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PREFACE.

This book is designed to be at once simple enough for

the beginner and complete enough for the most advanced

classes of academies and preparatory schools. The first

three quarters of it constitute an elementary algebra in the

strictest sense of the term; the remainder may be regarded

as an intermediate step between elementary and higher

algebra, and includes the topics of the most advanced re-

quirements in this subject for admission to American col-

leges and technical schools.

One of the main differences between this book and its

American predecessors lies in the prominence given to

problems and the consequent early introduction of the equa-

tion. The statement of problems in the form of equations

calls forth the pupil's intellectual resources and develops in

him the power of concentrated thought. It is an invalua-

ble mental exercise, and one, moreover, in which as a rule

pupils take pleasure. Drill in algebraic operations, on the

other hand, tends rather to strengthen the memory, to

quicken the apprehension, and to cultivate habits of ac-

curacy. Though absolutely necessary to secure facility in

manipulating algebraic expressions, this drill is apt not to

be interesting. For the sake, therefore, both of giving

varied employment to the mental activities and of main-

taining an equilibrium of interest, it seems desirable that

ill
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iv PREFACE.

problems and exercises should proceed together from the

very outset. Problems are accordingly introduced at a

much earlier stage than usual, and occur with uncommon
frequency in every chapter. At first they are so simple

that the resulting equations can be solved by elementary

arithmetical processes, and they gradually increase in com-

plication with the pupil's increasing knowledge of algebraic

methods. The majority of them are either new or else the

old ones with new data; the remainder have been selected

from a great variety of sources.

The book further differs from its predecessors (1) in

the attention given to negative quantities and to the formal

laws of algebra, known as the Commutative, the Associa-

tive, the Distributive, and the Index laws. In presenting

these laws the author has endeavored to be rigorous without

sacrificing simplicity. (2) In the fuller development of

factoring and in its more extensive application to the solu-

tion of equations. The method of solving quadratic equa-

tions has been based entirely on the principles of factoring.

Certainly this method is more in harmony with the pro-

cesses of advanced algebra, and it is the author's experience

that, even for the beginner, it is quite as simple as the

method of completing the square.

The first steps in the book have been simplified for the

pupil by building upon his knowledge of arithmetic and

adding, one by one, the distinguishing features of algebra;

—the use of letters as well as figures to express numbers,

the use of equations in the solution of problems, the more

extended and systematic use of signs, the meaning and use

of negative numbers, and the general proof of theorems.

In further recognition of practical requirements, the exer-

cises in Part I have been divided usually into two sets, the

first set being as a rule easier than the second. Careful

provision is made in both sets for frequent review of topics

already studied.



PREFACE. V

As the author and publisher cannot hope to have been

entirely successful in their efforts to keep the text free

from typographical and other errors, they will esteem it a

favor to have their attention called to any that may have

escaped their vigilance.

J. A. G.

Normal College, New York,
December 10, 1895.
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ELEMENTARY ALGEBRA.

CHAPTER I.

ALGEBRAIC NOTATION AND SYMBOLS.

1. Symbols of Operation.—Algebra treats of the prop-

erties and relations of numbers. In this respect algebra

agrees with arithmetic.

The fundamental operations of algebra are the same as

those of arithmetic. These are addition, subtraction,

multiplication, division, involution, and evolution.

These operations are also indicated by the same signs in

algebra as in arithmetic. These are -|- (plus) for addition,

— (minus) for subtraction, X for multiplication, -^ for

division, a figure placed above at the right (called an ex-

ponent) for involution, and |/ (radical) for evolution.

These are called operative symbols, or symbols of operation.

Multiplication is also indicated by a dot between the

factors. Thus, 4 . 5 means that 4 is to be multiplied by 5.

2. Algebraic Expressions.— Numbers are denoted in

algebra by letters as well as by figures. This is one respect

in which algebra differs from arithmetic.

When figures are written one after another in arith-

metic, the expression denotes the sum of the different

orders of units denoted by the figures separately. Thus,

334 = 300 + 20 + 4.
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When letters are written one after another in algebra,

the expression formed denotes the product of the numbers

denoted by the individual letters. Thus, abc — axh X c.

When figures are used in algebra, they are combined

to form numbers in the same way as in arithmetic.

When figures and letters are written one after another,

the expression denotes a product of which the numeral and

literal parts are factors. Thus, 12^c = 12 x ^ X c.

Literal expressions are more comprehensive than nu-

meral expressions. Thus, 324 means one number only,

while al)c represents every product that is composed

of three factors, and these factors may be integral,

fractional, or surd. Owing to this comprehensiveness

of its expressions, algebra is sometimes called generalized

arithmetic.

To find the value of an algebraic expression is to find

the number which it represents on the supposition that its

letters stand for particular numbers.

3. Exponents.—When the same letter enters more than

once as a factor in a product, the number of times that it

enters as a factor is indicated by writing a figure after it

at the top. Thus, aU^c^ — a X h X i X c X c X c. The
expression is read '' a, h square, c cube," or ^' a, l second,

c third."

The number used to denote how many times the same

factor occurs in a product is called an exponent.

4. Coefficients.—The number used to denote how many
times a single letter or a product of two or more letters is

taken is written before the letter or product and on a line

with it.

The number thus used is called a coefficient. Thus, 6x

denotes that the number x is taken 5 times. That is, 6x =
x-]-x-]-x-]-x-\-x; while x^ {x fifth) = x X x X x X x X x.

7abc = abc + abc -{- ahc + ahc + ahc + aic + aho.
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When no coefficient or exponent is expressed, the

number one is to be assumed.

EXERCISE I.

Find the value of the following expressions when a = d,

h — b, and c = 7

:

1. abc. 2. 5abc. 3. ab^c.

4. 4.a'bc\ 5. Gd'b^c. 6. 12a3^,V.

7. 2oab''^c^. 8. 4:0a^Pc. 9. 75aHc^

10. 250a^h.

11. Find the cost of a oranges at 5 cents a piece.

12. Find the surface of a rectangular board 10 ft. long

and a inches wide.

13. There are twenty pages in a book, and on each page

there are m lines, and in each line n words. How many-

words in the book ?

14. There are a drawers in a case, a compartments in

each drawer and c specimens in each compartment, and

there are 25 cases in a room How many specimens in all

the cases ?

5. Numeric Values.—A magnitude is any thing which

has size or extent, and which is doubled when added to

itself. Thus, lengths and distances are magnitudes.

Magnitudes are measured by comparing them with

some other magnitude of the same kind, to see how many
times they contain it.

The magnitude with which other magnitudes are com-

pared in measurement is called the unit of measure^nent^

or the iniit magnitude.

When the magnitude contains the unit an exact number
of times the number which expresses how many times a
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magnitude contains the unit is called the numeric value of

the magnitude. This term is also extended to the cases in

which the value can he expressed only by a fraction or a

surd.

Numerical expressions, whether composed of figures or

letters or of both, are called quantities. Every algebraic

expression is numerical; that is, it represents some num-

ber. Hence every algebraic expression is a quantity.

6. Quantitative Symbols.—The symbols which express

number are called quantitative symbols. In algebra they

are both numeral and literal.

7. Terms.—When an algebraic expression is made up

of parts separated by signs of operation, the parts separated

by the consecutive signs are called terms.

Thus, in the expression bci^b + c — 12 -f ati^c, 6aH, c,

12, and alP'c are terms.

It will be noticed that a term may be a single letter, a

number expressed by one or more figures, or a product com-

posed of literal or of literal and numeral factors. The nu-

meral factor of a term is commonly called its coefficient, and

when no numeral factor is expressed the coefficient is to be

regarded as one.

Thus, in the expression 7a^?/ — 5« + ^•^^.' the coefficient

of the first term is 7, of the second 5, of the third 1.

8. Monomials and Polynomials.—An algebraic expres-

sion which contains no signs of operation is called a mo-

nomial, or a one-term expression; one composed of two

terms separated by a sign of addition or subtraction, a hi-

nomial, or a two-term expression ; one composed of three

terms separated by signs of addition or subtraction, a tri-

nomial, or a three-term expression. Expressions which

contain more than three terms are sometimes called multi-
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nomials, and all expressions which contain more than one

term are usually classed together as polynomials.

To find the value of a polynomial, we must find the

value of each of its terms and then add or subtract these

values according to the signs before the terms. Every

minus term of a polynomial must be subtracted from the

sum of the plus terms or from some individual plus term.

AVhen no sign is placed before the first term of a poly-

nomial it is understood to be a plus term.

EXERCISE II.

Find the value of each of the following polynomials,

when « = 3, ^ = 1/2, and c = 2/3

:

1. 5 4- a^c - 2abc - Wc + lOa^c^.

2. 9ac^ - 24:bh - (Jab^ - ISabc^ + 7a^c.

Find the values of the following polynomials when

a = 2, b = d, c = 4:, and d — b:

3. Qabcd — 5«^6' — 7«^^^+ 'da^cd^*

5. ^a^cd^ — lab'^d -\- iSabcd — 6d^c.

6. - 5a^c + Sa^cd' + (Jabcd - lab^d.

Note that the value of a polynomial remi^ins the same

in whatever order its terms are written.

Note also that the value of a polynomial may be found

by first adding together the values of its plus terms, and

also of its minus terms, and then subtracting the latter

sum from the former.

9. Similar Terms. — Similar terms are those which

agree both in their letters and in their exponents. They

need not, however, agree either in their signs or in their

coefficients. Thus a^xy^, ba^xy^, — Zc^xy^, are all similar

terms.
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The similar terms of a polynomial may be combined

into one term by performing upon their coefficients the

operations indicated by the signs of the term, and using

the resulting number as the coefficient of the common
literal factors of the terms.

Dissimilar terms cannot thus be combined into one.

Similar plus terms are combined into one plus term by

adding their coefficients, similar minus terms are combined

into one minus term by adding their coefficients, and a plus

and a minus term, when similar, are combined into one by

subtracting their coefficients.

EXERCISE III.

Eeduce the following polynomials to simpler forms by

combining their similar terms

:

1. 9a^^ + lOa^^ - ^a%^ - ^aW + 12.

2. 12« - 5^2 _ 6^ _ 7^2 _ 2« _ 3^ _^ 6 - 3.

3. - Qxhj + 8 - ^x^y + Ibx'y - 10 + 7 - 5Z»3.

4. 7«2^ - l^ahj + ^ay^ + 'da'y - a^y - 7.

6. - 7A + 12A - 5A3 _ Qa^x + %a^x + 15-9.



CHAPTER II.

EQUATIONS AND PARENTHESES.

A. EQUATIONS.

"10. Members of an Equation.—An algebraic expression

of equality is called an equation. It is composed of two

members separated by the sign of equality. The part be-

fore the sign of equality is called the/rs^ member, and the

part after the sign, the second member.

Thus, 7x — 2^; + 6 =: 26 + ^ is an equation. Ix — 2x

-[- 6 is its first member, and 26 + 2; is its second member.

11. Verbal Symbols.—The signs =, >, <, .'. stand

for the phrases ''equal to," "greater than," "less than,"

" therefore" or "then," and are hence called verbal signs.

12. Axioms.—A mathematical truth so evident as to be

generally accepted without proof is called an axmn. The

following are important axioms about equations.

1°. If the same quantity or equal quantities be added

to equals, the sums will be equal.

2°. If the same quantity or equal quantities be sub-

tracted from equals, the remainders will be equal.

3°. If equals be multiplied by the same quantity or by

equal quantities, the products will be equal.

4°. If equals be divided by the same quantity or by

equal quantities, the quotients will be equal.

5°. The same powers of equals are equal.

6°. The same roots of equal quantities are equal.

7
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The two following axioms are applicable to all algebraic

expressions.

7°. The subtraction of any quantity from an algebraic

expression neutralizes the effect of its addition to the ex-

pression.

8°. The division of an algebraic expression by any

quantity neutralizes the effect of multiplying the expression

by the same quantity.

13. Transposition of Terms.— It follows from axioms

1° and 2° that a term may be omitted from one member of

an equation and written with the opposite sign in the other

without destroying the equality of the members.

Thus, if 7a; - 2a; + 6 = 26 + a;, then, by axiom 2°,

7x — 2x — X -\- 6 — 26 -{- X — X, and, by ax. 7°,

7x — 2x — X -{- Q = 2Q. Again, by axiom 2°,

7a; - 2a; - a; + 6 - 6 = 26 - 6, and, by ax.7°,

7a; - 2a; - a; = 26 - 6.

When a term is omitted in one member and placed with

the opposite sign in the other it is said to be transposed.

A plus term is transposed by subtracting it from each

member, and a minus term by adding it to each member.

Combining the similar terms in the last equation, we get

4a; = 20.

14. Collection of Terms.—The combining of the similar

terms in an equation is called collecting the terms.

15. Division by the Coefficient of x.—Dividing each

member of the equation 4a; = 20 by 4 we get, by axiom 4°,

X = 5.

16. Solution of an Equation.—To solve an equation is

to find the value in terms of known quantities of the letter

in it which represents an unknown quantity.
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It is customary to represent known quantities by the

first letters of the alphabet and unknown quantities by the

last letters, x, y, z, etc.

Among the steps necessary to the solution of an equa-

tion are transposition, collection, and division by the coef-

ficient of the unknown quantity.

EXERCISE IV.

Solve each of the following equations, and name and

explain each step taken:

1. ^x + ^x - 12 = bx + 72.

2. 14^ + 8 — "ly =99 — 2/,

3. 8;^ - 5 + 6 + 2^ = 3^ + 53.

4. l/2x + 3/2:?; - .T + 7 = 27 - l/3a;.

5. 7/52; - l/3x - 18 = 72 + d/4:X,

6. Sx -\- a = b -\- 5a.

7. ax -{- d -\- 3ax — c — hax.

17. Literal Coefficients.—In the seventh example, a

may be considered as the coefficient of x in the first term,

3« as the coefficient of x in the third term, and 5« as the

coefficient of x in the last term. Coefficient means felloiu

factor, and in any literal product all the factors but one

may be taken as the coefficient of that factor.

18. Algebraic Solution of Problems.—To solve a prob-

lem algebraically, wo must first obtain an equation in terms

of the known and unknown quantities of the problem, and

then solve the equation to find the value of the unknown
quantities in terms of the known.

e.g. 1. Divide the number 105 into two parts, one of

which shall be six times the other.

Let X = the number in the smaller part;

. •, 6x = the number in the larger part.
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and Qx-{- X — the whole number.

Also 105 = the whole number;

.
•
. Qx^x^ 105.

Collfccting, rx = 105.

Dividing by 7, a; = 15.

.•
. Qx = 90.

The numbers are 15 and 90.

e.g. 2. Eight times the smaller of two numbers is

equal to 143 minus the larger, and the larger is three times

the smaller. Find the numbers.

Let X = the smaller number

;

. •. 3x = the larger number.

.-. Sx= 143 -dx.
Transposing, 8x -\- dx = 143.

Collecting, llo; = 143.

Dividing by 11, a; = 13.

.-. 3x= 39.

The numbers are 13 and 39.

EXERCISE V.

I.

1. rind two numbers whose difference is 9 and whose

sum is 63.

2. Divide 103 into two parts whose difference shall be

13.

3. Find two numbers such that the larger shall be 4

times the smaller, and that 6 times the smaller shall equal

60 plus the larger.

4. Find two numbers such that the larger shall be 5

times the smaller, and that 7 times the smaller shall equal

374 minus 3 times the larger.

5. Divide 450 into three .parts such that the second shall
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contain twice as many as the third, and tlie first tliree times

as many as the third.

II.

6. 120 marbles are arranged in 3 piles so that there are

twice as many marbles in the first pile as in the second and

tliree times as many in the second as in the third. How
many marbles in each pile ?

7. In a scliool there are three grades, and there are three

times as many scholars in the lowest grade as in the middle

grade and five times as many in the middle grade as in the

highest. The whole school numbers 735. How many

scholars are there in each grade ?

8. A man bought a horse, a carriage, and a harness for

450 dollars. He paid three times as much for the horse as

for the harness, and twice as much for the carriage as for

the horse. What was the cost of each ?

9. A boy bought a speller, an arithmetic, and a history

for $2.30. He gave twice as much for the history as for

the arithmetic, and three times as much for the arithmetic

as for the speller. How much did he pay for each ?

10. A boy is three years older than his sister, and has a

brother who is five years older than himself. Their united

ages are 41 years. How old is he ?

19. Clearing Equations of Fractions.—Since a fraction

is reduced to its numerator when it is multiplied by its de-

nominator, and since botli members of an equation may be

multiplied by the same number without destioying their

equality, an equation may be freed of a fraction by multi-

plying both its members by the denominator of the frac-

tion.

Zx
e.g. Free the equation —- = 6 of its fraction.
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^X5 = 6X5. (Why?)

.'. ^x = 30;

a; = 10.

Note that 8 + 4 multiplied by 2 = either 12 X 2 = 24

or 8 X 2 + 4 X 2 = 16 + 8 = 24. Also that 8-4 mul-

tiplied by 2 = either 4x2 = 8 or 8x2-4x2 = 10

-8 = 8.

So in general a -\- h multiplied oy 2 = 2a + 2b, and

o, — b multiplied by 2 = 2a — 2b. That is, to multiply any

algebraic expression by a number, we must multiply each

term of the expression by the number.

If an equation contains two or more fractions it may be

freed of all of them by multiplying both its members by

the product of all the denominators at once.

2x ^'x
e.g. Free the equation —- -|- —— = 8 of fractions.

Multiplying both members by 12, we get

^+^-96

or Sx + 9a: = 96.

Instead of multiplying both members by the product of

all tlie denominators, we may multiply by the least common
multiple of the denominators.

2x 3^/ A:X
e.g. Free the equation -;j- + t—H To" ~ ^ ^^ fractions,

o o 12

The L. C. M. of 3, 5, and 12 is 60. Multiplying both

members by this, we obtain

120a;
,

180a;
,
240aj _

or 40a; + 36a; + 20a; = 120.
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Ex. 1. Divide 150 into two parts such that the first shall

be 2/3 of the second.

Let

Hence

or

X = the number in the second part;

2x

3
= a a <i " first ((

X +
2x

3
-- 150.

'Sx + 2x = 450,

5x = 450.

X = 90.

2x = 60.

Hence the parts are GO and 90.

Ex. 2. Divide $37.20 among four men so that the

second shall have 2/3 as much as the first, the third 3/4 as

much as the second, and the fourtli 5/6 as much" as the

third.

Let X — number of dollars received by the first,

2a;.•.-—= " " '' " '' '' second,
o

:^- =1= " " '' " *^ third,

30it' hx
and -^^ =: _ zr: '* ^- '^ " '^ fourth.

7/4 1/i

.% 12a; + 8a; 4- 6./; + 5a; = 446.40,

0-. 31a; == 446.40,

.% a;=: 14.40.
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-^ = 9.60,
o

1 = 7.20,

and If = 6.00.

Hence the first receives $14.40, the second 19.60, the

third $7.20, and the fourth $6.00.

EXERCISE VI.

1. Divide 175 into two parts, so that the first shall be

2/3 of the second.

2. Two men in comparing their ages found that tlie first

was 3/5 as old as the second, and that their united ages

were 72 years. How old was each ?

3. Divide $4.89 among four boys so that the second

shall receive 3/2 as much as the first, the third 3/4 as

much as the second, and the fourth 2/5 as much as the

third.

4. A man bought four houses for $117,000.00. He
paid 2/3 as much for the second as for the first, 4/5 as

much for the third as for the second, and 3/4 as much for

the fourth as for the third. How much did he pay for

each ?

5. A man buys three horses for $325.00, and pays four

times as much for the first as for the second, and twice as

much for the third as for the first. How much does he pay

for each ?

B. PARENTHESES.

20. Symbols of Aggregation.—To indicate that" any

portion of an algebraic expression which lies between non-
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consecutive signs is to be taken together as a complex term,

we enclose the portion within parentheses or brackets.

Thus, in the expression 5 + 4^6' — 3(4« + ^^)^ ^ and

4«c are simple terms, 3(4^ -|- 2^) is a complex term. The

3 may be considered as the coefficient of the parenthesis,

and the minus sign means that three times the quantity

within the parenthesis is to be subtracted from what pre-

cedes it.

The parenthesis does not indicate an operation, but

that certain parts of an algebraic expression are to be taken

together in an operation. Hence it is called a sign of

aggregation,

A bar or vinculum, drawn over or under the parts of

the expression which ivq to be taken together in an opera-

tion, is often used instead of a parenthesis as a sign of

aggregation.

Thus, 5 + 4«c - 3 . 4a + 2^*.

21. Signs of Parenthetic Terms.—When two or more

minus terms occur in an expression, they are to be sub-

tracted from the remaining terms.

Thus, 16 — 6—4 means that both the 6 and the 4 are

to be subtracted from 16. The final result will be 6. This

is the same result that would be obtained by subtracting 10,

the sum of 4 and 6, from 16. That is,

16 _ 6 - 4 = 16 - (6 + 4).

In general,

a — h — c = a — {h -\- c).

Again, 16 — 6 -f- 4 or 16 + 4 — 6 means that 6

is to be subtracted from the sum of 16 and 4. We may
first take 6 from 16 and add 4 to the result, or we may
first add 4 to the 16 and then take 6 from the result. In

either case the final result will be 14. This is the same re-
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suit that would be obtained by taking the difference between

4 and 6 from 16. That is,

16 - 6 H- 4 = 16 - (6 -4).

In general,

a — 1) -\- c — a — (1) — c).

That is, if a parenthesis have a minus sign before it,

the sign of every term within the parenthesis must be

changed both on putting on and on taking off' the paren-

thesis. This is a very important rule and should be care-

fully borne in mind.

The expression 16 -f- (6 — 4) means that the difference

between 4 and 6 is to be added to 16. The result is 18.

This is the same result that would be obtained by first

adding 6 to 16 and then taking 4 from the result. That

is,

16 + (6 - 4) = 16 + 6 - 4.

In general,

a-\- {h — c) — a -{- b — c.

That is, if a parenthesis have a plus sign before it, the

signs of the terms within it are not to be changed either on

putting on or on taking off the parenthesis.

22. Parenthetic Factors.—
4(6-4) = 4x2 = 8==4x6-4x4.

In general,

4:(b - C)=4:b- 4:C,

and 4«($ — c) = 4«^ — 4«c.

That is, in removing a parenthesis, every term within

the parenthesis must be multiplied by the factors without

the parenthesis, and on putting on a parenthesis all fac-
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7

tors common to all the terms within the parenthesis may be

placed without the parenthesis.

EXERCISE VII.

Kemove the parenthesis from each of the following

expressions

:

1. da-4:b- 2a(Sb - 4^) + 6.

2. dm + 4:n — 5c(4:X — 5y -\- g).

3. 7 + S{'dc - 4:b) - VZx.

4. 6x — a(b -\- c) -{- 7a.

. 6. 18m + 8(2« - 3^* + 4c).

6. 2x + d('Zx + 7).

Place the three terms after the first of each of the fol-

lowing expressions within a parenthesis,—first with a minus

and then with a plus sign before the parenthesis •

7. 6x-3a-Qb + dc + 9.

8. 7ab - Sbc + IQcd -f Mc^ + 3.

9. 27 + Qa^c - lOa^ + 12a\

10. 10a: -f 20:^2 _^ 25A - 35.

EXERCISE VIII.

I.

1. Find two numbers whose difference is 4, and such

that three times the less plus four times the greater shall

eqtial 232 minus eight times the sum of the numbers.

2. Find two numbers whose difference is 6, and such

that seven times the greater minus five times the less- shall

equal 156 minus nine times the sum of the numbers.

3. A man bought a carriage, a horse, and a harness for

720 dollars. He paid three times us much for the horse as
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for the harness, and twice as much for the carriage as for

the horse and harness together. How much did he pay for

each ?

4. A merchant received 131,640.00 in three months.

The second month he received 80 dollars less than three

times as much as he received the first month, and the

third month he received 40 dollars less than three times as

much as he received the first two months. How much did

he receive each month ?

6. What number increased by one-half and one-fifth of

itself will equal 34 ?

II.

6. What number increased by two-thirds and three-

fourths of itself, and 21 more, will equal three times itself?

7. What number increased by one-half and one-third

of itself, and 17 more, will equal 50 ?

8. What number diminished by three-fourths and one-

sixth of itself, and 6 more, will equal 5 ?

9. What number diminished by two-thirds and one-

ninth of itself, and 11 more, will equal one-ninth of itself?

10. Divide 119 into three parts such that the second

shall be three times the remainder obtained by subtracting

9 from the first, and the third shall be twice the remainder

obtained by subtracting the first from the second.

23. Note.—For the present it will be necessary .to

transpose the terms of an equation in such a way that,

after the terms have been collected, the term containing

the unknown quantity will be plus.

It makes no difference whether the unknown quantity

is finally in the first or the second member of the equation.

e.g. In a school of three grades, one-half the scholars
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are in the lowest grade, one-third in the middle grade, and

60 in the highest grade. How many scholars in each

grade, and in the whole school ?

Let X = the number of scholars in the whole school.

.
•. 1/^x = the number of scholars in the lowest grade,

1/^x — the number of scholars in the middle grade,

and 60 = the number of scholars in the highest grade.

.-. 1/22; + 1/32: + 60 = a;,

or Zx-\-%x-\- 360 = Qx,

. •. 360 = &x — dx — 2x,

.'. dQO = X = whole school.

1/22; = 180; 1/32; = 120.

The equation might have been written

X = 1/22; + 1/32; + 60,

and all the terms containing x might then have been trans-

ferred to the first member.

EXERCISE IX.

1. A bin contains a mixture of rye, barley, and wheat.

2/5 of the grain are rye, 2/7 barley, and 77 bushels are

wheat. How many bushels of grain are there in all, and

how many of each kind ?

2. In an orchard there are three kinds of apple-trees.

2/3 of the trees are baldwins, 2/11 greenings, and 35 are

pippins. How many trees are there in all, and how many
of each kind ?

3. There are four villages on a straight road. The
distance from the first to the second is 3/8 of the distance

from the first to the fourth, the distance from the second
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to the third is 2/5 of that distance, and the distance from

the third to the fourth is 18 miles. How far are the vil-

lages apart ?

4. Louis had four times as many stamps as Howard,

and after Louis had bought 80 and Howard had sold 30

they had together 450. How many had each at first ?

II.

6. Divide 226 into three parts, such that the first shall

be four less than the second and nine greater than the

third.

6. In an election 70,524 votes are cast for four candi-

dates. The losing candidates received respectively 812,

532, and 756 votes less than the winning candidate. How
many votes did each candidate receive ?

7. Four towns M, iV, S, and T are on a straight road.

The distance from M to T is 108 miles, the distance from

JVto Sis 2/7 of the distance from M to JV, and the dis-

tance from >S' to 2" is three times the distance from M to S.

Find the distance from M to JV, from JV to S, and from S
to T,



CHAPTER III.

NEGATIVE QUANTITIES.

24. Counting.—The fundamental relations of numbers

are determined by. counting, and the fundamental opera-

tions of arithmetic and algebra, when they are performed

on integers and result in integers, are simply abbreviated

methods of counting.

Numbers may be counted forward or backward. In the

former case the numbers obtained are always increasing and

in the latter case decreasing. In arithmetic we may count

forward indefinitely, but backward only to zero.

Counting forward is counting on, or addition ; counting

backward is counting off, or subtraction. In arithmetic

subtraction is impossible when the number to be subtracted,

or counted off, contains more units than the number from

which it is to be subtracted, or counted off. 8 — 12 rep-

resents an operation which is arithmetically impossible.

In algebra the operation is generalized, and counting

off is considered to be as unlimited as counting on. Num-
bers, instead of running only forward from zero as in arith-

metic, are considered as running backward from zero as

well.

25. Signs of duality.—In arithmetic the scale of num-
bers begins at zero and runs forward only, while in algebra

it runs both ways from zero at the centre. To indicate in

which part of the algebraic scale a number belongs, the

forward part of the scale is called tlie positive part, and the

31
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numbers in this part of the scale are either written without

a sign or are preceded by a plus sign. The numbers are

called positive numbers, and the plus sign so used is called

the positive sign. The backward part of the scale is called

the negative part, and numbers in this part of the scale are

written with a minus sign before them. These numbers

are called negative numbers, and the minus sign so used is

called the negative sign.

The signs -|- and — perform a double office in algebra.

They indicate the operations of addition and subtraction,

and also whether a quantity is to be taken in the positive

or the negative sense. In the former case they are properly

called plus and minus, and are symbols of operation and in

the latter, positive and negative, and are symbols of quality

or sense. When a term stands alone the sign before it is

to be regarded as positive or negative.

A term standing alone without a sign is understood to

be positive.

26. The Algebraic Scale of Numbers.—Counting along

the algebraic scale towards the positive end is counting on,

or in the positive direction, and counting along the scale

towards the negative end is counting off, or in the negative

direction.

The algebraic scale may be represented by a horizontal

line of numbers with zero at the centre and the consecutive

numbers differing by a single unit, those to the right of

zero being distinguished by the positive sign, and those to

the left of zero by the negative sign. Thus,

\ 13, 12, 11, fo, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,

+ + + + +•+ + + ++ + rf 4-

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13.

Counting along this line from any point towards the
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right is counting forward, or positivelyy and from any point

towards the left is counting backward, or negatively.

e.g. Beginning at minus five and counting positively,

we have minus five, minus four, minus three, minus two,

minus one, zero, one, two, three, four, five, etc. In this

case each new number mentioned is one greater than the

last, minus four being one greater than minus five.

Beginning at five and counting negatively, we have

five, four, three, two, one, zero, minus one, minus two,

minus three, minus four, minus five, etc. In this case

each new number mentioned is one less than the last.

Whatever a positive unit may be, the corresponding

negative unit is something just the opposite.

27. Absolute and Actual Values of Numbers. — The
absolute value of a number is the number of units in it ir-

respective of their sign, while its actual value is its value

due to the number and sign of its unit. As the absolute

value of a positive number increases, its actual value also

increases, but as the absolute value of a negative number

i7icreaseSj its actual value decreases.

28. Algebraic Addition and Subtraction of Integers.—

-f- 4 or simply 4 means the number obtained by beginning

at zero and counting four steps forward, and — 4 means

the number obtained by beginning at zero and counting

four steps backward.

In general -\- a or a means the number obtained by be-

ginning at zero and counting a steps forward, and — a

means the number obtained by beginning at zero and

counting a steps backward.

6 -|- (-[- 4) m.eans the operation of beginning at plus 6

on the scale and counting four steps forward, or in the

direction indicated by the sign of the number to be added.

6 + (— 4) means the operation of beginning at plus 6

on the scale and counting four steps backward.
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6 — (+4) means the operation of beginning at plus 6

on the scale and counting four steps backward, or in the

opposite direction to that indicated by the sign of the

number to be subtracted.

6 — (— 4) means the operation of beginning at plus 6

on the scale and counting four steps forward, or in the op-

posite direction to that indicated by the sign of the number

to be subtracted.

Note. 6 + (+ 4) and 6 + (— 4) having the meanings

given, which are really definitions of addition of a positive

and a negative quantity, 6 — (+ 4) and 6 — (— 4) must

have the meanings given them because of subtraction being

the inverse, or opposite, of addition.

In general, the placing of one number after another

with a plus sign between indicates the operation of begin-

ning on the scale at the first of the two numbers and

counting as many steps as there are units in the number to

be added and in the direction indicated by the sign of that

number.

The placing of one number after another with a minus

sign between indicates the operation of beginning on the

scale at the first of the two numbers and counting as many
steps as there are units in the number to be subtracted, and

in the opposite direction to that indicated by the sign of

that number.

EXERCISE X.

Find by actual counting on the scale the values of the

following expressions

:

I.

1. 12 + (+6): 2. 12 + (^6).

3. 6 + (+12). 4. -6 + (+12>

5^ 6 + (--12). 6, -12 + (+6),
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7. - 6 + (- 12). 8. -12 + (-6).

9. 12 - (- 6). 10. - 12 - (- 6).

11. 4 - (+ 4). 12. 4 +(-4).

13. « - (+ a). 14. «+(-«).

15. - 6 - (+ 12). 16. - 6 - (- 12).

17. a ~ (- a). 18. - ft - (+ ft).

19, Designate the pairs of operations above which give

precisely the same result.

29. Corresponding Positive and Negative Numbers.—
Every positive number in algebra has a corresponding neg-

ative number, that is, a number the same distance from

zero on the opposite side.

The sum of a positive number and its corresponding

negative number is zero. Thus,

6 + (- 6) = 0, ft 4- (-ft) = 0.

30. Special Signs of duality.—To indicate whether

the number to be added or subtracted is positive or nega-

tive, instead of enclosing the number with an ordinary plus

or minus sign before it within a parenthesis, we may simply

put a' small plus or minus sign before the number at the

top, and when the number is positive the small plus sign

may be omitted. Thus,

ft 4- (+ ^) may be written a -{- '^h or a-\- i.

a-\- (— b) may be written a + ~b.

ft — (+ ^) may be written ft — '•"J or ft — d.

a — {— b) may be written a — ~h,

— «—(—&) may be written ~a — "b,

etc.
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To indicate that the a and h may represent either posi-

tive or negative numbers we may write ^a -\- "^b.

31. Commutative Law of Addition.—From examples

1 and 3 in Exercise X we see that a -\- b = b -\- a; from

examples 7 and 8, that ~a -\- ~b = 'b -\- ~a; from examples 5

and 6, that ~a -\- b = b -{-~a; and from examples 2 and 4,

that a -\- ~b = ~b -\- a.

Whence we have the following general law

:

^a + ''b= ^Z* + ="«.

In words, the algebraic sum of two numbers is the same

no matter in what order the numbers are taken.

This is known as the Commutative Law of Addition.

32. Addition and Subtraction of Corresponding Num-
bers.—Show by actual counting on the algebraic scale that

8 + -4 =: 8 - +4, or 8-4 = 4

-8 + +4 = -8 - -4 = -4.

Also that

8 + +4 = 8- -4 = 12

and -8 + +4 = -8 - -4 = - 4.

In general,

^a + -b = ^a - n, or *« - 5

and "-a + +Z* = *r/ - "6.

Whence ="« -f H^ *a - n.

In words, tlie addition of any number has precisely the

same effect as the subtraction of the corresponding number



NEGATIVE QUANTITIES. 27

toith the reverse sign. And the subtraction of any number

has precisely the same effect as the addition of the corre-

sponding number with the reverse sign. This is one of the

most important theorems of algebra.

33. Associative Law of Addition. — Show by actual

counting on the algebraic scale that

8 + 5-3-4 = (8 + 5) -3- 4,

• = 8 + (5 - 3) - 4,

= (8 -f 5 - 3) - 4,

= 8 + (5 -3 -4),

=== 8 + 5 - (3 + 4) = 6.

In general,

-^^ + ^b- ^c- *^ = (-=« + n) - ^c- ^d,

= *« 4- (^b - ^c) - "-d,

= {^a-\- ^b- ^c) - ^d,

= =^« + (*^ - ^c - ^-d),

= ^a-]- H- (^6?+ ^d).

In words, the sum of three or more numbers is the same

in whatever way the numbers may be aggregated. This is

known as the Associative Laiv of Addition.

N.B.—When terms are associated with a negative sign

before the sign of aggregation, the signs of all the terms

within the sign of aggregation must be reversed. (21.)

34. Oppositeness of Positive and Negative Numbers.—
Positive and negative signs always imply oppositeness. In

case of abstract numbers, a negative number is simply the

opposite of a positive number; that is, a number which

L
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would produce zero when added to its corresponding posi-

tive number. Positive and negative numbers always tend

to cancel each other.

In the case of concrete numbers, a negative number is

the result of a measurement in the opposite direction to

that which gives a positive number.

Thus, distances measured to the right or upward are

usually regarded as positive, and those measured to the left

or downward as negative. Dates after a certain era are

regarded as positive, and those before the era as negative.

Degrees of temperature above zero are positive, while those

below zero are negative.

Assets are usually regarded as positive, and debts as

negative.

A surplus is positive, and a deficiency negative.

The following quotation is from Dupuis' Principles of

Elementary A Igehra

:

"It an idea which can be denoted by a quantitative

symbol has an opposite so related to it that one of these

ideas tends to destroy the other or to ronder its effects nu-

gatory, these two ideas can be algebraically and properly .

represented only by the opposite signs of algebra.

'^ If a man buys an article for b dollars and sells it for s

dollars, his gain is expressed by s — b dollars. So long as

s > b, this expression is -f, and gives the man's gain.

^'But if s < b, the expression is — . It denotes that

whatever his gain is now, it is something exactly opposite

in character to what it was before. And as he now sells

for less than he buys for, he loses. In other words, a neg-

ative gain means loss.

" Thus, gain and loss are ideas which have that kind

of oppositeness which is expressed by oppositeness in sign.

If a man gains + a dollars, he is so much the wealthier: if

he gains — a dollars, he is so much the poorer.

** Whether gain or loss is to be considered positive must
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be a matter of convenience, but only opposite signs can

denote the opposite ideas.

'
' Among the ideas which possess this oppositeness of

character are the following

:

'^
(1) To receive and to give out; and hence, to buy and

to sell, to gain and to lose, to save and to spend, etc.

'•
(2) To move in any direction and in the opposite direc-

tion; and hence, measures or distances in any direction

and in the opposite direction, as east and west, north and

south, up and down, above and below, before and behind,

etc.

^^(3) Ideas involving time past and time to come; as,

the past and the future, to be older and to be younger than,

since and before, etc.

"(4) To exceed and to fall short off; as, to be greater

than and to be less than, etc."

EXERCISE XI.

Give the meaning of the following expressions:

1. — 6 A.D. 2. ~n A.D.

3. "40 B.C. 4. ~« B.C.

5. — (— 30) B.C. 6. — ~h B.C

7. — "50 A.D. 8. — (— c) A.D,

9. The temperature is — 20°.

10. The temperature has risen — 12°.

11. The temperature has fallen — 16°,

12. The temperature has fallen — (— 7°).

13. The temperature has fallen — ~8°„

14. The temperature has risen ~ ~«°o
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15. It is — 17° colder to-day than yesterday.

16. It is — 8° warmer to-day than yesterday.

17. It is — ~12° warmer to-day than yesterday.

18. Howard lives — 3 miles east of Albert.

II.

19. Louis lives — 5 miles north of Horace.

20. Ethel is — 4 years older than Edith.

21. Mabel is — 6 years younger than Florence.

22. Hilda is — (— 2) years younger than Margaret.

23. Hermon owes the grocer — 3 dollars.

24. Hilda weighs — 7 pounds-more than Louis.

26. Mr. Crane is — 20,000 dollars richer than Mr^

Weston.

EXERCISE Xil.

1. A man having c dollars paid out a dollars to one

person and h dollars to another. Express in two ways what

he had left.

2. A man bought at a market tomatoes at a cents a

peck and potatoes at h cents a peck, and paid 7n cents for

an equal number of pecks of each. How many pecks did

he buy ?

3. Two cities are 42 miles apart. Two men start at

the same time from the two cities and walk towards each

other. The first travels four miles an hour and the second

three miles an hour. In how many hours will they meet

and how far will each have travelled ?

4. Two cities are a miles apart. Two men start at the

same time from the two cities and travel towards each
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other, the first at the rate of m miles an hour, and the

second at the rate of n miles an hour. In how many hours

will they meet, and how far will each have travelled ?

6. Find two numbers whose sum is 108 and such that

10 times the greater minus 5 times the less shall be less

than 762 by 4 times the sum of the numbers.



CHAPTER IV.

ADDITION OF INTEGRAL ALGEBRAIC
EXPRESSIONS.

35. Arithmetical and Algebraic Sums.—The sum, or

amount, of two or more integral numbers is the number

obtained by counting all the numbers together. The oper-

ation of finding the sum of two or more numbers is called

aclditio7i.

Since the numbers of arithmetic are all positive, the

addition of a number in arithmetic will always increase the

number of units in the number to which the addition is

made, and the sum of two or more numbers will contain as

many units as all the numbers together. The arith7netic

sum of two or more numbers is the sum of the numbers

without regard to their signs. That is, it is the sum of the

absolute values of the numbers.

In algebra, the addition of a positive and a negative

number will tend to diminish the number of units in the

number which has the greater absolute value. The alge-

braic sum of two such numbers is the arithmetical difference

of the numbers with the sign of the one which has the

larger absolute value.

The algebraic sum of two numbers both positive or both

negative is the arithmetic sum of the numbers with then

common sign. Thus,

8 + 10 = 18, -8 + -10 = - 18,

8 + -10 rr: ~ 2, "8 + 10 = + 2.

32
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The algebraic sum of two or more numbers is the sum

of the numbers regard being had to their signs. That is,

it is the sum of the actual values of the numbers.

36. Signs of Coefficients.—The sign of a term may be

regarded as belonging to its coefficient only. That is, plus

terms may be regarded as those whose coefficients are posi-

tive. The reason for this will appear farther on, under

Multiplication.

37. Integral Algebraic Expressions. — It has been

learned in arithmetic that numbers are not only integral,

but also fractional and surd. In any algebraic expression

the letters may stand for any kind of number.

An algebraic expression such as

x^ + 6x^ - 4:x^ - 3x^ + 2:c + 1,

or . ,
l-{-2x-3x^ - 4:X^ + 5x^ + x^,

in which the exponents of the letters are all positive inte-

gers, and in which none of the letters occur in the denom-

inators of fractions, or in the divisors of an indicated

division, are called ifitegral algebraic expressions. The co-

efficients of the various terms may be fractional.

38. Extension of the Application of the Formal Laws

of Addition.—In the addition of integral algebraic expres-

sions it is assumed that the commutative and associative

laws already established for integral numbers apply equally

to fractional and surd numbers. This is in accordance

with the generalizing spirit of algebra.

39. Definition of Addition of Algebraic Expressions.—
To add integral algebraic expressions is to combine their

various terms into a- single algebraic expression, each term

to be preceded by its own proper sign. The resulting ex-

pression should be given in its simplest form.
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40. Addition of Monomials and Polynomials.—Similar

terms are analogous to concrete numbers of like denomina-

tions, and dissimilar terms are analogous to concrete num-

bers of unlike denominations.

Similar terms may be added by finding the algebraic

sum of their coefficients and writing after this the common
literal factors of the terms. Thus, the sum of ba^b, 1la%,

and — ^a^h is 4a^^.

Dissimilar terms can be added only by placing them

one after another in a polynomial expression each with its

own sign. Thus, the sum of ^a%, — 4:al), and 5c is 3a^ —
4:ab + 5c. The sum of these dissimilar terms is really

3a^ + ~^(ib -\- 5c, but, as we have seen, to add ~4:ab is the

same as to subtract +4<x&, or + ~'4:ab = — 4:ab.

The following examples will illustrate the working

rules of addition

:

Ex. 1. 3A -7b^y

7a^x — 9b^y

5A — 5b^y

15a^x - 21Py

To add similar terms with like signs, an?iex the common

literal factors to the arithmetical sum of the coefjicients, and

prefix the common sign.

Ex. 2. 7^y 9>abx

^xY — \ahx

~ QxY - %abx

Wy^ IQabx

^ 9^y — 7abx

— 5(?^y^ l%abx
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To add similar terms tcith unlike signs, find the arith-

metical sum of the coefficients of the plus terms, and of the

coefficients of the minus terms, and tlie arithmetical differ-

ence of these tivo sums, anyiex to this difference the common

literal factors, and prefix the common sign of the terms

whose coefficients produce the larger arithmetical sum.

Ex. 3. a Sax

b — 4tby

— c —hd

a -\- b — c Sax — 4:bg — 5d

To add dissimilar terms, write them one after another,

each ivith its oivn sign.

Ex. 4. —a Sx'y

-b -7x^g

da -Qxy^

-2b - Sb

-5 -'Sxy^

2a-db- 5 - 4:Xh/ - QXlf - Sb

To add terms some of which cere similar a7id some dis-

similar, combine the different sets of similar terms into

single terrns, and write the resulting terms together icith

the remaining terms one after another in a 2^oly7io7nial ex-

pression each icith its own sign.

Ex. 5. 2cd- 3cx^ + 2c^x

- Scd - ex' - 5c^x -f- cx^

12cd + lOcx' - Qc'x - 11

Qcd + Qcx' - 9c'x + cx^ - 11

To add polynomials, combine the different sets of similar
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terms in the polynomials into si^igle terms, and write these

and the remaining terms as a polynomial.

In the addition of polynomials, it is convenient to ar-

range the terms so that the similar terms will fall in verti-

cal columns.

41. Simplification of Polynomials.—When any polyno-

mial contains one or more sets of similar terms, it may be

simplified by combining these sets into single terms.

EXERCISE XIII.

Find the sum of the following terms:

I.

1. 3«, 7«, 2«, a, 12a.

2. 7a^x, da^x, c^x, 20a^x.

8. - 6ab^ - ab\ - lal)\ - llaJ)% - 4.ay^, - 8«5l

4. — Ix, — 2x, — 8x, — X, — 12Xf — llic, — 15a;.

6. Zx^, - bx\ 82^2, - 12x^.

6. — bac^x, ac^x, — %a(?x, \^a(?x.

7. 5?/2, 4«c, — ac, — 7y^, — 6ac, iy"^, — 5.

8. 7a^x. — Aad, — ax^, — da^x, — 8, — 5abo

Simplify the following polynomials

:

I.

9. 4:X — 5al) -]- 7x -{- c -\- llab — 20a;.

10. daH^ -7x^- 5-{- 12x^ - 4:a^^ + 12 - c.

11. l/'dx - l/2x + d/4cx + X.

12. 2/'6y - S/4.y - 2y - l/3y + 6/6y + y.

13. 9(a + 5) + 10{a + ^) - (« + ^) ~ 2{a + 5).
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II.

14. 7« - 3(^ + 2^) + 8« - (a; + 2/) + 3(a: + y) - 16«.

15. 2(m + n) + 3(a + Z») + (« + ^») - {m -f /^) +
(r^ + /;) - 6(m + 7^.

16. 3r/,(/; + a:) + 5r/(^' + a;) + r^C^* ^ x) - lla{b + a;).

17. 2C(«2 _ J2)_ 3^(^2 _ J2) _^ 6^.(^2 _ ^2)_ ic(^2 _ J2).

Add the following polynomials:

I.

18. Mz — ^hy - 8, - 2az + bhy + 6, 6az + 6J?/ - 7,

and — Mz — 7% + ^^

19. Soa:; — dcz^, — 5ax + 5c;2;^ ax + 2c2;^, and — iax

— 4:CZ^.

20. 8^, + h,2a-i + c,- 3« + SZ* + 2^, - 65 - 3c

+ dd, and — 5« + 7c — 2d

II.

21. 7a: — G?/ + 5;^ + 3 — ^, — a; — 3?/ — 8 — ^, — a:

+ 2/
~ '"^^ - 1 + '^ff^

- 2x ^ dy -{- 3z - 1 - g, and a; +
Sy-5z + ^+g.

22. 2«'^ + 5ffZ> - xy, - 7a^ + dab - dxy, - 3a^ -
^ab -\- 6xy, and 9a^ — ab — %xy,

23. ^a^b^ - MV^ + x}y + xa/. ia^'^ - la^ - dxif+
6x2?/, 3^^3^2 _^ 3^^2^3 _ 3^2^ _|_ 5,^^2^ ^nd '^a^b^ - a%^ -
dx'^y — '6xy'\

I.

24. A lady bought three yards of ribbon at a cents a

yard, 10 yards of tape at c cents a yard, and five spools of

thread at d cents a spool. She paid x cents on the bill.

How much remains due ?
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25. One morning tlie mercury in the thermometer

stood at X degrees. During the next 24 hours it rose h de-

grees and fell c degrees. The following day it rose d de-

grees. What was its height then ?

26. A father divided his property of 27,000 dollars

among his four children, giving 500 dollars less to each in

succession from the eldest to the youngest. How much did

he give to each ^

ir.

27. A father gave his eldest son x dollars, his second

son 7 dollars less, his third son 9 dollars less than the sec-

ond, and his fourth son 1 1 dollars less than the third. How
much did he give to all ?

28. A father divided his property among his four chil-

dren. To each of the first three he gave 1/4 of his prop-

erty plus 200 dollars, and to the fourth he gave 1400 'dol-

lars. What was the value of his property ?

29. A man left his five children x bonds worth a dol-

lars each, and x acres of land worth i dollars each ; but he

owed m dollars to each of q creditors. W^hat was each

child's share of the estate ?

42. Aggregation of Coefficients.—When two or more

terms of a polynomial contain one or more common factors,

whether numeral or literal, the terms may be collected into

one by enclosing the terms within a parenthesis and placing

the common factors outside.

When the common factors are numeral and literal, it is

customary to place the numeral factor and the letters which

belong to the first part of the alphabet before the parenthe-

sis, and the letters which belong to tlie last part of the

alphabet after the parenthesis.

e.g. bacx + bbcx — bcdx = bc{a -{- h — d)x.
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EXERCISE XIV.

Collect the coefficients of x and y in tho following ex-

pressions :

I.

1. ax -\-hy -\- mx -|- ny.

2. 7nnx -\- 2by -{- pqx — 4:by.

3. 3x — 2y -{- (Jbx — 4// + 7ax -\- m -\- n.

4. ^ax + ^hx + hy + 1x - by ^ x - 5y.

5. Howard is twice as old as Albert. If x represents

Albert's age now, what would represent their respective

ages eight years hence ?

6. Howard is now twice as old as Albert, but 12 years

from now he will be only 3/2 as old. How old is each ?

7. Two cities, A and B, are on a straight road and 18

miles apart. Two couriers, P and Q, start at the same

time from the respective cities and travel in the same direc-

tion, P from A towards P at the rate of eight miles an

hour, and Q from B at the rate of six miles an hour. In

how many hours will P overtake Q, and how far will each

have travelled ?

8. Divide the number a into two parts, one of which

shall exceed the other by b.

II.

9. ax -j- by -\- rz — mx — ny — 2^^-

10. "idx + ^ey + 4A - 2/:r - ?>dy + Uz.

11. ^/oay - 2x + ^/\by + Qax.

12. ^ax — by — 3bx — 4:ay.
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13. Horace is now twice as old as Herbert, but a years

from now he will be only 4/3 as old. How old is each ?

14. Two towns, A and B, are a miles apart. Two cour-

iers, P and Q, set out at the same time from the respective

towns, and travel in the same direction. P travels from A
towards B at the rate of h miles an hour, and Q from B at

the rate of c miles an hour. In how many hours will P
overtake Q, and how far will each have travelled ?



CHAPTER Y.

SUBTRACTION OP INTEGRAL ALGEBRAIC
EXPRESSIONS.

43. Definition of Subtraction.—Subtraction is the in-

verse of addition, or the process of undoing the operation

of addition. In addition, two numbers are given and

their sum or amount required. In subtraction, the sum

of two numbers and one of the numbers are given, and

the other is required.

The given sum is called the mimie^id, the given num-

ber the subtrahend, and the required number the difference

or remainder.

Since the minuend is the sum of the subtrahend and

difference, we may prove our subtraction by adding the

subtrahend and difference to see if their sum agrees with

the minuend.

44. Rule for Subtraction of Integral Algebraic Ex-

pressions.—We have already seen in section 15 that the

addition of any number produces the same effect as the

subtraction of the corresponding number with the reverse

sign, or, conversely, the subtraction of any number is

equivalent to the addition of the corresponding number

with the reverse sign. Hence we have the following rule

for algebraic subtraction

:

Add the subtraliend with its signs reversed to the minu-

end,

41
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In the operation of subtraction it is better not actually

to change the old signs, but merely to think of them as

changed in the addition. If the new signs are written, it

is better not to change the old into the new, but to write

the new as small signs before the terms at the top.

EXERCISE XV.

I.

1. From "Zx -\- y -\- 1z take 6x -]- 2y — 7z.

2. From 9a — 4:b -\- Sc take 5a — db -{- c.

3. Subtract 3a^ - a^^la-U from lla^ - 2a^+ da^

— Sa.

4. From 10«V + Uax^ + 8A take - lOa^x^ + 15ax^

- 8A.

5. Subtract 1 — a -\- a^ — da^ from a^ — 1 -\- a^ — a.

6. From 2/3^:2 _ ^/^x - 1 take - 2/3^2 -{- x - 1/2.

7. From a take b — c.

8. What must be taken from 6a + 5 — 3J to produce

8a + 6Z» + 13 ?

9. What must be taken from 2x^ — 3a^x^ + 9 to pro-

duce x^ -\- ba^x^ — 3 ?

10. What must be added to a + 5Z» + 9 to produce

3a - 2^* + 6 ?

11. Ethel is twice as old as Edith, and six years ago

she was four times as old. What is the age of each ?

12. A and B have together 150 dollars. If A were to

give ^35 dollars, B would have three times as much as ^.

How much has each ?

II.

13. What must be added to x to produce y ?
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14. By how much does 6x — 7 exceed 3a; + 4 ?

15. From what must 5a; -f- 4?/ + 7ft — 12 be subtracted

to produce unity ?

16. From what must x^ — x^ -\- x — IhQ subtracted to

produce %x'^ -|- 2 ?

17. From l{a + I) take 3(ft + h),

18. From 3«(6' — x) take a{c — x).

19. From la^(l) —-x) — ab(a — b) take 5a^{h — x) —
bab(a — h).

20. Howard is x years old. How old was he eight years

ago?

21. Divide the number m into two parts such that,

when a is taken from the first and given to the second, the

second will be five times the first.

PAREKTHESES.

45. Operation upon Aggregates.—Every algebraic ex-

pression, however complex, represents a quantity, and

may be operated upon as if it were a single symbol of that

quantity.

When an expression is to be operated upon as a single

quantity it is enclosed within parentheses or brackets, but

the parenthesis may be omitted when no ambiguity or error

will result from the omission.

Thus, one polynomial may be added to another or to a

monomial by writing it, enclosed within a parenthesis and

preceded by a plus sign, after the expression to which it is

to be added; and a polynomial may be subtracted from a

polynomial or monomial expression by writing it, enclosed

within a parenthesis and preceded by a minus sign, after

the expression from which it is to be subtracted.

Since terms written after one another each with its own
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sign in a polynomial expression are to be considered as

added, and since in addition there is no change of signs, a

parenthesis preceded by a plus sign may be omitted without

any change of signs; and since the subtraction of any

quantity produces the same effect as the addition of the

corresponding quantity with the reverse sign, a parenthesis

preceded by a minus sign may be omitted if the sign of

every term be changed.

N.B".—It must be carefully borne in mind that the sign

before the parenthesis is not the sign of the first term

within it, but of the parenthesis as a whole. This sign

really goes with the parenthesis when the latter is removed.

When no sign is expressed with the first term within the

parenthesis, the term is understood to be plus, and its sign

must be written on the removal of the parenthesis, as plus

when the parenthesis is plus, and as minus when the

parenthesis is minus.

EXERCISE XVI.

Clear the following expressions of parentheses and re-

duce the results to the simplest form

:

1.

I.

ah — (m, — 'Sal) + 2ax) — 7ab.

2. X — {a — x) -\- (x — a).

3. 2b+{h- 2c) - {b-\- 2c).

4. 4:X - 3y -\- 2z - {- 7x + 5y - Sz

5.

II.

7ax — 2% — {8ax + Sbi/) — {Sax

6. {a — x) — (a -{- x) -\- 2x.

7. -(a-b)-(b-r)-(,- a).

8. - (Sm + 2») - {3m - 2n) + 9m.

Zby)
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22. Of course in forming aggregates preceded by a

minus sign, the sign of every term enclosed within the

parenthesis must be changed.

EXERCISE XVII.

Keduce the following expressions to the form x — (an

aggregate)

:

I.

1. X — a — h.

2. X — 7)1 — n.

3. a-{- X — 'dx-\-^y.

4. - 3^ + a; 4- 2c + 56?.

6. 2x-2a-i- 2b.

6. x + S - (a-\-b).

7. X -{- a — (b ~ o) -{- (m — n).

II.

8. 2x -\- a — b.

9. 3x - 2m + 2n.

10. ox -{- ab — m — Sab -\- 2m.

11. X — 2m — {Sa — 2b).

12. X — {am -\- b) — {p — q) — (am — n).

13 X — (a^b) — (p — q) — (m — n).

46. Compound Parentheses.—An algebraic expression

having parentheses as a part of it may be itself enclosed

in parentheses with other expressions, and this may be

repeated to any extent. Each order of parentheses must

then be made larger or thicker, or different in shape, to

distinguish it.

e.g. Suppose we have to subtract a from b, the remain-
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der from c, that remainder from d, and so on. We shall

have

:

First remainder, h — a.

Second remainder, c — {h — a).

Third remainder, . o . . d — [^c — {h — a)].

Fourth remainder, . e — {d — \g — {i — a)]].

Fifth remainder, ^ — [e — \d — [^ — (^ — «)] }].

Such parentheses are called compoimd pare^itJieses.

Compound parentheses of addition and subtraction may
be removed by removing separately the individual paren-

theses of which they are composed. AVe may begin either

with fhe outer ones and go inward, or with the inner ones

and go outward. It is customary to begin with the inmost.

e.g. Clear of parentheses:

^_[«_ {j_ [c_ (^_e)]}].

Beginning with the inmost, the expression takes, in

succession, the following forms

:

ic- [«- |&- [c- ^ + e]j] =
X — \a — [h — c -\- d — e}'] =

X— [a — I)-{-G — d-{-e] =

X — a -{ b — G -\- d ~ e.

Beginning with the outmost, we have

x-[a- \b- [G-(d- e)]}] =

x-a-\-{l)-{c- {d-e)']} =
X — a~\-h — \_c — {d ~ e)'] =
X — a-\-l) — G-{-{d— e)=.

X — a -\- b — G -\- d — e.

Again, x — {— (a -]- b) -\- {c -\- d) — {e — z)"]
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gives, when we begin with the inner parentheses,

X — \^— a — h -\- c -\- d — e -\- z\ =

x-{-a-\-b — c — d -\- G — z\

and when we begin with the outer parentheses,

x^- {a-^h) - {c^ d) ^ {e - z) =^

x-\-a-\-h — c — d-^-e — z,

EXERCISE XVIII.

Remove the parentheses in the following expressions,

and combine the terms containing x, y, and zi

I.

1. rn-{-i-{p-q)-^{a-l)-\-{-c-\-d)].

2. m.-l- {a-h)- {p-\-q)-]- (n - h)],

3. 'Tax - [(2ax + by) - {Sax -by) + (- "^ax+ 2%)].

4. a—\a— [a —\a— {a — «)]}]•

5. p—\a — h — {s-\-t-\-a)-\-{—m — n)].

6. A father left 80,000 dollars to his four children. The

eldest was to receive four times as much as the youngest

less 1800 dollars, the second was to receive three times as

much as the youngest less 1200 dollars, and the third was

to receive twice as much as the youngest less 600 dollars.

How much did each receive ?

7. Divide a into three parts such that the second shall

equal the first minus h and the third shall be c less than

twice the first.

II.

8. 2aa; — \^ax — by — (7ax + 2by) — {5ax — Sby)].

9. ax -\- by -\- cz -\- [2ax — 3cz — {2cz -\- 5ax) — {7by

- dcz)].
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10. X — \^x — y — [3:r — %y — (4a; — 3«/)] }.

11. ax — bz — {ax -\- bz — [ax — bz — {ax -f- bz)]].

12. my — \x-}- Sy -\- [2my — 3{x — y) — 4:ab] -\- 5].

13. Divide 186 into five parts such that the second

shall exceed the first by 12, the third shall exceed twice

the first by 24, the fourth shall exceed three times the first

by 36, and the fifth shall exceed four times the first by 48.



CHAPTER VI.

MULTIPLICATION OF INTEGRAL ALGEBRAIC
EXPRESSIONS.

A. LAW OF SIGNS, OF COMMUTATION, AND OF ASSOCIATION.

47. Multiplication of Integers.—Multiplication is the

operation of finding what number is obtained by counting

a number over a given number of times.

The number to be counted over is called the multipli-

cand, the number which indicates how many times the

multiplicand is to be counted over is called the multiplier,

and the number obtained as the result of the operation is

called the product.

The multiplier and the multiplicand are called /<a56'^ors

of the product.

48. Two Cases of Multiplication. — As there are two

directions of counting from zero in algebra, so there are

two cases of multiplication. In addition, as we have seen,

the numbers to be added are counted in the direction in-

dicated by their signs, while in subtraction the numbers to

be subtracted are counted in the opposite direction to those

indicated by their signs. The direction in which the mul-

tiplicand is to be counted is indicated by the sign of the

multiplier. When this sign is positive the multiplicand is

counted in the direction indicated by its sign. Hence the

sign in the product will be the same as the sign in the

multiplicand. When the multiplier is negative the multi-

49
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plicand is counted in the opposite direction to that indicated

by its sign. Hence the sign is the reverse of the sign in

the multiplicand. The former case corresponds to addition

and the latter to subtraction. In multiplication the

counting is always understood to begin at zero.

49. Law of Signs in Multiplication.—
Ex. 12 X 4 = 48. -12 X 4 = -48.

12 X -4 = -48. -12 X -4 =: 48.

4 X 12 = 48. 4 X-12 = -48.

-4 X 12 = -48. -4 X-12 = 48.

In general,

a xh = ah. -a X h = — ah.

aX'h — —ah. -a x~h = ah.

h X a = ah. h X~a— — ab.

-h- X a = — ah. ~h X~a — ah.

From the above we see

:

1°. That like signs in multiplication produce jt?/i^s, and

unlike signs minus.

2°. That interchanging the signs of the factors does not

alter the sign of the product, a X~h = — ah —~a Xh.
3°. That interchanging the multiplier and multiplicand

does not alter the product, a X~h — — ah — ~h X a.

50. Commutative Law of Multiplication.—From 2° and
3° we see that multipUcation is commutative both as re-

gards its signs and its factors. Addition is commutative

only as regards its terms and not as regards its signs.

12 + -4 = -4 + 12, but 12 + -4 does not equal "12 + 4.

That multiplication is commutative as regards its fac-

tors, that is, that the same result will be obtained by count-
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n

m
Fig. 1.

ing m things over n times as by counting n things over m
times, may be shown as follows.

Place 711 squares in a horizontal row and repeat the row

vertically n times as in Fig. 1.

Evidently we would get the num-

ber of squares in the figure either

by counting the m squares of the

"lower row over n times, or by

counting the n squares of the

left-hand column over m times.

Hence 7n X n = 7i X m. Thus

the commutative law of multipli-

cation is seen to be a consequence of the associative and

commutative laws of addition.

51. Associative Law of Multiplication.—In the opera-

tion of multiplication we combine only two factors at a

time into a product. If there are more than two factors to

combine, we first combine two of the factors into a product,

and then use the product obtained and a third factor as two

factors to form a new product, and so on, till the factors

are all used.

9 X 3 X 3 = 27 X 2 = 54,

9X3X2= 9X6 = 54.

e.g.

or

In general.

b . c =^ (ab) . c, or (bo).

That is, the result of multiplying ahj b and the prod-

uct by c is the same as multiplying a by the product of b

and c.

The fact that the factors may be grouped or associated

in any way is known as the Associative Law of Multiplica-

tion.

The associative law of multiplication may be shown to

be true for integers as follows

:
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m
Fig. 2.

Use the diagram of the last section, and suppose each of

the small squares to be divided

into a rectangles by horizontal

lines (Fig. 2). There will evi-

dently be ma of these small rect-

angles in the lower row of squares,

and na in the left-hand column,

and we would get the whole num-
ber of rectangles by counting the

lower set of ma rectangles over n

times, or by counting the lowest row of m rectangles over

na times. Hence

(ma) . n = m . {na).

From the commutative law of multiplication we see

that it makes no difference in what order the factors of a

product are written.

Hence the factors of a term may be written in any

order. It is, however, customary to write the numerical

factor first and the literal factors in their alphabetic order.

If there are more than two factors, the product will be

plus when all the factors are positive, or when the num-

ber of negative factors is even. The product will be minus

when the number of negative factors is odd.

e.g. a .b »~c = — ah .~c = ahc,

~a . ~1) .~c . d ^^ ah . ~cd = — ahcd.

62. Multiplication of Monomials.— In the multiplica-

tion of integral algebraic expressions we assume that the

laws of commutation and association which we have dem-

onstrated for integers also apply to all numbers which

may be represented by letters, fractional and surd as well

as integral.

Hence we multiply two integral monomial algebraic
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expressions together by grouping all their factors together

in a single term.

This term must therefore contain every factor contained

in the terms multiplied together, and each factor as many
times as in all the terms together.

e.g. 3«2^,sc X 4:a^b^x =

To multiply one monomial hy another, multiply togefher

their numeral coefficients and icrite after the product ob-

tained each letter of both monomials with an exponent equal

to the sum of its exponents in the two terms. Briefly,

multiply coefficients and add exponents.

The sign of the product must be determined by the law

of signs in multiplication.

EXERCISE XIX.

Find the product of the following factors:

I.

1. 3« and 7b.

2. 6a and Qa^.

3. 4:a'^x and — 8x^y^.

4. a^bx and — a^b^y^.

6. — 'iSd'^x^ and — H'^x^z^.

6. — Hmhiy^ and h/nhi^x*.

7. am X ab X ac X ad.

8. ax X ~ bx X ex X dx.
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9. X X — ax X — ahx X — abcx,

10. ^ax X — '^aH^ X — bahnx.

11. — l7n^y X — ^a^y^ X 6ax,

12. 27n X n X — a X — 2b.

13. — Sax X — 2h7i X — 7x X — 4:imx,

14. — ny xgy X — ^ X 3bm.

16. xy X 2y^ X y^x X 2ayx^.

16. 5y^ X — 3gy X — 2x^ x — ao^z,

II.

17. bax X anx X 3« X b^xy.

18. — ^bz X — xz X — yz X agz.

19. '^cH X 2xh X — z^ X — bgz\

20. — c^x X'dx X dp- X ay.

21. - 2e X -1y XaXbx.

22. — ^ax X 'day X — "Ic^y X — xy.

23. ax^ X ~ y"^ X — 1 X Sax X — a^y,

24. m^x X — n^x X — mn^ X — tnK

25. — abx X — ay^ X ax X d^x^.

26. ^^ X qy'^ X xy X — ax.

27. abc X — d^ X ax X —1 X Sax.

28. l/4flx X Sex X — 1/2^2: X — 4?/2 x ^m,

29. — Qmx X — 2n-x X l/6ac X — l/5mK

30. ~ a X ^c X — 1 X 1/4 X Sd^ X 4:xy X y.

53. Changing the Signs of an Equation.—If an alge-

braic expression be multiplied by — 1 its signs will all be

reversed, and, of course, the value of the expression will be
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changed. To multiply any number by — 1 will change it

into the corresponding number with the reverse sign.

If both members of an equation be multiplied by — 1,

the value of each member will be changed, but their equality

will not be destroyed. (Why not ?)

Hence in working with equations, it is legitimate to

change the signs at any stage' of the operation, provided

that the sign of every term, simple and complex, on both

sides of the equation be changed.

EXERCISE XX.

1. ^ = 80 - (a: - 20) + (3a; - 120). Find the value

of X.

2. 240 -{x -\- 40) = 20 +' {bx - 60) - (2a: - 80).

Find the value of x.

3. A father left his property of 47,000 dollars to his

four children, giving the eldest four times what he gave

the youngest less as much as he gave the second, to the

second three times as much as he gave the youngest less as

much as he gave the third, and to the third twice as much
as he gave the youngest • less 2000 dollars. What did he

give each ?

4. Divide 81 into five parts such that the second shall

be twice the first less eight, the third shall be three times

the first less the second, the fourth shall be four times the

first less the third, and the fifth shall be five times the first

less the fourth.

54. Distributive Law of Multiplication of Integers.

—

Ex. 1. (12 -f- 8) X 4 = 20 X 4 = 80,

and 12 . 4 4- 8 . 4 = 48 + 32 = 80.

(12 - 8) X 4 = 4 X 4 = 16,
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and 12 . 4 - 8 . 4 = 48 - 32 = 16.

(- 12 + 8) X 4 = - 4 X 4 = - 16,

and - 12 X 4 + 8 X 4 = - 48 + 32 = - 16.

(- 12 - 8) X 4 = - 20 X 4 = - 80,

and - 12 X 4 - 8 X 4 = — 48 - 32 = - 80.

(12 + 8) X - 4 = 20 X - 4 = - 80,

and 12 X - 4 + 8 X - 4 = - 48 - 32 = - 80.

In general,

{^a + ^h) X *c *« X *^ + *& X ^c.

The product of a polynomial and a monomial factor is

the Siim of the products of its several terms a7id that factor.

This is known as the Distributive Lato of Multiplication.

It is a law controlling the combination of multiplication

with addition and subtraction.

The trutli of the Distributive Law may be shown by

the following conventional arrangement of units on a plane

surface.

If a vertical and a horizontal line intersect each other on

a plane, they will divide the

plane into four quarters, or

quadrants. These quadrants

are numbered as shown in Fig. 3.

By general agreement, units

counted to the right of the ver-

tical line, whether above or be-

low the horizontal line, are re-

garded as positive; while those

counted to the left of the vertical

Also uuits counted upward

II

III IV

Fig. 3.

line are regarded as negative,

from the horizontal line, wliether at the right or left of the

vertical line, are regarded as positive, while those counted
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II

o +h +b
I

o
o o

o o o o o o o o
-a +a

-a +a
o o o o o o o o

o
o

III

-b -b
o
o
IV

downward from the horizontal line are regarded as nega-

tive.

The quality of the units arranged in the four quadrants

is shown in Fig. 4, the units being

represented by the small circles.

A rectangle of units in any quad-

rant, as shown in Fig. 5, represents

a product of two factors. A rect-

angle in the first quadrant repre-

sents a positive • product, since it is

composed of two positive factors; a

rectangle in the second quadrant rep-

resents a negative product (why ?)

;

^^^' ^'

a rectangle in the third quadrant represents a positive prod-

uct (why?); and a rectangle in

the fourth quadrant represents a

negative product (why ?).

To represent the case of (a -{-

b) X c, mark a -\- h units in a

horizontal row in the first quad-

rant, and repeat the row c times

one above the other (Fig. 6).

These rows represent the prod-

uct of a -\- h and c, and the

Fro. 5. vertical dotted line between the

a units and the b units shows that this product is the

sum of the two products ac

and be.

To represent the case of

{a + -b) . or {a — b) . c. ar-

range c rows of a units each —

in the first quadrant and c rows

of ~b units each in the second ^^^- ^•

quadrant (Pig. 7). Each complete horizontal row will be

composed of a + ~^> or a — b units, and the c rows to-

II

~ab
I

+ab
o o o o o o o o o o

o o o o o +b +b o oooo
o o o o o o o o o o

o o o o o
-a

o o o o
+a

~a +a
O O o o o O O o
o o o o o ~b ~b o o o o o
o o o o o o o o o o
o o o o o

+ah
III

O O O O
-ab

IV

{a -\- b) X c = ac -{- be

ac -\- be

oooo . o o
c o o o o . o o
oooo . o o

a + &
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c oo o o o o
o o oooo
'b a

58 MULTIPLICATION

gether represent the })roduct of {a 4- ~h) and r, or (a—b)c.

This product is evidently the sum of the two products ac

and — be, and is equal to ac -\- (— be),

or ac — be.

The two expressions ac -\- {— be)

and ac — be are not identical in mean-

ing. The former represents two sets

of units, one positive and one negative,

and indicates that they are to be com-

FiG. 7.
bined into one ; the latter represents

one set of units and indicates that it

has been obtained by uniting two sets of units, one positive

and one negative.

Of course the products ac and — be tend to cancel each

other wholly or in part, but the actual cancellation can be

expressed only when the products are numerals or similar

terms with numeral coefficients. In the actual illustration

ac represents 12 positive units and — be 6 negative units,

and ac — be represents 6 positive units obtained by cancel-

ling 6 of 12 positive units by 6 negative units. Were be>ac,

the result of the cancellation would have been a number of

negative units equal to the arithmetical difference of the

two products.

So long as ac > be, the expression ac — be, as a whole,

is positive, and denotes that the operation produces a sur-

plusage of the kind of units employed ; and when ac < be,

the expression ac — be, as a whole, is negative and indicates

that the operation produces a deficiency of the kind of units

employed.

EXERCISE XXI.

1. Arrange the units to represent the case (a-^b) X ~c

and show that it equals — ac — be.

2. Arrange the units to represent {~a -\- ~b) X c,

or {— a — b) X c, and show that it equals - ac — be.
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3. Arrange the units to represent {~a + ~h) X ~c,

or (— ft — ^) X — c, and show that it equals ac -\- be.

Ex. 2. (6 + 4)(3 + 2) = 10 X 5 =1 50,

and

3 . 3 + 4 . 3 + 6 . 2 4- 4 . 2 = 18 + 12 + 12 + 8 = 50.

In general.

ad
o o o o

hd
o o o

+

To represent the case

{a -\- h){c + d), arrange c -{- d

rows containing a -\- b units

each in the first quadrant

(Fig. 8). The c + d rows

will represent the product of

a -\- b and c -\- d. This prod-

uct is evidently equal to

ac -\-bc -\- ad -\- bd.

The product of a poly-

nomial and a polynomial is

the sum of the products of the first polynomial and each

term of the second.

ac,

o o o o
o o o o
o o o o
o o o o
o o o o

a +

Fig. 8.

o
o
o he

o
o

55. Extension of the Application of the Distributive

Law.—The distributive law of multiplication which we

have demonstrated for integers is assumed to hold for all

kinds of numbers which can be expressed by letters. Hence

the last two definitions hold for all integral algebraic ex-

pression in which the multiplicand is an integral polyno-

mial.
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EXERCISE XXII.

I.

1. Arrange the units to represent the case

(a + h){c + -d), or {a + h){c - d),

and show that it equals

ac -\- he — ad ~ hd.

Show by a similar arrangement that

2. (a-\-h)('~c-\-d), or {a-\-h){— ('-\-d)= —ac—hc-\-ad-\-hd.

3. {a-\-h){~c-\-~d), or {a-\-h){—('—d)— —ac—bc—ad—hd.

4. (a-\-~b)(c-{-d), or (a—b){c-\-d)=ar—bc-\-ad—bd.

6. (a-\-~b){c-\--'d), or (a—b)(c—d)=ac—bc—ad-\-bd.

6. («H-~^)(~c+f?), or («— Z>)(— ^-|-^)= — «6'-|-^c-|-«!<:/— M.

II.

7. {a-{-~b){~c-{-~d),ov{a—b){—c—d)= —ac-\-bc—ad-\-bd.

8. (~a-h&)(c+fZ), or {—a-^b){c-]-d):=^—ac-\-bc—ad-\-bd.

9. (~«+Z>)(c+"rZ), or (—«H-^)(C— <-/)=:—ft6'+^C+«^—M

10. (~a-\-b){~c-\-d), or (— ^-j-Z')(— 6*-f-6Z)=«c— Z>6'— «fZ+^>r?.

11. {-a-{-b){-c-\--d),or{-a-\-b){-c-d)-^ae-bc-\-ad-bd.

12 ("rt+~^)(6'+^?), or {—a— b){c-\-d)= —ac—bc—ad—bd.

13. (~«4-~^)(^+~^)jOr (
— <-«— /^)(6'—fZ)= —«6'—Z»c+r^r/+J^.

14. ("«4-~^)(~^+fO'Oi'(— <^'
— ^)(—^+^0=^^^-r^^— «^^— *^-

15. (~a-{-~b)(-c-\-^d),OY{—a— b){—c—d)=ac-{-bc-{-ad-^bd.

"N^ote that the numbers in the adjacent quadrants tend

to cancel each other, while those in the opposite quadrants

tend to augment each other. The expression finally ob-

tained will be positive or negative according as the sum of
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the units in the first and third quadrants is greater or

less than the sum of those in the second and fourth quad-

rants.

56. Arrangement of Terms according to the Powers

of a Letter.—A polynomial is said to be arranged accord-

to the powers of some letter when the exponents of that

letter either ascend or descend in magnitude in regular

order. Thus, ba — iSbx -\- 'dcx^ — 4:a^x^ is arranged accord-

ing to the ascending powers of x; and 3^^ — ^ax"^ -{- ex — 7

is arranged according to the descending powers of x.

57. Multiplication of Polynomials.—(a) To multiply a

polynomial hy a monomial, multiply each term of the poly-

nomial by the monomial, and tv7'ite the result as a poly-

nomial reduced to its simplest form.

EXERCISE XXIII.

Multiply together:

I.

1. 3xy -\- 4:yz and — VZxyz.

2. ab — be and a^be^.

3. -• X — y — z and — ^x.

4. a^ — b'^ -\- c^ and abc.

5. — ab -\- be — ca and — abc.

6. -2a^ ~ 4:ab^ and - 7d^b\

7. 5x^y — Qxy'^ + Sx^y^ and dxy.

8. ~ 7x^y — bxy^ and — %x^y^.

9. — bxyh -{- dxyz^ — Sx^yz and xyz,

10. ix^yh^ — Sxyz and — 12x^yz^.
,

11. — 13a;y^ — Ibx^y and — 7c(^y'^.
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II.

12. ^xyz — lOx'^yz^ and — xyz,

13. ahc — a%c — ab'^c and — «^c.

14. — (v^bc + ^^6'r« — c^ab and — 0^6.

Find the product of

15. 2rt. — 'db-\- 4:0 and — 3/2«.

16. 3x — 2// — 4 and — 6/Qx.

17. 2/3r« — J/6^ — c and d/Sax.

18. 6/7«V _ 3/2f/.r3 ^nd - 7/Sa^x.

19. - 5/3«V and - 3/2«2 + «a: - 3/5^1

20. - 7/-Zxy and - 3.^2 + 2/7x1/

.

21. - 3/22-y and - l/3i;2 + 2if.

22. - 4/7.<//3 and 7/4:X^ - 4:/7f.

(b) To multiply a ptolynowial by a 2^olynomial, rmiUiply

the first polynomial by each term of the second, and add

the partial products thiis obtamed.

In multiplying polynomials it is convenient to arrange

the terms of both factors in the same order according to the

powers of some letter, to write the multiplier under the

multiplicand, and to place like terms of the partial products

in columns.

e.g. (1) Multiply 4:X -\- 'd ^ bx^ - ^x^ by 4 - Qx^ - 5.r.

Arrange both multiplicand and multiplier according to

the ascending powers of x.

3+ 4a: + 5:^2 _ g^

4 - 5a; - 6:^2

12 + I62; + 20.c2 - Ux?

- I6x - %W - 2bx^ + 3(^-4

- 18a;2 - 24a;3 - 30.^^ -f 36a-5

12 -f X- Wx^ - 7^3^ + 36a:5
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(2) Multiply l-i-2x + x^ - S^ hjx^-2- 2x.

Arrange according to the descending powers of x.

x^ -dx^-^2x-\-l

a^-2x -2

x^ - dx^ + 2x^ + x^

- 2jf H- QX^ - 4:X^ --2x

- 2x' + Qx^ -4:X- 2

X^ - 5a;5 4- 7x^ + 2x^ --Qx--2

EXERCISE XXIV.

\IuItiply together

:

I.

1. X -^1 and X — 1.

2. x^ -\- xy -\- y^ and xy.

3. a? -?>x^-\-x- ^ and - ?>x^.

4. :c2 + a; + 1 and cc2 - 1.

5. x^ + 2a; + 3 and x^ -x^\.

6. X? -hx^^ and x? + 5:r + 6.

7. X? -\- xy -{- y^ and x — y.

8. x^ — xy -\- y^ and x -\- y.

9. x^ + xy -\- y^ and x^ — xy -{ y^.

10. .'2;^ + 3x^ H- Sa; + 1 and x^ + 2a; + 1.

11. 3(a; - 4) = 361 + 8(2a; - 12) - 5(4a; + 40).

Clear of parentheses and find the value of x.

12. A man bought three houses. He paid for the sec-

ond 8000 dollars less than three times as much as he paid

for the first, and for the third five times what he paid for

the first less the cost of the second. Five times the cost of
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the first minus the cost of the second is equal to 192,000

dollars minus three times the cost of the third. What was

the cost of each house ?

13. A man started to give 50 cents apiece to some beg-

gars and found he had not money enough within 7 cents.

He then gave them 45 cents apiece and had 18 cents left.

How many beggars were there ?

II.

Multiply together:

14. x^ — 2ax^ + 2A — da^ and x^ — Sax + 2a^.

15. ^ — ax^ — 2A -j- a^ and x'^ -\- ax — a^.

16. x^ -\- iix^y + Qx^y'^ + 4.^'?/^ + y^ and x'^ — 2xy -\- y^,

17. X — a, X + ci, and x^ -\- a^.

18. X — a, X -{- b, and x — c.

19. \-\-x-\-Q^,\ — x-\- o;^, and 1 — x -\- x^.

20. a — i, a -\- b, a^ — ah -\- W, and c? ^ ab -\- W'.

21. ^x? 4- Vlxy + \^y^ and 3cc — 4?/.

22. 25«V - IhaWxy'^ + UHf and 5A + Wf.
23. 16«V +.20rt//li-^''^ + 25^V and ^az^ - Wx.

24. A man bought three horses. He paid 50 dollars

less than twice as much for the second as for the first, and

for the third three times the cost of the first less the cost

of the second. Seven times the cost of the first minus

twice the cost of the second is equal to 1700 dollars minus

twice the cost of the third. What was the cost of each ?

25. A man gave some beggars 30 cents apiece and had

12 cents left. He found that he needed four cents more

to enable him to give them 32 cents apiece. How many
beggars were there ?

68. Multiplication by Detached Coefficients. — When
two expressions contain one and the same letter and both
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are arranged according to the ascending or descending

powers of that letter, much labor of multiplication can be

saved by writing down the coefficients only.

Thus, to multiply q-? — 5a* + 6 by x^ -\- bx-\- Q, we write

1-5+6
1 + 5+ 6

1-5+6
5-25 + 30

6-30 + 36

1 + 0-13+ + 36

The highest power of x in the result is x'^, and the rest

follow in order. Hence the required product is

^4 _^ ox^ - l^x^ + Oa; + 36,

or a;^ - 13^2 _^ 35^

When some of the powers of the letter are wanting, the

coefficients must be written down as zeros in their jiroper

places. Thus, to multiply x^ + '6x^ + 3a; + 1 by a;^ + 'Zx^

+ 1, we write

1+0+3+ 1

1 + 2+ + 1

1+0+3+ 3+1
2 + 0+ 6 + 6 + 2

0+ 0+0+0+0
1+0+3+3+1

1 + 2 + 3 + 10 + 7 + 5 + 3 + 1

Hence the product is

xi + 2a;« + 3a;5 + 10.^:* + 7.^3 + bx^ + 3a; + 1.

The method illustrated above is known as the method of

detached coefficients.
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EXERCISE XXV.

Do the following multiplications by the method of de-

tached coefficients.

Multiply

:

I.

1. 3a:2 - a: 4- 2 by ^x^ + 'Zx - 2.

2. ic* - 2a:2 + a: - 3 by 2;* 4- 2-3 - :^^ - 3.

3. ^ -5x^ + 1 by %x^ + 5a; 4- 1.

4. ^x^ -3x^-{-x-2 by x^ -2x^-x-^%

5. 1 - 2x + a;2 by 1 + 2x + 3x^ + 4:X^ + 6x\

6. 1 + 'Zx + 3a;=^ + 4^-3 + 5a;4 + Gx^ by 1 - 2.C 4- or^.

7. 1 - 2x 4- 'da^ by 1 4- 3:z; - 52;^.

8. Z -\- Sx — 2x^ by 2 — 3a; 4" ^^^«

9. x^ -2x^-{-x-\-l by .^2 4- 1.

10. x'' -2x^ + 3 by 2x' - xK

II.

Examples 1-10 of Exercise XXIV.

69. Degree of an Integral Expression.
—

'the degree of

an integral term in any letter is the number of times that

letter is contained as a factor in the term, and is equal to

the exponent of the letter.

The degree of an integral term in two or more letters is

the number of times all together that these letters occur as

factors in the term, and is equal to the sum of the expo-

nents of the letters in the term.

The degree of a term in any letter or letters is often

called the dime?isio7i of the term in that letter or those

letters.

The degree of any integral algebraic expression in any
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letter or letters is the degree of the term in it which is of

the highest dimensions in that letter or those letters.

e.g. The term 5a^b^x^ is of the fifth degree in x, of the

nintli degree in bx, and of the twelfth degree in abx.

The expression ba^x'^ + Qa^a^ — llax^ is of the sixth

degree in x and of the seventh degree in ax.

It will be noticed that in the last example every term is

of the same degree in ax. When all the terms of an ex-

pression are of the same degree in any letters, the expression

is said to be homoge^ieous in these letters.

60. Product of Homogeneous Expressions.—The prod-

uct of tivo homogeneous expressions must be homogene-

ous.—For each the terms of the product is obtained by

multiplying some one term of the multiplicand by some one

term of the multiplier, and the number of dimensions of

the product of two terms is clearly the sum of the number
of dimensions of the separate terms. Hence, if all the

terms of the multiplicand are of the same degree, and all

the terms of the multiplier are also of the same degree, it

follows that all the terms of the product must be of the

same degree.

It also follows from the above consideration that the

degree of the product is the sum of the degrees of the fac-

tors.

When the two factors to be multiplied are homogene-
ous, there must be some error if the products obtained are

not homogeneous.

61. Highest and Lowest Terms of a Product.—It is im-

portant to notice that, in the product of two algebraic ex-

pressions, the term which is of the highest degree in any

particular letter is the product of' the terms in the factors

which are of the highest degree in that letter, and the term

which is of the lowest degree in that letter is the product

of the terms which are of the lowest degree in that letter in
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the factors. Thus there can be obtaiued only one highest-

degree term and one lowest-degree term.

62. Complete and Incomplete Integral Expressions.—It

is also important to notice that if each factor in mnltiplica-

tion is complete in any letter, that is, contains every degree

of that letter from the highest one given down to zero, the

product will be complete in that letter.

Thus the product oi x^ -\- x^ -\- x^ -\- 1 and x'^ -\- x -\-

1

is x^ -f 2r^ + ^x^ + ^x^ + 3a;2 + 2.t + 1.

If an expression is incomplete in any letter it may be

completed by filling in the blank spaces with terms of the

proper degree having zero as their coefficients. Thus

x^ -f a:'-^ -f 1 may be written x^ + Ox^ + Ox^ -\-
x^

-\- Ox -^ 1.



CHAPTER VII.

DIVISION OP INTEGRAL ALGEBRAIC
EXPRESSIONS.

63. Definition of Division.—Division is the inverse of

multiplication, or the process of undoing multiplication.

In multiplication two factors are given and their product is

required. In division the product and one of the factors

are given and the other factor is required.

The product of the two factors is called the dividend,

the given factor the divisor, and the required factor the

quotient.

Since the dividend is the product of the divisor and

quotient, we may prove our division by multiplying together

the divisor and quotient to see if their product agrees with

the dividend.

64. Division of Monomials.—The rules for division are

obtained by studying the corresponding cases of multiplica-

tion.

Take the following cases of the multiplication of

monomials

:

Note: 1°. That the sign of one factor is + when the

signs of the product and of the other factor are alike, and
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— when the signs of the product and of the other factor

are unlike.

2°. That the coefficient of one factor is the quotient

obtained by dividing the coefficient of the product by the

coefficient of the other factor.

3°. That the exponent of any letter in one factor is the

difference between its exponent in the product and in the

other factor, and that when this difference is zero the letter

does not appear in the other factor. When any letter which

appears in the product does not appear in one factor, its

exponent in that factor is to be regarded as zero.

From these observations we obtain the following rule

for the division of a monomial by a monomial

:

Divide the coefficient of the dividend hy that of the divi-

sor for the coefficient of the quotient, subtract the expoiient

of each letter in the divisor from its exponent in the dividend

for its exponent in the quotient, and place before the term

in the quotient the plus sign when the sights of the divisor

and dividend are alihe, and the minus sig7i when the signs

of the divisor and dividend are tinlike.

EXERCISE XXVI.

Divide

:

1. 20a^y by 4a;l

3. 5^a*b^c by 6aH^c.,

5. blaxh by — 3azx^.

2. 21a^ by 7b.

4, 4:9a^yh by 7xyh,

6. - 132a^yh by 12^2^.

II.

7. — Sbx^yh"^ by -

9. l/5.cy by l/lOa^y. 10.

11. - 2/3ay by - 5/6a^y. 12.

-'27a^c^\)j-Sabc^.

l/^a^b" by - \/Vlab^,

- Oary^s by %/3xt'.
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Multiply

:

I.

13. b{x-[- ijfz by 3(a; + i/)V.

14. 13(rt - Ifx by - 3(^/ - VfT?.

16. - 5c(a + Z>)4a:y by U{a + ^)3r2.

II.

16. - na%{c - d)y^ by - ^a})\c - dfx.

Divide:

17. 45(rt + ifx^ by 9(« + ^).r2.

18. Q'dac\b - d^xf by - 7c(^> - ^)2a:^.

19. - ^'lc^d{h + c)2:^2 by _ 3c2(j _|_ c)^^

Simplify:

I.

20. (V'h'^C, X (- 8r«3J4^,5) _^ _ 4^6j6p4^

21. - ^xhf X (- 12.<?/«) -^ - 4:ry.

22. 260 - 3(a; - 2) = 14 + 4(a; + 3) - 12:^2 _^ 4^^

23. Divide 180 into two parts such that 80 minus three

times the sum of the smaller part and 12 shall be equal to

the larger part minus 8 less than five times the smaller

part.

65. Division of Polynomials.—«. We have seen in multi-

plication that, when one of the factors is a monomial and

the other a polynomial, the product will be a polynomial,

and that this product is obtained by multiplying each term

of the polynomial* factor by the monomial factor. Hence in

division, when tbe dividond is a polynomial and the divisor

is a monomial, the quotient will be a polynomial, and this

quotient will be obtained by dividing each term of the divi-
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dend by the divisor. Of course, the law of signs must be

carefully observed.

EXERCISE XXVII.

Divide

:

I.

1. a^'jf -\- a^y^ + ^y'^ ^1 ^'i^*

2. a^h — a%^ + a^V^ by aH.

3. - 2a^h + ^a%^ - 2ab^ by - 2ah.

4. 24:a^y^ + lOSx^y^ + Slxyf by 'dxf,

5. a'b^ - Q/'25a'b^ - 2/5a^b^ by Q/6ai\

II.

6. Ua^b^ + 28a3J* by - 7a^\

7. 15a;y — 182:^,1?/^ + Mx^y^ by 3a;«/.

8. - 3«2 -|. 9/2<^^) - 6ac by - 3/2«.

9. - 6/2x^ + 5/3a:?/ + lO/'Sx by - 5/6a:.

10. 1/4A — l/16«Z»a; — 3/8«c:c by 3/Sax.

66. J. In multiplication, we have seen that, when each

factor is a polynomial, their product is the sum of the par-

tial product obtained by multiplying the whole multiplicand

by each term of the multiplier. In this case the product is

a polynomial.

Hence in division, when the divisor is a polynomial, we

obtain a set of partial subtrahends by multiplying the whole

divisor (the multiplicand) by each term of the quotient, as

it is found. These partial subtrahends are subtracted in

succession from the dividend. The operation is continued

until there is no remainder, or, in case tlie divisor is not an

aliquot part of the dividend, until the remainder is of a

lower degree than the divisor.
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The method of procedure in division will be readily

understood by examining a case in multiplication of poly-

nomials, and the corresponding case in division.

e.g. x^ — ^x^ -\- 4a^

3a;2 _ 2a; - 7

3ic« - 9ar* -f 12a;*

- 2a;S + 6a;4 - 8a;«

- 7a;* + 21a:3 - 28a;2

3a;« — ll.r'' + II.t* + IBa;^ - 28a;2

Note that the first term of the first partial product is

also the first term of the complete product, and that it is

the product of the first term of the multiplier and multipli-

cand. Hence, in dividing the product by one factor, the

first term of the other factor will be the quotient obtained

by dividing the first term t)f the dividend by the first term

of the divisor, and the first partial subtrahend (partial prod-

uct) will be obtained by multiplying the whole divisor by

this first term of the quotient. Thus

:

3^^f. _ 11^5 _|_ 11^4 _|. 13^3 _ 14^
I

^4 _ 3^3 _|_ 4^
3.^r, _ 9^ I i2a;4 ^y^

- 2x' - x'+ 13x^ - Ux^

Note again that the first term of the remainder just ob-

tained is also the first term of the second partial product in

the corresponding multiplication, and that it is the product

of the first term of the factor used as a divisor and the

second term of the other factor or quotient. Hence in di-

vision the second term of the quotient will be obtained by
dividing the first term of the first remainder by the first

term of the divisor, and the second partial subtrahend
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(partial product) will be obtained by multiplying the whole

divisor by this second term of the quotient. Thus

:

3»6 _ 11^:5 + 11:^4 _^ 13.^3 _ 28:^2
|

«;' - 3x^ + ^x^

3^6 _ 9^5 _^ i2a:4 32;2 - 2a; - 7

--2^^ — ^4 _|_ 13^3 _-28a;2

- 2^5 + 6:c*- ^yf

— 7£c^ + 21a:3 -- 28a;2

— 1x^ + 21a;3 --28a;2

Note as before that the first term of the second remain-

der is the same as the first term of the third partial product,

and that it is the product of the first term of the factor

used as the divisor and the third term of the other factor

or quotient. Hence in division the third term of the

quotient will be obtained by dividing the first term of the

second remainder by the first term of the divisor, and the

third partial subtrahend (partial product) will be obtained

by multiplying the whole divisor by this third term of the

quotient.

Should there be another remainder, the next term of the

quotient will be obtained in a similar way.

Use the second factor in the preceding case of multipli-

cation as a divisor, and go through the work in the same

way, and note the same points.

Also go through the same case, arranging the terms of

divisor and dividend according to the ascending powers of x.

It is customary to bring down only one term at a time,

and, in case the dividend is not exactly divisible by the di-

visor, to express the remainder in the form of a fraction as

in arithmetic.

When some of the powers of the letter according to

which the terms are arranged are wanting, their places may
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be supplied by terms with zero coefficients. Thus, suppose

the dividend to be ^® — 27 : it may be written

a;6 ^ Qx'o j^ 0:^4 -H Qx^ + Oz^ -^ Ox - 27.

This is not absolutely necessary, but will be found con-

venient.

The rule for the division of a polynomial by a polynomial

may be stated as follows

:

Arrange the terms of the divisor and dividend simi-

larly ; divide the first term of the dividend by the first term

of the divisor for the first term of the quotient, and multi-

ply the divisor hy this term for the first partial subtrahend

;

divide the first term of the remainder by the first term of

the divisor for the second term of the quotient, and multiply

the divisor by this term for the second partial subtrahend ;

and continue the process until there is no remainder, or

until the first term of the remainder does not contain the

first term of the divisor.

Div

EXERCISE XXVIII

ide:

1.

I.

x^ -x-^hy x + ^.

2. x^ — 4:X — 21 by a; — 7.

3. x^ — 12a; + 35 by a; — 5.

4. 2x^-x- iJhy 2x + 3.

6. Qx^ -rdx-\-Q by 'dx - 2.

6. nx^ + 11a; - 56 by 4a; - 7.

7. 16a;2 - 24a; + 9 by 4a; - 3.

8. 25a;2 - 16 by 5a- -- 4.

9. 49a-2 -4- 70a; + 25 by 7a; + 5.

LO^ x^ - y^hy X- y.
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11. x^ -f- y^ by x^ — xy -\- y"^,

12. 27«V - 64^3 by ^ax - 4&.

II.

13. 8aV - 27c«^9 by 4«V + Qa^^(^x^ + 9c^J«.

14. 14a:4 + 45rc3«/ + 78a;2?/2 + 45a:?/3 + 14?/'^ by %x^ +
7/2

+ 3 by ^2 _ 3^, _^ 2.

5^;?/ + ly^

16. a:^ - ^^ + 9a:« - 6.^2

16. x^ — 4:X^ + da^ + 3.T=^ - 3a; + 2 by a;2 _ a; — 2.

17. x^ — x^y -{- x?y^ — Q(f — y^hj x^ — X — y.

18. i^^ + x^y — x?y^ + x^ — ^xy"^ -\- y^ by x'^-\-xy —

19. a;5 - 2^;* — 4a:3 _^ 19^2 _ 3^^ + 15 by ^

20. 2a;3 - 8a; 4 rc^ + 12 - 7^ by a;2 + 2 - 3a;.

21. 14«^ - 45«35 + 78«2^2 _ 45^j3 _^ ^4^4 ^y ^a^ _

Find the remainder in each of the following examples:

7a;+ 5.

23.

24.

25

26.

27.

30.

a;3 - 6a;2 + 11^ + 2

x^ - 6a;2 + 12a; - 17

2a;3 4- 5:^:2 _ 4a; _ 7

3^3 _ 7a; - 9

4a;3 + 7a;2 - 3a; - 33

27a;3 + 9a;2 - 3a; - 5

16a;3 - 19 + 39a; - 46a;2

8a; - 8a;2 + 5a;3 + 7

21«3-27a + 15 -26«2

divided by a; — 2.

' a;- 3.

'
a; + 2.

' x-\-l.

'
4.x ~ 5.

*
3a; -2.

'
8a- - 3.

'
5a- - 3.

' 3a- 9.
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II.

SI. 30a;* + lla;^ - 82a;2 - 5a; + 3 divided by 2a; - 4

+ 3a;2.

32. 6a; - 5a;3 + 12a;* + 20 - 33a;2 divided by a; + 4a;2

-5.

33. 30a; 4- 9 - IW + 28a;* — 35a;2 divided by 4.x^—

Vdx + 6.

Divide

:

34. 2a;2 + 7/6a; + 1/6 by 2a; + 1/2.

35. l/3a;3 + 17/6a;2 _ 5/4^; + 9/4 by l/3a? + 3.

36. 1 by 1 + a;.

37. 1 + a; by 1 — a;.

38. 4(a; - yf - 16(a; -• yf — 8(a; - y)^ - {x - y) by

2(a; - yf + 4(a; - ^) + 1.

The division of a polynomial by a polynomial may be

indicated by writing the divisor after the dividend, each

enclosed within a parenthesis, with the sign of division be-

tween. Thus, (a;2 -f 12a; + 35) -^ {x + 7) = ^- + 5.

67. To Free an Equation from Expressions of Division.

— Since multiplication by any quantity neutralizes the

effect of division by the same quantity, and since to multi-

ply both members of an equation by the same quantity does

not destroy their equality, an equation may be freed from

an expression of division in either member by multiplying

both members by the indicated divisor.

e.g. 4 + (5a;2 - 40) -^ {x - 3) = 5a;,

4(a; - 3) + bx^ _ 40 = Sa;^ _ i^y.^

or 4a; - 12 + bx^ - 40 = Sar^ - 16a;,

or 4a; + 15a; -}- bx^ — 5ar^ = 52,
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or 19a; = 52,

The above example might have been written

,, 5^2-40 .

X— d

N.B.—In clearing an equation of a fraction it must be

borne in mind that the bar of the fraction is a sign of ag-

gregation, and requires a change of sign when there is a

minus sign before the fraction.

EXERCISE XXIX.

Free the following equations of expressions of division

or fractions

:

I.

1. —-_ -,.77— = 5a; — 4.

(30a; - 60) ^ (7a; - 16) = Qx - 3.

3. 6a; + 7 - 5(2a; - 2) -^ (7a; - 16) = 3(2a; + 1).

,. 35(;?; - 5) „
5. ,7a; - 6 - —^—--^ = 7a;.

bx — 101

6. A woman buys eggs at 18 cents a dozen. Had she

bought five dozen more for the same money, the eggs would

have cost her 2^ cents a dozen less. How many dozen did

she buy ?

7. A man bought some sheep "at three dollars a head.

Had he bought two less for the same money, they would

have cost him one dollar more a head. How many did he

buy?

X -- 7a;

6a; + 1 -

6a; + 7 -

6a;

+

13-
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68. Division by Detached Coefficients.—It is evident

if the dividend and divisor are both homogeneous, the de-

gree of the quotient will be that of the dividend minus that

of the divisor.

Also if the dividend and divisor are complete in any

letter, the quotient will also be complete in that letter.

In finding the quotient of two integral algebraic expres-

sions which are arranged in the same order according to

the powers of some letter, much labor may be saved by the

method of. detached coefficients.

e.g. Divide l^x^ + ^x^ - l^x^ + 4:3? + l^x^ + 16a: -24
by 4x^ + 2x^ - 4.

12 + 6 - 16 + 4 -h 12 + 16 - 24
I

4 + 2 + - 4

12 4-6+0- 12 3 + 0-4 + 6

0-16 + 16 + 12

0+ 0+ 0+

- 16 + 16 + 12 + 16

- 16 - 8+ + 16

24+12+ 0--24

24 + 12 + -- 24

The required quotient is ^x^ — 4x + 6.

EXERCISE XXX.

II.

Exercise XXVIII, Examples 15-20.

SYNTHETIC DIVISION.

N.B.—This section may be omitted; but if mastered, it

will lead to an immense saving of labor in the end, even in

Elementary Algebra,
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69. Synthetic Multiplication.—In the first place let us

examine some cases of what may be called synthetic multi-

plication ; that is, multiplication of complete integral al-

gebraic expressions in which the coefficients of the several

powers of the letter are built up one after another. This

is effected by a kind of cross-multiplication, with which

one may be made familiar by a little practice.

e.g. 1. Multiply pa^ -j- qx^ -\- rx -\- s by ax^ -\- bx -\- c,

px? -j- qx^ \- rx-\- s

ax^ •{-hx -{• c

Ax' + Bx^ + Ca^ + Dx^ -\- Ex -]- F.

The first coefficient of the product is formed of the first

coefficients of the multiplicand and multiplier {aX p)\ the

second coefficient is formed out of the first two coefficients

of the multiplier and multiplicand, combined two by two

crosswise (a X q and b X p); the third coefficient is formed

out of the first three coefficients of the multiplicand and

of the multiplier, combined two by two crosswise (a X r,

b X q, c X p); and so on, the number of factors of the

multiplicand and of the multiplier increasing by one at

each step till the last coefficient of the multiplier has been

reached.

Then, if there are more coefficients in the multiplicand

than in the multiplier, all the coefficients of the multiplier

being retained, the initial coefficients of the multiplicand

are dropped one by one, and a new one taken on at the end,

till the last coefficient of the multiplicand has been reached.



SYNTHETIC DIVISION. 81

Then one initial coefficient is dropped from both multipli-

cand and multiplier till none are left. In every case, the

partial products are formed out of the coefficients employed

by cross-multiplication.

When there are more coefficients in the multiplier than

in the multiplicand, proceed as above till you reach the last

coefficient of the multiplicand, then, retaining all the coef-

ficients of the multiplicand, drop the initial coefficients of

the multiplier, one by one, and take in one at the end, till

you reach the last, and then drop one initial coefficient

from both multiplier and multiplicand till none are left.

The partial products are formed as before by cross-multipli-

cation.

e.g. 2.

px^ -\- qx -\- r

ax* + ^^^ + '^'^^ -{- dx -{- e.

apx^ + ': ^5' x^ -\- ar x'^hr

H- cq

x^ + cr

^dq
x^ + dr

-\req

x-\- er

+ ^P \^M
+ ci? + dp + ep

Ax' + Bx' + Cx' + Bx^ + Bx^ -\- Fx + G.

Note that, in each of the examples just worked out, the

partial products cut off by the dotted line are the only ones

that contain the first coefficient of the multiplicand as a

factor, and that these partial products contain this factor

combined with each of the coefficients of the multiplier in

turn.

70. The Coefficients of the duotient.—Hence if the

product be taken as a dividend and the multiplicand as the

divisor, the coefficients of the quotient may be found by

the following process. .
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1°. In Example 1

:

ap = A, .\ a= A -^ p.

bp = B — aq, ,', b = (B — aq) -^ p.

cp = C — (ar -\- bq), .'. c = [C — (ar -\- bq)] -^ p.

Now since A and p are known at starting, a can be

found ; then B, p, a, and q being known, b can be found

;

and finally, C, p^ a, b, r, and q being known, c can be

found.

2°. In Example 2:

ap — A,

bp = B — aq,

cp = G — (ar-\- bq),

dp= D — {br -\- cq),

ep = E — {cr -\- dq),

. a= A -7-p.

. b = (B — aq) -^ p.

.c = [C-{ar + bq)]^p.

, d=[D- (br-i-cq)] -^p.

. e = [B — {cr -^ cq)] -^ p.

In this case, a, b, c, d, and e can be found in the same

manner as in the first.

Observe that the first coefficient of the quotient is ob-

tained by dividing the first coefficient of the dividend by

the first coefficient of the divisor, and that the remaining

coefficients of the quotient are obtained by subtracting cer-

tain partial products from the coefficients of the dividend

which follow the first, and then dividing the remainders by

the first coefficient of the divisor.

Observe also that the partial products to be subtracted

from the coefficients of the dividend are those above the

dotted line in the two examples worked out, and that they

are obtained by a cross-multiplication in the way already

described. In this process the coefficients of the quotient

(multiplicand), are used as found, and only those coeffi-

cients of the divisor (multiplier) which follow the first are

employed.
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If the signs of all the terms of the divisor which follow

the first are reversed, the signs of the partial products to be

subtracted would be reversed, and the partial products

would become additive.

This process of finding the coefficients of the quotient

from those of the dividend and divisor is known as syn-

thetic division, because we build up the coefficient of the

dividend by getting the partial products which enter into

their composition, and through this synthesis we obtain the

coefficients of the quotient.

The following example will serve to show how this pro-

cess may be carried out systematically.

Divide 6a:^o - x^ - V2x? - ^Sx^ + 18:^ - 16a;4 + Uj^

+ Ux + 4 by 2^6 - 3a;4 - 4^2 _. 2.

First, write down the coefficients of the divisor with

the signs of all the terms after the first changed, the coef-

ficients of the missing terms being represented by zeros.

Under this write the coefficients of the completed dividend,

so arranged that each coefficient may fall under the coef-

ficient of the term of the same degree in the divisor, and

as a matter of convenience draw a vertical line after the first

coefficient of the divisor. Then obtain the coefficients of

the quotient by gradually filling in the partial products to

be added to the coefficients of the dividend. The coeffi-

cients of the quotient are written in the bottom line to the

left of the vertical line, thus

:

2

6 + 0- 1 - 12-^
+ 9+ + 12

0+ 0+
+ 12

3 + + 4

+ + 3 + + 4 + + 2

+ 18- 16 + 24 + + 12 + 4

+ + 6 + + 8- 12-4
+ + + + +
+ + 16- 24-8
— 18 +

0-
+

6

+ + + + + +
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The coefficients in the last line are obtained as follows

:

1°. Divide 6 by 2 and write the quotient in the bottom

line under the first coefficient of the dividend.

2°. Multiply 3 by (the second coefficient of the divi-

sor) for the first partial product, write the result under the

second coefficient of the dividend, add, divide by 2, and

place the quotient underneath in the bottom line.

3°. Form the next set of partial products by using the

two coefficients of the quotient already obtained and the

two of the divisor immediately after the vertical line, and

multiplying crosswise, thus : 3x3=9 and 0x0 = 0.

Write these under the third coefficient of the dividend,

add, divide the sum by 2, and write the quotient beneath in

the bottom line.

4°. Form the next set of partial products by using the

three coefficients of the quotient already obtained and the

three of the divisor immediately following the vertical line,

and multiplying crosswise, thus: 3x0 = 0, 0x3 = 0,

and 4 X = 0. Write these under the fourth coefficient

of the dividend, add, divide the sum by 2, and write the

quotient beneath.

5°. Form the next set of partial products by using the

four coefficients of the quotient already obtained and the

four of the divisor immediately after the vertical line,

and multiplying crosswise, thus: 3 X 4 = 12, X = 0,

4 X 3 = 12, and —6x0 = 0. Write these under the

fifth coefficient of the dividend, add, divide the sum by 2,

and write the result underneath.

We have now reached the vertical line and have obtained

the coefficients of the integral part of of the quotient. The

remaining part of the work is merely to ascertain whether

or not there is a remainder, and in case there be a remain-

der, to obtain its coefficients.

If, on filling in the remaining partial products and add-

ing, we find the sum to be zero in each case, there is no re-
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mainder. If, however, on filling in and adding, we find

the sums are not all zeros, there is a remainder, and the

sums obtained are the coefficients of the corresponding

terms of the remainder. For the addition of these partial

products will subtract from the portion of the dividend

which comes after the vertical line the corresponding

portion of the product of the divisor and the quotient

obtained. Hence, if the result is zero, there is no differ-

ence between the dividend and the product of the divisor

and the quotient obtained; and if the result obtained is not

zero, it must be the difference between the dividend and

the product of the divisor and the quotient obtained.

6°. To obtain the first set of partial products after the

vertical line, use the five coefficients of the quotient already-

obtained and the five of those of the divisor immediately

after the vertical line, multiplying crosswise, thus:

3x0=0, X 4 = 0, 4 X = 0, - 6 X 3 = - 18, and

-2x0 = 0.

7°. To obtain the next set, use the five coefficients of

the quotient and the five of the divisor which follow the

first after the vertical line, thus : 3x2 = 6, 0x0 = 0,

4 X 4 = 16, -6x0 = 0, -2 X 3 = - 6.

8°. To obtain the next set, omit the initial coefficient

from each set used last, and multiply crosswise, thus:

0X2 = 0, 4X0 = 0, -6X4=- 24, -2X0 = 0.

9°. To obtain the next set, omit the initial coefficient

from each set used last time. Thus: 4 X 2=8, —6X 0=0,
- 2 X 4 = - 8.

10°. To obtain the next set, omit again the initial co-

efficient, and use the remainder. Thus: — 6x2= — 12,

-2x0 = 0.

11°. To obtain the last, omit again the initial coeffi-

cient, and use the one remaining in each set. Thus:
_ 2 X 2 = - 4.
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The degree of the first term of the quotient will be the

difference between the degrees of the first terms of the divi-

dend and of the divisor, or 4 in this example. Hence the

quotient is ^x'^ + ^^^ — ^x — %.

With a little practice the coefficients of the quotient can

be obtained with great ease and rapidity by this method.

As a second example let it be required to divide

i^s _j_ ^4 _|_ 3^3 _ 22;2 -f 3 by x'^ - x^ -{- 1.

1 +0+1+0-1
1+0+0+0+1 +3 -2+0+3
+0+1+0-1 +0-1+0-1

+0+0+0 +0+0+0
+ + 1 + + 1

+ +

1+0+1+0+1 +3-2+0+2
Quotient.

a:* + a;2 + 1

Remainder.

3a;3 _ 2a: + 2

The above method of synthetic division is applicable to

all cases of integral algebraic expressions which contain only

one letter.

EXERCISE XXXI.

II.

Exercise XXVIII, Examples 1-9, 15, 16, 19, 20,22-33.



CHAPTEB VIII.

INVOLUTION OP INTEGRAL ALGEBRAIC
EXPRESSIONS.

71. Definition of Involution.—Involution is a case of

multiplication in which the factors are all alike. The

product obtained by using the same factor a number of

times is called a po^ver of the factor. When the factor is

used twice the product is called the second power, or

squa7'e ; when three times, the third power, or cuhe ; when

four times, the fourth power; when five times, the fifth

power; etc.

Involution may be defined as the operation of finding

powers of numbers, or quantities.

The operation is indicated by placing the quantity

within a parenthesis with an exponent after it.

Thus, (Sa^Z*^)^ indicates that Zo?})^ is to be cubed, or

raised to the third power.

72. Involution of Monomials.—Since a product con-

tains every one of its factors as many times as each of these

factors is contained in the several factors counted together,

a monomial is raised to a given power by raising its nu-

meral coefficient to that power and multiplying the exponent

of each letter by the exponent of the given power. Thus

:

When the quantity which is to be raised to any power

is positive, it must be borne in mind that every power of it

87
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will be positive, and that, if the quantity to be operated

upon is negative, every even power of it will be positive

and every odd power negative. The raising of an expres-

sion to a power is called expanding the expression.

EXERCISE XXXII.

Expand

:

1. (ah^f, 2. {^y^f. 3. {;^x'^yzy.

4. (- n(^dx^y. 5. (- ^xhff' 6. (- 2zy)5.

Write down the square of each of the following expres-

sions :

7. ^a%. 8. ac^. 9. 6a%^.

10. - ^a^a?. 11. - 'la''h'x\ 12. - 'i/U'^x^,

Write down the cube of each of the following expres-

sions :

13. M^h\ 14. -3A. 15. -aWx. 16. -^/^x\

73. Squaring of Binomials.—Any polynomial may be

squared by multiplying it by itself; but it is easy to learn

to square any polynomial at sight.

e.g. (a + hf = {a^h).{a^l)) = «2 + <^ah + l^.

a-by=(a-b). (a - b) = a" - 2ab + b^.

X + 3)2 ={x + Z). {x + 3) = a:2 + 6:?; + 9.

X - 3)2 = (2: - 3) . {x - 3) = x^ - 6a; + 9.

a + bf =: {- a-^b) . {- a -\-b) = a' - %ab + b^,

a-bf={-a-b).{-a-b) = a^ + ^ab + bK

Note that in every case the square of a binomial is a

trinomial, and that two of the three terms of this trinomial

are the squares of the two terms of the binomial which we
are squaring, and that the third term is twice the product
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of the two terms of the binomial, regard being had to the

signs of the terms. Hence the following rule for squaring

a binomial at sight:

Square each term of the bifio^nial and take tioice the

product of the tivo terms, and write the three terms thus

obtained as a polynomial, each with its own sign.

It is customary to write the double product as the mid-

dle term in the result, but this is not necessary.

EXERCISE XXXill.

Write down the square of each of the following expres-

sions :

I.

1. « + 35. 2. a-U. 3. X — by.

4. %x + 3y. 6. Zx-y. 6. 3x + by.

T. ^x - 2y. 8. hab — c. 9. pq-r.

LO. X — abc. 11.

II.

ax -\- %by. 12. x'^ -1.

13. - 4 + a;. 14. X + 2/3«. 15. X - 2/6i.

3«
16. X —

.

17. — X — a. 18. — 4 — X.

74. Squaring of Polynomials.—
Ex. (a-]-b-\-cY^{a-^b + c)(a + * + c)

= ^2 + ^,2 _^ c2 + 2«J + %ac + 2^>c.

{a-b^ cY={a-b + c){a - b + c)

= «2 ^^2_^^_ 2ab + 2ac - 2bc.

{a — b — c)'^ = (a — b — c)(a — b — c)

. =: «2 _|_ j2 _|_ ^2 _ 2(ih - 2ac + 2bc.

{— a — b — cy= (—a — b — c)(—a — b — c)

= ^2 _|_ j2 _|_ ^2 _|_ 2ab-{- 2ac + 2bc.
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Note that in each of these cases the square consists of

the square of each term of the polynomial and, in addition,

twice the product of the terms of the polynomial taken two

by two in every possible way, regard being had to the signs

of the terms.

The surest way to get every possible combination of the

terms two by two is to combine each term of the poly-

nomial with each term which follows it.

The law stated above holds whatever be the number of

the terms in the polynomial to be squared. Hence we have

the following rule for squaring a polynomial

:

Square each term of the polynomial, and take twice the

swn of the products of each term and the terms which follow

it, and ivrite the terms thus obtained as a polynomial, each

with its own sign.

EXERCISE XXXIV.

Form the squares of:

1. 1 -f 2^ + 3x\

2. 1 + 2a; -f 3a;2 + 4a;3.

3. 1 + 2^; + dx^ -h 4a:3 _j_ 5^5^

4i. a — b -{- c — d.

6. da-i-2b - c-i-d.

75. Cubing of Binomials.—

^x.(a-^bY=(a-]-b){a-\-b)(a + b)

= a^-}- da^ + 3«J2 _|. j3^

(a-bY=(a-b)(a-b)(a- b)

= a^ - da^ -h dab^ - b\

i^^ a + by^ (- a-\-b)(- a-\- b)(- a-i-b)

= -a^-i-'Sa^-'Sab^-\-b\

(-a-bY=(-a-b)(-a-b){~a-b)
= ^a^- 'da% - 3ab^ - b'\
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Note that in each case the cube of a binomial is a quad-

rinomial, and that two of its four terms aie cubes of the

two terms of the binomial, and each of the other two terms

is three times the product of one of the terms of the bino-

mial and the square of the other. Hence we have the fol-

lowing rule for cubing a binomial :

Cuhe the first term, take three times the product of the

square of the first term a7id the seco7id term, also three

times the product of the first term and the square of the

second, and the cube of the second term, and write the terms

obtained as a polynomial, each with its oivn sign.

e.g. (dx - 2«2)3 ,^ {3xY-3(3xY . 2a^-^ 3(3x)(2a^y-(2a^y

= 27a;3 - 54«V2 -|- 'SQa'x - Sa\

EXERCISE XXXV.

Write down the cube of each of the following expres-

sions :

I.

1. X + a. 2. X — a. Z. X — 'Zy.

4. 2x-\-2j. 5. 3x - 5y.

II.

6. ab' -\- c.

7. 2al) — 3c. 8. 5a — be. 9. x^ + 4?/l

10. 4:X^ — ^y^-

EXERCISE XXXVI.

1. Divide 9x^ -

I.

.Qx^-6x' + x'-x + 2 by x^~3x-\~2.

2. Divide 1/43^^ + l/72xy^ + 1/Uy^ by l/2x + 1/3?/.

3. Find two numbers whose difference is 5, and such

that the square of the smaller plus 9 will equal the square

of the laro^er minus 56.
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4. Find two numbers which shall differ by 3, and

such that the square of the smaller plus 15 shall equal the

square of the larger minus 24.

5. Find two numbers that shall differ by 2, and such

that the cube of the smaller increased by six times its square

shall be 44 less than the cube of the larger.

6. A farmer bought some cattle at 30 dollars a head.

Had he bought three more for the same money, they would

have cost him 2 dollars less a head. How many did he

buy ?



CHAPTER IX.

EVOLUTION OP INTEGRAL ALGEBRAIC
EXPRESSIONS.

76. Definition of Evolution.—Evolution is the inverse

of involution. In involution we have given the factor and

the number of times it is employed, and are required to find

the product, or the power, of the factor. In evolution we

have given the power, or product, and the number of times

a factor must be employed to produce it, and are required

to find the factor.

The factor whose involution will produce a power or

number is called the 7'oot of the number, and the number

of times the factor is to be employed is called the mdex of

the root. The operation of finding the required factor is

called extracting the root of the number.

The operation of evolution is indicated by the radical

sign, V , with a bar extending over the expression whose

root is to be extracted, unless that expression be a numeral

or single literal factor. The index of the root is written in

front of the radical at the top. Thus : iV, V^^. When
the index is 2 it is ordinarily omitted. A parenthesis may
be used in any case instead of the bar.

77. Inverse of Involution.— Involution is not com-

mutative, that is, 2^ does not equal 5^. In subtraction, the

inverse of addition, there are two questions that may be

asked. For example, we may ask what number must be

added to 5 to make 9, or to "what number must 5 be added



94: EVOLUTION.

to make 9 ; but as addition is commutative, there is only

one inverse operation. Each of the above questions is an-

swered by subtraction.

Also in division, the inverse of multiplication, two

questions may be asked. For example, we may ask how
many times is 4 contained in 20, or what number is con-

tained 4 times in 20. This is equivalent to asking *'20 is

how many times 4, or 20 is 4 times what number. ^^ But

since multiplication is commutative, there is only one in-

verse operation. Each of the above questions is answered

by division.

In evolution, the inverse of involution, two questions

may likewise be asked. For example, we may ask what is

the fifth root of 32, or what root of 32 is 2. As involution

is not commutative, these questions cannot be answered by

one and the same operation. The former is answered by

evolution, and the latter by logarithms. The former is the

only inverse operation that we shall consider here.

78. Corresponding Direct and Inverse Operations do

not always Cancel each Other.— Corresponding inverse

and direct operations usually cancel each other. Thus the

addition and subtraction of the same number cancel each

other, the multiplication and division by the same number

cancel each other, also the extraction of a root and raising

to the corresponding power cancel each other. Thus

:

It must, however, be borne in mind that roots are more

than one-valued, and hence the statement with reference to

the inverse operations of extracting roots and raising to

powers need restriction. It is true, "necessarily and uni-

versally, that [l^aY = a, but not that \/a'' = a. For

instance, Va^ = "^a. Wliile the statement that the extrac-

tion of a root is cancelled by raising the result to the cor-
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responding power is true necessarily and universally, the

inverse statement that the raising an expression to a power

is cancelled by the extraction of the corresponding root of

the result is not necessarily true.

79. Extraction of Roots of Monomials.—Since evolution

is the inverse of involution, we extract the root of an ex-

pression by doing just the opposite to what we do in finding

a power.

Thus, we find the power of a monomial by raising its

numeral factor to the power indicated by the exponent, and

multiply the exponent of each literal factor by the exponent

of the power.

e.g. (4a;V)3 := UxhK

Hence we extract the root of a monomial by extracting

the indicated root of the numeral factor and dividing the

exponent of each letter by the index of the root.

e.g. V^^x^z^ — 4A^

N.B.— Since (=^«)^ = 6^2, .'. Vd' = "^a.

That is, the square root of a positive quantity is either

-f- or — , and the square root of a negative quantity is im-

possible, or imaginary. The same is true of any even root.

The odd root of a positive quantity is -{-, and of a

negative quantity —

.

EXERCISE XXXVII.

I.

Find the indicated roots of the following monomials

:

1. Va^h^c'\

3. Vlla^1)'c\ 4. f- Uda'^'^

5, Vx''yH\ 6. V'-x'Y^
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80. Extraction of the Square Root of Polynomials.—
To obtain a rule for extracting the root of a polynomial, let

us examine the square of a polynomial.

e.g. (rt + J + c + ^0'

= a^ + ^,2 ^ ^2 + 6?2 + ^ab + %ac-^'^ad-\^Uc^^hd-]-^cd

= a' + 2ah + *^ + ^ac + 2bc + c^+ 2ad -\- 2M -\- 2cd -}-
d''

= a^-\-(2a-\-b)b-]-{2a-{-2b-\-c)c+(2a-{-2b-\-2c-\-d)d

= a^ -{- {2a -]- b)b + [2(a+ b) -\- c]c-{-ma-\-b -}- c) -{- d]d.

From the last of the above equations we may derive the

following rule for writing at sight the square of any poly-

nomial :

Write the square of the first term, then the product of

twice the first term pl^is the second multiplied by the second,

then the product of twice the first tivo terms plus the third

multiplied by the third, then the product of twice the first

three terms plus the fourth multiplied by the fourth, etc.

If now we take the second member of the second equa-

tion and compare it with the second member of the last,

we may readily obtain a rule for extracting the root of a

polynomial.

a^-{-2ab-^b''-{-2ac-Jf-2bc-\-c''+2ad-\-2bd-{-2cd-{-d'^ I a+b-]-c-^d

2a-{-b 2ab-{-b^

2ab 4- 6'

2a 4- 2& + c 2ac+ 3&C 4- c«

2ac 4- 26c 4- c^

2a^2b-{-2c-\-d 2ad+ 2bd+ 2cd+ d^

2cd 4- 2bd 4- 2cd + d^

First arrange the terms of the p)olynomial according to

the powers of some letter ; theii tahe the square root of the

first term, place it in the root or quotient, square, subtract,

and bring dotvn one or more terms; then double the root
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already found and place the resiilt in the divisor, find how

many times this is contained in the first term of the re-

7nainder, place the result in both the root atid in the divi-

sor, multiply, subtract^ and briny dotvn; then double the

root already found and proceed as before ; and so on to the

end.

EXERCISE XXXVIII.

Extract the square roots of:

I.

1. a^ + 4:a^ + 2a^ - 4a + 1.

2. x^ - 2x^y + 3xY - '^xy^ -\- t/, .

3. 4ft« - rZa^X -\- 5ff4^2 _|_ 6^3^3 _^ ^2.^4_

4. 9x^ - 12.cy + IQxY - 24:xy + 4?/6 + lQxy\

5. 4^8 + 166'8 + IQa'c^ - 32«V.

6. 4:X^-}-9 - SOx - 20ic3 + 37:^2.

7. 162;^ - Uabx^ + 16^»2a;2 + la^b'^ - 8ab^ + 4:b\

II.

8. x^ + 25x^ + 10^-4 - 4a;5 - 20a^ + 16 - 24:r.

9. a;^ + SxY — ^^y — ^xy^ + %xh/ — lOxY + y^-

10. 4 - 12a - lla^ + 5^2 _ 4«5 4- 4a« + 14a^.

11. 25a;« - 'dWy'^+ 34a;y _ 'dOx^y^y^-^xy^^lQxY-

12. ^c"^ — a;^?/ — 7/4a:y + a:^^ + ?/*.

13. x^ - 4:a^y + 6xY - Qxy^ + 5/ - ?^ + ^.

81. Squaring Numbers as Polynomials.—Every number
composed of two or more digit's may be written as a poly-

nomial. Thus: 25 = 20 + 5, 234 = 200 + 30 + 4, etc.
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Hence (234)2 = (200 + 30 + 4)'^

= (200)2+(2.2004-30)x30+(2.230+4)4.

40000 + 12900 + 185G = 5475G.

EXERCISE XXXIX.

In a similar way find the squares of the following

numbers

:

I.

1. 327. 2. 3789. 3. 845.

II.

4. 5006. 5. 19683. 6. 5083.

Observe that the square of a number contains either

twice as many or one less than twice as many places as the

number itself.

Ex. .234 = .2 + .03 + .004.

(.234)2 = (.2 + .03 + -004)2

= (.2)2+(2x.2+.03).03+(2x.23+.004).004

= .054756.

In a similar way find the square of

:

I.

7. .0304. 8. .0028.

Observe that when a number is a decimal, its square is

a decimal and contains twice as many places as the num-

ber.

Ex. 23.4 = 20 + 3 + .4.

(23.4)2=3(20+3+. 4)2=(20)2+(2x20+3)3+(2x23+.4).4

^ 547.56.
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In a similar way find the squares of

:

I.

9. 69.4. 10.

II.

43.21.

11. 37.89. 12. 8.008.

Observe that when the number is composed of an integer

and a decimal, its square is composed of an integer and a

decimal, and that the number of places in the integral part

of the square is either twice as great or one less than twice

as great as that in the integral part of the number, and in

the decimal part of the square twice as great as in the deci-

mal part of the number.

82. Extracting the Square Root of Numbers.—Observe,

in all the cases of the last section, that if we begin at the

decimal, point and divide the square into periods of two

places each, the square root of the largest square in the left-

hand period will be the left-hand figure of the number
squared, and the number of this left-hand period, counting

from the decimal point, will be the order, or place, of the

figure in the root, or in the number squared.

Hence the first step in finding the root of a number is

to divide the number into periods of two figures each, be-

ginning at the decimal point.

The periods thus obtained correspond to the terms of a

polynomial whose square root is to be found, and the pro-

cess of finding the square root of a number is precisely

analogous to that of finding the square root of a poly-

nomial.

e.g. |/387420489.
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3 - 87 - 42 - 04 - 89il0000+ 9000 -f 600 + 80+ 3

1 00 00 00 oo'

20000 + 9000

29000

2

2

87

61

42

00

04

00

89

00

38000+ 600

38600

26

23

42

16

04

00

89

00

39200 + 80

39280

3

3

26

14

04

24

89

00

39360 + 3

39363

11

11

80

80

89

89

19683.

It appears from the above example that, after the first

step, the extraction of the square is a case of division, in

which the divisor varies with each remainder, and in which

the exact or complete divisor is unknown. It also appears

that the incomplete or trial divisor in each case is double

the part of the root already found.

Evidently the work in the above example might be

made more compact by omitting the ciphers, and writing

the root at once in the usual form, instead of in the form of

a polynomial. Thus

:

3-

1

-87 --42--04--89 19683

29 2

2

87

61

386
1

26

23

42

16

3928
~ 3

26

14

04

24

39263
1

11

11

80

80

89

89

From the above considerations we may deduce the fol-

lowing rule for extracting the square root of a number:
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Divide the number into periods of two places each, be-

ginning at the deci7nal point; find the largest perfect

square in the left-hand period, subtract it from this period

and place its root in the quotient, and bring down the next

period; double the root already found for a trial divisor,

and seek how many times this is contained in the remainder

exclusive of the last figure, and place the result in both the

divisor and the quotient; multiply, subtract, bring down,

and proceed as before.

As the trial divisor is smaller than the real divisor, we

must guard against taking too large a figure for the quo-

tient. Of course this figure can never exceed 9.

Should the trial divisor not be contained in the remain-

der after the last figure has been excluded, place a cipher

in the divisor and quotient, and bring down the next period

and try again, and so on till a significant figure is obtained.

In the actual work, after the number has been separated

into periods, the decimal points may be disregarded. It

should be placed in the quotient, or root, when its position

has been reached, but farther than this it may be entirely

neglected.

When the number is not an exact square, its root may
be obtained to any required degree of approximation by

bringing down two ciphers for each new period. Of course

care must be taken to place the decimal point in the right

position in the quotient.

EXERCISE XL.

Find the square roots of

:

I.

1. 14356521. • 2. 25060036.

3. 25836889. 4. 16803.9369, 1
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II.

6. 4.54499761. 6. .9.

7. 6.21. 8. .00852.

83. Cubing of Polynomials.

—

{a + bf = «3 + 3«2^ + 'dah^ + h^

(« + Z» + 6f = «3 + ^,3 _^ c^ 4_ 3«2^ 4. 3^2^ _|_ 3^,2^ _^ 3^^2

+ 3«c2 + 3^c2 + 6«Jc

= «« + (3«2 + 3«^ + V")}} + [3(« + Z*)2 +
3(« + ^)c + o'^c.

By means of the above formulas the cube of any poly-

nomial may be written at sight. First, write the cube of

the first term ; then the product of three times the square

of the first term plus three times the product of the first

and second terms plus the square of the second term multi-

plied by the second; then the product of three times the

square of the first two terms plus three times the product

of the first two terms and the third plus the square of the

third multiplied by the third; etc.

EXERCISE XLI.

Cube the following polynomials by the above method

:

I. .

1. a-\-\. 2. X -\- 2. 3. ax — y^.

4. 2m - 1. 5. 4a - U. e. 1 + a: + x\

n.

7. 1 - 2a; + ^x\ 8. a-\-U-c.

9. U^ - 3a + 1. IQ, l-x-\-x'^ - x\
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84. Extracting the Cube Root of Polynomials.—If we

arrange the terms of {a-\- b -{- cY according to the descend-

ing powers of a and the ascending powers of c, we have

Comparing this with

a' + (3«2 -f- Mb + b^)b + \^{a -\- bf -^ Z(a -\- b)c + c^c,

we may readily extract the cube root of the first expression.

Thus:

a8_|_3^25^3^;,2_|.53_|_3«2c_^6«jc+3&2c4-3ac2-j-3&c2+c3|a+6+c

3a»+3a6+62 3«*6+3a*2+63

3«--»+6a6+362+3ac+36c+c-

3<z2c-j-6a6c+36-'c+3«cH 36c-^-|-c»

The rule for extracting the cube root of a polynomial

may be stated as follows

:

Arrange the terms according to the powers of some letter

or letters ; extract the cube root of the first term and place

the root in the quotient and suMract the cuhe from the poly-

nomial, and bring do2vn a part of the remainder ; use three

times the square of the root already found as a trial divi-

sor, and seek hoiv many times this is contained in the first

term of the remainder, place the result as a 7ieiu term in the

quotient, and place three times the product of this term and

the root already found, and also the square of this term, as

a new term in the divisor, multiply, subtract, and bring

dow7i; a7id so on till there is no remainder, or u?itil the

desired degree of app)roximation has been reached.
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EXERCISE XLII.

Find the cube roots of:

I.

1. 1 - 3a: + 32;2 - x^.

2. 1 + 6^ + 122;2 + Sx^.

3. ^x^ - ^^x^y + 54x^2 _ 27^/3.

4. 272;%3 - 21x^yH^ + 9:r^;2^ - zK

II.

5. 24«2J + «3 _^ hlW + 192«R

6. 108:^5 - 144a:* - 27a:« + 64ar^.

7. 1 + 3a: + 6a:2 + 7a:3 _^ g^,4 _j_ 3^^5 _|. ^6^

8. 1 — a: to four terms.

85. Cubing Numbers as Polynomials.— Any number
may be written as a polynomial and then cubed by the

method of 83. Thus:

1854 = 1000 + 800 + 50 + 4,

and (1854)3= (1000 + 800 + 50 + 4)^

= 10003+ [3(10002+ 1000 x800)+8002]800+

[3(18002+1800x50)+502]50+[3(18502+1850x4)+42]4

= lOOpOOOOOO + 4 832 000 000+ 499 625 000 + 41 158 864

= 6 372 783 864.

EXERCISE XLIIf.

Cube the following numbers by the process of 46

:

I.

1. 135. 2. 223. 3. 106.

4. 258. 6. 478. 6. 46.8.

II.

7. 9.36. 8. 27.55. 9. .384.
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86. Extracting the Cube Root of Numbers.—Observe

in each of the above cases that the cube of a number con-

tains three times as many figures as the number cubed, or

one or two less than three times as many; that when the

number cubed is an integer, the cube is an integer; that

when the number cubed is a decimal, the cube is a decimal

;

that when the number cubed is composed of an integer

and a decimal, the cube is also composed of an integer and

a decimal.

Observe also that if we divide the cube into periods of

three places each, beginning at the decimal point, the

number of periods in the cube will equal the number of

figures in the number cubed ; and that the cube root of the

largest cube in the left-hand period will be the left-hand

figure of the number cubed.

Hence the first step in finding the cube root of a num-
ber is to divide the number into periods of three figures

each, beginning at the decimal point.

The periods thus obtained correspond to the terms of a

polynomial whose cube root is to be found, and the process

of finding the cube root of a number is precisely analogous

to that of finding the cube root of a polynomial.

e.g. Extract the cube root of 12 977 875.

12-977-875
|

200 + 30 +5 = 235

2003 ^ 8 000 000

3x2002 = 120000

3x200x30= 18000
30'^ = 900

4 977 875

4 167 000

138900

3 X 2302 ^ 158700

3X230X5= 3450

52= 25

162175

810 875

810 875
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It appears from the above example that, after the first

step, the extraction of the cube root is a case of division,

in which the exact or complete divisor is unknown. It

also appears that the incomplete or trial divisor in each

case is three times the square of the part of the root already

found.

As in square root, the process may be made more com-

pact, by omitting the ciphers in the root, and writing it at

once in the usual form. The ciphers may also be omitted

from the partial subtrahends, and only one period need be

brought down at a time. One cipher must, however, be

employed for the next place in finding the trial and com-,

plete divisors. This is necessary because the significant

figures in the additions to the trial divisor often overlap

those of the trial divisor.

As regards decimal points and imperfect cubes, the

same remarks apply as to square root.

As the trial divisor in cube root is considerably smaller

than the real divisor, there is great liability to make the

next figure too large, and the right figure often can be

ascertained only after two or three trials.

EXERCISE XLIV.

Find the cube roots of :

1. 109 215 352.

I. .

2. 56.623 104.

3. 102.503 232. 4. 820.025 856.

6. 20 910.518 875. 6. 2.5.

II.

7. .2. 8. .01. 9. 4.

10. .4. U. 28.25. 12. 15f.
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I.

13. Divide 27«V - 8jy by 3^2^ - 2%.
14. {x + If - {x^ -I)- x(2x+ 1) - 2(x + 2)(x +1)

+ 20.

15. The length of a room exceeds its breadth by 3 ft.

Were its length increased by 3 feet and the breadth dimin-

islied by 2 feet, the area of the room would remain the

same. Find the dimensions of the room.

II.

16. Divide 8a^ + 64c« by 4^^ - Sa^c^ + IQcK

17. 25a: - 19 - [3 - i4:X - 5)] = Sx - (Qx - 5).

18. The length of a room exceeds its breadth by 8 ft.

Were each increased by 2 feet, it would take 26| yards

more of carpeting 3/4 of a yard wide to cover the floor.

Find the dimensions of the room.

19. In a cellar one fifth of the wine is port and one

third claret. Besides this it contains 15 dozen bottles of

sherry and 30 bottles of spirits. How many bottles of port

and of claret does it contain ?

20. A boy bought some apples at three a cent and 5/6

as many at four a cent. He sells them at 16 for 6 cents

and gains 3^ cents. How many apples did he buy ?



CHAPTER X.

MULTIPLICATION AT SIGHT.

87. Complete Algebraic Expressions.—A complete al-

gebraic expression of the first degree in any one letter is a

binomial, one of whose terms contains the first power of

the letter and the other does not contain the letter at all.

Thus. X -\- 5, dx — a are complete expressions of the first

degree in x.

The term of an expression which does not contain the

letter or unknown quantity is called the constant or absolute

term.

A complete algebraic expression of the second degree in

any one letter is a trinomial, one of whose terms contains

the second power of the letter, another the first power of

the letter, and the third does not contain the letter at all.

Thus, x^ -{- 6x — 6, dx^ — 4:X -\- a are complete expressions

of the second degree in x.

88. Product of Two Binomials of the First Degree.—
The product of two binomial expressions of the first degree

in any letter is generally a trinomial of the second degree

in that letter, though it is in one case a quadratic binomial.

The student should be able to write with facility at sight

the product of any two first-degree binomials in the same

letter.

Suppose we are required to obtain the product of 3x-\-4:

and 5x— 7. The literal factor of the first term will be x^,

of the second term x, and the third term will not contain x.

108
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The annexed diagrammatic arrangement will enable

us to obtain the coefficients.

The coefficients are to be multiplied together as indicated

by the connecting lines. The product

of the left-hand coefficients will be ^

the coefficient of x^, the sum of the

two cross-products will be the coeffi-

cient of X, and the product of the

right-hand factors will be the absolute
^

term. Care must be taken to use the

right sign with each coefficient of x and with the absolute

term, and also with each product.

The product of the above binomials will be found to be

Ibx^ - a; - 28.

We would advise using the diagrammatic arrangement in

all cases at first till the pupil has acquired facility in obtain-

ing the new coefficients. The diagram may then be dis-

carded, and the product written down at once, the work of

obtaining the result being entirely mental.

EXERCISE XLV.

Find by the above method the products of the following

pairs of first-degree binomials:

1. 2a; — 5 and Ix — 4.

3. 4 — 5x and 7 — ^x.

6. x -\-l and x -\- 9.

7. X — ^ and x -\-^.

9. X -\- b and X — Q.

11. X -\- ^ and X + 3.

13. X -\- % and a; — 8.

I.

2. 5rc -f- 8 and ^x + 6.

4 6 + 8:2; and 5 - lOx,

6. X ~ 5 and x — S.

8. 2; — 11 and X + 7.

10. X -\- 7 and x — 4.

12. X — 4: and x — 4.

14. X — Q and x -(- 6.
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II.

15. 7x- 9 and 6x + 12. 16. 6:c - 3 and 12x + 8.

17. 'Sx + 7 and 8^ - 25. 18. 2x + 6 and 9x - 30.

19. ax — b and 4:X — 5. 20. 'Sax -\- c and Qx -\- 8.

21. ax — c and 5cfa: + ^•

22. (a + ^)i^ + c and 2ax — b.

23. 3 — 9:?; and 8 + 12a:. 24. 9 + 4:?; and 7 — 8a;.

89. Product oix -\- a and x + J.—Observe in examples

5-10 that when the coefficient of x in the factors is unity,

the coefficient of x^ in the product will be unity, that the

coefficient of x in the product will be the algebraic sum of

the constant terms of the factors, and that the constant

term in the product will be the algebraic product of the

constant terms of the factors. Also that the constant term

of the product will be positive when the constant terms of

the factors have like signs, and negative when the constant

terms of the factors have unlike signs, and that the sign of

the term in x in the product is that of the constant term of

the factors which is numerically the larger.

The cases illustrated by these six examples are of very

common occurrence, and careful attention should be given

them.

90. Product oi X -\- a and x + a.—Observe in examples

11 and 12 that when the two factors are alike, the result is

the same as that obtained by the formula for squaring a

binomial.

91. Product oi X -\- a and x — a.—Observe in examples

13 and 14 that, when the corresponding terms of the two

binomial factors are alike in absolute value but different in

their connecting sign, the product is a hinomial, and that

the two terms of the product are the squares of the corrc-
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sponding terms of the factors, and that the sign between the

terms of the product is minus.

This is the only case in which the product of two bi-

nomials is a binomial. In all other cases it is a trinomial.

This case is particularly important, and is known as the

*' product of the sum and difference of two quantities," and

is usually stated thus:

The product of the sum and difference of tivo quantities

is equal to the difference of their squares.

92. Product of any Two Binomial Factors of the same

Degree.—Any two binomial factors which are of the same

degree in the same letter, and each of which has a constant

term, may be multiplied at sight by the method of section

88. The literal factor in one term of the product will be

the square of the factor in the given binomials, in another

term of the product it will be the same as in the given bi-

nomials, and in the third term of the product it will not

occur at all. The coefficients and con-

stant term of the product may be ^^\ /^^
found by the diagrammatic arrange-

ment given in section 88.

Ex. Find the product of dx^ + 5

and 4r^ - 8.

Ans. nx^ - 4^3 _ 40.

EXERCISE XLVI.

Write at sight the products of the following pairs of

binomials

:

I.

1. 4:c2 - 7 and bx^ - 3. 2. 7cc* + 4 and Sa;^ + 5.

3. bx^ + 4 and ^x^ - 8. 4. ^^ - 2 and 1':^ + 3.

6. Zz^ - 8 and 72^ + 12. 6. 9?/^ -f- 11 and 6/ - 7.

7. Vx^bm^ Vx-\-l. 8. %Vx-Qm^zVx-\-^,



13. 7?i* - 2 and 6m^ - 8.

16. s^-7 and s^ + 8.

17, x'-7 and x' + 7.

19. 'Za^ - 4 and 2x^ + 4.

21. 3V^+5 VfandSV:
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9. Vx-7 and i/^+ 7. lO. d Vx -{- 4: and 3 Vx -\- 4.

11. :?^ + V5 and x — V5.

12. V//i + VS and l/m — V~5.

II.

14. ^i^ + 12 and 3;^^ - 15.

16. a^ -f *J and a^ — 11.

18. '?^^^ + 6 and m^ — 6.

20. 5aV — 3 and 5aV+ 3.

6V7-

22. 6 V^- 7 V3 and 6 t/a; + 7|/3.

23. a; + V— 4 and :?; — V— 4.

24. 2a;2 + 3 V^^5 and 2^:2 - 3 V^^.

93. Products of Binomial Aggregates.—Any aggregate

may take the place of the literal factor in the preceding bi-

nomials and the product obtained by the same methods.

Of course the aggregate must have the same exponent or

radical index in the two binomial factors.

EXERCISE XLVII.

Write at sight the product of the following pairs of

binomials

:

I.

1. (a-\- x) -{- 4: and (a -\- x) — 7.

2. (m + ^) — 8 and (m -{-x)-\-^. '

3. {x — h) — ^ and {x — b) -\- 9.

4. (x — m) — 12 and (x — m) -\- 7.

5. X — |/(m — 5) and x + \/{m — 5).

6. X -[- |/(3 — a) and x — |/(3 — a).
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7. {x — A) -\- {x — a) and {x — 4) — (:r — a).

8. V{^^ + 2^^ + 3^^ + 4a:3 + 3x2 + 2a; + 1) = ?

9. |/(1 - 9rr2 + 33a;4-63x6_|_66^8_36^io_|_ 8a;i2)^ ?

-^/(a; - 6) a; + 8 ^ . ^,
10. -i^^-i - ^_^^- :. 5 V(. - 6).

11. A alone can do a piece of work in nine days, and

B alone in 12 days. How many days will it take them to

do it together ?

12. A cistern could be filled in 12 minutes by two

pipes which empty into it, and it could be filled in 20

minutes by one of these pipes alone. How many minutes

would it take the other pipe alone to fill it ?

II.*

13. (a: - 5) + (ic + 6) and {x - b) - {x -\- 6).

14. {x-Yl)-{x- 5) and {x-\-l)^{x- 5).

15. V{^ + 2) + 5 and ^{x + 2) - 5. .

16. Vi^ - ^) + 4 and ^{x - 7) - 4.

17. X + V{^ ~ ^) ^^^ ^ ~ V{^ — 5)-

18. |/(^ + 4) + \/{x - 7) and ^{x + 4) - ^{x - 7).

19. Vi^ + 8) + ViP^ + 5) and ^{x + 8) - \/{x+ 5).

20. 3 4/(5 + a;) + 5 y/{x - 7) and 3 |/(5 -\- x)

-

5 |/(a; - 7).

21. 4 |/(7 + a:) - 3 ^/(a; - 4) and 4 |/(7 + a;) +
3 ^/(^ - 4).

3i/(2a; + 4) 3a:- 10 ^ ^,„ , ,,

* Unless otherwise stated, directiojis for I apply to 11 also.
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23. A cistern could be filled by one pipe alone in six

hours, and by another pipe alone in eight hours ; and it

could be emptied by an outlet pipe in twelve hours. In how
many hours would the cistern be filled were all three pipes

opened together when the cistern was empty ?

94. Product oi x -\- y and x^ — xy -\- y"^.—The product

oi X -\- y and x^ — xy + ?/^ is x^ + y^, and of x — y and

x^ -{- xy -\- y^ is x^ — y^. (Show these by actual multiplica-

tion.
)

In words, the product of the sum of two terms and the

sum of the squares of the terms minus their product is the

sum of the cubes of the terms, and the product of the dif-

ference of two terms and the sum of the squares of the

terms plus their product is the difference of the cubes of

the terms.

EXERCISE XLVIII.

Write at sight the product of the following pairs of

factors

:

I.

1. X -\- a and a^ — ax -\- a\

2. X -}- 3 and x^ — Sx -\- 9.

3. X — 7 and x^ -{- 7x -\- 49.

4. X — c and x^ -\- ex -\- c^.

6. 2a;2 - 3« and 4.x^ + Qax^ .+ 9a^.

Write at sight the missing factor of the two following

examples

:

6. (x - 4)( )=x^ - 64.

7. (2aa;2 + 7)( ) = S^s^e _^ 343^

8. Square xf -\- x^ -\- x -\- 1 by the method of section

73.

9. Cube 1 — dx^ -\- 2x* by the method of section 75.
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II.

10. a^ + 1/db and a^ - l/3a^ + l/9b\

11. 1/2A3 _ 2/3^>V and l/4aV + \/Za%^o? +
4/9&V.

12. 1/5«V + 1/6^V and l/'lha^'x^ - l/ZWl^x^ +
l/36^»Vo.

Write at sight the missing factor of the following

examples

:

13. (3«V - l/3aa;)( ) = 27A» - X/Vta^^,

14. (1/46^32:5 + 1/6^V)( ) = 1/64A15 +
l/216J«a^2i_

95. To Convert x^ + Zia; into a Perfect Square.—The
square of a binomial of the first degree of the form x -\- a,

that is, of one having a constant term and unity as the co-

efficient of its first-degree term, is a complete quadratic

trinomial. The first-degree term of this trinomial is twice

the product of the two terms of the binomial, and the con-

stant term of the trinomial is the square of the constant

term of the binomial, or the square of half the coefficient

of the first-degree term of the trinomial.

e.g. {x + 4)2 = a;2 + 8a; + 16. Here 16 = (|)l

{x - 1/2)2 ^x^ -x-^ 1/4. Here 1/4 = (1/2)2.

Hence a quadratic binomial of the form x^ + ^^? that

is, one having a first- and a second-degree term in a letter

and unity as the coefficient of its second-degree term, may
be converted into a perfect square by adding as a constant

term the square of half the coefficient of its first-degree

term.

e.g. The quadratic binomial :i^ — ^x becomes a perfect

square on the addition of (3)2 to it as a constant term.

When thus completed it becomes the trinomial x?'—^x-\-^.
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EXERCISE XLIX.

Convert the following quadratic binomials into perfect

squares

:

I.

1. a? + 8:^;. 2. m2 - 10m.

3. a^-^x. 4. n^ — hn.

6. x^ + lx. 6.

II.

f - %.

7. x^ - Z/^x, 8. z^ + h/^z.

9. x^ + Ix. 10. x^ - 6bx.

11. a?-{-x. 12. y'-y-

96. To Convert x^ + bx"" into a Perfect Square.—Bi-
nomials of a similar form but of a higher degree may be

converted into perfect squares in the same way. The form

of the expression will be similar when the degree of one

term in any letter is twice that of the other term in the

same letter, and the coefficient of the term of the higher

degree is unity.

e.g. x^ — 8x^ becomes a perfect square on the addition

of (4)2. It will then be x^ - Sx^ + 16. This is the square

of x^ — 4.

Of course in any of these cases an aggregate may take

the place of a single literal factor.'

EXERCISE L.

Convert the following

plete squares:

binomial expressions into com-

I.

1. x^ + 6x^ 2. m* - 12m\

3. x' - 5x^. 4. a^ + 7a\

6. x'-\-bx^
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II.

6. z^ - z^. 7. ^^« - 2/3:?:^

8. 71^ - 3/4^^3. 9. {x + 2)2 + Q{x + 2).

10. {x - 5)2 - '6{x - 5).

97. To Convert x? -\- bx -\- c into a Perfect Square.—
Quadratic trinomials of the form x^ -{- hx -\- c may be con-

verted, without change of value, into perfect squares plus

or minus a term which may be either simple or complex,

by the addition and subtraction of the square of half the

coefficient of x. It is best to make the addition and sub-

traction immediately after the second term, and then to

combine the last two terms into one.

e.g. cc2 + 4a; — 8 = a;2 -f- 4a: -|- 4 — 4 — 8

= a;2 _j_ 4^ _|_ 4 _ 12.

The first three terms of the last polynomial are a perfect

square.

x^-^^x-\-10 = x^-\r 6x + 9-9 + 10 = a;^ + 6a: + 9 + 1.

x^J^bx- 7=za:2+5a; + ?^-^-7
4 4

= ^' + 5a; +— - —

.

EXERCISE LI.

Convert each of the following trinomials into a perfect

square plus or minus a constant term, without change of

value

:

I.

1. a;2 - 8a; - 2. 2. x^ - 12a; + 30.

3. x^ + 7a; ^ 3/4. 4. a;^ - 7a; + 3/5.

5. Divide l/32a;5 - 1024 by l/2a; - 4.
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6. A workman was employed for 60 days, on condi-

tion that he should receive 3 dollars for every day he

worked, and forfeit 1 dollar for every day he was absent.

At the end of the time he received 48 dollars. How many
days did he work ?

7. A can do a piece of work in 10 days, and B can do

it in eight days. After A has been at work on it for three

days, B comes to help him. In how many days will they

finish ?

II.

8. / - % + 3. 9. z^ + Hz - 7.

10. x^ -\-'bx -\- c. 11. y^ — hy — c.

12. Divide 32/243a;5 + 3125 by 2/3:c + 5.

13. A privateer, running at the rate of 10 miles an

hour, discovers a ship 18 miles off running at the rate of 8

miles an hour. How many miles can the ship run before

she is overtaken ?

14. A cistern has two supply-pipes respectively capable

of filling it in 4| and 6 hours. It also has a leak capable

of emptying it in 5 hours. In how many hours would it be

filled when both pipes are on ?

98. To Convert ax^ -j- hx into a Perfect Square. —
Quadratic binomials of the form ax^ -\- hx may be converted

into perfect squares by first dividing them by the coefficient

of x^ and then adding the square of half of the resulting

coefficient of x.

e.g. Zx^ + 12a; becomes, on division by 3, x^ + 4a:, and

then, on addition of the square of half of 4, x^ -\- ^x -{- 4,

which is a perfect square.

Similarly, ^x^ — 5x becomes x^ — 6/Sx, and then x"^ —
5/3x -f 25/36, which last is a perfect square.
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EXERCISE Lll.

Convert the following quadratic binomials into perfect

squares, and solve the given equations

:

I.

1. Qx^ + l%x. 2 Sa^ - 15a;.

3. 6x^ - 15a;. 4. 7a:2 _|_ 63^^

6. d{x-^aY-5(x^a). 6. ^^ZT^^^^^'
II.

7. ax^ + ix. 8. my^ — ?i«/.

9. 2x* + 3a;2. 10 ^sz^ _ 9;23

a. 7(.-5)^+3(.-5)^. X.. :-±i=:-^.
EXERCISE Llil.

Convert the following quadratic trinomials, without

change of value, into expressions which shall be a perfect

square plus or minus a constant term

:

I.

1. 2a;2 -f 32; + 6. 2. Sx^ - 18a; - 12.

3. 4a;2 -Qx + 7. 4. 5a;2 + 25a; - 20.

5. 6a;2 + 42a; + 50.

6. Find the square root of 2 to four places of deci-

mals.

7. Find the cube root of 3 to three places of decimals.

II.

8. 7a;2 - 63a; + 49. 9. Sa^ - 40a; - 12.

10. 9ar^ - 81a; + 63. n. lOa;^ _^ 70a; - 80.

12. lla;^ — 2a; + 3. 13. ax^ -\- bx -\- c.

14. mz^ — 7iz + p.



CHAPTER XL

PACTORING.

99. Resolution into Factors.—To factor an expression

is to resolve it into its component factors. To be able to

factor algebraic expressions readily and accurately is a mat-

ter of very great importance. Other things being equal,

the one most skilful at factoring is the best algebraist.

1°. To Resolve an Expression into a Monomial and a

Polynomial Factor. —When every term of a polynomial

contains a common factor, it may be resolved into a mono-

mial and a polynomial factor.

The factor common to all the terms will be the mono-

mial factor, and the quotient obtained by dividing the ex-

pression by this factor will be the polynomial factor.

e.g. 6:^2 _^ i2x - 18 = Q{x^ + 2^; - 3).

a^x — a^ = a^(x — 1).

EXERCISE LIV.

Eesolve each of the following expressions into a mono-

mial and a polynomial factor

:

I.

1. Gab + 2ac, 2. 2a^x^ - %d^hx + Wh\

3. ^l)^(?x + bbh^y - 6b^c\ 4. 7a - 7a^ + UaK

5. Qx^ + 2x^ + 4:X^.

120
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II.

T. bu^-- lOA^ -

9. ^^--x^^x.

121

6. 15a2 - 225^^ T. ^x^ - lOA^ - 15aV.

8. 38«V + 57aV.

10. '^x^y^ — 'Sx^y^ -\- 2xy^.

2°. To Facto?' the Difference of Two Squares.— The

difference of two squares is equal to the product of the sum
and difference of their roots.

EXERCISE LV.

Factor each of the following expressions

:

I.

1. x^ — a^. 2. x^ — 9.

3. 4^2 - 64. 4. 9A2 _ 25^2,

5. 81 - 16A*. 6. 49fi^V - lQa^z\

7. {x^ + Ux + 36) - 49. 8. y^-8y + 16 - 81.

9^ («2 _ 4rt + 4) _ 16. 10. (^2 ^ 24.b + 144) - 121.

11. The head of a fish is 9 inches long, the tail is

as long as the head and half the body, and the body is as

long as the head and tail together. What is the length of

the fish?

Note.—In solving problems concerning numbers composed of

digits, the student must bear in mind that a number composed of two

digits is equal to 10 times the left-hand digit plus the right-hand

digit; that a number composed of three digits is equal to 100 times

the left-hand digit plus 10 times the middle digit plus the right-hand

digit. Thus, 46 = 10 X 4 + 6, and 387 = 100 X 3 + 10 X 8 + 7.

12. A number is composed of two digits, and the left

digit is 4/3 of the right. If 18 be subtracted from the

number, its digits will be reversed. What is the number ?

II.

Factor

:

13. 12 - 3a2. 14. 48«3 _ lOSabK
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15. 27«5 - 75«.'r^ 16. 125«V _ 45:ry.

Convert the following trinomials into the difference of

two squares and then factor:

17. 0? + 14a: + 40. 18. x^ - l^x - 17.

19. x^ - lOx - 11. 20. x^ + 30x + 29.

21. A and B together can do a piece of work in 12

hours, A and together can do it in 16 hours, and A
alone can do it in 20 hours. In what time can they all do

it together, and in what time could B and C together do

it?

22. A number is composed of two digits whose sum is

13, and if 9 be added to the number its digits will be

reversed. What is the number ?

3°. Special Cases of Factoring Quadratic Trinomials.

—We have seen that the product of two binomials of the

first degree in any letter is, in general, a quadratic trino-

mial in the same letter, and that the coefficient of the sec-

ond-degree term of the letter is the product of the coeffi-

cient of the first-degree terms of the letter in the binomials,

the coefficient of the first-degree term of the letter in the

product is the sum of the products of the coefficient of the

first-degree term of the letter in each binomial multiplied

by the constant term of the other binomial, and the con-

stant term of the product is the product of the constant

terms of the binomials.

Hence a quadratic trinomial in any letter may be re-

solved into two binomial factors of the first degree in that

letter whenever we can discover four numbers such that the

product of the first two will be the coefficient of the second-

degree term of the trinomial, the product of the last two

will be the constant term of the trinomial, and the alge-

braic sum of the cross-products of the numbers will be the
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coefficient of the first-degree term of the trinomials. The

first two numbers will then be the coefficients of the first-

degree terms of the factors, and the last two numbers will

be the constant terms of the factors.

It is best to arrange diagrammatically the four numbers

selected for trial, as in the corresponding case of sight mul-

tiplication.

e.g. Resolve Qx^ + '^•^ ~ ^0 into binomial factors.

3x2 = 6, the coefficient of x^;

2 X -4^-8; ^'

3 X 5 = 15;

15 + (— 8) = 7, the coefficient of x;

5 X the constant(_ 4) = - 20,

term.

Hence ^x'^ + 7:?; - 20 = (2^ + 5)(3a; - 4).

Notice that the complete test involves two trials, if

first be unsuccessful: e.g. 3 above
'^

' and 2 below as well as 2 above and 3

below.

Again, resolve 3a;^ — l^x — 63

into binomial factors.

The required factors are {x — 7)

and {3x + 9).

Resolve x'^ — 2x — 63 into bino-

mial factors.

The factors are {x -\- 7) and

(X - 9).

The case in which the coefficient

of the second-degree term of the tri-

nomial is unity is of frequent occur-

rence and of great importance.
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EXERCISE LVI,

Eesolve the following quadratic trinomials into binomial

tors.-

I.

1. X' -^ l^X -\- ^b. 2. x^ - 12a; + 27.

3. x^ -^x- 32. 4. x^ + lx- 30.

5. X^ — X — 42. 6. x^ + x- 20.

7. %x^ - lOx - 48. 8. 3.^2 _|_ 26a; + 55.

9. Qx" - 17^ + 7. 10. 202;^ + 37^ + 8.

11. 'dbx^ + 39^ - 36. 12. 56a;2 - lOOx - 100.

13. A, B, and together can do a piece of work in 5

days, A and B together can do it in 8 days, and B and

together in 7 days. In what time can each do it alone ?

II.

Factor the following expressions

:

14. 12 + 10^ - %xK 15. 48 - 128^ + Mx\

16. 35 4- 41a; + 122;2. 17. 6a;2 + (21 - ^a)x - 7«.

18. ahx^ -\- {"Ha — 5b)x — 35.

19. acx^ + (^c — ad)x — M.

20. x^^^bx-a^-^y"'

21. {d^ - y^)x^ - 2{a + db)x - 8.

22. 3a;2 + 9a; - 54. 23. 7x^ - 7x - 210.

24. 102;2 + 50a; - 140. 26. 75flV - 5A - 30^2.

26. Find a number composed of two digits whose sum
is twelve and which will have its digits reversed by adding

63 to the number and dividing the sum by 4.

100. Functions.—In mathematics, one quantity is said

to be a function of another when its value depends upon

the value of the other and changes with it.
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e.g. The value of the expression x^ -{- ^x — 6 depends

upon the value of x and changes with the value of x.

Hence the expression a:^ -f- 6^ — 6 is a function of x.

The symbol f{x) means' any algebraic expression con-

taining X. This is a very convenient notation when we
wish to indicate any expression containing x without des-

ignating any particular expression. f{a) indicates the

algebraic expression obtained by substituting a for x in

f{x). Thus \if{x) = x'^-\-'dx^Q, then

f{a) = 6?2 + 3a + 6.

EXERCISE LVII.

I.

1. lif(x) =x^-{- dx^ - 10, find/(3).

2. ltf{x) ^x^ + 3x^ - 10, find/(- 3).

3. If /(^) = x^ — 5x -\- Q and y = 3 — x, ^ndf{y) in

terms of x.

4. ltf(x) =x^-irx-Jrl, find /(a; - 1).

6. Itf{x) = x^-]-2x- 7, find/(5).

6. If /(ft) = (ft + J + c)3 - «3 _ J3 _ ^3^ find/(-^»).

7. If /(^) = x'- y\ find f\y).

8. \if{x) = x'-y\^^^f{y).

II.

9. \if{x)=x--y\^v.^f{y),

10. If/(a:) = a;5 + ^^find/(-^).

11. \lf{x) = x^^y\^T,^f{y).

12. ^/(2;) = a:^ + y^find/(-2/).

13. If/(a:)=:a;^-fy*, find /(«/).
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14. lif(x) = x"" + y'' and n is odd, find/(- y).

15. If /(^) = a;" + 2/" ^^^ ^ is even, find/(— y).

16. If/(a;) = a:~ + ?/%find/(2/).

101. Remainder Theorem.—When f{x) is divided by

X — a, the process of division being continued till the re-

mainder, if there be one, does not contain x, the remainder

will =/(«).

Proof.—Denote the remainder, which is supposed not

to contain x, by R and the quotient by Q. Then we have

X — a X — a

or f{x) ^ Q(x - a)-\- R.

If now we substitute a for x in each member, R must
remain unaltered since it does not contain x, and x — a will

become a — a = 0. Hence f{a) = R.

e.g. Letf(x) = x^ -\- 2x^ — 5x — 6, and let a = 4.

Then

/(«) = 43 + 2 X 42 - 5 X 4 - 6 = 64 + 32 - 20 - 6=70.

By division,

x^-\-2x^- 6x- 6\x -4:

a^-\-6x-\- 19

6x^ - 5x

ex^ - Ux

19.T - 6

l^x - 76

70

Again, let f{x) = x^ -{- 32, and let a

Then f{a) = 32 + 32 = 64.
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By division,

x> + 32

- ^x"

\x -2
X'

x^ + 2x

f 32

- 4:c3

^ + 4a;

32

8:rM
Sx'-

2 + 8a; + 16

2x^-

2x'-

4^3 +

-32
- 16a:

16a; + 32

16a; - 32

Again, let f{^) = a;5--32, and let a -= 2.

Then Ao) = 32 -32 = 0.

By division,

x^- 32 \x- 2

x" - 2x^ nA 1 Oo,3 11 /1/V.2* 1 Q/>. 1 1

2a;* - 32

2a;*- 4a;'^

4a;3 - 32

4a;3- Sa;^

8a;2 - 32

8a;2 - 16a;

16a; - 32

16a; - 32

The theorem proved and illustrated above is a fun-

damental theorem in factoring. By it we can readily de-

termine whether x — a is a factor of /(a;). We have

merely to substitute a for x in the given expression, and see

whether it reduces to zero or not. In the former case the
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expression is divisible hy x — a without remainder, and

therefore :r — « is a factor of it. In the latter case the

expression is not divisible hy x — a without remainder, and

therefore x — ai^ not a factor of it.

EXERCISE LVIII.

Find in each of the following examples whether or not

the given binomial is a factor of the given expression

:

1. x-b of x^ - Ix^ + 7a; + 15.

2. X -\- 1 oi "^x^ -\- X — 1.

3. X — 1 of x^ -\- x^ — 2.

4. a; - 3 of 'Zx^ + 10a;2 - ^x - 40.

6. X — h oi x^ — h^. 6. X -{-!) of x'' -\- V,

7. X -{-h of x^ — W. 8. X — h of x^ + y^,

9. X — h olx^ — b^. 10. X -\- b of x^ — b^.

11. x — b of a;^ + b^. 12. is + 2» of x^ + i^

.13. OJ — Z> of a;" + Z*" when w is odd.

14. X — b of a;" + ^" when w is even.

16. X -{- b of x'' -{- ^" when ^ is odd.

16. X -\- b of x^ + ^" -when ?^ is even.

17. X — b of X" — ^" when ^ is odd.

18. X — b of x^ — J" when ^i is even

19. X -\- b of ic" — &" when 7i is odd.

20. X -\- b of a:" — ^" when ^ is even.

21. Divide x* — b~ hy x — b.

22. Divide x^ — b^ hy x -\- b.

23. Divide x^ -^ b^ hy x — b.

24. Divide a;^ + b^ by x -\- b.
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26. Divide x^ -\- h^ ^-^ x — h.

26. Divide x^ -\- IP hj x -\- h.

27. Divide x'^ — h^hj x — h.

28. Divide x^ — Whj x-\- h.

102. Factors of the Sum and Difference of the Same

Powers of Two Quantities.—From examples 13-20 it ap-

pears :

1°. That the sum of the same odd powers of two quan-

tities is divisible by the sum of their roots, but not by the

difference of their roots.

2°. That the sum of the same even powers of two quan-

tities is divisible by neither the sum nor the difference of

their roots.

3°. That the difference of the same odd powers of two

quantities is divisible by the difference of their roots, but

not by the sum of their roots.

4°. That the difference of the same even powers of two

quantities is divisible by both the sum and difference of

their roots.

From examples 21, 26, 27, 28, it appears:

1°. That when the difference of the same powers is di-

vided by the difference of the roots, the terms of the quo-

tient are all positive ; and that when the sum or difference

of the same powers is divided by the sum of the roots, the

terms of the quotient are alternately positive and negative.

2°. That in any case the first term of the quotient is

the letter of the first term of the dividend with its exponent

diminished by one, and that the exponent of this letter de-

creases by one in each of the succeeding terms of the quo-

tient; and that the letter of the second term of the dividend

occurs in the second term of the quotient with unity for its

exponent, and that the exponent of this letter increases
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by one in each subsequent term till it becomes one less than

its exponent in the dividend.

These two laws enable us in these cases of division to

write the quotient at sight.

EXERCISE LIX.

Write at sight the quotient in each of the following

cases

:

1. {x^ - if) ^ (x- y). 2. (x^ - f) -^{x- y).

3 (^6 _ ^6) ^(^x^ y). 4. {x' + f) ^{x + y).

5. {x^ - 27) ^{x- 3). 6. {x^ - 81) -^{x- 3).

7. (.T^ - 16) ^ (;?: + 2). 8. {x? + 32) ^ (x + 2).

Find the remainder when

—

I.

9. {x — %af + (%x — (if is divided by re — «.

10. {x -\- a -\- Hf ^ x^ is divided by 2; + a.

11. {x + 2«)2" + (2.^ + of" - 2«'^" is divided by a:+ a.

12. (« + ^ + ^Y — ^'^ — Ifi ~ & is divided by a + h.

II.

13. {a ^h -\- cf — ci} — h~ — c' is divided hy a -\-d.

14. {a-^b^cY - {b-[- cy- (c + aY - (« + hy +
^^ + ** + c* is divided by a + ^.

15. «"(^ — c)+ J"(^ — «)+ ^"(^ — ^) is divided by h—c.

Show that the given binomial is a factor of each of the

following expressions, and find the other two factors

:

I.

16. 3a:3 + a;2 - 22:2:- 24; a:- 3.

17. x^ + 2.^2 - 13a: + 10; x - 2.

18. x^-]-%x'^ - 11a; - 12; ;r + 1.
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II.

19. 3a;' - %0x^ + 36:c - 16; x- L

20. ^x^ + 13a;2 - 32.i- + 15 ; x + 5.

EXERCISE LX.

I.

1. A cistern can be filled by one pipe in five hours and

by another in eight hours, and it can be emptied by a third

pipe in four hours. Were the cistern empty and all three

pipes opened together, in what time would it be filled ?

2. Suppose the cistern in the last example could be

emptied by the third pipe in three hours. Were the cistern

full and all three pipes opened together, in what time would

it be emptied ?

3. A man does 3/5 of a piece of work in 30 days and

then calls in another man and they together finish it in 6

days. In what time can they do it separately ?

II.

4. A marketwoman bought a number of eggs at the

rate of two for a penny, and as many more at the rate of

three for a penny, and sold the whole at the rate of four

for 3 cents, and found she had made 24 cents. How many
of each kind did she buy ?

5. A person hired a laborer on condition that he was

to receive 2 dollars for every day he worked and forfeit

75 cents for every day he was absent. He worked three

times as many days as he was absent, and received $47.25.

How many days did he work ?

6. A sum of money was divided between A and B, so

that the share of A was to that of B as 5 to 4. The share

of A exceeded 5/11 of the whole by 300 dollars. What was

each man's share ?
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HIGHEST COMMON FACTORS.

103. Highest Common Factor.— A common factor of

two or more expressions is a factor which is contained in

each of them, and the highest common factor of the expres-

sions is the product of all their common factors. Thus,

Stt^Z'V and Qa^Vc have 2, a^, W, and c as common factors,

and 2«^J^c as their highest common factor.

The abbreviation H. C. F. stands for highest common
factor.

The highest common factor is sometimes called the

greatest common measure, and denoted by G. C. M.

104. The H. C. F. of monomials may be found by in-

spection. It is necessary merely to factor the expression,

select the common factors and find their product, using

each of these factors the least number of times that it

occurs in any of the expressions.

e.g. Find the H.C.F. of \WIHH, 9«^^>V, and Vla^WdK

Factoring, we have

Z.'^.^.a.a.h.h.'b.c.c.c.c.d^

S.d.a.a.a.b.b.c.c.c.c.c,

and Z . % . % . a . a . a . a . h . h . h . h . d . d . d . d.

The factors common to all the expressions are, 3, a,

and J). The least number of times that 3 occurs in any of

the expressions is oncej that a occurs in any of the expres-

189
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sions is twice; and that b occurs in any of the expressions

is twice. Now 3 . a . a . b . b — 3a^^, and this is the

highest common factor of the expressions. Of course we

might have seen at once that the highest common factor of

the coefficients is 3, that the common letters are a and b,

and that the lowest dimension of these letters in any of the

expressions is 2. Hence the H. C. F. would be da^b"^.

EXERCISE LXI.

Find the H. 0. F. of the following expressions:

I.

1. 5x^1/, Ibx^ii^z. 2. 7x^yh, 2Sx^yh^.

3. lSab^c% 36a^cd\ 4. 2xY, 'dxY, 4xY:f.

6. ITa^^V, 51a''b^c\ QSa^bh\

II.

7. Multiply ^x"^ + 6a:" - 5xPy^ by 3cc" - 4:X^ + Qxy^.

8. Divide 6a;"* + ^ -f 9a;'" + ^ + 12a;" + ^ -\- 18a;" + ^ — 8x^

- 12x^ by 2a;2 + 3a;.

105. To Find Highest Common Polynomial Factor by

Inspection.—In a similar way we may find the H. C. F. of

two or more polynomial expressions by inspection when we
are able to resolve them into polynomial factors. We have

simply to resolve the expressions into their polynomial fac-

tors, select the factors common to all the expressions, and

combine them into a product, using each factor the least

number of times that it occurs in any of the expressions.

e.g. Find the H. C. F. of x^ -{- x - 6, x^ -\- Qx + 9, and

a;^ — a; — 12.

Factoring, we obtain

{x 4- 3)(a; - 2), {x + 3)(a; + 3), and {x + 3)(a; - 4).
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The only common factor is x -\- 3, and the least number

of times that this occurs in any of these expressions is once.

Hence the H. C. F. of these three expressions is a; -f- 3.

When any of the polynomial expressions contains a

monomial factor, this factor should be removed before

searching for polynomial factors ; and if this factor is com-

mon to all the expressions, or contains a factor common to

them, the common factor should be set aside to be made a

factor of the H. C. F.

e.g. Find the H. C. F. of 3rtV + 3A - 60^2, Qa^x^ -
d6a\ and Ua^x^ - lOSa^x -f 240«^J.

Removing the monomial factors, we have

3a%x^ + x- 20), 6a%x^ - 16), and na^{x^ - 9x -\- 20).

Sa^ is the H. C. F. of the monomial factors thus re-

moved. Factoring now the three polynomial expressions,

we have

(x - 4:)(x + 5), (x - 4:){x + 4), and {x - 4.){x - 5),

the highest common factor of which is 2: — 4. Therefore

the H. C. F. of the three given expressions is

3«2(a: - 4) = 3alT - na\

EXERCISE LXil.

Find the H. 0. F. of the following expressions:

I.

1. x^-l,x^-\-3x-{-2.

2. x^-]-5x-\- 6, x^-{-7x-{- 12.

3. x^ -9x- 10, x^-\-2x- 120.

4. x^-^Hx- 18, x^ - 8.

6. x^ -\- {a -\- I?)x + CL^, x^ -\- {a — b)x — ab.

6. x^ — Ixy -\- 6?/^, x^ — xy^.

7. x^ — X, 2a:''^ — 4:X -\- ^, x? -\- x^ — 2x.
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II.

8, or^ + y^, {x + yY-, x^ + 2:r^y + '^xy'^ + 2/"-

9. 120^ + ly, 6(.7-^ - 1)3, 18(:r + 1)4.

10. 2^ - f, 3(.T-^ - /), 7(./-« - /).

11. x^ — 3A — 2rt^ x^ — 'dax^ + 4«^ x^ — ax — 2a^.

12. 2:^ + a:?/ — 2;^^, x^ — 3.^1?/^ + 2?/^, x^ -\- 3x^y — iy'^.

106. The method of finding the highest common factor

of two or more expressions which cannot readily be resolved

into factors is based on the three following theorems:

1°. If tic exjn'essions have a co?nmon factor, any mul-

tiples of these expressions will contain this factor.

Let A and B represent any two expressions which have

a common factor, and let this factor be represented by /;

let p denote the quotient resulting from dividing A by /,

and q the quotient obtained by dividing B by/. Then

A — pf and B — qf. Let m and n be any integral expres-

sions whatever. Then mA will represent any multiple

whatever of A, and nB any multiple of B.

But 7nA — mpf and uB — nqf.

Hence / is a factor of both mA and nB.
2°. If two expressions have a co7nmon factor, the sum

and difference of the expressio7is or of any multiples of the

expressions will contain this factor.

Use the letters as in 1°. Then

A — B = pf — qf = (p — q)f which contains the factor/.

Also

A -\- B = pf -\- qf = {p -{-
q)f, which contains the factor/

Again, niA — ?iB — mpf — nqf — (mp — nq)f, which

contains the factor/
Also mA -{- nB = mpf+ nqf = (mp -\- nq)f, which

contains the factor/.
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3°. If two expressions have a cornmon factor, and one

of them be divided by the other and there be a remainder,

this remaitider will contain the common factor.

Let A and B represent the two expressions which have

a common factor, Q the quotient obtained by dividing B by

A, and E the remainder. Then

B= QA-^ E.

By hypothesis B and A have a common factor /, and by

1°, QA contains /as a factor. But since B is divisible by

/, and one term of its equivalent expression (QA -j- E) is

divisible byf the other must be also. Hence the remainder

E must contain / as a factor.

OoK.—If now we divide A hy E and denote the remain-

der by S, then the common factor of E and S will be the

same as that of A and E and, therefore, of A and B.

If this process be continued to any extent, the common
factor of any divisor and the corresponding dividend will

be a common factor of the original expressions. In other

words, the remainder ivill always contain the common fac-

tors of the original expressions.

If at any stage there is no remainder, the divisor must

be a factor of the corresponding dividend, and therefore,

since it is evidently the highest-factor of itself, it must be

the H. C. F. of the original expressions.

By the nature of division the remainders are necessarily

of lower and lower dimensions, and hence, unless at some

stage the division leaves no remainder, we must ultimately

reach a remainder which does not contain the common let-

ter. In this case the given expressions have no H. C. F.

As the process we are considering is to be used only to

find the highest common polynomial factor, it is evident

that any dividend or divisor which may occur in the pro-

cess may be multiplied or divided by any monomial factor

without destroying the validity of the operation; for such
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multiplication or division will not affect the polynomial

factors.

Ex. 1. Find the H. C. F. of

^3 _|_ ^2 _ 2 and x^ + 2a:2 - 3.

Q^ + 2a;2 - 3 \x^ + x^-%
a;3 + a;2 - 2 '

a;3 _|_ ^2 _ 2 x^ -1
1

^^ - ^ ^ + 1

x^ + x- 2

^ - 1

x^-1 x-1
^'-^ ^4-1
x-1
x-1 The H. C. F. is a; -

The work might be shortened by noticing that the fac-

tors of the first remainder, x^ — 1, are x — 1 and x -\- 1, and

that of these^ only a; — 1 is a factor of x^ -\- x^ — 2.

Ex. 2. Find the H. C. F. of

x^ + 4.x^y - Sxy^ + 'Mif and 4:X^ - 4cxhj + d^xY-^'^xY-

The second expression is divisible by 4:X^, which is evi-

dently not a common factor. We have therefore to find the

H. C. F. of x^ — x^y -\- Sxy^ — 8?/* and the first expression.

X* - x^y + '^xy^ - %y^
|

a;^ -[- 4:X^y - ^xy'^ -\-

a;4 j^ 4^3y _ 8^2^2 ^ 24a;^^ V^ITy

- hx^y + ^xY - ^^xy^ - Sy^

- bx^y - %OxY + 40:r«/3 _ noif

^SxY - 562;«/3-f 112^4
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Rejecting the factor 28^/^, we have

rj. j^ 4^^y _ 8:?:/ + 24?/3
|

a.^ - 2xy + 4:2/

^x^y - 12.t/ _^ 24?/3

6:?;^^?/ — 1 ')lxy'^ + 24?/

Hence the H. C. F. \% x^ — "^xy -\- 4y^.

Ex. 3. Find the H. C. F. of

To avoid fractional coefficients, the second expression

may be multiplied by 2 and then divided by the first.

Za^+lbx^-^r bx^^lOx-^'^ 12^:4 + 9.^3+14:^+ 3

2 V,

Qx^ + 30a:3 _^ iQ^.2 _^ 20a: + 4

62;4 + 27a:3 + 42a; + 9

%x!^+ 9a:3+ 14a: + 3
|

3^:^ + lOa;^ _ 22^; - 5

3
2a: +7

6.T*+27a:3+42a:+ 9

6a:4+20a:3-44a;2-10a;

7a:3+44a:2+ 52a:- +9
3

21a:=^ + 132a:2 + 156a: + 27
• 21a:3 + 70a;2 _ 154^ _ 35

62a:2 + 310a: + 62
|

62

3a:3 + 10a:2 - 22a; - 5
|

x^ -\- 5a: + 1

3a:3 + 15a:^+ 3a: 3^ _^
— 5a:^ — 25a: — 5

- 5a:2 _ 25a: - 5 The H. C. F. is a:^ + 5a: + 1.

From the above theorems and examples we may derive
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the following rule for finding the H. C. F. of two expres-

sions :

Arrange the two expressions according to the descending

potvers of some common letter and, if the expressions are oj

the same degree i7i that letter, divide either hy the other,

hit if they are of different degrees in that letter, divide the

one ivhich is of the higher degree by the other. Take the

remainder after division, if any, for a new divisor, and the

former divisor as dividend; and continue the process till

there is no re7nai7ider. The last divisor ivill be the H. C. F.

required.

If the two expressions contain common monomial fac-

tors, their H. C. F. must be obtained by inspection, and this

must be multiplied by the last divisor found by the above

rule.

Any divisor, dividend, or remainder which occurs may
be multiplied or divided by any monomial factor.

107. To find the H. C. F. of three or more polynomial

expressions, we first find the H. C. F. of any two of them,

and then of this and a third, and so on.

Let the expressions be J, B, C, D, etc.

First find the H. C. F. of A and B, and denote it by^.
Then since the required H. C. F. is a common factor of A
and B, it must be a factor of E, which contains every com-

mon factor of A and B, and so on.

108. Note.—The highest common factor of algebraic ex-

pressions is not necessarily their greatest common measure.

For if one expression is of higher dimensions than another

in a particular letter, it does not follow that it is numeric-

ally greater. In fact, if a be a positive fraction, c? is less

than a.
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EXERCISE LXIII.

Find the H. C. F. of—
I.

1. x^-{-2x-{-l and x^ + 2x^ + 2^; + 1.

2. x^ - 8x^ + 7:r + 24 and x^ - 6x^ + 8a; - 6,

3. x^ - 5x^ + dx + 6 and x^ - dx^ -\- ix - 4=,

4. 2x^ — 7x-2 and 6x^ - 3x^ - ISa:^

5. 4:X^ + Sx^ - 6Qx^ - 12a;3 and 6^:3 - 6x^ - S6x.

6. 12«V + 120aV - 132a^x and SaV - 27aV+

7. 7:^;* - lOa.'^s + 3aV - 4^^^ + 4«4 and 82;'* - 13aa^

8. 25a;* -i-5x^-x-l and 20a;4 + x^ - 1.

9. 1 - 4a;3 + 3a;4 and 1 + a; - a;^ - 6x^ + 4a;*.

II.

Work the last nine and also the following examples by

synthetic division:

10. 11a;* + 24a;3 + 125 and x^ + 24a; + 55.

11. 2a;5 - lla;2 - 9 and 4:X^ + 11a;* + 81.

12. a;5 + lla;3 - 54 and ^ + 11a; + 12.

13. x^ — 2x^ — x-\- 2, x^ — x^ — 4:X-\- 4, and a^ — 7x-\- 6.

14. a;* - Qx^ + 8a; - 3, a;* - 2a:3 _ 7^2 _j_ 20a; - 12,

and a;* — 4a;2 + 12a; — 9.

15. Multiply 3a;"* - 4a;'" " ^ + 5a;" + ^ by 6x^ + 7a;"* + K

16. Multiply a;" - Sx^ + 5a;3 by 4a;* - 6:^-^

EXERCISE LXIV.

I.

Ex. At what time after 5 o'clock will the minute-hand

of the clock be ten minutes ahead of the hour-hand ?
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In examples about the position of the hands of»a clock,

it is best to draw a circle to represent the clock-dial, and to

mark on it the positions of the hands at the beginning of

the hour specified. Then note the number of minute-spaces

between the hands at this time, and let x denote the num-

ber of minute-spaces that the minute-hand must pass over

before it comes into the required position. Then, since the

minute-hand goes 12 times around the dial while the hour-

hand is going once around it, x/1^ will denote the number

of minute-spaces passed over by the hour-hand in the same

time.

Then x will equal the number of minute-spaces between

the hands at the beginning of the hour plus x/1% minus

the number of spaces the hands are required to be apart

when the minute-hand is required to be behind the hour-

hand ; and x will equal the number of minute-spaces be-

tween the hands at the beginning of the hour plus x/1%

plus the number of spaces the hands are required to be

apart when the minute hand is required to be ahead of the

hour-hand.

Thus, in the example, the minute-hand will be at XII

at the beginning of the hour specified,

and the hour-hand at V, and there

would be 25 minute-spaces between

them. While the former is moving

over i\\Q x spaces to its required posi-

tion of 10 minute-spaces ahead of the

hour-hand, the hour-hand will move

over x/1% spaces. Therefore

a; = 25 + ^/12 4- 10;

11/12^; = 35,

X = 38^.

That is, the minute-hand would be in the required po-

sition at dSf^ minutes past five.

XII
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Had tiie question been, at what time after 5 o'clock will

the minute-hand of the clock be ten minutes behind the

hour-hand, we would have had

x = 25-{- x/12 - 10;

.-. ll/12a: = 15,

X = Uj\.

1. At what time after 3 o'clock is the minute-hand of

the clock 18 minutes ahead of the hour-hand ?

2. At what time after 7 o'clock is the hour-hand 20

minutes behind the minute-hand ?

3. At what time after 9 o'clock is the hour-hand 15

minutes behind the minute-hand ?

4. At what time nearest to 2 o'clock is the minute-

hand 15 minutes behind the hour-hand ?

5. At what time between 4 and 5 o'clock are the hour

and minute hands at right angles ?

6. The sum of the two digits of a number is 8, and if

36 be added to the number the digits will be interchanged.

What is the number ?

7. If the first of the two digits of a number be doubled

it will be 3 more than the second, and the number itself

is 6 less than five times the sum of its digits. What is the

number ?

8. A courier who goes at the rate of 40 miles in eight

hours is followed after 10 hours by a second courier who
goes at the rate of 72 miles in 9 hours. In how many hours

will the second overtake the first ?

II.

9. A courier who goes at the rate of 31^ miles in five

hours is followed, after eight hours, by a second courier
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who goes at the rate of 22^ miles in three hours. In how-

many hours will the second overtake the first ?

10. Ten years hence a boy will be four times as old as

he was ten years ago. How old is the boy ?

11. One man is 60 years old, and another man is 2/3

as old. How long since the first man was five times as old

as the second ?

12. A father is four times as old as his son, and four

years ago the father was six times as old as his son. What
is the age of each ?



CHAPTER XIII.

LOWEST COMMON MULTIPLE.

109. Lowest Common Multiple.—A common multiple

of two or more expressions is an expression which is exactly

divisible by each of them.

The loivest common multiple of two or more expressions

is the expression of the lowest dimensions which is exactly

divisible by each of them. The lowest common multiple is

usually denoted by the letters L. C. M.

110. To Find L. CM. by Inspection. — The lowest

common multiple of two or more expressions must evidently

contain every factor of each, and each of these factors the

greatest number of times that it occurs in any one of them,

otherwise it would not be divisible by each expression.

e.g. Let ^a^V^c, Qa%^G^d, and ^h^c^e be the numbers

whose L. C. M. is required. To be divisible by each of

these expressions the required expression must contain the

factors 2, 3, a, h, c, d, and e, and it must also contain the

first of these once, the second twice, the third four times,

the fourth four times, the fifth three times, the sixth once,

and the seventh once. The L. C. M. is iMh^c^de,

Hence we have the following rule for finding the lowest

common multiple of two or more expressions which may be

factored by inspection

:

Find all the different factors ofeach expression, a7id take

each of these factors the greatest number of times which it

occurs in any of the expressions, or to the highest degree that

it has in any of the expressions, andfind the product of these

factors,

X44
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EXERCISE LXV.

Find the L. 0. M. of the following expressions:

I.

1. lSa%% U%H\ and taHK

• 2. 3a;^?/2^ bxyh^y 16x^yh, and 20a!^yh\

3. x^ — y^, xy — y"^, and xy -f-
y"^.

4. :z;^ — 2a; — 15, x^ — 9, and x^ — ^x -{ 15.

6. 5a; H- 35, x^ - 49, and x^ + 14^; + 49.

II.

6. x^ -X- 20, a;2 + 3a; - 40, and j? -\- V2x 4- 32.

7. 2x^ -X- 1, 2a;2 -|- 3a; + 1, a;^ - 1, 4a;^ - 5a;2+ 1.

8. 12a; - 36, x^ - 9, x^ - 6x -\- 6.

9. x^ — dx + 2, a;'-^ — 5a; -|- 6, and a;^ — 4a; + 3.

10. x^ — Qax -f 9a^, 7? — ax — 6a^, and 3a;^ — 12^^^.

111. To Find L. C. M. by Division.—Since the highest

common factor of two expressions contains every factor

common to the expressions, if two expressions be each di-

vided by their highest common factor, the quotients ob-

tained will contain no common factors. Hence the L.C.M.

of the two expressions will be the product of these quotients

and their H. C. F.

e.g. Find the L. C. M. of

a;3 4- a;2 - 2 and x^ + 2a;2 - 3.

The H. C. F. of these two expressions is a; — 1.

(a;3 + a;2 - 2) -^ (a; - 1) = a;^ + 2a; + 2,

and (a;3 + 1x^ - 3) -=- i^x - l) r= x^ + 3a; + 3.

a;3 + a;2 - 2 = (a; - \){p? + 2a; + 2),

and a;3 + 2a;2 - 3 = (a; - l)(a;2 + 3a; + 3).
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Since x^ -\- 2x -\- 2 and x^ -\- dx -\- 3 have no common
factor, {x - l){x^ + 2a; + 2)(a^ + 3a; + 3) must be the

L. 0. M. otx^ + x^-2 and a^ + 2x^ - 3.

In general, let A and B stand for any two expressions,

and let h stand for their H. 0. F. and I stand for their

L. 0. M., and let P and Q be the quotients when A and B
respectively are divided by ^; so that

A = P.h and B= Q.h.

Since h is the H. C. F. of ^ and B, P and Q can have

no common factors. Hence the L. 0. M. of ^ and B must

hQ P X Qxli, or

I = PQh;
or

^, on , B
h h

Hence the L. C. M. of two expressions may he found
hy dividmg either one of the expressions by their H. C. F.,

and multiplying the quotient by the other expression.

Also, since

T_ AX B

I X h = A X B.

That is, the product of any two expressions is equal to

the product of their H. C. F, and L. C. M.

EXERCISE LXVI.

Find the L. 0. M. of the. following expressions:

I.

1. Qx^ — 5ax — (ja^ and 4:X^ — 2ax'^ — Qa^.

2. 4«2 - 5ab + b^ and 3a^ - da^ + ab^ - b^

3. Sx^ - 13x2 + 23x - 21 and Qx^ -^ x^ - Ux + 21.

4. x' - lla;2 + 49 and 7x^ - iOx^ + 7ox^ - ^Ox -f 7.
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5. x^ 4- Qx^ -I- ll.^. _|_ G aud x"- + x^ - 4x^ - 4x,

6. x^ - x^ + 8ic - 8 aud x^ + 4:6-3 - Sx^ + 24a;.

II.

7. 8^3 - l8ab^ Sa^ + Sd^b - Qah^, and 4ft2-8«&+ 3^>l

8. x^ -Ix^ 12, 3a:2 - 6:?; - 9, and ^x^ - 62;2 - Sx.

9. 8a;3 + 27, 16a;* + 36^2 + 81, and Qx^ - hx - 6.

10. x^ — Qxy + 9^'^ x? — xy — 6?/^, and 3^;^ — 121/2.

11. Multiply x"^ + a;" by x"^ — x^.

12. Multiply 'Sa^'x " — ^oTx'' by 3a"a;"* + 4(x'"iC".

13. Divide a;
-

»" + ^ by a:"* + ^

14. Divide 4<x'«a; - S"* + p by 2a"a;-"»- ^

EXERCISE LXVII.

I.

1. At what time after 10 o'clock will the minute-hand

of a clock first be 20 minute-spaces ahead of the hour-

hand ?

2. A courier sets out from a city and travels at the rate

of 8 miles an hour, and 3 hours later a second courier sets

out from the same city and follows the first along the same

road, travelling at the rate of 10 miles an hour. In how
many hours will the second courier overtake the first, and

how far will each have travelled ?

3. A courier sets out from a city and travels 10 miles

an hour. Four hours later a second courier sets out from

the same place and travels along the same road and over-
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takes the first courier in 20 hours. How fast does the sec-

ond courier ride, and how far does each go ?

4. Two bodies, A and B, are moving around concentric

circles in the same direction, and, as seen from the common
centre of the circles, they are together every 50 days. A is

on the outer circle, and is longer in going around than B,

which is on the inner circle. A goes around his circle in

20 days. How long does it take B to go around his circle ?

Let X = number days it takes B to go around.

-— = number of degrees B goes over in a day.

Also -^r^ = number of degrees A goes over in a day,

and -^ = number of degrees gained by B in

one day.

In 50 days B must evidently gain 360° on A.

—
- = number of degrees gained by B in one day.

360 _ 360 _ 360 1^ J_ _ J_"^ ~ ^" ~ 50 ' ^^ ^ ~ 20 ~ 50
•

. •. - = -|-„ or Ix = 100, and x = 14f

.

X 100

II.

5. Suppose, in the last example, A went around his

circle in the shorter time, then in what time would B go

around ?

6. Two bodies, A and B, move around two concentric

circles in the same direction and are together every 60 days.

A is on the outer circle and B on the inner, and A goes

around its circle in 40 days. If B moves over more degrees
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a day than A does, how long will it take B to go around its

circle ?

7. If in the last example A goes over more degrees a

day than B does, how long will it take B to go around ?

8. Divide x^"^ + «/^" by x"' + ?/".

9. Divide x^"^ — if"" by x""' — «/".



CHAPTEE XIV.

FRACTIONS.

112. The Symbol-.—When the operation of division

is indicated by placing the dividend over the divisor with a

horizontal line between, the symbol is called a fraction, the

dividend being called the numerator and the divisor the

denominator. Thus, - is a fraction, a is its numerator and

l is its denominator. The quotient which results from the

division is the value of the fraction. In the type, 7-, a and

1) stand for any integral expression, however complicated.

By definition, - = a -^ h. Therefore

-Xh = a-^hxl) = a,
h

That is, the multiplication of a fraction by its denominator

produces its numerator.

When the numerator is a polynomial, the horizontal

line or bar of the fraction must be considered as a sign of

aggregation, showing that the numerator as a whole is to

be divided by the denominator.

In the various operations on fractions we assume that

the associative, distributive, and commutative laws which

have been demonstrated for integers apply also to the sym-

150
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bol T-. Having made this assumption, we proceed to en-

quire what addition, multiplication, and other operations

on fractions mean if they obey the same laws as the corre-

sponding operations on numbers.

113. Theorem I. The denominator of a fraction is

distributive among the terms of its numerator.

-., . .,, a-^b a b
It IS required to prove = - -|—

.

c c c

By definition x c = a -\-b.

By the distributive law

(a b\ a
,

b
, ,

\c c J c c

-bc>'-\-b ^^ _{a
I

b\

a -\- b _a b

c ~ c c'

It is thus seen that this theorem is a consequence of the

assumption that the distributive law of multiplication holds

for fractional symbols.

Hence the denominator of a fraction is distributive

throughout the terms of the numerator.

And, conversely, the algebraic sum of any number of

fractions with the same denominator is the fraction whose

numerator is the algebraic sum of the numerators of

several fractions, and whose denominator is their common
denominator.

The sign before a fraction may always be regarded as

belonging to the numerator as a whole, and it must be so

regarded in finding the algebraic sum of the numerators

of fractions which have the same denominator. Thus,
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+ r = —f—y and — ^ = —r-- The value of a fraction is

to be regarded as a quotient, and when the divisor is

positive the sign of the quotient is the same as that of the

dividend. Hence, if a and h both represent positive

quantities, — - = —— =—-, but is not = —-. That is,0—0 —
the minus sign before a fraction may be regarded as be-

longing to either the numerator or denominator as a whole,

but not to both.

The same is evidently true when both a and h repre-

sent negative quantities, or when one of them represents a

negative quantity and the other a positive quantity.

For ——, —zT-j and —— each evidently represent

the same negative quantity; and — :p7, , and —jpr

each evidently represent the same positive quantity, as do

also 7, —7-
, and - -b.

To illustrate by numerals :

- ^- - 2, =^= - 2, and -1^ = - 2;

_:^8_2, -:^:=2, and ^=2;

It must be borne in mind carefully that, in finding the

algebraic sum of the numerators of fractions which have

the same denominator, all the signs of the numerator of

every fraction which has a minus sign must be changed.
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EXERCISE LXVIII.

I.

1. Write ^ as the sum of three separate

fractions.

2. VVrite ^—r—

7

'— as the sum of four
a -\- b

fractions.

3. Write -——^ — -——7 + -;——Y as one fraction.
'^a -{-b 2a-{- b 2a -\- b

,-,^ ., 3.T + 5 4:^; + 6 6x — a ,
7x — c

4. Write —-r r a ::
as one

4c 4c 46* 4c

fraction.

II.

6. Write

2a -\- 3b -c 5a -7b ^11 da -{- 5b - 7 lla - d
x^-3 ^ x^-3 x^-S x^-3

as one fraction.

6. Write

3x - 4t(a -\-b) 5x^ 7{a \-b) 7x - 5(a- c)

a2 -J)i a^- ])i
a" - b^

as one fraction.

114. Theorem II. The value of a fraction is not

altered by multiplying its numerator and denominator by

the same quantity.

It IS required to prove T~~i-

By the commutative law t • mb — -r- . bxm = am= ma.
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By definition
ma
mb

. mb = ma

a
1' mb — ma

mb'
mb.

a ma
I

"
mb'

115. Theorem III. The value of a fraction is not

altered by dividing its numerator and denominator by the

sa7ne quantity.

T. ' . /, X a ^ m a
It IS required to prove -^ = 7.^ ^ b -r- m b

-o XT, 1 X XI,
a^m (a-^ 771)771

By the last theorem = -77 {
—

.

•^

b -^ m {b -^ 7n)m

^ , - , ^ .,

.

(a -=- m)m a
But by definition 77 ^-. — ^.

-^ {b -i- m)7n b

116. It follows from Theorem III that a fraction may
be simplified without altering its value by the rejection of

any common factor from its numerator and denominator.

Thus the fraction -73- takes the simpler form —7-3, when

the factor Xy which is common to its numerator and denom-

inator, is rejected.

A fraction is said to be in its loivest terms when its

numerator and denominator have no common factors.

A fraction may be reduced to its lowest terms by re-

moving, or cancelling, the common factors one after an-

other from the numerator and denominator by inspection,

or by dividing the numerator and denominator by their

H. C. F.

When the numerator and denominator of a fraction

are polynomials which can be factored by inspection, it is
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best to write them as factored, and then to cancel their

common factors.

3a;^ + a; - 2 _ (3a; - 2)(a; + 1) _ 82; - 2
®*^'

'Zx^ -x-d~ {2x - d)(x + 1)
~

2:r - 3
•

It is not worth while to divide the numerator and de-

nominator by their H. C. F. except in cases where their

common factors cannot be discovered by inspection.

EXERCISE LXIX.

Reduce the following fractions to their lowest terms.

12A UaWc

X — a
4.

x^ — a'

ax — a^ ' x^ -\- ax

3x^ - 9x^y Saf^x^ - 16a^x^

7.

7x^ - 21xY ^ali^x^ - 16Z»V

'

x^ -\-x-'2Q x^ - 36

x'' -\\x^ 28* ®- ^:i"3^~irT8-

II.

4a7^ — 16 ^x^ — 7.T
10.

%x^ - 2x - 12'

x^ + 3x - 28
11. 2 o ^- 12.

2x? + X -6 '

2:3 + 27

X^~^'

4.x? - ^x + 3. Qx^ -\- xy — y^
^^' 8^2 _^ 2x1/

-'^" ^*-
4:7-2 _^ 4^ _ 3

•

117. Reduction of Fractions to a Common Denominator.

—Two or more fractions may be reduced to equivalent

fractions with a common denominator by finding the L. C.
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M. of the denominators for the common denominator, and

dividing this by each of the old denominators in turn, and

multiplying each numerator by the corresponding quotient

for the numerator.

N.B.—This is equivalent to multiplying the numerator

and denominator of each fraction by the quotient obtained

by dividing the L. C. M. of all the denominators by its own
denominator; and hence the value of the fractions will

not be altered. (Why ?)

An integer may be regarded as a fraction whose denom-

inator is one. Hence an integral term may be reduced to a

fraction with any denominator by multiplying it by the re-

quired denominator and placing the product obtained over

the denominator.

Of course any fraction may be reduced to an equivalent

fraction with any required denominator (which is a mul-

tiple of its own) by multiplying the denominator of the

fraction by the factor which will produce the required de-

nominator, and the numerator by the same factor. Such a

factor may be obtained by dividing the required denomina-

tor by the old one, or, often, by simple inspection.

EXERCISE LXX.

I.

1. Reduce -^ to an equivalent fraction whose denom-

inator is 9«c^.

2. Reduce— to an equivalent fraction whose

denominator is 'iWu^.

X — S
3. Reduce to an equivalent fraction whose de-

X -J- i

nominator is 2;^ -|- :^ — 42.
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4. Reduce ~ ~ to an equivalent fraction whose cle-

nominator is I'^x^ -\- x — Q.

5^ ij"

6. Reduce ^r to an equivalent fraction whose
ZX — D

denominator is %x^ — 34a; + 30.

6, Reduce ^a^x to an equivalent fraction whose de-

nominator is ba^x^.

II.

7. Reduce 2^V to an equivalent fraction whose de-

nominator is 3 — laW^.

8. Reduce 3:?; — 5 to an equivalent fraction whose de-

nominator is 7r?; + 8.

9. Reduce 5a; — 7 to an equivalent fraction whose de-

nominator is 6 — Zx.

10. Reduce 3a; + 8 to an equivalent fraction whose de-

nominator is 9 — hx.

5 Ix
11. Reduce ^r—7^ and —3- to equivalent fractions with

a common denominator.

12. Reduce and to equivalent fractions
X ~j~ TC X 4:

with a common denominator, and find their sum.

Reduce the following terms to equivalent fractions with

a common denominator, and then the whole to a single

fraction

:

, ,

a;+ 7 a;-

8

13. 1 + —~- r-T-
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6x + 6
14. ^r-

15. dx

2a 4:a^

2x-3 4a: - 6

3x-\-4: 5x-2

16 Reduce — ^j-^ + - to a single negative fraction.
4fl2 ' Of

II.

257,2 >yQ

17. Reduce - ^tts + ^ ^0 a single negative fraction.
Sba'* oa

18. Reduce 1 —j-r to a single positive frac-

tion.

19. Divide x^"" — x^"- by x"^ + x"".

20. Divide x^"^ + x^"" by x"' + a;".

118. Theoeem III. The product of two fractions is

the product of their 7iumerators divided hy the product of

their denominators.

^ . . -, ,
a c ac

It IS required to prove t'^-3 — -ti-

By the commutative law -X-j.hd = -.h X -^. d = ac.
•^

h d b d

ac
By definition -:j—,.bd=ac.

^ bd

b d bd

a c _ ac

b d~'bd'

Hence the product of two fractions is another fraction

whose numerator is the product of their numerators, and

whose denominator is the product of their denominators.



FBAGTI0N8. 159

The product of any number of fractions may be found

by first finding the product of any two of them, and then

of the resulting fraction and a third, and so on to the end.

The resulting product evidently will be the fraction whose

numerator is the product of the numerators of all the

given fractions and whose denominator is the product of

their denominators. Thus,

b d f h bd f h bdf h bdfU

Hence

- \b)=b''b=¥' ^^^
\b)

^¥'

Cor. 1. A fraction may be multiplied by a quantity

by multiplying its numerator by that quantity.

For let 7- be a fraction and c be the quantity by which
b

it is to be multiplied, c may be written as the fraction -.

a a c ac

b bib
Also, by the Commutative Law, 7- X c = c X 7-.

a ac

Cor. 2. A fraction may be multiplied by a quantity

by dividing its denominator by that quantity.

For let - be a fraction, and c be the quantity by which

it is to be multiplied.
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Then - x c = j-. Multiplying both the numerator

and denominator by -, we have

1
ac .

—
c a a

or
, 1 b ' ^^ i^c.— —

c c

EXERCISE LXXI.

N.B.—In multiplying fractions by integers or fractions

it is best to cancel common terms as in arithmetic.

Find the following products ;

dz 4:X^y^ z

'

c? — x^ a^x -\- ax^ 2{a — x)

2ax (T — 2ax + x;^ c? -\- ax

a^ 4- ax a^ — a^
3. -^—5-X

a!'^ — x^ ax{c? -\- ax-\- x^)'

c^ — x^ c? — if- I ax \
4. 1 X r^X^H .

a-\- y ax -\- x^ \ ' a — xJ

II.

ax — x^ «2 _|_ ff^x

a^ — 2ax -{-x^ a^ + 2ax + x^'
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• e+^^)(:-+«--)'
10.

42)2 - 16a; + 15 ^ Q? -6a; -7 ^ 4a;2

2a;2 + 3a; + l 2a;2 - 17a; + 21 4a;2 - 20a; + 25*

119. Reciprocals.—The reciprocal of a fraction is the

c . d
fraction inverted. Thus, the reciprocal of -^ is -.

(t c

120. Theorem IV. To divide one fraction hy another

is equivalent to multiplying the first fraction hy the recip-

rocal of the second.

It is required to prove that - -^ - = - x —

.

^ ^ d b c

By definition of division, - ^ - x - = 7-.^
1) d d h

By Theorem III and the associative law of multiplica-

tion,

a f? c _ « cd _a
h G d b' cd b'

(a ^c\c _fa d\c

[b ' d)d~[b^c)d'

a _^G ^ a d

b ' d b c
'

Hence to divide one fraction by another, we invert the

divisor, and then proceed as in multiplication.

Cor. 1. A fractio7i may be divided by a quantity by

multiplying its denominator by the quantity.

For, let T- be a fraction and c be the given quantity.

Then will ? ^ c =
h b xc
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c,. c , a a 1 a
Since c = -, we nave — -hc = -X-=7-.

1 be

CoE. 2. A fraction may he divided hij a quantity hy

dividhig its numerator hy the quantity.

For, let T- be a fraction and c be the given quantity.

Then - -^ c — -r-, and multiplying the numerator and de-

nominator by -, we have

1 a
a .

- -
a c c a -7- c

-j_ c = =: —- or -—

.

h ., 1 h h
he .

-
c

Cor. 3. To divide a quantity hy a fraction we multi-

ply the quantity hy the reciprocal of the fraction.

Let fl^ be a quantity, and ^ be a fraction. Then will

«^^ = « xf
a c a c a d ad d

- X - =— = aX -0Ice c

EXERCISE LXXII.

Perform the operations indicated in the following ex>

amples

:

*
I,

Ux'^ - 7x 2x-\
*•

12^:3 + 24:^2 ' x^ + %x

a^^ + dab
^ ah^Z
r- r : —m

4a^ - X • 2a -1-
1*
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«2--121 « + 11

a' -4 • « + 2
*

2a^ + 13x + 15
.
2^2 _^ 11^. _^ 5

4:^2 _ 9 4a;^ - 1 •

x'-- 14:« -- 15 x^ - 12a; - 45

x^ -^x--45 • x^ - ex - 27
*

(10 + lla; - Qx^)
9a;2-4

' 4 -3a;*

(15.,;2_ 19a; + (3)

18 - 18a; - 20a;2

2a; + 7

{x'^ -%x--63) -^
a;2 + 2a; - 35

163

8.

121. To Multiply Several Fractions by a Factor which

will Cancel all their Denominators.—If each of several

fractions be multiplied by the L. C. M. of their denomina-

tors, there will be introduced into the numerator of each

fraction a factor which will cancel its denominator, and the

resulting products will be the product of the numerator of

each fraction and all the factors of the L. C. M. of the de-

nominators except the denominator of the fraction. We
may therefore obtain these products by dividing the L. C.

M. of the denominators by each denominator and multiply-

ing the numerator of each fraction by the resulting quo-

tient.

e.g. Find the product which would result from multi-

plying each of the following fractions by the L.C.M.D.

:

a; + 7 a;-8 ^ a; + 9
and

Q?-\-'^x- 10' a;2 - 8a; + 12 x^ - x - 30'

Factoring the denominators, we get

x-\-l a;— 8 a;+9
(x - 2)(a; + 5)' {x - 2){x - 6)' (x + 5)(a; - 6)'
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Hence the L. 0. M. of the denominator is

{x - %){x + b){x - 6).

Multiplying each fraction by this L. C. M., and cancel-

ling the common factors, we obtain

{x^l){x-^){x-^6){x- 6)

\x-^)\x^6)

(g;- 8)(a;- 2)(a;+ b){x - 6)

{x-%){x-Q)

and
(a;+9)(:.-2)(a;+5)(:.-6)

{x+b){x-Q)

or x^-^x- 42, x^-'^x- 40, and x'^-\-'ix- 18.

EXERCISE LXXIII.

Find the products obtained by multiplying each frac-

tion of the following sets by the L. C. M. of the denomina-

tors:

a;-4
a?-\-x-6Q' x^.-\- 11x^^4:' x^-4:x-21'

dx-7 5a; - 4 a; + 11

10a;2 - 43a; + 28 ' 16x^ + 8a; - 16' 6x^ - 13a; - 28*

5a; — 8 6 — 7a; 3 — a;

66a; - ISa;^ _ q^> 24:X^ - 90a; + 54' 40a;2 _ 86a; + 42*

11.

x-S x-^ 7
*• 0^-64:' (^'i-4:X-32' a^ -\- 4:x -\-

16'

x-\-7 a;4-6 15
^'

ie8+ 216' a;2-36' 3a;2 - 108'

6. Divide x^"" ~ x> by x^ — re*.
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EXERCISE LXXIV.

I.

1. A is four times as old as B and 6 years ago he was

seven times as old. What is the age of each ?

2. At what time after 3 o'clock are the hands of a

watch opposite each other for the first time ?

3. Divide 45 into two parts such that one of them shall

be four times as much above 20 as the other is below 19.

4. A man had $13.55 in dollars, dimes, and cents. He
had 1/7 as many cents as dimes, and twice as many dollars

as cents. How many of each kind had he ?

6. Divide 313 into two such parts that one divided by

the other may give 2 as a quotient and 19 as a remainder.

II.

6. A is m times as old as B, and in c years he will be

n times as old. What is the age of each ?

7. At what rate of simple interest will a dollars

amount to h dollars in c years ?

8. The denominator of a fraction is equal to four times

the numerator, diminished by 41, and if the numerator be

diminished by 6 and the denominator be increased by 9,

the value of the fraction will be 5/12. What is the frac-

tion ?

9. At what time after 5 o'clock are the hands of a

watch together for the first time ?

10. Divide n into two parts such that one divided by

the other will give g' as a quotient and r as a remainder.



CHAPTER XV.

CLEARING EQUATIONS OF FRACTIONS.

122. Three Classes of Equations Involving Fractions.—
As we have seen, an equation may be cleared of fractions

by multiplying both members by the least common multi-

ple of the denominators of all the fractions in the equa-

tion.

Equations involving fractions may be divided into three

classes

:

1°. Those m loliicli we should clear of fractions at once

or after maMng some slight reductions.

2°. Those ivhich might he cleared offractions partially

and then simplified.

3°. Those in which some or all of the fractions had

hetter he reduced to a mixedform.

Case 1°.

In clearing equations of fractions, it must be borne in

mind that every term of both members, integral as well as

fractional, must be multiplied by the L. C. M. D.

In clearing equations of fractions, it is best to express

the L. C. M. of the denominators as factors, and also to

indicate the work of multiplication before actually perform-

ing it. In this way like factors in tlie numerators and

denominators may be cancelled, and the work much
shortened.

e.g. Solve —-— -— -\ —- = 0.

166
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L. 0. M. D. (x + l){x + 2){x + 4).

{x -j- l){x -^ 2){x + A) _ 2(x + l)(x+2)(x + ^)

x+l x-^2

{x + l){x-^2)(x + ^) _^
' X -\- 4:

... (x-i-2)(x+ 4)-2{x-\-l){x-\-4)-\-{x-^l){x-\-2) = 0,

or a;2 _^ 62; + 8 - 2a;2 _ lOa; - 8 + ^c^ + 3a: + 2 = 0.

-x-\-2 = 0.

x = 2.

When all of the fractions are written as decimals, it is

best first of all to reduce these to the form of vulgar frac-

tions.

e.g. Solve
•^^"•^^'^ - (.03 - .02x) = .03.

Reducing the decimals to vulgar fractions, we have

_ /J 2^\ _ _3^
\100 100/ ~ 100'

^' IO-ro-100 + -100=^100- L.C.M.D. = 100.

5 X 100 a; X 100 3 X 100 2x X 100_ 3 X 100

10 10 100
"*"

100 ~ 100
'

or 50 - 10a; - 3 + 2a: = 3.

-8a:r=-44;

X = 5i,

5 X

100 100

1

10
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EXERCISE LXXV.

I.

1. \x-m^^[^x-i)-l{x-\-i)-ii.

2. |(2^-7)-|(^-8)=?^^ + 4.

3. ,^(4^ + 1) - ^(217 - ^) = 45 - IZi^.

4. .03a; + .02 = .0%x - .06.

5. .Ql{x - 10) + .542: = .2(.l - .Ix) - 3(.05 - .02).

^ — X 6 — X ^ x^ — 2
6. :; i^

= 1 —1-x 7-x 7-8a; + a;2

3 1 ^ + 10 _
2a; - 4 x-{-2 ' 2x^ — S

2 ^ -
1

4a;2 - 1
**•

1 -2x 2x-7 4:x^- IQx + 7'

II.

9. (1 - 22;)(.01 - .03a;) - .23

= (.6a; + .l)(.la; - .1) - .03a;.

.Ola; X .Ola;
, ^ „,

''• -^-30 = ^^^'^^'

.03a; - .01 .02(a; - 1) .Ola; - .03
,

.21
^^'

.02 .03 .4 ^ .2

12. (.la;+.2)2 + .7(.3a;-.l)

= .06(2a; + 4) + (.la; - .2)2-. 65.

4-a; 6-a; ^ 2a;2 + 8
13. H o = 2 -

2 - a; 8 - a; 16 - 10a; + a;^'

5 2 11a; ^
^^'

3a; - 9 a; + 3
~^

3a;2 - 27
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_ __3 3^ _ ^x{^x - 17)
^*-

l-'dx dx-7
~

^x^ - 24a; + 7

Case 2°.

123. When the L . C . M. of the denominators of all

the fractions which occur in the equations is inconveniently

large, it is easier to multiply both members by the L.O.M.

of two or more of the denominators, and then reduce as

much as possible before proceeding farther.

e.g. Solve ^-^- ^,_^^^^ ^^^-^+l.

Multiplying by 2 (a; — 1), we get

2^ __ 3(2_+|!) ^ 3 _ 22; + 2a; - 2, •

a; — 1

or 2. ^(^+f) = i.
a; — 1

.-. 2a;(a; - 1) - 2(2 + a;^) = a; - 1.

•. 2a;2 _ 2a; - 4 - 2x'^ = x - 1.

.-. 3ai=-3.

.-. a;=-l.

EXERCISE LXXVI.

Solve the following equations:

I. I +
-

; - 2a; a; - 3 1

10 22 ~ 5*

2.

4a; 4-

9

3 8a; + 19 7a; - 29 __

18 ' 5a; - 12
"

*

Z
h^'^

3a; + 10 X
^^"^^

10a; -50 -5'
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II.

8a: + 5 3 - 7a; IQx -\- 15 _ 2i
*• "~Ii 6a; + 2 28 ~ 7

'

6a;- 7i 1 + 16a; _ 53 - 24a; _ 12g - 8a;

^' 13 - 2a;
"^ 24 ""12 3 '

Case 3°.

124. When the degree of the numerator of any of the

fractions equals or exceeds that of the denominator, it is

best in most cases to write the fraction in the mixed form

obtained by dividing the numerator by the denominator

and writing the remainder in the form of a fraction after

the integral quotient; thus:

x-l ^ 2

a;+l a; + l'

5a; + 4 ^ 2

X — 'S X — S'

After writing the fractions as mixed numbers, the equa-

tion may generally be considerably reduced before finally

clearing of fractions.

, ^,
,

,
.^ + 9, 3a;2 + 6

e.g. 1. Solyea: + 3~^-_,^^=3^-^.

Writing the second fraction in the mixed form, we have

a; + 9
,
a;+6

3(a; - 1) ' 3a; - 1

0; + 9 a; + 6

• • 3(a; -1)" 3a; - 1*

(a; + 9)(3a;--1) =: 3(a; + 6)(a; -1).

3a;2 + 26a; — 9 = 3(a;2 -f 5a; --6).

,*, 11a; =: -9.

• . a; =
9

11*
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„^, X — 1 X — 2 X ~ 4: X — 5
2. Solve ^ — = -.

X — Z X — 3 X — 5 X — b

Writing each fraction as a mixed quantity, we have

l + -^-(l+^ = l + ^--fl + -^).x-2 \^x-SJ ^x-6 \^x-Qj
1 1 1 _ 1

X — 2 X — 3 ~ X — 6 X — 6'

We may now write each member as one fraction and get

X -3 -x-{-2 _x -Q-x-^5
{x - 2)(x - 3)

~ Jx'- 6){x - 6)'

- 1 _ -1
{x - 2)(x - 3)~ (x- 5){x - 6)*

.-. (x - 2){x - 3) = (x - 6){x - 6).

.-. x^ - 6x + = a;2 - II2; + 30.

.-. 6a; = 24.

. % X = 4:.

EXERCISE LXXVil.

Solve the following equations

:

I.

x — 1 x — 2 a: + ^ ,^ — '^..o
^\ ^ZT^-x-b' ^' x-3'^x-Q

x-\-3x-4._ X 3x _ ^

3a; +5 ,
2a; + 4 _

^-
3a; - 5 + a; - 2

'^'

2x 5 2a; - 5 __
®-

2it; + 1
"^

2a; - 1 + 2a; -f 1
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7.

10.

11.

12.

II.

X — 1

2
.

x-^ x-3
X-4:

x-4:
X - 6'X — x-^~

x^
x-Y

1^ + 6 x-\-2

x-\-3

x + 5

^ x + Q

8- hx 4.x + 3 = lh
2a;-- 1 ' x + 3

^ + « x-\-b

X — « ' X — V

X X -\- a — b a(a — h)

X — a x-h ~ {x- c){x - d)-

X — la X — a 5a _ X — a

X — 9a X — 3a x — 2a x -{- 'Za

EXERCISE LXXVIII,

1. A vessel can be emptied by three taps : by the first

alone in 3 hours and 40 minutes, by the second alone

in 2 hours and 45 minutes, and by the third alone in 2

hours and 12 minutes. In what time would it be emptied

were it full and all three taps were opened together ?

2. A cistern can be filled in 15 minutes by two pipes,

A and B, together. After A has been opened for 5 minutes

B is also turned on, and the cistern is filled in 13 minutes

more. In what time would it be filled by each pipe sep-

arately ?

3. A man invests one third of his money in 3-per-cent

bonds, two fifths of it in 4-per-cent bonds, and the remain-

der of it in 5-per-cent bonds. His income from his invest-

ment is 1180 dpllars. How much had he invested ?
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4. A man invested one quarter of his money in 3 -

per-cent bonds, two sevenths of it in 4-per-cent bonds, and

the remainder of it in 4^-per-cent bonds. His income from

his investment was 3450 dollars. How much had he in-

vested ?

5. Two men, A and B, 66 miles apart, set out, B 45

minutes after A, and travel towards each other, A at the

rate of 4 miles an hour and B at the rate of 3 miles an

hour. How far will each have travelled when they meet ?

6. The second figure of a number composed of three

figures exceeds the third by 5, and the first digit is one

fourth of the second. If the number increased by 3 be

divided by the sum of its digits, the quotient will be 22.

What is the number ?

7. A number is composed of three digits. The second

digit is one half of the third and 2 smaller than the first.

If the number be diminished by 18 and then divided by

the sum of its digits, the quotient will be 37. What is the

number ?

8. A banker has two kinds of money. It takes a

pieces of the first to make a dollar and b pieces of the second

to make a dollar. He was offered d dollars for c pieces.

How many of each kind would he give ?

9. A and B start in business at the same time, A
putting in 3/2 as much capital as B. The first year

A gains 150 dollars and B loses 1/4 of his money. The

next year A loses 1/4 of his money and B gains 300

dollars;, and they now have equal amounts. How much
had each at first ?

II.

10. Two couriers, A and B, set out from the same

place and travel along the same road in the same direc-
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tion, A starting 8 hours before B. B rides at the rate of

8 miles an hour, and A at the rate of 6 miles. How far

will each have travelled when B has overtaken A ?

11. A and B find a sum of money. A takes $2.40 and

1/6 of what is left; then B takes $3.52 and 1/7 of what is

left; and they find they have taken equal amounts. What
was the sum found and what did each take ?

12. A fox is pursued by a greyhound, and has 60 of

her own leaps the start. The fox leaps three times while the

greyhound leaps twice, but the hound goes as far in 3 leaps

as the fox does in 7. How many leaps does each make
before the hound catches the fox ?

13. A hare takes 4 leaps to a greyhound's 3, but two

of the hound's leaps are equivalent to three of the hare's.

The hare has a start of 50 of her leaps. How many leaps

must the hound make to catch the hare ?

14. A man and a boy agreed to do a piece of work for

$5.25, the boy to receive 1/2 as much per day as the man.

When 2/5 of the work was done the boy left, and, in con-

sequence, it took the man 1^ days longer to complete the

work than it would otherwise have done. How much did

each receive per day ?

15. In a mixture of spirits and water, half of the

whole plus 25 gallons is spirits, and a third of the whole

minus 5 gallons is water. How many gallons are there of

each ?

16. A garrison of 1000 men was provisioned for 60

days. After 10 days it was reinforced, and from that time

the provisions lasted only 20 days. What was the number

of the reinforcement ?

17. A laborer was engaged for 36 days on condition

that he should receive 2s. 6d. for every day he worked and

should forfeit Is. 6d. for every day he was idle. At the
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end of the time he received 58 shillings. How many days

did he work ?

18. At a cricket match the contractor provided dinner

for 24 persons, and fixed the price per plate so as to gain

12i per cent upon his outlay. Three of the cricketers were

absent. The remaining 21 paid the fixed price for their

dinner, and the contractor lost 1 shilling. What was the

price per plate ?



CHAPTER XYI.

BADICALS AND SURDS.

125. Rational and Irrational Numbers.—A numerical

quantity which can be exactly expressed as an integer or a

fraction whose numerator and denominator are integers is

called a commensurable or a rational number, and one

which cannot be so expressed, an incommeyisurdble or an

irrational number.

126. Radicals.—Any algebraic expression which con-

tains a factor under a radical or other root sign is called a

radical expression, or simply a radical^ and the factor

under the root sign is called the radical factor.

Any algebraic expression which contains no radical

factor is called a rational quantity.

To rationalize an expression is to free it of radical or

other root symbols.

127. Surds.—A surd is an incommensuratle root of a

commensurable number. In other words, it is the root of

an arithmetical number which can be found only approx-

imately.

While every surd is an incommensurable number, there

are many incommensurable numbers which are not surds,

or due to any finite combinations of surds. As examples

of these we have 3.1415926 . . . , the ratio of the circum-

ference to the diameter of a circle, and 2.7182818 . . . , the

base of the natural or Napierean system of logarithms.

176
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A radical expression which cannot be freed from root

symbols is called an irrational or surd expression, or

simply a surd. The symbol of a surd is \^n, in which n

denotes any positive integer, and a any integral algebraic

expression.

A surd may be expressed as a radical quantity, but

every radical quantity is not a surd. Thus, V'6, r5 are

surds, but VT, Vs are not surds. The expression

V 2 + V2 is not a surd according to definition.

128. Imaginary Quantities.—Since no even combina-

tion of negative factors can produce a negative product, an

even root of a negative quantity is called an imagiiiary

quantity. Thus, V— 2, V-^, ^/-a are imaginary quan-

tities.

The value of the expression \^a will be real or imag-

inary according to the values assigned to n and a. It will

be imaginary when n is even and a is negative. In all

other cases the value will be real.

When ^ is a perfect wth power, \^a is rational and in

all other cases irrational or surd.

129. To Express a Rational Quantity as a Radical.—
Any rational quantity may be expressed as a radical by

first raising it to the power indicated by the index of the

radical and then placing it under the radical sign.

e.g. 4 = Vie", 3 = f27^

130. Orders of Radicals.—A radical is said to be of the

first, second, or nth. orders according as its index is 1, 2,

or n.
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EXERCISE LXXIX.

Express the following quantities as radicals of the

second order:

I.

1. m. 2. n. 3. 3a.

4. hob. 5. 7^^ 6. 6a:^y^

7. 1/4A.

II.

8. i/3ay.
5aV .

10. a-\-b.

11. x-y. 12. 3«2 + 7.

Write the following as radicals of the third order:

13. X.

I.

14. Sa^x.

II.

16. 1/3«V.

16. x^h. 17. a- 3. 18- -rr-

131. Arithmetical Boots.—We have already seen that

Va/^ has two values, + a and — a; also, that Va has two

values which differ only in sign, one being positive and

the other negative. In higher algebra it is shown that

Va has three values, one of which is real and the other

two imaginary; also, that Va has 9i values, one, or at

most two, of which may be real, and the others imaginary,

and that when there are two real roots they will differ only

in sign.

When a root symbol is placed before a number it de-

notes the arithmetical root only, but when placed before
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an algebraic expression it denotes one of the roots. Thus

Va has two values either of which is denoted by the sym-

bol, but V^ is supposed to denote only the arithmetical

root, unless it is written ± V^.

In the demonstrations in the present chapter the sym-

bol Va in all cases must be taken in a restricted sense,—to

mean the real root of a whose sign is the same as the essen-

tial sign of a. Thus Va" must be taken to mean a, and

Va to mean the one real root of a which has the same sign

as a. The theorems established in this chapter do not

necessarily apply to other real roots than the one specified

above, or to imaginary roots.

In this chapter it is assumed that the associative, dis-

tributive, commutative, and index laws, which have been

established for integers, and applied to rational algebraic

expressions, also apply to surds.

132. Theorem I. The product of the same roots of ttuo

factors is equal to that root of the product of the factors.

By definition \a used n times as a factor will give a as

a product.

.-. C^ay = a.

Similarly, ( VhY = h, and ( "x/abY = ah.

But ( y~a X "i^lY = ( VaT X ( ^Y = ah,

and ( VahY = ah.

/. iVaxny=(VabT. (Why?)

/. -\^axVI= 'i^^. (Why?)

Cor. The product of the same roots of any number of

factors is equal to that root of the product of those factors.
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Note.—It should be borne in mind that \^~a, taken

arbitrarily, x V~b, taken arbitrarily, does not = Vab, taken

arbitrarily. Thus the negative root of 2 multiplied by the

positive root of 3 does not equal the positive root of 6.

The equation Va X yb=^ Vah is true when the mean-
ing of the symbols is restricted as in 131. It is also true

that any one of the n roots of a multiplied by any one of the

n roots of i will be equal to some one of the n roots of ab.

133. It follows from Theorem I that, when the quantity

under the radical sign can be separated into factors one or

more of which is an exact power of the order of the root

indicated, the product of the indicated roots of these factors

may be placed as a factor outside the radical.

e.g. l/l92 = 1^16 X 4 X 3 = VU X Vlx V^= 8 V^.

f864 = \/Wx 8X4 = f2f X ^^8 X ^4 = 6 1^4:

134. Pure and Mixed Surds.—The factor without the

radical sign may be regarded as the coefficient of the radi-

cal.

A ptire surd is one that has no rational coefficient

except unity.

A mixed surd is one that has a rational factor other

than unity.

A surd is said to be in its simplest form when it has no

rational factor under the radical sign.

EXERCISE LXXX.

Write the following as mixed surds in their simplest

forms

:

I.

4. ^7357 5. VWi^. 6. ^5677

7. fl35.
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II.

8. V448. 9. i/5632. lo. 4/48a2J.

11. 4/l25«V. 12. VUlaH\

13. l/4«& + 8«^^ + 4a3^l 14. 1/I22;y - 24a;y+ 12a^y\

A mixed surd may be reduced to the form of a pure

surd by raising its coefficient to the power indicated by the

order of the surd and placing it as a factor under the radi-

cal sign.

e.g. 7 1/5 = 1/72^5 = '^245.

EXERCISE LXXXI.

Express the following as pure surds:

I.

1. '^Vn. 2. 41/13; 3. 6 1/7.

4. 2 V^. 5. 4 \^6. 6. 6 t^4.

7. 3^ Va — b. 8. {x + ij) V'Sx. 9. 'Sa(a — b) Vbab.

136. Theorem II. The quotient of the same roots of

two qtiantities is equal to that root of the quotie?it of the

two quantities.

Expressed algebraically, Va -^ Vb = \^a -^ b,

( V^^ ny = ( ;/ay - ( f^)" = a~.b.

But ( \^a -- by = a^ b,

•/. ( 4^« -- \^by = ( f^TT^)'. (AVhy ?)

/. i^a -4- yT = 1^«T~^» (Why ?)

Cor. a / ~ =
,,
_= That is, any root of a fraction

« /a Va ,p
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may be indicated by placing the corresponding radical over

the fraction as a whole, or over its numerator and denomi-

nator separately.

136. Similar and Quadratic Surds.—Similar surds are

those whose radical factors are identical, e.g. Vb, 3 Vb,

are similar surds. So also are a ^x and c ^x.

Surds of the second order are called quadratic surds.

137. Theorem III. The product of two similar quad-

ratic surds is a rational quantity.

mVaXnVa — 7mi Va^ = mna.

The product of the coefficients is necessarily a rational

quantity, and the product of the similar radical factors is

necessarily the square root of a perfect square, and, there-

fore, rational.

138. Theorem IV. The product of two dissimilar

quadratic surds canyiot le- rational.

Let ^a and ^h be the surd factors. Since the surds

are dissimilar, a and h cannot be composed of the same

prime factors, and hence their product ah cannot be com-

posed of square factors only. Therefore 'fab cannot be

rational.

139. Rationalizing Factor. — Any factor which will

convert a radical expression into a rational one is called a

rationalizing factor.

It follows from Theorem II that the surd factor of a

pure or mixed surd is a rationalizing factor.

e.g. l/5'xl^==5. 3 V3"x |/3 = 3 X 3 = 9.

h^a-hy.^a-h = h{a-V).
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140. To Reduce a Fractional Radical to an Integral

Radical.—A fractional radical may be reduced to an inte-

gral radical with a fractional coefficient, by writing its nu-

merator and denominator each as a separate radical, and
then multiplying each by the rationalizing factor of the

denominator.

e.g. ^5-= -^ = -^£^=1/5^.

/^ _ _V« _ V^x Vb _ Vah _-\^

y h~ Vb~ VbxVb~ b -i^^^'

EXERCISE LXXXII.

Reduce the following to integral radicals

:

I.

1. VT/2. 2. VT/b. 3. Vy^.

. vm, . /|- a. /f±|.
II.

7.

./x + 4 ^x — 5 a/6x — 2

/4:X - 6 Jb - 2x
10. f . 11. V . 12.

—Zx-^1 L-^-4^ 4

141. Addition and Subtraction of Radicals.— Similar

radicals may be added and subtracted by combining their

coefficients in the same way as similar rational terms. The

common surd factor must be written after the coefficient

resulting from the combination.

e.g. The sum of 3 V5, V5, and - 7 VE is 6 VE.

The difference of 3 V2 and 9 1^ is - 6 1^2.
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Dissimilar radicals can be added and subtracted only by

writing them one after another, each with its proper sign,

as in the case of dissimilar rational terms.

Thus, Vy added to Vx = Vx + V^, and never

Vx -{- y, unless either x or y i^ zero.

143. Rule for Addition of Radicals.—To add surds of

the same order, reduce them to their simplest forms and

add the coefficients of the resulting surds which are similar,

and write those which are dissimilar after one another.

e.g. ^V^ -\-VT^-{-%^/n - V^-\-^Vb

143. Rule for Subtraction of Radicals.—To subtract

two radicals of the same order, reduce them to their

simplest form, and then, if they are similar, subtract their

coefficients, and if they are dissimilar, write them one

after the other with the proper sign between.

e.g. From 3 Vb take 2 Vv^.

= 3 V5 - 10 1/5"= - 7 y^.

From 3 \^ take 2 VSO.

144. Addition and Subtraction of Radicals of Differ-

ent Orders.—Radicals of different orders can be added

and subtracted only by writing them one after another

with the proper signs between.

EXERCISE LXXXIII.

Find the sum of the following sets of radicals :

I.

1. 4/18', -^32, 1^50, and Vn.

2. 2 VS, 3 /50, and 6 4^18.
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3. i/3/5, ^1/15, and ^15/49.

4. 2/3^^279; l/ev'ITse, and d/b\/yZ2.

5. xVVZa% 2a^V27x\ 3« V48«V, and |/75aV.

II.

6. 2V3, 1/2 Vl2, 4^27, and 4/T27I6.

7. I'54^^ 7«y'2^^ and 8b \^2a^^

7nn
and

y (n — s71 — S \ {^ ~ ^) ^^
~

EXERCISE LXXXIV.

I.

1. From 2 1/320" subtract 3 I^SO.

2. From « |/646f^Z>4 subtract i VWda%.

3. From Va% + 2a52 _^ J3 subtract Va% - 2aW + ¥.

4. From |/2a34-46j2^+2«J2 subtract ^Iw^-^d'l^laV^.

II.

5. From 2/3 1^2/9 + 3/5 1^3/32 subtract 1/6 Vl/36.

6. From l/289a3j subtract 3 VlUa^,

7. From 2 l/Sc^ + 5 4/72c3 subtract 7c VlSc + I^SOc^^,

8. From (c — :c) Vc'^ — x^ subtract a / -^—

.

\J c — X

145. Multiplication of Radicals of the Same Order.—
To multiply together two radicals of the same order,

multiply together their coefficients for the new coefficient,

and the quantities under the radical sign for the new

radical.
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EXERCISE LXXXV.

Perforin the following multiplications and reduce the

results to the simplest form

:

1. 3 f^ X 2 Vm, 2. 7^2/81 X 3/2 \/y^^.

3. 4 i/l2 X 3 V% 4. ^^1727 X 3/4 ^12.

5. 5 Vc^ X 1/2 V^bix. 6. ^ t^2a^ X a ^Sab.

7. (2 V2 - 3 V3 + 4 4/5) X (3 4/5 + 4 1^3).

8. (3V5-4: V2) (24/5 + 3 4/2).

9. (
4/7"+ 5 4^) (2 1^ - 4 VS).

10. ( 4/2 + 4/3 - 4^) ( 4^+ 4/3 + 4^).

11. (3 4/^ - 2 ^) (2 4^+ 3 4/^).

12. Multiply 4/f+ 9 by4^ - 6.

13. Square 4^5 + 3.

14. Multiply 4^ - 6 by 4^ ~ 8.

16. Square VY — 5.

16. Multiply t^+ 4 by V^+ 3.

17. Square Vx -{- 9.

18. Multiply Vx -{- Q hj Vx — 5,

19. Square Vx — Vs.

20. Multiply 4^ + 4/7 by VE - VY.

21. Square tY + 4^8.

22. Multiply 4^2; + 5 by 4/:^ — 8.
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23. Square Vx — 4= -\- Vx -\- 6.

24. Multiply 4/a; + 7 by Vx - 7.

25. Square l^a; — 3 + Vo; -|- 3.

II.

26. Multiply 3xVa — ij by 5x Va — 7.

27. Square 2a VQx-\-2 Vb.

28. Multiply 5aVx-{-7 by 7Z> 4/3; + 7.

29. Square d Vx -{- 6 — 4:Vx — 7.

30. Multiply 7^/^ Va; — 4 by 9^ Vx -f 4.

31. Square 3a Va -\- 3 -\- 5a Va — 5.

32. Multiply Vx — 4: — 5 by 4/a; — 4 + 5.

33. Multiply 1^2' + 8 + VQ by i^o; + 8 - Vq.

34. Multiply Va; - 5 + i^a; 4- 8 by 4/3; - 5 - 1^2;+ 8.

35. Multiply

3 Vx -\- 6 -^ 4: Vx -{- 5 hy 3 Vx -\- 6 - 4: Vx -i- 6.

36. Multiply

3a^x Vx-S ~ 5xWx-\-7 by 3A Vx - S + 6x^ Vx + 7.

146. Simple, Compound, and Conjugate Radicals.—A
smjy/e radical expression is one which contains only one

term, and a compou?id radical expression is one which con-

tains more than one term.

Thus, Vx, V a-\- X, a Vab, (a -\- b) Vx -\- 4, are simple

radicals, a -\- Vx, Va + Vx -\- b, are compound radicals.

Two binomial quadratic radicals which have the same
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^
4. ^ ^ .

5 + 2^
^2

9 + 2V1T
..

a^Va'- b^

II.

V3-\-a^- V3 -«2

Vd-i-a^-\- V'd -a^-
'•

V5 + a;2 4-2

3 + 4/6

6.

^a^ ^y^-y

2Vx-i-3-^SVx- 3

2 V^"+3 - 3 Vx'^^'

6V3 -2 Vi2 - VS2 + VW

Divide the following radicals at sight

:

I.

11. VT8"by Vq. 12. I^2rby \^.

13. 12V35by3i^. 14. a^ Vb^hj a"^ Vb.

15. Vx^ - 49 by Vx + 7. le. Ya^^ - 8 by i^a; - 2.

3/

17. i^x^ 4- 27 by ya;2 _ 3a; + 9.

II.

18. Vx^-\-2x- 15 by Vx-}-6:

19. Vx"- 13a; + 42 by Vx - Q.

20. Vx^ -x-72 by Vx + 8.

21. V6x^ + 17a; - 14 by V2x + 7.

22, V6x - 2a; - 7 by fa; + 1.
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Divide the following radicals by first expressing the

division in the form of a fraction and then rationalizing

the denominator.

I.

23. 29 by 11 + 3 Vl.

24. 17 by 3 i^ + 2 Vd.

25. 3|/2 - 1 by 3|/2 + 1.

26. 2 i^+ 7 1/2 by 5V3-4.V2.

II.

27. ^x — Vxy by 2 Vxy — y.

28. (3 + Vl)( 1/5 - 2) by 5 - Vb,

Va , Va-\- Vx
by

2 1^15"+ 8 8 1/3 - 6 V5

5 H- VTS" ^^ 5 V3 - 3 VS
*

150. Theorem IV. The 71th power of the root of any

quantity is the same root of the nth power of the quantity,

71 and the index of the root both being positive integers.

1°. When the index of the root is the same as the

exponent of the power.

By definition, (^ya)" = af

and r «" = a.

,'. (i/aY = te
2°. When the index of the root is not the same as the

exponent of the power.

(ni — v )n n

Va") = a ,
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^^^^ yi^Vaj) means that Vfl^ is to be used

mn times as a factor, and

(( "Va )") means that "Va is to be used

mn times as a factor.

... ((?«)•")" =((i^)"r.

But ((?«)")" = «».

.-. ((r«)r=«"-

... ((v«)T=("v;?r.

151. Theorem V. The mth root of the nth root of a

quantity is equal to the mnth root of the quantity.

Imf n _\m
By definition, \V Va) = V^.

... {(VWrY=(^'a)''=a.

Also, ("'f^)»»=«,

and {(Vl^TY=(Vl^r.

152. To Change Radicals from One Index to Another.

—It follows from Theorems IV and V that a radical may
be changed from one index to another by multiplying both

the index of the radical and the exponent of the quantity

under the radical by the number which will produce the re-
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quired index. For the former of these operations would

extract a root of the radical quantity, and the latter would

raise it to the corresponding power, and these two opera-

tions would neutralize each other.

e.g. \/a^^"''\/^^='\/^.

To change radicals of different orders to those of the

same order with the smallest possible indices, multiply each

index by the quotient obtained by dividing the least com-

mon multiple of all the indices by that index and raise the.

quantity under the radical sign to the corresponding power.

This will, of course, make the index of each radical the

least common multiple of all the indices.

e.g. Reduce 4^5, Vd, and r 2 to radicals of the same

order with the smallest possible index.

The L. 0. M. of 2, 3, and 4 is 12.

2X6
1/5= T5«= ?15635.

163. Multiplication and Division of Radicals of Different

Orders.—Radicals of different orders may be multiplied to-

gether by first reducing them to the same order and then

multiplying together their rational and their irrational

factors.

Similarly, radicals of different orders may be divided by

each other, by first reducing them to radicals of the same

order and then dividing their integral and radical factors.

EXERCISE LXXXIX.

1. Reduce r 10, 1^5, and r 11/12 to a common index.

2. Reduce Va + h, Va — b, and Vd^ + a;^ to a com-

mon index.
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3. Multiply V^ by Vb.

4. Multiply \/yYhy VyI.

6. Divide Va^ by \d^.

6. Divide 2 V'Zac by t^4^c^.

7. Divide 1/2 ^273 by 1/3 I'lTsT

164. Radical Equations.—An equation which contains

radicals is called a radical equation. Such equations are

solved by first clearing them of radicals, or rationalizing

them. If the equation contains fractions it should be

cleared of them first of all.

In the case of a quadratic radical equation, after it has

been cleared of fractions, it is best to transpose all the

terms into the left-liand member and place this equal to

zero. Each member should then be multiplied by the con-

jugate of the first.

If the first member contains more than two terms, they

should first be collected into a term and an aggregate, or

into two aggregates, and the terms arranged, if possible, so

that the aggregate shall contain no radical. Multiplying

then by the conjugate expression will square each of the

terms or aggregates, and place the minus sign between the

squares obtained, and the result will be rational. If either

aggregate contains a radical, the result of the first squaring

will be irrational. In this case a new pair of aggregates

must be formed and the operation must be repeated.

e.g. 1. Vx — Q -4=9.
Transposing, we get

V^^^Q - 13 = 0.

Multiplying by the conjugate expression Vx — ^ -j- 13,

we get
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X- 6 - 169 = 0,

2. V^^^ + 2 1^-5 = 3.

Transposing, we get

V^^^d + 2 1^ - 8 = 0.

Writing this as the sum of two aggregates, thus,

Vl^^d + (2 ^^ - 8) = 0,

and multiplying this by the conjugate expression

V¥x'^3 - {2Vx — 8), we get

4:X-S -4:X-{-32Vx-64: = 0.

Collecting, we get

32 1^-67 = 0.

Multiplying again by the conjugate 32 V^+ 67, we

get

1024a; - 4489 = 0.

EXERCISE XC.

Solve the following radical equations

:

I.

l^Vx- 5 = 3. 2. V4:X-7 = 5.

3. 7 - Vx-4: = 3. 4. 2 |/5x + 4 = 8.

6. VSa; - 1 = 2 Va; + 3.

6. 2 |/3 - 7a; - 3 VSx - 12 = 0.

7. Vx-\-25 = l -\- Vx.

8. V8a; + 33 - 3 = 2 V2x.
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9. Vx-

10 -

Vx-

V^-^Vx = 5.

10. - V25 4- 9

-4 + 3 =

x^'dVx.

11. Vx + 11,

12. V9a; - 8 = 3 |/a; + 4 - 2.

II.

13. Vx -\- Aab = 2« + Vx,

14. Vx + V4:a -\-x = 2Vb-\-x.

15. "^x^ + ^4:r2 + x + Vfx^'-\-'V2x = 1 ^ x.

16. '^« + Vax — Va — Va — Vax.

17. Vx -\- Vax — a — 1.

18.

19.

21.

Vs-c + '' .= Vbx^ 6.
' Vsx + (j

4^- _ 237 -

4 +
10:?;

4/^ •

Va-
0^

— T-
— ^

Va-- a;

Vx-

a
7^+3 = :c-4

i^^+2
*

Vx -\-Va-x.
V,T--!/«-:?; =

155. Reduction of Radical Equations by Rationaliza-

tion.—When a radical equation contains but one radical

fraction, it is often best to rationalize the denominator of

that fraction before clearing of fractions.
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Va-\-x-\-Va — X
e.g. '_ —

, = h.

ra-\-x — Va — x

Rationalizing the fraction, we get

2a 4- 2 Va^ - x^ , a 4- Vif - x^= b, or = h.
2x X

Clearing of fractions and transposing, we get

a — bx -{- Va^ — x^ — 0.

Multiplying by the conjugate, we have

«2 _ 2abx + b^x^ - «2 -\.x^ = 0,

or (Z>2 + l)a;2 = 2abx.

.-. {b^^l)x =z2ab.

_ 2ab
''' "^ ""F+~l*

EXERCISE XCI.

Solve the first four of the following equations by ration-

alizing the denominator:

I.

V3 + X A- V'S - X
,

V6 + ^ + |/6— = 4-. 2 ^— _=

\/S -^ X — V3 — X V6 i- ^- — V6

Vx-^^-{-Vx ^ Vx^^-\-Vx _
• ;= = 5. 4.

,
-j^— lU.

|/a; _^ 4 _ ^x Vx-\-Q — Vx

II.

l^a; + « + i^

Vx + fl'-
-|/^

-|/^1^2 + 2: 7

V2-\-x + Vx 12'

6.

1^2 + a; - l^a; _ 5_

V2~-^ -i- Vx 9
'

V2-\-x — Vx _b_

V2-\-x-]- Vx ~ ^



CHAPTER XVII.

THE INDEX LAW.

156. Meaning of Fractional Exponents.— It has been

shown that, when 7n and n are positive integers,

or xa'' = or + ''.

(1)

Also as a corollary to this, when m> n,

or ^ a"" = ar-"".

And as a consequence of (1) it has been shown that

{ary = «»»« = (a^^)^, (2)

and («^)" = a'^b^ (3)

These three laws follow from the definition that an ex=

ponent denotes the number of times a quantity is employed

as a factor.

The law expressed by equation (1) is known as the In-

dex Law.

The definition of an exponent becomes meaningless if

the exponent, or index, be other than a positive integer.

The spirit of algebra is to generalize, and the use of

indices cannot be restricted to the particular case of inte-

gers, but it must be extended to the case of fractional,

zero, and negative indices. All of these indices must be

governed by the index law, and they must be interpreted

in accordance with this law.

We will proceed first to find the meaning of a fractional

index in which both numerator and denominator are positive

integers.

198
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Let this index be denoted by -

.

q
Since the equation a"^ . a" = (fi + n

jg ^^ -^^ ^^^^ ^^^ ^y[

values of m and n, we may replace each by — . We then

have
P P 2p

and multiplying each member by a**, we get

and so on up to q factors, when we should have

P_ P_ P_ OP

a*^ , a*^ . a*^ . . . . q factors = a'^ = a^»

. •. (aT) = a».

Therefore, by taking the g'th root of each member, we

have
p_

p_

or, in words, ft
** is equal to ^'the 5'th root of a to the ^th

power."

If ^ = 1, we should have

1

or ft" is equal to the nth root of a.

For the present the meaning of the symbol «»» must be

restricted to the real nth. root of a whose sign is the same

as the essential sign of a, or to what may be called the

arithmetical root of a. If this strict limitation is departed

from, we are led to various paradoxes.

e.g. By the interpretation of fractional indices
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But icV2 z= x^,

which is right if we take x^f^ to stand for the positive value

of V^', but leads to the paradox x^ = — x^ if we admit

the negative value.

Again, according to the index law,

and (9V2)2 ^ (92)1/2^

or (±3)2 =±9,
or 9 = ± 9,

if both values are admitted.

157. Meaning of Zero Exponent.—Since al^ , a^ = oT -^ '^

is to hold for all values of 7n and n, we may replace 7n by

zero. We then have

aO.«" = «« + " = a".

Therefore, by dividing each member by a", we get

^"
1

a"

Therefore a quantity with zero index is equal to 1.

158. Meaning of Negative Exponents.—Since a^ .
«"=

^m + n
^g ^Q ^^o\^ for all values of m and ?^, we may replace

m by — n. We then have

Therefore by dividing each member by a" we get

fi~^ —
"" -a-- or'

Also, dividing each member by a~" we get

a" =
a~" a
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Hence a quantity with a negative exponent is equal to

the reciprocal of the same quantity with the corresponding

positive exponent.

Cor. Any factor may he transposed from the denom-

inator to the numerator of an expression, and the reverse,

hy simply changing the sign of its exponent.

159. The Index Law holds for all Rational Values ofw
and n.—Now that we have found what, in accordance with

the index law, indices must mean for all rational values of

m and n, we must show that, with these meanings, the

three laws

ft'" . a« = «»"+«,
(1)

{cd^Y = a^^^ (2)

and («^J)" = a"^>" (3)

must hold for all rational values of m and n.

I. To show that a"^ . a"" = «""+* for all rational values of

w and n.

t) r
1°. Let m and n be any fractions — and -, in which j3,

q, r, and s are positive integers.

Then a^'^ . a''" = ^aP • fa^, by definition;

= YaP' .7a^, by 152;

y^ps+rq^ by 132;

pa+rq

= a ^^
, by definition

— ^plq+rfs __ ffti+n

If either m or 7i is a positive integer while the other is

a fraction with positive integers for its numerator and de-

nominator, the integer may be expressed in a fractional

form, and the demonstration just given will hold.



202 THE INDEX LAW.

We know already that the law holds when m and 7i are

positive integers. Therefore

for 'all positive rational values of m and n,

2°. Let m and n be essentially positive, either fractions

or integers.

11 1
Then m fi-na ".a

or or a'

by definition.

And if w — w be positive.

and or . a'"" .«" = «"*. — . «" = a"».
a"

. *. a . a-"", a"" = a"*"" . a".

Hence if m — w be negative, that is ?^ — m be positive.

Therefore for all rational values of m and n

«,«*. «"= «*" + ".

Cor. Since «*""''. «" = r?"" for all rational values of

m and n, it follows, by dividing both sides by a^, that

^m _^ ^n -. f^m-n fqj, ^jj ^atlonal valucs of m and 7i.

II. To prove that («"*)" = a"*" for all rational values of

m and n.

1°. Let m have any value whatever, and let 7i be a

positive integer.
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Then, by definition,

{cry = or .or ' a"^ . - 'to n factors

= oT''.

2°. Let m have any value whatever, and let ti be a

fraction -, in which p and q are positive integers.

Then {aTy^ = ^{oTY, by definition;

= ^a-^byII, 1°;

mp
= tt 3

, by definition;

= a"*' 7 = «"»".

3°. Let n be any rational negative quantity and = —i?.

ThenK)-^= (^ =
J^p

= «-""•

We know already that the law holds when m and n are

positive integers.

Hence for all rational values of ?n and n

III. To prove (aby = «"Z>" for all rational values of 7i.

1°. Let n be any positive rational quantity which may

be denoted by a fraction -, in which p and 5' are positive

integers.

Then (aby = (ab)^ = ;{/{abY, by definition;

= ^a^b^, by (2).



202 THE INDEX LAW.

We know already that the law holds when m and n are

positive integers. Therefore

for "all positive rational values of m and 7i.

2°. Let m and n be essentially positive, either fractions

or integers.

Then a""* . a"" = J-
. 1- = -^^ = a-"*-*^.

by definition.

And if m — ^ be positive.

and «*".«-".«" = «"*. — . «" = a™.
a"*

.-. a . a-"", a"" = a"*-", a".

. •. a"^ .
<?-" = «"*-'*.

Hence if m — '^ be negative, that \^ n — m be positive.

Therefore for all rational values of m and ?^

aJ^ .
«" = «»" + ".

Cor. Since «"'"''. «" = r?"" for all rational values of

m and n, it follows, by dividing both sides by 0", that

^m _^ ^n -. ^m-n
f^j. ^|j national values of m and /i.

II. To prove that («"*)" = «"*" for all rational values of

m and ^z.

1°. Let m have any value whatever, and let 71 be a

positive integer.
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Then, by definition,

(ary = or ,ar , or . , .to n factors

= a

= oT'',

2°. Let m have any value whatever, and let w be a

fraction -, in which p and q are positive integers.

Then {aTy^ = ^(oTY, by definition;

= ^a-^byII, 1°;

mp
= fl^ 9

, by definition;

= a'"'^ = «"»".

3°. Let n be any rational negative quantity and = — jo.

ThenK)-^= _I_^J__^a-p.

We know already that the law holds when m and 7i are

positive integers.

Hence for all rational values of ?n and n

III. To prove (aby = «"Z>" for all rational values of 7i.

1°. Let n be any positive rational quantity which may

be denoted by a fraction -, in which p and 5' are positive

integers.

Then (aby = (ah)^ = ^{aby, by definition;

= ^a^h^, by (2).
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Also, {a'^lf'Y for all values of 7i

= fl^"^" . ft"Z»^ . a'^h'' ioq factors

— aJ^ . oT' . a"" . . ,io q factorsX ^'' .&".&"...

to §* factors

. •. a^'lf = ^«"«^»««.

But, since n = -- or nq = p.

Therefore for all positive rational values of n

(aby = a''b\

2°. Let n be any rational negative quantity and = — p,

p being a positive integer. Then

w = {"i}-' = p)-. =i= »-"
• "-" = «"*"•

We know already that the law holds when m and n are

positive integers.

Hence for all rational values of n

(ahy = a/'b\

EXERCISE XCII.

I.

Find the values of:

1.
642/s. 2 16-8/2^ 3 25-1/2.

4. Q-f. 5. (100000)-/= e. (4)"^.
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Simplify

:

9. {a-y%-^)-\ 10. {d'by'')-yK

Express with fractional or negative indices

:

11. Va-\- Vh -\- \^x^. 12. V^^ + ^^ay\

13. 4/«V + VaY- 14. VxYz^ + VaV.

Express without fractional or negative indices

:

16. xV^ - z-^ 16. a-^-y^

17, ^3/4J-2 _ ^-3/4J2, 18 a-SJ-2/3 + 3^1/3^,-3/4.

Multiply

:

I.

19. a;2/5 _^ y2/5 ^ ^2/5 _ y2/5^

20. 1 + a;V5 -f a;2/5 by 1 - a;V5.

21. «V2 _ ^1/4^,1/4 _|_ Jl/2 by «l/4 4. ^1/4.

II.

22. icVe _ a;V6 _|_ :^;i/2 _ ^1/6 _|_ ^-1/6 _ ^-3/6 i^y ^^/e _|_

23. x^ + :z;3/2 + 1 by ^"^ + x-^/^ + 1.

'^*- ^^ - 3^^^'^^^'^ + i«^'^^^'^
- i' ^^ r^'^

4

Divide

:

I.

25. x^ — y^ by ^/^ — y^ '^.
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6w 6n 2n 2n

26. x^ —y^ by x'"* —y^.

27. x^ + y^ by 2;V3 .f ^4/3_

28. x^ + 32?/5/^ by x^/^ + 2«/V4.

II.

29. x''/^ - 2 + ^-V3 by .^2/3 - x-y\

30. «'/2 - X by «Vio _ ^4/5,

81. a;^/^ — 2;^^/^ + xy^y — 3/^/^ by a;V2 _ yV^,



CHAPTER XVIII.

ELIMINATION.

160. Simultaneous and Independent Eq[uations.—Two
or more equations are said to be simultaneous when they

are satisfied by the same values of their unknown quanti-

ties.

The equations are independent when one cannot be de-

rived from the other.

When an equation contains two or more unknown
quantities, an indefinite number of values of their quanti-

ties may be found which will satisfy the equation.

e.g. Let 3x + 4?/ = 18.

Transpose the term containing y and solve for x, and

we have

^-
. 3 •

If in this result we put ?/ = 3, we get

18-12 ^

and if we put ^ = 4, we get

18 - 16 2

From this it appears that when an equation contains

two unknown quantities, it can be satisfied by an unlimited

number of pairs of values of these quantities, for by assign-

807
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ing any value whatsoever to one of these quantities we ob-

tain an equation from which the other may be found.

In general terms, if

ax -{- hy -\- c = 0,

we may give y any value m. Then ^^

ax -\- hm -f- c = 0,

hn + cx= —

.

a

The values y — m, and x— ^^, evidently satisfy

the given equation. That is, in an equation of the first

degree in x and ?/, to every value of y there is a correspond-

ing value of X which will satisfy the equation.

161. Two Unknown duantities require two Inde-

pendent Equations for their Solution. — If, however, we
have two independent equations in x and y, of the indefi-

nite number of pairs of values of x and y which will satisfy

either equation alone, there is only one pair which will

satisfy both.

To obtain this pair of values, we may solve each equa-

tion for the same letter, and put the resulting values equal.

e.g. Let 3a: + 4?/ = 18, (1)

and 2:c+5«/=:19. (2)

From (1), we have x — —
^,

o

and from (2), x — —^.

Now as we are seeking the value of x, which is the same

in both equations, we may put

18-4y _ 19-5y
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As this is a simple equation of the first degree in y, we
may solve it for y, and then find the value of y which will

give the same value of x in the two equations.

Solving (3) for y, we obtain y = 3.

Substituting this value of y in (1), we get

3:?; + 12 = 18.

.-. 3:^^ = 6,

and X = 2.

The same value of x would have been obtained had we

substituted the value of y in (2).

162. Elimination.—The general method of solving si-

multaneous equations of two or more unknown quantities is

to get rid one after another of all the unknown quantities

but one, so as to obtain an equation containing that un-

known quantity alone; then to find the value of this

quantity from the resulting equation, and afterwards of the

remaining unknown quantities by substitution.

The process of getting rid of the unknown quantities is

called elimination.

163. Three Methods of Elimination.—There are three

general methods of elimination, known respectively as the

methods by comparison, by substitution, and by addition or

suMradion.

The first has been illustrated already. It consists in

finding the value of the same unknown quantity from each

of the two equations, and putting their values equal to each

other.

e.g. 2a; + 3^ = 19; (1)

• - 3x-\-'ly = 16. (2)

From (1), X = —--^-,
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and from (2), x = -—^

.

o

19 - 3y _ 16 - %y

2 ~ 3 '

or 57 - 9?/ = 32 - 4.y,

or 5«/ = 25.

.-. y= b.

Substituting this value of ?/ in (1), we get

22; + 15 = 19;

x = 2.

The second method consists in finding the value of one

of the unknown quantities from one of the equations, and

substituting that value in the other.

e.g. 2x-{-'dy = 19; (1)

Sx + 2y = 16. (2)

From (1), we obtain x = ^r

—

-.

Substituting this value for ^ in (2), we get

"V^*^

2 ^^y = 16,

or 57 -9.V + 4^:= 32,

or by = 25.

*• y = ^'

Substitute this value in (1) or {% and we find

x= 2.

The third consists in multiplying each of the equations

by some number which will make the coefiicients of one of



ELIMINATION. 2 1

1

the unknown quantities the same in both, and adding the

equations when these coefficients have opposite signs in the

two equations, and subtracting the equations when the

coefficients have the same signs in both.

e.g. 2a: + 3?/ = 19, (1)

dx-\-^ = 16. (2)

Multiplying the first equation by 3 and the second by 2,

we have Qx -{- 2y = 57, (3)

and 6:r + 4?/ = 32. (4)

Subtracting (4) from (3), we get

by = 25.

.-. ^ = 5,

and X = 2.

The third method is the one usually employed, and the

first is least used. The student should, however, be familiar

with the use of all three.

EXERCISE XCIII.

Solve the following equations by each of the three

methods

:

I.

3:c +
4:X-

y= 9,

%y= 2.

2. bx- %y= 5,

2a; + y = 11.

%x-
%x-

6?/ = 10,

72/ = -> 3.

4. Ix + lly = 17,

2x - by = 13.

9x-
3^ +

5^ = - 1,

6?/ = 15.

6. 11a; + ly=- 5,

4a; - by^- 32.

%x-\-

7x-\-

2/= 4,

8i/ = - 13.

8. 8a; - 1/ = - 6,

a;+ By =-17.
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9. 14a; — dy — 45, lo. 6x — 7y — 0,

6x + 17^ =1. 7x-\- 5ij = 74. '

Solve the following by any method of elimination

:

11. -3- + 2/ = 10, 12. 2x - ^—j- = 4,

, y ^ o r^ ^ — ^^+1= 5. 3^ = 9--^.

13. Find the first four terms of the square root of 1 — a:.

14. Find the cube root of cc^ — ^x^ + 15^;* — 20:^3+ 15x^

-6x-\-l.

II.

3x^1/
, „ 2x —Sy Sx —by 1

^_X=s :r + 4y 5.T - 4y _
3 8 11 "^ 7 -

17. -yC^ + 2/) = 5(^ - «/)^

—(a; + 2/) = 35-(^ - «/) -y
18. :?:(2/ + 7) == y{x + 1),

2:^; = 3^/ - 19.

4 5

2
^3~ - ^^

2 •

20. «.'^ = %, 21. :^ + y = h
X -\- y — c. ax -\- hy — c.

22. ic + ?/ = a + J, 23. a; +?/ = « + ^,

X -\- a _ h ax -\- hy = a;^ -\- h^.

y -\-h
~"^'
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a h X A- a , b

ax+ by = c. y -\-

b

a

EXERCISE XCIV.

Solve the following problems by two unknown quan-

tities :

Ex. 1. Find two numbers whose sum is 17 and

whose difference is 3.

Let a; = the larger number,

and y = the smaller number.

Then x + y = 15, (1)

and X - y = 3. (2)

Add equation (2) to equation (1), and we get

2x = 18.

.-. x= 9.

Subtract equation (2) from equation (1), and we get

2y = 12.

.-. y= Q.

Hence the numbers are 9 and 6.

2. Find a fraction such that when 5 is added to its

numerator and 2 is added to its denominator, its value is

3/4; and if 1 be subtracted from its numerator and 5 be

subtracted from its denominator, its value is 3/5.

Let X = the numerator,

and y = the denominator.

Then —{— = -,
y^2 4
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X - 1 3
and k~'k-y - b 5

Clearing of fractions, we have

4a: + 20 = 3«/ + 6, or 4:X - dy = - 14, (1)

and

6x - 6 = 3y - 15, or 5x - Sy = - 10. (2)

Subtracting (1) from (2), we get

X = 4:.

.'. 16 - 3^ = - 14,

or dy = 30.

.-. y = 10.

Hence the fraction is 4/10.

3. There is a number composed of two digits. The

sum of the digits is 7, and if 9 be added to the number the

digits will be reversed.

Let X = digit in the tens^ place,

and y = digit in the units' place.

Then the number is 10a: + y. When the digits are

reversed the number is lOy -\- x.

Then x -\- y = 7, ^ (1)

10x + y + 9 = 10y + x,

or 9a; — 9i/ = — 9,

or X — y = — 1. (2)

Adding (1) and (2), we get

%x = 6.

.\ X = 3,
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Subtracting (2) from (1), we get

2^ = 8.

.-. y = ^>

Hence the number is 34.

I.

1. The sum of two numbers is 8 and their difference is

G. What are the numbers ?

2. There is a certain fraction, such that if its numer-

ator be increased by 4, its value is 4/5 ; and if its denom-

inator be increased by one, its value is 1/2. What is the

fraction ?

3. A certain number of two digits is equal to five times

the sum of its digits, and if 9 be added to the number, its

digits will be reversed.

4. A number consists of two digits whose difference is

1 ; if it be diminished by the sum of its digits, the digits

will be reversed. What is the number ?

5. Eight years ago A was five times as old as B, and in

two years he will be three times as old. What are their

present ages ?

6. A alone does 3/5 of a piece of work in 30 days, and

then with B's help finishes it in 10 days. In what time

could each do it alone ?

II.

7. A man buys 8 lbs. of tea and 5 lbs. of sugar for

$2.39 ; and at another time 5 lbs. of tea and 8 lbs. of sugar

for $1.64, the price being the same as before. What were

the prices ?

8. Two vessels contain mixtures of wine and water. In

the first there are three times as much wine as water, and in

the second five times as much water as wine. How many

gallons must be drawn from each vessel to fill a third, which
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holds 7 gallons, with a mixture which shall be half wine

and half water ?

9. Two vessels contain mixtures of wine and water. In

the first there are 4 gallons of wine to 3 gallons of water,

and in the second there are 5 gallons of water to 2 gallons

of wine. How many gallons must be drawn from each ves-

sel to fill a third, which holds 12 gallons, with a mixture

which shall be 1/3 wine ?

10. A man buys 2 lbs. of tea and 6 lbs. of sugar for 81

cents, and at another time 4 lbs. of tea and 9 lbs. of sugar

for $1.51|, the price being the same as before. What were

the prices ?

164. To Solve for n Unknown Quantities requires 7i In-

dependent Equations.—We have seen that we need two si-

multaneous equations in order to find the value of two un-

known quantities. Similarly, we need three independent

simultaneous equations in order to find the value of three

unknown quantities, and n independent simultaneous

equations in order to find the value of 7i unknown quanti-

ties.

With three unknown quantities, we first combine any

pair of the three equations so as to eliminate one of the un-

known quantities, and then another pair so as to eliminate

the same unknown quantity. We shall then have two

equations with two unknown quantities. Then we combine

these two equations so as to eliminate one of the remaining

unknown quantities, and thus obtain one equation with a

single unknown quantity. From this we obtain the value

of this quantity, and then, by successive substitution, the

values of the other two.

e.g. Qx-{-%y -bz = 13, (1)

^x-\-^ -2z = 13, (2)

'7x-\-by -^z = 26. (3)



ELIMINATION. 217

Eliminate y from (1) and (2) by subtraction, multiply-

ing (1) by 3 and (2) by 2.

18a; -\-Qy - 15z = 39,

6x-i-6t/ - 4.z = 26.

.-. 12a; -11^ = 13. (4)

Next eliminate y from (1) and (3) by subtraction, mul-

tiplying (1) by 5 and (3) by 2.

30a; + 10?/ - 26z = 65,

14a; + Wy - 6z = 52,

.-. 16a; -19^ = 13. (5)

Next eliminate x from (4) and (5) by subtraction, mul-

tiplying (4) by 4 and (5) by 3.

48a; - 44^; = 52,

48a; - 57z = 39.

.-. 132=13,

and z = 1.

Remember that the equations may be combined in any

order, and that those combinations are best which will pro-

duce the required result in the simplest and most direct

way.

EXERCISE XCV.

x-Jr2y-^2z = 16,

2a; -f 1/+ z = n,
3a; + 42/+ ^ = 22.

2. a; + 3^/ + 4^ = 7,

a; + 2^+ z = 0,

2a; + 2/ + 2^ = 6.

X + 4.y + 3^ = 14,

3a; + 3^+ 2 = 21,

2a; + 22/+ z = Id,

4. 3x-2y-\- z = 10,

2a; + 3«/ + z = 18,
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5. Sx-^4:y = 0, 6. 5:?; + 2^ = 8f

,

2y — 4:z= — 14, Sz-y = 1|,

x-i-dy-\-2z=- 1. 8a; - lOz = 3f.

II.

7. .-1 = 12,
y + z z + x x-\-y

^ 5 - 4 - 3 '

^-1=14,
X + y-\-Z = 18.

.-1=15.

9. % =% =5.--3x, 10. a; + 16 = ^ + 14

2^ + 2 = 32; - 3. = 3^ + 9

n n ''[^ n n

11. Multiply 3rr2 + ^^^ — 5^* ^J ^^ — 2a;*.

6n 6to, n m
12. Divide a; 2 — a;^ by x^ — x^,

13. Square 2a;V3 _ 3^2/3 _j_ 4^^

Note. — When tliere are more than three unknown
quantities, the process of elimination is similar.

EXERCISE XCVI.

Work the following examples by three unknown quan-

tities :

I.

1. The sums of three numbers, taken two by two, are

20, 29, and 27. What are tlie numbers ?

2. The sum of three numbers is 78, 1/3 the difference

of the first and second is 4, and 1/3 the difference of the

first and third is 7. What are the numbers ?

3. A person bought three silver watches. The price of
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the first, with 1/3 the price of the other two, was 40 dol-

lars, the price of the second, with 1/4 the price of the other

two, was 42 dollars, and the price of the third, with 1/2

the price of the other two, was 44 dollars. What was the

price of each watch ?

4. A, B, and C together have $2100. Were B to give

A 300 dollars, A would have 380 dollars more than B, and

if B received 200 dollars from C, they would both have the

same sum. How many dollars has each ?

5. A, B, and C can perform a piece of work in 20

days, A and B in 30 days, and B and in 40 days. How
long would it take each to do it alone ?

6. A and B together can do a piece of work in 6 days,

B and in 6f days, and A and in b^^ days. How long

would it take each to do it alone ?

7. A number is composed of three digits whose sum is

9. The digit in the units' place is twice the digit in the

hundreds' place, and if 198 be added to the number, the

digits will be reversed. What is the number ?

8. A number is composed of three digits whose sum is

10. The middle digit is equal to the sum of the other

two, and if 99 be added to the number its digits will be

reversed. What is the number ?

9. A number is composed of three digits whose sum is

14. Seven times the second digit exceeds the sum of the

other two by 2, and if the first and second digit be inter-

changed the resulting number will be less than the given

number by 180. What is the number?

II.

10. A and B can do a piece of work in r days; B and

C in s days; and A and C in / days. In how many days

can each do it alone ?
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Do the following by two unknown quantities:

24. A crew can row 10 miles in 50 minutes down

stream and 12 miles in an hour and a half up stream.

What is the rate in miles per hour of the stream, and of

the crew in still water ?

Let X — the rate in miles per hour of the crew in still

water,

and y = the rate in miles per hour of the current.

.*. X -\- y = the rate in miles per hour of the crew

down stream,

and X — y = the rate in miles per hour of the crew up

stream.

Since the number of miles rowed, divided by the rate

in miles per hour, is equal to the time in hours, we have

10 5

x-^y 6'

and

12 3

x-y- 2'

.*. X = 10, and ?/ = 2.

25 A crew can row 20 miles down stream in an hour

and 20 minutes, and 18 miles up stream in 2 hours. What
is the rate of the current in miles per hour, and what is

the rate of the crew in still water ?

26. Two trains start from two stations at the same

time, and each proceeds at a uniform rate towards the

other station. They meet in twelve hours, and one has

gone 108 miles farther than the other, and then if they

continue to travel at the same rate they will finish their

journey in 9 hours and 16 hours respectively. What is

the rate of the trains, and tlie distance between the towns ?
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27. Two trains start from two stations at the same

time, and each proceeds at a uniform rate towards the

other station. They meet in six hours, and one has gone

30 miles farther than the other, and then if they con-

tinue to travel at the same rate, they will finish the

journey in 7 hours and 12 minutes, and in 5 hours, respec-

tively. What is the rate of the trains, and what is the

distance between the towns ?

28. A certain number of persons paid a bill. Had
there been 10 more, each would have paid $2 less, and

had there been 5 less, each would have paid $2.50 more.

How many were there, and how much did each pay ?

29. A sum of money is divided equally between a cer-

tain number of persons. Had there been m more, each

would have received a dollars less ; if n less, each would

have received h dollars more. How many persons were

there, and how much did each receive ?



CHAPTEK XIX.

QUADRATIC EQUATIONS.

A. SUED AND IMAGINAEY FACTORS.

165. Trinomial and Binomial Quadratics.—A complete

quadratic exj^ression in one unknown quantity contains

three terms, one containing the square of the unknown
quantity, one containing the first power of the unknown
quantity, and the third without the unknown quantity.

The most general form of such an expression is

ax^ -\- bx -\- c.

The term which does not contain the unknown quan-

tity is called the constant term of the expression, and the

complete expression is called a trinomial quadratic.

When the term containing the first power of the

unknown quantity is wanting, the expression becomes a

binomial, and is called an incomplete or a binomial

quadratic expression.

166. Factors of x^ + c.—Every binomial quadratic of

the form

x^ -\- c

may be factored as the difference of two squares, since it

may be written in the form

x^ - {- c).
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The factors will be

X -{- V — c and x — V — c.

1°. When c represents a positive number, these factors

are imaginary.

2°. When c represents a negative number which is not

a perfect square, the factors are surd.

3°. When c represents a negative number which is a

perfect square, the factors are rational.

e.g. 1. x^^b=x^-(-b)= (x - V'^){x^ V^),

a;2+4=^-2_(_4)= (a; - V^{x + V-l)

= {;x - 2 i/^)(:^:4-2 V^.
2. a;2 + (- 3) = 3-2 - 3 = {x - V^){:x + V^).

3. x^ + (- 9) = a:2 - 9 = (a; - Z){x + 3).

When the expression is in the form

ax^ -\- c,

a may be taken out as a factor first, and then the remain-

ing factor may be factored as the difference of two squares.

Thus,

ax^ + o = a[x^ + '-)=a(^x^-[-'-]^

e.g. 1°. 3r?;2 + 6 = 3(a;2 + 2) = 'd{x^ - (- 2))

=3 3(:r - V^^2)(a; + V^^^).
r. ix^^{-^0) = 4.(x'-b)

= 4:(x -f V5)(x - Vb).
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3°. 6a;2+(-20) = 5(2;2-4)

= b{x - 2)(^ + 2).

= ^x - VbJ^){x + 1/573).

4a;2 4. (_ 3) := 4(a; _ |/374)(2; + VsTT)

=4-irt){.+i^).

EXERCISE XCVII.

Factor the following quadratic expressions

:

1. a;2 + 5. 2. x^ - 7. 3. a;^ + 16.

4. Zx^ - 9. 5. 5a;2 - 25. 6. '^x^ + 14.

7. 2a;2 _ 3, 8 3^2 _|_ 5^ 9 5^2 _ 2.

10. 4a;2 + 3. 11. dx^ - 4. 12. Ix^ + 5.

167. Factors of a Trinomial Cluadratic. — Every tri-

nomial quadratic expression may be factored as the differ-

ence of two squares.

We first take out the coefficient of the square of the

unknown quantity, and after the second term of the ex-

pression we add and subtract the square of half the coef-

ficient of the first power of the unknown quantity. This

will give a polynomial of five terms, the first three of which

will be a perfect square. The last two terms must be com-

bined into one with a minus sign before it. The factors

will both be real when this term is essentially positive,

rational when it is an exact square, and surd when it is not



SURD AND IMAGINARY FACTORS. 225

an exact square. The factors will both be imaginary when

this last term is essentially negative.

e.g. 1°. Factor ^x^ + 15a; + 18.

First, we have Zx^ + 15:^; + 18 = ^x^ + 6x -\- 6).

Then, after the second term of the second factor, add

and subtract (5/2)^, and we get

('+l+l)('+l-8

. •. 3a;2 + 15^; + 18 = ^x + 3)(a; + 2).

2°. Factor ax^-\-bx^c.

First, ax^ -{- hx -{- c = aix^ A—x A— ).

\ a al

Then ^ +^ + ^=-' +^ +£-£ + „-

= x^ -^-x^ — - ^' ~ ^^^

a 4«^ 4a^

h
,

Vl>^ - 4:ac\f ,
b Vb^- 4.ac'

= ("+2^+ 2^—jl^ + 2^-

/ ,
b + Vb^- 4:ac\/

,

2«

b- Vb^- 4ac

2a

ax^ -\-bx -\- c

b^-S/W - 4.ac\f
,
b- Vb^ - 4:ac\

= T +
2a k + 2a

Whether these factors be rational, surd, or imaginary

depends upon the radical Vb'^ — 4ac,
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If the quantity under the radical be positive, the factors

will be real.

If also the quantity under the radical be a perfect

square, the factors will be rational; and if this quantity be

not a perfect square, the factors will be surd.

If the quantity under the radical be 0, the factors will

be equal.

If the quantity under the radical sign be negative, the

factors will be imaginary.

Since ax^ -\-'bx-\- c is the general form of a trinomial

.quadratic expression,

I ,
^ + y^^ ^(^c\( ,

h - Vh^- 4:ac\

may serve as a formula by which all such expressions may
be factored.

e.g. Factor ^x^ -f- 4a: + 5.

Comparing this with ax^ -\-bx-\- c, we see that a = 3,

b = 4:, and c = 5.

Substituting these values in the formula, we get

4 + VU - 60\/ , 4 - Vl6 - 60^^^+——^— U^+

or

or

In this case the binomial factors are imaginary.

EXERCISE XCVIII.

Factor the following trinomial quadratic expressions

by the formula:

I.

1. 4:X^-\-7x-6, 8, 2x^-]-6x + 2,
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3. 6x^ — ^x — 7. 4. 'ox^ — ^x — '6.

5. ^x'^'dx-\-Q. 6. 2:^2 + 10a; + 8.

7. A man bought 175 acres of land for 6000 dollars.

For a part of it he paid 40 dollars an acre, and for the

remainder 25 dollars an acre. How many acres in each

part ?

II.

8. 7;?;2 + 9a; + 2. 9. lx^-\-'^%x- 7.

10. ^x^ + 7a; - 6. 11. 4^2 - Mx+ 12.

12. Ux^ -\- x-Q>. 13. 3a;2 - 10.C + 6.

14. A man bought m acres of land for s dollars. For a

part of it he paid a dollars an acre, and for the remainder

1) dollars an acre. How many acres were there in each part ?

V4a; + 1 + 2 Vx ^
15 Solve —=z=r — = 9.

V4:x + 1 - 2 Va;

Vx -\- a 4- Vx
16. Solve —^=^= —: = c.

Vx 4- a — Vx

B. ROOTS OF AInT EQUATIOI^.

168. Quadratic Equations.—A quadratic equation of

one unknown quantity is an equation whose first member
is a complete or an incomplete quadratic expression in that

letter after the equation has been reduced to its simplest

form and all its terms have been transposed into its first

member. After reduction and transposition the equation

takes either the form

ax^ -{-hx -^ c = (1)

or ax^ 4- c == 0. . (2)

169. Boots of an Equation.—A root of an equation is a

value of its unknown quantity which reduces its first
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member to zero, after it has been reduced to the form of

(1) or (2).

170. Solution of a Quadratic Equation.—To solve a

quadratic equation is to find its roots, or the values of its

unknown quantity which will reduce to zero the first

member of the equation after it has been brought into its

type form.

Since a product is zero when any one of its factors is

zero, the values of its unknown quantity which will reduce

to zero the factors of the first member after it has been

brought into its type form are the roots of the equation.

Hence, to solve a quadratic equation, reduce it to the type

form, factor its first member, equate each factor to zero,

and solve for its unknown quantity.

e.g. Solve a:^ — 6x = — 8.

Reduced to the type form this becomes

x^ - Qx -\- S = 0,

or (x - ^)(x - 4) = 0.

Put X -% = 0,

and we have a; = 2.

Put X- 4 = 0,

and we have a; = 4.

Hence 2 and 4 are the roots of the equation, for either

of these values of x will reduce the first member of the type

form to zero.

We have seen that every quadratic expression in one

letter may be resolved into two factors of the first degree

in that letter. Hence every quadratic equation has two

roots. Moreover a product cannot vanish unless one of its

factors vanishes. Therefore a quadratic equation has only

two roots. These roots will be rational when the factors

of the first member of the reduced form are rational, and
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equal when the factors are identical; surd when the factors

are surds; and imaginary when the factors are imaginary.

e.g. 1. Solve x^ — Qx = — ^.

When reduced to the type form this becomes

a:2 _ 6^ + 9 = 0.

.*. {x-d){x-'d)=Q.

Therefore the roots are 3 and 3, and are rational and

equal.

The roots of a quadratic equation are equal when the

first member of the reduced form is a perfect square.

2. Solve x' - lla: = - 28.

Transposing, we have

x^ - 11a; + 28 =
.-. {x-^){x-l) = 0.

.'. a: = 4 or 7.

Therefore the roots of the equation are 4 and 7, and are

rational and unequal.

3. Solve x^-4:x + l = 0.

Bring the first member of this equation under the case

of the diiference of two squares by adding and subtracting

the square of half the coefficient of x, and we have

iK2 - 4x + 4 - 3 - 0.

.-. (x-2-\- V3)(x -2 - V3) = 0.

,', a: = 2 - V3 and 2 -f V3.

Therefore the . roots of the equation are 2 — V3 and

2 + V'd, and are surd and unequal.

4. Solve a;2 - 6:r + 11 = 0.
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Bring the first member under the case of the difference

of two squares by adding and subtracting the square of

half the coefficient of x, and we have

a;2- 6:?; + 9 - (- 2) = 0.

(a; - 3 + y - 2)(« -'d- V ~ 2)=0.

. •. a; = 3 — |/ — 2 and 3 + V — 2.

Therefore tlie roots of the equation are 3 — i^ — 2 and

3 4- 'Z — 2, and are imaginary.

EXERCISE XCIX.

Solve the following quadratic (3quations by factoring:

1. a;2 - 32; - 18 = 0.

X.

2. x^ -\- 4:X = 45.

3. x^ + 13a; + 25 = - 15. 4. a;2 - 12a: - 5 == - 40.

6. a;2 4- 4x + 20 = 4 -- 4a;. 6. x^ — 5x = 5x — 25.

7. a;2 - 3 = 6. 8.

II.

a;2 - 2«2 ::.: _ «2.

9. x^-{-{a-^'b)x-\-al)^0. 10. a;2+(«-J)a;-«J=0.

11. 2a;2 4- a; - 3 = 0. 12. 3a;2 + 5a: = 12.

13. 15a;2 + 14a; = 8. 14. 7a;2 + 15.T = - 8.

15. 12 + 2a;2 == 11a;. 16. - 3x^ + 17a; = 20.

171. Formation of Quadratic Equations.—Since we ob-

tain the roots of a quadratic equation by equating to zero

each factor of the first member of its type form, it follows

that these factors are the unknown quantity of the equation

minus each of its roots in turn.

Hence we may obtain a quadratic equation in x whose

roots shall have given values by using as factors x minus
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each of the given roots in turn, finding the product of these

factors, and equating this product to zero.

e.g. 1. Form the quadratic equation in x whose roots

are 4 and — 7. The factors of the first member of its

type form will be

{x — 4) and {x + 7).

... (^_4)(.'^ + 7) = 0,

or a;2 + 3a;-.28 = 0,

which is the required equation.

2. Form the quadratic equation in x whose roots are

3 + V5 and (3 - Vb).

Here the factors are x — (3 + i^5) and a: — (3 — V6).

... (2; - (3 + V^)){x - (3 - 1/5)) = 0,

or a;2 - 6a; + 4 = 0.

EXERCISE C.

Form the quadratic equations in x whose roots have the

following values

:

I.

1. 3 and 7. 2. 4 and — 6. 3.-7 and — 1.

4. and 2. 5.-9 and 0. 6. 7 and — 7.

7. —8 and— 8. 8. 11 and 11. 9. 3 and 3/4.

•3 + 4/7 ,3-1/7 7+4/^5' ,7-4/5
,0. -^_ and —^. 11. -^- and —-.

12. 4 + 4/- 6 and 4 - 4/- 6.

II.

13. - 2/3 and - 5/6. u. 3/2 and - 1.

15. 7 and - 2/5. 16. 3 + 4/5 and 3 - 1^,



232 QUADRATIC EQUATIONS.

17. 2 + l/8~and 2- l/8. is. 5 + ^3 and 5 - l/3.

19. 9 + y- 4 and 9 - y- 4.

7 + 1/3-3 7 _ |/3^
20. _^^— and—^^ .

„, 11 + 4/"=^
, 11 - V^l

21. 1^— and j^_.

I.

22. Reduce — —^ -|— to a single negative fraction.

23. Reduce ,

—

~ — a; to a single fraction.
ic + 2

^

22;2 ^x
24. Reduce 2x —- to a sinde fraction.

EXERCISE CI.

1. (a: - 2)2 - 1 = |(:r + 2).

2. 2.^2 _^ 2(a; + 1)2 =: :^2r(a; + 1).
13

3

3. (2 - xf - (2 - x)(x - 3) + (a^ - 3)2 = 1.

4. ^ + i = 4i. 5. ^^+-^ = 2i.

a; + 2 2; + l _ 26 4 3 _ 17
®'

a: + l + « H- 2 ~ y' "'^ ic- 3
~

a; + 5 ~ 10*

II.
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4.x -d
., ,

2a; - 3 x-1 x-\-l 6x
10. w- ^ = 3 + -. 11.

——: +
3a: - 7 'x-1' " ' x+1^ x-1 x^ -1'

^x-1 o^ + 1 _ «
2x-l 13 _ 3a; + 5

EXERCISE Cll.

1. Solve ^{3 - 4:x) + 4/(2 + 5x) = ^(5 + x).

Transposing, we have

|/(3 - 4.x) + |/(2 + 5a;) - |/(5 + x) = 0.

Multiplying by the conjugate, we have

3 _ 4^ _}_ 2 |/(3 - 4a;) V(2 + 5a;) + 2 + 5a; - 5 - a; = 0,

or 2 |/(3 - 4) 4/(2 + 5a;) = 0.

.-. |/(3 - 4a;) |/(2 + 5a;) = 0.

.-. (3 - 4a;)(2 + 5a;) = 0.

.-. a; = 3/4 and - 2/5.

2. i/(5
- 7a;) + |/(4a; - 3) = |/(2 - 3a;).

3. Vi^ + «) + V(^ -^) = V(^^ -{-a-b).

4. |/(3 + 4a;) - i/(4 + 2a;) = |/(7 + 6a;).

a. 4/(2 - 3a;) - |/(7 + a;) :=. 4/(5 + 4.x),

6. V(a;2H-3a;-54)- 4/(a;2-3a;-54)= |/(2a;2 -108).

II.

7. 4/(a;2+4a;-60)- |/(a;2-4a;-60)= ^{2x^-120).

8 |/(12a;2-a;-6)- |/(12a;2 + a;-6)= i/(24a;2-12).

9. 4/(36a;2+24a;+l)+ V(36:i;2-24a;+l)= t/(72a;2+2).
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172. Interpretation of Solutions.—
Ex. 1. A man sold a watch for 24 dollars and lost as

many per cent as there were dollars in the cost of the watch.

What was the cost of the watch ?

Let X = the cost in dollars.

Then X = the lost per cent,

and ^•ioo=ioo=i°'''°'i°"«'^-

Also, X — 24t = loss in dollars.

••• 100=^ '''

Solving this, we get

x=QO or 40.

That is, the cost was either 60 dollars or 40 dollars ; for

either of these values satisfies the conditions of the problem.

2. A farmer bought a number of sheep for 80 dollars.

Had he bought 4 less for the same money, they would have

cost him 1 dollar apiece more. How many did he buy ?

Let X = the number bought.

80
Then — = the price per head in dollars,

80
and J

= the price per head, if there had been 4

more.

80 80

X X — 4:

- 1.

Solving this equation, we get a; = — 16 or + 20.

Only the positive value will satisfy the condition of the

problem. Therefore the number of sheep was 20.

In solving problems which involve quadratics, tliere
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will be, in general, two values of the unknown quantity,

both of which may not answer to the conditions of the

problem. This is due to the fact that the symbolic lan-

guage of algebra is more general than ordinary language.

So that the equations which correctly represent the con-

ditions of the oral problems may represent other allied

conditions also. The equation is entirely general, while

the verbal statement is more or less restricted. Verbal

statements are supposed generally to be restricted to an

arithmetical sense which admits only of positive numbers

;

while there is no restriction on the numerical symbols of

an algebraic equation.

A little consideration will enable the pupil to determine

whether or not both values of the unknown quantity will

fit the conditions of the verbal problem, and which one to

select in case both will not answer. It will be found also

a valuable exercise to interpret negative results when

possible.

Thus in the last example, to buy — 16 sheep has no

meaning in the arithmetical sense, but algebraically it

means to sell 16 sheep.

To buy 4 less than — 16 would mean to sell 20.

In the first case he would have paid — $5 a head for

the sheep; that is, he would have sold them for $5 a head.

In the second case he would have bought them for 1 dollar

more a head, or for — 4 dollars; that is, he would have

sold them for 4 dollars a head.

When one of the solutions is negative the wording of

the problem may be changed, in general, so as to make

that solution positive and arithmetically true.

Thus, a farmer sold a number of sheep for 80 dollars.

Had he sold 4 more for the same money he would have

received 1 dollar a head less for the sheep. How many

did he sell ?

e.g. 1. The length of a field is 12 rods and its breadth is
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10 rods. How many rods must be added to the length of

the field that the area may be 100 square rods ?

Let X = number of rods to be added.

Then (1^^ + a;)10 = 100.

10:^ = 100 - 120.

x= -2.

Hence the number of rods to be added to the length

is — 2. This is possible algebraically, but impossible arith-

metically.

In the arithmetical sense, to add means to increase;

and as the area of the field at first was 120 square rods, no

increase in its length could make its area 100 square rods.

But algebraically, to add — 2 means to subtract 2

arithmetically; and were the statement, *' How many rods

must be subtracted from the length of the field to make its

area 100 square rods ?" we should find the 2 to be positive

and, therefore, true in the arithmetical sense.

e.g. 2. A's age is 40, and B's 35. How many years

hence will A's age be twice B's ?

Let X = number of years hence.

Then ^0 -\- x = 2(35 + x),

x= —30.

This is impossible arithmetically, but perfectly true

algebraically, since — 30 years hence means 30 years ago.

Had the question been worded, " How many years ago

would A's age have been twice B's ?'' the solution would have

been positive and the problem would have been possible

arithmetically.

When imaginary results are obtained in the solution

of a problem, there is either an impossibility in the con-

ditions of the problem or an error in the formation of the

equation.
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e.g. Divide 12 into two parts whose product shall

be 37.

Let X denote one part.

Then x{l% - x) = 37.

nx -x^ = 37.

x^ - 12x + 37 = 0.

a;2 - 12a; + 36 - 1 = 0.

x-Q ± V~^^ = 0.

x = Q- V -1, or 6 + y - 1.

\<^ - X -^ Q -\- V - I, or 6-4/-1.

That is, 12 cannot be divided into two parts whose

product is 37.

EXERCISE cm.

I.

1. Find two numbers whose difference is 7 and

whose sum multiplied by the greater is 345.

2. Find three consecutive numbers whose sum is equal

to 3/5 the product of the last two.

3. Find two numbers whose difference is 12 and

whose sum multiplied by the greater is 560.

4. Find three consecutive numbers whose sum is equal

to 3/7 the product of the last two.

6. Find two numbers whose sum is 6 and the sum of

whose cubes is 72.

6. Find four consecutive numbers such that the prod-

uct of the last two shall be equal to the number composed

of the first two used as digits.

7, Find four consecutive numbers such that the prod-
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uct of the last two shall be 2^ times the product of the

first two.

II.

8. A merchant bought a quantity of flour for 120

dollars. Had he bought 10 barrels more for the same

money, the cost would have been 2 dollars a barrel less.

How many barrels did he buy, and at what price ?

9. A merchant sold a quantity of wheat for 16 dollars,

and the loss per cent was equal to the cost in dollars.

What was the cost of the wheat ?

10. A merchant sold a quantity of cloth for 96 dollars,

and the gain per cent was equal to the cost in dollars.

What was the cost of the cloth ?

11. A crew can row 10 miles down stream and back

again in 2 hours and 40 minutes; and the rate of the

stream is 2 miles an hour. What is the rate of the crew

in still water ?

12. A crew can row 20 miles down stream and back

again in 7 hours, and the rate of the stream is 3 miles an

hour. What is the rate of the crew in still water ?

173. Solution of the General Quadratic Equation.—
The most general type of a quadratic equation of one un-

known quantity is

ax^-\-lx-\-c = 0. (A)

If we divide through by a, then

x^ 4- -X A- ~ = 0',

a a

and if we substitute j) for —, and q for — , the equation
C(/ (t

becomes

x'-^px^q = 0, (B)
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which is the quadratic equation reduced to its simplest

form.

P
If in equation (B) we add and subtract the square of ^,

we get

or x^

which factors into

+^, +Z_Z^ = o,

Therefore x = l/2(- j9 + Vp^ - ^),

and l/2(-j9- Vp^ - ^).

On account of the double sign of the root symbol, y",

both values are included in the one expression

x^l/%{-p±Vf-4.q), (1)

which is the solution of (B).

h c
If in this equation we write - for p and — for q^ we have

a ^ a

" 2\ a^^ a" ar

1/ ^ , Jh^ 4«c\
or ^=o ± r -T 2"'

2 \ « a'^ of I

( h Vh^ - 4.ac\or ^ = o
. 2\ a

or x= ^i-{— b ± S/IP- — ^ac),
Zci

which is the solution of (A). (2)
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Formulae (1) and (2), for the solution of quadratic equa-

tions, should be so thoroughly memorized that the roots of

any quadratic equation may be written down at sight.

Formula (1) is most convenient for use when the coefficient

of x^ is unity, and formula (2) when the coefficient of x^ is

not unity.

e.g. 1°. Find the roots of x^ -{- %x - 35.

l/2(-2± 1/4+ 140),

or l/2(- 2 ± 12).

Hence x^ = 5, and X2= — 7.

2°. Find the roots of 2x^ -\- 6x - 12.

l/4(- 5 ± 4/25 + 96),

or l/4(- 5 ± |/121),

or l/4(- 5 ± 11).

Hence x^ = 3/2, and a^g = — 4.

3°. Find the roots of 3x^ -{- 7x - 25.

l/6(- 7 ± 1/49 + 300),

or l/6(- 7 ± |/349).

- 7 + ^^'349
^

- 7 - 1/349
Hence x = , and Xo =

6 '
'

6

Whether the roots be rational, surd, or imaginary de-

pends upon the radicals Vp^ — 4g and Vb'^ — 4ac.

When p'^ = 4g or P = 4:ac, the roots are equal, since the

radical then becomes zero.

EXERCISE CIV.

I.

1. x^-\-Qx-\-S = 0. 2. x^ - Ux - 120 = 0.

3. 2x^ - bx^ 25. 4. 3x^ - 17a: + 14 = 0.
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6. 7^:2 = 22a; - 15. 6. {^x - 'df = 2a; + 3.

7. a;2_|_|^i8. 8. x^-^ = l.

Sx^ 4a; 1 ^

10. (a; - 2)2 = 1 + |(a; + 2).

11
^ a;+l a; + 2 _

•

a; + l"^a; + 2'^a; + 3

12. a;2 -|- 2«a; — V^ — a^.

13. a;2 + «(1 -I- 3^')a; + 3^^^ = 0.

14. ax^ + ^(1 - a^)x = ab\

II.

16. {a - xY -(a- x){h -x)^{x- If = (a - b)\

16. a\x — hy = li^{x — of.

17. (2a- b- xf + 9(« - ^)2 = ((« + b)- 2x)\

,1 ,1 x , a a b
18. a; 4- - = <? H . 19. - -f - = - -f -.

a; « a X a

20. - + --— +—nr- = 0.
a ' a -\- X ^ a -\- 2x

21.
a; + a-]- 2b _b — 2a-\-2x

X -\- a — 2b ~ b -\-2a — 2x

CO ^±1 I

^ + ^
, ^±i - Q

22-
:c + 2 + a;4-3"^a;+5 ~ "^^

5a; 4- 2 5a; - 2 _ 25a; -j- 11
^^-

5.?; - 2 + 5a; + 2 ~ 5a; + 2
•

3a; + 1 3a; - 1 9a; - 13/2
^*"

3a; - 1
"^

a; + 1 ~
3a; + 1



242 QUADRATIC EQUATIONS.

EXERCISE CV.

I.

1. Two trains run over the same 120 miles of rail with-

out stopping. One of them goes 10 miles an hour faster

than the other and passes over the distance in 1 hour less

time. What is the speed of the trains ?

2. Two trains run, without stopping, over the same 90

miles of rail. One of them goes 5 miles an hour faster

than the other, and passes over the distance in 15 minutes

less time. What is the speed of the trains ?

3. A crew can row a certain course up stream in 5

hours, and in still water they could row it in 4^ hours less

time than it would take them to drift down stream to the

starting-point. How long would it take them to row back

with the current ?

4. A crew can row a certain course up stream in 6^

hours, and in still water they could have rowed it in 4 hours

less time than it would take them to drift down to the start-

ing-point. How long would it take them to row back with

the current ?

II.

6. Simplify {a'by^y y\a - ^^/'')y\d^H " V^)- \

6 Express a'^h'^^^ -{- 2a^/% ~ ^'^ without negative or

fractional exponents.

7. Find the value of (64)" 2/2.

8. Divide «"* + ^/^ by a"" + *'/'* and reduce the resulting

exponents to a single fraction.

9. Multiply («+^) by [0-^^.
10. Factor Ix^ — Uxy — llic -f 22y.
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174. Solution of Equations of the Form of Trinomial

duadratics.—Whenever an equation of one unknown quan-

tity can be reduced to a trinomial the first term of which

contains the unknown quantity only in the square of a

factor, the second term only in the first degree of the same

factor, and the third term not at all, it may be first solved

as an ordinary quadratic for that factor, and then the values

of the unknown quantity may be found from values of the

factor.

e.g. 1°. Solve ^{x - Sy -{- 5{x - S) - 2 = 0.

Factoring, we obtain

{(X - d) -\-2)(d(x - '6) - 1) = 0;

and equating each factor to zero, we have

a;- 3 + 2 =0, or x = l;

and d{x — 3) — d — 0, or x = 4.

2°. Solve ex' -5x^-6=0.

Factoring, we obtain

(3a;2 + 2)(2a;2-3) = 0.

.-. 3a;2 + 2 = 0, or x"" = -2/3;

and 2x^-3 = 0, or x^ = 3/2.

.'. x= ±V -2/3= ±1/3V -i

and x= ± 4/3/2 = ± 1/2 V6.

EXERCISE CVI.

Solve the following equations as quadratics:

I.

1. Q(2x - 3)2 - n{2x - 3) = 0.

2, 3a^ - 19^2 4- 20 = 0,
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3. ^x - 4)2 - 11(^ _ 4) 4- 10 = 0.

4. (2^2)2 _ 7(2:^2) _|_ 12 == 0.

6. {x - 3)2 _ 5(:z; - 3) + 6 = 0.

6. ^x^ - 33a;2 + 28 ^ 0.

II.

7. Ux!^ - Ux^ + 12 = 0. 8. 64.x^ - 21x^ + 2 = 0.

9. 8:^6 _|_ 37^,3 ^ 216. 10. 12x-^-{-x-' = d5.

11. 69-20x-^-x-^ = 0. 12. a;-4- 21:c-2=: - 108.

13. 32ic5 + l/ic5 = - 33. 14. x^ - 3a^/2 = 88.

EXERCISE evil.

1. A person has 12 miles to walk. After he has been

on the road one hour he increases his speed | mile an hour

and finishes his journey in f of an hour less time than he

would have accomplished it had he not altered his speed.

How fast did he walk at first, and how long was he on the

road?

2. A man has to drive 25 miles. After he has been

on the road two hours he slackens the speed of his horses 1

mile an hour, and is f of an hour longer than he would

have been had he not changed the rate of driving. At
what rate did he drive at first, and how long was he on the

road?

3J2
3. Reduce 3:^2 _ ^_ ^q ^ single negative fraction.

4. Rationalize — —

.

3 - 2 1^5
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II,

5. A and B together can do a piece of work in a

certain time. Were each to do half of it alone, A would

have to work 2 days less and B 4 days more than when

they work together. In what time can they do it together ?

6. A and B can do a piece of work in a certain time.

Were each to do half of it alone, A would have to work 4

days less and B 8 days more than when they worked

together. In what time can they do it together ?



CHAPTER XX.

QUADRATIC EQUATIONS OP TWO UNKNOWN
QUANTITIES.

176. Special Cases of Elimination. — Generally, by

elimination, two equations of the second degree with two

unknown quantities will produce an equation of the fourth

degree, which are usually insolvable by any of the methods

yet given.

e.g. x^-}-y = a. (1)

x-^f=h. (2)

From (1) we get y = a — x^.

Substituting this in (2), we get

X -{- {a — x^Y = b,

or X -\- a^ — 2ax^ -\- x'^ = &^,

which is an equation of the fourth degree, and insolvable

by any of the methods yet employed.

There are, however, several cases in which simultaneous

quadratics with two unknown quantities may be solved by

the rules of quadratics.

Case 1°.

}Vhen each of the equatioois is of the form

ax^ -\- hy'^ = c.

In this case one of the unknown quantities may be

eliminated by addition or subtraction, and then the value

of the other be found by substitution.

246
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e.g. Solve the equations %x^ + S?/^ = 56, (1)

4/ - Ux^ = 12. (2)

Multiplying (1) by 4, Sx" + 12/ =r 224.

Multiplying (2) by 3, - 39.^2 + 12«/2 = 36.

Subtracting, 47a;2 = igg.

,*. 0:2 = 4,

and o: = ± 2. (3)

Substituting (3) in (1)^, we obtain

8 + 3^/2 = 56.

.-. 3«/2 = 48,

and 2/2 = 16.

.-. 2/= ±4.

Therefore a: = 2, j^ = ± 4; or o: = — 2, ?/ = ±4.

In this case there are four possible sets of values of x

and y which satisfy the given equations

:

1. x = 2, y = 4:. 2. X = 2, y = — 4:.

3. X = — 2, y = 4:. 4. o: = — 2, ^ = — 4.

It would not be correct to leave the results in the form

X = ±2, y = ±4; for this would indicate only the first

and fourth of the above sets of values.

EXERCISE CVIII.

Solve the following equations:

I.

1. 3o:2 + 2tf = 77, 2. 4o;2 + Sy^ = 99,

3/ - 6o:2 = 21. 8o:2 - 12y^ = 23.

3. 5o:2 _^ 4^2 = 170, 4. o;2 _|_ ^2 ^ io(?>i2 + n^)^

3a:2 _ 7^2 ^ _ ge, o;2-9«/2= _20?i(3m -f 4'/^;.
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II.

6. 4:X-16=z 17 Vx. 6. x^/' + a;3/5 = 702.

7. Multiply at sight ^-f-
—\- c by j- -{- c, and ex-

press the result without fractions.

8. Factor 5x^ — lOax -{- Sbx — 16ab.

Case 2°.

JVhen one equatio7i is of the second degree and the other

of the first.

All equations of this kind may be solved by finding the

value of one of the unknown quantities from the first-degree

equation, and then substituting that value in the second-

degree equation.

The resulting equation will be a quadratic of one un-

known quantity which may be solved. When the value of

one unknown quantity has been found thus, the values of

the second must be found by substituting the values of the

one already found in the first-degree equation.

e.g. 1. Solve the equations '6x^ — xy = ^y. (1)

2a; + y = l. (2)

From (2), we have i/ = 7 — 2:r. (3)

Substituting this value in (1), we get

3^2 _ ^(7 _ 2x) = 2(7 - 2a;),

or dx^ -7x-{- 2^2 z= 14 - Ax,

.'. 5a;2- 3a;- 14 = 0.

.». {x - 2){6x + 7) =0.

Whence x = 2, or x = — 7/5.

Substituting these values in (3), we get

y = 3, OY y = +49/5.
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Therefore: 1. ^ = 2, 2/ = ^•

2. x= - 7/5, y = 49/5.

Certain examples in which one equation is of the third

degree and the other of the second degree may be solved in

a similar way.

e.g. 2. Solve the equations

^3 _|_ ^3 = 152^
•

(1)

X -\-y =^. (2)

From (2), we obtain y = 8 — x. (3)

By substituting this value of ^ in (1), we get

^3 _^ (g _ ^y ^ 152,

or x^ + 512 - 192^; + 24:X^ - x^ = 152,

or 24:X^ - 192x + 360 = 0,

or a;2 _ 8a; 4- 15 = 0.

.-. {x-5){x-S) = 0.

. •. a; = 5, or a: = 3.

Substituting these values of x m (2), we get

6 + y=8, (4)

and' 3 + 2/ =8. (5)

From (4), we have «/ = 3,

and from (5), y = ^^

Therefore a; = 5 or 3, and ?/ = 3 or 5.

1. X = 5, y = 3.

2. X = 3, y = 6.
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EXERCISE CIX.

Solve the following equations

:

I.

1. 3a^ — xy = 2y, 2. x -\- y = — 2,

2x -{- y = 7, xy = — 24:.

5. X — y = 2, ^. x^ -{- xy — y^ = — 11,

x^ -\- y^ = 34:, ^ — y = — 4:.

6. x^ -y^= - 296, 6. x^ -{- y^ = 152,

X — y = — 2. X -\- y = 8.

II.

7. x-y = l,

xy = a^ -\- a. 2A + 3/y = 1.

9. 8^ -y^= -7,
2x-y=-l.

10. x/y-^y/x = l0/3,

3x-2y=- 12.

11. 2a;2/« + 3:cV» - 56 = 0.

12. Factor Ibax — lOx + 6«J — 4J.

Case 3°.

An expression is said to be symmetrical with respect to

any of its letters when any two of them can be interchanged

without altering the value of the expression.

e.g. The expression ab -\- be -{- ca is symmetrical with

respect to the letters a, b, and c; for if any two of

them, as a and b, be interchanged, the expression becomes

ba -\- ac -\- cb, which is the same as the original expression

in meaning.

The equations x -\- y = 2,

xy = 3,

are symmetrical in x and y.
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The equations x — y = a,

xy= I,

are symmetrical except in their signs.

When tlie given equations are sym7netrical in x and y,

and one of them is of the second degree and the other of the

first.) they may he solved hy combining them in such a luay

as to oMain the values of x -\- y and x ~ y.

e.g. Solve the equations x-\- y = 1, (1)

xy=-Q. (2)

Squaring (1), we have x^ + '^^y + ^^ = !• (3)

Subtracting 4 times (2) from (3), we get

x^ — 2xy -\-y^ = 25,

which is the square oix — y.

Extracting the square root of each member,

X — y = ± 5. (4)

Adding (4) to (1), we have

2x = Q or — 4.

a; - 3 or - 2.

Subtracting (4) from (1), we have

2y= -4: or 6.

y= -2 or 3.

1. x = 3, y=-2.

.', 2. x=~2, y = d.

This method may be used in many cases when the equa-

tions are symmetrical except with respect to the signs of the

terms.

e.g. Solve the equations x^ -\- y^ = G5, (1)

X - y = -3. (2)
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Multiply (1) by 2, and subtract the square of (2) from

the result:

2x^ + 2?/^ =130

x^ — %xy -f 1/2 = 9

a;2•+ ^xy -^ y'^ = 121

.-. x^y=±ll. (3)

Add (3) to (2), and we get

2^ = 8 or - 14.

. •. X = 4: or — 7.

Subtract (3) from (2), and we get

— 2?/ = — 14 or 8.

«/ == 7 or — 4.

1. X = 4:, y = 7.

.-. 2. x^-1l, «/=-4.

Certain examples in which one equation is of the third

degree and the other is of the first or second may be solved

by the methods of this case.

e.g. Solve the equations x^ -\- y^ = 189, (1)

x^-xy-\-y^^ 21. (2)

Divide (1) by (2), and we get

^ + 2/ = 9. (3)

Square (3) and subtract (2) from the result:

x^ H- ^xy + y^ = 81

x^ — xy -\- y^ = 21

3xy = 60

.-. - xy= - 20. (4)
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Add (4) to (2), and we get

x^ — %xy -[- ?/^ = 1.

,-, x-y=±\. (5)

Add (5) to (3), and we get

1x = 10 or 8.

.'. x= 5 or 4.

Subtract (5) from (3), and we get

2y = S or 10.

.'. y = 4: or 5.

1. X = 5, 2/ — ^•

.-. 2. X = 4:, y = 5.

In solving examples under this case, it must be borne in

mind that, in every instance, we must combine the given

equations in such a way as to obtain the values of x -\- y
and X — y.

e.g. Solve the equations x^ -{- y^ = 13, (1)

xy= 6. (2)

Multiply (2) by 2, and add the result to (1), and also

subtract it from (1), and we get

x^ + 2xy + y^ = 25,

and x^ — 2xy + / = 1.

.'. x + y = ± 5,

and X — y = ± 1.

.-. 2a; = 5 ± 1 or - 5 ± 1.

.*. X = 3 or 2, or — 2, or — 3.

And 2^ = 5 =F 1 or -5^1.
. *. ?/ = 2 or 3, or — 3, or — 2.
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Therefore; 1. x = d, ?/ = 3.

2. 2- = 2, y = '6.

3. x= -% y = -3.

4. X = - 3, y = - 2.

A few examples in which both equations arc of the third

degree may be solved by the methods of this case.

e.g. 1. Solve the equations x^ — y^ — 26, (1)

':i?y — xy^ — 6. (2)

Multiply (2) by 3 and subtract the result from (1), and

we get

x^ - 3x^y + 3a;?/2 -^3^8. (3)

Extract the cube root of (3), and we get

x-y = ^. (4)

Divide (2) by (4), and we get

xy = 3. (6)

From (4) and (5), we get a; -f- 1/ = ±4. (6)

.-. 2a; =6 or -2,

and X -= 3 or - 1.

Also, "^y-= 2 or - 6.

.'. y:= 1 or - 3.

Therefore

:

1. x = 3, y = l.

2. x=-l,

EXERCISE

y = -d.

; ex.

Solve the following equations;

1. xy = 42,

x-{-y = 13.

1.

2 xy ~ 24,

x + y "• 11.
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8. x^ + if = 29, 4. x^ + ?/^ = 58,

X -\- y = 1. X -{- y = 10.

6. x^-\-y'^= 26, 6. x^-\-y'^ = 68,

X — y = — A:. X — y = — Q.

7. xy = — 18, 8. xy = — 72,

a; — ?/ = 11. a; — ?/ = — 18.

9. x^-y^ = 279, 10. a;3 _|_ ^3 ^ 152^

x^ -{- xy -{- y^ = 93. x^ — xy -\- y^ = 19.

11. x^-y^= 152, 12. a;3 -f ?/3 ^ 637,

X — y = 2. X -\- y = Id.

II.

13. a;3 + ?/3 = 243, 14. rc3 -y^^ 386,

a;^?/ + :ci/^ = 162. x^y — xy^ = 126.

15. x^-y^ = Wb + W,
xy(x — y) = 2b(d'^ — b^).

16. x'-^xy-\-y^ = Id' - Idab + W,
x?-xy^y^ = Za^- dab + Sb\

Case 4°.

An expression is said to be homogeneous when each of

its terms is of the same degree.

Certain equations which are of the form : a homogeneoits

expression in x and y of the second degree equals a constant,

may be solved by the methods of cases 1° a7id 3°. When
such equations can be solved by neither of these methods,

they may be solved by putting y = mx, and solving, first

for m, then for x, and finally for y.

e.g. Solve the equations a;^ — %xy = — 8. (1)

x'-\- y'=rd. (2)

Putting y = mx, we have

x^ - 2mx^ = -S, or x' = —^—-, (3)
27n — 1 ^ '



256 QUADRATIC EQUATIONS

1 ^
and x^ + wV = 13, or x" = , ,

1 + m^

8 13

2m — 1 1 -{- m^

.-. 8 + 8m2 = 26m - 13,

or 8m2 - 26m + 21 = 0,

or (2m - 3)(4m - 7) = 0.

.-. m = 3/2 or 7/4.

Substituting the first of these values in (3), we get

x^ - ^ - 4

.-. X = ± 2.

Substitute these values of x in (2), and we get

^ =±3.

Substituting the second value of m in (3), we get

a_ 8 _16
^ ~ 7/2 - 1 ~ 5

*

.'. ' X = ± 4/5 1/5.

Substitute these values in (2), and we get

y = ±1/b V6.

Then: 1. x = 4^/5 V5, y = l/bVb,

2. X =.^/bVb, y=- 7/5 V6.

3. ic = - 4/5 4/5", y = 7/5 \''5.

4. X = - 4/5 V5, y = - 7/5 Vb.

In each case the value of y might have been obtained

by substituting the values of m and xm y = mx.



OF TWO UNKNOWN QUANTITIES. 257

EXERCISE CXI.

Solve the following equations

:

I.

1. a:2 _^ 3^^ ^ 28, 2. x^-\-xy-\- 2tf = 74,

xy + %2 = 8. 2a;2 + 2xy + y^ = 73.

3. x^ -\- xy — 6y^ = 24,

2^2 -j- 3xy - lOy^ = 32.

II.

4. a;2 + a;^ — 6?/2 = 21, 5. ^^ — »;«/ + 2/^ = ^1*

a:?/ — 2?/^ =4. 2/^ — 2a;?/ = — 15.

6. x^ + xy + 2?/''^ = 44,

2ay^-xy-\-y^= 16.

EXERCISE CXII.

I.

Solve the following problems by using two unknown
quantities

:

1. The sum of two numbers is 8, and the sum of their

squares is 34. What are the numbers ?

2. The difference of two numbers is 3, and the differ-

ence of their squares is 33. What are the numbers ?

3. The sum of the squares of two numbers is 106, and

the product of the numbers is 45. What are the numbers ?

4. The difference of two numbers is 6, and their prod-

uct is 40. What are the numbers ?

6. The sum of two numbers is 7, and the sum of their

cubes is 91. What are the numbers ?

6. The difference of two numbers is 4, and the differ-

ence of their cubes is 316. What are the numbers ?

7. rind two numbers such that the square of the first
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and twice the square of the second shall together equal 32,

and the square of the second and three times the product

of the two shall equal 27.

II.

8. Find two numbers such that three times the square

of the smaller and the square of the larger shall together

equal 7, and the square of the smaller shall be 7 less than

four times the product of the two.

9. A man bought 8 cows and 5 sheep for 255 dollars.

He bought 3 more sheep for 39 dollars than cows for 300

dollars. What was the price of each ?

10. A number is composed of two digits. If its digits

be inverted, the sum of the new and original numbers will

be 44, and their product 403. What are the numbers ?

11. Multiply a A -, by J r—i-^•^ a — ^ a -\- b

12. Factor l^x^ — Sxy — 9x^y^ + 6y^.

13. Reduce — ^r^-^ -|- 75— to a single negative fraction.
obd oCi

14. Simplify {l/VZb)-y\

15. Multiply Vl by V^.

16. Express the following without fractional or nega-

tive indices

:

^2/3^-1 _ a-y^b.

8-51^
'•17, Rationalize the denominator of

3-21^2



CHAPTER XXL

INDETERMINATE EQUATIONS OP THE FIRST
DEGBEE.

176. Indeterminate Equations.—Equations are inde-

terminate when the number of independent equations

given is less than that of the unknown quantities which

they contain. For when such equations are solved for any-

one of their letters, the value obtained will contain con-

stants and one or more of the letters which represent the

other unknown quantities. Hence the value of the letter

found will vary with the value assigned to the other

letters.

Thus, if 2a; -|- 5«^ = 8, a: = 4 — 5/2?/, and y may take

as many values as we please, and to every value of y will

correspond a single value of x; and, conversely, to every

value of X will correspond a single value of y. Unless

some restrictions be placed on the values of the unknown
quantities, the equation may be satisfied in an indefinite

number of ways.

If, however, the values of the unknown quantities are

subject to any restriction, n equations may suffice to

determine the values of more than n unknown quantities.

In the present chapter we shall consider only indeter-

minate equations of the first degree in which the values of

the unknown quantities are restricted to positive integers.

177. Solution of Indeterminate Equations of the First

Degree in x and y.—Every equation of the first degree in

X and y may be reduced to the form ax ± by = ± c, in

859
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which ay ^, and c are positive integers, and have no com-

mon factor.

The form ax -\- by = — c cannot be solved for positive

integers ; for it a, b, x, and y are positive integers, ax -f- by

must also be a positive integer.

The remaining forms, ax ±by = c and ax — by— — c,

cannot be solved for positive integers when a and b are

commensurable. For if x and y are positive integers, the

common factor of a and b must also be a factor of ax+ by,

and therefore of c, which contradicts the hypothesis that

a, b, and c have no common factor.

The form ax — by= — c becomes by changing its signs

by — ax = c, which is essentially the same as ax — by = c,

a and b and x and y being interchanged.

Hence the two type forms ax-\-by = c and ax — by — c

are the only ones that need be considered, and those only

in the cases in which a and b are prime to each other.

Ex. Solve hx -f- 12y = 263 in positive integers.

Divide through by 5, the smaller coefficient, and we get

^ + ^y + ^=52 + |.

.-. :. + 2^ + ?^^ = 52. (1)

Since x and y are both integers, and the whole of the

first member is an integer, therefore

-=^-r— = an integer.

Multiplying this fraction by the integer which will make
the coefficient of y one more than the denominator (5), or

than a multiple of the denominator, we get

6?/ - 9
-^^—^— = an integer;
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11 — 4
that is, y — 1 -\- '^—z— = an integer.

V — 4 . ,

. •. ——— = an integer = p.
o

.'. y — 4: = 5p,

or y = 5p -\- 4:. (2)

Substituting this vahie of y in (1), we get

or x+ lOp -\-S + 2p+l = 52,

or x-\-12p = 43.

.-. X = 4:3 -Up. (3)

From (2) and (3) it is evident that x a^nd y will be

integral when p is an integer and only when p is an

integer; for they will both be integers when 5p and 12p

are both integers and in no other case, and 6p and 12^0 will

be integral when p is integral and in no other case.

From (3) it is evident that x will be negative when p
exceeds 3, and y will be negative when p is negative.

Hence p must be a positive integer less than 4. Hence

the only possible values of p are 0, 1, 2, 3. Thus the

only positive integral values of x and y are obtained by

putting in (2) and (3) p = 0, 1, 2, and 3.

The corresponding values of x and y are shown in the

following table:

p = 0,l, 2, 3,

X = 43, 31, 19, 7,

. 2/ = 4, 9, 14, 19.

Note that the coefficients ofp in the values of x and y
in (2) and (3) are the coefficients of y and x respect-
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ively in the given equation, and that one of the signs is

changed.

Hence when the given equation has the type form

ax -\- by = c, the term in p in the value of x ov y must be

negative, and the integral values of p and therefore of

X and y must be limited.

Ex. 2. Solve Sx — Sy — 28 in positive units.

Dividing by 3, the smaller coefficient, we get

,.+ !_, .9 + 1.

.-. 2x-y + ^^^ = 9. (1)

2x-l—-— = an integer.

Multiplying by 2 so as to make the coefficient of x

greater by one than 3,

4:X-2 — an integer.
3

x-2

2

X ~\ — = an integer.
o

an integer = p.
3

.-. X — "2 = 3p,

or x = ?>p -h 2. (2)

Substituting this value of x in (1), we get

or 4+ 6iJ-y+l + 2jo = 9,
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or 8p — y = 4:.

.: y = 8p-i. (3)

From (2) and (3) we see that p may be any positive

integer except zero.

When p = 1, 2, S, etc.,

:zj = 5, 8, 11, etc.,

and y — ^> 1^? 20, etc.

In this case the term in p is positive in both (2) and

(3), and the number of solutions is unlimited. This will

be the case always when the equation has the type form

ax — hy = c.

178. Solution of Indeterminate Equations of the First

Degree in x, y, and z.—To solve two equations in three

unknown quantities for positive integers: first eliminate

one of the unknown quantities so as to get one equation in

two unknown quantities; then solve this for positive

integers and obtain the value of each of the two unknown
quantities in terms of p and constants; and finally sub-

stitute these two values in one of the original equations to

find the value of the third unknown quantity in terms of

m and a constant, observe what values of p will make each

of these three positive integers, and find the corresponding

values of each of the unknown quantities.

e.g. Solve 2a; + 3?/ - 5^ = - 8,

bx- y-\-4:Z = 21, (1)

for positive integers.

Eliminating y by addition, we get

17:^:4-7^ = 55. (2)

... 2^ + . + ^=7 + |,
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or o i ,

3:?^ - 6 ^

3a: ~ 6 , ^—— = integer.

15:?; - 30

2^-4+

= integer,

— integer.

x-2
integer = p.

x-2 = 7p,

or x = 7p-^2. (3)

Substituting this value of x in (2), we get

119jo + 34 + 7;? = 55,

or 119;? + 7;2 = 21.

.% 17i?.+ ^ = 3.

.-. ;2 = 3-17i?. (4)

Substituting (3) and (4) in (1), we get

35J9+ 10 - 2/ + 12 - 68j9 = 21,

or — 'SSp — y = — 1,

y = l- 33p. (5)

The only value of p that can make z a positive integer

is 0. Substitute this value in (3), (4), and (5), and we get

x = 2,

and z = d.
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EXERCISE CXIII.

Solve the following equations in positive integers:

I.

I. 7a; +15?/= 59. 2. 8a; + 13.y = 138.

3 7^; -f 9^ = 100. 4. 13a; + lly = 200.

5 Find the number of solutions in positive integers of

11a; + 15^ = 1031.

Solve the following equations in positive integers

:

6. Qx -\- 7y -\- 4:z = 122, 7. 12x - Uy -\- 4.z = 22,

11a; -{-Sy -6z = 145. - 4a; + 6y -\- z=17.

II.

8. 20a; - 21y = 38, 9. 7a; + 4^ + 19z = 84.

3^ + 4^ = 34.

10. 23a; + 17y + 11^ = 130.

Find the general integral solutions of the following

equations

:

II. 7a; - Idy = 15. 12. 9a; - lly = 4=.

Solve in least positive integers

:

13. 119a; - 105y = 217. 14. 49a; - 69y = 100.

15. How can a length of 4 feet be measured by means

of two measures, one 7 inches long and the other 13 inches

long?

16. How can 45 pounds be exactly measured by means

of 4-pound and 7-pound weights ?

17. In how many different ways can the sum of $3.90

be paid with fifty- and twenty-cent pieces ?
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18. In how many different ways can the sum of $5.10

be paid with half-dollars, quarter-dollars, and dimes, the

whole payment to be made with twenty pieces ?

19. A farmer purchased a number of pigs, sheep, and

calves for 160 dollars. The pigs cost 3 dollars each, the

sheep 4 dollars each, and the calves 7 dollars each ; and the

number of calves was equal to the number of pigs and

sheep together. How many of each did he buy ?

20. Find the least multiples of 23 and 15 which differ

by 2.

21. Find two fractions whose denominators shall be

113
respectively 9 and 5 and whose sum shall be . ^ .



CHAPTER XXII.

INEQUALITIES.

179. Definition of Greater and Less Quantities.—One

quantity is said to be greater than another when the remain-

der obtained by subtracting the second from the first is

positive; and one quantity is said to be less than another

when the remainder obtained by subtracting the second

from the first is negative.

N.B.—Throughout the present chapter every letter is

supposed to denote a real positive quantity, unless the con-

trary is stated.

In accordance with the definition just given a is greater

than J) when a — h \^ positive, and, conversely, when a is

greater than h, a — h m positive. Also, a is less than h when
« — J is negative, and, conversely, when a is less than h,

a — J is negative. Thus 2 is greater than — 3 because

2 — (— 3), or 5, is positive; also — 2 is greater than — 3

because — 2 — (— 3), orl, is positive. Again, — 2 is

less than 1 because — 2 — 1, or — 3, is negative; and — 4

is less than — 2 because — 4 — (— 2), or — 2, is nega-

tive.

According to this definition zero must also be regarded

as greater than any negative quantity.

180. Inequalities.—An inequality is an algebraic state-

ment of the fact that one of two expressions is greater than

the other. The two expressions compared are connected

together by the sign >, "greater than, ^' or <, "less than,"

267
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the open end of the symbol always being directed towards

the larger member of the inequality.

Two or more inequalities are said to be in the same

sense, or of the same species, when the first member of each

is the greater or the less, and two inequalities are said to be

in the opposite sense, or of the opposite species, when the

first member of the one is the greater, and of the other is

the less.

Thus a > h and c > d are two inequalities in the same

sense, or of the same species. So also are m<n and 2^<q.

But a > h and c < d, or m < n andp> q are inequalities

in the opposite sense, or of opposite species.

The working rules for inequalities differ in some re-

spects from those for equations. They are based upon cer-

tain elementary theorems of inequality which are readily

deduced from the axioms of equality.

Theoeem I. If equals be added to unequals, the sum
will be unequal in the same sense.

Let a > b, and let their difference be denoted by r.

Then
a = b -\- r.

Adding x to each member of this equation, we get

a-\-x = b-\-x-\-r.

.'. a -\- X > b -{- X.

Theorem II. If equals be tahenfrom unequals, the re-

7nainders will be unequal i7i the same se^ise.

Let a > b, and let their difference be denoted by r.

Then
a = b -{- r.

Subtracting x from each member of this equation, we

get

a — X = (b — x) -\- r.

,\ a — x > b — x.
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Cor. From these two theorems it follows that we have

the right to add equals to the members of an inequality,

and to subtract equals from the members of an inequality,

without altering the sign of inequality.

Also, that we have the right to transfer a term from one

member of an inequality to the other by changing its signs,

without altering the sign of inequality.

Theorem III. If imequals be suUracted from equals,

the remainders loill he unequal in the reverse sense.

Let a> by and let their difference be denoted by r.

Then

a = b -\- r.

Subtracting each member of this equation from x, we

get

X — a = X — {b -{- r) = {x — b) — r,

.'. X — a <x ~b.

Cor. If x = 0, we would have — a < —b. Hence

when we reverse the signs of an inequality, we must also

reverse the sign of inequality.

Theorem IV. If unequals be multiplied by equals, the

products luill be unequal in the same sense.

Let ay b, and let their difference be denoted by r.

Then

a = b -\-r.

Multiplying both members of this equation by x, we get

ax = bx-\- rx.

. *. ax > bx.

Theorem V. If unequals be divided by equals, the

quotients will be unequal in the same sense.

Put a = b -\- r 2^% heretofore.
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Dividing each member of this equation by x, we get

a _h r

X ~ X x'

a h

Cor. From Theorems IV and V it follows that we

have the right to multiply or divide both members of an

inequality by the same positive quantity without altering

the sign of inequality.

If, however, both members of an inequality be multi-

plied or divided by a negative quantity, the signs of both

members will be reversed. This reversal of signs is equiv-

alent to an interchange of the members, and therefore it

reverses the character of the inequality. Hence, on such

multiplication, the sign of inequality must be reversed.

Theorem VI. If equals ie divided iy unequals, the

quotients will he unequal in the opposite sense.

Put as before a = h -\-r.

Dividing x by each member of this equation, we get

X X OX ox -j- rx — rx

a
~~ b-i-r~b{b-]- 7')~ b{b + r)

x{b -{- r) rx

-b{b + r)- b{b^r)

X rx

~b b{b-^ r)'

X X

Theorem VII. If two inequalities of the same species

be added together, the results will be unequal in the same

sense.

Let a> b and c > d.
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Put a = ^ -|- r, and c = d -{• s.

Then, by addition of equals,

a-\-c = b-\-d-\-r-{-s,

.'. a -\- c > b -\- d.

Note.—By subtraction we would get

a — c = b — d-\-r — s\

from which we cannot infer whether « — c > 6 — t?, or

a — c <b — d.

If r > s, a — c > b — d; but it r < s, a — c < b — d.

Hence addition of corresponding members of inequali-

ties of the same species without changing the sign of in-

equality is always admissible, but not subtraction.

CoE. It a > b, > dj e > f, etc., then

a -{- c -\- e -{ etc. > b -\- d
-\-
f -\- etc.

Theorem VIII. If two mequalities of the same species

be multiplied together, the results will be unequal iu the

same sense.

Let a> b, and c > d.

Put a = b -\- r, and c = d -{ s.

Then, by the multiplication of equals,

ac = (b -\- r)(d -j- s) = bd -\- bs -\- dr -{ rs,

.'. ac > bd.

Cor. 1. It a > b, c > d, e > f etc., then

a . c . e . etc. > b . d .f. etc.

Cor. 2. It a > b, then a'" > b"^.

Cor. 3. If « > b, then a-"' < b-"^,

EXERCISE CXIV.

1. For what values of x is

5^--<— + 6?
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Multiplying both members by 5, we get

^bx - 16 < 10:?; + 30.

By transposition, 15a; < 46.

.-. x<^^.

This inequality holds for all values of x less than S^^g

2. For what values of x and y are

4:c + 3?/ > 27,

3a; + 4^ = 29 ?

Multiplying both members of the inequality by 4, and

of the equation by 3, we get

16a; + 12?/ > 108;

9a; + 12?/= 87;

.-. 7a; > 21;

.-. X > 3.

Multiplying both members of the inequality by 3, and

of the equation by 4, we get

12a; + 9?/> 81;

12a; + 16?/ = 116;

" 7?/ > - 35.

.-. 7?/<35.

.-. ?/<5.

Hence the values are all of those of x greater than 3,

and of y less than 5, which make 3a; + 4?/ == 29.

N.B.—The values of x and y obtained as above are

called the limits of x and y. That is, they are the values

which bound the possible values which x and y can have

under the given conditions.
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Find the limits of x in the following cases

:

3. (42; + 2)2-29> (22; + 2)(8a:-4).

4. Cdx - 2)(4^ + 3) > {'^x - ^){<dx + 5) + 58.

5. When 3a: - 12 > 35 - bx, and 4a; - 12 > 6a: - 31.

Find the limits of x and y in the following case

:

6. 3a: + 7«/ > 46,

X - y zzz -1,

181. Type Forms.—Inequalities among algebraic quan-

tities are usually established by reference to certain stand-

ard forms.

The following is a very important standard form

:

For all values of x and y except equality,

x^ -\- if > 2xy. (A)

Proof.—{x — yY is essentially positive and hence > 0.

. •. x^ -\- y^ - 2xy > 0.

.'. x^ -\- y^ > 2xy.

e.g. The sum of a number and its reciprocal is > 2.

Let X denote the number. Then will

a:+i > 2.
X

Multiplying both members by x, we get

a;2 + 1 > 2a:,

or a:^ + 1^ > 2a: . 1.

That is, the first inequality is true if the last is. But

we know that the last is true by reference to standard (A).

Hence we infer that the first is also true.

Theorem I. The product of two positive quantities

whose sum is constant is greatest when the qua^itities are

equal
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Denote the two quantities by a + a: and a — x. Then,

whatever value be assigned to x, the sum of the quantities

will be 2«, and their product a^ — x^. Evidently the

product will be greatest when a; = 0; that is, when the

quantities are equal.

If a and l be two unequal quantities, the two halves of

their sum would be two equal quantities whose sum would

be the same as that of a and b. Hence

a 4- h a 4- h ,

la + JV ,

^ > ^^.

.-. a^h> 2Vab. (B)

Theorem II. The product of any number of positive

quantities ivhose sum is constant is gi'eatest when the quan-

tities are all equal.

For, if any two of the factors are unequal, their product

would be increased by making them equal without chang-

ing their sum. This would necessarily increase the whole

product without altering the sum of the factors.

If a, b, c, . . . . up to n quantities be unequal, by tak-

ing the ^th parts of their sum we should obtain n equal

quantities whose sum would be the same as that of the n
unequal quantities. Hence

(a-^b-\-c-\-
. . .y

or • > Vabc . . .

a-\-b-\-c-\- . . ,> n Vabc . . , (0)
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e.g. a^-\-h'^> 2ai,

and . a^-^b^-i-c^> Ulc,

in all cases when a, h, and c are positive and unequal.

EXERCISE CXV.

I.

1. For what value of x would 16:^2 -f 25 = 40a: ?

Show that for all other values of ^, 16a;^ -f 25 > 40a;.

2. Show that for no positive integral value of x is

x^-{- — <^x - —.
5 5

8. Show that for no positive value of a can

(3ff + 2Z>)(3« - 2^) < U{<oa - 6b).

4. Show that (ab + xy){ax -\- by) > 4:abxy.

6. Show thsit {b -]- c)(c -\- a) (a -{- b) > 8abc,

II.

6. If a^-{-P=l, and x^-^y^=l, show that ax-\-by<l.

7. If a'^ -f ^2 _[_ ^2 _ 1^ ^Yi.d x^ -\- y^ -{- z^ = 1, show

that ax -\- by -\- cz < 1.

8. Show that {x^y -\- yh+ -2^^;) {xy^-\- yz^-\- zx^) > 9x^y^z^.

9. Show that «* + Z*'' > rt^^ -|- ab^, except when a and

b are equal.

10. Show that a^ -\- ¥ > a^b -\- ab^, except when a and

b are equal.
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RATIO AND PROPORTION.

A. EATIO.

182. Definition of Ratio.—The term ratio denotes the

relation which one quantity bears to another of the same

kind in magnitude.

The magnitude of one number compared with another

is ascertained by dividing the number by the one with

wliich it is compared.

When the number is a multiple of the one with which

it is compared its ratio to it may be expressed by an inte-

ger, otherwise the ratio may be expressed by a mixed num-

ber or a fraction.

e.g. The ratio of 12 to 4 = 12 ^ 4 = 3; the ratio of 3

to 5 = 3 -4- 5 = 3/5; the ratio of 13 to 4 =: 13/4 or 3^.

The ratio of one number to another might be defined

as the number by which the second must be multiplied to

produce the first.

e.g. 5 must be multiplied by 4 to produce 20. There-

fore the ratio of 20 to 5 is 4.

Again, 5 must be multiplied by 3/5 to produce 3.

Therefore the ratio of 3 to 5 is 3/5.

183. Expression of a Ratio.—The ratio of one number

to a second may be expressed either by writing the numbers

in the form of a fraction with the first number as the nu-

merator, or by writing the second number after the first

with a colon between.
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e.g. The ratio of 2 to 3 may be expressed thus:

|, or 2:3.

184. The Terms of a Ratio.—The first term of a ratio

is usually called the antecedent, and the second term the

consequent.

When either term of a ratio is a surd the ratio cannot

be expressed exactly either by an integer or by a rational

fraction, though it may be expressed to any required degree

of approximation, by carrying out the extraction of the

indicated root to a sufficient number of places.

e.g. The ratio of the V'S to 4 cannot be expressed

exactly by any rational integer or fraction. Thus,

:^ = ^^^:^««^ =.559017...
4 4

By carrying the decimals further a closer approxima-

tion may be obtained.

185. Kinds of Ratios.—When the antecedent of a ratio

is equal to its consequent, the value of the ratio is one, and

the ratio is said to be a ratio of equality ; when the ante-

cedent is greater than the consequent, the value of the ratio

is greater than one, and the ratio is said to be a ratio of

greater inequality ; and when the antecedent is less than

the consequent, the value of the ratio is less than one, and

the ratio is said to be a ratio of less inequality.

186. Ratio of Equimultiples and Submultiples.—Since

ma
' mV

multiples

Also,

ratio as their equi-submultiples, equi-submultiples being the

--——:, two numbers have the same ratio as their equi
mo ^

Also, since t — ~n

—'-— » two numbers have the same^ m
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quotients obtained by dividing two or more numbers by the

same number.

187. Theorem I. If the consequent of a ratio of

greater inequality le positive, the ratio will he diminished

hy adding the same positive quantity to both of its terms,

and increased hy subtracting the same positive quantity

(less than the conseque^U) from hoth of its terms.

Let h be positive and a > h, then will ,
, < 7-.^

h -\- X h

For
a-{- X a h(a-{- x) — a(h -|- x) x(h — a)

h-^x h
~

h{h + x) ~h{h ^ x)'

Now since a, h, and x are positive by hypothesis and

< a, the fraction ,;-. ,
—{ is neffative. . •. y—'— < 7-.

h(h ~\- X)
^

b -\- X h

. . a — X a x(a — b)

But, since a > b, a — b is positive, and since x <.b,

b — X is positive.

Hence the fraction ~ !- is positive.
h(b- x)

^" ^ ^*
' ' h-x^ h'

188. Theorem II. If the consequent of a ratio of less

inequality he positive, the ratio will be increased by adding

the same positive quantity to both of its terms, and dimin-

ished by subtracting the same positive quantity (less than

the consequent) from hoth of its terms.

a I X a
Let h be positive and a < b, then will ,

, > 7-, and
t) -]- X

a — X a

b — X

Prove these cases in the same manner as those of the

last section.
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189. Compound Ratios. — When the antecedents and

also the consequents of two or more ratios are multiplied

together the ratios are said to be compounded, and the ratio

of the products is called the compound ratio of its compo-

nents. Thus, ac -.hd is the compound ratio of a : b and

c : d.

When a ratio is compounded with itself its terms are

squared, and the result is called the duplicate ratio of the

original. Thus, a^ : b^ is the duplicate of a : b.

Similarly a^ : b'^ is called the triplicate ratio ot a :b.

B. PROPORTION".

190. Definition of Proportion.—Four abstract numbers

are said to he 2^ropo)'tionaL or to form 2i proportion^ when

the ratio of the first to the second is equal to that of the

third to the fourth. Thus, \i a :b ^= c : d, the four quan-

tities a, b, c, and d form a proportion, which may be

written in any one of the following ways:

a c
a -.b — c -.d. 7- = -:, or a \b \\c \d.

b d

The first and last terms of a proportion are called the

extremes, and the second and third terms, the means.

Thus, in the above proportion a and d are the extremes,

and b and c the means.

If a, b, c, d, e, etc., are such that a :b — b : c = c : d =
d : e, then a, b, c, d, e are said to be in continued propor-

tion.

If three quantities, a, b, c, are in continued proportion,

so that a '.b = b : c, then b is said to be a mean proportional

between a and c.

If a : b = b \ c = c : d, then b and c are said to be two

mean proportionals between a and d, and so on.

191. Test of the Equality of Two Ratios. — Since a
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ratio is virtually a fraction, we test the equality of two ratios

in the same way that we test the equality of two fractions.

Two fractions are equal if, on reduction to a common
denominator, the resulting numerators are equal. Thus,

ft c
take the two fractions ^ and -:

, reduce them to a common
a

donominator, and we have -j-z and j^ . These resulting

fractions will be equal when ad = be. Hence the four quan-

tities a, b, c, d are proportional when the product of the

first and fourth is equal to the product of the second and

third ; and, conversely, li a -. h = c : d, then ad = he.

In any p^^oportion the product of the extremes is equal

to the product of the means. This is the great numerical

law of proportions.

192. Permutations of Proportions.— Any interchange

of the terms of a proportion is permissible which does not

destroy the equality of the product of the extremes and

means. The various interchanges of the terms of a pro-

portion are called permutations.

If we write the four terms of a proportion in the four

corners formed by two lines which cross at right angles, so

that the first ratio shall be at the left and the second at the

right, the two antecedents will be at the top and the two

consequents at the bottom, and the extremes will be in one

pair of opposite corners and the means in the other. Thus

a c

in the form , « : J is the first ratio and c : d the sec-

h d

ond ; a and c are the antecedents and h and d the conse-

quents; a and d are the extremes and h and c the means.

The letters a and d and h and c, which stand in opposite

corners in the above form, may be called the opposites of a

proportion, and we may make the general statement that
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The terms of a proportion may he ivritten in any order,

provided the opposites remain the same.

An interchange of antecedent and consequent in each

ratio is called an inversion, an interchange of an antecedent

of one ratio with the consequent of another is called an al-

ternation, and an interchange of one ratio with another a

transpositioyi.

There are seven permutations of an ordinary proportion,

so that when four quantities are proportional they may be

arranged in eight different ways.

d
Thus, by inversion — , and by mov-

c

C 1)

— becomes —
d a

ing the terms of each of these successively around to the

right eacli of the above may be changed three times by

alternation.

Thus
a c I— becomes — a d I c

— , and — d

h d d c c a a b

d . a— becomes — h c

>

a d
, and

c

c c d d b b a

And

Write out in the ordinary form each of the proportions

given above, and state by what change each proportion is

obtained from the last.

193. Transformations of Proportions.— Besides these

eight permutations there are other transformations which

a proportion may undergo.

li a :b — c '.d, then a -\- b : b = c -\- d \ d.

Let — = X. Therefore a = bx.

Then, also, ;t = ^- (Why ?) Therefore c = dx.



282 RATIO AND PROPORTION,

Then —7— becomes, by substitution,

hx±h_h{x^l)_—j~ - ^— _ a: + 1.

Also, —^— will become j— = (x 4- 1).
a a ^ ^

Therefore —
-,— = x 4-1 = —-^—

.

a

Hence a -\~ b : b = c -{- d : d.

This change is called composition.

EXERCISE CXVI.

Prove the following cases by methods similar to the

above

:

1. a — b : b = c — d : d.

This change is called division.

2. a -{- b : a — b = c .-\- d : c — d.

This change is called composition mid division.

3. a -\- b : a ^=^ c -\- d : c.

4. a — b\a — c — d\c.

6. If a -.b — c '. d = e \f= etc.,

then a-{-c-{'e\b-\-d-\-f=a:b.

This change is called addition.

6. li a '.b = c \ d, then ma : mb — nc : nd.

7. Write the last proportion in eight different ways.

8. \ia\b = c\d, then «"
: ¥ - c" : d"".

9. \t a '.b ^=^ c \ d, and m '.n ^=^ r \ s,

then am : Z'm = cr : ds.
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10. li a :h =^ c \ d, then

la -\- mb : pa -{- qb = Ic -\- md : pc + qd.

11. If a :h — c : d^ and m : 71 = r : s, then

a Vm — bVn:cVr — dVs = a Vm -\- b V71 : c Vr -\- d Vs.

EXERCISE CXVII.

Ex. Which is the greater ratio, a'^ -]- b^ : a -\- b or

a^ — b^ : a — b, a and b each being positive ?

Write each ratio in the form of a fraction, and subtract

the second from the first, and show that the result is essen-

tially negative. Hence the second ratio must be the greater.

Thus,

a''-{-¥ _ a'-b' _ {a' + b'){a - b) - {a' - b'){a + b)

a-\- b a — b
~

{a -\- b)(a — b)

_ 2ab' - ^a'b .

~ {a-^b){a- b)

"la^b - 2ab'

(a + b)(a - b)

2ab{a^ - b^)

(a + b){a - b)

2ab{a^ + ab + b^)

a^b

Now since a and b are both positive, both the numera-

tor and the denominator of this fraction must be positive.

^4 _ 54

Hence the result obtained by subtracting 7- from

^4 _|_ J4 ffi _ ^4
-—r- is negative. Therefore 7 must be larger than

a-\-b *^ a — b
®

a' + i'

a-\-b'
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1. Which is the greater ratio, 5 : 7 or 151 : 208 ?

2. Which is the greater ratio, 6 : 11 or 575 : 1056 ?

3. Which is the greater ratio, 7 : 12 or 589 : 1008 ?

4. Which is the greater ratio, x^ -\- y"^
: x -\- y or

x^— y'^ '. X — y, X and y both being positive ?

5. Which is the greater ratio, x^ -\- y^ : x -\- y or

x^— y^ '. X — y, X and y both being positive?

6. Which is the greater ratio, x"^ -\- y'^
: x -{- y or

x^ — y""
: X — y, X and y both being positive ?

7. In one city a man assessed for $10,000 pays $72 tax,

and in another city a man assessed for $720 pays $4.50

tax. Compare the rate of taxation in the two cities.

8. Two men can do in 4 days what three boys can do

in 5 days. Compare a man's working capacity with that of

a boy.

9. For what vahie of x will the ratio b -\- x -. S -{- x

become 5 : 8, 6 : 8, 7 : 8, 8 : 8, 9 : 8 ?

10. What number added to both antecedent and con-

sequent will duplicate the ratio 3:4?

n. If X -^ 1 \& io %(x -{- 14) m the duplicate ratio of

5 : 8, what is the value of a; ?

II.

12. Find two numbers in the ratio of 7 : 12 such that

the greater exceeds the less by 275.

13. What number must be added to each term of the

ratio 5 : 37 to make it equal to 1 : 3 ?

14. If a; : y = 3 : 4, what is the ratio of Ix — 4y \ 3x

+ 73/?



PROPORTION. 285

16. If 15(2a;2 — y^) = "^xy^ what is the ratio oix \ y'i

16. If 3(7a;2 _ 24«/2) = _ 29a;«/, what is the ratio of

x\y'i

17. What is the least integer which added to both

terms of the ratio 5 : 9 will make a ratio greater than

7 : 10?

194. Solution of Fractional Equations.—When an equa-

tion consists of two fractions only, or can be expressed in

the form of two fractions, its solution may be simplified by

a judicious application of one or more of the following

principles of composition and division.

Lell\^% Then
h d

1°.
a — c a c

h-d^h~ d~
a -{- c

-b-^d'

2°.
a-\- b c -\- d

h ~ d '

3°.
a — h c — d

h ~ d '

4° a-^h c-\-d

a — b c — d'

ft Q
Prove the first of these cases by letting — = ;,

= ^'- The

remaining three have already been proved.

e.g. 1. Solve the equation——- =——-.
• X -\- ^ a-{- b

{x-4.) + {x^ 4) _ (^ - 5) + (^ + 5)

(a; - 4) - (a; + 4)
~

(« - 5) - (« + 5)'

X — 4: -\- X ~\- 4: _a — 6 -\- a -\- 5

ay — 4: — X — 4: ~a — 6 — a — 6'

2x _ 2a

Applying 4°,

or

or
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or
X _a
4 ~5'

. '. bx = 4:a,

e.g. 2. Solve the equation

Applying 1'

or

X -\- 4: — b X -\- 4:

{x-4:-\-b)-{x — 4:) X- 4:

{x^4-I))-{x-\- 4)
~

x-i-4:'

b _x — 4:

=l"'^~+4*

a:-4 -1
X-\-4: 1

Applying 4°, .^ ^ _ = o.

.-. x = 0.

e.g. 3. Solve

(x^2){x+5){x-\-3){x^S)= {x+l){x+Q){x+4:)(x+7).

Dividing both sides by (x + 3)(x + 8)(^ + 4)(x + 7),

we have

(x-\-2)(x+5) _{x-\-l)(x+e)
{x + 4.)(x+7)-{x+'S)(x-j-8y

x^-\-7x-\- 10 _ x^-\-7x-\-6
***

a;2 + lla; + 28 ~
x^ -{- 11a; + 24*

Applying 1°, we have

(a;2 + 7a; + 10) - {x^ -\- 7x -^ Q) _ a:^ + 7a; + 10

(a;2 + 11a; + 28) - {x^ + 11a; + 24)
~

a;^ + 11a; -f-
28*

4 arJ + 7a; + 10 1
or

4 ~ a;2 + 11a; + 28 ~ 1
•

i«r« + 7a; + 10 = a;2 _|. 113, _|. 28,
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or — 4a; = 18.

. •. X — — ^.

e.g. 4. Solve [x - l)(2a; - 3)^ = {x - 3)(2a; - 1)1

Dividing both sides by (2a; — 3)2(2a; — 1)^, we have

a; — 1 a; — 3

or

or

or

7.

(2a; - If ~ (2a; -3)2'

X — 1 a; -3
4a;2 - 4a; + 1 ~ 4a;2 - 12a; + 9'

Applying 1°, we have

{X -1)- {X - 3) a;-l
(4a;2-4a; + l)- (4a;2 - 12a; + 9) 4a:2 _ 4a; + 1'

2 a;- 1 1

8(a^-1)"- 4:^2 _ 4:^ _|_l-4(a:-l)-
-•

. 4(a; - 1)2 = 4a:2 - 4a; + 1,

4a;2 - 8a; + 4 =: 4a;2 _ 4a; + 1.

.'•. - 4a: = -- 3.

.. a: = 3/4.

EXERCISE CXVIII.

Solve the following equations

X — a

a ~
h- c

c

-I.

2.

x-b l-l
5 ~ 7 *

x-1 .

x-\-l-

1- a
4.

a- - 3 3 - c

a; + 3 ~ 3 + c*

2a; + 3

2.2: - 3

5
"2" 6.

3a; -7 7

3a: + 7 ~ 3
*

mx + n & + c — a
^. A

3a; + 4 c^a — l

mx — n 6' -|- « — ^' 3a; — 4 a-\-l) — g
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2x-\-l 1 3ic - 1
9. ^ o , J—r-T, = —r-T- 10.

15.

2a;2 + 2a; + 3
"~

ic + 1*
Sa:^ - 3^; + 5 a; - 1

II.

11. (i»+l)(22; + 5)2 = 4(a; + 2)3.

12. (a: - l){x - %){x + 6) ^ (a; + 2)(,r -- 3)(a: + 4).

13. {x - l){x - ^y{x - 5) = x{x - '6f{x - 4).

&x^ + 5x^ + 6a; + 2 _ 2a;^ 4- a; H- 1
^^-

6a;2 4- 5a; + 3 ~ 2./: + 1 *

W -f 4a;^ + 8-^ + 4 _ 3a;^ + '^^ + 1

9a;2 4- 4a; + 5 ~" 3a; + 2 *

C. VAKIATION.

195. Direct Variation.—Suppose x and y to represent

two variable quantities which depend upon each other in

such a way that when one changes its value, the other must

also change its value; and let x and y be so related that

y = mx (m being a constant), whatever be the value of x;

and let x^, x^, x^, etc., and ?/, , y^, y^, etc., be corre-

sponding values of x and y, so that y^= mx^ , y^= nix^ , etc.

Since y = mx and y^ = wa;,,

y _ mx _ X

y^ mx^ x^

'

Whence y : y^= x -. x^, or x : y = x^ : y^.

When two quantities are thus related, one is said to

vary as the other. Since the relation is mutual, we may

say that y varies as x, or that x varies as y. The symbol

oc denotes this relation, and is read " varies as " or '^ varies

directly as." Thus y a a; is read '' y varies as a;"; and x

oc y, " X varies as y."

To say that y varies as x is to say that one is a constant

multiple of the other, or that they so vary that their ratio
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remains constant, or that any two values of x and the corre-

sponding values of y are in proportion.

It is a law of Optics that the intensity of the illumina-

tion upon a surface varies directly as the sine of the angle

which the rays from the light make with the surface. Tliat

is, the larger the sine of this angle, or the more nearly per-

pendicular the rays are to the surface, the more intense is

the illumination. If two surfaces are held at the same dis-

tance from the light, but one so as to make the angle-sine

for the rays twice as great as for the other, the illumina-

tion of the former will be twice as intense as that of the

latter; if the surface were held so as to make the angle-

sine three times as great, the illumination would be three

times as intense; and so on. While the illumination in-

creases with the size of the angle, it does not increase in

the same ratio. Hence the illumination does not vary as

the angle.

196. Inverse Variation.—When y varies as x, or di-

rectly as X, as we have already seen, y = mx, m being a

constant.

When y — m— , y is said to vary inversely as z. That

is, y increases as z decreases, and vice versa, and both

change at the same rate.

In the case of the light, the intensity of the illumina-

tion on a surface varies with the distance of the surface

from th^light, the intensity becoming less as the distance

becomes greater, and the intensity changes at the same rate

as the square of the distance changes. Hence we say that

the intensity of the illumination varies inversely as the

square of the distance from the light. If y denote the in-

tensity of the illumination, z the distance from the light,

and m the intensity of the illumination at a unit distance

from the source, then y = m-^ , and y cc —.
z z
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1 X . .When y = mx .
— or m . —, y varies directly as x and

inversely as z. In the case of the light already considered,

if y denote the intensity of the illumination, x the sine of

the angle which the rays make with the surface, and z the

X
distance from the light, then y—7n—^. That is, the intensity

of the illumination varies directly as the angle-sine and

inversely as the square of the distance.

AVhen y = mwx, y varies jointly as w and x.

If to denotes the intensity of the source of light, y the

intensity of the illumination on the surface, x the angle-

21)X
sine, and z the distance from the source, then y = —5-.

^ z^

Express this relation in words.

197. The Constant of Variation.—In all the cases of

variation, the constant (m) may be determined when any

set of corresponding values is given; and when the con-

stant and all but one of a set of corresponding values are

known, the remaining one can be calculated.

e.g. 1. A ex B, and when A = 8, B = 6. What will

A equal when B = 24:?

A = mB.

,\ S = 6m.

.'. m = 3/4.

.-. ^ = 3/4x24 = 18.

2. ^ a -^, and when A = S, B = Q. What will A

equal when ^ = 24 ?

. 1A=m.^.
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,\ 48 = m.

3. A (X BC, and when ^ = 2, 5 = 6 and (7=4.

What will A equal when i? = 18 and C = 6 ?

A = m. B. C.

2 = m X 6 X 4.

.-. m = 1/12.

.-. A = 1/12 X 18 X 6= 9.

4. A cc B . -^, and when ^ = 2, B = 6 and C = 4.

What will ^ equal when B = 18 and C=Q?

A = m . B . Yf.

.-. 2 = m.6.^.
4

.-. m=4/.3.

.-. A =4/3. 18. 1/6 = 4.

EXERCISE CXIX.

I.

1. A varies as B, and when A is 6, 5 is 4. What is ^
when 5 is 9 ?

2. Jf varies inversely as iV, and when if is 4, iV^is 13.

What is M when iV^ is 20 ?

3. A varies as B and C jointly, and A = 3 when B = 6

and (7=4. What is ^ when 5 is 8 and (7 is 3 ?

4. A varies as ^ and inversely as C, and A = 4: when
5 = 6 and (7 = 8. What is the value of A when B = IS

and (7 = 6 ?
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5. The area of a circle varies as the square of its radius,

and the area of a circle whose radius is 10 is 314.16. What
is the area of a circle whose radius is 20 ?

II.

6. The volume of a sphere varies as the cube of its

radius, and the volume of a sphere whose radius is 1 foot is

4.188 cubic feet. What is the volume of a sphere wliose

radius is 5 feet ?

7. The volume of a cone of revolution varies as its

height and as the square of the radius of its base jointly,

and the volume of a cone 7 feet liigh with a base whose

radius is 3 feet is 66 cubic feet. B'ind the volume of a cone

14 feet high with a base whose radius is 18 feet.

8. The volume of a gas varies as the absolute tempera-

ture and inversely as the pressure upon it, and when the

temperature is 280 and the' pressure 15 the volume of a cer-

tain mass of a gas is one cubic foot. What would be its

volume were the pressure 12 and the temperature 600 ?

9. The distance of the offing at sea varies as the square

root of the eye above sea-level, and the distance is 3 miles

when the height of the eye is 6 feet. What is the distance

when the height is 72 yards ?

10. The intensity of illumination varies as the sine of

the angle which the rays make with the surface and in-

versely as the square of the distance from the source, and

when the sine and distance are each unity the illumination

is 40. What will be the illumination when the sine is 3/4

and the distance 8 units ?



CHAPTER XXIV.

LOGARITHMS.

198. Definition of a Logarithm. — In the expression

cv^ zzz y^ X is called the logarithm of y to the base a. This

relation is indicated also by writing x — log„ y.

The base a being some fixed positive number, to every

value of y there is a corresponding value of x, and to every

value of X there is a corresponding value of y, but these

values are often incommensurable, so tliat they can be ex-

pressed only approximately.

The logarithm of a number may be defined in words as

the index of the power to which a given base must he raised

to jyroduce the number.

A. GENERAL PROPERTIES OF LOGARITHMS.

199. The Working Rules of Logarithms.

—

Let a"^ — m., and a- — n.

Then x — ^og^v:, and y = log^w.

From these two equations we may deduce four impor-

tant theorems

:

1°. mn = r?^. a^ = cf^^',

and \og^{mn) = .t + ^;

or log„(w/0 = loga^ + logan-

That is, the logarithm of the product of two numMvs is

the sum of the logarithms of the numbers.

Of course this theorem may be extended readily to the

product of any number of factors, and in its general form

it would be

:

293
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The logarithm of any product is the sum of the loga-

rithms of its factors.

2°. m-^ n = a'' -^ a^ = a'^-y,

and loga(m -i- n) = x — y,

or loga(m -^n) = log„m - log^n.

That is, the logarithm of the quotient of two numbers is

the logarithm of the dividend minus the logarithm of the

divisor.

3°. m^ = {a^'Y = «^^,

and loga{m^) = px,

or \oga(m^) =p\ogam.

That is, the logarithfn of a power of a number is the

logarithm of the number multiplied by the index of the

power.

and log„(mV^) = 1/p . x,

or log^(mV^) = l/p log^m.

That is, the logarithm of a root of a number is the loga-

rithm of the number divided by the index of the root.

These four theorems are the working rules of logarithms

as applied to numhers.

From these four theorems we see that addition of loga-

rithms corresponds to multiplication of numbers, subtrac-

tion of logarithms to division of numbers, the multiplica-

tion of logarithms by numbers to the raising of numbers to

powers, and the division of logarithms by numbers to the

extraction of roots of numbers. There are no operations

on logarithms which correspond to the addition and sub-

traction of numbers, and there is no operation on numbers

in ordinary arithmetic which corresponds to the raising of

logarithms to powers or to the extraction of their roots.



GENERAL PROPERTIES OF LOOARITHMS. 295

200. Systems of Logarithms.—The general properties

of logarithms are the same for all bases, and any positive

number, rational or irrational, may be taken as a base.

Certain numbers, however, otter special advantages as bases

in working with logarithms and in calculating them. The

base which is most advantageous for numerical computation

is 10, and the one most advantageous for theoretical inves-

tigation is the incommensurable 2.7182818 .... The for-

mer is the base of the system of logarithms in common use,

and the latter of the Napierean, or natural, system of loga-

rithms.

201. Common Logarithms.—When the base of the sys-

tem is 10, the 10 is omitted after the abbreviation "log."

Thus, log 100 = 2, means that 10 must be raised to the

second power to produce 100. Written in full the expres-

sion would be logiolOO = 2.

1 = 100, . •. log 1 = 0.

10 =r lOS .-. log 10 = 1.

100 == 10^ . •. log 100 = 2.

1000 = 103, .-. log 1000 = 3.

etc.

Whenever a number is an integral power of ten, its

logarithm is a positive integer, and is equal to one less than

the number of places in the number to the left of the deci-

mal point.

••l-li^-^^-^ .-. log .1=-1.

.01=1., =10- .-. log .01 = -2.

001 - ^, = lo-^ .-. log .001 = -3.

= .4, = 10-% . *. loof. = — 00
10
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The logarithm of is negative infinity. Tlie logarithm

of a negative number is imaginary. Whenever a number

is a decimal and equal to 1 divided by an integral power of

10, its logarithm is a negative integer and is equal to one

more than the zeros to the right of the decimal point.

Inasmuch as the logarithm of any number to base 10

or any base greater than 1 increases with the number, it

is evident from the above that the logarithm of any number

greater than one is positive, and the logarithm of any num-

less than one is negative; also that the logarithm of any

number between 1 and 10 lies between and 1, and is a

positive decimal; that the logarithm of any number be-

tween 10 and 100 lies between 1 and 2, and is 1 plus a

positive decimal ; and so on. It is further evident that the

logarithm of any number between 1 and .1 lies between

and — 1, and is — 1 plus a decimal; that the logarithm of

any number between .1 and .01 lies between — 1 and — 2,

and is — 2 plus a decimal ; and so on.

202. The Characteristic and Mantissa of a Logarithm.

—In general, the logarithm of a number is composed of

two parts, an integer and a decimal. The decimal part

of a logarithm is incommensurable, and therefore cannot

be expressed exactly. It is called the mantissa of the loga-

rithm, and is always taken as positive.

llie integral part of a logarithm is positive or negative

according as the number is greater or less than one. It is

called the characteristic of the logarithm.

The method of computing logarithms cannot be con-

sidered here. Its discussion is a matter of Higher Algebra.

It has been found that

6742 = 103'8276+^ . .. log 6742 = 3.8276 +.

Now 6-7420 = 6742 X 10 == lO^'S^^e x 10^ = W'^\

.'. log 67420= 4.8276;
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and 674200 = 6742 X 100 = lO^-^^^e x 10^ = io^-^r.\

.'. log 674200 = 5.8276.

Also, 674.2 = 6742 ^ 10 = lO^-^^^e ^ iqi = io2.8276^

.-. log 674.2 = 2.8276;

and 67.42 = 6742 -f- 100 = lO^-^s^e ^ iq2 ^ ioi'8276^

..-. log 67.42 = 1.8276,

etc.

We see from the above that so long as the figures of a

number and their arrangement are the same, the mantissa

of the logarithm is the same no matter what position the

group of figures may occupy in the scale of enumeration.

The shifting of the group of figures one place to the left

increases the logarithm by unity, because it multiplies the

number by 10, and the shifting the group of figures one

place to the right diminishes the logarithm by unity, be-

cause it divides the number by 10.

This property of logarithms is peculiar to the system

whose base is 10, and is of very great practical importance.

203. Logarithmic Tables.—The mantissae of the loga-

ritlims of all numbers from 1 to 99999 have been calculated,

and published in the form of tables. In these tables the

approximation in the mantissae is carried sometimes to four,

sometimes to five, sometimes to six, and sometimes to seven

decimal places, giving rise to tables of four-place, five-place,

six-place, and seven-place logarithms. The characteristics

of the logarithms are not given in these tables, because these

can be found by inspection of the numbers.

The following table contains the mantissae of the loga-

rithms of all integers from 100 to 1000, calculated to four

places of decimals, and from it can be found approximately

the logarithms of all numbers.
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COMMON LOGARITHMS.
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commo:n^ logaeithms.

n 1 2 3 ^ 5 6 ; 8 9 d

760 7782 7789 7796 7803 7810 7818 7825 7832 7839 7846

61
62
63

7R'53

79-24

7993

7860
7931
8000

7868
7938
8007

7875
7945
8014

7882
7952
8021

7889
7959
8028

7896
7966
8035

7903
7973
8041

7910
7980
8048

7917
7987
8055

6
7

64
65
66

8062
8129
8195

8069
8180
8202

8075
8142
8209

8082
8149
8215

8089
8156
8222

8096
8162
8228

8102
8169
8235

8109
8176
8241

8116
8182
8248

8122
8189
8254

7

6
7

67
68
69

8261
8325
8388

8267
8331
8395

8274
8338
8401

8280
8344
8407

8287
8351
8414

8293
8357
8420

8299
8363
8426

8306
8370
8432

8312
8376
8439

8319
8382
8445

6

6
6

770 8451 8457 8463 8470 8476 8482 8488 8494 8500 8506

71
72
73

8513
8573
8633

8519
8579
8639

8525
8585
8645

8531
8591
8651

8537
8597
8657

8543
8603
8663

8549
8609
8669

8555
8615
8675

8561
8621
8681

8567
8627
8686

6

6
6

74
7o
76

8692
8751
8808

8698
8756
8814

8704
8762
8820

8710
8768
8825

8716
8774
8831

8722
8779
8837

8727
8785
8842

8733
8791
8848

8739
8797
8854

8745
8802
8859

6

6

6

77
78
79

8865
8921
8976

8871
8927
8982

8876
8932
8987

8882
8938
8993

8887
8943
8998

8893
8949
9004

8899
8954
9009

8904
8960
9015

8910
8965
9020

8915
8971
9025

6
5
6

680 9031 9036 9042 9047 9053 9058 9063 9069 9074 9079

81
82
83

9085
9138
9191

9090
9143
9196

9096
9149
9201

9101
9154
9206

9106
9159
9212

9112
9165
9217

9117
9170
9222

9122
9175
9227

9128
9180
9232

9133
9186
9238

5
5
5

84
85
86

9243
9294
9345

9248
9299
9350

9253
9304
9355

9258
9309
9360

9263
9315
9365

9269
9320
9370

9274
9325
9375

9279
9330
9380

9284
9335
9385

9289
9340
9390

5

I

87
88
89

9395
9445
9494

9400
9450
9499

9405
9455
9504

9410
9460
9509

9415
0465
9513

9420
9469
9518

9425
9474
9523

9430
9479
9528

9435
9484
9533

9440
8489
9538

5
5
4

490 9542 9547 9552 9557 9562 9566 9571 9576 9581 9586

91
92
93

9590
96;38

9685

9595
9643
9689

9600
9647
9694

9605
9652
9699

9609
9657
9703

9614
9661

9708

9619
9666
9713

9624
9671
9717

9628
9675
9722

9633
9680
9727

5
5

4

94
95
96

9731
9777
9823

9736
9782
9827

9741

9786
9832

9745
9791

9836

9750
9795
9841

9754
9800
9845

9759
9805
9850

9763
9809
9854

9768
9814
9859

9773
9818
9863

4

5
5

97
98
99

9868
9912
9956

9872
9917
9961

9877
9921
9965

9S8]

9926
9969

9886
9930
9974

9890
9934
9978

9894
9939
9983

9899
9943
9987

9903
9948
9991

9908
9952
9996

4
4
4

204. Method of Using Logarithmic Tables.—In using

a table of logarithms there are two operations, one of which

is the inverse of the other: 1°. To find the logarithm of

a given number; 2°. To find the number which has a

given logarithm.
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B. TO FIKD THE LOGARITHM OF A NUMBER.

1°. Whe7i the Number has not more than Three

Figures.—First determine the characteristic by inspection

and write it down. Then look in the column headed n
for the first two figures of the number, and at the top of

the columns for the third figure. The required mantissa

will be in the horizontal line of the first two figures and in

the column which has the third figure at the top. This

mantissa should be written after the characteristic already

found.

e.g. Find the logarithm of 687.

The characteristic is 2, and the mantissa found in the

horizontal line of 68 in the left-hand column and in the

column of 7 at the top is 8370. Therefore

log 687 = 2.8370.

When the characteristic is negative, the minus sign

should be written above it, to indicate that it is the charac-

teristic alone which is negative. The mantissse of the tables

are always positive. Thus

log .0687 = 2.8370.

When the number consists of two figures only, the man-

tissa is found in the column headed 0. Thus,

log 68 = 1.8325.

When the number consists of one figure only, consider

the second figure as zero, and take the mantissa from the

column headed 0. Thus the mantissa of 6 is found in

the horizontal line of 60 in the column headed 0.

'in

|0

lo^ 6 = 0.7782.

2 . When the Numl)er has more than Three Figures.—
When a number has more than three figures, use must be

made of the principle that when the difference of two num-
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bers is small compared with either of them, these differ-

ences are approximately proportional to the differences of

their logarithms. This principle is called the Principle of

Proportional Differences.

e.g. Find the logarithm of 34567.

log 34500 = 4.5378

log 34600 = 4.5391

Difference of the mantissas = 13

Thus a difference of one unit in the third place corre-

sponds to a difference of 13 in the logarithms. But the

given number differs from 34500, not by a whole unit in the

third place, but only by .67 of that unit. Therefore the dif-

ference between the logs of 34500 and 34567 will be only

.67 of 13 = 8.71, which we take as 9, the nearest integer.

Therefore log 34567 = 4.5378

9

4.5387

The difference between one mantissa and the next follow-

ing in the tables is called the tabular difference, and the

result obtained by multiplying this by the following figures

of the number considered as a decimal is called the real

difference.

It is never necessary to use more than three of the

following figures for a multiplier, and seldom more than

two.

From the above we have the following rule for finding

the logarithm of a number of more than three figures

:

Find the mantissa of the first three figures of the num-

ber, and the tabular difference.

Multiply this tabular difference by the next two or three

figures of the number, considered as a decimal, and add the

result to the 7nantissa already found.
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The tabular difference should be taken from the table

at sight. To facilitate this operation, the difference

betweeii the last mantissa in one horizontal line and the

first of the next is given in the last column, headed D.

EXERCISE CXX.

Find the logarithms of the following numbers:

1. 956. 2. 58.7. 3. 2.38.

4. .0325. 5. 50 6. .003.

7. 40000. 8. 2. 9. .000007.

10. 28645. 11. 16-. 327. 12. .003579.

13. 2.468. 14. 8.006.

C. TO FIND A KUMBER WHICH HAS A GIVEN LOGARITHM.

1°. Whe7i the Exact Mantissa is found in the Tables.—
Find the mantissa in the table, and take out as the first

two figures of the number tlie two figures of the column

headed N which are on the horizontal line of the mantissa,

and as the third figure of the number the one at the top of

the column in which the mantissa is found, and point off

according to the characteristic.

e.g. Find the number whose logarithm is 1.9112.

Find 9112 in the table and take 81 from the left-hand

end of its horizontal line and 5 from the top of its column,

and place the decimal point before the 8.

log-^ 1.9112 = .815.

The symbol log ~ ^ means the 7iumher whose log is.

2°. When the Exact Mantissa is not found in the

Table.—Take out from the table the next smaller mantissa,

the first three figures of the corresponding number, and the

tabular difference, and find tlie real difference between this
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mantissa and the one given. Divide the real difference by

the tabular difference to two or, at most, three places in the

quotient, annex these figures to the three already taken out,

and point off accoi'ding to the characteristic. The result

is seldom trustworthy to even two places.

It will be seen at once that this process is the reverse

of that for finding the correction of the mantissa when the

number has more than three figures.

EXERCISE CXXI.

Find the numbers which have the following logarithms*:

1. 2.9355. 2. f.5635. 3. 2.9948.

4. 3.8845. 5. 0.5982. 6. 3.8340.

7. r.4570. 8. 2.9559. 9. 0.8077.

205. Cologarithms.—The cologarithm of a number is

the logarithm of the reciprocal of the number.

Thus, colog 987 = log^ = log 1 - log 987

= 0-2.9943

= -2.9943.

To avoid the negative mantissa, the logarithm of the

number is usually subtracted from 10 instead of 0.

Thus, colog 987 = 10 - log 987,

or 10 - 2.9943 = .0057.

Of course this logarithm is 10 too large. Such a loga-

rithm is called an augmenied logarithm.

The colog should be taken from the table at sight. We
may begin at the left hand and take each figure from 9 till

we come to the last, which should be taken from 10.
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EXERCISE CXXII.

Find the cologarithms of the following numbers

:

1. 3784. 2. 3959. 3. 2895.

4. .4265. 5. .078976. 6. .008.

7. 50. 8. .0008. 9. .00009.

D. ARITHMETICAL OPERATIONS.

206. Multiplication by Logarithms.—To multiply two

or more factors together by means of logarithms, find the

logarithm of each factor, add these logarithms and then

find the number which corresponds to this resulting loga-

rithm.

e.g. Find the product of 897, 564, and .0078.

log 897 = 2.9528

log 564=2.7513

log .0078 = 3.8921

3.5962

log -13.5962 = 3946.4

207. Division by Logarithms.—To divide one factor

by another by means of logarithms, find the logarithm

of each factor, subtract the logarithm of the divisor from

that of the dividend, and then find the number which cor-

responds to the logarithm thus obtained.

As in many practical applications it is necessary to per-

form both multiplication and division in the same example,

it is preferable in all cases to use the cologarithms of the

factors of the divisor and add these to the logarithms of the

multiplication factors.

This method is based upon the principle that to divide

by a factor is equivalent to multiplying by its reciprocal.

In using cologarithms it must be borne in mind that each
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colog is augmented, and, tlierefore, that as many lO's must
be rejected from the result as there are cologs used.

T.. . ,. 1 » 526 X 862
e.g. Fmdthevalueof^3^—

.

log 526 = 2.7210

log 862 = 2.9355

colog 232 = 7.6345

colog 683 = 7.1656

20.4566

log-^ 0.4566 = 2.8613.

208. Involution by Logarithms.—To raise a number

to a power by means of logarithms, find the logarithm of

the number, multiply it by the index of the power, and find

the number which corresponds to the resulting logarithm.

e.g. Raise 249 to the sixth power.

log (294)« r= 2.4683 X 6

= 14.8098.

log-i 16.8098 = 645330000000000 approximately.

209. Evolution by Logarithms.—To find the root of a

number by means of logarithms, take out the logarithm of

the number, divide it by the index of the root, and find the

number which corresponds to the resulting logarithm.

If the characteristic of the logarithm is negative, before

dividing by the index, add as many tens to it as there are

units in the index of the root, and reject ten from the result-

ing logarithm, which would be augmented by 10. For this

process consists in adding and subtracting the same multi-

ple of 10 and then dividing by the index of the root.

e.g. Find the fifth root of .086,
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log (.086)V5.z. 2.9345-^5

= (48.9345-50) -^ 5

= (48.9345^5)- 10

=1.7869.

log~i 1.7869 = .6121, approximately.

EXERCISE CXXIII.

Note.—A negative quantity has no real logarithm. If

such quantities occur in computation, they may be treated

as if they were positive and then the sign of the result de-

termined by the number of negative factors. If this num-

ber be even, the result will be positive, and if odd, negative.

In arranging the logarithms and cologarithms for addition,

it is best to place an n after each one which has been found

for a negative factor, and then a glance will show whether

the resulting number should be positive or negative.

T.- /. ^1 1
. 23 X - 8 X - 6

^

e.g. J^md the value of -^ .

log 23 = 1.3617

. log 8 = 0.9031/i

log 6 = 0.7782^

colog 5 = 9.3010

colog 60 = 8.2218/i

20.5658^

log-i 0.5658w= -3.68.

Find by logarithms the values of the following:

I.

1. 250.42 X .00687. 2. - 7.8346 X - .086427.

3, - 9.896 X 12.857. 4. .04632 X .008764.
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5.

.08

7
6.

- 9.876

.0076 •

H
18.009 X - .004

8.

27 X - 82
7.

.007695 X .004
*

3.8 X - 4.9*

9. (86.42)3. 10. (.0086)3.

II.

11. 92/3. 12. H.

13. (- 3.278)^ 14. 192/3.

15. (.12)«/5.

(- .000874)5/7.

16.

18.

I^To:

17. V'. 0009286.

19.
53/2 X 32/3, 20.

43/8

5275-

21.

5643/5

283 *
22. ^ 5 * 3

210. Theorem. The logarithm of any number to lase

h is equal to the product of the logarithm of the number to

the base a by logarithm of a to base b.

It is required to prove logipi — log„m . logj,a.

Let logoW = Xj and log^m = y.

Then m = a?",

and m — y.

Hence, a = J^/*.

And . a^/« = b.
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and, similarly, logaO^ = -.

,\ logbfn = log„m . logi,a,

or
^gft^ _ log ^,^,

It follows from the above theorem that if the logarithm

of any number to base b is known, its logarithm to any

other base a may be found by dividing the logarithm of the

number to base b by the logarithm of a to base b,

e.g. Find log 3 to base 7.

Iogio3 = 0.4771.

Iogio7 = 0.8451.

4771

EXERCISE CXXIV.

Find the following logarithms

:

1. logglS. 2. log342. 3. log^S.

4. Iog8.0803. 6. Iogi5.007008. 6. log956.31.

When the number can be expressed as an exact power

of the base, examples like the above may be solved by in-

spection.

e.g. Find the value of logiel28.

128 3= 16V*.

.-. log,el28 = 7/4.

T, log3729. 8. log3,3125. 9. loge,l/4.
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CHAPTER XXV.

VARIABLES AND LIMITS.

211. Constants and Variables. — A number which,

under the conditions of the problem into which it enters,

may assume any one of an unlimited number of values is

called a variable.

A number which, under the conditions t)f the problem

into which it enters, has a fixed value is called a constant.

Variables are usually represented by the last letters, x,

2/, z, etc., of the alphabet, and constants either by the first

letters, a, h, c, etc., or by Arabic numerals.

212. Functions.—Two variables may be so related that

a change in the value of one produces a change in the vah.e

of the other. In this case one variable is said to be ^func-

tion of the other.

When one of two variables is a function of the other tho

relation between them may be expressed by an equation.

Thus, if X and y are functions of each other, we may s: y
X X

that — = a, or X — aii. or y — —.

y
'' ^ a ,

Hence, if the value of one variable be assumed, the

corresponding value of the other variable may be computed.

The variable for which values are assumed is called Ihe in-

dependent variable; and the one whose value is found by

computation, the dependent variable.

When an equation containing two variables is solved for

one of them, the variable involved in the answer is regarded

as the independent variable.

811
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Thus, in equation x = ay, y is regarded as tlie inde-

pendent variable ; and in the equation y = -, x is regarded

as the independent variable.

213. Limit of a Variable.—As a variable changes, its

value may approach some constant. If the variable can be

made to approach a constant as near as we please without

ever becoming absolutely equal to it, the constant is called

the limit of the variable.

214. Axioms.—Any quantity, however small, may be

taken times enough to exceed any other fixed quantity,

however great.

Conversely, any quantity, however great, may be divided

into so many parts that each part shall be less than any

other fixed quantity, however small.

215. Theorem I. If a fraction have a finite numer-

ator and an independent variable for its denominator, ive

may assign to this denom/hiator a value so great that the

value of the fraction shall be less than any assignable value.

Let a be the numerator of the fraction, x its denomina-

tor, and c any finite value, however small, which we may
choose to assign. And let n be the number of times that

we must take c to make it greater than a. Then

a < nc.

a
.-. -<6.

n

Hence, by taking x greater than 7i, we shall have

-<c.
x

216. Theorem II. If a fraction have a finite numer-

ator and an independent variable for its denominator, ice
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may assign to this denominator a value so small that the

value of the fraction shall exceed any assignable value.

Let a be the numerator of the fraction, x its denomi-

nator, and c any finite value, however large, which we may

choose to assign.

Let ?i be a number greater than c. Divide a into

n parts, and let h be one of them. Then

a = nb.

a

Hence, if we take x less than h,

- > n> c.
X

217. Infinites.—If a variable can become greater than

any assigned value, however great that value may be, the

variable is said to increase indefinitely, or to increase with-

out limit.

When a variable is conceived to have a value greater

than any assigned value however great, the variable is

said to become infinite. Such a variable is called an

infinite number, or simply an infinite. An infinite is

usually denoted by the symbol qo .

It must be borne in mind that this symbol denotes, not

a constant, but a variable, which has already increased

beyond any assignable limit, but which is still capable of

an indefinite increase.

218. Infinitesimals.—If a variable can become less than

any assignable value, however small that value may be, the

variable is said to decrease indefinitely, or decrease without

limit.

In this case the variable approaches zero as a limit.

When a variable which approaches zero as a limit is

conceived to have a value less than any assigned value,
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however small tliis value may 1)e, the variable is said to

become infinitesimal. Such a variable is called an

infinitesimal number, or simply an infinitesimal. An
infinitesimal is often denoted by the symbol 0, which

in this case must be understood to represent an exceed-

ingly small variable.

We often express the relation between finite quantities

and infinite and infinitesimal quantities as follows

:

a ^ n- = 00 , — = 0.
00

The expression tt = Qo cannot be interpreted literally,

since we cannot divide by absolute 0; nor can the expres-

sion — = be interpreted literally, since we cannot find a

number so large that the quotient obtained by dividing a by

it shall be absolute zero.

The expression - = oo is simply an abbreviated way of

writing: when x approaches zero as its limit, then - in-

creases without limit.

— = is simply an abbreviated way of writing: when

X increases without limit, then - approaches zero as its

limit.

219. Approach to a Limit. — When a variable ap-

proaches a limit, it may approach it in one of three ways

:

1°. The variable may be always less tlian its limit;

2°. The variable may be always greater than its limit;

3°. The variable may be alternately greater and less

than its limit.
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If X represent the sum of w terms of the series

'+\+\+\+---'
X is always less than its limit 2.

If X represent the sum of n terms of the series

^ 3-4-8 '

X is always greater than its limit 3.

If X represent the sum of n terms of the series

X is alternately less and greater than its limit 2.

220. Theorem III. If k he any fixed quantity how-

ever great, arid x he a variahle which ive may make as

small as we please, we may make the product kx less than

any assignahle quantity.

If there be any smaller value of kx, let it be denoted

by s. Since we may make x as small as we please, let

us put

. *. kx < s,

so that s cannot be the smallest value of the product.

Hence the product cannot have a smallest value.

221. Theorem IV. If two functions are equal they

must have the same limit.

Assume it possible for the two functions to have

different limits, and denote these limits by L and L '. Put

s = \(L-L'),

SO that L and L ' differ by 2*\

Now since L is the limit of one function, that function

may be made to approach L so as to differ from it by less
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than A', and since L' is the limit of the other function, this

function may be made to approach L ' so as to differ from

it by less than s. And as the difference between L and

L ' = 2s, the functions in the above case must be unequal.

But this is contrary to the hypothesis. Hence it is im-

possible for the functions to have different limits.

222. Theorem V. The limit of the sum of several

functions is equal to the sum of their separate limits.

Let the functions be denoted by /(a:), f{x'), f{x"), etc.,

and their limits by L, L\ L ", etc. ; and let the differences

from their limits be denoted by i, i', i'\ etc. Then

f{x) = L — i,

f{x')=L'-^i\

f{x") = L"-i'\

etc. etc.

.-. /(^) +/(,:')+/(:,") + etc.

= i: + Z' + Z" + etc. - (i + i' + i" + etc.).

We must now prove that i -\- i' -\- i" -[- etc. can be made

less than any quantity we can assign.

Let h denote this quantity, which may be as small as

we please;

^i denote the number of the quantities i, %', i",

etc.;

and i denote the largest of them.

Since the difference between a function and its limit

may be made as small as we please, we may make

i < -, or ni < h.
n

But i -{- i' -\- i" -\- etc. < ni^ (/ being the largest.)

.*. i -\- i' -\- i" -\- etc. < A.
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Therefore L -\- L' -\- L" -\- etc. is the limit of

/W+/(^')-f-/K) + etc.

223. Theoeem VI. The limit of the product of two

functions is equal to the product of their separate limits.

Using the notation of Theorem V, we have

f(x)xf{x') = {L-i){L'-i-)

= L. L' - (Li -\- L'i-W).

Now as L and L ' are finite, Li' -}- L i can be made as

small as we please, and therefore the quantity within the

parenthesis may be made as small as we please. Hence

L. L' isthe limit of/(.T) X /(«').

Cor. 1. The limit of the product of any numler of

functions is equal to the product of their limits.

Cor. 2. The limit of any power of a function is equal

to the power of its limits lohen these limits are not both

zero.

224. Theorem VII. The limit of the quotie^it of two

functions is equal to the quotient of their limits when their

limits are not both zero.

Using the same notation as before, we have

f(x) L - i

f{x')- L'-i"

Now the difference between ^^-7 and -^r-;—r, is
L L —t

L'i-Li'
L\L'-i')'

The numerator of this expression evidently approaches

zero as its limit, and the denominator approaches L '^ as its

limit.
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Hence the expression as a whole has zero for its limit

when L ' is not itself zero.

226. Definition.—The expressions

•^ ^ -" X — a J at

denote the value of these expressions when x becomes equal

to a.

226. Theoeem VIII. The formula

Lim
Xr — a J = a"~

is true for all rational values of n.

Case I. When n is a positive integer.

We have, when x is different from a,

T-w //"
.M - 1 _J_ n^n - 8 I ^2^n

Now suppose X to approach the limit a. Then :c"
~ ^

will approach the limit 6?"~\ x"'"^ tlie limit <3^"~2, etc.

Hence «a:"~^ «^^a;"~* etc., will each approach the limit
^n -

1 That is, each term of the second member approaches

the limit a/" ~ ^ Because there are n such terms, we have

r' — a'
Lim. n - 1

X — a J =a

Case II. When n is a positive fractioti.

Suppose n = —, p and q being whole numbers. Then

a;^ — a"" x'^ — ««

X — a X — a

Let us put, for convenience in writing,

c^ = y, a"^ = Jj
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X = r. a

y- h"

a;"-«"

r-
-h"

- 1-
h

X ~ a b"

319

then

and
X ~ a y* — 0'^

I

~y-o

As X approaches indefinitely near to a, and consequently

y to 1), the numerator of this fraction (Case I) approaches

to pbP~^ as its limit, and the denominator to qb'^'^. Hence

the fraction itself approaches to

qb^-' q
'

Substituting for b its value «^ we have

X — a J=a q q (I

Hence the same formula holds when n is a positive

fraction.

Case III. Wlien n is negative.

Suppose n — — p, p itself (without the minus sign)

being supposed positive. Then

x"" — «" X ^ — a p

= X- Pa-x—a
fa'' - x^\

\ X — a I

fxP - aP\

\ X — a /'
— — X ^a

When X approaches a, then x'^ approaches a'^, and

' approaches ^«^ "^ Substituting these limiting

values, we have

I^im. Elzi^
I

= _ a-'^^pa^-' = - pa-^-K
X — a J=a
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Substituting for — jt> its value % we have

Lim. = na'

Hence the formula

X — a J=a
na'

is true for all values of n, whether entire or fractional,

positive or negative.

227. Definition of Series.—A series is a succession of

terms formed in order according to some definite law.

228. Theorem IX. The limit of the series

A, + A,x + A^x' + A^x^ + . . .

when X is i^idefinitely diminished is A^, provided all the

coefficients are finite and the coefficient of the ntlt term

approaches a finite limit as n is indefinitely increased.

1°. Suppose the number of terms of the series to be

infinite.

Let Tc denote the greatest of tlie coefficients A^, A^,

etc., and denote the series by Aq + S,

Since Ic is the largest of the coefficients A^, A^, etc.

. *. hx -\- hx^ + kx? -f- etc. > A^x -\- A^ -\- A^x? -j- etc

. •. ^^ < Tex + lex? + hx? + etc.

But lex -f- Icx^ + hx^ + etc. may be written in the form

lex
of the fraction , as may be shown by actual division

J. — X

of the numerator by the denominator.
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which, when x is indefinitely diminished, can be made as

small as we please.

Hence by indefinitely diminishing x, Aq can be made to

differ from the series by less than any assignable quantity.

Hence Aq becomes the limit of the series.

2°. If the number of terms in the series is finite,

;S' must be less than in case 1°; hence, a fortiori, the

theorem is true.

229. Theoeem X. In the series

Ao + AiX + A^x^ + A^x^ + . . .

by taking x small enough ive may make any term as large

as ive please compared with the sum. of all that folloiu it,

and, hy taking x large enough, we can make any term as

large as we please compared with the sum of all that

precede it.

1°. The rth term of the series will be A^^, and the

ratio of this to the sum of all the terms that follow will be

AX
A,^,x^^'-^A,^,x^^'-\-... A,^ix-^A,^,x^-\-..:

By taking x small enough we can make the denominator

of this last fraction as small as we please, and therefore the

fraction itself as large as we please.

2°. The ratio of the rth term to the sum of all that

precede it will be

Ajx'' A„

A,_,x-'^A,_X-'+ ... 1 1
•

""^x ""^^ -r • '
'

By taking x large enough we may make the denominator

of this last fraction as small as we please, and therefore the

fraction as large as we please.
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Cor. In an expression of the form

consisting of a finite number of terms in descending powers

of X, by taking x small enough we may disregard all the

terms but the last, and by taking x large enough we may
disregard all the terms but the first.

230. Vanishing Fractions.—A fraction which assumes

tlie form — for some particular value of x is called a van-

ialiing fractioyi.

The fraction, though indeterminate in form when x has

this critical value, has a real value. To determine this

value is to evaluate the fraction.

Sometimes for a particular value of x the fraction

assumes the form , which is also indeterminate in form.
oo

The values of the fractions when they assume these

indeterminate forms are really the limiting values of the

fractions as x is indefinitely increased or diminished.

The limiting value of a fraction when x in both

numerator and denominator is indefinitely increased or

diminished may be found by Theorem X, cor.

e.g. Find the limiting value of ,, ^
, ^\ , when x

dx-' -\- 7x^ — 4
is infinite and when x is zero.

1°. When a; = 00 , every term except the first of the

numerator may be disregarded, and we have as the limiting

value

4:X^ 4

Sx^^S'

2°. When x = 0, every term except the last of the

numerator and denominator may be disregarded, and we
7

have as the limiting value — -.
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The limiting value of a fraction which assumes an

indeterminate form for a critical value of x may be found

by first removing from the numerator and denominator all

common factors in x, and substituting the critical value of

X in the result.

e.g. Find the limiting value of

x^ — 4:ax -j- 'Sa^

x^-aJ'

3n X = a.

X? - 4:ax + da _ix- a)(x - 3a) _
x^ — a^ ~ {x — a)(x -\- a)

~ x — da

X -\- a'

Put x = am this result, and we have

^^=
1.

2«

EXERCISE CXXV.

Find the limiting values of the following:

X — al X — a~]
2.

« J^ao. X J=o.

ax -\-b~\ ax -\-h'l

bx -\- aJ = ao'
' bx-^ aj= 0-

mx^ ~[ mx^
"I

2)01? — axJ = 00

.

' p^ — axJ _ q.

{2x - 3)(S - 6x) -\ (2x - 3) (3 - da;)"]

7x^-Qx-{-4: J =00. ®" 7x^-6x-{-4: J..

x^ — a^~] afi — z^~]
10.

X — a J=a' X — z J^ g.

0.

11.
+ 1~] x^-8x-{- 15-|
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231. Discussion of Problems.—To discuss the solution

of a problem when the answer is literal is to observe

between what limiting numerical values of the known
elements the problem is possible, and whether any singu-

larities or remarkable circumstances occur within these

limits.

The following discussions will serve to illustrate tlie

significance of indeterminate forms of expression, and of

and 00 .as limiting values.

a. The Product of Two Quantities whose Sum is Constant.

Divide a into two parts whose product shall equal h.

Let X and y denote the parts. Then, by the con-

ditions.

x-\- y = a. (1)

xy = b. (2)

From (1), y — a — X.

By substitution in (2),

x{a — .t) = l.

.-. x^ - ax^h^^',

3nce x=-a±^--l).

1 / a^
and the two parts are

o"
^*^ +\/ ^: ^'

and VsJt-^-
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Now these values are imaginary \f h > j- ; that is, if the

product of the two parts is greater than the square of half

their sum.

Cor. Tlie product of tiuo quantities cannot he greater

than the square of half their sum.

Or, the product of tivo parts of a given quantitij is

qreatest when those parts are equal.

The two parts will be incommensurable when the differ-

ence between their product and the square of half their

sum is not a perfect square.

b. The General Quadratic Equation.

The equation

ax^ -^Ix-^- c —

has been discussed already in so far as to observe when the

values of x become imaginary, when they are real and

rational, when real and irrational, and when equal.

We will now discuss some peculiarities which may arise

by the vanishing of each of the coefficients in turn.

Note that c is really the coefficient of x^.

If c = 0, then

ax^-{-hx = 0', (1)

whence x = 0, or .

a

That is, one of the roots is zero and the other is finite.

If ^> = 0, then

rf_|_c^O; (2)

whence =v-^
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In this case the roots are equal in vahie and opposite in

sign.

They will be real or imaginary according as a and c

have opposite signs or tlie same sign.

It a = 0, then

hx + c-Q', (3)

and apparently in this case the quadratic has but one root.

namely, — —
. But every quadratic equation has two roots,

and in order to discuss the values of these roots we may
proceed as follows

:

Put - for X in the original equation, and clear of frac-
y

tions. Then

of + % + a = 0.

Now put a = 0, and we have

oy^ ^hy = 0;

mce 2/
== 0, or

_5
c'

••• X -
1 1

c

== 00 , or
c

Hence, in any quadratic equation one root becomes

infinite when the coefficient of x^ becomes zero.

This is merely a convenient abbreviation of the follow-

ing fuller statement

:

In the equation ax^ -{- hx -\- c = 0, if a is very small
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one root is very large, and becomes indefinitely great as a

is indefinitely diminished. In this case the finite root

approaches — — as its limit.

c. The ProUem of the Houriers.

Two couriers, A and B, are travelling along the same

road in the same direction, BR', at the respective rates of

m and w miles an hour. At a given hour A is at P, and

B is a miles beyond him at Q. After how many hours,

and how many miles beyond P, will the couriers be

together ?

R ^ 9. .R'

Let X denote the number of hours after the given time,

and y the number of miles beyond P. Then

y — a — number of miles beyond §;

y=mx', (1)

y — a= nx. (2)

From (1) and (2),

a , am
X = — , and y = .

7n — n *^ m — n

I.

Suppose a to be positive.

1°. Let m > n.

In this case both x and y will be positive, and A will

overtake B to the right of P.

This corresponds with the hypothesis; for since a is

positive, B is ahead of A, and since m is greater than w,

A is travelling faster than B.



328 VARIABLES AND LIMITS.

2°. Let m = 71.

In this case the values of x and ii take — and -— , and

each becomes 00

.

This result indicates that one never would overtake the

other.

This interpretation corresponds with the hypothesis

made. For B is « miles ahead of A, and both are travelling

at the same rate.

3°. Let m. < 71.

In this case the values of x and y both become nega-

tive. This indicates that che couriers were together before

the given time and before they reached the point P.

This corresponds with the supposition; for B travels

faster and is ahead of A at the given time. He therefore

must have overtaken A and have passed him before the

given time.

II.

Suppose « = 0.

1°. Let 771 > n.

In this case the values of x and y both assume the form

= 0.
m — 71

This is as it should be; for since the couriers travel at

unequal rates and are together at the given hour, they

never could have been together before, nor can they be to-

gether again afterward. As A travels faster than B, he

must have overtaken B just at the given time.

2°. Let 771 = 71.

In this case the values of x and y both assume the form

-, and the problem becomes indeterminate.
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This corresponds with the given conditions; for the

couriers are together and travelling at the same rate.

Hence they must have been together during all their past

journey, and they must continue together for the future.

3°. Let m < n.

This gives the same results as 1°, the only difference

being that B must have overtaken A at the given time.

III.

Suppose a to be negative.

1°. Let m > 71.

In this case x and y are both negative, and the couriers

must have been together on the road some time before the

given hour.

This corresponds with the supposition ; for A, being now

ahead and travelling faster, must have passed B at some

previous point.

2°. Let m = n.

This will again give oo for both x and y, and the prob-

lem is impossible.

These results evidently suit the conditions of the prob-

lem; for A is now ahead, and both are travelling at the

same rate. Hence the couriers never could have been to-

gether in the past, and never can be in the future.

3°. Let m < n.

In this case x and y must both be positive, and the

couriers must be together at some point farther along the

road.

This also answers to the given conditions; for B is now

behind at the given time, and travelling faster. Hence he

must overtake A at some future point.
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d. The ProUem of the Lights.

Two lights, A and B, of given intensities, are situated

at a given distance apart. Find the point on the line AB
where the lights give equal illumination.

Let m = illumination of A at a unit's distance,

a = distance from A to B,

and X — distance from A to P, the point of equal illu-

mination.

Then a — x will be the distance from B to P.

Since the illumination at P varies directly as the inten-

sity of the source and inversely as the square of its distance,

the illumination of A at P will be -g, and of B at P

{a - xy
By hypothesis these two illuminations are to be equal.

m = n

x' {a -xf

/>•
a Via

Whence
Vm ± Vn

The double sign of the denominator gives two values for

X, and shows that there must be two points of equal illumi-

nation.

I.

Suppose a to be positive.

1°. Let m > 71.

In this case both values of x will be positive, one less

and the other greater than a, and the one which is less

than a will be greater than — , since the denominator of the
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fraction is less than 2 Vm. Hence the two points of equal

illumination will both be on the same side of A, one be-

tween A and B and the other beyond B ; and the one be-

tween A and B will be nearer to B than to A.

Evidently these results are what we ought to expect.

The point of equal illumination between the lights ought

to be nearer the less intense light, and the second point of

illumination ought to be beyond the less intense light, so as

to be nearer to it than to the more intense light.

2°. Let m = n.

In this case the first value of x will be positive and

equal to — , and the second value of x will be oo .

That is, one of the points of equal illumination will be

midway between the lights, and the other must be at in-

finity.

The lights being of equal intensity, the points of equal

illumination ought to be equally distant from them, and

the only such points are the one half way between the two

lights and the point at infinity, or nowhere.

3°. Let m < n.

In this case the first value of ./• will be positive and less

than — , and the second value will be negative and greater
Z

than a.

That is, one of the points of equal illumination will be

between A and B and nearer the less intense light, and the

other is on. the opposite side of A to B, so as also to be

nearer the less intense light, A.

II.

Suppose a to be zero.

1°. Let m > n.

In this case both values of x become zero, and both

illuminations become co

.
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These results are on the supposition that each light is a

mathematical point, which is physically impossible.

Mathematical analysis does not concern itself with phy-

sical impossibilities. Could each light be reduced to a

mathematical point, the intensity of the light would become

infinite at that point, and were the two lights together at

that point, both illuminations would be equal there and

nowhere else.

3°. Let m <n.
The result in this case would be the same as in 1°.

III.

Suppose a to be negative.

The student may discuss this case when m y 71, m = n,

and m < n. The conclusions will be similar to those of i,

though not identically the same.



CHAPTER XXVI.

THE PROGRESSIONS.

A. ARITHMETICAL PROGRESSION.

232. Arithmetical Series.—When tlie terms of a series

increase or decrease by a common difference, it is called an

aritJmietical series or an arithmetical progression. This

series is denoted by the letters A. P.

Each of the following series represents an arithmetical

progression

:

1, 4, 7, 10, etc.

3, - 1, - 5, - 9, etc.

a — 4c?, a — d, a -^ 2d, etc.

In the iirst, the common difference is 3 ; in the second,

— 4; and in the third, 3d.

The general type of an A. P. is

a, a -\- d, a -\- 2d, a -{- 3d, etc.,

in which a is the first term, and d the common difference.

233. The nth Term of an Arithmetical Progression.

—Observe that the coefficient of d in any term of the type

is one less than the number of the term, it being 1 in the

second term, 2 in the third term, 3 in the fourth term, etc.

Hence the nth term of an arithmetical progression will

be

a-\- {n — l)d.

333
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Thus the fifteenth term of an arithmetical progression

whose first term is 5 and whose common difference is 3

will be

5 + (15 - 1)3 = 47.

When any two terms of an arithmetical progression are

given, the common difference, and any other term, may
be found by the formula for the nih. term.

e.g. Suppose the twelfth term of an arithmetical pro-

gression to be 36, and the eighteenth term to be 12. Find

the first term, the common difference, and the sixth term

of the progression.

Let a denote the first term, and d the common differ-

ence.

The twelfth term will \)q a -\- lid, and the eighteenth

term, a -\-lld.

.-. «+17^=12,

and a + 11^/ = 36.

6fi=-24

and ^/ = — 4.

Also, « = 36 - 11(- 4) = 80.

Therefore the sixth term will be

80 + 5(- 4) = GO.

234. Arithmetical Means.—When three quantities are

in arithmetical progression, the second is called the arith-

metical mean of the other two.

Thus, if «, h, and c are in A. P., h is the arithmetical

mean of a and c.

By definition, h — a — c — h,

or 2^ = « + c.

h = l/2(« + c).
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Hence, tlie arithmetical mean of two quantities is half

their sum.

When any number of quantities are in arithmetical pro-

gression, all the intermediate terms are called arithmetic

means of the two extreme terms.

Any number of arithmetical means may be inserted be-

tween any two given quantities.

e.g. Insert five arithmetical means between 12 and 3G.

We must find an arithmetical progression with five terms

between 12 and 36. Therefore 36 must be the seventh

term.

.-. 12 + 6f/ = 36.

f? = 4.

Therefore the progression will be

12, 16, 20, 24, 28, 32, 36.

In general, to insert n terms in A. P. between a and h

proceed as follows:

Denote the common difference by d.

Then h, or the (w + 2)th term, is « -f (n -\- l)d.

.'. rt + (m + l)r/ = ^'.

.-. {n^l)d=^b-a.

1) — a
. •. d= ——r

.

n -\- 1

Therefore the series is

h — a
^ J) ~ a

, J — rf
. I — a

'7^+ l M+1 y^-fl w + 1

and the required means are

,
h — a . J) — a . J) — a . l — a

a -1 r^, a + 2 -^-^, a + 3——r, , « + n——r,
^ n-^\ n-\-\ ^ + 1 n-\-r

or
na -]- b (n — l)a + 2^ (n — 2)a + 3^ a -{- nb

' ¥+T' TzT+l ' n-\-l
'

n-\- i'
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EXERCISE CXXVI.

1. Find the twentieth term of each of the following

arithmetical progressions

:

1°. 7, 10, 13, etc. 2°. 2, 6, 10, etc.

3°. 20, 15, 10, etc. 4°. 1/12, 1/2, 11/12, etc.

2. Find the last term of each of the following series

:

1°. 4, 7, 10, to 17 terms. 2°. 3, 7, 11, to 21 terms.

3°. 8, 6, 4, to 12 terms. 4°. 5, 8^, llf, to 16 terms.

5°. 1/3, - 1/2, - 4/3, to 25 terms.

3. The eleventh term of an A. P. is 51 and the sixth

is 31. What is the first term ?

4. The seventh term of an A. P. is 37 and the twelfth

term is 62. What is the first term ?

5. The fourth term of an A. P. is 10 and the tenth

term 24. What is the common difference ?

6. The sixth term of an A. P. is 5/4 and the fifteenth

term 11/4. What is the common difference ?

7. The third term of an A. P. is 1/2 and the thirteenth

is 2. What is the twenty-third term ?

8. The seventh term of an A. P. is 5 and the fifth term

is 7. Wliat is the twelfth term ?

9. Which term of the series 6, 11, 16, etc., is 96 ?

10. Which term of the series 7, 3, — 1, etc., is — 53 ?

11. Which term of the A. P. 16^^ - U, Iba - U, Ua
- 6b is Sa ?

12. Insert twenty-two arrithmetical means between 8

and 54.

13. Insert eight arithmetical means between 1 and 0.
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14. Insert ten arithmetical means between 5a — Qb

and 5^ — Qa.

16. The sum of the fourth and seventh terms of an

A. P. is 40, and the sum of the sixth and tenth is 60.

Find the common difference and the first term.

16. The sum of the fifth and eleventh terms of an A. P.

is 0, and the sum of the third and eighth terms is 15.

Find the common difference and the first term.

17. The sum of the fourth and thirteenth terms of an

A. P. is — 22, and of the second and eighth is 24. What
is the sum of the sixth and twelfth terms ?

235. Problem. To find the sum of any 7iumber of

terms of a7i arith7netical progression.

Let a be the first term, d the common difference, n the

number of terms whose sum is required, I the last term,

and S the required sum.

Then, since I is the nth term, we have

I — a -\- {n — l)d.

,'. S=a-{-{a-ird)+{a-\-2d)+ . . . -\-{l-2d)-\-{l-d)-{-I,

or in reverse order,

S=lJr{l-d)-\-{l-2d)-\-.. . ^(a+2d)+ (a+d)-\-a.

Adding these two equations, we obtain

<^S — (a -\- I) -\- {a -\- 1) -{- (a -{- I) -\- . . . to n terms

= 7i(a-\-l ).

0-. S=-{a+ l), (1)

But l = a-\- {n - l)d.

Substitute this value of I in (1), and we get

8 = l{U + (n-l)d). (2)
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Both these formulae are important. By means of the

second, when any three of the four quantities S, a, d, and

n are given, the fourth may be computed.

e.g. 1. Find the sum of the first thirty terms of the

series

3 + 6 + 9, etc.

Here o^ = 3, d—d^ and n = 30.

.-. ^=^[6 + 29x 3] = 1395.

e.g. 2. The sum of twelve terms of an A. P. is 260 and

the first term is 20. What is the common difference ?

Here /Sf=260, n = 1%, and a = 20.

.-. 260 = -^(40 + 116?),

or 260 = 240 + QQd.

.-. 66t^=-20,

and d = — -^.

e.g. 3. How many terms of the series 40 + 36 + 32

+ etc. must be taken that their sum may be 216 ?

Here S^UQ, « = 40, and d = - 4r

.-. 216=|[80 + (w-l) X-4],

or 432 = 80/1 - 4^^2 + 4w.

.-. n^- 2l7i + 108 = 0.

.-. {n- 9)(w-12) =

.\ n = 9 or 12.

The finding of the number of terms by this formula in-

volves the solution of a quadratic equation in n, and one or
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both of the values of n may be negative, fractional, surd, or

imaginary. In these cases all the values except the positive

integral ones must be rejected. When the two values of 7i

are positive and integral, the sum of the additional terms

for the greater value must be zero. In the above case the

tenth, eleventh, and twelfth terms are 4, 0, — 4.

EXERCISE CXXVII.

Find iiie sum of the following series

:

1. 3 + 5 -|- 7 + . . . to twenty-four terms.

2. 12 + llf4-ll| + ...to twenty-two terms.

3. 3 + 4i + 6 + . . . to seventeen terms.

4. — 7 — 2-|-3 + ...to twenty terms.

5. 1/2 + 1/3 + 1/6 + • • • to seven terms.

6. 5 + 6.2 -[- 7.4 + . . . to twenty-one terms.

7. {}i + 1) + {"^n + 3) + (3m + 5) + . . . to ^i terms.

8. {a + hf + {a^ J^h^)-\-(a-bf+ . .. to n terms.

9. The fourth and thirteenth terms of an A. P. are

— 9 and -{- 9. What is the sum of the first twenty terms ?

10. The seventh term of an A. P. is 43| and the twelfth

is 77^. What is the sum of the first twenty-four terms ?

11. Find the sum of thirty consecutive odd numbers of

which the. least is 7.

12. Find the sum of twenty consecutive odd numbers
of which the greatest is 77.

13. Insert seventeen arithmetical means between 4 and

76, and find their sum.

14. Insert forty arithmetical means between 10 and

100, and find their sum.
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15. Find the sum of all the multiples of 7 lying

between 200 and 400.

16. Find the sum of all the positive multiples of 12 of

less than four digits.

236. The Average Term.—An A. P. of an odd number
of terms must contain a middle term, and the number of

terms between the first term and this middle term must be

the same as that between it and the last term. Hence the

first, middle, and last terms must form an A. P., and the

middle term must be half the sum of the two extreme

terms.

Since the formula S = -^{a -\- I) may be written
lit

S = 7ii—-— 1, the sum of an A. P. of an odd number of

terms is equal to the product of the middle term and the

number of terms. The middle term therefore must be the

average of all the terms, or the arithmetical mean of any

pair of terms equally removed from it.

The average of all the terms of an A. P. evidently must
be half the sum of the extreme terms or their arithmetical

mean. For the average of the first and last is , of
2

the second and next to the last ^^-^—~^ — ''—^-

,

2 2
and so on.

Hence, if the number of terms be odd, the average of

all the terms will be the middle term, and if the number of

terms be even, the average of all the terms will be the

arithmetical mean of the two middle terms.

e.g. 1°. The first term of an A. P. of seventeen terms

is 3 and the last term is 27. ^Vhat is the sum of the terms ?

Here the middle term := —^— = 15,

and the sum = 17 X 15 = 255.
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e.g. 2°. The first term of an A. P. is 17, the common
difference is ~ 3, and the middle term is — 4. Find the

number of terms and their sum.

Here - 4 = 17 + (?i - 1) X - 3,

- 4 = 17 - 3?i + 3.

. •. Zn = 24.

Since 8 is the number of the middle term, the whole

number of terms must be 15, and their sum — 60.

EXERCISE CXXVIII.

1. Find the sum of the twenty-one terms of an A. P.

of which the middle term is 33.

2. Find the sum of forty-five terms of an A. P. of

which the twenty-third is 75.

3. The first term of an A. P. is 3, the last term is 77,

and the sum of the terms is 520. What is the number of

terms ?

4. The first term of an A. P. is 12, the last term is

— 198, and the sum of the terms is — 3069. What is the

number of the terms ?

5. A man travels 5 miles the first day, 8 miles the sec-

ond, 11 miles the third, and so on. At the expiration of

a certain time he finds he has travelled at the average rate

of 18^ miles a day. How many days did he travel ?

6. A pedestrian having to go 184 miles walks 30 miles

the first day, and two miles less each subsequent day till

liis journey was completed. How many days did it take

him ?

7. In an A. P. .the product of the sixth and eighth

terms exceeds the product of the fourtli and tenth by 200.

What is the common diHerence ?
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8. In an A. P. the product of the eighth and thirteenth

terms is less than the product of the ninth and twelfth

terms by 25. What is the common difference ?

9. Two travellers start together on the same road. One

of them travels uniformly at the rate of 10 miles a day.

The other goes 8 miles the first day, and increases his speed

half a mile each subsequent day. In how many days will

the latter overtake the former ?

10. One hundred stones are placed on the ground in a

straight line at intervals of 5 yards. A runner has to start

from a basket 5 yards from the first stone, pick up the

stones, and bring them back to the basket one by one.

How far will he be obliged to travel ?

11. An author wished to buy up the whole edition of

1000 copies of a book which he had published. He paid 20

cents for the first copy, but the price rose so that he was

obliged to pay 1 cent more for each subsequent copy than

for the last. What was he obliged to pay for the whole ?

12. Find three numbers in A. P. the sum of whose

squares is 2900, and the square of whose means exceeds the

product of the extremes by 100.

13. Find four numbers in A. P. such that the sum of

the squares of the extremes equals 464, and the sum of the

squares of the means equals 400.

14. Find four numbers in A. P. such that the product

of the means shall exceed the product of the extremes by

72, and the sum of their squares shall equal 280.

237. Two Important Series Allied to the Arithmetical

Series.—Let Si denote the sum of the first powers of the

natural numbers from 1 to n, S^ denote the sum of their

squares, and S^ the sum of their cubes. Then

—
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For this is an A. P. in which the first term is 1 and the

last term is n and the number of terms is also n.

This may be proved as follows

:

{n + If = n^-^ 3^2 _|_ 3^ _^ 1.

Writing 1, 2, 3, etc., in turn for 7i in this identity, we
get

23 = 13-}- 3. 12 + 3. 1 + 1;

33 = 23 + 3.22 + 3.2 + 1;

43 = 33 + 3. 32 + 3. 3 + 1;

etc. etc.

;

[n-\-lY = n^^^.n^-\-^.n-\- 1.

Note that we have on each side of these equations 23, 3^,

43 ... to n^. Adding these equations and cancelling their

common terms, we get

0^+1)3=13+3(12+22+32. ..+^^2)_|_3(l_^2+3...+ w)+?^

:.l + 3>% + 3^^(^) + .

3^z(MJ_) , 2Mi2

3^^^+^^^+^= 0^2 H ^ .

)l{n + 1)3 37^2 + 5^ + 2 2^3 ^ 3^2 _^ ^
•*• ^^^^-

2 '^ 2
= 2

_ ^^^ + l)(2^ + l)~
2

S,=_ 7l{7l + 1)(2?^ + 1)

6
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3°. ^3 = ^i'.

Here {n + 1)* - n'^ -\- 4w« + 6^^ _|_ 4^ _^ i.

Writing 1, 2, 3, etc., in turn for n in this identity, we

get

2^ = 1^ + 4 . 13 + 6 . 12 + 4 . 1 + 1
;

34 = 24 + 4 . 23 + 6 . 22 +.4 . 2 + 1;

44 = 34 + 4 . 33 + 6 . 32 + 4 . 3 + 1;

etc. etc.

;

i^n-\-iy = 7i^-^^.n^^Q.n^-\-^,n-\- 1.

Adding and cancelling as before, we get

{n+ ly = V + 4.^3 + 6.^% + 4.>S'i + w

= 1 + 4. .S3+ n{n + l)(2w + 1) + ^n{n + 1) + w,

.-. 4.^%=(n+l)4-[^^(r^+l)(27i+l)+247i+l)+^+l]

= ^^4 _^ 4^^3_^ 6^^2 _^ 4,^ _^ 1 __ [2^3_|_3^2_|_,j^27i2+2/i+w+ 1]

= n^ + 2^i3 _|_ ^2 ^ ,^2(^^ _|. 1)2 3^ [-^(^ _|. i)-|2,

... ^3=[MM^J=^.,

B. GEOMETRICAL PROGRESSION".

238. Geometrical Series.—Quantities are said to be in

geometrical prog7'essio7i (G.P.) when the ratio of any term

to that which immediately precedes it is the same through-

out the series.

Thus each of the following series forms a geometrical

progression

:

2, 4, 8, 16, etc.

1, - 1/4, 1/16, - 1/64, etc.

a, ar, ar^^ ar^^ etCo
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The constant ratio is called the common ratio, and is

found by dividing any term by the one which immediately

precedes it.

Thus, in the first of the above series, 3 is the common
ratio; in the second, — 1/4; and in the third, r.

239. Type Form of the Series.—The type form of a

geometric series is

a -\- ar -\- ar^ -{- ar^ -\- ar^ . . . -{ af ~ ^

It will be noticed that in this series the exponent of r in

each term is one less than the number of the term.

If n denote the number of terms, and I the last or wth

term, then / = ar^ ~ ^

240. Geometrical Means.—When three quantities are

in geometrical progression, the middle one is called the

geometrical mean between the other two.

Let a, b, and c be three quantities in G.P. By
definition,

— =r — , h^ = aCy and h = Vac.
a h

That is, the geometrical mean between two quantities is

equal to the square root of their product.

All the terms in a G.P. between the extremes may be

called geometrical means, and any number of such means

may be inserted between two terms.

Let a and h be the two terms between which 7i

geometrical means are to be inserted.

The wliole number of terms will be n + 3, and b will

be the (w -f 2)th term.

Let r be the common ratio. Then

ar
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hn+ 1 _ _
a

n + l

r
y~a

e.g. Insert four geometrical means between 224 and 7.

In this case we must find six terms in G.P. of which

the first is 224 and the sixth is 7. Therefore

7 =224r^

.-. r^ = l/32,

and r = y/xj^'l = 1/2.

Hence the means are 112, 56, 28, 14.

EXERCISE CXXIX.

In finding the common ratio in a G.P. it is often

necessary to extract a root of a high index, which is tedious

without the use of logarithms. In the following examples

it will be easy to extract the required roots by inspection.

Kemember that the fourth root is the square root of the

square root, that the sixth root is the cube root of the square

root, and that the eighth root is the square root of the

square root of the square root.

1. Insert two geometrical means between 2 and 250.

2. Insert three geometrical means between — 3 and

-768.

3. Insert four geometrical means between 5 and— 1215.

4. Insert five geometrical means between 3 and .000192.

6. Insert four geometrical means between 1/6 and 64/3.
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241. Problem. To find the sum of n terms of a

geometrical progression.

Let 8 denote the sum, and let the series be

a -\- ar -\- ar -\- . . . -\- ar"" \

. Then S = a + ar -{- ar^ ^ . . . + ar'^'K (1)

Multiply each side by r :

rS = ar -\- ar'^ -\- ar^ -{-... -\- ar^. (2)

Subtract (2) from (1), and we get

S — rS — a — ar'^,

or (1 -r)S= a{l - r").

.-. S= a 1-r
e.g. Find the sum of ten terms of the series 2 + 4 -f-

8 + etc.

Here a = 2, r = 2, and w = 10.

Therefore

1 oio

;S' = 2 A. ^ = 2(210 - 1) = 2(1023) = 2046.
1 — Z

242. Divergent and Convergent Series.—The formula

^ /p'"' ^'* ^ dr^^ ci

a—, , or a — , may be written -.
I - r r —1 ^ r — 1 r — 1

In the series a -\- ar -\- ar^ + «r^ 4- . . . «r" ~
\. if r be

made 1, the series becomes a + a -h a -\- . . . n terms = 7ta.

Hence, by sufficiently increasing n, we may cause S to

surpass any value however great. When n becomes qo,

*S' becomes oo

.

If r be greater than 1, r"" increases with n, and, by

sufficiently increasing n, r'^ may be made as great as we
r" — 1

please. When w becomes oo , a— — becomes ao .
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Hence, by sufficiently increasing the value of n, we may
cause S to exceed any value however great, and when

n = CO , S = cc .

In these two cases the geometric series, if supposed

continued to an infinite number of terms, is said to be

divergent.

If r be numerically less than 1, that is a proper frac-

tion either positive or negative, r" decreases as n increases.

By making n sufficiently large r"^ may be made as small

1 — r"
as we please. When n = oo , r"* = 0, and a--

a
becomes

1 - r

a
Hence is the value which 8 approaches as a limit

as n is indefinitely increased.

In this case the series is said to be convergent.

The sum of an infinite series is the limit to which the

sum of its first n terms approaches as n is indefinitely in-

creased.

If r = — 1, the series becomes

8=a — a-\-a — a-\-.,,.

In this case the sum of any odd number of terms is «,

and of any even number of terms 0. The sum, therefore,

does not become infinite when an infinite number of terms

are taken, nor does it converge to one definite value. A
series which has this property is said to oscillate, and is

called an oscillating series.

If a series is composed of an infinite number of terms,

its sum can be found only when the series is converging.

e.g. 1°. Find the sum of the series

1/2 + 1/3 + 2/9 + . . . to six terms.
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1/2(1 - (2/3)^) _ 1/2(1 - 64/729)
"

^~ 1-2/3 ~ 1/3

_ 1/2(665/729) 665~
1/3 ~486*

EXERCISE CXXX.

1. Find the sum of the G.P. 6 + 18 + 54 + . . .

to eight terms.

2. Find the sum of the G.P. 6 - 18 + 54 + . . .

to eight terms.

3. Sum — 2 + 2| — 3^ + . . . to six terms.

4. Sum 3/4 + li + 3 + . . . to eight terms.

6. Sum 2 — 4 + 8 — ... to ten terms.

6. Sum 16.2 + 5.4 + 1.8 + . . . to twelve terms.

7. Sum — 1/3 + 1/2 — 3/4 + ... to seven terms.

8. Sum 8/5 - 1 + 5/8 - ... to infinity.

9. Sum .45 + .015 + .0005 + ... to infinity.

10. Sum 1.665 - 1.11 + .74 - ... to infinity.

11. Sum 3-^ + 3-2 + 3-3
-f . . . to infinity.

12. The fifth term of a G.P. is 324 and the eighth term

is - 8748. What is the first term ?

13. There are five terms in G. P. The sum of the first

and second is 30, and the sum of the fourth and fifth is

1920. What are the numbers ?

14. There are three numbers in G. P. The sum of the

first and second is 24, and of the second and third is — 72.

What are the numbers ?

15. There are three numbers in G.P. Tlie second

minus the first equals 36, and the third plus the second

equals 210. What are the numbers ?
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243. The Value of Repeating Decimals.—The value of

a repeating or a recurring decimal may be found by sum-

ming a G.P. to infinity.

e.g. 1°. Find the value of the repeating decimal .333-|-.

3 3 3
•^^^ "^

10 + 10^ + 10^ + • • •
*^ '""^^^^^

3 1 3 10 1

10* 1 - 1/10 "10* 9
~3'

Find the value of the circulating decimal .24L

_^ 41
~ 10 + 102

•

1 _ W
"I

..1 - 1/102 ~ 99 J

41 102^ _ ^ .
41

103 X 99 - 10

2 X 99 -f 41 239

10 + 103
X

99 - 10 + 990

990 990*

244. Rule for Values of Recurring Decimals. — Note

241 2
that the last answer =——-—

.

yyu

Hence we obtain the following arithmetical rule for

finding the value of a mixed circulating decimal

:

Sithtract the non-repeating figures from all the digits

down to the end of the first period, and write as a denomi-

nator as many 9'^ as there are digits i7i the repeating part,

folloived hy as many ciphers as there are digits in the non-

repeating part.

Note also that the answer to the previous example =
3/9. Hence we obtain the following rule for finding the

value of a pure recurring decimal

:
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Write as a doiominator to the recurring digits as many
9's as there are digits in the period.

EXERCISE CXXXI.

Sum the following recurring decimals as geometrical

progressions, and show in each case- that the result is in

agreement with the rules just given:

1. .15. 2. .185. 8. .396.

4. .428571. 5. .012987. 6. .79.

7. .315. 8. .116.. 9. .19324.

C. COMPOUND INTEREST AND ANNUITIES.

245. Compound Interest.—There are many problems in

Geometrical Progression of which an approximate solution

can be obtained readily by means of logarithms. Among
these the different cases of compound interest and annuities

are of especial importance.

Money is said to be invested at compound interest when
at stated intervals the interest which has accrued is added

to the principal, so as itself to draw interest. These addi-

tions are made usually annually, semi-annually, or quarterly.

246. Problem I. To find the amotmt at the end of a

given time of a sum of 7noney invested at compound ititerest

at a given rate.

Let F denote the given sum,

71 denote the number of years,

r denote the interest of one dollar for one year,

and A denote the required amount.
1°. Suppose the interest to be computed annually. At

the end of the first year the amount will be

P + riP = P(l + r);
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at the end of the second year the amount will be

P(l + ^) -!_ rP(l + r) = P{\ + r)(l + r) = P(l + r)^;

at the end of the third year the amount will be

P(l + rf + rP{l + rf = P(l + r)2(l + r) = P(l + r)^;

and at the end of the 7ith year the amount will be

P(l + r)^-'-}-rP(l + r)'^-^ = P(l + r)"-i(l + r)

= P(l + r)".

The amounts

P(l + r), P(l + rf, P(l + r)^ . . . . P(l + r)%

are in geometrical progression, the first term being P(l+r),
the last term P(l + ry\ and the common ratio 1 + r.

^ = P(l + r)^ (1)

To solve this by logarithms, it is necessary to take out

log P, log (1 + r)% and the antilog of the sum of these two

logs.

2°. If the interest be computed semi-annually, the for-

mula for the amount becomes

A = p{l + If; (3)

and if the interest be computed quarterly, the formula be-

comes

A = P{'+iT' (^)

247. Present Worth.—The present ivortli of a sum of

money due at some future time without interest is the

principal which put at interest for the given time would

amount to the given sum.

248. Problem II. To find tlie present imrtli, at com-

pound interest, of a fixed sum due at a future date.

In formula (1), if A denotes the given sum, r the cur-
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rent rate of interest, and n the given number of years, then

P will evidently denote the present worth. Hence

^ = (]-^» = ^(i + '•)-"• w
To solve this by logarithms, it is necessary to take out

the log of A, the colog of (1 + ^)^ and the antilog of their

sum.

Of course, if the interest is to be computed semi-annu-

ally or quarterly, P must be found from formula (2) or

(3).

249. Problem III. To find the amount at a given

time of a fixed sum invested at stated intervals at compound

interest.

Let P denote the fixed sum, and use A, r, and n as be-

fore. Then the amounts of the stated investments, on the

supposition that they are made annually, will be as follow :

A, = P(l + r)%

A, = P(l + rr-\

A, = P(l^ry-^

A^ = P(l + r)"-("-« = P(l + r).

The sum of these amounts is

-P(l + r)-{- P(l + ry -h ^"(1 + ^)' + ^(1 + ry.

This is a geometrical progression, of which the first

term is P(l + ^)? the common ratio (1 + r), and the

number of terms 7i. Hence

^ ' 1 + r — 1 r

To solve this by means of logarithms, first find by loga-
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.

rithms the value of (1 + r)" + S from this subtract 1 -|- r,

find the logarithm of the result, of P, and the colog of r,

and, finally, the antilog of the sum of the three.

250. Annuities.—An annuity is a fixed sum of money
payable at equal intervals of time.

If the payment continue for a definite time, the annuity

is called q. fixed annuity ; if only during a person's life, a

life an7iuity ; and if for all time, a perpetuity.

Annuities may pay annually, semi-annually, quarterly,

or at any other stated times, but the principles of dealing

with all the cases being the same, we shall consider only

the case of annual annuities.

251. Problem IV. To find tlie present value of an

annuity of a given amount payable at the end of each of n

successive years.

Let A denote the amount of each payment, P the pres-

ent worth of the whole annuity, and P, , P^, etc., the

present worth of the successive payments, beginning with

the first. Then

P, = J(l + r)-\

P, = A{1 + rY\

P^=A{l^rf\

mn,^P=A[^^.^^^,-^.....^^J^

1 L_

In case of a perpetuity, n becomes oo , and y-—;—r- be-
(1 -f- ry

A
comes 0. Therefore P = —

.

r
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That is, the present ivorth of a perpetuity is the qttotient

obtained by dividinff the amount of the anmml papnent by

the interest of one dollar for one year.

252. Problem V. To find the amount of an annuity

to run for n years which can be purchasedfor a given sum

of money, the rate of compound interest being known.

In formula (6), P denotes the present value or the pur-

chase-money, and A the amount of the annuity. From

(6), we obtain

rP _ rP(l-fr)"

1-
(1 -f rf

Formula (7) is also the formula for finding by what

fixed annual payment of A dollars an obligation of P
dollars may be cancelled in a given number of years,

r being the interest of one dollar for one year.

253. Problem VI. To find the present ivorth of an

annuity to begin after m years and to continue for n years,

allotving compound interest.

By (6), the value of the annuity at the expiration of m
years is

(1 +

and by (4), the present worth of this sum due in m years is

A^ _ ^
rV (l + rY _ A{(l + rY-l)
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EXERCISE CXXXII.

1. What will be the amount of 2000 dollars for 15

years at 5 per cent, the interest being compounded

annually ?

2. What will be the amount of 800 dollars for 9 years

3 months at 4 per cent, the interest being compounded

quarterly ?

3. What sum of money will amount to 11240.60 in

5 years 6 months at 6 per cent, the interest being com-

pounded semi-annually ?

4. In how many years will 968 dollars amount to

11269.40 at 5 per cent, the interest being compounded

semi-annually ?

6. What is the present worth of a note for 600 dollars

due 9 years hence, allowing 4-^ per cent compound in-

terest ?

6. At what rate per annum will 2600 dollars give

$416.40 in 3 years and 9 months, the interest being com-

pounded quarterly ?

7. In how many years will 500 dollars double itself at

5 per cent, the interest being compounded annually ?

8. In how many years will a sum of money double

itself at 4 per cent, the interest being compounded quar-

terly?

9. What is the present value of an annuity of 500

dollars to continue for 20 years, allowing 4 per cent com-

pound interest ?

10. What is the present value of a perpetuity of 300

dollars, allowing 5 per cent compound interest ?

11. What is the present value of an annuity of 400
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dollars to begin 8 years hence and to run for 15 years,

allowing 4 per cent compound interest ?

12. What fixed annual payment must be made to can-

cel an obligation of 3000 dollars in 8 years, allowing 3^

per cent interest ?

13. What annuity to continue 12 years can be pur-

chased for 4000 dollars, allowing 5 per cent compound

interest ?

D. HARMONIC PROGRESSION".

254. Harmonic Progression.—Three quantities are said

to be in harmonic progression when the first is to the third

as the difference between the first and second is to the

difference between the second and third. An harmonic

progression is denoted by the abbreviation H.P.

a, J), and c are in H.P. when

a-.l = a — h:h — c.

A series is said to be harmonic when every three con-

secutive terms are in H.P.

255. Theorem I. If three quantities are in har-

monic progression.) their reciprocals are in arithmetical

progression.

Let a, h, and c be three quantities in harmonic pro-

gression. Then

a'.c ^= a — h'.l) — c.

Whence «(J — c) = c{a — V),

or ah — ac = ac — he.

Dividing each term by adc, we have

c h~ 1) a'
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Harmonical properties are interesting because of their

importance in geometry and in the theory of sound. In

algebra, the theorem just proved is the only one of any im-

portance. There is no general formula for the sum of any

number of terms in H.P. Questions in H.P. are solved

usually by taking the reciprocals of their tejms, and making

use of the properties of the resulting A. P.

256. Theorem II. The liarmonic mean of two quan-

tities is equal to ticice their ])roduct divided by tlieir sum.

If a, b, and c are in H.P., —
, ^, and — are in A. P.

a b' c

.: ^+1 = ^.
a c b

a -\- c

267. Theorem III. The geometric mean of two quan-

tities is also the geometric mean of the arith7netic and har-

monic mea7is of the quantities.

Denote the arithmetic, geometric, and harmonic means

of a and ^ by J, 0, and H, respectively. Then

A =
2

•

G = Vab.

H = Ub

.'. A . H = ab = 0\

258. Problem. To insert n harmonic means betivem

a and b.

Insert n arithmetical means between - and -=-, and the
a b

reciprocals of these will be the required harmonic means.
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EXERCISE CXXXIII.

1. Insert two harmonic means between 3 and 12.

2. Insert two liarmonic means between 2 and 1/5.

3. Find the fifth term of the H.P. 1/2, 1/4, 1/6.

4. Insert three harmonic means between 5 and 25.

5. If a, h, c, are in A. P., and i, c, d, are in H.P.,

prove that a \h — c -. d.

6. Show that if a, h, c, d, be in H.P., then will

?>{h - a){d - c) = {c - i){d - a).

7. Show that if .a, h, c, be in A. P., h, c, d, in G.P.,

and c, d, e, in H.P., then will a, c, e, be in G.P.



CHAPTER XXVII.

BINOMIAL THEOREM.

259. Theorem.— When n is a positive integer,

(a + xY = a" + na"" -^x-{- ^^^^a" "V

+ 1.2.3 "^ ^
-\- . . . to n -\- 1 terms.

1°. When n = 1, we have

{a -{- xY — a -\- X = a"" -{- na"" ~% since a^"^ = «o = 1.

By actual multiplication, when ?^ = 2, we have

{a-\-xy=a^-\-2ax-{-x^=a''+na'' -^x-{- ^^^^~^V " V,

since a^'^ — aP = 1.

When w = 3, we have

(a-\-xf = «3+ 3A+ 3«a;2+ a;^ = «"+ na"" -^x-\- \ _ \
1 . z

When w = 4, we have

(a+ a;)^= a^ + 4A + Ga^a^^ + ^ao? -|_ a;4 = ^n _|_ ^^n- 1^

y^(^-l)
2 o ,

n{n-l){n-^)
+ 1.2 "^ ^+ 17273 "" ^*

^^ - 1)(^ - 2)(^ - 3)+ 1.2.3.4 "^ ''•

360
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We thus see that the theorem holds true when n ^ \,

2, 3, or 4.

2°. Now multiply each member of the expression

(a + xf = fl" 4- na^'-'^x + \
~ ^U^'-^x^

1 . Z

+ 1.2.3 "^ ^

4"
. • . to (w + 1) terms,

which we have found to hold true when n = l,2, 3, and 4,

hy a -{- X, and we obtain

(a + a:)'* + i = «« + !+ [«"a; + na^'x]

-f- • • • to 7i + 2 terms.

Note that the second term of the last aggregate is ob-

tained by multiplying the fifth term of the expression of

(a + ^)" hy a.

Note also that each aggregate contains two terms in ax

with identical exponents, and that, if we let r + 1 denote

the number of the aggregate, the coefficient of these two

terms of each aggregate after the first will be respectively

n{n-l), . .(n-(r- 1)) n{n - 1) . . . (?i - r)

1
. 2 . . . . r

^""^
1.2. ...r+1 •

^(,, _ 1) . . . (^ _ (^ _ 1)) n(n-l)..,(n-r)
1.2. ...r "^ 1.2. ...r + 1

n{n-l). . .(n-(r- 1)) T n - rn

1.2. ...r L ^r+lj
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^
n{n-l)...(7i-{r-l)) n^l

1.2 r ^ r + 1

_{n + l)n{n - 1) ... (w - (r - 1))~
1. 2. . . . r(r+l) '

whatever r may be, and this is the general expression for

the sum of the coefficients of the term in ax in each bracket

after the first.

Therefore we have

(a + xf^^ :=«" + ! + {n + l)a''x + i^±li)^«~ -
1^^^

1 . Z

{n^l)n{n-l) _ (n ^ l)n(n - l)(n - ^)+ 1.2.3 "" ^
"^

1.2.3.4 "^ ^

+ . . . to (« + 2) terms.

If we put n -\- 1 = n' , WQ will have

1 . /O

+
>»'(«'-W-V-%^ + ... to (»' + 1) terms,

which agrees with the theorem.

We therefore conclude that the theorem will be true for

the next higher value of n if it be true for any one value

of n.

But by actual multiplication the theorem has been

shown to hold true when ?i = 1, 2, 3, and 4. It therefore

niust hold true when n = 5, 6, 7, or any positive integer.

260. The Binomial Coefficients.—The quantities

n{n-J) n{n - l){n - 2)
""' 1.2 ' 1.2.3

'^^''"

are known as the binomial coefficients.

Note that the factors in the numerators begin with n
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and decrease by 1, and that their number is one less than

the number of the term in which it occurs; also that the

factors in the denominators begin with one and increase by

unity, and that the number of factors in the denominator

is the same as in the numerator.

e.g. The coefficient of the fifth term of the develop-

meut of (. + x)» is
>K >' -!)(>» -2)(« - 3)

_
^ ^ 1.2.3.4

Note carefully that the binomial coefficient of the next

term in the development of a binomial expression can be

obtained by multiplying the coefficient of the last by the

exponent of a in that term and dividing by the number of

the term.

Thus the binomial coefficient of the third term is

-^

—

--^, and the exponent of a is n — 2. The binomial
1 . Z

coefficient of the fourth term is —^^

—

-—^^r -. This is

the coefficient of the third multiplied by (w — 2) and di-

vided by 3.

261. Developments.—AVhen a single algebraic expression

is changed into the sum of a series of terms, it is said to

be developed, and the series is called its development. A
development may be true in form, yet may equal the func-

tion only for certain special values of x. No development

can equal the function except for the values of x which

make it convergent.

EXERCISE CXXXIV.

Find the binomial coefficients of the development of the

following expressions:

1. {a^xf. 2. {a-^xf. 3. (a-[-xy.

4. (a^xf. 5 {a^xY. 6. {a^x)".

7. {a-\-x)\ 8. {a-^xf. 9. {a ^ x)\
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262. Coefficients.—Note in the above examples that

after the middle of the development, the coefficients of the

first half are repeated in the reverse order.

When n is odd, the number of terms in the development

will be even. There will be no middle term, and the

coefficients of the terms each side of the middle of the series

will be the same. When n is even, the number of terms in

the development will be odd, and there will be a middle

term whose coefficient will be the largest of all.

263. Exponents.—Note also that the sum of the expo-

nents of the two terms of the binomial in each term of the

development is equal to 7i, and that the exponent of the

second term of the binomial is always one less than

the number of the term in which it occurs in the develop-

ment. The exponent of the first term will be n, minus the

exponent of the second term.

e.g. In the sixth term of the development of (a + xy
we have a'^x^.

264. Signs.—When both terms of the binomial to be

developed are positive, all the terms of the development are

positive, since all powers of positive quantities are positive.

When the first term of the binomial is positive and the

second term negative, every other term of the development

beginning with the second is negative.

e.g. Write the product of the powers of the first and

second terms of the binomial (c — 2x^y in the fourth term

of its development.

c%- 2xY =c^X -Sx'= - 8(^x\

EXERCISE CXXXV.

Write the product of the powers of the two terms of the

following binomials in the given term of their develop-

ment.

N.B.—When the terms of the binomial expression to be

developed are complex, they should in all cases be thrown



BINOMIAL THEOREM. 365

with their signs within parentheses, the powers to which

these are to be raised should be indicated, and the binomial

co'efficient should be written before and then the indicated

operation should be performed.

1. In the fifth term of (a + 2x^y\

2. In the fourteenth term of (3 — aY^.

3. In the fourth term of (5^^ — Ix^)"*.

4. In the eighth term of (6a — x/by^.

I 1 V^
5. In the seventh term of (2a; — — 1 .

/ 1 Y'
6. In the eleventh term of \\.x .

\ 2 ^/xl

265. Practical Rules. — The work of developing a

power of a binomial is facilitated by the following arrange-

ment:

1°. In one line write all the powers of the first term

beginning with the ^^th and ending with the 0th, or unity.

2°. Under these write the corresponding powers of the

second term, beginning with the 0th, or unity, and ending

with the wth.

3°. Under these, in a third line, write the binomial

coefficients.

4°. Form the continued product of each column of

three factors, and connect these products with the proper

signs. The result will be the required development.

e.g. Develop (2« — Zx^y.

Powers of 2a, 32as+ 16a4 +8a3 + 4«5 -f2« +1.

Powers of - Soj^ 1 - S** + Oa;* — 27aj8 _|- 81*8 _ 243«io.

Binom. Coef. 1
-f-

5

+10 +10 +5 +1.

(2a - Zx'f = S2a' - UOa*x'-\- T20a^x*~ 1080aV+ SlOax^- 24'dx^^

Perhaps the easiest way to write out a binomial expres-
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sion is first to throw tlie complex terms with their signs

within parentheses, indicate the powers to which these are

to be raised, and then find the binomial coefiicients by

successive applications of the rule already given for finding

the coefficient of the next term to the one already ob-

tained.

EXERCISE CXXXVI.

Develop the following expressions

:

1. {a + x)\ 2. {a -xy. 3. {i-^xy.

4. (^-3)^ 5. (3.:+2#. 6. {"^x-yy.

7. (1 - da'Y. 8. (1 -xyy. 9. (3«-2/3)«.

10.
p 3y
V 3 ^ 2^-y

.

11. (c^/3 + f^ 3/4)4

12. (m- V2 _ n^y. 13. {x^^ - 2y^"y.

14. [a^ + 5 Vxf. 15. ( Va^ + -i ^ay.

16. (xy^-^dy-'^r-y. 17. («V2^- 2/3 4-^,-1/2^2/3)7^

18. (1 - l/xr.

- 266. The General Term.—The general term of the

development of {a -\- xy is usually designated the rth

term, r standing for the number of the term.

In any term of the development of {a + x)'^ :

1°. The exponent of x is one less than the number of

the term.

2°. The exponent of a is n minus the exponent of x.

3°. The last factor of the numerator is one greater than

the exponent of a.

4°. The last factor of the denominator is the same as

the exponent of x.

Therefore, in the rth term,

The exponent of x will be r — 1

;
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The exponent of a will be y^ — (r — 1) or 7^ — r + 1

;

The last factor of the numerator will be ';^ — r -}- ^5

The last factor of the denominator will be r — 1.

Hence the formula for the rth term is

n{n - \){ii - 2) . . . (^ - r + 2)

1.2.3 r:": V^^W '

e.g. The seventh term of (2aV2 _ I- 2)12.

In this case n — 12 and r = 7; hence the seventh

term will be

12 . 11 . 10 . 9 . 8 . 7

= 924 .
(64«3Z'-i2) ^ 59136«3Z>-i2.

EXERCISE CXXXVII.

1. Find the fourth term of {x — 5)^^.

2. Find the tenth term of (1 + 1x)^.

3. Find the twelfth term of (2a; - \y^.

4. Find the fourth term of («/3) + Uy^.

5. Find the fifth term of (2« - 1/^)^.

6. Find the seventh term of {— —1 .

-2\6

7. Find the fifth term
/^3/2 y5/2\8

8.- Find the value of (x + V2y -\- {x - V2Y.

9. Find the value oi (V2 -]- ly - { V2 - If.

10 Find the value of [2 - ^{1 -x)f+[2-\- ^(l-x)Y,

11. Find the middle term of {a/x -f- x/aY^.

12. Find the two middle terms of ida ^ j .

(o 1 \ 9

—X^ — —-
^ dx
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267. Binomial Theorem for any Rational Index.—We
have seen that when n is a positive integer, the binomial

function develops into a finite series, the number of whose

terms is w -f 1. This is because the factor n — r -\- 1

vanishes when r — n -\- 1.

Now as r is necessarily integral, n — r -{- 1 cannot

vanish for any fractional or negative value of n. Hence

when n is negative or fractional, a function when devel-

oped by the binomial theorem must produce an infinite

series of terms.

It is shown in Higher Algebra that the development is

true in form for all rational values of n. It must, however,

be borne in mind that the series is in reality an expansion

of the function only for those values of x which render the

series convergent.

EXERCISE CXXXVIII.

Develop each of the following binomials to five terms:

1. (a - x)y\ 2. {a + x)y\ 3. (1 - xY\

4. (1 -f xy^ 5. (3 - ^x)y\ 6. 1/ n - x.

7. 1/ v'lT^. 8. y{x^ + %). 9. («' - ^x- V2) - y\



CHAPTER XXVIII.

PERMUTATIONS AND COMBINATIONS.

268. Permutation.—To permute a group of things is to

arrange them in a different order, and the various different

orders in which the things in a group may be arranged are

called the im'mutations of the group.

Thus I permute the group formed by the three letters

abc when I change their order into acb, and the six differ-

ent orders in which the letters of this group may be written

are called the permutations of this group. These permuta-

tions are

abc, ach, hca, hac, cab, cba.

269. Combination.— To combine a given number of

things into groups each of which shall contain the same

number of things is to select from the whole the requisite

number of things and put them together without regard to

the order in which they are placed, and the various groups

that may be formed in this way out of the whole number

are called the combwations of the things.

Thus the four letters a, b, c, d, may be combined two at

a time, or by twos, in six different ways, namely,

ab, ac, ad, be, bd, cd.

If the letters were taken three at a time, or by threes,

it would be possible to make only four combinations,

namely,

abc, aM, acd, bed.
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270. Symbols of Combination and Permutation. — If

the whole number of things at our disposal be denoted by

w, and the number to be put into each group be denoted

by r, then the number of possible combinations will be de-

noted by the symbol ^C^. This symbol is read, oi things

combined by r's.

Thus in the above example

and 'C, = 4.

When things are combined by 2's there are two possible

permutations for each group. Thus we may write ab, or

ba.

Of the four letters a, b, c, d, the possible combinations

by 2's are

ab, ac, ad, be, bd, cd.

Of each of these groups there are two possible permu-

tations. Hence the possible permutations of the four letters

by 2's are

ab, ac, ad, be, bd, cd,

ba, ca, da, cb, db, dc — 12.

Of the same four letters the possible combinations by

3's are

abc, abd, acd, bed.

Of each of these groups there are six possible permuta-

tions. Hence the possible permutations of the four letters

by 3's are

abc, abd, acd. bed.

acb. adb. adc, bde.

bea, bda, cda. cdb,

bac, bad, cad. cbd.

cab. dab. dac, dbc,

cba, dha^ dca. deb ^ 24.
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In any case, the number of permutations is equal to

the product of the number of combinations and the number

of permutations of each combination.

Using n and r as above, the number of permutations

that are possible is denoted by the symbol "P^.

Thus, ^P, ^ 12 and ^P, = 24.

271. Number of Permutations.—The important fact to

which attention was called a short time since may be sym-

bolized thus: -

«P^ =r "6; X ^P,.

This is a special case of the following general principle

:

If one operation can be j)erformed in m ways, and if after

it has been performed in any one of these ways a second

operation can be performed in n ways, the number of ways

of performing the two operations will be m X n.

The truth of this statement is evident. For there will

be n ways of performing the second operation for each way

of performing the first; that is, n ways of performing the

two for each way of performing the first ; and as there are

m ways of performing the first, there must be m X n ways

of performing the two.

e.g. There are ten steamers plying between Liverpool

and Dublin. In how many ways can a man go from Liver-

pool to Dublin and return by a different steamer ?

There are ten ways of making the first passage, and

with each of these is a choice of nine ways of returning.

Hence the number of possible ways of making the two

journeys is 10 X 9 == 90.

This principle applies also to the case in which there

are more than two operations each of which may be per-

formed in a given number of ways.

e.g. Three travellers arrive at a town in which there

are four hotels. In how many ways can they find accommo-

dation, each at a different hotel ?
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The first tniveller has a choice of four hotels, and after

he has made his selection in any one way, the second has a

choice of three. Hence the first two can make their choice

in 4 X 3 == 12 ways. With any one of these selections, the

third can select his hotel in two ways. Hence the possible

number of ways is 4 X 3 X 2 = 24.

272. Peoblem I. To find the number ofpermutations

of n dissimilar things taken r at a time.

This is equivalent to finding in how many different

ways we may put one thing in each of r places when we

have n different things at our disposal.

Evidently we may select any one of the n objects for

the first place; hence we may fill that place in n different

ways. After any object has been selected for the first place

there remain n — 1 objects, any one of which may be se-

lected for the second place. Hence the first two places may •

be filled in 7i{n — 1) different ways. After any selection

has been made for the first two places there remain n — 2

objects, any one of which may be selected for the third

place. Hence the first three places can be filled in

n{n — l)(vi — 2) different ways. And so on.

Notice that a new factor is introduced for each place

that is filled, so that the number of factors will be equal

always to the number of places filled.

Notice also that the first factor is the number of objects

at our disposal, and that each subsequent factor is dimin-

ished by unity, so that each factor is the number of things

at our disposal diminished by a number which is one less

than that of the corresponding place. Hence the rth fac-

tor will hQ 71 — {r — 1) = 71 — r -\- 1.

Hence the number of permutations of w things taken r

at a time, or "P^ = 7i{7i — l){^n — 2) ... r factors,

or "P^ = 7l{7l - 1){71 - 2) ... (71 - 7- + 1).

When r in the above formula for the number of per-
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mutations equals n^ the last factor becomes 1, and the for-

mula becomes

-P,^ = n{n - l)(?^ - 2) ... 3 . 2 . 1.

This product is (idXlQdi factorial n. It is usually denoted

by the symbol \n, or n\

e.g. 1°. Six persons enter a room in which there are

six chairs. In how many ways may they be seated ?

Here we have

«Pe=|G = 6X5X4X3X2X1 = 720.

e.g. 2"". Five persons enter a room where there are

eight chairs. In how many ways may they be seated ?

Here we have

sp, = 8X7X6X5X4 = 6720.

e.g. 3°. How many different numbers of six digits

may be formed out of the nine digits 1, 2, 3, ... 9 ?

Here we have

9Pg = 9X8X7X6X5X4 = 60480.

273. Problem II. To find lioiv many of the permuta-

tio?is ^Pr contain a particular ohject.

Denote the objects by the letters of the alphabet.

Find first how many permutations there are of all the

letters b4it a when taken r — 1 at a time. Then associate

a with each of these in every possible way. The result of

these two operations must be all the permutations of the n
letters taken r at a time which contain the letter a.

The permutations oi n — 1 things taken r — 1 at a

time are

"-ip^_i = {n - l){n - 2) . . . {n - r -\- 1).

In each of these groups a can have r positions, since it

may occur first, or last, or in every intermediate position

between the letters of each group.
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Hence the number of permutations which contain the

letter a is

r{n - l){n - 2) . . . (w - r + 1).

In a similar way we may find that the number of per-

mutations which contain two objects or letters is

r{r - l){n- 2) . . . {n - r + 1).

For if the two letters a and b be left out and the re-

maining letters are arranged in groups of r — 2 letters, the

number of permutations would be

(n- 2){n-d). , . (n - r + 1).

Since each of these groups contains r — 2 letters, i may
be associated with each in r — 1 different ways. Hence
the number of permutations which contain b would be

(r - l){7i - 2){?i - 3) . . . {71 - r 4- 1).

As each of these groups contains r — 1 letters, a may
be associated with it in r different ways. Hence the num-
ber of permutations which contain a and b would be

r{r - l){n - 2){7i - 3) . . . (w - r + 1).

In a similar way, the number of permutations contain-

ing three objects or letters would be

r{r - !)(/• - 2)(7i - S) . . . (n — r -{- 1),

etc. etc,

e.g. How many numbers of four digits can be formed

out of the six digits 1, 2, 3, 4, 5, 6 ? How many of these

will contain 1 ? How many will contain 1 and 2 ? How
many will contain 1, 2, and 3 ?

1°. ep, = C) X 5 X 4 X 3 = 360.

2°. r{7i - l){7i - 2)(7i -3) = 4X5X4X3 = 240.

3°. r{r - l)(7i - 2){7i -3) = 4x3x4x3 = 144.

4°. r{r - l)(r - 2)(w - 3) = 4 x 3 X 2 X 3 = 72.
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274. Peoblem. To find the number of permutations

of n tilings all together, ivhen u of the things are alike.

Denote the required number of permutations by x.

Now if the u things were all unlike they would give rise to

"Pu, or u\, permutations, each one of which might be com-

bined with the X permutations, and thus give rise to "P„

,

or n !, permutations. Hence

^up — np

n\
or X— —,-.

ui

Similarly, if among the n objects there were u alike of

one kind and v of another, then

^ up vp — np
•^ ' -L u ' -^ V — -' nf

n\
,or X =^ —.—r, etc.

u\ v\

e.g. How many permutations can be made from the

letters in the word Mississippi ?

Here there are 11 letters in all, and among them 4 s's,

4 i's, and 2ys.

_ 11! 11.10.9.8.7.6.5.4.3.2.1
^ ~ 4! 4! 2l ~ 4.3.2.1.4.3.2.1.2.1

= 34650.

If the permutations were to contain no repeated letters,

the number of different letters being 4, the permutations

would be

*P, = 4 . 3 . 2 . 1 --= 24.

EXERCISE CXXXIX.

Find the value of

:

1. '^Pr . 2. i^Pg. 3. 'Pr

4. How many permutations can be made of the letters

in the word number ?
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6. How many permutations can be made of the letters

in the word q^iadruple ?

6. How many permutations can be made of the letters

in the word priiiciple ?

7. In how many ways may 4 red, 3 blue, and 5 white

cubes be arranged in a pile ?

8. In how many ways can 7 cards each of a different

prismatic color be arranged in piles of 4 cards each ?

9. How many of these piles would contain red ?

10. How many of them would contain red and green ?

11. How many of them would contain red, green, and

blue?

12. A pack consists of 8 white, 6 red, and 4 blue

cards. In how many ways may they be arranged ?

275. Problem. To find the number of combinations

of n things tahen r at a time.

As we have already seen,

nr - !^ - ^(^^ - l){n - 2) . . . (^ - r + 1)

\l~
'

t
e.g. How many different committees of 8 persons each

can be formed out of a board of 16 men ?

Here
.^^^16.15.14.13.12.11.10.9

8.7.6.5.4.3.2.1
= 12870.

276. Problem. To find the number of ti^nes any

'particular object, a^ will be present in ** 6^.

If we form "~
^6V_i combinations from all the objects

except a taken r — 1 togetlier we can place a with each of

these groups, and thus form all the combinations of the
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n objects taken r together which contain a. Hence a

occurs in '*"^6'^_, of the combinations. Similarly, two

particular objects will occur in ""^(7^_2 of the combina-

tions; etc.

e.g. Out of a guard of 14 men, how many different

squads of 6 men can be drafted for duty each night ?

In how many of these squads would any one particular

man be ?

In how many of these squads would any two given

men be ?

1°. ^^C'e = 3003.

2°. '^C, = 1287.

3°. 126; = 495.

e.g. From 10 books in how many ways can a selection

of 4 books be made, 1° when a specified book is included,

2° when a specified book is excluded ?

1°. Since one book is to be included in each selection,

we have only to choose 3 out of the remaining 9.

'C, = 84.

2°. Since one book is always to be excluded, we must

select the 4 books out of the remaining 9.

»C; = 126.

EXERCISE CXL.

1. In a certain district 4 representatives are to be

elected, and there are 8 candidates. In how many differ-

ent ways may a ticket be made up, each ticket to contain

four names ?

2. Out of 9 red balls, 4 white balls, and 6 black balls,

how many different, combinations may be formed each con-

sisting of 5 red balls, 1 white ball, and 3 black balls ?

Out of the 9 red balls 126 combinations may be formed
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each containing 5 balls. Each of these may contain one of

the 4 white balls, and there may be formed 20 combinations

out of 6 black balls taken 2 at a time. As each of these

may be combined with the 126 previous groups, hence the

combinations will equal

126 X 4 X 20 = 10080.

3. How many combinations can be formed out of 5 red,

7 white, and 6 blue objects, each combination to consist of

3 red, 4 white, and 2 blue objects ?

4. On the supposition that the colored objects of each

set are all of different shape, how many permutations of

these objects could be formed with 3 red, 4 white, and 2

blue in each resulting set ?

6. Out of 12 doctors, 15 teachers, and 10 lawyers, how
many different committees can be formed, each containing

4 doctors, 5 teachers, and 3 lawyers ?

6. There are fifteen points in a plane no three of which

are in a line. How many ^triangles can be formed by join-

ing them in threes ?

277. Meaning of the Binomial Coefficients.—
{a + xy = [a -\- x)(a -\- x) = a^ -\- 2ax + x^;

{a + xY ={a-]-x){a + x){a -^x) = a^-{- da^x+dax^+ x^;

{a -j- xy z=z (a -\- x){a + ^)(« + ^)(« + x)

= «^ 4- 4A +6ftV _^ 4^^3 _^ ^4.

(a -\- xy = (a -\- x){a -\~ x) . . . n factors

= a^+ na^-'x + ^^^^^~ "^V " V . . . to w + 1 terms.

These products are formed by taking a letter from each

of the 7i factors and combining them in every possible way.

We may take an a from each and combine these n a's



PERMUTATIONS AND COMBINATIONS. 379

into a product in every possible way. As the letters are

all alike, there is only one way of combining them. Hence
«" is one term of the product.

The letter x can be taken once, and a the remaining

{n — 1) times, and the number of combinations of «"~^

and X will be the number of ways in which x may be taken

out of the n factors, and this is the number of ways of

taking n things 1 at a time, or ^C\ = n. Hence the term

«" " ^x will occur "Ci times and we have

Again, the letter x can be taken twice, and a the re-

maining {n — 2) times, and the number of ways in which

2 x's can be taken is the number of ways of taking n things

2 at a time, or "62 = ———
^
—-

. Hence the term «" ~ "^x^

will occur ^6^2 times, and we have

"6'2««-V.

And, in general, x can be taken r times (r being a

positive integer not greater than n), and a the remaining

{n — r) times, and the number of ways in which r x'% can

be taken is the number of ways of taking n things r at a

time, or

_ n{n - l){n - 2) . . . (n - (r - 1))
^^ -

1 . 2 . 3 . . . . r

Hence we shall have ^C^a ™ ~ ^x^.

Hence (« + a:)" = «" -f ^ C^a'' "
^a; + " C^a'' - ^x^

+ . . . wCVa"- ^a;^ + ... to [~Cna"-"2:^ = x""].

We thus see that the binomial coefficients are simply

•the number of different ways in which 71 things can be

taken 1, 2, 3, . . . up to w at a time.

They are 1, ~(7i, ^C^, "C'a, ... ~6; ... up to "C„.
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They are often written C^, Ci, C\, C^, . . .Cr,..Cnj Cq

being understood to be 1.

If we make both a and x equal to 1, the formula

becomes

(1 + 1)- = 1 + 6; + c; + c; . .
. + a . .

. + c'^,

or 2*^ rr 1 + 6\ + ^2 + Cg . . . + C; . . . + Chi.

That is, the sum of the binomial coefficients in any

expression io n -{- 1 terms is equal to 2^ — 1.

Or the sum of all the possible ways of taking n things

1, 2, 3, up to n at a time is equal to 2" — 1.



CHAPTER XXIX.

DEPRESSION OP EQUATIONS.

278. General Equation of wth Degree in x.—The most

general form of an integral equation of the nth. degree in

X is

in which n is a positive integer.

If we divide this equation through by Jo 7 and put

—^ =z ai, -J
— a^, etc., we obtain

xn + a.x''-'' + «,x"-2 + . . . an._,x + «^ = 0, (1)

which we will consider as the general form of an integral

equation of the nth degree in x.

The coefficients «i, a.^, etc., may be integral, fractional,

or surd, but we shall consider only the cases in which these

coefficients are rational.

If none of the coefficients a^, a.^, etc., are zero, the

equation is said to be complete ; and if one or more of them

are zeros, incomiMe.

Any value of x which causes the first member of (1) to

vanish, or become zero, is called a root of the equation.

It is proved in Higher Algebra that every equation of

the above form has at least one root, and we shall assume

this to be true in the present chapter.

279. Theorem 1. If a is a root of the equation

x"" + a^x''-'^. + «2^"~^ + . . . «„-i^ + rt'n = 0,

the first rneinber of the equation is divisible hy x — a.
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The division of the first member hy x — a may be con-

tinued until the remainder does not contain x. Denote

this remainder by R and the quotient obtained by Q. Then

we have

{x-a)Q^R = 0,

as a form which the general equation may be made to as-

sume.

But a is assumed to be a root of the equation. Hence

if we put X — a, the first member must vanish.

... o.e + ^ = o,

or i? = 0.

Therefore x — a \^ contained in the first member with-

out a remainder.

280. Theorem II. Conversely, if the first me7)iber of

the equation

x^ + a^x'^'^ + a.iX^~'^ + • . . ctfi-i^ + «„ =

is divisible hy x— a, then a is a root of the equation.

In this case the equation may be made to take the form

{x — a)Q— 0,

the first member of which vanishes when x = a. Therefore

a must be a root of the equation.

Cor. If the first member of the equation

be divisible by ax -\- h, then is a root of the equation.

281. Theorem III. An equation of the nth degree has

n roots.

We have assumed what may be proved in more advanced

algebra that the equation

x"" + a^x'^''^ -\- «2^""^ + • . . an-iX + «„ =

has at least one root.
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Denote this root by a. Tlien the first member is divisi-

ble by X — a, aud the equation may be written

{x - «)(:r"-i + h^x""-^ + . . . K-yX-^ hn) = 0,

of which re = rt is a solution, and of which a farther solu-

tion may be obtained by putting

a;"-i + b.x''-' + . . . b^.^x + ^^ = 0.

This division lowers, or depresses, the degree of the

equation by unity. The new equation is the same in form

as (1), and therefore may be assumed to have at least one

root.

Denote this root by h. Then the first member is divisi-

ble hy X — h, and the equation may be written

{x - h){x--' + c,x^-' + . . . Cn-,x + c^) = 0,

of which a; = ^ is a solution, and of which a further solu-

tion may be obtained by putting

Jb I v^JC'
I

• « • (yyi — i^ l~ t/^ — \y»

The degree of this equation has been depressed two

units from that of (1). It is still of the same general form

as (1), and may be assumed to have at least one root.

Denote this root by c. As the first member is divisible

hy X — c, the equation may be written

{X - C)(X^-' + chx^-'-i- . . . dn-iX + dn) = 0,

and may be solved by putting

X — c = 0,

and x""-^ + d.x''-'' + . . . dn-iX -{-dn = 0.

The degree of our original equation has been depressed

now by three units.

This process may be continued till the degree of the

original equation has been depressed n — 1 units, and we

reach an equation of the first degree of the form x — k = 0,

of which k is the root.
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As each division by a linear factor depresses the degree

of the equation by unity, it must be divided by ^^ — 1 fac-

tors to depress it to the first degree. This implies n — 1

roots, which together with the root of the resulting linear

equation make n roots.

Cor. 1. The equation

(a)

^•n _^ ^^^n-l _^ ^^^n-2 _|_ ^ . . a^_,x + a„ =
may be written

{x — a){x — b){x — c) . . . to n factors = 0;

and the equation

AoX'' + A,x''-'-{-A,x^-^-\- . . . A^.,x + A, =
may be written

Aq{x — a)(x — b){x — c) . . . to 72 factors = 0. (3)

Cor. 2. The substitution of any oth§r than one of the

n values a, d, c, etc., for x in the first member of (2) or

(3) would not cause it to vanish. Hence an equation of

the ni\\ degree has only 7i roots.

Of these 7i roots some may be rational, some may be

surd, and some may be imaginary. Also some of the n
roots may be equal.

.

Cor. 3. The solution of an equation of the ni\\ degree

consists merely in resolving it into its linear factors, and

equating each of these factors to zero.

Cor. 4. The degree of an equation in x may be de-

pressed by unity by dividing it through by x minus one of

its roots.

Cor. 5. An equation in x may be tested for a suspected

root by dividing it through by x minus the suspected root.

Cor. 6. When all the roots but two of an equation in

X are known, the equation may be depressed to a quadratic

equation, which may then be solved by the rule already

given.
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EXERCISE CXLI.

Form the equations which have the following roots

:

1. I, 2, and 3. 2. — 2, — 3, 4, and 5.

3. 1, - 2, - 3, and 0. 4. 4, - 1, - 3/2, ^d 1/3.

5. -3, -3, 4/3, and 4/3. 6. 3, - 4, - 1/4, and 1/5.

Prove that the numbers given are roots of the equation

and find the other roots. In testing for suspected roots,

use method of synthetic division

:

Equation.

7. x^ - ^Ix + 84 = 0.

8. 2a;3 + bx^ - 4:3x - 90 = 0.

9. x^-\-2x^ -nx-i-Q = 0.

10. 4:X^ - 4:X^ -7x^-4.x-{-4: = 0.

11. 9x^ - Ux^ - 2a;2 _ 24:c + 9 = 0.

12. Sx^ - Ux^ + 20a; - 8 = 0.

13. x^ - 15.^2 + 10:r + 24 = 0.

14. x^-4:X^-5x^+20x'^+4:X-li)=0.

15. a^-74:X^-24:X^-{-937x-S^0=0,

Number.

4.

- 5.

2.

1/2, 2.

1/3, 3.

2/3.

-1,2.

1, - 1, 2.

1, 3, - 5.



CHAPTER XXX.

UNDETERMINED COEFFICIENTS.

A. FUNCTIOI^S OF FINITE DIMENSION'S.

282. Theorem I. A71 integral expression of the ntJi

in X cannot vanish for more than n values of x, ex-

cept the coefficie7its of all the poivers of x are zero.

Let Ax"" + J5a:"-i + Cx''-^ + . . .

vanish for the n values of x, a, h, c, . . . It must then

be equivalent to A{x — a){x — h){x — c) . , .

If now we substitute for x any value k different from

each of the n values a, b, c, . . . , we have

A{k - a)(k - b){k - c) . . .

Now as k is different from a, b, c, . . . , the expression

cannot vanish for the value x = k, except A itself is zero.

If A be 2ero, the original expression reduces to

which is of the (fi — l)th degree, and as before can vanish

for only 71 — 1 values of x, except B = 0. And so on.

Hence an expression of the nth. degree in x catmot van-

ish for more tha7i 71 values of x, except the coefficie7its of all

the powers of x are zero; and when all these coefficients are

zero, it is evident that the expression must vanish for all

the powers of x.

283. Theorem II. If ttvo integral expressions of the

nth degree in x be equal to one another for more than 7i
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values of x, tliey ivill be equal for all values of x, and all

the coefficients of the saine powers of x in the two expres-

sions mMst he equal.

Let

Ax^^Bx"" - ^^Cx^-^-{- . . . =A'x''-\-B'x''-'^^C'x''-^-\-

.

.

.

Then must A = A\ B = B', C^C . . .

By transposition, we have

{A - yl>'" + (^ - B')x"-' ^{C- 6'>«-2
. . . = 0,

and this must be true for all values of x for which the two

original expressions are equal, and therefore for more than

n values of x. Hence by Theorem I,

A - A' = 0, B - B' =0, C- C = 0, . . .

or A = A', B = B', C = C, . .,

When two integral expressions in x of finite dimensions

are equal for all values of x, all the coefficients of the same

power of X in the two expressions must be equal to each

other. For in this case n is finite, and the possible values

of X infinite, and therefore > n.

B. PARTIAL FEACTIONS.

284. Definition of Partial Fractions.—The sum of the

two fractions ^ and -

—

— is
1 — X l-\- X 1 — x^

With reference to the last fraction, the parts which
make it up by addition are called its partial fractions. It

is often necessary to separate a fraction into its partials.

In this separation it is understood that the denominators of

the partials shall be of the first degree when practicable,

but at any rate of a lower degree than that of the original

fraction.

e.g. 1. Separate ^ into partial fractions.
x X
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Since the denominator = {1 — x){l -\- x), assume

2 + 8a; A ^ B
+l-x^ ~ 1 - x^ 1 -\- x'

in which A and B are coefficients to be determined.

Clearing of fractions, we have

2 + 8a; = ^(1 + a;) + B{1 - x)

= (^ + B)x'^ + (^ - B)x.

And as this is to be true for all values of x, we may
apply Theorem II, which gives

^ + ^ = 2,

and A- B^S.
.'. 2.4 = 10, and A = b.

Also, 2^ == — 6, and ^ = — 3.

Hence the partials are

and — :;

—

—

.

1 — X 1 -\-x

From the above example we may derive the following

rule for separating a prope'r fraction into its partials:

Resolve the denominator, if possible, into real linear

factors, andformfractions icith undetermined numerators,

and put their sum equal to the original fraction. Clear of

fractions, and equate the coefficiefits of the like powers of x.

EXERCISE CXLII.

Separate the following fractions into partials with

linear denominators

:

1.

7x +17 34 - 2x

x^-\-5x-j- 6* x^ + 2a; - 8

25 - a; 13a; - 26
3. -0 T^- 4.

x^ - X - 12' a;2 _ 3a; - 40
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llx - 7

'^x' -lx-16'

c c. . a;^ + 3a; + 2
e.g. 2. Separate

^(^ _ ^^^^

fractious.

10 - 15a;

6a:2-26a;+24'

into partial

Assume

a;2 + 3^ + 2 A

2)(x-3)

5
a;- 2 3*

6(a; - l)(a; - 2)(a: - 3)
~ Q{x - 1)

Theu, cleariug of fractions, we have

a;2 + 3a; + 2

= ^(x-2)(a;-3)+65(a;-l)(a;-3)+6(7(a;-l)(a;-2)

=Ax^-bAx^QA-^QBx'-UBx-^rl^B^QCx^-l^Cx-{-l'ZG

x^= A ^ - 6A x+ QA

-\-QB -24:B + 18^

+6(7 -ISC + 126'

Therefore, equating coefficients, we have

A-\- 6B-{- 6(7=1,

5A + 24^ + 18(7= - 3,

and 6.4 + 18i? + 126'=2.

Whence A = 3, B = - 2, and C= 5/3.

a;2 + 3a; + 2 1 2 5
• * 6(a;-l)(a;-2)(a;-3) 2(a;-l) a; - 2 ^ 3(a; - 3)

*

There is, however, a shorter way of solving this ex-

ample. Since in the expression

a;2 + dx -\-2 = A{x- 2){x - 3)

+ QB{x - l)(a; - 3) + 6(7(a; - l)(a; - 2)

X may have any value whatever, we may put a; = 1.
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Then we shall have

6 = 2.4, and ^ = 3.

If we put X = ^, we shall have

12 = - Q>B, and B= ~ 2.

If we put X = 3, we shall have

20 = 12(7, and C = 5/3.

It is much shorter to use this method when by inspec-

tion we can find values of x which will cause all the terms

except one of the right-hand member of the identity to

vanish.

EXERCISE CXLIII.

Separate the following fractions into their partials

:

^2 - Ux + 37 9^2 _ 3g^ _ g9
2."• (x-3){x^-9x-\-20Y {2x-j-2)(x^-9y

2dx - Ux^ 3x - 2
3. 77i TwT^ 57- 4.(2x-l)(9-x'y "• (x-l){x^- 5x-{-Qy

X 2;^ J- X + 1
6.

'

*" (x + l)(x + 3){x -j- 5y
"• (x-]-l)(x^-5x-^Qy

7a;2 _|_ 7^^ _ 6
e.g. 3. Separate -,—r~rW o\ ^^^^ ^^^ partials.

(.T+ 1) (a; — Z)

In forming this fraction by addition there may have

A
been a fraction in the form of -,—t^tto, one in the form of

(x-j-iy

7? n
and one in the form of -. Hence in our as-x+r x-2

sumption we must make provision for all these.

7a;2 + 7a;-6 A ^ B ^ C
Assume -.—r^rY27 ^ —

i—r--i \2 H r^ +{x^\)\x-%) {x^Vf' x-\-\' x-^^
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Clearing of fractions, we have

Ix'^lx - 6 = A{x - 2) + ^(x+ l)(a:-2)+ C(^+l)l

- Putting X — — I, we have

- 6 = — 3^, and A = 2.

Putting :c — 2, we have

36 = 9C, and (7=4.

Equating coefficients of x^, we have

^+ (7=7.

.-. ^= 7 - C=3.

7a:^ + 7a; - 6 _ 2 3 4
^®^^®

(2: + 1)2(:?; - 2)
~ {x^lf +a; + l + 2;-2-

e.g. 4. Separate yg — into partials.
X J.

The denominator = {x — l){x^ -\- x-\- 1)^ and the qua-

dratic factor is not separable into real factors.

But a proper fraction which has a quadratic factor for

its denominator may have a linear factor for its numerator.

We must make provision for this by assuming that

bx^+ l A Bx-\-C
x^ — 1 x — 1 x^ -\- x-\- 1'

6x^-^1^ A{x^ + x-\-l)-^{Bx-\- C){x

Putting ic = 1, we have

6 = 3A, and ^ = 2.

Equating the coefficients of x^, we have

A-\-B = 6.

... 5 = 5-^ = 3.

Equating the constant terms, we have

A+ C=l.
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Whence C = 1 -- 2 = - 1.

bx' 4-1 2 , 'dx - \
Therefore

x^ — 1 X — 1 x^ -{- X -\- 1'

Observe that each of the separations into partial

fractions given is characterized by this : that it introduces

just as many undetermined coefficients as equations for

them to satisfy. This is characteristic of any proper

application of the method of undetermined coefficients in

which the number of coefficients is finite.

EXERCISE CXLIV.

Separate the following fractions into partials:

12a;2 - a: + 10
1.

6.

1

x^ + r

2a;3 + 2x^ -f 10

x'-i-:

X^ --X+1

4.

x^-1

x^ - d

(^ + m^'' + 1)'

(x^ -]-i){x - ly

G. FUNCTIONS OF INFINITE DIMENSIONS.

285. Theorem II. If Uvo integral functions of x of

infinite dimeyisions, and arranged in asce^iding order, are

equal to one another for all values of x ivUich malce the

series convergent, the coefficients of the like powers of x in

the two series will he equal.

JjQt A^hx-{- Cx^^ . . , = A' ^ B'x + C'x^ + . . .

be true for all values of x which render both convergent.

Then will A=: A', B = B', C— C, etc.

For if the series are both convergent their difference

will be convergent, and we shall have

A- A ^{B- B')x + (C - C')x^ . . . =
for all values of x for which the series is convergent.
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But when x is sufficiently small, the series is convergent

and A — J' is greater than all that follows, and its sign

must control that of the series; that is, the A — A' will be

>, =, or < zero according as the series is >, =, or <
zero. But the whole series = 0.

.-. A-A' = 0, or A = A'.

By striking out A and A' as equal, we may in like

manner prove B — B' ; and then C = C, etc. For since

{B - B')x + {C - C')x 4- . . . r=

for all values of x which make the original series convergent,

and therefore for other values of x than zero, both members

of the equation may be divided by x and the conclusion be

drawn that

B - B' -^{C- C')x^. . . =:0

for values of :r which make the original equation convergent.

D. EXPANSION OF FUNCTIONS.

A function may be developed into an infinite series in

various ways; and whenever the series is convergent, the

function is equal to its development, which is then called

its expansion. It is important to bear in mind that when

the series into which a finite function is developed becomes

divergent for any value of x the function cannot equal its

development.

A proper fraction may be developed into an infinite

series in ascending powers of x by division.

The four following expansions by division are im-

portant :

1. -^— = 1 + a; + 2^2 + ic3 + a;^ -f . . .

1 — x

2. -4— =1-^ + ^^-^^+^;^+. . .

l-\-x
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3.

4.

(1 — a;)

1

5x^

{1 + xy
l-2x-\-3x^- 4:x^ + 5a;^ + . . .

A function which is not a perfect power may be devel-

oped into an infinite series in ascending order by evolution.

e.g. yi - :c = 1
16

6x^

128' •
•

If a function of x which has but one value for each

value of X be expanded in ascending powers of x, the powers

must all be integral.

For were the exponent of any term to become fractional,

that term would be many-valued for eacli value of x, which

contradicts the hypothesis.

The following example illustrates the expansion of a

fraction by the method of undetermined coefficients.

Expand ————-^ to five terms in ascending powers
JL ""j~ X ~j~ X

of X.

Assume

1 2~^~^2 = A-i-Bx+ Ct? 4- B^x^^Ex^'-^Fx^^ Qx^-^..,

1 - re - a;2 = ^(1 + a; + a;2) + B{x \- x^ ^ x^)

-f C{x^ + a;3 + x"-) + D{x? + rc^ + x"") + E{x^ + ^' + ^')

+ Fix'' + a:« + x') + G{x'> + a;"^ + a:8) + . . .

A^ A x+ A 7?+B x'+C vf' ^D ^+E
-\-B + + D \-E + F

+ c + D +E ^F + G

X^-\-

Whence
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A-\-B= -1, and B=-2,
A+B+C=-h and C = 0,

B + C-\- D ^0, and i) = 2,

(7 + i> + ^ = 0, and E = -2,

D + E-\- F =0, and F=0,
E-{. F-\- G = 0, and G = 2.

;+:+:.-! ^-+^-^-- 2x^ + 2x^ +

and

In certain cases the operation of expanding fractions

into series may be abridged.

1°. If the numerator and denominator of the fraction

contain only even powers of x, we may assume a series con-

taining only even powers, as ^ + Bx^ -\- Cx'^ + . • .

2°. If the numerator of the fraction contains only odd

powers of x and the denominator only even powers, we
may assume a series containing only odd powers of x.

3°. If every term in the numerator contains x,

but not every term in the denominator, we may assume

a series beginning with the lowest power of x in the

numerator.

4°. If the numerator does not contain x, we may find

by actual division what power of x will occur in the first

term of the expansion.

e.g.
^ _—3

gives by division l/3a;~* as the first term

of the quotient. Hence we may assume
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EXERCISE CXLV.

Expand each of the following fractions to five terms in

ascending powers of x

:

l-%x-\- Zx^

3.

1 + 32; - ^X^'

3 - 4:0?
4.

dx
^- 4:-dx''

2 - 3a: + 4a;2

1 + 2x -- 5x'

2 - ^x?

1 + 4:X^'

2x

3 - 2x^'

The following example illustrates the method of develop-

ing a radical by the method of undetermined coefficients.

To expand Vl + ^•

Assume

Vl -\- X = A-^Bx + Cx^-i- Dx^ + Ex^ +
Then, squaring each member, we have

l-\-x=:A'' + 2ABx -i-2AC

-\-B^

Whence

x^-\-2AD

+ 2BC

x^-{-2AB

-{-2BD

x' +

A^ = 1, A = 1,

2AB = 1, B = 1/2,

2AC+B^=:0, 6'= -1/8.

2AD-\-2BC=:0, D = l/16,

2AE+ 2BD + C2 = 0, B=- 5/138.

Therefore

^(l-\-x) = l + \/%x - l/W 4- l/16a;3 - 5/128:^4+ .

.
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EXERCISE CXLVI.

1. Expand 1/(1 + x + x^) to x\

2. Expand y (———) to x^.

3. Expand \/{l + x) to x^.

Ex. Let ij = dx-2x^-\- 3x^ - 4:X^ -{- . , ,

Express x in ascending powers of 2/ to ?/*.

Assume x = Ay -{- By'^ -\- Cy^ + Dy^ -f • • •

= A{^x- 2x^ + 3.?;3 - 4:X* + . . .^

+ ^(9^2 ~ 12x^ + 22:^^ + . • •)

+ C{27x^- 54^-4 -f. ..)

+ i>(81a:* + ..'.)•

397

.-. x = 3Ax-2A x^ + 3.4 x^ - 4.4 ^^ + ..,

+ 95 -125 + 225

+ 27C - 54C

+ S1D

Whence SA = 1

-2^ + 95 =

3J -125 + 27(7=0

- 4^ + 22 5 - 54C + 81i> = 0.

Whence

A = 1/3, ^ = 2/27, C*= - 1/243, D=- 14/2187.

Therefore x = l/'dy + 2/2?f-1/243?/3-l4/21873/^+..
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EXERCISE CXLVII.

1. It y = 2x -\- x'^ — 2a^ — 3x^ -{-..., find x in terms

of y to y^.

2. It y := X -\- x^ -\- x^ -\- x^ -\- , . . , find x in terms of

y to y\

3. lty = x — a^-{-x^ — x'^-\-,.., find x in terms of

y to y\



CHAPTEK XXXI.

CONTINUED FRACTIONS.

286. Definition of a Continued Fraction.—An expres-

sion of the form

a±
o± —

g ± etc.

is called a contmued fraction.

For convenience, continued fractions usually are written

in the form

a ± - - — etc.
c ±e ±g ±

In this chapter we shall consider only the simpler form

«, H ,

—
,

etc.,

in which the numerators are each unity and «, , a^, a^,

etc., are positive integers.

The fractions a, , ^, — , etc., are called the first, sec-

ond, third, etc., elements of the continued fraction.

287. The Convergents.—The fraction obtained by stop-

ping at any element is called a convergent of the continued

fraction. Thus a^ , a. -\ , and a,-\ ,
— are the first,

«, a^ +«3
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second, and third convergents of the continued fraction

given above. These convergents may be reduced to the

forms
f',

«-^^-±i, and <""' + ^j"' + "
.

1 <?„ a^a„ 4- 1

For, evidently, a^ = ^,

1 _ a,a^ 1 _ a,a^ + 1
Q/. -\- — -\- — y

a^ «2 «2 «a

and «, H — a^-\ —~ — a, -\ ^

The rth convergent of a continued fraction will be de-

noted by —

.

Each convergent may be reduced to an ordinary frac-

tion, as above, by successive simplification of the complex

fractions of which it is composed. In this simplification

we begin always with the last complex denominator.

288. Theorem I. The numerator and denominator

of any convergent beyond the second are formed by nuilti-

plying the numerator and deno7ninator of the iweceding

convergent by the denominator of the new element considered

and adding to the respective products the numerator and

denominator of the last convergent but one.

An examination of the first three convergents already

obtained by actual reduction of the complex fractions to

simpler ones will show that the numerator and denominator

of the third convergent are formed in accordance with this

theorem.

Denote the number of the convergent by n, and the nth
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convergent by —, the preceding convergent by ——^

, the
Qn Qn-l

last but one by ^^^^'.

Qn-2
Then in the case of the third convergent we have

Now each convergent differs from the one preceding it

by having an -\ substituted in place of a„. Thus the
^n + 1

second convergent differs from the first simply in having

a^-\ in place of «, , the third differs from the second

in having a^-\ in place of a^ , and the (n -\-l)^i will

differ from the n only in having a^ -\ in place of a„.

Making this change in (1), we have

Pn-ir 1 \ ^H + 1 '

_ Q?n+l {anVn-^-\-Pn-% -\-) Pn - 1 _ (tn + I Pn + Pn - 1

0^«+rK^n-l+5'n-2+)5'n-l «n + 1 5'n + ^n - 1

'

which agrees with the theorem.

Hence the theorem which holds for the third convergent

holds also for the fourth, the fifth, and each subsequent

convergent.

Therefore the formula for the rth convergent is

qr ttrqr-l-\- qr-2
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289. Partial and Complete Quotients.—The integers

a,, «2, «3, etc., may be called the />rt?-^{a/ quotients, «5„ being

the nth partial quotient. When the number of partial

quotients is finite the continued fraction is said to be

termi7iating . If the number of these quotients is un-

limited the fraction is called an infinite continued fractio7i.

Since a^, a^, a^, etc., are positive integers, a continued

fraction of the form a, -\ , 1- etc. must be greater
«^, + «,

^

than unity; while a continued fraction of the form of

— -L — — must be less than unity.
«, ^ «, + ^3 + . . .

^

^

The complete quotient at any stage is the quotient from

that point on to the end. Thus an is the nth partial

quotient, and a„ -\ is the correspond-
^n + 1 I ^n + 2 I • • •

ing complete quotient. The complete quotient at any

stage may be denoted by K.

As we have seen, the ^th convergent is

Qn a„qn - 1 + 5'n - 2

'

This value evidently may be converted into that of the

whole continued fraction by substituting K in the place of

cin- Denote the value of the entire fraction by x. Then will

Kq„ _ 1 + (7„ _ 2

*

290. Theorem II. The difference between tivo suc-

cessive convergents is a fraction whose numerator is imity

and whose denomi^iator is the product of the denominators

of the convergents, and this difference taken in regular

order is alternately positive and negative.

Pn^ Pn-l _ (fnP„-l+P,,-2 Pn - 1

qn qn-i «uqn-i-\- qn-2 qn-i
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~
{Clnqn-l+ qn-'z)gn-l

Pn_ Pn-l _ Pn-2qn-l—Pn- l^n - 2

qn qn-l~ qnqn-1

.*. Pnqn-l-Pn-iqn = " (i?n - l5'n - 2 " i?n- 25'n - l)-

So also in succession

Pn-iqn-2 - Pn-2qn-l= - i?n - 25'n - 3 + i?n - sS'n - 2-

p.q.-p.qz = -p.q.+p^q.'

But p,q, - p,q, = (a^a, + 1) - a^if, = 1 = (" 1)^-

Also, since the successive convergents, beginning with

the first, are alternately less and greater than the fraction,

the successive convergents are alternately greater and less

than the preceding. Therefore the successive difference

will be alternately positive and negative, so that the numer-

ator of the fraction will be (— 1)", in which n is the num-

ber of the convergent used as a subtrahend.

Hence Pnqn-i -Pn-iqn = (- 1)". (1)

Hence, also, ^ -^^^ = till!.
(2)

q,t qn-i qnqn-i
^

CoK. 1. All convergents are in their lowest terms.

For every common measure of jt7„ and q^ must also be a

measure of Pnqn-\ — Pn-\qn and, from (1), of ± 1.

Hence pn and q,^ can have no common measure.

Cor. 2. In the continued fraction

_i- -i- _1_

«, + a, -f ^3+ '
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wliicli is less than unity,

^, /y _^ n—(— ^Y-'^ Olid -^" _ Pn-\ _ {— 1)"

Yn Y« - 1 7nYn - 1

since the first convergent will be too large, the next too

small, etc.

291. Theorem III. Each co^ivergent is nearer in

value to the continued fraction than any preceding con-

Let X denote the continued fraction, and —, ^C!L±i

qn qn+i

and i-!?-±l denote three consecutive convergents.

Then x differs from ^"^ ^
only in taking the complete

5'ji+ 2

{n -\- '^) quotient in place of «„ + ^. Hence

X =
Kqn^x-^ qn

'

Pn K{p^^^ q^ ~ p,,q^ -f 1 ) _ K
qn{Kqn + 1 + <Zn) !Zn(A'^„ + j + q^f

and

qn+1
'"

qn+1
'^

J^qn + i+qn

= Pn+iqn'^ Pnqn + 1 ^ 1

?n + l{J^^qn + 1 + ^») 5'« + l(^^'^n + 1 + 5'n)

'

Now A" > 1 and q,, < <7„+i;

hence on both accounts

K . 1

qnJi^qn + 1 + 5'n ^'n + iA^„ +!+$'«*

Combining the result of this article with that of article

290, it follows that
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The co7ivergents of an odd order continually increase,

hut are akuays less than the continued fraction j

The convergents of an even order continually decrease,

but are always greater than the continued fract\on.

292. Theorem IV. The value of x differs from —

1 , , ., 1
by less than —^ and by more than ^

Let — ,
^^"^ S ^

^
be three consecutive conver-

gents, and let K denote the {n + 2)th complete quotient.

Then ^ = pL±l±^n^

qn {Kqn + 1 + qn)qn qn(Kqn + 1 + ^n)

_ Kp^ ^ iqn + Pnqn - ^^Mn + 1 - Pnqn

qn{Kqn^X-\-qn)

- -^(Pn + iqn - Paqn.l) _ ^^

qn{Kq^ f 1 + ^n) qn{Kqn + 1 + ?n)

1

4^„ + l + |)

Now K is greater than 1, therefore — differs from 2:

qn

by less than and by more than —
-5.

Mn+. qnqn-tl + qn

And since q^ < §'„ + 1 , the difference between — and x
qn

must be less than -^ and greater than ^-^—

.

qn <'q n + l

293. Theorem V. The last convergent preceding a

large partial quotient is a close approximation to the value

of the fraction.
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By the last theorem, the error in taking -— instead of
fin

the whole continued fraction is less than , or, since

(7n + i
= «n + ign + ^n-i, less than —y- -——

^, or

less than j. Hence the larger a^ +i is, the nearer

does — approximate to the continued fraction. Therefore

when a^ + x is relatively large, the value of x differs but

little from that of ^.
qn

294. Theorem VI. Every fraction whose numerator

and denominator are positive integers can he converted into

a terminating continued fraction.

m
Let — be a fraction whose numerator and denominator

71

are positive integers.

Divide mhj n and let a^ be the integral quotient and

p the remainder. Then

m . p ,1
n n ^ n

P
Divide n hy p and let a„ be the integral quotient and g

be the remainder. Then

n q 1

P
^

p P
q

Divide p^y q and let ^g be the integral quotient and r

be the remainder, and so on.

Therefore — = «, H ,

—
^

^«a 4- «3 + • • •
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If 7)1 < 71, the first integral quotient will be zero.

w 1
Put — = and proceed as before.

71 n

m

The above process is the same as that of finding the

greatest common measure of m and n, a^, a^, a^ being the

successive quotients. As m and }i, being positive integers,

are commensurable, the process must terminate after a

finite number of divisions.

K7n
Cor. Evidently — and -^r^- will give the same contin-

•^
71 Rn *

ued fraction.

e.g.
251

1. Reduce —— to a continued fraction.
oO/C

Find the greatest common divisor of 251 and 802 by the

usual method.

quotients.

251 1 1 1 1
•'•

802 "3+5+8 +6*

e.g. 2. Reduce 3.1416 to a continued fraction.

1416

251 802 3 ]

6 49 5

1 8

6

3.1416 = 3 + 10000

1416

8

10000

88

7

16

11

and 3.1416 = 3 +

1416

10000

1 2 i
7 + 16 + 11*

1 L i
7 + 16 + ri'
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355
e.g. 3. Show that -—^ is a close approximation to

3.14159, differing from it by less than .000004.

3.14159 = 3 +

159 100000 7

854 887 15

29 33 1

1 4 25

1

7

4

1 1 1 1 1

7 + 15 -hl + 25 + 1 + 7 +4

The successive convergents are

3

1'

22

r
333 355

106' lis'

The last convergent precedes the large quotient 25, and

hence is a close approximation to x.

It differs from it by less than — . .„ , and there-

fore bv less than
25 X (100)'

25 X (113)2

, or .000004.

EXERCISE CXLVIII.

Express the following as continued fractions;

3. 3.61.

144

53 72
59* ' 91-

112 749

153' ^' 326-

436 3015

345* *• 6961

6.
89
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Calculate the successive convergents to the following

continued fraction

:

24-- - - — -
^' "^6+1+1 + 11+2'

1 L 1 ?L 1 1
^^' 2+2 +3 +1 +2 + 6*

"• "^3 + 1+2+2+1+9*
1111

12 -_

2 + 3 + 1 + 4
*

13. Find a series of fractions converging to .24226, the

excess in days of the tropical year over 365 days.

14. A metre is 39.37079 inches; show by the theory of

continued fractions that 32 metres are nearly equal to 35

yards.

16. A kilometre is very nearly equal to .62138 mile.

Qi, .1. ^ XT- i. .. 5 18 23 64bnow that the tractions — , — , ^r^, -p— are successive ap-

proximations to the ratio of a kilometre to a mile.

16. Two scales of equal lengths are divided into 162

and 209 equal parts respectively. If their zero points are

coincident, show that the thirty-first division of one nearly

coincides with the fortieth of the other.

17. The modulus of the common system of logarithms

is approximately equal to .43429. Express this decimal as

a continued fraction, find its sixth convergent, and deter-

mine the limits to the error made in taking this convergent

for the fraction itself.

18. The base of the Napierean system of logarithms is

2.7183 approximately. Express this decimal as a continued

fraction, find its eighth convergent, and determine the

limits to the error made in taking this convergent for the

fraction itself.
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295. Periodic Continued Fractions.—AVlien the partial

quotients of a continued fraction continually recur in the same

order, the fraction is called 2i periodic continued fraction.

A periodic continued fraction is said to be simple or

mixed according as the recurrence begins at the beginning

or not. Thus,

1 1, 1 1 1

^"^^>+c+a + i^c +. ..

is a simple periodic fraction.

L 1 1 L

is a mixed periodic fraction.

296. Theorem VII. A quadratic surd can he ex-

pressed as an infinite periodic continued fractio7i.

e.g. Eeduce V% to a continued fraction.

The integer next below VSi^ 2. Hence

1^8 — 2 expressed as an equivalent fraction with a

rational numerator is

(|/8-2)(l^+2)_ 4

y8 + 2 i/8 + 2

V8 = 2 + -—^ = 2+ ^

4^+2 V84-2

The integer next below ^^— is 1.

V8 + 2 _ i^8-

2

Hence

1 1
i^S = 2 +—

—

— = 2 +
1

^8-^ 1+4/8
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1

= 2 + i
( V8 - 2)( V8 + 2)

! + |/8 + 2

The integer next below V8 + ^ is 4. Hence

(l/8-2)( V8 +3)
4/8 + 2=4+4/8-2 = 4-1-

^8 + 2

4
4+ ^ ^ =4 +V¥+2 4^8 + 2

*

4

At this point the steps begin to recur

:

^=^ + r+4 + r+r+...
Thus 4^8 is seen to be equivalent to a periodic fraction

with one non-periodic element, which is half the last partial

quotient of the recurring portion. This law holds good

for every quadratic suixl.

Note in the above example that the last partial quotient

in the recurring portion is an integer + the given surd.

The following is a very compact and convenient form

for working such examples

:

4/8 = 2 + 4/8-2 = 2+ --i
,i^+2

4/8 + 2 i/8 - 2 ,
,

1
-A

= -^H
~A

= 1 +
4/8+2'

i/8 + 2 = 4 + ^/8-2 = 4+ -—^
,

4/8 + 2



412 CONTINUED FRACTIONS.

i^ = i+i:«^^=i +
V8 + 3'

^+3 = 4 + 4^-8 = 4 + -^^,

••• ^=« + r+r+r+ !'«*''•

296. Theokem VIII. An infinite periodic fraction

may he expressed as a quadratic surd.

Let the partial quotient be 1, 2, 3, 1, 2, 3, etc.

Then ^-i L 1 _1±^±nen a:-
i _^ 2 -f 3 + ^~ 10 + Sa:*

.-. 10a; + 3a;^ = 7+ 2a:.

.-. 3a;2 + 8a: - 7 = 0,

.-. a: = l/3( 1^ - 4).

EXERCISE CXLIX.

Express the following as periodic continued fractions

:

1. Vl. 2. '/13. 3. V2.

4. V6^ 6. Vl7. 6. 4/19.

Express the following continued fractions as quadratic

surds

:

111 14.2.111
"^

2 + 2 + 2+... * +2 + 3 + 2+3 + ...

11111
9-

1 + 2 + 3 + 4+1 + ..

.



ANSWERS.

EXERCISE 1.

1. 105. 2. 525. 3. 2625.

4. 26460. 5. 85050. 6. 396900.

7. 91875. 8. 1701000. •

9. 165375.

10. 1181250. 11. 5a cts. 12. 120a sq. in

13. Wmn, 14. 25a^c.

EXERCISE II.

1. 67f. 2. 35i. 3. 1130.

4. Same. 5. Same. 6. Same.

EXERCISE III.

1. 2aW + lOa^^ + 12. 2. a - I2b^ + 3.

3. Qx^y + 5 - 5b\ 4. Sa'y + 9«/ - 7.

6. 7a3a;-5aV + 6.

1, :?; = 12.

6. X = 2S4r^.

EXERCISE IV.

2. «/ = 7. s. z = 7^.

a; =

4. X

c -

15.

1. x =
9a

EXERCISE V.

1. 27 and 36. 2. 45 and 58. 3. 30 and 120.

4. 17 and 85. 5. 75, 150, and 225.

6. 72, 36, and 12. 7. 525, 175, and 35.

8. Harness $45 ; horse $135 ; carriage $270.

9. History $1.38 ; arithmetic 69 cts. ; speller 23 cts.

10. Sister's age 10 ; boy's 13 ; brother's 18.



2 ANSWIJRS TO QILLETS ALGEBRA.

EXERCISE VI.

1. 70 and 105. 2. 27 and 45.

3. $1.20, $1.80, $1.35, and 10.54.

4. $45000, $30000, 124000, and $18000.

5. $100.00, $25.00, and $200.00.

EXERCISE VII.

1. 3« - 4Z> - ^ah + ^ad + 6.

2. 3m -\- Aifi — 20cx -\- 26cy — 5c^.

3. 7 + 24c - 32^ - 122;. 4. 5x ~ ab - ac + la.

5. 18m + 16^ - 24^> + 32c. 6. 2a;-f 62:+21, or 8a:+21.

7. 52;-3(«+ 2^»-3c) + 9; 5a;+ 3(- <*- 2^» + 3c)+ 9.

8. 7«^-4c(2^>-4f?-6c)+3; lah+4.c{-U-^4.d-\-^c)-\-'d.

9. 27-2«2(- 3c + 5Z»-6); 27 + 2«2(3c - 5^ + 6).

10. 10a; - 5( - 42;2 - 5A + 7) ; lOa; + 5(42;^+ 5A - 7).

EXERCISE VIII.

1. 8 and 12. 2. 3 and 9.

3. Harness = $60 ; horse = $180 ; carriage = $480.

4. $2000 the first month, $5920 the second month, and

$23720 the third month.

6. 20. 6. 36. 7. 18. 8. 132. 9. 99.

10. 25, 48, and 46.

EXERCISE IX.

1. 245 bushels in all, 98 bushels of rye, and 70 bushels

of barley.

2. 231 in all, 154 baldwins, and 42 greenings.

3. First and second 30 miles, second and third 32

miles, and first and fourth 80 miles.

4. Louis had 320, and Howard 80.

5. First 77, second 81, and third 68.

6. Winning candidate 18156. Losing candidates 17344,

17624, and 17400, respectively.

7. M to N 21 miles, N io 6' 6 miles, and 6^ to ^81
miles.



ANSWEE^S TO OILLET'S ALGEBRA.

1.

4.

7.

10.

12.

14.

16.

1&.

20.

22.

23.

24.

6. 5. - 6.

18. 10. - 6.

0. 15. - 18.

EXERCISE X.

1. 18. 2. 6. 3. 18. 4.

6. - 6. 7. - 18. 8. - 18. 9.

.1. 0. 12. 0. 13. 0. 14.

.6. 6. 17. '^a. 18. — 2«.

.9. 12 + (+6), 6 + (+12), and 12-(-6);
12 + (- 6), - 6 + (+ 12), and - 6 - (- 12);

a -{-{-a), a + (-a); -G+(-12),
-12+ (-6), -6- (+12).

EXERCISE XI.

U B.C. 3. 40 A.D.

30 B.C. 6. b B.C.

C A.D. 9. 20° below zero.

11. Has risen 16°.

13. Has fallen 8°.

15. 17° warmer.

17. 12° warmer.

19. 5 miles south.

21. 6 years older.

6 B.C. 2.

a A.D. 5.

50 A.D. 8.

Has fallen 12°.

Has fallen 7°.

Has risen a°.

8° colder.

3 miles west.

4 years younger.

2 years younger.

The grocer owes Hermon 3 dollars.

7 pounds less. 25. 20000 dollars poorer.

1. c a — b,

EXERCISE XII.

-{a + b). 2.

m
a + b

3. In 6 hours. First will have travelled 24 miles, and

second 18 miles.

4.

a

m -\- n

miles.

6, 50 and 58.

hours. First
7na

m-{- n
miles, second

7ia

7W +



ANSWERS TO GILLET'S ALGEBRA.

EXERCISE XIII.

1. 25«. 2. ^loj^x;. 3. - 36«52.

4. - 56rc. 6. - Qx^. 6. 2ac^x.

7, 2y^ - 2ac - 5. 8. 4.a^x — ax^ — ^ab — 8.

9. — dx-{- Qab + c. 10. 5a;2 - aW - c + 7.

11. 19/12;?; = lj\x. 12. - V12y.
13. 16(« + b). 14. - ft - (x + y).

15. 5(a + b) -5(m + ?i). 16. 4:a(b-\-x).

17. c{a^ - h^). 18. - 2az - 4.

19. 0. 20. 2a- b-\-5c-}-3d.

21. 4:^ + 3y + 2 + 5^. 22. c? — xy.

23. «2^,3 _p ^2^^ 24. 3ft + lOc -\-^d-x.

25. X -\- b — c -\- d. 26. First 7500, second 7000,

27. (4:X - 50) dollars. third 6500, and fourth

28. 8000 dollars. 6000.

29.
{a + Z')a; — mq

5

EXERCISE XIV.

1. (« + m)x + (* + ^)2/- 2. {mn + pq)x — 2by,

3. (3 + 6^ + la)x - 6y -\- m H-^.
4. 8(a-{-b-\- l)x + (5 - 10)^.

5. x-}-8 and 2a; + 8.

6. Albert is 12 and Howard 24,

7. In 9 hours. 72 miles and 54 miles.

2 ' .2

9. (ft — m)x -\- {b — 7i)y -\- {c — p)z.

10. 2(d - f)x ^^e-d)y^ 4(/ + e)z.

11. l/12(8ft + 9% -- 2(1 - 3ft)^.

12. (2ft - U)x — (4ft + b)y.

13. Herbert is l/2ft, and Horace a.

T ct , ab ., , ac .,

14. In 7 hours, 7 miles, and ^^ miles,
J — (J

' b — b — c
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EXERCISE XV.

1. — ^x — y + 14:Z. 2. 4« — ^ + 2c.

3. 8a' - 2a^ + 4«2 _ I5a + 14.

4.

6.

8.

10.

12.

13.

15.

17.

19.

21.

20A2 + IQa'x. 5. 4«3 - 2.

4/3a:2 - l/2x - 1/2. 7. « — 5 + c.

- 2a - 95 - 8. 9. X - 8«2a;2 -f 12.

2^« - 7^* - 3. 11. 9 and 18.

A has 172.50, and B $77.50,

- X + tj. 14. 2x - 11.

5:^: + 4^ + 7«. - 11. 16. a^ + ^ + ^ 4. 1,

4(« + h). 18. 2a{c - x).

2«2(J_a;)+4«J(«-5). 20. x-8.
6fl + m , bm — 6fl^

6

EXERCISE XVI.

1. — Sab — m — 2ax, 2. ox — 2a.

3. 2b — 4:C. 4. lOa^ — '^y -\- 5^.

5. — 9ax — 2by. 6. 0. 7. 0. 8. 3m.

1. X — {a -{ b).

3. a; — (— a+ 3a^ —
5. a; — (— a; -|- 2« -

7. ic— (— «-|-^—^—

^

9. x—{—2x-\-2m-
11. ic— (2m + 3a —
13. x — (a -\- b -\- p

EXERCISE XVIII.

1. m^p-\-q-\-a — b — c-\-d.

2. m-{-a — b-{-p-\-q — n-\-k,

3. 15«a; — i:by. 4. 0.

5. p -\- b -\- s -^ t -\- m -\- n.

6. $8360, $16120, $23880, and $31640.

EXERCISE XVII.

2. a; — (m + ^^)'

%). 4. a; _ (35 - 2c - 5^).

- 2^^). 6. ^_(_3+« + 5).

n^7i). 8. a; — (— a; — rt + 5).

-2m). 10. :^-— (—2x -{-2ab —m)
2b). 12. x—(2am-{-b-{-p—q—7i)

- q -\- m -»).
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a-\- b -\- c 3b -\- c
and

a -\- b — c

4 - 4 ^ 2

8. llax. 9. — 2ax — 6by

10. — 2x -\- 2y. 11. — 4:bz.

12. - (m + 6)^ + 2x -\- iab - 5.

13. 6, 18, 36, 54, and 72.

C2!.

1.

4.

7.

10.

13.

16.

19.

22.

25.

28.

1.

3.

5.

7.

9.

10.

12.

14.

16.

17.

21ab.

— a^b^xy^.

a^bcdm.

30a%hnx^.

IQSabkni^x^.

— SOagxYz.

A:bc^gnx?z^.

— 2ia'^xY'

a^bx^y^.

2.

5.

8.

11.

14.

17.

20.

23.

26.

29.

EXERCISE XIX.

3Wb.
?>a%^x^z^.

.
— abcdx^.

10ba^7n^xy^.

, bg?)} ny'^.

. Iba^bhix^yz.

.
- ^alrc'j^y.

— '^((^xhi^.

— apqx^y'^.

— 2/bacmhiH^.

3.

6.

9.

12.

15.

18.

21.

24.

27.

30.

— 32AY.
— 4:2mVxY.
— d^b'^cxK

^Labmn.

4:axY.
— 4:abgxyz*.

4:abexy.

— m^n^x^.

Za%cdh^K

Zo^bcxy'^,

EXERCISE XX,

2. X - 40.\. X = 20.

3. $19000, $9000, $12000, and $7000.

4. 9, 10, 17, 19, and 2G.

EXERCISE XXIII.

- 3G.t2//2^ - \:%xy'^zK 2. a%^c^ -

3x^ + Zxy + Zxz. 4. a^bc — ab^c -\- ab(^.

a%^c - id)^(^ + a^bc'. 6. lia'b^ + 2MbK
15a;y-18.i;y+24;z;y. 8. 56a:y + 40a;y.

- bx^z^ -j- Sx^z^ — Sx^y^z^.

- 4:Sx^yh^ + 9QxYz'- U. 91a;y + 106x^y^

- 8xYz^ + lOxH/z'. 13. - «2Z>V + a^JV _^ ^2J3^2,

a^'^c - a%h + aWcK 15. - W + 9/^a^ - Uq,
- 5/22^2 _^ 5/3^_y _^ 10/3^-.
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18. - 2a'x' + 7/2aV. 19. 5/2^4^2 _ 5/3^3^3 _^ ^2^4^

20. 21/2xhj - xy. 21. l/2a:y - 3^y.
22. — x^ -\- l6/4:9xy.

EXERCISE XXIV.

1. x^ — 1. 2. x^y -f a^y + xy^.

3. - 3:^:5 _^ dx^-dx^-{-12x^ ^. x^-\-x^—x-l.
5. 2:4 + a:^ + 2,^2 - x -{- 3. 6. x* - ISa;^ + 36.

7. a:^ — ?/^. 8. x^ + y^ 9. ^'C^ + x^y^ -\- y^.

10. a;54-5ic4+10x3+10a;2 + 5a:+l. n. a; = 11.

12. $20000, $52000, and $48000. 13. 5.

14. x^ - 5ax^ + lO^V - 13«V + ISff^a; - Qa\

15. x^ — 4«V + Stt^a; — a^

16. x^-\-2x^y—xy—4:a^y^—xy-\-2xy^-{-y^. 17. ^* — a'^.

18. •'c^ — (^* — d + c)a;2 — (be — ca -{- ab)x -\- abc.

19. \ — X -^ x^ — X? -\- 2x^ — a^ -\- x^ -\- a^,

20. a^ — b^. 21. 27^^ — 64«/^.

22. 125aV + 27%«. 23. 64aV _ i25^9a;3^

24. $300, $550, and $350. 26. 8.

EXERCISE XXV.

1. 9x^ + dx^ - 2x^ + 62; - 4.

2. a;« + ^^ - 2a;« - 2x^ - 5x^ - x^ -}- 5x^ + 9.

3. 2x^ - lOa:^ + 5x^ - 222;^ - 52;2 -^ 5a; + 1.

4. 2x^ - 7a^ +6a^ + da^ - 3x^ -f 4a: - 4.

5. 1 - 6x^ + 5x\ 6. 1 - 7x^ + Qx\

7. 1 + :6- - 8a;2 + 19x^ - I6x\

8. 4 - 9x2 _j_ X2a;3 - 4:f4.

9. x^ + .-c^ - 2x^ - x^ -\- x^ + ^ -f 1.

10. 2x^ - bx^ 4- 2x^ + 6x^ - 3x\

EXERCISE XXVI.

1. 5xy. 2. 'Sa\ 3. 9«2. 4 7^2^.

6. — 17:r. 6. — ll.r^^. 7. 5z^. 8. 9«c2.

9. 2xy. 10. — 3«2^. 11. i/ba^y.

12. — 9a;2?/2^;3, 13, 15(x + y)V.
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14. - 39(« - hfxK 15. - 'dOcd(a + bfxy.
16. bQa%\c - ciyxyK 17. b(a + bfx.

18. - ^ac{h -dfy. 19. Ud(b + c)x.

20. 2a^c\ 21. - 2Wy.
22. X = 60. 23. 48 and 132.

EXERCISE XXVil.

1. x^ + xy + y\ 2. a^ - ab -\- b.

3. a^ - ?>a% + 1)\ 4. 8a;3 + mx^y + 21y\

6. 6/6a*-l/5a'b-l/da^^ . 6. - 2a% - 4:ab\

7. 6x^y - 6xy^ + 8xy. 8. 2a - Sb -\- 46'.

9. dx — 2y — 4. 10. 2/3« - l/6^> - c.

EXERCISE XXVIII.

1. X - S. 2. x-\- 3. 3. X — 7.

4. X - 2. 5. 2x -- 3. 6. Sx + 8.

7. 4:x - 3. 8. 5x + 4. 9. 7x + 5.

10. x^ + xy + y^. 11. ^ + y-

12. 9A2 4- 12abx + 16^^ 13. 2aV - 3(^b\

14. 7a:2 + 5xy + 2f, 15. ^3 _ 2a;2 -I- a; + 1.

16. f - 3x^ -h 2:?; - 1. 17. .^2 - a;y + y^.

18. x^ + X - y. 19. x^ - 2x -h 3.

20. x^ ^ 5x-\- G. 21. 7«2 - SrtZ* + 2bK

22. 8. 23. - 8. 24. 5. 25. — 5.

26. - 18. 27. 5. 28. - 10. 29. 10.

30. -5. 31. 7a- -45. 32. 0. 33. -392-+2

84. X + 1/3. 35. x^ - \/2x -f 3/4.

36. \ — x-\-^ — Qi?-\-x'^~ etc.

37. \\2x^2x^ ^ 27? + etc.

88. 2{x - yf - 4.{x ~ yf - {x - y),

EXERCISE XXIX.

1. X = 5^.. 2. X = — 2. 8. X — 3.

4. a: = 20. 5. a; =.11. e. 31 doz.

7, 8 sheep.
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- 27/64a;2^

EXERCISE XXXII.

2. x^if. 3.

6. — 125a;y. 6.

8. dh^. 9.

11. 49ai»Z>V. 12.

14. - 27a».r^ 15.

- 32a:iy

4/9a^^io.

EXERCISE XXXIII.

«2 + ^ab + 9Z>2.

a;^ — Vdxy \- 25«/^.

9a;^ — %xy + «/^.

81a:2 - 36a^y + 42/2

16

^2

4" ^ahxy -{- ^Wy'^.

- 82; + .t2.

- '2/Ux + 1/9^*2.

a;'^ -\- lax -\- (^

2.

4.

6.

8.

10.

12.

14.

16.

18.

«2 - 6a5 + 952.

A,x^ -f 12 2;?/ + 9?/^.

^x^ + 30a;?/ + 25f/2.

"IWW - lOabc + c2

x^ — 2abcx + c^lt^^,

x^ - 2.^2 + 1.

x^ + 4/3«2; + 4/9«2.

^2 _ 3^a; + 9/4a'2.

16 + 8a; + a;?.

EXERCISE XXXIV.

1 _j_ 4:^:2 _^ 9^4 + 4a; + 6a;2 + 12a;3.

1 + 4a; + 10a:2 _|_ 00.^3 _|_ 253^4 j^ 24a;5 + 16a;^

\j^^x-\- 10a;2 + 20a;3 + 25a:4 + 34a;5 + 36a:« + 30a;^

4- 40a;8 4- 2e5a:io.

4. a^^h^^c^^^^- lab + %ac

+ 40a;« + 25a;io.

Uc - 2ad

+ Ud — 2cd.

9^2 4- 452 ^ ^2 _|_ ^2 _^ i2ab - Qac - Uc + 6ad.

4- 4Z»^ - 2cd.

EXERCISE XXXV.

x^ + 2ax^ 4- 3A 4- a^. 2. a;^ — 3«a;2 4- 3A — «^.

a;^— 6a;2|/4-12a;^2_g^3^ ^ 3^3 _|_ i2a;22/ 4- Qxy-^ -{- y^.
^

27a''5 - U6x^y + 226xy^ - 12byK

a^b^ 4- 3a2^,2c 4- 3«5c2 4- c^

8^3^,3 _ 36«2^,2^ _|_ 54^^,c2 - 27c3.

125^3 _ 75«2^6' 4- 15a^>V _ js^.



10 ANSWEMS TO QILLETB ALGEBRA.

10. Ux^ - 240a;'*3/2 + 300a;y - 125?/«.

EXERCISE XXXVI.

1. a^-2x^ + x+l. 2. l/2a;2 - 1/3^2/ + 1/4/.

8. 4 and 9. 4. 5 and 8. 5. 3 and 5. 6. 42.

EXERCISE XXXVII.

o -4- ft'>'3^y9

6. x^y^z. — x^y^.

EXERCISE XXXVIII.

a^-\-2a- 1. 2.

2a^ — 3A — fl^a:^. 4.

•2a4+ 4«V - 4c4. 6.

4a;2 - 2^2; -h 2*2. g

a;^ — 2a;2?/+ '^xy^ — y^. 10.

52;^ — ?tx^y — 4x^/2+ y^. 12.

^^ - ^«/ + y^'

dx^ — 4:Xy^ — 2/.
2x^ - 5a; + 3.

^ - 2x^ + 3a; - 4.

2 - 3« - a2 -j. 2^3.

a;2 — l/2xy — y\

ic^ — 2xy -\- y''^

EXERCISE XXXIX.

1. 106929. 2. 14356521. 3. 714025.

4. 25060036. 5. 387420489. e. 25836889.

7. .00092416. 8. .00000784. 9. 4816.36.

10. 1867.1041. 11. 1435.6521. 12. 64.128064.

3789.

2.1319.

EXERCISE XL.

2. 5006. 3. 5083. 4. 129.63.

6. ,9486+. 7. 2.4919+. 8. .0923+.

EXERCISE XL!.

1. «3 _^ 3^2 _^ 3^ _|. 1, 2. x^ + Qx^ + 12a; + 8.

3. «V — TiaH^y^ + 3aa;/ — /.

4. 8m3 - 12m2 + 6m - 1.

6. 64^3 - 144^2* + 108aZ>2 _ 27*^^



ANSWERS TO OILLET'S ALGEBRA. ll

6. 1 + 3a; H- Qx^ + Ta;^ + Qx^ + 'ix^ + a:^

7. 1 - C^x + 21a:2 - 44?;=* + Q>^x^ - 54^^ + 27:?;«.

8. «^ + 6r?2/; - 3r^2^ + 12rtS2 _ i^ahc + Sr/c^ + 8^^

- I2}pc + 6^>6'2 - c^.

9. 8r^6 - 36«5 -f 66^4 - G3rr^ + 33^2 _ g^^ _^ ]^

10. 1 - 3a: + 6a;2 - \0x^ + 12.^'^ - 12a:5 + lO.c" - 6a;'

+ 3a;8 - a;^

EXERCISE XLil.

1. 1 — x. 2. 1 H- 2a:. 3. 2a: — 3^.

4. 3a;^ — z^. 5. a-\- 8b. 6. 4a: — 3a:2.

7. 1 + ^ + .... 8. l---_-_--etc.

EXERCISE XLIil.

1. 2460375. 2. 11089567. 3.- 1191016.

4. 17173512. 5. 109215352. 6. 102503.232.

7. 820.025856. 8. 20910.518875. 9. 056623104.

EXERCISE XLIV.

1. 478. 2. 3.84. 3. 4.68. 4. 9.36.

5. 27.55. 6. 1.357+ . 7. .5848+. 8. .2154+.

9. 1.587+. 10. .7368+ . ll. 3.045+. 12. 2.502+ .

13. 9a\x^-\-6aWxy+4.bY. 14. x = 2.

15. 15 ft. by 12 ft. 16. 2«3 + 4c2.

17. X = 1. 18. 48 ft. by 40 ft.

19. 90 of port and 150 of claret. 20. 44.

EXERCISE XLV.

1. 14a:2 - 43a: + 20. 2. 20a:2 + 62a: + 48.

3. 28 - 47a: + 15a:2. 4. 30 - 20a: - 80a;2.

5. x^ + 16a: + 63. 6. a:2 - 8a: + 15.

7. x^ + 3a: - 54. 8. a:2 - 4a: - 77.

9. x^-x-30. 10. a;2 + 3x - 28.

11. x^ + 6a: + 9. 12. a:2 - 8a: + 16.

13. a;2 - 64. 14. z'^ - 36.
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15. d6x^ + 39.i; - 108. 16. 72a;2 + 12a; - 24.

17. 24:X^ - 19x - 175. 18. 18a;2 ~^x- 180.

19. 4:ax^-(5a-lr^b)x-\-bb. 20. 18aa;2+(24«+6c)a;+8c.

21. ba^x^ + (^^ — 5«c)a; — be.

22. {2a^ + 2a*)a;2 - («J + V- 2ac)a; — 5c.

23. 24 - 36a; - 108^2, 24. 63 - 44a; - 32a;2.

EXERCISE XLVI.

1. 20^:4 - 47^2 _^ 21. 2. 21a;8^47^4^20.
3. 30:?:« - IQx^ - 32. 4. 42a;io + 4a;5 _ g^

5. 2^4 _ 20^2 _ 96^ 6. 54^2 -|. 3^6 _ rj^j.^

7. x-\- 12Vx-\-35. 8. 6.a; — 2 |/^— 48.

9. a; -49. 10. 9a; H- 24 V^4- 16.

11. c^-5. 12. m — 5.

13. 6m^ - 18m^ + 16. 14. 3n^ H- 21?i3 - 180.

15.
510 + 55 _ 5g^ 16.

«i4 _ 2aT _ 99,

17. a:8 - 49. 18. m« - 36.

19. 4:X^ - 16. 20. 26a^x^ - 9.

21. 9x - 175. 22. 36a; - 147.

23. a;2 + 4. 24. 4a;4 4- 45.

3.

EXERCISE XLVII.

{a + a;)2-3(« + x)-2% = a;^ + (2«-3)a;+a2_3«_28.
(m + 2;)2-f m+a;— 72 = a;^— (2m— l)a;+ m2+ m —72.

\x-bf ^ ^{x-b)-^h = x^-{2b-\)x -^b^-^b-^:b.

4. (a;-m)2-5(a;-m)-84=a;2-(2m-f 5)a;+m2+5m-84.
5. a;2 — m 4- 5. g, a;2 _ 3 _^ ^^

7. (a; - 4)2 - {x - ay = (2a - 8)x - d^ + 16.

8. a;3 + a;2 + a;+l. 9. 1 - 3a;2 + 2a;4.

10. X — 5^. 11. 5| days. \%, 30 min.

13. {x - 5)2 - (a; + 6)2 = - 22a; - 11.

14. \x + 7)2 -\x- 5)2 = 24a; + 24.

15. X - 23. 16. X - 23. 17. a;2 - a; + 5.

18. 11. 19. 3. 20. 220 - 16a;.

21. 7a; + 148. 22. a; = - If. 23. 4i liours.
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EXERCISE XLVIII.

1. x^ -h aK 2. x^ + 27. 3. x^ - 343.

4. a;3 - (^. 6. 8a;<' - 27a^

6. a;2 _|. 4^ _|_ lt5. 7. 4«V _ ;^4^^2 _|_ 49,

8. a:« 4- ^x' + 3a:4 _^ 4^3 _|_ 3^,2 _|_ 2a; + 1.

9_ 1 _ 9.^2 _^ 33^4 _ (.3^0 _^ 66^ _ 36^10 _^ s.'cil

10 a^j^\/%lb\ 11. l/8rtV - 8/27^'V.

12. l/125«V2+l/216^>%i^ 13. 9«V + «V + 1/9A2.

14. l/16««a'i'^ - l/Ua^h^x''^ + 1/36Z»V^

EXERCISE XLIX.

1. x^ + 8.r + 16. 2. m^ - 10m + 25.

3, x^ -'dx + 9/4. 4. w2 - 5w + 25/4.

6. x' + 72; + 49/4. 6. if - ^y + 81/4.

^ ^2 _ 3/4a; _|_ 9/04. ^ ^} + 5/6^ + 25/144.

9. x" + Z'.r + ^^74. 10. a;2 - 5Z^:c + 25^>V4.

11. x^-^x-^ 1/4. 12. ^^ — ?/ + 1/4.

EXERCISE L.

1. x^ + 6a;3 4- 9. 2. m^ - Vlw? + 36.

3 ^4 _ 5^2 _^ 25/4. 4. «» + 7^4 + 49/4.

5. x'' + ^>a:3 + 574. 6. 2;* - 2;2 + 1/4.

7 ,^10 _ 2/3x5 _|_ 1/9. g^ ^^6 _ 3/4^3 _|_ 9/64^

9. (^+2)H6(^+2)+9. 10. (:^-5)2-3(x-5)+9/4.

EXERCISE LI.

1 ^2 _ 8a; + 16 - 18. 2. a;2 - 12a; +36-6.
3_

r^i + 7a: + 49/4-52/4. 4. a:2_7^+49/4_233/20.

5^ 1/1 6a:* + 1/2^;^ + \x^ + 32a: + 256.

6. 27 days. 7. 3^ days.

8^ ^2 _ 9^ + 81/4 - 69/4. 9. 22+ii^+i2i/4_i49/4.

10. x^+bx+b'/4:--j^. 11. y'-bij+b'/4.-'^^.

12. 16/81a;4 _ 4o/27a:3 + 100/9a:2 _ 250/3a: + 625.

13. 72 miles. 14. 5j\ hours.
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EXERCISE Lll.

\. x^-{- '^x + 9/4. 2. x} - 5x -f 25/4.

3. x^-3x+ 9/4. 4. x^ + 9.T + 81/4.

6. {x + ay - 6/d(x + rt) + 25/36.

6. x = 2f

.

7. .^2 + -.^• + by4:a^.

8. ?/2 — n/my + 7^V4m2. 9. x^ + 3/2:»2 _|_ 9/16.

10. z^ - 3z^ + 9/4.

11. {z - 5)4 + 3/7(z - 5)2+9/196. 12. a: = 4:-^.

EXERCISE Llll.

1. 2{x^ + 3/2a; + 9/16 -f 39/16).

2. 3(:?;2 _ 6a; + 9 - 13).

3. 4:(x^ - 'S/2x + 9/16 + 19/16).

4. 5(a;2+5a;4-25/4-41/4). 5. Q{x^-\-7x-\-49/4-^7/12).

6. 1.4142+. 7. 1.442+.

8. 7(2;2-9:z;+81/4-53/4). 9. 8(x2-52;H- 25/4-31/4).

10. 9(.'c2-9:c+81/4-53/4). n. 10(a;2+7a;H-49/4-81/4).

12. n(x^ - %l\\x + 1/121 + 32/121).

14. m(.3-Vm. +—,--^^^^j.
EXERCISE LIV.

1. lai^U + c). 2. 2«2^(.t2 - 4a; + a^).

3. 5Z»V(J:r -^(?y - !)• 4. 7«(1 - «2 4. 2a3).

5. 2a;3(3 + a; + 2a;2). 6. 15«2(i _ 15^*2).

7. 5:^3(^2 _. 2«2 _ 3^3)^ g^ 19^2(2^3 + 3a).

9. (3a:2 — X — \)x. 10. xif^'lxy — Zx -\- "ly).

EXERCISE LV.

1. {x^a)(x- a), 2. (a: + 3)(a;-3).

3. 4(a + 4)(« - 4). 4. \zax+ 5Z')(3aa; - 5J).

5. (9 + 4«a;2)(9 - ^ax^).

6. (7«2a; + 4«V)(7a2a; - 4aV).
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7. (x+13){x-l). 8. 0/+5)(^-13).
9. {a+ 2)(« - 6). 10. {b + 23)(b + 1).

11. 6 ft. 12. 86.

13. 3(2 + a){2 - a). u. 3«(4« + 6b){^a - 6b).

15. 3«(3rt2 -f 5a:2)(3«2 - 5x^).

16. bx{5ax^ + 3.^7/)(5^.T^ — 3:?:?/^).

17. (:?: + 10)(a: + 4). 18. {x -j- l){x - 17).

19. (a:+ l)(a:- 11). 20. (.T + 29)(^' + 1).

21. lOJ^ hours; 21y\ hours. 22. 67.

EXERCISE LVI.

1. (x-\-b)(x+7). 2. {x-3){x-9).
3. (x-\-i){x-8). 4. (.T - 3)(a; + 10).

6. (x-7){x + 6). 6. (:^:+5)(.'r-4).

7. 2(a; - 8)(^ + 3). 8. (.tH-5)(3x+ 11).

9. (2rc-l)(3a:-7). lo. (4^; + 1)(5.t + 8).

11. (bx - 3){7x -^ 12). 12. 4(7:c + 5)(2a;-5).

13. A can do it in 17| days, B in 14|| days, and C in

13^ days.

14. 2(2 - x){3 + 4.T). 15. 4(6 - 7x)(2 - 3x).

16. (5 4- 3.t)(7 + 4:7:). n. {2x + 7){3x - a).

18. {ax — 6){bx + 7). 19. {ax + b){cx — d).

20. {x — {a — b)) (x + {a + ^')).

21. l{a-}-b)x + 2)({a-b)x-4:).

22. 3(a;+ 6)(a: - 3). 23. 7{x - Q){x + 5).

24. 10(a: - 2){x + 7). 25. 5^2(3^; - 2)(5a; + 3).

26. 93.

EXERCISE LVII.

0.

1. 44. 2. - 10.

3. x^-x. 4. x^-x + 1.

5. 28. 6. C3 + ^3 _ J3 _ ^3

7. if — if = 0, 8. .^6 _ y6 —Q^

9. if - ?/" = 0. 10. -if + .v' = 0.

LI. f + y' = 2y\ 12. y' + y'=.2yK
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13. y*-\-y' = 2f. 14. -y-+if = 0,

15. y"" -\-y'' = 2^". 16. 2/" + ^" = ^^Z""-

EXERCISE LVIIi.

1. It is. 2. It is. 3. It is.

4. It is not. 6. It is. 6. It is.

7. It is not. 8. It is not. 9. It is.

10. It is. 11. It is not. 12. It is not.

13. It is not. 14. It is not. is. It is.

16. It is not. 17. It is. 18. It is.

19. It is not. 20. It is.

21. x^ + hT" + Z>V + h^x^ + ¥x^ + ¥x + h\

22. x'^ — h'j(? + y^^ — b^x -\- h^ with — 2^^ as remainder.

23. x:' -\- bx* -\- b^x^ + b^^'^ -\- b'^x-\-b^ with 2b^ as remainder.

24. X' ~ bx^ + b^x^ - Z/V + b^x^ - Wx^ + b^x - b~ with

2^^ as remainder.

25. X?' -\- bx^ -\- h'^x^ + V^x + b^ with 2b^ as remainder.

26. x^ — bx" + Wx^ - IH^ + b^x^ - b^x + b\

27. x^ + bx^ -\- b^x + b\

28. (^ - bx^ + b^x^ - ^V _^ ^4^ _ j5^

EXERCISE LIX.

1. 2:'^ + a:^^ + x^y^ -\- xy^ -\- y^.

2 x"^ -\- x^y -\- x'y'^ + x!^y^ + a;^«/* + x^y^ + a;;^^ -f 2/'^-

3. X? — x^y + x^y'^ — 2:y + ^^'^ — y^'

4. 2;^ — x^y + .^**?/^ — 0:^2/^ + ^2/* ~ ^^'^ + y^'

5. a;2 4- 3a: + 9. 6. x^ + 3a:2+ 9^ _|_ 27.

7. a;3 - 2a;2 + 4a; - 8. 8. a;^ - 2a;3_j_4^_8^_|_ 16^

9. 0. 10. V'-aK 11. 0.

12. 0. 13. 0. 14. - 12^2^.

16. W - '^V'c - Ui^ + 1c\ 16. {x -\- 2)(3a; + 4).

17. (.T-l)(.T+5). 18. (a: + 4)(a; - 3).

19. (.T - 2)(3a: - 2). 20. \x - l)(4.r - 3).
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EXERCISE LX.

1. 13i hours. 2. 120 hours.

3. 50 days, 214 <iays. 4. 36. 5. 27 days.

6. A's $1650, B's $1320.

EXERCISE LXI.

1. 5a;^y. 2. Ix^yh. z. ISadcd.

4! xy. 5. I'^a^bh^. 6. Ux'^ + Y^^-^
^ Qx'^ + n,^ 13^2n_ l^^n + PyQ_ g^m + 2_ 24^h + 2_ 202;!' +^
8. Sx"" + Qx"" - 4:xK

EXERCISE LXII.

1. cc + 1. 2. ^ + 3. 3. X — 10.

A. X — 2. 5. X -^ a. Q. X — y.

7. cc — 1. 8. :?; + ^. 9. 6(rc + l)^.

10. x^—y^. 11. (a;+a)(a;— 2a). 12. ^ — y.

EXERCISE LXIII.

\. x-\-\. 2. X— d. 3. a; — 2.

4. X — 2. 5. 2a;(.T — 3). 6. 3A(x — a).

7. {x — af, 8. 5a:2 — 1. 9. [l—xy.

10. a;2 + 4a;+5. 11. a:2 + 2i» + 3. 12. x^ -}- 2x + 3,

13. a:2 - 3a: + 2. 14. x^ -\- 2x - 3.

16. 18a:"*+3-24a:"*+^+30a:'*+*+21a:2'«+2_28;x;2'»+35a:'«+'*+3^

16. 4a;«+'' - 12a;3«+^ + 20a;^ - 6a;2«-2 -f 18a:^-2 - 30a;«+i.

EXERCISE LXIV.

1. 36 min. 2. 8 o'clock.

3. 5y\ min. past 10. 4. 5y\ minutes before 2.

6. 5y\ minutes after 4 and 38 \ minutes after 4.

6. 26. 7. 69. 8. 16| hours.

9. 42 hours. 10. 16 5 years. 11. 35 years.

12. 40 and 10.
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EXERCISE LXV.

1.

3.

5.

7.

9.

x^y — y^. 4.

(X^ - 1)(4:X^ - 1). 8.

{x-l)(x-2){x-d), 10.

60xYz\
x^ - 5x^ - 9a: + 45.

^3 _^ 7^2 _ 28a; - 160.

n(x - 2){x^ - 9).

3(x - dafix^ - 4^2).

EXERCISE LXVI.

1. 12x^ + 2aa^ - \aH^ - Tia^'x - \^a\

2. (4«. - ^)(«- ^)(3«2 + J2).

3. (a:2 - 2a: + 3)(6:6-3 + a'^ - 44x + 21).

4. {x^ + 5x + 7')(7a;4 - 40r^ + TSa:^ - 40a: + 7).

5. a:(a:+l)(:r + 2)(a:- 2)(a; + 3).

6. x{x- l)(a:+2)(a: + ^){x^ - 2a: + 4).

7. 2rt(2« - h){2a - U){2a + 3^).

8. 6a:(.T+ l)(a: - 3)(a' - 4).

9. (3a: + 2)(8a;^ + 27)(8a:S _ 27).

10. 3 (a: - ZyYix" - 4/). n. a-^*" - a:2«.

12. 9«2«a:2'" — IG^^m^^n^ ^g a:-2*"+i. ^^ 2«™-"a:-2^+2''.

EXERCISE LXVII.

1. 5j^3 minutes past 11 o'clock.

2. In 12 hours. 120 miles.

3. 12 miles an hour. 240 miles. 4. 14f days.

5. 33-^ days. 6. 24 days.

7. 120 days. 8. a:^'" — x'Hf + «/2«.

9. X"^ + a:*"*?/** + a;3*»y2i« _^ ^2m^3» _^ ^m^4«
_^ ^5»^

EXE5^CISE LXVill.

« 4^ 5c 2a: hy Sac 9

3« — 5^ + 4 a: + ^

2« + J
•

4c

7fl;+9^+^--^-18 _ 9a: + 66? + 11^ 4- 5c
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EXERCISE LXIX.

13.

14.

15.

IT.

2a—

.

2.
X

3a;—

•

6.

2x- 4,

x-3
x^ - 3.g + 9

X — '6

Sab

~W'

10.

13.

3.

7.

3^+J.
a; + 2'

3a: — y
4cX — y

1

a'

x-{-6

rX

11.

14.

4.

X — a

X

x-\-h
o.

a; + 3'

x^-{-4x-^U
.T+7

2x - 3

12«3^3

~Vlx^ + a; - 6
'

15«V

EXERCISE LXX.

20«V
3.

2a; + 3'

a;2-9a;+ 18

x^ X

20a:^ - 53a; + 35

8a:2-

6^V

42

34a; + 30

- 14a^>V

21a;2 - 11a; 40

3 - ^iCiWx^ '

15a;2 - 9a; + 42

7a; 4-

8

15a;2 + 13a;

9- hx

9a; + 20

11
loa^x

a;2- 16

Their sum =

30

and

9a^x
2 + 10;r + 24

6 -. 3a;

and
r^'a;

9a=^^a;'

x^ 16

x^ x

2a;2 + a; + 44.

X? - 16. •

14a; + 48

x"

6a

4rt^

a; - 30 ' a^ - a; - 30

_ a;2 + 25x- - 43
~ Tc^"- a; - 30

•

oa; -|- 6 6rt — oa; — 6

30

4«:^

45x^+20a;2-3a;+18

15.t2 + 14a; - 8 *

25^>2 - 84rt6'

36^2

4^2

16. — b'^ — 4ac

18.

4«2

4a^> *
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19 iC^*"
^2rn-\-n _r_ ^TO-f-2n ^n^

20. a;^"* + aj^"""^" + a^^'^+^n _|_
^m+sn

_|_ ^«^

EXERCISE LXXI.

1. 1. 2. --^—

.

3. 1/x, 4.
—^ -^^

5.

a X

X? - 13a; + 42 15.^:2 - 26a; + 8

a: + 7

10.

a'^ — a;'^

2a;- 1

EXERCISE LXXII.

ab
2.7/12.

«- 11

a~% *

a; + l

a; + 5*
.

•

14 - 17a: -- 6a;2

2« -- 1*

2a;-- 1

2a;-- 3
*

6a;2 - 23a; + 20

3a;- 2

2a;2.- 21a; + 27

6.

4a; + 6 '
'

a; — 5

EXERCISE LXXIII.

1. x^ -X- 12, a;2 - 15a; + 56, ^x + 48.

2. 9a;2 - 9a; - 28, lOa;^ — 43a; -f 28, 5a;2 -f 51a; - 44.

3. -40a;2+ 94a;-48, -35a;^-19a;-42, -3(a;2-6a;+ 9).

4. a;2 - 64, a;^ - 64, 7a;2 + 28a; - 224.

5. x'^x- 42, a;^ -f 216, 5a;2 - 30a; + 180.

6. i/'^"' -4- o;S»»+'» _L_ '7;*"' + ^" -4- -|.3'« + 3n _j_ ™2»i+4n _j_ ^m+5» _j_ ^6»»

EXERCISE LXXIV.

1. A is 48 and B is 12.

2. 49^ minutes after 3 o'clock. a. 17 and 28.

4. 35 dimes, 5 cents, and 10 dollars. 5. 98 and 215,

.

,

cmim — 1) _,, cin — 1)
6. A's age = —^^ '-

; B's age = -^
.m — n ® m — n
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100(^ - a) 11
7. • 8. TT"*

ac 3

9. 27y\ minutes after 5 o'clock.

n — r , nq 4- r
10. ;—r and ^ ,'

.

S' + l ^ + 1

EXERCISE LXXV.

1. -3f 2. 11. 3. 7. 4. -8.
6. 1. 6. - If. 7. - 10. 8. - 1.

9. 7. 10. 3. 11. 1. 12. — 2.

13. 1/4. 14. -3^- 15. If.

EXERCISE LXXVI.

1. 5^. 2. 6. 3. 9-1^. 4. 1. 6. 1*.

EXERCISE LXXVII.

1. 1/2. 2. 4f. 3. 4i.

4. -4/7. 5. Hf. 6. 3.

7. 3i. 8. -4i. 9. 2^.
. ab — cd

10. 0. 11. -^^ j. 12. 2yV«.

EXERCISE LXXVIII.

1. 55 minutes. 2. 37^ min. and 25 min.

3. 130000. 4. $84000.

6. A 39 miles and B 27 miles. 6. 283. 7. 536.

8. Of the first -^^ ^, and of the second -^^ z-^.
a — a — i

9. $750 and $500. 10. 192 miles.

11. $15.36 and $4.56. 12. Hound 72 and fox 108.

13, 300. 14. Man 84 cents, boy 42 cents,

15. 85 gallons of spirits and 35 of water.

16. 1500. 17. 28. 18. 3 shillings.

EXERCISE LXXIX.

1. Vn^. 2. V^i:^ 3. V^^.

4. V'2ba%\ 6. V^aF. 6. Vl^\
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8. yl/9«y or —d-.
VU V9

>. V -77^2- or —=.—. 10. VflJ^ + 2«^> + b\

11. Va;2 - 2xy + 2/2. 12. V^a"" + 426^^ _^ 49^

13. fe 14. '^STaV.

„ l//Y9iy3

15.

hi
16. \/x^^lbx'^lbx^l2b. 17. \^a^ - 9^2 _^ 27^ _ 27.

18.
.727«V |/27«V
^ ^^0^ "

f64.3

•

EXERCISE LXXX.

1. 24/3. 2. 5 1^3. 3. 64/5:

4. 7 1/15. 6. 16 V2. 6. 9 V7.

7. 3 1^5". 8. 4 V'y. 9. 8 1^11.

10. 4.aV¥l). 11. 5«:c2 4/5«. 12. la^x^V^ax.

13. 2a{a + J) 1^6?. 14. 2x^y{x - y) V^xy,

EXERCISE LXXXI.

1. i/99. 2. 1^208. 3. V252.

4. ^^72. 5. >^^320. 6. ^864.

7. VSia^ - 9«2j. 8. V^x^ + Qx^y + Zxy^,

EXERCISE LXXXII.

1. 1/2 V2. 2. 1/5 i/5. 3. 1/3 VQ,

4. 1/6 l/fK 5. i- f^2l^. 6. . —^ V¥-b\
'

Ix ^
a — h

1 ./^^-TT.—7-7^ . 1
7. -t-t; ^^^ + 10:c + 24. 8. —ri^ i^^^ + 2a; -~ 35.
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9. ^r-V-r VlOx^+ x-2. 10. 5-^^ 4/12^21146^+42.
2x -{-1 dx — i

11. —^ ^20 + 7x-Qx\ 12. T y 12a;2 + 7:c - 12.
OX ~j~ 4: 'lit/ O

EXERCISE LXXXIII.

1. 18^2". 2. 37 V2. 3. ^^15".

4. 2/5 V'e". 6. 25a2a; 4/3^^ 6. -^ V^.

w(?i + Vns)
7. ISft^* V'2«2^2, 8^

n — s

EXERCISE LXXXIV.

1. 4 V'5. 2. - 3«2^ f^. 3. 2^> Vb.

31 3_
4. UV2a, 5. ^VQ. 6. -l9aVab.

yu

7. (13c - d5cd) V2i. 8. (6- - X -~-^ V^^

EXERCISE LXXXV.

1. 96 Vd. 2. 1^ H. 3. 24 y^.

4, 1/2 4/6". 6. ~4/^. 6. 4^%

7. 64/10 + 7 VT5 + 84/6 + 24.

8. 6 + V16. 9. 6 4/2r- 46. 10. 2 l^e.

11. 6ff - 6a; + 5 Vox, 12. 3 4/7 - 47.

13. 64/5 + 14. 14. 53-144/5.

15^ 32-104/7. . 16. a; + 7 4/^+ 13.

17. a; + 18 4/^+ 81. 18. x + Vx-dO,

19. a; -2 4/3^+3. 20. -3.

0^2.
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21. 15 + 4^11: 22. V^^ - 3x - 40.

23. 2a; + 2 + 2 i/a;2 -f'2^ - 24. 24. V^f^^^.
"•^ 2a; -f 2 |/a;2 - 9. 26. ISa;^ |/(:j''^ - 13« + 42.

24a% + 8« t^6^+ 4^. 28. 35«Z>a; + 245«&.

25a; - 58 - 24 Vx^ - x - 42. 30. 63^3 V^~rT{j.

34«3 _ 98^2 + 30«2 4/«2 _ 2« - 15. 32. x - 29.

33. x + 2. 34. - 13. 35. - 7a; - 26.

36. 9«V _ 72«V _ 25a;5 - 175a;^

27.

29.

31.

EXERCISE LXXXVI.

1. 113. 2. - 166. 3. 172.

4. - 6. 5. a — 4^. 6. 9c2 — 4a;.

7. X. 8. 2j» — q, 9. 2a;.

10. 25a;2+75?/2_49«2. n. - 2ax. 12. 2x^ -\- 6x.

EXERCISE LXXXVII.

1. 44. 2. 59.

3. «2 + J2 + ^2 _- 2«J - 2ac - 2hc. 4. 64.

EXERCISE LXXXVIII.

1.

- 64/3 + 8 V

104-134/42" 64/7-1/2"
^- 26 • ^- 25 •

4. 2. 5. ^ - i^a^ - l^.

3 _ i/9 _ «4
6.

7a; + 3 + 8 Vi

3a; + 15
8.

1 1 + a;2

11. Vs.

aVx.

12. '^'S. 13. 44/5.

14. 15. Vx - 7. 16. f:z^^ + 2a; + 4.

17. V^x-^3.

Vx - 9.

18. \^x - 3. 19. Va; - 7.

20. 21. 4/3a;-2. 22. Vbx-1.

23.
11 - 3 Vf

3

3 4/f- 2 1^3" 19 - 6 i^
24. 3 . 25. ^^ .
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26. 2+^6.
^/X'U

27. ^.
y

». f.

29.
a — X

: 30. 4 + 4/15;

EXERCISE LXXXIX.

1. VlOO, ^^125, and ^^11/2.

'i^(a - by, and2. '\/{a + hy, y'Ca^ f x^y.

4. 1/2 |/^.3. -/10125. 6. t^a^

6. 7. 3/2^8/3.

EXERCISE XC.

1. 14. 2. 8. 3. 20. 4. 2|.

5. 13. 6. 6/5. 7. 144. 8. 2.

9.

13.

4|^. 10. ItV 11- 5.

14
(^-*)'

12. 12.

15. 1/6.

16.

19.

3«/4.

23. 20.

17. (v;^-i)2.

a - 1. 21. 42i.

EXERCISE XCI.

18. 2/5.

22. 9«/10.

1.

4.

24/17.

12^3_

2. Hh
a{c - 1)2

^- 4. •

3. 3|.

6. 8/45.

7. 25/168.
(«-&)2

25

EXERCISE XCII.

1. 16. 2. 1/64. 3 1/5. 4. 1/6.

6. 1/1000. 6. 36. 7. a^VK

8. a-^/'^W^'^. - 9. «V3Z,i2. 10. a-%-y'^.

11^
«i/5 _|_ ji/2 ^ ^4/3^ j2^ ^^3/2 _|_ ^1/3^2^

13. a^/V/s + a^/^^^, 14. a;2/32/0V3 4- ^s/v/s^
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3-1 1
16. VX^ 3-. 16. T"vf*

18. —T- X S- - + -r— . 19. tC^/^ — ^*/^

20. 1 - ^'/^ 21. «'/' + 2'^/^ 22. X^-1,

23. :r3 + 2a:V2 -|- 3 + 2:?;-^/2 + a;-3.

4n 8m 2n 4h

25. ic5/2 + //2. 26. i«^^ +^V + 2/'-

27. a:«/3 _ ^4/3^4/3 _^ ^8/3^

28. iiJ^/^ - 22;«/5i/V4 4- 4a;V5^V2 _ SrrVy/* + \^.
29. ic2/3-^-2/3.

30. «4/10 _|_ ^3/10^1/5 _|_ ^2/10^2/5 _|_ ^1/10^3/5 _^ ^.4/5^

31. ^ + 2/-

EXERCISE XCIII.

1. x = 2, y = ^. 2. X = ^, y = b. 3. a; = 2, 2/ = 1.

4. a:=:4, i/ = — 1. 5. ic = 1, «/ = 2. 6. ^= — 3, ?/=:4.

7. X = 6^ y — — Q, 8. a^ = — 1, «/ = — 2.

9. 2; = 3, _^ = — 1. \Q^ X — 1 , y = 5.

11. a; — 3, ?/ = 8. 12. x — 2, y — 3.

'T* '7*^ or

13. 1 - 2
~ "8~ ~ 16"' ^*' ''^^

-2^+1.

15. a; = 15, 2/ = 16. 16. x = ^, y = 2.

17. »: = 2, y = - 1/2. 18. x = \,y = l,

he ac
19. X — b, y = b 20. .T =—r-7' ^ = —^^^^t.*^

a-\- h ^ a-^h
h — c a — c _, 07

21. X — 7 , y = ,. 22. X = 2h — a, y = 2a — u.
b — a ^ a — ^

ac he
23. x:=:a, y = h, 24. X = -2x12' y«24_^2' ^-«2_^
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7« + 8Z/ 8« -h n

EXERCISE XCIV.

1. 7andl. 2. 8/15. 3. 45. 4. 54.

5. 58 years and 18 years. 6. Each would do it in 50 days.

7. Tea 28 cents a pound, and sugar 3 cents.

8. 4 gals, from the first and 3 gals, from the second.

9. 2 gals, from the first and 10 gals, from the second.

10. Tea 30 cents a pound, and sugar 3^ cents.

EXERCISE XCV.

1. x = 2, 2. x=\, 8. a; = 3.

^ = 3, 2/=-2, 2/ = 5,

z =4. ^ = 3. = -3
4. x = l, 5. a; = 4, 6. a; = 3/2,

2/ = 3, 2/ =-3, 2/ = 2/3,

z= -b. ^=2. ;2? = 5/6.

7. x = 15, 8. i. = 3. 9. a; = 9,

y = lS, 2/ = 6, ^=18,
z = 20. z = 9. ^ = 6.

10. X = S, y = Q, z ^=- 5.

1.

5m 2m

3a;' + 4a;' -
7n

- V^x^^

3n «

- 6a:* + lO/.
3» + »i n + 3»n

12. a;2" + a; ' +»:" + '" + a; ' + ic^"*.

13. 4a:2/3 _^ 25a;V3 _|- iGa:^ - I2:r - 24a;S/3.

EXERCISE XCVI.

1. 9, 11, and 18. 2. 37, 25, and 16.

3. 124, $32, and 116. 4. A, 1420; B, $640; C, $1040.

6. A in 40 days, B in 120 days, and C in 60 days.

6. A in 10 days, B in 15 days, and C in 12 days.

7. 234. 8. 253. 9. 428.

10. A, _ ,
. ; B,———-———; C,

rs -\-st—rt —7's -\~st^rt rs—st-{-rt
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11. Rate of stream, 2 miles per hour; rate rowing in

still water, 10 miles per hour.

12. Rate of the current, 3 miles per hour; rate of crew

in still water, 12 miles per hour.

13. Rates 36 and 27 miles per hour respectively, and

distance 75 G miles.

14. Rates 25 and 30 miles per hour respectively, and

distance 330 miles.

15. 15 persons, and 5 dollars a piece.

16. Number of persons ^, ^ ; each received
bm — an

om — an
EXERCISE XCVII.

1. {x-\-V^^){x- V^^).2. {x ^ Vf){x - Vl).

3. (^+4 V~i)(x-4: V^). 4. 3(^ + V^)(x - 1/3).

6. b{x + VE){x - Vb). 6. 7(a;4- V'^)(x- V^^).

7. 2{x + 1/2 Vq){x - 1/2 |/6).

8. 3(ic + 1/3 V- lb)(x - 1/3 V- 15).

9. 5(a; + l/5|/l0)(:r- 1/5 VIO).

10. ^{x + 1/4 V- U){x - 1/4 ^"-^nj)

= 4(2: + 1/2 V'^^)(x - 1/2 \r^),

11. ^x + 2/3 \^){:x - 2/3 VI).

12. 7(a: + 1/7 V- 'db){x - 1/7 V^^^),

EXERCISE XCVIII.

1. ^[x^——-)[x^——y
2. 2{x^\/2){x+^

3. 5(.+ IlA4_^)(,
.-^-^^

•^•+
10 /

3 + 2|/ir\/ . _3-24^>/ _3 + 2|/ll\/
,
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6.

8.

10.

11.

12.

13.

14.

1.

4.

7.

10.

13.

^8>J ,

-4 + l/88\/
,
-4- V88\

6 a;

+

4b:

+

3 + i/- ^% + !
- V- 87>

i^2>

8

2{x^4.){x-\-l). 7. 661 at 125, and 108i at 140.

7(a; + l)(a:H-2/7). 9. 1l{x-\-'^ ^ Vb){x^2-- Vb).

d{x^^){x- 2/3).

4(a: - 3 + t'+'6)(a; - 3 - i^+~6).

15(a:- 3/5)(a: + 2/3).

S + ^/yN/ 6-Vf

s — bm , ^ — «^»
and

)•

16. X

a — h " b — a

a{c - If
4c •

acres. 16. a: = 4/9.

- 3, 6.

5,7.

3, -3.
— a, b.

2/5, - 4/3.

EXERCISE XCIX.

2. 5, - 9.

5. - 4, - 4.

8. a, — «.

11. - 3/2, 1.

14. - 8/7, - 1.

3. - 5, - 8,

6. 5, 5.

9. — a, — b.

12. 4/3, - 3.

15. 3/2, 4.

16. 5/3, 4.

1. x^ - lOx + 21

EXERCISE C.

0.

3. a:2 + 8a; + 7 = 0.

5. x^ 4- 9a: = 0.

7. x^ + 16a: + 64 = 0.

9. 4a:2 - 15x + 9 = 0.

11. 16a:2- 28a: +.11 = 0.

13. 18a;2+27a:+ 10 = 0.

15. 5a;2 - 33a: - 14 = 0.

4.

6.

8.

10.

12.

14.

16.

a;2 + 2a: - 24 = 0.

0:2 — 2a; = q^

a;2 - 49 = 0.

x^ - 22a: +121 = 0.

18a:2 _ 18a: + 1 = 0.

^.2

2a:2

8a: + 22 = 0.

- a: - 3 = 0.

6a: + 4 = 0.
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17. x^ - ix — ^ = 0. 18. x^ — lOo; 4- 22 = 0.

19. x^ - I82; + 85 = 0. 20. 25x^ - 35.T + 13 = 0.

IP- — 4«c
21. 242;2 - 44a; + 21 = 0. 22.

a;^-2a;
^^'

a; + 2
• ^^-

2 - a;'

EXERCISE CI.

1. 1, - 1/3. 2. 2, - 3. 3. 2, 3.

4. 4,1/4. 5. -1,2. 6. -3/4,-9/4.

7. 5, - 6yV 8. 1, - 7/32. 9. a, 1/a.

10. 3, 13/11. 11. 2, 1/2. 12. 1/2, - 3.

13. 5, - 1/6.

EXERCISE CM.

2. 5/7, 3/4. 3. - a, b. 4. - 3/4, -2.

5. 2/3, - 5/4. 6. ± 6, ± 9. 7. ± 6, ± 10.

8. ±2/3, ±3/4. 9. ±^,±^:^.
EXERCISE cm.

1. 15 and 8, or - 23/2 and - 37/2.

2. 3, 4, and 5, or — 1, 0, and 1.

3. 20 and 8, or — 14 and — 26.

4. 5, 6, and 7, or — 1, 0, and 1. 6. 4 and 2.

6. 1, 2, 3, 4; or 5, 6, 7, 8.

7. 3, 4, 5, 6, or - 4/3, - 1/3, 2/3, 5/3.

8. 20 barrels; 6 dollars a barrel. 9. $80 or $20.

10. $60. 11. 8 miles an hour. 12. 7 miles an hour.

EXERCISE CIV.

1. -2, -4. 2. 20, "6. 3. 5, -5/2.

4. 1, 4|. 5. 1, 2f 6. 3, 1/2.

7. 4, -4^. 8. 1, -3/4. 9. 2, -2/9.

^ , /o -6± VS ,77
10. 7,-1/3. 11. . 12. —a-\-I),—a — I?.
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13. —a, —3ak 14. , ab, is. a, b.
(t

16. 0,——Y. 17. 2ft— 6, db—2a. 18. «, 1/a.
a -\- b

'

19. ^', y. 20. |(-3±^). 21. ± V^H^^,

22. 1/8 (-25 ±4/33). 23. 3/5, -2/3. 24. 3, + 1/6.

EXERCISE CV.

1. 30 and 40 miles per hour. 2. 40 and 45 miles per hour.

3. 2 1 hours. 4. 2^^^ hours.

2,,, 1 2|/ft3
5. a'^^/^, 6. —i— + ~^^-

a" Vb^ Vb^

1 ' ^ {m — n)bd ~ cb-\- dx

C2 - ^>2'
10. (^ - 2?/)(7a; - 11).

EXERCISE CVI.

1. 5/2, 3/2. 2. ± 2/3 1/3, ± 4/5".
3. 6, 5f.

4. ±V^, ±l/2f6. 6. 5,6. 6. ±2/3 1^, ±1/3 t/2r

7. ± 1/2 V^, ± 1/3 |/6. 8. ± 1/6 V6, ± 1/3 V2,

9. 3/2, - 2. 10. 3/5, - 4/7.11
13. - 1, - 1/2. 14. t^m, 4.

EXERCISE evil.

1. 3 miles an hour, 3^^ hours.

2. 5 miles an hour, 5| hours.

db^ - 75ftV 31 4/5 + 85
^'

25^2
•

11

5. 8 days. 6. 16 days.
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EXERCISE CVIII.

I. a: 1= 3, y = ±b, 2. x = 7/2, y=± 5/2,

x= -3, y = ±5. x= - 7/2, y=± 5/2.

3. x = ZV%^ y—±2V5, 4. x='dm.—n,y=±{m-\-3n),

x = ~3 i^2, y=±2V5. x=n—dm,y=±{m-\-^7i).

5. 25, 9/16. 6. - 243, '^'26^

7. {a^ + l)'fa~^-^ - <?2. 8. (^x + 8Z^)(x - 2«).

EXERCISE CIX.

I. a: = 2, y = ^, 2. X = 4:, y = — e,

x= - 7/5, 2/ = 49/5. X = - 6, y = 4:.

Z, X =z 5, .^ = 3, 4, a; = 5, y = 9^

x= — 3, y = — 5. X = — 1, y = 3.

5^ X = G, y = ^f Q, X = 6, y = 3,

x— — S,y— — i). X = 3, y = 6.

7. X = a -{- 1, y — a, 8. x = 4:, y = 6.

x= — a, y = — a — 1.

9. X = — 1, y — — 1, 10. X = 4, y = 12,

X = 1/2, y = 2. x = - 36/7, ?/=-12/7.

II. (± 2)", (-14/3)"/2. 12. (3a-2)(5a; + 2^>).

EXERCISE ex.

I, X = 7, y = Q, 2. X = 8, y = 3,

X = 6, y = 7. x = 3, y = 8.

Z, X = 5, y = 2, 4. rr =r 3, 2/ = 7,

x= 2, y = 5. X = 7, y = 3.

6. X = 1, y = ^> Q, X = '2, y = S,

X = — b, y = — 1. X = — 8, y = -- 2.

1^ X — 2, y — —9, %, x= — Q, y =zl2f

X = 9, y — — 2. x= — 12, ?/ = 6.

9. a; = 7, 2/ — 4, 10. a: = 5, ?/ = 3,

a; — — 4, ?/ = — 7. ^ =: 3, 2/ = 5.

II. X = Q, «/ = 4, 12. X = 5, y = 8,

x= — 4, «/ = — 6. ic = 8, ^ = 5.
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13. X = Qi, y = 3, 14. ^ r= 9, 2/ = "^j

:c= 3, ?/=.6. :k = _ 7, 2/- -9.

15. x = h -\-a, y=a—h, 16. x=±(2a—b), y=±{a—2b),

x=b—ay y=—a—b. x=±{a—2b),y=±(2a—b).

EXERCISE CXI.

1. x= ± 4:, y = ±1, 2. X = ± 8, y =^ ^^ 5,

x=^ ± 14:, y= ^4:. x= ±3, y= ± 5,

3. x= ±Q, y= ±2. 4. x= :i^9, y=^ ±4.

6. X = ± 4, y — ± b, Q. X = ±2, y — ±4,

x = ±^V^,y=±V^. x= ±V2, y = ±3V2.

EXERCISE CXIlo

1. 3 and 5. 2, 4 and 7. 3. 5 and 9,

4. 4 and 10. 5. 3 and 4. 6. 3 and 7.

7. 2 and 3. 8. 1 and 2.

9. Cows 30 dollars apiece and sheep 3 dollars apiece.

10. 13. 11. ^^:rj2'

12. {4x - dy'^)(dx^ - 2y). is. -

14. 25. 15. 4 4/2". 16. ^
26b^ - 84ac

3Qd'
'

b

17. 4+|/2.

III.

3. 4, 8; 13, 1.

6. 9, 8,3.

EXERCISE CXIII

1. 2, 3. 2. 1, 10; 14, 2.

4. 1, 11. 5. 7.

7. 5, 6, 7. 8. 4, 2, 7.-

9. 3, 11, 1; 7, 4, 1; 2, 8, 2; 6, 1, 2; 1, 5, 3.

10. 1, 5, 2; 3, 1, 4; 2, 3, 3.

11. a; = 4 + 13i?, 2/ = 1 + '^i>-

12. a; = lli> — 2, y = ^p — 2.

13. 8, 7. 14. 64, 44.

15. liy using the 7-inch five times and the 13-inch once.
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16. By using 6 four-pound weights and 3 seven-pound

weights.

17. By using the fifty- and twenty-cent pieces respec-

tively 1, 17; 3, 12; 5, 7; or 7, 2.

18. By using the half-dollars, quarter - dollars, and

dimes respectively 1, 18, 1; 4, 10, 6; or 7, 2, 11.

19. 5 pigs, 10 sheep, and 15 calves. 20. 92, 90.

21. 19/9, 2/5; 10/9, 7/5; or 1/9, 12/5.

EXERCISE CXIV.

Z. X> 2i. 4. x>m.
5. ^>4|. 6. X > 3.9, y > 4.9.

EXERCISE CXVII.

1. 151 : 208. 2. 6 : 11. 3. 589 : 1008.

4. x^ -y^'.x — y. 6. x^ — y^ \x —y-
6. x"" -%f\x - y. 7. 144 : 125. 8 . 15 : 8.

9. 0, 4, 16, oc
) , - 32. 10. - If 11 . 18.

12. 385, 660. 13. 11. 14 . 5 : 37.

15. 5 : 6 or - :3 : 5. 16. 9 : 7, or - 8 : 3.

EXERCISE CXVill.

17. 5.

1.

ah

c
'

bb 1
2. y. 3. -.

9
4. -.

c

5. 3i.
4.a

n
6. O*. 7. /7 \«

^ m{b—a) *• 'd{c-h)'

9. 2. 10. -4. 11. -2i. 12. 6.

13. 2i. 14. 1/2. 15. -3/14.

EXERCISE CXIX.

1. 13i 2. 2|. 3. 3.6. 4. 16.

5. 1256.64. 6. 523.5 cu. ft. 7. 4752 cu. ft.

8. 2^ cu. ft. 9. 18 miles. lo.

EXERCISE CXX.

15/32.

1. 2.9805. 2 1.7686. 3. 0.3766. 4. 2.5119.

5. 1.6990. 6, 3.4771. 7. 4.6021. 8. 0.3010.
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9.

13.

6.8451. 10.

0.3923. 14.

4.4571. 11. 1.2121

0.9034.

EXERCISE CXXI.

). 12. 3.5538

1. 862.

4. 7665.

7. .2864.

2. .366.

6. 3.9645.

8. .09034.

EXERCISE CXXII.

3.

6.

9.

.0988.

.006823.

6.42285.

1. 6.42221.

4. 10.3701.

7. 8.3010.

2. 6.4024.

5. 11.1025.

8. 13.0969.

EXERCISE CXXIII.

3. 6.5383.

6. 12.0969.

9. 14.0458.

1.

4.

7.

10

13.

16.

19.

172.

.000406.

- 2340.52.

.000000636.

- 378.45.

2.3388.

23.2578. 20.

2. .677. 3.

5. .0114289. 6.

8. 118.916. 9.

11. 4.326. 12

14. 7.12. 15

17. — .006535. 18

.8834. 21. .15811.

EXERCISE CXXIV.

22

- 127.205.

- 1299.39.

645300.

1.71.

.07852.

.2475.

5. - .70214

1. 3.9073. 2. 3.4022. 3. 1.4999.

4.

7.

2.7871.

6.

5. 2.1683.

8. 5/2.

6.

9.

18346.

-1/3.

1.

6.

9.

1. 2.

m/p. 6.

2«. 10.

EXERCISE CXXV.
00 . 3. a/h.

0. 7. - 10/7.

5z*. 11. - 3/2.

EXERCISE CXXVI.

4. h/a.

8. -9/4.

12. -2.

1.

3.

7.

11.

13.

64; 78; - 75

11. 4.

3i. 8.

9th. 12.

8/9, 7/9, 6/9.

;8. 2. 52; 83; -

7. 5. 2h
0. 9. 19th.

10, 12, 14, . . . 52.

, . . . 1/9.

-14; 55; -19f.
6. 1/6.

10. 16th.
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14. 4a — bh, 3a — 4:b, 2a — 'db , . . — 5a + ib.

15. d = 4:, a = 2. 16. d= — 3, a = 21. 17. - 28f.

EXERCISE CXXVII.

1. 624. 2. 187. 3. 255.

4. 810. 5. 0. 6. 357.

7. 1/2 {n^ + 37^2). 8. n{a + ^')2 - oi(n - l)ab,

9. 80. 10. 1941. 11. 1080.

12. 1160. 13. 8 + 12 + 16 + . . . + 76. /S' = 680.

14. 12j\ + 14if + 16ff + . . . 97|f . ^ = 2200.

15. 8729. 16. 41832.

EXERCISE CXXVIII.

1. 603. 2. 3375. 3. 13. 4. 33. 5. 10 days.

6 8 clays. 7. ±5. 8. ± 2^. 9. 9 days.

10. 50500 yards. 11. $5195. 12. ± 20, ± 30, ± 40.

13. ± 8, ± 12, ± 16, ± 20. 14. =F 4, ± 2, ± 8, ± 14.

EXERCISE CXXIX.

1. 10, 50. 2. ± 12, -48, ± 192.

3. - 15, 45, - 135, 405.

4. ± .6, .12, ± .024, .0048, ± 00096

6. 1/3, 2/3, 4/3, 8/3, 16/3, 32/3.

EXERCISE CXXX.

1. 19680. 2. -9840. 3. 1281/512.

4. 191i. 5. -682. 6. 53144/2187.

7. -463/192. 8. 64/65. 9. 27/58.

10. .999. 11. 1/2. 12. 4.

13. 6, 24, 96, 384, 1536. 14. - 12, 36, - 108.

15. 24, 60, 150; or 27, 63, 147.

EXERCISE CXXXI.

1. 5/33. 2. 5/27. 3. 44/111. 4. 3/7. 5. 1/77.

6. 4/5. 7. 52/165. 8. 7/60. 9. 143/740.
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EXERCISE CXXXII.

1. $4159.09. 2. i?1153.94. 3. $897.00.

4. 5? yrs. 5. $403.90. 6. .04.

7. 14 yrs. 2 mo. 12 da. 8. 17^ yrs. 9. $6785.71

10. $6000. 11. $3246.42. 12. $437.50.

13, 451.33.

EXERCISE CXXXIII.

1. 4 and 6. 2. 1/2 and 2/7.

3. 1/10. 4. 6i 8i, m.
EXERCISE CXXXIV.

1. 1.2.1. 2. 1.3.3.1..

3. 1.4.6.4.1. 4. 1.5.10. 10.5.:1.

5. 1.6.15.20.15.6.1. 6. 1.7.21. 35.35 .21.7.1.

7. 1.8.28.56.70.56.28.8.1.

8. 1.9.36.84.126.126.84.36.9.1.

9. 1.10.45.120.210.252.210.120.45.10.1.

EXERCISE CXXXV.

1. a^^ X {:ix'y = 16«iV2, 2. 32 X (- ay^ ~ - S)a^\

3. (5«3)4(_ 7^^3)3 ^ _ 214375^%^

4. 5Vx-J--«V. 5. (2^)^(-^)-l^

6. 4^X^=1.

EXERCISE CXXXVI.

2. a^ - 8t«^a; + 28««a;2-56«5:x;3 _^ TO^?*^*- 56A-5 + 28a2a;6

— Sax^ -f a;^.

3. 1 + 9:?; + 36:?;2 _^ 34^3 _|_ 126a:* + 126^;^ + Mx^ + Ux'^

+ 9^'S 4- x\

4. :r^ - 15a;4 + 90.r3 - 270a;2 + 405a; - 243.

5. 81a;4 + 'ZUx^y + 216a;y + %Qxif + 16?/^

6. 32a;5 - SOx^ij + 80^:3^2 _ 49^2^3 _|_ i()^^4 _ ^5^

7. 1 -18a2 + I35a^ - 540rt« + 1215a^ - 1458^1^ + 729a^l
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8. l-7a;?/+21a;y-35^-y+35:z;y-21a.-y+ "ixSj^-x^if.

9. 729«« - 972a^ + 540«^ - IQW + ?|^' _ ^^ + ^^.

^°- 729 + 27 "^
3 "^ " "^

4a:2 + 8^^* + g4^,6-

12. w?~^ — 6m~^/W + 15?/?r2'M'* — 207n~^/hi^ + 15wr^;i^

14. a^2 _^ 20a9a;V2 + 150A + 500A3/2 ^ Q2bx^

15. «^ + 16«29/6 -^ 96ftii/3
-I- 25Gft5/2 4_ 256^^3.

16. x^ + 15a;i2/5«/-2/5-j-90a:V5;i/-4/5-f 270x6/5^-«/5+405:?;3/5^-8/3

+ 243?/-l

17. ttV2^-lV3_|-7a5/2^-10/3_|_21^3/2^-2_^ 35«V2^-2/3_|_35^-l/2^2/3

+ 21a-3/2^2 _|_ 7^-5/2^10/3 _^ a-y^^y.

10 45 120 210 252 210 120 45

10 1

3o'
ic^ a;^

EXERCISE CXXXVII.

1. - 35750a;^«. 2. - 112G402;9. 3 - 312a;2.

.n '^'^ ll'^O ,,, 10500

81 x^

70:ry»
^ ^^ 2a;4 + 24a;2 + 8. 9. 140 V^.

10. 2(3G5 - 'SQ3x + 63.^2 - x^). li. 252.

189^^^ _ 21a^ J_
12. g , ^g . 13. ^g.

EXERCISE CXXXVIII.

1. aV4 _ l/4«-3/4^ _ 3/32«-V4a;2 _ r/128«-"/V
- 77/2048rt-iVV.

2. a^/2 + 3/2aV2a; + 3/8«-V2a;2 _ 1/16^,-3/2^^3

-f 3/128a-V2a;4.
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3. 1 + 4.« + 10.f2 -f mx^ 4- 'dbx\

4. 1 - Ix + 28.^2 _ 84a;3 + 210a;^

6. 3V4 _ _J_ X l-x^ \—x^ '^-l :^,

2V27" 8^3'^ l^h'^ 128^3^
6. 1 + 1/3:^; + 2/9:^2 4- 14/81a;3 + 35/243^;^

1 1 . 3 o 11 3
,

44 ,

' ^-r + ^^^-T2^^ +-625^-

8. x-^ - ^x-'^ij + IQx-hf - Ux-y + 256a;-iy.

9.
«-i + 1/2^-5:^-1/2 _j_ b/8a-^x'^ + 15/16«-%-3/2

+ 195/128«-%-2

EXERCISE CXXXIX.

1.

4.

7.

10.

8648640.

720.

27720.

240.

2. 259459200. 3.

5. 181440. 6.

8. 840. 9.

11. 96. 12.

EXERCISE CXL.

5040.

90720.

480.

9^89180.

1.

4.

70.

1512000.

2. 10080.

5. 178378200.

EXERCISE CXLI.

3. 5250.

6. 455.

1.

2.

3.

4.

5.

6.

7.

a;3 _ Qx^ _|_

x^ - 4.^•3 -

6a;^ - 1L^•3

9.T^ 4- 30a;3 -

20:^^4-21a;3

3, -r.

11a; - 6 == 0.

19a;2 + 46:^ + 120 = 0.

x^ - 6x = 0.

- 48x2 — 19x + 12 = 0.

-47:^2- 120.r+ 144 = 0.

- 240^:2 - Vdx + 12 = 0.

8. - 2, |.

9. - 2± i^. 10. ^(-3± V-7).

11.

13.

^(-1±V
3, -4.

- 8). 12. 2, 2.

14. - 2, 4. 15. -7,8,
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EXERCISE CXLII.

and
,

„ . 2. ^ and—

3. • z and r—r. 4. ^ and
re — 4 :»+3 ' X — 8 X -}- 6'

6. ^
—

r-p> and -. 6. ^ 1 and —
2a; + 3 a; — 5 * 3a; — 4 2a; — 6'

EXERCISE CXLIII.

3 4
1.

a; — 3 'a; — 4 a; — 5

3 2 , 5

3.

2a; + 2 a;-3'a; + 31.4 1

2a; -1 '3 + a; 3-a;
1 4,7

4. irrz T^-z -0 +
2(a; - 1) a; - 2 ^ 2(a; - 3)

•

3 5 1
5.

4(a; + 3) 8{x + 5) 8(x + 1)'

1 7 13
6- 1o/^_J_1^ -^ ^^4-

12(a; + 1) 3(a; - 2) ^ 4(a; - 3)*

EXERCISE CXLIV.

a;- 2

3.

*•
' 3(a; + 1) 3(a;^ - a; + 1)

7 5a; - 3
^' x — l+a;2_|_ x-\-l'

5a; +6 _ 3a; - 4

a;'^ + a;+l a;^ — a;-|-l*

1 4a; -8
*• 5(a;+2) +5(a;2+ 1)*11
^-

2(a;2 + 1)
"^ H^ ~ 1)'

'
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EXERCISE CXLV.

1. 1 - bx+ nx" - 86.^3 + M^xK
2. 2 - Ix + 28a;2 - ^Ix^ + 322^;^

3. 3 - 19:^2 + 95a;4 - 475^6 + 2375^8.

4. 2 - 11:?;2 _^ 44^4 _ 1^(5^6 _|_ 704^:8.

3 , 9 , ,

27 , ,

81 .
,

243 9

2 , 4 „ , 8 , ,

16 „ ,
32 3

«• 3-"+r" +^^+ 81^+243^ •

EXERCISE CXLVI.

. ,
1 > 3 2 3 , ,

3 ,

1. l + 2^+8^'^-r6^+l28^-

2. 1 - a; 4- -a;2 - -2;3 + -x^.

3. 1+3^-^-^ + 81^'^ -^3^^.

EXERCISE CXLVII.

1 12.^3 13 4
1. ^=2^-8^^+16^ -128^-

2. X = y — y'^ -^ 1/ — y^.

3. a; = 2/+2/' + 2/+8/ + ..-

EXERCISE CXLVIII.

1111 111111
1-

1 + 8+1+5* ^- 1+3+1+3+1+3
3 3 + 1 1 i i i ^ i
^- ^1+1+1+1+3+2+21^111111
^•.1 +2+1 + 2 +1 +2 +1+2*

5 2+1 1 1 1 i i 1
^- ^3 +2 +1 +3 +2 +1 +2

i_j_l 11^ 11111
6- i + i+i+i+r+i+i+i+1+3- .
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1 4.L 1 L L 1 1 1
^- +3" + l + a +r + 3 +1+3*

L 1 L 1 L i* 2+3+4+5+6+7*
9. 2/1, 13/6, 15/7, 28/13, 323/150, 674/313.

10. 1/2, 2/5, 7/17, 9/22, 25/61, 159/388.

11. 3/1, 10/3, 13/4, 36/11, 85/26, 121/37, 1174/359.

12. 1/2, 3/7, 4/9, 19/43.

13. 1/4, 7/29, 8/33, 39/161, 47/194.

1 1 L 1 1 ^.lL .76 1
I*'-

2 + 3 + 3 + 3 + 1 + 1
"^

7 + . .
.

' 175 ' 262325'

_\
231700*

18. - +
2^ _^ 2 + 1 + 1 + 4 + 1 + 1 + 19 + . .

. ' 71
'

1__ _1_
103589' 98548*

EXERCISE CXLIX.

1 2^1 i 1 1 1 1 1 1
'• -^1+1 + 1+4+1 + 1 + 1 + 4+. ,,

^' "^1+1 + 1+1 + 6 + 1+1+1+1+6+..,
i 1 „ . 1 1 1 1

2+2
1 1

^' "^"^2+2... *• ^ + 2 + 4+2+4+..

^- ^+8+8+...
,1111_11

®- + 2 + i_^3_j_i4_2 + 8

1 1_ 1 1 1 1

+ 2 + 1 + 3 + 1 + 2 + 8 + .•

7. 1^2-1. 8. 1^6-1. 9. 1/5(2 1^39-9).



COMPLETE LIST
OF

HENRY HOLT & CO.'S
EDUCATIONAL PUBLICATIONS.

Allprices art net except those marked withan asterisk (*), which are retail.

All books bound in cloth, unless otherwise indicated.

SCIENCE. CATALOGUE
PRICE PAGE

Allen's Laboratory Physics, PupiVs Edition % 80 2

T^& s,2i.xn^. Teacher''s Edition 100 2

Arthur, Barnes, and Coulter''s Plant Dissection 120 3
Barker's Physics. A dvanced Course 3 50 4.

Beal's Grasses of North America. 2 vols 175
'^&%%Qy''S^Q\.2L.\-\Y, Advanced Course 220 6

'Y\\&%3i'SX\&, Briefer Course 108 6

Black and Carter's Natural History Lessons 50 8

Bumpus's Laboratory Manual of Invertebrate Zoology 100 8

Cairns's Quantitative Analysis i 60 176
Hackel's True Grasses (Scribner) . *i 50 8

Hall and Bergen's Physics (A'^>', 50 cts.) 125 9
Hall's First Lessons in Physics . 65 177
Hertwig's General Principles of Zoology 178
Howell's Dissection of the Dog 100 10

Jackman's Nature Study 120 n
Kerner's Natural History of Plants. With 16 colored plates, looocuts. 4 Pts. 15 00 179
Macalister's Zoology 80 12

MacDougal's Experimental Plant Physiology i 00 179
Macloskie's Elementary Botany i 30 12

McMurrich's Invertebrate Morphology 4 cx) iBd

McNab's Botany 80 12

MsLTtin's The Huma.n Body, A d7>anced Course 220 13
The same. Briefer Course i 20 13

The same, Elementary Course 75 15

The Human Body and the Effects of Narcotics i 20 14

Newcomb and Holden's Astronomy, ^(f7'««<r«^^ C<7Mrj^ 200 16

"Yh^ %Ayci^. Briefer Course i 12 16

Noyes's (W. A.) Elements of Qualitative Analysis 80 17

Packard's Zoology, ^^z/rtAzc^^/ Ct'z^r.f^ 240 18

T\\t.?,3i'caQ., Briefer Coiirse i 12 i3

The same, Ele^nentary Course 80 19
Entomology for Beginners *i 40 20
Guide to the Study of Insects *5 00 20
Embryology *2 50 20

Remsen's Chemistry, .<4£/z/rt«c^^ C^«rj^ 280 21

The same. Briefer Course 1 12 21

The same. Elementary Course 80 23
Laboratory Manual (for Elementary Course) 40 23

Remsen and Randall's Chemical Experiments (for Briefer Course) 50 181

Scudder's Butterflies ""i 50 24
Brief Guide to Commoner Butterflies *i 25 24
Life of a Butterfly *i 00 24

Sedgwick and Wilson's General Biology, New Edition 175 i8i

Underwood's Native Ferns 100 26

Williams's (,G. H.) Elements of Crystallography i 25 26



Complete List of Henry Holt &- Co.'s

CATALOGUE
PRICE PAGE

Williams's (H. S.) Geological Biolog-y $280 182

WoodhuU's First Course in Science : Book 0/ Experiments 50 183
Text-book 65 183

Zimmermann's Botanical Microtechnique— z 50 184

MATHEMATICS.
Gillet's Elementary Algebra 186

Euclidean Geometry 186

Keigwin's Class-book of Geometry 187
Newcomb's School Algebra (^^j>', 95 cts.) 95 29

Algebra for Colleges (A'^jj', $1.30) i 30 29
Elements of Geometry 120 29
Plane and Spherical Trigonometry 160 30
Trigonometry, separate i 20 30
Mathematical Tables i 10 30
Essentials of Trigonometry 1 00 30
Plane Geometry and Trigonometry i 10 30
Analytic Geometry 120 31
Differential and Integral Calculus 150 31

Phillips and Beebe's Graphic Algebra i 60 32

HISTORY AND POLITICAL SCIENCE.
Doyle's History of the United States 100 36
Duruy's Middle Ages i 60 33

Modern Times to 1798 160 189
Fleury's Ancient History told to Children.. 70 34
Freeman's General Sketch of History i 10 35
Fyffe's History of Modern Europe : Volume I. 1792-1814 *2 50 37

Volume n. 1814-1848 *2 50 37
Volume HI. 1848-1878 *2 50 37

Gallaudet's Manual of International Law 130 37
Gardiner's English History for Schools 80 38

Introduction to English History 80 39
Gardiner and MuUinger's English History for Students i 80 39
Hunt's History of Italy .. 80 36
Johnston's American Politics 80 43

H istory of the United States 1 00 40
Shorter History of the United States 95 42

Lacombe's Growth of a People 80 44
Mac Arthur's History of Scotland 80 36
Porter's Constitutional History of the United States i 20 44
Roscher's Principles of Political Economy. 2 vols *7 00 44
Sime's History of Germany 80 36
Sumner's Problems in Political Economy 1 00 44
Thompson's History of England 88 35
"Walker's Political Economy, Advanced Course 2 00 45

The same, Briefer Course i 20 46
The same Eletnentary Course i 00 46

Yonge's History of France 80 36
Landmarks of History : Ancient History 75 48

Mediaeval History 80 48
Modern History 103 48

PHILOSOPHY.
Baldwin's Psychology. Vol. I. Senses and Intellect 180 49

Vol, II. Feeling and Will 200 50
Elements of Psychology . 150 51

Descartes, Philosophy of (Torrey) 150 56
Falckenberg's History of Modern Philosophy 3 50 52
Hume, Philosophy of (Aikins) i 00 192
Hyde s Practical Ethics 80 53



Educational Publications iii

CATALOGUE
PRICK PAGB

James's Principles of Psychologry. 2 vols $480 54
VsychoXogy, Brie/er Course 160 55

Kant, Philosophy of (Watson) i 75 56
Locke, Philosophy of (Russell) 100 56
Paulsen's Introduction to Philosophy (Thilly) 350 191

Reid, Philosophy of (Sneath) i 50 56
Spinoza, Philosophy of (Fullerton) 150 192

Zeller's History of Greek Philosophy , 140 57

MISCELLANEOUS. (In English.)

Banister's Music 80 58
Champlin's Cyclopaedia of Common Things. Cloth *2 50 59

The same. Half Leather— *3 00 59
Cyclopaedia of Persons and Places. Cloth *2 50 60

The same. Half Leather *3 00 60
Catechism of Common Things 48 6i

Young Folks' Astronomy 48 61

Champlin and Bostwick's Cyclopaedia of Games and Sports *2 50 6i

Cox's Catechism of Mythology .- 75 62

Davis, King, and Collie's Governmental Maps— 30 62

"White's Classic Literature 160 62

>Vitt's Classic Mythology, 100 62

ENGLISH LANGUAGE AND LITERATURE.

Bain's Brief English Grammar (/To', 40 cts.) 40 63
Higher English Grammar 80 63
English Grammar bearing upon Composition i 10 63

Baker's Specimens of Argumentation. Modern. Boards 50 193
Baldwin's Specimens of Prose Description. Boards 50 194
Boswell's Life of Dr. Samuel Johnson (abridged) *i 50
Brewster's Specimens of Prose Narration. Boards 50 195
Bright's Anglo-Saxon Reader i 75 64
ten Brink's History of English Literature : Volume L To Wyclif *2 00 65

Volume IL (Part L) *2 00 65
Clark's Practical Rhetoric 100 66

Exercises for Drill. Paper 35 66

Briefer Practical Rhetoric 90 67
Art of Reading Aloud 60 67

Coleridge's Prose Extracts. (Beers.) Boards 30 196
Cooks Extracts from Anglo-Saxon Laws. Paper 40 68

Corson's Anglo-Saxon and Early English 160 68

De Quincey's English Mail Coach and Joan of Arc. (Hart.) 30 197
Ford's The Broken Heart. (Scollard.) Cloth 70 197

The same. Boards 40 197
Hardy's Elementary Composition Exercises 80 68

Johnson's Chief Lives of the Poets. (Arnold.) 125 68
Rasselas. (Emerson.) Cloth 70 198
The same. Boards 40 198

Lamont's Specimens of Exposition. Boards 50 199
Lounsbury's History of the English Language i 12 203
Lyly's Endymion. (Baker.) Cloth 125 199

The same. Boards 85 199
Macaulay and Carlyle: Croker's Boswell's Johnson (Strunk.) Boards. 40 2cxd

Marlowe's Edward H. (McLaughlin.) Cloth— 70 201
The same. Boards 40 201

McLaughlin's Literary Criticism 100 70
Nesbitt's Grammar-Land *i 00 70
Newman: Selections. (Gates.) Cloth 90 201

The same. Boards 50 201

Pancoast's Representative English Literature 160 204
Introduction to English Literature 125 206

Sewell's Dictation Exercises 45 77
Shaw's English Composition by Practice 75 76
Siglar's Practical English Grammar 60 77



iv Complete List of Henry Holt &- Co.'s

Smith's Synonyms Discriminated
Taine's History of English Literature.

CATALOGUE
PRICE PAGE
*|2 25 77
*i 25 77

The SAWie, Abridged. Class-room Edition. (Fiske.) i 40 77

GERMAN LANGUAGE.
BlackweU's German Prefixes and Suffixes 60 78
Bronson's Colloquial German {Key, 65 cts.) .

.

65 79
Easy German Prose. Se&aXso Andersen, Grimm, and Haujff^ 125 213

Fischer''s Practical Lessons in German 75 79
Elementary Progressive German Reader , 70 215
Wildermuth's Der Einsiedler im Walde 65 80
Hillern's Hoher als die Kirche 60 80

Harris's German Reader 100 218
Heness's Der neue Leitfaden i 20 81

Der Sprechlehrer unter seinen Schiilern i 10 81
Huss's Conversation in German i 10 81

Jagemann's German Prose Composition 90 82
Elements of German Syntax 80 83

Joynes-Otto: First Book in German. Boards 30 84
Introductory German Lessons 75 84
Introductory German Reader 95 84
Translating English into German {Key, 80 cts.) 80 84

Kaiser''s Erstes Lehrbuch 65 85
Keetels' Oral Method with German 130 85
Klemm's Lese- und Sprachbiicher. Kreis I. Boards 25 86

" II. Boards 30 86
" " (WilhVocab.) 35 86
" III. Boards 35 86

" (WithVocab.) 40 86
" IV. Boards 40 86
" V. Boards 45 86
" VI. Boards 50 86
" VII. Boards 60 86

Geschichte der deutschen Literatur (Kreis VIII.) 1 20 86
Otis's Elementary German 80 87

Introduction to Middle High German 100 88
Otto's German Conversation Grammar {Key, 60 cts.) i 30 89

Elementary Grammar of the German Language 80 90
Progressive German Reader. Half roan i 10 90

Pylodet's New Guide to German Conversation 50 91
Schrakamp and van Daell's Das deutsche Buch 65 91
Schrakamp's Erzahlungen aus der deutschen Geschichte 90 122
Spanhoofd's Das Wesentliche der deutschen Grammatik 60 92
Sprechen Sic Deutsch ? Boards 40 92
Stern's Studien und Plaudereien, First Series. New Edition 1 10 227

" " " im Vaterland. Second Series i 20 94
Teusler's Game for German Conversation. Ninety-eight Cards in a Box 80 95
Thomas's Practical German Grammar i 12 228
Wenckebach and Schrakamp's Deutsche Grammatik i 00 96
Wenckebach's Deutsches Lesebuch 80 97

Deutscher Anschauungs-Unterricht i 10 97
Die schonsten deutschen Lieder 120 106

Whitney's Compendious German Grammar {Key, 80 cts.) 1 30 98
Brief German Grammar 60 99
German Reader in Prose and Verse 150 100

Introductory German Reader 100 229
German and English Dictionary 2 00 loi

Whitney-KIemm: German by Practice 90 102

Elementary German Reader 80 102

W^illiams's Introduction to German Conversation 80 102
V^itcomb and Otto's German Conversation 50 91

GERMAN LITERATURE.
Andersen's Bilderbuch. Vocab. (Simonson.) Boards 30 rri

Die Eisjungfrau und andere Geschicliten. (Krauss.) Boards 30 iii
Ein Besuch be! Charles Dickens Boards.. 25 air
Stories, with Grimm's, from Bronson's Easy Prose. Vocab. 90 214



Educational Publications

CATALOGUE
PRICE PAGE

Auerbach's Auf Wache with Roquette's Gefrorene Kuss. (Macdonnell).
Boards $ 35 i^*

Baumbach's Frau Holde. (Fossler.) Poem. Boards 25 211

Benedix's Der Dritte. Play. (Whitney.) Boards 20 212

Dr. Wespe. P/ay. Boards 25 118

Eigensinn. Piay. Boards 25 119

Beresford-\A^ebb's German Historical Reader 90 121

Carove's Das Miirchen ohne Ende. Vocab. Boards 20 m
Chamisso's Peter Schlemihi. (Vogel.) Boards 25 214

Claar's Simsoii und Delila. Play. Paper 25 120

Cohn's ijber Bakterien. (Seidensticker.) Paper 30 '^3

Ebers's Eine Frage. Boards 35 "2
Eckstein's Preisgekront. (Wilson.) 214

EichendorflF's Aus dem Leben eines Taugenichts. Boards 30 112

Fouque's Sintram und seine Gefahrten. Paper 25 112

Undine. Vocab. (Jagemann.) 80 112
" Boards 35 112

Francke's German Literature. 215

Freytag's Karl der Grosse. (Nichols.) 75 121

Die Journalisten. Play. (Thomas.) Boards 30 118

Friedrich's Ganschen von Buchenau. Play. Paper 35 120

Goethe's Egmont. (Sieffen.) Play. Boards 4° 107

Faust. Parti. Play. (Cook.) 48 107

Hermann und Dorothea. Poem. (Thomas.). Boards 30 107

Iphigenie auf Tauris. Play. (Carter) 48 108

Gorner's Englisch. Play. Paper 25 118

Gostwick and Harrison's German Literature 2 00 103

Grimm's Die Venus von Milo; Rafael und Michel-Angelo. Boards 40 112

Grimms' Kinder- und Hausmarchen. Vocab. (Otis.) . 100 113

Boards. (Different selections and notes, «<? Vocab.). .

.

40 113

Selections, with Andersen, from Bronson's Easy Prose. Vocab. 90 214

Gutzkow's Zopf und Schwert. Play. Paper 40 118

HaufiTs Die Karawane. From Bronson's Easy Prose. Vocab 75 214

Das kalte Herz. Boards 20 113

Heine's Die Harzreise. (Burnett.) Boards 30 113

Helmholtz's Goethe's Arbeiten. (Seidensticker.) Paper 30 123

Heness's Kinder-Komodien. Plays 48 119

Heys Fabeln flir Kinder. Vocab. Boards 30 114

Heyse's Anfang und Ende. Boards 25 114
L'Arrabbiaia. (Frost.) Vocab
Die Einsamen. Boards . 20 114
Madchen von Treppi; Marion. (Brusie.) Boards 25 218

Hillebrand's German Thought (chiefly in Literature) 140 104
Hillern's Hoher als die Kirche. Vocab. (Whittlesey.) Boards 25 114

The same. (Fischer.) 60 80

Jungmann's Er sucht einen Vetter. Play. Paper 25 120

Klemm's Abriss der Geschichte der deutschen Litteratur 1 20 104

Klenze's Deutsche Gedichte 90 219
Knortz's Representative German Poems 200 105
Koenigswinter's Sie hat ihr Herz entdeckt. Play. Paper 35 120

Korner's Zriny. (Ruggles.) Play. Boards 50 108

Lessing's Emilia Galotti. (Super.) Play. Boards.. 30 220
Minna von Barnhelm. Play. (Whitney.) 48 108

Nathan der Weise. Play. (Brandt.) New Edition 60 220

Meissner's Aus meiner Welt. Vocab. (Wenckebach.) 75 115

Moser's Der Schimmel. Play. Paper 25 120

Der Bibliothekar. Play. (Lange.) Boards 40 119

Miigge's Riukan Voss. Paper 15 115
Signa die Seterin. Paper 20 115

Miiller's Elektrischen Maschinen. (Seidensticker.) Paper 30 123

Miiller's (Max) Deutsche Liebe. Boards 35 115

Nathusius's Tagebuch eines armen Frauleins. Paper 25 115

Nichols's Three German Tales : L Goethe's Die neue Melusine. H.
Zschokke's Der tote Gast. HL H. v. Kleist's Die Ver-
lobung in St. Domingo 60 221

Paul's Er muss tanzen. Play. Paper 25 120

Petersen's Princessin Use. Boards 30 115



vi Complete List of Henry Holt &- Co.'s

CATALOGUE
PRICE PAGE

Putlitz's Was sich der Wald erzahlt. Paper $ 25 116
Vergissmeinnicht. Paper 20 116
Badekuren. Play. Paper 25 119
Das Herz vergessen. Play. Paper 25 119

Regent's German and French Poems. Boards 20
Riehrs Burg Neideck. (Palmer.) 30 116

Der Fluch der Schonheit. (Kendall.) 25 116
Roquette's Der gefrorene Kuss, with Auerbach's Auf Wache. (Mac-

donnell.) Boards 35 117
Rosen's Bin Knopf. Play. Paper 25 120
Scheffers Ekkehard. (Carruth.) 125

Trompeter von Sakkihgen. Poem. (Frost.) 80 221
Schiller's Die Jungfrau von Orleans. Play. (Nichols.) Cloth 60 222

The same. Boards 40
Das Lied von der Glocke. Poem. (Otis.) Boards 35 109
Maria Stuart. Play (Joynes.) 60 223
Der Neffe als Onkel. Play. (Clement.) Boards 40 no
Wallenstein. Play. (Carruth.) 100 224
Wilhelm Tell. Play. (Sachtleben.) 48 no

Schoenfeld's German Historical Prose 80 226
Schrakamp's Sagen und Mythen 75 226

Beriihmte Deutsche .. 85 226
Simonson's German Ballad-book i 10 106
Storm's Immensee. Vocab. (Burnett.) Boards 25 117
Three German Comedies : Elz's Er ist nicht eifersuchtig. Benedix's

Der Weiberfeind, and MUUer's Im War-
tesalon erster Klasse. Boards 30 119

Tieck's Die Elfen and Das Rothkappchen. Boards 20 117
Vilmar and Richter's German Epic Tales. Boards. 35 117
Wichert's An der Majorsecke. (Harris.) 20 229
"Wilhelmi's Einer muss heirathen. Play. Boards 25 119
Zschokke's Neujahrsnacht and Der zerbrochene Krug. (Faust.) 25

FRENCH LANGUAGE.
AUiot's Contes et Nouvelles 100 124
Hubert's Colloquial French Drill. Parti 48 125

The same. Part H 65 125

Bt llows's Dictionary for the Pocket. Roan tuck 255 126

The same. Morocco tuck 310 126
French and English Dictionary. Larger-type Edition 100 126

Bevier and Logic's French Grammar 231
Borel's Grammaire Franjaise. Half roan 130 127
Bronson's Exercises in Everyday French. (A>^, 60 cts.) 60 23a
Delille's Condensed French Instruction 40 127
Eugene's Students' Grammar of the French Language i 30 128

Elementary French Lessons 60 128
Fisher's Easy French Reading 75 128

Fleury's L'Histoire de France i 10 128

Ancient History 70 128

Case's Dictionary of the French and English Languages. 8vo 2 25 129
Pocket French and English Dictionary i8mo 100 129
Translator 100 129

Gibert's French Pronouncing Grammar 70 129
Le Jeu des Auteurs. Ninety-six Cards in a Box 80 129
Joynes"s Minimum French Grammar and Reader 75 235
Joynes-Otto's First Book in French. Boards 30 131

Introductory French Lessons 100 131
Introductory French Reader 80 131

M^ras's Syntaxe Pratique de la Langue Fran9aise 100 132
L^gendes Fran^aises : No. i. Robert le Diable 20 132

No. 2. Le Bon Roi Dagobert 20 132
No. 3. Merlin TEnchanieur 30 132

Moutonnier's Les Premiers Pas dans T'fitude du Fran9ais 75 133
Pour Apprendre £l Parler Fran9ais 75 133

Otto's French Conversation-Grammar. Half roan. (AVy, 60 cts.) 130 134
Progressive French Reader •«... x 10 134



Educational Publications

CATALOGUE
PRICE PAGB

Parlez-vous Fran9ais ? Boards $ 40 134
Pylodet's Beginning French. Boards 45 13s

Beginner's French Reader. Boards 45 135
Second French Reader 90 135

Riodu's Lucie 60 135
Sadler's Translating English into French i 00 135
Stern and Meras's Etude Progressive de la Langue Fran9aise i 20 136
Whitney's Practical French Grammar. Half roan. (AVy, 80 cts.) 130 137

Practical French 90 138
Brief French Grammar 65 239
Introductory French Reader 70 140

Witcomb and Bellenger's Guide to French Conversation 50 141

FRENCH LITERATURE.

Achard's Le Clos Pommier. Paper 25 148
The same with De Maistre's Les Prisonniers du Caucase 70 148

^sop's Fables in French 50 162

Alliot's Les Auteurs Contemporains 120 142

Aubert's Littdrature Fran9aise i 00 142

Balzac's Eugenie Grandet. (Bergeron.) 80 231

Bayard et Lemoine's La Niaise de Saint-Flour. Playt Paper 20 156
B^doUiere's Histoire de la Mere Michel. Vocab 60 148

The same. Paper 30 148

Bishop's Choy-Suzanne. Boards 3° 232
Carraud's Les Gouters de la Grand'm^re. Paper 20 162

^\\.\s.^'^%\ix''^ Petites Filles Modeles 80 162

Chateaubriand's Les Aventures du dernier Abenc^rage. With extracts
Uova. Atala, Voyage en Amerique^ t.ic. (Sanderson.)
Boards 35 233

Choix de Contes Contemporains. (O'Connor.) , 100 149
The same. Paper 52 149

Clairville's Petites Misbres de la Vie Humaine. Play. Paper 20 156
Classic French Plays :

Vol. L Le Cid, Le Misanthrope, Athalie 100 145
Vol. IL Cinna, L'Avare, Esther 100 145
Vol. IIL Horace, Bourgeois Gentilhomme, Les Plaideurs i 00 145

College Series of French Plays :

Vol. L Joie fait Peur, Bataille de Dames, Maison de Penarvan. i 00 156
Vol. IL Petits Oiseaux, Mile, de la Seiglifere, Roman d'un Jeune

Homme Pauvre, Doigts de F^e 100 156

Coraeille's Cid. (Joynes.) Play. Boards 20 145
Cinna. (Joynes.) Play. Boards 20 146
Horace. (Delbos.) Play. Boards 20 146

euro's La Jeune Savante, with Souvestre's La Loterie de Francfort.
Plays. Paper 20 160

Daudet's Contes. Including La Belle Nivernaise. (Cameron.) 80 149
La Belle Nivernaise. (Cameron.) Boards 25 149

Drohojowska's Demoiselle de Saint-Cyr. With Souvestre's Testament
de Mme. Patural. Plays. Boards 20 160

De Neuville's Trois Comedies pour Jeunts Filles. I. Les Cuisinieres.

II. Le Petit Tom. III. La Malade Imaginaire. Paper.. 35 162

Erckmann-Chatrian's Le Conscrit de 1813. (Bocher.) 90 150

The same. Boards 48 150
Le Blocus. (Bocher.) 90 150

The same. Paper 48 »So
Madame Th^rese. (Bocher.) 90 150
The same. Paper 48 150

Pallet's Les Princes de 1'Art i 00 150

Thesame. Paper 52 150

Feuillet's Le Roman d'un Jeune Homme Pauvre. The Novel. (Owen.) 90 151

Thesame. Paper •• 44 15*

Le Roman d'un Jeune Homme Pauvre. The Play. Boards. 20 157

L^ Village. Play. Paper 20 157



viii Complete List of Henry Holt & Co.'s

CATALOGUE
PRICE PAGE

F^val's Chouans et Bleus. (Sankey.) $ 80 151
The same. Paper 40 151

Fleury's L'Histoire de France 110 161
Foa's Le Petit Robinson de Paris. Focai 70 151

The same. Paper 36 151
Contes Biographiques. Vocab 80 151
The same. Paper 40 151

Fortier's Histoire de la Litterature Fran9aise 100 143
Girardin's La Joie fait Peur. Play. Paper 20 157
Halevy's L'Abbe Constantin. Vocab. (Super.) Boards 40 233
Hugo's Selections. (Warren.) 70 234

Ruy Bias. Play. (Michaels.) Boards. 40 157
Hernani. Play. (Harper.) 70 234

Janon's Recueil de Poesies 80 144
Labiche and Delacour's La Cagnotte. Play. Paper 20 158

Les Petits Oiseaux. Play. Paper 20 158
Labiche et Martin's La Poudreaux Yeux. Play. Paper 20 158
Lacombe's Petite Histoire du Peuple Franfais 60 161
La Fontaine's Fables Choisies. (Delbos.) Boards 40 146
Leclerq's Trois Proverbes. Plays. Paper 20 158
Mace's Bouchee de Pain. Vocab 100 152

The same. Vocab. Paper , 52 152
Madame de M.'s La Petite Maman. With Mme. de Gaulle's Le Bracelet.

Paper 20 162
Mazeres' Le Collier de Perles. Play. Paper 20 158
de Maistre's Voyage autour de ma Chambre. Paper 28 152
Merimee's Colomba. (Cameron.) 60 237

The same. Boards 36 237
Moli^re's L'Avare. Play. (Joynes.) Boards 20 146

Le Bourgeois Gentilhomme. Play. (Delbos.) Paper 20 146
Le Misanthrope. Play. (Joynes.) Boards 20 147

Musiciens C^l^bres i 00 153
The same. Paper 52 153

Musset's Un Caprice. Play. Paper 20 158
Porchat's Trois Mois sous la Neige 70 153

The same. Paper 32 153
Pressense's Rosa. Vocab. (Pylodet.) 100 154

The same. Paper 52 154
Pylodet's Gouttes de Ros^e 50 144

Le9ons de Litterature Fran^atse Classique 130 144
Theatre Fran9ais Classique. Paper 20 144
La Litterature Fran9aise Contemporaine i 10 144
La M^re I'Oie. Boards 40 163

Racine's Athalie. Play. (Joynes.) Boards 20 147,
Esther. Play. (Joynes.) Boards 20 147
Les Plaideurs. Play. (Delbos.) 20 147

Regent's French and German Poems. Boards 20
St. Germain's Pour une :fipingle. Vocab 75 163

The same. Paper 36 163
Sand's La Petite Fadette. (BScher.) i 00 154

The same. Boards 5a 154
Marianne. Paper 30 154

Sandeau's Mademoiselle de la Seiglifere. Play. Boards 20 159
La Maison de Penarvan. Play. Boards 20 159

Scribe et Legouve. La Bataille de Dames. Play. Boards 20 159
Les Doigts de Fee. Play. Boards ... 20 159

Scribe et Melesville's Valerie. Play Paper 20 159
Segur's Les Petites Filles Modeles. Paper 24 163
Siraudin et Thiboust's Les Femmes qui Pleurent. Play. Paper 20 159
Souvestre's Un Philosophe sous les Toits 60 154

The same. Paper 28 154
La Vieille Cousine, with Les Ricochets. Plays. Paper 20 160
La Loterie de Francfort, with Curo's La Jeune Savante.
Plays. Boards 20 160

Le Testament de Mme. Patural, with Drohojowska's Demoi-
selle de Saint-Cyr. Plays. Boards 20 160

Tvine's Les Origines de la France Coiiiemporaine. (Edgren ) Boards. 50 237



Educational Publications

CATALOGUE
PRICE i'AGE

Thiers'" Expedition de Bonaparte en figypte. (Rdgren.) Boards $ 35 238
ToepfiFer's Bibliothfeque de mon Oncie. (Marcou.) 238
Vacquerie's Jean Baud ry, Piay. Paper 20 160
Verconsin's C'fiiait Gertrude. En Wagon. (.Together.) Plays. Boards. 30 23S
Verne's Michel Strogoff. (.Lewis.) 70 155
Walter's Classic French Letters 75 239

GREEK AND LATIN.

Brooks's Introduction to Attic Greek i 10 164
Goodell's The Greek in English 60 165

Greek Lessons. Part I. The Greek in English. Part IL The
Greek of Xenophon 125 166

Judson's The Latin in English 243
Peck's Gai Suetoni Tranquilli De Vila Caesarum Libri Duo i 20 167

Lati n Pronunciation ... 40 167
Preparatory Latin and Greek Texts 120 168

Latin part separate 80 168
Greek part separate 60 168

Richardson's Six Months' Preparation for Caesar 90 245
Scrivener's Greek Testament 200 168
Williams's Extracts from Various Greek Authors i cxj 169

ITALIAN AND SPANISH.

ITALIAN

Montague's Manual of Italian Grammar. Half roan 100 171
Nota's La Fiera. Paper 60 173
Ongaro's Rosa deir Alpi. Paper. 60 173
Parlate Italiano ? Boards 40 173
Pellico's Francesca da Rimini. Paper 60 173

SPANISH.

Caballero''s La Familia de Alvareda. Paper -5 173
i Habla vd. Espanol ? Boards ^^ 40 172
£ Habla V. Ingles ? Boards . .. 40 172
Lope de Vega's Obras Maestras. Burnished buckram 100 173
Manning's Practical Spanish Grammar. (Revised Ed.) 100 170
Ramsey's Text-book of Modern Spanish 180 172
Saies's Spanish Hive , , i c» 172
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