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PREFACE.

The materials for the following work, like those

of the author's treatise on Algebra, have been drawn

from the latest and best foreign sources, and from the

results of a varied experience of near twenty years

as an instructor, commencing at the United States

Military Academy.

The definitions of angles and parallel lines, upon

which so much depends, will be found quite different

from those in ordinary use
; yet it is believed that no

others hitherto suggested are so direct and distinct,

so free from metaphysical objections, or so easily ap-

prehended by the learner ; and none, certainly, are

productive of so much simplicity, generality, and

brevity in the depending demonstrations.

The treatment of proportions as equalities of ra-

tios, it is thought, will give greater clearness to the

proof of those propositions in which they are used.

Great care has been taken to remedy all the little

imperfections of demonstration in older treatises, and

to supply some propositions which have been here-

tofore unaccountably omitted.

The infinitesimal system has been adopted without

91882/'



IV PREFACE.

hesitation, and to an extent somewhat unprecedented.

The usual expedients for avoiding this, result in te-

dious methods, involving the same principle, only un-

der a more covert form. The idea of the infinite is

certainly a simple idea, as natural to the mind as any

other, and even an antecedent condition of the idea

of the finite.

A peculiar feature of the work will be observed in

the " Exercises," which occur at intervals, commenc-

ing immediately after the Axioms. These are intend-

ed to develop the original powers of the learner, and

to bring into play his inventive faculties, the ordinary

text tasking the powers of perception alone. The

Exercises are so arranged as to make the progress

from the easy to the more difficult so gradual that

they will be found to excite a lively interest even in

students of moderate capacity.

They will be especially convenient in the instruc-

tion of large classes, the members of which may all

pursue the text, while the exercises upon it will afford

scope for the students of greatest ability.

The appendices will be found to contain some re-

cent and elegant improvements. They leave much

to be done by the learner, it being supposed that none

will be likely to attempt them except such as have

some taste and talent for geometry. The previous

exercises will have furnished the skill requisite to

master this part of the work with facility.

The work might have been arranged in more ele-
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gant form by a rigid classification of subjects, all the

theorems relating to a particular class of magnitudes

being given together, after the manner of some of the

latest and best French and German treatises. This

arrangement, though in the main preserved, has been

occasionally departed from, for the sake of rendering

a knowledge of the whole subject most easy of ac-

quisition by the student.

By omitting the fine print in the volume, the stu-

dent will obtain a very short course of geometry,

but one fully adequate as a preparation for the study

of all the higher branches of mathematics, while the

whole work contains, probably, the most complete

system of purely elementary geometry to be found rn

any single treatise in any language.
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GEOMETRY.

DEFINITIONS.

Geometry is the science of position and extension.

1. A Point is position without magnitude or di-

mensions. It has neither length, breadth, nor thick-

ness.

2. A Line has one dimension only, length.

3. A Surface or Superficies has extension in two
dimensions, length and breadth ; but is without thick-

ness.*

4. A Body or Solid has three dimensions, length,

breadth, and depth or thickness.

5. A Right Line, or Straight Line, is A B
one which has every where the same

"

direction.

When the term Line is used in this work without
an adjective, a Right Line is understood.

A line is designated by two letters placed upon it.

Thus we say the line AB.
6. A Broken Line is one which

changes its direction at intervals.

7. A Curve, or Curve Line, is one
which is continually changing its di-

rection.

8. Parallel Lines are those which
have the same direction.

f

* A surface may be boundless, and a line interminable.

1 Parallel lines are sometimes said to meet at an infinite distanre;
in other words, they never meet. This follows evidently from the
definition.

The case where one line is the prolongation of another, or others,

which seeim t-> he euthneed in this definition, is to he excluded;
for those lines, in lie- u:uv-t neted WUe of* tin- torn, form one ami
the lame Straight line. Or, when two parallel lines coincide, they
become one and the sam • straight line.

A



2 GEOMETRY.

9. Olio line is Perpendicular to an-

other when the first inclines not more
toward the second on the one side than

on the other. _
10. An Angle is the difference of direc-

tion of two lines.*

The point where the two lines meet is

called the vertex of the angle.

11. Angles are Right or Oblique.

12. A Right Angle is that which is made by l

one line perpendicular to another.

Or, when the angles on either side of one
line meeting another are equal, they are
right angles.

13. Oblique Angles are either Acute or Obtuse.

14. An Acute Angle is less than a right

angle.

15. An Obtuse Angle is greater
than a right angle.

* When one line, having coincided with another, begins to move
round the point at one extremity, it begins to have a different direc-

tion, and the amount of this difference depends upon the amount of

the movement, which is evidently measured by the portion of the

circumference described by the other extremity. The length of this

portion is usually expressed in degrees, each degree being the 3^th

part of the whole circumference.

It is immaterial whether the revolving line be longer or shorter,

when it has attained the same position with respect to the stationary

line, or the same difference of direction from it, the portion of cir-

cumference described will contain the same number of degrees in

both circumferences ; each degree in the smaller circumference being
smaller, since it is the 360th part of its own circumference.

Parallel lines having no difference of direction, the angle which
they make with each other is zero or 0°.

Fractions of a degree are expressed usually in minutes and seconds,

a minute being the 60th part of a degree, and a second the 60th part

of a minute. This is called the sexagesimal measurement of angles, or

division of the circumference. Another mode of division sometimes
used, is of the whole circumference into four parts called quadrants,

the quadrant into 100 parts called grades, or centesimal degrees,

each grade into 100 centesimal minutes, and each minute into 100

centesimal seconds. This is called the centesimal division of the cir-

cumference. To convert one kind of degree into the other, it is only

necessary to observe that a grade is
-9 of a degree.



DEFINITIONS.

All angle is named from the letter at its vertex.

Thus we say the angle A. When, however,

there are two angles whose vertices are at the

same point, this method would be ambiguous.

It is necessary, then, to designate the angle to be -A

pointed out by three letters, naming the one at

the vertex always in the middle. Thus, the

angle formed by the two lines CB and CE is

called the angle BCE, or ECB ; and the angle

formed by the two lines CE %nd CD is called

the angle ECD, or DCE.
Angles are susceptible of addition, subtraction, and multiplication.

Thus the angle BCD = BCE+ ECD.

16. Superficies are either Plane or Curved.
17. A Plane Superficies, or a Plane, is that which is

straight in every direction, or with which a right line,

joining any two points of it, will coincide throughout

the length of the line. But if not, it is curved.

18. More accurately, a Curve Surface is one of

which the section made by some plane cutting it is

a curve.*

19. A Plane Figure is a portion of a plane, bound-
ed either by -right lines or curves.

20. Plane figures that are bounded by right lines

are called Polygons, and have names according to

the number of their sides, or of their angles ; the

number of sides and angles being the same. The
least number of sides requisite to form a polygon is

three.

21. A Polygon of three sides and three angles is

called a Triangle. And it receives particular de-

nominations from the relations of its sides and an-

gles.

22. An Equilateral Triangle is one the

three sides of which are all equal.

* A curve surface may or may not be straight in certain directions.

See the cone and cylinder, toward the end of the volume.
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23. An Isosceles Triangle is one which has

two sides equal.

24. A Scalene Triangle is one whose three sides are
all unequal.

25. A Right-angled Triangle is a tri-

angle having one right angler

It will be shown hereafter that no triangle can have more than ono
right angle, or more than one obtuse angle.

26. Other triangles are Oblique-angled, and are

either obtuse or acute.

27. An Obtuse-angled Triangle has one obtuse angle.

28. An Acute-angled Triangle has its three angles
acute.

29. A figure of Four sides and angles is called a
Quadrangle, or a Quadrilateral.

30. A Parallelogram is a quadrilateral which has
both its pairs of opposite sides parallel. And it

takes the following particular names, viz., Rectangle,
Square, Rhombus, Rhomboid.

31. A Rectangle is a right-angled par
allelogram.

32. A Square is an equilateral rectangle.

33. A Rhomboid is an oblique-an-

gled parallelogram.

34. A Rhombus is an equilateral

rhomboid.

35. A Trapezium is a quadrilateral which has not

its opposite sides parallel.

36. A Trapezoid is a quadrilateral

which has only one pair of opposite

sides parallel.
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37. A Pentagon is a polygon of five sides ; a Hex-
agon is one of six sides ; a Heptagon, one of seven

;

an Octagon, one of eight ; a Nonagon, one of nine
;

a Decagon, one of ten ; an Undeeagon, one of eleven ;

and a Dodecagon, one of twelve sides.

The Perimeter of a polygon is the sum of its bound-
ing lines.

A Convex Polygon is one the perimeter of which
can be intersected by a straight line in but two
points.

38. A Polygon is Equilateral when all its sides are

equal ; and it is Equiangular when all its angles are

equal. A Regular Polygon is one which is both equi-

angular and equilateral.

39. An Equilateral Triangle is a regular polygon
of three sides, and the square is one of four; the for-

mer being also called a trigon, and the latter a tetra-

gon.

40. A Diagonal is a line joining any
two angles of a polygon not adjacent.

41. A Circle is a plane figure bounded by
a curve line, called the Circumference, every
point of which is equidistant from a certain

point within, called the Center.

42. The Radius of a circle is a line drawn
from the center to the circumference.

43. The Diameter of a circle is a line

drawn through the center, and terminating

both ways at the circumference.

44. An Arc of a circle is any part of the

circumference.* •

* It will be shown hereafter that the circumference of a circle may
be obtained by multiplying the radius by 6:28:3:2: hi order to obtain
the absolute length of any arc given in degrees and parts of a degree,
or grades and parts, it is necessary to ascertain what fraction of a
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45. A Chord is a right line joining the ex-

tremities of an arc.

46. A Segment is any part of a circle

bounded by an arc and its chord.

47. A Semicircle is half the circle, or a
segment cut off by a diameter. A Semicir-

cumference is half the circumference.

48. A Sector is a part of a circle which is

bounded by an arc, and two radii.

Note.—A sector is a surface, as is also a
segment.

49. A Quadrant, or Quarter of a circle, is

a sector having a quarter of the circumfe-

rence for its arc, its two radii being perpen-

dicular to each other. A quarter of the cir-

cumference is also called a Quadrant.
Note.—A semicircle contains 180 degrees, and a

quadrant 90 degrees.

50. Concentric Circles are those which have the

same center.

51. Circles are said to be Eccentric with respect

to one another when they have not the same center.

In this case, the one circumference may be, with re-

spect to the other, Exterior, Interior, Tangent Exter-
nally, Tangent Internally, or, finally, the two circum-
ferences may intersect.

52. An Angle in a Segment is

that which is contained by two
lines, drawn from any point in the

arc of the segment, to the two
extremities of that arc. Thus A
and D are both angles in the seg-

ment BADC. They are also call-

ed inscribed angles, and are said

to be inscribed in the segment.

circumference the arc is, by reducing 360° to the lowest denomina-
tion in the given arc for a denominator, and the degrees, &c, of the
arc to the same denomination, for a numerator, then to multiply this

fraction by the product of the radius and the number 6-283:2.
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are those

53. An Angle on a Segment, or an Arc, is that which
is contained by two lines, drawn from any point in

the opposite part of the circumference to the extrem-
ities of the arc, and containing the arc between them.
Thus A and D (in the last figure) are both angles upon
the arc BEC.

54. An Angle at the Center is one whose
vertex is at the center of the circle. An
Eccentric Angle is one whose vertex is not at

the center. An Angle at the Circumference
is one whose vertex is in the circumfe-

rence. This last is also called an Inscribed

angle.

55. Similar arcs, in different circles,

which subtend equal angles at the center.

50. A right line is a Tangent to a circle,

or touches it, when it has but one point in

common with the circle.

57. Two circles Touch each other when
they have but one point common, or when
they have a common tangent.

58. A right-lined figure is Inscribed in a

circle, or the circle Circumscribes the fig-

ure, when all the angular points of the fig-

ure are in the circumference of the circle.

59. A right-lined figure Circumscribes a
circle, or the circle is Inscribed in the figure,

when all the sides of the figure touch the

circumference of the circle.

60. One right-lined figure is inscribed in

another, or the latter circumscribes the

former, when all the angular points of the
former are placed in the sides of the lat-

ter.

61. A Secant is a line that cuts a cir- f
cle, lying partly within and partly with- !

out it.
V

-
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62. The Altitude of a triangle is a

perpendicular let fall from the ver-

tex of either angle upon the opposite

side, called the base.

(J.'*. In a right-angled triangle, the side opposite

the right angle is called the Hypothenuse ; and the

other two sides are called the Legs, and sometimes
the Base and Perpendicular.

04. The altitude of a parallelogram

or trapezoid is the perpendicular dis-

tance between the parallel sides.

The bases of a trapezoid are the par
allel sides.

65. Two triangles, or other right-lined figures, are

said to be mutually equilateral when all the sides of
the one are equal to the corresponding sides of the

other, each to each ; and they are said to be mutu-
ally equiangular when the angles of the one are re-

spectively equal to those of the other.

66. Identical polygons are such as are both mutu-
ally equilateral and equiangular, or that have all the

sides and all the angles of the one respectively equal

to all the sides and all the angles of the other, each to

each ; so that if the one figure were applied to, or laid

upon the other, all the sides of the one would exactly

fall upon and cover all the sides of the other ; the two
becoming, as it were, but one and the same figure.

67. Similar polygons are of the same shape, but not

the same size ; they have all the angles of the one
equal to all the angles of the other, each to each, and
the corresponding or homologous sides, as they are

called, proportional.* The homologous sides are those

* Perhaps it will be a little plainer to sav that the homologous sides

in the two figures have the same ratio. Thus, if the first side in the

one figure (beginning in both at the sides adjacent equal ansles) be
three times a9 great as the first side in the other, the second side in

the first figure will be three times as great as the second side in the

other figure, and so on.

The ratio of the corresponding sides of the polygon is called the

ratio of similitude.
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similarly situated, or those adjacent equal angles, or,

in triangles, those opposite equal angles.

68. A Proposition is something which is either

proposed to be done, or to be demonstrated, and is

either a problem or a theorem.

89. A Problem is something proposed to be done.

70. A Theorem is a truth proposed to be demon-
strated.

71. A Hypothesis is a supposition made in theenun-

ciation of a. proposition, or in the course of a demon-
stration.

72. A Lemma is something which is premised, or

demonstrated, in order to render what follows more
easy.

73. A Corollary is a consequent truth, gained im-

mediately from some preceding truth or demonstra-
tion.

74. A Scholium is a remark or observation made
upon something going before it, and may require a

demonstration or may not.

Axioms.

1. Things which are equal to the same thing are

equal to one another.

2. When equals are added to equals, the wholes
are equal.

3. When equals are taken from equals, the remain-
ders are equal.

4. When equals are added to unequals, the wholes
are unequal.
' 5. When equals are taken from unequals, the re-

mainders are unequal.

6. Things which are double the same thing, or
equal things, are equal to each other.

7. Things which are halves of the same thing are

equal.
"8. The whole is greater than its part.

9. Every whole is equal to all its parts taken to-

gether.

A2



10 GEOMETRY.

10. Things which coincide, or fijl the same space,

are identical, or mutually equal in all their parts.

11. All right angles are equal.

12. Angles that have equal measures, or arcs, are

equal.

13. A straight line is the shortest distance between
two points. Corollary.—One side of a triangle is less

than the sum of the other two.

14. But one straight line can be drawn between
two points.*

EXERCISE WITH RULE AND DIVIDERS UPON THE- RIGHT LINE AND
ANGLE.

1. Make a line equal to the sum of two given lines. Of four.

2. Make a line equal to the difference of two given lines.

3. Make a line equal to five times one given line and six times

another.

4. Find how many times one given line is contained in another.

5. Find a common measure of two given lines.t

6. Make a straight line equal in length to a broken line.

7. Make a straight line equal in length approximately to a curve.\

8. With several given points as centers, to describe circles with

given lines as radii.

9. To find a point which shall be at given distances from two

given points.

10. Draw the radius of a circle as a chord of the same.

11. Make an angle double a given angle. Triple.

12. Measure the number of degrees in a given angle by means of a

brass or paper circle or semicircle, divided into degrees, called a pro-

tractor.

13. Make an angle equal to the sum of several given angles.

14. Draw a line through a given point parallel to a given line.

15. Draw through given points several parallels to a given line.

* A straight line joining two points is the direction of the one from
the other. Two points are said to determine a line. Two points of
a line being given, the line is given ; for it is the line joining them.

t This is done in a manner analogous to the corresponding opera-
tion in Arithmetic and Algebra, by applying the smaller line to the
larger as many times as it will go ; and the remainder to the smaller
given line, and so on.

\ This may be done by taking such small portions of the curve as

ire nearly straight.
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1G. Draw through a given point, without a given line, a line form-

ing with it a given angle.

17. To makfl ;ai angle with two given lines for sides.

18. In how many points may 20 lines cut each other, no two of

which are parallel?

19. Iu how many when twelve of them are parallel ?

'20. In how many when 4 are parallel in one direction, 5 in an-

other, and 6 in another ?

21. In how many points will 36 lines intersect, 24 of which pass

through the same point ?

THEOREM I.

If two triangles have two sides and the included

angle in the one equal to two sides and the included

angle in the other, the triangles will be identical, or

equal in all respects.

In the two triangles ABC, DEF, if the side

AB be equal to the side j±
DE, the side AC equal

to the side DF, and the

angle A equal to the an-

gle D, then will the two
triangles be identical, or

equal in all respects.

For, conceive the triangle ABC to be applied to, or

placed on,* the triangle DEF, in such a manner that

the point A may coincide with the point D, and the

side AB with the side DE, which is equal to it.

Then, since the angle A is equal to the angle D
(by hyp.),f the side AC must differ in direction from
the side AB by the same amount that the side DF
does from DE ; hence AC must take the same direc-

* The student will do well, at first, to cut two triangles out of paste-

board Of paper, and pUbe one upon the other; or imagine the first

of (he above triangles to be cut out of the page and placed upon the

Other; or conceive the sides to be fine wires, so that the triangle can
be t.iken oft' the page.

t 1
1
yp. stands for hypothesis. This term is much used, and signifies

generally that what is stated is given or supposed true at the outset.
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tioii as DP, and, since AC is (by hyp.) equal to J)F,

the point C must fall on the point. F, and, by Ax. 14,

the line BC must fall on EF; thus the two triangles

coincide throughout, and (Ax. 10) are identical.

Q. E. D.*

THEOREM II.

When two triangles have two angles and the in-

cluded side in the one equal to two angles and thr.

included side in the other, the triangles are identical,

or have their other sides and angles equal.

Let the two triangles

ABC, DEF have the an-

gle A equal to the angle D,

the angle B equal to the

angle E, and the side AB
equal to the side DE ; then

these two triangles will be

identical.

For, conceive the triangle ABC to be placed on

the triangle DEF in such manner that the side AB
may fall exactly on the equal side DE. Then, since

the angle A is equal to the angle D (by hyp.), the

side AC must fall on the side DF ; and, in like man-
ner, because the angle B is equal to the angle E, the

side BC must fall on the side EF, and the two sides

AC and BC coinciding respectively with the two
DE and EF, they must meet in the same point, that

is, the point C must fall on the point F. Thus the

three sides of the triangle ABC will be exactly placed

on the three sides of the triangle DEF ; consequently,

the two triangles are identical (ax. 10), and the other

two sides AC, BC will be equal to the two DF, EF,
and the remaining angle C equal to the remaining

angle F. Q. E. D.

* These letters are the initials of the words "quod erat demon-

strandum," signifying "which was to be demonstrated."
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THEOREM HI.

In an isosceles triangle, the angles at the base* are

equal. Or, if a triangle have, two sides equal, their

opposite angles will also be equal.

If the triangle ABC have the side AB aa

equal to the side AC, then will the an-

gle B be equal to the angle C.

For, conceive the angle A to be bi- I

sected, or divided into two equal parts /

by the line AD, making the angle BAD /
equal to the angle CAD. B D C

Then the two triangles BAD, CAD have two
sides and the contained angle of the one equal to

two tides and the contained angle of the other, viz.,

the side AB equal to AC, the angle BAD equal to

CAD, and the side AD common; therefore these two
triangles are identical, or equal in all respects (th. 1) ;

and, consequently, the angle C equal to the angle B.

a k.d.
CoroL 1. Hence the line which bisects the vertical

angle of an isosceles triangle bisects the base, and is

also perpendicular to it. (See def. 12.)

f

Carol. 2. Hence, too, it appears that every equi-

lateral triangle is also equiangular, or has all its

angles equal ; for an equilateral triangle is isosceles,

whichever side may be taken for the base.

* Th'* base of an isosceles triangle is the side unequal to either of

ih" other two.

t The line AD passes through the vertex, bisects the vertical angle,
- the base, and is perpendicular to tin- base. Anv two of these

tour conditions determine the position of the line, and the other two
conditions follow. Whence the following theorems in addition to

cor. 1.

1. The line ioinxng the vertex of an isosceles triangle with the

middle of the base bisects the vertical angle, anil is perpendicular
base.

be perpendicular at the middle of the base passes through the

. and bisects tin- vertical angle.

:?. The perpendicular from the vertex to the base bisects tin- base
and the vertical angle.

To prove each of these independently will be an exercise.
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THEOREM IV.

When a triangle has two of its angles equal, the sides

opposite to them are also equal.

If the triangle ABC have the angle

C equal to the angle B, it will also

have the side AB equal to the side AC.
For if not, let BA be greater than

AC, and take BD equal to AC, and join

the points C and D by the line CD

;

then the two triangles ABC and CBD
having the side BC common, the side B c

BD of the one equal (by construction) to the side AC
of the other, and the contained angle BCA of the for-

mer equal to the contained angle B of the latter, are
equal (by th. 1) ; but the triangle CBD is evidently
only a part of the triangle ABC, and a part can not
be equal to the whole (ax. 8). The hypothesis must,

therefore, be wrong, and AB can not be greater than
AC. In a similar manner it might be proved that

AC can not be greater than AB ; hence AB = AC.
Q. E. D.*

Corol Hence every equiangular triangle is also

equilateral.

THEOREM V.

When two triangles have all the tnree sides in the

one equal to all the three sides in the other, the trian-

gles are identical, or have also their three angles equal,

each to each.

Let the two triangles ABC, ABD
have their three sides respectively ^^^T\
equal, viz., the side AB equal to AB, A<^- *

—-^B
AC to AD, and BC to BD ; then ^"^\j/
shall the two triangles be identical, rj

* The kind of demonstration employed here is called negative rea
soning, because, by proving that the negative can not be true, it proves
the affirmative. It is also called the reductio ad absnrdum, because
it proves that the denial of the proposition leads to an absurdity.
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or have their angles equal, viz., those angles that are
opposite to the equal sides ; that is to say, the angle
BAC to the angle BAD, the angle ABC to the angle
ABD, and the angle C to the angle D.

For, conceive the two triangles to be joined togeth-

er by their longest equal sides, and draw the line CD.
Then, in the triangle ACD, because the side AC is

(by hyp.) equal to AD, the angle ACD is equal to the

angle ADC (th. 3). In like manner, in the triangle

BCD, the angle BCD is equal to the angle BDC, be-

cause the side BC is equal to BD. Hence, then, the

angle ACD being equal to the angle ADC, and the

angle BCD to the angle BDC, by equal additions the

sum of the two angles ACD, BCD, is equal to the

sum of the two ADC, BDC (ax. 2), that is, the whole
angle ACB equal to the whole angle ADB.

Since, then, the two sides AC, CB are equal to

the two sides AD, DB, each to each (by hyp.), and
their contained angles ACB, ADB, also equal, the

two triangles ABC, ABD are identical (th. 1), and
have the other angles equal, viz., the angle BAC to

the angle BAD, and the angle ABC to the angle
ABD. Q. E. D.

General Scholium. From the foregoing propositions

it appears that triangles will be identical when they
have two sides and the included angle, two angles

and the included side, or three sides of the one equal
to the same in the other.*

EXERCISES.

1. To make a triangle when two sides and the angle which they

form are given.

* A triangle is composed of six elements, three sides and three

angles. It is only necessary, in general, that three of these, provided
one be a side, in one triangle should be equal to the same in the

other to render the triangles equal. (See cor. 7, th. 15, and see prob.

8 for an exception.)

Three given j>arts are also said to determine a triangle; by which
is to l)i- understood, that with the three given parts only one triangle

can he formed, or that all which may be formed with them will be

identical. This remark, like the above, does not include the case

where three angles are given.
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2. When two angles and the side of the triangle between them are

given.

3. On a given line to construct an equilateral triangle.

4. To construct an isosceles triangle with a given base and given

side.

5. To construct a triangle with three given lines for sides.

N.B. The given sides must be subject to the condition expressed

in the corollary to ax. 13.

THEOREM VI.

When one line meets another, the angles which the

first line makes on the same side of the second are

together equal to two right angles.

Let the line AB meet the line CD
;

then will the two angles ABC, ABD,
taken together, be equal to two right

angles.

For, suppose BE drawn perpen-

dicular to CD. Then the two angles c B
CBA, ABD fill the same angular space with the two
CBE, EBD ; but the latter are right angles, hence
the former are together equal to two right angles.

Corol. 1. Conversely, if the two angles ABC, ABD,
on opposite sides of the line AB, make up together

two right angles, then CB and BD form one contin-

ued right line CD. For no other line from the point

B than BD, the continuation of CB, can form with BA
an angle equal to ABD, which, added to ABC, makes
two right angles, by the above theorem.

Corol. 2. All the angles which can be made at any
point B, by any number of lines, on the same side of

the right line CD, are, when taken all together, equal

to two right angles, since they fill the same angular
space.

Corol. 3. And as all the angles that can be made
on the other side of the line CD are also together

equal to two right angles ; therefore, all the angles

that can be made quite round a point B, by any num-
ber of lines, are together equal to four right angles.

Corol. 4. Hence, also, the whole circumference of
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a circle, being the sum of the measures of all

Che angles that can be made about the center

P, is the measure of lour right angles ; a

semicircle, or 180 degrees, is the measure ol

two right angles; and a quadrant, or 90 degrees, the

measure of one right angle. (See def. 49.)

Two anglei which together amount to a right angle, or 90°, are

called complement* of each other. Thus, 40° is the complement of

.a. I 50° of 40°.

Two angle* which together ecpial two right angles, or 180°, as"

111) ami 7U-\ are called supplements of each other.

THEOREM VII.

}\/ien two lines intersect each other, the opposite

angles are equal.

Let the two lines AB, CD inter-

sect in the point E ; then will the

angle AEC be equal to the angle

BED, and the angle AED be equal A
to the angle CEB.

For EA is exactly the opposite -°

direct ion from EB, and ED exactly the opposite di-

m-lion from EC. Hence their difference of direction

will be the same. Q. E. D. (See def. 10.)

THEOREM VIII.

^Yhen one side of a triangle is produced, the out-

toard angle is greater than either of the two inward
opposite angles.

Let ABC be a triangle, having
the side AB produced to D; then
will the outward angle CBD be
greater than either of the inward
opposite angles A or C.

For, conceive the side BC to be
v<] in the point E, and draw

the l.ne AE, producing it till EF be
equal to AE; and join BF.
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Then, since the two triangles AEC, BEF have the

side AE =s the side EF, and the side CE = the side

BE (by constr.), and the included or opposite angles

at E also equal (th. 7), therefore those two triangles

are equal in all respects (th. 1), and have the angle
C = the corresponding angle EBF. But the angle

CBD is greater than the angle EBF (ax. 8) ; conse-

quently, the said outward angle CBD is also greater

than the angle C.

In like manner, if CB be produced to G, and AB
be bisected, it may be shown that the outward angle

ABG, or its equal (th. 7) CBD, is greater than the

other inward angle A.

THEOREM IX.

The greater side of every triangle is opposite to the

greater angle, and the greater angle opposite to the

greater side.

Let ABC be a triangle, having the

side AB greater than the side BC ; then

will the angle ACB, opposite the greater

side AB, be greater than the angle A,
opposite the less side CB.

For, on the greater side ABD take the

part BD, equal to the less side BC, and c B
join CD. Then, since ACD is a triangle, the out-

ward angle BDC is greater than the inward opposite

angle A (th. 8). But the angle BCD is equal to the

said outward angle BDC, because the triangle BDC
is isosceles, BD being equal to BC (th. 3). Conse-

quently, the angle BCD, also, is greater than the an-

gle A. And, since the angle BCD is only a part of

ACB, much more must the whole angle ACB be

greater than the angle A. Q. E. D.
Again, conversely, in the given triangle ABC, if

the angle C be greater than the angle A, then will

the side AB, opposite the former, be greater than the

side BC, opposite the latter.

For if AB be not greater than BC, it must be
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either equal to it or less than it. But it can not

be equal, for then the angle C would be equal to

the angle A (th. 3), which it is not, by the sup-

position. Neither can it be less, for then the angle

C would be less than the angle A, by the former part

of this theorem, which is also contrary to the sup-

position. The side AB, then, being neither equal

to BC, nor less than it, must necessarily be greater.

Q. E. D.

THEOREM X.

When a line intersects two parallel lines obliquely it

willform with them four acute angles andfour obtuse ;

the four acute will be equal to one another, and the four
obtuse.

This follows from defini-

tions 8 and 10, and th. 7.

Corol. 1. Any one of the

acute and any one of the ob-

tuse will be supplements of

each other. (See th. 6.)

Corol. 2. If one of the an-

gles be right, the whole eight

will be right angles.

Scholium 1. The line cutting the two parallels is

sometimes called the secant line. The two angles

within the parallels, and on different sides of the se-

cant line, are commonly called alternate internal or

interior angles, or simply alternate angles. The two
outside the parallels, and on different sides the secant,

alternate external angles ; and the two on the same,
side of the secant, one within and the other without
the parallels, and not adjacent, are called opposite

internal and external, or outward and inward on the

tame side.

Scholium 2. The distance of two parallel lines is the

length of the line between them, drawn perpendicular
to both, as FH or EG in the next diagram.
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THEOREM XI.

When one straight line meets two others so as to

make equal angles with them, the latter are parallel ; in

other words, if two lines make the same angle with a

third, they will be parallel to each other.

For, having the same difference of direction from
the same line, they must have the same direction

with one another, and are therefore (def. 8) parallel.

Note.—Two lines parallel to a third are parallel to

one another. This follows from def. 8.

THEOREM XII.

Parallel lines are every where equally distant.

To prove this it will only h g-

be necessary to prove any c
two perpendiculars, FH
and EG, drawn at random
between them, equal. Join A F E B
EH. Then the lines FH and EG both being at right

angles to AB, will, by the last theorem, be parallel

;

and the two triangles EFH, EGH will have the side

EH common, and the two angles adjacent this side

in the one equal to the same in the other ; hence (th.

2) these triangles are equal in all respects, and, there-

fore, the side FH of the one equal to the correspond-
ing side EG of the other.

Carol. 1. Parallel lines, being every where at the

same distance, however far produced, can never meet.

This is sometimes expressed by saying that they
meet at an infinite distance.

Corol. 2. If the extremities of twTo equal perpen-
diculars to a given line be joined, a parallel will be

obtained.
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THEOREM Mil.

117/en one side of a triangle is produced, the out-

ward angle is equal to both the inward opposite angles

taken together.'

Let the side BC of the

triangle ABC be produced
t<> I) ; then will the out-

ward angle ACD be equal

to the sum of the two in-

ward opposite angles A
and B.

For, conceive CE to be drawn parallel to the side

IlB of the triangle. Then AC, meeting the two par-

allels BA, CE, makes the alternate angles A and ACE
qua! (th. 10). And BD, cutting the same two par-

allels BA, CE, makes the inward and outward angles

on the same side, B and ECD, equal to each other

(th. 10). Therefore, by equal additions, the sum of
tin.' two angles A and B is equal to the sum of the

two ACE and ECD, that is, to the whole angle ACD
(by ax. 2). Q.E.D.

THEOREM XIV.

If two angles stand upon the same base, the vertex

of one being within that of the other, the latter will be

the less angle.

In the diagram .the angle ABC is

less than the angle ADC ; for (th. 8)

ADE > ABD, and EDC > EBC .-.

by equal addition ADE + EDC >
ADD + EBC, or ADC > ABC.
Q. E. D. a-

* The two opposite angles are the two neither of which is adjacent
the outward angle.

d to 1>»' adjacent to another when the two have a

coiinii'iii vertex and a common side. An angle is said to be adjacent
to a line when that line is one of its sides.

N.B.— It will be found convenient, when angles have been proved
equal, to mark them with the same number of dots as in the figure.
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THEOREM XV.

In any triangle the sum of all the three an±

equal to two right angles.

Let ABC be any plane triangle ;

then the sum of the three angles A -f-

B + C is equal to two right angles.

For, let the side AB be produced
to D. Then the outward angle CBD A

is equal to the sum of the two inward opposite angles

A + C (th. 13). To each of these equals add the in-

ward angle B; then will the sum of the three inward
angles A + B + C be equal to the sum of the two
adjacent angles ABC -f- CBD (ax. 2). But the sum
of these two last adjacent angles is equal to two right

angles (th. 6). Therefore, also, the sum of the three

angles of the triangle A + B -f C is equal to two
right angles (ax. 1). Q. E. D.

Corol. 1. If two angles in one triangle be equal to

two angles in another triangle, the third angles will

also be equal; for they make up two right angles in

both.

Corol. 2. Two right-angled triangles will be equi-

angular when they have an acute angle in each equal.

Corol. 3. The sum of two angles of any triangle

and the third angle are supplements of each other.

Corol. 4. If one angle in one triangle be equal to

one angle in another, the sums of the remaining an-

gles will also be equal (ax. 3).

Corol. 5. If one angle of a triangle be right, the

sum of the other two will also be equal to a right

angle, and each of them singly will be acute, or less

than a right angle, and wall be the complement of the

other.

Corol. 6. The two least angles of every triangle

are acute, or each less than a right, angle. In other

words, there can be but one right angle, or one obtuse

angle in a triangle.

Corol. 7. Any two angles and a side of one trian-
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gle being equal to the same in another, the triangles

will be equal (th. 2).

Carol. 8. One side and an acute angle of a right-

angled triangle being equal to the same in another,

the triangles are equal.

THEOREM XVL

The sum of all the inward angles of a polygon is

equal to twice as many right angles, vmnting four, as
the figure has sides.

Let ABCDE be any figure ; D
then the sum of all its inward an- /T\
gles, A-J-B + C + D + E, is / N.
equal to twice as many right an- E

^-- jF _.____^c

gles, wanting four, as the figure \ /\ /

has sides. \ / \ /
For, from anv point F, within V Jy

it, draw lines, FA, FB, FC, &c, A B
to all the angles, dividing the polygon into as many
triangles as it has sides. Now the sum of the three

angles of each of these triangles is equal to two right

angles (th. 15) ; therefore, the sum of the angles of
all the triangles is equal to twice as many right

angles as the figure has sides. But the sum of all

the angles about the point F, which are so many of
the angles of the triangles, but no part of the inward
angles of the polygon, is equal to four right angles
(corol. 3, th. 6), and must be deducted out of the for-

mer sum. Hence it follows that the sum of all the

inward angles of the polygon alone, A +B + C + D
+ E, is equal to twice as many right angles as the

figure has sides, wanting the said four right angles.

QE.D.
Corol. 1. In any quadrangle, the sum of all the

four inward angles is equal to four right angles.

Corol. 2. Hence, if three of the angles be right

ones, the fourth will also be a right angle.

Carol. 3. And if the sum of two of the four angles
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be equal to two right angles, the sum of the remain-

ing two will also be equal to two right angles.

Corol. 4. The sum of the angles of a pentagon is

5X2— 4 = 6 right angles. Of a hexagon, 6X2—
4= 8 right angles.* Of a polygon of n sides (n x 2—
4) right angles.

The rule may be thus expressed : to obtain the

sum of the angles of a polygon, double the number
of sides and subtract 4, the right angle being the

unit of measure-!

THEOREM XVII.

A perpendicular is the shortest line that can be

drawn from a given point to an indefinite line. And,

of any other lines drawn from the same point, those

that are equally distant from the perpendicular are

equal, and those nearest the perpendicular are less than

those more remote.

If AB, AC, AD, &c, be lines

drawn from the given point A, to

the indefinite line DE, of which
AB is perpendicular ; then shall

the perpendicular AB be less than C B
AC,AE = AC if BE = BC,and AC<AD if BC<BD.

For, the angle B being a right one, the angle C of

* Each angle of a regular hexagon would be the sixth part of 8

right angles, or £ or
-J

or li right angles, i. e., 120°, 90°

being a right angle, this is i of 360°, or 4 right angles

;

so that if three regular hexagons were placed together

they would fill up the whole angular space about a

point.

This would not be the case with pentagons, for

5X2 4
^ =

|
' = Vs , which, multiplied by 3, gives 3| < 4 right an-

gles, and, multiplied by 4, gives 4| > 4 right angles, so that they would
fit together neither by threes nor fours.

It will be found, on examination, that no other figures except squares

and triangles have this same property with the hexagon. Hence
these three kinds of figures alone are employed for paving blocks.

t The above applies only to convex polygons, that is, those in which
the angles point outward. No convex polygon can have more than

three acute angles.
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the triangle ABC is acute (by cor. 6, th. 15), and

therefore less than the angle B. But the less angle

of a triangle is subtended by the less side (th. 9).

Therefore the side AB is less than the side AC.
Again, in the right-angled triangles ABC, ABE the

two sides AB, BC being respectively equal to the two
AB, BE, the third sides are equal (th. J).

Carol. Every point, as A, of a perpendicular at

the middle of a given line CE is equally distant from
its extremities C and E.

Finally, the angle ACB being acute, or less than a
right angle, as before, the adjacent angle ACD will

be greater than a right angle, or obtuse (by th. 6) ;

consequently, the angle D is acute (corol. 6, th. 15),

and therefore is less than the angle C. And since

the less side is opposite to the less angle, therefore

the side AC is less than the side AD. Q. E. D.
Corol. The least distance of a given point from a

line is the perpendicular. For if it were an oblique

line the perpendicular would be shorter, and thus less

than the least distance, which is impossible.

THEOREM XVIIf.

Every point out of a perpendicular at the middle of
a given line is at unequal distancesfrom the extremities

of the line.

Let DC be a perpendicular at the

middle of AB, and I a point out of the

perpendicular, then shall IB < IA.

For join BD ; then, BI < BD + Dl
;

or since BD = AD (th. 17), BI < AD .

+ DI, or BI < AI. Q. E. D.
Scholium. There can be but one

perpendicular through a given point

to a given line. For there can be
but one line through the same point in the same
direction, or having the same difference of direction

from a given line.

B
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THEOREM XIX.

The opposite sides and angles of a parallelogram

are equal to each other, and the diagonal divides it

into two equal triangles.

Let ABDC be a parallelogram, of ^ B
which the diagonal is BC ; then will r *?y
its opposite sides and angles be equal \ /'' \
to each other, and the diagonal BC XyS \
will divide it into two equal parts, C D
or triangles.

For, since the sides AB and DC are parallel, as

also the sides AC and BD (def. 30), and the line BC
meets them ; therefore the alternate angles are equal

(th. 10), namely, the angle ABC to the angle BCD,
and the angle ACB to the angle CBD. Hence the

two triangles, having two angles in the one equal to

two angles in the other, have also their third angles

equal (cor. 1, th. 15), namely, the angle A equal to

the angle D, which are two of the opposite angles of

the parallelogram.

Also, if to the equal angles ABC, BCD be added
the equal angles CBD, ACB, the wholes will be equal

(ax. 2), namely, the whole angle ABD to the whole
ACD, which are the other two opposite angles of the

parallelogram. Q E. D.
Again, since the two triangles are mutually equi-

angular, and have a side in each equal, viz., the com-
mon side BC ; therefore the two triangles are identi-

cal (th. 2), or equal in all respects, namely, the side

AB equal to the opposite side DC, and x\C equal to

the opposite side BD,* and the whole triangle ABC
equal to the whole triangle BCD. Q. E. D.

Corol. 1. Hence, if one angle of a parallelogram

be a right angle, all the other three will also be right

* The student will observe that in identical triangles the equal

sides are opposite equal angles. Thus, in the diagram, the side BD
opposite the angle C, in the lower triangle, is equal to the side AC,
opposite the equal angle B in the upper.
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angles, and the parallelogram a rectangle. (See
cors. to th. 16.)

Corol. 2. Hence, also, the sum of any two adjacent

angles of a parallelogram is equal to two right angles.

Carol. 3. If two parallelograms have an angle in

each equal, the parallelograms are equiangular.

THEOREM XX.

Every quadrilateral whose opposite sides are equal

is a parallelogram, or has its opposite sides parallel.

Let ABDC be a quadrangle hav- . B
ing the opposite sides equal, namely,
the side AC equal to BD, and AB
equal to CD ; then shall these equal

sides be also parallel, and the figure

a parallelogram.

For, let the diagonal BC be drawn. Then the

triangles ABC, CBD being mutually equilateral (by

hyp.), they are also mutually equiangular (th. 5), or

have their corresponding angles equal ; consequently,

the opposite sides, having the same difference of

direction in opposite ways from the same line BC,
have the same direction one way, and are parallel

(def. 8) ; viz., the side AB parallel to DC, and AC
parallel to BD, and the figure is a parallelogram (def.

30). Q. E. D.

THEOREM XXI.

Those lines which join the corresponding extremities

of two equal and parallel lines are themselves equal

and parallel.

Let AB, DC be two equal and parallel lines ; then
will the lines AC, BD, which join their extremes, be
also equal and parallel. [See the fig. above.]

For, draw the diagonal BC. Then, because AB
and DC are parallel (by hyp.), the angle ABC is

equal to the alternate angle DCB (th. 10). Hence,
then, t ho two triangles having two sides and the con-
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tained angles equal, viz., the side AB equal to the

side DC, and the side BC common, and the contained

angle ABC equal to the contained angle DCB, they

have the remaining sides and angles also respectively

equal (th. 1) ; consequently AC is equal to BD, and

also parallel to it (th. 1 1). Q. E. D.

General Scholium. From the foregoing theorems it

appears that a quadrilateral will be a parallelogram

:

1. When it has its opposite sides parallel ; 2. When it

has its opposite sides equal ; 3. When it has two of its

opposite sides equal and parallel. A quadrilateral is

also a parallelogram : 4. When two sides are parallel

and two opposite angles equal ; 5. When the opposite

angles are equal. The proof of the last two cases is

left as an exercise for the learner.

THEOREM XXII.

Parallelograms, as also triangles,, standing on the

same base, and between the same parallels, are equal to

each other.

Let ABCD, d
ABEF be two
parallelograms,

and ABC, ABF
two triangles,

standing on the

same base AB, and between the same parallels AB,
DE ; then will the parallelogram ABCD be equal to

the parallelogram ABEF, and the triangle ABC equal

to the triangle ABF.
For the two triangles ADF, BCE are equiangular,

having their corresponding sides in the same direc-

tion ; and having the two corresponding sides AD,
BC equal (th. 19), being opposite sides of a parallel-

ogram, these two triangles are identical, or equal in

all respects (th. 2). If each of these equal triangles,

then, be taken from the whole space ABED, there

will remain the parallelogram ABEF in the one case,
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equal to the parallelogram ABCD in the other (by

ax. 3).

Also, the triangles ABC, ABF, on the same base
AB, and between the same parallels, are equal, being
the halves of the said equal parallelograms (th. 11)).*

Q. E. D.
Carol. 1. Parallelograms, or triangles, having .the

same base and altitude are equal. For the altitude

is the same as the perpendicular or distance between
the two parallels, which is every where equal, by the-

orem 12.

Corol. 2. Parallelograms, or triangles, having equal
bases and altitudes are equal. For, if the one figure

be applied with its base on the other, the bases will

coincide, or be the same, because they are equal ; and
so the two figures, having the same base and altitude,

are equal.

THEOREM XXIII.

If a parallelogram and a triangle'stand on the same
base, and between the same parallels, the parallelogram
will be double the triangle, or the triangle half the par-
allelogram.

Let ABCD be a parallelogram, and p_
ABE a triangle, on the same base AB,
and between the same parallels AB, DE ;

then will the parallelogram ABCD be
double the triangle ABE, or the triangle

half the parallelogram.

For, draw the diagonal AC of the par-

allelogram, dividing it into two equal parts (th. 19).

Then, because the triangles ABC, ABE on the same
base, and between the same parallels, are equal (th.

22) ; and because the one triangle ABC is half the

parallelogram ABCD (th. 19), the other equal triangle

* The trianglei being raven, with their vertices C and F taken at

pleasure in the line DE, the lines BE and AD must be drawn parallel

t<> tin- tides At'. BC of the triangles, to complete tin- parallelograms
The above theorem may be proved by th. 1, and alio by th. 5.
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ABE is also equal to half the same parallelogram

ABCD. Q. E. D.
Corol. A triangle is equal to half a parallelogram

of the same base and altitude.

THEOREM XXIV.

The complements of the parallelograms which are

about the diagonal of any parallelogram are equal to

each other.

Let AC be a parallelogram, BD a d G
diagonal, EIF parallel to AB and f5T
DC, and GIH parallel to AD and '

BC, making AI, IC complements to E

the parallelograms EG, HF, which l l-

are about the diagonal DB ; then will

the complement AI be equal to the complement IC.

For, since the diagonal DB bisects the three par-

allelograms AC, EG, HF (th. 19) ; therefore, the

whole triangle DAB being equal to the whole tri-

angle DCB, and the parts DEI, IHB respectively

equal to the parts DGI, IFB, the remaining parts

AI, IC must also be equal (by ax. 3). Q. E. D.

THEOREM XXV.

A trapezoid is equal to half a parallelogram, whose

base is the sum of the two parallel sides, and its alti-

tude the perpendicular distance between them.

Let ABCD be the trapezoid, having its ®_

two sides AB, DC parallel ; and in AB
produced take BE equal to DC, so that

AE may be the sum of the two parallel

sides ;
produce DC also, and let EF, GC, A

BH be all three parallel to AD. Then is AF a par-

allelogram of the same altitude with the trapezoid

ABCD, having its base AE equal to the sum of the

parallel sides of the trapezoid ; and it is to be proved

that the trapezoid ABCD is equal to half the parallel-

ogram AF.
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Now, since triangles, or parallelograms, o/ equal

bases and altitudes, are equal (corol. 2, ih. 22), the

parallelogram DG is equal to the parallelogram HE,
and the triangle CGB equal to the triangle CHB

;

consequently, the line BC bisects or equally divides

the parallelogram AF, and ABCD is the half of it.

Q. E. D.

THEOREM XXVI.

In any right-angled triangle, the square of the hy-

pothenuse is equal to the sum of the squares of the

other two sides. ,

Let ABC be a right-angled

triangle, having the right angle

A ; then will the square of the

hypothenuse BC be equal to the

sum of the squares of the other

two sides AC, AB. Or BC 2 =
AC 2 + AB3

.

For, on BC describe the

square BE, and on AC, AB, the

squares CH, BG ; then draw AL
parallel to BD, and join CF, AD.
Now, because the line AB meets the two AG, AC,

so as to make the sum of the two adjacent angles

equal to two right angles, these two form one straight

line GC (corol. 1, th. 6). And because the angle

FBA is equal to the angle DBC, being each a right

angle, or the angle of a square; to each of these

equals add the common angle ABC, so will the whole
angle or sum FBC be equal to the whole angle or

sum ABD. But the line FB is equal to the line BA,
being sides of the same square ; and the line BD to

the line BC, for the same reason; so that the two
sides FB, BC, and the included angle FBC, are equal

to the two sides AB, BD, and the included angle
ABD, each to each ; therefore the triangle FBC is

equal to the triangle ABD (th. 1).

But the square BG is double the triangle FBC on
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the same base FB, and between the same parallels

FB, GC (th. 23) ; in like manner, the parallelogram

BL is double the triangle ABD, on the same base

BD, and between the same parallels BD, AL. And
since the doubles of equal things are equal (by ax. 0),

therefore the square BG is equal to the parallelo-

gram BL.
In like manner, the other square CH is proved

equal to the other parallelogram EK. Consequently,

the two squares BG and CH together are equal to

the two parallelograms BL and EK together, or to

the whole square BE ; that is, the sum of the two
squares on the two less sides is equal to the square

on the greatest side. Q. E. D.
CoroL 1. Hence the square of either of the two

less sides is equal to the difference of the squares of

the hypothenuse and the other side (ax. 3) ; or equal

to the rectangle contained by the sum and difference

of the said hvpothenuse and other side; for (Alg. 13)

«2-&2 = (a + 6) (a-b).
CoroL 2. Hence, also, if two right-angled triangles

have two sides of the one equal to two corresponding

sides of the other, their third sides will also be equal,

and the triangles identical.

THEOREM XXVII.*

In any triangle, the difference of the squares of the

two sides is equal to the difference of the squares of the

segments of the base, or of the two lines, or distances,

included between the extremes of the base and the per-

pendicular.

Let ABC be any triangle hav- c

ing CD perpendicular to AB

;

then will the difference of the

squares of AC, BC be equal to the

difference of the squares of AD, a B da
BD ; that is, AC 2-BC 2 =ADa-BD2

.

* The two following theorems require the aid of the following al-

gebraic formulas

:

(a-f i) 2 = a 2 + 2ai-f b 2 =a* + b* -f2ab
(,a—by = a2 —2abJr b 2 z=ai -\-b 2 —2ab
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For, since ACD and BCD are right-angled trian-

gles, AC 2=AD 2+CD 2
) , ,

and BC 2 = BD2 + CD2
\
W tn

-
26

) i

.-. By subtraction, AC 2- BC 2 = AD 2— BD\
Corol. The rectangle of the sum and difference of

the two sides of any triangle is equal to the rectangle

of the sum and difference of the distances between
the perpendicular and the two extremes of the base,

or equal to the rectangle of the base and the differ-

ence or sum of the segments, according as the per-

pendicular falls within or without the triangle.

That is, (AC + BC) . (AC - BC) = (AD + BD)

.

(AD-BD).
Or, (AC + BC) . (AC — BC) = AB (AD - BD) in

the 2d fig.

And, (AC + BC) . (AC - BC) = AB . (AD -f- BD)
in the 1st fig.

THEOREM XXVIII.

In any obtuse-angled triangle, the square of the side

subtending the obtuse angle is greater than the sum of
the squares of the other two sides, by twice the rectangle

of one of the sides containing the obtuse angle and the

distance of the perpendicular drawn from the opposite

vertex upon this side,from the obtuse angle.

Let ABC be a triangle, obtuse-angled at B, and
CD perpendicular to AB ; then will the square of

AC be greater than the squares of AB, BC, by twice

the rectangle of AB, BD. That is, AC 2=AB2 + BC 2

+ 2AB. BD. See the 1st fig. above.

For, AD 2 = (AB + BD) 2 = AB2 + BD2 + 2AB .

BD ; adding CD2
to both members of this equality,

AD 2 + CD 2 = AB 2 + BD2 + CD 2 + 2AB . BD (ax.

2.)

But AD2 + CD2 = AC 2

, and BD2 + CD2 = BC 2

(th. 26).

Therefore, by substitution in the last equality but

one, AC 2 - AB 2

-f BC
2 + 2AB . BD. Q. E. D.
B2
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THEOREM XXIX.

In any triangle, the square of the side subtending

an acute angle is less than the squares of the other two

sides, by twice the rectangle of one of the sides contain-

ing the acute angle and the distance of the perpendicu-

lar upon this sidefrom the acute angle.

Let ABC be a triangle, having c c
the angle A acute, and CD per- a a
pendieular to AB ; then will the /l\ / j\
square of BC be less than the sum / \ / \\
of the squares of AB, AC by twice £-—-f-* f—£-\
the rectangle of AB, AD ; that is,

B DA D B

BC 2 - AB 2 + AC 2 - 2 AD . AB.
For BD 2=(AD ~ AB) 2 = AD 2 + AB 2 - 2AD . AB.
And BD2 + DC 2 - AD 2 + DC 2

-f AB2 - 2AD . AB
(ax. 2).

Therefore BC 2 - AC 2 + AB 2 - 2AD . AB (th. 26).

Q. E. D.

THEOREM XXX.

In any triangle the double of the square of a line

drawnfrom the vertex to the middle of the base, together

with double the square of the half base,, is equal to the

sum of the squares of the other two sides.

Let ABC be a triangle, and CD the c
line drawn from the vertex to the middle ,.-A

of the base AB, bisecting it into the two // jV

equal parts AD, DB ; then will the sum / I
\ \

of the squares of AC, CB be equal to / / I \

twice the sum of the squares of CD, AD ;
A DEB

or AC 2

-f CB2 = 2CD 2 + 2AD 2
.

For AC 2 = CD 2 + AD 2 + 2AD . DE (th. 28).

And BC 2= CD 2 + BD 2 - 2AD . DE (th. 29).

Therefore, by addition (ax. 2),

AC 2 + BC 2 = 2CD2 + AD 2 + BD 2

= 2CD 2 + 2AD2 (by hyp.). Q. E. D.
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THEOREM XXXI.

/// any parallelogram the two diagonals bisect each
other, and the sum of their squares is equal to the sum
of the squares of all thefour sides of the parallelogram.

Let ABDC be a parallelogram

whose diagonals intersect each other

in E ; then will AE be equal to ED
and BE to EC, and the sum of the

squares of AD, BC will be equal to u D
the sum of the squares of AB, BD, CD, CA ; that is,

AE = ED, and BE -EC,
and AD 2 + BC = AB2 + BD 2 + CD2 + CAa

,

For, in the triangles AEB, DEC, the two lines AD,
BC meeting the parallels AB, DC, make the angle

BAE equal to the angle CDE, and the angle ABE
equal to the angle DCE, and the side AB is equal to

the side DC (th. 19) ; therefore these two triangles

are identical, and have their corresponding sides

equal (th. 2), viz., AE = DE, and BE = EC.
Again, since AD is bisected in E, the sum of the

squares, CA3 + CD 2 = 2CE a + 2DE a
(th. 30).

In like manner, BAa+ BD 2= 2DE 2

-f 2BE 2
or 2CE 2

.

Therefore, by addition, AB2

-f- BD 2

-f DC 2 + CAa=
4CE 2 + 4DE 2

(ax. 2).

But because the square of a whole line is equal to

4 times the square of half the line ;* that is, BC a=
4BE 2

, and AD'= 4DE a

;

Therefore AB 2

-f BD 2

-f- DC 2

-f CA2 = BC 2

-f AD a

(ax. 1). Q. E. D.
Cor. If AB= AC, or the parallelogram be a rhom-

bus, then the triangles AEB, AEC will be mutually

equilateral, and, consequently (th. 5), the angle BEA
of the one will be equal to the angle AEC of the

other. Hence (def. 12) the diagonals of a rhombus
intersect at right angles.

This may be seen from the accompanying diagram, or,

algebraically, from considering that the square of la is \a*.
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EXERCISES.

1. To construct an isosceles triangle with a given base and given

vertical angle.

2. Prove that every point of the bisectrix of a given angle is equally

distant from the sides.

3. Two angles of a triangle being given, to find the third.

4. To construct an isosceles triangle so that the vertex shall fall at

a given point, and the base fall in a given line.

5. An isosceles triangle so that the base shall be a given line and

the vertical angle a right angle.

6. With two angles and a side opposite one of them, to construct

a triangle.

7. To construct a triangle when the base, the angle opposite, and

the sum of this and one of the other two angles are given.

8. The same, except the difference instead of the sum given.

9. To construct a quadrilateral when the four sides and one angle

are given.

10. When three of the sides and the two angles included between

them are given.

11. When two sides and the included angle and two other angles.

12. To construct a parallelogram with two adjacent 6ides and the

diagonal given.

13. To construct a parallelogram with given base, altitude, and

diagonal.

14. With two adjacent sides and the altitude.

15. To make a hexagon equal in all respects to a given irregular

hexagon.

16. To construct a triangle with the angles at the base and the alti-

tude given.

17. With the vertical angle, one of its sides and the altitude given.

18. With the base, altitude, and one of the angles at the base given.

19. To construct a trapezoid when three sides and the angle con-

tained between two of them are given.

20. A line and two points without it being given, to find a point in

the line equidistant from the two given points.*

* Geometi-ic Analysis.—The best method for discovering the solu-

tion of problems is what is termed the analytic. This consists in

supposing the problem solved, making the diagram accordingly, and.

then, by examination of the required and given parts of the diagram
in their relations to one another, considering what known theorems

of geometry connect them together. This is a sort of going back

from the result sought by a chain of relations—depending upon known
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21. TUe data as above to draw two lines from the two given points,

meeting in the given line, and making equal angles with it.

theorems to what is given (or may be obtained), and is the natural

m of discovery or invention.

The required result having been thus obtained by analysis, or reso-

lution, the demonstration of its correctness is made by synthesis, or

composition; the order in which is the reverse of the former, and
Carries us forward from the data, by means of the truths on which the

rmtilt depend*, to the result itself. Analysis is, then, the method of

discovery, synthesis of demonstration after the discovery is made. The
one has for its object to find unknown truths, the other to prove
known ones. Analysis and synthesis are both of them applicable to

theorems as well as problems. In submitting a problem to analysis, its

solution, in the first instance, is assumed ; and from this assumption a

series of consequences are drawn, until at length something is found
which can be done upon established principles. In the synthesis, or
solution, beginning with the construction indicated by the final result

of the analysis, the process ends with the performance of what was
required by the problem, and is the first step of the analysis.

When a theorem is submitted to analysis, the thing to be determ-
ined is whether the statement expressed by it be true or not. In
the analysis this statement is, in the first instance, assumed to be true,

and a series of consequences deduced from it, until some result is ob-
tained, which either is an established or admitted truth, or contradicts
an established or admitted truth. If the former, the theorem may be
proved by retracing the steps of the investigation, commencing with
the final result and concluding with the proposed theorem. But if

the final result contradict an established truth, the proposed theorem
must be false, since it leads to a false conclusion.

We give a specimen of the analytic investigation of a problem be-
low. Of synthesis the student has already had specimens in all the
preceding theorems, and will find others in the problems which fol-

low the remaining theorems of plane geometry.

Specimen of the Analysis of a Problem.

Given two angles, and the sum
of the three sides of a triangle, to

construct it.

Suppose it done, and that ABO
is the triangle sought. Produce
BC till CD = CA and BE = BA;
join EA, DA; then the triangles

ACD and ABE being isosceles, the angle ABC = twice the angle
AEB, and the angle ACB = twice the angle ADC.
Hence the following construction: at the extremities of a line ED,

equal to the given sum of the three sides, draw lines making, with
this, angles each equal to half one of the given angles, and from
the point A, where they meet, draw lines making angles with AE
gad A I), respectively equal to the angles E and D ; ABC will be the
triangle required.

The demonstration synthetically would be as follows:
The angle EAB being = the angle E, the triangle is isosceles, and
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22. The same when the two given points are on opposite sides of

the line.

23. When every side of a polygon is produced out, prove that the

sum of the outward angles is equal to four right angles.

24. Show that in an isosceles triangle the square of the line drawn
from the vertex to any point of the base, together with the rectangle

of the segments of the base, is equal to the square of one of the equal

sides of the triangle.

25. Prove that the square of a line is equal to the square of its pro-

jection on another line added to the square of the difference of the

perpendiculars which determine this projection.

26. Prove that the sum of the squares on two lines, together with

twice their rectangle, is equal to the square on their sum.

27. That the square on the difference of two lines is equal to the

sum of their squares minus twice their rectangle.

28. To construct a quadrangle when three sides, one angle, and

the sum of two other angles are given.

29. When three angles and two opposite sides.

30. Prove that two parallelograms are equal when they have two

sides and. the included angle equal.

31. Prove that the greater diagonal of a parallelogram is opposite

the greater angle.

32. Prove that two rhombi are equal when a side and angle of

the one are equal to the same in the other.

33. That if the diagonals of a quadrilateral bisect each other at

right angles, the figure will be a rhombus.

34. That the diagonals of a rectangle are equal; and the converse.

35. Prove that the line joining the middle points of the inclined

sides of a trapezoid is parallel to the bases, and that it is equal to

half the sum of the bases.

36. Prove that two convex polygons are identical: 1°. When they

have the same vertices. 2°. When one side in each equal, and the

distances of the corresponding vertices from its extremities equal.

3°. When composed of the same number of equal triangles, similarly

placed. 4°. When they have all their sides equal and all their an-

gles but two. 5°. When all their sides but one and all their angles

but one.

37. Prove that there can be but one perpendicular from a given

point to a given line.

AB = BE; for a similar reason AC = CD; hence the sum of the

three sides of the triangle ABC = the given sum ED. Again, the

angle ABC = 2AEB, and ACB = 2ADC .-. ABC and ACB are equal

the given angles. Q. E. D.
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THEOREM XXXII.

If two triangles have two sides of the one equal to

two sides of the other, but the included angles unequal,

the third sides will be unequal, and the greater will

be in that triangle which has the greater included

angle.

Let ABC, DEF
be two triangles in

which AB = DE,
AC = DF, BAC <
EDF. Then will

EF > BC. B G ~ ^-Ag
For at the point D make the angle EDG equal to

the angle BAC ; take DG equal to AC, and join GE.
Then will the triangle DEG equal the triangle ABC
(th. 1) and EG = BC.
But EG < EI + IG, and DF < DI -f if (ax. 13).

By addition of these inequalities, EG 4- DF < EI
+ IF + DI + IG ; or, EG + DF < EF + DG.
Taking away the equals DF and DG from the

members of the last inequality, there remains EG <
EF. But EG = BC .-. BC < EF. Q. E. D.

If the point G fall within instead of without the

triangle DEF, we should have DG + GE < DF +
EF (th. 14) ; and, taking away the equals DG and
DF, there remains EG < EF. If the point G fall on
EF, the theorem is evident.

The converse of this proposition is also true, viz.,

that if two sides of one triangle be equal to two sides

of another, and the third sides unequal, the angle op-

posite the smaller third side will be less than the

one opposite the larger. For if the angle were great-

er, by the above proposition the third side must be

greater; and if it were equal, it must, by (th. 1), be
equal. But the third side is neither greater nor equal

;

therefore the angle opposite, being neither greater

nor equal than the angle of the other triangle, must
be less.
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THEOREM XXXIII.

Every diameter bisects a circle and its circumference.

Let ACBD be a circle, AB a di-

ameter. Conceive the part ADB
to be turned over and applied to the

part ACB, it will coincide with it . /

exactly, otherwise there would be
points in the one portion of the cir-

cumference or the other unequally

distant from the center; but this is D
contrary to the definition (def. 41) ; hence the two
parts are equal (ax. 10).

THEOREM XXXIV.

If a line drawn through the center of a circle bisect

a chord, it tvill be pe?~pendicular Ho the chord ; or, if

it be perpendicular to the chord, it will bisect both the

chord and the arc of the chord.

Let AB be any chord in a circle,

and CD a line drawn from the cen-

ter C to the chord. Then, if the

chord be bisected in the point D,

CD will be perpendicular to AB.
Draw the two radii CA, CB.

Then the two triangles ACD, BCD,
having CA equal to CB, being ra-

dii of the same circle (def. 41), and CD common, also

AD equal to DB (by hyp.) ; they have all the three

sides of the one equal to all the three sides of the

other, and so have their angles also equal (th. 5).

Hence, then, the angle ADC being equal to the angle

BDC, these angles are right angles, and the line CD
is perpendicular to AB (def. 12).

Again, if CD be perpendicular to AB, then will the

chord AB be bisected at the point D, or have AD
equal to DB ; and the arc AEB bisected in the point

E, or have AE equal EB.
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For, the two triangles ACD, BCD being right-an-

bled at D, and having two sides of the one equal tG

the same in the other, viz., AC = CB and CD common,

are equal (th. 26, cor. 2), .-. AD^=BD.
Also, since the angle ACE is equal to the angle

BCE, the arc AE, which measures the former, is equal

to the arc BE, which measures the latter, since equal

angles must have equal measures.

Scholium. Two conditions determine a line such as

that it shall pass through two given points, or that it

shall pass through one point and be perpendicular to

a given line, or pass through a point and make a given

angle with a given line.

The line CE in the last diagram fulfills four condi-

tions. It passes through the center C, through the

point D, the middle of the chord, through the point

E, the middle of the arc, and, finally, is perpendicular

to the chord AB. Either two of these involves the

other two. Thus, if a line pass through the middle of

the chord and be perpendicular to it, it will pass

through the middle of the arc and the center of the

circle ; if it pass through, the middle of the arc and

center of the circle, it will pass through the middle

of the chord and be perpendicular to it ; if it pass

through the middle of the arc and chord, it will be

perpendicular to the latter, and pass through the cen-

ter of the circle, &c.
•*%

THEOREM XXXV.

Any chords in a circle which are equally distant

from the center are equal to each other ; or, if they be

equal to each other, they will be equally distant from
the center.

Let AB, CD be any two chords at

equal distances from the center G ; then

will these two chords AB, CD be equal

to each other.

Draw the two radii GA, GC, and the

two perpendiculars GE, GF, which are
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the equal distances of AB, CD from G (th. 17).* Then
the two right-angled triangles, GAE, GCF, having the

side GA equal the side GC (being radii), and the side

GE equal the side GF, are identical (cor. 2, th. 26), and

have the line AE equal to the line CF. But AB is

the double of AE (th. 34), and CD is the double of

CF ; therefore AB is equal to CD (by ax. 6). Q. E. D.

Again, if the chord AB be equal to the chord CD,
then will their distances from the center, GE, GF,
also be equal to each other.

For, since in the right-angled triangles AEG, CFG,
AE the half of AB is equal to CF, the half of CD, and
the radii GA, GC are equal, therefore the third sides

are equal (cor. 2, th. 26), or the distance GE is equal

the distance GF. Q. E. D.

THEOREM XXXVI.

A line perpendicular to a radius at its extremity is

a tangent to the circle.

Let the line ADB be perpendicular A
^
^ E B

to the radius CD of a circle ; then is

any other point, except D, as E of the

line AB, without the circle. For CE,
an oblique line, is greater than the per-

pendicular CD (th. 17), or greater than the radius.

Hence, the line AB having but one point, D, in com-

mon with the circle, is a tangent (def. 56).

THEOREM XXXVII.

When a line is a tangent to a circle, a radius drawn
to the point of contact is perpendicular to the tangent.

For if oblique, a line shorter can be drawn perpen-

dicular to the tangent, and the tangent must then

pass within the circle, which is contrary to definition.

Corol. 1. Hence, conversely, a line drawn perpen-

dicular to a tangent, at the point of contact, passes

through the center of the circle ; for there can be but

one perpendicular to a given line through a given point.

* By the distance of a poiut from a line is understood the shortest

distance.
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Corol. 2. If any number of circles touch

each other at the same point, their centers

must be in the same line perpendicular to

their common tangent ; for the perpen-

dicular to the tangent at the common point

must pass through the center of each.

THEOREM XXXVIII.

The angle formed by a tangent and chord is meas-

ured by half the arc of that chord.

Let AB be a tangent to a circle, and A_ C B

CD a chord drawn from the point of

contact C ; then is the angle BCD meas- /

ured by half the arc CFD, and the angle
[

ACD measured by half the arc CGD. G<

Draw the radius EC to the point of

contact, and the radius EF perpendicular to the chord

atH.
Then the radius EF, being perpendicular to the

chord CD, bisects the arc CFD (th. 34). Therefore

CF is half the arc CFD.
But the angle CEF is equal to the angle BCD, be-

cause the sides of the two angles are respectively

perpendicular to each other, and consequently have
the same difference of direction. Moreover, the angle

CEF is measured by the arc CF (def. 10, note), which
is the half of CFD ; therefore the equal angle BCD
must also have the same measure, namely, half the

arc CFD of the chord CD.
Again, GEF being a diameter, CG is the supple-

ment ofCF, and is equal to GD, the supplement of FD.
.*. CG is half the arc CGD. Now, since the line CE,
meeting FG, makes the sum of the two angles at E
equal to two right angles (th. 6), and the line CD
makes with AB the sum of the two angles at C equal

to two right angles ; if from these two equal sums
there be taken away the parts or angles CEH and

BC1I, which have been proved equal, there remains

the angle CEG, equal to the angle ACH. But the



44 GEOMETRY.

former of these, CEG, being an angle at the center,

is measured by the arc CG (def. 10, note) ; conse-

quently the equal angle ACD must also have the same
measure CG, which is half the arc CGD of the chord
CD. Q. E. D.

. CoroL 1. The sum of two right angles is measured
by half the circumference. For the two angles BCD,
ACD, which make up two right angles, are measured
by the arcs CF, CG, which make up half the circum-

ference, FG being a diameter.

Coral. 2. Hence, also, one right angle must have
for its measure a quarter of the circumference, or 90
degrees.

THEOREM XXXIX.

An angle at the circumference of a circle is measur-

ed by half the arc that subtends it.

Let BAC be an angle of the circum- D
ference ; it has for its measure half the

arc which subtends it.

For, suppose the tangent DE to
B\

pass through the point of contact A

;

then, the angle DAC being measured by half the arc

ABC, and the angle DAB by half the arc AB (th. 38),

it follows, by equal subtraction, that the difference, or

angle BAC, must be measured by half the arc BC,
upon which it stands. Q. E. D.

CoroL 1. All angles in the same segment of a circle,

or standing on the same arc, are equal to each other.

CoroL 2. An angle at the center of a circle is double

the angle at the circumference, when both stand on
the same arc.

CoroL 3. An angle in a semicircle is a right angle.

THEOREM XL.

Any two parallel chords intercept equal arcs.

Let the two chords AB, CD be parallel ; then will

the arcs AC, BD be equal ; or AC = BD.
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Draw the line BC. Then, because theA
lines AB, CD are parallel, the alternate an-

gles B and C are equal (th. 10). But the

angle at the circumference B is measured

by half the arc AC (th. 39) ; and the other equal an-

gle at the circumference C is measured by half the arc

BD ; therefore the halves of the arcs AC, BD, and
consequently the arcs themselves, are also equal. Q.
E.D.

THEOREM XLI.

When a tangent and chord are parallel to each other,

they intercept equal arcs.

Let the tangent ABC be parallel to

the chord DF; then are the arcs BD,
BF equal ; that is, BD = BF.
Draw the chord BD. Then, because

the lines AB, DF are parallel, the al-

ternate angles D and B are equal (th. 10). But the

angle B, formed by a tangent and chord, is measured
by half the arc BD (th. 38) ; and the other angle at

the circumference D is measured by half the arc BF
(tli. 39) ; therefore the arcs BD, BF are equal. Q.
E. D.

THEOREM XLII.

When two lines, meeting a circle each in two points,

cut one another, either within or without it, the rectangle

of the parts of the one is equal to the rectangle of the

marts of the other* the parts of each being measured
from the point of meeting to the two intersections with

the circumference.

Let the two lines AB, CD meet each
other in E ; then the rectangle of AE, EB
will he equal to the rectangle of CE, ED.
Or, AE . EB = CE . ED.

For through the poiut E draw thevliame-
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tcr FG; also, from the center H draw the a

radius DH, and draw HI perpendicular to c

CD. /ffi\
Then, since DEH is a triangle, and the (A>iH\

)

perpendicular HI bisects the chord CD (th. D\^ \^Sb
34), the line CE is equal to the difference of G
the segments DI, EI, the sum of them being DE. Also,

because H is the center of the circle, and the radii DH,
FH, GH are all equal, the line EG is equal to the

sum of the sides DH, HE ; and EF is equal to their

difference.

But the rectangle of the sum and difference of the

two sides of a triangle is equal to the rectangle of the

sum and difference of the segments of the base (cor.,

th. 27) ; therefore the rectangle of FE, EG is equal to

the rectangle ofCE, ED. In like manner, it is proved
that the same rectangle of FE, EG is equal to the

rectangle of AE, EB. Consequently, the rectangle

of AE, EB is also equal to the rectangle of CE, ED
(ax. 1). Q. E. D. v

Corol. 1. When one of the lines in the

second case, as DE, by revolving about c
the point E, comes into the position of the '

tangent EC or ED, the two points C and
D running into one ; then the rectangle of

CE, ED becomes the square of CE, be-

cause CE and DE are then equal. Consequently, the

rectangle of the parts of the secant, AE . EB, is equal

to the square of the tangent, CE\
Corol. 2. Hence both the tangents EC, EF, drawn

from the same point E, are equal ; since the square

of each is equal to the same rectangle or quantity

AE . EB.

THEOREM XLIII.

In equiangular triangles, the rectangles of the cor-

responding or like sides, taken alternately, are equal.

Let ABC, DEF be two equiangular triangles,

having the angle A = the angle D, the angle B *=
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the angle E, and the angle C = the

angle F ; also, the like sides AB, DE,
and AC, DF, being those opposite the

equal angles; then will the rectangle

of AB, DF be equal to the rectangle

of AC, DE.
In BA, produced, take AG equal to DF ; and through

the three points B, C, G, conceive a circle BCGH to be
described, meeting CA, produced, at H, and join GH.
Then the angle G is equal to the angle C on the

same arc BH, and the angle H equal to the angle B
on the same arc CG (th. 39) ; also, the opposite angles
at A are equal (th. 7) : therefore the triangle AGH is

equiangular to the triangle ACB, and consequently to

the triangle DFE also. But the two like sides AG,
DF are also equal, by construction; consequently, the
two triangles AGH, DFE are identical (th. 2)", and
have the two sides AG, AH equal to the two DF,
DE, each to each.

But the rectangle GA . AB is equal to the rectangle
HA . AC (th. 42) ; consequently, the rectangle DF .

AB is equal to the rectangle DE . AC. Q. E. D.

KXKUCISES.

1. Find the length of an arc of 20° 45' to a radius of 10.

2. Through two given points, to draw a circumference of given

radius.

3. Divide an arc into 2, 4, 8, 16 ... . equal parts.

4. Prove that every other chord is less than the diameter.

5. That parallel tangents include semicircumferences between their

points of contact.

6. Draw a tangent to a given circle parallel to a given line.

7. To describe a circle of given radius tangent to a given line at a

given point

8. To describe a circle of given radius touching the two sides of a

given angle.

9. To describe a circumference which shall be embraced between
two parallels, and pass through a given point.

10. To place a chord of given length and direction in a given circle.

1 1

.

Prove that the chords of equal arcs are equal, and the converse.

12. To find in one side of a triangle the center of a circle which

shall touch the other two sides.
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13. To find the radius of a circle when a chord and perpendicular

from the centre to the chord are given.

14. With given radii to describe two circumferences which shall

intersect in a given point, and have their centers in a given line.

15. With given radii to describe two circles which shall touch each

other either externally or internally.

16. Three circles with equal given radii touching each other ex-

ternally.

17. The same with unequal radii.

18. Through a given point on a circumference, and another given

point without, to describe a circle touching the given circumference.

19. The same when, instead of the point upon the circumference,

the radius of the required circle is given.

20. To describe a circle of given radius touching two given circles.

21. To construct a right-angled triangle with the hypothenuse and

one of the perpendicular sides given.

22. In a given circle to inscribe a right angle, one side of which is

given.

23. In a given circle to construct an inscribed triangle of given

altitude and vertical angle.

24. Also, a quadrangle, when one side and two angles not adjacent

this side are given. (See Exercise 31, below.)

25. To find the center of a circle in which two given lines meet-

ing in a point shall be a tangent and chord.

26. In a given circle to inscribe a triangle equiangular to a given

triangle.

27. Show how to circumscribe a square about a given circle, and

how to inscribe a circle in a given square.

28. That a straight line touching a circle can have with it but one

point of contact.

29. To inscribe in an equilateral triangle three equal circles touch-

ing each other, and the sides of the triangle.

30. Prove that an eccentric angle is measured by half the sum of

the opposite arcs subtending it, if the vertex be within the circle ;

and by half the difference of the arcs if it be without.

31. That the opposite angles of an inscribed quadrilateral are sup-

plements.

32. That if one of the sides ofan inscribed quadrilateral be produced

out, the outward angle will be equal to the inward opposite angle.

33. That the sums of the opposite sides are equal.

34. That a regular polygon may be circumscribed with a circle.

35. That a circle may be inscribed in any regular polygon.
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36. If one circle touch another externally or internally, any straight

lint drawn through the point of contact will cut off similar tegmenta."

37. Prove that only one tangent can he drawn to a circle at a

given point on the circumference.

38. That of two chords the greater is nearer the center of the circle.

Numerical Problems.

1. In a triangle suppose two of the sides to be 8.76 and 5.26, and

the perpendicular from the vertex in which they meet 4.38; required

the third side.

Suppose the two segments of the required side to be represented

by x and y.

x— ^/ (8.76)3— (4^38)*, y= ^(5.26)*— (4.38)*,

or, •*

x= v/ (8.76+ 4.38) (8.76— 4.38), y= y/ (5.26 -f 4.38) (5.26— 4.38).

log. 13.14= 1.1185954

log. 4.38= 0.6414741

2)1.7600695

x — 7.586, log. = 0.8800347

By a similar method, y= 2.9126

.-.x-fy= 10.4990

for the value of the third side if the perpendicular falls within the

triangle; and x^,y= 4.67

for the value if the perpendicular falls without.

itren in a triangle the base 88; one of the sides 128.49; and

the perpendicular upon the base from the vertex opposite 96.45, to

iind the third side. Ans. 96.50.

3. Two chords cut each other in a circle; the segments of the one

are 13 and 25 ; the segments of the other are in the ratio of 4 to 7 ;

required the length of the latter chord. Ans. 37.47.

4. To find the absolute length of an arc of 45° 20' in a circle whoso

rail ins is 5.4, supposing the ratio of the circumference to the diameter

of :i circle to be 3.1416. Ans. 4.2726.

5. The side of a square being given 0.25, to find the side of an

equilateral triangle equal to the square. Ans. 0.37994.

6. Given the area of a circle 33.1830, to find its radius. Ans. 3.25.

7. Find the chord of the sum of two arcs, the chords of the arcs

being given 10 and 12, and the radius 16.

8. Find the chord of half an arc, the chord of the whole arc being

12 and 16.

* Similar segments are those which correspond to similar arcs.

c



OF RATIOS AND PROPORTIONS.

DEFINITIONS.

Def. 75. Ratio is the proportion or relation which
one magnitude bears to another magnitude of the

same kind with respect to quantity.

Note.—The measure or quantity of a ratio is con-

ceived by considering what part or parts the leading

quantity, called the Antecedent, is of the other, called

the Consequent ;* or what part or parts the number
expressing the quantity of the former is of the num-
ber denoting, in like manner, the latter. So the ratio

of a quantity, expressed by the number 2 to a like

quantity expressed by the number 6, is denoted by 2
divided by 6, or f or £ ; the number 2 being 3 times

contained in 6, or the third part of it. In like man-
ner, the ratio of the quantity, 3 to 6, is measured by

£ or | ; the ratio of 4 to 6 is | or § ; that of 6 to 4 is

| or |, &c. The ratio of two lines is the ratio of

the number of times which each contains the common
measure of the two lines. When the terms of a ratio

are equal, it is called a ratio of Equality. When un-

equal, a ratio of Inequality.

76. Proportion is an equality of ratios. Thus,
77. Three quantities are said to be proportional

when the ratio of the first to the second is equal to

the ratio of the second to the third. As of the three

quantities, A = 2, B = 4, C = 8, where f = £ = j, both

the same ratio.

78. Four quantities are said to be proportional

when the ratio of the first to the second is the same
as the ratio of the third to the fourth. As of the four,

A (4), B (2), C (10), D (5), where j = y - 2, both the

same ratio.

# The antecedent and consequent are called the terras of a ratio.
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Note.—To denote that four quantities, A, B, (?, D,
are proportional, they are usually stated or placed
thus, A : B : : C : D ; and read thus, A is to B as C is to

D. The two dots : must be understood as represent-

ing the sign of division ; the four dots : : the sign of
equality. The same proportion or equality of ratios

A C
may be written thus, — = — , or A : B = C : D. When

B D
three quantities are proportional, the middle one is

repeated, and they are written thus, A : B : : B : C.

79. Of three proportional quantities, the middle one
is said to be a Mean Proportional between the other

two ; and the last a Third Proportional to the first

and second.

80. Of four proportional quantities, the last is said

to be a Fourth Proportional to the other three, taken
in order.

81. Quantities are said to be Continually Propor-
tional, or in Continued Proportion, when the ratio is

the same between every two adjacent terms, viz.,

when the first is to the second as the second to the

third, as the third to the fourth, as the fourth to the

fifth, and so on, all in the same common ratio.

As in the quantities 1, 2, 4, 8, 16, &c, where the

common ratio is equal to 2.

82. Of any number of quantities, A, B, C, D, the

ratio of the first A, to the last D, is said to be com-
pounded of the ratios of the first to the second, of the

second to the third, and so on to the last.

83. Inverse ratio is, where the antecedent is made
the consequent, and the consequent the antecedent.

Thus, if 1 : 2 : : 3 : 6 ; then inversely, or by inversion,

2 : 1 : : 6 : 3.

84. Alternate proportion is where antecedent is

compared with antecedent, and consequent with con-

sequent. As, if 1 : 2 : : 3 : 6 ; then, by alternation or
permutation, it will be 1 : 3 : : 2 : 6.

85. Compound ratio is, where the sum of the ante-

cedent and consequent is compared either with the

consequent or with the antecedent. Thus, if 1:2::
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3:6; then, by composition, 1 -f- 2 : 1 : : 3 + G : 3, and
l+2:2::3 + 6:6.

86. Divided ratio is, when the difference of the an-

tecedent and consequent is compared either with the

antecedent or with the consequent. Thus, if 1 : 2 :

:

3:6; then, by division, 2— 1 : 1 : : 6— 3 : 3, and 2— 1

:

2::6— 3:6.
Note.—The term Division here means subtracting,

or parting ; being used in the sense opposed to com-
pounding, or adding, in def. 85.

THEOREM XLIV.

Equimultiples of any two quantities have the same
ratio as the quantity themselves.

Let A and B be any two quantities, and mA, wzB
any equimultiples of them, m being any number what-
ever ; then will mA and raB have the same ratio as A
and B, or A : B : : mA : wB.

For ^ = |. Q.E.D.
mA A

Corol. Hence like parts of quantities have the same
ratio as the wholes ; because the wholes are equimul-
tiples of the like parts, or A and B are like parts of
mA and mB.

p
Corol. 2. If — represent the first ratio of a pro-

portion, or equality of ratios,—- must be the form of
mA

the second ratio, m being a quantity entire or frac-

tional, rational or irrational. In the following theo-

rems the form of a proportion will always be assumed
in accordance with this corollary.

THEOREM XLV.

Iffour quantities of the same kind be proportionals,

they will be in proportion by alternation or permutation,
or the antecedents will have the same ratio as the conse-

quents.
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Let A : B : : mA : mB ; then will A : mA : : B : mB.
^ mA m , mB m . . .

For ——= — , and -^- = — , both the same ratio.
A 1 B 1

THEOREM XLVI.

If four quantities be proportional, they will be in

proportion by inversion or inversely.

Let A : B : : mA : mB ; then will B : A : : mB : mA.
-r, mA A
For

^irs-
Otherwise. Let A : B : : C : D ; then shall B : A :

:

D:C.
A C*

For let — = =-= r ; then A= Br, and C = Dr : there-

fore B = — and D = — . Hence — = -, and — = -.
r r A r r

B T)

Whence it is evident that — = — (ax. 1), or B : A :

:

A O
D:C.

In a similar manner may most of the other theo-

rems of proportion be demonstrated.

THEOREM XLVII.

If four quantities be proportional, they will be in

proportion by composition and division.

Let A : B : : mA : mB ;

Then will B ± A : A : : mB =fc mA : mA,
and B ± A : B : : »iB ± mA : mB.
~ mA A , mB B
ror

, s =7t—!—ri anc*mBimA B =fc A' mB ± mA B±A'
Corol. 1. If A : B : : mA : mB, then B + A : B —

A : : mB -f mA : mB— mA.
Corol. 2. It appears from hence that the sum of the

greatest and least of four proportional quantities ol

the same kind exceeds the sum of the other two.

For since A : A + B : : mA : : mA + mB, where A i?

the least, and mA + mB the greatest ; then m + 1 . A
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+ mB, the sum of the greatest and least, evidently

exceeds m + 1 . A + B, the sum of the two other

quantities, since mB > B.

THEOREM XLVIII.

If of four proportional quantities there be taken

any equimultiples whatever of the two antecedents, and
any equimultiples whatever of the two consequents, the

quantities resulting will still be proportional.

Let A : B : : mA : mB ; also, let pA andpmA be any
equimultiples of the two antecedents, and qB and
qmB any equimultiples of the two consequents ; then

will pA : qB : :pmA : qmB.

For
gmB_qB^
pmA pA'

THEOREM XLIX.

If there be four proportional quantities, and the two

consequents be either augmented or diminished by quan-
tities that have the same ratio as the respective antece-

dents, the results and the antecedents will still be pro-
portionals.

Let A : B : : mA : mB, and nA and nmA any two
quantities having the same ratio as the two antece-

dents ; then will A : B =t nA : : mA : mB ± nmA.
-r, mB rb n?nA B =t nA
For =

.

mA A

THEOREM L.

If any number of quantities be proportional, then

any one of the antecedents will be to its consequent as

the sum of all the antecedents is to the sum of all the

consequents.

Let A : B : : mA : mB : : nA : nB, &c. ; then will A :

B : : A + mA + nA : B -f mB -f nB, &c.
B + mB + nB (1 + m + n) B B

For
A + mA -{-nA ( 1 -f- m -|- ») A A
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THEOREM LI.

If a whole magnitude be to a whole as a part taken

from the first is to a part taken from the other, then

the remainder will be to the remainder as the whole to

the whole.

Let A T> m A m T>A : B : : — A : — B;
n n

then will A:B::A-™A:B_™B.
n n

For

B--B
Rn B

a-^a" a
'

THEOREM LII.

If any quantities be proportional, their squares or

cubes, or any like powers or roots of them, will also

be proportional.

Let A : B : : mA : mB ; then will A" : Bn
: : mnAn

:

mnBn
.

„ m"B n B"
For -^T^

=
TVm A" A

THEOREM LIII.

If there be two sets of proportionals, then the prod-
ucts or rectangles of the corresponding terms will also

be proportional.

Let A : B : : mA : mB,
and C : D : : wC : wD

;

then-will AC : BD : : mnAC : mnBD.
„ mnBD BD
For =—

.

m?iAC AC
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THEOREM L1V.

If four quantities be proportional, the rectangle or

product of the two extremes will be equal to the rect-

angle or product of the two means. And the converse.

Let A : B : : mA : mB
;

then is A X mB = B X mA = mAB, as is evident.

THEOREM LV.

If three quantities be continued proportionals, the

rectangle or product of the two extremes will be equal

to the square of the mean. And the converse.

Let A, mA, maA be three proportionals,

or A : mA : : mA : m*A
;

then is A X m2A = m2A a

, as is evident.
*

THEOREM LVI.

If any number of quantities be continued propor-

tionals, the ratio of the first to the third will be du-

plicate, or the square of the ratio of the first and second;

and the ratio of the first and fourth will be triplicate,

or the cube of that of the first and second, and so on.

Let A, mA, rn^A, m*A, &c, be proportionals ;

then is—- = — ; but—- =— ; and-—=— , &c.
mA m mA m mA m

THEOREM LVII.

Triangles, and also parallelograms, having equal
altitudes, are to each other as their bases.

Let the two triangles ADC, DEF have
x ck F

the same altitude, or be between the same
parallels AE, IF ; then is the surface of
the triangle ADC to the surface of the

triangle DEF as the base AD is to the

base DE. Or AD : DE : : the triangle
A B D G H E

ADC : the triangle DEF.

i
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For, let the base AD be to the base DE as any one
number m (which we have taken 2 in the diagram),

to any other number n (which we have taken 3 in the

diagram, though the reasoning would be the same for

any other numbers) ; and divide the respective bases

into those parts, AB, BD, DG, GH, HE, all equal to

one another ; and from the points of division draw the

lines BC, GF, HF to the vertices C and F. Then
will these lines divide the triangles ADC, DEF into

the same number of parts as their bases, each equal

to the triangle ABC, because those triangular parts

have equal bases and altitudes (cor. 2, th. 22) ; name-
ly, the triangle ABC equal to each of the triangles

BDC, DFG, GFH, HFE. So that the triangle ADC
is to the triangle DFE as the number of parts m (2)

of the former to the number n (3) of the latter, that is,

as the base AD to the base DE. (See end of note to

def. 75.)

The parallelograms ADKI, DEFK being doubles

of the triangles ACD, DFE, are in the same ratio,

viz., that of the base AD to the base DE. Q. E. D

THEOREM LVIII.

Triangles, and also parallelograms, having equal

bases, are to each other as their altitudes.

Let ABC, BEF be two triangles

having the equal bases AB, BE, and
whose altitudes are the perpendicu-

lars CG, FH ; then will the triangle

ABC : the triangle BEF : : CG : FH.
For, let BK be perpendicular to

A G B H E

AB, and equal to CG ; in which let there be taken
BL = FH ; drawing AK and AL.

Then, triangles of equal bases and heights being
equal (cor. 2, th. 22), the triangle ABK is = ABC, nnd
the triangle ABL = BEF. The two triangles ABK,
ABL may, therefore, be compared, instead of the two
given triangles, which are respectively equal to them

;

and having the same altitude AB, they will be as

C2
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their bases (th. 57), namely, the triangle ABK : the

triangle ABL : : BK = CG : BL = FH.
Therefore, the triangle ABC : triangle BEF : : CG

:FH.
And since parallelograms are the doubles of these

triangles, having the same bases and altitudes, they
will likewise have to each other the same ratio as

their altitudes. Q. E. D.

THEOREM LIX.

If four lines be proportional, the rectangle of the

extremes will be equal to the rectangle of the means;
and, conversely, if the rectangle of the extremes offour
lines be equal to the rectangle of the means, the four
lines will be proportional.

Let the four lines A, B, C, D be
proportionals, or A : B : : C : D ; then

will the rectangle of A and D be

equal to the rectangle of B and C

;

or the rectangle A . D = B . C.

For, let the four lines be placed

with their four extremities meeting in a common point,

forming at that point four right angles ; and draw
lines parallel to them to complete the rectangles P,

Q, R, where P is the rectangle of A and D, Q the

rectangle of B and C, and R the rectangle of B and D.

Then the rectangles P and R, being between the

same parallels, are to each other as their bases A and
B (th. 57) ; and the rectangles Q, and R, being be-

tween the same parallels, are to each other as their

bases C and D. But the ratio of A to B is the same
as the ratio of C to D, by hypothesis ; therefore, the

ratio of P to R is the same as the ratio of Q to R,

and, consequently, the rectangles P and Q, are equal.

Q. E. D.
Again, if the rectangle of A and D be equal to the

rectangle of B and C, these lines will be proportional,

or A : B : : C : D.
For, the rectangles being placed the same as be-

QC

B A
R D P
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fore ; then, because parallelograms between the same
parallels are to one another as their bases, the rect-

angle P : R : : A : B, and Q : R : : C : D. But as P
and Q, are equal by supposition, they have the same
ratio to R, that is, the ratio of A to B is equal to the

ratio of C to D, or A : B : : C : D. Q. E. D.
Corol. 1. When the two means, namely, the second

and third terms, are equal, their rectangle becomes a

square of the second term, which supplies the place

of both the second and the third. And hence it fol-

lows that, when three lines are proportionals, the rect-

angle of the two extremes is equal to the square of

the mean ; and, conversely, if the rectangle of the

extremes be equal to the square of the mean, the three

lines are proportionals.

Corol. 2. If the sides about the equal angles of par-

allelograms or triangles be reciprocally proportional,*'

the parallelograms or triangles will be equal ; and,

conversely, if the parallelograms or triangles be equal,

their sides about the equal angles will be reciprocally

proportional. It is only necessary to suppose P and

Q parallelograms to prove this. (See also th. 19.)

THEOREM LX.

Rectangles are to each other as the products of their

bases by their altitudes.

For, in the last figure, let the two rectangles P and

Q be unequal, and be placed as before. Then (th. 57),

P:R:: A:B;
R : Q : : D : C.

Multiplying the two proportions, and striking out

the common factor R from the two terms of the first

ratio of the resulting proportion, we have
P:Q:: AxD:BxC. Q. E. D.

Scholium. The area or space of a rectangle may,

* i. c, the first side of the first is to the first of the second as the

second of the second is to tlit* second of the first. By multiplying the

extremes and means, this will make the rectangle of the two sides of

the one figure equal to the rectangle of the two sides of the other.
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then, be represented or expressed by the product of

its length and breadth multiplied together. And, in

geometry, the rectangle of two lines signifies the same
thing as their product. (Compare ths. 59, 54.) Also,

a square is similar to, or represented by, its side mul-

tiplied by itself, or written with an exponent 2.

CoroL 1. Since, by th. 22, corol. 2, rhomboids are

equivalent to rectangles having the same base and
altitude, it follows that the areas of all parallelograms

will be expressed by the product of the base by the

altitude, and of triangles which are the halves of

parallelograms of the same base and altitude, by the

product of the base by half the altitude, or the altitude

by half the base, or half the product of the base by
the altitude.

Corol. 2. Parallelograms or triangles having equal

bases will be to each other as their altitudes ; those

having equal altitudes will be to each other as their

bases ; and those having neither equal will be as the

products of their bases by their altitudes.

Corol. 3. Parallelograms or triangles having an
angle in each equal, are in proportion to each other

as the rectangles of the sides which are about these

equal angles. This may be proved from the last dia-

gram, supposing P and Q to be parallelograms.

THEOREM LXI.

If a line be drawn in a triangle parallel to one of its

sides, it will cut the other two sides proportionally.

Let DE be parallel to the side BC
of the triangle ABC ; then will AD :

DB : : AE : EC.
For, draw BE and CD. Then the

triangles DBE, DCE are equal to each
other, because they have the same base

DE, and are between the same paral-

lels DE, BC (th. 22). But the two tri- B c

angles ADE, BDE, on the bases AD, DB, have the

same altitude, viz., the perpendicular from their com-
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mon vertex E to the line of their bases BA ; and the

two triangles ADE, CDE, on the bases AE, EC, have

also a common altitude ; and because triangles of the

same altitude are to each other as their bases, there-

fore

the triangle ADE : BDE : : AD : DB,
and triangle ADE : CDE : : AE : EC.

But BDE is = CDE ; hence the first ratio is the

same in these two proportions, and the second ratios

must be equal ; therefore AD : DB : : AE : EC. Q.
E. D.

CoroL 1. Also, the whole lines AB, AC are propor-

tional to their corresponding proportional segments
(th. 47),

viz., AB : AC : : AD : AE,
and AB : AC : : BD : CE.

CoroL 2. The converse of the above proposition is

also true, viz., that a line which divides the two sides

of a triangle proportionally must be parallel to the

base. For any other line through D than the parallel

DE, /neeting AC in some other point than E, must
divide AC into two parts, having a different ratio

from AE to EC, and, consequently, different from the

ratio AD : DB.

THEOREM LXII.

A line which bisects any angle of a triangle divides

the opposite side into two segments, which are propor-

tional to the other two adjacent sides.

Let the angle BAC, of the tri- E
angle ABC, be bisected by the \\
line AD ; then will the segment \ ***-j^

BD be to the segment DC as

the side AB is to the side AC.
For, let BE be drawn parallel

to AD, meeting CA produced at B D C

E. Then, because the line BA meets the two paral-

lels AD, BE, it makes the angle ABE equal to the al-

ternate angle s. (th. 10), and therefore also equal to
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the angle r, which is (by hyp.) equal to s. Again,
because the line CE cuts the two parallels AD, BE, it

makes the angle E equal to the angle r* on the same
side (th. 10). Hence, in the triangle ABE, the an-

gles B and E, being each equal to half the bisected

angle of the triangle, are equal to each other, and,

consequently, their opposite sides AB, AE are also

equal (th. 4).

But now, in the triangle CBE, the line AD, being
parallel to the side BE, cuts the other two sides, CB,
CE, proportionally (th. 61), making CD to DB, as is

CA to AE, or to its equal AB. Q. E. D.

THEOREM LXIII.

Equiangular triangles are similar, or have their

like sides proportional.

For, by th. 43, the rectangles of the corresponding

sides taken alternately are equal, and by the second
part of th. 59, these corresponding or like sidesf are,

in consequence, directly proportional.

THEOREM LXIV.

Triangles which have their sides proportional are
also equiangular.

In the two triangles ABC, DEF, if c

AB : DE : : AC : DF : : BC : EF, the two
triangles will have their corresponding
angles equal. a b

For, if the triangle ABC be not equian- G F

gular with the triangle DEF, suppose
, \ "\

some other triangle, as DEG, constructed // \\
upon the side DE, to be equiangular with -^ \
ABC. But this is impossible ; for if the D E

two triangles ABC, DEG were equiangular, their

sides would be proportional (th. 63), viz.,

* The use of small letters to designate angles may be adopted in

other propositions.

t The corresponding sides are called homologous-
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AB : DE : : AC : DG,
but, by hypothesis,

AB : DE : : AC : DF
;

.-. DG - DF.
In the same manner, it may be proved that

EG - EF
;

.-. (th. 5), A* DEF is identical with A DEG, which is

absurd, the angles being different.

TIIEOBEM LXV.

Triangles which have an angle in the one equal to

an angle in the other, and the sides about these angles

proportional, are equiangular.

Let ABC, DEF be two A
triangles, having the angle /\

A = the angle D, and the / \ D
sides AB, AC proportional / \ \

to the sides DE, DF ; then (d AH I \
will the triangle ABC be / \ / \
equiangular with the trian-

gle DEF.
For, make AG - DE, and AH = DF, and join GH.
Then the two triangles DEF, AGH, having two

sides equal, and the contained angles A and D equal,

are identical and equiangular (th. 1), having the an-

gles G and H equal to the angles E and F. But,

since the sides AG, AH are proportional to the sides

AB, AC, the line GH is parallel to BC (th. 61, corol.

2) ; hence the angles B and C are equal to the angles

G and H respectively (th. 10), and, consequently, to

their equals E and F. Q. E. D.
General Scholium.—Triangles will be similar, 1°.

When they have their angles equal, or two of their

angles equal (th. 15, corol. 1) ; 2°. When they have
their homologous sides proportional ;f 3°. When

* This sign (A) stands for the word triangle.

\ Triangles are the only polygons in which one part of the defini-

tion (def. 07 ) of similar figures involves the other as a necessary con-

sequence. Thus a square and a rectangle are equiangular quadri-

B C E
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they have an angle in each equal, and the sides about

the equal angles proportional ;
4°. When they have

their sides respectively parallel or perpendicular, or

in any way equally inclined.

THEOREM LXVI.

In a right-angled triangle, a peipendicular from
the right angle is a mean proportional between the

segments of the hypothenuse, and each of the sides

about the right angle is a mean proportional between

the hypothenuse and the adjacent segment.

Let ABC be a right-angled tri-

angle, and AD a perpendicular from
the vertex of the right angle A to

the hypothenuse CB ; then will B DC
AD be a mean proportional between BD and DC ;

AB a mean proportional between BC and BD :

AC a mean proportional between BC and DC.
For, the two right-angled triangles ABD, ABC,

having the angle B common, are equiangular (cor. 2,

th. 15). For a similar reason, the two triangles ABC,
ADC are equiangular.

Hence, then, all the three triangles, viz., the whole
triangle and the two partial triangles ABC, ABD,
ADC, being equiangular, will have their like sides

proportional (th. 63),

viz.,* BD: AD:: AD: DC;
and BC : AC : : AC : DC ;

and BC : AB : : AB : BD. Q. E. D.

laterals, but their homologous sides are not proportional, the adjacent

ones of the square having a ratio of equality, those of the rectangle

a ratio of inequality. Again, the sides of a square and rhombus are

proportional, having in both the ratio of equality, but the angles are

not equal, those oi the square being right, those of the rhombus
oblique.

* The student will be aided by saying BD, the long perpendicular

side of the left triangle, is to AD, the long perpendicular side of the

right triangle, as AD, the short perpendicular side of the former, is

to DC, the short perpendicular side of the latter. Again, BC, the hy-

pothenuse of the whole triangle, is to AB, the hypothenuse of the

left partial triangle, &c.
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Corol. 1. Because the angle in a semicircle is a

right angle (corol. 3, th. 39), it follows that if, from
any point A in the periphery of the semicircle, a per-

pendicular be drawn to the diameter BC, and the

two chords CA, AB be drawn to the extremities of

the diameter ; then are AD, AB, AC the mean pro-

portionals as in this theorem, or (by th. 55) AD 2 =
CD . BD ; ABa = BC . BD ; and AC 3 = CB . CD.

Corol 2. Hence AB2
: AC 2

: : CD : BD.
Corol. 3. Hence we have another demonstration

of th. 26.

For, since AB2 = BC . BD, and AC 2 = BC . CD ;

By addition, AB 2 + AC 2 = BC (BD + CD) = BC 2
.

THEOREM LXVII.

Similar triangles are to each other as the squares of
their like sides.

Let ABC, DEF be two
similar triangles, AB and
DE being two like sides

;

then will the triangle ABC
be to the triangle DEF as gj~-

the square of AB is to the

square of DE, or as AB2
to

DE*. B C E ±

For, the triangles being similar, they have their

like sides proportional (def. 67) ;

therefore AB : DE : : AC : DF ;

and AB : DE : : AB : DE, an identity of ratios
;

therefore AB 2
: DE 2

: : AB . AC : DE . DF (th. 53).

But the triangles are to each other as the rectangles

of the like pairs of their sides (cor. 3, th. 60) ; or

A ABC : A DEF : : AB . AC : DE . DF ;

therefore A ABC : A DEF : : AB2
: DE 2

. Q. E. D.

THEOREM LXVIII.

The perimeters of all similar figures are to each

other as their homologous sides, and the surfaces as the

squares of their homologous sides.
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Let ABCDE,
FGHIK be any
two similar fig-

ures, their like

sides being AB,
FG,andBC,GH,
and so on in the

same order ; then

will the perimeter of the figure ABCDE be to the pe-

rimeter of the figure FGHIK as AB to FG, and the

surface as the square of AB to the square of FG, or
as AB 2

to FG 2
.

For (by def. 67) AB : BC : CD, &c. : : FG : GH :

HI, &c. And (by th. 50) AB + BC + CD, &c. ; or

the perimeter of the first polygon is to FG -f- GH +
HI, &c. ; or the perimeter of the second polygon as

AB : FG.
Again, draw AC, AD, FH, FI, dividing the figures

into an equal number of triangles by lines from two
equal angles A and F.

The two figures being similar (by hyp.), they are

equiangular, and have their like sides proportional

(def. 67).

Then, since the angle B is = the angle G, and the

sides AB, BC proportional to the sides FG, GH, the

triangles ABC, FGH are equiangular (th. 65). If,

from the equal angles BCD, GHI there be taken the

equal angles ACB, GHF, there will remain the equals

ACD, FHI ; and since, from the similarity of the tri-

angles ABC, FGH, and of the whole polygons, AC
and FH, as well as CD and HI, have the same ratio

that BC and GH have, they must have the same ratio

as one another ; hence the triangles ACD, FHI, hav-

ing an equal angle contained by proportional sides

are (th. 65) similar.

In the same manner, ADE may be proved similar

to FIK. Hence each triangle of the one figure is equi-

angular with each corresponding triangle of the other.

But equiangular triangles are similar (th. 63), and
are proportional to the squares of their like sides

(th. 67).
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B

Therefore the A ABC : A FGH : : AB2
: FG2

;

and A ACD : A FHI : : DC 2
: HP ;

and A ADE : A FIK : : DE 2
: IK2

.

But as the two polygons are similar, their like sides

are proportional, and, consequently, their squares also

roportfonal ; so that all the ratios AB2
to FG2

, and
C u

to HI 2

, and DE a
to IK2

, are equal among them-
selves, and, consequently, the corresponding triangles

als... ABC to FGH, and ACD to FHI, and ADE to

FIK, have all the same ratio, viz., that of AB2
to

FG2
; and hence the sum of the antecedents, or the

figure ABCDE, have to the sum of the consequents,

or the figure FGHIK, still the same ratio, viz., that

of AB2
to FG2

(th. 50). Q. E. D.

THEOREM LXIX.

Similar figures inscribed in circles have their like

sides, and also their whole perimeters, in the same ratio

as the diameters of the circles in which they are in-

scribed.

Let ABCDE, FGH
IK be two similar fig-

ures, inscribed in the

circles whose diame-

ters are AL and FM

;

then will each side AB,
BC, &c, of the one
figure be to the like side FG, GH, &c, of the other

figure, or the whole perimeter AB + BC +, &c, of

the one figure, to the whole perimeter FG -f- GH +,
&c, of the other figure, as the diameter AL to the

diameter FM.
For, draw the two corresponding diagonals, AC,

FH, as also the lines BL, GM. Then, since the pol-

ygons are similar, they are equiangular, and their

like sides have the same ratio (def. 67) ; therefore the

two triangles ABC, FGH have the angle B = the an-

gle G, and the two sides AB, BC proportional to the

two sides FG, GH ; consequently, these two triangles
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are equiangular (th. 65), and have the angle ACB =
FHG. But the angle ACB = ALB, standing on the

same arc AB ; and the angle FHG = FMG, stand-

ing on the same arc FG ; therefore the angle ALB
= FMG (ax. 1). And since the angle ABL = FGM,
being both right angles, because in a semicircle

;

therefore the two triangles ABL, FGM, having two
angles equal, are equiangular ; and, consequently,

their like sides are proportional (th. 63) ; hence AB :

FG : : the diameter AL : the diameter FM.
In like manner, each side BC, CD, &c, has to each

side GH, HI, &c., the same ratio of AL to FM ; and,

consequently, the sums of them are still in the same
ratio, viz., AB -f- BC + CD, &c. : FG + GH + HI,

&c, : : the diam. AL : the diam. FM (th. 50). Q.
E. D.*

THEOREM LXX.

Similarfigures inscribed in circles are to each other

as the squares of the diameters of those circles.

Let (see last fig.) ABCDE, FGHIK be two simi-

lar figures, inscribed in the circles whose diameters

* Similar figures

admit of a better

definition than that

given at definition

67, and which can
now be understood.

They are those

which can be so

placed that lines

drawn through the

angular points of the

one from some point O, within or without,

shall also pass through the angular points

of the other ; and the distances from the

angular points of the two figures to the point

O shall be proportional.

This definition admits of being enlarged.

Similar geometrical magnitudes are those

which admit of lines being drawn from a

point through the corresponding points ol

both, the distances of which from the radiant point are proportional

(See Appendices II. and V.)
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are AL and FM ; then the surface of the pol

ABCDE will be to the surface of the polygon FGHIK
as AL a

to FAP.
For the figures, being similar, are to each other as

the squares of their like sides, ABa
to FG2

(th. 68).

But by the last theorem, the sides AB, FG are as the

diameters AL, FM ; and, therefore, the squares of the

sides AB' to FGa
as the squares of the diameters ALa

to FAT (th. 5*2). Consequently, the polygons ABCDE,
FGHIK are also to each other as the squares of the

diameters AL3
to FM' (ax. 1). Q. E. D.

THEOREM LXXI.

The circumferences of all circles are to each other

as their diameters.

Let D, d denote the diameters of two circles, and
C, c their circumferences ; then will D : d : : C : c, or

D : C : : d : c.

For (by th. G9) similar polygons inscribed in cir-

cles have their perimeters in the same ratio as the

diameters of those circles.

Now, as this property belongs to all polygons,

whatever may be the number of the sides, conceive
the number of the sides to be indefinitely great, and
the length of each infinitely small. But the perime-

ter of the polygon of an indefinite number of sides

becomes the same thing as the circumference of the

circle. Hence it appears that the circumferences of

circles, being the same as the perimeters of such pol-

ygons, are to each other in the same ratio as the di-

ameters of the circles. Q. E. D.
Corol. 1. Since the radius is half the diameter,

circumferences are also as their radii.

Corol. 2. Similar arcs being the same parts of their

respective circumferences, are to each other as their

radii.

Corol. 3. The ratio of the arc which subtends an
angle to its radius, being an arc which subtends the

same angle in the circle whose radius is unity, it fol-
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lows that angles at the centers of different circles

are to each other as the ratio of the arcs which sub-

tend them to their radii.

THEOREM LXXII.

The areas or spaces of circles are to each other as

the squares of their diameters, or of their radii.

Let A, a denote the areas or spaces of two circles,

and D, d their diameters ; then A : a : : D? : d9
.

For (by th. 70) similar polygons inscribed in cir-

cles are to each other as the squares of the diameters

of the circles.

Hence, conceiving the number of the sides of the

polygons to be increased more and more, or the

length of the sides to become less and less, the pol-

ygon approaches nearer and nearer to the circle, till

at length, by an infinite approach, they coincide, and
become, in effect, equal ; and then it follows that the

spaces of the circles, which are the same as of the

polygons, will be to each other as the squares of the

diameters of the circles. Q. E. D.
Corol. The spaces of circles are also to each other

as the squares of the circumferences ; since the cir-

cumferences are in the same ratio as the diameters

(by th. 71).

THEOREM LXXIII.

The area of any circle is equal to the rectangle of

half its circumference and half its diameter.

Conceive a regular polygon to v^—~^E
be inscribed in a circle, and radii //\ / v\
drawn to all the angular points, 1/ \q/ \\

dividing it into as many equal tri- Ak- yfc yiD-

angles as the polygon has sides, v\ /|\ H/J
one of which is OBC, of which the \^/ \$\J/
altitude is the perpendicular OG,* B^——~^C

* The line OG is called the apophthegm of the polygon.
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from the center to the base BC. The other triangles

will have the same altitude (th. 35).

Then the triangle OBC is equal (th. 60, cor. 1) to

the rectangle of the half base BC and the altitude

( K ; ; consequently, the whole polygon, or all the tri-

angles added together which compose it, is equal to

the rectangle of the common altitude OG, and the

halves of all the sides, or the half perimeter of the

polygon.

Now, conceive the number of sides of the polygon
to be indefinitely increased ; then will its perimeter

coincide with the circumference of the circle, and
the altitude OG will become equal to the radius, and
the whole polygon equal to the circle. Consequently,

the space of the circle, or of the polygon in that state,

is equal to the rectangle of the radius and half the

circumference. Q. E. D.

Scholium. It will be shown that the ratio of the cir-

cumference of a circle to its diameter may be express-

ed approximately by the mixed decimal 3.1415926,

a number which in all mathematical books it is cus-

tomary to represent by the Greek letter n*
If now d denote the diameter of a circle, r the ra-

dius, c the circumference, and a the area, we shall

have the following formulae derived from the forego-

ing theorems

:

C = TTC? ... (1)

C = 27TT . . . (2)

a = nr2
... (3)

(1) is obtained by multiplying d by the ratio of c arid d

;

(2) " " substituting 2r for d in (1) ;

(3) " " multiplying (2) by { r, in accordance
with th. 73.

KXERCI8ES.

1. Prove that no two lines in a circle bisect each other except two

diameters.

2. Prove that lines drawn from the vertex of a triangle divide the

base and a parallel to the base proportionally.

* For the investigation of the ratio of the circumference of a circle

to its diameter, see Mensuration, at the last part of this volume.
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3. Prove that if a line bisect the external angle of a triangle, the

distances of the point in which it meets the side opposite from the

extremities of that side produced, will have the same ratio as the

other two sides of the triangle.

4. Through a given point, situated between the sides of an angle,

to draw a line terminating at the sides of the angle, and in such a

manner as to be equally divided at the point.

5. Prove that the hypothenuse of a right-angled triangle is to either

segment formed by a perpendicular upon the hypothenuse from the

opposite vertex, as the square on the hypothenuse is to the square on

the side adjacent the segment.

6. Construct a quadrangle similar to a given quadrangle, the sides

of the latter having to the former the ratio of 2 to 3.

7. Divide a line into parts proportional to three given lines.

8. To draw a line parallel to the base of a given triangle in such a

manner as to halve the triangle.

9. If from a point in the circumference of a circle two chords be

drawn to the extremities of any diameter and a perpendicular ; sup-

posing the diameter to be 20, and the ratio of the segment into which

the perpendicular divides it 2:3, what are the lengths of the

chords ?

10. To divide a given line into two parts, such that they shall have

the ratio of two given squares.

11. To find a line which shall be to a given line as \/£ : VlO.
12. To construct a triangle, having given the base, the vertical an-

gle, and the ratio of the two sides which contain it. (SeePr.21,p.84)

13. The same with the same ratio, the altitude and one of the an-

gles at the base given.

14. The same with the altitude, the ratio of the two segments of

the base, and the vertical angle.

15. The same when the base, the vertical angle, and the sum of the

squares of the two sides are given.

16. The same when the base, the altitude, and the 6um of the

squares of the two sides.

17. The same with the difference of the squares.

18. To inscribe in a given triangle another triangle of given angles

in such a manner that one of its sides may be parallel to one of the

sides of the given.

19. Also, when the required triangle is required to be similar to

the given, and one of its vertices at a given point in one of the sides

of the given triangle.

20. The same similar to another instead of the given triangle.
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21. To describe a circle passing through a given point, aud touch-

ing the two aides of given angle.

22. Through two points touching a given line.

23. Touching a line and circle, and passing through a given point.

24. To construct a square when the difference between its diagonal

and side are given.

25. To find a point in a given line from which, if lines be drawn

to two given points without, they shall have a given ratio.

20. Prove that if two circles touch each other, the secants through

the point of contact and terminating in the two circumferences are

divided proportionally at that point.

27. Prove that the two common tangents and the line joining the

centers of two circles meet in the same point.

28. Draw a tangent to two circles of different centers and radii.

29. Prove that if a line be drawn through the points of intersection

of two circles, tangents drawn from any point of this line will be

equal.

30. That two parallelograms are similar when they have an angle

in each equal contained by proportional sides.

31. Prove that the ratio of the diagonal to the side of a square is

that of v/2 to 1.

32. To construct a polygon similar to a given one, and bearing to it

a given ratio.

33. To construct a polygon similar to one given polygon and equal

to another.

34. Construct a rectangle equal to a given square, having the sum

of its sides equal to a given line. The same, except the difference

of the sides equal to a given line.

35. To find a point such that the sum of the squares of its distances

from two given points shall be equal to a given square.

D
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PROBLEMS.

PROBLEM I.*

To bisect a given line AB.

From the two centers A and B, with

any equal radii greater than AE, describe

arcs of circles, intersecting each other

in C and D ; and draw the line CD, which
will bisect the given line AB in the point E.

For C and D both belong to the per-

pendicular at the middle of AB (th. 17, D
corol. 1) ; and as but one line can be drawn through
two points, CD must be this bisecting perpendicular.

PROBLEM II.

At a given point C, in a line AB, to erect a perpen-

dicular.

From the given point C, with any ra- F
dius, cut off any equal parts CD, CE of

the given line ; and from the two cen-

ters D and E, with any one radius, /___ \__
describe arcs intersecting in F; then A D c E ^

join CF, which will be perpendicular, as required.

For the points F and C both belong to the perpen-

dicular at the middle of DE, and determine it. (See

note to Axioms.jf

* Many of the following problems are for the benefit of those who
omit the exercises.

t The most convenient way of drawing perpendiculai-s through
points within or without lines is by means of a rule and triangle

made of wood, metal, or any other hard substance.

The triangle is right-angled, and its hypothenuse being placed
against the rule, with one of its perpendicular sides coinciding with
the given line, the triangle is moved up or down obliquely, sliding

along the rule, till the other perpendicular side passes through the

given point ; a line drawn along this latter side will be the perpen-
dicular required.
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OTHERWISE.

When the point is near the end of the line.

Analysis.* Suppose the perpendic- F
ular CF drawn ; FCA will then be a

right angle. But we know that a right

angle is inscribed in a semicircle.

Hence the following construction. —
From any point D, assumed above A E c B

the line, as a center, through the given point C de-

scribe a circle, cutting the given line at E ; and
through E and the center D draw the diameter EDF ;

then join CF, which will be the perpendicular re-

quired.

Synthesis. For the angle at C, being an angle in a

semicircle, is a right angle, and therefore the line CF
is a perpendicular (by def. 12).

problem in.

From a given point A, to let fall a perpendicular on
a given line BC.

From the given point A as the center, a
with any convenient radius, describe an /\
arc, cutting the given line at the two
points D and E ; and from the two cen- _>%!

ters D, E, with any radius, describe two B VT / w

arcs, intersecting at F ; then draw AGF, \|/
which will be perpendicular to BC, as f
required.

With the rule and triangle, parallel lines to a given line may be
drawn through given points in an obvious manner.

Another method is by means of what is called a T rule, from its

resemblance to this letter, the cross-piece being thicker than the
other, so as to project below the edge of a rectangular drawing board,
upon which the paper is pasted. The lines drawn with this will bo
always parallel to the edges of the board, unless there be a move-
ment of one arm of the rule, so that it may be placed at any angle
with the other.

* The student may be exercised in giving the analysis of some
others of the problems.



76 GEOMETRY.

For the points A and F are both equally distant

from the points D and E ; hence AF is perpendicu-
lar at the middle of DE.

OTHERWISE.

When the point is nearly the opposite end of the line.

From any point D, in the given A
line BC, as a center, describe the arc
of a circle through the given point

A, cutting BC in E ; and from the b-

center E, with the radius EA, de-

scribe another arc, cutting the for-

mer in F; then draw AGF, which
will be perpendicular to BC, as required.

For the chords AE, EF being equal, their arcs

are equal, and the line DE, drawn through the center

D and middle point E of the arc AEF, is perpendicu-

lar to the chord AF of that arc. (See th. 34.)

PROBLEM IV.

To bisect a given angle.

Let ACB be the given angle.

With C as a center, describe an
arc, cutting the sides of the given
angle in A and B. Draw the chord
AB, and from C the perpendicular

CD to this chord, which (th. 34) will

bisect the given angle.

PROBLEM V.

To make a triangle with three given lines AB, AC, BC.

With the center A, and distance AC, de-

scribe an arc. With the center B, and dis-

tance BC, describe another arc, cutting the

former in C. Draw AC, BC, and ABC will

be the triangle required.

For the radii, or sides of the triangle, b c
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AC, BC are equal to the given lines AC, BC by con-

struction.

Note. If any two of the lines are not together

greater than the third, the construction is impossible.

PROBLEM VI.

At a given point A, in a line AB, to make an angle

equal to a given angle C.

From the centers A and C, with any
one radius, describe the arcs DE, BF.
Then, with radius DE, and center B,

describe an arc, cutting BF in G.

Through G draw the line AG, and it
c

will form the angle required.

Let the equal lines or radii, DE, Syk
BG, be drawn. Then the two trian-

gles CDE, ABG, being mutually equi-

lateral, are mutually equiangular (th. *
5), and have the angle at A equal to the angle at C*

PROBLEM VII.

Through a given point A, to draw a line parallel to

a given line BC.

From the given point A draw B D r
a line AD to any point in the ~p '

given line BC. Then draw the /
line AE, making the angle at A -£- —
equal to the angle at D (by prob.

6) ; so shall AE be parallel to BC, as required.

* Angles are made most conveniently with a protracter, which is

commonly a semicircle of metal, horn, or paper, divided into degreM
and parts of a degree. An angle equal to a given angle is protracted

by placing the diameter of the instrument upon one side of the given

angle, the center being at the vertex, and then the other side of the

given angle will pass through the number of the degrees which it

contains. If, then, the protracter be taken up and placed with its

diameter upon the given line, and center at the given point, and a
point marked on the paper at the same degree or division of the cir-

cumference, and this point joined with the given point, the required

angle will be formed.
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For, the angle D being equal to the alternate angle
A, the lines BC, AE are parallel, by th. 10.

FROBLEM VIH.

Given two sides of a triangle and the angle opposite

one of them to construct the triangle.

There will be two cases :

1. Where the given triangle is

right or obtuse. Draw two lines,

AB, AC, making with each other

the given angle. Take AC, equal A

to one of the given sides, and with C as a center and
the given side opposite the given angle as a radius,

cut the indefinite side AB in B. Join CB, and ABC
will be the triangle constructed with the given angle

and sides.

2. If the given angle be
acute, and the side opposite

be less than the other given
side, there will be two solu-

tions. The triangle ABF or

ABE, either of them being B

constructed with the given angle B and side AE or

AF. This is called a doubtful or ambiguous solution.

If AE or AF be just long enough to reach BC,
the two solutions coalesce, and the resulting triangle

ADB is right-angled at D. If AF is too short to reach
BC, the solution is impossible.

N.B.—With the exception of this case, it may be
said, as a general scholium, that a triangle is determ-
ined when any three parts* are given, one of which
is a side. Or, two triangles are equal when any
three parts, one of which is a side in the one, are

equal to the same in the other.

* The parts of a triangle are the three sides and the three angles

—

six in all.

/
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PROBLEM IX.

To divide a line AB into any proposed number of
equal parts.

Draw any other line AC,
forming any angle with the

given line AB ; on which set

off any line AD as many times

as there are to be parts in AB
ending at C. Join BC, parallel

to which draw DE, then AE A
will apply exactly the required number of times to

AB. For those parallel lines divide both the sides

AB, AC proportionally, by th. 61.

problem x.

To make a square on a given line AB.

Raise AD, BC, each perpendicular and d
equal to AB, and join DC ; so shall ABCD
be the square sought.

For all the three sides AB, AD, BC are

equal, by the construction, and DC is equal

and parallel to AB (by th. 21) ; so that all

the four sides are equal, and the opposite ones are

parallel. Again, the angle A or- B of the parallelo-

gram, being a right angle, the angles are all right

ones (cor. 1, th. 19). Hence, then, the figure, having
all its sides equal and all its angles right, is a square
(def. 32).

PROBLEM XI.

To make a rectangle or a parallelogram of a given
length and breadth, AB, BC.

Erect AD, BC perpendicular to AB, and D c
each equal to BC ; then join DC, and it is

done.

The demonstration is the same as in the A

last problem. B
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And in the same manner is described any oblique

parallelogram, only drawing AD and BC to make the

given oblique angle with AB, instead of perpendicu-
lar to it.

PROBLEM XII.

To make a rectangle equal to a given triangle ABC.
Bisect the base AB in D ; then raise c E f

DE and BF perpendicular to AB, and
meeting CF parallel to AB at E and F

;

so shall DF be the rectangle equal to the

given triangle ABC (by cor. of th. 23). a D u

PROBLEM XIII.

To make a square equal to the sum of two or more
given squares.

Let AB and AC be the sides of two
given squares. Draw two indefinite

lines, AP, AQ, at right angles to each
other, in which place the sides AB,
AC of the given squares ; join BC

:

then a square described on BC will be
equal to the sum of the two squares

described on AB and AC (th. 26).

In the same manner, a square may be made equal

to the sum of three or more given squares. For, if

AB, AC, AD be taken as the sides of the given

squares, then, making AE = BC, AD = AD, and
drawing DE, it is evident that the square on DE will

be equal to the sum of the three squares on AB, AC,
AD. And so on for more squares.

PROBLEM xiv.

To make a square equal to the difference of two given

squares.

Let AB and AC, taken in the same -—^jp
straight line, be equal to the sides of the f /\
two given squares. From the center A,

' /.
\\

with the distance AB, describe a circle,

and make CD perpendicular to AB, meeting the cir-

cumference in D : so shall a square described on CD



PROBLEMS. 81

be equal to AD a

(cor. 1, th. 26).

AC 3

, or AB a — AC 2

, as required

PROBLEM XV.

To make a triangle equal to a given polygon ABCDE.
Draw DB and CF parallel to it,

meeting AB produced at F ; then

draw DF ; so shall the polygon
DFAE be equal to the given pol-

ygon ABCDE.
For the triangle DFB - DCB

(th. 22) ; therefore, by adding

DBAE to the equals, the sums are equal (ax. 2), that

is, DBAE + DBF = DBAE + DCB, or the quad-
rilateral DFAE = to the pentagon ABCDE.

In a similar manner the number of sides of a pol-

ygon may be repeatedly reduced, by one each time,

till the polygon is changed into an equivalent triangle.

..-•'"

PROBLEM XVI.

To make a square equal to a given rectangle

Let AB, BC be equal to the ad- ^
jacent sides of the rectangle.

Produce one side AB till BC be
equal to the other side. On AC
as a diameter describe a circle

meeting the perpendicular BD at A B C

D ; then will BD be the side of the square equal to

the given rectangle, as appears by cor. 1, th. 66.

N

PROBLEM XVII.

To describe a circle about a given triangle ABC.
Bisect any two sides with two of the

perpendiculars FD, ED, or GD, and
the point D, in which they intersect,

will be the center.

For every point of the line FD must
be equally distant from the points B
and C (th. 17, corol. 1), and every point

D2
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of the line ED must be equally distant from A and B ;

hence the point D, common to these two lines, must
be at equal distances from the three points A, B, and
C, and the center of a circle passing through them.

Scholium. There is but one such circle. For its

center could not be out of the line FA (th. 18), nor out

of EC, and they intersect in but one point D.*
Note. The problem is the same, in effect, when it is

required

To describe the circumference of a circle through

three given points A, B, 0, or to find the center of a

given circle or arc.

Draw chords BA, BC, and bisect these chords per-

pendicularly by lines meeting in D, which will be

the center. (See last diagram.)

PROBLEM XVIII.

An isosceles triangle ABC being given, to describe

another on the same base AB, whose vertical angle shall

be only half the vertical angle C.

From C as a center, with the dis-

tance CA, describe the circle ABE.
Bisect AB in D, join DC, and pro-

duce to the circumference at E; join

EA and EB, and ABE shall be the

isosceles triangle required.

For every point of the perpendic-

ular DE is equally distant from A and B (th. 17, co-

rol. 1) ; hence the side EA must be equal to the side

EB of the triangle AEB, which is, therefore, isosceles,

and the angle ACB at the center must be double of
the angle AEB at the circumference, for they both
stand on the same segment AB.

* If the given triangle be acute angled, the center of the circle

will be within it; and if the triangle be equilateral, as in the dia-

gram, the center of the circle will be the center of the triangle, and
the perpendiculars at the middle of the sides will pass through the

vertices of the opposite angles.

If the triangle be obtuse angled, the center of the circle will fall

without; if right angled, the center will fall upon the hypothenuse.
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PROBLEM XIX.

Given an isosceles triangle AEB, to erect another on

the same base AB, which shall have double the vertical

angle E.

Describe a circle about the triangle

AEB, find its center C, and join CA,
CB, and ACB is the triangle required.

The angle C at the center is double

of the angle E at the circumference,

and the triangle ACB is isosceles ; for

the sides CA, CB, being radii of the

same circle, are equal.

PROBLEM xx.

To draw a tangent to a circle, through a given point A.

1. When the given point A is in the

circumference of the circle, join A
and the center O ; perpendicular to

which draw BAC, and it will be the

tangent, by th. 36.

2. When the given point A is out

of the circle, draw AO to the center

O ; on which, as a diameter, describe

a semicircle, cutting the given cir-

cumference in D ; through which
draw BADC, which will be the tangent, as required.

For join DO. Then the angle ADO, in a semicir-

cle, is a right angle, and, consequently, AD is perpen-

dicular to the radius DO, or is a tangent to the circle

(th. 36).

Scholium. The circle ADO cuts the given circle in

two points ; and there will be two tangents, AD
and AE, to the given circle from the same point A,

without. These tangents are equal in length, and the

line joining the point without and the center bisects

the angle which the tangents make with each other

;

for the right-angled triangles ADO, AEO, having the



84 GEOMETltV.

side OA common, and the side OD = OE being radii

of the same circle, the triangles are equal .*. AD =
AE and angle DAO = angle EAO.

PROBLEM XXI.

On a given line AB to describe a segment of a circle

capable of containing a given angle.

At the ends of the given line make
angles DAB, DBA, each equal to the

given angle C. Then draw AE, BE
perpendicular to AD, BD ; and with the A

/

center E, and radius EA or EB, describe
a circle ; so shall AFB be the segment
required, as any angle F made in it will

be equal to the given angle C.

For the two lines AD, BD, being perpendicular to the

radii EA, EB (by construction), are tangents to the

circle (th. 36) ; and the angle A or B, which is equal
to the given angle C by construction, is equal to the

angle F, being all three measured by half the arc AB
(th. 38 and 39).*

Scholium. One of the lines AD, BD may be omit-

ted, and a perpendicular drawn at the middle of AB
to meet the other at the point E.

* This problem is particularly useful in the survey of harbors.

Three points on the shore are chosen, which, being connected by
lines, form a triangle ; then from a boat, where a sounding is to be
made, the angles subtended by two of the sides of this triaugle are
measured with a sextant.

To transfer this to a map, there must first be made upon the paper
the triangle whose sides unite the three points upon the shore. Then
upon one of the sides of this triangle, by the above problem, make a
segment capable of containing one of the observed angles, and upon
the other a segment capable of containing the other observed angle

;

the point in which the arcs of these two segments intersect will be the

point on the map corresponding to that where the sounding was
made, and there the depth in fathoms or feet may be written down.
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PROBLEM XXII.

To inscribe an equilateral triangle in a given circle.

Through the center C draw any di- A
ameter AB. From the point B as a

center, with the radius BC of the given

circle, describe an arc DCE. Join AD,
AE, DE, and ADE is the equilateral

triangle sought.

Join DB, DC, EB, EC. Then DCB
is an equilateral triangle, having each side equal to

the radius of the given circle. In like manner, BCE
is an equilateral triangle. But the angle ADE is

equal to the angle ABE or CBE, standing on the same
arc AE ; also, the angle AED is equal to the angle
CBD, on the same arc AD ; hence the triangle DAE
has two of its angles, ADE, AED, equal to the an-

gles of an equilateral triangle, and therefore the third

angle at A is also equal to the same ; so that the tri-

angle is equiangular, and therefore equilateral.

PROBLEM XXIII.

To inscribe a circle in a given triangle ABC.

Bisect any two angles C
and B with the two lines CD,
BD. From the intersection D,

w(iich will be the center of the

circle, draw the perpendiculars

DE, DF, DG, and they will be

the radii of the circle required.

For, since the sides CB, CA,
are to be tangents, the line CD,
bisecting the angle which they form, must pass through

the center. (Prob. 20, schol.) For a similar reason,

BD must pass through the center. Hence it is at the

intersection D of these two lines.
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PROBLEM XXIV.

To inscribe a square in a given circle.

Draw two diameters AC, BD, je

crossing at right angles in the cen- S*
ter E. Then join the four extrem- / /
ities A, B, C, D with right lines, A/
and these will form the inscribed \\
square ABCD. V\

For the four right-angled trian- \
gles AEB, BEC, CED, DEA are B

identical, because they have the sides EA, EB, EC,
ED all equal, being radii of the circle, and the four

included angles at E all equal, being right angles, by
the construction. Therefore, all their third sides, AB,
BC, CD, DA, are equal to one another, and the figure

ABCD is equilateral. Also, all its four angles, A, B,

C, D, are right ones, being angles in a semicircle.

Consequently, the figure is a square.

PROBLEM XXV.

To find a fourth proportional to three given linesf

AB, AC, AD.

Place two of the given lines AB, A_^ B
AC, or their equals, to make any an- a -c
gle at A ; and on AB set off, or place, A d

the other line AD, or its equal. Join J<^\
BC, and parallel to it draw DE ; so -- \ \
shall AE be the fourth proportional, as

required.

For, because of the parallels BC, DE, the two
sides AB, AC are cut proportionally (th. 61) ; so that

AB : AC : : AD : AE.

PROBLEM XXVI.

T< find a mean proportional between two lines AB,
BC.
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Place AB, BC, joined in one straight A B

line AC ; on which, as a diameter, de- B c
scribe the semicircle ADC ; to meet ^—

£

which erect the perpendicular BD, and

it will be the mean proportional sought i

between AB and BC (by cor. 1, th. 66). * O B C

PROBLEM XXVII.

To make a square equal to a given triangle.

Find a mean proportional between the base and
half the altitude, or between the altitude and half the

base of the triangle, and it will be the side of the

square required.

Corol. To find a square equal to a given polygon,

first find a triangle equal to the given polygon by
Prob. 15, and then a square equal to the given trian-

gle. This is called quadrating the polygon.*

PROBLEM XXVIII.

To divide a given line in extreme and mean ratio.

Let AB be the given line

to be divided in extreme and
mean ratio, that is, so that the JJ*
whole line may be to the great- J),

er part as the greater is to the

less part.

Draw BC perpendicular to
A E B

AB, and equal to half AB. Join AC ; and with cen-

ter C and distance CB, describe the circle BD ; then

with center A and distance AD, describe the arc

DF ; so shall AB be divided in F in extreme and
mean ratio, or so that AB : AF : : AF : FB.

For produce AC to the circumference at E. Then,
ADE being a secant, and AB a tangent, because B is

a right angle ; therefore the rectangle AE'AD is equal

to AB 2
or AB-AB (cor. 1, th. 42) ; taking the first as

* The quadrature of the circle has occupied ingenious minds in a

fi uiilr>s undertaking from a remote antiquity. The impossibility of

this problem may be very satisfactorily proved.
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means, and second as extremes of a proportion (th.

54), we have AB : AE or AD 4- DE : : AD : AB.
Bat AF is equal to AD, by construction, and AB = 2

BC = DE ; therefore, AB : AF + AB : : AF : AB
or AF + FB ; and, by division (th. 47), AB : AF : :

AF : FB.

PROBLEM XXIX.

To describe a regular pentagon on a given line AB.

On AB erect the isosceles trian- q
gle ACB, having each of the an-

gles at the base double of its verti-

cal angle ;
# on AB again construct D<

another isosceles triangle whose
vertical angle AOB is double of A
CB, and about the vertex O place

the isosceles triangles AOD, DOC,
COE,*and EOB, each = AOB ; these triangles will

compose a regular pentagon.

For the angle AOB, being the double of ACB,
which is the fifth part of two right angles, must be
equal to the fifth part of four right angles ; and, con-

sequently, five angles, each of them equal to AOB,
will adapt themselves about the point O. But the

bases of those central triangles, and which form the

sides of the pentagon, are all equal ; and the angles

at their bases being likewise equal, they are equal in

the collective pairs which constitute the internal an-

gles of the figure. It is, therefore, a regular pen-

tagon.

PROBLEM XXX.

To describe a hexagon upon a given line AB.

From A and B as centers, with AB as radius, de-

scribe arcs intersecting in O (fig. to the next problem).

From O as a center, with the same radius, describe a
circle ABCDEF. Within this circle set off from B

* In the last diagram, AB being the given base. AE will be the
side of the isosceles triangle. (See Prob. 33.)
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the chords BC, CD, DE, EF, FA in succession, each

equal to AB : they will, together with AB, form the

bexagon required.

The demonstration is analogous to that of the fol-

lowing problem.

PROBLEM XXXI.

To inscribe a regular hexagon in a circle.

Apply the radius AO of the given

circle as a chord, AB, BC, CD, &c,
quite round the circumference, and it

will complete the regular hexagon AB
CDEF.

For, draw the radii AO, BO, CO, DO,
EO, FO, completing six equal triangles ;

of which any one, as ABO, being equilateral (by con-

str.), its three angles are all equal (cor. 2, th. 3), and

any one of them, as AOB, is one third of the whole,

or of two right angles (th. 15), or one sixth of four

right angles. But the whole circumference is the

measure of four right angles (cor. 4, th. 6). There-

fore the arc AB is one sixth of the circumference of

the circle, and, consequently, its chord AB one side

of an equilateral hexagon inscribed in the circle.

Cor. 1. The chord of 00° is equal to the radius of

the circumscribing circle.

Cor. 2. To inscribe an equilateral triangle, join the

alternate vertices of the inscribed hexagon.

PROBLEM XXXII.

On a given line AB to construct a regular octagon.

Bisect AB by the perpendic-

ular CD, which make = CA or

CB ;
join DA and DB ; produce

CD, making DO = DA or DB,
draw AO and BO, thus forming

an angle equal to the half of AD
B (Prob. 18), and about the ver-

tex O repeat the equal triangles

AOB, AOE, EOF, FOG, GOH, a o b
HOI, IOK, and KOB to compose the octagon.



90 GEOMETRY.

For CA, CD, and CB being all equal by construc-

tion, the angle ADB is contained in a semicircle, and
is, therefore, a right angle. Consequently, AOB is

equal to the half of a right angle, and eight such an-

gles will adapt themselves about the point O. Whence
the figure BAEFGHIK, having eight equal sides and
equal angles, each angle, as ABK, being the double
of ABO, is a regular octagon.

PROBLEM XXXIII.

To inscribe a regular decagon in a circle.

Divide the radius into extreme
and mean ratio, and the greater

segment will apply to the circum-
ference ten times. For let D be
the point of division on the ra-

dius. Then, since we have, by
construction,

CA : AB : : AB : AD,
the two triangles CAB, DAB
have the angle A common, and A B
the sides about the common angle proportional ; they
are, therefore (th. 65), similar. But CAB is isosceles,

CA and CB being radii ; therefore, ADB is isosceles

or AB = BD ; and since, by construction, AB = CD
.*. BD = DC, and the triangle DCB is isosceles, and
hence the angle C = CBD. But the exterior angle
ADB of the triangle DCB is equal to the sum of the

two interior and opposite (th. 13) ; or, since these are
equal, the angle ADB, or its equal DAB = CBA, is

equal to double the angle C. Hence the triangle CAB
is such that the angles A and B at the base are each
double the angle C at the vertex, or together are four

times the angle C ; or all three of the angles of the

triangle CAB are together equal to five times the an-

gle C. Hence the angle C = one fifth of two right

angles = one tenth of four right angles, and the arc
AB, therefore, which measures the angle C, is one
tenth the circumference.
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CoroL 1. By joining the alternate vertices of the

decagon, a pentagon may be inscribed.

CoroL 2. A pentedecagon may be inscribed by first

finding the arc of a decagon, then the arc of a hexa-

gon, and the difference between them will be the arc

of the figure required.

For i—TV = t't-

PROBLEM XXXIV.

To describe a circle about a regular polygon.

Bisect any two of the angles C and
D with the 'lines CO, DO; then their

intersection O will be the center of the

circumscribing circle ; and OC or OD
will be the radius.

For, draw OB, OA, OE, &c. f to the ^B
angular points of the given polygon. Then the tri-

angle OCD is isosceles, having the angles at C and D
equal, being the halves of the equal angles of the

polygon BCD, CDE ; therefore, their opposite sides

CO, DO are equal (th. 4). But the two triangles

OCD, OCB, having the two sides OC, CD equal to

the two OC, CB, and the included angles OCD, OCB
also equal, will be identical (th. 1), and have their

third sides BO, OD equal.

AO may be proved equal to BO in the same man-
ner that BO was proved equal to CO, and so on ; and
thus the point O be shown to be equidistant from all

the vertices of the polygon.

PROBLEM XXXV.

To inscribe a circle in a regular polygon.

Bisect any two sides of the polygon

by the perpendiculars GO, FO, and

their intersection O will be the center

of the inscribed circle, and OG or OF
will be the radius.

For if a circle be circumscribed

about the polygon, the perpendiculars
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GO, FO, at the middle of the chords, will meet in its

center O (schol. to th. 34), and the distances OG, OF,
&c, of these chords are equal (th. 35).

PROBLEM XXXVI.

On a given line to construct a rectilinearfigure sim-

ilar to a given rectilinearfigure.

Let abcde be the given d
rectilinear figure, and AB /f\^ d

the side of the proposed /j ^} c /P^*%
similar figure that is simi- / I /'

t/j /j
larly posited with ab. \ // / \Lr j

Place AB in the prolong- V I ^
J
b

ation of ab, or parallel to it.
A B

Draw AC, AD, AE, &c. parallel to ac, ad, ae, respect-

ively. Draw BC parallel to be, meeting AC in C ;

CD parallel to cd, and meeting AD in D ; DE parallel

to de, and meeting AE in E ; and so on till the figure

is completed. Then ABCDE will be similar to abcde,

from the nature of parallel lines and similar figures

(th. 68).

Otherwise, divide the given figure up into triangles

as in the diagram ; then upon ab make the triangle

abc equiangular with the triangle ABC, and upon ac,

acd, equiangular with ACD, and so on till the figure

is completed. (See the demonstr. of th. 68.)
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GENERAL NOTE UPON THE METHOD OF SOLUTION OF
PROBLEMS.

Lv every problem of Plane Geometry, it is necessary to trace upon a
plane, in accordance with given conditions, one or more right lines

or curves, one or more angles, one or more points.

The problem can be solved by the aid of the rule and compass, if

the entire system of lines to be traced, and the lines of construction,

are reduced to a system of right lines and circumferences of circles.

A line is determined when two of its points are known ; a circum-
ference when its center and a point of it, or when three of its points

;

and an angle when the two sides, or the vertex and another point in
each of the sides. The tracing, then, of a system of lines, circles,

augles, and points, aud, consequently, the solution of a problem of
Geometry, when this problem is resolvable by the aid of the rule and
compass, can be reduced to the determination of a certain number
of unknown points.

W c may call thai a simple problem which is reduced to the deter-

mination of a single unknown point, and that a compound problem
which requires the determination of several points. For a compound
problem, the nature of the solution may vary not only with the num-
ber and nature of the points proposed to be determined, but also

with the order of their determination ; and it is easy to perceive from
hence how the same problem of Geometry admits of different solu-

tions more or less elegant. But as the different unknown points

must be determined one after another, it is clear that, to resolve a
compound problem, it is only necessary to resolve successively a
amber of simple problems.

It remains to consider how a simple problem is to be solved.

In every simple problem the unknown point is generally deter-

mined by two conditions. By virtue of one of these conditions alone
the unknown point is not completely determined ; it will only be sub-

jected to the necessity of coinciding with one of the points situated

upon a certain right line or curve corresponding to this condition.

But if we have regard to the conditions united, the unknown point
must be situated, at the same time, upon the two lines corresponding
to the two conditions, and can, therefore, only be at one of the points

common to these two lines. Then, if the two lines do not meet, the
proposed geometrical problem is impossible, or incapable of solution.

It will admit of a single solution, if the two lines meet in a single

point ; it will admit of several distinct solutions, if the two lines in-

tersect in several points. Thus a simple determinate problem may
be considered as resulting from the combination of two other simple
problems, but indeterminate, each of which consists in finding a point

which fp'.llls a single condition, or, rather, the geometric locus of all

(he pi'its (infinite in number) which fulfill the given condition. If

this Condition is reduced to that of the unknown point being fond
upon a certain line, the geometric locus sought will evidently be this

line itself. It may be added, that very often the geometric locus cor-

responding to a given condition will comprehend the system of a
number of right lines or curves. Thu.--

f
for instance, if the unknown
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point is required to be at a given distance from a given right line, the

geometric locus sought will be the system of two parallel lines drawn
at the given distance from this line.

Let it be observed, moreover, that a simple problem, determinate
or indeterminate, will be resolvable by the rule and dividers, if each
of the geometric loci which serve to resolve it is reduced to a system
of right lines or circumferences.

To illustrate the above, the solutions of some simple and indeterm-
inate problems will now be indicated.

1° Prob. To find a point which shall be situated upon a given line.

Solution. The geometric locus which resolves this problem is the

line itself.

2° Prob. To find a point which shall be situate upon the circumfe-

rence of a given circle.

Solution. The geometric locus which resolves this problem is the
circumference of the given circle itself.

3° Prob. To find a point which shall be at a given distance from a
given pohit.

Solution. The geometric locus which resolves this problem is the
circumference of a circle described with the given point as a center,

and with a radius equal to the given distance.

4° Prob. To find a point which shall be situated at a given distance

from a given line.

Solution. The geometric locus wrhich resolves this problem is the

system of two lines drawn parallel to the given line, and separated
from it by the given distance.

5° Prob. To find a point which shall be at a given distance from
the circumference of a given circle.

Solution. The geometric locus which resolves this problem is the

system of two circumferences of circles which are concentric with
the given circle, and have radii equal to its radius, increased or dimin-

ished by the given distance.

6° Prob. To find a point which shall be situated at equal distances

from two given points.

Solution. The geometric locus which resolves this problem is the

perpendicular erected at the middle of the line which joins the two
given points.

7° Prob. To find a point which shall be situated at equal distances

from two given parallel lines.

Solution. The geometric locus which resolves this problem is a
third line parallel to the two others, and which divides their mutual
distance into two equal parts.

8° Prob. To find a point which shall be at equal distances from two
fines which intersect.

Solution. The geometric locus which resolves this problem is the

system of two new lines which bisect the angles comprehended be-

tween the given lines.

9° Prob. To find a point situated at equal distances from the cir-

cumferences of two given concentric circles.

Solution. The geometric locus which resolves this problem is a

third circumference concentric to the other two, and which divides

their mutual distance into equal parts.

10° Prob. To find a point from which lines drawn to the extrem-
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! ;i line given in length and position, form, with each other, a
right angle.

Solution. The geometric locus which resolves this problem tho

circumference of a circle which has the given line for a diameter.
11° Prob. To find a }xrint from which lines drawn to the extremi-

ties of a given line form, with each other, an obtuse or acute angle.

Solution. The geometric locus which resolves this problem is the

system of two segments of a circle described on the given line as a
coord, and capable of containing the given angle.

12° Prob. To find a point the distances of which, from two given
points, shall have a given ratio.

Solution. The geometric locus which resolves this problem is the

circumference of a circle, one diameter of which has, lor extremities,

the two points which fulfill the prescribed condition upon the line

drawn through the two given points.

13° Prob. To find a point the distances of which, from two given
lines, 6hall be in a given ratio.

Solution. The geometric locus which resolves this problem is the
g-stem of two new fines which divide the angles comprehended be-

tween the given lines into parts, the trigonometric sines of which
have the given ratio.*

14° Prob. To find a point the distances of which, from two given
points, are the sides of squares, the difference of which is equal to a
given square.

Solution. The geometric locus which resolves this problem is the
perpendicular erected upon the line which joins the two given points
at the point of this line which fulfills the given condition.

15° Prob. To find a point the distances of which, from two given
points, are sides of squares, the sum of which is equal to a given
square.

Solution. The geometric locus which resolves this problem is the
circumference of a circle, one diameter of which has, lor extremities,

the two points which fulfill the prescribed condition, upon the line

joining the two given points.

16° Prob. To hud a point such that the oblique line drawn from
this point to a given line, under a given angle, shall have a given
length.

Solution. The geometric locus which resolves this problem is a sys-

tem of two lines drawn parallel to the given line through the extrem-
ities of a secant line, which, having its middle point upon the given
line, cuts it at the given angle, aud has a length double the given
length.

17° Prob. To find a point such that the secant, drawn from this

point to the circumference of a given circle and parallel to a given
liii'". shall be of given length.

Solution. The geometric locus which resolves this problem is the
system of two new circumferences, the radii of which are equal to

that of the given circumference, and the centers of which are the ex-
tremities of a line which, having its middle point at the center of the
given circle, is parallel to the given fine, and of a length equal to doub-
le the given length.

* This solution, of course, requires a knowledge of the first princi-
ples of Trigonometry.
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18° Prob. A point and a line being given, to find a second point

which shall be the middle of a secant drawn from the given point to

the given line.

Solution. The geometric locus which resolves this problem is a

new line drawn parallel to the given line, and which divides into

ecpial parts the distance of the given point from this line.

19° Prob. A point and the circumference of a circle being given, to

find a second point which shall be the middle of a secant drawn from
this point to the circumference.

Solution. The geometric locus which resolves this problem is a

new circumference of a circle which has for its radius the half of ths

radius of the given circumference, and for its center the middle of

the distance of the given point, from the center of the given circle.

20° Prob. To find a point the distance of which, from a given

point, has its middle upon a given line.

Solution. The geometric locus which resolves this problem is a new
line drawn parallel to the given line, at a distance equal to that which
separates this line from the given point.

21° Prob. To find a point the distance of which, from a given

point, has its middle upon the circumference of a given circle.

Solution. The geometric locus which resolves this problem is a new
circumference which has for its radius the double of the radius of the

given circumference, and for its center the extremity of a line, the

half of which is the distance of the given point from the center of the

given circle.

22° Prob. Two points being given, symmetrically placed on oppo-

site sides of a given axis, to find a third point such that the line drawn
from this third point to the first shall meet the given axis at equal dis-

tances from the second and third points.

Solution. The geometric locus which resolves this problem is a line

drawn parallel to the given axis, at a distance equal to that which sep-

arates it from the given point.

23° Prob. A circle being given and a chord, to find a point such

that the line drawn from this point to one of the extremities of a chord

shall meet the circumference of the circle at equal distances from this

point and from the other extremity.

Solution. The geometric locus which resolves this problem is the

system of two new circumferences of circles which have for a common
chord the given chord, and for centers the extremities of the diame-
ter perpendicular to this chord in the given circle.

24° Prob. Two lines perpendicular to each other being given, to

find a point which shall be at the middle of a secant of given length

comprehended between these two lines.

Solution. The geometric locus which resolves this problem is a cir-

cumference of a circle which has for its center the point common to

the two lines, and for its radius half the given length.

25° Prob. To find in a given circle a point which shall be the mid-
dle of a chord of given length.

Solution. The geometric locus which resolves this problem is a cir-

cumference wrhich has for its center the center of the given circle,

and for its radius the distance from this center to any one of the

chords drawn so as to be of the given length.

26° Prob. To find out of a given circle a point which must be the

extremity of a tangent of given length.
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Solution. The geometric locus which resolves this problem is a cir-

cumference of a circle which has lor its center the center of the gives
circle, and for its radius the distance from this center to the extremi-

ty of any one whatever of the tangents, drawn in such a manner as to

be of the given length.

27° Prob. To find out of a given circle the point of meeting of

two tangents, drawn through the extremities of a chord which con-

tains a given point.

Solution. The geometric locus which resolves this problem is the

polar line corresponding to the given point. (See Appendix II.)

The solutions above given are easily deduced from well-known the-

orems of Geometry. A great number of problems, both simple and
indeterminate, could be pointed out, the solutions of which would re-

duce themselves, m a similar manner, to systems of right lines and,

circumferences of circles. Let it be observed, moreover, that from
the solutions of n problem* of this kind, in each of which the unknown
point is subjected to a single condition, we can deduce immediately

the solutions of ' simple and determinate problems, in each of

which the unknown point is subjected to two conditions. For, to ob-
tain a simple and determinate problem, it is sufficient to combine two
conditions corresponding to two simple but indeterminate problems,
or even two conditions alike and corresponding to a single indeterm-
inate problem. But the number of combinations of n quantities, two
and two, is (see Alg., art. 203),

n(n—1) .

2

and. adding to this number that of the quantities themselves, the re-

sult is,

n(n— 1) _n(n-\-l)

2 2

This result increases very rapidly with n. Thus, if n=27,
t

7~

=378; that is. the solution of the 27 indeterminate problems enun-
ciated above furnishes already the means of resolving 378 simpler

and determinate problems.
In order that the principles just brought to view maybe the better

apprehended, they will now be applied to the solution of some de-
terminate problems.

Suppose, first, that it is required to draw a tangent to a circle

through a point without. The question may be reduced to seeking
the unknown point of contact Of the tangent with the circle. The
two conditions which this point must satisfy are, 1°. That it shall be
upon the circumference of the given circle. 2~. That lines drawn
from this point to the given point and the center of the circle should
make a right angle with each other. Then the question to be re-

solved will be a determinate problem, resulting from the combina-
tions of the indeterminate problems, -2 and 10.

The combined solutions of 9 and 10 furnish, in fact, the solutions

heretofore given (Prob. 20, p. 83).
Suppose, secondly, that it required to circumscribe a circle about

The question can be reduced to seeking for the cen-

E
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ter of the circle. But the two conditions which this center nr.

isfy will be those <>f being not only at equal distances from the first

and second vertex of the given triangle, but also at equal distances

from the first and third. Then the question to resolve will be a de-

terminate problem resulting from the combination of two indeterm-

inate problems identical with each other and with problem G. In

fact, the solution of problem 6, twice repeated, will furnish two geo-

metric loci, reduced to two right lines, which cut each other in a sin-

gle point, and thus will be obtained the known solution of the prob-

lem proposed.

Suppose, next, that the question is how to draw a circle tangent to

the three sides of a given triangle.

The question can be reduced to finding the center of the given cir-

cle. But the two conditions which this center must satisfy will be
not only to be at equal distances from the first and second side of the

given triangle, but also at equal distances from the first and third

sides. Then the question to be resolved will be a determinate prob-

lem, resulting from the combination of two indeterminate problems
identical with one another, and with problem 8. In fact, the solution

of problem 8 twice will furnish two geometric loci, which, reduced
each to the system of two right lines, will cut each other in four points,

and thus four solutions will be obtained of the proposed problem.
Suppose, finally, that the question is to inscribe between a chord

of a circle and its circumference a line equal and parallel to a given

line. The question can be reduced to seeking either one of the two
points which will form the extremities of this line, and, consequently,

to a determinate problem resulting from the combination of two hide-

terminate problems, to wit, problems 1 and 17, or problems 2 and
16. In fact, by the aid of this combination, the question proposed is

resolved without difficulty. And one of the extremities of the line

sought will be found determined either by the meeting of the circum-

ference of the given circle with a new line, or by the meeting of the

given chord with a new circumference.

It is seen here how the solution obtained may be modified when
the order comes to be inverted in which the unknown points are de-

termined.
The construction of the geometric locus which corresponds to a

simple and indeterminate problem may itself require the resolution

of one or more determinate problems. It should be observed, upon
this subject, that in the case where the problem is resolvable by the

rule and compass, the geometric locus should reduce to a system of

right lines and circles. Then, since each line or each circumference

finds itself completely determined when there are known two or three

points of it, the construction of the geometric locus, corresponding to

a simple and indeterminate problem, can always be deduced from the

construction of a certain number of points suitable to verify the con-

dition which ought to be fulfilled, in virtue of the enunciation of the

problem, by the unknown point.

Thus, for example, to resolve problem 6 ; that is to say, to find a

point which shall be situated at equal distances from two given points,

and, consequently, to construct the geometric locus which shall con-

tain every point suitable to fulfill this condition. We begin by seek-

ing such a point, for example, one the distance of which from the
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given points is sufficiently great. But the solution of this last prob-
lem deduces itself immediately from problem 'h which, twice repeat-

ed, will furnish ;it once two points that fulfill the proposed condition;

consequently, two points which suffice to determine the geometric
locus required.

Tims, again, to resolve problem 15; that is to say, to find a point
the distances of which, from two points given, shall furnish squares
the sum of which shall be equal to a given square, and, consequently,
to construct the geometric locus of every point suitable to fulfill this

condition. We can commence by seeking such a point; for exam-
ple, that which shall be situated at equal distances from the two given
points, and, consequently, separated from each of them by a distance
ecjual to half the diagonal of the given square. But the solution of
this last problem deduces itself immediately from the solution of prob-
lem 3, and, twice repeated, will furnish at once, also, two points which
will fulfil] the proposed condition. Moreover, these two points are
precisely the extremities of a diameter of the circle, the circumference
of which represents the geometric locus required.

The above note is from a recent article by the celebrated Cauchy.
Although designed by him as an introduction to a new method of re-

solving determinate geometric problems by means of the Indetermin-
ate Analysis (for an exhibition of which, see Comptes Rendus de
L'Acadamie des Sciences, No. 17, 21 Avril, 1843, p. 8G7, and No. 19,

IS Mai, 1843, p. 1039), yet it is calculated to afford important aid to

the solution of problems by the processes of ordinary geometry.
M. Cauchy acknowledges that it is but the development Of some

principles, the memory of which he has preserved, which were con-
tained in the course of lectures given by Dinet, at the Lycee Napoleon,
some forty years ago.
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MISCELLANEOUS EXERCISES IN PLANE GEOMETRY.

1. Prove that all regular polygons of the same number of sides are

similar figures.

2. That if a line join the middle points of two sides of a triangle,

it will be parallel to the third side and equal to its half.

3. To describe a circle about a given square.

4. To divide a right angle into three equal parts.

5. To circumscribe about a given circle a triangle one side of

which is given.

6. Find the length of the circumference of a circle in seconds of a

degree.

7. Find the length of the radius in seconds of a degree.

8. Find the length of 1" to radius 1.

9. Prove that a straight line can meet a circumference in but two

points.

10. From a given point without a circle to draw a secant such

that the part within the circle shall be equal to a given line.

11. To draw to a circle a tangent of given length, and termina-

ting at a given line, which cuts the circumference.

12. An inscribed polygon being given, to circumscribe another

similar.

13. Prove that of two convex lines, broken or curved, termina-

ting at the same points, the enveloped is less than the enveloping line.

14. Prove that the difference between the sum of the two per-

pendicular sides of a right-angled triangle and the hypothenuse is

equal to the diameter of the inscribed circle.
,

15. To trisect a given finite straight line.

16. Prove that if, from the extremities of the diameter of a sem-

icircle, perpendiculars be let fall on any line cutting the semicircle,

the parts intercepted between those perpendiculars and the circum-

ference are equal.

17. If, on each side of any point in a circle, any number of equal

arcs be taken, and the extremities of each pair joined, the sum of the

chords so drawn will be equal to the last chord produced to meet a

line drawn from the given point through the extremity of the first arc.

18. That if two circles touch each other, and also touch a straight

line, the part of the line between the points of contact is a mean pro-

portional between the diameters of the circles,

19. From two given points in the circumference of a given circle

to draw two lines to a point in the same circumference, which 6hall
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cut a line giveu in position, so that the part of it intercepted hy them

may be equal to a given line.

20. Prove that if, from any point within an equilateral triangle,

perpendiculars be drawn to the sides, they are together equal to a

perpendicular drawn from any of the angles to the opposite side.

21. That if the three sides of a triangle be bisected, the perpen-

diculars drawn to the sides, at the three points of bisection, will meet

in the same point.

22. If from the three vertices of a triangle lines be drawn to the

points of bisection of the opposite sides, these Hues intersect each

other in the same point.

23. The three straight lines which bisect the three angles of a

triangle meet in the same point.

24. If from the angles of a triangle perpendiculars be drawn to

the opposite sides, they will intersect in the same point.

•J
-'». If any two chords be drawn in a circle, to intersect at right

angles, the sum of the squares of the four segments is equal to the

square of the diameter of the circle.

26. In a given triangle to inscribe a rectangle whose sides shall

have a given ratio.

27. Prove that the two sides of a triangle are together greater

than the double of the straight line which joins the vertex and the

bisection of the base.

28. That if, in the sides of a square, at equal distances from the

four angles, four other points be taken, one in each side, the figure

contained by the straight lines which join them shall also be a square.

29. That if the sides of an equilateral and equiangular pentagon

be produced to meet, the angles formed by these lines are together

equal to two right angles.

30. That if the sides of an equilateral and equiangular hexagon

be produced to meet, the angles formed by these lines are together

equal to four right angles.

31. If squares be described on the three sides of a right-angled

triangle, and the extremities of the adjacent sides of any two squares

be joined, the triangles so formed are equal, though not identical,

to the giveu triangle, and to one another.

32. If the squares be described on the hypothenuse and sides of

a right-angled triangle, and the extremities of the sides of the former

square, and thoso of the adjacent sides of the others, be joined, the

sum of the squares of the lines joining them will be equal to five

times the square of the hypothenuse.

33. To bisect a triangle by a line drawn parallel to one of its sides.
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34. To divide a circle into any number of concentric equal aunuli.

35. To inscribe a square in a given semicircle.

36. Prove that if, on one side of an equilateral triangle, as a diam-

eter, a semicircle be described, and from the opposite angle two
straight lines be drawn to trisect that side, these lines produced will

trisect the semi-circumference.

37. Draw straight lines across the angles of a given square, so as to

form an equilateral and equiangular octagon.

38. Prove that the square of the side of an equilateral triangle, in-

scribed in a circle, is equal to three times the square of the radius.

39. To draw straight lines from the extremities of a chord to a point

in the circumference of the circle, so that their sum shall be equal to

a given line. N.B. The given line must evidently be limited.

40. In a given triangle to inscribe a rectangle of a given area.

41. Given the perimeter of a right-angled triangle, and the perpen-

dicular from the right angle upon the hypothenuse, to construct the

triangle.

42. In an isosceles triangle to inscribe three circles touching each

other, and each touching two of the three sides of the triangle.

43. To construct a trapezoid when four sides are given.

44. The same when three sides and the sum of the angles at the

base are given.

45. When the two sides not paralel, the altitude and an angle

are given.

46. When the difference of the parallel sides, the diagonal, a third

side, and an augle.

47. Prove that the line drawn to the middle of the hypothenuse

from the vertex of the right angle in a right-angled triangle is equal

to half the hypothenuse.

48. Prove that if the four angles of a parallelogram be bisected,

and the points in which two of the bisecting lines adjacent one side

meet be joined with that in which the two bisecting lines adjacent

the opposite side meet; 1°, that the joining line will be parallel to the

other two sides; 2°, that it will be equal to the difference of two

adjacent sides.

49. That in any quadrilateral the lines joining the middle points

of the opposite sides, and the line joining the middle points of the

diagonals, meet in the same point, and all three bisect one another.

50. That the rectangle of the two sides of any triangle is equal to

the rectangle of the perpendicular upon the third side from the ver-

tex opposite,

angle.
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51. Prove that the rectangle ql the diagonals of an inscribed quad-

rilateral is equal to the sum of the rectangles of the opposite sides.

52. Prove that the square of the line bisecting the vertical angle of

a triangle, together with the rectangle of the two segments of the

baae, is equal to the rectangle of the other two sides of the triangle.

53. To find two lines that shall have the same ratio as two given

rectangles.

54. Draw a transverse line to two circles such that the parts com-

prehended within the circumferences shall be equal to a given line.

55. To inscribe in a circle (radius not given) a triangle of given

base, vertical angle, and altitude.

56. In a given circle to place six others, so that each shall touch

two others, and the given.

57. To construct a figure similar to two given similar figures, anJ

equal to their sum or difference.
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ISOPERIMETRY.
Def 1. A maximum is the greatest quantity among those of the

same kind ; a minimum the least.*

Def. 2. Isoperimetrical figures are those which have equal periui-

MttB.

THEOREM I.

Among all triangles of the same perimeter, that is, a maximum in

which the undetermined sides are equal.

Let ABC, ABD be the two triangles.

With C as center, and radius CA, de-

scribe a circle cutting AC produced in

F ; ABF, inscribed in a semicircle, will

be a right angle ;
produce FB, making

DE = DB, and draw the perpendiculars

DII, CG. It will be easy to show of

the oblique lines that AE < AF .-. BE
< BF .\ BH < BG; these last two be-

ing the altitudes of the given triangles

which have a common base.

THEOREM II.

Of all isoperimetric polygons the maximum has its sides equal.

By drawing a diagonal in the polygon so as to cut off two sides

forming a triangle ; if these two sides be not equal, they may be re-

placed fcy two others which are equal, and which, by the last theorem,

will inclose a greater triangle. This process may be repeated with

all the sides of the polygon.

THEOREM III.

Of all triangles formed with two given sides, that is, a maximum in

which the two given sides make a right angle.

For with the same base it will have the greater altitude.

* These definitions are suited to our present purpose.
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THEOREM IV.

Of all polygons formed with sides all given except one side, that is,

a maximum, of which the given sides are inscribed in a semicircle, of

which the side not given is the diameter.

Let ABCDEF be the maxim-

um polygon formed with sides

all given except AB. Join AD,

BD ; then ADB must be a right

angle : otherwise, preserving the

parts BCD and ADEF the same, Ai

the triangle ADB might be increased (th. 3) ; the point D must, there-

fore, be in the semicircumference described on AB as a diameter.

In the same manner it may be proved that the points E, F, C, &c.,

must be in the semicircumference. Q. E. D.

Schol. There is but one way of forming the polygon ; for if, after

having found a circle which satisfies the requisition, a larger circle be

supposed, the chords which are the sides of the polygon correspond

to smaller angles at the center, and the sum of these will be less than

two right angles.

THEOREM V.

Of all polygons formed with given sides, thai is, a maximum which

can be inscribed in a circle.

Let ABCEFG be an inscribed polygon, abcefg one which is not

capable of being inscribed, and of equal sides with the former ; draw

the diameter EM ; join AM, MB; upon ab make the triangle abm =
ABM, and join em. By th. 4, EFGAM > efgam and ECBM> ecbm

.-. by addition, EFGAMBC minus AMB > efgambc minus amb. Q.

E.D.

Corollary from the two last propositions. The regular polygon is

the maximum among all isoperimetric polygons of the same number of

sides.
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TMEORKM VI.

Of all regular isoperimelric polygons, that is the greatest which has

the greatest number of sides.

Let DE be the half side of one of the polygons, O its center, OE its

apothegm. AB, C, CB the same for the other; DOE, ACB will be

the half angles at the centers of the polygons ; and as these angles are

not equal, the lines CA, OD, prolonged, will meet at the point F ; from

this point draw FG perpendicular to OC ; with O and C as centers,

describe arcs GI, GH.

Now, DE is to the perimeter of the first polygon as O is to four right

angles, and AB : perim. 2d polyg. : : C : 4 r. angs. .-. DE : AB : : O : C,

and .-. (th. 71, corol. 3), DE : AB : :^L :

C
l!l. Multiplying the ante

OG CG
cedents by OG, and the consequents by CG,

DE X OG:AB XCG::GI:GH.
But the similar triangles ODE, OFG give

OE : OG : : DE : FG .-. OE X FG = DE X OG (th. 54).

In the same manner it may be shown that

AB X CG = CB X FG
Therefore, by substitution,

OE X FG : CB X FG : GI : GH.
If, then, it can be shown that the arc GI > arc GH, it will follow that

the apothegm OE is greater than the apothegm CB.

Make the figures CKx = CGx, CKH = CGH.
Then KcG > KHG (see exercise 13 of the miscellaneous exercises).
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.-. Gz= I K*G > GH = iKHG.
Much more GI > GH. Q. E. D.*

Corollary from the preceding Propositions.—The circle is the great-

est of all figures of the same perimeter; for it may be regarded as a

regular polygon of an infinite number of sides.

* It has been seen in the note to corol. 4, th. 1G, that equilateral

triangles, squares, and regular hexagons are the only figures which
will, in juxtaposition, leave no intervening space. It appears, also,

from the present proposition, that the 6pace inclosed in the regular

hexagon is greater than that inclosed in the square or triangle of the

same perimeter. Some writers on natural theology call attention to

the fact that the cells of the bee-hive being made in the form of reg-

ular hexagons, thus affording the greatest space with a given amount
of the material employed in their construction, indicate an instinct

working in accordance with the most recondite principles of geometry.
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CENTERS OF SYMMETRY.
Def. 1. When the vertice8 of two polygons, or of the same polygon,

are two and two upon lines meeting in a point interior, and at equal

distances from this point, the point is called the center of symmetry.

Theorem 1. Prove that all lines drawn to opposite parts of the

figure through the center of symmetry are equally divided at this

point. 2. That the opposite sides of the figure or figures are equal,

parallel, and arranged In a reverse order. 3. The converse.

Def. 2. Two points are said he situated symmetrically with respect

to a line when this line is perpendicular to that which joins the two

points, and divides it into two equal parts.

OF AXES OF SYMMETRY.

Two polygons, or portions of one polygon, are said to be symmet-

rical with respect to a line when their corresponding vertices are

symmetrical. The line in such a case is called an axis of symmetry.

Def. 3. An isosceles trapezoid is one whose inclined sides are

equal.

Theorem. Prove that the line joining the middle points of the par-

allel bases of such a figure is an axis of symmetry.

Theorem 2. Prove that the isosceles trapezoid may be inscribed in

a circle.

General Theorem. Prove that every figure which has two axes of

symmetry perpendicular to each other has a center of symmetry at

their intersection.

Schol. Show that these axes divide the figure into four equal parts.

OF DIAMETERS.

Theorem 3. When the vertices of two polygons or of a same polygon

are two and two upon lines parallel, and equally divided by a

mkdian line, this median line bisects, also, every other line parallel to

the former, and terminating at the sides of the figure or figures.

CENTER OF MEAN DISTANCES.

Def. 4. If the middle points of the consecutive sides of a polygon

be joined, a new polygon will be formed of less perimeter an<i
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evidently, than the perimeter and area of the first. Proceeding in

the same manner with the second, a third is obtained, still smaller,

and so on. These operations being continued indefinitely, the result

will be at length a polygon, infinitely small, which may be regarded

as a point. This point is called the center of mean distances. It has

a remarkable property. The distance of this point from any given-

line is equal to the quotient of the sum of the distances of all the vertices

of the polygon from this given line, divided by the number of vertices.

The student may prove this by proving the sum of the distances of

the vertices of the second polygon equal to that of the first, and so on,

till the polygons are reduced to a point, the center of mean distances.

Cor. From this will follow a construction for determining the cen-

ter of mean distances, viz., determine its distance from two given

lines by dividing the sum of the distances by the number of vertices

of the polygon, and, drawing parallels to these two lines at the dis-

tances thus determined, these parallels will, by their intersection, de-

termine the point required.

Def. 5. Polygons are said to be inversely similar when one is similar

to a polygon symmetric with the other.

CENTERS OF SIMILITUDE.

Def. 6. The center of similitude is a point placed in such a manner
with reference to two polygons, directly similar, as that, if a line be

drawn through it to two homologous vertices of the polygons, the

direction of these vertices from the point shall be the same, and the

lines proportional to the homologous sides.

The distances from this point to the homologous vertices are called

radii of similitude.

If, from a point taken at pleasure, lines be drawn to the vertices of

a polygon, and upon these lines or their prolongations parts be taken

proportional to them, the points thus obtained will determine a new
polygon similar to the given polygon, and the arbitrary point will be

the center of similitude of the two polygons.

The center of similitude may be either external or internal to the

two polygons. (See diagram of note to th. 69 for an external center.)

Two similar polygons which have their sides respectively parallel,

and directed the same or contrary ways, have in the first case an ex-

ternal, and in the second case an internal center of similitude. In

the latter case it is between homologous vertices.

Theorem. Prove that when three similar polygons have their sides

respectively parallel, their three centers of similitudes are upon the

line.
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THEOREM.

Two polygons (directly^ similar, situated in any manner upon a

plane, have always a common homologous point*

By this is to be understood that there exists in the plane of the two

polygons a point such that, if it be joined with the vertices of the

two polygons, the homologous lines of junction will have the ratio of

similitude of the two polygons^ and that the angles formed by these

lines are equal each to each.

E D

—->*

Let ABODE, abcde be the two polygons, and N the point in which

the. two sides AB, ab meet. Find P, the center of a circle passing

through A, a and N, or equally distant from these three points, and

Q point equally distant from B, b and N. Join PQ. Then find the

point symmetric to N, with reference to the line PA. O will be

the point required.

* That is, a point from which homologous lines, drawn to the vert-

ices of the two polygons, will have the ratio of similitude of the pol-

ygons, nii*l form with each oilier equal angles.

This theorem is due to M. Chasles, and is demonstrated in the Bul-
letin des Sciences Mathematique of Ferussac for 1830.

t See note to def. 67.
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For APN, APO are isosceles triangles, and give the angle PAN =
PNA, and angle PAO = POA .-. NPA' = 2PAN, OPA' = 2PAO

;

or, by addition, NPO = 2NAO, i. e., NPO = 2BAO.

Similarly, the two triangles aPN, aPO give

NPO bs 2NaO, or NPO = 2baO .-. BAO = baO.

Reasoning upon the four points Q, B, b, N in the same manner as

upon the four points P, A, a, N, it may be proved that the angles ABO
and abO are equal. Thus the triangles OAB, Oab are similar, and

give

OA : Oa : : OB : Ob : : AB : ab.

The same would result from any number of triangles.

Scholium. The point O is the only common homologous point of the

two polygons. Every line passing through it is called a common ho-

mologous line, and conversely.

The center of similitude of two polygons is their common homolo-

gous point.

There is another mode of construction which seems more natural

than that just given.

Determine the circumference of a circle, every point of which shall

be at distances from two homologous vertices A, a in the ratio of simil-

itude of the two polygons (see Prob. 12 of General Note, p. 95) ; re-

peat the same construction for two other vertices B, b; one of the

points in which the two circumferences intersect will be the point

sought.

CENTERS OF SIMILITUDE IN CIRCLES.

THEOREM.

Two circles, as well as two regular polygons of an even number of

sides, have two centers of similitude, the one internal and the other ex-

ternal.

When the two circles are exterior to each other, prove that the

points in which their common tangents meet are centers of simili-

tude. This point may be found by dividing the line, joining the cen-

ters in the ratio of the radii.

When the circles touch each other externally, prove that the point of

contact is an internal center of similitude ; and that if they touch each

other internally, the point of contact is an external center of simil-

itude.

There exist several other remarkable particular cases.

For two concentric circles, the centers of similitude unite in the

common center.

For two equal circles, the internal center of similitude is at the
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middle of the line joining their centers ; the external is at an infinite

distance.

When one of the circles degenerates into a right line, 1°. The cen-

ters of similitude are, at die i -xtremities of a diameter of the other

circle, perpendicular to the line. 2°. If one of the circles reduces

to a point, that point is itself the center of similitude, both internal

and external.

Scholium. To be proved. When three circles are situated upon

the same plane which gives six centers of similitude ; 1°. The three

d centers of similitude ; 2°. One external and two internal—are

vpon a same line, which gives four lines, passing through six point3

combined, three and three.

RADICAL AXIS AND RADICAL CENTER.

Definitions. A radical axis of two circles is the locus of points from

each of which equal tangents can be drawn to the two circles.

Construction. Divide the line joining the centers of the two circles

in such a manner that the difference of the squares of the two parts

is equal to the difference of the squares of the radii, and the perpen-

dicular to this line at the point of division will be a radical axis.

Trove that to find the point on the line joining the centers it is

only necessary to lay off from the middle of this line, on the side

toward the smaller circle, a distance equal to half a third propor-

tional to the distance between the centers and the square root of the

difference of the squares of the radii. (See Prob. 14, p. 80.)

Each particular case, however, presents a more simple construction.

1°. If the circles be exterior, or in any position for which there exists

I common tangent, as the middle point of the portion of this tangent

comprehended between the two points of contact belongs to the rad-

ical axis, we draw through this point a perpendicular to the line join-

iii'' the centers of the circles, and thus have this axis. 2°. When the

circles touch either exteriorly or interiorly, the common point of the

two circumferences belongs necessarily to the radical axis, and thus

leads to its determination, as before. It is then the common tangent

to the circles at this point. 3°. When the circles cut each other, the

common chord produced both ways is the radical axis.

Concentric circles have no radical axis. When the two circles are

equal, the radical axis is the perpendicular at the middle of the line

joining the centers.

h' one of the circles be reduced to a point, the radical axis is ob-

tained by joining the middles of the tangents drawn from this point to

the other circle.
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If one of the circles degenerates into a right line, the radical axis is

the line itself.

Radical Center.— Three circles situated in the same plane (the

centers of which are not in the same line) give, by their combination

two and two, three radical axes ; and these three axes cut each other

in the same point.

For the two first cutting each other, and being respectively perpen-

dicular to two lines which cut, their point of intersection is such that

there can be drawn from this point to the three circumferences equal

tangents ; consequently, it belongs to the third radical axis.

This point is called the radical center of the three circles.

From this definition, and from what has been shown above, it fol-

lows, that if three circumferences intersect, the three chords which

unite their points of intersection meet in the same point.

When this point of intersection is exterior to the three circles, the

six tangents from this point are equal.

Theorem. Prove that if, from any point of a radical axis of two cir-

cles, a secant be drawn meeting the circumferences in four points, these

four points will be in the circumference of a third circle.

This may be proved by aid of the theorem that the rectangle of a

secant and its external segment is constant (th. 42), together with

the construction of a radical axis.

Theorem. If through one of two centers of similitude (external or

internal) of two circles two secants to these circles be drawn, 1°. The

eight points of intersection combined,four and four, in a suitable manner,

form four groups, situated respectively upon as many new circumferen-

ces; 2°. These four circumferences havefor a common radical center

that center of similitude which served to determine these circumferences.

Note. The above theory will be found of great use in the solution

of all problems involving the contact of circles.

CONJUGATE POINTS, POLES, AND POLAR LINES.

Conjugate points are two points situated the one within, the other

without, a circle, in such a manner that the distances of every point in

the circumference from these two points are in a constant ratio. The

circle is called the regulating circle.

The point within the circle being given, to determine its conjugate,

erect at the given point a perpendicular to the line joining the given

point and the center, and at the point where this perpendicular meets

the circumference draw a tangent which will meet the line joining

the given point and center produced in the point required. Prove

this.
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A chord of contact is a line joining the points of contact of two

nts drawn from the same point.

Theorkm. The chords of contact of all tangents which meet in one

and the same line will meet in the same point, and the conjugate of

this point is the loot of a perpendicular let fall from the center of the

circle upon the line in which the tangents meet.

Tin* point in which all the chords of contact meet is called a pole,

and the line in which the tangents all meet, a polar line.
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GEOMETRY OF PLANES*

DEFINITIONS.

1. The angle formed by two lines not in the same
plane is the angle formed by one of them with a line

drawn through any point of it parallel to the other.

2. A plane is a surface in which, if any two points

be taken, the straight line which joins these points

will be wholly in that surface.

3. A straight line is said to be perpendicular to a

plane when it is perpendicular to all the straight lines

in the plane which pass through the point in which it

meets the plane.

This point is called the foot of the perpendicular.

4. The inclination of a straight line to a plane is

the acute angle contained by the straight line, and
another straight line drawn from the point in which
the first meets the plane, to the point in which a per-

pendicular to the plane, drawn from any point in the

first line, meets the plane.

5. A straight line is said to be parallel to a plane

when it can not meet the plane, to whatever distance

both be produced.

6. It will be proved in Prop. 2, that the common
intersection of two planes is a straight line ; this be-

ing premised,

The angle contained by two planes, which cut one
another, is measured by the angle contained by two

jhtraight lines drawn, one in each of the planes, per-

pendicular to their common intersection at the same
^point.

This angle may be acute, right, or obtuse.

* Students intending to pursue that subject, may here with advan-
tage take up Plane Trigonometry before going on with the Geome-
try of Planes and Solids.
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If it be a right angle, the planes are said to be per-

pendicular to each other.

The angle formed by two planes is called diedral.

7. Two planes are parallel to each other when
they can not meet, to whatever distance both be pro-

duced.

8. A plane is ordinarily represented, in a diagram,
by a parallelogram, and called by the two letters at

the opposite (diagonally) angle. This plane, which
must be conceived to be indefinitely extended, divides

space into two indefinite portions called regions.

Two or more planes are represented in their rela-

tive position not accurately, but by a sort of perspec-

tive.

PROP. I.

A straight line can not be partly in a plane and part-

ly out of it.

For, by def. (1), when a straight line has two points

common with a plane, it lies wholly in that plane.

D

PROP. II.

If two planes cut each other, their common intersec-

tion is a straight line.

Let the two planes AB, CD cut each
other, and let P, Q be two points in

their common section.

Join P, Q

;

Then, since the points P, Q are in

the same plane AB, the straight line

PQ which joins them must lie wholly

in that plane (def. 2).

For a similar reason, PQ, must lie

wholly in the plane CD.
.*. The straight line PQ is common to the two

planes, and is .*. their common intersection.

Note. In this and the following diagrams concealed

lines are drawn dotted.
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PROP. III.

Any number of planes may be drawn through the

same straight line..-.

For let a plane, drawn through a straight line, be

conceived to revolve round the straight line as an
axis. Then the different positions assumed by the

revolving plane will be those of different planes

drawn through the straight line

PROP. IV.

One plane, and one plane only, can be drawn,

1°. Through a straight line, and a point not sit-

uated in the given line.

2°. Through three points which are not in the

same straight line.

3°. Through two straight lines which intersect

each other.

4°. Through two parallel straight lines.

1. For if a plane be drawn through the given line,

and be conceived to revolve round it as an axis, it

must in the course of a complete revolution pass

through the given point, and so assume the position

enounced in 1°.

Also, one plane only can answer these conditions,

for if we suppose a second plane passing through the

same straight line and point, it must have at least two
intersections with the first, which is evidently impos-

sible.

2. Join two of the points ; this case is then reduced
to the last.

.'}. Take a point in each of the lines which is not

the point of intersection ; join these two points ; the

case is now the same as the two former.

4. Parallel straight lines are in the same plane, and,

by the first case, one plane only can be drawn through
either of them, and a point assumed in the other.
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Cor. Hence the position of a plane is determined by,

1. A straight line, and a point not in the given

straight line.

2. A triangle, or three points not in the same
straight line.

3. Two straight lines which intersect each other.

4. Two parallel straight lines.

prop. v.

If a straight line be perpendicular to two other

straight lines which intersect at its foot in a plane, it

will be perpendicular to every other straight line drawn
through its foot in the same plane, and will therefore

be perpendicular to the plane.

Let XZ be a plane, and let the

straight line PQ, be perpendicular

to the two straight lines AB, CD
which intersect in Q in the plane

XZ.
We shall prove that PQ, will be

perpendicular to any other straight

line EF, drawn through Q in the

plane XZ.
Draw through any point K in QE a straight line

GH, such that GK = KH. (See exercise 4, p. 72.)

Join P, G ; P, K ; P, H
;

Then, since GH, the base of the A GQH, is bisect-

ed in K ;

.-. (by th. 30), GQ2 + HQ2 = 2GK2 + 2QK 2
... (1)

Similarly, since GH, the base of A GPH, is bisect-

ed in K

;

... Gp + HF = 2GKa + 2pK9
But the triangles PQG, PQH are right-angled at

Q; .*. the last expression becomes
PQ2 + GQ2 + PQ2 + HQ2 = 2GK2 + 2PK3 ... (2)

Taking (1) from (2), there remains
2PQ2 = 2PK2— 2QK2

,

.*. dividing by 2, and transposing,

PQ2 + QK2 = PK2
.
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Henco the triangle PQK is right-angled at Q, for in

the right-angled triangle alone the sum of the squares

pf two <>f the sides is equal to the square of the third

theorems 26, 28, 2i>.)

In like manner, it may be proved that PQ is at

right angles to every other straight line passing
through Q in the plane XZ.

PROP. VI.

A perpendicular is the shortest line which can be

drawn to a planefrom a point without.

Let PQ be perpendicular to the p
plane XZ ;

From P draw any other straight

line PK to the plane XZ
;

Then PQ < PK.
In the plane XZ draw the straight

line QK, joining the points Q, K.
Then, since the line PQ is perpen-

dicular to the plane XZ, it is per-

pendicular to QK, a line of the plane ; and .*. PQ is

less than PK. (Geom. Theor., 17.)

frop. vir.

Oblique lines equally distantfrom the perpendicular

are equal, and, if two oblique lines be unequally distant

from the perpendicular, the more distant is the larger.

That is, ifQG, Qll, QK r
are all equal, then PG, PH, PK . . .

. . . are all equal ; and if QI be great-

er than QG, then PI is greater than

PG. For the three right-angled tri-

angles PQG, PQH, PQK baying two
sides in each equal, the third sides

are equal (th. 2G, corol. 2) ; and
since PH < PI (th. 17), .-. PG < PL*

* Th tion pfibrdi a method of finding the foot of a per-

il:u- t<» ;i ffiveu plaae from a point without. With a straight
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Cor. A perpendicular measures the distance of any
point from a plane. The distance of one point from
another is measured by the straight line joining them,
because this is the shortest line which can be drawn
from one point to another. So, also, the distance from
a point to a line is measured by a perpendicular, be-

cause this line is the shortest that can be drawn from
the point to the line. In like manner, the distance

from a point to a plane must be measured by a per-

pendicular drawn from that point to the plane, be-

cause this is the shortest line that can be drawn from
the point to the plane.

PROP. VIII.

If, from a given point without a plane, a perpendic-

ular be let fall to the plane, andfrom its foot a perpen-
dicular be drawn to a line of the plane, and the point

of intersection be joined with the point without, the last

line will be perpendicular to the line of the plane.

Let PQ be a perpendicular on the plane XZ, and
GH a straight line in that plane ; if from Q, the foot

of the perpendicular, QK be drawn perpendicular to

GH, and P, K be joined ; then PK will be perpendic-

ular to GH.
Take KG= KH ;

join P, G ; P, p
H ; Q, G ; Q, H ;

Because KG = KH, and KQ is

common to the triangles GQK,
HQK, and the angle GKQ = an-

gle HKQ, each being a right an-

gle*

.-. QG = QH,

.\ PG ~ PH (last Prop.),
z

Hence the two triangles GKP, HKP have the two
sides GK, KP equal to the two sides HK, KP, and

rod, one end of which is fixed at the given point, touch the given
plane in three points not in the same right line ; find the center of the

circle passing through these three points, and it will be the foot of

the perpendicular required.
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the remaining side GP, equal to the remaining side

HP.
.-. Angle GKP = angle HKP, and .*. each of them

is a right angle (def. 12).

Cor. GH is perpendicular to the plane PQK, for

GH is perpendicular to each of the two straight lines

Kl\ KQ (Prop. 5).

Remark.—The two straight lines PQ, GH present

an example of two straight lines which do not meet,

because they are not situated in the same plane.

The shortest distance between these two lines is

the straight line QK, which is perpendicular to each
of them.

For, join any two other points, as P, G

;

Then PG > PK )
, f ^

And KP>KQi lastPr°P'

PG > KQ.
The two lines PQ, GH, although not situated in

the same plane, are considered to form a right angle
with each other. For PQ, and a straight line drawn
through any point in PQ parallel to GH, would form
a right angle.

In like manner, PG and QK, which represent any
two straight lines not situated in the same plane, are

considered to form with each other the same angle
which PG would make with any parallel to QK,
drawn through a point in PG.

PROP. IX.

If two straight lines be perpendicular to the same
plane, they will be parallel to each other.

Let each of the straight lines PQ,
GH be perpendicular to the plane XZ.
Then PQ will be parallel to GH.
In the plane XZ draw the straight

line QH, joining the points Q, H.
Then, since PQ, GH are perpen-

dicular to the plane XZ, they are per-

pendicular to the straight line QH in



8 GEOMETRY.

that plane ; and, since PQ, GH are both perpendicu-

lar to the same line QH, they have the same direc-

tion and are parallel to each other.

prop. x.

Conversely, if two straight lines be parallel, and if

one of them be perpendicular to any plane, the other

will also be perpendicular to the same plane.

For let GH, PQ be the two lines. Draw through

P a perpendicular to the plane ; this, by the last Prop.,

will be parallel to GH, and must, therefore, be identi-

cal with QP, since through a given point but one

parallel can be drawn to a given line.

Cor. Two straight lines parallel to a third are par-

allel to each other.

For, conceive a plane perpendicular to any one of

them, then the other two being parallel to the first,

will be perpendicular to the same plane ; hence, by
the last Prop., they will be parallel to each other.

The three straight lines are not supposed to be in

the same plane.

This corollary follows, also, from our definition of

parallel lines (def. 8, p. 1).

PROP. XI.

If a straight line, without a given plane, be parallel

to a straight line in the plane, it will be parallel to the

plane.

Let AB, lying without the plane a b
XZ, be parallel to CD, lying in the

plane. I

Then AB is parallel to the plane

xz. rtrhx

Through the parallels AB, CD 1 e g \

pass the plane ABCD, and suppose L \

it, as well as the lines AB and CD, z

to extend indefinitely.

If the line AB can meet the plane XZ, it must meet
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it in some point of the line CD, which is the common
intersection of the two planes, for the line AB can
not get out of the plane AD (def. 2).

But AB can not meet CD, because AB is parallel

to CD.
Hence AB can not meet the plane XZ, i. e., AB is

parallel to the plane XZ (def. 5).

PROP. XII.

The sections made by a plane cutting two parallel

planes are parallel.

Let FE, GH be the sections

made by the plane GF which cuts r

the parallel planes XZ, WY

;

L .

Then FE will be parallel to GH. a

For if the lines FE, GH, which
are situated in the same plane, be w
not parallel, they will meet if pro- r-

duced. Therefore, the planes XZ, \

WY, in which these lines lie, will

meet if produced, and .-. can not be parallel, which
is contrary to the hypothesis.

.-. FE is parallel to GH.

PROP. XIII.

Parallel straight lines included between two parallel

planes are equal.

Let (see last fig.) the parallels EG, FH be cut by
the parallel planes XZ, WY, in the points G, H, E, F.

Then EG =-- FH,
Through the parallels EG, FH, draw the plane

EFGH, intersecting the parallel planes in GH, FE.
Then GH is parallel to FE, by last Prop.

And GE is parallel to HF (by hyp.)

;

.*. GHFE is a parallelogram ; and, therefore,

EG = FII.

Cor. Two parallel planes are every where equidis-

tant. For the perpendiculars which measure their

distance, being parallels, are every where equal.
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prop. XIV.

X w
r

A
i—

7

if-

i

IB

z
*Y

If two planes be parallel to each other, a straight

line which is perpendicular to one of the planes will be

perpendicular to the other also.

Let the two planes XZ, WY be

parallel, and let the straight line AB
be perpendicular to the plane XZ ;

Then will AB be perpendicular

to WY.
For, from any point H in the

plane WY, draw HG perpendicular jf

to the plane XZ, and draw AG, BH.
Then, since BA, HG are both perpendicular to XZ,

they are (Prop. 9) parallel to each other.

And, since the planes XZ, WY are parallel, the

parallels BA, HG are (by the last Prop.) equal.

'Hence (th. 21) AG is parallel to BH ; and AB, be-

ing perpendicular to AG, is perpendicular to its par-

allel BH also.

In like manner, it may be proved that AB is per-

pendicular to any other line which can be drawn
from B in the plane WY.

.-. AB is perpendicular to the plane WY.

PROP. xv.

Conversely, if two planes be perpendicular to the

same straight line, they will be parallel to each other.

For if they could meet, from any common point

of the two planes draw two lines, one in each plane,

to the extremities of the line to which they are both

perpendicular ; we should thus have two perpendic-

ulars from the same point to the same line, which is

impossible.

PROP. XVI.

If two straight lines which form an angle be parallel

to two other straight lines which form an angle in the
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same direction, although not in the same plane with the

former, the tiro angles will be equal, and their planes

will be parallel.

Let the two straight lines AB, n
BC, in the plane XZ, be parallel

j

to the two DE, EF, in the plane x

Then angle ABC - angle DEF. / !*«- ±^a_A
For, make BA = ED, BC = EF ;

z

join A, C ; D, F; A, D ; B, E; w
C, F; i—

Then the straight lines AD, BE, »

which join the equal and parallel ' ^^

—

v

straight lines AB, DE, are them-

selves equal and parallel.

For the same reason, CF, BE are equal and paral-

lel.

.-. AD, CF are equal and parallel (cor., Prop. 10.),

and .\ AC, DF are also equal and parallel (th. 21).

Hence the two triangles ABC, DEF, having ali

their sides equal, each to each, have their angles also

equal.

.-. angle ABC = angle DEF.

Again, the plane XZ is parallel to the plane WY.
For, if not, let a plane drawn through A, parallel

to DEF, meet the straight lines FC, EB in G and H.
Then DA= EH = FG (Prop. 1 3).

But DA = EB=FC
.-.EH = EB, FG = FC,

which is absurd.

Cor. 1. If two parallel planes XZ, WY are met by
two other planes ADEB, CFEB, the angles ABC,
DEF, formed by the intersection of the parallel planes,

will be equal.

For the section AB is parallel to the section DE
(Prop. 12).

So, also, the section BC is parallel to the section EF.
.-. angle ABC = angle DEF.

Cor. 2. If three straight lines AD. BE, CF, not sit-
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X c

r-?t \

-J / 1

z

P 4
1

uated in the same plane, be equal and parallel, the tri-

angles ABC, DEG, formed by joining the extremities

of these straight lines, will be equal, and their planes

will be parallel.

mor. xvu.

If two straight lines be cut by parallel planes, they

will be cut in the same ratio.

Let the straight lines AB, CD be

cut by the parallel planes XZ, WY,
VS, in the points A, E, B ; C, F, D ;

Then AE:EB::CF:FD.
Join A, C ; B, D ; A, D ; and let

AD meet the plane WY in G
;
join

E, G ; G, F

;

Then the intersections EG, BD
of the parallel planes WY, VS,
with the plane ED, are parallel

(Prop. 12).

.\ AE : EB : : AG : GD (th. Gl).

Again the intersection AC, GF of the parallel

planes XZ, YW, with the plane CG, are parallel.

.-. AG:GD::CF:FD.
.*. substituting the second ratio for the first of this

proportion in the previous proportion, we have
AE : EB : : CF : FD.

PROP. XVIII.

If a straight line be perpendicular to a plane, every

plane which passes through it will be at right angles to

that plane.

Let the straight line PQ be perpen-

dicular to the plane XZ.
Through PQ, draw any plane PO,

intersecting XZ in the line OQW.
Then the plane PO is perpendicu-

lar to the plane XZ.
For, draw RS, in the plane XZ,

perpendicular to WQO.
Then, since the straight line PQ is

ffr\ X

\°
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perpendicular to the plane XZ, it is perpendicular to

the two straight lines RS, OW, which pass through

its foot in that plane.

But the angle PQR is contained between PQ, QR,
which are perpendiculars at the same point to OW,
the common intersection of the planes XZ, PO ; this

angle, therefore, measures the angle of the two planes

(def. 6) ; hence, since this angle is a right angle, the

two planes are perpendicular to each other.

Cor. If three straight lines, such as PQ, RS, OVV,
be perpendicular to each other, each will be perpen-

dicular to the plane of the other two, and the three

planes will be perpendicular to one another.

PROP. XIX.

If two planes be perpendicular to each other, a

Straight line drawn in one of the planes perpendicular

to their common section will be perpendicular to the

other plane.

Let the plane VO be perpendicular

to the plane XZ, and let OW be their

common section.

In the plane VO draw PQ perpen-

dicular to OW

;

Then PQ is perpendicular to the

plane XZ.
For, from the point Q, draw QR

in the plane XZ, perpendicular to

OW.
Then, since the two planes are perpendicular, the

angle PQR is a right angle (def. f>).

.*. The straight line PQ is perpendicular to the

straight lines QR, QO, which intersect at its foot in

the plane XZ.
.*. PQ is perpendicular to the plane XZ (Prop. 5).

Cor. If the plane VO be perpendicular to the plane
XZ, and if from any point in OW, their common in-

tersection, we erect a perpendicular to the plane XZ,
that straight line will lie in the plane VO.

X
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For if not, then we may draw from the same point

a straight line in the plane VO, perpendicular to O W,
and this line, by the Prop., will be perpendicular to

the plane XZ.
Thus we should have two straight lines drawn from

the same point in the plane XZ, each of them perpen-

dicular to this plane, which is impossible.

PROP. xx.

If tivo planes which cut each other be each of them
perpendicular to a third plane, their common section

will be perpendicular to the same plane.

Let the two planes VO, TW, whose
common section is PQ, be both per-

pendicular to the plane XZ.
Then PQ, is perpendicular to the

plane XZ.
For, from the point Q, erect a per-

pendicular to the plane XZ.
Then, by cor. to last Prop., this

straight line must be situated at once
in the planes VO and TW, and is .

section.

w \

their common

EXERCISES.

1. Prove that but one plane can be passed through a given point

perpendicular to a given line.

2. Prove that but one perpendicular can be drawn»from a given

point to a given plane.

3. That when a plane is perpendicular at the middle of a given

line, every point of the plane is equally distant from the extremities

of the line, and that every point out of the plane is unequally distant.

4. That through a given line in a plane only one plane perpendic-

ular to the given plane can be passed.

5. That through a line parallel to a given plane but one plane can

be passed perpendicular to the given plane.

6. That if two planes which intersect contain two lines parallel to

each other, the intersection of the planes will be parallel to the lines.

7. That if a line be parallel to a plane, every other plane passed
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through this line and meeting the former, will intersect it hi a second

line parallel to the first.

8. That when a line is parallel to one plane and perpendicular to

another, the two planes are perpendicular to each other.

9. That a line parallel to a plane is every where equally distant

from that plane. The same of two parallel planes.

10. That two lines are always either, in one and the same plane or

two parallel planes.

Note.—These planes, the system of which is unique for each system

of two lines not situated in the same plane, are called the parallel

planes of these lines.

11. Show that but one plane can be drawn through a given point

parallel to a given plane.

12. l'rove that two plane's parallel to a third are parallel to each

other.

13. Draw a perpendicular to two lines not in the same plane.

14. Prove that if two lines are parallel in space, and planes be

passed through them perpendicular to a third plane, the two planes

will be parallel.

15. That if a line be parallel to one of two perpendicular planes,

and a plane be passed through the line perpendicular to the other

plane, it will be parallel to the first plane.

16. To place a perpendicular to a given plane at a given point of

the plane.

17. To place a plane perpendicular to a given plane, and intersect-

ing it in a given line.

18. To place a plane parallel to a given plane.

19. To place a line under a given angle to a given plane.

20. To place a plane under a given angle to a given plane, and in-

tersecting it hv-a given line.

21. To pk^fcfa plane perpendicular to two give planes.





POLYHEDRAL ANGLES.

DEFINITION.

A polyhedral angle, improperly called a solid angle,

is the angular space contained between several planes

which meet in the same point. This point is called

the vertex.

Three planes at least are required to form a poly-

hedral angle.

A polyhedral angle is called a trihedral, tetrahedral,

&c, angle, according as it is formed by three, four,

&c, plane angles.

A polyhedral angle is named from the letter at its

vertex.

A polyhedral angle is called regular when all its plane angles are

equal and all its diedral angles equ;il.

A trihedral is called birectangular, ti-irectangular, when two or

three of its diedral angles are right angles.

When two of the diedral angles are equal, it is called isohedral.

PROP. I.

If a polyhedral angle be contained by three plane
angles, the sum of any two of these angles will be great-

er than the third.

It is unnecessary to demonstrate this proposition,

except in the case where the plane angle, which is

compared with the two others, is greater than either

of them.

Let A be a polyhedral angle con- D
tained by the three plane angles

BAC, CAD, DAB, and let BAC be

the greatest of these angles.

Then CAD + DAB > BAC.
For, in the plane BAC, draw the

straight line AE, making the angle

BAE = angle BAD.
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Make, also, AE = AD, and through E draw any
straight line BEC, cutting AB, AC in the points B, C

;

join D, B ; D, C ;

Then, because AD = AE, and AB is common to

the two triangles DAB, BAE, and the angle DAB =
angle BAE, by construction,

.-. BD = BE.
But, in the triangle BDC,

BD -f DC> BE + EC (ax. 13, cor.),

.-. DC > EC.
Again, v* AD = AE, and AC is common to the

two triangles DAC, EAC, but the base DC > base

EC,
.\ angle DAC > angle EAC (th. 32).

But angle DAB = angle BAE ;

.*. angle CAD -f angle DAB > angle BAE -f angle

EAC > angle BAC.

PROP. II.

The sum of the plane angles whichform a polyhedral

angle is always less than four right angles.

Let P be a polyhedral angle con-

tained by any number of plane angles

APB, BPC, CPD, DPE, EPA.
Let the polyhedral angle P be cut

by any plane ABCDE.
Take any point O in this plane

;

join A, O ; B, O ; C, O ; D, O ; E, O.
Then, since the sum of all the an-

gles of every triangle is always equal

to two right angles, the sum of all the angles of the
triangles APB, BPC, about the point P, will be
equal to the sum of all the angles of the equal number
of triangles AOB, BOC, about the point O.

Again, by the last Prop., angle ABC < angle ABP
+ angle CBP ; in like manner, angle BCD < angle
BCP + DCP, and so for all the angles of the polygon
ABCDE.

signifies " because."
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Hence the sum of the angles at the bases of the

triangles whose vertex is O, is less than the sum of

the angles at the bases of the triangles whose vertex

is P.

.*. The sum of the angles about the point O must

be greater than the sum of the angles about the point

P.

But the sum of the angles about the point O is four

right angles.

.\ The sum of the angles about the point P is less

than four right angles.

PROP. III.

If two trihedral angles he formed by three plane an-

gles which are equal, each to each, the planes in which

these angles lie will be equally inclineorto each other.

Let P, Q be two trihedral

angles ;

Let angle APC == angle

DQF, angle APB *= angle

DQE, and angle BPC = an-

gle EQF.
Then the inclination of the

planes APC, APB will be equal to the inclination of

the planes DQF, DQE.
Take any point B in the intersection of the planes

APB, CPB.
From B draw BY perpendicular to the plane APC,

meeting the plane in Y.
From Y draw YA, YC, perpendiculars on PA, PC;

join A, B ; B, C.

Again, take QE = PB ; from E draw EZ perpendic-

ular to the plane DQF, meeting the plane in Z ; from
Z draw ZD, ZF, perpendiculars on QD, QF

;
join

D, E ; E, F.

BA is perpendicular to PA (Geom. of Planes, Prop.

8), and the triangle PAB is right-angled at A, and the

triangle QDE is right-angled at D.
Also, the angle APB = angle DQE, by hyp.
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Moreover, the side PB= side QE (by construction);

.*. the two triangles APB, DQE are identical (cor. 8,

th. 15).

.\ PA-QD, and AB = DE.
In like manner, we can prove that

PC = QF, andBC=EF.
Let now the angle APC be placed upon the equal

angle DQF, then the point A will fall upon the point

D, and the point C on the point F, because PA = QD,
andPC = QF.
At the same time, AY, which is perpendicular to

PA, will fall upon DZ, which is perpendicular to QD ;

and, in like manner, CY will fall upon FZ.
Hence the point Y will fall on the point Z, and we

shall have
AY = DZ, andCY = FZ.

But the triangles AYB, DZE are right-angled in

Y and Z, the hypothenuse AB = hypothenuse DE,
and the side AY = side DZ ; hence these two tri-

angles are equal (th. 26, cor. 2).

.-. angle YAB= angle ZDE.
The angle YAB is the inclination of the planes APC,

APB (Geom. of Planes, def. 6) ; and
The angle ZDE is the inclination of the planes

DQF, DQE.
.*. These planes are equally inclined to each other.

In the same manner, we prove the angle YCB =
angle ZFE, and, consequently, the inclination of the

planes APC, BPC is equal to the inclination of the

planes DQF, EQF.
We must, however, observe that the angle A, of

the right-angled triangle YAB, is not, properly speak-

ing, the inclination of the two planes APC, APB, ex-

cept when the perpendicular BY falls upon the same
side of PA as PC does ; if it fall upon the other side,

then the angle between the two planes will be obtuse,

and, added to the angle A of the triangle YAB, will

make up two right angles. But, in this case, the an-

gle between the two planes DQF, DQE will also be

obtuse, and, added to the angle D of the triangle ZDE,
will make up two right angles.
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Since, then, the angle A will always be equal to the

angle D, we infer that the inclination of the two
planes APC, APB will always be equal to the in-

clination of the two planes DQF, DQE. In the first

the inclination of the plane is the angle A or D ;

in the second case, it is the supplement of those angles.

Scholium. If two trihedral angles have the three

plane angles of the one equal to the three plane an-

gles of the other, each to each, and, at the same time,

the corresponding angles arranged in the same manner
in the two trihedral angles, then these two trihedral

angles will be equal ; and if placed one upon the other,

they will coincide. In fact, we have already seen

thai the quadri lateral PAYC will coincide with the

quadrilateral QDZF. Thus the point Y falls upon
the point Z, and. in consequence of the equality of

the triangles AYB, DZE, the straight line YB, per-

pendicular to the plane APC, is equal to the straight

line ZE, perpendicular to the plane DQE ; moreover,
these perpendiculars lie in the same direction ; hence
the point B will fall upon the point E, the straight

line PB on the straight line QE (their extremities al-

ready coinciding), and the .two trihedral angles will

entirely coincide with each other.

This coincidence, however, can not take place ex-

cept we suppose the equal plane angles to be arrang-
ed in the same manner in the two trihedral angles ;

for if the equal plane angles be arranged in an inverse

order, or, which comes to the same thing, if the per-

pendiculars YB, ZE, instead of being situated both on
the same side of the planes APC, DQF, were situated

on opposite sides of these planes, then it would be

impossible to make the two trihedral angles coincide

with each other. It would not, however, be less true,

according to the above theorem, that the planes, in

which the equal angles lie, would be equally inclined

to each other; so that the two trihedral angles would
be equal in all their constituent parts, without admit-

ting of superposition. This species of equality is

termed symmetry.
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Thus the two trihedral angles in question, which
have the three plane angles of the one equal to the

three plane angles of the other, each to each, hut ar-

ranged in an inverse order, are termed angles equal by

symmetry, or, simply, symmetrical angles.

The same observation applies to polyhedral anles
formed by more than three plane angles. Thus, a

polyhedral angle formed by the plane angles A, B, C,

D, E, and another polyhedral angle formed by the

same angles in an inverse order, A, E, D, C, B, may
be such that the planes in which the equal angles are

situated are equally inclined to each other. These
two polyhedral angles, which would in this case be

equal, although not admitting of superposition, would
be termed polyhedral angles equal by symmetry, or

symmetrical polyhedral angles.

In plane figures there is no species of equality to

which this designation can belong, for all those cases

to which the term might seem to apply are cases of

absolute equality, or equality of coincidence. The
reason of this is, that in a plane figure one may take

the upper part for the under, and vice versa. This,

however, does not hold in solids, in which the third

dimension may be taken in two different directions.

This term symmetrical is of very extensive appli-

cation. Two magnitudes are said to be symmetrical

with respect to a plane when the corresponding points

are on opposite sides of the plane in the same per-

pendicular to it, and at equal distances from it.

Thus the two halves of the human body are sym-
metrical with respect to what anatomists call the

median plane. (See Appendix V.)

A plane figure may be said to be symmetrical with

respect to a median line when points on one side of

the median line are at equal perpendicular distances

from it with opposite points on the other side (see

Appendix II., Del*. 2).
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EXERCISES.

1. To make a trihedral angle with three given plane angles.

2. Trove that iu a trihedral angle the sum of the diedral angles is

greater than two and less than six right angles.

3. That two trihedral angles are equal when they have two plane

and the included diedral angle equal [disposed in the same

order].

4. Also, when they have one plane angle and two adjacent diedral

angles.

5. Also, when they have three diedral angles equal.

6. Show that if from a point within a trihedral angle perpendicu-

lars be drawn to each of the planes which compose it, a new trihedral

will be formed whose plane angles will be supplements of the diedral

angles of the first, and vice versa.

7. Prove that the three planes bisecting the diedral angles of a tri-





SOLID GEOMETRY.

DEFINITIONS.

1. A Polyhedron is a solid bounded by planes.

The intersection of any two of the pjanes is called a

side or edge of the polyhedron. Each bounding

plane will be a polygon, and is called a face of the

polyhedron.

2. Similar polyhedrons are such as have all their

solid angles equal, each to each, and are contained by
the same number of similar planes.*

3. A Pyramid is a solid figure contained

by triangular planes meeting in one point,

called the Vertex, and terminating in the

sides of a polygon, called the Base of the

pyramid.

A Regular Pyramid is one the base of which is a

regular polygon, and the vertex in a perpendicular to

the base at its center.

4. A Prism is a solid figure contained by
plane figures, of which two that are oppo-

site are equal, similar, and parallel to each*

other, called bases ; and the others are par-

allelograms. The latter are together called

the Lateral Surface of the prism.

A Right Prism is one in which the parallelograms

are perpendicular to the bases.

Pyramids and prisms are called Triangular, Quad-
rangular, Pentagonal, &c, according as their base is

a triangle, quadrilateral, pentagon, &c.
5. A Sphere is a solid figure described by the rev-

olution of a semicircle about its diameter, which re-

mains unmoved. The moving semicircle is called

the generatrix.

6. The Axis of a sphere is the fixed right line about

which the semicircle revolves.

* For a more comprehensive definition of similar solids, see Ap-
pendix V.
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7. The Center of a sphere is the same with that of

the semicircle.

8. The Diameter of a sphere is any right line which
passes through the center, and is terminated both

ways by the superficies of the sphere. The axis is a
diameter.

9. A right Cone is a solid figure described by the

revolution of a right-angled triangle about one of the

sides containing the right angle, which side remains
fixed.

Thus the side AC, revolving round A
AB, one of the sides which contains the

right angle and remains fixed, gener-

ates a cone.

If the fixed side be equal to the other

side containing the right angle, the

cone is called a right-angled cone ; if

it be less than the other side, an obtuse-

angled ; and if greater, an acute-an-

gled cone.

10. The Axis of a cone is the fixed right line about

which the triangle revolves.

In the figure above, AB is the axis.

The moving side of the triangle is called the gen-

eratrix o*f the cone, and any one of the positions of

the generatrix is called an element of the cone. The
length of the element is called the apophthegm of the

cone.

11. The Base of a cone is the circle described by
that side containing the right angle which revolves.

12. A Cylinder is a solid figure described by the

revolution of a right-angled parallelogram about one

of its sides which remains fixed.

Thus, the revolution of the parallelo-

gram AC about its side AB, which re-

mains fixed, generates a cylinder.*

13. The axis of a cylinder is the fixed

right line about which the parallelogram
revolves.

* The solids above defined are properly right cones and cylinders

These may also be oblique.
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The Altitude of a pyramid or cone is the perpen-

dicular let fall from the vertex to the plane of the

base, produced if necessary.

The altitude of a prism or cylinder is the perpen-

dicular distance between the parallel bases.

The altitude of a cone or cylinder is identical with

the axis.

14. The bases of a cylinder are the circles de-

scribed by the two revolving opposite sides of the

parallelogram.*

15. Similar cones and cylinders are those which
have their axes and the diameters of their bases pro-

portionals.

16. A regular polyhedron is one, all whose solid

angles are equal, and whose faces are equal polygons.

17. A Cube is a regular solid figure con-

tained by six equal squares.

18. A regular Tetrahedron is a solid

figure contained by four equal and equi-

lateral triangles.

10. A regular Octahedron is a solid

figure contained by eight equal and equi-

lateral triangles.

20. A regular Dodecahedron is a solid

figure contained by twelve equal penta-

gons which are equilateral and equian-

gular.

* Every section of a cylinder made by a plane perpendicular to the
axis is a circle, and every section through the axis is a rectangle
double the generating rectangle.

The moving side of the parallelogram is called the generatrix of the
cylinder, and any one of its positions is called an element.
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21. An Icosahedron is a solid figure

contained by twenty equal and equilateral

triangles.

These five, it will be shown hereafter, are the only

regular polyhedrons which can be formed.

22. A Parallelopipedon is a solid figure con-

tained by six parallelograms, the planes of ev-

ery opposite two whereof are parallel. The
parallelopipedon is a prism with parallelo-

grams for bases.

PROPOSITIONS.

PROP.

If a p?'is?n be cut by a plane parallel to its base, the

section will be equal and like to the base.

Let AG be any prism, and IL a plane H G
parallel to the base AC ; then will the

plane IL be equal, and like to the base

AC, or the two planes will have all their

sides and all their angles equal.

For the two planes AC, IL, being par-

allel, by hypothesis, and two parallel

planes, cut by a third plane, having par-

allel sections ; therefore, IK is parallel to AB, KL to

BC, LM to CD, and IM to AD. But AI and BK are

parallels, by def. 4, last page but two ; consequently,

AK is a parallelogram ; and the opposite sides, AB,
IK, are equal. In like manner, it is shown that KL
is =BC and LM = CD, and IM = AD, or the two
planes AC, IL are mutually equilateral. But these

two planes, having their corresponding sides parallel,

have the angles contained by them also equal (Geom.

of Planes, Prop. 16) : namely, the angle A = the angle

I, the angle B = the angle K, the angle C = the angle
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L, and the angle D — the angle M. So that the two
planes AC, IL have all their corresponding sides and
angles equal, or are equal and like. Q. E. D.

PROP. II.

If a cylinder be cut by a plane parallel to its base,

the section ivill be a circle equal to the base.

Let AF be a cylinder, and GHI any
section parallel to the base ABC ; then D
will GHI be a circle equal to ABC.

For, let the plane KE pass through the

axis of the cylinder MK, and meet the

section GHI in the line LH.
Then, since KL, BH are parallel (def.

12, Sol.Geom.) ; and the plane KH meet-
ing the two parallel planes ABC, GHI, makes the two
sections KB, LH parallel (Prop. 12, Geom. of Planes)

;

the figure KLHB is, therefore, a parallelogram, and,
consequently, has the opposite sides LH, KB equal,

where KB is a radius of the circular base.

In like manner, it may be shown that any other line

drawn from the point L to the circumference of the

section GHI, is equal to the radius of the base ; con-
sequently, GHI is a circle, and equal to ABC. Q.
E. D.

/

/

/

—
/

/
/"

PROP. III.

All prisms, and a cylinder, of equal bases and alti-

tudes, are equal to each other.

Let AC, DF be two
prisms and a cylinder,

upon equal bases AB,
DE, and having equal

altitudes; then will the

solids AC,DF be equal.

For, let PQ, RS be

any two sections parallel to the bases, and equidistant
from them. Then, by the last two propositions, the

G

v
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section PQ, is equal to the base AB, and the section

RS equal to the base DE. But the bases AB, DE are

equal by the hypothesis ; therefore the sections PQ,
RS are also equal. And in like manner it may be

shown that any other corresponding sections are

equal to one another.

Since, then, every section in the prism AC is equal

to its corresponding section in the prism, or cylinder

RS, the prisms and cylinder themselves, which are

composed of those sections (which will be the same
in number,* the altitudes being equal), must also be

equal. Q. E. D.

Corol. Every prism, or cylinder, is equal to a rect-

angular parallelopipedon, of an equal base and alti-

tude.

S G

U
\ A
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T

\
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i
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PROP. IV.

Rectangular parallelopipedons, of equal altitudes,

have to each other the same proportion as their bases.

Let AC, EG be two rectan- q r
gular parallelopipedons, hav-

ing the equal altitudes AD,
EH ; then will AC be to EG
as the base AB is to the base

EF.
For, let the proportion of

the base AB to the base EF be that of any one num-
ber m (3) to any other number n (2). And conceive

AB to be divided into m equal parts, or rectangles,

AI, LK, MB (by dividing AN into that number of

equal parts, and drawing IL, KM parallel to BN).
And let EF be divided, in like manner, into n equal

parts, or rectangles EO, PF : all of these parts of

both bases being mutually equal among themselves.

And through the lines of division let the plane sec-

tions LR, MS, PV pass parallel to AQ, ET.

e P

* The number in each will be infinite, but these infinities will evi-

dently be equal.
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Then the parallelopipedons AR, LS, MC, EV, PG
are all equal, having equal bases and heights. There-

fore, the solid AC is to the solid EG as the number of

parts in AC to the number of equal parts in EG, or

as the number of parts in AB to the number of equal

parts in EF ; that is, as the base AB to the base EF.
Q. E. D.

Note. If the bases be incommensurable, the divisions

must be infinitely small.

Corol. From this proposition, and the corollary to

the last, it appears that all prisms and cylinders of

equal altitudes are to each other as their bases ; every
prism and cylinder being equal to a rectangular par-

allelopipedon of an equal base and height.

prop. v.

Rectangular parallelopipedons of equal bases are in

proportion to each other as their altitudes.

Let AB, CD be two rect-

angular parallelopipedons

standing on the equal bases

AE, CF ; then will AB be to

CD as the altitude EB is to

the altitude DF.
For, let AG be a rectangu-

lar parallopipedon on the base AE, and its altitude

EG equal to the altitude FD of the solid CD.
Then AG and CD are equal, being prisms of equal

bases and altitudes. But if HB, HG be considered

as bases, the solids AB, AG- of equal altitude AH,
will be to each other as those bases HB, HG. But
these bases HB, HG being parallelograms of equal
altitude HE, are to each other as their bases EB, EG;
and, therefore, the two prisms AB, AG are to each
other as the lines EB, EG. But AG is equal CD, and
EG equal FD ; consequently, the prisms AB, CD are

to each other as their altitudes EB, FD ; that is, AB :

CD::EB:FD. Q. E. D.
Corol. From this proposition and the corollary to

/' /
;B

'

/ /
^G A~7

A

>
1/
H

JE

<

.
1
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Prop. 3, it appears that all prisms and cylinders of
equal bases are to one another, as their altitudes.

PROP. VI.

Rectangular parallelopipedons are to each other as
the products of their bases by their altitudes.

. TheparallelopipedonAF B

is to the parallelopipedon

CE as the base AG x the

altitude GF, is to the base

CD X altitude DE.
For the parallelopipedons

AB and CE, having the

same altitude, are to each
other as their basesAG and
CD; and the parallelopi-

pedons AF and AB, having
the same base, are to each A D
other as their altitudes GF, GB ; or,

AB:CE::AG:CD,
AF:AB::GF:GB.

Multiplying these two proportions together and
striking out AB from the two terms of the first result-

ing ratio, we have
AF : CE : : AG X GF : CD X GB.*

/ /f~ /

/
/

/

E

*

G-

/ /

* As rectangular parallelopipeds are always to each other as the

products of their bases by their altitudes, this may be taken as the

measure of parallelopipeds; and as every parallelopiped is equal to a

prism or cylinder of the same base and altitude (Prop. 3), it follows

that the measure of any prism or cylinder is the product of its base

by its altitude.

If the convex surface of a cylinder be developed, it opens out into

a parallelogram, of which the circumference of the cylinder's base is

the base, and the altitude of which is that of the cylinder; and as this

parallelogram is measured by the product of its base by its altitude,

we have for the measure of the convex surface of a cylinder the prod-

uct of the circumference of its base by its altitude.

A plane determined by an element of a cylinder, and the tangent

line to the base at the point where the element meets it, is a tangent

plane to the cylinder.

The contact is along the whole length of the element, which i*

called the element of contact.
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PROP. VII.

Similar' prisms and cylinders are to each other as

the cubes of their altitudes, or of any other like linear

dimensions.

Let ABCD, EFGH be two /x
similar prisms ; then will the D ^ /

\

"9
<&

prism CD be to the prism GH
as AB 3

to EF3

, or as AD 3
to

EH'.
For the solids are to each

other as the products of their

bases and altitudes (by the note a r

to the last Prop.), that is, as AC . AD to EG . EH.
But the bases being similar planes, are to each other

as the squares of their like sides, that is, AC to EG
as ABa

to EF3
; therefore, substituting the ratio or

fraction AB 2
: EF3

for AC : EG, we have the solid CD
to the solid GH as AB 2

. AD to EF3
. EH. But BD

and FH being similar planes, have their like sides

proportional, that is, AB: EF : : AD : EH, or AB 9
:

EF 3
: : AD 3

: EH 3

; multiply this by the identical pro-

portion AD : EH : : AD : EH, and we have AB 3
. AD

: EF3
. EH : : AD 3

: EH J

; and, consequently, the solid

CD : solid GH : : AD 3
: EH 3

, or AB 3
: EF a

. Q. E. D.

PROP. VIII.

In a pyramid, a section parallel to the base is similar

to the base, and these two planes will be to each other as

the squares of their distancesfrom the vertex.

Let ABCD be a pyramid, and EFG a A
section parallel to the base BCD, also AIH
a line perpendicular to the two planes at

H and I ; then will BD, EG be two simi-

lar planes, and the plane BD will be to the

plane EG as AH 3
to AP.

For, join CH, FI. Then, because a

plane cutting two parallel planes makes B
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parallel sections, therefore the plane ABC, meeting the

two parallel planes BD, EG, makes the sections BC,
EF parallel ; in like manner, the plane ACD makes the

sections CD, FG parallel. Again, because two pair of

parallel lines make equal angles, the two EF, FG,
which are parallel to BC, CD, make the angle EFG
equal the angle BCD. And, in like manner, it is

shown that each angle in the plane EG is equal to

each angle in the plane BD, and, consequently, those

two planes are equiangular.

Again, the three lines AB, AC, AD, making with
the parallels BC, EF, and CD, FG, equal angles; and
the angles at A being common, the two triangles

ABC, AEF are equiangular, as also the two triangles

ACD, AFG, and have, therefore, their like sides

proportional, namely, AC : AF : : BC : EF : : CD : FG.
And, in like manner, it may be shown that all the lines

in the plane EG are proportional to all the correspond-
ing ones in the base BD. Hence these two planes,

having their angles equal and their sides proportional,

are similar.

But similar planes being to each other as the squares

of their like sides, the plane BD : EG : : BC 2
: EF 2

: or

: : AC 2
: AF 2

, by what is shown above. But the two
triangles AHC, AIF, having the angles H and I right

ones, and the angle A common, are equiangular, and
have, therefore, their like sides proportional, namely,
AC:AF::AH:AI, or AC 2

: AF 2
: : AH 2

: AI 2
. Con-

sequently, the two planes BD, EG, which are as the

former squares AC 2

, AF 2

, will be also as the latter

squares AH 2

, AF, that is, BD : EG : : AH2
: AI2

.

PROP. IX.

In a right cone a section parallel to the base is a cir-

cle, and this section is to the base as the squares of
their distancesfrom the vertex.

Let ABCD be a right cone, and GHI a section

parallel to the base BCD ; then will GHI be a circle,
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and BCD, GHI will be to each other

as the squares of their distances from
the vertex.

For, let the planes ACE, ADE pass

through the axis of the cone AKE, meet-

ing t he section in the three points H, I, K.
Then, since the section GHI is paral-

lel to the base BCD, and the planes CK,
DK meet them, HK is parallel to CE,
and IK to DE. And from similar trian-

gles, shown to be such (as in the last Prop.), KH

:

EC : : AK : AE : : KI : ED. But EC is equal to ED,
being radii of the same circle ; therefore, KI is also

equal to KH. And the same may be shown of any
other lines drawn from the point K to the circumfe-

rence of the section GHI, which is, therefore, a circle.

Again, since AK : AE : : KI : ED, hence AK2
:

AE 3
: : KP : ED 3

; but KP : ED 3
: : circle GHI : circle

BCD (th. 72) ; therefore, AK2
: AE 3

: : circle GHI : cir-

cle BCD. Q. E. D.
PROP. X.

All pyramids and right cones of equal bases and al-

titudes are equal to one another.

Let ABC, DEF
be any pyramids
and a cone, ofequal

bases BC, EF, and
equal altitudes AG,
DH ; then will the

pyramids and cone
ABC and DEF be

equal.

For, parallel to the bases, and at equal distances,

AN, DO, from the vertices, suppose the planes IK,

LM to be drawn.
Then, by Prop. 8 and 9,

DO3
: DH 3

: : LM : EF,
and AN 3

: AG3
:: IK : BC.

But, since AN 2
, AG2

are equal to DO2

, DH 3
; there-
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fore IK : BC : : LM : EF. But BC is equal to EF, by
hypothesis ; therefore IK is also equal to LM.

In the same manner, it is shown that any other sec-

tions, at equal distance from the vertex, are equal to

each other.

Since, then, every section in the cone is equal to

the corresponding section in the pyramids, and the

heights are equal, the solids ABC, DEF, composed of
those sections, must be equal also. Q,. E. D.

PROP. XI.

Every triangular prism may be divided into three

equal triangular pyramids of the same base and alti-

tude with the prism.

Let ABCDEF be a prism.

In the planes of the three sides of the

prism, draw the diagonals BF, BD, CD.
Then the two planes BDF, BCD divide

the whole prism into the three pyramids
BDEF, DABC, DBCF ; which are proved
to be all equal to one another as follows :

Since the opposite ends of the prism

are equal to each other, the pyramid whose base is

ABC and vertex D, is equal to the pyramid whose
base is DEF and vertex B (Prop. 10), being pyramids
of equal base and altitude.

But the latter pyramid, whose base is DEF and
vertex B, may be considered as having BEF for its

base and D for its vertex, and this is equal to the third

pyramid, whose base is BCF and vertex D, being

pyramids of the same altitude (since they have the

same vertex and their bases are in the same plane)

and equal bases BEF, BCF (th. 19).

Consequently, all the three pyramids which com-
pose the prism are equal to each other, and each pyr-

amid is the third part of the prism, or the prism is

triple of the pyramid. Q. E. D.

Corol. 1. Any triangular pyramid is the third part

of a triangular prism of the same base and altitude

(this follows from the last Prop., 10).
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Coral. 2. Every pyramid, whatever its figure may
be, is the third part of a prism of the same base and
altitude. This follows from Props. 3 and 10, or may
be proved by dividing the given prism into triangular

prisms, and the given pyramid into triangular pyra-

mids, ail having a common altitude.

Corol. 3. Any right cone is the third part of a cyl-

inder, or of a prism, of equal base and altitude ; since

it has been proved that a cylinder is equal to a prism,

and a cone equal to a pyramid, of equal base and al-

titude.

Corol. 4. The measure of a pyramid or cone will

be the product of its base by the third of its altitude.

(See note to Prop. G.)

Scholium. Whatever has been demonstrated of the

proportionality of prisms or cylinders holds equally

true of pyramids or cones, the former being always
triple the latter when they have the same base and
altitude ; viz., that similar pyramids or cones are as

the cubes of their like linear sides, or diameters, or

altitudes, &c.
The tangent plane to a cone is analogous to that

of a cylinder. The contact is a right-lined element.

Every tangent plane to a cone passes through the

vertex.

The surface of a cone developes into the sector of

a circle, and is measured by the circumference of the

base multiplied by half the apophthegm.
A pyramid is inscribed in a cone when the base of

the pyramid is inscribed in that of the cone, and they
have the same vertex.

A cone is a pyramid of an infinite number of trian-

gular faces.

EXERCISES.

1. Prove that the four diagonals of a parallelopipedon meet in the

same point.

2. That the square of each diagonal of a rectangular parallelopiped-

on is equal to the sum of the squares of its three edges.
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3. Construct a parallelopipedon upon three lines perpendicular to

each other as edges.

4. Prove that the two lines joining the points of the opposite faces

of a parallelopipedon, in which the diagonals of those faces intersect,

bisect each other at the point where the diagonals of the solid meet.

5. Prove that two polyhedrons which have the same vertices are

identical.

C. That two prisms are equal when they have three faces forming

a polyhedral angle of the one equal to the same in the other, and ar-

ranged in the same order.

7. That two right prisms are equal when they have equal bases

and altitudes.

8. That two tetrahedrons are equal, 1°. When they have a diedral

angle equal, comprehended between equal faces, arranged in the

same manner in both; 2°. When they have one trihedral angle,

comprehended by three equal faces in each, and arranged in the same
order. 3°. Corol. When they have their edges all equal and arrang-

ed in the same order. 4°. When they have two faces and two adjacent

diedrals equal.

9. That two pyramids are equal when they have their bases and

two other faces forming a trihedral angle, with the base equal in each.

10. Polyhedrons may be divided into tetrahedrons by planes pass-

ing diagonally through the edges.

11. Polyhedrons are equal when composed of the same number of

equal tetrahedrons.

12. Prove that polyhedrons are equal when their faces and diedral

angles are equal, and disposed in the same order.

13. Prove that similar polyhedrons are composed of the same num-

ber of similar tetrahedrons.

14. That polyhedrons are similar when their faces are all equal,

each to each, and equally inclined.

15. That polyhedrons are similar when thsy have a face in each

similar, and their homologous vertices out of this face are determined

by tetrahedrons having a triangular face in the homologous face.*

16. That two pyi-amids are similar when they have their edges

parallel.

17. That two regular polyhedrons of the same kind are similar.

18. That a plane passed through two edges of a parallelopiped,

diagonally opposed to each other, divides the parallelopiped into two

symmetrical triangular prisms equal in volume.

* This is the definition of similar polyhedrons given by Legendre.
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19. That two prisms of the same base are proportional to their

altitudes.

20. That two regular pyramids are equal when their base and an

edge of the one are equal to the same in the other.

21. That similar pyramids are to each other as the cubes of their

homologous sides.

20. That similar polyhedrons are as the cubes of their homologous

sides.

23. That the surfaces of similar polyhedrons are as the squares of

their homologous sides.

21. Cut a pyramid by a plane, pai-allel to the base, in such a way
that the section shall be to the base in the ratio of two given lines.

25. Also, so that the convex surface of the superior portion shall be

one third that of the whole pyramid.

26. Show how to construct a pyramid when the base and two ad-

jacent triangular faces are given.

27. A prism with the same data.

28. A parallelopipedon with given base, and edge meeting it.

29. With given edges to construct the faces of a tetrahedron.

30. With three edges forming a trihedral angle, and their angles,

to construct the faces of a triangular prism.

31. The same for a pentagonal prism, three faces, forming a tri-

hedral angle, being given.

32. Show how to construct a cylinder similar to a given cylinder,

and whose base shall be to that of the given in the ratio of two given

lines.

33. Show in what the frustum of a cone develops, and what is the

measure of its surface.

31. Prove that every plane parallel to the axes of a cylinder cuts its

surface in two lines parallel to the axis.

:r>. That if a circle and a line tangent to it revolve about a com-

mon axis passing through the center of the circle, the curve of contact

of the cone generated by the line, and the sphere generated by the

circle, will be a circle whose plane is perpendicular to the axis.

36. That similar cones and cylinders are proportional, their surfaces

to the squares, and their volumes to the cubes of their altitudes, ele-

ments, diameters of bases, or any homologous lines.



16 GEOMETRY.

prop. xn.

The frustum of a pyramid is composed of three pyr-
amids having for a common altitude the altitude of the

frustum, andfor bases the upper and lower base of the

frustum and a mean proportional between them.

Let a plane be passed c

through the three points a,

C, b; it cuts off a triangular

pyramid having acb for a

base, and C in the plane of

the lower base of the frus-

tum for a vertex. This is

evidently the first pyramid
of the enunciation. Again

:

suppose a plane be passed

through the three points A,

C, /; ; it cuts off a pyramid
having ABC for base and b

for vertex, the second pyra-

mid of the enunciation. There remains the pyramid
CAba, which is equal to the pyramid CAD6 (M3 be-

ing drawn parallel to «A), having the same vertex C
and an equal base, since the diagonal Kb bisects the

parallelogram ADba. This last pyramid being con-
sidered as having its vertex at b and its base ADC,
has the altitude of the frustum, and it remains to show
that the triangle ADC, which is its base, is a mean
proportional between the triangles ABC and abc. For
this purpose, let us observe that

A ABC : A ADC : AB : AD (1)

because they have a common vertex, and, therefore,

are to each other as their bases, which are in the same
straight line. Also, that

A ADC : A abc : AC : ac (2)

because the angle A= the angle a (corol. 1, Prop.

16, Geom. of Planes), and (th. 60, cor. 3) A ADC

:

abc:: AD X AC :ab X ac, and AD = «&. Also, that

AB:ab::Adac (3)



SOLID GEOMETRY. 17

since the triangles ABC, abc are similar (Prop. 8,

ante).

Substituting now the first ratio of (3) for its equiv-

alent, the second ratio of (2), and then the first ratio

of (2) for its equivalent (since AD =ab), the second
ratio of (I), we have

A ABC : a ADC : : A ADC : A abc. Q. E. D.
CoroL The same proposition is true of the frustum

of any pyramid or of a cone (Prop. 9 and 10) which
is equivalent to three cones having the upper base,

the lower base and a mean proportional between the

two for bases, and for a common altitude the altitude

pf the frustum. In symbols r and r f
, being the radii

of the bases, and h the altitude of the Irustum, its

volume would be expressed by (th. 73, schol.)

n(?'
u + r'

a + rr')/i.

TROP. XIII.

If a sphere be cut by a plane, the section will be a
circle.

Because the radii of the sphere are all equal, each
of them being equal to the radius of the describing

semicircle, it is evident that if the section pass through
the center of the sphere, then the distance from the

center to every point in the periphery of that section

will be equal to the radius of the sphere, and the sec-

tion will, therefore, be a circle of the same radius as

the sphere. But if the plane do not pass through the

center, draw a perpendicular to it from the center,

and draw any number of radii of the sphere to the

intersection of its surface with the plane ; then these

radii are evidently the hypothenuses of a correspond-
ing number of right-angled triangles, which have the

perpendicular from the center on the plane of the

section, as a common side ; consequently, their other
sides are all equal, and, therefore, the section of the

sphere by the plane is a circle, whose center is the

point in which the perpendicular cuts the plane.

Scholium, All the sections through the center are
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equal to one another, and are greater than any other
section which does not pass through the center. Sec-
tions through the center are called great circles, and
the other sections small or less circles.

PROP. XIV.

Every sphere is two thirds of its circumscribing cyl-

inder.

Let ABCD be a section of the cyl- A F n
inder, and EFGH a section of the

sphere through the center I, and join /\
AI, BI. Let FIH be parallel to AD u

f
or BC, and EIG and KL parallel to E

AB or DC, the base of the cylindric

section ; the latter line KL meeting
BI in M, and the circular section of

the sphere in N.
Then, if the whole plane HFBC be conceived to

revolve about the line HF as an axis, the square FG
will describe a cylinder AG, and the quadrant IFG
will describe a hemisphere EFG, and the triangle IFB
will describe a cone IAB. Also, in the rotation, the

three lines, or parts, KL, KN, KM, as radii, will de-

scribe corresponding circular sections of these solids,

viz., KL a section of the cylinder, KN a section of

the sphere, and KM a section of the cone.

Now, FB being equal to FI or IG, and KM paral-

lel to FB, then, by similar triangles, IK = KM (Geom.
Theor., 63), and IKN is a right-angled triangle ; hence
IN3

is equal to IK2 +KN2
(theor. 26). But KL is

equal to the radius IG or IN, and KM = IK ; there-

fore KL2
is equal to KM2+KN 2

, or the square of the

longest radius of the above-mentioned circular sec-

tions is equal to the sum of the squares of the two
others. Now circles are to each other as the squares

of their diameters, or of their radii, therefore the cir-

cle described by KL is equal to both the circles de-

scribed by KM and KN ; or the section of the cylinder

is equal to both the corresponding sections of the
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sphere and cone. And as this is always the case in

every parallel position of KL, it follows that the cyl-

inder EB, which is composed of all the former sec-

tions, is equal to the hemisphere EFG and cone IAB,
which are composed of all the latter sections, the num-
ber of the sections being the same, because the three
solids have the same altitude.

But the cone IAB is a third part of the cylinder EB
(Prop. 1 1, cor. 3) ; consequently, the hemisphere EFG
is equal to the remaining two thirds, or the whole
sphere EFGH is equal to two thirds of the whole cyl-

inder ABCD.
Corol. 1. A cone, hemisphere, and cylinder of the

same base and altitude are to each other as the num-
bers 1, 2, 3.*

Corol. 2. All spheres are to each other as the cubes
of their diameters, all these being like parts of their

circumscribing cylinders.

Corol. 3. From the foregoing demonstration it ap-

pears that the spherical zone or frustum EGNP is

equal to the difference between the cylinder EiGLO
and the cone IMQ,, all of the same common height
IK. And that the spherical segment PFN is equal to

the difference between the cylinder ABLO and the

conic frustum AQMB, all of the same common alti-

tude FK.
Scholium. By the scholium to Prop. 11, we have

cone A1B : cone QIM : : IF3
: IK 3

: : FH 3
: (FH—2FK) 3

.-. cone AIB : frust.ABMQ : : FH 3
: FH 3—(FH—2FK) 3

: : fFH 3
: 6FH\FK- 12FH.FKa+8FK 3

;

but cone AIB= one third ofthe cylinder ABGE ; hence
cvl. AG : frust. ABMQ : : 3FH 3

:6FH\FK—12FH.FK2

+ 8FK\
Nowcyl.AL:cyl.AG:: FK : FI.

Multiplying the last two proportions, and striking

out the common factors from the ratios, observing,

also, that FI = ^FH, we have

* The surfaces of the sphere and circumscribing cylinder are in the

ipme ratio as their solidities. For tlie demonstration, see Mensuration,

t Raising the binomial to the third power.
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cyl. AL : frust. ABMQ : : 6FH 2
: 6FH 2—12FH.FK -f

8FK2

.*. (dividendo, and by corol. 3 of this Prop., 14),

cvl. AL : segment PFN : : 6FH 2
: 12FH.FK—8FKa

::|FH 2 :FK(3FH—2FK).
But cylinder AL = circular base whose diameter is

AB or FH, multiplied by the height FK ; hence cyl-

inder AL = circle EFGH X FK.

.•.segmentPFN=g.
circI^fGH(3FH—2FK)FK2

.

3 r ri



SPHERICAL GEOMETRY.

DEFINITIONS.

1. A sphere is a solid terminated by a curve sur-

face, and is such that all the points of the surface are

equally distant from an interior point, which is called

the center of the sphere.

We may conceive a sphere to be gen-

erated by the revolution of a semicircle

APB about its diameter AB ; for the sur-

face described by the motion of the curve

APB will have all its points equally dis-

tant from the center O.

The sector of a circle AOC at the same
time generates a spherical sector.

2. The radius of a sphere is a straight

line drawn from the center to any point on the surface.

The diameter or axis of a sphere is a straight line

drawn through the center, and terminated both ways
by the surface.

It appears from Def. 1 that all the radii of the same
sphere are equal, and that all the diameters are equal,

and each double of the radius.

3. It will be demonstrated (Prop. 1) that every
section of a sphere made by a plane is a circle ; this

being assumed,

A great circle of a sphere is the section made by a

plane passing through the center of the sphere.

A small circle of a sphere is the section made by a

plane which does not pass through the center of the

sphere.

4. The pole of a circle of a sphere is a point on the

surface of the sphere equally distant from all the

points in the circumference of that circle.

It will be seen (Prop. 2) that all circles, whether
jrreat or small, have two poles.
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5. A spherical triangle is the portion of the surface

of a sphere included by the arcs of three great circles.

6. These arcs are called the sides of the triangle,

and each is supposed to be less than half of the cir-

cumference.
7. The angles of a spherical triangle are the angles

contained between the planes in which the sides lie.

Or the angle formed by any two arcs of great circles

is the angle formed by the planes of the great circles

of which the arcs are a part.

8. A spherical polygon is the portion of the surface

of a sphere bounded by several arcs of great circles.

9. A plane is said to be a tangent to a sphere when
it contains only one point in common with the surface

of the sphere.

10. A zone is the portion of the surface and a
spherical segment, the portion of the volume of a
sphere between two parallel planes, or cut off' by one
plane.

The circles in which the planes intersect the sphere
are called bases of the zone or segment.

11. A lune is the portion of the surface of a sphere
comprehended between two great semicircles.

12. A spherical wedge or ungulais the solid bound-
ed by a lune and the planes of its two circles.

PROP. I.

Every section of a sphere made by a plane is a cir-

cle.

Let AZBX be a sphere whose A
center is O.

Let XPZ be a section made by
the plane XZ. x

;

From O draw OC perpendicular

to the plane XZ.
In XPZ take any points P

x , P2 ,

P3

JoinCP,; CP2 : CP3 ;

also, OP, ; OP2 ; OP3 ;



SPHERICAL GEOMETRY. J

Then, since OC is perpendicular to the plane XZ,
it will be perpendicular to all straight lines passing

through its loot in that plane. (Dei. 3, Geometry of

Planes.)

Hence the angles OCPi, OCP2 , OCP3

are right angles

OP^CP^ + OC 2

;

OP2
2= CP2

3 + OC 2

;

OP3
2= CP3

3 + OC\
But, since PM P2 , P3 are all points upon

the surface of the sphere, v by def. 1, OP1
= OP2

=
OP3=

... CP
1
= CP2

= CP3

Hence XPZ is a circle whose center is C, and every
other section of a sphere made by a plane may, in

like manner, be proved to be a circle.

Cor. 1. If the plane pass through the center of the

sphere, then OC = 0, and the radius of the circle will

be equal to the radius of the sphere.

Cor. 2. Hence all great circles are equal to one
another, since the radius of each is equal to the ra-

dius of the sphere.

Cor. 3. Hence, also, two great circles and their cir-

cumferences always bisect each other ; for, since both

pass through the center, their common intersection

passes through the center, and is a diameter of the

sphere and of each of the two circles.

Cor. 4. The center of a small circle and that of the

sphere are in a straight line, which is perpendicular

to the plane of the small circle.

Cor. 5. We can always draw one, and only one,

great circle through any two points on the surface of

a sphere ; for the two given points and the center of

the sphere give three points, which determine the po-

sition of a plane.

If, however, the two given points are the extremi-

ties of a diameter, then these two points and the cen-

ter of the sphere are in the same straight line, and an
infinite number of great circles may be drawn through
the two points. (Prop. 3, Geom. of Planes.)
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Distances on the surface of a sphere are measured
by the arcs of great circles. The reason for this is,

that the shortest line which can be drawn upon the

surface of a sphere, between any two points, is the

arc of a great circle joining them, which will be

proved hereafter.

PROP. II.

If a diameter be drawn perpendicular to the plane

oj a great circle, the extremities of the diameter will be

the poles of that circle, and of all the small circles whose

planes are parallel to it.

Let APB be a great circle of z

the sphere whose center is O.

Draw ZN, a diameter perpen-

dicular to the plane of the circle

APB.
Then Z and N, the extremities

of this diameter, are the poles of

the great circle APB, and of all

the small circles, such as apb,

whose planes are parallel to that of APB.
Take any points P„ P2 , in the circumfe-

rence of APB,
Through each of these points respectively, and the

points Z and N, describe great circles, ZP,N, ZP.N.
Join OP,, OP 2 ,

Then, since ZO is perpendicular to the plane of

APB, it is perpendicular to all the straight lines OP^
OP.2 , drawn through its foot in that plane.

Hence all the angles ZOP„ ZOP,, are
right angles, and .-. the arcs ZP X , ZP2 , are
quadrants.

Thus it appears that the points Z and N are at a
quadrant's distance, and .*. equally distant from all

the points in the circumference of APB, and are .*.

the poles of that great circle.

Again; since ZO is perpendicular to the plane APB,
it is also perpendicular to the parallel plane apb (Ge-
ometry of Planes, Prop. 14).
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Hence the oblique lines Zp
{ , 7,p : ,

drawn
to p t , p : , in the circumference of apb, will be equal to

each other. (Prop. 7, Geometry of Planes.)

.*. The chords Zpn Zp„ being equal, the

arcs Zp„ Zp 2 ,
which they subtend, will also

be equal.

.-. The point Z is the pole of the circle apb; and
the point N is also a pole, the arcs Np„ &c, being sup-

plements of the arcs Z/?„ &c.
Def. The diameter of the sphere perpendicular to

the plane of a circle is called the axis of that circle.

Cor. 1. Every arc PiZ, drawn from a point in the

circumference of a great circle to its pole, is a quad-

rant, and this arc PiZ makes a right angle with the

arc AP,B. For, the straight line ZO being perpen-

dicular to the plane APB, every plane which passes

through this straight line will be perpendicular to the

plane APB (Prop. 18, Geometry of Planes) ; hence

the angle between these planes is a right angle, or, by
def. 7, the angle of the arcs APi and ZPj is a right

angle.

Cor. 2. In order to find the pole of a given arc APX

of a great circle, take PiZ, perpendicular to A Pi,* and
equal to a quadrant, the point Z will be a pole of the

arc AP, ; or, from the points A and P
t
draw two arcs

AZ and P,Z perpendicular to AP1? the point Z in which
they meet is a pole of APj.

Cor. 3. Reciprocally, if the distance of the point

Z from each of the points A and P
x
is equal to a quad-

rant, then the point Z is the pole of APi, and each of

the angles ZAPM ZPiA is a right angle.

For, let O be the center of the sphere ; draw the

radii OA,OP„OZ;
Then, since the angles AOZ, P

r
OZ are right angles,

the straight line OZ is perpendicular to the straight

lines OA, OPi, and is .*. perpendicular to their plane ;

hence, by the above prop., the point Z is the pole of

* A perpendicular arc to APi at Pi is described by means of its

pole, which will be in Al'iB, at a quadrant's distance From Pi.
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AP1? nnd .*. (corol. 1), the angles ZAP15 ZP X
A are right

angles.

Cor. 4. Great circles, such as ZA, ZPj, whose
planes are at right angles to the plane of another
great circle, as APB, are called its secondaries ; and
it appears from the foregoing corollaries, that,

1. The planes of all secondaries pass through the

axis, and their circumferences through the poles of
the^r primary ; and that the poles of any great circle

may always be determined by the intersection of any
two of its secondaries.

2. The arcs of all secondaries intercepted between
the primary and its poles are =90°.

3. A secondary bisects all circles parallel to its pri-

mary, the axis of the latter passing through all their

centers.

Cor. 5.* Let the radius of the sphere = R, radius

of small circle parallel to it = r. Distance of two cir-

cles, or Oo = 6.

Join Op l9 and let the arc P,^, in degrees and frac-

tions of a degree, be expressed by 0. Then will 6

= sin. and r= cos. to the radius R, and we have
the equations

R* = r" + <f ;

r = R cos.
;

d = R sin. ;

in which cos. and sin. express these trigonomet-

rical lines to radius 1; the usual radius of the tables.

Cor. 6. Two secondaries intercept similar arcs of

circles parallel to their primary, and these arcs are

to each other as the cosines of the arcs of the sec-

ondaries between the parallels and the primary.

For the arcs of the parallels subtend at their re-

spective centers, angles equal to the inclinations of

the planes of the secondaries, and these arcs will,

therefore (def. 55), be similar. Again : let p {p 2 in the

diagram be one of these arcs, and imagine another,

* The two following corollaries require a knowledge of the first

principles of Trigonometry.
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fto* between this and PiP, ; then if r„ r3 be the radii

of
1

the two small parallels p tp„ q {q 2 ,
the rest of nota-

tion as before, we shall have
arc ptfi whole circumference of 1st

#

arc q^,
~ whole circumference of 2d

= -(th. 71, cor. 1);

_ R cos. <j>

R cos. <f>'

'

_ cos. <p

~~
COS. 0'"

If the second arc q vq3 becomes PjP2 , <f>

f = and cos.

<f>f=l.

arc P.P. 1 arc »,»2 ,

Cfty- = cos. 0, or arcp,p3=
TlMarc p {p

cos. arc P^a.*

r» or
cos. <p arc

PROP. III.

Every plane perpendicular to a radius at its extrem-

ity is a tangent to the sphere in that point.

Let ZXY be a plane perpendicular to

the radius OZ.
Then ZXY touches the sphere in Z.

Take any point P in the plane ; join

ZP • OP •

Then (Prop. 6, Geom. of Planes) OP
>OZ.
Hence the point P is without the

sphere ; and, in like manner, it may be

shown that every point in XYZ, except Z, is without

the sphere.

Therefore the plane XYZ is a tangent to the

sphere.

* These formulas are of frequent use in Astronomy, serving to ex-

press the relation between the distance moved on a parallel of decli-

nation and in right ascension of a star, and various other useful relar

tions of a similar kind.



GEOMETRY.

ntor. IV.

The angle formed by two arcs of great circles is

equal to the angle contained by the tangents drawn to

these arcs at their point of intersection, and is measured
by the arc describedfrom their point of intersection as

a pole, and intercepted between the arcs containing the

angle.

Let ZPN, ZQN, arcs of great

circles, intersect in Z.

Draw ZT, ZT', tangents to the

arcs at the point Z.

With Z as pole, describe the

arc PQ.
Take O, the center of the sphere,

and join OP, OQ.
Then the spherical angle PZQ

is equal to the angle TZT', and is measured by the

arc PQ.
For the tangent ZT, drawn in the plane ZPN, is

perpendicular to radius OZ ; and the tangent ZT',
drawn in the plane ZQN, is perpendicular to radius

OZ ; hence the angle TZT' is equal to the angle con-

tained by these two planes (def. 6, Geom. of Planes),

that is, to the spherical angle PZQ.
Again ; since the arcs ZP, ZQ are each of them

equal to a quadrant

;

.'. Each of the angles ZOP, ZOQ is a right angle,

or OP and OQ are perpendicular to ZO.
.-. The angle QOP is the angle contained by the

planes ZPN, ZQN.
.*. The arc PQ, which measures the angle POQ,

measures the angle between the planes, that is, the

spherical angle PZQ.
Cor. 1. The angle under two great circles is meas-

ured by the distance between their poles. For the

axes (def. in Prop. 2) of the great circles drawn
through their poles being perpendicular to the planes

of the circles, will be perpendicular to all lines of
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these planes, consequently, to the lines which measure
the angles of the planes, and .*. (see th. 65, Gen. Sch.,

4°) the angles under these axes will be equal to the

angle between the circles ; but the angle under the

axes is obviously measured by the arc which joins

their extremities, that is, by the distance between
their poles.

Cor. 2. The angle under two great circles is meas-
ured by the arc of a common secondary intercepted

between them. Q
Cor. 3. Vertical spherical an-

gles, such as QPW, RPS, are

equal, for each of them is the

angle formed by the planes QP
R, WPS.

Also, when two arcs cut each w
other, the two adjacent angles

QPW, QPS, when taken to-

gether, are always equal to two
right angles.

prop. v.

Iffrom the angular points of a spherical triangle con-
sidered as poles, three arcs be described forming another
triangle, then, reciprocally, the angular points of this

last triangle will be the poles of the sides opposite to

them in the first.

Let ABC be a spherical

triangle.

From the points A, B, C,
considered as poles, describe

the arcs EF, DF, DE, form-
ing the spherical triangle D
EF.
Then D will be the pole of

BC, Eof AC, andFofAB.
For, since B is the pole of

DF, the distance from B to D
is a quadrant.

TT
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And, since C is the pole of DE, the distance from
C to D is a quadrant.

Thus, it appears that the point D is distant by a

quadrant from the points B and C.

.-. (cor. 1, 2, Prop. 2) D is the pole of the arc BC.
Similarly, it may be shown that E is the pole of

AC, and F the pole of AB.
Note. D having been shown to be the pole of the

arc passing through the points B and C, it must be of

the arc BC, because but one arc of a great circle can

be made to pass through the two points B and C (cor.

5, Prop. 1).

PRor. vi.

The same things being given as in the last proposi-

tion, each angle in either of the triangles will be meas-

ured by the supplement of the side opposite to it in the

other triangle.

Produce BC to I and K, AB
to G, and AC to H.

Then, since A is the pole

of EF, the angle A is measur-
ed by the arc GH at a quad-

rant's distance from A (Prop.

4).

But, because F is the pole

of AG, the arc FG is a quad-

rant.

And, because E is the pole

of AH, the arc EH is a quadrant.
.-. EH + GF=180°,

or EF+GH = 180°;
.-. GH = 180°— EF.

In a similar manner, it may be proved that the an-

gle B is measured by 180°— DF, and the angle C by
180°— DE.
Again; since D is the pole of BC, the angle D is

measured by IK.

But, because B is the pole of DK, the arc BK is a

quadrant.
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And, because C is the pole of DI, the arc CI is a

quadrant.
.-. IC + BK=180°,

or IK+BC = 180°;
.-. IK =180°— BC.

But IK is the measure of the angle D (Prop. 4).

In the same manner, it may be proved that the an-

gle E is measured by 180°— AC, and the angle F by
180°— AB.
These triangles ABC, DEF are, from their prop-

erties, usually called Polar triangles, or Supplemental

triangles.

PROP. VII.

In any spherical triangle any one side is less than

the sum of the other two.

Let ABC be a sphercal triangle, A

O the center of the sphere. Draw
the radii OA, OB, OC.
Then the three plane angles AOB,

AOC, BOC form a trihedral angle at

the point O, and these three angles

are measured by the arcs AB, AC, BC.
But each of the plane angles which 6

form the trihedral angle is less than the sum of the

two others (Prop. 1, Polyhedral Angles).

Hence each of the arcs AB, AC, BC, which meas-

ures these angles, is less than the sum of the other

two.

PROP. VIII.

The sum of the three sides of a spherical triangle is

less than the circumference of a great circle.

Let ABC be any spherical tri-

angle.

Produce the sides AB, AC to

meet in D.
Then, since two great circles al-

ways bisect each other (Prop. \ $ £<

cor. 3), the arcs ABD, ACD are

semicircles.
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Now, in the triangle BCD,
BC < BD + DC, by last Prop.

... AB + AC + BC < AB + BD + AC + CD,
< ABD + ACD,
< circumference ofgreat circle.

Note. In elementary geometry the only spherical

triangles considered are those in which each side is

less than a semicircumference, and each angle less

than two right angle's.

Should a spherical triangle be taken without these

restrictions, it will be found that the residue of the

surface of the sphere will be a triangle having portions

of the same circumferences as boundaries with the

given triangle, and falling within the restrictions

;

when all the parts of this latter triangle are known,
the parts of the other may be derived from them by
subtracting the known angles and the known sides

from 180 or 360 degrees.

Triangles not limited by the restrictions above

mentioned, therefore, being dependent upon those

which are thus limited, the first class may be reject-

ed, and our attention, as it has been in the preceding

theorems, confined to the second.

PROP. IX.

Two spherical triangles are either identical or sym-
metrical, 1°. When they have two sides and the includ-

ed angle of the one equal to the same in the other ; 2°.

When they have a side and two adjacent angles ; 3°.

When they have three sides respectively equal.

These follow from the cor- A
responding theorems in trihe-

dral angles (Prop. 3, and exer.

3, 4, 5), but may be proved by
superposition of the given tri-

angles, the one upon the other,

or its symmetrical triangle, as

at th. 1, 2, &c, in Plane Geom-
etry.

The preceding diagram exhibits symmetrical tri-
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Ml-

angles, viz., EDF and EDF', or ABC and EDF. The
one could not be superposed upon the other, for, on

turning it over so as to bring the equal parts opposite

to each other, the convexities of the two surfaces

would be turned toward each other, and could touch

in but one point.

prop. x.

Symmetrical triangles are nevertheless equal in

surface, which may be proved as follows

:

Let ABC, DEF be two A D
symmetrical triangles, in

which AB = DE, AC = DF,
BC - EF.

Let G be the pole of the

small circle passing through B^

the three points A, B, C, and

H the pole of the small

circle passing through the

three D, E, F. Join G with A, B, C, and H with D,

E, F by arcs of great circles. The triangles AGB,
BGC, AGC, HDE, HFE, HDF are all isosceles, and

the corresponding ones in the two diagrams admit of

superposition, because, in turning them over to bring

the convexities of their surfaces the same way, equal

sides are not turned away from each other, and this

arises from the triangles being isosceles. The three

triangles of the one diagram being respectively iden-

tical, therefore, with the three of the other, we have

AGB + BGC— AGC = DHE + EHF— DHF, or A
BC = DEF. Q. E. D.

PROP. XI.

An isosceles spherical triangle has its two angles

equal, and conversely.

PROP. XII.

In any spherical triangle, the greater side is opposite

the greater angle, and conversely.

These may be proved precisely as in plane trian-

gles.
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PROP. XIII.

Two spherical triangles (unlike two plane triangles

in this respect) are equal when the three angles of the

one are equal to the three angles of the other, each to

each.

For the polar triangles of the two given triangles

will have equal sides (Prop. 6), and, consequently,

equal angles (Prop. 9). Hence the given triangles

will have equal sides.

NOTE.

The equal triangles in question in the preceding

theorems need not be supposed on the same sphere, if

their sides and angles are given in degrees and frac-

tions of a degree. Indeed, there would be much
advantage gained by discarding spherical triangles

from geometry except for purposes of mensuration on
the surface of the sphere, and using trihedral angles

in their place, especially in the application to Astron-

omy, which, as a science of observation, depends en-

tirely on angular measurements.

PROP. XIV.

The sum of the angles of a spherical triangle is

greater than two and less than six right angles.

For each angle is less than two (note to Prop. 8),

hence the sum of the three is less than six right an-

gles. Again, each angle being measured by a semi-

circumference, minus the side opposite in the polar

triangle, the sum of the three angles will be three

semicircumferences, minus the sum of the three sides

of the polar triangle, but the latter is less than a cir-

cumference (Prop. 8) ; hence the measure of the sum
of the three angles will be greater than one semicir-

cumference or two right angles.

Note. In a birectangular spherical triangle, two of

the sides are quadrants ; and in a trirectangular tri-
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angle all three of the sides are quadrants. This latter

triangle is sometimes taken as the unit of measure on

the surface of the sphere. As there are four such

triangles in each hemisphere, the whole surface of the

sphere would be expressed by the number 8.

trop. xv.

The surface of a lune is to the whole surface of the

sphere as the angle of the lune is to four right angles,

or as the arc which measures the angle of the lune is to

a circumference.

It is evident, from a mere in-

spection of the diagram, thatthe

lune ABDC is the same aliquot

part of the whole surface of

the sphere that the arc BC is of

a whole circumference, or that

the angle BAG, measured by
this arc, is of four right angles.

The demonstration may be

made more full by dividing the

triangle ABC into a number
of equal triangles, having their common vertex at A
and their bases equal portions of BC,* and dividing,

also, the hemisphere into triangles of the same size,

and thus showing that the ratio of the triangle ABC
to the hemisphere is the same as the ratio of BC to

the whole circumference, because both are in the

ratio of the same two numbers, viz., the number of
triangles in ABC to the number in the hemisphere, or

the number of bases in each.

Schol. The angle of the lune is to four as twice this

angle is to eight. Hence, if the whole sphere be ex-

pressed by 8, the lune will be expressed by 2A.

* These triangles will be equal because their sides are equal.
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PROP. XVI.

The two opposite spherical triangles on a hemisphere

are together equal to a lune having the same angle.

Let the two triangles ABC, ADE
be on the same hemisphere, having
their common vertex at A. Then
will their sum be equal to the lune

ABFC.
For the triangle BFC may be

proved equilateral with the trian-

gle ADE, and, therefore, of the

same surface. Q. E. D.

PROP. XVII.

The measure of a spherical triangle is the excess of
the sum of its angles above two right angles.

Let ABC be a spherical trian-

gle ; its measure will be A + B +
C— 2.*

For (by the last two proposi-

tions),

ADAE+ AGAH = 2A;
AFBG + AlBD =2B;
aHCI + aECF =2C.

If we add the first members to-

gether, we obtain evidently the whole hemisphere,
which is expressed by four, together with twice the

triangle ABC.
.-. 4 + 2 A ABC = 2A + 2B + 2C

;

ABC= A + B+ C— 2.

Q. E. D.
Corol. 1. The spherical triangle is equivalent to a

lune whose angle is half the above expression.

Corol. 2. Two spherical triangles are of equal sur-

face when the sum of their angles is the same, and
vice versct.

* A, B, and C must be here understood as expressed not in de-

grees, &c., but in fractions of a right angle.
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EXERCISES.

1. Prove that every spherical triangle may be inscribed in a circle.

2. Through a given point on the arc of a great circle to draw an

arc of a great circle perpendicular to the former.

3. The same through a point without the given arc.

4. Prove that the rectangles of the parts of all lines passing through

the same point within a sphere, and terminating at the surface, are

equal.

5. Trove that circles whose planes are equidistant from the center

of the sphere are equal.

6. Prove that every plane passing through the point of contact of a

tangent piano to a sphere cuts this plane in a line tangent to the circle

cut from the sphere.

7. That the line of centers of two spheres which cut each other is

perpendicular to the plane of the circle of section of the two spheres.

8. Prove that their intersection is a circle.

9. Show how to construct a spherical triangle with any three parts

given.

10. Prove that the sum of all the sides of a spherical polygon is less

than the circumference of a great circle.

11. Make a sphere pass through four given points, or prove that

every tetrahedron may be circumscribed by a sphere.

12. Also, inscribed.

13. Prove that the measure of the surface of a spherical polygon is

equal to the excess of the sum of its angles over as many times two

right angles as the Bgure has sides less two.

14. Make a great circle tangent* to a small circle on the surface

of a sphere.

15. Change a spherical quadrangle into an equivalent spherical

triangle.

16. Upon the base of a spherical triangle to construct an isosceles

spherical triangle of equal surface.

17. To construct on the base of a given spherical triangle another

of equal surface, 1°, having a given base angle; 2°, having a given

side.

18. Prove that the sums of the opposite angles of a spherical quad-

rilateral inscribed in a circle of the sphere are equal.t

* One circle is said to be tangent to another on the surface of a
sphere when the two circles have a common tangent line at a com-
mon point.

t This is done by connecting the four vertices of the quadrilateral
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19. Prove that if two spherical triangles, having a common base, be

inscribed in the same circle of a sphere, the difference between the

sum of the base angles and the vertical angle will be equal in the

two triangles.

Corol. Spherical triangles having the same base, and the sums of

their base angles equal, and also their vertical angles equal, have their

vertices lying in the same circumference on the sphere.

20. Prove that if the base of a spherical triangle be prolonged to

become a complete circumference, and the other two sides prolonged

beyond the vertex till they meet this ; then, if through the points of

meeting and the vertex a small circle of the sphere be made to pass,

every triangle having its vertex in this, and its base the same with

the given triangle, will have an equal surface.

Corol. If one of the other sides of the triangle falls in the prolonga-

tion of the base, and the vertex coincides with one of the above-

mentioned points of meeting, the small circle passing through the

three points vanishes or reduces to a point, viz., the point in which

these three points coalesce ; the triangle then degenerates into a lune,

which is still, however, equal to the given triangle in surface.

21. Upon the base of a given spherical triangle to construct another

of equal surface of which the vertex shall he in a given great circum-

ference.

22. To change a spherical triangle into another of equal surface

with a given side and given angle adjacent.

23. To construct a spherical triangle with two given sides and of

surface equal to a given triangle.

24. Prove that if P denote the number of polyhedral angles of a

polyhedron, F the number of its faces, and E the number of its edges,

P+ F= E-f 2.

25. Also, that the sum of the plane angles of a polyhedron is equal

to P— 2 times four right angles.

26. To construct the length of the radius of a sphere when con-

fined to its exterior.

27. To describe the circumference of a great circle through two

given points.

with the pole of the circle in which it is inscribed, thus forming four

isosceles spherical triangles.
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Prove that if _ expresses the ratio of an arc to a quadrant,
n n

m n
~"2

will express the ratio of the arc to the radius.

Knowing the ratio of an arc to the radius, show how to find the

Two angles subtended by arcs of different radii are to each other as

the ratios of the arcs to their respective radii (th. 71, corol. 3). In

symbols, if V and V be two angles, A and A' the arcs subtending

them, described with the radii R and R',

V* V • • — • ." R ' R'

Taking the right angle as the unit of angles, supposing for a moment
V to be this unit, A' the unit of arc, and R' the unit of length, the

above proportion becomes

V:l::^ : l .-. V=^
;R R'

that is, an angle at the center has for its measure the quotient of the

arc which subtends it, divided by the radius. It must, however, be

understood that the quantities V, A, and R are referred to their re-

spective units.

Of two arcs, each less than a semicircumferen.ee, subtended by the

same chord, the shortest is that whose center is furthest from the middle

of the chord.

Let AB be the common chord, AMB,
AM'B the two arcs, O the center of the for-

mer, O' of the latter. Then, if OP > O'P,

AMB < AM'B.

For (by th. 17) OA>0'A; and, if the

arc AM'B be turned over round AB as a

hinge, it will evidently contain the arc

AMB within it;* and it may be easily

* This may be seen more distinctly by
observing that an indefinitely small portion
of the arc of a circle may be regarded as a
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proved, that of two lines, the one enveloping the other, and termina-

ting at the same points, the enveloped line is the least. This maybe
shown, supposing them to be polygonal lines at first, by repeated ap-

plication of the principle that a straight line is the shortest distance

between two points, and then supposing the straight portions of the

polygonal lines to become infinitely small, or the polygonal lines to

become curves.

Prove that every small circle of a sphere has a less radius than the

sphere.

THEOREM.

The arc of a great circle comprehended between two given points on

the surface of a sphere is less than any arc of any small circle compre-

hended between the same two points.

This follows from the last theorems.

THEOREM.

The shortest path from one point to another on the surface of a sphere

is the arc of a great circle.

To prove this, let it be observed that the sphere is perfectly round

in all directions, so that every section of it made by a plane is a circle.

This being premised, suppose an irregular line upon its surface be-

tween the two given points ; this may be considered either an arc of

a small circle, or made up of small portions of such circles. In the

first case, it has already been proved that the arc of a great circle be-

tween the points is shorter than this. In the second case, arcs of great

circles between the extremities of the portions are less than these

portions, and, by the repetition of the principle that one side of a

spherical triangle is less than the sum of the other two, it may be

shown that the arc of a great circle between the two given points is

les3 than the polygonal combination of arcs of great circles between

the same points, so that in both cases the theorem is demonstrated.

straight line, which, prolonged both ways, becomes a tangent ; the

tangent, therefore, shows the direction of the curve at the point of

contact. If, now, after the arc AM'B is turned over, it be observed

that the direction of this arc at the point A is perpendicular to AO",
while the direction of AMB is perpendicular to AO, it is evident that

the latter arc will run within the former.

By joining the point O" with any point of the inverted arc AM'B,
and tlie point in which this line intersects the arc AMB with the

point O, it may be shown that the arc AM'B is every where diverging

in direction from the arc AMB, except at M, M'.
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ISOPERIMETRY ON THE SPHERE.

1. Prove that of all spherical triangles formed with two given sides,

the greatest is that in which the angle formed by the given sides is

equal to the sum of the other two angles.

2. That of all spherical triangles formed with one side, and the

perimeter given, the greatest is that in which the undetermined sides

are equal.

3. That of all isoperimetrical spherical polygons, the greatest is an

equilateral polygon.

4. That of all spherical polygons formed with given sides, and one

side taken at pleasure, the greatest is that which can be inscribed in

a circle, of which the chord of the undetermined side is the diameter.

5. The greatest of spherical polygons formed with given sides is

that which can be inscribed in a circle of the sphere.

6. The greatest of spherical polygons having the same perimeter

and same number of sides is that in which the sides and angles are

equal.

Note. All the above apply, also, to polyhedral angles, of which the

spherical triangles are the measures.
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SYMMETRY IN SPACE.

There are two kinds of symmetry for polyhedrons, symmetry of

form and symmetry of position.

To give an idea of these two kinds

ofsymmetry, let us consider, first, a tet-

rahedron SABC, and upon its edges,

prolonged above the vertex S, take dis-

tances SA' = SA, SB' = SB, SC ==

SC, and draw A'B', A'C, B'C ; the

parts of the two tetrahedrons (edges,

faces, diedral angles) are evidently

equal each to each, but disposed in an

inverse order. They are called sym-

metric.

The second tetrahedron may be de-

tached from the first, and is still symmetric, whatever may be their

relative position.

Two polyhedrons are said to be symmetric [and that independent

of their position in space] when they can be decomposed into the same

number of tetrahedrons symmetric each to each, and disposed in an in-

verse order.

Whence it follows that, 1°. A polyhedron can have but one sym-

metric with it. 2°. Two symmetric polyhedrons have their edges,

faces, diedral and polyhedral angles equal each to each.

SYMMETRY OF POSITION.

This exists in three ways : 1°. With reference to a point, which is

called a center of symmetry ; 2°. With reference to a line, called an

axis of symmetry ; 3°. With reference to a plane, called the plane of

symmetry. We shall treat, first, of

SYMMETRY RELATIVE TO AN AXIS.

Definition. Two points are symmetrical with respect to a line

when the line which joins them is perpendicular to the first, and

divided by it into two equal parts.
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A polyhedron is symmetric, or two polyhedrons are symmetric with

reference to a line, when this line passes through the middle point of

all the lines [other than the edges or diagonals of the faces] which

join the vertices of the polyhedron, two and two, and is perpendicular

to them.

Theorem 1. Two figures which are symmetric with reference to a

line are identical.

This may be proved by revolving the perpendiculars about the axis

;

the vertices will all describe similar arcs.

Corollaries. In a polyhedron symmetric with reference to an axis,

1°. Every line meeting the axis at right angles, and terminating at the

surface, is equally divided by the axis. 2°. Every plane through Ike

axis cuts the polyhedron into tioo equal parts. 3°. Every plane per-

pendicular to the axis determines a symmetric section with reference to

the point of intersection of this plane with the axis, and this point is the

center of symmetry of the section.

Schol. 1. The most simple of polyhedrons symmetrical with refer-

ence to an axis is the right prism, the base of which is symmetric with

reference to a point.

When the base of the right prism is a rectangle it has for axes of

symmetry the three lines which join the centers of the opposite faces.

If, moreover, the base is a square, there exist two other axes of

symmetry which join the middle of the opposite edges.

When the base of the right prism is a rhombus, there are three axes

of symmetry, one joining the centers of the two bases, and two others

joining the middle points of the opposite edges.

Schol. 2. The axis of a regular pyramid is also an axis of symmetry

when the number of lateral faces is even.

Schol. 3. Symmetry, with reference to an axis, is, properly speak-

ing, merely symmetry of position, since, by the preceding theorem,

the figures are equal and capable of superposition. But the same is

not the case with symmetry with reference to a point, or symmetry

with reference to a plane, which are at the same time symmetry of

form and position. For this reason we have commenced with sym-

metry referred to a line.

SYMMETRY WITH REFERENCE TO A POINT OR PLANE.

Definitions. Two points are said to be symmetrical with reference

to a point when the latter divides into two equal parts the line join-

ing the two former; and, with reference to a plane, when this plane

is perpendicular to the line which joins the two points and bisects it.

Theorem 2. If three points are in a right line, their symmetric
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points with reference to a point or plane arc in a right line. The
student will easily prove this.

Corollaries. 1°. Two lines of determinate length, and symmetric

with respect to a point, are equal and parallel. 2°. Two triangles sym-

virtric with respect to a point are equal and their planes parallel. 3°.

Two lines of determinate length, and symmetric with reference to a

plane, arc equal, make equal angles with this plane, and, being prolong-

ed, meet it at the same point, unless they are parallel.

Theorem 3. If four points are in the same plane, their symmetric

points, with reference to a point, are also in a same plane.

Schol. When the four points are in different planes their symmetric*

are also, and then the two systems of points determine two tetra-

hedrons, whose angles, diedral and trihedral, are symmetric, and,

consequently, the tetrahedrons themselves symmetric.

Theohkm 4. When two polyhedrons have their vertices, two and two,

si/m metric with reference to a point or a plane [in which case the poly-

hedrons are said to be symmetric], 1°. These polyhedrons have their

faces equal each to each, their diedral angles equal each to each, and

their polyhedral angles symmetric. 2°. These polyhedrons are sym-

metric in form.

The fust part of this theorem results from the last corollaries, and

the second by observing that the two polyhedrons are composed of

the same number of tetrahedrons symmetric, two and two, and in-

versely disposed.

Thkokkm 5. When the vertices of a polyhedron are situated symmet-

rically with reference to a point, 1°. This polyhedron has necessarily

an even number of edges, equal and parallel two and two ; and it. is the

same with the faces ; 2°. The plane angles and diedral angles arc also

equal each to each ; the polyhedral angles are symmetric in pairs; 3°.

Every line passing through the center of symmetry and terminating at

the surface is divided at this point into two equal parts ; 4°. Finally,

every plane passing through the center divides the polyhedron symmetric-

ally.

This follows from the last corollaries and scholium.

Schol. 1. The most simple of polyhedrons with reference to a point

is the parallelopipedon. It has for a center of symmetry its center of

figure. As every diagonal plane passes through its center of figure,

such a plane divides the parallelopipedon symmetrically.

Schol. 2. After the parallelopipedon, the most simple are prisms

having for bases polygons symmetric with reference to a point. The

center of symmetry is the middle of the line which joins the centers

of the two bases.
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General Scholium upon symmetry with reference to a point and a

plane compared with absolute symmetry.

It follows, from theorems four and five, that two polyhedrons sym-

metric with reference to a point or to a plane are at the same time

absolutely symmetric.

Reciprocally, two polyhedrons symmetric to each other (absolutely)

can always be placed symmetrically with reference to a point in space,

or with reference to a plane, this point or plane being a common ver-

tex or face of the two polyhedrons.*

Theorem 6. Two symmetric polyhedrons are equivalent.

It is only necessary, after the first definition, to demonstrate this

for tetrahedrons. These may be shown to have the same base and

height (see th. 5, 3°, of this App.), and are, consequently, equal.

The two following propositions may be easily established

:

1°. When there exist in a polyhedron two planes of symmetry per-

pendicular to each other, their common intersection is an axis of sym-

metry ; 2°. And if there exist three, the point common to these three

planes is a center of symmetry.

OF DIAMETRAL PLANES.

When a plane passes through a polyhedron in such a manner that

a system of parallel lines terminating at the surface are equally divided

by the plane, it is called a diametral plane. N.B.—The parallels are

not necessarily perpendicular to the plane.

Theorem 7. When the vertices of a polyhedron, or of two polyhe-

drons, are situated in pairs upon parallel lines, and a certain plane

passes through the middle points of these lines, 1°. Each couple of ho-

mologous edges produced will meet at a point of the plane, unless they

are parallel ; 2°. Each couple of homologous planes determined by three

vertices of the one polyhedron and three corresponding of the other, in-

tersect each other in a line of the first-mentioned plane (unless they are

parallel); 3°. Every line parallel to any of the lines joining the ho-

mologous vertices, and terminating on either side the plane at the poly-

hedral surface, is equally divided by this plane, which is, consequently,

a diametral plane.

N.B.—When the lines joining the homologous vertices are equal and

parallel, the figures determined by the vertices are equal and then'

planes parallel.

* An object and its reflected image present a familiar example of

two figures symmetric to each other.

The human body is a figure composed of two parts symmetric, with
reference to what is called a median plane.
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Sckol. 1. The preceding theorem comprehends, as a particular

case, figures symmetrical with reference to a plane.

Sckol. 2. Every triangular prism, right or oblique, has four diame-

tral planes, one of which is the plaue half way between the bases par-

allel to them ; and the three others are the planes passing through the

lateral edges and through the diameters of the bases.

CENTER OF MEAN DISTANCES.

The point which has been named center of mean distances in a pol-

ygon in a previous appendix (II., def. 4), has a property with refer-

ence to a plane which we have shown it to have with reference to a

line.

Theorem 8. The perpendicular let fall from the center of mean dis-

tances upon a plane drawn at pleasure in space, is equal to the quotient

of the algebraic sum of the perpendiculars let fallfrom the different ver-

tices upon this plane divided by the number of vertices. This sum is

zero when the plane passes through the center of mean distances, and

vice versa.

The demonstration will be similar to that in the corresponding one

in a previous appendix (II., def. 4, et seq.).

It is to be observed, that the vertices of which the point in question

is the center of mean distances need not be in the same plane as they

were supposed to be in the previous appendix.

Schol. To determine the center of mean distauces for any number
of points not in the same plane, draw three planes at pleasure which
cut each other (suppose, for the sake of simplicity, at right angles).

Let fall, from the different vertices upon each of these planes, per-

pendiculars ; find afterward for each plane the algebraic sum of its

perpendiculars, and divide this sum by the number of vertices. Fi-

nally, at distances equal to the three quotients, draw planes parallel

to the first three, and their common intersection will be the point

sought.

When four points are not in the same plane, these points, combined
three and three, determine a tetrahedron. This being observed

:

Theorem 9. In every tetrahedron the lines which join the middle

points of the edges not adjacent, all meet in a point which is the center

of mean distances of the four vertices.

Schol. This point is also found in three planes parallel to the faces,

and at a distance equal to one quarter the distance of the opposite

vertex from each face.

Theorem 10. The four lines joining the vertices with the centers of

mean disla?ices of the opposite faces, meet in a point which is the cen-
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ter of mean distances of the vertices. This point is one quarter the dis-

tance from the center of mean distances in each face to the opposite

vertex.

OF CENTERS OF SIMILITUDE.

Theorem 11. If all the vertices of a polyhedron be joined with a

point in space by lines, and upon these lines, or three prolongations, por-

tions be taken proportional to the lines themselves, the vertices of a new

polyhedron will be thus obtained, which is directly or inversely similar to

thefirst.

This point is called a center of similitude, external in the first

case, internal in the second.

The proof of the above is in all respects similar to that in a previ-

ous appendix (App. II.).

CENTERS OF SIMILITUDE OF SPHERES.

If lines be drawn tangent to two circles meeting each other, one

pair internally and the other pair externally ; and if these circles and

tangents be set in revolution about the line joining the centers, the

circles will generate spheres, and the tangents, cones enveloping the

spheres, and the points of contact will generate circles which will be

the curves of contact of the cones and spheres ; the planes of these

circles of contact will be perpendicular to the axis. The vertices of

these cones, at the points in which the tangents intersect, are called

centers of similitude of the two spheres, the one internal, the other

external.

Prove that every plane tangent to one of these conic surfaces is tan-

gent to the two spheres.

And, conversely, that every plane tangent to the two spheres is tan-

gent to one of the conic surfaces.

Two spheres in space would have an infinite number of common

tangent planes. One of these would be determined by another con-

dition, as, that it should pass through a given point, or be parallel to a

given line, or tangent to a third sphere, &c. ; and there would be two

planes which would fulfill the required condition in the first two cases

;

in the last there might be four systems of two planes tangent to the

three spheres, to wit : two planes comprehending the three spheres

between them, and six placed two and two between one of the

spheres and the two others.

This second case gives rise to a remarkable theorem analogous to

one in a previous appendix (App. II.), for three circumferences of a

circle.
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Theorem 12. The six centers of similitude of three spheres ea

to one another are situated three and three upon a same line, to

wit, the three external centers of similitude, then one of the external

and two internal, giving in all four lines.

For, first, let us consider the two tangent planes which embrace the

three spheres between them. These planes being tangent to the three

cones which envelop the spheres, must both pass through the vertices

of these cones, and, consequently, their intersection must. The other

tangent planes will, in a similar manner, serve to demonstrate the

other part of the theorem.

This theorem serves to prove the correctness of the theorem for the

case of three circumferences (App. II.), because the centers of simil-

itude of these circles are the same as the centers of similitude of three

spheres, of which these circles are great circles.

It is thus that sometimes propositions in Plane Geometry may be

demonstrated in a more simple manner by the aid of truths relating

to geometry in space.

REGULAR POLYHEDRONS.
A regular polyhedron is one in ichich the faces are equal regular pol-

ygons, and the diedral angles equal. From this definition it will follow

that the polyhedral angles will also be equal.

THEOREM.

There can be but five regular polyhedrons.

This follows from Prop. 2, of Polyhedral Angles, that a polyhedral

angle can not be formed unless the sum of the plane angles which

form it is less than four right angles.

If we take equilateral triangles, each angle of which is two thirds

of a right angle, to form a polyhedral angle, we may combine these

2 12
in threes, fours, and fives, but not more, because 6 X -= -%= 4 right

o o

angles.

If we take squares, each angle of which is one right angle, to form

a polyhedral angle, we can combine them in threes alone, for 4 X 1 =
4 right angles.

5^2 4
If regular pentagons, each angle of which is = 1 1, they

can be combined but in threes.

If hexagons, each angle of which is \\, they can not be combined
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even in threes to form a polyhedral angle, and three is the least num-
ber of planes that can be employed for this purpose.

It is evident that still less can regular polygons of a greater number
of sides be employed.

There can, therefore, be formed but three regular polyhedrons of

triangular faces, but one of square faces, and but one of pentagonal

faces, in all five, which is the greatest number that can possibly exist.

Schol. It remains to be shown that five regular polyhedrons can be

formed.

CONSTRUCTION OF REGULAR POLYHEDRONS.

1°. TO CONSTRUCT A REGULAR TETRAHEDRON.

Take an eqtiilateral triangle ; erect at the center of its inscribed cir-

cle a perpendicular to its plane ; with one of its vertices as a center,

and a radius equal in length to one of its edges, cut this perpendicu-

lar in a point
;
join this point with the vertices of the triangle, and the

regular tetrahedron will be formed.

2°. TO CONSTRUCT A REGULAR HEXAHEDRON OR CUBE.

We leave this to the student, being too easy to require explanation.

3°. A REGULAR OCTAHEDRON.

Upon a line equal to one of the sides of the equilateral triangle,

which is to be a face, construct a square ; erect at the center of this

square a perpendicular to its plane, and take upon this perpendicular,

on each side of the plane, a distance equal to one half the diagonal of

the square ;
joining the points thus determined with the vertices of

the square, the polyhedron required is formed.

N.B.—The center of the square is a center of symmetry. It is also

the center offigure.

4°. A REGULAR ICOSAHEDRON.

Construct first a pentagon upon the side of the given equilateral

triangle ; at the center of this figure erect a perpendicular to its

plane ; with a radius equal to the side of the triangle, cut this per-

pendicular in a point ; this point being joined with the vertices of the

pentagon, will furnish five equilateral triangles formed about it ; form

now a second pentahedral angle, with one of the angles of the pen-

tagon as a vertex, and two of its faces will be the same as those of the

first pentahedral angle formed ; with a third vertex of the same trian-

gle, to which the other two already employed belonged, form a third
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pentahedral angle; for this purpose two new faces will be required.

There will thus be united ten triangles, forming a sort of polyhedral

cap, such that the angles at the border are formed by alternately two

and three triangles. This polygonal line, winch terminates the surface,

has its sides equal, but its vertices not in the same plane. If now a

second polyhedral cap be constructed equal to the first, its diedral

angles will have the same value as those in the other. Then, with-

out breaking the continuity, we can unite the double angles of the bor-

der of the first cap with the triple angles of the border of the second,

and vice versa; whence will result a figure of twenty equal faces

equally inclined.

5°. A REGULAR DODECAHEDRON.

Suppose that with three regular pentagons a trihedral be formed,

which is possible (see last th.). The three diedral angles of this tri-

hedral angle are equal. Now with new pentagons, equal to the pre-

ceding, can be formed in the same manner, successively, at the vertices

of one of these pentagons, other trihedral angles, all of the same mag-

nitude. There will result six regular pentagons, composing a polyg-

onal cap, such that the angles of the border are formed alternately

of one arid of two plane angles.

[The same remark as above applies to this border.]

If a second cap be imagined, equal to the first, they can be united,

border to border, so that the single angles of the one accord to the

double angles of the other ; and thus will be formed a figure of

twelve faces, equal, and equally inclined to one another.

Schol. 1. To construct a regular polyhedron mechanically, taking

one of the faces as a base of construction, upon a sheet of pasteboard

make the development of all the faces, then fold these different faces

upon their edges in a suitable manner.

Schol. 2. All the regular polyhedrons except the tetrahedron have

a center of symmetry which is identical with the center offigure.

All have, also, planes of symmetry. These are, in general, planes

perpendicular upon the middle of the edges, or upon the middle

points of lines joining opposite vertices, taken two and two, or else

planes passing through the opposite edges, two and two.

Schol. 3. The regular tetrahedron has 4 vertices, 4 faces, and 6 edges.

The cube 8 " 6 " 12 "

The octahedron 6 " 8 " 12 "

The dodecahedron 20 " 12 " 30 "

The icosahedron 12 " 20 " 30 "

General Scholium upon Polyhedrons. These expressions, which can
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be easily verified upon the figures, are contained in the enunciation

of a theorem by the celebrated Euler, and which is translated by the

formula

V-f-F= E-f2;
V designating the number of vertices, F the number of faces, and E
the number of edges. This formula has been previously given.

There are a great many theorems more or less important upon

polyhedrons as well as upon polygons, similar to those in a previous

appendix, for which, see a memoir of M. Poinsot, in the Journal de

l'Ecole Polytechnique, 10e cahier, t. iv., p. 6, et seq. Also, a memoir

of M. Cauchy, in the same journal, 16e cahier, t. ix., p. 77. Also,

Annales de Mathematiques of M. Gergonne, particularly tome xv.,

page 157.
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D 4 O

The area of any plane figure is the measure of the

space contained within its extremes or bounds, with-

out any regard to thickness.

This area, or the content of the plane figure, is es-

timated by the number of little squares that may be

contained in it ; the side of each of those little meas-
uring squares being an inch, a foot, a yard, or any
other fixed quantity. And hence the area or content

is said to be so many square inches, or square feet, or

square yards, &c. In other words, the area of a sur-

face is the numerical ratio of this surface to its unit.

Thus, if the figure to be measured
be the rectangle ABCD, and the little

square E, whose side is one inch, be
the measuring unit proposed ; then, as

often as the said little square is con-
tained in the rectangle, so many square
inches the rectangle is said to contain,

which in the present case is 12.

PROBLEM I.

To find the area of any parallelogram, whether it be

a square, a rectangle, a rhombus, or a rhomboid.

Multiply the length by the perpendicular breadth
or height, and the product will be the area.*

* The truth of this rule is proved in the Geometry, Theor. 60,
Schol.

The same is otherwise proved thus : Let the foregoing rectangle be
the figure proposed ; and let the length and breadth be divided into

equal parts, each equal to the linear measuring unit, being here four
for the length and three for the breadth; and let the opposite points

of division he connected by right lines. Then it is evident that these
lines divide the rectangle into a number of little squares, each equal
to the square measuring un't E ; and further, that the number of these

I
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EXAMPLES.

Ex. 1. To find the area of a parallelogram whose
length is 1225, and height 8*5.

12-25 length.
8-5 breadth.

6125
9800

104*125 area.

Ex. 2. To find the area of a square whose side

is 35*25 chains. Ans. 124 acres, 1 rood, 1 perch.

Ex. 3. To find the area of a rectangular board
whose length is 12^ feet, and breadth 9 inches.

Ans. 9 1 feet.

Ex. 4. To find the content of a piece of land in

form of a rhombus, its length being 6*20 chains, and
perpendicular height 5*45.

Ans. 3 acres, 1 rood, 20 perches.

Ex. 5. To find the number of square yards of
painting in a rhomboid whose length is 37 feet, and
breadth 5 feet 3 inches. Ans. 21 T

7
2 square yards.

PROBLEM II.

Tofind the area of a triangle.

Rule I. Multiply the base by the perpendicular

height, and half the product will be the area.* Or,

multiply the one of these dimensions by half the

other.

little squares, or the area of the figure, is equal to the number of linear

measuring units hi the length, which is the same as the number of

square units in a horizontal row, repeated as often as there are linear

measuring units in the breadth or height, which is the same as the

number of horizontal rows, that is here 4 X 3 or 12.

And it is proved (Geometry, theor. 22) that a rectangle is equal to

any oblique parallelogram of equal length and perpendicular breadth.

Therefore the rule is general for all parallelograms whatever.
* The truth of this rule is evident, because any triangle is the half

of a parallelogram of equal base and altitude, by Geometry, Theor.

23.
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EXAMPLES.

Ex. 1. To find the area of a triangle whose base
is 625, and perpendicular height 520 links ?

#

Here 625 X 260= 162500 square links,

or equal 1 acre, 2 roods, 20 perches, the answer.
Ex. 2. How many square yards contains the tri-

angle, whose base is 40, and perpendicular 30 feet ?

Ans. 66§ square yards.

Ex. 3. To find the number of square yards in a
triangle whose base is 49 feet, and height 25| feet.

Ans. 68ff, or 68-7361.

Ex. 4. To find the area of a triangle whose base

is 18 feet 4 inches, and height 11 feet 10 inches.

Ans. 108 feet, 5| inches.

Rule II. When two sides and their contained an-

gle are given : Multiply the two given sides together,

and take half their product : Then say, as radius is to

the sine of the given angle, so is that half product to

the area of the triangle.

Or, multiply that half product by the natural sine

of the said angle, f
Ex. 1. What is the area of a triangle whose two

sides are 30 and 40, and their contained angle 28° 57'

18"?
Here \ x 40 X 30 = 600,

Therefore, -4841226 nat. sin. 28° 57' 18"

600

290*47356, the answer.

Ex. 2. How many square yards contains the tri-

* 100 links make a chain, 10,000 square links a square chain, and
10 square chains an acre.

t The following demonstration requires

an acquaintance with Trigonometry. For,

let AB, AC be the two given sides, includ-

ing the given angle A. Now £AB X CP
is the area, by the first rule, CP being per-

pendicular. But, by Trigonometry, CP
t= sine angle A X AC, taking radius = 1. Therefore, the area £AB
X CP is =£AB x AC X sin. angle A, to radius 1 ; or,

as radius : sin. angle A : : JAB x AC : the area.
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angle, of which one angle is 45°, and its containing

sides 25 and 21 1 feet? Ans. 20*86947.

Rule III. When the three sides are given : Add all

the three sides together, and take half that sum.

Next, subtract each side severally from the said half

sum, obtaining three remainders. Lastly, multiply

the said half sum and those three remainders all to-

gether, and extract the square root of the last prod-

uct for the area of the triangle.*

Ex. 1. To find the area of the triangle whose
three sides are 20, 30, 40.

20 45 45 45
30 20 30 40
40 25, first rem. 15, second rem. 5, third rem.

2)90 A

45, half sum.
Then 45 X 25 X 15 X 5= 84375.
The root of which is 290*4737, the area.

Ex. 2. How many square yards of plastering* are

in a triangle whose sides are 30, 40, 50 ?

Ans. 66|.
Ex. 3. How many acres, &c, contains the triangle

whose sides are 2569, 4900, 5025 links ?

Ans. 61 acres, 1 rood, 39 perches.

PROBLEM. III.

To find the area of a trapezoid.

Add together the two parallel sides ; then multiply

* For, let a, b, c denote the sides opposite respectively to A, B, C,
the angles of the triangle ABC (see last figure) ; then, by theor.

29, Geom., we have BC2— AB2
-f AC2— 2AB.AP, or a2= i2 -j-

c2— 2c. AP .-. AP=—£| ; hence we have

npa—p (&2+c2—a2)2_4&2c2—(b*+c*—a*y (<&<>+&+&—a*)' (2bc—b*—c*+a ,z)

4c2 4c2 ic2

.\4c2.CP2=
j
(&4-c)2_a2 j .

J
a2—(c—6)2

j =(a+6+c) (.^^^^ (a-b+c) (a+b—c)

•
1XR PP-!

r PP— A <*+H-c —a+b+c a—b+c a+b—c
}..-AJ3.CP--c.CF_v/l_ _

m
______ }_V,(»-flX_4)(_c)

where t =„(a+b-\-c)— half the sum of the three sides.
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their sum by the perpendicular breadth or distance

between them; and half the product will be the area,

by Geometry, theorem 25.

. l. In a trapezoid the parallel sides are 750
and 1225, and the perpendicular distance between
them 1510 links: to find the area.

I

750

1975 X 770 = 152075 sq. links = 15 acres, 33 perches.

Ex. 2. How many square feet are contained in the

plank whose length is 12 feet 6 inches, the breadth at
l

he greater end 15 inches, and at the less end 11

inches? Ans. 13|f feet.

Ex, 3. In measuring along one side AB ofa quad-
,!ar field, that side and the two perpendiculars

let fall on it from the two opposite corners, measured
as below : required the content. D
AP = 110 links.

A<i= 745 " C

AB=1110 " A \
CP = 352 " / !

•
! \

DQ= 595 " AP Q B

Ans. 4 acres, 1 rood, 5*792 perches.

rROBLH.M IV.

To find the area of any trapezium.

Divide the trapezium into two triangles by a diag-

onal : then find the areas of these triangles, and add
them together.

Note. If two perpendiculars be let fall on the diag-

onal, from the other two opposite angles, the sum of
perpendiculars being multiplied by the diagonal,

half the product will be the area of the trapezium.
Ex. 1. To find the area of the trapezium whose

diagonal is 42, and the two perpendiculars on it 10
and 18.

! Fere 16 + 18 = 34 ; its half is 17.

Then 42 X 17 = 714, the area.

Ex. 2. How many square yards of paving are in
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the trapezium whose diagonal is 65 feet, and the two
perpendiculars let foil on it 28 and 331 feet ?

Ans. 222 T
,

2 yards.
Ex. 3. In the quadrangular field ABCD, on account

of obstructions, there could only be taken the follow-
ing measures, viz. : the two sides BC 265, and AD 220
yards, the diagonal AC 378, and the two distances of
the perpendiculars from the ends of the diagonal,
namely, AE 100, and CF 70 yards. Required the

area in acres when 4840 square yards make an acre.

Ans. 17 acres, 2 roods, 21 perches.

problem v.

To find the area of an irregular polygon.

Draw diagonals dividing the proposed polygon into

trapeziums and triangles. Then find the areas of all

these separately, and add them together for the con-
tent of the whole polygon.

Ex. To find the content of the irregular figure

ABCDEFGA, in which are given the following diag-

onals and perpendiculars, B
namely : ^/X

AC 55 ^< \\
FD52 >^ • \
Gm 13 X ^""$\ \
B?i 18 \^'""'^ \ /
Go 12 /i *--^ \/

D?23 ^^^^A^^
Ans. 1878-5. E

PROBLEM VI.

To find the area of a regular polygon.

Rule I. Multiply the perimeter of the polygon, or
sum of its sides, by the perpendicular drawn'from its

center on one of its sides, and take half the product
for the area.*

* The demonstration of this is given in th. 73.
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Ex. 1. To find the area of the regular pentagon,

each side being 25 feet, and the perpendicular from

the center on each side 17*2047737.

Here 25 x 5 = 125, is the perimeter.

And 17*2047737 x 125 = 2150-5967125.

Its half, 1075*298356, is the area sought.

Rule II. Square the side of the polygon ; then mul-

tiply that square by the area or multiplier set against

its name in the following table, and the product will

be the area.*

No. of Names.
Areas or

Sides.

3

Multipliers.

Trigon, or triangle 0-4330127

4 Tetragon, or square 1-0000000

5 Pentagon 1-7204774

6 Hexagon 2-5980762

7 Heptagon 3-6339124

8 Octagon 4-8284271

9 Nonagon 6-1818242

10 Decagon 7-6942088

11 Undecagon 9-3656399
1*2 Dodecagon 11-1961524

Ex. Taking here the same example as before,

namely, a pentagon, whose side is 25 feet.

Then, 25a being - 625,

And the tabular area 1*7204774;

Therefore, 1-7204774 x 625= 1075*298375, as before.

* This rule is founded on the property that regular polygons of

the same number of sides, being similar figures, are as the squares of

their sides. Now the multipliers in the table are the areas of the re-

spective polygons to the side 1. Whence the rule is manifest.

Note. The areas in the table, to each side 1, may
1><- oqmpated in the following manner, with the aid

of plane trigonometry : From the center C of the
polygon draw lines to every angle, dividing the

whole figure into as many equal triangles as the pol-

ygon has sides ; and let ABC be one of those trian-

gles, the perpendicular of which is CD. Divide
360 degrees by the number of sides in the polygon, A D B
the quotient gives the angle at the center ACB. The half of this gives

the angle ACD; and this taken from 90°, leaves the angle CAD.
Then, as radius is to AD, so is tangent angle CAD to the perpendicular
CD. This, multiplied by AD, gives the area of the triangle ABC;
which, being multiplied by the number of the triangles, or of the
sides of the polygon, gives its whole area, as in the table.
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Ex. 2. To find the area of the trigon, or equilateral

triangle, whose side is 20. Ans. 173-20508.

Ex. 3. To find the area of a hexagon whose side

is 20. Ans. 103923048.
Ex. 4. To find the area of an octagon whose side

is 20. Ans. 1931-37084.

Ex. 5. To find the area of a decagon whose side

is 20. Ans. 3077-68352.

PROBLEM VII.

Tofind the diameter and circumference of any circle,

the onefrom the other.

This may be done nearly by either of the two fol-

lowing proportions, viz. :

As 7 is to 22, so is the diameter to the circumfer-

ence.

Or, as 1 is to 3-1416, so is the diameter to the cir-

cumference.*

* For, let ABCD be any circle whose center is E,

and let AB, BC be any two equal arcs. Draw the

several chords as in the figure, and join BE ; also,

draw the diameter DA, which produce to F,* till BF
be equal to the chord BD.
Then the two isosceles triangles DEB, DBF are equi-

angular, because they have the angle at D common

;

consequently, DE : DB : : DB : DF. But the two tri-

angles AFB, DCB are identical, or equal in all respects,

because they have the angle F= the angle BDC, be-

ing each equal the angle ADB (see th. 39, cor. 1 ) ; also,

the exterior angle FAB of the quadrangle ABCD is equal the opposite
interior angle at C (exercise 32, p. 48) ; and the two triangles have,
also, the side BF= the side BD ; therefore, the side AF is also equal
the side DC. Hence the proportion above, viz., DE : DB : : DB : DF
=DA -f- AF, becomes DE : DB : : DB : 2DE + DC. Then, by taking
the rectangles of the extremes and means, it is DB2 = 2DE2 -4- DE .

DC
Now if the radius DE be taken == 1, this expression becomes DB3

= 2 -f- DC ; and hence DB = V24-DC. That is, if the measure of

the supplemental chord of any arc be increased by the number 2,

the square root of the sum will be the supplemental chord of half that

arc.

Now, to apply this to the calculation of the circumference of the

circle, let the arc AC be taken equal to one sixth of the circumference,

* The point F may be found by describing an arc with B as center, and radius
= BD.

f The supplemental chord is the chord of the supplement.
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for the
> supplemental

chord of

1

T2

&

1U2
1

TO*

TSJVJ

of the

periphery.

Ex. 1. To find the circumference of the circle

whose diameter is 20.

and be successively bisected by the above theorem : thus, the chord

AC of one sixth of the circumference is the side of the inscribed reg-

ular hexagon, and is, therefore, equal the radius AE or 1 ; hence, in

the right-angled triangle ACD, we shall have DC = n/AD1— AC*=
-v/2'2— l3 = %/ 3 = 1-7320508076, the supplemental chord of one sixth

of the periphery.

Then, by the foregoing theorem, by always bisecting the arcs, and
adding 2 to the last square root, there will be fouud the supplemental

chords of the 12th, the 24th, the 48th, the 96th, &c., parts of the

periphery; thus,

^3-7320508076 = 1-9318516525

"

^3-9318516525 = 1-9828897227

v/3'9828897227 = 19957 178465

v/3-9957 178465 = 1-9989291743

v/3-9989291743 = 1-9997322757

^3-9997322757 = 1-9999330678

-v/3-9999330678= 1-9999832669

^3-9999832669 =
Since, then, it is found that 3-9999832669 is the square of the sup-

plemental chord of the 1536th part of the periphery, let this number
be taken from 4, the square of the diameter, and the remainder
0-0000167331 will be the square of the chord of the said 1536th part

of the periphery, and, consequently, the root ^000001 67331 =
0-0040906112 is the length of that chord; this number, then, being
multiplied by 1536, gives 6-2831788 for the perimeter of a regular

polygon of 1536 sides inscribed in the circle; which, as the sides of

the polygon nearly coincide with the circumference of the circle,

must also express the length of the circumference itself, very nearly.

But now, to show how near this determination is to the a R T
truth, let AQP = 0-0040906112 represent one side of such
a regular polygon of 1536 sides, and SRT a side of another
similar polygon described about the circle ; and from the
center E let the perpendicular EQR be drawn, bisecting

AP and ST in Q and R. Then, since AQ is= iAP =
0-0020453056, and EA = 1, therefore EQ2= EA2— AQ*
= •9999958167, aud, consequently, its root gives EQ=
•9999979084 ; then, because of the parallels AP, ST, we
have the proportion EQ : ER : : AP : ST : : the whole in-

scribed perimeter : the circumscribed one ; that is, as

•9999979084 : 1 : : 6-2831788: 6-2831920, the perimeter of
the circumscribed polygon. But the circumference of the circle be-
ing greater than the penmeter of the inner polygon, and less than that

of the outer, it must, consequently, be greater than 6-2831788,
but less than 6 2831920,

ami must, therefore, be nearly equal half their sum or a mean bo*
tween them, or 62831854, which, in fact, i^ true to the lasl figure,

which should be a 3 instead of the 4.
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By the first rule, as 7 : 22 : : 20 : 62f , the answer.
Ex. 2. If the circumference of the earth be 25,000

miles, what is its diameter?
By the 2d rule, as 3.1416 : 1 : : 25000 : 7957?, near-

ly the diameter.

Carol. To find the circumference from the radius,

multiply the latter by 6-2832.

PROBLEM VIII.

To find the length of any arc of a circle.

Multiply the degrees in the given arc by the radius

of the circle, and the product, again, by the decimal
•01745, for the length of the arc*
Ex. 1. To find the length of an arc of 30 degrees,

the radius being 9 feet. Ans. 4-7115.
" Ex. 2. To find the length of an arc of 12° 10', or

12°-}, the radius being 10 feet. Ans. 2-1231.

PROBLEM IX.

To find the area of a circle.

Rule I.f Multiply half the circumference by half
the diameter. Or multiply the whole circumference
by the whole diameter, and take \ of the product.

Hence the circumference being 6-2831854 when the diameter is 2,
it will be the half of that, or 3-1415927, when the diameter is 1 (th.'

71), to which the ratio in the rule, viz., 1 to 3-1416, is very near. Also,
the other ratio in the rule, 7 to 22, or 1 to 3j= 3*1428, &c., is another
near approximation.

* It having been found, in the demonstration of the foregoing prob-
lem, that when the radius of a circle is 1, the length of the whole
circumference is 6-2831854, which consists of 360 degrees ; therefore,
as 360°

: 6-2831854 : : 1° : -01745, &c., the length of the arc of 1 de-
gree. Hence the number -01745, multiplied by any number of
degrees, will give the length of the arc of those degrees. And, be-
cause the circumferences and arcs are as the diameters, or radii of the
circles ; therefore, as the radius 1 is to any other radius r, so is the
length of the arc above mentioned to r X -01745 X degrees in the arc,
which is the length of that arc, as in the rule.

t This first rule is proved in the Geometry, theor. 73.
And the second rule is derived from formula (3), schol., of the

same theorem, tt being 3-1416. Rule 3 is derived from the same
formula, observing that 7ir" =. indr, and {it s= -7854.
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Rule II. Square the radius, and multiply that square

by 3- 14 It).

• Rule III. Square the diameter, and multiply that

square by the decimal *7854, for the area.

Ex. 1. To find the area of a circle whose diameter

is 10, and its circumference 31*416.

By Rule 1. By Rule 3.

31-416 -7854

10 100 = 103

4)31416 78*54

78*54, the area.

Ex. 2. To find the area of a circle whose diame-

ter is 7, and circumference 22. Ans. 38|.

Ex. 3. How many square yards are in a circle

whose diameter is 3£ feet? Ans. 1*069.

Ex. 4. Find the area of a circle whose radius is 10.

Ans. 314'] 6.

PROBLEM X.

To find the area of a circular ring or space included

between two concentric circles.

Take the difference between the areas of the two
circles, as found by the last problem. Or, since cir-

cles are as the squares of their diameters, subtract

the square of the less diameter from the square of the

greater, and multiply their difference by *7854. Or,
lastly, multiply the sum of the diameters by the dif-

ference of the same, and that product by *7854 ;*

which is still the same thing, because the product of
the sum and difference of any two quantities is equal
to the difference of their squares.

Ex. 1. The diameters of two concentric circles

being 10 and 6, required the area of the ring contained
between their circumferences.

Here 10 + 6 = 16, the sum ; and 10— 6 = 4, the

difference.

Therefore *7854 x 16 x 4 =7854 x 64 = 50*2656,
the area.

* In this last method logarithms may be advantageously applied.
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Ex. 2. What is the area of the ring, the diameters of
whose bounding circles are 10 and 20 ? Ans. 23562.

PROBLExM XI.

To find the area of the sector of a circle.

Rule I. Multiply the radius, or half the diameter,

by half the arc of the sector, for the area. Or, mul-
tiply the whole diameter by the whole arc of the sec-

tor, and take one quarter of the product. The reason
for which is, that the sector bears the same propor-

tion to the whole circle that its arc does to the whole
circumference.

Rule II. As 360 is to the degrees in the arc of the

sector, so is the area of the whole circle to the area
of the sector.

This is evident, because the sector is proportional

to the length of the arc, or to the degrees contained

in it.

Ex. 1. To find the area of a circular sector whose
arc contains 18 degrees, the diameter being 3 feet.

1. By the 1st Rule.

First, 3*1416 X 3 = 9*4248, the circumference.

And 360 : 18 : : 9*4248 : -47124, the length of the arc.

Then *47124 x 3 ~ 4= -11781 x 3=35343, the

area.

2. By the 2d Rule.

First, -7854 x 3
2 = 7*0686, the area of the whole

circle.

Then, as 360 : 18 : : 7-0686 : -35343, the area of the

sector.

Ex. 2. To find the area of a sector whose radius

is 10, and arc 20. Ans. 100.

Ex. 3. Required the area of a sector whose radius

is 25, and its arc containing 147° 29'.

Ans. 804-4017.

PROBLEM XII.

To find the area of a segment of a circle.

Rule I. Find the area of the sector having the

same arc with the segment, by the last problem.
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Find, also, the area of the triangle formed by the

chord of the segment and the two radii of the sector.

Then take the sum of these two for the answer,
when the segment is greater than a semicircle: or

take their difference for the answer, when it is less

than a semicircle ; as is evident by inspection.

Ex. 1. To find the area of the segment ACBDA,
its chord AB being 12, and the radius AE or CE 10.

*First, AD £- AE = sin. angle D = sin. .
c

B
36° 524 = 36*87 degrees, the degrees in /\^~J\
the angle AEC or arc AC. Their double, / \:/ \

73*74, are the degrees in the whole arc I
£

! ;

ACB. V
i S

Now -7854x400 = 314-16, the area f*
of the whole circle.

Therefore 360° : 73-74: : 314*16: 64-3504, area of
the whole sector ACBE.

Again, v'AE2— ADa= V 100— 36 = %/64 = 8 =
DE.

Therefore, AD x DE = 6 x 8=48, the area of the

triangle AEB.
Hence sector ACBE— triangle AEB =16-3504,

area of seg. ACBDA.
Rule II. Divide the height of the segment by the

diameter, and find the quotient in the column of
heights in the following tablet: Take out the corre-

sponding area in the next column on the right hand,
and multiply it by the square of the circle's diameter,
for the area of the segment.f

Note. When the quotient is not found exactly in the

* This requires a knowledge of plane trigonometry.

t The truth of this rule depends on the principle of similar plane
figures, which have the ratio of their like lines (as the height and ra-

dius of a segment) equal, and are to one another as the square of their

like linear dimensions. The segments in the table are those of a cir-

cle whose diameter is 1 ; and the first column contains the quotients
of corresponding heights, or versed sines, divided by the diameter,
which are the same for similar segments of all diameters. Thus,
then, the area of the similar segment, taken from the table, and mul-
tiplied by the square of the diameter, gives the area of the segment
corresponding to this diameter.
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table, proportion may be made between the next less

and greater area, in the same manner as is done for

logarithms or any other table.

TABLE OF THE AREAS OF CIRCULAR SEGMENTS.

1

+3

<gg

i
i

•a

1 J*
i
n

3

4-S

If
^ 0)

1
Ti

-3

ITT

1 1
•01 •00133 •04701 •11990 •31 •20738 •41 •30319
•02 •00375 •12 •05339 •22 •12811 •32 •21667 •42 •31304
•03 •00687 •13 •06000 •23 •13646 -33 •22603 •43 •32293
04 •01054 •14 •06683 •24 •14494 •31 •23547 •44 •33284
05 •01468 •15 •07387 •25 •15354; •35 •24498 •45 •34278
•06 •01924 •16 •08111 •26 •16226 •36 •25455 •46 •35274
•07 •02417 •17 •08853 •27 •17109 •37 •26418 •47 •36272
•08 •02944 •18 •09613 •28 •18002 38 •27386 •48 •37270
•09 •03502 19 •10390 •29 •18905 •39 •28359 •49 •38270
•10 04088 •20 -11182 1-30 •19817 •K) •29337 •50 •39270

Ex. 2. Taking the same example as before, in

which are given the chord AB 12, and the radius 10,

or diameter 20.

And having found, as above, DE = 8 ; then CE—
DE = CD = 10— 8 = 2. Hence, by the rule. CD *
CF= 2-H20=-1, the tabular height. This being
found in the first column of the table, the correspond-
ing tabular area is -04088. Then :04088 x 20 2 =
•04088 x 400= 16-352, the area, nearly the same as
before.

Ex. 3. What is the area of the segment whose
height is 18, and diameter of the circle 50 ?

Ans. 636-375.
Ex. 4. Required the area of the segment whose

chord is 16, the diameter being 20.

Ans. 44-7292.

PROBLEM XIII.

To measure long irregular figures.

Take or measure the breadth in several places at

equal distances ; then add all these breadths together,
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and divide the sum by the number of them for the

mean breadth, which multiply by the length for the

area.*

Note 1. Take half the sum of the extreme breadths

for one of the said breadths.

Note 2. If the perpendiculars or breadths be not at

equal distances, compute all the parts separately as

so many trapezoids, and add them all together for the

whole area.

Or else add all the perpendicular breadths togeth-

er, and divide their sum by the number of them for

the mean breadth, to multiply by the length ; which
will give the whole area not far from the truth.

Ex. 1. The breadths of an irregular figure, at five

equidistant places, being 8*2, 7*4, 9*2, 10*2, 8*6 ; and
the whole length 39 : required the area.

First, (8-2 + 8-6) ^2 = 8*4, the mean of the two
extremes.

Then 8*4 + 7.4 + 9*2 + 10*2 = 35*2, sum of

breadths.

And 35*2 -r 4 = 8*8, the mean breadth.

Hence 8-8, x 39 = 343*2, the answer.
Ex. 2. The length of an irregular figure being

84, and the breadths at six equidistant places, 17*4,

20*6, 14-2, 16*5, 20*1, 24*4 ; what is the area?
Ans. 1550*64.

* This rule is made out as follows : Let
ABCD be the irregular piece, having the

several breadths AD, EF, GH, IK, BC at the

equal distances AE, EG, GI, IB. Let the
several breadths in order be denoted by the
corresponding letters a, b, c, d, e, and the

whole length AB by /; then compute the areas of the parts into which
tin- figure is divided by the perpendiculars, as so many trapezoids by
Problem 3, and add them all together. Thus the sum of the parts is,

2±-6 X AE+ *±5 X EG+^B x OI+±H x IB ,

= ( \a -f b + c -f J-f he) X J/= (m -f b+ c+ d) \l,

which is the whole area, agreeing with the rule ; m being the arith-

metic mean between the extremes and 4 the number of the parts.

And the same for any other number of parts.
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By the Mensuration of Solids are determined the

spaces included by contiguous surfaces; and the sum
of the measures of these including surfaces is the

whole Surface or Superficies of the body.

The measure of a solid is called its solidity, capac-

ity, or content. A better term is volume.

Solids are measured by cubes, whose sides are

inches, or feet, or yards, &c. And hence the volume
of a body is said to be so many cubic inches, feet,

yards, &c, as will fill its capacity or space, or anoth-

er of equal magnitude.
The least ordinary solid measure, or measure of

volume, is the cubic inch, other cubes being taken

from it according to the proportion in the following

table:

Table of Cubic or Solid Measures.

1728 cubic inches make . . 1 cubic foot.

27 cubic feet make . . 1 cubic yard.

166f cubic yards make . . 1 cubic pole.

64000 cubic poles make . . 1 cubic furlong.

512 cubic furlongs make . 1 cubic mile.

PROBLEM I.

To find the superficies of a prism.

Multiply the perimeter of one end of the prism by
the altitude of one of the parallelograms, and the

product will be the lateral surface. To which add,

also, the area of the two ends of the prism, when re-

quired.*

* And the rule is evidently the same for the surface of a cylinder,

which may be regarded as a prism of an infinite number of lateral

faces.
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Or, compute the areas of all the sides and ends sep-

arately, and add them all together.

Ex. 1. To find the surface of a cube, the length of
each side being 20 feet. Ans. 2400 feet.

Ex. 2. To find the whole surface of a triangular

prism whose length is 20 feet and each side of its end
or base 18 inches. Ans. 91*948 feet.

Ex. 3. To find the convex surface of a round prism,

or cylinder, whose length is 20 feet and diameter of
its base is 2 feet. Ans. 125*664.

Ex. 4. What must be paid for lining a rectangular
cistern with lead at 2d. a pound weight, the thickness

of the lead being such as to weigh 7 lbs. for each
square foot of surface ; the inside dimensions of the

cistern being as follows, viz., the length 3 feet 2 inches,

the breadth 2 feet 8 inches, and depth 2 feet 6 inches ?

Ans. £2 3s. 10 ±d.

To find the superficies of an irregular polyhedron.

Find the superficies of each of its bounding polyg-
onal faces, and add the results.

Tofind the superficies of a regular polyhedron.

Find the area of one of its faces by Prob. VI., and
multiply this by the number of faces.

PROBLEM II.

To find the surface of a regular pyramid or cone.

Multiply the perimeter of the base by the slant

height, or length of the side, and half the product
will evidently be the convex surface or the sum of

the areas of all the triangles which form it. To
which add the area of the end or base, if requisite.

Note. The slant height of a regular pyramid is the

perpendicular from the vertex to the middle of one
of the sides of the base.

Ex. 1. What is the upright surface of a triangular

pyramid, the slant height being 20 feet, and each side

of the base 3 feet ? Ans. 90 feet.
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Ex. 2. Required the convex surface of a cone, or

circular pyramid, the slant height being 50 feet, and
the diameter of its base 8i feet. Ans. 667*59.

PROBLEM III.

To find the surface of the frustum of a regular 'pyr-

amid or cone, being the lower part, when the top is cut

off by a plane parallel to the base.

Rule I. Add together the perimeters of the two
ends, and multiply their sum by the slant height, tak-

ing half the product for the answer. Because the

lateral faces of the frustum of a pyramid are trape-

zoids, having their opposite sides parallel, and the

frustum of a cone is the frustum of a pyramid of an
infinite number of lateral faces.

Rule II. Multiply the perimeter of the section mid-
way between the two bases by the slant height.

This depends upon the fact that the perimeter of the

middle section is half the sum of the perimeters of

the bases, as may be easily shown.
Ex. 1. How many square feet are in the surface

of the frustum of a square pyramid whose slant

height is 10 feet; also, each side of the base or great-

er end being 3 feet 4 inches, and each side of the less

end 2 feet 2 inches? Ans. 110 feet.

Ex. 2. To find the convex surface of the frustum

of a cone, the slant height of the frustum being 12|
feet, and the circumferences of the two ends 6 and
8-4. Ans. 90 feet.

PROBLEM IV.

To find the volume of any prism or cylinder.

Find the area of the base, or end, whatever the fig-

ure of it may be ; and multiply it by the altitude* of

the prism, or cylinder, for the volume.

* The altitude of a prism is the perpendicular distance between its

parallel bases. The cylinder, as well as the prism, may be oblique.

Prop. 3 of Solid Geom., upon which, with the note to Prop. 6 of the

6ame. the demonstration of thi9 depends, may evidently be extended
to an oblique cylinder.



4 MEXSI RATION.

Ex. 1. Find the solid content of a cube whose side

is 24 inches. Ans. 13824.

Ex. 2. How many cubic feet are in a block of mar-
ble, its length being 3 feet 2 inches, breadth 2 feet 8
inches, and thickness 2 feet 6 inches? Ans. 2\~.

Ex. 3. How many gallons of water will the cis-

tern contain whose dimensions are the same as in the

last example, when 277*274 cubic inches are contained
in one gallon? Ans. 131*566.

Ex. 4. Required the solidity of a triangular prism
whose length is 10 feet, and the three sides of its tri-

angular end or base are 3, 4, 5 feet. Ans. 60.

Ex. 5. Required the content of a round pillar, or

cylinder, whose length is 20 feet, and circumference
5 feet 6 inches. Ans. 48-1459.

PROBLEM V.

To find the volume of any pyramid or cone.

Find the area of the base, and multiply that area

by the perpendicular height ; then take one third of

the product for the volume. (See Prop. XL, Solid

Geom., and corollaries.)

Ex. 1. Required the solidity of the square pyramid,
each side of its base being 30, and its perpendicular

height 25. Ans. 7500.

Ex. 2. To find the content of a triangular pyramid
whose perpendicular height is 30, and each side of

the base 3. Ans. 38-97117.

Ex. 3. To find the content of a triangular pyramid,
its height being 14 feet 6 inches, and the three sides

of its base 5, 6, 7. Ans. 71-0352.

Ex. 4. What is the content of a pentagonal pyra-

mid, its height being 12 feet, and each side of its base

2 feet ? Ans. 27*5276.

Ex. 5. What is the content of the hexagonal pyr-

amid whose height is 6-4, and each side of its base

6 inches? Ans. 1*38564 feet.

Ex. 6. Required the content of a cone, its height

being 10| feet, and the circumference of its base 9

feet. Ans. 22*56093.
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PROBLEM VI.

Tofind the volume of the frustum of a cone or pyramid.

Rule I. Add into one sum the areas of the two
ends, and the mean proportional between them, or

the square root of the product, and one third of

that sum will be -a mean area ; which, being multi-

plied by the perpendicular height or length of the

frustum, will give its content.

Rule II. For the cone. Add together the squares

of the radii of the two bases and their product, and
multiply the sum by 3*1416, and the product by one
third of the altitude. (See Prop. XII., Solid Geom.,
and corol.)

Ex. 1. To find the number of solid feet in a piece

of timber whose bases are squares, each side of the

greater end being 15 inches, and each side of the

less end 6 inches ; also, the length or perpendicular

altitude 24 feet ? Ans. 19 J.

Ex. 2. Required the content of a pentagonal frus-

tum whose height is 5 feet, each side of the base 18

inches, and each side of the top or less end 6 inches.

Ans. 931925 feet.

Ex. 3. To find the content of a conic frustum, the

altitude being 18, the greatest diameter 8, and the

least diameter 4. Ans. 527-7888.

Ex. 4. What is the volume of the frustum of a
cone, the altitude being 25 ; also, the circumference

at the greater end being 20, and at the less end 10 ?

Ans. 464216.
Ex. 5. If a cask, which is two equal conic frus-

tums joined together at the bases, have its bung di-

ameter 28 inches, the head diameter 20 inches, and
length 40 inches, how many gallons of wine will it

hold? Ans. 79*0613.

PROBLEM VII.

Tofind the surface of a sphere, or any segment.

Rule I. Multiply the circumference of the sphere
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by its diameter, and the product will be the whole
surface of it.*

Rule II. Multiply the square of the diameter by
3-1416, and the product will be the surface.

Note. For the surface of a segment, multiply the

circumference of a great circle of the sphere by the

altitude of the segment.

Ex. 1. Required the convex superficies of a sphere

whose diameter is 7, and circumference 22.

Ans. 154.

* For if a regular semi-polygon be revolved
about a diameter of the figure, each of the trap-

ezoids, as BGHC, will describe the frustum of

a cone, the convex surface of which will* be
measured by the circumference of MN, describ-

ed by the middle point of its inclined side, multi-

plied by the slant height BC (Prob. 3, Rule 2).

But by the similarity of the triangles IMN and
BCO, whose sides are respectively perpendicular,

BC : BO : : IM : MN : circum. IM : circum. MN
(Geom., th. 71).

.-. BC X circum. MN= BO X circum. IM.
In the same manner, the convex surface of the

frustum described by the revolution of the trap-

ezoid HCDK may be shown to be measured by
HK X circum. IM. Of that described by the

revolution of DKLE by KL X circum. IM. And, by addition, the
surface described by the portion of the perimeter BCDE is measured
by GL X circum. IM. The same result will be obtained when the
number of sides of the semi-polygon is infinite and it becomes a semi-
circle, generating a sphere by its revolution ; and the portion BCDE
generating a zone, of which GL is the altitude. The circum. IM in

this case becomes the circumference of a great circle of the sphere.
When the whole semi-polygon or semicircle revolves, the altitude be-
comes the diameter AF, and the surface is measured by the circum-
ference of a great circle multiplied by its diameter. This is equal to

four times the area of a great circle (see th. 73, Geom.).
Corol. The convex surface of a cylinder circumscribing a sphere is

measured by the rectangle of the circumference of the base by the
altitude, which, being equal to the diameter of the sphere, and the
base of the cylinder equal a great circle, it follows that the measure
of the surface of the sphere is equal to that of the convex surface of
the cylinder. If now we add the two bases of the cylinder, since the
surface of the sphere is equal to four great circles, we shall have the
surface of the cylinder equal six great circles, so that the surfaces of
the sphere and circumscribed cylinder are as 4 to 6, or as 2 to 3.

Rule 2 follows obviously from Rule 1.



MENSURATION OF SOLIDS. 7

Ex. 2. Required the superficies of a globe whose
diameter is 24 inches. Ans. 1809-5G1G.

Ex. 3. Required the area of the whole surface of
the earth, its diameter being 7957f miles, and its cir-

cumference 25000 miles.

Ans. 198943750 sq. miles.

Ex. 4. The axis of a sphere being 42 inches, what
is the convex superficies of the segment whose height
is 9 inches? Ans. 1187*5248 inches.

Ex. 5. Required the convex surface of a spherical

zone whose breadth or height is 2 feet, and cut from
a sphere of 12£ feet diameter. Ans. 78*54 feet.

PROBLEM VIII.

To find the surface of a lune.

Multiply the arc which measures the angle of the

lune by the diameter of the sphere. For the lune is

to the whole surface of the sphere as its arc is to a
circumference.

Cor. 1. The measure of a spherical wedge, or un-
gula, is for a similar reason the product of the lune

which serves for its base, multiplied by one third the
radius of the sphere (see next Prob.).

Cor. 2. The measure of a spherical triangle is the

arc of a great circle subtending half the excess of the

sum of its angles over two right angles, multiplied by
the diameter of the sphere. This depends on the
above and Prop. XVII,, cor. l,Spher. Geom.
The measure of the surface of a sphericalpolygon

is the arc of a great circle subtending half the excess
of the sum of its angles over as many times two
right angles as the figure has sides, wanting two, mul-
tiplied by the diameter of the sphere.*

Or in symbols, s denoting the sum of the angles of
the polygon in fractions of a right angle, n the num-
ber of its sides,

[s— 2(ti— 2)] H- 8,

* This may be easily proved by dividing the polygon ruto tri-
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will express the fraction which the polygon is of the

whole surface of the sphere.

Ex. 1. Required the surface of the lune whose arc
is 8 and diameter 10. Ans. 8 X 10 = 80.

Ex. 2. Required the measure of the lune whose
angle is 30° 20', and diameter 12.

Ans. 12 X 3-1416 x 12 X^' =38-139.*

Ex. 3. Required the area of a spherical triangle,

of which the three angles are 30°, 100°, and 80°, the

diameter of the sphere being 40.

Ans. ~ X 3-1416 x 40X40.
Ex. 4. Required the area of a spherical pentagon,

the angles of which are 60°, 110°, 150°, 160°, and
100°, the diameter of the sphere being 50.

Ans. ^[60 + 110+150 + 160+ 100— (5— 2)180°]
-f-360}X 3-1416X50X50.

Ex. 5. What fraction of the whole surface of a
sphere is a spherical heptagon, the angles of which
are in fractions of a right angle 1J, 1}, If, li, If,

Ans "l-M -is-i-fl- 11
Ans. g —

1

8
. o — -.

PROBLEM IX.

Tofind the volume of a sphere or globe.

. Rule I. Multiply the surface by the diameter, and
take one sixth of the product for the content.

Rule II. Multiply the cube of the diameter by the

decimal -5236 for the content.

Ex. 1. To find the content of a sphere whose axis

is 12. Ans. 904*7808.

Ex. 2. To find the solid content of the globe of the

earth, supposing its circumference to be 25,000 miles.

Ans. 263,857,437,760 miles.

* This answer is of the same denomination as the diameter, ex-
cept that it is square units instead of linear. Logarithms may here
be conveniently applied, using the arithmetical complement of the
logarithm of the divisor 360° reduced to minutes.
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PROBLEM X.

To find the volume of a spherical sector.

Multiply the area of the zone which serves for its

base by one third of the radius of the sphere.*

Ex. 1. Required the volume of a spherical sector,

the altitude of the zone which serves for a base being

12, and the diameter of the sphere being 30.

Ans. 12 X 30 X 3-1410 X 5.

Ex. 2. Required the volume of a spherical sector,

a great section of the zone base being an arc of 40°,

and the diameter of the sphere being 100.

PROBLEM XI.

To find the volume of a spherical segment.

Rule I. From three times the diameter of the

sphere take double the height of the segment ; then

multiply the remainder by the square of the height,

and the product by the decimal -523G for the coi.

(See Schol. to Prop. XIV., Sol. Geom.)
Rule II. To three times the square of the radii;

the segment's base add the square of its height ; t!

multiply the sum by the height, and the product by
•5236, for the content.

Rule III. When the segment has two bases, multi-

ply the half sum of the parallel bases by the altitude,

and add the volume of the sphere of which this alti-

tude is the diameter.

* The spherical sector may be Apposed to he made up of an in-

finite number of indefinitely small cones, each taring an evai

portion of the surface of the zone base for a base, mid the radius of
the sphere for an altitude. The sum of" these will he measured by
the sum of their bases, or the zone multiplied by one third their Com
mmi altitude, or the radius of the sphere.

When the zone becomes the whole surface of the sphere the sector
becomes the whole solid sphere. Note that one third the radius is

ii the diameter.
Un\<- „'. observe that ir<P z= surface of sphere (Prob. 7), and

5~ :=-">-3G. The rule is similar for a spherical pyramid having a
spherical polygon fnr a base and the center of the sphere for a vertex.

K
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Ex. 1. To find the content of a spherical segment
of two feet in height cut from a sphere of 8 feet in

diameter. Ans. 41*888.

Ex. 2. What is the solidity of the segment of a

sphere, its height being 9, and the diameter of its base

20? Ans. 1795-4244.

EXERCISES IN MENSURATION.*

1. Transform a given parallelogram into another of double the alti-

tude which shall have a given angle.

2. To transform a triangle into another of the same base and given

vertical angle.

3. To construct a triangle of given base, vertical angle, and area.

4. The same, except the altitude instead of the base given.

5. To construct a triangle similar to a given triangle, and equal to

a given square.

6. A triangle with given angles at the base, and equal to a given

rectangle.

7. The same, when the base, vertical angle, and rectangle of the

other two sides are given.

8. The same, when the base, the altitude, and the product of the

two sides.

9. The same, when the altitude, the area, and the ratio of one of

the sides to the base.

10. The same, when the ratio of the base and altitude, the vertical

angle and the area.

11. Make a regular hexagon equivalent to a given polygon.

12. To construct a figure similar to a given figure, and its area hav-

ing to that of the given figure a given ratio.

13. A quadrilatei'al capable of being inscribed, in which two ad-

jacent angles, the angle which its diagonals make with each other

and its ai-ea, are given.

14. A quadrilateral that may be inscribed, in which three angles

and the area are given.

15. A circle equal to the sum of several circles.

16. A square in a given semicircle.

17. A circle equal to the ring between two circles.

18. A quadrant equal to a given semicircle.

* Many of these will conveniently admit the application of loga-

rithms.
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15). A sextant equal to a given quadrant.

2U. To determine the side of an equilateral triangle, the area of

which is 73-15.

2 1 . Also, of a regular hexagon, the area of which is 1G8.

The side of a regular pentagon is 21-7. What is that of another

half as large ?

To find the radius of a semicircle equal to a triangle whoso

- 1 !. and altitude 9.

24. What 18 the diameter of a circle equal to a trapezoid, of which

the base is 17*4, the opposite side 127, and tho altitude 1008?

To find the content of a regular octagon when the radius of its

[bed circle is equal to 12.

2G. Of a regular decagon when the radius of the inscribed circle is

equal to 17-2.

27. How large is the anglo at the center of a circular sector, the

area of which is equal to that of an equilateral triangle whose side is

14, the radius of the sector being 8 ?

28. To determine the side of a square which shall be equal to a

whose arc is 18°, and radius 7*5.

29. To determine the diameter of a circle which shall be equal to

the segment of a circle whose radius is 120, and arc 135°.

30. To determine the radii of the inscribed and circumscribed cir-

cles of a triangle whose sides are 10, 12, and 11.

31. To find the convex surface of a regular hexagonal prism, the

longest diameter of which is 2r, and height h.

Of a regular hexagonal pyramid with the same data.

33. Of a zone of one base, the radius of which is r, and altitude h.

3 1. Of a spherical sector, the chord of which =c, and rad. sphere

= r.

35. To find the volume of a solid generated by the revolution of

tor of a circle about a line through the center, and exterior to the

36. Find the volume of the solid generated by the revolution of any

triangle about one of its sides.

37. Find the volume of a solid generated by the revolution of the

segment of a circle about a line passing through the center of the cir-

l exterior to the segment.

38. Prove that the surfaces of two spheres are as the squares, and

the volumes as the cubes of their radii.

39. Find the volume left of a cylinder after a spherical segment

having one bate equal to that of the cylinder, and the same altitude

with the cylinder, has been abstracted.

40. The altitude and surface of a regular hexagonal prism, of
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which the greatest diameter is 18, and the volume of which is

to that of a regular triangular pyramid, of which the is equal

to 8, and altitude 20.

41. In a quadrangular and hexagonal prism each side of the bases is

7, the height 13. What is the ratio of their volumes and surfaces?

42. To find the altitude of a regular quadrangular pyramid, the

side of whose base is 28-7, and volume equal to that of a rectangular

parallelopipedon whose edges are 13, 17, and 23.

43. The ratio of two homologous edges of two similar polvhodrons

is 5 : 7. To find the ratio of their surfaces and volumes.

44. The ratio of the volumes of two similar polyhedrons is 14 : 29.

To find that of their homologous edges.

45. What is the ratio of the surfaces. of two regular pyramids, the

one triangular, the other quadrangular, if the base in both is 24, and

the altitude 7 ?

46. A regular tetrahedron, the edge of which is 15, has the third of

its altitude cut off by a plane parallel to the base ; required the vol-

ume of the frustum left. Also, the surface.

47. About a sphere of 16 inches radius a polyhedron is circum-

scribed, containing 20,800 cubic inches. What is the area of the

surface of the latter 1

48. A cylinder and cone have their radii 14 and 8, their altitudes 6

and 9. What is the ratio of their volumes and surfaces ?

49. Find the radius of a sphere equal to a cube, the diagonal of

which is 17-22.

50. Also, of a sphere- equal to a regular octahedron, the diagonal of

which is 31*5.

51. Find the radius of an inscribed sphere in a regular tetrahedron,

the edge of which is a.

52. The same for an octahedron.

53. Find the ratio of the surfaces of a regular tetrahedron and in-

scribed sphere.

54. The same for an octahedron and sphere.

55. What is the ratio of a hemisphere to a cone of the same base

and altitude ?

56. Find the ratio of the solids generated by a triangle and rectan-

gle revolving about a common base, and the altitude of the former

being double that of the latter.

57. To find the volume of a spherical segment when the radius is

5-86, and the arc of a great section 162° 14'.

58. Find the base of a square pyramid which shall contain a

cubic yard, and the altitude of which shall be 1 foot.
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The ride* of the base of a tetrahedron are 12, 15, 17, its alti-

tude 9. Required its volume. Ans. 263*248.

GO. A regular tetrahedron contains 19*683 cubic yards. Required

its edges and surface. Ans. Edge 5-50705, surfac.

61. Required the volume of a frustum of a regular triangular pyra-

mid, the larger base of which has 0-9 for its side, and the smaller

base 0-4, and of which the lateral edge is 0-5. Ans. 0078371.

I riven the volume of a sphere equal to 1843-080278 to find its

radius. Ans. 7*61.

63. Given the edge of a cube 0-3G. Required the volume of the

circumscribed Bphere. Ans. 0-120937.

64. Find the area of a spherical triangle, the angles of which are

tively 85 grades, 17', T03sr
, 35', 67er

, 49', the radius of the

sphere being 1*54. Ans. 2-0805.

65. There is a crucible in the form of a conic frustum, the bottom

ofwhich is 003 in diameter, the top 0-00, and the altitude 0-08 ; this

crucible contains a quantity of melted metal, the surface of which is

005 in diameter: it is required to make a sphere of it. What is the

diameter of the proper mold ? Ans. 0-5074 1 1.

60. Given the side or apophthegm of a cone 25*15, and its height

17-3, to find its convex surface and volume.

Ans. A= 1442-32, V = 0037-01.

67. Find the quantity of glass in a lens, of which the diameters of

the surfaces are 0*03, and the thickness of the lens 0-004.*

Ans. 0-000001422094.

68. Supposing the earth to be perfectly spherical, and a quarter of

the meridian to be expressed by 10,000,000; find me expression for its

radius, the area of its surface, its volume and weight, supposing the

mean density of the earth to be 5*6604.f

* This solid is a double segment of a sphere.

t This number is the result of the experiments of Sir Francis

Bailey, given in the xivth vol. of the Memoirs of the Royal Ast. Soc.

of Lond., 1844.
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