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PREFACE

This volume has been written in response to the un-

mistakable and growing demand for a text-book on the

Calculus which shall present in a course of from thirty-

five to forty exercises the fundamental notions of this

branch of mathematics. In American technical schools

students pursuing courses distinct from engineering

branches usually terminate their mathematical studies

with Plane Analytic Geometry. But in view of the recent

remarkable development of certain of the general sciences

along mathematical lines, such a course can no longer be

regarded as adequate. Moreover, there can be no differ-

ence of opinion as to the relative advantage to the student

of a knowledge of more than the mere elements of Ana-

lytic Geometry and an introductory acquaintance with the

Calculus. It is, I think, the experience of every teacher

that the average student first realizes the power and use

of mathematics when taught to solve problems in maxima
and minima by means of the methods of the Differential

Calculus. Certainly no stronger argument can be adduced

in favor of an adjustment of the curriculum which shall

include this branch of mathematics. Such a change has

been effected in the Sheffield Scientific School, and results

abundantly justify the step.

For the general student in our colleges who elects a

year's work in mathematics beyond the usually required
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4 PREFACE

Trigonometry, the most satisfactory course would seem to

be one in which the time is equally divided between Plane

Analytic Geometry and Calculus.

In writing this book I have everywhere emphasized the

possibility of appUcations. The examples have been care-

fully selected with this end in view. The first chapter

may seem long, but the notion of limit certainly demands

adequate treatment. While an elementary text-book offers

no excuse for employment of the refinements of modern

rigor, I have endeavored to avoid positive inaccuracies

and have carefully distinguished between demonstration

and illustration.

I am indebted to my colleague, Dr. W. A. Granville, for

many helpful suggestions.

PERCEY F. SMITH.

Sheffield Scientific School.
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ELEMENTARY CALCULUS

CHAPTER I

FUNCTIONS AND LIMITS

1. Continuous Variation. In this book we are concerned

with real ^lumbers only. Geometrically, such numbers may
be conveniently represented by points of a scale (Fig. i).

-f • 1 h-
etc. -5 —i —3—2-101234567 etc.

Fig. I

Then to every real number corresponds one point of the

scale, and only one; conversely, every point of the scale

represents a real number. Any segment of the scale,

however small, represents indefinitely many numbers. We
speak indifferently of the number a and the point a of the

scale.

A variable x is said to vary continuously between the

numbers a and b when it assumes values corresponding to

every point of the segment ah,

2. Functions. The problems arising in Elementary

Calculus involve in general two variables in such a way
that the value of one variable can be calculated as soon as

a value is assumed for the other. Thus, in Geometry, the

student has an illustration in the area and radius of a

circle, two variables such that the area A can be calculated

when we know the radius r from the formula A = irr^.

7



8 FUNCTIONS AND LIMITS

Definition. A variable is said to be a function of a second

variable when its value depends upon the value of the sec-

ond variable and can be calculated when the value of the

second variable is assumed.

The first variable is called the dependent variable, and

the second the independent variable.

For example, the equations

J = ;r2, J = sin;ir, y = logio(;r2 - i)

state that j/ is a function of x. In the first two cases, j/

may be calculated for any value of ;r ; in the last case, how-

ever, X is restricted to values numerically greater than i,

since the logarithms of negative numbers cannot be found.

In the first two cases, then, we say that the dependent

variable (or the function) is defined for every value of x,

and in the last the function is defined only when x exceeds

I numerically.

A function is defined for a value of the variable when its

value can be calculated for that value of the variable.

Elementary Functions. Pozver Function: x'^, m any

positive integer.

Logarithmic Function: log«;r, a>0] this function is

defined only for x>o.
Exponential Function : a"", a>0, i.e. the exponent is a

variable, the number a being a constant.

Circular Functions :'^ sin;r, cosjr, tan;r, etc., i.e. involving

^ the six trigonometric functions.

* So called from the use of the circle in their definition,

e.g. in Fig. 2, sin AOP=— = MP if P is the unit of
P

linear measure. Hereafter, angles will always be meas-

arc * y4 P
ured in circular measure, i.e. x = = —^-. In the

radius R
Fig. 2 unit circle, JR = i, x = a.rc AP.
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Inverse Circular Functions: arc sin ;r, arc tan ^', etc., i.c,

the "arc whose sine is ;r," "arc whose tangent is a'," etc.

In the unit circle (see Fig. 2) /^ = i ; if x= MP, then

arc sin;ir= arc^/*.

One thing is peculiar here. Assuming any value of x
not exceeding i numerically, arc sin x may be calculated,

but the number of answers is always indefinitely great.

For not only is

arc sin MP = arc AP,

but also equal to any number of circumferences 4- arc AP,

i.e, arc sin MP = 3,ycAP + 2 irn,

where n is any integer.

For this reason the inverse circular functions are called

many-valued functions. For definiteness we may always

take the least positive arc.

3. Functional Notation. As general symbols for func-

tions of variables we use the notation

A^\ ^iy\ H^l etc.,

(read / function of x, theta function of y, phi function of

r, etc.).

We mean by this that f(x) is a variable whose value de-

pends upon ,r, and can be found when a value is assumed

for X. The notation is extremely convenient, for it enables

us to indicate the value of the function corresponding to

any value of the variable for which the- function is

defined.

Thus /(^) represents the value of /(,t') for x = a, 6(0)

the value of (y) for j = o, (f>{-^) the value of <f){r) for

r = 1-, etc.
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EXERCISE 1

1. For what values of the variable are the following functions

defined ?

(a) -. Ans. For every value except x = o, since - cannot be
^

calculated.*
°

(J?) y/x^ — 6x. Since x^ — 6x or x (x — 6) must not be negative^

X2ivA X - 6 must always have the same signs.

Ans. For every value except those between o and 6.

(0 ^jy - y^
; W ^lo; W arcsin;jr;

(/) arc sec ;r; (g) sin Vi -f ;r; (A) logtan^r.

2. Given /(x) = x^— '/ x^+i6x— 12, show that /(2) =o, /(3)=o.
Does /"(^') vanish for any other value of ;ir ?

3. Given /(x) = logx] show that

4. Given </> (x) = a' ; show that

5. Given ^ (x) = cos ;r;

then 0(x) + 6 (y) ~ cos ;r + cos/.

From Trigonometry, we know that

cos X + cosy = 2 cos J (^ + /) cos J (^ — /) ;

4. Graph of a Function. After determining for what

values of the variable a given function is defined, it is im-

portant to know in what manner the value of the function

* The student should observe that the four fundamental operations of arithmetic,

addition, subtraction, multiplication, and division, v^^hen performed with r<?a/ num-
bers, give real numbers, with the single exception that division by zero is excluded.



FUNCTIONS AND LIMITS II

changes with the variable. Geometrically this is accom-

plished by drawing the graph of the ftmctioHf which is

thus defined

:

The graph of a function is the curve passing through all

poijits whose abscissas are the values of the variable and

ordinates the conrspondijtg values of the ftmction.

In the language of Analytic Geometry the graph

of a function f{x) is the locus of the equation

y=f{x).

I-

-1-

-2-

X 1
Fig. 3

By carefully drawing the graph of a func-

tion a good idea is obtained of the behavior

of the function as the variable changes. For ex-

ample, the graph of logg.^, i.e, the locus of the

equation *

7 = logs -^^

is drawn in Fig. 3.

Here we see the following facts clearly pictured

to the eye.

{a) For ;r= I, logger ^logg I = O.

{b) For x>\y logg^ is positive and increases as x in-

creases.

The values oiy are found from the formula proven in the theory of logarithms,

^' logio 3



12 FUNCTIONS AND LIMITS

(c) For;r<i, log^ x is negative and increases indefi-

nitely in numerical vahce as x diminishes.

{d) For X = o, logg X is not defined, since the logarithm
of zero cannot be calculated.

The graph of the general logarithmic function log^ ;r

may be drawn by merely changing the ordinates in Fig. 3
in the constant ratio i -f- logg a.

Graphs: {a) Of :r2.
(^) Of ;ir8.

F
y

j

/

/

/

->

1
,

]

~

r \ 2',^

( a )

~

y
7-^

I

r
it

- -^

_ 7
^ ^
' yr

-^
X' 4.'0 1^3 J^

H^J--
i
t-

"

J : t^l- -i -%/

The graph of x"^ has the appearance of {a) or (^) according as tn
is even or odd.

(c) Of logs ;r.

Z'

-2 4^== ,

Ti

id) Of 3=

2 3

ffl
X

Since if we set y= \og^x, then ;r=3J', the graph in (c) has the
same relation to XX^ and YY^ as (^) to KF' and XX

K
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(e) sin .r.

v-*^
""*>

"^SL-ia 52 ]_4.^.
x' -^^- ^-i -^r K J,C

^^rr-

1M_
\

3: X'

The graphs of the circular functions have the appearance of a curve

repeated over and over as the variable increases or decreases. As in

(c) and (d), if we revolve (e) and (/) around XX 'y and interchange

XX' and VV, we shall have the graphs of arc sin ,r and arc tan ,r

respectively.

5. Limits. For the study of the Calculus it is absolutely

essential that the student should understand perfectly the

fundamental notion of a limit. He is already familiar with

simple examples of limits from Geometry, such as the limit

of the perimeter of an inscribed regular polygon as the

number of sides is indefinitely increased is the circum-

ference, and the limit of the area of the polygon is the

area of the circle. These are examples of variables ap-

proachijtg limits, the variable being in the first case the

perimeter, and in the second the area of the regular

polygon. The following definition states the matter gen-

erally.

Definition. A variable is said to approach a number A
as a limit when the values of the variable ultimately differ
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from A by a number whose numerical value is less than

any assignable positive number.

If we represent the values of the variable by the infinite

sequence
a^y ^2' ^3' *"> ^wj ^n+i) •*•>

then on the scale (Fig. i) the points corresponding to

^1, ^2' ^3' ***' ^ny ^n+\i *"y ^tc, will ultimately approach

nearer the point A than any assignable length, that is, will

*'heap up" at the point A. The definition interpreted

A
I

Fig. 4

<—h- -h-^

geometrically means, then, that no length h (Fig. 4), however

small, can be laid off from the point A, but that points of

the sequence will fall within the segment.

We write Limit {a^ = A, or, also, if we denote the varia-

ble whose values are a^, a^, etc., by x,

Limit (;r)=^.

6. Limiting Value of a Function. Continuous Function.

Consider the elementary function log^^r (Fig. 3). Take
any sequence

a^ a^y a^y •••,

of positive numbers whose limit is some positive number^.
For example, the sequence

1.3, 1.33, 1.333, -,

the limit of which is |-. Consider now the sequence of

numbers
loga(^l), ^Oga{a^)y l0ga(^3), ••',

and draw their ordinates in Fig. 3. Then the student
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5

will see that this last sequence has the Hmit \oga{A);

that is,

IV/ien the variable x approacJies a limit A greater than

zero^ the logarithmic function log^x approaches the limit

logaA.

We express this important fact by writing

Limit (loga^r)^^ = loga^.

The general relation brought out by this example is the

following: When the values assumed by the variable x
approach * a limiting value A, then the corresponding

values of the function will also approach a limiting value

;

and if the function is defined for the value A, then the

limiting value of the function is its value for x=^ A. Or,

in symbols, \i f{A) is a number, then

Umit{f{x)),=,=f(A).

For example, since cos 0=1, Limit (cos ;i')^=o = i • The
property above described is that of contiftuity ; i,e. a cofi-

tiniwiis function is such that

Limit /(;r) =/(Limit x).

For the purposes of the Calculus it is essential that a

function should be continuous. The elementary functions

of § 2 possess this property.

7. Infinity. If the points on the scale of Fig. i cor-

responding to the sequence of values of the variable x

* The variable x may approach the limit A in any manner consistent with the

definition of the function. In the above illustration the geometrical sequence

I. i + i. i+J + iV. i + i + A +A,etc.,

whose limit is §, might also have been taken.



l6 FUNCTIONS AND LIMITS

ultimately advance to the right without Hmit, we say, ";r

increases without limit," or also, ''x approaches the limit

positive infinity," and we write

Limit ;i: = -f- oo.

If under the same conditions the points advance to the

left without limit, we say, '^;ir decreases without limit," and

write

Limit ;r = — 00.

Finally, if the points advance both to the right and left

without limit, we write

Limit ;ir= 00.

The student should disabuse his mind of any previous

notions of infinity not agreeing with the above definitions.

The symbols + ^, — ^, ^, must be used always in the

sense above described.

8. Fundamental Theorems on Limits. The student is

asked to accept the following theorems as true

:

Given a number of variables whose limits are known

;

then

I. The limit of an algebraic sum of any finite number

of variables equals the same algebraic sum of their respective

limits.

II. The limit of the product of any finite number of

variables equals the product of their respective limits,

III. The limit of a quotient of two variables equals the

quotient of their respective limits when the limit of the

denominator is not zero.
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9. Two Important Limits. To prove

Limit
rsinxl

L a? Ja5=0

In Fig. 5 let ;r=arc A T
= arc AS, the radius OQ
being taken equal to unity.

Then

tan;r= TQ ^ QS.

Now

Fig. 5

ST<^rcST<SQ + QT,

.'. 2 sin ^ < 2 ^ < 2 tan x
;

whence, dividing through by 2 sin jr,

I
T < ^ ^ tan.r

sin ;ir sin ;r \ COS x

Therefore, taking reciprocals,

C0S;r<5Hl^<I.
X

;)

Now let ;r approach zero as a limit ; then, since cos 0=1,

id t

have

sin X
and the value of lies between i and cos^, we must

_ . . fsm x^
Limit = I

.

L ^ Jx=o

10. Consider next the infinite sequence

I I I.I

Since for ;r = o, ^^^^

not defined for x = o, ^

EL. CALC.— 2

= -, a meaningless expression, the function is
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Representing the successive terms by a^, a^, a^, ..., we
have = I

= 2

= 2.5

= 2.666...

«1 = I,

«2 = i+i

«3 = i + -

^4 = i+-

an = i+-

numbers of

+ -

I -2'

+A+- ^

1-2 1-2.3

+ . \ , + -' +1—^*, etc.
1-2 I • 2 • 3 /^ — I

this sequence continually increase. We
may show, however, that any term is less than 3.

For \r_> 2^*, and therefore

I

I I I I I 2^

^»<^t7 + o + :r2 + :73 + -+:;^=^+-; >

I 22^ —-

1

since .1 + 1 + 1 + . ._L
2 ^ 22 ^ 2^ ^ ^ 2^-

is a geometrical progression and its sum may be imme-
diately written by the usual formula.

Hence <2„ < 3 -—^ and taking ;? = i, 2, 3, etc. ad infi-

nitunty every term of the sequence is seen to be less than 3.

6

^1 0^2 a 3 Ir
Fig. 6

T

The points, then, corresponding to the sequence (Fig. 6)

must heap up at some point to the left of 3 ; that is, the

sequence must have a limit.

The symbol \n — i , read " factorial n — i," means the product of all integers

from I to « — I inclusive.
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The calculation of this Hmit to any number of decimal

places is a matter of no difficulty, as the following compu-

tation to five decimal places will show.

Write down

Divide by

t,-'

-2_

2^^

Adding,

i.oooooo(= i).

2)1.000000 (
= —

J

3 ). 500000 (^=^^

4). 166667 (^=,|

5).04i667(^=.-ij

6).oo8333 (^=^

7).ooi388(=|)

8).oooi98
'll^

9).oooo25
(^=|^j

io).ooooo3 (=r^

2.71828

neglecting the figure in the sixth decimal place, of which

we cannot be sure, In fact, it can be easily shown that
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2.71828 is the limit of the sequence correct to five deci-

mal places.

Writing the limit of the sequence in the form of an infi-

nite series and denoting this Umit by ^, we have

e = l+i + i + i + ,^H-i+ etc., ad infinitum.
1 [2 [3 [i L»

6 = 2.71828....

The number e is called in the Theory of Logarithms the

Napierian base or natural basey and is a number of prime

importance in mathematics.

The expression for e in the form of an infinite series

should be remembered and also its value to five decimal

places.

11. To prove

Limit ri+-T =e.

A rigorous proof of this very important limit is beyond

the scope of this volume. We may perhaps best illustrate

the meaning of the theorem by drawing the graph of the

function for positive values of ^.

Setting J/
= f I + -

j , then

logioJ = ^logio(^i+^),

and for any value of ;s greater than zero y may be approxi-

mately calculated, as for example in the accompanying

table, which gives j/ to five decimal places.
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z y
.01 1.04723

.1 1.27098

I. 2.

10 2.59374

100 2.70481

1000 2.71692

10,000 2.7I8I5

100,000 2.71827

1,000,000 2.71828

21

etc.

Fig. 7

The figure illustrates the theorem in showing that the

graph approaches the Hne j = ^ as z increases indefinitely.

When z diminishes toward zero, y approaches unity.
.
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EXERCISE 2

[The graph of the function considered must be drawn in every case."]

1. Prove Limit r-^^-3-^+4
] ^ 2.

L x-i JiB=2

We have merely to substitute 2 for x.

2. Prove Limit P^ ~ ^^
1 =-2a.

We cannot substitute directly, for we should get -, a meaningless

x^ — a^
o

expression. But = x — a^ and we may now substitute.
x+ a

3. Prove the following in which a is any number greater than zero :

Limit [—1 = + 00; Limit f-l =00:

Limit \ci^\ = 00 ; Limit - =0.
*- —'35=00 '-'^—'x=ao

The last three results are often written

a a- = 00, ^ • 00 = 00, — = o,
O 00

but the student must remember that such equations are merely abbrevia-

tions of the preceding.

4. Prove Limit f
"^^'+^ - ^1 = _L

L h Jft^ oa/

Hint. Multiply numerator and denominator by y/x + h -\- Vx.

5. Show that

Limit r^^l =1; Limit [tan :r1 =00;
Lsm;rJ;c^ L Jx=f

Limit logeX = - 00 ; Limit f^"*! = o.



CHAPTER II

DIFFERENTIATION

12. Increments. In order to understand the manner

of variation of a function as the variable varies, it is essen-

tial to know how great a change in value occurs in the

function for a given change in value of the variable.

Change in value is termed mcrement ; i.e. the incremetit of

the function is the change in value of the function corre-

sponding to a given change in value or increment of the

variable.

The problem now arises : To calculate the increment of a

given fmiction.
Let f{x) be defined for

all values of x from x to

x + h (Fig. 8). Now for

X -{-h the value of the func-

tion is f{x + h)j hence the

increment of the function

fix) corresponding to an

-li-A A hicreme7it h in the variable

-hr^

X
Fig. 8

J{x+h)-f(x)

a?+/i X ts

f{x + h)-f{x).

We shall represent the increment of any variable by the

letter A (read ** delta ") prefixed to that variable, thus

If Ax = ^, then A/(ir) = /(ir + 7^)-/(x).

23
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Rule. To find the increment of a functiony calculate the

new value of the function by replacing x by x \- h and sub-

tract the old value of the function from the new value,

EXERCISE 3

1. Find t:^\ t^'^ ={x ^ hy - x^=:2kx-\- h^, Ans.

2. Find AfiV a(1)='-1=—Z±-. Ans,
\xl \xl x + h X x{x+ h)

3. Prove A>/r= '
(Ex. 4, page 22.)

y/x + -^ + Vx
4. Find Alogjr.

Alog;r=log(;ir+>^)-log;ir=:logf ^^^

j
= log f I

+-J.
Ans.

5. Find A sin x.

A sin X= sin {x-\- K) — sin x—7. cos {x^\K) sin \ h,

from Trigonometry. Ans.

6. Find A^. A^ = e^+^ - e"^ = e'^^e^ - i). Ans,

7. Find A cos 2 x. A cos 2X=— 2 sin (2 ;ir + h) sin h. Ans.

8. Find t^W+x.
,

^ns.
2VI + X

13. The Increment Quotient. While the increment of

a function as found in the preceding article is of impor-

tance, still more essential in any investigation is the rate

of change of the function, that is, the change iit the function

per unit change in the variable.

If we form the quotient

A/(^)
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we obtain the average rate of change of the function while

the variable changes from x \o x -\- h.

For example, the ** law of falling bodies,"

given in Mechanics, asserts that the distance s

traversed by such a body falling freely from rest

in a vacuum varies as the square of the time /,

that is,

the constant 16.1 being determined experimen-

^^2 tally when s is measured in feet and t in seconds.

Therefore A^ = 16.1 (^ + lif - 16.1 i^.

As
or — = 16.1(2 /-f //), since At = k

At

For example, the average velocity throughout

As
the third second is given by setting in —^t = 2,

Fig. 9 A = I, and is 80.5 feet per second.

EXAMPLES

1. From Physics we learn that for a perfect gas at constant tem-

perature the product of the pressure p and volume v is constant, or

pv = 2i constant c, i.e. p = -
; show that — — —

UZ

V ' Av v^ + vAv

2. Show from Ohm's law, viz. current strength C equals electro-

motive force E divided by the resistance R^ that for constant R the

change of current strength per unit change of electromotive force is

constantly equal to i -^ R.

14. Derivative of a Function. In the illustration taken

from the law of faUing bodies given in § 13, let us propose

to ourselves to find the velocity at the end of two seconds.

Making /= 2, we have

^ = 64.44- 16. 1//,
At
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which gives us the average velocity throughout any time

h after two seconds of falhng. Our notion of velocity

shows us, however, that by the velocity at the end of two

seconds we do not mean the average velocity during one

second after that moment, or even during y^Q- or -joVcr

of a second after that moment, but, in fact, we mean the

limit of the average velocity when h diminishes toward

zero; that is, the velocity at the end of two seconds is

64.4 feet per second. Thus, even the everyday notion

of velocity involves mathematically the notion of a limit,

or, in our notation.

Velocity = Limit f^l

Thus, after t seconds have elapsed, the velocity of a

faUing body is 32.2 t feet per second.

Again, let it be required to find the slope of the tangent

at any point P of a plane curve whose equation is given

in rectangular coordinates x and y.

The tangent at P is constructed as follows (Fig. 10)

:

Through P and any point P^ on the curve near P draw

the secant AB. Let the point P^ move along the curve
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toward P, the secant AB meanwhile turning around P.

Then when P^ coincides with P, the secant AB becomes -^

the tangent TP,

Now if P is (x, y) and P^ {x -h A;r, y + Ay), the slope of

yi^is

, ^ SP^ ^ytan^=—- = --^-

As P' approaches P as above described, £^ will ap-

proach zero as a limit, while approaches the angle PTO
or 7 ; hence, at the limit,

tan 7 = Limit [ -r^ ] = slope of tangent at any point JP,
\Aa?/Aj5=o

For example, the slope of the tangent at any point of

the parabola J = x^ -f- 3 is 2;ir.

Law of Linear Expansion. \i Iq is the length of a rod at o° Centi-

grade, and / the length at t° on the same scale, then experiment estab-

lishes the law of expansion

1 = Iq + at + bt\

a and b being constants. The coefficient of linear expansion at any tem-

perature / is the increase in length per unit change in temperature, i.e.

coefficient of expansion = Limit (—

)

We easily find, then, that

coefficient of expansion = a + 2 bt,

and .'. a = the coefficient of expansion at o^.

Specific Heat of a Substance. The specific heat of any substance is

the quantity of heat necessary to raise a unit mass of the substance

one degree in temperature. If Q is the measure of the quantity of heat

in unit mass, and / the corresponding temperature, then by definition,

specific heat — Limit (
—^

)
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These examples show that we obtain an important new
function of the variable if we can find the limit of the

Increment Quotient when the increment of the variable

approaches zero. This function is called the derivative

of the function.

Definition. The derivative of a function is the limit of the

quotient of the increment of the function and the increment of the

variable when the latter increment approaches the limit zero.

The step of finding the limit of -^^ ^ when A;r ap-

proaches o is indicated by changing the A's to ordinary

^'s, so that -^—-^ = Limit (
-{ '

^
| ,

or also, if

ax \ 1\X /Aa'=0

A^ = ,», g§^ = Limit r
^("+\>-^^^>

l .

The symbol -^^ ^ is read, "derivative of f{x) with
ax

respect to xT This, being a new function of x, is often

written /' {x\ so that also,

%^=/'(-
dx

Thus in the illustrations given,

)•

velocity =—

,

i.e. velocity is the derivative of the space traversed in the

time t with respect to the time.

Slope of tangent = -^,
dx
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i.e. equals the derivative of the ordinate of the poi7it ivith

respect to its abscissa.

Coefficient of linear expansion = —

,

dt

or the derivative of the length with respect to the teviperature.

Specific heat = -^,^
dt

that is, equals the derivative of the quajitity of heat in unit mass with

respect to the temperature.

Many more illustrations of physical magnitudes might be given which

take the form of a derivative.

We call — the sign of differentiation^ so that the pre-
dx

fixing of — to any function of x means that the following
dx

process is to be carried through

:

General Rule of Differentiation. 1°. Calculate the

qnotient of the increment of the function and the increment of the

yariable (i.e. the increment quotient).

2°. Find the limit of this quotient when the increment of the

variable approaches the limit zero.*

It must be emphasized here that the characteristic thing

in differentiation is finding the limit of a quotient. From
the standpoint of the Differential Calculus a function is of

no interest if the limit mentioned does not exist. Func-

tions possessing derivatives are said to be differoitiablcy

and it is of prime importance to show, for example, that

the elementary functions of § 2 are differentiable.

The student must notice that the limit of the increment quotient cannot be

found by Theorem III, § 8, since the limit of the denominator is zero.
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15. Differentiation of the Elementary Functions

oc^j sin Xf log^ 00,

(a) To prove — x^^ = ^nx""^'^.

ax

Now A {x^) =^{x-\- lif - ;r"^ if A;ir = //.

But {x + hy = X''' + ;;/;ir^-V^ + • • • + /i"\

the terms not written containing powers of //.

.-. A(x'^) = mx"'-^/i + ... + //^

;

A;r

where again the terms not written contain powers of //.

Putting ^ = o, we find

(i) 4-(^"') = ^^'^~^'

ax

(b) To prove — sin x = cos x.
dx

Since A sin ;r = sin (x -^ h) — sin x

= 2 cos(;r+ J>^) sin^/^ (§ I2, Ex. 5),

we find

A sin ;r __ 2 cos {x •\-\K) sin \ h

Ax h

/ , 1 ,x sinii^= cos {x + 1^) • —r|~*

Limit (5i^) =1' (§9),

and Limit (cos {x-\-\ /i))h=o = cos x

(since cos x is continuous, § 6),

so that we may apply the theorem II, § 8, and we have

(2) -— sin;ir= cos;r.
ax

But
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(c) To prove —- log^ x = log^ e —

From § 12, Ex. 4, we have

I +-fxj

since the introduction of the exponent - is, by the princi-
h

pies of logarithms, equivalent to multiplying the logarithm

itself by that exponent.

Now f I + - j^ is the expression of § 11 if we write in that

expression ^ = -•

h

Also

hence Limit

imit[|Limit
A=0

I + ^"jfl = Limit
xJ 1/1=0

.-. Limit flog^ (^1+^)1

i+-

= l0ga^,

and we have

(3)

(since log ;ir is a continuous function),

ax X

Formula (3) becomes most simple when ^ = ^, for then

d , I— log,;r = -.

dx X

Logarithms to the base e are called natural logarithms or Napierian

logarithms (§ 10), and the factor logo^ in (3) is called the vwdubis of

the system whose base is dr, i.e. the 7iu?nber bywhich natural logariih77is

fntist be 7nultiplied in order to obtain logarithjns to any given base a.

We write M= modulus = loga e.
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For example, the modulus of the common system of base lo is log^) Cy

and
logio^ = 0.43429

to five decimal places.

If in (i), (2), and (3) we write u for x^ we have

(4) ^u^'^ = mu^-^'^ -^sinii=cost/j ^ loga «^ = loga ^ -•^^ du du du u

EXERCISE 4

1. Diiferentiate with respect to x.

(a) x^-]-sax+d. Ans. 2x-\-3a.

(^) .% Ans.
a

{pc^by

(c) Vx (cf. Ex. 4, p. 22) Ans.
I

2. Prove — cos :r= — sin x.
dx

3. Prove — vT+^=

—

dx 2V1 +;r

2^/x

4. Prove ^(^^V- ^•

5. Prove — (O/) = C, if C is any constant.
du

6. From the law of falling bodies

we found (§14) 1 = 3..-.

or velocity = -z/ = 32.2 1,

Prove f-3-
What does

represent in Mechanics ? Acceleration. Ans,
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7. Find the velocity and acceleration of the motion defined by

(i) s = at -\- ^g/'^; Ans. V=a-\'gt\ accel.=^.

(2) s = at - \gt'^'^ Ans. V=a—gt'^ accel.= — ^.

8. Find the slope of the tangent to y = 6x— x'^ at the origin.

Ans. 6.

16. Certain General Rules. We prove in this section

several important rules for differentiation of a general

character.

Let the variables //, v, w, etc., be functions of the vari-

able X.

I. To differentiate any algebraic sum of these variables.

For example, to find —- iti -\- v — w).
ax

Now

= b^u -\- Lv — Azv,

A(7i + z^ — '^) _ A?/ Av Aw
Ax Ax Ax Ax

Since LimitM = $^, LimitM =f',

r . .^rAzvl dzv
Limit —- = -—

,

LA,rjA:r=() dX

we may apply I, § 8, and we have

/^. d , ,
^ du ,

dv dzv

IL To differentiate a product.

For example, to ^et -r-{uv).
dx
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Now A (uv)= (^ + A^) {v + J^v) — tWy

= ^ Az^ + V An + A^/ Av,

A(tcv) Av , A?/ , . Av
Ax Ax Ax Ax

Since Limit r^l = ^, Limit f^l =^,
LA;trjAa:=o ax y_Axj>^x^ ax

Limit [A^]^^o=o,

we may apply I and II, § 8, and obtain

/^N d y ^ dv , dti
(6) ^^^'^)=^'^ + '^^-

To find -—
- {uvw\ consider tivw as made up of the two

dx
factors uv and w ; then, by (6),

(uv 'W)=UV f- w -^
^,

dx dx dx

or by (6) again,

(7) = //z^ h Z£//^ -— + ^^—
dx dx dx

III. 7!:? differentiate a quotient.

Q* A (^^_u -\- Au _u __ vAu — uAv
\vj V + Av V v'^ + v Av

Au Av
V u

A AA__ Ax Ax
Ax\vj v^-}-vAv

Then since Limit [z^2 + ^Az/]^^o= '^^ we may apply I,

II, III, § 8, and have
dv du

(^) d /u\ dx dx
dx \v
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From (6), (7), and (8) we have the rules

:

I. The derivative of an algebraic sum of any number of vari-

ables is equal to tlie same algebraic sum of the derivatives of the

variables.

II. The derivative of a product of any number of variables is

equal to the sum of all the products formed by multiplying the

derivative of each variable by all the remaining variables.

III. The derivative of a quotient equals the denominator times

the derivative of the numerator minus the numerator times the

derivative of the denominator, all divided by the square of the

denominator.

To these we may add the following

:

IV. The derivative of a constant is zero.

y. The derivative of a constant times a variable equals the

constant times the derivative of the variable.

Rule V comes from (6) and IV, if we place u equal to a

constant.

EXAMPLES

1. Workout -^(H-;r2)(i -2;f2).

Rule II is first applied, and we get

^(i-f;f2)(i-2;f2) = (i + ;f2) ^(i _2;r2) + (1-2^2)^ (i +;r2).
ax ax ax

By Rule I, £ —^) = ^ (0 - £(-^

Since by V, — (2:^2) = 2 —x\ and from (4) ^ 15, —^2 = 24-,

dx dx
'

dx

we have finally,

^ (I + ;r2) (I - 2 :r2) = (i +;r2) . -4^+ (l -2 :i'2) . 2 ^= -

2

x{\ + 4-^'^)-
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d
f
sinx \

dx\\ogexl
2. Work out .

Vlog,

Rule III we use first and find

, , . loge X-— sin or - sin x —- loge

x

a I sin -^ \ _ dx dx

dx \ loge ^')
~

(loge X) ^

By (4) §15? — sin ;r=cos^, —loge :r=i.

d / sin .^' N _ ;r cos .r loge ;tr— sin ;r

dx \ loge xi X (loge ^) ^

EXERCISE 5

Prove the following differentiations :

yd. \ , ^ ^ d /sin;r\ ;ircos;ir— sinjr
1. —x(\ — X)=\ ~-2X. 3. — =

dx ^
^ dx\ X I x'^

2 ^ (
^ \= ^

~^^
4 i^/L±j£!^ = __4£__.

'dxKi+xy (i+x^y 'dx\i-xy (i~x^y

5 ^ (
^"*

\ — ^^'^0^^ + x^ {in — n))

dx\l +;ir«/
~

(I +;ir")2

6. — (;ir"'log:r) = jr"»-^(i + ;//log;r).
dx

' dx\i -xV (I -;t-2)2'

' dx\aJ a ' dxW'l ;r"+i

10. — :r"*(i -:r)" = ;i"»-i(l -xy-^{m- {7n + n)x),
dx

Special attention should be given to the following:

1-1 T-- J d . c" i.
sin 11

11. Find — tan?/. Since tan 2/ =
,

du cos u

, d . d fsin7i\
we have — tan ?/=--- •

du dii\cQS,ul

Applying III (4), § 15, and Example 2, § 15, we find

— tan 2/ = sec^?/.
du
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Prove

12. — cot u = — cosec- 21.

du

13 . — sec ti = sec u tan //. ( Put sec 71
—

]

du \ cos // /

14. — CSC 7i = — CSC u cot H.
du

17. We come now to two most important rules.

Differentiation of Inverse Functions. Suppose j is a

function of x^ i.e. in symbols

(9) y =fi^)-

Then it is usually possible inversely to calculate x when
values are assumed for j, i.e. we may choose y for the

independent variable instead of x, so that by solving (i)

for X we obtain

(10) ;r = (/)(;/).

Then f{x) and <t>{y) are called inverse functions,

Exa?nple. If y = a', then x = loga/ ; that is, a^ and loga/ are

inverse functions.

Let now Ax and Aj/ be corresponding increments of x
and

J/, so that Ax and Ay vanish together, since we are

dealing here with continuous functions. Then the incre-

. Ay Ax ,. . . 1ment quotient is -^ or -r—, according as x or y is taken

for the independent variable.

Now by multiplication, -r^ . x— = i,

hence Limit! -r^j . Limit f-r^) =1,
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by II, § 8, since, as above emphasized, Aj/ and Ax vanish

together. We have, therefore, in the derivative notation,

dy dx . .

^.^=i,orsolvmg,

(II) '^ = i-*
dx

VI. If 1/ is a function of oc^ and inversely oc a function of 2/, then

the deriratiye of x with respect to y. equals the reciprocal of the

derivatire of y with respect to x.

Differentiation of a Function of a Function. We have

seen by (4) how to differentiate with respect to x the ele-

mentary function sin x. Suppose we wish to find

-^sin(l+;ir2),
dx

for which the rule (4) does not suffice. We then introduce

the variable u= i -^x'^y and setting;^ = sin(i '{x^)=^ sin^,

we have before us the relations

(12) jK = sin^, ^ = I 4-^^

and we say y is a function ofx through u^ i.e. y is z. function

of a function.

Now, if Aj, A?/, and Ax are corresponding increments of

y, u, and x, then forming the increment quotients -=^, —
-,

we have, by multiplication,

(\%\ ^ AM^Ay^
^ ^^ Au ' Ax Ax

The student will not fail to notice that in (ii) the familiar property of a

fraction, -= i -^ - is suggested. But he must not forget that -~- is noi a fraction,

Ay
but merely the symbol for the limiting value of the fraction ^.
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But the increments A;/, Au, and Ax vanish together, so

that, by II, § 8,

Limit ( -r^
J

• Limit f^) = Limit f-j^)
\AuJ^u=0 \^'^Jax=0 \AxJ^^^

or (lA)
dy^dydu^

^ ^^ dx clu ddc

VII. If 2/ is a function of oc tlirough w, then tlie derivative of y
with respect to a? eqnals the products of the derivatives of y with

respect to u and of u with respect to cc.

Thus in (12), since — sin//:
au

cos//, -7- (i + ^^) = 2r, we find
ax

-7- sin (i + x'^^ = cos /^ • 2 ;ir = 2 :r cos ( i + x^) .

dx ^
"^

EXERCISE 6

1. Show that the geometrical significance of (i i) is that the tangent

makes complementary angles with XX' and W.
2. If a material point /*, whose rectangular coordinates are x and /,

move in a plane, then x and y are functions of the time /. Now the

horizontal component v^ (see Fig. 11) of the velocity v is the velocity

along OX of the projection M of /*, and is therefore the time rate of



40 DIFFERENTIATION

change of ;r, or -z/j == - . In the same manner, the vertical component

^2 equals ^; and since

we have "V{f)V(f)'.

For the direction of the velocity, tan y = --, or

dy dx
tan y = -f- -f- -—

.

^ dt dt

3. Prove that the equations x — a cos/, y — a sin/ define uniform

motion in the circle x'^ -\- y^ = a^.

4. If the coordinates (^, /) of a point on a curve are functions of a

variable ^, show that

(At\
dy _(iy ^dx

^ ^^ dx~ dO dO'

(Use (14) and then (u).)

d ^

5. To find — (x'i) when {/ is any positive integer; i.e. to differ-
dx

entiate arty root of x.

1

Put // — x'i, then x = W^ ] hence, by (4), § 15,

dx

and by (11)
dn I

dx qufi"^

But n'i~'^ — X "i = X 9,

... ^-^ = 1;^'/ \ or ^{x<i)-^-x~^ ';

dx q dx q

i.e. ///<? same ride holds for roots and powers of the independent

variable.
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6. From (4), § 15, and VII, we have

liv^ ^ <///^ lit- dx

(16)

du

dx du dx dx
du

r/ ,
</ , .du

,
dx

-^log«// =-r-(log<./0;77.= log..—
dx du

7. To find ^(-r*).

I

Letting // = .v* (Example 3), we have

.. ^ (.r«)=^u'= puP-^ — ( Example 6)
dv

t:^^ I \-i p e_,

//^«cv the rule of (4), § 15. for pinvers holdsfor «/;

du

8. To prove .arc sm // = .^ dx Vi - u^

Placing/ = arc sin //, we have inversely,

// = sin/.

\ {. ( 'fi in,

du

dy
- cos/, and by (15),

^ _ J
du COS/

But

Hence

and by (16),

COS/ = Vi — sin'-*/ = Vi — «^.

^=: '
,

dy d . dx
; = -J- arc Sin « =

,

dx dx Vi - «a

ensurabU
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d
dx

du

dx
I +«2

9. Prove arc tan u =

(Remember sec^j/ = i + tanVO

10. Prove
d
dx

arc sec u =

du

dx

uy/u'^ — I

11. Prove
d
dx'

V' = a"* loge
dx

Putting y -.= ^«
, we have inversely,

u = ^ogay.

du
" dy-

= l0ga^| (§15, (4)).

... ^._ y _ a^
^

du loga e loga e

dx dx dx

In particular, -^ ^« ^ ^u du.

dx dx

Example ii shows that the exponential function e"^ possesses the

remarkable property of being its own derivative^ for

dx dx

In general, if a is any constant, then

(i

)

-- ^«^ = ^^«^, since — {ax) = a
;dx dx

that is, the derivative of the function ^"* is proportional to {i.e. a times)

the function itself. For a reason now to be explained, the function ^«^

is said to follow the Compound Interest Law,
If P dollars be drawing compound interest at r per cent, then in the

time t^t the interest is Pt^t. and hence the change in P or A/* is

given by

£^P =— P^t, or ^=I-P
loo A/ loo

* From the principle in logarithms, loge a = —-—

•

logatf
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Now suppose the interest to be added on contimiously^ and not after

finite intervals of time A/, i.e. we make A/ approach the limit zero, and

conceive of P as increasing continuously ; then

dt 100

so that a sum of money accumulating continuously at compound inter-

est has precisely the property above enunciated in (i), viz. its derivative

is proportio7ial to the sum itself.

18. From the examples in Exercises 5 and 6 and the

Rule VII, we deduce the following fundamental formulae

for differentiation

:

VIII. -^ tiw* = mum-x^ {rn any commensnrable number)

.

CfwK/ (toe

du
r^ d . - dx

X. -^ aw = aw logrc a^(a any positiye constant),
ciQiy doc

XL -^ sin w = cos 1^ 4^.
dx doc

XII. -^costi = -sinM^.
doc dx

XIII. -^tanu = sec2M^.
dx dx

XIV. -^ cot u = - csc2 u ^.
dx dx

XV. —- sec li = sec w tan w—

•

dx dx

XVI. -^CSCU=-C8CWC0tW^.
dx dx

du

XVII. # arc sin u =—J^.
dx Vl - 1*2

du

XVIII. #arccosti= ^^
da? Vl - u2
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du

XIX. # arc tan ^/ = ^^^
doc 1 + w2

XX. -^ arc cot «^ - ^
^

XXI. -^arcsecti-

du

XXII. #arccsct« = - ^^
^/a? u Vu^ - 1

The formulae and rules I-XXII the student must memo-

rize. With their aid differentiation of the commoner func-

tions is made rapid and easy, but perfect famiharity with

them is indispensable.

To show the application of the rules three examples are

now given

:

1. Find ^f-J—^\

By III, ^^-^\= ^ -^ ^

By I and IV, — (i -:r)=:-i;
dx

from VIII, — (I + x'^y = -(I + ;r2)"i^ (I + x^),
dx 2 dx

and since — (i + ^^) = 2 ;r, we have
dx

To simplify, muUiply numerator and denominator by

(I + x'')k

2^~^
.
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Then, since (i -f- x'^)^ = i, we have, reducing,'

^Av^T+T;; (n-;.^)*

2. Find ^logeV'"'^^'-
^-i- ^ I + cos ^

P'or convenience, set y = log« '\—

Since \oge^i'--^^=l\og{l - cosx)-Uog{i ^ cosx),

then by I and V,

Applying IX, we have

,
— (i-cosa-) (i+cosjir)

dy I dx I dx J , VTT-^ —
-, and by XII,

dx 2 I — cos .r 21+ cos x

^ _ I / sin A- sin x \ _ sin .r _ i

^^ ~ 2 V I — cos ^ I + cos .r/ I - cos'-^ ^ ~ sin

;

^ 1
^/i — cos:r I

+ cos ;r sin x

3. Find ^^arctan(l^i:!).

Setting the function equal to/, we have, by XIX,

d (e^ - e-^\ e^ + e ^
dy _ de\ 2 . _
dS /e^j-j-ey- ^^e2e _ 2 + ^ 2^ K^Y ^)

'

eo ^ e-9
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EXERCISE 7

Prove the following diiFerentiations :

2. aJl±^=—-1—
dx^i -X (I -x)^/T~-

3. Af_^\= I .

4. ^ / 3x^+ 2

+ i)t)

5. ^(I -2X+ 3X^- 4x^)(i -^ xV=- 20;i'3(i +;ir).

6. —(I - 3 ;ir2 + 6;ir4)(i + ar2)8 = 6o;r5(i + ;r2)2.

dx

7. ^ (5x^2*) = 2(ar + I) 5"='+^ log* 5-
ax

8. —- x'^a^ = ;»r*»-^^*(« 4- ^loge a)

.

dx

9. ^ r£l2Il£ + log.(i _ :,r)l = 1°S'^ .

dxV \-x ^^ ^J (I -xy

10. -fl^(;^s_i£? + 6£_6\^ ^^,^_
^;r \ a d^ a^J

11. /iog,(.x + .-) = ^^^i:!.

12. ^(VJ_log,(i+VJ)) = ?_^.

13. -^ tan2 5 ^ = 10 tan 5 ^ sec2 5 6.
du

14. 4h si^^ OcosO = sin2 ^ (3 cos2 ^ - sin^ 0) .

15. -^ log sec ^ = tan ^.
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16. 40an2^-logsec2^)=2tan8^.
dd

17 . -^ sin «^ sin'* = n sin"-^ ^ sin (« + i ) 0,
dd

18. —- arc sin (3 ;r - 4 ;r3) =—-^
.

19. ^arcsec- = -

^

dx a x\/x^ - d^

20. -^ arc esc ' - ^
^;r 2 ;r2 — I Vi — x^

21. ^ arc sin'-
^'- ^

^ 1+^2 I + ;r'

22. ^ arc tan .^+'^- '

^;r I — ^AT I + ;r2

23. -- arc cos -
—

^jr e^ -{ e-' ef -\- e-

A—24. —arc sec-' ^ - ^

^/r ^\-\-x 2V1 — ;r2

25. ^ (arc cot ^ + log.A^)^ ^''^^

x^-a'^

19. Differentiation of Implicit Functions. If an analytic

relation is given between two variables not solved for either

variable in terms of the other, then either variable is said

to be an implicit ficnction of the other.

For example, in x^ — y^ -\-(^ = o either x ox y\^ an im-

plicit function of the other variable.

In such a case either variable may be chosen for the

independent variable, and if we can solve explicitly for the

other (as in the above example for y, giving y = V^^ — 9),

then we can differentiate as before. But it is generally

better not to solve the equation, but to differentiate the

given relation as it stands.
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Thus, to find
-J-

from

x'^ — 2)Xy -\- 2/2 — 2.

^ _ 2 ;ir— 3/and
^;ir 3^— 4>'

To justify this process is beyond the Hmits of this text-

book. One thing is to be noted, namely, that only those

values of the variables which satisfy the original relation

can be substituted for the derivative.

EXERCISE 8

Fi
dv

nd ~ from the following equations :

1. y'^ - 1 xy - a'^. Aits.
dy _ y
dx y — X

2.
;t'2 1/2

Ans.
dy ., b\x'

dx~ ay'

3. ax'^ + 2bxy + cy^ + 2\fx-\- 2gy + // — o.

Ans.
dy _ ax+ by + /^

dx~ bx -^ cy -^ g

4. x^ -{. y^ — ^ axy = o. Ans.
dy _ x'^ - ay

dx~ j2 _ ^x

5. ;rt + J/3
zz: ^¥. Ans.

dy y^
dx ^\'

6. Given r = «(i — cos ^) ; show -^=^sin^.
du

n r^- 9 9 n I, dr — <22 sin 2 ^
7. Given ^2 = ^2 QQs 2 ^ ; show —- = — .
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20. Derivatives of Higher Orders. Since the derivative

of a function of a variable x with respect to x is also in

general a function of ;r, we may differentiate the derivative

itself, that is, carry out the operation,

This double operation is indicated by the more compact

notation,

and this new function is called the second derivative. In

the same way,

is the third derivative^ and in general,

is the «th derivative of f(x\ that is, the result of differen-

tiating f{x) n times. The following notation is also used,

|/(.r)=/'(:r), g/(.-)=/"(-r), ..., £./(^) =/(«)(^).

The operation of finding the successive derivatives is

called successive differejttiation.

EXERCISE 9

1. Given /(x)= 3,r^ - 4^-^ + 6 A'

-

- I

then /'(r)= i2;i-8-8:i'+6:

/"(:r)= 36:1-2 -8, etc.

EL. CALC.— 4
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2. Given

3. Given

4. Given

5. Given

6. Given

7. Given

DIFFERENTIATION

f{x) =€'"''
;
prove /("^(;r) = ^«^«=".

f{x) = loge (I - X)
;
prove /(«)(:r) =

J = x^\ogeX\ prove ^_6
^;r*

~ X

(i - r)"

_y = loge sin ;ir; find
^3j/ ^ 2 cos AT

^;irS
""

sin^x
"

y = e^''(x^-SX+s); find ^ = 8;fV*.

jr-^ jK

^2 ^^2

From Ex. 2, Exercise 8,

dx~

+•^2 = i^ or ^'^^^ + ^y = ^^^^ to find

^Ar2 a4y2
^

^2^'

ay dx
dx'^' aY '

then substituting for -^ and reducing,

dy _ b\a^yl^ b^x'^) _ b^

dx^
~

i^p ~ aY

9. From y'^-zxy=a\ prove ^ = ^_-^^.

.t.
xy



CHAPTER III

APPLICATIONS

21. Tangent and Normal. For all applications of the

Calculus to Geometry the fact established in § 14 is of

fundamental importance, viz.

Theorem. TJie value of the derivative of y with respect

to Xfoundfrom the equation of a curve in rectangular coor-

dinates gives the slope of the tangent at any point on that

curvcy or

— = slope of tangent.
dx

If we wish the slope at any particular point (x\y\ we
have to substitute xf and ^ respectively for x and y in the

general expression for -^- Let \-^\ be the value of
, dx \dxj
-^ after this substitution, then we have from Analytic
dx
Geometry,

Equation of the tangent at (x\ y') is

(17) ^--^' =(!)'(---')•

Since the normal is perpendicular to the tangent, and

Equation of the normal at {x\ y') is

(18) ^_y = _(^gy(^ _;,').
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EXERCISE 10

1. Find equations of tangent and normal to the parabola j^= 4^1- _[. i

at the point whose ordinate is 3.

Substituting 3 for/, we find x = 2, hence (x', y') is (2, 3). Differen-

Ans. tangent, 2 ;i' — 3j + 5 = o ; normal, 3 ;r + 2/ — 12 = 0.

2. Find equation of tangent to the ellipse b'^x^ + a^y'^ = aW at

(x',y'). Ans. d^x'x + a^'y = aP-U^.

3. Show (Fig. 12) that the subtangent M^T^ = -/'(— V, and the

subnor7nal M^N^ = yH-^\ •

4. Prove that the subnormal in the parabola j/^ = ^px has the con-

stant length 2 p.

22. Sign of the Derivative. An important question is

the following

:

Is the function vtcrcasijig or decreasing as the variable

passes through a given value a f

The phrase " passing through a " is understood to mean
that the series of values assumed by the variable is an

Fig. 12

increasing sequence including a, i.e. on the graph of the

function we proceed from left to right. In Fig. 12, as we
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pass through P^ the ordinates are decreasing, while at P^

the ordinates are increasing, and since the ordinates repre-

sent the values of the function and -^ or /'(a-) is the slope
ax

of the tangent, we have the result

:

The functioji f{x) is increasing or decreasing as x passes

through a accoj^ding asf{a) is greater or less than zero.

At P^ and P^ (Fig. 12) the tangent is parallel to XX' ^ and therefore

f'{x) vanishes at these points. For such values of .r, therefore, the

rule just given does not enable us to answer the question proposed.

If, now, for any value of ;r, say x=a, the second deriva-

tive ~^y or f"{x\ is positive, then as x passes through a^
dx^

the first derivative f\x)y or tan 7, must be an increasing

function of x, i.e. 7 must be increasing as x passes through

a ; and therefore as we pass along the curve from left to

right, the tangent is rotating counter-clockzvise, and the

curve is accordingly concave upward {diS at {a), Fig. 13).

Fig. 13

On the contrary, \{ f"{a)<o, the reasoning shows the

tangent to be rotating clockivise as we pass along the graph

through X = ay and hence the curve is concave downward

Un Fig. 13).
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The result is

:

A curve is concave upward or downward as x passes

through a according as the value of the second derivative

dh
*

-y^ for X = a is greater or less than zero,

dh
As before, if

-f^
= o, the rule just given does not enable

d^y
us to decide. If -f^

= o for x= a and changes sign as x

passes through ^, then at x= a we have a point of inflec-

tion (P4 and Pg, Fig. 12).

EXERCISE 11

1. Show that the following functions are either always increasing or

always decreasing, and draw the graphs in each case

:

.(^)tan^; (d) e-; (c) logx', (^) i.

2. Show that jk = sin;r has a point of inflection at each intersection

with XX'.

3. Determine the points of inflection of y =(x — ay -\- d.

Ans. {a, b).

23. Maxima and Minima. A function /(;r) is said to be

a maximum for x=^a when f(a) is the greatest value of

f{x^ as X passes through a.

A function f{x) is said to be a minimum for x =^ a when

f{a) is the least value of f{x) as x passes through a.

In other words, a maximum value is greater than any

other in the immediate vicinity, and similarly for a mini-

mum value. It is not to be inferred that a maximum value

is the greatest of all values of the function ; on the con-

trary, a function may have several maxima.
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Graphically, at a maximum we have a highest point

(Pj and /^3, Fig. 14), at a minimum a lowest point

(7^2 and P4).

Fig. 14

Since, by definition, if f{d) is a maximum, f{x) must be

an ina^easing function for ;r < ^ and a decreasing function

for jr > ^, we have (§ 22)

:

Theorem. If f{a) is a maximum value of f(x), then

the first derivative f\x) must change sign from positive to

negative as x passes through a.

By similar reasoning for a minimimt, we find a change

in signfrom negative to positive micst occur in fix).

In either case, therefore, f'{x) must change sign. If we
now assume that f'{x) is continuous for ;r = (^, we see that

f\a) = o ; that is, the tangent at a highest or lowest point

must be horizontal {P^ and P^ in Fig. 14). If, on the con-

trary, f'{x) is not continuous for x = a, then the change in

sign occurs by passage through 00 ; i.e. the tangent becomes

parallel to FF', as at P^ and P^. This case is, however,

of minor importance, and is omitted from further con-

sideration.

Furthermore, if f"(a)<Of the curve at .r = ^ is concave

downward, and we have a highest point {Pi), while

f"{a)>o indicates a lowest point {P^^^
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We have therefore the following

Rule for determination of Maximum and Minimum
values of a function f{x).

Find the first derivative f {x), and get the roots of the

equation f{x) = 0.

First Test. If f (x) changes sign as x passes through

any root a of the equation ^'(jr) = 0, then f{a) is a maxi-

mum or minimum value according as the change is from +
to — , or from — to +.

Second Test. Find the second derivative f (jr) ; then,

if a is any root of f'{x) = 0, f{a) is a maximum if f"(a) < 0,

and a minimum if f (a)>0. If, however, f'(a) = 0, we
must use the first test.

EXAMPLES

1. Examine the function ;i'3— 3 jr^ — 9 jr + 5 for maxima and minima.

Placing /(x)=x^— ^x^— gx+ ^,

then /' (x) =^x^— 6x—g,

and the roots of 3;ir2— 6;ir— 9 = ^ive x= 2 and — i

.

Now f'(x) = 6x-6, and /"(3)=i2, f'(-i)=-i2y

hence by the Rule, Second Test,

/(S) — — 12 is a minimu7ii value,

and /"(— i)=ioisa maxi7nuin value of the function.

The student should draw the graph.

2. Examine the function ^^
~"—^ for maxima and minima.

Here /(;r) = ^-^~ ^^'
-

Differentiating and reducing, we find
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The roots of/' (jr) = o are therefore x= i, x= 5. We now apply the

First Test, since it is unwise to form the second derivative.

Taking account of the signs only, we have

When* .r< i, f(x) = - ^~)(~ l =-
]

•^ ^ ^ +
I

Hence /{x) is a

When x> I, r(x) = - ( + )(-) = + ^^^inimum when x= i.

When x<s,/'ix)=- C +K") =+ )

+ I Hence /' (;f) is a ^ ^

When x> 5, /'(,r) = - i±i(±l = -
J

^^^^-^^'^^^^^^^^ when ^' = 5. (g;

.-. y(i) = o is a minimum, and /is)T 'kj^ maximum value of the

function.

EXERCISE 12

1. Examine the following functions for maxima and minima

:

(a) x'^— 3x-\- 5. Minimum value( 1 1 .^ Ans.

(b) -• Max. value \, min. value - \. Ans.
I -\-x^

{c) 6^+3 X-— 4x^. Max. value 5, min. value —
J. Ans.

(ci) x^— 3 .r2+ 6x, No max. or min. values. Ans.

(e) ax'--i-2_l)^ -^ If ^>o, min. value '^^ " ^
^ if ^<o,

a

then is a maximum. Ans.
a

(/) \oyJ%x-x^. Max. value 40. .4;/^.

This function is a maximum or minimum according as 8 x — x'^ is

a maximum or minimum, hence f ^ constant factor or a radical sign

may be dropped in investigations of this sort.

* We consider values of x differing only very slightly from the number on

the right of the inequality sign.

t If w is any polynomial in .v containing no multiple /actors, we may show that

\lu is a maximum or minimum only when « is a maximum or minimum. For if
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2. Divide the number a into two such parts that their product shall

be a maximum.

Hint. If x is one part, then a — xis the other, and the function to

be examined is r(a — x) or ax — x^. Equal parts. Ans.

3. Divide the number a into two such parts that the product of the

mth power of one and the nth power of the other shall be a maximum.

In the ratio m : n. Ans,

24. The subject of Maxima and Minima is one of the

most important in the applications of the Calculus to Ge-

ometry, Mechanics, etc. It is often necessary to derive

the expression for the function to be investigated, and in

testing this, attention should be paid to the remark in

Example i(/) of the preceding exercise.

EXERCISE 13

1. A box with a square base and open top is to be constructed to

contain io8 cubic inches. What must be its dimensions to require the

least material ?* Base 6 inches square, height 3 inches. Ans.

2. The strength of a rectangular beam varies as the product of the

breadth b and the square of the depth d. What are the dimensions of

the strongest beam that can be cut from a log whose cross section is a

circle a inches in diameter ? f Breadth is J ^ v/3 inches. Ans,

/(^) = V^./'(^)=-l-^. and /''(:.)=- -i-f^+ -i-f^. so that /'(^)

vanishes only if — = o, and then/" {x) has the same sign as —^.
dx dx'^

* Hint. Let x be the side of the base, y the height, then x'^y = 108, i.e, y =— •

and since the material is x^-]-^ xy, we find by substituting for y the function

X

t Hint. The strength therefore equals 5d'^ multiplied by some constant, which

may be dropped by the remark of § 24. But d^ = a'^ — d^; hence the function is

3(a2—32), d being the variable.
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3. Find the dimensions of the stiffest beam that can be cut from

the same log as in 2, given that the stiffness varies as the product of

the breadth and the cube of the depth. Breadth J a inches. Ans,

FiG. 15

4. The equation of the path of a projectile (see Fig. 16) is

y = ;irtan a f ^—

,

2 Vf^^ cos^ a

where a is the angle of elevation and v^ the initial velocity. Find the

greatest height.
V^in2_a^ j^^

Y

<.y

A^' H ^
\/ \ ^

Fir,. 16

5. Find the dimensions of the rectangle of greatest area that can be

inscribed in the ellipse b'^x'^-\-a^'^= aP-U^. Ans. Sides are « V2 and b\f7..

6. Find the altitude of the right cylinder of greatest volume inscribed

Altitude =— . Ans.
^3

in a sphere of radius r.
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7. Assuming that the brightness of the illumination of a surface

varies directly as the sine of the angle under which the light strikes the

surface and inversely as the

square of the distance from the

source of light, find the height

of a light placed directly over a;

the center of a circle of radius

a when the illumination of the

circumference is greatest.

From Fig. 17, the bright-

ness at P is given by

K sin B _KX _ X _ / x'"- V^

Hence the bris^htness is a maximum when is a maximum.^
{a^-^x^y^

x—-^. Alls.

V2

25. Expansion of Functions. By actual division

(19) -^— = I ^x-\-x^ + ... +^r^ + f-^V""''^^ \ — X \\ — x)

where n is some positive integer. In this simple way we

may find for the function an equivalent polynomial

all of whose coefficieitts save that of x^^^ are constants. By
transposition (19) becomes

(20) — (i +.:r + ;ir2 + ;r3+ ... +;r^) = —i— .r^+i.
^

\ — X ^ ^ I — X

Now let X be some number numerically less than i, say

.r=.5, and suppose we wish the value of correct

within one one-hundredth, i.e, correct to two decimal places.

Let us then determine for what values of n the term

-:r^+^ when x=x is less than .01, i.e. solve the in-\-x
equality

__
.5'^"^^ < .01. We find n >6.
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Furthermore, if x is numerically less than .5, —
I — X

and x''""^ are less than for ^ = .5, so that taking ;/ = 7

{{.€, >6), ——— ;tr^<.oi for every value of ;i' not numeri-

cally greater than .5. And we now see from (20) that

the function _ may be replaced by the polynomial

I + .r 4- x^ 4- x^ -f- ;r* + ^ + x"^ + x"^ for all values of x
numerically equal to or less than .5 if results correct only

to hundredths' place are desired.

Precisely the same reasoning holds for any value of x
numerically less than unity, since for any such value x'^'^^

can be made as small as we please by taking n sufficiently

great. But this reasoning does not hold for any value

equal to or exceeding i numerically. We may then state

this theorem :

For any value of x numerically less than unity ^ the func-

tion 7nay be represented zvith a?ty desired degree of

accuracy by a sufficiently great number of terms of the

polynomial^

I +x -i-x^ -i-x^-h •••.

The Differential Calculus enables us to obtain a similar

theorem for many other functions, as will now be explained.

In all practical computations results correct to a certain

number of decimal places are sought, and since the process

in question replaces a function perhaps difficult to calcu-

late by a polynomial with constant coefficients, it is there-

fore of great practical importance in simplifying such

computations.
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26. Theorem of the Mean. If fix) and f{x) are con-

tinuous as X varies from a to b, then there is at least one

value of x^ say x^, between a and ^, such that

(21)
Ab)-f{a) ,,.
b-a -J ^^1^-

Fig. i8

In Fig. 1 1, f{b) -f{a) = CB, b-a = AC,

/•/ i\ •f(n\

/, /_L_z—ZA-J= slope of AB, and at eack of the points

P^ and P^ the tangent is parallel to AB^ and hence (21) is

true if x^ is the abscissa of P-^ or P^*
Multiplying (21) out gives

(22) /{b)=f(a) + (d-a)/'(x,),

where it must be remembered a>x-^> d.

A more general theorem than (21) is enunciated as

follows

:

If f(x) and the (n -{- i) successive derivatives /X^)>

f\x\ •••, /^"^^\^) are continuous when x varies from a

* This proof of the theorem of the mean is not mathematically rigorous, but

merely illuminates the significance of (21). The student should draw other figures,

and especially such that the necessary conditions of the continuity of fix) and

f\x) fail.
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to ^, then there is at least one value of ;r, say x^, between

a and d such that

(23) Ad) =f{a) + ^^^f{a) + ^1:1^fXa)

The proof of (23) is beyond the scope of this book.*

The student should, however, carefully note the law by

which the expression on the right is constructed.

Putting for b in (23) the variable ;r, we get Taylof^s

Theorem,

(24) /w=/(«)+^-^f^V(^)+^-^j^/"(«)+

-

yx a) y(n+i)(^) where a<x.<x.

Finally, setting /2 = o in (24), we find Maclauren's

Theorem
y

(25) /(«^)=/(o) +f/'(o)+^/"(o)+
... +^/»>(o)

+ ,—;

—

P^'^^x^ where, o < jr. < ;r.

\n 4- I

If in (23) we put ^ = ^ + ;r, we obtain another form of Taylor's

theorem,

f{a + X) =f{a) + \fia) + |V''(^) + - etc.

This formula (25) gives/(;r) in the form of a polynomial

in X with constant coefficients save that of x^'^^, which,

since x^ lies between o and x, is a function of x ; that is,

* An excellent discussion is given in Gibson's An Elementary Treatise on the

Calculus, London, 1901, p. 390.
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we have the generalization of the example of § 25 as

-

follows

:

A fimctio7i f(x) for certain values of the variable * may
be represented with any desired degree of accuracy by the

polynomial^

/(o)+^/'(o) +|/"(o) +g/'"(o)+ - +^/<"'(o).

By " expansion of a function " is meant the forming of

this polynomial. Of course n is indefinite, and must be

taken great enough to give the desired degree of accuracy.

It is of greatest theoretical importance to determine for

what values of x the polynomial represents the function

when 71 is taken indefinitely great. This consists in exam-

ining for what values of x

for this term is the dijference between the function and the

polynomial.
EXERCISE 14

1. Expand sin;r.

Since f{pc) = sin x, and for x = o, /(o) = sin o = o

;

then f'(^) = cos x^ and for x= o^ /'(o) = i
;

/"(;ir) = -sin;r, /"(o)ir:o;

f"(x) = - cos X, f"(o) = - I

;

/iv(:r) = sin X, f^(P) - o

;

etc. etc.

jy.3 -v-S -k" jJ;*9

Hence sin x= x —

.

h

,

, h

,

etc.

[3. Ll l_Z. 19. .

2. Show that the expansion of cos x is

y-1 •y-4 -y-6 j/^

cos ;r = I - ,—1-
,

r?: -^KQ- ^^c.
[2 [4 1 6_ II

* Namely, for all values of x such that the "remainder"
|—qj-/^**+iH^i) is

less than the limit of error. This question is often difficult to settle.
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3. Expand eF.

Since f[x)= ^, and all its derivatives are likewise ^', while ^ = i,

we obtain ^, ^, ^ ^.,

Putting ;r = I, we find

I I I I

the expression given in § 10.

The expansions of sin Xj cos x, and e' are remarkable in that they

hold for eve?y value of Xy positive and negative.

4. Prove the following expansions :

. X , , XI fx x^ x^ x^ x^ \
(a) loga(i +^)= ^ogae{^--- + ~-j-{-j-"'y

,,s X X m(m — i) ^ ;;/(;// — i)(m — 2) _

(<^) (I + ;r)'« = I + ///;r+ —^^ -^^ + —^^ r^ -^^ + ••••

(d) is the binomialformula. These expansions hold only for values

ofx numerically less than i

.

Taylors Theorem (24) differs from (25) in that we are

to consider values of the variable x near some given num-

ber Uy since (24) is a polynomial in (x — a) in the same

sense that (25) is a polynomial in x. It is evident that no

greater difficulty arises in the application of (24) to a given

function than has been already pointed out.

27. Differentials. From (23) we are able to find an ex-

pansion for the increment of a function in powers of the

increment of the variable as follows :

Write b = X'\-/^Xy a = Xy .*. b — a = Ax, and (23) be-

comes, after transposing /(x)y

(26) /(x + A;r) -/(x) = Axf(x) + ^/"(^) + -,

or (27) A/ix) =/'(x)Ax +/"(x)^-^ + ....

Now, if we suppose Ax to diminish toward zero, the first

term /'{x)Ax of the right-hand member will ultimately

EL. CALC.— 5
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greatly exceed the sum of the remaining terms, since these

contain higher powers of A;r. For this reason /'(x)Ax is

called the principal part of the increment of fix). Also,

when we wish to emphasize the fact that the variable l^x

is to approach zero as a limit, we write dx, called differen-

tial X, instead of A;ir, and the principal part of the incre-

ment/'(;r)^^ we call the differential of thefunction ; that is,

(28) df{x)=f'{x)dx.

The following definitions are fundamental:

A differential (or infinitesimal) is a variable whose limit

is zero.

The differential of the independent variable is an incre-

ment of that variable whose limit is zero.

The differential of the dependent variable is the princi-

pal part of the increment of that variable, and equals the

product of the derivative a7td the differential of the inde-

pendent variable (28).

From (28), we see that if 7 is a function of x, then

EXERCISE 15

1. Prove by (28) and (29) the following differentials

:

{a) d{2,x'')=6xdx, (^) dy/V^x = ^
dx

2W^r^
{b) d\og,x = —'

(f) dsm2x = 2cos2xdx,

(c) de' = e^dx. sec^f-)

(d) dx^ = mx-^-^dx. (^) ^ t^^
(^)

= jr- ^^'

(Ji) \i y = xlogeX, then dy =(i + loge:r) dx.

2. U y = uvy then

dy = (u^ -{- v"^) dx = u~ dx + V — dx, or dy = udv + vdu.
\ dx dx) dx dx
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V du — u dv

67

'(j)^

4. State the rules I-V for differentiation in terms of differentials

instead of derivatives.

28. We may write (27) after replacing A;r by dx,

(30) ^f(^x)^f\xyx^dx''{^^^^^^

Now, since by (28) f{x)dx is the differential of the

function, (30) shows that A/(,r) and df{x^ differ by a term

containing the factor dx'^. Such a quantity is called a

differential of the second order ; in general, any quantity

containing as a factor the product of tivo differentials is

thus designated.

The increment of a function differs from its differential

by a differential of the second order.

EXAMPLES
1. Differential of a product nv,

0' i

^ udv
^ m^'

E'

du

Fig. 19
B B'

Let 71 = AB, V = ACy then uv = area ABCD. If du = BB\
dv — CC\ then

t^{t(v) = area AB'CD' - area ABCD
= area CDCE + area BB'DE' + area DE'ED'

= udv -\- V du + du • dv.

Now du ' dv is a differential of the second order, .-. principal part

oi ti(uv) \s udv + vdu\ i.e. d{uv)= udv \- vdu. (Cf. Ex. 2, § 27.)
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2 . Differential of an area

.

X'
dx

N
Fig. 20

X

Consider the area aAPM bounded by any curve, the axis XX' and

the ordinates aA^ MP, and call this area ?/. Then if MN= dx, t^u

= area aAQN- area aAPM- areaMPQN. r . ^u -y dx -\- area PSQ

.

But area PSQ <dx' dy, .
•

. PSQ = k dxdy, where k is some number < i

.

Hence area PSQ is a differential of the second order, and .*. du=y dx.

The differeiitial of the area bounded by any curve, the axis XX' , and

two ordinates is the product of the ordinate of the curve and the differ-

ential of the abscissa.

3. Differential of the volume of a solid of revolution.

Let the solid be generated

by revolving a curve APQ
around XX', and denote the

volume APA'P by v. If

dx — MN, then At/ = volume

AQA'Q' - volume APA'P',

or At/ = volume of the cylin-

der PSP'S' H- volume gener-

ated by the curvilinear A PSQ.
Now the volume of the cylin-

der PSP'S' — iry-dx, since /
= PM = radius of base and

^jr= altitude. The volume

generated by the curvilinear

A PSQ < volume generated

by the rectangle PRSQ, and

this last volume = ttA^^ • MN- ttMP^ . MN z=: it {2y dy ^ dy^)dx.

Fig. 21
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We see therefore that At/ = tt/^ ^/r -f a differential of the second

order, i.e. dv — iry'^dx.

The differential of the volume of a solid of revolution generated by

revolving any curve around the axis XX ' equals ir times the product of
the square of the ordinate and the differential of the abscissa.

Q{r+dr,d+dd)

P{r,e)

Fig. 22

4. Show that the differential of the area u bounded by a cur\'e AP
and two radii vectores OA and OP is given by du = ^r^dO, where

(r, 0) are the polar coordinates of P.



CHAPTER IV

INTEGRATION

29. Indefinite Integral. Integration consists in finding

a function of which a given differential expression, such as

dzi
X dx^ sinxdxy — , etc., is the differential. The function

thus found is called the integral of the given differential

expression, and the operation is indicated by prefixing the

integral sign j . Thus, since

d{^ x^) = X dx, .
•

. \ xdx= ^x^;

I dx = Xy j sinxdx= — cos x, etc.

In general,

//

means to find a function F(x) such that

dF(x) =f{x)dx.

Constant of Integration. Since d(^ x'^ 4- C) also equals

X dxy no matter what the constant C is, we have

\xdx = ^x^ + Cy

where C is any constant whatever, called the constant of

integration. We see, therefore, that a given differential

70
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expression may have infinitely many integrals, found by
giving to the constant of integration different values.

Thus

and since C is unknown and mdefinite^ ^{^) -h C is called

the indefinite integral of f(x)dx.

Of course, the same differential expression has an in-

definite number of distiiict integrals, but what has just

been said shows that the difference of any two of these

must be a constant.

30. Rules for Integration. From Rule V in differentia-

tion, if V is any function of x, and ic a constant, then

^-.(icv) = /c— , i.e. d(Kv) = fcdv.
dx dx

Integrating, we have, since if two differential expressions

are equal so are their integrals equal,

j fcdv = 1 d{f€v),

or, since j d(Kv) = kv,

Kv = j f€ dv.

But K j dv = fcv.

(31) .', j icdv = fc j dv.

XXIII. A constant factor may be written either before or after

tlie integral sign.

The chief application of XXIII is to be found in cases like the

following

:
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To work out i xdx. If we multiply xdx by 2, we have an exact

differential, since

d (;i'2) = 2 xdx,

.*. \2xdx = x^
;

but by XXIII, j 2 ;ir^ar = 2 i ;if ^;»r,

.-. (xdx=^.
J 2

From (31) we may also write

(32) ff(x)dx=^ ffc/(x) dx.

Integral of a Sum of Differential Expressions. If u and v

are functions of x, then

diu + z/) = — {ti '\' v) dx — du -{ dv.
dx

*.
j (<^;^ + dv) = j <3f(^ + Zf)^ u -\- V = \ dii-\- \ cdv.

This result gives Rule

XXIY. The integral of any algebraic sum of differential ex-

pressions eqnals the same algebraic sum of the integrals of these

expressions taken separately.

That is, e.g.,

J (-^ + 3) dx= \ {xdx + 3 dx) = \xdx + \;^dx=\x'^-\-^x-\- C

31. From any result in differentiation may always be

derived an integration formula, and we now proceed to

obtain some of the simpler ones, making use of § 18.
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Since by VIII,

then, integrating,

^m+i^ r(w-h i)v'^ dv =^ {m ^- \)^v^dv, (XXIII)

From IX, ^log,v=—

,

rdv ,

(34)
•*• JV = ^^^^''-

In the same way we might go through with each formula

in § 1 8. It will suffice for our purpose to. tabulate a few

of the results

:

XXV. fi;»^cfv = ^^^^ + C(m:?^-l).

XXVI. f^ = logei^+C.
J V

XXVII. fat^<ft; = r-^^ + C.
J loge a

XXVIII. J sin vdv = - cos v + C.

XXIX. fcos V cfv = sin V + C

XXX. f
^^ =:arcsin^+C.

XXXI. f_^ = ? arctan^ + C.



74

1. Find

INTEGRATION

EXAMPLES

dxC
X

This is the same thing as f (i — x) ^ dx^ which resembles XXV.

For put
I — x-=v^ then — dx := dv, or dx — — dv.

.'. \i} — x)~^dx = \v~^ — dv — — \v~^dv.

.-. by XXV {v'^dv^'^^C,

and by substituting again,

•^ Vl — ;r

2. Workout C3axdx_
Jc^- d^x^

Taking out constant factor 3 a (XXIII), this becomes

r xdx
^"^J c^- d^x^'

and this resembles XXVI.

For put 6-2 — dH-^ = Vf .'. — 2 b'^xdx = dv, or xdx = ^.
2 a^

_ -^
r xdx r 2d^ 7. a C dv 3^1 ,^

3. Find
/;

^;r

9 + 4^'

This resembles XXXI, if ^ = 3, ix=v.

Then 2 dx — dv, and since the given integral by (32) is the same as

If 2dx I C dvf "^dx £ C

2} 32+(2;r)2
^^

2 J ^2_,_^2'

we find by XXXI, f ^^
„ = ^ arc tan— + C.

^ 9 + 4^2 6 3
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By studying the above examples the student will see

that integration depends upon comparison of the given

integral with certain standard forms. To be able to tell

quickly what. form the given integral resembles is abso-

lutely essential.

Tables of standard forms * have been constructed con-

taining all integrals occurring in ordinary work.

EXERCISE 16

1. Prove the following integrations :

(a) J {ax + dx^) dx=lax'^-\-\ bx^ + C. (Use XXIV.)

(jf) 1 = loge (I - COS x^ 4- C.
J I - COS Jf

(0 r V^2 _ x'lxdx = - \{a?' - x'^Y + C' (UseXXV, 2/ = fl2_;^a').

{d) \ sin {7.x)dx=i — J cos 2 ;ir + C

(.) ^e-^dx =->r-'+C. ig) J^^ = V55+^+ C.

(/) f—^=: = iarcsin(2x) + C. W CJ^ = -\og,{i-x) + C.
•^ VI A x^ 2 •/ I — X

(0 U-xdx=ixUC; r^=--L+c.
^ ^ X^ 2X-^

C sin X
(J) \t2inxdx= - loge COS X -\- C. (Put tan x = and use

•^ cos X
XXVI.)

(k) isiu'^xdx = ix - isin2x-\- C. (Put sin^ji- = ^(i - cos 2r).)

2. Special Devices in Integration.

(a) By partial fractions^ when we have to integrate a rational frac-

tion times dx^ and this fraction can be replaced by partial fractions.

• E.g., B. O. Peirce's A Short Table of Integrals, Ginn & Co.. 1899.
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For example,

Putting
1 _ A B

a^ -x^ a -X a-\- X
and clearing of fractions,

I = x(A-B)-{-a(A+B),

.-. A-- B = o,,
a(A +B)= I, or A I

'2a

Ja^-x^ 2aJ a - X 2aJ a-\- X ^a> " * ' "'^ "

2a ^ \a - xj

(d) By change of variable.

Find
I
\/^2 _ ^1 ^x. Substitute ;ir = ^ cos ^

;

.-. dx = -a?:mBdO, Va^ - x^ =\/a^ - a^cos'^O = asinO,

and
J\/«2

_ ^2^^ ^ _ a'^^sm'^Odd = - ^ ^ + ^ sin 2 ^ + C

by Ex. I (y^). Now
X I X^ X

= arc cos-, sin 2^ = 2 sin ^ cos ^ = 2\/i 5 • -.
a \ a^ a

.'. \ V^2 _ ^2 ^x = arc cos - + - xVa"^ — x^.
J 2 a 2

3. Prove f.^— ^ log,^fZI+ c.

The following two examples illustrate the manner of determination of

the constant of integration by means of so-called initial conditions.

4. Find the amount of a sum of money increasing continuously at

compound interest of r per cent.

We found, page 43, that, in derivatives, P being the sum sought,

dP^jr_p
dt 100

Multiplying by dt and dividing by /*, we have

P 100 '

integrating, (
i
) log, Z' =^ / + C
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Let now a equal the iniiial sum of money ; that is, the sum started

with, so that P = a when / = o ; substituting these in this equation,

we have log^^ = C, so that (i) becomes loge/' =— / + loge«, or,

transposing, ^ i P\ r
loga/^-log.^ =— /, or loge^-j =— /;lOO

Ans.

5. Find the relation between s (space) and t (time) for uniformly

accelerated rectilinear motion.

Since the acceleration —^ is constant, say /. we have — —
f.

Multiplying by dty dv —fdt, and integrating, v =ft + C.

To determine C, let the iyiitial velocity be v^^ i.e. v = Vq when t = o,

or z/q = o + C. .'. V =ft + Vq.

Since v = —, .-. -^ —ft-\-v^^ and multiplying by dt^ ds—ftdt-\-Vrdt.
dt dt

Integrating, s = \ft'^ + vj- + C, and if s — s^ when / = o, we have

finally s = J//-^ + v^t + Sq. Ans.

32. Definite Integral. We have already seen that the

indefinite integral contains an arbitrary constant, t/ie co?z-

stant of integration, and has for that reason an indefinite

value. By making suitable assumptions, now to be ex-

plained, we are able to dispose of this inconvenience.

In § 28, Example 2, it was shown that the differential of

the area ti between a

curve MABCy the axis

XX' y and any two ordi-

nates was given by

du =y dx.

.'. u= \y dx \- C.

Here, of course, y is

some function of x determined from the equation of the

curve, and .*. \ydx-=- some function of x, say F{x\

.-. //=F(;r)-hC

Fig. 23
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Let US now agree to reckon the area from the axis VV^,

so that when x — a^ tc=^ area OaAM, etc.

Under this assumption, when ;r = o, u = o, and

.-. o=i^(o)+C, or C^-Fip),

and we have
u = F{x) — F(o).

Now area OaAM = F{a) - F{o).

Area ObBM = F{b) — F(o). Subtracting, we have

Are^ aMB ^F{b)-F{a),
or.

The difference of values of the \ y dx for x — b and x = a

gives the area bounded by the curve zvhose ordinate is y, the

axis XX' y and the ordinates at a and b.

This difference is represented by the symbol

(35) jydx,

read, " integral from a to b oi y dx'' ] the operation is called

integration between limits ^ a being the lower, b the upper

limit.

We see therefore that (35) or, what is the same thing,

(36) £A^yx

always has a definite value, and is accordingly a definite

integral. For if

(37) ^f{x)dx= F{x)-^C, then

(38) £f{x)dx^ F{b) + C- {F{a) + C) = F(d) - F{a),

and the constant of integratioft has disappeared.
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33. Areas of Plane Curves. From § 32, we have the

theorem : Given any plane curve y =zf(x\ the definite

f{x)dx gives the area bounded by that curve

^

the axis XX' and the ordinates at a and b.

To find the area bounded by two given curves, we get

the area between each and XX^ and then subtract.

Volumes of solids of revolution.

Precisely as in § 32 and remembering the result of

Example 3, § 28 we prove that

:

Given any plane curve y =f{x)y the definite integral

1 iry'^dx gives the volume generated by revolving around

XX' the portion of the curve between the ordictates at a

and b.

The two theorems just given find numerous applications

in Geometry.

EXERCISE 17

1. Find the area of the curve / = ;ir2 — 9 lying below XX'

.

Here \ ydx= \ (x^- 9) dx, and since for / = o, ;r= ± 3, the limits

are +3 and —3, z.e. area = i (x^—g)dx. 36. Ans.

2. Find the area of the circle x^-\-y'^ = d^.

Since y — ^a^ —^% \ydx=\ y/a^— x^dx which has been worked

out in Exercise 16, Example 2 {U). For the semicircle the limits

are 4- a and — a.

3. Show that the area of the ellipse b'^x'^-\- d'-y'^ = d'-b'^ is to the area

of the circle whose diameter is the major axis 2a2iS>b\a,

4. Find the area of one arch of sine curve y = sin x. 2. Ans.

5. Find area between the equilateral hyperbola xy=i. the axis

XX' J and the ordinates at x=ay x = 3. loge ( - )
• Ans.
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6. Find the volume of the sphere.

Since we have to revolve the circle x^-\-y^ = a% or y^ = a^—x^

around XX', then
J

iry^^x = ttJ (a^ -x'^) dx. The limits are + a and

-a. ^ira^. Ans,

7. Find the volume generated by revolving around XX' the pa-

rabola ^^^ — ^ ^^ and cut off by a plane perpendicular to XX' at the

distance of 4 to the right of the origin. 32. Ans.

34. Definite Integral as the Limit of a Sum of Differential

Expressions. In the Differential Calculus the student was

asked to bear in mind that everything was built up from a

fundamental limit, the limit of a quotient whose denominator

approached zero. We are now to see that the definite inte-

gral is the limit of a sum of differential expressions.

If ^f{x)dx^F{x)^C,

then 4^W=/Wand Cf(x)dx =-F{b)-F{a)
dx ^^

gives the area bounded by the curve7=/(;r) (Fig. 24),

the axis XX\ and the ordinates ^tx=^a,x=^b.

<—AjX—

>

Pr—

^,
P,r-

bi X2 h^ X3 bs a?4 64 a?5

Fig. 24

Q

Now divide the segment ad into any number of equal

parts, say 6, a^b^=^b^b^= •.. =^b^b, and call the length of

each division Lx. Erect the ordinates at these points, and
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1

apply the theorem of the mean (§ 26) to each division.

In the present case F(x) takes the place oi /(x) in (21),

and /{x) replaces /'(x) ; for the first interval ad^, a=^a,

b= by and x^, lying between a and b, is marked in the figure.

Draw the ordinate of Xy Then (21) gives

F{b,)-Fia)

or, since b-^ — a = Ax,

(39) F{b,) -F{a)=f{x,)A.r.

In the same way (21) applied to each of the remaining

five segments gives the equations

F{b,)-F{b,)=Ax,)A.r,

F{b,)-F{b^)=/{x,)Ax,

(40) \F{b,)-F(b,)=/{x,)Ax,

F{b,)-F{b,)=/{x,)Ax,

F{b) -Fib,)=/(x,)Ax.

Adding the six equations (39) and (40), we find

(41) F{b)-F{a)=/{x,)Ax+f(x,)Ax+/Qr,)Ax

+/{x^)Ax+/{x,)Ax+/{x,)Ax.

But /{xj)Ax = area of the rectangle aPP-^b-^,

f{x^Ax = area of the rectangle b-^p^P^b.,,

etc.,

so that the sum on the right equals the area

aPPxPxP'LpiP%PzP^Pj'f.P^Qb-> i-e-

(42) F{b) —F{a) = area between the broken line

/'/'lA-AGand^^',
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and this is true independently of the number of parts into

which ab is divided. Hence for any number n of equal

parts

(43) F{b)-F{a) =f{x^^x -\-f{x^)^x + ... +/(^,)A^,

(44) and A;r =

Equations (43) and (44) hold when n increases without

limit, and then A;r becomes dx (§ 27), ie, a variable whose

limit is zero.

.-. F{b)-F{a)=
l;'^'^

{f{x^)dx-\-f{x^)dx+^^>-^f{x,)dx\

or, by (38),

(45) £A^y^ = n'=L{A^iy^+A^^y^+ ... +/(;r,yr).

And now we see very clearly why
J^

f{x)dx gives the

area under the curve, for as n increases, the broken Hne

PPxP\P^Pi '"pr^Q approaches the curve itself, and the sum

f{x^dx-\ \-f{x^dx always represents the area under

this broken line.

Integrating between limits is accordingly spoken of as

"summing up"; the integration sign I is historically a

distorted 5, the first letter of sum. But let the student

not forget that the definite integral is not a sum, but the

limit of a sum, the number of terms increasing ivithout

limit, and each term itself diminishing toivard zero.

The problem of finding the area is then to be thought

of thus : Divide the interval on xx^ into any number of

equal parts, and at a point within each division erect an

ordinate to the curve ; construct the rectangles on the

divisions as bases, with the corresponding ordinate as
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altitude. Then finding the area consists in summing up

these rectangles and taking the limit of this sum as the

number of divisions increases without limit.

As an example of the great number of problems in Physics and other

branches of Mathematics which involve in their solution definite inte-

grals, consider the following

:

To determine the amount of attraction exerted by a thin, straight,

homogeneous rod of uniform thickness and of length / upon a material

point P of mass ///, situated in the line of direction of the rod.

,
^£-H H a >P

Fig. 25

Imagine the rod (see Fig. 25) divided up into equal infinitesimal

portions (elements) of length dx. IfM — mass of rod, then

M— dx = mass of any element.

The law of attraction being Newton's Law, i.e. attraction = product

of masses ^ square of distance, then

attraction of element dx on P —
^mdx

and the total attraction is the su?n of these from x — o to x - I.

— VIdx
... Force = Vl ^^T "^

^

Jo {x^aY I Jo {x-\- ay

or integrating, Force =^(- —L- + -^ = - /^^^^
. Answer.



CHAPTER V

PARTIAL DERIVATIVES

35. Functions of More than One Variable. In the pre-

ceding chapters we have been concerned with functions of

one variable ; i.e. the variable function depended for its

value upon the value of a single variable. Such functions

do not by any means suffice for the applications of the

Calculus. In fact, the student is already famiHar with

many examples of a variable whose value depends upon
those assigned to two or more distinct variables. Thus

the area of a rectangle is a function of two variables, viz.

the two sides ; the volume of a gas depends upon both the

pressure and the temperature ; the- volume of a parallele-

piped depends upon the three edges, etc.

Notation. If the value of a variable u depends upon

two variables, x and j/, and can be computed when values

are assumed for x and y, then we write precisely as in § 3,

(46) u-=f{x,y).

Similarly for a function of three variables,

u = ^(x,y, z)y etc.

36. Partial Differentiation. As in § 12 the important

question arising here is how to determine the manner of

variation of the function when the variables change in

value. But we have greater latitude here than in § 12.

For in (46) we can ask ourselves,

84
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first, how does 71 vary when x alone varies and y remains

constant ? or

second, how does u change when x remains constant and

y varies ? or

third, in what manner does // vary when both x and y
change independently of each other ?

Thus let « = JTK, X and / being respectively the base and altitude

of a rectangle ; if / remains constant (say / = b), u gives the area of

all rectangles of a certain altitude b\ and if ;t- = a constant, say a, then

u represents the area of all rectangles with common base a. But if

X and / both vary independently, then we are to consider all possible

rectangles.

Now the first and second cases do not differ in the least

from § 12, for we really have in \}i\^ first, u a function of x
alone, and in the second, u a function of y alone. We can

therefore form,

first, the increment quotient (§ 13) when x alone varies,

and this is

(47) ^ = f{x^Lx,y)-f{x,y)
^^' ^ Ax Ax

second, the increment quotient when y alone varies, which
*
is

/^ox A?^ _ f{x, y + Ar) -f{x, y)
^^^^ ^ "

A^
"•

For example, in the area of rectangle already used, u = xy,

Au (x + Ax^y - xy , A?^ ,^ = -^ =/, and ^- reduces to ^.

Finally, we can, as in § 14, find the limits of the func-

tions in the right-hand members of (47) and (48), in (47)

when Ax approaches zero, in (48) when Ay approaches
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zero. The results are called the partial derivatives of u

or f{x, J/) with respect to x and j/ respectively, and this

step of passing to the hmit we indicate on the left by

replacing the A's by round 6's, so that

(49) ^ = Lmnt (l^
A. 1^.>

(so) —- = Limit —
\

The partial derivatives — , — are then to be calculated
dx dy

by the rules of Chapter II, the independent variables being

respectively x and y.

EXERCISE 18

1. Find the partial derivatives of:

dx X dy y

(2) ^<f = arc tan f =^
j

.

Ans. ^^ =d]i_ _ y bu _ X
dx~ x^ +/2' Sy

~ x^+y^'

(3) u = xv. Ans. ^ =yx^-^
; ^ = ^^ loge x,

dx ay

Partial Differentials

:

By § 27, (29), the differential of ?/, when ;r alone varies is

— dxy and when y alone varies equals — dy\ these are
dx dy

called the partial differentials of u.

— dx= partial differential of ti, when x alone varies

;

. . dx
^^'^ ^ d»— dy = partial differential of ^/, when y alone vanes.

dy
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37. Total Differentiation. We have yet to discuss the third case

of S 36, viz. required the change in u when x and/ vary independently.

If Ao-, A/, and A// are the increments of these variables, then from (46)

we have

(52) A// =/(-r H- Ar, / + A/) -/(r, /).

By adding and subtracting /(r, / + A/) in the right-hand member,

(52) becomes

(53) ^'^ =/(•*'+ ^-^^ ^^ + ^-^) ~/(^' -^ + '^^'^ +-^^-'' y'^^y^ ~f^^' ^^

'

Consider now the last two terms,

/{x,y-\-^y) -/(r,y).

This is the increment of ?/ or /(x,y) when y alone varies. Hence,

by (27), §27,

(54) /(^'/ + ^/) -/(^'^y) = Y ^^ "^ ^^^^^ ^^ ^^^^^^ powers of A/.

In the same way the first two terms of (53) give us, if we set

u' =:f(x,y + ^y)y

(55) /(^+ Ar,/ + Aj) -/(^,/ + Ay)

=^ A;i' + terms involving Kx^, etc.

But also

,/ =/(:., 7 + A;.) =Ar,y) + |a>^ + terms in ^/, etc.

by (26), § 27. Differentiating with respect to x, we find

.^. 57£: ^^ 4. terms in A/,

since
u=/(r,y).

Consequently, from (56), (55^, and C54), (53) becomes

/ - ^x ^u = ^'Ar 4- ^ A/ + terms of higher degree in Ar, A/.

v57; ^jr c)y

Now letting A.- and ^y approach zero, /... become ^'^^"fi"';"™
J

rf^ and ^/, then, as in § 27, calhng the prinapai part of A« the /./^/

differential of ?/, we have

(58)
'" =|.*+|*
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From (51) and (58), then, we have the theorem

:

The total differential of a ftmctiofi of several variables

equals the sum of the partial differentials.

Example. In § 28, Example i, was demonstrated the result

d (xy) = xdy + / dx^

which agrees with (58).

EXERCISE 19

Find the total differentials of the following

:

{a) // = loge(^).
ydx-xdy

Ans.du= ^^

{b) z^ = arctan^^).
xdy-ydx

Ans. du- ^,^^, .

{c) u = xy. Ans. du = xy-\ydxj

38. Total Derivative. We may in (57) assume that x
and J/ are not independent, but are functions one of the

other, say J/ a function of x. Then ti becomes also a func-

tion of X alone, and we may therefore form the total

derivative —
dx

Dividing (S/) by A;i: and taking the limit for t^x = o, and
.*. Aj/ = o, we have the result

/
jj

N ^ —. ^ 4. fdzi\ dy

dx dx \dyj dx

a very important formula.

Suppose in the illustration of the rectangle, § 36, we wish the deriva-

tive with respect to the base x of the area u of all rectangles whose
altitude/ is double the base. Then

dx dy dx

and (59) gives ^=y -\- 2x= ax.
dx
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Or, we may substitute for/ before differentiation

;

i,e. II — X'lx — 2 x\ .'. -— = 4.Xj as before.

Equation (59) is especially important as affording a proof of the

method given in § 19. For in the example of that article, set

/^ = X' - 3^7 + 2/- - 3;

.... = 0, and -=.0, or - + ^-^=0;

i,c. (60)

Qx \dyldx

du

^___6f _ 2x-2,y __ 2x-2>y
dx~m du~ -3^+4J'~3^-4/'

the same answer as before. This formula (60) is very useful.

For further study of the Calculus the student is referred to

:

G. A. Gibson, An Elementary Treatise on the Calculus. London,

190 1.

Young and Linebarger, The Elements of the Differential and

Integral Calculus. New York, 1900.

McMahon and Snyder, Elements of the Differential Calculus.

New York, 1898.

Murray. An Elementary Course in the Integral Calculus. New
York, 1898.
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Tables separate. Cloth, 8 vo, 118 pages . . . .1.00

DAVIES'S ANALYTICAL GEOMETRY.
Sheep, i2mo, 352 pages . . . . . . .1.40

ANALYTICAL GEOMETRY AND CALCULUS.
Sheep, i2mo, 430 pages 1.75

DESCRIPTIVE GEOMETRY.
Cloth, 8vo, 174 pages 2.00

DIFFERENTIAL AND INTEGRAL CALCULUS.
Sheep, i2mo, 226 pages ....... 1.40

LOOMIS'S ANALYTICAL GEOMETRY.
Sheep, i2mo, 261 pages ....... 1.00

DIFFERENTIAL AND INTEGRAL CALCULUS.
Sheep, i2mo, 309 pages ....... 1.00

ANALYTICAL GEOMETRY AND CALCULUS.
Sheep, i2mo, 570 pages . . . . . . .1.75

McMAHON AND SNYDER'S DIFFERENTIAL CALCULUS.
Cloth, i2mo, 336 pages 2.00

MURRAY'S INTEGRAL CALCULUS.
Cloth, i2mo, 302 pages . 2.00

RAY'S ANALYTICAL GEOMETRY (HOWISON).
Sheep, 8vo, 574 pages . o . . . . .1.75

INFINITESIMAL CALCULUS (CLARK).
Sheep, 8v0; 441 pages . . . . . . .1.50

ROBINSON'S CONIC SECTIONS AND ANALYTICAL GEOMETRY.
Sheep, 8vo, 350 pages ....... 1,60

DIFFERENTIAL AND INTEGRAL CALCULUS.
Sheep, 8vo, 472 pages . . . . . . , 1 .80

TANNER AND ALLEN'S ANALYTIC GEOMETRY.
Cloth, i2mo, 400 pages ....... 2.00

Copies of these books will be sent, prepaid^ on receipt of the price.

American Book Company
New York Cincinnati Chicago
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The Cornell Mathematical Series

LUCIEN AUGUSTUS WAIT, General Editor,

Senior Professor of Mathematics in Cornell University.

AN ELEMENTARY COURSE IN ANALYTIC GEOMETRY
By J. H. Tanner, B.S., Assistant Professor of Mathematics,

Cornell University, and Joseph Allen, A.M., Instructor

in Mathematics in The College of the City of New York.

Cloth, i2mo, 400 pages $2 00

ELEMENTS OF THE OIFFERENTIAL CALCULUS
By James McMahon, A.M., Assistant Professor of Mathe-

matics, Cornell University, and Virgil Snyder, Ph.D.,

Instructor in Mathematics, Cornell University.

Cloth, i2mo, 336 pages . 2.00

AN ELEMENTARY COURSE IN THE INTEGRAL CALCULUS
By Daniel Alexander Murray, Ph.D., Instructor in

Mathematics in Cornell University, Author of " Introductory

Course in Differential Equations." Cloth, i2mo, 302 pages 2.00

The Cornell Mathematical Series is designed pri-

marily to meet the needs of students in the various

departments of Mathematics in Cornell University and

other institutions in which the object and extent of

work are similar. Accordingly, many practical problems

in illustration of fundamental principles play an impor-

tant part in each book. While it has been the aim to

present each subject in a simple manner, yet thorough-

ness and rigor of treatment have been regarded as more

important than mere simplicity ; and thus it is hoped

that the series will be acceptable to general students,

and at the same time useful as an introduction to a mcTre

advanced course for those who may wish to specialize

later in Mathematics.

Copies of these books will be sent, prepaid, on receipt of the price,

American Book Company
New York • Cincinnati Chicago
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Text-Books on Surveying

RAYMOND'S PLANE SURVEYING

By William G. Raymond, C.E., Member American Society

of Civil Engineers ; Professor of Geodesy, Road Engineer-

ing, and Topograf)hical Drawing in Rensselaer Polytechnic

Institute $3.00

This work has been prepared as^a manual for the

study and practice of surveying. The long experience of

the author as a teacher in a leading technical school and

as a practicing engineer has enabled him to make the

subject clear and comprehensible for the student and

young practitioner. It is in every respect a book of

modern methods, logical in its arrangement, concise in its

statements, and definite in its directions. In addition to

the matter usual to a full treatment of Land, Topograph-

ical, Hydrographical, and Mine Surveying, particular

attention is given to system in office work, to labor-saving

devices, the planimeter, slide rule, diagrams, etc., to co-

ordinate methods, and to clearing up the practical diffi-

culties encountered by the young surveyor. An appendix

gives a large number of original problems and illustrative

examples.

Other Text-Books on Surveying

DAVIES'S ELEMENTS OF SURVEYING (Van Amringe) . . $1.75

ROBINSON'S SURVEYING AND NAVIGATION (Root) . . 1.60

SCHUYLER'S SURVEYING AND NAVIGATION . . . . 1.20

Copies will be sent, prepaid^ to any address on receipt of the price.

American Book Company

New York Cincinnati Chicago

(76)



Scientific Memoir Series

Edited by JOSEPH S. AMES, Ph.D.

Johns Hopkins University

The Free Expansion of Gases. Memoirs by Gay-Lussac, Joule,

and Joule and Thomson. Edited by Dr. J. S. Ames . . $0.75

Prismatic and Diffraction Spectra. Memoirs by Joseph von
Fraunhofer. Edited by Dr. J. S. Ames 60

Rbntgen Rays. Memoirs by Rontgen, Stokes, and J. J. Thomson.
Edited by Dr. George F. Barker 60

The Modern Theory of Solution. Memoirs by Pfeffer,Van't Hoff,

Arrhenius, and Raoult. Edited by Dr. H. C. Jones . .1.00

The Laws of Gases. Memoirs by Boyle and Amagat. Edited by
Dr. Carl Barus 75

The Second Law of Thermodynamics. Memoirs by Carnot,
Clausius, and Thomson. Edited by Dr. W. F. Magie . .90

The Fundamental Laws of Electrolytic Conduction. Memoirs by
Faraday, Hittorf, and Kohlrausch. Edited by Dr. H. M.
Goodwin 75

The Effects of a Magnetic Field on Radiation. Memoirs by
Faraday, Kerr, and Zeeman. Edited by Dr. E. P. Lewis . .75

The Laws of Gravitation. Memoirs by Newton, Bouguer, and
Cavendish. Edited by Dr. A. S. Mackenzie . . . 1 00

The Wave Theory of Light. Memoirs by Hu3'gens, Young, and
Fresnel. Edited by Dr. Henry Crew . . . .1.00

The Discovery of Induced Electric Currents. Vol. I. Memoirs
by Joseph Henry. Edited by Dr. J. S. Ames ... .75

The Discovery of Induced Electric Currents. Vol. H. Memoirs
by Michael Faraday. Edited by Dr. J. S. Ames... .75

Stereochemistry. Memoirs by Pasteur, Le Bel, and Van't Hoff,
together with selections from later memoirs by \Vislicenus

and others. Edited by Dr. G. M. Richardson , . .1.00

The Expansion of Gases. Memoirs by Gay-Lussac and Regnault,
Edited by Prof. W. W. Randall 1 .00

Radiation and Absorption. Memoirs by Prevost, Balfour Stewart,

KirchhofT, and Kirchhoff and Bunsen. Edited by Dr.
DeWitt B. Brace 1.00

Copies sent, prepaid^ to any address on receipt of the price,

American Book Company

New York Cincinnati Chicago



Biology and Zoology

DODGE'S INTRODUCTION TO ELEMENTARY PRACTICAL
BIOLOGY
A Laboratory Guide for High School and College Students.

By Charles Wright Dodge, M.S., Professor of Biology

in the University of Rochester $1 .80

This is a manual for laboratory work rather than a
text-book of instruction. It is intended to develop in the
student the power of independent investigation and to

teach him to observe correctly, to draw proper conclusions
from the facts observed, to express in writing or by means
of drawings the results obtained. The work consists

essentially of a series of questions and experiments on
the structure and physiology of common animals and
plants typical of their kind—questions which can be
answered only by actual investigation or by experiment.
Directions are given for the collection of specimens, for

their preservation, and for preparing them for examination;
also for performing simple physiological experiments.

ORTON'S COMPARATIVE ZOOLOGY, STRUCTURAL AND
SYSTEMATIC

By James Orton, A.M., Ph.D., late Professor of Natural

History " in Vassar College. New Edition revised by

Charles Wright Dodge, M.S., Professor of Biology in

the University of Rochester $1.80

This work is designed primarily as a manual of

instruction for use in higher schools and colleges. It

aims to present clearly the latest established facts and
principles of the science. Its distinctive character con-
sists in the treatment of the whole animal kingdom as a
unit and in the comparative study of the development and
variations of the different species, their organs, functions,

etc. The book has been thoroughly revised in the light

of the most recent phases of the science, and adapted to

the laboratory as well as to the literary method of teaching.

Copies of either of the above books will be sent, prepaid, to any address
on receipt of the price.

American Book Company

New York Cincinnati Chicago
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Civics and Economics

ANDREWS'S NEW MANUAL OF THE CONSTITUTION

COCKER'S GOVERNMENT OF THE UNITED STATES

FORMAN'S FIRST LESSONS IN CIVICS

GREGORY'S NEW POLITICAL ECONOMY .

LAUGHLIN'S STUDY OF POLITICAL ECONOMY.

LAUGHLIN'S ELEMENTS OF POLITICAL ECONOMY

McCLEARY'S STUDIES IN CIVICS

NORDHOFF'S POLITICS FOR YOUNG AMERICANS
Revised Edition ......

PETERMAN'S CIVIL GOVERNMENT

$1.00

.72

.60

1.20

.80

1.20

1.00

,75

.60

Special editions of the same for New York, New Jersey, Penn-

sylvania, Ohio, Michigan, Iowa, North Carolina, Kentucky,

Tennessee, West Virginia, Colorado, and Oregon.

SMALL AND VINCENT'S INTRODUCTION TO THE STUDY OF

SOCIETY 1,80

STORY'S EXPOSITION OF THE CONSTITUTION OF THE
UNITED STATES 90

TOWNSEND'S SHORTER COURSE IN CIVIL GOVERNMENT .72

TOWNSEND'S ANALYSIS OF CIVIL GOVERNMENT 1.08

WILLOUGHBY'S RIGHTS AND DUTIES OF AMERICAN CITIZEN-

SHIP 1.00

Copies sent, prepaid, to any address on receipt of the price

New York

(187)

American Book Company
Cincinnati Chicago



Text-Books in Geology

By JAMES D. DANA, LL.D.

Late Professor of Geology and Mineralogy in Yale University,

DANA'S GEOLOGICAL STORY BRIEFLY TOLD . . . $1.15

A new and revised edition of this popular text-book for beginners in

the study, and for the general reader. The book has been entirely

rewritten, and improved by the addition of many new illustrations and

interesting descriptions of the latest phases and discoveries of the science.

In contents and dress it is an attractive volume, well suited for its use.

DANA'S REVISED TEXT-BOOK OF GEOLOGY . . . $1.40

Fifth Edition, Revised and Enlarged. Edited by William North
Rice, Ph.D., LL.D., Professor of Geology in Wesleyan University.

This is the standard text-book in geology for high school and elementary

college work. While the general and distinctive features of the former

work have been preserved, the book has been thoroughly revised, enlarged,

and improved. As now published, it combines the results of the life

experience and observation of its distinguished author with the latest

discoveries and researches in the science.

DANA'S MANUAL OF GEOLOGY $5.00

Fourth Revised Edition. This great work is a complete thesaurus of

the principles, methods, and details of the science of geology in its

varied branches, including the formation and metamorphism of rocks,

physiography, orogeny, and epeirogeny, biologic evolution, and paleon-

tology. It is not only a text-book for the college student but a hand-

book for the professional geologist. The book was first issued in 1862,

a second edition was published in 1874, ^^^ ^ third in 1880. Later

investigations and developments in the science, especially in the geology

of North America, led to the last revision of the work, which was most

thorough and complete. This last revision, making the work substantially

a new book, was performed almost exclusively by Dr. Dana himself, and

may justly be regarded as the crowning work of his life.

Copies of any of Dana*s Geologies will be sent, prepaid, to any address on

receipt of the price.

American Book Company

New York Cincinnati Chicago

(177)
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