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PREFACE. 

The  present  work  is  a  result  of  the  Author's  experience 

in  teaching  Geometry  to  Junior  Classes  in  the  University 

for  a  series  of  years.  It  is  not  an  edition  of  "  EucHd's 

Elements,"  and  has  in  fact  little  relation  to  that  cele- 

brated ancient  work  except  in  the  subject  matter. 

The  work  differs  also  from  the  majority  of  modern 

treatises  on  Geometry  in  several  resi)ects. 

The  point,  the  line,  and  the  curve  lying  in  a  common 

plane  are  taken  as  the  geometric  elements  of  Plane 

Geometry,  and  any  one  of  these  or  any  combination  of 

them  is  defined  as  a  geometric  plane  figure  Thus  a 

triangle  is  not  the  three-cornered  portion  of  the  plane 

inclosed  within  its  sides,  but  the  combination  of  the 

three  points  and  three  lines  forming  what  nre  usually 

termed  its  vertices  and  its  sides  and  sides  produced. 

This    mode    of    considering    geometric    figures    leads 
V 
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naturally  to  the  idea  of  a  figure  as  a  locuSj  and  con- 

sequently prepares  the  way  lor  the  study  of  Cartesian 

Geometry.  It  requires,  however,  that  a  careful  distinction 

be  drawn  between  figures  which  are  capable  of  super- 

position and  those  which  are  equal  merely  in  area. 

The  properties  of  congruence  and  equality  are  accord- 

ingly carefully  distinguished. 

The  principle  of  motion  in  the  transformation  of 

geometric  figures,  as  recommended  by  Dr.  Sylvester, 

and  as  a  consequence  the  principle  of  continuity  are 

freely  employed,  and  an  attempt  is  made  to  generalize 

all  theorems  which  admit  of  generalization. 

An  endeavour  is  made  to  connect  Geometry  with 

Algebraic  forms  and  symbols,  (i)  by  an  elementary 

study  of  the  modes  of  representing  geometric  ideas  in 

the  symbols  of  Algebra,  and  (2)  by  determining  the 

consequent  geometric  interpretation  which  is  to  be  given 

to  each  interpretable  algebraic  form.  The  use  of  such 

forms  and  symbols  not  only  shortens  the  statements 

of  geometric  relations  but  also  conduces  to  greater 

generality. 

In  dealing  with  proportion  the  method  of  measures 

is  employed  in  preference  to  that  of  multiples  as  being 
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equally  accurate,  easier  of  comprehension,  and  more 

in  line  with  elementary  mathematical  study.  In  dealing 

with  ratio  1  have  ventured,  when  comparing  two  finite 

lines,  to  introduce  Hamilton's  word  tejisor  as  seeming  to 

me  to  express  most  clearly  what  is  meant. 

After  treating  of  proportion  I  have  not  hesitated  to 

employ  those  special  ratios  known  as  trigonometric  func- 

tions in  deducing  geometric  relations. 

In  the  earlier  parts  of  the  work  Constructive  Geometry 

is  separated  from  Descriptive  Geometry,  and  short 

descriptions  are  given  of  the  more  important  geometric 

drawing-instruments,  having  special  reference  to  the 

geometric  principles  of  their  actions. 

Parts  IV.  and  V.  contain  :i  synthetic  treatment  of  the 

theories  of  the  mean  centre,  of  inverse  figures,  of  pole 

and  polar,  of  harmonic  division,  etc.,  as  applied  to  the 

line  and  circle ;  and  it  is  believed  that  a  student  who 

becomes  acquainted  with  these  geometric  extensions  in 

this  their  simpler  form  will  be  greatly  assisted  in  the 

wider  discussion  of  them  in  analytical  conies.  Through- 

out the  whole  work  modern  terminology  and  modern 

processes  have  been  used  with  the  greatest  freedom, 

regard  being  had  in  all  cases  to  perspicuity. 
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As  is  evident  from  what  has  been  said,  the  whole 

intention  in  preparing  the  work  has  been  to  furnish  the 

student  with  that  kind  of  geometric  knowledge  which 

may  enable  him  to  take  up  most  successfully  the  modern 
works  on  Analytical  Geometry. 

N.  F.  D. 

Qi:ern's  Colle(;e, 
Kingston,  Canada. 
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PART    I 

GENERAL   CONSIDERATIONS. 

r.  A  statement  which  explains  the  sense  in  which  some 
word  or  phrase  is  employed  is  a  definition. 

A  definition  may  select  some  one  meaning  out  of  several 
attached  to  a  common  word,  or  it  may  introduce  some 
technical  term  to  be  used  in  a  particular  sense. 

Some  terms,  such  as  space,  straight,  direction,  etc.,  which 
express  elementary  ideas  cannot  be  defined. 

2°.  Def. — A  Theorem  is  the  formal  statement  of  some 
mathematical  relation. 

A  theorem  may  be  stated  for  the  purpose  of  being  sub- 
sequently proved,  or  it  may  be  deduced  from  some  previous 

course  of  reasoning. 

In  the  former  case  it  is  called  a  Proposition^  that  is,  some- 
thing proposed,  and  consists  of  {ix)  the  statement  or  enuncia- 

tion of  the  theorem,  and  {b)  the  argument  or  proof.  The 
purpose  of  the  argument  is  to  show  that  the  truth  of  the 
theorem  depends  upon  that  of  some  preceding  theorem 
whose  truth  has  already  been  established  or  admitted. 

Ex.  "  The  sum  of  two  odd  numbers  is  an  even  number  " 
is  a  theorem. 

3°.  A  theorem  so  elementary  as  to  be  generally  accepted  as 
true  without  any  formal  proof,  is  an  axiom, 

«  '  A     * 
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Mathematical  axioms   are  general   or  particular,   that   is, 

they  apply  to  the  whole  science  of  mathematics,  or  have 

special  applications  to  some  department. 

The  principal  general  axioms  are  :- - 
i.  The  whole  is  equal  to  the  sum  of  all  its  parts,  and 

therefore  greater  than  any  one  of  its  parts, 

ii.  Things  equal  to  the  same  thing  are  equal  to  one 
another, 

iii.   If  equals  be  added  to  equals  the  sums  are  equal, 

iv.   If  equals  be  taken  from  equals  the  remainders  are 

equal. 
V.  If  equals  be  added  to  or  taken  from  unequals  the 

results  are  unequal, 

vi.   If  unequals  be  taken  from  equals  the  remainders  are 

unequal, 

vii.  Equal  multiples  of  equals  are  equal ;  so  also  equal 

submultiples  of  equals  are  equal. 

The  axioms  which  belong  particularly  to  geometry  will 

occur  in  the  sequel. 

4°.  The  statement  of  any  theorem  may  be  put  into  the 
hypothetical  form,  of  which  the  type  is — 

If  A  is  B  then  C  is  D. 

The  first  part  "  if  A  is  B  "  is  called  the  hypothesis^  and  the 

second  part  "  then  C  is  D  "  is  the  conclusion. 

Ex.  The  theorem  "  The  product  of  two  odd  numbers  is 

an  odd  number  "  can  be  arranged  thus  : — 

Hyp.     If  two  numbers  are  each  an  odd  number. 

Concl.  Then  their  product  is  an  odd  number. 

5''.  The  statement  "  If  A  is  B  then  C  is  D  "  may  be  im- 
mediately put  into  the  form — 

If  C  is  not  D  then  A  is  not  B, 

which  is  called  t"he  contrapositive  of  the  former. 
The  truth  of  a  theorem  establishes  the  truth  of  its  contra- 
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positive,  and  vice  versa^  and  hence  if  either  is  proved  the 

other  is  proved  also. 

6^  Two  theorems  are  converse  to  one  another  when  the 

hypothesis  and  conclusion  of  the  one  are  respectively  the 

conclusion  and  hypothesis  of  the  other. 

Ex.   If  an  animal  is  a  horse  it  has  four  legs. 

Converse.   If  an  animal  has  four  legs  it  is  a  horse. 

As  is  readily  seen  from  the  foregoing  example,  the  truth  of 

a  theorem  does  not  necessarily  establish  the  truth  of  its  con- 
verse, and  hence  a  theorem  and  its  converse  have  in  general 

to  be  proved  separately.  But  on  account  of  the  peculiar 

relation  existing  between  the  two,  a  relation  exists  also 

between  the  modes  of  proof  for  the  two.  These  are  known 

as  the  direct  and  indirect  modes  of  proof.  And  if  any 

theorem  which  admits  of  a  converse  can  be  proved  directly 

its  converse  can  usually  be  proved  indirectly.  Examples 
will  occur  hereafter. 

7°.  Many  geometric  theorems  are  so  connected  with  their 
converses  that  the  truth  of  the  theorems  establishes  that  of 

the  converses,  and  vice  versa. 

The  necessary  connection  is  expressed  in  the  /\it/e  of 

Identity,  its  statement  being  :- 

//  there  is  but  one  X  and  one   I',  and  if  it  is  proved 
that  X  is  Y,  then  it  follows  that  V  is  X. 

Where  X  and  Y  stand  for  phrases  such  as  may  form  the 

hypotheses  or  conclusions  of  theorems,  and  the"  is"  between 

them  is  to  be  variously  interpreted  as  ''  equal  to,"  "  corre- 

sponds to,"  etc. 
Ex.  Of  two  sides  of  a  triangle  only  one  can  be  the  greater, 

and  of  the  two  angles  opposite  these  sides  only  one  can  be 

the  greater.  Then,  if  it  is  proved  that  the  greater  side  is 

opposite  the  greater  angle  it  follows  that  the  greater  angle  is 

opposite  the  greater  side. 
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In  this  example  there  is  but  one  X  (the  greater  side)  and 

one  Y  (the  greater  angle),  and  as  X  is  (corresponds  to  or  is 

opposite)  Y,  therefore  Y  is  (corresponds  to  or  is  opposite)  X. 

8".  A  Corollary  is  a  theorem  deduced  from  some  other 
theorem,  usually  by  some  qualification  or  restriction,  and 

occasionally  by  some  amplification  of  the  hypothesis.  Or  a 

corollary  may  be  derived  directly  from  an  axiom  or  from  a 
definition. 

As  a  matter  of  course  no  sharp  distinction  can  be  drawn 
between  theorems  and  corollaries. 

Ex.  From  the  theorem,  "  The  product  of  two  odd  numbers 

is  an  odd  number,"  by  making  the  two  numbers  equal  we 

obtain  as  a  corollary,  "  The  square  of  an  odd  number  is  an 
odd  number." 

Exercises. 

vState  the  contrapositives  and  the  converses  of  the  follow- 

ing theorems  : — 
1.  The  sum  of  two  odd  numbers  is  an  even  number. 

2.  A  diameter  is  the  longest  chord  in  a  circle. 

3.  Parallel  lines  never  meet. 

4.  Every  point  equidistant  from  the  end-points  of  a  line- 
segment  is  on  the  right  bisector  of  that  segment. 

SECTION    I. 

THE    LINE   AND    POINT. 

9°.  Space  may  be  defined  to  be  that  which  admits  of 
length  or  distance  in  every  direction  ;  so  that  length  and 

direction  are  fundamental  ideas  in  studying  the  geometric 

properties  of  space. 
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Every  material  object  exists  in,  and  is  surrounded  by 

space.  The  limit  which  separates  a  material  object  from 

the  space  which  surrounds  it,  or  which  separates  the  space 

occupied  by  the  object  from  the  space  not  occupied  by  it,  is 
a  surface. 

The  surface  of  a  black-board  is  the  limit  which  separates 

the  black-board  from  the  space  lying  without  it.  This  surface 
can  have  no  thickness,  as  in  such  a  case  it  would  include  a 

part  of  the  board  or  of  the  space  without  or  of  both,  and 
would  not  be  the  dividing  limit. 

io°.  A  flat  surface,  as  that  of  a  black-board,  is  a  plane 
surface,  or  a  Plane. 

Pictures  of  geometric  relations  drawn  on  a  plane  surface 

as  that  of  a  black-board  are  usually  called  Plane  Geometric 
Figures.,  because  these  figures  lie  in  or  on  a  plane. 

Some  such  figures  are  known  to  every  person  under  such 

names  as  "  triangle,"  "  square,"  "  circle,"  etc. 

1 1°.  That  part  of  mathematics  which  treats  of  the  properties 
and  relations  of  plane  geometric  figures  is  Plane  Geometry. 

Such  is  the  subject  of  this  work. 

The  plane  upon  which  the  figures  are  supposed  to  lie  will 

be  referred  to  as  the  plane.,  and  unless  otherwise  stated  all 

figures  will  be  supposed  to  lie  in  or  on  the  same  plane. 

12°.  The  Line.  When  the  crayon  is  drawn  along  the 
.black-board  it  leaves  a  visible  mark.  This  mark  has  breadth 

and  occupies  some  of  the  surface  upon  which  it  is  drawn, 

and  by  way  of  distinction  is  called  a  physical  line.  By 

continually  diminishing  the  breadth  of  the  physical  line  we 

make  it  approximate  to  the  geometric  line.  Hence  we  may 
consider  the  geometric  line  as  being  the  limit  towards  which 

a  physical  line  approaches  as  its  breadth  is  continually 

diminished.  We  may  consequently  consider  a  geometric 

line  as  length  abstracted  from  every  other  consideration. 
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This  theoretic  relation  of  a  geometric  Hne  to  a  physical 
one  is  of  some  importance,  as  whatever  is  true  for  the 

physical  line,  independently  of  its  breadth,  is  true  for  the 

geometric  line.  And  hence  arguments  in  regard  to  geometric 

lines  may  be  replaced  by  arguments  in  regard  to  physical 

lines,  if  from  such  arguments  we  exclude  everything  that 
would  involve  the  idea  of  breadth. 

The  diagrams  employed  to  direct  and  assist  us  in  geo- 
metric investigations  are  formed  of  physical  lines,  but  they 

may  equally  well  be  supposed  to  be  formed  of  threads,  wires 

or  light  rods,  if  we  do  not  involve  in  our  arguments  any  idea 

of  the  breadth  or  thickness  of  the  lines,  threads,  wires  or 

rods  employed. 

In  the  practical  applications  of  Geometry  the  diagrams 

frequently  become  material  or  represent  material  objects. 

Thus  in  Mechanics  we  consider  such  things  as  levers,  wedges, 

wheels,  cords,  etc.,  and  our  diagrams  become  representations 

of  these  things. 

A  pulley  or  wheel  becomes  a  circle,  its  arms  become  radii 

of  the  circle,  and  its  centre  the  centre  of  the  circle  ;  stretched 

cords  become  straight  lines,  etc. 

13°.  The  Point.  A  point  marks  position,  but  has  no  size. 
The  intersection  of  one  line  by  another  gives  a  point,  called 

the  point  of  intersection. 

If  the  lines  are  physical,  the  point  is  physical  and  has  some 

size,  but  when  the  lines  are  geometric  the  point  is  also 

geometric. 

14°.  Sti'iiigJit  Line.  For  want  of  a  better  definition  we 
may  say  that  a  straight  line  is  one  of  which  every  part  has 

the  same  direction.  For  every  part  of  a  line  must  have  some 

direction,  and  when  this  direction  is  common  to  all  the  parts 

of  the  line,  the  line  is  straight. 

The  wond  "direction"  is  not  in  itself  definable,  and  when 
applied  to  a  line  in  the  absolute  it  is  not  intelligible.     Rut 
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ever)  person  knows  what  is  meant  by  such  expressions  as 

"the  same  direction,"  "opposite  direction,"  etc.,  for  these 
express  rehitions  between  directions,  and  such  relations  are 

as  readily  comprehended  as  relations  between  lengths  or 
other  magnitudes. 

The  most  prominent  property,  and  in  fact  the  distinctive 

property  of  a  straight  line,  is  the  absolute  sameness  which 
characterizes  all  its  parts,  so  that  two  portions  of  the  same 

straight  line  can  differ  from  one  another  in  no  respect  except 

in  length. 

Dcf.—K  plane  figure  made  up  of  straight  lines  only  is 
called  a  rectilinear  figure. 

15°.  A  Citrve  is  a  line  of  which  no  part  is  straight;  or  a 
curve  is  a  line  of  which  no  two  adjacent  parts  have  the  same 
direction. 

The  most  common  example  of  a  curve  is  a  circle  or  portion 
of  a  circle. 

Henceforward,  the  word  "line,"  unless  otherwise  qualified, 
will  mean  a  straight  line. 

16°.  The  "rule"  or  "straight-edge"  is  a  strip  of  wood, 
metal,  or  other  solid  with  one  ^<\<^^  made  straioht.  Its 
common  use  is  to  guide  the  pen  or  pencil  in  drawing  lines 

in  Practical  Geometry. 

17°.  A  Plane  is  a  surface  such  that  the  line  joining  any  two 
arbitrary  points  in  it  coincides  wholly  with  the  surface. 

The  planarity  of  a  surface  may  be  tested  by  applying  the 
rule  to  it.  If  the  rule  touches  the  surface  at  some  points  and 

not  at  others  the  suiface  is  not  a  plane.  But  if  the  rule 

touches  the  surface  throughout  its  whole  length,  and  in  every 

position  and  direction  in  which  it  can  be  applied,  the  surface 

is  a  plane. 

The  most  arcurateh'  plane  artificial  surface  known  is 
probahlv    that    of  a    well-formed    plane   mirror.     Examina- 
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tion  of  the  images  of  objects  as  seen  in  such  mirrors  is 

capable  of  detecting  variations  from  the  plane,  so  minute  as 

to  escape  all  other  tests. 

iS"".  A  surface  which  is  not  plane,  and  which  is  not  com- 
posed of  planes,  is  a  curved  surface.  Such  is  the  surface  of 

a  sphere,  or  cylinder. 

19°.  The  point,  the  line,  the  curve,  the  plane  and  the 
curved  surface  are  the  elements  which  go  to  make  up  geo- 

metric figures. 

Where  a  single  plane  is  the  only  surface  concerned,  the 

point  and  line  lie  in  it  and  form  a  plane  figure.  But  where 

more  than  one  plane  is  concerned,  or  where  a  curved  surface 

is  concerned,  the  figure  occupies  space,  as  a  cube  or  a  sphere, 

and  is  called  a  spatial  figure  or  a  solid. 

The  study  of  spatial  figures  constitutes  Solid  Geometry,  or 

the  Geometry  of  Space,  as  distinguished  from  Plane  Geometry. 

20°.  Given  Point  and  Lifie.  A  point  or  line  is  said  to  be 
giveji  when  we  are  made  to  know  enough  about  it  to  enable 

us  to  distinguish  it  from  every  other  point  or  line ;  and  the 

data  which  give  a  point  or  line  are  commonly  said  to 
determine  it. 

A  similar  nomenclature  applies  to  other  geometric  ele- 
ments. 

The  statement  that  a  point  or  line  lies  in  a  plane  does  not 

give  it,  but  a  point  or  line  placed  in  the  plane  for  future 

reference  is  considered  as  being  given.  Such  a  point  is 

usually  called  an  oiigin^  and  such  a  line  a  datti?n  line^  an 

i?iitial  line.,  a  prime  vector,  etc. 

21°.  Def.  I. — A  line  considered  merely  as  a  geometric 
element,  and  without  any  limitations,  is  an  indefinite  line. 

2. — A  limited  portion  of  a  line,  especially  when  any  refer- 

ence is  had  to  its  length,  is  a  fittite  line,  or  a  line- segment.,  or 
simply  a  segment. 
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That  absolute  sameness  (14°)  which    characterizes  every 
part  of  a  line  leads  directly  to  the  following  conclusions  : 

(i)  No  distinction  can  be  made  between  any  two  segments 

of  the  same  line  equal  in  length,  except  that  of  position 
in  the  Hne. 

(2)  A  line  cannot  return  into,  or  cross  itself. 

(3)  A  line  is  not  necessarily  limited  in  length,  and  hence, 

in   imagination,   we  may  follow  a  line  as  far  as  we 

please  without  coming  to  any  necessary  termination. 

This  property  is  conveniently  expressed  by  saying 
that  a  line  extends  to  infinity. 

3. — The  hypothetical  end-points  of  any  indefinite  line  are 
said  to  be  points   at   infinity.      All    other  points  are  finite 

points. 

22".  Sotation.  A  point  is  denoted  by  a  single  letter  where- 

ever  practicable,  as  '*  the  point  A." 
An  indefinite  line  is  also  denoted  by  a  single  letter  as  "  the 

line  L,"  but  in  this  case  the  letter  ,_    ^ 
has  no  reference  to  any  point.  a  b 

A  segment  is  denoted  by  naming  its  end  points,  as  the 

"  segment  AB,"  where  A  and  B  are  the  end  points.  This  is 
a  biliteral.,  or  two- letter  notation. 

A  segment  is  also  denoted  by  a  single  letter,  when  the 

limits  of  its  length  are  supposed  to  be  known,  as  the  "seg- 
ment aP     This  is  a  uniliteral,  or  one-letter  notation. 

The  term  "  segment "  involves  the  notion  of  some  finite 
length.  When  length  is  not  under  consideration,  the  term 

"line"  is  preferred. 

Thus  the  "  line  AB  "  is  the  indefinite  line  having  A  and  B 

as  two  points  upon  it.  But  the  "segment  AB"  is  that  portion 
of  the  line  which  lies  between  A  and  B. 

23°.  In  dealing  with  a  line-segment,  we  frequently  •  have  to 
consider  other  portions  of  the  indefinite  line  of  which  the 

segment  is  a  part. 
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As  an  example,  let  it  be  required  to  divide  the  segment  AB 

__H   into  two  parts  whereof  one  shall 

^         ̂     ̂   ^  be  twice  as  long  as  the  other. 
To  do  this  we  put  C  in  such  a  position  that  it  maybe  twice  as 

far  from  one  of  the  end-points  of  the  segment,  A  say,  as  it  is 
from  the  other,  B.  But  on  the  indefinite  line  through  A  and 

B  we  may  place  C  so  as  to  be  twice  as  far  from  A  as  from  B. 

So  that  we  have  two  points,  C  and  C,  both  satisfying  the 
condition  of  being  twice  as  far  from  A  as  from  B. 

Evidently,  the  point  C  does  not  divide  the  segment  AB  in 

the  sense  commonly  attached  to  the  word  divide.  But  on 

account  of  the  similar  relations  held  by  C  and  C  to  the  end- 
points  of  the  segment,  it  is  convenient  and  advantageous  to 

consider  both  points  as  dividing  the  segment  AB. 

When  thus  considered,  C  is  said  to  divide  the  segment 

inter7ially  and  C  to  divide  it  externally  in  the  same  manner. 

24°.  Axiom. — Through  a  given  point  only  one  line  can 
pass  in  a  given  direction. 

Let  A  be  the  given  point,  and  let  the  segment  AP  mark 

.   ^    the  given  direction.     Then,  of  all  the  lines 

that  can  pass  through  the  point  A,  only  one 

can  have  the  direction  AP,  and  this  one  must  lie  along  and 

coincide  with  AP  so  as  to  form  with  it  virtually  but  one  line. 

Cor.  I.  A  finite  point  and  a  direction  determine  one 

line. ' 
Cor.  2.  Two  given  finite  points  determine  one  line.  For,  if 

A  and  P  be  the  points,  the  direction  AP  is  given,  and  hence 

the  line  through  A  and  having  the  direction  AP  is  given. 

Cor.  3.  Two  lines  by  their  intersection  determine  one  finite 

point.  For,  if  they  determined  two,  they  would  each  pass 

through  the  same  two  points,  which,  from  Cor.  2,  is  impossible. 

Cor.  4.  Another  statement  of  Cor.  2  is — Two  lines  which 
have  two  points  in  common  coincide  and  form  virtually  but 
one  line. 
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25°.  Axiom. — A  straight  line  is  the  shortest  distance  be- 
tween two  given  points. 

Although  it  is  possible  to  give  a  reasonable  proof  of  this 

axiom,  no  amount  of  proof  could  make  its  truth  more 

apparent. 
The  following  will  illustrate  the  axiom.  Assume  any  two 

points  on  a  thread  taken  as  a  physical  line.  By  separating 

these  as  far  as  possible,  the  th'ead  takes  the  form  which  Vve 
call  straight,  or  tends  to  take  that  form.  Therefore  a  straight 

finite  line  has  its  end-points  further  apart  than  a  curved  line 
of  equal  length.  Or,  a  less  length  of  line  will  reach  from  one 

given  point  to  another  when  the  line  is  straight  than  when  it 
is  curved. 

De/.—The  distance  between  two  points  is  the  length  of  the 

segment  which  connects  them  or  has  them  as  end-points. 

i6\  Superposition. —  Comparison  of  Fignres.—V^'o:  assume 
that  space  is  homogeneous,  or  that  all  its  parts  are  alike,  so 

that  the  properties  of  a  geometric  figure  are  independent  of  its 

position  in  space.  And  hence  we  assume  that  a  figure  may 

be  supposed  to  be  moved  from  place  to  place,  and  to  be  turned 

around  or  over  in  any  way  without  undergoing  any  change 

whatever  in  its  form  or  properties,  or  in  the  relations  existing 

between  its  several  parts. 

The  imaginary  placing  of  one  figure  upon  another  so 

as  to  compare  the  two  is  called  superpositio7i.  By  superposi- 
tion we  are  enabled  to  compare  figures  as  to  their  equality  or 

inequality.  If  one  figure  can  be  superimposed  upon  another 

so  as  to  coincide  with  the  latter  in  every  part,  the  two  figures 

are  necessarily  and  identically  equal,  and  become  virtually 

one  figure  by  the  superposition. 

27°.  Two  line-segments  can  be  compared  with  respect  to 
length  only.  Hence  a  line  is  called  a  magnitude  of  one 
(iifnension. 

Two  segments  ?i\t  eg uat  when  the  end-points  of  one  can  be 
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made  to  coincide  with  the  end-points  of  the  other  by  super- 

position. 

28°.  Def. — The  sum  of  two  segments  is  that  segment  which 
is  equal  to  the  two  when  placed  in  hne  with  one  end-point  in 
each  coincident. 

Let  AB  and  DE  be  two  segments,  and  on  the  line  of  which 

0   E  AB  is  a  segment   let    BC    be  equal  to 
DE.      Then    AC    is    the   sum    of    AB 

~A  B  c  and  DE. 
This  is  expressed  symbolically  by  writing 

AC  =  AB-fDE, 

where  =  denotes  equality  in  length,  and  +  denotes  the 

placing' of  the  segments  AB  and  DE  in  line  so  as  to  have  one 
common  point  as  an  end-point  for  each.  The  interpretation 
of  the  whole  is,  that  AC  is  equal  in  length  to  AB  and  DE 

together. 

29°.  /?(?/!— The  differetice  between  two  segments  is  the 
segment  which  remains  when,  from  the  longer  of  the  segments, 

a  part  is  taken  away  equal  in  length  to  the  shorter. 

Thus,  if  AC  and  DE  be  two  segments  of  which  AC  is  the 

longer,  and  if  BC  is  equal  to  DE,  then  AB  is  the  difference 
between  AC  and  DE. 

This  is  expressed  symbolically  by  writing 

AB  =  AC  -DE, 

which   is  interpreted  as  meaning  that  the   segment  AB   is 

shorter  than  AC  by  the  segment  DE. 

Now  this  is  equivalent  to  saying  that  AC  is  longer  than 

AB  by  the  segment  DE,  or  that  AC  is  equal  to  the  sum  of 
AB  and  DE. 

Hence  when  we  have     AB  =  AC-  DE 

we  can  write  AC  =  AB  -I-  DE. 

We  thus  see  that  in  using  these  algebraic  symbols,  =,  +, 

and  -,  a  term,  as  DE,  may  be  transferred  from  one  side  of 
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the  equation  to  another  by  changing  its  sign  from  -f  to  -  or 
vice  versa. 

Owing  to  the  readiness  with  which  these  symbolic  expres- 

sions can  be  manipulated,  they  seem  to  represent  simple  alge- 

braic relations,  hence  beginners  are  apt  to  think  that  the  work- 
ing rules  of  algebra  must  apply  to  them  as  a  matter  of 

necessity.  It  must  be  remembered,  however,  that  the  formal 

rules  of  algebra  are  founded  upon  the  properties  of  numbers, 
and  that  we  should  not  assume,  without  examination,  that 

these  rules  apply  without  modification  to  that  which  is  not 
number. 

This  subject  will  be  discussed  in  Part  II. 

30°.  De/.—  That  point,  in  a  line-segment,  which  is  equi- 
distant from  the  end-points  is  the  middle  point  of  the  segment. 

It  is  also  called  the  internal  point  of  bisection  of  the  seg- 
ment, or,  when  spoken  of  alone,  simply  \ht  point  0/  bisection. 

Exercises. 

1.  If  two  segments  be  in  line  and  have  one  common  end- 
point,  by  what  name  will  you  call  the  distance  between 

their  other  end-points  .-* 

2.  Obtain  any  relation  between  *'  the  sum  and  the  differ- 

ence "  of  two  segments  and  "the  relative  directions  "of 
the  two  segments,  they  being  in  line. 

3.  A  given  line-segment  has  but  one  middle  point. 

4.  In  Art.  23°,  if  C  becomes  the  middle  point  of  AB,  what 
becomes  of  C  ? 

5.  In  Art.  30''  the  internal  point  of  bisection  is  spoken  of. 
What  meaning  can  you  give  to  the  "  external  point  of 
bisection  "  ? 
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SECTION   II. 

RELATIONS  OF  TWO  LINES.— ANGLES. 

3f°.  When  two  lines  have  not  the  same  direction  they  are 
said  to  make  an  angle  with  one  another,  and  an  angle  is  a 

c    difference  in  direction. 

'^       Illiistratiojt.-LQi  A  and  B 
represent  two  stars,  and  E  the 

^'     ~~''^   position  of  an  observer's  eye. 
Since  the  lines  EA  and  EB,  which  join  the  eye  and  the 

stars,  have  not  the  same  direction  they  make  an  angle  with 
one  another  at  E. 

1.  If  the  stars  appear  to  recede  from  one  another,  the  angle 

at  E  becomes  greater.  Thus,  if  B  moves  into  the  position  of 

C,  the  angle  between  EA  and  EC  is  greater  than  the  angle 
between  EA  and  EB. 

Similarly,  if  the  stars  appear  to  approach  one  another,  the 

angle  at  E  becomes  smaller ;  and  if  the  stars  become  coinci- 

dent, or  situated  in  the  same  line  through  E,  the  angle  at  E 
vanishes. 

Hence  an  angle  is  capable  of  continuous  increase  or 

diminution,  and  is  therefore  a  magnitude.  And,  being 

magnitudes,  angles  are  capable  of  being  compared  with  one 

another  as  to  greatness,  and  hence,  of  being  measured. 

2.  If  B  is  moved  to  B',  any  point  on  EB,  and  A  to  A',  any 
point  on  EA,  the  angle  at  E  is  not  changed.  Hence  increas- 

ing or  diminishing  one  or  both  of  the  segments  which  form 

an  angle  does  not  affect  the  magnitude  of  the  angle. 

Hence,  also,  there  is  no  community  in  kind  between  an 

angle  and  a  line-segment  or  a  line. 
Hence,  also,  an  angle  cannot  be  measured  by  means  of 

line-segments  or  lines. 
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32'.  Dtf. — A  line  which  changes  its  direction  in  vt  plane 
while  passing  through  a  fixed  point  in  the  plane  is  said  to 

ronih'  about  the  point. 
The  point  about  which  the  rotation  takes  place  is  the  poli\ 

and  any  segment  of  ihe  rotating  line,  having  the  pole  as  an 

end-point,  is  a  radius  vector. 
Let  an  inexiensible  thread  fixed  at  O 

be  kept  stretched  by  a  pencil  at  P. 

Then,  wnen  P  moves,  keeping  the 

thread  straight,  OP  becomes  a  radius 

vector  rotating  about  the  pole  O. 
When  the  vector  rotates  from  direction  OP  to  direction 

OP'  it  describes  the  angle  between  OP  and  OP'.  Hence  we 
have  the  following  : — 

Def.  I .  —  The  ans^le  between  two  lines  is  the  rotation  neces- 
sary to  bring  one  of  the  lines  into  the  direction  of  the  other. 

The  word  "  rotation,"  as  employed  in  this  definition,  means 
the  amount  of  turning  effected,  and  not  the  process  of  turning. 

Def.  2. — For  convenience  the  lines  OP  and  OP',  which,  by 
their  difference  in  direction  form  the  angle,  are  called  the 

arms  of  the  angle,  and  the  point  O  where  the  arms  meet  is 
the  vertex. 

Cor.  From  31  ,  2,  an  angle  does  not  in  any  way  depend 

upon  the  lengths  of  its  arms,  but  only  upon  their  relative 
directions. 

33°.  Notation  of  Angles. — i.  The  symbol  L  is  used  for  the 

word  "angle." 
2.  When  two  segments  meet  at  a  vertex  the  angle  between 

them  may  be  denoted  by  a  single  letter 

placed  at  the  vertex,  as  the  L.0  ,  or  by 
a  letter  with  or  without  an  arch  of  dots, 

as  L? ;  or  by  three  letters  of  which  the 

extreme  ones  denote  points  upon  the  arms  of  the  angle  nnd 
the  middle  one  denotes  the  vertex,  as  i.AOH. 
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3.  The  angle  between  two  lines,  when  the  vertex  is  not 

pictured,  or  not  referred  to,  is  expressed  by  l{L.  M),  or  LM, 

where  L  and  M  denote  the  lines  in  the  one-letter  notation 

(22°);  or  LfAB,  CD),  where  AB  and  CD  denote  the  Hnes  in 
the  two-letter  notation. 

Two  angles  are  equal  when  the  arms  of  the  one 

may  be  made  to  coincide  in  direction  respec- 
tively with  the  arms  of  the  other  ;  or  when 

the  angles  are  described  by  the  same  rotation. 

Thus,  if,  when  C  is  placed  upon  O,  and 

O'A'  is  made  to  lie  along  OA,  O'B'  can  also 

B'  be  made  to  lie  along  OB,  the  z.A'0'B'  is  equal 
to  1.AOB.    This  equality  is  symbolized  thus  : 

^A'0'B'  =  ̂ AOB. 

-A       Where  the  sign  =  is  to  be  interpreted  as 
indicating  the  possibility  of  coincidence  by  superposition. 

35°.  Sum  and  Difference  of  Angles. — The  sum  of  two 
angles  is  the  angle  described  by  a  radius  vector  which 

describes  the  two  angles,  or  their  equals,  in  succession. 

,p'  Thus  if  a  radius  vector  starts  from  co- 
incidence   with    OA    and    rotates    into 

direction    OP    it   describes    the    Z.AOP. 

If  it  next  rotates  into  direction  OP'  it 

0  A  describes  the  z_POP'.     But  in  its  whole 

rotation  it  has  described  the  /_AOP'.     Therefore, 
z.AOP'  =  ̂ AOP-h^POP'. 

Similarly,  ^AOP  =  ̂ AOP'-^POP'. 

Def. — When  two  angles,  as  AOP  and  POP',  have  one  arm 
in  common  lying  between  the  remaining  arms,  the  angles  are 

adjacent  angles. 

36°.  Def. — A  radius  vector  which  starts  from  any  given 
direction  and  makes  a  complete  rotation  so  ns  to  return  to  its 

original  direction  describes  a  circumanglt\  or  prrii^vn. 
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One-half  of  a   rircumangle  is  a  strtti^ht  angle,  and   one- 
fourth  of  a  circumangle  is  a  rio^ht  angle. 

37°.    Theorem. —  If  any  number  of  lines  meet  in   a  point, 
the  sum  of  all  the  adjacent  angles  formed  is  a  circumangle. 

OA,  OB,  OC,  ...,  OF  are  lines  meeting 
in  O.     Then 

^AOB  +  ̂ BOC4-.iCOU  +  ...+^FOA 
=  a  circumangle.  D_ 

Proof.— K  radius   vector  which   starts 
from  coincidence  with  OA  and  rotates  into 

the  successive    directions,   OB,  OC,   ...,  '^ 
OF,  OA  describes  in  succession  the  angles  AOB,  BOC,  ..  , 

EOF,  FOA. 

But  in  its  complete  rotation  it  describes  a  circumangle  (36°). 
zJVOB -I- _BOC -I- ... -F^FOA  =  a  circumangle.      q.e.d. 

Cor.  The  result  may  be  thus  stated  : — 
The  sum  of  all  the  adjacent  angles  about  a  point  in 

the  plane  is  a  circumangle. 

38°.   Theorem.— 'Wi^  sum  of  all  the  adjacent  angles  on  one 
side  of  a  line,  and  about  a  point  in  the  A 

line  is  a  straight  angle. 

O  is  a  point  in  the  line  AB  ;  then 

_AOC  +  z.COB  =  a  straight  angle. 

Proof.— Let  A  and  B  be  any  two  points 

in  the  line,  and  let  the  figure  formed  by  y' 
AB  and  OC  be  revolved  about  AB  without  displacing  the 

points  A  and  B,  so  that  OC  may  come  into  a  position  OC. 

Then  {2^,  Cor.  2)  O  is  not  displaced  by  the  revolution, 

-AOC  =  ̂ AOC',  and  ̂ BOC  =  z.BOC'; 
^OC-l-_BOC  =  ̂ AOC'  +  /.BOC', 

and  since  the  sum  of  the  four  angles  is  a  circumangle  (37°), 

therefore  the  sum  of  each  pair  is  a  straight  angle  (36°).    q.e.d. 
Cor.  I.  The  angle  between  the  opposite  directions  of  a  line 

is  a  straight  angle. 
B 
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Cor.  2.  If  a  radius  vector  be  rotated  until  its  direction  is 

reversed  it  describes  a  straight  angle.  And  cor.vcrsely,  if  a 

radius  vector  describes  a  straight  angle  its  original  direction 
is  reversed. 

Thus,  if  OA  rotates  through  a  straight  angle  it  comes  into 

the  direction  OI>.  And  conversely,  if  it  rotates  from  direction 

OA  to  direction  OB  it  describes  a  straight  angle. 

MX         39°.  When  two  lines  L  and  M  cut  one 
g  /^  another  four  angles  are  formed  about  the 

~T  point  of  intersection,  any  one  of  which 
may  be  taken  to  be  the  angle  between 
the  lines. 

These  four  angles  consist  of  two  pairs  of  opposite  or 

vet  thill  angles,  viz..  A,  A',  and  B,  B',  A  being  opposite  A', 

and  B  being  opposite  B'. 

40°.  Theorem. — The  opposite  angles  of  a  pair  formed  by 
two  intersecting  lines  are  equal  to  one  another. 

Proof.—         ̂ A  +  ̂ B  =  a  straight  angle  (38°) 

and                     ^A'  +  Z.B  =  a  straight  angle.  (38°) 

-A  =  ̂ A', 
and                                 z_B  =  i-B'.  q.e.d. 

DeJ.  I. — Two  angles  which  together  make  up  a  straight 
angle  are  supplementary  to  one  another,  and  one  is  called  the 

supplement  of  the  other.  Thus,  A  is  the  supplement  of  B', 
and  B  of  A'. 

Cor.  If  Z_A  =  ̂ B,  then  z.A'  =  ̂ B  =  ̂ B',  and  all  four  angles 

are  equal,  and  each  is  a  right  angle  (36°). 
Therefore,  if  two  adjacent  angles  formed  by  two  intersect- 

ing lines  are  equal  to  each  other,  all  four  of  the  angles  so 

formed  are  equal  to  one  another,  and  each  is  a  right  angle. 

Def.  2.— When  two  intersecting  lines  form  a  right  angle  at 
their  point  of  intersection,  they  are  said  to  be  perpoulicular 

to  one  another,  and  each  is  perpendicular  to  the  other. 
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Perpendicularity  is  denoted  by  the  symbol  _L,  to  be  read 

'•  perpendicular  to"  or  "is  perpendicular  to."' 

A  right  angle  is  denoted  by  the  symbol  ~~\. 
The  symbol  J_  also  denotes  two  right  angles  or  a  straight 

angle. 

D^/.  3. — When  two  angles  together  make  up  a  right  angle 
they  are  complementary  to  one  another,  and  each  is  the 

complement  of  the  other. 

The  right  angle  is  the  simplest  of  all  angles,  for  when  two 

lines  form  an  angle  they  form  four  angles  equal  in  opposite 

pairs.  But  if  any  one  of  these  is  a  right  angle,  all  four  are 

fight  angles. 

Perpendicularity  is  the  most  important  directional  relation 

in  the  applications  of  Geometry. 

Def.  4. — An  acute  angle  is  less  than  a  right  angle,  and  an 
obtuse  angle  is  greater  than  a  right  angle,  and  less  than  two 

right  angles. 

41  .   From  (36°)  we  have 
I  circumangle  =  2  straight  angles 

=  4  right  angles. 

In  estimating  an  angle  numerically  it  may  be  expressed  in 

any  one  of  the  given  units. 

If  a  right  angle  be  taken  as  the  unit,  a  circumangle  is 

expressed  by  4,  i.e,  four  right  angles,  and  a  straight  angle 

by  2. 

Angles  less  than  a  right  angle  may  be  expressed,  approxi- 
mately at  least,  by  fractions,  or  as  fractional  parts  of  the 

right  angle. 

For  practical  purposes  the  right  angle  is  divided  into  90 

equal  parts  called  degrees  ;  each  degree  is  divided  into  60 

equal  parts  called  minutes  ;  and  each  minute  into  60  equal 

parts  called  seconds. 

Thus  an  angle  which  is  one-seventh  of  a  circumangle 

contains  fifty-one  degrees,  twenty-five  minutes,  and  forty-two 
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seconds  and  six-sevenths  of  a  second.     This  is  denoted  as 

follows:—  5i°25'42S". 

42°.    Thcorcnt. — Through  a  given  point  in  a  line  only  one 
perpendicular  can  be  drawn  to  the  line. 

The  line  OC  is  ±  AB,  and  OD  is  any 

other  line  through  O. 

A  p  B      Then  OD  is  not  ±  AB. 

Proof.— i:\v^   angles    BOC    and   COA 

'  are  each  right  angles  (40°,  Def  2). 
Therefore  BOD  is  not  a  right  angle,  and  OD  is  not  _L  AB. 

But  OD  is  any  line  other  than  OC. 

Therefore  OC  is  the  only  perpendicular.  q.e  d. 

Def. — The  perpendicular  to  a  line-segment  through  its 
middle  point  is  the  right  bisector  of  the  segment. 

Since  a  segment  has  but  one  middle  point  (30",  Ex  3),  and 
since  but  one  perpendicular  can  be  drawn  to  the  segment 

through  that  point, 

a  line-segment  has  but  one  right  bisector. 

43°.  Def. — The  lines  which  pass  through  the  vertex  of  an 
angle  and  make  equal  angles  with  the  arms,  are  the  bisectors 
of  the  angle.  The  one  which  lies  within  the  angle  is  the 

internal  bisector,  and  the  one  lying  without  is  the  external 
bisector. 

Let  AOC  be  a  given  angle  ;  and 

E     let  EOF  be   so  drawn   that  ̂ AOE 
=  ̂ EOC. 

EF  is  the  internal  bisector  of  the 

angle  AOC. 

^  Also,  let  GOH  be  so  drawn  that 
'D  ^COG  =  z.HOA. 

HG  is  the  external  bisector  of  the  angle  AOC. 
^COG  =  ̂ HOA  (hyp.) 

and  -.HOA  =  z.GOB,  (40°) 
^COG=^GOB; 
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and  the  external  biscLtor  of  AOC  is  the  internal  bisector  of 

its  supplementary  angle,  COB,  and  vice  versa. 

The  reason  for  calhng  GH  a  bisector  of  the  angle  AOC  is 

given  in  the  definition,  viz.,  GH  makes  equal  angles  with  the 

arms.  Also,  OA  and  OC  are  only  parts  of  indefinite  lines, 

whose  angle  of  intersection  may  be  taken  as  the  Z.AOC  or 
as  the  ̂ COB. 

44°.  Just  as  in  23°  we  found  two  points  which  are  said 
to  divide  the  segment  in  the  same  manner,  so  we  may  find 

two  lines  dividing  a  given  angle  in  the  same  manner,  one 

dividing  it  internally,  and  the  other  externally. 

Thus,  if  OE  is  so  drawn  that  the  i_AOE  is  double  the 

/lEOC,  some  line  OG  may  also  be  drawn  so  that  the  _A0(} 
is  double  the  ̂ GOC. 

This  double  relation  in  the  division  of  a  segment  or  an 

angle  is  of  the  highest  importance  in  Geometry. 

45°.  Theorem.— The  bisectors  of  an  angle  are  perpendicular 
to  one  another. 

EF  and  GH  are  bisectors  of  the  Z.AOC  ; 
then  EF  isi.GH. 

Proof. 

and 
adding, 
But 

lEOC =  \lAOC,     V   OE 
is 

a  bisector ; 

lCOG  ■■ 

=  kcOB,     V   0(} is a  bisector ; 

^EOG: =  \LAOh. 
lAOW is  a  straight  angle, 

(38°, 

Cor.  I) 

^EOG is  a  right  angle. 

Exercises. 

(36I 

Three  lines  pass  through  a  common  point  and  divide  the 

plane  into  6  equal  angles.     Express,  the  value  of  each 

angle  in  right  angles,  and  in  degrees. 

OA  and  OB  make  an  angle  of  30*,  how  many  degrees  are 
there  in  the  angle  made  by  OA  and  the  external  bisector 

of  the  angle  AOB.^ 
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What  is  the  supplement  of  13"  27'  42"?  What  is  its 
complement  ? 

Two  lines  make  an  angle  a  with  one  another,  and  the 

bisectors  of  the  angle  are  drawn,  and  again  the  bisectors 

of  the  angle  between  these  bisectors.  W^hat  are  the 
angles  between  these  latter  lines  and  the  original  ones  .^ 

The  lines  L,  M  intersect  at  O,  and  through  O,  L'  and  M' 
are  drawn  X  respectively  to  L  and  M.  The  angle  be- 

tween L'  and  M'  is  equal  to  that  between  L  and  M. 

SECTION    III. 

THREE   OR   MORE   POINTS  AND   LINES. 

THE    TRIANGLE. 

46°.  Theorem. — Three  points  determine  at  most  three  lines ; 
and  three  lines  determine  at  most  three  points. 

Proof  I. — Since  (24°,  Cor.  2)  two  points  determine  one 
line,  three  points  determine  as  many  hnes 

as  we  can  form  groups  from  three  points 
taken  two  and  two. 

Let  A,   B,   C   be  the  points  ;   the  groups 

are  AB,  BC,  and  CA. 

Therefore  three  points  determine  at  most  three  lines. 

2. — Since  (24°,  Cor.  3)  two  lines  determine  one  point,  three 
lines  determine  as  many  points  as  we  can  form  groups  from 
three  lines  taken  two  and  two. 

But  if  L,  M,  N  be  the  lines  the  groups  are  LM,  MN,  anvl 
NL. 

Therefore  three  lines  determine  by  their  intersections  at 

most  three  points. 
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47".  Theorem. — Four  points  determine  at  most  six  lines ;  and 
four  lines  determine  at  most  six  points. 

Proof. -~\.  Let  A,  B,  C,  D  be  the  four 
points.  The  groups  of  two  are  AB,  AC, 
AD,  BC,  BD,  and  CD  ;  or  six  in  all. 

Therefore  six  lines  at  most  are  deter- 
mined. 

2.  Let  L,  M,  N,  K  be  the  lines.  The 

groups  of  two  that  can  be  made  are  KL, 
KM,  KN,  LM,  LN,  and  MN  ;  or  six  in  all. 

Therefore  six  points  of  intersection  at 
most  are  determined. 

Cor.  In  the  first  case  the  six  lines  determined  pass  by 

threes  through  the  four  points.  And  in  the  second  case  the 

six  points  determined  lie  by  threes  upon  the  four  lines. 

This  reciprocality  of  property  is  very  suggestive,  and  in  the 

higher  Geometry  is  of  special  importance. 

Ex.  Show  that  5  points  determine  at  most  10  lines,  and  5 

lines  determine  at  most  10  points.  And  that  in  the  first  case 

the  lines  pass  by  fours  through  each  point  :  and  in  the  latter, 

the  points  lie  by  fours  on  each  line. 

48°.  Def.—\  triauf^le  is  the  figure  formed  by  three  lines 
and  the  determined  points,  or  by  three  points  and  the  deter- 

mined lines. 

The  points  are  the  vertices  of  the-  triangle,  and  the  line- 

segments  which  have  the  points  as  end-points  are  the  sides. 
The  remaining  portions  of  the  determined  lines  are  usually 

spoken  of  as  the  "sides  produced."  But  in  many  cases 
generality  requires  us  to  extend  the  term 

"  side  "  to  the  whole  line. 

Thus,  the  points  A,  B,  C  are  the 
vertices  of  the  triangle  ABC. 

The  segments  AB,  BC,  CA  are  the 

sides.  The  portions  AE,  BF,  CD,  etc., 

extending  outwards  as  far  as  required,  are  the  sides  piod 
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The  triangle  is  distinctive  in  being  the  rectilinear  figure  for 
which  a  given  number  of  lines  determines  the  same  number 

of  points,  or  vice  versa. 

Hence  when  the  three  points,  forming  the  vertices,  are 

given,  or  when  the  three  lines  or  line-segments  forming  the 

sides  are  given,  the  triangle   is   com- 

pletely given. 
This  is  not  the  case  with  a  rectilinear 

figure  having  any  number  of  vertices 
other  than  three. 

If  the  vertices  be  four  in  number, 
with  the  restriction  that  each  vertex  is 

determined  by  the  intersection  of  two 

sides,  any  one  of  the  figures  in  the 

margin  will  satisfy  the  conditions. 

Hence  the  giving  of  the  four  vertices  of  such  a  figure  is 

not  sufficient  to  completely  determine  the  figure. 

49°.  De/.—i.  The  angles  ABC,  BCA,  CAB  are  the  in- 
ternal angles  of  the  triangle,  or  simply  the  angles  of  the 

triangle. 

2.  The  angle  DCB,  and  others  of  like  kind,  are  external 

angles  of  the  triangle. 

3.  In  relation  to  the  external  angle  DCB,  the  angle  BCA 

is  the  adjacent  iftternal  angle,  while  the  angles  CAB  and 

ABC  are  opposite  internal  angles. 

4.  Any  side  of  a  triangle  may  be  taken  as  its  base.,  and  then 

the  angles  at  the  extremities  of  the  base  are  its  basal  angles, 

and  the  angle  opposite  the  base  is  the  vertical  angle.  The 

vertex  of  the  vertical  angle  is  the  vertex  of  the  triangle 

when  spoken  of  in  relation  to  the  base. 

50°.  Notation. — The  symbol  A  is  commonly  used  for  the 
word  triangle.  In  certain  cases,  which  are  always  readily 

apprehended,  it  denotes  the  area  of  the  triangle. 
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The  angles  of  the  triangle  are  denoted  usually  by  the 

capital  letters  A,  B,  C,  and  the  sides  opposite  by  the  cor- 
responding small  letters  a^  b^  c. 

51°.  Def. — When  two  figures  compared  by  superposition 
coincide  in  all  their  parts  and  become  virtually  but  one  figure 

they  are  said  to  be  congruent. 

Congruent  figures  are  distinguishable  from  one  another 

only  by  their  position  in  space  and  are  said  to  be  identically 

equal. 

Congruence  is  denoted  by  the  algebraic*  symbol  of  identity, 
=  ;  and  this  symbol  placed  between  two  figures  capable  of 
congruence  denotes  that  the  figures  are  congruent. 

Closed  figures,  like  triangles,  admit  of  comparison  in  two 

ways.  The  first  is  as  to  their  capability  of  perfect  coinci- 
dence ;  when  this  is  satisfied  the  figures  are  congruent.  The 

second  is  as  to  the  magnitude  or  extent  of  the  portions  of  the 

plane  enclosed  by  the  figures.  Equality  in  this  respect  is 

expressed  by  saying  that  the  figijres  are  equal. 
When  only  one  kind  of  comparison  is  possible,  as  is  the 

case  with  line-segments  and  angles,  the  word  equal  is  used. 

CONGRUENCE    AMONGST   TRIANGLES. 

52".  Theorem. — Two  triangles  are  congruent  when  two 
sides  and  the  included  angle  in  the  one  are  respectively  equal 

to  two  sides  and  the  included  angle  in  the  other. 

If  AB  =  A'B'1  the  triangles  y^B  j^' 
BC  =  B'C  r  are    congru- 

and    lV>  =  l\\'  J  ent. 

Proof.— ?\2iQ.^  AABC  on  a  c      a'  c 
AA'B'C  so  that  B  coincides  with  B',  and  BA  lies  along  B'A'. 

^B  =  ̂ B',  BC  lies  along  B'C,  (34") 
and  V  AB  =  A'B'  and  BC  =  B'C  ; 

A  coincides  with  A'  and  C  with  C,  (27°) 
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and  .•.  AC  lies  along  A'C  ;  (24',  Cor.  2) 

and  the  /S.s  coinciding  in  all  their  parts  are  congruent.    (51°) 

Cor.  Since  two  congruent  triangles  can  be  made  to  coin- 

cide in  a//  their  parts,  therefore — 
When  two  triangles  have  two  sides  and  the  included  angle 

in  the  one  respectively  equal  to  two  sides  and  the  included 

angle  in  the  other,  a//  the  parts  in  the  one  are  respectively 

equal  to  the  corresponding  parts  in  the  other. 

53°.  TheorejH.—  lixQYy  point  upon  the  right  bisector  of  a 
segment  is  equidistant  from  the  end-points  of  the  segment. 

AB  is  a  line-segment,  and  P  is  any  point 

on  its  right  bisector  PC.     Then  PA  =  PB. 

Proof.— In  the  As  APC  and  BPC, 
AC  =  CB,  (42%  Def.) 

^ACP  =  ̂ BCP,  (42°,  Def.) 
and  PC  is  common  to  both  As  ; 

AAPC  =  ABPC,  (52°) 

and.-.  PA=PB.  (52°,  Cor.)  ̂.^'.rt'. 

jj(,j;  I, — A  triangle  which  has  two  sides  equal  to  one  an- 
other is  an  isosceles  triangle. 

Thus  the  triangle  APB  is  isosceles. 

The  side  AB,  which  is  not  one  of  the  equal  sides,  is  called 
the  base. 

Cor.  I.  Since  the  AAPC=ABPC, 
/-A  =  ̂ B. 

Hence  the  basal  angles  of  an  isosceles  triangle  are  equal  to 
one  another. 

Cor.  2.   From  (52°,  Cor.),  ̂ APC  =  ̂ BPC  ; 
Therefore  the  right  bisector,  of  the  base  of  an  isosceles  tri- 

angle is  the  internal  bisector  of  the  vertical  angle.  And  since 
these  two  bisectors  are  one  and  the  snme  line  the  converse  is 
true. 
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2; 

l)tf .  2.  A  iriani^flc  in  which  all  the  sides  are  cqiuil  to  one 
another  is  an  iijiiilafcral  trian^Me. 

Cor.  3.  Since  an  equilateral  triangle  is  isosceles  with  re- 
spect to  each  side  as  base,  all  the  angles  of  an  equilateral 

triangle  are  equal  to  one  another  ;  or,  an  equilateral  triangle 

is  equiangular. 

54'.  Theorem.  -Y.\Q^\\  point  equidistant  from  the  end- 
points  of  a  line-segment  is  on  the  right  bisector  of  that 

segment.     (Converse  of  53°.) 
PA  =  PR.     Then  P  is  on  the  right  bisector 

of  AK. 

Proof.     If  P  is  not  on  the  right  bisector  of 

AB,  let  the  right  bisector  cut  AP  in  O. 
Then 

but 

or 

which  is  not  true. 

OA  =  OB, 
PA  =  PB, 

OP  =  PB-OB, 

PB  =  OP-fOB, 

(25°,  Ax.) 
Therefore  the  right  bisector  of  AB  does  not  cut  AP  ;  and 

similarly  it  does  not  cut  BP  ;  therefore  it  passes  through   P, 

or  P  is  on  the  right  bisector.  (j.e.n. 

This  form  of  proof  should  be  compared  with  that  of /\rt. 

53°,  they  being  the  kinds  indicated  in  6". 
This  latter  or  indirect  form  is  known  as  proof  by  reiiuctio 

ad  absurdiivi  (leading  to  an  absurdity).  In  it  we  prove  the 

conclusion  of  the  theorem  to  be  true  by  showing  that  the 
acceptance  of  any  other  conclusion  leads  us  to  some  relation 
which  is  absurd  or  untrue. 

55°.  Def. — The  line-segment  from  a  vertex  of  a  triangle  to 
the  middle  of  the  opposite  side  is  a  median  of  the  triangle. 

Cor.  I.  Every  triangle  has  three  medians. 

Cor.  2.  The  median  to  the  base  of  an  isosceles  triangle  is 
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the  right  bisector  of  the  base,  and  the  internal  bisector  of  the 

vertical  angle.  (53^  Cor.  2.) 

Cor.  3.  The  three  medians  of  an  equilateral  triangle  are 

the  three  right  bisectors  of  the  sides,  and  the  three  internal 

bisectors  of  the  angles. 

56°.   Theorem. —  If  two  angles  of  a  triangle  are  equal  to  one 
another,  the  triangle  is  isosceles,  and  the  equal  sides  are 

opposite  the  equal  angles.     (Converse  of  53°, Cor.  I.) 

£.PAB  =  ̂ PBA,  then  PA  =  PB. 

Proof. — If   P   is  on   the   right   bisector   of 

AB,  PA  =  PB.  (53°) 
If  P  is  not  on  the  right  bisector,  let  AP 

A  fc  B  cut  the  right  bisector  in  O. 

Then  QA  =  QB,  and  a.OAB  =  ̂ QBA.  (53°  and  Cor.  i) 
But         z.PBA  =  ̂ QAB;  (hyp.) 

Z.PBA  =  ̂ QBA, 

which  is  not  true  unless  P  and  Q  coincide. 

Therefore  if  P  is  not  on  the  right  bisector  of  AB,  the 

Z.PAB  cannot  be  equal  to  the  ̂ PBA. 

But  they  are  equal  by  hypothesis  ; 
P  is  on  the  right  bisector, 

and  PA  =  PB.  q.e.d. 

Cor.  If  all  the  angles  of  a  triangle  are  equal  to  one  another, 

all  the  sides  are  equal  to  one  another. 

Or,  an  equiangular  triangle  is  equilateral. 

57°.  From  53°  and  56°  it  follows  that  equality  amongst  the 
sides  of  a  triangle  is  accompanied  by  equality  amongst  the 

angles  opposite  these  sides,  and  conversely. 

Also,  that  if  no  two  sides  of  a  triangle  are  equal  to  one 

another,  then  no  two  angles  are  equal  to  one  another,  and 

conversely. 
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Def. — A  triangle  which  has  no  two  sides  equal  to  one 
another  is  a  scalene  triangle. 

Hence  a  scalene  triangle  has  no  two  angles  equal  to  one 
another. 

58°.  Theorem. — If  two  triangles  have  the  three  sides  in  the 
one  respectively  equal  to  the  three  sides  in  the  other  the 

triangles  are  congruent.  b  b' 

If  A'B'  =  AB]the  As  ABC 
B'C'  =  BChandA'B'C'are 
C'A'  =  CaJ congruent. 

Proof.— Iwxrs.   the  AA'B'C 

over  and  place  A'  on  A,  and  "^ 

A'C  along  AC,  and  let  B'  fall  at  some  point  D. 
A'C  =  AC,  C  fiills  at  C,  (27°) 

and  AADC  is  the  AA'B'C  in  its  reversed  position. 
Since  AB  =  AD  and  CB-CD, 

A  and  C  are  on  the  right  bisector  of  BD,  and  AC  is  the  right 

bisector  of  BD.  (54°) 

^BAC  =  ̂ DAC  ;  (53°,  Cor.  2) 

and  the  As  BAC  and  DAC  are  congruent.  (52°) 
AABC  =  AA'B'C.  q.e.d. 

59°.  Theorem. — If  two  triangles  have  two  angles  and  the 
included  side  in  the  one  equal  respectively  to  two  angles  and 

the  included  side  in  the  other,  the  triangles  are  congruent. 

If    la:-^lk\ 

lC  =  l.C  I  the  As  ABC  and  A'B'C  are  congruent, 
and      A'C=ACJ 

^  c       A'  c' 

Proof.— V\2ict  A'  on  A,  and  A'C  along  AC. 
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Because        A'C'^  AC,  C  coincides  with  C  ; 

and  V  ^A'  =  iLA,  A'B' lies  along  AB  ; 

and  V  -C  =  lC,  C'B'  lies  along  CB  ; 
B*  coincides  with  B, 

and  the  triangles  are  congruent. 

(2f) 

(24°,  Cor.  3) 

q.c.d. 6o^    Theorem. — An  external  angle  of  a  triangle  is  greater 
than  an  internal  opposite  angle. 

The  external  angle  BCD  is  greater 

than  the  internal  opposite  angle  ABC  or 
BAC. 

Proof. — Let  BF  be  a  median  produced 
until  FG  =  BF. 

Then  the  As  ABF  and  CGF  have 

(construction) 

(55") 

(40) 

(52) 

(52°,  Cor.) 

BF  =  FG, 

AF-FC, 

and  ^BFA  =  ̂ GFC. 

AABF=ACGF, 
and  _FCG  =  ̂ BAC. 

But  ̂ ACE  is  greater  than  ̂ FCG. 
^ACEis>^BAC. 

Similarly,  ^BCD  is>^ABC, 

and  ^BCD=^ACE.  (40') 
Therefore  the  £-s  BCD  and  ACE  are  each  greater  than  each 

of  the  ̂ s  ABC  and  BAC.  q.e.d. 

61°.    Theorem. — Only  one  perpendicular  can  be  drawn  to  a 
line  from  a  point  not  on  the  line. 

Proof. — Let  B  be  the  point  and  AD  the  line  ; 
and  let  BC  be  J_  to  AD,  and  BA  be  any  line 
other  than  BC. 

Then  ̂ BCD  is>i.BAC,  (60°) 

-BAG  is  not  a  ~\ BA  is  net  ±  to  AD. 

BA  is  anv  line  other  than  WQ  ; 

BC  is  the  only  perpendicular  from  B  to  AD.       (j.e.d. 

A    c 

and 

But 
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Cor.  Combining  this  result  with  that  of  42°  we  have— 
Through  a  given  point  only  one  perpendicular  can  be  dj'awn 
to  a  given  line. 

62\  Theorein. — Ot  any  two  unequal  sides  of  a  triangle 

and  the  opposite  angles — 
1.  The  greater  angle  is  opposite  the  longer  side. 

2.  The  longer  side  is  opposite  the  greater  angle. 

1.  BAis>BC;  b 

then                  L<Z  is>.iA. 

Proof.— "L^t  BD  =  BC    
Then  the  A13DC  is  isosceles,  '^  ^^o 

and  ^BDC  =  .lBCD.  (53°,  Cor.  i) 

But  -i.BDCis>^A,  (60°) 
and  ^BCAis>^BCD; 

^BCAis>_BAC; 

or,  _Cis>i.A.  q.e.d. 

2.  _C  is  >  _A  ;  then  AB  is  >  BC. 

Proof. — From  the  Rule  of  Identity  (7"),  since  there  is  but 
one  longer  side  and  one  greater  angle,  and  since  it  is  shown 

(i)  that  the  greater  angle  is  opposite  the  longer  side,  therefore 

the  longer  side  is  opposite  the  greater  angle.  q.e.d. 

Cor.  I.  In  any  scalene  triangle  the  sides  being  unequal  to 

one  another,  the  greatest  angle  is  opposite  the  longest  side, 

and  the  longest  side  is  opposite  the  greatest  angle. 

Also,  the  shortest  side  is  opposite  the  smallest  angle,  and 

conversely. 

Hence  if  ̂ ,  /?.  C  denote  the  angles,  and  a,  h,  c  the  sides 

respectively  opposite,  the  order  of  magnitude  of  A,  B,  C  is 
the  same  as  that  of  a,  b,  c. 

63°.  Thenrem.-  Of  all  the  segments  between  a  given  point 
and  a  line  not  passing  through  the  point — 

1.  The  perpendicular  to  the  line  is  the  shortest. 

2.  Of  any   two   segments    the  one   which   meets   the   line 
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further  from  the  perpendicular  is  the  longer  ;  and  con- 
versely, the  longer  meets  the  line  further  from  the 

perpendicular  than  the  shorter  does. 

3.  Two,  and  only  two  segments  can  be  equal,  and  they  lie 
upon  opposite  sides  of  the  perpendicular. 

P  P  is  any  point  and  BC  a  line  not  pass- 
ing through  it,  and  PA  is  _L  to  BC. 

I.  PA   which   is  X  to    BC    is   shorter 

than   any   segment  PB  which  is  not  _L "b  to  BC. 

Proof.— z.PAC  =  z.PAB=n. 

(hyp) 

But ^PACis>^PBC; 
^PABis>^PBC, 

(60°) 

id.-. 
PB  is>PA. 

(62°,  2)  q.eui. 

2.  AC  is  >  AB,  then  also  PC  is  >  PB. 

Proof.— "^xxiz^  AC  is  >  AB,  let  D  be  the  point  in  AC 
sothat  AD  =  AB. 

Then  A  is  the  middle  point  of  BD,  and  PA  is  the  right 

bisector  of  BD.  "      (42°,  Def ) 
PD  =  PB  (53°) 

and  ^PDB  =  ̂ PBD.  (53°,  Cor  i, 
But  ^PDBis>^PCB; 

^PBDis>^PCB, 

and  PCis>PB.  (62°,  2) 
The  converse  follows  from  the  Rule  of  Identity.  q.e.d. 

3.  Proof — In  2  it  is  proved  that  PD  =  PB.  Therefore  two 
equal  segments  can  be  drawn  from  any  point  P  to  the  line 
BC  ;  and  these  lie  upon  opposite  sides  of  PA, 

No  other  segment  can  be  drawn  equal  to  PD  or  PB.  For 
it  must  lie  upon  the  same  side  of  the  perpendicular,  PA,  as 
one  of  them.  If  it  lies  further  from  the  perpendicular  than 
this  one  it  is  longer,  (2),  and  if  it  lies  nearer  the  perpendicular 
it  is  shorter.  Therefore  it  must  coincide  with  one  of  them 

and  is  not  a  third  line.  q.e.d 
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Dti/'.  The  length  of  the  perpendicular  segment  between 
any  point  and  a  line  is  the  distance  of  the  point  from  the 
line. 

64°.  Theorem. — If  two  triangles  have  two  angles  in  the  one 
respectively  equal  to  two  angles  in  the  other,  and  a  side 

opposite  an  equal  angle  in  each  equal,  the  triangles  are 

congruent. 

If    .iA'  =  ̂ A^then      the      As 
LfZ'  =  L.C  hA'B'C'and  ABC 

and    A'B'  =  AB  J  are  congruent. 

Proof. — Place  A'   on   A,   and 
A'B'  along  AB. 

A'B'  =  AB,  B'  coincides  with  B. 

Also,  •.'  z.A'  =  Z-A,  A'C  lies  along  AC. 
Now  if  C  does  not  coincide  with  C,  let  it  fall  at  some  other 

point,  D,  on  AC. 

Then,  •.'  AB  =  A'B',  AD  =  A'C,  and  lA^lM, 

.-.  AA'B'C'^AABD,  (52°) 

and  zADB  =  ̂ C.  (52°,  Cor.) 

But  ^C'=^C,  (hyp.) 
.-.      .lADB  =  _C, 

which  is  not  true  unless  D  coincides  with  C. 

Therefore  C  must  fall  at  C,  and  the  As  ABC  and  A'B'C 
are  congruent. 

The  case  in  which  D  may  be  supposed  to  be  a  point  on 

AC  produced  is  not  necessary.  For  we  may  then  super- 

impose the  AABC  on  the  AA'B'C. 

65°.  Theorem  — U  two  triangles  have  two  sides  in  the  one 
respectively  equal  to  two  sides  in  the  other,  and  an  angle 

opposite  an  equal  side  in  each  equal,  then — 

1.  If  the  equal  angles  be  opposite  the  longer  of  the  two 
sides  in  each,  the  triangles  are  congruent. 

2.  If  the  equal  angles  be  opposite  the  shorter  of  the  two 
C 
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sides  in  each,  the  triangles  are  not  necessarily  con- 

gruent. 
A'B'  =  AB, 
B'C'  =  BC, 

I.  If    BCis>AB, 

AA'B'C'  =  AABC. 

Proof.— ^'mcQ  BC  is  >  AB,  therefore  B'C  is  >  A'B'. 
Place  A'  on  A  and  A'C  along  AC. 

Lk'  =  Lh,  and  A'B'  =  AB, 

B'  coincides  with  B.  (34°,  27°) 
Let  BP  be  ±  AC  ; 

then  B'C  cannot  lie  between  BA  and  BP  (63°,  2),  but  must 
lie  on  the  same  side  as  BC ;  and  being  equal  to  BC,  the  lines 

B'C  and  BC  coincide  (63°,  3),  and  hence 
AA'B'C'=AABC.  g.e.d. 

2.  If  BC  is  <  AB,  the  As 

A' B'C  and  ABC  may  or  may 
not  be  congruent. 

Proof.— S'mcQ  AB  is  >  BC, 
PA  is  >  PC  (63^  2) 

Let  PD  =  PC, 
then  BD  =  BC. 

Now,  let  A  A' B'C  be  superimposed  on  AABC  so  that  A' 

coincides  with  A,  B'  with  B,  and  A'C  lies  along  AC.  Then, 

since  we  are  not  given  the  length  of  A'C,  B'C  may  coincide 

with  BC,  and  the  As  A' B'C  and  ABC  be  congruent; 

or  B'C  may  coincide  with  BD,  and  the  triangles  A'B'C  and 
ABC  be  not  congruent.  g.e.d. 

Hence  when  two  triangles  have  two  sides  in  the  one 

respective! V  equal  to  two  sides  in  the  other,  and  an  angle 

opposite  one  of  the  equal  sides  in  each  equal,  the  triangles 
are  not  reressnrilv  congruent  unless  some  other  relation 
exists  between  them. 
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The  first  part  of  the  theorem  ^ives  one  of  the  suffici- 
ent rehitions.  Others  are  given  in  the  following  cor- 

ollaries. 

Cor.  I.  If  _C  is  a  |,  BC  and  WD  (2ncl  Fig.)  coincide  along 
BP,  and  the  /\s  ABD  and  ABC  become  one  and  the  same. 

Hence  C  must  fall  at  C,  and  the  As  A'B'C  and  ABC  are 
congruent. 

Cor.  2.  The  ̂ BDA  is  supplementary  to  BDC  and  therefore 

to  BCA.  And  •.•  /.BDA  is  >  ̂ BPA,  .'.  _BOA  is  greater 
than  a  right  angle,  and  the  _BCA  is  less  than  a  right 

angle. 

Hence  if,  in  addition  to  the  equalities  of  the  theorem,  the 

angles  C  and  C  are  both  equal  to,  or  both  greater  or  both 

less  than  a  right  angle,  the  triangles  are  congruent. 

JJe/.— Angles  which  are  both  greater  than,  or  both  equal  to, 
or  both  less  than  a  right  angle  are  said  to  be  0/  the  same 

affection. 

66^  A  triangle  consists  of  six  parts,  three  sides  and  three 

angles.  When  two  triangles  are  congruent  all  the  parts  in 

the  one  are  respectively  equal  to  the  corresponding  parts  in 

the  other.  But  in  order  to  establish  the  congruence  of  two 

triangles  it  is  not  necessary  to  establish  independently  the 

respective  equality  of  all  the  parts  ;  for,  as  has  now  been 

shown,  if  certain  of  the  corresponding  parts  be  equal  the 

equality  of  the  remaining  parts  and  hence  the  congruence  of 

the  triangles  follow  as  a  consequence.  Thus  it  is  sufficient 

that  two  sides  and  the  included  angle  in  one  triangle  shall  be 

respectively  equal  to  two  sides  and  the  included  angle  in 

another.  For,  if  we  are  given  these  parts,  we  are  given  con- 
sequentially all  the  parts  of  a  triangle,  since  every  triangle 

having  two  ?;ides  and  the  included  angle  equal  respectively  to 

those  given  i-^  cdngruent  with  the  given  triangle. 

Hence  a  trian2"le  is  ̂ iven  when  two  of  its  sides  and  the 
angle  between  them  are  given. 
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A  triangle  is  given  or  determined  by  its  elements  being 

given  according  to  the  following  table  : — 

1.  Three  sides,    (58"^) 
2.  Two  sides  and  the  included  angle,    (52  ) 

3.  Two  angles  and  the  included  side,    (59°) 

4.  Two  angles  and  an  opposite  side,    (64"^) 
5.  Two  sides  and  the  angle  opposite  the  longer  side,  (65^) 

When  the  three  parts  given  are  two  sides  and  the  angle 

opposite  the  shorter  side,  two  triangles  satisfy  the  conditions, 

whereof  one  has  the  angle  opposite  the  longer  side  supple- 
mentary to  the  corresponding  angle  in  the  other. 

This  is  known  as  the  ambiguous  case  in  the  solution  of 

triangles. 

A  study  of  the  preceding  table  shows  that  a  triangle  is 

completely  given  when  any  three  of  its  six  parts  are  given, 

with  two  exceptions  :  - 
(i)  The  three  angles  ; 

(2)  Two  sides  and  the  angle  opposite  the  shorter  of  the 
two  sides. 

67°.  Theorem. — If  two  triangles  have  two  sides  in  the  one 
respectively  equal  to  two  sides  in  the  other,  but  the  included 

angles  and  the  third  sides  unequal,  then 

1.  The  one  having  the  greater   included   angle   has   the 

greater  third  side. 
2.  Conversely,  the  one  having  the  greater  third  side  has  the 

greater  included  angle. 

^B*  A'B'  =  AB  and  B'C'  =  BC,  and 

I.        ̂ ABC  is  >  ̂ A'B'C, 
then  AC  is  >  A'C. 

Proof.— L^i    A'  be  placed  upon 

;^^  ̂    »     A  and  A'B'  along  AB. 

A^-\  \  /E     C        ̂ -A^,     Since  A'B'^AB,  B'  falls  on  B. 
D  Let  C  fall  at  some  point  D. 

Then  ABD  is  A'B'C  in  its  new  position. 
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Let  BE  bisect  the  _DBC  and  meet  AC  in  E. 

Join  DE. 
Then,  in  the  As  DEE  and  CBE, 

DB  =  BC,  (hyp.) 

:_DBE  =  _CBE,  (constr.) 
and  BE  is  common. 

ADBE  =  ACBE, 
and  DE  =  CE. 

But  AC  =  AE  +  EC  =  AE  +  ED, 
which  is  greater  than  AD. 

AC  is  >  A'C.  q.e.d. 

>  2.     AC  is  >  A'C,  then  _ABC  is  greater  than  ̂ A'B'C. 

Proof. — The  proof  of  this  follows  from  the  Rule  of  Identity. 

68^  Theorem. — i.  Every  point  upon  a  bisector  of  an  angle 
is  equidistant  from  the  arms  of  the  angle. 

2.  Conversely,  every  point  equidistant  from  the  arms  of 

an  angle  is  on  one  of  the  bisectors  of  the  angle. 

1.  OP  and  OQ  are  bisectors  of  the  angle  AOB,  and  PA, 

PB  are  perpendiculars  from  P  upon 
the  arms.     Then 

PA  =  PB.  ^\  X^^P 

Proof. -'X\\^  As    POA   and    POB   a' 
are  congruent,  since  they  have  two 

angles  and  an  opposite  side  equal  in 

each  (64°);    .-.  PA  =  PB. 
If  Q  be  a  point  on  the  bisector  OQ  it  is  shown  in  a  similar 

manner  that  the  perpendiculars  from  Q  upon  the  arms  of  the 

angle  AOB  are  equal.  q.e.d. 

2.  If  PA  is  _L  to  OA  and  PB  is  _L  to  OB,  and  PA  =  PB, 
then  PO  is  a  bisector  of  the  angle  AOB. 

Proof. — The  As  POA  and  POB  are  congruent,  since  they 
have  two  sides  and  an  angle  opposite  the  longer  equal  in 

each  (65°,  i)  ;         .'.     Z-POA  =  z.POB, 
and  PO  bisects  the  ̂ AOB. 
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Similarly,  if  the  perpendiculars  from  O  upon  OA  ana  OB 

are  equal,  QO  bisects  the  Z.BOA',  or  is  the  external  bisector 
of  the  Z-AOB.  q.e.d. 

LOCUS. 

69°.  A  locus  is  the  figure  traced  by  a  variable  point,  which 
takes  all  possible  positions  subject  to  some  constraining^ 
condition. 

If  the  point  is  confined  to  the  plane  the  locus  is  one  or 

more  lines,  or  some  form  of  curve. 

Illustration. — In  the  practical  process  of  drawing  a  line  or 
curve  by  a  pencil,  the  point  of  the  pencil  becomes  a  variable 

(physical)  point,  and  the  line  or  curve  traced  is  its  locus. 

In  geometric  applications  the  point,  known  as  \\it  generat- 
ing point,  moves  according  to  some  law. 

The  expression  of  this  law  in  the  Symbols  of  Algebra  is 

known  as  the  equation  to  the  locus. 

Cor.  I.  The  locus  of  a  point  in  the  plane,  equidistant  from 

the  end-points  of  a  given  line-segment,  is  the  right  bisector 
of  that  segment. 

This  appears  from  54°. 

Cor.  2.  The  locus  of  a  point  in  the  plane,  equidistant  from 

two  given  lines,  is  the  two  bisectors  of  the  angle  formed  by 
the  lines. 

This  appears  from  68°,  converse. 

Exercises. 

1.  How  many  lines  at  most  are  determined  by  5  points? 

by  6  points  ?  by  12  points? 

2.  How  many  points  at  most  are  determined  by  6  lines  ?  by 
12  lines  ? 

3.  How  many  points  are  determined  by  6  lines,  three  of  which 

pass  through  a  common  point? 
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4.  How  many  angles  altogether  are  about  a  triangle?     How 

many  at  most  of  these  angles  are  different  in  magni- 
tude ?  What  is  the  least  number  of  angles  of  different 

magnitudes  about  a  triangle  ? 

5.  In  Fig.  of  53°,  if  Q  be  any  point  on  PC,  APAQ=APBQ. 
6.  In  Fig.  of  53°,  if  the  APCB  be  revolved  about  PC  as  an 

axis,  it  will  become  coincident  with  APCA. 

7.  The  medians  to  the  sides  of  an  isosceles  triangle  are 

equal  to  one  another. 

8.  Prove  58°  from  the  axiom  "  a  straight  line  is  the  shortest 

distance  between  two  given  points." 

9.  Show  from  60°  that  a  triangle  cannot  have  two  of  its 
angles  right  angles. 

10.  If  a  triangle  has  a  right  angle,  the  side  opposite  that  angle 

is  greater  than  either  of  the  other  sides. 

1 1.  What  is  the  locus  of  a  point  equidistant  from  two  sides 

of  a  triangle  ? 

12.  Find  the  locus  of  a  point  which  is  twice  as  far  from  one 

of  two  given  lines  as  from  the  other. 

1 3.  Find  the  locus  of  a  point  equidistant  from  a  given  line 

and  a  given  point. 

SECTION   IV. 

PARALLELS,   ETC. 

70°.  Def.- -Two  lines,  in  the  same  plane,  which  do  not 
intersect  at  any  finite  point  are  parallel. 

Next  to  perpendicularity,  parallelism  is  the  most  important 

directional  relation.  It  is  denoted  by  the  symbol  ||,  which  is 

to  be  read  "  parallel  to  "  or  "  is  parallel  to  "  as  occasion  may 
require. 

The  idea  of  parallelism  is  identical  with  that  of  samettess 
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of  direction.     Two  line-segments  may  differ  in  length  or  in 
direction  or  in  both. 

If,  irrespective  of  direction,  they  have  the  same  length, 

they  are  equal  ;  if,  irrespective  of  length,  they  have  the  same 

direction,  they  are  parallel  ;  and  if  both  length  and  direction 

are  the  same  they  are  equal  and  parallel.  Now  when  two 

segments  are  eqjial  one  may  be  made  to  coincide  with  the 

other  by  superposition  without  change  of  length,  whether 

change  of  direction  is  required  or  not.  So  when  they 

are  parallel  one  may  be  made  to  coincide  with  the  other 

without  change  of  direction,  whether  change  of  length  is 

required  or  not. 

Axiom. — Through  a  given  point  only  one  line  can  be 
drawn  parallel  to  a  given  line. 

This  axiom  may  be  derived  directly  from  24°. 

71°.  Theorem. — Two  Hnes  which  are  perpendicular  to  the 
same  line  are  parallel. 

L  and  M  are  both  J_  to  N, 

then  L  is  ||  to  M. 

Proof. — If  L  and  M  meet  at  any  point,  two 
-    perpendiculars  are  drawn  from  that  point  to 

the  hne  N. 

But  this  is  impossible  (61°). 
Therefore  L  and  M  do  not  meet,  or  they  are  parallel. 

Cor.  All  lines  perpendicular  to  the  same  line  are  parallel 
to  one  another. 

72°.  Theorem. — Two  lines  which  are  parallel  are  perpen- 
dicular to  the  same  line,  or  they  have  a  common  perpendicular. 

(Converse  of  71°.) 
L  is  II  to  M,  and  L  is  _L  to  N  ; 

then  M  is  _L  to  N. 

Proof. — If  M  is  not  _L  to  N,  through  any  point  P  in  M,  let 
K  be  ±  to  N. 
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Then  K  is  i|  to  L.  (71') 
But  M  is  II  to  L.  (hyp.) 
Therefore      K  and  M  are  both  jj  to  L, 

which  is  impossible  unless  K  and  M  coincide.  (70^,  Ax.) 
Therefore  L  and  M  are  both  ±  to  N, 

or  N  is  a  common  perpendicular. 

73°.  Def. — A   line   which   crosses   two   or   more    lines    of 
any  system  of  lines  is  a  transversal. 
Thus  EF  is  a  transversal  to  the  lines 

AB  and  CD. 

In  general,  the  angles  formed  by 

a   transversal    to    any    two    lines  are  ^/^h 
distinguished  as  follows —  /r 

a  and  ̂ ,  r  and^*^,  b  andy,  d  and  //  are  pairs  of  corresponding 
angles. 

t  and  /j  e  and  d  are  pairs  of  alternate  angles. 

c  and  <?,  //andyare  pairs  of  interadjacent  angles. 

74°.  When  a  transversal  crosses  parallel  lines — 
1.  The  alternate  angles  are  equal  in  pairs. 

2.  The  corresponding  angles  are  equal  in  pairs. 

3.  The  sum  of  a  pair  of  interadjacent  angles  is  a  straight 

angle.  G^ 

A B  is  II  to  CD  and  EF  is  a  transversal,  a   p     /         B 

^AEF  =  :lEFD.  o 

Proof. — Through  O,  the  middle  point 

of  EF,  draw   FO  a  common  X  to  AB       ̂ ^ 

and  CD.  (72°) 

Then  AOPE=AO(2F;  (64^) 
iAEF  =  ̂ EFD.  q.e.d. 

Similarly  the  remaining  alternate  angles  are  equal. 

2.  ̂ AEG  =  ̂ CFE,  etc. 

Proof.—         ̂ AEG  =  supplement  of  _AEF,       (40°,  Def  i) 
and  Z.CFE  =  supplement  of  .lEFI). 
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But  ^AEF-^EFD  ;  (74",  0 
lAEG  =  ̂ CFE.  q.i.d. 

Similarly  the  other  corresponding  angles  are  equal  in  pairs. 

3.  ̂ AEF  +  ̂ CFE  =  ±. 

Proof.—  ^AEF  =  _EFD,  (74",  0 
and  ^CFE  +  Z-EFD  =  ±;  (38°) 

^AEF  +  lCFE  =  _L.  q.e.d. 

Cor.  It  is  seen  from  the  theorem  that  the  equality  of  a  pair 

of  alternate  angles  determines  the  equality  in  pairs  of  corre- 
sponding angles,  and  also  determines  that  the  sum  of  a  pair 

of  interadjacent  angles  shall  be  a  straight  angle.  So  that  the 

truth  of  any  one  of  the  statements  i,  2,  3  determines  the  truth 

of  the  other  two,  and  hence  if  any  one  of  the  statements  be 

proved  the  others  are  indirectly  proved  also. 

75°.  Theorem. — If  a  transversal  to  two  lines  makes  a  pair 
of  alternate  angles  equal,  the  two  lines  are  parallel.  (Con- 

verse of  74°  in  part.) 
If  ̂ AEF  =  ̂ EFD,  AB  and  CD  are  parallel. 

Proof.— T>x2iV^  P(2  as  in  74",  ±  to  AB, 

AOPE^AOQF^  (59°) 

^OPE  =  i.OQF  =  ~l, 
Q  and.-.         AB  is  !|  to  CD.         {7i°)(/.e.d. 

Cor.  It  follows  from  74"  Cor.  that  if  a  pair  of  corresponding 
angles  are  equal  to  one  another,  or  if  the  sum  of  a  pair  of 

interadjacent  angles  is  a  straight  angle,  the  two  lines  are 

parallel. 

76".    Theorem. — The  sum  of  the  internal  angles  of  a  tri- 

\^  y  angle  is  a  straight  angle. 
E       ABCisaA; 

the^A  +  ̂ B  +  _C=J_. 

A~  c  D  Proof —l^ti  CE  be  |1  to  AB,  and 
D  be  anv  point  on  AC  produced. 

A .    / B 

c 
p7 A 

0 
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Then  BC  is  a  transversal  to  the  parallels  AH  and  CK  ; 

_ABC  =  ̂ BCE.  (74",  0 
Also,  AC  is  a  transversal  to  the  same  parallels  ; 

^BAC  =  ̂ ECD.  (74^  2) 

^ABC+^BAC=^BCD 

=  supplement  of  ̂ BCA. 

^A  +  i.B4-_C  =  _L.  q.e.d. 

Cor.  An  external  angle  of  any  triangle  is  equal  to  the  sum 

of  the  opposite  internal  angles,  (49°»  3) 
For  /.BCD=^A  +  ̂ B. 

']'j°.  From  the  property  that  the  sum  of  the  three  angles  of 
any  triangle  is  a  straight  angle,  and  therefore  constant,  we 

deduce  the  following — 

1.  When  two  angles  of  a  triangle  are  given  the  third  is 

given  also  ;  so  that  the  giving  of  the  third  furnishes 
no  new  information. 

2.  As  two  parts  of  a  triangle  are  not  sufficient  to  deter- 
mine it,  a  triangle  is  not  determined  by  its  three  angles, 

and  hence  one  side,  at  least,  must  be  given  (66",  i). 
3.  The  magnitude  of  any  particular  angle  of  a  triangle  does 

not  depend  upon  the  sise  of  the  triangle,  but  upon 

the  form  only,  i.e.,  upon  the  relations  amongst  the 
sides. 

4.  Two  triangles  may  have  their  angles  respectively  equal 
and  not  be  congruent.  But  such  triangles  have  the 
same  form  and  are  said  to  be  siviilar. 

5.  A  triangle  can  have  but  one  obtuse  angle  ;   it  is  then 

called  an  obtusc-ans^led  triangle. 
A  triangle  can  have  but  one  right  angle,  when  it  is  railed 

a  ri!j;ht-augli'd  triangle. 
All  other  triangles  are  called  acute-ano;led  Ux^w^ts,  and 
have  three  acute  angles. 

6.  The  acute  angles  in  a  right-angled  triangle  are  comple- 
mentarv  to  one  another. 
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78°.  Theorem.     If  a  line  cuts  a  given  line  it   cuts  every 
parallel  to  the  given  line. 

\,  P  M 
— -^^*s   —       Let  L  cut  M,  and  let  N  be  any  parallel 

^  \l  to  M.     Then  L  cuts  N. 

\  Proof.— \{  L  does  not  cut  N  it  is  ||  to  N. 
But  M  is  !|  to  N.  Therefore  through  the  same  point  P  two 

lines  L  and  M  pass  which  are  both  ||  to  N. 

But  this  is  impossible  ;  (70°,  Ax.) 
L  cuts  N. 

And  N  is  any  line  ||  to  M. 

L  cuts  every  line  ||  to  M.  q.e.d. 

79°.    Theorem. — If  a  transversal  to  two  lines  makes  the 
sum  of  a  pair  of  interadjacent  angles  less  than  a  straight 

angle,  the  two  lines  meet  upon  that  side 

of  the  transversal  upon  which  these  inter- 
adjacent angles  lie. 

GH  is  a  transversal  to  AB  and  CD, 
and  ^BEF  +  z-EFD  <  J_. 

/H  Then  AB  and  CD  meet  towards  B  and  D. 

Proof. — Let  LK  pass  through  E  making  ̂ KEF  =  -^EFC. 
Then  LK  is  !|  to  CD. 

But  AB  cuts  LK  in  E, 

it  cuts  CD.  (78') 
Again,  •.'  EB  lies  between  the  parallels,  and  AE  does  not, 

the  point  where  AB  meets  CD  must  be  on  the  side  BD  of 

the  transversal.  q  e.d. 

Cor.  Two  lines,  which  are  respectively  perpendicular  to 

two  intersecting  lines,  intersect  at  some  finite  point. 

80°.  Def — I.  A   closed   figure    having    four 
lines  as  sides  is  in  general  called  a  quadrangle 

'C    or  quadrilateral. 
Thus  ABCD  is  a  quadrajigle. 

2.  The  line-segments  AC    and    BD    which   join   opposite 
vertices  are  the  diagonals  of  the  quadrangle. 
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3.  The  quadrangle  formed  when  two  parallel  lines  intersect 

two  other  parallel  lines  is  a  parallelogram^  and  is  usually 

denoted  by  the  symbol 

81°.    Theorem. — In  any  parallelogram — 
1.  The  opposite  sides  are  equal  to  one  another. 

2.  The  opposite  internal  angles  are  equal  to  one  another. 

3.  The  diagonals  bisect  one  another.  a 

AB  is  II  to  CD,  and  AC  is  l|  to  RD,  and    /\,;^^/ 
AD  and  BC  are  diagonals.  Z::::l!^r_\y 

1.  Then  AB  =  CDand  AC  =  BI).  ^  D 

Proof. — •.  AD  is  a  transversal  to  the  parallels  AB  and  CD, 
^CDA  =  _DAB.  (74,  i; 

and  •.•  AD  is  a  transversal  to  the  parallels  AC  and  BD, 

^CAD  =  ̂ ADB.  (74°,  i; 

Hence,  ACAD  =  ABDA.  (59') 
AB  =  CD  and  AC  =  BD.  q.e.d. 

2.  ̂ CAB  =  i.BDC  and  ̂ ACD=.iDBA. 

Proof.— \i  is  shown  in   i  that  ̂ CAD=^DB  and  Z.BAD 
-^ADC; 

.•.  by  adding  equals  to  equals, 
^CAB  =  .iCDB. 

Similarly,  :iACD  =  .lABD.  q.e.d. 

3.  AO  =  OD  and  BO  =  OC. 

Proof -Th^  AAOC  =  ADOB  ;  (59°) 
AO  =  OD  and  BO  =  OC.  q.e.d. 

82°.  Def  I.  —A  parallelogram  which  has  two  adjacent  sides 
equal  is  a  rhombus.  B^ 

Cor.  I.  Since  AB  =  BC  (hyp.) 

=  DC(8r,  i)  =  AD.     A< 
Therefore  a  rhombus  has  all  its  sides 

equal  to  one  another. 

Cor.  2.  Since  AC  is  the  right  bisector  of  BD,  (54°) 
and  BD  the  right  bisector  of  AC, 



4.6  SYNTHETIC   GEOMETRY. 

Therefore  the  diagonals  of  a  rhombus  bisect  one  another 

at  right  angles. 

J?e/.  2. — A  parallelogram  which  has  one  right  angle  is  a 
rectangle^  and  is  denoted  by  the  symbol  i=i. 

Cor.  3.  Since  the  opposite  angle  is  a  ~~|)  (8i°j  2) 

and  the  adjacent  angle  is  a  ~~|,  (74°,  3) 
Therefore  a  rectangle  has  all  its  angles  right  angles. 

Cor.  4.  The  diagonals  of  a  rectangle  are  equal  to  one 
another. 

J^^f-  3- — A  rectangle  with  two  adjacent  sides  equal  is  a 
square^  denoted  by  the  symbol  □• 

Cor.  5.  Since  th6  square  is  a  particular  form  of  the  rhombus 

and  a  particular  form  of  the  rectangle, 

Therefore  all  the  sides  of  a  square  are  equal  to  one  another; 

all  the  angles  of  a  square  are  right  angles  ;  and  the  diagonals 

of  a  square  are  equal,  and  bisect  each  other  at  right  angles. 

84°.  Theorem. — If  three  parallel  lines  intercept  equal  seg- 
ments upon  any  one  transversal  they  do  so  upon  every 

transversal. 

AE  is  a  transversal  to  the  three  parallels 

AB,  CD,  and  EF,  so  that  AC  =  CE,  and 
BF  is  any  other  transversal.  Then  BI) =  DF. 

Proof. — Let  GDH  passing  through  D 

be  II  to  AE. 

Then  AGDC  and  CDHE  are  Z=Z7s.  (80°,  3) 
GD  =  AC  =  CE-DH.  (81°,  i) 

Also,            z.GBD  =  /-DFH,  '.•  AG  is  ||  to  EF,  (74°,  i) 
and                  ^BDG  =  ̂ FDH;  (40°) 

ABI)G  =  AFDH,  (64°) 
and                       BD  =  DF.  g.e.d. 

De/.—'Yhe  figure  AHFE  is  a  trapezoid. 
Therefore  a   traiKv.oid   is  a  (juadrangle   having  only   two 

a\J \B    Q 
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sides  parallel.     The  parallel  sides  are  the  major  and  minor 
bases  of  the  fiiiure. 

Cor.  I.  Since 

HF 

and 

2CD  =  AG  +  EH, 
=AB+BG+EF 

BG=HF; 

CD  =  |(AB  +  EF). 

Or,  the  line-segment  joining  the  middle  points  of  the  non- 

parallel  sides  of  a  trapezoid  is  equal  to  one-half  the  sum  of 
the  parallel  sides. 

Cor.  2.  When  the  transversals  meet  upon 

one  of  the  extreme  parallels,  the  figure 

AEF'  becomes  a  A  and  CD'  becomes  a 
line  passing  through  the  middle  points  of 

the  sides  AE  and  AF',  and  parallel  to  the 
base  EF'. 

Therefore,  i,  the  line  through  the  middle  point  of  one  side 

of  a  triangle,  parallel  to  a  second  side,  bisects  the  third  side. 

And,  2,  the  line  through  the  middle  points  of  two  sides  of 

a  triangle  is  parallel  to  the  third  side. 

85°.    Theorem.— T\it   three   medians    of    a    triangle    pass 
through  a  common  point. 

CF  and  AD  are  medians  intersecting  in  O. 
Then  BO  is  the  median  to  AC. 

Proof.— Lt\.  BO   cut  AC  in  E,  and  let 
AG  II  to  FC  meet  BO  in  G.     Join  CG. 

Then,  BAG  is  a  A  and  FO  passes  through 

the  middle  of  AB  and  is  ||  to  AG. 

.-.    O  is  the  middle  of  BG.      (84^  Cor  2) 
•Again,   DO   passes  through  the  middle 

points  of  two  sides  of  the  ACBG, 

CG  is  |i  to  AO  or  OD  ; 
A(^CG  is  a  EHJ. 

and  AE-KC; 
liO  is  the  median  to  AC. 

(84°,  Cor.  2) 
(81",  3) 
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Def. — When  three  or  more  lines  meet  in  a  point  they  are said  to  be  conairrent. 

Therefore  the  three  medians  of  a  triangle  are  concurrent. 

Def.  2.— The  point  of  concurrence,  O,  of  the  medians  of  a 
triangle  is  the  centrotd  oi  ihe  triangle. 

Cor.  Since  O  is  the  middle  point  of  BG,  and  E  is  the  middle 

point  of  OG,  (81°,  3) OE  =  iOB, =  1EB. 

Therefore  the  centroid  of  a  triangle  divides  each  median 

at  two-thirds  of  its  length  from  its  vertex. 

86°.    Theorem.—The  three  right  bisectors  of  the  sides  of  a 
triangle  are  concurrent. 

Proof.— h^\.   L    and    N    be    the    right 
bisectors  of  BC  and  AB  respectively. 

Then  L  and  N  meet  in  some  point  O. 

(79°,  Cor.) Since  L  is  the  right  bisector  of  BC,  and  N  of  AB,  O   is 

equidistant  from  B  and  C,  and  is  also  equidistant  from  A 

and  B.  (53°) 
Therefore  O  is  equidistant  from  A  and  C,  and  is  on  the 

right  bisector  of  AC.  (54°) 
Therefore  the  three  right  bisectors  meet  at  O.  g.e.d. 

Cor.  Since  two  lines  L  and  N  can  meet  in  only  one  point 

(24°,  Cor.  3),  O  is  the  only  point  in  the  plane  equidistant 
from  A,  B,  and  C. 

Therefore  only  one  finite  point  exists  in  the  plane  equi- 
distant from  three  given  points  in  the  plane. 

Def — The  point  O,  for  reasons  given  hereafter,  is  called 
the  circumceiitre  of  the  triangle  ABC. 

87°.  Def. — The  line  through  a  vertex  of  a  triangle  per- 
pendicular to  the  opposite  side  is  the  perpendicular  to  that 

side,  and  the  part  of  that  line  intercepted  within  the  triangle 
is  the  altitude  to  that  side. 
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Where  no  refcieiKe  to  length  is  made  the  word  altitude  is 

often  employed  to  denote  the  indefinite  line  forming  the 

perpendicular 
Hence  a  triangle  has  three  altitudes,  one  to  each  side. 

88°.  Theorem.— The  three  altitudes  of  a  triangle  are  con- 
current. 

Proof.— Ltt  ABC  be  a  triangle. 
Complete  the  /  7s,  ACBF, 
ABDC,  and  ABCE. 

Then    •.•      FB  is  ||  to  AC, 
and  Bit)  is  ||  to  AC, 

FBD  is  one  line,   (70°,  Ax.) 
and  FB  =  BD.  (8l°,  i) 

Similarly,     DCE  is  one  line  and  DC'  =  CE, 
and  EAF  is  one  line  and  EA  =  AF. 

Now,  •••  AC  is  II  to  FU,  the  altitude  to  AC  is  _L  to  FD  and 

passes  through  B  the  middle  point  of  FD.  (72°) 
Therefore  the  altitude  to  AC  is  the  right  bisector  of  FD, 

and  similarly  the  altitudes  to  AB  and  BC  are  the  right  bisec- 
tors of  DE  and  EF  respectively. 

But  the  right  bisectors  of  the  sides  of  the  A^^EF  are 

concurrent  (86'),  therefore  the  altitudes  of  the  AABC  are 
concurrent.  </.e.(f. 

Def. — The  point  of  concurrence  of  the  altitudes  of  a  tri- 
angle is  the  orthocentre  of  the  triangle. 

Cor.  I.  If  a  triangle  is  acute-angled  {-jf,  5),  the  circum- 
centre  and  orthocentre  both  lie  within  the  triangle. 

2.  If  a  triangle  is  obtuse-angled,  the  circumcentre  and 
orthocentre  both  lie  without  the  triangle. 

3,  If  a  triangle  is  right-angled,  the  circumcentre  is  at  the 
middle  point  of  the  side  opposite  the  right  angle,  and  the 

orthocentre  is  the  right-angled  vertex. 

De/.—The  side  of  a  right-angled  triangle  opposite  the  right 
angle  is  called  the  hypothenuse. 
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Sc/.  The  definition  of  80°  admits  of  three  different  figures, 
viz.  :— 

f.  The  normal  quadrangle  (i)  in  which  each  of  the  in- 

ternal angles  is  less  than  a  straight  angle.  When  not 

(0  ,      (2)  (3) 

A   -^  'l^  A  B 

C 

Otherwise  qualified  the  term  quadrangle  will  mean  this 

figure. 

2.  The  quadrangle  (2)  in  which  one  of  the  internal  angles, 

as  at  D,  is  greater  than  a  straight  angle.  Such  an  angle  in  a 

closed  figure  is  called  a  re-entrant  angle.  We  will  call  this 
an  inverted  quadrangle. 

3.  The  quadrangle  (3)  in  which  two  of  the  sides  cross  one 
another.     This  will  be  called  a  crossed  quadrangle. 

In  each  figure  AC  and  BD  are  the  diagonals ,  so  that  both 

diagonals  are  within  in  the  normal  quadrangle,  one  is  within 

and  one  without  in  the  inverted  quadrangle,  and  both  are 

without  in  the  crossed  quadrangle. 

The  general  properties  of  the  quadrangle  are  common  to 

all  three  forms,  these  forms  being  only  variations  of  a  more 

general  figure  to  be  described  hereafter." 

90°.  Theorem. — The  sum  of  the  internal  angles  of  a  quad- 
rangle is  four  right  angles,  or  a  circumangle. 

Proof.— 'Y\iQ  angles  of  the  two  As  ABD  and  CBD  make 
up  the  internal  angles  of  the  quadrangle. 

But  these  are  J_  +  JL ;  (76°) 
therefore  the  internal  angles  of  the  quadrangle  are  together 

equal  to  four  right  angles.  q.e.d. 

Cor.  This  theorem  applies  to  the  inverted  quadrangle  as  is 

readily  seen. 
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91°.  Theorenu—\i  two  lines  be  respectively  perpendicular 
to  two  other  lines,  the  angle  between  the  first  two  is  equal 

or  supplementary  to  the  angle  between  the  last  two. 
BC  is  i.  to  AB 

and  CD  is  _L  to  AD. 

Then  z.(BC .  CD)  is  equal  or  supplemen- 
tary to  4AB .  AD). 

Proof. — ABCD   is  a  quadrangle,  and  the 
Z.S  at  B  and  D  are  right  angles  : 

i.BAD-f^BCD-±, 

or  Z.BCD  is  supplementary  to  ̂ BAD, 

But  z_BCD  is  supplementary  to  ̂ ECD  ; 

and  the  i.(BC .  CD)  is  either  the  angle  BCD  or  DCE.      (39') 
^(BC  .  CD)  is  =  or  supplementary  to  z_BAD.      q.e.d. 

Exercises. 

1.  ABC  is  a  A,  and  A',  B',  C  are  the  vertices  of  equilateral 
As  described  outwards  upon  the  sides  BC,  CA,  and 

AB  respectively.     Then  AA'=  BB'  =  CC'.     (Use  52°.) 
2.  Is  Ex.    i    true  when   the   equilateral  As   are   described 

"  inwardly  "  or  upon  the  other  sides  of  their  bases  .'* 
3.  Two  lines  which  are  parallel  to  the  same  line  are  parallel 

to  one  another. 

4.  L'  and  M'  are  two  lines  respectively  parallel  to  L  and  M. 
The^(L'.  M')  =  _(L.M). 

5.  On  a  given  line  only  two  points  can  be  equidistant  from 

a  given  point     How  are  they  situated  with  respect  to 

the  perpendicular  from  the  given  point .'' 
6.  Any  side  of  a  A  is  greater  than  the  difference  between 

the  other  two  sides. 

7.4  The  sum  of  the  segments  from  any  point  within  a  A  to 

the  three  vertices  is  less  than  the  perimeter  of  the  A- 

8.  ABC  is  a  A  ̂ "^^  P  is  a  point  within  on  the  bisector  of 
-A      Then  the  difference  between  PB  and  PC  is  less 

than  that  between  AB  and  AC,  unless  the  A  is  isosceles. 
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9.  Is  Ex.  8  true  when  the  point  P  is  without  the  A?  but  on 
the  same  bisector  ? 

10.  Examine  Ex.  8  when  P  is  on  the  external  bisector  of  A, 

and  modify  the  wording  of  the  exercise  accordingly. 

11.  CE  and  CF  are  bisectors  of  the  angle  between  AB  and 

CD,  and  EF  is  parallel  to  AB.  Show  that  EF  is 

bisected  by  CD 

12.  If  the  middle  points  of  the  sides  of  a  A  be  joined  two 

and  two,  the  A  is  divided  into  four  congruent  As. 

13.  From  any  point  in  a  side  of  an  equilateral  A  lines  are 

drawn  parallel  to  the  other  sides.  The  perimeter  of 

the  I      7  so  formed  is  equal  to  twice  a  side  of  the  A- 

14.  PLxamine    Ex.    13    when    the    point    is   on    a   side    pro- 
duced. 

15.  The  internal  bisector  of  one  angle  of  a  A  and  the  ex- 
ternal bisector  of  another  angle  meet  at  an  angle  which 

is  equal  to  one-half  the  third  angle  of  the  A- 
16.  O  is  the  orthocentre  of  the  AABC.     Express  the  angles 

AOB,  BOC,  and  COA  in  terms  of  the  angles  A,  B, 
and  C. 

17.  P  is  the  circumcentre  of  the  AABC.     Express  the  angles 

APB,  BPC,  and  CPA  in  terms  of  the  angles  A,  P), 
and  C. 

18.  The  joins  of  the  middle  points  of  the  opposite  sides  of 

any  quadrangle  bisect  one  another. 

19.  The  median  to  the  hypothenuse  of  a  right-angled  triangle 

is  equal  to  one-half  the  hypothenuse. 
20.  If  one  diagonal  of  a  1      7  be  equal  to  a  side  of  the  figure, 

the  other  diagonal  is  greater  than  any  side. 

21.  If  any  point  other  than  the  point  of  intersection  of  the 

diagonals  be  taken  in  a  quadrangle,  the  sum  of  the 

line-segments  joining  it  with  the  vertices  is  greater 
than  the  sum  of  the  diagonals. 

22.  If  two  right-angled  As  have  the  hypothenuse   and   an 
acute  angle  in  the  one  respectively  equal  to  the  like 

parts  in  the  other,  the  As  are  congruent.. 
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jj.  The  bisectors  of  two  adjacent  angles  of  a  I      7  are  X  to 
one  another. 

24.  ABC  is  a  A-     The  angle  between  the  external  bisector 

of  B  and  the  side  AC  is  |(C~A). 
25.  The  external  bisectors  of  B  and  C  meet  in  I).     Then 

^BDC  =  |(B  +  C). 
26.  A  line  L  which  coincides  with  the  side  AB  of  the  AABC 

rotates  about  B  until  it  coincides  with  BC,  without  at 

any  time  crossing  the  triangle.  Through  what  angle 
does  it  rotate  ? 

27.  The  angle  required  in  Ex.  26  is  an  external  angle  of  the 

triangle.  Show  in  this  way  that  the  sum  of  the  three 

external  angles  of  a  triangle  is  a  circumangle,  and  that 
the  sum  of  the  three  internal  angles  is  a  straight  angle. 

28.  What  property  of  space  is  assumed  in  the  proof  of  Ex.  27? 

29.  Prove  76°  by  assuming  that  AC  rotates  to  AB  by  crossing 
the  triangle  in  its  rotation,  and  that  AB  rotates  to  CB, 

and  finally  CB  rotates  to  CA  in  like  manner. 

SFXTION    V. 

THE  CIRCLE. 

92°.  Def.  I.— A  Cin/e  is  the  locus  of  a  point  which,  moving 
in  the  plane,  keeps  at  a  constant  ___^=^— B 
distance  from  a  fixed  point  in  the 

plane. 
The  compasses,  whatever  be  their 

form,  furnish  us  with  two  points,  A  "      a 
and  B,  which,  from  the  rigidity  of .   r^-i   | — l, 
the   instrument,   are    supposed    to  tr-"  \-r^ 
preserve    an     unvarying    distance  ^  ^ 

from  one  another.     Then,    if  one  of  the   points  A   is  fixed, 

while  the  other   B   moves    over   the    paper   or   other    plane 
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surface,  the  moving  point  describes  a  physical  circle.  The 
limit  of  this  physical  circle,  when  the  curved  line  has  its 
thickness  diminished  endlessly,  is  the  geometric  circle. 

Def.  2. — The  fixed  point  is  the  centre  of  the  circle,  and  the 
distance  between  the  fixed  and  moveable  points  is  the  radius 
of  the  circle. 

The  curve  itself,  and  especially  where  its  length  is  under 

consideration,  is  commonly  called  the  a'rcu??iferefice  of  the circle. 

The  symbol  employed  for  the  circle  is  0. 

93°  From  the  definitions  of  92°  we  deduce  the  following 
corollaries  : — 

1.  All  the  radii  of  a  0  are  equal  to  one  another. 

2.  The  0  is  a  closed  figure  ;  so  that  to  pass  from  a  point 
within  the  figure  to  a  point  without  it,  or  vice  versa,  it  is 
necessary  to  cross  the  curve. 

3.  A  point  is  within  the  0,  on  the  0,  or  without  the  0, 
according  as  its  distance  from  the  centre  is  less,  equal  to,  or 
greater  than  the  radius. 

4.  Two  0s  which  have  equal  radii  are  congruent  ;  for,  if 
the  centres  coincide,  the  figures  coincide  throughout  and  form 
virtually  but  one  figure. 

Def. — Circles  which  have  their  centres  coincident  are 
called  concentric  circles. 

94°.  Theorem.— k  line  can  cut  a  circle  in  two  points,  and  in 
two  points  only. 

Proof.  Since  the  0  is  a  closed  curve  (93°,  2),  a  line  which 
cuts  it  must  lie  partly  within  the  0  and  partly  without.  And 

the  generating  point  (69°)  of  the  line  must  cross  the  0  in 
passing  from  without  to  within,  and  again  in  passing  from 
within  to  without. 

.".  a  line  cuts  a  0  at  least  twice  if  it  cuts  the  0  at  all. 
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Again,  since  all  radii  of  the  same  0  are  equal,  if  a  line 

could  cut  a  0  three  times,  three  equal  segments  could  be 

drawn  from  a  given  point,  the  centre  of  the  0,  to  a  given  line. 

And  this  is  impossible  (63°,  3). 
Therefore  a  line  can  cut  a  0  only  twice.  q.e.d. 

Cor.  I.  Three  points  on  the  same  circle  cannot  be  in  line  ; 

or,  a  circle  cannot  pass  through  three  points  which  are  in  line. 

95°.  Def.  I . — A  line  which  cuts  a  0  is  a  secant  or  secant-line. 

Def.  2.— The  segment  of  a  secant 
included  within  the  0  is  a  chord. 

Thus  the  line  L,  or  AB,  is  a 

secant,  and  the  segment  AB  is  a 

chord.  (21°) 
The  term  chord  whenever  involv- 

ing the  idea  of  length  means  the  segment  having  its  end- 
points  on  the  circle.  But  sometimes,  when  length  is  not 
involved,  it  is  used  to  denote  the  whole  secant  of  which  it 

properly  forms  a  part. 

Def.  2,' — A  secant  which  passes  through  the  centre  is  a 
centre-line,  and  its  chord  is  a  diameter. 

Where  length  is  not  implied,  the  term  diameter  is  some- 

times used  to  denote  the  centre-line  of  which  it  properly 
forms  a  part. 

Thus  M  is  a  centre-line  and  CD  is  a  diameter. 

96°.     Theorem. — Through  any  three  points  not  in  line- 
1.  One  circle  can  be  made  to  pass.  *^o 
2.  Only  one  circle  can  be  made  to  pass. 

Proof. — Let  A,  B,  C  be  three  points 
not  in  line. 

Join  AB  and  BC,and  let  L  and  M  be  the  a" 
right  bisectors  of  AB  and  BC  respectively. 

I.  Then,  because  AB  and  BC  intersect  at  B, 

L  and  M  intersect  at  some  point  O,        (79*,  Cor.) 
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and  O  is  equidistant  from  A,  B,  and  C.  (86  ) 

/.  the  0  with  centre  at  O,  and  radius  equal  to   OA,  passes 

through  B  and  C.  q.e.d. 

2.  Any  0  through  A,  B,  and  C  must  have  its  centre  equally 
distant  from  these  three  points. 

But  O  is  the  only  point  in  the  plane  equidistant  from  A,  B, 

and  C.  (86°,  Cor.) 
And  we  cannot  have  two  separate  0s  having  the  same 

centre  and  the  same  radius.  (93°,  4) 
.•.  only  one  circle  can  pass  through  A,  B,  and  C.  q.e.d. 

Cor.  I.  Circles  which  coincide  in  three  points  coincide 

altogether  and  form  one  circle. 

Cor.  2.  A  point  from  which  more  than  two  equal  segments 
can  be  drawn  to  a  circle  is  the  centre  of  that  circle. 

Cor.  3.  Since  L  is  a  centre-line  and  is  also  the  right 
bisector  of  AB, 

.*,  the  right  bisector  of  a  chord  is  a  centre  line. 

Cor.  4.  The  AAOB  is  isosceles,  since  OA=OB.  Then,  if 
D  be  the  middle  of  AB,  OD  is  a  median  to  the  base  AB  and 

is  the  right  bisector  of  AB.  (55°,  Cor.  2) 
.•.  a  centre-line  which  bisects  a  chord  is  perpendicular  to 

the  chord. 

Cor.  5.  From  Cor.  4  by  the  Rule  of  Identity, 

A  centre  line  which  is  perpendicular  to  a  chord  bisects  the 
chord. 

.'.  the  right  bisector  of  a  chord,  the  centre-line  bisecting 
the  chord,  and  the  centre-line  perpendicular  to  the  chord  are 
one  and  the  same. 

97°.  From  92°,  Def.,  a  circle  is  given  when  the  position  of 
its  centre  and  the  length  of  its  radius  are  given.  And,  from 

96°,  a  circle  is  given  when  any  three  points  on  it  are  given. 
It  will  be  seen  hereafter  that  a  circle  is  determined  by  three 

points  even  when  two  of  them  become  coincident,  and  in 

higher  geometry  it   is  shown  that  three  points  determine  a 
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circle,  under  certain  circumstances,  when  all  three  of  the 

points  become  coincident. 

De/.—Xny  number  of  points  so  situated  that  a  circle  can 
pass  through  them  are  said  to  be  concyc/ic,  and  a  rectilinear 

figure  (14°,  Def.)  having  its  vertices  concyclic  is  said  to  be 
inscribed  in  the  circle  which  passes  through  its  vertices,  and 

the  circle  is  said  to  circumscribe  the  figure. 

Hence  the  circle  which  passes  through  three  given  points 

is  the  circuincirclc  of  the  triangle  having  these  points  as  ver- 
tices, and  the  centre  of  that  circle  is  the  circumcentre  of  the 

triangle,  and  its  radius  is  the  circiimradius  of  the  triangle. 

(86°,  Def.) 
A  Uke  nomenclature  applies  to  any  rectilinear  figure  having 

its  vertices  concyclic. 

98°.  Theorem. — If  two  chords  bisect  one  another  they  are 
both  diameters. 

If  AF  =  PD  and  CF=FB,  then  P  is  the 
centre. 

Proof. — Since  P  is  the  middle  point  of 
both  AD  and  CB  (hyp.),  therefore  the  right 

bisectors  of  AD  and  CB  both  pass  through  P. 

But  these  right  bisectors  also  pass  through  the  centre ; 

(96°,  Cor.  3)  .*.     P  is  the  centre.         (24°,  Cor.  3)  q.e.ti. 

99°.    Theorem  — Equal  chords  are  equally  distant  from  the 
centre  ;   and,  conversely,  chords  equally  dis- 

tant from  the  centre  are  equal. 

If  AB  =  CD  and  OE  and  OF  are  the  per- 
pendiculars from  the  centre  upon  these 

chords,  then  OE  =  OF  ;  and  conversely,  if 

OE  =  OF,  then  AB  =  CD.  c^ 

Proof.  — ^\x\Q^  OE  and  OF  are  centre  lines  J_  to  AB  and  CD, 

AB  and  CO  are  bisected  in  K  and  F.     ('96°,  Cor.  5) 
.-.in  the  As  OBE  and  ODF 

OB  =  OD,      EB  =  FD, 
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and  they  are  right-angled  opposite  equal  sides, 
AOBE^AODF, 

and  OE-OF. 

Conversely,  by  the   Rule   of  Identity,  if  OE  =  OF, 
AB  =  CD. 

then 

q.e.d. 
loo 

A 

Theorem. — Two  secants  which  make  equal  chords 
,pmake  equal  angles  with  the  centre-line 

through  their  point  of  intersection. 

AB  =  CD,  and  PO  is  a  centre-line 

through  the  point  of  intersection  of 
AB  and  CD.     Then 

i-APO=^CPO. 

Proof.— "L^X.  OE   and    OF  be  J_  to 
AB  and  CD  from  the  centre  O. 

Then  OE  =  OF,  (99°) 
AOPE-AOPF,        (65°) 

and  ^APO=^CPO.  q.e.d. 

Cor.  I.   •.•  E  and  F  are  the  middle 

points  of  AB  and  CD,  (96°,  Cor.  5) 
.-.  PE  =  PF,  PA  =  PC,  and  PB  =  PD. 

Hence,  secants  which  make  equal  chords  make  two  pairs  of 

equal  line-segments  between  their  point  of  intersection  and 
the  circle. 

Cor.  2.  From  any  point  two  equal  line-segments  can  be 
drawn  to  a  circle,  and  these  make  equal  angles  with  the 

centre-line  through  the  point. 

101°.  As  all  circles  have  the  same  form,  two  circles  which 

have  equal  radii  are  equal  and  congruent  (93°,  4),  (51°). 
Hence  equal  and  congruent  are  equivalent  terms  when 

applied  to  the  circle. 

Def.  I. — Any  part  of  a  circle  is  an  arc. 
The  word  equal  when  applied  to  arcs  means  congruence 

or  capability  of  superposition.  Equal  arcs  come  from  the 
same  circle  or  from  equal  circles. 
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Dcf.  2.  -A  line  which  divides  a  figure  into  two  parts  such 
that  when  one  part  is  revolved  about  the  line  it  may  be  made 

to  fall  on  and  coincide  with  the  other  part  is  an  axis  oj 

symmetry  of  the  figure. 

102°.    Theorem  —  A  centre-line  is  an  axis  of  symmetry  of 
the  circle. 

Proof. — Let  AB  and  CD  be  equal 
chords  meeting  at  P,  and  let  PHOG 
be  a  centre  line. 

Let  the  part  of  the  figure  which  lies  q 
upon  the  F  side  of  PG  be  revolved 

about  PG  until  it  comes  to  the  plane 
on  the  E  side  of  PG. 

Then 

And 
and 

and 

i.GPA  =  ̂ GPC,         (100) 
PC  coincides  with  PA. 

PB  =  PD 

PA  =  PC,  (100°,  Cor.  1) 
D  coincides  with  P>, 
C  coincides  with  A. 

And  the  arc  HCG,  coinciding  in  three  points  with  the  arc 

HAG,  is  equal  to  it,  and  the  two  arcs  become  virtually  but 

one  arc,  (96°,  Cor.  i) 
Therefore  PG  is  an  axis  of  symmetry  of  the  0,  and  divides 

it  into  two  equal  arcs.  (/.e.d. 

Def. — Each  of  the  arcs  into  which  a  centre-line  divides  the 
circle  is  a  semicircle. 

Any  chord,  not  a  centre- line,  divides  the  circle  into  unequal 
arcs,  the  greater  of  which  is  called  the  major  arc,  and  the 
other  the  minor  arc. 

Cor.  I.  By  the  superposition  of  the  theorem  we  see  that 

arc  AB  =  arc  CD,  arc  HB  =  arc  HD,  arc  GA  =  arc  GC, 

arc  BDCA  =  arc  DBAC  (ist  Fig.) 

But  the  arcs  BDCA  and  AB  are  the  major  and  minor  arcs 
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to  the  chord  AB,  and  the  arcs  DBAC  and  CD  are  major  and 
minor  arcs  to  the  chord  CD. 

Therefore  equal  chords  determine  equal  arcs,  major  being 
equal  to  major  and  minor  to  minor. 

Cor.  2.  Equal  arcs  subtend  equal  angles  at  the  centre. 

103°.   Theorem. — Parallel  secants  intercept  equal  arcs  on  a 
E  circle. 

If  AB  is  !|  to  CD, 

then  arc  AC  =  arc  DB. 

'D      Proof, — Let  EF  be  the  centre-line  _L  to  AB. 

Then  EF  is  _L  to  CD  also.  (72^) 
When  EBDF  is  revolved  about  EF, 

B  comes  to  coincidence  with  A,  and  D  with  C,  and  the  arc 
BD  with  the  arc  AC, 

arc  AC  =  arc  DB.  q.e.d. 

Cor.  Since  the  chord  AC  =  chord  BD, 

Therefore  parallel  chords  have   the   chords  joining  their 

end-points  equal. 

Exercises. 

1.  Any  plane  closed  figure  is  cut  an  even  number  of  times  by 
an  indefinite  line. 

2.  In  the  figure  of  Art.  96°,  if  A,  B,  and  C  shift  their  relative 
positiorts  so  as  to  tend  to  come  into  line,  what  becomes 

of  the  point  O  ? 

3.  In  the  same  figure,  if  ABC  is  a  right  angle  where  is  the 

point  O .? 
4.  Given  a  circle  or  a  part  of  a  circle,  show  how  to  find  its 

centre. 

5.  Three  equal  segments  cannot  be  drawn  to  a  circle  from 

a  point  without  it. 
6.  The  vertices  of  a  rectangle  are  concyclic. 

7.  If  equal  chords  intersect,  the  segments  of  one  between  the 
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point  of  intersection  and  the  circle  are  respectively- 
equal  to  the  corresponding  segments  of  the  other. 

8.  Two  equal  chords  which  have  one  end-point  in  common 
lie  upon  opposite  sides  of  the  centre. 

9.  If  AB  and  CD  be  parallel  chords,  AD  and  BC,  as  also 

AC  and  BD,  meet  upon  the  right  bisector  of  AB  or  CD. 

10.  Two  secants  which  make  equal  angles  with  a  centre-line 
make  equal  chords  in  the  circle  if  they  cut  the  circle. 

(Converse  of  100°) 
11.  What   is   the  axis  of  symmetry  of  (a)  a   square,   (fi)   a 

rectangle,  (c)  an  isosceles  triangle,  {(/)  an  equilateral 

triangle  ?  Give  all  the  axes  where  there  are  more  than 
one. 

12.  When  a  rectilinear  figure  has  more  than  one  axis  of 

symmetry,  what  relation  in  direction  do  they  hold  to 
one  another } 

13.  The  vertices  of  an  equilateral  triangle  trisect  its  circum- 
circle. 

14.  A  centre-line  perpendicular  to  a  chord  bisects  the  arcs 
determined  by  the  chord. 

1 5.  Show  how  to  divide  a  circle  (a)  into  6  equal  parts,  (6)  into 

8  equal  parts. 

16.  If  equal  chords  be  in  a  circle,  one  pair  of  the  connecters 

of  their  end-points  are  parallel  chords. 

(Converse  of  103",  Cor.) 

THE  PRINCIPLE  OF  CONTINUITY. 

104'.  The  principle  of  continuity  is  one  of  the  most  prolific 
in  the  whole  range  of  Mathematics. 

Illustrations  of  its  meaning  and  application  in  Geometry 

will  occur  frequently  in  the  secjuel,  but  the  following  are 

given  by  way  of  introduction. 

I.  A  magnitude  is  continuous  throughout  its  extent. 

Thus  a  line  extends  from  any  one  point  to  another  without 
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breaks  or  interruptions  ;  or,  a  generating  point  in  passing 

from  one  position  to  another  must  pass  through  every  inter- 
mediate position. 

2.  In  Art.  53°  we  have  the  theorem — Every  point  on  the 
right  bisector  of  a  segment  is  equidistant  from  the  end-points 
of  the  segment. 

In  this  theorem  the  limiting  condition  in  the  hypothesis  is 

that  the  point  must  be  on  the  right  bisector  of  the  segment. 

Now,  if  P  be  any  point  on  the  right  bisector,  and  we  move 

P  along  the  right  bisector,  the  limiting  condition  is  not  at 

any  time  violated  during  this  motion,  so  that  P  remains  con- 

tinuously equidistant  from  the  end-points  of  the  segment 
during  its  motion. 

We  say  then  that  the  property  expressed  in  the  theorem  is 

continuous  while  P  moves  along  the  right  bisector. 

3.  In  Art.  97°  we  have  the  theorem — The  sum  of  the  in- 
ternal angles  of  a  quadrangle  is  four  right  angles. 

The  limiting  condition  is  that  the  figure  shall  be  a  quad- 

rangle, and  that  it  shall  have  in- 
ternal angles. 

Now,  let  ABCD  be  a  quadrangle. 
Then  the  condition  is  not  violated 

if  D  moves  to  D^  or  D2.  But  in 

the  latter  case  the  normal  quad- 
rangle ABCD  becomes  the  inverted  quadrangle  ABCDg, 

and  the  theorem  remains  true.  Or,  the  theorem  is  continu- 

ously true  while  the  vertex  D  moves  anywhere  in  the  plane, 

so  long  as  the  figure  remains  a  quadrangle  and  retains  four 
internal  angles. 

Future  considerations  in  which  a  wider  meaning  is  given 

to  the  word  "  angle  "  will  show  that  the  theorem  is  still  true 
even  when  D,  in  its  motion,  crosses  one  of  the  sides  AB  or 

BC,  and  thus  produces  the  crossed  quadrangle. 

The  Principle  of  Continuity  avoids  the  necessity  of  proving 

theorems  for  different  cases  brought  about  by  variations  in 

the  disposition  of  the  parts  of  a  diagram,  and  it  thus  gener- 
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alizes  theorems  or  relieves  them  from  dependence  upon  the 

particularities  of  a  diagram.  Thus  the  two  figures  of  Art. 

loo"^  differ  in  that  in  the  first  figure  the  secants  intersect 
without  the  circle,  and  in  the  second  figure  they  intersect 

within,  while  the  theorem  applies  with  equal  generality  to  both. 

The  Principle  of  Continuity  may  be  stated  as  follows  : — 
When  a  figure,  which  involves  or  illustrates  some  geometric 

property,  can  undergo  change,  however  small,  in  any  of  its 

parts  or  in  their  relations  without  violating  the  conditions 

upon  which  the  property  depends,  then  the  property  is  co/i- 
tiiiuoHS  while  the  figure  undergoes  any  amount  of  change  of 

the  same  kind  within  the  range  of  possibility. 

105°.  Let  AB  be  a  chord  dividing  the  0  into  unequal  arcs, 
and  let  P  and   ()  be  any  points  upon 

the  major  and  minor  arcs  respectively. 

(102°,  Def.) 
Let  O  be  the  centre. 

1.  The  radii  OA  and  OB  form  two 

angles  at  the  centre,  a  major  angle 

denoted  by  a  and  a  minor  angle  de- 

noted by  ̂ .  These  together  make  up 

a  circumangle. 

2.  The  chords  PA,  PB,  and  OA,  QB  form  two  angles  at 

the  circle,  of  which  APB  is  the  minor  angle  and  AQB  is  the 
major  angle. 

3.  The  minor  angle  at  the  circle,  APB,  and  the  minor  angle 

at  the  centre,  /S,  stand  upon  the  minor  arc,  AQB,  as  a  base. 

Similarly  the  major  angles  stand  upon  the  major  arc  as  base. 

4.  Moreover  the  _APB  is  said  to  be  ///  the  arc  APB,  so 

that  the  minor  angle  at  the  circle  is  in  the  major  arc,  and  the 
major  angle  at  the  circle  is  in  the  minor  arc. 

5.  When  B  moves  towards  B'  all  the  minor  elements 
increase  and  all  the  major  elements  decrease,  and  when  B 

comes  to  B'  the  minor  elements  become  respectively  equal  to 
the  major,  and  there  is  neither  major  nor  minor. 
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When  B,  moving  in  the  same  direction,  passes  B',  the 
elements  change  name,  those  which  were  formerly  the  minor 
becoming  the  major  and  vice  versa. 

io6°.  Theorem.— \n  angle  at  the  circle  is  one-half  the 
corresponding  angle  at  the  centre,  major  corresponding  to 
major  and  minor  to  minor. 

^AOB  minor  is  2^APB. 

Proof. — Since  AAPO  is  isosceles, 

z.OAP  =  z.OPA,(53°,Cor.i) 
andi_OAP  +  ̂ OPA  =  2Z.OPA. 

But  z.AOC  =  z.OAP  +  _OPA, 

(76°,  Cor.) 
^AOC  =  2^0PA. 

^B0C  =  2^0PB; 

.-.  adding,  lAOB  minor  =  2^APB.  q.e.d. 
The  theorem  is  thus  proved  for  the  minor  angles.  But 

since  the  limiting  conditions  require  only  an  angle  at  the 

circle  and  an  angle  at  the  centre,  the  theorem  remains  true 

while  B  moves  along  the  circle.  And  when  B  passes  B' 
the  angle  APB  becomes  the  major  angle  at  the  circle,  and 

the  angle  AOB  minor  becomes  the  major  angle  at  the 
centre. 

the  theorem  is  true  for  the  major  angles. 

Cor.  I.  The  angle  in  a  given  arc  is  constant.  (105°,  4) 

Cor.  2.  Since      Z-APB  =  |z-AOB  minor, 

and  ^AOB  =  |^AOB  major, 

and  *.'   Z.AOB  minor +  z_ AOB  major  =  4  right  angles        (37°) 
^APB  +  Z.AOB  =  a  straight  angle. 

And  APBO  is  a  concyclic  quadrangle. 

Hence   a    concyclic    quadrangle   has    its    opposite   internal 

angles  supplementary.  (40°,  Def  i) 

Cor.  3.   D  being  on  AO  produced, 

i_BOl)  is  supplementary  to  ̂ AOB. 
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lint      -APFJ   is  supplementary  to  _AQB, 
_APB  =  _BOD. 

Hence,  if  one  side  of  a  concyclic  quadrangle 

be  produced,  the  external  angle  is  equal  to  a^ 

the  opposite  internal  angle. 

Cor.  4,   Let  B  come  to  B'.         (Fig.  of  106°) 
Then  lAOB'  is  a  straight  angle, 

Z.APB'  is  a  right  angle. 

But  the  arc  APB'  is  a  semicircle^  (102°,  Def.) 
Therefore  the  angle  in  a  semicircle  is  a  right  angle. 

107°.    Theorem. — A   quadrangle    which    has    its    opposite 
angles  supplementary  has  its  vertices  concyclic. 

(Converse  of  106°,  Cor.  2) 
ABCD  is  a  quadrangle  whereof  the  ̂ ADC 

is  supplementary  to  lABC  ;  then  a  circle 

can  pass  through  A,  B,  C,  and  D, 

Proof. — If  possible  let  the  0  through  A, 
B,  and  C  cut  AD  in  some  point  P. 

Join  P  and  C. 

Then  ^APC  is  supplementary  to  zJVBC,  (106°,  Cor.  2) 

and  aADC  is  supplementary  to  aABC,  (^hyp.) 
^APC-^JVDC, 

which  is  not  true.  (60°) 
.'.  the  0  cannot  cut  AD  in  any  point  other  than  D, 
Hence  A,  B,  C,  and  D  are  concyclic.  q.e.d. 

Cor.  I.  The  hypothenuse  of  a  right-angled  triangle  is  the 

diameter  of  its  circumcircle,  (88°,  3,  Def. ;  97",  Def.) 
Cor.  2.  When  P  moves  along  the  0  the  AAPC  (last  figure) 

has  its  base  AC  constant  and  its  vertical  angle  A  PC  constant. 

Therefore  the  locus  of  the  vertex  of  a  triangle  which  has  a 

constant  base  and  a  constant  vertical  angle  is  an  arc  of  a 

circle  passing  through  the  end-points  of  the  base. 
This  property  is  employed  in  the  trammel  which  is  used  to 

describe  an  arc  of  a  given  circle 
E 
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It   consists    of  two    rules    (i6°)    L    and    ]\I    joined   at   a 
L  ̂ ,yC\  determined  angle.     When  it  is   made 

to   slide   over   two   pins  A   and   B,  a 

pencil    at    P   traces    an    arc    passing 

through  A  and  B. 

Io8^  Theorem. — The  angle  between  two  intersecting  se- 
cants is  the  sum  of  those  angles  in  the  circle  which  stand 

on  the  arcs  intercepted  between  the 

secants,  when  the  secants  intersect 

within  the  circle,  and  is  the  difference 

of  these  angles  when  the  secants 
intersect  without  the  circle. 

^APC  =  ̂ ABC  +  :_BCD,  (,!J.) 

z_APC-^ABC-^BCD.  {f^) 

Proof.-\.  ̂ APC  =  lPBC  +  z.PCB,  (6o°) 

".-.       zAPC  =  ̂ ABC+^BCD. 
2.  a.ABC  =  :1APC+^BCP, 

.-.      ̂ APC  =  z.ABC-^BCD. 

q.e.d. Exercises. 

If  a  six-sided  rectilinear  figure  has  its  vertices  concyclic, 
the  three  alternate  internal  angles  are  together  equal 
to  a  circumangle. 

In  Fig.  105°,  when  B  comes  to  O,  BO  vanishes  ;  what  is 
the  direction  of  BO  just  as  it  vanishes  ? 

Two  chords  at  right  angles  determine  four  arcs  of  which  a 

pair  of  opposite  ones  are  together  equal  to  a  semi- 
circle. 

A,  B,  C,  D  are  the  vertices  of  a  square,  and  A,  E,  F  of  an 

equilateral  triangle  inscribed  in  the  same  circle. 

What  is  the  angle  between  the  lines  BE  and  DF.^ 

between  r)F  and  EI).^ 
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SPECIAL  SECANTS-TANGENT. 

109'.  Let  P  be  a  fixed  point  on  the  0S  and  O  a  variable 
one. 

The  position  of  the  secant  L,  cut- 
ting the  circle  in  P  and  Q,  depends 

upon  the  position  of  O. 

As  Q  moves  along  the  0  the  secant 
rotates  about  P  as  pole.  While  Q 

makes  one  complete  revolution  along 

the  0  the  secant  L  passes  through  two 

special  positions.  The  first  of  these  is  when  Q  is  farthest 

distant  from  P,  as  at  Q',  and  the  secant  L  becomes  a  centre- 
line. The  second  is  when  O  comes  into  coincidence  with  P, 

and  the  secant  takes  the  position  TT'  and  becomes  a  tangent. 

Def.  I.— A  t(i7io^ent  to  a  circle  is  a  secant  in  its  limiting 
position  when  its  points  of  intersection  with  the  circle  become 
coincident. 

That  the  tangent  cannot  cut  or  cross  the  0  is  evident. 

For  if  it  cuts  the  0  at  P  it  must  cut  it  again  at  some  other 

point.  And  since  P  represents  two  points  we  would  have  the 

absurdity  of  a  line  cutting  a  circle  in  three  points.  (94") 

Def.  2.— The  point  where  P  and  O  meet  is  called  ihc  point 

of  contact.  Being  formed  by  the  union  of  two  points  it  repre- 
sents both,  and  is  therefore  a  doul^le  point. 

From  Defs.  i  and  2  we  conclude — 

1.  A  point  of  contact  is  a  double  point. 

2.  As  a  line  can  cut  a  0  only  twice  it  can  touch  a  0  only  once. 

3.  .A  line  which  touches  a  0  cannot  cut  it. 

4.  A  0  is  determined  by  two  points  if  one  of  them  is  a 

given  point  of  contact  on  a  given  line  ;  or,  only  one 

circle  can  pass  through  a  given  point  rmd  touch  a 

given  line  at  a  given  point.     (Compare  97°.) 
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I  io°.    Theorem.— k  centre-line  and  a  tangent  to  the  same 
point  on  a  circle  are  perpendicular  to  one  another. 

L'  is  a  centre-line  and  T  a  tan- 

gent, both  to  the  point  P.  Then  L' 
is  J_  to  T. 

Proof. — •.'  T  has  only  the  one  point 
P  in  common  with  the  0,  every  point 

of  T  except  P  lies  without  the  0.  .". 
if  O  is  the  centre  on  the  line  L',  OP 
is  the  shortest  segment  from  O  to  T. 

OP,  or  L',  is  ±  to  T.  (63°,  i)  q.e.d. 

Cor.  I.  Tangents   at    the   end-points   of    a    diameter  are 

parallel. 

Cor.  2.  The  perpendicular  to  a  tangent  at  the  point  of  con- 

tact is  a  centre-line.     (Converse  of  the  theorem.) 

Cor.  3.  The  perpendicular  to  a  diameter  at  its  end-point  is 
a  tangent. 

111°.  Theorem. — The  angles  between  a  tangent  and  a 
chord  from  the  point  of  contact  are 

respectively  equal  to  the  angles  in  the 

opposite  arcs  into  which  the  chord 
divides  the  circle. 

TP  is  a  tangent  and  PO  a  chord  to 

the  same  point  P,  and  A  is  any  point  on 

the  0.     Then 

_QPT  =  ̂ QAP. 

Proof.  — 'L^i  PD  be  a  diameter. Then Z.OAP  =  ̂ QDP, (106°,  Cor.  i) 
and 

^UQP  is  a  ~1- 
(106°,  Cor.  4) 

Also ^DPQ  iscomp.  of^OPT, (40°,  Def.  3) 
and _DPO  iscomp.  of_QDP, 

_ODP  =  ̂ OPT-_QAP. {11\  6) 

Similarly,  tl le    _QPr  =  /.QBP. 

q.e.d. 
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112°.  T/ti'drcfn.  -Tv/o  circles  can  intersect  in  only  two 
points. 

Proof.  —  If  they  can  intersect  in  three  points,  two  circles 
can  be  made  to  pass  through  the  same  three  points.  But 

this  is  not  true.  (96°) 
.'.  two  circles  can  intersect  in  only  two  points. 
Cor.  Two  circles  can  touch  in  only  one  point.  For  a 

point  of  contact  is  equivalent  to  two  points  of  intersection. 

1 13°.   Theorem. — The  common  centre-line  of  two  intersect- 
ing circles  is  the  right  bisector 

of  their  common  chord. 

O  and  O'  are  the  centres  of  S 

and  S',  and  AB  is  their  common 

chord.  Then  OO'  is  the  right 
bisector  of  AB. 

(54") 

/'r^^/- Since  AO  =  BO, 

and  AO'  =  BO', 
.".     O  is  on  the  right  bisector  of  AB 

Similarly  O'  is  on  the  right  bisector  of  AB, 

.-.     GO'  is  the  right  bisector  of  AB. 

Cor.  I.  By  the  principle  of  continuity,  OO'  always  bisects 
AB.  Let  the  circles  separate  until  A  and  B  coincide.  Then 

the  circles  touch  and  GO'  passes  through  the  point  of  contact. 

Def. — Two  circles  which  touch  one  another  have  external 
contact  when  each  circle  lies  without  the  other,  and  internal 
contact  when  one  circle  lies  within  the  other. 

Cor.  2.  Since  OG'  (Cor.  i)  passes  through  the  point  of 
contact  when  the  circles  touch  one  another — 

{a)  When  the  distance  between  the  centres  of  two  circles 
is  the  sum  of  their  radii,  the  circles  have  external 
contact. 

{b)  When  the  distance  between  the  centres  is  the  difference 

of  the  radii,  the  circles  have  internal  contact. 
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(c)  When  the  distance  between  the  centres  is  greater  than 

the  sum  of  the  radii,  the  circles  exclude  each  other 
without  contact. 

(</)  When  the  distance  between  the  centres  is  less  than 

the  difference  of  the  radii,  the  greater  circle  includes 
the  smaller  without  contact. 

{e)  When  the  distance  between  the  centres  is  less  than  the 

sum  of  the  radii  and  greater  than  their  difference,  the 
circles  intersect. 

114'.  Theorefft. — From  any  point  .without  a  circle  two 
tangents  can  be  drawn  to  the 
circle. 

Proof. ~htt  S  be  the  0  and  P 
the  point.  Upon  the  segment 

PO  as  diameter  let  the  0S'  be 
described,  cutting  0S  in  A  and 
B.  Then  PA  and  PB  are  both 

tangents  to  S. 

For  ̂ OAP  is  in  a  semicircle  and  is  a  "1.  (106°,  Cor.  4) 

.-.  AP  is  tangent  to  S.  (110°,  Cor.  3) 
Similarly  BP  is  tangent  to  S. 

Cor.  I.  Since  PO  is  the  right  bisector  of  AB,  (113°) 
PA  =  PB.  (53°) 

Hence  calling  the  segment  PA  the  tangent  from  P  to  the 

circle.,  when  length  is  under  consideration,  we  have — The  two 
tangents  from  any  point  to  a  circle  are  equal  to  one  another. 

Def — The  line  AB,  which  passes  through  the  points  of 
contact  of  tangents  from  P,  is  called  the  chord  of  contact  for 

the  point  P. 

115°.  Def  I. — The  angle  at  which  two  circles  intersect  is 
the  angle  between  their  tangents  at  the  point  of  intersection. 

Def  2.  When  two  circles  intersect  at  right  angles  they  are 
said  to  cut  each  other  orfhogonal/y. 
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The  same  term  is  ronveniently  applied  to  the  intersection 

of  any  two  figures  at  right  angles. 

Cor.  I.  If,  in  the  Fig.  to  114°,  PA  be  made  the  radius  of  a 
circle  and  P  its  centre,  the  circle  will  cut  the  circle  S  ortho- 

gonally. For  the  tangents  at  A  are  respectively  perpendicular 
to  the  radii. 

Hence  a  circle  S  is  cut  orthogonally  by  any  circle  having 

its  centre  at  a  point  without  S  and  its  radius  the  tangent 

from  the  point  to  the  circle  S. 

116°.  The  following  examples  furnish  theorems  of  some 
importance. 

Ex.  I.  Three  tangents  touch  the  circle 

S  at  the  points  A,  B,  and  C,  and  inter- 

sect to  form  the  AA'B'C.  O  being  the 
centre  of  the  circle, 

^A0C  =  2i.A'0C'. 

Proof.—  AC'  =  BC', 

and  BA'  =  CA',  (114°,  Cor.  i) 

AAOC'  =  AHOC,  and  ABOA'  =  ACOA' 

^BOC'  =  ̂ OC',   and    ̂ COA'  =  ̂ BOA', 
zJ\OC  =  2^A'OC'.  q,e.d. 

Similarly        i.AOB  =  2^A'OB',  and  z.BOC  =  2iLB'OC'. 
If  the  tangents  at  A  and  C  are  fixed,  and  the  tangent  at  B 

is  variable,  we  have  the  following  theorem  : — 

The  segment  of  a  variable  tangent  intercepted  by  two  fixed 

tangents,  all  to  the  same  circle,  subtends  a  fixed  angle  at  the 
centre. 

Ex.  2.  If  four  circles  touch  two  and  two  externally,  the 
points  of  contact  are  concyclic. 

Let  A.  B.  C,  D  be  the  centres  of  the  circles,  and  P,  Q,  R, 
S  be  the  points  of  contact. 

Then  AB  passes  through  P,  BC  through  Q,  etc.  (113°,  Cor.  i) 
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Now,  ABCD  being  a  quadrangle, 

_A  +  -B  +  _C  +  ̂ D  =  4~is.  (90°) 
But  the  sum  of  all  the  internal  angles  of  the  four  As  APS, 

BQP,  CRQ,  and  DSR  is  8 "Is,  and 
i.APS=Zj\SP,  ^BPQ  =  ̂ BQP,  etc., 

z.APS  +  Z-BPQ  +  z.CRQ  +  ̂ DRS  =  2"~|s. 
Now  ^SP(2-2~!s-(^APS  +  ̂ BPQ), 

z.QRS  =  2~ls-(^CRQ  +  /.DRS), 

^SP0  +  ̂ QRS  =  2~|s. 
and  P,  Q,  R,  S  are  concyclic  (107°).  q.e.d. 

Ex.  3.  If  the  common  chord  of  two  intersecting  circles 

subtends  equal  angles  at  the  two  circles,  the  circles  are  equal. 

AB  is  the  common  chord,  C,  C  points  upon  the  circles,  and 
z.ACB  =  .lACB. 

Let  O,  O'  be  the  centres.  Then  ̂ AOB  =  ̂ AO'B.  (106°) 

And  the  triangles  OAB  and  O'AB  being  isosceles  are  con- 

gruent,        .'.  OA  =  0'A,  and  the  circles  are  equal.       (93°,  4) 

Ex.  4.  If  O  be  the  orthocentre  of  a  AABC,  the  circum- 
circles  to  the  As  ABC,  AOB,  BOC,  COA 

are  all  equal. 

•.•  AX  and   CZ  are  _L  respectively  to 
BC  and  AB, 

^CBA  =  sup.  of  ̂ XOZ 

=  sup.  of  i_COA. 

But   D    being    any   point   on   the    arc 

AS2C,  ̂ CDA  is  the  sup.  of  ̂ COA. 
/.CBA  =  ̂ CDA, 

and  the  0s  S  and  Sg  are  equal  by  Ex.  3. 

In  like  manner  it  may  be  proved  that  the  0S  is  equal  to  the 

0s  S3  and  S^. 

.  Ex.  5.  If  any  point  O  be  joined  to  the  vertices  of  a  AABC, 

the  circles  having  OA,  OB,  and  OC  as  diameters  intersect 

upon  the  triangle. 

/*r^^/— Draw  OX  \_  to  BC  and  OY  J_  to  AC. 
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■ :  _0XB=~~1,  the  0  on  OB  as  diameter  passes  through  X. 
(I07^  Cor..  I) 

Similarly  the  0  on  OC  as  diameter  passes  through  X. 

Therefore  the  0s  on  OB  and  OC  intersect  in  X  ;  and  in  like 

manner  it  is  seen  that  the  0s  on  OC  and  OA  intersect  in  Y, 
and  those  on  OA  and  OB  intersect  in  Z,  the  foot  of  the  JL 
from  O  to  AB. 

Ex.  6.  The  feet  of  the  medians  and  the  feet  of  the  altitudes 

in  any  triangle  are  six  concyclic  points,  and  the  circle  bisects 

that  part  of  each  altitude  lying 
between  the  orthocentre  and  the 

vertex. 

D,  E,  F  are  the  feet  of  the 

medians,  i.e.^  the  middle  points 
of  the  sides  of  the  AABC.  Let 

the  circle  through  D,  E,  F  cut 

the  sides  in  G,  H,  K. 

Now  FD  is  II  to  AC  and  ED  is  ||  to  AB,  (84^  Cor.  2) 
i.FDE  =  ̂ FAE. 

But  _FDE  =  £-FHE,  (lo6^  Cor.  i) 

.'.  AAFH  is  isosceles,  and  AF  =  FH  =  FB  ; 

_AHB  =  ~|,  (106°,  Cor.  4) 
and  H  is  the  foot  of  the  altitude  from  B. 

Similarly,  K  and  G  are  feet  of  the  altitudes  from  C  and  A. 

Again,  .iKPH=i.KFH  =  2_KAH.  And  A,  K,  O,  H  are 

concyclic  (107°),  and  AG  is  a  diameter  of  the  circumcircle, 
therefore  P  is  the  middle  point  of  AG. 

Similarly,  Q  is  the  middle  point  of  BO,  and  R  of  CO. 

7)^— The  circle  S  passing  through  the  nine  points  D,  E, 

F,  (i,  H,  K,  and  P,  O,  R,  is  called  the  nine-points  circle  of 
the  AABC. 

Cor.  Since  the  nine-points  circle  of  ABC  is  the  circum- 
circle of  A'^EF.  whereof  the  sides  are  respectively  equal  to 

half  the  sides  of  the  AABC,  therefore  the  radius  of  the  nine- 

points  circle  of  any  triangle  is  one-half  that  of  its  circumcircle. 
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Exercises. 

1.  In  105'  when  P  passes  B  where  is  the  ̂ lAFB  } 
2.  A,  B,  C,  D  are  four  points  on  a  circle  whereof  CD  is  a 

diameter  and  E  is  a  point  on  this  diameter.  If 

^AEB  =  2/.ACB,  E  is  the  centre. 

3.  The  sum  of  the  alternate  angles  of  any  octagon  in  a  circle 
is  six  right  angles. 

4.  The  sum  of  the  alternate  angles  of  any  concyclic  polygon 

of  2n  sides  is  2(//  -  i)  right  angles. 

5.  If  the  angle  of  a  trammel  is  60''  what  arc  of  a  circle  will 

it  describe  ?  what  if  its  angle  is  n''  ? 
6.  Trisect  a  right  angle  and  thence  show  how  to  draw  a 

regular  12-sided  polygon  in  a  circle. 

7.  If  r,  r'  be  the  radii  of  two  circles,  and  d  the  distance 

between  them,  the  circles  touch  when  d^r±.r'. 
8.  Give  the  conditions  under  which  two  circles  have  4,  3,  2, 

or  I  common  tangent. 

9.  Prove  Ex.  2,  116°,  by  drawing  common  tangents  to  the 
circles  at  P,  Q,  R,  and  S. 

10.  A  variable  chord  passes  through  a  fixed  point  on  a  circle, 

to  find  the  locus  of  the  middle  point  of  the  chord. 

11.  A  variable  secant  passes  through  a  fixed  point,  to  find 

the  locus  of  the  middle  point  of  the  chord  determined 

by  a  fixed  circle. 

12.  In  Ex.  II,  what  is  the  locus  of  the  middle  point  of  the 

secant  between  the  fixed  point  and  the  circle  ? 

13.  In  a  quadrangle  circumscribed  to  a  circle  the  sums  of  the 

opposite  sides  are  equal  in  pairs  ;  and  if  the  vertices 

be  joined  to  the  centre  the  sums  of  the  opposite  angles 

at  the  centre  are  equal  in  pairs. 

14.  If  a   hexagon  circumscribe   a   circle  the  sum   of  three 

alternate  sides  is  equal  to  that  of  the  remaining 
three. 

15.  If  two  circles  are   concentric,   any   chord   of  the  outer 

which  is  tangent  to  the  inner  is  bisected  by  the  point 
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of  contact  ;  and  the  parts  intercepted  on  any  secant 

between  the  two  circles  are  equal  to  one  another. 

1 6.  If  two  circles  touch  one  another,  any  line  through  the 

point  of  contact  determines  arcs  which  subtend  equal 

angles  in  the  two  circles. 

17.  If  any  two  lines  be  drawn  through  the  point  of  contact  of 

two  touching  circles,  the  lines  determine  arcs  whose 

chords  are  parallel. 

18.  If  two  diameters  of  two  touching  circles  are  parallel,  the 

transverse  connectors  of  their  end-points  pass  through 
the  point  of  contact. 

19.  The  shortest  chord  that  can  be  drawn  through  a  given 

point  within  a  circle  is  perpendicular  to  the  centre-line 
through  that  point. 

20.  Three  circles  touch  each  other  externally  at  A,  B,  and  C. 
The  chords  AH  and  AC  of  two  of  the  circles  meet  the 

third  circle  in  D  and  E.  Prove  that  DE  is  a  diameter 

of  the  third  circle  and  parallel  to  the  common  centre- 
line of  the  other  two. 

21.  A  line  which  makes  equal  angles  with  one  pair  of  oppo- 
site sides  of  a  concyclic  quadrangle  makes  equal  angles 

with  the  other  pair,  and  also  with  the  diagonals. 
22.  Two  circles  touch  one  another  in  A  and  have  a  common 

tangent  BC.     Then  _BAC  is  a  right  angle. 

23.  OA  and  OB  are  perpendicular  to  one  another,  and  AB  is 

variable  in  position  but  of  constant  length.  Find  the 

locus  of  the  middle  point  of  AB. 

24.  Two  equal  circles  touch  one  another  and  each  touches 

one  of  a  pair  of  perpendicular  lines.  What  is  the  locus 

of  the  point  of  contact  of  the  circles  ? 

25.  Two  lines  through  the  common  points  of  two  intersecting 
circles  determine  on  the  circles  arcs  whose  chords  are 

parallel. 
26.  Two  circles  intersect  in  A  and  B,  and  through  B  a  secant 

cuts  the  circles  in  C  and  D.  Show  that  i_CAD  is 

constant,  the  direction  of  the  secant  being  variable. 
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27.  At  any  point  in  the  (  iidinicircle  of  a  square  one  of  the 

sides  subtends  an  angle  three  times  as  great  as  that 

subtended  by  the  opposite  side. 

28.  The  three  medians  of  any  triangle  taken  in  both  length 
and  direction  can  form  a  triangle. 

SECTION    VI. 

CONSTRUCTIVE   GEOMETRY, 

INVOLVING    THE    PRINCIPLES    OF    THE    FIRST    FIVE 

SECTIONS,    ETC. 

117°.  Constructive  Geometry  applies  to  the  determination 
of  geometric  elements  which  shall  have  specified  relations  to 

given  elements. 

Constructive  Geometry  is  Practical  when  the  determined 

elements  are  physical,  and  it  is  Theoretic  when  the  elements 

are  supposed  to  be  taken  at  their  limits,  and  to  be  geometric 

in  character.  (12°) 
Practical  Constructive  Geometry,  or  simply  "  Practical 

Geometry,"  is  largely  used  by  mechanics,  draughtsmen,  sur- 
veyors, engineers,  etc.,  and  to  assist  them  in  their  work 

numerous  aids  known  as  "  Mathematical  Instruments"  have 
been  devised. 

A  number  of  these  will  be  referred  to  in  the  sequel. 

In  "Practical  Geometry  "  the  "  Rule"  (16°)  furnishes  the 

means  of  constructing  a  line,  and  the  "  Compasses  "  (92°)  of 
constructing  a  circle. 

In  Theoretic  Constructive  Geometry  we  assume  the  ability 

to  construct  these  two  elements,  and  by  means  of  these  we 

are  to  determine  the  required  elements. 

118°.     To  test  the  "  Rule." 
Place  the  rule  on  a  plane,  as  at  R,  and  draw  a  line  AR 
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along  its  edge.     Turn  the  rule  into  the  position  R'.     If  the 
edge  now  coincides  with  the  line  .   ■,   ^_^ 

the  rule  is  true.  "X^ZI   \   T^ — 
This  test  depends  upon  the  pro- 

perty  that  two  finite  points  A  and   B  determine  one  line. 

(24°,  Cor.  2) 
Def. — A  construction  proposed  is  in  general  called  a 

proposition  (2°)  and  in  particular  d,  problem. 
A  complete  problem  consists  of  (i)  the  statement  of  what 

is  to  be  done,  (2)  the  construction,  and  (3)  the  proof  that  the 

construction  furnishes  the  elements  sought. 

1 19°.  Problem. — To  construct  the  right  bisector  of  a  given 
line  segment. 

Let  AB  be  the  given  segment.  9) 

Construction. — With  A  and  B  as  centres 

and  with  a  radius  AD  greater  than  half  of  a  ■      ;D 
AB  describe  circles. 

Since  AB  is  <  the  sum  of  the  radii  and 

>  their  difference,  the  circles  will  meet  in 

two  points  P  and  O.  (i  13')  Cor.  2,  e) 
The  line  FQ  is  the  right  bisector  required. 

Proof. — P  and  O  are  each  equidistant  from  A  and  B  and 

.*.  they  are  on  the  right  bisector  of  AB  ;  (54'') 

.*.  PQ  is  the  right  bisector  of  AB. 

Cor.  I.  The  same  construction  determines  C,  the  middle 

point  of  AB. 

Cor.  2.  If  C  be  a  given  point  on  a  line,  and  we  take  A  and 

B  on  the  line  so  that  CA  =  CB,  then  the  right  bisector  of  the 

segment  AB  passes  through  C^and  is  _L  to  the  given  line. 

.*.  the  construction  gives  the  perpendicular  to  a  given  line 
at  a  given  point  in  the  line. 

120°.  Problem. — To  draw  a  perpendicular  to  a  given  line 
from  a  point  not  on  the  line. 
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Let  L  be  the  given  line  and  P  be  the  point. 

Cojistr. — Draw  any  line  through 

P  meeting  L  at  some  point  A. 

Bisect  AP  in  C  (119°,  Cor.  i),  and 
with  C  as  centre  and  CP  as  radius 

describe  a  circle. 

If  PA  is  not  ±  to  L,  the  0  will 

cut  L  in  two  points  A  and  D. 

Then  PD  is  the  _L  required. 

Proof. — PDA  is  the  angle  in  a  semicircle, 

£.PDAisa~l-  (106°,  Cor.  4) 
Cor.  Let  D  be  a  given  point  in  L.     With  any  centre  C 

and  CD  as  radius  describe  a  circle  cutting  L  again  in  some 

point  A.     Draw  the  radius  ACP,  and  join  D  and  P.     Then 
DP  is  ±  to  L. 

.*.  the  construction  draws  a  _L  to  L  at  a  given  point  in  L. 

(Compare  119°,  Cor.  2) 
Cor.  2.  Let  L  be  a  given  Hne  and  C  a  given  point. 

To  draw  through  C  a  line  parallel  to  L. 

With  C  as  the  centre  of  a  circle,  construct  a  figure  as 

given.     Bisect  PD  in  E  (119°,  Cor.  i).  ̂   Then  CE  is  ||  to  L. 
For  C  and  E  are  the  middle  points  of  two  sides  of  a  triangle 

of  which  L  is  the  base.  (84°,  Cor.  2) 

121°.   The  Square. — The  square  consists  of  two  rules  with 
their  edges  fixed  permanently  at 

right  angles,  or   of  a   triangular 

plate   of  wood   or   metal   having 

two  of  its  edges  at  right  angles. 

To  test  a  square. 

Draw  a  line  AB  and  place  the 

square  as  at  S,  so  that  one  edge 
coincides  with  the  line,  and  along 

the   other    edge    draw    the    line 
^  CD. 

Next  place  the  square  in  the  position  .S'.     If  the  edges  ran 



I 
CONSTRUCTIVE   GEOMETRY.  79 

now  be  made  to  coincide  with  the  two  lines  the  square 
is  true. 

This  test  depends  upon  the  fact  that  a  right  angle  is  one- 
half  a  straight  angle. 

The  square  is  employed  practically  for  drawing  a  line  _L  to 
another  line.  — 

Cor.  I.  The  square  is  employed  to 

draw  a  series  of  parallel  lines,  as  in 

the  figure. 

Cor.  2.  To  draw  the  bisectors  of  an  angle  by  means  of  the 

square. 

Let  AG B  be  the  given  angle.  Take  OA  =  OB,  and  at  A 
and  B  draw  perpendiculars  to  OA  and  OB. 

Since  AOB  is  not  a  straight  angle,  these  perpendiculars 

meet  at  some  point  C.  (79",  Cor.) 
Then  OC  is  the  internal  bisector  of  _AOB.  For  the  tri- 

angles AOC  and  BOC  are  evidently  congruent. 
lAOC  =  £.BOC. 

The  line  drawn  through  O  ±  to  OC  is  the  external  bisector. 

122°.  Problem. — Through  a  given  point  in  a  line  to  draw  a 
line  which  shall  make  a  given  angle  B 
with  that  line. 

Let  P  be  the  given  point  in  the 

line  L,  and  let  X  be  the  given 

angle. 

Constr.—  From  any  point  B  in 
the  arm  OB  draw  a  _L  to  the  arm  OA. 

Make    PA'  =  OA,   and   at   A'   draw 
A'B'  =  AB.     PB'  is  the  line  required. 

Proof.— Thit  triangles  OBA  and  PB'A'  are  evidently  con- 

gruent," and  .-.  ^BOA  =  X  =  ̂ B'PA'. 
Cor.  Since  PA'  might  have  been  taken  to  the  left  of  P,  the 

problem  admits  of  two  solutions.  When  the  angle  X  is  a 

right  angle  the  two  solutions  become  one. 
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The  Protractor. — This  instrument  has  different  forms 

depending  upon  the  accuracy  re- 
quired of  it.  It  usually  consists  of 

a  semicircle  of  metal  or  ivory  divided 

into  degrees,  etc.  (41°).  The  point  C 
is  the  centre.  By  placing  the  straight 

edge  of  the  instrument  in  coincidence  with  a  given  line  AB 

so  that  the  centre  falls  at  a  given  point  C,  we  can  set  off  any 

angle  given  in  degrees,  etc.,  along  the  arc  as  at  D.  Then 

the  line  CD  passes  through  C  and  makes  a  given  angle 
with  AB 

1 24°.  Problem. — Given  the  sides  of  a  triangle  to  construct  it. 
Constr. — Place  the  three  sides  of 

the   triangle   in    line,  as  AB,   BC, 
CD. 

J       With  centre  C  and  radius  CD 

^         ̂   ^  describe  a  circle,  and  with  centre 
B  and  radius  BA  describe  a  circle. 

Let  E  be  one  point  of  intersection  of  these  circles. 

Then  ABEC  is  the  triangle  required. 

Proof.— \\Y.^V>K  and  CE  =  CD. 

Since  the  circles  intersect  in  another  point  E',  a  second 
triangle  is  formed.  But  the  two  triangles  being  congruent 

are  virtually  the  same  triangle. 

Cor.  I.  When  AB  =  BC  =  CA  the  triangle  is  equilateral. 

(53°,  Def  2) 
In  this  case  the  circle  AE  passes  through  C  and  the  circle 

DE  through  B,  so  that  B  and  C  become  the  centres  and  BC 
a  common  radius. 

Cor.  2.  When  BC  is  equal  to  the  sum  or  difference  of  AB 

and  CI)  the  circles  touch  (113°,  Def)  and  the  triangle  takes 
the  limiting  form  and  becomes  a  line. 

When  liC  is  "reater  than  the  sum  or  less  than  the  differ- 
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ence  of  AB  .ind  CI)  the  circles  do  not  meet  (113°,  Def.)  and 
no  triangle  is  possible. 

Therefore  that  three  line-segments  may  form  a  triangle, 
each  one  must  be  less  than  the  sum  and  greater  than  the 
difference  of  the  other  two. 

125°.  The  solution  of  a  problem  is  sometimes  best  effected 
by  supposing- the  construction  made,  and  then  by  reasoning 
backwards  from  the  completed  figure  to  some  relation 

amongst  the  given  parts  by  means  of  which  we  can  make 
the  construction. 

This  is  analogous  to  the  process  employed  for  the  solution 

of  equations  in  Algebra,  and  a  more  detailed  reference  will 
be  made  to  it  at  a  future  stage. 

The  next  three  problems  furnish  examples 

126°.  Problem. — To  construct  a  triangle  when  two  sides 
and  the  median  to  the  third  side  are  given. 

Let  a  and  b  be  two  sides  and  ;/ 

the  median  to  the  third  side. 

Suppose  ACB  is  the  required 

triangle  having  CD  as  the  given 
median. 

By  completing  the  ZZZ7ACBC' 
and  joining  DC,  we  have  DC 

equal  to  CD  and  in  the  same  line,  and  BC  =  AC  (81°) ;  and 
the  triangle  CCB  has  CC  =  2;/,  CB  =  rt,  and  BC  =  AC  =  /^ 

and  is  constructed  by  124°. 
Thence  the  triangle  ACB  is  readily  constructed. 

Cor.  Since  CC  is  twice  the  given  median,  and  since  the 

possibility  of  the  triangle  ACB  depends  upon  that  of  CCB, 

therefore  a  median  of  a  triangle  is  less  than  one-half  the 

sum,  and  greater  than  one-half  the  difference  of  the  conter- 

minous sides.  (124°,  Cor.  2) F 
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127°.  Problem. — To   trisect   a  given    line-segment,  i.e.^  to 
divide  it  into  three  equal  parts, 

Cojistr. — Let  AB  be  the  segment. 
Through  A  draw  any  line  CD  and  make 

A^   •^i   3:=;^B  AC  =  AD.     Bisect  DB  in  E,  and  join  CE, 
E  cutting  AB  in  F. 

D  Then  AF  is  AAB. 

Proof. — CBD  is  a  A  and  CE  and  BA  are  two  medians. 

AF  =  iAB.  (85°,  Cor.) 
Bisecting  FB  gives  the  other  point  of  division. 

128°.  Problem.- 
B 

To  construct  a  A  when  the  three  medians 
are  given. / 

•;^           Let    /,    7n,    n    be    the    given 
n       medians,     and     suppose     ABC 

to     be     the     required     triangle. 
Then 

BE  =  ?«,     and  CF  =  «, 

;/, 

A  E  c 

AD  =  /, 

AO  =  f/,  OB  =  |w,  and  OF 

.'.  in  the  AAOB  we  have  two  sides  and  the  median  to  the 

third  side  given.  Thence  AAOB  is  constructed  by  126° 

and  127". 
Then  producing  FO  until  OC  =  2FO,  C  is  the  third  vertex 

of  the  triangle  required. 

Ex.  To  describe  a  square  whose  sides  shall  pass  through 

four  given  points. 

Let  P,  Q,  R,  S  be  the  given  points,  and 

suppose  ABCD  to  be  the  square  required. 

Join  P  and  Q  upon  opposite  sides  of  the 

square,  and  draw  QG  ||  to  BC.  Draw  SX 

_L  to  PQ  to  meet  BC  in  E,  and  draw  EF 

II  to  CdT  Then  AQPG  =  AFSE, 
and  SE  =  PO. 

Hence  the  construction  : — 

Join  any  two  points  PO,  and  through  a  third  point  .S  draw 

s< 

  q\     b A 
\ 
./ F 

/ c 

R 

°  / 
Q 
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SX  _L  to  PO.  On  SX  take  SE  =  PO  and  join  E  with  the 
fourth  point  R.  ER  is  a  side  of  the  square  in  position  and 

direction,  and  the  points  first  joined,  P  and  O,  are  on  oppo- 
site sides  of  the  required  square. 

Thence  the  square  is  readily  constructed. 

Since  SE  may  be  measured  in  two  directions  along  the 

line  SX,  two  squares  can  have  their  sides  passing  through 

the  same  four  points  P,  O,  R,  S,  and  having  P  and  (2  on 

opposite  sides. 
Also,  since  P  may  be  first  connected  with  R  or  S,  two 

squares  can  be  constructed  fulfilling  the  conditions  and 

having  P  and  Q  on  adjacent  sides. 

Therefore,  four  squares  can  be  constructed  to  have  their 

sides  passing  through  the  same  four  given  points. 

CIRCLES  FULFILLING  GIVEN  CONDITIONS. 

The  problems  occurring  here  are  necessarily  of  an  elemen- 
tary character.  The  more  complex  problems  require  relations 

not  yet  developed. 

129°.  Problem. — To  describe  a  circle  to  touch  a  given  line 
at  a  given  point. 

P  is  a  given  point  in  the  line  L. 

Cotistr. — Through  P  draw  M  _L  to  L. 
A  circle  having  any  point  C,  on  M,  as 
centre  and  CP  as  radius  touches  L  at  P. 

Proof. — L  is  _L  to  the  diameter  at  its 

end-point,  therefore  L  is  tangent  to  the  circle,    (i  10°,  Cor.  3) 

Def.—As  C  is  any  point  on  M,  any  number  of  circles  may 
be  drawn  to  touch  L  at  the  point  P,  and  all  their  centres  lie 
on  M. 

Such  a  problem  is  indefinite  because  the  conditions  are 

not  sufficient  to  determine  a  particular  circle.     If  the  circle 
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varies  its  radius  while  fulfilling  the  conditions  of  the  problem, 

the  centre  moves  along  M  ;  and  M  is  called  the  centre-locus 
of  the  variable  circle. 

Hence  the  centre-locus  of  a  circle  which  touches  a  fixed 

line  at  a  fixed  point  is  the  perpendicular  to  the  line  at  that 

point. 
Cor.  If  the  circle  is  to  pass  through  a  second  given  point 

Q  the  problem  is  definite  and  the  circle  is  a  particular  one, 

since  it  then  passes  through  three  fixed  points,  viz.,  the  double 

point  P  and  the  point  O.  (i09°j  4) 
In  this  case  iLCOP  =  £.CPQ. 

But  ̂ CPQ  is  given,  since  P,  Q,  and  the  line  L  are  given. 

.'.  ̂ COP  is  given  and  C  is  a  fixed  point. 

Problem. — To  describe  a  circle  to  touch  two  given 

non-parallel  lines. 
Let  L  and  M  be  the  lines  inter- 

secting at  O. 

Draw  N,  N,  the  bisectors  of  the 

angle  between  L  and  M .  ( 1 2 1  °,  Cor.  2) 
From  C,  any  point  on  either  bi- 

sector, draw  CA  ̂ _  to  L. 

The  circle  with  centre  C  and  radius  CA  touches  L,  and  if 

CB  be  drawn  J_  to  M,  CB  =  CA.  (68') 
Therefore  the  circle  also  touches  M. 

As  C  is  any  point  on  the  bisectors  the  problem  is  indefinite, 

and  the  centre-locus  of  a  circle  which  touches  two  intersecting 
lines  is  the  two  bisectors  of  the  angle  between  the  lines . 

131°.  Problem. — To  describe  a  circle  to  touch  three  given 
lines  which  form  a  triangle. 

L,.M,  N  are  the  lines  forming  the  triangle. 

Constr.  -\)x7Vs\  I,,  E,  the  internal  and  external  bisectors 

of  the  angle  A  ;  and  I.,,  r'^,,  those  of  the  angle  B. 
/.A-KlB  is  <i_,   .-.  _BAO-l-i.ABO  is<n- 
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.-.   Ii  and  I.^  meet  at  some  point  O  (79°)  and  are  not  _L  to  one 
another  and  therefore  E^  and  Eg  meet  at  some  point  O3. 

(79°,  Cor.) 

Also  Ij  and  Eg  meet  at  some  point  O,,  and  similarly  Ig  and 

E^  meet  at  Oj. 

The  four  points  O,  Oj,  Og,  O3  are  the  centres  of  four  circles 
each  of  which  touches  the  three  Hnes  L,  M,  and  N. 

Proof. — Circles  which  touch  M  and  N  have  Ij  and  E^  as 

their  centre-locus  (130°),  and  circles  which  touch  N  and  L 
have  I2  and  E,  as  their  centre-locus. 

.".  Circles  which  touch  L,  M,  and  N  must  have  their 
centres  at  the  intersections  of  these  loci. 

But  these  intersections  are  O,  Oj,  Og,  and  O3, 

.■.  O,  Oi,  O2,  and  O3  are  the  centres  of  the  circles  required. 
The  radii  are  the  perpendiculars  from  the  centres  upon  any 

one  of  the  lines  L,  M,  or  N. 

Cor.  I.  Let  I3  and  E3  be  the  bisectors  of  the  lC  Then, 

since  O  is  equidistant  from  L  and  M,  I3  passes  through  O.  (68°) 
.•.  the  three  internal  bisectors  of  the  angles  of  a  triangle 

are  concurrent. 

Cor.  2.  Since  O3  is  equidistant  from  L  and  M,  I3  passes 

through  O3.  (68°) 
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.'.  the  external  bisectors  of  two  angles  of  a  triangle  and  the 
internal  bisector  of  the  third  angle  are  concurrent. 

Def.  I. — When  three  or  more  points  are  in  line  they  are 
said  to  be  collinear. 

Cor.  3,  The  line  through  any  two  centres  passes  through  a 
vertex  of  the  AABC. 

.'.  any  two  centres  are  collinear  with  a  vertex  of  the  l\. 
The  lines  of  collinearity  are  the  six  bisectors  of  the  three 

angles  A,  B,  and  C. 

Def.  2  — With  respect  to  the  AABC,  the  circle  touching 
the  sides  and  having  its  centre  at  O  is  called  the  inscribed 

circle  or  simply  the  in-circle  of  the  triangle. 
The  circles  touching  the  lines  and  having  centres  at  Oj, 

O2,  and  O3  are  the  escribed  or  ex-circles  of  the  triangle. 

REGULAR  POLYGONS. 

132°.  Def.  I. — A  closed  rectilinear  figure  without  re-entrant 
angles  (89°,  2)  is  in  general  called  2i polygon. 

They  are  named  according  to  the  number  of  their  sides  as 

follows  : — 

3,  triangle  or  trigon  ; 
4,  quadrangle,  or  tetragon,  or  quadrilateral ; 
5,  pentagon  ;  6,  hexagon  ;     7,  heptagon  ; 
8,  octagon  ;    10,  decagon  ;  12,  dodecagon  ;  etc. 

The  most  important  polygons  higher  than  the  quadrangle 
are  regular  polygons. 

Def  2. — A  regular  polygon  has  its  vertices  concyclic,  and 
all  its  sides  equal  to  one  another. 

The  centre  of  the  circumcircle  is  the  centre  of  the  polygon. 

133°.   Theorejn. — If  ;/  denotes  the  number  of  sides  of  a 
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regular   polygon,    the    magnitude   of    an    internal    angle    is 

(  2  -  4  j  right  angles. 

Proof. — Let  AB,  BC  be  two  consecu- 
tive sides  of  the  polygon  and  O  its  centre. 

Then   the   triangles  AOB,  BOC   are 

isosceles  and  congruent. 

^OAB=^OBA-^OBC  =  etc., 
^OAB  +  ̂ OBA  =  _ABC. 

But  ^OAB  +  ̂ OBA-_L-zAOB, 

and  (132°,  Def.  2)  ^OB  =  4  rig
ht  angles n 

^ABC  =  (2-'*)  right  angles, 

Cor.  The  internal  angles  of  the  regular  polygons  expressed 

in  right  angles  and  in  degrees  are  found,  by  putting  proper 

values  for  «,  to  be  as  follows  : — 

Equilateral  triangle,  |      60°         Octagon,      .  f     135" 

Square,   i       90°         Decagon,     .  f     144° 

Pentagon,  ....  4     108°         Dodecagon,    ̂      150" 

Hexagon,    .     .     ,     .  *     120° 

134°.  Problem. — On  a  given  line-segment  as  side  to  con- 
struct a  regular  hexagon. 

Let  AB  be  the  given  segment. 

Constr. — On  AB  construct  the  equi- 

lateral triangle  AOB  (124°,  Cor.  i),  and 
with  O  as  centre  describe  a  circle  through 

A,  cutting  AO  and  BO  produced  in  D 

and  E.  Draw  FC,  the  internal  bisector  of 

ABCDEF  is  the  hexagon. 

Proof.—  ^AOB  =  ̂ EOD  =  O 
^A0E  =  O  and  A0F  =  O 

.lAOB  =  :_BOC-_COI)  =  etc.  =  §n. 
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And  the  chords  AB,  BC,  CD,  etc.,  being  side.s  of  congruent 

equilateral  triangles  are  all  equal. 

Therefore  ABCDEF  is  a  regular  hexagon. 

Cor.  Since  AOB  is  an  equilateral  triangle,  AB=AO  ; 

.-.  the  side  of  a  regular  hexagon  is  equal  to  the  radius  of 
its  circumcircle. 

135°.  Pi'oblem. — To  determine  which  species  of  regular 
polygons,  each  taken  alone,  can  fill  the  plane. 

That  a  regular  polygon  of  any  species  may  be  capable  of 

filling  the  plane,  the  number  of  right  angles  in  its  internal 

angle  must  be  a  divisor  of  4.  But  as  no  internal  angle  can 

be  so  great  as  two  right  angles,  the  only  divisors,  in  133°,. 
Cor.,  are  f,  i,  and  |,  which  give  the  quotients  6,  4,  and  3. 

Therefore  the  plane  can  be  filled  by  6  equilateral  triangles, 

or  4  squares,  or  3  hexagons. 
It  is  worthy  of  note  that,  of  the  three  regular  polygons 

which  can  fill  the  plane,  the  hexagon  includes  the  greatest 

area  for  a  given  perimeter.     As  a  consequence,  the  hexagon 

is     frequently     found     in 

Nature,  as  in  the  cells  of 

bees,  in  certain  tissues  of 

y03         plants,  etc. 
Ex.  I.  Let  D,  E,  F  be 

points  of  contact  of  the  in- 

circle,  and  P,  P',  P ",  R,  R', 

R",  etc.,  of  the  ex-circles. 

(131°) 

ThenAP  =  AP',CP'  =  CP", 
andBP  =  BP",(ii4°,

Cor.i) 

.-.  AP'  +  AP 

=:AB  +  BC  +  AC 

and,  denoting  the  perimeter  of  the  triangle  by  is^  we  have 

AP  =  AP'  =  J, 
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CP'  =  J-^  =  CP",      BV  =  s~c  =  BP". 

Similarly,       AR  =  s-d  =  AR'\    BR'  =  j-rt  =  BR",  etc. 

Again,   '         CD  =  CE  =  ̂ - AE  =  /5- AF  =  /^-(r- BF) =  d-c+BD  =  &~c  +  n-CD, 

2CD  =  d  +  a-c=2(s-c), 

CK  =  CD  =  s-c'=BP". 

Similarly,       AE  =  AF  =  j-^z  =  BR",  etc. 
These  relations  are  frequently  useful. 

If  we  put  At  to  denote  the  distance  of  the  vertex  A  from 

the  adjacent  points  of  contact  of  the  in-circle,  and  A^,  Ac  to 
denote  its  distances  from  the  points  of  contact  of  the  ex-circles 
upon  the  sides  d  and  c  respectively,  we  have 

A/=  Be  =  C/^  =  s  -  a, 

Bi=  Ca  =  Ac  =  s-  d, 
Qi=Ab=Ba=s  —  c. 

Exercises. 

1.  In  testing  the  straightness  of  a  "rule"  three  rules  are 
virtually  tested.     How  ? 

2.  To  construct  a  rectangle,  and  also  a  square. 

3.  To  place  a  given  line-segment  between  two  given  lines 
so  as  to  be  parallel  to  a  given  line. 

4.  On  a  given  line  to  find  a  point  such  that  the  lines  joining 

it  to  two  given  points  may  make  equal  angles  with  the 

given  line. 
5.  To  find  a  point  equidistant  from  three  given  points. 

6.  To  find  a  line  equidistant  from  three  given  points.     How 

many  lines .'' 
7.  A  is  a  point  on  line  L  and  B  is  not  on  L.    To  find  a  point 

P  such  that  PA±PB  may  be  equal  to  a  given  segment. 

8.  On   a  given   line  to  find  a  point  equidistant  from  two 

given  points. 
9    Through  a  given  point  to  draw  a  line  which  shall  form  an 

isosceles  triangle  with  two  given  lines.     How  many 
solutions  ? 
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10.  Through  two  given  points  on  two  parallel  lines  to  draw 
two  lines  so  as  to  form  a  rhombus, 

11.  To  construct  a  square  having  one  of  its  vertices  at  a 

given  point,  and  two  other  vertices  lying  on  two  given 

parallel  lines. 
12.  Through  a  given  point  to  draw  a  hne  so  that  the  intercept 

between  two  given  parallels  may  be  of  a  given  length. 

13.  To  construct  a  triangle  when  the  basal  angles  and  the 

altitude  are  given. 

14.  To  construct  a  right-angled  triangle  when  the  hypothen- 
use  and  the  sum  of  the  sides  are  given. 

1 5.  To  divide  a  line-segment  into  any  number  of  equal  parts. 
16.  To  construct  a  triangle  when  the  middle  points  of  its 

sides  are  given. 

17.  To  construct  a  parallelogram  when  the  diagonals  and 

one  side  are  given. 

18.  Through  a  given  point  to  draw  a  secant  so  that  the  chord 

intercepted  by  a  given  circle  may  have  a  given  length. 

19.  Draw  a  line  to  touch  a  given  circle  and  be  parallel  to  a 

given  line.     To  be  perpendicular  to  a  given  line. 

20.  Describe  a  circle  of  given  radius  to  touch  two  given  lines. 

21.  Describe  a  circle  of  given  radius  to  touch  a  given  circle 

and  a  given  line. 

22.  Describe  a  circle  of  given  radius  to  pass  through  a  given 

point  and  touch  a  given  circle. 

23.  Describe  a  circle  of  given  radius  to  touch  two  given  circles. 

24.  To  inscribe  a  regular  octagon  in  a  circle. 

25.  To  inscribe  a  regular  dodecagon  in  a  circle. 

26.  A,  B,  C,  D,  ..  ,  are  consecutive  vertices   of  a   regular 

octagon,  and  A,  B',  C,  D',  ...,  of  a  regular  dodecagon 
in  the  same  circle.  Find  the  angles  between  AC  and 

B'C;  between  BE'  and  B'E.     (Use  io8°.) 
27.  Show  that  the  plane  can  be  filled  by 

(a)  Equilateral  triangles  and  regular  dodecagons. 

{d)  Equilateral  triangles  and  squares. 

(c)  Squares  and  regular  octagons. 



PART    II. 

PRELIMINARY. 

136°,  Def.  I. — The  area  of  a  plane  closed  fi^^ure  is  the  por- 
tion of  the  plane  contained  within  the  figure,  this  portion 

being  considered  with  respect  to  its  extent  only,  and  without 

respect  to  form. 
A  closed  figure  of  any  form  may  contain  an  area  of  any 

given  extent,  and  closed  figures  of  different  forms  may  con- 
tain areas  of  the  same  extent,  or  equal  areas. 

Def.  2. — Closed  figures  are  equal  to  one  another  when  they 
include  equal  areas.  This  is  the  definition  of  the  term 

"equal"  when  comparing  closed  figures. 
Congruent  figures  are  necessarily  equal,  but  equal  figures 

are  not  necessarily  congruent.  Thus,  a  A  and  a  czi  may  have 

equal  areas  and  therefore  be  equals  although  necessarily 

having  different  forms. 

137°.  Areas  are  compared  by  superposition.  If  one  area 
can  be  superimposed  upon  another  so  as  exactly  to  cover  it, 

the  areas  are  equal  and  the  figures  containing  the  areas  are 

equal.  If  such  superposition  can  be  shown  to  be  impossible 

the  figures  are  not  equal. 

In  comparing  areas  we  may  suppose  one  of  them  to 

be  divided  into  any  requisite  number  of  parts,  and  these 

parts  to  be  afterwards  disposed  in  any  convenient  order, 

since  the  whole  area  is  equal  to  the  sum  of  all  its  parts. 

91 
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Illustration.— kViQV)  is  a  square. 

Then  the  AABC  =  AADC,  and  they  are  therefore  equal. 
Now,  if  AD  and  DE  be  equal  and  in 

hne,  the  As  ADC  and  EDC  are  con- 

gruent and  equal. 

Therefore  the  AABC  may  be  taken 

"e  from  its  present  position  and  be  put  into 
the  position  of  CDE.     And  the  square  ABCD  is  thus  trans- 

formed into  the  AACE  without  any  change  of  area  ; 

nABCD  =  AACE. 

It  is  evident  that  a  plane  closed  figure  may  be  considered 
from  two  points  of  view. 

1.  With  respect  to  the  character  and  disposition  of  the 

lines  which  form  it.  When  thus  considered,  figures  group 
themselves  into  triangles,  squares,  circles,  etc.,  where  the 

members  of  each  group,  if  not  of  the  same  form,  have  at 
least  some  community  of  form  and  character. 

2.  With  respect  to  the  areas  enclosed. 

When  compared  from  the  first  point  of  view,  the  capability 

of  superposition  is  expressed  by  saying  that  the  figures  are 

congruent.  When  compared  from  the  second  point  of  view, 

it  is  expressed  by  saying  that  the  figures  are  equal. 

Therefore  congruence  is  a  kind  of  higher  or  double 

equality,  that  is,  an  equality  in  both  form  and  extent  of  area. 

This  is  properly  indicated  by  the  triple  lines  (  =  )  for  con- 

gruence, and  the  double  lines  (  =  )  for  equality. 

138°.  Def. — The  altitude  of  a  figure  is  the  line-segment 
which  measures  the  distance  of  the  farthest  point  of  a  figure 
from  a  side  taken  as  base. 

The  terms  base  and  altitude  are  thus  correlative.  A  tri- 

angle may  have  three  different  bases  and  as  many  corre- 

sponding altitudes.  (87°) 

In  the  rectangle  (82°,  Def  2)  two  adjacent  sides  being 
perpendicular  to  one  another,  either  one  may  be  taken  as  the 
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base  and  the  adjacent  one  as  the  altitude.  The  rectangle 

having  two  given  segments  as  its  base  and  altitude  is  called 

the  rectangle  on  these  segments. 

Notation. — The  symbol  1=1  stands  for  the  word  rectangle 
and  I      7  {ox  parallel ogratn. 

Rectangles  and  parallelograms  are  commonly  indicated  by 

naming  a  pair  of  their  opposite  vertices. 

SECTION  I. 

COMPARISON    OF   AREAS— RECTANGLES, 
PARALLELOGRAMS,   TRIANGLES. 

139°.   Theorem. —  i.  Rectangles  with  equal  bases  and  equal 
altitudes  are  equal. 

2.  Equal  rectangles  with  equal  bases  have  equal  altitudes. 

3.  Equal  rectangles  with  equal  altitudes  have  equal  bases. 

I.  In  the  OS  BD  and  FH,  if  \\  3§ 
AD  =  EH, 

and  AB  =  EF,  ^ then  i=iiBD=(=iFH. 

Proof.- -VlRce   E   at   A   and    EH    along     e'   

AD.     Then,  as  Z.FEH  =  ̂ BAD=~|.  EF  will  lie  along  AB. 
And  because  EH=AD  and  EF  =  AB,  therefore  H  f^lls  at 

D  and  F  at  B,  and  the  two  nns  are  congruent  and  therefore 

equal,  ^.e.d. 

2.  Ifc=iBD  =  [=iFH  andAD  =  EH,then  AB  =  EF. 

Proof.— 1(  EF  is  not  equal  to  AB.  let  AB  be  >  EF. 
Make  AP  =  EF  and  complete  the  cnPD. 

Then  nPD  =  nFH,  by  the  first  part, 
but  aBD=oFH,  (hyp.) 
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i=]PD=[zdBD,  which  is  not  true, 

.•.  AB  and  EF  cannot  be  unequal,  or 
AB  =  EF.  q,e.d. 

3.  Ifc=iBD=i=iFH  and  AB  =  EF,  then  AD  =  EH. 

Proof.— \.^^  AB  and  EF  be  taken  as  bases  and  AD  and 

EH  as  altitudes  (138°),  and  the  theorem  follows  from  the 
second  part.  q.e.d. 

Cor.  In  any  rectangle  we  have  the  three  parts,  base,  alti- 
tude, and  area.  If  any  two  of  these  are  given  the  third  is 

given  also. 

140°.   Theorem. — A  parallelogram  is  equal  to  the  rectangle B   F   c  on  its  base  and  altitude. 

/        AC  is  a  /     7  whereof  AD  is  the  base 
and  DF  is  the  altitude. 

A  D  Then  EZJAC  =  [=i  on  AD  and  DF. 

/•rd?/?/— Complete  the  cdADFE  by  drawing  AE  _L  to  CB 
produced. 

Then  AAEB  =  ADFC,    '.•  AE  =  DF,  AB  =  DC, 
and  ^EAB  =  ̂ FDC; 

•*•  ADFC    may  be  transferred  to  the  position  AEB,  and 
ZZZ7ABCD  becomes  the  cdAEFD, 

ZZZ7AC  =  n  on  AD  and  DF.  q.e.d. 

Cor.  I.  Parallelograms  with  equal  bases  and  equal  altitudes 

are  equal.     For  they  are  equal  to  the  same  rectangle. 

Cor.  2.  Equal  parallelograms  with  equal  bases  have  equal 

altitudes,  and  equal  parallelograms  with  equal  altitudes  have 

equal  bases. 

Cor.  3.  If  equal  parallelograms  be  upon  the  same  side  of 

the  same  base,  their  sides  opposite  the  common  base  are 
in  line. 

141°.  Theorem.— K  triangle  is  equal  to  one-half  the  rect- 
angle on  its  base  and  altitude. 
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ABC  is  a  triangle  of  which  AC  is  the  base  and  BE  the 
altitude.  B  d 

Then  /\ABC  =  hcn  on  AC  and  BE. 

Proo/.~Comp\ete  the  £IZ7ABDC,  of 
which  AB  and  AC  are  adjacent  sides,    a 

Then  AABC  =  ADCB, 

AABC  =  ̂ /ZU AD  =^C3  on  AC  and  BE.    (140')  ̂ .t\r/. 

Cor.  I.  A  triangle  is  equal  to  one-half  the  parallelogram 
having  the  same  base  and  altitude. 

Cor.  2.  Triangles  with  equal  bases  and  equal  altitudes  are 

equal.     For  they  are  equal  to  one-half  of  the  same  rectangle. 

Cor.  3.  A  median  of  a  triangle  bisects  the  area.  For  the 
median  bisects  the  base. 

Cor.  4.  Equal  triangles  with  equal  bases  have  equal  alti- 
tudes, and  equal  triangles  with  equal  altitudes  have  equal  bases. 

Cor.  5.  If  equal  triangles  be  upon  the  same  side  of  the 

same  base,  the  line  through  their  vertices  is  parallel  to  their 
common  base. 

142°.   Theorem. — If  two  triangles  are  upon  opposite  sides 
of  the  same  base — 

1.  When  the  triangles  are  equal,  the  base  bisects  the  seg- 
ment joining  their  vertices  ; 

2.  When  the  base  bisects  the  segment  joining  their  vertices, 

the  triangles  are  equal.    (Converse  of  i.) 

ABC  and  ADC  are  two  triangles  upon 

opposite  sides  of  the  common  base  AC. 

I.  If         AABC  =  AADC,  ^* 
then  BH  =  HD. 

Proof. 

Then    ". 

Let  BE  and  DF  be  altitudes, 

AABC=AADC,      .-.  BE  =  DF, 
AEBH-AFDH,and  BH  =  HD. 

-2.   If  BH  =  HD,  then  AABC  =  AADC. q.e.d. 
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Proof.—SmcQ  BH  =  HD,      /.  AABH=AADH, 
and  ACBH  =  ACDH.  (141^  Cor.  3) 

.-.  adding,       AABC=AADC.  q.e.d. 

143.  Def. — By  the  skjh  or  difference  of  two  closed  figures  is 
meant  the  sum  or  difference  of  the  areas  of  the  figures. 

If  a  rectangle  be  equal  to  the  sum  of  two  other  rectangles 
its  area  may  be  so  superimposed  upon  the  others  as  to  cover 
both. 

144°.  Theorem. — If  two  rectangles  have  equal  altitudes, 
their  sum  is  equal  to  the  rectangle  on  their  common  altitude 
and  the  sum  of  their  bases. 

f.       Proof. — Let  the  ens  X  and  Y,  having 
equal  altitudes,  be  so  placed  as  to  have 

E  their  altitudes  in  common  at  CD,  and  so 
that  one  en  may  not  overlap  the  other. 

Then  z.BDC=^CDF=~n, 
BDF  is  a  Hne.  (38°,  Cor.  2) 

Similarly  ACE  is  a  line. 
But  BD  is  II  to  AC,  and  BA  is  ||  to  DC  ||  to  FE  ;  therefore 

AF  is  the  t=i  on  the  altitude  AB  and  the  sum  of  the  bases 

AC  and  CE  ;  and  the  c=iAF=c:dAD  +[=iCF.  q.e.d. 

Cor.  I.  If  two  triangles  have  equal  altitudes,  their  sum  is 

equal  to  the  triangle  having  the  same  altitude  and  having  a 
base  equal  to  the  sum  of  the  bases  of  the  two  triangles. 

Cor.  2.  If  two  triangles  have  equal  altitudes,  their  sum  is 

equal  to  one-half  the  rectangle  on  their  common  altitude 
and  the  sum  of  their  bases. 

Cor.  3.  If  any  number  of  triangles  have  equal  altitudes, 
their  sum  is  equal  to  one-half  the  rectangle  on  their  common 
altitude  and  the  sum  of  their  bases. 

In  any  of  the  above,  "base"  and  "altitude"  are  inter- 
changeable. 
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145  .  Theorem,  'X^o  lines  parallel  to  the  bideb  of  ;• 
parallelogram  and  intersecting  upon  a  diagonal  divide  the 

parallelogram  into  four  parallelograms  such  that  the  two 

through  which  the  diagonal  does  not  pass  are  equal  to  one 
another. 

In  the^UABCD,  EFis  ||  to  AD  and 

GH  is  II  to  BA.  and  these  intersect  at 

O  on  the  diagonal  AC. 

Then        £ZZ7BO  =  Z=Z70D. 

/'rt?^?/— AABC  =  AADC,  and  AAEO=AAHO, 

and  AOGC  =  AOFC  ;  (141",  Cor.  i) 
but  £ZZ7BO  =  AABC-AAEO-AOGC, 

and  £ZI70D=AADC-AAH0-A0FC. 

Z=Z7BO  =  CZ70D.  q.eM. 

Cor.  I.  .CI7BF  =  £=7GD. 

Cor.  2.   If  ZZZ7B0  =  £IZ70D,  O  is  on  the   diagonal  AC. 
(Converse  of  the  theorem.) 

For  if  O  is  not  on  the  diagonal,  let  the  diagonal  cut  EF  in 

O'.     Then  z=7BO'=ZZI70'D.  (145") 
But  IZU\SO'  is  <  £=760,  and  ̂ IIJO'D  is  >  /ZZ70D  ; 

.•.  /      7BO  is  >  I      70r)j  which  is  contrary  to  the  hypothesis; 

.".  the  diagonal  cuts  EF  in  O. 

Ex.  Let  ABCD  be  a  trapezoid. 

(84°,  Def.)  In  line  with  AD  make 
DE  =  BC,  and  in  line  with  BC  make 

CF  =  AD.  "  °  ^ 

Then  BF  =  AE  and  BFEA  is  a  / — 7. 

But  the  trapezoid  CE  can  be  superimposed  on  the  trape- 

zoid DB,  since  the  sides  are  respectively  equal,  and 
^F  =  A,  and  ̂ E  =  B,  etc. 

trapezoid  BD  =  |ZZZ7BE, 

or,  a  trapezoid  is  equal  to  one-half  the  rectangle  on  its  alti- 
tude and  the  sum  of  its  bases. 

G 
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Exp:rctses. 

1.  To  construct  a  triangle  equal  to  a  given  quadrangle. 

2.  To  construct  a  triangle  equal  to  a  given  polygon. 

3.  To  bisect  a  triangle  by  a  line  drawn  through  a  given 

point  in  one  of  the  sides. 
4.  To  construct  a  rhombus  equal  to  a  given  parallelogram, 

and  with  one   of   the  sides  of  the  parallelogram  as 
its  side. 

5.  The  three  connectors  of  the  middle  points  of  the  sides 
of   a    triangle    divide   the   triangle   into    four    equal 

triangles. 

6.  Any  line  concurrent  with  the  diagonals  of  a  parallelogram 

bisects  the  parallelogram. 

7.  The  triangle  having  one  of  the  non-parallel  sides  of  a 
trapezoid  as  base  and  the  middle  point  of  the  opposite 

side  as  vertex  is  one-half  the  trapezoid. 
8.  The  connector  of  the  middle  points  of  the  diagonals  of  a 

quadrangle  is  concurrent  with  the  connectors  of  the 

middle  points  of  opposite  sides. 

9.  ABCD  is  a  parallelogram  and  O  is  a  point  within.    Then 

AA0B-f-AC0D  =  |£II7. 
What  does  this  become  when  O  is  without  ? 

10.  ABCD  is  a  parallelogram  and  O  is  a  point  within.    Then 

AAOC  =  AAOD-AAOB. 
What  does  this  become  when  O  is  without?    (This 

theorem  is  important  in  the  theory  of  Statics.) 

1 1.  Bisect  a  trapezoid  by  a  hne  through  the  middle  point  of 

one   of  the   parallel  sides.      By  a   line   through   the 

middle  point  of  one  of  the  non-parallel  sides. 

12.  The  triangle  having  the  three  medians  of  another  tri- 
angle  as   its    sides    has    three-fourths    the    area    of 

the  other. 
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POLYGON  AND   CIRCLE. 

146°.  Def. — The  sum  of  all  the  sides  of  a  polygon  is  called 
its  perimeter^  and  when  the  polygon  is  regular  every  side  is 
at  the  same  distance  from  the  centre.  This  distance  is  the 

apothem  of  the  polygon. 

Thus  if  ABCD...LA  be  a  regu-  .   ̂ ^\^~~i5==^o 
lar  polygon  and  O  the  centre 

(132°,  Def.  2),  the  triangles  OAIi, 
OBC,  ...   are  all  congruent,  and  Li 

OP  =  OQ  =  etc.  o 

AB4-BC4-CD  +  ...  +  LA   is   the   perimeter   and  OP 
pendicular  upon  AB,  is  the  apothem. 

per- 

147".  Theorem. — A  regular  polygon  is  equal  to  one-half  the 
rectangle  on  its  apothem  and  perimeter. 

Proof.— 'Wi^  triangles  AOB,  BOC,  ...  LOA  have  equal 
altitudes,  the  apothem  OP,  .".  their  sum  is  one-half  the  [=1  on 

OP  and  the  sum  of  their  bases  AB-l- BC-f-...LA.  (144",  Cor.  3) 
But  the  sum  of  the  triangles  is  the  polygon,  and  the  sum  of 

their  bases  is  the  perimeter. 

.".  a  regular  polygon  — ^cd  on  its  apothem  and  perimeter. 

148°.  Of  a  limit. — A  //;////  or  limitino  7>aluc  of  a  variable 
is  the  value  to  which  the  variable  by  its  variation  can  be 

made  to  approach  indefinitely  near, 
but  which  it  can  never  be  made  to 

pass. 
Let  ABCD  be  a  square  in  its  cir- 

cumcircle.  If  we  bisect  the  arcs  AB, 

BC,  CD,  and  DA  in  E,  F,  G,  and  H, 

we  have  the  vertices  of  a  regular 

octagon  AEBFCGDHA.  Now,  the 

area  of  the  octagon  approaches  nearer 

to  that  of  the  circle  than  the  area  of  the  square  does  ;  and  the 
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perimeter  of  the  octagon  approaches  nearer  to  the  length  of 

the  circle  than  the  perimeter  of  the  square  does  ;  and  the 

apothem  of  the  octagon  approaches  nearer  to  the  radius  of 

the  circle  than  the  apothem  of  the  square  does. 

Again,  bisecting  the  arcs  AE,  EB,  BF,  etc.,  in  I,  J,  K,  etc., 

we  obtain  the  regular  polygon  of  i6  sides.  And  all  the  fore- 
going parts  of  the  polygon  of  i6  sides  approach  nearer  to 

the  corresponding  parts  of  the  circle  than  those  of  the 

octagon  do. 

It  is  evident  that  by  continually  bisecting  the  arcs,  we  may 

obtain  a  series  of  regular  polygons,  of  which  the  last  one  may 

be  made  to  approach  the  circle  as  near  as  we  please,  but  that 

however  far  this  process  is  carried  the  final  polygon  can  never 

become  greater  than  the  circle,  nor  can  the  final  apothem 

become  greater  than  the  radius. 

Hence  the  circle  is  the  limit  of  the  perimeter  of  the  regular 

polygon  when  the  number  of  its  sides  is  endlessly  increased, 

and  the  area  of  the  circle  is  the  limit  of  the  area  of  the  poly- 
gon, and  the  radius  of  the  circle  is  the  limit  of  the  apothem 

of  the  polygon  under  the  same  circumstances. 

149°.  Theorem.— k.  circle  is  equal  to  one-half  the  rectangle 
on  its  radius  and  a  line-segment  equal  in  length  to  the  circle. 

Proof. — The  0  is  the  limit  of  a  regular  polygon  when  the 
number  of  its  sides  is  endlessly  increased,  and  the  radius  of 

the  0  is  the  limit  of  the  apothem  of  the  polygon. 

But,  whatever  be  the  number  of  its  sides,  a  regular  polygon 

is  equal  to  one-half  the  czi  on  its  apothem  and  perimeter.  (147°) 
.'.  a  0  is  equal  to  one-half  the  c:  on  its  radius  and  a  hne- 

segment  equal  to  its  circumference. 

Exercises. 

I.  Show  that  a  regular  polygon  may  be  described  about  a 

circle,  and  that  the  limit  of  its  perimeter  when  the 

number  of  its  sides  is  increased  indefinitely  is  ihp 
circumference  of  the  circle. 
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The  difference  between  the  areas  of  two  regular  polygons, 
one  inscribed  in  a  circle  and  the  other  circumscribed 

about  it,  vanishes  at  the  limit  when  the  number  of 

sides  of  the  polygons  increases  indefinitely. 

What  is  the  limit  of  the  internal  angle  of  a  regular  polygon 

as  the  number  of  its  sides  is  endlessly  increased  ? 

SECTION    II. 

MEASUREMENT  OF  LENGTHS  AND  AREAS. 

150°.  Be/. —  I.  That  part  of  Geometry  which  deals  with 
the  measures  and  measuring  of  magnitudes  is  Metrical 

Geometry. 

2.  To  measure  a  magnitude  is  to  determine  how  many  unit 

magnitudes  of  the  same  kind  must  be  taken  together  to  form 

the  given  magnitude.  And  the  number  thus  determined  is 

called  the  tneasure  of  the  given  magnitude  with  reference  to 

the  unit  employed.  This  number  may  be  a  whole  or  a  frac- 

tional number,  or  a  numerical  quantity  which  is  not  arith- 

metically expressible.  The  word  "number"  will  mean  any 
of  these. 

3.  In  measuring  length,  such  as  that  of  a  line-segment,  the 

unit  is  a  segment  of  arbitrary  length  called  the  unit-length. 
In  practical  work  we  have  several  such  units  as  an  inch,  a 

foot,  a  mile,  a  metre,  etc.,  but  in  the  Science  of  Geometry  the 

unit-length  is  quite  arbitrary,  and  results  obtained  through  it 
are  so  expressed  as  to  be  independent  of  the  length  of  the 

particular  unit  employed. 

4.  In  measuring  areas  the  unit  magnitude  is  the  area  of  the 

square  having  the  unit-length  as  its  side.  This  area  is  the 
unit-area.     Hence  the  unit-length  and  unit-area  are  not  both 
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arbitrary,  for  if  either  is  fixed  the  other  is  fixed  also,  and 
determinable. 

This  relation  between  the  unit-length  and  the  unit-area  is 

conventional,  for  we  might  assume  the  unit-area  to  be  the 
area  of  any  figure  which  is  wholly  determined  by  a  single 

segment  taken  as  the  unit-length  :  as,  for  example,  an  equi- 
lateral triangle  with  the  unit-length  as  side,  a  circle  with  the 

unit-length  as  diameter,  etc.  The  square  is  chosen  because 
it  offers  decided  advantages  over  every  other  figure. 

For  the  sake  of  conciseness  we  shall  symbolize  the  term 

unit-length  by  //./.  and  unit-area  by  ti.a. 

5.  When  two  magnitudes  are  such  that  they  are  both 

capable  of  being  expressed  arithmetically  in  terms  of  some 

common  unit  they  are  commensurable^  and  when  this  is  not 

the  case  they  are  mcommensurable. 

Illus. — Let  ABCD  be  a  square,  and  let 
EF  and  HG  be  drawn  X  to  BD,  and  EH 

and  FG  ±  to  AC.  Then  EFGH  is  a 

square  (82°,  Cor.  5),  and  the  triangles 
AEB,  APB,  BFC,  BPC,  etc.,  are  all  equal 

H         D        G      to  one  another. 

If  AB  be  taken  as  uJ.,  the  area  of  the  square  AC  is  the 

ii.a.\  and  if  EF  be  taken  as  7/./.,  the  area  of  the  square 
EG  is  the  u.a. 

In  the  first  case  the  measure  of  the  square  AC  is  i,  and 
that  of  EG  is  2  ;  and  in  the  latter  case  the  measure  of  the 

square  EG  is  i,  and  that  of  AC  is  \.  So  that  in  both  cases 

the  measure  of  the  square  EG  is  double  that  of  the  square  AC. 

.•.  the  squares  EG  and  AC  are  commensurable. 
Now,  if  AB  be  taken  as  ti.L,  EF  is  not  expressible  arith- 

metically, as  will  be  shown  hereafter. 

.'.  AB  and  EF  are  incommensurable. 

151°.  Let  AB  be  a  segment  trisected  at  E  and  F  (127°), 
and  let  AC  be  the  square  on  AB.     Then  AD  =  AB.     And 

p 
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if  A  I)    be    trisected  in    the    points   K  and  M,  and  through 

E  and  F  ||s  be  drawn  to  AD,  and  through     ̂      E     F 
K  and  M  ||s   be   drawn    to  AB,  the  figures 

I,  2,  3,  4,  5,  6,  7,  8,  9  are  all  squares  equal  to    k 
one  another.  M 

Now,  if  AB  be  taken  as  ?iJ.,  AC  is  the  7^m.  ; 

and  if  AE  be  taken  as  uJ.,  any  one  of  the  ' 
small  squares,  as  AP,  is  the  u.a.  And  the  segment  AB  con- 

tains AE  3  times,  while  the  square  AC  contains  the  square 

AP  in  three  rows  with  three  in  each  row,  or  3^  times. 

.*.  if  any  assumed  «./.  be  divided  into  3  equal  parts  for  a 

new  //./.,  the  corresponding  u.n.  is  divided  into  3'^  equal  parts 
for  a  new  j/.a.  And  the  least  consideration  will  show  that  this 

is  true  for  any  whole  number  as  well  as  3. 

.'.  I.  If  an  assumed  //./.  be  divided  into  //  equal  parts  for  a 

new  «./.,  the  corresponding  u.a.  is  divided  into  n^  equal  parts 
for  a  new  u.a.;  n  denoting  any  whole  number. 

Again,  if  any  segment  be  measured  by  the  //./.  AB,  and 

also  by  the  //./.  AE,  the  measure  of  the  segment  in  the  latter 

case  is  three  times  that  in  the  former  case.  And  if  any  area 

be  measured  by  the  u.a.  AC,  and  also  by  the  u.a.  AP,  the 

measure  of  the  area  in  the  latter  case  is  3^  times  its  measure 
in  the  former  case.  And  as  the  same  relations  are  evidently 

true  for  any  whole  number  as  well  as  3, 

.*.  2.  If  any  segment  be  measured  by  an  assumed  u.l.  and 
also  by    th  of  the  assumed  u.l.  as  a  new  u.l..,  the  measure  of n 

the  segment  in  the  latter  case  is  ;/  times  its  measure  in  the 

former.     And  if  any  area  be  measured  by  the  corresponding 

u.a.^  the  measure  of  the  area  in  the  latter  case  is  n^  times  its 
measure  in  the  former  case  ;  ;/  being  any  whole  number. 

This  may  be  stated  otherwise  as  follows  :— 

By  reducing  an  assumed  u.l.  to    th  of  its  original  length, 

we  increase  the  measure  of  any  given  segment  n  times,  and 

we  increase  the  measure  of  any  given  area  ti-  times  ;  n  being 
a  whole  number. 
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In  all  cases  where  a  uJ.  and  a  u.a.  are  considered  together, 

they  are  supposed  to  be  connected  by  the  relation  of  1 50°, 
3  and  4. 

152°.  Theorem. — The  number  of  unit-areas  in  a  rectangle 
is  the  product  of  the  numbers  of  unit-lengths  in  two  adjacent 
sides. 

The  proof  is  divided  into  three  cases. 

1.  Let  the  measures  of  the  adjacent  sides  with  respect  to 

B      c    the  unit  adopted  be  whole  numbers. 
Let  AB  contain  the  assumed  u.l.  a 

times,  and  let  AD  contain  it  b  times. 

Then,  by  dividing  AB  into  a  equal 

parts  and  drawing,  through  each  point 

of  division,  lines  |1  to  AD,  and  by  dividing  AD  into  b  equal 

parts  and  drawing,  through  each  point  of  division,  lines  ||  to 

AB,  we  divide  the  whole  rectangle  into  equal  squares,  of 

which  there  are  a  rows  with  b  squares  in  each  row. 

the  whole  number  of  squares  is  ab. 

But  each  square  has  the  u.l.  as  its  side  and  is  therefore  the  u.a. 

u.a.s  in  KC  —  u.l.s  in  AB  x  Jt.l.s  in  AD. 

We  express  this  relation  more  concisely  by  writing  symbolic- 

ally [=]AC  =  AB.AD, 

where  i=]AC  means"the  number  oiu.a.s  in  cnAC,"  and  AB  and 

AD  mean  respectively  "the  numbers  o(  u.l.s  in  these  sides." 
And  in  language  we  say,  the  area  of  a  rectangle  is  the  pro- 

duct of  its  adjacent  sides  ;  the  proper  interpretation  of  which 

is  easily  given. 

2.  Let  the  measures  of  the  adjacent  sides  with  respect  to 

the  unit  adopted  be  fractional. 

Then,  •.*  AB  and  AD  are  commensurable,  some  unit  will 

be  an  aliquot  part  of  each  (150°,  5).  Let  the  new  unit  be 
ith  of  the  adopted  unit,  and  let  AB  contain  p  of  the  new 

units,  and  AD  contain  q  of  them. 
The  measure  of  cuAC   in  terms  of  the  new  u.a.   is   Pq 
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(i  52°,  i),  and  the  measure  of  the  cuAC  in  terms  of  the  adopted 
unit  is  ̂ ?  (151%  2) 

But   the  measure  of  AB   in   terms  of  the  adopted  u.l.  is 

^,  and  of  AD  it  is  ?.  (151%  2) 

pq  ̂ p    g 

n^     n '  n or  ciiAC  =  AB.AD. 

Illus. — Suppose  the  measures  of  AB  and  AD  to  some 

unit-length  to  be  3.472  and  4.631.  By  taking  a  //./.  1000 
times  smaller  these  measures  become  the  whole  numbers 

3472  and  4631,  and  the  number  of  corresponding  z/.^^.s  in  the 

rectangle  is  3472  x  4631  or  16078832  ; 

and  dividing  by  looo'^,  the  measure  of  the  area  with  respect  to 
the  original  //./.  is     16.078832  =  3.472x4.631. 

3.  Let  the  adjacent  sides  be  incommensurable.     There  is 
now  no  H.l.  that  will   measure   both  AB     b    c 
and  AD. 

Ifc=iAC  is  not  equal  to  AB.  AD,  let  it 

be  equal   to  AB  .  AE,  where  AE  has  a    a  ehd 

measure  different  from  AD  ;  and  suppose,  first,  that  AE  is  < 
AD,  so  that  E  lies  between  A  and  D. 

With  any  u.L  which  will  measure  AB,  and  which  is  less 

than  ED,  divide  AD  into  parts.  One  point  of  division  at 

least  must  fall  between  E  and  D  ;  let  it  fall  at  H,  Complete 

-the  rectangle  BH. 

Then  AB  and  AH  are  commensurable,  and 
nBH-AB.AH, 

but  nBD^AB.AE;  (hyp.) 
and  nBH  is<i=]BD  ; 

AB.AH  is<  AB.  AE, 

and  AB  being  a  common  factor 
AH  is  <  AE  ;  which  is  not  true. 

.-.   If  nAC  =  AB  .  AE,  AE  cannot  be  <  AD,  and  similarly 

it  may  be  shown  that  AE  cannot  be  >  AD  ;  .'.  AE  =  AD,  or 
i=]AC  =  AB.AD.  q.e.d. 
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153°.  The  results  of  the  last  article  in  conjunction  with 
Section  I.  of  this  Part  give  us  the  following  theorems. 

1.  The  area  of  a  parallelogram  is  the  product  of  its  base 

and  altitude.  (140°) 

2.  The  area  of  a  triangle  is  one-half  the  product  of  its  base 

and  altitude.  (HI°) 

3.  The  area  of  a  trapezoid  is  one-half  the  product  of  its 

altitude  and  the  sum  of  its  parallel  sides.  (M5°)  Ex.) 

4.  The  area  of  any  regular  polygon  is  one-half  the  product 

of  its  apothem  and  perimeter.  (H7°) 

5.  The  area  of  a  circle  is  one-half  the  product  of  its  radius 

and  a  line-segment  equal  to  its  circumference.  (H9°) 

Ex.  I,  Let  O,  O'  be  the  centres  of  the  in-circle  and  of  the 
P  ex-circle  to  the  side  BC  (131°); 

V       X    \  and    let    OD,    O'P"  be   perpen- 

^^■.          \        diculars  on  BC,   OE,  O'P'  per- 

^^  >2.--^<^°    pendiculars  on  AC,  and 
 OF,  O'P 

^^^-^^'^l       --~a7     I  OD  =  OE  =  OF  =  r 
^  ^  c\P'    ̂ ^^      o'P  =  0'P'=OT''  =  r'; 
.-.  AABC  =  AAOB  +  ABOC-f-ACOA 

=  UB.  OF-h|BC.OD-f|CA.OE  (153°,  2) 
=  |r  X  perimeter  =  rs, 

where  s  is  the  half  perimeter  ; 

Ex.  2.     AABC  =  AAO'B  -f-  AAO'C  -  ABO'C 

=^0'P .  AB  4-^0'P'.  AC  -iO'P ".  BC 
—  \r'{b  ■\-c  -a)  —  r'{s  —  a), 

where  r'  is  the  radius  of  the  ex-circle  to  side  a  ; 

Similarly,      ̂   =  r"{s-d) =  r"'{s-c). 
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Exercises. 

r    r     r      r 

2.  rh^={s-a)(^s-b){s-c){r"r"' ^r'^y ^r'r"). 
3.  What  relation  holds  between  the  radius  of  the  in-circle 

and  that  of  an  ex- circle  when  the  triangle  is  equiangular? 
Note. — When  the  diameter  of  a  circle  is  taken  as  the//./, 

the  measure  of  the  circumference  is  the  inexpressible  numeri- 

cal quantity  symbolized  by  the  letter  tt,  and  which,  expressed 

approximately,  is  3. 141  5926.... 
4.  What  is  the  area  of  a  square  when  its  diagonal  is  taken 

as  the  u.l.  ? 

5.  What  is  the  measure  of  the  diagonal  of  a  square  when 

the  side  is  taken  as  the  u.l?.  (150°,  5) 
6.  Find  the  measure  of  the  area  of  a  circle  when  the  di- 

ameter is  the  u.l.     When  the  circumference  is  the  u.l. 

7.  If  one  line-segment  be  twice  as  long  as  another,  the 
square  on  the  first  has  four  times  the  area  of  the 

square  on  the  second.  (151°,  2) 
8.  If  one  line-segment  be  twice  as  long  as  another,  the 

equilateral  triangle  on  the  first  is  four  times  that  on 

the  second.  (141°) 
9.  The  equilateral  triangle  on  the  altitude  of  another  equilat- 

eral triangle  has  an  area  three-fourths  that  of  the  other. 
10.  The  three  medians  of  any  triangle  divide  its  area  into 

six  equal  triangles. 

I  r.   From  the  centroid  of  a  triangle  draw  three  lines  to  the 

sides   so   as  to  divide  the  triangle  into  three  equal 

quadrangles. 
12.  In  the  triangle  ABC  X  is  taken  in  BC,  Y  in  CA,  and  Z 

in  AB,  so  that  BX  =  JBC,  CY  =  ̂ CA,  and  AZ  =  JAB. 
Express  the  area  of  the  triangle  XYZ  in  terms  of  that 
of  ABC. 

1 3.  Generalize  1 2  by  making  BX  =  -BC,  etc. n 

14.  Show  that  a  =  s(^\~  ̂\  =  L{r"  +  r"'). 
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SECTION    III. 

GEOMETRIC    INTERPRETATION    OF 

ALGEBRAIC    F^ORMS. 

1 54°.  We  have  a  language  of  symbols  by  which  to  express 
and  develop  mathematical  relations,  namely,  Algebra.  The 

symbols  of  Algebra  are  quantitative  and  operative,  and  it  is 

very  desirable,  while  giving  a  geometric  meaHing  to  the 

symbol  of  quantity,  to  so  modify  the  meanings  of  the  sym- 
bols of  operation  as  to  apply  algebraic  forms  in  Geometry. 

This  application  shortens  and  generalizes  the  statements  of 

geometric  relations  without  interfering  with  their  accuracy. 

Elementary  Algebra  being  generalized  Arithmetic,  its 

quantitative  symbols  denote  numbers  and  its  operative  sym- 
bols are  so  defined  as  to  be  consistent  with  the  common 

properties  of  numbers. 

Thus,  because  2  +  3  =  3-1-2  and  2.3  =  3.2,  we  say  that 
a-{-b  =  b-\-a  and  ab=ba. 

This  is  called  the  co7nviutative  law.  The  first  example  is 

of  the  existence  of  the  law  in  addition,  and  the  second  of  its 

existence  in  multiplication. 

The  commutative  law  in  addition  may  be  thus  expressed : — 
A  sum  is  independent  of  the  order  of  its  addends  ;  and  in 

multiplication — A  product  is  independent  of  the  order  of  its 
factors. 

Again,  because  2(3  +  4)  =  2  .  3  -I-  2  .  4,  we  say  that 

a{b-\-c)  =  ab-\-ac. 
This  is  called  the  distributive  law  and  may  be  stated 

thus  :— The  product  of  multiplying  a  factor  by  the  sum  of 
several  terms  is  equal  to  the  sum  of  the  products  arising  from 

multiplying  the  factor  by  each  of  the  terms. 
These  two  are  the  only  laws  which  need  be  here  mentioned 

And  any  science  which   is  to  employ  the  forms  of  Algebra 
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must  have  that,  whatever  it  may  be,  which  is  denoted  by  the 

algebraic  symbol  of  quantity,  subject  to  these  laws. 

155°.  As  already  explained  in  22°  we  denote  a  single  Ime- 
segment,  in  the  one-letter  notation,  by  a  single  letter,  as  a, 
which  is  equivalent  to  the  algebraic  symbol  of  quantity  ;  and 
hence, 

A  single  algebraic  symbol  of  quantity  is  to  be  interpreted 

geometrically  as  a  line- segment. 

It  must  of  course  be  understood,  in  all  cases,  that  in  em- 

ploying the  two-letter  notation  for  a  segment  (22°),  as  "  AB," 
the  two  letters  standing  for  a  single  line-segment  are  equiva- 

lent to  but  a  single  algebraic  symbol  of  quantity. 

The  expression  a-\-b  denotes  a  segment  equal  in  length  to 
those  denoted  by  a  and  h  together. 

Similarly  2a  =  a-\-a,  and  na  means  a  segment  as  long  as  n 
of  the  segments  a  placed  together  in  line,  «  being  any 

numerical  quantity  whatever.  (28°) 
a-b,  when  n  is  longer  than  b^  is  the  segment  which  is  left 

when  a  segment  equal  to  b  is  taken  from  a. 

Now  it  is  manifest  that,  if  a  and  b  denote  two  segments, 

a  +  b=b-\-a,  and  hence  that  the  commutative  law  for  addition 
applies  to  these  symbols  when  they  denote  magnitudes  having 

length  only,  as  well  as  when  they  denote  numbers. 

1 56".  Line  in  Opposite  Senses. — A  quantitative  symbol,  a,  is 
in  Algebra  always  affected  with  one  of  two  signs,  -f-  or  - , 
which,  while  leaving  the  absolute  value  of  the  symbol  un- 

changed, impart  to  it  certain  properties  exactly  opposite  in 
character. 

This  oppositeness  of  character  finds  its  complete  interpreta- 
tion in  Geometry  in  the  opposite  directions  of  every  segment. 

Thus  the  segment  in  the  margin  may  be  con-  a   
sidered  as  extending/r<7w  A  to  B  or  from  B  to  A.  A  B 

With  the  two-letter  notation  the  direction  can  be  denoted 

by  the  order  of  the. letters,  and  this  is  one  of  the  advantages 
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of  this  notation  ;  but  with  the  one-letter  notation,  if  we  denote 
the  segment  AB  by  +rt,  we  7nust  denote  the  segment  BA 

by  -a. 
But  as  there  is  no  absolute  reason  why  one  direction  rather 

than  the  other  should  be  considered  positive,  we  express  the 

matter  by  saying  that  AB  and  BA,  or  + «  and  -  a,  denote 
the  same  segment  taken  in  opposite  senses. 

Hence  the  algebraic  distinction  of  positive  and  negative  as 

applied  to  a  single  symbol  of  quantity  is  to  be  interpreted 

geometrically  by  the  oppositeness  of  direction  of  the  segment 

denoted  by  the  symbol. 

Usually  the  applications  of  this  principle  in  Geometry  are 

confined  to  those  cases  in  which  the  segments  compared  as 

to  sign  are  parts  of  one  and  the  same  line  or  are  parallel. 

Ex.  I.  Let  ABC  be  any  A  and  let  BD  be  the  altitude  from 
B  the  vertex  B. 

Now,  suppose  that  the  sides  AB  and  BC 

undergo  a  gradual  change,  so  that  B  may 

move  along  the  line  BB'  until  it  comes 

into  the  position  denoted  by  B'. 
"a  d  c  Then  the  segment  AD  gradually  di- 

minishes as  D  approaches  A  ;  disappears  when  D  coincides 
with  A,  in  which  case  B  comes  to  be  vertically  over  A 

and  the  A  becomes  right-angled  at  A ;  reappears  as  D 
passes  to  the  left  of  A,  until  finally  we  may  suppose  that 

one  stage  of  the  change  is  represented  by  the  AAB'C  with 

its  altitude  B'D'. 

Then,  if  we  call  AD  positive,  we  tnust  call  AD'  negative,  or 
we  must  consider  AD  and  AD'  as  having  opposite  senses. 

Again,  from  the  principle  of  continuity  (104°)  the  foot  of 
the  altitude  cannot  pass  from  D  on  the  right  of  A  to  D'  on 
the  left  of  A  without  passing  through  every  intermediate 

point,  and  therefore  passing  through  A.  And  thus  the  seg- 
ment A!)  must  vanish  before  it  changes  sign. 

This    is    conveniently    expressed   by    saying   that    a   line- 
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segment  changes  sign  wheti  it  passes  through  zero ;  passing 

through  zero  being  interpreted  as  vanishing  and  reappearing 

on  the  other  side  of  the  zero-point. 

Ex.  2.  ABCD  is  a  normal  quadrangle.     Consider  the  side 

AD  and  suppose  D  to  move  along  the  line         g 

DA  until  it  comes  into  the  position  D'. 

The  segments  AD  and  AD'  are  opposite 

in  sense,  and  ABCD'  is  a  crossed  quad- 
rangle. 

.'.  the  crossed  quadrangle  is  derived  from 
the  normal  one  by  changing  the  sense  of  one  of  the  sides. 

Similarly,  if  one  of  the  sides  of  a  crossed  quadrangle  be 

changed  in  sense  the  figure  ceases  to  be  a  crossed  quadrangle. 

Ex.  3.  This  is  an  example  where  segments  which  are  par- 
allel but  which  are  not  in  line  have 

opposite  senses. 
ABC  is  a  A  and  P  is  any  point 

within  from  which  perpendiculars 

PD,  PE,  PF  are  drawn  to  the  sides. 

Suppose  that  P  moves  to  P'. 
Then  PF  becomes  P'F',  and  PF 

and  P'F'  being  in  the  same  direc- 

tion have  the  same  sense.  Similarly  PE  becomes  P'E', 
and  these  segments  have  the  same  sense.  But  PD  becomes 

P'D'  which  is  read  in  a  direction  opposite  to  that  of  PD. 

Hence  PD  and  P'D'  are  opposite  in  sense. 

But  PD  and  P'D'  are  perpendiculars  to  the  same  line  from 
points  upon  opposite  sides  of  it,  and  it  is  readily  seen  that  in 

passing  from  P  to  P'  the  _LPD  becomes  zero  and  then  changes 
sense  as  P  crosses  the  side  BC. 

Hence  if  by  any  continuous  change  in  a  figure  a  point 

passes  from  one  side  of  a  line  to  the  other  side,  the  perpen- 
dicular from  that  point  to  the  line  changes  sense. 

Cor.   If  ABC  be  equilateral  it  is  easily  shown  that 

PD  +  FE-f-PF  =  a  constant. 
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And  if  we  regard  the  sense  of  the  segments  this  statement  is 

true  for  all  positions  of  P  in  the  plane. 

157°.  Product. — The  algebraic  form  of  a  product  of  two 
symbols  of  quantity  is  interpreted  geometrically  by  the  rect- 

angle having  for  adjacent  sides  the  segments  denoted  by  the 
quantitative  symbols. 

This  is  manifest  from  Art.  152°,  for  in  the  form  ab  the 
single  letters  may  stand  for  the  measures  of  the  sides,  and  the 

product  ab  will  then  be  the  measure  of  the  area  of  the  rect- 

angle. 

If  we  consider  ab  as  denoting  a  en  having  a  as  altitude  and 

b  as  base,  then  ba  will  denote  the  n  having  b  as  altitude  and 

a  as  base.  But  in  any  en  it  is  immaterial  which  side  is  taken 

as  base  (138°;  ;  therefore  ab=ba,  and  the  form  satisfies  the 
commutative  law  for  multiplication. 

Again,  let  AC  be  the  segment  b  +  c^  and  AB  be  the  segment 

A   p   c   a,  so  placed  as  to  form  the  ma{b-{-c)  or 

'  AF.     Taking  AD  =  <^,  let  DE  be  drawn II  to  AB.     Then  AE  and  DF  are  rect- 

angles and  DE  =  AB  =  rt;. 
cziAE  is  rzkib.,  and  [mDF  is  mac ; 

\i3a{b-\-c)  =  mab  +  \i3ac^ 
and  the  distributive  law  is  satisfied. 

158".  We  have  then  the  two  following  interpretations  to 
which  the  laws  of  operation  of  numbers  apply  whenever  such 

operations  are  interpretable. 

1.  A  single  symbol  of  quantity  denotes  a  line -segment. 

As  the  sum  or  difference  of  two  line-segments  is  a  segment, 
the  sum  of  any  number  of  segments  taken  in  either  sense  is  a 

segment. 

Therefore  any  number  of  single  symbols  of  quantity  con- 

nected by  -f  and  -  signs  denotes  a  segment,  as  a-\-b^ 

a~b  +  c,  a-b  +  {-c),  etc. 
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For  this  reason  such  expressions  or  forms  are  often  called 

/iru-ar^  even  in  Algebra. 
Other  forms  of  linear  expressions  will  appear  hereafter. 

2.  The  product  form  of  two  symbols  of  quantity  denotes  the 
rectangle  whose  adjacent  sides  are  the  segments  denoted  by  the 

single  symbols. 

A  rectangle  encloses  a  portion  of  the  plane  and  admits  of 

measures  in  two  directions  perpendicular  to  one  another, 

hence  the  area  of  a  rectangle  is  said  to  be  of  two  dimensions. 

And  as  all  areas  can  be  expressed  as  rectangles,  areas  in 

general  are  of  two  dimensions. 

Hence  algebraic  terms  which  denote  rectangles,  such  as<7/^, 

{a  +  by,  (a  +  b){c -{- d),  etc.,  are  often  called  rectangular  terms, 
and  are  said  to  be  of  two  dimensions.        ad  c 

b 

Ex.  Take  the  algebraic  identity  ^      ̂ ^ 

a  {b  +  c)  =  ab  -\-  ac.         

The  geometric  interpretation  gives —     be  f 
If  there  be  any  three  segments  {a,  b,  c)  the  cu  on  the  first 

and  the  sum  of  the  other  two  (/^,  c)  is  equal  to  the  sum  of  the 
CDS  on  the  first  and  each  of  the  other  two. 

The  truth  of  this  geometric  theorem  is  evident  from  an 

inspection  of  a  proper  figure. 
This  is  substantially  Euclid,  Book  II.,  Prop.  i. 

I  yf.  Square. — When  the  segment  b  is  equal  to  the  seg- 
ment a  the  rectangle  becomes  the  square  on  a.  When  this 

equality  of  symbols  takes  place  in  Algebra  w-e  write  a^  for  aa, 

and  we  call  the  result  the  "  square  "  of  a,  the  term  "  square  " 
being  derived  from  Geometry. 

Hence  the  algebraic  form  of  a  square  is  interpreted  geo- 
metrically by  the  square  which  has  for  its  side  the  segment 

denoted  by  the  root  symbol. 

Ex.  In  the  preceding  example  let  b  become  equal  to  rt,  and 

a{a  4-  c)  =  a-  +  ac, 
H 
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which  interpreted  geometrically  gives — 
If  a  segment  (a  +  c)  be  divided  into  two  parts  (^i,  t:),  the 

rectangle  on  the  segment  and  one  of  its  parts  (a)  is  equal  to 

the  sum  of  the  square  on  that  part  {a^)  and  the  rectangle  on 
the  two  parts  (at^. 

This  is  Euclid^  Book  II.,  Prop.  3.  The  truth  of  the  geo- 
metric theorem  is  manifest  from  a  proper  figure. 

160°.  HoDiogeneity. — Let  a,  b^  r,  d  denote  segments.  In 
the  linear  expressions  a-^b,  a-b,  etc.,  and  in  the  rectangular 
expressions  ab  +  cd,  etc.,  the  interpretations  of  the  symbols  + 

and  -  are  given  in  28°,  29°,  and  143°,  and  are  readily  in- 
telligible. 

But  in  an  expression  such  as  ab  +  c  we  have  no  interpreta- 

tion for  the  symbol  -1-  if  the  quantitative  symbols  denote 

line-segments.  For  ab  denotes  the  area  of  a  rectangle  and  c 
denotes  a  segment,  and  the  adding  of  these  is  not  intelligible 

in  any  sense  in  which  we  use  the  word  "  add." 
Hence  an  expression  such  as  ab  +  c  is  not  interpretable 

geometrically  This  is  expressed  by  saying  that — An  alge- 
braic form  has  no  geometric  interpretation  unless  the  form  is 

hofnogeneojts,  i.e.,  unless  each  of  its  terms  denotes  a  geo- 
metric element  of  the  same  kind. 

It  will  be  observed  that  the  terms  "square,"  "dimensions," 

"  homogeneous,"  and  some  others  have  been  introduced  into 
Algebra  from  Geometry. 

161°.  Rectangles  in  Opposite  Senses. — The  algebraic  term 
ab  changes  sign  if  one  of  its  factors  changes  sign.  And  to  be 

consistent  we  must  hold  that  a  rectangle  changes  sense 

whenever  one  of  its  adjacent  sides  changes  sense. 

Thus  the  rectangles  AB .  CD  and  AB .  DC  are  the  same  in 

extent  of  area,  but  have  opposite  senses.     And 

AB.CD-hAB.DC  =  o, 

for  the  sum  =  AB(CD  +  DC), 

and  CD  +  DC  =  o.  (156°) 
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+       I      - 
c 

As  the  sense  of  a  rectangle  depends  upon  that  of  a  line- 
segment  there  is  no  difficulty  in  determining  when  rectangles 
are  to  be  taken  in  different  senses. 

The  following  will  illustrate  this  part  of  the  subject  : — 

Let  OA  =  OA'  and  OC  -  OC,  and  let     b  c   b, 
the  figures  be  rectangles. 

ns  OA .  OC  and  OA' .  OC  have  the 
common  altitude  OC  and  bases  equal 

in  length  but  opposite  in  sense.    'Jhere- 

fore  OA.  OC  and  OA'.  OC  are  opposite  in  sense,  and  if  we 

call  czjOA  .  OC  positive  we  must  call  cnOA' .  OC  negative. 

Again,  ns  OC  .  OA'  and  OC .  OA'  have  the  common  base 

OA'  and  altitudes  equal  in  length  but  opposite  in  sense. 
Therefore  czis  OC .  OA'  and  OC.  OA'  are  opposite  in  sense, 
and  therefore  cms  OA.  OC  and  OA'.OC  are  of  the  same  sense. 

Similarly  ens  OC .  OA'  and  OC.  OA  are  of  the  same  sense. 

These  four  czis  are  equivalent  to  the  algebraic  forms  : — 

+  a.  +  d=  +ad,  -a.-\-b=  -ab, 
■\-a.-b=-ah^  -a.-b=-\-ab. 

Ex.  I.  ABCD  is  a  normal  quadrangle  whose  opposite  sides 
meet  in  O,  and  OE,  OF  are  altitudes 

of  the  As  DOC  and  AOB  respectively. 
The  Qd.  ABCD 

=  ADOC-AAOB, 

=  ̂ DC.OE-^AB.OF.  (141°) 

Now,  let  A  move   along  AB   to   A' 

(104°).     Then  O  comes  to  O',  F  to  F',     d    e  e'        c 

E  to  E',  and  O'E',  O'F'  become  the  altitudes  of  the  As 

DO'C  and  A'O'B  respectively. 

But  O'E'  and  OE  have  the  same  sense,  therefore  DC .  OE 
and  DC .  OE'  have  the  same  sense. 

Also,  A'B  is  opposite  in  sense  to  AB,  and  O'F'  is  opposite 

in  sense  to  OF.  (156°,  Ex.  3) 
AB  .  OV  and  AB .  O'F'  have  the  same  sense  ; 

Qd.  A'BCD  =  ADO'C-AA'0'B; 



Ii6 SYNTHETIC   GEOMETRY. 

or,  the  area  of  a  crossed  quadrangle  must  be  taken  to  be  the 

difference  between  the  two  triangles  which  constitute  it. 

162°.  Theorem.— K  quadrangle  is  equal  to  one-half  the 
parallelogram  on  its  diagonals  taken  in  both  magnitude  and 
relative  direct-on. 

ABCD  is  a  quadrangle  of  which  AC 

and  BD  are  diagonals.  Through  B  and 

D  let  PQ  and  RS  be  drawn  ||  to  AC,  and 

through  A  and  C  let  PS  and  OR  be 

drawn  ||  to  BD.  Then  PORS  is  the 

I  7  on  the  diagonals  AC  and  BD  in 

both  magnitude  and  direction. 

Qd.  ABCD=izzZ7P0RS. 

Proof.-M.  ABCD 
=  AABC4-AADC(istFig.) 

=  AABC  -  AADC  (2ndFig., 

(i6r,  Ex.) 

AABC  =  ̂ £ZZ7PQCA, 

AADC  =  ̂ ^:^SRCA,  (141°,  Cor.  i) 
Od.  ABCD  =^£=17 PORS  in  both  figures. 

This  theorem  illustrates  the  generality  of  geometric  results 

when  the  principle  of  continuity  is  observed,  and  segments 

and  rectangles  are  considered  with  regard  to  sense.  Thus 

the  principle  of  continuity  shows  that  the  crossed  quadrangle 

is  derived  from  the  normal  one  (156°.  Ex.  2)  by  changing  the 
sense  of  one  of  the  sides. 

This  requires  us  to  give  a  certain  interpretation  to  the  area 

of  a  crossed  quadrangle  (161°,  Ex.  i),  and  thence  the  present 
example  shows  us  that  all  quadrangles  admit  of  a  common 

expression  for  their  areas. 

163°.  A  rectangle  is  constructed  upon  two  segments  which 
are  independent  of  one  another  in  both  length  and  sense. 

But  a  square  is  constructed  upon  a  single  segment,  by  using 
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it  for  each  side.  In  othervvords^a  rectangle  depends  upon 

two  segments  while  a  square  depends  upon  only  one. 

Hence  a  square  can  have  only  one  sign,  and  this  is  the 

one  which  we  agree  to  call  positive. 

Hence  a  square  is  always  positive. 

164^  The  algebraic  equation  ab=^cd  tells  us  geometrically 
that  the  rectangle  on  the  segments  a  and  b  is  equal  to  the 

rectangle  on  the  segments  c  and  d. 

But  the  same  relation  is  expressed  algebraically  by  the  form 
cd 

therefore,  since  rt-  is  a  segment,  the  form  ̂ ■—  is  linear  and 0 

denotes  that  segment  which  with  h  determines  a  rectangle 

equal  to  cd. 

Hence  an  expression  such  as  ̂   +— +  -^^  is  linear. cab 

165°.  The  expression  a^  =  bc  tells  us  geometrically  that  the 
square  whose  side  is  a  is  equal  to  the  rectangle  on  the  seg- 

ments b  2t.nd  c. 

But  this  may  be  changed  to  the  form 
a  =  J  be. 

Therefore  since  <?  is  a  segment,  the  side  of  the  square,  the  form 

\^c  is  linear. 

Hence  the  algebraic  forjti  of  the  square  root  of  the  product 

of  two  symbols  of  quantity  is  interpreted  geometrically  by  the 

side  of  the  square  which  is  equal  to  the  rectangle  on  the 

seg7nents  denoted  by  the  quantitative  symbols. 

166°.  The  following  theorems  are  but  geometric  interpreta- 
tions of  well-known  algebraic  identities.  They  ma) ,  however, 

be  all  proved  most  readily  by  superposition  of  areas,  and 

thus  the  algebraic  identity  may  be  derived  from  the  geo- 
metric theorem. 
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ab 

I.  The   square  on  the  sum  of  two  segments  is  equal  to 

the    sum    of  the   squares   on    the  segments  and   twice   the 

u  b      rectangle  on  the  segments. 

{a  +  ̂ y  =  a''  +  /?^  +  2a/K 

2.  The  rectangle  on  the  sum  and  differ- 
ence of  two  segments  is  equal  to  the 

difference  of  the  squares  on  these  segments. 

3.  The  sum  of  the  squares  on  the  sum  and  on  the  differ- 
ence of  two  segments  is  equal  to  twice  the  sum  of  the  squares 

on  the  segments. 

{a  +  bf  +  (rt!  -  bj  -  2(^2  +  //>)^  a>b. 
4,  The  difference  of  the  squares  on  the  sum  and  on  the 

difference  of  two  segments  is  equal  to  four  times  the  rectangle 

on  the  segments. 

{a-^b)^-{a-bY  =  \ab,  a>b. 

Exercises. 

To  prove  4  of  Art.  166°. 
Let  AH  =  <7  and  HB  =  <^  be  the  segments,  so  that 

A  a         H  6   B    AB   is   their   sum.     Through    H 

draw  HG  ||  to  BC,  a  side  of  the 

square  on  AB.  Make  HG  =  rt, 
and  complete  the  square  FGI^E, 

as  in  the  figure,  so  that  FG  is 
a-b. 

Then  AC  is  {a^bj  and  EG  is 

{a  —  bf\  and  their  difference  is 
the  four  rectangles  AF,  HK,  CL,  and  DE  ;  but  these 

each  have  a  and  b  as  adjacent  sides. 

State  and  prove  geometrically  {a-b)'^  =  a'^-\-b'^-2ab. 
State  and  prove  geometrically 

{a  +  b){a  +  c)  =  a^-Va{b  +  c)  +  bc. 
State  and  prove  geometrically  by  superposition  of  areas 

ab           b 

ab 

b 

b 

ab 

E             F 

(a-b)^ 
L            G 

6          ab 

(ft+b)' 
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(a  +  Sy  i- (a- dy^  + 2(11  + /?)((i-/>)  =  {2a)'^,  where  a  and  b 
denote  segments. 

If  a  given  segment  be  divided  into  any  three  parts  the 

square  on  the  segment  is  equal   to  the  sum  of  the 

squares  on  the  parts  together  with  twice  the  sum  of 

the  rectangles  on  the  parts  taken  two  and  two . 

Prove,  by  comparison  of  areas  from  the  Fig.  of  Ex.  i,  that 

{a-\-Uf  =  2b{a-\rb)^2b{a-b)-\-{a-b)'^,    and    state    the 
theorem  in  words. 

SECTION    IV. 

AREAL  RELATIONS. 

167°.  Def. —  I.  The  segment  which  joins  two  given  points 
is  called  the  joi7i  of  the  points  ;  and  where  no  reference  is 

made  to  length  the  join  of  two  points  may  be  taken  to  mean 

the  line  determined  by  the  points. 

2.  The  foot  of  the  perpendicular  from  a  given  point  to  a 

given  line  is  the  orthogonal  projection,  or  simply  the  projec- 
tion^ of  the  point  upon  the  line. 

3.  Length  being  considered,  the  join  of  the  projection  of 

two  points  is  the  projection  of  the 

join  of  the  points. 

Thus  if  L  be  a  given  line  and  P, 

O,  two  given  points,  and  PP',  QQ' 
perpendiculars  upon  L ;  PQ  is  the 

join  of  P  and  Q,  P'  and  Q'  are  the  ^ 

projections  of  P  and  Q  upon  L,  and  the  segment  P'Q'  is  the 
projection  of  PO  upon  L. 

168°.    Theorem.  —The  sum  of  the  projections  of  the  sides  of 
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any   closed    rectilinear    figure,    taken    in    cyclic   order   with 
respect  to  any  line,  is  zero. 

ABCD    is    a    closed    rectilinear 

figure  and  L  is  any  line.     Then 
Pr.AB  +  Pr.BC  +  Pr.CD-|-Pr.DA=o 

A'    B'  c       D    L       Proof.  -  Draw  the  perpendiculars 

A  A',  BB',  CC,  DD',  and  the  sum  of  the  projections  becomes 
A'B'  +  B'C'  +  C'D'  +  D'A'. 

But  D'A'  is  equal  in  length  to  the  sum  of  the  three  others  and 
is  opposite  in  sense.         .*.  the  sum  is  zero. 

It  is  readily  seen  that  since  we  return  in  every  case  to  the 
point  from  which  we  start  the  theorem  is  true  whatever  be 
the  number  or  disposition  of  the  sides. 

This  theorem  is  of  great  importance  in  many  investigations. 

Cor.  Any  side  of  a  closed  rectilinear  figure  is  equal  to  the 
sum  of  the  projections  of  the  remaining  sides,  taken  in  cyclic 
order,  upon  the  line  of  that  side. 

Def. — In  a  right-angled  triangle  the  side  opposite  the  right 
angle  is  called  the  hypotheiiMse,  as  distinguished  from  the 
remaining  two  sides. 

Then 

Also, 

and 

Theorem. — In  any  right-angled  triangle  the  square 
on  one  of  the  sides  is  equal  to  the  rectangle 

on  the  hypothenuse  and  the  projection  of 
that  side  on  the  hypothenuse. 

ABC  is  right-angled  at  B,  and  BD  is  ± 
AC.     Then  AB2  =  AC.AD. 

Proof.— \.tX  AF  be  the  Q  ori  AC,  and  let 
EH  be  II  to  AB,  and  AGHB  be  a  (=3,  since 

^B  is  a  ~1- 
^GAB  =  ̂ EAC  =  ~|,  (82°,  Cor.  5) 
z.CAB  =  _EAG. 

AE  =  AC,  (hyp.) 

ACAB  =  AKAG,  (64°) 
AG-AB,  and  AH  is  the  Q  ̂^^  AB. 
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(82^  Cor,  5) 

(52°) 

Now  nAH=-£lZ7ABLE  =  [=]ADKE,      ̂ 140°) 

i.e.,  AB'-  =  AC.AD.                                 qe.d. 
As  this  theorem  is  very  important  we  give  an  alternative 

proof  of  it. 

Proof.— hY  is  the  Q  on  AC  and  AH 
is  the  D  on  AB,  and  BD  is  ±  AC. 

^GAB  =  -.CAE=n,        (82^  Cor.  5)0^ 
i.GAC=^BAE. 

Also,        AG=AB, 

and  AC  =  AE, 

Acac  =  abap:. 
But     ACAC  =  |nAH, 
and     ABAE  =  taAK, 

nAH=c=]AK, 

i.e.,  AB''*  =  AC.AD. 

Cor.  I.  Since  AB-  =  AC.  AD  we  have  from  symmetry 
BC-^^AC.DC, 

.-.  adding,  AB^+ BC^  =  AC(AD  +  DC), 

or  AB2+BC2  =  AC'-. 

.'.  The  square  on  the  hypothenuse  of  a  right-angled  triangle 
is  equal  to  the  sum  of  the  squates  on  the  remaining  sides. 

This  theorem,  which  is  one  of  the  most  important  in  the 

whole  of  Geometry,  is  said  to  have  been  discovered  by 

Pythagoras  about  540  B.C. 

Cor.  2.  Denote  the  sides  by  a  and  c  and  the  hypothenuse 

by  b,  and  let  a^  and  c^  denote  the  projections  of  the  sides  a 

and  L  upon  the  hypothenuse. 
Then 

and 

a^b, 

d'^c^ 

c^b, 

■.b\ 

Cor.  3.  Denote  the  altitude  to  the  hypothenuse  by  p. 

Then  b  =  Cy^-\-a^,  and  ADB  and  CDB  are  right-angled  at  D, 

b'^  =  c^-^-a^'^2C^a,  ;  (166°,  i) 

add  ip'-  to  each  side  and 

Ir  +  2p'  =  c^  +p'  +  a^^  +/■-'  +  2^1^?,, 
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or  c^ -\- a^  +  2p^  =  c^  +  a^  +  ic^a^.  (Cor.  i) 

or  BD2  =  AD.DC, 
i.e.^  the  square  on  the  altitude  to  the  hypothenuse  is  equal  to 

the  rectangle  on  the  projections  of  the  sides  on  the  hypo- 
thenuse. 

Def. — The  side  of  the  square  equal  in  area  to  a  given 
rectangle  is  called  the  7nean  proportional  or  the  geometric 

mean  between  the  sides  of  the  rectangle. 

Thus  the  altitude  to  the  hypothenuse  of  a  right-angled  A 
is  a  geometric  mean  between  the  segments  into  which  the 

altitude  divides  the  hypothenuse.  (169°,  Cor.  3) 
And  any  side  of  the  ̂   is  a  geometric  mean  between  the 

hypothenuse  and  its  projection  on  the  hypothenuse.       (169°) 

170°.    Theorem. — If  the  square  on  one  side  of  a  triangle  is 
equal  to  the  sum  of  the  squares  on  the  remaining  sides,  the 

triangle  is  right-angled  at  that  vertex  which  is  opposite  the 

side  having  the  greatest  square.     (Converse  of  169°,  Cor.) 

p^  If  AC^^AB'^-FBC'^,  the^B  is  a  "]• 

/^\  Proof.- hQt  ADC  be  a  ̂ 0  on  AC. 
y^        \       •.•  AC2  =  AB2-hBC2, 

A,<^   \c'''  ABis<AC. 
'v    \.  //'    .'.a  chord  AD  can  be  found  equal  to  AB. 

^v^^\     //'  Then  the  AADC  is  right-angled  at  D. 
"        D  (106°,  Cor.  4) 

AC2  =  AD2-|-DC2,  (169°,  Cor.  I) 

and.  AC2=AB''^-f  BC2,  and  AD  =  AB.  (hyp.) 
DC  =  BC, 

and  AADCsAABC. 

lD  =  lQ^~\  q.e.d. 

171°.  Theorem  169"  with  its  corollaries  and  theorem  170° 
are  extensively  employed  in  the  practical  applications  of 

Geometry.     If  we  take  the  three  numbers  3,  4,  and  5,  we 
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have  5^  =  3^  +  4".  Therefore  if  a  triangle  has  its  sides  3,  4, 
and  5  feet,  metres,  miles,  or  any  other  w./.,  it  is  right-angled 
opposite  the  side  5. 

For  the  segments  into  which  the  altitude  divides  the 

hypothenuse  we  have  S^i^3'  ̂ ^^  5^i  =  4^  whence  ai  =  ̂   and 
Ci=^\     For  the  altitude  itself,  /^  =  |  •  Y"  5  whence  p  =  J-'- 

Problem. — To  find  sets  of  whole  numbers  which  represent 

the  sides  of  right-angled  triangles. 
This  problem  is  solved  by  any  three  numbers  .r,  y^  and  r, 

which  satisfy  the  condition  x^^y^-^-s^-. 
Let  in  and  n  denote  any  two  numbers.     Then,  since 

(;;/2  4- ;/-)-  =  ( w^  -  n'J  +  (2/;/;/)-,  ( 1 66°,  4) 
the  problem  will  be  satisfied  by  the  numbers  denoted  by 

/;/-  -f  n^,  ni^  -  n^,  and  2jnn. 

The  accompanying  table,  which  may  be  extended  at 

pleasure,  gives  a  number  of  sets  of  such  numbers  : — 

2 3 ' 5 6 7 8 9 10 •• 

5 10 

15 

26 
37 

50 

65 

82 lOI 
... 

I ^ 6 8 10 12 

14 

16 18 20 

4 8 

17 24 

35 

48 

63 

80 
99 

13 

20 

29 

40 

53 68 

85 

104 

2 12 16 20 

24 

28 

32 

36 
40 

5 12 21 

32 

45 
60 

77 

96 

25 

34 

45 

58 

73 

90 

109 

3 

24 

30 36 42 48 

54 
60 7 16 

27 

40 

55 

72 

91 

- 

41 

52 

6^ 

80 
97 

116 
4 9 

48 

56 

64 

72 

80 

40 

20 33 

48 

65 84 

61 74 

89 

106 

125 

5 
60 

70 

80 

90 

100  1 

1 II 

24 

39 

56 

751 
... ... 

... 
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"•'^         (3)     ̂ ^- 

I.   By  subtracting  
(2)  from  (3) 

be  the  sides  of  any  triangle,  and  let  fi  be 

taken  as  base.  Denote  the  projections 

of  a  and  c  on  ̂   by  ̂7,  and  r,,  and  the 

altitude  to  />  by  /.     Then 

(i)     d'^  =  c{^  +  a{^  +  2Ciai,         (166°,  i) 

(2)     c^  =  c,^+p\  (169°,  Cor.  I) 
:^i2+/- 

-/-2. 

.•.  7"/^^  difference  between  the  squares  upon  two  sides  of  a 
triangle  is  equal  to  the  difference  of  the  squares  o?i  the  projec- 

tions of  these  sides  on  the  third  side,  take?i  in  the  same  order. 

Since  all  the  terms  are  squares  and  cannot  change  sign 

(163°),  the  theorem  is  true  without  any  variation  for  all  As. 

2.  By  adding  (i)  and  (2)  and  subtracting  (3), 
b'^  +  c--a'^==  2c^  +  2c^a^ 

=  2bc^,  '.'  b  =  Ci  +  a^j 
a^  =  b^  +  c^-2bci. 

Now,  since  we  have  assumed  that  b  =  Ci-]-a-^,  where  c^  and  a^ 
are  both  positive,  D  falls  between  A  and  C,  and  the  angle  A 
is  acute. 

.'.  ///  any  triangle  the  square  on  a  side  opposite  an  acute 
angle  is  less  than  the  sum  of  the  squares  upon  the  other  two 

sides  by  twice  the  rectatigle  on  one  of  these  sides  a?id  the  pro- 
jection of  the  other  side  upon  it. 

3.  Let  the  angle  A  become  obtuse.  Then  D,  the  foot  of 
the  altitude  to  b,  passes  beyond  A, 

and  c-^  changes  sign. 

.-.  czi/^^i  changes  sign,         (i6r) 

and  a^=b'^^-c^-\-2bcy 
.'.  The  square  on  the  side  opposite 

the  obtuse  ajigle  in  an  obtuse- 
angled  triangle  is  greater  than  the  sum  of  the  squares  on  the 

other  two  sides  by  twice  the  rectangle  on  o?te  of  these  sides  and 

the  projection  of  the  other  side  upon  it. 
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The  results  of  2  and  3  are  fundamental  in  the  theory  of 

triangles. 

These  results  are  but  one  ;  for,  assuming  as  we  have  done 

that  the  undci  is  to  be  subtracted  from  d'^+c'^  when  A  is  an 
acute  angle,  the  change  in  sign  follows  necessarily  when  A 

becomes  obtuse,  since  in  that  case  the  cd  changes  sign  because 

one  of  its  sides  changes  sign  (161°);  and  in  conformity  to 
algebraic  forms  -  (  -  2bc^=  +  2bc\. 

Cor.  If  the  sides  «,  b^  c  o{  n  triangle  be  given  in  numbers, 

we  have  from  2  c\  - 

2b       ' 
which  gives  the  projection  of  c  on  b. 

\i  Cy'is  +  the  lA  is  acute  ; 

if  q  is  o  the  zA  is  ~| ; 
and  if  c\  is  -  the  Z-A  is  obtuse. 

Ex.  The  sides  of  a  triangle  being  12,  13,  and  4,  to  tind  the 

character  of  the  angle  opposite  side  13. 

Let  1 3  =  rt,  and  denote  the  other  sides  as  you  please,  c.g.^ 
/^=i2andr=4.     Then 

_i2-^  +  4— 13'^_     3 

''  H  "8' 
and  the  angle  opposite  side  13  is  obtuse. 

173^    Theorem.— Tht  sum  of  the  squares  on  any  two  sides 
of  a  triangle  is  equal  to  twice  the  sum  of  the  squares  on  one- 
half  the  third  side  and  on  the  median  to  b 
that  side. 

BE  is  the  median  to  AC.     Then 

AB''^  +  BC2=2(AE2-f-EB2). 

Proof.— Lei  D  be  the  foot  of  the  altitude  ̂   ^   .  ̂     ̂  
on  AC.     Consider  the  ̂ I^ABE  obtuse-angled  at  E,  and 

AB-'-AE2-f-EB2-h2AH.ED.  (172",  3) 
Next,  consider  the  ̂ CBE  acute-angled  at  E,  and 

BC-  =  EC-'  +  EB'-2EC.ED.  (172  ,  2) 
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Now,  adding  and  remembering  that  AE  =  EC, 

AB2  +  BC2  =  2AE2  +  2EB-^.  q.e.d. 

Cor.  I.  Denoting  the  median  by  m  and  the  side  upon  which 

it  falls  by  b^  we  have  for  the  length  of  the  median 

4 

Cor.  2.  All  the  sides  of  an  equilateral  triangle  are  equal 

and  the  median  is  the  altitude  to  the  base  and  the  right 

bisector  of  the  base.  (53°,  Cors.  2,  3) 
.'.  in  an  equilateral  triangle, 

m'^=p^  =  \a^^  ox  p  =  \as] -if,  a  being  the  side. 

173°.    Theorem. — The  sum  of  the  squares  on  the  sides  of  a 
c   quadrangle    is    equal   to   the    sum    of   the 

squares  on  the  diagonals,  and  four  times 

the  square  on  the  join  of  the  middle  points 

of  the  diagonals. 

E,  F  are  middle  points  of  AC  and  BD. 

Then        2(AB2)  =  AC2  +  BD2  +  4EF2. 

D  Proof. — Join  AF  and  CF. 
Then  AF  is  a  median  to  AABD,  and  CF  to  ACBD. 

AB2  +  AD2=2BF2  +  2AF2,  (172°) 
and  BC2  +  CD2  =  2BF2  +  2CF2, 

.-.  adding,  2(AB2)  =  4BF2  +  2(AF2  +  CF2). 
But  EF  is  a  median  to  AAFC. 

AF2  +  CF2  =  2CE2  +  2EF2,»  (172^) 

2(AB2)  =  4BF2  +  4CE2  +  4EF2 
=  BD2  +  AC2  +  4EF2.  q.e.d. 

Since  squares  only  are  involved  this  relation  is  true  with- 
out any  modification  for  all  quadrangles. 

Cor.  I.  When  the  quadrangle  becomes  a  1  7  the  diagonals 

bisect  one  another  (81°,  3)  and  EF  becomes  zero. 
.-.  the  sum  of  the  squares  on  the  sides  of  a  parallelogram 

is  equal  to  the  sum  of  the  squares  on  its  diagonals. 
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174°.  Let  ABC  be  an  isosceles  triangle  and  P  be  any  point 
in  the  base  AC,  and  let  D  be  the  middle  point  of  b 
the  base,  and  therefore  the  foot  of  the  altitude. 

In  the  ABAP,  acute-angled  at  A, 
BP2=BA24-AP2-2AP.AI),      (172%  2) 

BA2-  BP2  =  AP(2AD  -  AP) 
=  AP.PC.  Q    A   p    D       c 

If  P  moves  to  Q,  AP  becomes  AQ  and  changes  sign,  BP 

becomes  BQ  which  is  >  BA,  and  thus  both  sides  of  the 

equality  change  sign  together  as  they  pass  through  zero  by 

P  passing  A. 

Now,  of  the  two  segments  from  B  we  always  know  which 

is  the  greater  by  63°,  and  if  we  write  PA  for  AP  the  cnPA .  PC 
is  positive  when  P  is  on  the  O  side  of  A.  Hence,  considering 

the  rectangle  as  being  always  positive,  we  may  state  the 

theorem — 

The  difference  between  the  squares  on  a  side  of  an  isosceles 

triatigle  and  on  the  join  of  the  vertex  to  any  point  in  the  base 

is  equal  to  the  rectangle  on  the  segments  into  which  that  point 
divides  the  base. 

i75°-  I-  From  174°  we  have  BA2- BP2  =  AP.  PC.  Now 
BA  is  fixed,  therefore  the  cdAP  .  PC  increases  as  BP  de- 

creases. But  BP  is  least  when  P  is  at  D  (63°,  i),  therefore 
the  cdAP  .  PC  is  greatest  when  P  is  at  D. 

Def  I. — A  variable  magnitude,  which  by  continuous 
change  may  increase  until  a  greatest  value  is  reached  and 

then  decrease,  is  said  to  be  capable  of  a  maximum,  and  the 
greatest  value  reached  is  its  inaximiun. 

Thus  as  P  moves  from  A  to  C  the  cziAP .  PC  increases 

from  zero,  when  P  is  at  A,  to  its  maximum  value,  when  P  is 

at  D,  and  then  decreases  again  to  zero,  when  P  comes  to  C. 

And  as  AC  may  be  considered  to  be  any  segment  divided 
at  P, 

.'.  The  maximum  rectangle  on  the  parts  of  a  given  segment 
is  for 711  ed  by  bisecting  the  segment; 
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Or,  of  all  rectangles  with  a  given  perimeter  the  square  has 

the  greatest  area. 

2.        AC2=(AP  +  PC)2  =  AP''^  +  PC2  +  2AP.PC       (i66°,  i) 
=  AP2  +  PC2  +  2(AB2-BP2).  (174°) 

But  AC  and  AB  are  constant, 

AP2  +  PC2  decreases  as  BP2  decreases. 
But  BP  is  least  when  P  is  at  D, 

AP2  +  PC2  is  least  when  P  is  at  D. 

Def.  2. — A  variable  magnitude  which  by  continuous  change 
decreases  until  it  reaches  a  least  value  and  then  increases  is 

said  to  be  capable  of  a  minimum^  and  the  least  value  attained 
is  called  its  miniinuin. 

.'.  The  sum  of  the  squares  on  the  two  parts  of  a  given  seg- 
ment is  a  minimum  when  the  segment  is  bisected. 

175^°.  The  following  examples  give  theorems  of  importance. 
B  Ex.  I.  Let  ABC  be  any  triangle  and  BD  the 

altitude  to  side  b.     Then 

c/    aWa  b'^-\-C^-a^  /    ̂     o    /-       \ 
^1  =   —^   ,  (172,  Lor.) 

c  But      p^  =  c^--c^^  =  {c^c;){c-c^), 

A=¥P-  (153°,  2) 

^■+^1-   2b   2b  ' 
_n^-{b-cf_{a-\-b-c){a-b+c) 

'    '''^^b  Yb  • 
4^2^2  =  1 5^2  =  (^;  _|_  ̂  +  ̂■)(^  4.  ̂.  _  a){c+a  -  b)(a  +  b-c), 

and    by  writing  s  for  ̂ {a  +  b-\-c),  and  accordingly  s-a   for 

^{b  +  c-a),  etc.,  we  obtain   
A  =  '^s{s  -  a)(s  -  b){s  ~  c). 

This  important  relation  gives  the  area  of  the  A  in  terms  of 
its  three  sides. 

Ex.  2.   Let  ABC  be  an  equilateral  A-      Then  the  area  may 

be  found  from  Ex.  i   by  making  a  =  b  =  c,  when  the  reduced 

expression  becomes,  /\=-\'j- 4 
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Ex.  3.  To  find  the  area  of  a  regular  octagon  in  terms  of  its 
t  ircumradius.  ^^..^   P 

Let  A,  R,  C  be  three  vertices  of  the  octagon 

and  O  the  centre.  Complete  the  square  OD, 
and  draw  BE  _L  to  OA. 

Since  _EOB-i"l.  and  OB  =  r, 
EO  =  EB-|r^/2, 

and       AOAB  =  |OA.  EB  =  ̂ r.  Ir^f2  =  ir^^2. 
But  AOAB  is  one-eighth  of  the  octagon, 

Oct.  =  2rV2. 

Exercises. 

1.  ABC  is  right-angled  at  B,  and  E  and  F  are  middle  points 

of  B A  and  BC  respectively.   Then  5AC2  =  4(CE=^4-AF=^). 
2.  ABC  is  right-angled  at  B  and  O  is  the  middle  of  AC, 

and    D    is   the   foot   of  the   altitude   from   B.     Then 

2AC.OD  =  AB2-BC2. 

3.  ABC  is  right  angled  at  B  and,  on  AC,  AD  is  taken  equal 
to  AB,  and  on  CA,  CE  is  taken  equal  to  CB.     Then 
ED2  =  2AE.DC. 

4.  The  square  on  the  sum  of  the  sides  of  a  right-angled  tri- 
angle exceeds  the  square  on  the  hypothenuse  by  four 

times  the  area  of  the  triangle. 
5.  To  find  the  side  of  a  square  which  is  equal  to  the  sum  ot 

two  given  squares. 

6.  To  find  the  side  of  a  square  which  is  equal  to  the  differ- 
ence of  two  given  squares. 

7.  The  equilateral  triangle  described  upon  the  hypothenuse 

of  a  right-angled  triangle  is  equal  to  the  sum  of  the 
equilateral  triangles  described  on  the  sides. 

8.  ABC  is  a  triangle  having  AB  =  CB,  and  AD  is  _L  upon 
BC.     Then  AC2  =  2CB.CD. 

9.  Four  times  the  sum  of  the  squares  on  the  three  medians 

of  a  triangle  is  equal  to  three  times  the  sum  of  the 

squares  on  the  sides. 
I 
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10.  ABCD  is  a  rectangle  and  P  is  any  point.     Then 

PA'-^+PC2-PB''^+PD2. 

11.  O   is  the  centre  of  a  circle,  and  AOB  is  a  centre-line. 

OA  =  OB  and  C   is  any  point  on  the  circle.     Then 
AC2+BC2  =  a  constant 

Define  a  circle  as  the  locus  of  the  point  C. 

12.  AD  is  a  perpendicular  upon  the  line  OB,  and  BE  is  a 

perpendicular    upon   the  line   OA.      Then    OA.OE 
=  OB.OD. 

13.  Two  equal  circles  pass  each  through  the  centre  of  the 

other.     If  A,  B  be  the  centres  and  E,  F  be  the  points 

of  intersection,  EF2=3AB2. 
If  EA  produced  meets  one  circle  in  P  and  AB  pro- 

duced meets  the  other  in  Q,  P02  =  7AB2. 

14.  ABC  is  a  triangle  having  the  angle  A  two-thirds  of  a 

right  angle.     Then  AB2 -f  AC^  =  BC^  -h  AC .  AB. 
15.  In  the  triangle  ABC,  D  is  the  foot  of  the  altitude  to  AC 

and  E  is  the  middle  point  of  the  same  side.     Then 

2ED.AC  =  AB2-BC2. 

16.  AD  is  a  line  to  the  base  of  the  triangle  ABC,  and  O  is 

the  middle  point  of  AD.     If  AB2-fBD2  =  AC2  +  CD2, 
then  OB-OC. 

17.  ABC  is  right-angled  at  B  and  BD  is  the  altitude  to  AC. 
Then  AB.CD  =  BD.BC  and  AD  .  CB  =  BA.  BD. 

18.  ABC  is  a  triangle  and  OX,  OY,  OZ  perpendiculars  from 

any  point  O  on  BC,  CA,  and  AB  respectively.     Then 

BX2  +  CY2-f-AZ2=CX2-t-AY2+BZ2. 

A  similar  relation  holds  for  any  polygon. 

19.  AAj,  BBi  are  the  diagonals  of  a  rectangle  and  P  any  point. 

Then  PA^+  PB2-^PAl2  +  PBl2  =  AA,-^-4P02,  where  O 
is  the  intersection  of  the  diagonals. 

20.  ABC  is  a  triangle,  AD,  BE,  CF  its  medians,  and  P  any 

point.     Then 

PA2-fPB2  +  PC2  =  PD2+PE2  +  PF2-hKAD--fBE2-f-CF2), 
or  2PA2  =  SPD2+i:S;/r,  where  m  is  a  median. 

21.  If  O  be  the  centroid  in  20, 
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PA2+  PB-^+  PC-  =  3P02  +  A(A1)-'  r  liE-^  +  CF^), 
or  ^PA-i  =  3PO-+fj:2w=^. 

22.  ABCD  is  a  square  and  AA',  BB',  CC,  I)D'  perpendicu- 
lars upon  any  line  L.     Then 

(AA'2  +  CC'-)-2BB'.  DD'  =  area  of  the  square. 
23.  The  sum  of  the  squares  on  the  diagonals  of  any  quad- 

rangle is  equal  to  twice  the  sum  of  the  squares  on  the 

joins  of  the  middle  points  of  opposite  sides. 

24.  ABCD  is  a  trapezoid  having  AD  parallel  to  BC.     Then 

AB-'  +  CD--l-2AD.BC  =  AO-l-BD-. 
25.  If  A,  B,  C  be  equidistant  points  in  line,  and  D  a  fourth 

point  in  same  line,  the  difference  between  the  squares 

on  AB  and  DB  is  equal  to  the  rectangle  on  AD  and 
CD. 

26.  If  A,  B,  C,  D  be  any  four  points  in  line, 

AD2+  BC-^  =  AC-  +  BD-^-f  2AB  .  CD. 

27.  Any  rectangle  is  equal  to  one-half  the  rectangle  on  the 
diagonals  of  the  squares  described  on  adjacent  sides. 

28.  In  the  triangle  ABC,  D  is  any  point  in  BC,  E  is  the 

middle  point  of  AD  and  F  of  BC.     Then 

AB*'^-f-AC2  =  AD2-l-4EFH2BD.  DC. 
29.  The  sides  of  a  rectangle  are  a  and  /k     U  />  be  the  length 

of  the  perpendicular  from  a  vertex  upon  a  diagonal  and 

f/  be  the  distance  between  the  feet  of  the  two  parallel 

perpendiculars  so  drawn, 

pJa^  +  d^  =  ad  and  g\^a^T¥=  b'^  -  a^-   {b  >  a), 

what  line-segment  is  denoted  by  \a--\-b'^? 
30.  ABCD  is  a  square.     P  is  a  point  in  AB  produced,  and  Q 

is  a  point  in  AD.  If  the  rectangle  BP.OD  is  con- 
stant, the  triangle  PQC  is  constant. 

31.  If  the  lengths  of  the  sides  of  a  triangle  be  expressed  by 

x^+i,  x^-  I,  and  2r,  the  triangle  is  right-angled. 
32.  U  a  and  c  be  the  sides  of  a  right-angled  triangle  and  p  be 

the  altitude  to  the  hypothenuse, 
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33.  The    iriaiigle   whose   sides   are   20,   15,  and    12   has   an 
obtuse  angle. 

34.  The  area  of  an  isosceles  triangle  is  S^Jil  and  the  side  is 

twice  as  long  as  the  base.  Find  the  length  of  the  side 

of  the  triangle. 

35.  What  is  the  length  of  the  side  of  an  equilateral  triangle 

which  is  equal  to  the  triangle  whose  sides  are  13,  14, 
and  15? 

36.  If  AB  is  divided  in  C  so  that  AC2  =  2BC-,  then 
AB24-BC-^  =  2AB.AC. 

37.  Applying  the  principle  of  continuity  state  the  resulting 

theorem  when  B  comes  to  D  in  (i)  the  Fig.  of  172°, 
(2)  the  Fig.  of  173^ 

38.  Applying  the  principle  of  continuity  state  the  resulting 

theorem  when  B  comes  to  E  in  the  Fig.  of  173°. 
39.  The  bisector  of  the  right  angle  of  a  right-angled  triangle 

cuts  the  hypothenuse  at  a  distance  a  from  the  middle 

point,  and  the  hypothenuse  is  2/k  Find  the  lengths  of 
the  sides  of  the  triangle. 

40.  Construct  an  equilateral  triangle  having  one  vertex  at  a 

given  point  and  the  remaining  vertices  upon  two  given 

parallel  lines. 
41.  A  square  of  cardboard  whose  side  is  s  stands  upright 

with  one  edge  resting  upon  a  table.  If  a  lower  corner 

be  raised  vertically  through  a  distance  a,  through 

what  distance  will  the  corner  directly  above  it  be 
raised  ? 

42.  What  would  be  the  expression  for  the  area  of  a  rectangle 

if  the  area  of  the  equilateral  triangle  having  its  side 
the  ?iJ.  were  taken  as  the  7t.a.? 

43.  The  opposite  walls  of  a  house  are  12  and  16  feet  high  and 

20  feet  apart.     The  roof  is  right-angled  at  the  ridge 
and  has  the  same  inclination  on  each  side.     Find  the 

lengths  of  the  rafters. 

44    Two  circles  intersect  in  P  and  Q.     The  longest  chord 

through  P  is  perpendicular  to  PO. 
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45.  The  largest  triangle  with   a  given   perimeter  is  an  equi- 
lateral triangle. 

46.  The  largest  triangle  having  its  base  and  the  sum  of  the 

other  two  sides  given  is  isosceles. 

47.  The  largest  polygon  of  given  species  and  given  perimeter 
is  regular. 

48.  The  largest  isosceles  triangle  with  variable  base  has  its 

sides  perpendicular  to  one  another. 

49.  The  largest  rectangle  inscribed  in  an  acute-angled  tri- 
angle  and   having  one   side  lying  on  a  side  of  the 

triangle  has  its  altitude  one-half  that  of  the  triangle. 
50.  L,  M  are  two  lines  meeting  in   O,  and   P  is  any  point. 

APB  is  a  variable  line  cutting  L  in  A  and  M  in  B. 

The  triangle  AOB  is  least  when  P  bisects  AB. 

EQUALITIES  OF  RECTANGLES  ON  SEGMENTS 
RELATED  TO  THE  CIRCLE. 

176°.  Theorem.— \{  two  secants  to  the  same  circle  inter- 
sect, the  rectangle  on  the  segments  between  the  point  of 

intersection  and  the  circle  with  respect  to  one  of  the  secants 

is  equal  to  the  corresponding  rectangle  with  respect  to  the 
other  secant. 

I.  Let  the  point  of  intersection   be 
within  the  circle.     Then 

AP.PB  =  CP.PD. 

Proof. — AOB  is  an  isosceles  triangle, 
and  P  is  a  point  on  the  base  AB. 

OA''i-OP2  =  AP.PB.        (174°) 
Similarly,  COD  is  an  isosceles  tri- 

angle, and  P  a  point  in  the  base  CD, 
OC2-OP2  =  CP.PD. 

But  OC  =  OA, 

AP.PB^CP.PD.  q^e.d. 
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Cor. I.  (a)  Let  CD  become  a  diameter  and  be  ±  to  AB. 

Then      AP .  PB  becomes  AP2,     (96°,  Cor.  5) AP2=:CP.PD, 

and  denoting  AP  by  c,  CP  by  v,  and  the 

radius  of  the  circle  by  r,  this  becomes 

which  is  a  relation  between  a  chord  of  a  0, 

the  radius  of  the  0,  and  the  distance  CP, 

commonly  called  the  versed  si7ie,  of  the  arc  AB. 

{b)  When  the  point  of  intersection  P  passes  without  the  0 

we  have  still,  by  the  principle  of  con- 
tinuity, AP .  PB  =  CP  .  PD.  But  the  as 

being  now  both  negative  we  make  them 

both  positive  by  writing 

PA.'PB  =  PC.PD. 

Cor.  2.  When  the  secant  PAB  be- 

comes the  tangent  PT  (109°),  A  and 
B  coincide  at  T,  and  PA.PB  becomes 

PT2,  .-.  PT2  =  PC.PD, 

1  .e.,  if  a  tangent  and  a  secant  be  drawn 

from  the  same  point  to  a  circle^  the  square  on  the  tangent  is 

equal  to  the  rectangle  on  the  segments  of  the  secant  between 

the  point  and  the  circle. 

Cor.  3.  Conversely,  if  T  is  on  the  circle  and  PT2=PC  .  PD, 
PT  is  a  tangent  and  T  is  the  point  of  contact. 

For,  if  the  line  PT  is  not  a  tangent  it  must  cut  the  circle  in 

some  second  point  T'  (94°).     Then 
PT.PT'  =  PC.PD  =  PT2. 

Therefore  PT  =  PT',  which  is  not  true  unless  T  and  T  coin- 
cide.    Hence  PT  is  a  tangent  and  T  is  the  point  of  contact. 

Cor.  4.  Let  one  of  the  secants  become  a  centre-line  as 
PEF.  Denote  PT  by  /,  PE  by  h,  and  the  radius  of  the  circle 

byr.     Then  PT2  =  PE.PF 

becomes  t'^=h{2r+h). 
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Exercises. 

r.  The  shortest  segment  from  a  point  to  a  circle  is  a  portion 

of  the  centre-line  through  the  point. 
2.  The  longest  segment  from  a  point  to  a  circle  is  a  portion 

of  the  centre-line  through  the  point. 
3.  If  two  chords  of  a  circle  are  perpendicular  to  one  another 

the  sum  of  the  squares  on  the  segments  between  the 
point  of  intersection  and  the  circle  is  equal  to  the 
square  on  the  diameter. 

4.  The  span  of  a  circular  arch  is  120  feet  and  it  rises  15 
feet  in  the  middle.  With  what  radius  is  it  con- 
structed? 

5.  A  conical  glass  is  b  inches  deep  and  a  inches  across  the 
mouth.  A  sphere  of  radius  r  is  dropped  into  it.  How 
far  is  the  centre  of  the  sphere  from  the  bottom  of  the 

glass  ? 
6.  The  earth's  diameter  being  assumed  at  7,960  miles,  how 

far  over  its  surface  can  a  person  see  from  the  top  of  a 
mountain  3  miles  high  ? 

7.  How  much  does  the  surface  of  still  water  fall  away  from 
the  level  in  one  mile  ? 

8.  Two  circles  whose  radii  are  10  and  6  have  their  centres 

12  feet  apart.  Find  the  length  of  their  common  chord, 
and  also  that  of  their  common  tangent. 

9.  Two  parallel  chords  of  a  circle  are  c  and  r^  and  their 
distance    apart    is    d^    to    find    the    radius    of    the 
circle. 

10.  If  V  is  the  versed  sine  of  an  arc,  k  the  chord  of  half  the 

arc,  and  r  the  radius,  k'^  =  ivr. 

177°.  Theorem. — If  upon  each  of  two  intersecting  lines  a 
pair  of  points  be  taken  such  that  the  rectangle  on  the  seg- 

ments between  the  points  of  intersection  and  the  assumed 

points  in  one  of  the  lines  is  equal  to  the  corresponding  rect- 
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angle  for  the  other  Hne,  the  four  assumed  points  are  concyclic. 

A    3  (Converse  of  176°.) 
L  and  M  intersect  in  O,  and 

OA.OB  =  OC.OD. 

Then  A,  B,  C,  and  D  are  concyclic. 

Proof. — Since  the  czis  are  equal,  if  A  and  B  lie  upon  the 
same  side  of  O,  C  and  D  must  lie  upon  the  same  side  of  O  ; 

and  if  A  and  B  lie  upon  opposite  sides  of  O,  C  and  D  must 

lie  upon  opposite  sides  of  O. 

Let  a  0  pass  through  A,  B,  C.  and  let  it  cut  M  in  a  second 

point  E.     Then  OA.OB  =  OC.OE.  (176°) 
But  OA.OB  =  OC.OD.  (hyp.) 

OD=:OE, 

and  as  D  and  E  are  upon  the  same  side  of  O  they  must  co- 

incide; .'.     A,  B,  C,  D  are  concyclic.  q.e.d. 

178°.  Let  two  circles  excluding  each  other  without  contact 
have  their  centres  at  A  and  B,  and  let  C  be  the  point,  on 

their  common  centre-line>  which  divides  AB  so  that  the 
difference  between  the  squares  on  the  segments  AC  and  CB 

is  equal  to  the  difference  between  the  squares  on  the  con- 
terminous radii.  Through  C 

draw  the  line  PCD  JL  to  AB, 

and  from  any  point  P  on  this 

line  draw  tangents  FT  and  PT' 
to  the  circles. 

Join  AT  and  BT'. Then,  by  construction, 

AC2-BC2  =  AT2-BT'2. 
But,  since  PC  is  an  altitude  in 

(172°,  i) 

(169°,  Cor.  i) 

the  AAPB, 

AC2 

-BC2  =  AP2-BP2, 
and AP2  =  AT2-|-PT2, 
and 

BP2=BT'2-fPT'2, 
whence 

PT2  =  PT'2, and 
PT  =  PT'. 



AREAL    RELATIONS. 

137 

Therefore  PCD  is  the  locus  of  a  point  from  which  equal 

tangents  are  drawn  to  the  two  circles. 

Def. — This  locus  is  called  the  radical  axis  of  the  circles, 
and  is  a. line  of  great  importance  in  studying  the  relations  of 
two  or  more  circles. 

Cor.  I.  The  radical  axis  of  two  circles  bisects  their  com- 

mon tangents. 

Cor.  2.  When  two  circles  intersect,  their  radical  axis  is 
their  common  chord. 

Cor.  3.  When  two  circles  touch  externally,  the  common 

tangent  at  the  point  of  contact  bisects  the  other  common 

tangents. 

179.  The  following  examples  give  theorems  of  some  im- 
portance. 

Ex.  I.  P  is  any  point  without  a  circle  and  TT  is  the  chord 

of  contact  (114°,  Def.)  for  the  point  P. 

TT'   cuts   the    centre-Hne    PO    in    Q. 

Then,  PTO  being  a  ~1,  ('  10°) 
OO.OP  =  OT-'.  (169°) 

.*.  the  radius  is  a  geometric  mean  be- 
tween the  Joift  of  any  point  with  the 

centre  and  the  perpendicular  from  the 

centre  upon  the  chord  of  contact  of  the  point. 

Def. — P  and  O  are  called  inverse  points  with  respect  to 
the  circle. 

Ex.  2.   Let  PO  be  a  common  direct  tangent  to  the  circles 

having  O  and  O'  as  centres. 
Let  OP  and  O'O  be  radii 

to  the  points  of  contact,  and 

let  QR  be  |l  to  OO'.  Denote 
the  radii  by  ;•  and  r' .  Then 

\Q  =  00'  +  r-r\ 
BD  =  00'-r-fr'. 

.-.   AC.BD^OO'-'-  (r-  ;■')-  = OR2-PR2=PO-.  (169',  Cor.  i; 
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Similarly  it  may  be  shown  that 

AD .  BC  =  square  on  the  transverse  common  tangent. 

Exercises. 

1.  The  greater  of  two  chords  in  a  circle  is  nearer  the  centre 
than  the  other. 

2.  Of  two  chords  unequally  distant  from  the  centre  the  one 

nearer  the  centre  is  the  greater. 

3.  AB  is  the  diameter  of  a  circle,  and  P,  O  any  two  points  on 

the  curve.  AP  and  BO  intersect  in  C,  and  AQ  and  BP 
in  C     Then 

AP .  AC  +  BQ  .BC  =  AC.  AQ  -f  BC'.BP. 
4.  Two  chords  of  a  circle,  AB  and  CD,  intersect  in  O  and 

are  perpendicular  to  one  another.     If  R  denotes  the 
radius  of  the  circle  and  E  its  centre, 

8R2  =  AB2  +  CD2  +  40E2. 
5.  Circles  are  described  on  the  four  sides  of  a  quadrangle  as 

diameters.  The  common  chord  of  any  two  adjacent 

circles  is  parallel  to  the  common  chord  of  the  other 
two. 

6.  A  circle  S  and  a  line  L,  without  one  another,  are  touched 

by  a  variable  circle  Z.  The  chord  of  contact  of  Z  passes 

through  that  point  of  S  which  is  farthest  distant 
from  L. 

7.  ABC  is  an  equilateral  triangle  and  P  is  any  point  on  its 
circumcircle.  Then  PA  +  PB  +  PC=o,  if  we  consider 

the  line  crossing  the  triangle  as  being  negative. 

8.  CD  is  a  chord  parallel  to  the  diameter  AB,  and  P  is  any 

point  in  that  diameter.     Then 
PC2  +  PD2  =  PA2  +  PB2. 
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SECTION    V. 

CONSTRUCTIVE    GEOMETRY. 

180°.  Problem. — AB  being  a  given  segment,  to  construct 
the  segment  AB^^2.  A_ 

Constr.  —Draw  EC  ±  to  AB  and  equal  to  it. 

Then  AC  is  the  segment  ABx^2. 

Proof. — Since  ABC  is  right-angled  at  B, 

AC2=AB-  +  BC2=2AB2,   (169,  Cor.  i) 
AC  =  AB^/2. 

Cor.  The  square  on  the  diagonal  of  a  given  square  is  equal 
to  twice  the  given  square. 

181°.  Problem. — To  construct  AB^/3. 

Constr.— TdLke  BC  in  line  with  AB  and  equal 
to  it,  and  on  AC  construct  an  equilateral  tri- 

angle ADC.  (124°,  Cor.  i) 
BD  is  the  segment  AB^3. 

Proof.— A.^T>  is  a  "1,  and  AD  =  AC  =  2AB. 
Also  AD2  =  AB2-hBD2  =  4AB2.         (169°,  Cor.  i) 

BD2  =  3AB2,  and  BD  =  AB^/3. 

Cor.  Since   BD   is  the  altitude  of  an  equilateral  triangle 

and  AB  is  one-half  the  side, 

.-.  the  square  on  the  altitude  of  an  equilateral  triangle  is 
equal  to  three  times  the  square  on  the  half  side. 

182°.  Problem.— To  construct  AB^^5.  A 
Constr.  —Draw  BC  JL  to  AB  and  equal  to  twice 

AB.     Then  AC  is  the  segment  KV>^^. 

Proof — Since  z_B  is  a  right  angle, 
AC2  =  AB2  +  BC2. 

But  BC2  =  4AB2; 
AC2=5AB2, 

and  AC  =  AB^/5. 
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183^.  The  three  foregoing  problems  furnish  elements  of 
construction  which  are  often  convenient.  A  few  examples 

are  given. 

Ex. 

\ 

AB  being  a  given  segment,  to  find  a  point  C  in  its 

________  line  such  that  AC"- AB  .  CB. 
A  c  B     Analysis-  AC-  =  AB.  CB  =  AB(AB  -  AC), 

AC-  +  AC.AB  =  AB-^. 
Considering  this  an  algebraic  form  and  solving  as  a  quad- 

ratic in  AC,  we  have        AC  =  ̂ (ABs^5  -  AB), 
and  this  is  to  be  constructed. 

Ctf«.f/r.— Construct  AD  =  AB>^/5  (by  182°)  as  in  the  figure, 
and    let    E    be    the 

middle  point  of  BD. 

Take  DF  =  DE. 
Then 

AF  =  ABV5-AB  ; 

.'.  bisecting  AF  in  G, 
AG  =  AC 

=  KAB^/5-AB), 

and  the  point  C  is 
found. 

Again,  since /^/s  has 

two    signs    +    or    -, 
,^-^F'  take  its  negative  sign 

and  we  have  AC  =  -  ̂ AB^S + AB). 
Therefore,    for    the    point    C,    on    AD    produced    take 

DF'  =  DE,  and  bisect  AF'  in  G'.     Then 

AG'=|(ABV5+AB); 

and  since  AC  is  negative  we  set  off"  AG'  from  A  to  C,  and 
C  is  a  second  point. 

The  points  C  and  C  satisfy  the  conditions, 

AC2  =  AB  .  CB  and  AC^= AB .  CB. 

A  construction  effected  in  this  way  requires  no  proof  other 

than  the  equation  which  it  represents. 
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It  is  readily  proved  however.     For 

AD2=5AB'-,  and  also  AD-  =  (AF  +  FD)-  =  (2AC4-AB)^ 
whence  AC-  =  AB(AB  -  AC}  =  AB  .  CB. 

It  will  be  noticed  that  the  constructions  for  finding  the  two 

points  differ  only  by  some  of  the  segments  being  taken  in 
different  senses.  Thus,  for  C,  DE  is  taken  from  DA,  and  for 

C,  added  to  UA  ;  and  for  C,  AC  is  taken  in  a  positive  sense 

equal  to-  AG,  and  for  C,  AC  is  taken  in  a  negative  sense 

equal  to  AG'. 

In  connection  with  the  present  example  we  remark  : — 

1.  Where  the  analysis  of  a  problem  involves  the  solution  of 

a  quadratic  equation,  the  problem  has  two  solutions  corre- 
sponding to  the  roots  of  the  equation. 

2.  Both  of  the  solutions  may  be  applicable  to  the  wording 

of  the  problem  or  only  one  may  be. 

3.  The  cause  of  the  inapplicability  of  one  of  the  solutions 

is  commonly  due  to  the  fact  that  a  mathematical  symbol  is 

more  general  in  its  significance  than  the  words  of  a  spoken 

language. 

4.  Both  solutions  may  usually  be  made  applicable  by  some 

change  in  the  wording  of  the  problem  so  as  to  generalize  it. 

The  preceding  problem  may  be  stated  as  follows,  but 

whether  both  solutions  apply  to  it,  or  only  one,  will  depend 

upon  our  definition  of  the  word  "part."     See  Art.  23°. 

To  divide  a  given  segment  so  that  the  square  upon  one  of 

the  parts  is  equal  to  the  rectangle  on  the  whole  segment  and 

the  other  part. 

Def. — A  segment  thus  divided  is  said  to  be  divided  into 
extreme  and  mean  ratio,  or  in  median  section. 

Ex.  2.  To  describe  a  square  when  the  sum  of  its  side  and 

diagonal  is  given. 

Analysis.—  If  AB  is  the  side  of  a  square,  AB^2  is  its 

diagonal,  (^80°) 
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.•.  AB(i  +J2)  is  a  given  segment  =S,  say.     Then 

E        S   _F  ^  '. 

Constr, — Let  EF  be  the  given  segment  S. 
Draw  FG  _L  and   =    to  EF,  and   with 

centre  G  and  radius  GF  describe  a  0  cut- 

ting EG  in  H  and  H'. 
-^'H'      EH  is  the  side  of  the  square ;  whence  the 

square  is  easily  constructed. 

If  we  enquire  what  EH'  means,  we  find  it  to  be  the  side  of 
the  square  in  which  the  difference  between  the  side  and 
diagonal  is  the  given  segment  S.  The  double  solution  here 
is  very  suggestive,  but  we  leave  its  discussion  to  the  reader. 

184°.  Problem. — To  find  a  segment  such  that  the  rectangle 
on  it  and  a  given  segment  shall  be  equal  to  a  given  rectangle. 

^'   '         Constr. — Let  S  be  the  given  segment, 
F  and  AC  the  given  rectangle. 

On   DA  produced   make  AP  =  S,  and 
^    draw  PBO  to  cut  DC  produced  in  Q. 

,   ,  CQ  is  the  segment  required. 

/'r^^— Complete  the  cus  PEQD,  PGBA,  and  BCQF. 
Then  nAC  =  i=iGF  =  GB.  BF  =  PA.  CQ, 

S.CQ  =  oAC. 

Def. — The  segments  AP  and  CQ  are  reciprocals  of  one 
another  with  respect  to  the  cdAC  as  unit. 

185°.  Problem. — To   find  the  side  of  a  square  which  is 
_  equal  to  a  given  rectangle. 

B    

/ N^  Constr. — Let    AC    be    the    rectangle. 
\      Make    BE  =  BC   and   in   line  with  BA. 

B — ^    On  AE  describe  a  semicircle,  and  pro- 
duce CB  to  meet  it  in  F. 

°  ^  BF  is  the  side  of  the  required  square. 

Proof. — Since  AE  is  a  diameter  and  FB  a  half  chord  _L  to  it, 
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BF2=AB.BE, 

BF2=AB.BC. 
(176°,  Cor.  i) 

Cor,  This  is  identical  with  the  problem,  "To  find  a  geo- 

metric mean  between  two  given  segments,"  and  it  furnishes 

the  means  of  constructing  the  segment  a,  when  rt  =  \^  b  and 

<:  being  given.  (165°) 

Ex.  I.  To  construct  an  equilateral  triangle  equal  to  a  given 

rectangle.  p  c 

Let  AC  be  the  given  rectangle,  and  suppose 

PQR  to  be  the  required  triangle.     Then 

AB.BC=|PR.QT 
=  PT.QT. 

But  QT  =  PT^/3,  (181°,  Cor.) 
PT.QT=PTV3 

whence  PT2  =  ABV3- i^BC  ''     '      " 
And  PT  is  the  side  of  a  square  equal  to  the  rectangle  whose 

sides  are  ABiv/3  and  |BC,  and  is  found  by  means  of  iST, 

127°,  and  185°. 
Thence  the  triangle  is  readily  constructed. 

Ex.  2.  To  bisect  the  area  of  a  triangle  by  a  line  parallel  to 
its  base. 

Let  ABC  be  the  triangle,  and  assume 

PQ  as  the  required  line,  and  complete 

the  parallelograms  AEBC,  KFBC,  and 
let  BD  be  the  altitude  to  AC.  Because 

PQ  is  II  to  AC,  BD  is  _L  to  PO.  Now 

/IZ7EP  =  £=I7PC, 

Z=Z7FC  =  EZ7EQ,  or  PQ.  BD  =  AC.  BG. 

But      2^Z7FQ=ZIZ7EC,  or  2PQ.bg  =  AC.  BD; 

.'.  dividing  one  equation  by  the  other,  and  reducing  to  one 
line,  BD-^  =  2BG2; 
and  therefore  BG  is  one-half  the  diagonal  of  the  square 

of  which  BD  is  the  side,  and  the  position  of  PQ  is  de- 
termined. 

(•43°) 
(153°,  0 
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1 86".  Problem. — To  find  the  circle  which  shall  pass  through 
two  given  points  and  touch  a  given  line. 

Let  A,  B  be  the  given  points  and  L 

the  given  line. 

Constr. — Let  the  line  AB  cut  L  in  (). 

Take  OP  =  OP',  a  geometric  mean  be- 

tween OA  and  OB  (185°).  The  circles 

through  the  two  sets  of  three  points  A,  B,  P  and  A,  B,  P'  are 
the  two  solutions. 

The  proof  is  left  to  the  reader.     (See  176°,  Cor.  2.) 

187°.  Problem.— Tq>  find  a  0  to  pass  through  two  given 
points  and  touch  a  given  Q. 

Let  A,  B  be  the  points  and  S 
the  given  0. 

Constr. — Through  A  and  B 
draw  any  0  so  as  to  cut  S  in 

two  points  C  and  D.  Let  the 
line  CD  meet  the  Hne  AB  in  O. 

From  O  draw  tangents  OP  and 

OQ  to  the  0S  (114°).  Pand 
O  are  the  points  of  contact  for 

the  0s  which  pass  through  A  and  B  and  touch  S.  There- 
fore the  0s  through  the  two  sets  of  three  points  A,  B,  P  and 

A,  B,  Q  are  the  0s  required. 

Proof.-        OB.OA  =  OC.OD-OQ2  =  Op2; 
therefore  the  0s  through  A,  B,  P  and  A,  B,  O  have  OP  and 

OQ  as  tangents  (176°,  Cor.  3).     But  these  are  also  tangents 
to  0S  ;  therefore  P  and  Q  are  the  points  of  contact  of  the 

required  0s. 

Exercises. 

1.  Describe  a  square  that  shall  have  twice  the  area  of  a 

given  square. 
2.  Describe  an  equilateral  triangle  equal  to  a  given  square. 
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3.  Describe  an  equilateral  triangle  having  five  times  the  area 

of  a  given  equilateral  triangle. 

4.  Construct  AB,v/7,  where  AB  is  a  given  segment. 

5.  Construct  'Ja'^^^  and  sJa^-b^,  where  a   and  b  denote 
given  line  segments. 

6.  Divide  the  segment  AB  in  C  so  that  AC2  =  2CB-.     Show 
that  AC  is  the  diagonal  of  the  square  on  CB.  Does 
this  hold  for  external  division  also  } 

7.  ABCD  is  a  rectangle  and  DE,  a  part  of  DA,  is  equal 

to  DC.  EF,  perpendicular  to  AD,  meets  the  circle 

having  A  as  centre  and  AD  as  radius  in  F.  Then  DF 

is  the  diagonal  of  a  square  equal  to  the  rectangle. 

8.  In  the  Fig.  of  183°,         CE2  =  3AB  .  CB, 
CD-  =  CE2  +  3ED2=  3AB(AB  +  CB). 

9.  Show  that  the  construction  of  183"  solves  the  problem, 
"To  divide  a  segment  so  that  the  rectangle  on  the  parts 

is  equal  to  the  difference  of  the  squares  on  the  parts." 

10.  Show  that  the  construction  of  183''  solves  the  problem, 
"  To  divide  a  given  segment  so  that  the  rectangle  on 
the  whole  and  one  of  the  parts  is  equal  to  the  rectangle 
on  the  other  part  and  the  segment  which  is  the  sum  of 

the  whole  and  the  first  part." 
1 1.  Construct  an  equilateral  triangle  when  the  sum  of  its  side 

and  altitude  are  given.  What  does  the  double  solution 

mean?     (See  183°,  Ex.  2.) 
12.  Describe  a  square  in  a  given  acute-angled  triangle,  so 

that  one  side  of  the  square  may  coincide  with  a  side  of 
the  triangle. 

13.  Within  a  given  square  to  inscribe  a  square  having  three- 
fourths  the  area  of  the  first. 

14.  Within  an  equilateral  triangle  to  inscribe  a  second  equi- 
lateral triangle  whose  area  shall  be  one-half  that  of 

the  first. 

1 5.  Produce  a  segment  AB  to  C  so  that  the  rectangle  on  the 

sum  and  difference  of  AC  and  AB  shall  be  equal  to  a 

given  square. 
K 
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16.  Draw  a  tangent  to  a  given   circle  so  that  the  triangle 
formed  by  it  and  two  fixed  tangents  may  be  (i)  a 
maximum,  (2)  a  minimum. 

17.  Draw  a  circle  to  touch  two  sides  of  a  given  square,  and 
pass  through  one  vertex.  Generalize  this  problem  and 
show  that  there  are  two  solutions. 

18.  Given  any  two  lines  at  right  angles  and  a  point,  to  find  a 
circle  to  touch  the  hnes  and  pass  through  the  point. 

19.  Describe  a  circle  to  pass  through  a  given  point  and  to 
touch  a  given  line  at  a  given  point  in  the  line. 

20.  Draw  the  oblique  lines  required  to  change  a  given  square 
into  an  octagon. 

If  the  side  of  a  square  is  24,  the  side  of  the  result- 
ing octagon  is  approximately  10 ;  how  near  is  the 

approximation  ? 
21.  The  area  of  a  regular  dodecagon  is  three  times  that  of 

the  square  on  its  circumradius, 

22.  By  squeezing  in  opposite  vertices  of  a  square  it  is  trans- 
formed into  a  rhombus  of  one-half  the  area  of  the  square. 

What  are  the  lengths  of  the  diagonals  of  the  rhombus.? 
23.  P,  Q,  R,  S  are  the  middle  points  of  the  sides  AB,  BC, 

CD,  and  DA  of  a  square.  Compare  the  area  of  the 
square  with  that  of  the  square  formed  by  the  joins  AQ, 
BR,  CS,  and  DP. 

24.  ABCDEFGH  is  a  regular  octagon,  and  AD  and  GE  are 

produced  to  meet  in  K.  Compare  the  area  of  the  tri- 
angle DKE  with  that  of  the  octagon. 

25.  The  rectangle  on  the  chord  of  an  arc  and  the  chord  of 
its  supplement  is  equal  to  the  rectangle  on  the  radius 
and  the  chord  of  twice  the  supplement. 

26.  At  one  vertex  of  a  triangle  a  tangent  is  drawn  to  its  cir- 
cumcircle.  Then  the  square  on  the  altitude  from  that 
vertex  is  equal  to  the  rectangle  on  the  perpendiculars 
from  the  other  vertices  to  the  tangent. 

27.  SOT  is  a  centre-line  and  AT  a  tangent  to  a  circle  at  the 

point  A.     Determine  the  angle  AOT  so  that  AS  =  AT. 



PART     III. 

PRELIMINARY. 

1 88°.  By  superposition  we  ascertain  the  equality  or  in- 
equality of  two  given  line-segments.  But  in  order  to  express 

the  relation  between  the  lengths  of  two  unequal  segments  we 

endeavour  to  find  two  numerical  quantities  w  hich  hold  to  one 

another  the  same  relations  in  magnitude  that  the  given  seg- 
ments do. 

Let  AB  and  CD  be  two  given  segments.  If  they  are  com- 

mensurable (150°,  5)  some  ti.l.  can  be  found  with  respect  to 

which  the  measures  of  AB  and  CD  (150",  2)  are  both  whole 
numbers.  Let  m  denote  the  measure  of  AB  and  n  the 

measure  of  CD  with  respect  to  this  unit-length. 
The  numbers  7n  and  ;/  hold  to  one  another  the  same  rela- 

tions as  to  magnitude  that  the  segments  AB  and  CD  do. 

The  fraction  —  is  called  in  Arithmetic  or  Algebra  the  ratio n 

of  m  to  n,  and  in  Geometry  it  is  called  the  ratio  of  AB  to  CD. 

Now  n  has  to  m  the  same  ratio  as  unity  has  to  the  fraction 

--.     But  if  CD  be  taken  as  //./.  its  measure  becomes  unity, 

while  that  of  AB  becomes  —  • 

Therefore  the  rat/o  of  AB  to  CD  is  the  measure  of  AB  with 

respect  to  CD  as  unit-length. 

When  AB  and  CD  are  commensurable  this  ratio  is  expres- 
sible arithmetically  either  as  a  whole  number  or  as  a  fraction  ; 

U7 
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but  when  the  segments  are  incommensurable  the  ratio  can 

only  be  symbolized,  and  cannot  be  expressed  arithmetically 

except  approximately. 

189°.  If  we  suppose  CD  to  be  capable  of  being  stretched 
until  it  becomes  equal  in  length  to  AB,  the  numerical  factor 

which  expresses  or  denotes  the  amount  of  stretching  neces- 
sary may  conveniently  be  called  the  tensor  of  AB  with 

respect  to  CD.  (Hamilton.) 

As  far  as  two  segments  are  concerned,  the  tensor,  as  a 

numerical  quantity,  is  identical  with  the  ratio  of  the  segments, 
but  it  introduces  a  different  idea.  Hence  in  the  case  of  com- 

mensurable segments  the  tensor  is  arithmetically  expressible, 

but  in  the  case  of  incommensurable  ones  the  tensor  may  be 

symbolically  denoted,  but  cannot  be  numerically  expressed 

except  approximately. 

Thus  if  AB  is  the  diagonal  of  a  square  of  which  CD  is  the 

side,  AB  =  CD^^2  (180°);  and  the  tensor  of  AB  on  CD, 
i.e.,  the  measure  of  AB  with  CD  as  unit-length,  is  that 
numerical  quantity  which  is  symbolized  by  J2^  and  which 

can  be  expressed  to  any  required  degree  of  approximation  by 

that  arithmetical  process  known  as  "  extracting  the  square 

root  of  2." 

190°.  That  the  tensor  symbolized  by  sj'i  cannot  be  ex- 
pressed arithmetically  is  readily  shown  as  follows  : — 

If  J2  can  be  expressed  numerically  it  can  be  expressed  as 

a  fraction,  — ,  which  is  in  its  lowest  terms,  and  where  accord- 

ingly  ;//  and  n  are  not  both  even. 

If  possible  then  let  v/2  =  -l 

Then  iir^nr.  Therefore  ;//"-  and  ;//  are  both  even  and  n 
is  odd.  ., 

But  if  )n  is  even,  —  is  even,  and  ifi  and  n  are  both  even. 

But  ;/  cannot  be  both  odd  and  even. 

Therefore  -^i  cannot  be  arithmetically  expressed. 
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Illustration  of  an  inr.ommensurable  tensor. 

Let    BD    be  equal   to  AB,  and  let  AC   be  equal  to  the 

diagonal  of  a  square  of  which  AB  is  the  side. 

^   ^   ^E'F'   ^ 
A  B  E  'c'   1^  D 

Then  some  tensor  will  bring  AB  to  AC. 

Let  BD  be  divided  into  lo  equal  parts  whereof  E  and  F 

are  those  numbered  4  and  5. 

Then  the  tensor  i .  4  stretches  AB  to  AE,  and  tensor  i .  5 
stretches  AB  to  AF.  But  the  first  of  these  is  too  small  and 

the  second  too  great,  and  C  lies  between  E  and  F. 

Now,  let  EF  be  divided  into  10  equal  parts  whereof  E',  F' 
are  those  numbered  i  and  2. 

Then,  tensor  1.41  brings  AB  to  AE',  and  tensor  1.42 

brings  AB  to  AF' ;  the  first  being  too  small  and  the  second 
too  great. 

Similarly  by  dividing  E'F'  into  10  equal  parts  we  obtain 
two  points  ̂ ,  f  numbered  4  and  5,  which  lie  upon  opposite 

sides  of  C  and  adjacent  to  it. 

Thus,  however  far  this  process  be  carried,  C  will  always  lie 

between  two  adjacent  ones  of  the  points  last  obtained. 

But  as  every  new  division  gives  interspaces  one-tenth  of 
the  length  of  the  former  ones,  we  may  obtain  a  point  of 

division  lying  as  near  C  as  we  please. 
Now  if  AB  be  increased  in  length  from  AB  to  AD  it  must 

at  some  period  of  its  increase  be  equal  to  AC. 

Therefore  the  tensor  which  brings  AB  to  AC  is  a  real 

tensor  which  is  inexpressible,  except  approximately,  by  the 

symbols  of  Arithmetic. 

The  preceding  illustrates  the  difference  between  magnitude 

and  number.  The  segment  AB  in  changing  to  AD  passes 

through  every  intermediate  length.  But  the  commensurable 

or  numerically  expressible  quantities  lying  between  i  and  2 

must  proceed  by  some  unit  however  small,  and  are  therefore 
not  continuous. 
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Hence  a  magnitude  is  a  variable  which^  in  passing  from 
one  value  to  another^  passes  through  every  intermediate  value. 

191°.  The  tensor  of  the  segment  AB  with  respect  to  AC,  or 
the  tensor  of  AB  071  AC  is  the  numerical  factor  which  brings 
AC  to  AB. 

But  according  to  the  operative  principles  of  Algebra, 

^.AC  =  AB, AB 
.".  xr  ̂^  ̂ ^  tensor  which  brings  AC  to  AB. 

Hence  the  algebraic  form  of  a  fraction,  when  the  parts 
denote  segmetits,  is  interpreted  geo7netrically  by  the  tensor 
which  brings  the  deno?ni7iator  to  the  7iumerator ;  or  as  the 
ratio  of  the  numerator  to  the  de7iominator. 

SECTION   I. 

PROPORTION   AMONGST   LINE-SEGMENTS. 

192°.  Def — Four  Ii7te-segme7its  take7t  i7i  order  for7n  a 
proportio7i,  or  are  in  proportion,  whe7i  the  tensor  of  the  first 
071  the  seco7id  is  the  same  as  the  tensor  of  the  third  on  the 

fourth. 
This  definition  gives  the  relation 

r^   w 
where  a,  b,  c,  and  d  denote  the  segments  taken  in  order. 

The  fractions  expressing  the  proportion  are  subject  to  all 

the  transformations  of  algebraic  fractions  (158°),  and  the  re- 
sult is  geometrically  true  whenever  it  admits  of  a  geometric 

interpretation. 
The  statement  of  the  proportion  is  also  written 

a  :b=c:d,   (b) 
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where  the  sign  :  indicates  the  division  of  the  quantity  de- 
noted by  the  preceding  symbol  by  the  quantity  denoted  by 

the  following  symbol. 

In  either  form  the  proportion  is  read 

"  a  \s  to  fi  as  c  is  to  //." 

193°.  In  the  form  (b)  a  and  c/  are  called  the  extremes,  and 
d  and  c  the  means  ;  and  in  both  forms  a  and  c  are  called 

antecedents  and  b  and  d  conseq2ients. 

In  the  form  (a)  a  and  d,  as  also  b  and  c,  stand  opposite 
each  other  when  written  in  a  cross,  as 

a  I  c 

b\d' 

and  we   shall  accordingly  call   them  the  opposites   of  the 

proportion. 

194°.  I.  From  form  (a)  we  obtain  by  cross-multiplication ad=bc, 

which  states  geometrically  that 

When  four  segments  are  in  proportion  the  rectangle 

upon  ofte  pair  of  opposites  is  equal  to  that  upon  the  other 

pair  of  opposites. 

Conversely,  let  ab  and  a'b'h^  equal  rectangles  having  for 

adjacent  sides  a,  b,  and  a',  b'  respectively.     Then 
ab  =  a'b\ 

and  this  equality  can  be  expressed  under  any  one  of  the  fol- 
lowing forms,  or  may  be  derived  from  any  one  of  them,  viz.  ; 

^_b'     a  _a'     b  _b'     b  _a' 

a'     T    b'V    a'~a'    b'~a' 
in  all  of  which  the  opposites  remain  the  same.     Therefore 

2.  Two  equal  rectangles  have  their  sides  in  proportion, 

a  pair  of  opposites  of  the  proportion  coming  from  the  same 
rectangle. 

3.  A  given  proportion  amongst  four  segments  may  be 

written  in  any  order  of  sequence,  provided  the  opposites 
remain  the  same. 
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195°.  The  following  transformations  are  important. 

Let  ̂ =^,  then 

I.  b^'^d''  {a>b  for  -  sign) 

Let  ̂   =  f=l  =  etc.,  then b    d  / 

^'  b~ d   f    /^  +  r?+7+etc.' 

To  prove  ..  •.•       -^=-^,    .-.  -±,=-±,,  and^_=-^. 

To  prove  2.  v       ̂ =^,    .'.-  =  -,  (194,3) 

~^^         d~' 
or a  _c  _a  it.£ 

b~d~b±d' 

To  prove  3.    •        r7=*T^=Q'  '^y' 
rt     e     <?+P     rt4-^+^ 

;,  etc. ^    /  /+Q    ̂ +^+/ 

SIMILAR  TRIANGLES. 

196°.  De/. — I.  Two  triangles  are  similar  when  the  angles  of 
the  one  are  respectively  equal  to  the  angles  of  the  other. 

{n\  4) 
2.  The  sides  opposite  equal  angles  in  the  two  triangles  are 

corresponding  or  homohs^ous  sides. 
The  symbol  ̂   will  be  employed  to  denote  similarity,  and 

will  be  read  "  is  similar  to." 
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In  the  triangles  ABC  and  A'B'C,  if  ̂   =  ̂ A'  and  lB  =  lB', 
then   also    l.C  =  lC'   and    the    tri- 

angles are  similar. 

The  sides  AH  and  A'B'  are 
homologous,  so  also  are  the  other 

pairs  of  sides  opposite  equal 

angles,  ad  c 

Let  Bl)  through  B  and  B'D'  through  B'  make  the 

z.Br)A  =  £.B'D'A'. 
Then  AABD  «  AA'B'D'  since  their  angles  are  respectively 

equal.  In  like  manner  A^BC  ̂ A^'B'C,  and  BD  and  B'D' 
divide  the  triangles  similarly. 

3.  Lines  which  divide  similar  triangles  similarly  are 

homologous  lines  of  the  triangles,  and  the  intersections  of 

homologous  /t'/it's  are  homologous  points. 

Cor.  Evidently  the  perpendiculars  upon  homologous  sides 

of  similar  triangles  are  homologous  lines.  So  also  are  the 

medians  to  homologous  sides ;  so  also  the  bisectors  of  equal 

angles  in  similar  triangles  ;  etc. 

197°.  Theorem. — The  homologous  sides  of  similar  triangles 
are  proportional. 

AABC^AA'B'C 
having  _A  =  Z-A' 
and  ^B  =  z.B'. 
^,^  AB      BC      CA 

^"^"  A'B'  =  FC  =  C-A'-         , 
B  C 

Proof.— V\2iQ.^  A'  on  A,  and  let  C  fall  at  D.  Then,  since 
Z-A'  =  Z-A,  A'B'  will  lie  along  AC  and  B'  will  fall  at  some  point 
E,     Now,    AA'B'C'  =  AAED,   and   therefore  lAED  =  z.B, 
and  B,  D,  E,  C  are  concyclic.  (107°) 

Hence                        AD.AB  =  AE.AC,  (176°,  2) 
or                               A'C'.AB  =  A'B'.AC. 

AB      AC  /      o     . 

A^B'  =  A-C-  ^'94,2) 
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Similarly,  by  placing  B'  at  B,  we  prove  that 
AB_BC 
A'B'     B'C 

AB      BC      CA  , 

A^'-FC  =  CW  ^•'•^- 

Cor.  I.  Denoting  the  sides  of  ABC  by  a^  b,  c^  and  those  of 

A'B'Cby  ̂ ',  b',c\  -,  =  t,=  -,. a     b     c 

a!     b'     c'    a'-\-b'  +  c"  \  vd  ,  j/ 
i.e.,   the  perimeters  of  similar  triangles  are  proportional  to 

any  pair  of  homologous  sides. 

198°.  Theorem. — Two  triangles  which  have  their  sides  pro- 
portional are  similar,  and  have 

their  equal  angles  opposite  hom- 

ologous sides.  (Converse  of  197°.) 
AB  _  BC  _  CA 

A'B'  B'C  C'A'' 
Then  .iA  =  aA',  ̂ B  =  ̂ B',  and 

^C  =  ̂ C'. 

Proof.— Ov^  A'C  let  the  AA'DC  be  constructed  so  as  to 
have  the  ^DA'C'  =  -lA 

and  A.DC'A'=^C. 

Then  AA'DC  ̂ AABC,  (196^  Def.  i) 
^.  AB      AC      BC  ,      o, 

^"^  A^  =  AX:'  =  DC'  ^^97) 
K.,f  AB      AC      BC  .,       , 

^"'  Air'=A^'=B'c'  ^^yp-^ 

A'D  =  A'B' 
and  DC  =  B'C, 

and  AA'DC  =  AA'B'C'.  (58°) 
^A'  =  zA,  _B'  =  _B, 

and  _C  =  ̂ C.  q.ed. 
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199".    Theorctn. — If  two  triangles  have  two  sides  in  each 
proportional    and    the  included  a 

angles  equal,  the  triangles  are 
similar.  D^ 

AB_AC    ̂ „d^-/A' 

then       AABC^AA'B'C. B  c 

Proof. — Place  A'  on  A,  and  let  A'C  lie  along  AB,  and 

A'B'  lie  along  AC,  so  that  C  falls  at  D  and  B'  at  E. 

The  triangles  AED  and  A'B'C  are  congruent  and  therefore 
.    .,  ,  AB     AC 

similar,  and  -— -  =  .  _ AE     AD 

Hence                    AB.AD=AE.AC;  (194°) 

and  .'.  B,  D,  E,  C  are  concyclic.  (i77^) 
ZJ\ED  =  ̂ B,  and^j\DE  =  Z-C,  (106°,  Cor.  3) 

and                   AABC  ̂   AAED  »  AA'B'C  q.e.(i. 

lod" .  Theorem.  — \{  two  triangles  have  two  sides  in  each 
proportional,  and  an  angle  opposite  a  homologous  side  in 

each  equal : 

1.  If  the  angle  is  opposite  the  longer  of  the  two  sides  the 
triangles  are  similar. 

2.  If  the  angle  is  opposite  the  shorter  of  the  two  sides  the 

triangles  may  or  may  not   be 
similar. 

AB       BC  ,     .         ., 

A^B'=B-C'"^^^  =  '^- 

I.  If         BC>AB, 

AABC  ̂ AA'B'C. 

Proof.— V\2iQ.^  A'  at  A  and  let  B'  fall  at  D,  and  A'C  along 
AC.     Draw  DE  ||  to  BC.     Then 

AABC«AADE,and^B=BC 

But  AB  =  ̂   ;       .-.     DE  =  B'C'. 

AD     B'C 
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And  since  B'C'>  A'B',  the  AA'B'C'  =  AADE  and  they  are 
therefore  similar.  (65°,  i) 
But  AABC^AADE, 

AABC^AA'B'C. 

2.  If  BC  <  AB,  B'C  <  A'B',  and  the  triangles  may  or  may 
not  be  similar. 

Proof.— Smc%  AD  =  A'B',  and  DE  =  B'C',  and  B'C  <  A'B', 
.-.  the  triangles  A'B'C  and  ADE  may  or  may  not  be 

congruent  (65°,  2),  and  therefore  may  or  may  not  be 
similar. 

But  AABC^AADE, 

.•.  the    triangles   ABC    and    A'B'C    may  or  may  not  be 
similar.  , 

Cor.  Evidently,  if  in  addition  to  the  conditions  of  the 
theorem,  the  angles  C  and  C  are  both  less,  equal  to,  or 
greater  than  a  right  angle  the  triangles  are  similar. 

Also,  if  the  triangles  are  right-angled  they  are  similar. 

201°.  The  conditions  of  similarity  of  triangles  may  be 
classified  as  follows  : — 

1.  Three  angles  respectively  equal.     (Def.  of  similarity.) 
2.  Three  sides  proportional. 
3.  Two  sides  proportional  and  the  included  angles  equal. 
4.  Two  sides  proportional  and   the  angles   opposite  the 

longer  of  the  homologous  sides  in  each  equal. 

If  in  4  the  equal  angles  are  opposite  the  shorter  sides  in 
each  the  triangles  are  not  necessarily  similar  unless  some 
other  condition  is  satisfied. 

By  comparing  this  article  with  66°  we  notice  that  there  is  a 
manifest  relation  between  the  conditions  of  congruence  and 
those  of  similarity. 

Thus,  if  in  2,  3,  and  4  of  this  article  the  words  "  propor- 
tional" and  "homologous"  be  changed  to  "equal,"  the 

statements  become  equivalent  to  i,  2,  and  5  of  Art.  66°.     The 
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difference  between  congruence   and   similarity  is   the  non- 
necessity of  equality  of  areas  in  the  latter  case. 

When  two  triangles,  or  other  figures,  are  similar,  they  are 

copies  of  one  another,  and  the  smaller  may  be  brought,  by  a 

uniform  stretching  of  all  its  parts,  into  congruence  uith  the 

larger.  Thus  the  primary  idea  of  similarity  is  that  every 

line-segment  of  the  bmaller  of  two  similar  figures  is  stretched 

to  the  same  relative  extent  to  form  the  corresponding  seg- 
ments of  the  larger  figure.  This  means  that  the  tensors  of 

every  pair  of  corresponding  line-segments,  one  from  each 

figure,  are  equal,  and  hence  that  any  two  or  more  line- 

segments  from  one  figure  are  proportional  to  the  correspond- 
ing segments  from  the  second  figure. 

Def. — Two  line-segments  are  divided  similarly  when,  being 
divided  into  the  same  number  of  parts,  any  two  parts  from 

one  of  the  segments  and  the  corresponding  parts  from  the 

other  taken  in  the  same  order  are  in  proportion. 

202°.  Theorem. — A  line  parallel  to  the  base  of  a  triangle 
divides  the  sides  similarly  ;  and 

Conversely,  a  line  which  divides  two  sides  of  a  triangle 

similarly  is  parallel  to  the  third  side.  B 
DE   is  II  to  AC.     Then  BA  and  BC  are 

divided  similarly  in  D  and  E. 

Proof,— 'Wi^  triangles  ABC  and  DBE  are 
evidently  similar, 

AB     CB  ̂     ,    .    AD     CE  .  ̂ ,0     . 

DB  =  EB'^"^     •   DB  =  EB'  ^^^^  ̂  ') 
and  AB  and  CB  are  divided  similarly  in  D  and  E.  q.e.d. 

Conversely,  if  DE  so  divides  BA  and  BC  that 

AD  :  DB  =  CE  :  EB,  DE  is  ||  to  AC. 

/'r../-Since^=CE_  .-.  AB^CB  ̂     ̂„,  ,,,  ,,i,„g„3 
ABC  and  DBE  having  the  angle  B  common,  and  the  sides 
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about  that  angle  proportional,  are  similar.  (i99°) 
z.BDE  =  ̂ A,  and  DE  is  II  to  AC.  q.e.d. 

Cor.  I.  Since  the  triangles  ABC  and  DBE  are  similar 

BA:BD  =  AC:DE. 

203°.    Theorem. — Two  transversals  to  a  system  of  parallels 
yO  are  divided  similarly  by  the  parallels. 

AA'  is  II  to  BB'  is  |1  to  CC,  etc. 

Then  AD  and  A'D'  are  divided  similarly. 

Proof. — Consider  three  of  the  ||s,  AA', 

BB',  and  CC,  and  draw  A'Q  ||  to  AD. 

Then    AP    and    BQ    are    / — 7s,   and 

AB  =  A'P  and  BC  =  PQ.      (81°,  i) 

But  A'QC  is  a  triangle  and  PB'  is  jj  to  QC. 

Similarly,  if  DD'  be  a  fourth  parallel, 
AB  _  BC  _  CD 

A'B'     B'C     CD' 

BC 
B'C CD 

CD" 

etc. 

Def. — A  set  of  three  or  more  lines  meeting  in  a  point  is  a 

pencil  and  the  lines  are  rays. 
The  point  is  the  vertex  or  centre  of  the  pencil. 

Cor.  I.  Let  the  transversals  meet  in  O,  and  let  L  denote 

any  other  transversal  through  O. 

Then    AD,  A'D',   and    L    are    all    divided    similarly    by 
the  parallels.  But  the  parallels  are  transversals  to  the 

pencil. 
.'.  parallel  transversals  divide  the  rays  of  a  pencil 

similarly. 

Cor.  2.  Applying  Cor.  i  of  202°, 
OA_OB_OC_OD_ 

AA'     BB'     CC     DD'        ̂ ' 
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204°.   Theorem. — The  rectangle  on  any  two  sides  of  a  tri- 
angle is  equal  to  twice  the  rectangle  on 

the  circumradius  (97°,  Def.)  and  the  alti- 
tude to  the  third  side.  ^(^  /"d     ̂  

BD  is  _L  to  AC  and  BE  is  a  diameter. 

Then  BA.BC  =  BE.BD. 

Proof. —  ^A  =  ̂ E,         (106°,  Cor.  I ) 

and  i_AUB=^ECB=n,  0o6°,  Cor.  4) 

AABD^AEBCand  g|=|§, 
BA.BC  =  BE.BD.  q.e.d. 

Cor.  Denoting  BD  by  p  and  the  circumradius  by  R, 
ac='ipK^ 

and  multiplying  by  b^  and  remembering  that  pb  =  2j^  ('  53°j  2), 

we  obtain  R  =  — r  , 4A 

which  (with  175^°,  Ex.  i)  gives  the  means  of  calculating  the 
circumradius  of  a  triangle  when  its  three  sides  are  given . 

205°.  Theorem. — In  a  concyclic  quadrangle  the  rectangle 
on  the  diagonals  is  equal  to  the  sum  of  the  rectangles  on  the 

sides  taken  in  opposite  pairs. 
AC .  BD  =  AB  .  CD  +  BC  .  AD. 

Proof. —  Draw     AE     making     zJVED 
=  ̂ ABC.     Then,    since  ̂ BCA  =  ̂ BDA, 

the  triangles  EDA  and  BCA  are  similar. 
BC.AD  =  AC.DE. 

Again,  since  Z_AEB  is  supp.  to  z_AED, 

and  ̂ CDA  is  supp.  to  zABC,  therefore  triangles  BEA  and 

CDAare  similar,  and  AB .  CD  =  AC.EB. 

Adding  these  results,  AB.  CD -f  BC  .  AD  =  AC  .  BD. 

This  theorem  is  known  as  I^loltnuy's  Theorem. 

206°.  Dtf. — Two  rectilinear  figures  are  similar  when  they 
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can  be  divided  into  the  same  number  of  triangles  similar  in 
pairs  and  similarly  placed. 

Thus  the  pentagons  X 
and  Y  can  be  divided  into 

the  same  number  of  tri- 

angles. 

If  then  AP  «  AP', 

AQ  «  AQ',  AR  «  AR', 
and  the  triangles  are  similarly  placed,  the  pentagons  are 
similar. 

The  triangles  are  similarly  placed  if  ̂ EAD  corresponds  to 

E'A'D',  ̂ AED  to  A'E'D',  ̂ DAC  to  D'A'C,  etc. 
This  requires  that  the  angles  A,  B,  C,  etc.,  of  one  figure 

shall  be  respectively  equal  to  the  angles  A',  B',  C,  etc.,  of  the 
other  figure. 

Hence  when  two  rectilinear  figures  are  similar,  their  angles 
taken  in  the  same  order  are  respectively  equal,  and  the  sides 
about  equal  angles  taken  in  the  same  order  are  pro- 
portional. 

Line-segments,  such  as  AD  and  A'D',  which  hold  similar 
relations  to  the  two  figures  are  similar  or  homologous  lines  of 
the  figures.  : 

207°.  Theorem. — Two  similar  rectilinear  figures  have  any 
two  line-segments  from  the  one  proportional  to  the  homolo- 

gous segments  from  the  other. 

Proof. — By  definition  AP==AP',  and  they  are  similarly 
placed,  .-.  AE  :  A'E'  =  AD :  A'D'. 
For  like  reasons,  AD  :  A'D'  =  AC  :  A'C'  =  AB  :  A'B'. 

AE  _  AD  _  AC  _  AB  _ 

A'E'     A'D'     A'C     A'B'     ̂   ̂'' 
and  the  same  can  be  shown  for  any  other  sets  of  homologous 

line-segments. 

Cor.  I.  All  regular  polygons  of  the  same  species  are  similar 
figures. 
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Now,  let  a,  b^  c,  ...,  a\  b\  l\  ...,  be  homologous  sides  of  two 

similar  regular  polygons,  and  let  r  and  r'  be  their  circumradii. 

Then  r  and  r'  are  homologous, 

_  perimeter  of  P 

perimeter  of  P' But  at  the  limit  (148°)  the  polygon  becomes  its  circumcircle. 
.•.  the  circumferences  of  any  two  circles  are  proportional  to 

their  radii. 

Cor.  2.  If  c^  c'  denote  the  circumferences  of  two  circles  and 

r  and  r'  their  radii,      -  =  —  =  constant. r    r 

Denote  this  constant  by  2ir,  then 
c=2-Kr. 

It  is  shown  by  processes  beyond  the  scope  of  this  work 

that  TT  stands  for  an  incommensurable  numerical  quantity, 

the  approximate  value  of  which  is  3. 141 5926... 

Cor.  3.  Since  equal  arcs  subtend  equal  angles  at  the  centre 

(102°,  Cor.  2),  if  s  denotes  the  length  of  any  arc  of  a  circle 
whose  radius  is  r,  the  tensor  -  varies  directly  as  s  varies, 

and  also  varies  directly  as  the  angle  at  the  centre  varies. 

Hence  -  is  taken  as  the  7ncasure  of  the  angle,  subtended r 

by  the  arc,  at  the  centre.     Denote  this  angle  by  e.    Then 

and  when  s^r^Q  becomes  the  unit  angle. 

,-.  the  unit  angle  is  the  angle  subtended  at  the  centre  by  an 
arc  equal  in  length  to  the  radius. 

This  unit  is  called  a  radian^  and  the  measure  of  an  angle 
in  radians  is  called  its  radian  measure.  Radian  measure  will 

be  indicated  by  the  mark  ̂  

Cor.  4.  When  j'=- =a  semicircle,  B  —  ir. 
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But  a  semicircle  subtends  a  straight  angle  at  the  centre. 

.*.  TT  is  the  radian  measure  of  a  straight  angle  and  -  of  a     |. 

Now  a  straight  angle  contains  i8o°,  (4^°) 7r'^=i8o°. 

Hence  i'^=57°.29578..., 

and  i°  =  o'\oi7453...  ; 
and  these  multipliers  serve  to  change  the  expression  of  a 

given  angle  from  radians  to  degrees  or  from  degrees  to 
radians. 

Cor.  5.  Since  the  area  of  a  circle  is  equal  to  one-half  that 
of  the  rectangle  on  its  radius  and  a  segment  equal  in  length 

to  its  circumference,  i^49°) 
(•)  =  \cr=\.2irr.r  (Cor.  2) 

=  7rr2. 

.*.  the  area  of  a  0  is  tt  times  that  of  the  square  on  its  radius. 

208°.   Theorem. — The  bisectors  of  the  vertical  angle  of  a 
triangle  each  divides  the  base  into  parts  which  are  propor- 

g  tional  to  the  conterminous 
sides. 

BD    and    BD'    are    bi- 
sectors of  Z.B.     Then 

AD_AD^_AB 
DC     CD'     BC 

Pr^^— Through  C  draw 

EE'lltoAB.    Then 

EBE'=~1(45°),  and:LE  =  £.ABD  =  ̂ DBC. 
BC  =  EC  =  CE'.  (88°,  3) 

But  ABD  and  ABD'  are  triangles  having  EE'  !|  to  the 
common  base  AB. 

and  r^^,=7^r^„        (203  ,  Cor.) AB^AD  A^^AD' 
EC     DC  ̂ "^  CE'     CD 

AD^AD^^AB  , 

DC     CD'     BC*  ^ 

Cor.  D  and  D'  divide  the  base  internally  and  externally  in 
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the  same  manner.     Such  division  of  a  segment  is  called  har- 
monic division. 

.'.  the  bisectors  of  any  angle  of  a  triangle  divide  the  oppo- 
site side  harmonically. 

209°.  Theorem. — A  line  through  the  vertex  of  a  triangle 
dividing  the  base  into  parts  which  are  proportional  to 
the  conterminous  sides  is  a  bisector  of  the  vertical  angle. 

(Converse  of  208°.) 
Let  the  line  through  B  cut  AC  internally  in  F.     Then,  BD 

being  the  internal  bisector  ̂ ^=^^  (208°),  and  ̂   =  ̂^  by 

hypothesis,  .'. 
AF_AD 

FC     DC* 
But  AD  is  <  AF  while  DC  is  >  FC. 

.'.  the  relation  is  impossible  unless  F  and  D  coincide,  />., 
the  line  is  the  bisector  AD. 

.Similarly  it  may  be  proved  that  if  the  line  divides  the  base 

externally  it  is  the  bisector  AD'. 

210°.  Theorem. — The  tangent  at  any  point  on  a  circle  and 
the  perpendicular  from  that  point  upon  the  diameter  divide 

the  diameter  harmonically. 

AB  is   divided   harmonically  in 
M  and  T.  A 

/'r^^/-^CPT  =  _PMT  =  ~I,(iio°) 
ACPM^ACTP, 

and C^^CP 

CP     CT' CB+CM     CT+CB 

CM^CB 
CB  CT 

AM     AT 

CB-CM     CT-CB'  MB     BT' 

.'.  AB  is  divided  harmonicallv  in  M  and  T. 

(195°,  2) 

q.€. 

211°.  The  following  examples  give  important  results. 



164 
SYNTHETIC    CxEOMETRY. 

Ex.  I.   L,  M,  and  N  are  tangents  which  touch  the  circle  at 

A,  B,  and  P. 
AX  and  BY  are  ±s  on 

N,  PC  is  _L  on  AB,  and 

PQ  and  PR  are  i.s  upon 
L  and  M. 

Let  N  meet  the  chord 

of  contact  of  L  and  M  in 

T.      Then   the   triangles 

TAX,  TPC,  TBY  are  all 

TA .  TB     TJ^2 

PC2'
 

(176°,  Cor.  2)   (A) 

similar, 

But 
AX.  BY 

Then 

(114°,  Cor.  I) 

and 

and 

Similarly 

TA^TP^TB  . 

AX     PC     BY ' 
TA.TB  =  TP^ 

.      AX.BY  =  PC2   
Again,  let  L  and  N  intersect  in  V. 

VP-VA, 

z.VQP  =  ̂ VXA  =  ~l, 
^QVP  =  ̂ XVA. 
AVXA  =  AVOP, 

AX-PO. 

BY  =  PR,   .-.   PQ.PR  =  PC2   (b) 

Ex.  2.  AD  is  a  centre-line  and  DQ  a  perpendicular  to  it, 
and  AO  is  any  line  from  A  to 
the  line  DO. 

Let  AQ  cut  the  circle  in  P. 
Then       AADQ^AAPB, AD^AQ 

AP     AB' 
or  AD.AB  =  AP.AQ. 
But  the  circle  and  the  point  D 

being  given,  AB  .  AD  is  a  given 
constant. 

AP .  AO  =  a  constant. 

Conversely,  if  O  moves  so  that  the  cnAP .  AQ  remains 

constant,   the    locus   of  O   is   a  line  ±  to   the   centre-line 
through  A. 
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Now,  let  the  dotted  lines  represent  rigid  rods  of  wood  or 

metal  jointed  together  so  as  to  admit  of  free  rotation  about 

the  points  A,  C,  P,  U,  V,  and  Q,  and  such  that  UPVQ  is  a 

rhombus  (82°,  Def.  i),  and  AU  =  AV,  and  AC  =  CP,  AC 
being  fixed. 

PQ  is  the  right  bisector  of  UV,  and  A  is  equidistant  from 

U  and  V.     Therefore  A,  P,  Q  are  always  in  line. 

Also,  PUQ  is  an  isosceles  triangle  and  UA  is  a  line  to  the 

base,  therefore  UA2-UP2=AP  .  AQ  (174°).  But,  UA  and 
UP  being  constants,  AP  .  AO  is  constant. 

And  AC  being  fixed,  and  CP  being  equal  to  AC,  P  moves 

on  the  circle  through  A  having  C  as  centre. 

.'.  Q  describes  a  line  _L  to  AC. 

This  combination  is  known  as  Peaucellier's  cell^  and  is 
interesting  as  being  the  first  successful  attempt  to  describe  a 

line  by  circular  motions  only. 

Ex.  3.  To  construct  an  isosceles  triangle  of  which  each 

basal  angle  shall  be  double  the  vertical  angle . 

Let  ABC  be  the  triangle  required,  and  let  AD 
bisect  the  ̂ A. 

Then  ̂ B  =  ̂ BAD  =  ̂ DAC,  and  Z.C  is  common 

to  the  triangles  ABC  and  DAC.  Therefore  these 

triangles  are  similar,  and  the  ACAU  is  isosceles 
and  AD=AC. 

Also,  AABD  is  isosceles  and  AD  =  DB  =  AC. 
BA:AC  =  AC:DC, 

or  BC:BD  =  BD:DC. 

BC.DC  =  BD2. 

And  BC  is  divided  into  extreme  and  mean  ratio  at  D  (183°, 
Ex.  i).     Thence  the  construction  is  readily  obtained. 

Cor.  I.  The  isosceles  triangle  ADB  has  each  of  its  basal 

angles  equal  to  one-third  its  vertical  angle. 

Cor.  2.  ̂ ABC  =  36°,  z.BAC  =  72°,  _BDA=  108".     Hence 
(i)  Ten  triangles  congruent  with  ABC,  placed  side  by  side 

with  their  vertices  at  B,  form  a  regular  decagon.  (132°) 
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(2)  The  bisectors  AD  and  CE  of  the  basal  angles  of  the 

A^BC  meet  its  circumcircle  in  two  points  which,  with 

the  three  vertices  of  the  triangle,  form  the  vertices  of  a 

regular  pentagon. 

(3)  The  z.BDA  =  the  internal  angle  of  a  regular  pentagon. 

The  following  Mathematical   Instruments  are  im- 

P    portant  : — 

I.  Proportional  Compasses. 

This  is  an  instrument  primarily  for  the  purpose 

of  increasing  or  diminishing  given  line-segments 

in  a  given  ratio  ;  i.e.,  of  multiplying  given  line- 

segments  by  a  given  tensor. 

If  AO  =  BO  and  QO  =  PO,  the  triangles  AOB, 
POQ  are  isosceles  and  similar,  and 

AB:PQ  =  OA:OP. 
Hence,  if  the  lines  are  one  or  both  capable  of 

rotation  about  O,  the  distance  AB  may  be  made  to  vary  at 

pleasure,  and  PQ  will  remain  in  a  constant  ratio  to  AB. 

The  instrument  usually  consists  of  two  brass  bars  with 

slots,  exactly  alike,  and  having  the  point  of  motion  O  so 

arranged  as  to  be  capable  of  being  set  at  any  part  of  the  slot. 

The  points  A,  B,  P,  and  Q  are  of  steel. 

2.   The  Sector. 

This  is  another  instrument  which  pri- 
marily serves  the  purpose  of  increasing  or 

diminishing  given  line-segments  in  given 
ratios. 

This  instrument  consists  of  two  rules 

equal  in  length  and  jointed  at  O  so  as  to 

be  opened  and  shut  like  a  pair  of  com- 
passes.    Upon  each  rule  various  lines  are 

drawn  corresponding  in  pairs,  one  on  each  rule. 

Consider  the  pair  OA  and  OB,  called  the  "line  of  lines." 
Each  of  the  lines  of  this  pair  is  divided  into  10  equal  parts 
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which  are  again  subdivided.  Let  the  divisions  be  numbered 

from  o  to  10  along  OA  and  OB,  and  suppose  that  the  points 

numbered  6  are  the  points  P  and  Q.  Then  GAB  and  OPQ 

are  similar  triangles,  and  therefore  PQ :  AB  =  OP  :  OA.  But 

OP=J^AO.  .-.     PQ  =  i'iyAB. 
And  as  by  opening  the  instrument  AB  may  be  made  equal  to 

any  segment  not  beyond  the  compass  of  the  instrument,  we 

can  find  PQ  equal  to  ̂   of  any  such  given  segment. 

The  least  consideration  will  show  that  the  distance  5-5  is 

|AB,  3-3  is  vijAB,  etc.  Also  that  3-3  is  ̂   of  7-7,  5-5  is  f  of 
7-7,  etc.  Hence  the  instrument  serves  to  divide  any  given 

segment  into  any  number  of  equal  parts,  provided  the  num- 
ber is  such  as  belongs  to  the  instrument. 

The  various  other  lines  of  the  sector  serve  other  but  very 

similar  purposes. 

3.    T/w  Pantagraph  or  Eidograph. 

Like  the  two  preceding  in- 

struments the  pantagraph  pri-  , 
marily  increases  or  diminishes 

segments  in  a  given  ratio,  but 

unlike  the  others  it  is  so  ar- 

ranged as  to  be  continuous  in 

its  operations,  requiring  only 

one  setting  and'  no  auxiliary 
instruments. 

It  is  made  of  a  variety  of 

forms,  but  the  one  represented 

in  the  figure  is  one  of  the  most  convenient. 

AE,  AB,  and  BF  are  three  bars  jointed  at  A  and  B.  The 

bars  AE  and  BF  are  attached  to  the  wheels  A  and  B  respec- 

tively, which  are  exactly  of  the  same  diameter,  and  around 

which  goes  a  very  thin  and  flexible  steel  band  C. 

The  result  is  that  if  AE  and  BF  are  so  adjusted  as  to  be 

parallel,  they  remain  parallel  however  they  be  situated  with 

respect  to  AB.     E,  F  are  two  points  adjustable  on  the  bars 
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AE  and  BF,  and  D  is  a  point  in  line  with  EF,  around  which 
the  whole  instrument  can  be  rotated. 

Now  let  EG  KM  be  any  figure  traced  by  the  point  E ;  then 

F  will  trace  a  similar  figure  FHLN. 

Evidently  the  triangles  DAE  and  DBF  remain  always 
similar  however  the  instrument  is  transformed.  Therefore 

DF  is  in  a  constant  ratio  to  DE,  viz.,  the  ratio  DB  :  DA. 

Now,  when  E  comes  to  G,  F  comes  to  some  point  H  in 

line  with  GD,  and  such  that  DH  :  DG  =  DB  :  DA. 

.-.  the  triangles  EDG  and  FDH  are  similar,  and  FH  is  || 
to  EG,  and  has  to  it  the  constant  ratio  DB  :  DA.  Similarly 

HL  is  II  to  GK  and  has  to  it  the  same  constant  ratio,  etc. 

.•.  the  figures  are  similar,  and  the  ratio  of  homologous  lines 
in  GM  and  HN  is  AD  :DB. 

The  tjiree  points  E,  D,  and  F  being  all  adjustable  the  ratio 

can  be  changed  at  pleasure. 

Altogether  the  Pantagraph  is  a  highly  important  instrument, 

and  when  so  adjusted  that  E,  D,  and  F  are  not  in  line  its 

results  offer  some  interesting  geometrical  features. 

4         2 

i 
\           2 >          1 C 

^ 

4.  T/te  Diagonal  Scale. 
This  is  a  divided  scale  in 

which,  by  means  of  similar  tri- 
angles, the  difficulty  of  reading 

off  minute  divisions  is  very  much 

diminished. 

Its  simpler  form  is  illustrated  in 

°'      ̂    the  figure. 
A  scale  divided  to  fortieths  of  an  inch  is,  on  account  of  the 

closeness  of  the  divisions,  very  difficult  to  read. 

In  the  scale  represented  OA  is  \  inch.  The  distance  AB 

is  divided  into  10  equal  parts  by  the  horizontal  parallel  lines 

numbered  i,  2,  3,  etc.  Then  OBO'  is  a  triangle  whereof  the 
horizontal  lines  are  all  parallel  to  the  base.  Hence  it  is 

readily  seen  from  the  proportionality  of  the  homologous  sides 

of  the  similar  triangles  formed  that  the  intercept  on  the  hori- 
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zontal  line  i,  between  OO'  and  OB,  is  i^o^^^)  that  is 
-4V  Jnch. 

Similarly  the  intercept  on  the  horizontal  line  2  is  4^  inch, 

on  3,  {'()  inch,  etc. 
Hence  from/  to  y  is  one  inch  and  seven-fortieths. 
In  a  similar  manner  diagonal  scales  can  be  made  to  divide 

any  assumed  unit-length  into  any  required  number  of  minute 

parts. 
The  chief  advantages  of  such  scales  are  that  the  minute 

divisions  are  kept  quite  distinct  and  apparent,  and  that  errors 

are  consequently  avoided. 

Exercises. 

1.  ABCD  is  a  square  and  P  is  taken  in  BC  so  that  PC  is 

one-third  of  BC.  AC  cuts  the  diagonal  BD  in  O,  and 
AP  cuts  it  in  E.     Then  OE  is  one-tenth  of  DB. 

2.  If,  in  I,  OE  is  one-eighth  of  DB,  how  does  P  divide  BC? 
3.  If  BP  is  one  nth  of  BC,  what  part  of  DB  is  OE  ? 

4.  Given  three  line-segments  to  find  a  fourth,  so  that  the 
four  may  be  in  proportion. 

5.  The  rectangle  on  the  distances  of  a  point  and  its  chord  of 

contact  from  the  centre  of  a  circle  is  equal  to  the 

square  on  the  radius  of  the  circle. 

6.  OD  and  DQ  are  fixed  lines  at  right  angles  and  O  is  a 

fixed  point.  A  fixed  circle  with  centre  on  OD  and 

passing  through  O  cuts  OQ  in  P.  Then  OP .  OQ  is  a 
constant  however  00  be  drawn. 

7.  To  divide  a  given  segment  similarly  to  a  given  divided 

segment. 

8.  To  divide  a  given  segment  into  a  given  number  of  equal 

parts. 
9.  Two  secants  through  A  cut  a  circle  in  B,  D,  and  C,  E 

respectively.     Then  the  triangles  ABE  and  ACD  are 

similar.     So  also  are  the  triangles  ABC  and  AED. 

10.  Two  chords  are  drawn  in  a  circle.     To  find  a  point  on 



I/O  SYNTHETIC   GEOMETRY. 

the  circle  from  which  perpendiculars  to  the  chords  are 

proportional  to  the  lengths  of  the  chords. 

11.  ABC  is  a  triangle  and  DE  is  parallel  to  AC,  D  being  on 
AB  and  E  on  CB.     DC  and  AE  intersect  in  O.     Then 
BO  is  a  median. 

12.  If  BO,  in  II,  cuts  DE  in  P  and  AC  in  Q,  BO  is  divided 

harmonically  by  P  and  O. 

1 3.  A  and  B  are  centres  of  fixed  circles  and  AX  and  BY  are 

parallel   radii.     Show   that   XY   intersects  AB   in   a 

fixed  point. 

14.  In  the  triangle  ABC,  BD  bisects  the  Z.B  and  cuts  AC  in 

D.      Then    BD2  =  AB.  BC  -  AD  .  DC.      (Employ  the 
circumcircle.) 

15.  ABC  is  right-angled  at  B  and  BD  is  the  altitude  on  AC. 
(i)  The  As  ADB  and  BDC  are  each  similar  to  ABC. 

(2)  Show  by  proportion  that  AB2  =  AD  .  AC, 
and  BD-  =  AD.DC. 

16.  If  R  and  r  denote  the  radii  of  the  circumcircle  and  in- 

circle  of  a  triangle,  i'Kr{a-\-b-\-c)=^abc. 
17.  In  an  equilateral  triangle  the  square  on  the  side  is  equal 

to  six  times  the  rectangle  on  the  radii  of  the  circum- 
circle and  incircle. 

18.  OA,  OB,  OC  are  three  lines.     Draw  a  line  cutting  them 

so  that  the  segment  intercepted  between  OA  and  OC 

may  be  bisected  by  OB. 

19.  What  is  the  measure  of  an  angle  in  radians  when  its 

measure  in  degrees  is  68°  17'  ? 
20.  How  many  radians  are  in  the  angle  of  an  equilateral  A  ? 

21.  The  earth's  diameter  being  7,960  miles,  what  is  the  dis- 
tance in  miles  between  two  places  having  the  same 

longitude  but  differing  16°  in  latitude? 
22.  Construct    a    regular   pentagon,   a    regular   decagon,   a 

regular  polygon — of  1 5  sides,  of  30  sides,  of  60  sides. 
23.  ABODE  is  a  regular  pentagon. 

(i)  Every  diagonal  is  divided  into  extreme  and  mean 

ratio  by  another  diagonal. 
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(2)  The  diagonals  enclose  a  second  regular  pentagon. 

24.  Compare  the  side  and  the  areas  of  the  two  pentagons  of 

23  (2). 

25.  If  one  side  of  a  right-angled  triangle  is  a  mean  propor- 
tional between  the  other  side  and  the  hypothenuse,  the 

altitude  from  the  right  angle  divides  the  hypothenuse 
into  extreme  and  mean  ratio. 

26.  A  variable  line  from  a  fixed  point  A  meets  a  fixed  circle 

in  P,  and  X  is  taken  on  AP  so  that  AP .  AX  =  a  con- 
stant.    The  locus  of  X  is  a  circle. 

27.  If  two  circles  touch  externally  their  common  tangent  is  a 

mean  proportional  between  their  diameters. 

28.  Four  points  on  a  circle  are  connected  by  three  pairs  of 

lines.  If  a,  ttj  denote  the  perpendiculars  from  any  fifth 

point  on  the  circle  to  one  pair  of  lines,  /3,  /3,  to  another 

pair,  and  7,  7^  to  the  third  pair,  then  oai=/3/3i=77,. 

(Employ  204°.) 
29.  A  line  is  drawn  parallel  to  the  base  of  a  trapezoid  and 

bisecting  the  non-parallel  sides.  Compare  the  areas 
of  the  two  trapezoids  formed. 

30.  Draw  two  lines  parallel  to  the  base  of  a  triangle  so  as  to 
trisect  the  area. 

31.  ABC  is  right-angled  at  B,  and  AP  is  the  perpendicular 
from  A  to  the  tangent  to  the  circumcircle  at  B.  Then 

AP.AC  =  AB-. 

SECTION    II. 

FUNCTIONS  OF  ANGLES.— AREAL  RELATIONS. 

212°.  Def. — When  an  element  of  a  figure  undergoes  change 
the  figure  is  said  to  vary  that  element. 

If  a  triangle  changes  into  any  similar  triangle  it  varies  its 

magnitude  while  its  form  remains  constant ;  and  if  it  changes 
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into  another  form  while  retaining  the  same  area,  it  varies  its 
form  while  its  area  remains  constant,  etc. 

Similar  statements  apply  to  other  figures  as  well  as  triangles. 
When  a  triangle  varies  its  magnitude  only,  the  tensors  or 

ratios  of  the  sides  taken  two  and  two  remain  constant.  Hence 

the  tensors  or  ratios  of  the  sides  of  a  triangle  taken  two  and 

two  determine  the  form  of  the  triangle  but  not  its  magni- 
tude ;  i.e.^  they  determine  the  angles  but  not  the  sides. 

{ll\  3;   197°;  198°;  201°) A  triangle,  which,  while  varying  its  size,  retains  its  form,  is 

sometimes  said  to  remain  similar  to  itself,  because  the  tri- 
angles due  to  any  two  stages  in  its  variation  are  similar  to 

one  another. 

213°.  In  the  right-angled  triangle  the  ratios  or  tensors  of 
the  sides  taken  in  pairs  are  important  functions  of  the  angles 

and  receive  distinctive  names. 

^'  ^       The  AOPM  is  right-angled  at  M, and  the  ̂ POM  is  denoted  by  Q. 

Then,  -— —  is  the  sine  of  ̂ ,  and  is o 

contracted  to  sin  Q  in  writing. 

_-  is  the  sine  of  the  Z.OPM,  but  as  ̂ OPM  is  the  comple- 

ment of  ̂ ,  this  tensor  is  called  the  cositie  of  ̂,  and  is  written  cos^. 

—   is  the  tangent  of  ̂ ,  contracted  to  tan  d. 

^  PM     PM    OP      .    ̂       .     sin0 

^"'"•'-    ■•  OM=OP-OM'    ••'^^'  =  ̂^.- 

Cor.2.   V       PM^.-OM^=OP^    .-.  (™)%(OMy=r. or  sin^5-f-cos^<?=i. 

214°.  LetOP'  =  OP  be  drawn  so  that  iiP'OM'  =  POM  =  ̂, 
and  let  P'M'  be  ±  on  OM. 

Then  z.P'OM  is  the  supplement  of  d,  and  the  triangles 
P'OM'  and  POM  are  congruent. 
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sinP'OM  =  ̂'  =  ™-.sin., 
i.e.^  an  angle  and  its  supplement  have  the  same  sine. 

2.  CosP'OM=5^'.     But  in  changing  from  OM  to  CM', 
on  the  same  line,  OM  vanishes  and  then  reappears  upon  the 

opposite  side  of  O. 

Therefore  OM  and  OM'  have  opposite  senses  (156°),  and 

if  we  consider  OM  positive,  OM'  is  negative. 
0M'=  -  OM,  and  hence 

an  angle  and  its  supplement  have  cosines  which  are  equal  in 

numerical  value  but  opposite  in  sign. 

215°.  Theorem. — The  area  of  a  parallelogram  is  the  pro- 
duct of  two  adjacent  sides  multiplied  by  the  sine  of  their 

included  angle.  (152°,!)  b   ^ 
AC  is  a  I  7  and  BP  is  _L  upon  AD. 

Then  BP  is  the  altitude,  and  the 

area  =  AD.BP.  (153°,  i) 
But  BP  =  ABsin^BAP. 

=  AB .  AD  sin  z.BAP  =  rt<^sin  B. 

Cor.  I.  Since  the  area  of  a  triangle  is  one-half  that  of  the 
parallelogram  on  the  same  base  and  altitude, 

.•.  the  area  of  a  triangle  is  one-half  the  product  of  any  two 
sides  multiplied  by  the  sine  of  the  included  angle.     Or 

2A  =  ̂ <^sin  C  =  <5'tsin  A  =  tv?sin  B. 

216°.  Theorem. — The  area  of  any  quadrangle  is  one-half 
the  product  of  the  diagonals  multiplied  by  the  sine  of  the 

angle  between  them. 

ABCD  is  a  quadrangle  of  which  AC 

and  BD  are  diagonals. 
Let^AOB  =  ̂  =  _COD. 

Then  ̂ BOC  =  ̂ A()D  =  supp.  of  ̂ .  ^^^^^  \l 
AAOB  =  iOA.  OB  sine, 

ABOC  =  i0B  .  CO  sin  e,     A^Ol)  =  U)C  .  DO  sin  6, 
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ADOA  =  |DO.OAsin^,  and  adding, 

Qd.=iAC.BDsin^. 
(compare  162°) 

217°.  BD  being  the  altitude  to  AC  in  the  AABC,  we  have 
from  172°,  2, 

But  AD  =  ABcos  A  =  rcos  A, 
a^  =  b^-Vc^-ibczQsK. 

c     When  B  comes  to  B'  the  ̂ A   becomes 

obtuse,  and  cos  A  changes  sign.  (214°)  2) 
If  we  consider  the  cosine  with  respect  to  its  magnitude 

only,  we  must  write  +  before  the  term  7.bc  cos  A,  when  A  be- 
comes obtuse.  But,  if  we  leave  the  sign  of  the  function  to  be 

accounted  for  by  the  character  of  the  angle,  the  form  given 
is  universal. 

Cor.  I.  ABCD  is  a  parallelogram.     Consider  the  AABD, 

then  BD2  =  rt2  4-<^^-2rt(^cos(?. 
Next,  consider  the  AABC.     Since 

Z.ABC  is  the  supplement  of  ̂ ,  and 
BC  =  AD=<^, 

AC^  =  rt2  +  (^2^2«^cos(9. 

and  writing  these  as  one  expression, 
^2  +  /^2  4:2rt^COS^, 

gives  both  the  diagonals  of  any  1      7,  one  of  whose  angles  is  6/. 

Cor.  2.     DE  =  rtcos^  (CE  being  X  to  AD),  CE  =  rtsin^. 
AE=/^  +  rtCos^; 

and     tanCAE  =  ̂ E^_^sin^ AE     b  +  ao.o'ie 
which  gives  the  direction  of  the  diagonal. 

218°.  Def. — The  ratio  of  any  area  X  to  another  area  Y  is 
the  measure  of  X  when  Y  is  taken  as  the  unit-area,  and  is 

■  V 

accordingly  expressed  as  -.     (Compare  i88°.) 

I.  Let  X  and  Y  be  two  similar  rectangles.     Then  X  =  ab 
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and  \'  =  ab\  where  a  and  b  are  adjacent  sides  of  the  cdX  and 
a  and  b'  those  of  the  oY. 

X^rt    b 

Y    a'' I/'
 

But  because  the  rectangles
  

are  similar,  —  =  -. 

X_a^  ""'    *' 
Y"Z2' i.e.,  the  areas  of  similar  rectangles  are  proportional  to  the 

areas  of  the  squares  upon  homologous  sides. 

2.  Let  X  and  Y  be  two  similar  triangles.     Then 

X  =  \abs\nC,  Y=Jrt'^'sinC, 

X^^_£2 

Y    a'b'    rt'2' 
because  the  triangles  are  simila

r,  
(197") 

i.e.,  the  areas  of  similar  triangles  are  proportional  to  the 

areas  of  the  squares  upon  homologous  sides. 

3.  Let  X  denote  the  area  of  the  pentagon  ABCDE,  and  Y 

that  of  the  similar  pentagon  ^ 

A'B'C'D'E'.     Then                        A"\  R 

P_AD=      R_  AC^ 
P'     A'D'2'    R''    A'C^  /  p    \     Q 

Q_  DC 

But  (X) 

P'    R'    O'    P'  +  Q'  +  R'     Y' 
,  AD  _  AC  _  DC 

A7D'~A'C'"D'C" 

X_  DC^ 

Y     D'C'2" 
And  the  same  relation  may  be  proved  for  any  two  similar 

rectilinear  figures  whatever. 

.*.  the  areas  of  any  two  similar  rectilinear  figures  are  pro- 
portional to  the  areas  of  squares  upon  any  two  homologous 

lines. 
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4.  Since  two  circles  are  always  similar,  and  are  the  limits 
of  two  similar  regular  polygons, 

.'.  the  areas  of  any  two  circles  are  proportional  to  the  areas 
of  squares  on  any  homologous  chords  of  the  circles,  or  on 

line-segments  equal  to  any  two  similar  arcs. 

5.  When  a  figure  varies  its  magnitude  and  retains  its  form, 
any  similar  figure  may  be  considered  as  one  stage  in  its 
variation. 

Hence  the  above  relations,  i,  2,  3,  4,  may  be  stated  as 
follows  :  — 

The  area  of  any  figure  with  constant  form  varies  as  the 

square  upoti  any  one  of  its  line- segments. 

Exercises. 

Two  triangles  having  one  angle  in  each  equal  have 

their  aj-eas  proportional  to  the  rectangles  on  the  sides 
containing  the  equal  angles. 

Two  equal  triangles,  which  have  an  angle  in  each  equal, 
have  the  sides  about  this  angle  reciprocally  propor- 

tional, />.,  a  :  a'  =  b' :  b. 
The  circle  described  on  the  hypothenuse  of  a  right-angled 

triangle  is  equal  to  the  sum  of  the  circles  described  on 
the  sides  as  diameters. 

If  semicircles  be  described  outwards  upon  the  sides  of  a 

right-angled  triangle  and  a  semicircle  be  described  in- 
wards on  the  hypothenuse,  two  crescents  are  formed 

whose  sum  is  the  area  of  the  triangle. 

AB  is  bisected  in  C,  D  is  any  point  in      y;^^^Z^ 

AB,  and  the  curves  are  semicircles,    j^    q 

Prove  that  P-hS  =  0^-R.  A  c^d" 
If  rt,  b  denote  adjacent  sides  of  a  parallelogram  and  also 

of  a  rectangle,  the  ratio  of  the  area  of  the  parallelogram 
to  that  of  the  rectangle  is  the  sine  of  the  angle  of  the 

parallelogram. 
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7.  The  sideb  of  a  concyclit  ciuadrangle  are  a,  b^  l,  d.     Then 

the  cosine  of  the  angle  between  a  and  b  is 

{a-  ̂ tr-c-  -  d-)  2{ab  +  cd). 

8.  In  the  quadrangle  of  7,  if  i"  denotes  one-half  the  perimeter, 

9.  In  any  parallelogram  che  ratio  of  the  rectangle  on  the 
surrt  and  differences  of  adjacent  sides  to  the  rectangle 

on  the  diagonals  is  the  cosine  of  the  angle  between  the 

diagonals. 

10.  If  rt,  ̂  be  the  adjacent  sides  of  a  parallelogram  and  d  the 

angle  between  them,  one  diagonal  is  double  the  other 

when  cos^  =  Af^  +  ̂Y 

11.  If  one   diagonal   of  a   parallelogram    is    expressed    by 

/ 1  ^^^^^ — '- 1 ,  the  other  diagonal  is  n  times  as  long. 

12.  Construct  an  isosceles  triangle  in  which  the  altitude  is  a 

mean  proportional  between  the  side  and  the  base. 

13.  Three   circles    touch    two   lines   and   the   middle   circle 
touches  each  of  the  others.  Prove  that  the  radius  of 

the  middle  circle  is  a  mean  proportional  between  the 
radii  of  the  others. 

14.  In  an  equilateral  triangle  describe   three   circles  which 
shall  touch  one  another  and  each  of  which  shall  touch 

a  side  of  the  triangle. 

15.  In  an  equilateral  triangle  a  circle  is  described  to  touch 
the  incircle  and  two  sides  of  the  triangle.  Show  that 

its  radius  is  one-third  that  of  the  incircle. 

M 



PART   IV. 

SECTION  I. 

GEOMETRIC  EXTENSIONS. 

220°.  Let  two  lines  L  and  M  passing  through  the  fixed 
points  A  and  B  meet  at  P. 

When  P  moves  in  the  direction  of  the  arrow,  L  and  M 

approach  towards  parallelism,  and  the 
angle  APB  diminishes.  Since  the 

^  L  K  ̂ ---.,^^  lines  are  unlimited  (21°,  3)  P  may  re- 
cede from  A  along  L  until  the  segment  AP  becomes  greater 

than  any  conceivable  length,  and  the  angle  APB  becomes 

less  than  any  conceivable  angle. 

And  as  this  process  may  be  supposed  to  go  on  endlessly,  P 

is  said  to  "go  to  infinity"  or  to  "be  at  infinity,"  and  the 
Z.APB  is  said  to  vanish. 

But  lines  which  make  no  angle  with  one  another  are  parallel, 

.'.  Parallel  lines  meet  at  injiiiity^  and  lines  whieh  meet  at 
infinity  are  parallel. 

The  symbol  for  "  infinity  "  is  00 . 

The  phrases  "  to  go  to  infinity,"  "  to  be  at  infinity,"  must 
not  be  misunderstood.  Infinity  is  not  a  place  but  a  property. 

Lines  which  meet  at  00  a'-e  lines  so  situated  that,  having  the 
same  direction  they  cannot  meet  at  any  finite  point,  and 

therefore  cannot  meet  at  all,  within  our  apprehension,  since 

every  point  that  can  be  conceived  of  is  finite. 
178 
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The  convenience  of  the  expressions  will  appear  throughout 

the  sequel. 

Cor.  Any  two  lines  in  the  same  plane  meet  :  at  a  finite 

point  if  the  lines  are  not  parallel,  at  infinity  if  the  lines  are 

parallel. 

221°.  L  and  M  are  lines  intersectmg  in  O,  and 
point  from  which  PB  and  PA  are  || 

respectively  to  L  and  M.     A  third 
and  variable  line  N  turns  about  P 

in  the  direction  of  the  arrow. 

1 .  AX .  B Y  =  a  constant        ( 1 84  ) 
=  U  say. 

When  N  comes  to  parallelism 

with  L,  AX  becomes  infinite  and 
BY  becomes  zero. 

.-.  00 .  o  is  indefinite  since  U  may  have  any  value  we 

please. 

2.  The  motion  continuing,  let  N  come  into  the  position  N'. 

Then  AX'  is  opposite  in  sense  to  AX,  and  BY'  to  BY.  But 
AX  increased  to  00  ,  changed  sign  and  then  decreased  ab- 

solutely, until  it  reached  its  present  value  AX',  while  BY 
decreased  to  zero  and  then  changed  sign. 

.•.  a  magnitude  changes  sign  when  it  passes  through  zero 
or  infinity. 

3.  It  is  readily  seen  that,  as  the  rotation  continues,  BY'  in- 

creases negatively  and  AX'  decreases,  as  represented  in  one 

of  the  stages  of  change  at  X"  and  Y".  After  this  Y"  goes  off 

to  00  as  X"  comes  to  A.  Both  magnitudes  then  change  sign 

again,  this  time  BY"  by  passing  through  00  and  AX''  by  pass- 
ing through  zero. 

Since  both  segments  change  sign  together  the  product  or 

rectangle  remains  always  positive  and  always  equal  to  the 
constant  area  U. 
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222°.  A  line  in  the  plane  admits  of  one  kind  of  varia- 
tion, rotation.  When  it  rotates  about  a  fixed  finite  point  it 

describes  angles  about  that  point.  But  since  all  the  lines  of 

a  system  of  parallels  meet  at  the  same  point  at  infinity,  rota- 
tion about  that  point  is  equivalent  to  translation,  without 

rotation,  in  a  direction  orthogonal  to  that  of  the  line. 

Hence  any  line  can  be  brought  into  coincidence  with  any 

other  line  in  its  plane  by  rotation  about  the  point  of  intersection. 

223°.  If  a  line  rotates  about  a  finite  point  while  the  point 
simultaneously  moves  along  the  line,  the  point  traces  a  curve 

to  which  the  line  is  at  all  times  a  tangent.  The  line  is  then 

said  to  envelope  the  curve,  and  the  curve  is  called  the  en- 
velope of  the  line. 

The  algebraic  equation  which  gives  the  relation  between 

the  rate  of  rotation  of  the  line  about  the  point  and  the  rate  of 

translation  of  the  point  along  the  line  is  the  intrinsic  equation 
to  the  curve. 

224"^.  A  line-segment  in  the  plane  admits  of  two  -kinds  of 
variation,  viz.,  variation  in  length,  and  rotation. 

If  one  end-point  be  fixed  the  other  describes  some  locus 
depending  for  its  character  upon  the  nature  of  the  variations. 

The  algebraic  equation  which  gives  the  relation  between 

the  rate  of  rotation  and  the  rate  of  increase  in  length  of  the 

segment,  or  radius  vector,  is  the  polar  equation  of  the  locus. 

When  the  segment  is  invariable  in  length  the  locus  is  a 
circle. 

225°.  A  line  which,  by  rotation,  describes  an  angle  may 
rotate  in  the  direction  of  the  hands  of  a  clock  or  in  the  con- 

trary direction. 

If  we  call  an  angle  described  by  one  rotation  positive  we 

must  call  that  described  by  the  other  negative.  Unless  con- 

venience requires  otherwise,  the  direction  of  rotation  of  the 
hands  of  a  clock  is  taken  as  negative. 
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An  angle  is  thus  counted  from  zero  to  a  circumangle  either 

positively  or  negatively. 

The  angle  between  AB  and  A'B'  is  the 

rotation  which  brings  AB  to  A'B',  and 
is  either  +a  or  — /3,  and  the  sum  of  these  ̂  

two  angles  irrespective  of  sign  is  a  cir- 
cumangle. 

When  an  angle  exceeds  a  circumangle  the  excess  is  taken 

in  Geometry  as  the  angle. 

Ex.  OA  and  QB  bisect  the  angles  CAB  and  ABP  extern- 

ally ;  to  prove  that  lF  =  2^Q. 
The  rotation  which  brings  CP 

to  AB  is  -2a,  AB  to  BP  is  +2/3, 

.-.   Z.P  =  2(/3-a). 
Also,  the  rotation  which  brings 

AC2  to  AB  is  -a,  and  AB  to  BQ 

is  +^,  .-.  z.Q  =  ̂ -a. 
z.(CP.BP)  =  2^(AQ.B0). 

This  property  is  employed  in  the  working  of  the  sextant. 

I 

226".  Let  AB  and  CD  be  two  diameters  at  right  angles. 
The  rectangular  sections  of  the  plane 

taken  in  order  of  positive  rotation  and 

starting  from  A  are  called  respectively 
the  first,  second,  third,  and  fourth 

quadrants,  the  first  being  AOC,  the  b| 
second  COB,  etc. 

The  radius  vector  starting  from  co- 
incidence with  OA  may  describe  the 

positive  <lAOP,  or  the  negative  -lAOP'. 
Let   these   angles   be  equal   in  absolute  value,  so  that  the 

AMOP  =  AMOP',  PM  being  ±  on  OA. 

Then   PM=-P'M,  since  in  passing  from   P  to   P',  PM 
passes  through  zero. 

sinAOP': 

P'M 

OP 

-PM 

OP 
=  -sinAOP. 
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and cos  AO  P  ̂  ̂ c^^  =  „-,-  =  cos  AOP. OP'     OP 

/.  the  sine  of  an  angle  changes  sign  when  the  angle  does, 
but  the  cosine  does  not. 

227°.  As  the  angle  AOP  increases,  OP  passes  through  the 
several  quadrants  in  succession. 

When  OP  lies  in  the  ist  Q.,  sin  AOP  and  cos  AOP  are 

both  positive  ;  when  OP  lies  in  the  2nd  Q.,  sin  AOP  is  posi- 
tive and  cos  AOP  is  negative  ;  when  OP  lies  in  the  3rd  Q.^ 

the  sine  and  cosine  are  both  negative  ;  and,  lastly,  when  OP 

lies  in  the  4th  O.,  sin  AOP  is  negative  and  the  cosine 

positive. 
Again,  when  P  is  at  A,  z.AOP  =  o,  and  PM=o,  while 

OM  — OP.  .'.  sin  0  =  0  and  cos  0=  I. 

When  P  comes  to  C,  PM  =  OP  and  OM=o,  and  denoting 

a  right  angle  by  ̂ ,  (207°,  Cor.  4) 

sin  f  =  I ,  and  cos  \  =  o. 

When  P  comes  to  B,  PM  =  o  and  OM=  -  i, 

sin  7r  =  o,  and  cos  7r=  —  I. 

Finally  when  P  comes  to  D,  PM  =  -  OP  and  OM  =0. 

sm 3^. I,  and  cos 

3^^^, 

These  variations  of  the  sine  and  cosine  for  the  several 

quadrants  are  collected  in  the  following  table  : — 

1st  Q. 2ndO- 

3rd^. 4th  ̂ . 

Sine,   

Cosine,     .... 

+ 
+ 

+ 
- + 

.Sine,   

Cosine,     .... 

From       To 

0           I 

I           0 

From      To 

I          0 

0     -  I 

From      To 

0  -  r - 1       0 

From      To -,     0 

0          I    ' 
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228°.  ABC  is  a  triangle  in  its  circumcircle  whose  diameter 
we  will  denote  by  d.  ^ 

Let  CD  be  a  diameter. 

Then  ̂ D  =  ̂ A,  (106°,  Cor.  i) 

and    ̂ CBD  =  "~|-  ^^ 
CB  =  CD  sinCDB  =  ̂ sinA  =  ̂ . 

and  from  symmetry, 

d—    ̂      —     ̂     —    ̂  
sin  A     sin  B     sin  C* 

Hence  the  sides  of  a  triangle  are  proportional  to  the  sines  of 
the  opposite  angles  ;  and  the  diameter  of  the  circumcircle  is 
the  quotient  arising  from  dividing  any  side  by  the  sine  of  the 
angle  opposite  that  side. 

PRINCIPLE  OF  ORTHOGONAL  PROJECTION. 

229°.  The  orthogonal  projection  (167°,  2)  of  PQ  on  L  is 
P'(2',  the  segment  intercepted  between  3 
the  feet  of  the  perpendiculars  PP'  and      p 

QQ'. Now       P'Q'  =  PQ  cos  (PQ  .  P'Q'). 

.•.  the  projection  of  any  segment  on  a       ̂          ̂          Q'    ' 
given  line  is  the  segment  multiplied  by  the  cosine  of  the 

'  angle  which  it  makes  with  the  given  line. 
From  left  to  right  being  considered  as  the  4-  direction 

along  L,  the  segment  PQ  lies  in  the  ist  ̂ .,  as  may  readily  be 
seen  by  considering  P,  the  point  from  which  we  read  the 
segment,  as  being  the  centre  of  a  circle  through  Q. 

Similarly  OP  lies  in  the  3rd  Q.,  and  hence  the  projection 

of  PQ  on  L  is  +  while  that  of  QP  is  - . 
When  PQ  is  _L  to  L,  its  projection  on  L  is  zero,  and  when 

'I  to  L  this  projection  is  PQ  itself. 
Results  obtained  through  orthogonal  projection  are  univer- 

sally true   for   all    angles,    but   the   greatest   care    must   be 
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exercised    with    regard   to    the    signs    of    angular    functions 
concerned. 

Ex.  AX  and  OY  are  fixed  lines  at  right  angles,  and  AO  is 

any  line  and  P  any  point. 

Required  to  find  the  _LPQ  in  terms  of 

AX,  PX,  and  the  ̂ A. 

Take  PQ  as  the  positive  direction,  and 

project  the  closed  figure  POAXP  on  the 
line  of  PQ.     Then 

pr.PO  +  pr.OA  +  pr.AX  +  pr.XP  =  o.  (i68°) 
Now,  pr.PO  is  PQ,  and  pr.QA  =  o  ;  AX  lies  in  ist  Q.,  and 

XP  in  the  2nd  Q. 

Moreover  ^AX .  PQ),  i.e.,  the  rotation  which  brings  AX  to 

PQ  in  direction  is  --lN,  and  its  cosine  is  +. 

cos4AX.PQ)=+sinA. 

Also,  pr.XP  is  -XPcos^XPQ=-XPcosA. 

PQ  =  XPcosA-AXsinA. 

SIGNS  OF  THE  SEGMENTS  OF  DIVIDED 

LINES  AND  ANGLES. 

230°.  AOB  is  a  given  angle  and  ̂ AOB=  -Z.BOA. 
Let  OP  divide  the  ̂ lAOB  internally,  and  OQ  divide  it  ex- 

ternally into  parts  denoted  respectively 

by  a,  /3,  and  a'^'. If  a  is  the  ̂ AOP  and  §  the  ̂ POB,  a 

and  ̂   are  both  positive.     But  if  we 

A  p       B  Q     write    Q    for     P,    a' =  ̂ AOQ,     and 
/if  =^OOB,  and  a  and  ̂   have  contrary  signs. 

On  the  other  hand,  if  a  is  Z.AOP  and  /3  the  ̂ BOP,  a  and  /3 

have  contrary  signs,  while  replacing  P  by  Q  gives  a  and  jS' 
with  like  signs. 

The  choice  between  these  usages  must  depend  upon  con- 
venience ;  and  as  it  is  more  svmmetrical  with  a  two-letter 
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notation  to  write  AGP,  BOP,  AOQ,  BOO,  than  AOP,  POB, 

etc.,  we  adopt  the  convention  that  internal  division  of  an 

angle  gives  segments  with  opposite  signs,  while  external 

division  gives  segments  with  like  signs. 

In  like  manner  the  internal  division  of  the  segment  AB 

gives  parts  AP,  BP  having  unlike  signs,  while  external  divi- 
sion gives  parts  AO,  BO  having  like  signs. 

Dtf. — A  set  of  points  on  a  line  is  called  a  range^  and  the 
line  is  called  its  axis. 

By  connecting  the  points  of  the  range  with  any  point  not 

on  its  axis  we  obtain  a  corresponding  pencil.  (203°,  Def ) 

Con  To  any  range  corresponds  a  pencil  for  every  vertex, 

and  to  any  vertex  corresponds  a  range  for  every  axis,  the 

axis  being  a  transversal  to  the  rays  of  the  pencil. 

If  the  vertex  is  on  the  axis  the  rays  are  coincident  ;  and  if 

the  axis  passes  through  the  vertex  the  points  are  coincident. 

23 r.  BY  is  any  Hne  dividing  the  angle  B,  and  CR,  AP  nre 

perpendiculars  upon  BY.  B 
Then  AAPY^ACRY, 

and  AP  is  AB  sin  ABY, 

and  CR  is  BCsinCBY, 

AY^AB    sin  ABY 

CY     CB'sinCBY'  A^-^ /y Therefore  a  line  through  the  vertex  of  a  tri-  /p 
angle  divides  the  base  into  segments  which 

are  proportional  to  the  products  of  each  conterminous  side 

multiplied  by  the  sine  of  the  corresponding  segment  of  the 

vertical  angle. 

Cor.  I.  Let  BY  bisect  ̂ B,  then  ̂ X  =  f. YC     a 

A Y  =  ''{h  -  AY),  and  AY  =  -  '  . //  a  ■\- c 

Thence  YC=  -— . 
a  +  c 
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Which  are  the  segments  into  which  the  bisector  of  the  Z.B 
divides  the  base  AC. 

Cor.  2.   In  the  AABY, 

BY2  =  ABHAY^-  2AB  .  AY.  cos  A.  (217^) 

But  cosA^^"^^'""^'  (217°),  and  AY  =  — , 2bc        ̂      '  "  a  +  c 
whence  by  reduction 

which  is  the  square  of  the  length  of  the  bisector. 

Cor.  3.  When  AY  =  CY,  BY  is  a  median,  and 

AB_sinYBC 

CB     sinABY' .'.a  median  to  a  triangle  divides  the  angle  through  which  it 
passes  into  parts  whose  sines  are  reciprocally  as  the  con- 

terminous sides. 

232°.  In  any  range,  when  we  consider  both  sign  and  mag- 
nitude, the  sum    AB  +  BC -H  CD  +  DE -f  EA  =0, 

however  the  points  may  be  arranged. 

For,  since  we  start  from  A  and  return  to  A,  the  translation 

in  a  -f-  direction  must  be  equal  to  that  in  a  -  direction. 
That  this  holds  for  any  number  of  points  is  readily  seen. 

Also,  in  any  pencil,  when  we  consider  both  sign  and  mag- 

nitude; the  sum  ̂ OB-|-^BOC  +  ̂ COD-h^DOA  =  o. 
For  we  start  from  the  ray  OA  and  end  with  the  ray  OA, 

and  hence  the  rotation  in  a  -f  direction  is  equal  to  that  in  a 
-  direction. 

RANGES  AND  PENCILS  OF  FOUR. 

233°.  Let  A,  B,  C,  P  be  a  range  of  four,  then 
AB.CP  +  BC.AP  +  CA.BP  =  o. 
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Proof.—  AP  =  AC  +  CP,  and  BP  =  BC4-CP. 

.'.  the  expression  becomes 

BC(AC  +  CA) +(AB  +  EC  -f  CA)CP, 

and  each  of  the  brackets  is  zero  (232°).     .'.  etc. 

234°.  Let  O  .  ABCP  be  a  pencil  of  four.     Then 

sinAOB.sinC0P  +  sinB0C.s*inA0P  +  sinC0A.sinB0P  =  o. 

Proof.— l\KOV»  =  \OK .  OB  sin  AOB, 
also  AAOB=|AB.A 
where  p  is  the  common  altitude  to  all 

the  triangles. 

AB  ./  =  OA  .  OB  .  sin  AOB. 

Similarly,      CP  .;2J  =  OC .  OP.  sin  COP.     '^       ̂         g) 
AB  .  CP  ./  =  0A .  OB  .  OC .  OP  sin  AOB  .  sin  COP. 

Now,  p"^  and  OA .  OB .  OC  .  OP  appear  in  every  homologous 
product,  .•.(AB.CP  +  BC.AP  +  CA.BP);>2 

=  OA .  OB  .  OC  .  OP(sin  AOB  .  sin  COP 
+  sin  BOC  .  sin  AOP  +  sin  COA .  sin  BOP). 

But  the  bracket  on  the  left  is  zero  (233'),  and  OA.OB.OC.OP 
is  not  zero,  therefore  the  bracket  on  the  right  is  zero.       q.e.d. 

235".  From  P  let  perpendiculars  PA',  PB',  PC  be  drawn  to 
OA,  OB,  and  OC  respectively.     Then 

sinAOP^^|,  sinBOP=^,  etc., 

and  putting  these  values  for  sin  AOP,  etc.,  in  the  relation  of 

234°.  we  have,  after  multiplying  through  by  OP, 
CP  .  sin  AOB  +  A'P  .  sin  BOC  +  B'P  .  sin  COA  =0. 

Or,  let  L,  M,  and  N  be  any  three  concurrent  lines,  /,  w,  n 

the  perpendiculars  from  any  point   P  upon  L,   M,  and    N 
respectively,  then     ̂  

y.         /sm  M\+wsin  NL  +  ;/sin  LM=o. 
where  MN  denotes  the  angle  between  M  and  N,  etc. 
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236°.   Ex.  I.   Let  four  rays  be  disposed  in  the  order  OA, 
c^:;   pOB,  OC,  op,  and  let  OP  be  perpendicular 

to  OA. 

Denote  ̂ AOC  by  A,  and  /.AOB  by  B. 

Then  234°  becomes 
sin  Bcos  A  +  sin(A-B)sin2-sinAcosB=o, 

or,      sin(A-B)=:sinAcosB-cosAsinB. 
Similarly,  by  writing  the  rays  in  the  same  order  and  making 

^BOP  a  "1,  and  denoting  Z.AOB  by  A  and  ̂ BOC  by  B,  we 
obtain  sin  (A  +  B)  =  sin  A  cos  B  +  cos  A  sin  B. 

Also,  by  writing  the  rays  in  the  order  OA,  OP,  OB,  OC, 

and  denoting  .lAOP  by  A  and  ̂ BOC  by  B,  we  obtain 

(i)  when  ^AOB=~|, 
cos  (A  -  B)= cos  A  cos  B  +  sin  A  sin  B  ; 

(2)  when  z.AOC  =  n, 
cos  (A  +  B)  =  cos  A  cos  B  -  sin  A  sin  B  ; 

which  are  the  addition  theorems  for  the  sine  and  cosine. 

Ex.  2.  ABC  is  a  triangle  and  P  is  any  point.     Let  PX, 

p  PY,    PZ   be  perpendiculars    upon    BC, 

K"-.    A    CA,  AB,  and   be  denoted   by  P„,  Pt,  Pc 
respectively. 

Draw  AQ  ||  to  BC  to  meet  PX  in  Q. 

Then  (235°) 
— X        B       c      D         POsin  A  +  PYsinB  +  PZsinC=o. 
But  if  AD  is_Lto  BC,  AD  =  ̂ sin  C  =  QX. 

(PX-/^sinC)sinA  +  PYsinB  +PZsinC  =  o, 

or  2(P„sin  A)  =  /5sinAsinC. 

Similarly,  2(P„sin  A)  =  rsin  Bsin  A 
=  a  sin  C  sin  B, 

2(P„sin  A)=  ̂ {ndcs'm^A  sin2B  sin^C}. 
Hence  the  function  of  the  perpendicular 

P„sin  A  +  PftSinB  +  PeSinC 

is  constant  for  all  positions  of  P.     This   constancy  is   an 

important  element  in  the  theory  q{  trilinenr  co-ordinates. 
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237'.  A,  B,  C  being  a  range  of  three,  and  P  any  point  not 
on  the  axis,  ^p 
AB  .  CP-+  BC .  AP-^  +  CA .  BP2 

=  -AB.BC.CA. 

Proof.— Lq\.  PQ  be  ±  to  AC.     Then 

AQ  =  AC  +  CQ,    BQ  =  BC  +  CQ, 
and  the  expression  becomes 

(AB  +  BC  +  CA)(PQ2  +  CQ-)+BC.CA(BC-AC) 
=  BC .  CA(BC  +  CA)  =  BC .  CA .  BA 
=  -AB.BC.CA. 

Exercises. 

1.  A  number  of  stretched  threads  have  their  lower  ends  fixed 

to  points  lying  in  line  on  a  table,  and  their  other  ends 

brought  together  at  a  point  above  the  table.  What  is 

the  character  of  the  system  of  shadows  on  the  table 

when  {a)  a  point  of  light  is  placed  at  the  same  height 

above  the  table  as  the  point  of  concurrence  of  the 

threads  .'*  {d)  when  placed  at  a  greater  or  less  height .'' 
2.  If  a  line  rotates  uniformly  about  a  point  while  the  point 

moves  uniformly  along  the  line,  the  point  traces  and 

the  line  envelopes  a  circle. 

3.  If  a  radius  vector  rotates  uniformly  and  at  the  same  time 

lengthens  uniformly,  obtain  an  idea  of  the  curve  traced 

by  the  distal  end-point. 
4.  Divide  an  angle  into  two  parts  whose  sines  shall  be  in  a 

given  ratio.     (Use  231°,  Cor.  3.) 
5.  From  a  given  angle  cut  off  a  part  whose  sine  shall  be  to 

that  of  the  whole  angle  in  a  given  ratio. 

6.  Divide  a  given  angle  into  two  parts  such  that  the  product 

of  their  sines  may  be  a  given  quantity.  Under  what 

condition  is  the  solution  impossible.' 

7.  Write  the  following  in  their  simplest  form  : — 

sin(7r  -fl),  sin(2+«),  sin  {t-(^-|)}, 

(27r  +  /^),  COS  .|27r-(d-5)J-,  cos-Jfl-(;  +  , 
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II. 

12. 

Make  a  table  of  the  variation  of  the  tangent  of  an  angle 

in  magnitude  and  sign. 

OM  and  ON  are  two  lines  making  the  z_MON=w,  and 
PM  and  PN  are  perpendiculars  upon  OM  and  ON 

respectively .     Then  OPsina>  =  MN. 

A  transversal  makes  angles  A',  B',  C  with  the  sides  BC. 
CA,  AB  of  a  triangle.     Then 

sin  A  sin  A'  +  sin  B  sin  B'  +  sin  C  sin  C = o. 
OA,  OB,  OC,  OP  being  four  rays  of  any  length  whatever, 

AAOB .  ACOP  +  ABOC .  AAOP  + ACOA .  ABOP  =  o. 
If  r  be  the  radius  of  the  incircle  of  a  triangle,  and  r^  be 

that  of  the  excircle  to  side  a,  and  if  p^  be  the  altitude 

to  the  side  a,  etc., 

^,  =  -,^^(sin  A  +  sin  B  +  sin  C) smA 

=—^   (-sinA  +  sinB  +  sinC), sm  A 

and 
r,     r, 

+  -  = 
'^' 

+  -^=-. ^3  P\  A   A    ̂  (Use  235°.) 
13.  The  base  AC  of  a  triangle  is  trisected  at  M  and  N,  then 

BN2=i(3BC-  +  6BA2-2AC2). 

SECTION    II. 

CENTRE  OF  MEAN  POSITION. 

C,  D  are  any  points  in  line,  and  perpendiculars 

AA',  BB',  etc.,  are  drawn  to  any  fixed 
hne  L.     Then  there  is,  on  the  line, 

evidently  some  point,  O,  for  which 

AA'  +  BB'  +  CC  +  DD'  =  40N  ; 

g,  j^    ̂,        y.      -  and  ON  is  less  than  AA' and  greater 

than  DD'. 
The  point  O  is  called  the  centre  of  vieim  position,  or  simply 

the  mean  ce?ttre,  of  the  system  of  points  A,  B,  C,  D. 
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Again,  if  we  take  multiples  of  the  perpendiculars,  as  ̂ .  AA', 
b  .  BB',  etc.,  there  is  some  point  O,  on  the  axis  of  the  points, 
for  which 

.?.AA'  +  ̂ .BB'  +  ̂ .CC'  +  ̂/.  DI)'  =  (.?  +  ̂  +  f+rt')ON. 

Here  again  ON  lies  between  AA'  and  DD'. 
O  is  then  called  the  mean  centre  of  the  system  of  points  for 

the  system  of  multiples. 

De/.—  YoY  a  range  of  points  with  a  system  of  multiples  we 
define  the  mean  centre  by  the  equation 

2(rt.A0)  =  o, 
where  Z{a  .  AO)  is  a  contraction  for 

a.AO  +  fi.  BO  +  C.CO  +  ..., 

and   the   signs   and   magnitudes  of  the  segments  are  both 
considered. 

The  notion  of  the  mean  centre  or  centre  of  mean  position 
has  been  introduced  into  Geometry  from  Statics,  since  a 

system  of  material  points  having  their  weights  denoted  by  a, 

d,  c,  ...,  and  placed  at  A,  B,  C,  ...,  would  "balance"  about 
the  mean  centre  O,  if  free  to  rotate  about  O  under  the  action 

of  gravity. 
The  mean  centre  has  therefore  a  close  relation  to  the 

"  centre  of  gravity  "  or  "  mass  centre  "  of  Statics. 

239".   Theorem. —  If  P  is  an  independent  point  in  the  line  of 
any  range,  and  O  is  the  mean  centre,    

2(rt.AP)  =  2:(rt).OP.  "a      b     o      c  p 

Proof.— AV  =  AO  +  OP,  BP  =  BO  +  OP,  etc., 
a.AV  =  a.hO  +  a.OV,    ̂ .  BP  =  /;.  BO  +  <^.  OP,  etc. 

2(rt .  AP)  =  2(rt  .  AO)  +  ̂ {a) .  OP. 
But,  if  O  is  the  mean  centre, 

2(<7.  A0)=o,  by  definition, 

2(^.AP)  =  2f^).0P. 

Ex.  The  mean  centre  of  the  basal  vertices  of  a  irianfjie 
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when  the  multiples  are  proportional  to  the  opposite  sides  is 

the  foot  of  the  bisector  of  the  vertical  angle. 

240°.  Let  A,  B,  C,  ...  be  a  system  of  points  situated  any- 
where in  the  plane,  and  let  AL,  BL,  CL,  ...,  AM,  BM,  CM, 

...,  denote  perpendiculars  from  A,  B,  C,  ...  upon  two  lines  L 
and  M. 

Then  we  define  the  mean  cfentre  of  the  system  of  points  for 

a  system  of  multiples  as  the  point  of  intersection  of  L  and  M 

when  2(rt.AL)  =  o, 

and  2(«.AM)=o. 
If  N   be  any  other  line  through  this 

2(rt.AN)=o. 
let   A   be   one    of   the    points. 

Then,  since  L,  M,  N  is  a  pencil  of  three 

and  A  any  point,  (235°) 
AL  .  sin  MON  +  AM  .  sin  NOL  + AN  .  sin  LOM  =0, 

also        BL  .  sin  MON  +  BM  .  sin  NOL  +  BN  .  sin  LOM  =0, 

and  multiplying  the  first  by  a,  the  second  by  b^  etc.,  and  adding, 

2(rt.AL)sinMON4-2:(rt.AM)sinNOL4-2(rt.AN)sinLOM=o. 
But  2(^ .  AL)  =  2(^ .  AM)  =  o,  by  definition, 

S(rt.AN)=o. 

241°.    Theorem. — If  O  be  the  mean  centre  of  a  system  of 
points  for  a  system  of  multiples,  and  L  any  line  whatever, 

2(rt.AL)  =  2(rt).0L. 

Proof. — Let  M  be  ||  to  L  and  pass  through  O.     Then 

AL  =  AM  +  ML,  .-.  rt.AL-^?.AM  +  ̂?.  ML, 

BL  =  BM  +  ML,  .-.   ̂ .BL  =  ̂ .BM  +  ̂ .ML, 

adding,  Z(^?.  AL)  =  2:(.?.  AM)  +  2:(rt).  ML. 
But,  since  M  passes  through  O, 

!!:(.?.  AM) -o  and  ML  =  OL, 

::'('^-AL)-v(,,).OL. 
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24.2°.    riuorini.     The    mean    (cntre    of   the    vertices    of  a 
triangle  with    multiples    proportional   to 

the  opposite  sides   is  the  centre  of  the 
incircle. 

Proof. — Take  L  along  one  of  the  sides, 

as  BC,  and  let  p  be  the  _L  from  A.     Then   A 
2(rt'.AL)  =  rt./ 

and  2(.7).OL  =  (rt  +  ̂  +  t).OL, 

_      ap      -A_y 
a-\-b^-c     s 

/>.,  the  mean  centre  is  at  the  distance  r  from  each  side,  and 
is  the  centre  of  the  incircle. 

(241°) OL: (153°,  Ex:  I) 

Cor.  I.   If  one  of  the  multiples,  as  a^  be  taken  negative, 

OL 

ap 

.=  -^=-r';         (15/,  Ex.  2) -a-\-h-\-c     s-a 

i.c.^  the  mean  centre  is  beyond  L,  and  is  at  the  distance  ; '  from 
each  side,  or  it  is  the  centre  of  the  excircle  to  the  side  a. 

Cor.  2.  If  any  line  be  drawn  through  the  centre  of  the  in- 
circle of  a  triangle,  and  a,  /i,  7  be  the  perpendiculars  from  the 

vertices  upon  it,  ^a  4-^/3 4-^:7=0, 
and  if  the  line  passes  through  the  centre  of  an  excircle,  that 

on  the  side  a  for  example,     aa.-=b^-\- cy. 

Exercises. 

1.  If  a  line  so  moves  that  the  sum  of  fixed  multiples  of  the 

perpendiculars  upon  it  from  any  number  of  points  is 

constant,  the  line  envelopes  a  circle  whose  radius  is 

^^S(rt.AL) 
2.  The  mean  centre  of  the  vertices  of  a  triangle,  for  equal 

multiples,  is  the  centroid. 

3.  The  mean  centre  of  the  vertices  of  any  regular  polygon,  for 

equal  multiples,  is  the  centre  of  its  circumcircle. 
N 
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243'.  Theorem. — If  O  be  the  mean  centre  of  a  system  of 
points  for  a  system  of  multiples,  and  P  any  independent  point 

in  the  plane, 

Proof. — Let  O  be  the  mean  centre,  P  the 
independent  point,  and  A  any  point  of  the 

system.     Let  L  pass  through  O  and  be  per- 

pendicular to  OP,  and  let  AA'  be  perpen- 
dicular to  OP.     Then 

AP-  =  A0-^  +  0P--20P.0A', 

rt .  AP-  =  « .  AOHrt .  0P2  -  2OP  .  .z .  OA'. 

^.BP2  =  /^.BO'^  +  ̂ .OP2-20P.^.OB', 

and 

Similarly 

S(« .  AP2)  =  2(rt .  A02)  +  2(rt) .  OP-  -  2OP  .  2(rt .  OA'). 

But         S(rt.  OA')  =  2(rt.AL)  =  o,  (241°) 

2(rt  .  AP2)  =  2(^  .  AO'^)  +  2(^)  .  0P2.  q.e.d. 

Cor.  In  any  regular  polygon  of ;/  sides  -th  the  sum  of  the 

squares  on  the  joins  of  any  point  with  the  vertices  is  greater 

than  the  square  on  the  join  of  the  point  with  the  mean  centre 

of  the  polygon  by  the  square  on  the  circumradius. 

For  making  the  multiples  all  unity, 

2(AP-^)  =  «;^-f«OP2, 

i2(AP-)  =  OP2  +  r2. n 

Ex.  Let  rt,  b^  c  be  the  sides  of  a  triangle,  and  a,  /3,  7  the 

joins  of  the  vertices  with  the  centroid.     Then  (242°,  Ex.  2) 

2(AP2)=2(A02)-h30P-. 
I  St.    Let  P  be  at  A,         B^-{-c^=-  o?  +  ̂ H  r  +  3a^ 

2nd.     „    P      „     B,        r^-f-rt2  =  a2  +  ̂ 2  +  7--l-3^2^ 

3rd.      „     P       ,;     C,  rt2  +  ̂2  =  a2  +  ̂-  +  7-  +  37S 
whence  rt--|-<^"  +  r'  =  3(0- -1-^2-1-7^). 

Ex.  If  ABCDEFGH  be  the  vertices  of  a  regular  octagon 

taken  in  order,  AC-  +  AD--h  AE--|-AF'-  + AG-=  2(6-f  V2)r2. 
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244'.  Let  O  be  the  centre  of  the  incircle  of  the  AABC  and 
let  V  coincide  with  A,  B,  and  C  in  succession. 

I  St.  /?r  +  cb-  =  :l{ii  .  A(J-)  4-  ̂ {a)kO'\ 

2nd.      ac-  +  civ  =  Z{a  .  AO-)  +  :^{ci)BO'\ 
3rd.       a/r  +  biv         =  Z{a  .  AO-)  +  2:(r?)CO-. 

Now,  multiply  the  ist  by  a,  the  2nd  by  b,  the  3rd  by  c,  and 

add,  ar.d  we  obtain,  after  dividing  by  {a-\-b-\-c\ 

^{a.  A0-)  =  abc. 

Cor.  I.  For  any  triangle,  with  O  as  the  centre  of  the  incircle, 

the  relation       2(rt .  AF-)  =  -(^  .  hO-)  +  Z{a)OV- 

becomes  Z{a .  AV^)  =  ahc  +  2 j  .  O F", 
and,  if  O  be  the  centre  of  an  excircle  on  side  «,  for  example, 

^{a  .  AP-)  =  -  abc-^i.{s  -  /^)OP^ 
where  a  denotes  that  a  alone  is  negative. 

Cor.  2.  Let  P  be  taken  at  the  circumcentre,  and  let  1)  be 
the  distance  between  the  circumcentre  and  the  centre  of  the 

incircle.     Then  AP  =  BP  =  CP  =  R. 

But  abc=\/\^,  (204  ,  Cor.) 

and  j='^,  (I53^  £-'<•  ') 
D2=R2-2Rr. 

Cor.  3.  If  D,  be  the  distance  between  the  circumcentre  and 

the  centre  of  an  excircle  to  the  side  a,  we  obtain  in  a  similar 

manner  Df  =  R'-4-2Rri. 
Similarly  D./=R2  +  2Rr2, 

D32  =  R-'  +  2Rr3. 

245°.  Ex.  To  find  the  product  OA.  OB .  OC,  where  O  is 
the  centre  of  the  incircle. 

Let  P  coincide  with  A.     Then  (244°) 
bc'-^-b'c^abc^^s.KO', 

p^Q2_bc{s~a) 
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Similarly  bO'^ ='''^' ~ ^'\   and    CO^~^^fcl£), s 

AO-  BO-  CO' - '^'^'^'^(^ ' ^)^^ -' ^)(^' - ') 

J"* 

and  OA.  OB.OC-4Rr-'. 

246°.   If  "^(a  .  AP-)  becomes  constant,  ̂ ,  we  have 

Jt=i:{a.AO-)  +  ̂ ia)OF-', 

and  ̂ {(i .  AO-)  being  independent  of  the  position   of  P,  and 
therefore  constant  for  variations  of  P,  OP  is  also  constant, 
and  P  describes  a  circle  whose  radius  is 

p,,_>&-2(^.AO^) 

.*.  If  a  point  so  moves  that  the  sum  of  the  squares  of  its 
joins  with  any  number  of  fixed  points,  each  multiplied  by  a 

given  quantity,  is  constant,  the  point  describes  a  circle 

whose  centre  is  the  mean  point  of  the  system  for  the  given 

multiples. 

Exercises. 

1.  If  O',  O",  O'"  be  the  centres  of  the  escribed  circles, 

AO'.BO".  CO"'  =  4R«5''. 

2.  AO'.  BO'.  CO'  =  4R<-'. 

3.  s.OL  =  {s-  a)0'L  +  {s-  ̂ )0"L  +  {s-  c)0"'L, 
where  L  is  any  line  whatever. 

4.  If  P  be  any  point, 

s.OV'  =  {s-  a)0'?''  +  (^  -  ̂ )0'T-  +  (j  -  ̂ )0"'P-  -  2ah'. 

5.  (s-a).  O'O^  +  {s-d).  0"0-  +  (.V  -  ̂ )0"'0-^  =  2adc. 
6.  If  D   is  the  distance  between  the  circumcentre  and  the 

centroid,  D-  =  ?,  (qR"'  -  a-  -  /r  -  r). 
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SECTION   III. 

OF  COLLINEARITV  AND  CONCURRENCE. 

247°.  Def.  I.— Three  or  more  points  in  line  are  collinear, 
and  three  or  more  lines  meeting  in  a  point  are  concurrent. 

IJtf.  2. — A  tetragrain  or  general  quadrangle  is  the  figure 
formed   by  four  lines   no  three  of 

which  are  concurrent,  and  no  two 

of  which  are  parallel. 

Thus  L,  M,  N,  K  form  a  tetra-  lx     ̂ .^/P 

gram.     A,  B,  C,  D,  E,  F  are  its  six  y,-"'"  \l    \.\ 
vertices.     AC,  BD  are  its  interna/ 

diagonals,  and  EF  is  its  ̂ .r/^rm?/ diagonal. 

248°.  The  following  are  promiscuous  examples  of  collinear- 
itv  and  concurrence. 

Ex.  I.  AC  is  a and  P  is  any  point. Through  P,  GH 

N  O 

.1 

is  drawn  \\  to  BC,  and  EF  || 
to  AB. 

The  diagonals  EG,  HF, 
and  DB  of  the  three  1  7s 

AP,  PC,  and  AC  are  concur- 
rent. 

EG  and  HF  meet  in  some 

point  O  ;  join  BO  and  complete  the 
the  extensions  as  in  the  figure. 

We  are  to  prove  that  D,  B,  O  are  collinear. 

Proo/.—ouKG  =  0—lCM,  and  ̂ FL  = 
ZZ=7KG  =  Z=^GF  +  ZZI7BM, 

and  ZIZ7FL=£ZI7GF  +  ̂ i:7NB. 

Hence  £=7KB  =  £Z3'BL, 

B  is  on  the  line  DO,  (i45'.  Cor.  2) 
and  D,  B,  O  are  collinear. 

H  C  L 

OKDL,  and  make 

FN,   (145°) 
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Ex.  2    The  middle  points  of  the  three  diagonals  of  a  tetra- 

gram  are  collinear. 
ABCDEF  is  the  tet- 

ragram,  P,  Q,  R  the 
middle  points  of  the 

diagonals. 

Complete  the  paral- 
lelogram AEDG,  and 

through  B  and  C  draw 

lines  II  to  AG  and  AE 

respectively,  and  let 
them  meet  in  T. 

Then,  from  Ex.  i, 

IH  passes  through  F.  Therefore  EIHF  is  a  triangle,  and 

the  middle  points  of  EI,  EH,  and  EF  are  collinear. 

(84°,  Cor.  2) 
But  these  are  the  middle  points  of  AC,  BD,  and  EF  re- 

spectively.    .•.         P,  Q,  R  are  collinear. 

Ex.  3.   Theorem.— T\it  circumcentre,  the  centroid,  and  the 
B  orthocentre  of  a  triangle  are  col- 

linear. 

Proof.— htt  YD  and  ZD   be 
the  right  bisectors  of  AC  and  AB. 

Join   BY,  CZ,  and   through   E, 

A  Y  H       c   the   intersection  of  these  joins, 
draw  DE  to  meet  the  altitude  BH  in  O. 

Then  D  is  the  circumcentre  and  E  is  the  centroid.  Since 

DY  is  II  to  BH,  the  triangles  YDE  and  BOE  are  similar. 

But  BE  =  2EY,  (85°,  Cor.) 
OE  =  2DE, 

and  as  D  and  E  are  fixed  points,  O  is  a  fixed  point. 

.•.  the  remaining  altitudes  pass  through  O. 

249°.   Theorem  —Three  concurrent  lines  perpendicular  to 
the  sides  of  a  triangle  at  X,  Y,  Z  divide  the  sides  so  that 

BX'-2  +  CY2-hAZ-  =  CX--FAY--f-BZ- ; 
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and,  conversely,  if  three  lines  perpendicular  to  the  sides  of  a 
triangle  divide  the  sides  in  this  manner,  B 
the  lines  are  concurrent. 

Proof.— Lei  OX,  OY,  OZ  be  the  lines. 

Then         BX- -  CX-=  BO-- CO-,(i72°,i) 
Similarly  CY-- AY-=CO-- AO", 

AZ2-BZ-  =  AO--BO-,  A 

BX-  +  CY-  + AZ-  -  CX-  -  AY-  -  BZ- 

Conversely,  let  X,  Y,  Z  divide  the  sides  of  the  triangle  in 

the  manner  stated,  and  let  OX,  OY,  perpendiculars  to  BC 
and  CA,  meet  at  O.     Then  OZ  is  ±  to  AB. 

Proof. —  U  possible  let  OZ'  be  _L  to  AB,     Then,  by  the 

theorem,  ,        BXHCY-  + AZ'^-CX^- AY-- BZ'-=o, 

and  by  hyp.        EX'  +  CY'  +  AZ^-CX*-'- AY'-- BZ'-  =  o, 
AZ'2-AZ2=BZ'2-BZ2. 

But  these  differences  have  opposite  signs  and  cannot  be  equal 

unless  each  is  zero.     .'.         Z'  coincides  with  Z. 

Exercises. 

I.  When  three  circles  intersect  two  and  two,  the  common 
chords  are  concurrent. 

Let  S,  Sj,  S2  be  the  circles,  and  A,  B,  C  their  centres. 

Then  (113°)  the  chords  are  perpendicular  to  the  sides 
of  the  AABC  at  X,  Y,  and  Z.     And  if  r,  r^,  r^  be  the 
radii  of  the  circles, 

BX2-CX2  =  ri2-r,2,  etc.,  etc., 
and  the  criterion  is  satisfied. 

.'.     the  chords  are  concurrent. 
2    The  perpendiculars  to  the  sides  of  a  triangle  at  the  points 

of  contact  of  the  escribed  circles  are  concurrent. 

3.  When  three  circles  touch  two  and  two  the  three  common 

tangents  are  concurrent. 

4.  If  perpendiculars  from  the  vertices  of  one  triangle  on  the 

sides  of  another  be  concurrent,  then  the  perpendiculars 
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from  ihe  vertices  of  the  second   triangle  on  the  sides 
of  the  first  are  concurrent. 

5.  When  three  perpendiculars  to  the  sides  of  a  triangle  are 
concurrent,  the  other  three  at  the  same  distances  from 

the  middle  points  of  the  sides  are  concurrent. 

6.  Two  perpendiculars  at  points  of  contact  of  excircles  are 

concurrent  with  a  perpendicular  at  a  point  of  contact  of 
the  incircle. 

250°.  Theorem. — When  three  points  X,  Y,  Z  lying  on  the 
sides  BC,  CA,  and  AB  of  a  triangle  are  collinear,  they  divide 

the  sides  into  parts  which  fulfil  the  relation 

ln\  BX.CY.AZ_^ 

^^  CX.AY.BZ~' 

and  their  joins  with  the  opposite  vertices  divide  the  angles 
into  parts  which  fulfil  the  relation 

ib\        sin  BAX .  sin  CBY .  sin  ACZ_ 

^'        sin  CAX  .  sin  AB  Y  .  sin  BCZ     '* 

Proof  of  {a).~  On  the  axis  of  X,  Y,  Z  draw  the  perpendicu- 
lars AP,  BO,  CR. 

On  account  of  similar  ̂ ^s, 

BX^BQ     CY^CR     AZ^AP 

CX     CR'    AY     AP'    BZ     BO' 
BX.CY.AZ 

=  1. 

CX.AY.BZ 

Proof  of  {f^-  B^  =  ABAX^B
AsjnBAX -^  -^  ̂  ̂        CX     ACAX     CA  sin  CAX' 

sinBAX^C^    BX 

sin  CAX     BA'CX' 

Snl    1  sinCBY_AB    CY     sinACZ_BC    AZ 

'  "  ̂  ^'"  ̂'       sin  ABY     CB  '  AY'    sin  BCZ     AC  "  BZ* 
sin  BAX  .  sin  CBY  .  sin  ACZ_  BX.CY.AZ_ 

sin  CAX  .  sin  ABY  .  sin  P CZ     CX  .  AY .  BZ       '  g-C-(f' 
The  preceding  functions  which  are  criteria  of  collinearity 
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will  be  denoted  by  the  symbols 

It  is  readily  seen  that  three  points  on  the  sides  of  a  triangle 

can  be  collinear  only  when  an  even  number  of  sides  or  angles 

(2  or  o)  are  divided  internally,  and  from  230°  it  is  evident  that 
the  sign  of  the  product  is  +  in  these  two  cases. 

Hence,  in  applying  these  criteria,  the  signs  may  be  dis- 
regarded, as  the  final  sign  of  the  product  is  determined  by 

the  number  of  sides  or  angles  divided  internally. 

The  converses  of  these  criteria  are  readily  proved,  and  the 

proofs  are  left  as  an  exercise  to  the  reader. 

Ex.  If  perpendiculars  be  drawn  to  the  sides  of  a  triangle 

from  any  point  in  its  circumcircle,  the  feet  of  the  perpendicu- 
lars are  collinear. 

X,  Y,  Z  are  the  feet  of  the  perpendicu- 
lars. If  X  falls  between  B  and  C,  ̂ OBC 

is  <  a  ~|,  and  therefore  _OAC  is  >  a  ~~\. 
and  Y  divides  AC  externally  ; 

.'.  it  is  a  case  of  collinearity. 
Now,  BX  =  OBcosOBC, 
and  AY  =  OAcosOAC. 

But,  neglecting  sign,  cosOBC  =  cosOAC, 

BX^OB 

AY     OA' CY^OC     AZ^OA 

BZ     OB'    CX     OC 
and  similarly. 

BX\ 

CX/ 

I,  and  X,  Y,  Z  are  collinear. 

De/.—The  line  of  collinearity  of  X.   N'.  Z    is   known  as 
"  Simson's  line  for  the  point  O." 

25  r.    '/7u'on;/i. -WhQu  three  lines  through  the  vertices  of  a 
triangle  are  concurrent,  they  divide  the  angles   into    parts 
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which  fulfil  the  relation 

/  s        sin  BAX^irKTBY^sinACZ^  _ 

^  ̂        sin  CAX  .  sin  ABY  .  sin  BCZ         ̂ ' 
and  they  divide  the  opposite  sides  into  parts  which  fulfil  the 
relation 

(^)  BX^CY.AZ^_^ ^  CX.AY.BZ 

To  prove  {a). — Let  O  be  the  point  of  concurrence  of  AX,  BY, 
and  CZ,  and  let  OP,  OO,  OR  be  perpendiculars  on  the  sides. 

Then 

QY 

sinBAX_OR 

sin  C  AX  OQ' sinCBY_OP 

sinABY  OR' sin  ACZ_OQ 

sinBCZ     OP' ....  /sin  ri/\A.\ 
multiplying,  UT^TrAV   =     i. 

sinBAX> 

VsinCAXy 

the   negative   sign   resulting  from   the   three  angles    being 

divided  internally.  (230°) 

To  prove  {b). — From  B  and  C  let  BE  and  CF  be  per- 
pendiculars upon  AX. 

Then,  from  similar  As  BEX  and  CFX, 

BX_BE_ABsinBAX 

CX     CF     AC  sin  C AX* CY     BCsinCBY    AZ     CAsinACZ 
Similarlv, 

AY     BA sinABY'    BZ     CBsinBCZ' 
BX 

.-.  multiplying,    (^)=  -  i,  from  (a).  ^^^ 
The  negative  sign  results  from  the  three  sides  being  divided 

internally.  (230°) 
It  is  readily  seen  that  three  concurrent  lines  through  the 

vertices  of  a  triangle  must  divide  an  odd  number  of  angles 

and  of  sides  internally,  and  that  the  resulting  sign  of  the 

product  is  accordingly  negative. 

Hence,  in  applying  the  criteria,  the  signs  of  the  ratios  may 

be  neglected. 
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The  remarkable  relation  existing  between  the  criteria  for 

collinearity  of  points  and  concurrence  of  lines  will  receive  an 

explanation  under  the  subject  of  Reciprocal  Polars. 

Exercises. 

252°.   I.  Equilateral  triangles  ABC,    BCA',  CAB'    are    de- 
scribed upon  the  sides  AB,  BC,  CA  of  any  triangle. 

Then  the  joins  A  A',  BB',  CC  are  concurrent. 

i^r^^.— Since       AC'  =  AB,  AB'  =  AC, 

and  z.CAC'  =  ̂ BAB', 

ACAC=AB'AB,  and  £j\C'C  =  Z.ABB'. 

0  sin  ACZ     sin  ACC'_AC'_AB  (-y^R") 
sinABY"imACC~AC~AC'  ^'      ̂ 

c-«,i«  1       sin  BAX     BC     sin  CBY     CA 
^^'"^^^'^y'    imBCZ  =  BA'   irnCAX  =  CB' 

/sin  BAX  \ 

VsinCAX/ 

and  hence  the  joins  AA',  BB',  CC  are  concurrent. 
2.  The  joins  of  the  vertices  of  a  A  with  the  points  of  con- 

tact of  the  incircle  are  concurrent. 

3.  The  joins  of  the  vertices  of  a  A  with    the   points   of 

contact  of  an  escribed  0  are  concurrent. 

4.  ABC  is  a  A,  right-angled  at  B,  CD  is  =  and  X  to  CB, 
and  AE  is  =  and  _L  to  AB.     Then  EC  and  AD  inter- 

sect on  the  altitude  from  B. 

5.  The  internal  bisectors  of  two  angles  of  a  A  and  the 

external   bisector  of   the   third    angle    intersect    the 

opposite  sides  collinearly. 

6.  The  external  bisectors  of  the  angles  of  a  A  intersect  the 

opposite  sides  collinearly. 

7.  The  tangents  to  the  circumcircle  of  a  A,  at  the  vertices 

of  the  A,  intersect  the  opposite  sides  collinearly. 

8.  If  any  point  be  joined  to  the  vertices  of  a  A,  the  lines 

through  the  point  perpendicular  to  those  joins  intersect 

the  opposite  sides  of  the  A  collinearly. 



204 
svn'iuktk"  oi^omktrv. 

II. 

A  0  cuts  the  sides  of  a  /\  in  six  points  so  th.il  three 

of  them  connect  with  the  opposite  vertices  concurrently. 

Show  that  the  remaining  three  connect  concurrently 

with  the  opposite  vertices. 

Is  the  statement  of  Ex.  i  true  when  the  As  are  all  de- 

scribed internally  upon  the  sides  of  the  given  A? 

If  L  is  an  axis  of  symmetry  to  the  congruent  As  ABC 

and  A'B'C,  and  O  is  any  point  on  L,  A'O,  B'O,  and 
CO  intersect  the  sides  BC,  CA,  and  AB  collinearly. 

253°.  Theorem. — Two  triangles  which  have  their  vertices 
connecting  concurrently  have  their  corresponding  sides  inter- 

secting collinearly.     (Desargue's  Theorem.) 
rz  ABC,  A'B'C  are  two  As 

having  their  vertices  connect- 
ing concurrently  at  O,  and 

their  corresponding  sides  in- 
tersecting in  X,  Y,  Z.  To 

kQ-  ;     prove  that  X,  Y,  Z  are  col- 
^  y      ~/l\    \  I     linear. 

Proof. — To  the  sides  of 

AA'B'C  draw  perpendiculars 

AP,  AP',  BQ,  BQ',  CR,  CR'. 
Then,  from  similar  As, bx^bq; 

CX  CR' 

CY^CR' 
AY  AP' 
AZ_AF 

BZ     BQ' 

But 

/BX\     AP'.  BO'.CR' 

Vex/     AP.BQ.  CR* 
AP'_sinAA'B' AP 

sinAA'C" with  similar  expressions  for  the  other  ratios. 
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Also,  since  AA',  BB',  CC  are  concurrent  at  O,  they  divide 

the  angles  A'  B',  C  so  that 

sin  AA'B\  sin  BB'C".  sin  CC^A^ ^  ̂ 
sin  AA'C.  sin  BB'A'.  sin  CC'B'       ' 
BX\ 

'    ̂     I,  and  X,  Y,  Z  are  collinear. 

The  converse  of  this  theorem  is  readily  proved,  and  will  be 
left  as  an  exercise  to  the  reader. 

Ex.  A',  B',  C  are  points  upon  the  sides  BC,  CA,  AB  re- 

spectively of  the  AABC,  and  AA',  BB',  CC  are  concurrent 
in  O.     Then 

1.  AB  and  A'B',  BC  and  B'C,  CA  and  C'A'  meet  in  three 
points  Z,  X,  Y,  which  are  collinear. 

2.  The  lines  AX,  BY,  CZ  form  a  triangle  with  vertices  A", 

B",  C",  such  that  AA",  BB",  CC"  are  concurrent  in  O. 

OF  RECTILINEAR  FIGURES  IN  PERSPECTIVE. 

254''.  De/.—AB  and  A'B'  are  two  segments  and  AA'  and 
BB'  meet  in  O. 

Then  the  segments  AB  and  A'B'  are  said  to 
be  in  perspective  at  O,  which  is  called  their 

centre  of  perspective. 

The  term  perspective  is  introduced  from 

Optics,  because  an  eye  placed  at  O  would  see 

A'  coinciding  with  A  and  B'  with  B,  and  the 

segment  A'B'  coinciding  with  AB. 

By  an  extension  of  this  idea  O'  is  also  a 

centre  of  perspective  of  AB  and  B'A'.     O  is  o 

then  the  external  centre  of  perspective  and  O'  is  the  internal 
centre. 

Def. — Two  rectilinear  figures  of  the  same  number  of  sides 
are  in  perspective  when  every  two  corresponding  sides  have 

the  same  centre  of  perspective. 
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Cor.  I.  From  the  preceding  definition  it  follows  that  two 

rectilinear  figures  of  the  same  species  are  in  perspective  when 

the  joins  of  their  vertices,  in  pairs,  are  concurrent. 

Cor.  2.  When  two  triangles  are  in  perspective,  their  ver- 
tices connect  concurrently,  and  their  corresponding  sides 

intersect  collinearly.  (253°) 
In  triangles  either  of  the  above  conditions  is  a  criterion  of 

the  triangles  being  in  perspective. 

Def. — The  line  of  collinearity  of  the  intersections  of  corre- 
sponding sides  of  triangles  in  perspective  is  called  their  axis 

of  perspective  J  and  the  point  of  concurrence  of  the  joins  of 

corresponding  vertices  is  the  centre  of  perspective. 

255°.  Let  AA',  BB',  CC  be  six  points  which  connect  con- 
currently in  the  order  written. 

These  six  points  may  be  connected  in  four  different  ways 

so  as  to  form  pairs  of  triangles  having  the  same  centre  of 

perspective,  viz., 

ABC,  A'B'C;  ABC,  A'B'C  ;  AB'C,  A'BC;  A'BC,  AB'C. 
These  four  pairs  of  conjugate  triangles  determine  four  axes 

of  perspective,  which  intersect  in  six  points  ;  these  points  are 

centres  of  perspective  of  the  sides  of  the  two  triangles  taken 

in  pairs,  three  X,  Y,  Z  being  external  centres,  and  three  X', 

Y'',  Z'  being  internal  centres.  (254°) 
The  points,  the  intersections  which  determine  them,  and 

the  segments  of  which  they  are  centres  of  perspective  are 

given  in  the  following  table  : — 

01  NT. 
Determined  by 
Intersection  of 

Centre  of 
Perspective  to 

X 
BC-B'C BC-B'C Y 

CA-C'A' 

CA'-CA 
Z 

AB-A'B' 
AB'-A'B 

X' 

BC'-B'C 
BC  -  B'C 

Y' 

CA'-C'A 

CA-CA' 

Z'
 

AB'  -  A'B 

AB  -  A'B' 
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And  the  six  points  lie  on  the  four  lines  thus, 

XYZ,   X'Y'Z,    X'YZ',   XY'Z'. 

Exercises 

1.  The  triangle  formed  by  joining  the  centres  of  the  three 

excircles  of  any  triangle  is  in  perspective  with  it. 

2.  The  three  chords  of  contact  of  the  excircles  of  any  tri- 
angle form  a  triangle  in  perspective  with  the  original. 

3.  The  tangents  to  the  circumcircle  of  a  triangle  at  the  three 

vertices  form  a  triangle  in  perspective  with  the  original. 

SECTION   IV. 

OF   INVERSION  AND  INVERSE  FIGURES. 

256°.  Def. — Two  points  so  situated  upon  a  centre-line  of  a 

circle  that  the  radius  is  a  geometric  mean  (169°,  Def.)  between 
their  distances  from  the  centre  are  called  inverse  points  with 

respect  to  the  circle. 

Thus  P  and  Q  are  inverse  points  if 

CP.C0  =  CB''i  =  R2,  a| 
R  being  the  radius. 

The  OS  is  the  circle  0/ itiversion 

or  the  inverting  0,  and  C  is  the  centre  of  inversion. 

Cor.  From  the  definition  : — 
1.  An  indefinite  number  of  pairs  of  inverse  points  may  lie  on 

the  same  centre-line. 

2.  An  indefinite  number  of  circles  may  have  the  same  two 

points  as  inverse  points. 

3.  Both  points  of  a  pair  of  inverse  points  lie  upon  the  same 
side  of  the  centre  of  inversion. 

4.  Of  a  pair  of  inverse  points  one  lies  within  the  circle  and 
one  without. 
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5.  P  and  Q  come  together  at  B  ;  so  that  any  point  on  the 
circle  of  inversion  is  its  own  inverse. 

6.  When  P  comes  to  C,  O  goes  to  00  ;  so  that  the  inverse  of 

the  centre  of  inversion  is  any  point  at  infinity. 

257°.  Problem. — To  find  the  circle  to  which  two  pairs  of 
coMinear  points  may  be  inverse  points. 

P^„-   ^Q    c    pj-   ^Q'  P)  Q>  P'j  Q'  are  the  four 
colHnear  points,  of  which 

PO  and  P'()'  are  respec- 

tively to  be  pairs  of  in- 
verse points. 

Through     P,     ()     and 

^  through    P',    O'   describe 

any  two  circles  S,  S'  to  intersect  in  two  points  U  and  V.  Let 
the  connector  UV  cut  the  axis  of  the  points  in  C,  and  let 

CT  be  a  tangent  to  circle  S'.  Then  C  is  the  centre  and  CT 
the  radius  of  the  required  circle. 

Proof.- CT2  =  CP'.  CO'  =  CU  .  CV  =  CO.  CP. 

Cor.  If  the  points  have  the  order  P,  P',  O,  O'  the  centre  C 
is  real  and  can  be  found  as  before,  but  it  then  lies  within 

both  circles  S  and  S',  and  no  tangent  can  be  drawn  to 
either  of  these  circles  ;  in  this  case  we  say  that  the  radius 

of  the  circle  is  imaginary  although  its  centre  is  real. 

In  the  present  case  P  and  O,  as  also  P'  and  O',  lie  upon 

opposite  sides  of  C,  and  the  rectangles  CP .  CO  and  CP'.  CO' 

are  both  negative.  But  R^  being  alwa'S  positive  (163°) 
cannot  be  equal  to  a  negative  magnitude. 

When  the  points  have  the  order  P,  P',  O',  Q,  the  circle  of 
inversion  is  again  real. 

Hence,  in  order  that  the  circle  of  inversion  may  be  real, 

each  pair  of  points  must  lie  wholly  without  the  other,  or  one 

pair  must  lie  between  the  others. 
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Exercises. 

1.  Given  a  0  and  a  point  without  it  to  find  the  inverse  point. 

2.  Given  a  0  and  a  point  within  it  to  find  the  inv^erse  point. 
3.  Given  two  points  to  find  any  0  to  which,  they  shall  be 

inverse. 

4.  In  3  the  0  is  to  have  a  given  radius. 

5.  In  3  the  0  is  to  have  a  given  centre  on  the  line  of  the 

points. 

258°.  Theorem. — A  0  which  passes  through  a  pair  of 
inverse  points  with  respect  to  another  0  cuts  the  latter 

orthogonally.  (i  15",  Defs.  i,  2) 
And,  conversely,  a  0  which  cuts  another  0  orthogonally 

determines  a  pair  of  inverse  points  on  any  centre-line  of  the 
latter. 

1.  P  and  O  are  inverse  to  0S. 

Then         CP.C0  =  CT2, 

CT  is  tangent  to  0S'. 
(176°,  Cor.  3) 

And  .'.  S'  cuts  S  orthogonally 
since  the  radius  of  S  is  perpen- 

dicular to  the  radius  of  S'  at  its  end-point. 

2.  Conversely,  let  S'  cut  S  orthogonally.  Then  Z-CTC 

is  a  "~1,  and  therefore  CT  is  tangent  to  S'  at  the  point  T. 
Hence  CT^^CP.CQ, 
and  P  and  O  are  inverse  points  to  0S. 

Cor.  I.  A  0  through  a  pair  of  points  inverse  to  one  another 

with  respect  to  two  0s  cuts  both  orthogonally. 

Cor.  2.  A  0  which  cuts  two  0s  orthogonally  determines 

on  their  common  centre-line  a  pair  of  points  which  are  inverse 
to  one  another  with  respect  to  both  0s. 

Cor.  3.  If  the  0S  cuts  the  0s  S'  and  S"  orthogonally,  the 

tangents  from  the  centre  of  S  to  the  0s  .S'  and  S"  are  radii  of 
S  and  therefore  equal. 
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.-.  (178°)  a  0  which  cuts  two  0s  orthogonally  has  its 
centre  on  their  radical  axis. 

Cor.  4.  A  0  having  its  centre  on  the  radical  axis  of  two 

given  0s,  and  cutting  one  of  them  orthogonally,  cuts  the 
other  orthogonally  also. 

259°.  Let  P,  O  be  inverse  points  to  circle  S  and  D  any 
point  on  it. 

Then 

CP.CQ=CD2, 
.-.    CP:CD  =  CD:CQ. 
Hence  the  triangles  CPD 

and  CDQ  are  similar,  and 

PD  and  DQ  are  homolo- 

gous sides. 

CQ^CP 

CO* 

CQ^ 

.*.  the  squares  on  the  joins  of  any  point  on  a  circle  with  a 
pair  of  inverse  points  with  respect  to  the  circle  are  propor- 

tional to  the  distances  of  the  inverse  points  from  the  centre. 

Cor.  I.  If  P  and  Q  are  fixed,  PD^:  QD2  is  a  fixed  ratio. 

.*.  the  locus  of  a  point,  for  which  the  squares  on  its  joins  to 
two  fixed  points  have  a  constant  ratio,  is  a  circle  having  the 

two  fixed  points  as  inverse  points. 

Cor.  2.  When  D  comes  to  A  and  B  we  obtain 

CP_PD2_PA2_PB2 

CQ     QD2     QA2     QB2' 
Pp^PA^PB 

•         QD     OA     QB* 
Hence  DA  and   DB  are  the  bisectors  of  the  Z-PDQ,  and 

the  segments  PB  and  BO  subtend  equal  angles  at  D. 

Hence  the  locus  of  a  point  at  which  two  adjacent  segments 

of  the  same  line  subtend  equal  angles  is  a  circle  passing 

through  the  common  end-points  of  the  segments  and  having 

their  other  end-points  as  inverse  points. 
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Cor.  3.  Let  P',  Q'  be  a  second  pair  of  inverse  points.    Then 
^BDP'=Z.BDQ',  and  ̂ BDP  =  ̂ BDQ, 

z.PDP'  =  ̂ QDQ'; 

or  the  sej^ments  PP'  and  OO'  subtend  equal  angles  at  D. 
Hence  the  locus  of  a  point  at  which  two  non-adjacent  seg- 

ments of  the  same  line  subtend  equal  angles  is  a  circle  having 

the  end-points  as  pairs  of  inverse  points. 

Cor.  4.  Since        AP  :  AQ=PB  :  BQ,  (Cor.  i) 

.'.  P  and  Q  divide  the  diameter  AB  in  the  same  manner  in- 
ternally and  externally,  and  B  and  A  divide  the  segment  PQ 

in  the  same  manner  internally  and  externally. 

.•.  from  208°,  Cor.,  P,  Q  divide  AB  harmonically,  and  A,  B 
divide  PQ  harmonically. 

Hence,  when  two  segments  of  the  same  line  are  such  that 

the  end-points  of  one  divide  the  other  harmonically,  the  circle 

on  either  segment  as  diameter  has  the  end-points  of  the  other 
segment  as  inverse  points. 

Exercises. 

1.  If  a  variable  circle  passes  through  a  pair  of  inverse  points 

with  respect  to  a  fixed  circle,  the  common  chord  of  the 

circles  passes  through  a  fixed  point. 

2.  To  draw  a  circle  so  as  to  pass  through  a  given  point  and 

cut  a  given  circle  orthogonally. 

3.  To  draw  a  circle  to  cut  two  given  circles  orthogonally. 

4.  On  the  common  centre-line  of  two  circles  to  find  a  pair  of 
points  which  are  inverse  to  both  circles. 

Let  C,  C  be  the  centres  of  the  circles  S  and  S'.  Take 
any  point  P,  without  both  circles,  and  find  its  inverses 

P'  and  P"  with  respect  to  both  circles.         (2  57^  Ex.  1) 

The  circle  through  P,  P',  and  P"  cuts  the  common 

centre-line  CC  in  the  required  points  Q  and  O'. 
c.  To  describe  a  circle  to  pass  through  a  given  point  and  cut 

two  given  circles  orthogonally. 
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6.  To  determine,  on  a  given  line,  a  point  the  ratio  of  whose 

distances  from  two  fixed  points  is  given. 

7.  To  find  a  point  upon  a  given  line  from  which  the  parts  of 

a  given  divided  segment  may  subtend  equal  angles. 

8.  A,  B,  C,  D   are  the  vertices  of  a  quadrangle.     On  the 

diagonal  BD  find  a  point  at  which  the  sides  BA  and 

BC  subtend  equal  angles. 

9.  To  draw  a  circle  to  pass  through  a  given  point  and  touch 
two  given  lines. 

260°.  Def. — One  figure  is  the  inverse  of  another  when  every 
point  on  one  figure  has  its  inverse  upon  the  other  figure. 

Theorem. — The  inverse  of  a  circle  is  a  circle  when  the 

centre  of  inversion  is  not  on  the  figure  to  be  inverted. 
s 

T 

Let  O  be  the  centre  of  inversion  and  S  be  the  circle  to  be 

inverted  ;  and  let  A',  B',  C  be  the  inverses  of  A,  B,  C  respec- 

tively.    To  prove  that  the  iLB'C'A'  =  "~l- 

Proof.— OK .  0A'  =  OB .  OB'  =  OC .  0C'  =  R^,  (256°) 
AOA'C'«AOCA,  and  AOB'C^AOCB. 

(i)  /_OC'A'  =  .lOAC,  and  (2)  _OC'B'  =  ̂ OBC. 
And  ^B'C'A'  =  lOCA'-OCB'  =  _OAC-aOBC 

=  _ACB=n, 
since  ACB  is  in  a  semicircle. 

.•.  as  C  describes  S,  its  inverse,  C,  describes  the  circle  S' 
on  A'B'  as  diameter.  q.c.d. 
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Cor.  I.  The  point  O  is  the  intersection  of  common  direct 

tangents. 

Cor.  2.  •.•  OD'.  OD  =  OT.  or.  ̂ ,'^  =  ̂'-  qY^> 
where  R  is  the  radius  of  the  circle  of  inversion  ; 

.•.  the  centre  of  a  circle  and  the  centre  of  its  inverse  are  not 
inverse   points,  unless  OD  =  OT,  />.,  unless  the   centre  of 
inversion  is  at  00, 

Cor.  3,  When  the  circle  to  be  inverted  cuts  the  circle  of 

inversion,  its  inverse  cuts  the  circle  of  inversion  in  the  same 

points.  (256°,  Cor.  5) 

261°.  Theoretn. — A  circle  which  passes  through  the  centre 
of  inversion  inverts  into  a  line. 

Let  O  be  the  centre  of  invjersion 

and  S  the  circle  to  be  inverted,  and 

let  P  and  P'  be  inverses  of  Q  and  ()'. 

Proof. — Since 

OP.OQ  =  OP'.  00'  =  R2, 
OP:OP'  =  OQ':00, 

and  the  triangles  OPP'  and   OQ'O  ^t 

are  similar,  and  _OPP'  =  _OQ'Q  =  "~l,  since  OQ'O  is  in  a 
semicircle.  And  as  this  is  true  however  OP'  be  drawn,  PP' 
is  a  line  _L  to  OP,  the  common  centre-line  of  the  circle  of 

inversion  and  the  circle  to  be  inverted.  q.e.d. 

Cor.  I.  Since  inversion  is  a  reciprocal  process,  the 
inverse  of  a  line  is  a  circle  through  the  centre  of  inversion 

and  so  situated  that  the  line  is  _L  to  the  common  centre- 
line of  the  two  circles. 

Cor.  2.  Let  I  be  the  circle  of  inversion,  and  let  PT  and  PT' 
be  tangents  to  circles  I  and  S  respectively.     Then, 

PT*2  =  OP2-OT2=OP-'-OP.OO  =  OP.PO  =  PT'^, 

PT  =  PT', 
.'.  when  a  circle  inverts  into  a  line  with  respect  to  another 

circle,  the  line  is  the  radical  axis  of  the  two  circles.  (178°,  Xy^i.) 
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Cor.  3.  If  a  circle  passes  through  the  centre  of  inversion 

and  cuts  the  circle  of  inversion,  its  inverse  is  their  common 
chord. 

Cor.  4.  A  centre-line  is  its  own  inverse. 

Cor.  5.  Considering  the  centre  ofinversion  as  a  point-circle, 
its  inverse  is  the  line  at  00 . 

262°.  A  circle  which  cuts  the  circle  of  inversion  orthogon- 
ally inverts  into  itself. 

Since  circle  S  cuts  circle  I  orthogon- 
ally OT  is  a  tangent  to  S,  and  hence 

OP.OO  =  OT2, 

.*.  P  inverts  into  O  and  O  into  P,  and 
the  arc  TQV  inverts  into  TPV  and  7iice 

versa.  q.e.d. 

Cor.  Since  I  cuts  S  orthogonally,  it  is  evident  that  I  inverts 

into  itself  with  respect  to  S. 

263°.  A  circle,  its  inverse,  and  the  circle  of  inversion  have 
T^       a  common  radical  axis. 

Let  I  be  the  circle  of  inver- 

sion, and  let  the  circle  S'  be 
the  inverse  of  S. 

The  tangents  TT'  and  VV 
meet  at  O  (260°,  Cor.  i),  and 
T,  T'  are  inverse  points.  D, 

the  middle  point  of  TT'  is  on  the  radical  axis  of  S  and  S', 
and  the  circle  with  centre  at  D  and  radius  DT  cuts  S  and  S' 
orthogonally.  But  this  circle  also  cuts  circle  I  orthogonally 

(258°).     .*.  D  is  on  the  radical  axes  of  I,  S  and  S'. 

Similarly  D',  the  middle  point  of  the  tangent  VV,  is  on  the 

radical  axes  of  I,  S  and  S'. 

.*.  the  three  circles  I,  S,  and  S'  have  a  common  radical 

axis  passing  through  D  and  D'.  q.e.d. 
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Remarks.  ~Th.\s  is  proved  more  simply  by  supposing  one 
of  the  circles  to  cut  the  circle  of  inversion.  Then  its  inverse 

must  cut  the  circle  of  inversion  in  the  same  points,  and  the 
common  chord  is  the  common  radical  axis. 

The  extension  to  cases  of  non-intersection  follows  from  the 

law  of  continuity. 

264°.  Theorem — The  angle  of  intersection  of  two  lines  or 
circles  is  not  changed  in  magnitude  by  inversion. 

Let  O  be  the  centre  of  in- 

version, and  let  P  be  the  point 
of  intersection  of  two  circles  S 

and  S',  and  O  its  inverse. 
Take  R  and  T  points  near  P,  0 
and  let  U  and  V  be  their  in- 

verses.    Then 

OU.OR  =  OQ.OP  =  OV.OT  =  R«, 
AOQU^AORP, 

and  ^0()U=^ORP  =  z.RPX-lROP. 

Similarly        ̂ OQV  =  ̂ TPX  -^TOP, 

z.UQV  =  ̂ RPT-^ROT. 
But  at  the  limit  when  R  and  T  come  to  P  the  angle  between 

the  chords  RP  and  PT  becomes  the  angle  between  the  circles 

(115°,  Def.  I ;   109°,  Def.  i).    And,  since  ̂ ROT  then  vanishes, 
we  have  ultimately        -UOV  =  _R PT. 

Therefore  S  and  S',  and  their  inverses  Z  and  Z',  intersect  at 
the  same  angle. 

Cor.  I.  If  two  circles  or  a  line  and  a  circle  touch  one 
another  their  inverses  also  touch  one  another. 

Cor.  2.  If  a  circle  in\erts  into  a  line,  its  centre-lines  invert 
into  circles  having  that  line  as  a  common  diameter.  For, 

since  the  circle  cuts  its  centre-lines  orthogonally,  their  in- 
verses must  cut  orthogonally.  But  the  centre  line  is  the  only 

line  cutting  a  circle  orthogonally. 
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Exercises. 

1.  What  is  the  result  of  inverting  a  triangle  with  respect  to 
its  incircle  ? 

2.  The  circle  of  self-inversion  of  a  given  circle  cuts  it  or- 
thogonally. 

3.  Two  circles  intersect  in  P  and  Q,  and  AB  is  their  common 

centre-line.     What  relation  holds  between  the  various 

parts  when  inverted  with  P  as  centre  of  inversion  ? 

4.  A  circle  cuts  two  circles  orthogonally.     Invert  the  system 
into  two  circles  and  their  common  centre-line. 

5.  Three  circles  cut  each  other  orthogonally.     If  two  be  in- 
verted into  lines,  their  intersection  is  the  centre  of  the 

inverse  of  the  third. 

265°.  The  two  following  examples  are  important. 

Ex.  I.  Any  two  circles  cut  their  common  centre-hne,  and  a 

circle  which  cuts  them  orthogonally  in  two  sets  of  points 

which  connect  concurrently  on  the  last-named  circle. 

S  and  S'  are  the 
two  given  circles  and 
Z    a    circle     cutting 

a(<7~   f — pfe   fc — ^   ^D  them  orthogonally. 

Invert    S    and    S' 
and     their     common 

centre  line    with    re- 

~o  spect     to     a      circle 
which  cuts  S  and  S'  orthogonally  and  has  its  centre  at  some 

point  O  on  Z.  S  and  S'  invert  into  themselves,  and  their 

centre-line  into  a  circle  through  O  cutting  S  and  S'  ortho- 
gonally, i.e.^  into  circle  Z. 

.•.  A'  is  the  inverse  of  A,  B'  of  B,  etc  ,  and  the  points  AA', 

BB',  CC,  DD'  connect  concurrently  at  O. 

Ex.  2.  The  nine-points  circle  of  a  triangle  touches  the  in- 
circle and  the  excircles  of  the  triangle. 
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Let  ABC  be  any  triangle  having  its  side  AB  touched  by 

the    incircle    I    at     b   h 

T,  and  by  the  ex- 
circle  to  the  side 

c  at  T'.  Take 
CH^CAand  CD 

=  CB,andjoin  UH 
and  HA. 

From  the  sym- 

metry of  the  fig- 
ure it  is  evident 

that  HD  touches 

both  the  circles  I  and  S.  Let  E  and  F  be  the  middle  points 
of  AB  and  AC,  and  let  EF  cut  HA  in  G. 

From  135°,  Ex.  i,  AT  =  BT'  =  j-^?, 

whence  ET  =  ET'  =  \{a  -  b). 
But,  since  EF  bisects  HA,  EG  =  ̂ BH=^(/r     b\ 

ET  =  ET'-EG, 
ahd  the  circle  with  E  as  centre  and  EG  as  radius  cuts  1  and 

S  orthogonally,  and,  with  respect  to  this  circle,  the  circles  I 
and  S  invert  into  themselves. 

Now,     PF  :HC  =  DF  :DC  =  BC-CF:BC, 

PF 

^^(
BC 

EP=EF-PF 
2  2a 

EP.EF  =  (--^-t--)-  =  K^-^)2  =  EG2. 
2  2a'2 

.'.  P  inverts  into  F,  and  the  line  HD  into  the  circle  through 
E  and  F,  and  by  symmetry,  through  the  middle  point  of  BC. 

But  this  is  the  nine-points  circle  (116°,  Ex.  6).  And  since 
HD  touches  I  and  S,  the  nine-points  circle,  which  is  the 
inverse  of  HD,  touches  the  inverses  of  I  and  S,  i.e.,  I  and  S 
themselves. 

And,    similarly,    the   nine-points   circle    touches    the   two 
remaining:  excircles. 
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SECTION  V. 

OF    POLE   AND    POLAR. 

266°.  Dd/.—The  line  through  one  of  a  pair  of  inverse  points 
perpendicular  to  their  axis  is  the  polar  of  the  other  point  with 

respect  to  the  circle  of  inversion,  and  the  point  is  the  pole  of 
the  line. 

The  circle  is  called,  in  this  relation,  ih^  polar  circle^  and  its 

centre  is  called  the  polar  centre. 

From  this  definition  and  from  the  nature  of  inverse  points 

we  readily  obtain  the  following  : — 

Cor.  I.  The  polar  of  the  polar  centre  is  a  line  at  infinity. 

But,  since  the  point  which  is  the  inverse  of  the  centre  may  go 

to  00  along  any  centre-Hne,  all  the  lines  obtained  therefrom 
are  polars  of  the  centre.  And  as  a  point  has  in  general  but 

one  polar  with  respect  to  any  one  circle,  we  speak  of  the  polar 

of  the  centre  as  being  />^<?  line  at  infinity,  thus  assuming  that 

there  is  but  otie  line  at  infinity. 

Cor.  2.  The  polar  of  any  point  on  the  circle  is  the  tangent 

at  that  point;  or,  a  tangent  to  the  polar  circle  is  the  polar  to 

the  point  of  contact. 

Cor.  3.  The  pole  of  any  line  lies  on  that  centre-line  of  the 
polar  circle  which  is  perpendicular  to  the  former  line. 

Cor.  4.  The  pole  of  a  centre-line  of  the  polar  circle  lies 
at  00  on  the  centre-line  which  is  perpendicular  to  the 
former. 

Cor,  5.  The  angle  between  the  polars  of  two  points  is 

equal  to  the  angle  subtended  by  these  points  at  the  polar 
centre. 

267°.  Theorem.— \{  V  and  Q  be  two  points,  and  P  lies  on 
the  polar  of  O,  then  O  lies  on  the  polar  of  P. 
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OP    and    OO     are    centre-lines    of 

and  PE,  _L  to  GO,  is  the  polar  of  O. 

To  prove  that  OD,  ±  to  OP,  is  the 

polar  of  P. 

Proof.— T\\^  As   ODO   and   OEP 
are  similar. 

OE:OP  =  OD:00, 

and.-.         OE.OO^OP.OU. 

But  E  and  Q  are  inverse  points  with 

respect  to  circle  I, 
P  and  D  are  inverse  points 

and  .'.  DQ  is  the  polar  of  P. 

Def. — Points  so  related  in  position  that  each  lies  upon  the 

polar  of  the  other  are  conjugate  points,  and  lines  so  related 
that  each  passes  through  the  pole  of  the  other  are  conjugate 
lines. 

Thus  P  and  Q  are  conjugate  points  and  L  and  M  are  con- 

jugate lines. 

Cor.  I.  If  Q  and,  accordingly,  its  polar  PV  remain  fixed 

while  P  moves  along  PE,  L,  which  is  the  polar  of  P,  will 

rotate  about  Q,  becoming  tangent  to  the  circle  when  P  comes 

to  U  or  V,  and  cutting  the  circle  when  P  passes  without. 

Similarly,  if  Q  moves  along  L,  M  will  rotate  about  the 

point  P. 

Cor.  2.  As  L  will  touch  the  circle  at  I'  and  \\  UV  is  the 
chord  of  contact  for  the  point  Q. 

.*.  for  any  point  without  a  circle  its  chord  of  contact  is  its 

pol:ir. 

Cor.  3.  For  every  position  of  P  on  the  line  M,  its  polar 

passes  through  O. 

.'.  collinear  points  have  their  polars  concurrent,  and  con- 
current lines  have  their  poles  collinear,  the  point  of  concur- 

rence being  the  pole  of  the  line  of  collinearity. 
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Exercises. 

1.  Given  a  point  and  a  line  to  find  a  circle  to  which  they  are 

pole  and  polar. 

2.  In  Ex.  I  the  circle  is  to  pass  through  a  driven  point. 

3.  In  the  figure  of  267°  trace  the  changes, 
(a)  when  P  goes  to  00  along  M  ; 

(^)  when  P  goes  to  00  along  OD  ; 

(c)  when  P  moves  along  UV,  what  is  the  locus  of  D  ? 

4.  From  any   point  on  a  circle  any  number  of  chords  are 

drawn,  show  that  their  poles  all  lie  on  the  tangent  at 

the  point. 

5.  On  a  tangent  to  a  circle  any  number  of  points  are  taken, 

show  that  all  their  polars  with  respect  to  the  circle  pass 

through  the  point  of  contact. 

268°.    Theorem. — The  point  of  intersection  of  the  polars  of 
two  points  is  the  pole  of  th6  join  of  the  points. 

A  Let  the  polars  of  B  and  of  C  pass  through  A. 

Then  A  lies  on  the  polar  of  B,  and  therefore  B 

lies   on   the   polar   of  A   (267°).      For  similar 
B.  .  c  reasons  C  lies  on  the  polar  of  A. 

.*.  the  polar  of  A  passes  through  B  and  C  and  is  their  join. 

q.e.d. 
Cor,  Let  two  polygons  ABCD...  and  abc...  be  so  situated 

that  a  is  the  pole  of  AB,  b  of  BC,  c 

of  CD,  etc. 

Then,  since  the  polars  of  a  and  b 

meet  at  B,  B  is  the  pole  of  ab  ; 

similarly  C  is  the  pole  of  bc^  etc. 

.".  if  two  polygons  are  such  that 
the  vertices  of  one  are  poles  of  the  sides  of  the  other,  then, 

reciprocally,  the  vertices  of  the  second  polygon  are  poles  of 
the  sides  of  the  first,  the  polar  circle  being  the  same  in 
each  case. 
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Def.  1.- -Polygons  related  as  in  the  preceding  corollary  are 
polar  reciprocals  to  one  another. 

Def.  2. — When  two  polar  reciprocal  As  become  coincident, 

the  resulting  A  is  self-reciprocal  or  self -conjugate^  each  vertex 
being  the  pole  of  the  opposite  side. 

Def  3.— The  centre  of  the  0  with  respect  to  which  a  A  is 
self-reciprocal  is  the  polar  centre  of  the  A»  and  the  0  itself 
is  the  polar  circle  of  the  A- 

269°.  The  orthocentre  of  a  triangle  is  its  polar  centre. 

Let  ABC   be  a  self-conjugate  A-  a.^-— -— ~-^z 
Then  A  is  the  pole  of  BC,  and  B  of 

AC,  and  C  of  AB. 
Let  AX,  _L  to  BC,  and  BY,  ±  to 

AC,  meet  in  O.  Then  O  is  the  ortho- 

centre.  (88°,  Def) 
Now,  as  AX  is  J_  to  BC,  and  as  A 

is  the  pole  of  BC,  the  polar  centre 
lies  on  AX.  For  similar  reasons  it 

lies  on  BY. 

.'.  O  is  the  polar  centre  of  the  AABC. 
Cor.  I.  With  respect  to  the  polar  0  of  the  A»  the  0  on 

AG  as  diameter  inverts  into  a  line  _L  to  AG  (261°).  And  as 
A  and  X  are  inverse  points,  this  line  passes  through  X  ; 

therefore  BC  is  the  inverse  of  the  0  on  GA  as  diameter. 

Similarly,  AC  is  the  inverse  of  the  0  on  GB  as  diameter, 

and  AB  of  the  0  on  GC  as  diameter. 

Cor.  2.  As  the  0  on  AG  inverts  into  BC,  the  point  D  is 

inverse  to  itself,  and  is  on  the  polar  0  of  the  A-         (256^,  5) 
.*.  GD  is  the  polar  radius  of  the  A- 

Cor.  3.  If  G  falls  within  the  A»  it  is  evident  that  the  0  on 
GA  as  diameter  will  not  cut  CB.  In  this  case  the  polar 

centre  is  real  while  the  polar  radius  is  imaginary.  (257°,  Cor.) 
Hence  a  A  which  has  a  real  polar  circle  must  be  obtuse- 

aneled. 
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Cor.  4.  The  0  on  BC  as  diameter  passes  through  Y  since 
Y  is  a  H- 

But  B  and  Y  are  inverse  points  to  the  polar  0. 

.*.  the  polar  0  cuts  orthogonally  the  0  on  BC  as  diameter. (258O 

Similarly  for  the  circles  on  CA  and  AB. 

.'.  the  polar  0  of  a  ̂   cuts  orthogonally  the  circles  having 
the  three  sides  as  diameters. 

Cor.  5.  TheZ.AOZ  =  z.B,_BOZ  =  ̂ A,and  :_OAC=-(C -|). 
And  CX  =  OC  sin  AOZ=OC  sin  B,  also  =-^cosC, 

0C=— -^ — -.  cos  C= -<^cos  C, sm  B 

where  d  is  the  diameter  of  the  circumcircle  (228'')  to  the 
triangles  AOC  or  BOC  or  AOB  or  ABC,  these  being  all 

equal.  (116°,  Ex.  4) 
Similarly         OA  =  ̂ cos  A,  OB  =  rt'cos  B. 
But  OX  =  OCcosB= -r/cosBcosC, 

R2  =  OX.  OA=:-rt'2cosAcosBcosC. 

In  order  that  the  right-hand  member  may  be  +,  one  of  the 
angles  must  be  obtuse. 

Cor.  6.  R2  =  OC.OZ  =  OC(OC  +  CZ)  =  OC-'  +  OC.CZ, 

and  OC=-^/cosC,  and  CZ  =  .^sinB  =  ̂ ,  (228) 
R2  =  rt'2(i_sin2c)_,^^cosC 

^^d'^-y^d'^b'^  +  c').  (217°) 

,    If  O   is  within   the  triangle,   d"^  <  \^{d- ^  b'- ■¥ c^)  and  R   is 
imaginary. 

Exercises. 

1.  If  two  triangles  be  polar  reciprocals,  the  inverse  of  a  side 

of  one  passes  through  a  vertex  of  the  other. 

2.  A  right-angled  triangle  has  its  right-angled  vertex  at  the 
centre  of  a  polar  circle.     What  is  its  polar  reciprocal  ? 

3.  In  Fig.  of  269  \  if  the  circumcircle  of  ABO  cuts  CY  pro- 

duced in  C,  prove  that  CY  =  YC'. 
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4.  If  P  be  any  point,  ABC  a  triangle,  and  A'B'C  its  polar 
reciprocal  with  respect  to  a  polar  centre  O,  the  per- 

pendiculars from  O  on  the  joins  PA,  PB,  and  PC 

intersect  the  sides  of  A'B'C  collinearly. 

27o^  Theorem. —  U  two  circles  intersect  orthogonally,  the 

end-points  of  any  diameter  of  either  are  conjugate  points 
with  respect  to  the  other. 

Let  the  circles  S  and  S  in- 

tersect orthogonally,  and  let 

PO  be  a  diameter  of  circle  S'. 

Then  P'  is  inverse  to  P,  and 

P'Q  is  ±  to  CP. 

.*.  P'Q  is  the  polar  of  P  with 
respect  to  circle  S. 

.'.  Q  lies  on  the  polar  of  P.  and  hence  P  lies  on  the  polar 

of  (),  and  P  and  (2  are  conjugate  points  (267''  and    Def.)- 

(j.e.d. Cor.  I.  PQ2=CP=*+CC2-'-2CP.CP'  ^172°,  2) 

=  CP2-i-CQ-'-2R'« 
=  CP''^-R''^4-CQ2-R2=T'-^-l-T'^ 

where  T  and  T'  are  tangents  from  P  and  Q  to  the  circle  S. 

.'.  the  square  on  the  join  of  two  conjugate  points  is  equal 
to  the  sum  of  the  squares  on  the  tangents  from  these  points 

to  the  polar  circle. 

Cor.  2.  If  a  circle  be  orthogonal  to  any  number  of  other 

circles,  the  end-points  of.  any  diameter  of  the  first  iire  conju- 
gate points  with  respect  to  all  the  others.  And  when  two 

points  are  conjugate  to  a  number  of  circles  the  polars  of  either 

point  with  respect  to  all  the  circles  pass  through  the  other 

point. 

271°.    Theorem. — The  distances  of  any  two  points  from  a 
polar  centre  are  proportional  to  the  distances  of  each  point 

'        from  the  polar  of  the  other  with  respect  to  that  centre. (Salmon) 
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NN'  is  the  polar  of  P  and  MiM'  is  the  polar  of  Q. 
P0:(20  =  PM  :0N. 

Then 

MM' 

Proof.— Let  Om  be   ||  to 

and  On  be  ||  to  NN'.     Then 
OP'.  OP  =  OQ'.  OQ 

OP^OQ'^Mw 

OQ     OP'     N«' 
But  the  triangles  OPm  and  Oi2'i 
are  similar, 

OP^Pw^M^ 

OQ     Q«      N« _Fm+ Mm_?M  , 

Qn  +  Nn      QN*   
 ̂'^*  • Cor.  I.  A,  B  are  any  two  points  and  L  and  M  their  polars, 

and  P  the  point  of  contact  of  any  tangent  N. 

AX  and  BY  are  ±  upon  N,  and  PH  and  PK  are  ±  upon  L 

and  M  respectively.     Then 

BY^BO       ,  AX^AO 

PK      R   ̂       PH       R' 
BY.  AX     AO.BO     A  ,  ,^„,,.,„, 

AX.BY=>&.PH.PK. 

If  A  and  B  are  on  the  circle,  L  and  M  become  tangents 

having  A  and  B  as  points  of  contact,  and  AO  =  BO  =  R. 

AX.BY  =  PH.PK.  (See  211°,  Ex.  i) 

Exercises. 

If  P  and  Q  be  the  end-points  of  any  diameter  of  the  polar 
circle  of  the  AABC,  the  chords  of  contact  of  the  point 

P  with  respect  to  the  circles  on  AB,  BC,  and  CA  at 
diameters  all  pass  through  Q. 

Two  polar  reciprocal  triangles  have  their  corresponding 

vertices  joined.  Of  what  points  are  these  joins  the 

polars  ? 
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A,  B,  C  are  the  vertices  of  a  triangle  and  L,  M,  N  the 

corresponding  sides  of  its  reciprocal  polar.  If  T  be  a 

tangent  at  any  point  P,  and  AT  is  J_  to  T,  etc., 
AT.BT.CT_AO 
PL 

BO  .CO 
-^   =^  constant. R PM .  PN 

If  A,  B,  C  are  on  the  circle, 
AT .  BT .  CT  =  PL .  PM  .  PN. 

In  Ex.  3,  if  A',  B',  C  be  the  vertices  of  the  polar  reciprocal, 
AT .  B'T .  CT  _  A'O  .  B'O  .  CO 
AT.BT.CT  R3 

The  right-hand  expression  is  independent  of  the  position 
ofT. 

If  ABC,  A'B'C  be  polar  reciprocal  triangles  whose  sides 

are  respectively  L,  M,  N  and  L',  M',  N',  and  if  AM'  is 
the  JL  from  A  to  M',  etc., 

AM'.  BN'.  CL'=AN'.  BL'.  CM', 
and         A'M  .  B'N  .  C'L  =  A'N  .  B'L .  CM. 

Then  (271°) 
etc. 

272°.   7"^^<9r^w.—  Triangles  which  are  polar  reciprocals  to 
one  another  are  in  perspective.  yp' 

Let  ABC  and  A'B'C  be  polar  recipro- 

cals.    Let  AP,  AP'  be  perpendiculars  on   ̂ ' 
A'B'  and  A'C,  BO  and  B(2'  be  perpen- 

diculars on  B'C  and  B'A',  etc. 

AP'^AO     BQ'^BO 

BQ     BO'    CR     CO' 
AP'.  BQ'.  CR'_ 

AP.BQ.CR       * 
!iut      AP'  =  AA'sinAA'P',   AP  =  AA'sin  AA'P', 

AP'^sinAA'P' 
AP     sin  AA'P' 

and  similarly  for  the  other  ratios.     Hence  AA',  BB',  CC 
divide  the  angles  at  A,  B,  and  C,  so  as  to  fulfil  the  criterion 

of  251°. 
.•.  A  A',  BB',  and  CC  are  concurrent,  and  the  triangles  arc 

in  perspective.  (254°,  Cor.  2) 
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SECTION    VI. 

OF   THE    RADICAL   AXIS. 

273°.  Def.  I. — The  line  perpendicular  to  the  common 
centre-line  of  two  circles,  and  dividing  the  distance  be- 

tween the  centres  into  parts  such  that  the  difference  of 

their  squares  is  equal  to  the  difference  of  the  squares  on  the 
conterminous  radii,  is  the  radical  axis  of  the  two  circles. 

Cor.  I.  When  two  circles  intersect,  their  radical  axis  is  the 

secant  line  through  the  points  of  intersection. 

Cor.  2.  When  two  circles  touch,  their  radical  axis  is  the 

common  tangent  at  their  point  of  contact. 

Cor.  3.  When  two  circles  are  mutually  exclusive  without 
contact,  their  radical  axis  lies  between  them. 

Cor.  4.  When  two  circles  are  equal  and  concentric,  their 

radical  axis  is  any  line  whatever,  and  when  unequal  and  con- 
centric it  is  the  line  at  co. 

Def.  2. — When  three  or  more  circles  have  a  common 

radical  axis  they  are  said  to  be  co-axnL 

274°.  If  several  circles  pass  through  the  same  two  points 
they  form  a  co-axal  system. 

For  (273°,  Cor.  i)  the  line  through  the  points  is  the  radical 
axis  of  all  the  circles  taken  in  pairs,  and  is  therefore  the 

common  radical  axis  of  the  system. 

Such  circles  are  called  circles  of  the  commoit  poiiit  species^ 

contracted  to  t./ -circles. 

Let  a  system  of  ̂ ./.-circles  S,  Sj,  S.j,  ...,  pass  through  the 

common  points  P  and  O,  and  let  L'L  be  the  right  bisector 
of  PO. 

Then  the  centres  of  all  the  circles  of  the  r./.-system  lie 

on    L'L    and   have    M'M    for   their    common    radical    axis. 
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Hence  from  any  point  C  in    M'M  the  tangents  to  all  the 

circles  are  equal  to  one  another.  (178') 

Let  CT  be  one  of  these  tangents.  The  circle  Z  with  C  as 

centre  and  CT  as  radius  cuts  all  the  f./>. -circles  orthogonally. 
Similarly,  a  system  of  circles  Z,  Zj,  Zg,  ...  may  be  found 

with  centres  lying  on  M'M  such  that  each  one  of  the  system 
cuts  orthogonally  every  one  of  the  r./.-circles. 

Since  the  centre  of  any  circle  of  this  new  system  is  obtained 

by  drawing  a  tangent  from  any  one  of  the  circles,  as  S.^  of 

the  t".^. -species,  to  meet  MM',  it  follows  that  no  circle  of  this 
new  system  can  have  its  centre  lying  between  P  and  Q.  As 

T  approaches  P  the  dependent  circle  Z  contracts  until  it  be- 

comes the  point-circle  P,  when  T  comes  to  coincidence  with  P. 
Hence  P  and  O  are  limiting  forms  of  the  circles  having 

their  centres  on  M'M  and  cutting  the  (./^.-circles  orthogon- 
ally. The  circles  of  this  second  system  are  consequently 

called  limiting  point  circles,  contracted  to  /./.-circles. 
From  the  way  in  which  //.-circles  are  obtained  we  see  that 

from  any  point  on  L'L  tangents  to  circles  of  the  /./.-system 

are  all  equal,  and  hence  that  L'L  is  the  radical  axis  of  the 
/./.-circles.     Thus  the  two  systems  of  circles  have  their  radi- 
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cal  axes  perpendicular,  and  every  circle  of  one  system  cuts 

every  circle  of  the  other  system  orthogonally. 

Hence  P  and  O  are  inverse  points  with  respect  to  every 

circle  of  the  /./>. -system,  and  with  respect  to  any  circle  of 
either  system  all  the  circles  of  the  other  system  invert  into 
themselves. 

If  P  and  Q  approach  L,  the  ̂ ./.-circles  separate  and  the 

/./^.-circles  approach,  and  when  P  and  Q  coincide  at  L  the 
circles  of  both  species  pass  through  a  common  point,  and  the 

two  radical  axes  become  the  common  tangents  to  the  respec- 
tive systems. 

If  this  change  is  continued  in  the  same  direction,  P  and  Q 

become  imaginary,  and  two  new  limiting  points  appear  on 

the  line  L'L,  so  that  the  former  /./.-circles  become  <:.^.-circles, 
and  the  former  ̂ ./.-circles  become  /./^.-circles. 

Thus,  in  the  systems  under  consideration,  two  limiting 

points  are  always  real  and  two  imaginary,  except  when  they 

all  become  real  by  becoming  coincident  at  L. 

Cor.  I.  As  the  r./. -circles  and  the  /./.-circles  cut  each  other 

orthogonally,  the  end -points  of  a  diameter  of  any  circle  of  one 
species  are  conjugate  points  with  respect  to  every  circle  of 

the  other  species.  But  a  circle  of  either  species  may  be  found 

to  pass  through  any  given  point  (259°,  Ex.  5).  .'.  the  polnrs 
of  a  given  point  with  respect  to  all  the  circles  of  either  species 
are  concurrent. 

Cor.  2.  Conversely,  if  the  polars  of  a  variable  point  P  with 

respect  to  three  circles  are  concurrent,  the  locus  of  the  point 
is  a  circle  which  cuts  them  all  orthogonally. 

For  let  Q  be  the  point  of  concurrence.  Then  P  and  O  are 

conjugate  points  with  respect  to  each  of  the  circles.  Hence 

the  circle  on  PO  as  diameter  cuts  each  of  the  circles  ortho- 

gonally. (270°) 
Cor.  3.  If  a  system  of  circles  is  cut  orthogonally  by  two 

circles,  the  system  is  co-axal. 
For  the  centres  of  the  cutting  circles  must  be  on  the  radical 
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axis  of  all  of  the  other  circles  taken 

have  a  common  radical  axis. 
in  pairs  ;  therefore  they 

Cor.  4.  If  two  circles  cut  two  other  circles  orthogonally,  the 

common  centre-line  of  either  pair  is  the  radical  axis  of  the 
other  pair. 

Cor.  5.  Two  /./.-circles  being  given,  a  circle  of  any  required 
magnitude  can  be  found  co-axal  with  them.  But  if  the  circles 

be  of  the  ̂ ./.-species  no  circle  can  be  co-axal  with  them  whose 
diameter  is  less  than  the  distance  between  the  points. 

Exercises. 

1.  Given  two  circles  of  the  /./.-species  to  find  a  circle  with  a 
given  radius  to  be  co-axal  with  them. 

2.  Given  two  circles  of  either  species  to  find  a  circle  to  pass 

through  a  given  point  and  be  co-axal  with  them. 

3.  To  find  a  point  upon  a  given  line  or  circle  such  that  tan- 
gents from  it  to  a  given  circle  may  be  equal  to  its 

distance  from  a  given  point. 

4.  To  find  a  point  whose  distances  from  two  fixed  points  may 

be  equal  to  tangents  from  it  to  two  fixed  circles. 

275°.  Theorem. — The  difference  of  the  squares  on  the  tan- 
gents from  any  point  to  two  circles  is  equal  to  twice  the 

rectangle  on  the  distance  between  the  centres  of  the  circles 

and  the  distance  of  the  point  from  their  radical  axis. 

Let  P  be  the  point,  S  and 

S'  the  circles,  and  LI  their 
radical  axis.  Let  PO  be  _L 
to  AB. 

p 72  _  p'p'2 

=  PA2-PB2-(r2-r'0, 

where  r,   r'  are  radii   of  S 

and  S'. 
.  But,  273^  Def.  i, 

r2-r'2=.Ar-'-IB^, 
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and  PA-^     PB^^ACP-QB^,  (172°,  1) 
pj2_  px'2  =  AQ2- OB'^- (AI-^- IB-^) 

=  ABCAci"-  OB)  -  AB(AI  -  I B) 
=  2AB.IO  =  2AB.PL.  q.e.d. 

This  relation  is  fundamental  in  the  theory  of  the  radical  axis. 

Cor.  I.  When  P  is  on  the  radical  axis  PL=o,  and  the 

tangents  are  equal,  and  when  P  is  not  on  the  radical  axis  the 

tangents  are  not  equal. 

Cor.  2.  The  radical  axis  bisects  all  common  tangents  to  the 
two  circles. 

Cor.  3.   If  P  lies  on  the  circle  S',  PT'  =  o,  and 
PT2  =  2AB.  PL, 

.*.  the  square  of  the  tangent  from  any  point  on  one  circle  to 
another  circle  varies  as  the  distance  of  the  point  from  the 
radical  axis  of  the  circles. 

Cor.  4.  If  C  is  the  centre  of  a  circle  S"  passing  through  P 
and  co-axal  with  S',  PT2  =  2AC  .  PL. 

Now,  if  P  could  at  any  time  leave  this  circle  we  would  have 
PT'2-PT"2  =  2AC.  PL, 

where  PT"  is  the  tangent  from  P  to  the  circle  S" 
p'p2=pX2_pT"-2, 

which  is  impossible  unless  PT"=o. 
Hence  the  locus  of  a  point,  which  so  moves  that  the  square 

on  the  tangent  from  it  to  a  given  circle  varies  as  the  distance 

of  the  point  from  a  given  line,  is  a  circle,  and  the  line  is  the 

radical  axis  of  this  circle  and  the  given  circle. 

Cor.  5.  Let  PT'  =  /C- .  PT,  where  k  is  a  constant.     Then 
PT2-PT'~(i-/&2)PT2  =  2AB.PL, 

p^9_2AB.  PL 

As  PT-  varies  as  PL,  P  lies  on  a  circle  co-axal  with  S  and  S'. 
.*.  the  locus   of  a  point  from  which  tangents  to  two  given 

circles  are  in  a  constant  ratio  is  a  circle  co-axal  with  the  two. 
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Exercises. 

1.  In  Cor.  5  what  is  the  position  of  the  locus  for  k~o,  /<'  =  i, 
k  =  >  \,  k  negative? 

2.  What  is  the  locus  of  a  point  whose  distances  from  two 

fixed  points  are  in  a  constant  ratio  .'* 
3.  P  and   O  are  inverse  points  to  the  circle  I,  and  a  line 

through  P  cuts  circle  I  in  A  and  B.  PO  is  the  internal 

or  external  bisector  of  the  _AOB,  according  as  P  is 
within  or  without  the  circle. 

4.  P,  Q  are  the  limiting  points  of  the  /.^.-circles  S  and  S',  and 

a  tangent  to  S'  at  T  cuts  S 
in  A  and  B. 

Then,  considering  P  as  a 

point-circle,  tangents  from 

any  point  on  S  to  P  and  S' are  in  a  constant  ratio. 

.-.  AP:AT  =  BP:BT,  and  PT  is  the  external  bi- 

sector of  _APB.  If  S'  were  enclosed  by  S,  BT  would 
be  an  internal  bise'^tor. 

5.  The  points  of  contact  of  a  common  tangent  to  two  l.p.- 
circles  subtend  a  right  angle  at  either  Hmiting  point. 

276°.  Theorem.-  T\\&  radical  axes  of  three  circles  taken  in 
pairs  are  concurrent. 

Let  Si,  S2,  S3  denote  the  circles,  and  let  L  be  the  radical 

axis  of  Sj  and  S2,  M  of  S.,  and  S3,  and  N  of  S3  and  S,. 

L  and  M  meet  at  some  point  O,  from  which  OT,  =  OT.,, 

and  0T._,  =  0T3,  where  OT,  is  the  tangent  from  O  to  S^  etc., 

0Ti  =  0T3,  and  O  is  on  N, 

.•.     L,  M,  and  N  are  concurrent  at  O. 
Def. — The  point  of  concurrence  of  the  three  radical  axes  of 

three  circles  taken  in  paiis  is  called  the  radical  centre  of  the 
circles. 

Cor.  I.  if  S„  S._,  are  cut  by  a  third  circle  Z,  the  common 

chords  of  Sj,  Z  and  S.,,  Z  intersect  on  the  radical  axis  of  S, 
and  Sg. 
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Hence  to  find  the  radical  axis  of  two  given  circles.  S^  anci 

S2,  draw  any  two  circles  Z  and  Zj  cutting  the  given  circles. 

The  chords  S^,  Z  and  S2,  Z  give  one  point  on  the  radical  axis 

and  the  chords  Sj,  Z^  and  83,  Z^  give  a  second  point. 

Cor.  2.  If  three  circles  intersect  each  other,  their  three 

common  chords  are  concurrent.  (See  249°,  Ex.  i.) 

Cor.  3.  If  a  circle  touches  two  others,  the  tangents  at  the 

points  of  contact  meet  upon  the  radical  axis  of  the  two. 

Cor.  4.  If  a  circle  cuts  three  circles  orthogonally,  its  centre 

is  at  their  radical  centre  and  its  radius  is  the  tangent  from 

the  radical  centre  to  any  one  of  them. 

Cor.  5.  If  in  Cor.  4  the  three  circles  are  co-axal,  any  num- 
ber of  circles  may  be  found  to  cut  them  orthogonally,  and 

hence  they  have  no  definite  radical  centre,  as  any  point  upon 
the  common  radical  axis  of  the  three  becomes  a  radical 

centre. 

Cor.  6.  If  in  Cor.  4  the  three  circles  mutually  intersect  one 

another,  the  radical  centre  is  within  each  circle  (Cor.  2),  and 

no  tangent  can  be  drawn  from  the  radical  centre  to  any  one 
of  the  circles.  In  this  case  the  circle  which  cuts  them  all  or- 

thogonally has  a  real  centre  but  an  imaginary  radius. 

277*.  Theoretn. — If  any  three  lines  be  drawn  from  the  ver- 
tices of  a  A  to  the  opposite  sides,  the  polar  centre  of  the  A 

is  the  radical   centre   of  the   circles  having  these  lines  as 

R  z          B  diameters. 

ABC  is  a  A  and  O  its  ortho- 
centre,  and  AP,  BQ,  CR  are  lines 
from  the  vertices  to  the  opposite 
sides. 

^BXA  =  ~|, 
o  the    circle    on    AP    as    diameter 

passes  through  X,  and  tJX .  OA  is  equal  to  the  square  on  the 
tangent  from  O  to  the  circle  on  AP. 
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Similarly  OV .  OB  is  the  square  of  the  tangent  from  O  to 

the  circle  on  BQ  as  diameter,  and  similarly  for  OZ.OC. 

But  as  O  is  the  polar  centre  of  AABC,  (269") 
OX .  OA  =  OY .  0B  =  OZ  .  OC 

.•.  the  tangents  from  O  to  the  three  circles  on  A\\  BO,  and 
CR  are  equal,  and  O  is  their  radical  centre.  ^w.t/. 

Cor.  I.  Let  P,  Q,  R  be  colHnear. 

Then  the  polar  centre  of  AABC  is  the  radical  centre  of 
circles  on  AP,  BO,  and  CR  as  diameters. 

Again,  in  the  AAOR  AP,  OB,  and  RC  are  lines  from  the 

vertices  to  the  opposite  sides. 

.*.  the  polar  centre  of  AAC2R  is  the  radical  centre  of  circles 
on  AP,  BQ,  and  CR  as  diameters. 

Similarly  the  polar  centres  of  the  As  BPR  and  CPQ  are 
radical  centres  to  the  same  three  circles. 

But  these  As  have  not  a  common  polar  centre,  as  is  readily 
seen.  Hence  the  same  three  circles  have  four  different 

radical  centres.  And  this  is  possible  only  when  the  circles 

are  co-axal.  (276°,  Cor.  5) 

.*.  the  circles  on  AP,  BQ,  and  CR  are  co-axal. 

.*.  if  any  three  coUinear  points  upon  the  sides  of  a  A  be 
joined  with  the  opposite  vertices,  the  circles  on  these  joins  as 
diameters  are  co-axal. 

Cor.  2.  Since  ARPC  is  a  quadrangle  or  tetragram  (247°, 
Def.  2),  and  AP,  BO,  CR  are  its  three  diagonals, 

.•.  the  circles  on  the  three  diagonals  of  any  quadrangle  are 
co-axal. 

Cor.  3.  The  middle  points  of  AP,  BQ,  and  CR  are  col- 
linear.  But  ARPC  is  a  quadrangle  of  which  AP  and  CR  are 

internal  diagonals,  and  BQ  the  external  diagonal. 

.•.  the  middle  points  of  the  diagonals  of  a  complete  quad- 

rangle, or  tetragram,  are  collinear.  (See  248^,  Ex.  2) 

Cor.  4.  The  four  polar  centres  of  the  four  triangles  deter- 

mined by  the  sides  of  a  tetragram  t.-ikcn  in  threes  are  collinear 
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and  lie  upon  the  common  radical  axis  of  the  three  circles 

having  the  diagonals  of  the  tctragram  as  diameters. 

278".  Theorem.  In  general  a  system  of  co-axal  circles 
inverts  into  a  co-axal  system  of  the  same  species. 

(i.)  Let  the  circles  be  of  the  r./.-species. 
The  common  points  become  two  points  by  inversion,  and 

the  inverses  of  all  the  circles  pass  through  them.  Therefore 

the  inverted  system  is  one  of  c./. -circles. 

Cor.  I.  The  axis  of  the  system  (LL'  of  Fig.  to  274  )  inverts 

into  a  circle  through  the  centre  of  inversion  (261°,  Cor.  i;,  and 
as  all  the  inverted  circles  cut  this  orthogonally,  the  axis  of 

the  system  and  the  two  common  points  invert  into  a  circle 

through  the  centre  and  a  pair  of  inverse  points  to  it. 

(258.  Conv.) 

Cor.  2.  If  one  of  the  common  points  be  taken  as  the  centre 
of  inversion,  its  inverse  is  at  00 . 

The  axis  of  the  system  then  inverts  into  a  circle  through 
the  centre  of  inversion,  and  having  the  inverse  of  the  other 

common  point  as  its  centre,  and  all  the  circles  of  the  system 
invert  into  centre-lines  to  this  circle. 

(2.)  Let  the  circles  be  of  the  /./.-species. 

Let  the  circles  S  and  S'  pass  through  the  limiting  points 
and  be  thus  ̂ ./.-circles. 

Generally  S  and  S'  invert  into  circles  which  cut  the  in- 

verses of  all  the  other  circles  orthogonally.  (264°) 

.'.  the  intersections  of  the  inverses  of  S  and  S'  are  limiting 
points,  and  the  inverted  system  is  of  the  /./'.-species. 

Cor.  3.  The  axis  of  the  system  (MM'  of  Fig.  to  274°)  be- 
comes a  circle  through  the  centre  and  passing  through  the 

limiting  points  of  the  inverted  system,  thus  becoming  one  of 

the  r./>.-circles  of  the  system. 

Cor.  4.   \i  one  of  the  limiting  points  be  made  the  centre  of 
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inversion,  the  tirrles  S  and  S'  become  centrelines,  and  the 
/./.-circles  become  concentric  circles. 

Hence  concentric  circles  are  co-axal,  their   radical   axis 

being  at  oo. 

EXERCISFS. 

1.  What  does  the  radical  axis  of  (i,  278)  become.'' 

2.  What  does  the  radical  axis  of  (2,  278")  become? 
3.  How  would  you  invert  a  system  of  concentric  circles  into 

a  common  system  of  /./.-circles  ? 
4.  How  would  you  invert  a  pencil  of  rays  into  a  system  of 

r./.-circles. 

5.  The  circles  of  277°  may  be  c.p.  or  /./.-circles. 

279'.   Theorem. — Any   two    circles    can   be   inverted   into 
equal  circles. 

Let  S,  S'  be  the  circles 

having  radii  r  and  r',  and 
let  C,  C  be  the  equal 
circles  into  which  S  and 

S'  are  to  be  inverted  ;  and 
let  the  common  radius  be  p. 

Then    0^  =  P=«POQ
 

0()     r        002 

P_OP'.6o' 
Similarl 

\', 

But,  since  P  and  O  and  also  P'  and  Q'  are  inverse  points, 
op.oo=op'.oq; 

OO''     r 

^  J,,  =  ̂   =  a  constant, 

and  (27 5^  Cor.  5)  O  lies  on  a  circle  co-axal  with  S  and  S'. 
And  with  any  point  on  this  circle  as  a  centre  of  inversion  .S 

and  S'  invert  into  equal  circles. 

Cor.  I.  Any  three  non-co-axal  circles  can  be  inverted  into 
equal  circles. 
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For,  let  the  circles  be  S,  S',  S',  and  let  Z  denote  the  locus 

of  O  for  which  S  and  S'  invert  into  equal  circles,  and  Z'  the 

locus  of  O  for  which  S  and  S"  invert  into  equal  circles.  Then 

Z  and  Z'  are  circles  of  which  Z  is  co-axal  with  S  and  S',  and 
Z'  is  co-axal  with  S  and  S".  And,  as  S,  S',  and  S"  are  not 

co-axal,  Z  and  Z'  intersect  in  two  points,  with  either  of  which 
as  centre  of  inversion  the  three  given  circles  can  be  inverted 

into  equal  circles. 

Cor.  2.  If  S,  S',  and  S"  be  /./.-circles,  Z  and  Z'  being 
co-axal  with  them  cannot  intersect,  and  no  centre  exists  with 
which  the  three  given  circles  can  be  inverted  into  equal  circles. 

But  if  S,  S'  and  S"  be  cp.-c\rc\es,  Z  and  Z'  intersect  in  the 
common  points,  and  the  given  circles  invert  into  line  circles 

with  centres  at  infinity,  and  having  each  an  infinite  radius 

these  circles  may  be  considered  as  being  equal.   (278°,  Cor.  2) 

Cor.  3.  In  general  a  circle  can  readily  be  found  to  touch 

three  equal  circles.  Hence  by  inverting  a  system  of  three 

circles  into  equal  circles,  drawing  a  circle  to  touch  the  three, 

and  then  re-inverting  we  obtain  a  circle  which  touches  three 
given  circles. 

If  the  three  circles  are  co-axal,  no  circle  can  be  found  to 
touch  the  three. 

280°.  Let  the  circles  S  and  S',  with  centres  A  and   B  and 
radii  r  and  r,  be  cut 

by  the  circle  Z  with 
centre  at  O  and  radius 

OP  =  R.  Let  NL  be 

the  radical  axis  of  S 

and  S'. 
Since  AP  is  _L  to 

the  tangent  at  P  to 
the  circle  S,  and  OP 

is  _L  to  the  tangent 
at  P  to  the  circle  Z. 

the  -lAPO  =  ̂   is  the  angle  of  intersection  of  the  circles  S 
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and  Z  (115',   Def.    i).     Similarly   BQO  =  </>  is  the   angle   of 
intersection  of  the  circles  S'  and  Z.     Now 

PP'  =  2rcos^-=R-OP', 

and  QQ'  =  2r'cos0  =  R-OQ', 
OP' -  OQ'  =  2(r'cos  0  -  r  cos  ̂ ). 

But  R.OP'-R.OQ'-OT-'-OT'2    (where   OT  is  the 

tangent  from  O  to  S,  etc.)   =2AB  .  OL,  (275°) 

R-   ,        ̂ ^'  .OL. rcos0-  rcos^ 

Cor.  I.  When  0  and  <p  are  constant,  R  varies  as  OL. 

.*.  a  variable  circle  which  cuts  two  circles  at  constant 
angles  has  its  radius  varying  as  the  distance  of  its  centre  from 
the  radical  axis  of  the  circles. 

Cor.  2.  Under  the  conditions  of  Cor.  i  ON  varies  as  OL, 

and  .  .    _.-    IS  constant. 
ON 

.  .  a  variable  circle  which  cuts  two  circles  at  a  constant 

angle  cuts  their  radical  axis  at  a  constant  angle. 

Cor.  3.  When  OL  =  o,  /cos 0  =  r cos  ̂ , 

and  r:r'  =  cos  <f> :  cos  d. 

.'.  a  circle  with  its  centre  on  the  radical  axis  of  two  other 
circles  cuts  them  at  angles  whose  cosines  are  inversely  as  the 
radii  of  the  circles. 

Cor.  4.  If  circle  Z  touches  S  and  S',  6  and  <p  are  both  zero 
or  both  equal  to  tt,  or  one  is  zero  and  the  other  is  ir. 

AB 
.-.  when  Z  touches  S  and  S',  R  =  -^   ,   —  .  OL,  where  the ±r+r 

variation  in  sign  gives  the  four  possible  varieties  of  contact. 

Cor.  5.  When  d  =  <p=2  Z  cuts  S  and  S'  orthogonally,  and 
OL  =  o,  and  the  centre  of  the  cutting  circle  is  on  the  radical 
axis  of  the  two. 
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SECTION   VII. 

CENTRE    AND    AXES    OF    SIMILITUDE    OR 
PERSPECTIVE. 

The  relations  of  two  triangles  in  perspective  have  been 

given  in  Art.  254".  We  here  propose  to  extend  these  rela- 
tions to  the  polygon  and  the  circle. 

Let  O,  any  point,  be  connected  with  the  vertices  A, 

B,   C,   ...  of  a  polygon,  and  on 

OA,  OB,  OC,  ...  let  points  a,  b, 
c,  ...  be  taken  so  that 
OA  :  Oa  =  OB  :  0<^=0C  :  Oc... 

and 

OA  :  Oa=OV,  :  Ob'  =  OC  :  Oc'... 
Then,  since  OAB  is  a  A  and  ab 
is  so  drawn  as  to  divide  the  sides 

proportionally  in  the  same  order, 

.-.  ab  is  II  to  AB.       (202°,  Conv.) Similarly, 

<^^  is  II  to  BC,      cd  to  CD,  etc., 

similarly,  b'c'  is  ||  to  BC,    c'd'  to  CD,  etc., 

and  AOAB^AO^?<^^AOrt'^', 

A0BC^A0^6-^A0^V',  ... 

.'.  the  polygons  ABC...,  abc...,  and  db'c...   are  all  similar 
and  have  their  homologous  sides  parallel. 

Def. — The  polygons  ABCD...  and  abed...  are  said  to  be 

similarly  placed,  and  O  is  their  t'.iV^r;/^/ centre  of  simiUtude; 

while  the  polygons  ABCD...  and  a'b'c'd'...  are  oppositely 
placed,  and  O  is  their  ijifernal  cexxixe  of  similitude. 

Hence,  when  the  lines  joining  any  point  to  the  vertices  of 

a  polygon  are  all  divided  in  the  same  manner  and  in  the 
same  order,  tiie  i)()iiits  of  (li\  ision  are  the  vertices  of  a  second 
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polygon    similar  to   the    original,    and    so    placed    that    the 

homologous  sides  of  the  two  polygons  are  parallel. 

282°.  When  two  similar  polygons  are  so  placed  as  to  have 
their  homologous  sides  parallel,  they  are  in  perspective,  and 

the  joins  of  corresponding  vertices  concur  at  a  centre  of 
similitude. 

Let  ABCD...,  abed...  be  the  polygons. 

Since  they  are  similar,  AH  :  ̂ ?/^=BC  :  <^t  =  CD  .cd..,  (207°), 
and  by  hypothesis  AB  is  |1  to  ab^  BC  to  bc^  etc. 

Let  Ka  and  Vib  meet  at  some  point  O. 

Then  OAB  is  a  A  and  ab  is  ||  to  AB. 

OB^AB^BC^ 

Ob      ab       be  *' 
.•.  Qe  passes  through  O,  and  similarly  D// passes  through  O, 
etc. 

By  writing  rt'^V...  for^^r...  the  theorem  is  proved  for  the 

polygon  db'c!d\  which  is  oppositely  placed  to  ABCD... 

Cor.  I.  If  ka  and  V^b  meet  at  00,  <?<^  =  AB,  and  hence 

^t:=BC,  etc.,  and  the  polygons  are  congruent. 

Cor.  2.  The  joins  of  any  two  corresponding  vertices  as  A, 

C  ;  a.,  c\  a\  e'  are  evidently  homologous  lines  in  the  polygons 
and  are  parallel. 

Similarly  any  line  through  the  centre  O,  as  XxOx'  is 
homologous  for  the  polygons  and  divides  them  similarly. 

283°.  Let  the  polygon  ABCD...  have  its  sides  indefinitely 
increased  in  number  and  diminished  in  length.  Its  limiting 

form  (148°)  is  some  curve  upon  which  its  vertices  lie.  A 
similar  curve  is  the  limiting  form  of  the  ])olyg()ns  abed...  as 

also  of  a'b'c'd' . . .,  since  every  corresponding  pair  of  limiting  or 
vanishing  elements  arc  similar. 

Henrc.  if  two  points  on  a  variable  ratlius  \ector  have  the 

ratio  (if  their  distaiucs  fioni  the  j^olc  ( onslant,  the  loci  of  the 
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points  are  similar  curves  in  perspective,  and  having  the  pole 
as  a  centre  of  perspective  or  similitude. 

Cor.  I.  In  the  limiting  form  of  the  polygons,  the  line  BC 

becomes  a  tangent  at  B,  and  the  line  be  becomes  a  tangent  at 

b.     And  similarly  for  the  line  be'. 
.'.  the  tangents  at  homologous  points  on  any  two  curves  in 

perspective  are  parallel. 

284".  Since  abed. . .  and  ab'c'd' . . .  are  both  in  perspective  with 
ABCD...  and  similar  to  it,  we  see  that  two  similar  polygons 

may  be  placed  in  two  different  relative  positions  so  as  to  be 

in  perspective,  that  is,  they  may  be  similarly  placed  or  oppo- 
sitely placed. 

In  a  regular  polygon  of  ah  even  number  of  sides  no  dis- 
tinction can  be  made  between  these  two  positions  ;  or,  two 

similar  regular  polygons  are  both  similarly  and  oppositely 

placed  at  the  same  time  when  so  placed  as  to  be  in  per- 

spective. 
Hence  two  regular  polygons  of  an  even  number  of  sides 

and  of  the  same  species,  when  so  placed  as  to  have  their  sides 

respectively  parallel,  have  two  centres  of  perspective,  one  due 

to  the  polygons  being  similarly  placed,  the  external  centre  ; 

and  the  other  due  to  the  polygons  being  oppositely  placed, 
the  internal  centre. 

Cor.  Since  the  limiting  form  of  a  regular  polygon  is  a  circle 

(148°),  two  circles  are  always  similarly  and  oppositely  placed 
at  the  same  time,  and  accordingly  have  always  two  centres  of 

perspective  or  similitude. 

285°.  Let  S  and  S'  be  two  circles  with  centres  C,  C  and 

radii  r,  r'  respectively,  and  let  O  and  O'  be  their  centres  of 
perspective  or  similitude. 

Let  a  secant  line  through  O  cut  S  in  X  and  ̂ ^and  S'  in  X' 

and  Y'. 
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Then  O  is  the  centre  of  similitude  due  to  considering  the 

circles  S  and  S'  as  being 
similarly  placed. 

Hence  X  and  X',  as  also 

Y  and  Y',  are  homologous 

points,  and  (283°,  Cor.  i) 
the  tangents  at  X  and  X' 
are  parallel.  So  also  the 

tangents  at  Y  and  Y'  are  - 
parallel. 

Again  O'  is  the  centre 
of  similitude  due  to  con- 

sidering the  circles  as 

being  oppositely  placed, 

and  for  this  centre  Z  and  Y'  as  also  U  and  U'  are  homologous 

points  ;  and  tangents  at  Y'  and  Z  are  parallel,  and  so  also 

are  tangents  at  U  and  U'. 
Hence  YZ  is  a  diameter  of  the  circle  S  and  is  parallel  to 

Y'Z'  a  diameter  of  the  circle  S'. 
Hence  to  find  the  centres  of  similitude  of  two  given 

circles  :— Draw  parallel  diameters,  one  to  each  circle,  and 

connect  their  end-points  directly  and  transversely.  The 
direct  connector  rviis  the  common  centre-line  in  the  external 
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centre  of  similitude,  and  the  transverse  connector  cuts  it  in 
the  internal  centre  of  siniiHtude. 

286°.  Since  OX  :  0X'  =  OY  :  OY',  if  X  and  Y  become  coin- 

cident, X'  and  Y'  become  coincident  also.  . 

.'.  a  line  through  O  tangent  to  one  of  the  circles  is  tangert 
to  the  other  also,  or  O  is  the  point  where  a  common  tangent 

cuts  the  common  centre-line.     A  similar  remark  applies  to  O'. 
When  the  circles  exclude  one  another  the  centres  of 

similitude  are  the  intersections  of  common  tangents  of  the 
same  name,  direct  and  transverse. 

When  one  circle  lies  within  the  other  (2nd  Fig.)  the  com- 

mon tangents  are  imaginary,  although  O  and  O'  their  points 
of  intersection  are  real. 

287°.  Since  AOCY^AOC'Y',      .-.    OC  :  OC  =  r:  r', 
and  since  AO'CZ^  AO'C'Y',      .*.  O'C  :  0'C'  =  r  :  r'. 

.•.  the  centres  of  similitude  of  two  circles  are  the  points 
which  divide,  externally  and  internally,  the  join  of  the  centres 

of  the  circles  into  parts  which  are  as  the  conterminous  radii. 

The  preceding  relations  give 

0C  =  -^^.  CC,  and   0'C=   ,--  .  CC. r  -r  ?'  +r 

OC  is  ̂   r  according  as  CC  is  %  r'-r, 

and       O'C  is  <  r  according  as  CC  is  <  r'  4-  r. 
Hence 

1.  O  lies  within  the  circle  S  when  the  distance  between  the 

centres  is  less  than  the  difference  of  the  radii,  and  O'  lies 
within  the  circle  S  when  the  difference  between  the  centres  is 

less  than  the  sum  of  the  radii. 

2.  When  the  circles  exclude  each  other  without  contact  both 

centres  of  similitude  lie  without  both  circles. 

3.  When  the  circles  touch  externally,  the  point  of  contact 
is  the  internal  centre  of  similitude. 

4.  When  one  circle  touches  the  other  internalh,  the  point 
of  contact  is  the  external  centre  of  similitude. 
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5.  When  the  circles  are  concentric,  the  centres  of  similitude 
coincide  with  the  common  centre  of  the  circles,  unless  the 

circles  are  also  equal,  when  one  centre  of  similitude  becomes 

any  point  whatever. 
6.  If  one  of  the  circles  becomes  a  point,  both  centres  of 

similitude  coincide  with  the  point. 

288°.  Def. — The  circle  having  the  centres  of  similitude  of 
two  given  circles  as  end-points  of  a  diameter  is  called  the 
circle  of  similitJtde  of  the  given  circles. 

The  contraction  0  of  s.  will  be  used  for  circle  of  similitude. 

Cor.  I.  -Let  S,  S'  be  two  circles  and  Z  their  0  of  s. 
Since  O  and  O'  are 

two  points  from  which 

tanj^^ents  to  circles  S  and 

S'  are   in    the    constant  /  t/ 
ratio  of  r  to  r\  the  circle  o 
Z  is  co-axal  with  S  and 

S'  (275%  Cor.  5).     Hence 
any  two  circles  and  their  0  of  s.  are  co-axal. 

Cor.  2.  From  any  point  P  on  circle  Z, 

PT  :TC  =  PT':T'C', 
and  .-.  ^TPC=^T'PC'. 

Hence,  at  any  point  on  the  0  of  s,  of  two  circles,  the  two 

circles  subtend  equal  angles. 

Cor.  3.      OC  =  CC'.    !"—,  and  0'C  =  CC.  -f~  .  (287") r  -r  r  +r 

whence       00'  =  CC'. 
r^-r- 

The  0  of  s.  is  a  line,  the  radical  axis,  when  the  given 

circles  are  squal  {r=r'). 
The  (J)  of  s.  becomes  a  point  when  one  of  the  two  given 

circles  becomes  a  point  (r  or  r'  =  o). 
The  0  of  s.  is  a  point  when  the  given  circles  are  con- 

centric (CC'=o). 
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289'.  Z>^— With  reference  to  the  centre  O  (Fig.  of  285°), 

X  and  y,  as  also  X'  and  Y,  are  called  anti/iojnologoiis  points. 
Similarly  with  respect  to  the  centre  O',  U'  and  Z,  as  also  U 

and  Y',  are  antihomologous  points. 

Let  tangents  at  X  and  Y'  meet  at  L.  Then,  since  CX  is  || 

to  CX',  ̂ CXY=z.C'X'Y'  =  ̂ C'Y'X'.  But  £.LXY  is  comp.  of 

^CXY  and  ̂ LY'X'  is  comp.  of  ̂ C'Y'X'. 

ALXY'  is  isosceles,  and  LX  =  LY'. 
L  is  on  the  radical  axis  of  S  and  S'. 

Similarly  it  may  be  proved  that  pairs  of  tangents  at  Y  and 

X',  at  U  and  Y',  and  at  U'  and  Z,  meet  on  the  radical  axis  of 

S  and  S',  and  the  tangent  at  U  passes  through  L. 

.*.  tangents  at  a  pair  of  antihomologous  points  meet  on  the 
radical  axis. 

Cor.  I.  The  join  of  the  points  of  contact  of  two  equal 

tangents  to  two  circles  passes  through  a  centre  of  simihtude 
of  the  two  circles. 

Cor.  2.  When  a  circle  cuts  two  circles  orthogonally,  the 

joins  of  the  points  of  intersection  taken  in  pairs  of  one  from 

each  circle  pass  through  the  centres  of  similitude  of  the  two 
circles. 

290°.  Since  OX  :  OX'  =  r :  r', 
OX.OY':OX'.  OY'  =  r:r'. 

But  OX'.  OY'  =  the  square  of  the  tangent  from  O  to  the  circle 
S'  and  is  therefore  constant. 

OX  .  O Y'  =  -, .  OT'-^  =  a  constant. r 

.'.  X  and  Y'  are  inverse  points  with  respect  to  a  circle 

whose  centre  is  at  O  and  whose  radius  is  OT'     /   ,. 

Z>e/. — This  circle  is  called  the  circle  of  mitisitnilitude^  and 
will  be  contracted  to  0  of  ans. 

Evidently  the  circles  S  and  S'  are  inverse  to  one  another 
with  respect  to  their  0  of  ans. 



CKNTRE  OF  STMir.ITUDE  OR  PF.RSPIXTIVK.     245 

For  the  centre  O'  the  product  O'U.O'Y'  is  negative,  and  the 
0  of  ans.  corresponding  to  this  centre  is  imaginary. 

Cor.  I.  Denoting  the  distance  CC  by  d^  and  the  difference 

between  the  radii  (r'  -  r)  by  5,  we  have 

6-     ' 
where  R  =  the  radius  of  the  0  of  ans.     Hence 

1.  When   either  circle  becomes  a  point   their  0  of  ims. 
becomes  a  point. 

2.  When  the  circles  S  and  S'  are  equal,  the  0  of  ofis.  be- 
comes the  radical  axis  of  the  two  circles. 

3.  When  one  circle  touches  the  other  internally  the  0  of 

ans.  becomes  a  point-circle.     {d=5.) 
4.  When  one  circle  includes  the  other  without  contact  the 

0  of  ans.  is  imaginary.     (<^/<5.) 

Cor.  2.  Two  circles  and  their  circle  of  antisimilitude  are 

co-axal.  (263') 

Cor.  3.  If  tw^o  circles  be  inverted  with  respect  to  their 
circle  of  antisimilitude,  they  exchange  places,  and  their  radi- 

cal axis  being  a  line  circle  co-axal  with  the  two  circles 

becomes  a  circle  through  O  co-axal  with  the  two. 
The  only  circle  satisfying  this  condition  is  the  circle  of 

similitude  of  the  two  circles.  Therefore  the  radical  axis 

inverts  into  the  circle  of  similitude,  and  the  circle  of  simili- 
tude into  the  radical  axis. 

Hence  every  line  through  O  cuts  the  radical  axis  and  the 

circle  of  similitude  of  two  circles  at  the  same  angle. 

291°.  Def — When  a  circle  touches  two  others  so  as  to 
exclude  both  or  to  include  both,  it  is  said  to  touch  them 

similarly,  or  to  have  contacts  of  like  kind  with  the  two. 
When  it  includes  the  one  and  excludes  the  other,  it  is  said  to 

touch  them  dissimilarly,  or  to  have  contacts  of  unlike  kinds 
with  the  two. 
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292°.  Theoretn.  -When  a  circle  touches  two  other  circles, 
its  chord  of  contact  passes  through  their  external  centre  of 

similitude  when  the  contacts  are  of  like  kind,  and  through 
their  internal  centre  of  similitude  when  the  contacts  are  of 
unlike  kinds. 

Proof. — Let  circle  Z  touch  circles  S  and  S'  at  Y  and  X'. 

Then  CYD  and  C'X'D  are  lines.  (113°,  Cor.  i) 

Let  XYX'Y'  be  the  secant  through  Y  and  X'.     Then 

^CXY  =  z.CYX  =  ̂ DYX'  =  ̂ DX'Y  =  ̂ CX'Y'. 

.'.  CX  and  C'X'  are  parallel,  and  X'X  passes  through  the 

external  centre  of  similitude  O.  (285°) 

Similarly,  if  Z'  includes  both  S  and  S',  it  may  be  proved 
that  its  chord  of  contact  passes  through  O. 

Again,  let  the  circle  W,  with  centre  E,  touch  S'  at  Y'  and 

S  at  U  so  as  to  include  S'  and  exclude  S,  and  let  UY'  be  the 
chord  of  contact.     Then 

:LCVU  =  ̂ CUV  =  ̂ EUY'  =  ̂ EY'U, 

.".  EY'  and  CV  are  parallel  and  VY'  connects  them  trans- 

versely ;  .•.  VY'  passes  through  O'.  c/.r.d. 

Cor.  I.  Every  circle  which  touches  S  and  S'  similarly  is 
cut  orthogonally  by  the  external  circle  of  antisimilitude  of  S 

and  S'. 
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Cor.  2.  If  two  circles  touch  S  and  S'  externally  their  points 

of  contact  are  concyclic.  (116'',  Ex.  2) 
But  the  points  of  contact  of  either  circle  with  S  and  S'  are 

antihomologous  points  to  the  centre  O. 

.•.  if  a  circle  cuts  two  others  in  a  pair  of  antihomologous 
points  it  cuts  them  in  a  second  pair  of  antihomologous  points. 

Cor.  3.  If  two  circles  touch  two  other  circles  similarly,  the 

radical  axis  of  either  pair  passes  through  a  centre  of  simili- 
tude of  the  other  pair. 

For,  if  Z  and  Z'  be  two  circles  touching  S  and  S'  externally, 
the  external  circle  of  antisimilitude  of  S  and  S'  cuts  Z  and  Z' 
orthogonally  (Cor.  i)  and  therefore  has  its  centre  on  the 

radical  axis  of  Z  and  Z'. 

Cor.  4.  If  any  number  of  circles  touch  S  and  S'  similarly, 
they  are  all  cut  orthogonally  by  the  external  circle  of  anti- 

similitude  of  S  and  S',  and  all  their  chords  of  contact  and  all 
their  chords  of  intersection  with  one  another  are  concurrent 

at  the  external  centre  of  antisimilitude  of  S  and  S'. 

293°.  Theori'vi.—\{  the  circle  Z  touches  the  circles  S  and 

S',  the  chord  of  contact  of  Z  and  the  radical  axis  of  S  and  S' 
are  conjugate  lines  with  respect  to  the  circle  Z. 

Proof. — Let  Z  touch  S  and  S'  in  Y  and  X'  respectively. 

The  tangents  at  Y  and  X'  meet  at  a  point  P  on  the  radical 

axis  of  S  and  vS'.  (289") 
Rut  P  is  the  pole  of  the  chord  of  contact  YX'. 

.'.  the  radical  axis  passes  through  the  pole  of  the  chord  of 
contact,  and  reciprocally  the  chord  of  contact  passes  through 

the  pole  of  the  radical  axis  (267",  Def )  and  the  lines  are 

conjugate.  '  q.e.d. 
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294°.  Let  Si,  82,  S3  denote  three  circles  having  their  centres 
A,  B,  C  and  radii  r^,  rg,  rg,  and  let  X,  X',  Y,  Y',  Z,  Z'  be  their 
six  centres  of  similitude. 

Now   X,   Y 

,  z 

are 

three 

points 

on 
the 

sides of  the 
AABC, 

and BX 

CX 
CY 

AY" v:- 

AZ 

BZ" 

=:>' 

•*• 

(S)= 

=  1, 

and  X,  Y,  Z are 

col- 

linear, 

Similarly  it  is  proved  that  the  triads  of  points  XY'Z',  YZ'X', 
ZX'Y'  are  collinear. 

Def. — These  lines  of  collinearity  of  the  centres  of  similitude 
of  the  three  circles  taken  in  pairs  are  the  axes  of  similitude 

of  the  circles.  The  line  XYZ  is  the  external  axis,  as  being 

external  to  all  the  circles,  and  the  other  three,  passing  be- 
tween the  circles,  are  internal  axes. 

Cor,  I.  If  an  axis  of  similitude  touches  any  one  of  the 

circles  it  touches  all  three  of  them.  (286°) 

Cor.  2.  If  an  axis  of  similitude  cuts  any  one  of  the  circles 

it  cuts  all  three  at  the  same  angle,  and  the  intercepted  chords 

are  proportional  to  the  corresponding  radii. 

Cor.  3.  Since  XYX'Y'  is  a  quadrangle  whereof  XX',  YY', 

and  ZZ'  are  the  three  diagonals,  the  circles  on  XX',  YY',  and 

ZZ'  as  diameters  are  co-axal.  {-77°,  Cor.  2) 

.'.  the  circles  of  similitude  of  three  circles  taken  in  pairs 
are  co-axal. 
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Cor.  4.  When  the  three  circles  of  similitude  are  of  the  c.p.- 
species,  two  points  may  be  found  from  which  any  three  circles 

subtend  equal  angles.  These  are  the  common  points  to  the 

three  circles  of  similitude.  (288°,  Cor.  2) 

Cor.  5.  The  groups  of  circles  on   the  following  triads  of 

segments  as  diameters  are  severally  co-axal, 

AX,  BY,  CZ  ;  AX,  YZ',  Y'Z  ;  BY,  Z'X,  ZX';  CZ,  XY',  X'Y. 

295".  Any  two  circles  Z  and  Z',  which  touch  three  circles 
Si,  S2,  S3  similarly,  cut  their  circles  of  antisimilitude  ortho- 

gonally (292°,  Cpr.  i),  and  therefore  have  their  centres  at  the 
radical  centre  of  the  three  circles  of  antisimilitude. 

(276°,  Cor.  4) 

But  Z  and  Z'  have  not  necessarily  the  same  centre. 
.•.  the  three  circles  of  antisimilitude  of  the  circles  S,,  Sg,  and 
S3  are  co-axal,  and  their  common  radical  axis  passes  through 

the  centres  of  Z  and  Z'. 

296°.  Theorem.— \{  two  circles  touch  three  circles  similarly, 
the  radical  axis  of  the  two  is  an  axis  of  similitude  of  the 

three  ;  and  the  radical  centre  of  the  three  is  a  centre  of 
similitude  of  the  two. 

Proof. — The  circles  S  and  S' 
touch  the  three  circles  A,  B, 

and  C  similarly. 

I.  Since  S   and   S'  touch   A 
and  B  similarly,  the  radical  axis 

of  S  and  S'  passes  through  a 
centre  of  similitude  of  A  and  B. 

(292°,  Cor.  3) 
Also,   the    radical    axis   of    S 

and  S'  passes  through  a  centre  of  similitude  of  B  and  C,  and 
through  a  centre  of  similitude  of  C  and  A. 

.'.  the  radical  axis  of  S  and  S'  is  an  axis  of  similitude  of 
the  three  circles  A,  B,  and  C. 
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2.  Again,  since  A  and  B  touch  S  and  S',  the  radical  axis  of 

A  and  B  passes  through  a  centre  of  simiHtude  of  S  and  S'. 
For  similar  reasons,  and  because  A,  B,  and  C  touch  S  and 

S'  similarly,  the  radical  axes  of  B  and  C,  and  of  C  and  A, 

pass  through  the  same  centre  of  similitude  of  S  and  S'.  But 
these  three  radical  axes  meet  at  the  radical  centre  of  A,  B, 
and  C. 

.*.  the  radical  centre  of  A,  B,  and  C  is  a  centre  of  simili- 

tude of  S  and  S'.  q.e.d. 

297°.  Problem. — To  construct  a  circle  which  shall  touch 
three  given  circles. 

In  the  figure  of  296^  let  A,  B,  and  C  be  the  three  given 

circles,  and  let  S  and  S'  be  two  circles  which  are  solutions 
of  the  problem. 

Let  L  denote  one  of  the  axes  of  similitude  of  A,  B,  and  C, 

and  let  O  be  their  radical  centre.  These  are  given  when  the 

circles  A,  B,  and  C  are  given. 

Now  L  is  the  radical  axis  of  S  and  S'  (296°,  i),  and  O  is 
one  of  their  centres  of  similitude. 

But  as  A  touches  S  and  S'  the  chord  of  contact  of  A  passes 

through  the  pole  of  L  with  respect  to  A  (293°).  Similarly  the 
chords  of  contact  of  B  and  C  pass  through  the  poles  of  L 

with  respect  to  B  and  C  respectively.  And  these  chords  are 

concurrent  at  O.  (292") 
Hence  the  following  construction  : — 
Find  O  the  radical  centre  and  L  an  axis  of  similitude  of  A, 

B,  and  C.  Take  the  poles  of  L  with  respect  to  each  of  these 

circles,  and  let  them  be  the  points  p,  g,  r  respectively. 

Then  O/,  O^,  Or  are  the  chords  of  contact  for  the  three 

given  circles,  and  three  points  being  thus  found  for  each  of 

two  touching  circles,  S  and  S',  these  circles  are  determined. 
(This  elegant  solution  of  a  famous  problem  is  due  to  M. 

Gergonne ) 

Cor.  As  each  axis  ot  similitude  gives  different  poles  with 

respect  to  A,  B,  and  C,  while  there  is  but  one  radical  centre 
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O,  in  general  each  axis  of  similitude  determines  two  touching 

circles  ;  and  as  there  are  four  axes  of  similitude  there  are 

eight  circles,  in  pairs  of  twos,  which  touch  three  given  circles. 

Putting  /  and  e  for  internal  and  external  contact  with  the 

touching  circle,  we  may  classify  the  eight  circles  as  follows  : 

(See  294') f  Axes  of  Similitidk. 

I  X  Y  Z 

K  V  Z' 

X'  Y  Z' 

X'  Y'  Z 

A B c 

e 

i 

e 

:]'- 

e 

2 

i 

e 

'■|=pr. 
t'  J 

i 

:i3P.
 

i 

;:|4pr
. 



PART  V. 

ON  HARMONIC  AND  ANHARMONIC  RATIOS- 

HOMOGRAPHY.  INVOLUTION,  ETC. 

SECTION    I. 

GENERAL     CONSIDERATIONS     IN     REGARD    TO 

HARMONIC  AND  ANHARMONIC  DIVISION. 

298°.  Let  C  be  a  point  dividing  a  segment  AB.  The  posi- 
tion of  C  in  relation  to  A  and  B  is  determined  by  the  ratio 

AC  :  BC.  For,  if  we  know  this  ratio,  we 

know  completely  the  position  of  C  with 

respect  to  A  and  B.  If  this  ratio  is  negative,  C  lies  between 

A  and  B  ;  if  positive,  C  does  not  lie  between  A  and  B.  If 

AC:BC=-i,  C  is  the  internal  bisector  of  AB  ;  and  if 

AC  :  BC=  +  1,  C  is  the  external  bisector  of  AB,  />.,  a  point 
at  Qc  in  the  direction  AB  or  BA. 

Let  D  be  a  second  point  dividing  AB.     The  position  of  D 
is  known  when  the  ratio  AD  :  BD  is  known. 

A  c        D         B 

Def. — If  we  denote  the  ratio  AC  :  BC  by  w,  and  the  ratio 
AD  :  BD  by  «,  the  two  ratios  771  :  n  and  ;/ :  m,  which  are 

reciprocals  of  one  another,  are  called  the  two  anharmonic 

ratios  of  the  division  of  the  segment  AB  by  the  points  C  and 
D,  or  the  harmonoids  of  the  range  A,  B,  C,  D. 

252 
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Either  of  the  two  anharmonic  ratios  expresses  a  reliition 

between  the  parts  into  which  the  segment  AB  is  divided  by 

the  points  C  and  D. 

Evidently  the  two  anharmonic  ratios  have  the  same  sign, 
and  when  one  of  them  is  zero  the  other  is  infinite,  and  viu 
7'ersa. 

These  ratios  may  be  written  : — 

AC  .  AD        AC.BD        AC^ HD 

^"  BC  *  BD  ̂ ^  BC  .  AD  °*^  AD  .  BC' 
AD.  AC        AD.BC        AD.BC 

i3D  ■  BC  ̂'^  BD.AC        AC.BD' 
The  hist  form  is  to  be  preferred,  other  things  being  convenient, 

on  account  of  its  symmetry  with  respect  to  A  and  B,  the 

end-points  of  the  divided  segment. 

299°.  The  following  results  readily  follow. 
T    ,  AC.BD,       ,       T,,       AC       ,  AD  ,         ,.,       . 

'■  AD    BC  BC  BD     '^  ̂ '^"^' 
and   therefore  C  and   D  both  divide  AB  internally  or  both 

externally.  (298") 
In  this  case  the  order  of  the  points  must  be  some  one  of 

the  following  set,  where  AB  is  the  segment  divided,  and  the 

letters  C  and  D  are  considered  as  being  interchangeable  : 

CDAB,     ACDB,     CABD,     ABCD. 

,    ,  AC.BD,  ^,        AC         .   AD, 

2.  Let  ̂  J)   g(^  be  - .     Then  ̂ ^  and   ̂ ^  have  opposite 

signs,  and  one  point  divides  AB  internally  and  the  other 
externally. 

The  order  of  the  points  is  then  one  of  the  set  CADB,  ACBD. 

3.  When  either  of  the  two  anharmonic  ratios  is  ±1,  these 

ratios  are  equal. 

holli  internal  or  liolh  external. 
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.,  AC-BC     AD-BD        AB     AB 
^^^°  BC-=~nBD-'"''BC  =  BD' 
and  C  and  D  coincide. 

Hence,  when  C  and  D  are  distinct  points,  the  anharmonic 

ratio  of  the  parts  into  which  C  and  D  divide  AB  cannot  be 

positive  unity. 

,    T    .  AC.BD  T,,       AC        AD 

And  since  C  and  D  are  now  one  external  and  one  internal 

(2),  they  divide  the  segment  AB  in  the  same  ratio  internally 

and  externally,  disregarding  sign.  Such  division  of  a  line 

segment  is  called  harmonic.  (208°,  Cor.  i ) 
Harmonic  division  and  harmonic  ratio  have  been  long  em- 

ployed, and  from  being  only  a  special  case  of  the  more 

general  ratio,  this  latter  was  named  "anharmonic"  by 

Chasles,  "who  was  the  first  to  perceive  its  utility  and  to 

apply  it  extensively  in  Geometry." 

300°.  Def. — When  we  consider  AB  and  CD  as  bein<i:  two 
segments  of  the  same  line  we  say  that  CD  divides  AB,  and 
that  AB  divides  CD. 

Now  the  anharmonic  ratios  in  which  CD  divides  AB  are 

ac.bd      ,  ad.bc 

adTbc  ̂ "    ac:bd" 
And  the  anharmonic  ratios  in  which  AB  divides  CD  are 

CA.JDB        ,  CB^DA 

CB.  DA  ̂"     CA.DB' 
But  the  anharmonic  ratios  of  these  sets  are  equal  each  to 

each  in  both  sign  and  magnitude. 

.*.  the  anharmonic  ratios  in  which  CD  divides  AB  are  the 
same  as  those  in  which  AB  divides  CD. 

Or,  atiy  two  segments  of  a  cotnmon  line  divide  each  other 
equianharmonically. 

301°.  Four  points  A,  B,  C,  D  taken  on  a  line  determine  six 
segments  AB,  AC,  AD,  BC,  BD,  and  CD. 
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These  may  be  arranged  in  three  groups  of  two  each,  so  that 

in  each  group  one  segment  may  be  considered  as  dividing 
the  others,  viz.,     AB,  CD  ;  BC,  AU  ;  CA,  BD. 

Each  group  gives  two  anharmonic  ratios,  reciprocals  of  one 
another  ;  and  thus  the  anharmonic  ratios  determined  by  a 

range  of  four  points,  taken  in  all  their  possible  relations,  are 

six  in  number,  of  which  three  are  reciprocals  of  the  other 
three. 

These  six  ratios  are  not  independent,  for,  besides  the 

reciprocal  relations  mentioned,  they  are  connected  by  three 
relations  which  enable  us  to  find  all  of  them  when  any  one  is 

given. 
T.       ,    AC.BD,     ,,   BA.CU,     ..   CB.AD,     ^ 

•  ^^"°^^  AD .  BC  ̂y  ' '  BD7CA  ̂ ^  '^'  CDTAB  ̂ >^  ̂̂  
Then  P,  Q,  R  are  the  anharmonic  ratios  of  the  groups 

A  BCD,  BCAD,  and  CABD,  each  taken  in  the  same  order. 

But  in  any  range  of  four  (233°)  we  have 
AB  .  CD  +  BC  .  AD  +  CA  .  BD  =0. 

And  dividing  this  expression  by  each  of  its  terms  in  succes- 

sion, we  obtain  Q+^=R+--  =  P+-=i. 
^     P  Q  R 

F"rom  the  symmetry  of  these  relations  we  infer  that  any 
general  properties  belonging  to  one  couple  of  anharmonic 

ratios,  consisting  of  any  ratio  and  its  reciprocal,  belong 

equally  to  all. 
Hence  the  properties  of  only  one  ratio  need  be  studied. 

The  symbolic  expression  [ABCD}  denotes  any  one  of  the 

anharmonic  ratios,  and  may  be  made  to  give  all  of  them  by 

reading  the  constituent  letters  in  all  possible  orders. 

Except  in  the  case  of  harmonic  ratio,  or  in  other  special 

cases,  we  shall  read  the  symbol  in  the  one  order  of  alternat- 
ing the  letters  in  the  numerator  and  grouping  the  extremes 

and  means  in  the  denominator.     Thus 

rAtjr-T^)  J  AC.BD 
{ABCDf  denotes    .  .      .  p- 

It  is  scarrelv  necessarv  to  sav  that  whatr\rr  nrdei    mav  be 
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adopted  in  reading  the  symbol,  the  same  order  must  be  em- 
ployed for  eack  when  comparing  two  symbols. 

302°.  Theorem. — Any  two  constituents  of  the  anharmonic 
symbol  may  be  interchanged  if  the  remaining  two  are  inter- 

changed also,  without  affecting  the  value  of  the  symbol. 

Proof.-        {ABCD}  =  AC.BD  :  AD  .  BC. 
Interchange  any  two  as  A  and  C,  and  also  interchange  the 

remaining  two  B  and  D.     Then 

{CDAB}=CA.UB:CB.DA 
=  AC.BD:  AD.BC. 

Similarly  it  is  proved  that 

[ABCD}  =  {BADC}  =  {CDAB}  =  {DCBA}.     q.e.d. 

303°.  If  interchanging  the  first  two  letters,  or  the  last  two, 
without  interchanging  the  remaining  letters,  does  not  alter 

the  value  of  the  ratio,  it  is  harmonic. 

For,  let  {ABCD}  =  {ABDC}. 

^.  AC.  BD_  AD.BC 
^^  AD.BC^AC.BD' 

or,  multiplying  across  and  taking  square  roots, 
AC.BD-±AD.  BC. 

But  the  positive  value  must  be  rejected  (299",  4),  and  the 
negative  value  gives  the  condition  of  harmonic  division. 

304".   Let  ABCD  be  any  range  of  four  and  O  any  point  not 
o  on  its  axis. 

The  anharmonic  ratio  of  the  pencil 

O.ABCD   corresponding  to  any  given 

ratio  of  the  range  is  the  same  function 

of  the  sines  of  the  angles  as  the  given 

^         ̂         ̂   ^  ratio  is  of  the  corresponding  segments. 
^,         sin  AOC.  sin  BOD  ,    ,     AC .  BD 
^"^'^        •       ̂ rw^        •      T,r^r^    ̂ ^^'''^^ponds  tO     .~,r— f^y.  I Sin  AOI) .  sin  BOC  aD  .  BC 

or,  symbolirally,  O  I  ABCD'  corresponds  to  [AliCDy. 
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To  prove  thai  the  ( orresponding  anharmonic  ratios  of  the 

range  and  pencil  are  equal. 

AC  _  AAOC_  OA .  PC  sin  AOC  _  OA    sinAQC 

BC     ABUC     OB.OCsinBOC     OB '  sin  BOC* 
c-    .,    ,  BD     OB    sin  BOD 
SimUarly,  ^D  =  OA  "  sin  AOD' 

AC.BD  ^  sin  AOC.  sin  BOD 
AD.BC     sijiAOD.sinBOC 

Hence,  svnibolicallv 

;abcd}=o;abcd} ; 
and,  with  necessary  formal  variations,  the  anharmonic  ratio 

of  a  range  may  be  changed  for  that  of  the  corresponding 

pencil,  and  vice  versa,  whenever  required  to  be  done. 

Cor.  I,  Two  angles  with  a  common  vertex  divide  each 

other  equianharmonically.  (300°) 
Cor.  2.  If  the  anharmonic  ratio  of  a  pencil  is  +  i,  two  rays 

coincide,  and  if  -  i,  the  pencil  is  harmonic.  (299^  4,  5) 

Cor.  3.  A  given  range  determines  an  equianharmonic  pen- 

cil at  every  vertex,  and  a  given  pencil  determines  an  equian- 
harmonic range  on  every  transversal. 

Cor.  4.  Since  the  sine  of  an  angle  is  the  same  as  the  sine 

of  its  supplement  (214°,  i),  any  ray  may  be  rotated  through  a 
straightaugle  or  reversed  indirection withoutaffectingthe  ratio. 

Corollaries  2,  3,  and  4  are  of  special  importance. 

305.  Theorem. — If  three  pairs  of  corresponding  rays  of  two 
equianharmonic  pencils  intersect  collinearly,  the  fourth  pair 

intersect  upon  the  line  of  coUinearity. 

Proof.    -1.^1 

0{ABCD}=0'{ABCD'}, 
and  let  the  pairs  of  corresponding  rays 

OA  and  O'A,  OB  and  O'B,  OC  and  O'C 
intersect  in  the  three  collinear  points  A, 

B,  and  C.  Let  the  fourth  corresponding 

rays  meet  the  axis  of  .■\HC  in  D  and  D' 
respectively.     Then  {ABCD- 

R 
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AC.BD_AC.BD'  .,  ,  BD_BD' 

AD.BC     AD'.BC'  ''"''  AD'aD" 
which  is  possible  only  when  D  and  D'  coincide. 

.•.  the  fourth  intersection  is  upon  the  axis  of  A,  B,  and  C, 
and  the  four  intersections  are  collinear.  q.e.d. 

Cor.  If  two  of  the  correspond ins^  rays  as  OC  and  0"C 
become  one  line,  these  rays  may  be  considered  as  intersecting 

at  all  points  on  this  line,  and  however  A  and  B  are  situated 

three  corresponding  pairs  of  rays  necessarily  intersect  col- 
li nearly. 

.'.  when  two  equianharmonic  pencils  have  a  pair  of  cor- 
responding rays  in  common,  the  remaining  rays  intersect 

coUinearly. 

306*.  Theorei7i. — If  two  equianharmonic  ranges  have  three 
pairs  of  corresponding  points  in  perspective,  the  fourth 

points  are  in  the  same  perspective. 

Proof.— 

{ABCD]-  =  {A'B'C'D'}, 
and  A  and  A',  B  and  B',  and  C  and  C 
are  in  perspective  at  O.     Now 

0{ABCD}=OfA'B'C'D'}, 
and  we  have  two  equianharmonic  pen- 

cils of  which  three  pairs  of  correspond-  ̂  

ing  rays  meet  collinearly  at  A,  B,  and   C.     therefore  OD' 

and  OD  meet  at  D,  or  D  and  D'  are  in  perspective  at  O. 

Cor.  If  two  of  the  corresponding  points,  as  C  and  C",  be- 
come coincident,  these  two  points  are  in  perspective  at 

every  centre,  and  hence  three  corresponding  pairs  of  points 

are  necessarily  in  perspective. 

.'.  when  two  equianharmonic  ranges  have  a  pair  of  cor- 
responding points  coincident,  the  remaining  pairs  of  cor- 

responding points  are  in  perspective. 
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SECTION    II. 

HARMONIC    RATIO. 

307''.  Harmonic  ratio  being  a  special  case  of  anharmonic 

ratio  (299°,  5\  the  properties  and  relations  of  the  latter 
belong  also  to  the  former. 

The  harmonic  properties  of  a  divided  segment  may  ac- 

cordingly be  classified  as  follows  : — 
1.  The  dividing  points  alternate  with  the  end  points  of  the 

divided  segment. 

For  this  reason  harmonic  division  is  symbolized  by  writing 

the  letters  in  order  of  position,  as,  lAPBOj,  where  A  and  B 

are  the  end  points  of  the  segment  and  P  and  (2  the  dividing 

points  (301°).  A— P— B-    O. 
2.  The  dividing  points  P  and  O  divide  the  segment  extern- 

ally and  internally  in  the  same  ratio,  neglecting  sign.  (299°,  5) 
3.  If  one  segment  divides  another  harmonically,  the  second 

also  divides  the  first  harmonically.  (300°) 
4.  A  harmonic  range  determines  a  harmonic  pencil  at  every 

vertex,  and  a  harmonic  pencil  determines  a  harmonic  range 

on  every  transversal.  (304^>  Cor.  3) 
5.  If  one  or  more  rays  of  a  harmonic  pencil  be  reversed  in 

direction  the  pencil  remains  harmonic.  (304°>  Cor.  4) 
6.  Two  harmonic  pencils  which  have  three  pairs  of  corre- 

sponding rays  intersecting  collinearly  have  all  their  corre- 

sponding rays  intersecting  collinearly.  (305") 
7.  Two  harmonic  ranges  which  have  three  pairs  of  corre- 

sponding points  in  perspective  have  all  their  corresponding 

points  in  perspective.  (3o6'0 
8.  If  two  harmonic  pencils  have  a  corresponding  ray  from 

each  in  common,  all  their  corresponding  rays  intersect  col- 
linearly. (305%  Cor.) 

9.  If  two  harmonic  ranges  have  a  corresponding  point 
from  each  in  common,  all  their  corresponding  points  are  in 

perspective.  •  (306°.  Cor.) 
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308°.  Let  APBO  be  a  harmonic  range.     Then 
,  AP:PB  =  AQ:BO, 

^  ̂     ̂         ̂     :.       AP:AO-AB-AP:A(i-AB. 
Taking   AP,  AB,   AG    as   three   magnitudes,  we   have   the 
statement  : — 

The  first  is  to  the  third  as  the  difference  between  the  first 

and  second  is  to  the  difference  between  the  second  and  the 

third.  And  this  is  the  definition  of  three  quantities  in 

Harmonic  Proportion  as  given  in  Arithmetic  and  Algebra. 

Exercises. 

1.  When  three  line  segments  are  in  harmonic  proportion  the 

rectangle  on  the  mean  and  the  sum  of  the  extremes  is 

equal  to  twice  the  rectangle  on  the  extremes. 

2.  The    expanded    symbol     {APBO}=-i    gives   AP  :  AQ 
=  -  BP  :  BO.     Why  the  negative  sign  ? 

3.  Prove  from  the  nature  of  harmonic  division  that  when  P 

bisects  AB,  Q  is  at  00  . 
4.  Prove  that  if  OP  bisects  _AOB  internally  00  bisects  it 

externally  ;  0{APBQ}  is  equal  to  -  i. 
5.  Trace  the  changes  in  the  value  of  the  ratio  AC  :  BC  as  C 

moves  from  -  00  to  +  00 , 

309°.  In  the  harmonic  range  APB(2,  P  and  O  are  called 
conjugate  points,  and  so  also  are  A  and  B. 

Similarly  in  the  harmonic  pencil  O.APB(2,  OP  and.OQ 

are  conjugate  rays,  and  so  also  are  OA  and  OB. 

Ex.  I.  Given  three  points  of  a  harmonic  range  to  find  the 
fourth. 

Let  A,  P,  B  be  the  three  given  points. 

By  (259°,  Ex.  7)  find  any  point  O  at  which  the  segments 
AP  and  PB  subtend  equal  angles.  Draw  OQ  the  external 

bisector  of  the  1.AOB.     O  is  the  fourth  point. 

For  ()!'  and  OO  are  internal  and  external  bisectors  of  the 

_AOB.  '^  (2o8^  Cor.  i) 
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K\.  2.  Ciiven  three  rays  to  Hnd  a  fourth  so  as  to  make  the 

pencil  harmonic.  ° 
Let  OA,  OP,  OB  be  the  three  rays.  0^ 

On   OA  take  any  two  equal  distances        £^ 
OD  and  DE. 

Draw  DF  i|  to  OB,  and  draw  OO  '!  to 

EF.     00  is  the  fourth  ray  required.  ^ 
For  since  OD  =  DE.  EF=FG.  And  OQ  meets  EF  at  00. 

Then  EFGoo  are  harmonic  and  hence  O  .  APBQ  are 
harmonic. 

Cor,  In  the  symbolic  expression  for  a  harmonic  ratio  a  pair 

of  conjugates  can  be  interchanged  without  destroying  the 
harmonicism. 

{APBQ!  =  {B  PAQl  =  {BOAPJ  =  {AOBP}, 

for  {APBQ}  gives  AP  .  BQ  :  AQ  .  BP=  -  i, 
and         {BPAQI  gives  BP  .  AQ  :  BQ  .  AP, 

and  being  the  reciprocal  of  the  former  its  value  is  -  i  also. 
And  similarlv  for  the  remaining  svmbols. 

HARMONIC   PROPERTIES   OF  THE  TETRAGRAM 

OR    COMPLETE    OUADRANGLE. 

310°.  Let  ABCD  be  a  quadrangle,  of  which  AC,  BD,  and 
EF  are  the  three  diagonals. 

Also  let  the  line  EO  cut  two  sides 

in  G  and  H,  and  the  line  FO  cut 
the  other  two  sides  in  K  and  L. 

Then 

I.  AEDisa  Awhereof  AC,  EH, 
and  I)B  are  concurrent  lines  from 

the  vertices  to  the  opposite  sides. 

.-.   AB.EC.DH=-AH.DC.EB. 

(251°,  ̂ ) 
Also,  AED  is  a  A  ̂ ^^^  FCB  is  a 
transversal.  a 

AB.EC.I)F  =  AF.DC.EB, 
(250-,  u) 
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and  dividing  the  former  equality  by  the  latter, 

DH__AH 

DF         AF' and  AHDF  is  a  harmonic  range. 

2.  Again,  {AHDF}  =  E{AHDF}  =  E{LOKF}  =  E{BGCF}. 

(307°,  4) 
LOKF  and  BGCF  are  harmonic  ranges. 

3.  0{AHDF}  =  0{CEDK}  =  F{CEDK}  =  F{GEHO} 

=  F{BEAL},  (307°,  4,  5) 

but        {CEDK}  =  {DKCE},  etc.  (309°,  Cor.) 
DKCE,  HOGE,  ALEE  are  harmonic  ranges. 

4.  If  AC  be  produced  to  meet  EF  in  I,  AOCI  is  a  harmonic 
range. 

.'.  all  the  lines  upon  which  four  points  of  the  figure  lie  are 
divided  harmonically  by  the  points. 

And  the  points  E,  F,  and  O  at  which  four  lines  concur  are 

vertices  of  harmonic  pencils. 

Exercises. 

1.  A  line  ||  to  the  base  of  a  A  ̂ ^^  its  points  of  intersection 

with  the  sides  connected  transversely  with  the  end 

points  of  the  base.  The  join  of  the  vertex  with  the 

point  of  intersection  of  these  connectors  is  a  median, 

and  is  divided  harmonically. 

(Let  F  go  to  00  in  the  last  figure.) 
2.  ABC  is  a  A  and  BD  is  an  altitude.     Through  any  point 

O  on  BD,  CO  and  OA  meet  the  sides  in  F  and  E 

respectively.  Show  that  DE  and  DF  make  equal 

angles  with  AC. 

3.  The  centres  of  two  circles  and  their  centres  of  similitude 
form  a  harmonic  range. 

4.  In  the  Fig.  of  310°  the  joins  DI,  IB,  BH,  and  LD  are  all 
divided  harmonically. 
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311*.  Let  APBQ  be  a  harmonic  range  and  let  C  be  the 
middle  point  of  AB.     Then 

AP__BP_PB 

AO         BQ     BO' 
^,    ,  .    CB-4-CP_CB-CP 
^^^^'^CB  +  CQ"CQ-CB' 

CB+CP_CQ+CB 
"'  CB-CP     CO-CB' 
,  CB     CO 

^^^^"^^  CP  =  CB- 

.-.  CP .  C0  =  CB2,  oj.  p  and  O  are  inverse  points  to  the  circle 
having  C  as  centre  and  CB  as  radius. 

.".  I.  The  diameter  of  a  circle  is  divided  harmonically  by 
any  pair  of  inverse  points. 

And  a  circle  having  a  pair  of  conjugates  of  a  hartnonic 

range  as  end-points  of  a  diameter  has  the  other  pair  of 
con  ugates  as  inverse  points. 

Again,  let  EF  be  any  secant  through  P  meeting  the  polar 
of  P  in  V. 

A  circle  on  PV  as  diameter  passes  through  Q  and  P,  and 

therefore  cuts  S  orthogonally.  (258") 
Hence  also  the  circle  S  cuts  the  circle  on  PV  orthogonally, 

and  E  and  F  are  inverse  points  to  the  circle  on  PV. 

.•.  EPFV  is  a  harmonic  range. 

.'.  2.  A  line  is  cut  harmonically  ly  a  pointy  a  circle^  and 
the  polar  of  the  point  with  respect  to  the  circle. 

Ex.  P,  O  are  inverse  points,  and  from  Q  a  line  is  drawn 

cutting  the  circle  in  A  and  B.  The  join  IB  cuts  the  circle  in 

A'.     Then  AA'  is  JL  to  PQ. 

312°.  Let  P  be  any  point  and  L  its  polar  with  respect  to 
the  circle  Z.  And  let  PCD  and  PBA  be  any  two  secants. 
Then 

I.  PCED  and  PBFA  are  harmonic  ranges  having  P  a  cor- 
responding point  in  each.  Therefore  AD,  FE,  and  BC  are 

concurrent.     And  BC  and  AD  meet  on  the  polar  of  P.   (309°,  9) 
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2.  Again,  since         (PCEDl  =  {PDEC:.  (309',  Cor.) 

.•.  PDEC  and  PBFA  are  harmonic  ranges  having  P  a  cor- 
responding point  in  each.  Therefore  DB,  EF,  and  CA  are 

concurrent,  and  AC  and  DB  meet  on  the  polar  of  P. 

.•.  If  from  any  point  two  secants  be  drawn  to  a  circle^  the 
cofmectors  of  their  points  of  intersection  with  the  circle  meet 

upon  the  polar  of  the  first  point. 

3.  Since  O  is  on  the  polar  of  P,  P  is  on  the  polar  of  O. 

But  since  Q  is  a  point  from  which  secants  are  drawn  satis- 

fying the  conditions  of  2,  Q  is  on  the  polar  of  O. 

.'.  PQ  is  the  polar  of  O. 
Now  ABCD  is  a  concyclic  quadrangle  whereof  AC  and 

BD  are  internal  diagonals  and  PO  the  external  diagonal. 

.  •.  In  any  concyclic  quadrangle  the  external  diagonal  is  the 
polar  of  the  point  of  interscctio?i  of  the  internal  diag07tals, 

with  respect  to  the  circumcircle. 

4.  Since  Q  is  on  the  polar  of  P  and  also  on  that  of  O, 

therefore  PO  is  the  polar  of  O,  and  POO  is  a  triangle  self- 
conjugate  with  respect  to  the  circle. 

5.  Let  tangents  at  the  points  A,  K,  C,  D  form  the  circum- 

scribed quadrangle  USV'T. 
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Then  S  is  the  pole  of  AB,  and  T  of  DC. 

.-.  ST  is  the  polar  of  P,  and  S  and  T  are  points  on  the 
line  00. 

Similarly  U  and  V  are  points  on  the  line  PO. 
But  XY  is  the  external  diagonal  of  USVT,  and  its  pole  is 

0.  the  point  of  intersection  of  DB  and  AC. 

.•.  X  and  Y  are  points  on  the  line  PO. 
Hence,  If  tangents  be  drawn  at  the  vertices  of  a  coney  die 

quadrangle  so  as  to  form  a  circumscribed  quadrang/e,  the  in- 
ternal diagonals  of  the  two  quadrangles  are  concurrent,  and 

their  external  diagonals  are  segments  of  a  common  line  ;  and 

the  point  of  concurrence  atid  the  line  are  pole  and  polar  with 

respect  to  the  circle. 

Exercises. 

1.  UOVP  and  SOTO  are  harmonic  ranges. 

2.  If  DB  meets  the  line  PQ  in  R,  XOR  is  a  self-conjugate 
triangle  with  respect  to  the  circle. 

3.  To  find  a  circle  which  shall  cut  the   sides   of   a   given 

triangle  harmonically. 

4.  QXPY  is  a  harmonic  range. 

313".  Let  S  be  a  circle  and  A'P'B'Q'  a  harmonic  range. 
Taking  any  point  O  on  the 

circle  and  through  it  projecting 

rectilinearly  the  points  A'P'B'Q' 
we  obtain  the  system  APBQ, 

which  is  called  a  harmonic  sys- 

tem of  points  on  the  circle. 

Now,  taking  O'  any  other  point 
on  the  circle,  O'.  APBO  is  also 
harmonic.     For 

_AOP  =  _AO'P, 
_POB  =  _PO'B,  etc. 

.*.  Def — F'our  points  on  a  circle 

form  a  harmonic  system  when  their     A  P      B '        q' 
joins  with  any  fifth  point  on  the  circle  form  a  harmonic  pencil. 
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Cor.  I.  vSince    sin^iAOP ^Y,  sinz.POB  =  ?^,  etc.,  (228  ) a  a 

.-.  (304°),  neglecting  sign,  AP  .  BQ- AG  .  PB, 

.'.  When  four  points  form  a  harmonic  system  on  a  circle^  the 
rectangles  on  the  opposite  sides  of  the  normal  quadrangle 
which  they  determine  are  equal. 

Cor.  2.  If  O  comes  to  A,  the  ray  OA  becomes  a  tangent 
at  A. 

.•.  When  four  points  form  a  harmonic  systetn  on  a  circle, 
the  tangent  at  any  one  of  them  and  the  chords  frotn  the  point 

of  contact  to  the  others  forin  a  harmonic  pencil. 

[4°.  Let  the  axis  of  the  harmonic  range  APBQ  be  a  tan- 
gent to  the  circle  S. 

Through  A,  P,  B,  and 

Q  draw  the  tangents  A«, 
B<5,  P/,  and  Q^. 

These  four  tangents 

form  a  harmonic  system 

of  tangents  to  the  circle  S. 

Let  L  be  any  other  tan- 

gent cutting  the  four  tan- 

gents of  the  system  in  A' 
P',  B',  and  Q'. 

Then,  considering  Art;,  P/,  B/a  etc.,  as  fixed  tangents,  and 

A'P'B'Q'  as  any  other  tangent. 

^AOP  =  ̂ OP',  ̂ P0B  =  :LP'0B',  etc.,  (116°,  Ex.  i) 

.'.  the  pencils  O.APBQ  and  O .  A'P'B'Q'  are  both  har- 
monic, and  A'P'B'Q'  is  a  harmonic  range. 

.'.  When  four  tangents  form  a  harmonic  system  to  a  circle, 
they  intersect  any  other  tatigent  in  points  which  form  a  har- 

monic range. 

Cor.  I.  If  the  variable  tangent  coincides  with  one  of  the 

fixed  tangents,  the  point  of  contact  of  the  latter  becomes  one 
of  the  points  of  the  range. 
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.•.  When  four  tangents  form  a  harmonic  system  to  a  circle^ 
each  tangent  is  divided  harmonicaity  by  its  point  of  contact 
and  its  intersections  with  the  other  tangeftts. 

Exercises. 

1.  Tangents  are  drawn  at  A,  A'  the  end-points  of  a  diameter, 
and  two  points  P,  B  are  taken  on  the  tangent  through 

A  such  that  AB  =  2AP.  Through  P  and  B  tangents  are 

drawn  cutting  the  tangent  at  A'  in  P'  and  B'.  Then 
2A'B'  =  A'P',  and  AA',  PB',  and  BP'  are  concurrent. 

2.  Four  points  form  a  harmonic  system  on  a  circle.     Then  the 

tangents  at  one  pair  of  conjugates  meet  upon  the  secant 

through  the  other  pair. 

3.  If  four  tangents  form  a  harmonic  system  to  a  circle,  the 

point  of  intersection  of  a  pair  of  conjugate  tangents  lies 

on  the  chord  of  contact  of  the  remaining  pair. 

4.  If  four  points  form  a  harmonic  range,  their  polars  with 

respect  to  any  circle  form  a  harmonic  pencil  ;  and 
conversely. 

SECTION   III. 

OF    ANHARMOMC    PROPERTIES. 

315°.  Let  A,  E,  C  and  D,  B,  F  be  two  sets  of  three  col- 
linear  points  having   their  ̂ ^   ^ 
axes     meeting     in     some 

point  R, 

Join     the    points    alter- 
nately,    as     ABCDEFA. 

Then  AB  and  DE,  BC  and 

EF,  CD  and  FA  meet  in    d 

P,  Q,'  O.     To  show  that  these  points  are  collinear. 
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0{EC0F;  =  C{F.0(2F;  (refen-ed  to  axis  EF^ 

=  C{RDBF}  (referred  lo  axis  DR) 
=  A{RDBF} 

=  A{EDPF}  (referred  to  axis  DE) 

=  0{EDPF} 

=  0{ECPF}.  (by  reversing  rr^ys,  etc.) 

.-.  the  pencils  O.  E(  OF  and  O.  ECPF  are  equianharmonic, 
and  having  three  rays  in  common  the  fourth  rays  must  be  in 

common,  i.e.^  they  can  differ  only  by  a  straight  angle,  and 
therefore  O,  P,  O  are  collinear. 

(Being  the  first  appHcation  of  anharmonic  ratios  the  work 

is  very  much  expanded.) 

..If  six  lines  taken  in  order  iiitersect  alternately  in  tivo 

sets  of  three  collinear  points.,  they  intersect  in  a  third  set  of 
three  collinear  poitits. 

Cor.  I.  ABC  and  DEF  are  two  triangles,  whereof  each  has 

one  vertex  lying  upon  a  side  of  the  other. 

If  AB  and  DE  are  taken  as  corresponding  sides,  A  and  F 

are  non-corresponding  vertices.  But,  if  AB  and  EF  are 

taken  as  corresponding  sides,  A  and  D  are  non-corresponding 
vertices. 

Hence  the  intersections  of  AB  and  EF,  of  ED  and  CB, 
and  of  AD  and  CF  are  collinear. 

.•.  If  two  triangles  have  each  a  vertex  lying  upon  a  side  of 
the  other,  the  remaining  sides  and  the  joins  of  the  remaining 

non-corresponding  vertices  intersect  collinearly. 

Cor.  2.  Joining  AD,  BE,  CF,  ADBE,  EBFC,  and  ADFC 

are  quadrangles,  and  P,  Q,  O  are  respectively  the  points  of 
intersection  of  their  internal  diagonals. 

.*.  if  a  quadrangle  be  divided  into  two  quadrangles,  the 
points  of  intersection  of  the  internal  diagonals  of  the  three 

quadrangles  are  collinear. 
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316°.  Let  A,  A',  B,  R',  C,  C  be  six  points  lying  two  by  two 
on  two  sets  of  three  con- 

current lines,  which  meet 
at  P  and  O.  Then  the 

points  lie  upon  a  third  set 
of  three  concurrent  lines 

meeting  at  O. 

We   are   to   prove   that 

AO  and  AA'  are  in  line. 

A{OxC'B}=B';0.t'C'Q} 
=  B'{CPC>} 

=  Q{A'P.-B} 
=  A{A';rC'B}. 

.-.  the   pencils  A.O.i-C'B 

and  A  .  A'^'B   are   equi- 
anharmonic,  and  have  three  corresponding  rays  in  common. 

Therefore  AO  and  AA'  are  in  line. 

Cor.  ABC  and  A'B'C  are  two  A^  which  are  in  perspective 
at  both  P  and  Q,  and  we  have  shown  that  they  are  in  per- 

spective at  O  also. 

As  there  is  an  axis  of  perspective  corresponding  to 

each  centre,  the  joins  of  the  six  points,  accented  letters 

being  taken  together  and  unaccented  together,  taken  in 

every  order  intersect  in  three  sets  of  three  collinear 

points. 

Exercises. 

If  two  /^s  have  their  sides  intersecting  collinearly,  their 

corresponding  vertices  connect  concurrently. 
The  converse  of  Ex.  i. 

Three  equianharmonic  ranges  ABCD,  A'B'C'D',  and 

PQRS  have  their  nxes  concurrent  at  Y,  and  AA',  BB', 

CC,  DD'  concurrent  at  X,  and  .^P,  BQ,  CR,  DS  con- 
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current  at  Z,  then  A'P,  B'Q,  C'R,  D'S  are  concurrent  at 
a  point  which  is  coHinear  with  X  and  Z. 

From  Ex.  3  show  that  if  a  variable  A  has  its  sides  passing 

through  three  fixed  points,  and  two  of  its  vertices  Ijnng 

upon  fixed  lines,  its  third  vertex  lies  upon  a  fixed  line 
concurrent  with  the  other  two. 

If  a  variable  A  has  its  vertices  lying  on  three  fixed  lines 

and  two  of  its  sides  passing  through  fixed  points,  its 

third  side  passes  through  a  fixed  point  coUinear  with 
the  other  two. 

317°.  The  range  ABCD  is  transferred  to  the  circle  S  by- 
rectilinear  projection  through 

any  point  O  on  the  circle. 

Then  A'B'C'D'  is  a  system  of 
points  on  the  circle  which  is 

equianharmonic  with  the  range 
ABCD. 

I.  If  O'  be  any  other  point 
on  the  circle,  the 

^A'OB'  =  ̂ A'0'B', 

ABCD  ^B'OC'^^B'O'C,  etc., 

and  the  two  pencils  O .  A'B'C'D'  and  O'.  A'B'C'D'  are  equi- anharmonic. 

.-.  four  points  on  a  circle  subtend  equianharmonic  pencils 
at  all  fifth  points  on  the  circle. 

      A
'B' 

2.  Smce 
sinA'OB'  =  : 

sin  COD' = 

CD' 

etc. 

and 

d 

AB.CD  +  BC.AD  =  AC.BD, 

A'B'.  CD'  +  B'C.  A'D'  =  A'C'.  B'D' ; 

which  is  an  extension  of  Ptolemy's  theorem  to 

quadrangle. 
(233-) 

a  concyclic (205I 



OF   AN  HARMONIC    PROPERTIES.  27  I 

3.  If  the  range  ABCD  is  inverted  with  O  as  the  centre  of 

inversion,  the  axis  of  the  range  inverts  into  a  circle  S  through 

O,  and  A,  B,  C,  D  invert  into  A',  B',  C,  and  D'  respectively. 
Hence,  in  general,  anharmonic  relations  are  unchanged  by 

inversion,  a  range  becoming  an  equianharmonic  system  on  a 
circle,  and  under  certain  conditions  vice  versa. 

4.  In  the  inversion  of  3,  A  and  A',  B  and  B',  etc.,  are  pairs 
of  inverse  points. 

OA.OA'  =  OB.OB' 

=  OC.OC  =  OD.OD', 

and   the  As  OAB  and  OB'A',  OAC  and  OCA',  etc.,  are 
similar  in  pairs. 

And  if  P  be  the  _L  from  O  to  AD,  and  Pj,  Pg,  P3,  and  P4  be 

the  ±s  from  O  to  A'B',  B'C,  CD',  and  D'A',  we  have 

AB^A'B'     BC^B'C 

P"       P7'     P        P2' 

CD^CD'    DA_D'A^ 
P        P3  '     P        P4  ' 

AB  f-BC  +  CD  +  DA_A'B^     B'C     CD^     D'A^ 

p  Pi  "^  P2  '^'v;    P4  • 

But  (232°)  AB  +  BC  +  CD  +  D A  =  0, 

A'B' .B'C  .CD'     D'A'    ̂  

-PT^PT^-PT'-Pr^"' 
And  since   the    same  principle  applies  to  a  range   of  any 

number  of  points, 

.'.  in  any  concyclic  polygon,  if  each  side  be  divided  by  the 
perpendicular  upon  it  from  any  fixed  point  on  the  circle,  the 

sum  of  the  quotients  is  zero. 

In  the  preceding  theorem,  as  there  is  no  criterion  by  which 

we  can  distinguish  any  side  as  being  negative,  some  of  the 

perpendiculars  must  be  negative. 

Of  the  perpendiculars  one  falls  externally  upon  its  side  of 
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the  polygon  and  all  the  others  fall  internally.     Therefore  the 

theorem  may  be  stated  : — 
If  _Ls  be  drawn  from  any  point  on  a  circle  to  the  sides  of  an 

inscribed  polygon,  the  ratio  of  the  side,  upon  which  the  _L 

falls  externally,  to  its  _L  is  equal  to  the  sum  of  the  ratios  of 

the  remainint^  sides  to  their  JLs. 

318^    Theorem. —  If  two  circles  be  inverted  the  ratio  of  the 
square  on  their  common  tangent  to  the  rectangle  on  their 

diameters  is  unchanged. 

Let  S,  S'  be  the 
circles  and  AD  be  the 

common  centre  line, 
and  let  the  circles  s 

and  /  and  the  circle 

Z  be  their  inverses 

respectively. 
Then  Z  cuts  s  and  / 

orthogonally,  and 

O{ABCDH0{A'B'C'D'[. But  if  abed  be  the 

common  centre  line  of 

s  and  /,  <7A',  ̂ B',  rC, 
and  dT)'  are  concurrent 
at  O.  (265^  Ex.  I) 

0{abcd\  =  0\P^V>'C\y] 
=  0{ABCD}, 

{rt^^rf'}  =  {ABCD}, 

KQ  ."QV) _ae .  bd 
°^  AB.CD     ab.cd' 

But  AC .  BD  =  the  square  on  the  common  direct  tangent  to  S 

and  S',  and  ac .  bd=\\\^  square  of  the  corresponding  tangent 

to  s  and  .<•'.  (i79°,  Ex.  2) 
And  AB  .  CD  and  ab .  e/^  are  the  products  of  the  diameters 

respectively. 
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And  the  theorem  is  proved. 

Cor.  I.  Writing  the  symbolic  expressions  {ABCD}  and 
{ndcif}  in  another  form,  we  have 

AB.CD     ad.cd' And  AD .  BC  and  ad.  be  are  equal  to  the  squares  on  the 

transverse  common  tangents  respectively. 

Cor.  2.  If  four  circles  S^,  83,  S3,  S4  touch  a  line  at  the 

points  A,  B,  C,  D,  and  the  system  be  inverted,  we  have  four 

circles  j-^,  j-g,  %  J4,  which  touch  a  circle  Z  through  the  centre 
of  inversion. 

Now  let  ̂ /i,  lU.  d-^,  d^  be  the  diameters  of  Sj,  Sg,  etc.,  and  let 

^ij  ̂2>  ̂31  ̂4  be  the  diameters  of  j^,  s^,  etc..  and  let  /jg  t>e  the 
common  tangent  to  Sy  and  j.,,  t^^  be  that  to  jgand  J4,  etc. 

Then  AB,  etc.,  are  common  tangents  to  Sj  and  Sg,  etc., 

and  AB.CU  +  BC.AD  +  CA.BD=o.  (233°) 

And  A^^     '-' 
rt',4    5,52' CD^_V 

d^^     5354' AB .CD_    V34 

and  similar  equalities  for  the  remaining  terms, 

/12/34  + /23^,4  +  ̂31^24  =  O- 

This  theorem,  which  is  due  to  Dr.  Casey,  is  an  extension 

of  Ptolemy's  theorem.  For,  if  the  circles  become  point- 
circles,  the  points  form  the  vertices  of  a  concyclic  quadrangle 

and  the  tangents  form  its  sides  and  diagonals. 

If  we  take  the  incircle  and  the  three  excircles  of  a  triangle 

as  the  four  circles,  and  the  sides  of  the  triangle  as  tangents, 

we  obtain  by  the  help  of  Ex.  1,  135°,  fi--  t'  +  c'' ~  d^-\-n^-d^ 
as  the  equivalent  for  /pj/^j  +  etc. ;  and  as  this  expression  is 
identically  zero,  the  four  circles  given  can  all  be  touched  by 
a  fifth  circle. 

S 
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319".  Let  A,  B,  C,  D,  E ,  F  be  six  points  on  a  circle  so  con- 
nected as  to  form  a  hexagram, 

i.e.,  such  that  each  point  is  con- 
nected with  two  others. 

Let  the  opposite  sides  AB, 
DE  meet  in  P  ;  BC,  EF  in  Q  ; 

and  CD,  FA  in  R. 

To  prove  that  P,  Q,  and  R  are 
collinear. 

Q{BDER}  =  Q{CDER} =  F{CDEA} 

=  B{CDEP} 

=  Q{BDEP}, 

.-.  QR  and  QP  are  in  line. 
,•.    if    a    hexagram    have    its 

vertices  concyclic,  the  points  of 

intersection  of  its  opposite  sides 

in  pairs  are  collinear. 

Def. — The  line  of  collinearity  is  called  the  pascal  of  the 
hexagram,  after  the  famous  Pascal  who  discovered  the 

theorem,  and  the  theorem  itself  is  known  as  PascaPs 
theorem. 

Cor.  I.  The  six  points  may  be  connected  in  5  x  4  x  3  x  2  or 

T20  different  ways.  For,  starting  at  A,  we  have  five  choices 

for  our  first  connection.  It  having  been  fixed  upon,  we  have 

four  for  the  next,  and  so  on  to  the  last.  But  one-half  of  the 
hexagrams  so  described  will  be  the  othef  half  described  by 

going  around  the  figure  in  an  opposite  direction.  Hence,  six 

points  on  a  circle  can  be  connected  so  as  to  form  60  different 

hexagrams.  Each  of  these  has  its  own  pascal,  and  there  are 

thus  60  pascal  lines  in  all. 
When  the  connections  aie  made  in  consecutive  order  about 

the  circle  the  pascal  of  the  hexagram  so  formed  falls  without 

the  circle  ;  but  if  any  other  order  of  connection  is  taken,  the 

pascal  may  cut  the  circle. 
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Cor  2.  In  the  hexagram  in  the  figure,  the  pascal  is  the  line 
through  P,  O,  R  cutting  the  circle  in  H  and  K.     Now 

C{KFBD}  =  C{KFQR}  ^   
=  F{KCQR}  a/     A        \c 
=  F{KCEA},  Ax/     \/f\ 

{KFBD}  =  {KCEA},  [    \f\yy\_ 

and  K  is  a  common  point  to  two  equi-    hV  wV/^^S^Q^  J^ 
anharmonic  systems  on  the  circle.     So         b\\/  ̂ ^f 
also  is  H.  B 

These  points  are  important  in  the  theory  of  homographic 
systems. 

Cor.  3.  Let  i,  2,  3,  4,  5,  6  denote  six  points  taken  consecu- 
tively upon  a  circle.  Then  any  particular  hexagram  is  denoted 

by  writing  the  order  in  which  the  points  are  connected,  as  for 
example,  2461352. 

In  the  hexagram  246135  the  pairs  of  opposite  sides  are  24 

and  13,  46  and  35,  61  and  52,  and  the  pascal  passes  through 
their  intersections. 

Now  taking  the  four  hexagrams 
246135*  245136,  246315,  2453T6, 

the  pascal  of  each  passes  through  the  intersection  of  the 
connector  of  2  and  4  with  the  connector  of  i  and  3.     Hence 

the  pascals  of  these  four  hexagrams  have  a  common  point. 
It  is  readily  seen  that  inverting  the  order  of  2  and  4  gives 

hexagrams  which  are  only  those  already  written  taken  in  an 
inverted  order. 

.•.  the  pascals  exist  in  concurrent  groups  of  four,  meeting 
at  fifteen  points  which  are  intersections  of  connectors. 

Cor.  4.  In  the  hexagram  1 352461  consider  the  two  triangles 
formed  by  the  sides  13,  5^2,  46  and  35,  24,  61.  The  sides  13 
and  24,  35  and  46,  52  and  61  intersect  on  the  pascal  of 
1352461,  and  therefore  intersect  collinearly. 

Hence  the  vertices  of  these  triangles  connect  concurrently, 
/>.,  the  line  through  the  intersection  of  35  and  61  and  the 
intersection  of  52  and  46,  the  line  through  the  intersection  of 
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35  and  24  and  the  intersection  of  13  and  46,  and  the  line 
through  the  intersections  of  24  and  61  and  the  intersection 

of  13  and  25  are  concurrent. 

But  the  first  of  these  lines  is  the  pascal  of  the  hexagram 

1643521,  the  second  is  the  pascal  of  the  hexagram  3564213, 

and  the  third  is  the  pascal  of  the  hexagram  4256134. 

.'.  the  pascals  exist  in  concurrent  groups  of  three,  meeting 
at  20  points  distinct  from  the  15  points  already  mentioned. 

Cor.  5.  If  two  vertices  of  the  hexagram  coincide,  the  figure  be- 
comes a  pentagram,  and  the  missing  side  becomes  a  tangent. 

.•  if  a  pentagram  be  inscribed  in  a  circle  and  a  tangent  at 
any  vertex  meet  the  opposite  side,  the  point  of  intersection 
and  the  points  where  the  sides  about  that  vertex  meet  the 

remaining  sides  are  collinear. 

Ex.  I.  The  tangents  at  opposite  vertices  of  a  concyclic  quad- 
rangle intersect  upon  the  external  diagonal  of  the  quadrangle. 

Ex.  2.  ABCD  is  a  concyclic  quadrangle.  AB  and  CD 

meet  at  E,  the  tangent  at  A  meets  BC  at  G,  and  the  tangent 
at  B  meets  AD  at  F.     Then  E,  F.  G  are  collinear. 

320°.  Let  six  tangents  denoted  by  the  numbers  i,  2,  3,  4,  5, 
and  6  touch  a 
circle  in  A,  B,  C, 

D,  E,  and  F. 
And  let  the 

points  of  inter- section of  the 

tangents  be  de- noted by  12,  23, 

34,  etc. 
Then  the  tan- 

gents form  a 
hexagram  about 
the  circle. 

Now,      12      is 

the  pole  of  AB,  and  45  is  the  pole  of  ED.     Therefore  the 
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line  12.45  '^  ̂ ^^  polar  of  the  point  of  intersection  of  AB 
and  ED. 

Similarly  the  line  23 .  56  is  the  polar  of  the  intersection  of 

BC  and  EF,  and  the  line  34.61  is  the  polar  of  the  intersec- 
tion of  CD  and  FA.  » 

But  since  ABCDEF  is  a  hexagram  in  the  circle,  these 

three  intersections  are  collinear.  (319°) 

.'.  the  lines  12 .  45,  23.  56,  and  34.  61  are  concurrent  at  O. 
And  hence  the  hexagram  formed  by  any  six  tangents  to  a 

circle  has  its  opposite  vertices  connecting  concurrently. 

De/. — The  point  of  concurrence  is  the  Brianchoti  point,  and 
the  theorem  is  known  as  Bria?tchojis  tJicorcm. 

Cor.  I.  As  the  six  tangents  can  be  taken  in  any  order  to 

form  the  hexagram,  there  are  60  different  hexagrams  each 

having  its  own  Brianchon  point. 

Now  take,  as  example,  the  hexagram  formed  by  the  lines 

T23456  taken  in  order. 

The  connectors  are  12  .  45,  23  .  56,  34.  61,  and  these  give 

the  point  O. 

But  the  hexagrams  T26453,  T23546,  and  T26543  all  have 

one  connector  in  common  with  T23456,  namely,  that  which 

passes  through  12  and  45.  Hence  the  Brianchon  points  of 

these  four  hexagrams  lie  upon  one  connector. 

.*.  the  60  Brianchon  points  lie  in  collinear  groups  of  four 
upon  15  connectors  of  the  points  of  intersection  of  the 

tangents. 

Cor.  2.  Consider  the  triangles  12.56.34  and  45.23.61. 

These  have  their  vertices  connecting  concurrently,  and  there- 
fore they  have  their  sides  intersecting  collinearly. 

But  the  point  of  intersection  of  the  sides  61 .  23  and  56.  34 

is  the  Brianchon  point  of  the  hexagram  formed  by  the  six 

lines  234165  taken  in  order;  and  similar  relations  apply  to 

the  other  points  of  intersection. 

Hence  the  60  Brianchon  points  lie  in  collinear  groups  of 

three  upon  axes  which  are  not  diagonals  of  the  figure. 
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Cor.  3..  Let  two  of  the  tangents  become  coincident. 

Their  point  of  intersection  is  then  their  common  point  of 

contact,  and  the  hexagram  becomes  a  pentagram. 

.'.  in  any  pentagram  circumscribed  to  a  circle  the  join  of 
a  point  of  contact  with  the  opposite  vertex  is  concurrent  with 

the  joins  of  the  remaining  vertices  in  pairs. 

Ex.  I.  In  any  quadrangle  circumscribed  to  a  circle,  the 

diagonals  and  the  chords  of  contact  are  concurrent. 

Ex.  2.  In  any  quadrangle  circumscribed  to  a  circle,  the 

lines  joining  any  two  vertices  to  the  two  points  of  contact 

adjacent  to  a  third  vertex  intersect  on  the  join  of  the  third 

and  the  remaining  vertex. 

SECTION    IV. 

OF  POLAR  RECIPROCALS  AND  RECIPROCATION. 

321°.  The  relation  of  pole  and  polar  has  already  been 
explained  and  somewhat  elucidated  in  Part  IV.,  Section  V. 

It  was  there  explained  that  when  a  figure  consists  of  any 

number  of  points,  and  their  connecting  lines,  another  figure 

of  the  same  species  may  be  obtained  by  taking  the  poles  of 

the  connectors  of  the  first  figure  as  points,  and  the  polars  of 

the  points  in  the  first  figure  as  connecting  lines  to  form  the 
second. 

And  as  the  first  figure  may  be  reobtained  from  the  second 

in  the  same  way  as  the  second  is  obtained  from  the  first,  the 

figures  are  said  to  be  polar  reciprocals  of  one  another,  as 

being  connected  by  a  kind  of  reciprocal  relation.  The  word 

reciprocal  in  this  connection  has  not  the  same  meaning  as  in 

184°,  Def. 
The  process  by  which  we  pass  from  a  figure  to  its  polar 

reciprocal  is  called  polar  reciprocation  or  sjmply  reciprocation. 
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322°.  Reciprocation  is  effected  with  respect  to  a  circle 
either  expressed  or  implied.  The  radius  and  centre  of  this 

reciprocating  circle  are  quite  arbitrary,  and  usually  no 
account  need  be  taken  of  the  radius.  Certain  problems  in 

reciprocation,  however,  have  reference  to  the  centre  of  re- 
ciprocation, although  the  position  of  that  centre  may  gener- 

ally be  assumed  at  pleasure. 
From  the  nature  of  reciprocation  we  obtain  at  once  the 

following  statements  : — 
1.  A  point  reciprocates  into  a  line  and  a  line  into  a  point. 

And  hence  a  figure  consisting  of  points  and  lines  reciprocates 

into  one  consisting  of  lines  and  points. 

2.  Every  rectilinear  figure  consisting  of  more  than  a  single 

line  reciprocates  into  a  rectilinear  figure. 

3.  The  centre  of  reciprocation  reciprocates  into  the  line  at 

00 ,  and  a  centre-line  of  the  circle  of  reciprocation  reciprocates 
into  a  point  at  00  in  a  direction  orthogonal  to  that  of  the 
centre-line. 

4  A  range  of  points  reciprocates  into  a  pen"il  of  lines,  and 
the  axis  of  the  range  into  the  vertex  of  the  pencil.  And 

similarly,  a  pencil  of  lines  reciprocates  into  a  range  of  points, 
md  the  vertex  of  the  pencil  into  the  axis  of  the  range. 

pencil  of  four,  and  C  be  the 323'.  Let  O.  LMNK  be  a 
centre     of    reciprocation. 

Draw   the    perpendiculars 

Qf  on  L,  Cm'  on   M.  C;/' 

on  N,  and  Ck'  on  K. 
The  poles  of  L,  M,  N, 

K  lie  respectively  on  these 

perpendiculars,  forming  a 

range  of  points  as  /,  ;//,  ;/, 
k      Then 

I.  Evidently  the 

_LOM=_/C///,  _M()N  -_'//C;/,  etc. 

.•.  the  angl^  between  two  lines  is  equal  to  that  subtended  at 
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the  centre  of  reciprocation  by  the  poles  of  the  lines  ;  and  the 

angle  subtended  at  the  centre  of  reciprocation  by  two  points 

is  equal  to  the  angle  between  the  polars  of  the  points. 

2.  Any  pencil  of  four  is  equianharmonic  with  its  polar 

reciprocal  range.  And  hence  anharmonic  or  harmonic  re- 
lations are  not  altered  by  reciprocation. 

Def. — Points  are  said  to  be  perpendicular  to  one  another 
when  their  joins  with  the  centre  of  reciprocation  are  at  right 

angles.  In  such  a  case  the  polars  of  the  points  are  perpen- 
dicular to  one  another. 

324°.  In  many  cases,  and  especially  in  rectilinear  figures, 
the  passing  from  a  theorem  to  its  polar  reciprocal  is  quite  a 

mechanical  process,  involving  nothing  more  than  an  intel- 
ligent and  consistent  change  in  certain  words  in  the  statement 

of  the  theorem. 

In  all  such  cases  the  truth  of  either  theorem  follows  from 

that  of  its  polar  reciprocal  as  a  matter  of  necessity. 

Take  as  example  the  theorem  of  88°,  "  The  three  altitudes 
of  a  A  are  concurrent." 

To  get  its  polar  reciprocal  put  it  in  the  following  form,  where 

the  theorem  and  its  polar  reciprocal  are  given  in  alternate 

lines  : — 

The  three!  ""'^  trough  the  vertices)^ ̂   ̂  ̂   perpendicular 
(pomts    on    the    sides      ) 

^    ,,  .     (sides      )        (concurrent. 
to  the  opposite-  i^re-^     ,,. ( vertices )         ( coUinear. 

To  get  a  point  ±  to  a  vertex  we  connect  the  vertex  to  the 

centre  of  reciprocation,  and  through  this  centre  draw  a  line  ± 

to  the  connector.  The  point  required  lies  somewhere  on  this 

line.  (323°,  Def.) 
And  as  the  centre  may  be  any  point,  we  may  state  the 

polar  reciprocal  thus  : 

"  The  lines  through  any  point  perpendicular  lo  the  joins  of 
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that  point  with  the  vertices  of  a  triangle  intersect  the  opposite 

sides  of  the  triangle  collinearly."  (252",  Ex.  8) 

325.  Consider  any  two  As-  These  reciprocate  into  two 

As  ;  vertices  giving  sides,  and  sides,  vertices. 
If  the  original  As  are  in  perspective  their  vertices  connect 

concurrently.  But  in  reciprocation  the  vertices  become  sides 

and  the  point  of  concurrence  becomes  a  line  of  collinearity. 

Hence  the  polar  reciprocals  of  these  As  have  their  sides 

intersecting  collinearly  and  are  in  perspective. 

.•.  As  in  perspective  reciprocate  into  As  in  perspective. 
But  any  three  concurrent  lines  through  the  vertices  of  a  A 

intersect  the  opposite  sides  in  points  which  form  the  vertices 

of  a  new  A  'n  perspective  with  the  former. 

Hence  all  cases  of  three  concurrent  lines  passing  through 

the  vertices  of  a  A  reciprocate  into  As  in  perspective  with 

the  original.  Such  are  the  cases  of  the  concurrence  of  the 

three  medians,  the  concurrence  of  the  three  altitudes,  of  the 

three  bisectors  of  the  angles,  etc. 

326°.  The  complete  harmonic  properties  of  the  tetragram 
may  be  expressed  in  the  two  following  theorems,  which  are 

given  in  alternate  lines,  and  are  polar  reciprocals  to  one 

another  : — 

FourP*"^"    Idetermine  by  their f'"^^''^^^^'°"n six |P°^"t^4 (pomts)  (connectors    )       (lines,    ) 

and  the|™""^<='°.''=    iof  these  by  their ('"'"^«"'°"'} deter- ( mtersections )  ( connectors    ) 

mine  three  new(P°'"«=!.     The|~""«"°"    Iof  any  of  the (nnes.    )  (mtersections) 

three  new  |P'''"^'|  with  the  original  six  |P^*"^'|  form  a  har- 
( lines    )  ^  (lines    ) 

monic/P^"^
'^- (  range. 

Other  polar  reciprocal  theorems,  which  have  been  alreadv 
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given,  are  Pascal's  and  Brianchon's  theorems  with  all  their 

corollaries,  the  theorems  of  Arts,  313°  and  314  ,  of  Arts. 

315°  and  316%  etc. 
The  circle,  when  reciprocated  with  respect  to  any  centre  of 

reciprocation  not  coincident  with  its  own  centre,  gives  rise  to 

a  curve  of  the  same  species  as  the  circle,  i.e.^  a  conic  section, 

and  many  properties  belonging  to  the  circle,  and  particularly 

those  which  are  unaltered  by  reciprocation,  become  properties 

of  the  general  curve. 

These  generalized  properties  cannot  be  readily  understood 

without  some  preliminary  knowledge  of  the  conic  sections. 

SECTION   V. 

HOMOGRAPHY   AND    INVOLUTION. 

327°.  Let  A,  B  and  A',  B'  be  fixed  points  on  two  lines,  and 
  .   ^   —   . —    let  P  and  P'  be  variable  points, BCD  E  ur  u-   u one  on  each  Ime  which  so  move 

A'      B'      C        D'         E'  as  to  preserve  the  relation 

AP_,     AT' 

BP        '  B'P" where  k  is  any  constant ;  and  let  C,  C  ;  D,  D' ;  E,  E',  etc., 

be  simultaneous  positions  of  P  and  P'. 

Then  the  points  A,  B,  C,  D,  E,  etc.,  and  A',  B',  C,  D',  E'. 
etc.,  divide  homographically  the  lines  upon  which  they  lie. 

A'D' 

B'D" 
{B'C'D'E'i,  etc. 

■•* AC     ,     A'C  _  ,  AD      , 

BC-^-B'c""%D~^ 
AC.BD     A'C.  B'D' *   * 

AD.BC     A'D'.B'C" or 
{ABCD}  =  {A'B'CI)':. Similarly, 
{ABCE}  =  {A'B'CE'],  {BCDE} 
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Evidently  for  each  position  of  P,  V  can  have  only  one 

position,  and  conversely,  ruid  hence  the  points  of  division  on 

the  two  axes  correspond  in  unique  pairs. 

.'.  two  lines  are  divided  homographically  by  two  sets  of 
points  when  to  each  point  on  one  corresponds  one  and  only 

one  point  on  the  other,  and  when  any  four  points  on  one  line 

and  their  four  correspondents  on  the  other  form  equianhar- 
monic  ranges. 

Cor.  I.  If  the  systems  of  points  be  joined  to  any  vcitices  O 

and  O',  the  pencils  O.ABCD...  and  O'.  A'B'C'D'...  are 
evidently  homographic,  and  cut  all  transversals  in  homo- 
graphic  ranges. 

Cor.  2.  The  results  of  Arts.  304*,  Cors.  3  and  4,  and  of 

Arts.  305"  and  306°  and  their  corollaries  are  readily  extended 
to  homographic  ranges  and  pencils. 

The  following  examples  of  homographic  division  are  given. 

Ex.  I.  A  line  rotating  about  a  fixed  point  in  it  cuts  any  two 

lines  homographically. 

Ex.  2.  A  variable  point  confined  to  a  given  line  deteiTnines 

two  homographic  pencils  at  any  two  fixed  points. 

Ex.  3.  A  system  of  r.;^. -circles  determines  two  homographic 
ranges  upon  any  line  cutting  the  system. 

Consider  any  two  of  the  circles,  let  P,  O  be  the  common 

points,  and  let  the  line  L  cut  one  of  the  circles  in  A  and  A' 

and  the  other  in  B  and  B'.  Then  the  ̂ PBB'  =  z.PQB',  and 
-PAB'  =  ̂ POA'.     .'.  ̂ APB=^VOB'. 

Hence  the  segment  BA  subtends  the  same  angle  at  P  as 

the  segment  at  B'A'  does  at  0.  And  similarly  for  all  the 
segments  made  in  the  other  circles. 

Ex.  4.  A  system  of /.^.-circles  determines  two  homographic 
ranges  upon  every  line  cutting  the  system. 
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DOUBLE    POINTS   OK    HOMOGRAFHIC    SYSFEMS. 

328°.  Let  ABCD...  and  A'B'C'D'...  be  two  homographic 
^    ,         ̂     B  c  D  ranges  on  a  common  axis. 

^  ^'      ̂ '         ̂ '  ^'  If  any  two  correspondents 
from  the  two  ranges  become  coincident  the   point   of  co- 

incidence is  a  double  point  of  the  system. 

If  A  and  A'  were  thus  coincident  we  would  have  the  rela- 

tions {ABCE}  =  {AB'C'E'},  etc. 
Thus  a  double  point  is  a  common  constituent  of  two  equi- 

anharmonic  ranges,  of  which  the  remaining  constituents  are 
correspondents  from  two  homographic  systems  upon  a 
common  axis. 

ABC  and  A'B'C  being  fixed,  let  D  and  D'  be  two  variable 
correspondents  of  the  doubly  homographic  system. 

'Then  {ABCD}  =  {A'B'C'D'}, 
„,Ko„^^  BD.A'D'     BC.A'C    p 
^*^^"^"  AD^my^ATTB^'^f  '"'• 

Now  taking  O,  an  arbitrary  point  on  the  axis,  let 

OD  =  .r,  OD'  =  :i-',  OA  =  r?,  OA'  =  ̂ ',  0B  =  ̂ ,  OB'  =  <5'. 
Then  BD=;r-<^,  B'D'  =  ;i-'-^',  AD=;r-rt,  MY^'^x'-a\ 

(x-b){x'-a')_p 
{x-a){x'-b')     / 

which  reduces  to  the  form 

.o-'+P,r-f  Q;i''4-R=o. 

When  D  and  D'  become  coincident  x'  becomes  equal  to  x 
and  we  have  a  quadratic  from  which  to  determine  x,  i.e.,  the 

positions  of  D  and  D'  when  uniting  to  form  a  double  point. 
Hence  every  doubly  homographic  system  has  two  double 

points  which  are  both  real  or  both  imaginary,  and  of  which 
both  may  be  finite,  or  one  or  both  may  be  at  infinity. 

Evidently  there  cannot  be  more  than  two  double  points, 
for  since  such  points  belong  to  two  systems,  three  double 

points  would  require  the  coincidence  of  three  pairs  of  corre- 

spondents, and  hence  of  all.  (306°) 
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329*.   If  D  be  one  of  the  double  points  of  a  doubly  homo- 
,.         ,  DB.DA'     CB.C'A'     P 

graphic  system,     dAJDK  =  CB'.  CA  =  Q' ^^y* 

Now  DB.DA'  and  DA.DB'  are  respectively  equal  to  the 
squares  on  tangents  from  D  to  any  circles  passing  through 

B,  A'  and  B',  A. 
But  the  locus  of  a  point  from  which  tangents  to  two  given 

circles  are  in  a  constant  ratio  is  a  circle  co-axal  with  both. 

(275°,  Cor.  5) 
Hence  the  following  construction  for  rinding  the  double 

points. 

Through  A,  B'  and 
A',  B  draw  any  two 
circles  so  as  to  intersect 

in    two    points    U    and       /I  V    /     ̂ \     , 

V,  and  through  these  ̂   ̂̂   ̂ "^  ̂ ^  ®'  °  ̂ 

points  of  intersection  pass  the  circle  S",  so  as  to  be  the  locus 

of  a  point  from  which  tangents  to  the  circles  S  and  S'  are  in 
the  given  ratio  ̂ /P  :  v^Q- 

The  circle  S"  cuts  the  axis  in  D,  D,  which  are  the  required 
double  points. 

Evidently,  instead  of  A,  B'  and  A',  B  we  may  take  any  pairs 

of  non-corresponding  points,  as  A,  C  and  A',  C;  or  B,  C  and 
B',  C  The  given  ratio  ̂ P  '■  VQ  is  different,  however,  for 
each  different  grouping  of  the  points. 

AP      AT' Cor.  I.  When  P  =  (2,  i.e.,  when   g>:  =  ̂,^„   the  circle   S" 

takes  its  limiting  form  of  a  line  and  cuts  the  axis  at  one  finite 

point  or  at  none. 

In  this  case  both  double  points  may  be  at  00  or  only  one 
of  them. 

Cor.  2.  If  any  disposition  of  the  constituents  of  the  system 

causes  the  circle  S"  to  lie  wholly  upon  one  side  of  the 
axis,  the  double  points  for  that  disposition  become  imagin- 
ary. 
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330*.  Let  L  be  the'  axis  of  a  doubly  homographic  system. 
Through  any  point  O  on  the 
circle  S  transfer  the  system, 

by  rectilinear  projection,  to 
the  circle.  Then  ABC..., 

A'B'C...  form  a  doubly 

homographic  system  on  the 
^'  circle. 

D        Now,  by  connecting  any 

^    two  pairs  of  non-correspond- 

B    ents  A,  B'  and  A',  B  ;  B,  C 
and  B',  C  ;  C,  A'  and  C,  A, 
we   obtain   the   pascal    linf 
KH  which  cuts  the  circle  in 

two  points  such  that 

{KABC;  ={KA'B'C'}. 

(319°,  Cor.  2) Hence  H  and  K  are  double  points  to  the  system  on  the 

circle.  And  by  transferring  K  and  H  back  through  the  point 

O  to  the  axis  L,  we  obtain  the  double  points  D,  D  of  the 

doubly  homographic  range. 

Cor.  I.  When  the  pascal  falls  without  the  circle,  the  double 

points  are  imaginary. 

Cor.  2.  When  one  of  the  joins,  KO  or  HO,  is  ||  to  L,  one  of 

the  double  points  is  at  00 . 

Cor.  3.  If  the  system  upon  the  circle  with  its  double  points 

H  and  K  be  projected  rectilinearly  through  any  point  on 

the  circle  upon  any  axis  M,  it  is  evident  that  the  projected 

system  is  a  doubly  homographic  one  with  its  double  points. 

Cor.  4.  Cor.  3  suggests  a  convenient  method  of  finding  the 

double  points  of  a  given  axial  system. 

Instead  of  employing  a  circle  lying  without  the  axis,  employ 

the  axis  as  a  centre-line  and  pass  the  circle  through  any  pair 

of  non-correspondents. 
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Then  from  any  convenient  point  on  the  circle  transfer  the 

remaining  points,  find  the  pascal,  and  proceed  as  before. 

.331°.  The  following  are  examples  of  the  application  of  the 
double  points  of  doubly  homographic  systems  to  the  solution 

of  problems. 

Ex.  I.  Given  two  non-parallel  lines,  a  point,  and  a  third 

line.  To  place  between  the  non-parallels  a  segment  which 
shall  subtend  a  given  angle  at  the  given  point,  and  be  parallel 
to  the  third  line. 

Let  L  and  M  be  the  non- 

parallel  lines,  and  let  N  be 
the  third  line,  and  O  be  the 

given  point. 
We  are  to  place  a  segment 

between  L  and  M,  so  as  to 

subtend  a  given  angle  at  O  and  be  ||  to  N. 

On  L  take  any  three  points  A,  B,  C,  and  join  OA,  OB,  OC. 

Draw  Art,  Bfi,  Cc  all  ||  to  N,  and  draw  On',  O//,  Oc'  so  as  to 

make  the  angles  AO^',  BO^',  COc'  each  equal  to  the  given 
angle. 

Now,  if  with  this  construction  a  coincided  with  //',  or  /;  with 
If',  or  f  with  c',  the  problem  would  be  solved. 

But,  if  we  take  a  fourth  point  D,  we  have 

0{ABCD}  =  {ABCD}  =  {adcrf}  =  {a'b'dd'). 
.-.  abed 2i^A  a' b' c' d'  2iX^  two  homographic  systems  upon  the 
same  axis.     Hence  the  double  points  of  the  system  give  the 

solutions  required. 

Ex.  2.  Within  a  given  A  to  inscribe  a  A  whose  sides  shall 

be  parallel  to  three  given  lines. 

Ex.  3.  Within  a  given  A  to  inscribe  a  A  whose  sides  may 

pass  through  three  given  points. 

Ex.  4.  To  describe  a  A  such  that  its  sides  shall  pass 

through  three  given  points  and  its  vertices  lie  upon  three 

given  lines. 
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SYSTEMS  IN  INVOLUTION. 

332°.   If  A,  A',  B,  B'  are  four  points  on  a  common  axis, 

whereof  A  and  A',  as  also  B  and  B',  are  correspondents,  a 
point  O  can  always  be  found  upon  the  axis  such  that 

OA.OA'  =  OB.OB'. 
This  point  O  is  evidently  the  centre  of  the  circle  to  which 

A  and  A',  and  also  B  and  B',  are  pairs  of  inverse  points,  and 

is  consequently  found  by  257°. 
Now,  let  P,  P'  be  a  pair  of  variable  conjugate  points  which 

so  move  as  to  preserve  the  relation 

OP  .  OP'  =  OA .  OA'  =  OB .  OB'. 

Then  P  and  P'  by  their  varying  positions  on  the  axis  deter- 

mine  a  double   system   of  points  C,  C,  D,  D',  E,  E',  etc., 
conjugates  in  pairs,  so  that 

OA.OA'=OC.OC'  =  OD.OD'  =  OE.OE'  =  etc. 

Such  a  system  of  points  is  said  to  be  in  involution.,  and  O 
is  called  the  centre  of  the  involution. 

When  both  constituents  of  any  one  conjugate  pair  lie  upon 

the  same  side  of  the  centre,  the  two  constituents  of  every 

conjugate  pair  lie  upon  the  same  side  of  the  centre,  since 

the  product  must  have  the  same  sign  in  every  case. 

With  such  a  disposition  of  the  points  the  circle  to  which 

conjugates  are  inverse  points  is  real  and  cuts  the  axis  in  two 

^    ,      ,     ,      ,    ,     points  F  and  F'. 

able  conjugates  meet  and  become  coincident. 

Hence  the  points  F.  F'  are  the  double  points  ox  foci  of  the 
system. 

From  Art.  31 1^  i,  FF'  is  divided  harmonically  by  every 
pair  of  conjugate  points,  so  that 

FAF'A',  FBF'B',  etc.,  are  all  harmonic  ranges. 
When  the  constituents  of  any  pair  of  conjugate  points  lie 

upon  opposite  sides  of  the  centre,  the  foci  are  imaginary. 
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3}3  •  Let  A,  A',  B,  !•',  C,  C  be  six  points  in  involution,  and let  O  be  the  centre. 

Draw  any  line  0P()  through  O, 
and  take  P  and  O  so  that 

of7oo=oa.oa', 
and  join   PA,  PB,  PC,  and  PC, 

and  also  OA',  QB',  OC,  and  QC. 
Then,  •/    OA.  OA'  =  OP  .  OO, 

.-.  A,  P,  O,  A'  are  concyclic.    .'.  ̂ OPA  =  Z-OA'Q. 
Similarly,  B,  P,  (),  B'  are  concyclic,  and  ;^OPB  =  ̂ OB'0,  etc. 

/.APB  =  zJV'QB'. 
Similarly,  ^BPC  =  ̂ B'QC',  ^CPC'  =  ̂ C'()C,  etc 
Hence  the  pencils  P(ABCC')  and  Q(A'B'C'C)  are  equianhar- 
monic,  or         {ABCC'j  =  [A'B'C'C  -. 

Hence  also  {ABB'C}  =  (A'B'BC'},  JAA'BC}  =  {A'AB'C;. 
And  any  one  of  these  relations  expresses  the  condition  that 
the  six  points  symbolized  may  be  in  involution. 

334''.  As  involution  is  only  a  species  of  homography,  the 
relations  constantly  existing  between  homographic  ranges  and 
their  corresponding  pencils,  hold  also  for  ranges  and  pencils 
in  involution.     Hence 

1.  Every  range  in  involution  determines  a  pencil  in  involu- 
tion at  every  vertex,  and  conversely. 

2.  If  a  range  in  involution  be  projected  rectilinearly  through 
any  point  on  a  circle  it  determines  a  system  in  involution  on 
the  circle,  and  conversely. 

Ex.  The  three  pairs  of  opposite  connectors  of  any  four 

points  cut  any  line  in  a  six-point  involution. 
A,  B,  C,  D  are  the  four  points,  \P        P  C 

and  P,  F  the  line  cut  by  the  six 
connectors  CD,  DA,  AC,  CB,  BD, 
and  AB.     Then 

d{pqrr';  =  d{carb} 
=  b{card! 

=  B{Q'P'RR'} 

P'Q'R'Rj, 

(302') 
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{P(2KR']  =  Jl'O'R'K.j, 
and  the  six  points  are  in  involution. 

Cor.  I.  The  centre  O  of  the  involution  is  the  radical  centre 

of  any  three  circles  through  PP',  OO',  and  RR';  and  the 

three  circles  on  the  three  segments  PI'',  OQ',  and  RR'  as 
diameters  are  co-axal. 

When  the  order  of  PQR  is  opposite  that  of  P'Q'R'  as  in  the 
figure,  and  the  centre  O  lies  outside  the  points,  the  co-axal 

circles  are  of  the  /.^.-species,  and  when  the  two  triads  of 

points  have  the  same  order,  the  co-axal  circles  are  of  the 

t'./.-species. 

Cor.  2.  Considering  ABC  as  a  triangle  and  AD,  BD,  CD 

three  lines  through  its  vertices  at  D,  we  have — 
The  three  sides  of  any  triangle  and  three  concurrent  lines 

through  the  vertices  cut  any  transversal  in  a  six-point 
involution. 

Exercises. 

1.  A  circle  and  an  inscribed  quadrangle  cut  any  line  through 
them  in  involution. 

2.  The  circles  of  a  co-axal  system  cut  any  line  through  them 
in  involution. 

3.  Any  three  concurrent  chords   intersect   the   circle   in  six 

points  forming  a  system  in  involution. 

4.  The  circles  of  a  co-axal  system  cut  any  other  circle  in 
involution. 

5.  Any  four  circles  through  a  common  point  have  their  six 

radical  axes  forming  a  pencil  in  involution. 
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iMilion  of  the  work  has  been  to  prepare  the  student  to  take  uji  successfully  the 

Modern  works  on  analvtical  geometry.  It  is  safe  to  say  that  a  student  will  "learn iiore  of  the  science  from  this  book  in  one  year  than  he  can  learn  from  the  old- 
Ushioned  translations  of  a  certain  ancient  Greek  treatise  in  two  vears.  Every 
iiathematical  master  .should  study  this  book  in  order  to  learn  the  logical  method 
)f  presenting  the  subject  to  beginners."  —  Canada  Educational  Journal. 
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ARITHMETIC   FOR   SCHOOLS, 

By  J.  B.  LOCK, 

Author  of  "  Trigonometry  for  Beginners,"  "  Elementary  Trigonometry"  ■• 

Edited  and  Arranged  for  American  Scliools 

By    CHARLOTTE    ANGAS    SCOTT,    D.SC, 

Head  of  Math.  Dept.,  Bryn  Mawr  College,  Pa. 

1 6mo.    Cloth.    75  cents. 

"  Evidently  the  work  of  a  thoroughly  good  teacher.  The  elementary  truth,  that 
arithmetic  is  common  sense,  is  the  principle  which  pervades  the  whole  book,  and  no 
process,  however  simple,  is  deemed  unworthy  of  clear  explanation.  Where  it  seems 

advantageous,  a  rule  is  given  after  the  explanation.  .  .  .  Mr.  Lock's  admirable 
■  Trigonometry '  and  the  present  work  are,  to  our  mind,  models  of  what  mathematical 
school  books  should  be."  —  The  Literary  World. 

FOR    MORE   ADVANCED    CLASSES. 

ARITHMETIC. 
By  CHARLES   SMITH,  M.A., 

Author  of  "  Elementary  Algebra"  "A  Treatise  on  Algebra** 
AND 

CHARLES   L.  HARRINGTON,  M.A., 

Head  Master  of  Dr.  J.  Sach's  School  for  Boys,  New  York. 

1  6mo.    Cloth.    90  cents. 

A  thorough  and  comprehensive  High  School  Arithmetic,  containing  many  good 
examples  and  clear,  well-arranged  explanations. 

There  are  chapters  on  Stocks  and  Bonds,  and  on  Exchange,  which  are  of  more 
than  ordinary  value,  and  there  is  also  a  useful  collection  of  miscellaneous  examples 
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ALGEBRA    FOR    BEGINNERS 

By  H.  S.  HALL,  M.A.,  and  S.  R.  KNIGHT. 

1  6mo.    Cloth.    60  cents. 

American  Edition.     In  Press. 

"  The  present  work  has  been  undertaken  in  order  to  supply  a  demand  for  an  easy 
introduction  to  our  '  Elementary  Algebra  for  Schools,'  and  also  to  meet  the  wishes 
of  those  who,  while  approving  of  the  order  and  treatment  of  the  subject  there  laid 
down,  have  felt  the  want  of  a  beginners'  text-book  in  a  cheaper  form.  As  regards 
the  earlier  chapters,  our  order  has  been  determined  mainly  by  two  considerations  : 
lirst,  a  desire  to  introduce  as  early  as  possible  the  practical  side  of  the  subject  and 
some  of  its  most  interesting  applications,  such  as  easy  equations  and  problem;  : 
and,  secondly,  the  strong  opinion  that  all  reference  to  compound  expressions  and 
their  resolution  into  factors  should  be  postponed  until  the  usual  operations  of 
algebra  have  been  exemi)lified  in  the  case  of  simple  expressions.  By  this  course 
the  beginner  soon  becomes  acquainted  with  the  ordinary  algebraical  processes 
without  encountering  too  many  of  their  ditticulties  ;  and  he  is  learning  at  the  same 
time  something  of  the  more  attractive  parts  of  the  subject." 

BY  THE   SAME  AUTHORS. 

ELEMENTARY  ALGEBRA  FOR  SCHOOLS. 

Edition  for  Atnerican  Schools.      In  Pretm. 

"  This  is,  in  our  opinion,  the  best  Elementary  Algebra  for  school  use.  It  is  the 
combined  work  of  two  teachers  who  have  had  considerable  experience  of  actual 
.school  teaching,  .  .  .  and  so  sticcessfully  grapples  with  difficulties  which  our  pres- 

ent text-books  in  use.  from  their  authors  lacking  such  experience,  ignore  or  slightly 
touch  upon.  .  .  .  We  confidently  recommend  it  to  mathematical  teachers,  v)h6. 

we  feel  sure,  will  find  it  the  beat  book  of  its  kind  for  teaching  ptirjwses." 
—  Nature. 

'•  We  will  not  say  that  this  is  the  best  Elementary  Algebra  for  school  use  that  we 
have  come  across,  but  we  can  say  that  toe  do  not  remember  to  have  seen  a  better. 
.  .  .  It  is  the  outcome  of  a  long  experience  of  school -teaching,  and  so  is  a  thor- 

oughly practical  book.  .\\l  others  that  we  have  in  our  eye  are  the  works  of  men 
who  have  had  considerable  experience  with  senior  and  junior  students  at  the  uni- 

versities, but  have  had  little,  if  any,  accjuaintance  with  the  poor  creatures  who  are 
just  stumbling  over  the  threshold  of  algebra.  .  .  .  Buy  or  borrow  the  book  for 
yourselves  and  judge,  or  write  a  better.  ...  A  higher  text-book  is  on  its  way. 
This  occupies  sufficient  ground  for  the  generality  of  boys."  —  Academy. 
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ELEMENTARY  ALGEBRA 

USE    OF    PREPARATORY    SCHOOLS. 
By  CHARLES  SMITH.  M.A., 

Author  of '■'■  A  TreatUe  on  Algebra,''  "J//  KltinenUiry  TreatUe  on 
Conic  Sections,'''  etc. 

Revised  and  adapted  to  American  Schools 

By  IRVING  STRINGHAM,  Ph.D., 
-Professor  of  Matheinaiici<  and  Dean  of  the  College  Faculties  in  the 

University  of  California. 

Briefer  edition,  $  1 . 1  O.    Complete  edition,  $  1 .20. 

The  Co^mplete  Edition  contains  in  addition  to  the  material  given  in  the  briefer 
work,  chapters  on  special  subjects,  a  knowledge  of  which  is  required  for  admission 
to  Harvard,  Yale,  and  other  colleges  of  advanced  standing.  It  should  be  especially 
valuable  to  students  preparing  for  Harvard,  Cornell,  the  I'niversity  of  Michigan, 
of  California,  Missouri,  etc.,  in  which  the  "Treatise  on  Algebra,''  by  the  same author,  is  us»d. 

PRINCIPLES  OF  ELEMENTARY  ALGEBRA. 

By  N. F.  DUPUIS,  M.A.,  F.R.S.C. 
Price,  $  1 . 1  O. 

"This  is  one  of  the  most  able  expositions  of  algebraic  principles  that  we  have  yet 
met  with.  The  book  is  intended  to  embrace  all  the  ordinary  algebraic  subjects,  but 
its  real  value  lies  in  the  rehable  guidance  it  offers  to  students  who,  having  had  an 
ordinary  text-book  drilling  to  the  end  of  quadratics,  wish  to  know  what  it  was  all 

about.  '.  .  .  The  concluding  chapter  contains  a  very  practical  consideration  of  that ever  increasingly  important  branch  of  algebra  —  determinants.  Emphatically  a 
book  for  teachers,  we  ̂ vish  this  Algebra  the  wide  sale  that  it  merits." —  Tlte  Schoohnaster. 

"Professor  Dupuis  has  followed  iip  the  success  achieved  by  his  'Elementary 
Synthetic  Geometry'  (Macmillan,  18S9),  and  now  publishes  this  'intermediate 
algebra,'  'a  stepping-stone  to  assist  the  student  in  passing  from  the  former  stage 
(of  absolute  beginners)  to  the  latter  (of  accomplished  algebraists).'  A  resume  of 
the  preface  will  indicate  the  work  attempted,  and  carried  out  in  an  interesting  and 
satisfactory  manner.  Prominence  is  given  to  the  formal  laws  of  algebra  and  to 
factoring,  from  which  last  the  theory  of  the  solution  of  quadratic  and  other  e(]  na- 

tions is  deduced.  .  .  .  The  inspiration  of  Chrystal's  'Algebra'  is  conspicuous 
throughout  and  duly  acknowledged."  —  The  Academy. 
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INTRODUCTORY  MODERN  GEOMETRY 
OF  THE 

POINT,  RAY,  AND  CIRCLE. 

By  WILLIAM  B.  SMITH,  Ph.D., 
Professor  of  Mathematics  in  the  Tulane  University  of  New  Orleans,  La. 

Cloth.    $1.10. 

•  •  To  the  many  of  my  fellow-teachers  in  America  who  have  questioned  me  in 
regard  to  the  Non-Euclidean  Geometry,  I  would  now  wish  to  say  publicly  that 
Dr.  Smith's  conception  of  that  profound  advance  in  pure  science  is  entirely  sound. 
.  .  .  Dr.  Smith  has  f,'iven  us  a  book  of  which  our  country  can  be  proud.  I  think  it 
the  duty  of  every  teacher  of  geometry  to  examine  it  carefully."  —  From  Prof. 
Oeorge  BarfK  I'I.\l8tkd,  Ph.  D.  (Johns  Hopkins),  Professor  of  Mathematics, University  of  Texas. 

"  I  cannot  see  any  cogent  reason  for  not  introducing  the  methods  of  Modern 
Geometry  in  text-books  intended  for  first  vears  of  a  college  course.  How  useful 
and  instructive  these  methods  are.  is  clearly  brought  to  view  in  Dr.  Smith's  admi- 

rable treatise.  This  treatise  is  in  the  right  direction,  and  is  one  step  in  advancing  a 
doctrine  which  is  destined  to  reconstruct  in  great  meii.iure  the  whole  edifice  of 
Geometry.  I  shall  make  proA'islon  for  it  in  the  advanced  class  in  this  school  next 
term."  —  From  Principals ou:i  M.  Colaw,  A.M.,  Monterey,  Va. 

MODERN   PLANE   GEOMETRY. 

Being  the  Proofs  of  the  Theorems  in  the  Syllabus  of  Modem 
Plane  Geometry  issued  by  the  Association  for  the 

Improvement  of  Geometrical  Teaching. 

By  G.  RICHARDSON,  M.A.,  and  A.  S.  RAMSAY,  M.A. 

Cloth.    $1.00. 

"  Intended  to  be  an  Introduction  to  the  subject  of  Modern  Plane  Geometry  and 
to  the  more  advanced  books  of  Cremona  and  others.  It  has  a  twofold  object:  to 
serve,  in  the  first  place,  as  a  sequel  to  Euclid  .  .  . ;  and,  secondly,  as  a  systematic 
means  of  procedure  from  Euclidean  Geometry  to  the  higher  descriptive  Geometn' 
of  Conies  and  of  imaginary  points." 
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TEXT-BOOK  OF  EUCLID'S  ELEMENTS. 
aicluding  Alternative  Proofs,  together  with  Additional 

Theorems  and  Exercises,  classified  and  arranged 

By  H.  S.  HALL  and  F.  H.  STEVENS. 

Books  L-VI.  and  XI.    $1.10. 

Also  sold  separately  as  follows  : 

Book  1     30  cents. 
Books  I.  and  II.  .  .   50  cents. 
Books  I. -IV.  ...   75  cents. 

Books  III.-VI.  .  .  .  75  cents. 
Books  v.,  VI.,  and  XI.  70  cents. 
Book  XI   30  cents. 

"The  chief  peculiarity  of  Messrs.  Hall  and  Stevens'  edition  is  the  extent  and 
variety  of  the  additions.  After  each  important  proposition  a  large  number  of  exer- 

cises are  given,  and  at  the  end  of  each  book  additional  exercises,  theorems,  notes, 
etc.,  etc.,  well  selected,  often  ingenious  and  interesting.  .  .  .  There  are  a  great 
number  of  minute  details  about  the  construction  of  this  edition  and  its  mechanical 
execution  which  we  have  no  space  to  mention,  but  all  showing  the  care,  the  patience, 
and  the  labor  which  have  been  bestowed  upon  it.  On  the  whole^  we  think  it  the 
most  usable  edition  of  Euclid  that  has  yet  appeared,"  —  The  Nation. 

THE  ELEMENTS  OF  SOLID  GEOMETRY. 

By  ROBERT  BALDWIN  HAYWARD,  M.A.,  F.R.S.. 
Senior  Mathematical  Master  in  Harrow  School; 

Late  President  of  \,\e  Association  for  the  Improvement  of 
Geometrical  Teaching. 

16mo.    Cloth.    75  cents. 

"  A  modification  and  extension  of  the  first  twenty-one  propositions  of  the  eleventh 
book  of  Euclid,  developed  out  of  a  Syllabus  of  Solid  Geometry  submitted  by  the 
author  to  a  Committee  of  the  Association  for  the  Improvement  of  Geometrical 
Teaching,  and  reported  upon  by  that  Committee  with  a  considerable  degree  ol 

favor." 
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A  TREATISE   ON   ALGEBRA. 

By  CHARLES  SMITH,  M.A. 

Cloth.     $1.90. 

No  stronger  commendation  of  this  woric  is  neerfed  thaxi  the  fact  that  it  is  tlie  text 

used  in  a  large  number,  if  not  in  the  majority,  of  the  leading  colleges  of  the  country, 

among  which  may  be  mentioned  Harvard  University,  Cornell  University,  University 

of  Ohio,  of  Pennsylvania,  of  Michigan,  of  Wisconsin,  of  Kansas,  of  California,  of 

Missouri,  Stanford  University,  etc.,  etc. 

"  Those  acquainted  with  Mr.  Smith's  text-books  on  conic  sections  and  solid 
geometry  will  form  a  high  expectation  of  this  work,  and  we  do  not  think  they  will 

be  disappointed.  Its  style  is  clear  and  neat,  it  gives  alternative  proofs  of  most  of 

the  fundamental  theorems,  and  abounds  in  practical  hints,  among  which  we  may 

notice  those  on  the  resolution  of  expressions  into  factors  and  the  recognition  of  » 

series  as  a  binominal  expansion."  —  Oxford  Review. 

HIGHER  ALGEBRA  FOR  SCHOOLS. 

By  H.  S.  HALL,  B.A.,  and  S.  R.  KNIGHT.  B.A. 

Cloth.     $1.90. 

"The  'Elementary  Algebra,'  by  the  same  authors,  Mhich  has  ah-eady  reached  a 
sixth  edition,  is  a  work  of  such  exceptional  merit  that  those  acquainted  with  it  will 

form  high  expectations  of  the  sequel  to  it  now  issued.  Nor  will  they  be  disappointed. 

Of  the  authors'  '  Higher  Algebra,'  as  of  their  '  Elementary  Algebra,'  we  un- 
hesitatingly assert  that  it  is  by  far  the  best  work  of  the  kind  with  which  we  are 

ticqualnted.    It  supplies  a  want  much  felt  by  teachers."  —  The  Athenceum. 
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ELEMENTARY  TRIGONOMETRY. 

HALL  and  KNIGHT.  —  Elementary  Trigonometry.    By  the 
authors  of  "Algebra  for  Beginners,"   "Elementary 
Algebra  for  Schools,"  etc.     $1.10. 

HOBSON  and  JESSOP.  —  An  Elementary  Treatise  on  Plane 
Trigonometry.     By  E.  AV.  Hobson,  Sc.D.,  and  C.  M. 
Jessop,  M.A.     $1.25. 

LEVETT  and  DAVISON.— The  Elements  of  Trigonometry. 
By  Rawdon   Levett  and  A.   F.   Davison,  Masters 

at  King  Edward's  School,  Birmingham.     Crown  8vo. 
$1.60. 
This  book  is  intended  to  be  a  very  easy  one  for  beginners,  all  difficulties  con- 

nected with  the  application  of  algebraic  signs  to  geometry  and  with  the  circular 
measure  of  angles  being  excluded  from  Part  I.  Part  II.  deals  with  the  real 
algebraical  quantity,  and  gives  a  fairly  complete  treatment  and  theory  of  the 
circular  and  hyperbolic  functions  considered  geometrically.  In  Part  III.  complex 
numbers  are  dealt  with  geometrically,  and  the  writers  have  tried  to  present  much 
of  De  Morgan's  teaching  in  as  simple  a  form  as  possible. 

LOCK.  —  Trigonometry  for  Beginners.  As  far  as  the 
Solution    of   Triangles.      By  the  Rev.   J.  B.  Lock. 
16mo.     75  cents. 

"A  very  concise  and  complete  little  treatise  on  this  somewhat  difficult  subject 
for  boys ;  not  too  childishlj^  simple  in  its  explanations ;  an  incentive  to  thinking, 
not  a  substitute  for  it.  The  schoolboy  is  encouraged,  not  insulted.  The  illustra- 

tions are  clear.  Abundant  examples  are  given  at  every  stage,  with  answers  at  the 
end  of  the  book,  the  general  correctness  of  which  we  have  taken  pains  to  prove. 
The  definitions  are  good,  the  arrangement  of  the  work  clear  and  easy,  the  book 
itself  well  printed."  —  Journal  of  Education. 

Elementary  Trigonometry.  6th  edition.  (In  this  edition 
the  chapter  on  Logarithms  has  been  carefully  revised.) 
16mo.     fl.lO. 

"  The  work  contains  a  very  large  collection  of  good  (and  not  too  hard)  examples. 
Mr.  Lock  is  to  be  congratulated,  when  so  many  Trigonometries  are  in  the  field,  on 
having  produced  so  good  a  book  ;  for  he  has  not  merely  availed  himself  of  the  labors 
of  his  predecessors,  but  by  the  treatment  of  a  well-worn  subject  has  invested  the 
study  of  it  with  interest."  —  Nature. 

LONEY.— Plane  Trigonometry.  By  S.  L.  Loxey,  M.A. 
Part  I.  An  Elementary  Course,  including  the  Use  of 
Imaginary  Quantities.     Cloth.     $1.40. 
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