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PREFACE

In writing this book one of the chief aims of the author has

been to make the transition from arithmetic to algebra as easy

and natural as possible, and at the same time to arouse and

sustain the student's interest in the new field of work.

Accordingly the first few pages are devoted to a restatement

and slight extension of the meaning of the ordinary arithmetical

operations. Then the literal notation is introduced, and the

innovation immediately justified by showing that, among other

advantages, it enables the student to solve with ease a class of

problems which, by unaided arithmetical analysis, had previously

been very difficult for him.

In Chapter II negative numbers are introduced, but only after

it has been shown, by concrete examples, that these numbers are

essential to man's needs, and that they arise naturally from

positive numbers. Moreover, to make this extension of the

number system seem less startling, it is pointed out that an

altogether similar extension has already been made in arithmetic

by the introduction of fractions.

And so on throughout the book, wherever an essentially new
step is to be taken, its naturalness and advantages are presented

with it, and it is thereafter freely employed until it becomes a

useful tool in the student's hands.

Moreover, in order to avoid every unnecessary discouragement

to the student, the proofs of the various principles involved in

his work are deferred, not only until after he has correctly

apprehended and freely employed those principles, but also until

after he has been convinced of fjfce necessity of a proof; compare

§§ 49, 62 (note), 95, 146 (footnote), 176, etc.

Another important object of this book is to teach the student

to think clearly. "There is considerable danger of the true

educational value of arithmetic and algebra being seriously im-

paired by reason of a tendency to sacrifice clear understanding

to mere mechanical skill." * The mere manipulation of algebraic

* From the report of a Committee of the London Mathematical Society ap-

pointed to consider the subject of the teaching of elementary mathematics.

137919



VI PREFACE

symbols, however cleverly performed, is of no advantage what-

ever in after life to the vast majority of those who study algebra

in the schools ; but the training in correct reasoning and in an

appreciation of the validity of conclusions that may be drawn
from given data, which algebra wheh rightly taught affords, is

of vast importance to every one.

Accordingly, although the early part of each new topic has

been presented as concretely and simply as possible, and although

the student has been led, often without conclusive proofs, to

infer correctly the principles involved and to perform the various

operations freely, his attention has always been called to the

fact that results obtained in this way must be regarded as tenta-

tive until after the proofs have been given; and the discussion

of no topic has been finally closed without a rigorous demonstra-

tion of all the principles involved therein.

New topics have always been brought in where they were
needed, and this has made it necessary in some cases to defer

the final proofs considerably (cf. Chapters VI, XVIII, and the

Appendices) ; this arrangement has the further advantage, how-

ever, of making it possible, if the teacher prefers, to omit the

harder proofs altogether on a first reading, without breaking the

continuity of the subject.

While this book is designed to meet the most exacting entrance

examination requirements in Elementary Algebra of any college

or university in this country, and especially the excellent revised

requirements of the College Entrance Board, yet the arrangement

of the book will be found to be peculiarly suited to a briefer

course where that should be desired.

The author takes pleasure in acknowledging his indebtedness

to his colleagues in Cornell University for valuable suggestions,

especially to Professors Wait and McMahon, who have read both

the manuscript and the proof-sheets; to Miss Lelia J. Harvie,

formerly of the Virginia State Normal School, who assisted in

preparing and grading the exercises in a large part of the book

;

to Dr. William J. Milne of the State Normal College, Albany,

N.Y., for his kind permission to make free use of the exercises

in his books ; to Professor H. W. Kuhn of the Ohio State Univer-

sity, and to several colleagues in the secondary schools, whose
advice has been helpful.
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NOTICE

It is not expected that pupils will be asked to solve all of the

very large number of exercises and problems, but rather that the

teacher will make such selections as will best suit the needs of

his or her classes.

If the teacher desires a briefer course than that provided in

the book, or prefers to omit the proofs on a first reading, the

following articles, together with their attached exercises, may-

be omitted without breaking the continuity of the work

:

Articles 50-54 Pages 74-83 Omit exercises 1-14, pp. 84-

u 77-79 116-122
(I 95 143-144 Take exercises 5-15, p. 145
a 99 149-150 " " 3-6, p. 151
t( 103 163-164
(C 108-109 170-172 Take exercises on p. 173
(( 114-116 189-192
(( 127-129 216-222

Notes 1-2 285 Omit exercises 17-22, p. 28

Articles 173 294-297
(I 176 298-299
(C 183-185 314-317.

The teacher will also find it easy to abbreviate somewhat the

work of Chapters XIV and XV.
If the above omissions are made, it will be necessary to pass

over a few isolated exercises and notes such as Ex. 3, p. 184, and

note 1, p. 301, and also to change slightly the headings to some

sets of exercises such as those on p. 145.
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ELEMENTARY ALGEBRA

CHAPTER I

INTRODUCTION

1. Algebra may be regarded as, in a certain sense, a continuation

and extension of arithmetic ; it may be best, therefore, to recall

briefly the subject matter and some of the processes of arithmetic

before taking up the study of algebra.

It will presently appear (§ 6) that algebra abbreviates and

greatly simplifies the solution of certain kinds of problems. It

will also be shown that the meaning hitherto attached to num-

ber, as well as its mode of representation, is greatly extended in

algebra; and that the "equation," which plays a very minor part

in arithmetic, is of great importance in algebraic investigations.

2. Number. The first numbers that present themselves are

those which arise from counting and from measuring things;*

they are usually called whole numbers, and also integers, but may
quite appropriately be called the natural numbers. These numbers

are always definite, and are represented by one or more of the

Arabic characters 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

Out of combinations of these natural numbers have grown other

kinds of numbers, such as fractions, which have already been

studied in arithmetic, and still other kinds which will "be pre-

sented in later chapters of this book.

* Numbers themselves are not found ready made in nature ; there are, how-
ever, everywhere things, and the counting or the measuring of these gives rise to

numbers. Since much of the intercourse of life is concerned with the things

about us, and with their relations to one another, and since these relations are

expressed by means of numbers, it is for this reason alone— to say nothing of

other excellent reasons— of fundamental importance that numbers and their

combinations be carefully studied. It will be found advantageous, and will

add clearness of view, if in our reasoning about numbers we frequently go back

to the things themselves from which these numbers may have arisen.

1



2 ELEMENTARY ALGEBRA [Ch. I

3. Arithmetical processes, (i) Addition. Fundamentally, addi-

tion of natural numbers is merely counting.

E.g., to add 4 to 7, means to find that number which is four greater than

seven ; we begin therefore with 7 and count four, forward, which gives 11.

Similarly in general.

The sign of addition is an upright cross (+), which is read plus

(meaning more) ; when written between two numbers, it means

that the second is to be added to the first.

E.g., 7 + 4 is read " seven plus four," and means that 4 is to be added to 7.

The result of adding two or more numbers is called their sum;

the numbers to be added are called the summands.

It is evident that addition, in the case of natural numbers, is always a possible

arithmetical operation ; that this is not true of subtraction will be seen in (ii)

below.

Two short parallel horizontal lines (=) are used to express

that one of two numbers is equal to, i.e., is the same as, the

other ; e.g., 7 + 4 = 11. This expression is called an equation,

and is read " seven plus four equals eleven."

(ii) Subtraction. Subtraction is tlie inverse* of addition;

with natural numbers it is a counting off.

E.g., to subtract 3 from 15, we begin with 15 and count off (or backward)

3 units, thus: 14, 13, 12; and 12 is the result of the subtraction.

In other words, to subtract the first of two munbers froiYi

the second is to find a third number such that this third

number plus the first number equals the second number.

The 'sign of subtraction is a short horizontal line (— ), which is

read minus (meaning less) ; when written between two numbers,

this sign means that the second number is to be subtracted from

the first.

E.g.y 7 — 4 is read " seven minus four," and means that 4 is to be subtracted

from 7.

* An inverse operation may be defined as one whose effect is neutralized by the

corresponding direct operation. Addition and multiplication are direct opera-

tions; their inverses are subtraction and division.
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The result of subtracting one number from another is called

their difference, and also the remainder; the number which is sub-

tracted is called the subtrahend, and the one from which the

subtraction is made is called the minuend.

In the above example, 7 is the minuend, 4 the subtrahend, and 3 the remainder,

all of which is expressed by the equation 7—4 = 3, which is read " seven minus
four equals three."

From the above definition it follows that subtraction is a possible arithmetical

operation only when the minuend is at least as great as the subtrahend.

(iii) Multiplication is usually defined as the process (or

operation) of taking one of two numbers, called the multiplicand,

as many times as there are units in the other, which is called the

multiplier. In this sense multiplication is, fundamentally, the

same as addition.

E.ff., 8 multiplied by 5 means that 8 is to be used 5 times as a summand; i.e.,

the product of 8 multiplied by 5 is 8+8 + 8 + 8+ 8.

The sign of multiplication is an oblique cross ( x ), which is read

multiplied by ; when written between two numbers, it means that

the first is to be multiplied by the second. The result of multi-

plying one number by another is called their product.

Note. The definition of multiplication just given applies only when the mul-
tiplier is an integer. Under it, multiplication by a fraction or by a mixed number
has, strictly speaking, no meaning. For example, let it be required to multiply

8by 5|; to do this under the definition just given, it is necessary to take 8 as

many times as there are units in 5|, but manifestly, while 8 may be taken addi-

tively five times, it can not be taken tioo thirds of a time* and the proposed
problem, therefore, does not admit of solution under this definition.

A far more useful definition of multiplication than that given

above, and one that will serve all future needs, may be stated thus

:

The product of two numhers is the result obtained hy
performing upon the first of these numhers {the multi-
plicand) tl%e same operation that must he perfonned upon
the unit to obtain the second {th^, inultiplier)

.

This definition not only includes the former one, but it also

gives an intelligible meaning to multiplication when the multiplier

is a fraction or a mixed number.

* This is as meaningless as " to fire a gun two-thirds of a time."
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E.g., consider again the question of multiplying 8 by 5f ; the multiplier, 5|, is

obtained from the unit by taking the unit five times, and ^ of the unit twice, as

summands

;

i.e., 5| = l + l + l + l + l + i+ i
and, therefore, by this new definition of multiplication,

8x51 = 8 + 8 + 8 + 8 + 8+ 1 + !

= 40+ J# = 45i

(iv) Division. In algebra as in arithmetic, to divide one of

two given numbers by another is to find a number which, being

multiplied by the second of the given numbers, will produce the

first ; the symbol of division is -h, and is read divided by.

E.g., 15 -^ 5 = 3, because 3 X 5 = 15 ; the first of these equations is read " fifteen

divided by five equals three."

The operation of dividing one number by another is called

division, the first of the given numbers is called the dividend, the

second is the divisor, and the result, i.e., the number sought, is the

quotient.

E.g., in 15 ^ 6 = 3 the dividend, divisor, and quotient are 15, 5, and 3, respec-

tively.

Note 1. Observe that, under the above definition, the test of the correctness

of a quotient is
quotient x divisor = dividend.

Division is therefore the inverse of multiplication (cf. footnote, p. 2).

NoTJB 2. Observe also that while the sum, the difference, and also the product

of any two integers is an integer, their quotient may or may not be an integer

;

for instance, 6 -f- 3 is an integer, but 7-^3 and 5 -7-9 are called fractions [cf.

§ 7 (V)].

4. Symbols of continuation and deduction. The symbol of con-

tinuation is •••; it is read "and so on," or "and so on to," and

is used to denote that a given succession of numbers is to con-

tinue, either without end or up to a given number.

E.g., 1, 2, 3, ••• is read "one, two, three, and so on" ; while 1, 2, 3, ••• 27 is

read "one, two, three, and so on to twenty-seven."

The symbols of deduction are ••• and .-. , and are read " since " and
" therefore," respectively.

E.g., .•3x5 = 15, .-. 15 -4- 5 = 3; this expression is read " since three multi-

plied by five equals fifteen, therefore fifteen divided by five equals three."

The symbols explained in this section are, like all other signs

and symbols, merely, abbreviations for longer, expressions.
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EXERCISES

Read the following expressions, and give the names of their parts

:

1. 3 + 7 = 10. 3. 15 - 3 = 5.

2. 13 - 8 = 5. 4. 4 X 6 = 24.

5. State the definitions of the operations indicated in exercises 1-4.

Show that your definition of multiplication applies also to cases in which

the multiplier is a fraction or a mixed number.

6. Which of the operations in exercises 1-4 are direct, and what are

their respective inverse operations? Explain your answer.

7. How is the correctness of an inverse operation to be tested? Illus-

trate your answer by testing the correctness of 15 -^ 3 = 5.

Read the following expressions :

8. •.•5x3= 15, .•. 15 - 3 = 5. 9. •.• 5 + 8 = 13, .•. 13 - 8 = 5.

10. The numbers 1, 3, 5, ••• are called odd numbers. The sum of the

numbers 1, 3, 5, ••• 13 is 49.

5. Literal notation. The Arabic characters of arithmetic, viz.,

0, 1, 2, 8, '" 9, and also the signs +, — , x, -^, and =, are all

retained in algebra, and each with its precise arithmetical mean-

ing ; but algebra also frequently employs some of the letters of the

alphabet to stand for, or represent, numbers.*

E.g., in a certain problem it may be agreed (possibly merely for brevity) to

let n stand for a particular number, say 786 ; in that case — (i.e., one half of n)

would, in the same problem, stand for 393, while 3 n {i.e.,n + n + n) would stand

for 2358, etc. In another problem, however, n may be employed to represent any
other desired number.

One advantage of representing numbers by letters is explained in § 6 below;

others will appear later. For the present it is perhaps sufficient to say that, just

as in arithmetic we speak of 4 books, 7 bicycles, 85 pounds, 3 men, etc., so in

algebra we shall frequently, in addition to these expressions, use such expressions

as a books, n bicycles, x pounds, y men, etc.

When it is necessary to distinguish between numbers which

are represented by the Arabic characters 0, 1, 2, •••, and numbers

which are represented by letters, the latter will be called literal

numbers.

* This way of representing numbers is, however, not entirely new to the stu-

dent because, even in arithmetic, in problems concerning " interest," the princi-

pal, amount, rate, interest, and time are often represented by the letters p, a, r,

i, and t, respectively.
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The properties of numbers are, of course, precisely the same
whether these numbers are represented by the Arabic characters,

by letters, by words, or in any other way.

E.g., just as 3 books + 8 books = 11 books, so m books + ?i books = (m+n)
books ; and if k stands for 20, then Sk-i 2yfc==25.

4
Again, just as 7 — 3 means that 3 units are to be subtracted from 7 units, so

a~b means that b units are to be subtracted from a units.

EXERCISES

1. If 5 represents 16, what number is represented by 2 s? by | of s,

i.e., by i? by2s + -?*
4 4

2. If a, b, and c represent, respectively, 2, 5, and 8, what is the value

of 3 a- 6? of a + & + c? of ^^^^?

3. If a: represents the number of panes of glass in a window, how
may the number of panes of glass in 3 such windows be repi-esented ?

— _ 4. If a suit of clothes costs 8 times as much as a hat, and if d stands

for the number of dollars which the hat costs, what will represent the

cost of the suit? How may the combined cost of the suit and hat be

represented ?

5. Since ^ of any number is the same as /g of that number, and i of

a number is the same as y\ of that number, what is the remainder when

^ of n is subtracted from | of n, where n represents any number what-

ever? i.e., ^ - ^ = ?
' 3 4

6. Just as 37 may be represented by 10 x 3 + 7, so 10 ^ + w represents

a number whose tens' digit is t and whose units' digit is u. If the units',

tens', and hundreds' digits of a number are represented by x, y, and z,

respectively, how may the number itself be represented?

7. If X represents the number of years in a man's present age, how
may his age 5 years ago be represented ? What will represent his age

12 years hence?

8. If X represents any integer, how may the next higher integer be

represented? The next above that? If n represents any integer, does

2 n represent an even or an odd number? How may the next higher even

number be represented? Show that 2w — 3, 2n— 1, 2n + l, 2n + 3, •••,

represent consecutive odd numbers.

* In these exercises, and throughout the first five chapters of this book, a

knowledge of the ordinary arithmetical processes is assumed ; the fundamental

principles involved will be studied in Chapter VI.
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9. A thermometer reads 80*^ at noon and falls y° during the next

6 hours. What is its reading at 6 o'clock?

10. What number multiplied by 8 gives the product 40? If 8 a: = 40,

what is the value of a:? li 3 y + b y — 2 y = bi, what is the value of ?/

?

6. One advantage of literal notation. The use of letters to repre-

sent numbers greatly simplifies the solution of certain kinds of

arithmetical problems. This is illustrated in the examples that

follow.

^ Prob. 1. A gentleman paid $45 for a suit of clothes and a hat. If

the clothes cost 8 times as much as the hat, what was the cost of each?

Arithmetical Solution

The hat cost "some number of dollars," and since the clothes cost

8 times as much as the hat, therefore the clothes cost 8 times "that num-
ber of dollars," and therefore the two together cost 9 times "that number
of dollars"; hence 9 times "that number of dollars" is $45, therefore

"that number of dollars" is $5, and 8 times "that number of dollars"

is $40; i.e., the hat cost $5, and the clothes cost $40.

This solution may be put into the following more systematic

form, still retaining its arithmetical character.

Some number of dollars = the cost of the hat

;

then 8 times that number of dollars = the cost of the clothes,

9 times that number of dollars = the cost of both,

i.e., 9 times that number of dollars = $45,

that number of dollars = $5, the cost of the hat,

and 8 times that number of dollars = $40, the cost of the clothes.

Algebraic Solution

The solution just given becomes very much simplified by letting

a single letter, say x, stand for "some number" and "that num-

ber " which occur so often above ; thus

:

Let X = the number of dollars* the hat cost.

Then 8 x = the number of dollars the clothes cost,

and X + 8 a: = the number of dollars both cost,

i.e.f 9 a; = 45,

x= 5, and 8 a: = 40;

i.e., the hat cost $5, and the clothes cost $40.

* The letter x here stands for a number, not for the cost of the hat ; the equa-

tions are numerical.
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Prob. 2. Three men, A, B, and C, form a business partnership with a

capital of $30,000 ; if A furnishes twice as much of this capital as B, and

C furnishes as much as A and B together, how much does each furnish?

Solution

Let X = the number of dollars furnished by B.

Then 2 x = the number of dollars furnished by A,

and 3 X = the number of dollars furnished by C

;

and the algebraic statement of the conditions of the problem becomes

a: + 2x + 3a;= 30,000,

i.e., Qx = 30,000,

whence x = 5000, 2x = 10,000, and Sx = 15,000
;

i.e., A furnishes |10,000, B |5000, and C |15,000 of the capital.

Prob. 3. Of three numbers the second is 5 times, and the third 2

times, the first, and the sum of these numbers exceeds the third number
by 42 ; what are the numbers ?

Solution

Let X = the first of the three numbers.

Then 5 x = the second of the three numbers,

and 2 X = the third of the three numbers

;

and the algebraic statement of the conditions of the problem becomes

x + 5x-h2x = 2x + i^2,

i.e., 8 a: = 2 a: + 42,

hence 6^=42,
TSubtract 2 x from

[_each member
therefore x=7, 5 a: = 35, and 2 x = 14

;

and the required numbers are, respectively, 7, 35, and 14.

Note. Observe that the plan of each of the foregoing solutions is to let some
letter, say x, stand for one of the unknown jiumbers (preferably the smallest),

then to express the other unknown numbers in terms of x, and finally to trans-

late into algebraic language the conditions which are verbally stated in the prob-

lem ; this last statement is an equation, and from it the required numbers are

easily found.

Observe also that while the above problems can be solved by arithmetical

analysis, the algebraic solution is much simpler.
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PROBLEMS

4. In a room containing 45 pupils there are twice as many boys as

girls. How many boys are there in the room ?

5. If a horse and saddle together cost $ 90, and the horse cost 5 times

as much as the saddle, how nmch did each cost ?

6. In a business enterprise, the combined capital of A, B, and C is

121,000. A's capital is twice B's, and B's is twice C's. What is the

capital of each ?

7. The difference between two numbers is 8, and their sum is 30.

What are the numbers?

8. Divide 98 into three parts such that the second is twice the first

and the third is twice the second.

9. A number, plus twice itself, plus 4 times itself, is equal to 56.

What is the number?

10. The sum of three numbers is 160 ; two of these numbers are equal,

and the third is twice either of the others. Find the numbers.

11. In a fishing party consisting of 4 boys, 2 of the boys caught the

same number of fish, another caught 2 more than this number, and

another 1 less ; if the total number of fish caught was 29, how many did

each catch?

12. If a locomotive weighs 3 times as much as a car, and the difference

between their weights is 50 tons, what does the locomotive weigh ?

13. Of two numbers, twice the first is seven times the second, and

their difference is 75 ; find the numbers.

Suggestion. Let 1 x= the first number, then 2x = the second.

14. An estate of $ 19,600 was so divided between two heirs that 5 times

what one received was equal to 9 times what the other received; what

was the share of each ?

15. A horse, harness, and carriage together cost |340; if the horse

cost 3 times as much as the harness, and the carriage cost \\ times as

much as the horse and harness together, what was the cost of each ?

16. A, B, C, and D together buy % 16,000 worth of railroad stock. B
buys three times as much as A, C twice as much as A and B together,

and D one third as much as A, B, and C together. How much does each
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17. What number added to I of itself equals 20 ?

Solution

Let X = the number.

Then x + ^ x = 20,

i.e., |x = 20,

.-. '

cc = 20-^1 = 15.

18. If I of a number is added to the number, the sum is 120; what is

the nural)er?

19. If I of a number is added to twice the number, the sum is 35;

what is the number?

20. 'I'he difference between 4 times a certain number and | of that

number is 30; what is the number ?

21. Three times A's age is four times B's, and the sum of their ages

exceeds | of A's age by 24 years; what is the difference between their

ages?

22. A merchant owes a certain sum of money to A, | as much to

B, and twice as much to C as he owes A; various persons owe him
12 times as much as he owes B, and if all these debts were paid, the mer-

chant would have $4000. What is the total amount that the merchant

owes ?

23. A boy found that he had the same number of 5, 10, and 25 cent

pieces, and that the total amount of his money was $3.20; how many
coins of each kind had h3?

24. Of a family of seven children each child is 2 years older than the

next younger; if the sum of their ages is 81 years, how old is the

youngest child?

25. In a number consisting of two digits, the digit in units' place is

3 times that in tens' place, and if these digits be interchanged, the num-

ber will be increased by 36 ; w^hat is tlie number (cf. Ex. 6, § 5) ?

26. The president of a stock company owns 3 times as many shares as

the vice president, and the secretary owns 6 shares less than the vice presi-

dent ; if these three men together own 539 shares, how many shares does

each own?

27. Three newsboys sold a total of 191 papers in an afternoon; if the

second sold 5 more than twice as many as the first, and the third sold

three times as many as the second, how many did each sell?

28. A tree, whose height was 150 feet, was broken off by the wind,

and it is found that 3 times the length of the part left st-anding is the

same as 7 times that of the part broken off ; how long is each part ?
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29. In a yachting party consisting of 36 persons, the number of chil-

dren is 3 times the number of men, and the number of women is one half

that of the men and children combined; how many women are there in

this party ?

30. If two boys together solved 65 problems, and if 8 times the num-

ber solved by the first boy equals 5 times the number solved by the second

boy, how many did each boy solve ?

31. An estate valued at $ 24,780 is to be divided among a family con-

sisting of the mother, 2 sons, and 3 daughters ; if the daughters are to

receive equal shares, each son twice as much as a daughter, and the

mother twice as much as all the children together, what will be the share

of each?

32. A library contains 17 times as many scientific books, and 6 times

as many historical books, as books of fiction; if the books of fiction

number 220 less than the scientific and historical books together, how

many books are there in this library ?

33. A, B, and C enter into a business partnership in which A furnishes

6 times as much capital as C, and B furnishes | as much as A and C
together; if the total capital is |13,500, how much is furnished by each

partner ?

7. Operations with literal numbers. As is pointed out in § 5, the

reasoning employed with numbers represented by letters is pre-

cisely the same as if those numbers were represented by the Arabic

characters. It may be worth while, however, to examine the fun-

damental operations a little more closely.

(i) AdditioTi. Just as 3 + 7 means that 7 is to be added to 3,

so too, if a and h stand for any two numbers whatever, a + h

means that h is to be added to a.

Similarly, a-\-x-{-p means that x is to be added to a, and that

p is then to be added to that sum ; and so in general.

(ii) Subtraction. Just as 15 — 9 means that 9 is to be sub-

tracted from 15, %o x — y means that y is to be subtracted from a;,

whatever the numbers represented by x and y.

Note. Observe that, while addition is always possible, the indicated subtrac-

tion a; — ?/ is arithmetically possible only when the number represented by x is at

least as great as that represented by ?/.

This restriction upon the relative values of the two numbers in such an expres-

sion as x — ?/ is often very inconvenient; in Chapter II the meaning of number is

so extended as to make this subtraction possible even when y is greater than x.
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(iii) Multiplication. Just as 6 x 5 means that 6 is to be

multiplied by 5, so 6x3 means that h is to be multiplied by 3.

Again, a x y X n means that a is to be multiplied by y, and that

their product is then to be multiplied by n ; and so in other cases.

Instead of the oblique cross ( x ), a center point (•) placed be-

tween two numbers (a little above the line to distinguish it from

a decimal point) is frequently used as a sign of multiplication.

E.g., instead of 4x6, 3xn, axk, etc., it is usual to write 4 • 6, 3 • n, a • A;, etc.

And even the center point is usually omitted in cases where its

omission causes no misunderstanding.

E.g., 3 Xn = 3-n = 3n, and aX k = a - k= ak; but, while 4 X 6 = 4 • 6, it can

not be written "46," for in that case it would be confused with 40 + 6.

(iv) Powers, exponents, etc. Products in which all the fac-

tors are identical with one another are usually written in an abbre-

viated form. This form consists of the repeated factor written

only once and having attached to it (at the right and slightly

above) the number which tells how many times the given factor

is to be repeated.

E.g., 2 • 2 • 2 is written 2^, a ' a ' a • a ' a is written a^, and the product of n
factors each of which is a is written x^.

The expression a?" is called the nth power of x, and is usually

read " x nth. " ; the number n is called the exponent of the power,

and X is called the base. In particular, 2^ is the third power of

2, the exponent is 3, and the base is 2.

A power is called odd or even according as its exponent is odd

or even.

Similarly, a product in which the factor 2 is repeated 3 times,

and the factor 5 is repeated 2 times, is written 2''
• 5^. And, more

generally, the expression a^'b^'c^ is the product of a repeated m
times, b repeated n times, and c repeated p times; it is read "the

mth power of a, multiplied by the nth. power of b, multiplied by
the pth power of c."

Note. Under the definition of a power given above, it is evident that a^ has
the same meaning as a, and the exponent 1, therefore, need not be written.

The second and third powers of numbers are, for geometric reasons, often called

by the special names of square and cube, respectively; thus, a!^ is known as the

"second power of a," the "square of a," and also as "a squared"; and x^ is

known as the " third power of x," the " cube of x," and also as " x cubed." Cor-

responding to the other powers there are no such special names.
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(v) Division. Just as 40 -h 5 indicates that 40 is to be divided

hj 5, so a-v-b indicates that a is to be divided by b, whatever the

numbers represented by a and b ; that is, (a-i-b) •b = a for all

values of a and b [cf. § 3 (iv), note 1].

Other forms of writing a-i-b are : -, a:b, and a/b.
b

In algebra, as in arithmetic, if the divisor is not exactly

contained in the dividend, the indicated division is called a

fraction.*

^'9', I, — . -» and ^-±^ are fractions.
3 5 n y

It is to be remarked, in passing, that literal numbers may be

fractional in form and yet have integral values, and vice versa.

E.g., — , though fractional in form, has the integral value 3 if a = 12 and 6 = 4;
b

and m + 3 7i, though integral in form, has the value j| if m = j and n = j.

8. The order in which arithmetical operations are to be performed.

Signs of aggregation. When there is no express statement to the

contrary, a succession of multiplications and divisions is under-

stood to mean that these operations are to be performed in the

order in which they are written from left to right. The same

rule applies in the case of a succession of additions and sub-

tractions.

E.g., 9 • 8 -^ 6 • 2 means that 9 is to he multiplied hy 8, that product to be divided

by 6, and the resulting quotient to be multiplied by 2; it does not moan that the

product of 9 by 8 is to be divided by the product of 6 by 2 : the result is 24, and

note.

So, too, 7 + 9— 6 + 3 means that 9 is to be added to 7, then 6 subtracted from

that sum, and finally 3 added to this remainder ; it does not mean that 6 + 3 is to

be subtracted from 7 + 9 : the result is 13, and not 7.

Again, by a succession of the operations of addition; subtraction,

multiplication, and division, when the contrary is not expressly

stated, it is customary to mean that all the operations of multi-

plication and division are to be performed in the order in which

* A fraction is usually defined as " one or more of the equal parts into w^hich a

unit has been divided," but this definition is only a special case of the one given

above ; it is meaningless when the denominator is not an integer.
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they are written from left to right, before any of those of addi-

tion and subtraction are performed ; the resulting expression will

then contain only the operations of addition and subtraction, and

these operations are then to be performed in the order in which

they occur.

E.g., the expression 2+ 6-5— 8-^2 means 2 + 30— 4, which is 28.

Should the writer of such an expression desire that a different

meaning be given to the expression (e.g., that one or more of the

additions and subtractions be performed before some of the mul-

tiplications and divisions are performed), he would indicate

his meaning by employing one or more of the so-called signs of

aggregation; among these are the parenthesis ( ), the brace
| \, the

bracket [ ], and the vinculum '. An expression, included in

the parenthesis, brace, or bracket, or under the vinculum, is to be

regarded as a whole, and is to be treated as though it were repre-

sented by a single symbol.

E.f/., (2+ 6) .5-4-3-(7+ 8-^2)=8-5-=-3— 11, i.e., 2^. So, too, (4+ 6)-^2 = 5.

while without the parenthesis its value would be 7.

It may even be useful sometimes to employ one sign of aggre-

gation within another.

E.g., 72 ^ {252- (24 • 4+ 6)}.

In such a case the innermost sign of aggregation is, of course, to be attended to

first ; the value of the above expression is 6.

EXERCISES

Find the value of each of the following expressions

:

1. 38-6 + 14-12-2. 2. 38 - (6 + 14) -(12- 2).

3. 9. 6 -4(36 -3 -2) +54 -(17 -12 -5).

4. 12 . 3 - (9 + 3 - G) . 18 - 6^=^.

5. {4 . 9 - 16 ^ 2 - (12 - 8) ^ (4 + 6 -^ 3)} - (6 - 2).

6. Give a definition of a fraction that will include cases in which the

denominator is such a number as 3|.

7. May an expression be fractional in /orm, but integral in value?

Give three examples of this kind.
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Read each of the following expressions, then tell in what order the

indicated operations are to be performed, and finally find the numerical

values of these expressions when a = 8, 6 = 3, c = 12, and d = \:

8.

12.

c

A
ba ' d hd

ah

cd
9. 4a +36-C-'

10. (a + 6)2- (a- by -4 aft.

11. {ahc + h) -- (4 cc/ + d) -i-[^ -(a + 4rf)],

cd-.

C2-

rUd'

h'^c
13.. a(;c- 6) + 6(a

o6c

d (^l)'

14. {6 a - 2 c - 2 (/-'} + J^iii - (2 ft • ^/).

4 c/3

9. Advantages of using letters to represent numbers. Attention

has already been called (§ 6) to one of the many advantages which

result from the use of letters to represent numbers ; two further

advantages will now be considered.

(i) Suppose it to have been noticed, in a few particular cases,

that half the sum of two numbers plus half their difference equals

the greater of these numbers, and suppose that it is required to

ascertain whether this is true for a certain few pairs of numbers

only, or whether it is true for all possible pairs of numbers.

For any particular pair of numbers that may be under con-

sideration, 15 and 7 for example, its correctness is easily verified,

thus AK\7 ip; 7

but after having made this verification one is still in doubt about

every untried pair of numbers.

If, on the other hand, letters are employed, it may be proved,

once for all, that the above property belongs to every pair of

numbers, and no further verifications are needed. Thus, let a and

h represent any two numbers whatever, and let a be greater than

6; then x

a4-5 a — h _a h i^_^_^,^i^_^_^i^_^
2 2 "2 2 2 2~2 2 2 2~2 2~ '

which proves that half the sum of any two numbers ivJiatever, plus

half their difference, equals the greater of these numbers. The

literal notation has here served to prove a general law.
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(ii) Another advantage of the literal notation may be illustrated

by comparing the solutions of the two following problems.

Prdb. 1. If A can do a piece of work in 15 days, and B can do it in

10 days, in how many days can both working together do it?

Prob. 2. If A can do a piece of work in a days, and B can do it in b

days, in how many days can both working together do it?

Solution of Problem 1

Since A can do all of the work in 15 days, therefore he can do j\ of it

in one day ; similarly, B can do j\ of it in one day, and both together can

therefore do ^^ + Jj, that is, I, of it in one day ; hence it will take both

together 1 -f- ^, i.e., 6, days to do the work.

Solution of Problem 2

Since A can do the work in a days, therefore he can do - of it in

1 '

"

one day ; similarly, B can do - of the work in one day, and both

together can do - + 7, i.e., —;— , of it in one day; hence it will
a h ah

take both together 1 -^
^

, that is,
^

. days to do the work.
ab a + b

The reasoning in the two solutions just given is exactly the

same ; it is to be observed, however, that while in the course of

the first solution the numbers given in that problem (viz., 15 and

10) have, by combining, completely lost their identity before the

result is reached, yet the numbers given in the second problem

(viz., a and b) preserve their identity to the end.

Because of this fact the answer to the. second problem may be

used as 2i, formula by means of which the answer to any other like

problem may be immediately written down. Thus, if a = 15 and

h = 10, then the second problem becomes exactly like the first,

and its answer, viz., , becomes -

—

'-

, which is 6 as before.
a + h 15 + 10

In other words, the solution of the second problem includes the

solution of every other similar problem ;
numerical problems

like the first are merely particular cases of the second.
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10. Recapitulation. Two things mentioned in this chapter

must be carefully kept in mind when reading the following pages;

they are : (1) the somewhat broader, and at the same time more

precise, definitions * of the fundamental arithmetical operations

;

and (2) the advantages connected with the use of letters to repre-

sent numbers.

While the Arabic characters, 1, 2, 3, • • •, always represent the

same numbers, wherever they occur, a letter may be chosen to

represent one number in one problem, and a different number in

another problem ; a letter may also represent a number to which

no specific value is assigned (cf. § 9), as well as a number whose

value is at first unknown and is to be found in the course of the

solution of the problem (cf. § 6).

EXERCISES

1. Express the following indicated products by means of the expo-

nent notation : 3 • .3 • 3 • 3 • 3 ; a - a a • a; x • a: • a: ••• to 12 factors

;

5 • 5 • 5 ... to n factors; ax > ax - ax '•• to k factors.

2. Define the expressions: power, base, and exponent, and illustrate

your meaning by means of exercise 1.

.

3. Express the following numbers as products of powers of prime

numbers: 48, 200, 972, and 1183.

When a = f and 6 = |, verify the following statements

:

4. a(a + 26) =a2+2a&. 6. (a - ft)3 = a^ - 3 a2^, + 3 ^^2 _ 53.

5. (a + 6)2 = a2 4- 2 a& + 6=. 7. (a + 6) (a - &) = a^ - h\

Find the numerical value of each of the following expressions when
a = 3, & = I, c = i, a: = 4, y = 2, m = 5, and n = 2 :

o a^ft" — c^x e.a-^-x^c-^mc'^
o. • ». 1

xy'^ — ax** { y x +n n"

* These definitions pave the way for the proofs of some fundamental laws to be

given later.



CHAPTER II

POSITIVE AND NEGATIVE NUMBERS

11. General remarks. As already pointed out, a.n important use

of numbers is to enable man to express, in a brief and simple way,

the relations of the things which are everywhere round about

him. At first he used only the natural numbers, i.e., the integers,

to express these relations, but as his need and desire for precision

and conciseness increased, he found it necessary to extend his

number system so as to include in it, not only fractions, but also

other kinds of numbers, some of which will presently be studied.

E.g., when he wished to express even so simple a relation as that between the

lengths of two lines, he found that integers alone are not sufficient unless the

lengths of these lines happen to be such that the longer can be divided into

parts each of which will be just as long as the shorter; thus, if the given lines

are 12 ft. and 5 ft. long, respectively, then the relation between their lengths

can not be exactly expressed by an integer, because 12 -^ 5 is not an integer.

In order to meet this and other like needs, man extended his number system

so as to make the arithmetical operation of division always possible, i.e., he

included common fractions in his number system (§ 3, note 2). Before fractions

were introduced, division was possible only in the comparatively few cases in

which the dividend happened to be a multiple of the divisor.

12. Need of negative numbers. In § 11 it is shown that a

number system consisting of integers only is not sufficient for

man's needs, but that if the system be so enlarged as to make
division always possible, i.e., so as to include fractions also, this

enlarged system will serve him far better— indeed this enlarged

system serves all the purposes of ordinary arithmetic.

In the study of algebra, however, there are many considera-

tions which make it very advantageous to enlarge the number
system still further.

To illustrate : on every hand there are found things which stand in a relation

of opposition to each other— e.gf., assets and liabilities in business, latitude north

and latitude south of the equator, temperature above zero and temperature

below zero, etc. — and if the relations between these opposite things are to be

expressed in the simplest possible way, then there must be numbers which stand

in this same relation of opposition to each other.

18
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How to enlarge the number system— which now consists of

integers and fractions (§ 11)— so that it will meet the require-

ments just now pointed out, becomes evident if it be observed

that all such cases of opposition as those mentioned on- the pre-

ceding page, may be arrived at by subtracting a number from one

that is less than itself.

E.g., if a business man whose assets are ^5000 loses ^6000, i.e., if $6000 be

subtracted from his $5000 of assets, it leaves him not only without any assets,

but with $ 1000 of liabilities, i.e., he has $ 1000 less than nothing; if from latitude

40° north 50° be subtracted (counted off), the result is latitude 10° south; if the

thermometer records 5° above zero and the temperature falls 8°, it will then

record 3° below zero ; etc.

Hence, if the number system be so enlarged as to make subtrac-

tion always possible, even when the subtrahend is greater than the

minuend, this enlarged system of numbers will provide for all

such cases of opposition as those above mentioned. The nature

of these new numbers will be more closely examined in the next

article.

Note. The considerations mentioned in §§ 11 and 12 demand, respectively,

that the natural number system be extended so as to make division and subtrac-'

tion always possible, i.e., so as to give a meaning to the expressions a -r- 6 and
a—b, whatever the relative values of a and 6.

There are, however, other important considerations which lead to the same
conclusions; e.f/., algebra makes extensive use of letters to represent numbers,
and it often happens, as in the problems of § 0, that the number represented by a

given letter may be unknown until after the problem is solved ; if then the num-
ber system consists of integers only, and if a and b represent two numbers whose
values are not yet known, then, should the combination a -r- & present itself in a

problem, one would not know whether or not it could be treated as a number
(because it would be a number of the given system only if a happened to be a

multiple of 6), and further progress with the problem must necessarily cease. A
much wiser plan is, of course, to extend the number system so as to make a -4- 6

represent a number, whatever the relative values of a and 6 {i.e., to include frac-

tions in the number system) ; then the solution may be continued and the proper

interpretation given at the end. A similar argument applies to such an expression

as a — 6.

13. Negative numbers introduced. The natural numbers arranged

in a series increasing by one from left to right, and therefore

decreasing by one from right to left, are

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...;
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addition is performed by counting toward the right (cf. § 3), and

subtraction by counting toward the left, in this series. More-

over, addition is always possible because this series extends with-

out end toward the right, and subtraction is arithmetically possible

only when the subtrahend is not greater than the minuend because

this series is limited at the left.

What has just been said shows that to make subtraction with

natural numbers always possible, it is only necessary to add to

the present number system such numbers as will continue the

above series indefinitely toward the left.

Let the result of subtracting 1 from 1 be designated by ; of

subtracting 1 from 0, by ~1 ; of subtracting 1 from "1, by ~2 ; of

subtracting 1 from ~2, by ~3, etc. ; with these new numbers in-

cluded, and arranged as before, the series becomes

-., -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, •..,

which extends without end toward the left as well as toward the

right.

Since in this enlarged series each number is less by one than

the next number at its right (and therefore greater by one than

the next number at its left), therefore addition and subtraction

with natural numbers may, as before, be performed by counting

toward the right and left respectively.

E.g., to subtract 8 from 5, i.e., to find the number which is 8 less than 5, we
begin at 5 and count 8 toward the left, arriving at -3; hence, 5— 8 = -3.

Similarly, 4 — 6 = -2, 4— 9 = -5, —2— 3 = -5, etc. ; hence, besides indicating a

particular place in the enlarged number series, -5 also indicates that the subtra-

hend is 5 greater than the minuend.* Similarly in general.

Again, to add 7 to -4, i.e., to find the number which is 7 greater than —4, we
begin at -4 and count 7 toward the right, arriving at 3. Similarly in general.

14. Negative numbers defined. Numbers less than are called

negative numbers, and are written thus: ~1, ~2, ~3, ••• ; while num-

bers greater than are, for distinction, called positive numbers,

* Such an expression as 4 — 9 = -5 is, of course, not to be understood to mean
that 9 actual units of any kind can be subtracted from 4 such units ; 4 of the 9

units may be immediately subtracted, leaving the other 5 units to be subtracted

later if there is anything from which to subtract ; in this sense the number -5

may be said to indicate a postponed subtraction, and thus to have a suhtractive

quality ; hence the appropriateness of attaching the minus sign to such numbers.
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and are written either ''"1, +2, "'"3, •••, or, when there is no danger

of confusion, simply 1, 2, 3, •••.

Positive and negative numbers taken together are sometimes

called algebraic numbers, while positive numbers alone are called

arithmetical numbers. The signs ^ and ~ employed in the alge-

braic numbers above are called signs of quality, or simply the

signs, of these numbers. Two algebraic numbers, one of which

is positive and the other negative, are said to be of opposite

quality, or to have unlike signs, while if both numbers are positive,

or both negative, they are of the same quality, i.e., they have like

signs. A number written without a sign is understood to be

positive ; the negative sign, however, is never omitted.

The numbers ~1, ~2, ~3, •••, are read: negative one, negative tivo,

negative three, etc., and also minus one, minus two, etc. ; and the

numbers +1, +2, +3, •••, i.e., 1, 2, 3, •••, are read: positive one, posi-

tive two, etc., also plus one, plus two, plus three, etc., or simply one,

two, three, etc.

By the absolute value of a number is meant its mere magnitude

irrespective of its quality ; thus, ~2 and +2 have the same abso-

lute value, so too in general have ~a and """a, whatever the number
represented by a.

Two numbers which have the same absolute value, but which
are of opposite quality, are called opposite numbers ; thus, 5 and
~5 are opposite numbers, so too are "^a and ~a, whatever the

number represented by a.

15. Interpretation of negative numbers. The interpretation of a

negative number depends upon the nature of the problem which
gives rise to it.

E.g., a lady with S15 in her purse goes shopping and makes purchases
amounting to $12 ; how much money has she left?

Here the answer is clearly 15 — 12 dollars, that is, 3 dollars. Had the pur-

chases amounted to $ 19, the answer would have been 15 — 19 dollars, that is,

-4 dollars ; and the -4 dollars would mean that she not only had no money left,

but that she was 4 dollars in debt.

In this case then, when possessions are under consideration, the negative num-
ber means indebtedness.

The student should now re-read § 12 ; he should also show that

if in a certain problem temperature above zero is under considera-
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tion, then a negative number means temperature below zero ; simi-

larly, if positive numbers are used to represent degrees of north

latitude, then negative numbers will mean degrees of south lati-

tude, etc. ; in other words, negative numbers must in all cases be

interpreted as representing things opposite in character to those

dealt with in the problem.

EXERCISES

[The following questions should be supplemented by others asked by the

teacher.]

1. If temperature above zero be regarded as positive, interpret the

following temperature record taken from a U. S. Weather Bureau report

:

Albany, +8"^; Bismarck (S.D.), -11°; Buffalo, -2'; Chattanooga, +26^;

Denver, "5°
; Galveston, +34'' ; Marquette, "9°

; Oswego, +1''.

2. How much warmer is it at Albany than at Bismarck in the above

record? at Buffalo than at Denver? at Buffalo than at Chattanooga?

3. Answer the questions in Ex. 2 if the word "colder" be put in place

of " warmer."

4. The value of all the available property of a merchant is a dollars,

and his total indebtedness is b dollars, hence the value of his estate is

(a — b) dollars. In such a case is it possible that h is greater than a?

If so, what kind of a number is a — 6? In this case how should this

negative number be interpreted? Can one actually pay out more money
than he has?

5. If assets are represented by positive numbers, how may indebted-

ness be represented? Interpret the financial conditions represented by
the following numbers: $+783; $"2568; $'374.20; and 1.(856 - 1232).

Also interpret these conditions if indebtedness be represented by posi-

tive numbers.

6. A boy who weighs 54 lb. is playing with a toy balloon which pulls

upward with a force of 6 lb. ; if the boy were weighed while holding the

balloon, what would be the combined weight? If +54 lb. represents the

weight of the boy, what w^ould represent the tceight of the balloon ?

7. In Ex. 6 the combined weight of the boy and the balloon may be

represented as (+54 -f "6) lb., hence adding the ne,2:ative number cancels

part of the positive number ; is this true in general for additions of posi-

tive and negative rmmbers? Illustrate your answer.
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8. If distances upstream on a river be indicated by positive numbers,

what would "5 miles along this stream mean V Indicate by a number
and sign the distance and direction that a boat would Jioat on this stream,

in 1| hours, if ttie river flows
2-J-

miles an hour.

9. An oarsman who can row 4 miles an hour in still water is rowing

upstream on the river in Ex. 8 ; show tliat the distance he will go in one

hour is (4 4- "2^) miles. Here too adding a negative number to a posi-

tive number cancels it in part. How far upstream can he row in 7 hours ?

10. An ocean steamer is in 12° east longitude; if east longitude be

indicated by positive numbers, and if the vessel moves westward through

7° of longitude per day, indicate by a number and sign the longitude of

the vessel 4 days hence; 1| days hence; 2 days ago.

11. If the vessel in Ex. 10 sails westward for 2 days and then, being

disabled, drifts 1^° eastward, what is its longitude?

12. What is meant by the absolute value of a number ? Which is the

greater, 8 or -12 ? Why?* Which of these numbers has the greater ab-

solute value?

16. Addition of negative numbers. In order to understand just

what is meant by adding a negative number to any given number,

one has only to recall the essential meaning of a negative num-

ber. The symbol ~3, for example, means (and may always be

replaced by) a subtraction in which the subtrahend exceeds the

minuend by 3 units, i.e., it is equivalent to an unperformed (post-

poned) subtraction of 3 units.t Hence, to add ~3 to any number

whatever means to subtract +3 from that number.

E.g., 8+-3 = 8— 3 = 5; 4 + -10 = 4- 10 =-6; -9+ -5 = -9-5 = -14; etc.

Manifestly the above reasoning applies to any negative num-

bers whatever, hence the sum of two or more negative num-
bers is a negative number whose absolute value is the sum
of the absolute values of the given numbers

;

And the suin of a negative and a positive number is a
number whose absolute value is the difference of the abso-

lute values of the two given numbers, and whose sign is

that of the larger of these numbers.

* Compare § 117. t Compare footnote, p. 20.
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EXERCISES

Find the value of each of the following expressions :

1. 13 + -4. 3. -6 + 10 +-7. 5. -6t + 10+-ll|. , y

2. -8 +-3. 4. 3^ + -9i+-5|. 6. "2 + -13 + 8 + -4 + 6.

7. Regarding a negative number as a postponed subtraction, show

that the result in Ex. 6, and in all others like it, might be found by

adding the positive numbers separately, and the negative numbers sepa-

rately, and then uniting these two sums.

8. If money in hand, or to be received, is represented by a positive

number, then how should money owed (a postponed subtraction), or to be

paid out, be represented ?

Indicate by a sum of positive and negative numbers that a man had

$20 and received f 15 more, and that he paid out for various things $8,

$3, and $7.50; also show in two ways that he then had $16.50 left.

9. If distances westward from a certain point be indicated by posi-

tive numbers, how should distances to the eastward be indicated?

A wheelman after riding 37 miles westward from a certain point rides

back 12 miles; show that 37 + "12 miles indicates both his direction and

distance from the starting point.

10. Indicate by a sum of positive and negative numbers what tempera-

ture is now registered by a thermometer which stood at 4° above zero,

then rose 2°, later fell 9°, and then rose 2i° (cf. Ex. 9).

11. Make up exercises similar to 8, 9, and 10 to illustrate exercises 1-6

;

observe, however, that the demonstration given in § 16 relies wholly upon

the definition of a negative number, and is in no way dependent upon

any illustration.

12. From the reasoning in § 16 it follows that in adding a positive

and a negative number, negative units and positive units cancel each

other ; show that this is true in aU the illustrations above.

17. Subtraction of negative numbers. Since subtraction is the

inverse of addition, i.e., since to subtract any number, a, from

another number, 6, means to find the number to which a must be

added to produce h,* therefore the results of § 16 may be used to

show how to subtract negative numbers.

* Definition of subtraction, § 3 (iii).
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Thus, to subtract ~3 from 8 means to find the number to which

-3 must be added to produce 8, and by § 16 this number is 11,

hence 8 -"3 = 11;

but 8 + 3 = 11,

8--3 = 8 + 3.

Similarly, 15 - "2 = 15 + 2; 4 - "9 = 4 + 9; "8 -"3 ="8 + 3;

and, in general, +a—~h= +a ++6, and -a—~h — ~a ++&,

whatever the numbers represented by a and h ;
i.e., subtracting

a negative number from any given number {positive or

negative) gives tl%e same result as adding a positive num-
ber of the same absolute value to the given number.

Note. If three or more algebraic numbers are to be combined by addition and

subtraction, the order in which these operations are to be performed, when there

is no express indication to the contrary (parenthesis, bracket, etc.). is understood

to be from left to right as in § 8. E.g., +11 -+4 +-2 =+7 +-2 =+5.

Moreover, since the subtraction of an algebraic number is equivalent to the

addition of its opposite, such an expression as +11—+4 +-2 (above) is usually

spoken of as an algebraic sum.

EXERCISES

1. To what number must "5 be added to produce 12 ? What then is

the value of 12 — -5 ? Answer these questions if 12 is replaced by 3

;

by -2
; by a; ; by 4 + n.

Find the value of each of the following expressions

:

2. 9 --6. 3. -4 --12. 4. 26§ - -41-

5. A " rule " for subtracting one number from another is often stated

thus : " reverse the sign of the subtrahend and proceed as in addition."

By means of § 17 establish the correctness of this rule when the subtra-

hend is a negative number.

6. Using positive numbers to represent money in hand or receivable,

illustrate the fact that subtracting a negative number from a positive

number increases that number. Does subtracting a negative number

always enlarge the minuend? Is it so in -7 —"3?

7. In the extended number series of § 13, viz., •••, "3, -2, -1, 0, 1, 2, 3,

4, •••, how by counting may we add 5 to 3? to "2? to -8? Do we

count forward or backward when adding a positive integer? Since sub-

traction is the inverse of addition, which way should we count when

subtracting a positive integer? State and explain the corresponding

facts for adding and subtracting negative integers.
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Simplify each of the following expressions, that is, find the value of

each of these algebraic sums :

8. 137 +-86 --7 +-26 -8. 10. 4p --54^ +-38| - 28.

9. -54 +-864 + 732 -"413 - 36. 11. 18 --4' - 13^ +"6 --17^.

12. Mount Washington is 6290 feet above the sea level. Pikes Peak

is 14,083 feet above the sea level, and a place near Haarlem, in Holland,

is 16^ feet below the sea level. Find by subtraction how much higher

Pikes Peak is than Mount Washington ; and also how much higher

Mount Washington is than the place near Haariem.

13. An engineer when making measurements for the grade of a street

indicates the distances of points above a certain horizontal reference plane

by positive numbers, and those that are below this plane by negative

numbers. Show that the difference of level between any two points may
always be found by subtraction. Also draw figures to illustrate several

different cases.

18. Product of two algebraic numbers. Rule of signs. The prod-

uct of any two algebraic numbers is readily obtained from the

definition of a product, which is given in § 3 (iii), viz., the product

of any two numbers is the result obtained by performing upon

the multiplicand the same operation that must be performed upon

the positive unit to get the multiplier.

E.g., since 3 = 1 + 1 + 1,

therefore 8- 3 = 8 + 8+8 = 24;'

and -8.3=-8+-8+-8=-24.

Again, to get "3 from 1, this positive unit must be increased

3-fold and then have its quality sign reversed; 'therefore, to

multiply any number by ~3, first increase that number 3-fold and

then reverse the quality sign.

E.g., since -3 ="(1 + 1 + 1),

therefore 8 • "3 = "(8 + 8 + 8) = ^24

;

similarly, "8 • "3 means that ~8 is to be increased 3-fold and then

have its quality sign reversed, but ~8 increased 3-fold is ~24,

therefore -g . -3 _+24

From what has just been said, "8 • 3 =-(8 • 3), 8 • "3 ="(8 • 3),

and ~8- -3=+(8-3); by the same reasoning as that employed
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in these particular cases, it follows that, whatever the numbers

represented by a and b,

+a'+b = +(a . b),

-a-'^b = ~(a • b),

+a '-b = -(a -b),

and ~a . "6 = +(a • b).

These results may be formulated in words thus : the absolute

value of the product of any two numbers is equal to the

product of their absolute values, and this product is posi-

tive if the factoids have like quality signs, otherwise it is

negative.

Note 1. Since a succession of multiplications* is to be performed by first

getting the product of the first two numbers, then multiplying this product by
the next number, and so on (cf. § 8), tlierefore, by the successive application of

the principle established for the product of two numbers, it follows that the abso-

lute value of a continued product is the product of the absolute values of the

factors, and this product is negative if it contains an odd number of negative

factors, otherwise it is positive.

E.fj., 5 • -3 • -2 . 7 = -15 • -2 • 7 = 30 . 7 = 210= +(5 .3.2. 7).

Note 2. From Note 1 it follows that odd powers {i.e., powers whose expo-

nents are odd numbers) of negative numbers are negative, while even powers of

negative numbers are positive, and all powers of positive numbers are positive.

E.g., (-2)2 = +4, (-2)3 = -8, (-2)* = +16, etc.

EXERCISES

Find the value of each of the following indicated products

:

1. 5-3. 5. -7f--6. 9. -2c. 3c.

2. -6 . 4. 6. -m ' -5. 10. "3 • 4 • -6 • 2.

3. -7.-2. 7. -4 a- 3. 11. 3.-A;.-x-4a.

4. 12 • 9. 8. -12 . -3 X. 12. (-3)2 .5.-2.

13. In the above products, how does the absolute value of the product

compare with the product of the absolute values of the factors? What
is meant by the absolute value of a number?

* A succession of multiplications such as 3 • 5 • 9 • 4 ••• is often called a con-

tinued product.
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14. If two numbers have like signs (both plus, or both minus), what

is the sign of their product? If they have unlike signs, what is the sign

of their product ?

15. In the continued product of Ex. 10 above, what is the sign of the

product of the first two factors? of this product multiplied by the next

factor ? of this product by the next factor ?

16. Can the sign of a continued product be ascertained without actu-

ally performing the multiplication? How? What is the sign of the

result in Ex. 10 above? in Ex. 11? in Ex. 12? If a continued product

has five negative factors, what is the sign of the result?

17. Define the product of two numbers, and on the basis of your

definition prove that the sign of the product -4-7 is negative. Also

that the sign of the product -4 • "7 is positive.

18. How is -5 obtained from the positive unit? How then is the

product 8 • -5 obtained ? the product "8 • -5 ? Show that -2.-2.-2- -2,

i.e., (-2)4, is 16; also that (-2)5 = -32. What is the sign of ("6)8?

of (-2)4. (-3)2? of (-1)10?

19. Define a continued product, and state the order in which its

multiplications are to be performed. What is an odd power of a

number (cf . § 7) ? an even power ?

Find the value of (a + b) - (x — y) :

20. When a = 2, & = -3, x = -4, and y = 6.

21. When a = |, b = -2a, x = -6, and y = -10.

22. When a = -4, & = 6, x = ah, and y = "12.

23. When a = -4, b = a'^, x= Sa, and y = 2a\

19. Division of algebraic numbers. Since division is the inverse

of multiplication [cf. § 3 (iv)], therefore the results of § 18 may
be used to show how to divide algebraic numbers.

For example, to divide +24 by ~3 means to find the number
which being multiplied by ~3 will produce +24 ; but, by § 18,

this number is "8 ; hence

+24 -f- -3 = -8.

And, in general, whatever the numbers represented by a and h,

+(a .6)-- +6 = +a.

+(« .6)---h = ~a,

-(« .6)--+h = -a,

and -(a .6)---h = +a.
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These results may be formulated in words thus : the absolute

value of the quotient of two numhers is the quotient of
their absolute values, and this quotient is positive if the

dividend and divisor have like signs, otherwise it is

negative.

EXERCISES

Find the value of each of the following indicated quotients

:

1. 14 -r- 2. 4. -31 --If. 7. 15-i--l.

2. 14 H- -2. 5. -24 - 9. 8. -365 - -9^.

3. -18 -=-4^. 6. (-6)2 -(-2)3. 9. "63 a^ - -7.

10. Of what operation is division the inverse? What is an inverse

operation ? In an exercise in division, what is it that corresponds to the

product in multiplication ? How may the correctness of an exercise in

division be tested ?

11. If the dividend is positive, and the divisor negative, what is the

sign of the quotient? If the dividend is positive, how do the signs of

divisor and quotient compare ? if the dividend is negative ?

Find the value of each of the following expressions

:

12. 24 - 28 ^ -7 + -16 -^ -4 --3. 13. -8 • -6 -> 24 - 27 -^ -6 ^ 3.

14. {28 -f- -7 - 2 . (-4 - 2) + 24} -j- (-2)3.

Verify that «±^ . ^Ln^ ^^^ :

x-\-y x-y x^-y^

15. When a = 6, 6 = 2, x = 10, and ?/ = 6.

16. When a = -8, 6 = 12, a; = -9, and y = 'l.

20. Small quality signs (+ and -) dispensed with. To distinguish

sharply between the positive and the negative quality of numbers,

and at the same time to avoid confusing signs of quality with the

signs of the operations of addition and subtraction, the small plus

and minus signs (+ and ~) have thus far been employed.

In order to simplify this notation, which is manifestly some-

what cumbersome, the larger plus and minus signs (+ and — ) may
in future be employed to indicate both the quality of numbers,

and also the operations of addition and subtraction. A number

without a quality sign attached to it will continue to mean a
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positive number, while a negative number will be indicated by

writing the minus sign before the numeral, and inclosing both

the numeral and its sign in a parenthesis when the parenthesis is

necessary to avoid ambiguity : the quality sign — is never omitted.

With this simpler notation : 5 means the same as +5 ; a the same as +a ;
— 8,

or (—8), the same as -8; 9— 5— (—3)* the same as +9 — +5— -3, etc.

In general it may be said that the sign prefixed to a number indicates an opera-

tion unless that number stands alone, or stands first among several which are to

be united, or is inclosed, together with its sign, in a parenthesis.

EXERCISES

1. In the expression +5 + '*"3 — +4, which are signs of quality and

which are signs of operation?

. 2. Rewrite the expression in Ex. 1, omitting the quality signs. Has
this change in the writing really made any change in the quality of the

numbers ?

3. Answer questions 1 and 2 with regard to the expression +5 — +3 + +4.

4. Could all the quality signs in the expression +15 — +3 + -8 be

omitted without changing the meaning of the expression? Which of

these signs might be omitted? When no quality sign is written, what is

the quality of the number?

5. If the expression in Ex. 4 be written so as to use only the larger

signs, is a parenthesis necessary to preserve the meaning? Write the

expression so. Also answer the same questions with regard to the

expression a; — "5 + ~8.

6. Show that the expression a: — "5 + -8 is equal to ar + 5 — 8, wherein

both 5 and 8 are positive numbers, and the signs + and — indicate

operations.

21. Algebraic expressions. Terms. In the course of operations

with algebraic numbers, it often happens that the expression for

a number does not consist of a single symbol, but rather of a

combination of such symbols.

E.g., if a and h represent numbers, then ab, a + b, and a^ — 3 aft^ also represent

numbers.

* By §§ 16 and 17 this expression equals 9 — 5 + 3, which is 7. In this connec-

tion attention may also be called to the fact that since a-\- ( — b) = a— b (§16),

therefore such an expression as a — 6 may be understood as meaning either that b

is subtracted from a, or that — 6 is added to a.
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Such expressions for numbers as

a + b, 3xy, m' + 27i'-5x, dax" +— -10^^ +Saxy', etc.,

are called algebraic expressions.*

The parts of an algebraic expression which are connected by

the signs + and — (or, rather, these parts together with the signs

preceding them) are called the terms of the expression. Terms

preceded by the plus sign are called positive terms, while those

preceded by the minus sign are called negative terms.

E.g., in the expression 5cfi-\-Zh — lQc^x'^, there are three terms, viz.: 5a2,

+ 36, and — 10 c^x^ ; the first two are positive, and the third is negative.

EXERCISES

1. How many terms are there in the expression

5 a% + 2 axif - 7 mx^ - 26 ?

What are they ? Which are positive V Which negative ?

2. Answer the same questions as in Ex. 1 with regard to the expression

-12 + 7 rrfix^ - 5 a?/^ - 3 a;2 _ § ahiA

3. The sum of two times a number and three times the same num-

ber is how many times that number? Unite the two terms 3a: + 5a:

into one. What single term is equal to \ x — \ x'l Is5a:+13a: — 9x
equal to (5 + 13 - 9) a: ? Why ?

22. Recapitulation. In this chapter it has been shown that, in

order to express in a simple way the relations between assets and

liabilities, latitude north and latitude south of the equator, tem-

perature above zero and temperature below zero, in fact, between

any of the things which bear a relation of opposition to each other,

and which are everywhere met with in one's daily intercourse,

it is advantageous to extend the number system so as to make

subtraction always possible.

Further considerations have shown that the numbers needed to

make subtraction always possible are the so-called negative num-

bers, and in §§ 15-19 it has been shown how to interpret these

numbers, and also how to operate with and upon them. A rapid

re-reading of these paragraphs is recommended.

* An algebraic expression is spoken of as an expression, or as a wwrrtfter accord-

ing as the thought is of the combined symbol, or of the numerical value which

that symbol represents.



CHAPTER III

THE EQUATION

23. Definitions. Although a discussion of the fundamental

principles relating to equations must be postponed until more

of the theory connected with algebraic expressions has been

developed (see Chapter X), yet the importance of the equation

as an instrument of investigation demands that it be presented as

early as possible.

An equation has already been defined [§ 3 (i)] as a statement

that each of two expressions has the same value as the other, i.e.,

it is a statement that each of these expressions represents the

same number. These two expressions are called the members of

the equation, and that expression which is written at the left

of the sign of equality is known as the first member, while the

other is known as the second member.

E.g., 8 «— 21 = 3 a; + 4 is an equation of which 8 a;— 21is the first member, and
3 a;+ 4, the second member.

Manifestly the two members of the equation just written do not

represent equal numbers for all values that may be assigned to

the unknown number represented by x : indeed there is only one

value of X for which they are equal ; viz., for a? = 5. Hence such

an equation is called a conditional equation; it is an equation only

on condition that a; = 5.

An equation which is true for all values that may be assigned to

its letters is called an identical equation or, more briefly, an identity.

To indicate that an equation is an identity, rather than a condi-

tional equation, the sign = may be used instead of = to connect

the two members.

E.g., 3a; + 5 — x= 2x4-7 — 2 and ax"^ + & — ax"^ = b are identities. Many other

examples of identities will present themselves in the following pages.

82
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The process of deducing from any conditional equation the

values that must be substituted for the unknown number to make
the two members equal, is called solving the equation, and these

values themselves are called the solutions or roots of the equation.

Note. The final test as to whether a number is or is not a root of a given

equation is to substitute that number for the letter representing the unknown
number in the equation ; if this substitution satisfies the equation, i.e., if it makes
the two members reduce to the same number, then it is a root, otherwise it is not.

E.g., 5 is a root of the equation 8a; — 21 = 3x+4, because substituting 5 for x

satisfies this equation.

24. Some axioms and their use. The following principles,

usually called axioms, are useful in solving equations.

(1) If equals he added to or subtracted from equals, the

results will he equal.*

(2) If equals he multiplied or divided hy equals, the

results will he equalA

The application of these axioms to the solution of equations is

illustrated by the following examples : X

Ex. 1. If 8 a; — 21 = 3 X + 4, find the value of x ; i.e., solve this equation.

Solution

Since 8a:-21 = 3a: + 4,

therefore 8 x - 21 + 21 = 3 a; + 4 + 21, [Axiom (1)

i.e., 8 a: = 3 a: + 25,

and therefore 8a; — 3a; = 3a: + 25 — 3x, [Axiom (1)

i.e., 5 a: = 25,

whence a: = 5. [Axiom (2)

Verification. Substituting 5 for x in the original equation, each

member reduces to 19 ; that is, the substitution of 5 for x satisfies this

equation, and 5 is therefore a root of it.

* Equal numbers are really the same number ; such numbers may, of course,

be expressed in different ways (e.g., 19 + 5, 3 • 8, and 5-5 — 1 each express 24),

but they are, nevertheless, the same number, and the self-evidence of these

axioms rests upon that fact.

t It is not permissible, however, to divide by zero.

J See footnote, p. 6.
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Ex. 2. Solve the equation ^ x + 12 -\- 7 x = \x - l()\ - 4:X.

Solution

Since |a:+12 + 7x = |x-10i-4a:,

therefore, multiplying each member by 6,

,
4 a; + 72 + 42 a: = 3 a; - 62 - 24 X,

|;Axiom (2)

i.e., 46 a: + 72 = - 21 a; - 62,

and therefore, subtracting 72 from each member,

46 a; = - 21 x - 62 - 72 [Axiom (1)

zz - 21 a; - 134,

and, adding 21 x to each member,

67 a; = - 21 a: - 134 + 21 a: = - 134,

whence a: = — 2. [Axiom (2)

Verification. Since the substitution of — 2 for x satisfies the origi-

nal equation, therefore — 2 is a root of that equation.

EXERCISES

3. Define an equation. Also distinguish between a conditional

equation and an identity. Give an illustrative example of each of

these two kinds of equations. Is 2 ax + 3a = a(4ar + 3)— 2 aa; a con-

ditional equation or an identity?

4. What are the members of an equation? Which is called the first

member? What is the other member called? What is meant by a root

of an equation? Illustrate your answers by suitable examples.

5. What is meant by solving an equation? Describe briefly the

process of solving an equation. State the axioms which have thus far

been employed in solving equations. Illustrate your answers by suitable

examples.

6. How may the correctness of a solution (root) be verified ? Show
that 4 is a root of 7 a: - 10 = 4 x + 2. Is 2 a root of a:2-5a: + 6 = 0?

Is 3 also a root of this last equation?

Solve the following equations, give the reasons for each step of the

work, and test the correctness of the roots

:

7. 3 a; -F 2 = a; + 30. 9. 2 a: + - = —

•

3 6

8. 7 a: - 55 = 18 - 2 a: - 1. 10. 5 a: - 3j a: = 17 - a:.
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11. If the second member of an equation be multiplied by any num-

ber, say 4, what must be done to the first member in order to preserve

the equality? If any given number be added to either member, what

must be done to the other member? Why?

12. If 2 a be subtracted from each member of the equation 5 a: + 2 a

= 3 a; + 4 &, what is the resulting equation ? What does this show with

reference to removing a term from the first to the second member of an

equation? Is the same thing true when a term is removed from the

second member to the first? Show this by adding -3 x to each member

of the given equation.

25. Transposition ; directions for solving equations. Eemoving a

term from one member of an equation to the other is spoken of

as transposing that term. It has doubtless been observed, in the

solutions of the equations of § 24, that a term may be trans-

posed froin one member of an equation to the other by

merely reversing its sign.

This fact may be formally proved as follows : let any term of either member
{e.g., the first) of any given equation be represented by k,— this term may be

positive or negative, and may contain any number of letters, — and let the remain-

ing terms of the first member of this equation be represented hy M, and its second

member by N ; then the equation is

M-\-k = N.

Subtracting k from each member of this equation, it becomes, by axiom (1),

M=N-k,
i.e., the term k has disappeared from the first member of the given equation, but

has reappeared, with its sign reversed, in the second member.

The following simple directions may now be given for solving

such equations as those considered in § 24.

(1) If the equation contains fractions, multiply both of
its mcTnbers by the legist common multiple of the denomina-
tors of these fractions (axiom 2); this is usually spoken of as

clearing the equation of fractions.

(2) Transpose all the terms containing the unknown
number to the first member of the equation, and all other

terms to the second member.

(3) Unite the terms of each member, and then divide

both members by the coefficient '^ of the unknown number.

* The coefficient of the unknown number is the factor which multiplies it.
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(4) Substitute the value thus found for the unhnown
number in the given equation; if this satisfies the equa-

tion, then it is a root of the equation, otherwise it is not.

These directions may be illustrated by solving again Ex. 2 of

§ 24, thus

:

Given lx-^12-^1 x=lx-l0}-4:x\^
multiplying the given equation by 6 to clear it of fractions, it becomes

4 a: + 72 + 42 a: = 3 a; - 62 - 24 X, [Axiom (2)

whence, transposing, 4 x+42 x—^x + 24 x = — 62 — 72,

i.e., 67 a; = — 134

;

[Uniting terms

therefore, dividing by 67, x = — 2

;

and this value of x proves, on substitution, to be a root of the given

equation.

EXERCISES

Solve the following conditional equations, and verify the results :

1. 12a:+5x+ 20-8a:= 48+ 3a:-4. 5. §^ + 5 = 91 - lOar.

2. 3(x-5)*+4a; + 8 = 5(4ar-20).
^ 7^+2-^=17

3. 5(2a:-10)+7ar-15 = 20a:. „ o„^
7. 8 + 2v + '^=l| + ^-

3 7
'

Q. ^k-lQ=.2k-\-ll.

9. Uk-20 + lk-2 = Qk + V-

10. 2t;+^-^ + 14 = 7.-^ + ^-i^.
2 4 4 7 2

26. Problems leading to equations. A problem is a question pro-

posed for solution; it always asks to find one or more numbers

which at the beginning are unknown, and it states certain relations

(conditions) between these numbers, by means of which their

values may be determined.

The process of solving problems has already been illustrated

in § 6,— which should now be re-read. The important steps are

:

(1) Represent one of the unhnown numbers involved in

the problein by some letter, as x.

(2) From the verbal conditions of the problem find alge-

braic expressions for the other unhnown numbers, and
form two such expressions that are equal to each otlwr.

* That 3(a; — 5) = 3 a; — 15 may for the present be assumed ; it is proved in § 39.
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(3) With these two equal expressions, form an equation,~
called the equation of the problem.

(4) Solve this equation and verify the correctness of the

result.

These steps are illustrated in the solutions of the following

problems

:

Prob. 1. The sum of the ages of a father and son is 54 years, and the

father is 24 years older than the son. How old is each?

Solution

The conditions of this problem, stated in verbal language, are

:

(1) The number of years in the father's age plus the number of years

in the son's age is 54. /

(2) The number of years in the son's age plus 24 equals the number

of years in the father's age.

To translate these conditions into symbolic language, let x represent

the number of years in the son's age,* then by the second condition the

number of years in the father's age is a: + 24, and by the first condition

a; + 24 + a; = 54,

which is the equation of the problem.

From this equation it is found that x = 15, which is the number of

years in the son's age, and a: + 24 = 39, the number of years in the

father's age. By substituting these numbers it is found that they satisfy

the two given conditions of the problem and are, therefore, its solution.

Note. It maybe worth remarking that it was not necessary, but only con-

venient, to let z stand for the number of years in the son's age.

Thus, if X represents the number of years in the father's instead of in the son's

age, then the given conditions translated into algebraic language become :

(1) 54 — cc = the number of years in the son's age, and

(2) 54— a; + 24 = X',

which is the equation of the problem.

From this equation it is found that x = 39, whence 54 — x = 15 ; these are the

same numbers as obtained before.

Again, if 3x were chosen to represent the number of years in the son's age,

then the equation of the problem would be

3 X + 24 -h 3 X = 54,

whence x = 5 and 3 x = 15, the son's age, and 3 x + 24 = 39, the father's age.

* It is to be carefully noted that x represents a number ; it does not represent

the son's age, but represents the number of years in the son's age.
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Prob. 2. A boy was given 39 cents with which to purchase 3-ceiit

and 5-cent postage stamps, and was told to purchase 5 ixiore of the former

than of the latter. How many of each kind should he purchase ?

Solution

The conditions of this problem, stated in verbal language, are

:

(1) The total expenditure is 39 cents.

(2) There are to be 5 more 3-cent stamps than 5-cent stamps.

To translate these conditions into symbolic language, let x stand for

the number of 5-cent stamps purchased ; their cost is then 5 x cents

:

then, by the second condition, the number of 3-cent stamps is x + 5, and

their cost is (3a:-j-15) cents; hence, by the first condition,

5 a; -1- 3 a; 4- 15 = 39,

which is the equatjon of this problem.

The solution of this equation gives a; = 3, the number of 5-cent stamps,

and X -{- D = S, the number of 3-cent stamps ; and it is easily verified by

substitution that these two numbers do, in fact, satisfy both the condi-

tions of the problem ; hence they are the numbers sought.

Prob. 3. If a certain number be diminished by 6, and 2 times this

difference be added to 5 times the number, the result will equal 88 minus

3 times the number. What is the number ?

Solution

To form the equation of this problem, let x represent the given number

;

then 5 times the number is 5 x, the number diminished by 6 is a:— 6, etc.,

and the given condition becomes

5 ar -}- 2(a: - 6) = 88 - 3 a:,

whence 5 a; -|- 2 a; - 12 = 88 - 3 a:,

and, transposing, 5a: + 2a:-F3a:=88 4-12, »

i.e., 10 a: = 100,

and, therefore, x = 10,

which, on verification, proves to be the required number.

Prob. 4. A number consists of two digits whose sum is 5 ; if the digits

be interchanged, the number will be diminished by 9. What is the

number ?

Solution

To form the equation of this problem, let x represent the digit in

units' place ; then, by the first condition, 5 — a; will represent the digit in
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tens' place ; therefore, the number is 10(5 — x) + x,— compare Ex. 6, § 5,

—

and the number formed by interchanging the digits is 10 a; + (5 — x).

The second condition then gives

10 X + (5 - x) = 10(5 - x) + a: - 9,

whence x = 2, the digit in units' place,

and 5 — X = 3, the digit in tens' place.

These two digits are found to satisfy both the conditions of the prob-

lem, hence the number sought is 32.

PROBLEMS

5. Divide 28 into two parts whose difference is 4.

6. The sum of two numbers is 63, and the larger exceeds the smaller

by 17. What are the numbers ?

7. If I of a certain number exceeds
I-

of that number by 8, what is

the number ?

8. Divide 48 into two parts such that twice the larger part equals 5

times the smaller part.

9. A man who is 32 years old has a son who is 8 years old ; how
many years hence will the father be 3 times as old as his son ?

10. On being asked his age, a gentleman replies that liis age 5 years

hence will be twice as great as it was 20 years ago ; how old is he?

11. How old is a person if 20 years hence his age will be less by 5

years than twice his present age ?

12. If 16 be added to a certain number, the result will be the same as

it would be if 7 times the number were subtracted from 56 ; what is the

number ?

13. If 6 times a certain number is as much less than 62 as 3 times this

number exceeds 19, what is the number?

14. Of four given numbers each exceeds the next below it by 3, and

the sum of these numbers is 58 ; find the numbers.

15. Mary is 25 years younger than her mother, but if she were one

year older than she is she would be i as old as her mother ; what is the

age of each ?

16. The sum of three numbers is 25; the first of these numbers is

gi-eater by 5 than the third, but only -^ as great as the second ; find the

numbers.

17. Divide f 2200 among A, B, and C in such a way that B shall have

twice as much as A, and C $200 more than B.
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18. Divide $351 among three persons in such a way that for every dime

the first receives, the second shall receive 25 cents, and the third a dollar.

19. Three boys together have 140 marbles ; if the second has twice as

many as the first, but only half as many as the third, how many marbles

has each boy ?

20. After taking 3 times a certain number from 11 times that number,

and then adding 12 to the remainder, the result is less than 117 by 7 times

the number ; what is the number ?

21. A number consists of two digits whose sum is 8, and if 36 be sub-

tracted from this number the order of its digits will be reversed ; what

is the number?

22. In a certain two-digit number the tens' digit is twice the units'

digit, and the number formed by interchanging the digits equals the

given number diminished by 18 ; w^hat is the number ?

23. In a three-digit number the tens' digit exceeds the hundreds'

digit by 3, the units' digit is 4 less than twice the hundreds' digit, and

interchanging the units' and tens' digits decreases the number by 45

;

what is the number ?

24. A two-digit number is equal to 7 times the sum of its digits, and

the tens' digit exceeds the units' digit by 3 ; what is the number?

25. A merchant owes A three times as much as he owes B, he owes C
twice as much as he owes A, and he owes D as much as he owes A and B
together ; if the sum of his indebtedness to A, B, C, and D is $28,000,

how much does he owe each?

26. Two clerks, A and B, have the same salary ; A saves i of his, but

B, by spending $150 more than A each year, saves only $350 in 7 years

;

what is the salary of each?

27. A merchant bought some eggs at the rate of 2 for 3 cents, he then

bought J as many more at the rate of 6 for 5 cents, and later sold them

all at the rate of 3 for 4 cents, thereby losing 6 cents ; how many did he

buy?

28. If I of a number is as much less than the number itself as | of

the number is less than 65, what is the number ?

29. The sum of three consecutive integers is 51 ; what are these thiee

numbers (cf. Ex. 8, § 5)? Show that the sum of any three consecutive

integers is 3 times the second of these integers.

30. The sum of four consecutive odd integers is 80; what are these

four numbers? Prove that the sum of any four odd integers is an even

integer.
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31. M can do a certain piece of work in 8 days, and N can do it in

12 days; iu how many days can both do it when working together

[cf. §9(ii)]?

32. If M begins the work mentioned in Prob. 31, and, after working a

certain number of days at it, turns it over to N to finish, and the entire

piece of work is done in 10 days, how long did each work at it ?

33. A country club consisting of 200 members, having decided to

build a new club house, assessed each of its members a certain sum for

that purpose ; meanwhile the membership was increased by 50, and it

was then found that the assessment could be reduced by $10; what was

the cost of the proposed house?

34. A real estate dealer purchased three houses, paying 1| times as

much for the second as for the first, and If times as much for the third as

for the first ; if the difference between the cost of the second and third

was 11500, what was the cost of each?

35. A gentleman left his property, valued at $800,000, to be divided

among three colleges; if the first was to receive $30,000 more than the

second, and the third half as much as the other two together, how much
was each to receive?

36. Five boys had agreed to purchase a pleasure-boat, but one of them

withdrew, and it was then found that each of the remaining boys had to

pay $2 more than would have been necessary under the original plan;

how much did the boat cost?

37. A lady having already spent $10 more than | of her money made
further purchases amounting to $10 more than f of what then remained,

and found that she had only $2 left; how much had she at first?

38. A laborer was engaged to do a certain piece of work on condition

that he was to receive $2 for every day that he worked, and to forfeit

50 cents for every day that he was idle ; at the end of 18 days he received

$28.50. How many days did he work?

39. A certain number being subtracted from 50, and also from 84, it

is found that f of the first of these remainders exceeds | of the second by

47 ; what is the number ?



CHAPTER IV

ADDITION AND SUBTRACTION OF ALGEBRAIC EXPRES-

SIONS— PARENTHESES

I. ADDITION

27. Monomials, binomials, etc. ; coefficients. An algebraic expres-

sion consisting of but one term* is called a monomial, while one

consisting of two or more terms is called a polynomial. A poly-

nomial consisting of only two terms is usually called a binomial,

and one consisting of three terms, a trinomial ; but to polynomials

consisting of more than three terms it is not customary to give

special names corresponding to binomial and trinomial.

E.g., 2ax^,—7m^p^, and Sbx^i/^ are monomials; x^+ Sy, 5m— 2 z^, and
— 3 a62— f ^Sy4 are binomials ; 'and 2 a;8 + 4 ay — 5 62, 2 s*— 6 ?/ + 3 m^x^, and

x + 'dt — j abx'^ are trinomials.

If a term is composed of several factors, any one of its factors,

or the product of two or more of them, is called the coefficient of

the product of the remaining factors.

E.g., in the term 5 axy^, the coefficient of axy^ is 5, the coefficient of xy^ is 5 a,

the coefficient of 5 xy'^ is a, etc.

A coefficient consisting of Arabic characters only is a numerical

coefficient, while one that contains one or more literal factors is a

literal coefficient.

E.g., in the term ~3ax^y^, the numerical coefficient of ax^y* is — 3, but —3a
and 3 ay^ are literal coefficients of x^y^ and — x^ respectively.

Note. The word "coefficient" is usually understood to mean "numerical

coefficient," and the sign (+ or — ) written before a term is usually regarded as

belonging to the numerical coefficient. When no numerical coefficient is written,

the term is understood to have the coefficient 1.

* For the definition of an " algebraic expression," and of a *' term," see § 21.

42
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28. Positive and negative terms ; like and unlike terms. A term

whose sign is + is called a positive term, and one whose sign is —
is called a negative term. If the first term of an algebraic expres-

sion is positive, its sign is usually omitted, but the sign of a nega-

tive term is never omitted.

Note. As has already been pointed out, the letters in an algebraic expression

may represent any numbers whatever,— they may be positive or negative, even

or odd, integers or fractions, — and therefore an algebraic expression which is

fractional in appearance may have an integral value, and vice versa ; so too a

term which is positive in appearance may still, for certain values of the letters

involved in it, have a negative value, and vice versa.

Terms which either do not differ at all, or which differ only in

their numerical coefficients, or in their quality signs, are called

like terms, and also similar terms; terms which differ in other

respects are called unlike terms, and also dissimilar terms.

E.g., Zxhj, hx^ij, and —Ix^y are like terms, while 2 ax, —ob^x^y, and Sxy^

are unlike terms.

Like terms must contain the same letters, and these letters must be affected

with the same exponents, but they may differ in their signs and also in their

coefficients.

EXERCISES

1. What is the coefficient of a^x in each of the following expressions

:

3a%, - 6a^x, a% 4 a^&x, - 4a%, ^" " "^
, and -9a^x?

1 m
2. Which of the above coefficients are literal and which numerical?

Which of the terms in Ex. 1 are positive and which negative?

3. Do the positive terms in Ex. 1 necessarily represent positive num-

bers for all values that may be assigned to the letters involved ? Try

a = 3 and x =—2.

4. What is the coefficient of x—yin each of the following expressions

:

\^{x - y), — a(x — y), f m(x - y), and (4 - a^)(x — y) ? Which of

these coefficients are numerical? Which literal? Which of these expres-

sions are positive and which negative ? Try various values for the letters

and see whether the negative expressions necessarily represent negative

numbers.

5. Consult a good dictionary for the derivation of the words " mono-

mial," "binomial," "trinomial," and "polynomial." Write three mono-

mials, three binomials, three trinomials, and three polynomials.

6. Distinguish carefully between the meanings of 5 in the expressions

5 X and x^. What name is given to the 5 in each of these expressions?
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7. What are like terms? By what other name are they known? In

what respects may they differ and still be like terms ? Are 3 x^y, —2x^i/,

and I a;2^ similar? Are 4: ax^ and — Gbx^ similar? Are these last two

terms similar if 4a and —Qb are regarded as their respective coefficients?

8. Write three sets of like terms, some terms being positive and some

negative, and each set containing at least four terms.

29. Addition of monomials. That the sum of several similar

monomials may be united into a single term has already been

illustrated in some of the exercises and problems in the preceding

pages ; this subject will now be considered in greater detail.

Since 5 times any given number, plus 2 times that number, is

7 times the given number, i.e., (5 + 2) times the given number,

therefore o a -^2 a = (o-i-2) a = 7 a, whatever the number repre-

sented by a. So too 3 mxhj + 8 mx-y = (3 + 8) mx^y = 11 mx^y.

Observe that this reasoning applies to any two similar monomials whatever.

Since the sum of three or more numbers is obtained by adding

the third to the sum of the first and second, the fourth to the sum
of the first three, etc. , therefore, to add any nuinber of similar

monomials, add their coefficients, and to this result annex
the common literal factors.

It is usually most convenient to write the terms to be added

under one another, as in arithmetic, thus

:

3x?/2 153a2ma;8 l%ak^8

8 xy^ 74 a2mx8 _ 7 ak'^s

11 xy"^ 227 a^mx^ 11 ak'^s*'

If the monomials to be added are dissimilar, they cannot be

united into a single term, but their sum may be indicated in the

usual way ; e.g., the sum of 5 a and 2 car' is 5 a -f 2 ca^.

EXERCISES

1. If 6 times any number whatever be added to 13 times that number,

the result is how many times the given number ?

2. To 6 times any given number add 13 times that number, and to

this sum add -8 times the given number ; what is the result ?

* Since 18+ (- 7) = 11 ; compare § 16.
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3. State in words a convenient rule for adding any number of like

terms. Does your rule apply to cases in which some of these terms are

negative ?

4. Find the sum of 6 n, 7 n, — 3 n, 18 n, and — 11 n.

5. Find the sum of 4 a^x^, 5 a^x% - 2 a^x% and - 6 a^x^.

Simplify the following expressions, i.e., unite similar terms

:

6. 3 mxy^ + ( - 4 mxy^) + ( - 12 mxy^) + 5 mxy^

7. 14 ahx^ + 32 abx^ + ( - 19 abx^) + 5 abx^.

8. 3 mp^ + 7 mp^ + 13 a^x - inip'^ + (-

6

a%) - 2 a%.

9. 4:(a - b) + '6 (a - b) - 2{a - b) + (a - b).

10. 4 (aa:)^ + 11 (axy - 3 (axy + [- 6 («x)2].

11. 7 (:r + 2/ + 2) + 19 (x + y + z) + 4 (a; + ^ + 2:) - 8 (a: + r/ + 2).

12. - 15 (ax^ + 3) + 27 ^ax^ + 3) - 9 (ax^ + 3).

Add the following terms, uniting as far as possible, and indicating the

addition where necessary

:

13. Smp% - 8 mp% 5 a% - 4 mp% - Sa% and 2 a^x.

14. 23 a\ 5 &2, _ 8 a^b% - 13 &2, 24 02^2, and - 19 a^.

15. - 5 (a - &), 2 (ax) 2, - 8 (ax)^, 12 (a - J), and - 4 (aa:)2.

16. 16 X, — y, 4:x, — X, 4 z, 5 ?/, x, 2 x, and —32.

17. 7nxy + nxz/ equals how many times xy ?

18. ax2 + &x2 — cx2 — Zx2 is how many times x2 ?

30. Addition of polynomials. The explanation given in § 29

for the addition of monomials is easily extended so as to apply

to the addition of polynomials also.

E.g., 7 62^3 _ 3 ax2 + 6 abc and 4 bhj^ + 5 aa-2— 12 ahc may be added thus •

7 62?/3_3ax2+ 6 abc

4 b'^ij^ + 5 0x2_ 12 abc

1162«/8 + 2ax2— 6a6c

Similarly in general, hence:

To add two or more polynoTnials, uurite theirv under one

anotlier so that similar terms shall stand in the same
column, and then add each column separately as in § 29.
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EXERCISES

Find the sum of each of the following groups of polynomials

:

1. 6a-5&+ 3c, 7a + 106-6c, 8a-9&-10c, and 19a+8&+2c.

2. 2c-l d+Qn, 8c?-3n-9c, 4(/+16n-4c, and 3c-4n + (i.

3. 2 c -1 d - X + Qn, 8^-14n-3z, 18z + 10n + 8c?+3a,
4n-18c-5x + 6rf, 19c + 4a; + 8n-6fi?, and 5c + 2^-10c-4^.

4. 2 x8 + 7 6a;2 - 4 fi^x + 3 &3, 8 ft^^ - 15 hx^ _ 5 63 _ 10 a-^, 3 a;^ - 6 fix^,

46a;2 - 6 ?>3 + 10x8, and -hx'^-\- x^-^ b».

Simplify the following polynomials, i.e., unite their similar terms

:

5. 8 ma; - 5 x2 + 3 m2 + 2 a:2 - 8 m2 + 13 m2 - 18 W2X + 6 a;2 - 9 m^.

6. 3a2-6a6-862 + 7a2_3a2 + 2a6-14&2_6a6 + 862.

7. 4x2^-0:?/+ 10x3-4i/2_8x8-4a:3-f 3?/2_ 15xy + 2'dxy.

a 4 a2 - 6 a + 4 - 3 a2 + a + 1.5 a2 - 2 + 5 a - 3.4 a2 _ 3.75 - 2 a.

9. ax^ - 4 a;2 + &?y3 _ ^^2 + 14 x^ - by^ +ay^ -3 y^.

[Collect all the x^ terms and all the y^ terms.]

II. SUBTRACTION

31. Subtraction of monomials. Since 5 times any given number,

minus 2 times that number, is 3 times the given number, i.e.,

(5—2) times the given number, therefore 5 a— 2 a = (5 —2) a=3 a,

whatever the number represented by a. So too 13 mx^y^ — Smci^y^

= (13 — 8) mx^y^ = 5 mx^y^.

Observe that the reasoning just now given applies to any two similar

monomials whatever, hence:

To subtract one of two sivxilar monomials from tl%e other,

subtract the coefficient of the subtrahend from that of tl%e

minuend, and to this reinainder annex the com^mon literal

faxitors.

Here, as in arithmetic, it is usually most convenient to write the

subtrahend under the minuend, thus

:

126 a^s 13ma;2?/8 53 6ex8

92fl22 8 rna;2ji/8 — 9 hcx^

34 a 22 5mx^y^ 62 6car8*

* Since 63— (— 9) = 53+ 9 = 02 ; compare § 17.
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Note. Since algebraic expressions represent numbers, the rule just now given

may be stated thus

:

To siibtract one of tioo similar monomials fro7n the other, reverse the quality

sig7i of the subtrahend and proceed as i7i addition (ef . § 17, Ex. 5).

In order to avoid confusion when reviewing one's work, it is usually best not

actually to change the sign of the subtrahend, but only to conceive it to be

changed, or at most to write the changed sign helovo the term, thus:

13 77ixhj^ 53 6cx3

8 mxhj^ — 9 6cx8

+
5 mx2«/8 62 6ca;8

EXERCISES

In the following exercises subtract the number written below from tlie

one above it

:

I"
1.

2.

^8^
I. 1

7a
4a

locx^

^cx-

-18
5

16 6^2

-3 6x2

6 m'^p'^

— 5 m-^9*

-18
-5

- 18 m^

b7n^

18 -9
-5 9

- 18 rH^

-5r2a;8

- 34.7 k^Y
6.8 k'^xY

9

-9

26 vY
- 7 vh/

3. - 5| a2w?*

- 2\ a"'m^

4. Are the signs written in the above exercises signs of operation

or signs of quality ?

5. Define subtraction, and from your definition show how to verify

the correctness of the above exercises.

6. Show that " changing the sign of the subtrahend and proceeding

as in addition " will give the remainder in each of the above exercises.

7. From 5 (a— 2 6^) subtract —11 (a— 2 6-^)
; also subtract 15 m^(x—y)

from — 23 7n^(x — y) ; and — 2 x{l + 5 a2y/) from 14 x(l + 5 a2^).

8. From the sum of Q ax^, — 3 ax^, and 11 ax^, subtract the sum of

— 4 ax^, 9 ax^, and — 7 ax^.

9. Re-read §§ 16 and 17, and then pi-ove that, in any subtraction, the

remainder may be obtained by adding the subtrahend, with its sign

changed, to the minuend.
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32. Subtraction of polynomials. From the reasoning already

given, it is evident that one polynomial may be subtracted from

another by writing the subtrahend under the minuend, similar

terms under one another, and subtracting term by term, thus

:

4 62y8+ 5 aa.2_ 12 ahc
- - +
352y3_8aa;2+ i8a6c

EXERCISES

^1. From 12 a — 3 & subtract 6 a — 5 &.

—2. From 3a:— 2y+53 subtract 5 y — 2 — 8 ar.

^-Q. From 4 a^xi/ -9x'^y + 10 a^y'^ take 7 a32/2 _ 3 a^xy^ - 12 x2?^.

--4. From 8 ^2 _ 7 y^iS _ 13 aa;2 take 4 m^ - 8 aa;2.

-5. From 5 a;2 + 4 a%^ take 13 a^"^ -2x^+5 abx.

6. From a;^ + 1 take 1 - 2 x + a;^ + 3 a;2 - 4 a;3.

7. From 2 a — 3 x+ z take the sum of9a; + z — 4a and 10 z— 5 x+ a.

8. From 7.42 a:2 - 3} xy + 10 y'^ take 2.5 xy-7f-\- 3.02 a,-2.

9. From 34 a2x8 - 10mV take 15 if + 10 a2a:3 + m*y\

10. Subtract - 7 c^r^ + 3 a2 _ ^s from 5 a2 + 2 r2 + .s* - 3 ch^

11. Subtract 1 - 3 a: + 10 a:2 from 2 a;2 + 5 ; from 4 ; from 0.

12. Subtract -8a + 3 &-13x2 from 5 6; from -6x2+ 2 a; from -7.

13. Subtract 3 &2 __ 10 aa: + 5 a:2 from the sum of 5 aa: — 2 a:2 and

10 62 _ 13 ax.

14. Subtract the sum of6a — 46 + 3c and 6h — 2a — c from 8 a — 3 6.

15. Subtract 3 a: - 10 ay^ — 2a^ minus x — 6ay+a^ from 4 a;2 — a; plus

5 a3 - 3 ay\

16. From fa:8-|a;2+|a;-3 subtract | a:^ - 2^ - ^ a: - f x^.

17. Subtract 1 + 3(x - y) - 5(a2 + b) from a^ + 2(a^+b)- 8(x - y).

18. Subtract the sum of 5 a - 3 &2 + 2 x and - 4 x + 2 ^2 from

3 x2 + 4 a - 12 52 minus 3 a - 7 62 + 2 x2.

19. Subtract 4.5 m - 1.3 y' + 10 a^c^ from 1.4 y - 8 a^c^ plus 6.3 y
- 181. ^2^4.

20. From the sum of x2 - 1 , 3 x + 2, and - 8 x2 - 5 x, subtract 4 x - 3 x2

plus 4 — 2 X minus 6 x + 3 x2 — 8.
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III. PARENTHESES

33. Removal of parentheses. That one expression is to be sub-

tracted from another may be indicated by inclosing the subtra-

hend in a parenthesis and writing the minus sign before it.

E.g., 6 X— (2 a— ?/) means that 2 a; — r/ is to be subtracted from 6 x.

Moreover, since a subtraction is performed by changing the sign

of each term of the subtrahend and then adding it to the minuend

(§§ 32 and 31), therefore a parenthesis preceded by the minus
sign may he removed by simply changing the sign of each
term inclosed by it*

E.g., a—{— be + mp) = a + bc— mp;3kx2~i2by — 7a2)=3kz^— 2by + 7a^',

a;2 + 2 6x — (&3 ~ bx + S x^) = x^ -\- 2 bx — b''^ -\- bx— 3 x^ =— 2x'^-^Sbx — b^; and
— (- 4 A;2 + 5 ax - 8 6?/3) = 4 ^^— 5 ax + 8 by^.

Note. If a parenthesis is preceded by the plus sign, it may be removed without

changing the signs of the terms inclosed by it, because the expression within such

a parenthesis is to be added to whatever precedes it.

34. Parenthesis within parenthesis. It often happens that a

sign of aggregation may inclose one or more other signs of aggre-

gation, thus

:

3a''x-l2 mb + [a^x _ (- 4 s^^ -f 5 mb) -f sH']
J

.

In such cases it may be best for the beginner, after removing

all those signs of aggregation which are preceded by the plus

sign (§ 33, note), to remove the innermost of those signs of aggre-

gation which are preceded by the minus sign, then the next inner-

most, and so on until all are removed.

E.c/., omitting the square bracket in the above expression, since it is preceded

by the plus sign, that expression becomes

3 a2x -{2mb + a^x- (- 4 s2i + 5 mb) + sH};

now removing the parenthesis, this expression becomes

3 a2x - (2 m6 + a2x -h 4 s^t— 5 m& 4- s^]
;

and, removing the brace, we obtain

3 a2x— 2 mb — a2x — 4 ^2^ + 5 mb — s%

i.e., 2a2x + 3m6 — 5s2<.

* Compare also § 39, Ex. 19.
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Note. The work of removing parentheses in such expressions as that just

given may be somewliat shortened by removing the outermost negative paren-

thesis first, then the next outermost, and so on, instead of beginning with the

innermost. The expression witliin an inner parenthesis is, of course, to be

regarded as a single term of the next outer parenthesis. Parentheses preceded

by the sign + should be dropped whenever they occur. The student may simplify

the above expression by this method and then compare his work with that above.

The essential thing in both plans is that on removing a negative parenthesis

the sign of every term inclosed by it must be reversed.

EXERCISES

Simplify the following expressions

:

1. 7a;-3ac + (a:-2ac).

2. 1 X — Zac —{x — 2ac).

3. 4 a - 2 & - (c + 3 a) - (2 c + 3 & - 2 a).

4. 5 a:2 + (7 aa: - 10 ^/) + 3 ?/ - (4 ao; - 5 y + 3 a;2).

5. ^xy+^if-^-x^ + y'^ + xy).

6. mx2-[8?/+(6a-wa:)-2a].

7. _ (a + 5 - c) + 4 a - (c + 3 h).

8. ^x-2y+f-g-{2x-{^y + ^z-2V)^-2f-2g].

9. a-y-{a-{-y-^^r^)}.

10. 15 - (6 - a:)- [13 - {x-{y + 2) + 2 ?/} + 2 x].

11. x-{Zx-l-{-^x + 2y)+by^-^y].

12. -{-[-(x-y)]}.

13. 8 a - 2 & - {(3 6- - <f) - [4 c - rf - (- 8 a + 2 &)] - 2 c?}.

14. 4 - [5 1/ - {3 - (2 a; - 2) - 4 a;}] - {x + 5 1/ - X + 3}.

15. 5 a^xV - {2 a^xY - ["^ + (3 x'^y'^ -a^-^ a'^xY) + 4 a-] - 3 xY}-

16. a'»-n''-(3a»-2n«) + (- 5 a'» - 2n«)-{- [-(- «"-n«)]}.

17. - d ax - (o xy - ^ z) + 2 z - 1(4: xy + 6 z + ax) + 3 xy'].

18. 2 a -la -{h -(3b- 2a-b) - 3 a} + 4 ^»] - (6 - a).

35. Inserting parentheses. From §§33 and 34 it follows that

the value of a polynomial is not altered by inclosing any number

of its terms in a parenthesis, provided only that if this paren-

thesis is preceded by the minus sign, the sign of each inclosed

term be reversed.
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EXERCISES

1. Indicate by means of a parenthesis that a + b -\- c is to be sub-

tracted from a —b -\- c; then remove the parenthesis and simplify the

expression.

2. Inclose the last two terms of x^-\- y^ — z^ in a parenthesis preceded

by the plus sign ; by the minus sign.*

3. Inclose the last three terms ofax — 4?/4-3a — 8a:ina parenthesis

preceded by the plus sign; by the minus sign.

4. In the expression 3w — 4a + 10a;2— 5^ + 3 ab^ — 8 aa:, inclose the

4th and 5th terms in a parenthesis preceded by the minus sign ; then

inclose this parenthesis, together with the two preceding terms, in a

bracket preceded by the minus sign.

SO. Make the clianges asked for in Ex. 4, in the expressions

3'^ + 4 a - 10 a;2 - 5 2/ + 3 a&2 _ 8 aa:, 3 m - 4 a - 10 a:2 + 5 jr - 3 0^2 + 8 rta:,

and - 5 x2 + 3 2/2 - 4 a - 14 Jc + 8 m\

6. Inclose the first three terms of each of the expressions in Ex. 5 in

a parenthesis preceded by the plus sign
;
preceded by the minus sign.

7. When terms are inclosed in a parenthesis preceded by the plus

sign, are any changes in the signs of these terms made? Why ? Explain

why the signs are changed when the parenthesis is preceded by the minus

sign.

8. Just as 5 x + 3 x = (5 + 3)a:, so ax -{ bx = {a ^ y)x, and similarly,

mx — nx \- px = {jn — n -{ p)x = — (— w + n— p)x.

Similarly combine the terms oibx — mx — nx.

9. Combine all the a:-terms, and also all the y-terms, in the following

expressions : ax — bi/ — dy — ex— ex -\-fy, mx — ex \- py — ay + gx, and

d ex + 4: dy — 2 ax — 5 7nx — 7 by -^ ax.

10. Arrange the letters within the parentheses in the expressions of

Ex. 9 in their alphabetical order, and give to each parenthesis the sign

of the first letter it contains.

11. Group together the like powers of y in the following expressions

:

ay^ — 2 by — 3 ey^ — my^ — ny + dy% y^ — ay^ —3ry^-\- ny^ — ly^, and

-Sy^-ci/ + ay- dy ^by^-2 ay^ + ny"^ - y.

* In such exercises it is, of course, understood that the value of the expression

is to be left unchanged.



CHAPTER V

MULTIPLICATION AND DIVISION OF ALGEBRAIC
EXPRESSIONS

I. MULTIPLICATION

36. Some fundamental laws. Before going farther it is perhaps

well to point out that thus far in this book, as well as in the

arithmetic previously studied, it has been silently assumed that,

whatever the numbers represented by a, h, and c,

a + h + c = a + c -\-h = h -\- c-\-ay etc.

;

i.e., it has been assumed that the sum of several numbers is not

changed by changing the order in which these numbers are added.

This is known as the commutative law of addition.

This assumption was based upon the fact that with any par-

ticular set of numbers, such as 2, 5, and 8, the correctness of these

statements (equations) is easily verified.

E.g., 2 + 5 + 8 = 2 + 8 + 5. [Each member being 15

It has also been assumed that the sum of several numbers is not

changed by grouping together any two or more of the summands.
and replacing them by their sum. This is known as the associa-

tive law of addition.

E.g., a + 6 + c = a + (6+c).

The commutative and associative laws of multiplication are ex-

pressed by such equations as

and a • h ' c — a ' {h • c),

respectively; their correctness has also thus far been assumed.

While attention is now expressly called to the fact that mere

verifications, however numerous, cannot prove the generality of a

law, the proofs of the above laws are deferred till Chapter VI

;

mitil then their correctness will continue to be assumed.

62
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37. Law of exponents in multiplication. The words "power,"

" base," and " exponent," as used in connection with arithmetical

numbers, were defined and illustrated in § 7 (iv). The definitions

there given apply also when algebraic numbers are under con-

sideration, though it is to be carefully noted that, while the base

and the power may be negative or fractional, the exponent (under

the present definition) is necessarily a positive integer.

It follows directly from these definitions that, if a represents

any number whatever, then

a^ . a^ = (a • a • a) • (« • a) = a • a • a • a • a [Associative law

= a\

i.e.,

Similarly in general, if m, n, and p are any positive integers

whatever, then

a"* . a" = (a • «. • a . ••• to m factors) -{a -a- a- ••• to n factors)

^a- a-a- •••to (m + w) factors [Associative law

= a'"+".

So, too, a"^ -a"" -a^ = a"*+"+^.

The law of exponents, expressed by these equations, may be

formulated into words thus : the product of two or more powers

of any numher is that power of the given ninnber ivhose

exponent is the sum of the exponents of the factors.

38. Product of two or more monomials. The product of two or

more monomials may be obtained as a simple extension of § 37.

E.g., if a, b, and x represent any numbers whatever, then

(2 ax3) . (3 b^x) = 2 • a • x3 • 3 • 62 . a; [Associative law

= 2 • 3 • a • 62 . x3 . X [Commutative law

= 6 ab^xA. [Associative law

Similarly, (3 a^^) • (-2 a6x2) • (5 a62x4) =3 • (-2) • 5 • a2 • a • a • 6 • 62 • x3 • a;2 . x4

= -30a463x9.

And, manifestly, the product of any number of monomials may be obtained in

the same wav.
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This method of obtaining the product of several monomials may
be formulated into the following rule : to the product of the

numerical coefficients of the several monomials, annex each

of the letters which they contain, and give to each letter an
exponent equal to the sum of the exponents of that letter

in the several monoinials.

EXERCISES

1. Define and illustrate the meaning of exponent, base, and power.

2. May the base be a negative number? a fraction? May the

exponent be either negative or fractional ?

3. If the base is a fraction, what is the power? If the base is nega-

tive and the exponent is 3, is the power positive or negative ? Why ?

4. If the base is negative, what is the sign of the power when the

exponent is 4? when it is 5? when it is 6? when the exponent is even?

when it is odd?

5. What is the meaning of a:^? of x^? How many times is x used

as a factor in a:^ • a;^? How then may this product be represented? State

the law of exponents for multiplication.

6. If X stands for a negative number, is x^ positive or negative?

Why? How does 3* compare with (-3)^? 2^ with (-2)6? 2^ with

(—2)5? State the general law of which these are particular cases.

7. What is the meaning of a^y^'^ of a^^^? How many times is a used

as a factor in the product a^y^ • a^y'^'^ How many times is y so used? In

what simpler form may this product be written ? Why ?

Multiply

by

8.

4 n^x^

3ax2

13.

7p2,p3y5

- 9 pw'^x^

9.

2m8<2

10.

- 8 anV
5ay^

11.

-4a2j3^2

- 6 a^hx

15.

xy^z^

- xhjh

12.

5 b^x^

- 7 a^by^

Multiply

by

14.

m^x^

- 3 p^xy^

16.

f ahn'^x^

- f bmY

17. Write a carefully worded rule for finding the product of two

monomials— it should, of course, make special mention of the coefficient,

the letters, the exponents, and the sign of the product.

18. Find the product of 4 ax% - 2 a^xy\ and 5 aby^.

19. What is the product of 3 m^pw\ —2 ap^w^, — 6 mp"^, and — aw^l
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20. Wliat is the product of 2^ ab% 1.2 b^x% and - f a% ?

21. What is the meaning of a:«? May x represent any number what-

ever here? may w? How may the product of a;« and x^ be represented?

of a^, a"*, and a''? What are the restrictions upon m and r in this last

question ?

22. What is the meaning of ?/"-2? What are the limitations upon

n here? What is the product of 4 a^ and -3a«-2? of 2 a'"^" and

— a'^-^x*? Does the answer given to Ex. 17 apply to such multiplica-

tions as these?

23. What is meant by (a^)*? by (a;8)2? by (-3a2?/)2? W>ite each

of these expressions in its simplest form.

24. Without actually performing the following indicated operations,

tell by inspection what the sign of the result is in each case, and why

:

(_3)4. (-2)9; (-11)40; 5^ 724; (_5)«when n is an even positive

integer, and when n is an odd positive integer; (— 3)2«and (— 3)2« + i,

when n is any positive integer.

25. As in Ex. 24, determine the sign of the result in each of the fol-

lowing indicated operations if a = 2 and 6 =—4: (a — 6)^; (a — 6)*;

(a+by-, {ab'^Y] (a-4:by; {o.^'^y-, and {a%y^\

26. Tell what is meant by the commutative and associative laws of

addition and multiplication. Illustrate your answer in each case.

39. Product of a polynomial by a monomial. Since the product

of two numbers is obtained from the multiplicand in the same

way as the multiplier is obtained from the positive unit [§ 3 (iii)],

therefore 5 • (2 + 6) = 5 • 2 -f 5 • 6, because the multiplier 2 -f 6 is

obtained by first taking the unit 2 times, then 6 times, and adding

the two results.

Similarly, whatever the numbers or expressions represented

by a, b, c, d, ",

a{b-\- c + d -\- •••) = ab -\- ac -\- ad + •••

;

and, applying the commutative law to each member of this equa-

tion, it becomes

(b-\-c + d-\ )• a = ba + ca-\-da + ••.

These last two equations state what is known as the distributive

law * of multiplication as to addition ; it may be put into words

* The multiplication of a sum is " distributed " over the parts of that sum.
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thus: the product of a polynomial hy a jnonomial is

obtained hy multiplying each term, of the polynomial hy

the monomial and adding the partial products.

E.g., 5a;(3a2-2 6 + c2) = (3a2-26 + c2) . 5x = 16 a2a;-10 &x + 5 c2a;. The
actual work may be conveniently arranged thus:

3 a2 - 2 6 + c2

5x

15 a2x — 10 6x + 5 c^x.

each term of the multiplicand being multiplied by the multiplier, and the partial

products added.

EXERCISES

1. How is a + 1 — c obtained from + 1 ? How then is the product

3 • (a + 6 - e) to be obtained from 3 ?

2. Is 3 • (a + & - c) equal to (a + & - c) • 3 ? Why?

3. What is the product of 365 by 2? of (300 + 60 + 5). 2? Show
that this illustrates the distributive law.

4. Since a(6 { c \- d -^ •••) = (6 + c + c? H— ) ' a = ah + ac + ad-\ ,

whatever the numbers represented by a, b, c, d, •••, what is the product of

2 ax and 3 a:2-4 a2a;8 + 5 aa;*?

i>

5. Multiply 3 a'^b^—7 ax by 2 abx. Also 5 mx^ -7ay^-4: aHi by - 2 am^.

Write a rule for multiplying a polynomial by a monomial.

6. When an indicated multiplication has been performed, and the

result is expressed by an equation, is that equation an identity or merely

a conditional equation ? E.g., is (3 a%^ — 7 ax) • 2 abx = 6 a%^x — 14 a^x^

a conditional equation or an identity ?

7. The fact that the equation in Ex. 6 is an identity may be used as a

partial check upon the correctness of the multiplication. Are the two

members equal when a = & = a; = l? If they were not equal when these

special values are assigned to the letters, could the multiplication be

correct ? Does the equality of the two members for this set of values

prove that the multiplication is correct, or does it merely increase the

probability of its correctness? Is it then a " complete " or only a " partial

"

check ?

8. 9. 10.

Multiply 8a2-4aa: + 3m2 -3 xh -5 x^ + 4:xz^ 2a-3J + c

by — 4 am^ —2xz^ ' — abc
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11. Check Exs. 8, 9, and 10 by the method of Ex. 7. Could other

special values for the letters than those there given be employed for such

a check? Why?

Multiply (and check the work)

:

12. 5 m2 - 2 P by 3 mF. 13. - 8.5 h^x'^y + 5f hy^ by ^V ^y-

14. 25 «» - 17 a^ _ a6 by - 3 a\

15. a;^6 _ 2 x^y^ — 15 a:*?/^ + 4 x^y by — x^-'^y'^-^.

Perform the following multiplications and check the work:

16. - 2 a:2 . {x^ -bxhj- 16 x'^y'^ + 24 xy^ -y^-xy-^).
17. (a362c3 _ 3 ah^c^ - 4 a^fes^ + aj^) • 2 a&c^.

18. -1. (3r«a;-4m2-2a;2).

19. Since -1.(3 mx - 4 m^ - 2 a:^) = - (3 mx - 4 m^ - 2 a:2), derive

from P]x. 18 a new proof that a parenthesis preceded by the minus sign

may be removed if the sign of each term inclosed by it be reversed

(cf. § 33).

40. Product of two polynomials. Since m + n is obtained from

the positive nnit by adding n times this unit to m times the unit,

therefore, by the definition of multiplication,

(a 4- 6 + c) • (m + n) = (a + 6 + c)m + (a + 6 + c)n

= am + 6m + cm -\-an-\-hn + en. [§ 39.

Similarly for any polynomials whatever; i.e., the product of
two polynomials is obtained hy multiplying each term of
the multiplicand hy each term of the multiplier, and add-
ing the partial products.

If any two or more terms of a product are similar, they should,

of course, be united.

The actual work of such a multiplication, and its check, may be conveniently

arranged thus: Check

a2 + 2 a& - 62 = + 2, when a = 6 = 1

a+6 = +2, when a = 6 = 1

(a2+ 2a& — 62) .a= a3 + 2a26-a62
(a2+ 2 a6 - 62) . 6= a26 + 2a62— 6^

a8+ 3a26 + a62-68 = +4, when a = 6 = 1

Note. The product of three or more polynomials may be obtained by
multiplying the product of the first two by the third, this product by the fourth,

and 80 on.
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EXERCISES

Multiply (and check the work) :

1. 4 az + 5 a2 - 2 a;2 by 3 a - 4 a:.

2. 2x^-7 xy + Sa^x hj - 5 x + 3 y.

3. 4 m2 - 3 mp by 3 p"^ - 2 m + m^.

V4. 5s-3^ by 2s -Zr + t.

5. ax"^ — hij'^ by hx + ay.

6. a^ — 2 «:c + a;^ by a — x.

7. 2 a^ - 6 a6 + 3 &-2 by a + 6 + aft.

8. X - 5 x^ +^10 by 2 - 7 X + a;"^-

9. ai* - 2 a^r + 5 by a - X - 3.

10. w^ + 2 m.n + n^ by m + n — mn.

11. a + 6 — c + c? by a — 6 + c — rf.

12. 3 a - 5 ^2 _^ a/x by - f + 2 a - 3 x^.

13. a^ + b'^ + c"^ - 2 ah - 2 ac + 2hc hy a - h - c.

f

14. xn + j,H by X - y.

15. a:n + yn by :c2 _ ^2.

16. X" + r by X" - 2/«.

17. X" + ?/» by x'- - J/*-.

18. 3 a8 - 4 a26 + 2 ab^

19. 1.8x2-2x^-2.3 5

20. 2.5a2a;2_i,4a:ry +

ft3 by 5 a2 - 3 aft + ft2.

by lix-3|3/.

1 3/2 by - 3 ax -42/ - 1.2 a.

41. Integral expressions, degree and arrangement of expressions,

etc. In multiplications with polynomials, and elsewhere, it is

often advantageous to arrange the terms of a polynom.ial in a

particular order; such arrangements will now be explained.

A term is said to be integral if it contains no letters in its

denominator ;
* it is integral imth regard to a particular one of

its letters if that letter does not appear in its denominator. A
polynomial is integral, or integral with regard to a particular

letter, if each of its terms is so.

E.g., 3ax'^+-—^— oct^y
jg integral with regard to b, w, x, and y, it is

fractional with regard to a; its first and last terms are altogether integral,

while its second term is integral only with regard to 6, m, and y.

* It may contain numerical denominators and still be called integral.
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By the degree of an integral term is meant the number of

literal factors which that term contains, i.e., it is the sum of the

exponents of all the letters of that term.

E.g., 5 ax is of the 2d degree, and 32 a^cy^ is of the 8th degree.

An integral polynomial is said to be of the same degree as its

highest term ; if all of its terms are of the same degree, it is said

to be homogeneous.

E.g., 6 aby- — 2 bmx + 5 ciH^y is of degree 6, and 2 ax^— 6 xyz + 5 abx — y^ is

homogeneous, and of degree 3.

One is often concerned with the degree of a polynomial (or of a

term) with regard to some rather than all of its letters ; in such a

case only those letters are considered in determining the degree.

E.g., 5 a^x^y — 3 ab^xy"^ + 2 x^ is homogeneous, and of degree 3, with regard to

the letters x and y; it is of degree 2 in y alone, and of degree 3 in x alone, and

non-homogeneous; its degree in all the letters is 7.

A polynomial is said to be arranged according to ascending

powers of some one of its letters if the exponents of that letter, in

going from term to term toward the right, increase, and that letter

is then called the letter of arrangement; it is arranged according

to descending powers of the letter of arrangement if taken in the

reverse order.

E.g., 2 x3 — 5 ax^y — 7 b^y^ + 3 m^y^ is arranged according to descending

powers of x, and ascending powers of y.

42. Multiplication in which the polynomials are arranged. If

each of two polynomials be arranged according to powers of some

letter which is contained in each, then their product will arrange

itself according to powers of that letter, and the actual multipli-

cation will take on an orderly appearance.

E.g., to get the product of 7x — 2x^ + 5 + x^hYSx + 4:X^— 2, arrange the

work thus: Check

x3-2a;2+ Tx + 5 =11, whenx=l
4.r2 + 3 3; — 2 = 5 , when x = l

4 x5 — 8 a;4 + 28 xS + 20 3-2

3x*- 3;3 + 21x2+15x
—2x3+ 4a-2— 14 a; — 10

4x5 — 5x* + 20x3 +45x2 -1-x— 10 =55, when x = 1
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EXERCISES

1. Is the monomial fa^z* integral or fractional? With regard to

what letters is "
^

-^ integral? With regard to what letters is it

fractional ?

2. What is meant by the degree of an integral algebraic expression?

When is such an expression said to be homogeneous?

3. Arrange the expression 4 ax^ — 7 x^ A- b x^ — 2hx — ^ a^ according to

descending powers of x. Also according to ascending powers of x. Of

what degree is its present first term?

4. Arrange the expression 3 x'^y^ + xy^ — 8 x^y^ — 6 x^y"^ + x^y accord-

ing to descending powers of x. How is it then arranged with reference

to y ? Of what degree is this expression ? Is it homogeneous ?

In the following exercises arrange both multiplier and multiplicand

according to some letter contained in each, then multiply and observe

that the product has a corresponding arrangement.

Multiply

:

5. 6 a;2 - 2 + 5 a: + 3 a:8 by a;2 + 5 - a:.

6. 2a + a8 - a^ - 1 by 4 - a2 + a.

7. 3 a^x - 4 ax"^ { x^ - a^ by a'^-ax-\- x\

8. 3 xy^- 2/8-3 x'^y + x^ hj -2xy-\-x^ + y\

9. a:2^2 _ y.yz + 2/4 _ ^.s^ ^ a:* by x'^-\-xy- y\

10. 4A2r-/ir2-A8+2r« by ^-2r.

IJ.. In the product of two homogeneous polynomials, one of degree 5

and the other of degree 2, what is the degree of each term? Why?
Is then this product homogeneous? Show that this consideration may
be used as a partial check upon the correctness of such a product.

Compare also Exs. 7-10.

12. Find the product of ax"^ + h'^x + a%, a-\-h+ x, and a — x. Should

this product be homogeneous ? Why ?

13. Find the product of 2 m^ — 5 mn + 3 n^, 3 m — 2 n, and 1 — m — n.

Should this product be homogeneous?

Expand,* and check, the following indicated multiplications

:

14. (Za + 2h)(2ax-a'^-x'^)(hx-2a).

15. {x^ _ 3 a:8^ + 2/4 - 3 xy^) {x'^ -2xy+ y^).

* An indicated product is said to have been expanded when the multiplication

has been performed.
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16. (3r2_5r + 25)(s-2f + r)(3-s- 0-

17. [3 X + 2 2/
- 3 (y + 2 a;) - 2] [2 - 5 (a: - 2 + 3y)] (a; + y - 1).

18. (x + yy, i.e., (x + 7/)(x + y) (x -\- y).

19. (^x - yy(x -h yy.

20. (a-2 6)8(2a-&)(2a + 6).

21. (x2 + xy + ?/2)(a:-2/).

22. (a8 + a% + a6'^ + 63) (a-b).

23. (z2 + a:?/ + ?/2) (x-2 _ a;e, + ^2) (^ _ y) (a; 4. 2,).

24. If the multiplier and multiplicand are each arranged according to

the descending powers of some particular letter, how will the product

arrange itself ? From what two terms is the highest term in the product

obtained? The lowest term in the product?

25. The results in Exs. 21-23 show that some of the terms of a

product may cancel each other, and that the number of terms in a

product of polynomials may be as small as two. Show that there must be

at least two terms in such a product (cf. Ex. 24).

26. When both multiplier and multiplicand are arranged according to

the powers of some letter, the actual work of multiplying may be some-

what shortened, thus :

Multiply 3a;4-2a;3_5x2 + (Ja:-4 by 7a:2 — 3a; + 2.

Ordinary Process Shorter Process

3 X*— 2 a;8- 5 x^+ 6 a; - 4 3 x^— 2 x^- 5 x^+ 6 a; — 4

7 a;2_ 3 a; + 2 7 a;^— 3 a; + 2

21a;6--14 x^—'So a;4+42 a;3--28 .i;2 21x6--14 a:5-35 a;4+42 a;8--28x2
-- 9 a;5+ 6 x^-\-15 x^--18a;2+12a; -- 9 + 6 +15 --18 +12 a;

+ 6 a;4- 4 a-3--l()a;2+12a;--8 •+ 6 - 4 --10 +13 --8

21 a;6—23 x6-23 a;4+53 a:3-5(i x2+24 a;—8 21 x6-23 a;5-23 x^+ss a;8-56 x2-(-24 x—

8

Perform Exs. 5-9 by this shorter process, and check the work.

27. Since the powers of the letter of arrangement in the multiplication

in Ex. 26 follow one another in regular order, in each partial product,

the process may be still further abridged by omitting the letters until the

very end. This is known as the method of detached coefBlcients.

Thus, to multiply 3 x* - 2 x^ — 5 x2+ 6 x — 4 by 7 x2 - 3 x + 2, write only the

coefficients

:

3 2 5+6 4

7- 3+ 2

21 — 14 — 35 + 42— 28

- 9+ 6 + 15-18 + 12

+ 6- 4-10 + 12-8
21 — 23 — 23 + 53-56 + 24 — 8

i.e., the product is 21 xS— 23 xS — 23 x^ + 53 x3 — 56 x2 + 24 x — 8.

Perform Exs. 5-9 by the method of detached coefficients.
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28. Since, for example, 7325= 7(10)3+ 3(10)2 + 2 (10) + 5, jg not

ordinary arithmetical multiplication performed by means of detached

coefficients? Only the coefficients of the various powers of 10 are used.

29. Any absent term, in the regular order of arrangement of a

polynomial to be multiplied by using detached coefficients, should be

inserted, with zero for its coefficient.

Thus, multiply 3 a;4 - 2 xs + 6x-i, i.e., dx^ - 2x^ + Ox^+ 6x - i,hj

bx-2.
Compare this with such multiplications in arithmetic (see Ex. 28).

30. Multiply 2 a^ — 5 a + 1 by 4 a — 2, using detached coefficients.

31. Multiply 6 x* — 2 a;2 — 5 by 3 x^ + 5 a;, using detached coefficients.

II. DIVISION

43. Law of exponents in division. Assuming for the present, as

in arithmetic, that the quotient is not changed if equal factors be

cancelled from dividend and divisor, the law of exponents in

division is easily discovered.

For example, —^= ——'-—'-—'— [Definition of exponent

i.e.f a'^-i-a^ = a^'^.

Similarly, x^ -h x^ = x^~'^ = oc^

;

and s^ _i. g8 _— _—

In precisely the same way, it follows that if m and n are any

two positive integers, then

a"* -f- a" = a"*"", when m > ri,* .

a*" -J- a"* = 1 , when m = n,

and a"* -7- a" = , when in < n.

* The symbols > and < stand, respectively, for " is greater than " and " is less

than "
; thus, m > n is read :

" m is greater than n."



42-44] DIVISION 63

44. Zero and negative exponents defined. Thus far the symbol a"

has been defined only when n is a positive integer ; we are there-

fore still free to say what we shall mean by such symbols as a~^

and a". It will be found advantageous to agree that, when such

symbols present themselves in any operation, a" shall be inter-

1 *
preted to mean 1, and a~* shall mean —

•

Under this definition of a" and a~*, the three expressions for the

quotient of a*" -r- a", which are given in § 43, may be replaced by

the single expression ^m _^ ^» _ ^m-n

whether m "> n, m = n, ov m < n.

For, when m = n, then a^'-i-a'' = a"*"", because then a"* h- a^ is

manifestly 1, and a™"" is a", which is also 1. Again, when m<in,

thena'"-T-a"= (§ 43), but by the above definition = a-^"-"*)

= a'^"'*, so that even in this case a'^-^-a'' = a"'~".

Hence, with this extended meaning of an exponent, the quo-

tient of any two powers of a given numher is that power

of the number whose exponent is the exponent of the divi-

dend minus that of the divisor.

EXERCISES

1. What is the meaning of x^'i oi x^l .

2. How many x's in the product of x"^ by a;^? How, then, may this

product be most simply written ?

3. How is the exponent of the product of two or more powers of any

given number obtained? Why?

4. Since x"^ • x^ = x'^^, what is the quotient when x^^ is divided by x^ ?

Why ? What is the quotient of x^'^ divided by x'^ ?

5. What is the quotient of N^ divided by N^"^ of y^^ divided by ^/5?

of p^^ by p' ? of x^ by x*" ?

6. How is the exponent of the quotient of two powers of any given

number obtained ? Why ?

* In extending the meaning of any symbol already in use, there is one principle

that should always be observed, viz., the extended meaning should be such that

any rules of operation already established for the symbol in question shall not

be disturbed (cf. Ex. 9, below).
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7. With exponents restricted to positive integers, could one say that

T" -f- a;'' = a;""'" without knowing the relative values of n and r?

8. What meaning is it necessary to give to zero and negative exponents

so that x" -f- a;'' may equal x"-'", even when n = r and when rKir'i Why V

9. In § 37 it is shown that a"* • «"=:a"»+" when a represents any num-
ber whatever, and m and n are any two positive integers ; show that this

equation is still true if m, or n, or both m and n, have zero or negative

values (cf. footnote, p. 63).

10. What is the meaning of m-^'i oi x^l of (-)~^? Is a" equal to

x^ even when a is not equal to a; ? Why ?

11. What is the product of x^ by x-^1 Is it a^+i-^) ? Why? What
is the quotient of a^ divided by a^? Is it a^~^? Why? What is the

quotient of N^ - iV-2? Is it iV5-(-2) ? Why ?

45. Division of monomials. Since division is the inverse of

multiplication, i.e., since the quotient multiplied by the divisor

equals the dividend [§ 3 (iv), note 1], therefore it follows from the

method of multiplying monomials (§ 38) that the coefficient of
the quotient of two monomials is tl%e coefficient of the divi-

dend divided hy that of the divisor, and the exponent of
every letter in the quotient is the exponent of that letter in

the dividend diminished hy its exponent in the divisor.

E.g., 12 a5x8 ^ 4 a'^x^ = ^^a^-'h:,^-^, i.e., 3 aH^ ;
- 18 a^¥ -^Q a«b^ = Ili^a4-863'-2

=- 3 a65 ; and 5 m^x^ -f- 10 m'^x^= j% m^-^x^-^ = i m^x-^ = 1 ?^^
(§ 44)

.

Dividing one monomial by another may also be accomplished by cancellation,

as in § 43. To test the correctness of a quotient, multiply it by the divisor ; the

product should be the dividend.

s EXERCISES

1. What is the quotient of Q a^ divided by 2 a? of 15 a^'^ divided

by 3 a2a-4? of 12 m^x^ divided by - 4 a:2?

2. How is the sign of a quotient determined? the coefficient? the

letters ? their exponents ?

3. How may the correctness of a quotient be tested ? Perform the

following indicated divisions, and test the result in each case

:

18 a^x^ -f- 3 ax2; 15 hY - (- 6 Jip^) ; and - | mh^ divided by - | mh\



44-46] DIVISION 65

4. What is the sign of the product of two monomials each of which

is positive V Of their quotient ?

5. Answer the same questions as in Ex. 4 if each of the monomials is

negative ; also if one is positive and the other negative.

6. If two monomials have like signs, what is the sign of their product ?

of their quotient? In multiplication how is the exponent of any particu-

lar letter in the product obtained? in division?

7. Multiply 5 a^b^ by 2 a^c^ ;
3^ ?n%3 by 2 vix^t/ ; 2^a^x-^ by - 6 a^xh

;

and - -m-'Y by j% ah-'^k^.

8. Divide 18 mV by - 3 wV^ ; - -a^x-^ by |f a-^x^ ; and (D^n^z^ by
3^

(— j^^)%22. Also test the correctness of the result in each case.

9. Divide \ h^kH-^ by - | h^k'^] - 27 ahn-^x'^ by - ^ iif-xy^\ 2 x^+^

by 6a;"»; and 15 a%^^" by ^axP+^y"". Also test the correctness of the

results.

10. Show that even when some of the exponents are negative, as in

Exs. 8 and 9, the exponent of any letter in the quotient, of one monomial

divided by another, is the exponent of that letter in the dividend dimin-

ished by its exponent in the divisor.

11. Based upon the definition of such a symbol as x-% given in § 44,

show that x^y-^ = — : that 6a%-3^-4 = -— ; that -—n^^T^-,; and

, , , m^n^x~'^ _ a~^rrfin^

a*x^y^ x^y^

12. Following the suggestion of Ex. 11, show that a factor may be

transferred from the numerator to the denominator of a fraction, and

vice versa, by merely changing the sign of its exponent.

46. Division of a polynomial by a monomial. Since the quotient

multiplied by the divisor always equals the dividend [§ 3 (iv)],

therefore the quotient of a polynomial divided by a monomial

must, by § 39, be a jjolynomial whose separate terms being multi-

plied by the divisor produce the separate terms of the dividend

;

hence this quotient is obtained by dividing each term of the divi-

dend by the divisor.

E.g., (15 a2x8_ lo hx^y + c2a;2) -j. 5 a:2 = 3 a2x — 2 hx'^y + \ c^.
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EXERCISES

1. What is meant by saying tliat division is the inverse of multi-

plication V

2. Since (^a -\-h — c + d) • s = as + bs - cs + ds, what must be the quo-

tient of (as 4- bs — cs + ds) divided by s ? Why ?

3. What is the quotient of 15 ax^ — 6 a*bx -f 21 a^x^y"^ divided by 3 ax ?

Why?
4. How may any pohmomial whatever be divided by a monomial?

How are the signs of the several quotient terms determined? their

coefficients ? their letters ? their exponents ?

5. Divide 6 a^x^ - 9 ab^x^ - 15 a^c^x^ by 3 ax^ ; also by - 3 ax^.

6. Divide — x + 4 ax^ — 3 m^x — 6 ainx by — ar ; also by 2 x.

7. Divide — m — n + a: — aby— 1.

8. Divide 26 a^m^ - 52 a%m^ - 39 a^m^x^ by - 13 a%2; also by 13 a%2.

9. Divide - 10 r^s^y^ - 25 k^rh^ + 15 ad^r^s^ by 5 rh ; also by - 5 r%2.

10. Divide iam^-Q a'^x^ + 3 a-^mx by | a2:c-i.

11. What is the meaning of a negative exponent? of a zero expo-

nent? How may the correctness of an exercise in division be verified?

Perform the following indicated divisions and verify the results

:

/ 12. (- a2m3 - 4 a%^x-^ -f- 6 a-'^WmH-^)^(-\ aWcH'^).

[What is the effect of such a factor as a" in any tgnn ?]

13. (-1 m2x-2 + \ chn'^x'^ - \ a^mr'^x'^) -f- 1 a^rrrH^.

14. {x{x 4- yy - x\x + 2/)8 -f a;3(a: -f 2/)2} - {- x{x + 2/)2}.

15. {_ (a _ 6) - 2(a - by + 3(a - &)4} -^ {- (a - 6)}.

16. (a™ - 2 a'^+i - 5 a^+2 + 3 a"*-!) -=- 1 a"*.

17. (2«+4-3 2"-i + 4a22)^(_ ign-i).

18. (a"&" - I
a"-i6''+i + ^^ a^-^ft^+s) -^ f

anj-n

47. Division of a polynomial by a polynomial. Since (see § 42)

(4a^+3a;-2) • (a^-2a;2+7a;4-5)=4a^-5 0^4+20 a^4-45a;2+a;-10,

therefore, with this last expression as dividend, and x'—2qi?-\-1x-\-o

as divisor, the quotient must be 4 ar^ + 3 .'« — 2, i.e.,

(4a;«-5a;*-f20arV45aj2+a;-10)-i-(a:3-2aj24-7a;+5)=4a^4-3a;-2.

The process of obtaining this quotient from the given dividend

and divisor will now be explained.
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Since the dividend is the product of the divisor by the quotient,

therefore the highest term in the dividend is the product of
the highest term in the divisor multiplied hy the highest

term in the quotient, and therefore, if 4 ar^, the highest term in

the dividend, be divided by y?, the highest term in the divisor, the

result, 4 a^, is the highest term in the quotient.

Moreover, since the dividend is the algebraic sum of the several

products obtained by multiplving the divisor by each term of the

quotient, therefore, if 4 ar* — 8 a;* + 28 a^^ + 20 cc^, the product of the

divisor by the highestterm of the quotient, be subtracted from

the divrdenci, the remainder, viz., 3 a;"* — 8 a^ 4- 25 oi? + x— 10, is the

sum of the products of the divisor multiplied by each of the other

terms of the quotient except this one.

Eor the same reason as that given above, if 3 x^, the highest

term of this remainder, be divided by a^, the highest term of the

divisor, the result, 3 x, is the next highest term of the quotient.

By continuing this process all of the terms of the quotient may
be found. It is convenient to arrange the work as follows

:

a;3-=.2ic2d-7a;i5

4.5S1-3X -2
^

4a;5-5a;4+ 20x3+ 45a;2+x-10
(,^;3-2j-2+ 7x + 5)-4x2= 4x5-8x4-1-28x3+ 20x2

V 3 »4^ 8x3+ 25x2+x- 10

(x3-2x2+7x+ 5) .3x = 3x4- 6x3+ 21x2+ 15

x

Quotient

- 2x8+ 4x2— 14a;— 10

(x3-2x2+7x+ 5)- (-2)= - 2x3+ 4x2-14-x-10

Check

When x = l, dividend = 55, divisor =11, and quotient = 5, as it should.

Even if it is not known beforehand that the dividend was

actually obtained as the product of two polynomials, the process

of division may still be applied as above.

The method just now explained, which may be employed to

solve any example whatever of this kind, may be formulated

into the following rule

:

(1) Arrange both dividend and divisor according to the

descending {or ascending) powers of some one of the letters

\
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involved in each, * and write the divisor at the right of the

dividend.

(2) Divide the first term of tlxe dividend hy the first term

of the divisor, and write the result as the first term of the

quotient.

(3) Multiply the entire divisor by this first quotient term,

and subtract the result from the dividend.

(4) Treat this remainder as a new dividend, arranging

as before, and repeat this process until a zero remainder is

reached, or until the remainder is of lower degree in the

letter of arrangement than the divisor.

Note. Since each remainder is of lower degree in the letter of arrangement,

than the preceding one, therefore it is always possible to comply with (4) in the

rule just given. If a zero remainder is reached, then the division is said to be

exact ; otherwise the complete quotient consists of an entire algebraic expression

plus a fraction whose numerator is the last remainder and whose denominator is

the given divisor.

EXERCISES

Divide (and check your results) ;

1. a:2 + 7 a: + 12 by x + 3. 2. a;2 - a: - 20 by a; - 5.

3. &2 _ 6 6 _ 16 by & + 2.

4. p^ + ^p^+Qp'^-\-bp-\-2 byp2 + j9 + i.

5. 2 a;4 + 6 x2 - 4 a: - 5 a:3 + 1 by a;2 - a: + 1.

6. 3 a* + 3 a2 + 3 + 3 a + a6 + 5 a8 by 1 + a-t

7. 4 a:?/2 + 8 x8 + 2/8 _^ 8 x'^y by y + 2 x.*

8. 6 aH"^ - 4 a^a; - 4 ax^ + a* + a;* by a^ + a;2 - 2 ax.

9. 2a^-\-B -oa^k-4. ak^ + 6 a'^k^ by k^ + a^ - ak.

10. If the quotient be multiplied by the divisor, how' must the result

compare with the dividend? What must the result be if the dividend

be divided by the quotient ?

* If there is more than one letter involved in the given polynomials, then the

expression " highest term " in the explanation on p. 67 is to be replaced by " term

of highest degree in the letter of arrangement."

t Just as in "long division" in arithmetic, so here, some labor may be

saved by bringing down only so much of the remainder at any stage of the

work as is needed in the next step.
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11. If the partial quotient, at any stage of the process of division, be

multiplied by the divisor, and the coiTesponding remainder added, how
must the result compare with the dividend?

12. Could the principles involved in Exs. 10 and 11 be employed as

a check upon the correctness of an exercise in division? Is this check

more or less conclusive than that given in connection with the solution on

p. 67? Why?
13. Is it necessary or merely convenient to arrange both dividend and

divisor according to the descending or the ascending powers of some

letter contained in each? Could not the highest term of the dividend

be divided by the highest term of the divisor in whatever order the

terms of these expressions are written?

14. Divide 2 a:^ + a;* + 49 a;2 - 13 a; - 12 by x^ - 2 a;2 + 7 a; + 3.*

Divide (and check the results) :

15. v^ - r* - 1 + 2 y + y3 _ y2 by ^ - I -\- v^.

16. a5 - 41 a - 120 by a^ + 4 a + 5.

17. m4 + 16 + 4 m2 by 2m + m^-{- 4.

18. cd - d^ -{- 2 c^ hj c -{- d. 19. x^ - if hy x - y.

20. a-* - 16 64 by a - 2 h. 21. h^ - F by h^ + k\

22. a^"' - a;2™ by a" - rr". 23. m2« + 11 w« + 30 by m» + 6.

24. x'^+^y" — 4 a:w+«-i^2n _ 27 x'^+w-s^/S" + 42 x'^+'^-^y'^ by a,"" + 3 x'^-hj'^

- 6 x-^-hf^.

25. ^^x^-lx^y-\-\%x''y''^r\xy^hy \x^\y.

26. 1.2 ax^ - 5.494 a^x^ + 4.8 aH'^ + 0.4 a^a: - .478 a^ by 6 aa: - 2 a^.

27. (3 x* - 1 + 3 a: + 6 a:2 + 7 a;3) (1 + a;2 - a:) by x + 1 + a:^.

28. a5 - &5 by (a^ + W) (a + &) + a^V^.

29. 10 xV _|_ 3.5 _ 10 x2?/8 + 5 x?/* - 5 x^!/ - ?/5 by x^ + y2 _ 2 xy,

30. 2 x2 - 2 ?/2 _ 3 ;22 _ 3 a.^/ _ 5 2.2 _ 52/s by x - 2 3/ - 3 z.

31. x4 - 3 x3 +x2 + 2 X - 1 by x^ - x - 2.

[In Ex. 31 the complete quotient is

x2— 2 X + 1 + ~^
; compare $ 47, note.]

32. x8 + X - 25 by X - 3. 33. a^ - 1 by a + 1.

34. 2 s8 - 3 s + 8 by s2 _ 4.

* Since there is no term in x^ in the dividend, care must be used to keep the

remainders properly arranged (of. Ex. 29, p. 62).
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35. 4 m^x^ - 8 m^x^ + 40 m^^ +95 by 5 + 3 7nx - m^x^

36. abc + ax'^ + a;' + ahx + feo^^ -)_ c:r2 _|_ ^(,^ _|. j^^ ^y ^2 ^ ^j^ ^ ^j^ ^ ^^_

Since a; occurs in more terms than any other letter, it will be best to arrange

the work in Ex. 36 thus

:

x2+(a + &)a; + a6

x + c

a:8 + (a + 6 + c)a;2 + (ab + ac + bc)x + abc

xs+{a + b)x^+ abx

cx^+ {ac + bc)x-{- abc

cx^+ (ac + bc)x + abc

37. adx*-\-cf-^bfx-\-bex^+ ecx+ bdx^+(af+cd)x^-\-aex^ by ax^+Jx + c.

38. ay-^ — aby + y^ — by^ — acy — cy^ -\- bey + abc by y^ — ab — by + ay.

39. 14:xy^+6x^-4:y^-lQx^y-2x'^-2y^ + 4xy by 3 a; - 1 - 2 3/.

40. 7 a;3 + xs + 2 x4 - 46 a; + 6 a:2 - 120 by 4 a; + 5 + a;2.

41. 7 a2 _ 6 a3 + a4 - 4 a - 12 by 3 - 2 a + a2.

42. (4 m4 - 5 m262 + ^4) (5 ^2^ + ^^s + ^3 _^ 5 ^.^2)

by (2 w2 - 3 w6 + ^2) (a;2 + ^2 _^ 4 3:3/).

43. a^ - 63 _,. c3 + 3 a&c by a^ + b'^ + c^ + ab - ac + be.

44. a:6 - 6 a: + 5 by x2 - 2 a; + 1.

45. Divide Sab { a^ -\-b^ by a + 6, arranging according to descending

powers of a. Perform this division also with the expressions arranged

according to descending powers of b, and compare the two results.

46. Divide 2 xy^ + 3 x* — 4 a:2^2 _ 7 x^y + y^ by x^ + y'^ — xy, arranging

first according to powers of x,.then according to powers of y, and com-

pare the results.

47. As has just been seen, in Exs. 45 and 46, the form of the quotient

depends upon the choice of the letter of arrangement lohen the division is

not exact; prove that this is not the case when the division is exact.

48. Divide p^ -\- q^ by p -\- q, until 4 quotient terms are obtained.

49. Divide a by a — ar, to 5 quotient terms.

50. Divide 1 by 1 — r, to 8 quotient terms.

51. Divide 1 by 1 — mx, to 4 quotient terms.

52. Divide a:« — y" by x + y, to 8 quotient terms. What does this

quotient become when w = 2, 3, 4, •.-? What is the remainder when

n = 2, 4, 6, 8, ...? when n = 3, 5, 7, - ?

53. Examine the quotient (x» — ?/") -^ (x — y) under the same circum-

stances as in Ex. 52. Also (a"+ 6") ^(a+ft), and (p" + 5")-^(jo-^)-
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/ 54. Some labor may often be saved in an exercise in division by using

/ the coefficients only, and omitting the letters until the end.

/ Thus, (4a:5-5a;4+ 20cc3 + 45a.2-}-a._io)-4-(a;8-2a;2 4-7a; + 5), with letters

I omitted, becomes

4-5 + 20+ 45 + 1-10

4— 8 + 28+ 20

3- 8 + 25+ 1

3- 6 + 21 + 15

— 2+ 4-14--10
- 2+ 4-14--10

1-2+7+5
4 + 3-2, i.e., 4a;2+ 3a;-2.

This example has already been solved on p. 67 ; the student should

carefully compare the two methods. He should also note that this last

method— called the method of detached coefficients— is altogether

similar to "long division" in arithmetic, and analogous to that em-
ployed in Ex. 27, p. 61.

\By the method of detached coefficients, perform Exs. 1, 4, 5, 6, 8,

nd 9.

55. In using the method of detached coefficients, if any powers of

the letter of arrangement are absent they must be supplied, giving them
zero coefficients ; compare this with Ex. 29, p. 62. Solve Ex. 14 by this

method, writing the dividend thus : 2 x^ + a;* + a;^ + 49 a:^ — 13 a; — 12.

56. Solve Exs. 16 and 17, using detached coefficients.

57. Divide a;^ + 4 x^ — 7 x + 2 by ar — a, and show that the remainder

is what would he obtained by substituting a for x in the dividend.

58. Divide 5 m^ — 8 m + 3 by m— r, and compare the remainder with

the dividend. Similarly, divide z^ — Sz^-^z^—1 hj z — b', y^— 3y+l
by v-2; and 2 x* + 5 a;^ - a; + 10 by ar - c.

48. Remainder theorem. In Ex. 57 on this page it is shown
that when a^ + 4a^ — 7a; + 2is divided by x—a the remainder is

a^ + 4a^ — 7a + 2; i.e., the remainder is what would be obtained

-^by substituting a for x in the dividend.

To show that this relation between dividend and remainder is

not accidental, but that it is always true when a polynomial in

X is divided by x — a, let Ax"" + Bx''-'^ + Cx""-^ + \- Hx -\- K
represent any such polynomial whatever, arranged according to

descending powers of x, and let Q and E, respectively, represent
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the quotient and remainder when this polynomial is divided by

X — a; then, since the dividend equals the quotient times the

divisor, plus the remainder,

Ax'' + Bx^-' + Caj"-2 -\-...+Hx + K=Q{x - d) + B.

Moreover, since the second member of this equation, when mul-

tiplied out, must be exactly like the first member, therefore this

equation is true for all values that may be assigned to x ; but if

the value a be given to x, the equation becomes

Aa^ + Ba^-' + Ca"-^ + ... + Ha + K= R*
hence, in every such division, the remainder may be immediately

written down by substituting a for x in the dividend.

It also follows from this theorem that if

then Ax"" + Bx""-^ + Cx""-^ -\ + Hx + K is exactly divisible by

x — a, for in that case the remainder is zero ; and conversely.

EXERCISES

1. What is the remainder when 3 a:* — 2 a: + 1 is divided by a: — c ? by

x — a'i byx — 2? Answer these questions by means of § 48.

2. What is the remainder when y^-\-2 y^—\i:y — ^ is divided by ?/— a?

by 2/ — A;? by 2/ + 2, i.e., by y — (— 2) ? by ?/ — 3 ? Try the last two cases.

3. Is ar — 3 an exact divisor of x* — 4 x^ + 5 a: + 12 ? Answer without

actually performing the division.

REVIEW QUESTIONS-CHAPTERS l-V

1. Define the following operations : addition ; subtraction ; multipli-

cation ; division. Which of these are inverse operations ? Explain.

2. Point out at least one advantage which the definition of multipli-

cation as given in § 3 (iii) has over the usual arithmetical definition.

3. In a number system consisting of positive integers only, is division

always a possible operation ? How must this number system be enlarged

so that division may be always possible ?

Answer these questions with regard to subtraction also.

* Since, in that case, Q{z — a) becomes Q{a — a), i.e., 0.
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4. Point out at least two advantages of using letters to represent

numbers.

5. Define and illustrate a negative number. How may a negative

number be subtracted from any given number? State and prove the
" law of signs " for multiplication of negative numbers. Also for division.

6. How may a parenthesis which incloses several terms, and which
is preceded by the minus sign, be removed without affecting the value

of the expression^ Why ?

7. Define an algebraic expression; a term; a binomial; a poly-

nomial; a coefficient; an exponent; the degree of a term, and of an
integral polynomial.

8. State the several steps in solving an algebraic problem. What
axioms are frequently used in such solutions? What is meant by
" checking the work " ?

9. How are two or more similar monomials added? State a rule for

subtracting one polynomial from another.

10. Prove that a"» • a" • qp = 0"*+"+^ if a is any number whatever and
m, n, and p are positive integers.

11. How may the product of two or more monomials be obtained ?

12. Give a rule for dividing one polynomial by another. Also explain

a device for abbreviating the work. State two ways of checking the

correctness of an exercise in division.

13. Are negative numbers ever used as exponents? Is zero so em-

ployed ? What is the interpretation of such symbols as 5-^, a°, and x-« ?

What is the advantage of such exponents?

14. Prove that, under a proper interpretation, negative and zero

exponents conform to all the laws previously established for positive

integral exponents.

15. Prove that any factor may be transferred from the numerator of

a fraction to the denominator, or vice versa, by merely reversing the sign

of its exponent— whether the given exponent be positive or negative.



CHAPTER VI

COMBINATORY PROPERTIES OF NUMBERS*

49. Introductory. Some combinatory properties of numbers,

the correctness of which has thus far in this book, and also in

arithmetic, been assumed, deserve to be somewhat carefully

studied. This further study is not so much needed to give the

student confidence in their correctness as it is to justify the con-

fidence he already feels; it is designed to guard the student

against drawing conclusions which are not fully warranted.

To illustrate : since by actual counting 3+5 = 8 and 5 + 3 = 8,

therefore 3 + 5 = 5 + 3; similarly it is found that 9+2 = 2 + 9,

15 + 7 = 7 + 15, etc. ; but merely verifying this fact in particular

cases does not warrant the conclusion that a + 6 = 6 + a, when a

and b represent an untried pair of numbers. So far as the above

reasoning is concerned, the very next pair of numbers that is

tried may prove to be an exception.

If a large number of verifications could establish a general law,

then the conclusion that a* = 6", for every pair of numbers, would

be valid to one who had happened to try only those pairs of num-

bers for which this is true ; e.g., 2^ = 4P.1f

50. Commutative law of addition. In § 49 it was verified that

3 + 5 = 5+3, 9 + 2 = 2 + 9, etc. These are particular cases of a

general principle which is known as the commutative law of addi-

tion. This law may be stated thus : the sum of two or more
numJbers is not changed hy changing the order in which
these numbers are added.
That this law is true for every set of numbers without exception

will now be shown, not by verifying it in particular cases,— that

* This chapter may, if the teacher prefers, be omitted on a first reading,

t Admitting fractional exponents, which are introduced later (§ 153), the num-
ber of pairs of numbers for which a^ = 6« is infinitely large.

74
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method would not really prove anything for any untried set of

numbers (§ 49),— but by fundamental considerations based upon

the primary meaning of number.

(i) The numbers positive integers. To show that a + 6 equals

6 + a, whatever positive integers are represented by a and h, let

there be a objects * in one group and h objects in another, then

a + 6 means the number of objects in the group formed by adding

the objects of the second group to those of the first, and h -\- a

means the number of objects in the group formed by adding the

objects of the first group to those of the second; but manifestly

the total number of objects in the two groups f is the same
whether the second group be added to the first or the first to the

second, and therefore a -{- h = h + a.

Similarly, the correctness of this law is shown for any number
of positive integers.

(ii) The nuwibers negative integers. Since the sum of any

number of negative integers is found by getting the sum of the

absolute values of these numbers and ]3refixing to this sum the

minus sign (§ 16), therefore, by (i) above, the commutative law is

true for any number of negative integers.

(iii) The numbers integers, some positive and some nega-

tive. Such a sum as 2 -f-(— 6)+7 is obtained by first adding —6
to 2 and then adding 7 to that result; but 2 + (- 6) = — 4 (§ 16),

and —4-1-7 = 3; i.e., two of the negative units in — 6 are can-

celled by the 2, and the — 4 that remains cancels four of the

positive units in 7. Similarly in general.

In other words, in adding positive and negative numbers one

negative unit cancels one positive unit and but one, and viee versa.

Now neither the number of positive units nor the number of

negative units is changed by changing the order in which the

addition is performed [(i) and (ii) above]; therefore the sum
(the number of uncancelled units) is not changed by changing

the order in which the additions are made.

* These may be any objects whatever, and need not even be of the same kind

;

for the purpose of mere counting any object may take the place of any other.

t This assumes merely that an object may be removed from one position to

another without destroying its individuality.
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(iv) TJie numhers fractions. It will presently be shown that

any given fractions can always be reduced^to equivalent fractions

having a common denominator, and such that the numerators

and denominators are integers ; it will also be shown (§ 54) that

such a fraction as — is equal to m times -• Assuming this
n n

for the present, it follows that the commutative law is true for

this case also, for, if the simplified fractions are — , -, -, etc.,
n n n

then —!-- + - + ••• means m times - + » times - + q times
n n n n n

_ _{_ ... i,e., if - be called the fractional unit, then—h - + - + •••

n n n n n

means m -fp + g + ••• times this fractional unit; but, by (i), (ii),

and (iii) above, the sum m + j9 + g + ••• is independent of the

order in which the addition is performed; therefore—h - + - Hn n n

is independent of the order in which the fractions are added.

Hence the commutative law of addition is true for positive and

negative integers and fractions.

51. Associative law of addition. Another law of the same

general character as that given in § 50 above, is known as the

associative law of addition, and may be stated thus : the sum of

three or more numbers is not changed hy grouping together

two or more of the swmmands, and replaxAng them by

their sum.
E.g., 3+ 6 + 2 = 3+ (6 + 2) = 3+ 8, [Each member being 11

and 5 + 3+ 6 + 8=5+(3 + 6) +8 = 5+9 + 8. [Each member being 22

To show that this law, which has just been verified in two

particular cases, is true for any set of numbers whatever (positive

or negative, integers or fractions), let a, 5, c, and d represent any

four such numbers

;

then a+h + c + d=h + d-\-a-[-c [§50

= (& + c^) + a + c [§ 8

= a + (6 + d) + c, [§50

i.e., the numbers h and d may be grouped together and replaced

by their sum ; similarly for any two or more of the summands.
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Observe that the process employed in the proof just given is entirely general,

i.e., that it applies to any number of summands and to any desired grouping of

them ; it consists in first bringing the numbers which it is desired to group together

into the leading places in the sum (§ 50), then grouping them together (§ 8), and
then putting the group (which is a number) into any desired place (§ 50).

52. Commutative law of multiplication. Another principle

which the student has ah-eady used freely, and which is of the

same general character as those given in §§ 50 and 51, is known
as the commutative law of multiplication. This principle may be

stated thus: the product of two or more numbers is not

changed hy changing the order in which the multiplica-

tions are performed.

E.g., 5 • 8 = 8 • 5. [Each member is 40

So. too, 3.4-9 = 4-3-9 = 9-3.4, etc. [Each member is 108

Although the law which has just been stated and illustrated is

true for any numbers whatever, its complete proof necessarily

divides itself into several parts ; the proof of its correctness when
some or all of the numbers are fractions is given in § 54 (iii),

while the part of the proof which concerns integers only will now
be given.

(i) Proof for three positive integers ; also for two. Let a,

h, and c represent any three positive integers whatever,* and let

a rectangular array containing h rows and c columns of groups

of a objects each, be formed, thus

:

c columns

a, a, a, ••-, a

a^ a, a^ '", a

6 rows • a, a, a, '", a

[ a, a, a, •••, a

Since there are a objects in each group and b groups in each

column, therefore the number of objects in a column is a • 6 ; and

since there are a • b objects in each column and c columns, there-

* When reading this proof for the first time, it may be best for the student to

use a set of particular numbers such as 3, 5, and 6 instead of a, b, and c.
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fore the number of objects in the entire array is («•&)• c, i.e.,

a ' b ' c*

Again, the number of objects in a row is a • c ; and, since there

are b rows, the number of objects in the entire array is (a • c) • b,

i.e., a ' c 'b.

But the number of objects in the entire array is manifestly the

same when they are counted in one order as it is when they are

counted in another ; therefore

a -b • G = a' c 'b, (1)

i.e., the product of any three positive integers is not changed by inter-

changing the order of the second arid third.

If a = 1, then equation (1) becomes

b'C = C'b, (2)

i.e., the product of any two positive integers is not changed by inter-

changing their order.

Eemark. Since multiplier and multiplicand may be inter-

changed, each is called a factor of the product ; and, in general,

the numbers which multiplied together produce a certain product

are called the factors of that product.

(ii) Proof for any numher of positive integers. By means
of the proof given in (i), it is easily shown that any two consecu-

tive factors, in a product of two or more integers, may be inter-

changed without changing that product.

E.g., that Jc'm-n'P'S^k-ni'p-n-s,

may be shown as follows

:

A; • m • n • p = (^ • m) • 71 • /) . [§ 8

= (k-m) 'p '71 [(i) above

= k -m • p -n, [§ 8

i.e., k- m-ri' p = k- rri' p ' n;

whence k'm'n'P'S = k-m-p'n-s, [Multiplying each member by s

i.e., the product k • m - n • p • s is not changed by interchanging the two consecu-

tive factors n and p. Similarly in general.

* The order of multiplication being from left to right (§ 8), a • 6 • c means the

same as (a • 6) • c.
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Moreover, by successive interchanges of two consecutive factors,

all the factors of a product may be arranged in any desired order.

Therefore, the product of any number of positive integers is not

changed by any change whatever in the order of the factors.

(iii) Proof when some factors are negative. The proof

just given applies also to products in which some of the factors

are negative, because the absolute value of such a product is the

same as though all of its factors were positive ; and its quality is

determined by the number of its negative factors (§ 18, note 1)

;

hence neither the quality nor the absolute value of a product

of two or more integers is changed by merely changing the order

of its factors.

Therefore, the product of any number of integers is not changed

by any change whatever in the order of the factors.

53. Associative law of multiplication. As might be inferred

from its name (cf. § 51), this law asserts that the product of

any number of factors is not changed hy grouping together

two or more of these factors and replacing them, hy their

product.

E.g., 2. 5 -3-7 = 2- (5-3) •7 = 2-15.7. [Each member is 210

The proof * of this law is as follows : the factors to be grouped

together may, by successive applications of the commutative law

(§ 52), be brought together into the leading places, in which

position they may be grouped together and replaced by their

product (§ 8) ; if it is desired to group together still other factors,

they may now be treated in the same way.

To illustrate : if a, b, c, c?, and e represent any integers whatever,

then a • b ' c - d ' e = a ' {b ' e) • c ' d',

for a'b'C'd'e = b'e'a-C'd [§52

= (6 • e) • a ' c ' d [§8

= a ' (b ' e) ' G ' d, [§52

i.e., a -b • c ' d ' e = a' (b • e) ' c ' d,

which was to be shown.

* The proof is here limited to the case of integers because it depends upon § 52,

which is thus limited ; in § 54 (iv) the case involving fractions will be considered.
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54. Some fundamental principles involved in operations with frac-

tions.* The way to use fractions has already been taught in

arithmetic, but the underlying principles upon which such use is

based should also be carefully mastered by the student.

Among these principles are :

(i) The product of two simple fractions^ is a simple

frojction whose numerator is the product of the numera-
tors of the ^iven fractions, and whose denominator is tJie

product of their denominators

;

i.e., if 2h q, r, and s represent any four integers whatever,

then P.Z^Pr.
q s qs

In order to simplify the proof of (1), let it first be observed that:

(a) If P •n= Q- n, then P= Q; for if P is not equal to Q, let P= Q+ R
(wherein R is positive or negative) , then P - n= ( Q + jB) • n= Q- 7i-{- R • n (^39),

I

i.e., P • n is not equal to Q • n, which is contrary to the hypothesis.

(6) It follows from the different ways of counting the a's in the rectangular

array in § 52 (i) that, whatever the number represented by a, so long as b and c

are integers, , , n. \a'0'C=a'C'0 = a-{0'C).

(c) To multiply any number by the simple fraction - means first to multiply
s

that number by r, and then to divide the product by s, for the fraction - is

obtained from the unit in this way [cf . § 7 (v)]

.

*

p T pr
The proof that — • - =— is as follows

:

^ q s qs

p r p
5" *

i
* ^ * ^ = g

• *' ^ ^ • ^ • ^ [% (c) above

= |.r.g [§7(v)

p= — • g • r [By (h) above

= pr;

* Observe carefully that, in the following proofs, a fraction is always regarded

as an indicated division.

t By a " simple fraction " is here meant one whose numerator and denominator

are integers.
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pr pr
and ^— ' s ' q = — • qs

qs ^ qs ^

=pr;

[By (6) above

[§ 7 (V)

, p r pr
hence - - - • s • q = -— s • a,

q s ^ qs ^'

"Each member being

_equal to pr

and therefore - • ^—^
q s qs'

[By (a) above

which was to be proved.

(ii) The product of any numher of simple fractions is a
simple fraction whose numerator is the product of the

numerators of the given fractions, and whose denominator
is the product of their denominators.

For, since

r

prp r

q s qs

P
q s V qs V

number of simple fractions.

which is a simple fraction, therefore

=— • - = -— and similarly for the product of any
qs V qsv j r j

(iii) The product of two or more simple fra/itions is not

changed hy changing the order in which the multiplicar-

tions are performed (commutative law),

prux^prux
[By (ii) above

q s V y qsvy

[§ 52

[By (ii) above

E.g.,

purx

qvsy

_p u r x^

~q V s y^

i.e., the product of these fractions remains unchanged by inter-

cl^?9f^P^^ factors - and -: similarly in general for any num-
s V

bar of factors, and for any desired order.

Note. Since — is the same as m, and since in the above demonstrations any

of the denominators may be 1, therefore those proofs remain valid when some of

the factors are fractions and some are integers.

In particular, it follows from (iii) that

Inn
1 m

,

i
i.e.,,thatm.l = i.m =a

n '

1
'

n n n
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(iv) TTie product of any numher of fractions {and inte-

gers) is not changed hy grouping together any two or more
of them and replacing them hy their product (associative

law).

For the factors to be grouped may, by (iii) above, and note,

be brought together into the leading places, in which position they

may be grouped together and replaced by their product (§ 8) ; if

it is desired to group together still other factors, they may now
be treated in the same way.

(v) The value of any simple frojction is not changed hy

multiplying hoth numerator and denominator hy any inte-

ger whatever, or by dividing hoth hy any integer factor of

eojch.

For, since tZ= ^, [By (i) above
(^ S QS

whatever integers are represented by the letters,

therefore = =^— , i.e., — = ±—i [Since - = 1
q r qr ' q qr '- r

and, since this last equation may be read either way, the proposi-

tion is proved.

This theorem enables one to reduce fractions to their " lowest

terms," and also to reduce two or more given fractions to equiva-

lent fractions having a " common denominator."

(vi) To divide hy a simple fraction gives the same result

as to multiply hy this fraction inverted.

For, let 2^ represent any integer or simple fraction, and let -

represent any simple fraction ; then

^
N^l=N^'-.(L.£\ [Since r.? = ?:f=l

8 s \s rj s r sr

= iV^ r . r . ! [By (iv) above
s 8 r

= iVT. !, [Since J\r-^ . ^= iV, [§ 7 (v)]
r 8 ^

i.e., N-^-=N' -, which was to be proved,
s r
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Kemark. If a represents any number whatever, then 1 -i- a is

called the reciprocal of a. From this definition it follows that the

reciprocal of a simple fraction is that fraction inverted; for, if

-^= 1 in the proof just given, then

s r r

(vii) The sum of two or more simple fractions whieh
have the same denominator is a fraction whose numera-
tor is the sum of the numerators of the given fractions,

and whose denominator is the common denominator of the

given fractions.

For, let -, -, and - represent any simple fractions having a

common denominator ; then

- + - + -=«• -+h • - + c ' - [By (iii) above, note
d d d d d d

ljv/

= (a + & + c) . i [Distributive law,* § 39
d

a + b -\- c

, ah G_ a+h+c
'•'•' d^~d^d~ d

[By (iii) above, note

I

and similarly for any number of such fractions. If the given

fractions have not a common denominator, they must be reduced

to equivalent fractions having a common denominator [see (v)

above] before they can be added.

(viii) Complex fractions. A complex fraction is usually

understood to mean a fraction whose numerator or denominator

or both are themselves fractions, i.e., it is an indicated division in

which the dividend and divisor may themselves be fractions.

* In § 39 it was proved that multiplication is distributive as to addition ; the

student is advised to re-read that proof, and to observe that the reasoning there

employed makes no restriction upon the numbers involved, — these numbers may
be integers or fractions, and positive or negative. It follows then that division

also is distributive as to addition, because dividing by any number d is the same

as multiplying by - [(iii), note, and (iv)].
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By the foregoing principles, and especially by (vi) above, com-

plex fractions may always be reduced to equivalent simple frac-

tions, and may then be replaced by these simple fractions ; hence

the commutative and associative laws, which were demonstrated

above for integers and simple fractions, apply to complex fractions

also; i.e., these laws, as well as the distributive law (§ 39),

apply to any integers and fractions whatever.

55. Zero ; operations involving zero. Zero may be defined as the

result of subtracting any number from itself ; it is represented by

the symbol 0.

E.g.^ a~a = 0,

whatever the number represented by a.

By replacing by a — a it is easily shown that

71 + = 71 = 71 — 0; ' n = n ' = 0; and -f- n = 0,

where n represents any finite number whatever.

Again, since ti -i- d stands for the number which, being multi-

plied by d, will produce n [§ 3 (iv)], therefore 0^0 Tnay Jiave

any finite value whatever, because any finite number multiplied

by equals ; and 7i -^ (wherein n is any finite number) hm
no finite value whatever, because no finite number multiplied by

equals ri.* From what has just been said, it is clear that must

not be used as a divisor.

EXERCISES

1. What are the values of the expression 2 n+ 1 when n = 1, 2, 3, ••-, 15?

Are these values even or odd ?

m
2. Do the answers of Ex. 1 warrant the conclusion that 2 n + 1 rep-

nts an odd number for every integer value of n (cf. § 49) ? Prove

oth 2^ + 1 and 2^ — 1 represent odd numbers for all integer values

3. Show also that any odd number whatever may be represented

by 2 n -f- 1 by giving a suitable integer value to n.

4. What are the values of n^-\- n + 17 when n = 1, 2, 3, •••, 9? Are

these values prime or composite ?

* Compare note to Ex. 15 below.
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5. Do the answers of Ex. 4 warrant the conclusion that n^ + n + 17

represents a prime number for every integer value of n (cf . § 49) ? Is

not 17 a factor oi n^ + n + 17 when w = 17 ?

6. Do the expressions x^ + x + 4:1 and 2 a:^ + 29 represent prime or

composite numbers when x = 1, 2, 3, ••• ? Are their values prime for all

integral values of x?

Note. The above questions are designed to emphasize § 49 by showing the

kind of errors into which some distinguished matliematicians have been led by
basing general conclusions upon more or less numerous verifications. The cele-

brated mathematician Fermat concluded from a certain number of verifications

that 2» + 1 is always prime when n = 2, 22, 2^, 2^, •••
; Euler, however, discovered

later that 2^2 + 1 is a composite number.

7. What is meant by saying that addition is a commutative opera-

tion (cf . § 50) ? That it is an associative operation ?

Is subtraction commutative? Multiplication? Division? Illustrate

your answer in each case.

8. What is meant by saying that multiplication is distributive with

reference to addition (cf. § 39, and footnotes, pp. 55 and 83) ? Can you

name another instance in which one operation is distributive with

reference to another?

9. Regarding the expression — (a+J— c+---) as —l'(a + h— c-\— ),

apply the distributive law of multiplication as to addition to prove the

correctness of the principle gi^en in § 33 for removing a sign of aggrega-

tion preceded by the minus sign.

10. By means of the commutative and associative laws of multiplica-

tion, show that (3 • 2)* = 3* . 2K So, too, show that (a • 6)" = a" • &«.

Is the raising of the product of several factors to a power a distributive

operation with reference to the factors ?

11. Is (2 + 5)2 equal to 22 + 52? Compare this with Ex. 10, and then

state the operations over which an exponent is distributive, and those

over which it is not distributive.

12. Which of the combinatory laws discussed in the present chj

is it usually necessary to employ when a polynomial is simplifit

uniting similar terms? When a polynomial is arranged according"

powers of one of its letters ? When an equation is cleared of fractions ? *

13. Give the proofs which are taught in arithmetic of the principles

given in § 54. Compare the arithmetical treatment with that given here,

and note the advantages of the present proofs.

* Compare (1) and Ex. 10, of § 25.

ing; to
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14. Under the arithmetical definition is — a fraction, i.e., is it " one
n

or more of the equal parts into which a unit has been divided " ? How

is a fraction defined in the preceding pages of this book ? Is — a frac-

tion under this definition ? ^

5
15. Write down the successive values which the fraction - takes when

X

the values 1, I, |, \, -j^g, ••• are assigned to x. How do these successive

values of the fraction compare ? Can you name a number so large that

none of these values of the fraction will exceed it? Can you name a

number so near that none of the series of numbers 1, |, ^, I, y*g, ••• will

be still nearer to ?

Note. Ex. 15 illustrates the fact that in mathematical operations numbers
may arise which are greater, and others which are less, than any numbers which

we can name or even think of ; such numbers are usually called infinitely large

and infinitely small numbers, respectively,— all other numbers being classed

together as finite numbers. An infinitely large number is usually represented by
the symbol oo.

16. Having defined as a — a, wherein a is any finite number, prove

that • n = for every finite value of n.

Suggestion. Substitute a — a for 0, then apply § 39, and finally the defini-

tion of zero.

17. Point out the fallacy in the following reasoning

:

If x = a,

then x'^ = ax,

and x^ — a^ = ax — a%

[Subtracting a^ from each member

i.e.,
' (x -{- a)(x — a) = a(x — a)

;

therefore 2 a(x — a) = a(x — a), [Since x = a

«, therefore, 2 = 1. [Dividing by a (a; — a)



CHAPTER VII

TYPE FORMS IN MULTIPLICATION—FACTORING

I. SOME TYPE FORMS IN MULTIPLICATION

56. Type forms. Although all exercises in multiplication and

division of integral algebraic expressions can be readily solved by

§ 40 and § 47, yet there are a few special cases of these operations

which occur so frequently in practice that it is well worth one's

while to be able to perforin them by inspection ; they are often

spoken of as type forms. Some of these type forms are considered

in the next few paragraphs.

57. Square of a binomiaL This may be divided into two cases,

according as the binomial is the sum or the difference of two

numbers.

(i) The square of the sum of two numbers. Let a and 6

represent any two algebraic numbers ; then by actual multiplica-

tion (§ 40),

-(a + b)(a-^b) = a'-j~2ab + b\ i.e., (a + by= a^-\-2ab-{-b'.*

This formula may be translated into words thus : tlie square

of the sum of two numbers equals the square of the first

number, plus twice the product of the two numbers, plus

the square of the second number.

E.g., (x + 3)2 = a2-(-6a;-|_9
;
Q/4.p)2 = ^2 + 2yp+p2; etc.

(ii) The square of the difference of two numbers. By
actual multiplication, as before,

and, in general, (a — by = a? — 2 ab + 6^.*

The student may translate this formula into words.

* This second member is called the expansion of the binomial.

87
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Note. If either or both of the terms of the binomial are represented by more
than a single symbol, they may be inclosed in parentheses (to preserve their

individuality) and the simplified result may then be written as a third member
of the equation.

E.g., (2 X + 3 2/)2 = (2 x)2 + 2(2 x) (3 y) + (3 ?/)2 = 4rX^ + 12zij + 9 y^.

With a little practice and care, this intermediate step may, however, be safely

omitted.

EXERCISES

Expand the following expressions

:

1. Qx + yy. 8. (a -5)2.
^^

a xj2. (w + n)2. 9. (7-v)2.

4. (m + m>)2. 11. (4a + 7a;)2. ^2a 3a;/

5. (a - py. 12. (3 m4 - 2 n)2. 17. (9 aJc + hcdy.

6. (c-A)2. 13. (|a:2-|)2. 18. {{a + h)+cf.

7. (a; + 3)2. 14. (2 a^x + 3 hy^y. 19. {(a + &) - c}2.

20. Compare the fully expanded form of Ex. 18 with (a + & + c)2,

and state, if you can, a general rule for writing down the square of any

trinomial (see also § 61).

21. Expand (x-y + z^- sy.

Suggestion. x--y + z + s={x — y) + {z + s).

22. Since a — h=a-\-{ — h), show that case (ii), p. 87, is included under

case (i).

23. Expand (x^ + y") 2. Also (3 a« - 2 s'«)2.

24. What must be added to a;2 + 6 a; to make it the square of a; + 3 ?

25. What must be added to f^ + H to make it the square of < + |?

26. What must be added to a* + 0.%"^ + ft* to make it the square of

a2 + 62?

27. What must be added to x^-\-2 x^y^ + 4 y^ to make it the square of

a;4 + 2 2/3 ?

28. Find what must be added to each of the following expressions to

make them exact squares; also give the expressions of which they are

then the squares

:

?n4-8m2n2 + 4n4; a^-^ah; x'^y^ + 12 xyz^
',

x'^ + ax\ ?^ndi A^ + -AB.
n

29. Find, by the method of § 57, the square of 53, i.e., of 50 + 3.

30. Write down the squares of the following numbers : 18 (i.e., 20—2),

39, 71, 83, and 34.
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58. Product of sum and difference. If a and b represent any two
numbers whatever, then, by actual multiplication,

(a ^b)(a-b) = a' - b\

i.e., the product of tTie sum of any two numhers, hy the

difference of these numhers,* is tlxe square of the first num-
ber minus the square of the second.

E.g., (a; + 3)(a; — 3) = a'2-9; (5 + ?>i) (5— m) = 25— m2 ; etc.

Note. Here, too, as in § 67, complex terms may be iticlosed in parentheses,

thus

:

(3x2+ 5^/) (3x2-5?/) = (3 a:2)2- (5 y)2 = 9x4-25^2.
/

EXERCISES

Without actually performing the following indicated multiplications,

write down the products by inspection :

1. ix^y-){x-y). 8. (x^ + ?/2) (^3 _ ^^2)

.

2. (m + n)(m-n). 9. {\^lmn-^'p\^){\^lmn^-^'p\^).

3. (3 a; + 2/) (3 a;-?/). 10. {^x - y^ ^ z}{{x - y) - z\.

4. (J x-2y)Qx^1y). 11. {{a? J^y^) - ab^iia^ ^V') ^ ah}.

5. (14a+15&)(14a-15&). 12. (« + 6 + c)(a + &- c).

6. (6jo-5^)(6/>+59). 13. {a-h^c^ia-h-c).

7. (4m2-3n3)(4m2+3n3). 14. (a - &+ a:)(a + J - x).

15. (m - 2 n + s - (w - < + 2 n - s).

16. Show that a:2 + 2 x?/ + ?/^ — 2^ is the product of the sum and differ-

ence of X + 2/ and z.

17. Show that a^ -{ 2 ah -^ V^ - c^ — 1 cd - d^ \s, the product of the sum
and difference of a + 6 and c-\- d.

18. (9a;2-42/2)-(3a;-2?/) = ? Why?

19. (16a2-25&2)-^(4a + 5J)=? Why?

20. (a;4 _ ^/4) ^ (a;2 _ ^2) ^ ? Why?

21. (a:6 _ 1/4) ^ (^8 _ 2/2^ ^ ? 22. (xis - 3/8) ^ (a:9 + i/4) = ?

23. Find, by the above method, the product of 22 by 18.

Suggestion. 22 = 20+ 2 and 18 = 20— 2.

* The order in which these numbers are written being the same in both factors.
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24. By this method find the following products : 63 by 57 ; 48 by 52

;

34 by 26.

Note. The identity (a + 6) (a - 6) = cfi- 62, i.e., a2 = (a + &) («-&) + 6^,

furnishes a very practical device for mentally squaring any number consisting of

two digits.

E.g., to square 73 mentally, let a = 73 and 6 = 3; then the last formula above

^^*^°°^®^
(73)2 = 76 . 70 + 9 = 5329.

Similarly, to square 58, let a = 58 and 6 = 2; then the formula becomes

(58)2 = 60.56 + 4 = 3364.

25. By the method given in the above note, write down the square of

47 ; of 82 ; of 29 ; of 53 ; of 98 ; and of 61.

59. Product of binomials having common term. By actual mul-

tiplication,

(a; + 3)(a;+ 5) = a;2_^8a; + 15 = a;2_|_(3^5)^_|.15.

and (a; + 3)(a;-5) = a^-2a;-15 = ar^+(3-5>-15.

So, too, in general, (x -{• a) (x -\- h) = x^ -\- {a -{- h)x -|- ah
;

i.e. the product of two binomials having a term in common
equals the square of the common term, plus the algebraic

sum of the unlike terms multiplied by the common term,

plus the product of the unlike terms.

EXERCISES

Without actually performing the following multiplications, write down
the products by inspection

:

1. (a+5)(a + 7). 10. {a + h){a + c).

2. (a-5)(a-7). 11. {a-h){a + c).

3. (a+5)(a-7). 12. (2 a; + 3)(2 x- 5).

4. (a-5)(a + 7). 13. (3 a + 4)(3 a- 6).

5. (y_c)(2/ + 2c). 14. (4rt2_5)(4a2+ 1).

6. (a:2 + 4)(a:2+5). 15. (xy- 4)(a:7/+ 16).

7. (a:2+4)(a:2-5). 16. Q^mH^ + 2)(lhnhi^ -d>).

8. (a:2-4)(a;2_5). 17. {Q ^ m) - 2}{{l + m) - b}.

9. (a;2-4)(a;2+5). 18. {(/ + ,«)+ 8}{(^ + m) - 15}.
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60. Product of two binomials which contain the same letters.

The product of two binomials containing the same letters is a

trinomial which, by a little practice, may be written down without

writing the intermediate steps.

E.g., the product of 3 a; + 5 and 2 cc — 7 may be arranged as in the margin : the

term (5 x'^ is the product of the first terms of the binomials, the term — 11 a; is the

algebraic sum of the " cross products " (2 cc by 5 and 3 a; by — 7)

,

and —35 is the product of the last terms of the binomials. 3x +5
This final product may, with a little practice, be easily written 2 a; — 7

down, omitting the intermediate steps. i-UAn
Similarly, in the product of3x + 4?/ by 5a— 2 y, the prod- _ _

uct of the first terms is 15 x^, the algebraic sum of the cross

products is 14 xy, and the product of the last terms is — 8 2/2 ; 6 a;2— 11 a: — 35

hence (3 a; + 4 ?/) (5 a; — 2 ?/) = 15 x^+ 14 x?/ — 8 y^. So, too,

(ax + 6) (ex + (^) = acx2+ (ad+ 6c)x + 6(^.

EXERCISES

Write down the following products by inspection

:

1. (3a;+2)(4a;-3). 5. (7 0^+ 62)(3 ^2+ 8 &2).

2. {^x + 2y){4.x + Zy). 6. (Q x -2 y){x+ y).

3. (a:-3y)(5a:+6y). 7. (x + d){x+h).

4. (2a-4&2)(5a-6 62).

61. The square of any polynomial. By actual multiplication it

is found that

(ct+ 6 + c)2 = a2 + 62_,_c2_p2a6 + 2ac + 2&c,

{a + h \- G-\- df= a? + h^ + (? -\- d} + 2 ab ^2 ac + 2 ad + 2hc

+ 2hd + 2cd,

(a.+ 6 4- c+ d+e)2 = a2 _,_ 52 _|_c2 ^^2 ^ g2^ 2 a6 + 2 ac + 2 ac^ + 2 ae

+ 2 6c + 2 &d 4- 2 &e + 2 cd + 2 ce + 2 de,

etc. This may be formulated into words, thus : the square of

any polynomial whatever equals the sum of the squares

of all the terms of the polynoinial, plus twice the product

of each term hy all the term^s that follow it*

* The formal proof of this theorem is given in Chapter XVIII.
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EXERCISES

Expand the following expressions by inspection

:

1. (m+n-.s)2. a (rt_6 + c-rf)2

2. (a-&-c)2. 9. (ax + hy + czy.

3. (2x + y + 2)2. 10. {ahx - acy - hczy\

4. (2 a; + 3 ?/ - 2;)2. 11. (^ + /^j + n + p + (^ + r + s)2.

5. {2x-^y + zy. ^ 12. (2x-3 2/+ 4 2-5a+3 6-4)2.

6. (3 a + 4 & + c)2. 13. (a;4 + 2 a:8 - 3 a:2 + 4 a; - 5)2.

7. (3a-46-2c)2.

62. Higher powers of binomials— binomial theorem. By actual

multiplication it is found that

(x -\- yy = x^ -\- 4.:»?y + Q ^y"^ ^^xf-\- y\

(a; + ?/)« = a^ + 5 x'^y + 10 a^?/^ + 10 x^ + 6xy^-\- f,

{x + yf = x^ + Qx^y + l^xy -\-20 ^f + 15xY + Qxf -^y"^,

etc. ; and that

{x - 7jy>= a? - ^x'y + ^xy'- f,

{x — yy = x^ — 4:a:^y-\-6 a?y'^ — 4 a^?/^ + y^,

{x — 7jy = x^~5 x^y + 10 a^2/^ — 10 x^y^ -{-5xy* — f', etc.

A careful study of the second members of the above equations

will show that they all follow the same laws, and that they may,

therefore, be written down by the same rules. In fact, such a

study will show that

:

(1) The number of terms in the expansion is in every
case greater by 1 than the exponent of the binomial.

(2) The X * appears in every term of the expansion except

the last, and the y appears in every term^ the expan-
sion except the first.

(3) The exponent of x in the first term of the expansion
is the same as the exponent of the binomial, and it decreases

by 1 from term to term in passing to the right, while the

* In applying these rules to other hinomials, observe that cc is here used for
" the first term of the binomial " and y for " the second term of the binomial."
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exponent of y in the second term of the expansion is 1, and
it increases hy 1 from term to term in passing toward the

right.

(4) The coefficient of the first term of the expansion is 1

;

the coefficient of the second term is the same as the exponent

of the binomial ; and if the coefficient of any term he mul-
tiplied hy the exponent of x in that term, and this product

he divided hy the /rtumher of the term (i.e., hy this term's

exponent of y increased hy/T), the result will he the coeffi-

cient of the next term.

(5) The signs of the terms of the expansion are all posi-

tive if each term of the hinomial is positive, hut if the

second term of the hinomial is negative, then the terms of

the expansion are alternately positive and negative— the

first term heing positive.

Note. It is proved later (Chap. XVIII) that the above laws apply to all

positive integral powers of any binomial whatever ; hence such powers may be

expanded without actually performing the multiplications.

Ex. 1. Expand (a — hy.

Solution. By (1), (2), and (3) above, the letters and exponents in

the several terms of this expansion are

:

a^ a'b a^b^ a%^ a^b* a%^ • a%^ ab'^ b^;

by (4), the coefficients are

:

1 8 28 56 70 56 28 8 1;

and by (5), the signs are:

+ -.+ - + - + -+;
hence, combining these results,

(a _ J) 8 zz: a8 - 8 a^ft+ 28 a662_ 56 a^b^+ 70 a^b^- 56 a%^+ 28 a^js _ 8 a&H i^

Ex. 2. Expand (2 x - a^y.

Solution. Letters and exponents,

(2 xy (2 xy (a2) (2 x) (a2)2 (a^)^
;

[Cf . (1), (2), (3)

coefficients, 1 3 3 1

;

[Cf. (4)

signs, + - + -
;

[Cf. (5)

combined result, (2 x - a^y = (2 xy - 3 (2 xy(a^) +3(2x) (a^y - (a^y
;

simplified result, (2 x - a'^y= 8 x^ - 12 x^a^ + 6 xa* _ a^.

With a little practice the combined result may be written down at

once instead of making several steps of the work.
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EXERCISES

Expand the following expressions

:

3. (a + 6)3. 6. (u-vy. 9. (a:-y)io.

4. (a~xy. 7. (a: + -)*- 10. (x-2ay.

5. (m-ty. 8. (3 a2- 2 65)3. n. (;n2 + 3n)6.

12. Write the first 4 terms of (a + x)^.

13. Write the first 3 terms, and also the 7th term, of (x — yY^.

14. Write the first 5 terms of (2 ax - 3 k^y,

II. FACTORING

63. Definitions. In a broad sense, any two or more numbers

whose product is a given number are factors of that number.

Thus, since -i- • |- • 10 = 4, therefore \, f, and 10 are factors

of 4; so also are j^, 18, and j%.

In this sense, however, the problem of finding the factors of

any given number, or algebraic expression, is manifestly inde-

terminate; it is therefore customary, when speaking of factors,

to mean only the rational * and integral exact divisors of a
given number or expression.

E.g., ±l,t ±2, ±3, ±4, ±6, and ±12 are factors of 12; and ±1, ±5,
± (2 a; + ?/) , ± (2 a; — z/) , as well as products of any two or more of these, are

factors of 20 x^ — 5 y^. Every number is a factor of itself, and 1 is a factor of

every number.

A number, or an algebraic expression, is said to be prime if it

has no exact divisor {i.e., factor) except itself and unity; other-

wise it is composite.

A factor is prime or composite according as the expression for it

is prime or composite ; and it is integral with regard to any given

* An expression is rational with regard to a particular letter if it cpntains no
indicated root of that letter (see § 130)

.

t The sign db is called the double sign, and is read " plus or minus "
; it is used

to combine two expressions into one : thus the expression ± a means both + « and

also — a.
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letter if the algebraic expression for it is integral with regard to

that letter (cf. § 41).

It will appear later that the writing of an expression as the

product of its prime factors often greatly simplifies algebraic

work ; and it is therefore important that the student should early

master those cases of factoring which present themselves most

frequently. Some of these cases will now be considered.

64. Factors of a monomial. This is the simplest of all the exer-

cises in factoring, and can be done by inspection.

E.g., 30 ax'^y = 2 -^ -^ • a- x -x -y, which exhibits the given monomial as the

product of its prime factors; the product of any two or more of these prime
factors is a composite factor of the given monomial (cf . § 63)\

A rule for this kind of factoring may be stated thus : by inspec-

tion, or hy trial, find the prime factors of the numerical
coefficient of the given rnonomial, and to their indicated

product annex, each of the literal factors as many times

as there are units in its exponent,

EXERCISES

Separate the following monomials into their prime factors

:

1. Qa^x^ 2. 15 mY^^- 3. 36 sHK

4. 420 m%V- 5. 572 a^c^uv^.

65. Monomial and polynomial factors of a polynomial. If a poly-

nomial contains a monomial factor, the latter can usually be dis-

covered by mere inspection.

E.g., in 12 a^^+ 4 abx'^ — 8 axhj'^, it is seen that each term contains the factor

^ ' 12 a'hfi + 4 ahxhj — 8 axhj^ = 4 oa;2 . {^ax-\-by — 2y^.

In order to factor a polynomial completely, it is then only

necessary to consider further how to factor a polynomial which

contains no monomial factor. This problem, however, is in general

very difficult, and only its simplest cases will at present be con-

sidered. Fortunately it is these simpler cases which present

themselves most frequently in practice.



1. 5a-106.

2. 17 x^ - 289 xK

3. 4 a:3 - 8 x'^y.

4. 10 m%2 _ 15 ,w8„8.

5. lQx'^-2ahx.

6. 4 a%'^ - 24 a258.

7. 15 a:* _ 10 a;3 + 5 a;2.

8. 3 a^ - 6 a-ife + a4^,2.

9. :ci2^i2 + a;iYi + 3,103,8 _

.0. 3 7715 _ 12 mH'^ + 6 mn*.
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EXERCISES

Separate the following expressions into their monomial and poly-

nomial factors

:

11. ac — be — cd — abed.

12. 13 xY - 13 xY + 12 xy.

13. 14 xYz^ - 7 xYz^ + 8 xy^z^.

14. 60m2nV2-45m%V+ 90m%V2.
15. 12 x'^b^y - 18 xy% + 24x4&4^4.

16. 14 ahnn^- 21 a^m^^-^9 a^mn^.

17. 25 c'^dx^ + 35 03^2^:4 _ 55 c2</2^5.

18. 51 0:3/2^3 _ 68 xY^^ + 85 x^y^z*.

19. 52 a2^,8c4 _ 65 a^^c"^ + 91 a2J2c2.

20. 44 a^xY^ + 66 a^xY+ 88 a2a;5j,4.

66. Use of type forms in factoring. Since finding the factors of

a given number or expression is, in a certain sense, the undoing

of a multiplication, therefore the type forms in multiplication

already studied (§§ 57-62) may be advantageously employed in

separating certain types of expressions into their factors ; some of

these will now be given.

(i) Trinomials of the type x^ ±2xy -\- y^* In § 57 (i) and

(ii) it is shown that, whatever the numbers or expressions repre-

sented by a and b,

(a + by = a'-\-2ab + b^ and (a-bf = a" -2ab + b^;

therefore a-\-b and a + & are the factors of a^ + 2ab -\- b^, and

a — ft and a — 6 are the factors of a^ — 2 a6 + b^.

Similarly in general, if in a trinomial two terms are exa/it

squares, and the remaining term is the double product of
their square rootsA then the given trinomial is the square

of a hinomidt.

E.g., m2 -f 6 mn + 9 n"^ is a trinomial of this type, and its factors are ?n + 3

n

and ??i+ 3 n ; so, too, is 4 a;2 -}_ 25— 20 x, of which the factors are 2 a;— 5 and 2 x— 5.

* x2 ± 2 x?/ + ?/2 means both x^+ 2 x?/ + 7/2 and also x2— 2 x?/ + 7/2 (cf . § 63,

footnote).

t The square root of a number is that number which, being multiplied by itself,

will produce the given number. Cf . § 122.

\.
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EXERCISES

Factor the following expressions

:

1. a:2-6x + 9. 3. 1 - \0 y i- 25 y"^. 5. x^-4:x^ + 4:.

2. 225 + 30 a; + x^. 4. x- + 4:xy-\-4: y'^. 6. a^^ + 2 at + 1

.

7. What first suggests to you that x- + 9y^ -\- 6 xy may be the square

of a binomial? How do you test the correctness of this supposition?

When is a trinomial the square of a binomial?

8. Write out a carefully worded rule for factoring expressions of the

type x^±2xy + y^. How are the terms of the binomial obtained ? How
determine the sign by which they are to be connected ?

9. Is a* + 2 a%^ — b^ the square of a binomial ? Why?

10. Is (x + y)2 + (« + 6)2 4- 2(a + b) (x + y) the square of a binomial ?

Separate the following expressions into their prune factors, and check

your work by assigning simple numerical values to the letters involved

(cf. Ex. 7, § 39) :

11. a^b^ + 6 abed + 9 c^d^. 13. 9 x^ - 12 xyz + 4: yh^.

12. 4x4-64x2 + 256. 14. 81 x2 - 18 ax + a^.

15. 196 a2&2c2 + 112 ab^c^d + 16 b^c^d^.

16. yi-^y(x + y)+4:(x + yy.

17. (X + yy - 10(x + 2/) (y + 2) + 2o(y + zy.

18. 16(a + x)2 - 32(a + x) (x-y)-\- 16(x - y)^.

19. 25(x + yy-50(x + y)z*-\-25z^

20. 4(a + 3 &)2 - 24(a + 3 &)(6 - c) + 36(6 - c)2.

21. 9 a^** - 12 a~62» + 4 64». 23. - x* + 2 a2x8 - a%2.

22. -x^-lQy^-8xY- 24. (x2 + ?/2)2_ 2(a;2+ ?/2)22 + ^4.

(ii) Expressions of the type x^ — y^. In § 58 it was shown

that, whatever the numbers or expressions represented by a and h,

(a+6)(a-&) = a2-62;

therefore the factors of a? — h^ are a-\-h and a — 6.

Similarly the difference of the squares of any two numbers or

expressions may be factored.

B.g.i 25 n2 — 9 <2 is of this type, and its factors are 5 n + 3 « and 5 n— 3 f ; so,

too, a2+ 62 and a2 — 62 are factors of a*~ 6*, but a2— 62 is not prime ; the prime

factors of a*— 6* are a2 + 62, a+b, and a — b.



6. 25x^-9f. 11. 121a4-36&i

7. ai6-4&8. 12. 64xy«-144z2.

8. a^x - hH. 13. (a: + 2/)2_(a + c)2.

9. 36aV_81rf2. 14. 49-36a:V.

.0. a:2« - 4. 15. w2„_^2m.

\ 18. 289a;c^9-/"s.

19. 16</2_-9(x-2/)2.
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EXERCISES

Factor the following expressions

:

1. y^-z^.

2. 2/2 _ 9^2.

3. 4^2_25&2.

4. 225a262-16.

5. 9y2_l.

16., 169 xYz^ - IQ y^d^

17. 324a:2?/426_81.

20. For what values of a and & is (a + ft) (a — b) equal to a^ — h^l Is

this equation true even when a = b? (Cf. § 55.)

21. Factor a^ + 2ab- c'^ + b\

Suggestion. a2+ 2 a6 — c2 + 62 = a2 + 2 a& + &2 _ c2 = (a+ &)2— c2.

By rearranging and grouping the terms as in Ex. 21, factor the

following

:

22. 62^2&c + c2- J2. 28. 4a2+ 962_ ig ^2 _ 12a&.

23. a2-6aa:+9a;2-4c2. 29. 9 a:2 - 25 32 + 16 ^^2 + 24 a:y.

24. a^-\-2ab-d'^-\-b\ 30. ^.b"^ - x'^^ ^xy -^ o?-^-^ah-^y\

25. (a;+ 2/ + e)2_a2-2a6-&2, 31. l-x'^-1xy-y\

26. x2 - J2 _ 2 ^2/ + 2/2. 32. 1 -4a: + 4x2-1 + 6a: -9x2.

27. x2 + 4x^-4 22 + 4^2. 33. 2562-1 -9 &2a;2_i0aj+a2+6&x.

(iii) Expressions of the type x^ + {a-[-h)x-{- ah. In § 59 it

was shown that, whatever the numbers or expressions represented

by a, b, and x,

(x + a) (x -{- b) = a^ -\- (a -{- b)x + ab.

This formula is helpful in factoring trinomials of the above type.

E.g., x2+ 7 K + 12 * may be written cc2 + (4+ 3) x + 4 • 3 ; it is therefore of this

type, and its factors are x + 4 and x + 3.

Observe that the plan of factoring this trinomial is first to find all the pairs of

numbers whose product is 12, then to select from among these that pair whose
sum is 7 ; from which the required factors are manifest.

In the same way it may be shown that the factors of m2— 6 m + 8 are m — 4

and m— 2; so, too, x2 + 2x - 15 = (x + 5) (x — 3) ; 9y2— lSy — 7, i.e., (3y)2
— 6(3?/)— 7= (3?/

— 7)(3y + l) ; and x2- 3nx— 28 a2 = (x + 4a) (x— 7a).

This method of factoring expressions of the form x2+ ax + 6 is, however,

advantageous only when the number of pairs of factors of b is not large ; another

method is given in § 164, Ex. 69.

* Such an expression is usually called a quadratic trinomial.
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EXERCISES

1. If the expression x^ + 6 x — SQ is the product of two binomial

factors, what is the product of the unlike terms in these binomials ?

Have these terms like or unlike signs ? Why ? What is the sum of these

unlike terms ? Is the larger of them positive or negative ? Why ?

2. Based upon such considerations as those given in Ex. 1, write out

a carefully worded rule for factoring trinomials of this type.

Separate each of the following expressions into its prime factors :

3. a;2 - 3 a; + 2. 7. a2 -f 7 a - 30. 11. Q y - y"^ - y\

4. x'^ + x-Q. 8. n2-4n-60. 12. a:^ - 17 a;2 + 72 a:.

5. x'^-x-2. 9. p2 _ 12p + 35. 13. 13 a; - 30 + x\

6.2/2-6^ + 5. 10. 4 - 6 a: + 2 a;2. 14. x^ - 24 a;^ + 63.

15. 3 3/6 + 39 ?/3 + 66. 18. a:-2 - 26 a:-i + 69.

16. a;2 + (3 a - 2 &) a; - 6 ah. 19. a^"^ - 7 ab -{- 10.

17. ax2 + 7 a2a; + 6 a^. 20. (a: + 2/)2 + 7 (a: + ?/) + 6.

21. 9a;2+6a:-8. Suggestion. 9a;2+ 6x — 8= (3x)2 + 2(3x) — 8.

22. 4 ar2 + 4 a;y - 3 y^ 24. 15 x^ + 32 x^y + 16 xY-

23. 16 a;2 + 32 a; + 15. 25. a;^^ + 5 a:'* + 6.

26. Can a;2 + a: + 6 be separated into two binomial factors like those

found for the other exercises above ? Explain.

(iv) Expressions of the type acoi? + (ad \-hG)x-\- bd. The
foregoing method is easily extended so as to include many tri-

nomials which, are not of type (iii).

From § 60 it follows that if the trinomial 6 a?^ — 11 ic — 35, for

example, is the product of two binomial factors, then the first

terms of these binomials are factors of 6 a^, and the last terms are

factors of — 35 ; hence the possible pairs of binomial factors are

:

3a;-716x-5] (6x+5\ (6x-7} (6x+7\ J3a;-5
x+7j'\ a^-Tj' I a;+5r t x-5J' \2x+7 [2x+oj'

etc. ; and from among these the pair to be selected is that one for

which the algebraic sum of the " cross products " is — 11 a; ; this

pair is 3aj+ 5 and 2 a;— 7, hence 6 a;^— 11 a;—35= (3a;-f5)(2 a;— 7).

Similarly it is found that 12 a;^ + 8 a; - 15 = (6 a; - 5) (2 a; + 3),

and that 15 a- + 14 a& - 8 6^ = (3 a + 4 6) (5 a - 2 b).
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EXERCISES

Factor each of the following expressions

:

1. Sx^ + X- 10. 5. 16 a;5 + 4 xY - 30 xy^.

2. 4 a;2 + 16 a; + 15. 6. 4 ab^ - 73 ahc + 18 ac^.

3. Sy^ -lOxy -d x"^. 7. 90 xyz^ - 98 a^xyz + 8 a^xy.

4. 8 ^2 + 23 ^B - 3 ^2. 8. 15 M*' + 16 M2*iV2 + 4 iV*.

• 9. 3 (a + 6)2 + 10 (a + &) (a + 2 6) - 8 (a + 2 6)2.

(v) O^/z^r types; exact powers. The formulas of §§ 61 and

62 may also be employed to factor polynomials of the types to

which they belong. When such polynomials present themselves

for factoring, which is comparatively seldom, the student need

only arrange them properly and observe whether all the require-

ments stated in § 61 or § 62 are satisfied ; if so, the given poly-

nomial is an exact power, and its factors are written by inspection.

E.g., to factor the expression x^ + z^— 4: yz-^ 2 xz + iy^— 4: zy, obserye that

it consists of three square terms, and of three double products, hence it may
belong to the type considered in § 61. A slight rearrangement of the terms shows

that it is of this type, viz., x^+ 'iy^^ z^— 4:Xy + 2zz — 4:yz= (x — 2y -{ z)^.

Similarly for expressions which belong to the type considered in § 62, namely,

powers of binomials.

EXERCISES

Factor the following expressions, and check your results

:

1. m2 - 2 ms - 2 ns + s2 + 2 mn -1- n2.

2. y^ + 4:xy-{-4:X^ + 4:Xz-{-2yz + zK

3. m^-i^+dmt^-^m'^t.

4. a:4+8a;2+24 + ^ + ^.
a;2 x^

5. 9 a2 + 4 c2 - 12 ac + 16 &c - 24 ab -\- 16 b^.

^^
6. 9m4+30m8 + 25m2-12TO2n4-4n2-20mn.

67. Factoring by means of the remainder theorem. In § 48 it was

proved that if Ax'' + Bx""-^ + ••• + Bx H-^ is exactly divisible by

x — a, then Aa"" + Ba"-'^ -\- ••• -\-Ha + K=0, and conversely; on

this fact is based a simple method for finding binomial factors of a

large number of algebraic expressions.
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E.g., to ascertain whether x— 2 is a factor of x^— 5z + 6, it is only necessary

to substitute 2 for a; in a;2_ 5 ^ + 6, and observe whether or not the result is ;

this result is 0, and therefore a: — 2 is a factor oix^— 5x + 6.

So, too, X — 6 is a factor of a;2_ g a; + 12 because 6^— 8 • 6 + 12 = ; and x + 1,

i.e., X - (- 1) , is a factor of x2 + 7 x + 6 because (- 1)2 + 7(- 1) + 6 = 0.

Again, if a: — a is a divisor of x^— 2 x2— 9 x + 18, then 18 is the product of a by
the last quotient term ; hence, in seeking this class of factors of x^— 2 x2— 9 x+ 18,

only numbers which are factors of 18 need be tried in the place of a. The factors

of 18 are: +1, —1, +2,-2, +3,-3, +6, —6, +9, —9, +18, and— 18; if these

numbers be substituted in turn for x in the given expression, it will be found that

+ 2 is the first one that reduces that expression to 0, therefore neither x — 1 nor

X + 1 are factors, but x— 2 is a factor ; further trial will show that x — 3 and
X + 3 are also factors of the given expression.

When any factor of an expression has been discovered, by any

process whatever, that factor may be divided out of the given

expression, and the remaining factors may then be more easily

found.

EXERCISES

1. If X* + Q x^ — I2x + 5 be divided by x — a, what will be the

remainder? Without performing the division, find the remainder when
the divisor is a: — 2 (of. § 48); also when it is a; + 1, and when it is x — 1.

Which of these divisors is a factor of the given expression ?

2. If the expression x^—dx^ — x-\-d has a factor of the form x — a,

what are the four possible values of a ? Find all such binomial factors of

a;3 - 3 a;2 - a: + 3.

By the above method, find all the factors you can of the following

expressions

:

3. xs-'jx + e. 8. mj4-15m;2 + 10i^ + 24.

4. a:^ - 9 a;2 + 23 x - 15. 9. a8 + 7 a2 + 2 a - 40.

5. a:3 + 14 a;2 + 35 a: + 22. 10. c8 _ 5 c2 - 29 c + 105.

6. x3-lla:2 + 31a;-21. 11. x^-x^-7 x^+x+Q.

7. p + 4 p _ 11 ;^ _ 30. 12. y5_iOj,4 + 40 3/3_80z/2+ 80 32.

13. If a; — A: is a factor of any given expression, what does the value

of that expression become when x = k'i Why? Prove that the converse

of this is also true.

14. By means of the remainder theorem show that a — h,!) — c, and

c - a are factors of a(&2 _ c^) + &(c2 - a^) + c{a^ - b^).
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15. What is the remainder when (2 a: — 3 a) 2 + (3 a? — a) ^ is divided

by a: — a ? When (z — y + 2)^ — y^ -\- x^ is divided by x— y'i by x+yl

16. Find the factors of 4 x^ - 4 x^ - 9 a; + 9.

Suggestion-. ^x^ — ^x^ — Qx-\-^ = ^{z^—z^—^iX-\-^)\ now apply the above
method to the expression within the parenthesis.

Find the factors of

:

17. 4 a;2 - 16 a; + 15. 18. 2 ?/8+ 5 ^2 _ 2 ^ _ 5.

19. What value of x will reduce to zero any expression which contains

2 X — d as a factor? How then may the remainder theorem be used to

detect the factor 2 a; — 3 in any given expression ? Use this suggestion

to solve Exs. 17 and 18.

20. What is the remainder when x^ — a" is divided by a: — a ? Why ?

When a;" — a" is divided by a; + a and n is an even positive integer?

21. Prove that a: — 1 is a factor of every expression of the form

^a;" + jBa;"-i + Cx"^-^ + ••• + Hx + iC = 0, in which the sum of the positive

coefficients (among A, B, C,'"K) equals the sum of the negative coeffi-

cients. Compare Exs. 3, 4, and 6, above.

'68. Binomial factors of x" ±a". The method of the preceding

article may be used to find binomial factors of the expressions

x'^— a" and a;" + a**, wherein x and a represent any numbers what-

ever, and n is a positive integer.

(i) Thus a;" — a" is exactly divisible by x — a, whatever integer

n may be, because if a be substituted for x, the expression a?" — a"

becomes a" — a", i.e., 0.

Hence, the difference of lihe positive integral powers of
two numhers is exactly divisible hy the diff'erence of the

nwmbers.

By actual division, it is found that

x— a x — a x — a

^^ ~ "^ = .t4 + x^a + a;2a2 + xa^ + a* ; etc.
x — a

Binomials of the form a:» — a" can always be separated into at least two
factors, both of which may be written down by inspection ; one of these fac-

tors is cc— a and the other is cc«-i + x^-'^a + x^-^a^ -j 1- a;a"-2+ a^-i ; this last

factor is homogeneous, of degree n — 1, in the two numbers, and contains n
terms, all of which are positive.
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(ii) Again, x -\- a, i.e., x— (—a), is a factor of aj" — a" when n

is even, because then (— o)" — a'* = a" — a" = (§ 18, note 2).

Hence, ^7^e difference of like even positive powers of two
numbers is exactly divisible by the sum of the numbers.

By actual division, it is found that

*^
~ *^ - °- '

•

^^~^^ = s^-sn+ sP-t^', ^lll^^s^-sH+sH^-sH^+st^-t^
; etc.

s+ t s->rt s+t

The student may make a verbal statement of this case of factoring similar to

the last paragraph in (i) above.

(iii) Again, x-\-a, i.e., » — (— a), is a factor of a;" + a" when n

is odd, for in that case (— a)" + a" = — a" + a" = (§ 18, note 2).

Hence, the suuv of like odd positive powers of two num-
bers is exactly divisible by the sum, of these numbers.

By actual division, it is found that

ai±X^=a;2-a;?/ + ?/2; ^^^^^^ = x^- x^y + x^^- xy^ -\- y^ •

x+y x+y

2^i^ = x6— x5y + a;4y2_ x^yB + xhj^— xy^+ ?/8 ; etc.
x-\-y

The student may formulate this principle into words,— see last paragraph

in (i) above.

(iv) Finally, a; — a is never a factor of a?" + a" ; for if a be sub-

stituted for X in this expression it becomes a" + a", which is not

either when n is even or when n is odd, and therefore x^ -f a" is

not exactly divisible by a; — a (§ 48).

Note. Principles (i) to (iv), above, may be briefly recapitulated thus:

xn— an is always divisible by a; — a,

xn— a" is divisible by x + a only when n is even,

x" + a" is divisible by x + a only when n is odd,

x"+ a« is never divisible by x — a.

EXERCISES

/ 1. 'Show by means of the remainder theorem that x^ — a^ is exactly

divisible by a: — a ; also that x^ + a^ is exactly divisible by a: + a.

2. Prove that a; — a is a factor of x" — a^ for every positive integral

value of n.

3. Prove that ar + a is a factor of a:" + a" for odd positive integi-al

values of n, and of a;" — a" for even positive integral values of n.
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4. Prove that neither x — a nor x + a is a factor of x"* + a" when n

is an even positive integer.

Write out the following quotients by inspection, and then verify them

by actual division

:

21.

22.

23.

24.

25.

26.

27.

5
x'^-y\

x-y

6.
x^-y^
x-y

7.
a^-b*
a-b

8.
w8 _ ^,B

U — V

9.
v^-w^
V -\- w

10.
m^ — n*

m + n

11.
uS-yS

w + u

19 x^ + y^

13.
a:5 + 2/5

x + 2/

14.
m^ + s^

m + s

15.
a^ + b^

a-\-b

16.
(x^y + (^/2)^

x'^ + y'^

17 (2 a)4 - a:*

2a-x

18.
m6 - 32

m-2

19.
4P-9
2ifc-3

9n 16p*-81
28.

2:2 + 3,2

81a^-16
3a + 2

64 -rg

r + 2
'

27 a:8 + 64 gS

3x + 4a

32x5 + 1

2a: + l

'

x^ + yg

x2 + 3/2*

a2 + 62
'

32 xio + ?/i6

a; + 2/ 2jt) + 3 2 a;2 _|-
yS

29. Compare the quotients in Exs. 5-15 with the corresponding

powers of a binomial (§ 62), with reference to coefficients, exponents,

signs, etc.

30. Of what is x^ the square ? Of what is it the cube ?

Write x^ — y^ as the difference of two squares ; of two cubes.

Is a;2 - 2/2 a factor of x^ - y^l Why? Is x^ - y^2 Is x^ + /? Why?
Find the prime factors of x^ — y^.

31. When seeking the prime factors of x^ - y^ show that it is better

not to divide out the factor x — y at once, but rather to separate x^ — y^

first into the factors x^ — y^ and x^ + y^, and then to separate each of

these factors further. Is a similar plan advisable in general, e.g., with

a;8-y8 and p"^ - 720?

32. Find the prime factors of mi2 _ ni2
; compare Ex. 31.

33. Find the prime factors of x^ - 3/^ ; also of 64 a^ _ 1.

34. Prove that jt)« — r" is exactly divisible by p^ - r2, if n is an even
positive integer.

35. For what positive integral values of n between 1 and 9 has a;" + «/"

no binomial factor ? Is ic2 + 3/2 a factor of x^ -\- y^t
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Resolve the following expressions into their prime factors :

36. x*-y\ 40. aioxio-yio. 44. S as^^ - S at^^.

37. a^-b^ 41. p9 + l. 45. jfi + y^.

38. a8-68. 42. 16 a*^^ - 81 xV- 46. 64 x^ + y«.

39. m8 - 1. 43. ai2a:i3 _ b^^xy^-2,

69. Factoring by rearranging and grouping terms. A rearrange-

ment and grouping of the terms of an expression will often

reveal a factor which could not be easily seen before.

Ex. 1. Find the factors of ax — 3 &y + 6x — 3 ay.

Solution, ax — dby + bx — Say = ax + bx — Sby — day

= x(a + 5) - 3 y(a + b)

= (a + 6)(x-3y).

Ex. 2. Find the factors of x(x + 4) - ^(^^ + 4).

Solution. x(x + 4) — y(y + 4) =x^-\-4:Z — y^ — iy
= x-2~y^ + 4(x - y)

= (^ -y)(^ + Z/
+ 4).

Note. The factor z — y could also have been detected by means of § 67,

because the given expression is zero when x = y.

EXERCISES

Find the factors of the following expressions :

3. ax8 + 1 + a + X. 7. m^ - n^ - (m - n)^.

4. a2J2 + a2 + 62 ^ 1. 8. x^ + x2 _ 4 a- _ 4.

5. ac \- bd — ad — he. 9. 5 x^ + 1 — x^ — 5 x.

6. ac"^ + bd"^ - ad^ - bc^. 10. a^ - 9 x2 + 4 c2 - 4 ac.

Suggestion. The first, third, and fourth terms of the expression in Ex. 10

are together (a — 2c)2, i.e., the given expression equals (a — 2c)2— 9^2^ of

which the factors are obvious.

11. X* — xy^ — ax^ + ay^- 15. ab + bx"* — x''^™ — ay^.

12. 1 +bx- (a^ + ab)x^. 16. 3 xy(x + y) + 16 x^ + 16 y^

13. a^c^ + acd + abc + bd. 17. (p^ - q^y - (p^ - pgy.

14. x4 - 4 xY + 2 x8 - 16 y^ 18. (x + yy + 12 (x + y) - 85.

19. a^x 4- abx + ac + b^y + aby + be.

20. (x2 + 6 X + 9)2 - (x2 + 5 X + 6)2.

21. x^+ (a + b - c)x2 + (ab-ac - bc)x - abc.
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22. m^ + n^ -f m + 77Jn + n + run.

23. 14 a{x - ?/) + 49 a2 + (x - yy.

24. a;2 - a2 + y2 _ ^,2 4. 2 arz/ - 2 a6.

25. A2 _ „i2 + 10 m + F - 25 - 2 ^^.

26. 9 a2 + 12 a6 + 4 &2 _ 15 a - 10 & - 24.

27. a2 + &2 + c2 + 2 (rt6 + «c + &c) + 5 (a + & + c).

28. a:2 + 3^2 + ^2 + 2 (a:?/ + X2: + 3/z) + 5 (a; + 3/ + z) + 6.
'

29. 4 a;2 + 10 X + 6 - 5 a - 4 aa; + a2.

70. Factoring by means of other devices. It often happens that

the factors of an expression will become apparent by adding a

certain number to, and subtracting the same number from, the

given expression ; this, of course, leaves the value of the expres-

sion unchanged.

Ex. 1. Find the factors of a;* + a;2 + 1.

Solution. If the second term in this expression were 2 x^ instead

of a;2, then [§ 66 (i)] the expression could be written (x2 + 1)2; this

suggests that x^ be both added and subtracted, which gives

a:* + a;2 + 1 = x* + 2 a;2 + 1 - a;2

= (:c2 + 1)2 _ a-a

= (:c2 + 1 4. a.) (3,2 4. 1 _ a-)^ [§ 66 (ii)

i.e., a;4 + a:2 + 1 = (a:2 + x + 1) (a:2 - a: + 1).

Ex. 2. Find the factors of a"^ + a^h"^ + &*.

Solution. This expression may be treated in the same way as Ex. 1,

*^^^ •

a* + a2j2 + ft4 ^ ^4 .|. 2 a252 ^. 54 _ ^2^2

= (a2 + &2')2 _ ^cihy

= (a2 -\-ah + 62) (^^2 - ab + b^).

Ex. 3. Find the factors of a;^ - 4 a; - 32.

Solution. Here the first two terms, plus 4, are an exact square, and
this suggests the following arrangement

:

a;2 - 4 X - 32 = a;2 - 4 a; + 4 - 32 - 4

= (a; _ 2)2 _ 36

= (a: _ 2 + 6) (a: - 2 - 6),

I.C., a;2 - 4 a: - 32 = (a: + 4)(a; - 8).

Note. Observe the superiority of the method of Ex. 3 over the method of § 66

(iii) for factoring the same expressiou.



69-70] FACTORING 107

EXERCISES

Factor the following expressions

:

4. m^ + m2n2 + n*. 13. 5 a;* - 70 xY + 5 y*-

5. p^+4: qK 14. 9 a* + 26 a%'^ + 25 6*.

6. a:2 + 6 a; + 5. 15. a^ + 2 a6 - rf^ _ 2 6rf.

7. 9 s2 + 30 s< + 16 A 16. x^ + 64 y^.

8. a;4 + a2x2+a4. 17. 4a4+81.

9. a-8 + a:4//4 + ?/8. 18. x^y^ + 4 ar^/*.

10. 4 a8 - 21 a4&4 + 9 68. 19. m6 + 4mn4.

11. a4j4 + ^262^2^2 ^ ^4^4. 20. a^ + 8 a2 _ 128.

12. 9 x^ + 8 a:22/2 + 4 3/*.

"

21. 5 na;* - 70 na;2 + 200 n.

22. What must be added to a:* + 3 x2 + 4 to make it an exact square?

What must then be subtracted to leave the result unchanged? Factor

this expression.

23. What must be added to a;*— 3 x2 + 4 to make it an exact square, and

what must then be subtracted so as not to change the value of the given

expression ? If the given expression is written in the form (a:2 — 2)2 + a:2,

can it be factored by any of the preceding methods (cf. § 68) ?

24. Can the sum of two squares be factored (cf. § 68) ? Is not the

expression in Ex. 5 above the sum of two squares? Could this expres-

sion be written (/)2 + 2 ^2)2 _ (2^9^)2?

25. Factor the expression 3 a:2 + z - 10 [cf. Ex. 1, § 66 (iv)].

Solution. Zx^+ x-\0 = 12(3a;2+ cc-10)

12

^ 36a;2+ ]2a;-120
12

36x2+ 12 a; + 1 — 121

12

_ (6 a; + 1)2 -(11)2
12

_ (6 a; + 12) (6 a; -10)
12

= (a; + 2)(3x-5).

Note. The above method is more direct than that given in § 66 (iv) ; it con-

sists in multiplying the given expression by such a number as will make its

highest term an exact square, and the next highest term exactly divisible by tivice

the square root of the highest term, then factoring the resulting expression as

explained in § 70, and finally dividing the whole by the number first used as a

multiplier, so as not to change the value of the expression.
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Factor the following expressions :

26. 5 ,n2 - 2 m - 3. 30. 8.12 + 23^5- 352.

27. 6«2_n«_35. 31. 4iV2+16iViM3 + 15 M6.

28. 18a:2- 3 a; -36. 32. 2 a;2 + 5 ar«/ + 2 ?/2.

29. 6 i?2 _ 2 72 _ 20. 33. 3 a:2 - 10 x?/ + 3 ?/2.

71. General plan for factoring a polynomial. Based upon § § 65-70,

the following suggestions for separating a polynomial into its

prime factors may be made, ^j inspection find the monomial

factors of the given polynomial, if there are any such, and then

write this polynomial as the indicated product of the monomial

and the corresponding polynomial factor ; then, by rearrangement

of the terms, or by some one of the other methods given above,

separate this polynomial factor into two factors, and replace it

by their indicated product; then further separate each of these

factors into two others, if possible, and so continue until all of

the factors are prime.

EXERCISES

Factor the following expressions

:

1. m^x^ + 7n2^5. 4. x^ \- ax — ay — yx.

2. c2 - 5 c - 14. 5. a;4 - 8 a:3 + 15 x^.

3. 21 m^-ma- 10 a\ 6. m%4 - 5 m'^n'^ + 4.

7. 25 a2 + 2/2 + 10 a;2 + 10 a?/ - 35 aa; - 7 xy.

8. 7n2 + 6 m - a:2 + 9 - 4 x?/ - 4 y2^

9. 2 (a2&2 _ a2c2 + 52^.2) _ ^^^4 _^ J4 _^ ^4).

10. ari2 _ 2,12. 16. ai6 + 1.

11. ai2a:i22^i2 + ri2si2. 17. (a2+ 5a + 4)2-(a2_5a-6)2.

12. 4 ax2 4- 4 ay\ 18. a;2« 2 + ^,2^2 _^ 2 a;»-%.

13. a%H'^ + 4 ah'^xy + 4 h'^y\ 19. x^ - y^ - ^ x^ + 3 a:22/4.

14. 32 a - ax^. 20. a;^!/ - 15 x'^y + 38 xy - 24 ?/.

15. a9 + 4 a. 21. js 4. ^,4^,2 ^ ^4.

22. w%3 4. 2 mhi''rh^ + m%iV%«.

23. a;2 + 9 y2 + 25^2 _ 6 a:?/ - 10 xs + 30 3^2.

24. a:5 + 5 x^az^ +10 a;^^^* + 10 0:20826 4. 5 xaH^ + a^sio.

25. a2 - 2 a6 + &2 _ 2 ac + 2 6c + c2 - 2 a(/ + 2 Jrf + 2 cd/ + tf^.
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72. Solving equations by factoring. If all the terms of an

equation be transposed to its first member, factoring that member

will always simplify the finding of the roots of the given equa-

tion ; this is illustrated by the following examples.

Ex. 1. Given x'^ — 5 x + Q = 0; to find its roots, i.e., to find those

values of x for which this equation is satisfied (cf. § 23).

Solution. By § 66 (iii) the first member of this equation is the prod-

uct of a; — 3 and x — 2, and the given equation may, therefore, be written

(x-2)(x- 3) =0.

It is manifest, moreover, that a product is if, and only if, at least one

of its factors is ; hence (x — 2)(x— 3) = if, and only if,

a:-2 = 0ora;-3 = 0,

i.e., if, and only if, a: = 2 or re = 3
;

hence the roots of the given equation are 2 and 3.

Ex. 2. Given x^ = ^ x + i; to find its roots.

Solution. On transposing, this equation becomes

a;2 _ 3 a; - 4 = 0,

i.e., -, (x - 4) (a: + 1) = ; [§ 66 (iii)

hence either a; — 4 = or x -f 1 = 0, i.e., a; = 4 or a: = — 1,

and therefore the roots are 4 and — 1

.

Ex. 3. Solve the equation 6 x^ — 11 a; = 35.

Solution. Transposing and factoring [§ 66 (iv)], this equation may
be written

(3x+5)(2x-7) = 0;

hence 3a; + 5=:0 or 2x — 7 = 0, i.e., x = — f or x = |,

and therefore the roots are — | and |.

Note. Since the roots of the equation {x— a)(x—b)—0 are a and 6, therefore

an equation which shall have any given numbers as roots may be immediately

written down ; thus the equation whose roots are 3 and 8 is

(x -3){x-8)= 0, i.e., cc2— 11 a; + 24 = 0.

Similarly, the equation whose roots are 2,-1, and 5 is

(a; - 2) (a; + 1) (x — 5) = 0, i.e., a:8— 6 a;2+ 3 a; + 10 = 0.
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EXERCISES

4. What is meant by a root of an equation ? May an equation have

more than one root?

5. Find the roots of x^ — 4 a: — 21 = 0. Verify their correctness by

substituting them, in turn, for x in the given equation.

6. Solve the equation ^^ _ g ^ ^ 5 — o, and verify the solution.

7. What values of x will satisfy the equation (a; — 2) (x — 3) = 0? If

X =fz 2* will a: - 2 be ? If a: ^ 3, will ar - 3 be ? If, then, x is neither

2 nor 3, can the given equation be satisfied ? This equation has then

how many roots?

8. Write the equation whose roots are 5 and 1. Also one whose roots

are 3, 2, and 7.

9. W^rite the equation whose roots are : 1 and — 5 ; | and 6 ; a and 6

;

3, — 1, and 5 ; a, — a, and 2a; 1, 2, 3, and 4.

Solve the following equations, and verify the correctness in each case

:

10. a:2-2a: = 15. 13. Sy^ + 15 = - 26 3/. 16. 2a:3 + 5a:2= 2 a; + 5.

11. 6 a;2 _ a: - 1 = 0. 14. 5 a;^ - 7 a; = 0. 17. a:^ - 4 = 0.

12. ^if+y= 10. 15. 12 22 = 4 2. 18. x^ - 13 a:2 + 36 = 0.

19. x3 + a;2-x = l. 20. (a: - l)(a;+ l)(a: - 2) = 0.

21. Can the roots of the equation in Ex. 20 be determined by mere

inspection ? Can the roots of the equation

(3a:-2)(a;+l)=2

be so determined ? What are these roots ?

22. Write out a rule for solving such equations as those given in the

above examples.

PROBLEMS

By the meth6d of § 26 f solve the following problems

:

1. If the product of the two remainders obtained by first subtracting

3 from a certain number, and then 5 from the same number, is 24, what
is that number? How many solutions has this problem? Explain.

2. If the sum of two numbers is 12 and one of these numbers is x,

what is the other number? Find two numbers whose sum is 12 and of

which the square of the larger is 1 less than 10 times the smaller.

* The expression a; ::^2 is read " x is not equal to 2."

t § 26 should now be re-read.
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3. The difference between two numbers is 2, and the sum of their

squares is 130. What are these numbers?

4. One side of a rectangle is 3 feet longer than the other. If the

longer side be diminished by 1 foot and the shorter side increased by

1 foot, the area of the rectangle will then be 30 square feet. How long

is this rectangle ?

5. A rectangular orchard contains 2800 trees, and the number of trees

in a row is 10 less than twice the number of rows. How many trees are

there in a row?

6. If the dimensions of a certain rectangular box, which contains

120 cubic inches, were increased by 2, 3, and 4 inches, respectively, the

new box would be cubical in form. Find the dimensions of this box.

7. Plow may $128 be divided equally among a certain number of

persons so that the number of dollars received by each person shall

exceed the number of persons by 8 ?

8. A certain club banquet is to cost $75, and it is found that this

will require each member of the club to pay 50 cents more than ^q as

many dollars as there are members in the club. How much must each

pay, and how many members are there in the club ?



CHAPTER VIII

HIGHEST COMMON FACTORS— LOWEST COMMON MULTIPLES

I. HIGHEST COMMON FACTORS

73. Definitions. A factor of each of two or more numbers or

algebraic expressions is called a common factor of these numbers

or expressions; the highest common factor— usually designated

by the letters H. C. F.— of two or more numbers or expressions is

the product of all the prime factors (§ 63) that are common to

these numbers or expressions.

E.g., the H. C. F. of 12 a^h'^cx^ and 6 ah^x.^y is 6 ah^x'^, because when this factor

is removed from the given expressions they have no comrnon factor left ; 6 ab^^
is then the product of all the common prime factors of the given expressions.

Similarly, 3a(a;-l)2(a;— 2) is the H.C.F. of 6 a2x(x — l)4(a; — 2)(a — ?/) and

15 ab{x — y){x — l)2(a; — 2)3.

Note. It is evident from the above definition that no common factor of two
or more expressions is of higher degree in any letter than their H. C. F.

Two or more numbers or algebraic expressions which have no

common factor except unity are said to be prime to each other.

74. Highest common factor of two or more monomials. From
the definition and illustration given above, it is clear that the

H. C. ¥. of two or more monomials can be found by inspection.

E.g., to find the H. C. F. of 12 a%^xy, 6 ab^z^, and 9 ab^^.

Inspection shows that these monomials have the prime factors 3, a, b, b, and x
in common, and that, when these are removed, there are no other factors common
to the given monomials ; hence their H. C. F. is 3 • a • 6 • 6 • x, i.e., 3 ab^x.

A rule for writing down the H. C. F. of several monomial ex-

pressions may be formulated thus: to the H.C.F. of the nu-
merical coefficients annex those letters that are found in

each one of the given monomials, and give to each of these

letters the lowest exponent which it has in any of the

monomials.
112
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EXERCISES

Find the H. C. F. of the following sets of monomials:

1. 3 a2j8c(^ and 6 a6Vrf3.

2. 15 x^z, 24 xYz\ and 18 x^.

3. 16 x'^yHhn% 169 y^z^, and 39 x'^y^m*.

4. 2041 a^i^cT and 8476 a%c^d.

5. 292 x^y'^z^, 1022 x^^^^ and 1095 x^^*.

6. 364 x-'^if'^z^ and 455 x'^y'^^'z^.

7. Is the H. C. F., as above defined, the same as the greatest common
divisor (G. C. D.) in the arithmetical sense? What is the H. C. F. of aH^y

and a^xy^'i Is this H. C. F also the G. C. D. when a = ^,x=Q, and y — ^'i

Note. Observe that highest refers to degree, while greatest refers to value.

If c is any proper fraction, then c > c^> c^ • ••, but c" is always higher than c^.

Find the H. C. F. of the following sets of expressions :

8. 24 aH{y - zy{w + 3) and 56 a%x^{y - zy(w + 3)2.

9. 473 hhH(^x - 1)2(3 - 2 yy and 319 a^hs\x - l)(x - 2)2(3 - 2 yy.

75. H. C. F. of two or more polynomials whose prime factors are

known. The H. C. F. of several polynomials whose prime factors

are known may be written down by inspection as is done for

monomials in § 74.

EXERCISES

Find the H. C. F. of each of the following sets of expressions:

1. 4(rt + J)3(a-J) and J(a + &)2(a - &)2.

2. Q(a + by{a-hy and 15(a- &)2(a + &).

3. 4 aa;2 - 20 ax + 24 a and 6 06^2 + 24 ahx - 126 ah.

Solution

Since 4 a3:2- 20 ax + 24 a = 4 «(a;2- 5 a; + 6) = 2 • 2 a(x- 2) (x - 3),

and 6 a&x2+ 24 ahx - 126 a6 = 6 a6 (a;2+ 4 a;- 21) = 3 . 2 a& (x + 7) (a; - 3),

therefore the H. C. F. is 2 a (a;— 3)

.

4. a2-&2, a{a + h), and a2 + 2a& + 62.

5. 5-19iP-4a:2 and 2^2 + 7 a: -15.
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6. z2 + 5 :c + 6, x2 + 7 a; + 10, and x^ + 12 a; + 20.

7. a^-a-12 and a^ - 4 a - 21.

8. 15(^2 - z) and 35(?/% - ?/2;).

9. X* + a:^^'^ + ?/'' and (x^ - a:?/ + ?/2)2,

10. Of what is the H. C. F. of two or more expressions composed?

State a rule for finding the H. C. F. of two or more expressions which

are already separated into their prime factors, or which may be easily so

separated.

11. What is the H. C. F. of x^x-iy and a:(a;2-l)? Is this also

the G. C. D. of these expressions for all values of x V Try 05 = 3, and also

x = i. Compare Ex. 7, § 74.

Find the H. C. F. of the following sets of expressions:

12. 4 afeV -f 12 ab^x - 40 ah\ 6 aH'^y - 6 a^xy - 12 o?-y, and

18 a%x2 - 54 a'^mx + 36 ahn.

13. 15 a4a;2 + 15 a%H^ + 15 }fix'^ and 3(a2 _ aW- + h%

14. a:8 + aS and 3 a^ + 3 a^ - 5 ax^ - 5 x\

15. 2 a;2 - X - 3 and 2 x^ + 11 a;^ - a: - 30.*

16. (a;+3)(a:2-4), x^H- 4a:3 + 2 a;2 - x+ 6, and 2 a:8 + 9 a;2+ 7 x - 6.

17. a3 + l, 3a3-4a2 + 4a-l, and 2a3+a2-a + 3.

76. H. C. F. of two polynomials neither of which can be readily

factored. Although, it is only in exceptional cases that the factors

of a polynomial can be found (such cases were examined in Chap-

ter VII), yet the common factors of any two given polynomials

can always be found.

The method for finding the H. C. F. of two polynomials neither

of which can be readily factored, is precisely the same as that

used in arithmetic for finding the G. C. D. of two numbers, neither

of which can be easily factored.

* Since the second of these expressions is not easily factored,— although the

first is,— find by trial whether the factors of the first expression are also factors

of the second.

This method may be employed whenever any one of a given set of expressions

is easily separated into its prime factors.
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To illustrate, let it be required to find the G. C. D. of 1183 and 2639.

1183)2039(2

2366

273)1183(4

1092

91)273(3

273

The last divisor, 91, is the G. C. D. of the given numbers. This work may be

more compactly arranged thus

:

Quotients

1183

1092

91

2639

2366

273

273

Similarly, the H. C. F. of x4_{_3x3 + 222_3a;_3 and x^+ x^— 2 may be

found thus:
Quotients

a* + 3 a;3 + 2x2- 3a;-

2cc

2x3 + 2x2— X —

3

2 xs+ 2 x2 — 4

x + 1

x + 2

x2-2x-2

X8+ X2

X3— X2

2x2-

2x2-

2

2x

2x-2
2x-2

and — x+ 1, which is the last divisor, is the H.C.F. of the given polynomials.*

The procedure illustrated above may be formulated in words

thus:

Arrange the given polynomials according to the descend-

ing powers of some common letter, and divide the higher

expression hy the lower, continuing the division until the

remainder is of lower degree than the divisor; then using

this rejnainder as a divisor, with the preceding divisor as

a dividend {and with the same letter of arrangement),

divide as before; continue this process until the remainder
is either zero, or free from the letter of arrangement : — if

' it is zero, the last divisor is the H. C. F. sought ; and (cf . § 77)

if it is free from the letter of arrangement, the given ex-

pressions have no common factor containing that letter.

* The H. C. F. of these polynomials may also be regarded as x — 1. Why ?



116 ELEMENTARY ALGEBRA [Ch. VIII

EXERCISES

By the above method, find the H. C. F. of the following pairs of

expressions

:

1. a:2 + 5 a: + 6 and 4 a;3 + 21 a:2 4- 30 ar + 8.

2. 12 a;4 - 8 a;3 - 55 a;2 - 2 a; + 5 and 6 a;^ - a;^ - 29 x - 15.

3. 6 a2 - 13 a - 5 and 18 a^ - 51 a^ + 13 a + 5.

4. 5n4-10n3+lln2-6n+l and 10n5_5n4_7w34-19n2-14n + 2.

77. Fundamental principle. The success of the method em-

ploj^ed in § 76 for finding the H. C. F., whether in arithmetic

or algebra, is due to the following principle:

// an integral algebraic expression * he divided hy another

such expression which is of the same or of a lower degree

in the letter of arrangement, and if there he a remainder,

then the H. C. F. of this remainder and the divisor is also

the H. C. F. of the two given expressions.

To prove the correctness of this principle, let Ei and E2 repre-

sent any two given integral expressions, and let the degree of E2,

in the letter of arrangement, be at least as low as that of Ei ; also

let Qi and Ri represent, respectively, the quotient and remainder

when El is divided by E2 ; then (§ 47, Ex. 11),

E, = q,E2 + Bi, (1)

whence, Ri= E^ — q^E^. (2)

Now since any factor of each term of an expression is a factor

of the whole expression, therefore any factor common to E2 and

Ri is also a factor of gi^/a + R\, and therefore, by equation (1),

of Ex ; i.e., all the factors common to R^ and E2 are also factors of

jEJi, and therefore common to E2 and Ey
But, by exactly the same reasoning, equation (2) shows that all

the factors common to E^ and E^ are also common to E.^ and R^
;

* " Integral expression " as here used includes arithmetical numbers also.
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i.e., the factors common to Ri and E2 are precisely those which are

common to E^ and Eo. Hence the H. C. F. of R^ and E2 is also

the H. C. F. of El and E^.

From the proof just given it follows : (1) that if E2 be now
divided by R^, giving a remainder R2, then the H. C. F. of R2 and

i?i is also the H. C. F. of ^2 and R^, and therefore of E^ and E2.

So, too, if J?i be divided by R2, giving a remainder R^, then the

H. C. F. of R2 and R^ is also the H. C. F. of E^ and E^, and so

on ; i.e., the H. C. F. of E^ and E2 is also the H. C. F. of any two

consecutive remainders in this succession of divisions.

But these successive remainders are of lower and lower

degrees,* hence a remainder i?„ which is either 0, or free from

the letter of arrangement, must finally be reached ; if i?„ = 0, then

Rn-i is the H. C. F. of i?„_i and i?n_2, and therefore of E^ and

E2, but if Rn is merely free from the letter of arrangement, then

Rn-\ and R^-^ can have no common factor containing this letter,

and therefore E^ and E2 have no common factor which contains

that letter.

Note. It follows directly from the definition (§ 73) that the H. C. F. of two

entire expressions is not altered by multiplying or dividing either of them by any

number which is not a factor of the other. By introducing and suppressing

suitable factors during the divisions above described, fractional coefficients,

which might otherwise arise, may always be avoided.

To illustrate, let it be required to find the H.C.F. of 3x3+ 8x2+ 3x—

2

and a3_2a;24-a; + 4.

Since these expressions are of the same degree, either one may be used as

divisor; the work may be arranged thus:

Before beginning

the second division

the factor 14 is sup-

pressed (see note

\ above), and later 2

is also suppressed;

fractional coeffi-

cients are thus

avoided.

3a;8+ 8x2+ 3x- 2

3a;3-6a;2 + 3x + 12

3

x-2

x-1

x8-2x2+ x + 4

X3 -X
14)14x2-14

x2-l
-2x2+ 2x+ 4

-2x2 +2
X2 + X 2x+ 2(2

-x-1
-x-1

x + 1

and x + 1, which is the last divisor, is the H. C. F. of the given expressions.

* If El and E^ represent arithmetical numbers, then i?i, R.2, and R2,

sent smaller and smaller numbers.

repre-
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As a further illustration, let us find the H. C. F. of

a;4+ 4a;3 + 2a;2— x + 6 and 2a;8+ 9a;2+ 7a; — 6.

Before beginning

the division the fac-

tor 2 is introduced

so as to avoid frac-

tional coefficients in

the quotient (cf . note

above) ; later — 2 is

introduced for the

same purpose; and

finally—3 is rejected.

cb2+ 5 a; -f 6, which is the last divisor, is the H. C. F. of the given expressions.

2

2a;-l

2a:3 + 9x2 + 7a;-6
2a:3 + 10a;2 + 12a;

2a;44-8a;8 + 4a;2-2x + 12 — a;2— 5 a; — 6

— a;2— 5a; —

6

-a;3-3a;2+ 4a; + 12

-2
2a;8 + 6a;2-8a;-24
2a:3 + 9:r2 + 7a!- 6

-3)-3a;2-15a;-18
x^+ 5x + 6

EXERCISES

By the above method find the H. CF. of the following pairs of

expressions :

1. x^-dx^+dx-1 and x* -2 x3 + 2 a:2 -2 a: + 1.

2. 8 x3 - 22 a:2 -F 17 a; - 3 and 6 a;8 - 17 a;^ + 14 x - 3.

3. a:6-4x4-f 5a:3-3a:2 + 3a:-2 and 2 x^ - o x^- + x + 2.

4. a:6-4a;4 + 5a:2_2 and Sx^ + 5x + 2.

5. a;5_ 2x4 -2x8-11x2 -a:- 15 and 2 x5-7 xH4x8-15x2+x-10.

6. x6 + x4 + x8-x-2 and 3x6 + x6-x2-l.

7. a8 + 3a2-2a-6 and 4a2- a + 0^+ 4a4 - 12-}- 4a8.

8. 1 - 4 m8 -f 3 m* and 1 - 5 w3 -f 4 m* -h m - tw^.

9. x5-3x4-3x8-15-19x and 3 x^ - 3 x^ -K x^ - 15 -f 9 x2- x.

10. What is meant by the H.C.F. of two expressions E^ and iJg^

If a is not a factor of E^, how does the H. C. F. of jEJ^ and a • E^ compare

with the H. C. F. of E^ and E^f Why? Compare § 77, note.

11. If a is a factor of E^, but not of E2, how does the H. C. F. of E^

and a • E^ compare with the H. C. F. of E^ and JEJg? In introducing and

suppressing factors during the process of division (§ 77), what special

precaution must be exercised, and why ?

12. Suppose that, at some stage of the work in an exercise like those

above, the divisor is 2 x2 — 4 x -{- 2, and the dividend x8 — 3x2 + 3x-fl;
what would be the eifect on the final result if the factor 2 were intro-

duced into the dividend to avoid fractional coefficients? What should

be done in this case instead of introducing the factor 2 ? Why?



77-78] HIGHEST COMMON FACTOBS 119

13. Show that every factor common to A and B is also common to

A — B and A + B; and also to 7nA + nB and mA — nB. Is the H. C. F.

of A and B necessarily the H. C. F. of ^ - 5 and ^ + -B?

78. Supplementary to §§ 76 and 77. (i) H.C.F. of poly-

nomials which contain monoTnial factors. The problem of

finding the H. C. F. of a pair of polynomials, either of which

contains monomial factors, is usually much simplified by setting

aside these monomial factors before the division process is begun.

Factors which are common to the given polynomials must, of

course, be reserved as factors of their H. C. F. ; all others may
be rejected.

Thus, to find the H. C. F. of

6x5 + 18a;4 + 12x3-18a;2— 18x and Sax^ + 3ax^— 6ax,

remove the monomial factors Hx and 3 ax from the given expressions, and the

remaining polynomial factors are, respectively, x^-{-3x^-{-2x^— Sx — S and

a;8-f-a;2_2 ; the H.C.F. of the monomial factors is Sx, and the H.C.F. of the

polynomial factors is a; — 1 (see illustrative example, § 76) ; hence the H. C. F. of

the given polynomials is 3 x(a; — 1).

(ii) H. C. F. of polynomials zvhich involve several letters.

Although the examples given in § 77 involve only one letter, yet

it should be especially observed that the demonstration there

given applies to expressions involving any number of letters.

Thus, if the given expressions involve several letters, then, to find whether

they have a common factor containing any particular one of these letters, they

need only be arranged according to the descending powers of that letter, and

divided as above described. If, therefore, the given expressions be successively

arranged according to each of the several letters which they have in common,
and divided as above, then all their common factors {i.e., their H.C.F.) will be

found.

Manifestly, however, any common factor which contains two or more letters

will be found when the given expressions are arranged according to any one of

these letters.

(iii) H. C. F. of three or more polynomials. Since the

H. C. F. of three polynomials is a factor of each of them, it is also

a factor of the H. C. F. of any two of them ; therefore the H. C. Y.

of three polynomials is found by first finding the H. C. F. of any

two of them, and then the H. C. F. of that result and the third

polynomial. By continuing this process the H. C. F. of any num-
ber of polynomials may be found.
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EXERCISES
Find the H. C. F. of :

1. 21 ax — 17 ax^ — 5 ax^ + ax^ and 5 ax^ — 34 ax^ — 1 ax.

2. 7 m^^pS — 49 in^x + 42 m^ and 14 ahnx^ + 14 a^mx^— 56 a%a: — 56 a'hn.

3. 48s3te4-162s3fxH54s3^ and 18 s^^a^^- 9 s%%a;- 48 s2f%a:2+ 2452^2^^x3.

4. 6 ca:3(l + 2/2) - 18 cx^z + 2 cy^ - 4: cyH + 12 cz^ - 2 C2(3 z/+ 2) + 2 cy

and 2 a?/4 + 2 ax2(3/2 _ 3 ;2) _ 6 03/2^ + 2 a(a:2 _ 2/2') ^ 4 ^(3 ^ _ i).

5. 4 a;4 - 12 x^^ + 5 x22/2 + 12 xi/^ -^y^ and

12 a;4 - 36 a:^^/ + 11 a;22/2+ 48 a:3/3 _ 36 3^*.

6. 7?2n(a:2 + 2/2)+ x?/(?n2 _|_ ^2) ^nd 'mn{x^ + 3/^)+ xy{m^y + n2a:).

7. 3 ax2 - 6 a2x + 9 a3 _ 3 a:2 + 6 ax - 9 a2 and

6 a2x2 + 24 aH + 6 «*_ 6 x2 - 24 ax - 6 a\

8. Show that the proof given in § 77 applies to expressions contain-

ing any number of letters.

9. Explain fully the method of finding the H. C. F. of more than two

expressions.

10. Why must the H. C. F. of any number of expressions be a factor

of the H. C. F. of any two of these expressions ? Must it be the H. C. F.

itself of any two of the given expressions ? Explain.

FindtheH.C.F. of:

11. a4 + 4 a3 + 4 a\ a% - 4 ah, and a% + 5 a^^ 4. 6 a%.

12. x8 - 6 x2 + 11 X - 6, x8 - 9 x2 + 26 X - 24, and x^ - 8 x2 + 19 x - 12.

13. a3+ a2x-2x3, a8+3a2a;+4ax2+2x3, and 2 a8 + 3 02-^+2 ax2-2x8.

14. ax + }p-x + cH - acy - h'^cy - c^y, a2 4. 2 a& + a62 ^ 2 i^ + 00^+ 2 hc\

and 2 a2 + 2 alP- + c^h + 2 ac^ + 6^ + ah.

79.* Other important consequences of § 77. Some further im-

portant conclusions may be easily drawn from such a series of

divisions as that described in §§ 76 and 77 ; thus, if iHf and N are

any two integers, of which M is the greater, and if M be divided by

JV, giving a quotient Qi and a remainder i?i, and if -^be then divided

by iJi, giving a quotient Q2 and a remainder i?^? ^iid so on,— sub-

sequent quotients and remainders, all of which are, of course,

* This article may be omitted on a lirst reading.
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integers, being designated by Q^, Q^, Q^, "-, and R^, R^, R^, ••,

respectively,— then (§ 47, Ex. 11)

• M=Q,N'-\-R„ N=q,Ri+R2, Ri=QsR2+R3, ^2=9^+^4, etc.

From this series of equations it is easy to express the several

remainders Ri, Ro, R^, •••in terms of M, N, and the quotients Qi,

Q,2j ^3? "••

Thus, by transposing, the first equation becomes Ri=M—QiN.,
transposing in the second equation, and then substituting this value

of Ri, gives

R, = N-q,R^=N-Q,{M-Q,N) = -q,M+(X+QiQ2)N)

similarly, from the third equation,

R^=R^-Q,R,={M-q,N)-q,\{i + q,q.:)N- q,M]

= (1 + Q2Q3)M- (Qi + 4 + q,q,q,) n;

and so on for the later remainders; i.e., the successive re-

mainders may each he expressed in the form aM+ hN,

wherein a and b are integers (one positive and the other nega-

tive), which involve the successive quotients, hut not the

given numhers, nor the remainders.

Again, if M and N are prime to each other, then (§ 77) the last

remainder is 1, and therefore, by what has just been said, two

integers a and h can be found such that

aM-\-hN=l.

From this last equation it is easy to establish the following

important principle : if M is a factor of NL, hut is prime to

N, then it is a factor of L.

To prove this it is only necessary to multiply the above equa-

tion by L ; this gives

aML + hNL = L,

wherein the first member is manifestly divisible by M (M being

a factor of NL by hypothesis) ; therefore the second member,

viz., Z, is also divisible by J/, which was to be proved.
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EXERCISES

The following direct consequences of the principle just now established

may be proved by the student:

1. Ji M is prime to N and also to L, then it is prime to the product NL.

2. ]f ilf is prime to N, L, P, •••, then it is prime to the product NLP •••.

3. A number can be separated into but one set of prime factors.

4. If M is a prime to N, then it is prime to any integral power of N.

5. Show that, with slight verbal modifications, the principles proved

above apply also to integral expressions involving one or more letters.

II. LOWEST COMMON MULTIPLES

80. Multiples of algebraic expressions. A multiple of an alge-

braic expression* is another algebraic expression that is exactly

divisible by the given one, i.e., it is an algebraic expression that

contains all the prime factors of the given expression.

A common multiple of two or more algebraic expressions is a

multiple of each of these expressions.

E.g., 12 a4a;3 (2/2—1) is a common multiple of.3a'^x^{i/-{-l) and 2a^z{y — l).

The lowest common multiple— usually v^rritten L. C. M. — of

two or more algebraic expressions is that algebraic expression of

lowest degree which is exactly divisible by each of the given ex-

pressions; it is that expression which contains all the prime factors

of each of the given expressions, but no superfluous factors.

From these definitions, it is easy to find a common multiple of any two or more
algebraic expressions whose prime factors are known.

E.g., a common multiple of a%'^x^ and a^x^fj* may be found thus :

Since a^ is the highest power of a that is found in either of these expressions,

therefore any common multiple of the given expressions must contain the factor

aS; it mar/, of course, contain a still higher power of a. Similarly, a common
multiple of these two expressions must contain &2, x^, and y^ as factors. More-

over, any expression which contains among its factors a^, b^, x^, and y^, is exactly

divisible by each of the given expressions, and is, therefore, a common multiple

of them.

The L. C. M. of these expressions is that one of their common multiples which
contains no factor that is superfluous; it is a%^x^y^.

Similarly, 6 a^x^{x — 2)^(x — 1)3 is a common multiple of a^x{x— 2)^(x — 1) and

x^ix — 2){x — 1)3, but it is not their L. C. M. , because it contains the factor (x—2)^

when only (x—2)2 is needed, and it contains the further superfluous factor 6; the

L. C. M. of these given expressions is a^x^{x — 2)^(x — 1)3.

* "Algebraic expressioas " as here used include arithmeticalnumbers also.
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A rule for writing down the L. C. M. of two or more monomials,

or of any two or more entire algebraic expressions ichose prime

factors are either known, or can easily be found, may be formulated

thus: write down the indicated product of the different

prime factors that enter into any of the given expressions,

giving to each of these factors the highest exponent which
that factor has in any of the given expressions.

EXERCISES

Find the L. C. M. and H. C. F. of

1. 8 a%'^, 24 a'^b'^c^, and 18 ahcK 5. x"^ - if- and x^ + 2 a:y + y\

2. 15 a%\ 20 a%2c2, and 30 ac^. 6. 21 a;^ and 7 x'^{x + 1)

.

3. 16 aWc, 24 aMc, and 36 a^W^. 7. x^ - 1 and x2 + x.

4. V^a%r\ V^pYr, and 54 a&y. 8. ^x'^y-y and 2 x'^ + x.

Find the L. CM. of:

9. a + i, a - &, a2 + h"^, and a* + h\

10. 3 + a, 9 - a2, 3 - a, and 5 a + 15.

11. x^ — y% x'^ + xy + y^, and x'^ — xy.

12. 4 a + 4 ^>, 6 a2 - 24 &2, and a2 - 3 a6 + 2 h\

13. x^ + y^, x^y — ?/*, and x^ — y^.

14. 2/2 _ 5 y _^ 6 and ?/2 - 7 ?/ + 10.

15. x'^ ~ {a -\- b)x + ab and x'^ — (a — b)x — ab.

16. Is 12 a%^(x'^ — if) a common multiple of 2 a%{x — y) and
3 ab\x - y) ? Is it their L. CM.?

17. What is the essential requirement in order that one expression

may be a common multiple of two or more others? that it may be

their L. CM.?

Find the L. C M. of

18. 3 x2 + 7 x + 2 and x"^ - x - Q.

19. a2 + 4 a + 4, a^ - 4, and «4 _ 16.

20. (« + 6)2 _ e2 and (a + & + c)2.

21. a:'-" - ?/2n and (a:" - ?/")2.

22. a;3 + 6 a:2 + 5 a: - 12 and a,-3 - 8 a;2 + 19 a: - 12.

Suggestion. Use § 67 to find one factor of each of these expressions.

23. a;3 - 6 a;2 + 11 X - 6 and a;3 - 9 x2 + 26 a: - 24.

24. o3 + 2 a2 - 4 a - 8, a8 _ ^2 _ 8 a + 12, and a^ + 4 rt2 - 3 a - 18.
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81. The L. C. M. of two entire algebraic expressions found by means

of their H. C. F. The use of the H. C. F. in finding the L. C. M.

may be better understood if a particular example be first worked

out before the general discussion is given.

Let it be required to find the L. C. M. of Sx^ — x^ — a?-\-x — 2

and 2 ar^ - 3 or - 2 a; + 3.

By § 76 it is found that the H. C. F. of these expressions is

a? — 1] they may, therefore, be written thus

:

^x"^ - a? - x" + x -2 = {x^ -l){^o? - X + 2),

and 2 x^ -^ x'' - 2 X + ^ = (x" -1){2 X - 3),

wherein Za? — x + 2 and 2 a? — 3 have no common factor. Hence

the L. C. M. of the given expressions is

(a^ - 1) (3 a^ - .T + 2) (2 a; - 3). *

Similarly, in general, let Ei and E2 be any two entire algebraic

expressions, and let their H. C. F. be F) then they may be written

:

and E2 = FQ2,

wherein Qi and Q2 have no common factor, since F is the H. C. F.

of El and E2. Hence the L. C. M. of Ei and E2 is the product of

Ff Qi, and Q2, i.e., it is FQ1Q2.

Moreover, since E^- E2 = FQi • FQ2 = FiFQ^Q^, therefore the

product of any two entire algebraic expressions is equal to the

product of their H. C. F by their L. C. M.
Hence : to find the L. C. M. of any two entire algebraic expres-

sions, divide the product of the given expressions hy their H. C. F.

r.. , , . ^ ,, .
EXERCISES

Find the L.C.M. of:

1. a:3 - 6 a:2 + 11 a: - 6 and x^ - 9 a:^ + 26 a; - 24.

2. a;8-5 a:2 - 4 z + 20 and x^ \-2x'^-2ox- 50.

3. 2 !/3 - 11 3/2 ^ 18 ?/ - 14 and 2 ?/3 + 3 .y2 _ 10 2/ + 14.

4. 6 a^a; - 5 a^x - 18 ax - 8 ar and 6 a% - 13 a'-b - 6 ab + 8 b.

5. 4 x* - 17 xY + 4 ?/* and 2 x* - xhj - S x^y^ -5xy^-2 y\

6. 2 x4 - 9 a;3 + 18 x2 - 18 a: + 9 and 3 a:* - 11 a;^ + 17 a;2 - 12 a: + 6.

* This is the L. C. M. because it contains all the necessary factors, and none
that are superfluous.
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82. The L. C. M. of three or more expressions. The L. C. M. of

three or more entire algebraic expressions, whose factors are not

easily determined, may be found by first finding the L. C. M. of

two of the given expressions (§ 81), then the L. C. M. of that

result and another of the given expressions, and so on.

T.. , , . ^ ,, .
EXERCISES

Find the L. C. M. of

:

1. a;4 - 2 a;3 + x2 - 1, a:* - a;2 + 2 a: - 1, and a:* - 3 z^ + 1.

2. a:8 + 3 x^ - G ;r - 8, x3 - 2 a:2 - X + 2, and x^ + x - Q.

3. a;2 - 4 a^, a:3 + 2 ax^ + 4 cfix + 8 a^, and x^-2ax'^^-^ a^x - 8 a^.

4. If A, B, and C stand for any tliree given expressions, and if 31^ is

the L. C. M. of A and B, while M.j, is the L. C. M. of M^ and C, prove that

M^ is the L. C. M. of A, B, and C.

Find the L. C. M. of :

5. a3 + 7 a2 + 14 rt + 8, a3 + 3 rt2 _ 6 n - 8, and a^ + a^ - 10 a + 8.

6. ^3 _ 9 ^2 + 23 ^ - 15, P + ^.-2 _ 17 ^ + 15, and P + 7 ^•2 + 7 ^ - 15.



CHAPTER IX

ALGEBRAIC FRACTIONS

83. Definitions. An algebraic fraction is an indicated division

in which the divisor, or both dividend and divisor, are algebraic

expressions, and the dividend is not a multiple of the divisor.

E.g., 5^ ix — 2y), x^-^y, and Sax-i- {a^— x^) are algebraic fractions.

Fractions in algebra are written in the same form as that used

in arithmetic, and the parts are called by the same names, i.e.,

the dividend is called the numerator, the divisor is called the

denominator, the numerator and denominator taken together are

called the terms of the fraction, and the numerator is usually

written above the denominator, from which it is separated by a

line.

E.g., the fractions 5-^ (x— 2?/), x^-^y, and 3aa;-^ {a^— x^ are usually written

^ ^^ and f
"^

respectively.
x — 2y y a^— x^

An algebraic fraction is called a proper fraction if its numerator
is of lower degree than its denominator, otherwise it is called an

improper fraction.

E.g.,
^

is a proper fraction, while _^' is an improper fraction.

An expression which consists of a part that is fractional and
a part that is integral is called a mixed expression.

E.g., m +-, a-\ —^-, and x-\-y — are mixed expressions.
p a-\- c x — y

Observe the difference in writing a mixed number in arithmetic and a mixed

expression in algebra: 5| means 5 + | in arithmetic, while in algebra m- means

m ' -, and not m + -•

P P

It is sometimes desirable to write an integral expression in the

form of a fraction; this is done by using 1 as the denominator;

e.g., a? — 2x, in the form of a fraction, is
^" ~ ^

'

126
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Attention is again called to the fact that algebraic expressions may be frac-

tional in form and yet, for certain values of the letters involved, represent

integers, and vice versa [cf. § 7, (v)].

84. Operations with algebraic fractions. As in arithmetic, so in

algebra, it is often necessary to reduce fractions to their " lowest

terms" and to a "common denominator," and also to change

mixed expressions to improper fractions, and vice versa. The

operations of addition, subtraction, multiplication, and division

must also often be performed with algebraic fractions.

Moreover, since algebraic expressions represent numbers, there-

fore the principles which were demonstrated in § 54 apply to

algebraic as well as to arithmetical fractions, and all of the above

operations are therefore essentially the same in algebra as in

arithmetic ; the student should carefully observe this similarity

in the next few articles.

85. Converting an improper fraction into a mixed expression.

This change in form is made in precisely the same way as the

corresponding case was treated in arithmetic.

E.g., just as V" = 3^> *-^-» 3 + J, so, too, since a fraction is an indicated divi-

z^+ z + 1 x2 4-a; + i

EXERCISES

Keduce each of the following improper fractions to an equivalent

mixed expression, and explain your procedure

:

^ a^-2ab + c ^ a^ + a ^ + 1

3a:

'

3 2 a:^ + ax - 3 a^ g

4. -"-I-IL^. 9.
X + 2

5 x^- a:8 -23;''-2a;- 1 ^q
x'^-x-l

'
'

a:2-3x+l

11. Is ^ ~ -^ +— a proper or an improper fraction ? Why

?

5 a^ — 8 a + 3

a

3 a:2 + 9 a; + 2

3a:

2 a:2 + aa: - 3 a2

x-\-a

t + 16

a+1
.

8x3- I0a;2-3a; + 5

4 a2 - 3

3 x6 + 2 X - 5

x8 + 2x+l
7x6-1

X3 + X + 1

18 x4 - X3 - 2 X2 -7
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Reduce the following mixed expressions to equivalent improper frac-

tions, and check the correctness of your work (cf. Ex. 7, § 39) :

12. 2x + ^^^1^^. 14. :r + y + e - V^^^^-
x^ + >>

//
x^ — y — z

13. Qy-x-\- —— 15. 3a-26 + c- 4 + *"^
4:y^ + X a — 5 b + 2 c

86. Reduction of fractions to lowest terms. In § 54 (v), it was

shown that any factor which is found in both terms of a fraction

-may be rejected (canceled) without changing the value of the

fraction.

3a^_3ax, , x^-1 _ {x-\-i) (x-1) ^x + 1^
'^'' 4.bxy^4:by' x'^— 2x-i-l {x— l){x — l) x— 1

In algebra, as in arithmetic, a fraction is said to be in its

lowest terms when the numerator and denominator have no com-

mon factor; hence, a fraction may always he reduced to an
'^equivalent fraction in its loiuest terms by dividing both

its numerator and denojjiinator by their H. C. F.

fi a'^x7/^
E.g., to reduce -

—

z'-- to its lowest terms, divide both numerator and denomi-
9 ax^i/^

nator by 3 axy^, which (§ 73) is their H. C. F.

Instead of dividing both terms of a fraction by their H. C. F., and thus redu-

cing the fraction to its lowest terms in a single operation, the same result may, of

course, be accomplished by canceling any common factor as soon as it is dis-

covered, and continuing this process until the resulting numerator and denomi-
nator are prime to each other. Recourse to the H. C. F. is necessary only when
no common factors can be found by other methods. Observe that it is only

equal factors, and not equal parts, that may be canceled. E.g., 5^"t^ -

is not equal to |f ; nor is f^^^i^ equal to -^^^^. ' "^

5&C 6s— 5^2^ 3 s— 5 n^

EXERCISES

Reduce each of the following fractions to its lowest terms :

1. ^^JZJI^. 4 a^ + 2ab + b^ ^
a^ + b»

&2 a8 + 63 a^ + a2b' + b^

2 34 a^^c*
g

2 x^ + 3 a: + 1 g 3 a^ _ 2 a - 1

51 a^b^c
'

' x'^+5x + 4:
'

' l + a~a^-a^

^ ap. - yi

^
a:« + y8

^
^ a* - ^2 - 20

(a -6)2 y^-x^ a*-9a2 + 20
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10 a:^ + 2 xy + if - z^ ^5 Sfl^-f OQa^ - q - 2

z^ + x^ + 7f-^2xij-^2xz+ 2yz ' Sa^ + 17 a'-^ + 21 a - 9*

j_j_
a^-h^ ^g a:5- 2x4 -2x3 -11x2-3;- 15

12.

a^ + a^'ft + a^6"^ + aW + b^ 2 x5-7x4+ 4 x^- 15 x^-f x-lO

x3+3x2 + 4x+2 ^.y a6(x2 -}- y^) .j. a,-y(a-2 + /j2-)

x3-3x2-8x-10' *

a&(x-'2-2/=2)+x^(a^-62)'

j_3
x8 + x2 - 22 X - 40 j_Q x8-6x2v + 2x?/2 + 3?/3

8-7x2+ 2x + 40 x=^+0x2?/-2x?/'^-53/S

j_^
1 - 2 X - 5 x2 + 6 x3 ^g a2 ^ 52 _^ 2 c2 + 2 a5 + 3 ac + 3 ^»c

* l + 5x+2x2-8x8' '

a2 + 6^ + c2+2a6 + 2«c + 26c

20. May the factor 5 ax be canceled from the first two terms of the

numerator and denominator of
5ax2- 10fl2^- + 3 6(x -2 a)

^-^^Yxout
15 a3x4 - 30 a4x3 + 6 6(x - 2 a)

changing the value of this fraction? Why?

21. Is the value of a fi-action changed by canceling equal /ac/ors from
both numerator and denominator? Is it changed by canceling equal

parts or equal factors of parts of the numerator and denominator?

87. Changing fractions to equivalent fractions having given denomi-

nators. Since multiplying both terms of a fraction by the same
number does not change its value, therefore any given fraction

may be reduced to an equivalent fraction whose denominator is

any desired multiple of the given denominator.

E.g., to reduce j—^ to an equivalent fraction whose denominator shall he

12 cx^y, multiply both terms of the given fraction by 3 cy.

EXERCISES

1. If the denominator of a fraction be multiplied by any given ex-

pression, what must be done to the numerator in order to preserve the

value of the fraction ?

2. How find the expression by which it is necessary to multiply both

terms of a given fraction in order that the new equivalent fraction shall

have a given denominator? A given numerator?

3 a — 5
3. Reduce -—— ^ to an equivalent fraction whose denominator is

2 x(3 + ax)

18 X — 2 a^x^. Also to one whose numerator is 12 ax + 18 a?/ — 20 x — 30 y.
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Find the required numerator in each of the following equations

:

4.
3x-2a ?

5.

x^-Sax+2a^ 2x^- 7 ax^+7 a^x -2a^

4 ?

(y - a) (a _ x) (3 - 4 i/) (a - y) (a - a:) (4 ?/ - 3) (3 - 7 y)

g 3m -8 ^ ? ^ 3x ?

2x-5 -2a:+5 1 7a;2-3a; + 5

88. Reduction of fractions to common denominators. In § 87 it

is shown that any given fraction may be reduced to an equiva-

lent fraction whose denominator is any desired multiple of the

given fraction ; if then any common multiple of the denominators

of two or more given fractions be chosen as the new denominator,

it is clear that these fractions may be reduced to equivalent frac-

tions having this denominator in common.

E.g., since 12 a^x^ is a common multiple of the denominators of — , —^, and
2x 3 .t2

-—
, therefore these fractions may be reduced to the equivalent fractions " •^

.

o a 12 a2a;2

8 a^ 10 amx^
^o 9 o ' ^^^ .,„ o o > which have the common denominator 12 a^x^. Similarly
12 a^x^ 12 a^x^ "^

for any given fractions whatever.

In practice it is usually desirable to keep the denominators of

fractions as small as possible, and therefore, instead of choosing

any common multiple, as above, it is best to choose the L. C. M.
of the given denominators.

2a „„, 5xE.g., the L. C. M. of the denominators of — and
(a;-l)(a; + l) (x-\-l){x + 3)

is (x — l){x-h 1) (x + 3) , and these fractious are respectively equal to

ix-l)T+~l)l + B)
^"^

i:c-l]T+l)l+S) '
^"''°^^'.' *^^ ^^^^^ ^^"^^'""^

can not be reduced to equivalent fractions having a lower common denominator.

To reduce tvs^o or more given fractions to equivalent fractions

having the lowest possible common denominator, divide the
L. C. M. of the ^iven denominators hy the denotninator of
one of the given fractions, and then multiply both terms
of that fraction by the resulting quotient; do the same with
each of the given fra/itions.
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EXERCISES

Reduce the following fractions to equivalent fractions having the

lowest possible common denominator

:

1. 3a+i and ^^±i. 5. ^ and
4 6 (m-l)(m-2) (2 - wO(m - 3)

2.
^-^^ and ^ + ^^.

6. ^ + y and ^ " -^ •

16 6 20 62 x'^ + xy^y^ x^-xy+ y^

3. ±±^ and ^Lll^. 7. £^ll, ^±i^, and ^' + ^^
a — b a + h x + y x — y x^ — y'^

4. -^^1- and ^ + y . 8. ^ " -^ and
^'
" ^ + ^

•

X3 - 3/3 3;3 + 2^3 a-S _ 2/3 3.4.^ 3.22/2 _^ y*

9.
, -, and

1 + X 1 — x^ x^ — 1

10.
^(--^'^

,

^(^^-^)
, and ^«

2 rt6 + />' a^ + 2ab+ b^ a^ - b^

11.
6x 3a ^^^^

3a- 6x

12. 7 a:,

15 _ 13 a: + 2 0:2 a;^ - 8 a: + 15 ^2 - 2 a: - 15

b — X a — X _ J 3

:i.-2_62' x2 -(a + 6)a; + a6

13.
^--'^

, ^_, and ^(^ + ^)
.

a:2+7a: + 10 a;2 + a: - 2 a:2 + 4 a: - 5

14. ,
^ + ^

, .
"-^

, and « + 1

a2 - 4 a + 3' a2 - 8 a + 15' a2 - 6 a + 5

^5^
5(u - 3 .)

^

8
and ^^-^^)

.

u - 2 V w2 — 5 My + 6 y2 ^^ _ 3 y

89. Addition and subtraction of fractions. As in arithmetic, so

in algebra, the sum (or difference) of two given fractions

which have a cormnon denominator is a fraction whose
numerator is the sum (or difference) of the given numera-
tors, and whose denominator is the common denominator

of the §iven fractions [of. § 54 (vii)].

E.g.
a^2 + a; + 5 a;2 + 3 ^ a;2+ a; +5-(a;2+ 3)

Note 1. The minus sign before the second fraction means that all of that

fraction is to be subtracted, hence the necessity for the parenthesis in the numera-
tor of the next fraction.
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Note 2. Since a fraction is a quotient, therefore its sign (i.e., the sign written

before the dividing line) is governed by the laws of signs in division. Thus, if Ei

and E2 are any algebraic expressions whatever, then ——l =+—^ =+ -^^.

Hence the above example may also be arranged thus :

x'^ + x + 5 a;2 + 3 ^ x'^+ x + b , -a;2-3 ^ a; + 2

a;2-2a; + l x^-2x + l a;2_2a; + i x'^-'lx + l x^-2x + i

If the given fractions have 7iot a common denominator, they

must be reduced to equivalent fractions which have a common
denominator (§ 88) before they can be added or subtracted.

^ _1 3, 2 ^ xix + \) 3(a;-l)(a; + l)
I

2x(x-l)
•^' x-\ X x + 1 a:(x-l)Ca; + l) a;(a;-l)(a; + l) x{x-l){x + l)

_ x{x + l)—Z{x— \){x + \)+ 2x{x — l)

x{x-l){x + l)

^-x
x{x-\){x + \)'

3 3.

and this result, viz., ;

—-, is called the "algebraic sum" of the given

fractions.
x{x-l){x + l)

EXERCISES

, Simplify the following expressions

:

1 ^-^ ^
4. ±±A. 9 ^ + "^ ^ + ^

a;2 - 3 x - 10 x2 + 2 X - 35

1
^

re + 3
J

a: + 7
, ^^

1 3

2 5 10

3.
a-\-x ^ a-x ^ j_3__

a — a; a -\- x

4. 1 + ^ + y—

.

12.
2 a; - 3 y/ 4 a;2 - 9 2/^

g 2 a; — 3 g 2 x - a je
-j^g

a; — 2 a x — a

6. -3- + -1-. 14.
a; + y a; — y a'-^ + ax + a;'-^ a + a.-

n ^ 1^_ ,g a -\-h + c a — h -\- c

1 + X - 2 a;2 6 x2 - a; -2

^ 1 + 1 .- 1 X + 2 - x2

1 1

(X -yy {x + yy
a A-h a -b

cfi - 2 a6 + 62 a2 + 2 ab + b^

a2 — ax + x^ a — X

x-e x-2 a-2_(/;+c)2 (a-6)2-c'-2

X X - - a — X ,
a + X 0.2 _ 2-2

8. ~t ± 16. " ~ ^ +
1 — x2 1 -f x2 X X 2 ax

* Compare example under Note 2, above.
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17 ^ ~ ^
1
^ — c c — a

ah be ac

18.
2 3 ?/2 -x^

^
XI/ + f

xy xy^ x'^y^

19. h 3 a:.

X — 2 a x — a

Suggestion. 3 a: =—

•

1

20.
^

1

^-y 3:2-a:.y

X -\- y x^ — xy -\- y^ x^ -\- y^

21. UL^ + lzi^ + a:.

1 — a; 1 + a:

22.

23.

24.

25.

26.

37.

a; — a a;^ — a"

a:(a:

1

-y) ^Ri
1

a:?/

1 1

a:2-7x- + 12 a:2- 5 a:-F 6

2a;2

1

— X -1^
1

3-a;- 2a:2

1 1 2a

27.

28.

29.

30.

31.

32.

33.

34.

35.

a- 1 a (a — 1)

1 2

a a + l"^a + 2

1 1

x-1 2(x + 1)

a

a- 1

2

a + 1 a

a 1

+ 2 a

1 1 a: +
2(x2 +

:}

1-x 2(a: + 1) 1)

7h- :.

^'

1-x

2 a:-3 a.-3

x + 4. + 64

b ai a62

a + 6 a — b b^ — a^

-1 1

a + 6 (a + />)2 (a + ft)
3

a:^ + ax^ _ x(x — a) _ 2 aa:

aa;2 — a^ a{x -\- a) x^ — a'^

x(a -b) b -2i
b^-x^ x + b

36 ^^ -^ _ 3 x(a - b) b -2a
X — b

1

(a - ft) (a - c) (ft - c) (ft - a) (c - a) (c - ft)

Is (rt — 6)(a — (^(^ — c) a common multiple of these three denomiuators? Is

(a - 6) (6 — c) (c - a) ?

38.
1

1 + ^

X — 1 a: + 1 '

a- — 2 a; + 2 x^ -\- y^ x^ — y^ x^ — y^

3 a; ^ 4 - 13 a:

l + 2a; l-2a: 4a:2-l

42.

41. ^-+ 4« 1 a

1 + 2

a; + a x^ — cfi a — x x^+ a''^

3

a;2-5a; + 6 3a:-2-a:2 4a;-3-a:2

43.

44.

a: - 1 2 (a: - 2) a:-3
(x-2)(a;-3) (3-a:)(x-l) (a: - 1)(2 - x)

a2
,

ft2 c2

(a-ft)(a-c) (ft-a)(ft-0 (c-a)(c-ft)
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45. -^-^ + ^« + «*

46.

(a - c) (a -b) (6 - c)(b -a) (c - a)(c - b)

1 2
,

L

x^ - 5 a:^/ + 6 2/2 x"^ - ^ xy -\- 3 y^ x'^-3xy+2

^^ g^ + 2 g + 1 _ 2 g^ - 2 g + 1 ^g a:« + ar^ + a: + 1 3
^g2-2g + l g2 + 2g + l'

* x^-ar + l x-1

90. Reducing mixed expressions to improper fractions. Since an

entire expression may be written in the fractional form with

the denominator 1, therefore reducing mixed expressions to im-

proper fractions is merely a special case of addition.

'^''
x— 1 1 x — 1 z — 1 x — 1 x — 1

EXERCISES

By the above method simplify the following expressions

:

1. .-l+^!_. 6. 3a-Sb 186^-5o«
a;2 — g + 2^>

J.3

x*-\-x^-x + l

1 + a; + a.-2

^ 4 + 4y2+y3
l-22/ + 2^2

4 g2 + 9 62

2a + 36

7 gx + 6a: + g6

2. x + 1-^^. 7. a;-a;2-:
x — 1

a:2-2a: + l
^ ^

4. l-y-yi-tuJl. 9. 2g-36
1 - 2/4

5. g2 _ aft + ft2 ^

.

10. 1 - ga: - ...

rt + 6 1 - g6 + a:2

11. Prove that any mixed expression may be reduced to an improper

fraction by multiplying the integral part by the denominator of the frac-

tion, adding or subtracting the numerator as the case may be, and placing

this result over the denominator. Also compare § 47, Ex. 11.

91. The product of two or more fractions. In algebra, as in

arithmetic, the product of two or more fractions is a frac-
tion whose numerator is tlie product of the numerators of
the given fractions, and whose denominator is the product

of their denominators [cf. § 54 (ii)].

3x2 2a2?/ 5rt62 _ ma^h'^T^y Sa^bE.g.,
^by^ 3x2 2x-Zy 12 bx^y^2 x - 3 y) 2yC2x-3y)
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i'ind the product of

:

EXERCISES

1.
«^^ and

^'<
b^dh-^ ab-2

3. f": and *"'"^

6'»+2 a-"

2.
Sxy ^^^ 16 ,V
8yz 9xY

4. "and * .

a + 6 a - 6

5.
«'-«^

and ^'+^-^.

x^ — xy a^ + ab

6. ! and —' - xy + y'^

X* + x-y'^ + y^ (a - by

7. Simplify (x -\-2y— )

^
, making use of the distributive law.

\ yl a + a;

8. Simplify (x + 2y— ]
—^ by first reducing the multiplicand

\ y/a + X

to an improper fraction (cf. Ex. 7).

9. Simplify f ?/ + 3 ^] f 2 ?/ + 3 - —-^

—

] by the method of
\ y — 0/ \ 2 y — '6/

Ex. 7, and also by that of Ex. 8, and compare results.

10. Give a convenient rule for multiplication when one or more fac-

tors are mixed expressions.

p r pr
11. Prove that —.- = —;-, and show that the proof is still valid

when some or all of the letters represent algebraic expressions (cf. § 54

and § 84).

12. How may an integral expression be multiplied by a fraction

(cf. § 54) ? Is n . - equal to — ? Is it equal to -^—

?

13. How does the identity I^Y=^ follow from § 54 (ii)?

14. Prove that ^S.= P^, and thus prove that El . iL = P/:
. A = 2L.

q qn qs rw q^ /w qio

15. Based upon Ex. 14, give a convenient rule for multiplying two or

more fractions together by cancellation.

Find the product of

:

16. ^«-^^'and ^'+-y^y'
19.

^'^y' and «*-«^'^^ + ^\
x^ — y^ a^ — "2 ax + x^ a6 + 66 x^+2 a;23/2 + /

17. i^-^y-^ and « + ^+l.
(a + 6)2_i a -6-1

20.
^' + ^^ and f

^ - y '

a:2+y2 \x-y x^y

18.
«'-!

and («^+l)(^ + l)^
21. a+ «* and b "^

•

a-\-b
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x-^-9x + 20 a;2 - 6 X + 9

(ga-DCaS+l) ^^^ (a-DHa + iy
,

x^ + x-^?/=2 + y^ (a2 - 1) (a4 _ 2 a2 + 1)

24 «iz^8^ and « + -^
-

'
-^ 4 62 a2 + 2 a6 + 4 62

25. 5!^ll?, ££:L+1^, and -liii-
2 xy XT/ + 2/2 x^ — xyxy + 2/2 aj2 _ 2:^

26 " ^ + 6'^ - c2 + 2 aft ^^^ ^2 _ ^,2 ^ ^2 _ o ^^
•

(,2 _ j-2 _ c2 _ 2 he c^-a^+}p-- 2 6c*

27. ^^JLi + ^LZL^ and ^L±i _ ^^IL:^.

a — 6 a + 6 a — 6 a + 6

28. « -A-l--? and 1 ^-^—'
he ac ah a a + 6 + c

92. Division of fractions. In algebra, as in arithmetic, to divide

hy any fraction gives the same result as to multiply hy the

reciprocal of that fraction [cf. § 54 (vi)].

^*'
b^y^

' bijlf^' c»s bey

Note. If the divisor is an integral expression, it should be first written in a

fractional form, and if it is a mixed expression, it should be first reduced to an

improper fraction, before proceeding as above.

EXERCISES

1. Prove that -2 - ^ = ^ . ! (cf. § 54 and § 84).
q s q 7-

Perform the following indicated operations, and simplify the results :

2 Qx^y . 2x^ - / 3x2W ^2 A . a

14a364 2a262"
' V a JVSx^ )

'

x''

(q _ />)2 _ p q _ ;, + 3

(a + 6)2 - 9 a + 6 + '6

x2- 1 .y2- 12 X + 8.5

x2- ;}x - 10 x2 + 3x +2
'

<72 -I- .r-2 _ 1 4. 9 ax . g + 1 + X

x2 + y- — d -{- 2 xy x + 3 + y

3:3 _ n y2 4. 30 y x^ + 216x
x2 - 49 '

x2 - X - 42'

3. " - ^-^^ ^^ -r ^-^, Q

14 a364 2a262

a2 _ 121
.
a + 11

a2-4 a + 2

X3 - «8 (x-«)2
x3 + a3 x2-a2

14x2- 7x 2x-- 1

12 x3 + 24 x2 x2 + 2x

a*- 64
. (« --6)«

a4 + a26'2 + ¥ «« -6«

5.
"^-^ Lj^ ^ ^uf: i.. 10.

12 x3 + 24 x2 x2 + 2 X

6.
«^-^^ ^ (^^ - ^>)"

11.
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i m^n — 5 n"^ m^ — mn + n^
IS-

14.

2 x^ + 13 a: -f 15 . 2 a:^ + 11 r + 5

4 x2 - 9 4 a;-^ - 1

a* - 84 a"'^ + 25 8 a-^ + 8 a + 5

15 4 g-^ + />2 _ ^2 ^ 4 ,,ft 2 g + ^ + c ^
4 rt--^ - //2 _ c-^ - 2 6c 2 a - 6 - c'

16.

17.

a^ -\- ah -]- ac + he
^ a^ — ax + ay — xy a^ — a(y — h^ — hi)

ax — ay — x'^ -^ xy d^ + ac + ax -\- ex x"^ — x(y — a) — ay

a:4 - .3 a:3 - 28 x^ + 75 x - 50 .
3:3 - 12 a:^ + 45 -g _ 50

a;4 _ 5 a;3 _ 21 a;2 + 125 a: - 100 "

a:^ _ 10 a:^ + 29 a; - 20'

18. P^-^* ^ P^ + P^ + P^ . p--^P9 + g^

iP - Q)^ P - Q P^ + (f P^ + 2/'^ + <?2

93. Complex fractions. In algebra, as in arithmetic, a fractioii

whose numerator or denominator, or both, are themselves frac-

tional expressions, is called a complex fraction.

\-a z-l
E.g.,

., I

and are complex fractions.^^^
x + 2-\--

X

A complex fraction, like a simple one, is primarily an indicated

quotient, but it usually also involves some of the other funda-

mental operations alread}'' studied; performing these operations

is spoken of as simplifying the fraction.

E.g., the above complex fractions are simplified as follows:

\ and

l-a
a

1 + a ={-l-«)-
-(!+«) = --«2

a

1 +
1

a 1-
a

cr2 1 1

1 + a

— a

a

.-1
X

x2_i

a;2 + 2 x +

1

' = ?!-1^
X

X x-\

a; + 2 + i x^-\-2z + 1 K + l

Note. Multiply both numerator and denominator of this last fraction by x,

and reduce to lowest terras. How does this method compare with that used above ?

* To avoid ambiguity, the principal dividing line in a complex fraction is best

made somewhat heavier than the others.
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EXERCISES

Simplify each of the following expressions :

[Va^/ a6 (a-6)2j
[ [ \a bl ab

2 /^ ^
I M - h • f

^-^ Ml-

I
^a + 6^ (a + />)2|| (a + 6)2 I

1 -

rrr + n'

n m

1 +

(a + by

m2- n2

m^ — n^

1 + ^)

6.
X - y

X + y

- 2 -

a - 3 i)
J I

1 + 26-a

^ +

X +

1

xy

x^ +

x^ — y'

X + y }

10.
a — 6 a + b

11.

X — ^ -

a: -4

^ 4 -
1 '

a: -4

fl?;2 4 rr/>(a + ft)

3 + &3 a2 -- a6 + 62

a2 + ft2 a2 -62

a2-ft2 a2 + 62

a + 6 a -6
12.

m — n m-^ + n'

m + n m2 — 71^

13

6 a + 6

^8 _ yZ

a — b a + 6

7n2n + n*

m — n (m — ny

x^ — xy -\- ^2 X

x^ + y^
. (l ^ y \

'^ + xy + y^ \ X - yl
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9 a:2 - 64
14. 1 + 17.

I + X +
O -r^

'

„ 1 1X- 1

1-a; 1 ^
4 + a:

1
18.

,^ 3x-2 Sx + 2
15. _

1 ^

^^
1 - o:

^ + Ui 19 £±iL
1^ « ^ <^

, ,

16.
J

a; + 3/ +
a

, b , c ,1
H h- X - y +

b c a X -\- y

20. Recalling the meaning of a negative exponent (§ 44), show that

,4.1

cr-
^2 - ^,2 -^2^3*

21. As in Ex. 20, show that _'?!r^lV ^ a^ffi, gj^o^ ^jgo l^h^t^
^mjy-n m^s-^w^ m'^wH^ by

~
b^s-"'

22. Prove that any factor whatever of the numerator of a fraction

may be transferred to the denominator by merely reversing the sign of

the exponent of that factor. Also show how a factor may be transferred

from denominator to numerator.

23. Is
^^ + ^~^^^

equal to 9^+^'? Why? Observe carefully that
4 X 4 xb^

a factor, but not a part, may be transferred as in Ex. 22.

Clear the following expressions of negative exponents, and simplify

them as far as possible; in any case of doubt employ the definition

of § 44, viz., a~* = — •

a*

24 3 m-^n^ 25
^'^^ 26 3a + 2ftc-8

'

2 (a + a:)*
' 3 • 2-^b^y-^'

' 5 x-^ - H y

REVIEW QUESTIONS-CHAPTERS VI-IX

1. Define and illustrate : even numbers; odd numbers; prime num-

bers; composite numbers; finite numbers; and infinite numbers.

2. What is the value of g? Of§? Explain.

3. Show that the absurdity in Ex. 17, § 55, arises from dividing zero

by zero.
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4. By applying the distributive law show that — (a + x — 5) = — a

- a: + 5.

5. State the binomial theorem. Apply this theorem to expand

(2 a - 3 x^y.

6. If Ax"^ + Bx"^-^ + ••• + Hx -\- K is divided by x — a, prove that

the remainder is Aa"^ -\- Ba"-'^ + - -\- Ha -{ K.

7. By means of Ex. 6, and without actually performing the division,

show that a: — 1 and x + 2 are factors of x* + 2 x^ + 7 x - 10.

8. As in Ex. 7, show that x" - ?/", wherein n is any positive integer

is exactly divisible hy x — y.

9. By means of factoring, find the roots of x^ — 7 x + 12 = 0, and

explain.

10. Form the equation whose roots are 3 and — 7, and explain.

11. What is meant by the L. C. M. of two or more expressions? How
may it, in general, be found?

12. How may the L. C. M. of three or more given expressions be

found?

1+ ^

13. Simplify
l + x^C^-D-^.

^ ^
,

1 x^ + x + l
X + ^ ^

a: + 1

14. Is
2rtx5^

g J ^^
a^—J Explain.

3 63 ^ 3-2-163^-2 ^



CHAPTER X

SIMPLE EQUATIONS

I. INTEGRAL EQUATIONS

94. Introductory remarks and definitions. Some preliminary

work in simple equations has already been given in Chapter III

;

the text of that chapter should now be rapidly reread. In the

present chapter it is proposed to treat this subject in a somewhat

more careful and rigorous manner.

Every algebraic problem involves one or more numbers whose

values are at first unknown, and which are to be found from

given relations which they bear to other numbers whose values

are known ; to distinguish between these two kinds of numbers

the first are called unknown numbers, and are usually represented

by some of the later letters of the alphabet, as x, y, and z (cf.

§ 26), while the others are called known numbers, and are repre-

sented either by the Arabic characters, 1, 2, 3, •••, or by some of

the early letters of the alphabet, as a, b, and c.

If any of the known numbers in an equation are represented

by letters, then it is called a literal equation, otherwise it is called

a numerical equation. If its members are integral expressions so

far as the unknown numbers are concerned (§ 41), then it is

called an integral equation ; known numbers may appear as

divisors and the equation still be integral.

E.g., 3x2 + 5x1/ -10 2/2 = 8, 4-^ = 7x, and 5(x2+ 2/2)=^ are integral

equations; the first two are numerical, while the third is literal.

By the degree of an integral algebraic equation is meant the

highest number of unknown factors which it contains in any one

term. If all of its terms are of the same degree, the equation is

homogeneous.

141
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E.g., 3x4-7 = 13 and 2 + 4?/ — 5x = are numerical equations of the first

degree, while z^ + 10x = ^x — ^, 4 xi/2 = 3 ax^ — 7 ?/3, and azy^— x = 3y are of

the third degree ; of these last three equations the first is numerical, the second

and third are literal, and the second is homogeneous.

Special niimes are often given to equatioils of the lower degrees; thus an

equation of the first degre6 is known as a simple equation and also as a linear

equation ; * one of the second degree is also called a quadratic equation ; one

of the third degree, a cubic equation; etc.

EXERCISES

1. What is meant by a root (or solution) of an equation? Is 2 a

root of a:2 - 7 a: + 10 = ? What then are the factors of x'^ - 7 x + 10

(of. § 67)? What other root has this equation?

2. Verify that x = 4: and y = 3 constitute a solution of the equation

7 X + 2 y = M. If a: = 2 in this equation, what must be the corresponding

value of y? If a: = a, what is y ? If y = 6, what is x? Find four other

.solutions of this equation.

3. How many solutions has the equation in Ex. 1 ? How many
solutions has the equation in Ex. 2?

4. Is the equation in Ex. 1 homogeneous? integral? literal? numeri-

cal? simple ? Define each of these kinds of equations.

5. Show that x^ + lOx'^y + 8^^ = dxy^ is a homogeneous equation.

What is its degree ? Can a homogeneous equation have a term free

from the unknown number ?

6. Is 3x2 — 5?/2 =:2a2 homogeneous? Why? Write a homogeneous

linear equation in two unknown numbers ; also an integral, literal, quad-

ratic, non-homogeneous equation in two unknown numbers.

Solve the following equations, using the methods of Chapter III, and

also § 72

:

7. ^-'^^^Ji^ + 5 = 0. 10. 2ax = 2c-3bx.

8. x-Sx + 4:-(sx+2-'f\ = 0. 11. -^--^ = c.

\ 4:1 2a 46

9. ^^-=i-^^;^+2=0. 12. {a-x){a-h)-a{h-x) = ().

13. x^-x = Q. 14. x2 + (a - 6)r = «&. 15. x^ ^2 x"- = x ^2.

16. Find three solutions of .5 a: — 3 y = 7.

* The appropriateness of this name will be seen in § 115.
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95. Equivalent equations. Two equations are said to be equiva-

lent if every root' of eitlier is also a root of the other.

The methods thus far employed for solving equations (in Chap-

ter III, and elsewhere) consist in clearing equations of fractions,

transposing and collecting terms, etc., i.e., these methods consist

in deducing from any given equation a succession of iiew equations

whose roots are more and more easily found, and then finding the

root of the simplest of these new equations,— compare Exs. 1 and

2, § 24.

That the root of this final simplest equation happens also to be

a root of the given equation depends upon the following prin-

ciples : ,

(1) Adding* the saine numher to each member of any
given equation, forins a new equation which is equiva-

lent to tJie first (cf. § 24, Ax. 1).

(2) Multiplying* each member of an equation by the

same number or algebraic expression, which does not

involve the unhnown number, and which has a finite

value different from zero, forms a new equation which
is equivalent to tlze first (cf. § 24, Ax. 2).

To prove Principle (1) let the member^fVny fei\^eu equation be represented

by El and E^ respectively, i.e., let the equ^iott be ^
Ei^E^ \ \ (1)

This does not mean that Ei and E.2 represent the same number for every value

that may be substituted for the unknown nurnbet^ but that they represent the

same number only when a root of the equation if substituted for the unknown
number.

But manifestly, if N represents any nuntfipn whatever, then

Ei + N=B^^N
I ^ (2)

whenever Ei = E^; i.e., every root of Eq. (1) is also'a root of Eq. (2).

By precisely the same reasoning, every rootr^ Equation (2) is also a root of

(El -{-N) + (-N) = (E2+% + (- -ZVT), (3)

i.e., of Ei = E<i.

Hence, every root of Equation (1) is a root of Equation (2), and vice versa;

therefore these equations are equivalent.

* Since adding a negative number is the same as subtracting a positive number
of the same absolute value, and since dividing by any number is the same as

multiplying by its reciprocal, therefore subtraction and division are included in

these statements.
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To prove Principle (2), it is simpler first to write Equation (1) in the form

^1-^2 = 0,
•

(4)

which, by Principle (1), is equivalent to Equation (1).

If now N represents any finite number that does not contain the unknown
number, and is not zero, then manifestly

N{Ei-E2)=0 (5)

for every value of the unknown number which makes Ei = E^, and for no others,

i.e., every root of Equation (1) is also a root of Equation (5), and vice versa ; i.e.,

Equation (1) and Equation (5) are equivalent.

Note 1. That the multiplier in Principle (2) above must not contain the un-

known number, and that it must not be zero, becomes evident on examining any

given equation, e.g., 3a;— 4 = 2. On multiplying each member of this equation

by cc — 3, and simplifying, it becomes 3x2 — 15a; + 18 = 0; but since 3 is a root

of this equation, and not a root of 3 a; — 4 = 2, therefore the two equations are

not equivalent.

So, too, if each member of the given equation be multiplied by zero it becomes

(3 a; — 4) • = 2 • 0, of which any finite number whatever is a root, and hence the

new equation is not equivalent to the given one.

Note 2. The language in this discussion applies to equations containing only

one unknown number, though it is evident that the same argument is applicable

however many unknown numbers may be involved.

EXERCISES

1. Apply Principles (1) and (2) of § 95 in solving the equation

^^-^ H
^ ~ '

+ 3 X = ; and show in detail that each derived equation
2 o

is equivalent to the one preceding, and thus to the given equation.

2. Show that the equation 6 a: — 30 = —^^-^—- + 36 is equivalent to

3 X — '^

X — 5 = + 6 ; and that each of these is equivalent to 7 a; — 35 =

3 X — 2 + 42, and therefore to 4 a: = 75, i.e., to a: = 18|.

3. Provided that no error has been made in the transformations in

Ex. 2, do we really know, without verifying, that 18| is a root of the

given equation ? * Why ?

4. Show that Principle (1) above includes the principle of transposi-

tion (§ 25) ; and that Principle (2) is far more useful in solving equations

than Axiom 2, § 24 (cf. Note 1, § 95).

* Though it is no longer necessary to verify that the root of the last of such a

set of equations as those in Ex. 2 is also a root of the given equation— because

of the principles of § 95— yet verifying serves as a check upon the correctness of

the actual work, and is still recommended.



95-97] SIMPLE EQUATIONS 145

Apply Principles (1) and (2) of § 95 in solving the following equations

;

and in particular point out the equivalence of the several equations

involved in each exercise, and the reason for this equivalence :

f. X 2 a; — ;3,3x — 15 o ik5.- ^- +^ 2x^15.

6. 3 a; - 3(2 a; + 15) + 2(a: - 2) - 14 = 0.

7. (3 a; - 5) (a; - 2) - 4 a;2 + 14 a; - 12 = 0.

4a;-5 7 a: - 15 4(3 a:

-

2) ,«7a: + l ,,o 4a; + 7

2 ~ 3

7i - a: a:/6

I(.-0-

14. 1.75:.+3+:5£=:26£,z2:375.
.25 1.125

15. ^i;il+ 1-^1^ = 0.

96. Literal equations. The same method that has been followed

in the solution of numerical equations, and the same principles as

are there involved, apply also to literal equations.

E.g., given the equation ax-{-h = cx+d; to find x. This equation is equiva-

lent to ax — cx = d—h, [§ 95 (1)

i.e., to x{a— c) = d— b,

and hence to x = ^
~

, rs 95 (2)
a — C La \ J

which is the required root.

Show that the root just found will serve as a formula for solving any equation

of this kind [cf. § 9 (ii)].

97. A simple equation in one unknown number has one and but

one root. By transposing and uniting terms, etc., every equation

of the first degree, which is not an identity, and which contains

only one unknown number, is easily reduced to an equivalent

equation of the form ax=b (§ 95) ; but this last equation has,

manifestly, one and but one root, viz., b h- a, hence the given equa-

tion has one and but one root, which was to be proved.
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EXERCISES

1. What is a literal equation ? A numerical equation ? To which

class does 2x — V6 + ax = 14:x belong ?

2. Find the roots of a;^ — 5 a: + 6= 0. How many roots has this

equation? By factoring its first member pi'oce that this equation has

the two roots 3 and 2, and that it has no other root whatever.

3. How many loots has 3a; — l = a: + 3? How do you know that

it really has one root? Prove that it has only one.

4. By the formula of § 96, solve the equation in Ex. 3, and

explain fully.

Solve the following literal equations; show in detail that the steps

you employ always yield equivalent equations ; verify the correctness of

your solution in Exs. 5-10 by actual substitution of the roots. Also

solve Exs. 5-8 by using the formula of § 96 :

X — 2 ab -, a:— 3c
5. bx-(a + b)x +20-cx = d. 8.

c ab

6. C8-- X + n^x =

7.
X

b

x + 2b
a b

n-c-x. 9, 7 x+5(l-—] = a(x-a).

_ 3 10 ^ ~ ^^ + - = ^^ + ^ ^^

2 b a ab '

11. rf(3 X - 9 c + 14 6) = c{c - x).

12. (a -b){x- c) - (b -c)(x-a) = (c- a)(x - b).

13. (x - a) (a -b -{- c) = (x + a) (b - a + c).

14. b{c - a:) + a{b - x) - b(b - a:) = 0.

^5 4 (3 - 2 a:) X ^ 3

m — n rfi — rri^ vi \- n

16. a^x + &8:r + 3 x{a% + ab'^) = 3 ab.

,« 4 a: — 3a
,
5 a: K .

15 6
17. 1 = O -\

b a a

T Q X 4- a X + c X + b _«i^_^c
J

19.

b a c b c a

ax + bx - a^ - ah 2bx - 2b^ -{- 2 ax - 2 ab

a b

20. If an equation is an identity (cf. §23), how many roots has it?

Tf the equation ax = b is an identity, what is the value of a? Of 6?

Of the root 6 h- a (cf. § 55) ? Show that this is entirely consistent.
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II. EQUATIONS INVOLVING FRACTIONS

98. Fractional equations. Equations containing expressions

which are fractional with regard to an unknown number (§ 41)

are usually called fractional equations. Such equations frequently

present themselves in connection with practical problems, and the

process of solving them will now be illustrated ; the demonstra-

tion of the principles involved is given in the next article.

3 15 1Ex. 1. Given the equation ' = h - ; to find the value of x.^
X 2 3a; 6'

Solution. If each member of the given equation be multiplied by

6x (the L. CM. of the denominators), it becomes

18 - 3 a; = 10 + X,

whence, by § 95, x = 2;

moreover, by substituting 2 for x, it is found that the given equation is

satisfied, hence 2 is a root of this equation.

Ex.2. Given ^ ^ =-^ ^^ ^; to find a:.

2 (a: - 1) 7 (a: + 1) a: + 1 7 (x^- 1)

Solution. On multiplying this equation by 2 • 7 • (a: + 1) • (a: — 1),

which is the L. C. M. of the denominators, it becomes

3 . 7 . (a; + 1) - 2 (a: - 1) = 8 . 2 • 7 . (a: - 1) - 20,

i.e., 21 a; + 21 -2 a: + 2 = 112 a; -112-20,

whence, ^ = f

;

and, on being substituted for x in the given equation, | proves to be a

root of that equation.

7 a:^ — 1
Ex, 3. Given - H = a; ; to find x.

6 a:2 - 1

Solution. On multiplying this equation by 6(x^ — 1), it becomes

7(a:2 _ 1) + 0(a:3 - 1) = 6 a:(a:2 - 1),

i.e., 7x^-7-\-6x^-6 = Qx^-Qx,

whence, 7 a;^ + 6 x - 13 = 0,

i.e., (a;- l)(7a: + 13)=0,

and the roots of this equation are 1 and — ^p-v [§ 72
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But by trial it is found that — V is a root of the given fractional equa-

tion, and that 1 is not a root of that equation.

Note. Clearing an equation of fractions mmj bring in extraneous roots, i.e.,

roots which do not belong to the given equation; this is illustrated in Ex. 3

where the extraneous root 1 was brought in by multiplying by the unnecessary
3.3 1

factor a; — 1 in clearing the given equation of fractions ; the fraction —
might first have been reduced to its lowest terms.

The method employed for solving fractional equations in the

examples given above may be stated thus : (1) clear the given

equation of fractions hy multiplying it hy the L. C. M. of

its denominators, (2) solve the resulting integral equation,

and (3) substitute the roots of this integral equation in the

given fractional equation, and reject those ivhich prove

to he extraneous.

EXERCISES

Solve the following equations

:

A ^ X _ 5 __ ^ Q 3 2 n'364'
.

' ^ ~ •

5 a:-3a:-f5 ^ + 2 ^^
• 7 3 6 ^+1 y

10. l-i = A_i.
10 4.?/ by

8.
3

X

2

-1

9.
y-^.= 1

1

6.
X—
"2
x,^. a:-3

4
J_-5a;

6

7. 4_
X

13
16'

= 1 +
8

11. _^+_^=_^+3.
X^ -1 X -1 x+1

12. Define a fractional equation. Are the equations in Exs. 4-6

fractional? Are Exs. 7-11 fractional? Why?

13. In solving the equations in Exs. 4-6, are the successive equations

equivalent? Why? Is this true with reference to Exs. 7-11 also?

14. If in Ex. 11 we clear of fractions and simplify, we obtain the

equation x^-2x-S = 0, i.e., (x -{ 1) (x - Z) = 0, whose roots are -1
and 3. Is 3 a root of the given equation? Is - 1 a root (cf. § 55)?

Was the factor x + 1 necessary to clear of fractions? Compare also

Ex, 3, which is solved above.
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Solve the following equations, and test your results

:

15 ^-1,^ + 2^ 1 24 2x (5^-3) 1^^
*

a; - 2 x+1 x2 - X - 2 '3 10 x^ _ i ^j

7.2V-3 ./ 2.(1-5) 3x(l-t)

9^

z-\- 5 Z + 10 2 + 4 2 +

^^- 3-y 8"^2/ + 3 8(y+ 3)' 25. IIAI^ + IX-^A^^ZI.
,„ 2-5 2-10 2-4 2-9

25. .. . .
,^

Suggestion. Simplify each member ^6

before cleariug of fractious.

18.
a: + 1 _x -\- 2 _ X + 5 _ a: + 6

a; + 2 a: + 3'~x + 6 a; + 7

19 -^ ~ 1
I

3^ — 7 _ a: — 5 a: — 3

a:-2a:-8~a;-6a;-4'

20.

21.

a-3 + 2 a;8 - 2 _ 10

a; + l a:— 1 x^ — \

- (2 - a;) - - (3 - 2 x) = ^^tl^-
2^ ^4^ ^

6

22. -i- + ?=6

23.

1 — a: X 1 — a;

2 .x- + 1 _ 8 ^ 2 a:- 1

2a;-l 4a;2-l 2 x + l'
" a{h-x) ' h{c-x) a{c-x)

9(i

,^ 3 , 18 21 , 100 5
17 + - 1 +— 1 +K

X XX
,

^ 3

3 ' 5 9 ' 15

.. .
-'^-.

27.

-r-i
28.

2 c 6 _ c 2 ca;

a X 2- X a(2-x)

29. = a-b +
X -\- b X + a

30.
x^ — ax

1

« — a: _ Q
a;2 + ca: — az — «c x — c

31.
a;+ 7rt a: — a_a: + 7a a —

x

x+ 6a ' X— 3a x + a 2a + x

32. ./ i./ , ' ,=0.

99. Demonstration of principles involved in § 98. The success

of the method employed in § 98 for solving fractional equations

is due to the fact that, in the great majority of cases, the integral

equation obtained by clearing an equation of fractions is equiva-

lent (§ 95) to the given fractional equation ; the exceptions, as the

student may already have observed, are those in which an unneces-

sary factor is used to clear of fractions (cf. Exs. 3 and 11, § 98).

To prove the above, let it first be recalled that transposing and

uniting terms (whether those terms are integral or fractional)

leads to ah equivalent equation (§ 95). Hence, by performing

these operations, every fractional equation may be reduced to an

equivalent equation of the form

f=0. (1)



150 ELEMENTARY ALGEBRA [Ch. X

wherein JV and D represent integral expressions in the unknown
number (say x), and D is the L. C. M. of the denominators of the

fractions in the given equation.

If now N and D have no common factor (as usually happens),

then (§§ 72 and 48) there is no value of x for which both N and

D will become zero, and therefore Eq. (1) is equivalent to

N=0, (2)

i.e., the given equation is equivalent to Eq. (2) ; but Eq. (2) is the

result of clearing the given equation of fractions, hence, in all such

cases, clearing an equation of fractions leads to an equivalent

integral equation.

If, on the other hand, N and D have a common factor— which

rarely happens— then Eq. (2) is not equivalent to Eq. (1); for,

if N=F-N' SLYid D = F' D', where F is the H. C. F. of JST and

D, then only thqse values of x for which

N' = (3)

are roots of Eq. (1), while Eq. (2) has all of these roots, and also

those for which -n /x /isF= 0; (4)

these extraneous roots were brought in by using the unnecessary

factor F to clear the given equation of fractions,— tJiey are those

roots of Eq. (2) which will make D = 0, and are, therefore, easily

detected.

EXERCISES

1. Show that clearing the equation— — + ^^ ~ ^^
x-7 x + 2 9(x-\-2) 7{x-l)

of fractions, by the usual method, produces an integral equation which
is equivalent to the given fractional equation, i.e., show that multiplying

this equation by the L. C. M. of its denominators introduces no extrane-

ous root.

2. Show that while 2 is a root of the integral equation resulting from

clearing —^ + -3? = 8 + —^ of fractions, it is not a root
a^ + 5 (r+5)(x-2) x-2

of the fractional equation itself. What is the value of D (see demon-
stration above) for this equation when a: = 2 ? How may extraneous

roots be most easily detected?
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Solve the following equations, and tell, by mere inspection, i.e., without

substituting in the original equation, which of the roots of the integral

equations, if any, are extraneous ; also state your reasons in full:

3 20 40
, n 4:x

3 a: 15 10_ - 5.
x+1 'dx^ + X-2 6x-2

5 2 5x ^ X + 29 g
' x-5 3x + 2 (x-5)(3x+2)

c 12 a: 2a: + 6_^
3 a; — 7 a: - 3

PROBLEMS

By the method of § 26 solve the following problems, applying also the

principles of the present chapter:

1. If I of a certain number is diminished by J of that number, and
the result is 3 more than | of the number, what is the number ?

2. B's present age is 18 years, which is | of A's age ; after how many
years will B's age be f of A's age ?

3. The tail of a fish is 4 inches long. Its head is as long as its tail

and } of its body, and its body is as long as the head and ^ of its tail;

how long is its body ?

4. Mary, who is now 24 years old, is twice as old as Ann was when
Mary was as old as Ann now is. How old is Ann?

5. A boy bought some apples for 24 cents ; had he received 4 more
for the same sum, the cost of each would have been 1 cent less. How
many did he buy ?

6. A reservoir is fitted with three pipes, one of which can empty it in

4 hours, another in 3 hours, and the third in 1^ hours. If the reservoir is

half full, and the three pipes are opened, in what time will it be emptied?

7. A man's age is such that | of it, less I of what it will be a year

hence, is equal to | of what it was 5 years ago ; how old is he ?

8. An orchard has twice as many trees in a row as it has rows. By
increasing the number of trees in a row by 2, and the number of rows

by 3, the whole number of trees will be increased by 126. How many
trees are there in the orchard ?
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9. Wliat number must be added to each term of the fraction j'r so

that the resulting fraction shall be | ?

10. If a certain number be added to, and also subtracted from, each

term of the fraction f, the first result will exceed the second by |. What
is the number? How many solutions has this problem?

11. The combined cost of a table and a chair is ^11, of the table and

a picture, $14, and the chair and the picture together cost 3 times as

much as the table. What is the cost of each ?

12. A field is twice as long as it is wide, and increasing its length by

20 rods and its width by 30 rods, increases its area by 2200 square rods.

What are the dimensions of this field ?

13. In a certain quantity of gunpowder, which is a mixture of salt-

peter, sulphur, and charcoal, the saltpeter weighs 6 lb. more than ^ the

whole, the sulphur 5 lb. less than ^ of the whole, and the charcoal 3 lb.

less than \ of the whole. How many pounds of each of these constituents

are contained in this quantity of gunpowder ?

14. An officer in forming his men into a solid square, with a certain

number on a side, finds that he has 49 men left over, and if he puts 1

more man on a side he lacks 50 men of completing the square. How
many men has he ?

15. A regiment drawn up in the form of a solid square lost 60 men in

battle, and when the men were rearranged with 1 less on a side, there

was 1 man left over. How many men were there in this regiment?

16. In a regiment which is drawn up in the form of a solid square, it

is found that the number of men in the outside 5 rows, counted all

around, is -^-^ of the entire regiment. How many men are there in this

regiment? Has the equation of (his problem [cf. § 26 (3)] one or two

solutions? Is each also a solution of the problem itself?

17. A boy was engaged at 15 cents a day, to deliver a daily paper to

those of its subscribers who live in a certain part o£ the city, with the

added condition, however, that he was to forfeit 5 cents for every day he

failed to perform this service; at the end of 60 days he received $7.

How many days did he serve ?

18. A man was hired for 30 days on the following terms : for every

day he worked he was to receive $2.50 and his* board, while for every

day he was idle he was not only to receive nothing, but was charged

75 cents for his board. If at the end of the period he received $49,

how many days did he work ?
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19. A steamer can sail 20 miles an hour in still water. If it can sail

72 miles with the current in the same time that it can sail 48 miles against

the current, what is the velocity of the current ?

20. A steamer now 'goes 5 miles downstream in the same time that it

takes to go 3 miles upstream, but if its rate each way is diminished by
4 miles an hour, its downstream rate will be twice its upstream rate.

What is its present rate in each direction?

21. A man rows downstream at the rate of 6 miles an hour, and

returns at the rate of 3 miles an hour. How far downstream can he go

and return if he has 9 hours at his disposal ? At what fate does the

stream flow ?

22. The sum of two numbers is 18, and the quotient of the less

divided by the greater is equal to I. What are the numbers?

23. Divide the number 25 into two such parts that the square of the

greater part exceeds by 75 the square of the lesser part.

24. Divide 72 into four parts, such that if the first part be divided by

2, the second multiplied by 2, the third increased by 2, and the fourth

diminished by 2, the four results will all be equal.

25. What number must be subtracted from each of the four numbers,

20, 24, 16, and 27, so that the product of the first two remainders shall

equal the product of the second two?

26. Find a number such that its square being diminished by 9, and

this remainder being divided by 10, the quotient is greater by 3 than the

number itself. How many solutions has this problem?

27. A line 28 inches long is divided into two parts of which the length

of the shorter is | that of the longer. What is the length of each part?

28. An automobile runs 10 miles an hour faster than a bicycle, and it

takes the automobile 6 hours longer to run 255 miles than it does the

bicycle to run 63 miles. Find the rate of each. How many solutions

has the equation of this problem ? Is each of these also a solution of the

problem itself?

29. At what time between 2 and 3 o'clock are the hands of a clock

together?

Suggestion. Let z represent the number of minute spaces over which the

minute hand passes from 2 o'clock on, until it overtakes the hour hand between

2 and 3 o'clock, then show that :^+10 represents the same number, and thus

form an equation and find the value of z.
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30. At what time between 3 and 4 o'clock is the minute hand 15 minute

spaces ahead of the hour hand ?

31. At what time between 8 and 9 o'clock are the hands of a clock

together ? «

32. At what time between 4 and 5 o'clock do the hands of a watch

extend in opposite directions ?

33. At what time between 9 and 10 o'clock is the hour hand 20 minute

spaces in advance of the minute hand?

34. In an alloy of silver and copper weighing 90 oz., there is 6 oz.

of copper; find how much silver must be added in order that 10 oz.

of the new alloy shall contain but | of an ounce of copper.

35. If 80 lb. of sea water contains 4 lb. of salt, how much fresh water

must be added in order that 45 lb. of the new solution may contain 1| lb.

of salt?

36. What percentage of evaporation must take place from a 6%
solution of salt and water (salt water of which 6 % by weight is salt) in

order that the remaining portion of the mixture may be a 12% solution?

That it may be an 8 % solution ?

37. How many minutes is it before 4 o'clock, if | of an hour ago it

was twice as many minutes past 2 o'clock ?

38. If the specific gravity of brass is 8|,* while that of iron is 7^, and

if an alloy of brass and iron, which weighs 57 lb., displaces 7 lb. of water

when it is immersed, what is the weight of each of these metals in the

alloy?

39. If, on being immersed in water, 97 oz. of gold displaces 5 oz. of

water, and 21 oz. of silver displaces 2 oz. of water, how many ounces of

gold and of silver are there in an alloy of these metals which weighs

320 oz., and which displaces 22 oz. of water? What is the specific gravity

of each of these metals and of the alloy ?

40. Two boat builders, A and B, working together, can build a boat

of a certain size in 12 days, and A, working alone, can build such a

boat in 18 days. In how many days can B alone build such a boat

(cf. Prob. 31, § 26) ?

41. A, B, and C together can do a piece of work in 3^ days ; B can

do ^ as much as A, and C can do | as much as B. In how many days

can each do this work alone ?

* This means that a given volume of brass weighs 8§ times as much as an equal

volume of water.
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42. A can do a certain piece of work in 6 days, and B can do the same

work in 14 days. A, having begun this work, had later to abandon it,

when B took his place and finished the work in exactly 10 days from the

time it was begun by A. How many days did B work at it ?

43. A and B can dig a certain trench in 10 days, B and C can dig it in

6 days, and A and C in 7^ days. How long would it take each working

alone to do this work ?

44. The first of three outlet pipes can empty a certain cistern in 2 hr.

and 40 min., the second in 3 hr. and 15 min., and the third in 4 hr. and

25 min. If the cistern is | full, and all three pipes are opened at the same

time, how long will it take to empty it ?

45. A gentleman invested \ of his capital in 4% bonds,* f of it in

3^7o bonds, and the remainder in 6% bonds, purchasing all these bonds at

par. If his total annual income is $2100, what is the amount of his

capital ?

46. A gentleman made two investments amounting together to |4330

;

on the first he lost 5% and on the second he gained 12%. If his net gain

was $251, what was the amount of each investment?

47. An estate was divided among four heirs. A, B, C, and D. The
amounts received by A and B were, respectively, | and \ of an amount

$ 1000 less than the estate ; and C and D received, respectively, \ and
J-

of an amount greater than the estate by ^ of it. How much did each

receive ?

48. A wheelman and a pedestrian start at the same "time for a place

54 miles distant, the former going 3 times as fast as the latter ; the wheel-

man, after reaching the given place, returns and meets the pedestrian

6f hours from the time they started. At what rate did each travel ?

49. A girl found that she could buy 12 apples with her money and

have 5 cents left, or 10 oranges and have 6 cents left, or 6 apples and 6

oranges and have 2 cents left. How much money had she?

50. Find a fraction whose numerator is greater by 3 than one half of

its denominator, and whose value is |.

51. The numerator of a certain fraction is less by 8 than its denomi-

nator, and. if each of its terms be decreased by 5, its value will be ^; what

is the fraction ?

52. The tens' digit of a certain two-digit number is \ the units' digit,

and if this number, increased by 27, be divided by the sum of its digits,

the quotient will be 6J. What is the number (cf. Prob. 4, § 26) ?

* Bonds yielding 4% interest per annum.
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53. A certain number is increased by 1, and also diminished by 1, and
it is then found that 3 times the reciprocal of the first result, being

increased by I, equals 2 times the reciprocal of the second. What is this

number? How many solutions has this problem?

54. A steamer's speed is such that, on a certain stream, it takes as long

to go 3 miles upstream as it does t6 go 5 miles downstream, L)ut if its

rate in still water were 4 miles less per hour, its downstream rate would

be twice its upstream rate. What is its rate in still water?

55. A physician having a 6% solution of a certain kind of medicine

wishes to dilute it to a 3^ % solution. What percentage of water must

he add to the present mixture ?

56. A physician having a 6% solution, and also a 3% solution, of a

certain kind of medicine, mixes these in such proportions as to form a

3^% solution. What percentage of the new mixture is taken from each

of the given mixtures ?

57. A tourist ascends a certain mountain at an average rate of 1^ miles

an hour, and descends by the same path at an average rate of 4J miles an

hour. If it takes him 6| hours to make the round trip, how long is the

path ?

58. If a father takes 3 steps while his son takes 5, and if 2 of the

father's steps are equal in length to 3 of the son's, how many steps will

the son have to take before he overtakes his father, who is 36 of his own
steps ahead ?

Solution, The simplest way to form the equation of this problem is to com-
pare two lengths. To do this

let I = the number of feet in the son's step,

3 I
then — = the number of feet in the father's step

;

also let X = the number of steps the son must take,

then — = the number of steps the father will take

;

5

and the equation of the problem is

a^^=^-Y+ 3G.-^, (why?)

i.e., a; =^ + 54 ; whence a; = 540.

Observe that fractions could have been avoided by letting 5 x and 2 1, respec-

tively, stand for the number and length of the son's steps.
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59. A hare pursued by a hound takes 4 leaps while the hound takes 3,

but 2 of the hound's leaps are equal in length to 3 of the hare's. If

the hare has a start equal to 60 of her own leaps, how many leaps

must the hound take to catch the hare?

60. Solve Prob. 59 if all its conditions are unchanged except that the

hare's start is equal to 60 of the hound's leaps.

61. A merchant added annually to his capital an amount equal to ^ of

it, but deducted at the end of each year $2000 for personal expenses. If

after taking out the 1 2000 at the end of the third year, he finds that he

has just twice his original capital, what was the original capital ?

62. A pedestrian finds that his uphill rate of walking is 3 miles an

hour, while his downhill rate is 4 miles an hour. If he walked 60 miles

in 17 hours, how much of this distance was uphill?

63. A hound is 39 of his leaps behind a rabbit that takes 7 leaps

while the hound takes 8. If 6 leaps of the rabbit are equal to 5 leaps of

the hound, liow many leaps must the hound take to catch the rabbit?

64. A picture whose length lacks 2 inches of being twice its width,

is inclosed in a frame 4 inches wide. If the length of the frame divided

by its width, plus the length of the picture divided by its width, is 3J,

what are the dimensions of the picture? How many solutions has the

equation of this problem ? Is each of these a solution of the problem also ?

III. GENERAL PROBLEMS

100. General problems. Interpretations of their solutions. A
problem in which the known numbers are represented by letters,

instead of by the Arabic characters, is often called a general

problem, because it includes all those particular problems which

may be obtained by giving particular values to these letters—com-

pare § 9, and also the illustrations given below.

Prob. 1. A yacht was chartered for a pleasure party consisting of

p persons, the expense to be shared equally by those participating; q

of the proposed party being unable to go, it was found necessary for

each person who did go to pay d dollars more than would otherwise

have been necessary. How much was paid for the yacht? How much
was each to pay under the original ari-angement

?

Solution

Let X = the number of dollars each member of the original party was

to have paid, then x + d is the number of dollars that each participant
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actually did pay, while px and (p - q) (x + d) are two expressions, each

of which represents the number of dollars charged for the yacht ; hence

px = {p — q) (x + d) = px + pd — qx — qd\

whence x = v^ ~ ^^
^ the amount each was to pay,

and px = p -^—-^, the price of the yacht.

The student may solve this problem independently if p = 12, q = 3,

and d = 2, and compare the results with those obtained by substituting

these values for p, q, and d in the above general solution (formula).

Prob. 2. Divide m golf balls into two groups in such a way that the

first group shall contain n balls more than the second group.

Solution

Let X = the number of balls in the first group.

Then m — x = the number of balls in the second group,

and, therefore, by the condition of the problem,

x = m — x-\-n;

whence x = ^ ^
^

, the number of balls in the first

group, and m — x = m — ^ "^ ^ = ^ ~ ^
, the number of balls

in the second group.

As in the previous problem, so here, the general solution just obtained

may be employed to obtain the solution of any particular problem of

the same kind. For example, if 7n = 30 and n = 4, then the two groups

contain, respectively, —-— and —-— balls, i.e., 17 and 13 ; while, if

771 = 10 and n = 2, then the two groups contain 6 and 4 balls, respectively.

If, however, m = 10 and n = 14, then the number of balls in the two

groups, as given by the above solution, is —'^— and —p—, respec-

tively, i.e., 12 and — 2 ; but since there can not be an actual group con-

taining — 2 golf balls, therefore this last problem is impossible, and the

impossibility is indicated by the negative result.

Note 1. Some problems admit of negative results, and some do not, just as

some problems admit of fractional results, while others do not. The nature of

the things with which any particular problem is concerned will always make
it evident whether or not fractional or negative solutions are admissible.
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For example, let it be required to find the temperature at Chicago on a certain

day, it being known that on that day the sum of the thermometer readings at

New York and Chicago is 10°, their difference 14°, and that it is colder in Chicago
than in New York.

Let the reading at Chicago be x degrees. Then it is (10 — x) degrees at New
York, and the other condition of the problem becomes x— (10 — x) — 14, whence
x=— 2, i.e., the reading at Chicago is 2° below zero. The negative result is

admissible in this problem.

Note 2. Observe also that two algebraic problems which differ widely with
regard to the tilings with which the problems are concerned may yet give rise

to the same equation, and the solution of this equation may be a solution of

one of the problems, while it merely shows that the other problem demands what
is impossible of fulfilment.

Thus, if the head of a certain fish is 7| inches long, the tail as long as the

head and J of the body, and the body as long as the head and tail together, how
long is the body of the fish ?

If X = number of inches in the length of the body, then the second condition

of the problem becomes x = 7|4-7j + -, i.e., x = 15 + ^, whence x = 22^.
o o

This number is found to satisfy all the conditions of the given problem, and
is, therefore, not only the solution of the equation, but is also the solution of

the problem.

Again, let it be required to find how many sparrows a certain dock must con-

tain if j^2 of their number, plus ^ of their number, plus 15, equals the whole
number.

If X = their number, then the given condition becomes x = :^+ -+ 15, i.e.,

x= 15 + -, which is the same as the equation in the former problem, but the

solution of this equation, viz., x = 22^, is not now a solution of the problem,

but merely shows the impossibility of fulfilling the conditions of the problem.

Prob. 3. Two boys, A and B, are running along the same road, A at

the rate of a rods per minute, and B at the rate of b rods per minute

;

if B is m rods in advance of A, and if they continue running at the same
rates, in how many minutes v\rill A overtake B ?

Solution

Let X = the number of minutes that must elapse before A overtakes B.

Then, by the conditions of the problem,

ax = bx -{ m,

whence x = , the number of minutes before

A overtakes B. ^
~

As in the two previous problems, so here the general solution just obtained

may be employed to find the solution of any particular problem of the same kind.
00

E.g., if a = 60, 6 = 50, and m = 90, then x = = 9, i.e., A will overtake B
in 9 minutes. 60 50



160 ELEMENTARY ALGEBRA [Ch. X

Again, if a = 50, 6 = 50, and m = 90, then x=—^—— = — , i.e., an infinite
50 — 50

number of minutes will elapse before A overtakes B ; in other words, A will never

overtake B. Compare § 55, and also the note to Ex. 15, of § 55.
CM)

But if a = 50, 6 = GO, and m = 90, then x = —

=

=— 9, i.e., the two boys are
50 — ()0

together — 9 minutes from the moment they were observed, and since adding — 9

minutes to the present time is the same as subtracting 9 minutes from the present

time, therefore the two boys were together 9 minutes ago.

This interpretation of the negative result accords fully with the physical condi-

tions of the actual problem, because if B is already 90 rods in advance of A, and

if he is running 10 rods per minute faster than A, he will not only keep getting

farther and farther ahead of A, but he must also have passed him 9 minutes ago.

Prob. 4. The present ages of a father and son are respectively 50

and 20 years ; after how many years will the father be 4 times as old as

the son Y
Solution

Let X = the number of years from now to the time when the father's

age shall be 4 times that of the son. Then, by the conditions of the

V^ohlem, 50 + x = 4(20 + :r),

whence a; = — 10.

This means that 10 years ago the age of the father was 4 times that of

the son.

N. B. The general problem, which includes Prob. 4 as a particular case, may
be stated thus : The present ages of a father and son are, respectively, m and n
years ; after how many years will the father's age be p times that of the son ?

EXERCISES AND PROBLEMS

5. Is Prob. 25 of § 99 a particular or a general problem? Why?
Formulate a general problem which shall include this one as a particular

case. Solve the new problem and thus find a formula by which Prob. 25

may be solved.

6. Answer the questions in Ex. 5 above, supposing them to have been

asked wath regard to Prob. 24, p. 153.

7. Answer the questions in Ex. 5 above, supposing them to have been

asked with regard to Prob. 10, p. 152.

8. Does Prob. 24, p. 153, admit of a fractional result? Of a negative

result ? Explain your answers.

9. By a slight change in the wording of Prob. 4, § 100, make an

equivalent problem of which the answer shall be positive. This should

agree with the interpretation there given of the negative result.
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10. By slightly changing the wording of the last particular case under

Prob. 3, § 100, make an equivalent problem whose answer shall be positive.

11. A farmer can plow a certain field in a days, and his son can plow
the same field in (f days. In how many days can both working together

plow the field ?

12. Is Prob. 11 a particular or a general problem? Make several

examples of which it is the generalization. Solve one of these particular

examples independently, and then show that its answer could have been

obtained from the answer to Prob. 11.

13. At what time between n and n + 1 o'clock will the hands of a clock

be together? At what time between these hours will they be pointing in

opposite directions, ifn<6? Ifn>6? Ifn = 6?

14. A fathei- is m times as old as his son, and in p years he will be n

times as old. Find their respective ages.

Interpret your result when m<,n. Is jo positive or negative in this

case?

15. A merchant has two kinds of sugar worth, respectively, a and
h cents a pound. How many pounds of each kind must be taken to make
a mixture of n pounds worth c cents a pound?

Interpret the result if a = ft, and c is less than a ; also when a = h = c.

Do these interpretations of the results agree with the conditions of the

problem under the same suppositions ?

16. An alloy of two metals is composed of m parts (by weight) of one

to n parts of the other. How many pounds of each of the metals are

there in a pounds of the alloy?

Show that the problem just stated is the generalization of such a prob-

lem as this: Bell metal is an alloy of 5 parts (by weight) of tin to IG of

copper; how many pounds of tin and of copper in a bell weighing 4200 lb.?

17. A wheelman sets out from a certain place at m miles an hour, and

is pursued by a second wheelman, who starts from the same place a hours

later, and rides p miles an hour. How far from the starting point will

the second wheelman overtake the first? What does this result become
if m = 10, jt? = 12, and a = 4?

18. Two wheelmen, A and B, are observed passing a certain point, A
being c hours in advance of B, and traveling at the rate of a miles in

h hours, while B travels p miles in q hours. How far will A travel before

he is overtaken by B ?

Under what conditions is this solution positive? Negative? Zero?

Infinite ? Interpret the result in each case.



CHAPTER XI

SIMULTANEOUS SIMPLE EQUATIONS

I. TWO UNKNOWN NUMBERS

101. Indeterminate equations. Although a simple equation in

one unknown number has one and but one solution (of. § 97), yet

it is easy to see that an equation which involves two or more

unknown numbers has an infinite number of solutions.

E.g.f in the equation x + 3 y = 5, which is equivalent to

y =^, [§95

there is a perfectly definite value of y corresponding to every value that one may-

choose to assign to x ; thus, if x = l, then ?/ = f , if a; = 2, ?/ = 1, if a; = 3, ?/ = f , if

x=—l, y = 2, and so on indefinitely; i.e., each of these pairs of numhers, viz.,

1 and f , 2 and 1, 3 and f , etc., constitutes a solution of the given equation, because,

when substituted for x and y respectively, they satisfy that equation.

An equation, such as the one just now considered, which has

an infinite number of solutions, is, for that reason, called an

indeterminate equation.

102. Positive integral solutions of indeterminate equations. Al-

though the number of solutions of an indeterminate equation, as

has just been illustrated, is unlimited, yet it often happens that

only solutions of a particular kind are sought,— e.g., those that

are positive integers,— and the number of these may be finite.

In practice the positive integral solutions of an indeterminate

equation can usually be found by mere inspection, or by trial.

E.g., to find the positive integral solutions of the equation 2 a; + 3 y = 7, it is

only necessary to assign to one of the unknown numbers, say x, the values 1, 2,

3, ••• in turn, and to find the corresponding values of the other unknown number,

which are f, 1, ^, ••• ; moreover, if a; = 4, or. any greater number, then y is nega-

tive, hence the only positive integral solution of the given equation is x = 2 and

y = l.

162
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Many problems lead to indeterminate equations which, from the

nature of the things involved, demand solutions that are positive

integers.

E.g., a farmer spent S22 purchasing two kinds of lambs, the first kind costing

him $ 3 each, and the second kind $ 5 each. How many of each kind did he buy ?

Solution. Let x = the number of the first kind,

and y = the number of the second kind.

Then one condition of the problem is that

Sx+5tj = 22,

and the other condition is that z and y shall be positive integers.*

By § 95, this equation is equivalent to a;= —
^,

o

and, if the values 1, 2, 3, and 4 be assigned to y, the corresponding values of z are

found to be V> 4, I, and |; moreover, if y = 5, or more, then z is negative, and
therefore the ojily positive integral solution of the above equation is a; = 4 and

y = 2; i.e., 4 and 2 are, respectively, the numbers of lambs purchased.

103. Positive integral solutions : another method. Another

method of finding the positive integral solutions of an indetermi-

nate equation will now be illustrated.

Given the equation 7 x +4 ?/ = 46 ; to find its positive integral solutions.

By transposing and dividipg, this equation becomes

4 4

i.e., y-ll-^z =^^,
and, since z and y are integers, therefore the first member of this equation repre-

2 3 2;

sents an integer, and therefore the second member, viz., —-— , also represents

an integer.

Again, since = represents an integer, therefore the product obtained by
4

multiplying it by any integer whatever also represents an integer ; moreover, if

this multiplier be so chosen that the new coefiScient of z shall exceed some multi-

ple of the denominator by 1 (cf. § 79), then the integral values of z and y may be

easily determined as follows

:

2 3 -J. 3/2 3 2;) 5 9 X 2 z
Since —:— represents an integer, therefore -^

—

-—^ =—7— = 1—2 z-]—

—

4 2—x 4 4 4
represents an integer, and therefore represents an integer. If this last

2 X
integer be designated by p, then —— =p,

- * Although this condition is not expressible by means of an equation, yet it is

none the less vital on that account.
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whence cc = 2— 4 p,

and, on substituting this value of z in the given equation, it becomes

y = 8 + 7p.

In these last two equations x and ?/ are positive integers, and p is an integer,

though not necessarily positive. This shows that p is either — 1 or (in order

that X and y may be positive), whence x = 6 and y = 1, ov x = 2 and y = S; and
there are no other positive integral values of x and y which satisfy the given

equation.

EXERCISES

Find five solutions to each of the following equations

:

1. Sx-4y=8. 2. 2w = 5 + 3z. 3. 3r + 6s = 20.

4. How many solutions has each of the above equations? Why?
What are such equations called?

5. If possible solve the equations in Exs. 1, 2, and 3 above, in posi-

tive integers. How many such solutions has each?

Find the positive integral solutions of the following equations

:

6. ? + ^ = 5. 7. 6x + 7y = 52. 8. 13 w + 5 y = 229.

Show that the following equations have no positive integral solutions :

9. 2x -4:y = l. 10. dx + 6y = 5. 11. 9 x + 3 y = 17.

12. Sliow that the indeterminate equation ax + ly = c can not be

solved in positive integers when a + ft > c ; nor when a and h have a

common factor which is not a factor of c.

13. Find three solutions of the equation 2a: — 5?/ + 32 = 6.

14. If a man spends $300 for cows and sheep, which cost respectively

$ 45 and $ 6 a head, how many of each does he purchase ?

15. In how many and what ways may a 19-pound package be weighed

with 5-pound and 2-pound weights ?

16. How many pineapples, at 25 cents each, and watermelons, at 15

cents each, can be purchased for $2.15?

17. Divide a line which is 100 feet long into two parts, one of which

shall be a multiple of 11, and the other of 6.

18. Find the least number which when divided by 4 gives a remainder

of 3, but when divided by 5 gives a remainder of 4.

19. A man selling eggs to a grocer counted them out of his basket 4

at a time and had 1 egg left over, and the grocer counted them into his

box 5 at a time and there were 3 left over. If the man had between

() and 7 dozen eggs, how many must there have been ?
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104. Definitions: simultaneous equations, etc. Although a single

equation which involves two unknown numbers has just been

shown to be indeterminate, i.e., to have an indefinite number of

solutions, yet if two such simple equations be given, it usually

happens that one, and only one, pair of numbers can be found

which will satisfy each of them, i.e., be a solution of each.

E.g., the equations 4 a; + 3 y = 5 and 2 x — 5 y = 9 are each satisfied by x = 2

andy =—1, and by no other pair of numbers.

Two or more equations which are satisfied by the same set (or

sets) of numbers are called simultaneous equations (also called

consistent equations), while two equations which have no solu-

tion whatever in common are called inconsistent equations (also

called incompatible equations) ; e.g., x+ y = 4: and 2 x-\-2y = 9 are

inconsistent equations.

Two or more equations which express different relations be-

tween the unknow^n numbers, and therefore can not be reduced

to the same form, are called independent equations.

Two or more equations taken together are often called a system

of equations ; and any set of numbers which satisfies every equa-

tion of the system is called a solution of the system.

105. Solving simultaneous equations. The process of finding a

solution of a system of simultaneous equations is called solving the

equations; this process will now be illustrated by some easy

examples.

f X + 7/ = 4:, (1)
Ex. 1. Solve the equations -;^

lx->j = 2. (2)

Solution. Adding these two equations, member to member, gives

2 a: =6,

whence x = d.

Substituting this value of x in Eq. (1) gives

3 + 2/ = 4,

whence
2/ = !•

That these numbers, viz., x = S and ?/ = 1, really constitute a solution

of the given equations is verified by substituting them for x and y in

those equations.
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rdx-^y = l, (1)
Ex. 2. Solve the equations - x ^

I a; + 2?/ = 9. . (2)

Solution. On multiplying Eq. (2) by 2, it becomes

2a: + 42/ = 18, (3)

and adding Eq. (3) to Eq. (1) gives

5 a; = 25,

whence x= o\

and the corresponding value of y may be found by substituting this value

of X in either of the equations which contain both x and y. E.g., by this

substitution Eq. (2) becomes

5+2y = 9,

whence ^ = 2

;

and it is easily verified as in Ex. 1 that x = 5 and y = 2 is a solution of

each of the given equations.

r
3 X + 2 ?/ = 26, (1)

Ex. 3. Solve the equations -{^
1 5 a: + 9 2/ = 83. (2)

Solution. On multiplying both members of Eq. (1) by 5, and of

Eq. (2) by 3, they become, respectively,

15 a; + 10 2/ = 130, (3)

15^ + 27 3/ = 249; (4)

and subtracting Eq. (3) from Eq. (4) gives

17?/ =119,

whence y — 'J.

Substituting this value of y in any one of the equations containing

both X and y gives _ .

it isTfeaiand it isTfea^ily verified that x = 4 and ?/ = 7 is a solution of the given

system 6i^eqyations.

Observl tmxt if Eq. (1) had been multiplied by 9, and Eq. (2) by 2,

and if one of the two resulting equations liad been subtracted from the

other, then y would have disappeared, and the value of x would have

been found before that of y.

•( />-
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Ex. 4. Solve the equations

V-ii=-|, (1)

f
+^ = 4i. (2)

Solution. Multiplying both members of Eq. (1) by 12, and of

Eq. (2) by 6, gives

4a;- 8- 21 =-3 3^, (8)

and 3x + 4y=27; (4)

and, on transposing and simplifying, Eq. (3) becomes

4:x+'dy = 29. (5)

Equations (4) and (5) may now be solved by the method employed in

Ex. 3 ; and it is easily verified that their solution, viz., x = 5 and y = 3

is, at the same time, a solution of equations (1) and (2).

106. Elimination. Any process of deducing from two or more
simultaneous equations other equations which contain fewer

unknown numbers is called elimination. Such a process elimi-

nates (i.e., gets rid of) one or more of the unknown numbers, and

thus makes the finding of a solution easier.

That particular plan of elimination which was followed in the

examples given in § 105 is known as elimination by addition and

subtraction. It is evident, moreover, that this method is appli-

cable to any pair of such equations. The procedure may be

formulated thus:

(1) Unless each of the ^iven equations is already in the

form ax + by = c, wherein a, b, and c are integers, reduce

them to this form.

(2) Multiply these equations by such numbers as will

mahe the coefficient of tlxe letter to be eliminated the same
{in absolute value) in both equations.

(3) Subtract or add these last two equations (according

as the terms to be eliminated have like or unlihe signs),

solve the resulting equation for the unhnown number which
it contains, and substitute that value in any one of the

earlier equations to find the other unhnown number.
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(4) Verify that these two numbers really satisfy the two

given equations.

Note. If the coefficients which are to be made of equal absolute value are

prime to each otlier, then each may be used as a multiplier for the other equation

;

if, however, these coefficients are not prime, their least common multiple should

be divided by each in turn, and these quotients used as the multipliers.

EXERCISES

Solve each of the following systems of equations, and check the results

:

(15 X

ox

15 a; + 77 2/ = 92,

3.

6 ?/ - 5 X = 18,

12 x - 9 ?/ = 0.

5 a: + 6 2/ = 17,

6 a: +5 3/ = 16.

8.

9.

^-K2/-2)-K^-3)=0,

x-\{y-\)-\{x-2) = (i.

^x-ly-m,
3 4

^ r5;9 + 3(? = 68,

•

12;,

6.

7.

+ 5 ^ = 69.

22 x - 8 ?/ = 50,

26 x + 6 ?/ = 175.

28 a; - 23 ^ = 33,

63 X - 25 2/ = 199.

4.<f-i(y-3) = 5s-3,

2 y 4- 5 6- = 69.

10.

a: + 3 8-?/ ^ 3(a: + ?/)

5 4 8

x_y
4 2

-2.

Suggestion. Eliminate without first

clearing of fractions. When is it advan-

tageous to do this ?

11.

±4- '1-7
3 + 3"^'

6
61

12. What is meant b}'- saying that two equations are simultaneous?

Consistent? Independent? Inconsistent? Show the appropriateness of

these names. What is a system of equations?

Which of these names apply to the systems of equations in the above

exercises ?

107. Other methods of elimination. Besides the method of elimi-

nation which is explained in § 106, theie are several other

methods that serve the same purpose ; two of these, which are

often useful, will now be explained.
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(i) Elimination by substitution.
'

, , ,
r3x-42/ = 7, (1)

Ex.1. Solve the system of equations
j o _ie xox

Solution

FromEq. (1) a: = ^^^;
o

on substituting this expression for x, Eq. (2) becomes

2(^^) + 32/ = 16; (3)

whence 2/ = 2,

and, by substituting this value in either of the given equations,

a: = 5.

It is easily verified that these values, viz., x=5 and y = 2, constitute a

solution of the given system of equations.

The method of elimination which has just now been illustrated

is known as elimination by substitution ; it is manifestly applicable

to any such system of equations as the above.

The student may solve, by this method, the system

r 3 w — 4 u = 19,

1 5 r« + 2 y = 10,

being careful to check the result, and then vrrite out a "rule" for applying this

method to all such exercises.

(ii) Elimination by comparison.
r 3 a: -4 2/ =7, (1)

Ex. 2. Solve the system of equations \^ ^ [2x+3?/ = 16. (2)

Solution

From Eq. (1) x = ^—^^, and from Eq. (2) x = ll^zll. Now,
o 2

since x is to have the same value in each of these equations,

therefore 7_+4_^ ^ 16^-^.
3 2 • ^

^

Solving Eq. (3) gives y = 2,

whence, substituting this value in either of the given equations,

x = 5.

It is easily verified that these values, viz., p^ ^ ^ and y = 2, constitute

a solution of the given system of equations.



170 ELEMENTARY ALGEBRA [Ch. XI

The method of elimination which has just now been illustrated

is called elimination by comparison ; it is manifestly applicable to

all such systems of equatibns.

The student may solve, by this method, the system

8r + 5i

12 r- 7;

and then write out a " rule" for applying this method to all such exercises.

EXERCISES

Solve each of the following systems of equations, using first the method

of elimination by substitution, and then that by comparison, and observe

which method is easier in the different exercises

:

2 x + 3 y = 23,

34,

16.

3. f ^ +

I 5x + 9?/ = 51.

(8x-21y = SS,

I 6 a; + 35 ?/ = 177.

21y-\-20x = 165,

2x + y = 50,

77 30 X = 295.

8.
11 < - 10 r = 14,

5t+ 7t; = 41.

10.

11.

12.

6 7

2^3 '

^ + •^=.5.
3 4

? + ^=18,
o

8 4

11 r

12

13,

= 12.

13. Show that elimination by comparison is merely a special case of

elimination by substitution.

14. State such suggestions as occur to you for determining, by mere
inspection, which of the three methods of elimination thus far considered

will be most advantageous to use in any given exercise.

108. Principles involved in elimination. Two systems of equa-

tions (§ 104) are said to be equivalent when every solution of either

system is also a solution of the other.
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The methods already given (§§ 106 and 107) for the solution of

a system consisting of two independent equations, each containing

two unknown numbers, consist in replacing a given system of

equations by an equivalent system whose solution may be more
easily obtained. Those methods are based upon the following

principles :
*

(i) If any equation of a system he replaced hy an equiva-
lent equation (§ 95), the new system thus formed will he

equivalent to the given system.

The truth of this principle follows at once from the definition of equivalent
systems, because if the new equation has the same solutions, and only those, as

the equation which it replaces, then the new system will have those solutions, and
only those, which the given system has; in other words, the two systems are
equivalent.

(ii) // any equation of a given system he replaced hy the

equation formed hy adding ior suhtracting) any otJier equa-
tion of the system to it, memher to memher, then the new
system thus formed will he equivalent to the given system.

Proof, Suppose the given system of equations to be

.P = 0,

(I) Q = 0,

^ R = 0,

wherein P, Q, and R represent polynomials, — this is allowable, because if the

equations are not in the above form, they may be brought to that form by trans-

position, which produces equivalent equations (§95), and the systeins also are

equivalent [(i) above]; — then it is required to prove that the above system is

equivalent to the system p _|_ q _

(n)j Q = 0,

^ K = 0.

Now mere inspection of the two systems shows that every set of values of the

unknown numbers which satisfies system (I), i.e., which makes P, Q, and R each

separately 0, also satisfies system (II) , and that every solution of system (II) is

also a solution of system (I) ; therefore these systems are equivalent.

Similarly in general.

(iii) If any equation of a given system he solved for one

of its unhnown numhers, say x, in terms of the other

unknown numhers which it involves, it may he wi^itten in

* Observe that these principles apply to systems of any number of equations in

any number of unknown numbers.
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the form x= R, and this equation will he equivalent to the

one which was solved to obtain it (§ 95). If now the expres-

sion R he suhstituted for x in each of tlze other equations,

the system of equations thus forined, together with the

equation x = R, will he equivalent to the given system.

To prove this principle, it need only be remarked that the only difference between

the two systems of equations is that, in the second system, every x is replaced by

R, but, by virtue of the equation x= R, every solution of either system makes
the expression R represent exactly the same number as does x ; hence the two

systems are equivalent.

109. Applications of the principles of the preceding article. The

solutions of the exercises given in §§ 106 and 107 are all based

upon one or more of the principles given in § 108 ; this will now
be illustrated by reconsidering the solution of Ex. 4, § 105.

f

a; —

2

. 3 _ ?/
(1)

[j+^f = 4j. (2)

On multiplying Eq. (1) by 12, and Eq. (2) by 6, (I) becomes

f4a;-8-21=-37/, (3)

l3cc + 4?/ = 27; (4)

and, on replacing Eq. (3) by its simplified form, (II) becomes

(III)
(4^ + 3 2/ = 29. (5)

i3x + 4?/ = 27; (6)

multiplying Eq. (5) by 4, and Eq. (6) by 3, (III) becomes

f 16 a; + 12 2/ = 116, (7)

I 9x + 12?/ = 81; (8)

replacing Eq. (7) by the result of subtracting Eq. (8) from Eq. (7), (IV) becomes

f7x = 35, (9)

t9x + 12y = 81, (10)

{x = 5 (11)

3 a; +4?/ = 27. (12)

But if x = 5, then Eq. (12) shows that y = 3, and hence a; = 5 and ?/ = 3 is a

solution of system (VI); moreover, (I), (II), (III), and (IV) are equivalent, by

§ 108 (i)
;
(IV) is equivalent to (V), by § 108 (ii) ; and (V) is equivalent to (VI),

by § 108 (i) ; hence (I) and (VI) are equivalent, and therefore x = 5 and y = '3

is a solution of (I) also.
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EXERCISES

Solve each of the following S3-stems of equations. In the solution of

the first ten, give detailed explanations like those given in § 109 :

^r7a; + 47/ = l,

l9x + 4?/ = 3.

2
|3a: + 5?/=19,

I 5 x - 4 ?/ = 7.

3 ja:-ll?/ = l,

llly-9x = 99.

4.^
21 y

I G M + 14 y = - 26.

'

I 51 a; + 25 y = 101.

g (Sdx-loy = 93,

65 X + 17 y = 113.

7.^
r 19 5 + 85 f = 350,

1 17 6- + 119^ = 442.

i2r

11 MJ = 0,

17 w = 139.

9.

10.

r 3 a:- ll?/ = 0,

I 19 x - 19 y = 8.

2 3 '

X _2y
4 3

3.

11.
3 6 2

•r _ 3j ^ _ 1

I 5 10 2

12. ^

13.

+ 3 7/ + 14 = 0,

- + 5?/ + 4 = 0.
5

+ 5 ;2 = - 4,

||+5.= 4.

14.-^

15. i

16.

17.

18.

19.^

( x±2_
3

+ 4?/

7/ +11 3; + l ^..

11 2

2r + 3^ ^+<^ = o

5
7"'

2 _5_^ ^ r + 7

3 4

m-2 n+2

ll-2n
0.

li -2 ^ + 5

3 2

2^-7 13 - A-

0,

12 =

6

+ 32

10.

? + ^
^^y

25.

.2 ?/ + .5 _ .49 a: - .7

1.5
~

4.2

.5 a:- .2 ^41 1.5 y- 11

1.6 16 8
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20.

21.

V + i(3v - w- 1) =

(^f.n)-(4x.
3x - 5y 2x -8y

i + K^-
« + 24).

- 9 31

1),

5
= 6'

3 12 12

110. Simultaneous fractional equations. By first clearing the

given equations of fractions (§§ 98 and 99), the foregoing

methods become applicable to the solution of fractional equa-

tions,— the following examples will illustrate this.

3

Ex. 1. Given the system of equations .

^1 + 1=-
X y X

y xy

}

to find X and

Solution

On multiplying each of these equations by xy, they become, respectively,

y + X=z3y,

and Q y — X = 1.

The solution of these integral equations is (§ 106) x = \ and y = \',

and it is easily verified that these numbers constitute a solution of the

given system of fractional equations also.

r 1
^ 4^ If)

^ 3 ?y X x(x 3 y/^

Ex. 2. Given the system of equations
]

- ; to

find X and y. £_1_7/ —
o

Solution

On multiplying these equations by x{x -Sy) and 3, respectively, they

become x + 4: (x - S y) = 16,

and x-S-Sy = 0.

By § 106 the solution of this system of integral equations is a: = 4 and

y = I, and these two numbers prove also to be a solution of the given

system of fractional equations.

Ex. 3. Given the system of equations

solution.

1 + 1 = 3
X y

?-5 = i

; to find its
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Solution

On multiplying each of these equations by xy, they become, respectively,

y + x = Sxy,

and 2y — 3x = xy;

if the first of these be subtracted from three times the second, the result

will be
5y- 10x = 0,

i.e., y = 2x.

On substituting this value of y in the first of the given equations, it

becomes £ 4. J_ = 3,
x 2 X

whence, multiplying by 2 ar, 2 + 1 = 6 a;,

i.e., X = h

and therefore, since y = 2 x, y = ^^

It is, moreover, easily verified that x = I and y = 1 constitutes a solution

of the given fractional equations.

Note. Solve Ex. 3 by eliminating before clearing of fractions (e.g., subtract

the second equation from twice the first), and compare the two methods.

Ex. 4. Given the system of equations .

X and y.

Solution

^2

x-1 y-2

; to find

On multiplying the first of these equations by x and the second by

(x — l)(y — 2), and simplifying, they become, respectively,

xy -4:x + 2 = 0,

and 2xy~ox-3y + 7 = 0.

To eliminate the term containing xy subtract twice the first of these

integral equations from the second ; the result is

3x-dy + d = 0,

i.e., y = x + 1.
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On substituting this value of y in the first of the integral equations,

it becomes / , i \ i , o nX (x + 1) - 4 a; + 2 = 0,

i.e., x^-Sx + 2 = 0,

i.e., (x-l){x-2)=0,

whence a: = 1 or a; = 2

;

and since y = x + 1, therefore the corresponding values of y are

y = 2 and ^ = 3.

While each of these pairs of corresponding values, viz., x = 1, y = 2

and x = 2, ?/ = 3, is a solution of the system of integral equations obtained

by clearing the given system of fractions, yet it is easily verified that the

second pair is a solution of the given system of fractional equations and

that the first pair is not a solution of this system.

Observe that extraneous solutions, here as in § 99, reduce one or more

of the denominators to zero.

EXERCISES

Solve the following systems of equations, and check the results;

eliminate before clearing of fractions when that is possible, as in

Exs. 8-11, 13, etc.

:

3 a: + 2 V + 6

4a;- 2y
- ^f

3 - 7 ?/

2x + l

= 2.

15-f .V -2x - 5
4 a: — 5 y-2
3a;-2 y + ^. 16

X — y 3

8 15

6.

7. -jSx+lOy '3 X — 4: y

x = 7.

X y

= 1.

9.

10.

11.

12.

5 + «:

X y

6 . 5

20,

10.

--5=5,

-2 = 7.

1-1 + 3.
2 V 10

A+i=23.
2v w

1 2

a: -2 3

i 3 a: + ?/
=

* Show that the equations in Ex. 12 are inconsistent.
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13.

14.

3 2 ^13
2x-o 3ij + 2 5

'

-1 ^ = 8.

2a:- 5 2 + 3 </

3 '^ ^ 2,
4:U + V 2 U —

3 ^ 4 23

2 u — V V + 4 u

15. ^

x q_5?/-f2x x — 3

2

2y-3y
y + \

+ y = l2

19.

x-20

16.

17.

4x +
2 16X + 19

17 -3x

50_ y-1 ^s 147-24.y,

|(a;-2) ^^ 3

\x-2 3?/ +

5^/ + 2x-7

f 3 9 _

18. ^

17 -2y
2 * [u-l' V ^^'

2 ?/ - X _ 2 a: - 59

23 - x ~
2 '

20.

"^ x-lS 3

|(2x + 3)+l|^^=31 + ^^,
8y + 7 6x-3?/ ^ . 4?/-9

[ 10 2(2^-4) 5

111. Literal equations. Literal equations of the first degree, and

involving but one unknown number, have already been discussed

(§ 97) ; the present article will be devoted to the consideration of

a pair of simultaneous, independent, literal equations of the first

degree, each involving two unknown numbers.

Since, by transposing and collecting terms, every first degree

equation in two unknown numbers may be reduced to an equiva-

lent equation of the form ax -\-hy = c, wherein a, 6, and c represent

known numbers, therefore the two given equations will be assumed

as already in that form. It is then proposed to solve the system

of equations

I

a^x + h^y = Ci, (1)

1 a.x 4- h^y = Cg. (2)

* Compare Ex. 4 above, and use § 66 (iv) if necessary.
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To eliminate y multiply Eq. (1) by 62; and Eq. (2) by h^ and

then subtract ; this gives

{oLyb^ — a^-^x = 62C1 — 61C2, (3)

whence x= -^ ^^- (4)

Similarly, by eliminating x,

(ai&2 - ^2^)2/ = aiCs - a2Ci, « (p)

whence
0,0, -a,c.

It is also easily verified (by substitution) that these expressions

for X and y satisfy the given system of equations. Hence the

given system of equations has at least one solution, provided only

that a^2 — «'2^i ^ 0.*

Moreover, by § 108, the system consisting of Eqs. (4) and (6) is

equivalent to the given system ; but, for any given set of values

of the coeJBficients, Eqs. (4) and (6) have manifestly but one solu-

tion, and hence the given system has hut one solution.

Hence, any system consisting of two independent and con-

sistent first degree equations, involving two unknown num-
bers, has one solution, and but one.

Note. It may also be stated here that three or more independent equations of
the first degree, involving only two unknown numbers, can not all be satisfied by
the same values of the unknown numbers.

For, if the solution of the first two of these equations is a solution of the third

equation also, then

\a1b2-a2b1J \aib2-a.2bi)

i.e., in this case, there is a definite relation (equation) connecting the coefficients

of the given equations, and these equations are, therefore, not independent.

Similarly in general.

* If 0162— 02^^1 = 0, then X (= h£izz]h£fi.\ is infinite, unless it happens that
\ a1b.2~a.2b1

1

62C1— 61C2 is also 0, in which case ^ = 2l=:£i, and the given equations are not
02 62 C2

independent, for either of them may then be obtained by multiplying the other by
a suitable factor ; i.e., in this case there is really only one equation and the

number of solutions is infinite (§ 101)

.
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EXERCISES

Solve the following systems of equations, and check the results ; elimi-

nate without clearing of fractions when possible

:

1.

2.
-i

4.

5.

' ax + by = m,

[
bx 4- ay = n.

f

-- y = a — b,

[
ax + by = a^--62.

(" + » =
X y

1

c

c a _
X y~

1

b

ax by

1

bx cy

1

a2'

« +a^ X

b

b-\-y

c

c + 1'

h

a-^x
c

b + y

a

a+ 1

6.

X + y _ ^ -y ^ 0,

= 0.

a b

X — a _ y — b

2a'^- ax=2b'^ + by,

7.
i y

b a + b

a + b

ab

8. i

{ {a-^b)x-\-{a^c)y= a^b,

[
{a-\-c)x-\-{a-\-b)y= a + c.

y + l~ a-b + V

X- v = 2b.

10.

hx + ky = 4: h%

+
h

X — k y — h, k(y — h)

11. Under what circumstances has Ex. 1 above no finite solution?

Answer this question with regard to Ex. 2 also ; and with regard to Ex. 7.

12. What relation among the coefficients is needed in order that Ex. 1

shall have more than one solution? If this relation exists, how many-

solutions has this system of equations ?

13. What relation among the coefficients is required in order that the

three equations ax + by = c, bx + cy = a, and ex + ay = b may have one

solution in common ?

PROBLEMS

1. Find two numbers whose difference is -^^ of their sum, and such

that 5 times the smaller minus 4 times the larger is 39.

Let

and

Solution

z = the larger number,

y =* the smaller number.
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Then, by the conditions of the problem,

•^ 35 '

and 5 1/ — 4 a; = 39.

Solving these equations, we obtain

a; = 54 and y = 5l;

and these numbers, which constitute a solution of the equations of the problem,

also satisfy ail the conditions of the problem itself, and are, therefore, the num-
bers sought.

2. Find two numbers such that 3 times the greater exceeds twice the

less by 29, and twice the greater exceeds 3 times the less by 1.

3. A lady purchased 20 yds. of one kind of goods, and 50 yds. of

another, for |3(); she could have purchased 30 yds. of the first kind, and

20 of the second, for |23. What was the price of each?

4. If A's money were increased by $4000, he would have twice as

much as B. If B's money were increased by $5500, he would have

3 times as much as A. How much money has each?

5. One eleventh of A's age is greater by 2 years than ^ of B's, and

twice B's age equals what A's age was 13 years ago. Find the ages of

each.

6. If 45 bushels of wheat and 37 bushels of rye together cost $62.70,

and 37 bushels of wheat and 25 bushels of rye, at the same prices, cost

$48.30, what is the price of each per bushel?

7. A pound of tea and 6 lb. of sugar together cost 72 cents ; if sugar

were to advance 50%, and tea 10%, then 2 lb. of tea and 12 lb. of sugar

would cost $ 1.68. Find the present price of tea, and also of sugar.

8. A man having $45 to distribute among a group of children, finds

that he lacks $1 of being able to give $3 to each girl and $ 1 to each

boy, but that he has just enough to give $2.50 to each girl and $1.50 to

each boy. How many boys and how many girls are there in this group?

9. John said to James, "Give me 8 cents and I shall have as much
as you have left." James said to John, " Give me 16 cents and I shall

have 4 times as much as you have left." How much money had each?

10. A boy bought some oranges at the rate of 3 for 5 cents, and another

kind at 4 for 5 cents, and paid for the whole $4.60. He afterwards sold

them all at 2 cents apiece, clearing thereby $1.54. How many of each

kind did he buy?

11. A fishing rod consists of two parts ; the length of the upper part

is ^ that of the lower part; the sum of 9 times the length of the upper

part and 13 times the length of the lower part exceeds 11 times the length

of the whole rod by 36 inches. P'ind the length of the rod.
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12. If a certain rectangular floor were 2 ft. broader and 3 ft. longer,

its area would be increased by 64 sq. ft., but if it were 3 ft. broader and

2 ft. longer, its area would be 68 sq. ft. greater than it now is. Find its

length and breadth.

13. Three rectangles are equal in area; the second is 6 meters longer

and 4 meters narrower than the first, and the third is 2 meters longer and

1 meter narrower than the second. What are the dimensions of each?

14. The sum of the ages of a father and son will be doubled in 25

years, and 20 years hence the difference of their ages will just equal ^ of

their sum at that time. What is the present age of each ?

15. If 1 be added to each term of a certain fraction, its value will be |;

but if 1 be subtracted from each of its terms, its value will be ^. What
is the fraction?

16. The sum of the digits of a two-digit number is 12, and if its digits

be interchanged, the number thus formed will lack 12 of being the double

of what it now is. What is the number?

17. If a certain two-digit number is divided by the sum of its digits,

the quotient is 8, and when the tens' digit is diminished by 3 times the

units' digit, the remainder is 1. What is the number?

18. The tickets of admission to an entertainment were 50 cents for

adults and 35 cents for children. If the proceeds from the sale of 100

tickets was $39.50, how many tickets of each kind were sold?

Solve this problem also by using but one letter to represent an

unknown number.

19. A capitalist invested $4000, part of it at 5% and the balance at 4%,

and found that his annual income from this investment was $175. How
much was invested at 5%, and how much at 4%?

Can this problem be solved without using two letters to represent

unknown numbers? How?

20. A boat crew can row 4 miles downstream and back again in

U hours, or 6 miles downstream and halfway back in the same time.

What is the rate of rowing in still water, and what is the rate of the

current?

21. A capitalist invested 1^4, part at p% and the balance at q%, and

found that his annual income from this investment was 1 5. How much

was invested at />%?

Show that this problem includes Prob. 19 as a special case— it is the

generalization of Prob. 19 (cf. § 100).
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22. Generalize Prob. 14. Find the solution of the generalized problem,

and then show that the answer to the particular problem (14) may be

found by merely substituting in the answer to the generalized problem.

23. Generalize Prob. 20, solve, etc., as in Prob. 22.

24. A man rows 15 miles downstream and back in 11 hours. If he

can row 8 miles down^^tream in the same time as it takes him to row

3 miles upstream, what is his rate of rowing in still water? and what is

the velocity of the current?

25. Divide the number N into two such parts that — of the first

1
*"

part, plus - of the second, shall exceed the first part by M.
n

Specialize this problem, and find the solution of the special problem

by substituting in the general solution.

26. Three cities. A, B, and C, are situated at the vertices of a triangle;

the distance from A to C by way of B is 50 miles, from A to B by way
of C is 70 miles, and from B to C by way of A is 60 miles. How far

apart are these cities?

Solve this problem by first generalizing it, and then substituting the

particular numbers 50, 70, and 60 in the general solution.

27. Two boats which are d miles apart will meet in a hours if they

sail toward each other, and the second will overtake the first in b hours

if they sail in the same direction. Find the respective rates at which

these boats sail. Also discuss fully your solution, i^^ interpret the results

when the rate of the second boat is greater than, equal to, and less than,

the rate of the first— compare Prob. 3 of § 100.

28. Two men, A and B, had a certain distance to row and alternated

in the work ; A rowed at a rate sufficient to cover the entire distance in

10 hours, while B*s rate would require 14. If the journey was completed

in 12 boursL how many hours did each row?

29. A mine which is to be emptied of water has two pumps which

together can discharge 1250 gallons an hour. The larger pump can do

the work alone in 5 hours, but with the help of the smaller pump only

4 hours are needed. How many gallons an hourdoes each pump discharge ?

Solve this problem by first generalizing it, as in Prob. 26 above.

30. Two trains are scheduled to leave the cities A and B, m miles

apart, at the same time, and to meet in h hours; but, the train leaving A
being a hours late in starting, they met k hours later than the scheduled

time. What is the rate at which each train runs ?

From the solution of this problem find, by substitution, the solution

of the special problem in which m = 800, ft = 10, a = If, and k = ^.
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31. Two boys, A and B, run a race of 400 yards, A giving B a start of

20 seconds and winning by 50 yards. On running this race again, A,

giving B a start of 125 yards, wins by 5 seconds. What is the speed of

each? Generalize this problem.

32. A and B working together can build a wall in 5^ days ; finding

it impossible to work at the same time, A works 5 days, and later B takes

up the work, finishing it in 6 days. In how many days could each have

built this wall alone? Generalize this problem.

33. A railway train, after running 1 hour and 36 minutes, was detained

40 minutes by an accident, after which it proceeded at | of its former

rate, and reached its destination 16 minutes late. Under the same cir-

cumstances, had the accident occurred 10 miles farther on, the train

would have arrived 20 minutes late. At what rate did the train move
before the accident, and what was the entire distance traveled?

II. THREE OR MORE UNKNOWN NUMBERS

112. Equations containing more than two unknown numbers. It

is easy to see that the methods employed in § 105 for solving a

system of two simultaneous integral equations, each containing

two unknown numbers, may also be employed for solving a system

of three or more such equations involving as many unknown num-
bers as there are independent equations. (Cf. Exs. 1 and 2 below.)

( x-i-Si/- z = o, (1)

Ex. 1. Given
|
3 x + 6 ?/ + 2 z = .3, (2)

to find the solution of this system of equations.

Solution. Adding 2 times Eq. (1) to Eq. (2), member to member,

g^^^s 5x+V2y=lS, (4)

and subtracting Eq. (3) from 3 times Eq. (1) gives

x+12t/=9. (5)

Now subtracting Eq. (5) from Eq. (4) gives

4 a: = 4,

whence x = 1. (6)

On substituting this value of x, Eq. (5) becomes

H-12y = 9,

whence v = i\ C7\
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and substituting these values of x and y in Eq. (1) gives

whence z = — 2. (8)

That these numbers, viz., x = 1, y = ^, and z = — 2, really constitute a

solution of the given system of equations is easily verified by substituting

them for x, y, and z in these equations.

Note. It should be carefully observed that, by principles (i) and (ii) of § 108,

Eq. (2) of the given system of equations may be replaced by Eq. (4), —which is

derived from Eq. (1) and (2),— and the new system thus formed will be equivalent

to the given system, i.e., the system of Eqs. "(1), (3), and (4) is equivalent to the

system of Eqs. (1), (2), and (3).

So too Eq. (3) may be replaced by Eq. (6), making the system formed of Eqs. (1),

(4), and (0) equivalent to the given system; and this last system, being readily

solved, furnishes a solution of the given system.

The foregoing is another illustration of the fact to which attention has already

been called (§ 108), viz., that solving a system of simultaneous equations is

accomplished by fix-st replacing the given system by an equivalent system whose

solution is more easily obtained.

(2x-^y-2z = -l, (1)

Ex. 2. Given '

|
3 a: + z = 6, (2)

i a: + 2/ + 2 = 3
; (3)

to find the solution of these equations.

Solution. Since the second of these equations is already free from

the unknown number y^ therefore it is best to combine Eqs. (1) and (3)

so as to eliminate y, and thus obtain another equation involving only x

and 2. Adding Eq. (1) to 3 times Eq. (3) gives

5 a: + 2 = 8, (4)

and subtracting Eq. (2) from Eq. (4) gives

2 a: =2,

whence x = \. (5)

Substituting this value of x in Eq. (2) gives

2 = 3;

and substituting these two values in Eq. (3) gives

2/ = -l.

Moreover, it is easily verified that a; = 1, ^ = — 1, and 2=3 constitute

a solution of the given equations.

Ex. 3. Show that Eqs. (2), (3), and (5), in Ex. 2, form a system which

is equivalent to the given system.
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113. Formulation of the method of procedure of § 112. The proc-

ess of finding a solution of three independent integral equations

of the first degree and containing three unknown numbers, which

is illustrated in § 112, may be stated thus

:

Combine any two of the three given equations in such a
way as to eliminate some one of the unknown numbers,

thus deriving from them an equation containing but two
unhnown nujnbers; then combine the remaining equation

of the given system with either one of the other two in such

a way as to eliminate the same unhnoiun number as before,

thus deriving another equation which contains the same
two unknown nuinbers as does the first derived equation;

next combine these two derived equations so as to elimAnate

one of the unknown numbers, thus deriving another equa-

tion which contains but one unknown number; from this

last equation the value of the unknoiun number ivhich it

contains can be found, and then, by successively substituting

in earlier equations, the values of the other two unknown
numbers can be found.

Similarly for the solution of a system of n independent integral

equations of the first degree and containing n unknown numbers.

When n is greater than 3 the eliminating should be done very

systematically, since otherwise the derived equation may not be

independent ; the procedure may be stated thus :

So combine some one of the given equations {the first, for

example) with each of the others, as to eliminate tJie same
unknoivn number in each case, thus forming ivhat may
be called a first derived system of n — 1 equations, which

will be independent, integral, and of the first degree, and
which will contain n — 1 unknown numbers ; by proceeding

with the first derived system just as with the given sys-

tem, a second derived systein containing n — 2 equations

involving n — 2 unknown numbers is obtained; by continu-

ing this process, there is finally obtained a single equation

with but one unknown number; from this equation the

value of that unknown number is found, and then, by
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successive substitutions in earlier equations, the values of

all the other unknown numbers are found.

Note. It may be remarked that any one of the give)i equations, together with

then — 1 equations of the first derived system, constitute a system which is

equivalent to the given system ; also that any one of the given system, together

with any one of the first derived system, and the n — 2 equations of the second

derived system, are equivalent to the given system, and so on; finally, that the

system composed of any one of the given equations, any one of the first derived

system, any one of the second derived system, and so on including the single

equation of the last derived system, is equivalent to the given system.

EXERCISES

Solve each of the following systems of equations

:

1.

2.

3.

4.

2:c + 3?/ + 4z

3a: + 5?/+6^

20,

26,

31.

4 a; — y — z = 5,

3a;-4?/+16 = 6z,

lx + ^y-2z = lQ,

2a; + 5y + 3^ = 39,

^ X — y -\- 5 z = 31.

5x-Qy + 4:Z=l5,

7 X + 4:y- 3z=19,

2x + y+Qz = i6.

2 X + 4 ?/ + 5 2 = 19,

Sx-Sy + bz = 2S.

5x + 6y -12z = 6,

2x-2y - 62=- 1,

4x-52/+ 32 = 7^.

y + z -8Q = 72 - 5x,

9'^-ix-\y = iy-2z,
lx + ly + lz=5S.

10.

12.

^x + ly=12-iz,
iy+ Xz = 8+lx,

ix + iz = 10.

|'2a;-5?/+19 = 0,

rdy-4:z-{- 7 = 0,

\2z-5x- 2 = 0.

4
3,

4 o

5.

'1 + ^ = 6,
X V

11. \

1 1
- + - 10,

1 1-+ - =
Z X

3 2 1,
^ + - + - = 1,
X y z

V z

= 1.
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13.

14.

( X + y -z = a,

{x-y = 2b,

[x + z = Sa-^h,

X -^ y a

yz ^1
y + z 6'

xz 1

c

If

18.

19. i

x±
xy

[x+ z

Suggestion

= a, i.e., —h- = o
y X

xy
then

15.

16

2 y + 3 a; + y - 2 = 0,

3 3/
^ 2 X + 2 - 4 <; = 21,

22-3y- ?/+ a: =6,

r + 4 a: + 2 ?/ - 3 2 = 12.

u + a: + // = 15,

X + ?/ + 2 = 18,

y + _y + 2 = 17,

L I' 4- X + 2 = 16.

Suggestion. Adding these equa-

tions and dividing the sum by 3 gives

v-\-x-\-y + z = 22,.

{ y + z-Zx = 2a,

x + z-3y = 2b,

X + y — S z = 2 c,

I2x-h2y+v = 0.

(Zu + ov-2x + ^z = 2,

2u + 4x-^y-z = Z,

u -\- V + z = 2,

6y + iv + u = 2,

5z + 4:x-7v = 0.

« 1 1 o- + -+- = 2,
X y z

20. J 1 h 2 ^

X y z

yz + xz + cxy = 3 xyz.

Suggestion. Carefully compare the

last equation with either of the other

two.

21.

22.

abxjjz 4- cxy — ayz = bxz,

bcxyz + ayz — bxz = cxy,

acxyz + bxz — cxy = ayz.

5xy -\- Q(x+y)= 0,

5yz-2(y + z)=0,

Uxz - 3(a:+ z)=0.

17

( y + z + V — X = 22,

1z + V + X - y = 18,

V + X -\- y — z = li,

X + y -j- z — V = 10.

23. From the considerations presented in § 113, prove that a system

consisting of n independent and consistent equations of the first degree,

and containing n unknown numbers, has one and only one solution. (Cf.

also § 111.)

24. If there are more unknown numbers than independent equations

in any given system, how many solutions has that system? Why ? (Such

a system is usually called an indeterminate system.)

25. If there are more consistent equations than unknown numbers in

a system, prove that these equations can not all be independent. (Cf.

§ 111, note.)
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26. Prove that there is no unique solution of the system

\ ox + 2y — 2z = 0j

[ Sx + ^y - 2 = 2.

Is this system indeterminate (cf . Ex. 24) ? Explain.

PROBLEMS

1. A grain dealer sold to one customer 5 bushels of wheat, 2 of corn,

and 3 of rye, for $6.60; to another, 2 of wheat, 3 of corn, and 5 of rye,

for 15.80 ; and to another, 3 of wheat, 5 of corn, and 2 of rye, for $5.60.

What was the price per bushel of each of these kinds of grain ?

2. A quantity of water, which is just sufficient to fill three jars of dif-

ferent sizes, will fill the smallest jar exactly 4 times; or the largest jar

twice, with 4 gallons to spare ; or the second jar 3 times, with 2 gallons

to spare. What is the capacity of each of these jars?

3. If A and B can do a certain piece of work in 10 days, A and C in

8 days, and B and C in 12 days, how long will it take each to do the

work alone ?

4. Divide 800 into three parts such that the first, plus I of the second,

plus f of the third, shall equal the second, plus | of the first, plus I of the

third : each of these sums being 400.

5. A merchant having three kinds of tea, sold to one customer 2 lb.

of the first kind, 3 of the second, and 4 of the third, for $4.70; and to

another he sold 4 lb. of the first kind, 3 of the second, and 2 of the third,

for $4.-30. If a pound of the third kind is worth 5 cents more than | lb.

of the first kind and I lb. of the second kind taken together, what is the

price of each per pound ?

6. Divide 90 into three parts such that I of the first, plus ^ of the

second, plus J of the third, shall be 30 ; and that the first part shall equal

twice the third part diminished by twice the second part.

7. The sum of the digits of a 3-digit number is 11 ; the double of the

second digit exceeds the sura of the first and third by 1 ; and if the first

and second digits be interchanged, the number will be diminished by 90.

What is the number?

8. The third digit of a 3-digit number is as much larger than the

second as the second is larger than the first; if the number be divided

by the sum of its digits, the quotient will be 15; and the number will be

increased by 396 if the order of its digits be reversed. What is the

number ?
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9. The sum of the digits of a 4-digit number is 11 ; if the order of the

digits be reversed, the number will be increased by 819 ; if 9 be subtracted

from the number, the units' and tens' digits will be interchanged ; and the

Slim of the units' and tens' digits equals the hundreds' digit. What is

the number ?

10. Of three alloys, the first contains 35 parts of silver, to 5 of copper,

to 4 of tin ; the second, 28 parts of silver, to 2 of copper, to 3 of tin ; and
the third, 25 parts of silver, to 4 of copper, to 4 of tin. How many ounces

of each of these alloys melted together will form 600 oz. of an alloy con-

sisting of 8 parts of silver, to 1 of copper, to 1 of tin ?

11. If Problem 10 merely demanded that the alloy should contain 8

parts of silver to 1 of copper, how many ounces of each of the given alloys

would then be required? Why is this problem indeterminate?

12. A tank whose capacity is 1600 gallons is supplied by two pipes,

and has one outlet pipe. If the tank is empty, and all three pipes are

opened, it will be filled in 80 hours; if it is | full, and all the pipes are

opened for 10 hours, and if the larger supply pipe is then closed, leaving

the other two open 10 hours longer, the tank will then be | full; and it

can be filled by the larger pipe alone in 26| hours. Find the number
of gallons discharged per hour by each of the three pipes, assuming the

flow to be uniform.

13. Find an expression of the form ax^ -\- hx + c whose value will be

6,when x = 2, 3 when x = — 1, and 10 when a: = 4.

Suggestion. 4a + 2^ + cis the value of ax'^ -i-bx + c when x = 2; therefore.

4a+26 + c = 6, etc.

14. Can such an expression as that in Prob..l3 be found which shall

take four prescribed values when four particular values are assigned

to a:? Why? What letters represent unknown numbers in Prob. 13?

III. GRAPHIC REPRESENTATION OF EQUATIONS*

114. Preliminary remarks. Although an equation in two un-

known numbers has an infinitely large number of solutions,

and is in that sense entirely indeterminate (§ *101), yet, % a

beautiful device, due to a ceiebrated mathematician and philoso-

pher named Descartes, a perfectly definite geometric picture of such

an equation may be made. The "method by wliich this is done

will be explained in this and the next article.

* This subject is discussed in detail in a later course in mathematics,— in

Analytic Geometry.
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Y

,Q

P

y'

M

1?

y'

Let two indefinite straight lines X'X and T^T be drawn at

right angles to each other and intersecting in the point — as

in the figure. If now it be agreed that

distances measured to the right, or

upward, be represented by positive

numbers, Avhile distances to the left,

or downward, are represented by nega-

tive numbers, then the position of any

point whatever, in the plane of this

page, is completely determined by

merely giving the distances of that

point from the lines X'X and Y'Y.

It will be observed that this is similar to locating a place on a

map by means of its latitude and longitude.

E.g., to locate a point P, whose distances from I'Tand X'X are respectively

3 inches and 2 inches, measure 3 inches to the right from 0, to the point M say,

and then measure 2 inches up from M. This point is usually represented by the

symbol (3, 2), i.e., by P= (3, 2) ; the numbers 3 and 2 are called the coordinates of

the point P, and the lines X'X and r'Fare called the axes of coordinates. Simi-

larly, the point Q= (— 3, 4) is located by measuring 3 units toward the left from

0, and then 4 units upward. The point R={—2,, — 3) is also represented in the

figure.

The student may draw a figure and locate accurately the following points upon
it:* (5, -1), (4, 7), (-4, 2), (3i, -4), (-2i -5f), and (8, -6|).

115. Geometric picture, or graph, of an equation. By the geomet-

ric picture (or map) of an equation— usually called the locus or

graph of the equation— is meant the

totality of all those points whose co-

ordinates satisfy that equation..

E.g. , since the numbers — 1 and — 5, when
substituted for x and ?/, respectively, satisfy

the equation 2 a: — ?/=:3, therefore the point

Pl= (— 1, — 5) lies on the graph of this equation
;

so, too, the points P2=(0, — 3), P3= (l, — 1),

P4=(2, 1), P5=(3, 3), etc., are on the graph of

this equation, because each of these pairs of

numbers satisfies the equation.

If these points are located, by the method of

§ 114, it is found that they are not scattered

* It is recommended that cross-section paper be used for this purpose ; such

paper may be obtained from all stationers,
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indiscriminately over the page, but that they all lie upon the line AB ; this line

is the graph of the given equation.* It is due to this fact that such equations

are often called linear equations (cf. § 94).

The points F^, P3, P4, ••• were found by assigning the values 0, 1, 2, 3, -
to z, and then finding the corresponding values of y from the equation; other

points between any two of these may be found by assigning intermediate values

to X.

The above method of finding the graph of any given equation in

two unknown numbers may be stated thus: by assigning to ic a

succession of values, such as 0, 1, 2, 3, •••, — 1, —2, —3, ••, find

the corresponding values of y, i.e., find as many solutions of the

given equation as may be desired ; locate the points whose coordi-

nates are these solutions, and draw a line connecting these points

in regular order ; this line will represent the required graph.

EXERCISES

Draw a j)air of axes, as in §§ 114 and 115, and locate the following

points

:

1. (5, 4) ; (3, 7) ; (4, - 2) ;
(- 3, 1) ; and (- 4, - 6).

2. (3, 0) ;
(- 5, 0) ; (0, 8) ; (0, 0) ; and (0, - 2).

3. Where are all points whose second number is 0? Where are those

whose first number is 0? Where are all those whose second number is

3|? Draw a fine through this last class of points.

4. Where are those points whose second number is the same as its

first number ? Where are those whose second number is the opposite of

its first number? Draw a line through each of these two classes of points.

5. What is meant by the graph of an equation ? Find ten pairs of

numbers, each of which satisfies the equation 2 x + y = 12. Carefully

locate the points determined by these pairs of numbers.

6. How many solutions has such an equation as that given in Ex. 5?

Show that its graph may be regarded as a record of all of its solutions.

7. Show that the equation 3 x = 2 (i.e., 3 x + • 2^ = 2) is satisfied by
each of the following pairs of numbers: f , 1 ; |, 2; |, 3; f, 4; etc.,

f, 0;

I,
— 1 ; f,

— 2 ; etc., i.e., by every pair of numbers of which the first is
-f

.

Where do all these points lie (cf. Ex. 3) ? What, then, is the graph of

the equation 3 a; = 2 ? Draw it.

8. As in Ex. 7, construct the graph of 2 y = 5. Of x- = - 1. Oi y = ix.

Of a:2 = 9.

* Students who are acquainted with the theory of similar triangles will find no

dilWculty in proving that all these points lie on the same straight line (.-l /?), and

9,lso that the coordinates of every point on AB will satisfy tlie given equation.
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Assuming the graph of a first degree equation in two unknown num-

bers to be a straight line, construct the graph of each of the following

equations by finding two of its points and drawing a straight line through

them:

9. 2x + y-4: = 0. 11. iz-y = d.

10. 3y-4a: + 2 = 0. 12. ^ - ^ = -?-.

X y xy

116. Intersection of two graphs. Since any two numbers which

satisfy an equation are the coordinates of some point on the graph

of that equation (§ 115), therefore a pair of numbers which satis-

fies each of two given equations must be the coordinates of a point

which is on the graph of each of these equations, i.e., these numbers

are the coordinates of a point in which these graphs intersect.

Hence, to find the coordinates of the point in wiiich the graphs

of two equations intersect each other, it is only necessary to solve

these equations, regarding them as simultaneous.

On the other hand, instead of solving two simultaneous equa-

tions in the ordinary way, one may accurately draw the graph of

each of these equations, using the same axes for both, and care-

fully measure the coordinates of their point of intersection ; these

coordinates will constitute an approximate solution of the given

equations.

EXERCISES

1. Find the coordinates of the point of intersection of the graphs of

X + y = 5 and 2 x — y = 4, both by solving these equations and also by

measurement, and compare the results.

2. Solve the system of equations 3 a; + 4 ?/ = 7 and 2 x — S y = IQ hy

the graphic method, i.e., by measuring the coordinates of the point in

which their graphs intersect.

Find the coordinates of the point of intersection (as in Ex. 1) of the

graphs of each of the following pairs of equations:

3x-§?/ = 3, ^ (2x-Sy=7,
5x-7ly=n.

6. Show that the two equations in Ex. 5 are algebraically inconsistent.

How are their graphs related to each other ? Where is their intersection ?

7. In how many points can two straight lines intersect each other?

Does this agree with § 111 ? Explain.

3.
(4y-^dx=5, ^ r3x-§?/ = 3,

^ j
[4x-3y = d.

' [ix-2y = 4.
'

[



CHAPTER XII

INEQUALITIES

117. Definitions. Expressed in algebraic language, the condi-

tions of the problems thus far met with have led to equations;

but there are many other problems whose conditions lead only to

a statement that one of two expressions is greater or less than the

other. A correct analysis of such a statement is often of great

importance, and may afford all the desired information concerning

the numbers involved in the given problem.

The symbols > and < are called the symbols of inequality, and

are read "is greater than," and "is less than," respectively.

Thus, a>& is read " a is greater than 6," and a< 6 is read "a is less than b."

One number is said to be greater than another when the result

of subtracting the second from the first is a positive number, and

one number is said to be less than another when the result of

subtracting the second from the first- is a negative number.

Thus, if a — b is positive then a > 6, while if a — b is negative, then a<C.b.

Again : since 5— 2 = 3, therefore 5> 2 ; also, since 2— (— 6) = 8, therefore 2> — 6

;

and since 8— 1.5 = — 7, therefore 8 << 15.

The statement that one of two numbers or expressions is greater

or less than the other is called an inequality. The number or

expression which stands at the left of the symbol of inequality is

called the first member of the inequality, while the number or

expression which stands at the right of this symbol is called the

second member,— the opening of the symbol being toward the

greater number.

Thus, a> 6 is an inequality of which a is the first member and 6 the second

;

it is read, " a is greater than 6."

Two inequalities are said to be of the same species (or to subsist

in the same sense) if the first member is the greater in each, or if

the iirst member is the lesser in each; otherwise they are of

opposite species.

Thus the inequalities a > 6 and c + dy- c are of the same species, while

a-*2 + ?/2>2:2 and m^<in^+ mn are of opposite species.

193 *
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118. General principles in inequalities.

(i) // the same nuinber be axlded to, or subtracted from,

each member of an inequality, the result will be an in-

equality of the same species as the given one.

E.g., 10 > 8, and so, also, 10 + 5 > 8 + 5, and 10- 5 > 8 — 5.

To prove this principle generally, let the given inequality be n < 6, and let c be

any number whatever ; then (a + c)— (6 + c) , which equals a— 6, is negative, since

a < 6, and therefore, by definition,

a + c <,h -\- c.

Similarly, a — c<,h — c.

Manifestly the proof would have been just the same if the given inequality had

been a>6.

From the principle just proved it follows that terms may
be transposed in a,n inequality, just as in an equation, viz.,

by reversing their signs; for subtracting any given term from

each member will cause that term to disappear from one member,

and to reappear, with its sign reversed, in the other.

(ii) // several inequalities of tJw same species be added,
member to member, the result will be an inequality of the

sajne species.

E.g., adding the inequalities 3< 7, 21 < 30, and — 2 < 1, member to member,
we obtain 22< 38.

To prove this principle generally let a > 6, c > d, e >/, •••, /i > A; be any num-
ber of given inequalities, all of the same species; then each of the differences

a— 6, c— d, e —/, •'•,h — k\s positive, hence their sum is positive,

i.e., (a — 6) + (c— cZ) + (e —/) H h (A — k) is positive,

hence {a-\-c + e-\ (- A) — (& + d +/H h k) is positive,

and therefore, a + c-{-e-\ \-h>h-\-d +/H \-k; which was to be proved.

It should be carefully noted that if two or more inequalities

which are not of the same species are added, the result may or

may not be an inequality.

The student may illustrate this statement by means of some

numerical examples.
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(iii) // an inequality he subtracted from an equation, or

from an inequality of opposite species, member from mem-
her, tim result will be an inequality whose species is oppo-

site to that of tJie subtrahend.

The proof of this principle is similar to that of (ii) above, and is left as an

exercise for the student.

The student may also illustrate, by appropriate examples, that if one inequality

be subtracted from another inequality of the same species, the result may be an

inequality of the same or of opposite species, or it may be an equation.

(iv) If each mem^ber of an inequality be multiplied or

divided by the same positive number, the result will be an
inequality of the same species.

E.g., 24> 20, and so, also, 24-^ 4> 20 -^ 4 ; again, 3< 5, and so also 3 • 7 < 5 • 7.

To prove this principle, let a >> 6 be any inequality, and let c be any positive

number whatever; then {a — b)c is positive, since each factor is positive, i.e.,

ac — be is positive, and hence by definition,

ae > 6c,

which was to be proved.

Similarly it is proved that, under the above conditions,

ah
c c

The principle just proved enables one to clear an inequality of

fractions, and also to remove any factors that are common to both

members.

(v) // each member of an inequality be multiplied or

divided by the same negative number, the result will be an
inequality of opposite species.

To prove this principle, let a > 6 be any inequality, and let c be any negative

number whatever; then {a — b)c is negative, i.e., ac — be is negative, and hence

ac < he,

which was to be proved.

Similarly it is proved that, under the given conditions,

a &

c c"

(vi) // t?ie signs of all the terms of an inequality be re-

versed, then the symbol of inequality must also be reversed.

E.g., if2a — 4c' + 3a;>2d + 5y — 7 6, then 4c — 2a-3a;<76-2d— 5y.

The proof of this principle follows directly from (v) by putting — 1 for the

multiplier c.
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(vii) If the first of three numhers is greater than the

second, and the second is greater than the third, then the

first is greater than the third; and conversely.

E.g., 10 > 7 and 7 > 3, and 10 > 3 also.

To prove this principle, let a > & and 6 > c be the given inequalities ; then

a— 6 is positive, as is also 6 — c, and hence their sum (a— h) + (6— c), i.e., a — c,

is positive, and therefore a > c, which was to be proved.

Similarly it is proved that if a < & and 6 < c, then a < c.

(viii) If two inequalities which are of the same species,

and whose members are all positive, he multiplied togetJier,

meinher by member, the result will be an inequality of the

same species.

E.g., 5 > 3 and 4 > 2, and 5 . 4 > 3 • 2 also.

To prove this principle, let a > 6 and c > (^ be two such inequalities ; then by
(iv) ac > be, but by (iv) he > hd, whence by (vii) ac > hd, which was to be proved.

By proceeding step by step, it is clear that principle (viii) holds for any num-
ber of (and not merely for two) such inequalities.

The student may modify the above statement and proof so as

to apply to the case in which some of the members are negative.

EXERCISES

1. When is the first of two numbers said to be greater than the

second ? When is it said to be less ?

2. By the definitions of "greater" and "less " given in § 117, show
that 5 > 2 ; that - 23 <- 12 ; and that 2 > - 9.

3. li a=^ b, show that a"^ + b^>2 ah. This is a very important rela-

tion, and well worth remembering.

Suggestion, (a— 6)2 is positive whether a > & or a < 6.

4. If two or more inequalities of the same species are added, what is

the species of the resnlting inequality? Prove your answer. Is it neces-

sary that the members of these inequalities hQ positive numbers?

5. If an inequality is subtracted from another inequality of the same
species, member from member, what is the result? Prove your answer.

6. If two inequalities of the same species are multiplied together,

member by member, what is the result? Prove your answer. Is it

necessary in this case that the members of these inequalities be positive

numbers?
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7. What happens if the signs of the terms of each member of an

inequality are reversed? Why?

8. May terms be transposed from one member of an inequality to

the other ? If so, how and why ?

9. What other operations may be performed with or upon inequali-

ties, producing results whose relations are known ?

10. Name and illustrate some operations with inequalities that give

results about whose relations there is doubt. E.g., the quotient of two

inequalities of the same species, divided member by member, may be an

equality or an inequality of the same or of opposite species.

119. Unconditional and conditional inequalities. An unconditional

inequality is one which is true for all values of the letters in-

volved— e.g., a + 4>a; while a conditional inequality is one

which is true only on condition that the values to be assigned

to the letters involved shall be somewhat restricted— e.g.,

a; + 4<3a; — 2 only on condition that the values assigned to x

shall be greater than 3.*

To solve a conditional inequality means to find those values of

its letters for which the inequality is true ; this may be done by

means of the principles which were proved in the preceding

article =— for illustrations see Exs. 1 and 2 which follow.

Ex. 1. Given 3 x — ^^ > ^^ — ar, to find the possible values of x.

Solution. On multiplying each member of the given inequality

by 3, it becomes^
9 a: - 25 > 11 - 3 a:, [§118 (iv)

whence 9 a: + 3 a; > 11 + 25, [§ 118 (i)

i.e., V2x> 36,

whence a:>3;. [§ 118 (iv)

therefore, if the given inequality is true, x must be greater than 3.

By means of the principles established in § 118 the student may show that each

step in the reasoning of Ex. 1 is reversible, and hence that the. converse of that

example is also true ; viz., that if x > 3, then 3 a; — -^/-> ^-^- — x.

* Let it be observed that conditional and unconditional inequalities are respec-

tively analogous to conditional and identical equations; the student may also

note the analogy between solving an inequality and solving an equation.
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"ig
I'

^° ^°^ those values of

x and y that will satisfy them both.

Solution. On multiplying each member of the inequality by 4, and

each member of the equation by 3, they become, respectively,

8x+12?/>20,

and 3a:+123/ = 18;

whence, subtracting, 5a:>2, [§118 (i)

and therefore a:>|. [§ 118 (iv)

Now substitute for^a: any number greater than g, in the above equation,

and find the corresponding value of y ; these values of x and ?/, taken

together, will satisfy both the equation and the inequality.

EXERCISES

3. Distinguish between a conditional, and an unconditional inequality.

To which of these classes does aP- + h'^ + \>2 ah belong? Why ?

4. Is the expression 6x — 5>3x + 10 true for all values of x ? If not,

what is the least value that x may have in this inequality ? To which

class does this inequality belong?

5. What is meant by " solving " a conditional inequality ? Describe

the procedure. Illustrate what you have said by solving the inequality

in Ex. 4.

6. From the inequality in Ex. 4 above it is found that a: > 5, i.e., the

range of values that x may have in this inequality is from just above 5

upward ; 5 may here be called the lower limits or minimum, of the possible

values of x. Find the minimum value of a: in 3 a; < 5 a; — 9.

7. Show that the range of values of a: in a;^ + 24< 11 a; is between 3

and 8, i.e., that 3 is the lower limit, or minimum, and that 8 is the upper

limit or maximum.

Suggestion. In order that {z — 3) (8 — a;) , i.e., Wx — x"^ — 24, may be positive,

both factors must be positive or both negative.

Find the range of values of x in each of the following inequalities

:

8. a:2 > 9. 13. x'^ + o a: > 24.

9. .2 + 24>lla:.
, J4.-ll>-,

10. 30>a:+-^>25. ^*-
|io_x>5.^

11. 28>3a: + a;2. j3-4r<7,
12. a:2>9a:-18. ' la:+2<4.
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16. By the definitions of "greater" and "less" given in § 117, show

that n + -<2, when n is any positive number,* i.e., show that the sum of
n

any positive number and its reciprocal is not less than 2.

17. Show that 4 x^ + 9 < 12 x.*

18. Show that26(6a-5 6)X2a + &)(2a-6).

If a, h, and c are positive and unequal, prove the correctness of the fol-

lowing statements:

19. a2 + 62 ^ c2>> ab + hc \- ac.

20. a^-\-b^> a% + abK 21. a^ + 68 + cS> 3 abc,

22. If a2 + 62 = 1, and c"^ + cP = 1, prove that a6 + erf > 1.*

23. If m and n are both positive, which of the expressions ^ ^^ or

^'"'^
is the greater?

m '\-n

Solve the following systems

:

r2x-3j/<2, f3a:+2y = 42, fx + y=10,
24.

3 3^.l2x + 52/=:6. |3a:-|>16. l4:c<

I 20 15
^

Find the integral values of x and y in the following systems

:

l3x-2/<21. |l3a:-^<33.

31. If 16 more than 3 times the number of sheep in a certain flock

exceeds 27 plus twice their number, and if 45 less than 4 times their

number is less than their number diminished by 6, how many sheep are

there in the flock ?

32. Find the smallest integer fulfilling the condition that \ of it

decreased by 7 is greater than \ of it increased by 6.

33. Find a simple fraction (in its lowest terms) which, when 2 is added

to its numerator and subtracted from its denominator, shall be greater

than f, while if 2 is subtracted from its numerator and added to its

denominator, it shall be less than \.

34. Three times A*s money and 4 times B's is $ 1 more than 6 times

A's ; and if A gives $ 5 to B, then B will have more than 6 times as much
as A will have left. Find the range of values of A's money and B's.

Compare also Ex. 3, p. 196. The symbol <[ stands for "is not less than."
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REVIEW QUESTIONS- CHAPTERS XXII

1. Define and illustrate: conditional equations; equivalent equations;

integral equations ; the degree of an equation ; literal equations.

2. Outline the plan for solving a conditional equation in one unknown
number, and state the principles upon which this plan rests.

3. How may a fractional equation in one unknown number be solved?

4. Under what circumstances are extraneous roots introduced by-

clearing an equation of fractions? How may such roots be detected?

5. By means of the equation \- —— —- = -^^ —-^, illus-

trate your answer to Lk. 4.

6. Define and illustrate what is meant by : an indeterminate equa-

tion; an indeterminate system of equations; consistent equations; inde-

pendent equations ; simultaneous equations.

7. Outline three methods of elimination.

8. Prove that the syetem of equations a^x + b^y = Cj and Og^; + &22/ = Cg

has one solution, and only one, if a^b^ ^ «2*i-

9. Outline the procedure for solving a system consisting of n inde-

pendent simple equations in n unknown numbers.

10. Find an expression of the form ax^ + bx + - whose value is 16

when X = — 1, 2 when x = 1, and 40 when x = 2. ^

11. What is meant by the graph of an equation? Illustrate your

answer.

12. How may the graph of an equation be constructed ? Construct the

graph oi 6y = Sx -\- lO; also of 2 y^ = S x -\- 1.

13. How may a pair of equations, such as that given in Ex. 8, be solved

graphically ? Illustrate your answer.

14. Define a conditional inequality, also an unconditional inequality.

Illustrate each.

15. How may a conditional inequality be solved? Illustrate your

answer by finding the range of values of x in the inequality x — 3 < —

.

10 '"'

16. If X - 3 < — , does it follow that a:^ - 3 x< 10 ?
X

17. Prove that a positive proper fraction is increased by adding the

same positive number to both its numerator and its denominator.



CHAPTER XIII

INVOLUTION AND EVOLUTION

I. INVOLUTION

120. Definitions. If a represents any number * whatever, then

it has been agreed that the product «•«•«••• (to n factors),

which is called the /ith power of a, shall, for brevity, be represented

by the symbol a", which is usually read "a nth." The number

a is called the base, and n the exponent, of the power [cf. § 7 (iv)].

The operation of raising a number to any given power is called

involution. It consists merely in a succession of multiplications;

thus, 43 = 4.4.4 = 64, (-2/ = -32, (a+&)2 = a2 + 2a6 + 6^ etc.

Under the above definition the symbol a" has been appropriated

only when 71 is a positive integer ; that definition assigns no mean-

ing whatever to such expressions as a~^, a°, and a^. In § 44 1 it

was shown, however, that in operating with such symbols as a" it

is often advantageous to make the further agreement that a"*,

where k is any positive integer, shall mean — , and that a" shall

mean 1. In Chap. XIV such symbols as a^ will have a meaning

assigned to them, and will receive detailed consideration.

121. The exponent laws. Under the above agreements as to the

meaning of a", the following laws for exponents are easily estab-

lished.

(i) First exponent law. If a is any base, and m and n are

integers (positive or negative), or zero, then

* The word number is here used to include algebraic expression also,

t This article should now be reread. J Compare also § 37.

201
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For, if m and n are positive integers, then

a"* • a" = (a • a • a ••• to m factors) • (a • a • a ••• to n factors)

=z a ' a ' a '• • to (m -\- n) factors [Associative law

= a'"+".

If either m or n is a negative integer, say n = — Jc, where A; is a

positive integer, then

a* a*

_ g • g ' g •
' • to m factors

g . g . g ••• to k factors

g* "•

according as m > A;, or m < A;

;

but (since ri = — fc) g*""* = «"*+'*,

and — = g-^*-"*) = g*""*= g^^-

:

therefore g"*
. g" = g'"+",

even if one of the exponents is a negative integer.

Similarly the student may prove the correctness of this law if

both m and n are negative, or if either or both of them are 0.

By successive applications of the foregoing law, and with the

same limitations upon the exponents, it follows that

a"' • a" • a^ • a'' - = fl^«+n+p+'-+-.

(ii) Second exponent law. If a is any base, and m and n are

integers (positive or negative), or zero, then

For, if m and n are positive integers, then

(g*")" = (g • g . g ... to m factors)"

= g • g • g • • • to mn factors [Associative law
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and if either m or n is a negative integer, say m = — k^ where k

is a positive integer, then

(«"•)« = (a-*^)" = /^i-Y=— ' — ' — '" ton factors

= -J—=— = a-*^" = a"*". r—k==m

If both m and n are negative, or if either or both of them are

zero, the proof is similar to that just given; hence, for all these

cases, ^^r.y ^ ^«„

(iii) Third exponent law. If a and h are any two bases, and

n is a positive or negative integer, or zero, then

al" •})'' = {obY.

For, if n is a positive integer, then

a** • 6" = (a • a • a ••• to n factors) .(p'b-b-" to n factors)

= a6 . a5 . a5 . . . to n factors
[Commutative and

[_ associative laws

= (aby;

if n is a negative integer, say n = — k, where A; is a positive inte-

ger, then

a" . 6" = a-*
.

6-* = i ^^ = "Fir. = 7^7*= (^^)" = («^)^*'

a* b'' a* • &* {aby
as before

;

and if n = 0, then a" • 5" = 1 = (aby
;

[Since a;^' = 1

hence, for all these cases, a" • 5** = (aby.

By successive applications of the above law it follows that

aj'lf c"^' d^ ••• = {ohcd — )"•

(iv) Fourth exponent law. If a is any base and m and n are

any integers, or zero, then

a"" ^ a""- a^'*.
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The proof of the correctness of this law rests directly upon the

first exponent law [(i) above], and the definition of a quotient

[§ 3 (iv)], for, since ^m-n
,
^^n ^ ^m-n+n ^ ^r.^ [-0 above

therefore . a"' ^ a" = a"*-". [§ 3 (iv)

EXERCISES

1. Write a carefully worded statement of each of the four exponent

laws above,— e.g., the third law may be stated thus :
" The product of

like powers of any two or more numbers is the like power of the product

of those numbers."

2. How is the sign of the power in such a case as (— 6^)5 determined?

State, illustrate, and prove a law which shall cover all such cases, bearing

in mind that the exponents may be positive or negative integers, or zero

(cf. § 18, especially note 2).

3. Tell what the ngn of the result in each of the following expres-

sions is, and explain your answer

:

(-a)3; (-a)^ (a)-^; (- a)-3; (-4)0; (-f^'V'; (-6)^80;

(-a:)2"; and (-2)2«-i. ^ '

What is the value of (- 2)3 . 2-2? Of 3-2 • (- 2)3? Of 32 . 2-2?

4. How is a fraction raised to a power ? Why ? Give four illustra-

tions of your answer. Read again the second paragraph of § 120.

5. What does a represent in the proofs of § 121? May it represent

any polynomial whatever, as well as any number ? What does it repre-

sent in Ex. 3 ?

6. By § 62 expand the following expressions : {x + y)^ {x + y)^,

and {x + z/)^; then multiply the first two expanded forms together, and

thus verify that {x + yY • {x + yY = (x + y^-

7. To what kind of numbers were exponents originally limited ? To
what extent has this limitation now been removed ? What is the meaning

of such an expression as x~^ ? Of x^ ? Read again § 44, and the third

paragraph of § 120.

Simplify the following expressions (free them from negative and zero

exponents where such occur, etc.) and explain each step of your work

fully, always referring to the appropriate exponent laws

:

8. a^Wc^\ a-3i-%-3; and (a-2)8.

9. (a2x8^-2)4; (m3^?/-4)2. ^nd (rt2y-3)-2.

10. (rt2:^2)3_^ (_a^2)2. (6a0)2 - (2x0)2; and (- 122a-8j:V)2 -^

(-32a-5x2)3.



121-122] INVOLUTION AND EVOLUTION 205

12. f--^y. 14. l-^^J^!n\\ 16 /_zr!£!^V".

17. State the binomial theorem (§62).

18. How many terms are there in the expansion of (m + n)^? How-
many in (a - 6)8? How many in (3 s - 2 0"?

19. What are the signs of the terms in (a - &)8? Compare (a - by
with [a + (- b)y, and explain why the alternate terms of the expansion
are negative.

Write down the expansions of the following expressions, and remove
negative exponents where they present themselves :

20. (2a-36)4.t 25. (a-hb-hcy,i.e.,[a+(b+ c)f.

21. (x2-i/t)8. 26. (3xY-^fz^y-
22. (x-2 + 3 z/-i)4. 27. (a;3 - 2 ?/-3)5.

23. (3 a + 2 &2)5. 28. (a-2 - ic-i)^.

24. (2 m +3 xy. 29. (2 x8 + 3 a;2 - 5)*.

30. Is (a- b'C- <iy equal to a^ • b"^ • c^ d^'i is (a + b + c + dy equal

to a^ + 62 _^ ^2 _|_ ^2 9 Explain your answer.

Is involution distributive over a product (cf . § 39) ? over a sum ?

31. Translate the following symbolic statement into a verbal one

:

(a + a;)« :^ a« + x".

32. Ts [(-2)3]3 equal to [(-2)2]3? What is the sign of each

result? Why?

33. Prove that (a"*)" = (a")'", wherein a is any number or algebraic

expression, and m and n are integers (positive or negative) or zero [cf.

law^ (ii) above]. Also state this principle in words.

II. EVOLUTION

122. Definitions. A number whose nth power is a given num-
ber {n being any positive integer) is called an nth root of the

given number ; thus, if a" = h, then a is an ?ith root of h. %

* Compare Exs. 20-26, § 93. t Compare note, § 57.

J As here used the word number mcludes algebraic expression also.
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E.g., 2 is a 3d root of 8 because 2^ = 8 ; so also 2 ab^ is a 5th root of 32 a^ftW

;

either +3 or —3 {i.e., ±3) is a 2d root of 9; db| is a 4th root of if ; a 3d root of

x8 — 3 a;2y + 3 xy^— y^ is x — y; etc.

The special names square root and cube root are usually employed instead of

2d root and 3d root, respectively [cf. § 7 (iv), note].

The operation of finding any root of a given number is called

evolution, or extraction of roots. Evolution is then the inverse of

involution,* just as subtraction is the inverse of addition, and

division the inverse of multiplication.

The radical sign, ^, is placed before a number to indicate that

a root of the given number is required, and a small figure, called

the index of the root, is placed in the opening of the radical sign

to indicate what particular root is to be extracted.

The number whose root is required is called the radicand ; and

an indicated root is said to be an even root or an odd root accord-

ing as its index is an even or an odd number.

Thus, y/21 stands for the cube root of 27 ; this is an odd root since its index, 3,

is an odd number, and 27 is the radicand. \/(32 a^&io) jg the 5th root of 32 a^ftio,

and y/a is the nth root of a. If no index is written, the index is understood

to be 2, i.e., \/4 stands for the square root of 4.

The radical sign is a modification of the letter r— the initial letter of the Latin

word radix, meaning root.

In practice the radical sign is usually combined with a vinculum (§ 8) to indi-

cate clearly just how much of the expression following the radical sign is

to be affected by that sign ; thus V9+ 16 means the square root of the sum of 9

and 16, while y/^-\- 16 indicates that 16 is to be added to the square root of 9.

Instead of the vinculum a parenthesis may be used for the same purpose, in

connection with a radical sign, thus : \/(9+16) = \/9+16, VaSfts . c= y/{<ofib^) • c, etc.

123. Roots of monomials. If a monomial is an exact power, the

corresponding root can usually be written down by inspection.

E.g., v'8 a6a;3 = 2 a'^x, because (2 a2cc)8= 8 a^xS (§ 121); V9xV=+ 3a;V or
— 3a;V, because (+ 3 xV)^ = (— 3 a;%8)2 = 9 a;4^y6; ^—32x10 =— 2x2, because

(_ 2x2)6 =-32x10; \l^ = '^Jnk because f2m\3^8mf etc See also Exs. 5

and 21 below.

* It is to be remarked, however, that while raising a number to a power always

produces a single result, extracting a root may lead to more than one result;

e.g., 32 = 9, but the square root of 9=+ 3 or — 3.

This is often expressed by saying that involution is a unique operation, while

evolution is non-unique.
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EXERCISES

1. What is meant by the square root of a number? Of what two
equal positive factors is 25 the product? What, then, is a square root of

25 ? Has 25 another square root ? Why ?

2. What are the square roots of 49 ? Why ? The fourth roots of 81 ?

Why? Prove that if a is any even root of a number, then — a is also a

root (with the same index) of that number.

3. What is the cube root of 27? W^hy? Of - 27 ? Why? Of 64

and of - 64? Why? How does ^32 compare with \/^r82? Why?
Compare the signs of odd roots of numbers with the signs of the

numbers themselves, and give your reasons in full. Is this also true

for even roots?

4. What is the sign of any even power of any positive or negative

number? Why? Can, then, an even root of a negative number be an

integer or a fraction, positive or negative ? Why ?

5. What is the nth power of a^S^j-ft^-s? What, then, is \^3nj2n-cftny"-5n ?

Why ? What is the sign of this root ? Why ? How do the exponents of

the root compare with those of the number itself? Why?

6. Is V9.16equalto\/9.\/l6? Why? Is V9+16equalto \/9+ Vl6?
Compare Ex. 30, § 121, and give a verbal statement of your general con-

clusion.

Find the following indicated roots, and verify your answers. Also tell

which are even and which are odd roots, and name the radicand and the

index in each case :

7. ^a366ci6.

8. VI 6 a^x^y-'^.

9. >/32 x6?/io.

10. Va^"x-^y^\

11. f-?

13. v/128 a^^ft-i^y. 8 / 256 ynV«
\6561^3%-8

j_^
3 / 125 a;i2yg

' V 1728 a^z^' 18.
.027 a'\r^

' \ 128a:i4
15. I Hi'^-y) . „ 2na2n2-2^

19. \

_ 5 I- 32 «5:,40 I,a5xjjx2^dx

12. V- 243 a^^x-^ \ 243 y^s \ 2-^^y^'z'

21. Write a rule for the extraction of such roots as the above, and

emphasize particularly the matter of exponents and signs. Does your

rule apply to roots of polynomials also ?
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124. Roots of polynomials extracted by inspection. If a poly-

nomial is an exact power of a binomial, a little study will usually

reveal the corresponding root ; this is illustrated by the following

examples.

Ex. 1. Find the square root of m^ + 4 m% + 4 n^.

Solution. This expression is easily seen to be (m^ + 2n)2; there-

fore Vm*^ + 4 m^n + 4 n^ = i (m^ + 2 n).

Ex. 2. Find the cube root of 8 a^ _ 36 a% - 27 b^ -\- 54 ab^

Solution. Since the given polynomial has four terms, two of which,

viz., 8 a^ and — 27 h^, are exact cubes, therefore it may be the cube of a

binomial (§ 62) ; if it is the cube of a binomial, that binomial must be

2 a — 3 6 (why ?), which, on further examination, proves to be the required

cube root.

Hence v'S a^ - 36 a% - 27 6^ + 54 ab^ = 2 a -8b.

A polynomial which is the square of another polynomial may
also sometimes be recognized as such (cf. § 61), and its square

root may then be written down by inspection.

Ex. 3. Find the square root of a^ + 62 _ 2 aJ - 4 &c + 4 c^ + 4 ac.

Solution. Since the given polynomial consists of six terms, three of

which are exact squares, and three of which are double products, there-

fore (§ 61) it mmj be the square of a trinomial whose terms are the square

roots of the square terms ; by a little further examination it is seen that

Va2 + 62 _ 2 a6 - 4 &c + 4 c2 + 4 ac =±(a-b + 2c).

EXERCISES

Extract the following indicated roots by inspection, and verify

:

4. ^4 x2 + 12 a: + 9. 6. V(m + n)2 -4:(7n + n)+ 4.

5. V25 2/2 _ 40 y + 16. 7. Vx^ + 2xy + y^ -2xz -2yz + z^.

8. \/8 h^ - 84 h% + 294 hk^ - 343 k\

9. \/x^ -^xhj + y^-^xy^ + Q x'^y\

10. a/8 w8 _ 12 u^v - v3 + 6 uv\

11. v^flS _ 65 _ 5 ^4^, + 5 aj4 + 10 rtS^'i _ 10 an\

12. Va2 + 9 62 _ 6 a6 + 6 (x - 2 2/) (a - 3 6) + 9 (a:2 - 4 a:?/ + 4 y'^).

13. Vx^ - 6 abx^ + 15 a%^x^ - 20 a%^x^ + 15 a'^b^x'^ - 6 a%^x -f- a%^.
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125. Square roots of polynomials. Since it is not always easy

to lind the square root of a polynomial by the method illustrated

in § 124, another method, which is always applicable, will now be

given. This method will be better understood by first squaring

a polynomial and carefully observing its formation, and then

reversing that process.

(i) Consider first the binomial A-\-B; its square is, A^+ 2AB-\- B^, therefore

the square root of A^ + 2 AB + B'^ is J. + jB ; and the question now to be investi-

gated is: given the power A^ + 2 AB-\- B^, how may the root A-\-B he found
from it?

Since the first term of the power is the square of the first term of the root,

therefore the first term of the root is the_square root of the first term of the

power ; i.e., the first term of the root is \A^, viz., A.*

If the square of the root term just found be subtracted from the given power,

then the first term of the remainder, viz., 2AB, will be the double product of the

first and second terms of the root, therefore the second term of the root is found

by dividing the first term of the remainder by twice the root already found.

Twice the root already found at any stage of the work is usually called the

trial divisor, and the trial divisor plus the next root term is called the complete

divisor.

The work of finding the square root just considered may be put into the fol-

lowing form

:

^2+ 2^5 + ^2
1 ^ + ^

^2

Trial divisor, 2 A
Complete divisor, 2 A

2AB-{-B^
2AB + B^ =i2A + B)'B

Observe that the first and second subtractions are together equivalent to the

subtraction of (A + B)^ from the given power.

Similarly, to find the square root of 9 m2— 42 mx^ + 49 x^, the work may be

arranged thus (the student should fully explain each step of the process)

:

9 m2— 42 mx^+ 49 x^ \Sm — 7x^

9m2

Trial divisor, 6m
Complete divisor, 6 m— 7 x^

— 42 ma;3 + 49 x^

— 42 mx^ + 49 a;6 = (6 m - 7 x^) (— 7 x^)

(ii) The above plan for extracting the square root of a trinomial power is easily

extended so as to apply to polynomial powers of any number of terms.

Consider, for example, the expression A + k + B, wherein A stands for the

first n terras, k for the next term, and B for all the remaining terms of any poly-

* For the consideration of the negative root (viz., — A), see note 2, page 211.
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nomial whatever; and let all of the terms of this polynomial be regarded as

already arranged according to the descending powers of some one of its letters.

The square of this polynomial is A^+ 2 Ak-\- k^-{-2 AB -i-2 Bk-{- B^, and the

question is: c/iven the power A^-{-2 Ak + k^ + 2 AB -{-2 Bk + B'^, how may the

root A-{- k + B be found from it ?

Let it be assumed that the terms represented by A have already been found,*

— by (i) above or any method whatever,— then it is clear that when A^ has been

subtracted from the power, the highest term in the remainder is the highest term

in 2Ak, hence the next term in the root (viz., k) may be found by dividing the

highest term in this remainder by the highest term in 2 A, i.e., by the highest

term in the trial divisor. But since A stands for the terms of the root already

found, therefore what has just been said shows how to find the next term of the

root at any stage of the work, i.e., it shows how to find all the terms of the

root.

This work may be arranged thus

:

A^+ 2Ak + k^ + 2AB^2Bk + B2 \A+k
A^

Trial divisor, 2 A
Complete divisor, 2A-^k

2Ak + k'^-\-2AB + 2Bk+B^
2Ak + k^ =i2A + k)'k

2AB + 2Bk + B^

Observe that the two subtractions here made are together equivalent to sub-

tracting (^ + A;)2from the given power; i.e., by proceeding as above explained,

the remainder at any stage of the work is the same as that obtained by subtract-

ing the square of the root found at that stage of the work from the given power.

Similarly, to find the square root of 9x^ + 6 xhj — 11 xhj'^ — 4 xij^ + 4 y^, the

work may be arranged thus (the student should, however, explain each step)

:

9 a:4+r,.r3,/_iia;2;/2_4 3^2/3+4 ?/4
[

3 x^+a;?/—2 ?/2

9a;4

(> xhj- 1 1 a:2?/2—4 a;?/3+4 ?/4

6x3//+ x%2 ={Qx'^+xy) 'Xy

1st trial div., 2{Zx'^)=i\x'^

1st comp. div. , 6 x^+xy

2d trial div., 2(3a;2-f-a-//)=6x2+2x?/| — 12.r2?/2—iajyS-f^^/^

2d comp. div. , 6 a;2+2 xy-2 r/2
j

—12 x^y"^-^ a!?/3+4 ?/4= (fi x'^+2 xy—2 y2) .27/2

The above method for extracting the square root of a polynomial

may be stated thus :

(1) Arrange the terms of the given polynomial according

to the descending powers of soine one of its letters, and
write the square root of its first term as the first term of
the required root.

* The first term at least may always be found as in (i) above.
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(2) Subtract the square of the root terrn just found from
the given polynofnial, and divide the first term of the

remainder by twice tl%e first termj of the root; write the

quotient as the next terin of the required root, and also

annex it to the trial divisor to form the complete divisor.

Q^) Multiply the coTnplete divisor by the last root term,

which has just been found, and subtract the product from
tixe preceding remainder.

(4) Divide the first term of this new remainder by the

first term of the new trial divisor; write the quotient as

the next term of the required root, and also add it to the

trial divisor to form the complete divisor.

(5) Repeat the steps (3) and (4) until all the terms of
the root are found.

Note 1. Observe that if polynomials are arranged according to ascending
instead of to descending powers of the letter of arrangement, the above demon-
stration still applies; it requires only the verbal change of lowest term for

highest term.

Note 2. If the negative value, instead of the positive value, of the square

root of the first term of the polynomial had been used in the above demonstra-

tion, the sign of each term of the result would have been changed, i.e., the result

would have been the negative square root of the given polynomial.

Note 3. It has been shown above how to find the square root of a polynomial

which is an exact square; i.e., if the above process be continued until a zero

remainder is reached, then the square of the expression thus found will be the

given polynomial. If, however, the same process be applied to a polynomial

which is not an exact square, then as many root terms as desired may be found,

and the square of this root, at any stage of the work, will equal the result of sub-

tracting the corresponding remainder from the given polynomial — such a root is

usually called an approximate root, and also the root to n terms.

EXERCISES

Find the square root of each of the following expressions, and verify

the correctness of your result

:

1. a;* - 4 a;8 + 8 X + 4.

2. 4 w* - 4 m3 - 3 m2 + 2 Tw + 1.

3. l-6y+52/2+i2y3_^.43,4. .

4. 25 x^ - 40 a%^x^y^ + 16 a^ft*.

5. 4x6 + i7a.2 _ 22 x3 + 13 x4 - 24 X - 4x6 + 16.
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6. 4 a4 + 64 64 _ 20 a% + 57 a^"^ - 80 ab^

7. 6 a:^^ + 2 x^y^ - 28 xy^ -\- 9 x^ + 4: y^ + 45 a;^?/* + 43 x^y^.

8. 3 ^4 - 2 x5 - a:2 + 2 a: + 1 + x^ *

9. 48 a* + 12 a2 + 1 - 4 a - 32 a8 + 64 a« - 64 a^.

10. 46 a:2 + 25 a;4 - 44 a:3 - 40 ar + 4 a:« + 25 - 12 x^.

11. x^-2x'^y + 2 x^z^ - 2 7/^2 + y2 ^ 2*.

12. a:8 - 2 a'^x^ - 3 a^a;* + 4 «6a;2 + 4 «» - 16 a^a;+ 32 aSa;^- 20 a3a;5+ 4 aa;^

14. — + 16 a^y^ + 8 x'^y^.

15. a;2+2a;- 1 -- + --t
X x^

16. 9a,-2-24a; + 28- — + i.
a; a:^

17. n4 + 4 n3 + - + 2 n + 4 4- 4 w2,

18. x* + 1 + 4 a;8 + - + 6 a:2 + -^ + 5 + 5 a: + -.

x^ x^ 4a;2 a;

19. 4 + ^'-^-^ + -^.
62 6 a 4a2

20. (a: - y)2 - 2 (a-^/ + 3:2 - 2/2 _ yz) + (y + 2)2.

21. a;2'-_y2» _ 6 x^^hf^"^ - 30 x^y'^"^ + 10 a:2''-y«+i+ 25 a;2'-23/2s+2
_f. 9 ^.y,

22. 1 + a:, to 4 terms. See note 3.

23. a2 + 1, to 3 terms.

24. 1 + a; — a:2, to 4 terms.

25. a;4 + 2 x^y + 2/^ + a:^/^ + a:23^^ to 4 terms.

26. By extracting the square root until a numerical remainder is

reached, show that x4 + 4x^+8a:2 + 8a:- 5 equals (^2 + 2 x + 2)2 - 9,

and thus find the factors of x* + 4 a;^ + 8 a:2 + 8 x — 5.

27. Similarly, find the factors of x* + 6 x^ + 11 x2 + 6x - 8 and

a6 - 6 a* + 10 a8 + 9 a2 _ 30 a + 9.

* Check Exs. 8-21 by the method of Ex. 7, § 39.

t Show first that this expression is already arranged according to descending

powers of «.
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126. Square roots of arithmetical numbers. Arithmetical num-

bers are merely disguised polynomials— e.g., 3862 = 3 (10)* +
8 (10)^ + 6 (10) + 2— and their square roots are extracted by

virtually the same process as that given in the preceding article.

Although it is not necessary to do so, yet it is more systematic

to find the several digits of these roots in their order from left to

right, just as the terms are found in the case of polynomials;

to do this the given number is first separated into periods of two

figures each, to the right and left of the decimal point.

The reason for the separation into periods lies in this : the square of any num-
ber of tens ends in two ciphers, and hence the first two digits at the left of the

decimal point are useless when finding the tens' digit of the root ; they are there-

fore set aside until needed to find the units' digit of the root. So, too, the square

of any number of hundreds ends in four ciphers, and hence, for a like reason,

two periods are set aside when the hundreds' digit of the root is being found, and

so on. Similarly for the periods at the right of the decimal point.

The application of the method of § 125 to extracting square

roots of arithmetical numbers may be best understood in general

by first considering some particular examples.

Let it be required, for instance, to find the square root of 1156.

Since this number consists of two periods, therefore its square root will consist

of two integer places, i.e., of tens and units.

Moreover, since 30^< 1156< 40^, therefore the required root lies between 30

and 40, i.e., the tens' digit is 3, the square root of the greatest square integer in

the left-hand period of the given number.

The units' digit may now be found as follows : let Tc represent the part of the

root already known (viz. 30), and let u represent the unknown part of the root

;

then 1156 = (A; + w)2 = A:2+ 2 ku + w2,

and, therefore, 2 ^w + w^ = 1156 - A;2 = 256. [A;2=900

Again, since k represents tens while u represents units, therefore 2 ku is much
greater than ifi ; hence the last equation above shows that 2 kit (though somewhat

less than 256) is approximately equal to 256, and hence that 256 -^2 A; (though

somewhat too great) is approximately equal to u, i.e., 256 -^ 2 Z: will suggest a

value for u, which must then be tested by the above equation.*

* Since 2.56= (^k-\-u)u, therefore 256^ (2 A;4- w) == w, i.e., the complete divi-

sor is 2k-\-u, and 2fc is merely a trial divisor; hence the appropriateness of

these names. Since 256-^2 ^ gives too great a quotient, therefore the units' digit

in the required square root is either 4 or a smaller number; hence if the units'

digit is not 4 (i.e., if it is 3, 2, 1, or 0), then (A: + 4)2> 1156, i.e., 1156— (A: + 4)2

is negative, and the next smaller number must be tried. This shows that the Jirst

one of these numbers (4, 3, •••) which leaves a positive remainder in the above

subtraction is the units' digit in \/ll56. Similarly in general.
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Finally, since k is already known to be 30, therefore 256 -;- 2 A: = 256 -^ 60 = 4+,

hence u is probably equal to 4; substituting this value of u in the equation

266 = 2 A;u + w2^ proves that w = 4, and hence that \/ll56 = 34.

The work may be arranged as follows

:

(A;+ w)2=A;2+ 2A:n + w2= 11'56 1 30 + 4 = 34

^2 = (30)2 = 900

trial divisor is 2 A; = 60 \25Q = 2 ku+ u^

complete divisor is 2 & + m = 64 1256= {2k-\-u)-u

Again, let it be required to find the square root of 315844.

Since this number consists of three periods, therefore its square root will con-

sist of three integer places. The work may be arranged as follows (the student

should fully explain each step)

:

31'58'44

250000

1500+ 60 + 2 = 562

1st trial divisor, 2 • 500 = 1000

Ist complete divisor, 1000+ 60 = 1060

2d trial divisor, 2 • 560 = 1120

2d complete divisor, 1120 + 2 = 1122

&5844

63600 = 1060 . 60

12244

1 2244 = 1122 . 2

NoTB. When some familiarity with the above process has been gained, the work
may be abridged by omitting unnecessary ciphers, and annexing to each remainder

the two digits which compose the next period in the given number, thus

:

31'58'44

25

1562

Ist complete divisor, 106

2d complete divisor, 1122

658

636

12244

12244

Finally, let it be required to extract the square root of 10.5626.

13.25
The work may be arranged thus

:

1st complete divisor, 62

2d complete divisor, 646

10.'56'25

9

156

124

13225

13225

The results of the discussion of the present article may be stated

thus:

(1) Separate the given number into periods of two digits

each, beginning at the decimal point and counting both

toward the^ right and toward the left, completing the right-

hand decimal period by annexing a cipher if necessary.
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(2) By inspection find the greatest square integer in the

left-hand period, and write its square root as the first digit

of the required root.

(3) Subtract the square of the root digit already found
from the left-hand period of the given number, and bring

down the next period as part of the remainder.

(4) Divide this remainder, exclusive of its right-lxand

digit, by twixie the root digit already found, i.e., by tJie

tidal divisor, and annex tlxe quotient digit to the root

and also to the trial divisor, thus forming the complete

divisor.

(5) Multiply the complete divisor by the last digit in the

root, subtraxit the product from the former remainder,
and bring down the next period of the given nuinber as

part of this new remainder.

(6) Repeat (4) and (5) above until all the periods of
the given number are exhausted.

(7). // a negative remainder presents itself in the above

worh, it indicates that the corresponding trial root digit is

too great, and the one next lower must be tried.

(8) For a given number which is not a perfect square

as many decimal figures as desired in the root may be

found by annexing the necessary number of periods of

ciphers to the number (cf. § 125, note 3).

EXERCISES

Extract the square root of each of the following numbers :

1. 1296. 3. 7396. 5. 667489. 7. 17424.

2. 841. 4. 12.96. 6. 1664.64. 8. 101.0025.

9. How may the square root of a fraction be found? Why? What
is the square root of -^-^ ? Why ?

10. Find the square root of ff|. Is — |f also a square root of this

fraction? Why?

11. If a number contains 3 decimal places, how many decimal places

does the square of this number contain ? Why ? Generalize this relation.

12. Extract the square root of 2 to three decimal places. How many
decimal ciphers must be annexed to 2 for this purpose ? Why ?
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Find the square root of each of the following numbers, correct to

three decimal places

:

13. 13.5. 14. .017. 15. |. 16. 4f.

17. Show by actual trial that, having found the square root of 35.8

correct to 3 decimal places, the next 2 decimal figures of the root may be

found by simply dividing the remainder at that stage of the work by the

corresponding trial divisor.

18. If the square root of a number is desired, correct to 2 n + 1 figures,

prove that when the first n + 1 figures have been found in the usual

way, the remaining n figures may be found by ordinary division

(cf. Ex. 17).

Suggestion. Let N stand for any number whatever, k for the first n+1
figures of its square root (with n ciphers annexed), and r for the remaining n

figures of the root.

Then N = {k+ r)'^ = k'^ + 2kr+r^,

whence — ~ = r-\ , in which -^— is a proper fraction (why ?)

;

2k 2k 2k

i.e., merely dividing N— k^ (which is the remainder when the first n + 1 figures

have been found) by the trial divisor at that stage of the work (viz., 2 k) gives the

next n figures of the root, together with a proper fraction.

19. Find \/84256 to 5 figures, V3.642 to 3 figures, and \/6018274

to 3 decimal places. How many root figures must be found by the

usual process, in each of these cases, before the ordinary division may
begin ?

127. Cube root of polynomials. The general method for extract-

ing the square root of a polynomial, which is given in § 125,

may easily be extended so as to apply to cube root also— and

indeed to the higher roots as well. The process is in all cases

the inverse of that employed in raising a polynomial to a power.

The several steps are indicated below.*

Since (k + uy=J^ + S k'n + 3 hi' + u^ (1)

= k' + (3k'-{-3ku-{- u')u,
. (2)

therefore

:

* To avoid needless repetition here the student is referred for fuller statement

of reasons to the detailed explanation already given in § 126.
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(1) Ajrange the terms of the given polynomial according

to the descending powers of some one of its letters.

(2) The highest term of the required root is the cube root

of the highest teriTi of the given power ; i.e., the highest

term in the above root is VA;^ viz., k.

(3) If the cube of the part of the root already found be

subtracted from the given polynoinial, the remainder will

be 3 Tihi + 3 kii?' + u^, and the next term of the root may be

found by dividing the first term of this remainder by

three tiines the square of the first term of the root {which

is already known); i.e., t1%e second term of the root is

3 k'^u -J- 3 k^, viz., u.

The trial divisor here is 3 • Tc^, i.e., it is three tiines the square of

the root already known ; and, from Eq. (2) above, it is clear that

the complete divisor is 3 k^ -}-3kii -\- u^, i.e., it is the trial divisor,

plus three times the product of the last term of the root by the

preceding part of the root, plus the square of the last term of the

root.

The work may be put in the following form

:

k^+Zk^u-\-Zku^+u^\k-\-u
;fc8

'

Trial divisor, 3 • k^

Complete divisor, Zk'^-\-Zku-\-u^

3A;2M+ 3ytw2+ tf3

^k^u-\-Zku'^+u^ = {Zk'^+ Zku+ u^) 'U

Observe that the two subtractions just performed are together equivalent to

the subtraction of {k + w)^ from the given polynomial.

(4) By proceeding as in § 125 (ii) it is easy to show that,

having found any jiumber of terms of the required root,

and having subtracted tl%e cube of this part of the root

from the given polynomial, the next root term may be

found by dividing the first term of the remainder by the

first term of the trial divisor,— the trial divisor being

three times the square of the part of the root already found.

By continuing this process all the terms of the required

root may be found.
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The work of finding the cube root of x^ - 9 x^ + 30 a;4 _ 45 a;8 + 30 a;2_ 9 ^ + 1

may be arranged as follows

:

x6-9x5+ 30x4-45a;8+ 30a;2_9a;+ i|;c2_3j;-}-i

(X2)8=:x6

9 a;S+ ;«x4 -45x8+ 30x2-9x4-1

9x5+ 27x4-27x3

3x4-18 x3+ 30x2_9a;+ i

3x4— 18x3+ 30x2- 9x+ l

1st trial divisor,

3(X2)2 = 3X4

Ist complete divisor,

3x4-9x3+ 9x2

2d trial divisor,

3(x2-3x)2= 3x4- 18x3+ 27x2

2d complete divisor,

3x4-18x3 + 27x2

3x2-9x + l
'

3x4_i8x8+-30x2-9x+ l

The student may now solve this example by arranging the

terms according to the ascending powers of x and compare his

result with the above.

EXERCISES

Find the cube root of each of the following expressions, and verify

the correctness of your results

:

1. 8x3-12a;2 + 6x-l.

2. 27 x^ - 189 x^y + Ul xi/ - S^S y».

3. 125n8-150mn2-8m3 + 60 7w2/,.

4. 675 M2y + 1215 wy2 + 125 m8 + 729 y3.

5. a;«-20a;3-6a: + 15x4-6a:5+15a:2+l.

6. 3 a;5 + 9 x^ + x6 + 8 + 12 a: + 13 a:3 + 18 z2.

7. 342 a;2 _ 108 a; - 109 x^ + 216 + 171 x* - 27 x^ + 27 x^

8. 156 x4 - 144 x^ - 99 x3 + 64 x^ + 39 x^ - 9 x + 1.

48
,
108

12 x2.*

10. 20
15
+ 15 c2 + c« + -^ + c-6 + 6 c\

11. 30 2/-1 + 8 2/-3 + 8 2/8 + 30 y - 12 ?/2 _ 25 - 12 y-^.

12. 6 a^x* - 4 a3x6 - 2 a^x^ + 6 a^x"^ + 3 a^x + a^ + x^ - 3 ax^.

13. 108 3/62 -27 y^- 90 2j^z^ + 8 z^ _ 80 yh^ + 60 y^z^ + 48 yz^

* Compare § 125, Ex. 15.
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14. ^^i^^8fa/>3^M,2_«6(,,2/,2+ o)rH3fa36+«V4 + ^'_35»c.
h^ b \ aJ \ hi a^ a

15. x^ + a%^ - 3 a%^x - 3 ahx^ + 3 a^> ( 1 + ah)x^ + 3 a%'^{l + ah)x'^

- a262(6 4- aJ).r3.

16. a:3y-3 + x-Y + 3 x}j-\{y-^ - 1) + 3 x-hj{x-- - 1) + 3 x-^y-\l + a:-2

+ y~'^) - 3 a:''^-^ - 3 a-V - xV + x-^y-^ + 3 xy (^2 j^ y^ - \).

17. 64 y3n_{.117 y3»-3^10 y3H-2_G ^,3n-4_36 y3n-5_144 y3n-l _ g y3n-6,

18. Find the first 3 terms of V\ + x.

19. Find the first 4 terms of v 1 -3x4- x\

128. Cube root of arithmetical numbers. To extract the cube

root of an arithmetical number, proceed as follows :
*

(1) Separate tJie given number into periods of three digits

each, beginning at the deciinal point and counting both

toward the right and toward the left, completing the right-

l%aihd deciinal period by annexing one or two ciphers if

necessary.

(2) By inspection {or by trial) find the greatest cube

integer in the left-lxaiul period, and write its cube root as

the first digit of the required root.

(3) Subtract tl%e cube of the root digit just found from
the left-hand period of the given number, and bring down
tlie next period as part of the remainder.

(4) To three times the square of the root digit already

found annex two ciphers, thus forming tlxe trial divisor;

divide the above remainder by this trial divisor, and annex
tl%e first quotient digit to the root.

(5) To the trial divisor add three times the product of
the last root digit multiplied by the part of the root previ-

ously*found with a cipher annexed, and also the square

of the last root digit, thus forming the complete divisor.

Multiply the complete divisor by the last root digit, and
subtract the product from the above remainder, bringing

down the next period as part of the new remainder.

* The reasoning here is similar to that given in § 126, and should be given by the

student.
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(6) Repeat (4) and (5) above until all tl%e periods of the

given number are exhausted.

Note. As in the case of square root (§ 126), so here, if a negative remainder

presents itself in the course of the above worlc, it indicates that the correspond-

ing trial root digit is too great, and tlie next lower digit must be tried.

As many decimal figures as desired in the root may be obtained by annexing

the necessary number of periods of ciphers to a number which is not a perfect

cube.

The work of finding the cube root of 9800344 may be arranged as follows

:

9'800'344 1214

8

1800 [1800-1200

1261 = 1261 • 1

539^ [539344 -f- 132300

539M4= 134836 -4

1st trial divisor, 1200

1st correction, 60

2d correction, 1

1st complete divisor, 1261

2d trial divisor, 132300 5393M [539344^-132300^=4 +
1st correction, 2520

2d correction, 16

2d complete divisor, 134836

Verification of the correctness of the above root : (214)3 — 9800344.

Again, let it be required to find the cube root of 43614208.

Trial divisor,

1st correction,

2d correction,

Complete divisor.

43'614'208 136

27

2700

540

36

3276

16614

19656

[16614+ 2700 = 6+

Since the remainder would be negative, therefore the trial digit 6 is too great,

and 5 must be tried.

43'614'208
1
352

27

1st trial divisor, 2700

1st correction, 450

2d correction, 25

1st complete divisor, 3175

2d trial divisor, 367500

1st correction, 2100

2d correction, 4

16614

15875 =3175-5

739208 [739208 + 367500 = 2 +

739208 = 369604 • 2

2d complete divisor, 369604

Verification of the correctness of this root : (352)3 = 43614208.
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EXERCISES

Extract the cube root of each of the following numbers

:

1. 1728. 3. 31855.013. 5. 39304.

2. 571787. 4. 148877. 6. 426.957777.

7. 305.909539272. 9. .04, to 3 decimal places.

8. 34.7, to 2 decimal places. 10. 3|, to 2 decimal places.

11. If the cube root of a number consists of 2 n -{ 2 figures, show-

that when n + 2 of these figures have been obtained by the ordinary

method, the ramaining n figures may then be found by simple division

(cf. Ex. 18, § 126).

12. By the method of Ex. 11, find V.0783259 correct to 6 decimal

figures.

129. Higher roots of polynomials and of numbers. The methods

for extracting the square and cube roots of polynomials which

are given in §§ 125 and 127, respectively, may be easily extended

so as to apply to the higher roots.

E.g., the identity (k + u)^ = k^ -{- 4: k^u + 6 k'^u'^+ ^ ku^ + n^ shows that the

first term of the fourth root is the fourth root of the Jirst term of the power, i.e.,

of the given polynomial; again, if k and u represent respectively the known and
unknown parts of the root at any stage of the work, and if k^ be subtracted from
the power, the remainder may be written thus : (4 A;^ + G k'^a + 4 kv!^ + u^) a, which
shows that the trial divisor is 4 k^, and that there are three corrections, viz., 6 khi,

4 ku^, and %fi, which must be added to the trial divisor to give the complete divisor.

From here on the work proceeds as in the case of cube root.

Similarly, in extracting the fifth root the trial divisor is 5k^, and there are

four corrections to be added to the trial divisor to form the complete divisor; in

the nth root (where n is any positive integer) the trial divisor is nk"--^, and there

are n — 1 corrections.

The method of extracting any root of a polynomial is easily adapted to the

extraction of the corresponding root of an arithmetical number, as has already

been illustrated in §§ 12G and 128.

Note. If a number be separated into two equal factors, and each of these two
factors be further separated into three equal factors, the given number will then

really have been separated into 6 (i.e., 3 '2) equal factors; from this it follows

that if N represents a number which can be separated into 6 equal factors, then

</^ = </^.
Similarly, in general, if N represents a number which can be separated into

p ' q equal factors, then 'Vn=VVn = "V VN. This fact simplifies the extrac-

tion of the higher roots whenever the index of the required root is a composite

number (cf. also § 136).
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EXERCISES

Find the indicated roots of the following expressions— both directly,

and also by the method given in the preceding note

:

1. ^/x^ - 8 ;r8 + 24 a;2 ~ 32 X + 16.

2. \/81 / + 54 xhf^ + a:4 + 12 x^y + 108 xy^.

3. Vx^ - 12 x^ + 60 a;4 - 160 x^ + 240 x^ - 192 x + 64.

4. \/15 a^c^a;^ + ae^e + ^ ^5^53. _^ 20 a^c^x^ + 15 a%2^4 + a-e + 6 acxK

5. Find the fifth root of 32 a:^ 4. 80 x^ + 80 x^ + 40 a;2 +*10 a; + 1.

Find the following indicated roots:

6. </v}^+ 243 yio+ 1 5 M8y2+ 405 uH^+90 u^v^+ 270 uH^.

7. v/50625. 8. \/53r44l. 9. \/5764801. 10. \/1874161.



CHAPTER XIV

IRRATIONAL AND IMAGINARY NUMBERS— FRACTIONAL
EXPONENTS

I. IRRATIONAL NUMBERS

130. Preliminary considerations and definitions. While such

roots as V4, V— /y, V32aV", etc., can be exactly expressed by

means of integers and fractions, many others which frequently

present themselves in algebraic investigations can not be so

represented; e.g., V2 and V— 5.

These new numbers, and their laws of combination, will now be

examined, and they will henceforth be included in the number

system, which heretofore has comprised only positive and nega-

tive integers and fractions.

Note 1. That \/2 is neither an integer nor a fraction may be shown as follows

:

By the definition of a root (§ 122), V2 means a number whose square is 2, and

since (+ 1)2< 2 and (+ 2)2> 2, therefore the number whose square is 2 must, in

absolute value, lie between 1 and 2, and therefore can not be an integer. Moreover,

\/2 can not be a fraction such as — because if it were, then — would equal 2, but

m ^ ^*
rrfi

if — is a fraction, it may be supposed to be in its lowest terms, and then —- is
n n^

also a fraction in its lowest terms and can not be equal to the integer 2. It is then

proved that V2 is neither an integer nor a fraction.

Note 2. Although, as has just been shown, such numbers as \/2 can not be

exactly represented by integers or by fractions, yet they can be approximately

represented, and to any required degree of accuracy, by means of these numbers.

E.g., squaring 1, 2, 3, ••• in turn shows that 1 < a/2< 2, then squaring 1.1,

1.2, 1.3, •.. in turn shows that 1.4 < \/2<1.5, then squaring 1.41, 1.42, 1.43, ••• in

turn shows that 1.41 < \/2 < 1.42, etc.

Thus it is shown that 1 < \/2 < 2, 1.4<V2<1.5, 1.41 < V2< 1.42,

1.414< v'2 < 1.415, etc. ; and since a number which lies between two other num-
bers differs from either of them by less than they differ from each other, therefore

y/2, differs from 1 or 2 by less than 1, from 1.4 or 1.5 by less than 0.1, from 1.41

or 1.42 by less than 0.01, etc. If, then, the numbers 1, 1.4, 1.41, 1.414, ••• be taken

as successive approximations to the value of V'2, the errors will be less than 1,

0.1, 0.01, 0.001, ••• respectively ; hence it is clear that, by continuing the above

process, a number can be found which can be expressed by means of integers,

and which will represent \/2 to any required degree of accuracy.

223
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Furthermore, it is evident from the nature of the argument just given that it-

applies equally well to any indicated root of a positive number, and also to odd

roots of negative numbers.

Note 3. Although such numbers as V'2 can not be exactly expressed by

means of integers and fractions, they are just as definite and precise as are

integers and fractions, and they are also necessary in human affairs.

E.g., let the figure ABCD be a square whose

Bi ^p side AB is 1 foot long, and let the figure

\ ACEF be another square whose side ^C is the

\ diagonal of the first square ; then it is easily

^\ proved by geometry that the area of the square

ACEF is 2 times that of ABCD, and hence, if

X is the number of feet in AC, then a;^ = 2 ; i.e..
^, BJ

i y if the length of the side of a square is 1 foot,

\ ; y then the length of the diagonal of that square

\
j / is precisely \/2 feet.

\ I /^ This illustration shows also that such num-

\ I y bers are necessary in human affairs, e.g., \/2

m '

is the only number which exactly expresses

the length of the diagonal of a unit square,—
the numbers 1, 1.4, 1.41, 1.414, 1.4142, ••• are successive approximations to the

length of this diagonal, but its exact length is a number whose square is exactly 2,

and which is represented by the symbol •v/2;

Note 4. That the other root indicated above, viz., V— 5, can not be expressed,

even approximately, by means of integers and fractions follows directly from the

law of signs in multiplication ; if it could be so expressed it must be either a posi-

tive or a negative number, and its square would then be a positive number and

not — 5. The same argument applies to every indicated even root of a negative

number.

Numbers that involve indicated roots which can not be exactly

expressed by means of integers and fractions, but which may be

expressed to any required degree of accuracy by means of these

numbers, are called irrational numbers, while integers and fractions

are classed together as rational numbers.

E.g., yj'l, 4— v7, and V2 + v5 are irrational numbers.

Numbers which involve indicated even roots of negative mwyh-

bers are called imaginary numbers,* and all other numbers are, for

distinction, called real numbers.

E.g., V— 3, 2 + V--5, and 3\/— 2 are imaginary numbers.

* The name " imaginary " is rather an unhappy one because these numbers are

just as real, under their proper interpretation, as any other numbers.

For present jmrposes it seems best to define irrational and imaginary numbers
as above, and thus to separate them ; the name " irrational" is, however, often

employed to include the imaginary numbers also.

For a broader definition of imaginary numbers see Appendix B.



130] IRRATIONAL NUMBERS 225

Although the language employed in defining a root of a number
in § 122 is general, and includes the irrational and imaginary roots

as well as the rational roots, yet the student's conception of a root

has doubtless heretofore been limited to those roots which

happened to be rational ; it is therefore worth while especially to

emphasize here that the symbol -{/a stands for a number whose
nth power is a,

(ya)": = a*

where a is any number whatever, and the only limitation upon
the symbol is that n must be a positive integer.

Note 5. Having uow further enlarged the number concept, it may be worth
while to recapitulate briefly what has already been said upon this subject in the

preceding pages.

The first numbers which man invented to express the relations of the things

about him were the positive Jntetrersj with these he found it necessary to perform

certain fundamental operations (addition, subtraction, etc.), and later he found

it necessary to enlarge his idea of number so as to make these operations always

possible (cf. § 12, note). Thus fractions arose from generalizing the operation of

division (cf. § 11) ; negative numbers arose from generalizing the operation of

subtraction (cf. §§ 12-14) ; and in the present article it appears that generalizing

the operation of extracting roots introduces two further new kinds of numbers,

viz., the irrational and the imaginary.

In other words: while the direct operations (viz., addition, multiplication, and

involution) with positive integers always produce results that are positive integers,

the inverse operations (viz., subtraction, division, and evolution) lead respectively

to negative, fractional, and irrational and imaginary numbers, and demand for

their accommodation that the primitive idea of number be so enlarged as to include

these new kinds of numbers along with the positive integers.

EXERCISES

1. What is an irrational number? Show that V— 5 is not an irra-

tional number. To what class of numbers does V — 5 belong ?

2. Is \/8 an irrational number? Why? Show that V5 is neither an

integer nor a fraction. To what class of numbers does V5 belong?

Why?

3. Find three successive approximations to the value of V5 (cf. note 2

above). Compare these approximations with the result of extracting

the square root of 5 by the method of § 126.

* It may be remarked that, under this definition, Va means the same as a [cf.

§ 7 (iv) note].
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4. Find two approximate values of V3, one larger and the other

smaller than the true value, which differ from Vs by less than .001.

5. A fruit grower has 16 plum trees and wishes to plant them in

rows in a rectangular plot of ground, and to have the number of trees in

each row exceed the number of rows by 2. How many trees shall he

plant in a row ?

Suggestion. If x represents the number of trees to be planted in a row,

show that z^— 2z = l(i. From this equation it follows tha^t (a; — 1)2— 17 = 0,

i.e., that (x - 1 + VlT) {x-1- Vl7) = ; whence a; = 1 + Vl7, or a; = 1 - Vl7.

Does the fact that one can not plant 1 + >/l7 trees in a row show that

there is no such number as 1 + VlT? Or does it merely show that the

present problem demands what is impossible ?

6. Show how to construct a line which shall be exactly 1 + Vl7 times

as long as a given line.

7. Can V— 8 be expressed by means of an integer or a fraction ? Is

it then an irrational number? Why not? What kind of number is it?

8. Is the number 21 + VIZ rational or irrational? Why ? What kind

of number is 84V5 - v/-^ ? Why ?

131. Further definitions. An indicated root of a number is

usually called a radical ; if this root is irrational, but the radicand

rational, the expression is also called a surd.

E.g., V2, v^8, >/5 + \/10, and6v^45 are radicals; and of these \/2and6v^
alone are called surds.

The coefficient of a radical is the factor which multiplies it, and

the order of the radical is determined by the root index. Two radi-

cals which have the same root index are said to be of the same

order.

E.g., the surds 12 y/5 ax^ and m^V&fi are of the same order, viz., the 7th, and
their coeflacients are 12 and m^, respectively.

Surds of the second and third orders are usually called quadratic and cubic

surds, respectively.

If two or more radicals are of the same order, and have their

radicands (cf. § 122) exactly alike— or if they can be reduced to

such— they are called similar radicals and also like radicals; other-

wise theJ are dissimilar (unlike).
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Expressions which involve radicals, in any way whatever, are

called radical expressions ; they are monomial, binomial, etc. (cf.

§ 27), depending upon the number of their terms.

E.g., Vs and 3\/5 are similar quadratic surds, while 6-\/a2+ 2 6a; + ?/* and
{m + 2.n)y/a^ + 2hx + y are similar cubic surds. The four examples just given

are monomial surds, while 5 a + 3V7 and 2^9+ SVx are binomial surds.

132. Principal roots. It has already appeared that a number
has tioo square roots {e.g., V9 is + 3 or — 3), and it will be seen

later that every number has three cube roots, four fourth roots,

Jive fifth roots, etc.

E.g., \/8 = 2, — l +V— 3, or —1 — ^—3, since the cube of each of these

numbers is 8 (cf. Ex. 23, § 170) ; and v/I(3 = 2, - 2, 2V- 1, or - 2\/^.

Although, as has just been said, a numbeu has 3 cube roots,

4 fourth roots, etc., some of these roots are imaginary, and when
there are two real roots, they are equal in absolute value and of

opposite sign.f

By the principal root of a number is meant its real root, if there

is but one real root, and its real positive root if there are two real

roots.

E.g., if attention is confined to principal roots, V9=3 (and not —3),
v^- 8 = - 2, \^l25 = 5, ^16 = 2, etc.

That irrational and imaginary numbers obey the fundamental

combinatory laws (commutative, associative, etc.) which have

already been established in the case of rational numbers is

proved in the appendix ; logically this proof for irrational num-

bers should now be read, but it may be deferred until later if the

reader will carefully bear in mind that the following discussion

assumes that irrational numbers are subject to these laws, and

that the results are therefore to be regarded as tentative until this

fact is proved.

* Such expressions are said to be surd in form even though values may be

assigned to the letters involved which make them rational in value.

t It should be especially observed that a number can not have two real roots of

unequal absolute value. For suppose Va = r^ and also r^, where r^ and r^ are

real, and r^^r^i in absolute value; from this it follows that r^^rc^ in abso-

lute value, and therefore, if rji = a, then rg** ^ a, i.e., Va ^ r^-



228 ELEMENTARY ALGEBRA [Ch. XIV

EXERCISES

1. What is a radical expression? A surd? Give examples to illus-

trate your answer. Are all radicals surds? Are all surds radicals ?

2. What is the coefficient of a surd ? Give an example. May this

coefficient be a negative number? May it be a fraction? Are there

any restrictions upon it ?

3. What is meant by the order of a surd? Illustrate by examples.

May the order of a surd as now defined be negative or fractional ?

4. Define similar surds, and illustrate your definition by several

examples. May the coefficients differ and the surds still be similar?

5. What factor have any two similar surds necessarily in common?
What kind of number, then, is the quotient of two similar surds ? Illus-

trate your answer.

6. What is an imaginary number? Give several illustrations. For

what vaUies of n is "v^— 5 an imaginary number? Give a reason for

calling these numbers " imaginary."

7. Illustrate by examples: monomial and trinomial surds; quadratic

and cubic surds ; and the order of a surd.

8. How many values has Vl6? What are they? What is the

principal square root of 16? What is the principal fifth root of — 32?

Define the principal root of a number.

9. Show that \/'d4:3 is 7. Under what conditions is VK equal to ;??

How, in general, is the correctness of a root tested ?

10. Show that under the definition given in § 132 no number can

have more than one principal root of any specified order.

133. Product of two or more radicals of the same order.*

Just as V9 . V25 =V^, i.e., V9^^,

and ^^^'-y/27=^^^216;

[Each member of the first of these equations being 15, and of the second, — 6.]

SO, too, if X and y are any numbers whatever (cf. footnote, p. 229),

and n is any positive integer,

•\/x • -y/y = \/xy.

* In §§ 133-145 imaginary numbers are excluded, and the proofs are further

limited to " principal roots."
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For,, since (-y/x-\/yy = {-y/x^y) • (-Vx-y/y) ••• to n factors

= (^xy . (Vyy [§§ 52 and 53

= xy;

i.e., since the nth power of -Vx • ^y is xy, therefore (§ 130)

Vic • -\/y = ^xy. (1)

Similarly, it is easily shown that

\/x • ^y • -y/z '•• = ^xyz • • •, (2)

which may be formulated in words thus : the -product of the

nth roots of two or more numhers* is the nth root of the

product of those numhers.

EXERCISES

Express each of the following indicated products as a single radical

:

1. V5-\/7. , 4. \/3a.Vl0te.

2. \/3.V7-\/2. 5. y/¥^ • Vb^ • VW^.
3. y/2 • ^6 . y/l • v^. 6. V^T~y • v'^TT^.

7. Verify that vx + y • Vx — y = Vx^ — y^ when x = 5 and ?/ = 4.

8. Is the equation in Ex. 7 true for all values of x and y, or only for,

certain particular values, such as a; = 5 and y = 4? Why?
(

9. Is Va • Vh equal to Va6 ? Why ? If Va • v^i were also equal to

Vab, how would Vb and Vft compare ?

10. Is V& equal to Vb when & ^t 1 ? Is then Va • V6 equal to Vab or

to Vab for all values of a and &?

11. When may the product of two or more radicals be expressed as a

single radical?

134. Special cases of § 133. It x = y, then Eq. (1) of § 133,

viz., -Vx • -Vy = '\/xy,

becomes a/cc • ^x = ^xx,

i.e., ('Vxy = -y/x^.

* If n is even, these numbers must be positive, since imaginary numbers are

excluded from the present discussion.
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Similarly, if x = y = z=-'; then Eq. (2) of § 133,

viz., ^/x' ^y ' ^z •" = ^xyz •••,

becomes (-v/^)^ = V^, (1)

where jp is any positive integer, i.e., the pth poiver of the nth

root of a number is equal to the nth root of the pth power

of that number.
Again, if either ic or ?/ is itself the nt\i power of some number,

say X = a", then Eq. (1) of § 133,

viz., Vx • Vy = Vxy,

becomes Va" • -^y = -y/a^'y,

i.e., a^y = Va^'y
; (2)

hence, a coefficient of a radical may be inserted (as a fac-

tor) under the radical sign by first raising it to a power
corresponding in degree to the index of the root ; and (read-

ing Eq. (2) from right to left) a factor of the radicand, which
is an exact power corresponding in degree with the indi-

cated root, may be placed outside of the radical sign (as a
coefficient) by merely extracting the indicated root.

EXERCISES

1. What is the value of (Vi)^? Of v/i^? How, then, does (\/4)8

compare with \/48 ? Does this agree with Eq. (1) above ?

2. Is (v^)6 equal to -t/75? Why?

3. What is the value of 5 v^ ? Of v/pTs, i.e., of v^lOOO? How, then,

does 5\/8 compare with VS^ • 8 ? Does this agree with Eq. (2) above?

4. Is3\/5equalto V32T5? Why?

5. Using the method by which Eq. (2) above was established, prove

the correctness of your answer in Ex. 4.

In the following expressions insert the coefficients under the radical

signs, and explain your work in each case

:
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6. 3v/5. 10. fVB. 14. W2i.

7. 2VI0.

a 2^.

11. |Vf|.

12. fVSaa:
15.

x + i^j 3

x-i ^^
x + i

9. 5^4.
13. ^^/l2 a^a:. 16. ±-y/a^x{x- \).

17. State in words how a coefficient of a radical may be inserted under
the radical sign.

Write each of the following radicals in a form having the radicand

as small as possible :

18. Vi5.

Suggestion. \/45 = VsTTB = V32T5, —compare Eq. (2) above.

19. Vl80. 23. y/- 192.

20. vT62. 24. V892a8^.

21. ^^'320, 25. y/imd^¥x^^ ^^ ,^—,
30. V3 x^ -Qxy ^-6 y\

22. \/- 54. 26. ^-486mV. 31. 12v/-8m4+ 24m8n.

32. Is V^ equal to a;?/ ? Why?

27. V12«3(a: + 2/)5.

28. v/ltja^a:*- 246x6.

29. V18 a - 9.

33. Is Va;2 + ?/2 gq^a] to a; + ?/? Why?

34. Verify your answer to Ex. 33 when x = 3 and y = 4.

35. Is the extraction of roots distributive over a sum ? Over a prod-

uct? Compare Exs. 32 and 33.

135. Quotient of two radicals of the same order.

Just as
. |= = \/|' [Each being I

SO, too, if X and y are any numbers whatever (cf . footnote, p. 229),

and n is any positive integer.

«/7. \ liyy
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To prove this it is only necessary to remember that

('lly^l^.ll.l:!... ton factors

\y/yj y/y Vy -Vy

-y/g? -\/x » -y/x »
• • to n factors

\/y . ^y . -s/y ... to n factors
[§ 54 (ii)

(Vyy y'

i.e., the nth power of ^^ is -, and therefore, by the definition

^y y

of a root (§ 130), ^^=a/-,— which was to be proved.
Vy ^y

The student may state in words what has just been proved

(cf. § 133).

EXERCISES

Express each of the following quotients by means of a single radical

:

1. V35--V5. 4. \/lQ a^x^ -~ VW^K

2. \/216-^Vl2. 5. v'a;2 - y^ ^ V^+^.

3. \/216-\/l2. 6. \/16 a^b^ - 32 a^x^ - \/4a2.

7. Verify that Va^ - 6^ ~ y/a -h = \/a -\- b when a = 5 and & = 3.

8. Is the equation in Ex. 7 true for all values of a and b, or only for

certain particular values of these letters ? Why ?

9. Is y/W^^^Wai equal to
^/^rt^.^

^j^^. Compare also

Ex. 9, § 133. \ Qax

10. If two radicals are of different orders, can their quotient be ex-

pressed as a radical of the same order as either one ?

11. iP^'^ : -i/l ^ =? 12 * l^^^y^ ^ 5 /__2rt_

' \ 35 68 \1b'^xh3 a \ 35 68 \7 62xV
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136. Radicals whose indices are composite numbers.

Just as </M = -y/V^=V^, [Each being 2

so, too, if X is any number whatever (cf . footnote, p. 229), and n

and p are positive integers,

This principle may be proved as follows (cf. §§ 133 and 135)

:

\^-\/x) = V -^/a; . V-v/a; . V^x •••to np factors

=
i
V^ . V^ . i/^ ... toi> factors

i"

=
I V^J« [Since (VVS)" = V^

i.e., the n^th power of \^x is ic, and therefore \-\/x=^^-

In the same way it may be shown that '^Vx =X^x.

This principle is useful in extracting roots whose indices are

composite numbers (cf. § 129, note).

EXERCISES

1. What is meant by the symbol VN (cf. §§ 122 and 130) ? Point

out two places in the above proof where this definition is employed.

2. Using § 136, show that </T25=V5, and y/M=</E; also state

verbally the general principle which is involved in these equations.

Reduce each of the following radicals to an equivalent radical of

lower order:

3. v^. 5. \/3i3. 7. \/'d2a^b^°xK 9. \/l21 aV-

4. v^. 6. Wfx^. 8. y/a*b^xY, 10. </^^ - 2 QX -\- x^.
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137. Changing the order of a radical. It follows directly from

the principle established in § 136 that

wherein a is any number whatever (cf. footnote, p. 229), and w,

p, and t are positive integers

;

for, Vi^='V(^ [§121(ii)

[§136

[Since </N''=N

that is,

hence, multiplying both the index of tim radieal and the

exponent of the radicand hy any positive integer, or divid-

ing them both hy any positive integral factor which tJiey

may contain, leaves the value of the expression unchanged.*

EXERCISES

1. Is Vofi equal to Va? Why? ^Employ § 136 to prove the correct-

ness of your answer. Show also that it follows from § 137.

2. Is V 3 a^x equal to wd a^x^'i Why? Show that the correctness of

this equation follows from § 136 ; also from § 137.

3. Reduce Va^i^ to an equivalent radical of the second order, and

explain. Also Vx^y^^.

4. Change v2a;* to an equivalent radical of the 12th order, and

explain. Also y/ahf.

5. Reduce V25 mH^ and VS a^ft^x^, respectively, to equivalent radicals

of the fourth order, and explain.

6. Reduce V3ax, \/2m'^n, and Vd^-n^x^^ respectively, to equivalent

radicals of the 12th order ; of the 24th order.

7. Write out a carefully worded rule (from the principle of § 137) for

reducing given radicals to equivalent radicals of higher or lower orders,

and state the necessary limitations.

* This property at once suggests that the exponent of the radicand and the index

of the root bear to each other a relation similar to that of the numerator and

denominator of a fraction ; this relation will be more fully considered in § 153.
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138. Reduction of radicals to the same order. Comparison of

radicals. From § 137 it follows that any two or more radicals

(real numbers) may be reduced to radicals which are of the same
order, and which are, respectively, equivalent to the given radicals.

E.g., VE and Vt are respectively equivalent to ^'\/5^ and *'\/7^, i.e., to v''625

and v/3i3.

The student may, by this method, reduce VA and a/B to

equivalent radicals of the same order ; he may then formulate the

procedure into a rule.

Reducing any two given radicals (real numbers) to the same
order furnishes a means for comparing the values of these radicals

;

thus, in the above illustration, S/5 >V7 because their respective

equivalents, viz., ^625 and \/343, stand in this relation.

EXERCISES

Reduce the following to equivalent radicals of the same order, and

thus compare their values

:

1. V5 and y/VL. 3. \/lO, V2, and v^S.

2. \/7 and V3. 4. Vl, v^, and ^5.

Reduce the following to equivalent radicals of the same order

:

5. V3a6, y/2^\ and y/^a%H^ 7. y/x, V^j, and V^.

6. \/2x% y/ax, and v2m%. 8. Va+ 6, Va^+ ft^^ and Va — b.

9. Can the radicals in Ex. 5 be reduced to equivalent radicals of

the 6th order? Of the 12th order? Of the 9th order? Give the reasons

for your answer in each case.

10. What is the lowest common order to which the radicals in Ex. 6

can be reduced ? Those in Ex. 7 ? Those in Ex. 8 ?

11. Compare the rule, asked for in § 138, with the procedure in solving

Exs. 1 to 8, and see whether it meets all the requirements.

12. Which is greater, 3V5 or 2v/IT? Compare §§ 134 and 138.

13. Whichisgreater, 2v/9 or3V3\/2? Why?

14. How may the values of any two numerical radicals (real numbers)

whatever be compared ?

vn
T
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139. Reduction of radicals to their simplest forms. A radical is

said to be in its simplest form when the radicand is integral, when
the index of the root is as small as possible, and when no factor

of the radicand is a perfect power corresponding in degree with

the indicated root.

The following examples may serve to illustrate the application

of the foregoing principles to the reduction of any given radical

to its simplest form.

Ex. 1. Reduce v^f to its simplest form.

Solution. ^ =y|^ = ^F^ = j ^. [§ 134

Ex. 2. Reduce Vi a^x^y^ to its simplest form.

Solution. y/Ia^xY = v^(2a^VF = ^2 axY- [§ 137

Ex. 3. Reduce v8 a^x^y^ to its simplest form.

Solution. VsS^ ^ v/4 a^xY • ^2ax [§ 133

= 2 ax^y V2 ax.

EXERCISES

4. Is VS ax in its simplest form ? Why ?

5. Is V12ax in its simplest form? Why?
6. Is 5 ViaW in its simplest form ? Why

?

7. Is 12 Vf ax^ in its simplest form ? Reduce it to its simplest form.

8. What is meant by saying that a radical is in its simplest form?

Reduce each of the following radicals to its simplest form

:

9. Vl2. 19. \/|. 26. 3 \/25 a%^x^

10. Vl62. 20 Ar^ «/

11. v/16. ,
"^ y

21. v^.
12. ^250. I—. 28. ^a'+%2.y.-4.

13. \/81. • A/ 9 ^^2* 29. \/a2na;»+5.

14. ^189. ._ ^/TTift^ 3 —
15. VI2-8. "'-^W' 30. V-40.^-B,H.

16. </32. - 24. V^±J. 31. 4 ^^
17. ^640.

a^"a:".

18. Vj.
25. 3aV^^=^. 32. -^I^Tli.
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140. Addition and subtraction of radicals. Similar radicals (cf.

§ 131) may evidently be added and subtracted just as rational

numbers are added and subtracted, i.e., by regarding the common
radical factor as the unit of addition.

E.g., just as 3+ 10 — 4 = 9, in which 1 is the unit, and 3 a + 10 a — 4 a = 9 a, in

which a may be regarded as the unit of addition, so 3\/2+ 10\/2 — 4V2 = 9 V2,
in which V'2 may be regarded as the unit of addition.

If the radicals are in their simplest forms and are dissimilar,

then their sum or difference can only be indicated, and this is

done by connecting them with the proper signs.

E.g., the sum of 7n/15, ^aV^xy^, and 3\/2 is indicated thus:

7 \/l5 + 3 av^2^ + 3 \/2

.

If the radicals which are to be added are not in their simplest

forms, they should first be reduced ; the following examples may
serve to illustrate the procedure

:

Ex. 1. Find the sum of V75 and 3 \/l2.

Solution. V75 + 3 >/l2 = V25 • 3 + 3\/4T3'= 5\/3 + 6V3 = ll\/3.

Ex. 2. Find the sum of 5 vTS, - VOS, and ^/\.

Solution. 5 Vl8 - Vo.5 + Vi- = 5 Vo • 2 - V^ . 2 + VJg • 2 *

= 15 V2 - ^ V2 + i V2 = 14f \^.

Ex. 3. Find the sum of V9 ar - 18, 6 V4 x + 8, \/36 x - 72, and

- \/25 X + .50.

Solution. Vq x - 18 + 6 \/4 x + 8 + \/36 a: - 72 - V25 x + 50

3 Vx^^ + 12Vx + 2 + 6\/x-2-5\/a: + 2

= 9 Vx - 2 + 7 Vx + 2.

EXERCISES
Find the sum of:

4. VSO, Vl8, and \/98. 6. \/28, V63, and VTOO.

5. \/l2, V75, and V27. 7. \/250, v^, and ^/U.

8. v/500, v^l08, and V^^^.

* Since 0.5 = ^ = f , and ^ = i^.
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9. What is the sum of a, 2 b, and c ? Of 3 x, 4 y, a, 2 a:, and — 5 y ?

10. What is the sum of 3 V2 and Sv'T? Of 3 V2, 5 v^, - 2 V7,

and V2?

11. Write out a carefully worded rule for the addition and subtraction

of radicals
;
provide both for those cases in which the given radicals are

similar and for those in which they are dissimilar.

Simplify the following expressions as far as possible, and explain your

work in each case

:

12. v/135 + v^625 - v^320. 18. vl28¥ + \/375^ - v^547.

13. ^+V2-8 + Vl7-5 + ^.
^^ J-l_,JJ_J1,

14. v^375 - Vii - v/192 + V99.
' ^^^ ^^^ ^2'

15. V1+V75-V/12 + 1V3.
^^ ^1^2^, iyq—^ ra

16. Vl47-x4 + iV3 + ^^9.
' ^^V ^ bf ^hf'

17. 6 \^ + 4 v^JI - 8 \^. 21. V(a + b)c - V(^^^h)^.

22. v/192 a;4 - 2 V3 a;4 - v/5 a: + V40 x*.

23. </7^ + V^b^ - y/8^^b^.

24. V3 a:3 + 30 x^ + 75 a; - V'Sx^ - Q x^ + 'd x.

25. \/5 a6 + 30 a" + 45 a^ - V5 a^ _ 40 a* + 80 a^

26. V50 + v^ - 4 V| + v^:r24 + v^ - ^^64.

27. Vf + 6 Vf - Wl8 + v^36 - v^ + Vl2b - V^
28. Va3 - a^x - Vax^ - x^ - V(a + x) (a^ - x^).

141. Multiplication of monomial radicals. In § 133 it is shown
how to get the product of two or more radicals which are of the

same order, and in § 138 it is shown how to reduce any given

radicals to the same order ; therefore the product of any two or

more monomial radicals (real numbers) may now be found.

Ex. 1. Multiply \/5 by V2.

Solution. 4^5 • \/2 = v/p • \/2'^
[§ 188

v/52 . 28 = V200. [§ 133
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Note. The student should observe that, although a root remains to be ex-

tracted in this resjilt, viz., V'iOO, the result is simpler in form than the indicated

product, viz., Vs • \/2, and also that the arithmetical work of finding the

approximate numerical value is much easier in the final than in the original

form.

Ex. 2. Find the product of 5V2 by 8v^7.

Solution. 5\/2 • 8\/7 = 5 • 8 . V2 • v^Y [§52

= 40\/23. v^2^40\/392.

EXERCISES

3. Multiply V3 by VG, and simplify the result.

4. Multiply \/3 by \^.

5. How may the product of two or more radicals which are of the

same order be found (cf. § 133) ?

6. How may the product of two or more radicals which are of differ-

ent orders be found ?

Find the following products, and simplify the results :

7. V3 by Vl5. 15. VxY ' ^^12^ • ^^^Wxf.

8. 2V5 by 3Vl0. 16. V2^ • VWc • y/r^\

9. 5V2 by 4v^. 17. VFi^. V^F^^ . V^=Y.

10. \/3 by 3\/3. 18. V^^ by \/8a8.

11. 2\^ by 7v^l0. 19. ^a' by V^\

12. 2^2 by 'v/512. 20. 3v/2 by ^V% i.e., (3v^2)2.

13. v/| by 2\/|. . 21. (2v^5"^)8.

14. y/2'^'-^. 22. (v^l2a-2xV)».

142. Multiplication of polynomials containing radicals. The
product of two polynomials containing radicals is obtained by

multiplying each term of the multiplicand by each term of the

multiplier and adding the partial products, just as in the case of

rational polynomials.
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Ex. 1. Multiply 5V2 - 2V3 by 3 V2 + 4V3.

Solution. 5V2 — 2a/3

3\/2 + 4V3

30-6V6
+ 20\/6-24

30 + 14V6-24 = 6 + 14\/6.

Esc. 2. Expand (2 \/3 — V2)2 by the binomial theorem.

Solution. (2V3 - ^2)2 = (2\/3)2- 2(2\/3) v^2 + (v/2)2 [§57

= 12-4v/l08 + v^. [§140

EXERCISES

Perform the following multiplications, and simplify the results

:

3. V5-5 by Vo + 1. 7. 2V3 + v^2 by 2V3 - y/l.

4. 2\/2+V3 by \/2 + 4V3. 8. a'^-abV2 + b^ by a2+a6V2+>.

5. v^2 + 3 v/2 by Vi. 9. x ~ -Vxyz + yz by V^ + Vyz.

6. 5 + v/4 - 2 v/5 by \/5 + \/6. 10. -Va + Vxby -Va-Vl.

Expand the following expressions, and simplify the results

:

11. (V2-3v/3)2. 14. (v;^r^ + v;;H^)2.

12. (\/2^-V3^)2. 15. (v/'J^- ^3^2)3.

13. (a + V6 - \/c)2. 16. (v/a + 2\/3)5.

18. (V2a-V6 + V2a + V6)l

143. Division of monomial radicals. By means of §§ 135 and

138 the quotient of any two given monomial radicals (real

numbers) may be expressed as a single radical (cf. § 141).

Ex. 1. Divide v^4 ax^f by VTcih:.

Solution. V±^^ _'^^W^^
V2 a^x V8 a^xs

[§138

= :MJ^^ [§135

= a/?^-^' = 1 'V2 a^x^. [§ 139, Ex. 1
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EXERCISES

2. What is the quotient of V50 divided by V8 ?

3. What is the quotient of 4V5 divided by VIO?

4. What is the quotient of 1 Vbi divided by 2v^686V

5. How is the quotient of two monomial radicals obtained if these

radicals are of the same order ?

Express each of the following indicated quotients in its simplest form :

6. 2v^-\/8. » 11. Voi-^V^.

7. 2^6 -^v^. 12. V2^-^^o"^2^.

8. Vl8 - \/500. 13. 2 v/9a2p ^ 3V3^.

14. a\/^x^y'-^2b</'2xy.

10. \/|-3v/f. 15. 3aV2^^«^i-26v/3a:'*-5.

16. How is the quotient of two monomial radicals obtained if these

radicals are of different orders ?

17. Apply the answer of Ex. 16 to show that

y/x'^ - y^ -f- vT+l/ = -^ y/ ix - y)\x ->r yY = -^ ^(x2-?/2)2(x+ 3/)8.

x+y x+y

Verify this equation when x = 64 and ?/ = 0. Is this equation true for

all values of x and y, or merely for certain particular values of these

letters ? What other name is given to such equations (cf. § 23) ?

144. Division of polynomials containing radicals. If the divisor

is a monomial, then, manifestly, the quotient may be obtained by

dividing each term of the dividend by the divisor— just as in the

case of rational expressions.

E.g., 3i^+ivl^lW„3+4Ji-2^| K138

= 3+ 2V6-2v^2. [§139

Instead of dividing directly by a radical, it is usually advan-

tageous first to multiply both dividend and divisor by an expres-

sion which will make the new divisor rational— indeed, it is

frequently necessary to do so.



242 ELEMENTARY ALGEBRA [Ch. XIV

E.g., since (3\/2-\/i3) • (3 a/2 + VlS) = (3>/2)2- (Vi3)2 = 5,

therefore 5 -^ (3V2 - Vi3) = 3V2 + Vi3

,

but oue could not easily obtain this quotient by dividing directly. It may be

obtained thus:

5(3V2+\/l3) pMultiplying numerator and

3V2—Vl3 (3V2— Vl3)(3V2+ Vl3) L denominator by 3V2+\/i3

^16vl+5Vl3^3^2+Vl3.

This method of dividing (usually called division by means of

rationalizing the divisor) will often be found very advantageous

even when it is not strictly necessary.

jEq 3V2+ 4v/3 ^ (3V2+4\/3) . V2 ^ 6 + 4V6 ^ 3 ,
g^/g

V2 (\^)2 2

The factor by which a given radical is multiplied to obtain a

rational product is called its rationalizing factor.

E.g., of v^4 and ^2 each is a rationalizing factor of the other (why?) ; so also

are Vop and \/o"-p (why?), and aVx + hy/y and aVz — hy/.y (why?).*

Of two such binomial quadratic surds as a-\/x + &Vy and

a^x — h^y, which differ from each other only in the quality

sign of one of their terms, each is called the conjugate of the other.

EXERCISES

1. Divide Vl5 - V3 by V3.

2. Divide V6 + 2 V3 by \/2.

3. Divide v^ - 4 V5 + 2 v^G by V3.

4. Perform the divisions in Exs. 1-3 by first rationalizing the divisors,

and show whether or not there is any advantage here in rationalizing.

5. Show that 2 VB - Vs is a rationalizing factor of 2VS + \/5.

6. Is \/5 - 2 \/3 a rationalizing factor of 2\/3 + VB? Why? Are

these surds conjugate to each other?

* The question of finding rationalizing factors for given expressions is further

considered in § 161.
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Find the simplest rationalizing factor of each of the following surds :

11.5^7. V2a. „ ^12ahn 15. 3a -2" ox.

8. V4^2. L
^ _ ^^- oa:-\/2^.

3,

^2. V2-V7.
17^ v^+2V3-6.

9. V4ax-^.
^3^ 2V8+V6.

/^^^
18. ^ii£ + |v^8.

10. Va + 6. 14. 4 + 5 V3. ^ a

19. Divide 31 by 7 + 3 V2.

20. Divide 2V6 by V5 - VB.

21. Divide 5\/l2 — 2 V6 + 4 by \/4. What is the smallest multiplier

that will rationalize v^l ?

22. Divide 3 \/2 - 4 V5 by 2V3 + V7.

23. Divide 4V3 + 5 V2 by 3V2 - 2 VB.

24. If the result of Ex. 21 were wanted correct to 4 decimal places,

say, show in detail that it is far simpler first to rationalize the divisor

than to extract roots and divide by the ordinary arithmetical method.

25. What is the product of (2 + VB) - V5 by (2 + V3) + V5 ? Of this

result by 2 — 4 \/3 ? What then is a rationalizing factor of 2 + V3 — V5 ?

Of 2 + V3 + V5 ?

26. Divide 2 - V3 by 1 + V3 - \/2.

Reduce the following to equivalent fractions having rational denomi-

nators :

a + Vq^ + ar ga ^^ + ^ -y/x - y . 39 E!_27. " ^ " "• ^ •". 28. "-^ ^ !f l^ ^. 29.

a — V a^ + X Vx + 2/ + Vx — y Va^ + z^ — z

30. Simplify-^ + -^_. 31. Simplify
(V2+ 3)(v/5-2),

^_1 ^ + 1 (3-V2)(2 + V5)

32. Find the value of :; -| ^^^ correct to 3 decimal places.

2 - V3 \/2 + 1

145. An important property of quadratic surds. Neither the

sum nor the difference of two dissimilar quadratic surds (§ 131)

can be a rational number ; for, if possible, let

y/x-\-Vy = r, (1)

Vx and Vy being dissimilar surds, and r rational, and not zero.
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From Eq. (1) Vy==r — Vx, (2)

whence, squaring, y = r^ —2 rVx + x, (3)

and, solving for Vx, Vx = —-^-- ^,

I.e., if Eq. (1) were true, then the surd Vx would equal the rational

number — ,^ ~ ^
, which is impossible; hence Eq. (1) can not be

true.

Similarly, Vx — Vy ^ r.

From what has just been shown it at once follows that

if x-\- Vy = a + Vb, where x and a are rational, and Vy
and Vb are quadratic surds, then x = a and y = b.

For, if x-{- Vy = a + Vb,

then Vy — Vb = a — x;

which, by the above proof, can be true only if each member is

zero, i.e., if a = a; and Vy =Vb. In other words, the equation

x-\-Vy = a-\-Vb is equivalent to the two equations x = a and

y = b.

II. IMAGINARY NUMBERS

146. Imaginary numbers. In solving the equations of the next

chapter, indicated square roots of negative numb'ers frequently

appear; such numbers have already been defined (§ 130) as

imaginary numbers ; if they present themselves in the form V—b,
where 6 is a positive number, they are called pure imaginary num-

bers, while if they present themselves in the mixed binomial form

a -{-V—b, where a and b are real and b is positive, they are usually

called complex numbers.*

* A broader definition of imaginary numbers is given in appendix B, where

it is shown that every such number can be expressed in the form a + bV—l,
and where it is proved that these numbers obey the laws already established for

real numbers (commutative, associative, etc.). Logically this proof should now
be read, but it may be deferred until later if the reader will carefully bear in

mind that the following discussion assumes that imaginary numbers are subject

to those laws, and is therefore to be regarded as tentative until this fact is proved.

The very elementary discussion which is given in the next few pages will suflSce

for present needs.
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E.g., \/—5, 2\/— G, and V— ^ are pure imaginary numbers, while 2 —V—

3

and 7 + 2\/— 5 are complex numbers.

Operations with imaginary numbers are greatly simplified by
observing that, by the definition of v a, § 130,

(V^y^-b, (1)

and also (cf. method of § 133, and apply §§52 and 53) that

V^b = -Vb'V^. (2)

The symbol V— 1 is called the imaginary unit, and is often

represented by the letter i.

147. Positive integral powers of V— 1. As a special case of

consequently, (V— 1)^ i.e., (V— 1)^ • V— 1 = — V— 1.

Similarly,

(v^^)* = (V^^y . v^^ = -v^T • v=^ = - (v^' = 1,

(V^y = (V^riy . (v^^ = - 1,

(V^^)^ = (V^i)^ • (V^« = - V^^,

and so on for the higher powers, i.e., the positive integral powers

of V— 1 have only these four values : V— 1, — 1, —V— 1, and

1 ; see also Exs. 5, 6, and 7 below.

EXERCISES

1. Define an imaginary number; compare § 130.

2. Which of the following are imaginary numbers : V— 3, v^— 2,

^36, V5, ^/^^^, 3v^^, 4a-J-^ and 2 + i V^s?

3. Is V— a; imaginary when x represents a positive number? When
X represents a negative number ?

4. Show that if i = V^^, then i^ = -l, i^ = - i, i* = 1, i^ = i,

t^ = — 1, f = — i, i^ = 1, and i^ = i.
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5. Since any even number may be written in the form 2 n, where n is

an integer, and since a^" = (a^)", show that every even power of i is real.

6. As in Ex. 5, show that every odd power of i is either i or — i.

7. Since x"+'^ = x" • x*, and since any positive integer whatever can be

represented by one of the following expressions, viz., 4 n + 1, 4 n + 2,

4 n 4 3, or 4 n, show that the positive integer powers of i can have no

other values than i, — 1, — i, and + 1, and that these values always recur

in this order.

8. Distinguish between pure and complex imaginary numbers, and

give three examples of each.

148. Addition and subtraction of imaginary numbers. By first

writing the imaginary numbers in the form a + ftV— 1, these

numbers may be added and subtracted exactly as though they

were real ; this is illustrated below.

Ex. 1. Find the sum of V— 4, 4V— 9, and V— 25.

Solution

x/i:4+4v'^+ V:r25=2\^^+4 • 3V^ +SV"^ [§ 146, Eq. (2)

= (2 + 12 + 5)V^ [Footnote, p. 83

= 19^^.

Ex. 2. Find the sum of 3 + V^T6, V^^, and 5 - V^T^.

Solution. 3 + V- 16 + V^T + 5 - \/^9

= 3 + 5 + V^Te -f v"^^ - v^ITg [§ 50

= (3 + 5) + (V^iTo + v/i:i - v:r9) [§ 51

= 8 + 3V31. [Ex. 1

Ex. 3. Simplify the expression a:V— 4+V— a:^ — 2x— 1— V— 32.

Solution. Since xV^ = 2 xy/^^,

V-a:2-2a;-l = V - (x + 1)2 = (x + 1) V^^,

and _VZr32 = -V32. \/^l = _4\/2. V^
therefore the given expression becomes

{2 a: + (a; + 1) - 4V2} . V^T, i.e., (3 a: + 1 - 4\/2) • \^^.

Similarly in general.
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EXERCISES

Simplify each of the following expressions

:

4. 3+\/:r36-(l +2\/^25)+3\/- 16.

5. V-49 + 5\/^=lt-(6 + 2\/^^).

6. V^ - 3V~-^ + 6 V^^TS - 2 V^^27 + 8 + V^^^T2.

7. . |_ (9 V-l + 5-3 V-24)+3V

8. V- 16 ah^ + Virrs + 9 V5

18.

30 -V- 9a2x2 + \/-a2x2.

149. Multiplication of imaginary numbers. Multiplication of

imaginary numbers is also performed by first writing these

numbers in the form a + ftV— 1; this is illustrated below.

Ex. 1. Multiply V^^ by V^.
Solution. V^ - y/~^ = V2 • V^ • V5 . V^l [ 146, Eq. (2)

= (V2 . V5) (V^l . V^^l) [§§ 52 and 53

'

.
=VT0.(- l) = -\/IO.

Similarly in general : V— a • V— 6 = —Vab.

Note. The student should carefully observe that (§ 133) the law for the prod-

uct of two radicals, i.e., principal roots, does not apply to the product of two
imagi nai-y numbers; according to that law the product of V—a • V—b would

be V{—a) • (~6), i.e., y/ah, and not ~Vab. Errors of this kind are easily

avoided by writing an imaginary number in the form a + 6V— 1 before operating

with it.

Ex. 2. Multiply 3 + V^5 by 2 - V~^.

Solution. Writing these imaginary numbers in terms of the imagi-

nary unit, the work may be arranged thus

:

3 -h V5 . v^n.
2 - V3 . a/^T

6 + 2V5. v^nr
- 3\/.3 • v^i Vi5(v/irT)5

6 + (2\/5- 3V3) . V- 1 +V15.

Similarly in general

:

(a + V^^) • (c +V^) = ac- Vbd H- (a Vd + cV6)V^.
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EXERCISES
Find the product of

:

3. 3Vr6 by 5V_ 12. 6. Vr^ + y/ZT^ by VI~6 - VTl.

4. sVITg by 2VI^. 7. 3 + 2Vr^ by 5 - 4VZI;.

5. 2Vi:i by V_ 4 a%3. s. Vrso _ 2Viri2 by V^s - 5V^.

9. Show that the sum and also the product of a + hi and a — 6i

(wherein a and 6 are real) is real.* Show that this is also true for

Vri _ 3 and - Viri _ 3.

10. Prove that both the sum and also the product of any two conju-

gate complex numbers is real.

11. Multiply Vir^ + VITft + V3^ by V- a - V_ ft + VT^.

12. (1 + Vr5)2 ^9 13. (2 - 3 iy = ? 14. (2 a - 3 a;Viri)2 = ?

15. Find the product of aV_ 6 -f &V— a, aV_ a -f ftV— 6, and

16. Show that — J + h^— 3 and — J — i^^— 3 are conjugates of each

other, and also that the square of either is equal to the other.

17. Write a rule for multiplying one pure imaginary number by

another, and compare it with the rule for getting the product of two

monomial surds of the same order. Wherein do the two rules differ?

18. Reduce ———,ZL • + "^-^—^ to its simplest form.

150. Division of imaginary numbers. The simpler cases of

division of imaginary numbers are illustrated by the following

examples

:

Ex. 1. Divide V^e by V^^.

S0.„™.. Q =|l^ =^ = V| = >^. [§§146,135

Similarly in general

:

V— a la Va / a -, V— a I a

* Of two complex numbers which differ only in the sign of the imaginary term

each is called the conjugate of the other (of. § 144).
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Ex. 2. Divide 12 +V_ 25 by 3 -VZl.

Solution. Such divisions are easily performed by rationalizing the

divisor (cf. § 144), thus:

12 + V- 25 ^ 12 + 5Vin^ ^ (12 + 5V^rT)(3+2\/^^)

3-V^^ 3-2V^:i (3_2\/^I)(3+2V^n)

^ 36 + 39V^^ + 10(V^n)2

9_4(V-ri)2

^ 26_-|-_39>/^

9+4

= 2+ 3v/^T=2 + \/39.

Similarly in general:
a + &V£l ^ (a + 6V;=l)(c - dV^)
c + dV - 1 (c + dV- l)(c - dV- 1)

_ CTC + ^c? + (&c — ad)V— 1~
c^ + d^

EXERCISES

3. Verify the correctness of the result in Ex. 2 above by multiplying

the quotient by the divisor.

4. Divide V- 6 + 2V--8by V^~2,

5. Divide 4 by 1 + i.

6. Divide 2 by i* + i\

Simplify the following

:

7 2-V^S g V2^ - 3 ai

3 + V-2 V2lc + 2 6t

8. 5 + V-4. 10.
^«-^'^^

5 - 2 i iV6 + Va

11. Write a rule for dividing one pure imaginary number by another,

and compare it with the rule for finding the quotient of two monomial
surds of the same order.

12. Divide 3 -V^+ 2 i by 2+V^ ~V^ (cf . § 144, Ex. 25).



250 ELEMENTARY ALGEBRA [Ch. XIV

151. Important property of imaginary numbers. Neither the

Slim nor the difference of two different pure imaginary numbers

can be a real number (cf. also § 145) ; for, if possible, let

V^=^- V^=^ = r;* (1)

then, transposing, V— a = r + V— &,

and squaring, — a = i'^ + 2 r^—b — 6,

whence V— 6 = ~^^
~—

;

z r

i.e., if Eq. (1) were true, then the imaginary number V— 5 would

equal the real number -^^—^^— , which is impossible, and hence

Eq. (1) can not be true.

Similarly it may be shown that V— a +V— 6 ^ r.

, From what has just been shown it follows that if

a; + V— 2/ = a + V— &,

wherein a and x are real and V— ?/ and V— 6 pure imaginary

numbers, then
x = a and y = h. ,

For, if x +^—y = a-\-V— 6,

then, transposing, ^—y —V—b = a — Xj

which, by the above proof, can be true only if each member is

zero, i.e., if y = b and x = a,

which was to be proved.

In other words, the equation x +V— y — a +V— b is equiva-

lent to the two equations x = a and y = b.

* The expressions V— a and V— 6 represent different pure imaginary num-
bers, and r is real, and not zero. . .
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152. Complex factors. Solving equations by factoring. Since

(a + bi) {a — bi) = r/ + b^, wherein a and b may be any real num-
bers whatever, therefore tlie sum of any two real positive numbers
may be separated into two imaginary factors.

E.g.,x'^-\-^ = {x + 2i)'{x-2i); aH- 3 =(a + iV3)(a- iVi) ; a;2 + 2a: + 5

= (a; + l)24-4 = (a; + l + 2z)(a; + l-2?); x^-x'^+ \ = x^-2x^-\-l + x^

= (a;2- 1)2+ a;2 = (a.2_ 1 + a; . i) (a:2- 1 - X . 0-

Note. Observe that the most important step in the above factoring is first to

write the given expression as the sum of two squares; the plan for doiug this is

precisely that which is followed in § 70,

The following examples will illustrate the use of imaginary

factors in solving certain kinds of equations ; this method will be

more fully treated, however, in Chapter XV.

Ex. 1. Solve the equation a;^ + 2 a: + 5 = 0.

Solution. Since this equation may be written in the following forms :

22 + 2 a: + 1 + 4 = 0,

(x + 1)2 + 4 = 0,

(x + l+20(x + 1-20=0,

therefore it is clear (§ 72) that the only values of x that satisfy it are

those that make
a: + 1 + 2 i = or x + 1 - 2 i = ;

i.e., the given equation is satisfied if, and only if,

x = -l —2i or x = - 1 + 2 I

;

i.e., the roots of that equation are — 1 — 2 z and — 1 + 2 t.

Ex. 2. Solve the equation x^ = ^x — 22.

Solution. This equation may be written in the following forms

:

a;2 _ 4 ^ + 22 = 0,

(a: _ 2)2 + 18 = 0,

{x-2 + i vT8)(x - 2 - i VT8) = ;

hence its roots are 2-ivl8 and 2+ iVl8, i.e., 2-3V^ and 2+ 3a/^.
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EXERCISES

3. By actual substitution verify the correctness of the roots found in

Exs. 1 and 2 on page 251.

4. What must be added to x^ — 8 x in order that the sum shall be

the square of a binomial ?

5. Write a:^ — 8 a; + 25 as the sum of two squares.

Solve the following equations and verify the correctness of your results

:

6. a:2 4- 25 = 8 a;. 8. a;2 - x + 1 = 0. 10. 3x2 -5 a: +21 = 0.

1. x^ + x-\-l=0. 9. 4 x2 + 9 = 0. 11. x-* + a2x2 + a* = 0.

12. Write an equation whose roots are 1, i, and — i (see § 72, note).

13. Write an equation whose roots are 1, —\+li V3, and — \ — \ iV3.

14. If s = - ^ + i i V3, show by substitution that s^ + s + 1 = 0.

What other root has this equation?

III. FRACTIONAL EXPONENTS

153. Fractional exponents.* In § 137 it is shown that the

exponent of the radicand and the index of the root may both be

multiplied by any integer, or both be divided by any factor which

they may have in common, without changing the value of the

expression. This property at once suggests that these numbers

may bear to each other relations similar to those of the numerator

and denominator of a fraction.

For this and other reasons, some of which will presently appear,

it is customary to employ, when it is desired to indicate that roots

are to be extracted, not only the radical sign, the use of Avhich has

already been explained, but also what is known as a fractional

exponent. This new symbol may perhaps be best defined by

the identity p _
p

i.e., the symbol A*" means the pth power of the rth root of A, and
r must therefore necessarily represent a positive integer, while p
may be positive or negative.

E.g., 9^ = (V9)5 = 35 = 243, and 8^3" = ( v/8)-4 = 2-4 = ^ = -1.
24 16

•For a similar treatment of fractional exponents see Tannery's Arithme'tique.
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p

The expression A'', whatever the value of A, is usually spoken

of as a fractional power of A, just as A^ is called a positive integral

power, and A~^ a negative integral power.

In the next few articles it is shown how to use this new symbol

in the various algebraic operations j these uses will further justify

its adoption.

For the sake of simplicity, here, as in §§133-145, only the

principal roots (§ 132) are considered, and for these roots it has

already been shown that (VZ)^ = V^ [§ 134, Eq. (1)] ; hence, in

p

the following proofs, either (^/Ay or -y/A^ may be used for A"".

p p

Note. Although '•, in the expression A>' , is called a fractional exponent, and
is written in the form of a fraction, and although it will presently appear that

such exponents may often he dealt with as though they were really fractions,

yet it must he carefully remembered that they are not fractions at a,\\; this

fractional-exponent notation is merely another loay of indicating that roots are

to be extracted.

EXERCISES

1. What is meant by the symbol - ? Has it the same meaning when

used as an exponent?

2. Is the exponent — , in the symbol x^, really a fraction ? What is

the precise meaning of a." •

3. Is it correct to say that the symbol x« is merely a convenient way
of indicating the mth power of the nth root of a;? Is this the same as

the nth root of the rnth power of x, when only the principal roots are

under consideration?

Express each of the following radicals by means of the fractional-

exponent notation:

4. W. 6. V^. 8. V{a+2xy. 10. </a-%\

5. {Vmy. 7. y/¥^\ 9. 3 62.^^^^. 11. ^2aP{x + ^yy.

Find the numerical value of each of the following expressions, and

explain your work:

12. 4I 14. 25"k 16. 3.32"l 18. (^^°)^-

13. 9I 15. 4.4"^.9i 17. (.09)"^. 19. 169^ • f^V^ . isi

* First write— for — -.
2 2
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Translate the following into equivalent radical expressions

:

20. a». 22. 5.(^y + 2{ax)K
^4 3z^-7aW

-oA-l
'

«"^ + ^^^
21. a^ + 68. 23. - 2 a% K

25. Of the following expressions, which are integral and which are

fractional powers (see §153)? Which are positive and which negative

powers? Give the reason for your answer in each case.

154. Fractional exponents changed to lower and higher terms.

Under the above definition of a fractional exponent it is easily

verified that 16^ = 16^, [Each member being 4

and that 9^ = 9'^. [Each member being 27

So, too, in general, if A is any numher whatever,* and if

— is any simple fraction in which r is positive, then

p pm

A^=A:-f,

wherein m is any positive integer whatever.

The proof of this statement follows directly from the definition

of a fractional exponent and from § 137, for

A- = </AP [§153

='V:^ [§ 137

= Jr^, [§ 153

p pm

i.e., A'' = A''"", which was to be proved.

*If 9' is even A must be positive, since imaginaries are exchided from this dis-

cussion (cf. also footnote, p. 2'2<J).

t Observe that this equality can not be affirmed merely because — =— , con-

sidered as fractions.
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Note. Observe that the proof of § 154 applies to real numbers only ; if imagi-
nary numbers present themselves, here or elsewhere, they must be dealt with in

accordance with the principles given in §§ 146-152,

Ex. 1. By means of fractional exponents reduce y/a^ and Vx^ to
equivalent radicals of the same order. '

Solution. The given radicals are respectively equivalent to aJ and

a:^, and these expressions are respectively equivalent to as and a;^s\ i.e., to

y/a^ and y/x^^, each of which is of order 6.

EXERCISES

2. Can a^ and x^ be reduced to equivalent expressions whose common
order is any multiple whatever of 2 and 3? How?

3. State in detail how the principle proved in § 154 may be employed
to reduce any two or more given radicals (real numbers) to equivalent

radicals of a common order.

4. Solve Exs. 1-8 of § 138 by means of fractional exponents.

155. Product of fractional powers of any number. If A is any

nuiivber whatever (cf. footnote, p. 254), and if ^ and —
r r'

are any two simple fractions in which r and r' are positive,

then
p p' pr'+p'r

A-'A'- = A ^'^
.

For, since A'-=A'-''=s/A^'^, [§§ 154 and 153

and since

p

A-

A'-=A'"-=Va^''',

'A'-=''y/A^'^'''VA^-'-

[§§ 154 and 153

therefore ^'•^^4pr'+pV [-§ 133

pr'+p-r

=A ''•'

, [§ 153
which was to be proved.

' 1_ ' . I
pr'+p'r

Since £LslJLL — P^P^ -^e may write, instead of A ""
, the

rr r r
p^p

simpler form A'' '"', if we are careful to remember that the symbol

A' *" is to be interpreted by first adding the exponents as though
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they really were fractions. With this understanding the principle

which has just been proved becomes

p p' p.p^

A^'A'-' = A'- ^
p p^ p- p p^ p^ p+Pl^^

Similarly, AT • A''' • A'"' = A'
'

'
• A'' = A^ '' '^',

and so on for any number of factors ; hence, under the above

definitions, fractional exponents conform to the exponent

law
Am , An , Ap . . . ^:^

j^m+n+p+-"

already demonstrated when m, n, p, ••• are integers.

EXERCISES

1. What is the numerical value of let . 16^ -16^ Of let+l+h

Is then let . lel . 16^ equal to 16^+1+1?

2. Do the fractional exponents in Ex. 1 conform to the same law as if

they were positive integers? State that law.

Without extracting any irrational roots, reduce the following expres-

sions to their simplest forms

:

3. 8t.8l.8i 5. 241.24^.24-1. 7. d^.a^.ai.

4. 8t.8t.8-i. 6. 5^ . 5"? . 5t • 55 • 5-tV 8. 2x^ -Zxi -^-^x^.

1121 _8 21 ^-*?.^?i
9. a^b'^x^ 'b'^x^^ . a^b^. 10. a'^arV • ar^z/*" . aTy"".

11. Show that every step in the proof of the above principle (§ 155)

remains valid even if p' should be negative (cf. Ex. 4) ; and also if jo = r,

or if there is any other relation among p, r,p', and /.

156. Quotient of fractional powers of any number. From the

definition of a fractional exponent (§ 153) it follows directly that

64^ ^ 64^ = 64^, i.e., 64^"^, [Each being 2

and that 64^ h- 64^ = 64"^, i.e., 64^. [Each being |

So, too, in general, if A is any nwrnber whatever (cf. foot-
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P P'
note, p. 254), and if — and -j are any two simple fractions

in which r and r' are positive, then

p

A-
r' P P' P p- pr'-pr-

r A'' = A"- ''. [Where A"-
'"' = A -

For, since A^ = A^- = yA^\ [§§ 154 and 153

and since

p

A'-

A' = A^- = VA^', [§§ 154 and 153
p'

therefore r-A^ = Va^'-- ^ VA^-^ ='\/A^^--p-^ [§ 135

i.e.,

p

pr'-p'r

= A ^-^
. [§ 153

p' ppr

:- A" = A'-
'•',

which was to be proved. This proof shows that, under the above

definitions, fractional exponents also conform to the law

A"" ^ ^" = J'"-"

already demonstrated when m and n are integers.

EXERCISES

1. What is the numerical value of 16? - leh Of 16?"^? Is, then,

16? - 16^ equal to IgH?
2. Do the fractional exponents in Ex. 1 conform to the same law

as though they were positive integers ? State that law.

Simplify the following expressions:

3. St-si 5. 64t -f- 64t . 64i 7. 2a:t-4A
4. 8t.8t-8i 6. 12t.l2^-12. 8. x^ - 3 a^xi

9. Show that every step of the proof of the above principle (§ 156)

remains valid even if /> = 0, and thus prove that 1 -f- a" = a «. Com-
pare this result with § 44.

10. By means of Ex, 9, show that a'factor may be transferred from

numerator to denominator, or vice versa, by merely reversing the sign

of its exponent, even when the exponent is fractional (cf. Exs. 22-26, § 93).

157. Product of like powers of different numbers. From § 153

it follows directly that

8^ . 27^ = (8 . 27)^, i.e., 2161 [Each being 36
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So, too, in general, if A and B are any two numbers what-

'er (cf. footnote, p. 254), c

which r is positive, then

P
ever (cf. footnote, p. 254), and if -- is any simple fraction in

A^ . B = {ABY.

For, since J- =V^ and R = V^,
p p

[§153

therefore A'- . R=</A'' . -\/B^ = ^'A^ . & [§ 133

= </XABf [§ 121 (iii)

= (AB)S [§153

I.e.,

p p p

A'- ' jr = {ABy,

which was to be proved. This proof shows that, under the above

definitions, fractional exponents also conforin to the law

A''-B^ = {ABY

already demonstrated when 7i is an integer.

Moreover, by successive applications of the above proof it fol-

lows that
p p p p

A^ .B- .C'... = {ABC--)%

for any number of factors whatever

EXERCISES

1. What is the numerical value of 16^ • 9^? Of 144*, i.e., of (16 • 9)^?

Is, then, 16^ • 9^. equal to (16 • 9)^?

2. Does the fractional exponent in Ex. 1 conform to the same law as

though it were a positive integer? State that law.

3. Does the law asked for in Ex. 2 apph'- to products of three or more
factors as well as to products of only two factors? Verify it for the

m m m
product st . 125^ • .064^ ; and prove it for o".s»x'».

158. A power of a power of a number. From § 153 it follows

directly that

(64^)^ = 64% i.e.y 64^ * i [Each being 4
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So, too, in general, if A is any numher whatever (cf. foot-

p p'
note, p. 254), and if — and 77 are any two simple fra/ytions

in which r and r' are positive, then

( ?y p. £i

Uv'-' = AT '^

p

For, since A' =</A^, [§ 153

therefore u9^" =V(V^ = VV^ [§ 134

=VAP- [§ 136

pp'

= A'-'-; [§ 153

I.e., V^'7'- = yl'-'^iJP
which was to be proved. This proof shows that, under the above

definitions, fractional exponents also conform to the law

already demonstrated when m and n are integers.

EXERCISES

1. What is the numerical value of (729^)2? Of 729^ Is, then,

(729^)^ equal to 729^"^? Is it also equal to (729^)^?

2. Do the fractional exponents in Ex. 1 conform to the same law as

though they were positive integers ? State that law.
/ r\p rp

3. Read the equation ^x^^i = x'l
; state what the several indicated

operations are ; mention the order in which they are to be performed

;

and prove the correctness of the equation.

159. Summary of exponent laws. As originally used, the symbol

A" was merely an abbreviation for the product A' A- A-'-to n

factors [cf. § 7 (iv) and also § 37], and n was therefore necessarily

a positive integer. Later on (§ 44 ) it was found desirable slightly

to extend the meaning of an exponent, and it was agreed that

A^ should mean 1, and that ^~*, where fc is a positive integer,

should mean — . Under these luterpretations, it was then proved
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(§ 121) that when m and n represent any positive or negative

integers whatever, including zero, then

I A"''A^ = A"'+% (1)

{A-r = A-% (2)

A^'B^ = (ABy, (3)

and ^'^ -J- ^" = A"'-^ (4)

These formulas state the so-called "exponent laws." It has

now been shown (§§ 155-158) that, under the definition given in

§ 153, these exponent laws remain valid even when some or

all of the exponents are simple fractions (cf. § 154, note).

EXERCISES

1. Translate the first exponent law into a rule for multiplying

together two different powers of any given number.

Find tlie following products and explain each; does the rule given in

Ex. 1 apply in finding these products ?

2. 53 . 54. 4. (1)4 . (1)2. 6. 83- . sf. 8. 26"? • 26-*.

3. 126.12-4. 5. 64.6°. 7. 14^ • 14"i 9. .Oil • .04"*.

10. State in detail the precise meaning that we have agreed to give

to each of the different kinds of exponents used in Exs. 2-9, z'.e., the

meaning of 5^, 12-4, go, 14^, and 26-t.

11. State briefly the important steps by which law (1) was estab-

lished when m and n are positive integers ; when one or both are negative

integers ; and when they are simple fractions.

12. Prove that law (1) applies also to product? of three or more
powers of any given number,— e.g.^ that a;"* • x" • a:'" = a;'»+'»+'*, where m, n,

and r may be integers, fractions, or zeros.
9 2 5

13. Translate law (2) into a rule and employ it to simplify (8^)^.

14. Make up 3 examples to illustrate the application of law (2) with

the various kinds of exponents (cf. Exs. 2-9 above).

15. Is {ix'^Y'Y equal to a;"»'»'? Why? May m, n, and r be fractions

as well as integers here ? May one or more of them be negative? Zero?

16. Show that (a-2)-3 = ^1 ^
"^
= ^^ =i = a^. Is this the same as

a(-2).(-3)? [Cf.§121(ii)].
"

(-2) -6

17. As in the first part of Ex. 16 show that (m~^)~^ = w?.
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18. Translate law (3) into a rale, and state what limitations, if any,

are placed upon the value of n.

19. Prove that law (3) applies also to the product of three or more
like powers,— i.e., that a"* •/>"»• e"* • ^"^ ••• = {abed •••)'", wherein m may be

positive or negative, integral or fractional, or zero.

20. Make up 4 examples to illustrate the application of law (3) with

the various kinds of exponents.

21. Translate law (4) into a rule, and illustrate its application.

22. What is the product of ^'»-" by yl**? What, then, is the quotient

of A'^ divided by A'^ [cf. definition of division, § 3 (iv)] ?

23. By means of the suggestion contained in Ex. 22, prove law (4)

from law (1*) and the definition of division,— independent of § 156.

160. Operations with polynomials involving fractional exponents.

Since the operations with polynomials are merely combinations of

the corresponding operations with monomials, therefore the prin-

ciples already demonstrated (§§ 155-159) for monomials suffice

for operations with polynomials also.

Moreover, since fractional exponents obey the familiar laws

formerly established for integral exponents, and since any radical

expression may be written in the fractional-exponent notation,

therefore operations with radicals (real numbers) are usually

greatly siraplilied by using fractional exponents ; * this is illus-

trated below.

Ex. 1. Find the product of 3Va — 5 v^ by 2-\/a-\-Vy.

Solution. Since 3Va — 5\/^ = 3a^ — 5^/^, and 2\/a -}- \/y = 2a2+ ^^>

therefore this product becomes

3 a^ - 5 2^i

6 ai+^ - 10 a^y^

+ 3 o^y^ - 5 yi+^

6 a — 7 a^y^ — 5 y^.

If it is desired, this product may, of course, be written in either of the

following forms :6a — 7 Va v^ — by/y^ or Q a — 7Va^y^ — oVy^.

* Although the radical notation and the fractional-exponent notation are each

equivalent to the other, and either may therefore replace the other, yet each is

frequently met with, and it is desirable that the student should understand how
to operate with each form without first converting it into the other.
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Ex. 2. Divide x^ — ij^ by \^x + y/y.

Solution. Since Vx + Vy = x^ + y-, this solution may be put into

the follow ino- form

x^ + x'^y"^

1 1

x^ + y^
5 4 1 2 3

x3 — a^3y2 ^ xy — xay^ +

5 1 4.— x^ys^ — x"Sy

xsy — y^

x^i -^W'

xy^ x^y^

xsy^ - 2/3

x'^t/^ + x^y^

-y'

The above quotient may also be written thus :

Vx^ — y/x"^ Vy -{- xy — Vx'^ Vy^ + v^a: • y^ — Vp.

Note. To appreciate one of the advantages of fractional exponents the student

has only to perform the division in Ex. 2, using the radical notation, and compare
his work with the above solution.

Ex. 3. Extract the square root of v^ — 2 y/x^ + 5 v^x^ — 4 aXx + 4.

SoLUTiox. This expression written in the equivalent fractional-expo-

nent form is X* — 2 z^ -1- 5 a;5 — 4 x"^ + 4, and in this form its square root

may be extracted just as though it were a rational expression (cf. § 125) ;

thus:
4 s 9. 1 9. ^

x^ - 2 x"5 -I- 5 x^ - 4 x^ -f 4 [x? - x^-f 2
4

X^

2 x3 - x^ - 2 x3 + 5 xt

-2x^ + xi

2 x^ - 2 x3 + 2 4^!-4x* + 4

4x^-4x3 + 4

hence the square root of the given expression is xs — x3 -f 2, i.e.,

^^-Vx-\- 2.
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EXERCISES

Perform the following multiplications

:

4. a^ + 62 by a2 - h^ (cf. § 58).

5. a;3 — x'^y'^ + ?/3 by :c3 -|- yz,

6. 771^ — w"5n5 + nS by //?? + n^.

7. m^ — m^y~^ + n~a by w?^ + n~o.

8. i a:t - Jj x?/^ + ,V ^^^ - 2V 2/^ by ^ a:i + 1 yi.

9. 81 ^7^-27 ^^3^^+9^2^^_3^^^^^^ by 3^ + ^y.

10. Va - 4 VlK + 6 \/^- 4 v'^ -4- Vx by v^a - 2 v^ + Vx.

11. \/x^ + 2 Vp - \/2^ -^ Vy + 2 V^ v^s - ^^ Vz
by y/x — 2 Vy + Vs.

12. w^ + m"t - 2 m^ + 4 m~^ by 1 + 2 'm"^ - -j^-

13. j9"t + ^-1-6 - p-'!5q-^ by />- -75 + 9-5.

14. 14 n^x a/x + 2 n Vn + 1 a:^-^ + 6 n v^ by Vn — 3 x* + 7—-x^.

15. 5 a-H-i + 3 a-26»x-i - h^-^x^ by x-^ - 3 ir~h-^ + ai

Perform the following divisions :

16. a + x2 by a^ + x^.

17. m5' — n3 by m^ — ns.

18. x-i + 3 y~^ - 10 x?/-! by x"! Vy - 2.

19. a* + 2 v^H + ^ by v^ + ft'i

20. x^ + x'^y/y — xy/xy^ — xy + -\/x y^ + y^ 3 by Vx + v^y.

Simplify the following expressions

:

21. ( ^^ + '^1 '^
_

^-Vy
^ 23 _^^ 9^ ]_< 1

\Vx-y/'y' \^x + Vy y/a-1 y/a+ 1 «i-l a^+ 1

22 3:"» + ?/"
_ x" - y"^

24. ^ ^ 1

'x— + 2/-« x-^-2/— ' y+Vy-^l' yl-l

25 ^ ~ y _ Va:^ — y'^

Vx — Vv ^ — y
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Extract the square root of each of the following expressions

:

26. a;2 + 2 a:t + 3 a; + 4 a:^ + 3 + 2 a;"i + x'K*

27. tt^ - 4 as 4- 4 « + 2 a^ - 4 a^ + ai

28. ns — 2 nT^n'^' + 2 rri^n^ + m~^n ^ — 2 m^n^ + m^.

Write down, by inspection if possible, the square root of each of the

following expressions

:

29. 1-2 m3 + wi 31. jo^ - 4 + 4;>~i

30. x^ 4- 4 xt + 4. 32. axt + 2 a^x^ + atx.

33. m + n+jo — 2 ni^n^ + 2 n^jo^ - 2 m^jo^.

Extract the cube root of each of the following expressions ; write

the results first with all the exponents positive, and then replace all

fractional-exponent forms by radical signs

:

34. 8 + 12 xt + 6 art + x\

35. 8 x-i - 12 x~iy + 6 x'^nf - if.

36. r^ - 6 ri + 15 ri - 20 + 15 f^ - 6 f + it.

37. 8 asrt + 9 a&* + 13 at + 3 a^6 + 18 a%-^ + &t + 12 ah-K

161. Rationalizing factors of binomial surds. Another advantage

of the fractional-exponent notation is that it furnishes an easy

method for finding a rationalizing factor of any binomial surd

whatever, — only quadratic binomial surds have thus far been

rationalized (§ 144).

To illustrate this method, let it be required to rationalize the

binomial surd cc^ _j_ y^^

Since (xi)"— (?/^)" is exactly divisible by xs + y'2 whenever n is an even posi-

tive integer [§ 68 (ii)], therefore, if n be given such an even integral value as will

make both (xs)** and (r/i)** rational,— e.g., G, 12, 18, — ,— then the quotient of

(xi)** — (?/^)'* divided by x'S -fy^ will be a rationalizing factor of a;3 + y^, because

the product of x'S + ?/^ by this quotient will be (a;:?)" — (,?/2)", which is rational for

all such values of n.

* Observe that this expression is arranged according to descending powers of x.
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In the present case, G is the smallest admissible value of n, and the required

rationalizing factor is

(a;3)6 — (j/i)6 a;2 _ yS 5 41, 231 5

«3 +,?/2 K^ + y^

Again, a rationalizing factor of x's + y'5 is the quotient \.{x^)^^ -\- {y^Y^'\-^

(a;7 + y'S), i.e., {x^+ y^) -^ (k^ + y's)
; and a rationalizing factor of a^ — 6* is the

quotient [(at)i2- (6l)i2] ^ («! _ 5!)^ i.e., (aS- 69) -^ (al- 6^).

The student may now, from the above examples, formulate a

rule for finding a rationalizing factor for any binomial surd; he

should distinguish three cases, viz., (1) when the binomial is a

difference; (2) when it is a sum and the L. C. M. of the denomi-

nators of its fractional exponents is odd; and (3) when it is a

sum and this L. C. M. is even.

EXERCISES

Find the simplest rationalizing factor for each of the following

expressions

:

1. a? - ri 2. mk + ni 3. 2 a:l - 3 ^i 4. ahi + 3 v\ 5. x"^ + 2 yl.



CHAPTER XV

QUADRATIC EQUATIONS

I. EQUATIONS CONTAINING BUT ONE UNKNOWN NUMBER

162. Introductory remarks. It has already been shown that the

first step in solving an algebraic problem is to translate its condi-

tions into algebraic language, and also that this translation leads

to equations which contain one or more unknown numbers ; the

values of these unknown numbers are then found by solving the

equations (§ 26).

Although nearly all of the problems thus far met with are

such that their conditions give rise to equations of the first

degree in the letters representing the unknown numbers,* yet

there are many other problems which lead to equations of the

second degree in those letters; the solution of equations of this

kind will be investigated in the present chapter.

Note. It may be recalled, however, that some easy equations of the second

degree have already been solved by means of factoring (§ 72) ; it will presently

appear that all such equations may be solved by the same method.

163. Definitions. An integral algebraic equation which involves

the second but no higher degree of a number, is called a quadratic

equation in that number (cf. § 94).

E.g., a;2 -f- 5 = 0, 'ix'^— ^ = lx, and ax^ + 6a; + c = are quadratic equations in

the number represented by a;; 4c2 + 2c = 9 and a (c + 4)2 — 3 c + 8 = are quad-

ratic equations in c ; and a (?/ — 3)2 -f- 6 (?/ — 3) — 6 = is a quadratic equation in

y — 3, and also in y.

Unless the contrary is expressly stated, a quadratic equation is understood to

mean a quadratic equation in the unknown number.

Every quadratic equation in one unknown number, say x, may
evidently, by transposing and simplifying, be reduced to the

standard form 2.7, a
ax^ -+- 6a; + c = 0,

* For the solution of first degree equations see Chapters X and XI.

266
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wherein a, b, and c represent known numbers and are usually

called the coefficients of the equation ; the term free from x, viz., c,

is also called the absolute term. Although 6 or c may be zero, a

can not be zero, for if a = 0' the equation becomes bx-\- c = 0,

which is not quadratic.

If neither b nor c is zero, the equation is called a complete quad-

ratic equation, while if either 6 or c is zero, it is called an incomplete

quadratic equation. If 6 = 0, the equation is also often called a

pure quadratic equation, otherwise it is called an affected quadratic

equation.

E.g., the equation 2x^+ 5— 3a; = 7a; — 8 becomes, by transposing and uniting

terms, 2 a;2_ lo ^ -{- 13 = o, which is in the above standard form,— the coefficients

a, b, and c of the general equation being for this particular case 2, — 10, and 13,

respectively; it is a complete, and also an affected, quadratic equation.

Again, the equation 8x2+ 4 — 3 a; = ^^—

—

'- — x + S becomes, by clearing of

fractions, transposing and uniting terms, 16x^ — 3 = 0, which is in the standard

form, a, b, and c being 16, 0, and — 3, respectively; it is an incomplete, and also

a pure, quadratic equation.

In the same way evenj quadratic equation in one unknown number may be

reduced to the standard form.

EXEFiCISES

1. What are the important steps in the solution of an algebraic

problem (of. § 26) ? What is meant by the " equation of a problem "?

2. If the conditions of a problem, when translated into algebraic

language, lead to a quadratic equation (such as 5 a;^ — 8 x + 10 = 0), can

that problem be solved by the methods given in Chapter III or Chap-

ter X?

3. What is a numerical equation? a literal equation? a simple

equation? a general equation? a particular equation? a root of an

equation ?

4. Is 3 a:2 — 2 a: = a complete or an incomplete quadratic equation ?

Why ? Is it pure or affected ? Why ?

5. Reduce 5x^ + 2 — 8x = 4(8 — x) to the " standard form." What
is its absolute term? Is this equation pure or affected? complete or

incomplete ? Why ?

6. Clear the equation 2a: — 3+-=a: + 2of fractions, then reduce it

to the standard form, and classify it (pure, complete, etc.) ; also solve it

by the method of § 72.
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7. Is the equation in Ex. 6 a quadratic or a simple equation ? Why ?

8. If X andy stand for unknown numbers, tell which of the following

equations are simple, which quadratic, and which of a still higher degree

:

a4ar2 + a^x -\- a = 0', ^^=-^ = -; 5 x - 7 ?/ = 11 ; 5 x + ^'^ - 7 ^ = 11

;

2 X

'2(x2- x)+6 = 2x^; ^ - 4: = ') x + -^ ; 3 ar + 4 a^ _ o ax = 7.

y y + -

9. What particular equation is obtained by substituting the values

2, — 7, and 5 for the coefficients in the general equation ax^ + hx + c = 01

10. By assigning different sets of values to the letters a, 6, and c, how
many particular quadratic equations can be formed from the general

equation ax^ + ftx + c = ?

Why is this last equation called a "general" equation, and one in

which the coefficients are numerals a " particular " equation ?

164. Solution of quadratic equations. Although the roots of any-

quadratic equation whatever may be found by the method of fac-

toring (§§ 72 and 165), yet there are various other methods. for

solving these equations, and one of these, which will doubtless be

more easily followed by the student, will now be explained.

Ex. 1. Find the roots of the equation 2x2-3-5a: = 7a:+ll.

Solution. By transposing and uniting terms, the given equation

becomes
2x^-12x=,U, (1)

whence, dividing by 2, x^ — 6 x = 7

;

(2)

if now 9 be added to each member of Eq. (2), it becomes

x^-Qx + 9 = lQ, (3)

i.e. (see " remark " below), (z - 3)2 = 16, (4)

whence, taking square roots, x — 3 = ± 4, (5)

i-e.y a: - 3 = + 4, or X - 3 = - 4, (6)

hence, transposing, x = 7, or x = — 1,

and, on substituting these values of x in the given equation, it is found

that they each satisfy that equation ; they are, therefore, the roots of the

given equation.

That this equation has no other roots is shown in Ex. 38 below.
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Eemark. Since (x ± k)- = oi^. ± 2 kx + Jc'y therefore the expres-

sion x^ ± 2kx, whatever the value of A:,. lacks only the term k'^ of

being the square of x ±k, i.e., if the square of half the coeffi-

cient of the first power of x he added to an expression of
the form x^ + hx, the result will he an exact squared

E.g., if
(

-^
)

be added to a;2— (j x, the expression becomes {x — 3)2, as in Eq. (3)

above ; if
(
-

j
be added to y'^+ 5 ?/, it becomes (?/+-) ; and if

( 7 )
be added

to z'^+hx, it becomes lx-\--\ •

(Og l^y,
\ 2"
\ , i.e., 72, be added to 4 k'^x'^ + 28 kx, it becomes

2V4/fc2j;2y

(2 kx + 7)2 ; this may also be seen by first writing 4 ^2^2 -f 28 kx in the form
(2A:x)2^-14(2^•x).

Ex. 2. Solve the equation a;2+llx + l = 8a;.

Solution. On transposing, the given equation becomes

x^ + Sx = -l, (1)

whence, adding (|)2, x^ -{- Sx +(1^ = - 1 + (|)2, (2)

i-e., (X + 1)2 = I, (3)

and hence a: + f = ±A/|=±^ \/5, (4)

.^-l±lvE = :^lf^, (5)

and each of these values of x, viz.,
~ '

"^—'- and ——^—'-, is found, on

substitution, to satisfy the given equation ; they are, therefore, the roots

of that equation.

Ex. 3, Solve the equation ax^ -^ bx + c = 0.

Solution. On transposing and dividing by a, this equation becomes

x'^ + ^x = -^', (1)
a a

whence x^ + -x + {
— = —— = —

,

(2)
a \2a/ 4a2 a ^a^ ^

^

I.e.,
I b \2_ ft2_4ac ,3.

* Making this addition to the given expression is usually spoken of as com-

pleting the square.
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therefore , ^^ = ± J^l^^ = ±2^EZ±££, (4)

I.e., a; = - —- + =
, (5)

and as before, each of these values of x, viz., '^^—— — and
2 a

————^—^——, is a root of the given equation.
2a

Note. Having now shown how to find the roots of any quadratic equation

whatever, the method of § 67 may be employed to find the factors of any quadratic

expression of the form ax^ -\-hx-\- c (cf. also § 165).

E.g., since 7 is a root of the equation x^ — 6 a; — 7 = (see Ex. 1 above) , there-

fore X— 7 is a factor of the expression x^—iSx — 1 (cf . § 67)

.

Similarly, from Ex. 2, the factors of x^+ Zx-\-\ are x — ~^'^ — and

z — ——~ ; and x — ~ "*" ~—— is a factor of the expression ax^+bx+c.
2 2 d

EXERCISES

4. In Ex. 1 above, how was Eq. (1) obtained from the given equation?

State also how Eq. (2) was obtained from Eq. (1) ; Eq. (3) from Eq. (2)

;

Eq. (5) from Eq. (3). How many equations are expressed in (5) ? How
were the roots of the given equation finally found from Eq. (5) ?

5. Show that the essential steps in the solution of Ex. 2, and of Ex. 3,

are the same as those in Ex. 1, viz.,

(1) Transposing and uniting terms, and dividing each member of the new

equation by the coefficient of the second power of the unknown number, thus re-

ducing the given equation to the form x^ + mx = n ; (2) adding
(
—

)
to each

member, thus making the first member an exact square ; (3) extracting the

square root of each member {giving the double sign to the second member^,

and solving the two resulting simple equations.

By the above method find the roots of the following equations, and
verify the correctness of each

:

6. 2 a;2 - 27 = 9 X - a;2 + 3. 12. 5 a: = x2 - 14.

7. 2;2+5.r = 21 + a:. 13. 19 a: + 5a:2 = 15 - 5a:2.

8. 2/2-52^-24 = 0. 14. 2y^-by=^y-\-2U.
9. 2 a:2 - a: = 3. 15. 22 f + 3 /2 = 4 ^2 _ 43.

10. 2.^2 - 10^/ = ?/2 + lOy - 51. 16. /2 _ 3 = 10 ^ - 3<2.

11. z^^ z- 1.50 = 4 - 2 e. 17. 9 - 5 0,2 = 12 x.
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18. Write a carefully worded rule for solving such equations as those

given above ; also show that by this rule any quadratic equation what-

ever, which contains but one unknown number, may be solved.

19. Show that the rule asked for in Ex. 18 will serve to solve such

equations as x^ + 6 x = 0. What are the two roots of this equation ?

Verify your answer.

20. Show that while such equations as that given in Ex. 19 may be

solved by the above method, they may be much more easily solved by the

method given in § 72.

Prove that if an equation has no absolute term, one of its roots is neces-

sarily zero.

21. Does the rule asked for in Ex. 18 apply to such equations as

4 ^2 — 9 = ? What are the roots of this equation ? Verify your

answer.

Solve the following equations, and verify your results

:

22. 5 a;2 = 8 z. 25. ax^ + bx = cx^.

23. lSx'\-2x^=5x + 4x^. 26. ax^ + b = 0.

24. 3f-8y = 2y(y-i)-\-Q. 27. {m + n)x'^ + n^ m

28. What must be added to a;^ + 8 a: to " complete the square " ?

29. What must be added to P^ — 5 P to complete the square ?

30. What must be added to (x + yy — 4:(x -h y) to complete the square ?

31. What must be added to 4: M^ -\- 8 M to complete the square ?

32. What must be added to 9 a'^x^ + 12 ax'^ to complete the square?

33. Show that the answer to each of the exercises 28-32 conforms to

what is said in the "remark" under Ex. 1.

34. How many different equations are expressed by P = ± Q ? What
are they ? Write them separately.

35. How many different equations are expressed by ± P = ± Q ? What
are they? Write them separately. Do the equations + P = + Q and

— P = — Q express the same or different relations between P and Q?

36. Show that the equation P = ±Q expresses all the relations between

P and Q that are expressed by the equation ±P = ± Q ; and hence show

that the double sign (±) need be employed in only one member of an equa-

tion which is obtained by extracting the square root of each member of

a given equation. Illustrate this in the solutions of Exs. 1 and 2 above.
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37. Prove that the two equations P = ± Q are together equivalent

(§ 95) to the equation P^ = Q^

Proof. The equation P^ = Q^

is equivalent to pa_ q2 = o, [§ 95 (1)

i.e., to (P-Q)(i'+Q) = 0,

and, manifestly, this last equation is satisfied when, and only when,

P - Q = or P + Q = 0,

i.e., when P = ± Q

;

hence the equations P2 = Q2 and P = :kQ are equivalent.

38. In the solution of Ex. 1 above, show that the given equation and

Eqs. (1), (2), (3), and (4) are all equivalent to each other, and that each

is equivalent to the two equations (5), i.e., to the two in (6). Hence show

that the given equation has two roots, and only two.

39. By the method of Ex. 38, show that the equation given in Ex. 2,

above, has two roots, and only two.

40. Show that Ex. 3 has two solutions, and only two, and thus prove

that every quadratic equation in one unknown number has two roots, and

only two (cf. § 97).

Solve the following equations, and verify your results :

41. 3 a;2 + 5 x - 4 = x2 - 2 a: + 3. 45. 2y'^ + Z = l y.

42. x2-|x-2 = 0. *6. 3x2-10 = 7x.

47. 6 + 5 « = 6 f2.

43. (2-x){x+\)+^ = x-^.
^

48 Ix — '^-^ 4- '^ =
44. (2 2/-3)2zz:6(?/ + l) -5. ^

4

49. What are the roots of x^ — Sar — 2 = 0? Are these roots rational

or irrational numbers? Define rational and irrational numbers. Are

the above roots real or imaginary ?

50. What are the roots of a;^ — 3a: + 4 = 0? Verify the correctness

of your answer. Are these roots real or imaginary ?

51. Solve the equation 3a;2-8a:+10 = 0.

Suggestion. The method already explained for solving such equations gives

rise to fractions ; these fractions can be avoided by proceeding thus

:

On multiplying the given equation by 3 (the coefficient of a;2), and transposing, it

^^°°"^«« 9x2_24cc=-30;

completing the square, 9 a;2 — 24 a; + 16 =— 30 + 16 =— 14,

i.e., (3 X -4)2 =—14,

hence 3 « — 4 = =t V^^HI,

and a; = i(4+ \/^=n4) or i(4 - V^^14).
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52. Solve the equation 3a;2-5a;-2 = 0.

Suggestion. Multiply this equation by 4 • 3 and then proceed as in Ex. 51.

53. Solve the equation ax^ }- bx -{ c = 0.

Multiply by 4 a and then proceed as in Ex. 51.

54. Solve the equation mx'^ -\- 2 nx -^ k = 0.

Multiply by m and proceed as in Ex. 51.

55. By studying ^xs. 51-54, especially 53 and 54, point out when it is

necessary to multiply by 4 times the coefficient of the second degree term

in order to avoid fractions in the solution of a quadratic equation ; and

also when multiplying by that coefficient alone will suffice.

Solve the following equations, avoiding fractions in completing the

square :

56. 3 a;2 + 2 X = 7. 60. 2 t^ + 7 t = - Q.

57. 5 x2 + 6 a; = 8. 61. 3 a.-2 - 5 x = 2.

58. 3y^ + 4y = 95. 62. 5 z^ - x - 3 = 0.

59. 2 !/2 + 3 3/ rr 27. 63. 15 y-^ -7 y - 2 = 0.

64. Is 8 a root of a:^ - 5 a: - 24 = ? Why ? What is the correspond-

ing factor of a:2 — 5x — 24 (cf. Ex. 3, note) ? What is the other factor

of this quadratic expression? What root of the given equation corre-

sponds to this other factor ?

65. Since x'^ — 7 x -\- I0~(x — 2)(x — o), what are the roots of the

equation a:2 - 7 x + 10 = ? Why (cf . § 72) ?

66. Since 2 and 7 are the roots of x^ — 9 x + 14 = 0, what are the

factors of x2 - 9 X + 14 ? Why (cf . § 67) ?

67. Since ^ and f are the roots of 6 x2 — 7 x + 2 = 0, what are the

factors of 6x2 — 7x + 2? ^^.g these the only factors, or is there also a

numerical factor?

68. By first finding the roots of the equation 15 x2 — 4 x — 3 = 0, find

all the factors of the expression 15 x2 — 4 x — 3.

69. Based upon the note under Ex. 3, and upon Exs. 64-68, write a

carefully worded rule for factoring quadratic expressions.

Apply the rule asked for in Ex. 69 in finding all the factors of the

following expressions, and verify their correctness :

70. 5 x2 + 12 X - 9. 73. (x + 1)(2 - x) + 9 - x.

71. 8.2_io,_3.
^^ (2, - 3)2- 6(2, + 1)+ 8.

„2 3x2 ^
'^ ~4"~2~ 75. ax2 + 6x + c.
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76. Are the expressions in Exs. 70-75 equal to ? What justification

have we then for writing them so ?

77. Write an equation whose roots are 3 and 8 (cf. § 72).

78. Write an equation whose roots are — | and 12; 7 and — 1; f and

V- ; 1 + V3 and 1 - \/3 ; i audi; 2 + 3 i and 2 - 3 i.

79. By first finding the factors of x^ — 2 x — 10, prove that the roots

of 7(x^ — 3 X — 10) = are also roots of a;^ — 3 a; — 10 = 0, and vice versa.

Prove this also from § 95 (2).

80. Is there any number which is a root ofa;^ — 3a: — 10 = and also

oi S x^ + X — 10 = O'j i.e., have these equations a root in common ?

Suggestion. Solve either of these equations and substitute its roots in the

other equation. Also solve by means of § 76.

81. Find the common roots, if any, of 2 x^ — S3 x^ — 5 x -\- Q = and
6a:8 + 7x2 + 4a; + l = 0.

82. Find all the roots of the equations in Ex. 81.

165. Solution of quadratic equations by factoring. In § 72 it

was shown how factoring may be employed to solve algebraic

equations; it will now be shown that any quadratic equation

whatever may be solved by this method.

Ex. 1. Solve the equation a:^ + 6 x + 8 = 0.

Solution. The expression x^ + 6 a: + 8

= x2 + 6 a; + (1)2 _ (1)2 + 8 [cf . §§ 70 and 164

= a:2+6a; + 9-9 + 8

= (a: + 3)2 - 1

= {(a: + 3) + 1} . {(.r + 3) - 1}

= (a; + 4) (a: + 2) ;

hence the given equation is equivalent to

(x + 4) (a: + 2) = 0,

which, in turn, is equivalent to the two equations

a: + 4 = and a; + 2 = 0,

whose roots are — 4 and — 2, respectively ; therefore, the roots of the

given equation are — 4 and — 2.

Note. Observe that the plan of the above solution is first to transform the

expression a;2 + 6a; + 8 into the difference of two squares, one of which shall con-

tain all the terms involving x, and then to factor the resulting expression by the

formula A^-B^={A — B) (A + B).
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Ex. 2. Solve the equation a;^ — 3 a; + 1 = 0.

^ Solution, x^ - '6 x + 1 = x^ - Sx + 1-]^-I^Y+ 1

=(^-|-^)-(^-|-f)

hence the roots of the given equation are the same as the roots of

i.e., they are —— and '—^—^•

Ex. 3. Solve the equation ax^ + bx -{- c = 0.

Solution. The expression aa:^ + &x + c, whatever the values of a, b,

and c, may be factored as follows :

ax"^ + bx + c = alx^ + - X + -\

a-l X +

— 4:ac

J_ _ VW^Jac} („ . 6 . Vb^ - 4 ac

2a 2a M-f«
a< X -^ y ' i X -\ — >•

i 2a \ I 2a )

hence the roots of the given equation are the same as those of

,
ft-V62_4ac>

' 2a

-b + Vb^--4rtc

\ 2a /\ '2 a J

z>., they are
-^-rv. -:.„. ^^^ _ ft _ V//^ _ 4 «c

.

' "^ 2 a 2«

Since every quadratic equation is reducible to the standard form

ax^ + bx-\-c=:0, therefore the solution of Ex. 3 shows not only

how to factor any expression of the form ax^ + bx-j- c, but also that

every quadratic equation has two roots, and only two ; compare also

§ 164, Ex. 40.
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EXERCISES

4. By first finding the factors of the expression x^ — 9 x -\- li, solve

the equation x^ - 9 x -{• H = 0.

5. By first finding the factors of 15 a:" — 4 x — 3, find the roots of the

equation 15 a;^ — 4 a; — 3 =0.

6. Factor 3y'^-2y-20, and thus solve the equation Sy^-2y-20 = 0.

Factor the following expressions, both by the method of § 164 and

also by that of § 165 ; also point out which method is simpler, and why

:

7. 8 /2 _ 10 ^ - 3. 10. 5 m2 + 6 m + 2.

8. (a; - 1) (2 - a;) + 9 - x. 11. x^ + (m + n)x + mn.

9. 3 y2 + 4 2/
_ 1. 12. x^+px-\- q.

166. Solution of quadratic equations by means of a formula.

Since every quadratic equation in one unknown number may be

reduced to an equivalent equation of the form ax^ + te + c =

(§ 163), and since the roots of this equation are ——^—

—

———^

whatever tJie numbers represented by a, b, and c (§ 165, Ex. 3, and

§ 164, Ex. 3), therefore the roots of any particular quadratic equa-

tion may be found by merely substituting for a, b, and c, in the

expressions for the roots of the above general equation, those

values which these coefficients have in the particular equation

under consideration.

E.g., since the roots of ax^+ bx-{-c = are
— ^^vft^^— 4qc

^ therefore the
2a

roots of 3 x2+ 10 K— 8 = (in which a = 3, 6 = 10, and c = — 8) are

_10j,VlO._4.3.(-8)
^ .^^^ -lOj.14, .^^^ 2 ^^^ __^

2*3 6 3

So, too, the roots of 6 ?/2+ 19 y — 7 = are

19J:Vl92-4.(^(-7) , 1 ^^^ _7.
2-6 3 2

And the roots of a;2_3a; + 5 = are (
'^)^^{ ^)^ 4.1-5

^

2

Note. While the student should, of course, be able to solve quadratic equa-

tions without the use of the formula (by the method of § 164, or of § 165), he

is advised to commit this formula carefully to memory, and henceforth to employ it

freely as in the illustrative examples above ; he will find this well worth his while,

because roots of quadratic equations are so very frequently required in mathe-

matical investigations.
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EXERCISES

1. Write down the formula for the roots of ax^ -{-bx + c = 0. How
many values has this expression ? Write two expressions which are

together equivalent to this formula.

2. Do these two expressions represent the roots of ax^ + hx + c =
for all values of the coefficients a, b, and c, or only for particular values of

these letters ?

By means of the above formula, write down the roots of each of the

following equations, verify their correctness in each case, and point out

which are real, which imaginary, which rational, and which irrational

:

3. a:2-5a: + 6 = 0.

4. 3w2_4^_10= 0.

6. (3y + l)(2-r) ^ y(3

-

-V).

7. mx^ + nx + jo = 0.

8 -t2——t —~'
a n 2n

9. If the numbers represented by p and q are such that p^>4:q, are

the roots oi x^ + px + q = real or imaginary? What are they if jt?2< 4 q'i

10. W^hat are the roots of 36 m^x^ + 36 m^nx - n^ = m^(l -9n^)l
Show that each of these roots is real whatever integers or fractions

(positive or negative) may be represented by m and n.

167. Character of the roots. It has already been shown (§ 165)

that the roots of the equation ax^ -{- bx -\- c = are

-6 + V62-4ac -, _6-V62-4ac
—-r and

;2a 2a '

hence, if a, b, and c represent real and rational numbers, these

roots can be imaginary or irrational only if V&^ — 4 ac is imagi-

nary or irrational. E.g., both roots are imaginary if 6^ — 4 ac is

negative.

The conditions for discriminating the character of the roots

may be summarized thus

:

if &^ — 4 ac > 0, the roots are real, and unequal,

if &^ — 4 ac = 0, the roots are real, and equal,

if 6^ — 4ac<0, both roots are imaginary,

and the roots are rational only when ft- — 4 ac is an exact

* The expression b^— ^ao is, for this reason, usually called the discriminant

of the quadratic equation.
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The character of the roots of any particular quadratic equation

may, therefore, be determined by merely. finding the value of the

expression &^— 4 ac for that equation.

E.g., the roots of 3 x^ — 5a; — 1 = are real, irrational, andunequal, because

here h^— 4tac = '61 (since a = 3, 6 = — 5, and c = — 1), and y/'dl is real and irra-

tional
;

The roots of 3a;2— 5ccj— 2 = are real, rational, and unequal, because in this

equation y/b^ — 4 ac = \/4y = ± 7, i.e., it is rational

;

The roots of 2a;2+ 5x — 8 = 4x — 11 are imaginary, because in this equation

V62— 4ac = V— 23;

And the roots of 4 x^ — 12 k + 9 = are real, rational, and equal, because in

this equation h^— ^ac = 0.

EXERCISES

1. If 62 = 4 ac, what is the value of &2 _ 4 ac ? of y/h'^ -4:ac ? of

-bjW¥Z±^9
of

-b-Vb-'-^ac
, How, then, do the two roots

2a 2a
of ax^ + 6a: + c = compare when 6^ = 4 ac ?

2. State verbally the condition that must hold among the coefficients

of a quadratic equation in order that the roots of that equation shall be

equal,— instead of "a" say "the coefficient of the second power of the

unknown number," etc.

3. For what value of h will the roots of 3 a;^ — 10 a; -f 2 ^ = be

equal ?

Suggestion. The roots are equal if (— 10)2 = 4 . 3 • 2 A;. Why ?

4. Find the value of m for which mx^ — 6 a; + 3 = has equal roots.

5. Find the values of k for which the roots of 3 x^ — 4 ^a; + 2 = are

equal.

6. For what values of a are the roots of ax^ — 5 aa: + 11 = a equal?

7. For what values of m are the roots of a:^ — 3 a; — m{x + 2 a;^ 4- 4)

= 5a;2 + 3 equal?

Without first solving, tell whether the roots of the following equations

are real, imaginary, rational, equal, etc., and explain your answers :

8. a:2-5a: + 6 = 0. 11. ^t^ + lit + 11 = 0.

9. a:2-6a: + 9 = 0. 12.
3:^2+ 2 _ 1 ^ £-j,

7 3 6

10. 3 f2 _ 11 f _ 17 = 0. 13. 7 w2 + 4 w + 1 = 0.

14. Are the roots of the equation in Ex. 13 related in any way (cf.

Ex. 9, §149)?
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15. Show that if either root of a quadratic equation is imaginary,

then the other root is also imaginary, and that each is the conjugate of

the other.

16. For what values of k are the roots of 36 x^ — 24 /:a: + 15 ^ = — 4

imaginary ?

Solution. The roots of this equation (§ 166) are

24 fe + V(-24 A:)-^-4 • 36 (15 k+^) ^^^ 2ik- \/(-24 A:)2-4 • 36 (15 k+i)
^

2-36 2 • 36

. 2k+V4:k'^— 15k-4: , 2k~V4ck^-15k-4: .

6 6
'

and these roots are imaginary for those values of k for which the expression

under the radical, viz., 4 k'^— 15k — 4, is negative, and for those values only.

Now 4 A;2 — 15 ^ — 4j which equals (4 A; + 1) (k — 4) (§ 165) , is negative for those

values of k for which one of these factors is positive and the other negative, and
for no others ; hence the roots of the given equation are imaginary when k lies

between — ^ and 4.

17. From the solution of Ex. 16 point out those values of k for which

the roots of the given equation are real, and explain your answer.

18. If k =— \, are the roots of the equation in Ex. 16 real or imagi-

nary ? How do they compare in value when k = — ^'i when A: = 4 ? "

19. "Without actually solving the equation, find the values of m for

which the roots of 4 m^x"^ + 12 m^x + 10 — m = are equal.

20. Without actually solving the equation, find the values of m for

which the roots in Ex. 19 are real, and those for which these roots are

imaginary.

21. Find the sum of the two roots of ax^ -\- hx -{ c = ', also the sum
of the roots oi x^ } px + q = 0.

22. By means of the results of Ex. 21, and without first solving the

equation, determine the sum of the roots of x^ + Sx — 2 = 0; also the

sum of the roots of 4 x^ — 6 a; = 3. Verify your answers by actually

adding the roots.

23. Find the product of the roots oi x^ + px + q = 0', also the product

of the roots of ax^ -\- bx + c = 0.

24. By means of the results of Ex. 23, determine the product of the

roots of a;2 - 10 X 4- 16 = ; also of 4 a;2 _ 30 a; + 25 = 0.

25. State verbally the relation between the sum of the roots of a

quadratic equation and the coefficients of that equation ; also make
a similar statement concerning the product of the roots,— compare Exs.

21 and 23.
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168. Sum and product of the roots. If r and r' be employed to

represent the roots of the equation ax^ + 6a; 4- c = 0, i.e., if

r = !— — and r = ,

2 a 2a '

then by adding, and by multiplying, it follows that

"cf. Exs. 21 and

23, § 167

b c
r -\-7'' = and r - r' = -

a a

The student should perform these operations in detail, and should also express

the results in verbal language. Compare Ex. 25, § 167.

Note. Rationalizing the numerators in the above expressions for the roots of

az^+bz + c = 0, shows that

-&+ v/62_-4ac -2c
2a 6+V62-

-2c

4:ac

-b-Vb^--4 ac

2a 6-V62- 4ttc

and

Since r-r' =-, therefore if c is very small as compared with a, i.e., if - is very
a a

small, then at least one of the roots (r or r') must be very small ; to see which one
this is, and also to see how large the other root is, it is only necessary to examine
the above expressions for r and r'.

Thus as c = 0,* 4 ac =^ 0, and b^— 4tac^ b^, i.e., VP^^^^Toc = b, and the first

expression for r shows that ?• = 0,— since — = 0.
2 a

Similarly it may be shown, from the first expression for r', that when c = 0,

then r' = , — observe that the second expression for r' becomes indeterminate
a r.

when c = 0, i.e., it becomes —

What has just been shown is usually expressed by saying "if the absolute term

of a quadratic equation is zero, then one root of that equation is also zero*'

(cf. Ex. 20, § 164).

Again, if a = 0, then the above expressions show that r' becomes — oo (cf . note

to Ex. 15, § 55), and that r becomes — -,— the first expression for r becomes -,

c
^

which is indeterminate, but the second shows its value to be — -•

b

What has just been shown may be expressed by saying " a = is the condition

that one root of az^ + bz + c = Ois infinitely large.'*

EXERCISES

1. Without solving the equations, write down the sum and also the

product of the roots of each of the equations in Exs. 6-11 of § 164, and

explain your answer in each case.

* The symbol = is here used to mean " approaches indefinitely near to."
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2. Give the sum and also the product of the roots of each equation

in Exs. 22-27 of § 164, and verify your work.

3. If one root of the equation x^ + 5 a; — 24 = is known to be 3,

how may the other root be found from the absolute term? from the

coefficient of the first power of x ? Do the results agree ?

4. If one root of any given quadratic equation whatever be known,

how may the other root be most easily found?

5. What is the sum of the roots of 3 nfiz^ + (8 m - l)a: + 5 = ? For

what value of m is this sum 3 ?

6. For whatr values of A; will one of the roots of 2 (k ]- lyx^

—

^(2k-i- I) (k + l)x+9k = 0he tlie reciprocal of the other ?

Suggestion. Equate one of the roots to the reciprocal of the other, and solve.

7. For what value of k will one root of the equation in Ex. 6 be zero ?

With this value of k, what will be the value of the other root?

8. For what value of k will one root of the equation in Ex. 6 be

infinite (cf . note, § 168) ?

9. For what values of n will one of the roots of (n — 3)y^— (2 n+ 1) y
= 2 — 5 n be double the other ?

10. Prove that one of the roots of ax"^ -\- bx + c = 0, whatever the

values of a, b, and c, will be double the other if 2b'^ = 9 ac.

11. If r and r' are the roots of ax^ -\- bx -\- c = 0, find the value of

- + — expressed in terms of a, b, and c.

r r'

12. It has already been shown that if r and r' are roots of the equation

ax^ + bx -\- c = 0, then ax^ + bx -\- c = a(x - r) (x - r') ; from this fact

prove that if r" is not equal to r or to r', then r" can not be a root of

ax^-{-bx + c = (cf. Ex. 40, § 164).

13. Show that the roots of ax^ + 2bx -\- c = are
-b+^b^-ac and

b-Vh^ a

How do these expressions compare with the expressions
a

for r and / above ?

14. Apply the formulas of Ex. 13 to write down the roots of 3 a;^ — 8 a;

— 3 = 0; also of 2 x^ + 10 a; = 7. Compare these results with those

obtained by the formulas of § 166 ; which of these formulas gives the

simpler result when the coefficient of the first power of the unknown
number is even?

15. Show that when a and c represent numbers having like signs, the

roots of ax^ + bx + c = may be real, or may be imaginary, depending

upon the relative values of a, 6, and c ; but that these roots are necessarily

real when a and c represent numbers having unlike signs.
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16. What relation exists between the roots of ax^ + hx -{- c = when

a = c'i when a = — c'i

17. If r and r' represent the roots of ax^ + 6a; + c = 0, form an equation

whose roots are — r and — r'.

Solution. The equation whose roots are — r and — r' is (§ 72}

{x-\-r){x + r')=Q, i.e., a:2+ (r+ r')a; + rr' = 0;

6 c
but r-\-r' = and rr' = - (§ 168) , hence the required equation is

a;2— -a;+- = 0, i.e., ax^—hx-\-c = 0.
a a X

18. Find r^ + r'2 from ax"^ -{-hx + c = 0. Also find the sum of the

reciprocals of the roots ofx^ — 5a: + 2 = (cf. Ex. 11).

19. If r and r' are the roots of ax'^ -{ hx -\- c = 0, form the equation

whose roots are r^ and r'^ ; also one wliose roots are - and —

•

r r

20. What do the roots of nx^ + hx-[-c = become when c = 0?

when c = and 6 = 0? when a = ? when a = and 6 = 0? when 6 = 0?

Compare the note on p. 280.

169. Fractional equations which lead to quadratics. The general

principles underlying the solution of fractional equations are dis-

cussed in § 99; manifestly those principles apply whatever the

degree of the integral equation to which the fractional equation

leads. The following solutions may illustrate the procedure.

Ex. 1. Solve the equation ^ "^ + 1 = 3 x.
X + 2

Solution. On clearing the given equation of fractions, it becomes

a: + 5 + a; + 2 = 3a;2 + 6a;,

which reduces to 3 a;^ -f 4 x ~ 7 = 0,

whence 4 j: Vl6 + 84
^^

6
^^

-4±10
6

1 or -

and since neither x = \ nor a; = — | reduces to zero the multiplier which
was used to clear of fractions, therefore they are the roots of the given

equation (cf. § 99).
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Ex. 2. Solve the equation -^— + * ^ + '^ - ^
^^

1 - X X + 1 x2-l
Solution. On clearing the given equation of fractions, it becomes

-x^-x-^x-S + ix^ + Sx = 2x^,

which reduces to a;^ — 2 x — 3 = 0,

whence ^ ^ 2 ^ V4TT2 ^ 2_^^
2 2

I.e., x='d or — 1

;

but although both 3 and — 1 are roots of the integral equation, yet 3

alone is a root of the given fractional equation. Observe that a: = — 1

reduces the multiplier a:^ — 1 to zero ; compare also § 99.

EXERCISES

Solve the following fractional equations, being careful to exclude all

extraneous roots

:

3. 15x + ?=ll. - 2x-2_x-l
X .5a:+5ar + l

X X x + 2x — 2 -C-^)
^ ^ ^ 8. ^+(x-2)-i

2(a;2-l) 4(a: + l) 8 x -1

9. -1^+ 42_ ^g_^ 6

X + 5 (x + 5) (a: - 2) a: - 2

10 ^Q
I

^Q
I

7= ^^ 12 2a + a; a- 2 a: ^ 8

a;+ 3 a;2+4:a;+ 3 a;+ l*
' 2 a - a; a + 2 a; 3*

11 2a; + l 5^ a:-8 ^3 Ix ^ ^ a(a: + 2 6)

l-2a: 7 2 * ' a - a; a + 6

3^4
2 _ 5a: ^ a: + 29

g
•

15.

a; -5 3 a; + 2 (3 a; + 2) (a: - 5)

X X

X — 1 a; + 1

170. Irrational equations. Equations which contain indicated

roots of the unknown numbers are usually called irrational equa-

tions
;
they are also sometimes spoken of as radical equations.

E.g., V^-o = 0, VF+l + a; = 8, ^^+ 1 = 0, and 3 + ^=\/^2Zri are

irrational equations, but x — -\/3 = 5 k is a rational equation.

The solution of irrational equations may be illustrated by the

following examples

:
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Ex. 1. Solve the equation Vx — 5 = 0.

Solution. The given equation is (§ 95) equivalent to

Vx = 5,

whence, squaring, x = 25.

On substituting 25 for x, the given equation is satisfied, provided that

Vx is understood to mean the positive value of the square root ; and in

that case 25 is, therefore, a root of the given equation.

Ex. 2. Solve the equation y/x + 1 + a; = 11.

Solution. The given equation is (§ 95) equivalent to

Vx + 1 = 11 - x,

whence, squaring, a: + 1 = 121 — 22 a: + a:^,

t.e., a;2 - 23 X + 120 = 0,

, 23 ± V232 - 480
whence x =———

>

i.e., X = 15 or 8,

and, on substitution, it is found that 15 satisfies the given equation if

Vx + 1 means the negative value of this root, while 8 satisfies it if the

positive value of this root is intended.

Ex. 3. Solve the equation ^^l£ + 1 = 0.

Vx
Solution. The given equation is equivalent to

6 — X = — Vx,

whence, squaring, 36 — 12 x + x^ = x,

and therefore x = 9 or 4
;

of which 9 is a root of the given equation if the positive value of the

square root is meant, otherwise 4 is a root.

The above procedure may be formulated thus : (1) isolate the

radical, or one of the radicals, if there are two or more,

(2) hy involution rationalize the given equation, (3) solve

this rational equation, and (4) test the results hy sub-

stituting them in the given equation.

Note 1. Observe that a quadratic irrational equation is ambiguous unless it

is stated which of the two values of the radical is intended.

E.g.t the equation Vx — 5 = really contains in itself two equations, viz.,

Vx— 5= 0* and Vx— 5 = 0; and the equation Vx+ Vs— x = 3 contains in itself

* Let V and V indicate the positive and negative values, respectively, of

the roots.
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four equations, viz., \/z -h ^/5 — x = 3, Va: + VS — x = 3, 'y/z + V5 — x = 3,

and Vx + Vo— X = 3, Hence, in order to avoid ambiguity, it is always neces-

sary to specify in connection with a radical equation which root is intended.

Note 2. It sliould also be observed that if both members of any given equation

be raised to the same positive integral power, then every root of the given equa-

tion will be a root of the new equation thus formed, and the new equation will, in

general, have one or more additional roots which were introduced by the involution.

To prove this, let the members of the given equation be represented by u
and V respectively (where u and v may be expressions containing the unknown
number x) ; then the given equation is u = v, and from this it follows by squaring

that u^=v^, which is equivalent to u^— v^ = 0, i.e., to {u — v){u+ v)=0; but

every root of the given equation makes u = v, i.e., makes u— v^O, and hence

satisfies the equation {ii — v) (w + u) = 0, while the new equation is also satisfied

by those additional values of x which make w + u = 0; hence the correctness of

the above statement.

Similarly if the members of the given equation had been raised to a higher

power than the second.

Hence the roots of any given irrational equation are to be found among the

roots of the equation resulting from rationalizing the given equation, and if none

of the roots of the rational equation prove to be roots of the irrational equation,

then that equation has no root whatever.

E.g., the equation V'Sx + i + 2Vx + 5 - Vx = leads to 3 x2 -f 4 x - 64 = 0,

whose roots are 4 and — V> neither of which is a root of the given equation, hence

that equation has no root whatever.

EXERCISES

4. Show that if the signs of the radicals are left unrestricted, then

the equation V8 a; -j- 4 + 2 Vx -f 5 — Vx = has two roots. What are

these roots?

Solve the following equations, and show what restrictions, if any, must

be made on the signs of the radicals in order that your results shall be

roots of the equations :

5. \/5-a: = a;-5, 11. V4a:-|-1- Va:-f:3:

6. x+V^ = 4x-4Vi. "• V^T^+V.+6=V2x+« + ft.

13. Va:+ 3-l-V4a;-l-l = Vl0x+ 4.

^^ V3 a: + 1 + V3^

8. \/4!/-f 17 + \/z/ + l- 4 = 0. V3F+T - >/3x

^•^ + ^^ = ^«-

^^^ V,37TT+V8^ _,

9. Vx -f 1 -f (a; 4- l)-2 = 2. ^^^
Vx- 2_ Vi-f- 1

Vx + 3 Vx + 21

10. VS + x-l-Vx^A. i6_ J^%6_>'_
\X ^ X ^ X
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Find all the roots of the following restricted equations (cf. note 2,

above), and verify your results

:

17. V^in + V^^^ = 2. 20. V3^^+V^^-2v'^^=0.

18. VxT4:+Vx^^ = -2. 21. V3X-5+ v^^-2Va:-l = 0.

19. vTT5+Vx^^ = 2. 22. Va^^+Vx^-2Vi^=0.
23. By first rationalizing the equation x = VT, and then transposing

and factoring, show (§ 72) that this equation has 3 solutions; i.e., show

that 1 has 3 distinct cube roots, viz. : 1, i( — 1+ V^) and |( — 1— V — 3).

Similarly it may be shown that any number whatever has 3 cube roots

(cf. § 132).

171. Problems which lead to quadratic equations. The directions

already given for solving problems whose conditions lead to

simple equations (§ 26) are also applicable to problems which

lead to quadratic and still higher equations ; the three important

steps are

:

(1) Translate the conditions of the problem into equations,

(2) Solve these equations,

(3) Test and interpret the results.

Special emphasis is to be laid upon the testing and interpreting of

the results, because a problem often contains restrictions upon its

numbers, expressed or implied, which are not translated into the

equations, and therefore the solutions of the equations may or may
not be solutions of the problem itself,— compare the illustrative

problems which follow, and also § 100.

Prob. 1. A farmer purchased some sheep for $168 ; later he sold all

but 4 of them for the same sum, and found that his profit on each sheep

sold was |1. How many sheep did he purchase ?

Solution

Let X = the number of sheep purchased.

1 ftft

Then = the number of dollars each sheep cost,
X

1 OQ
and = the number of dollars received for each sheep,

a? — 4

and hence i^ - 1^ = 1

;

fSi^ee the profit is

X — 4: X L$lon each sheep

therefore (§ 169) x = 28 or - 24.
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The first of these values, viz., 28, is found to be a solution of the prob-

lem as well as of the equation, but while the second satisfies the equation

it can not satisfy the problem, because the number of sheep purchased is

necessarily a positive integer.

Prob. 2. At a certain dinner party it is found that 6 times the num-
ber of guests exceeds the square of f their number by 8 ; how many guests

are there?
Solution

'

Let X = the number of guests.

Then the expressed condition of the problem is

t.e., 2 a:2 - 27 X + 36 = 0,

whence a: = 12 or f

.

Here, too, an implied condition of the problem is that the answer must
be a positive integer, and hence, although f satisfies the equation, it is

not a solution of the problem.

Prob. 3. If 4 times the square root of a certain number be subtracted

from that number, the result will be 12 ; what is the number?

Solution

Let X = the required number.

Then the problem states that a; — 4\/x = 12,

Le., ' a;2 - 40 a; + 144 33 0,

whence a: = 36 or 4.

If the above square root is understood to be positive, then 36 is the

solution, but if the negative root is meant, then 4 is the solution.

Prob. 4. If the number of dollars that a certain man has, be multi-

plied by that number diminished by 4, the product will be 21. How
much money has he ?

Solution

Let X = the number of dollars he has.

Then the problem states that x{x — 4) = 21,

whence a; = 7 or — 3.

Each of these numbers will satisfy the conditions of the problem, pro-

vided, in the case of the second, that a negative possession be regarded as

an indebtedness; i.e., the man may either possess $7, or he may owe |3.
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Prob. 5. The sum of the ages of a father and his son is 100 years,

and one tenth of the product of the number of years in their ages, minus

180, equals the number of years in the father's age ; what is the age of

each ?

Solution

Let X = the number of years in the father's age.

Then 100 — x = the number of years in the son's age,

and the condition of the problem states that

a:(100-.)_^3Q^
10

whence a; = 60 or 30.

Although each of these numbers is a positive integer, yet the second

is not a solution of the problem, since it would make the son older than

the father. Hence the father is 60, and the son 40 years old.

If, in the above problem, "two persons" be substituted for "a father

and his son," then both solutions are admissible, and their ages are

either 60 and 40, or 30 and 70 years.

PROBLEMS

6. Find two numbers whose difference is 11, and whose sum multi-

plied by the greater is 513.

7. A man purchased a flock of sheep for $75. If he had paid the

same sum for a flock containing 3 more sheep they would have cost him

$1.25 less per head. How many did he purchase?

Is each solution of the equation of this problem a solution of the prob-

lem itself? Why?

8. A clothier having purchased some cloth for $30 found that if he

had received 3 yards more for the same money, the cloth would have cost

him 50 cents less per yard. How many yards did he purchase? Has
this problem more than one solution?

9. Divide 10 into two parts whose product is 22|.

10. Find two numbers whose sum is 10 and whose product is 42. Are

there any two real numbers which satisfy these requirements?

11. Find two consecutive integers the sum of whose squares is 61.

How many solutions has the equation of this problem? Show that each

of these solutions of the equation is also a solution of the problem itself.
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12. Are there two consecutive integers the sum of whose squares is

118? Are there two numbers whose difference is 1, and the sum of

whose squares is 118? What are they? How does the second of the

above questions differ from the first ?

13. Find three consecutive integers whose sum is equal to the product

of the first two.

14. Is it possible to find three consecutive integers whose sum equals

the product of the first and last? How is the impossibility of such a set

of numbers shown ?

15. If the number of eggs which can be bought for 25 cents is equal

to twice the number of cents which 8 eggs cost, what is that number?

How many solutions has the equation of this problem ? Is each of these

a solution of the problem itself ? Explain.

16. A farmer, having taken some eggs to market, found that their

price had risen 2| cents per dozen, and he also discovered that he had

broken 6 eggs. He received $2.88 for his eggs, which was exactly what

he would have received if he had broken none, and if the price had not

risen. How many eggs did he take to the market?

Is each solution of the equation of the problem a solution of the prob-

lem itseK ? Explain.

17. Find two numbers whose sum is f, and whose difference is equal

to their product. How many solutions has this problem ?

18. The product of three consecutive integers is divided by each of

them in turn, and the sum of the three quotients is 74. What are these

integers? How many solutions has this problem? Explain.

19. If the product of two numbers is 6, and the sum of their recipro-

cals is II, what are the numbers? How many solutions has the equation

of this problem? How many solutions has the problem itself? Explain.

20. A merchant who had purchased a quantity of flour for |96 found

that if he had obtained 8 barrels more for the same money, the price per

barrel would have been $2 less. How many barrels did he buy? How
many solutions has this problem? Explain.

21. Why is it that the solutions of the equation of a problem are not

always solutions of the problem itself? Compare the last paragraph in

§171.

22. The area of a rectangle is 55^ sq. in., and the sum of its length

and breadth is 15 in. How long is the rectangle ?
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23. Find the length of a rectangle whose area is 464 sq. in., and the

sum of whose length and breadth is 16 in.

What is the interpretation of the imaginary result in this problem

(cf. note 1, § 100) ? Does an imaginary result always show that the con-

ditions of the problem are impossible of fulfillment (cf . Prob. 10, above) ?

24. A boating club on returning from a short cruise found that its

expenses had been $90, and that the number of dollars each member had

to pay was less by 4| than the number of men in the club. How many
men were there in the club ?

25. If in Prob. 24 the expense of the cruise had been $145, the other

conditions remaining unchanged, how many members would the club

contain ?

What is the significance of the fractional and negative results in this

problem ? Do such results always indicate that the conditions of a prob-

lem are impossible of fulfillment ?

26. The cost of an entertainment was $20, and was to have been

shared equally by those present. Four of them, however, left without

paying, and this made it necessary for each of the others to pay 25 cents

extra. How many persons attended the entertainment?

27. The number of miles to a certain city is such that its square root,

plus its half, equals 12. What is the distance ?

Has this problen\ more than one solution? Explain.

28. When a certain train has traveled 5 hours it is still 60 miles from

its destination ; if it is also known that, by traveling 5 miles faster per

hour, 1 hour could be saved on the whole trip, what is the entire distance?

And what is the actual speed ?

29. The diagonal and the longer side of a rectangle are together five

times the shorter side, and the longer side exceeds the shorter by 35 yards.

What is the area of the rectangle ?

30. It took a number of men as many days to dig a trench as there were
men. If there had been 6 more men, the work would have been done in

8 days. How many men were there ?

31. A crew can row 5J miles downstream and back again In 2 hours

and 23 minutes ; if the rate of the current is 3| miles an hour, find the

rate at which the crew can row in still water.

32. A crew can row a certain course upstream in 8f minutes, and if

there were no current, they could row it in 7 minutes less than it takes

them to drift down the stream. How long would it take them to row
the course downstream ?
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33. The hypotenuse of a right-angled triangle is 10 inches, and one of

the sides is 2 inches longer than the other ; required the length of the

sides.

34. From a thread whose length is equal to the perimeter of a square,

one yard is cut off, and the remainder is equal to the perimeter of

another square whose area is | of that of the first. What is the length

of the thread at first?

35. If one train by going 15 miles an hour faster than another, requires

12 minutes less than the other to run 36 miles, what is the speed of each

train ?

36. A tank can be filled by one of its two feed-pipes in 2 hours less

time than by the other, and by both pipes together in IJ hours. How
long will it take each pipe separately to fill the tank ?

37. A man who owned a lot 56 rods long and 28 rods wide constructed

a street of uniform width along its entire border, and thereby decreased

the available area of the lot by 2 acres. What was the width of the

street?

38. Of two casks, one contains a certain number of gallons of water,

and the other | as many gallons of wine; 6 gallons are drawn from

each cask, and then emptied into the other, after which it is found that

the percentage of wine is the same in the one cask as in the other. How
many gallons of water did the first cask originally contain?

39. A and B together can do a given piece of work in a certain time

;

but if they each do one half of this work separately, A would have to

work 1 day less, and B 2 days more, than when they work together. In

how many days can they do the work together ?

40. In going a mile, the hind wheel of a carriage makes 145 revolu-

tions less than the front wheel, but if the circumference of the hind wheel

were 16 inches greater, it would then make 200 revolutions less than

the front wheel. What is the circumference of the front wheel ?

172. Equations above second degree, but solved like quadratics.

Two important classes of equations of higher degree than the

second can be solved like quadratics ; they are discussed below,

(i) Equations in the quadratic form. Equations which

contain only two different powers of the unknown number, the

exponent of one being twice that of the other, may all be reduced

to equivalent equations of the form ax^"" + &ic" + c = ; such equa-

tions are said to be in the quadratic form, and may be solved like

quadratics.
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Eac. 1. Solve the equation 2 x^(x^ + 1) = 6 - z^

Solution. The given equation is equivalent to 2 x* -{- 3 x^ — 5 = 0,

and on putting y in place of the lower power of x, i.e., putting y = x^,

this equation becomes
2y^ + 3y-5 = 0,

whence ^ = llliJ^SE, ,;§ igg

i.e.,

and therefore

whence

i.e., the roots of the given equation are : + 1, — 1, + ^ V— 10, and

- ^ V3T0.

Ex. 2. Solve the equation x^ + 6 x^ = 3 + a;^ — a;3.

Solution. The given equation is equivalent to 2 x^ + 5 a; * — 3 = 0,

or, on putting y ior x^,to 2y^ + 5y — 3 = 0-,

whence

i.e.,

and therefore

whence

Ex. 3. Solve the equation \^x^-^5x + 10 = 2 x^ - 10 a: + 14.

Solution. Since the rational part of this equation is, so far as the

terms containing x are concerned, simply a multiple of the part under the

radical, therefore the equation may be easily transformed into the quad-

ratic form ; thus, the given equation is equivalent to

y =
— o± V25 + 24

4

y = h or -3,

.1 = h or -3,

X = i or -27.

Va:2 - 5 a; + 10 = 2 (a;2 - 5 x + 10) - 6
;

and, on letting y stand for Vx^ _ 5 x + 10, the given equation becomes

y = 2y'^-Q,

whence y = 2 ov — f

,

i.e., Va;2 _ 5 a: + 10 = 2 or - f

,

and therefore a;^ — 5 x + 10 = 4 or |,

whence a: = 2, 3, ^.A^^Zl or 5^:2^.
2 2
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EXERCISES

4. Show that rationalizing the equation given in Ex. 3, leads to an
equation of the 4th degree. Is this rational equation easily reduced to

the quadratic form? Of the methods of §§ 170 and 172 which is prefer-

able in such equations ?

14_ y2 i, + 1 _ 7

Solve the foilowing equations

5. X*- 8a;2 + 12 = 0.

6. 3d:6 -4 v^ = 10.

7. x^ +
1 _
x^

8. .-.yl = 6.

y + 1 y2 12

[Observe that ^-^ is the reciprocal

of -^.1
v + lj
v^ -

y + 2 2(y2 + 4) _ 5115. JLJUL^
9. a;2-7a: + Va;2-7a;-l-18=24. 3/2^.4' ^^2 5

10. (z2 +1)2 + 4 (x2 + 1) = 45. 16. a:4 + 4 a;8 - 8 x + 3 = 0.'

11. x2-5a:+2Vx2-ox-2 = 10. 17. 3/* + 2 ?/3 + 53/2 + 4 ^ ^ 60.

12. a;-t + 5 a^'s +4 = 0. 18. 16 a;* - 8 a:^ - 31 a;2 + 8 a:

13. (12_i\V8(12_iU33. +15 = 0-

V w / \u J 19. a;8 + 2 a:2 - 9 a: = 18.

(ii) Reciprocal equations. An equation which remains un-

changed when, for the unknown number, its reciprocal is sub-

stituted, and the new equation is cleared of fractions, is called a

reciprocal equation.

Reciprocal equations of the fifth and lower degrees are readily

solved like quadratics, as is shown in the following examples

:

Ex. 1. Solve the equation ax^ + &a:2 + 6a; + a = 0.

Solution. This equation is equivalent to a (a;^ -f- 1) -f bx (x + 1) =0,

i.e., to (^ + 1) • {« (a:2 - X + 1) + hx} = 0,

which is equivalent to the two equations,

X + 1 = and ax^ — ax -{• bx + a = 0,

from which the values of x are easily found.

* By extracting the square root of the first member, show that this equation

may be written in the form (a;2 + 2 a; — 2)2 = 1, from which the complete solution

readily follows.
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Ex. 2. Solve the equation ax* + bx^ + cx^ } bx -\- a = 0.

Solution. This equation is equivalent to ax^ -\-bx + c-\ h — = 0,

i.e., to a(x^ + -\ +b(x + -]-{- c = 0;

1 f 1\^
and, remembering that x^ + — = i x -\- - ) — 2,

this equation becomes a(x+-] +blx+-\ + c — 2a=:0.

Now, on putting y for x -{--, this last equation becomes
X

aif + by + (c - 2 a) = 0,

whence y =
- ^>± ^^'-4a(c-2a) ^ ^^ ^^^^ ^^^ -j^^ ^^ ^^^ .

then af + - = k., and x H— = ^9,
X X "

i.e., a;2 - ^^a: + 1 = 0, and x'^ - k.p: + 1 = 0,

whence the four values of x are easily found when a, 6, and c are known.

EXERCISES

3. Prove (from the definition) that if ax^ + bx'^ + cx^ + tZx^ + ea;+/=0

is a reciprocal equation, then a = f, b = e, and c = (/, or a = — /, J = — e, 1

and c = — d. Also generalize this result.
'

4. Show from Ex. 3, by grouping terms as in Ex. 1, that a reciprocal

equation of odd degree contains the factor a: + 1 or a: — 1.

5. By comparing Ex. 3, show that every reciprocal equation of even

degree may have its terms grouped as in Ex. 2.

Solve the following equations

:

6. 2x8 + 3^2+ 3a; + 2 = 0. 8. ^^ - 3 ?/» + 4?/2 = 3?/ - 1.

7. a:4 + a;8-4a;2 + a;+ 1 =0. 9. 3a;H6a;4-2 a;8-2a;2+ 6a: + 3 = 0.

173. Maximum and minimum values of quadratic expressions. I

Evidently such an expression as 3 + 5 ic — a?^ will, in general, have ^

different values when different values are assigned to x ; and it is

often important to determine the greatest or the least value (i.e.,

the maximum * or the minimum value) that such an expression may
have, for real values of the letter or letters involved in the

expression.

* While this definition is somewhat narrow, it serves present purposes best.
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Ex. 1. Find the maximum value of the expression 3 + 5 x — z^, for

real values of x.

Solution. Let m stand for the numerical value of the given expression,

i.e., let 3 -{- 5 X — x^ = m.

Then x^ - 5 x + m - 3 = 0,

, 5 ± V25 - 4(7/1 - 8) 5±V87-4/n .. ,««whence x = —^ ^ 1 = -^ [§166

From this last expression it is clear (§ 167) that x will be real only so long

as 4 my>S7,i.e., so long as m>>^V 5 hence the greatest value that the given ex-

54- v37—-4w
pression may have, while x is real, is ^^. Moreover, since x= '-^—

,

therefore, x — | when m = V ; «-e-) f is the value of x which gives the

above expression its maximum value.

Ex. 2. Find the least positive value of x + - , for real values of x.

1
^

Solution. Let x +-= m. [Wherein m is positive
X

Then x^ - mx + 1 = 0,

1 m ± Vm^ — 4
whence x = —=^=

—

In order that x may be real, m^ — 4 < 0, i.e., m < 2; hence the least

positive value of m is 2 ; and the corresponding value of x is 1.

Note. This exercise may also be solved thus: for any real value of x,

(x— 1)2<0, i.e., x2 — 2a; + l<0, whence cc2 4- 1^ 2 x-, whence x+ -<2— since

the problem requires that x be positive (why?) — i.e., 2 is then the least value of

x + -
; and the expression takes this value when x = l.

X

Ex. 3. Find the range of values of the fraction ' "
, for

real values of x.

Solution. Let

Then

a:2_6a: + 2_
x+1

;2 _- (6 + m)x + 2 - m =

whence x = ^ + ^ ±^(^ + ^0' - ^("- ^) = 6 + m j: Vm2+ 16 >» + 28

Hence, in order that x may be real,

m2 + 16 m + 28 < 0,

i.e., (w + 14) • (m + 2)<0,

and, therefore, the factors m + 14 and m + 2 must both be positive or

both be negative (in order that their product shall be positive) ; hence m
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may have any value whatever from -co to — 14, and from — 2 to + oo,

but it can not have a value between — 14 and — 2. In other words, for

real values of x the given fraction has no value between — 14 and — 2.

Ex. 4. A window consisting of a rectangle surmounted by a semi-

circle, is to have a perimeter of 18 ft. ; what shall be the dimensions of

the rectangle in order that the window shall admit the maximum amount

of light? And what will be the window's area?

Solution. Let x stand for the number of feet in the width of the win-

dow; * then - is the radius of the semicircular part, and tt- is the semi-

circle's length. And since the entire perimeter is 18 ft., therefore the height

of the rectangular part must be | ( 18 — x — tt-
j

, i.e., 9 — 2!_Jl_ x.

From these dimensions it follows at once that the area of the window is

hence, if a represents the area,

9 a:- "^^-t^^a = a,
8

whence (tt + 4)a:2 - 72 x + 8 a = 0.

Solving this equation gives

^^ 36±V(36)2-8a(,r + 4)

7r + 4

and hence, in order that x be real,

(36)'-^ - 8 a(7r + 4)< 0, i.e., a> —^^^^, which is 22.68 (nearly)
;

8(7r + 4)

hence the maximum area of the window is nearly 22.68 sq. ft. ; and the

width and height are, therefore, (nearly) 5.04 ft. and 2.52 ft., respectively.

EXERCISES

For real values of x, find the maximum, or the minimum, value of each

of the following expressions ; also the corresponding value of x

:

5. x^-8x+ 10. 6. 9 - 2a;2 + 16a:. 7. 12 + x^ -2ax.

8. Find the range of values of
^^ + ^ ^ - ^

.

9. Find the dimensions of the largest rectangular field that can be

inclosed by 160 rods of fence. How many acres does this field contain ?

* The student should draw a figure to represent the window ; it will make the

solution easier to understand.
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10. Solve Ex. 9 if a be substituted for 160.

11. Divide 20 into two parts such that the sum of their squares shall

be a minimum.

12. A man who can row 4 miles per hour, and can walk 5 miles per

hour, is in a boat 3 miles from the nearest point on a straight beach, and

wishes to reach in the shortest time a place on the shore 5 miles from

this point. Where must he land?

II. QUADRATIC EQUATIONS IN TWO OR MORE UNKNOWN
NUMBERS

174. Introductory remarks. The really essential thing in solv-

ing any system of simultaneous equations, is first to combine the

given equations so as to eliminate all but one of the unknown num-
bers, and then to solve the resulting equation containing that

unknown number. When each equation of the given system is of

the first degree, this elimination, as well as the solution of the

resulting equation, is easily effected (§ 112) ; but these operations

become much more difficult if one or more of the given equations

is quadratic, or of a still higher degree.

The next few articles are devoted to a study of the procedure in

cases where the given system consists of two equations one or

both of which are quadratic.

175. One equation simple and the other quadratic. In this case

elimination by substitution (cf. § 107) is usually advisable.

Ex. 1. Solve the following system of simultaneous equations

:

3:^-2^=3,
1 (1)

,.lX^ + 4:f=ld.} (2)

Solution. From Eq. (1), x = i±-^, (3)
o

whence, by substituting this value of x, Eq. (2) becomes

+ 4 2/2 = 13, (4)(H^J
and, on expanding and simplifying, Eq. (4) becomes

lOy^+Sy-27 = 0, (5)

whence (§ 164) y = I or - |. (6)
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But Eq. (3)— also Eq. (1) — shows that to every value of y corresponds

one, and only one, value of x ; and that when ?/ = f then x = 2, and when

y = — f then x = — ^. It is, moreover, easily verified that each of these

pairs of numbers is a solution of the given system of equations.

Manifestly the above method is applicable whenever one equa-

tion of the given system is simple and the other quadratic.

EXERCISES

Solve the following systems of equations and verify the correctness of

your results

:

^
(4x-\-Sy = 9,

[2x^ + 5x!j = 3.

^
(x^ + xy-

[x-y = '2.

.
r(^ + 3)(.y-7)=48,

*•

[x + y=lS.

. ( 2s + St = 10,

12 = 0,

uv — V = 10 u,

+ 2 = v.

^ (2x^-\-y^ = 3xy-^U,
' [2x-y = 7.

(1Q + 4:v + 2u^ = 5uv,

[llv-5u = 4..

9.

10.

x^ -\- 2 X + y _ 4

^2 _ 5 X + 3
~

9

xy

2 1

+H=i+4

= 7.*

11. Write a rule for solving a pair of simultaneous equations one of

which is simple and the other quadratic, and which contain two unknown
numbers. Could two such equations containing three unknown numbers
be solved? Compare § 111 note, and explain.

12. How many solutions has each of the above systems of equations

(Exs. 2-10) ? Has every such system two solutions, and only two ? Why
(see also § 176, Exs. 1 and 2) ?

176. Principles involved in § 175. The success of the method
of solution employed in § 175 depends upon the fact that, if X, Y,

* Solve first for - and 1-
X y
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and Z represent any expressions whatever which contain either

X or y, or both, then the system of equations

I Y'Z=0,}
is equivalent to the two systems

r.::;) - If:::!
To prove this equivalence, it need only be observed that every solution of

either of the last two systems is evidently a solution of the first system; and
every solution of the first system is found among the solutions of the last two
systems, for it must make X=0 and also either F= or Z = 0.*

EXERCISES

1. By means of the proof just given show that Ex. 1, § 175, has two
solutions, and only two.

Suggestion. The given system of equations is equivalent to Eqs. (1) and (5)

(Why ?), and Eq. (5) may be written in the form (2 ?/ — 3) (5 ?/ + 9) = 0. Compare
also § 108 (iii) and § 111.

2. By means of the suggestion just given show that every system con-

sisting of two equations, one of which is simple and the other quadratic,

and containing two unknown numbers, has two solutions, and only two.

3. Show that the solutions mentioned in Ex. 2 may be imaginary

(cf. Ex. 6, § 175), and also that one or both of these solutions may be

infinite (cf. note, §168).

4. In the solution of Ex. 1, § 175, are Eqs. (2) and (6) equivalent to

the given system ? May then the values of y from Eq. (6) be substituted

in Eq. (2) to find the corresponding values of x? In which two equations

may they be substituted? Why? Does your "rule" (Ex. 11, § 175) pro-

vide for this ?

177. Both equations quadratic,— one homogeneoust. If both of

the equations of a given system are quadratic, then elimination

by substitution, as in § 176, leads to an equation of the 4th degree

( W • X= )

* Similarly it may be shown that the system
J
„ 7 _ n' [

^^ equivalent to the

four systems
{ j.^^|, j^^^j. j j. ^ ^^

j
, and

j ^ ^ J .

t An equation is said to be homogeneous if all of its terras are of the same
degree in the unknown numbers (cf. § 41).
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»

in one of the unknown numbers,* and this equation can not, in

general, be solved by the methods already studied.

If, however, one of the given equations is homogeneous, then the

solution of the system may always be made to depend upon the

solution of a quadratic equation in one unknown number ; this is

illustrated below.

Ex. 1. Solve the following system of equations

:

r6x2^-5xy-6^/2 = 0,| (1)

\ 2x^-y^+5x = 9.l (2)

Solution. On dividing Eq. (1) by y% it becomes

6(^y+5(.^)-6 = 0, (3)

whence (§ 164) ^ = |, or ^ = - |, (4)
y d y 2

i.e., x = ly,orx = -^y. (5)

On substituting the Jirst of these two values of x, viz., |y, in Eq. (2),

that equation becomes

2(|y)2-3/2 + 5(fy)=9, (6)

i.e., y'-30y + 81 = 0, (7)

whence (§ 164) y = 27 or y = 3, (8)

and, since x = ^y, the corresponding values of x are 18 and 2.

By substituting these pairs of numbers, viz., x=18, y = 27, and x = 2,

y = 3, in the given system of equations, it is easily verified that each pair

is a solution of that system.

Similarly, if the second of the two values of x in Eq. (5), viz., — f y, be

substituted in Eq. (2), two other solutions of the given system of equa-

tions will be found; these are : x = —
^, y = S, and x = f , y = — f

.

It is, moreover, evident that every such system of equations may be

solved by this method.

Note 1. The success of the method of solution here employed is due to the

fact that the two systems of equations from which the values of x and y were
finally found, are together equivalent to the given system.

* For example, given the system x^— Sx + Sy = 4: and Sx^— Ifi y^+ 20 y = 9.

Solving the second of these equations for y gives y = i (5± \/l2a:^— 11), and
on suhstituting this value of y, Eq. (1) becomes a;2_ 3 a- -j- 5 -j- Vl2 a;2— 11 = 4,

which, when rationalized, is x*— 6 a;8— a;2— 6 a; + 12 = 0.
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This equivalence may be seen by writing the given system thus

:

and recalling that, by § 176, this system is equivalent to the two systems

[2a;2— 2/2+ 5x = 9, J \2x^— y^+ 5x = 9,

)

from which the above solutions were obtained.

Moreover, since each of these systems has two solutions, and only two (§ 176),

therefore the given system has four solutions, and only four.

Note 2. In practice the above method may be somewhat simplified by putting

a single letter, say v, in place of the fraction - in Eq. (3), i.e., by putting x = vy
y

in the homogeneous equation. Thus, on substituting vy for x in Eq. (1), it becomes

6 «2j/^+ 5 ?;|/2 _ 6 2/2 = 0,

and hence, dividing by ?/2, 6 ?;2 -|- 5 ^ — 6 = 0,

whence (§ l&i) w = f or w =— f

;

and, since x = vy, therefore a; = | y and x=~^y. From here on the work is the

same as that already given.

EXERCISES

Solve the following systems of equations and verify the correctness of

your results :

5x'^ + ^xij = y% ( 2{x^ -}- f) = 5 xy,

a;2 + 3x = 5+ I/.
' \x^-y^=^75.

^ fx^^xij-U = y-x, ^ (x^-2xy-Sy^ = 0,

[2x^-3y^ = xy.
'

\ y(x -\- y) = ^.

6. Show that every such system of equations as those above has four

solutions (real or imaginary, finite or infinite), and only four.

178. Both equations homogeneous in the terms containing the

unknown numbers. The solution of a system consisting of two quad-

ratic equations, each of which is homogeneous m the terms which

contain the unknown numbers, is easily made to depend upon § 177.

Ex. 1. Solve the following system of equations

:

I

3^2 + 3x^ + 22/2 = 8, (1)

I a;2 _ X2/ - 4 2/2 = 2. (2)

Solution. On subtracting Eq. (1) from 4 times Eq. (2), the result is

a;2 _ 7 ^y _ 18 ^2 ^ 0, (3)

and the given system of equations is equivalent to the system consisting

of Eq. (3) together with either Eq. (1) or Eq. (2) ; but of this last system

Eq. (3) is homogeneous, and hence the system can be solved by the method

of § 177.
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r x2 - 7
i.e., solve the equations \ „

EXERCISES

2. By the method of § 177 complete the solution of Ex. 1 above,

xy -42/2 =

and verify the correctness of your results -

Solve the following systems of equati( and verify your results

:

3 (4:X^-xy-S2f = 2,
^ ^ ( y^ -\- 15 = 2 xy,

[x^+Qxy-y'' = ~Q,
^^,

\x^ + y^ = 21 + xy.

(2x^-xy = 28,
g I

ta:2 + 2 2/2=18. '

[

2x^-xy = 28, ^ {x'^+6xy = 3-6y%
x^-2o = 2y(y -\-2x).

7. Substitute vy for x in each of the equations of Ex. 6 ; then solve each

of the resulting equations for y^ in terms of v ; from the first equation
3 25

you will find y^ = ——
, and from the second, y^ = —— -; now

equate these two values of y% solve the resulting equation in v, and from

its values find the values of y, and thence the corresponding values of x.

8. Solve Exs. 4 and 5 above, by the method outlined in Ex. 7.

9. Is the method of Ex. 7 easier or more difficult than that outlined

in Ex. 1 ? In what respect ?

10. Is the method of Ex. 7 applicable to all such exercises as those

given above?
( Sx^- 5xy-4:y^ = 3x,

11. Solve the system ^•^

[9x^-\- xy-2y^ = Qx.

Suggestion. Subtract the second of these equations from twice the first, and

then proceed as in Exs. 1 and 2 above.

12. By the method of Ex. 11, solve the following system of equations,

and verify your results

:

(4:X^ + Qxy-y^ = ly,

\Qx^ -Qxy -\-2y^ = 2y.

13. Show that the method suggested in Ex. 11 may be successfully

applied to any system of equations whatever of the form

ax^ + hxy + cy^ = dx,

a'x^ + b'xy + c'y^ = d'x.

14. Could the method suggested in Ex. 7 be employed in such systems

of equations as those given in Exs. 11, 12, and 13 ? Explain.
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Solve the following systems of equations, and verify your results

:

c^ — XT/ — y^ = 2

:2 - 3 x?/ + 2 3/2

r2 - xy - ?/2 = 20, (u^ + 3uv + v^= 61,

^^'
^

- - - -
'

I m2 _ y2 = 31 _ 2 My.

2 3
17. i

I

4_ 4y2 _ y2 + 2 xy

[3 !;-l~2(l-a;)'

179. Special devices. . kinds of systems of equations speci-

fied in §§ 175, 177, and 1 >ccur frequently, and, although they

present themselves in a grt. u variety of forms, they may always be

solved by the methods there given.

It is worth remarking, however, that special devices of elimina-

tion sometimes give simpler and more elegant solutions, not only

for the systems already considered, but also for many others which

need not now be classified. Some of these special devices are

illustrated in the following examples, where it is also shown that

they apply to some exercises in which equations above the second

degree are involved.

Facility in the use of these special devices can be acquired only

by practice, but a little study of any particular problem will often

suggest a suitable method for attacking it.

x-y = 6, (1)

xy = -Q. (2)

Solution. From Eq. (1), x'' - 2 xy + y^ = 25, (3)

fromEq. (2), 4 2:3/ = -24, (4)

adding Eq. (4) to Eq. (3), x^ + 2 xy + y"^ = 1, (5)

whence x + y = ±1; (6)

and from Eq. (1) and Eq. (6), a; = 3 or 2.

The corresponding values of y are ?/ = — 2 or — 3.

Observe that this exercise belongs to the class of § 175, and could have been

solved by the method tlere given.

+ 3a;2/ = 54, (1)

a:?/ + 4 2/2 = 115. (2)

Solution. On adding Eqs. (1) and (2), we obtain

a:2 + 4 a:?/ + 4 ?/2 = 169,

i.e., ix + 2yy=m, (3)

whence x + 2 y = ± 13. (4)

Ex. 1. Solve the equations
1 ^ ^ ^o>

f
x^

Ex. 2, Solve the equations \
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From the first of the two equations in (4), and either Eq. (1) or Eq. (2),

by § 175, it is found that x = S, y = 5 and x = 3Q, y = — 11^ are solutions.

Similarly, by using the second equation in (4), it is found that x'= — 36,

y = 11 J and x = — 3, y = — 5 are also solutions of the given system of

equations.

Observe that this exercise belongs to the class of § 178, and could have been

solved by the method there given.

r a:2 + 2/2 = 6, (1)
Ex. 3. Solve the equations

\ ^

,

^ ^^ [xy = 2(x-\-y)-5. (2)

Solution. On adding 2 times Eq. (2) to Eq. (1), we obtain

x^ + 2xy + y^ = ^x + y)-^y - ^ (3)

i.e., (x + 3/)2 - 4(a: + 2/) + 4 = ; W^\^ )
^
^J (4)

whence x -\- y = 2. ^- (5)

Substituting this value oi x -{ y in Eq. (2) gives

xy = ^-5 = -l; (6)

and 2 times Eq. (6) subtracted from Eq. (1) gives

x^-2xy + y^ = S, ' (7)

whence x - y =±2\/2, (8)

From Eq. (5) and Eq. (8), it follows that x = 1 + a/2, y = 1 - V2, and

X = 1 — V2, y = 1 + a/2 are solutions of the given equations.

Equations like those in Ex. 3, which are not changed by inter-

changing X and y, are usually said to be symmetric with regard to

those letters.

If the equations of a given system are symmetric, or symmetric

except for the signs of one or more terms, their solution is often

facilitated by substituting u+v for one of the letters and u—v for

the other ; this method of solution is illustrated in Exs. 4-6 below.

f x^ + w2 =r 6, (1)
Ex. 4. Solve the equations !

' '

.„.
\xy = 2(x + y)-5. (2)

Solution. On putting x = u -{- v and y = u — v, the given equations

become, respectively,

2 m2 + 2 y2 = 6, and m2 _ „2 = 4 ^^ _ 5

.

(3)

therefore, eliminating i?2 and simplifying,

u2 - 2 w + 1 = 0,

whence - w = 1.
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Substituting this value of u iu either one of Eqs. (3), gives

v=±V2,
whence (since x = u + v, and y = u — v)

X = 1 ± \^, and 3/ = 1 T V2,

which agrees with the result found in Ex. 3 above.

Ex. 5. Solve the equations -i

'

\x-y = 5. (2)

Solution. On putting x = u + v, and y = u — v^ the given equations

become, respectively, ^2 _ „2 ^ _ g, and 2 . = 5. (3)

From the second of these, w = |,

and substituting this in the first gives

whence a: = 3 or 2, and y = — 2 or — 3 (cf . Ex. 1, above)

.

„ ^ o 1 , . [ x^ + y^ = xy — h,
Ex. 6. Solve the equations \

1 X + ?/ + 1 = 0.

Solution. On putting x = u + v and y = u — v, the given equations

become, respectively,

2 w3 _f. 6 My2 _ ^2 + y2 4. 5 ^ 0, and 2 u + 1 = 0.

From the second of these equations,

u =- i,

and substituting this value in the first gives

y =± f,

whence x = 1 or — 2, and ?/ = — 2 or 1.

x^ + y^= 17, (1)
Ex. 7. Solve the equations , „

' x + y = 3. (2)

Solution. This example may be solved like Exs. 4, 5, and 6 ; another

solution is as follows :

On raising each member of Eq, (2) to the 4th power, we obtain

x^ -\- i x^y -\- 6 xhf + 4 a:2/3 + y4 ^ 81, (3)

whence, by subtracting Eq. (1) from Eq. (3) and simplifying,

xy (2 x2 + 3 a:?/ + 2 y"^) = 32
; (4)

from Eq. (2), 2 x2 + 3 xy + 2 y^ = 18 - xy, (5)

whence, on substituting from Eq. (5), Eq. (4) becomes

x^/(18-xy)=32, (6)

Le., (xyy - 18 (xy) + 32 = 0, (7)

whence (§ 164) xy = 2 or 16. r (8)



,
x8-8= (X2-/)V, (1)

Ex. 9. Solve the equations '
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By combining Eq. (8) with Eq. (2) it is now easy to show that

X = 1, 2, or^ ,

and the corresponding values of y are

O ^ y/ KK

y = 2, 1, and ^
, respectively.

If one of two equations is exactly divisible by the other, mem-

ber by member, their solution may often be greatly simplified, as

is shown below.

ra;2-3/2=3, (1)
Ex. 8. Solve the equations \ ^ ^^.

[ x-y=l. (2)

Solution. On dividing Eq. (1) by Eq. (2), member by member, we

obtain 3, ^ 2/ = 3, (3)

whence, from Eqs. (2) and (3),

X = 2, and y = 1.

r x8 - 8 =

[ x + y = 2. (2)

Solution. By transposing, Eq. (2) becomes

x-2=-y, (3)

and, dividing Eq. (1) by Eq. (3), member by member, we obtain

a;2 + 2 a: + 4 = - a;2 + ?/2, (4)

whence, from Eqs. (2) and (4), by § 175,

a; = or — 6, and ^ = 2 or 8.

Note. That this method of division must be applied with some caution is,

however, evident from Ex. 9, for, while it is easily verified that the two pairs of

numbers there found are solutions of the given system of equations, that system

has another solution, viz., x = 2, and y = 0, which the above process has failed to

reveal. This last solution is found by equating each member of Eq. (3) sepa-

rately to zero.*

* The general theory for such cases may be stated thus : if P, Q, E, and S
represent any expressions whatever, which contain either a; or ?/ or both, then

( P'Q=R'S,]
the system of equations < ^ Ms equivalent to the two systems

I -P = "S, J

Q = R,
\

r P = 0, 1

n „ t
S'lid ] „ y because every solution of either of the last two sys-P = S, j [ 5 = ; J

tems is evidently a solution of the first system, and every solution of the first

system is found among the solutions of the last two systems.

In Ex. 9 above, P=x — 2, S = -7j, Q= x^ + 2x + 4:, and R = — x^ + y^.



179] QUADRATIC EQUATIONS 307

Ex. 10. Solve the equations

1 + i 13.

Solution. These equations being fractional, the first step toward their

solution would ordinarily be to clear them of fractions ; in cases like this it

is, however, easier to regard - and - as the unknown numbers, and to
X y

eliminate without first clearing of fractions.

If, for brevity, u and v be substituted for - and -, respectively, the

given equations become, respectively,
"

and

whence (§ 175)

and therefore

3 M - 2 y = 3,

m2 _|. 4 „2 = 13^

M = 2 or — I, and u = | or —
|,

a; = J or — 5, and 2/ = | or — |.

EXERCISES

Solve the following systems of equations

x'^-\-y^ = 13,

xy

I
6.

12. ^^^ + ^^ = 1-

25 a:y 4- 12 = 0.

a;2 + 7/2 + a: = ?/ + 26,

xy = 12.

V.2 j^ „2

13.

14.

15.

16.

17.

r x2 + ?/2 = a,

yx-]-y = h.

r m2 4. j,2 := 61,

\u + v = 11.

1 + 1 = 0.
xy l^

1 1

a:2 ^-

1 1

l + i = 74,
.2 ^ „2 '

= 2.

18.

19.

20.

21.

22.

] y X

[x -y -

r a:3 + f
[x + y --

{r^ -p
[r-p =

1+i:
X^ yS

( x^ + y^

1 x^ + ?/^

16
15'

z2.

= 26,

--2.

= 91,

7.

91,

23.
\''^'^'

[x + y =

7.

= 2,

= 26.

a,

24.

2/

a:^+ ?/*

X + y =

97,

• 1.
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, rri^n^ =96-4 n,n, ' ( x + y . x -y _ 10
25. «« + —

26.

J

rri'n^ = 96 -

\m + n = 6.

(x^-\-xy-\-y^ = 8^,
- ^

\x-Vry-,y = ^. 33. (
^(-^ + ^^)

[ X-^ + y-l
:

32. \ X - y X + y 6

+ y^ = 45.

: 5xy,

1.5.

27. !„,,„ ,,_,o o. f(2 + :r)(2/ + l) = 4
.s8 - ^8 = 37,

s« (s - f) = 12. 34.
(2 + x)^-(i/ + l)i = i.

28.
Va; + Vy = 7. 35

x'-^ — 3 a;?/ + ?/2 = 5,

a;4 + V* = 2. 36.

I 2 Va; + 2/ = 2Vx -y + d.

36.

37.

5 a;-2 _ (a;2,)-i + 2 2/-2 z= 3.

30.
a; + y + 2Vx + y = 24,

f 3 a:^ + 3 a;?/"! = 5^

— y + 3va; — y = 10. I 3 a:.y + 3 x-^y = 2.5.

31.
,^^^ + ^^+6V^^T?=55, 38.,_&_!.^^_,.«_5.
|x2- ,^ = 7. y X

180. Systems containing three or more unknown numbers. Al-

though the solution of a system consisting of three or more

simultaneous quadratic equations (involving as many unknown
numbers as there are equations in the system) can not in general

be made to depend upon the solution of a quadratic equation in

one unknown number, yet some solutions of special cases of such

systems may be found in this way.

(x^+xy-hxz = 2, (1)

Ex. 1. Solve the equations \ xy -\- y^ + yz = — 2, (2)

[xz +yz + z^ =4:. (3)

Solution. Since these equations may be written in the form

{x(x + y + z)=2, (4)

y(x + y + z) = -2, (5)

z(x + y-^z) = 4, (6)

therefore, dividing Eqs. (5) and (6) by Eq. (4), member by member, we

obtain

^ = -1, and- = 2, (7)
X X

Le.j y = — X, and z = 2x\ (8)
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substituting these values of y and z, in terms of x, Eq. (1) becomes

x^ = l,

whence x = ±l;

and, substituting these values of x in Eq. (8), we obtain

x — 1, y = — l, 2 = 2, and also x= — 1, y z=l, z = — 2,

as solutions of the given system of equations.

i^xy-Sx-2y
= 0,

2xz—Sx — 6z = 0,

5 3/2 + 3 y - 4 z = 0.

(1)

(2)

(3)

Solution. On dividing these equations by xy, xz, and yz, respectively,

they become

y X

2-?-?
Z X

5 + ?_! = 0.
z V

These last equations, being of the first degree in the fractions -, -, and

1 1
"" y

~, may be readily solved for -, etc., and hence the values of x, y, and z
z X
themselves be found.

{ 2x-\-2v — z = ^

Ex. 3. Solve the equations -I
x-Qy-\-z = 2,

[a;2-8?/2 + 3?/2=l6.

Solution. From Eqs. (1) and (2), y
^^"^

(1)

(2)

(3)

and z
7 a,- -11

4 2 '

substituting these expressions for y and z in Eq. (3), and reducing, it

^^^°'^^« 5x2-12:r-9=:0,

whence a: = 3 or — |

,

and the corresponding values of y and z are readily found.

4.

5.

xy = 30,

yz = 60,

xz = 50.

a:2 + ?/2 = 13,

2/ + z^ = 34,

a-2 + 22 = 29.

EXERCISES

6.

x + i

xyz

y + z

xyz

z + x

= 1.2,

= 1.5,
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7.

(z + x)(z + y)=Q.

x^ + 2/2 + z^ = 29,

xy -\- yz + zx = - 10,

X + y + 5 = z.

9.

X3/2

^2 + z2 5

3'
a;.y2

2-^ + X^

xyz

13
6'

181. Square roots of binomial quadratic surds. Having now
learned how to solve simultaneous quadratic equations, it is pos-

sible to deal with an interesting problem which was necessarily

postponed from Chapter XIII ; this problem is the extraction of

the square root of a binomial quadratic surd.

Ex. 1. Find the square root of 8 + V60.

Solution. Let . Vx + V^ =V8 + V60.

Then, by squaring, a: + 2 Vary + ?/ == 8 + V60,

i.e., x + y + 2y/xy=^ + y/m,

whence (§ 145) x + y=^ and 2Vxy = VOO

;

combining these last two equations— after squaring the second— easily

leads (§ 175) to the solution

x = 3, ?/ = 5

;

therefore Vs + \/60 = V3 + V5,

as is easily verified by squaring each member of this last equation.

Ex. 2. Find the square root of a — V&.

Solution. Let \/x — -\/y =Va — Vb.

Then, as before, x + y = a and 4:xy = b,

whence (§ 175) x = ^(a+Va^-ft) and y = i(a - Va^ - &),

and, therefore, ^^^~7b= yjl+S^^H _ ^/«Z^^,
as is easily verified.

Note. The above solution shows that although an expression can always be
found whose square is a— \/b, yet, unless a^ — b happens to be a perfect square,

the expression so found is more complicated than v a— \/&; in other words, the

procedure of Exs. 1 and 2 is of advantage only when «2— 6 is a perfect square.
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EXERCISES

3. In Ex. 1 above, why is x + y equal to 8, and 2Vxy equal to V60?

Find the square root of each of the following expressions :

4. 25 + 10V6. 5. 11 + 6\/2. 6. 47 - 12vTl. 7. 18 - 6V5.

8. If the numerical value of v 21 -f SVS is required, is it easier to

find first the binomial whose square is 21 + 8V5, or to begin by extract-

ing the square root of 5 ? Explain. Also answer this question if 12 — 6VZ
be substituted for 21 + 8V5.

182. Square roots of complex numbers. The square root of a

complex number may be found by a process similar to that used

in § 181.

E.g., to find the square root of 5 + 12V^,

let Vx+ V^\/-l= Vs+ l-iV-l.

Then, by squaring, x-{-2 yjxyV— 1 — ?/ = 5 + 12V— 1,

whence (§ 151) x — 7/ = 5 and lyjxy = 12,

and therefore (§ 175) a; = 9 and ?/ = 4,

whence V5+ 12 y/^1 = 3+2V^,
as is easily.verified.

Similarly in general.

Note. By means of extracting square roots of complex numbers every imagi-

nary number may be reduced to the form a + 6 v'— 1, wherein a and b are real,

and b^O.

E.g., ^V^l=^e^=,J/3i [</~l = -l

= Vv'-i= Vo+V-i
= 2 V2 -\- 2 \/2-\/— 1. [As in above example

Similarly in general ; for, by definition, a number is imaginary only when it

contains an expression of the type V— 1, wherein 7i is an even positive integer;

moreover, if n contains any odd factors, let their product be p and let the other

factor of n be 2* ; then

V^ = ^^=l= V-^=:i = 2^::ri; [p being odd, </=!=-

1

but, by repeatedly extracting the square root of an imaginary number as above,

the expression V— 1 may be brought to the form a + by/— 1, and thus the given

number may also be brought to this form.
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EXERCISES

Find the square root of each of the following expressions

:

1. 5 _ 6^/Zri, 3. 3 + 2V- 10.

2. 6V^^-17. 4. 5.125 - 3.75V^^.

5. Reduce v^— 1 to an equivalent expression of the form a-tbV—l.

PROBLEMS

1. The sum of two numbers is 14, and the difference of their squares

is 28. What are the numbers?

2. Find two numbers whose difference is 15, and such that if the

greater be diminished by 12, and the smaller increased by 12, the sum of

the squares of the results will be 261.

3. Find two numbers whose difference is 80, and the sum of whose

square roots is 10.

4. The sum of two numbers, their product, and also the difference of

their squares, are all equal; find the numbers.

5. Find two numbers whose product is 8 greater than twice their

sum, and 48 less than the sum of their squares.

6. If 5 times the sum of the digits of a certain two-digit number be

subtracted from the number, its digits will be interchanged, and if the

number be multiplied by the sum of its digits, the product will be 648.

What is the number ?

7. Find two numbers such that the square of either of them equals

112 diminished by 12 times the other.

8. If the length of the diagonal of a rectangular field, containing

30 acres, is 100 rods, how many rods of fence will be required to inclose

the field?

9. Find the dimensions of a rectangular field whose perimeter is

188 rods, and whose area will remain unchanged if the length be dimin-

ished by 4 rods and the width increased by 2 rods.

10. The combined capacity of two cubical coal bins is 2728 cu. ft., and
the sum of their lengths is 22 ft. ; find the length of the diagonal of the

smaller bin.

11. It took a number of men as many days to pave a sidewalk as there

were men, but had there been three more workmen employed the work
would have been done in 4 days. How many men were employed ?
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12. A farmer found that he could buy 16 more sheep than cows for

f 100, and that the cost of 3 cows was $15 greater than the cost of 12

sheep. What was the price of each V

13. If 5 be added to the numerator and subtracted from the denomi-

nator of a certain fraction, the result will be the reciprocal of the fraction
;

and if 2 be subtracted from the numerator, the result will be I of the

original fraction. What is the fraction?

14. A sum of money at interest for one year at a certain rate amounted

to $11,130. If the rate had been 1% less and the principal $100 more,

the amount would have been the same. What was the principal and
what the rate ?

15. A certain kind of cloth loses 2% in width and 5% in length by

shrinking. Find the dimensions of a rectangular piece of this cloth

whose shrinkage in perimeter is 38 in., and in area 8.625 sq. ft.

16. A formal rectangular flower garden is to be enlarged by a border

whose uniform width is 10 % of the length of the garden. If the area of

the border is 900 sq. ft., and the width of the old garden is 75 % of the

width of the new one, find the dimensions of the garden and the width

of the border.

17. In going 40 yds. more than i of a mile the fore wheel of a carriage

revolves 24 times more than the hind wheel, but if the circumference of

each wheel had been 3 ft. greater the fore wheel would have revolved 16

times more than the hind wheel. What is the circumference of the hind

wheel?

18. A merchant paid $125 for an invoice of two grades of sugar. By
selling the first grade for $91, and the second for $36, he gained as many
per cent on the first grade as he lost on the second. How much did he

pay for each grade ?

19. Two trains start at the same time from stations A and B,

respectively, and travel toward each other. These stations are 320 miles

apart, and it requires, from the time the trains meet, 6 hr. and 40 min.

for the first train to reach B, and 2 hr. and 24 min. for the second to

reach A. Find the rate at which each train runs.

20. After traveling 2 hr., a railway train is detained 1 hr. by an acci-

dent, after which it proceeds at 60 % of its former rate, and arrives 7 hr.

and 40 min. behind time. If the accident had occurred 50 miles farther

on, the train would have saved 80 min. What was the entire distance

traveled by the train ?
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21. The hundreds' digit of a 3-digit number equals the sum of the

other two digits, the square of the tens' digit equals the units' digit

multiplied by the sum of the units' and hundreds' digits, and if 594 be

subtracted from the number, the order of its digits will be reversed.

What is the number?

22. Find the dimensions of a room of which two adjacent side walls

and the floor contain, respectively, 26|, 20, and 48 square yards.

III. GRAPHIC REPRESENTATION OF EQUATIONS

183. Graphs of quadratic equations. The methods of §§ 114-

116 (which should now be reread) are manifestly applicable to

Y equations of any degree whatever,

, . . provided only that these equations

contain two unknown numbers.

E.g., to find the graph of the equation

4 a; + 2/ = a;2 4- 3^ it is merely necessary to find

a sufficient number of solutions of this inde-

terminate equation, to locate the points having

these solutions as coiJrdinates, and then to con-

nect these successive points by a smooth curve.

Thus, on solving the above equation for y,

it becomes ?/ = a;2— 4 a; + 3, which shows that

when x = 0,\, 2, 3, 4, 5, •••, -1, -2, -3, ...,

then ?/ = 3, 0, -1, 0, 3, 8, —, 8,15,24,—;

and therefore (§ 115) that the points Pi= (0, 3),

P^= (1, 0), P3- (2, - 1), P^= (3, 0), P^= (4, 3),

2, 15), Pq={— 3, 24), ••• are on the required(-1, 8), P8 = (^6^(5. 8),.

graph.

If these points, and as many more as may be desired, are located by the method
of § 114, it is easily seen that the required graph is approximately represented by
the curved line P^P^Pq in the above figure.

If the above equation is written in the form y = {x — 1) {x — S), it shows that

as X increases from 3 to 00, or decreases from 1 to

— X, ?/ increases from to 00, and that y is negative

only for values of x between 1 and 3, i.e., y is nega-

tive when l<a:<3. And if the equation is solved

for X, i.e., written in the form ±Vl + ?/, it

shows that there are no points on the graph for

which ?/ < — 1.

Again, let the graph of the equation 4a;2+ 9?/2 = 36

be required. If this equation is solved for y, it

becomes ^ = ±1^9— a;2^ which shows that y is real for all values of x from
« = — 3 to a; = 3, but imaginary for all other values of x, i.e., this form of the
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equation shows that no part of the graph lies at the left of x = — 3, nor at the

right of a; = 3. It also shows that

when x = -3, -2, -1, 0, .1, 2, and 3,

then 7j= 0, ±|V5, ±t\/2, ±2, ±|v^, ifVS, and 0.

If the points having these solutions as coordinates be located (§ 114) and con-

nected in succession by a smooth curve (using approximate values for the square

roots indicated above), this curve will represent the required graph. See accom-

panying figure.

EXERCISES

Construct the graphs of the following equations (cf. footnote, p. 190):

1. 2/2 = 8 a:. 4. 3x2-43/2 = 12.

2. 16 a;2 + ^2 ^ 64. 5. 4 a;2 + 54 y = 8 x + 9 3/2 + 113.

3. 3 x2 + 4 3/2 = 12. 6. 4 3/2 = x^.

7. Show, from its equation, that no part of the graph of Ex. 1 lies to

the left of the 3/-axis (the line Y'Y).

8. Show, from its equation, that 1.0 part of the graph of Ex. 2 lies

outside of a certain rectangle whose length is 16 and whose width is 4.

9. Show from the equation of Ex. 4 that its graph consists of four

infinitely long branches, one in each of the quarters into which the axes

divide the plane, and that no part of it lies between x = — 2 and x = 2.

10. Construct the graph of the equation 4: x -\- y = x^ -\- 6, and show

that it is the same as that given in the first figure of § 183, except that

it is moved two divisions upward. Explain why this should be so.

184. Graphic solution of simultaneous equations. If the graph

of one of two simultaneous equa-

tions is drawn across the graph

of the other, i.e., if the same axes

are used for Ijoth graphs, then the

coordinates of each of the points of

intersection of the two graphs (these

coordinates may be measured) consti-

tute a simultaneous solution of the

given equations (cf. § 116).

E.g., the graph ofSx — 5?/=— 3, viz, AB,
intersects the graph of ^ x + y = z^ + 3, viz.

HSK, in the points P and Q. The coordinates

of Q, on being measured, are found to be 4 and

3, and those of P are approximately ^| and

II ; and it is easily verified that each of these pairs of numbers constitutes an

approximate simultaneous solution of the given equations.
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Remark. It should be observed that the longei* the unit divisions on the axes

are made, i.e., the larger the scale on which the drawing is made, the greater

the degree of accuracy with which the coordinates of any given point can be

measured.

EXERCISES

By constructing their graphs, find the approximate simultaneous solu-

tions of each of the following pairs of equations, and check the correct-

ness of your results by the methods of §§ 174-180

:

2.

(9z^ + 9i/ = 289,

I 4 x2 - 9 ?/2 = 36.

9 a;2 + 64 2^2 _ 575,

xy = 11.

x^ + 9x

y = -2.

(x^-\-9x

?/ + 7;r2-f 1,

2/ + 7 a:2 + 1,

185. Graphic solution of equations containing but one unknown

number. Manifestly the roots of the equation oj^ — 2a- — 2 =
are the values of x found by solving the pair of simultaneous

equations
(y = x'~2x-2,

[y = 0.

Now, by § 184, the solutions of this pair of simultaneous equa-

tions are the coordinates of the points in which their graphs inter-

sect each other, and, since the graph of y = is the line X'X,

therefore the roots of a;- — 2a; — 2=0 may be found graphically

by measuring the distances from to the points in which the

graph of y = x'—2x—2 intersects the line X'X.

Thus, the graph of the equation y = x^— 2x— 2is the curve MQS in the figure,

and the distances OR and OP are found to be approximately 2.75 and — .75

;

hence the roots of the equation z^— 2x— 2 =
are approximately 2.75 and — .75.

Note 1. Although the nieaswement of a

root, OR for example, gives only a roughly

approximate result, yet, assuming that the

graph is continuous, which it really is, it is

possible to find that result to any required

degree of accuracy. Thus, by trial, it is found

that 7j is negative when 0, 1, and 2 are substi-

tuted for X, but positive when a; = 3 ; therefore

the graph crosses the line X'X between x = 2

and x = 3, i.e., 2<OR<3. Again, by sub-

stituting 2.1, 2.2, 2.3, •••, for x, it is found that

2.7 < 0/?< 2.8; similarly that 2.73 <Oi?<2.74,

2.732<Oi2< 2.733, etc.
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Note 2. Although a quadratic equation is used to illustrate the method for

the graphic solution of numerical equations, yet it is only for equations ahove

the second degree that this method is advantageous, — first and second degree

equations can be more easily solved by other methods.

EXERCISES

1. Show that one root oi x^ — 7 x^ -i- 9 x = 1 lies between 1 and 2.

2. By the above method find, correct to two decimal places, the root

referred to in Ex. 1.

3. Between what two integers do each of the other two roots of the

equation in Ex. 1 lie ? Compare § 184, Ex. 4.

4. Corresponding to any given value of x, how does the value of y in

y = x^ — Qx-\-Q compare with its value in y = x~ — Q x + 7'^ Could,

then, the graph of the second equation be obtained by merely moving

that of the first vertically upward through one division?

5. Compare the graphs oi y = 2 x'^ — 10 a: — 3 and y = 2 x^ — 10 x+l]
also those oi y = •} + 4:X — x^ and y = 10 -\- i x — x^.

6. By first constructing the graphs oi y = x"^ — 6x + 6, y = x^ — Qx+7,
etc., compare the roots of a;2-Ga:+ 6 = 0, x^-6x+7 = 0, x^-Qx-\-8 = 0,

a;2 _ 6 X + 9 = 0, a;2 - 6 a: + 10 = 0, and a;2 - 6 a: + 11 = 0.

7. As in Ex. 6, compare the two smaller roots oi x^ — 7 x^ + 9 x — 1 =
with those oix^-7x^-}-9x-S = and x^ - 7 x"^ + 9 x - o = 0.

[Exercises 6 and 7 illustrate how, by changing the absolute term in

an equation, a pair of unequal roots can be made gradually to become

equal and then imaginary.]

By means of graphs show how the following expressions vary in value

as X varies gradually from — go through to + co :

8. a;2 - 7 a: + 12. 9. Q + ix - x^ 10. x^ - 18 a: + 2.



CHAPTER XVI

RATIO, PROPORTION, AND VARIATION

I. RATIO

186. Definitions. The ratio of one of two numbers to the other

is the quotient obtained by dividing the first of these numbers by

the second. These numbers themselves are usually called the

terms of the ratio, the first being the antecedent, and the second

the consequent.

E.g., the ratio of 15 to 5 is 15 h- 5, i.e., 3; the ratio of 6 to 9 is 6^-9, i.e., f

;

and the ratio of a to 6 (whatever the numbers represented by a and b) is a-^b.

The terms of this last ratio are a and b, of which a is the antecedent and 6 the

consequent.

Each of the expressions a-i-b, a: b, and - is used to denote the
b

ratio of a to b, and they may each be read " the ratio of a to & " or

" a divided by 6."

The inverse ratio of a to 6 is 6 -=- a, i.e., it is the reciprocal of the

direct ratio of these numbers.

EXERCISES

1. What is the ratio of 6 to 2? of 15 to 3? of 12 to 18? of 4.9 to .7?

off to if?

2. Read the expression 18 : 32, and tell what it means. What is the

inverse ratio of 18 to 32 ?

3. Write two other expressions which mean the same as 25 : 40.

4. Does the antecedent of a ratio correspond to dividend or to divisor?

In the ratio 5:8 what is the antecedent? What is the other number
called?

5. What is meant by the reciprocal of a number ? Show that the

inverse ratio of x to y is the direct ratio of the reciprocal of x to the

reciprocal of y.

6. If the ratio of a: to 5 equals 2. find x, and verify your work.

318
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7. If the ratio of two numbers is |, and the consequent is 6, what is

the antecedent ?

Find X in each of the following ratios, and verify your result

:

8. x^:2 = ?y 10. 25 : a:2 = 9.

9. X : 6 = X - 10. 11. 36 : a: = X.

12. Given x^ + 6 ^^ _ 5 ^y, flnd the two values of the ratio x : y.

13. The ratio of two numbers is f , and the ratio which their sum bears

to the difference of their squares equals that of 1 to 7. Find these num-

bers and verify your result.

14. Prove that the value of a ratio is not changed by multiplying or

by dividing each of its terms by any number whatever, except zero.

15. If the antecedent of a ratio be multiplied by any number, what

effect will this have upon the value of the ratio ? Why ? What is the

effect of multiplying the consequent? Why ?

16. Prove that a ratio which is less than 1 is increased, and that a

ratio which is greater than 1 is diminished, by adding the same positive

number to each of its terms (cf. § 117, and Ex. 17, p. 200).

17. What number must be added to each term of the ratio 15 : 27 in

order that the resulting ratio shall be 2 : 3 ? Has this addition increased

or diminished the given ratio ?

187. Ratio of like quantities. Commensurable and incommen-

surable numbers. If A = 7i > B, "where A and B are any two quan-

tities of the same kind, and n is a number, then the quantity A is

said to have the ratio n to the quantity B.

E.g., since a line 10 inches long equals 2 times a line 5 inches long, therefore

the ratio of a 10-inch line to a 5-inch line is 2, i.e., it is the same as the ratio of the

numbers 10 : 5.

Similarly the ratio of S 6 to $ 9 is the same as 6 : 9, i.e., as 2 : 3.

Since, by the above definition, the ratio of any two like quanti-

ties is the same as that of the numbers which represent these

quantities, therefore it is sufficient for present purposes to study

the ratios of numbers only.

If the ratio of two numbers (or quantities) is a rational num-

ber (§ 130), then the given numbers (or quantities) are said to be

commensurable * with each other, but if this ratio is an irrational

number, then they are said to be incommensurable with each other.

* In this case the uumbers have a common measure, hence the name.
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E.g., since VB : 3 is an irrational number, tlierefore y/b and 3 are incom-

mensurable with each other; the diagonal and a side of a square are incommen-
surable with each other, their ratio being V2 (§ 130) ; but the two irrational

numbers 3 \/2 and 6\/2 are commensurable with each other, since their ratio is 3 : 5.

Note. An irrational number is also often called an incommensurable number,

since it is incommensurable with the unit 1.

EXERCISES

1. Show that the following ratios are all equal : 8 bu. oats : 6 bu. oats

;

4 tons of coal : 3 tons of coal ; 1 12 : $ 9 ; 10 qt. of milk : 7^ qt. of milk

;

4:3; and ^ : i^.

2. Find the value of each of the following ratios

:

8:6; 32 lb. : 4 lb. ; 4V3 in. : 3V2 in. ; 2.7:9; 9:2.7; 4v^:V2;
4\/2 : 2 ; 8.46 cm. : 2.35 cm. ; and ^ 5.80 : 29 cents.

3. Which of the pairs of numbers (or quantities) in Ex. 2 are com-

mensurable with each other? Which are incommensurable? Why?
4. Which of the individual terms in Ex. 2 are irrational?

II. PROPORTION

188. Definitions. An expression of the equality of two or more

ratios is called a proportion.

E.g., if a: 6 equals c: d, then the equation a : 6 = c : d is a proportion, and the

numbers a, 6, c, and d are said to he proportional {a\^o in proportion) ; thus, since

6 : 3 = 10 : 5, therefore the numbers 6, 3, 10, and 5 are in proportion.

The proportion a: b = c:d is sometimes written in the form

a:b : :c: d, which is read " a is to & as c is to d."

E.g., the proportion 6 : 3 : : 10 : 5 is read " 6 is to 3 as 10 is to 5 "
; its meaning

is the same as 6 : 3 = 10 : 5, i.e., the same as S = ¥•

The first and fourth terms of a proportion are called the ex-

tremes, while the second and third terms are called the means,

and the fourth term is called the fourth proportional to the other

three. The antecedents and consequents of a proportion are the

antecedents and consequents of its two ratios.

E.g., in the proportion a:b = c:d, the extremes are a and d ; the means, 6 and
c; the antecedents, a and c ; the consequents, 6 and d ; and the fourth proportional

to a, b, and c is d.

If the first of three numbers is to the second as the second is to

the third, then the second is said to be a mean proportional between
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the other two, and the third is called the third proportional to the

other two.

E.g., in the proportion a:b=^b:c the number 6 is a mean proportional between
a and c, and c is the third proportional to a and b.

A succession of equal ratios in which the consequent of each is

also the antecedent of the next, is called a continued proportion.

E.g., it a:b = b: c = c:d= d:e= '•-, then this expression is a continued pro-

portion.

EXERCISES

1. Is it true that 8: 12:: 10: 15? Why? How is this proportion read ?

What does it mean ?

2. Is it true that 8 : 10 : : 12 : 15 ? What are the means, and what the

extremes, of this proportion ? What is the fourth proportional to 8, 10,

and 12 ? What are the antecedents? What are the consequents ?

3. How does the proportion in Ex. 1 compare with that in Ex. 2? If

any four numbers are in proportion, will they be in proportion after the

means have been interchanged? Try several numerical cases, and also

compare § 189, Prin. 5.

4. Show that the numbers 3, 4, 6, and 8 are proportional in the order

in which they now stand. Arrange these numbers in three other ways
in each of which they will be proportional.

5. Show that 6 is a mean proportional between 4 and 9 ; also between

2 and 18. Is — 6 also a mean proportional between these numbers?
What are the third proportionals in these cases?

189. Important principles of proportion. Since a proportion is

merely an equation whose members are fractio7is, the principles of

proportion may be easily derived (as is shown below) from those

already demonstrated for equations and fractions. »

Principle 1. If four numbers are in proportion, then the

product of the means equals the product of the extremes*

* Before reading the proofs of these principles the student is urged to make
several numerical illustrations of each, and also to try to make a general proof

for himself, which he may then compare with that given in the text. Verbal

statements of these principles should be committed to memory.
If the terms of a proportion are quantities, they may first be replaced by their

representative numbers (cf . § 187) , after which the above principle may be applied

;

the product of two quantities is meaningless.
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For, let a, b, c, and d be any four numbers which are in propor-

tion, then ^ . 5 ^ c : d

;

a_c
b d

whence ad = be, [Multiplying by bd

which was to be proved.

Principle 2. If the product of two nurrbbers equals the

product of two others, then these four numbers form a pro-

portion of which the two factors of either product may
be made the means, and those of the other product the

extremes.*

For, if ad = be,

then ^ = ^

,

[Dividing by bd

i.e., a:b = c:d.

In the same way it may be shown that, if ad = be, then

b : a = d : c, e: a = d:b, etc.

;

hence the correctness of Principle 2.

Remark. From the proof just given it follows that the correct-

ness of a proportion is established when it is shown that the product

of the means equals the product of the extremes; this test is very

useful.

Principle 3. Tlie products of the corresponding terms of
two {or more) proportions are proportional.

For, if a:b = e:d and e \f=g : h,

then (multiplying) «.! = £. |,,>.,p =
^^,

hence ae : bf= eg : dh,

which was to be proved.

Principle 2 is the converse of Principle 1.
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Principle 4. Tlie quotients of the corresponding terms

of two proportions are proportional.

For, if a:h=^c:d and e :/= g : h,

then ad = be and eh =fg,

whence adfg = bceh
; [§24 (2)

on dividing each member of this last equation by ehfg, it becomes

ad _ be . a d _b c

eh fg'
'

''
e h f g'

and from this last equation, by Principle 2,

a . b_ c , d

e'f~g'h'
which was to be proved.

Principle 5. If a:b = c:d,

then (1) b:a = d:e',

(2) a:c =b:d',

(3) {a + b): a(or b) = (c-\-d): c(or d)-,

(4) (a— b): a{or b) = (c — d): c{or d)
;

and (5) {a-\-b) : (a-b) = (c + d) : (c-d).

The correctness of these proportions [(1) to (5)] easily follows

from the remark at the end of Principle 2; the detailed proofs

are left as an exercise for the student.

Eemark. Proportion (1), above, is usually said to be formed

from the given proportion by inversion
; (2) by alternation

; (3) by

composition
; (4) by division (or by separation) ; and (6) by compo-

sition and division.

The student should translate each part of the above principle into

verbal language, and commit it to memory ; e.g., (3) thus translated

is : Iffour numbers are in proportion, then they are also in propor-

tion when taken by composition; i.e., the sum of the first and second

is to the first (or the second) as the sum of the third and fourth is to

the third (or the fourth).
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Principle 6. In a series of equal ratios the sum of the

antecedents is to the sum of the consequents as any ante-

cedent is to its own consequent.

Thus, if a:b = c:d = e:f=g:h= "' = .^:y,

then (a + c + e + 9'+ ••• +»): (6 + d +/+/i + •-. -\-y)=:e:f.

To prove this theorem, let each of the given equal ratios be

represented by a single letter, say r
;

then l=r, ^=r, ^ = r,
f
= r, ..., and ?= r,

b d f h y

hence a = hr, c = dr, e = fr, g = hr, • • •, and x — yr,

and, adding these equations, member to member,

a + c + e-l-gr+ ... ^x=(b-\-d+f+h+ "- + y)r,

and therefore ^ + c +6 + ^ + - + o^^^e

which proves the principle.

Note. As in the proof just given, so it will often be found advantageous to

represent a ratio by a single letter.

Principle 7. Lihe powers of proportional numbers are

proportional; so also are like roots; i.e., if

a:b = c: d, then a"* :
6**= c'* : c?".

For, if ^= ^, then f^X = f^X, i.e., ^- = ^;
'

b d' \bj \dj ' b^ d"'

hence, if a:b = c:d, then a~ :
6** = c" : c^",*

which was to be proved.

EXERCISES

1. Find the fourth term of the proportion of which the first three

terms are 5, 12, and 15.

Suggestion. Let x represent the fourth term, and apply Principle 1.

2. Find a mean proportional between 4 and 25. How many answers

has this problem ?

3. Find the third proportional to 25 and 40.

* According as n is an integer or its reciprocal, a»» is a power or a root of a.
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4. If a line 18 inches long is divided into two parts whose ratio is

4 : 5, how long is each part ?

5. If x:15=(a;-l):12,finda:.

6. If 32 : x^ = iL : (a; + 2), find x.

7. Find the mean proportionals between am^ and a^m ; also between

a + b and a — b.

8. li a : b = c : d, show that am :bn = cm: dn, wherein m and n are

any numbers whatever ; also translate this principle into verbal language.

9. Show that the product of the means of a proportion, divided by

either extreme, equals the other extreme.

10. Show that the mean proportional between any two numbers is

the square root of the product of these numbers.

11. Prove Principle 6 by means of the remark under Principle 2.

12. Prove Principle 4 by using a single letter to represent a ratio

(compare proof of Principle 6).

13. Add 1 to each member of the equation a:h = c :d, write the result

in the form of a proportion, and thus prove (3) of Principle 5.

14. It a:b = c : d, and if a is not equal to b nor to c, show that no num-

ber whatever can be added to each term of the proportion and leave the

results in proportion.

If p : q = r : s, prove that

:

15. r : .9 = - : - • 17. pr : as = r^ : s^.

q p

16. 5p:dr=5q:Ss. 18. (p -]- q) : (r + s) = Vp^ + (/^ : Vr^ + s^.

xy. v.iven
^^y^2x):(rj-2x) = (12x + 6y~Sy.iQy-12x-l)^^

find x and y.

20. Given x :27 = y : 9 = 2 : (x - j/); find x and y.

21. li a : b = c : d - e :f = g : h = •", and I, m, n, p, ••• are any numbers

whatever, prove that

(jna + Ic — ne + pg + •••) : (mb-j- Id — nf + ph -\- "•) = a:h.

22. If a : X = b : y = c : z = d : w = ••• , show that

(a« + 6" + c» + ...) : (x~ +?/'» + 2« ...) = a" . x\

23. If (p + q -h r -h s) (p - q - r + s) = (p - q + r - s) (p -\- q - r - s),

show that p : q = r :s.
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24. It a:b= c :d = e :f, show that

c:d = Va2 + 4 ac + 5 c2 : Vft2 + 4 6c? + 5 c?2

25. If (x — y) : (y — 2) : (2 — x) = / : m : n*, and x ^y =^z, show that

/ + w + n = 0.

By the principles of proportion, solve the following equations

:

2g^
Vx + 7 + Vx ^ 4:+ Vx

Vx + 7 — Vx 4 — Vx
Suggestion. Apply Principle 5 (6).

27 x+ VT^n: ^ IS

a; _ V.r - 1 7

28. (a - V2 ax - a;^) : (« _ 6) = (a + V2 ax - x^) : (a + 6).

Suggestion. First apply Principle 5 (2).

29. If
qx±^^ay±_cz^azj^^^

^^^^ ^^^^ ^^^^ ^^ ^j^^^^ ^^^.^^

&y + c?2 62 + c?x 6x + <iy

equals
^-^-^

b + d

30. The perimeter of a triangle, whose sides are in the ratio 5 : 6 : 8, is

57 meters ; find the lengths of the sides.

31. Divide 16 into two parts such that their product is to the sum of

their squares as 3 : 10.

32. Find two integers whose ratio is the same as 15f : 9|. Can the

ratio ot.any two numbers whatever be expressed by means of two inte-

gers (cf . Ex. 2, p. 320) ?

33. By the addition of new books, a certain circulating library was

increased in the ratio of 12 : 11 ; later 160 old books were discarded, and

it was then found that the library remained increased only in the ratio

35 : 33. How many books were there in the library originally?

34. If x, y, and z represent positive numbers, which of the following

ratios is the greater, 2^±A^ or ^±1^? ^ " -^ + "
or £±X±^?

2x + 7y x + Sy x + y — z x — y — z

35. If a : &, c:d, e:f, g:h, ••• are unequal ratios, in which a, b, c, •••

are positive numbers, and if a : ft is the greatest and e :/the least among
these ratios, show that (a + c + e-{-g + •.•) : (b -\- d +/+ h + ...) is less

than a : b, but greater than e :/.

• * The expression a:h: c =x:y:z, means that a:b = z:y, a: c = z:z, and

& : c = y : «. It may also be written a:x = b:y = c:z.
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III. VARIATION

190. Definitions. Many questions in mathematics are con-

cerned with numbers whose values are changing; such numbers
are usually spoken of briefly as variables, while numbers whose
values do not change are called constants.

Two variables may, also, be so related that a change in one of

them necessarily produces a corresponding change in the other.

E.g., if w and v represent, respectively, the weight and volume (i.e., the number
of pounds, and the number of cubic feet) of the quantity of water in a certain

tank, and if a cubic foot of water weighs 62.5 pounds, then w = 62.5 v.

Moreover, while the water is flowing into this tank, both w and v will mani-
festly change (i.e., they will be variables), but through all their changes the

relation between these variables continues to be

w = 62.5 V.

Of two variables which are so related that, during all their

changes, their ratio remains constant, each is said to vary as

the other.*

E.g., if X and y are any two variables so related that, during all their changes,

x:y = k, wherein ^ is a constant, then x varies as y, and y also varies as x.

The equation x:y = k,oT, what is the same thing, x = ky, shows that when y
is doubled, tripled, halved, etc., then x is also doubled, tripled, halved, etc.

The symbol employed to denote variation is oc; it stands for

the words " varies as,'' and the expression a ccb is read " a varies

as 6."

In the above example about the water, vj varies as v, because their ratio is

constant {i.e., w.v = 62.5, whatever the quantity of the water) ; this is com-

monly expressed by saying that "the weight of water varies as its volume."

One of two numbers is said to vary inversely as the other if the

ratio of the first to the reciprocal of the second is constant.

E.g., the time required for a railway train to travel a given route varies

inversely as its speed; for, if t, r, and d represent, respectively, the time, rate,

and distance, then

t'r= d, that is, t:-=d,

where d is constant. From the first of these equations it follows also that if the

speed is doubled, then the time will be halved; if the speed is divided by 3, then

the time will be trebled, etc.

Also " to vary directly as the other.*
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Again, if x, y, and z are variables such that x = kyz, where k is

a constant, then x is said to vary jointly as y and Z] and if x =—

,

then X is said to vary directly as- y and inversely as z.

Note. It should be remarked in passing that such an expression SiS w xv
above (i.e., the weight of water varies as its volume) is merely an abbreviated

form of the proportion
w:w =v:v

,

wherein w and w' stand for the respective weights, and v and v' for the volumes,

of any two quantities of water.

The theory of variation is substantially included in that of ratio and propor-

tion, and the only reason for even defining the expressions " varies as," " varies

inversely as," etc., here, is that this convenient phraseology is so well established

in physics, chemistry, etc.

EXERCISES AND PROBLEMS

1. Which of the following quantities are constants and which are

variables: (1) the circumference of a growing orange? (2) the length

of the shadow cast by a certain church steeple between sunrise and sun-

set? (3) the length of the steeple itself? (4) the time since the dis-

covery of America ? (5) the interest earned by a note ? (6) the principal

of the note ?

2. What is meant by the expression, " the speed being constant, the

distance traveled by a railway train varies as the time " ? Express this

fact by means of a proportion (cf. note, above).

3. What is meant by saying " the interest earned by a certain princi-

pal varies as the time " ? Express this fact as a proportion ; also as an

equation.

4. What is meant by the expression x <x y? Are a; and y constants or

variables here?

5. Express by means of an equation that x cc y. Explain.

6. If a: cc y, and if x = 12 when ?/ = 3, find the equation connecting

X and ?/, and the value of x when y = 7.

Solution. Since cc act/, therefore cc = ^t/, where ^ is a constant. Moreover,
if a; = 12 when 2/ = 3, then the equation x = ky gives 12 = 3 A;, from which we
find A; = 4 ; therefore, under the given conditions, z = ^y; and therefore cc = 28

when y = 7.

7. If a; varies inversely as y, and a: = 10 when y = 3, what is the

value of X when y = 5 ?

8. If m varies inversely as n, and is equal to 4 when n = 2, what is

the valne of r? when w = li?
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9. The area of a circle varies as the square of its radius, and the

area of a circle whose radius is 10 ft. is 314.6 sq. ft. What is the area

of a circle whose radius is 5 ft. ? of one whose radius is 12 ft. ?

10. Find the radius of a circle whose area is twice as great as that of

a circle whose radius is 10 ft. (cf . Ex. 9)

.

11. If one of two numbers varies inversely as the other, show that

their product is constant.

12. li AazB and BcxzC, prove that AxC.
Suggestion. Show that A = kC, wherein k is some constant.

13. Ji mccn and pccn, prove that m ± pccn.

14. If p varies inversely as q and q varies inversely as r, prove that

peer.

15. If 3 w^ — 18 cc 2 n + 1, and m = 4 when n = 2, what is the value

of m when n = 23.5 ?

16. If X varies as y when z is constant, and as z when y is constant,

prove that, when both y and z vary, xcc yz; i.e., that x varies jointly as y
and z.

Suggestion. Let y and z vary separately, and write each variation as a pro-

portion; thus from the change in y, -^= -^, and now letting z change, ^= ^>
z _ yz X- y

whence —
- = ^7— , from which the conclusion is evident.

X y z

17. The area of a triangle varies as its altitude if its base is constant,

and as its base if its altitude is constant. If the area of a triangle whose
base and altitude are, respectively, 6 and 5 in., is 15 sq. in., what is the

area when the base and altitude are 13 and 10 in. respectively?

18. If the volume of a pyramid varies jointly as its base and altitude,

and if the volume is 20 cu. in. when the base is 12 sq. in. and the altitude

is 5 in., what is the altitude of the pyramid whose base is 48 sq, in. and

whose volume is 76 cu. in. ?

19. The distance (in feet) fallen by a body from a position of rest

varies as the square of the time (in seconds) during which it faUs. If

a body falls 257| ft. in 4 sec, how far will it fall in 5 sec. ? how far

during the 5th second? how far during the 7th second?

20. If the intensity of light varies inversely as the square of the dis-

tance from its source, how much farther from a lamp must a book, which
is now 2 ft. away, be removed so as to receive just one third as much
light?
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21. A rectangle moves with its center on a given straight line and its

plane perpendicular to that line. If one of its sides varies as the dis-

tance, and an adjacent side as the square of the distance, of the rectangle

from a certain point on this line, and if at the distance 3 ft. the rectangle

becomes a square 2 ft. on a side, what is its area when the distance is

5ft.?

22. In order that two weights attached to a rod should balance each

other when the support on which the rod rests is between them, their

distances from the point of support should vary inversely as the weights.

Find the point of support for a 12-foot plank on which two boys weigh-

ing 75 and 90 lb., respectively, wish to play see-saw.

23. The number of oscillations made by a pendulum in a given time

varies inversely as the square root of its length. If a pendulum 39.1

inches long oscillates once a second, what is the length of a pendulum

that oscillates twice a second ?

24. The volume of a sphere varies as the cube of its radius, and the

volume of a sphere whose radius is 1 ft. is 4.19 cu. ft. Find the volume

of a sphere whose radius is 3 ft.

25. Three metal spheres whose radii are 3, 4, and 5 in. respectively,

are melted and formed into a single sphere. Find the radius of this

new sphere.

Suggestion. If S^ and S^ are the volumes of two spheres whose radii are

rj and r^, and if -S is a sphere of radius r and equivalent to S^ -i- S^, then Si = kr^,

and S = Si -1- Sa = A {r^ + r^^) = kr».



CHAPTER XVII

SERIES - THE PROGRESSIONS

191. Definitions. A series is a succession of related numbers

which conform to some definite law. The numbers which con-

stitute the series are called its terms.

The law of a series may prescribe the way each of the terms,

after a given term, is formed from those which precede it, or it

may state how each term is related to the number of the place it

occupies in the series.

E.g., in the series 1, 2, 3, 5, 8, 13, ••• eacli term, after the second, is the sum of

the two preceding terms.

In the series 2, 6, 18, 54, ••• each term, after the first, is 3 times the preceding

term; and 3, 7, 11, 15, 19, ••• is a series of which each term, after the first, is

formed by adding 4 to the preceding term.

On the other hand, in the series 1, 4, 9, 16, 25, ••• each term is the square of the

number of its place in the series; and the law of the series §, |, f, f, tt»
•"

is expressed by , where n is the number of the term's place in the series.
1 ~T" ^ M

If the number of terms of a series is unlimited, it is called an

infinite series, otherwise it is a finite series.

E.g., in each of the five examples given above the series is infinite, but the

series 1, 2, 3, 5, 8, 13, ••• 89 is finite, consisting of 10 terms.

Only the simplest kinds of series— the so-called "progres-

sions "— will be studied in the present chapter.

I. ARITHMETICAL PROGRESSION

192. Definitions and notation. A series in which the difiierence

found by subtracting any term from the next following term is

the same throughout the series is an arithmetical series ; it is also

often called an arithmetical progression, and is designated by

"A. P." This constant difference, which may be either positive

or negative, is called the common difference of the series.

331
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E.g., the numbers 2, 5, 8, 11, 14, ••• form an A. P. because 5 — 2 = 8 — 5 = 11— 8

= 14 — 11 = ••• ; the common difference of this series is 3.

So, too, 18, 11, 4, — 3, — 10, ••• is an A. P. whose common difference is — 7.

In any given A. P. it is customary to represent the first term,

the last term, the common difference, the number of terms, and

the sum of all the terms, by the letters a, I, d, n, and s, respec-

tively ; and these are called the elements of the series.

E.g., in the series 2, 5, 8, ••• 32, the elements are : a = 2, 1 = 32, d = 3, n = 11, and

s = 187.

EXERCISES

1. Define a series. If a row of numbers be written down quite at

random, will they constitute a series ? Explain.

2. Define an arithmetical series. Is 1, 7, 13, 19, 25, an A. P. ? What
are its elements?

3. If the series 7, 11, 15, 19 be continued toward the right, what is the

next term? Why? Extend this series by writing the next four terms

at the right, and also the next three at the left.

4. Do the numbers 7, 11, and 15 belong to the same A. P. as 27, 31,

and 35? What is d for each of these two series? Write the series

which includes both of these sets of numbers.

5. If the first, third, and fifth terms of an A. P. are 18, 24, and 30,

respectively, find d and write 8 consecutive terms of this series. Also

write 10 consecutive terms of the series of which 19, 9, and 4 are the

first, fifth, and seventh terms, respectively. What is d for this last series?

6. Are the numbers 5, 5 + 3, 5 + 6, 5 + 9, and 5 + 12 an A. P.? What
are the values of a, d, I, n, and s for this series? How may the second

term of this series be fonned from the first? the third from the second?

any terra from the one preceding ?

7. Are the numbers x, x -{ y, x -{ 2 y, x -\- Sy, a; + 4y, ••• an A. P.?

Why? What is d in this series? How may the second term be formed

from the first? the third from the first? the fourth from the first? the

tenth from the first? the fifteenth from the first? How may any term

whatever (say the nth) be formed from the first?

8. Show from the definition of an A. P. that such a series may be

written in the form

a, a -\- d, a -{- 2 d, a-j-Zd, •- I - 2 d, I - d, I,

wherein a, d, and / represent, respectively, the first term, common differ-

ence, and last term

.
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193. Formulas. The elements of an A. P. are connected by two
fundamental equations (formulas), which will now be derived.

Since each term of an A. P. may be derived by adding d to the

preceding term (cf. Exs. 6-8, § 192), therefore, if I stands for the

^*^*^^^'
l = a+(7i-l)d. (1)

Again, since the sum of the terms of an A. P. may be written

in each of the two following forms,

s = a + {a-{-d) -{- {a -{-2 d) + '" + {1-2 d) -\- (I- d) + 1,

and s = l-j-{l-d)-{-{l-2d)-\ f- (a + 2 d) + (« + ^) 4- «,

therefore, by adding these equations, term by term,

2s = (a + Z) + (a + ^)4-(a+/)+-H-(a4-0 + (« + + (« + 0;

i.e., 2s = n(a-\-l), [n terms

whence g = M«ilil. ' (2)

Note. If any three of the five elements of an A. P. are given, the other two

can always be found from formulas (1) and (2) above, because, in that case, the

remaining two unknown elements will be connected by two independent equations

(cf. Ex. 17, p. 334).

EXERCISES AND PROBLEMS

1. Verify formulas (1) and (2) above, in the case of the arithmetical

series 7, 10, 13, 16, 19, 22, 25. What is the value of a in this series?

of d? of n? of Z?

2. Verify formulas (1) and (2) above, for the arithmetical series

26, 19, 12, 5, - 2, - 9, - 16, - 23, - 30 ; also for the series - 8, - 5|,

- 3i - 1, H, 3i 6, 8i lOf, 13.

3. By means of formula (1) find the 17th term of 7, 11, 15, ••• ; then,

using formula (2), and without writing all the terms, find the sum of the

first 17 terms of this series.

4. Using formulas (1) and (2) find the 8th term, and also the sum

of the first 8 terms of 1, 3.5, 6, 8.5, •-.

5. Find the 26th term, and also the sum of the first 18 terms of the

series 1, 5, 9, —

.

6. Find the sum of 10 terms of 4, 11, 18, •••.

7. Find the sum of 30 terms of - 2, - 0.5, 1, 2.5, •...
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8. Find the sum of 19 terms of 2, 5, 8, ••• ; also find the sum of

k terms of this series.

9. Find the sum of n terms of the series 5, 5 + /:, 5 + 2 ^, 5 + 3 ^, •••.

10. Find the sum of t terms of the series h, 2h,^h, •••. What is this

sum if ^ = 2 and f = 50 ?

11. Find the sum of the even numbers from 2 to 100 inclusive.

Compare your result with that found in Ex. 10.

12. How many strokes does a clock make during the 24 hours of

a day?

13. Suppose that 50 eggs were placed in a row, each 2 yds. from the

next, and a basket 2 yds. beyond the last eg^, how far would a boy,

starting at the basket, walk in picking up these eggs and carrying them,

one at a time, to the basket ?

14. If a body falls 16.1 feet during the first second, 3 times as far during

the next second, 5 times as far during the third second, etc., how far will

it fall during the 8th second? how far during the first 8 seconds?

15. If the 6th and 11th terms of an A. P. are, respectively, 17 and 32,

find the common difference, and also the sum of the first 11 terms.

Suggestion. Since the 6th term is 17, therefore 17=a+ 5d. Similarly,

32 = a+ 10 d. From these two equations find a and d, and then find s.

16. By means of formula (1) find the number of the terms in the

series 2, 6, 10, •••, 66. Also find the sum of the series.

17. How many terms are there in the series — 1, 2, 5, ••• if the sum of

this series is 221 ?

Suggestion. Since in this series a =— 1, d? = 3, and s = 221, therefore formulas

(1) and (2) of § 193 become, respectively, Z =— 1 + (n - 1) 3 and 221 = - (— 1 + ;

and from these equations it is easy to determine n and I.

18. Determine the unknown elements in the series •••, 10, 13, 16, ••• if

s = 112 and n = 7.

19. If s, 71, and d are given, find a and I, i.e., find a and I in terms of

s, n, and d (cf. Ex. 18).

20. Find a and n in terms of c?, Z, and s. Make up and solve eight

other examples of this kind.

21. Show that an A. P. is fully determined when any three of its

elements are given.

22. Prove that the products obtained by multiplying each term of an

A. P. by any given number are themselves in arithmetical progression.

If each term of an A. P. be divided by any given number, or be in-

creased or diminished by any given number, will the results be in arith-

metical progression? Explain.



193-194] SERIES— THE PROGRESSIONS 335

194. Arithmetical means. The two end terms of an arithmetical

series are called the extremes of the series, while all the other

terms are called the arithmetical means between these two.

E.g., in the series 5, 9, 13, 17, 21, the extremes are 5 and 21, and 9, 13, and 17

are arithmetical means between 5 and 21.

Ex. 1. Insert 5 arithmetical means between 3 and 27.

Solution. Since there are to be 5 means between 3 and 27, therefore

the complete series will consist of 7 terms, and therefore, for this series,

a = 3, Z = 27, and n = 7 -, whence, from formula (1) of § 193, d = i, and

the series is : 3, 7, 11, 15, 19, 23, 27.

EXERCISES AND PROBLEMS

2. Insert 4 arithmetical means between 12 and 27.

3. Insert 15 arithmetical means between 19 and 131.

4. Insert 20 arithmetical means between 16 and — 40.

5. If m arithmetical means are inserted between two given numbers,

such as a and b, show that the common difference for the series thus

formed is d = (h — a)-^ (m + 1).

6. If X is the (one) arithmetical mean between a and b, show, directly

from the definition of an A. P., that x =(a+ b)-^2. Does this agree

with the statement in Ex. 5? Explain.

7. Without actually finding the means asked for in Ex. 2, find the

sum of the series formed by inserting them.

8. Find 3 numbers in A. P. whose sura is 15 and the sum of whose

squares is 107.

Suggestion. Let x — y,x, and x + y represent the required numbers.

9. The sum of 7 terms of an A. P. is 105, and the sum of its third and

fifth terms is 10 times its first term. Find the series.

10. The product of the extremes of an A. P. of 3 terms is 4 less than

the square of the mean, and the sum of the series is 24. Find the series.

11. The sum of 4 numbers in A. P. is 14, and the product of the means

is 12. What are the numbers ?

Suggestion. Let x — Sy, x — y, x + y, and x + 3y represent the series.

12. The sum of an A. P. of 5 terms is 15, and the product of the ex-

tremes is 3 less than that of the second and fourth terms. Find the series.

13. How many arithmetical means must be inserted between 4 and

25 so that the sum of the series may be 116?
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14. A number consists of 3 digits which are in A. P. ; and the sum of

the digits multiplied by 30.4 equals the number, but if 9 be added to the

number, the units' and tens' digits will be interchanged. What is the

number ?

15. In the series 1, 3, 5, ••• what is the nth term? Prove that the sum
of the first n odd numbers, beginning with 1, is n^.

II. GEOMETRIC PROGRESSION

195. Definitions and notation. A series in which the quotient

of any term (after the first) divided by the next preceding term

is the same throughout the series is a geometric series ; it is also

often called a geometric progression, and is designated by " G. P."

This constant quotient is called the common ratio, or simply the

ratio, of the series.

E.g., the numbers 2, 6, 18,54, ••• form a geometric series, whose ratio is 3;

while §, — 1, ^, — I, ¥-, ••• is a G. P. whose ratio is — f

.

It is customary to represent the elements of a G. P., i.e., the first

term, the last term, the number of terms, the ratio, and the sum
of all the terms, by the letters a, I, n, r, and s, respectively.

E.g., in the G. P. 2, -(5, 18, -54, 162, -486, 1458, a = 2,^=1458, n=7,
r=— 3, and s=1094.

EXERCISES

1. Is 7, 21, 63, 189, 567 a geometric series? Why? What are its

elements ?

2. Is 2, 8, 32, 96, 288 a geometric series? If not, why not?

3. Is - 6, 12, - 24, 48, - 96, 192, - 384, 768 a G. P.? What are its

elements ? How may the second term be obtained from the first ? the

third from the second ? the sixth from the fifth ?

4. If the series in Ex. 3 be continued toward the right, what is the

next term? the next after that? Extend this series 5 terms toward

the left also.

5. If a represents the first term of a G. P., and r the ratio, what is

the second term? the third? the fourth ? the fifth? the fourteenth? the

twenty-third? the nth ? Explain.

6. Show that x, xy, xy^, xy% xy'^, ... is a G. P. What are a and r in

this series ? ^ _

Answer these questions with regard to ~, p^, p^q\ p(i\ q^, — also.
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7. What is r in the series 2, |, f,
••• ? in the series 21, 7, |, ••• ? Are

these two series merely parts of the same series? Explain.

8. If the first, third, and sixth terms of a G. P. are 12, 3, and f,

respectively, find r, and then write down the first 8 terms of this series.

196. Formulas. The elements of a G. P. are connected by two

fundamental equations which will now be derived (cf. § 193).

Since each term of a G. P. may be obtained by multiplying the

preceding term by r (cf. Exs. 5 and 6, § 195), therefore, if I repre-

sents the nth term of such a series, then

/ = ar^'-K (1)

Again, if s represents the sum of a G. P. of n terms, then

s = a + a/' + ar^ -I- ar^ H h ar"~^ + ar"~^,

whence sr = ar + cn^+ a?*^+ • • • + ar"^"^+ ar", [multiplying by r

and therefore, by subtracting the second of these equations from

the first, member from member,

s — sr = a — ar"",

hence s = (2)
1 — ?'

EXERCISES AND PROBLEMS

1. By means of formula (1) above, write down the fifth term of the

G.P. 7, 21, 63, ....

2. By formula (1) write down the seventh term of 3, 6, 12, •••, and

then find the sum of the first 7 terms of this series by means of formula

(2). Verify your answers by actually writing the first 7 terms of the

given series.

3. Find the G. P. whose third term is 18 and whose eighth term is

4374.

Suggestion. Since the third term is 18, therefore, by formula (1), 18 = ar^;

similarly, 4374 = ar^; therefore, by dividing the second of these equations by the

first, 243 = r6, i.e., r = 3; etc.

4. Find the G. P. whose fifth term is f and whose ninth term is ^|f

.

Also find the sum of this series.

5. Find the sum of the first 10 terms of the series 1, 2, 4, •••.

6. Find the sum of the first 6 terms of 1, 1.5, 2.25, •.-.
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7. Find the sum of the first 7 terms of 2, - |, |, ••.

8. Find the sum of the first 7 terms of 1, — 2 a:, 4 x% •••.

9. Find the sum of the first k terms of — 5, — 2, — .8, ....

10. Find the sum of the first 9 terms of the series whose first term

is 13.5 and whose fourth term is 4.

11. By actually dividing a - ar'\ i.e., a (1 - r"), by 1 - r, verify the

correctness of formula (2) of § 196 [cf. § 68 (1)].

12. Show that the sum of n terms of a G. P. may be expressed in

each of the following forms:

a — li rl — a nr" — « « ^ « «^'*

1 — r'r— 1 r — 1 1— r 1 r

13. If r, n, and I are given, find a and s ; i.e., find a and s in terms of

r, n, and I (cf. Ex. 19, § 193).

14. By means of formulas (1) and (2), § 196, show that a G. P. is

fully determined when any three of its elements are given (cf. Ex. 21,

§193).

15. If r = 3, do the terms of the series a, ar, ar% ar% - ar'^~'^ increase

or decrease in going toward the right? Can you name a number so large

that it will exceed the nth term of this series for all values of n, however

large ?

16. If r > 1 (numerically), show that the terms of the series a, ar, ar%

ar% ••• grow larger and larger in passing toward the right, and that, by
taking n sufficiently large, the nth term, i.e., ar"'~^, may be made to exceed

any given finite number however large.

17. If r< 1 (numerically), show that the terms of the series a, ar, ar^,

ar^, ..• grow smaller and smaller in passing toward the right, and that,

by taking n sufl&ciently large, ar^-'^ may be made to differ from zero by

less than any given number however small.*

Suggestion on Exs. 16 and 17. Let h be any positive number, then since

(1 + hy- (1 + hy-l= (1 + hy--^{{l+h)-l} ^h{l+hy-\ and since hO--\-hy-^> h,

when 5— 1 is positive, therefore {1 + h)^— (l + h) >h, (l-j-h)^— (l-\- h)^>h,
(l + A)4-(l + /i)3>/i, (i + /i)5_(i + /i)4>/i, ...and (l + /i)«- (1 + /i)'»-i> A.

Now adding these inequalities, and the equation l-{-h = l-{-h, member to mem-
ber, we have {1 + h)n ';> 1 -{ nh ; but 1 + «^ > Q (where Q is any given number
however large) when n>(Q — l)-^A, hence, for this or larger values of n,

(l + 7i)">Q; and therefore, by taking n large enough, the nth power of any
number greater than 1 can be made to exceed any number however large.

Again, letp<l and p . q = l,then q(= 1 -r-p) >1, and therefore q^^i.e., l-^p",

may be made larger than any given number however large, hence p" may be made
smaller than any given number however small.



196-197] SERIES— TEE PROGRESSIONS 339

18. Three numbers whose product is 216 form a G. P., and the sum
of their squares is 189'. What are the numbers?

Suggestion. Let - , a, and ar represent the requh'ed numbers.
r

19. If the population of the United States was 76,000,000 in 1900, and

if it doubles itself every 25 years, what will it be in the year 2000 ?

20. Thinking $1 per bushel too high a price to pay for wheat, a

man bought 10 bu., paying 3 cents for the first bushel, 6 cents for the

second, 12 cents for the third, and so on. AVhat did the tenth bushel

cost him, and what was the average price per bushel ?

21. A gentleman loaned a friend $250 at the beginning of each year

for 4 years. If money is worth 5 % compound interest, how much should

be paid back to him at the end of the fourth year to discharge the

obligation ?

22. Divide 38 into three parts which are iii G. P., and such that when 1,

2, and 1 are added to these parts, respectively, the result shall be in A. P.

197. Infinite decreasing geometric series. If r<l (numerically),

the G. P. is called a decreasing series, while if ?' > 1 (numerically),

it is an increasing series.

Formula (2) of § 196, which gives the sum of the first n terms of

the series a, ar, ar^, ai^, ••• may evidently be written in the form

a ar''

1 — r 1 — ?•

Now, for a decreasing series the value of becomes smaller
1 —

r

and smaller, and approaches zero as a limit when n becomes in-

finite (cf. Ex. 17, p. 338) ; therefore the sum of the first n terms of

an infinite decreasing G. P. may, by taking n sufficiently large,

be made to differ from by less than any given number how-

ever small. This is usually expressed by saying that the sum to

infinity of a decreasing G. P. is
^

; and if s^ stands for "limit

of «„ when 7i becomes infinite," it may be written thus

:

s - ^

1 —

r
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EXERCISES AND PROBLEMS

1. From a line one foot long cut off one half, then one half of the re-

mainder, then one half the next remainder, and so on ; if this process

were continued without end, show that, when expressed in inches, the

parts cut off form the G. P.

:

6, 3, I, I, f, ^, ^2, ii,
.-.

2. By means of formula (2), § 196, find s^ for the series in Ex. 1. Also

find Sg, Sq, *iq,
and s„.

3. Based upon the manner in which the series in Ex. 1 was formed,

show that 5„< 12, however large n may be. How near to 12 will s„ ap-

proach as n is made larger and larger? Explain. Also find Soo by § 197.

4. Find s„ for the series 0.6, 0.06, 0.006, ••., and thus show that 0.6,

i.e., that 0.666 •••, equals |.

Find s^ for each of the following series

:

5. 1, - h h •••• 9. 0.3.

6. 1, h h •••• 10. 0.i2.

7. i - f, A, -. 11. 1.362.

8. V2, 1, \/o:5, •••• 12. 4.7523.

.5. If, in a G. P., r is positive and le

13. l,k,k^

(wherein k <1).

14. ^,-,K
X x^

(wherein x >1)'

the series is greater than all the terms that follow it.

16. If a point moves from a given position, and along a straight line,

with such a velocity that during any given second it moves 75 % as far as

it did during the preceding second, and if it moved 24 feet during the

first second, how far will it move before it comes to rest?

17. If a sled runs 80 feet during the first second after reaching the

bottom of a hill, and if its distance decreases 20% during each second

thereafter, how far will it run on the level before coming to rest ?

18. If a ball, on being dropped from a tower window 100 feet above

the pavement rebounds 40 feet, then falls and rebounds 16 feet, and so

on, how far will it move before coming to rest?

19. The president of a woman's charity organization starts a " letter

chain" by writing 3 letters, each numbered 1, requesting each recipient

to remit 10 cents to the society, and also to send out 3 other letters, each

numbered 2, with a similar request, the chain to close with the letters
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numbered 20. If evefy one addressed complies with the requests, how
much money will be realized for the society ?

20. Although Sao for the series ^, \, I,
••• is 1, show that for the series

hhhh •••> ^n grows larger beyond all bounds, by sufficiently increasing n.

Suggestion. Write the series tlius: Sn=^+(J+i)+ (i+B+7+J)H ,
putting

8 terms in the next group, 16 in the next, and so on, and show that each group is

greater than 5-

198. Geometric means. The two end terms of a finite G. P. are

called its extremes, while all the other terms are called the geo-

metric means between these two.

E.g., in the series |, ^, |, |, and ^^ the extremes are f and ^, and I, I, and |
are geometric means between them.

Ex. 1. Insert 4 geometric means between f and — ^.

Solution. Since 4 means are to be inserted, therefore the complete

series will consist of 6 terms, and therefore, for this series, a = ^, I = — ^-,

and n = 6; hence, by formula (1) of § 196,

- ^= I • r^ therefore r^ = - »-^^, i.e., r = - f

,

and the _series is : I,
—

I, 1, —
I, f, and — ^.

EXERCISES

2. Insert 4 geometric means between 3 and 96.

3. Insert 3 geometric means between 2 and ^\ (two answers).

4. Insert 5 geometric means between x^ and y^ (two answers).

5. If m geometric means are inserted between any two given num-
bers, such as a and b, show that the common ratio for the series thus

formed is ""^y/b -^ a.

6. If X is the (one) geometric mean between a and b, show directly

from the definition of a G. P. that x = Vab. Does this agree with the

statement in Ex. 5? Explain.

7. Insert a geometric mean between 12 and 3. Give two solutions,

and compare Ex. 6.

8. Insert a geometric mean between 0.5 and 3.5 ; also between

(a + 6)2 and (a — b)^; and between dm^x^ and 75m-^x.

9. If the difference between two numbers is 24, and if their arithmeti-

cal mean exceeds their geometric mean by 6, what are the numbers ?
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199. Arithmetico-geometric series. A series formed by multi-

plying corresponding pairs of terms of an A. P. and a G. P. is

usually called an arithmetico-geometric series. The sum of n terms

of such a series may be found by the method of § 196.*

Ex. 1. Find the sum of the series 1, 2 r, 3 r^, 4 r^, 5 r*, .••• nr''-\

Solution. Let s = 1 + 2 r + 3 r2 + 4 r3 + ...
. + n/-"-i,

then rs — r + 2r2+ 3r3 + .- • + (n - l)r"-i + nr^,

whence s --rs — 1 + r + r^+r^+.... + 7-

i.e., .(1--r) = 1 -
1 - r

[§ 196, ]form

and therefore s = 1 -

(1-- r)2 1 - r

EXERCISES

2. By the method of Ex. 1 find the sum of the n terms of the series

obtained by multiplying the corresponding terms of the two series a,

a + rf, a -f 2 c?, ••• a + (n - l)d and 1, r, r\ ••• r"-i.

3. Find the sum of the series whose (n + l)th term is (a + nh)x''\ i.e., find

a +(a + &)a; + (a + 2 6)a;2+ ... + (a + nh)x'^.*

III. HARMONIC PROGRESSION

200. Harmonic series. A series of numbers whose reciprocals

form an A. P. is called an harmonic series ; it is also often called

an harmonical progression, and is designated by " H. P."

E.g., the series 1, i, \, iV,
••• is an H. P. because the reciprocals of its terms are

1, 4, 7, 10, ••., and these form an A. P.

It follows immediately from the above definition that questions

concerning harmonic series, which admit of solution,! ^ay be

solved by treating the reciprocals of the terms of the given series

as an A. P.

E.g., to extend the H.P. ?, \, i\, ^ps three terms further at each end it is only-

necessary to take the reciprocals of these numbers, which form the A, P. 5, 4, V. '/>

in which d = §, and extend it three terms at each end, and write the reciprocals of

its terms. Thus, the given series extended is — §, — 1, f , ?, \, ^, ^^, i, a'l.

* For an extension of this subject see Chrystal's Algebra, Part I, p. 489.

t There is no general formula for the sum of n terms of an H. P.
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EXERCISES

1. If X is the harmonic mean between a and b, show, as above, that

1 _ 1 =. 1 _ 1, and hence that x = ^^'
X a X a-^ b

2. Insert 5 harmonic means between 2 and — 3.

3. The arithmetical mean between two numbers is 5, and their har-

monic mean is 3.2. What are the numbers ?

4. The difference between two numbers is 2, and their arithmetical

mean exceeds their harmonic mean by |. Find the numbers.

5. Given (b — a) : (c — b)= a:x, prove that x equals a, b, or c, accord-

ing as a, b, and c form an A. P., a G. P., or an H. P.

6. If the sixth term of an H. P. is ^, and the seventeenth term is ^j,

find the thirty-seventh term.

7. If a and b are any two unequal positive numbers, show that their

arithmetical mean is greater than their geometric mean, and that this,

in turn, is greater than their harmonic mean ; also that the geometric

mean is a mean proportional between their arithmetical and harmonic



CHAPTER XVIII

MATHEMATICAL INDUCTION— BINOMIAL THEOREM

201. Proof by induction. An elegant and powerful form of

proof, and one that finds extensive application in almost every

branch of mathematics, is what is known as "proof by induc-

tion."

Suppose it to have been found, by trial or otherwise, that x— y
is a factor of a? — y^, o? — y^, and x^ — y^, and that one wishes to

know whether it is a factor of x^ — if, x^ — y^, ••• also. Actual

trial with any one of these, say x'—'if', would show that it is exactly

divisible by x — y, but, besides being somewhat tedious, this

division gives no information as to whether ic — ?/ is or is not a

factor of x^ — y^, ••• also ; each successful trial increases the proh-

dbility of the success of the next, but it really proves nothing

beyond the single case on trial.

That x — y is a factor of a?" — ?/", for every positive integral

value of n, may be proved as follows

:

Since ic" — y^ = x (a?""^ — 2/""^) + y^~^ (x — ?/),

therefore x — y is sl factor of .t" — ?/", if it is a factor ofx'^''^ — ^/""K

In other words : if x — y is a, factor of the difference of two like

integral powers of x and y, then it is a factor of the difference of

the next higher powers also.

But since, by actual trial, x — y is already known to be a factor

of x'^ — y*, therefore, by what has just been proved, it is also a

factor of a^ — y^', again, since it is now known to be a factor of

a^ — y^, therefore it is a factor of x^ — y^ -, and so on without end

:

i.e., x — y is a factor of a;** — ?/" for every positive integral value

of n [cf. § 68 (i)].

The proof just given is an example of what is known as a

proof by mathematical induction ; it consists essentially of two

steps, viz.

:

344
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(a) Showing, by trial or otherwise, the correctness of a given

proposition when applied to one or more particular cases, and
(h) Proving that if the proposition is true for any given case,

then it is true for the next higher case also.

From (a) and (6) it then follows that the proposition under
consideration is true for all like cases.*

EXERCISES

1. Prove that the sum of the first n odd integers is n^.

Solution, (a) By trial it is found that 1 + 3 = 22 and 1 + 3 + 5 = 32.

(6) Moreover, t/ 1 + 3+ 5 H \-{2k-l) = k2, (1)

then, by adding the next odd integer to each member of Eq. (1), we have

l + 3 + 5 + ... + (2A;-l) + (2A; + l) = A;2+(2A;+ l) = (A: + l)2;

i.e., if the law in question is true for the first k odd integers, then it is true for

the first k + 1 odd integers also.

But, by actual trial, this law is known to be true for the first 3 odd integers,

hence it is true for the first 4; and, since it is 7iow known to be true for the first

4, therefore it is true for the first 5, and so on without end ; hence the sum of any
number of consecutive odd integers beginning with 1 equals the square of that

number.

By matliematical induction prove that

:

2. 1 + 2 + 3 + ... + n = -1 n (n + 1).

3. 2 + 4 + 6 + ••• + 2w = n(n + 1).

4. 12 + 22 + 32 + ... + 7i2 = 1 n (n + 1) (2 n + 1).

5. 13 + 28+33+ ... +n8 = in2(n + 1)2^(1 + 2 + 3 + ... + n)2.

6. A: + ;r^+:r^ + .-.+
^

1-2 2.3 3.4 n(n+l) n + 1

7. 1.2 + 2.3 + 3.4 + ... + n(n+l) = in(n + l) (n+ 2).

8. Having established (a) and (b) in the inductive proof of any prop-

osition, show the generality of the proposition by showing that there

can be no first exception, and therefore no exception whatever.

* The student should carefully distinguish between mathematical induction

,

as here defined, and what is known as inductive reasoning in the natural

sciences; a proof by mathematical induction is, from its very nature, ahsolutely

conclusive. On the other hand, the inductive method in physics, chemistry, etc.,

consists in formulating a statement of a law which will fit the particular cases

that are known, and regarding it as a law only so long as it is not contradicted

by other facts, not previously taken into account. From the nature of the case

step (&) above can not be applied in physics, etc.
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202. The binomial theorem. The method of induction (§ 201)

furnishes a convenient proof of what is known as the binomial

theorem; this theorem, which was presented without formal proof

in § 62, may be symbolically stated thus

:

(a; + yy = a;" + nx^-'y + ^
^^ 7^^) x^^-y

wherein x-\-y represents any binomial whatever, and n is any

positive integer.

To prove this theorem by mathematical induction, observe first

that it is correct when n = 2, for it then becomes

2 • 1
(x -i- yy = 3(^ -\- 2 xy i- —— xy, i.e., (x + yy = x^-{-2xy + y^,

which agrees with the result of actual multiplication.

Again, if Eq. (1) is true for any particular value of n, say for

n = k, i.e., if

(x-{-yy=x^-^7c^-'y-^^^^ x'^-y+ ^^^~^^%~^^ ^"V+ • • •, (2)

then, on multiplying each member of Eq. (2) hj x-\-y, it becomes

(x+yy^'=x'^^^+kx'y-^^^^^^a^-y+^^^

1 • ^

i.e., (x+yy+'=x'-^'+ (k+l)x'y+ ^\~^'^^^ x'-y

+ (±i^l|fclla--y+.., (3)

* The student should now re-read § 62, and observe that the second member of

this identity conforms in every detail to the statement there given.
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which is of precisely the same form as Eq. (2),* merely having

A: + 1 wherever Eq. (2) has k. Moreover, Eq. (3) is obtained from

Eq. (2) by actual multiplication, and is therefore true if Eq. (2)

is true ; hence, if the theorem is true when the exponent has any

particular value (say k), then it is also true ivhen the exponent has

the next higher value*

But, by actual multiplication, the theorem is known to be true

when n = 2, hence, by what has just been proved, it is true when
71 = 3 ; again, since it is now known to be true when n = 3, there-

fore it is true when w = 4 ; * and so on without end : hence the

theorem is true for every positive integral exponent,* which was

to be proved.

EXERCISES

1. In the expansion of (x + yy* what is the exponent of y in the 2d

term ? in the 3d term ? in the 4th term ? in the 12th term ? in the rth

term? What is the sum of the exponents of x and y in each term ?

2. In the expansion of (x + ?/)" what is the highest factor in the

denominator of the 3d term ? of the 4th term ? of the 10th term ? of the

rth term? How does this factor compare with the exponent of y in any

given term ?

3. What is subtracted from n in the last factor of the numerator^ in

the 3d term of the expansion of (x + yYl in the 4th term? in the 5th

term? in the 9th term? in the rth term?

4. Based upon your answers to Exs. 1-3, write down the 6th term of

(x + 2/)". Also write the 10th term ; the 17th term ; and the rth term.

203. Binomial theorem continued. Strictly speaking, all that

was really proved in § 202 is that, for every positive integral

value of the exponent, the first four terms of the expansion follow

the law expressed by Eq. (1) ; that all the terms follow this law

will now be shown.

In multiplying Eq. (2) of § 202 by x + y the 2d term of the

product (3) is x times the 2d term plus y times the 1st term of

(2) ; so, too, the 10th term of (3) would be found by adding x

times the 10th term to y times the 9th term of (2), and the rth

* Only the first four terms are given in Eqs. (2) and (3) ; see § 203 for com-

plete proof.
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term of (3) by adding x times the rth term to y times the (r— l)th

term of (2).

But the (r — l)th and the rth terms of (2) are, respectively,

1.2-3- .••(r-2)
^

and A;(A; - l)(k - 2) .•> (fc - r + 3)(fe - r + 2) .^^.,_,
^"""^

1.2.3....(r-2)(r-l) ^ "V
,

therefore the rth term of (3) is

fe(fc-l)(fe-2)..-(fe-r + 3)

1.2.3. •.. (r- 2)I

fc(A:-l)(fe-2)...(A;-r + 3)(fc-r + 2)
\ ^-.+2^.-1^

1.2.3....(r-2)(r-l)
j

^ '

(fe+l)fe(A;-l) ... (fe-r + 3) ._,^, ,

*
*' 1.2.3. ...(r-1) ^ '

which conforms to the law for the rth term expressed by (1)

of § 202. Hence the rth term (i.e., every term) in (3) conforms

to the law expressed by (1), which was to be proved.

EXERCISES

1. Write down the expansion of (a + by-, also of {p— qY- Explain

why the alternate terms in the expansion of (p — qY are negative.

2. Write down the first 3 terms of {x + y)^^ ; also the 8th term.

3. Write down the 4th and 7th terms of (a — xy^.

4. How many terms are there in the expansion of {x -f yY^l Write

down the first three, and also the last three terms of this expansion, and
compare their coefficients.

5. Write down the coefficient of the term containing a^y^ in (a — yy^.

6. Expand (3 a2 _ 2 xy^y\ compare Ex. 2, p. 93.

7. Write down the 4th term of (f a: - | yy^ ; also the 9th term.

8. How many terms are there in ( a:— ] ? Write down the 10th

term. Also write the 5th term of (y^- +'V~)*"

9. Write down the term of (3 x* - 2 a;2)7, u., of {x'^y {^ x^ - 2y

,

which contains x^.
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10. Write down the term of ( a^—^ ) which contains a^^.

11. Expand (a^ -{ ^ a^x-^y, and write the result with positive ex-

ponents.

12. Expand (1 — a: + x^y by means of the binomial theorem (cf.

Ex. 25, p. 205).

13. By applying the law expressed in Eq. (1) of § 202, show that the

coefficient of the (n + l)th term of {x + iy)« is 1 ; also show that the

coefficient of every term thereafter contains a zero factor, and hence that

(x + yy contains only n + 1 terms.

14. Since (a + !))" — {h + a)", show that the coefficients equally dis-

tant from the ends of (a + &)" are equal ; show this also by comparing

the coefficient of the rth term from the beginning with that of the rth

term from the end [i.e., with the (n — r + 2)th term from the beginning].

15. Show that the sum of the binomial coefficients, i.e., of 1, n,

n(n-\) n(n-l)(n-2) • «„

2 ' 1-2.3 '••''" ^ •

Suggestion. Let x = ?/ = 1, after expanding {x + y)^.

16. Show that the sum of the even coefficients {i.e., the 2d, 4th, •••) in

Ex. 15 equals the sum of the odd coefficients, and that each sum is 2**-^

Suggestion. Let x = 1 and y =—lin {x + yy.

17. Show that the coefficient of the rth term in {x -f yy may be ob-

tained by multiplying that of the (r — l)th term by ^~ ^"^
, and thus

r — 1

show that the binomial coefficients increase numerically in going from

term to term toward the center (cf. also Ex. 14).

18. Show that the coefficient of the rth term is numerically greater

than that of the (r — l)th term so long as r< \(n + 3) ; and thus write

down the term whose coefficient is greatest in the expansion of {x + ?/) ^M

and also in {x + yY^.

204. Binomial theorem extended. It may be remarked in passing

that the binomial theorem (§ 202), which has thus far been re-

stricted to the case where the exponent is a positive integer, is

greatly extended in Higher Algebra, where it is shown that, under

certain restrictions, it admits negative and fractional exponents

also. Although the proof of this fact is beyond the limits of this

book, its correctness may be assumed in the following exercises.
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EXERCISES

1. By means of the binomial theorem wi^te the first four terms of

(1 + a:)^ ; the first five terms of (a + b)-^; the 5th term of (1 - 3 a;)i

2. Show that the application of the binomial theorem to such cases as

the above gives rise to an infinite series (cf. Ex. 13, § 203).

3. Expand (1 — x)-^ to 8 terms by the binomial theorem and compare

the result with the first 8 terms of the quotient 1 -f- (1 — x).

4. Show that (25 + 1)^ = 5 + ^V— nks + z<yhws — •-> when expanded

by the binomial theorem and simplified ; compare this result with V'26

as found by the usual method.

5. By means of the expansion of (9 — 2)* show how to get an

approximate value of the square root of 7.

205. The square of a polynomial. In § 61 it was pointed out

that, by actual multiplication, the square of a polynomial consist-

ing of 3, 4, or 5 terms, equals the sum of the squares of all the

terms of the polynomial, plus twice the product of each term by

all those that follow it. It will now be shown that if this theorem

is true for polynomials of n terms, then it is also true for those of

n + 1 terms, and from this it will follow, as in § 201, that it is

true for polynomials of any finite number of terms whatever, since

it is already known to be true for polynomials of five terms.

Let a-\-h-^c-\ \-p + qhe a. polynomial of n terms, and let

(a + b + c-\ [-
p

-{- qf = a^ + b^ -\ ^q'~-\-2ab+ 2ac-\ \-2aq

+ 2bG-\ \-^bq-{ \-2pq.

In this identity replace a everywhere hj x-\-y; then the number
of terms in the polynomial in the first member will become n 4- 1,

and the second member will still consist of the sum of the squares

of all the terms of the polynomial, plus twice the product of each

term by all those that follow it (the student should work this out

in detail) ; therefore, if the theorem is true for polynomials of n

terms, then it is also true for those of n + 1 terms, which was to

be proved.

EXERCISES
Expand

:

1. (a + b-3x + 2ah- 1)2. « / . 2 „ .2
2. (2-3a? + 4ma:2-3ma;+3a;- 3a2a:)2. \ X ml
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IRRATIONAL NUMBERS

[Supplementary to § 132]

206. Irrational numbers are defined and illustrated in Chapter XIV,

and it is there tentatively assumed, not only that the earlier definitions

of sum, product, etc., apply to these numbers, but also that they are

subject to the combinatory laws previously established for rational

numbers.

These definitions will now be restated from a somewhat broader point

of view, and one from which the proofs of the combinatory laws are

easily established.

As in § 130, note 2, two infinite series may be found such that the

square of each term of the first series is less than 2, while the square of

each term of the second series is greater than 2. These series may be

conveniently written in the form

1, 1.4, 1.41, 1.414, 1.4142, .•• <V2<2, 1.5, 1.42, 1.415, .-.; (1)

and the value of V5 may be thought of as defined by them.

For, let a point P move along a straight line AB va. such a way that,

at successive stages, its distances from are: 1, 1.4, 1.41, ••• (shown

in the figure by OP^, OP^, •••), and let another point Q move along

A q T, p,Q, g, B

this line so that its distances from are successively: 2, 1.5, 1.42, ...

(shown in the figure by OQj, OQg^ •-)• Then clearly the point P will

always be at the left of Q,— since each number of the first series is

smaller than each number of the second,— and P and Q will approach

each other infinitely closely, but will never meet,— since the distance

between them at the nth stage of their progress is —, which may be

made smaller than any assigned distance, however small, by making n

sufficiently large, but which can not be made zero. In other words : the

points P and Q are each approaching, infinitely closely, a fixed common point

R which lies between them.

361
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Moreover, there exists only one such fixed point, as R, betweenP and Q

:

for, if there be more than one, let R^ be another point distinct from R,

and approached infinitely closely by both P and Q, and let d be the dis-

tance between R and R^ ; now the distance between P and Q is —-, and

this may be made smaller than d by suflBciently increasing n ; therefore

R and R^ can not both be between P and Q, which was to be shown.

Now, there being one, and only one, fixed point, R, determined (de-

fined) by the two infinite series in (1) above, therefore the distance OR
may be said to be defined by these infinite series; and since these series

are formed as above explained, therefore the distance OR may be

appropriately represented by the symbol V2 ; hence the above series

may be said to de^ne the value of V2 (cf. § 130, note 3).

As in the particular example just now considered, so in general, ani/

two infinite series of rational numbers {expressed decimally

or otherwise), one series increasing and the other decreas-

ing, define an irrational number if the difference between

the nth terms of the two series, while it can never be made
zero, may be made smaller than any assigned number,
however small, by sufficiently increasing n. Moreover, every

irrational number may be represented in this way (cf. § 130).

207. Equality, sum, product, etc., of irrational numbers. Let k and Id

be two given positive irrational numbers, and let them be defined by
infinite series of rational numbers as explained in § 206

;

i.e., let Op a^, a^ — a„, ••• <k<h^, h^, h^, — bn, —

,

(1)

and a\, a'^, a'g, ... a'„, ... <k' < h\, h\, ft'g, ... 6'„, ..., (2)

wherein a„ — bn and a'„ — b'n may each be made smaller than any

assigned number, however small, by sufficiently increasing n.

Then k is said to be equal to k' if, and only if, every one of the a's is

less than every one of the 6"s, and every a' is less than every b.

And k is said to be greater than k' if, and only if, some of the a's are

greater than some of the 6"s.

Again, the sum, difference, product, and quotient of k and k' may be

defined, respectively, by the following pairs of infinite series

:

fli + a'l, flg + «'2' «3 + «'3» •••«« + a'n, "' <k + k' <,b^-\- b\,

b^ + b\, &3 + fe'a, - bn + ft'„, -, (3)

a, - h\, a^ - V^ as - b'g, ... a„ - ft'„, ... < ^ - ^^' < &, - a'„

^2 - «'« h - «'3' --K- «'«' —
» (4)
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a^ • a'l, Og • a'j, a^ • a'g, ••• a» • «'„, ••• < ^' • ^' < 6j • 6'^,

*2 • *'2> *3 • *'3' ••• ^H • *'n, —

,

(5)

and flj -4- h\, a^ h- 6'2» as "^ ^V •- «n ^ 6'«, -" <k-^k' <\^ a\,

h^ ^ a\, 63 - a'g, ... />„ - a'„, .-. (6)

Note 1. Observe that if k = k' , as defined above, then these two irrational

numbers have the same decimal expressions , however far they may be carried

out. For suppose that some decimal figure, say the 14th, in k is greater than
the corresponding figure in k', then the corresponding* a woulci be equal to, or
greater than, the corresponding 6', and k would not equSil k' under t^e above
definition. .

' '
-

Note 2. In applying the above definitions, say that of the sum, it may happen
that ai + a'l = 03 + a'2 = — = an + a'n = — = &n + b'n = •.• ; in this case k + k'

= an-{-a'n= bn+ b'n, i.e., this sum is a, rational number. To illustrate this fact

numerically, let k = y/2 and k' — 5~ \/2.

Note 3. The above definitions [inequalities (3)-(6)] apply also when negative
irrational numbers are involved : those of sum and difference apply directly, and
those of product and quotient apply by regarding the numbers as positive and
attaching the proper sign to the result.

208. Comparisons and operations between rational and irrational num-
bers. A given rational number r is said to be less than k (see § 207) if,

and only if, some of the a's are greater than r, otherwise it is greater

than k.

The sum of a rational and an irrational number, say A: + r, is defined

by the series

a^ + r, a^-\-r, flg+ r, .- a„+r < ^+r < ft^+ r, h^-^r, 63+r, — 5„+ r, ...;

and the difference, product, and quotient of a rational and an irrational

number are defined in a similar manner.

209. Combinatory laws of irrational numbers. That the irrational

numbers are subject to the same combinatory laws as are the rational

numbers follows easily from the definitions given in §§ 207 and 208.

Thus, by (3) of § 207,

aj+ a'i, a2+«'2' «3+«V •*• < k-\-k' <h^ + b\, h^-\-h\, b^+b'^, •-, (1)

and a'l+ aj, a'g + flg' ^'3+ 03, ... < A;' + ^<6'j+ ii, ft'2+ ^2' ^'s+ ^s'
"*

5 (2)

but since the addition of rational numbers is commutative, i.e., since

flj -f a'l = a'j + flj, etc., therefore the two infinite series which define

k + k' are exactly the same as those which define k' + k; but, by § 206,

two such series define one, and only one, irrational number, therefore

k -hk' = k' + k.
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In the same way it may be shown that the sum of any number of

irrational numbers is independent of the order in which the summands
are arranged ; i.e., irrational numbers are subject to the commutative law of

addition.

That this law holds also when rational numbers are added to irra-

tional numbers, and vice versa, follows from § 208.

Moreover, by means of (5) of § 207, and by reasoning altogether simi-

lar to that which has just now been employed, the commutative law of

multiplication may be established.

The associative law of addition, and also that of multiplication, is

proved from the commutative law in precisely the same way as that

employed for integers in §§ 51 and 53.

And finally, since (I -]-m)n = ln + mn for all rational numbers, there-

fore, by reasoning altogether similar to that employed to prove the com-

mutative law of addition and of multiplication, it is easily proved that

{k + k') k" = k- k" + k' • k", wherein k, k', and k" are any three irrational

numbers which are defined by infinite series of rational numbers as in

§ 207 ; hence, even for irrational numbers, multiplication is distributive

with regard to addition.

Remark. For a more extended treatment of irrational numbers see Tannery's

Arithmetique, Chapter XII; or Weber's Encyklopadie der Elementar-Mathe-
matik, Chapter IV.



APPENDIX B

COMPLEX NUMBERS

[Supplementary to § 146]

210. Complex numbers. In the treatment of complex numbers given

in the preceding pages, considerations of simplicity demanded that the

proofs of their combinatory laws be postponed ; accordingly these laws

were there tentatively assumed to hold,— compare footnote, p. 244.

The following definition of a complex number, while it may at first

sight seem somewhat arbitrary, is fully justified by the beautiful results

to which it leads, and it serves at the same time to illustrate a means of

defining numbers which has not hitherto been employed in this book.

A complex number is a combination of two real numbers, such as a and

b, which will be temporarily represented by the symbol (a, b), and which

satisfies the following defining equations

:

(a, h) = (a', h'), if, and only if, a = a' and b = b', (1)

(a, b) + (a', b') = (a + a', ft + b'), (2)

and (a, b) - (a', b') = (aa' - bb', ab' + a'b)
; (3)

these equations merely define what is meant by equals, sum, and product,

for complex numbers.

Moreover, in order immediately to connect complex numbers more

closely with real numbers, and to make the latter a special case of the

^orm^^^\^^
(a,0)=a, (4)

which may be done since it is consistent with each of the above defining

equations.

211. Immediate consequences of the definitions in § 210. It will now

be shown that if (a, b) is any combination whatever of two real num-

bers which satisfies the defining equations in § 210, then

(a, &) = a + bi,

wherein i^ = — 1 ; and hence that the complex number defined in § 210

is none other than the complex number a + 6i, already considered in

Chapter XIV.
866
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Thus, by (3) and (4) of § 210,

(0, 1).(0, 1) = (-1, 0)=-l,

i.e., (0, 1)2 = - 1, and therefore (0, 1) = a^^=^ = i.

Again, by (3) of § 210, (0, h) = {h,0 • (0, 1),

Le., (0, h) = hi.

And finaUy, by (2) of § 210,

(a,&) = (a,0)- ^0,&),

i.e., {a, b) = a + hi

which was to be proved.

212. Combinatory laws of complex numl s. That the commutative

law of addition, already established for reaj umbers, holds for complex

numbers also may be easily proved as follow

By (2) of § 210,

(a, b) + (a', h') = (a + a', & + V), and (a', h') + (a, h) = (a' + «, h' + h),

but, since a, a', h, and h' are real numbers,

therefore a + a' — a' + a^ and b + b' = b' + b,

and therefore (a, b) + (a', 6') = (a', &') + (a, b)
;

i.e., the commutative law holds for the sum of two complex numbers.

Moreover, it is evident that the proof just now given for two complex

numbers may be easily extended to any number of siich numbers; and

since (a, b) is a real number when b = 0, and a pure imaginary number
when a = 0, therefore this proof applies also when real numbers and

complex numbers are added together.

Again, by means of (3) of § 210, and by reasoning altogether similar

to that which has just been employed in the proof of the commutative

law of addition, it is easily shown that multiplication is also subject to

the commutative law.

The associative law of addition and of multiplica^ 'on is proved from
the commutative law in precisely the same way u that employed for

integers, §§ 51 and 53.

And finally, it is easily proved from the definitions of § 210 that

(a, b) + (a', b') . (a", b") = (a, b) . (a", b") + (a', 6;) • (a", b") ;
*

* The details of this proof are left as an exercise for the student ; he may
establish this equality by showing that each member is equal to the complex
number ^^^„ _ ^^,. ^ ^.^,. _ j,^„^ ^^,. ^ ^„^ ^ ^,^„ ^ ^„^,^
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i.e., multiplication with complex numbers is distributive with regard to

addition.

213. Subtraction and divisipn with complex numbers. Here, as with

real numbers, subtraction and division are defined, respectively, as the

inverses of addition and mult plication (cf. § 3) ; and, based upon this

definition, it will now be shown that any two given complex numbers

have a unique difference and a unique quotient, which may be easily

written down from the giv^en numbers. To show this, let (a, 6) and

(a', h') be any two given ' Kiplex numbers, and let

then, by § 3 (ii), (x + (a', h') = (a, h),

•6

whence, from (2) and (1) ,, i§ 210,

X -\' i' = a and y + b' = b;

therefore x = a — a' and y = h — b',

i.e., (a, b) - (a', b') = (a - a', b — b').

Again, let ' (a, b) ^ («', b') - {x, y) ;

then, by § 3 (iv), (x, y) (a', b') = (a, 6),

and therefore, from (3) and (1) of § 210,

a'x — b'y = a and a'y + b'x = 5,

1 aa' + bb' -, a'b — ab'
whence x =

,,^ ,„,
and y =

2.0..
(g, b) _ l ag' + bb' oH) — ab' \

(aT6^~ U'2 + 6'2' a'^+b'^l'

On recalling the conclusion of §211, the two results just obtained

may be written, re^s^ectively, as

a -^^i - (a' + b'i) = a - a' + (6 - b')i,

A g + bi _ aa' + hb' + ja'h - ab')i

214. Powers and roots of complex numbers. Raising a complex

number to a positiv^i integral power is merely a special case of multiplica-

tion, and is therefore fully provided for in (3) of § 210.
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The method of extracting the square root of a complex number * is

illustrated by means of a particular example in § 182; and it is evident,

from what is there said, that this same process may be applied to any

complex number whatever.

Moreover, by the method employed in the note of § 182, it is now evi-

dent that any even root of any negative number whatever can be

expressed in the form a + bi, wherein a and b are real, and ^2 = — 1.

215. Graphic representation of complex numbers. A complex number,

such as a + bi, may be graphically represented by the point (P)

whose coordinates (§ 114) are a and b. In this scheme of representation

it is evident that to every complex number there corresponds one and only

one point in the plane, and conversely, to every point in the plane there

corresponds one and only one complex number,— if a=0 the correspond-

ing point lies on the line OY, while if & = it lies on OX.

y

X ct

J

/
b

o

JtI X

This method of graphically representing a complex number was intro-

duced by Argand in 1806, and is known as the Argand diagram.

Instead of representing a + bi by the point P, it may also be repre-

sented by the line OP ; each of these methods is, in fact, often employed.
The length of the line OP, which is Va^ + b% is called the modulus

(also the absolute value) of the number a + bi, and the angle XOP is

called its argument (also its amplitude).

Not only may given complex numbers be represented by the Argand
diagram, but the sum, product, etc., of two or more of them, being itself

a complex number, may also be represented by such a diagram.
E.g., in the following diagram, OP represents 9 + 2{, OQ represents

2 -f 7 1, and OR represents their sum, viz., 11 + 9 i.

Observe that PR is equal and parallel to OQ (why?), and hence
that OPRQ is a parallelogram. From this it follows that if any two

* Higher roots of complex numbers can not in general be extracted by the
elementary methods thus far studied.
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F R

g....,- -y^

1X 1
j^y^^^^^"

X

complex numbers are represented by the Argand diagram, then their sum
is represented by the diagonal of the parallelogram of which the given

numbers are a pair of adjacent sides.

Note 1. From a physical point of view, it is also quite appropriate to call OR
the swn of OF and OQ. Thus, if two forces which are represented in amount
and direction by OP and OQ, respectively, act simultaneously upon a body

situated at 0, the result is the same as if a single force represented in amount
and direction by OR were acting on this body.

Note 2. The fact that t • i =— 1 is also consistent with the Argand diagram.

E.q., the effect of multiplying any given line as OM by — 1 is to reverse its

quality, and this may be thought of as accomplished by rotating OM through

an angle of 180° to the position OM' , as shown in the figure; now, since multi-

H

M' O

plying OM hy i-i also reverses its quality, therefore multiplying OM by i alone

should rotate it through 90° to the position OH. Hence if OM represents any-

real number, then the number represented by i • OM should be laid off on a line

perpendicular to OM, as it is in the Argand diagram.
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Lowest common multiple, 122.

Mathematical induction, 344.

Maximum and minimum values, 294.

Mean proportional, 320.

Means, extremes, etc., 336, 341,

343.

Minuend, 3.

Modulus, 358.

Monomials, addition, etc., 42, 44,

46.

Multiples, L. C. M., etc., 122.

Multiplicand, multiplier, 3.

Multiplication, etc., 3, 12, 62, 69.
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Negative, exponents, 63.

numbers, 18-21, 23, 24.

terms, 31, 43.

Numbers, absolute value of, 21.

commensurable, etc., 319.

constants and variables, 327.

finite and infinite, 86.

imaginary and complex, 224, 244,

311, 355.

known and unknown, 141.

literal, 5.

natural, positive, etc., 1, 18, 20, 21.

opposite, 21.

prime and composite, 94.

rational and irrational, 224, 351.

real, 224.

Operations with literal numbers, 11.

Opposite numbers, 21.

Order of operations, 13.

Parentheses, 14, 49, 50.

Polynomials, addition, etc., 42, 44,

48.

square of, 91, 350.

Positive numbers, terms, etc., 20, 31,

43.

Prime factors, 94.

unique set of, 122.

Principal roots, 227.

Principles of clearing of fractions, 149.

of elimination, 170, 298, 306.

of H. C. F., 119.

of inequalities, 194.

of proportion, 321.

Problems, directions for solving, 36.

equations of, 37.

general, 157.

Products, 3, 26, 53, 55, 57, etc.

of sum and difference, 89.

Progression, arithmetical, 331.

geometric, 336.

harmonic, 342.

Proof by induction, 344.

Property, of complex numbers, 250.

of quadratic surds, 243.

Proportion, its principles, 320, 321.

abbreviated, 328.

Quadratic equations, 267.

graphs of, 314.

principles involved, 298, 306.

special devices for, 303.

Quadratic surds, property of, 243.

Radicals, radical equations, 226, 383.

Radicand, 206.

Ratio, 318, 319.

common, in G. P., 336.

Rational numbers, 224,

Rationalizing factor, 242, 264.

Real numbers, 224.

Recapitulation, 17, 31, 225 (note 5).

Reciprocal, equations, 293.

of a number, 83.

Remainder, 3.

theorem, 71, 100.

Removal of parentheses, 49.

Roots of an equation, 33.

character of roots, 277.

sum and product of, 280.

Rule of signs, 26.

Series, 331, 336, 339, 342.

Signs, of aggregation, 13, 14.

of operation, 2, 3, 4.

of quality, 21, 29.

of relation, 2, 193.

Similar and dissimilar terms, 43.

Simple equations, 142.

one and but one solution for, 145,

178.

Simultaneous equations, 165, 174,

183, 297.

Solution, of equations, 33, 109, 165.

graphic method, 315.

by special devices, 303.

Specific gravity, 154.

Square of polynomial, 91, 350.

Square roots, 209, 213.

of quadratic surds, etc., 310, 311.

Subtraction, 2, 3, 11, 24, 46, 48, 141.

Subtrahend, 3.

Sum, summands, etc., 2, 26, 352, 355.

Surds, 226.

Symbols of continuation, 4.

Symmetric equations, 304.
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System of equations, 166.

indeterminate, 187.

INDEX

Type forms, 87.

Unknown numbers, 141.

Term, absolute, 267.

Terms, positive, negative, etc., 30, 31,

43.

Theorem, binomial, 92, 344.

Third proportional, 321.

Transposition, 36.

Trinomial, 42.

Variables, variation, 327.

Verification, 33.

Vinculum, 14.

Zero, exponent, 63.

operations with, 84.
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MODERN MATHEMATICAL SERIES

Elementary Plane Geometry
By JAMES McMAHON

Assistant Professor of Mathematics in Cornell University

Price, 90 Cents

PLAN OF THE BOOK
A combination of demonstrative and inventional geometry.

The subject is presented with Euclidean rigor; but this rigor

consists more in soundness of structural development than in

great formality of expression.

METHOD OF ARRANGEMENT
The general enunciation is placed first and printed in italics.

Next comes the special arrangement, consisting of the special

statement of the hypothesis, followed by the diagram and
the special statement of the conclusion immediately following

the diagram. The successive steps in the demonstration lead-

ing from hypothesis to conclusion are then made clear with
reference to the figure, the previous authority for each step
being quoted or referred to.

SPECIAL FEATURES
1. Theorems and problems are arranged in natural groups

with reference to their underlying principles.

2. Elementary ideas of logic are introduced from the begin-
ning, and their significance for geometry is clearly shown.

3. Typical forms of theorems, etc., are given before the
special forms are developed.

4. Independence of reasoning is fostered by compelling the
student to rely on the propositions already proved.

5. Ordinary size-relations are treated in a geometrical man-
ner. Words suggestive of length, area, distance, etc., are

referred to only in Book VI.

6. Instead of the numerical theory of ratio and proportion
usually given, the Euclidean doctrine of ratio and proportion is

presented in a modernized form, emphasizing its naturalness

and generality.

7. The work throughout aims to develop the student's

powers of invention and generalization.

AMERICAN BOOK COMPANY
t7»J



THE MODERN (Cornell)

MATHEMATICAL SERIES
LUCIEN AUGUSTUS WAIT

General Editor

Senior Professor of Mathematics In Cornell University

ANALYTIC GEOMETRY
By J. H. Tanner, Ph.D., Assistant Professor of Mathe-
matics, Cornell University, and Joseph Allen, A.M., Instruc-
tor in Mathematics in the College of the City of New
York. Cloth, 8vo, 410 pages $2.00

DIFFERENTIAL CALCULUS
By James McMahon, A.M., Assistant Professor of Mathe-
matics, Cornell University, and Virgil Snyder, Ph.D.,
Instructor in Mathematics, Cornell University. Cloth, 8vo,
351 pages $2.00

INTEGRAL CALCULUS
By Daniel Alexander Murray, Ph.D., Instructor in Mathe-
matics in Cornell University. Cloth, 8vo, 302 pages, $2.00

DIFFERENTIAL AND INTEGRAL CALCULUS
By Virgil Snyder, Ph.D., Instructor in Mathematics, Cornell
University, and John Irwin Hutchinson, Ph.D., Instructor
in Mathematics, Cornell University. Cloth, Svo, 320
pages $2.00

ELEMENTARY GEOMETRY-PLANE
By James McMahon, Assistant Professor of Mathematics
in Cornell University. Half leather, 12mo, 358 pages, $0.90

ELEMENTARY ALGEBRA
By J. H. Tanner, Ph.D., Assistant Professor of Mathematics,
Cornell University. Half leather, Svo, 374 pages . $1.00

The advanced books of this series treat their subjects in a
way that is simple and practical, yet thoroughly rigorous and
attractive to both teacher and student. They meet the needs
of students pursuing courses in engineering and architecture in

any college or university. Since their publication, they have
received the general and hearty approval of teachers, and have
been very widely adopted.

The elementary books will be designed to implant the spirit

of the other books into secondary schools, and will make the
work in mathematics, from the very start, continuous and har-
monious.

AMERICAN BOOK COMPANY
PUBLISHERS
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Lessons in Physical Geography

By CHARLES R. DRYER, M.A., F.G.S.A.

Professor of Geography in the Indiana State Normal School

Half leather, 12mo. Illustrated. 430 pages, . . , Price, $1.20

EASY AS WELL AS FULL AND ACCURATE
One of the chief merits of this text-book is that it is simpler than

any other complete and accurate treatise on the subject now before the

public. The treatment, although specially adapted for the high school

course, Is easily within the comprehension of pupils in the upper grade
of the grammar school.

TREATMENT BY TYPE FORMS
The physical features of the earth are grouped according to their

causal relations and their functions. The characteristics of each group
are presented by means of a typical example which is described in unusual
detail, so that the pupil has a relatively minute knowledge of the type form.

INDUCTIVE GENERALIZATIONS
Only after the detailed discussion of a type form has given the pupil

a clear and vivid concept of that form are explanations and general prin-

ciples introduced. Generalizations developed thus inductively rest upon
an adequate foundation in the mind of the pupil, and hence cannot
appear to him mere formulae of words, as is too often the case.

REALISTIC EXERCISES
Throughout the book are many realistic exercises which include both

field and laboratory work. In the field, the student is taught to observe

those physiographic forces which may be acting, even on a small scale,

in his own immediate vicinity. Appendices (with illustrations) give full

instructions as to laboratory material and appliances for observation and
for teaching.

SPECIAL ATTENTION TO SUBJECTS OF HUMAN INTEREST
While due prominence is given to recent developments in the study,

this does not exclude any link in the chain which connects the face of the

earth with man. The chapters upon life contain a fuller and more
adequate treatment of the controls exerted by geographical conditions

upon plants, animals, and man than has been given in any other similar

book.

MAPS AND ILLUSTRATIONS
The book is profusely illustrated by more than 350 maps, diagrams,

and reproductions of photographs, but illustrations have been used only

where they afford real aid in the elucidation of the text.

Copies sent^ prepaid^ on receipt ofprice,

American Book Company
New York •- Cincinnati Chicago
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Gateway Series of English Texts
General Editor, Henry van Dyke, Princeton University

The English Texts which are required for entrance to college,
edited by eminent authorities, and presented in a clear, helpful,
and interesting form. A list of the volumes and of their editors
follows. More detailed information, with prices and terms for
introduction, will be gladly supplied on request.

Shakespeare's Merchant of Venice. Professor FeHx E. Schelling,
University of Pennsylvania.

Shakespeare's Julius Caesar. Dr. Hamilton W. Mabie, "The
Outlook."

Shakespeare's Macbeth. Professor T. M. Parrott, Princeton
University.

Milton's Minor Poems. Professor Mary A. Jordan, Smith
College.

Addison's Sir Roger de Coverley Papers. Professor C. T. Win-
chester, Wesleyan University.

Goldsmith's Vicar of Wakefield. Professor James A. Tufts,
Phillips Exeter Academy.

Burke's Speech on Conciliation. Professor William MacDonald,
Brown University.

Coleridge's The Ancient Mariner. Professor George E. Wood-
berry, Columbia University.

Scott's Ivanhoe. Professor Francis H. Stoddard, New York
University.

Scott's Lady of the Lake. Professor R. M. Alden, Leland Stan-
ford, Jr. University.

Macaulay's Milton. Rev. E. L. Gulick, Lawrenceville School.

Macaulay's Addison. Professor Charles F. McClumpha, Uni-
versity of Minnesota.

Carlyle's Essay on Burns. Professor Edwin Mims, Trinity
College, North Carolina.

George Eliot's Silas Marner. Professor W. L. Cross, Yale
University.

Tennyson's Princess. Professor Katharine Lee Bates, Wellesley
College.

Scott's Lady of the Lake. Professor R. M. Alden, Leland Stan-
ford Jr. University.

Tennyson's Gareth and Lynette, Lancelot and Elaine, and The
Passing of Arthur. Dr. Henry van Dyke, Princeton Uni-

versity.

Irving's Life of Goldsmith.
Macaulay's Life of Johnson.

AMERICAN BOOK COMPANY
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Text- Books in Ancient History

BY

WILLIAM C. MOREY, Ph.D.
Professor of History and Political Science, University of Rochester

MOREY»S OUTLINES OF ROMAN HISTORY . $1.00

IN this history the rise, progress, and decay of the Roman
Empire have been so treated as to emphasize the unity and

continuity of the narrative; and the interrelation of the

various periods is so clearly shown that the student appreciates

the logical and systematic arrangement of the work. The
scope of the book covers the whole period of Roman history,

from the foundation of the city to the fall of the Western

Empire, all relevant and important facts having been selected

to the exclusion of minute and unnecessary details. The work
is admirably adapted to the special kind of study required by
high school and academy courses. The character of the illus-

trative material is especially worthy of close examination.

This is all drawn from authentic sources.

MOREY»S OUTLINES OF GREEK HISTORY . $1.00

THIS forms, with the "Outlines of Roman History," a

complete elementary course in ancient history. The
mechanical make-up of the volume is most attractive

—

the type clear and well spaced, the illustrations well chosen

and helpful, and the maps numerous and not overcrowded

with names. The treatment, therefore, gives special attention

to the development of Greek culture and of political institu-

tions. The topical method is employed, and each chapter is

supplemented by selections for reading and a subject for special

study. The book points out clearly the most essential facts

in Greek history, and shows the important influence which

Greece exercised upon the subsequent history of the world.

The work is sufficient to meet the requirements for entrance

of the leading colleges and those of the New York State Regents.

AMERICAN BOOK COMPANY



Text-Books in Geology

By JAMES D. DANA, LL.D.

Late Professor of Geology and Mineralogy in Yale University,

DANA'S GEOLOGICAL STORY BRIEFLY TOLD . . . $1.15

A new and revised edition of this popular text-book for beginners in

the study, and for the general reader. The book has been entirely

rewritten, and improved by the addition of many new illustrations and

interesting descriptions of the latest phases and discoveries of the science.

In contents and dress it is an attractive volume, well suited for its use.

DANA'S REVISED TEXT-BOOK OF GEOLOGY . . . $1.40

Fifth Edition, Revised and Enlarged. Edited by William North
Rice, Ph.D., LL.D., Professor of Geology in Wesleyan University.

This is the standard text-book in geology for high school and elementary

college work. While the general and distinctive features of the former

work have been preserved, the book has been thoroughly revised, enlarged,

and improved. As now published, it combines the results of the life

experience and observation of its distinguished author with the latest

discoveries and researches in the science.

DANA'S MANUAL OF GEOLOGY $5.00

Fourth Revised Edition. This great work is a complete thesaurus of

the principles, methods, and details of the science of geology in its

varied branches, including the formation and metamorphism of rocks,

physiography, orogeny, and epeirogeny, biologic evolution, and paleon-

tology. It is not only a text-book for the college student but a hand-

book for the professional geologist. The book was first issued in 1862,

a second edition was published in 1874, and a third in 1880. Later

investigations and developments in the science, especially in the geology

of North America, led to the last revision of the work, which was most

thorough and complete. This last revision, making the work substantially

a new book, was performed almost exclusively by Dr. Dana himself, and

may justly be regarded as the crowning work of his life.

Copies of any of Dana*s Geologies will be sent, prepaid, to any address on

receipt of the price.

American Book Company
New York Cincinnati Chicago
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AVERY'S PHYSICS
By ELROY M. AVERY, Ph.D., LL.D.

AVERY'S SCHOOL PHYSICS $1.25

For Secondary Schools

Avery's School Physics combines in one volume many
features which are invaluable in a high school course. Although
of great comprehensiveness, it is concise and simple. It fur-

nishes a text which develops in logical order the various divi-

sions and subdivisions of the science, stating the fundamental
principles with great accuracy and clearness, and consequently
affording an excellent basis for the student to use in his work.
At the same time there are included a large number of exercises
and experiments which are amply sufficient for class-room demon-
stration and laboratory practice.

AVERY'S ELEMENTARY PHYSICS $1.00

A Short Course for High Schools

This book meets the wants of schools that cannot give to

the study the time required for the author's School Physics,
and yet demand a book that is scientifically accurate and up-
to-date in every respect. While following the general lines of
the larger book, and prepared with the same painstaking
effort and ability, it contains much matter that is new and
especially suited for more elementary work.

AVERY AND SINNOTT'S FIRST LESSONS IN
PHYSICAL SCIENCE $0.60

For Grammar Schools

A work adapted to the capacities of grammar school pupils,

which wisely selects topics that are fundamental and immedi-
ately helpful in other studies, as physical geography and physi-
ology. The book is of great value to all pupils unable to take
a high school course in this branch. Although very elementary,
it is also scientifically accurate. Step by step, the pupil is

led to a clear understanding of some of the most important
principles.

AMERICAN BOOK COMPANY



A Modern Chemistry

Elementary Chemistry
$1.10

LaLborsLtory MaLnuad
50c.

By F. W. CLARKE
Chief Chemist of the United

States Geological Survey

and L. M. DENNIS
Professor of Inorganic and Analytical

Chemistry in Cornell University

THE study of chemistry, apart from its scientific and
detailed applications, is a training in the interpretation

of evidence, and herein lies one of its chief merits as

an instrument of education. The authors of this Elementary
Chemistry have had this idea constantly in mind: theory and
practice, thought and application, are logically kept together,

and each generalization follows the evidence upon which it

rests. The application of the science to human affairs, and
its utility in modern life, are given their proper treatment.

The Laboratory Manual contains directions for experi-

ments illustrating all the points taken up, and prepared with

reference to the recommendations of the Committee of Ten
and the College Entrance Examination Board. Each alter-

nate page is left blank for recording the details of the experi-

ment, and for writing answers to suggestive questions which
are introduced in connection with the work.

The books reflect the combined knowledge and experi-

ence of their distinguished authors, and are equally suited

to the needs both of those students who intend to take a

more advanced course in chemical training, and of those
who have no thought of pursuing the study further.

AMERICAN BOOK COMPANY
^ Publishers

NEW YORK CINCINNATI CHICAGO
Cife)



Outlines of Botany
FOR THE

HIGH SCHOOL LABORATORY AND CLASSROOM

BY

ROBERT GREENLEAF LEAVITT, A.M.

Of the Ames Botanical Laboratory

Prepared at the request of the Botanical Department of Harvard
University

LEAVITT'S OUTLINES OF BOTANY. Cloth, 8vo. 272 pages . $1.00

With Gray's Field, Forest, and Garden Flora, 791 pp. . .1.80

With Gray's Manual, 1087 pp 2.25

This book has been prepared to meet a specific demand. Many
schools, having outgrown the method of teaching botany hitherto

prevalent, find the more recent text-books too difficult and comprehensive

for practical use in an elementary course. In order, therefore, to adapt

this text-book to present requirements, the author has combined with

great simplicity and definiteness in presentation, a careful selection and

a judicious arrangement of matter. It offers

1. A series of laboratory exercises in the morphology and physiology

of phanerogams.

2. Directions for a practical study of typical cryptogams, represent-

ing the chief groups from the lowest to the highest.

3. A substantial body of information regarding the forms, activities,

and relationships of plants, and supplementing the laboratory

studies.

The laboratory work is adapted to any equipment, and the instruc-

tions for it are placed in divisions by themselves, preceding the related

chapters of descriptive text, which follows in the main the order of

topics in Gray's Lessons in Botany. Special attention is paid to the

ecological aspects of plant life, while at the same time morphology and
physiology are fully treated.

There are 384 carefully drawn illustrations, many of them entirely

new. The appendix contains full descriptions of the necessary laboratory

materials, with directions for their use. It also gives helpful sugges-

tions for the exercises, addressed primarily to the teacher, and indicating

clearly the most effective pedagogical methods.

Copies sent, prepaid, on receipt of price.

American Book Company

New York • Cincinnati Chicago



A New Astronomy

BY

DAVID P. TODD, M.A., Ph.D.
Professor of Astronomy and Director of the Observatory, Amherst College.

Cloth, i2mo, 480 pages. Illustrated - - Price, $1.30

This book is designed for classes pursuing the study in

High Schools, Academies, and Colleges. The author's

long experience as a director in astronomical observatories

and in teaching the subject has given him unusual qualifi-

cations and advantages for preparing an ideal text-book.

The noteworthy feature which distinguishes this from

other text-books on Astronomy is the practical way in

which the subjects treated are enforced by laboratory

experiments and methods. In this the author follows the

principle that Astronomy is preeminently a science of

observation and should be so taught.

By placing more importance on the physical than on

the mathematical facts of Astronomy the author has made
ev6ry page of the book deeply interesting to the student

and the general reader. The treatment of the planets and

other heavenly bodies and of the law of universal gravita-

tion is unusually full, clear, and illuminative. The mar-

velous discoveries of Astronomy in recent years, and the

latest advances in methods of teaching the science, are

all represented.

The illustrations are an important feature of the book.

Many of them are so ingeniously devised that they explain

at a glance what pages of mere description could not make
clear.

Copies of Todd's New Astronomy will be sent., prepaid., to any address

on receipt of the price by the Publishers :

American Book Company
NEW YORK * CINCINNATI CHICAGO
<i8i)
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