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PREFACE 

The  following  treatise  is  based  on  courses  of  lectures  \ 
delivered  in  Firth  College,  Sheffield.     It  is  intended  as  an 
introduction  to  the  principles  of  dynamics  for  the  use  of 
students  with  no  knowledge  of  mathematics  beyond  the 
elements  of  algebra  and  pure  geometry.     It  will  thus  be 
found  useful,  not  only  in  colleges  and  schools,  but  also  to 

that  large  class  of  mechanical  engineers  to  whom  a  know-V 
ledge  of  dynamics   is  valuable,  but  whose  acquaintance  ̂  
with  mathematics  is  slight.     The  wants  of  this  latter  class 
have  been  kept  in  view  throughout,  although  developments 

properly  to  be  found  in  technical  treatises  are  not  intro- 
duced.    The  chapters  on  the  motion  of  rigid  bodies  will,  it 

is  hoped,  be  especially  useful  to  them.     This  part  will  also 

be  of  value  to  ordinary  students,  who  will  thus  be  intro- 
duced to  the  simple  principles  of  rigid  dynamics  freed  from^ 

the  intricacies   of   the  differential  and  integral  calculus,  ̂  

which  usually  accompany  them.     For  engineers,  the  know- 
ledge of  the  properties  of  moments  of  inertia  and  their 

values  for  simple  bodies  are  as  important  as  that  of  their 
centres  of  gravity,  and  it  is  hoped  that  the  methods  of 
Chapter  XIX  will  be  found  as  simple  as  those  employed  in 
finding  centres  of  gravity. 

Although  a  knowledge  of  trigonometry  has  not  been 
assumed  in  the  text,  it  has  been  occasionally  introduced  in 

some  of  the  worked-out  examples,  and  examples  have  been 
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added  which  require  trigonometry  for  their  solution.  The 

book  is  thus  rendered  useful  to  a  larger  circle  of  students. 

The  chief  points  of  novelty  in  the  presentment  of  the 

subject  are  the  following :  (1)  no  separation  has  been 

made  between  Statics  and  Kinetics — but  they  have  been 
considered  together,  the  former  merely  as  a  special  case  of 

the  latter ;  (2)  the  way  in  which  the  idea  of  Mass  and  its 
measure  is  introduced,  and  the  discussion  of  Momentum 

before  that  of  Force,  depart  from  the  order  usually  followed. 

The  author  believes,  however,  that  this  is  the  only  logical 

way  of  treating  the  subject,  based,  as  it'must  be  ultimately, 
on  experimental  laws.  This  gives  to  the  student  a  vivid 

realisation  of  the  essential  property  of  matter  and  inertia 

at  the  very  commencement  of  the  subject.  He  would 

strongly  recommend  the  student  himself  to  perform  or  see 

the  experiments  described. 

The  audior  owes  a  great  debt  to  Miss  Perrin,  late 

scholar  of  Girton  College,  and  Mr.  G.  M.  Hicks,  late  scholar 

of  Clare  College,  Cambridge,  for  their  kindness  in  going 

through  the  proof-sheets,  in  working  the  answers  to  the 
examples,  and  for  naost  valuable  help  and  suggestions  as 

the  book  was  passing  through  the  press. 

W.  M.  HICKS. 
December  188&. 

PREFACE  TO  THE  FOURTH  EDITION 

Advantage  has  been  taken  of  the  call  for  a  new  edition 
to  add  a  chapter  on  motion  under  central  forces.  This  has 
been  done  at  the  request  of  teachers,  so  as  to  render  the 
book  useful  to  students  preparing  for  examinations  in  which 
this  subject  is  included.  It  is  placed  in  an  appendix  Avith 
some  additional  matter  which  appeared  desirable. 

The  author  has  again  to  thank  various  correspondents 
who    have    made  suggestions    and   corrections.      He    has 
especially  to  thank    his    friend   and   colleague    Professor 
Leahy  for  valuable  advice  and  help. 

March  1897. 
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INTRODUCTION 

Physical  science  is  concerned  \vith  the  relations,  of  the 

fundamental  things,  time,  space,  and  matter.  Each  of  these 

is  said  to  be  sui  generis — neither  can  be  explained  nor  defined 

in  tei-ms  of  the  others.  Although,  however,  it  is  not 
possible  to  say  what  they  are  in  themselves,  it  is  possible 
to  investigate  the  relations  which  subsist  between  them. 
That  science  which  treats  of  space  by  itself  is  called 
geometry.  That  which  treats  of  the  relations  of  matter  to 
space  and  time  is  called  dynamics.  Kinematics  deals 
with  questions  connected  with  space  and  time,  such  as 
velocity  and  change  of  position  with  time.  Dynamics, 
again,  is  subdivided  into  kinetics,  which  deals  with  matter 
in  motion,  and  statics,  which  deals  with  the  conditions  of 
rest.  Before  entering  on  the  consideration  of  these  latter 
subjects  it  will  be  necessary  first  to  learn  about  motion, 
apart  from  the  thing  which  moves ;  consequently  we  shall 
be  obliged  to  make  some  study  of  kinematics  as  a  pre- 

liminary to  the  larger  subject  of  dynamics. 
The  object  of  all  physical  science  is  to  reduce 

phenomena  to  measurement.  In  the  case  of  any  of  the 
fundamental  things,  time,  space,  or  matter,  all  we  can  do 
is  to  say  that  a  certain  time,  space,  or  niatter  is  so  many 
times  another  portion  of  the  same  thing.  A  similar 
statement  holds  good  with  respect  to  any  other  kind  of 
quantity,  although,  as  we  shall  see  later,  it  is  possible  to 
express  them  in  terms  of  the  fundamental  ones.  The 
expression  of  the  magnitude  of  any  physical  quantity  is 
(S^  B 
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therefore  composed  of  two  factors — one  giving  the  portion 
with  which  it  is  compared,  and  the  other  the  number  of 
times  that  the  quantity  in  question  contains  it.  Tiie 
former  is  called  the  unit,  the  latter  the  measure.  Thus 

a  certain  length  may  be  3  feet,  a  certain  time  3  hours. 

Here  the  measure  is  3,  the  units  are  "feet"  and  "hours." 
The  chief  fundamental  units  in  use  are  the  following  : — 

Unit  of  Time. — The  unit  of  time  in  use  throughout 
the  world  depends  on  the  average  time  which  the  earth 
takes  to  make  one  turn  on  its  axis,  relatively  to  the  sun, 
or,  as  it  is  called,  the  mean  solar  day.  This  is  subdivided 
into  24  hours,  an  hour  into  60  minutes,  and  a  minute  into 
60  seconds. 

Unit  of  Space. — Different  nations  use  different  units 
of  length.  The  principal  British  unit  is  called  the  yard. 
It  is  the  distance  between  the  centres  of  two  transverse 

lines  on  a  bronze  bar  kept  in  the  office  of  the  Exchequer  in 
London,  the  distance  being  measured  at  a  temperature 

of  62°  F.  The  yard  is  subdivided  into  3  feet,  and 
each  foot  into  1 2  inches.  The  unit  used  chiefly  on 
the  continent  and  in  scientific  measurements  is  called  the 

meter.  It  was  introduced  in  1795  by  the  French 

Republic,  and  was  intended  to  be  one  ten-millionth  of  the 

length  of  a  meridian  from  the  earth's  pole  to  the  equator. 
It  is  now  defined  as  the  distance,  measured  at  the  tempera- 

ture of  melting  ice,  between  the  ends  of  a  platinum  rod 
kept  in  the  archives  at  Paris.  The  system  of  units  based 

on  this  is  called  the  metrical  system.  The  meter  is  sub- 
divided into  smaller  units,  one-tenth,  one-hundredth,  and 

one-thousandth  of  the  meter,  and  named  by  placing  the 
words  deci,  centi,  milli  respectively  before  meter.  On 
the  contrary,  when  larger  units  are  needed,  deca  placed 
before  meter  means  10  meters,  hecto  100,  and  kilo  1000. 
It  is  thus  possible  to  change  the  measure  of  a  length 
from  one  unit  to  another  merely  by  changing  the  decimal 

point.  Thus  1102-167  meters  =  1'102167  kilometers, 
110216-7  centimeters,  or  1102167  millimeters.  This  is 
one  advantage  of  the  metrical  system  of  units,  but  a 
greater   advantage    still    is    the  way, in   which    they  are 
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correlated  with  the  unit  of  mass.  The  relations  between 

the  metrical  and  British  units  are  given  in  Tables  I.,  11. 
below. 

An  area  requires  a  unit  of  its  own  kind  by  which  to  be 
measured.  It  is  the  area  of  a  square  of  which  a  side  is  the 
unit  of  length.  But  for  certain  purposes  special  units  are 

employed — thus,  for  measuring  land  an  acre  is  equal  to 
4840  square  yards,  a  rood  is  equal  to  a  quarter  of  an  acre, 
and  a  pole  contains  30|  square  yards.  The  metrical  unit 
of  area  is  100  square  meters,  and  is  called  an  are.  For 

land  measures  the  hectare  or  square  hectometer  is  em- 

ployed. 
Again,  the  unit  proper  to  measure  a  volume  is  the 

volume  of  a  cube  whose  side  is  the  unit  of  length.  Other 

units  are  also  employed — for  instance,  1  gallon  is  equal 

to  277*274  cubic  inches,  and  contains  10  lbs.  of  pure 
water  at  62"  F.  This  is  subdivided  into  4  quarts  and 
8  pints.  The  unit  of  volume  corresponding  to  the  deci- 

meter unit  of  length,  that  is  a  cubic  decimeter,  is  called 
a  liter. 

Units  of  Matter. — The  quantity  of  matter  in  a  body 
is.  called  its  mass.  The  British  unit  of  mass  is  called  the 

pound.  It  is  a  quantity  of  matter  equal  to  that  contained 
in  a  piece  of  platinum  which  is  preserved  in  the  office  of 
the  Exchequer  in  London. 

The  system  of  units  employed  on  the  continent  and  in 
scientific  measurements  is  based  on  the  gram.  It  was 
intended  to  represent  the  quantity  of  matter  in  1  cubic 

centimeter  of  pure  water  at  4°  C.  It  is  now  defined  as 
the  one-thousandth  of  the  quantity  of  matter  in  a  piece  of 
platinum  preserved  in  the  archives  at  Paris. 

The  multiples  and  subdivisions  are  made  as  in  the  case 
of  the  meter,  and  are  called  the  kilogram,  hectogram, 
decagram,  decigram,  centigram,  milligram. 

The  system  of  units  depending  on  the  centimeter, 
the  gram,  and  the  second  is  often  called  the  C.G.S. 

system. 
It  will  be  useful  for  reference  to  collect  here  the  follow- 

ing tables  and  numbers  : — 



ele:mentary  dynamics 

I.  Measures  of  Space. 

A.  Length- 
0 Centimeters 

5 
— 1 — r-J-i — 1—1 — i-J-i   1   1   iJ— 1 — 1   

JO 

0 

1   ,   ,   1   !   ,_L,   L 

7 

-M   '      '      '      '   '   '   '      '      1 

2 3 

1    '    '    ' — '— 
4 

Inches 

Table  I. 

1  centimeter  =         '3937079  inch. 

1  meter         =    .  39*37079  inches. 

„  =       3-2809  feet. 
1  kilometer  =::1093-6  yards. •6213  mile. 

Table  II. 

1  inch  =   2*539954  centimeters. 
1  foot  =30"479449  centimeters. 

1  yard  =      -91438347  meter. 
1  mile  =   1  -60932  kilometer. 

The  following  are  roughly  approximate  numbers 

Distance  from  pole  to  equator  =10,000,000  meters. 
1  decimeter  =  4  inches. 
8  kilometers  =  5  miles. 

Diameter  of  1  halfpenny  =  1  inch. 

B.  Area- 

1  sq.  centimeter 
1  sq.  meter 
1  sq.  hectometer  ^ 

or  1  hectare   / 

1  sq.  kilometer 

Table  III. 

•155006  sq.  inch. 
10-7643  sq.  feet. 

2-47114  acres. 

•38611  sq.  mile. 

Table  IV. 

1  sq.  inch=     6-45137  sq.  centimeters. 
1  sq.  foot  =928-997  sq.  centimeters. 
1  sq.  yard=        ̂ 836097  sq.  meter. 
1  acre        =        -404672  hectare. 

1  sq.  mile=     2-58989  sq.  kilometers. 
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V.  Volume — 
Table  V. 

1  cubic  centimeter  =      '0610271  cubic  inch. 

1  liter  or  "I  =61*0271  cubic  inches. 
1  cubic  decimeter  /  =   1*76172  pint. 
1  cubic  meter  =35 '3166  cubic  feet. 

Table  VI. 

1  cubic  inch  =  16"3866  cubic  centimeters. 
1  cubic  foot  =28-3153  liters. 

1  cubic  yard=     "764513  cubic  meter. 
1  pint  =     -567627  liter. 
1  gallon        =  4-54102  liters. 

II.  Measures  of  Mass. 

Table  VII. 

1  centigram  =      "154323  grain. 
1  gram         =15*4323  giains. 

,,  =     "0353739  oz. 
1  kilogram  =  2*20462  lbs. 

Table  VIII. 

1  grain  =     "064799  gram. 
1  oz.        =28*3496  grams. 
1  lb.       =      -453593  kilogi-am. 
1  ton      =   101605  tonne  =  1016-05  kilos. 

1  gram        =  mass  of  1  cubic  centimeter  of  pui-e  water  at  4°  C. 
1  kilogram  =       , ,       1  liter  of  pure  water  at  4°  C. 
1  gallon      =277  "274  cubic  inches. 

The  gallon  contains  10  lbs.  of  pure  water  at  62°  F. 1  cubic  foot  of  water  contains  about  1000  oz. 

The  pint  contains  20  fluid  oz. 

The  mass  of  1  sovereign  =  123  "274  gi-ains. 
,,         ,,       48  pennies  =1  lb. 
,,         ,,         3  pennies  =1  oz. 

Acceleration  of  gravity  at  London  =  32*182  feet  per  second  per  second 
=  980*889  centimeters  per  second  per  second. 

1  dyne  =  j^y  "^veight  of  gram  =  weight  of  1  milligram  about. 
1  poundal  =  weight  of  ̂   oz.  about. 
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Two  masses  of  1  gram  each,  distant  1  centimeter  attract  each  other 

with  a  force  =  6 "58  x  10~^  dynes. 
Diameter  of  earth,  equatorial,  7926  miles. 

,,  polar,  7900  miles. 
Sound  travels  in  air  at  about  1100  feet  per  second. 

Light  travels  at  the  rate  of  186,000  miles  per  second,  or  300,000  kilo- 
meters per  second. 

The  heat  necessary  to  raise  1  lb.  of  Avater  1°  F.  if  expended  in  work 
would  raise  1  lb.  779  feet  high  ;  or 

1  lb.  of  water  raised  1°  C.  would  raise  1  lb.  1402  feet  high  ;  or 
1  kilogram  of  water  raised  1°  C.  would  raise  1  kilogram  427  '4  meters 

high. 

Areas  and  Volumes. 

Parallelogram  .  area      =  one  side  x  distance  from  opposite  side. 
Triangle  .         .  area      =|  base  x  altitude. 

Parallelopiped  .  volume  =  area  of  one  face  x  distance  from  opposite  face. 
Pyramid  or  cone  volume  =  \  area  of  base  x  height. 
Circle,  rad.  =  r.  length  =:27rr. 

,,         „  area       —irr^. 
Sphere,  rad.  =  r  surface  =Airr\ 

„         „  volume  =  ffl-r^. 
Zone  on  sphere 

between  par- 
allel planes  .  surface  =  27rr  x  distance  between  planes. 

Where  tt  =  3  -1 41 59  .  .  .  =  y-  nearly. 
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CHAPTER  I 

MOTION   IN   A   STRAIGHT   LINE 

1.  When  a  point  is  changing  its  position  in  space  it 
takes  a  certain  time  in  which  to  do  it.  The  shorter  the  time 

the  more  quickly  it  is  said  to  move.  In  this  chapter  we 

shall  consider  the  simplest  case — viz.  where  the  point  is 
moving  along  a  straight  line.  If  it  always  moves  over  the 
same  distance  in  the  same  time  it  is  said  to  have  a  constant 

velocity.  If  it  does  not,  the  velocity  is  variable.  The 
magnitude  of  a  velocity  is  called  its  speed.  It  is  measured 
ivJien  constant  by  the  space  passed  over  in  the  unit  of  time. 
JFhen  not  constant,  the  measure  at  any  time  is  the  space  which 
would  he  passed  over  in  a  unit  of  time  if  the  velocity  were 
throughout  the  same  as  at  the  instant  in  question.  This  way  of 
measuring  is  quite  familiar ;  thus,  if  we  say  that  a  man  walks 
at  the  rate  of  3  miles  an  hour,  or  that  the  speed  of  a 
train  is  20  miles  per  hour,  no  one  will  suppose  us  to  mean 
that  in  the  next  hour  the  man  will  walk  3  miles  or  the 

train  will  travel  20  miles,  but  only  that  they  would  do 
so  if  they  went  at  the  same  speed  for  an  hour. 

Velocity  is  a  quantity  which  is  different  in  kind  from 
each  of  the  fundamental  conceptions  of  space,  time,  or 
matter.  It  will  therefore  require  a  unit  of  its  own  kind 
to  measure  it ;  but  this  unit  can  be  expressed  in  terms 
of  two  of  the  fundamental  ones.  Suppose,  for  instance,  the 
units  of  space  and  time  are  1  foot  and  1  second,  then 
we  may  say  that  a  certain  velocity  is  (say)  10  feet  per 
second,  in  other  words  it  is  ten  times  a  velocity  of  1  foot 
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per  second.'  Here  the  measure  is  10,  the  unit  is  a  velocity 
of  1  foot  per  second.  And  so  in  general  the  unit  of 
velocity  is  the  velocity  of  a  point  whi^h  passes  over  the  unit  of 
space  in  the  unit  of  tinu.  When  Ave  say  that  the  velocity  of 
a  body  is  denoted  by  v,  we  mean  that  it  is  v  times  the  unit, 
or,  which  is  the  same  thing,  a  velocity  of  v  units  of  space 
passed  over  in  a  unit  of  time. 

It  is  easy  to  find  a  formula  connecting  the  space  passed 
over  in  a  given  time  by  a  given  velocity,  when  the  velocity 
is  constant.  Thus,  let  the  velocity  be  denoted  by  v,  and 
the  time  by  t  {i.e.  t  units  of  time).  Then  in  one  unit  of 
time  V  units  of  space  are  passed  over,  therefore  in  t  units 
of  time,  t  times  as  much,  or  vt  units  of  space  will  be  passed 
over.     That  is,  if  s  denotes  the  number  of  units  of  space, 

s  =  vt  (1).    . 

It  is  often  necessary  to  pass  from  one  system  of  units  to 
another.  Thus,  for  example,  suppose  we  want  to  express 
a  velocity  of  1800  miles  per  day  in  feet  per  second. 

In  one   day  1800  miles  or  1800  x  1760  x  3   feet  are 
passed  over, 

,         1800  X  1760  X  3  .    ̂  
.•.  m  one  hour    feet, 24 

or  in  one  second 1800  X  1760  X  3 
24  X  60  X  60 

=  110  feet;    ' 
in  other  words,  the  velocity  is  110  feet  per  second. 

2.  We  have  defined  a  velocity  to  be  the  space  passed 
over  in  a  unit  of  time.  Let  us  consider  for  a  moment 
how  this  distance  is  to  be  determined.  AYe  cannot  do 

this  without  referring  the  positions  of  the  point  at  the 
beginning  and  at  the  end  of  the  interval  to  some  other 
point  which  we  suppose  fixed.  This  is  evident,  for  when 
it  is  in  its  final  position  we  cannot  tell  where  its  initial 
one  was  without  referring  to  surrounding  objects.  We 
call  the  point  of  reference  affixed  point,  but  we  cannot  say 

whether  any  point  is  absolutely  fixed  in  space — in  fact, 
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such  a  statement  could  liave  no  meaning.  To  illustrate 
this,  take  the  case  of  a  train  travelling  .along  a  line  due 

east,  with  constant  velocity.  If  at  the  end  of  an  liour's 
time  it  was  30  miles  distant  from  the  starting-point, 
we  should  say  its  velocity  was  30  miles  per  hour.  But 
suppose  a  person  looking  at  it  from  a  point  oulside  the 
earth,  fixed  with  reference  to  the  sun,  this  person  would 
see  that  the  train  was  carried  in  the  hour  through  an 
enomiously  greater  distance  than  30  miles.  Or,  to  take 
another  case  of  a  passenger  walking  along  the  deck  of  a 
steamboat  from  stern  to  bow.  To  a  person  in  the  ship 
looking  at  him  he  might  seem  to  walk  at  the  rate  of  3 
miles  per  hour,  whereas  to  a  person  in  the  sea  he  might 
appear  to  be  moving  along  at  23  miles  per  hour, 
owing  to  the  motion  of  tlie  ship  (20  miles  per  hour). 
Thus  we  see  that  all  velocity  is  essentially  relative  to 
something  else,  and  when  we  speak  of  a  fixed  point  we 
only  mean  that  we  refer  the  positions  of  all  other  points  to 
that,  and  consider  their  motions  relatively  to  it. 

Now,  if  every  point  of  a  system  of  bodies  be  displaced 
through  the  same  distance,  their  relative  positions  remain 
unaltered,  and  therefore  any  relative  motions  they  may 

have  will  remain  unchanged  if  they  receive  the  same  dis- 
placement every  second.  In  other  words,  we  may  impress 

any  the  same  velocity  on  every  point  without  altering 
their  relative  motion.  This  remark  enables  us  to  find  the 

relative  velocities  of  two  points  when  their  motion  is  given 
with  reference  to  some  third  point.     Thus,  let  the  points 
A,  B  be  moving  along  the  same  straight  line  with  velocities 
u,  V  relative  to  some  fixed  point.  Since  the  relative  motion 
is  unaffected  if  we  impress  the  same  velocity  on  both  A  and 
B,  let  us  impress  on  both  a  velocity  equal  and  opposite  to 

that  of  A.  Then  the  velocity  of  A  becomes  zero — that  is,, 

it  becomes  the  *'  fixed  point,"  and  the  velocity  of  B  becomes 
V  -  u.  This  way  of  treating  the  question  is  of  great  value 
when  we  come  to  treat  of  more  complicated  motions  than 
are  considered  in  this  chapter. 

We  can,  however,  look  at  it  from  another  point  of  view. 
The  relative  velocity  of  two  points  moving  along  the  same 
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straight  line  is  tlie  rate  at  which  the  distance  between  them 
increases. 

Let  O  be  tlie  fixed  point,  A,  B  the  initial  positions  of 

r   •   r-,   1   rp    A,    B  and  A'    B'  their 
O  A       A  B    -  B  •^.  r    '  .,       P positions    alter    unit   ot 

time.     Then  AA'  =  u   units  of   length,    BB'  =  v   units    of 
length,  and  the  change  of  distance  in  the  unit  of  time  is 

A'B'  -  AB  =  BB'  -  AA'  = «;  -  u  units  of  length. 

The  following  questions  illustrate  the  foregoing  result : — 
Example  I.  Two  trains  on  the  same  line  are  21  miles  apart ;  the 

foremost  is  going  13  miles  an  hour,  and  the  hindmost  20.  When  vnll 
they  collide  ? 

As  above,  the  rate  at  which  the  distance  increases  is  13-20=  -  7, 
or  the  distance  between  decreases  at  the  rate  of  7  miles  per  hour, 
and  when  the  collision  takes  place  this  distance  has  decreased  from 
21  miles  to  0.     Therefore,  if  t  be  the  number  of  hours, 

21  =  7^  or  ̂   =  3  hours. 

If  they  had  been  moving  towards  one  another,  the  relative  velocity 

would  have  been  - 13-20= -33,  and  the  time  would  have  been 
f^  hour=38Y\  minutes. 

Example  II.  A  column  of  soldiers  315  yards  long  is  marching  at  3| 
miles  per  hour  past  an  onlooker  walking  at  2  miles  per  hour  in  the  same 
direction.     Eow  long  will  the  column  take  to  pass  him  ? 

Here  the  velocity  of  the  head  of  the  column  relative  to  the  onlooker 

is  1^  mile  per  hour=2640  yards  per  hour.  The  time  taken  to  pass 
is  the  time  the  head  of  the  column  takes  to  increase  its  distance  from 

0  to  315  yards, 

Therefore  the  time  is  -jVVtt  l^owr  =  Y-7V  hour  =  74'y  minutes. 

3.  The  formula  (1)  gives  the  space  passed  over  in  any 
time  when  the  velocity  remains  constant,  but  fails  in  other 
cases.     When  the  velocity  is  altering,  the  point  is  said  to  be 
accelerated.     One  very  important  case  is  where  the  velocity 
is  increasing  at  a  constant  rate  while  the  point  is  moving. 

AVe  shall  then  say  that  the  point  has  constant  acceleration.* 
It  is  usual  to  say  that  it  has  uniform  acceleration,  but 
we   shall    find   it   best   to    use   the    word    constant    for 

regularity  with  reference  to  time  and  uniform  for  regularity 

*  For  a  case  of  varying  acceleration  see  example  50  at  the  end  of  this 
chapter. 
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with  reference  to  space.    This  distinction  between  the  words 
will  be  held  to  throughout  the  book. 

Acceleration  is  measured  in  an  analogous  way  to 
velocity.  WTien  constant  it  is  measured  hy  the  increase  of 
velocity  in  a  unit  of  time,  and  when  variable  hy  the  increase  of 
velocity  which  would  take  place  in  a  unit  of  time  if  the  accelera- 

tion remained  the  same  as  at  the  instant  in  question. 
Here,  again,  acceleration  is  a  new  kind  of  quantity, 

and  we  require  a  hew  kind  of  unit  to  measure  it.  This 
unit  is  an  acceleration  in  which  the  unit  of  velocity  is 
added  on  per  unit  of  time.  Thus,  for  instance,  if  the  foot 
and  second  are  the  respective  units  of  space  and  time,  an 
acceleration  10  would  mean  one  in  which  10  units  of- 

velocity  were  added  on  in  a  second — w  in  which  a  velocity 
of  10  feet  per  second  was  added  on  every  second.  It  is 
clear  here  that  the  unit  of  time  enters  twice.  We  shall 

consider  this  point  further  in  Chapter  V  ;  here  we  will  only 
show  by  an  example  how  to  change  from  one  set  of  units 
to  another.  Thus  let  it  be  required  to  express  an 
acceleration  of  2400  yard  minute  units  in  foot  second 

units.     We  proceed  as  follows — 
In  one  minute  a  velocity  of  2400  yards  per  minute  is  added  on, 

therefore  in  one  second  one-sixtieth  of  this  Avill  be  added  on,  or  40 
yards  per  minute. 

But  a  velocity  of  40  yards  per  minute  is  120  feet  per  60  seconds, 
that  is  2  feet  per  second.     Hence 

In  one  second  a  velocity  of  2  feet  per  second  is  added  on,  or  the 

acceleration  is  2  feet  per  second  per  second — that  is,  the  measure  in  the 
new  unit  is  2. 

When  the  acceleration  is  constant  it  is  important  to  be 
able  to  know  what  the  velocity  is  after  any  time,  and  also 
what  the  space  passed  over  amounts  to.  Let  the  velocity 
at  the  beginning  of  the  time  be  denoted  by  u,  and  the  ac- 

celeration by  a.  After  a  time  denoted  by  t  let  the  velocity 
become  v.  Then,  since  in  a  unit  of  time  a  velocity  a  is 
added  on,  in  t  units  of  time  a  velocity  at  will  be  added  on. 
In  other  words,  the  velocity  which  at  the  beginning  was  u 
has  increased  by  at,  or  in  symbols 

v=^u  +  at  (2). 
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Thus  a  train  going  down  an  incline  at  an  acceleration  of 
I  mile  per  hour  per  hour,  and  starting  at  20  miles  per 
hour,  will  have,  after  30  minutes  (or  h  hour),  a  velocity 

=  20  +  f  X  I  =  20|  miles  i3er  hour.  Again,  as  we  shall 
see  later,  any  body  falling  freely  is  constantly  accelerated 
at  the  rate  of  about  32  feet  per  second  per  second.  Hence  a 
stone  dropped  from  rest  will  after  5  seconds  have  a  velocity 
of32x5  =  lG0  feet  per  second. 

If  the  point  be  retarded  instead  of  accelerated,  then  the 
velocity  in  time  t  has  decreased  by  at,  and 

V  =  u-  at. 

If  we  regard  a  retardation  as  a  negative  acceleration  the 
formula  (2)  will  therefore  be  true  in  all  cases. 

4.  It  remains  now  to  obtain  a  formula  which  shall  give 
us  the  space  described  in  any  time.  As  before,  let  u  be  the 
initial  velocity,  a  the  acceleration,  t  the  time,  and  s  the 
space  passed  over.  Let  V  be  the  velocity  at  the  middle 
of  the  time,  i.e.  at  a  time  ̂ t  from  the  beginning.  Then 
by  formula  (2) 

V  =  u+  ̂ at. 

Now  notice  that  since  the  velocity  of  the  point  is  increased 
constantly  at  the  same  rate,  at  any  interval  (r)  before  the 
middle  the  velocity  will  be  just  as  much  less  than  V,  as  it 

is  greater  than  V  at  the  same  interA^al  r  after.  In  other 
words,  the  rate  at  which  space  is  being  passed  over  at  the 
former  instant  is  as  much  less  than  V  as  it  is  greater  than 
V  at  the  latter,  and  tliereforev  the  total  effect  is  the  same 

as  if  the  point  is  moving  at  both  instants  with  velocity 
V.  As  this  is  the  case,  whatever  the  interval  t  may  be, 
the  whole  space  described  will  be  the  same  as  if  there  is 
a  constant  velocity  V  throughout.     That  is 

s  =  Yt. 

But  we  have  just  seen  that 

Y  =  u+  \at^ 

.:  s  =  {u  +  lat)t  =  lit  +  ̂ af  (3). 

As  an  example  of  the  use  of  this  formula,  suppose  a  stone  thrown 
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downwards  with  a  velocity  of  12  feet  per  second,  and  let  it  be  required 
to  find  the  space  described  in  5  seconds.     Here,  as  above,  a  =  32,  and 

5=12x5  +  ̂ x32x25  =  460  feet. 

If  it  had  been  projected  npwards,  it  would  be  retarded,  and  the  dis- 
tance upwards  would  be 

s=12x 5-^x32x25= -340  feet, 

the  negative  sign  showing  that  it  is  340  feet  helow  the  point  of  pro- 
jection. If  the  time  had  been  \  second  the  distance  in  the  second  case 

would  have  been  12x^--|x32xJ=+2  feet,  that  is  2  feet  above. 

Equation  (3)  will  also  enable  us  to  find  in  what  time 
the  point  will  have  passed  over  a  given  distance.  For 
now  s  is  known,  and  t  is  required  to  be  found.  The 

equation,  regarded  as  one  to  find  t,  is  a  quadratic,  and 
therefore  has  two  roots.  In  other  words,  the  point  will 
have  been  in  a  given  position  at  two  different  times.  This 
can  be  illustrated  by  the  case  of  a  stone  thrown  up  in  the 
air.  It  will  pass  through  each  position  twice  ;  once  on  the 
way  up,  and  once  on  the  way  down.  Thus,  su})pose  a 
stone  projected  up  with  a  velocity  of  40  feet  per  second, 
and  it  is  required  to  know  at  what  times  it  will  be  at  a 
height  of  16  feet. 

The  equation  is  (remembering  that  if  we  measure  space  uj)wards 
a=-32) 

16  =  40^-^  x  32^2^ 40<-16i!2; 

i.e.  i--|«=-l, 

.«    5,     /5\2    25-16      9 

(Sf= 
2      \4/  16         16' 

We  learn,  therefore,  that  it  was  16  feet  high  half  a  second  after 
starting  (on  way  up),  and  again  two  seconds  after  starting  (on  way 
down). 

Suppose  the  stone  had  been  projected  downwards  instead 
of  upwards,  and  we  wished  to  know  when  it  was  IG  feet 
below»  then,  measuring  tlie  space  downwards, 
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16  =  iOt+  16f ; 

4         4  4 

The  value  "35  has  a  definite  meaning,  viz.  it  will  be  at 
the  point  named  '35  seconds  after  starting.  But  what 
does  -  2 '85  mean  1  To  determine  this  we  notice  that  the 
motion  is  precisely  the  same  whether  the  stone  was  initially 
projected  down,  or  whether  it  was  just  then  falling  freely 

through  the  starting-point.  In  this  latter  case  it  would 
have  had  a  previous  motion,  and  therefore  at  some  time 
previously  it  would  have  been  moving  upwards  and  at  the 
point  named.  The  answer  above  then  means,  that  if  it 
had  been  moving  freely  before  it  would  have  been  at  the 

given  point  2*85  seconds  before  the  instant  at  which  we 
supposed  it  to  start.  If  the  equation  to  find  t  should  have 

imaginary  roots,  that  would  mean  that  the  velocity  of  pro- 
jection was  not  large  enough  to  bring  it  to  the  position 

given. 
Formula  (2)  gives  a  relation  between  the  velocity  and 

time,  whilst  (3)  gives  the  space  in  terms  of  the  time. 
Between  them,  therefore,  it  is  possible  to  find  the  velocity 
after  the  point  has  moved  over  a  given  distance,  and  this 
we  now  proceed  to  do.  Squaring  both  sides  of  the 
equation  v  =  u  +  at,  there  results 

v^  =  {u  +  dty  =  u^  +  2\icit  +  aY, 
=  11^  +  2a{ut  +  ̂af). 

But  (3)  s  =  ut  +  \af, 
.'.v'  =  u'-^2as  (4). 

If  the  point  is  retarded  instead  of  being  accelerated  -  a 
must  be  put  instead  of  a,  as  in  the  former  cases.  This 
formula  serves  to  answer  the  question  how  far  a  retarded 
body  will  move  before  it  comes  to  rest.  For  instance,  a 
stone  is  projected  up  with  a  velocity  of  20  feet  per 
second,  how  far  will  it  go  1  The  point  to  notice  is  that  at) 
the  highest  point  the  velocity  is  zero, 



CHAP.  I  MOTION  IN  A  STRAIGHT  LINE  17 

.•.0-  =  202-2x32x5, 
or  64s  =  400, 

s  =  ̂   =  6ifeet. 

If  the  question  had  been,  how  long  before  it  reaches  its  greatest 
height,  it  woukl  be  best  to  use  the  formula  v  =  u  +  at, 

thus  0  =  20-32^, 

whence  t  =  —  =  -  second. 

5.  In  the  same  way  as  it  was  shown  that  there  is 
no  such  thing  as  an  absolute  velocity,  it  can  be  seen  that 
acceleration  must  be  also  relative.  The  relative  accelera- 

tion of  two  points  moving  along  the  same  line  is  the  rate 
at  which  rate  of  increasing  distance  between  them  is 
altered.  In  the  same  way  as  for  velocity,  it  is  easy  to  see 
that  the  relative  accelerations  of  a  series  of  j^oints  will  be 
unaltered  if  we  impress  on  each  any  the  same  acceleration. 
Thus  let  A,  B  move  along  the  same  straight  line  with 

velocities  u,  u'  at  any  instant  and  accelerations  a,  a'.  If  we 
impress  on  both  a  velocity  ( -  ii\  A  will  be  for  the  instant 

at  rest,  and  the  velocity  of  B  will  be  u'  -  u.  If  at  the 
same  time  we  also  impress  on  both  an  acceleration  equal 
and  opposite  to  <r,  A  will  remain  at  rest,  and  B  will  have 

an  acceleration  a'  -  a.  Hence  the  relative  acceleration  of 

B  with  respect  to  A  is  ft'  -  a. 
The  same  result  may  also  be  deduced  by  formula  (3) 

from,  the  figure  on  p.  12.  For,  if  A',  B'  be  the  positions 
of  A,  B  after  time  ̂ , 

AA'  =  ut+\  af,     BB'  =  u't  +  \a'(\ 
and      A'B'  -  AB  =  BB'  -  AA'  =  {u'  -  u)t  +  \{a  -  a)f. 

That  is,  comparing  with  formula  (3),  the  initial  relative 

velocity  is  u  -  u,  and  relative  acceleration  is  a  -  a. 

EXAMPLES— I. 

1.  A  river  is  flowing  at  the  rate  of  3  miles  per  hour.  How  long 
will  it  take  a  log  floating  with  it  to  pass  over  100  feet  ? 

2.  Express  45  miles  per  hour  in  feet  i)er  second  and  in  yards  per 
minute. 

3.  Express  2  feet  per  second  in  centimeters  per  minute. 
C 
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4.  Supposing  the  earth  to  describe  a  circle  relative  to  the  sun  of 
92,000,000  miles  radius,  and  that  the  year  is  365  days  6  hours,  find  the 
velocity  of  the  centre  of  the  earth  in  miles  per  second,  and  also  when 
the  units  are  1  day  and  1000  miles. 

5.  Light  travels  at  the  rate  of  186,000  miles  per  second  ;  express 
this  in  kilometers  per  minute. 

6.  The  distance  of  the  sun  from  the  earth  is  91,000,000  miles.  How 

long  does  it  take  light  to  travel  thence  to  us  ?     (See  previous  question. ) 
7.  The  earth  rotates  on  its  axis  in  23  hours  56  minutes,  and  its 

equatorial  diameter  is  7925  miles.  Find  the  velocity  relative  to  the 

earth's  centre  of  a  point  (1)  on  the  equator,  (2)  in  latitude  60°. 
8.  Two  trains  whose  lengths  respectively  are  130  and  110  feet, 

moving  in  opposite  directions  on  parallel  rails,  are  observed  to  be  4 
seconds  in  completely  passing  each  other,  the  velocity  of  the  longer 
train  being  double  that  of  the  other.  Find  how  many  miles  per  hour 
each  train  is  moving. 

9.  Two  trains  pass  one  another  moving  in  opposite  directions  on 
parallel  lines  of  rail,  with  velocities  of  45  and  60  miles  per  hour.  The 
length  of  one  is  420  feet  and  of  the  other.  350  feet.  How  long  will 
they  be  in  passing  one  another  ? 

10.  If  in  the  previous  question  they  had  been  going  in  the  same 
direction  with  the  slow  one  in  front,  how  long  would  they  take  to 
pass  ?     Also,  how  far  would  each  go  before  they  are  just  clear  ? 

11.  Two  boats,  each  30  feet  long,  are  rowed  at  8  and  7  miles  per 
hour  respectively,  the  latter  being  80  feet  ahead  of  the  former.  Find 
how  long  before  it  is  bumped  ;  also  the  time  before  the  former  draws 
level  with  it,  and  the  extra  time  necessary  to  pass  it. 

12.  In  the  former  question  determine  how  far  the  first  boat  has 
gone  (1)  when  it  bumps,  and  (2)  when  it  is  clear. 

13.  Two  men  a  mileapart  are  walking  towards  one  anotherwith  a  velo- 
city of  264  and  176  feet  per  minute.     When  and  where  do  they  meet  ? 

14.  In  a  storm  the  thunder  was  heard  12  seconds  after  the  flash  was 

seen.  How  far  off  was  the  point  of  discharge  ?  (Velocity  of  sound 
1100  feet  per  second.) 

15.  A  train  moving  uniformly  describes  88  yards  in  3  seconds.'  Find 
its  velocity  in  miles  per  hour.  In  what  time  will  it  travel  600  miles 

^'ith  a  stoppage  of  5  minutes  after  every  100  miles  ? 
16.  Supposing  the  circumference  of  the  earth  at  the  equator  to  be 

25,000  miles,  and  the  time  of  the  earth's  rotation  to  be  24  hours,  find 

the  velocity  relative  to  the  earth's  centre,  in  miles  per  hour,  of  a 
cannon-ball  at  the  equator  when  it  is  fired  with  a  velocity  of  1650 

feet  per  second  (1)  in  the  direction  of  the  earth's  rotation,  (2)  in  the 
opposite  direction. 
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17.  If  the  minute-hand  of  a  clock  be  6  inches  long,  what  is  the 
linear  velocity  of  its  extremity  ? 

18.  Compare  the  velocities  of  the  extremities  of  the  hour,  minute, 

and  second  hands  of  a  watch,  their  lengths  being  "48,  "8,  and  24 
inches  respectively. 

19.  The  velocity  of  the  extremity  of  the  minute-hand  of  a  clock  is  48 
times  the  velocity  of  the  extremity  of  the  hour-hand,  which  is  3  inches 
long.     Find  the  length  of  the  minute-hand. 

20.  From  a  train  moving  with  velocity  V,  a  carriage  on  a  road 
j)arallel  to  the  line  at  a  distance  d  from  it,  is  observed  to  move  so  as  to 
appear  always  in  a  line  with  a  more  distant  object,  whose  least  distance 
from  the  railway  is  D.     Find  the  velocity  of  the  carriage. 

21.  A  sportsman  covers  a  bird  flying  in  a  straight  line  at  the  rate 
of  6  miles  an  hour,  moving  his  gun  round  his  shoulder  as  a  fixed  point. 
If  when  the  bird  is  nearest  to  him  it  be  20  yards  distant,  find  the 
angular  velocity  of  the  gun  at  that  instant. 

22.  Two  points  describe  the  same  circle  in  such  a  manner  that  the 
line  joining  them  always  passes  through  a  fixed  point.  Show  that  at 
any  moment  their  speeds  are  proportional  to  their  distances  from  the 
fixed  point. 

23.  A  stone  falls  with  an  acceleration  of  32  feet  per  second  per  second. 
Express  this  in  yard  minute,  and  also  in  centimeter  second  units. 

24.  What  is  the  measure  of  the  acceleration  of  a  falling  body  when 
an  inch  and  an  hour  are  units  of  space  and  time  ? 

25.  Compare  the  following  accelerations — {a)  one  in  which  a  velocity 
of  20  feet  per  second  is  added  on  every  minute,  {b)  one  in  which  20  feet 
per  minute  is  added  on  every  second. 

26.  Determine  what  would  have  to  be  the  value  of  the  accelera- 

tion of  gravity,  in  order  that  a  body  starting  from  rest  should  fall 
10,000  feet  in  10  seconds. 

27.  A  point  moves  from  rest  with  an  acceleration  of  20  yards  per 
minute  per  minute.  What  distance  will  it  pass  over  (1)  in  the  fifth 
minute,  (2)  in  the  next  12  seconds  ? 

28.  A  point  moves  along  a  straight  line  under  an  acceleration  of  10 

centimeters  per  second  per  second.  If  the  initial  velocity  be  7  centi- 
meters per  second,  what  is  the  velocity  after  it  has  passed  over  12 

centimeters  ? 

29.  A  point  moving  from  rest  under  constant  acceleration  passes  over 
36  yards  in  3  seconds.  What  is  the  acceleration  ?  Also  what  is  its 
velocity  after  the  3  seconds  ? 

30.  A  point  moving  from  rest  under  constant  acceleration  has  a 
velocity  after  4  seconds  of  18  feet  per  second.  What  is  the  accelemtiou  ? 
Also  how  far  will  it  have  moved  in  16  seconds  ? 
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31.  How  long  does  it  take  a  stone  to  fall  625  feet  from  rest  ? 
32.  A  train  whicli  has  constant  acceleration  starts  from  rest,  and  at 

the  end  of  3  seconds  has  a  velocity  with  which  it  would  travel  through 
1  mile  in  five  minutes.     Find  the  acceleration. 

33.  A  point  starting  from  rest  passes  over  121  feet  in  the  sixth 
second.     What  is  the  acceleration  ? 

34.  A  point  passed  over  126  feet  during  the  fourth  second  and  246 
feet  during  the  eighth  second.  What  was  its  initial  velocity  and  its 
acceleration  ? 

35.  A  body  is  projected  upwards  with  a  certain  velocity,  and  it  is 

found  that  when  in  its  ascent  it  is  at  a  point  960  feet  from  the  gi'ound 
it  takes  4  seconds  to  return  to  the  same  point  again.  Find  the  velocity 
of  projection  and  the  whole  height  ascended. 

36.  A  train  reduces  speed  from  45  miles  an  hour  to  15  miles  an 
hour  in  800  yards.     How  much  farther  will  it  go  before  stopping  ? 

37.  A  bullet  is  projected  upwards  vdth  a  velocity  of  1000  feet  per 
second.     Find  the  height  to  which  it  will  rise. 

38.  In  the  previous  question  another  bullet  is  projected  vertically 
upwards  with  a  velocity  of  920  feet  per  second,  5  seconds  after  the  first. 
AVhere  and  when  will  they  meet  ? 

If  the  second  had  been  projected  2  seconds  after  the  first,  would 

they  have  met  ? 
39.  A  tower  is  288  feet  high  ;  at  the  same  instant  one  body  is 

dropped  from  the  top  of  the  tower  and  another  projected  vertically 
upwards  from  the  bottom,  and  they  meet  half  way.  Find  the  initial 
velocity  of  the  projected  body  and  its  velocity  when  it  meets  the 
descending  body. 

40.  A  stone  is  thrown  up  with  a  velocity  of  320  feet  per  second,  and 
4  seconds  afterwards  another  with  a  velocity  of  190  feet  per  second. 
Will  they  ever  meet  ? 

41.  A  stone  is  let  fall,  and  5  seconds  afterwards  another  is  projected 
down  with  a  velocity  of  200  feet  per  second.  When  and  where  will 
it  overtake  the  former  ?  , 

42.  A  train  goes  from  one  station  to  another  5  miles  off  in  8  minutes, 

first  moving  with  constant  acceleration  and  then  with  an  equal  retard- 
ation.    Find  its  greatest  speed. 

43.  Two  trains  pass  through  stations  100  miles  apart  towards  one 
another  with  velocities  of  10  and  15  miles  per  hour  ;  they  are  respect- 

ively accelerated  at  1760  and  3520  yards  per  hour  per  hour.  When 
and  where  will  they  meet,  and  what  will  be  their  velocities  then  ? 

44.  A  body  projected  vertically  downwards  describes  720  feet  in 
t  seconds  and  2240  feet  in  2t  seconds.  Find  t  and  the  velocity  of 

projection. 
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45.  A  train  stops  at  a  station  by  constantly  slackening  speed  ;  it 
begins  to  do  so  one  mile  from  the  station,  when  it  is  going  at  30  miles 
per  hour.     What  is  its  retardation  ? 

46.  A  stone  is  let  fall  down  a  well  and  the  splash  is  heard  5 '94 
seconds  later.     What  is  the  depth  of  the  well  ?     (See  question  14.) 

47.  A  train  going  60  miles  per  hour  overtakes  one  going  at  20  miles 
per  hour,  but  they  see  each  other  just  in  time  to  prevent  a  collision, 
the  one  slackening  and  the  other  increasing  speed  at  the  rate  of  5  feet 
per  second  per  second.  How  far  off  were  they  when  they  sighted  each 
other  and  how  long  before  they  just  not  collide  ? 

48.  From  a  balloon  which  is  ascending  with  a  velocity  of  32  feet  per 
second,  a  stone  is  let  fall  and  reaches  the  ground  in  17  seconds.  How 
high  was  the  balloon  when  the  stone  was  diopped  ? 

49.  K  a,  b,  c  he  the  spaces  described  in  the  pth,  qth,  and  rth  seconds 
by  a  point  moving  with  constant  acceleration,  prove  that 

a{q-  r)  +  b{r  -p)  +  c{p  -q)  =  0. 

50.  i.  0,  B,  A  are  three  points  arranged  in  this  order  on  a  straight 
line.  A  particle  is  projected  from  A  towards  B  with  velocity  zt  and 
reaches  B  with  velocity  v,  being  acted  on  during  the  motion  by  a  force 

which  produces  constant  acceleration     p^     towards  0.     Prove  that 

«.=-«=)=^(-^^-^). 

ii.  0,  A„,  A„_i,  .  .  .,  A2,  Ai,  A  are  points  arranged  in  this  order    ̂  
on  a  straight  line.     A  particle  is  projected  from  A  towards  A„  with 
velocity  u  and  reaches  A„  with  velocity  v,  being  acted  on  during  the 
motion  by  a  force  of  the  following  nature  :  whilst  the  particle  moves 

from  A  to  Ai  it  produces  constant  acceleration  ^.  ̂^:- ,  whilst  from UA  .  UAi 

Ai  to  A2  it  produces  constant  acceleration  -  ̂   ̂  _  ̂     ;  from  Ao  to  A3 OAi .  OA2 

and  so  on.     Prove  that 
OA2.OA3 

^(^'-^'^^Ko^'oa)- 

-    iii.  Show  how,  by  keeping  the  points  A,„  A  fixed  in  position,  and 
making  w  indefinitely  great,  to  prove  the  formula 

r 

where  v  is  the  velocity,  -^  the  acceleration  at  the  distance  r  from  0, 
and  C  is  a  constant. 



CHAPTER   II 

MASS — MOMENTUM — COLLISION 

6.  In  this  chapter  we  enter  on  the  consideration  of 
matter  in  its  relations  to  motion.  The  quantity  of  matter 
in  a  given  body  is  called  its  tnass.  To  measure  this  mass 
we  must  refer  it  to  another  portion  of  matter  which  we 
take  for  unit  mass,  and  say  how  many  times  it  contains 
this  unit ;  and  this  leads  us  to  the  question  how  this  ratio 
is  to  be  determined. 

Now,  in  general,  in  order  to  determine  the  ratio  between 
two  quantities  of  the  same  kind,  the  first  step  is  to  get  some 
criterion  which  shall  determine  when  they  are  equal.  For 
instance,  suppose  we  have  a  given  thing  A  (whether  mass 
or  any  other  quantity)  and  a  criterion  by  which  to  deter- 

mine if  it  is  equal  to  another  thing  B  of  the  same  kind. 
It  will  then  be  possible,  by  applying  the  criterion  of  equality, 
to  make  any  number  of  things  of  the  same  kind  each  equal 
to  A.  By  combining  two  of  them  we  can  get  one  whose 
magnitude  is  twice  that  of  A;  by  combining  three  one 
whose  magnitude  is  three  times  that  of  A,  and  so  on.  In 
a  similar  way  we  can  obtain  two  equal  ones  which  together 
equal  A — in  other  words,  we  can  get  one  whose  magnitude 
is  one-half  that  of  A,  and  so  on.  Having  obtained  these 
larger  and  smaller  units  we  can,  by  combining  them,  build 
up  a  quantity  whose  magnitude  (according  to  the  criterion) 
•is  equal  to  that  of  B  which  we  wished  to  measure.  To 
illustrate  this,  consider  the  case  of  measurement  of  length, 
the  unit  A  being  one  foot — i.e.  the  length  of  a  certain  rod. 
Here  the  "  criterion  of  equality  "  is,  that  when  laid  along- 

side with  one  end  coinciding,  the  other  coincides  also. 
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Applying  this  criterion  we  can  make  a  series  of  rods  each 
equal  in  length  to  one  foot.  So  also,  by  making  twelve 
equal  pieces  which  together  equal  the  one  foot,  we  get 

other  units  equal  to  one-twelfth  of  a  foot.  If  then  we  wish 
to  measure  the  length  of  anything,  say  the  side  of  a  table, 
we  first  lay  along  it  end  to  end  a  series  of  our  foot  rods, 
until  one  more  would  be  too  long ;  then  a  series  of  the 
smaller,  until  one  more  would  be  too  long,  and  so  on.  We 
have  then  built  up  a  length  equal  to  that  whose  measure  is 

required,  and  the  ratio  of  this  composite  one  to  the  unit — 
one  foot — is  known  by  the  process  of  its  formation.  In  prac- 

tice this  is  simplified,  but  the  rationale  is  as  here  given, 
and  is  the  same  whatever  the  kind  of  quantity  we  may 
wish  to  measure. 

The  first  point  then  to  be  determined  is  the  criterion 
of  equality  of  two  masses,  and  this  criterion  must  depend 
on  the  properties  of  matter.  For  a  knowledge  of  these 
properties  recourse  must  be  had  to  experiment. 

In  general,  when  two  bodies  impinge  they  fly  apart  after 
the  collision,  but  if  by  any  means  this  is  prevented,  such 
as  by  a  catch  or  sticky  cement,  the  single  body  composed 
of  these  two  will  in  general  still  have  a  motion  different 

from  that  of  either  before  impact.  Now  suppose  two  par- 
ticles to  impinge  on  one  another  in  opposite  directions  in 

the  same  straight  line  with  equal  speeds,  and  to  stick  to  one 
another.  If  they  do  not  come  to  rest,  clearly  the  masses 
.are  not  equal,  for  everything  else  is  the  same  for  both.  If 
they  do  come  to  rest  we  shall  say  that  they  are  equal. 
This  will  give  the  necessary  criterion  for  equal  masses ;  it 

may  be  defined -as  follows — 
Two  masses  are  equal,  if  when  they  are  made  to  impinge 

on  oiie  another  in  opposite  directions  with  equal  speeds,  and  stick 

together,  they  come  to  rest.  It  is  supposed  here  that  no  rota- 
tions are  set  up. 

A  simpler  practical  method  of  determining  equality  of 
masses  will  be  deduced  later  based  on  another  property  of 
matter.  The  above  is,  however,  the  simplest  and  most 
fundamental  conception  of  equal  masses. 

7.  The  criterion  supposes  that  the  actual  value  of  the 



24 ELEMENTARY  DYNAMICS 

relative  velocity  of  the  masses  has  no  influence.  Before 

therefore  applying  it,  it  will  be  necessary  to  see  by  experi- 
ment whether  two  masses  which,  according  to  the  criterion, 

are  equal  with  one  velocity,  are  also  equal  with  another 
velocity.  To  test  this  and  also  to  employ  our  definition  in 
the  measurement  of  actual  masses  it  is  necessary  to  have 
some  instrument  by  which  it  is  possible  to  give  determinate 
velocities  to  the  bodies  to  be  compared,  and  to  measure 
their  velocities  after  impact.  Such  an  instrument  may  be 
called  a  ballistic  balance.*  One  form  of  construction  is  as 
follows — 

ABCD  is  a  framework  across  the  top  of  which  the 
bars  ab  can  be  adjusted  at  right  angles  to  AB.  From 
the  extremities  of  these  bars  two  carriers  ef  are  supported 
by  sets  of  wires,  which  cause  tliem  to  move  always  parallel 
to  themselves  in  a  definite  path,  so  as  to  strike  one  another 
perpendicularly.  The  ends  of  one  carrier  are  fitted  with 
two  springs,  which  can  clasp  the  other  and  so  prevent  them 

*  The  arrangement  shown  in  the  text  is  satisfactory  when  it  has 
to  be  movable.  If,  however,  the  apparatus  is  to  be  used  always 
in  the  same  room,  the  arrangement  explained  in  the  Appendix  is 

j>referable. 
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from  rebounding.  Each  carrier  also  has  a  pointer  which 
moves  in  front  of  two  scales  g,  g.  On  the  bar  EF,  to 
which  the  scales  are  fixed,  are  fitted  movable  catches, 
which  hold  back  the  carriers  to  any  point  of  the  scale,  and 
which  are  capable  of  being  set  free  at  the  same  moment. 
If  a  carrier  be  pulled  aside  and  then  let  go  it  will  arrive  at 
the  lowest  point  with  a  velocity  which  depends  only  on  the 
distance  from  which  it  falls.  This  velocity  is  marked  on 
the  scale,  and  must  be  determined  for  each  instrument 
For  instance,  when  the  carriers  are  109  centimeters  below 

their  point  of  support,  it  will  be  found  that  if  the  deflections 
are  not  very  large  a  centimeter  scale  will  serve,  each 
centimeter  corresponding  to  a  velocity  of  3  centimeters 
per  second.  It  will  also  be  found  that  the  carriers  will 
arrive  at  their  lowest  position  at  the  same  moment,  if 
they  start  simultaneously,  and  that  this  will  be  the  case 
whether  they  start  from  equal  distances  or  not. 

With  this  instrument  it  is  easy  to  show  that  the 
criterion  of  the  equality  of  masses  is  independent  of  the 
actual  velocities  of  impact.  For  it  will  be  found  that  the 
carriers  will  come  to  rest  after  striking  with  any  velocity, 
if  they  do  so  with  some  given  velocity. 

The  complete  expression  of  the  mass  of  a  body  necessi- 
tates that  it  should  be  compared  with  the  mass  of  another 

body,  which  is  called  the  unit.  In  Great  Britain  this  is 

the  pound,  on  the  continent  generally  the  gram.  The  re- 
lations between  these  are  stated  in  the  Introduction  (pp.  3-5). 

8.  The  degree  of  concentration  of  matter  in  a  body 
is  called  its  densiti/.  It  is  measured  in  one  of  the  two 

following  ways — 
A.  By  the  mass  contained  in  the  unit  of  volume,  such 

as  a  cubic  foot  or  a  cubic  centimeter. 

B.  By  the  ratio  of  the  mass  of  any  volume  of  the  body 
to  the  mass  of  an  equal  volume  of  some  substance 
which  is  taken  as  a  standard  of  comparison.     The 
substance  usually  taken  as  the  standard  is  water. 

We  may  illustrate  the  two  ways  by  taking  a  case  where 
the  units  of  space  and  mass  are  1  foot  and  1    lb.,   and 
the  density  5.      Then  accordiuj^  to 
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A.  One  cubic  foot  of  the  body  contains  5  lbs.  of  matter. 
B.  One  cubic  foot  contains  five  times  as  much  matter 

as   1   cubic  foot  of  water.     Now  1   cubic  foot  of 

water  contains  about  1000  oz.,  or  62 J  lbs.     Hence 
1    cubic  foot  of  the   body  in   question   contains 

5000  oz.,  or  3121  lbs. 
It  is  clear  then  that  in  general  the  numerical  value  of 

the  density  of  a  body  will  be  very  different  according  as 
it  is  stated  by  methods  A  or  B.     But  now  consider  the 
same  case  when  the  units  of  mass  and  length  are  the  gram 
and  centimeter. 

Then  by  A.  Mass  of  1  cubic  centimeter  of  the  body  is 

5  grams, 
by  B.  Mass  of  1  cubic  centimeter  of  the  body  is 

five  times  the  mass  of  1  cubic  centimeter 

of  water,  i.e.  5  grams. 
Here  the  measures  are  the  same,  and  they  are  so  because 

the  unit  of  mass  has  been  taken  to  be  the  mass  of  the  unit  of 
volume  of  the  standard.     Whenever  this  is  the  case,  the  two 
measures    agree.      This   is    one    advantage    in   using    the 

centimeter -gram    or    the    decimeter -kilogram    system    of 
units. 

The  densities  of  bodies  are  always  tabulated  by  method 
B,  and  are  then  sometimes  called  specific  gravities.  The 
standard  substance  is  generally  water.  In  the  following 

table  the  density-ratios  or  specific  gravities  of  several  common 
substances  are  given.  The  exact  values  in  any  case  will 
depend  on  the  temperature,  the  extent  of  hammering,  or 

other  process  to  which  the  bodies  have  been  subjected — 

AiratO°C.*     . 
•0012759 

Tin        . 

.       7-4 
Alcohol  at  0°  C. 

•791 

Iron 

.      7^7 Turpentine  at  0°  C. 

•870 

Copper  . 

.       8^8 
Ice   . 

•92 

Silver    . 

.     10^5 
Sea  water  at  0°  C. 

1-026 
Lead 

.     11-4 
Crown  glass 

2-5 Mercury  at  0°  C. 
..     13-596 

Flint  glass 3  0 Gold      . 

.     19^3 
Aluminium 2-6 Platinum 

.     21^5 
Zinc 

7-0 

» 

*  When  the  pressure  on  any  area  is  the  same  as  that  of  a  column' 
of  mercury  760  millimeters  high. 
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9.  We  cannot  determine  from  any  a  pwf  considerations 
what  the  properties  of  matter  may  be.  Any  further  steps 
in  our  knowledge  then  must  be  based  on  experiment. 

The  question  that  first  presents  itself  is,  "How  do  the 
velocities  of  bodies  which  strike  each  other  depend  on 

their  velocities  before  impact  and  on  their  masses  ?"  We 
must  try  to  obtain  from  experiment  some  general  state- 

ment of  what  takes  place.  These  general  statements  are 
often  called  laws.  To  do  this  we  make  use  of  the  ballistic 

balance,  and  make  a  long  series  of  determinations  of  the 
resulting  velocities  where  different  masses  impinge  with 
all  kinds  of  velocities.  First,  we  shall  simplify  matters  by 
examining  what  happens  when  the  masses  are  prevented 
from  rebounding  after  collision,  and  when  consequently 
both  take  the  same  velocity.  Let  v  denote  this  common 
velocity  after  impact,  %,  u^  the  velocities  of  the  right  and 

left-hand  carriers  respectively,  and  m„  m^  the  masses,  in- 
eluding  that  of  the  carriers. 

Then  it  will  be  found  that,  if  the  measurements  are 

accurate,  the  value  of  v  will  be  given  by  the  formula 

(m,  +  m.^v  =  m{Uy^  +  m^u^, 

the  values  of  the  velocities  being  taken  to  be  positive 
when  they  are  in  the  same  direction.  If  u^  be  opposite  to 
the  direction  of  u^  and  v  be  considered  as  positive  in  the 
direction  of  «„  we  must  put 

If  this  formula  gives  v  a  negative  value,  it  means  that  it 
is  opposite  to  the  direction  of  u^  and  in  the  same  direction 
as  u^. 

The  student  is  strongly  advised  to  himself  carry  but  a 
set  of  actual  observations  with  the  ballistic  balance  to 
convince  himself  of  the  truth  of  this  law. 

By  means  of  this  formula  we  can  determine  the  change 
of  velocity  when  the  two  bodies  do  not  rebound  after 
impact.  It  is  particularly  to  he  noticed  tlmt  it  expresses  the 
results  of  experiment,  and  has  not  been  deduced  from  any 
d  priori  considerations. 

A  similar  equation  is  found  also  to  hold  good  even  when 
the   colliding  bodies  are  free  to   rebound  after  striking. 
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In  this  case  the  rebounding  bodies  will  have  different 
velocities.  In  experimenting  for  this  case  observations  of 
the  two  distances  which  tlie  carriers  reach  after  the  impact 

will  be  required,-  and  therefore  two  observers  will  be  needed. 
In  other  respects  the  experiment  will  be  carried  out  as  in 
the  previous  cases,  the  clips  having  been  removed.  It  will 
be  found  that,  if  Vi,  v^  denote  the  velocities  afterwards, 

10.  If  we  multiply  together  the  numbers  expressing  the 
measures  of  a  mass  and  the  velocity  with  which  it  is 
moving  we  get  another  number,  the  magnitude  of  which 
depends  on  the  units  of  mass,  space,  and  time  employed. 
The  quantity  of  which  this  product  is  the  measure  is  called 
the  momentum  of  the  moving  mass,  and  sometimes  the 
quantity  of  motion.  If  several  masses  are  moving,  then  the 
momentum  of  the  whole  is  the  sum  of  the  momenta  of 

each  separately.  The  result  of  -the  foregoing  experiments 
can  therefore  be  shortly  summed  up  by  the  statement  that 
the  whole  momentum  of  the  bodies  remains  unaltered  by 
impact. 

The  equation 
m^v^  +  m^Vo  =  m.iti  +  m^u^ 

may  also  be  written 

m^Vi  -  m^Ui  =  m^u.^  -  in^v^. 

In  words,  the  momentum  gained  by  m^  =  the  momentum 
lost  by  mg.     We  are  thus  led  to  regard  the  momentum  as  a 
physical  quantity  which  is  capable  of  being  transmitted  in  whole 
or  in  part  witlwut  loss  from  one  body  to  another. 

This  capacity  of  matter  to  possess  momentum  is  called 
inertia. 

Momentum  then,  being  a  real  physical  quantity,  requires 
a  unit  of  its  own  kind  by  which  it  may  be  measured.  This 
unit  is  the  momentum  possessed  by  a  unit  of  mass  moving 
with  unit  of  velocity.  Its  magnitude  therefore  depends  on 
all  three  of  the  fundamental  units.  A  unit  of  mass  moving 

with  V  units  of  velocity  will  then  possess  v  units  of  mo- 
mentum, and  if  a  mass  m  times  as  big,  or  of  mass  w,  is 

moving  with  this  velocity  it  will  possess  mv  units  of 
momentum.     Thus  then,  when  it  is  said  that  the  momentum 
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of  a  body  is  mv,  what  is  meant  is,  that  its  momentum  is 
mv  times  that  momentum  which  unit  mass  moving  with 
unit  velocity  possesses. 

1 1.  If  we  confine  our  attention  to  a  single  body  only, 

what  happens  at  a  collision  is  the  sudden  change  of  mo- 
mentum in  it.  The  cause  of  the  change  may  be  the  impact 

of  a  big  mass  moving  with  a  small  velocity  or  a  small  mass 
with  a  big  velocity,  or  a  moderate  mass  with  a  moderate 
velocity  in  an  infinite  number  of  possible  arrangements. 

In  order,  however,  to  avoid  having  to  take  account  of 
the  actual  circumstances  of  a  collision,  it  is  sometimes  useful 
to  suppose  an  intermediate  effect  and  cause,  and  to  say 
that  the  change  of  momentum  is  produced  by  a  blow.  The 
magnitude  of  the  blow  is  called  the  impulse,  or  sometimes 

shortly  the  "blow."  //  is  measured  hy  the  change  of 
momentum  produced. 

It  has  been  seen  that  in  any  collision  the  gain  of 
momentum  by  one  body  is  equal  to  the  loss  of  momentum 

by  the  other — or  the  changes  of  momentum  produced  are 
equal  and  opposite.  Expressed  in  this  other  language,  the 
impulses  on  the  two  masses  are  equal  and  opposite.  This 

is  found  to  be  the  case  in  all  kinds  of  changes  of  mo- 

mentum ;  and  is  a  case  of  Newton's  third  law  of  motion 
that  action  and  reaction  are  equal  and  opposite. 

In  considering  then  changes  of  motion  of  any  body  due 
to  impacts,  we  may  leave  out  of  consideration  the  acting 
bodies  and  merely  suppose  it  acted  on  by  a  series  of 
impulses. 

12.  We  will  now  apply  the  principles  so  far  developed 
in  the  present  chapter  to  the  solution  of  a  few  examples. 

Example  I.  Two  inelastic  balls  tnoving  in  the  same  direction  icith 
velocities  of  10  and  %feet  jier  second  impinge.  The  masses  being  4  and 
5  lbs.  respectively,  what  is  the  common  velocity  after  impact  ? 

Note. — Bodies  are  said  to  be  inelastic  when  they  do  not 
rebound  after  impact. 

Since  the  bodies  are  inelastic,  they  have  the  same  velocity  after  im- 
pact.    Denote  this  by  v. 

By  the  experimental  law  that  tliQ  momentum  is  unchanged  by  the 
im^Mict 
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(4  +  5)tJ  =  mom.  after  impact, 
=  mom.  before  impact, 
=  4x10  +  5x8; 

i.e.  9i)  =  80, 

or  v=-^=%^  feet  per  second. 

If  they  had  been  moving  in  opposite  directions 
9v  =  4xl0-5x8  =  0, 

t'  =  0, 

or  they  would  have  come  to  rest. 

Example  II.  A  bullet  whose  mass  is  1  oz.  is  fired  with  a  velocity  of 
1210  feet  per  second  iiito  a  mass  of  1  cwt.  of  wood  at  rest.  What  is 
the  velocity  loith  which  the  wood  begins  to  move  ? 

Since  the  momentum  is  unchanged,  and  the  bullet  and  wood  move 
on  together  afterwards,  we  have 

Momentum  of  wood  and  bullet  after  =  momentum  before. 

Using  ounce,  foot,  second  units,  this  gives,  since  1  cwt.  =  1792  oz., 
(1  +  1792)^=1x1210  +  1792x0, 

1793^  =  1210, 
1210     110.    ̂   , 

^  =  1793^163  ̂ ''*P^''''^"^' 
or  'i;  =  83V®^  inches  per  second. 

This  is  the  principle  of  the  ballistic  pendulum,  an  instrument  to 
measure  the  velocity  of  rifle  bullets. 

Example  III.  An  80-ton  gun  on  a  smooth  horizontal  plane  fires 
horizontally  a  shot  of  ̂  cwt.  with  a  velocity  of  l%00feet  per  second.  If 
the  mass  of  the  poivder  be  negligible,  find  the  velocity  of  recoil. 

Here  the  momentum  before  the  blow  by  the  powder  is  zero. 
Hence  the  momentum  afterwards  is  also  zero,  or  the  momentum  of  the 
gun  is  equal  and  opposite  to  that  of  the  shot.  Let  v  denote  the  velocity 
of  the  gun  ;  its  mass  is  1600  cwts.     Hence 

1600i;=-i.  1800, 

.  • .  v=  -  y\  foot  per  second. 
=  -j\  foot  per  second  opposite  to  that  of  the  shot. 

13.  Up  to  this  point  we  have  only  dealt  completely 
with  the  case  where  after  impact  the  two  bodies  move  on 

together — that  is,  with  bodies  which  are  named  inelastic. 
Now  in  general,  if  two  bodies  strike  one  another  they  re- 

bound, and  after  the  impact  move  with  different  velocities. 
To  complete  the  study  of  the  subject  of  collision  it  will  be 
necessary  then  to  consider  this  more  general  case.     In  any 
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given  case  we  know  the  circumstances  before  impact — that 
is,  the  magnitudes  of  the  two  masses  and  of  the  two  veloci- 

ties. The  unknown  quantities  are  two,  viz.  the  two 
velocities  after  impact.  The  principle  of  the  constancy  of 
the  whole  momentum  gives  one  equation  only  between  the 
above  quantities.  In  order  then  to  completely  determine 
the  velocities  after  impact  another  equation  is  needed,  and 
this  must  be  found  from  experimental  observations.  These 
observations  were  first  made  by  Newton  with  .an  apparatus 
on  the  same  principle  as  that  described  in  §  7.  He  found 
that  when  tivo  bodies  collide,  the  velocity  of  separation  after 

impact  is  in  a  constant  ratio  to  the  velocity  of  app'oach  before 
impact.  This  ratio  depends  on  the  nature  of  the  colliding 
bodies.  It  is  sometimes  called  the  coeificient  of  restitution, 
or  of  rebound.  We  shall  always  denote  it  by  the  letter  e. 
The  law  may  be  expressed  in  other  words,  and  perhaps 
more  suitably  for  application  thus  :  The  relative  velocity  after 

impact  is  -e  times  the  relative  velocity  ̂ efcn-e.  This  law  is 
not  rigorously  true  in  all  cases,  for  the  value  of  e  will 
depend  to  some  extent  on  the  form  of  the  colliding  bodies, 
and  on  the  velocities.  It  is,  however,  in  nearly  all  cases 
very  approximately  true.  This  law,  combined  with  the 
constancy  of  momentum,  enables  us  completely  to  determine 
the  effect  of  a  given  collision.  Let  Wj,  m^  be  the  two  masses, 

and  Wj,  %3  their  respective  velocities  before  and  i'„  v^  after 
impact.     Then,  since  the  momentum  is  unaltered, 

m^v^  +  m^v^  =  mi^i  +  m^u^. 
Since  the  relative  velocities  after  and  before  are  in  the 

ratio -g,  v^-Va=  -e{u^-u^. 
If  one  of  the  bodies  is  a  fixed  plane,  v^  =  0,  ̂2  =  0,  and 
t'l  =  -  ew,.  From  these  two  equations  v^,  v^  can  be  found. 
To  do  this,  multiply  the  latter  throughout  by  m^,  add  this 
to  the  first,  then 

miVi  +  m^Vy  =  m^Ui  -  m.^u^  +  mj[\  +  e)u^ 
(tWi  +  m^v^  =  (??ii  +  m^u^  -  mj(\  +  e)w,  +  mJi\  +  e)u^ 

?',  =  w,  -  (1  +  ey^'^^^—hi,  -  ?g  ; 
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and  similarly 

V  =  w,,  -  (1  +  e)   ' — (u,  -  ti,). 

These  equations  completely  give  the  motion.  The 
student  is,  however,  advised  not  to  attempt  to  remember 
them,  but  in  all  cases  to  start  from  the  two  experimental 

laws  of  collision.    Thus,  take  as  an  example  the  following — 
Two  balls  of  masses  3  and  7  lbs.  are  moving  in  the  same  direction 

vrith  velocities  of  20  and  \h  feet  per  second,  so  that  the  former  overtakes 

the  latter;  the  coefficient  of  rebound  is  '3.  What  arc  the  velocities 
afterwards  ? 

The  two  principles  stated  above  give 

3vi  +  7vo  =  3x  20  +  7x15  =  165 

^'1-272=:- -3(20-15)= -1-5. 

Multiplying  the  second  by  7,  and  adding  to  the  first, 

3^1 +  71?!  =  165 -1-5x7, 
10^1  =  165-10-5  =  154-5, 

171  =  15-45  feet  per  second. 

Also  r.2  =  i?i  +  l-5  =  15-45  +  l-5  =  16-95  feet  per  second. 
If  they  had  been  moving  towards  one  another,  the  velocity  of  the  7  lbs. 

would  be  denoted  by  -  15,  and  the  equations  would  have  been 

3vi  +  7u2  =  3x20-7xl5= -45, 

i;i-V2=  - -3(20  +  15)= -10-5  ; 
whence  \0v^=  -  45  -  73-5  =  -  U8-5, 

ri= -11-85, 

^2= -11-85  +  10-5= -1-35. 

That  is,  the  velocity  of  the  3  lbs.  is  reversed  and  becomes  11-85  feet  per 
second,  whereas  the  7  lbs.  moves  in  the  same  direction  as  before,  but 

with  the  diminished  velocity  of  1-35  feet  per  second. 

The  student  can  easily  verify  the  truth  of  Newton's 
law  that  the  velocity  of  separation  is  in  a  constant  ratio  to 
the  velocity  of  approach  by  means  of  the  apparatus  already 
described.  In  order,  however,  to  avoid  rotations  set  up  by 

the  irregular  shape  of  the  colliding  bodies,  it  will  be  neces- 
sary to  make  them  of  symmetrical  form  about  the  line  of 

impact,  such  as  spheres  for  instance.  These  can  be  sus- 
pended by  two  strings  at  a  single  point  of  the  sphere,  or  by 

four  strings  at  two  points,  as  in  the  arrangement  described 
in  §  7.     By  employing  balls  of  glass,  steel,  ivory,  or  other 
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materials,  it  is  then  easy  to  fipd,  as  before,  the  velocities 
before  and  after  impact  and  to  verify  the  truth  of  the  law. 

14.  Let  us  consider  a  little  more  fully  what  happens 
during  a  collision.  The  collision  commences  as  soon  as 
the  surfaces  of  the  bodies  come  in  contact.  Then  the 

substance  around  the  point  of  contact  gets  compressed,  the 
velocities  altering  during  this  compression.  At  the  instant 
of  greatest  compression  they  will  have  no  relative  motion, 
or  the  velocities  of  the  two  will  be  the  same.  Up  to  this 
point  then  the  bodies  behave  in  the  same  way  as  inelastic 
bodies,  and  their  common  velocity  at  the  moment  of  greatest 
compression  can  be  found  in  the  same  way  as  if  inelastic. 
From  this  instant  of  greatest  compression  the  surfaces 
begin  to  regain  their  form  with  different  velocities,  so  that 
a  relative  velocity  is  developed,  and  they  tend  to  fly  apart. 
At  the  instant  when  the  surfaces  separate,  the  collision  is 
at  an  end,  and  tlie  bodies  separate  with  the  velocity  they 
had  at  that  instant.  Denote  now  the  impulses  of  the  blows 
during  the  first  and  second  periods  by  I,,  Ig.  Then  the 

whole  blow  of  the  impact  is  I  =  Ii  +  I^ 
The  effect  of  1^  is  to  reduce  the  initial  velocities  Wj,  n.^ 

to  a  common  velocity,  which  we  will  denote  by  w.  As  it 
is  measured  by  the  change  of  momenta  produced, 

Ii  =  mi(Wi  -  u)  =  7^2(1*  - 11.2), 
.                                    rtiM,  +  irioU^ 
whence  u=    ^ 

Wi  +  m.^ 

and  I,  =   (m,  -  uX 

m,  +  w?2  ' 
The  effect  of  I^  is  to  alter  the  velocity  of  m,  from  n  to  i\^ 
and  of  rtici  from  u  to  v.^.  Hence,  being  measured  by  the 
change  of  momentum, 

and  lo  =   (t'a "  ̂\)- 

From  this 

h  _  %  - I,     I*,  - 
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We  learn  then  that  the  blc^ws  during  the  two  portions  of  a 
collision  are  always  in  a  constant  ratio  for  the  same  bodies. 
The  ratio  is  in  fact  the  coefficient  of  rebound. 

EXAMPLES— II. 

1.  Find  the  mass  of  a  cube  of  iron  of  1  yard  side. 
2.  Find  the  masses  of  1  cubic  decimeter  of  platinum,  gold,  silver, 

and  aluminium. 
3.  Find  the  mass  of  the  earth  in  tons,  having  given,  mean  density 

of  earth  =  5 -6,  mean  radius  =  4000  miles. 
4.  Find  the  size  of  a  plate  of  iron  1  inch  thick  and  weighing  1  ton. 
5.  Find  the  difference  in  the  masses  of  100  cubic  decimeters  of 

water  and  of  ice. 
6.  Find  the  difference  in  the  masses  of  1  cubic  yard  of  water  and 

1  cubic  yard  of  ice. 
7.  What  is  the  volume  of  (1)1  cwt.  of  copper,  (2)  4  kilograms  of 

lead? 

8.  The  mass  of  20  liters  of  a  certain  fluid  is  16  kilograms.  What  is 
its  density  ? 

9.  The  mass  of  10  cubic  feet  of  a  certain  substance  is  2  tons.  What 

is  its  density  ? 
10.  Find  the  density  of  an  alloy  of  2  parts  by  weight  of  copper  to 

3  of  zinc,  supposing  no  alteration  of  volume  to  take  place. 

11.  The  density  of  a  solution  of  zinc  sulphate  is  1'2.  How  much 
pure  water  must  be  mixed  with  1  gallon  of  it,  that  the  density  of  the 
mixture  may  be  the  same  as  that  of  sea  water  ? 

12.  The  density  of  a  certain  substance,  when  water  is  the  standard, 

is  2,  and  that  of  another  substance,  when  mercury  at  0°  C.  is  the 
standard,  is  1'6,     Compare  their  densities. 

[In  questions  13-21  the  bodies  are  inelastic.] 
13.  Two  spherical  masses  of  3  and  5  tons  impinge  directly  on  one 

another  with  velocities  of  4  and  5  '5  feet  per  second  respectively.  Find 
their  final  velocity  (1)  when  they  are  moving  in  the  same,  (2)  when 

in  opposite  directions, 
14.  Two  particles  of  3  lbs.  and  14  oz.  are  moving  in  opposite  direc- 

tions, and  impinge  on  one  another  ;  the  first  has  a  velocity  of  S^,  and 
the  latter  of  9  feet  per  second.  In  Avhat  direction  will  they  move 
after  impact  ? 

15.  A  particle  whose  mass  is  16  lbs.  is  moving  with  a  velocity  of  25 
miles  per  hour,  and  impinges  on  another  moving  in  the  opposite  direc- 

tion. The  two  come  to  rest.  If  the  mass  of  the  latter  were  28  lbs., 
what  was  its  velocity  ? 
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16.  If  in  the  former  question  the  velocity  of  the  second  particle 
were  66  feet  per  second,  what  was  its  mass  ? 

17.  A  mass  of  1  cwt.  strikes  an  object  of  very  large  mass  with  a 
velocity  of  20  feet  per  minute.  What  is  the  measure  of  the  blow  when 
the  fundamental  units  are  foot,  pound,  second  ? 

18.  Three  balls  of  equal  size,  and  masses  of  2,  3,  5  oz.,  lie  on  a  straight 
line  at  rest.  If  the  first  have  communicated  to  it  a  velocity  of  15  centi- 

meters per  second  towards  the  others,  what  will  the  ultimate  velocity 
of  the  balls  be  ? 

19.  If  in  the  preceding  question  the  balls  had  velocities  of  15,  12, 
and  10  centimeters  per  second  in  the  same  direction,  what  would  their 
ultimate  velocity  be  ? 

If  the  third  had  a  velocity  of  13*5  centimeters  per  second,  show  that 
the  others  would  never  overtake  it. 

20.  A  shot  of  600  lbs.  is  fired  from  a  10-ton  gun  with  a  velocity  of 
1000  feet  per  second.  If  the  mass  of  the  powder  be  neglected,  find  the 
velocity  of  recoil. 

21.  An  1800-lb.  shot  moving  with  a  velocity  of  2000  feet  per  second 
impinges  on  a  plate  of  10  tons,  passes  through  it,  and  goes  on  with  a 
velocity  of  400  feet  per  second.  If  the  plate  be  free  to  move, 
find  its  velocity. 

22.  Two  elastic  masses  of  3  lbs.  and  30  oz.  impinge  on  one  another 
with  velocities  of  3  and  5  feet  per  second.  Can  it  be  possible  for 
their  velocities  afterwards  to  be  (1)  1  inch  and  1  foot  per  second,  (2) 
5  feet  and  3  feet  per  second  1 

23.  Two  spheres  of  glass  of  5  and  8  oz.  impinge  on  one  another  with 
velocities  of  10  and  4  feet  per  second  (1)  in  the  same,  (2)  in  opposite 
directions  ;  the  coefficient  of  rebound  is  ̂ |.  Determine  the  motion 
after  impact. 

24.  Two  balls  (c  =  |)  impinge  directly  on  one  another  ;  their  masses 
are  as  2  to  1,  and  their  respective  velocities  before  impact  as  1  to  2, 
and  in  opposite  directions.  Show  that  each  ball  will  move  back  after 

impact  with  five-sixths  of  its  original  velocity. 
25.  Two  equal  bodies  impinge  on  one  another  with  velocities  of 

60  and  45  miles  per  hour  in  opposite  directions,  and  their  velocities 
after  impact  are  7  and  8  miles  per  hour  in  the  same  direction.  What 
was  the  coefficient  of  rebound  ? 

26.  Two  masses  of  4  lbs.  and  8  lbs.  impinge  on  one  another  in 
opposite  directions  with  velocities  of  6  and  2  feet  per  second  ;  the 
former  flies  back  with  a  velocity  of  3  feet  per  second.  Find  the  velocity 
of  the  other  and  the  coefficient  of  rebound. 

27.  An  elastic  sphere  (m)  impinges  on  another  elastic  sphere  {m^)  at 
rest.     If,  after  the  impact,  {in)  remains  at  rest  and  (m,)  moves  on  with 
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one-eiglitli  of  the  velocity  witli  which  it  is  struck,  find  the  coefficient 
of  reb6und  and  the  latio  of  the  radii  of  the  two  spheres,  supposed  of 
the  same  material. 

28.  Two  masses  impinge  on  one  another  and  interchange  their 
velocities.     Prove  that  e  must  be  unity  and  the  masses  equal. 

29.  A  ball  at  rest  on  a  smooth  horizontal  plane  at  the  distance  of 
one  yard  from  a  wall,  is  impinged  on  directly  by  another  equal  ball 

moving  tow^ards  the  wall  with  the  velocity  of  one  yard  in  a  minute. 
If  the  coefficient  of  rebound  between  the  balls  and  Avail  be  "5,  prove 
that  the  balls  will  impinge  a  second  time  after  2  minutes  24  seconds, 

the  radii  of  the  balls'being  of  inconsiderable  length. 
30.  A  ball  A  impinges  directly  upon  an  exactly  equal  and  similar 

ball  B  lying  upon  a  smooth  horizontal  plane.  If  e  be  the  coefficient  of 

rebound,  prove  that  after  the  impact  B's  velocity  "vvill  be  to  A's 
velocity  as  1  +  e  :  1  -  e. 

31.  If,  after  the  impact  described  in  the  foregoing  question,  B  moves 
on  and  impinges  directly  upon  a  perfectly  elastic  vertical  wall  from 
which  it  rebounds  and  meets  A  a  second  time,  prove  that  after  the 
second  impact  B  will  be  reduced  to  rest. 

32.  Two  equal  marbles  A,  B  lie  in  a  horizontal  circular  groove  at 
opposite  ends  of  a  diameter ;   A  is  projected  along  the  groove,  and 

after  a  time  t  impinges  on  B.     Show  that  a  second  impact  will  take  • 
place  after  a  further  interval  2tje,  e  being  the  coefficient  of  rebound. 

33.  A  ball  A  of  mass  p  impinges  directly  upon  another  ball  B  of 
mass  q,  which  is  at  rest ;  after  the  impact  B  impinges  directly  upon  a 
third  ball  C  of  mass  r,  which  is  also  at  rest.  If  C  has  imparted  to  it 
the  same  velocity  as  A  had  at  first,  and  all  the  balls  are  perfectly 
elastic,  show  that  {p  +  q){q  +  r)  =  ̂ pq. 

34.  Two  equal  balls  A,  B  are  lying  very  nearly  in  contact  on  a 
smooth  horizontal  table  ;  a  third  equal  ball  impinges  directly  on  A, 

the  three  centres  being  in  one  straight  line.  Prove  that  if  e  >  3  -  2\/2, 
the  final  velocity  of  B  will  bear  to  the  initial  velocity  of  the  striking 
ball  the  ratio  {\+ef:L 

35.  A  smooth  circular  ring,  mass  M  radius  a,  rests  on  a  smooth 

horizontal  table-;  a  small  spherical  mass  tn  is  projected  from  the  centre 
of  the  circle  with  velocity  v.  Prove  that  the  whole  time  that  elapses 
until  the  second  impact  is 

a    2  +  e 

v'    IT' 
where  e  is  the  coefficient  of  rebound.  Find  the  ultimate  velocity  of 
the  ring  and  sphere  after  an  infinite  time. 

36.  Three  imperfectly  elastic  balls  of  different  masses  and  materials 
are  capable  of  moving  in  a  straight  line  and  are  originally  at  rest  and 
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not  in  contact ;  one  of  the  extreme  balls  is  then  projected  with  a  velocity 
V  against  the  middle  ball,  which  strikes  the  other  extreme  ball  and 
communicates  to  it  a  momentum  M.  Show  that  if  the  third  ball  had 

been  projected  in  the  opposite  direction  with  the  same  velocity  V,  it 
would  have  communicated  the  same  momentum  M  to  the  first  ball. 

Show  also,  that  P,  Q,  R  being  the  masses  and  g^,  e^  the  coefficients 
of  restitution,  if 

PR(1  +  e^e^)  >  Q(P  +  Q  +  li){ei  +  ̂ 2), 

the  middle  ball  will  after  another  collision  with  the  first  strike  the 

third  again  and  impart  to  it  a  momentum  which  is  the  same  whichever 
of  the  extreme  balls  be  originally  projected. 

I 



CHAPTER   III 

FORCE 

1 5.  In  the  preceding  chapter  the  circumstances  attending 

the  sudden  change  of  velocity  in  a  mass  have  been  investi- 
gated, and  our  experiments  have  led  us,  amongst  other 

things,  to  the  conception  of  a  new  kind  of  physical  quantity 
which  has  been  called  momentum.  The  idea  of  impulse 
has  also  been  introduced  as  the  cause  of  a  sudden  change 
of  momentum  of  a  body.  Now,  clearly  a  given  change 
of  momentum  may  be  gradually  caused  by  a  gradual 
change  of  the  velocity,  as  well  as  suddenly  by  an  impulse. 
Or  it  may  be  supposed  to  be  generated  by  a  series  of 
smaller  impulses  acting  at  any  intervals  after  one  another. 
The  smaller  these  impulses  are  the  more  of  them  will  be 
required  in  order  to  produce  a  given  change.  If  the 
successive  impulses  act  more  quickly,  yet  so  that  the  sum 
of  those  acting  in  a  given  time  remains  finite,  we  approach 
nearer  and  nearer  to  the  case  where  the  momentum  is 

gradually  changed.  The  change  of  momentum  in  a  given 
time  will  be  equal  to  the  sum  of  all  the  small  impulses  in 
this  time.  That  is,  the  change  of  momentum  per  second 

=  whole  impulse  per  second. 
Now  an  impulse  per  second  is  another  kiml  of  thing 

from  an  impulse,  the  time  being  introduced  differently  in 
the  two  cases.  It  therefore  has  a  name  of  its  own,  and  is 
called  a/(9rc(2. 

If  two  equal  blows  be  given  to  a  body  in  opposite 
directions,  the  body  behaves  precisely  as  if  no  blow  acted 
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on  it  at  all.  Similarly,  if  two  equal  forces  acted  in  op- 
posite directions  on  a  body,  no  change  of  momentum  would 

be  produced.  In  this  case  each  would  tend  to  produce  a 
change  of  momentum,  and  would  actually  produce  it  if  the 

other  were  absent.  We  can  then  give  tlie  following  de- 
finition of  force,  and  statement  of  how  it  is  measured — 

Def.  When  a  gradual  change  of  momentum  is  either  pro- 
duced or  tends  to  he  produced  in  a  body,  that  body  is  acted  on  by 

foi'ce. 
Fm'ce  is  measured  by  the  rate  at  which  the  momentum 

changes,  or  the  rate  at  which  it  would  change  if  all  other  forces 
were  removed. 

Whether  there  is  an  actual  entity  corresponding  to 

force  there  is  ~no  evidence  to  show.  Our  sensation  of  an 
effort  required  to  make  a  body  move  with  our  hands  is  a 
subjective  one,  and  has  nothing  to  do  with  us  at  present. 

The  student  will  do  well  to  banish  any  a  p-imi  ideas  about 
force  founded  on  his  own  muscular  feelings,  as  they  will 

only  lead  him  astray.  It  will,  however,  be  of  great  assist- 
ance to  regard  force  as  something  having  a  real  existence, 

and  as  measured  by  the  effect  it  produces. 
16.  Momentum  depends  on  two  factors,  the  mass  and 

the  velocity ;  and  it  may  change,  therefore,  either  by  a 
change  in  the  mass  or  in  the  velocity. 

The  mass  of  a  body,  however,  in  general  remains  the 
same,  and  any  change  therefore  is  due  to  a  change  of 
velocity.  Let  the  mass  of  a  body  be  denoted  by  m.  .  Then 
the  rate  of  change  of  momentum,  i.e.  of  mv  =  m  x  rate  of 
change  of  velocity, 

=  m  X  acceleration. 

Hence,  if  we  denote  the  force  by  F  and  the  acceleration 
produced  by  it  «, 

F  =  ma. 

Two  accelerations  along  a  straight  line  are  equivalent 
to  a  single  one  whose  magnitude  is  the  sum  of  the  two. 
Hence  it  follows  that  if  forces  act  along  the  same  line  on  a 
particle,  the  effects  produced  are  the  same  as  if  a  single 

force  equal  to  the  sum  of  the  others  acted  on  it.     This  state- 
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ment  will  still  hold  when  some  of  the  forces  arc  opposed 
to  the  other,  if  they  be  regarded  as  negative,  and  the 
algebraical  sum  be  taken. 

17.  Suppose  the  constant  force  F  to  act  for  a  time  t. 

The  acceleration  being  a,  the  change  of  velocity  in  that 
time  is  at,  and  the  change  of  momentum  =  mat.  But 

ma  =  F,  therefore  the  cliange  of  momentum  in  the  time 
-F^.  Thus  the  product  of  a  force  and  time  gives  us  a 
momentum.  In  other  words,  this  product  and  momentum 
are  physical  quantities  of  the  same  kind.  It  is  sometimes 

called  the  "  time  integral  of  the  force  "  or  the  "  impulse  of 
the  force  "  during  the  time  in  question. 

18.  We  have  seen  that  if  a  change  of  momentum  is  pro- 
duced in  any  body  an  equal  and  opposite  change  must  be 

produced  in  some  other  bodies.  This  will  apply  also  to 

forces— ̂ which  are  merely  impulses  per  time.  This  state- 

ment is  embodied  in  Newton's  third  law  of  motion,  viz. 
action  and  reaction  are  equal  and  opposite. 

It  is  usual  to  give,  in  connection  with  the  present 

subject,  Newton's  three  statements  of  the  laws  of  motion. 
They  are  as  follows  : — 

I.  A  body  at  rest  will  remain  at  rest,  or  if  in  motion  will 
m,ove  with  a  unifonn  velocity  in  a  straight  line  unless  acted  on 
by  some  external  force. 

As  we  know  nothing  about  force,  this  is  really  a  defini- 
tion of  it.  The  definition  given  above  is  equivalent  to  it, 

but  worded  so  as  to  bring  out  more  definitely  the  fact  that 
it  is  merely  a  definition. 

II.  Change  of  momentum  is  proportional  to  the  impressed 
force  and  takes  place  in  the  direction  of  the  force. 

Here  again  the  "  change  of  momentum  " — or,  as  is  meant, 
the  rate  of  change  of  momentum — is  a  definite  thing  we  can 
measure,  whereas  the  force,  apart  from  the  change  produced, 

is  unknown.  The  "law"  is  then  merely  a  statement  of 
how  force  is  to  be  measured. 

III.  Action  and  reaction  are  equal  and  opposite. 
This  statement  is  based  on  experiment.  We  have 

seen  in  the  previous  chapter  how  it  is  verified  for 
impulses.     Regarding   force   as    impulse   per   second,  the 
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statement  is  also  seen  to  be  true  for  forces.  It  is, 
however,  easily  shown  directly,  as  for  instance  where 
two  bodies  are  joined  by  a  stretched  elastic  string,  and 
are  allowed  to  approach.  It  can  then  be  observed  that 
the  rates  of  increase  of  momentum  of  the  two — that  is, 
the  forces — are  equal  and  opposite.  This  law  is  of 
extreme  importance. 

1 9.  Wh^re  new  physical  quantities  are  introduced,  units 
of  their  own  kind  are  required  to  measure  them.  Now  the 
equation 

¥  =  ma 

means  that,  if  the  numbers  of  units  of  mass  and  of  accelera- 
tion be  substituted  in  ma,  the  result  gives  the  number  of 

units  of  force  in  the  force.  If  m  =  1  and  a  =  1,  then  F  =  1 
unit  of  force.  In  other  words,  the  unit  of  force  produces 
unit  acceleration  in  unit  mass.  We  shall  define  it  then  as 

follows — 
Def.  The  unit  of  force  is  such  tJuit,  if  it  acts  on  unit  of 

mass,  it  will  p'oduce  unit  of  acceleration  ; 

or, 

The  unit  of  force  is  such  that,  if  it  acts  on  unit  of  mass 

fai'  unit  of  time,  it  will  p'oduce  unit  of  velocity. 
On  account  of  their  importance,  definite  names  have 

been  given  to  the  units  of  force  in  the  two  cases  where 
the  fundamental  units  are  the  pound,  foot,  second,  and  the 
gram,  centimeter,  second,  or  C.G.S.  units  respectively.  AYe 
shall  define  them  anew  as  follows — 

1.  The  POUNDAL  is  that  force  which,  acting  on  a  mass  of  one 
pound  for  one  second,  gives  it  a  velocity  of  one  foot  per  second. 

2.  Tlie  DYNE  is  that  force  which,  acting  on  a  mass  of  one 

gram  fm'  one  second,  gives  it  a  velocity  of  one  centimeter  per secmid. 

A  system  of  two  equal  and  opposite  forces  is  called  a 
stress.  Clearly,  if  a  stress  act  on  a  perfectly  rigid  body, 
there  will  be  no  effect  produced  by  which  the  presence  of 
the  stress  will  be  indicated.  When,  however,  the  com- 

ponents of  the  stress  act  on  different  bodies,  or  different 

portions  of  a  non-rigid  body,  effects  are  produced.     Thus 
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in  the  first  case  the  bodies  move  towards  or  from  one 

another  with  equal  changes  of  momentum.  In  the  second 
case  the  different  portions  of  the  body  actually  move,  but 
are  again  brought  to  rest  by  the  calling  into  play  of  other 
stresses.  The  body  is  deformed,  and  the  deformation  is 
called  a  strain. 

When  the  two  components  of  a  stress  act  from  one 
another,  as  at  any  point  of  a  stretched  bar,  it  is  called  a 

tension : — if  the  bar  is  cut  at  any  part,  the  two  sides,  where 
it  is  cut,  move  apart.  When  the  components  act  towards 

one  another,  as  at  any  point  of  a  compressed  bar,  it  is  some- 

times though  not  correctly  *  called  a  jTressure  : — if  the  bar  is 
cut  at  any  part,  the  two  sides  remain  in  contact  and  tend 
to  move  towards  one  another. 

Example  T,  A  certain  force  acting  on  5  lbs.  for  3  seconds  gives  it  a 
velocity  of  4  feet  per  second.  How  long  loould  it  take  to  move  a  mass 
of  8  lbs.  through  15  feet? 

Here  the  first  thing  is  to  find  the  magnitude  of  the  force,  next  the 
acceleration  it  produces  in  the  8  lbs. 

It  generates  in  5  lbs.  a  velocity  of  4  feet  per  second  in  3  seconds, 

that  is,  a  velocity  of  |  feet  per  second  in  1  second — in  other  words, 
the  acceleration  is  ̂ . 

Hence  the  force  =  5  x  f  =  V-  poundals. 
Next,  let  a  be  the  acceleration  it  produces  in  8  lbs.    Then 

Force  =  8a  poundals, 
.-.  8«  =  ̂ /, 

or  a  =  |. 

The  acceleration  it  will  produce  in  the  8  lbs.  is  then  |  foot  per 
second  per  second. 

Let  t  be  the  time  required  to  move  it  through  15  feet. 

Then  by  the  formula  s  =  ̂ t^ 15  =  ̂ x^t\ t^  =  S6, 

whence  t=6  seconds. 

Example  II.  Two  masses  of  6  and  11  lbs.  are  connected  by  an  in- 
elastic string  of  no  mass;  they  are  acted  on  by  forces  of  48  and-  14 

poundals  in  opposite  directions.     Determine  the  motion. 

Sihce  the  string  is  inelastic,  they  will  move  on  together.     Let  the 

*  Pressure  is  properly  the  intensity  of  the  stress  over  a  surface,  as  for 
instance  10  poundals  per  square  foot. 
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acceleration  be  a.     Then  the  whole  force  acting  on  them  is  48  - 14  =  34 
poundals,  whereas  the  mass  moved  is  6  +  11  =  17  lbs.     Hence 

17a  =  34, 

a  =  2  feet  per  second  per  second. 

Example  III.  If  the  fundamental  units  are  the  ton,  yard,  and 

minute,  expi'css  the  unit  of  force  in  poundals. 
The  unit  force  produces  an  acceleration  of  1  yard  per  minute  per 

minute  in  a  mass  of  1  ton. 

Now  1  yard  per  minute  per  minute  =  3  feet  per  60  seconds  in  60 

seconds  =—r  foot  per  second  in  60  seconds =^r7r — — ,  foot  per  second  per 
20  '^  20  X  60  ^  ^ 

second,  also  1  ton  =  2240  lbs.     Therefore 

The  unit  of  force =2240  x  — — --  poundals, 

20  X  60  "^ 
112     28     ,13  ,  , 

=  -60  =15  =  ̂15  P^^^*^"- 
20.  When  equal  and  opposite  forces  are  applied  at  the 

ends  of  a  string  or  bar,  the  tension  or  pressure  is  the  same 
at  every  point.  For  consider  the  two  points  A,  B  of  a 
stretched  string,  and  sup-  ,      , 

pose  the  tension  at  the   <   ^-^-^   <^-^   > 

two  points  to  .be  T,  T'.  ^ 
Then,  confining  our  attention  to  what  happens  to  the 

portion  AB,  the  whole  force  on  it  is  T  -  T'.  But  the  string 
is  at  rest ;  hence  there  is  no  force,  i.e.  T  -  T'  =  0  or  T  =  T'. 
If,  however,  the  string  is  in  motion  and  is  accelerated,  this 
is  no  longer  the  case.  In  fact,  if  m  be  the  mass  of  the 
string  between  A  and  B,  and  a  the  acceleration,  then 

T  -  T'  =  ma. 

In  many  cases  the  mass  of  a  string  is  so  slight  compared 
with  the  other  masses  treated  that  it  may  be  regarded  as 

nothing.     In  this  case  again  T  =  T',  and  the  tension  may 
♦  be  regarded  as  the  same  throughout. 

As  an  example,  suppose  a  force  equal  to  10  poundals 
to  act  at  one  end  of  a  rope  100  feet  long,  whose  mass 
per  foot  is  8  oz.,  and  let  us  find  the  tension  at  a  distance 
20  feet  from  the  free  end. 

The  first  thing  is  to  find  the  acceleration.  Now  the 

mass  =  100  X  8  oz.  =  50  lbs.  and  the  force  is  10  poundals 
Hence  acceleration  =  ̂ 8^  =  l-.foot  per  second  per  second. 
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Let  T  be  the  tension  at  a  point  distant  20  feet  from  the 
free  end.  Now  T  is  the  force  which  drags  along  the  20 
feet  of  rope  with  acceleration  ^.  The  mass  =  20x8  oz. 
=  10  lbs. 

•Hence  T=10xi  =  2  poundals. 

21.  Gravitation. — So  far  we  have  concerned  ourselves 
with  one  only  of  the  fundamental  properties  of  matter, 
viz.  inertia.  There  is  another,  to  which  the  name  of 
gravitation  is  given.  It  shows  itself  in  a  tendency  for  any 

two  masses  to  move  towards  one  another — in  other  words, 
a  force  of  attraction  exists  between  every  portion  of  matter 

and  every  other  portion.  Here,  however,  it  will  be  neces- 
sary to  enter  fully  into  one  case  only  of  it,  viz.  the  force 

between  the  earth  and  any  body  at  its  surface.  If  any 
body  be  free  to  move  at  the  surface  of  the  earth,  it  always 
falls  towards  the  earth ;  whence,  according  to  the  first  law 
of  motion,  a  force  must  act  on  it.  This  force  is  called  the 
weight  of  the  body. 

A  falling  body  is  found  to  obey  the  following  laws — 
(1)  It  falls  with  a  constant  acceleration. 
(2)  This  acceleration  is  independent  of  the  mass  of  the 

falling  body,  but  depends  on  the  locality. 
We  shall  see  immediately  in  §§  22,  23  how  the  truth 

of  these  statements  can  be  shown  experimentally,  and 
other  more  exact  methods  will  be  given  later.  At 
present  let  us  see  what  deductions  can  be  drawn  from 
them. 

From  (1),  since  the  mass  and  the  acceleration  remain 
constant,  the  force  acting  is  constant.  In  other  words,  the 
weight  of  a  body  is  the  same  at  different  heights,  and  is 
independent  of  the  velocity  of  the  body.  This  is  not 
found  to  be  true  for  very  great  differences  of  heights, 
nor  is  it  rigorously  true  even  for  small  heights.  The 
deviation  from  constancy,  however,  is  so  small  as  to 

be  quite  inappreciable  except  by  the  most  delicate  ap- 
paratus. 

From  (2)  we  learn  that  the  weight  of  a  body  at  a  given 
place  is  proportional  to  its  mass.     For  let  m,,  m^  be  the 
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masses  of  two  bodies  and  (?„  a^  their  accelerations,  then  the 

forces  acting  on  them — i.e.  their  weights — are 

Fi  =  Wi«i,    Fg  =  rngftg. 

But,  since  «,  =  a.^  according  to  law  (2), 
m,a, 

Fa     m./i.^ 

mi 

or  the  weights  are  proportional  to  the  masses. 
This  fact,  that  the  mass  of  a  body  is  proportional  to  its 

weight,  is  that  on  which  is  based  the  practical  way  of 
measuring  masses  referred  to  in  §  6. 

The  acceleration  of  gravity  is  usually  denoted  by  the 
letter  g.  It  is  found  to  vary  at  different  parts  of  the 

earth's  surface  from  32*091  feet  per  second  per  second  at 
the  equator  to  3 2'2o 5  near  the  pole.  The  value  of  g  at  & 
point  h  units  of  length  above  the  sea  level  and  in  latitude  A. 

is,  in  I'.P.S.  units,  ̂ =  32-173  - -082  cos  2A- -000003/^; 
in  C.G.S.  units,  g  =  980-6056  -  2-5028  cos  2A  -  -000003/^. 

If  the  place  is  on  land  at  a  height  h,  the  term  depending 
on  h  has  to  be  modified  for  the  attraction  of  the  extra  land 

between  the  point  and  sea  level. 

The  following  table,  based  on  Everett's  Units  and 
Physical  Constants^  gives  the  value  of  g  at  sea  level  in  a 
few  localities — 

Latitddb. 

Value 

OF  g 

in  F.P.S.  units. in  C.G.S.  units. 

The  equator 

0°0' 

32-091 

978-10 
Paris    . 

48°  50' 

32-183 

980-94 London 

51°  29' 

32  191 
981-17 Berlin  . 

52°  30' 

32-194 

981-25 Edinburgh  . 

55°  57' 

32-203 

981-54 The  pole 

90°  0' 

32-255 

983-11 1 

Unless  we  wish  to  be  very  exact,  we  shall  take  the 
numerical  value  oi  g  to  he  32  and  981  in  the  two  systems 
of  measurement  respectively. 
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Denote  the  weight  of  a  body  by  W  and  its  mass  by  m. 

Then  the  force  W  acting  on  a  mass  m  produces  an  accelera- 
tion g.     Therefore 

W  =  mg  units  of  force. 

This  will  enable  us  to  get  some  idea  of  the  magnitude 
of  a  poundal  or  of  a  dyne  in  terms  of  forces  with  which  we 
are  familiar.     Thus — 

Weight  of  1  lb.  =  1  x  32  poundals; 
whence  1  poundal  =3^  weight  of  1  lb., 

=  ̂   =  Y  weight  of  1  oz., 
=  weight  of  ̂   oz. 

So  also 

Weight  of  1  gram  =  981  dynes  ; 
or  1  dyne  =  -^^j  weight  of  1  gram, 

=  1*02  weight  1  milligram, 
=  weight  of  1  milligram  nearly. 

The  student  must  keep  clearly  distinguished  in  his  mind 
the  difference  between  the  mass  of  a  body  and  its  weight. 
The  mass  is  the  quantity  of  matter  in  it ;  the  weight  is 

the  force  with  which  the  earth  pulls  it.  The  mass  is  con- 
stant, the  weight  depends  on  the  locality. » 

Example.  A  force  u^hich  can  just  support  2  cwts.  acts  for  1  minute 
on  3  tons.     Find  the  velocity  it  produces  in  it. 

The  force  =  weight  of  224  lbs., 
=  224  X  32  poundals. 

Let  a  be  the  acceleration  it  produces  in  3  tons  or  6720  lbs.     Then 
Force  =  6720a. 

/.  6720a=  224x32, 
224x32     16.    ,  .  , 

a=  —^i^^zTT-  =7^  foot  per  second  per  second. 

:.  velocity  in  1  minute  =  60a= ^f  x  60  =  64  feet  per  second. 

The  student  should  not,  however,  get  into  the  habit  of 
always  expressing  the  magnitudes  in  F.P.S.  or  C.G.S.  units. 
Thus  in  the  preceding  example  it  would  be  better  to  take 
the  cwt.  as  unit  of  mass.      Then  the 

Force = weight  of  2  cwts., 
=  2g  units. 
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Also  3  tons  =  60  cwts. 

Then  Force  =  60«  units  ; 
.-.  60a  =  2g, 

.  *=  OA  =  f?  foot  per  second  per  second. 

22.  The  facts  that  the  acceleration  of  a  falling  body  is 
constant,  and  that  it  is  independent  of  the  mass  of  the  body 
and  of  its  velocity  can  only  be  known  as  the  results  of 
observation.  It  is  easy  to  see  the  approximate  truth  of  the 

first  statement  by  letting  a  stone  fall  from,  say,  a  first-floor 
and  second-floor  window  to  the  ground  and  noting  the  times 
it  takes  in  each  case  to  reach  the  ground.  It  will  be  found 
that  the  heights  are  to  one  another  in  the  same  ratio  as 
the  square  of  the  times  of  fall.  This  shows  that  the 
acceleration  is  constant,  for  when  the  acceleration  is  constant 

oi\  the  spaces  are  proportional  to  the  squares  of  the  times. 
It  will  be  seen  below,  in  finding  the  actual  magnitude  of 
the  acceleration,  how  the  statement  can  be  verified  with 

greater  exactness. 
The  following  experiment  will  show  the  truth  of  the 

second  statement,  viz.  that  the  acceleration  is  independent 
of  the  mass.  A  cylindrical  glass  receiver  A  is 
fitted  with  a  cover  B,  to  which  it  is  ground 

accurately  tnie  and  made  air-tight  with  a  little 
grease.  Through  this  cover  passed  a  rod  work- 

ing in  an  air-tight  collar  c  and  having  arms  hah 
inside ;  d^  d  are  small  pillars  on  the  cover  to 
which  are  hinged  small  plates  e,  e  so  arranged 
that  their  other  ends  can  rest  one  on  each  arm 

J,  whilst  they  will  slip  off  the  arms  at  the  same 
instant  when  hah  is  rotated.  On  these  plates 
are  placed  different  bodies,  as  for  instance  a 
piece  of  cork,  lead,  and  a  feather.  The  air  is 
then  exhausted  from  the  interior.  If  now  the 

rod  be  turned,  the  bodies  will  fall  at  the  same 
instant,  and  it  will  be  observed  that  they  reach 
the  bottom  at  the  same  instant  also.  That  is,  the  accelera- 

tions with  which  tliey  move  are  the  same.     It  is  necessary 
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to  make  the  experiment  in  a  vacuum,  for  otlierwise  the 
effect  of  gravity  is  masked  by  others  due  to  the  presence 
of  the  air. 

The  following  examples  will  serve  to  illustrate  the  prin- 
ciples developed  in  this  chapter,  and  will  also  lead  up  to  a 

method  of  determining  the  value  of  the  acceleration  of 

gravity  by  experiment. 

Example  I.  A  body  of  mass  m  lies  on  a  smooth  horizontal  table  ;  to 
it  is  connected  one  end  of  an  inextensible  string  lohich  passes  over  a  2mllcy 

at  the  cd'je  of  the  table  and  s^ippmis  a  mass  m' ;  the  system  loill  move. 
Find  the  acceleration  and  the  tension  of  the  string. 

It  is  to  be  noticed  that  the  effect  of  the  pulley  is  merely  to  change 
the  direction  of  the  string,  and  not  to  alter  its  tension.  Also,  since  the 
table  is  smooth,  there  is  no  force  tending  to  stop  the  mass  m  when  it  is 
once  in  motion.  The  only  force  then  on  m  is  the  tension  of  the  string. 
The  string  has  no  mass,  and  therefore  requires  no  force  to  set  it  in 
motion.  Consequently  the  tension  is  the  same  at  ewry  point.  (See 
§20.) 

Let  T  denote  the  tension  of  the  string  and  a  the  acceleration  of 
either  mass,  it  being  the  same  for  each,  since  the  string  is  inextensible. 

We  shall  treat  the  question  in  two  ways. 

Method  1.  Consider  the  circumstances  of  each  mass  sepai-ately. 
The  only  force  on  the  mass  m,  moving  it  on  the  table,  is  the  tension 

T  ;  the  acceleration  produced  is  a.     Hence 
T  =  ma, 

T 
or  a  =  — . m 

The  forces  on  m'  are  the  tension  T  upwards  and  its  weight  m'g 
downwards.  These  are  equivalent  to  one  force  7n'g-T  downwards. 
This  acts  on  a  mass  m'  and  produces  acceleration  a.     Therefore 

^_mV-T^    _    T 

But  we  have  already  seen  that 

T 
w 

T         T 

m    -^     m' 
mT  +  mT  =  7nm'g, 

m  +  m' 



FORCE 49 

That  is,  the  tension  is 
mm 

m  +  m ,g  units  of  force,  or  is  equal  to  the  weight 

of  a  mass 

Also 
m  +  vi'

' 
T 

a  =  — m    m  +  m 
',9- 

Method  2.  In  this  method  regard  the  two  bodies  as  one,  which  is 
legitimate  since  they  move  as  such.  The  only  force  acting  on  the 
composite  body  and  which  produces  motion  is  the  weight  of  the  hanging 

portion,  ix.  m'g.  The  mass  moved  is  the  sum  of  the  two,  i.e.  m+m'. 
Hence  the  acceleration  is 

_  force  _    m'g m  +  m! 

To  find  the  tension  we  must  consider  the  motion  of  one,  as  in  the 
former  method 

T=7na=   ,9'. ?«  +  rti 

Example  II.  Two  masses  m,  m'  are  connected  by  a  string  whose  mass 
can  be  neglected,  and  which  passes  over  a  masslcss  pulley.  Determine 
the  acceleration  and  the  tension  of  the  striiig. 

Suppose  m  to  be  the  larger,  then  the  force  on 
downwards  is  mg  -  T  as  in  the  former  case, 

mor-T           T 
.  .  a  =  -^   =  g   

m        ̂      m 

So  also  force  on  m'  is  upwards  a.nd  =  T~  m'g, 

Now  a=a', 

m' 

T^T_ 
'  ̂"m    m' 

g- 

also 

\m    m'J      ̂   ' 

,_      2mm' 

m  +  7n'^  ' T     /_       2m'  \^ a=^g   =(  1   ^,  1^, 
^    m     \      m+m'/ 

.9- 

m  +  111 

U  m=m\  a=0.  That  is,  there  is  no  acceleration,  and  they  will  be 
at  rest,  or  will  move  loilh  constant  velocity. 

It  will  be  noted  that  a  is  the  acceleration  of  m  down,  and  a'  of 

m'  up.     It  might  be  thought,  therefore,  with  regard  to  what  has  been 
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said  as  to  direction,  that  the  true  equation  should  be  a  =  -  a.  But 
this  would  not  be  correct.  In  fact  the  presence  of  the  pulley  alters  the 
direction  in  space,  but  does  not  do  so  in  reference  to  the  motion  along 
the  string,  which  is  what  we  have  to  deal  with  here.  The  accelerations 

a  and  a'  are  both  in  the  direction  of  the  string's  motion,  and  therefore 

By  taking  m  and  m'  nearly  equal,  w  -  m'  becomes  very  small,  in 
which  case  the  acceleration  a  will  also  be  small,  and  therefore  easily 

measurable.     This  being  done,  the  value  of  gr  can  be  deduced,  viz. — 

w  +  m' 

q=   ra. in-ni 

This  was  the  method  employed  by  Atwood  (see  Art.  23). 

Example  III.  A  length  of  20  feet  of  a  heavy  chain  is  suspended  by 
a  wire,  whose  mass  viay  be  neglected,  over  a  pulley  ;  the  other  end  of  the 
wire  is  fastened  to  a  irnass  of  56  lbs.;  the  mass  per  foot  of  the  chain  is  2^ 
lbs.  Find  (1)  the  acceleration,  (2)  the  tension  of  the  wire,  (3)  the  tension 
of  the  chain  at  a  point  6  feet  from  its  lower  end. 

(1)  The  mass  of  the  chain  is  20  x  2^  =  50  lbs.  Therefore  the  whole 

mass  moved  is  56  +  50  =  106  lbs.  The  force  moving  it  is  the  weight  of 
(56  -  50)  Vos.=6g  poundals. 

.-.  Acceleration  is  j^ = ^JJ. 

(2)  Also  force  on  chain  alone  =  (T  -  SOgf)  poundals,  where  T  is  the 
tension  of  the  wire. 

'.  Acceleration  = _T-50^ 

50     * 

••  50 

-g-- 
3 

=51^' 
• T 

50
" 

=^  +  5-3^= 
56 =  53^' 

T     2800  ,  , 

T=-gg- 9' poundals, 
.  -^    .2800,, 

=  weight  of   -^-^  lbs. 

(3)  Let  T'  be  the  tension  of  the  chain  at  a  point  6  feet  from  the 
lower  end.  Then  the  function  of  T'  is  to  take  part  in  accelerating  the 
6  feet  of  chain  below  it. 

The  mass  of  this  portion  =  6  x  2|  =  15  lbs.     The  force  on  it  is  V  -I5g 
upwards. 

,      ,      ,.         T'-15.^     T' 
.*.  Acceleration  =  — .,-      =Ti-9' 15         15 
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But  the  acceleration  is  that  found  before,  viz.  zr^g. 

r       3 
•••15-^  =  53^' 

„,     _     56       840  ,  . 
T'  =  15  X  — 5f=  -^g  poundals, 

= weight  of  -T^  lbs. 

Example  IV.  One  of  the  masses  in  Example  II  suddenly  strikes 
another  M,  and  the  two  go  on  together.  Determine  the  circumstances  of 
the  whole  motion. 

The  circumstances  will  differ  according  to  which  of  the  two  moving 

ones  has  the  collision.  If  it  is  the  less  (say  m'),  it  is  moving  up  at 
the  moment,  the  collision  makes  it  suddenly  go  more  slowly,  there 
is  an  impulsive  jerk  on  the  string,  and  m  is  also  made  to  go  more 
slowly. 

After  collision  the  system  will  go  on^with  another  constant  accelera- 

tion. If  m'  and  M  are  together  less  than  tn,  the  acceleration  is  in 
the  same  direction  as  before,  and  the  only  effect  is  that  they  are 

accelerated  less.  If  m'  and  M  are  together  g4-eater  than  m,  the 
acceleration  is  in  the  opposite  direction,  and  therefore  they  will  go 
more  and  more  slowly,  come  to  rest,  and  then  begin  to  move  in  the 

opposite  direction.  If  m'  +  M  =  m,  there  will  be  no  acceleration 
after  the  impact,  and  the  system  will  go  on  with  constant  velocity. 
This  is  all  clear  without  any  calculations.  To  find  the  actual  changes 
we  must  have  recourse  to  calculation. 

Before  the  collision — 

.       ,      ..         m-m' Acceleration  =   ,q, 

„      .  27nm' .  Tension  =   ,g. 

m  +  m^ 
At  the  collision — 

Let  the  common  velocity  just  before  impact  be  u  and  afterwards  be 
V.  The  impact  takes  place  in  so  short  a  time  that  gravity  during  the 
collision  has  no  effect.  It  is  therefore  a  case  of  simple  impact,  in 
which  case  the  momentum  after  impact  =  momentum  before, 

i.e.  (m  +  7»'  +  M)'y  =  (m  +  m')w 

_     in-\-  m' and 

m-\-m'  M     * 
Change  of  velocity ; 

m  +  m'  +  M      7/1  +  m'  +  M 
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Jfter  the  collision — 

.       ,      ..         m-(?n'  +  M) Acceleration  =   , — vr-a, 

m  +  m'  +  M  ̂' »,      .         2m{m' -{-Wj Tensions  — — ; — ^'q. 

m  +  m'  +  W^* for  the  m'  and  M  are  equivalent  to  one  =m'  +  M. 

Here  if  in'  +  M  <  m,  acceleration  is  + ,  i.e.  in  tlie  same  direction  as  before  ; 

if  m'  +  M  >  m,  acceleration  is  -  ,  i,  e.  in  the  opposite  direction. 

On  the  second  supposition,  that  the  collision  takes  place  with  the 
greater  mass,  the  result  is  more  coniplicated.  The  mass  m  is  going 
downwards,  and  by  the  impact  is  made  to  go  more  slowly,  consequently 
the  string  now  becomes  slack.  As  the  tension  of  the  string  is  now  zero, 

m'  is  retarded  by  its  weight  at  the  rate  g.  M  and  m  are  accelerated 
at  the  same  rate,  until  the  string  again  becomes  tight.  Then  another 
jerk  takes  place,  and  the  two  suddenly  take  up  a  common  velocity 
and  proceed  with  a  greater  acceleration  than  the  original  one. 

Let  us  consider  each  of  these  steps  in  detail. 

Before  the  collision — 

.       ,      ̂ .         m-m' Acceleration  =   ,q, 
m  +  m 

rr,      .  2mm' 
i  eusion  =  —   ,q. 

■    m  +  7n''^ 
At  the  collision — 

Suppose  the  common  velocity  just  before  to  be  u.  Then  m'  is  un- 
affected by  the  collision,  and  its  velocity  is  unchanged  and  =  it.  The 

string  becomes  slack,  and  the  mass  m  +  M  goes  on  with  altered  velocity. 

If  this  be  -y, 
(m  +  M)y  =  mti, 

m 

m  +  M 

While  the  string  is  slack — 

Afterwards  m'  moves  freely  under  a  retardation  g,  and  with  initial 
velocity  u.  Also  ??i  +  M  moves  freely  with  acceleration  g  and  initial 
velocity  v.  The  string  gets  loose,  and  after,  say  a  time  t,  gets  tight 

again.  This  will  happen  when  the  space  gone  up  by  m'  is  equal  to 
the  space  gone  down  by  m  +  M,  for  they  are  then  again  at  the  same 
distance  from  one  another. 

Now  space  gone  up  by  m'  =ut  -  \g^ 

,,  , ,  down  by  m  +  'M  =  vt  +  ̂gt^  ; 
.*.  ut  -  ̂ijt^  =vt  +  ̂gt^, 
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But  v=   =-,u; 

^      W  +  M  ' 

t  =  - 

m  +  M  g 

Also  at  this  time  the 

velocity  oim'=u-gt=v, 

velocity  oim  +  '^l.  =  v  +  gt  =  u, 
or^  the  masses  have  interchanged  their  velocities. 

IVhen  the  string  becomes  tight— tit 

The  velocity  of  m'  before =^-  =   rvW.     The  velocity  of  wi  +  M  is 

w.     Let  V  be  the  common  velocity  afterwards.     Then 

(m'+m  +  M)V=m''y  +  (m  +  M)w, 
/  •mm'    ,       ,  ,-\ 

\m  +  M  / 

.•.v= mm'  +  (m  +  M)^ 

(M  +  w)(m'  +  7^  +  M) 
FiTuil  state — 

.      ,      ..        m  +  M-m' Acceleration =   ^r^   ,g, 

m  +  M  +  m"" Tension  =   ^^   ,q. 

m  +  M  +  m'^ 23.  Experimental  determination  of  the  value  of  g. — The 
acceleration  of  a  body  falling  freely  is  so  great  that 
it  is  not  at  all  an  easy  matter  to  observe  its  magnitude. 
Moreover,  when  moving  quickly,  the  resistance  of  the  air 
is  so  large  as  to  introduce  great  errors.  The  earliest 
attempts  were  based  on  methods  which  diminished  the 
acceleration  in  a  known  ratio ;  this  diminished  acceleration 
was  then  observed,  and  the  acceleration  of  free  fall  deduced 
from  it.  Thus,  if  the  method  produced  an  acceleration 
yV  that  of  gravity,  and  this  diminished  acceleration  was 
observed  to  be  1  6  feet  per  second  per  second ;  the  value 

of  g  would  be  20  x  1-6  =  32.  Apart  from  the  fact  that 
apparatus  to  diminish  the  acceleration  introduces  com- 

plications due  to  friction  and  other  causes,  the  method  is 
a  bad  one  for  another  reason,  which  perhaps  may  best  be 
illustrated  by  an  example.  In  all  physical  measurements 
a  certain  small   error  of  observation  is  always  liable  to 
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occur.  Suppose  now  in  the  above  observation  an  error  so 

small  as  '01  were  made,  so  that  instead  of  1'6  the  true 
observation  sliould  have  been  1*61,  then  the  calculated 
value  of  g  would  have  been  1'61  x  20  =  32 '2,  showing  a 
large  error  in  the  value  of  g  of  '2,  twenty  times  that  oli 
the  original  one. 

In  order  to  diminish  the  acceleration,  Galileo  employed 
an  inclined  plane,  allowing  a  body  to  slide  down  it  under 
the  action  of  gravity.  By  the  principles  developed  in 
Chapter  VII,  it  is  possible  to  calculate  the  ratio  of 
this  diminished  acceleration  to  that  of  free  fall  when  the 

inclination  is  known,  and  thence  to  deduce  a  value  of  g. 
It  is  difficult,  however,  to  avoid  errors  due  to  friction. 

In  1784  Atwood  published  a  new  method  for  finding 
the  value  of  g.  Although  it  is  not  susceptible  of  giving 
very  accurate  values,  yet  his  machine,  as  it  is  called, 
is  very  interesting,  as  it  may  be  used  to  exemplify  in  a 
striking  manner  the  principles  developed  in  this  chapter. 
The  frontispiece  is  reduced  from  the  plate  in  his  book  On 
the  Rectilinear  Motion  and  Rotation  of  Bodies.  The  essential 
part  is  a  pulley  over  which  passes  a  light  string  carrying 
masses  at  its  two  ends.  In  order  to  reduce  the  friction  as 

much  as  possible,  the  axle  of  the  pulley  rests  on  two  pairs  of 
other  wheels  called  friction  pulleys,  which  diminish  the 
friction.  The  pendulum  shown  is  for  the  purpose  of 
measuring  the  time.  The  masses  A  and  B  are  equal. 
Then  A  is  loaded  with  a  small  mass.  This  causes  A  to 

descend  and  B  to  ascend  with  an  acceleration,  as  we  have 
already  seen, 

~2m  +  M^' 

where  m  is  the  mass  of  A  or  of  B,  and  M  of  the  additional 
mass  placed  on  A.  The  pendulum  beats  seconds,  or  at 
least  some  known  interval  of  time.  -  The  masses  are  then 
placed  so  that  A  is  at  the  top  of  the  graduations  on  the 
graduated  rod,  and  they  are  set  free  at  one  tick  of  the 
pendulum.  A  then  falls  until  it  strikes  against  the  small 
shelf.     The  position  of  this  shelf  is  so  arranged  that  A  strikes 
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it  just  as  the  pendulum  makes  the  second  tick.  This  can 
be  done  ̂ vith  great  accuracy  after  several  trials,  for  the 
ear  can  easily  decide  whether  the  sounds  of  the  tick  and 

the  blow  occiy-  simultaneously.  It  only  remains  then  to 
measure  the  distance  to  the  shelf,  whjch  gives  the  distance 
fallen  by  A  in  one  second,  and  from  this  we  deduce  at  once 
its  acceleration  from  the  formula 

s  =  |-  .  ft  .  1'  -  Ja. 
Thus,  for  instance,  if  m  =  62  oz.  and  M  =  4  oz.,  we  know 
that 

M   ^        JL^ 

also  by  observation  from  the  machine  it  will  be  found  that 
the  shelf  must  be  placed  at  a  distance  6  inches  below  the 

top,  whence 

a  =  2s  =  2xj  =  l  foot  per  second  per  second, 

•  •  32       ' 

g  =  S2  feet  per  second  per  second. 

By  taking  the  interval  more  than  one  second,  the  position 
of  the  shelf  will  be  farther  down,  and  the  measurements 
may  be  made  more  accurately. 

Modifications  of  Atwood's  machine  have  been  made, 
and  various  contrivances  to  give  more  accurate  observa- 

tions, into  which  we  need  not  enter,  especially  as  there  is 
a  much  more  accurate  way  of  determining  the  value  of  g 
given  in  §§  1G2,  203. 

The  application  of  Atwood's  machine,  as  here  described, 
can,  however,  never  give  accurate,  or  even  nearly  accurate, 
values  of  g.  For  not  only  have  corrections  to  be  applied 

to  take  account  of  the  friction  of  the  apparatus,  the  resist- 
ance of  the  air,  and  the  weight  of  the  string ;  but  a  much 

larger  correction  has  to  be  applied  owing  to  the  mass  of 
the  pulleys  over  which  the  string  passes.  The  weight  of 
the  pulleys  of  course  produces  no  effect  in  moving  the 
system,  but  as  the  pulleys  have  to  be  moved,  and  their 
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angular  motion  is  accelerated,  as  well  as  the  motion  of  the 
suspended  masses,  part  of  the  moving  force  is  used  up  in 
this  acceleration  of  the  pulleys.  This  is  always  comparable 
with  the  whole  effect.  We  shall  see  how  this  is  to  be 

taken  account  of  in  ̂ art  III.     (See  §  200.) 

If  the  student  can  have  access  to  an  Atwood's  machine 
it  will,  however,  be  of  very  great  value  to  him  to  practise 

with  it,  not  only  in  finding  the  value  of  g,  but  in  illus- 
trating the  laws  deduced  in  the  preceding  examples — for 

instance,  in  proving  that  the  spaces  described  are  propor- 
tional to    the    squares    of   the   times,    that   the    velocity 

generated  is  proportional  to  the  time  of  fall,  or  to  the 
square  root  of  the  distance  through  which  it  has  fallen. 
The  velocity  can  be  measured  in  the  following  manner: 
The  additional  weight  M  is  made  of  the  form  ah  in  the 

^^^       adjoining  figure,  and  can  be  slipped  over 

aC^  Q   _^^''  ̂^®  mass  A  as  in  the  second  figure.     In 
its    fall   A   comes    to  a   ring    through 

.  which   A    itself   can   pass,   but   which 
I  catches  off  ah.      After  this  has  taken 

place  the  two  moving  masses  are  equal, 
and  the  acceleration  is  therefore  zero. 

Consequently  the  bodies  move  on  with 
IH  the  same  velocity  that  they  had  at  that 

^  instant.      This    velocity    can    then    be 
measured  either  by  observing  the  time  which  A  takes  to  move 
from  the  ring  to  a  lower  shelf,  or  the  space  through  which  A 
travels  in  a  given  time.  From  this  we  deduce  what  the  velocity 

'of  A  was  when  ah  was  taken  off  by  means  of  the  formula 
s^vt. 

By  making  observations  for  different  intervals  and  different 
distances  of  fall,  it  will  be  found  that  the  value  of  g  comes 
out  always  the  same,  which  proves  the  statement  in  §  21 
that  the  acceleration  of  gravity  is  constant. 

24.  Pressure  due  to  continuous  impact. — When  a  large 
number  of  particles  impinge  continuously  against  an 
obstacle,  the  same  effect  is  produced  as  if  the  obstacle  was 
acted  on  by  a  force.     Thus,  for  instance,  a  water  jet  or 

¥M 
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sand  blast  directed  against  a  plate  exerts  a  force  on  the 
plate  due  to  the  fact  that  the  momentum  of  the  water  or 
sand  is  being  continuously  destroyed.  We  shall  illustrate 
the  treatment  of  this  class  of  problems  by  considering  the 
pressure  produced  on  a  floor  by  a  heavy  chain  falling  on  it, 
lying  on  the  floor  as  it  falls.  To  fix  our  ideas,  sujjpose 
the  chain  held  up  at  one  end  with  the  other  hanging 
vertically  down,  and  that  then  it  is  let  fall.  It  falls  on  the 
floor,  coiling  up  as  it  does  so.  Suppose  that  the  velocity 
with  which  the  chain  is  falling  in  is  v  feet  per  second,  which 
for  the  present  we  shall  suppose  is  kept  constant.  Also  let 
m  lbs.  denote  the  mass  of  a  foot  of  the  chain.  Then  in  one 

second  a  length  v  x  I  =v  feet  falls  in,  and  its  mass  is  there- 
fore m  X  V  =  inv.  Its  momentum  before  falling  in  was  mass 

X  velocity  =  mv  x  v  =  mv^,  and  this  is  destroyed  every  second. 
In  other  words,  momentum  is  being  destroyed  at  the  rate  mv', 
but  the  force  produced  is  the  rate  of  change  of  momentum. 
Hence  the  pressure  produced  by  the  falling  chain     . 

=  m^  poundals. 

This  is  the  pressure  when  the  velocity  is  v,  and  does  not 
depend  on  whether  the  velocity  was  different  before  or  after. 
If  then  the  velocity  be  changing,  at  the  instant  when  the 

velocity  is  v  the  pressure  is  still  mv^.  Hence  after  falling  t 
seconds  the  velocity  is  gff  and  the  pressure  is  mg^t^ 

Example.  A  uniform  chain  of  1  lb.  to  the  yard  7ms  its  lower  end 
just  touching  the  ground,  and  is  let  fall.  Find  the  pressure  on  the 
ground  after  5  seconds. 

The  mass  of  one  foot  is  |  lb.  and  the  velocity  is  hg,  hence  the  pressure 

due  to  the  fall  is  ̂ J^g^jZ  poundals.  Also  a  length  ̂ /2  x  6'  =  25gl2  has 
already  fallen  in,  and  it  presses  on  the  gi-ound  with  its  weight.  Its 
mass  =1/3  x259r/2,  and  its  weight  25g'l6  poundals.  Therefore  whole 
pressure 

=-3-S'^  +  yr  =  ̂ 9^  poundals, 

=weightof?|^lbs.,  "^ 
=  weight  of  400  lbs., 

whilst  the  real  weight  of  the  portion  on  the  floor  is  only  that  of 
133^  lbs. 
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EXAMPLES— III. 

1.  A  mass  of  7  lbs.  is  suspended  from  a  fixed  point  by  a  uniform 
string  which  weighs  18  oz.  Find  the  tension  of  the  string  at  its 
middle  point  and  at  its  extremities. 

2.  If  the  resistance  of  the  air  is  supposed  to  be  always  four-fifths  of 
the  weight  of  a  body,  find  how  high  a  body  will  go  if  shot  vertically 
upwards  with  velocity  900  feet  per  second,  and  prove  that  the  body 

will  reach  the  point  of  projection  again  after  62  '5  second^,  taking  g  =  S2 
[F.P.S.] 

3.  A  force  of  5  lbs.  weight  acts  on  a  mass  of  48  lbs.  Find  the 
acceleration  produced. 

4.  A  certain  force  acting  on  1  ton  for  5  minutes  gives  it  a  velocity 
of  6  yards  per  minute.     Express  it  in  poundals. 

5.  A  certain  force  acting  on  1  kilogram  for  an  hour  gives  it  a 
velocity  of  100  kilometers  per  minute.     Express  it  in  dynes. 

6.  A  ball  whose  mass  is  3  lbs.  is  falling  at  the  rate  of  100  feet 
per  second.  What  force,  in  addition  to  its  weight,  expressed  in  lbs. 
weight,  will  stop  it  (1)  in  2  seconds,  (2)  in  2  feet  ? 

7.  How  many  dynes  are  there  in  one  poundal  ?    (See  table  on  p.  4.) 
8.  A  force  acting  on  7  lbs.  gives  it  an  acceleration  of  96  feet  per 

second.  "What  accelei-ation  w'ould  it  produce  in  1  cwt.,  and  how  long 
would  it  take  to  move  it  through  8  feet  4  inches  ? 

9.  A  force  acting  on  1  milligram  for  1  second  gives  it  a  velocity  of 
100  meters  per  minute.  What  velocity  would  it  give  to  a  kilogram 
in  1  day  ? 

10.  A  train  is  moving  on  a  horizontal  rail  at  the  rate  of  15  miles  an 
hour.  If  the  steam  be  suddenly  turned  off,  how  far  will  it  run  before 
it  stops,  the  resistances  being  taken  at  8  lbs.  weight  per  ton  ? 

11.  Prove  that  an  engine  capable  of  exerting  a  uniform  pull  of  3 
tons  weight  can  take  a  train  of  120  tons  on  the  level  from  rest  at  one 
station  to  stop  at  the  next  station  2  miles  off  in  3  minutes  38  seconds, 
the  speed  being  kept  uniform  when  it  has  reached  45  miles  per  hour 
and  the  brakes  bringing  the  train  to  rest  in  368|  yards.  (Neglect 
passive  resistances. ) 

12.  A  certain  force  acting  on  a  mass  of  10  lbs.  for  5  seconds  produces 
in  it  a  velocity  of  100  feet  per  second.  Compare  the  force  with  the 
weight  of  1  lb.  and  find  the  acceleration  it  would  produce  if  it  acted 
on  a  ton. 

13.  A  certain  force  can  just  support  a  mass  of  8  tons.  How  far 
would  it  move  a  mass  of  16  tons  in  1  minute  if  no  other  force  acted 

on  it  ?  '  ■ 
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14.  If  the  force  in  the  preceding  question  were  applied  to  lift  a  mass 
of  6  tons  against  gravity,  how  far  would  it  raise  it  in  15  seconds  ? 

15.  A  man  of  12  st.  weight  is  riding  on  a  trolly  of  1  ton  ;  he  pulls 
on  a  fixed  rope  with  a  force  equal  to  the  weight  of  56  lbs.  Find  the 

acceleration  of  the  trolly.  Also  find  the  acceleration  if  he  gets  ofi"  and 
pulls  the  trolly  with  the  same  force. 

Find  the  force  with  which  his  feet  push  along  the  ground. 
16.  A  bullet  with  an  initial  velocity  of  1500  feet  per  second  strikes 

a  target  1200  yards  distant  with  a  velocity  of  900  feet  per  second,  the 
range  of  the  bullet  being  assumed  to  be  horizontal.  Compare  the  mean 
resistance  of  the  air  with  the  weight  of  the  bullet. 

17.  A  ball  of  elasticity  =  ̂   falls  Jrom  a  height  of  64  feet  upon  a 

horizontal  plane.  Find  the  height  to  which  it  will  rise  at  the  fii-st 
rebound  and  the  time  at  which  the  rebounding  will  cease. 

18.  A  heavy  elastic  ball  drops  from  the  ceiling  of  a  room  and  after 
twice  rebounding  from  the  floor  just  reaches  a  point  half  the  height  of 
the  room.     Show  that  the  coefficient  of  rebound  =  l/\/2. 

19.  Two  particles  are  projected  at  the  same  instant  with  the  same 
velocity  v,  one  vertically  upwards  and  the  other  vertically  downwards, 
from  a  point  at  a  height  h  above  a  perfectly  elastic  horizontal  plane. 

Prove  that  they  will  meet  again  at  the  same  point  ifv^=lgh. 
20.  If  a  given  impulse  acting  on  a  stone  causes  it  to  rise  to  a  height 

h,  how  high  will  a  stone  of  half  the  weight  of  the  former  rise  under . 
the  action  of  the  same  impulse  ? 

21.  A  ball  is  projected  vertically  upwards  with  a  velocity  of  160 
feet  per  second  ;  when  it  has  reached  its  greatest  height  it  is  met  in 
direct  impact  by  an  equal  ball  which  has  fallen  through  64  feet.  Find 
the  times  from  the  instant  of  impact  to  those  in  which  the  balls  reach 
the  ground,  the  coefficient  of  rebound  between  them  being  ̂ . 

22.  Given  that  a  quadrant  of  the  earth's  surface  is  10^  centimeters, 
and  that  the  mean  density  of  the  earth  is  5*67,  prove  that  the  C.G.S. 
unit  of  force  will  be  the  attraction  of  two  particles,  each  of  3928  grams, 
at  a  distance  of  one  centimeter,  the  acceleration  of  gravity  at  the 

earth's  surface  being  981  centimeters  per  second  per  second. 
23.  If  the  attraction  of  gravitation-between  two  unit  masses  at  the 

unit  distance  from  one  another  be  taken  as  the  unit  force,  express  the 
unit  mass  in  lbs.,  when  the  units  of  space  and  time  are  a  foot  and  a 

second  respectively :  gravity  at  the  earth's  surface  being  regarded  as 
due  solely  to  the  attraction  of  the  earth  considered  as  a  sphere  of 

radius  21,000,000  feet  and  of  uniform  density  equal  to  5§  of  the  den- 
sity of  water. 

[Note.  — A  sphere  attracts  as  if  the  whole  mass  is  condensed  at  its 
centre.     The  attraction  can  then  be  found  by  the  law  in  §  21.] 
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24.  Find  the  attraction  of  two  pound-weights,  a  foot  apart,  in  terms 
of  the  weight  of  a  lb.  (Rough  approximations  to  the  numerical  results 
will  sufl&ce. ) 

25.  Find  the  difference  in  the  weight  of  one  ton  at  London  and  at 
Edinburgh. 

26.  If  the  time  of  a  body's  fall  from  a  certain  height  at  one  place  on 
the  earth's  surface  be  vi  seconds  less  than  that  at  another  place,  and 
the  velocity  acquired  in  the  fall  be  a  feet  per  second  greater,  prove 
that  ajm  is  the  geometric  mean  of  the  acceleration  of  gravity  at  the 
two  places. 

27.  A  pile  is  driven  a  feet  vertically  into  the  ground  by  n  blows  of 

a  steam-hammer  fastened  to  the  head  of  the  pile.  Prove  that  iip  is  the 
mean  pressure  of  the  steam  in  lbs.  per  square  inch,  d  the  diameter  of 
the  piston  in  inches,  e  the  length  of  the  stroke  in  feet,  w  the  weight  in 

lbs.  of  the  moving*  parts  of  the  hammer,  and  W  the  weight  of  the  pile 
and  the  fixed  parts  of  the  steam-hammer  attached  to  it,  then  the  mean 
resistance  of  the  ground  in  lbs.  weight  is 

y(  +  w  +  ̂ ^^(w  +  iird?p\-. W  +  wV  /a 
28.  Find  the  ratio  of  the  units  of  force  in  the  two  cases  where  the 

fundamental  units  are  (1)  ton,  mile,  hour,  and  (2)  stone,  yard,  minute. 
29.  Two  masses  of  8  and  3  kilograms  are  connected  by  a  string, 

and  forces  of  1600  and  500  dynes  act  on  them  respectively  in  opposite 

dii-ections.     Find  the  acceleration  and  the  tension  of  the  string. 
30.  Two  masses  of  18  and  12  grams  are  connected  over  a  small 

pulley.     Find  the  acceleration  and  the  tension  of  the  string. 
31.  Two  masses  of  5  lbs.  and  4  lbs.  are  connected  by  an  inextensible 

string  which  hangs  over  a  smooth  pulley.  Find  the  acceleration  of 
each  and  the  tension  of  the  string.  After  the  greater  has  descended 
4  feet  the  string  breaks,  how  far  will  each  move  in  the  next  second  ? 

32.  A  uniform  chain  whose  mass  is  28  lbs.  has  one  end  attached  to 

a  mass  of  one  cwt.  and  the  other  end  is  pulled  with  a  force  equal  to 
the  weight  of  56  lbs.  Find  the  acceleration  and  the  tension  of  the 
chain  at  its  middle  point. 

33.  If  in  the  preceding  question  the  mass  and  chain  lay  on  a  smooth 
horizontal  table  and  the  end  were  connected  by  a  massless  rope  over 
a  pulley  at  the  edge  of  the  table  with  a  mass  of  56  lbs.  hanging  freely, 
find  the  acceleration  and  the  tension  at  the  middle  of  the  chain. 

34.  Two  weights,  each  equal  to  8  oz.,  are  in  equilibrium  over  a 
pulley,  and  ̂ V  oz.  is  then  added  to  one  of  them.  Determine  how  long 
it  will  be  in  descending  10  feet  and  what  velocity  it  will  acquire  in  so 
doing. 

35.  Two  equal  scale  pans  are  suspended  over  a  pulley,  the  mass  of 
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each  being  6  oz.  A  mass  of  8  oz.  is  then  placed  in  one  of  them.  How 
long  will  it  take  to  fall  through  10  feet  and  what  will  its  velocity 
then  be  ? 

36.  In  the  preceding  question  find  the  pressure  between  the  scale 

pan  and  the  8-oz.  mass. 
37.  A  man  descends  in  a  lift  with  an  acceleration  yV  tliat  of  gravity. 

What  is  the  ratu)  of  his  pressure  on  the  lift  to  his  weight  ? 
38.  If  a  weight  W  be  connected  by  a  weightless  string  hanging 

over  a  smooth  pulley  with  a  scale  pan  containing  two  weights,  each 

equal  to  "W,  lying  one  upon  the  other,  find  the  pressures  during 
free  motion  between  these  weights — the  weight  of  the  pan  being 
neglected. 

39.  A  bucket  containing  a  cwt.  of  coal  is  being  drawn  up  from  a 

coal-pit,  so  that  the  pressure  of  the  coal  on  the  bottom  of  the  bucket 
is  equal  to  that  of  126  lbs.     Find  the  acceleration  of  the  bucket. 

40.  Masses  of  4  and  6  lbs.  hang  over  a  pulley  ;  the  4-lb.  mass  is  pro- 
jected downwards  with  a  velocity  of  128  feet  per  second.  How  long 

is  it  before  its  velocity  is  zero  ? 
41.  Inelastic  masses  of  15  and  17  lbs.  hang  over  a  pulley,  and  are 

at  the  same  height  of  16  feet  above  a  rigid  plane.  Describe  generally 
the  subsequent  history  and  discuss  in  detail  what  happens  up  to  the 
second  impact. 

42.  Discuss  the  same  question  as  the  preceding  in  the  case  where 
the  coefficient  of  rebound  between  the  masses  and  the  plane  is  J. 

43.  (a)  Two  masses  of  8  and  4  oz.  hang  over  a  massless  pulley.  After 
moving  for  2  seconds,  the  4  oz.  catches  up  another  mass  of  2  oz.  previously 
at  rest.     Determine  the  subsequent  motion. 

Also  if  the  mass  caught  up  had  been  6  oz. 
(b)  If  in  the  previous  case  the  larger  mass  had  caught  up  the  2  oz. , 

determine  the  subsequent  motion. 
(c)  Determine  the  motion  in  the  example  43a,  if  the  2  oz.  had  been 

moving  with  a  velocity  of  10  feet  per  second  upwards  at  the  moment 
when  it  was  caught  up  by  the  4  oz.  mass. 

44.  Two  balls,  unequal  in  weight  and  connected  by  a  string,  hang 
over  a  pulley  ;  they  are  allowed  to  move  from  rest  so  that  one  of  them 

encountei-s  a  fixed  horizontal  plane  and  rebounds.  Show  that  if  the 
modulus  of  elasticity  be  ̂ ,  the  string  will  become  tight  again  just  at 
the  time  when  the  heavier  ball  ceases  to  rebound,  and  that  ball  will 

have  oscillated  through  spaces  amounting  cumulatively  to  two-thirds  of 
the  free  fall  required  to  produce  its  original  velocity. 

45.  Two  masses  w,  m'  are  suspended  freely  over  a  pulley  ;  the 
pulley  itself  is  moved  upwards  with  acceleration  a.     Find  the  accelera- 

■  tion  of  each  mass  and  the  tension  of  the  string. 
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46.  If  in  the  preceding  question  the  pulley  itself  be  suspended  over 
another  fixed  pulley  by  a  string  attached  to  a  mass  M,  find  the 
acceleration  of  each  mass  and  the  tension  of  each  string. 

47.  A  mass  of  20  lbs.  rests  on  a  smooth  horizontal  table.  A  string 
tied  to  it  passes  over  a  pulley  A  on  the  table  under  another  B,  and  is 
fixed  at  C  so  that  the  strings  between  are  vertical ;  from  B  is  suspended 
a  mass  of  10  lbs.  Find  the  acceleration  of  each  mass  and  the  tension 

of  the  string. 
If  the  mass  of  20  lbs.  hung  freely  over  A,  find  the  acceleration  and 

the  tension. 

48.  For  one  of  the  weights  in  Atwood's  machine  a  pulley  is  sub- 
stituted, round  which  passes  a  string  connecting  two  masses  P,  Q 

which  hang  freely.  Show  that,  if  the  ratio  of  P  to  Q  lie  between  3 
and  ̂ ,  certain  values  of  the  other  weight  may  be  found  which  will  keep 
either  P  or  Q  stationary,  and  that  these  values  are  to  one  another 

respectively  as  3P  -  Q  to  3Q  -  P. 
49.  In  case  a  fine  string  passing  over  a  smooth  pulley  carries  two 

small  smooth  pulleys,  and  these  in  turn  carry  strings  with  weights 
1  lb,  2  lbs.  and  1  lb.  3  lbs.  tied  to  their  ends  respectively,  show  that 
the  accelerations  of  the  movable  pulleys  are  each  equal  to  gjlT. 

Find  also  the  accelerations  of  the  weights  and  the  tensions  of  the 
strings. 

50.  Two  equal  buckets  ai-e  connected  by  a  string  without  weight  pass- 
ing over  a  smooth  pulley,  and  over  one  of  the  buckets  a  heavy  chain 

is  held  by  its  upper  end  with  its  lower  end  just  above  the  base  of  the 
bucket.  If  the  upper  end  be  let  go,  prove  that  the  equilibrium  may 
be  maintained  by  pouring  water  gently  and  uniformly  into  the  other 
bucket,  provided  the  weight  of  water  which  can  be  poured  in  is  three 
times  the  weight  of  the  chain. 
***** 

51.  On  what  mass,  expressed  in  grams,  must  a  force  equal  to  the 

weight  of  a  gram  act,  so  as  to  add  to  it  a  velocity  of  1  centimeter  per 
second  every  second  ? 

52.  Masses  of  2  lbs.  and  8  lbs.  hang  in  equilibrium  over  a  wheel 
and  axle,  whose  mass  may  be  neglected.  A  mass  of  1  lb.  falling 
vertically  strikes  the  2  lbs.  with  a  velocity  of  14  feet  per  second. 
The  masses  are  inelastic.     Show  that  immediately  after  impact  the 
2  lbs.  moves  with  a  velocity  of  4  feet  per  second.     Also  determine  the 
acceleration  and  the  tensions  after  the  impact. 

53.  Masses  of  2  and  3  lbs.  hang  in  equilibrium  over  a  wheel  and 
axle.     The  masses  are  interchanged.     Determine  the  motion  ensuing. 



CHAPTER  IV 

WORK — ENERGY — POWER 

In  the  present  chapter  we  propose  to  touch  shortly  on 
certain  matters  which  are  of  extreme  importance  in  physical 
science,  leaving  a  fuller  discussion,  until  the  student  has 
obtained  some  acquaintance  with  the  properties  of  motion 

in  a  plane.  • 
25.  When  a  force  acts  on  a  body  it  makes  it  move,  and 

the  farther  it  moves  it  the  greater  the  velocity  it  gives 
the  body.  The  force  in  moving  the  body  is  said  to  do 
work  on  it,  and  we  define  work  and  its  measurement  as 
follows   

Def.  Wlien  a  force  acting  at  a  fixed  point  of  a  body  moves 
its  point  of  application  it  is  said  to  do  work.  The  work  is 
measured  by  the  product  of  the  measure  of  the  force  into  the 
measure  of  the  displacement  estimated  parallel  io  the  force. 

A  remark  or  two  on  the  wording  of  the  definition  is 
necessary.  A  force  may  be  supposed  to  act  at  any 
point  of  its  line  of  action :  thus  in  the  case  of  a 
sphere  suspended  by  a  string,  the  tension  may  be 
supposed  to  be  applied  at  its  upper  end,  or  at  its 
point  of  attachment,  or  at  the  centre  of  the  sphere. 
When,  in  the  definition,  a  displacement  of  the  point 

of  application  of  a  force  is  spoken  of,  no  displace- 
ment of  this  kind  is  meant.  For  instance,  suppose 

a  string  attached  to  the  lower  end  of  a  rod  at  B  and 
passing  through  a  clip  at  A.  The  point  of  application 
of  the  force  is  at  B.     If,  however,  the  string  be  cut  between 
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A  and  B  and  at  the  same  time  the  dip  be  closed  at  A,  the 
point  of  application  is  transferred  to  A.  But  this  is  no 
displacement  in  the  sense  of  the  definition.  The  force 
would  not  be  said  to  do  work.  If,  however,  it  lifted  the 

rod  bodily  through  a  height  BA,  then  it  would  be  said  to 
have  done  an  amount  of  work  measured  by  the  product 
of  the  force  by  the  distance  AB. 

Next,  as  to  the  force  of  the  words  "  estimated  parallel 
to  the  force."  Let  the  force  act  at 
A  in  the  direction  AB,  and  suppose 

the  point  of  application  to  move  to 

A'  so  that  now  the  force  acts  along 
A'B'. 

Draw  A!n  perpendicular  to  AB. 

Then  A  A'  is  the  actual  displace- 
ment, but  An  is  the  displacement 

"estimated  parallel  to  the  force." The  work  done  will  then  be 

measured  by  F  x  An. 
If,    however,  the    displacement 

had  been  as  in  the  second  figure, 
the  displacement  A71  would  be  in 

the   opposite  direction  to  the  force,  and  work  would  be 
said  to  be  done  against  the  force ;  or  the  work  done  by 

the  force  would  be  measured  by  -  F  x  An.  . 
In  the  present  part  we  are  only  treating  of  motion  in  a 

straight  line,  and  consequently  in  all  cases  the  actual 
displacement  will  be  tliat  required.  Tlie  reason  for  the 
complete  definition  will  be  seen  later. 

26.  In  Chapter  I.  it  was  shown  that  if  a  point  move 
through  a  space  s  with  an  acceleration  a  and  change  its 
velocity  from  u  to  v,  then 

v^  =^1^  +  2as, 

In  the  last  chapter  it  was  seen  that  if  a  force  F  acted  on 
a  mass  m,  the  acceleration  {a)  produced  was  given  by 

a  = 

m 
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If  then  a  force  acts  on  a  mass  m,  and  moves  it  through 
a  distance  s,  the  change  in  velocity  will  be  given  by 

F 

m 

or  ^mv^  -  ̂mij^  =  Fs. 
Now  the  expression  on  the  right  hand  is,  according  to 

the  above  definition,  the  work  done  by  the  force,  and  the 

result  is  that  the  quantity  ̂ mu^  is  changed  to  Jm/. 
The  quantity  Jm/  is  called  the  kinetic  energy  of  the 
particle.  It  is  measured  by  half  the  product  of  the 
measure  of  the  mass  into  the  square  of  the  measure  of  the 
velocity  with  which  the  mass  is  moving.  We  can  then 
state  the  result  of  the  above  equation  in  words  as  follows — 

fFhen  a  force  acts  on  a  particle^  the  change  in  its  kinetic 
energy  is  equal  to  the  icork  done  hy  the  force. 

This  raises  the  magnitudes,  kinetic  energy  and  work, 
from  being  mere  definitions  to  the  rank  of  quantities  which 
have  a  real  physical  meaning.     It  may  be  compared  with 
the  analogous  result  obtained  in  the  last  chapter 

mv  -  imi  =  Fty 

or  the  change  in  the  momentum  is  equal  to  F  x  /,  the 

"  impulse  of  the  force." 
Def.  The  unit  of  woi'k  is  the  work  done  by  the  unit  force 

acting  through  the  unit  of  distance. 
No  special  name  has  been  given  to  the  unit  work  when 

the  units  are  the  foot,  pound,  second.  It  is  the  work 
done  by  a  poundal  in  moving  through  a  foot,  and  is  called 

shortly  a  foot-poundal.  In  the  C.G.S.  unit  the  unit  of 
work  is  that  done  by  a  dyne  when  its  point  of  application 
is  moved  through  a  centimeter.     It  is  called  an  erg. 

In  engineering  and  for  practical  purposes  generally  it  is 
more  convenient  to  measure  forces  in  terms  of  the  weight 
of  unit  mass,  such  as  the  weight  of  a  pound  or  of  a 
gram.  In  these  cases  the  practical  unit  of  work  will 
be  the  work  done  in  moving  the  weight  of  unit  mass 
through  unit  distance,  or,  which, is  the  same  thing,  the  work 
necessary  to  lift  unit  mass  vertically  through  unit  distance. 

In  the  British  units  this  is  called  the  foot-pound.     In 
F 
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countries  using  the  metrical  system  it  is  the  kilogrammeter, 
or  the  work  done  in  lifting  one  kilogram  through  one 
meter. 

In  electrical  measurements  the  C.G.S.  system  of  units 
is  always  employed.  For  practical  purposes,  however,  the 
erg  is  too  small  a  unit,  and  a  larger  one  is  used  called  a 

joule.     A  joule  is  10,000,000  =  10'  ergs. 
27.  Consider  a  particle  moving  along  a  straight  line 

under  the  action  of  a  force  which  may  or  may  not  be 
constant,  provided  it  is  always  the  same  at  the  same  point. 
When  it  has  moved  from  A  to  B,  the  force  has  done  a 
certain  amount  of  work,  which  will  depend  only  on  the 
path  AB,  and  the  kinetic  energy  will  be  increased.  If  it 
be  moved  back  again  to  A,  it  will  lose  kinetic  energy,  and 
the  loss  will  be  exactly  equal  to  the  work  formerly  done 
by  the  force  in  moving  from  A  to  B.  Thus,  if  a  mass 
move  from  A  to  0  and  then  back  to  B,  the  work  done  on  the 

whole  is  equal  to  that  done  if  it  had  moved  at  once  from  A 
,   ,   ,    to  B.     In  other  words,  the  change 

^  ^  ^   of  kinetic  energy  between  A  and  B 
depends  only  on  the  positions  of  A  and  B  and  not  on 
the  previous  history  of  how  the  mass  moved  from  A  to 
B.  This  theorem  is  true  for  the  forces  of  nature,  even 

if  the  particle  pursued  any  path  whatever  in  going  from 
A  to  B.  So  far,  however,  we  have  only  proved  it  true 
if  the  path  lies  along  ABC.  The  complete  proof  is 
given  later,  §  102.  The  mass  has  a  given  energy  at  the 
point  A.  If  it  moves  to  B  or  C  it  alters  by  a  certain 
amount,  greater  or  less,  depending  on  the  position  of  B  and  C. 
Now  notice  two  facts :  (1)  when  it  is  at  A  it  has  a  certain 
amount  of  kinetic  energy,  and  (2)  it  is  also  in  a  position 
from  which  it  can  gain  more  by  moving  away  from  it. 
This  power  of  getting  kinetic  energy,  which  depends  on 
its  position,  is  called  potential  energy.  The  potential 
energy  at  any  point  is  measured  by  the  energy  which  the 
mass  can  gain  by  moving  from  that  point  to  some  fixed 
position  (say  C).  Clearly  the  sum  of  these  two  energies 
must  be  constant,  for  this  statement  simply  means  that  the 
kinetic  energy  which  the  mass  actually  possesses,  together 
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with  that  which  it  can  obtain  by  moving  to  a  fixed  point 
C,  is  constant.  This  statement  is  expressed  shortly  by 
saying  that  the  whole  energy,  or  simply  the  energy,  is 
constant. 

When  a  body  is  moving  so  that  its  kinetic  energy  is 
decreasing,  we  have  seen  that  the  work  done  is  against  the 

forces  acting — that  is,  work  is  done  hy  the  moving  body. 
Since  action  always  has  its  equal  reaction,  this  work  is 

capable  of  being  applied  to  other  bodies,  and  so  of  pro- 
ducing useful  effects. 

Thus  a  body  in  motion  is  enabled  to  do  work  in  virtue 
of  its  motion,  the  whole  amount  available  being  measured 
by  its  kinetic  energy.  The  study  of  physical  science 
shows  that  apparently  other  things  besides  matter  in 

motion  are  capable  of  doing  work.  The  following  defini- 
tion of  energy  will  include  all  forms. 

Def.  Anything  that  is  capable  of  doing  work  is  called  energy. 
The  more  advanced  our  knowledge  of  nature  becomes, 
however,  the  more  we  are  led  to  believe  that  all  forms  of 

energy  are  ultimately  referable  to  motion  of  matter. 
The  above  principles  find  their  widest  applications  in 

more  complex  motions  than  the  rectilinear  ones  considered 
in  this  first  part.  An  example  or  two  will,  however, 
show  their  use. 

Example  I.  A  IS-ton  gun  recoils  on  being  fired  with  a  velocity  of 
\^  feet  per  second,  and  is  brought  to  rest  by  a  uniform  friction  equal  to 
the  weight  of  A^  tons.     How  far  does  it  recoil  ? 

Take  as  units  the  ton,  foot,  and  second. 
Let  X  feet  be  the  distance.     The  force  overcome  is  i^  x  g  units. 

.*.  Work  done =^^gxx. 

The  kinetic  energy  at  starting  is  i  x  13  x  10-  =  650. 
Now,  since  the  kinetic  energy  at  the  end  is  zero,  it  is  all  used  up 

in  doing  this  work. 

16x650 
65x32 

5  feet. 

Example  II.  A  train  of  100  tons  running  on  a  level  line  is  kept 

going  by  the  locomotive  at  a  ̂ iniformpace  of  50  miles  -per  hour  ;  the  steam 
is  suddenly  shut  off,  aiui  the  train  comes  to  rest  after  it  has  travelled 
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2  miles  farther.     What  was  the  force  applied  hy  the  locomotive  to  the 
train,  supposing  the  resistance  of  the  rail  and  air  to  he  constant  ? 

Here  the  force  on  the  whole  train  at  first  is  compounded  of  the  pull 
forward  and  the  resistance  backwards.  Since  the  velocity  is  constant, 
the  whole  force  is  zero.  Therefore  the  pull  on  the  train  just  equals 
the  resistance. 

Afterwards  the  resistance  destroys  the  whole  kinetic  energy,  and 
does  an  amount  of  work  measured  by  the  product  of  the  resistance 
into  the  distance.  For  units  use  the  ton,  mile,  hour.  Let  E,  be  the 

resistance.     Then  the  distance  =  2,  and 
Work  =  2xR, 

Energy  destroyed  =  ̂   x  100  x  (50)^, 
.-.211  =  125,000, 

R= 62,500  units  of  force. 

But  this  is  equal  to  the  pull  of  the  engine. 
From  a  practical  point  of  view  this  does  not  give  us  much  idea  of 

the  magnitude  of  the  force.  If,  however,  g  denote  the  acceleration 

of  gravity  in  the  above  units, 

R=the  weight  of —   tons. 

Now  g  is  the  acceleration  of  32  feet  per  second  per  second,  measured 
in   miles  per  hour  per  hour.     We  must,  therefore,   determine   the 
measure  of  g  in  these  units.     Now 

32 

^2f^«t=176073°^^l^- 

32 
Hence  g  is  an  acceleration  of  yjofi — s  ̂ ^^^  V^^  second  added  on  in 
1  second,  that  is, 

,      ̂ .        .32x60x60x60x60    .,  ,  , ,   ,       .    ,, 
an  acceleration  of   z-,^^^ — x   miles  per  hour  added  on  m  1  hour 

1760  x  3  '■ 
864,000     .,  ,  , 

=  — :r~ —  miles  per  hour  per  hour  ; 

„         .  ,^    .11x62,500         .  ,,    .1375^ 

•■•  R=^«^ght  °f     864,000    =^'^S^^  "^  1728  *°"^- 

28.  When  a  blow  acts  on  a  body,  its  velocity,  and  there- 
fore its  kinetic  energy,  are  altered,  and  work  is  done  on 

it.  In  fact,  the  work  is  done  by  a  very  big  force  acting 
through  a  very  short  space.  Suppose  this  force  to  be  F, 
the  space  s,  and  the  time  of  impact,  supposed  very  small, 
to  be  t.     Then 

g 

Work  done  =  F.5  =  F^  x  -. 
6 
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Now  F^  is  the  change  of  momentum  produced  by  the 
force.  But  this  change  is  measured  by  the  impulse,  which 
we  will  denote  by  I. 

Also  s/t  is  the  average  velocity  of  the  body  during  the 
time  t  If  u  be  the  velocity  before  and  v  the  velocity 
afterwards,  this  average  velocity  will  be  \{v  +  v).     Hence 

Work  done  =  1.—      =  -l{v  +  u). 

Now  look  at  the  question  from  the  other  side,  viz.  at 
the  changes  produced.  The  mass  being  m,  the  change 

in  the  kinetic  energy  is  \mv^  -  \mu^  =  Jm(v'  -  u^. 
Also  l  =  mv  —  mu. 

Now 

Change  in  kinetic  energy  =  \m{v^  —  u^\ 
=  lm(v  —  u)(v  +  u\ 
=  ll{v  +  u). 

In  other  words, 

Change  in  kinetic  energy  =  work  done  by  blow. 

29.  When  an  impact  takes  place  the  whole  momentum 
remains  unchanged.  Is  this  the  case  with  the  kinetic 
energy  or  not  ?  This  question  we  now  proceed  to  consider. 
First,  take  the  simpler  case  where  the  impinging  bodies 
are  inelastic. 

Let  their  masses  be  denoted  by  m,  m\  velocities  before 
impact  by  u^  u\  common  velocity  after  impact  by  v. 
Then,  since  the  momentum  is  unaltered, 

mu  +  m'u'  =  (m  +  m')v. 
The  kinetic  energy  before  impact  is 

El  =  \mu^  +  \m'u'^, afterwards  it  is 

1,  ,,   /mu  +  m'u'\' 
2^  '  \  m  +  m'   J' 

1  {mu  +  m'u'Y 

2  7n  +  m' 
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Hence 

(E,-K) 

=  mu  +  ??i  -?*   -  ̂   

m{m  +  m')v^  +  m'(w  +  m')w'^  —  {in%^  +  2mm'uu'  +  in'Si'^) 
~  m  +  m'  ^  ' 

_  mm'{u^  -  2uu'  +  u'^) m  +  m! 

1  mm'{u  -  u'Y rji-  rj.i  =  -   — . 2  m  +  7ii 

Now  (u  -  u'Y  being  a  square  number,  is  always  positive 
whatever  the  velocities  u,  vl  may  be.  Hence  Ej  -  E^  is 
always  positive,  or  Ej  is  greater  than  Eg.  There  is  there- 

fore always  a  loss  of  energy,  and  the  loss  is  given  by  the 
value  of  E,  -  E^. 

This  result  might  have  been  arrived  at  more  shortly  by 
employing  the  expression  obtained  above  for  the  work 
done  by  an  impulse. 

Let  I  denote  the  impulse,  then 

I  =  m{u  -  v\ 

also  I  =  m'(t;  -  %'). 

Multiply  the  first  by  m',  the  second  by  m,  and  add.     Then 

(m  +  m')I  =  mm'{u  —  u'). Also 

The  loss  of  energy  of  one  =  \l{v  +  u), 

The  gain  of  energy  of  the  other  =  \l{v  +  u') ; 
.'.  Whole  loss  by  the  collision  =  JI(?;  +  u)-  ̂l(v  +  u'\ 

=  yuu  -  u'\ 1  mm'   ,         ,,2 

2  m  +  m^  ' the  same  result  as  before. 

30.  In  the  more  general  case  where  the  bodies  are 

elastic,  let  the  velocities  after  impact  be  ?;,  v',  the  other 
quantities  remaining  as  before.  Also  let  I  denote  the  whole 
impact  and  I,  the  impact  up  to  the  instant  when  the  bodies 
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have  a  common  velocity.     The  magnitude  of  this  has  just 
been  found,  viz. 

T  mm'  ,         ,. 
I,  =      -iu  -u). 

m  +  m^ 
But  it  was  shown  in  §  14  that  the  impulses  during 

the  two  parts  of  the  collision  are  always  in  the  ratio  1  :  e. 
Therefore 

l  =  I,  +  el,  =  n+  eV^^^^iu  -  u\ 

Now  the  loss  of  energy  by  the  first  body  =  jl(v  +  u)^ 

gain         „  „        second       =  JI(v'  +  v!) ; 
. '.  Whole  loss  =  |I(i;  -v'-^u-  u'). 

But  one  of  the  laws  of  collision  is  that  the  relative  velocities 

are  reversed  and  in  the  constant  ratio  e:\,  that  is 

V  -v'  =  -  e(u  -  u'). 
Therefore,  substituting  for  v  -  v\ 

Whole  loss  =  -1(1  -  e)iu  -  u'\ 

=  i(l  +  e)-^^,(u  -  n'){l  -  e){u  -  u'), 

2^         '  m  +  m^  ' 
Now  e  is  always  less  than  unity.  Hence,  as  before,  the 

right-hand  side  is  positive,  and  there  is  always  a  loss  of 
kinetic  energy — at  least  of  the  kinetic  energy  of  visible 
motion.  This  energy,  apparently  lost,  reappears  in  the 
form  of  heat,  sound,  and  vibrations  of  the  colliding  bodies. 

In  the  limiting  case  of  perfectly  elastic  bodies  e  =  1,  and 
there  is  no  loss  of  energy. 

30  a.  Questions  as  to  work  done  by  the  stoppage  of 
bodies  in  motion,  such  as  the  driving  of  piles,  nails,  or 
penetration  of  shot,  well  serve  to  illustrate  the  ideas 
developed  in  this  chapter.  Piles  are  driven  into  the 
ground  by  repeated  blows  of  a  heavy  mass  falling  from 
a  height.  In  some  cases  an  apparatus  for  raising  the 
weight  is  fixed  to  the  top  of  the  pile,  and  then  the  height 
of  fall  is  always  the  same.     In  other  cases  the  mass  falls 
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from  a  fixed  staging,  and  the  height  of  fall  increases  as 
the  pile  is  driven  in.  In  an  improved  arrangement  the 
blow  is  produced  by  a  small  steam  hammer,  whose  energy 
is  produced  both  by  a  fall  and  the  expansion  of  steam. 
In  all  cases  kinetic  energy  is  produced,  a  part  of  which  is 
used  in  doing  the  required  work.  The  work  done  is 
always  equal  to  the  kinetic  energy  of  the  blow,  but  as 
was  shown  in  the  previous  article,  a  portion  of  the  energy 
is  wasted  in  producing  heat,  noise,  etc.  It  is  necessary, 
therefore,  to  know  what  proportion  of  the  original  energy 
is  utilised  for  penetration. 

After  the  blow,  the  pile  originally  at  rest  starts  with  a 
certain  velocity,  and  is  brought  to  rest  after  penetrating  a 
short  distance  by  the  resistance  of  the  ground.  The  work 
done  by  this  resistance  is  equal  to  the  kinetic  energy  of 
the  pile  and  mass  just  after  the  blow,  together  with  the 
work  done  by  gravity  on  them  in  moving  through  the 
distance  penetrated. 

The  following  example  will  illustrate  the  method — 
A  pile  weighing  4  cwt.  is  driven  1  foot  into  the  ground  by 

10  blows  of  a  mass  of  5  cwt.  falling  15  feet.      What  is  the 
resistance  of  the  ground  ? 

The  momentum   of  the   5   cwt.   before   striking   is   equal  to  the 
momentum  of  the  5  +  4  =  9  cwt.  after.     Hence  the  common  velocity 

5 
after =-  of  that  before. 

5 
.'.   Velocity  after  =  -  x  \/{2g  x  15), 

1  25  125 
.-.   Kinetic  energy  after  =  -  .  9  .  — -  .  SOg=-^  foot-cwts. J  ol  o 

Also  distance  moved  =  —  foot.     Therefore,  if  resistance  of  ground 

be  the  weight  of  R  cwt. 

R_125^Q      1 __— +yx-, 

2 
whence  R=425^, 

o 

or  resistance  =  weight  of  425|  cwts.,  or  about  21 1  tons. 

31.  Steam  engines  or  other  agents  which  gi\e  a  con- 
tinuous supply  of  work  or  energy  differ  from  one  another  in 
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the  rate  at  which  they  supply  this  energy.  The  rate  at 
which  any  agent  supplies  work  is  called  its  powei\  and  is 
measured  by  the  quantity  of  work  it  does  in  a  given  unit 
of  time.  In  the  foot,  pound,  second  units  the  unit  of 

power  is  a  power  which  will  do  one  foot-poundal  per 
second,  i.e.  move  against  a  poundal  through  one  foot  in 
one  second.  In  the  C.G.S.  units  the  unit  power  is  that 
which  will  do  one  erg  per  second. 

For  engineering  purposes  the  unit  of  work  is  the  foot- 
pound. A  power  which  can  do  33,000  foot-pounds  of  work 

per  minute  is  called  a  horse-power.  This  is  the  unit  in 
which  the  power  of  prime  movers  is  measured.  For 

electrical  purposes — in  which  units  based  on  the  C.G.S. 
system  are  used — the  unit  of  power  employed  is  a  joule 

per  second,  that  is  10,000,000  =10'  ergs  per  second. 
It  is  called  a  watt.  A  horse-power  contains  about  746 
watts. 

Example.  What  must  he  the  horse-poiver  exerted  by  an  engim  which 

•pumps  up  4257  tons  of  water  a  day  from,  a  depth  of  100  feet? 
The  work  done  in  a  day  is  the  raising  of  4257  tons  or  4257  x  2240 

lbs.  100  feet  high  against  its  weight. 

Hence  the  work  is  4257  x  224,000  foot-ponnds. 
This  is  done  in  1  day. 

rru      f       xv  1    •    1      •     X      4257x224,000.    ^  , 
Therefore  the  work  in  1  mmute=   yr^- — r^r   foot-pounds, 

60  X  24  ^ 
=  473  X  1400  foot-pounds. 

But  1  horse-power  =  83,000  foot-pounds  per  minute. 

rvu    V  473x1400     301     „1 
..  Thehorse.power=-33-^^=-J5=20^. 

EXAMPLES -IV. 

[FurtJier  examples  on  this  subject  arc  given  at  the  end  of  Chapter  A'/.] 

1.  A  cannon-ball  whose  mass  is  60  lbs.  falls  through  a  vertical  height 
of  400  feet.  What  is  its  energy  ?  With  what  velocity  must  such  a  ball 
be  projected  from  a  cannon  to  have  initially  an  equal  energy  ? 

2.  How  much  energy  is  there  in  a  body  weighing  1  oz.  and  moving 
at  the  rate  of  30  miles  an  hour  ? 

3.  Find  tlie  energy  per  second  of  a  waterfall  Avhose  ledge  is  30  yards 
high  and  ̂   mile  broad,  where  the  mass  of  water  is  20  feet  deep  and  has 
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a  velocity  of  7^  miles  an  hour  when  it  arrives  at  the  fall.     The  weight 
of  water  is  1024  oz.  per  cubic  foot, 

4.  A  half- ton  shot  is  discharged  from  an  81 -ton  gun  with  a 
velocity  of  1620  feet  per  second.  What  will  be  the  velocity  with  which 
the  gun  will  begin  to  recoil  if  the  mass  of  the  powder  be  neglected  ? 
Will  the  gun  or  the  shot  be  able  to  do  more  work  before  coming  to 
rest,  and  in  what  proportion  ? 

5.  Prove  that  if  a  hammer  weighing  2  lbs.  striking  a  round  nail 

one-tenth  of  an  inch  in  diameter  and  weighing  1  oz.,  with  a  velocity  of 
50  feet  per  second,  drives  the  nail  1  inch  into  a  plank  of  wood,  then  a 
bullet  half  an  inch  in  diameter,  and  weighing  1  oz.,  striking  with  a 

velocity  of  1500  feet  per  second,  will  penetrate  about  1*16  inches  of  the 
wood,  supposing  the  resistance  uniform  and  proportional  to  the  sec- 

tional area  of  the  hole. 

6.  From  a  point  28  feet  above  the  ground  a  mass  of  3  lbs.  is  pro- 
jected upwards  with  a  velocity  of  20  feet  per  second.  What  is  its 

kinetic  energy,  how  far  will  it  rise,  and  what  will  be  its  kinetic  energy 
when  it  reaches  the  ground  ? 

7.  How  many  ergs  are  there  in  a  foot-poundal  and  how  many  in  a 

foot-pound  ?     (gr  =  32  '2  F.  S.  units. ) 
8.  How  many  watts  are  there  in  a  horse-power  ? 
9.  A  man  of  10  st.  goes  to  the  top  of  a  house  45  feet  high.  What 

work  does  he  do  ?     If  he  does  it  in  1  minute,  what  power  does  he  exert  ? 
10.  If  the  unit  of  energy  be  that  required  to  raise  1  lb.  through  1 

foot  (without  gain  of  velocity),  find  the  number  of  units  of  kinetic 
energy  in  a  mass  of  1  oz.  moving  10  feet  per  second. 

11.  A  man  of  12  st.  weight  climbs  up  a  mine  shaft  800  feet  deep 

by  a  ladder.  What  work  does  he  do  ?  If  he  exerts  \  horse-power,  how 
long  will  he  be  ? 

12.  A  train  of  100  tons  is  pulled  by  a  locomotive  on  a  level  at  the 
constant  speed  of  60  miles  per  hour  ;  the  resistance  is  18  lbs.  weight 

per  ton.     Find  the  minimum  horse-power  of  the  locomotive. 
13.  Find  the  horse-power  of  a  locomotive  which  moves  a  train  of 

mass  50  tons  at  the  rate  of  30  miles  an  hour  along  a  level  railroad,  the 
resistance  from  friction  and  the  air  being  16  lbs.  weight  per  ton. 

14.  The  mass  of  a  complete  train  is  80  tons,  and  the  resistance  to 

its  motion  on  a  level  20  lbs.  weight  per  ton  ;  the  horse-power  of  the 
locomotive  is  256.  What  is  the  highest  speed  at  which  it  can  pull  the 
train  ? 

15.  An  engine  is  required  to  raise  in  3  minutes  a  weight  of  13  cwts. 

from  a  pit  whose  depth  is  840  feet.  Find  the  horse-power  of  the 
engine. 

16.  Determine  the  resistance  to.  the  motion  of  a  steamer  when  8000 
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effective  horse-power  is  required  to  drive  it  at  17i  knots  (of  6080  feet 
an  hour). 

17.  Determine  the  horse-power  transmitted  by  a  belt  moving  with  a 
velocity  of  600  feet  a  minute,  passing  round  two  pulleys,  supposing 
the  difference  of  tension  of  the  two  parts  is  the  weight  of  1650  lbs. 

18.  Supposing  that  the  band  of  a  friction  break  extends  over  the  upper 

half  of  the  fly-wheel  of  radius  r  feet,  and  that  the  band  is  kept  tight 
by  means  of  a  weight  of  W  lbs.  hung  at  one  end,  and  a  spring-balance 
at  the  other  end,  prove  that  if  the  spring-balance  registers  a  tension  of 

W'  pounds  when  the  engine  is  making  n  revolutions  a  minute,  the 
horse-power  of  the  engine  is  lirnriy^  -  W')/33,000. 

19.  The  weights  of  an  eight-day  clock  are  together  11  lbs.,  and  when 
the  clock  is  Avound  up  they  are  raised  a  yard.  How  many  such  clocks 

could  an  engine  of  one  horse-power  drive  ? 
20.  If  n  equal  masses  are  placed  in  contact  in  a  line  on  a  smooth  table, 

each  being  connected  with  the  next  by  an  inelastic  string  of  length  a, 
and  another  equal  mass  is  attached  to  the  foremost  of  the  n  masses  by 
a  string  which  passes  over  a  pulley  at  the  edge  of  the  table,  sho^v  that 
of  the  vis  viva  generated  until  the  last  mass  is  set  in  motion  the  fraction 

—   r^  is  lost,  supposing  that  none  of  the  n  masses  leave  the  table 
before  the  last  is  set  in  motion. 

21.  How  do  the  values  of  a  horse-power  and  a  watt  depend  on  the 
locality  ?  Find  the  difference  between  a  horse-power  at  the  equator 
and  in  London. 

22.  An  inelastic  pile  of  \  ton  is  driven  12  feet  into  the  ground  by 
30  blows  of  a  hammer  of  two  tons  falling  30  feet.  Prove  that  it  would 
require  120  tons  in  addition  to  the  hammer  to  be  superimposed  on  the 
pile  to  drive  it  do\vu  very  slowly. 



CHAPTEE  V 

UNITS 

32.  As  we  have  seen,  the  measure  of  any  physical  quan- 
tity consists  of  two  factors,  the  unit  and  the  measure  or 

ratio  of  the  quantity  measured  to  the  unit.  The  measure 
simply  states  how  many  of  the  units  must  be  joined 
together  in  order  to  form  a  quantity  equal  to  the  one  in 
question.  Clearly,  if  the  standard  taken  as  the  unit  be 
changed,  so  will  the  measure  be  also.  Thus  a  length  of  10 
yards  when  expressed  by  means  of  foot  units  becomes  30 

feet,  because,  a  foot  being  only  one-third  the  size  of  a  yard, 
it  will  require  three  times  as  many  of  them  to  make  up  the 
length  as  it  would  when  a  yard  was  the  unit.  So  in 
general  we  are  led  to  the  important  law  that  if  the  unit  is 
increased  or  decreased  in  any  ratio,  the  measure  is 

decreased  or  increased  in  the  same  ratio — or,  as  it  is  stated 
shortly,  the  measure  of  a  quantity  varies  inversely  as  the 
magnitude  of  the  unit.  The  truth  of  this  is  easy  to  see ;  for 
since  the  measure  states  how  many  of  the  units  must  be 
taken  to  make  a  quantity  equal  to  the  given  one,  if  the 
unit  be  twice  as  big  it  will  need  only  half  as  many  to  make 

the  same  quantity  as  before — or  if  half  as  big  it  will  need 
twice  as  many  for  the  same  purpose.  And  the  same 
reasoning  holds  for  any  other  proportion.  This  rule  enables 
us  at  once  to  find  the  new  measure  when  the  ratio  of  the 

new  unit  to  the  old  is  given. 
33.  There  are  three  kinds  of  things  sui  generis,  and 

which,  as  such,  require   units,   none   of  which   have  any 
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relation  to  the  others — viz.  matter,  space,  and  time.  The 
units  used  in  measuring  these  quantities  are  called 
fundamental.  In  the  preceding  chapters  examples  of 
several  other  kinds  of  units  have  occurred ;  but  they  have 
all  reference  to  two  or  more  of  these  fundamental  units. 

It  is  not,  however,  necessary  in  measuring  them  that 
recourse  be  had  to  the  fundamental  units.  Thus,  for 

instance,  in  measuring  a  velocity,  we  might  take  as  the 
unit  of  velocity  the  velocity  of  the  earth  round  the  sun,  or 
the  velocity  of  sound,  and  say  that  a  certain  velocity  is  so 

many  times  a  sound-speed.  Or  again,  in  measuring  a 

force,  we  may  take,  as  is  very  generally  done, "the  force exerted  on  a  certain  piece  of  matter  by  the  earth  as  the 
unit,  and  say  that  a  certain  force  is  so  many  times  this 
weight.  Thus  for  practical  purposes  people  often  speak 
of  a  force  of  so  many  pounds,  speaking  shortly  for  a 
force  equal  to  the  weight  of  so  many  pounds.  These 
secondary  or  derivative  units,  however,  are  generally 
expressed  in  terms  of  the  fundamental  ones,  and  when 
such  is  the  case  they  are  called  absolute  units.  Thus, 
instead  of  measuring  a  velocity  by  comparing  it  with  a 

sound-speed,  it  is  measured  by  comparing  it  with  a  velocity 
in  which  say  a  foot  is  passed  over  in  a  second  ;  or,  instead  of 
referring  a  force  to  the  weight  of  a  pound,  it  is  referred  to 
the  poundal,  or  the  force  which  in  one  second  will  make  a 
pound  move  with  a  velocity  of  one  foot  per  second. 

In  absolute  measurement  then  it  is  clear  that  the 

magnitude  of  a  unit  will  depend  on  the  magnitude  of  the 
fundamental  units.  The  way  in  which  a  particular  unit 
depends  on  them  is  called  the  dimensions  of  the  unit. 
When  the  dimensions  of  a  unit  are  known  we  can  at  once 

determine  how  the  unit  is  changed  if  the  fundamental 
units  are  changed ;  and  from  the  law  that  the  measure  is 
inversely  as  the  unit,  we  can  immediately  write  down  the 
new  measure.  The  determination  of  the  dimensions  of 

the  different  derivative  units  is  therefore  a  matter  of  im- 

portance. 
The  dimension  of  a  unit  with  reference  to  either  of  the 

fundamental  units  tells  us  the  kind  of  proportion  in  which 
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that  unit  is  altered  when  the  fundamental  unit  is  altemd. 

Thus,  suppose  that  the  unit  of  mass  be  made  x  times  as 
big,  and  it  is  found  that  the  derivative  unit  becomes 
thereby  y^  times  as  big.  The  unit  is  then  said  to  be  of 
3  dimensions  with  reference  to  mass,  and  we  should  know 
that  if  the  unit  of  mass  be  doubled,  the  unit  in  question 

will  be  increased  2^  or  8  times;  or  if  the  unit  be  changed 
from  ounces  to  pounds,  the  derivative  unit  will  be  increased 

16^  or  become  4096  times  as  big. 
Take  the  case  of  any  unit  which  depends  on  all  three 

fundamental  units.  Suppose  the  unit  of  mass  becomes  M 
times  as  big  as  before,  the  unit  of  space  L  times,  and  the 
unit  of  time  T  times.  Suppose  also  that  in  consequence 

of  the  increase  of  the  unit  mass,  the  derivative  unit  be- 

comes M'^  times  as  large ;  on  account  of  the  increase  of  the 
length  unit,  L^  as  large ;  and  on  account  of  the  increase  of 
the  time  unit,  T^  as  large.  Then  this  fact  is  represented  in 
the  following  way, 

Dimensions  of  unit  =  [M^  L^  T^], 
and  it  is  said  that  the  dimensions  of  the  unit  are  x  in 

mass,  y  in  space,  and  z  in  time. 
34.  The  easiest  way,  perhaps,  to  find  the  dimensions  of 

a  unit  in  any  particular  case  is  to  suppose  one  of  the 

fundamental  units,  say  the  space,  doubled,  and  then  to  ex- 
amine how  many  times  the  unit  is  increased.  This  number, 

expressed  in  the  form  2*,  will  then  give  the  dimensions. 
This  is  the  method  we  shall  employ  in  the  following 
determinations.  We  will  take  the  units  in  the  order  in 

which  they  have  been  introduced  in  the  preceding  pages. 

I.  Velocity. — Velocity  depends  on  two  fundamental  units 
only,  those  of  space  and  time.  The  unit  velocity  is  one 
in  which  the  unit  of  space  is  passed  over  in  a  unit  of  time. 
If  the  unit  of  space  be  doubled,  the  new  unit  is  such  that 

twice  the  space  is  passed  over  in  the  same  time — that  is, 
the  unit  is  doubled,  or  is  altered  in  the  same  proportion  as 
the  unit  of  space.     Hence  it  is  one  dimension  in  space. 

If,  on  the  contrary,  the  unit  of  time  be  doubled,  the 

same  space  is  passed   over  in  twice  the  time,  and  there- 
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fore  the  new  unit  is  only  one-half  the  old.  Hence  the 
unit  of  velocity  varies  inversely  as  the  unit  of  time.     The 
final  result  then  is 

[Velocity]  =  [^]  =  [LT- 
Example.  Express  a  velocity  q/"  120  yards  per  minute  in  miles  per hour. 

Here  the  unit  of  space  is  increased  1760  times,  and  the  unit  of  time 
60  times,  or  L=1760,  T=60, 

T^  ..     1760    88    „       .^ 
.*.  New  unit  =  -^7r-  =  —  old  unit. oO       o 

But  the  measure  is  inversely  as  the  unit, 

.*.  New  measure  =  120  x  A=Tf=^rr  miles  per  hour. 

II.  Acceleration. — This  unit  also  depends  only  on  space 
and  time.  It  is  an  acceleration  in  which  unit  of  velocity 
is  added  on  in  unit  of  time.  Let  now  the  unit  of  space  be 
doubled ;  by  the  preceding  result  the  unit  of  velocity  is  also 
doubled.  Therefore  the  new  unit  is  one  in  which  twice  the 

velocity  is  added  on  in  the  same  time  as  before — in  other 
words,  the  new  unit  is  double  the  old.  Doubling  the  unit 
of  space  doubles  the  unit  of  acceleration.  Hence  the  unit 
is  one  dimension  in  space. 

Next,  double  the  time.  We  have  seen  that  the  new 

unit  of  velocity  is  one-half  the  original.  Hence  the  new 
unit  of  acceleration  is  one  in  which  half  the  original  velocity 
is  added  on  in  twice  as  long  a  time.  It  is  therefore 

one-quarter  the  magnitude  of  the  old  one.  Doubling  the 
unit  of  time  therefore  diminishes  the  unit  of  acceleration 

to  1/4  =  1/2''  its  original  value,  or  so  far  as  the  time  is  con- cerned 

[Acceleration]  =     - ,  1. 

The  final  result,  therefore,  is 

[Acceleration]  =  f^J  =  [^^'^] 

III.  Density. — Two  ways  of  measuring  the  density  of  a 
body  were  given  in  Chapter  II.     One  way  was  to  state  the 
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ratio  of  the  mass  of  a  body  to  that  of  an  equal  vohime  of 
some  standard  substance.  In  this  method  density  is  merely 

a  ratio  between  two  quantities  of  the  same  kind,  and  there- 
fore is  a  pure  number,  independent  of  any  units.  In  the 

other  method  the  density  is  measured  by  stating  the  mass 
contained  in  a  unit  of  volume,  and  is,  therefore,  a  quantity 
which  depends  on  the  units  of  mass  and  space,  or 

[Density]  =  [WLv]. 

This  unity  of  density  is  one  in  which  unit  volume  con- 
tains unit  of  mass.  If  the  mass  be  doubled,  the  new  unit 

of  density  will  contain  twice  the  mass,  and  will  therefore 
also  be  doubled.     Hence  x=l. 

If  the  unit  of  space  be  doubled,  the  unit  of  volume  is 
increased  to  eight  times  its  former  volume.  Hence  in  the 
new  unit  density  the  same  mass  occupies  a  volume  eight 
times  larger  than  the  old  one.  The  density  is  therefore 

only  "I  its  former  value,  and  since  -J-  =  1/2^  =  2  "^,  we  see  that 
y  =  -  3,  or 

[Density]  =  [g]  =  [ML-3]. 
IV.  Momentum,  impulse. — Momentum  and  impulse  are 

quantities  of  the  same  kind,  and  therefore  are  of  the  same 
dimensions.  They  involve  mass  and  velocity,  and  therefore 
all  three  of  the  fundamental  units. 

If  the  unit  of  mass  is  doubled,  so  also  is  the  unit  of 
momentum,  which  is  the  momentum  of  unit  mass  moving 
with  unit  velocity.  These  two  units  are  therefore  so  far 
directly  proportional. 

Also,  if  the  unit  of  velocity  is  doubled,  the  new  unit  of 
momentum  is  that  of  the  same  mass  moving  with  double 
the  velocity,  and  is  therefore  itself  doubled  also.     Hence 

[Momentum]  =  [MV]  =  [^1  =  [MLT-i]. 

V.  Force. — The  unit  of  force  is  that  which  will  give 
unit  acceleration  to  unit  mass.  If  the  mass  be  doubled, 

the  new^  unit  of  force  must  give  the  same  acceleration  to 
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double  the  mass,  and  must  therefore  itself  be  twice  as  big 
as  before.  In  other  words,  so  far  as  mass  is  concerned,  it  is 
proportional  to  the  unit  of  mass. 

Again,  if  the  unit  acceleration  is  doubled,  so  also  must 
be  the  force.     Hence 

[Force]  =  [M  .  Acceleration]  =  f^l  =  [MLT'^]. 

VI.  W&i-k,  energy. — These  are  quantities  of  the  same 
kind  =  [M^L^T^].  The  unit  of  work  is  the  work  done  in 
moving  unit  force  through  unit  distance. 

If  the  mass  be  doubled,  so  is  unit  force,  and  therefore 
unit  work, 

.\x=l. 

If  the  length  be  doubled,  so  is  unit  force,  and  the  new 
unit  work  is  that  done  when  twice  the  force  moves  through 

twice  the  distance,  and  is  therefore  four  times  =  2^  as  big 
as  before, 

.\7/=2. 

If  the  time  be  doubled,  the  unit  force  is  ̂   the  original 
one,  and  therefore  also  the  unit  of  work,  or 

z=  -2. 

.-.  [Work]  =  [^J  =  [ML2T-2]. 
VII.  Power. — The  unit  power  is  unit  work  per  unit 

time.  It  will,  therefore,  depend  on  mass  and  space  in  the 
same  way  as  unit  work.  If  the  unit  of  time  be  doubled, 
the  new  unit  of  work  is  i  its  original  value,  and  the  new 
unit  power  does  one-quarter  the  work  in  twice  the  time, 

is  only  a  =  1/2^  its  original  value. 
.-.  z=  -3; 

or 

[Power]  =  [^']  =  [ML2T-3]. These  results  are  useful  for  reference,  and  are  here 
collected — 

G 

or 
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Velocity  =  |^^J, 

Density  =  j^^J, 

Acceleration  = 

Momentum,)    _  FMLH 

Impulse 

Force  =     -^^  * 

Work,)       FMLn 

Energy!       L  T'  J' 
Power  =  1^-^  J- 

One  example  of  the  use  of  these  formulas  has  been  given. 
Another,  more  complicated,  is  to  express  a  power  of  25 
foot-pounds  per  minute  in  the  C.G.S.  system. 

Firstly,  the  first  numher  is  not  an  absolute  measure. 

It  must  therefore  be  made  absolute  by  expressing  the  weight  of  a 

pound  in  units  of  force.  To  do  this  we  have  to  multiply  by  g  (foot 
minute  units). 

Now  in  foot  second  units  g=B2. 

.:  In  foot  minute,  new  unit  acceleration  = —rs  x  the  old  =  ir^7r7,, oO  ooOO 

.-.  Measure  in  new  units  is  32-^-— ^  =  32  x  3600  =  115,200, ooUv 

or,  absolute  measure  of  the  power  =25  x  115,200  =  2,880,000 
ft.  lb.  min.  units. 

The  question  then  is  to  find  the  measure  of  a  power  =  2, 880, 000  ft. 
lb.  min.  units,  in  C.G.S.  units. 

Now  1  cm.  =  -0328  ft., 

1  gr.  =  -0022  lbs., 
1  sec.  =  ̂ V  min., 

and  by  VII  above  Power  =    -7^3-     ; 

AT           •.    f               -0022  X  (-0328)2^,       ,, 
,'.  New  unit  of  power  =       '3    the  old, 

= -0022  x( -0328)2  X  (60)3 
=  •611,239. 
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Hence  new  measure  pf  the  power  in  question  (being  inversely  as 
2  880  000 

unit)=   \r-i\c,     =  about  5,610,000  ergs  per  second. 

35.  These  tables  of  dimensions  are  useful  also  for 

another  purpose;  they  enable  us  to  check  any  result 
we  may  have  arrived  at,  and  often  to  discover  if  the  result 
is  wrong.  For  instance,  to  take  a  simple  case,  suppose  a 
result  came  out  that  5  lbs.  were  equal  to  3  feet.  It 
would  be  clear  at  once  that  the  result  had  no  meaning. 
Again,  suppose  the  equation 

3ms  +  2ft -10v=0 

had  been  arrived  at,  where  the  letters  denote  the  usual 
quantities.  It  is  not  evident  at  sight  whether  this  would 
be  a  possible  equation  or  not.  But  it  is  clear  that  if  it 
represents  an  equation  between  real  quantities,  that  equation 
must  be  independent  of  the  units  in  which  they  happen  to 
be  measured  and  must  still  hold  if  the  units  are  altered  in 

any  manner. 
Let  us  then  test  the  equation  by  the  results  obtained 

above.  Firstly  by  the  space.  By  I  and  II,  v,f  are  each  of  one 
dimension  in  space,  and  therefore,  if  the  unit  of  space  be 
increased  L  times,  each  term  is  multiplied  by  1/L,  and 
the  only  effect  is  to  multiply  the  whole  equation  by  1/L;  in 
other  words,  the  equation  still  subsists.  So  far  then  we 
find  no  objection  to  it.  Next  let  us  test  by  the  mass.  If 
the  mass  be  increased  M  times,  the  first  term  in  the  equation 
being  of  dimension  +  1  in  mass,  is  multiplied  by  1/M,  but 
the  others  not  containing  mass  remain  unaltered ;  in  other 
words,  we  get  a  new  equation  by  altering  the  unit  of  mass. 
The  equation  is  therefore  just  as  unmeaning  as  that  5  lbs. 
=  3  feet.  So  also  if  we  increase  the  unit  of  time  T  times, 
the  first  term  remains  unaltered,  the  second  is  multiplied  by 

(Tx  l/T2)-i  =  T,  and  the  last  by  T;  again  showing  that 
the  equation  is  really  nonsense. 

All  the  above  reasoning  may  be  done  at  a  glance  by 
putting  the  units  in  evidence  by  their  dimensions.  Thus 
the  equation  would  become 
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3ms[ML]  +  2ft^~  x  t]  -  10.[^]  =  0, 

3ms[ML]  +  2/^[^]-10.[^]  =  0. 
or 

It  is  then  clear  that  ML  and  ̂   are  different  kinds  of 

things,  and  therefore  cannot  be  added  or  subtracted  from 
one  another. 

Such  a  process  of  testing  whether  a  result  is  wrong  is 
called  counting  the  dimensions.  The  following  examples 
will  exemplify  the  method. 

Determine  whether  any  of  the  following  equations  are  impossible 
or  not, 

( 1)  lOF  vst  +  8mv-s  -  Zinf^  =  0, 
(2)  v^t-i7nfs  +  SF  =  0, 

(3)  6m^Y  +  2fF^pt^  -  BF^st^  =  0, 
where  V  is  a  volume. 

Putting  in  evidence  the  dimensions  of  the  units  only,  the  terms  are — 

In(l)  ̂ x^xLxT.     Mx(.^yxL.     m(^,)V, 

ML»     mJ     ML» 
or  rp2  >       'p2  >       "pa  • 

Each  term  is  therefore  a  quantity  of  the  same  kind  and  the  equation 

is  possible. 

Io(2)  (^)'t.     M^L,     ̂ ^, 1?     UU     ML 
or  rpa'       "pa  '      n^2 ' 

or  each  term  refers  to  different  kinds  of  physical  quantities,  and  the 

equation  is  therefore  nonsense. 

In(3)M^xL3,     (I'.yx^xL'^xM^xTB,     (^)\l.1- 

or  M2L3,     M2L3,     M^L''. 
Each  term   is   of  the   same    kind,    and    the   equation    is  therefore 
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EXAMPLES— V. 

1.  Find  the  ratio  of  the  units  of  the  following  quantities  when  the 
fundamental  units  aie  changed  from  the  foot,  pound,  second  system 

to  the  yard,  ton,  hour — 
(a)  Acceleration, 

(/3)  Force, 

(7)  Work. 
2.  Find  the  ratio  of  the  measures  of  the  same,  acceleration,  force,  and 

work  when  the  fundamental  units  are  (1)  the  foot,  pound,  second,  and 
(2)  the  yard,  ton,  hour. 

3.  Find  the  ratio  of  the  units  of  the  following  quantities  when  the 
fundamental  units  are  changed  from  the  yard,  cwt.,  minute  system  to 

the  foot,  pound,  second — 

(a)  Momentum,  • 

(/3)  Force, 

(7)  Power. 
4.  Find  the  ratio  of  the  poundal  to  the  dyne. 
5.  Express  an  acceleration  of  314  feet  per  second  per  second  in  terms 

of  yards  per  hour  per  hour. 
6.  Express  18  poundals  in  units,  depending  on  the  yard,  pound, 

minute. 

7.  How  many  watts  are  there  in  one  horse-power  ?    (gf  =  32*2.) 
8.  Determine  the  unit  of  time  in  order  that,  the  foot  being  the  unit 

of  length,  g  may  be  expressed  by  unity. 
9.  If  the  acceleration  of  a  falling  body  be  the  unit  of  acceleration, 

and  if  a  velocity  of  a  yard  per  minute  be  the  unit  of  velocity,  find  the 
units  of  space  and  time. 

10.  The  acceleration  of  a  body  falling  in  vacuum  and  the  velocity 
it  acquires  in  1  second  are  taken  as  the  units  of  acceleration  and 
velocity  respectively.    What  are  the  units  of  space  and  time  ? 

11.  If  the  acceleration  due  to  gravity  be  taken  as  the  unit  accelera- 
tion and  the  velocity  generated  in  one  minute  as  the  unit  of  velocity, 

find  the  unit  of  length. 
12.  A  particle  describes  a  foot  from  rest  and  acquires  a  velocity 

denoted  by  h  in  d  seconds,  with  a  uniform  acceleration  denoted  by  c. 
Find  the  units  of  length  and  time. 

13.  Determine  the  unit  of  mass  that  the  absolute  unit  of  energy 

may  be  the  foot-pound,  the  second  and  foot  being  units  of  time  and 
length. 

14.  What  are  the  dimensions  of  energy  per  volume  of  a  liquid  ? 
15.  Show  that  mvg  is  the  same  kind  of  quantity  as  i)ower. 
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16.  Have  the  following  expressions  any  meaning — 

(a)  smv  +  S¥t, 
(^)  Sva  +  mg, 

(7)  8m-vs  +  2FH^  -  Sm¥st  =  0, 

(5)  Work  =  ̂~-2Fvtl 
Avhere  the  letters  have  the  meanings  applied  in  this  book. 

17.  Two  particles,  whose  masses  are  ??ii,  m.2,  and  distances  from  a 

fixed  point  are  rj,  r-2,  are  moving  with  velocities  ?^],  U',  under  accelera- 
tions /i,  /2.  A  person  deduces  from  some  investigations  the  following 

equations —  * 

Energy   of  system  =fi\/mim2{r{''  -  ri^)  +f2\/{'nh  +  wi2)(^i  +  ̂2).       Show 
that  he  has  made  an  error  somewhere  in  his  calculations. 

18.  Show  that  the  expression  mv^  in  Art.  24,  Chap,  iii.,  is  of  the 
dimensions  of  a  force. 



PART  n 

FORCES  IN  ONE  PLANE 





CHAPTER   VI 

COMPOSITION   OF   VELOCITIES   AND   ACCELERATIONS 

Hitherto  we  have  confined  our  attention  to  the  simplest 

kind  of  motion — that  of  translation  along  a  straight  line,  in 
which  therefore  the  direction  remains  unchanged.  We 
now  proceed  to  consider  the  more  complex  motions  in 
which  change  of  direction  occurs,  confining  our  attention 
to  cases  where  all  the  motions  take  place  in  the  same 

plane. 
36.  Resultant  of  two  velocities. — If  a  board  ABCD  be  mov- 
ing in  the  direction  AB  with  a  velocity  ?/,  and  a  ball  on  it 

move  over  it  parallel  to  AB 

with  a  velocity  u'  relative  to 
the  board,  we  have  seen  that 
the  actual  velocity  of  the  ball 

relative  to  the  "fixed  point" 
IS  u  +  u'.  But  suppose  that  the 
ball,  instead  of  moving  in  dir- 
ection  AB,  had  moved  in  direction  AD ;  what  would  its 
actual  velocity  then  have  been  ?  This  is  the  problem  we 
first  proceed  to  discuss. 

The  ball  is  in  reality  moving  with  two  simultaneous 
velocities  u  and  u\  and  is  therefore  changing  its  position  in 
space  in  a  certain  manner.  If  looked  at  from  outside  the 
board,  it  would  appear  to  be  moving  with  a  velocity  different 

from  either  u  or  u'.  This  velocity  is  called  the  resultant  of 
the  other  two.  It  produces  by  itself  the  same  rate  of  change 
of  position  as  the  others  do  together.     It  clearly  depends 
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both  on  the  magnitudes  of  u  and  u'  and  also  on  their directions. 

In  order  to  fix  our  ideas,  we  will  suppose  the  simul- 
taneous velocities  to  be  pro- 

/a'  duced  in  the  following  manner. 
Let  a  ring  slide  on  a  straight 

rod  OA  with  velocity  u'  relative 
to  the  rod,  while  at  the  same 
time  the  rod  moves  parallel  to 

itself  with  velocity  u  along  00'. 
O  ^  At  the  beginning  of  the  time 
let  the  rod  be  OA  and  the  ring  at  0.  After  t  units  of 

time  let  the  rod  have  moved  to  O'A'  and  the  ring  have 
slipped  along  the  rod  to  P.  Then  00'  is  the  space  passed 
over  by  the  rod  in  time  t,  and  is  therefore  measured  by 

ut.  Also  O'P  is  the  space  passed  over  by  the  ring  along 
the  rod  in  the  same  time  t,  and  is  therefore  measured  by 
u't.     Hence 

O'P  _  u't  _  u 

00'     ut     u' 

or  P  moves  so  that  at  any  time  O'P/00'  is  constant, 
and  therefore  P  must  describe  a  straight  line.  It  follows 

therefore  that  OP/00'  is  constant.  Now  00'  is  described 
at  a  constant  rate  u ;  therefore  also  OP  is  described  at 

a  constant  rate — that  is,  the  resultant  velocity  of  u 

and  u'  is  a  constant  velocity.  To  find  its  value,  let  the 
time  t  be  taken  to  be  unity,  then  00'  =  u,  O'P  =  u,  and 
OP  will  then  represent  the  displacement  in  unit  of  time 

— that  is,  the  resultant  velocity  in  magnitude  and  direc- 
tion. 

If  a  line  PP'  be  drawn  through  P  parallel  to  00',  OP'  is 
equal  to  O'P,  and  OP'PO'  is  a  parallelogram  whose  sides 
are  equal  to  u,  u'.  The  theorem,  called  the  parallelogram 
of  velocities,  may  then  be  thus  stated — 

If  two  velocities  he  represented  hy  two  straight  lines  meeting 
at  a  point,  and  the  parallelogram  he  described  having  these 

lines  as  adjacent  sides,  then  the  resultant  velocity  is  rep'esented 
hy  that  diagonal  which  passes  through  the  point. 
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Note. — The  lines  represent  both  the  magnitude  and 
direction  of  the  velocities — that  is,  they  have  the  same 
direction  and  contain  as  many  units  of  length  as  the 
velocities  contain  units  of  velocity. 

37.  Let  two  velocities  be  represented  by  OA,  OB.  Com- 
plete the  parallelogram  OACB.  We  have  just  seen  that  OC 

represents  a  velocity  which  produces  the  same  effect  as  OA, 
OB  combined.  Now  clearly  we  may  regard  the  question 
in  the  opposite  light,  and 

look  on  OA,  OB  as  velo-  Y/ 
cities  which  combined  pro- 

duce the  same  effect  asOC. 

Regarded  in  this  light, 
OA,  OB  are  said  to  be 
components  of  OC. 

Two  given  velocities  ̂  
have  only  one  definite  resultant,  but  a  given  velocity  may 
be  replaced  by  pairs  of  components  in  an  infinite  number 
of  ways.  If,  however,  the  directions  of  these  components 
be  given,  their  magnitudes  are  determinate.  For  instance, 
let  us  see  how  to  decompose  OC  into  two  components 
whose  directions  lie  along  OX,  OY.  Through  C  draw  CA 
parallel  to  OY  and  CB  parallel  to  OX.  Then  by  the 
parallelogram  of  velocities  OC  is  the  resultant  of  OA  and 
OB,  or  OA,  OB  are  the  components  of  OC  in  the  given 
directions. 

Suppose  now  the  direction  OY  were  changed  to  OY', 
then  the  components  would  be  OA',  OB'  as  in  the  figure, 
so  that  not  only  is  the  component  along  OY'  altered,  but 
also  that  along  OX. 

Hence  it  is  necessary  in  finding  the  component  along 
OX  to  know  the  direction  in  which  the  other  is  acting. 

OA  is  called  "  the  component  of  OC  along  OX,  when  the 

other  component  acts  along  OY."  In  the  case,  however, 
where  OY  is  perpendicular  to  OX,  it  is  usual  to  call  OA 
simply  the  component  of  OC  along  OX. 

38.  It  is  important  to  be  able  to  determine  the  resultant 
of  two  velocities,  when  their  speeds  and  directions  are 
given.     This   can    always   be   done   approximately    by    a 
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graphical  construction.  Thus  suppose  we  require  the  re- 
sultant of  two  velocities  of  5  and  3  feet  per  second  at  an 

angle  of  57°  32'. 
Draw  two  lines  OX,  OY  making  the  required  angle  with 

one  another.  Along  OB  mark  off  lengths  0/>,,  b^b.,,  LqB 
equal  to  one  another,  and  along  OX  mark  off  five  each 

equal  to  these,  and  let  A  be  the  last.  Then  OB,  OA  will 
represent  the  velocities  3,  5.  Complete  the  parallelogram 
OACB  and  join  00.  Mark  off  on  OC  points  Cj,  Cg,  .  .  .,  c^ 
at  distances  equal  to  Ob^.  The  last  (in  this  case)  falling 
inside  OC  is  c-.     Then  the  measure  of  the  resultant  is 

^     Cc, 

The  angle  AOC,  or  direction  of  the  resultant,  can  then 
easily  be  determined  rodghly  by  a  suitable  scale.  In  the 

present  case  it  will  be  found  to  be  20°  57'. 
Clearly,  by  drawing  with  care  on  a  sufficiently  large 

scale,  it  is  possible  to  obtain  a  very  fair  degree  of 
accuracy  by  the  graphical  method.  Frequently,  however, 
we  require  to  obtain  the  result  either  quite  accurate  or 
with  a  known  amount  of  accuracy.  In  this  case  recourse 
must  be  had  to  methods  of  calculation.  In  general  this 
requires  the  use  of  trigonometrical  tables.  In  many  cases, 
however,  especially  as  to  magnitude,  we  can  obtain  the  result 
by  a  little  easy  geometry.  It  will  be  useful  to  consider 
some  of  these  geometrical  results  first. 

39.  I.   Two  velocities  u,  \i'  perpendicular  to  one  another. 
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The  parallelogram  now  becomes  a  rectangle.     OAC  is  a 
right  angle,  and,  by  Eucl.  I.  47,  g  q 

=  OA'  +  OB', 

11.   Two  velocities^,  u'  at  an  angle 
of  60% 

Let  OA,  OB  denote  u,  u'  and  let  AOB  =60°. 
From  C  draw  CL  perpendicular  to  OA  produced.     Then 

CAL  =  60',     ACL  =  30'. 
B  C 

Draw  CA',  making  A'CL  =  30%     Then  ACA'  =  60°,  and 
the  triangle  ACA'  is  equilateral. 

Hence,  CL  being  the  perpendicular  from  C, 

AL  =  JAA'  =  iAC  =  i2*', 
CL'  =  AC  -  AL'  =  u"  -  \u"  =  f  u". 

OL  =  OA  +  AL  =  It  +  ̂u', 
.•.OC'  =  OL'  +  CL'; 

v'  =  (m  +  uy  +  iu'\ 

also 
Now 

or 
w  +  It    +  uu. 

IIL   Two  velocities  u,  u'  at  an  angle  of  45*". 
Making  a  similar  construction, 

CAL  =  45°, 
.-.ACL  =  45°, 
.•.AL  =  CL, 

and  AL'  +  CL'-AC; 
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or 

CLEMEN fTAR^ '  DYNAMICS 

2AV-. 

=  < 

AL  = 

=  CL; 

.•.0L  = 
=  0A +  AL, 

-u-\-  - 

u'
 

x/2  ' 
0C^  = 

-OV +  CL^ 

.'.v'  = 

,(., 

u'  \^ V2) 

■■  v^  +  u'^  +  uu' 

V2. 

and 

IV.  Two  velocities  u,  u'  at  an  angle  of  30°. 
HereCAL  =  30°,  ACL=60°. 
Draw  CL  perpendicular  to  OA  and  produce  it  to  C  so 

that  LC  =  CL.     Join  AC.     Then  C'AL  =  CAL  =  30°. 

.*.  CAC  =  60°  and  CAC  is  an  equilateral  triangle. 
.•.CL  =  iCC'  =  iAC  =  i< AL^  =  fACj 

AT        ̂3       , 
or  AL  =  -^  .  u  ; 

,\  OL  =  OA  +  AL, 

x/3, 

2      /        n/3  a'     1   ,2 

=  u^  +  u"  +  mi'  \/3. 

The  student  may  prove  as  an  exercise  that  when  the 

angles  are  1 20°,  v'  =  u'  +  u"  -  uu\ 

135°,  '^=^x^  +  v:^-uu'  \/2, 

150,  ?;'  =  i*'  +  w"-m'v3. 
V.  In  the  general  case,  if  AL  he  knoivn,  the   resultant 

can  be  calculated  by  geometry.     For,  by  Eucl.  II  13, 

OC' =  OAV  AC  +  2  .  0 A .  AL, 

or  /  =  -j*^  +  u'^  +  2uu' .  -TTq . AC 
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Now  the  ratio  AL/AC  depends  only  on  the  angle  CAL 
(or  BOA),  and  not  on  the  lengths  of  OA  or  OB.  The 
value  of  this  ratio  for  different  angles  is  given  in  books  of 
trigonometrical  tables.  When  the  angle  between  the 
velocities  is  known,  all  that  is  necessary  is  to  turn  to  the 
tables  and  find  the  value  of  the  corresponding  ratio, 
substitute  its  value,  and  the  further  determination  of  v  is 
a  mere  question  of  arithmetic. 

40.  The  properties  of  this  ratio,  and  of  other  ratios 
of  an  angle,  are  considered  in  trigonometry.  In  this 
book  we  assume  no  knowledge  of 

trigonometry,  but  it  will  be  con- 
venient to  know  the  names  of 

certain  ratios  and  regard  their 
values  for  different  angles  as  given 
by  the  tables. 

Let  then  AOB  be  any  angle. 
In  OA  (or  OB)  take  any  point  P 
and  draw  PM  perpendicular  to  OB. 
Then  the  ratios  of  the  sides  OP, 
PM,  OM  are  independent  of  the 
position  of  P. 

PM  . 
The  ratio  j^  ̂^  called  the  sine  of  AOB,  and  is  written 

Qp=smAOB.
 

-pyp  is  the  cosine  of  AOB  =  cos  AOB, 
PM  . 

^^-^  is  the  tangent  of  AOB  =  tan  AOB. 

So  also 

and 

As  stated,  these  ratios  depend  only  on  the  angle  AOB. 
Their  values  are  tabulated  in  trigonometrical  tables  for  all 

angles  differing  successively  by  1  minute  from  0°  to  90°. 
If  we  denote  the  angle  by  A,  the  above  may  be  written 

PM  =  OPsinA, 
OM  =  OP  cos  A, 
PM  =  OMtanA, 
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So  that  if  the  angle  and  OP  be  known,  the  values  of  PM 
and  OM  are  at  once  found  by  looking  out  in  the  tables 
the  values  of  sin  A  and  cos  A. 

The  formula  of  the  last  article  may  now  be  written  in 
the  new  notation  :  for 

,-^  =  cos  CAL  =  cos  AOB, AC 

or  if  we  denote  the  angle  between  the  velocities  by  ̂, 

AL/AC  =  cos  e, 
and  '(f  =  u^  +  u'^  +  2uu'  cos  6. 
This  is  a  most  important  formula. 

41.  The  formula  v^  =  u^  +  u'^  +  2uu'  cos  0  gives  the  mag- 
nitude of  the  resultant  velocity.  It  remains  to  obtain  a 

formula  to  give  its  direction. 
The  direction  is  known  if  we  can  determine  the  angle 

COA,  or  COB.     Now,  by  the  definition  above, 

tanC0L  =  X4^. 

CL 
But  -T-Tc  =  sin  CAL, AC 

.'.  CL  =  u'  sin  dj 

so  OL  =  OA  +  AL  =  u  +  u'  cos  6. 

Hence  tan  COL  =   ;   ;:. u  +  u  cos  6 

This  enables  us  to  find  the  value  of  tan  COL.  Then 

look  up  in  the  tables  what  angle  has  its  tangent  equal  to 
this,  and  we  know  at  once  the  value  of  the  angle  COA. 

A  numerical  example  will  render  the  above  reasoning 
clearer.  We  will  take  the  case  whose  graphical  solution 
was  given  in  §  38,  viz.  to  find  the  resultant  of  3  and  5 

feet  per  second  at  an  angle  of  57°  32'. 

The  tables  give  cos  57°  32'  =  -53681,  sm  57°  32'  =  '84370.     Hence 
^2  =  32  +  52  +  2  X  3  X  5  X -53681, 
i;2= 9 +  25 +  16-1043, 

=  50-1043; 

.-.  I? = 7*078  feet  per  second. 
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Next,  to  find  the  direction — 

^     ̂ ^,        3  sin  57°  32' 
tenCOA=5-3-^^^.32.

 

3  X -84370 

5  +  3  X -53681' 

_  2-5311 
6-61043' =  -38289. 

Now  in  the  tables  it  will  be  found  that 

tan  20°  57'= -38286, 
tan  20°  58'= -38319. 

Hence  the  angle  COA  lies  between  20°  57'  and  20'  58'.  If  we  are 
satisfied  to  get  the  angle  correct  to  1',  COA  =  20°  57'.  If  we  desire 
a  closer  approximation,  it  is  easy  to  obtain  one  by  the  theory  of 

''proportional  parts,"  but  the  consideration  of  this  would  lead  us 
too  far. 

The  final  result  then  is  that  the  resultant  velocity  is  one  of  7 "078 

feet  per  second,  making  an  angle  of  20°  57'  with  the  direction  of  the 
5  feet  per  second  component. 

Note. — For  graphical  purposes  it  is  much  better  to  know  the 
tangent  of  an  angle  than  the  angle  itself,  as  to  draw  the  latter  requires 
a  special  scale  or  protractor,  whereas  the  tangent  can  be  drawn  at  once 
by  the  aid  of  a  pair  of  compasses. 

42.  Relative  velocity. — Suppose  two  points  moving  with 
different  velocities  u,  u'.  If  the  motion  of  one  be  regarded 
from  the  position  of  the  other, 
it  will  appear  to  move  with  a 
velocity  different  from  either  u 
or  xi'.  This  is  called  the  relative 
velocity  of  the  two  points.  To 
find  it  in  any  case,  notice  that 
the  relative  motion  is  unaffected 

if  we  give  any  the  same  velocity 
to  both  points.  Apply  then  to 
both  a  velocity  equal  and  op- 

posite to  that  of  A.  The  con- 
sequence is  that  A  becomes  "  at 

rest,"  whilst  B  has  the  velocity 
-  u,  in  addition  to  its  own — 
represented  in  the  second  figure  by  BX,  BY.     These  are 
equivalent  to  a  resultant  BC.     In  other  words  B,  as  seen 

H 
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from  A,  will  appear  to  move  with  a  velocity  represented 

in  -magnitude  and  direction  by  BC.  Tliis  then  is  the 
relative  velocity. 

Note. — It  is  to  be   especially  noted  that  the  relative 

g  Q  velocity  is  not  the  rate  at 
which  the  distance  between 
A  and  B  increases.  This 

rate  depends  on  the  positions 
of  A  and  B  as  well  as  their 
velocities. 

Clearly  YB  may  be  taken 
to  represent  the  velocity  of 

A  and  YC  that  of  B,  and  we  get  thus  the  following  con- 
struction to  give  the  relative  velocity  in  any  case.  If 

OA,  OB  represent  the  simultaneous  velocities  of  two  points, 

their  relative  velocity  is  AB — or  if  the  parallelogram  be 
described  having  those  lines  for  adjacent  sides,  the  relative 
velocity  is  that  diagonal  which  does  not  pass  through  0. 
On  the  contrary,  we  have  seen  that  if  they  represent  the 
simultaneous  velocities  of  one  point,  then  their  resultant  is 
that  diagonal  which  does  pass  through  0. 

43.  Acceleration. — Acceleration  has  been  defined  in 

Chapter  L  as  rate  of  change  of  velocity.  As  a  velocity 
depends  on  both  direction  and  speed,  acceleration  will 
involve  both  change  in  direction  as  well  as  change  in 
speed.  The  question  of  change  in  speed  alone  has  been 
already  considered;  it  will  now  be  requisite  to  take  up 
the  general  problem  where  both  conditions,  vary. 

As  an  example  of  change  of  velocity  without  change  of 
speed,  we  may  take  the  following.  Suppose  a  point 
moving  with  a  velocity  represented  by  OA  (the  student 
should  draw  the  figure  himself),  and  that  its  velocity  is 
changed  by  the  addition  of  another,  OB,  equal  to  it  in 

magnitude,  but  at  an  angle  of  120°  to  it.  Then  the  new 
velocity  is  OC,  the  diagonal  of  the  parallelogram  OBCA, 
equal  to  OA  in  magnitude,  but  in  a  different  direction. 
The  change  of  velocity  is  represented  by  AC  or  OB. 

We  have  already  seen  that  if  OA  denote  any  velocity, 
and  AB  another  velocity  added  to  it,  then  the  resulting 
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velocity  is  OB— or  conversely,  if  OA  be  changed  to  OB, 
the    change    is  represented  by   AB.     Suppose  now  that 
in  the  unit  of  lime  the  velocity 
OA   changes   to    OB,    then    AB 
is  the  change  of  velocity  per  unit 
time,  or  in  other  words  represents 
the  acceleration. 

Now  just  as  a  point  may  be 
considered  to  have  two  velocities  ̂   ^ 
simultaneously,  so  also  we  may  consider  each  of  these 

velocities  as  altering,  —  that  is,  consider  the  point  as 
having  simultaneous  accelerations  in  different  directions. 
These  will  have  a  single  resultant  which  produces  the 
same  effect  as  the  two  combined.  To  find  this  resultant, 
we  notice  that  the  accelerations  are  velocities  added  on 

per  unit  time.  These  are  equivalent  to  a  single  resultant 
velocity,  found  by  the  parallelogram  law,  and  this  resultant 
will  represent  the  whole  change  of  velocity  per  unit  of 
time,  in  other  words  the  resultant  acceleration.  We  see 

then  that  accelerations  are  compounded  in  precisely  the 
same  manner  as  velocities,  and  the  statement  of  the  law 
in  §  36  will  exactly  hold  good  for  accelerations  when  the 

word  "  velocity  "  is  replaced  by  "  acceleration." 
All  the  results  obtained  with  reference  to  components 

and  resultants  of  velocities  and  to  relative  velocity  hold 
also  with  respect  to  accelerations. 

The  methods  for  finding  the  resultant  of  several 
velocities  or  accelerations  are  precisely  analogous  to  those 
for  finding  the  resultant  of  forces  given  in  the  next  chapter, 
and  will  be  there  considered  (§§  45,  46). 

EXAMPLES— VI. 

[Further  examples  in  resolving  and  compounding  will  he  found  in  the 
next  chapter.^ 

1.  A  particle  moves  in  a  straight  line  along  a  horizontal  smooth  plane 
with  a  velocity  of  3  feet  per  second  ;  after  2  seconds  a  velocity  of  8 
feet  per  second  is  imparted  to  it  in  a  direction  at  right  angles  to  its 

original  motion.  Find  the  distance  of  the  particle  from  its  starting- 
point  after  it  has  been  in  motion  for  4  seconds. 
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2.  The  velocity  of  a  ship  in  a  straight  course  on  an  even  keel  is  8^ 
miles  an  hour  ;  a  ball  is  bowled  across  the  deck,  perpendicular  to  the 

ship's  length,  with  a  uniform  velocity  of  3  yards  in  a  second.  Describe 
the  true  path  of  the  ball  in  space,  and  show  that  it  will  pass  over  45 
feet  in  3  seconds  nearly. 

3.  A  particle  is  moving  with  a  velocity  of  3  feet  per  minute  along 
the  diagonal  of  a  square,  which  is  itself  moving  with  a  velocity  of  4 
feet  per  minute  parallel  to  an  edge.  Find  the  actual  velocity  of  the 

particle. 
4.  A  particle  is  moving  with  a  velocity  of  12  yards  per  minute  along 

the  side  of  an  equilateral  triangle,  which  is  itself  moving  at  2  feet 
per  second  parallel  to  the  base.  Find  the  actual  velocity  of  the 

particle. 
5.  A  particle  revolves  uniformly  in  a  vertical  circle  with  a  velocity  (v) ; 

find  the  vertical  and  horizontal  velocity  at  any  point.  If  the  time  of 
one  revolution  is  8  seconds,  and  tlie  radius  of  the  circle  12  inches, 
and  the  particle  start  from  the  highest  point,  find  the  horizontal  and 
vertical  velocity  after  it  has  revolved  for  1  second. 

6.  A  body  descends  uniformly  down  an  inclined  plane  1  mile  in 
length  in  1  hour  and  20  minutes.  If  the  plane  rises  1  foot  vertical 
for  100  feet  in  length,  find  the  vertical  velocity  of  the  body  in  feet 

per  second. 
7.  Rain  is  falling  vertically,  and  it  is  observed  that  the  splashes  made 

by  the  drops  on  the  window  of  a  moving  railway  carriage  are  inclined 
to  the  vertical.  Explain  this,  and  point  out  in  which  direction  the 
splashes  are  inclined. 

8.  If  in  the  previous  question  the  train  was  travelling  at  60  miles 

per  hour  and  the  inclination  of  the  splashes  to  the  vertical  was  30°, 
what  was  the  velocity  of  the  falling  drops  ? 

9.  A  horseman  at  full  gallop  fires  at  a  stationary  animal.  Show  that 
he  must  aim  behind  the  animal. 

10.  If  in  the  previous  question  the  animal  is  also  running  in  a  parallel 
direction,  show  that  the  horseman  must  aim  in  front  or  behind 

according  as  his  speed  is  less  or  greater  than  that  of  the  animal. 
11.  A  steamboat  is  going  north  at  15  miles  per  hour  while  an  east 

wind  is  blowing  at  5  miles  per  hour.  Find  the  angle  the  direction  of 

the  smoke  appears  to  make  with  the  ship's  keel. 
12.  Knowing  the  direction  of  the  true  wind  and  the  velocity  and 

direction  of  the  apparent  wind  on  a  ship,  as  shown  by  the  direction  of 
the  vane  on  the  mast,  determine  the  velocity  of  the  ship,  supposing 
there  is  no  lee-way. 

13.  In  a  ship  sailing  at  16  miles  per  hour  it  is  observed  that  the 

direction  of  the  wind  is  apparently  30°  to  the  line  of  keel  and  from  the 
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bows  ;  its  velocity  is  apparently  4  miles  per  hour.     What  is  its  true 
direction  and  magnitude  ? 

14.  If  two  points  move  in  two  straight  lines  with  uniform  accelera- 
tion, the  path  of  either  relative  to  the  other  will  be  rectilinear,  if  at 

any  one  instant  their  velocities  be  to  one  another  respectively  as  their 
accelerations. 

15.  Two  particles  are  started  simultaneously  from  the  points  A 
and  B,  5  feet  apart,  one  from  A  towards  B  with  a  velocity  which  would 
cause  it  to  reach  B  in  3  seconds  and  the  other  at  right  angles  to  the 

former  and  with  three -fourths  of  its  velocity.  Find  their  relative 
velocity  in  magnitude  and  direction,  the  shortest  distance  between 
them,  and  the  time  at  which  they  are  nearest  to  one  another. 

16.  A  circular  ring  moves  uniformly  in  a  straight  line  in  its  own 
plane,  and  a  point  on  the  ring  moves  uniformly  round  the  ring.  Find 

the  actual  velocity  of  the  point  when  the- line  joining"  it  to  the  centre 
makes  angles  of  (1)  90°,  (2)  45°,  (3)  0°  with  the  direction  of  motion. 

17.  Two  planets  are  moving  in  concentric  circles,  radii  a,  b,  in  the 
same  direction  with  velocities  u,  v.  Determine  the  angle  between  them 
when  their  relative  velocity  is  along  the  line  joining  them.  Describe 
generally  the  appearance  of  the  motion  of  each  planet  as  seen  from  the 
other. 
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CHAPTER  YII 

FORCES   ACTING   AT   ONE   POINT 

44.  When  a  body  is  changing  its  state  of  rest  or  motion, 
the  rate  at  which  the  change  of  momentum  is  taking  place 
is  called  the  force  acting  on  it.  It  may  be  that  more 
than  one  cause  is  tending  to  make  a  particle  move,  and  in 
such  a  case  what  is  observed  is  only  the  effect  due  to  the 
whole  combined.  By  observing  then  the  motion  of  any 
particle  it  is  not  possible  to  determine  all  the  causes  tending 
to  make  it  move,  but  on  the  other  hand,  if  we  have  given 
the  causes  and  the  effects  which  each  would  produce 

separately  (in  other  words  their  forces),  it  must  be  possible 
to  determine  what  the  combined  effect  will  be.  This  is 

the  problem  to  which  we  address  ourselves  in  this  chapter : 
and  we  begin  with  the  simplest  case,  viz.  that  of  two 
forces  acting  at  a  point. 

If  m  denote  the  mass  of  a  particle  and  v  its  velocity, 
the  momentum  is  measured  by  mv.  The  momentum  can 
change,  therefore,  either  by  alteration  of  the  mass  or  by 
alteration  of  the  velocity.  In  most  cases  the  latter  takes 
place  alone!.  The  former  would  take  place  if  matter  was 
being  created ;  the  same  result  is  in  effect  produced  in 
certain  cases,  such  as  the  fall  of  a  raindrop  through  a  cloud, 
where  the  drop  continually  increases  by  condensation  from 
the  mist. 

Now  notice,  that  momentum  is  quite  analogous  to 
velocity  in  that  it  has  magnitude  and  direction.  It  will 
therefore  obey  the  same  laws  as  velocity  with  regard  to 
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composition — ie.  there  is  a  theorem  analogous  to  the  paral- 
lelogram of  velocities  which  may  be  called  the  parallelogram 

of  momenta.  And  in  precisely  the  same  manner  as  the 
parallelogram  of  accelerations  (i.e.  of  rate  of  change  of 
velocity)  was  deduced  from  that  of  velocity,  so  a  theorem 
of  the  parallelogram  of  forces  {i.e.  of  rate  of  change  of 
momentum)  may  be  deduced  from  that  of  momentum.  On 
account  of  the  importance  of  this  theorem,  it  is  here  stated  / 

in  its  proper  form.  ^ 
If  tu'O  forces  acting  at  a  point  be  represented  in  magnitude 

and  direction  by  two  sides  of  a  parallelogram,  their  resultant  is 
represented  by  that  diagonal  of  the  parallelogram  which  passes 
through  the  point. 

45.  The  constructions  given  for  velocities  also  hold  good 
in  the  case  of  forces.  We  thus  have  the  following  graphical 
methods  of  finding  the  resultant  of 
two  forces  represented  by  two  lines 

OA,  OB— 
(1)  Complete  the  parallelogram 

AB.     Join  OC.     Then  00 
is  the  resultant. 

(2)  Join  AB  and  bisect  it  in  C. 
Join  00.       Then  the  re- 

sultant is  200. 

(3)  From  A  draw  AC  to  repre- 
sent the  second  force,  and 

join  OC.     Then  the  result- 
ant is  OC. 

Conversely  OC  is  equivalent  to 
any  two  OA,  AC. 

The  third  method  gives  the 
means  of  finding  graphically  the 
resultant  of  any  number  of  forces 
acting  at  a  point.     We  shall  suppose  the  forces  are  given 
graphically  by  straight  lines. 

Take  any  point  0,  and  from  it  draw  the  line  OA  to 
represent  one  of  the  forces  in  magnitude  and  direction. 
From  A  draw  AB  equal  and  parallel  to  another  force ;  from 
B,  BC  equal  and  parallel  to  another ;  and  so  on  until  all  the 
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forces  have  been  represented :  and  let  the  end  of  the  last 
line  be  denoted  by  K.  Then  the  resultant  of  all  the  forces 
is  represented  in  magnitude  and  direction  by  the  line  OK. 
/  v^  For,  by  what  has  gone  before, 

the  resultant  of  the  first  two  forces 

is  represented  by  OB.  They  may, 
therefore,  be  replaced  by  the  single 
force  OB.  Again,  this  and  the 
third  force  may  be  replaced  by  a 
single  force  00,  and  so  on,  until 
at  last  the  whole  will  be  replaced 
by  the  single  force  OK. 

requires  only  the  use  of  a  scale  and  an 

O  A 

This  method 

instrument  to  measure  angles,  and  is  of  wide  application. 

Example.  Find  by  the  graphical  method  the  resultant  of  4,  2,  2J, 

Spoundals  at  angles  ofi5°,  60°,  90°  successively  with  one  another. 

Constructing  the  figure  as  described,*  0A  =  4  inches.  AB  is  drawn 
making  45°  "with  this  and  2  inches  measured  on  it,  BC  is  then  drawn 
making  60°  with  AB  and  2^  inches  measured  off ;  finally  CD  is  drawn 
at  right  angles  to  BC  and  3  inches  marked  off  ending  at  D.     Then, 

*  The  figure  in  the  text  is  rediiced  from  a  larger  one,  constructed 
as  described. 
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applying  the  ruled  scale  to  OD,  it  will  be  found  to  be  about  3 "47  inches 
in  length. 

Hence  the  resultant  force  is  3*47  poundals,  making  an  angle  DO  A 
with  the  first  force. 

46.  The  preceding  paragraphs  give  the  means  of  obtain- 
ing directly  by  graphical  methods  the  resultant  of  any 

number  of  forces  acting  at  a  point.  We  now  proceed  to 
deduce  a  method  by  which  it  may  be  calculated  in  any 
given  case  to  any  desired  degree  of  accuracy. 

When  there  are  only  two  forces  P,  Q,  and  the  angle 
between  them  A  is  given,  we  can  at  once  apply  the  formula 
already  obtained  for  velocities.  Thus,  if  R  denote  the 

resultant,  R^  =  F  +  QV  2PQ  cos  A, 

and  the  direction  is  given  by  a  formula  similar  to  that  in 

§41. 
When  there  are  more  than  two  forces,  it  is  best  to 

proceed  in  a  different  manner.  Take  any  two  straight 
lines  Ox,  Oy  at  right  angles  to  one  another  through  the 
point  of  application.  Then,  since  the  angles  between  the 
forces  are  given,  so  are  their  inclinations  to  these  lines. 

Let  the  forces  be  denoted  by  Pj,  Pg,  Pg,  .  .  .  and  the 
angles  they  make  with  0:^  by  aj,  ag,  ag,  .  .  .  Draw  from 
0  lines  Opi,  0/?2)  ...  to 
represent  the  forces.  Draw 

jPiMi,  jpiNi  perpendicular 
to  Ox,  Oy  respectively, 
and  similarly  with  the 
other  forces.  Then  we 

know  that  Op^  is  equi- 
valent to  two  forces  OMj, 

ONi,  and  may  therefore 
be  replaced  by  them. 

Similarly  Op^  may  be  re- 
placed by  OMg  and  ONg, 

and  so  on  with  all  the 

original  forces  Pj,  Pg,  .  .  . 
We  now  have  a  system  of  forces  precisely  equivalent  to 
the  original  one,  viz.  a  series  all  acting  along  Ox  equivalent 
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to  a  single  one,  and  another  series  along  Oy  also  equivalent 
to  a  single  one.     Denote  these  by  X,  Y.     Then 

X  =  OMi  +  OM,  +  OM3  +  .  .  ., 
Y  =  0Ni  +  0N,  +  0N3+  .  .  ., 

where,  if  M  lies  to  the  left  of  0,  or  N  below   0,  the 
corresponding  lines  must  be  subtracted. 

The  result  now  is  that  all  the  original  forces  Pi,  Pg,  .  .  . 
may  be  replaced  by  the  two  X,  Y  at  right  angles  to  one 
another.  Let  them  be  represented  by  OM,  ON,  and 
complete  the  parallelogram  OMrN.     Then  the  resultant  is 

E  =:  Or, 

whence  R'  =  OM'  +  ON'  =  X'  +  Y'. 

Often  the  angles  ai,  ag,  .  .  .  are  such  that  the  values  of 
OM,  etc.  can  easily  be  determined  by  geometrical  methods, 

e.g.  in  the  case  where  they  are  0°,  30°,  45°,  60°,  90°,  etc. 
In  general,  however,  this  is  not  the  case,  and  recourse  must 

be  had  to  trigonometrical  tables.  Referring  to  the  defini- 
tions given  in  §  40, 

OM,  ON,    ̂ iM,       . 

Opi  Oj9,         0/7, 

whence,  since  O^i  =  P,, 

OMi^PjCOStti,     ONi  =  Pisinai, 
and  SO  with  the  others.     Hence 

X  =  Pj  cos  tti  +  P2  cos  ttg  +  .  .  .  =  2(P  cos  a)  say, 
Y  =  P,  sin  tti  +  Pg  sin  og  +  .  .  .  =  S(P  sin  a). 

Also,  to  find  the  angle  rOM  =  A  (say),  which  gives  the 
direction  of  the  resultant, 

rM  _  ON  _  Y 
^^""^     OM     OM     X' 

Substituting  the  values  of  X  and  Y  obtained  above,  we 
get  the  value  of  tan  A,  and  A  may  then  be  found  by 
reference  to  the  tables.  The  student  will  perhaps  best 

understand  the  method  by  the  following  examples  : — 

Example  I.  Four  forces  eqtcal  to  the  weight  of  8,  2,  5,  IsVs-  18 
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lbs.  act  so  that  the  angles  between  sxiccessive  forces  are  45°,  15°,  and 
90°.     Determine  their  resultant. 

The  direction  of  the  line  of  reference  Ox  is  at  our  disposal.  We 
will  then,  in  order  to  simplify  the  calculation,  choose  it  to  be  along 
the  direction  of  the  first  force.  The  diagram  will  then  be  as  in  the 
adjoining  figure. 

Here  0Mi=0jt>i=8,     ONi=0; 

P3OM3  =  Q0° 

;>4OM4=30° 

•.    0M3  =  j0i^: -,     ON3  =p3U3 = -2"  •  ̂̂   =  "2" 

.-.  0M4=  -  ̂  Op^=  -  ̂  (IsVi  - 18),     ON4=jt>4M4 
13\/3-18. 

.'.  X  =  8  + V2  +  |-y  +  9V3  =  V2  +  9\/3-9, 

Y  =  0  +  V2.f^  +  l-^4^«  =  V2  +  9V3-9. 
If  the  approximate  values  of  V2  and  Vs  be  substituted,  theie 

results 
X  =  8-0026, 
Y  =  8-0026, 

whence  R-  =  (8  '0026)2  +  (8-0026)2, 
=  128-08321352, 

and  R= 11-3173, Y 
also  tanA  =  ̂   =  l, 
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whence  tlie  angle  is  45°.     The  resultant,  therefore,  is  equal  to  the 
weight  of  11-3173  lbs.,  and  makes  an  angle  of  45°  with  the  force  8. 

Example  II.  Find  resultant  of  3,  2 '5,  6  poundals,  making/  angles  of 
22°  30',  73°  071  one  side,  and  114°  on  the  other  with  a  straight  line  Ox. 

The  latter  makes  an  angle  of  180° -114°  =  66°  with  Ox  produced 
backwards  (say  Oa;'). 

This  is  a  case  where  recourse  must  be  had  to  the  tables.     They  give 

the  following  values — 

cos  22°  30'  =  -92388,     sin  22°  30'  =  -38268, 
cos  73°       =-29237,     sin  73°       =-95630, 
cos  66°        =-40674,     sin  66°        =-91354. 

Hence        X  =  3  cos  22°  30'  +  2-5  cos  73°  -  6  cos  66°, 
=  2-77164+ -73092-2-44044, 
=  1-06212. 

Y  =  3  sin  22°  30'  +  2  -5  sin  73°  -  6  sin  66°, 
=  1-14804  +  2-39075  -  5-48124, 
=  -1-94245. 

That  is,  Y  acts  along  Oy'  instead  of  Oy. 

Hence  R2= (1-06212)2 +  (1-94245)2, 
=  1-1-281  +  3-7729, 
=  4-9010, 

R=2-213  poundals. 

Now  tan  61°  19' =1-8278, 
tan61°  20' =1-8290, 

whence,  neglecting  seconds, 

A  =  61°  19', 
or  the  direction  makes  an  angle   180° -61°  19' =128°  41'  with  the 
positive  direction  of  Ox. 

EXAMPLES— VII  (a). 

1.  "What  are  the  rectangular  components  of  10  poundals  along  lines 
making  two  equal  angles  with  it  ? 

2.  What  are  the  components  of  10  poundals  along  lines  making  30° 
■vnth  it  on  each  side  ? 

3.  Find  the  resultant  of  the  following  forces — 

(1)  4  and  5  lbs.  weight  at  30°, 
(2)  2  and  6  lbs.  weight  at  60°, 
(3)  4  lbs.  weight  and  4  poundals  at  45°, 
(4)  6  and  7  poundals  at  135°. 
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4.  Find  the  resultant  of  20  and  35  lbs.  weight  at  an  angle  of  120°. 
5.  Forces  equal  to  the  weights  of  6,  7,  and  8  lbs.  act  at  a  point  in 

directions  making  angles  of  120°  with  each  other.    Find  their  resultant. 
6.  Find  graphically  the  magnitude  and  direction  of 

(1)  3  and  5  lbs.  weight  at  35°, 
(2)  3,  6,  2,  8  lbs.  weight, 

making  angles  of  15°,  120°,  60°  with  each  other  in  succession. 
7.  Calculate  by  the  help  of  the  trigonometrical  tables  the  magnitude 

and  direction  of  the  resultants  of 

(1)  3  and  5  lbs.  weight  at  35", 
(2)  3,  6,  2,  8  lbs.  weight, 

making  angles  of  15°,  120°,  60°  with  each  other  in  succession. 
8.  Show  that  if  the  angle  between  two  forces  is  increased,  their 

resultant  is  diminished. 

9.  A  cricket-ball,  mass  m,  being  supposed  to  move  with  uniform 
velocity  in  a  horizontal  plane,  occupies  t  seconds  in  traversing  the 
distance,  22  yards,  from  the  bowler  to  the  batsman.  In  what  direction 
must  it  be  hit  so  as  to  go  off  with  equal  velocity  in  a  direction  at 
right  angles  to  that  in  which  it  first  moves  ?  Give  a  numerical 

measure  of  the  blow,  supposing  m=5i  oz.,  <=5^. 
10.  The  greatest  resultant  that  two  forces  can  have  is  P,  and  the 

least  resultant  they  can  have  is  Q.  Find  what  their  resultant  is  when 
they  act  at  right  angles. 

11.  Prove  that  the  resultant  of  two  forces  P  and  P  +  Q  acting  at  an 

angle  of  120°  is  equal  in  magnitude  to  the  resultant  of  two  forces  Q  and 
P  +  Q  acting  at  the  same  angle. 

12.  The  horizontal  and  vertical  components  of  a  certain  force  are 
equal  to  the  weights  of  5  lbs.  and  12  lbs.  respectively.  What  is  the 
magnitude  of  the  force  ? 

13.  Supposing  this  force  to  act  for  10  seconds  on  a  mass  of  8  lbs., 
which  is  also  exposed  to  the  action  of  gravity  and  is  initially  at  rest, 

what  velocity  will  be  communicated  to  the  mass,  the  vertical  com- 
ponent of  the  force  acting  upward  ? 

14.  The  sum  of  two  forces  is  36  lbs.  weight,  and  the  resultant, 
which  is  at  right  angles  to  the  smaller  of  the  two,  is  24  lbs.  weight. 
Find  the  magnitude  of  the  forces. 

15.  Forces  of  12  lbs.  and  6  lbs.  weight  act  at  a  point  in  a  plane;  the 

angle  between  them  is  120°.  Determine  the  direction  of  a  force  which 
exactly  counterbalances  these. 

16.  The  magnitudes  of  two  forces  are  as  3:5  and  the  direction  of 
their  resultant  is  at  right  angles  to  that  of  the  smaller  force.  Compare 
the  magnitudes  of  the  larger  force  and  the  resultant. 

17.  If  the  resultant  R  of  the  two  forces  P  and  Q  inclined  to  each 
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other  at  any  given  angle  make  the  angle  6  with  P,  prove  that  the 
resultant  of  the  forces  (P  +  K)  and  Q  at  the  same  angle  will  make  the 
angle  0/2  with  P  +  R. 

18.  The  resultant  of  two  forces  which  are  inclined  to  each  other  at 

an  angle  of  60°  divides  the  angle  in  the  ratio  3  : 1.  What  is  the  magni- 
tude of  the  smaller  force,  if  that  of  the  greater  be  20  lbs.  weight  ? 

19.  Forces  of  1,  2,  4,  6,  8  act  from  the  centre  of  a  regular  pentagon 
to  the  corners.     Find  the  resultant.     Given 

cos  72°= -30901,     sin  72°= -95105, 
cos  36°  =  -80901,     sin  36°  =  '58778. 

^0.  The  sides  of  a  quadrilateral  taken  in  order  are  1,  2,  9,  7  inches 
respectively  ;  forces  at  a  i)oint  of  2,  4,  8,  14  lbs.  weight  respectively 
act  parallel  to  them,  the  same  way  round.     What  is  the  resultant  ? 

21.  ABDC  is  a  parallelogram,  and  AB  is  bisected  in  E.  Prove  that 
the  resultant  of  the  forces  represented  by  AD,  AC  is  double  the 
resultant  of  those  represented  by  AE,  AC. 

22.  Four  forces  are  represented  by  the  sides  AB,  BC,  CD,  AD  of 
the  rectangle  ABCD.     Find  their  resultant  and  its  line  of  action. 

23.  Three  forces  are  completely  represented  by  the  lines  joining  the 
angular  points  of  a  triangle  with  the  middle  points  of  the  opposite 
sides.     Show  that  they  are  in  equilibrium. 

24.  ABC  is  a  triangle,  D,  E  are  points  in  AB  and  AC  respectively, 
BE,  CD  cut  in  0.  Indicate  the  direction  of  the  resultant  of  forces 

represented  by  CD,  BE. 
25.  The  side  BC  of  an  equilateral  triangle  ABC  is  bisected  in  D, 

and  forces  are  represented  in  direction  and  magnitude  by  BA,  BD. 
Find  the  magnitude  of  their  resultant  if  the  force  along  BD  be  equal 
to  the  weight  of  1  lb. 

26.  The  side  BC  of  an  equilateral  triangle  ABC  is  bisected  at  D  and 
a  point  0  is  taken  in  AD  so  that  CD  is  equal  to  twice  OA  ;  two  forces 
act  along  OB  and  OC,  each  equal  to  the  weight  of  V7  lbs.  Find  the 
magnitude  and  direction  of  their  resultant. 

27.  The  sides  OB,  BA,  AO  of  the  triangle  OAB  are  respectively  4,  5, 
and  6  inches  long.  Find  the  magnitude  of  a  force  which,  together  with 
a  force  of  4  lbs.  weight  acting  along  OB,  will  be  equivalent  to  a  force  of 
12  lbs.  weight  acting  along  OA. 

28.  ABC  is  a  triangle,  D,  E  are  the  middle  points  of  AB,  AC.  Show- 
that  forces  acting  at  a  point  represented  in  magnitude  and  direction 

"N  by  DB,  BC,  CE  are  equivalent  to  forces  represented  by  DA,  AE. 
•  29.  Four  forces,  P,  Q,  R,  and  S,  no  two  of  which  are  parallel,  act  in 

a  plane  ;  the  resultant  of  P  and  Q  meets  that  of  R  and  S  in  A,  the  re- 
sultant of  P  and  R  meets  that  of  Q  and  S  in  B,  and  the  resultant  of  P 

and  S  meets  that  of  Q  and  R  in  C.  Prove  that  A,  B,  and  C  ai-e  in  the 
same  straight  line. 
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30.  Centres  of  force  repelling  directly  as  the  distance  are  arranged 
symmetrically  round  a  circle,  and  one  of  them  is  destroyed.  Find  the 
resultant  force  upon  a  particle  placed  at  any  point  in  the  plane. 

31.  It  is  required  to  decompose  a  force  whose  magnitude  and  line 
of  action  are  given  into  two  equal  forces  passing  through  two  given 
points.  Give  a  geometrical  construction  for  solving  the  problem  (1) 
when  the  two  points  are  on  the  same  side  of  the  line,  (2)  on  opposite 
sides. 

47.  The  following  definition  and  theorem  are  of  very 
great  importance. 

Def .  The  product  of  the  measures  of  a  force  and  its  distance 
from  a  point  is  called  the  moment  of  the  force  about  the  point. 

Note.— The  "dimensions"  of  a  force  are  [ML/T],  §  34  V. 
Hence  the  dimensions  of  a  moment  are  [ML7T^],  or  the 
same  as  those  of  energy. 

Let  0  be  the  point,  and  AB  represent  the  force.  Join 
OA,  OB  and  draw  OL  perpen- 

dicular to  AB.  Then  the  moment 

is  represented  by  the  product 
OL  X  AB,  i.e.  by  twice  the  area 
of  the  triangle  OAB.  Thus,  just 
as  a  force  may  be  represented 
geometrically  by  a  straight  line, 
so  may  its  moment  about  a  point 
be  represented  by  twice  the  area 
of  the  triangle  formed  by  joining 
the  point  to  the  extremities  of  the  line  representing  the 
force. 

It  will  be  convenient  to  regard  the  moment  of  a  force 
as  of  different  signs,  according  as  the  point  is  on  different 
sides  of  the  force,  or  according  as  the  direction  of  the  force 
looked  at  from  the  point  tends  in  the  direction  of  the 
hands  of  a  watch,  or  opposite.  With  this  convention,  the 

following  important  theorem  is  true,  viz. —  ^ 
The  sum  of  the  moments  of  any  numbei-  of  forces  about  a  \[ 

point  is  equal  to  the  moment  of  their  resultant  about  the  same 

point. 
We  first  proceed  to  prove  the  theorem  in  the  case  of 

two  forces  acting  at  a  point. 
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Let  the  forces  act  along  the  lines  Oa,  Ob  and  their 
resultant  along  Oc.  Let  P  be  the  point  about  which  the 
moments  are  taken.  Through  P  draw  BPC  parallel  to  Oa, 
and  through  C  draw  CA  parallel  to  06.  Then  OA,  OB 
may  be  taken  to  represent  the  forces  and  OC  their 
resultant.     Join  PO,  PA.     Then  we  require  to  show  that 

(1)  If  P  is  placed  as  in  the  first  figure, 

2  A  OPA  -  2  A  OBP-  2  A  OPC. 

(2)  If  P  is  placed  as  in  the  second  figure, 

2  A  OPA  +  2  A  OPB  =  2  A  OPO. 
Now  in  (1) 

2  A  OPA 2  A  OBP  =  2  A  OCA  -  2  A  OBP, 
=  2  A  OCB  -  2  A  OBP, 
=  2  A  OPO ; 
and  in  (2) 

2  A  OPA  +  2  A  OPB 
-  2  A  OCA  +  2  A  OBP, 
=  2  A  OCB  +  2  A  OBP, 
=  2  A  OPC. 

The   theorem  is  therefore 
true  for  two  forces.    It  is  then 

easy  to  see  that  it  is  true  in 
general   for   any  number   of 
forces  Pj,  Pg,  P3,  .  .  .  For  the 
moments  of  P„  Pg  are  equal 
to  that    of    their    resultant. 
Hence  the  moments  of  Pj,  Pg, 

P3  are  equal  to  those  of  the 
two  forces  P3  and  the  resultant  of  Pj,  Pg,  that  is  of  the 
resultant  of  the  three — and  so  on. 

48.  The  preceding  result  enables  us  to  prove  a 
theorem  which  is  often  of  great  use.  It  is  this.  Let 
forces  act  along  the  lines  OA,  OB,  and  of  magnitudes 
/ .  OA,  m .  OB  respectively.  Then  the  resultant  acts  along 

OC,  where  AC  :  BC  =  m:l,  and  is  represented  in  magnitude 
by  (l  +  m)OC.     For  if  the  resultant  K  acts  along  OC,  the 
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moments  of  the  forces  round  C  must  vanish.    Now,  since  the 
forces    are    /  .  OA   and    m  .  OB, 
the  moments  are  /  x  moment  of 

OA  -  m  X  moment  ot*  OB, 
.-../.  A  OAC  -  ?/i.  A  OBC  =  0. 

But  A  OAC,  A  OBC   are    on 

bases  AC,  CB,  and  of  the  same  O 
altitude, 

.  A  OAC     AC •'•aobc~bc' 
.•.LAC  =  m.BC, 

which  proves  the  first  part.     To  find  the  value  of  K^  take 
moments  about  A.     Then,  if  R  =  ic  .  OC, 

m  .  moment  of  OB  =  z  .  moment  of  OC, 

or  m  .  A  OAB  =  x  .  /\  OAC, 

m  .  AB  =  X  .  AC. 

But  AB  =  AC  +  BC  =  — .  AC, m 

.-.  (/  +  w)AC=a;.  AC, 
x  =  l  +  mj 

R  =  (;  +  m)OC, 

which  proves  the  second  part. 

Statics  of  Forces  acting  at  a  Point. 

49.  In  the  succeeding  part  of  this  chapter  we  devote 
our  attention  to  the  conditions  of  the  equilibrium  of  a 
particle  acted  on  by  any  forces  in  one  plane.  In  other 
words,  we  proceed  to  consider  the  science  of  statics  in  so 
far  as  it  has  reference  to  a  single  particle. 

As  the  particle  does  not  change  its  motion,  no  resultant 
force  can  act  on  it.  This  then  is  the  simple  condition,  viz. 
the  resultant  of  all  the  forces  must  be  zero.  We  can  from 

this  deduce  easily  the  two  following  sets  of  conditions, 
either  of  which  is  necessary  and  sufficient. 

I 
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(1)  The  resolved  parts  of  all  the  forces  in  any  two  directions 
at  right  angles  must  vanish. 

This  is  necessary,  for  as  there  is  no  resultant  there  can 

be  no  components — it  is  also  sufficient^  for  the  resolved  parts 
are  components  of  the  force,  and  if  these  two  components 
vanish,  the  diagonal  of  the  parallelogram  formed  by  them 
must  also  be  zero — i.e.  there  can  be  no  resultant  force. 

If  the  resolved  parts  in  any  two  directions  vanish,  so 
must  the  resolved  parts  in  any  directions  at  right  angles. 

Hence  the  limiting  condition  "  at  right  angles "  may  be 
omitted, 

(2)  The  moments  of  the  forces  about  any  two  points  not  in 
the  same  straight  line  with  the  particle  must  vanish. 

For  the  said  moments  are  equal  to  the  moment  of  their 
resultant.  Now  this  moment  can  vanish,  either  because 
the  resultant  itself  vanishes,  or  because  the  resultant  passes 
through  the  point. 

*  If,  however,  the  particle  and  the  two  points  do  not  lie  in 
one  straight  line,  it  is  clear  that  the  resultant  cannot  pass 
through  both  points,  and  therefore,  if  the  moment  vanishes 
for  both,  it  must  be  because  the  resultant  force  itself 
vanishes.  That  is,  the  particle  is  at  rest.  This  also  is 

clearly  necessary  and  sufficient. 
50.  The  following  theorems,  easily  deduced  from  the 

foregoing  principles,  are  often  of  great  use. 

(1)  The  triangle  of  forces. — If  three  forces  acthig  on  a 
particle  be  represented  in  magnitude  and  direction  by  the 

sides  of  a  triangle  taken  in  order,  they  will  be  in  equili- 
brium. 

.  For  let  the  forces  be  represented 
in  magnitude  and  direction  (though 
not  line  of  action)  by  AB,  BC, 

CA.    '  Then    we    know   that   the 
resultant  of  AB,  BC  is  AC  (§  45). 
Hence  the  resultant  of  the  three 

is  that  of  AC  and  CA,  that  is  zero — or  the  particle  will 
bo  at  rest. 

Note. — The  converse  theorems  of  this  are  also  true,  viz. 
if  three  forces  acting  on  a  particle  be  in  equilibrium,  and  a 
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triangle  be  formed  (a)  whose  sides  are  parallel  to  them 
they  will  also  be  proportional  to  them ;  or  (/?)  if  the  sides 
are  proportional  to  them  they  shall  make  the  same  angles 
with  one  another  as  the  corresponding  forces  do. 

(2)  The  polygon   of  fm'ces. — If   any  number   of  forces 
acting  on  a  particle  can  be  represented  by  the  sides  of  a 
closed   polygon    taken    in    order, 
they  will  be  in  equilibrium. 

For  let  the  polygon  be 

OABC  .  .  .  K.  By  §  45  the  result- 
ant is  found  by  joining  O  to  the 

extremity  of  the  sides  representing 
the  forces.  But  here  this  ex- 

tremity is  at  0  itself.  Therefore 
the  resultant  is  zero. 

Note. — The  converse  theorems  of  this  are  not  necessarily 
true,  viz.  if  a  polygon  be  drawn  with 
its  sides  parallel  to  the  forces  they  will 
not  necessarily  be  proportional  to  them. 
For  suppose  the  pol/gon  ABODE  to 
have  its  sides  parallel  and  proportional 
to  the  forces.  Draw  cd  parallel  to  CD, 
then  ABcd¥i  has  also  its  sides  parallel 
to  the  forces,  but  clearly  its  sides  are 
not  proportional  to  those  of  ABODE, 
i.e.  to  the  forces. 

In  the  case  of  a  triangle,  however, 
the  sides  of  A.cd  are  proportional  to 
those  of  AOD. 

So  also  with  the  other  converse, 
viz.  if  the  sides  are  proportional  to 
the  forces  they  will  not  necessarily 
contain  angles  equal  to  those  between 
the  forces.    For  suppose  this  the  case 
with  the   polygon  ABODPl     Form 
another  polygon  by  displacing  EDOB 

to  E^ZcB,  keeping   the  lengths    un- 
altered.    Then  AB«/E  is  a  polygon 

with  its  sides  proportional  to  the  forces,  but  the  angles 
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are  clearly  not  the  same  as  in  ABODE — that  is,  as  between 
the  forces. 

This  illustration  fails  in  tlie  case  of  the  triangle,  as  it 
ought,  for  when  three  sides  are  given  there  is  only 
one  triangle  possible. 

The  following  examples  will  not  only  serve  to  illus- 
trate the  principles  developed  in  this  chapter,  but  are 

also  important  in  themselves  : — 

Example  I.  A  particle  is  placed  on  a  smooth  inclined  plane.     Deter- 
onine  the  motion. 

A  smooth  surface  is  one  which  offers  no  resistance  to  a  particle 
moving  over  it.     The  reaction  between  the  particle  and  the  surface  is 

D      therefore  always  perpendicular  to  the 

surface  at    the  point  where  the  par- 
ticle is. 

Let  m  be-  the  mass  of  the  par- 
ticle, and  its  weight  therefore  tng. 

Let  BA  be  the  inclined  plane  making 

an  angle  BAG  (  =  a)  with  the  horizontal, 
and  suppose  the  particle  at  D.  The 
first  thing  we  have  to  do  is  to  find  the 

forces  on  it.  In  this  case  there  are  only  two,  viz.  its  weight  mg  acting 
vertically  and  the  resistance  of  the  plane,  which  we  will  call  R,  and 
which,  as  we  have  seen,  is  perpendicular  to  AB. 

Resolve  the  forces  in  two  directions,  one  along  AB  and  the  other 
perpendicular  to  it. 

Now  the  weight  can  be  decomposed  into  mg  cos  a  perpendicular  to 
AB  and  mg  sin  a  along  BA.     Hence 

Force  down  BA  =  mg  sin  a. 
This  acts  on  the  mass  m. 

.'.  Acceleration  down  BA  =  —   =  q  sin  a. 

Also  Force  perpendicular  to  AB  is 

R  -  mg  cos  a.' 
But  there  is  no  acceleration  perpendicular  to  AB  (else  the  particle 

would  go  through  the  plane), 
.'.  the  force  =  0, 

.*.  R-wg'cosa  =  0, 
or  R  =  wgrcosa  =  AVcos  a, 
where  W  is  the  weight. 

Hence  the  final  result  is  that  the  particle  moves  down  the  plane 
with  acceleration  g  sin  a. 
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If  BC  be  perpendicular  to  AC,  this  may  be  expressed, 
BC     height  of  plane 

Acceleration = g'-nr  - 1 — ^ — rh — 9' ^AB    length  of  plane 

Example  II.  A  mass  of  weight  W  is  placed  on  an  inclined  plane,  and 

is  kept  at  rest  by  a  force  acting  up  the  plane.  Determine  the  magnitude 
of  this  force  and  the  pressure  on  the  plane. 

Let  AB  be  the  plane,  AC  the  horizontal,  and  BL  perpendicular  to 
AC.     Let  P  denote  the  force  up  the 

plane,  R  the  reaction.    Then  the  forces  B 
acting  on  the  particle  are  as  represented  p^ 

in  the  figure.    We  shall  treat  the  ques-  \^**^^^ 
tion  in  two  ways. 

(a)  Draw  LM  perpendicular  to  AB. 
Then  in  the  triangle  LMB  the  sides 
LM,  MB,  BL  are  parallel  to  the  forces 
R,  P,  W  respectively.  Therefore,  by 
the  converse  of  the  triangle  of  forces,  they  are  proportional  to 
them. 

''  BM~LM    BL' 

But  the  triangle  LMB  is  similar  to  ALB,  and  therefore  has  its  sides 

proportional  to  those  of  the  triangle  ALB  respectively — 

••BL    AL    AB' 

p=w.gj^,=w.!^^^'gy"^p;^^^ 
AB  length  of  plane 

T?— W-AI^— W     l>ase  of  plane 
~     ■  AB  ~      '  length  of  plane^ 

E,g.  a  smooth  hoard  1  yard  long  has  one  end  raised  9  inches.  Find 
the  force  necessary  to  keep  1  ton  weight  from  slipping  down. 

Here  P=  A  ><  1  ̂^^  weight = weight  of  560  lbs. 

(/3)  In  the  second  method  let  the  inclination  of  the  plane  to  the 
horizontal  be  given,  say  a.  Then  W  makes  an  angle  a  with  the 
perpendicular  to  AB. 

The  condition  of  equilibrium  in  §  49  is  that  the  resolved  parts  in  any 

two  directions  must  vanish.  Resolve  then  along  AB  and  perpen- 
dicular to  it.     Then 

P-Wsind  =  0, 
R-Wcosa  =  0; 

whence  P  =  W  sin  a, 
R=Wco8a. 
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Note. — By  resolving  along  AB,  R  does  not  enter  into  the  equation, 
and  by  resolving  perpendicular  to  AB,  P  does  not  enter.  Hence  the 
equations  will  give  P  and  R  at  once.  The  advantage  of  this  is 
obvious.  In  general,  in  applying  the  conditions  of  equilibrium,  we 
should  if  possible  resolve  perpendicular  to  a  force  whose  magnitude  is 
not  wanted. 

Example  III.  A  imrticle  of  iceight  W  is  2^laced  on  a  smooth  inclined 
plane,  and  is  kept  there  by  a 

P  ^i\  horizo7ital  force.      Determine 
its  magnitude  and  the  pressure 
on  the  plane. 

Denote  the  force  by  P,  the 

pressure  by  R.  Draw  BL 
perpendicular  to  AC  and  BM 

A  L  M   C    ̂°  ̂̂ ^' Then  in  the  triangle  BLM 

the  sides  BL,  LM,  MB  are  parallel  to  the  forces  W,  P,  R.     Therefore 

BL~LM~MB' 
But  BLM  is  equiangular  to  ALB,  and  therefore  the  sides  of  the 

two  triangles  are  proportional.     Hence 

W_^_  R, 

AL    BL"AB' 
I 

P  =  W. BL  _  „  height  of  plane 

AL~         base  of  plane  ' 
T>  _  -ur  ̂ ^  _  "w"  ̂̂ ^^g^^  of  plane 

'  AL  base  of  plane 

If  we  proceed  by  the  second  method,  we  shall  have,  resolving  along 
the  plane  and  vertically, 

P  cos  a  -  W  sin  a  =  0, 
Rcosa-W  =  0: 

whence 

R: 

cos  a 

Example  IV.  A  mass  of  10  lbs.  is  susptcnded  from  a  point  by  a 
string  i  feet  long  ;  it  is  acted  on  by  a  horizontal  force  equal  to  the  iceight 
of  8  lbs.     How  far  is  it  displaced  and  what  is  the  tension  of  the  string  1 

Take  the  weight  of  1  lb.  for  the  unit  of  force. 
Let  A  be  the  point  of  suspension  and  P  the  position  of  rest  of  the 

mass.     Draw  PL,  AL  horizontal    and   vertical.     Then   the   forces   8, 



(HAP.  VIl FORCES  ACTING  AT  ONE  POINT 119 

10,  T  are  parallel  to  LP,  AL,  PA,  and  are  therefore  proportional  to 
them.     Therefore 

PL~AL~AP~4  ' 
also  .  PL2  +  AL2  =  AF  =  16. 

AX_10_5 

PL~  8  ~4' 

Rut 

and 

.-.  AL=^PL, 
4 

PL2  +  ||PL2=16, Id 

41PL2  =  16xl6, 

PL 

16    .    ̂  

»-8 

which  gives  the  displacement. 

Also  T^^^SVTl 4     PL       16 

.-.  T  =  2V4T  lbs.  weight. 

Example  V.  Two  masses  of  2  lbs.  each  are  connected  by  a  string  and 
are  suspended  over  two  smooth  pegs  in  a  horizontal  lin£  and  1  foot 
aptart ;  a  mass  of  1  lb.  is  then  hooked  on  to  the  string  between  the  pegs. 
What  is  the  position  of  rest  ? 

The  particles  will  hang  as  in 

the  figure.     AB  =  1  foot. 
The  tension  along  CB  and  CA 

must  be  equal  to  the  weight  of 
2  lbs.  Hence  at  C  three  forces 

act,  viz.  2  lbs.  weight  along  CB, 
2  lbs.  weight  along  CA,  and  1  lb. 

weight  vertical.  CA  and  CB  must  be  equally  inclined  to  the  vertical. 
Hence,  resolving  vertically, 

2  cos  BCL  +  2  cos  ACL  -1=0. 

But  BCL  =  ACL, 
.*.  4cos  ACL  =  1, 

ALB "'^^^^^^--^ 

0 

k2 
■ 

\i 

or 
^•AC  =  '' 

AC  =  4CL. 
Now AL  =  i  foot  =  6  inches, 

and AC2  =  AL-  +  CL^ 

/.  16CL2  =  36  +  CL2, 
15CL2=36, 

^^=Vl5-5^^°^^^^ 
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Example  VI.  ABCD  is  a  quadrilateral  and  0  any  point ;  forces  are 
represented  by  OA,  OB,  OC,  OD.  Prove  t/kat  their  resultant  is  4 .  OG, 
where  G  is  the  midpoint  of  the  line  joining  the  midpoints  of  the  diagonals. 

Join  the  diagonals  BD,  AC,  and  let 
E,  F  be  their  mid  points.  Join  EF  and 
bisect  it  in  G. 

Then  the  resultant  of     OA,  0C  =  20F, 

„      OB,  0D=:20E, 
and  resultant  of  OE,  0F  =  20G, 

20E,  20F=40G. 

51.  The  time   occupied   by  a 
particle  in  falling  from  the  highest 
point    of    a  vertical    circle  down 
any    chord   is  the    same    for    all 

chords.     To  prove  this,  let  AB  be  the  vertical  diameter  of 
the  circle  and  AC  any  chord  through  A       The   particle 
is  acted  on  by  its  weight  mg  vertically 
and  the  reaction  E,  which  is  normal 
to  the  chord.     The  force  effective  in 

moving  the  particle  is  therefore  the 
resolved  part  of  the  weight  along  AC. 
Since   ACB   is   a    right   angle,    this 
resolved  part  is  AC/AB  of  the  weight.   q\ 
The  acceleration  is  therefore 

AC 

AB-^
- 

Hence,  if  t  be  the  time  down  AC, 

^^==2-AB^^' 

whence 

or  the  time  down  AC  is  equal  to  that  down  AB,  and  is 
therefore  the  same  for  all  chords  through  A. 

The  same  theorem  is  also  clearly  true  for  chords  ending 
in  the  lowest  point  B. 

This  curious  theorem  is  of  importance,  since  it  enables  us 
to  find  the  straight  line  of  quickest  descent  from  a  fixed 
point  to  a  curve,  and  also  from  one   curve   to   another. 
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Thus  let  AB  be  any  curve  in  a  vertical  plane  and  P  a  point 
in  the  same  plane.     It  is  required  to  find  a  straight  line 
from  P  to  the  curve  down  which  a  particle  will  slide  more 
quickly  than  down  any  other  straight  line.    Through  P  draw 
a  circle  having  its  highest  point 
at  P  and  touching  the  curv-e  AB. 
Let  it  touch  it  in  Q.     Then  PQ 
is  the  line  required.    For,  if  not, 

let  PQ'  be  a  line  down  which  the time  is  shorter.    This  will  cut  the 

circle  at  some  point  P'  between 
P  and  Q'.    Now  by  the  foregoing 
theorem  the  time  down  PP'  is 
the  same  as  that  down  PQ.    But 

clearly   it   takes    longer   to    slide   down    PQ'   than   PP'. 
Hence  the  time   down  PQ'  is  longer  than  down  PQ — so 
that  PQ  is  the  line  of  quickest  descent. 

The  construction  may  be  modified  thus.  Let  C  be  the 
centre  of  the  circle.  Join  CP,  CQ.  Then  CP  is  vertical, 
and  CQ  is  normal  to  the  curve  at  Q.  Also  the  angle  CPQ 
is  equal  to  the  angle  CQP.  Hence  PQ  must  be  in  such  a 
direction  that  it  bisects  the  angle  at  Q  between  the  vertical 
and  the  normal  to  the  curve  at  Q. 

EXAMPLES— VII  (b). 

1.  Equal  forces  act  at  the  centre  of  a  regular  pentagon  along  the 
lines  drawn  from  the  centre  to  the  angles  of  the  pentagon.  Prove  that 
the  resultant  of  any  two  of  these  adjacent  forces  is  equal  and  opposite 
to  the  resultant  of  the  other  three. 

2.  Five  forces  acting  on  a  body  keep  it  in  equilibrium  ;  the  resultant 
of  three  of  these  forces  is  known.    Find  the  resultant  of  the  other  two. 

3.  Three  forces  cannot  be  made  to  balance  if  the  sum  of  two  of 
them  is  less  than  the  third. 

4.  A  weight  of  10  lbs.  is  supported  by  two  forces,  one  of  which 

acts  horizontally  and  the  other  at  an  angle  of  30°  with  the  horizon. 
Find  the  magnitude  of  these  forces. 

5.  A  mass  of  12  lbs.  is  hanging  by  a  string  from  a  fixed  point ;  it 
is  acted  on  by  a  horizontal  force  equal  to  the  weight  of  9  lbs.  Find 
the  tension  of  the  string. 
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Also  the  horizontal  distance  through  \Vhich  it  is  displaced,  the 
length  of  the  string  being  5  feet. 

6.  What  is  the  inclination  to  the  horizon  of  the  steepest  plane  on 
which  a  force  of  5  lbs.  weight  will  support  a  weight  of  10  lbs.  ? 

7.  On  an  inclined  plane,  whose  height  is  6  feet  and  length  18  feet, 
a  mass  of  12  lbs.  is  supported  by  a  string  which,  passing  over  a  pulley 
at  the  top,  supports  a  mass  m  hanging  freely.  Determine  the  mass  m 
that  the  12  lbs.  may  be  in  equilibrium. 

8.  A  number  of  loaded  trucks,  each  containing  1  ton,  on  one  part  of 
a  tramway  whose  inclination  to  the  horizon  is  a,  supports  an  equal 
number  of  empty  trucks  on  another  part  whose  inclination  is  ̂ .  Find 
the  weight  of  a  truck.  , 

9.  A  man  pushes  a  garden  roller  of  weight  iv  up  a  plank  6  feet  long 
and  resting  with  one  end  on  a  step  1  foot  high  ;  he  holds  the 
handle  horizontally.  Find  the  force  necessary  to  push  it,  and  the 
pressure  on  the  plank. 

10.  Prove  that  if  R,  R'  be  the  pressures  on  a  plane  when  a  given 
weight  W  is  supported  by  a  force  parallel  to  the  base  and  a  force 

parallel  to  the  plane  respectively,  RR'  =  W^. 
11.  Equal  weights  are  attached  to  the  ends  of  a  string,  one  of  which 

rests  on  a  plane  inclined  at  45°  to  the  horizon,  and  the  other  hangs 
vertically  over  the  summit  of  the  plane  and  rests  on  the  ground 
beneath.     Find  the  pressure  of  the  latter  on  the  ground. 

12.  A  string  is  fastened  to  two  points  A,  B  in  a  horizontal  line,  and 
supports  a  mass  of  8  lbs.  at  its  middle  point.  Determine  the  tension 
of  the  string,  when  the  length  of  the  string  is  1  foot  and  the  depth  of 
its  middle  point  below  AB  is  2  inches. 

13.  If  ABCD  is  any  quadrilateral  figure,  and  0  be  the  point  of  inter- 
section of  the  two  straight  lines  bisecting  the  opposite  sides  of  the 

quadrilateral,  then  the  forces  represented  in  magnitude  and  direction 
by  OA,  OB,  OC,  OD  will  be  in  equilibrium  at  0. 

14.  ABCD  is  a  quadrilateral  with  a  point  fixed  ;  forces  act  along  AB, 
EC,  AD,  DC  proportional  to  those  lines,  and  there  is  equilibrium  ; 
also  if  forces  be  represented  by  BA,  AD,  BC,  CD  there  is  equilibrium. 
Find  the  position  of  the  fixed  point,  and  prove  that  the  line  joining  it 
to  the  intersection  of  the  diagonals  is  bisected  by  the  line  which  bisects 
two  opposite  sides  of  the  quadrilateral. 

15.  ABC  is  a  triangle,  AE,  BF,  CD  lines  drawn  from  the  angles  to 

the  points  of  bisection  of  the  opposite  sides.  Show  that  the  forces  re- 
presented by  AE,  BF,  and  CD  are  in  equilibrium. 

16.  If  four  straight  lines  lie  in  a  plane,  and  no  three  of  them  meet 
in  a  point  nor  are  parallel,  prove  that  it  is  always  possible  to  arrange 
forces  acting  along  them  so  as  to  be  in  equilibrium. 
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If  the  four  straight  lines  are  the  sides  of  a  quadrilateral  inscribed  in 
a  circle,  prove  that  the  force  acting  along  each  side  is  proportional  to 
the  opposite  side  of  the  quadrilateral. 

17.  On  two  inclined  planes  of  equal  height  two  weights  are  respect- 
ively supported  by  means  of  a  string  passing  over  the  common  vertex  ; 

the  length  of  one  plane  is  double  its  lieight,  and  the  length  of  the  other 
is  double  its  base.  Show  that  the  pressure  on  one  plane  is  three  times 
the  pressure  on  the  other. 

18.  A  continuous  string,  without  weight,  length  Z,  hung  over  two 
smooth  pegs  in  the  same  horizontal  line,  distant  a  apart,  hangs  in  two 
loops,  on  each  of  which  is  placed  a  snjall,  smooth,  heavy  ring,  one  of 

weight  W,  the~  other  of  weight  W.  Find  an  equation  to  determine 
the  tension  of  the  string. 

19.  A  string  is  fastened  to  two  points  A,  B  and  has  equal  particles 
(m)  attached  at  C,  D  trisecting  the  string  ;  CD  is  horizontal  and  AC, 

BD  inclined  at  angles  of  45°  to  the  horizon.  Find  the  tensions  in 
AC,  CD. 

20.  Four  forces  acting  in  the  sides  of  the  quadrilateral  ABCD  are 
in  equilibrium.  If  the  straight  lines  representing  the  forces  in  the 
sides  AB,  BC,  CD,  DA  are  to  the  lengths  of  the  respective  sides  as 

P'.q'.r:s,  prove  by  considering  the  moments  of  the  forces  about 
the  angular  points  i\\Q.i  pr=qs. 

EXAMPLES— VII  (c). 

1.  Prove  that  the  time  of  falling  down  a  plane  from  rest  is  the 
same  as  the  time  of  moving  over  the  same  distance  with  a  uniform 
velocity  equal  to  half  that  acquired  in  falling  down  the  plane. 

2.  A  heavy  particle  slides  from  rest  down  a  smooth  inclined  plane 
15  feet  long  and  12  feet  high.  What  velocity  will  it  possess  when  it 
reaches  the  bottom  and  how  many  seconds  will  be  occupied  in  the 
descent  ?  How  long  would  it  ha,ve  taken  to  fall  vertically  through  a 
height  of  12  feet  ? 

3.  A  heavy  body  slides  down  a  smooth  plane  inclined  30°  to  the 
horizon.  Through  how  many  feet  will  it  fall  in  the  fourth  second  of 
its  motion  ? 

4.  A  body  begins  to  slide  down  a  smooth  inclined  plane  from  the 
top,  and  at  the  same  instant  another  body  is  projected  upwards  from 
the  foot  of  the  plane  with  such  a  velocity  that  the  bodies  meet  in  the 
middle  of  the  plane.  Find  the  velocity  of  projection  and  determine 
the  velocities  of  each  body  when  they  meet. 

5.  Find  the  horse-power  of  an  engine  which  is  taking  a  train  of  120 
tons  down  an  incline  of  1  in  224  at  50  miles  per  hour,  supposing  a 
resistance  of  35  lbs.  a  ton  on  the  level  at  this  speed. 



124  ELEMENTARY  DYNAMICS  part  ii 

6.  Find  the  horse -power  of  an  engine  which  is  drawing  a  train  of 
200  tons  up  an  incline  of  1  in  250  at  20  miles  an  hour  ;  the  resistance 
on  the  level  being  8  lbs.  a  ton. 

7.  Supposing  a  tricycle  and  rider,  weighing  together  200  lbs. ,  to  run 
uniformly  at  8  miles  per  hour  down  an  incline  of  1  in  100  against  the 
resistance  of  the  air  and  of  the  road,  without  working  the  pedals  ; 
prove  that  to  go  up  an  incline  of  1  in  200  at  the  same  speed  the  rider 

must  be  working  at  the  rate  of  "064  horse-power,  and  that  the  mean 
pressure  on  each  pedal  will  then  be  about  8*06  lbs.  weight,  supposing 
the  cranks  5  inches  long  and  making  100  revolutions  a  minute. 

8.  A  train  runs  from  rest  for  a  mile  down  a  plane  whose  descent  is 
1  foot  vertical  for  100  feet  in  length.  If  the  resistances  are  8  lbs. 
per  ton,  how  far  will  the  train  be  carried  along  the  horizontal  level  at 
the  foot  of  the  incline  ? 

9.  If  a  train  ascends  a  gradient  of  1  in  40  by  its  own  momentum 
for  a  distance  of  1  mile,  the  resistance  from  friction  etc.  being  10  lbs. 
weight  per  ton,  find  its  initial  velocity. 

10.  A  train  of  mass  200  tons  is  running  at  40  miles  an  hour  down 
an  incline  of  1  in  120.  Find  the  resistance  necessary  to  stop  the  train 
in  half  a  mile. 

11.  A  train  runs  from  rest  down  an  incline  of  1  in  100  for  a  distance 

of  1  mile  (no  engine  attached) ;  it  then  runs  up  an  equal  gradient  with 
its  acquired  velocity  for  500  yards  before  stopping.  Find  the  total 
resistance  in  pounds  per  ton  which  has  been  opposing  its  motion. 

12.  If  particles  start  from  rest  from  a  given  point  to  run  down  a 
number  of  smooth  inclined  planes,  show  that  at  the  end  of  t  seconds  they 
will  all  be  at  the  same  distance  from  a  point  gf/i  feet  below  that  from 
which  they  started. 

13.  P  hangs  vertically  and  is  9  lbs.  Q  is  6  lbs  on  a  plane  whose  in- 

clination is  30°.  Show  that  P  will  draw  Q  up  the  whole  length  of  the 
plane  in  half  the  time  thatt  Q  hanging  vertically  would  draw  P  up  the 

plane. 
14.  A  weight  of  W  lbs.  is  drawn  from  rest  up  a  smooth  inclined  plane 

of  height  h  and  length  I  by  means  of  a  string  passing  over  a  pulley  at 
the  top  of  the  plane,  and  supporting  a  weight  of  w  lbs.  hanging  freely. 
Prove  that  in  order  that  W  may  just  reach  the  top  of  the  plane,  w 

must  be  detached  after  it  has  descended  a  distance    •  t — v 

15.  Two  equal  masses  of  8  lbs.  are  connected  by  a  string  ;  one  lies 
on  an  inclined  plane  and  the  other  hangs  freely  over  the  top.  If  the 

inclination  of  the  plane  be  30°  and  the  string  be  just  on  the  point  of 
breaking,  find  the  greatest  weight  which  the  string  would  support  if  it 
were  suspended  from  a  fixed  point  vertically. 
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16.  If  two  particles  P  and  Q  start  simultaneously  from  A,  one  .sliding 
down  the  plane  AB  at  the  angle  a  to  the  horizon  and  the  other  falling 

freely,  prove  that  their  relative  vertical  acceleration  is  {g  cos^  a). 
17.  Three  weights  {w)  are  fastened  to  a  string  whose  length  (Z)  is 

equal  to  that  of  an  inclined  plane  ;  one  weight  is  attached  to  each  end, 
and  the  other  weight  to  the  middle  of  the  string ;  when  one  weight 
hangs  over  the  top  of  the  plane  the  weights  are  in  equilibrium.  If  the 
second  weight  also  is  just  made  to  hang  vertically,  find  the  velocity 
with  which  the  third  weight  reaches  the  top  of  the  plane. 

18.  A  smooth  wedge  in  the  form  of  a  right-angled  triangle  ABC 

has  its  hypotenuse  AB  horizontal ;  the  angle  ABC  is  30° ;  equal 
masses  lie  on  the  faces  and  are  connected  by  a  string  passing  over  the 
top.  Determine  the  acceleration,  the  tension  of  the  string,  and  the 
pressure  produced  by  the  string  at  the  top. 

19.  A  man  stands  on  the  upper  end  of  a  long  rough  plank  of  length 
a  and  mass  M,  which  lies  along  a  smooth  straight  groove  on  an  inclined 
plane,  and  has  its  upper  end  supported  by  a  cord.  The  cord  is  cut, 
and  at  the  same  instant  the  man  starts  off  and  runs  with  very  short 
steps  down  the  plank  at  such  a  rate  that  the  plank  does  not  move. 
Prove  that  the  velocity  of  the  man  at  the  lower  end  of  the  plank  is 

^[igaco^d^]. 
where  m  is  the  mass  of  the  man  and  a  the  inclination  of  the  groove  to 
the  vertical. 

20.  A  wedge  with  angle  60°  is  placed  upon  a  smooth  table,  and  a 
weight  of  20  lbs.  on  the  slant  face  is  supported  by  a  string  lying  on 
that  face  passing  through  a  smooth  ring  at  the  top  and  supporting  a 
weight  W  hanging  vertically.  Find  the  magnitude  of  W.  Find  also 
the  force  necessary  to  keep  the  wedge  at  rest  (1)  when  the  ring  is  not 
attached  to  the  wedge,  (2)  when  it  is  so  attached. 

21.  A  particle  is  fastened  on  an  inclined  plane  whose  height  is  6 
inches  and  base  18  inches,  and  which  rests  on  a  horizontal  board  ;  it 

is  set  free  to  slide  down  the  plane.  Find  the  change  in  the  pressure 
on  the  board. 

With  what  acceleration  must  the  board  be  moved  upwards  that  the 
pressure  on  it  may  be  the  same  ?  In  this  case  compare  the  time  of  the 

particle's  fall  down  the  plane  with  that  in  the  former  case. 
22.  If  two  vertical  circles  touch  each  other  a  their  lowest  point,  and 

any  straiglit  line  be  drawn  from  that  point  to  cut  the  inner  and  to 
meet  the  outer  circle,  show  that  the  time  of  a  heavy  particle  falling 
from  rest  along  the  part  of  the  line  (considered  as  an  inclined  plane) 
intercepted  between  the  circles  is  constant. 

23.  A  straight  line  without  a  circle  and  in  the  same  plane  with  it  is 
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parallel  to  its  vertical  diameter.  Find  the  straight  line  of  quickest 

descent  fi'om  the  given  line  to  the  circle,  and  determine  the  angle 
which  the  line  so  drawn  makes  with  the  tangent  at  the  lowest  point  of 
the  circle. 

24.  Show  that  the  line  of  quickest  descent  from  one  curve  to  another 
bisects  at  each  end  the  angles  between  the  vertical  and  the  normal  to 
the  curve  there. 

25.  Show  how  to  find  the  time  of  quickest  descent  from  a  vertical 
curve  to  a  point  below  it. 

26.  Find  the  direction  of  the  line  of  quickest  descent  between  two 

parallel  lines  in  a  vertical  plane. 
27.  Find  the  direction  of  the  line  of  quickest  descent  from  a  point 

to  a  circle. 

28.  Find  the  line  of  longest  descent  from  a  point  to  a  circle. 
29.  Find  (1)  the  line  of  quickest  and  (2)  the  line  of  longest  descent 

from  one  circle  to  another,  both  lying  in  a  vertical  plane. 



CHAPTER  VIII 

FORCES  ON  A  RIGID  BODY   PARALLEL  FORCES 

52.  When  we  are  dealing  with  the  motion,  or  with  the 
conditions  o£  equilibrium  of  particles,  all  the  forces  under 
consideration  pass  through  one  point.  This  is  no  longer 
the  case  when  we  have  to  deal  with  bodies  of  finite  size, 
and  our  methods  will  therefore  have  to  be  modified 

accordingly.  The  modification  depends  on  the  principle 
that  we  may  suppose  a  force  to  act  at  any  point  in  its  line 
of  action,  which  is  in  rigid  connection  with  the  body.  In 
practice,  however,  it  is  best  to  suppose  that  all  points  are 
rigidly  connected,  and  consider  afterwards  the  actual  cir- 

cumstances of  each  case. 

"The  truth  of  the  principle  can  be  rendered  evident  by the  following  considerations. 

Let  A,  B  be  two  points  in  a  rigid  body  and  suppose  two 

equal  and  opposite  forces  act- 
ing at  the  points  A,  B,  the  one 

in  the  line  BA  and  the  other 
in  the  line  AB.  Then  it  is 

evident  that  no  change  of 

motion  can  take  place — in 
other  words,  the  state  of  rest 
or  motion  is  unaltered  if  we 

suppose  the  two  forces  alto- 
gether removed. 

Now  let  a  force  P  act  at  a  point  B  of  a  rigid  body,  and 
let  A  be  any  other  point  in   its  line  of  action,  rigidly 
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connected  with  B.  At  A  apply  two  opposite  forces  (Pj,  Pg) 
each  equal  to  P  in  magnitude  and  acting,  Pi  along  AB  and 
Pg  along  BA.  These,  being  in  equilibrium  by  themselves, 
will  not  affect  the  motion  or  state  of  rest.  But  by  the 
preceding  considerations  we  may  take  away  P  and  Pg,  and 
there  remains  Pj  acting  at  A,  instead  of  P  at  B,  whilst  the 
state  of  rest  or  motion  of  the  body  is  unaltered.  In  other 
words,  we  may  suppose  P  to  have  its  point  of  application  at 
any  point  in  its  line  of  action. 

53.  If  a  system  of  forces  in  one  plane  acts  on  a  body, 
their  directions  will  in  general  intersect.  We  can  then  by 
the  foregoing  principle  suppose  two  to  act  at  their  point  of 
intersection,  and  replace  them  by  their  resultant.  We  can 
then  take  the  resultant  of  this  and  another  of  the  forces, 

and  so  on,  until  at  last  we  have  the  single  resultant  of  the 
whole.  This  will  be  possible  by  foregoing  principles, 
provided  each  two  of  the  forces  under  consideration  do 
actually  intersect;  but  should  they  be  parallel  these 
principles  are  no  longer  directly  applicable.  Before, 
therefore,  proceeding  to  the  general  case  it  will  be  necessary 
to  consider  the  special  case  of  parallel  forces  acting  on  a 
rigid  body. 

Two  Parallel  Forces. 

54.  Suppose  A,  B  to  be  two  fixed  points  and  CD  a  fixed 
straight  line.     Let  P  be  any  point  on  the  line  CD ;   join 

PA,  PB.     Now  sup- 
pose    P     to     move 

farther    and  farther 

p^  ^^^'^'^  to    an    infinite    dis- tance along  CD,  then 

e'  PA,  PB  will  become 
more  and  more  parallel  to  CD,  and  by  making  P  go  far 
enough  we  may  make  the  angles  APC,  BPO  smaller  than 
any  given  quantity,  however  small.  That  is,  ultimately 
the  angles  become  nothing  and  CD,  PA,  PB  become  parallel. 

So,  vice  versa,  all  parallel  lines  may  be  supposed  to 
intersect  in  the  same  point  at  an  infinite  distance  away. 
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This  consideration  at  once  brings  parallel  forces  within 
the  category  of  forces  acting  at  a  point,  and  hence  the 
results  already  obtained  are  applicable  to  these  forces 
also. 

(1)  To  find  i]iQ  magnitude  of  the  resultant  of  two 
parallel  forces  we  notice  that  if 
AB,  BC  be  equal  and  parallel  to 
two  forces  P,  Q,  their  resultant  (R) 
is  AC.  If  now  P,  Q  are  parallel 
and  in  the  same  direction,  the 
angle    ABC    becomes    two    right 
angles  and  A  B  C 

AC  =  AB  +  BC,  A— c   B 
or  R  =  P  +  Q. 

If,  on  the  contrary,  they  are  in  opposite  directions,  the 
angle  ABC  becomes  zero,  and 

AC  =  AB  -  BC, 

or  R  =  P  -  Q. 

(2)  The  direction  of  R  is  clearly  parallel  to  that  of  P  or 

O  Q,  for  R  goes  through   their 
intersection,    which  is    at    an 

-»-  p  .       .        . 
infinite  distance. 

  ^R         (3)  The  position    of    R  is 
easily  found  by  applying  the 

theorem  of  moments  proved  in 
the  last  chapter. 

Take  any  point  0  and  draw 

OAB  perpendicular  to  the  di- 
-^R  rections  of  the  forces,  meeting 
— ^P        them  in  A  and  B,  and  let  the 

resultant  act  at  C.     Then  the 
moments    of    the    forces    are 

~^  equal  to  the  moment  of    the 
Fio,  2.  resultant,  whence 

B  B 
FlQ,  1. 

O 

C 
7^ 

K 

(in  Fig.  1) 

(in  Fig.  2) 
P.  OA  i  Q.  OB  =  R.  OC  =  (P  +  Q)OC, 

P.  OA  :f  Q.  OB  =  R.  OC  ̂   (P  -  Q)OG, 
K 
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the  +  or  -  sign  being  taken  according  as  0  is  outside 
A,  B,  or  between  them. 

In  the  first  case  C  is  between  A,  B ;  in  the  second  case 
outside,  on  the  side  of  the  bigger  force. 

The  point  0  may  have  any  position ;  suppose  it  at  C, 
then  OC  =  0,  and 

P.CA-Q.CB  =  0, AC  Q 

BC^F ie.  C  divides  AB  inversely  as  the  forces,  internally  if  the 
forces  are  in  the  same  direction,  externally  if  in  opposite 
directions. 

By  supposing  the  point  0  at  B  we  get 

P .  AB  =  R .  BC, 

bc  =  |ab.p-5qAb, 
a  form  which  is  sometimes  useful. 

Draw  the  line  A'C'B'  inclined  to  the  forces  in  Figs.  1,  2. 
Then  we  may  suppose  the  forces  to  act  at  A',  B',  C, 
and  we  know  by  geometry  that  A'B'  is  divided  at  C  in 
the  same  way  as  AB  is  at  C.     In  other  words, A  C^  ̂   Q 

B'C  ~  F 

Now  notice  that  the  position  of  C  on  A'B'  depends  on 
the  magnitude  of  the  forces  alone,  and  not  on  their  common 

direction.  Hence  if  P,  Q  act  at  A',  B'  in  any  parallel 
directions,  their  resultant  will  always  act  at  C  in  the 
like  direction.  C  is  called  the  centre  of  the  parallel  forces 

P,  Q  acting  at  A',  B'.  It  remains  the  same  when  P,  Q  are 
turned  through  any  the  same  angle  about  A,  R 

55.  The  following  proof  is  often  given  of  this  important 
theorem — 

Suppose  the  forces  to  be  P,  Q  acting  at  the  points  A,  B.  Apply  at 
A  any  force  S  along  BA  and  at  B  an  equal  force  S  along  AB.  These 
will  balance  one  another  and  will  not  modify  the  state  of  motion  of 
the  rigid  body  to  which  they  are  applied.  Reijlace  P  and  S,  acting  at 
A,  ami  Q  and  S  acting  at  B,  by  their  resultants.     Then,  if  the  forces 
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P,  Q  act  in  the  like  direction  as  in  Fig.  1,  it  is  clear  that  the  two 
resultants  will  intersect  at  some  point  0.  If,  however,  they  act  in 

unlike  directions,  as  in  Fig.  2,  they  will  only  intersect  if  P  and  Q  are 
unequal.     For  it  is  clear  that  if  they  be  equal,  then  the  resultants 

of  P  and  S  and  of  Q  and  S 

will  be  parallel,  whilst  if 

Q  is  not  e(][ual  to  P  the 
resultants  will  cease  to  be 

parallel,  and  will  intersect 
somewhere,  say  0,  as  in 

Fig.  2. 
If  then  the  case  of  equal 

forces  be  excepted  for  the 

present,  the  resultants  in 
both  cases  of  like  and  un- 

like forces  will  meet  at  a 

point  0.  Through  0  draw 
OC  parallel  to  P  or  Q  and 
meeting  the  line  AB  in  the 
point  C.  When  the  forces 
are  like,  as  in  Fig.  1,  C 

will  clearly  fall  between  A 
and  B.  When,  however, 

they  are  unlike,  as  in  Fig. 
2,  C  will  fall  outside  AB  oil 
the  side  of  tJie  larger  force. 
To  prove  this,  suppose  Q 

the  larger  force.  If  it  were 

equal  to  P,  the  resultant  of  it  and  S  would  act  along  BO'  parallel  to 
AO  ;  but  as  Q  is  greater  than  P,  this  resultant  must  lie  somewhere  in 

the  angle  QBO',  and  therefore  will  intersect  AO  to  the  right  of  BQ — 
in  other  words,  OC  will  fall  on  the  side  of  Q  away  from  P. 

We  have  then  now  two  forces  at  A  and  B  whose  directions  intersect 

at  a  point  0.  Transfer  their  points  of  application  to  0.  Each  can  be 

decomposed  into  two  forces  equal  and  parallel  to  their  former  com- 

ponents, viz.  the  one'hito  P  along  OC  and  S  parallel  to  BA,  and  the 
other  into  Q  along  OC  (Fig.  1)  or  CO  (Fig.  2)  and  S  parallel  to  AB. 
The  two  S  forces  balance  one  another  and  may  be  removed.  We  are 
then  left  with 

(Fig.  1,-  like  forces)  P  +  Q  along  OC, 
(Fig.  2,  unlike  fol-ces)  Q  -  P  along  CO. 

It  only  remains  to  determine  the  position  of  C.  Now  notice 
that  in   the  case  of  the  force  along  OA  it  is  decomposed  into  two 

Fig.  2. 
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parallel  to  OC,  CA. 
sides — that  is, 

The  forces  are  therefore  proportional  to  these 

OC  :  AC, 

whence 

Similarly 

R:P:S=OA 
OOP 

AC'S* 

OCQ 

BC     S" 
Therefore,  dividing  the  first  of  these  by  the  second, 

BC_P 

ACQ' 
or  AB  is  divided  at  C  inversely  as  the  forces,  internally  when  like,  and 
externally  when  unlike.     Here  also  it  is  to  be  noticed  that  the  position 
of  C  depends  only  on  the  magnitudes  of  P  and  Q  and  not  on  their 
directions. 

With  this  method  no  proof  is  given  that  the  moment  of  two 

parallel  forces  about  any  point  is  equal  to  the  moment  of  their  result- 
ant. If  this  method  be  adopted,  therefore,  it  will  be  necessary  to 

prove  this  further  proposition.  This  is  left  as  an  exercise  to  the 
student. 

56.  Having  now  obtained  the  means  of  finding  the 
resultant  of  two  parallel  forces,  we  can  proceed  to  find  that 
of  any  number.  Suppose  then  we  are  given  any  number 
of  parallel  forces  Pj,  Pg,  P3,  .  .  .  acting  at  the  points  Aj, 
Ag,  A3, .  .  .  Then  P,,  P^  may  be  replaced  by  another  parallel 
force  Rj  acting  at  a  definite  point  Bi .  So  11^  and  P3,  acting 
at  Bj  and  A3,  by  another  Rg  ̂^  a  definite  point  B^,  and  so  on; 
until  all  the  forces  are  replaced  by  a  single  force  acting  at 

some  definite  point  C ;  which 
point,  as  we  have  just  seen, 
depends  only  on  the  magnitudes 
of  the  forces  and  their  points  of 
application,  and  not  at  all  on 
their  common  direction.  This 

point  is  called  the  centre  of 
parallel    forces  of    the    system. 

     We  proceed  to  obtain  formulae 
by  which  its  position  may  be 
determmed. 

We  shall  suppose  tlie  positions  of  Aj,  A^,  .  .  .  deter- 
mined by  their  distances  from  two  straight  lines,  Ox,  0?j 

A, 

M^M^M 
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perpendicular  to  one  another,  and  we  shall  denote  their 

distances  from  Oij  respectively  by  ./•,,  ;>•,,  .  .  .,  and  from 
Ox  by  ̂j,  i/^j  .  .  .,  also  the  corresponding  distances  of  C  by 
Xf  y.  Now  we  know  that  the  position  of  C  is  independent 
of  the  common  direction  of  the  forces.  Suppose  then  that 
they  are  all  parallel  to  Oy,  and  draw  the  forces  cutting  Cb; 
in  Mj,  M2,  .  .  .,  and  let  the  resultant  cut  it  in  M. 

Then  the  resultant  R  is 

R  =  P,  +  P,  +  P3+.  .  ., 

and  the  moment  of  the  forces  round  0  is  the  same  as  the 
moment  of  their  resultant.     Hence 

R.OM  =  P,.OM,  +  P,.OM,+  .  .  .; 

Px.a;i  +  Pa.a;a  +  P3.a;3+  .  .  . 
^=   ^   , 

_  Pi-T,  +  V^i  +  PaiCa  +   .    .    . 
P1  +  P2  +  P3+    .    .    . 

Similarly  we  may  suppose  the  forces  to  be  all  parallel  to 

Ox-,  and  by  again  taking  the  moments  in  this  case  about 
O,  we  get,  as  before^ 

_  P.y,  +  P^3  +  .  •  . . 

y-    P,  +  P,+  .  .  .    ' 

X,  y  are  therefore  now  known,  and  the  position  of  C  is 
determined. 

These  results  are  often  written 

2Pa;  2Pv 

"=2F'     ̂ =2P- 

2Pa;  standing  for  summation  of  all  terms  Pi^'j,  Pga^a,  etc. 
Note. — If  any  force  act  in  the  opposite  direction  to  the 

others,  we  must  put  -  P  instead  of  P,  for  its  moment  is 
altered  in  direction,  and  it  diminishes  the  resultant.  Also 
if  a  point  A  lies  to  the  left  of  Oy,  its  value  of  x  must  be 
considered  negative,  for  here  again  the  corresponding 
moment  acts  in  the  opposite  direction.  Similarly,  if  it  lie 
below  0;r,  its  value  of  //  must  be  negative.  With  these 
conditions,  the  formulne  above  are  universally  true. 
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A  few  examples  will  illustrate  the  use   of  the  above 
formulae. 

Example  I.  Parallel  forces  \,  2,  Z,  i  act  at  the  angles  of  a  square. 
Find  their  centre  of  parallel  forces. 

yfio 

y'^
 

M B 

Let  A  BCD  be  the  square.      We  may  take  the  Hnes  of  reference 
Oy,  Oij,  at  onr  discretion.     Choose  them  then  to  be  AB,  AD.     Then 

_lxO+2xAB+3xAB+4xO ^~  1+2+3+4 

=  T«7AB  =  iAB; 

_1^0  +  2  X  0  +  3  X  AD  +  4  X  AD y_  _„  1:^-2  +  3  +  4 
=  tV.AB; 

and  R  =  l  +  2  +  3  +  4  =  10. 

Hence  the  resultant  is  10  and  it  acts  at  0,  where 

AM  =  iAB,    OM=tVAB. 

Example  IL   The  same  system  with  1,  3  in  the  opposite  direction. 

Here  R=  -  1 +2-3  +  4=2. 
-1x0  +  2.  AB-3.AB  +  4.0 

-1.0  +  2.0-3.  AD+4.  AD 

-UK 

=  iAD, 

and  the  resultant  acts  at  0  as  in  the  second  figure,  where  AM  is  in 
the  opposite  direction  to  AB  and  is  ̂ AB,  and  OM^^AD. 

Example  IIL  Forces  eqvM  to  the  weights  of  3,  2, 6,  5,  7  Ihs.  act  at  the 
five  angles  A,  B,  C,  D,  E  0/  a  regular  hexagon  ABCDEF  inscribed  in  a 
circle.     Find  the  resultant  and  its  point,  of  application. 

The  resultant  is  given  by 

R  =  3  +  2  +  6  +  5  +  7  =  23  lbs.  weight. 

To  find  its  point  of  application,  take  O.at  the  centre  of  the  circle, 
FOC  for  the  line  Oy,  and  a  perpendicular  to  it  for  Ox. 

The  distances  of  A,  15,  D,  E  from  FOC  and  from  Ox  must  be  found. 
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This  is  easily  done  when  we  notice  that  FOA  is  an  equilateral  triangle, 
and  therefore  AL  bisects  OF.     Hence 

OL  =  ̂ OF  =  Jr,  where  radius  =  r, 

AL--  =  OA-  -  OL-  =  7'-  -  ir2  =  f  ?-2  ; 

E 

M i / 
^ 

D
^
 

M 
0 

c 

r 
The  magnitudes  of  the  distances  of  A,B,  D,  E  from  Oy  are  therefore  all 

equal  to  -— r,  and  from  Oct'=-r.     Hence ^  2 

3x^,.  +  2x^r  + 6.0.5(-f).+  7(-f> 23 

7^r=--263...r; 

y= 

3  X  ir  +  2(  - ir)  +  6(- r)  +  5(- ir)  +  7(ir) 23 

=  -:^r=-  1956.  .  .  r. 

That  is,  the  resultant  is  the  weight  of  23  lbs.  acting  at  G  as  in  the 

figure,  where  GM=  -0652  .  .  .  r  and  0M=  -263  .  .  .  r. 

57.  Couples. — We  have  seen  that  in  the  case  of  two 
unlike  parallel  forces  P,  Q  the  resultant  is  P  -  Q,  and  that 
it  acts  at  a  point  C,  whose  distances  from  the  points  of 
application  A,  B  of  the  components  are  given  by 

Q 

AC  = 
AB. 

P-Q 

If  now  the  forces  are  nearly  equal,  the  resultant  P  -  Q 
is  very  small  and  AC  becomes  very  large.  The  resultant 
therefore  acts  at  a  very  great  distance.  If  the  forces  are 
exactly  equal  the  resultant  is  zero,  but  this  zero  force  acts 
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Q 

at  an  infinitely  great  distance.  Its  moment,  however,  about 
any  j^oint  remains  finite.     Such  a  system  is  called  a  couple. 

Def.  A  couple  is  a  system  of  tuv  equal  unlike  parallel  fmxes 
not  in  the  same  straiglit  line. 

We  proceed  to  demonstrate  certain  properties  of  couples. 
I.  The  sum  of  the  moments  of  the  fmxes  composing  a  couple 

about  any  point  in  their  plane  is* the  same. 
For  in  the  figure,  if  O  be  any  point,  the  moments  are 

P.  OA  -  Q  .OB  =  P(OA  -  OB)  =  P.  AB, 

which  is  independent  of  the  posi- 
tion of  0. 

The  distance  between  the  two 

      forces  of  a  couple  is  called  its  arm. 

O  The  i^roduct  of  one  force  into  the 
arm  is  called  the  torque  or  moment 

of  the  couple.  It- is  to  be  taken  as 
positive  or  negative  according  as 

the  forces  tend  to  turn  the  body  one  way  round  or  the 
other.  The  theorem  just  proved  may  then  be  stated 
thus :  the  sum  of  the  moments  of  the  f(yrces  of  a  couple  about 
any  point  in  its  plane  is  equal  to  the  moment  of  the  couple. 

58.  II.  A  couple  may  be  considered  as  acting  anywhere  in 

its  plane. 
Let  aABb  represent  a  couple  in  one  position,  and  cCDd 

the  same  transferred  to 

any  other  position  in 

the  plane,  AB,  CD  re- 
presenting arms  of  the 

couple. 
Then  if  these  couples 

are  equivalent,  one  of 
them  reversed  will  be 

in  equilibrium  with  the 
other.  Suppose  then  the  second  reversed,  and  P  to  act 
along  cC,  dD.  Let  the  directions  of  the  forces  meet  in 
^>/>  9i  h-  This  forms  a  rhon^bus,  or  parallelogram  witli  all 
its  sides  equal. 

We  may  suppose  the  forces  P  along  Aa  and  P  along 
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A 
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cC  to  act  at  /;  and  P  along  Bh  and  clD  at  h.  Then  P 
along  ef  and  P  along  gf  have  a  resultant  R  along  hf.  Also 
P  along  gh  and  P  along  eh  have  an  equal  resultant  R  along 
hf.     These  will  balance  one  another. 

Hence  the  two  original  couples  are  equivalent  to  one 
another. 

59.  III.  A  couple  may  he  replaced  hy  another  whme  moment 
is  the  same. 

Let  AB  be  the  arm  of  the  couple  and  the  forces  P,  Q. 

Let  B'  be  any  other  point 
in  the  line  AB,  and  at  B' 
apply  two  equal  and  oppo- 

site forces  P',  Q'  perpen- 
dicular to  AB'  so  that 

F.AB'  =  P.AB. 

The  equal,  forces  at  B'  pro- 
duce no  effect  by  them- 

selves. .  Now  the  force  P  at  A  can  be  replaced  by  two 

others  at  A,  viz.  P  -  Q'  and  Q'.  Also  P  -  Q'  at  A  and  P' 
at  B'  have  a  resultant  R  =  P-Q'  +  P'  =  P  (since  P'  =  Q') 
acting  at  a  point  which  divides  AB'  in  the  point  C,  where 

P'.AB'  =  R.AC  =  P.AC. 

But  P'.AB'  =  P.AB, 

therefore  C  and  B  coincide — that  is,  the  resultant  of  P  -  Q' 
at  A  and  P'  at  B'  is  P  at  B,  and  therefore  annuls  Q  at  B. 
We  are  left  with  Q'  at  A  and  Q'  at  B',  that  is  a  couple 
whose  moment  is  Q'.  AB'  =  P .  AB,  the  same  as  the  original one. 

By  means  of  the  former  proposition  it  follows  at  once 
that  the  original  couple  can  be  replaced  by  any  other  in 
the  same  plane  whose  moment  is  the  same. 

Cm:  It  is  clear  that  we  can  replace  any  couple  by  another 
in  which  either  the  force,  or  the  arm  is  at  our  disposal. 

60.  IV.  A  fm'ce  acting  at  any  point  can  he  replaced  hy 
an  equal  force  acting  at  any  other  point  and  a  couple. 

Let  the  force  P  act  at  A,  and  let  B  be  any  other  point. 
Draw  BL  perpendicular  to  the  direction  of  P  and  apply  at 

B  two  equal  unlike  forces  P',  Pj  each  equal  to  P.     Tlie 
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system  is  unaltered.     But  these  three   forces  may  be  re- 

garded as  a  single  force  P'  at  B  together  with  the  couple 

P,   Pj   whose  mo- ment is  P .  BL. 

61.^V.  The  re- 
sultant of  two  couples 

in  a  plane  is  another 
whose  moment  is  the 

sum  of  their  mo- ments. 

For  replace  the 
two  couples  by 

others  having  the  same  arm  AB  and  forces  P,  Q.  Then 

we  have  a  single  couple  whose  force  is  P  -f  Q  and  arm  AB. 

Its  moment  is  (P  +  Q)AB  =  P .  AB  4-  Q .  AB, 
=  moment  of  first  +  moment  of  second. 

62.  It  is  now  possible  for  us  to  determine  the  resultant 
of  any  system  of  forces  in  a  plane  acting  on  a  rigid  body. 
For  take  any  fixed  point  0  in  the  plane,  and  let  the  forces 
be  Pi,  Pg, .  .  .  acting  at  A,,  A.,,  .  .  .  Then  Pi  acting  at  Ai  is, 
by  IV  above,  equivalent  to  Pi  acting  at  0  together  with  a 

-couple  ;  similarly  with  the  others.  Consequently  the  forces 
are  equivalent  to 

(1)  A  system  of  forces  acting  at  a  point  equal  and 
parallel  to  the  original  forces,  and 

(2)  A  system  of  couples  in  the  plane  of  the  forces. 
These  may  be  combined  into  a  single  force  at  the  point 
and  a  single  couple.     Hence  we  get  the  theorem  that  any 

number  of  coplanar  foi'ces  acting  on  a  rigid  body  are  equivalent 
io  a  single  force  acting  at  any  point,  and  a  couple. 

Note. — The  single  force  is  independent  of  the  position 
of  the  point,  for  it  is  the  resultant  of  the  original  forces 
supposed  acting  at  a  point.  The  magnitude  of  the  couple, 
however,  does  depend  on  the  position  of  the  point  0. 

In  the  case  where  there  is  both  a  force  and  a  couple 
the  system  can  be  reduced  to  a  single  force  alone,  with, 

however,  a  definite  line  of  action.  For  suppose  the  re- 
sultant force  is  R  acting  at  0,  represented  by  OA,  alter 
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the  arm  and  forces  of  the  couple  (by  III)  so  that  the  force 
is  R.  Then  turn  it  (by  II)  until  one  of  its  forces  acts  at 
O  and  opposite  to  the  force  OA.  Suppose  the  couple  is 

then  represented  by  OB,  O'C,  00' 
being  the  arm.  Then  OA,  OB 

annul  and  we  are  left  with  O'C 
only,  i.e.  with  a  single  force  R 

acting  along  a  definite  line  O'C. 
If  in  the  above  system  there 

is  no  resultant  force  R,  then  the 

couple  remains. 
In  general  then  any  system  of  coplanar  foixes  acting  on  a 

rigid  body  reduces  to  either  a  single  foi'ce  OR  a  single  couple. 
If  both  vanish,  we  get  of  course  a  special  case  of  this 

theorem. 

Note. — This  has  only  been  proved  for  forces  in  one 
plane.  It  is  not  true  in  general  when  the  forces  act  in  any 
direction  whatever. 

63.  In  the  actual  calculation  of  the  resultant  in  any 
special  case,  it  will  generally  be  found  most  convenient  to 
replace  the  original  forces  by  their  components  parallel  to 
two  orthogonal  lines  through  O  before  transferring  them 
to  O.  The  following  examples  will  serve  to  illustrate  the 
previous  articles. 

Example  I.  Forces  act  along  the  sides  of  a  triangidar  lamina  in 
order  proportional  to  the  sides.     Find  the  resultant. 

Let  ABC  be  the  lamina.     Take  A  for  the  point  of  reference.    Then, 

by  the  foregoing,  the  system 
is  equivalent  to 

(1)  The  resultant  of  the 
forces  supposed  acting 

at  A,  this  by  the  tri- 
angle of  forces  is  zero  ; 

(2)  A  couple  equal  to  the 
sum  of  the  moments 
of  the  forces  about  A 
—  i.e.    of   the     force 

if  the  force  is  k.  BC,  the  moment 

A  L  C 

along  BC  alone.     He 

'   of  tlie  couple  is  A:  x  2  area  of  ABC. 
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Example  II.  Same  case  ivith  the  forces  iyro2)ortlonal  to  AB,  BC,  AC. 
Take  A  for  point  of  reference.  Then  if  BC  acted  at  A,  the  resultant 

of  AB,  BC  would  be  proportional  to  AC.  Therefore  the  resultant  force 
is  proportional  to  2AC  and  therefore  equal  to  2k .  AC.  The  couple  as 
before  is  2Jc  a  ,  where  A  is  the  area  of  ABC,  in  the  direction  represented 
by  the  arrow.  If  this  couple  be  arranged  so  that  the  force  in  it  is 
2k .  AC,  the  arm  must  be 

2k  A        A 

2^TAC~AC 
and  it  must  be  placed  as  in  the  figure,  where 

O'A^A^^BL. 

Hence  the  system  reduces  to  a  single  force  2k .  At  parallel  to  AC  and 
at  a  distance  from  it  equal  to  ̂ BL. 

The  foregoing  exemplifies  the  general  method.  In  this  special  case 
the  result  may  be  obtained  more  easily  thus.  The  forces  AB,  BC  have 
a  resultant  equal  and  parallel  to  AC  acting  at  B,  whilst  the  force  AC 
itself  may  be  supposed  acting  at  L.  Thus  the  system  is  P  =  AC  at  B 

and  P  =  AC  at  L.  Whence  the  resultant  is  2 AC  at  the  middle  point' ofBL. 

Example  III.  Forces  of  2,  3,  5,  5,  4,  1  poundals  along  the  sides 

AB,  BC,  DC,  DE,  EF,  FA  of  a  regular 
hexagon. 

Take  0  the  centre  of  the  circle  round 

the  hexagon  for  the  point  of  reference. 
Then  the  system  of  forces  is  equivalent to 

(1)  A  force  at  0,  viz.  the  resultant  of 
the  forces  supposed  all  acting  at 

0; 

(2)  A  couple  whose  moment  is  the  sum 
of  the  moments  of  the  forces  about  0. 

(1)  The  forces  at  0  are  as  in  the  left-hand  figure. 

Tliese  reduce  to  the  system  in  the  right-hand  figure. 
Oy  along  the  force  1,  Ox  perpendicular  to  this. 

In  this  take 
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Then  along  Ou; 

it  u  2i 

along  Oy 

\=6x-  +  l+3x-=— ; 

.•.R-X^  +  Y-27-M21^148^3-^ 4  4 

whence  R=  V  37  =  6'082  .  .  .  poundals, 
and  it  acts  in  a  direction  making  an  angle  B  with  Ox,  where 

^      .    Y       11       llV3_„.,7 
tand=;^  =  — ^=  ——— =  2-117  .  .  .  , X     3V3         9 

whence,  by  tables  ̂   tangents,  Q  =  64°  43' . 
(2)  The  torque  is  equal  to  the  moment  of  the  forces  about  0.     Let 

p  denote  the  perpendicular  distance  of  0  from  a  side.     Then 

Moment  of  couple  =  2p  +  Sp  -  6p  +  5p  +  ip  +  1  x  p  =  10p. 

.  The  forces  therefore  reduce  to  a  single  force  6 '082  .  .  .  poundals  acting 

at  0  and  inclined  at  64°  43'  to  Ox,  and  a  couple  whose  moment  is 
lOp  (units). 

But  this  can  (by  §  62)  be  reduced  to  a  single  force  6-082 .  .  .  alone, 
acting  along  some  definite  line.  To  find  this,  we  have  first  to  deter- 

mine the  arm  of  the  couple  when  the  force  is  6  '082.     Now 

(6'082.  .  .)xarm  =  10p, 

^^'"^  =  6^  =  ̂'^^*^'- 

Thus,  finally,  the  system  of  forces  reduces  to  a  single  force  of 

6*082  .  .  .  poundals  acting  along  a  line  inclined  64°  43'  to  Ox  at  a 
distance  from  0  equal  to  1-644  times  the  distance  of  a  side  from  0. 
It  is  represented  by  the  thick  line  in  the  figure. 

Conditions  of  Equilibrium  of  a  Eigid  Body. 

64.  We  are  not  yet  in  a  position  to  determine  the 
motion  of  a  rigid  body  in  general,  but  it  is  possible  with 
the  knowledge  already  gained  to  determine  the  conditions 
in  order  that  the  body  may  be  at  rest. 

We  have  seen  that  any  system  of  forces  in  one  plane 
acting  on  a  rigid  body  may  be  reduced  to  either  a  single 
resultant  force,  or  else  a  single  couple.  The  condition  of 
equilibrium  is  therefore  that  these  must  be  zero ;  and  the 
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only  question  now  is — how  best  to  apply  this  condition. 
In  general  it  will  be  found  that  one  of  the  two  following 
statements  of  the  conditions  will  be  the  most  convenient 

to  use — 
A.  The  resolved  parts  of  the  forces  in  any  two  directions 

must  vanish  and  their  moment  about  any  point 
must  vanish. 

B.  The  moments  of  the  forces  about  any  three  points 
not  in  the  same,  straight  line  must  vanish. 

It  is  easy  to  see  the  truth  of  these  statements.  Thus 
in  the  case  of  A — if  the  resolved  forces  in  two  directions 
vanish,  there  is  no  resultant  force ;  if  the  moment  about 
any  point  vanishes,  it  must  be  because  the  resultant  force 
(if  any)  goes  through  the  point,  or  because  there  is  no 
couple.  But  the  first  condition  has  shown  that  there  is  no 
resultant  force,  therefore  there  is  also  no  couple  ;  and  there 

being  no  force  and  no  couple,  the  body  must  be  in  equi- 
librium. 

So  also  in  the  case  of  B,  the  resultant  cannot  be  a  single 
force,  for.  if  so  it  would  have  to  pass  through  three 
points  not  in  a  straight  line,  which  is  impossible.  Hence 
there  is  no  force,  and  further,  since  the  moment  about  a 
point  vanishes  and  there  is  no  resultant  force,  there  is  also 
no  couple.  Therefore,  as  in  A,  the  body  must  be  in 

equilibrium — and  vice  versa,  if  the  body  is  in  equilibrium, 
conditions  A  and  B  must  be  satisfied. 

65.  The  following  theorem  is  often  useful  in  finding  the 

conditions  of  equilibrium — 
If  three  coplanar  forces  keep  a  body  in  equilihrium,  they 

must  either  he  parallel  or  meet  in  a  point. 
For  they  are  either  parallel  or  not.  If  they  are  parallel, 

by  a  suitable  arrangement  of  magnitude  and  position  they 
may  annul  one  another.  If  they  are  not  all  parallel,  two 
of  them  at  least  must  intersect.  Let  them  intersect  in  A. 

Keplace  them  by  their  resultant,  also  acting  at  A.  Then 
there  are  two  forces  keeping  a  body  in  equilibrium,  but 

this  cannot  be  unless  they  are  in  the  same  line  of  action — 
i.e.  unless  the  third  force  also  goes  through  A.  In  other 

words,  unless  the  three  all  go  through  one  point... 
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For  an  application   of  this   theorem  see  Example  III 
below, 

66.  We  cannot  illustrate  the  foregoing  principles  by 
many  examples  of  practical  interest  until  we  have  investi- 

gated the  properties  of  the  centre  of  gravity  in  the  next 
chapter.  The  following  will,  however,  serve  to  exemplify 
the  methods  developed  in  this  chapter. 

Example  I.  A  ti-iangular  lamina  is  acted  on  by  thi-ee  forces  repi-e- 
sentcd  respectively  by  liij,es  through  each  angle  bisecting  the  opposite 
side.     Prove  that  the  lamina  is  in  equilibrium. 

Let  ABC  be  the  triangle  and  DEF  the  middle  points. 
Take  moments  about  A.  A 
Then  moments  =  2  a  AFC  -  2  A  BEA. 
But  E  and  F  bisect  AC,  AB. 

.•;  moments=  A  ABC-  A  BCA  =  0.  ^     i      \e 
Similarly  the  moments  vanish  about  B 

and  C— that  is,  about  three  points  not  in  a 
straight  line. 

Therefore  the  body  is  in  equilibrium.  B  D  C 

Example  II.  A  iveightless  rod  rests  on  two  jnops  A,  B,  3  feet  apart, 
and  a  \0-lb,  weight  is  placed  at  C,  6  inches  from  one  of  them.  Find  the 
pressures  on  the  props. 

Let  R  be  the  pressure  on  the  nearer  prop  and  R'  on  the  other. 
For  the  sake  of  illustration,  we  treat  this  question  in  two  different 

ways. 

A.  Notice  that  the  forces  R,  R'  just  counterbalance  the  10-lb. 
weight.  Hence  the  10-lb.  weight  must  be  equal  and  opposite  to  the 
resultant  of  R  and  R'.     Hence 

R  +  R'  =  10, 
R^^BC^2|^ 

R'     AC      ̂        ' 
.-.  R=5R', 

.-.  6R'  =  10; 

whence  R'  =  |,     R  =  ̂ .     . 

B.  If  the  system  be  in  equilibrium  t^je  moments  about  any  point 
must  vanish.     Take  then  tlie  moments  about  A.     Then 

10.AC  =  R'.AB, 
3R'  =  10x^  =  5, R'  =  f. 
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So  also  take  moments  about  B.     Then 

10.BC  =  R.AB, 
3R  =  10x#  =  25, 

R=-¥-- Example  III.  A  rod  AB  without  weight  is  movable  about  a  hinge 
at  A,  and  its  end  B  is  attached  to  a  weight  W  by  tneans  of  a  string 

which  passes  over  a  pulley  C  vertically  above  A,  and  so  that  AC  =  AB  ; 
a  weight  W  is  then  suspended  from  the  middle  jJoint  of  AB.  Find  the 
position  of  equilibrium. 

Let  AB  be  the  rod.  It  is  acted  on  by  the  tension  W  along  BC,  the 
weight  W  vertically  through  D  the  mid  point 

of  AB,  and  some  reaction  at  A — that  is,  by 
three  forces. 

These  are  not  parallel,  therefore  they  must 

pass  through  one  jioint.  Now  we  know  the  di- 
rection of  W  and  W  at  D  and  B,  let  them  inter- 

sect at  D'.  Then  the  reaction  at  A  must  act 

along  AD'. Because  DD'  is  parallel  to  AC  and  D  is  the 
mid  point  of  AB,  D'  is  also  the  mid  point  of  BC. 
Whence  AD'  is  perpendicular  to  BC,  since  ABC 
is  an  isosceles  triangle. 

Now  the  resolved  parts  of  the  forces  in  any  direction  must  vanish. 
Resolve  then  along  BC.     We  have,  remembering  that  the  reaction  is 

aloilg  AD',  and  therefore  perpendicular  to  BC, 
W-W'cos^  =  0, 

6  being  the  inclination  of  BC  to  the  vertical.     Hence 
W 

W" 

This  gives  the  position  of  equilibrium  when  W,  W'  are  known. 

Kg.,  suppose  W'=2W, cos  6  =  ̂ , 

and  -  ^  =  60°. 

If  we  desire  to  find  the  magnitude  of  the  reaction  at  A,  resolve 

along  AD^',  and  call  the  reaction  R.     Then 
R-W'sin^  =  0, 

R  =  W'sin^, 

R  =  W'Vl-C082^, 

-w'^i-i;,. 

=  \/W'2-W2 

cos  6: 
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111  this  case,  however,  the  result  may  be  more  easily  arrived  at 

by  noticing  that  the  foi*ces  are  parallel  to  the  sides  CA,  AD',  D'C. 

Whence  CA=CD'=AD" 

also  AD'C  is  a  right  angle, 
.-.  AC2=AD"-  +  CD'2. 

Whence  W^-  =  K'  +  W-, 
or  R2  =  W'-2-W^ 

1  o    CD'    W 
also  cos^  =  ̂ =^,. 

EXAMPLES— VIII. 

[Li  the  following  examples,  suppose  the  weight  of  a  uniform 
straight  rod  to  act  at  its  middle  point,] 

1.  Two  forces  of  10  and  15  lbs.  weight  act  at  points  30  inches 
apart.  Find  their  resultant  when  they  are  in  (1)  like,  (2)  unlike 
directions. 

2.  The  resultant  of  two  unlike  parallel  forces  of  10  lbs.  and  18  lbs. 
weight  acts  in  a  line  at  a  distance  of  12  feet  from  the  line  of  action  of 
the  less  force.  What  is  the  distance  between  the  lines  of  action  of 
the  two  forces  ? 

3.  A  lever  ABC,  with  a  fulcrum  B,  one-third  of  its  length  from  A  is 
divided  into  equal  parts  at  D,  E,  F  ;  at  C,  D,  F  forces  of  12,  8,  6  lbs. 
weight  respectively  act  vertically  downwards,  and  at  E  a  force  of  16  lbs. 
weight  acts  vertically  upwards.  What  force  applied  at  A  will  cause 
equilibrium  ] 

4.  The  resultant  of  two  parallel  forces  P,  Q  at  A,  B  acts  at  C  when 
like,  and  at  D  when  unlike.  Prove  that  if  these  resultants  act  at 
C,  D,  then  A,  B  will  be  the  points  at  which  their  resultant  will  act 
in  the  two  cases  of  like  and  unlike  directions. 

5.  If  a  straight  rod  ABC  is  supported  in  a  horizontal  position  by 
being  placed  under  a  peg  at  A  and  over  a  peg  at  B,  find  the  reactions 
of  the  pegs  due  to  hanging  a  weight  W  at  C. 

6.  A  lever  30  niches  in  length  has  weights  3  lbs.  and  15  lbs.  fastened 
tp  its  ends,  and  balances  about  a  point  9  inches  from  one  end.  What  is 
the  weight  of  the  lever  ? 

7.  A  uniform  lever  is  18  inches  long,  and  each  inch  in  length  weighs 
one  ounce.  Find  the  place  of  the  fulcrum  when  a  weight  of  27  oz. 
at  one  end  of  the  lever  balances  a  weight  of  9  oz.  at  the  other  end. 
If  the  smaller  weight  be  doubled,  how  must  the  position  of  the 
fulcrum  be  shifted  to  preserve  the  equilibrium  i 

L 
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8.  The  horizontal  roadway  of  a  bridge  is  30  feet  long  and  weighs  6 
tons,  and  it  rests  on  similar  supports  on  its  ends.  What  pressure  is 

borne  by  each  of  tlie  supports  when  a  carriage  weighing  2  tons  is  one- 
third  of  the  way  across  the  bridge  ? 

9.  A  horizontal  rod  without  Aveight,  6  feet  long,  rests  on  two  sup- 
ports at  its  extremities  ;  a  Aveight  of  6  cwts.  is  suspended  from  the  rod 

at  a  distance  of  2^  feet  from  one  end.  Find  the  reaction  at  each  point 
of  support.  If  one  support  could  only  bear  a  pressure  of  1  cwt.,  what  is 
the  greatest  distance  from  the  other  support  at  which  the  weight  could 
be  suspended  ? 

10.  Two  equal  uniform  beams  AB,  BC  are  freely  jointed  at  B,  and  A 
is  fixed  to  a  hinge  at  a  point  in  a  wall,  about  which  AB  can  revolve  in  a 
vertical  plane.  At  what  point  in  BC  must  you  apply  a  vertical  force  to 
keep  tlie  two  beams  in  one  horizontal  line  ?    Find  the  value  of  the  force. 

11.  A  heavy  uniform  beam  whose  mass  is  40  lbs.  is  suspended  in  a 
horizontal  position  by  two  vertical  strings,  each  of  which  can  support 
35  lbs.  How  far  from  the  centre  of  the  beam  must  a  weight  of  20  lbs. 

be  placed  so  that  one  af  the  strings  may  just  break  ? 
12.  A  heavy  beam  rests  horizontally  over  a  fixed  peg,  weights  P, 

Q,  R  being  successively  hung  from  one  end.  If  P,  Q,  R  be  in  arith- 
metical progression,  the  distances  of  the  peg  from  that  end  of  the  beam 

are  in  harmonical  progression. 
13.  Find  the  centre  of  parallel  forces  of  forces  1,  2,  3  acting  at 

the  angles  of  an  equilateral  triangle. 
14.  The  sides  of  a  square  are  divided  each  in  four  equal  parts,  and 

parallel  forces  alternately  like  and  unlike  act  at  the  angles  and  the 
points  of  division  ;  their  magnitudes  in  order  are  2,  2,  3,  4,  4,  3,  2,  1, 
5,  6,  7,  8,  8,  7,  6,  5,  Find  the  resultant  and  the  centre  of  parallel 
forces.     Also  when  tlie  first  is  1  instead  oF  2. 

15.  A  square  weightless  board  has  weights  of  1, 2,  3,  4  lbs.  respectively 
hanging  from  its  four  corners,  and  is  suspended  by  a  string.  If  the 
board  is  to  remain  horizontal,  at  what  point  of  it  must  the  string  be 
fastened  and  what  will  be  the  tension  of  the  string  ? 

16.  Prove  that  the  difference  of  the  moments  of  any  force  P  about  two 
points  in  the  same  plane  with  each  other  and  the  force,  is  equal  to  the 
moment  about  either  of  the  points  of  a  force  parallel  and  equal  to  P 
applied  at  the  other  point. 

17.  If  any  number  of  forces  represented  by  the  sides  of  a  regular 
hexagon  taken  in  order  act  along  the  sides  to  turn  the  hexagon  round 
an  axis  perpendicular  to  its  plane,  show  that  the  moment  of  the  forces 
is  the  same  through  whatever  point  within  the  hexagon  the  axis  passes. 
Is  this  true  if  the  hexagon  is  not  regular  ? 

18.  The  sides  of  a  regular  polygon  taken  in  order  represent  forces 
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acting  in  the  plane  of  the  polygon.  Show  that  the  sum  of  their 
moments  will  be  the  same  round  any  j)oint  within  the  figure.  Find 
the  forces  of  the  couple,  having  one  side  of  the  polygon  for  an  arm, 
that  will  keep  the  system  in  equilibrium. 

19.  Two  equal  rods  AB,  BC  are  firmly  joined  together  at  B  at  right 
angles  to  one  another.  If  they  were  suspended  from  A  so  as  to  be 
capable  of  turning  freely  about  that  point,  in  what  position  would  they 
hang  ?  Could  you  get  them  to  hang  with  one  side  vertical  by  attaching^ 
a  heavy  weight  at  B  ? 

20.  The  arms  of  a  bent  lever  are  at  right  angles  toone  another,  and 

their  lengths  are  in  the  ratio  of  5  : 1.  The  longer  arm  is  inclined  45" 
to  the  horizon,  and  carries  at  its  extremity  a  weight  of  10  lbs.  The 
end  of  the  shorter  arm  presses  against  a  smooth  horizontal  plane. 

Draw  a  figure  showing  the  forces  in  action  and  find  the  pressure  be- 
tween the  shorter  arm  and  the  plane. 

21.  A  picture  of  given  weight  hanging  vertically  against  a  smooth 
wall  is  supported  by  a  string  passing  over  a  smooth  peg  driven  into  the 
wall ;  the  ends  of  the  string  are  fastened  to  two  points  in  the  upper 

rim  of  the  fi-ame,  which  are  equidistant  from  the  centre  of  the  rim,  and 

the  angle  at  the  peg  is  60°.  Compare  the  tension  in  this  case  with 
what  it  will  be  when  the  string  is  shortened  to  two-thirds  of  its  length. 

22.  A  heavy  uniform  rod  15  inches  in  length  is  suspended  from  a 
fixed  point  by  two  strings  fastened  to  its  ends,  the  lengths  of  the 
strings  being  respectively  9  inches  and  12  inches.  If  6  be  the  angle  at 
which  the  rod  is  inclined  to  the  vertical,  prove  that  25  sin  ̂   =  24. 

23.  A  triangular  lamina  lying  upon  a  smooth-  circular  table  has  its 
angular  points  attached  to  strings  passing  over  the  edge  of  the  table, 
and  supporting  weights  proportional  to  the  opposite  sides  of  the 
triangle.  Find  the  direction  of  tlie  strings  with  reference  to  the 
triangle  in  the  case  of  equilibrium. 

24.  A  BCD  is  a  rectangle  ;  AB,  BC,  adjacent  sides,  are  3  and  4  feet. 
Along  AB,  BC,  CD,  taken  in  order,  forces  of  30,  40,  30  lbs.  weight  act 
respectively.     Find  their  resultant. 

25.  ABCD  is  a  quadrilateral,  and  two  points  P,  Q  are  taken  in  AD, 

BC,  such,  that  AP  :  PD  :  :  CQ  :  QB.  From  P,  Q  straight  lines  PP',  QQ' 
are  drawn  equal  to,  parallel  to,  and  in  the  same  directions  as  BC  and 

DA  respectively.  Show  that  forces  represented  by  AB,  CD,  PP',  QQ' 
are  in  equilibrium. 

26.  One  end  of  a  string  is  fastened  to  a  fixed  point  and  the  other  to 
the  angle  A  of  a  weightless  triangular  lamina  ABC.  If  the  lamina  be 
acted  on  by  forces,  represented  by  AB,  BC,  CA,  find  the  weight  which 
must  be  susj^ended  from  the  angular  point  B  in  order  to  maintain  the 
lamina  in  equilibi  ium  with  the  side  BC  vertical. 



CHAPTER   IX 

FORCES   ON   A   RIGID   BODY — CENTRE   OF   GRAVITY 

67.  Every  part  of  a  body  is  attracted  downwards  to 
the  earth  with  a  force  proportional  to  its  mass.  When  the 
body  is  not  very  extended,  all  these  forces  are  appreciably 
parallel.  For  instance,  the  angle  between  the  directions  of 
gravity  at  two  points  a  mile  apart  is  only  about  one 
minute  or  a  sixtieth  of  a  degree.  So  that  for  bodies  with 
which  we  have  to  deal  practically,  we  may  regard  the 
direction  of  gravity  at  their  different  points  as  accurately 
the  same. 

In  the  case  of  parallel  forces,  we  have  seen  in  the 

previous  chapter  that  there  is  a  point,  "the  centre  of 
parallel  forces,"  through  which  their  resultant  may  always 
be  supposed  to  act,  no  matter  how  the  forces  are  turned  about 
their  points  of  application.  This  will  be  the  case,  therefore, 

with  the  gravitation  of  bodies  when  the  gravitation  is  every- 
where in  the  same  direction.  In  other  words,  we  may 

suppose  the  weight  to  act  at  a  definite  point  of  every 

body.  This  point  is  called  the  "  centre  of  gravity  "  of  the body. 

In  general  it  is  not  the  case  that  when  two  bodies  are 
attracting  one  another  the  resultant  attraction  always 
passes  through  fixed  points  in  the  bodies.  But  when  this 
is  the  case  such  point  is  called  a, centre  of  gravity.  Thus 
in  the  case  where  one  of  two  attracting  bodies  is  a  sphere 
the  resultant  attraction  always  passes  through  its  centre. 
Here  then  its  centre  would  be  called  a  centre  of  gravity. 
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In  this  chapter  we  confine  our  attention  to  the  case 
where  ̂ gravitation  is  supposed  to  act  in  pamllel  lines,  in 
which,  as  we  have  seen,  there  always  exists  a  centre  of 
gravity. 

68.  Centre  of  gravity  of  any  number  of  particles  in  a  plane. 

Refer  the  positions  of  the  particles  to  two  perpendicular 
lines  Ox,  Oy  and  let  their  distances  from  them  be  given 
t>y  (-^1,  Vi),  («^2j  y-),  '  '  ;  and  the  position  of  the  centre  of 
gravity  by  x,  y.  Also  let  the  masses  be  «i,,  m^,  .  .  ,  Then 
we  have  a  series  of  parallel  forces  m^g,  m^g^  .  .  .  acting  at 
the  given  points,  and  since  the  centre  of  gravity  is  the 
centre  of  parallel  forces  of  the  system, 

niigxi  +  Ttiogx^  +  .  .  . 

Similarly 

???,  +  Wg  +  .  .  . 

The  point  determined  by  x,  y  depends  only  on  the  masses  and 
their  distribution,  and  is  independent  of  the  intensity  of 
gravitation.  It  is  also  called,  for  reasons  given  in  §  182, 
the  centre  of  inertia. 

69.  Now  any  continuous  solid  body  may  be  supposed  to 
be,  made  up  of  a  very  large  number  of  very  small  parts. 
Hence  we  could  use  the  formula  just  obtained  to  find  the 
centre  of  gravity  of  a  continuous  solid,  if  we  had  the  means 
of  obtaining  the  value  of  the  sum  of  the  very  large  number 
of  terms  in^x^  +  m,?^  +  .  .  .  and  Wj  +  m^  +  ...  To  do  this 
would  require  a  more  advanced  knowledge  of  mathematics 
than  is  supposed  in  this  book.  It  is  possible,  however,  in 
several  important  cases  to  determine  the  centre  of  gravity 
by  other  methods.  Thus  the  following  considerations  will 
often  be  sufficient  to  completely  determine  it. 

A.  If  we  know  that  tlie  cejitre  of  gravity  lies  in  each 
of  two  lines,  or  in  each  of  three  planes,  it  must  lie  at  their 
point  of  intersection. 

m^g  +  nrigg  +  .  .   .    ' 
m,x. 

+  m^.,  +  .   .  . 

Ml 

+  W2  +  .  . W,y, 

+  m^2+  •  •  ■ 
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B.  If  a  straight  line  or  plane  divides  a  lamina  or  a  solid 
into  tAvo  equal  and  similar  portions,  it  is  clear  that  the 
centre  of  gravity  must  lie  in  that  straight  line  or  plane. 

C.  If  the  centres  of  gravity  of  the  two  jwrtions  of  a 
body  be  known  we  can  find  the  centre  of  gravity  of  tlie 
whole  thus.  Let  m„  m^  be  the  masses  of  the  two  portions 
and  A,  B  the  positions  of  their  centres  of  gravity.  Then 
we  may  suppose  the  body  replaced  by  ???,  at  A  and  riio  at 
B.  These  will  have  their  centre  of  gravity  on  AB  at  some 

point  G  where  
^^^^^ BG     m; 

and  the  position  of  G,  the  centre 
of  gravity  of  the  whole  body,  is 
determined. 

The  same  method  can  also  be  applied  to  find  the  centre 
of  gravity  of  a  part  when  that  of  the  whole  and  the  other 
part  is  known. 

The  centre  of  gravity  of  a  plane  lamina  of  uniform  thick- 
ness clearly  lies  in  the  plane  half  way  between  the  faces,  and 

its  position  merely  depends  on  the  shape  of  the  boundary. 
We  may  disregard  the  thickness  and  confine  our  attention 
.to  the  boundary.  In  this  connection  it  is  usual  to  speak 

of  the  "centre  of  gravity  of  an  area."  When  this  phrase 
is  used  it  must  be  understood  to  refer  to  a  thin  lamina  of 

uniform  thickness  with  the  same  boundary.  Similarly  we 
may  speak  of  the  centre  of  gravity  of  a  curve,  meaning 

thereby  the  centre  of  gravity  of  a  thin  unifoi'm  wire  of  the 
same  shape. 

The  rest  of  this  chapter  will  be  devoted  to  the  discovery 
of  the  position  of  the  centre  of  gravity  for  important  simple 

70.  Methods  A  and  B  enable  us  at  once  to  state  the 

position  of  the  centre  of  gravity  of  the  following  bodies. 
(1)  A  straight  line,  at  its  middle  point. 
(2)  u4  parallelogram,  at  the  intersection  of  lines  bisecting 

the  opposite  sides,  therefore  at  the  intersection  of  the 
diagonals. 

(3)  A  circular  disc  (w  circumference),  at  its  centre. 
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(4)  A  paralleloj)iped,  at  the  intersection  of  planes  half 
way  between  opposite  faces,  therefore  at  the  intersections  of 
diagonals. 

(5)  ̂   sphere  (or  spJierical  surface)^  at  its  centre. 
(6)  ̂   circular  cylinder  ivith  plane  ends  perpendicular  to  its 

axis,  at  the  middle  point  of  the  axis. 
(7)  A  right  prism  or  cylinder  of  any  cross  section. 

Here  the  centre  of  gravity  bisects  the  line  joining  the 
centres  of  gravity  of  the  two  ends. 

For  let  A,  B  be  the  centres  of  gravity  of  the  two  ends. 
Draw  any  plane  parallel  to  the  ends  and  cutting  AB  in 

C.  It  will  cut  the  cylinder  in  a  curve  precisely  the  same 
as  the  ends,  and  C  will  be  its  centre  of  gravity.  If  now 
the  cylinder  be  divided  into  a  large  number  of  thin  laminse, 

the  centres  of  gravity  of  all  will  lie  on  this  line  AB — that 
is,  the  centre  of  gravity  of  the  whole  cylinder  lies  some-, 
where  on  it.  Also  a  plane  through  the  middle  point  of 
AB  parallel  to  the  ends  clearly  divides  the  cylinder  into 
two  equal  and  similar  parts.  Hence  the  centre  of  gravity 
lies  at  the  intersection  of  AB  and  this  plane — that  is,  at  the 
middle  point  of  AB. 

71.  2'he  centre  of  gravity  of  three  equal  particles  at  the 
angles   of  a   triangle   ABC. — Let    the 
three  particles  (rw)  be  at  A,  B,  C.     Bi- 

sect BC  at  D.     Then  m  at  B  and  m 

at  C  are  equivalent  to  2m  at  D. 
Join  AD.     Then  m  at  A  and   2m 

at  D  are  equivalent  to  3m  at  G,  where 
AG_2m_ 

DG  "  m  "    ' 
or  DG  =  IDA,     AG  =  f  AD. 

Cm\  In  the  same  way  it  might  have  been  shown  that 
the  centre  of  gravity  lay  on  BE,  where  E  is  the  mid  point 
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Q 

of  AC.  Hence  it  lies  on  their  intersection  G.  We  there- 
fore get  incidentally  the  theorem  that  the  lines  joining  the 

angular  points  of  a  triangle  to  the  mid  points  of  the 
opposite  sides  meet  in  one  point  which  trisects  each  of 
them.  This  theorem  is  important  for  the  next  case  to  be 
considered. 

72.  Triangular  lamina. — Let  ABC  be  the  triangle. 
Bisect  BC  in  D  and  draw  any  line 

PQ  parallel  to  BC,  cutting  the  sides 
in  PQ  and  AD  in  d.  Then  AD  also 
bisects  PQ  in  d.  If,  therefore,  we  take 

any  narrow  strip  PQ',  its  centre  of 
Q  gravity  will  lie  on  AD.  Now  the 

triangle  may  be  ctit  up  into  an  infin- 
itely large  number  of  strips  parallel 

to  BC,  the  centre  of  gravity  of  each 
lying  on  AD.  Hence  the  centre  of 

gravity  of  the  whole  triangle  lies  on  AD.  Similarly  it 
may  be  shown  to  lie  on  BE  (figure  of  last  article) ;  and 
therefore  at  the  intersection  of  AD,  BE.  That  is,  the 

centre  of  gravity  is  the  same  as  that  of  three  equal  par- 
ticles at  the  angular  points :  therefore  on  AD  at  G, 

where  DG  =  ̂ DA. 
The  proof  of  the  theorem  may  be  completed  without 

reference  to  the  case  of  the  three  equal  particles  in  the 
following  way  (see  figure,  §  71). 

The  centre  of  gravity  lies  at  the  intersection  of  BE  and 
AD.     Join  DE.     Then  CE  =  AE  and  BD  =  DC.     There- 

fore DE  is  parallel  to  AB. 
Hence,  by  Eucl.  VI  2, 

DE  ~  CE  ~  "" Also,  since  the  sides  of  BGA  are  cut  by  DE  parallel 
to  AB, 

BGAB 

GE  ~  DE  ~    ' 

or 

•.  BG  =  2GE, 

GE  =  JBE. 
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Cm:  The  centre  of  gravity  is  also  the  same  as  that  of 
three  equal  particles  placed  at  the  mid  points  of  the  sides. 
For  it  is  the  same  as  that  of  three  equal  ones  (say  P)  at 
the  angular  points.  Now  JP  at  B  and  JP  at  C  are 
equivalent  to  P  at  D.  So  also  JP  at  C  and  JP  at  D 
are  equivalent  to  P  at  E,  and  JP  at  A  and  B  equivalent  to 
P  at  F,  which  proves  the  statement. 

73.  Centre  of  (p-avity  of  a  trapezoid. — Let  ABCD  be  the 
trapezoid,  E,  F  the  mid  points  of  AB  and  CD.  Join  EF. 
Denote  AB  by  a,  CD  by  h,  and  EF 
by  c.     Join  AF,  BF. 

The  trapezoid  is  now  divided 
into  three  triangular  parts  CAF, 
AFB,  FBD,  and  has  therefore  the 
same  centre  of  gravity  as  the 
masses  (or  areas)  of  these  parts  supposed  collected  at  their 
respective  centres  of  gravity. 

The  triangles  ACF,  BFD   on   equal  bases  are   equal. 

Let  A  denote   the  area  of   either,  A'  the   area  of  AFB. 
Then   since   their  altitudes  are  the  same,,  A  and  A'  are 
proportional  to  their  bases.     Therefore, 

A_|6__^ 

A'      a      2d 

Now  the  centre  of  gravity  of  a  triangle  is  the  same  as 

that  of  three  equal  particles  (each  one-third  the  mass  of 
the  triangle)  at  the  angular  points.  Replace  each  triangle 
by  these  particles. 

Thus  we  have 

^A'  at  A,  B,  F, 
|a  at  C,  A,  F,  F,  B,  D 

— that  is,  J(A  +  A')  at  A  and  B,  ̂ A'  +  f  A  at  F,  and  JA 

at  C,  D.      ' 
Those  at  A,  B  are  equivalent  to  f  (A  +  A')  at  E,  and 

tliose  at  C,  D,  F  to  J  A'  +  f  A  +  |A  =  JA'  +  4  A  at  F,  and  the, 
whole  =  A'  +  2A. 

Hence  the  centre  of  gravity  is  at  G,  where 

EG(A'+2A)  =  iEF(A'  +  4A), 

or  since  A.'  \.2k  =  a  :  h ; 
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or 
EG(a.t)  =  c('-^), 

EG  = 

\    3 
c     a+  2h 

a  +  b 

74.  Foiir  equal  particles  at  the  angles  of  a  triangular 

pyramid. — Let  m  denote  the  mass  of  each  particle,  and  let 
ABCD  be  the  pyramid.  Let  g  be 
the  centre  of  gravity  of  the  base 
ABC.  It  is  also  the  centre  of  gravity 
of  the  three  equal  particles  at  A,  B, 
C,  which  may  therefore  be  replaced 
by  3  m  at  g. 

Join  Dg.  Then  the  centre  of 
gravity  of  the  particles  is  that  of  m 
at  D  and  3m  at  g. 

Therefore  it  is  at  G  where 

DG  ̂   3m 

G^       m        ' whence Gg  =  iDg  and  DG  =  |D^. 

That  is,  the  centre  of  gravity  is  on  the  line  joining  any 
angular  point  to  the  centre  of  gravity  of  the  opposite  face, 

and  at  a  distance  three-fourths  of  this  line  from  the  angle. 
Co)\  As  there  is  only  one  centre  of  gravity,  it  follows 

that  the  lines  joining  each  angle  to 
the  centre  of  gravity  of  the  opposite 
face  all  pass  through  the  same  point. 

75.  Triangular  pyramid.  —  Let 
ABCD  be  the  pyramid. 

Draw  a  plane  parallel  to  the  base 
BCD  and  cutting  the  pyramid.  It 
will  cut  it  in  a  triangle  bed  whose 

sides  are  parallel  to  BCD — viz.  be 
parallel  to  BC,  and  so  on. 

Bisect  DC  in  E  and  draw  a  plane 
through  the  edge  AB  and  E.     It  will 
cut  the  faces  in  BE,  AE,  and  the  triangle  bed  in  be. 
AE  being  drawn   in  the   triangle   ACD   from  A  to the 
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middle  i)oiiit  of  CD,  will  bisect  cd  which  is  parallel  to  CD. 
Therefore  e  is  the  middle  point  of  cd,  and  therefore  the 

centre  of  gravity  of  the  triangle  bed  is  in  be— thai  is,  in  the 
intersection  of  the  plane  of  bal  with  the  plane  through  AB 
and  E.  Similarly  it  is  in  its  intersection  with  the  plane 
through  AD  and  F,  the  mid  point  of  BC.  Therefore  it 
lies  in  the  intersection  of  these  two  planes. 

The  same  is  true  for  all  triangular  laminae  parallel 
to  BCD.  Therefore  the  centre  of  gravity  of  the  whole 
pyramid  lies  in  their  line  of  intersection.  This  line  is  that 
joining  A  to  g,  the  intersection  of  BE  and  DF,  that  is  the 
line  joining  A  to  the  centre  of  gravity  of  the  opposite  face. 
Similarly  it  may  be  shown  to  lie  in  the  line  joining  any 
other  angular  point  to  the  centre  of  gravity  of  the  opposite 
face.  It  is  therefore,  by  the  corollary  to  the  former  case, 
the  same  as  the  centre  of  gravity  of  four  equal  particles  at 

the  angles.     Therefore  it  is  at  G  on  Ag  where  AG  =  ̂ Ag. 
Note. — The  height  of  G  above  the  base  is  one-fourth  the 

altitude  of  A. 

76.  Centre  of  gravity  of  a  pyramid  on  any  base,  and  of  a 

con£. — Let  the  base  be  any  polygon  ABCDEF  .  .  .,  and 
let  V  be  the  vertex.  Take  any 
point  0  in  the  base  and  join  0  to 
all  the  angles.  We  then  divide 
the  pyramid  into  a  number  of 
smaller  on6s,  with  the  same  vertex 
V,  and  on  triangular  bases  OAB, 
OBC,  .  .  . 

The  centre  of  gravity  of  each 
of  these  is  at  a  distajice  from  the 

base  equal  to  one-fourth  the  alti- 
tude of  V.  Therefore  the  centre 

of  gravity  of  the  whole  solid  must 
be  at  a  distance  from  the  base  equal 
to  one-fourth  the  altitude  of  V. 

Again,  take  0  the  centre  of  gravity  of  the  base  and 

join  VO. 
Take  any  plane  section  abcdef  parallel  to  the  base.  It 

will  be  similar  to  it,  and  will  be  cut  by  VO  in  its  centre 
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of  gravity.  Hence  the  centre  of  gravity  of  every  lamina 
parallel  to  the  base  lies  in  VO,  and  therefore  so  does  that 
of  the  whole  figure. 

Hence,  combining  these  two  results,  the  centre  of  gravity 
of  the  pyramid  is  on  the  line  joining  the  vertex  to  the 

centre  of  gravity  of  the  base,  and  at  a  point  one-quarter  of 
this  line  from  the  latter  point. 

We  can  extend  this  result  to  the  case  where  the  base  is 

a  plane  curve  instead  of  a  polygon.  For  in  the  above 
proof  it  does  not  matter  how  many  sides  the  polygon  has. 
The  result  is  still  true  if  we  suppose  the  number  of  sides 
infinitely  large  and  their  lengths  infinitely  small.  But  this 
ultimately  includes  the  case  of  a  curve.  Hence  the  centre 
of  gravity  of  a  cone  may  be  determined  in  the  same  way 
as  that  of  a  pyramid. 

77.  Surface  of  a  pyramid  ami  of  a  cone. — Using  the  figure 
of  the  preceding  case,  we  have  now  to  do  with  a  series  of 
triangles  VAB,  VBC,  etc.  instead  of  pyramids  VABO,  etc. 
The  centres  of  gravity  of  all  these  are  at  a  distance 
from  the  base  one-third  the  altitude  of  V.  The  rest  of 
the  proof  proceeds  in  the  same  way.  Hence  the  centre  of 
gravity  of  the  surface  of  a  pyramid  or  cone  is  on  the  line 
joining  the  vertex  to  the  centre  of  gravity  of  the  perimeter 

of  the  base,  and  at  a  point  distant  one-third  of  this  line 
from  the  latter  point. 

78.  Portion  of  a  regular  polygon  and  arc  of  a  circU. — Suppose 
a  wire  bent  into  a  portion  of  a 

regular  polygon.  Let  0  be  the 
centre  of  the  circle  inscribed  in 

the  polygon.  Further,  let  a  be 
the  radius  of  this  circle,  m  the 

mass  of  one  side,- and  n  the  num- 
ber of  parts  into  which  the  wdre 

is  bent.  Then  the  whole  mass  of 
the  wire  is  nm.  Let  OA  be  the 

radius  which  divides  the  wire  sym- 
metrically. A  is  either  at  an  angle,  or  the  mid  point  of 

the  side,  according  as  n  is  even  or  odd.  The  centre  of 

gravity  lies  in  OA.     The  mass  of  each  side  can  be  sup- 
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posed  to  be  concentrated  at  its  mid  point,  where  it  touches 
the  inscribed  circle.  The  problem  is  then  to  find  the 
centre  of  gravity  of  particles  (m)  at  these  points.  If  it 
be  at  G, 

2(w.0N)    :i;(ON) 

0G  = nm 

If  P,  Q  be  the  extremities  of  any  side,  draw  PL,  QM 
perpendicular  to  BC,  the  line  joining  the  extremities  of  the 

wire.  Also  draw  PM'  perpendicular  to  QM.  Then  BC 
is  perpendicular  to  OA,  and  the  sides  of  the  triangle  ORN 
are  respectively  perpendicular  to  the  sides  of  the  triangle 

PQM',  and  therefore  they  contain  equal  angles  and  are similar.     Hence 

ONPM' 
OR'PQ' 

0G  = K^^-) ^^  -2(PM'). w.PQ 

Xow  n .  PQ  =  length  of  wire  =  /  (say),  and  OR  =  a, 

.-.  0G  =  |2(LM), 

This  gives  the  position  of  the  centre  of  gravity  in  terms  of 
the  length  of  wire,  the  radius  of  the  inscribed  circle,  and 
the  chord  joining  the  extremities.  It  does  not  depend  at  all 
on  the  number  of  sides.  Hence  the  result  is  true  if  the 
number  of  sides  in  the  inscribed  polygon  be  infinitely 
large.  But  then  it  becomes  indistinguishable  from  a 
circular  arc.     Hence  the  centre  of  gravity  of  a  circular 
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arc  is  on  the  radius  bisecting  the  arc,  at  a  distance  from 
the  centre 

chord  , . 
=  -,   -r  X  radius. 

length 

Example  I.  For  a  semicircuLar  wire. 

Example  II.  For  a  quddrantal  wire, 

^r,     a\^2         2a\^2 OG  =   .  a  =   

79.  Lamina  in  the  form  of  a  circular  sector. — Going  back 
to  a  boundary  formed  of  a  regular  polygon  circumscribing 

the  circle,  consider  the  portion  of  the 
sector  OPQ.  The  centre  of  gravity 
of  this  triangle  is  clearly  the  same  as 
that  of  a  uniform  wire  pq,  where 

Op  =  fOP,  Oq  =  §0Q.  Hence  the  cen- 
tre of  gravity  of  the  whole  polygonal 

sector  is  the  same  as  that  of  a  similar 

polygonal  wire  circumscribing  a  circle 
of  two-thirds  the  radius  of  the  former. 

This  is  the  same  for  the  circular 

sector.  Its  centre  of  gravity  will  therefore  be  the  same  as 

that  of  a  corresiDonding  circular  arc  of  two-thirds  the  radius 
— that  is,     ' 

OG  =  % . ,   —    X  radius. 
length  of  arc 

Example.  Semicircle, 

OTT 

80.  Surface  of  a  spJiere  cut  off  between  two  parallel  planes. 

— Let  0  be  the  centre  and  PNP',  QMQ'  the  bound- 
ing planes.  Draw  OMNA,  the  radius  perpendicular  to 

them. 

Describe  round  the  sphere  a  cylinder  whose  axis  is  OA. 
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Let  the  planes  cut  the  cylinder  in  the  circles  ̂ j?',  qq'. Then  it  is  known  that  the  area  of  the  surface  cut  off  on 

the  sphere  between  the  planes  is  equal  to  that  cut  off  on 
the  cylinder.  Consider  now  the  thin 
ribbons  cut  off  these  by  two  planes 
close  together;  they  will  both  have 
their  centres  of  gravity  on  OA,  and 
will  each  be  equivalent  to  their 
respective  masses,  distributed  along 

mm'.  But  since  these  masses  are 
equal,  they  are  equivalent  alto- 

gether. The  same  is  therefore  true 
for  larger  parts  built  up  of  these 
smaller  ribbons.  Hence  the  centre  of  gravity  of  the 
zone  cut  off  the  sphere  is  the  same  as  that  of  the  zone  cut 
off  the  cylinder.  This  latter  clearly  bisects  the  distance 
between  the  planes.  Hence  so  does  the  centre  of  gravity 
of  the  spherical  zone. 

Example.  Hemispherical  shelly 

OG=:J.OA. 

81.  Sedm'  of  a  sphere. — The  volume  of  the  sector  may 
be  divided  into  a  larger  number  of  very  small  cones,  whose 
vertices  are  at  the  centre,  and  bases  on  the  surface. 

The  centres  of  gravity  of  these  all  lie  on  a  spherical 

surface  of  three-fourths  the  radius.  The  centre  of  gravity 
of  this  latter  surface  is  determined  by  the  preceding 
case. 

Example.  Solid  hemisphere,  radius  a. 

The  centre  of  gravity  is  that  of  a  hemispherical  surface 
of  radius  ̂ a.     Therefore,  by  the  preceding  article, 

OG=i.|rt 

{a. 
82.  The  foregoing  results  must  be  remembered  by  the 

student.  The  following  examples  will  serve  to  illustrate 
methods  of  finding  the  centre  of  gravity  in  more  complicated 
cases : — 
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Example  I.  A  square  tvith  an  equilateral  triangle  on  one  side. 

Let  the  side  of  the  square  be  a.     Then 

Area  of  square  =  a-, 

FE: 

Area  of  triangle  =  -DC . 

and  the  whole  =  «-(  1  + 

4 

\/3 

Draw  EFH  parallel  to  DA  or  CB,  it  clearly 

passes  through  ̂ i,  (jto,  the  centres  of  gravity  of  the 
square  and  triangle  respectively. 

Replace  the  square  by  a  mass  a-  at  g\  and  the 
triangle  by  a^\/sl4,  at  g^.  Then,  taking  moments 
about  F, 

FG    1  + V3 

4  7 

)a^
 

F(/iXft2-F^2 

aWs 

also 
Fi/i  =  2«' 

cc\/s 

2     ' 

F!/,=^EF  =  i 2"       6 

FG 

FG: 
2(4  +  \/3) 

Example  IL  ̂   circular  disc  of  1  foot  radius  has  a  ciixular  hole  of 
radius  3  inches  cut  out  of  it,  the  centre  of  the  hole  being  at  a  distance  of 
2  indies  from  the  centre  of  the  disc.     Find  the  centre  of  gravity. 

[The  student  should  draw  the  figures  for  this  and  the  next.  ] 

Let  Ci,  C2  be  the  centres  of  the  circles  and  G  the  centre  of  gravity 
required.     Then  the  whole  disc  is  made  up  of  two  parts,  viz.  the  figure 
condensed  at  G  and  the  part  cut  out  at  Cg. 

The  area  of  the  whole  =  7r  x  l^-  =  1447r, 

,,  hole  =  7r  X  3-  =  97r, 
,,  plate  =  1447r-97r  =  1357r. 

Hence,  since  Cj  is  the  centre  of  gi'avity  of  ISott  at  G  and  Ott  at  Co, 

CiG  ̂   97r  _  1 

CiC.2~1357r~15' .-.  CiG  =  .rVCA=TVmch. 

Example  IIL  A  wire  is  lent  into  the  shape  of  a  triangle.     Find 
the  centre  of  gravity. 

L'et  ABC  be  the  triangle.    Bisect  the  slides  in  D.  E.  F  and  join  DE,  EF, 
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FD.  Calling  the  sides  a,  h,  c,  their  masses  are  proportional  to  a,  b,  c, 
and  may  be  supposed  collected,  a  at  D,  b  at  E,  c  at  F.  We  then  have 
to  find  the  centre  of  gravity  of  three  particles  a,  b,  c  at  the  points 

D,  E,  F. 
Draw  DL  perpendicular  to  FE,  then,  using  the  formulae  in  §  68, 

the  distance  from  FE 

_«.DL  +  ̂>xO  +  c.O_      a      j^j 

~         a+b+c         ~a+b+c 
Let  A  denote  the  area  of  DEF.     Then 

A=i.FE.DL. 
But  since  E,  F  bisect  AC,  AB, 

EF=iBC  =  ̂ a; 

.-.  A  =ia.  DL, 
and  a .  DL  =  4  A . 

Hence  the  distance  of  the  centre  of  gravity  from  FE  is 4a 

a  +  b  +  c 

Similarly  the  distances  from  the  other  sides  FD,  DE  are  the  same 
quantity  ;  therefore  it  is  at  the  same  distance  from  each  of  the  sides, 
and  consequently  at  the  centre  of  the  circle  inscribed  in  the  triangle 
DEF. 

83.  When  a  heavy  body  is  suspended  from  a  point  and  is 
in  equilibrium,  its  centre  of  gravity  will  lie  either  vertically 
below  or  vertically  above  the  point  of  suspension.  For 
the  body  is  at  rest  under  two  forces,  viz.  the  weight  of 
the  body  supposed  acting  vertically  through  its  centre  of 
gravity  and  the  reaction  at  the  point  of  suspension.  But 
two  forces  cannot  balance  one  another  unless  they  are  in 
the  same  straight  line,  viz.  in  this  case  the  vertical  through 
the  centre  of  gravity.  Hence  the  point  of  suspension  and 
the  centre  of  gravity  must  be  in  the  same  vertical. 

This  consideration  is  of  use  in  determining  positions  of 
equilibrium.     Take  for  instance  the  following  problem — 

A  rod  3  feet  long  has  its  centre  of  gravity  1  foot  from  one 
end,  and  is  suspended  over  a  smooth  peg  by  a  string  6  feet  long 
attached  to  its  ends.     Find  the  position  of  equilibrium. 

Notice  first  that  at  the  peg  the  forces  are  the  reaction  and  the  two 
tensions.  These  are  in  equilibrium  amongst  themselves,  and  therefore 
the  reaction  is  equal  and  opposite  to  the  resultant  of  the  tensions.  But 
the  tensions  are  equal,  and  the  resultant  must  therefore  bisect  the  angle 

M 
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between  them.  Hence  if  in  the  figure  AB  be  tlie  rod  and  C  the  peg, 
the  reaction  must  bisect  the  angle  ACB.  Further,  it  must  pass  through 

G.  That  is,  the  vertical  CG  must  bisect  ACB. 
Therefore  (Eucl.  VI  3) 

AC:CB  =  AG:GB  =  2:1, 

also       AC  +  CB  =  length  of  string  =  6  ; 
.*.   AC  =  4, 

'B  CB  =  2. 

Thus  when  it  is  placed  over  the  peg  the  string 
Avill  slip  round  until  the  peg  divides  it  into 
portions  4  feet  and  2  feet  long.  Also  CG 
must  be  vertical.  Hence  CGB  is  the  inclin- 

ation of  the  rod  to  the  vertical.  This  angle  can  thus  be  determined 
graphically  or  determined  by  easy  trigonometry. 

84.  The  theorem  in  the  last  article  may  also  be  applied 
to  determine  experimentally  the  position  of  the  centre  of 

gravity  of  a  plane  lamina. 
Hang  the  lamina  freely  from  any  point  A  in  it,  and  by 

means  of  a  plumb  line  hanging  from  A  draw  on  the  lamina 
the  vertical  line  Aa.  Then  the  centre  of  gravity  must  lie 
on  A.a.  Now  suspend  it  from  another  point  B,  and  in  the 
same  way  draw  a  vertical  B6  through  it ;  this  will  intersect 
A.a  in  some  point  G.  Then  G  is  the  position  of  the  centre 
of  gravity,  for  the  centre  of  gravity  lies  both  on  A.a  and 
B&,  and  therefore  at  their  intersection. 

A  similar  method  would  also  apply  to  any  solids,  if  we 
could  get  inside  to  draw  the  lines. 

The  student  is  recommended  to  determine  experiment- 
ally in  this  way  the  position  of  the  centre  of  gravity  of  a 

triangular  lamina,  or  other  of  the  examples  given.  The 
lamina  may  be  cut  out  of  a  piece  of  board,  tin  plate,  or 
thick  cardboard. 

85.  When  a  heavy  body  is  resting  on  any  surface,  it  is 
in  equilibrium  under  its  weight  acting  through  its  centre 
of  gravity  and  the  reactions  at  the  points  of  contact  where 
it  is  resting.  These  reactions  will  so  adjust  themselves 
that  their  resultant  passes  through  the  centre  of  gravity  of 
the  body.  If  it  is  impossible  for  them  so  to  adjust  themselves, 
then  the  body  cannot  rest  in  that  position.     For  instance, 
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if  the  body  is  as  in  the  figure,  it  is  impossible  for  the 
reactions  at  A  and  B  to  have  a  resultant  passing  through 
C  outside  of  them. 

Now  in  the  general  case  of  a  body  resting  on  a  plane — 
suppose  that  A,  B,  C,  D, 
E, ...  be  the  points  of 
contact.  Join  the  out- 

side points  so  that  the 

outside  figure  is  a  con- 
vex polygon  (i.e.  has  no 

re-entrant  angles  like 
ABC).  Then  it  is  clear 

that  by  properly  choos- 
ing the  reactions  at 

A,  B,  C,  D,  E,  .  .  .  their 
resultant  may  be  made 
to  pass  through  any 
point  within  ACDE, 
but  not  outside.  If  then 

the  vertical  through  the 
centre  of  gravity  of  the 
body  cuts  the  plane  in 
P,  the  weight  can  be  counterbalanced  if  P  lies  within 
ACDE,  but  not  if  it  lies  outside.  Consequently  the  body 
will  rest  or  topple  over  according  as  the  vertical  through 
the  centre  of  gravity  falls  within  or  without  the  convex 

Fig.  1. Fio.  2. 

polygon  formed  by  joining   the  points  of  contact  of  the 
body  with  the  plane. 
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Example.  A  cube  is  laid  on  an  inclhud  plane,  and  is  prevented 
frmn  slipping  by  a  small  peg  at  the  lower  edge.  Find  the  inclination  of 
the  plane  ivhen  the  cube  is  just  on  the  point  of  toppling  over. 

If  the  vertical  through  G  falls  as  in  Fig.  1,  the  block  will  remain  at 
rest,  if  as  in  Fig.  2,  it  will  topple  over.  The  limiting  point  between 
the  two  cases  is  when  GD  is  vertical.  But  if  GD  is  vertical,  GDE  is 
the  inclination  of  DE  or  the  plane  to  the  vertical. 

Now  DEFH  is  a  square,  therefore  GDE  =  45°.  Hence  the  inclina- 
tion of  the  plane  to  the  vertical  is  45°. 

EXAMPLES— IX. 

1.  At  points  in  a  straight  line  which  divide  it  into  parts,  bearing  to 
each  other  the  ratios  of  7  :  5  :  3  : 1,  are  placed  weights  which  are  in  the 
ratio  1:3:5.  Determine  the  centre  of  gravity  of  the  system,  the  line 
being  5  feet  4  inches  in  length. 

2.  Find  the  centre  of  gravity  of  six  heavy  particles  situated  on  a 
straight  line,  the  successive  particles  weighing  1,  4,  9,  16,  25,  36  grains 
respectively  ;  the  distance  between  the  first  and  second  particles  being 
one  inch,  and  between  the  others  being  respectively  3,  5,  7  and  9  inches. 

3.  A  uniform  rod  of  5  lbs.  is  weighted  w^ith  masses  of  1  and  2  lbs. 
at  the  ends.     Find  the  point  about  which  it  will  balance. 

4.  Find  the  centre  of  gravity  of  weights  ̂ a,  2w,  Sw  placed  at  the 
angular  points  of  a  triangle,  and  determine  the  ratios  in  which  the  lines 
drawn  from  the  angular  points  through  the  centre  of  gravity  to 
the  opposite  sides  are  divided  at  that  point. 

5.  Two  equal  heavy  particles  are  placed  in  the  plane  of  a  triangle. 
Where  must  a  third  of  equal  weight  be  placed  in  order  that  the  centre 
of  gravity  of  the  whole  may  be  the  same  as  that  of  the  triangle  1 

6.  Prove  that,  if  weights  1,  2,  3,  4,  5,  6  are  situated  at  the  angles  of  a 
regular  hexagon,  the  distance  of  their  centre  of  gravity  from  the  centre 
of  the  circumscribing  circle  is  two-sevenths  of  the  radius  of  that  circle. 

7.  Find  the  centre  of  gravity  of  equal  particles  at  all  the  angles  but 
one  of  a  regular  polygon  of  n  sides. 

8.  Masses  are  placed  at  four  points  A,  B,  C,  D  lying  in  one  plane, 
respectively  proportional  in  the  areas  of  the  triangles  BCD,  CDA, 
DAB,  ABC.     Find  their  centre  of  gravity. 

9.  A  series  of  triangles  on  the  same  base  have  their  vertices  on  a 
given  line.  Prove  that  their  centres  of  gravity  lie  in  another  line 
parallel  to  the  first. 
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10.  ABC  is  a  triangle  right-angled  at  A,  AB  and  AC  are  12  inches 
and  15  inches  respectively  ;  weights  of  2  oz.,  3  oz.,  4  oz.  are  placed  at 
A,  C,  B  respectively.  Find  the  distances  of  their  centre  of  gravity  from 
B  and  C. 

11.  If  the  triangle  ABC  weigh  6  oz.,  what  weight  must  be  placed 
at  A  so  that  the  centre  of  gravity  of  the  whole  may  bisect  the  line 
joining  A  to  the  middle  point  of  BC  ? 

12.  A  wire  is  bent  into  the  shape  of  a  triangle.  Find  its  centre  of 
gravity. 

13.  If  the  sides  in  the  above  be  7,  8,  9  feet  and  the  mass  be 

48  lbs.,  find  the  pressures  on  three  props  supporting  it  at  the  angular 

points. 
14.  Two  cylinders  of  the  same  material  2  and  3  feet  long  and  1 

and  4  inches  diameter  are  joined  end  to  end  with  their  axes  in  the 
same  straight  line.     Find  the  centre  of  gravity. 

15.  A  figure  is  formed  of  two  isosceles  triangles  on  same  base  and 

on  opposite  sides,  and  of  vertical  angles  90°  and  60°.  Find  the  centre 
of  gravity. 

16.  From  an  isosceles  triangle  another  on  the  same  base  is  cut  away. 
Determine  its  height  that  the  centre  of  gravity  of  the  remainder  may 
be  at  the  vertex  of  the  second  triangle. 

17.  A  straight  line  parallel  to  a  side  of  a  triangle  is  drawn  so  as  to 

cut  ofi"  one-ninth  of  the  area  of  the  triangle.  Find  the  centre  of  gravity of  the  remainder. 

18.  A  unifoi-m  equilateral  plate  is  suspended  by  a  string  attached 
to  a  point  in  one  of  its  sides,  which  it  divides  in  the  ratio  of  2 : 1. 
Find  the  inclination  of  this  side  to  the  vertical. 

19.  A  rod  AB  has  a  hinge  at  A,  and  is  kept  in  a  position  making 

60°  with  the  vertical  by  a  horizontal  string  at  the  other  end.  Find 
the  tension  of  the  string  and  the  reaction  at  the  hinge. 

20.  Find  the  centre  of  gravity  of  the  laminae  represented  in  the 

figures  i-iv. 

2' 

Fio
.  

i. 2' 

3'
 

CM 

Fio.  iL FiQ.  iii. Fio.  iv. 
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21.  A  wire   is  bent  into   the  form  „  „ 

Find  its  centre  of  gravity  (7r  =  -y).            ■ 
22.  One  corner  of  a  square  sheet  of 

paper,  whose  side  is  1  foot,  is  folded  down  so  as  to  coincide  with  the 
centre  of  the  sqnare.  Find  the  distance  of  the  centre  of  gravity  of  the 
paper  from  the  centre. 

23.  A  tricycle  weighing  5  st.  4  lbs.  has  a  small  wheel  symmetrically 
placed  3  feet  behind  two  large  wheels,  which  are  3  feet  apart.  If  the 

centre  of  gra^'ity  of  the  machine  be  9  inches  behind  the  front  wheels, 
and  that  of  the  rider,  who  weighs  9  st.,  be  3  inches  behind,  find  the 
pressures  on  the  ground  of  the  different  wheels, 

24.  Two  uniform  balls  of  the  same  material,  whose  diameters  are  6 
inches  and  12  inches  respectively,  in  contact  with  one  another,  are 
firmly  united  at  their  point  of  contact.  Find  the  centre  of  gravity  of 
the  body  thus  formed,  it  being  known  that  the  volumes  of  spheres  are 
proportional  to  the  cubes  of  their  radii. 

25.  The  faces  of  a  pyramid  are  all  equilateral  triangles.  Show  that 
the  position  of  the  centre  of  gravity  for  the  four  faces  considered  as 
plane  areas  will  be  the  same  as  it  is  for  the  solid  pyramid. 

26.  If  ABCD  be  a  tetrahedron,  and  if  the  plane  CDE  passing  through 
the  edge  CD  cuts  AB  in  E,  prove  that  the  line  joining  the  centres  of 
gravity  of  the  tetrahedrons  ABCD  and  AECD  is  parallel  to  AB. 

27.  The  uniform  quadrilateral  ABCD  has  the  sides  AB,  AD  and  the 

diagonal  AC  all  equal,  and  the  angles  BAC  and  CAD  30°  and  60° 
respectively.  If  a  weight  equal  to  two-thirds  of  the  triangle  ABC  be 
attached  to  the  point  B,  and  the  whole  rest  suspended  from  A,  prove 
that  the  diagonal  AC  will  be  vertical. 

28.  A  hemisjihere  is  joined  to  a  cylinder  on  the  same  base  and  of  the 
same  material.  Prove  that  the  equilibrium  will  be  stable  Avhen  the 
hemisphere  is  resting  on  a  horizontal  plane  if  the  radius  of  the  base  is 
greater  than  \/2  times  the  height  of  the  cylinder. 

29.  From  a  right  cone  the  top  is  cut  off  by  a  plane  parallel  to  the 
base  half  way  between  the  vertex  and  the  base.  Find  the  centre  of 
gravity  of  the  remainder. 

30.  From  a  right  cone  is  cut  out  another  with  the  same  vertex 
and  axis.      Find  the  centre  of  gravity  of  the  remainder. 

Find  the  position  of  the  centre  of  gravity  when  the  part  cut  away 
becomes  almost  equal  to  the  original  cone.  Why  does  the  result  not 
agree  with  that  obtained  for  the  centre  of  gravity  of  the  surface  of  a 
cone  ? 
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31.  From  a  uniform  right  cone  whose  vertical  angle  is  60°  is  cut  out 
the  largest  possible  sphere.  Find  the  centre  of  gravity  of  the  remaining 
portion  of  the  cone. 

32.  Find  the  centre  of  gravity  of  the  surface  of  a  tetrahedron. 

33.  (jiven  the  base  and  height  of  a  triangle,  construct  it  so  that  it 
will  just  stand  on  a  horizontal  plane. 

34.  A  cone  whose  height  is  equal  to  the  diameter  of  its  base  rests 
on  a  rough  inclined  plane.  Determine  the  greatest  inclination  that  the 
cone  may  not  topple  over. 

35.  A  body  consists  of  two  parts,  and  one  of  them  is  moved  into  any 
other  position.  Show  that  the  line  joining  the  two  positions  of  the 
centre  of  gravity  of  the  whole  body  is  parallel  and  bears  a  fixed  ratio 
to  the  line  joining  the  two  positions  of  the  centre  of  gravity  of  the 
part  moved,  and  apply  this  theorem  to  find  the  position  of  the  centre 
of  gravity  of  a  circular  arc. 

36.  An  arc  of  a  circle  consists  of  homogeneous  matter  attracting  with 
a  force  which  varies  as  the  distance.  Find  the  resultant  attraction  on 

any  particle. 
37.  Three  forces  PA,  PB,  PC  diverge  from  the  point  P  ;  and  three 

others  AQ,  BQ,  CQ  converge  to  the  point  Q.  Show  that  the  resultant 
of  the  six  is  represented  in  magnitude  and  direction  by  3PQ,  and 
that  it  passes  through  the  centre  of  gravity  of  the  triangle  ABC. 

38.  A  set  of  particles  attract  with  a  force  proportional  to  their  masses 
and  to  the  distance.  Show  that  the  resultant  attraction  at  any  point 
is  proportional  to  the  whole  mass  and  the  distance  from  the  centre  of 
gravity. 

39.  In  the  side  CD  of  a  uniform  square  plate  ABCD  a  point  E  is 
taken  and  the  triangle  ADE  is  cut  off.  Find  the  length  of  DE  so  that 

the  plate  ABCE  may  just  be  able  to  stand  with  its  side  CE  on  a  hori- 
zontal plane,  the  side  of  the  square  being  a  inches  long. 

40.  A  particle  P  descends  from  the  highest  point  down  the  chord 
which  is  the  side  of  a  regular  hexagon  inscribed  in  a  circle,  and  Q 
down  the  vertical  diameter.  If  P  =  2Q,  show  that  their  common  centre 

of  gravity  will  descend  along  the  chord  which  is  the  side  of  an  equi- 
lateral triangle  inscribed  in  the  circle,  assuming  that  the  path  of  the 

centre  of  gravity  is  a  straight  line. 

41.  Four  weights  are  placed  at  four  given  points  in  space,  the  sum 
of  two  of  the  weights  is  given,  and  also  the  sum  of  the  other  two. 
Prove  that  their  centre  of  gravity  lies  on  a  fixed  plane. 

42.  A  uniform  lamina  in  the  form  of  a  right-angled  triangle,  such 
that  one  of  the  sides  containing  the  right  angle  is  three  times  the  other, 
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is  suspended  by  a  string  attached  to  the  right  angle.  Prove  that  in 
the  position  of  equilibrium  the  hypotenuse  makes  with  the  vertical 
an  angle  6  where  sin  d  =  ̂ . 

43.  If  three  heavy  particles  be  placed  in  the  angles  A,  B,  C  of  a 
triangle,  the  weights  of  each  being  proportional  to  the  opposite  sides 
of  the  triangle  a,  h,  c,  prove  that  the  distance  of  the  centre  of  gravity 
of  the  particles  from  A  is  equal  to 

2bc  A 
cos 

a+b+c        2 

44.  The  perpendiculars  from  the  angles  A,  B,  C  meet  the  sides  of  a 
triangle  in  PQR.  Prove  that  the  centre  of  gravity  of  six  particles 

proportional  respectively  to  sin^  A,  sin^  B,  sin^  C,  cos'-^  A,  cos'-^  B,  cos^  C 
placed  at  A,  B,  C,  P,  Q,  R  coincides  with  that  of  the  triangle  PQR. 

45.  A  body  is  composed  of  a  cylinder  with  one  conical  end. 
Determine  the  ratio  of  lengths  of  cylinder  to  cone  in  order  that  it 
may  just  rest  on  a  horizontal  table  (1)  with  the  cylinder  in  contact ; 
(2)  with  the  cone  in  contact.  Consider  in  each  case  the  question 
of  stability  for  all  kinds  of  displacement. 



CHAPTER  X 

MISCELLANEOUS  THEOREMS   AND   EXAMPLES 

In  this  chapter  the  methods  and  results  derived  in  the 
last  two  chapters  will  be  illustrated  by  application  to  a  few 
special  questions.  The  student  is  advised  before  reading 

each  solution  to  attempt  to  solve  the  problem  first  by  him- 
self. 

86.  A  ladder  is  placed  against  a  smooth  wall;  (he  bottom  of  the 
ladder  is  6  feet  from  the  wall,  and  the  top  8  feet  from  the  ground;  the 
mass  of  the  ladder  is  12  lbs.,  and  a  man  of  10  st.  is  on  the  ladder  2 
feet  from  the  bottom.  Find  the  pressure  of  the  ladder  on  the  wall  and 
the  reaction  on  the  ground. 

In  attacking  any  problem  the  student  should  always  draw,  in  the 
first  place,  a  diagram  of  all  the  forces. 
In  this  case,  if  AB  be  the  ladder  and  BC 
the  wall,  the  force  at  B  on  the  ladder  is 

a  horizontal  pressure,  for  it  is  perpen- 
dicular to  the  smooth  wall.     Call  it  P. 

At  A  the  ladder  is  acted  on  by  an 
unknown  force  in  an  unknown  direction. 

We  shall,  therefore,  suppose  this  force 
given  by  its  two  components  horizontally 
and  vertically.  Call  them  X  towards  the 
wall  and  Y  vertically  upwards. 

Also  the  ladder  is  acted  on  by  its 

weight,  which  we  may  suppose  collected  at  its  centre  of  gravity — that 
is,  by  a  vertical  force  of  12  lbs.  weight  at  its  middle  point  D,  and  also 
by  the  weight  of  the  man,  or  140  lbs.  weight  vertically  at  E,  where 
AE  =  2  feet.     The  forces  will,  therefore,  be  as  in  the  figure. 

Take  the  weight  of  1  lb.  for  the  unit  of  force.     For  the  sake  of 



•-•AF  =  |x6  =  5. 
Hence  the  last  equation is 

8P- 36 -140x^=0 

From  (iii.) 8P  =  36  +  168  =  204, 

.-.  P  =  25i  lbs.  weight. 
From  (ii.) Y  =  152  lbs.  weight. 
From  (i.) X  =  P  =  25ilbs.  weight. 
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illustration  we  will  solve  this  question  by  applying  each  of  the  con- 
ditions of  §  64. 

(1)  The  resolved  forces  horizontally  and  vertically,  and  the  moments 
about  some  point  must  each  vanish.     Hence, 

resolving  horizontally,  P  -  X  =  0  ( i. ) 
vertically,  Y- 140 -12  =  0  (ii.) 

Moments  about  A, 
P  X  BC  -  12  x  AL  -  140  x  AF  =  0. 

Now  BC  =  8,     AC  =  6.      .-.  AB  =  10,  and  AL  =  3, 
AF    AE      2 

""^  AC  =  AB=l0' 

(iii.) 

If  the  whole  reaction  of  the  gi'ound  be  R,  and  if  it  make  an  angle 
d  with  the  vertical, 

R2=X2  +  Y2  =  1522  +  (25-5)2, 

whence  R=154'12, 

and  tan  ̂   =  1  =  ̂^= -16776, 

whence,  from  the  tables,  ̂   =  9°  31'  approximately. 

(2)  If  we  had  proceeded  with  the  other  set  of  conditions,  the  moments 
about  three  points  not  in  a  straight  line  must  vanish.  Take  the  three 
points  to  be  A,  B,  C. 

Moments  about  A,  as  before, 
8P-36-f  xl40  =  0, 

or  P  =  25i. 
Moments  about  B, 

Xx8-Yx6  +  140xFC  +  12xCL  =  0, 
or  8X-6Y  +  -VX  no +  12x3  =  0, 

6Y-8X  =  36  +  672  =  708. 
Moments  about  C, 

P  x  8  +  X  x  0  -  Y  X  6  + 140  X  V*  + 12  X  3  =  0, 
or  6Y-8P  =  708. 
Hence  6Y  =  8P  +  708  =  204  +  708  =  912, 

Y  =  152. 
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Also,  subtracting  the  last  equation  from  the  second, 
X  =  P=25|, 

aud  we  then  proceed  as  before. 

87.  A  horizontal  bar  is  fixed  parallel  to  a  smooth  wall,  and  at  a 
distance  from  it  of  3  feet ;  a  uniform  heavy  rod  of  8  lbs.  and  18  feet 
long  is  then  laid  across  it  at  right 
angles,  vnth  ov£  end  pressing 
against  the  wall  so  as  to  rest  in 

equilibrium.  Determitie  its  posi- 
tion and  the  pressiires  on  the  wall 

and  on  the  bar. 

Let  AB  be  the  rod  in  its  posi- 
tion of  equilibrium,  C  the  bar, 

and  AD  the  wall.  Draw  the 
forces  on  the  rod.     These  will  be 

(1)  The   weight  W  vertically 
through  G  the  mid  point 
of  the  rod. 

(2)  The  pressure  P  of  the  bar, 

perpendicular  to  AB. 
(3)  The  pressure  R  of  the  wall,  perpendicular  to  it. 
These  are  three  forces  in  equilibrium.  Hence,  since  they  are  not 

parallel,  they  must  (§  65)  meet  in  a  point.  Let  E  denote  this  point. 
Draw  CL  perpendicular  to  the  wall.     Then 

Angle  LCA  =  CAE, 
also  CLA  =  ACE  =  AEG,  being  right  angles. 

Hence  the  triangles  ACL,  EAC,  GAE  are  similar, 

. AC_AE_AG 
••CL~AC~AE" 

Let  each  of  these  ratios  be  represented  by  y. 

Then 

Hence 

and 

whence 

AC    AE    AG_AG_9_ 

^-CL''ac''aE~CL~3~'** 
i/=^/3, 

CL^'^^' AC  =  CLv/3  =  3-y3, 
=  4-326  feet. 

This  determines  the  position  of  rest  of  the  rod. 
is  desired,  we  have 

1 

If  the  inclination 

8inCAL  =  Y-;,= 

VI 

=  -6933, 
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whence,  from  the  tables,  it  will  be  found  that 

C AL  =  43°  53'  approximately. 

To  find  the  magnitude  P,  take  moments  about  A.     Then 

PxAC-WxAE  =  0. 
AF 

But  M^^y^  ̂ ' 

.-.p.  AC-W-y3AC  =  0, 

or  P=Wv^3. 
The  easiest  way  to  find  R  is  to  notice  that  P  must  be  equal  in 

magnitude  to  the  resultant  of  W  and  R,  which  are  perpendicular. 
.•.P2  =  W2  +  R2, 

or  R2  =  W2^9-W2; 

Hence 
.-.  R=Wv/('v/9-l). 

P  =  1-442  W, 
R=1-039W. 

88.  A  heavy  rod  AB  is  sitspended  by  a  hinge  at  A;  a  heavy  ring , 
on  the  rod  arid  is  fastened  by  a  string  to  a  point  C  on  the  same  horizontal 
as  A,  50  that  AC  is  equal  in  length  to  the  string.  Determine,  the  2)osition 
of  equilibrium,  the  tension  of  the  string,  and  the  reactions  at  the  hinge 
and  ring. 

This  difi"ers  from  foregoing  questions  in  that  two  bodies  have  to  be considered. 

Let  W  denote  the  weight  of  the 
rod  and  21  its  length  ;  also  let  to 
denote  the  weight  of  the  ring  and  a 
the  length  of  the  string. 

First  draw  the  forces  on  the  rod. 
These  are 

(1)  W  vertically  through  G,  the 

(2) 
mid  point  of  the  rod.  AG  =  I. 

P,  th€  pressure  of  the  ring  on 

the  rod,  acting  perpendicu- 
lar to  the  rod. 

(3)  The  reaction  R  at  the  hinge, 
which  by  §  65  goes  through 
the  intersection  of  P  and  W. 

Next  draw  the  forces  on  the  ring. 

They  are 
(1)  Tlie  weight  to  vertically  down. 
(2)  The  tension  T  along  the  string. 
(3)  Tlie  pressure  P  of  the  rod  on  the  ring,  equal  and  opposite  to 

that  of  the  ring  on  the  rod. 
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Denote  the  angle  CAD  by  0.     This  also  is  equal  to  CDA,  since 

CA  =  CD.     The  angle  between  the  rod  and  W  or  «;  is  90°-  ̂ . 
Consider  first  the  conditions  of  equilibrium  of  the  ring. 
The  resolved  parts  of  the  forces  along  the  rod  must  vanish. 

Hence  TcosCDA=w;coswDB, 

or  Tcos0  =  'M;sin^ ; 
.-.  T='M?tan^  (i.) 

Again  the  resolved  parts  of  the  forces  perpendicular  to  the  rod 
must  vanish.     Hence 

P  +  t^cos^  =  TsinCDA, 
or  P  +  i<>cos^=Tsin^  (ii.) 

Next  consider  the  conditions  of  equilibrium  of  the  rod. 
The  moments  of  the  forces  about  A  must  vanish.     Hence 

PxAD=W.AL, 
P.2AM  =  W.  AL, 

2P .  AC .  cos  0  =  W  .  AG .  cos  ̂   ; 

These  equations  will  be  sufficient  to  determine  P,  T,  and  the  position 
of  the  rod. 

From  (i.)  and  (ii.) 

^        sin*  6  - F  =  W    ;:  -■l^COS^. cos^ 
From  (iii.) 

i'=s;"^- 

Hence sin2  e  -  cos"  d      I     ,,r 

"        cos#           2a- ^> 
or,  since sin2  0  =  l-cos2 

l-2cos2e  =  :^.- 2a     w 

This  is  a  quadratic  to  determine  cos  6,  viz. 

,     ±V?2W2  +  32^W-ZW COS^=   pr   ■   . Saw 

Now  COS  d  is  here  a  positive  quantity  ;  hence  the  value  for  the  pro- 
blem we  are  considering  is        

^     \/pWTS2aho^-lW cos  ̂ =   . Saw 

This  will,  from  the  tables,  give  6  when  I,  a,  W,  w  are  known.     For 
instance,  if  Z=a  and  W  =  2w, 

cos^  =  i, 

whence  ^  =  60°, 
or  the  ring  rests  at  the  middle  of  the  rod. 
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The  angle  6  being  known,  the  values  of  T  and  P  are  at  once  deter- 
mined, viz. 

T  =  i^tan^\ 

[In  the  particular  case  above,  where  ̂   =  60,  T  =  t^\/3  =  1732  .  w,  and 
P  =  ̂ W  =  w;.] 

If  it  is  necessary  to  determine  R,  it  is  best  done  by  considering  it  as 
equal  and  opposite  to  the  resultant  of  P  and  W,  which  are  inclined  ̂ t 

an  angle  180°-  6.     Hence 

R2  =  p2  +  W2  +  2PW  cos  (180°  -  ̂ ), 

and  R=W-f -^+l--cos^P. 1 4ft-'  a  J 

Students  often  find  a  difficulty  in  questions  like  the 
foregoing,  where  several  bodies  are  in  mutual  equilibrium, 
e.g.  two  spheres  resting  inside  a  bowl,  or  a  system  of 
jointed  rods.  In  all  problems  of  this  kind  there  are  two 
sets  of  forces  to  deal  with,  viz.  the  forces  acting  on  some 
of  the  bodies  from  outside,  and  those  between  one  of  the 
bodies  and  another ;  i.e.  external  forces  and  internal  forces. 
The  latter  must  be  in  equilibrium  amongst  themselves,  for 
they  consist  of  a  number  of  stresses,  i.e.  to  any  force  acting 

on  one  body  must  correspond  the  equal  and  opposite  reac- 
tion on  the  adjoining  body,  so  that  these  two  together  are 

in  equilibrium  by  themselves.  As  this  is  true  for  all  the 

stresses,  the  system  of  internal  forces  must  be  in  equi- 
librium. As  the  whole  system  of  forces  is  in  equilibrium, 

and  a  part  of  them  (the  internal  forces)  are  also  in 

equilibrium,  so  must  be  the  remainder — or  the  external 
forces.  Applying  the  conditions  of  equilibrium  (Art.  64) 
to  these,  we  get  a  number  of  equations  which  may  or  may 
not  be  sufficient  to  solve  the  question.  If  not,  it  will  be 
necessary  to  consider  the  internal  forces  as  well.  In  doing 
this,  each  body  of  the  system  should  be  considered  by  itself 
as  kept  in  equilibrium  by  the  forces  actually  exerted  on 

it,  some  of  which  may  be  external.  In- such  cases  the 
student  should  first  indicate  on  a  diagram  all  the  forces 
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by  arrows,  remembering  that  where  two  bodies  touch,  the 
forces  on  each  are  equal  and  opposite.  Take,  for  instance, 
the  case  of  Example  23  at  the  end  of  this  chapter. 

Consider  each  hemisphere  and  weight  separately. 
First,  the  weight  is  acted  on  by  three  forces,  viz.  its  weight,  the 

pressure  of  the  sphere  on  it  outwards  from  the  centre  (say  P),  and  the 
tension  of  the  string  (say  T).  The  length  of  the  string  beiug  given  or 
assumed,  both  T  and  P  can  be  obtained  in  terms  of  the  weight. 

Next  consider  the  right-hand  hemisphere.  The  forces  are  (1)  a 
pressure  P  inwards  to  the  centre  produced  by  the  weight :  this  is  now 
known  from  the  former  work  ;  (2)  the  weight  of  the  hemisphere 
through  its  centre  of  gravity  ;  (3)  the  reaction  of  the  ground  (say  R) ; 
(4)  a  pressure  somewhere  between  it  and  the  other  hemisphere  (say  Q) 
acting  to  the  right  at  some  point  L ;  and  (5)  the  effect  of  the  string 
over  the  top.  This  last  is  clearly  the  same  as  if  the  string  were 
fastened  to  the  top  edge,  and  pulled  with  its  tension  T  horizontally  to 
the  left.  Applying  the  conditions  of  equilibrium  to  these  we  get 
three  equations  to  find  R,  Q,  and  the  unknown  distance  of  L  above 
the  point  where  the  system  rests  on  the  ground. 

In  all  cases  the  student  will  find  no  diflSculty  if  he 
carries  out  the  rule  to  draw  first  the  forces  acting  on  each 
body  separately,  and  apply  the  conditions  of  equilibrium 
to  each.  In  general,  however,  the  process  may  be 
shortened  by  the  application  of  a  little  consideration  and 
common  sense. 

In  dealing  with  the  stresses  at  hinges  or  joints,  similar 
methods  apply.  The  direction  of  a  stress  can  often  be 
settled  at  a  glance  from  symmetry,  or  the  fact  that  three 
forces  in  equilibrium  must  be  parallel,  or  meet  in  a  point. 

The  treatment  of  stresses  at  joints  may  be  illustrated 
by  the  following  example. 

Two  rods,  ABj  BC,  are  hinged  at  B,  and  jointed  by  smooth 
pins  to  points  A  and  C  in  the  same  horizontal  line.  Determine 
the  stresses  at  A,  B,  C. 

Resolve  the  stresses  at  A,  B,  C  horizontally  and  vertically,  and 

indicate  them  as  in  the  figure.  Here  X,  Y,  X',  Y',  and  tt'i,  tv-i,  are 
external  forces.  Since  they  are  in  equilibrium  by  themselves  X  =  X', 
Y  ■i-Y'  =  wi+w-2,  and  Y,  Y'  may  be  completely  determined  by  taking 
moments  about  A.     Afterwards  Xi,  Yi,  X  can  be  found  by  considering 
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the  equilibrium  of  AB  by  itself.     We  will,  however,  work  it  out  in 
full  by  considering  each  separately. 

Taking  equilibrium  of  BC  only, 

Y  Xi=x      .  (1), 

X'-*4-   L   L^  Y  +  Y^  =  wi        .  (2), 
^C^    Xi .  BL  +  Yi .  CL  =  ̂ ivi .  CL  (3). 

So  equilibrium  of  AB  gives 
X'  =  Xi  =  X         .  (4), 
Y'-Yi=^2        .(5), 

Xi.  BL-  Yi. AL=iw;2.  AL  (6), 

(3) -(6)  gives 
Yi.AC  =  Kw'i.CL--?^;2.AL), 
whence  the  other  forces  can 

easily  be  found. 

In  general,  questions  connected  with  jointed  systems  of 
rods  are  best  treated  by  graphical  methods  (see  Art.  91), 
or  by  the  method  of  Art.  104. 

89.  In  certain  cases  the  ordinary  conditions  of  equili- 
brium are  insufficient  to  determine  all  the  forces  called 

into  play.  Such  is  the  case,  for  instance,  when  a  rigid 
body  rests  on  a  plane  surface,  touching  it  at  more  than 
three  points.  If  there  are  three  points  of  contact,  the 
pressure  at  each  of  these  points  is  quite  definite  and  can  be 
found  by  applying  the  ordinary  conditions  of  equilibrium. 
If  there  are  more  than  three  points  of  contact,  the 
pressures  at  these  points  will  depend  on  other  chance 
circumstances  and  may  vary  between  given  limits.  To 

illustrate  this  we  may  take  the  following  problem — 
A  square  table  rests  on  four  equal  legs  at  the  coimers  on  a 
C  D  horizontal  plane,  and  a  weight  is  placed 

at  a  given  point  on  it.     Determine  the 
pressures  on  the  legs. 

Let  G  be  the  centre  of  gravity  of  the 

weight  and  table  together,  and  W  their  com- 
bined weight.  Also  let  the  position  of  G  be 

given  by  its  distances  «,  y  from  AC  and  AB. 
Let  P,  Q,  R,  S  denote  the  pressures  at 

A,  B,  C,  D. 
It  is  clear  at  once  that  there  is  a  certain 

amount  of  ambiguity.  For,  supposing  G  to  lie  on  the  A  side  of  BC 
and  the  C  side  of  AD,  it  is  clear  that  the  table  would  still  rest  if  we 

N G 

M B 
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cut  away  either  the  leg  at  D  or  the  leg  at  B.  That  is,  the  forces  might 
be  P,  Q,  R,  0,  or  P,  0,  R,  S.  However,  applying  the  conditions  of 
equilibrium,  we  notice  that  all  the  forces  are  parallel.     Hence 

P  +  Q  +  R  +  S=W. 
Taking  moments  round  AB, 

(R  +  S)«=W.y, 

and  taking  moments  round  AC, 

(Q  +  S)a=W.a;. 

These  are  all  the  equations  deducible  from  the  conditions  of  equi- 
librium. That  is,  three  equations  with  four  unknown  quantities  to 

find.  The  question  is  then  indefinite,  and  in  fact  the  pressures  in  any 
actual  case  will  either  depend  on  accident  (such  as  the  slightest  in- 

equality in  the  legs),  or  can  be  made  to  take  to  a  certain  extent  arbitrary 
values.  For  instance,  a  pressure  may  be  applied  to  D  by  the  finger  so 
that  the  pressure  S  becomes  zero.  If  the  finger  be  taken  away,  S  will 
remain  zero  and  the  equations  to  determine  P,  Q,  R  become 

whence 

P  +  Q  +  R=W, Ra=W2/, 

P=wfi-^-^) \       a     aj 

a 

Wy 

a 
S  =  0 

Q= 

R= 

or  we  may  arrange  that  S  has  a  given  value  S' 

when 
a 

provided 

If  the  legs  are  in  every  respect  equal,  the  actual  pressures  would 
then  be  determined  thus.  The  legs  have  a  certain  amount  of  elasticity, 

the  amount  of  "give"  of  each  being  proportional  to  the  pressure  to 
which  it  is  subjected.  Now  this  being  so,  suppose  the  legs  give  slightly, 
and  let  a,  jS,  y,  8  be  the  small  displacements  of  A,  B,  C,  D.    Then  there 

N 
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must  be  a  relation  between  these  if  we  suppose  the  table  itself  rigid. 
For  in  this  case  the  displacement  of  the  middle  of  the  table  will  be 

either  —^  or  ~w~-    Hence 
a  +  5  =  )8  +  7. 

But  a,  /3,  7,  5  are  proportional  to  T,  Q,  R,  S.     Hence 

P  +  S  =  R  +  Q. 

This  gives  us  a  fourth  equation,  which  with  the  others  enables  us  to 
determine  P,  Q,  R,  S  definitely.     Solving  them  we  get 

P: 

W/3     x^y\ 

2  \2~     a    )' 

W/x  +  2/     1\ 

Another  example  illustrating  indeterminateness  of  solution  will  be 
found  in  §  133  (3). 

90.  Cases  often  arise  in  which  elastic  strings  come  into 
operation.  In  these  the  tension  of  the  string  depends  on 
the  amount  it  is  stretched.  The  law  connecting  the  two 
is  simply  that  the  tension  of  the  string  is  proportional  tcf 
its  extension,  the  extension  being  measured  by  the  ratio  of 
the  increase  of  length  to  the  original  length.  Thus,  if  /,  V 

be  the  natural  and  the  stretched  length,  V  -I  is  the  in- 

crement, and  the  extension  is  (}'  -  /)//.  The  above  law then  states  that 

T=A— , 

where  A  is  a  constant,  depending  only  on  the  material  and 

section  of  the  string.*  This  law  goes  by  the  name  of 
Hook's  law.  It  is  however  not  to  be  regarded  as  exact  for 
large  extensions.     The  law  may  be  represented  thus. 

If  now  T  =  A,  r  =  21,     In  other  words,  A  is  the  tension 
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necessary  to  double  the  length  of  the  string,  provided  the 
law  held  to  such  an  extent. 

This  is  only  a  particular  case  of  elastic  behaviour  of 
matter.  We  do  not  consider  this  most  interesting  question 
further  here,  but  must  refer  to  special  treatises — an  example 

will,  however,  illustrate  the  application  of  Hook's  law  to 
questions  involving  elastic  strings. 

Jn  elastic  string  without  weight  is  joined  to  two  poin^  A,  B  in  a 
horizontal  line  so  that  AB  is  equal 

to  the  natural  length  of  the  string  ;       —  ° 
a  ring  of  weight  W  is  then  slip2^cd 
on.  Determine  the  position  of  equi- 
lihrium. 

The  ring  mil  pull    down    the 
string  and  will  hang  in  a  sym- 

metrical position,  as  at  P  in  the  figure.    Let  AB  =  2a,  PL  =  a;.    Further, 
let  the  tension  of  the  string  be  T. 

Then,  since  the  ring  is  in  equilibrium, 

W  =  2TcosAPL, 
=  2T.^. 

Moreover,  by  Hook's  law. AP-AL    ^    AP 
T=\. — i-F — =X.   

Hence 

and W  = 

AL 

2\a; 

     AP-g a    •     AP   ' 
AP2=AL2  +  PL2, 

=  a'^-\-X^    y 

W       /I  1 '•  2\' 

)■
 

^    (l_        
■    *\a     \/a''  +  3?. 

or,  if  we  use  trigonometrical  expressions  and  call  APL=^, 
W  =  2Tcos^, 

T=\ 
sin  6 

■W  =  2Xcos^ 

-a       /     1 
=  ̂\sin^ 

Vsiii^"  V' 

).
 

1 
sin^ 

91.  Graphical  methods. — In  many  cases,  especially  in 
problems  connected  with  the  stresses  arising  in  frameworks, 
the  most  expeditious  way  is  to  employ  graphical  methods. 
The  following  example  illustrates  the  process.     A  careful 
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study  of  it  and  of  the  next  article  will  enable  the  student 
to  find  the  stresses  called  into  play  in  any  arrangement  of 

framework  in  which  the  ties  and  struts  are  so  arranged  as 
to  make  the  forces  definite.    [See  note  in  Appendix.] 
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Example.  A  hent  crane,  as  represented  in  Fig.  A,  supports  a  mass 
of  30  toils.  Find  the  tensions  and  stresses  in  the  various  parts,  neglecting 
the  weights  of  the  bars. 

In  the  figure  the  thin  lines  represent  ties  (in  which  the  stress  is  a 
tension)  and  the  thick  lines  struts  (in  which  the  stress  is  a  thrust). 

The  magnitudes  of  the  parts  are  as  follows — 

A4B4=3',     B3B4=r, 

AiA2  =  A2A3  =  A3A4  =  l'  6", 

^      BiB2=B2B3  =  2'6", 
and  the  cross  pieces  are  all  equal. 

First  draw  a  plan  of  the  crane  to  scale. 
Let  the  letters  T,  P,  Q,  S,  etc.  in  the  figure  denote  the  stresse.s 

acting  along  the  bars. 
Now  notice  that  Ai  is  in  equilibrium  under  the  action  of  a  known 

force  W  downwards  and  two  unknown  Pj,  Sj  in  two  known  directions. 

Hence  Pj,  Si  can  be  found  by  the  triangle  of  forces.  So  B^  is  in  equi- 
librium under  Pi  known,  and  Ti,  Q^  in  known  directions.  Therefore 

Ti,  Qi  can  be  found.  So  also  at  Ag,  Si  and  Qi  are  known,  therefore  their 
resultant.  Hence  P2,  S2  can  be  found,  and  so  on.  We  proceed  then  to 

find  these  by  the  "sti'ess  diagram." 
Draw  OOi  (Fig.  B)  vertical  to  represent  the  weight  W.  Then 

(considering  the  point  Ai)  draw  O&i  parallel  to  AiAg  and  Oi^i  to  AiBi. 
Then,  by  the  triangle  of  forces,  0\,  0^^  represent  Si  and  Pi. 

Again  (considering  Bi),  draw  h^a^  parallel  to  BiAg  and  Oiftg  to  BjBg. 
Then  these  will  represent  Qi,  Ti. 

Now  at  A2  the  forces  Si ,  Qj  are  represented  by  0 ̂ i ,  h^a^  Hence 
they  have  a  resultant  O^o,  and  Ag  is  in  equilibrium  under  Oa^,  Pg,  Sg. 
Draw  then  0^2  parallel  to  AgAg  and  a.^h.,  to  AgBg.  They  will  represent 

S2,  P2. 
At  B2  the  resultant  of  Tj  and  Pg  is  01^2  •  Draw  Oi«3  parallel  to 

BoBg  and  h.^  to  BgAg,  they  will  represent  T2,  Q2,  and  Oas  will  represent 
the  resultant  of  S2  and  Q2  (052  +  ̂ 2%)  ̂ ^  -^3>  ̂ ^^  so  on.  Whence, 
measuring  the  lengths  of  the  different  lines,  we  obtain  the  magnitudes  of 
the  various  stresses.  The  figure  B  is  reduced  from  a  dra^ving  in  which 

1  inch  represented  10  tons.  The  measurements  in  that  gave  the  follow- 

ing values — Tons. Tons. Tons. Tons. 

Si  =  28 -2, 
Ti=13, Pi  =  27, 

Qi  =  22-5, 82  =  41, T2=16-6, 
P2=10, 

Q,=  14-8, 83  =  47, T3=18, P3=l, 

Q3=  4-2. With  a  figure  on  a  large  scale  and  with  care  in  drawing,  great  accuracy 
may  be  obtained. 



182 ELEMENTARY  DYNAMICS PART  II 

If  the  weights  of  the  bars  are  to  be  considered,  we  may 
regard  the  weight  of  any  bar  as  distributed  into  two  parts 
acting  at  the  ends  of  a  bar.  This  then  reduces  the  problem 
to  the  case  of  a  framework  whose  weight  is  neglected,  but 
which  is  acted  on  by  known  forces  at  the  various  joints. 

To  find  the  actual  stress  of  any  bar,  the  stress  as  deter- 
mined by  the  above  method  must  be  combined  with  the 

weight  of  the  bar  and  with  two  vertical  upward  forces  at  the 
ends,  each  equal  to  half  its  weight.  Thus  in  the  case  here 
considered,  if  w^,  W2,  w^  be  the  weights  of  the  bars  AjAg, 
BjBa,  BjAi,  etc.  respectively,  we  shall  have  the  following 

forces  applied  vertically  at  the  various  points — 
at  Ai 
at  B, 2(^1  +  «^3) 

at  A„  and  A, 

J(^2  +  ̂3)         at  B2,  B3 

w^  +  W3, 

Wn 

w^ 

92.  When  a  set  of  forces  act  at  a  point,  we  have  learnt 
how  to  determine  their 

'R  resultant  graphically  by 
the  polygon  of  forces. 
When  the  forces  act  in 

one  plane  on  a  rigid 

body,  we  know  that  the 
resultant  reduces  in 

general  to  a  single  re- 
sultant force  acting 

along  a  definite  line 
(in  special  cases  to  a 
couple).  The  magni- 

tude and  direction  of 
this  resultant  force  can 

be  obtained  by  the 

polygon  of  forces,  but 
as  yet  we  have  devel- 

oped no  method  of  find- 
ing graphically  the  line 

of  action,  or — which  is 
the    same   thing,   since 

the  direction  is  known — one  point  in  its  line  of  action. 
This  we  now  proceed  to  do. 
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Let  Pi,  .  .  .  denote  a  system  of  forces  in  equiKbrium 
when  acting  on  a  rigid  body.  Take  any  points  Aj,  .  .  . 
on  them  and  join  them  so  as  to  form  a  polygon  AjAg  .  .  . 
Regard  this  polygon  as  a  jointed  system  of  bars.  If  they 
be  in  equilibrium  the  stresses  in  the  bars  can  be  found 

graphically  as  follows — 
Take  any  point  O.  Draw  O^i,  O^a  parallel  to  A5A1, 

A1A2,  and  tti^g  parallel  to  Pj.  Then,  if  we  take  a^a^  to  re- 
present Pi,  the  stresses  along  A5A1,  AjAg  will  be  represented 

on  the  same  scale  by  0^1,  0^2  •  This  follows  from  the 
triangle  of  forces,  since  Aj  is  in  equilibrium. 

Next  draw  Oa^  parallel  to  A2A3  and  a^a^  parallel  to  Pj. 
Then  again,  since  Oa^  represents  the  stress  in  AjAg,  Oa^ 
will  represent  the  stress  in  A3A3,  and  aM^  will  represent  Pg. 
Proceed  in  the  same  way  with  all  the  sides  of  the  polygon. 
Now  notice  that  a^aod^a^ ...  is  the  force  polygon  of  Pi,  .  .  . 
Since  these  are  in  equilibrium,  the  force  polygon  must  be 
closed ;  hence  the  last  side  in  the  series  a^a^  .  .  .  will  have 
one  end  falling  on  a^.  Call  0  the  pole.  We  may  then 
state  our  result  thus :  the  second  figure  is  such  that  the 
sides  represent  the  applied  forces,  and  the  lines  joining  the 
pole  to  the  angular  points  represent  the  stresses  in  the  bars. 

Conversely,  take  any  pole  0,  and  draw  lines  from  it  to 
the  angular  points  of  the  force  polygon  Oj .  .  .  Take  any 
point  Ai  on  Pj  and  draw  AjAg  parallel  to  Oa^y  AgAg  parallel 
to  0^3,  and  so  on,  the  last  one  cutting  P5  in  A5  (say).  Then 
we  shall  get  a  closed  polygon.  For  Pi  can  be  replaced  by 
a,0,  Ortg  along  A1A5,  AjAg;  Pgby  ̂ gO,  Oa^  along  AgAj,  AgAa; 
P3  l>y  ̂ aO,  0«4,  etc.,  and  so  on.  All  of  these  cut  one 
another  out,  with  the  exception  of  the  first,  ̂ lO  along  AjAg, 

and  the  last,  O^i  along  A5'  A,'.  Since  Pi ,  ...  are  in  equi- 
librium, so  must  be  also  these  two ;  and  since  they  are 

parallel,  they  must  be  in  the  same  straight  line,  or  A/ 
must  coincide  with  A5  and  the  polygon  be  closed. 

Regarded  from  this  point  of  view,  the  polygon  Aj . . .  A5 
is  called  a  polar  polygon  or  funicular  with  reference  to  the 
point  O.  It  is  clear  that  any  number  of  polar  polygons 
may  be  drawn  to  one  pole,  homologous  sides  being  parallel. 

The  preceding  theorem  enables  us  now  to  obtain  a 
graphical  construction  for  the  line  of  action  of  the  resultant 
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when  the  forces  are  not  in  equilibrium.  For  consider  all 
the  forces  but  one^  say  P5.  Then  P5  reversed  is  equal  in 

all  respects  to  the  resultant  of  the  others.  The  force  poly- 
gon is  unclosed,  and  the  resultant  is  represented  in  magni- 
tude and  direction  by  a^ay 

Take  now  any  pole  0,  draw  Oa^,  Oa2,  and  starting  with 
say  0^1,  proceed  as  if  to  draw  the  polar  polygon.     That  is, 
take  any  point  Aj  on  Pj,  draw  a  line  through  it  (AgAj) 
parallel  to  Oa^,     Through  Aj  draw  AiAg  parallel  to  Oa^, 
through  Ag  draw  A2A3  parallel  to  Oa^,  and  so  on,  the  last 
one  (drawn  from  A4)  will  intersect  the  first  drawn  A5A, 
in  some  point  A5.     But  we  have  just  seen  that  this  must 
lie  on  Pg,  i.e.  the  line  of  action  of  the  resultant.     Hence 

A5  is  a  point  on  the  line  of  action.     By  choosing  another 
position  for  Aj  and  proceeding  as  before  we  get  another 
point  on  the  resultant.     The  two  points  then  give  its  line 
5  of  action.    As,  however,  the 

•r^^  magnitude  and  direction  are 

I  \     *^-^  known  from  the  force  poly- 
1  \  *••,  9       gon,  it  is  sufficient  only  to 

determine  one  point. 
The  following  example 

will  illustrate  the  method — 

A  rectangle  ABCD  is  acted  on 
by  the  following  forces,  2  lbs. 
weight  along  each  of  the  diagonals 
AC,  DB  ;  1  lb.  weight  along  BC  ; 
and  4  lbs.  weight  along  AD.  Find 
their  resultant. 

ABCD  is  the  rectangle, 
EFGHK  the  force  polygon. 

Hence  the  resultant  is  equal  and 

parallel  to  EK  (by  measurement 
about  5*9  lbs.  weight).  Take 
any  point  0  for  pole  and  join 
OE,  OF,  etc. 

Taking  the  intersection  of 
diagonals  for  starting-point, 
pqrst  is  the  polar  polygon.  The 

first  [pt)  and  last  {st)  sides  in- 
tersect in  t.  Hence  the  resultant  passes  througli  t  and  is  equal  and 

parallel  to  EK— is,  in  fact,  5-9  lbs.  weight  along  tk. 
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When  the  applied  forces  are  weights,  they  are  all 
parallel.  In  this  case  the  force  polygon  becomes  a  vertical 
straight  line.  As  an  example,  take  weights  of  2,  3,  4  lbs. 
at  distances  of  2  and  1  feet     Find  their  resultant. 

.   A  B  C 

:::--v>o 

a-^- 

The  force  polygon  is  the  vertical  line  EFGH.  Therefore  the 
resultant  is  EH,  which  closes  the  polygon,  =2  +  3  +  4  =  9.  Oisa 
pole.  Starting  from  j?,  pqrs  is  the  polar  polygon,  s  being  the  inter- 

section of  the  first  and  last  side.  The  resultant  therefore  passes  through 
s.  As  is  seen,  it  falls  on  the  force  3,  as  it  should,  since  the  resultant 
of  2  and  4  passes  along  the  3. 

We  give  another  example  to  illustrate  the  treatment  of 
loads  applied  to  the  various  points  of  a  framework.  For 
more  complete  information  the  student  is  referred  to  special 
treatises  on  the  subject. 

Take  the  case  of  a  simple  Warren  girder  as  drawn  in  the  figure, 
Ai,  A4  resting  on  supports  and  sustaining  loads  of  10  and  20  tons  at 
Aj,  A3. 

First,  to  find  graphically  the  reactions  at  the  ends. 
Draw  CDE  vertically,  CD  to  represent  10  tons  and  DE  to  represent 
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20.  Tlie  reactions  together  are  EC,  as  they  form  a  system  in  equilibrium 
witli  the  10  and  20.  Take  any  pole  0,  join  OC,  OD,  OE.  Starting 

from  any  point  p  on  the  force  of  10  tons  weight,  draw  s-pqr  with  sides 
parallel  to  OC,  OD,  OE.     Join  rs.     Then  'pqrs  must  form  the  complete 

polar  polygon,  and  if  OF  be  drawn  parallel  to  rs,  the  lines  EF,  FC 
will  complete  the  force  polygon  and  will  represent  the  reactions  at 
the  ends  A4  and  Aj. 

To  find  the  stresses  in  the  framework,  describe  the  stress 

diagram  as  follows — 
Start  from  Aj.  Draw  FH  horizontal,  and  through  C  draw  a  line 

parallel  to  AjB^.  The  sides  are  the  reactions  at  Aj,  Pj,  and  T^.  The 
stress  diagram  is  drawn  in  the  figure,  which  the  student  should  care- 

fully study  and  reconstruct  on  a  larger  scale,  so  as  to  get  numerical 
results  of  fair  accuracy. 

EXAMPLES— X. 

1.  Two  equal  unifonn  beams,  connected  at  a  common  extremity  by  a 
smooth  joint,  are  placed  in  a  vertical  plane,  their  other  extremities, 
which  rest  on  a  smooth  horizontal  plane,  being  connected  by  a  light 
rope.     Find  the  tension  of  the  rope  and  the  reaction  at  the  joint. 
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2.  The  transverse  section  of  the  timber  roof  of  a  church  is  given  by 
the  two  equal  sides  of  an  isosceles  triangle  whose  vertical  angle  is  2a 
where  tana  =  \/l2.  Show  that  the  total  thrust  outwards  on  each 

wall  is  W,  and  that  it  makes  an  angle  of  30°  with  the  vertical,  where 
W  is  the  weight  of  the  roof. 

3.  A  sphere  of  given  weight  rests  between  two  smooth  planes,  one 
vertical  and  the  other  inclined  at  a  given  angle  to  the  vertical.  Find 
the  pressures  on  the  planes. 

4.  A  vertical  cylindrical  cup,  radius  2a  height  3«,  rests  upon  a 
horizontal  table ;  a  rod  is  placed  within  it  with  its  lower  end  at  the 
circumference  of  the  base  ;  the  rod  rests  upon  the  opposite  point  of 
the  upper  rim  and  projects  over.  If  the  weight  of  the  rod  be  equal  to 
that  of  the  cylinder,  how  long  must  the  rod  be  that  it  may  just  cause 
the  cylinder  to  topple  over  ? 

5.  Prove  that  if  a  pair  of  compasses  is  resting  across  a  smooth  hori- 
zontal cylinder  of  radius  c,  the  frictional  couple  at  the  joint  preventing 

the  legs  of  the  compasses  from  opening  is 
^„.     cos  a  .      \ 
W(  c  -—^   a  smaj, 

sin^a 
where  W  is  the  weight  of  one  leg,  2a  the  angle  between  the  legs,  and 
a  the  distance  of  the  centre  of  gravity  of  one  leg  from  the  joint. 

6.  A  uniform  rod  4  inches  in  length  is  placed  with  one  end  inside  a 
smooth  hemispherical  bowl  of  which  the  axis  is  vertical  and  the  radius 

Vs  inches  long.  Show  that  one-fourth  of  the  rod  will  project  over 
the  rim  of  the  bowl. 

7.  A  uniform  rod  has  its  lower  end  fixed  to  a  hinge  and  its  other  end 
attached  to  a  string  which  is  tied  to  a  point  vertically  above  the 
hinge.  Show  that  the  direction  of  the  action  at  the  hinge  bisects 
the  string. 

8.  A  uniform  beam  rests  with  one  end  against  the  junction  of 
the  horizontal  ground  and  a  vertical  wall ;  it  is  supported  by  a  string 
fastened  to  the  other  end  of  the  beam  and  to  a  staple  in  the  vertical 
wall.  Find  the  tension  of  the  string  and  show  that  it  will  be  half 
the  weight  of  the  beam  if  the  length  of  the  string  be  equal  to  the 
height  of  the  staple  above  the  ground. 

9.  A  uniform  rod  of  given  length  is  to  be  supported  in  a  given  in- 
clined position  with  its  upper  end  resting  against  a  smooth  vertical  wall 

by  means  of  a  string  attached  to  the  lower  end  of  the  rod  and  to  a  point 
of  the  wall.  Find  by  a  geometrical  construction  the  point  of  the 
wall  to  which  the  string  must  be  attached. 

10.  A  circular  disc  BCD  of  radius  a  and  weight  W  is  supported  by 
a  smooth  band  of  inappreciable  weight  and  thickness,  which  surrounds 
the  disc  along  the  arc  BCD  and  is  fastened  at  its  extremities  to  the 
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point  A  in  a  vertical  wall,  tlie  portion  AD  touching  the  wall  and  the 
plane  of  the  disc  being  at  right  angles  to  the  wall.  If  the  length  of 

AD  be  h,  prove  that  the  tension  of  the  string  is  W(a2  +  b^)l2b^  and 
find  the  pressure  at  D. 

11.  A  uniform  rod  of  weight  "W  is  suspended  horizontally  from  two 
nails  in  a  wall  by  two  vertical  strings,  each  of  length  I,  attached  to  its 

ends ;  a  smooth  weightless  wedge  of  vertical  angle  30°  is  pressed 
down  with  a  vertical  force  W/2  between  the  wall  and  rod  (so  as  not  to 
touch  the  strings),  its  lower  edge  being  kept  horizontal,  and  one  face 
touching  the  wall.  Find  the  distance  through  which  the  rod  is  thrust 
from  the  wall. 

12.  A  thin  board  in  the  form  of  an  equilateral  triangle  and  weighing 

1  lb.  has  one-quarter  of  its  base  resting  on  the  end  of  a  horizontal 
table,  and  is  kept  from  falling  over  by  a  string  attached  to  its  vertex 
and  to  a  point  on  the  table  in  the  same  vertical  plane  as  the  triangle. 
If  the  length  of  the  string  be  double  the  height  of  the  vertex  of  the 
triangle  above  the  base,  find  the  limits  between  which  its  tension 
must  lie. 

13.  A  square  figure  ABCD  is  formed  by  four  equal  rods  jointed 
together,  and  the  system  is  suspended  from  the  joint  A  and  kept  in  the 
form  of  a  square  by  a  string  connecting  A  and  C.  Prove  that  the 
tension  of  the  string  is  half  the  weight  of  the  four  rods  and  find  the 
direction  and  magnitude  of  the  action  at  either  of  the  joints  B  or  D. 

14.  Four  weightless  rods  are  freely  jointed  together  forming  a 
quadrilateral  ABCD.  If  two  equal  and  opposite  forces  are  applied  at 
two  points,  one  on  the  rod  AB,  one  on  the  opposite  rod  CD,  determine 
the  conditions  that  they  shall  balance  one  another. 

If  instead  of  forces  two  equal  and  opposite  couples  be  applied  to  the 
rods  AB,  CD,  what  is  necessary  for  equilibrium  ? 

15.  Three  equal  strings  of  no  sensible  weight  are  knotted  together 
to  form  the  equilateral  triangle  ABC,  and  a  weight  W  is  suspended 
from  A.     If  the  triangle  and  weight  be  supported,  with  BC  horizontal, 

by  means  of  two  strings  at  B  and  C,  each  at  the  angle  of  135°  to  BC, 

W  r- prove  that  the  tension  in  BC  is  -^(3  -  V3). 

16.  One  of  six  equal  heavy  rods  jointed  at  their  extremities  is  held 
horizontal ;  the  hexagon  is  kept  regular  by  a  horizontal  rod  connecting 
opposite  corners.  What  is  its  length  and  the  strain  along  it  ?  If 
instead  the  hexagon  be  kept  regular  by  a  vertical  string  connecting 
the  middle  points  of  the  horizontal  sides,  what  would  be  the  length 
and  tension  of  the  string  ? 

17.  Determine  the  tensions  of  the  threads  of  a  rectangular  piece  of 
network,  hung  from  a  horizontal  bar,  due  to  suspending  a  series  of 
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equal  weights  in  a  horizontal  line  at  the  lowest  points  of  the  net, 
supposing  the  meshes  are  equal  regular  hexagons  of  which  a  pair  of 
sides  are  vertical. 

18.  Four  heavy  rods,  equal  in  all  respects,  are  freely  jointed  together 
at  their  extremities  so  as  to  form  the  rhombus  ABCD.  If  this  rhombus 

be  suspended  by  two  strings  attached  to  the  middle  points  of  AB  and 
AD,  each  string  being  inclined  at  the  angle  6  to  the  vertical,  prove 
that  in  the  position  of  equilibrium  the  angles  of  the  rhombus  will  be 
29  and  w  -  26. 

19.  A  rhombus  of  freely  jointed  rods  (lengths  a)  is  hung  up  by  two 
equal  strings  of  length  I  which  are  attached  to  the  middle  points  of 
two  adjacent  sides,  their  other  ends  being  fastened  to  two  points  in  a 
horizontal  line  at  a  distance  c  apart.  Show  that  the  angles  of  the 

rhombus  are  20,  ir-2d  where  sin  ̂   =  c/(a  +  2Z). 
20.  A  uniform  smooth  plate  in  the  form  of  a  right-angled  isosceles 

triangle,  whose  hypotenuse  is  c,  rests  with  its  plane  vertical  and  its 
two  equal  edges  in  contact  with  two  smooth  pegs  in  the  same  horizontal 
line  and  at  a  distance  cjQ  cos  6  apart.  Prove  that  the  plate  can  rest 
in  a  position  where  the  hypotenuse  will  make  an  angle  6  with  the 
horizon. 

21.  A  uniform  beam  AB  of  given  length  and  weight  has  its 
extremity  A  resting  in  a  horizontal  groove  AC  and  its  extremity  B 
in  a  vertical  groove  BC,  and  is  kept  in  equilibrium  by  a  string  DC 
fixed  at  a  given  point  D  on  the  beam.  Find  the  tension  of  the  string, 
and  the  limits,  as  to  the  length  and  point  of  attachment  of  the  string, 
under  which  equilibrium  is  possible. 

22.  Two  equal  hemispherical  bowls  are  placed  on  a  horizontal  i^lane 
and  are  kept  with  their  rims  everywhere  in  contact  in  a  vertical  plane 
by  a  string  which  passes  over  them,  and  hangs  vertically  supporting 
two  equal  masses  \c.  If  W  be  the  weight  of  either  hemisphere,  prove 

that  if  the  bowls  are  just  not  falliaig  apart,  ■i/;  =  ̂ W.  Find  the  value 
of  w  also  in  case  the  bodies  are  solid  hemispheres. 

23.  Two  equal  hemispherical  bowls  are  placed  on  a  horizontal  plane, 
and  are  kept  with  their  rims  everywhere  in  contact  in  a  vertical  plane 
by  a  string  connecting  two  equal  weights  which  rest  on  the  bowls. 
Find  the  length  of  the  string  and  a  limit  to  the  magnitude  of  the 
weight. 

24.  Three  equal  cylinders,  each  of  weight  W,  are  bound  together 
with  their  axes  parallel  by  a  string  whose  tension  is  T  ;  they  are  then 

placed  so  that  two  rest  on  a  horizontal  plane.  Find  the  pressures  be- 
tween the  cylinders. 

25.  Two  cylinders,  each  of  weight  W,  are  placed  in  contact  on  a 
smooth  horizontal  plane,  and  a  third  equal  cylinder  is  placed  upon 
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them  ;  a  rod  of  weight  w  bent  into  the  two  sides  of  an  isosceles 
triangle  of  vertical  angle  2a  is  then  placed  upon  them.  Prove  that  it 

is  lifted  if  '»(;<:  W  tan  a/ VS  when  a  <  30°,  or  if  w<  W  tan^  a  when  a  >  30°. 
26.  Three  spheres,  each  of  weight  W,  are  placed  in  contact  on  a  smooth 

horizontal  table,  and  a  fourth  equal  sphere  is  placed  upon  them,  and 
then  a  cone  of  semivertical  angle  a  is  placed  over  the  pile  of  spheres. 
Prove  that  the  cone  will  be  lifted  if  its  weight  is  less  than  W  tan  a/ V2 

when  tan  a  <  1/V2,  but  when  tan  a  >  l/\/2  its  weight  must  be  <  W  tan  ̂ a. 
27.  Three  equal  heavy  spheres  hang  in  contact  from  a  fixed  point  by- 

strings  of  equal  length.  Find  the  weight  of  a  sphere  of  given  radius 
which,  when  placed  upon  the  other  three,  will  just  cause  them  to 
separate. 

28.  A  uniform  regular  tetrahedron  has  three  corners  in  contact  with 
the  interior  of  a  fixed  smooth  hemispherical  bowl  of  such  magnitude 
that  the  completed  sphere  would  circumscribe  the  tetrahedron.  Prove 
that  every  position  is  one  of  equilibrium.  If  P,  Q,  R  be  the  pressures 
on  the  bowl  and  W  the  weight  of  the  tetrahedron,  prove  that 

3(P2+Q2  +  R2)-2(QR  +  RP  +  PQ)=3W2. 
29.  A  hollow  cylinder  composed  of  thin  material  open  at  both  ends, 

of  radius  a  and  height  4a,  is  placed  on  a  smooth  horizontal  plane  ; 
inside  it  are  placed  two  smooth  spheres  of  radius  r  one  above  the  other, 

2r  being  >  a  and  <  2a.     If  "W  be  the  weight  of  the  cylinder  and  w  the 
weight  of  one  of  the  spheres,  show  that  the  cylinder  will  just  stand 

W     a-r upright  without  toppling  over  if  —  =   . 

The  following  examples  are  to  he  solved  by  graphical  methods.  Where 
dimensions  are  not  given  the  student  must  draw  a  figure,  and  then  work 
to  scale  to  this  figure. 

29a.  Solve  Ex.  1,  3,  4  above  by  graphical  constructions. 
29&.  A  heavy  beam,  resting  on  two  smooth  inclined  planes,  is  in 

equilibrium  in  a  given  position.     Determine  its  centre  of  gravity. 
29c.  The  rod  AB,  whose  centre  of  gravity  is  at  G,  is  supported 

in  a  given  position,  with  one  end  A  in  contact  with  a  smooth 
vertical  wall  AD,  by  a  string  attached  to  the  given  point  C  of 
the  rod,  and  also  to  a  point  D  in  the  wall.  Determine  the  position 
of  the  point  D  and  the  tension  of  the  string,  the  weight  of  the  rod 
being  60  oz. 

29c?.  A  rod  ACB,  weighing  25  oz.,  rests  upon  a  smooth  peg  C,  and 
its  end  A  is  attached  to  a  fixed  point  0,  in  the  same  horizontal  line 
with  C,  by  means  of  a  string  OA.  Find  the  position  of  the  centre  of 
gravity  of  the  rod,  the  tension  of  the  string,  and  the  pressure  between 
the  rod  and  peg. 

29e.  A,  D  are  fixed  points  ;  AB,  BC,  CD  are  tight  strings  support- 
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ing  two  weights  resting  in  the  given  position.  If  the  weight  at  B 
is  one  pound,  find  to  two  places  of  decimals  the  weight  at  C  and  the 
tensions  of  the  three  strings. 

29/.  ADB,  BEC,  DE  are  three  rods  arranged  as  a  gibbet  (AB 
vertical).  A  weight  of  150  lbs.  is  suspended  from  C.  Find  the 
reactions  at  B  and  E,  supposing  the  rods  have  no  weight. 

29g.  Two  equal  weightless  rods,  AB  and  AC,  are  hinged  together 
at  A,  and  placed  in  a  vertical  plane  with  B  and  C  on  a  smooth 
horizontal  plane.  If  B  and  C  be  connected  by  a  string,  and  a  weight 
of  30  lbs.  be  suspended  from  a  point  D  in  AC,  find  the  tension  of  the 
string  BC. 

30.  Four  equal  rods  are  jointed  to  form  a  square,  and  are  placed  with 
one  diagonal  vertical ;  the  other  two  angles  are  joined  by  a  string  ; 
a  mass  of  2  lbs.  is  placed  on  the  top.  Find  the  stresses  in  the  bars 
and  strings  (1)  when  the  weights  of  the  bars  are  neglected,  (2)  when 
each  weighs  1  lb. 

31.  A  regular  hexagon  of  equal  jointed  rods  has  each  pair  of 
opposite  angles  joined  by  a  string  ;  it  is  placed  on  a  horizontal 

plane  with'  one  of  these  vertical ;  a  weight  W  is  placed  on  the  top. 
Find  the  tension  of  the  strings  and  the  stresses  in  the  rods  (without 
weight). 

32.  Show  that  if  in  the  preceding  question  the  rods  be  supposed 
to  have  weight,  the  system  will  collapse.  Point  out  how  this  takes 

place. 
33.  The  same  hexagon  is  held  with  the  one  side  (top)  horizontal ; 

two  opposite  angles  are  joined  by  a  horizontal  strut,  and  a  weight  2\V' 
is  placed  on  the  middle  of  the  lower.  Find  the  stresses  when  the 
weight  of  each  rod  is  W,  and  of  the  horizontal  strut  2W. 

34.  Find  all  the  stresses  in  the  derrick  crane  (Fig.  i.),  supposing  the 
framework  without  weight.  Also,  supposing  the  weights  proportional 
to  the  lengths  and  that  the  upright  weighs  28  lbs. 

35.  Find  the  stresses  in  the  bent  crane  in  §  91,  supposing  the 
weights  of  the  connecting  pieces  all  equal  to  2  cwts. 

36.  Find  all  the  stresses  in  the  roofs  (Figs.  ii.  iii.  iv.) 
37.  Find  all  the  stresses  in  the  bridge  (Fig.  v.)  and  the  cantilever 

(Fig.  vi.) 
38.  Forces  3,  4,  5  act  along  the  sides  AB,  BC,  CD  of  a  square. 

Find  the  magnitude  and  position  of  their  resultant. 
39.  Forces  1,  2,  3  act  along  the  sides  of  an  equilateral  triangle  in 

order.     Find  completely  the  resultant. 
40.  A  rectangle  ABCD,  with  AB  4  ft.  and  BC  2^  ft.  long,  is  acted 

on  by  6  lbs.  in  AB,  3  lbs.  in  BC,  4  lbs.  in  CA,  and  6  lbs.  in  BD. 

Find  the  resultant  completely. 
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41.  Three  like  jiarallel  forces  of  5,  7,  9  lbs.  act  in  lines,  whose 
distances  apart  are  3  ft.  and  4  ft.     Find  their  resultant. 

42.  Like  parallel  forces  1,  2,  3  act  at  the  angles  of  an  equilateral 
triangle.     Determine  the  line  of  action  of  their  resultant. 

The  foregoing  will  serve  as  typical  exam]>les  for  graphical  treatment. 
The  student  is  advised  to  obtain  facility  in  the  method  by  setting 
himself  similar  examples  to  work  out. 
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The  folloioing  figures  are  merely  diagrammatic  ;  theyrmcst  be  drawn 

to  scale  first  by  the  student. 

tons 

Fia.  i. 

,7  Ton 

Fig.  iii. 

5'    [    5'    \     5 
It  It  It 

Fig.  v. 

5'
 

20  tons 

Fig,  vi. 



CHAPTER   XI 

ENERGY 

93.  The  conception  of  work  and  energy  has  been  in- 
troduced in  Chapter  IV,  and  has  been  there  applied  to 

cases  of  motion  along  a  straight  line  in  the  direction  of  the 
force.  It  is,  however,  only  when  the  conception  is  applied 
to  the  more  general  kinds  of  motion  of  matter  that  its 
importance  becomes  manifest.  In  the  present  chapter  we 

propose  to  consider  the  subject  under  this  extended  appli- 
cation. 

It  may  be  well  at  the  outset  to  recall  the  definition  of 

work  given  in  §  25,  viz.  wlien  a  force  acting  at  a  fixed  point 
of  a  body  moves  its  point  of  application  it  is  said  to  do  work. 

The  work  is  measured  by  the  product  of  the  measure  of  the  fm'te 
and  the  measure  of  the  displacement  estimated  parallel  to  the 

force. 
This  definition  as  it  stands  can  clearly  only  apply  to  a 

uniform  force.  If,  however,  we  first  learn  what  we  can 
about  this,  the  extension   to  non- uniform  forces  will  be 

If  the  particle  on  which  a  force  acts  be  moved  from  one 
position  A  to  another  B,  it  can  be  supposed  done  in  an 

infinite  number  of  ways — either  in  a  straight  line  from 
A  to  B,  or  a  broken  path,  or  a  curved  path.  The  question 
arises,  does  the  work  done  depend  on  the  path  ?  We 
proceed  to  show  that,  whatever  the  path  between  the  points, 
the  work  done  is  the  same. 

Let  the  force  F  act  at  A  and  its  point  of  application  be 
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moved  to  B,  either  in  one  operation  or  in  the  two  successive 
ones  A  to  C  and  C  to  B.  Draw  B/,  Cm  perpendicular  to 
the  force  AF.  Then  in  the  figure  CF 

being  parallel  to  AF,  Bn  is  perpendic- 
ular to  CF,  and  Cn  =  Im. 

Now  in  the  first  case  the  work  done 
is  F  X  M. 

In  the  second  case  the  work  done 

in  the  two  steps 
=  F  X  Am  +  F  X  C/i  =  F  X  Am  +  F  X  /m 
=  F  X  A/, 

whence  they  are  the  same  in  both  cases ;  and  so  in  general 
for  any  series  of  steps  AC,  CD,  .  .  .  Also,  since  a  curve 
can  be  considered  as  the  limit  of  a  large  number  of  very 

small  lines,  the  theorem  is  seen 
to  be  true  also  for  a  curved  path. 
It  is  to  be  noted  that  the 

theorem  has  been  proved  for  a 
uniform  force  only. 

94.  The  work  done  by  a 
force  may  also  be  defined  as  the 

product  of  the  whole  displace- 
ment into  the  resolved  part  of 

the  force  along  the  displacement, 
the  displacement  being  taken  positive  when  in  the  same 
direction  as  the  resolved  force. 

For  let  AC  denote  the  force,  AB  the  displacement. 
Draw  Bw  perpendicular  to  AC.     Then 

Work  done  =  AC  x  A.n. 

Draw  CL  perpendicular  to  AB.  Then  AL  is  the  com- 
ponent of  the  force  along  the  displacement.  Also  the 

triangles  ABw,  ACL  are  equiangular  to  one  another,  and 
hence  are  similar,  i.e. 

ABAC 

kn  ~  AL' .-.  ALx  AB  =  ACx  Aw, 
or  resolved  part  of  force  along  AB  x  displacement 

=  work  done 
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95.  We  can  now  prove  a  most  important  proposition, 
viz.  the  work  done  by  any  system  of  forces  acting  on  a 
particle  is  equal  to  that  done  by  their  resultant.  For  let 
AB  denote  the  displacement.  Eesolve  each  force  into  two 
components,  one  along  AB,  the  other  perpendicular  to  it, 
and  let  Xj,  Xg,  .  .  .  denote  their  values  along  AB.  Then 
the  works  done  by  the  forces  are,  by  the  previous  theorem, 
AB  X  Xi,  AB  X  Xg,  .  .  . 

Hence  their  sum  =  AB(Xj  +  Xg  +  .  .  .), 
=  AB  X  resolved  part  of  resultant  along  AB, 
=  work  done  by  the  resultant. 

96.  It  follows  at  once  from  the  foregoing  theorem  that 
if  a  particle  be  in  equilibrium  under  the  action  of  any  forces, 
and  if  it  receive  any  small  displacement,  the  work  done  by 
the  forces  must  on  the  whole  be  zero,  and  vice  versa,  if  the 

work  done  by  the  forces  for  any  possible  small  displacement 
be  zero,  the  particle  will  be  in  equilibrium.  For  in  any 
case,  if  R  denote  the  resultant  and  x  any  displacement 
estimated  parallel  to  the  resultant,  the  work  done  by  the 
forces  is  Ka;,  and  since  x  is  not  zero,  if  the  work  is  zero  it 

must  be  because  R  =  0,  i.e.  the  particle  must  be  at  rest. 
The  reason  for  stating  the  above  for  small  displacements 

is  that  for  large  displacements  the  forces  will  in  general 
alter  during  the  displacement,  and  the  result  would  not  then 
be  true. 

To  illustrate  the  above,  consider  the  case  of  a  heavy 
particle  resting  on  an  inclined  plane,  and  acted  on  by  a 
force  up  the  plane. 

Let  F  denote  the  force  up  the  plane,  R  the  reaction,  and  W  the 
weight. 

(1)  To  find  F,  give  the  particle  a  displacement  along  the  plane  to  D 

Then  Work  done  by  R  =  R  x  0  =  0, 

„         „        F  =  F.DD', 

„        „       W=-W.D'n. Hence  F .  DD'  -  W .  D'w= 0, 

F=W.^,  =  W.|g  =  W.|^^. DD'  AB  length 
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(2)  To  find  R,  give  the  particle  a  displacement  DD'  (Fig.  2)  per- 
pendicular to  the  plane.     Then 

B 

^/
^ 

tV"
 

n 

X                 ̂  

\ 
V 

V 

V 

Fio.  1. 

Hence 

C        A 

WorkbyR=R.DD', 
„        F  =  FxO, 

„      \V=-W.D'm. 
R.DD'-W.D'7i=0, 

R^W^_W    BC^        AC 

Fig.  2. 

In  this  example  the  restriction  as  to  smallness  of  displacement  is  not 
necessary.     It  is,  however,  necessary  in  the  following. 

A  particle  W  rests  on  a  smooth  cylinder  and  is  kept  in  equilibrium 
by  a  string  fastened  to  another  particle  which  passes  over  the  cylinder 
and  hangs  freely.  Determine  the 
position  of  equilibrium. 

Let  the  position  of  rest  be  at  A  > 

give  the  particle  a  small  displace- 

ment along  the  cylinder  to  A'. 
Then,  since  the  string  is  inexten- 
sible,  W  will  move  through  a  space 

AA',  and  the  whole  work  is 

-W.A'n  +  W.  AA'=0, 

W     k'n or  T,T=-i  r/=cos  AA7i  =  cos  ATO. W      AA 

Now  this  equation  is  true,  what- 

ever the  magnitude  of  AA'  may  be, 
if  the   particle  rests  on  the  chord 

AA'.  If,  however,  AA'  be  vanishingly  small,  AAT  becomes  the 
tangent  at  A  and  we  have  the  case  of  the  particle  at  rest  on  the 

cylinder.  * 
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Hence,  if  the  tangent  at  A  make  an  angle  6  with  the  vertical, 

97.  JVork  by  non-unifm-m  force. — In  general,  as  a  particle 
changes  its  position  the  force  acting  on  it  changes  con- 

tinuously— that  is,  the  smaller  the  change  in  position 
the  smaller  the  alteration  in  the  force.  If  a  particle 
changes  its  position  in  any  way,  we  may  consider  it  as  made 
up  of  a  series  of  smaller  changes,  and  the  whole  work  done  will 
be  the  sum  of  the  works  done  in  these  smaller  parts.  Now 
if  during  any  small  displacement  we  regard  the  force  as 
constant  and  equal  to  its  value  at  the  beginning  of  the 
displacement,  the  work  done  is  measured  by  the  definition 
already  given,  and  the  whole  work  can  be  determined  by 
adding  the  various  parts  together.  But  the  actual  work 
done  will  not  be  exactly  this,  but  will  differ  from  it  by  a 
small  quantity  depending  on  the  size  of  the  parts  into 
which  the  whole  displacement  is  broken  up.  This 
difference  will  be  smaller  the  smaller  (and  therefore  the 
more  numerous)  the  component  parts  are  taken  to  be,  and 

can  be  made  as  "small  as  we  please  by  dividing  the  whole 
displacement  into  a  sufficiently  large  number  of  component 

parts.* The  foregoing  considerations  will  show  how  the  amount 
of  the  work  done  in  any  displacement  in  which  the  force 
changes  is  to  be  measured.  The  following  example  will 
illustrate  it,  and  is  also  of  importance  in  itself. 

A  particle  moves  in  a  straight  line  under  the  actimi  of  a 
force  directed  to  a  point  in  the  line  and  proportional  to  the 
distance  of  the  particle  from  the  point.  Find  the  w(yrk  done 
while  moving  from  one  position  to  another. 

AVhen  the  particle  is  at  P  let  the  force  be  denoted  by 

p'p  k.O?.      Let  P'  be  a 
Q   g   p   Q — '"' — p — %         point  near  P.      Then 
^  in  moving  from  P  to 

P'  the  force  will  change  from  k .  OP  to  k .  OP',  and  the 
work  done  will  lie  between  yt.OP.PF  and  X'.OP'.PP'. 

*  The  argument  supposes  that  the  force  is  nowhere  infinitely  large. 
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If,  therefore,  we  take  the  work  to  be  k .  OP .  PP',  the 
error  will  be  less  than  the  difference  of  the  two — that  is, 

k .  (PP'/. 
Now  suppose  we  take  n  equal  divisions  of  AB,  the 

error  in  taking  the  force  through  each  division  the  same  as 

at  its  beginning  will  be  less  than  the  sum  of  the  k .  (PP')^ 
OYn.k,{VY)\ 

But  n .  PP'  =  AB,  hence  the  error  will  be  less  than 
k .  AB .  PP'.  If  then  n  be  made  indefinitely  large  or  PP' 
indefinitely  small,  the  error  may  be  made  vanishingly  small, 
and  our  result  therefore  correct.  We  will  now  proceed  to 
find  the  sum  of  the  component  works  by  a  method 
analogous  to  that  by  which  the  space  in  any  time  under 
constant  acceleration  was  found  in  §  4. 

Let  C  be  the  point  midway  between  A  and  B ;  Pj,  Pg 
points  at  equal  distances  on  either  side  of  C. 

Then  the  forces  at  Pj  and  Pg  are 

k.OV,  =  k.{OQ  +  CV,\ 
k.OV,  =  k.{OQ-CV,\ 

or  the  force  at  Pi  is  just  as  much  greater  than  that  at 
C  as  that  at  Pg  is  less.  Hence  the  work  during  any  small 
displacement  at  Pj  is  just  as  much  greater  than  that 
through  an  equal  displacement  at  C  as  that  at  Pg  is  less. 
The  work  of  both  is  therefore  the  same  as  if  both  forces 

were  equal  to  that  at  C — that  is,  k .  OC.  And  similarly  for 
every  pair  of  points.  The  work  done  is  therefore  the  same 
as  if  the  force  were  k .  OC  throughout.  But  in  this  case 

the  work  would  be  ̂ *.OCxAB.      Let  OA  =  r„  0B  =  ?-2. 

Then  00  =  -'4^,     AB  =  r,-r,. 

Hence     Work  done  =  k^  ̂   x  {ii\  -  r^  =  ̂k{i\^  -  r/). 

This  theorem  enables  us  to  find  the  work  done  in 

stretching  an  elastic  string. 

98.  It  is  clear  that,  since  the  theorems  proved  in  §§  94-6 
are  true  for  small  displacements  as  well  as  large,  they  will 
also  hold  universally ;    since,  if  the  forces  vary  during  any 



200  ELEMENTARY  DYNAMICS  part  ii 

displacement,  they  may  be  considered  as  built  up  of 

smaller  parts,  throughout  which  the  forces  may  be  re- 
garded as  constant.  [It  will  not,  however,  follow  in  general 

that  the  work  done  is  independent  of  the  path  (see  §  93)]. 
Suppose  a  particle  acted  on  by  any  forces  to  move  from  a 
position  A  to  another  B.  In  general  the  velocity  will  be 
different  at  the  two  points,  and  the  kinetic  energy  of  the 
particle  will  be  altered.  Now,  however  the  particle  is 
moving,  we  can  treat  the  components  of  its  velocity  and 
acceleration  in  two  given  directions  independently  of  one 
another,  and  consider  each  as  due  to  the  corresponding 
components  of  the  forces.  In  other  words,  the  component 
motions  will  be  the  same  as  those  of  two  similar  particles 
moving,  one  under  the  one  set  of  component  forces  and  the 
other  under  the  other  set.  But  if  a  particle  move  along 
a  straight  line  under  a  constant  force,  it  was  shown  in 
§25  that  the  change  in  kinetic  energy  was  equal  to  the 
work  done  by  the  force.  The  considerations  above  show 
that  this  is  still  the  case  even  when  the  force  is  variable. 

Hence  if  u^,  v^  are  the  components  of  the  velocity  at  A,  and 
u^,  %  the  components  at  B, 

\miu^  -  Ui)  =  work   done    by  components    of   the 
forces  in  the  direction  of  u, 

\m{v^  -  v^)  =  work   done   by  components    of    the 
forces  in  the  direction  of  v. 

Hence  \m{u^  -  u^)  +  Jw(v/  -  v^)  =  work  done  by  the  forces 
between  A  and  B. 

But  if  Vi,  V2  are  the  actual  velocities  of  the  particle  at  A 
and  B, 

and  2^iV/  -  JmVi^  =  work  done  by  forces, 
or,  change  of  kinetic  energy  =  work  done  by  forces. 

99.  The  theorem  of  the  last  article  is  of  extreme  im- 

portance. We  will  illustrate  its  use  by  applying  it  to 
determine  the  velocity  of  a  particle  when  it  slides  down  a 
smooth  curve  under  the  action  of  gravity.  The  only  forces 
are  the  weight  of  the  particle  and  the  reaction  of  the 
curve,  which,  since  the  curve  is  smooth,  is  perpendicular  to 



CHAP.   XI ENERGY 201 

it.  At  every  point,  therefore,  the  particle  is  moving  at 
right  angles  to  this  reaction,  and  consequently  the  reaction 
does  no  work.      Hence  the  change   in  kinetic  energy  is 

equal  to  the  work  done  by  gravity.  But  the  weight  is  a 

uniform  force,  and  the  work  done  is  consequently  (§  93)  in- 
dependent of  the  path.  If,  therefore,  h  denote  the  vertical 

height  of  A  above  B,  and  u  be  the  velocity  at  A,  the 
velocity  «;  at  B  is  given  by 

\mv^  -  \mu^  =  mg .  AL  =  mgh, 
or  if  =  u^  +  2gh. 

100.  In  the  foregoing  example  the  change  of  energy 
and  velocity  is  independent  of  the  path  between  A  and 
B.  This  is  not  necessarily  the  case  for  any  system  of 
forces.  But  it  is  so  in  the  case  of  all  forces  in  nature. 

It  is  easy  to  prove  that  this  must  be  the  case  for  a  system 
where  the  force  is  always  directed  to  a  fixed  point,  and 
depends  only  on  the  distance  from  this  point.  .Let  0 
denote  the  fixed  point  and  a  ̂ — />-— 7,^.^p 
AB  any  path  along  which 
the  particle  moves.  Divide 

the  path  into  a  large  num- 
ber of  small  parts  of  which 

PP'  is  one.  Join  each 
point  of  division  to  0  by 

straight  lines  OP,  OP',  etc., 
and  through  each  draw  arcs  of  circles  with  centres  at  0 

and  cutting  OB,  and  let  p,  p'  be  the  points  in  which  the 
circles  through  P,  P'  cut  OB.    Then  we  have  seen  that  since 
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PP'  is  small,  we  may  treat  the  force  at  all  points  of  PP'  as 
constant,  and  therefore  the  work  done  along  PP'  is  equal 
to  that  along  Fn,  nV. 

But  since  the  force  is  everywhere  directed  to  0,  it  is 
everywhere  perpendicular  to  Pn.  Hence  the  work  along 
Fn  is  zero. 

Also,  since  the  magnitude  of  the  force  depends  only  on 

the  distance  from  0,  the  force  at  any  part  of  F'n  is  the 
same  as  at  the  corresponding  points  of  pp'  (equal  to  F'n). 
Hence  the  work  done  through  F'n  is  the  same  as  would-be 
done  along  p'p. 

Therefore  the  work  along  PP'  =  work  along  pp',  and  so 
for  every  corresponding  portion.  Hence  the  work  done 
along  the  path  AB  is  the  same  as  that  done  along  aB. 
So  for  any  other  path  terminating  at  A,  B  the  work  is  the 

same.  We  have,  therefore,  the  following  extremely  im- 

portant theorem — 
If  a  particle  move  under  the  action  of  a  force  which  is  (1) 

everywhere  directed  to  a  fixed  point,  and  (2)  depends  only  on 
the  distance  from  that  point,  the  work  done  between  any  two 
points,  and  therefore  by  ̂   98  the  clmnge  of  kinetic  energy,  is 
independent  of  the  path  between  the  points. 

Such  a  system  of  forces,  where  the  work  done  between 
two  points  depends  only  on  the  position  of  the  points,  and 
not  on  the  path  by  which  a  particle  passes  from  one  to 
the  other,  is  called  a  conservative  system  of  forces. 

Gravitation,  or  the  attraction  between  bodies,  forms  a 
conservative  system.  For  it  consists  of  a  very  large 
number  of  systems  of  forces  directed  each  to  a  fixed  point, 
and  inversely  proportional  to  the  square  of  the  distance 
from  the  point.  Each  system  is  therefore,  as  we  have  seen, 
a  conservative  one.  Consequently  the  whole  system  is 
conservative. 

101.  If  a  particle  move  under  a  conservative  system  of 
forces,  it  is  clear  that  if  its  kinetic  energy  be  given  in  one 
position,  its  kinetic  energy  in  any  other  position  is  definite 
and  depends  only  on  this  position.  Further,  it  is  clear 
that,  the  particle  being  in  any  position,  it  is  possible  to  let 
it  have  some  other  kinetic  energy  by  allowing  it  to  move 
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to  another  position.  In  other  words,  when  a  particle  is  at 

any  point,  it  possesses  a  certain  amount  of  kinetic  energy,  • 
and  is  in  the  position  to  gain  more.  The  energy  that  it 
can  gain  by  moving  from  any  point  P  to  some  fixed  point 
A  is  called  its  potential  energy  at  P.  From  the  definition, 

the  kinetic  energy  at  A  =  kinetic  energy  at  P  +  potential 
energy  at  P.  Hence  in  all  cases  the  whole  energy  remains 
constant.  That  is,  in  any  conservative  system  of  forces 
acting  by  themselves  the  sum  of  the  kinetic  and  potential 
energies  is  constant.  Now,  as  we  shall  see  presently,  all 
the  systems  of  forces  in  nature  are  conservative.  Hence 
in  all  physical  processes  the  total  energy  remains  constant. 

This  theorem  is  known^  as  the  p'inciple  of  the  conservation  of 
energy. 

102.  All  systems  of  forces  reducible  to  sets  of  systems 
which  act  towards  points  and  depend  only  on  the  distances 
from  these  points  are  conservative  forces.  The  same  is 
the  case  for  forces  between  particles,  directed  in  the  lines 
joining  the  particles  and  depending  only  on  the  distances 
of  the  particles,  provided  the  forces  between  any  two 
particles  are  equal  and  opposite.  For  in  any  small  interval 
of  time  let  two  particles  move  through  small  distances 
whose  components  along  the  line  joining  the  particles  are 
«?i,  <?2)  3,nd  let  the  equal  and  opposite  force  between  them 

be  F.  Then  the  work  done  is  Yd,  -  Fd,  =  F{d,  -  d,),  that 
is  the  force  x  relative  displacement.  It  is  therefore  the 
same  as  if  one  had  been  at  rest  and  the  other  moving 
with  its  motion  relatively  to  it.  But  then  this  reduces  to 
the  case  of  a  force  to  a  fked  point,  and  the  work  depends 
only  on  the  distances  of  the  particles.  This  therefore 
forms  a  conservative  system.  Now  it  is  probable  that  all 
natural  forces  are  reducible  to  systems  of  forces  acting 
between  particles  and  depending  only  on  their  distances. 
If  this  be  so,  it  follows  at  once  that  all  forces  in  nature 
are  conservative.  It  is  impossible  to  devise  experiments 
to  determine  the  question  of  the  nature  of  the  forces 

directly  in  all  cases.  It  is,  however,  a  matter  of  experi- 
ence that  it  is  impossible  to  get  work  indefinitely  out 

of  any  arrangement  of  bodies  without  putting  energy  con- 
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timially  into  it.  In  other  words,  "perpetual  motion  "  is 
impossible.  So  far  as  mechanical  forces  transmitted  by 
machines  are  concerned,  this  is  absolutely  the  case, 
as  the  foregoing  principles  will  show  (see  Chapter  XII). 
Until,  however,  we  actually  see  the  nature  of  the  forces 
called  into  play  by  heat,  electricity,  or  chemical  action,  it  is 
impossible  to  prove  this  by  demonstration.  We  can  only  say 
that  in  no  known  case  has  it  been  found  possible  to  draw 
energy  indefinitely  out  of  bodies.  From  this  statement  it 
may  also  be  deduced  that  all  physical  forces  are  conservative. 

For  suppose  a  particle  to  move  from  A 

'  to  B  along  any  path  ACB,  and  to  gain 
a  certain  amount  of  energy  e,  and  sup- 

pose that  if  it  moved  along  another  path 
ACB  it  would  gain  a  different  amount  of 

energy  e'.  Then,  if  it  had  been  moved 
from  B  to  A  along  BCA  a  quantity  of 

work  «'  would  have  been  lost.  If  then 

the  particle  were  moved  along  ACBC'A, 
it  would  (if  e  >  e')  gain  energy  =  e-  e'. 

But  it  would  then  be  in  the  same  position  as  before,  and 
the  same  operation  could  be  repeated  over  and  over  again, 
each  operation  yielding  a  quantity  of  work  measured  by 

e  -  e'.  Thus  perpetual  motion  would  be  possible.  As  it 
is  not,  e'  must  be  equal  to  e,  or  the  work  between  A  and  B 
must  be  independent  of  the  path. 

103.  Other  things  than  bodies  in  visible  motion  can  be 
made  to  do  work,  and  so  must  possess  energy.  Thus  heat, 
light,  a  system  of  electrified  bodies,  the  chemical  action  of  one 
substance  on  another  such  as  sulphuric  acid  on  zinc,  can  be 
made  to  do  work.  In  general  then  we  need  a  wider  definition 
of  energy  than  that  given  above.  Anything  that  can  he  made 
to  do  work  is  said  to  possess  energy,  and  the  quantity  of  energy 

is  measured  by  the  quantity  of  work  (foot-pounds,  ergs,  etc.) 
that  can  be  got  out  of  it.  Thus,  for  instance,  heat  can  be 
transformed  into  work,  and  is  therefore  a  form  of  energy. 
It  is  not  the  place  here  to  go  more  fully  into  this  question, 
which  involves  a  knowledge  of  the  properties  of  heat, 
electricity,  chemistry,  etc.     But,  as  an  illustration,  we  may 
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state  that  experiments  by  Joule  and  others  have  shown 
that  a  quantity  of  heat  necessary  to  raise  1  lb.  of  water 

from  0°  F.  to  1°  F.  is  capable  of  producing  779  foot- 
pounds of  work.* 

104.  A  rigid  body  may  be  regarded  as  a  system  of 
particles  at  invariable  distances  from  one  another  and  kept 
in  equilibrium  by  forces  between  them.  If  now  such  a 
body  be  displaced  into  any  other  position,  the  work  done 
by  these  internal  forces  will  be  zero.  For  the  displacements 
of  any  two  particles  along  the  line  joining  them  are  equal, 
while  the  forces  on  them  are  equal  and  opposite.  Hence 
the  work  done  by  one  is  equal  to  the  work  done  on  the 
other — that  is,  on  the  whole,  no  work  is  done  by  them. 
Now  suppose  any  system  of  forces  to  act  on  a  rigid  body. 
In  general  the  body  will  be  made  to  move,  and  its  kinetic 
energy  will  be  altered.  This  more  general  case  will  be  con- 

sidered in  Chapter  XIX.  Here  it  will  be  sufficient  to  con- 
sider the  case  where  the  body  is  kept  at  rest.  In  this  case 

give  the  body  any  small  displacement,  either  of  translation 
or  rotation.  Each  particle  gets  a  small  displacement,  and 
since  it  is  in  equilibrium,  the  whole  work  done  on  it  is 
zero.  But  of  this  the  work  done  by  the  internal  reactions 
is,  as  we  have  seen,  also  zero.  Therefore  the  work  done 
by  the  applied  forces  amongst  themselves  vanishes.  In 
general  these  applied  forces  consist  of  two  kinds  :  (1)  forces 
applied  to  definite  points  of  the  surface  of  the  body,  and 
(2)  forces,  like  gravity,  which  act  on  every  particle  of  it. 
For  practical  applications,  therefore,  it  will  be  necessary  to 
know  how  to  determine  the  work  done  by  the  latter  kind 
of  forces. 

105.  The  work  dme  by  gravity  on  a  rigid  body  moving 

in  any  way  from  one  'position  to  another  is  the  same  as  if  the 
whole  body  were  supposed  concentrated  at  its  centre  of  gravity 
and  treated  as  a  particle. 

For  consider   the  body    as  made  up  of  particles  m,, 
m^,  .  .  .in  positions  whose  heights  above  a  fixed  horizontal 
plane  are  a^,  a^j  .  .  .  In  consequence  of  the  displacement 

*  Heat  to  raise  1  lb.  of  water  from  0°  C.  to  1°  C.  =  1402  foot-pounds. 
„  ,,     1  kilogram         ,,  ,,         =  427  kilogrammeters. 
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of  the  body,  suppose  7)\  to  be  raised  through  a   height 

ii'i,  m^  through  x^,  and  so  on. 
The  work  done  =  m^gx^  +  ̂ 2^0:2  +  .   .  ., 

=  g{iihx^  +  rn^x^  +...). 

Further,  let  a  denote  the  height  of  the  centre  of  gravity 

initially  and  a  +  x  the  height  after  displacement.     Then 

(mi  +  mg  +  .  .  .)a  =  m^a^  +  .  .  ., 
(mi  +  mg  +  .  .  .)(a  +  ic)  =  mi(ai  +  x^  +  .  .  . ; 

.'.  (nil  +  1712  +  •  '  ')^  =  i^i^i  +  ̂ 2^2  +  •  •  .  . 

Hence  The  work  done  =  p'(mi  +  m^  +  .   .  .)x'y 
or,  if  W  be  the  weight  of  the  body, 

W  =  m^g  +  niog  +  .  .  ., 

and  Work  done  =  Wx, 

which  proves  the  proposition. 

Note. — The  condition  that  the  body  should  be  rigid  has 
not  been  introduced  in  this  proof.  Hence  the  theorem  is 
true  for  a  system  of  bodies  as  well  as  for  a  rigid  body. 

106.  The  following  examples  will  serve  to  illustrate  the 
application  of  the  foregoing  principles  to  the  equilibrium 
of  bodies  ;  others  will  be  given  in  the  chapter  dealing  with 
machines. 

The  first  is  the  same  as  has  been  treated  already  in 

.g  §  87  by  a  different 
method,  viz.  a  Jwri- 
zontal  bar  is  fixed  par- 

allel to  a  smooth  wall; 

a  uniform  heavy  rod  is 
laid  across  it  at  right 

angles  with  one  end 
pressing  against  the  wall, 

so  as  to  rest  in  equi- 
librium. Determine  the 

position  of  equilibrium. 
Give  the  rod  a  small 

displacement  by  pushing 

the  end  A  up  in  contact  with  the  wall.  Then  the  whole  work  done  is 
zero.     But  the  work  done  by  the  pressure  on  the  wall  is  zero,  because 
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the  displacement  is  perpendicular  to  it.  Also  the  work  done  by  the 
reaction  on  the  bar  is  zero,  for  the  same  reason.  Hence  the  work  done 

by  the  only  otlier  forces,  viz.  gravity,  must  be  zero. 
But  this  is  the  same  as  if  the  whole  weight  were  collected  at  G. 

Hence,  if  this  does  no  work,  there  must  be  no  vertical  displacement,  or 
the  rod  must  be  iu  such  a  position  that  if  the  end  A  be  pushed  up,  the 
centre  of  gravity  G  must  begin  to  move  horizontally. 

Example  II.  Four  equal  rods  are  jointed  to  form  a  rhombus  ABCD  ; 
the  opposite  angles  B,  D  are  joined  by  a  string  and  the  system  is  placed 
tcith  AC  vertical  resting  on  a  horizontal  plane.  Determine  the  tension 
of  the  string.  ^ 

Let  T  denote  the  tension,  and 

suppose  the  string  replaced  by 
forces  T  on  B  along  BD  and  T  on 
D  along  DB. 

Give  the  system  a  small  dis- 
placement by  pressing  A  down  to 

A',  so  that  the  rhombus  now  be- 
comes A'B'CD'. 

Since  it  is  in  equilibrium,  the 
whole  work  done  is  zero.  But 

the  work  done  by  the  reactions  at 

the  hinges  is  zero,  for  the  reac- 
tions at  a  hinge  on  each  rod  are 

equal  and  opposite  and  no  work 
is  done  on  the  whole.  The  other  forces  remaining  are  the  forces  T  and 
gravity.     Hence 

Work  done  by  gravity  =  work  done  against  T. 

Now  work  by  gravity  is  the  same  as  if  the  weight  of  the  rods  were 
concentrated  at  their  centre  of  gravity. 

In  the  displacement  let  x  denote  the  horizontal  displacement  of  B 
and  y  the  vertical  displacement.  Then,  remembering  that  the  centre 

of  gravity  is  in  BD  and  that  consequently  y  denotes  its  vertical  dis- 
placement, 

4W.2/  =  Ta;-f-Ta;, 
where  W  =  weight  of  one  rod. 

Hence T=2^.  W. 
X 

Now  B  moves  at  right  angles  to  CB.     Therefore  CB'B  is  a  right  angle, 

^=taii  BB'7i=cot  n  B'C=cot  \  ABC. on 
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Hence 
T=2WcotiABC, 

which  gives  T  in  terms  of  W  and  the  angle  between  the  rods. 
If  the  length  of  the  rods  be  given  (=a)  and  of  the  string  (=/),  then 

AB=a,     OB  =  il, 

OA2=a2-^?2=4a^^ 

107.  Work  by  a  couple. — If  a  body  on  which  a  couple  is 
acting  receive  a  displacement  consisting  of  a  translation 
merely,  the  work  done  by  the  couple  is  zero.  For  each 
force  of  the  couple  receives  the  same  displacement.  The 
works  done  by  them,  therefore,  are  equal  and  opposite,  and 
no  work  on  the  whole  is  done. 

This  is,  however,  not  the  case  if  the  body  receive 
a  rotation  as  well  as  a  displacement.  Let  A,  B  be  the 
points  of  application  of  the  forces.  We  may  consider 
the  forces  as  acting  perpendicularly  to  AB. 

By     the     displace- 
I?   ^  /s^    ment,    suppose    A    is 

transferred  to  A'  and -^  ^  B  to  B'.       Since  the 

body  is  rigid,  A'B' =  AB.  We  require 
the  work  done  by 
the  couple. 

Displace  the  body 

by  a  translatory  mo- 
tion so  that  A'  is 

brought  back  to  its 

former  position  A,  and  the  position  of  B  is  now  B".  No 
work  is  done  by  this  operation.  Therefore  the  work  required 
is  the  same  as  that  in  rotating  the  body  round  A  through 

the  angle  BAB".  But  here  the  force  P  at  A  does  no 
work,  and  the  work  is  that  done  by  P  in  moving  from 

B  to  B".  We  may  regard  B  as  moving  to  B''  along  the 
arc  of  a  circle  whose  centre  is  at  A,  while  P  always  acts 



CHAP.  XI  ENERGY  209 

perpendicularly  to   AB,   or  along  the  arc  at  each  point. 
Hence  the  work  done  by  P  at  B  is 

Work  =  PxarcBB", 

AB 

Now  the*  ratio  of  the  arc  of  a  circle  to  its  radius  does 
not  depend  on  the  radius,  but  on  the  angle  subtended  at 
the  centre.  This  ratio  is  known  as  the  circular  measure 

of  the  angle.  Denoting  by  6  the  circular  measure  of  the 

angle  through  which  the  body  has  been  rotated,  • 

.     arcBB" 
^="aF~' 

and  Work  =  P.AB.^, 

if  L  denote  the  moment  of  the  couple. 

108.  Considerations  of  energy  often  enable  us  easily  to 
distinguish  whether  the  equilibrium  of  a  body  is  stable  or 
unstable.  A  body  is  said  to  be  in  stable  equilibrium 
when,  if  it  receive  any  very  small  displacement  from  the 
position  of  equilibrium,  it  tends  to  move  back  again.  If, 
on  the  contrary,  it  tends  to  move  farther  away,  it  is  said 
to  be  in  unstable  equilibrium.  When  the  body  keeps  the 
position  to  which  it  is  displaced,  it  is  in  neutral  equilibrium. 

In  certain  cases  the  equilibrium  is  stable  for  some  displace- 
ments and  unstable  for  others  ;  in  this  case  the. equilibrium, 

as  a  whole,  is  unstable.  The  following  examples  will 
illustrate  the  distinction. 

(1)  A  body  suspended  from  a  point. — Here  there  are  two 
positions  of  equilibriuna,  one  with  the  centre  of  gravity 
below  the  point  of  suspension,  the  other  above.  In  the 
former  the  equilibrium  is  stable,  in  the  second  unstable. 
If  the  centre  of  gravity  be  at  the  point  of  suspension,  the 
equilibrium  is  neutral. 

(2)  A  particle  resting  on  a  hollow  vertical  circular  tuhdar 

ring. — Here  there  are  four  positions  of  equilibrium — 
(a)  Inside  at  the  lowest  point  A  (stable). 

P 
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(b)  Outside  at  B  (stable  for  displacements  along  BE, 

unstable  for  those  along  Bg,  .*.  equilibrium  is 
unstable). 

(c)  Inside  at  C  (unstable 
along  CE,  stable  along 

C/,  .*.  equilibrium  is unstable): 

(d)  Outside  at  D  (unstable 
for  all  displacements). 

It  is  evident  that  it  is  always 

easy  practically  to  put  a  body 
into  one  of  its  positions  of  stable 
equilibrium,  but  not  into  an 
unstable  one.  Witness  for  ex- 

ample the  difficulty  of  making 

an  egg  stand  on  end,  whilst  it  is  always  easy  to  put  it  on 
its  side. 

When  a  body  is  in  equilibrium,  it  is  so  in  general  under 
a  system  of  external  forces  together  with  a  set  of  constraints 
which  do  no  work  as  the  body  is  moved  about.  Now 
suppose  that  the  body  is  placed  at  rest  in  such  a  position 
that  the  potential  energy  of  the  acting  forces  is  a  minimum. 
That  is,  for  every  position  of  the  body  near  this  the 
potential  energy  is  greater.  Suppose  now  the  body  in  this 
position  to  have  a  velocity  given  to  it  in  any  direction. 
Then,  remembering  that  the  sum  of  the  potential  and 
kinetic  energies  is  always  constant,  and  that  in  this  case 
the  body  must  move  into  positions  where  the  potential 
energy  is  greater,  it  follows  that  the  kinetic  energy  must 
be  less.  In  other  words,  the  forces  called  into  play  by  the 
displacement  tend  to  stop  the  motion  and  to  bring  back 
the  body  to  its  former  position.  We  learn  then  that  when 

the  potential  energy  is  a  minimum  there  is  stable  equi- 
librium. It  is  of  course  evident  that  such  a  position  is  one 

of  equilibrium,  for,  if  at  rest,  the  body  must  remain  at  rest, 

as  it*  is  impossible  to  get  kinetic  energy  to  move  away  with. 
There  is  also  equilibrium  when  the  potential  energy  is 

a  maximum — that  is,  when  the  potential  energy  for  all  posi- 
tions near  that  in  question  is  everywhere  less  than  in  the 
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position  itself.  This  cannot  be  proved  in  the  same  way 
as  in  the  previous  case.  But  suppose  all  the  forces 
reversed,  then  clearly  to  a  position  of  maximum  energy 
for  the  original  forces  will  correspond  one  of  minimum 
energy  in  the  reversed  system.  But  this  is,  as  we  have 

already  seen,  one  position  of  equilibrium, — it  will,  therefore, 
also  be  in  equilibrium  if  the  forces  are  all  reversed  again 
to  their  former  state.  Hence  a  position  of  maximum 
energy  is  one  of  equilibrium.  But  it  is  one  of  unstable 
equilibrium,  for  if  it  is  displaced  it  moves  to  positions  of  less 
potential  energy,  and  therefore  the  kinetic  energy  increases 
and  the  body  tends  to  move  farther  away. 

As  illustrating  these  results,  we  notice  that  in  the  case 
of  the  suspended  body  the  potential  energy  depends  on  the 
height  of  the  centre  of  gravity.  Hence  it  is  stable  when 
it  is  as  low  as  possible  (i.e.  under  the  point  of  suspension), 
and  unstable  when  as  high  as  possible  (i.e.  above  the  point 
of  suspension).  Compare  also  the  case  of  the  egg.  Further 
examples  are  given  in  §  155. 

EXAMPLES— XI. 

1.  A  ball  weighing  12  lbs.  leaves  the  mouth  of  a  cannon  horizon- 
tally with  a  velocity  of  1000  feet  per  second  ;  the  gun  and  carriage, 

together  weighing  12  cwts.,  slide  upon  a  smooth  plane  whose  inclina- 

tion to  the  horizon  is  30°.  Find  the  space  through  which  the  gun  and 
carriage  will  be  driven  up  the  plane  by  the  recoil. 

2.  A  rope  500  feet  long,  and  weighing  2  lbs.  a  foot,  is  wound  on  a 
roller.  What  is  the  difference  of  its  potential  energy  in  this  position 

and  in  its  position  when  200  feet  of  the  rope  have  rolled  out,  neglect- 
ing friction  and  the  weight  of  the  roller  and  supposing  that  no  part 

of  the  rope  touches  the  ground  ? 

3.  Find  the  horse-power  of  an  engine  which  will  travel  at  25  miles 
per  hour  up  an  incline  of  1  in  100,  the  weight  of  the  engine  and  load 
being  50  tons  and  the  resistance  10  lbs.  per  ton. 

4.  Find  the  horse-power  exerted  by  an  engine  that  is  drawing  a 
train  of  120  tons  up  an  incline  of  1  in  300  at  30  miles  an  hour  ;  re- 

sistances 8  lbs.  a  ton. 

5.  Prove  that  the  pull  of  a  locomotive  engine  is  pdrl/D  lbs.  for  a 
mean  effective  pressure  of  p  lbs.  on  tlie  square  inch,  where  d  denotes 
tlie  diameter  of  each  of  the  two  cylindere,  I  the  length  of  stroke,  and 

D  the  diameter  of  the  driving-wheels  in  inches. 
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6.  A  weight  of  8  cwts.  is  raised  through  a  height  of  60  fathoms  by 
means  of  a  rope  weighing  1  lb.  to  the  foot.     Find  the  work  expended. 

7.  Find  the  horse-power  of  an  engine  that  would  empty  a  cylindrical 
shaft  full  of  water  in  32  hours  if  the  diameter  of  the  shaft  be  8  feet 

and  its  depth  600  feet,  the  weight  of  a  cubic  foot  of  water  being  62 '5  lbs. 
8.  A  tower  is  to  be  built  of  brickwork,  and  the  base  is  a  rectangle  22 

feet  by  9  and  the  height  is  66  feet,  the  walls  being  2  feet  thick.  Find 
the  number  of  units  of  work  expended  on  raising  the  bricks  from  the 

ground  and  the  number  of  hours  in  which  an  engine  of  3  horse-power 
would  raise  them,  a  cubic  foot  of  brickwork  weighing  1  cwt. 

9.  A  man  sculling  does  E  foot-pounds  of  work,  usefully  applied,  at 
each  stroke.  If  the  total  resistance  of  the  water  when  the  boat  is 

moving  uniformly  n  miles  an  hour  be  R  lbs.,  find  the  number  of  strokes 
he  must  take  per  minute  to  maintain  the  speed. 

10.  A  particle  moves  in  a  vertical  circular  tube  and  starts  from  rest 
at  the  highest  point.  Find  the  velocity  (1)  when  it  is  at  the  lowest 

point,  (2)  when  the  line  to  it  from  the  centre  makes  an  angle  of  45°, 
and  (3)  of  135°  to  the  vertical. 

11.  A  ball,  mass  vi,  is  just  disturbed  from  the  top  of  a  smooth  cir- 
cular tube  in  a  vertical  plane  ;  it  falls  and  impinges  on  a  ball,  mass 

2m,  at  the  bottom  ;  the  coefficient  of  rebound  is  ̂ .  Find  the  height 
to  which  each  ball  will  rise  in  the  tube  after  a  second  impact. 

12.  A  heavy  weight  is  suspended  from  a  point  by  a  string  8  feet 

long ;  it  is  pulled  aside  until  the  string  makes  an  angle  of  60°  with 
the  vertical  and  let  go.  What  is  the  velocity  when  it  reaches  the 
lowest  point  ? 

13.  A  particle  moves  under  the  action  of  a  constant  force,  equal  to 
that  of  gravity,  to  a  fixed  point ;  it  is  projected  in  any  direction  with 
a  velocity  of  10  feet  per  second  from  a  point  distant  2  feet  from  the 
fixed  point ;  after  a  certain  time  it  is  3  feet  from  the  point.  Find  its 
velocity.     (See  §100.) 

14.  A  heavy  string  of  length  I  lies  on  a  smooth  horizontal  table 
with  its  length  perpendicular  to  an  edge  ;  a  short  piece  just  hangs 
over,  and  the  whole  is  free  to  move.  Find  the  velocity  of  the  string 
as  it  just  leaves  the  table. 

15.  A  particle,  mass  M,  is  fastened  to  one  end  of  a  string  which 
passes  through  a  hole  in  a  horizontal  plane  and  is  attached  to  another 
of  ma^  m  hanging  vertically.  Determine  the  velocity  when  on  lias 
fallen  through  1  foot. 

16.  In  the  previous  question  M  is  projected  with  velocity  u  at  right 
angles  to  the  line  joining  it  to  the  hole  when  the  distance  from  the 
hole  is  « ;  it  is  again  moving  at  light  angles  to  the  string  when  the 
distance  is  r.     Find  the  velocity  at  that  instant. 
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17.  A  particle  is  .acted  on  by  a  force  to  a  fixed  point  = /u  x  distance 
from  the  point ;  it  is  at  rest  at  a  distance  a.  Find  the  velocity  when 

it  is  at  a  distance  ?•.    (See  §  97.) 
18.  In  the  previous  question  the  particle  is  projected  with  velocity  u 

(1)  towards  the  point,  (2)  perpendicular  to  the  distance  a.  Find  the 
velocity  when  the  particle  is  at  a  distance  r. 

19.  Four  equal  rods  are  jointed  to  form  a  square  ABCD  ;  the  opposite 
angles  A,  C  are  joined  by  a  weightless  rod  and  the  whole  rests  with  AC 
vertical  on  a  horizontal  plane.  Find  the  thrust  on  the  rod  AC,  the 
weight  of  the  rods  being  given. 
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CHAPTEE  XII 

MACHINES 

109.  A  MACHINE  is  an  instrument  for  the  transmission 

of  mechanical  work  and  for  the  transformation  of  a  simple 
motion  into  a  more  complicated  system  of  motions,  as  for 
instance  in  a  pump  or  a  lace  machine.  The  theory  of  the 
relations  between  the  motions  of  different  parts  of  a  machine 
is  called  the  kinematics  of  machinery.  Into  this  very 
interesting  and  technical  subject  we  do  not  enter  here;  we 
confine  our  attention  to  the  forces  called  into  play  at 
different  parts  of  a  machine.  If  now  we  analyse  any 
machine  into  its  parts,  we  shall  always  find  that  it  is  built 
up  of  a  series  of  simpler  elements,  and  that  these  elements 
can  usually  be  arranged  under  about  five  or  six  different 
heads.  These  elements  are  sometimes  spoken  of  as  the 
mechanical  powers.  But,  as  a  power  is  a  rate  of  doing 
work,  this  name  is  clearly  wrong.  We  shall  simply  refer 
to  them  as  the  elementary  machines.     They  are — 

(1)  The  inclined  plane. 

(2)  The  lever. 
(3)  The  wheel  and  axle. 
(4)  The  pulley. 

(5)  The  screw. 
Besides  these,  there  are  others  which  it  would  be  difficult 

to  classify  under  one  of  the  foregoing — such  for  instance  as 
cams,  link  work,  etc. 

An  instrument  for  the  transformation  of  energy  into 
that  of  mechanical  work  is  called  a  prime  mover.     Thus 
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the  steam-engine  transforms  heat,  the  gas-engine  the 
potential  chemical  energy  of  coal-gas  and  oxygen,  the 
electro -motor  electricity,  turbines  and  water-wheels  the 
potential  energy  due  to  gravity  of  water,  wind -mills  the 
kinetic  energy  of  the  air  into  mechanical  work. 

110.  In  all  actual  machines  the  case  is  more  or  less 

complicated  by  the  presence  of  friction.  In  the  present 
chapter  we  shall  suppose,  however,  that  all  the  parts  are 

perfectly  smooth,  and  leave  to  the  next  chapter  the  con- 
sideration of  the  modifications  produced  by  friction. 

When  a  certain  amount  of  work  is  given  in  at  one  point 
of  a  machine  an  equal  amount  must  be  given  out  at  other 
points.  For  if  the  forces  at  those  other  points  be  reversed 
they  will  form  a  system  in  equilibrium  with  the  first,  and 
therefore  the  work  done  hy  the  first  set  will  be  just  equal 
to  that  done  on  the  other.  When  there  is  friction,  a 

certain  portion  of  this  work  will  be  expended  in  over- 
coming the  friction,  and  is  therefore  lost  so  far  as  'useful 

effect  is  concerned.  The  useful  work  given  out  will,  there- 
fore, always  be  less  than  the  work  put  in.  However,  in 

the  cases  considered  in  the  present  chapter,  where  there  is 
no  friction,  the  work  given  out  will  be  equal  to  that  put 
in.  Now  the  work  in  any  case  is  produced  by  a  certain 
force  acting  through  a  certain  distance.  In  general,  if  the 
point  of  a  machine  where  the  force  is  applied  be  moved 
through  a  certain  distance,  the  point  where  the  transmitted 
force  is  exerted  will  move  through  a  different  distance,  and 
since  the  work  is  the  same  at  the  two  places,  the  forces 
must  be  different.  Now  for  most  purposes  we  require  to 
change  a  small  force  into  a  large  force,  and  a  machine 

enables  us  to  do  this,  though  it  does  not  enable  us  to  in- 
crease or  diminish  the  work  done  in  any  time. 

The  ratio  of  the  force  exerted  hy  the  machine  to  the  applied 
force  is  called  its  mechanical  advantage.  Thus,  if  /  be  the 
applied  force  and  F  the  force  exerted  by  the  machine,  F// 
is  the  mechanical  advantage.  When  F  is  less  than  /  this 
ratio  is  sometimes  called  the  mechanical  disadvantage. 
Suppose  now  two  machines  coupled  together  so  that  the 
point  of  exertion  of  the  first  is  coupled  to  the  point  of 
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application  of  the  second.  Let  /  be  the  applied  force  to 

the  first  and  F'  the  force  it  exerts.  Then  F'  is  the  applied force  to  the  second.  Let  F  be  the  force  the  second  exerts. 

Also  let  Ai,  Ag  be  the  mechanical  advantages  of  the  first 
and  second  and  A  that  of  the  two  combined.  Then 

F'  F 

F'      F      F 
•    A      A   -—  X  — - — -  A 

or  the  mechanical  advantage  of  the  two  coupled  is  the 
product  of  the  mechanical  advantages  of  the  two  separately. 
The  same  is  evidently  true  also  for  any  number  of 

machines — the  mechanical  advantage  of  any  number 
arranged  one  after  the  other  is  equal  to  the  product  of  the 
mechanical  advantages  of  each  separately.  If  then  we 
determine  the  mechanical  advantages  of  the  different 
elementary  machines,  it  will  be  an  easy  matter  to  calculate 
that  of  any  complicated  machine  by  considering  the 
elements  of  which  it  is  composed.  This  will  be  the  object 
of  a  large  part  of  the  present  chapter. 

In  any  actual  machine,  without  friction,  it  is  an  easy 

matter  to  determine  the  mechanical  advantage  by  experi- 
ment. For,  push  the  point  of  application  through  a 

distance  «,  and  measure  the  distance  through  which  the 
point  of  exertion  moves,  say  h.  Then,  when  there  is  no 
friction,  the  work  done  at  the  two  points  is  the   same. 

Hence  fa  =  F&, 

The  method  of  energy  is  in  general  the  best  to 

determine*  the  mechanical  advantage  in  all  cases.  For  the sake  of  practice,  however,  we  shall  in  what  follows  use 
this  method  as  well  as  those  developed  in  the  earlier 
chapters. 

in.  In  actual  machines  a  certain  amount  of  work 

being  spent  in  friction,  the  useful  work  is  less  than  that 
put  in.     The  ratio  of  the  useful  work  transmitted  to  the 
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work  put  in  is  called  the  efficiency  of  the  machine.  The 
word  is  chiefly  emj^loyed  with  reference  to  prime  movers, 

and  in  this  case  gives  the  ratio  of  the  useful  work  pro- 
duced to  the  work  which  should  have  been  produced  if 

there  had  been  no  loss  owing  to  friction,  conduction  of 

heat,  electrical  or  other  actions  where  work  is  spent  use- 
lessly. In  machines  without  friction,  for  simply  trans- 

mitting work,  the  efficiency  is  unity.  In  all  other  cases  it 
is  less  than  unity. 

Properly  speaking,  there  is  no  such  thing  as  the 
efficiency  of  a  prime  mover  or  a  machine.  The  efficiency 
in  general  depends  on  the  power  transmitted  or  produced, 
and  not  only  on  the  particular  machine.  Thus  in  the  case 

of  a  given  water-wheel,  with  the  water  entering  at  the 
top  and  carried  in  buckets  to  the  bottom,  the  efficiency  will 
be  greatest  when  it  is  moving  slowest,  or  the  power  is 
least.  For  with  a  given  quantity  of  water  carried  over, 
the  whole  work  done  is  equal  to  the  work  done  by  the 
wheel  +  the  kinetic  energy  given  to  the  water.  The  slower, 
therefore,  the  wheel  works  the  less  kinetic  .energy  is  given 
to  the  water,  and  the  more  is  therefore  left  to  be  given  out 
by  the  wheel.  Although,  therefore,  it  would  be  incorrect 
to  speak  of  the  efficiency  of  the  machine  itself,  it  is  quite 
correct  to  speak  of  the  efficiency  at  which  it  is  working. 

112.  Inclined  plane. — This  has  been  already  treated  of 
as  an  example  in  the  resolution  of  forces  in  §  50. 

Case  I.  Applied  force  along  the  plane. — Let  AB.  be 
the  plane  and  BC  the  direction 
of  the  force  to  be  overcome. 

(In  the  case  of  the  weight  of  a 
body,  BC  is  vertical.)  Draw 
AC  perpendicular  to  BC. 
Consider  the  work  to  bring 
the  point  P  from  A  to  B. 

The  work  applied     =/  x  AB. 
The  work  overcome  =  F  x  BC. 

These  are  equal, 

.-.  /.  AB  =  F.BC, 



218 ELEMENTARY  DYNAMICS PART  II 

and 

A  = 
/ 

AB 

BC" 

Thus,  in  the  case  of  a  truck  hauled  up  an  inclined  plane 
by  a  rope, 

.  _  length  of  track 
height  raised 

Case  II.  Applied  force  in  any  direction. — Suppose  /  to 
act  in  direction  AD.  Draw  BD  perpendicular  to  AD. 
Then,  as  before, 

/.AD  =  F.BC, 
AD 

,      AD     AB     cos^ or  A  = BC BC 

AB 

sin  a 

if,  for  instance,  /  be  perpendicular  to  F, 

AC  _   base  of  plane 

A  = 
BC     height  of  plane 

cot 

As  an  example  of  the  inclined  plane,  we  may  take  a 
wedge.  Here  the  thin  edge  is  placed  in  a  chink  between 

two  bodies  M,  M',  the  wedge  is 
driven  down,  and  the  bodies  forced 
apart.  Let  a  denote  the  breadth 
of  the  wedge  and  I  its  length. 
Then,  when  the  wedge  has  been 

driven  down,  the  bodies  are  sepa- 
rated by  a  distance  BC  =  a,  whilst 

the  wedge  itself  has  moved  through 
a  distance  =  h.     Hence 

/•J  =  F.a, 
.      h      length  of  wedge 

a     breadth  of  wedge 

113.  The  lever. — Levers  are  some- 
times classified  according  to  the  relative  positions  of  the 

fulcrum  and  the  points  of  application  and  exertion.  Thus, 

in  a    pair   of    scissors   or  pincers,  a  crowbar  or  a  pump- 
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handle,  the  fulcrum  comes  between  the  other  two  points ; 

in  the  human  arm  or  a  sheep-shears  the  applied  force  is  be- 
tween ;  and  in  a  pair  of  nutcrackers  or  an  oar  the  exerted 

force  is  between  the  others.  In  all  cases,  however,  the 
formula  for  the  mechanical  advantage  is  the  same. 

Case  I.  A  straight  lever,  with  parallel  forces. — Here  the 
reaction  at  the  fulcrum  is  parallel  to  the  others,  and  is 

equal  and  opposite  to  their  resultant — that  is,  the  fulcrum 
is  •  situated  at  the  point  through  which  the  resultant  of 
F  and  /  acts.     Hence 

F  _  distance  of  applied  force  from  fulcrum 
/     distance  of  exerted  force  from  fulcrum 

When,  therefore,  the  applied  force  is  farther  from  the 
fulcrum  than  the  exerted  force  there  is  mechanical  ad- 

vantage, when  otherwise  there  is  disadvantage.  Thus, 

with  fulcrum  between,  there  may  be  advantage  or  dis- 
advantage ;  for  example,  in  cutting  with  a  pair  of  scissors, 

there  is  advantage  when  the  cut  is  begun,  but  disadvantage 
toward  the  end  of  the  cutting.     This  explains  why  it  is 

easiest  to  cut  a  hard  substance  when  the  scissors  are  opened 
wide  and  the  object  put  in  close  to  the  pin.      With   the 
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point  of  application  between,  there  is  always  disadvantage  ; 

with  the  point  of  exertion  between,  there  is  always  advan- 
tage. 

The  same  formula  holds  for  a  bent  lever  and  parallel 
forces.     Thus  in  the  upper  figure,  0  being  the  fulcrum, 

F_  PL 

/  "  OM' 
Case  II.  Forces  iwt parallel. — DrawOL,  OM  perpendicular 

to  the  forces.  Then,  since  the  forces  just  keep  the  lever  in 
equilibrium,  the  moments  about  0  must  vanish.      Hence 

F.OM-/.OL  =  0 
F     OL 

As  important  applications  of  the  lever,  the  steelyards  and 
balance  will  require  a  more  detailed  consideration. 

114.  The  common  steelyard. — This  consists  essentially 
of  a  lever,  with  the  fulcrum  between  the  points  of  applica- . 
tion  and  exertion.  The  body  to  be  weighed  is  suspended 
from  the  shorter  arm,  and  a  constant  movable  weight  is 
adjusted  on  the  other  and  longer  one  until  the  beam  is 
horizontal.  The  long  arm  is  graduated  so  that  the 
graduation  at  which  the  movable  weight  rests  gives  the 
required  weight  of  the  body.  This  would  be  a  simple 
matter  if  we  could  neglect  the  weight  of  the  steelyard 

itself — the  weight  would,  in  fact,  be  proportional  to  the 
distance  of  the  movable  weight  from  the  fulcrum.  We 
must  then  investigate  how  to  graduate  the  arm  when  the 
weight  of  the  yard  is  taken  into  consideration. 

Let  AB  represent  the  yard.      Let  C  be  the  fulcrum, 

I  A    the     point    of 
  9p  I   5      application   of  the 
I  I  body  to  beweighed, 

^         Q  and  BC  the    long 
arm  on  which  the 

movable  weight  w  moves.  Let  F  be  the  point  where 
the  movable  weight  rests  when  the  yard  is  horizontal.  We 
require  to  know  the  number  to  be  placed  at  P  to  give  the 
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weight  of  W — in  other  words,  we  require  to  know  how  to 
graduate  the  arm  BC.  Let  Q  denote  the  weight  of  the 
steelyard  without  the  movable  weight  and  the  hook  by 
which  the  yard  is  suspended  from  C.  There  will  be  two 
cases  to  consider,  according  as  the  centre  of  gravity  of  the 
yard  is  on  one  side  or  the  other  of  the  fulcrum. 

Case  I.  The  centre  of  gravity  G  on  the  shorter  arm, — 
Take  moments  about  C.     Then 

.       W.AC  +  Q.GC-«;.CP  =  0. 

Now  take  a  point  0  on  the  side  opposite  to  G,  so  that 

Q.GC  =  w.OC; 

then  W.AC  =  ̂ CP-OC), =  w . OP ; 

W 
hence  OP  =  - .  AC. w 

Case  II.  G  mi  the  longer  arm. — Here,  proceeding  as 
before,  the  equation  of  moments  about  C  is 

W.AC-Q.GC-w.CP  =  0. 

O  must  now  be  chosen  in  the  shorter  arm,  so  that 

'  Q.GC  =  ii'.OC, 
then  \V.AC  =  w.OP, 

W 
or  OP  =  -.AC. 

If  then  we  mark  off  points  P,,  Pg,  P3,  .  .  .  along  CB  at 
distances  AC,  2AC,  SAC,  .  .  .  from  O,  these  graduations 
will  represent  points  for  which  the  body  to  be  weighed 
is  w,  2w,  3w,  .  .  .  For  instance,  suppose  z^  to  be  1  lb. 
weight.  Then,  if  the  movable  weight  has  to  be  placed 
at  Pg,  it  shows  that  the  weight  of  the  body  is  2  lbs. 

Tliese  graduations  would  be  too  large  for  practice,  and 
smaller  ones  are  therefore  necessary.  For  instance,  in  the 

case  above,  w  =1  lb.  =  1 6-  oz.  If  then  W  be  expressed  in 
ounces, 

AH 
OP  =  W.  vX  oz. 

10 
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Therefore,  when  W  is  1,  2,  3,  .  .  .,  ?*  oz.,  the  gradua- 
tions must  make 

AC     op_2AC     ()p_3AC  .AC 
^^'~  16'     ̂ ^'~    16  '     ̂̂ '~    16  '     •   •  •'    ̂^""    16  • 

Note. — It  is  clear  that  all  the  graduations  are  of  the 
same  length.      For  the  distance  between  any  consecutive 

AC 
ones  =  ̂ . 

115.  The  Danish  steelyard. — This  steelyard  consists  of  a 
bar  with  a  heavy  boss  at  one  end.  The  body  to  be 
weighed  is  suspended  from  the  other  end,  and  the  bar 
itself  is  then  moved  over  the  fulcrum  until  it  rests  in 

equilibrium.  The  graduation  at  which  it  rests  then  gives 
the  weight  of  the  body. 

Q  Ap  Let     w     be     the 

^kJ/I  ̂   I      weight  of   the   yard, 
'^  Wik     Gits  centre  of  gravity, 

W.the  weight  of  the  body,  P  the  position  of  the  fulcrum 
when  there  is  equilibrium. 

Then  the  reaction  at  P  =  W  +  w. 
Taking  moments  about  G, 

W  X  EG  -  (W  +  w)GF  =  0, 
W 

.-.  GP  =  ,^  .  GB. W  +  w 

If  P^  be  the  graduation  when  W  =  nw,  then 

GP,,=  -^GB. n+  I 

The  graduations  must  therefore  be  at  Pj,  Pg,  P3,  .  .  ., 
where 

GP,  =  iGB,    GP,  =  |gB,    GP3  =  |gB,     .  .  ., 

GP,.=  -^GB. n  +  1 

Note. — It  is  clear  in  this  case  that  the  spaces  between 

the  graduations  are  of  unequal  length.     This  is  a  great  dis- 
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advantage  when  heavy  bodies  have  to  be  weighed,  for  the 
intervals  between  successive  graduations  are  then  so  small 
that  it  is  difficult  to  determine  them  with  accuracy. 

116.  The  balance. — The  most  useful  instrument  for 
measuring  masses  is  the  balance,  consisting  essentially  of 
a  straight  uniform  lever  with  the  fulcrum  at  the  middle 
point.  Like  the  steelyards,  the  balance  does  not  directly 
compare  masses,  but  only  their  weights.  As,  however,  all 
experience  hitherto  has  pointed  to  the  conclusion  that  the 
weights  of  bodies  are  proportional  to  their  masses,  if  the 
weights  are  equal  so  also  will  their  masses  be. 

The  figure  is  intended  to  represent  diagrammatically  a 
balance.  AB  is  the  line  joining  the  points  of  suspension 
of  the  scale  pans,  0  the  point 

from  which  the  beam  swings,  •      ̂  
and  G  the  centre  of  gravity 
of  the  beam  and  of  the  scale 

pans  supposed  collected  at  their 
respective  points  of  suspension. 
Let  OG  meet  AB  in  L. 

Then,  when  no  weights  are 
in  the  scale  pans,  OG  will 
be  vertical.  But  then  AB 

must  be  horizontal.  Therefore  OGL  must  be  perpendicular 
to  AB.  Also,  since  the  equilibrium  must  still  subsist  when 
equal  masses  are  placed  in  each  scale  pan,  it  is  clear  that 
the  arms  of  the  balance  AL,  BL  must  be  equal.  In  order 
then  that  a  balance  may  be  true  it  is  necessary  that  the 
line  joining  the  points  of  suspension  of  the  scale  pans  shall 
be  (1)  perpendicular  to  the  line  joining  the  point  of  support 
and  the  centre  of  gravity,  and  (2)  that  the  arms  shall  be 

equal. 
These,  however,  are  not  the  only  requisites  for  a  good 

balance.  Not  only  must  the  arm  be  horizontal  when  the 

masses  in  the  pans  are  equal,  but  in  order  to  weigh  accu- 
rately it  must  be  easy  to  determine  when  the  masses .  are 

not  exactly  equal — in  other  words,  if  one  mass  be  ever  so 
slightly  larger  than  the  other,  the  arm  must  turn  through 
an  appreciable  angle.     The  balance  must  in  fact  be  sensitive. 
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Where  time  is  an  object,  it  is  also  necessary  that  the 
balance  should  quickly  take  up  its  position  of  equilibrium. 
In  other  words,  when  displaced  from  its  position  of  rest 
the  forces  called  into  play  should  quickly  bring  it  back 
again.     The  balance  must  in  fact  be  stable. 

It  is  important,  therefore,  to  determine  the  conditions 
which  must  be  satisfied  that  a  balance  may  be  (1)  true,  (2) 
sensitive,  (3)  stable.  The  conditions  for  the  first  have 
been  just  determined.  To  determine  those  for  the  two 
others  it  will  be  necessary  to  consider  the  forces  called 
into  play  when  the  scales  are  loaded  unequally  and  the 
beam  is  displaced  through  any  angle. 

In  the  figure  let  the  thick  lines  OL,  AB  represent  the 
displaced    position    of 

O-^;  ^\      the  balance,  OL',  A'B' its  position  of  rest  with 
equal  weights. 

Let   W,  w   be    the 

Then   the  moment  of 
beam  round  0 

weights  in  the  pans  at 

A,  B  ;  Q  the  weight  of 
the    beam     and    scale 

pans.     Also  let 

Oa  =  A,    QiL  =  h 
the  forces  tending  to  turn  the 

Now,  since  AL 

whence 

also 

w.Oh  +  q.Og-W  .Oa. 
=  LB,  therefore  al  =  lb, 

0a  =  la-0l  =  lb-0l, 

OgOGh 

or  0L~  Is Hence  the  moment  of  the  forces 

=  loiOl  +  lb)  +  Q^* .  0/  -  W(/^*  -  0/), 

=  Ol(w  +  W  +  Q^*)  +  lh(zv  -  W). 

Now,  to  get  the  greatest  stability  possible,  the  forces 
tending  to  bring  back  the  beam  when  displaced  a  given 
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distance  01,  and  when  loaded  with  equal  weights,  must  be 

as  great  as  possible — that  is,  putting  W  =  iv^ 

Oi(2W.Qj) 

must  be  as  great  as  possible  for  a  given  displacement, 
whatever  W  may  be. 

Now  the  displacement  LOL'  being  given,  0/  will  be  pro- 
portional to  k.  Hence  the  condition  is  that  k(2W  +  Q}i/k) 

=  2Wk  +  QA  must  be  great.  This  may  be  attained  by 
making  h  and  k  very  large — that  is,  the  point  of  suspension 
at  a  considerable  distance  from  AB. 

The  investigation  for  sensitiveness  becomes  much 
simplified  by  the  use  of  trigonometrical  functions.  We 

notice  that  if  the  angle  LOL'  be  denoted  by  0, 
0/  =  LM  =  OLsin(9  =  ̂sin(9, 

lb  =  'LN  =  BL  cos  BLN  =  a  cos  0, 
if  a  denote  the  length  of  the  arm. 

Putting  in  these  values  the  forces  tending  to  bring  the 
beam  back, 

=  {{w  +  W)k  +  QA}  sin  (9  -  (W  -  w)a  cos  0. 
Now,  if  a  balance  be  sensitive,  its  displacement  will  be 

considerable,  even  when  the  two  weights  are  very  nearly 

equal.  That  is,  for  a  given  small  value  of  W  -w,  0  must 
be  large.  But  when  at  rest  the  moment  of  the  forces 
about  0  vanish.     Hence  6  is  given  by 

{{w  +  W)k  +  QA}  sin  0  =  {W-  w)a  cos  (9, 

sin  ̂      ̂        .  W  -  w 
or  —^  =  tan  d  =   ^^^^-^ — ;^a. 

cos  6  (tv  +  W)k  +  QA 

Now  for  a  given  value  of  W  -  w;,  tan  6  must  be  large ; 

hence  ;   ^^=r-j — prr  must  be  large  : 

(w  +  W)k  +  QA  ® 
that  is,  since  W  =  w  nearly, 

2^Yk  +  QA 
  must  be  small. 

a 

'    It  will  be  noticed  that  this  is  to  some  extent  incompat- 
Q 
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ible  with  the  condition  for  stabih'ty,  viz.  that  2W^  +  Q/t 
must  be  large.  If,  however,  wliile  making  A,  k  large  for 
stability  we  also  make  a,  or  the  length  of  the  arm,  very 
long,  we  shall  get  both  stability  and  sensitiveness.  But 
this  simply  means,  the  larger  the  balance  is  made  the 
better  it  will  be.  This  is,  however,  only  apparently  the 
case,  for  if  the  arm  be  made  longer  what  is  called  its 

moment  of  inertia  (§  175)  will  be  larger,  and  the  con- 
sequence will  be,  as  will  be  shown  in  Chapter  XXI,  that  it 

will  move  still  more  slowly.  In  fact  the  conditions  of 
stability  cannot  be  fully  worked  out  without  considering 
the  dynamics  of  the  balance  as  a  moving  body.  The  best 
way  is,  for  ordinary  purposes,  to  sacrifice  great  sensitiveness 

or  accuracy  (in  M^eighing  a  pound  of  sugar  it  is  not  neces- 
sary to  be  accurate  to  the  tenth  of  a  grain)  and  to  make 

balances  in  which  OL  is  not  extremely  small.  On  the 
other  hand,  in  cases  where  extreme  accuracy  is  necessary 
and  the  time  expended  in  the  operation  of  weighing  is  a 
secondary  consideration,  as  in  chemical  balances,  everything 
is  sacrificed  to  sensitiveness. 

This  is  not  the  place  to  enter  into  complete  details  of 
accurate  balances  and  of  the  operations  necessary  to  secure 
accurate  weighings.  There  are,  however,  methods  whereby 
correct  results  may  be  obtained,  even  when  the  balance 
(through  inequality  of  arms  or  otherwise)  is  inaccurate. 
One  method,  used  also  with  the  chemical  balance,  is  to 
place  the  body  in  one  scale,  and  counterpoise  it  with  small 
shot  and  sand  and  observe  the  position  of  the  beam.  Then 
take  out  the  body  and  replace  it  by  weights  until  the 
beam  returns  to  its  former  position.  It  is  then  clear  that, 
whether  the  balance  is  inaccurate  or  not,  the  weight  of 
the  body  is  equal  to  that  of  the  weights  put  in  its  place. 

When  the  arms  are  unequal,  the  correct  weight  can  still 
be  found  by  weighing  the  body  alternately  in  each  scale 

pan.  If  w^  w'  be  the  apparent  weights  in  the  two  cases,  the 

correct  weight  will  be  Jiow',  The  student  can  prove  this 
as  an  example. 

117.  The  wheel  and  axle. — This  consists  •  essentially  of 
two  cylinders   of  different  diameters  on  the  same  axis, 
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round  which  they  can  turn  together.  Eopes  are  wound  in 
opposite  directions  round  each  of  them  so  that,  as  the 
machine  turns,  one  rope  is  wound  on  and  the  other  off.  A 

modification  is  when  the  large  cylinder  and  rope  are  re- 
placed by  a  handle,  as  in  a  windlass. 

The  second  figure  represents  dia- 
grammatically  an  end  view  of  the 
machine.  0  is  the  axis  ;  A,  B  the  points 
where  the  ropes  leave  the  surface. 

If  F  and /be  just  in  equilibrium, 
it  is  clear  that  they  balance  about  0 
as  in  the  case  of  the  lever.     Hence 

OA 

OB 

radius  of  wheel 

radius  of  axle  * 
If  the  thickness  of  the  rope  is  large, 
and  at  all  comparable  with  the  size  of 
the  wheel  or  axle,  it  is  necessary  to 
take  account  of  it.  Now  in  a  rope  we  may  regard  the 
tension  it  transmits  as  spread  uniformly  across  it,  and 
therefore  the  whole  tension  as  acting  through  the  centre 
of  its  section.  This  will  increase  the  effective  diameter 

of  the  wheel  or  axle  by  half  the  thickness  of  the  rope. 
Whence  the  mechanical  advantage  is 

F  _  radius  of  wheel  +  J  thickness  of  wheel  rope 
/        radius  of  axle  +  J  thickness  of  axle  rope 

Moreover  it  is  clear  that  if  as  the  wheel  revolves  one  rope 
gets  coiled  on  itself  as  the  other  uncoils,  the  effective  radii 
of  the  wheel  and  of  the  axle  alter.  For  instance,  if  the 
wheel  is  uncoiling  and  raising  a  weight,  the  effective  radius 
of  the  wlieel  is  diminishing  whilst  that  of  the  axle  is 

increasing.  In  consequence  of  this  the  ratio  of  the  numer- 
ator to  the  denominator  of  the  above  fraction  diminishes, 

or  the  mechanical  advantage  gets  less.  An  example  of 

varying  advantage  is  to  be  seen  in  the  fusee-wheel  of  a 
watch.  When  the  spring  is  wound  tight  up  the  mechanical 
advantage  is  small,  whilst  as  the  force  applied  by  the  string 
gets  less  the  mechanical  advantage  increases. 
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118.  Pulleys. — A  pulley  is  essentially  a  small  wheel  by 
which  the  direction  of  a  tension  is  altered  without  affecting 
its  magnitude.  We  consider  first  a  single  pulley,  and 
then  different  arrangements  of  several  pulleys  by  which 
mechanical  advantage  is  gained. 

The  rope  on  passing  round  the  pulley  has  the  same 
tension  on  both  sides,  and  the  effect  on  the  ]^ulley  is  the  same 

as  if  two  forces  equal  to  the  tension  were  applied  at  the 
points  A,  B  where  the  rope  leaves  the  pulley.  If  one  end 
of  the  rope  be  fastened  at  C  and  the  other  pulled  with  a 
force  /,  the  effect  on  the  pulley  is  the  same  as  if  two  forces 
/,  /  acted  at  A,  B  along  AC,  BD.  These  may  be  made  to 
counterbalance  a  force  F  applied  to  the  pin  on  which  the 

pulley  works. 
If  the  two  portions  of  the  rope  are  parallel,  it  follows 

that r  =  2/, 

or  the  mechanical  advantage  of  a  pulley  with  parallel  ropes 
is  2. 

If  the  two  portions  are  not  parallel.  Let  2^  be  the  angle 
between  them.  Then  each  makes  an  angle  6  with  F,  and 
resolving  parallel  to  F, 

F  =  2/ cos  d, 

or  the  mechanical  advantage  is  2  cos  $. 
These  results  have  been  obtained  on  the  supposition 

that  the  pulleys  have  no  weight.  Usually  the  error  so 
introduced  will  only  be  a  small  fraction  of  the  forces 
involved.  In  many  cases,  however,  it  will  be  necessary 
to  take  account  of  the  weight  of  the  pulleys. 
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If  the  pulley  hangs  vertically,  the  effect  is  to  add  its 
weight  to  F.     Hence 

F  +  w;=2/cos(9, 

w 

and  mechanical  advantage  =  2  cos  ̂   -  -^  . 

It  is  to  be  noticed  that  in  this  case  the  mechanical 

advantage  depends  partly  on  the  applied  force. 
Pulleys  may  be  combined  with  one  another  in  an  infinite 

number  of  ways.  Three  of  the  most  common  are  con- 
sidered in  the  next  three  articles. 

119.  The  same  rope  goes  round  all  the  pulleys. — The 
pulleys  are  combined  in  two  blocks  running  loose  on 
two  pins,  and  the  same  rope  goes  round  all  the  pulleys 
as  in  the  figure  (A).  Sometimes,  however,  the  pulleys 
on  each  block  are  made  of  one  piece,  but  in  this  case 
they  must  be  of  suitable  diameters,  as  in  the  figure  (B),  or 
the  ropes  will  have  to  slip  over  the  surface  of  the  pulleys 
and  work  will  be  lost  in  the  friction.  One  end  of  the  rope 
is  attached  to  either  of  the  blocks. 

The  force  F  applied  to  the  lower  block  is  counterbalanced 

by  the  tensions  of  the  ropes  pass- 
ing round  the  pulleys  in  it.  The 

tension  of  each  rope  is  the  same 
as  that  applied  at  the  end,  viz.  /. 
If  the  other  end  of  the  rope  is 
attached  to  the  upper  block, 
there  will  be  an  even  number  of 

ropes  pulling  up  on  the  low^r, 
viz.  two  for  each  pulley,  but. if 
it  be  fixed  to  the  lower,  then 
there  will  be  an  odd  number.  In 

any  case,  however,  if  there  be  n 

ropes  at  the  lower  block,  the  up- 
ward force  is  nf  (since  tension  of 

each  ̂ =/). 

or  A  =  n. 
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If  the  weight  of  the  lower  block  is  taken  account  of, 

F  =  nf-w. 

120.  System  in  which  each  rope  has  one  end  fixed,  passes 

round  a  pulley,  and  is  fastened  to  the  preceding  one. — The 
method  of  arrangement  is  as  shown  in  the  figure.  Clearly 

this  is  a  case  where  the  exerted 

force  of  one  pulley  is  the  applied 
force  on  the  next.  In  other  words, 
we  have  a  series  of  machines  each 

worked  by  the  one  before  and  work- 
ing on  the  one  in  front.  Hence, 

by  §  110,  the  mechanical  advantage 
is  the  product  of  those  of  each.  In 
this  case  the  mechanical  advantage 
of  each  is  2  by  §  118.  Therefore,  if 
there  are  n  pulleys, 

A  =  2x2x2x  .  .   .   (n  factors), =  2"; 

or  F  =  2y. 

This  may  also  easily  be  arrived 
at  directly,  for  the  tension  of  each  rope  is  twice  that 
of  the  rope  before.  Hence,  if  tn  denote  the  force  on  the 
nth.  pulley, 

X  =  %  =  ̂ tn-i  =  2  tn-2  =  •"  f«-3  =  .    .   .    =  2  f 0  =  2"'/. 

If  the  weights  of  the  pulleys  are  considered,  we  must  in- 
vestigate the  equilibrium  of  each  separately. 

Let  w„  W2,  .  .  .,  Wn  be  the  weights  of  the  1st,  2nd,  .  .  ., 
nth.  pulley.     Then 

F-2tn.^+Wn  =  0^ 
2L 

tr, 

2L 
+  Wr> 

1  =  0 

.  =  0 
  =  0 

t,-2/+w,  =  0 
These  are  n  equations.  Multiply  the  2nd  by  2,  the 

3rd  by  2^,  the  4th  by  2^  .  .  .,  the  last  (or  nth)  by  2^-\ Then 
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2L 

\ 
2\-.-2\_3+2X-2  =  0 
  =0 

.      2"-i^,-2«/+2"-S  =  0J 
If  all  these  equations  be  added  together,  the  first  term 

of  each  will  be  cancelled  by  the  second  term  of  the 
previous  equation,  and 

.     F  -  2"/+ w«  +  2w;„_i  + 22^^.2+  .  .  .  +2^-%i  =  0, 
or      F  =  2y-(w;„+2w,,_,+  22w;„_,+  .  .   .  +  2^-iw.).       • 

If  the  weights  of  the  pulleys  are  all  equal, 

F=2«/-(l  +2+  .  .  .  +2**-^, 
let  now  S=l  +  2+   +  2'''-\ 
then  2S  =        2  +  4  +  .  .  .  +  2"-^  +  2^ ; 
or,  subtracting  the  1st  from  the  2nd, 

S  =  2S-S  =  2«-1. 

Hence  F=2Y-(2^-lK 

In  this  system  of  pulleys,  therefore,  the  mechanical  ad- 
vantage is  diminished  by  the  weights  of  the  pulleys. 

121.  System  in  which  each  rope  is  attached  to  the  point  of 

exertion. — The  end  of  each  rope  is 
attached  to  a  bar,  on  which  the  force 

F  acts.  It  is  clear,  from  a  com- 
parison of  the  figures,  that  this  is 

essentially  the  previous  system  in- 
verted. Now  the  force  acting  on  the 

pulley  at  C  is  the  force  F  of  the 

previous  case.     Call  it  F',  then F'  =  2  V- 

But  regarding  the  system  as  one 
system  acted  on  by  the  three  forces 
F,  F',/, 

F+/=F'-2Y, 
.•.F  =  (2"-l)/, 

or  A  =  2"-l. 

If  the  pulleys  be  of  the  same  size,  the  ends  of  the  ropes 
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will  be  fixed  on  the  bar  AB  at  equal  intervals.  Their 

tensions  will  have  a  resultant  ( =  F)  passing  through  some 
definite  point  of  the  bar,  and  it  is  this  point  at  which  F 
must  be  applied.  In  order  to  find  this  point  we  shall 
require  to  calculate  each  tension  separately.  The  method 
will  best  be  exemplified  by  considering  the  case  of  three 
free  pulleys,  or  four  ropes. 

The  tension  at  Ci  =  ̂ i=/, 
Q,^  =  t^  =  1j,  ^ 
Oz  =  t,  =  2% 

To  find  their  centre  of  parallel  forces  0,  take  moments  about  Ci. 

Let  the  interval  between  the  ropes  be  a  ( =  radius  of  a  pulley).     Then 

PO_/x  O  +  y.  «  +  2y.  2a  +  2y.  Sa '^^-  /+2/+2y+2y 

2  +  8  +  24        -34       34    _       34,^ 

1  +  2  +  4  +  8       15       45'  45 

In  this  system  the  weights  of  the  pulleys  are  an  advan- 
tage. The  formula  giving  F  in  terms  of  /  and  the  weights 

is  left  as  an  example  for  the  student. 

122.  The  screw. — In  a  sqrew  the  force  is  generally 
applied  at  the  end  of  an  arm,  at  right  angles  to  the  screw. 

The  force  is  exerted  in  one  of 

two  ways,  either  by  the  screw 
bolt  working  in  a  fixed  nut  so 
that  the  screw  moves  forward,  or 
the  screw  working  in  a  fixed 
collar  with  the  nut  free  to  move. 

In  the  latter  case,  as  the  screw 
turns  i\Q  nut  moves  forwards  or  backwards. 

The  distance  between  two  screw  threads  is  called  the 

pitch  of  the  screw. 
The  thread  forms  a  helix  on  a  cylinder.  The  curve 

may  be  supposed  generated  by  wrapping  a  piece  of  paper, 
on  which  a  straight  line  has  been  drawn,  round  the  cylinder. 

Thus  let  ABCD  be  a  piece  of  tracing  or  transparent 
paper  on  which  the  line  BC  has  been  drawn.  Wrap  it 
round  a  cylinder  with  AC  parallel  to  the  axis.     Suppose. 
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for  exampie,  it  just  goes  three  times  round.  Then,  the 
paper  being  transparent,  the  line  BC  will  be  seen  to  form 
a    helix.       The    screw    thread    ,  ^ 
then  clearly  makes  a  uniform 
angle  with  the  axis.  The  angle 
BCD  is  the  angle  of  the  screw. 

*    The  angle  of  the  thread  may  j/^    i  y^ vary  from  square  to  any  acute 
angle.       The    shape,    however,  alz_^   i   i   I  at^ 
will  not  affect   the  mechanical 

advantage  except  in  so  far  as  it  modifies  the  friction.  Its 
shape  is  determined  by  other  considerations,  such  as  ease 
of  manufacture,  or  the  stresses  it  has  to  bear  and  the 

material  of  which  it  is  ma'de. 
To  find  the  mechanical  advantage,  give  one  complete 

turn  to  the  screw.  Then  /  moves  through  the  circumfer- 
ence of  the  circle  traced  out  by  the  end  of  the  arm  on 

which  it  acts.  The  .screw  itself  advances  a  distance  equal 
to  the  distance  between  the  threads,  i.e.  its  pitch.  This 
then  is  the  distance  through  which  F  acts.  Hence,  since 

the  work  done  by  /  =  work  done  on  F, 

/  X  circumference  by  arm  =  F  x  piteh,  - 
F 

or  Mechanical  advantage  =  j 

_  circumference  of  circle  by  arm 

pitch 

If  I  be  the  length  of  the  arm, 

*      F     ̂         / 

/  pitch 
It  is  instructive  to  see  how  the  same  result  may  be 

arrived  at  by  another  method. 
.,  .         In  the  figure  let  the  circle  OB  repre- 

t      sent  the  end  of  the  cylinder  on  which 

^B   ^     the  screw  is  made,  and  let  OA  be  the 
arm.     Then  /  acting  at  A  is  equivalent 

to/'  acting  at  B,  where 

/.OA=/'.OB. 
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or,  if  r  denote  the  radius  of  this  cylinder, 

Now  we  have  seen  that  the  threads  may  be  formed  by 
wrapping  an  inclined  plane  round  the  cylinder.  The 
problem  is  therefore  the  same  as  raising  a  weight  F  up  an 

inclined  plane  by  a  horizontal  force  /'.     Hence  ' 
F       base  of  plane 

/'     height  of  plane' 
But  the  base  of  the  plane  just  wraps  round  the  cylinder, 

and  therefore  measures  its  circumference,  =  2ivr ;  and  the 

height  of  the  plane  =  pitch  of  the-  screw, 

F_j7rr *  ■  /'  ~  pitch' 

also  *V  =  -• 

/      ̂ Hence,  multiplying  the  two, 

.  _  F  _   27rr    I  _   ̂irl  _  circumference  by  arm 

/     pitch  *  r     pitch  pitch 
By  diminishing  the  pitch  sufficiently  it  is  therefore 

possible  to  increase  the  mechanical  advantage  to  any 
extent.  A  limit,  however,  is  set  to  this  by  the  .strength 
of  the  material,  which  would  give  way  if  the  threads  were 
made  too  small.  The  same  effect  is  produced  indirectly 
in  another  way  by  the  diflferential  screw. 

123.  Differential  screw. — The  differential  screw  consists 
of  two  screws  of  different  pitch  on  the  same  axis.  The 
figures  illustrate  two  forms  of  the  arrangement.  In  the 
first  the  two  screws  form  one  piece.  The  nut  at  A  is  fixed, 
while  B  is  movable.  As  the  screw  is  worked  out  of  A  it 

moves  to  the  right,  and  would  pull  B  after  it  at  the  same 
rate,  were  it  not  that  the  small  screw  works  through  B,  also 
to  the  right,  and  so  tends  to  leave  B  behind.  As,  however, 
it  does  not  screw  out  of  B  so  quickly  as  into  A,  B  is 
still  drawn  towards  A,  though  not  so  quickly  as  otherwise. 
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modification   known   as 

separate,  the 
B  A 

are 

jHH'^^piSKs) 

B 

The  second   figure   exemplifies    a 

Hunter's  screw.     Here  the  two  screws 
smaller   one  working    inside  the 
larger  one.     Thus,  as  A  is  screwed 
in  to  the  left  it  partly  screws  on 
to  the  small  screw  B  and  partly 
pushes  it  bodily  to  the  left.     The 
mechanical    advantage    is    easily 
found,  as  in  the  case  of  the  simple 
screw.     Let  ft,  b  be  the  pitches  of 
the  two  screws.     Then  on  making 
one  complete  turn  the  large  screw 
advances  a  distance  a,  while  the 

small  screw  (or  the  nut  in  the  first  figure)  moves  h  into  it. 
Hence,   on  the    whole,   the   distance  moved   through   by 
B  =  a-b. 

Since  the  work  done  is  equal  to  the  work  exerted, 

F{a  -  b)  =f  X  circumference  of  circle  by  arm, 
F  _  circumference  of  circle  by  arm 

/  difference  pf  pitches 

In  order  then  to  get  a  great  mechanical  advantage  we 
must  make  the  pitches  nearly  equal,  while  at  the  same 
time  it  is- possible  to  make  each  screw  as  strong  as  may  be 
required. 

124.  The  differential  axle  and  pulley  is  an  example  of 
the  combination  of  two  elementary  machines.  In  this  the 

wheel  and  axle  are  of  very  nearly  the 
same  diameter.  The  two  ends  of  the 

rope  are  fastened,  one  to  the  axTe  and 
the  other  to  the  wheel,  and  the  portion 
hanging  loose  supports  a  pulley. 

Give  the  wheel  one  complete  turn, 

Tthen  a  length  equal  to  t
he  circumference 

of  the  wheel  is  wound  on  the  wheel, 

and  a  portion  wound  off  the  axle  equal 
P  to     the    circumference    of    the    axle, 

hanging    freely    is    shortened    by    their 
,  the  parts  on  each  side  of  the  pulley 

or 
A  =  =r 

■c 

« } 

^-^^ 

Hence    the    part 
difference ;    that ; 
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arc  shortened  by  half  this  amount.  Therefore  the  pulley 
is  raised  a  distance 

=  J  difference  of  circumferences  of  wheel  and  axle. 
If  the  force  /  is  applied  to  pull  down  the  string  ab,  it 

will  move  through  a  distance  equal  to  the  circumference  of 
the  wheel.     Hence,  if  Cj,  Cg  denote  the  circumferences, 

Fxifc, -C2)=/.c,, 

or  A  =  -  =   ~. 

f     Ci-c^ Since  the  circumferences  are  proportional  to  the 
diameters,  if  a,  h  denote  the  diameters, 

2a 
A=   ^• 

d-  0 
Hence,  by  making  h  very  nearly  equal  to  a,  we  may  increase 
A  to  any  desired  extent  without  making  the  axle  unduly 
weak. 

125.  When  a  prime  mover  is  working  at  its  maximum 
efficiency  it  is  not  necessarily  giving  out  a  maximum  of 
work.  This  is  an  imporjiant  point.  The  following 

example  will  illustrate  this  difference — 

Consider  the  action  of  a  water- wheel.  In  order  to  simplify  matters 
and  to  bring  out  the  essential  points  more  clearly,  suppose  that  no 
water  is  wasted  ;  that  the  water  is  taken  in  from  a  reservoir  at  the  top, 
where  the  water  is  at  rest,  and  that  it  is  all  given  up  after  a  quarter  of 

a  revolution — that  is,  after  the  water  has  fallen  a  distance  equal  to  the 
radius'of  the  wheel. 
Let  a  =  radius  of  wheel  in  feet. 

%  =  number  of  revolutions  per  minute. 
m  =  number  of  lbs.  of  water  the  wheel  would  hold  if  all 

the  buckets  were  full. 
Then  in  one  minute  the  water  carried  over  could  fill    n    times  the 

circumference— that  is,  if  M  denote  the  mass  carried  over  every  minute, 
M  =  nm  lbs. 

This  falls  through  a  distance  a  feet. 

.',  Work  done  by  gravity  (the  source  of  the  power) 
=  mna  foot-pounds. 

Part  of  this  is  transmitted  as  useful  work  =  W,  whereas  part  is  used  in 

giving  kinetic  energy  to  the  water  =  E.     Hence 
W-l-E=?nwa. 
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Now  the  velocity  of  the  water  is  that  at  the  ciicumfereuce  of  the 
wheel,  which  is  27ra  feet  long.  Hence  the  velocity  of  a  point  there  is 
71 X  2ira  feet  per  minute. 

.'.  E=--m»x(2irna)^  (foot,  pound,  minute  units  of  power), 

=   foot-pounds  per  minute, 

where  9^  =  32  feet  per  second  per  second  =  32  x  60  x  60  feet  per 
minHte  per  minute  ; 

•  •  ̂  =  -^  ̂o^AA  foot-pounds  per  minute ; 16  X  3600 

and  efficiency=.^^g=l-^g^^3g^^. 
This  gives  the  efficiency  when  the  speed  in  revolutions  per  minute 

is  given.  It  is  clearly  greatest  when  n  is  least — that  is,  when  the 
wheel  is  moving  most  slowly.     The  useful  power,  however,  is  given  by 

/        Tr-n-a\ ^^'^H^-STeool 

This  is  very  small  when  the  speed  is  very  slow.     It  is  also  very  small 
very 

240 
for  very  lai-ge  speeds.      For  instance,  it  is  zero  when  7i^= — ^ — ,  or 

,.—       ._.     Between  these  two  points  it  first  begins  to  increase  up  to  a 

certain  point,  and  then  again  to  decrease  to  zero.     There  is  therefore 
a  critical  speed  at  which  the  wheel  is  giving  out  its  maximum  amount 
of  power.     To  deduce  the  actual  value  of  this  critical  speed  from  the 
above  formula  necessitates  the  use  of  the  differential  calculus.     The 

student  may,  however,  satisfy  himself  by  working  out  cases  that  the 80     /s 

power  given  out  for  a.  speed  n=  —  ̂   -  is  greater  than  that  of  any 

other  speeds  he  may  try.    At  this  speed  of  maximum  work  the  efficiency 

In  the  case  of  a  water-wheel  then,  such  as  the  above,  the  speed  of 
maximum  efficiency  is  as  slow  as  possible,  the  speed  of  maximum 

fiO       /^ 
work  is  —  */  -.    This  does  not  hold  true  of  every  motor — for  instance, 

in  the  case  of  electro-motors  the  efficiency  is  greatest  when  the  speed 
is  greatest.  There  is  in  this  case  also  a  critical  speed  at  which  the 
power  emitted  is  greatest. 

126.  We  conclude  this  chapter  with  two  examples  to 
illustrate  the  method  of  calculating  the  motion  ensuing 
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when  the  applied  force  differs  from  that  just  necessary  to 
support  a  weight  through  the  medium  of  a  machine. 

Example  I.  In  a  wheel  and  axle  a  mass  of  10  Ihs.  hangs  from 
the  axle,  and  a  force  equal  to  the  weight  of  6  lbs.  is  applied  to  the  wheel ; 
the  radii  of  the  wheel  and  axle  are  1  foot  and  3  inches  respectively. 
Find  the  motion. 

Let  T  be  the  tension  of  the  rope.  Then,  if  the  wheel  and  axle 
have  no  mass,  T  and  6g  balance. 

.-.  T.3  =  6t^.l2, 

T  =  2ig  poundals. 

Force  upon  the  weight  =  T-  10^=24(/-  10g'  =  14gr ; 

.'.  Acceleration  =  y^=:l"4gr. 

It  is  to  be  noticed  here  that  a  constant /orce  is  applied  to  the  whbel. 
If,  on  the  contrary,  a  mass  of  6  lbs.  had  been  suspended  from  it,  the 

motion  would  be  different.  In  this  case  let  T'  be  the  tension  of  the 

string  round  the  wheel,  a',  a  the  accelerations  of  the  6.  and  10-lb. 
mass  respectively.     Then,  a'  being  down  and  a  up, 

a-      g     , 

also,  if  the  wheel  has  n-o  mass,  T  and  T'  balance, 
.-.  T.3  =  TM2 

or  T  =  4T'. 

Moreover,  since  the  strings  are  inextensible,  there  must  be  a  relation 

between  a  and  a'.  Now  if  the  wheel  is  turned  once  round,  the  6  lbs. 
goes  down  a  distance  equal  to  the  circumference  of  the  wheel  =.27r  feet, 
whereas  the  10  lbs.  goes  up  a  distance  equal  to  the  circumference  of 

the  axle=27r .  3  inches.  But  their  accelerations  must  be  proporti'^nal 
to  these  distances, 

a'     27rxl2     , 

"a-  27r.3  ~"' or a'=ia.                           . 

Hence Aa=g-l   ] 
4T'     r ^=io-^J 

From  the  first  T'= 
.-.  5a  = 

53a = or                           a= 

=  6gr- 

=  2T'- 

=  79, --^9, 

24a, 

-5g=l2g-i8a-5g  =  7g-i8a, 

auda'=^g. 
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The  mass  of  the  wheel  ought  in  general,  however,  to  be  taken  into 
consideration.    To  do  this  requires  the  principles  developed  in  Part  III. 

Example    II.   Determine    the    motion    indicated   in    the    annexed 

diagram,  the  pulleys  being  of  no  muss. 

Let  a  be  the  acceleration  of  P  downwards,  a',  a"        f^     \ 
the  accelerations  of  Q,  R  upwards.     Then  B  goes  up 
with  acceleration  a. 

.".  the  acceleration  of  Q  relative  to  B  is  a -a', 
and  of  R  relatively  to  B  is  a  -  a".      But,  since  the 

string  QBR  is  inextensible,  the  acceleration  of  Q  «;?    pH     /^"X 
relatively  to  B  must  be  equal  to  the  acceleration  of              I  P 
R  down  relatively  to  B.  ^,   / 

:.   a-a'=  -{a-a")y 
or  a'  +  a"=2a. 

Let  T  denote   the  tension  of  QBR.      Then   the 
tension  of  BA=2T. 

.*,  Force  on  P  down=Pgr-2T, 2T 

So 

But 

Q-^' 

4PQR 

a'^a" T 
R 

4     1 

P'^Q'^R 

«=9'--p- 

,,     T 
^=R-^- 

2a, 

4T 

Q  +  R-2^=2^-F 

(Q  +  R)P-4QR 
4QR+PR+PQ 
4QR-3PR  +  PQ 
4QR  +  PR+PQ 

g,    a  = 

9, 

4QR  +  PR  +  PQ^= 
4QR  +  PR 

^ 

  3PQ 
4QR  +  PR  +  PQ^* 

EXAMPLES— XII. 

1.  Find  the  advantages  of  the  different  mechanical  elements  by 
methods  other  than  those  in  the  text.  For  instance,  when  proved  in 
the  text  by  energy,  deduce  them  by  the  conditions  for  the  equilibrium 
of  forces. 

2.  Two  weights,  each  equal  to  8  lbs. ,  hanging  on  a  straight  lever  at 
points  12  inches  and  18  inches  from  the  fulcrum,  and  on  the  same  side 
of  it,  are  balanced  by  a  single  vertical  force  acting  at  a  point  16  inches 
from  the  fulcrum.     Find  the  magnitude  of  the  force. 

3.  Weights  of  5  oz.  and  7  oz.  balance  on  a  lever  in  which  the  shorter 
arm  is  3  feet.     Find  the  length  of  the  lever. 
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4.  In  an  8-oar  boat  tlie  oars  are  10  feet  long,  the  distance  from 
the  hand  to  the  rowlock. is  2  feet  6  inches;  each  man  ^mirs  with  a 

force  equal  to  the  weight  of  60  lbs.  Find  the  force  on  the  boat,  sup- 
posing the  blades  of  the  oars  not  to  move  through  the  water. 

5.  The  arms  of  a  balance  are  9^  and  9f  inches  long  respectively,  and 
the  scales  balancQ  when  empty.  How  much  would  a  customer  gain 
or  lose  in  what  was  weighed  as  a  pound  of  tea  ? 

6.  A  tradesman  has  a  balance  with  unequal  arms,  and  weighs  for 
successive  customers  in  alternate  arms.  Does  he  gain  or  lose  on  the 

average,  and  how  much  ? 
7.  A  common  steelyard  weighs  10  lbs.  ;  the  weight  is  suspended 

from  a  point  4  inches  from  the  fulcrum,  and  the  centre  of  gravity  of 
the  steelyard  is  3  inches  on  the  other  side  of  the  fulcrum  ;  the  movable 
weight  is  12  lbs.  Where  should  the  graduation  corresponding  to  1 
cwt.  be  situated  ? 

8.  A  steelyard  is  12  inches  long,  and  with  the  scale  pan  weighs  1  lb., 
the  centre  of  gravity  of  the  two  being  2  inches  from  the  end  to  which 
the  scale  pan  is  attached.  Find  the  position  of  the  fulcrum  when  the 
movable  weight  is  1  lb.  if  the  greatest  weight  that  can  be  ascertained 
by  means  of  the  steelyard  is  12  lbs. 

9.  In  a  steelyard  the  length  of  the  rod  is  2  feet,  its  weight  2  lbs., 
the  distance  of  its  centre  of  gravity  from  the  fulcrum  1  inch  towards 

the  end  of  the  shorter  arm,  'the  distance  of  the  point  where  the  weight 
is  suspended  from  the  fulcrum  2  inches,  and  the  movable  weight  6  oz. 
Find  the  greatest  weight  which  can  be  weighed. 

10.  The  length  of  the  shorter  arm  of  a  common  steelyard  is  4  inches. 
If  when  W  is  increased  by  2  oz.  P  must  be  moved  through  |  inch, 
and  the  division  corresponding  to  4  lbs.  weight  is  3  inches  from  the 
fulcrum,  find  the  moment  of  the  beam  about  the  fulcrum. 

11.  A  capstan  has  eight  spokes,  each  8  feet  long,  and  three  men  work 
each  at  a  distance  of  1  foot  6  inches  from  one  another,  the  outer  man 
being  at  the  end ;  the  capstan  is  2  feet  in  diameter,  and  each  man 
pushes  with  a  force  of  56  lbs.  weight.  Find  the  force  exerted  on  the 
anchor. 

12.  In  the  system  of  pulleys  in  which  the  same  stiing  goes  round  all 
the  pulleys,  the  applied  force  is  2  lbs.  weight  ;  the  lower  block  weighs 
8  lbs.  and  contains  3  pulleys  :  the  string  is  fastened  to  the  lower  block. 
Show  that- W  =  6  lbs. 

13.  In  that  system  of  pulleys  in  which  the  same  string  goes  round 
all  the  pulleys,  there  are  5  strings  at  the  lower  block.  What  pull  is 
necessary  to  just  raise  a  mass  of  1  ton  ?  Find  the  power  exerted  when 
the  string  is  pulled  out  at  a  speed  of  5  feet  per  second. 

14.  In  a  system  where  the  same  string  goes  round  all  the  blocks, 
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one  block  is  made  of  one  solid  piece.     Find  the  relation  between  the 
sizes  of  the  grooves  cut  in  it. 

15.  In  that  system  of  pulleys  in  which  each  string  is  attached  to 
the  weight,  there  are  three  strings.  Find  the  point  of  the  bar  to 
which  the  weight  must  be  attached,  supposing  the  pulleys  of  equal  size. 

16.  Supposing  in  the  previous  case  the  diameters  of  the  pulleys  were 
4,  5,  6  inches  respectively,  and  all  the  strings  were  vertical,  determine 
the  point  of  attachment  of  the  weight. 

17.  Find  the  relation  between  the  force  P  and  the  weight  W  in  a 
system  of  five  movable  pulleys  in  which  each  pulley  hangs  by  a 
separate  string,  and  the  weight  of  each  pulley  is  equal  to  P. 

18.  A  mass  of  1  ton  has  to  be  raised  by  a  man  who  can  only  exert  34 
lbs.  weight.  If  he  uses  a  system  of  pulleys  in  which  each  string  has 
one  end  fixed,  passes  under  one  pulley,  and  is  fastened  to  the  next, 
how  many  pulleys  must  he  use  ?  If  the  weight  of  each  pulley  were  2 
lbs.,  how  many  pulleys  must  he  use? 

19.  There  are  four  pulleys  in  which  the  strings  are  vertical,  and  all 
attached  to  the  weight.  What  weight  can  be  supported  by  a  force  of 
14  lbs.  weight,  and  what  force  can  support  a  weight  of  14  lbs.  (1)  if  the 
Aveights  of  the  pulleys  themselves  can  be  neglected,  and  (2)  if  each 
pulley  weighs  1  lb.  ? 

20.  In  a  system  of  pulleys  in  which  each  string  is  attached  to  the 
weight,  each  pulley  ha§  the  weight  w,  the  sum  of  the  weights  of  the 
pulleys  is  W,  and  P  and  W  are  the  applied  force  and  weight,  prove 
that  the  force  V  +  w  would  support  the  weight  W  +  W  in  the  same 
system  if  the  pulleys  had  no  weight. 

21.  In  the  system  of  pulleys  where  each  string  passes  under  one 

pulley  and  is  attached  to  the  next,  if  "W  be  the  weight  supported,  and 
w?i,  w^,  .  .  .,  Wn  the  weights  of  the  movable  pulleys,  there  will  be  no 
mechanical  advantage  unless 

W  -  i^n  +  2(W  -  Wn-i)  +  22( W  -  w;„-2)  + .  .  .  +  2«-i( W  -  w^) 
be  positive. 

22.  In  the  Spanish  Barton  C  is  a  fixed  pulley.  Two  pulleys  A,  B 
hang  over  C  by  a  string ;  another  string  is  fastened  to  a  fixed  point  D, 
passes  under  B,  over  A,  and  bears  a  mass  P  at  the  end  ;  another  mass 
Q  is  suspended  to  the  pulley  B.  Find  the  relation  between  P  and  Q 
when  there  is  equilibrium. 

23.  Find  the  mechanical  advantage  of  a  screw  whose  diameter  is  6  78 

inches,  and  the  distance  between  whose  successive  threads  is  "71  inch. 
24.  A  man  has  to  raise  10  cwts.  by  means  of  a  screw  ;  he  can  exert  a 

force  of  10  lbs.  weight  with  each  hand,  and  there  is  a  double  arm  of  2 
feet  total  length.  Find  the  greatest  pitch  of  screw  allowable,  supposing 
no  friction.  ^ 
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25.  A  capstan,  whose  diameter  is  20  inches,  is  worked  by  a  lever 
which  measures  6  feet  from  the  axis  of  the  capstan.  Find  in  foot-, 
pounds  the  amount  of  work  done  in  drawing  up  by  a  rope  1  ton  over 

35  feet  of  the  surface  of  a  smooth  plane  whose  height  is  three-fifths  its 
length.  The  rope  may  be  supposed  to  be  always  parallel  to  the  surface 
of  the  plane.  Find  also  the  force  applied  to  the  end  of  the  lever  and 
the  distance  through  which  its  point  of  application  moves. 

26.  In  a  wheel  and  axle  the  wheel  is  driven  by  a  tangent  screw  ;  the 

pitch  of  the  screw  is  -^  inch,  and  the  ratio  of  the  radii  of  the  wheel 
and  axle  is  10:1.  Find  the  mechanical  advantage,  the  head  of  the 
screw  being  1  inch  diameter. 

27.  In  the  system  of  pulleys  in  which  the  same  string  goes  round  all 
the  pulleys,  the  lower  pulley  bears  a  mass  of  1  cwt.  while  12  lbs.  is 
suspended  from  the  end  of  the  string ;  there  are  seven  strings  at  the 
lower  block.  Find  the  accelerations  of  the  masses  and  the  tension  of 

the  string. 
28.  In  a  wheel  and  axle  Avhose  radii  are  in  the  ratio  5  : 1,  a  mass  of  1 

lb.  is  suspended  over  the  wheel  and  10  lbs,  over  the  axle.  Find  their 
accelerations  and  the  tensions  of  the  strings,  supposing  the  wheel  and 
axle  to  have  no  mass. 

29.  Prove  that  if  W  lbs.  and  P  lbs.  balance  on  a  system  of  pulleys 
W  -  7lP 

when  "W=?iP,  the  acceleration  of  W  downwards  will  be  ,„   „„  <7,and 

of  P  upwards  will  be  WV^^9'»  supposing  W>wP. 

30.  Fourteen  horse-power  is  transmitted  from  one  place  to  another 
by  a  rope  which  can  only  bear  a  strain  of  56  lbs.  weight.  Find  the 
least  speed  at  which  the  rope  can  be  driven, 

31.  A  water-wheel  of  10  feet  diameter  takes  in  the  water  from  a  still 

reservoir  at  its  highest  point,  and  empties  its  buckets  after  a  quarter  of 
a  revolution.  Compare  the  power  it  produces  and  its  efficiency  when 
it  makes  (1)  20  revolutions  per  minute,  (2)  5  revolutions  per 
minute.  , 



CHAPTER   XIII 

FRICTION 

127.  Hitherto,  and  especially  in  the  last  chapter,  we 
have  in  the  illustrations  of  principles  treated  bodies  as 
smooth.  That  is,  we  have  supposed  that  two  bodies  in 
contact  offer  no  resistance  to  being  slipped  the  one  along 

the  surface  of  the  other — or,  which  comes  to  the  same  thing, 
that  the  mutual  stress  between  two  bodies  in- contact  i§ 

pei^"endicular  to  their  common  surface.  As  a  matter  of 
fact,  however,  this  is  never  absolutely  the  case.  In  many 

instances  the  supposition  is  so  nearly  true  that  no  appreci- 
able error  is  introduced  by  neglecting  altogether  the  effects 

of  the  friction.  In  general,  and  especially  in  machines 
whose  elements  contain  the  inclined  plane,  axle  bearings, 
or  tlie  screw,  it  is  necessary  to  take  account  of  the  friction 
if  any  approximation  to  real  conditions  is  sought. 

Ordinary  experience  teaches  us  that  the  resistance  to 
the  slipping  of  one  body  over  another  dej^ends  on  the 
nature  of  the  surfaces  and  the  pressure  ̂ vith  which  they 
are  forced  together.  Before  being  able  to  calculate  the 
effects  of  friction  in  any  case  it  will,  therefore,  be  necessary 
to  investigate  the  laws  which  it  obeys.  Consider  now  a 
body  on  the  horizontal  surface  of  another.  In  this  case 
no  force  is  exerted  horizontally,  and  the  mutual  stress  is 

perpendicular  to  the  surfaces — no  friction  is  called  into 
play.  If,  however,  a  small  horizontal  force  be  applied  to 

the  body,  it  still  does  not  inove — friction  is  now  called 
into  play,  and  a  counteracting  resistance  equal  and  opposite 
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to  the  force  exerted  is  set  up.  If  the  force,  be  slowly 
increased,  this  counteracting  resistance  also  increases,  so  as 
just  to  counterbalance  it,  until  at  last  a  point  is  reached 
at  which  the  friction  reaches  its  limit  and  the  body  gives 
way.  The  friction  does  not  cease ;  it  still  resists  the  motioh, 
but  it  cannot  exceed  a  certain  limit.  The  force  called  into 

play  when  the  body  gives  way  is  called  the  limiting  friction. 
The  laws  of  limiting  friction  as  first  discovered  by  Coulomb 

may  be  thus  stated — 

(1)  When  the  surfaces  in  contact  remain  the  same,  the 
limiting  friction  is  directly  proportional  to  the 
normal  pressure,  and  is  therefore  independent  of 
the  extent  of  surface  in  contact. 

(2)  When  in  motion,  the  friction  is  independent  of  the 
relative  velocities  of  the  two  surfaces. 

If  R  denote  the  normal  stress  or  reaction  between  the 

two  surfaces — that  is,  the  force  with  which  one  body  is 
pressed  on  to  the  other — and  F  the  limiting  friction,  then 
according  to  the  first  of  these  laws  F/E  is  constantTTTr  if 

we  write  F/R  =  /x,  /^  is  a  constant  depending  only  on  the 
nature  of  the  surfaces  in  contact.  It  does  not  depend 
only  on  the  materials  of  which  the  bodies  are  made,  but 
also  on  the  state  of  polish  or  otherwise  of  the  actual 
surfaces.     It  is  called  the  coefficient  of  friction. 

It  has  been  found  by  later  experimenters  that  these 
laws  hold  within  very  wide  limits.  They  are  not,  however, 
exact  for  very  large  pressures,  nor  do  they  seem  to  be  so 
for  very  small  ones.  Moreover,  the  coefficients  of  friction 
for  the  same  surfaces  at  rest  and  in  motion  are  not  the 

same,  but  the  former  is  always  somewhat  larger  than  the 

other — in  other  words,  it  needs  a  larger  force  to  start  a 
body  on  a  rough  plane  than  to  keep  it  moving  after  it  is 

•  once  started.  This  statement,  again,  is  not  quite  exact  for 
exceedingly  slow  velocities.  In  fact,  starting  from  complete 
rest,  fx  appears  to  decrease  from  its  statical  value  to  its 

proper  value  for  motion — very  quickly,  indeed,  but  not  by  a 
sudden  jump.  The  value  of  fx  also  is  found  to  be  larger 
when  the  bodies  have  been  some  time  in  contact. 
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128.  In  the  case  of  a  rough  body,  then,  on  a  surface 

the  reaction  consists  of  a  normal  pressure  R  com- 
bined with  a  tangential  force  F.  These  are  equivalent  to 

a  single  reaction  in  some  definite  direction.  Let  the  figure 
represent  a  body  on  a  rough 
plane,  pressed  on  it  (by  its 

weight  or  otherwise)  by  a  pres- 
sure =  K  Let  a  force  push  it 

to  the  right.  This  calls  into 
play  an  equal  force  F  opposite 
to  it.  Let  OA,  OB  represent 
these  forces.  Complete  the  parallelogram  ;  then  the  total 
resistance  is  represented  by  00  making  an  angle  AOC 

with  the  normal  to  the  surface.  If  the  force  F  be  gradu- 
ally increased,  this  angle  also  increases  up  to  a  certain 

point,  beyond  which  the  friction  is  not  sufiicient  to  main- 
tain equilibrium.     Now 

^      .^^     AC     F tanAOC  =  ̂   =  g, 

when  then  the  body  gives  way 

tan  AOC  =  /a. 

That  is,  the  angle  AOC  which  the  total  reaction  makes 

with  the  normal  when  the  body  gives  -v^y  is  constant  for 
the  same  materials.  This  angle  is  called  the  angle  of  fric- 

tion.    If  it  be  denoted  by  e, 

tan  €  =  fi. 

129.  In  machinery  the  friction  would  be  so  great  that 
not  only  would  a  large  proportion  of  power  be  lost  in 
driving  it,  but  the  friction  would  soon  wear  away  the 

bearings.  It  is  enormously  diminished  by  the  use  of  lubri- 

cants, such  as  oil.  In  this  case  the  oil  forms  a  thin*  layer 
between  the  two  surfaces  so  as  to  prevent  their  coming 
into  contact,  and  the  friction  properly  so  called  becomes 
extremely  slight.  There  is,  however,  now  another  kind  of 
resistance  to  be  overcome,  due  to  the  viscosity  of  the  oil. 
The  oil  sticks  to  the  two  surfaces,  and  the  relative  motion 
takes  place  in  the  layer  of  oil  itself.     This,  however,  calls 
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up  a  very  much  less  force,  and  at  the  same  time  the  wear 

of  the  bearings  becomes  almost  infinitesimal.  Should,  how- 
ever, the  pressure  become  extremely  great  the  layer  of 

oil  becomes  very  thin,  and  friction  again  comes  into  play. 
Tiie  following  table  gives  the  values  of  the  angle  and 

coefficient  of  friction  in  certain  cases — 

Wood  on  wood  (dry)  14°  to  26° 

„    (soaped)  2°  to  111° Metals  on  dry  oal^     .  2  6 1°  to  31° 
dry  elm     .  llj°  to  14° 

Leather  on  oak           .  15°  to  19J° 

Metals  on  metals  ̂      .  8J°  to"lli° 
130.  With  the  above  laws  of  friction  known,  the  prin- 

ciples already  developed  in  the  foregoing  chapters  enable  us 
at  once  to  calculate  the  effect  of  friction  in  different  cases. 

The  following  example  will  serve  to  illustrate  this — 

A  body  rests  on  a  rough  horizontal  table  and  is  attached  to  a  toeight 
hanging  freely  by  a  string  passing  over  a  pulley  at  the  edge  of  the  table. 

Determine  '(1)  the  weight  needed  in  order  to  just  move  the  body,  and 
(2)  the  motion  ensuing  if  the  weight  is  larger  than  this. 

Let  W  be  the  weight  of  the   body,  fi  the  coefficient  of  friction 
between  it  and  the  table.     Let  w  be  the  suspended  weight. 

Then,  if  R  be  the  jjressure  of  the  body  on  the  plane, R=W, 

and  if  F  be  the  friction  called  into  play, 
F  =  T. 

But  if  the  system  is  at  rest,  ̂   =  w, .'.  U  =  W\ 

F=w  r 

If  now  it  is  just  on  the  point  of  motion,  F  has  its  greatest  possible 
value,  and F=/*R, 

.*.  w  =  fjiW. 

This  affords  an  easy  and  expeditious  way  to  determine  fx,  and  also  to 
prove  tlie  truth  of  the  first  law.  We  have  only  to  alter  the  weight  w 
until  the  body  just  begins  to  move.     Then  observe  its  magnitude,  and 

^  = 

W"
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On  altering  the  load  by  putting  extra  weights  on  the  top  of  the  body  it 
will  be  found  that  w  will  be  altered  so  that  w/W  or»^  remains  the  same 

as  before.  Instead  of  hanging  the  weights,  a  spring -balance  may  be 
used  to  pull  the  body  along  the  table,  and  the  reading  w  observed 
when  the  body  just  gives  way. 

In  determining  the  motion  it  has  to  be  remembered  that  the  co- 
efficient of  friction  while  moving  is  less  than  that  necessary  to  start 

the  body.  Let  this  coefficient  be  represented  by  /*',  and  let  M,  m 
denote  the  masses  of  W  and  w. 

Then  the  force  tending  to  make  the  body  move  along  the  table 

=mg-¥=mg-fi'Mg, 
and  the  mass  moved  is  m+M  : 

.•.  Acceleration  = in-  fi'M 

m  +  M  ̂* 

If  m  be  the  mass  just  necessarj'  to  start  the  body,  and  if  the  body 
be  started  by  a  slight  push,  then 

mg=iMg 

by  the  former  part  of  the  question,  and  in  this  case 

In  general  fi-fi'  is  very  small,  so  that  it  would  move  with  a  constant 
small  acceleration.  If,  however,  the  motion  were  stopped,  the  bodies 
would  remain  just  at  rest. 

131.  Body  resting  on  an  indiiied  plane. — Let  us  find  the 
inclination  of  the  plane  in  order  that  the  body  may  just  be 
at  rest.     The  body  is  acted  on  by  only  two  forces,  viz.  its 

weight  vertically  downward  and  the  reaction  of  the  plane. 
Hence  these  must  be  in  the  same  line,  and  therefore  the 

reaction  of  the  plane  must  be  vertical.  The  reaction  must, 

therefore,  make  with  the  normal  to  the  plane  the  angle 

RDL  =  90°  -  BDW  =  ABC.     Therefore,  as  the  inclination 
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of  the  plane  is  increased,  RDL  increases  also,  until  at  last  it 
becomes  equal  fo  the  angle  of  friction,  beyond  which  it 
cannot  extend,  and  the  body  would  begin  to  move.  The 
body  therefore  gives  way  when  RDL  =  e  or  ABC  =  e.  That 
is,  the  inclination  of  the  plane  must  be  the  angle  of  friction. 
This  is  also  an  easy  method  to  determine  the  Value  of  /x. 

If  the  plane  had  been  smooth,  the  work  done  in  pulling 
the  body  up  the  plane  AB  would  have  been  equal  to  that 

done  in  raising  it  freely  through  the  height  AC.  If,  how- 
ever, the  plane  be  rough,  the  work  done  must^be  greater 

than  this.  In  order  to  find  the  amount  of  work  done,  let 
us  suppose  the  reaction  resolved  into  components,  a  pressure 
P  normal  to  the  plane  and  a  friction  F  along  the  plane. 
Since  the  body  is  being  pulled  upwards,  F  will  ad  downwards. 

Also,  since  it  is  limiting  friction,  F  =  /xP.  Then,  if  T  be 
the  force  pulling  it  up  the  plane,  we  have 

also,  resolving  up  the  plane, 

=  ;.P4-W^, 

V  AB  ̂   ab;    • 
Now  the  work  done  =  T  x  AB, 

.-.  Work  =  /xW.BC  + W.AC. 
Here  W .  AC  is  the  work  done  in  raising  W  freely  through 
a  height  AC ;  also,  if  BC  be  regarded  as  of  the  same  material 
as  AB,  and  W  be  pulled  along  it,  the  friction  will  be  /x .  W 

and  the  work  /xW .  BC.  Hence  we  obtain  this  very  im- 

portant result — 
The  work  done  in  raising  a  body  tip  an  inclined  plane  is 

equal  to  the  work  done  in  raising  it  through  the  height  of  the 
plane  and  dragging  it  along  the  base  supposed  of  the  same 
material  as  the  plane  itself. 

In  all  cases  ,where  work  is  done  against  friction  it  is 
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dissipated  into  heat  or  other  energy,  and  is  not  given  back 
again  if  the  path  be  reversed.  Thus  here,  if  the  body  be 
moved  down  the  plane,  gravity  returns  the  work  formerly 
done  against  it  by  pulling  the  body  through  the  height  of 
the  plane.  But  work  still  has  to  be  done  to  drag  the 
body  back  over  the  base. 

In  the  rough  inclined  plane  the  mechanical  advantage  is 

A     W  1 

A  = 
T       BC     AC 

f 

1 

''aB  "*"  AB 

/A  cos  a  +  Sin  a 

Note, — For  a  smooth  plane  A  =  1/sin  a;  if  the  inclination 
of  the  rough  plane  be  the  angle  of  friction,  /x  =  tan  a 
=  sin  a/cos  a  and  A  =  1/2  sin  a. 

Hence,  if  a  rough  plane  be  inclined  at  the  angle  of 

friction,  the  mechanical  advantage  is  reduced  one-half  by 
the  roughness. 

The  above  formula  gives  T,  the  force  necessary  to  pull 
the  weight  W  up  the  plane.  If  the  inclination  of  the 
plane  is  less  than  the  angle  of  friction,  the  body  will  rest 
on  it,  and  it  would  require  a  force  to  pull  it  down.  Let 

T'  be  the  force  necessary  to  pull  it  down.  In  this  case 
the  friction  F  acts  up  the  plane*  in  opposition  to  T'i  P  is the  same  as  before.     Hence 

^       ̂ \^AB     AB/; 
=  W(/A  cos  a  -  sin  a). 

Any  force  then  between  W  (sin  a  +  /a  cos  a)  up  the  plane 

and  W(/>t  cos  a  -  sin  a)  dovm  the  plane  will  be  insufficient 
to  make  the  body  move. 

132,  Of  the  elementary  machines  the  inclined  plane  and 
the  screw  are  those  most  affected  by  friction.  The  results 
of  the  previous  paragraph  enable  us  at  once  to  find  the 
mechanical  advantage  in  a  rough  screw. 
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For,  give  the  screw  one  complete  turn.  Since  the 
action  of  the  screw  is  that  of  the  threads  sliding  up  an 
inclined  plane,  the  work  done  by  the  screw 

=  work  in  moving  freely  through  the  pitch  +  work 
in  dragging  round  the  circumference  of  the  screw 

cylinder. 

Or,  if  F,  /  denote  the  forces  exerted  by  the  screw  and 
applied  to  the  arm  respectively,  work  done  by  screw 

=  F  X  pitch  +  fiF  X  circumference  of  screw. 

But  this  is  the  Avork  done  by  /  on  the  screw, 

=/  X  circumference  traced  out  by  the  arm  of  the  screw. 

Hence,  if  rj,  ?*2  denote  the  radii  of  the  arm  and  screw, 

/.  27rr,  -  F  X  pitch  +  fxF27rr,, 

/     pitch  +  27r?2/x 
133.  The  rest  of  this  chapter  will  be  devoted  to  ex- 

amples more  interesting  for  the  methods  of  solution  than 
for  their  importance  in  themselves. 

Example  I.  A  heavy  uniform  beam  rests  on  the  top  of  a  rough  sphere. 
Find  the  greatest  weight  ivhich  can  he  placed  on  one  end  that  it  may  not 

slip  off.  ' Let  C'A'D'  be  the  position  when 
just  on  tlie  point  of  slipping  off. 
B  the  point  of  contact  with  the 
sphere,  and  A  the  highest  point. 
Also  let  P  be  the  greatest  weight 

which  can  be  placed  at  D'  with- 
out the  beam  coming  off.  Let  a  be 

the  radius  of  the  sphere,  21  the 
length  of  the  beam,  and  W  the 

weight  of  the  beam. 
Then  the  resultant  of  W  and  P 

must  pass  through  B,  the  point  of  contact,  and  the  reaction  at  B, 
being  equal  and  opposite  to  this  resultant,  must  be  vertical.  Therefore 
OB  must  make  with  the  vertical  the  angle  of  friction,  or 

AOB  =  e. 
This  gives  the  position- 
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Again 
and 

But 

W.A'B  =  P.BD', 
A'B  =  arc  AB,  since  the  rod  rolls  without  slipping  ; 
BD'  =  A'D'-arcAB. 

arc  AB       _    angle  AOB 
circumference     4  right  angles 

therefore,  if  e  be  measured  in  degrees, 

^''^^  =  36()2'^^- 

Hence 

A^ 

BD' 

arc  AB 
I  -  arc  AB 
2va€ 

W, 

l- 

Irrae 

360 
e 

.W, 

180 

tra  ' 

-.W. 

Example  II.  A  rectangular  block  rests  on  a  rough  inclined  plane. 
If  the  inclination  he  gradually  increased,  determine  whether  it  tvill  first 
begin  to  slide  or  to  topple  over. 

Let  the  figure  represent  the  position  when  the  diagonal  BD  is 
vertical.     Then  the  centre  of  grav- 

ity is  just  over  D,  and  if  the  plane 
be  raised  ever  so  little  the  block 

will  topple  over. 
Also,  if  the  inclination  of  the 

plane  be  greater  than  the  angle  of 
friction,  it  will  slip. 

If  then  CEF  be  greater  than  the 
angle  of  friction,    the  block  will 

have  begun  to  slide  before  the  in-    ̂  
clination  is  so  great  as  CEF — that 

is,  it  will  slide  fii-st.     If,  on  the  contrary,  CEF,  or  which  is  the  same 

thing  AD15,  is  less  than  e,  it  will  topple  over  first.  '  Hence,  if  a  denote 
the  angle  between  the  diagonal  and  the  side  perpendicular  to  the  plane, 

it  will  slide  first  if  o>e, 

it  will  topple  over  first  if  a  <  e. 

Example  III.  A  ladder  rests  against  a  rough  vertical  wait  and  on  a 
rough  Twrizontal  pavement.  Determine  the  reaMions  in  any  position 
and  the  position  in  lohich  it  is  just  on  the  pointy  of  slipping  out.^ 
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Let  AB  represent  the  ladder  in  any  position,  and  let  G  be  its  centre 
of  gravity,  usually  nearer  the  lower  end  than  the  top.  B  tends  to 
move  out,  A  down.     Hence  the  total  reaction  at  B  and  A  will  be  in 

the  directions  indicated  in  the  figure. 

Let  them  be  R,  R'  making  angles  a, 
a'  with  the  horizontal  Al  and  the 

vertical  Bl\  Then  a,  a'  must  both 
be  less  than  the  angles  of  friction 
for  the  ladder  and  the  wall,  and  the 
ladder  and  the  ground  respectively. 

We  have  then  the  ladder  acted  on 

by  three  forces  W,  R,  R'.  Hence 
they  must  meet  in  a  point  (0  say). 
This  is  sufficient  to  determine  R, 

R'  when  OAZ,  OBZ'  (or  simply  one  of 
theni  and  ABC)  are  given. 

But  there  is  nothing  further  to  de- 
termine these  angles  beyond  the  fact 

that  they  must  lie  within  certain 
angles. 

For  consider  the  reaction  at  A. 

Let  OjAZ,  OgAZ  be  each  equal  to  the 

angle  of  friction  =  e. 
Then  the  reaction  R  at  A  must 

lie  somewhere  within  OjAOg,  and 
must  cut  the  vertical  through  G 
somewhere  in  O1O2. 

Again,  let  Z'BOg  be  equal  to  the 
angle  of  friction  at  B  =  e'  say.  Then 

the  reaction  R'  at  B  must  cut  the  vertical  through  G  somewhere  above 
O3.  Since  R,  R'  must  meet  in  the  vertical  through  G,  it  is  clear 
that  if  O3  be  above  Oj,  equilibrium  cannot  subsist.  If  O3  is  just  at 
Oj,  the  ladder  is  just  on  the  point  of  slipping.  If  O3  lies  between  0^ 

and  O2,  there  will  be  equilibrium,  but  the  reactions  will  be  indeter- 
minate, varying  between  limiting  friction  at  A  and  limiting  friction 

atB. 

If  O3  be  below  O2,  there  will  be  equilibrium,  but  the  reactions  will 
be  indeterminate,  varying  between  limiting  friction  at  A  downwards 
and  limiting  friction  at  A  upwards.  If  0  be  given,  then  the  reactions 
are  perfectly  determinate. 

Of  course  in  any  actual  case  the  reactions  are  definite.  Their  values 
are  settled  according  to  the  way  in  which  the  ladder  was  put  on  and 
the  elastic  give  of  the  material  of  which  it  is  composed.     The  student 
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can  easily  illustrate  this  by  sitting  in  an  easy-chair  covered  in  plush. 
According  to  the  way  in  which  he  sits  down  he  may  feel  in  one  case 
that  he  is  chiefly  kept  from  slipping  out  by  the  friction  on  his  trousers, . 
and  in  another  case  chiefly  by  the  friction  on  the  back  of  his  coat. 

In  the  present  case  the  reactions  would  be  diflFerent  if  the  ladder 
resting  at  B  were  quietly  lowered  on  to  A,  from  those  if  the  ladder 
resting  at  A  were  quietly  lowered  on  to  B. 

The  less  OjOs  is,  the  less  ambiguity  is  there. 
In  one  case,  however,  there  is  no  ambiguity,  viz.  when  the  ladder 

is  just  on  the  point  of  slipping.     In  this  case  OiAl  =  e,  OjBl'  =  e'. 
If  d  be  the  inclination  of  the  ladder  to  the  vertical, 

OiGA=^, 

also  B0iG=0iBZ'  =  e', 

AOiG=90°-OiAZ=90°-e. 
Hence  we  have  triangles  in  which 

BG  =  b,     AG  =  a  are  known, 

GOB  =  e',     GOA  =  90°-e, 
and  OGA  =  6  can  be  found. 

The  angle  OBG  =  OGA  -  GOB  =  d-e\ 

OAG  =  OGB-GOA=180°-^-(90°-e)-90°  +  e-0. 
Students  who  are  acquainted  with  the  solution  of  triangles  will 

then  see  that 
OG       sinB        AG     sinGOA 

Hence 
BG~sinBOG'    "OG  ~    sin  A   " 

AG_a_sin(^-€')      sin  (90° -e)        Cose     sin  {d  -  e') 
BG  ~  &  ~  ~sin"7'~'  •  sin(96°  +  e-(?)  ~  sin  e'  '  cos  ((?  -  e )' 

whence  6  may  be  found. 
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Or  it  may  be  done  graphically  thus :  on  BG  describe  the  segment 

of  a  circle  containing  an  angle  e'  and  on  AG  a  segment  containing  an 
angle  90°- e  (Eiicl.  III).  Let  them  intersect  at  0.  Join  OG.  Then 
OGA  is  the  inclination  of  the  ladder  when  it  begins  to  slip. 

An  example  illustrating  indeterminateness  of  solution  when  bodies 
are  treated  as  rigid  has  been  given  in  §  89. 

Example  IV.  A  heavy  body  rests  on  a  rough  horizontal  hoard,  which 

is  moving  horizontally.  Determine  the  accelei'ation  that  the  body  may 
remain  without  slipping  on  the  board. 

Let  a  be  the  acceleration,  m  the  mass  of  the  body,  and  F  the  friction 

actually  called  into  play.     Then  the  force  on  m  making  it  move  =  F, 
F 

.'.  a=  —' m 

But  if  it  is  just  on  the  point  of  slipping, 

F  =  /A  X  weight = iimg  =  ma  ; 

.'.  if  a  =  /xg,  the  body  is  just  on  the  point  of  slipping  over  the  board. 
If  a  be  greater  than  this,  there  is  relative  motion  ;  and  if  /jf  represent 
the  coefficient  of  friction  when  moving,  the  acceleration  of  the  body 

is  fji'g,  and  relatively  to  the  board  is  a- fig. 
Example  V.  A  train  is  travelling  on  a  horizontal  line  ;  it  is  brought 

to  rest  by  the  application  of  the  brakes  to  some  of  the  wheels.  How  far 
will  it  go  before  coming  to  rest  if  resistances  other  than  those  due  to  the 

brakes  be  neglected .? 
Let  m  denote  the  mass  of  the  whole  train,  v  the  original  velocity, 

u  the  velocity  after  a  distance  s,  P  the  pressure  of  a  brake  on  a  wheel, 
R  the  pressure  of  a  wheel  on  the  rail  (both  P  and  R  measured  in  terms 

of  the  weight  of  unit  mass),  /*,  /a'  tlie  coefficients  of  friction  of  the  wheel 
with  the  brake  and  rail  respectively,  n  the  number  of  wheels  braked. 

Then  the  only  work  done  is  that  by  the  friction.     Hence 

\m{i?  -  w2)= number  of  absolute  units  of  work  done  by  the  friction. 
Now  two  extreme  cases  will  arise  according  as  all  the  wheels  skid 

along  the  rails,  or  roll  on  the  rails  and  slip  over  the  brakes.  There 

may  be  intermediate  cases  where- some  wheels  skid  and  others  roll. 
In  the  first  case  the  work  is  done  by  the  friction  on  the  rails,  i.e. 

by  /i'R  ;  in  the  second  case  by  fxY.  "We  shall  only  consider  here  these 
two  cases,  the  intermediate  ones  being  easily  worked  out  in  a  similar 
way.  Whichever  of  these  cases  is  happening,  call  the  friction  F,  so 

that  F  =  /a'R  in  the  first  and/iP  in  the  second.  If /a'R</aP  the  wheels 
will  skid,  if  /x,'R>/xP  they  will  roll  on  the  rail  without  skidding. 
Hence  F  is  to  stand  for  the  larger  of  /x'R  or  jx?. 

Now  supposing,  as  is  usually  the  case,  that  "the  brakes  are  applied 
to  the  rim  of  the  wheel,  the  distance  throufrh  which  the  wheel  moves 
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against  F  is  in  both  cases  the  distance  through  which  the  train  moves. 
Hence  the  work  done  is  Fs  gravitation  units  of  >vork. 

Therefore  ̂ m{v^  -  ti^)  =  Fsg. 
It  therefore  comes  to  rest  after  a  distance 

_  mv^ 
where  F  is  the  greater  of  /t'R  or  fiF. 

EXAMPLES— XIIP. 

1.  A  force  can  just  move  a  given  weight  up  a  plane  of  30°,  and  can 
just  prevent  a  weight  twice  as  great  from  moving  down  a  plane  of  60°. 
Prove  that  the  coeflficient  of  friction,  which  is  the  same  for  both  planes, 
=  1^  nearly. 

2.  Assuming  that  a  force  of  20  lbs.  weight  per  ton  of  load  is  re- 
quired to  maintain  the  motion  of  a  train  on  a  level  line,  determine  the 

coefficient  of  friction  between  the  driving-wheels  and  rails  when  an 
engine  of  27  tons  weight  can  just  keep  in  motion  a  train  of  252  tons. 

3.  A  weight  of  10  tons  is  dragged  in  half  an  hour  a  length  of  330 

feet  up  a  rough  plane  inclined  30°  to  the  horizontal  plane,  the  co- 
efficient of  friction  being  l/Vs.  Find  the  work  expended  and  the 

horse-power  of  an  engine  by  which  the  work  could  be  done. 
4.  A  weight  of  30  lbs.  is  just  supported  on  a  rough  inclined  plane 

(coefficient  of  friction  f )  whose  height  is  three-fifths  of  its  length. 
Show  that  it  will  require  a  force  of  36  lbs.  weight  acting  parallel  to 
the  plane  to  be  on  the  point  of  moving  the  weight  up  the  plane. 

5.  A  weight  of  5  lbs  can  just  be  supported  on  a  rough  inclined  plane 
by  a  weight  of  2  lbs.,  or  can  just  support  a  weight  of  4  lbs.  suspended 
by  a  string  passing  over  a  smooth  pulley  at  the  top  of  the  plane.  Find 
the  coefficient  of  friction  and  the  sine  of  the  inclination  of  the  plane 
to  the  horizon. 

6.  A  particle  of  10  lbs.  mas.s  is  kept  on  a  rough  plane,  inclined  at 

45°  to  the  horizon,  by  a  horizontal  force.  If /a=^,  find  the  least  and 
greatest  possible  values  of  the  force. 

7.  A  weight  W  is  just  supported  by  friction  on  a  plane  inclined  at 
an  angle  a  to  the  horizon.  Show  that  it  cannot  be  moved  up  the  plane 
by  any  horizontal  force  less  than  W  tan  2a. 

8.  An  inclined  plane  is  partly  smooth  and  partly  rough  (/a  =  \/S/2  ; 
a  particle  slips  down  the  upper  smooth  part  and  moves  on  to  the  rough 

part ;  the  inclination  of  the  plane  is  30°  and  the  length  of  the  smooth 
part  is  4  feet.     How  far  will  it  move  before  it  comes  to  rest  ? 

9.  If  the  height  of  an  inclined  plane  be  12  feet,  the  base  16  feet, 
find  how  far  a  body  will  move  on  the  horizontal  plane,  supposing  it  to 
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pass  from  one  plane  to  the  other  without  loss  of  velocity,  the  co- 
efficient for  both  planes  being  ̂ . 

10.  A  body  slides  down  a  rough  inclined  plane  100  feet  long,  the 

sine  of  whose  inclination  =  "6  and  coefficient  of  friction  =  ̂ .  Find  its 
velocity  at  the  bottom. 

If  projected  up  the  plane  with  a  velocity  which  just  carries  it  to  the 
top,  find  what  height  it  would  reach  if  thrown  vertically  upwards  with 
that  velocity. 

11.  The  two  planes  AB  and  AC  are  hinged  together  at  A,  and  AC 
is  horizontal,  while  AB  slopes  downwards  at  the  angle  (a)  to  the 
horizon  ;  two  equal  weights  are  connected  by  a  string  and  placed  one 
on  AB  and  the  other  on  AC,  the  limiting  angle  of  friction  between 
each  weight  and  plane  being  (e)  and  less  than  (a).  Find  through 
what  angle  AC  may  be  slowly  tilted  round  the  hinge,  always  sloping 
towards  A  before  motion  ensues. 

12.  A  mass  rests  on  a  rough  horizontal  board  and  is  connected  by 
a  string  which  passes  over  a  pulley  on  the  board  to  another  mass 
hanging  vertically,  and  the  system  is  just  on  the  point  of  moving. 

"Will  it  keep  at  rest  if  the  board  be  lowered  with  an  acceleration  a  ? 
13.  Two  weights  are  connected  by  a  string  and  placed  upon  a  rough 

inclined  plane,  with  the  string  parallel  to  the  line  of  greatest  slope  of 
the  plane.  If  the  coefficient  of  friction  between  the  weights  and  the 
plane  be  different,  find  the  angle  of  inclination  of  the  plane  at  which 
they  will  just  begin  to  slide  down,  and  prove  that  it  is  intermediate 
between  the  angles  of  inclination  for  the  weights  taken  separately. 

14.  Two  equal  heavy  particles  on  two  equally  rough  inclined  planes 
of  the  same  height,  and  placed  back  to  back,  are  connected  by  a  string 
passing  over  the  top  of  the  planes.  Show  that  when  the  particles  are 
on  the  point  of  moving,  the  limiting  angle  of  resistance  will  be  half 
the  difference  of  the  inclination  of  the  planes. 

15.  A  heavy  string  rests  on  two  given  rough  inclined  planes  of  the 
same  material,  passing  over  a  smooth  pulley  at  their  common  vertex. 
If  the  string  is.  on  the  point  of  motion,  show  that  the  line  joining  its 
two  ends  is  inclined  to  the  horizon  at  the  angle  of  friction. 

16.  A  heavy  slab  whose  under  surface  is  rough,  but  the  upper 
smooth,  slides  down  a  given  inclined  plane.  Find  the  acceleration 
with  which  a  small  particle  laid  on  its  upper  surface  will  move  along 
the  slab. 

17.  Prove  that  a  train  going  45  miles  per  hour  will  be  brought  to 
rest  in  about  378  yards  by  the  brakes,  supposing  them  to  press  with 

two-thirds  of  the  weight  on  the  wheels  of  tlie  engine  and  brake-vans, 
which  are  half  the  weight  of  the  train  ;  and  supposing  a  coefficient  of 

friction  '18. 
18.  Prove  that  a  train  going  60  miles  per  hour  can  fee  brought  to 
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rest  in  about  313  yards  by  the  brakes,  supposing  them  to  press  on  the 
wheels  with  two-f birds  of  the  weight  of  the  train  and  a  coefficient  of 

friction  "18,  in  addition  to  a  passive  resistance  of  20  lbs.  weight  per 
ton  on  the  level. 

19.  If  a  right  cone  be  placed  with  its  base  on  an  inclined  plane, 
friction  being  sufficient  to  prevent  sliding,  examine  the  conditions  that 
the  cone  may  just  remafn  at  rest  on  the  plane. 

If  l/Vs  be  the  coefficient  of  friction,  find  the  angle  of  the  cone  when 
it  is  on  the  point  both  of  sliding  and  falling  over. 

20.  A  right  circular  cone  whose  semivertical  angle  is  a  stands  on 
a  rough  plane  which  is  gradually  lifted  up.  Show  that  if  4  tan  a  =  tan  e, 
where  e  =  angle  of  friction,  it  will  be  doubtful  whether  the  cone  will 
slip  or  upset. 

21.  A  uniform  ladder  10  feet  long  rests  with  one  end  against  a  smooth 
vertical  wall  and  the  other  on  the  ground,  the  coefficient  of  friction 
being  ̂ .  Find  how  high  a  man  whose  weight  is  four  times  that  of  the 
ladder  may  ascend  before  ̂ t  begins  to  slip,  the  foot  of  the  ladder  being 
6  feet  from  the  wall. 

22.  A  uniform  ladder  70  feet  long  is  equally  inclined  to  a  vertical 
wall  and  the  horizontal  ground,  both  rough  ;  the  weight  of  a  man  with 
his  burden  ascending  the  ladder  is  2  cwts.,  and  the  ladder  weighs  4 
cwts.  How  far  up  the  ladder  can  the  man  ascend  before  it  slips,  th« 
coefficient  of  friction  for  the  wall  being  ̂   and  for  the  ground  ̂   ? 

23.  A  uniform  beam  rests  with  one  end  on  the  ground,  and  the 
other  against  a  vertical  wall.  If  e,  the  angle  of  friction  of  the  ground, 
be  the  same  as  that  of  the  wall,  show  that  2e  is  the  inclination  of  the 
ladder  to  the  vertical  when  it  is  on  the  point  of  slipping. 

24.  A  uniform  ladder  rests  between  a  vertical  wall  and  the  horizontal 

ground,  both  rough.  If  the  coefficient  of  friction  for  the  ladder  and 
wall  be  ̂   and  for  the  ladder  and  ground  f,  find  the  angle  which  the 
ladder  makes  with  the  ground  when  it  just  begins  to  slide. 

25.  A  uniform  ladder  just  rests  with  one  end  on  the  horizontal 
ground,  the  other  leaning  against  a  vertical  wall.  If  6  be  the  angle  it 

makes  with  the  ground,  prove  that  tan  ̂   =  (1  -fifi')/2fx,  where  /iand/t' 
are  the  coefficients  of  friction  respectively. 

26.  A  uniform  bar  is  placed  in  a  sloping  position,  its  lower  end  on 

the  ground  (coefficient  of  friction  =  /*),  its  upper  in  the  air,  the  bar  being 
supported  by  a  smooth  fixed  peg  against  which  it  rests.  If  Z  =  length 
of  bar  and  ̂   =  height  of  peg  from  the  ground,  and  if  a  be  the  angle  the 
bar  makes  with  the  horizon  when  on  the  point  of  slipping,  prove  that 
a  is  to  be  found  from  the  equation 

cos  a  sin-a  +  )W  sin  a  cos'^a  =  -y-/i 

(supposing  the  centre  of  the  bar  below  the  peg). 
S 
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27.  A  cylinder  rests  on  a  rough  inclined  plane  witli  its  axis  hori- 

zontal, and  is  kept  in  equilibrium  by  a  string  which*  passing  round  it 
and  over  the  top  has  one  end  fastened  to  a  point  in  the  plane,  so  that 
its  length  is  perpendicular  to  the  plane.  Find  the  inclination  of  the 
plane  when  the  cylinder  is  just  on  the  point  of  slipping. 

28.  A  triangle  ABC  formed  of  three  uniform  rods  jointed  together 

is  supported  by  a  rough  peg  under  the  middle  point  of  AB.  Prove 
that  the  least  angle  of  friction  is  ̂ (A~B),  and  that  the  sides  AC,  BC 
are  equally  inclined  to  the  vertical. 

29.  A  hemisphere  rests  with  its  curved  surface  touching  a  vertical 

wall  (ai  =  tV)  and  a  horizontal  plane  (/A'  =  i).  Show  that  when  the  body 
is  on  the  point  of  slipping,  the  inclination  (6)  of  the  plane  of  its  base  to 

the  horizon  is  given  by  sin  6  =  -^^. 
30.  Three  equal  spheres  are  placed  on  a  horizontal  table  so  as  to 

touch  each  other  ;  another  sphere  of  the  same  radius  is  placed  on  the 
top.  Show  that  if  the  spheres  and  the  table  are  all  made  of  the  same 
material  and  the  system  is  on  the  point  of  slipping,  the  coefficient  of 
friction  is  Vs  -  V2. 

31.  If  the  ratio  of  the  greatest  to  the  least  forces  which  acting  parallel 
to  a  rough  inclined  plane  can  support  a  weight  on  it,  be  equal  to  the 

ratio  of  the  weight  to  the  pressure  on  the  plan^,  show  that  the  co- 

efficient of  friction  will  be  tan  a  tan^  -,  where  a  is  the  inclination  of 

the  plane  to  the  horizon. 
32.  Two  rings,  each  of  weight  w,  slide  upon  a  vertical  semicircular 

wire  with  the  diameter  horizontal  and  convexity  upwards  ;  they  are 
connected  by  a  light  string  of  length  21  (supposed  less  than  2a,  the 
diameter  of  the  semicircle),  on  which  is  slipped  a  ring  of  weight  W. 
Show  that  when  the  two  rings  that  slide  on  the  semicircle  are  as  far 
apart  as  possible,  the  angle  2a  subtended  by  them  at  the  centre  is 

given  by  the  equation  (W  +  2w)- tan2(a  +  t-)(Z--a2  sin2a)  =  WV^  sin^ 
where  tan  e  is  the  coefficient  of  friction. 

33.  Two  sides  of  a  rigid  rectangular  lamina  are  horizontal,  the  lower 
being  hinged  to  a  vertical  wall  and  the  upper  connected  with  the  wall 
by  a  string,  while  a  rough  sphere  rests  in  equilibrium  between  the 
wall  and  the  lamina ;  the  coefficients  of  friction  of  the  sphere  with  the 
wall  and  lamina  being  jx,  it!.  If  the  string  lengthens  slightly,  prove 

that  if  /*  =  /*'  the  sphere  will  slide  along  the  wall  and  roll  along  the 
lamina.  Find  the  relation  between  /i  and  fil  in  order  that  the  sphere 
may  roll  along  the  wall  and  slide  along  the  lamina. 
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OBLIQUE   IMPACT 

[This  may  he  omitted  on  a  first  reading] 

134.  When  a  sphere  impinges  directly  on  another — that 
is,  so  that  the  directions  of  motion  of  the  two  are  in  the 

line  joining  their  centres — the  motion  ensuing  is  determined 
by  the  methods  of  Chapter  11.  It  remains  to  investigate 
how  the  motion  is  affected  when  the  motion  before  impact 
is  not  direct.  The  methods  are  not  necessarily  confined  to 

spherical  bodies.  It  is  only  requisite  that  the  bodies  shall 
be  symmetrical  about  the  line  of  impact,  so  that  after 
impinging  no  rotations  of  the  bodies  shall  be  set  up. 
When  rotations  ensue,  the  motion  of  the  relative  parts  of 
the  body  has  to  be  taken  into  account,  a  subject  considered 
in  the  third  section  of  this  book,  but  too  difficult  to  treat 
at  any  length  with  elementary  mathematics. 

The  simplest  case  is  that  where  a  sphere  impinges  on  a 
rigid  plane  surface. 

Let  AB  represent  the  plane,  CO  the  direction  of  motion 
before  and  OC  the  direction  after 

the  impact.  Also  let  Y,  V  be  the 
velocities  and  a,  a  the.  angles  which 
their  directions  make  with  the  nor- 

mal DO  before  and  after. 

The  velocities  V,  V  can  be  re- 
placed by  their  components  parallel 

to  the  plane  and  perpendicular  to  the  plane.    We  can  then 
consider  the  alteration  in  each  component  separately. 
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Let  u,  V  be  the  components  of  V  parallel  and  perpen- 

dicular to  AB,  and  u',  v'  the  corresponding  components  of 
v.  Tiien  considering  first  the  motions  parallel  to  AB,  no 

effect  is  produced  by  the  impact,  since  the  blow  is  per- 
pendicular to  AB.     Hence 

u  =  u'. 
The  motion  represented  by  v,  v'  is  that  of  a  direct  impact 
on  the  plane.  This  has  already  been  considered  in  Chapter 

II,  and  Newton's  law,  that  the  relative  velocities  after  and 
before  are  in  a  constant  ratio  -  «,  gives 

V  =  -  ev. 

The  motion  after is therefore  given  by 
u'  =  u      \ 
v'  =  -  evj 

Now 
u 

tan  a  =  - , 
V 

,     ̂ *'     ̂  tana  =  —  =  — , 

v'     ev' 
taking  the  positive  sign,  as  we  are  now  dealing  with  magni- 

tudes only.     Hence 

tan  a'  =  —  tan  a. e 

This  gives  the  angle  of  reflection  in  terms  of  the  angle  of 
incidence  and  the  coefficient  of  rebound.  If  the  ball  is 

perfectly  elastic,  e  =  1,  tan  a'  =  tan  a,  or  a  =  a,  and  the 
angles  of  incidence  and  reflection  are  equal.      Also 

Y"  =  2c"  +  v"  =  u'  +  e%\ 

=  v^(  e^  +  —  j  =  v^{e^  +  tan^a), 

and  V'  =  w^  +  v^  -=  v^(  1  +  -J  =  if  {I  +  tan"a). 

Y"     i  +  t^n'a 
Hence        ;^  =  - — - — ^, V       1  +  tan  a 

which  gives  V  in  terms  of  V,  the  angle  of  incidence,  and 
the  coefficient  of  rebound. 
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Or  thuSj 

and 

?/<  =  V  sin  a, 
v  =  'V  cos  a, 

.-.  V''=V-"sin'a  +  eV,cosX 
=  V^(sin*a  +  /  cosV). 

Both  these  formulae  are  the  same,  since  it  is  known  from 
trigonometry  that         g|^  ̂    =tana. 

cos  a 

135.  A  sphere  iikpinges  obliquely  on  another  sphei'e  at  rest. — 
Let  A,  B  be  the  centres  of  the  spheres  when  in  contact 
CA,  AC  the  direction^  of  motion 
before  and  after. 

Then  the  force  on  B  can  only 

be  along  AB.  Hence  after  im- 
pact the  second  sphere  will  move 

in  the  direction  AB.  Let  its- 

velocity  be  Vi,  and  let  the  ve- 
locities, etc.  of  A  be  represented 

as  in  the  previous  case. 
Then  the  motion  perpendicular  to  AB  is,  as  in  the 

previous  case,  unchanged.     Hence 

u'  =  u  (i.) 
In  the  case  of  the  motion  along  AB,  B  now  moves,  and 

the  case  is  that  of  a  sphere  impinging  directly  on  another 
at  rest.     Let  m,  m^  be  the  masses  of  A  and  B.     Then, 
by  unchanged  momentum, 

miVj  -I-  mv'  =  mv, 

by  Newton's  law,  ^'  _  y,  =  -  e{v  -  0), 
whence,  multiplying  the  second  by  m  and  subtracting, 

(??ii  +  m)V,  =  m(l  +  e)vj 

Y, 

-(1  +  e)v m  +  mi 

also,  multiplying  by  m,  and  adding, 

(m  +  mi)v'  =  (m  -  mjg)«;, 
,     m  -  m.e V  =   -V 

(ii.). 

(iii.) 
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Equations     (i.),     (ii.),     (iii.)     completely    determine     the 
motion. 

A  numerical  case  will,  perhaps,  illustrate  the  method 
more  clearly.  A  hall  0/  10  Ihs.  is  moving  with  a  velocity  of 

1 5  feet  per  second,  and  impinges  on  -another  of  1  2  Ihs.  making 

an  angle  of  60°  with  the  line  of  centres.  The  coefficient  of 
rebound  is  '5. 
Here  V=15, 

^,       i,^o     15\/3 ?t  =  Vcos30  =— --^ 

v=Vcos60°  =  y. 

15\/3       • 
Then 

2     ' 

4 

10v'  +  12Vi  =  10v=75 

12v'-12Vi=  -: 

Adding  22v'  =  30, 

12v'-12Vi=-12x  j=-45 

v'-. 

=i^foo, 

per 

second. 

Again 

lOv' 

-10Vi  = =  -10x 

15_ 

4  ~
 

75 

2' 

subtracting this  from 

lOy' 

+  12Vi  = 

22Vi  = 

=  75, 

225 "   2  ' 

Vi  =  — r-  =^j-A  feet -per  second. 

Since  v'  is  positive,  the  ball  is  deflected  from  its  path,  but  is  not reflected  backwards. 

The  angle   the  direction  of  A   makes  with   AB   after   impact  is 
given  by 

I5V3 

tan.a-'i;=^=^V3  =  9-526, n 
whence  the  trigonometrical  tables  give 

a' =  84°. 

.'.  V'  =  13  06  feet  per  second.^ 
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136.  Tioo  spheres  impinge  obliquely. — The  method  is 
precisely  the  same  as  the  preceding.  Resolve  the  velocities 
of  each  before  and  after  impact  perpendicular  to  and  along 
the  line  of  centres.     Let  them  be 

For  A. ForB. 

U,  V 

.         U„  V, before  impact, 

u',  v' 

u,\  vl after  impact. 

Then  the  motion  of  each  perpendicular  to  AB  is 
unaffected,  whilst  the  portion  parallel  to  AB  is  a  case  of 
direct  impact  already  treated. 

-  137.  In  the  case  of  a  ball  projected  from  a  given  point 
and  reflected  at  a  rigid  plane,  the  subsequent  path  can  easily 
be  found  as  follows — 

Let  A  be  the  point  of  projection  and  AO  the  direction. 
Draw  LO  at  a  distance  from 

the  plane  equal  to  the  radius 
of  the  sphere.  Then  the 
motion  will  be  the  same  as 

if  the  sphere  were  a  particle 
at  its  centre  and  reflected 

at  the  rigid  plane  LO. 
Draw  AL  perpendicular 

to  LO  and  produce  it  to  A',  so  that  A'L  =  e .  AL. 
Join  A'O  and  produce  it  to  B.     Then 

tan  LAO  =  T^y-, AL 

tan  LA'O  =  -r^^^ AL 
— TT  =  -  tan  LAO. .  AL     e 

Now 

Hence 
LAO  =  AOE,  and  LA'O  =  BOE. 

tan  BOE  =  -  tan  AOE  =  -  tan  (angle  of  incidence), e  e 

.'.  BOE  =  angle  of  reflection, 
or  OB  is  the  direction  of  motion  after  reflection. 

This  curious  result  enables  us  to  find  in  what  direction 

a  ball  must  be  projected  so  as  after  impact  at  a  given 
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plane  to  pass  through  another  point.  For  let  A  be  the 
point  of  projection,  B  the  point  through  which  it  has  to 

pass.  Find  A'  as  above.  Join  A'B,  cutting  LO  in  0. 
Then  O  must  be  the  point  of  impact  and  AO  the  direction 
of  projection. 

138.  The  same  method  will  serve  to  determine  the 

direction  of  projection  when  it  has  to  pass  through  a  given 
point  after  impinging  on  any  number  of  planes.  •  Thus  let 

AB,  CD  be  two  such 

l)lanes,  0  the  point  of 

projection,  and  P  the 
point  through  which  it 
has  to  pass. 

Draw  OLOi  perpen- 
dicular to  AB  and  make 

OiL  =  6.0L. 

Draw  OjMOg  perpen- 
dicular to  CD  and  make 

OgM  =  e .  0,M. 

"■'O2        Join  PO2  cutting  CD inF. 

Join  FOi  cutting  AB 
in  E. 

Join  OE.     Then  OEFP  will  be  the  path  of  the  ball. 
For,  from  the  foregoing,  the  ball  after  impact  at  AB  will 

appear  to   move  from  Oj,   and   after  impact  from   CD  it 
will  appear  to  move  from  Og. 

This  construction  supposes  that  the  sphere  is  indefinitely 
small.  In  case  the  sphere  is  of  finite  size,  the  lines  AB,  CI) 
must  not  represent  the  planes  themselves,  but  planes 
parallel  to  them  at  a  distance  from  them  equal  to  the 
radius  of  the  sphere. 

EXAMPLES— XIV. 

1.  A  sphere,  mass  2  lbs.,  is  projected  with  a  velocity  of  10  feet  per 

second  in  a  direction  making  an  angle  of  30°  with  a  rigid  plane. 
Find  the  subsequent  motion,  being  given  e=  '5. 

2.  A  sphere  of  given  radius  is  projected  from  a  given  point  so  that  its 
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direction  after  impinging  on  a  rigid  plane  is  perpendicular  to  its 
original  direction.  Show  how  to  find  by  construction  the  direction  of 
projection,  the  coefficient  of  rebound  being  given. 

3.  A  perfectly  elastic  billiard-ball  is  struck  so  as  to  return  to  the  same 
point  after  reflection  at  each  of  the  four  sides  of  the  table.  Show  that 
it  must  be  struck  parallel  to  one  of  the  diagonals  of  the  table. 

4.  A  smooth  ball  rests  on  the  bottom  of  a  square  box  ;  the  co- 
efficient of  rebound  between  it  and  the  sides  of  the  box  is  ̂   ;  it  rests  on 

a  diagonal  of  the  bottom  and  at  one-quarter  the  diagonal  from  one 
corner.  In  what  direction  must  it  be  struck  so  as  after  reflection  at 

each  side  successively  to  return  to  its  original  position  ? 
5.  A  sphere  slips  down  a  smooth  inclined  plane  of  1  in  10  and  100 

feet  long;  the  inclined  plane  rests  on  a  horizontal  inelastic  plane. 
Determine  the  time  before  the  sphere  reaches  a  point  on  this  20  feet 
from  the  foot  of  the  inclined  plane. 

6.  A  sphere,  mass  16  lbs.,  at  rest  is  struck  by  another  mass,  8  lbs., 
moving  with  a  velocity  of  20  miles  per  hour  in  a  direction  making  an 

angle  of  45°  with  the  line  of  centres  at  the  moment  of  impact ;  the 
coefficient  of  rebound  is  ̂.     Determine  the  subsequent  motion. 

7.  Two  equal  perfectly  elastic  spheres  moving  in  parallel  lines 
impinge  on  one  another  so  that  the  line  of  centres  makes  an  angle  of 

30°  with  their  directions.  If  the  velocities  before  impact  were  29  and 
16  feet  per  second,  determine  their  velocities  and  directions  afterwards. 

8.  If  two  billiard-balls  were  equal  to  each  other  in  all  respects,  and 
were,  as  well  as  the  table,  perfectly  smooth,  prove  that  the  direction 

taken  by  the  striker's  ball  after  hitting  the  object  ball  would  be  the 
same  for  all  velocities  of  the  former,  and  would  depend  only  upon*the 
point  at  which  the  latter  was  hit. 

9.  Two  smooth  inelastic  spheres  of  radii  1  and  2  feet  and  of  the 
same  material  are  moving  directly  towards  one  another  on  a  smooth 
inelastic  plane.     Determine  the  motion  after  impact. 

10.  Prove  that  the  directions  of  the  relative  velocities  of  two  perfectly 
elastic  spheres  before  and  after  impact  are  equally  inclined  to  the  line 
of  centres,  at  the  instant  of  impact. 

11.  Two  balls  A,  B  move  in  directions  at  right  angles  with  velocities 
«,  V.     Prove  that  if  they  subsequently  move  at  right  angles  to  one 

another  the  coefficient  of  rebound  =  -r-^^   ;   -• — r ,  where  a  is  the AB(w  cos  a  +  v  sm  a) 
inclination  of  the  direction  of  motion  of  A  to  the  line  of  impact. 

12.  If  a  stream  of  particles  of  elasticity  e  all  moving  in  parallel 
directions  with  velocity  «  impinge  successively  on  two  smooth  fixed 

planes  at  right  angles,  prove  that  the  average  resultant  of  the  pres- 
sures on  the  plane  is  M?<(1  +  e),  where  M  is  the  mass  of  the  particles 

which  strike  each  plane  in  1  second. 
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MOTION   UNDER   CONSTANT   ACCELERATION   PROJECTILES 

139.  The  motion  of  a  point  moving  with  a  constant  ac- 
celeration in  the  direction  of  motion  has  been  already 

investigated.  When,  however,  the  acceleration  is  not  in  the 
direction  in  which  it  is  moving,  the  point  will  describe  a 
curved  path.  The  question  is  specially  interesting,  because  it 
is  the  kind  of  motion  which  ensues  when  a  body  is  projected 
in  any  direction  under  the  action  of  gravity.  In  the  actual 
case  of  a  body  thus  projected,  the  air  produces  effects  which 
in  some  cases  may  materially  alter  the  path  as  deduced  on  the 
simpler  hypothesis.  Thus  its  buoyant  power  diminishes  the 
effective  weight  of  tlie  body,  the  air  itself  has  to  be  moved, 
and  in  addition  it  offers  a  resistance  to  the  motion  of  the 

body  through  it.  With  slow  motions,  such  as  for  instance 

in  the  case  of  a  cricket-ball,  all  these  effects  may  be 
neglected,  but  when  the  velocities  are  great,  as  in 
the  case  of  shot,  they  must  be  taken  account  of.  The 
resistance  offered  by  the  air  to  the  motion  of  shot  is 
extremely  great  when  the  velocities  are  great.  Our  results 
then  in  the  case  of  shot  must  only  be  supposed  to  be  a  very 
rough  first  approximation.  Further,  in  the  case  of  light 
bodies,  the  buoyancy  of  the  air  will  produce  a  very  large 
disturbing  effect. 

We  shall  suppose  then  that  the  motion  we  consider  takes 
place  in  a  vacuum,  but  that  our  results  may  be  applied 
without  appreciable  error  to  bodies  moving  in  the  air, 
provided  those  bodies  are  not  too  light,  moving  too  quickly, 
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and  are  not  of  shapes,  like  discs  for  instance,  whose  form 
produces  a  great  resistance  by  the  air. 

140.  To  fix  our  ideas,  suppose  that  the  constant  accelera- 
tion a  is  vertically  downwards.  The  motions  in  any  direc- 

tion will  be  completely  independent  of  those^  in  a  per- 
pendicular direction.  Let  us  then  consider  the  horizontal 

and  vertical  parts  independently. 

Let  V  be  the  velocity  of  projection,  a  the  angle  of  eleva- 
tion. 

Further,  let  u,  v  ̂ denote  the  horizontal  and  vertical 

components  of  the  velocity  Y — that  is, 

u  =  Y  cos  a,     v  =  Y  sin  a. 

Then  there  is  no  acceleration  horizontally.  Hence  the 
horizontal  component  of  the  velocity  is  always  the  same 
and  =  n.  The  vertical  component  is  subject  to  acceleration 

a  down.  Hence,  if  v'  be  the  vertical  velocity  at  any 
time  /, 

v'  =  v-  at, 

and  the  vertical  velocity  at  a  height  s  is  given  by 
v'^  =  /  -  2as. 

Let  ACB  represent  the  path  of  the  particle,  AB  the 
horizontal,  and  AY  the  direction  of  projection.  It  is  clear 
that  the  path  will  be 
symmetrical  on  both  sides, 
that  in  fact,  if  C  is  the 

highest  point  and  CL  ver- 
tical, the  curve  on  both 

sides  of  CL  will  be  similar. 

The  position  of  the  ̂  
point  at  any  time  is  known  if  we  know  the  lengths  AM, 

MP  at  those  times,  i.e.  the  height  above  and  the  hori- 
zontal distance  from  the  point  of  projection. 

Now  the  horizontal  velocity  is  constant.     Hence 
AM  =  ut  I 

also        -  'PU  =  vt-^af  J* 
This  gives  the  position  at  any  time. 
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The  velocities  are  u'  =  ?*, v'  =  v  -  at, 

or  the  resultant  velocity  is  given  by 

V  =  u"  +  v"  =  u'  +  «;'  -  2avt  +  a% 
=  V  -  2aV  sin  a .  ̂  +  aH\ 

and  the  direction  of  motion  makes  with  the  horizontal  an 

angle  6,  where 

.       vertical  velocity       v'     v  -.  at     ,  at tan  d  =  , — r   ^.   ; — r—  =    ,  =   =  tan  a  - 
horizontal  velocity     u         u  V  cos  a 

These  formula?  give  the  velocity  and  direction  after  any 
time.     When  the  body  is  at  a  height  y, v'^  =  if  -  2ay, 

y"=Y'-2ay. 

The  direction  of  motion  is  given  by 

2  ̂     v^      if  -  2ay      ̂      2  2«?/ 
tan  (9  =  -72  =   ^  =  tan  a  -  ̂ -„— -^g-. u  u  V"  cos  a 

The  path  taken  by  a  projectile  belongs  to  a  class  of  curves 
called  parabolas. 

141.  The  points  of  most  interest  are  (1)  the  distance 
AB,  or  the  hoiizontal  range ;  (2)  the  time  from  A  to  B,  or 
the  time  of  flight ;  and  (3)  CL,  or  the  greatest  height. 

Evidently  the  time  of  flight  T  is  twice  the  time  from 
A  to  C.  But  at  C  the  motion  is  horizontal — in  other 
words,  the  vertical  velocity  has  become  zero  under  the 
retardation  a.  Hence  the  vertical  velocity  v  is  destroyed 
in  time  JT,  or 

0  = «;  -  aJT, 

•  T=-. 
a 

Next  to  find  AB,  notice  that  AB  is  described  by  the 
horizontal  velocity  u  in  time  T.  Hence  the  range  K  is 
given  by 

a 

_,  '   2  V*  sin  a  cos  a or  R=   . 
a 
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Thirdly,  the  greatest  height  is  the  height  through 
which  the  vertical  velocity  is  destroyed.     Hence 

0  =  v'-  2ah, 

^-.       ̂ ^     Vsin'tt or  A  =  CL  =  —  =  —   . 

142.  With  a  given  elevation,  the  range  is  greater  the 
greater  the  velocity  of  projection.  With  a  given  velocity 
of  projection,  however,  the  range  can  never  exceed  a  certain 
amount.  The  range  will  change  with  the  elevation,  and 
for  a  certain  elevation  will  be  a  maximum.  To  find  this, 
notice  that 

a 

is  to  be  a  maximum,  w,  v  being  subject  to  the  condition 
u'  +  v'  =  N\ 

Now  {u  -  vf  =  u^  +  if  -  2uvy 
hence  2uv  =  Y^  -  (u-  vf. 

Here  iiv  must  be  as  great  as  possible — but,  since  V  is 
given,  this  can  only  be  by  {u  -  vf  being  as  small  as  possible, 
i.e.  zero.  Hence  the  range  is  greatest  when  u  =  v.  But 
then  V  bisects  the  angle  between  u^  v,  and  must  therefore 

make  an  angle  of  45°  with  either.  Hence  to  obtain  the 
greatest  range  the  elevation  must  be  45°.  The  value  of 
this  range  is  then 

a 

or,  since  V^  =  u'  +  u^  =  2u^y T 

E  =  -. a 

143.  It  is  often  a  practical  question  to  determine  the 
elevation  with  a  given  velocity  of  projection  in  order  to 
reach  a  particular  object  within  range.  Now  notice  that, 
since 

a 

we  get  the  same  range  if  we  interchange  w,  v.     That  is,  if 



270 ELEMENTARY  DYNAMICS 

the  elevation  is  such  that  the  components  are  w,  v,  we  shall 
get  the  same  range  as  if  the  elevation  is  such  as  to  give 
components  v,  u. 

In  the  figure  let 

AD,  AD'  he  the  two 
velocities  of  projection, 

so  that    ■ AL  =  u,     DL  =  V, 

and  AL'  =  v,    D'L'  =  u. Then 

<DAL  =  <D'AM', 
or  the  two  directions 

are  equally  inclined  to 
the  horizontal  and  the 

vertical  respectively. 
If  AT  bisect  LAM, 

it  is  also  clear  that 

DAT=:D'AT,  or  the 
directions  of  projection 

are  equally  inclined  to 

a  line  making  45°  with the  vertical. 

The  paths  will  be  as  in  the  figure,  where  TAB  =45° 
and  AB  is  the  maximum  range.  TiAT  =  TgAT,  and  AB'  is 
the  range  of  both  of  them.  Of  course  the  lower  one  will 
give  the  quicker  time  of  flight.  If  Tj,  Tg  be  the  times  of 
flight  for  the  two  elevations  giving  the  same  range  E, 

2u  2v 

.  _iuv_2U •'     -'-l-*-2  —         2     —  ■• a        a 

In  order  to  get  a  given  range  Ki  we  notice 

271V  =  aRi, 

Hence  adding,    (u  +  vf  =  V"  +  aR 
subtracting,         {u  -  vf  =  V^  -  oR 

■
}
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whence  u-\-  v=  \/V*  +  aR, 

2v=  \/WaR,T  VV'-aR, 

The  quicker  time  will  be  with  the  lower  trajectory — 
that  is,  the  one  in  which  v  is  the  less.     Hence 

•2u  =  s^T  +  oR,  +  JY'-oR,, 

2v=  'JW+aU,-  JY'-oR,. 
The  angle  of  elevation  may  then  be  found  from 

tan^  =  -. V 

But  the  most  expeditious  way  is  to  use  a  property  of  the 
trigonometrical   functions    whereby  2  sin  a  cos  a  =  sin  2a. 

^,  ^      2V%inacosa     V"    . ihen  K  =   ■■   =  —  sin  2a, .  a  a 

. '.  sm  2a  =  :^i 

whence  2a  can  be  obtained  at  once  from  the  tables. 

144.  The  following  example  Avill  illustrate  the  method: 

A  man  firing  at  an  elevation  of  45°,  and  800  yards  from  a  fort, 
wishes  to  hit  the  top  which  is  ̂ 00  feet  above  the  plain.     Find  the  muzzle 
velocity  of  the  shot. 

The  horizontal  and  vertical  components  are  both  equal  {u  say).    Then 
AL  =  2iOO  =  ut, 
BL  =  SOO  =  ut-^gt^; 

.-.  2100  =  16^2^ 
or  4<  =  10V21, 

.-.  2400=wx— V2T, 

4x240     320    ̂ _ 

"=  vir=-7-v2i. 
But  V2  =  w2  +  M2=2t«2; 

.-.  V  =  wV2  =  ?|^V42, 

=  296-26  feet  per  second. 

145.  "When  a  body  is  projected  on  a  hillside,  the  range 
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will  depend  on  the  steepness  of  the  hill  as  well  as  on  the  cir- 
cumstances of  projection.  To  find  it,  let  AB  be  the  inclined 

plane  representing  the  hill.  Then  the  angle  BAL  being 
known,  the  ratio  BL/AL  is  known.  But  when  the  velocity 
of  projection  and  the  elevation  are  known,  AL,  BL  can  be 
expressed  in  terms  of  the  time.  The  known  ratio  AL/BL 

then  gives  an  equation  to  find  the  time  to  B — or  the  time 
of  flight.  This  being  solved  and  the  time  so  found  inserted 
in  the  expressions  for  AL,  BL,  fully  determine  AL,  BL,  and 
thence  AB. 

In  all  cases  of  inclined  planes,  however,  it  is  better  to 

proceed  differently,  and  instead  of  considering  the  horizontal 
and    vertical  components    of 

the   motion,   to  treat   separ- 
ately the  components  parallel 

and     perpendicular    to    the 

plane.    In  this  case  both  com- 
ponents of  the  velocity   are 

subject  to  acceleration. 
Let  a  be  the  inclination  of  the  plane. 
Let  6  be  the  elevation  of  the  direction  of  projection 

above  the  plane.     (DAB  in  the  figure.) 
Then  the  components  of  the  velocity  of  projeqtion  are 

u  =  Y  cos  0  parallel  to  the  plane, 
V  =  Y  sin  6  perpendicular  to  the  plane. 

Also,  since  the  acceleration  a  makes  an  angle  a  with  the 
normal  to  the  plane,  the  components  of  the  acceleration 
are 

a  sin  a  down  the  plane, 

a  cos  a  perpendicular  to  the  plane.  ' 

Let  C  be  the  point  of  the  path  farthest  from  the  plane. 
Then  here  the  point  is  moving  parallel  to  the  plane,  and  the 
velocity  perpendicular  to  the  plane  has  been  destroyed  by 
a  cos  a.  When  it  gets  to  B,  this  velocity  has  been  produced 
again  in  the  opposite  direction,  and  the  times  taken  to  do 
this  are  the  same.  Hence  the  point  is  at  C  after  half  the 
time  of  flight. 
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Hence,  if  T  denote  the  time  of  fljght,  v  is  destroyed  in 
time  ̂ T,  or 

T 
v  =  acosa.  -y 

,  ^        2u        2Vsin(9 whence  T=   =   =-. 
«  cos  a       a  cos  a 

Also  R  =  AB  is  the  space  described  in  time  T.     Hence,  if 
the  projection  is  up  the  plane, 

R  =  ui:-h.asma.T\ 

,,        ̂     2Vsin^      .      .        4V%in^(9, =  V  cos  0 .   Ml  sm  a  .  —5   5 — 
ft  cos  a       ̂   a  cos  a 

2V^sin^.       ̂   •    zi  •      X =   7, — (cos  0  cos  a  -  sm  d  sin  a), 

«  cos"  a 
which  gives  R  in  terms  of  V,  6,  a.  The  expression  may 
be  simplified  by  use  of  trigonometry,  for 

cos  0  cos  a  -  sin  6>  sin  a  =  cos  {6  +  a), 

,,     2V'sin^cos((9  +  a) whence  R  =   2   1 a  cos  a 

or  without  trigonometry  the  result  might  have  been 
arrived  at  thus, 

AL  =  AB  cos  a  =  R  cos  a. 

But  AL  is  the  space  described  in  time  'T  by  the  hori- 
zontal velocity  which  remains  unchanged  =  V  cos  DAL 

=  Vcos(6>  +  a), 

.'.  R  cos  a  =  V  cos  (^  +  a)  .  T, 
Vcos((9  +  a)  -5Vsin^ R 

cos  a 

r2 

2V'sin(9cos(6>  +  a) 

If  it  is  projected  down  the  plane,  AT  makes  an  angle 

(6  -  a)  with  the  horizontal,  and  the  horizontal  velocity 
=  V(cos  6  -  a),  whence,  as  before, 

2V'sin^cos((9-a) 
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146.  As  an  example,  let  us  find  the  angle  of  projection 
in  order  that  the  body  may  strike  the  plane  perpendicularly, 
and  the  range  and  time  of  flight  in  this  case,  when  the 

inclination  of  the  plane  is  45°  and  the  velocity  of  pro- 
jection V  =  1000  feet  per  second. 

Let  6  be  the  elevation  of  projection  above  the  plane. 
The  velocities  along  and  perpendicular  to  the  plane  are 

u  =  'Y  tOSdy 

'y  =  Vsin^. 

The  corresponding  accelerations  are 

-f^  cos  45°=--^, 

and  -^sin45°= --5-. 
V2 The  time  of  flight  is  twice  that  in  which  V  sin  d  is  destroyed  by 

~g/\/2.     Hence 

Vsiu^=4---, V2    2 

or  T=— Vsin^. 
9 

Again,  when  the  body  strikes  the  plane,  it  does  so  perpendicularly. 
Therefore  the  velocity  there  parallel  to  the  plane  vanishes.     Hence 

0  =  w--^.T, 

V2 \/2 
or  T  =  —  Vcos(?. 9 

But  T  =  ̂.Vsin^j 

9  
' 

:.  2  sin  6  =  cos  6, 

or  tixnO^-—'5. 

The    tables    give    ̂   —  26°   33'.      This    is    therefore    the    required 
elevation. 

Also  the  range  will  be  the  space  through  which  V  cos  6  is  destroyed 

by  —:.     Hence 
^  V2 

0  =  V2cos2^-2.  4-.R» 

\'2 

^     \/2V2cos2^ 
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aud  T=  — Vcos^. 
g 

Now  the  tables  give 

cos  26°  33' =-8944. 

Heuco  K=^?M(:8£41)^, 64 

=  V2(lll-8)2, 
=  17676-5..  .  feet. 

,                                   m     V-i  X  1000  X  -8944 and  T=   ^^    seconds 

nr      111-8 =  V2x-^-, 

.  seconds. 

EXAMPLES— XV. 

1.  A'particle  is  projected  with  a  vertical  velocity  16-7  feet  per  second 
and  a  horizontal  velocity  -81  feet  per  second.  Prove  that  its  distance 
from  the  point  of  projection  after  1  second  is  about  1  foot. 

2.  A  bullet  is  shot  horizontally  from  a  gun  at  the  top  of  a  high 
mountain  with  velocity  u.  Find  the  range  on  a  horizontal  plane 

below  if  it  strikes  at  an  angle  of  45°,  and  the  velocity  at  the  point  of 
impact.     The  resistance  of  the  air  is  to  be  neglected. 

3.  Find  the  greatest  range  which  a  projectile  with  an  initial  velocity 
of  1600  feet  per  second  can  attain  on  a  horizontal  plane. 

4.  A  stone  is  thrown  from  the  top  of  a  tower  32  feet  high  at  an 

angle  of  elevation  of  30°,  with  the  velocity  of  32/ V3  feet  per  second. 
Find  its  velocity  and  direction  of  motion  on  striking  the  horizontal 
plane  through  the  foot  of  the  tower. 

5.  Determine  the  angle  of  projection  when  the  range  is  equal  to  the 
height  due  to  the  velocity  of  projection. 

6.  A  man  can  throw  a  cricket-ball  50  yards  vertically  upwards. 
Find  the  greatest  distance  he  can  throw  it  on  a  horizontal  plane. 

7.  A  rifle  has  a  range  of  1000  yards.  What  would  be  the  range 
under  the  same  circumstances  if  fired  in  the  moon,  Avhere  the  force  of 

gravity  is  one-sixth  that  on  the  earth  ? 
8.  Two  small  elastic  balls  {e  =  ̂ )  are  projected  towards  each  gther 

with  equal  velocities  ̂ /ga  frQm  points  in  the  same  horizontal  plane 
distant  2a  from  each  other.  Prove  that  after  impact  the  velocities 
are  each  ̂ \/5ag. 



276  ELEMENTARY  DYNAMICS  part  ii 

9.  A  person  wishes  to  throw  a  stone  so  as  to  produce  the  greatest 
possible  blow,  at  a  point  in  a  smooth  vertical  wall,  at  a  height  h  from 
the  ground  ;  his  strength  is  sufficient  to  throw  the  stone  vertically 
upwards  to  a  height  2h.  Prove  that  he  must  throw  from  a  point 
distant  2h  from  the  foot  of  the  wall. 

10.  Determine  the  charge  of  powder  required  to  send  a  32-lb.  shot 

to  a  range  of  2500  yards  with  an  elevation  of  15°,  supposing  the  initial 
velocity  is  1600  feet  a  second  when  the  charge  is  half  the  weight  of 
the  shot,  and  that  the  initial  energy  of  the  shot  is  proportional  to  the 
charge  of  powder. 

11.  Prove  that  pieces  of  mud  thrown  from  the  top  of  a  cab  wheel  of 
diameter  d  feet,  the  cab  moving  with  velocity  v  feet  per  second,  will 
when  they  strike  the  ground  be  at  a  distance  \v\/d  in  front  of  the 
position  then  occupied  by  the  point  of  contact  of  the  wheel  with  the 
ground.  Prove  that  v  must  exceed  4vrf  feet  per  second  for  the 
pieces  of  mud  to  clear  the  wheel. 

12.  Two  particles  are  simultaneously  projected  in  opposite  directions 
from  the  same  horizontal  line  so  as  to  describe  parts  of  the  same  curve. 
If  the  mass  of  one  be  n  times  that  of  the  other  (w>  1)  and  the  coefficient 
of  rebound  be  e,  find  their  respective  orbits  after  impact ;  and  show 

from  your  result  that  if  e  =  \{n  -  1)  one  particle  will  fall  vertically  down 
and  the  velocity  of  the  other  will  be  reversed  and  increased  in  the 
ratio  ?i-  1 : 1. 

13.  If  t  be  the  time  in  which  a  projectile  reaches  a  point  P,  and  t' 
the  time  from  P  until  it  strikes  the  horizontal  plane  through  the  point 

of  projection,  prove  that  the  height  of  P  above  that  plane  is  \gtt'. 
Hence  verify  the  expression  for  the  greatest  height. 

14.  A  particle  is  projected  with  given  velocity  under  the  action  of 
gravity  from  a  point  P  so  as  to  pass  through  a  point  Q.  Show  that  if 
ti,  <2  are  the  two  possible  times  of  flight,  then  g'<i(!2  =  2PQ. 

15.  A  bird  of  mass  M  is  flying  horizontally  at  a  height  h  with 
velocity  V  when  it  is  struck  by  a  bullet  of  mass  m  moving  vertically 
with  velocity  v ;  the  bullet  kills  the  bird  and  remains  embedded  in 

it.  Prove  that  the  bird  will  fall  to  the  gi'ound  at  a  distance  from  the 
point  from  which  the  bullet  was  projected 

1^1  y   

= i{M+^2[«i^  +  \/7n  V  +  2hg[  M  +  mf]. 

16.  A  body  slides  down  an  inclined  plane  of  given  height  and  im- 
pinges on  an  elastic  horizontal  plane..  What  must  be  the  elevation  of 

the  plane  that  the  range  on  the  horizontal  plane  may  be  the  greatest 

possible  ? 
17.  A  wet  open  umbrella  is  held  with  the  handle  upright  and  made 

to  rotate  round  that  handle  at  the  rate  of  14  revolutions  in  33  seconds. 
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If  the  rim  of  the  umbrella  be  a  circle  of  1  yard  diameter  and  its 
height  above  the  ground  be  4  feet,  prove  that  the  drops  shaken  off 
from  the  rim  meet  the  ground  in  a  circle  of  5  feet  diameter,  tt  being 
^  ;  the  effect  of  the  air  being  neglected. 

18.  An  elastic  ball  projected  at  a  given  angle  from  a  point  in  a 
horizontal  plane  rebounds  from  the  plane.  Find  the  range  after 
the  first  rebound  and  the  time  of  flight,  the  coefficient  of  elasticity 
being  ̂  

19.  A  body  is  projected  from  a  given  point  with  velocity  v.  Find 
the  direction  of  its  projection  so  that  it  may  pass  through  another 
given  point,  distant  h  horizontally  and  k  vertically  from  the  point  of 

projection. 
20.  A  shot  of  ?/i  lbs.  is  fired  from  a  gun  of  M  lbs.  placed  on  a  smooth 

horizontal  plane,  and  elevated  at  an  angle  a.  Prove  that  if  the 
velocity  of  the  shot  just  outside  the  muzzle  be  V,  the  range  will  be 

(-S) 
yo      I  -^  -r  ̂   J  tan  a 

21.  If  three  bodies  are  projected  simultaneously  in  the  same  vertical 
plane  from  the  same  point,  prove  that  the  area  of  the  triangle  fonned 
by  joining  the  three  bodies  at  any  instant  of  their  motion  will  vary  as 
the  square  of  the  time. 

22.  Three  bodies  are  projected  simultaneously  from  the  same  pornt 
and  in  the  same  vertical  plane,  one  vertically  upwards,  another  at  the 

angle  of  elevation  30°,  and  the  third  horizontally.  If  their  velocities 
be  in  the  ratio  of  1  : 1  :  \/Z,  prove  that  they  will  always  be  in  a  straight 
line.     How  does  this  line  move  in  space  ? 

23.  Free  particles,  projected  simultaneously  from  points  on  the 
circumference  of  a  vertical  circle  towards  the  highest  point  with  the 
velocities  which  would  be  acquired  by  sliding  down  to  those  points 
from  the  highest  point,  all  reach  the  circumference  again  in  the  same 
time  ;  and  in  double  that  time  they  are  all  in  another  circle  of  three 
times  the  radius  of  the  former. 

24.  A  particle  is  projected  up  an  inclined  plane  and  making  an  angle 

of  45°  with  the  horizontal,  so  as  always  to  move  in  the  plane.  If  the 
inclination  of  the  plane  be  60°,  find  its  range. 

25.  A  perfectly  elastic  ball  is  projected  from  a  point  in  an  inclined 
plane.  Find  the  direction  of  projection  that  the  ball  may  rebound  to 
the  point  of  jnojection. 

26.  A  particle  is  projected  from  the  foot  of  an  inclined  plane  whose 

inclination  is  {§),  and  in  a  direction  making -an  angle  of  60°  with  the 
horizon.     If  its  range  on  the  inclined  plane  is  equal  to  the  distance 
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tlirougli  which  anotlier  particle  Avould  fall  from  rest  during  the  time 
which  elapses  before  the  first  particle  hits  the  plane,  find  /3. 

27.  Tliere  is  a  hill  whose  inclination  is  30°.  From  a  point  on  the  hill 
one  projectile  is  projected  up  the  hill  and  the  other  down  it  with  equal 
velocities  ;  the  angle  of  projection  in  each  case  is  inclined  to  the 

horizon  at  45°.  Show  that  the  range  of  one  projectile  is  nearly  3|  times 
the  range  of  the  other. 

28.  A  smooth  solid  cylinder  of  radius  r  lies  on  a  smooth  horizontal 

plane,  to  which  it  is  fastened,  and  an  inelastic  sphere  of  radius  2?- 
moves  along  the  plane  in  a  direction  at  right  angles  to  the  axis  of  the 
cylinder.  Find  the  condition  that  after  collision  it  may  pass  over  the 
cylinder  without  touching. ***** 

29.  The  range  of  a  projectile  on  a  horizontal  plane  was  1000  meters, 
and  the  time  of  flight  was  10  seconds.  Find  the  horizontal  and  vertical 
components  of  the  initial  velocity,  and  the  greatest  height  reached  by 
the  projectile. 

30.  AB,  BC  are  two  equal  planes"  back  to  back  inclined  at  30°  to 
the  horizon.  A  particle  is  projected  up  AB  with  a  velocity  due  to  f 
the  height  of  the  planes.  Show  that  it  will  alight  at  the  foot  of  the 

plane  BC. 



CHAPTER   XVI 

MOTION   ON   CURVES 

147.  If  a  stone  be  whirled  round  at  the  end  of  a  string, 
the  string  must  exert  a  force  on  the  stone,  or  if  a  particle 
be  constrained  to  move  along  a  given  curve  under  any 
forces,  the  curve  must  in  general  exert  a  pressure  on  the 
particle.  How  is  the  amount  of  this  tension  or  pressure 
to  be  determined  1  The  answer  to  this  depends  on  the 

acceleration  of  the  stone  or  particle.  When  a  particle  is- 
moving  in  any  curve,  it  is  subject  to  an  acceleration  in  a 
definite  direction  at  each  point  of  the  curve.  In  order  to 
determine  this  it  will  be  best  to  resolve  the  acceleration 

into  two  components,  one  along  the  direction  of  the  motion 
at  any  time,  the  other  perpendicular  to  this.  The  first 
component  then  gives  the  rate  of  change  of  the  magnitude 
of  the  velocity,  the  second  the  rate  at  which  the  direction  of 
the  velocity  changes,  or  the  rate  at  which  the  motion  of 
the  particle  is  deviating  from  a  straight  line. 

In  studying  this  question  the  properties  of  a  curve  called 
the  hodograjih  are  of  very  great  importance.  The  hodo- 
graph  of  the  path  of  a  particle  may  be  defined  as  follows — 

Let  AB  denote  the  path  of  a  moving  particle,  and 
suppose  that  the  velocity  of  the  particle  is  known  at  every 

point  of  the  path.  ^ 
Take  any  fixed  point  0  and  draw  from  it  lines  repre- 

senting the  velocities  at  every  point  of  tlie  patii  AB.  The 
extremities  of  these  lines  will  lie  on  a  curve,  which  is  called 

the  hodograph  of  the  path. 
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Thus  let  0/:)i,  Op^,  -  -  -  represent  the  velocities  at  the 
points  P.i,  Pg,  .  .  .  Then  if  lines  similar  to  Ojj  be  drawn 

for  all  the  points  P 

on  AB,  their  extrem- 
ities will  lie  on  some 

^^-flPop  JZ  curve  ap.'p^'pj).     The 
y^   \l/f.  ^/  curve  ah  is  the  hodo- 

/  \  //^b  7^3  graph    of    the    path 
\//  V  AB.       The     points 

f  j^h  i'n  Pi;  i^., P.;  i^3,  Pa 
are  called  correspond- 

ing points. 
Eegarding  a  point 

P  as  moving  with  the 
particle  along  the  curve  AB,  its  corresponding  point  p  will 
move  along  the  curve  ah  with  a  definite  velocity  at  each 
point.  We  can  now  state  the  following  important  theorem 

— viz.  iihe  acceleration  of  a  point  along  the  path  is  represented 
in  magnitude  and  direction  by  the  velocity  of  the  corresponding 
point  in  the  hodograph. 

In  other  words,  the  velocity  of  ])  represents  the  accelera- 
tion of  P. 

To  prove  this,  let  Pj,  P2  denote  two  points  on  the  path 
and  ̂ 1,  P2  the  corresponding  points  on  the  hodograph. 
Then  the  velocities  at  P,,  Pg  are  O^i,  Op.2  respectively. 
Hence  the  total  change  of  velocity  in  going  from  Pj  to  Pj 

is  Opa  -  Opi  =V\Pi-  I^^  other  words,  the  increase  of  velocity 
whilst  the  particle  moves  from  Pj  to  Pg  is  represented  by 
^1^2.  If  the  particle  takes  a  time  t  to  move  from  P,  to  P2, 
the  average  rate  of  change  of  velocity  between  these  two 
points  is  therefore  Pxpjt.  In  the  above  no  supposition  has 
been  made  as  to  the  magnitude  of  P1P2,  or  of  t.  Let  now 
PjPg,  and  therefore  /,  become  very  small.  We  now  have 
P1P2  and  t  both  small,  but  their  ratio  is  not  necessarily  so ; 
it  gives  in  fact  as  before  the  average  rate  of  change  of 
velocity  between  Pi  and  Pg.  This  is  always  the  case, 
however  near  Pj  and  P2  may  be.  Let  now  Pg  move  up  to 
actual  coincidence  with  Pj,  then  the  limiting  value  o{ p^pojt 

will  be  the  rate  of  change  of  velocity  at  P — that  is,  the 
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acceleration.  But  looked  at  as  a  point  moving  on  the 
curve  ab,  p^pjt  denotes  the  velocity  of  p  on  ah.  Hence  the 
velocity  on  the  hodograph  represents  the  acceleration  at 
the  corresponding  point  of  the  path  itself. 

148.  This  very  important  theorem  at  once  enables  us 
to  answei^  the  question  proposed  above,  viz.  to  find  the 
acceleration  when  a  particle  is  compelled  to  move  on  a 
given  curve.  Consider  first  the  case  of  a  particle  moving 
uniformly  round  the  circumference  of  a  circle.  Here  the 
velocity  is  constant  in  magnitude,  the  acceleration  only 
affects  the  direction. 

Let  the  radius  of  the  circle  be  denoted  by  a  and  tlie 
velocity  of  the  particle  by  v.  Take  the  centre  of  the 

circle  as  the  fixed  point  for  the  hodo- 

graph. 
When  the  particle  is  at  P  draw  Op 

parallel  to  the  tangent  at  P  and  equal  to 
V.  Then  j9  is  the  poin,t  on  the  hodograph 
corresponding  to  P,  and  as  P  moves  round 
its  circle,  p  moves  in  another  concentric 

one.  Hence  the  hodograph  will  be  a  con- 
centric circle  of  radius  measured  by  v.  Now,  firstly,  the 

velocity  of  p  is  along  the  tangent  at  j9,  ie.  is  parallel  to 
PO.  Hence  the  acceleration  of  P  is  along  PO.  Secondly, 
as  to  its  magnitude,  which  is  represented  by  the  velocity 
of  p.  Notice  that  P  and  p  describe  their  circles  in  the 
same  time.     Hence 

.   velocity  of  ;;  _  circumference  of  circle  p     Op 

velocity  of  P     circumference  of  circle  P     OP* 
velocity  oi p     v 
V  cH 

.if 
or  "  velocity  of  ̂   =  - 

Hence  the  acceleration  of  P  is  directed  inwards  along 

the  normal  PO  and  is  equal  to  v'/a,  or 

Acceleration  of  P  =  —  along  PO. 
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Now  the  acceleration  of  a  point  depends  only  on  the 
rate  of  change  at  the  moment,  and  does  not  depend  on 
the  history  of  the  motion  before  or  afterwards.  Hence, 
even  when  the  magnitude  of  the  velocity  is  altering,  the 

acceleration  along  the  noi^mal  is  given  by  the  same  formula. 
It  does  not,  liowever,  now  represent  the  total  acceleration. 
To  find  this,  the  normal  acceleration  as  found  above  must 

be  compounded  with  the  acceleration  along  the  tangent  to 
the  path,  due  to  the  changing  speed. 

Further,-  notice  that  the  acceleration  perpendicular  to 
the  direction  of  motion  gives  the  rate  at  which  the  velocity 
is  changing  owing  to  the  rate  of  change  of  direction.  This 
remark  points  out  how  to  find  the  normal  acceleration 
when  the  path  is  any  other  curve  than  a  circle.  For  at  a 
point  P  draw  a  circle  touching  the  curve  of  such  a  radius 
that  the  rate  of  deviation  from  the  tangent  at  P  is  the 
same  for  the  circle  and  the  curve.  If  a  denote  the  radius 

of  this  circle  and  v  the  velocity,  the  normal  acceleration  will 

be  v^ja.  The  circle  is  called  the  circle  of  curvature  of  the 
curve  at  P,  and  a  the  radius  of  curvature.  Until,  however, 

we  have  means  of  determining  the  A^alue  of  the  radius  of 
curvature  in  particular  cases  we  can  make  no  use  of  this 

result.  The  determination  of  a  involves  a  larger  know- 
ledge of  mathematics  than  we  assume  in  this  book. 

149.  The  following  examples  will  illustrate  the  applica- 
tion of  the  foregoing  results — 

Example  I.  A  particle  of  mass  3  lbs.  lies  on  a  smooth  horizontal 
table  and  is  attached  by  a  string  2  yards  long  to  a  fixed  point  in  the 
plane ;  it  whirls  round  this  point  ai  a  velocity  of  20  feet  per  second. 
Find  the  tension  of  the  string. 

v^     (20)^ 
The  acceleration  is  —  =  -  ̂      feet  per  second  per  second. 

The  force  on  the  particle  is  the  tension  T  of  the  string  alone. 

Hence  '^..g  ̂          poundals  =  200  poundals, 

=  weight  of  ̂   lbs.  =  weight  of  Q\  lbs., 
25 

=  r^ .  the  weight  of  the  mass  itself. 
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The  student  may  prove  that  in  the  general  case 

orT= 

ag 

^Mit  of  mass  itself. 

Example  II.  Conical  pendulum.  A  mass  m  lbs.  is  suspended, from 
a  point  by  a  string  of  length  1  feet ;  the  mass  revolves  in  a  honzontal 
circle  with  the  string  inclined  to  the  vertical  and  makes  n  revolutions 
Xter  secowl.  Find  the  inclination  of  the  string  to  the  vertical  and  the 
tension  of  the  string. 

Let  0  be  the  point  of  suspension,  OA  vertical.  P  describes  the 

horizontal  circle  PB.  Draw  PN  per- 
pendicular to  OA.  Then  PN  is  the 

radius  of  the  circle  described  by  the 

mass,  also  OV  =  l.  The  particle  is  acted 
on  by  two  forces,  viz.  its  weight  mg 
downwards  and  the  tension  T  along 
PO.  Decompose  this  last  into  two 
components,  one  Y  vertically  upwards, 
the  other  X  along  PN. 

Then  the  vertical  force  on  m 

=  Y  -  mg.  Now  the  particle  describes 
a  horizontal  circle.  There  is  therefore 

no  vertical  motion  nor  vertical  accel- 
eration.    Hence 

Y-  wigr  =  0, 

or  Y=mg. 

The  horizontal  force  on  the  particle  is  X  along  PN,  whereas  the 

v^ 

hor
izo

nta
l  
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rat
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is 
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, 
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of 
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particle.     Hence 

X  =  m 

PN' 

Now  the  particle  makes  n  revolutions  per  second — that  is,  it  passes 
over  a  distance  n.  27r .  PN  per  second,  or 

v=27r7i.PN. 

Hence 

and 
X=: 

47r2m7i2.PN2 =  iir^mn^ ,  PN  poundals, PN 

Y  =  mg  poundals. 

Now  X,  Y  are  the  horizontal  and  vertical  components  of  T. 
YON    XPNPN 

X"PN'    T~OP       I   ' 
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T=~,X  =  iTr-mn% FN 

mg  =  — - —  =  weight  of  mass 

also cosPOA  =  ?^.  =  ̂  = 

9 

mg 

OP     T    iTrhr 

I ,  mg 9 

which  gives  the  inclination  of  OP  to  the  vertical.     Instead  of  finding 
POA,  we  may  find  PN.     Thus 

YON 
T~OP' 

Gl- 
and

 
0N  =  ̂  

47rV 

OP2  =  ON2  +  PN2 

(47rV^)2  +  ̂̂
^' 

PN 

-.A 

Note  that  ON  is  the  same,  whatever  the  length  of  the  string, 
provided  the  number  of  revolutions  per  second  is  the  same. 

If  the  length  I  is  given,  the  inclination  a,  and  also  the  fact  that  the 
particle  describes  a  horizontal  circle,  the  periodic  time  is  easily  found. 

But     ~ 

For  it  makes  one  revolution  in  -  second, n 

H( Periodic  time 

_9_ 

ArrhiH' 

^/
^ 

Example  III. 

A 
A  heavy  particle  is  placed  on  the  top  of  a  smooth 

sphere  and  slips  down  over  the  surface.  Where 
will  it  leave  the  sphere  ? 

Let  on  denote  the  mass  of  the  particle,  a 

the  radius  of  the  sphere.  While  the  particle 
is  in  contact  with  the  surface  the  sphere  will 
exert  a  certain  pressure  on  it.  This  pressure 

will  just  vanish  when  the  particle  leaves  the* 
sphere.  In  order  to  find  where  the  particle 
leaves,  we  shall  first  find  the  pressure  at  any 

point,  and  then  determine  at  what  point  this  pressure  vanishes. 
The  particle  is  acted  on  by  two  forces,  viz.  its  weight  mg  downwards 

and  the  normal  pressure  (R  say)  outwards  along  OP.  The  resolved 
parts  of  these  along  PO 

ON 
=  mg  cos  PON  -  R,     or  mg  .  ̂  

R. 
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This  must  equal  tlie  rate  of  change  of  raomentum  along  PO,     By  what 
precedes,  the  acceleration  along  PO  is  trfa^  where  v  is  the  velocity  at  P. 

ON     _,     vi'ifi Hence  vig —  -  R  =   . Cli  ci 

Now  V  is  the  velocity  attained  in  moving  along  the  arc  AP,  i.e.  in 
falling  a  vertical  distance  AN, 

,                                       ON    ̂   2^AN 
Avhence  rng   R = m .  — — , 

A  .  t>  /ON     2AN\ and  ri=mg[   ), 

\   a         a   J' 

=  ̂{0N-2(a-0N)}, 

=  ̂(30N-2a), 

.   .  „     30N-2a         .  ,  ̂    f       ̂ -1 
or  pressure  at  any  point  P  =   x  weight  of  particle. 

The  particle  leaves  the  surface  when  this  pressure  becomes  zero. 
That  is,  when 

SON  =  2a, 

or  ON  =  |a=iOA. 

Example  IV.  Assuming  that  the  moon  rotates'Wiaid  the  earth  as  a 
fixed  point  in  27  days  8  hours,  and  that  her  distance  is  sixty  times  the 

earth's  radius,  find  the  acceleration  of  gravity  at  the  surface  of  the  earth. 
The  earth's  radius  is  to  he  taken  as  4000  miles. 

If  m  be  the  mass  of  a  body  its  weight  at  the  surface  of  the  earth  is 
mg,  whilst  its  weight  at  the  distance  of  the  moon  will  be  mgl{QQr).  Its 

acceleration,  therefore,  towards  the  earth  is  g/{60^).  But  this  is  the 
acceleration  to  the  earth  of  the  moon  in  her  orbit.  Now  the  moon 

moves  through  a  distance  27rr  in  27  days  -8  hours,  where  r  is  the  radius 
of  its  orbit.     Hence,  if  v  denote  its  velocity,  • 

_  2irr ^"27^x24x60x60' 

g  iv^r^ 
602    (82  X  8  X  60  X  60)V' 

47r260  X  4000  X  1760  X  3  .    ,  ,       ., 

^=   (82x8x60)-^   ^"^^  '^^^"^  "?'*^' 220000  ..  „  ,. 

=  -672T  ̂ ^'^=^^' =  32.  .  .  about. 
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150.  Angular  velocity. — Let  OA  be  a  fixed  line  and  P 
a  point  moving  in  any  way.  The  angle  POA  depends  on 
the  position  of  P,  and  will  alter  in  general  as  P  moves. 
The  rate  at  which  the  angle  POA  is  increasing  at  any 

moment  is  the  angulm-  velocity  of  P 
about  0  at  that  moment.  It  is 

measured  when  constant  by  the 
angle  turned  through  in  a  unit  of 
time,  and  when  not  constant  by 
the  angle  which  would  be  turned 
through  in  a  unit  of  time  if  during 
that  interval  the  angular  velocity 

remained  the  same  as  at  the  beginning. 
The  actual  numerical  value  of  an  angular  velocity 

depends  on  our  angular  unit  and  unit  of  time.  Thus  we 
may  measure  the  same  velocity  as  a  right  angle  per  minute, 

90°  per  minute,  or  1J°  per  second.  The  most  convenient 
method,  however,  is  to  employ  circular  measure  in  which 
the  unit  is  called  a  radian. 

Draw  a  circle  of  any  radius  round  0,  and  let  OA,  OP  cut  it  in  the 
points  a,  p.  Then  the  arc  aji  will  always  be  proportional  to  the  angle 
POA  so  long  as  it  is  an  arc  of  the  same  circle.  If,  however,  the  circle 
have  a  larger  radius,  a^  will  be  larger.  However,  in  different  circles 
the  ratios 

ap    a'p' 
'        Oct     Oa' 

will  be  the  same  for  the  same  angle.  We  may,  therefore,  measure  any 
angle  POA  by  drawing  any  circle  round  0  and  taking  the  ratio  of  the 
arc  ap  cut  off  between  OA,  OP  to  the  radius  of  the  circle,  and  say 

AnglePOA  =  ̂. 
^  Oa 

For  (1st)  this  ratio  is  independent  of  the  size  of  the  circle  ;  and  (2nd) 
it  is  directly  proportional  to  the  size  of  the  angle. 

Here  the  unit  of  angular  measurement  is  that  in  which  ap/Oa=l, 
or  the  arc  =  radius.     This  unit  is  called  a  radian. 

In  order  to  express  an  angle  given  in  circular  measure  in  degrees,  it 
is  necessary  to  know  how  many  degrees  there  are  in  a  radian.  To  do 

this,  notice  that  the  whole  circumference  of  a  circle  measures  360° 
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TT  „/,/^o    circumference  of  circle        ,. 
Hence  360  =   y.   ^—. — ^   .  radians, radius  or  circle 

3c   =2ir  radians. 
r 

Hence  Radian  =        degrees, 

=  57°  about. 

The  circular  measure  of  two  right  angles  is  tt,  or  3  •14159. 

Since  the  circular  measure  of  an  angle  is  a  length 
divided  by  a  length,  it  is  independent  of  the  units  of  mass, 
length,  and  time,  or 

[Angular  measurement]  =  [M"L°T*]. 
It  is  therefore  simply  a  number. 

Angular  velocity  is  an  angle  per  time.     Hence 

[Angular  velocity]'  =  I  Tf  I- 

Speed  of  rotation  is  sometimes  given  by  the  number  of 

revolutions  made  per  unit  of  time.  If  this  number  be  n, 

then  4?i  right  angles  are  described  per  unit  of  time — that  is, 
2mr  radians  per  unit  of  time. 

151.  AVhen  the  angular  velocity  of  P  is  given  and  its 
distance  from  0,  it  is  easy  to  express  the  velocity  of  P  in 
the  direction  perpendicular  to  OP.  For  describe  a  circle 
of  radius  OP.  Then  the  velocity  of  P  in  the  given  direction 
is  the  rate  at  which  the  arc  AP  is  increasing. 

AP 

But  Angle  POA  =  ̂ rj  radians. 

Hence  rate  at  which  the  an£?le  POA  increases 
rate  at  which  arc  AP  increases 

"  OA  ' 
velocity  of  P 

"         OA        ■ 
Ovy  if  (u  denote .  the  angular  velocity  of  P  about  0  and  v 
the  velocity  of  P  in  the  direction  perpendicular  to  OP, 

V 

w  =  -, r 

or  V  =  wfr. 
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The  velocity  of  P  in  the  direction  of  OP  clearly  does 
not  affect  the  angular  velocity. 

We  may  now  express  the  acceleration  along  PO  when 
the  particle  is  moving  in  a  circle  round  0  in  terms  of  the 
angular  velocity.  For  we  have  seen  that  it  is  measured 
by  tfir ;  and 

2  2    2 

-  =  —  =  ior. 

In  general  the  angular  velocity  of  a  point  is  not  con- 
stanf.  When  it  is  not  so  it  is  said  to  be  accelerated,  and 

the  acceleration  is  measured  by  the  increase  of  angular 
velocity  per  unit  of  time. 

152.  When  an  impulse  acts  on  a  particle  the  change 
in  its  momentum  is  measured  by  the  impulse.  Suppose 
now  a  particle  to  be  moving  and  to  be  acted  on  by  a 
series  of  impulses  at  different  intervals.  The  v/hole 
change  of  momentum  will  be  equal  in  magnitude  and 

direction  to  the  resultant  of  the  various  impulses — oi\ 
which  is  the  same  thing,  if  we  suppose  its  original  momen- 

tum to  be  replaced  by  the  corresponding  impulse,  then 
the  resultant  of  all  these  impulses  will  be  equal  to  the 
final  momentum  of  the  particle  in  magnitude  and  direction. 
This  follows  at  once  from  the  definition  of  impulse.  But, 
further  than  this,  it  can  be  shown  that  if  the  impulses  be 
regarded  as  acting  at  the  points  at  which  they  really 

acted,  and  if  the  momentum  of  the  particle  at  any  subse- 
quent time  be  replaced  by  its  impulse  reversed,  acting  at 

the  point  which  the  particle  is 
occupying  at  that  instant,  the 
whole  set  of  impulses  will  form 
a  system  in  equilibrium. 

For  suppose  the  particle  to 
start  from  rest  at  A  and  to 

move  along  the  path  ABCD  .  . ., 
receiving  given  impulses  I„  I,, 

I„  .  .  .  at  A,  B,  C,  D,  .  .  .  ' After  the  first  impulse  at  A  it  moves  along  the  line 
ABT  with  constant  momentum.     This  is  always  constant, 
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and,  as  it  is  in  direction  AB,  is  always  equivalent  to  the 
original  impulse  acting  at  A.  If  then  it  be  reversed  when 

at  P,  it  will  be  a  system  in  equilibrium  with  the  original  im- 
pulse at  A.  When  it  arrives  at  B,  suppose  another  impulse 

to  act  on  it,  making  it  take  the  path  BC.  We  have  seen 
that  when  it  reached  B  it  had  a  momentum  equal  to  the 

impulse  at  A.  Eeplace  it  by  this.  Then  the  new  mo- 
mentum is  equivalent  to  the  resultant  of  Ij  and  I^  acting  at 

B.  Hence  the  momentum  afterwards  at  any  point  Q  is 
equal  to  this.  But  I^,  Ig  at  B  are  equivalent  to  Ij  at  A 
and  I2  at  B.  Hence,  if  the  momentum  at  Q  be  reversed, 
it,  together  with  Ii  at  A  and  Ig  at  B,  will  form  a  system 

in  equilibrium.  In  the^  same  way  the  theorem  may  be 
proved  for  the  three  impulses,  and  so  on  in  general.  This 
theorem  has  important  applications,  see  next  paragraph 
and  §  171. 

153.  Suppose  now  a  moving  particle  to  be  acted  on  by 
a  series  of  impulses  all  directed  to  a  fixed  point  0. 

Let   ABCD  . .  .  KL   denote  the  path    of  the  particle, 
and   let   v^   be    the 

velocity  at  A,  v  along 
KL. 

Then,  by  the  pre- 
ceding theorem,  the 

following  form  a 

system  in  equili- 
brium, viz.  mVo  along 

AB,  the  impulses  at 
B,  C,  D,  .  .  .,  K,  and 
mv  along  LK. 

Hence  their  mo- 
ments round  the 

point  0  must  vanish.  But  all  the  impulses  at  B,  C,  .  .  .,  K 
pass  through  0,  and  consequently  their  moments  vanish. 
Therefore  the  moments  about  0  of  iuVq  along  AB  and  mv 

along  LK  must  vanish — that  is,  the  moment  of  mVo  about  O 
must  equal  the  moment  of  mv  about  the  same  point.  But 
since  the  point  K  is  at  any  point  of  the  path,  we  learn  that 
the  moment  about  0  of  the  momentum  at  any  point  of  the 

u 
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path  always  remains   the  same  whatever  the  number  or 
magnitude  of  the  impulses,  provided  they  all  act  towards  0. 

Since  the  mass  is  constant,  it  follows  that  the  moment 

of  the  velocity  about  0  is  always  the  same. 
If  at  any  time  p  denote  the  perpendicular  from  0  on 

the  line  of  motion  of  the  particle,  this  theorem  may  be 

expressed  thus, 

pv  =  constant. 
The  above  proof  is  quite  independent  of  the  number  or 

magnitude  of  the  impulses.  Therefore,  as  in  the  cases 
before  treated  of,  the  theorem  is  still  true  when  stated  of 
a  particle  moving  under  a  continuous  force  always  directed 
to  a  fixed  point. 

The  theorem  may  be  stated  in  a  different  form.  Re- 
ferring again  to  the  figure,  let  A  denote  the  area  of  the 

figure  OABC  .  .  .  PO,  where  P  is  the  position  of  the, 
particle  at  any  time.  In  a  time  t,  P  will  have  moved  to 

P',  where  PP'  =  vt,  and  the  area  will  have  increased  by 
OPP'.  This  is  a  triangle  of  base  PP'  and  altitude  p. 
Hence  increase  of  A  in  time  /  =  J  .  PP' .  =  ̂ pvt.  That  is, 
the  increase  of  A  per  unit  of  time  or  the  rate  of  increase 
of  A  is  ̂ pv.  But  we  have  seen  that  this  is  constant. 
Hence  if  a  particle  is  describing  any  orbit  under  the  action 
of  forces  directed  to  a  fixed  point,  the  area  described  about 
this  point  in  any  time  is  proportional  to  the  time  of 
describing  it. 

This  theorem  was  first  discovered  by  Newton,  and  was 
employed  by  him  in  conjunction  with  the  fact  discovered 
by  Kepler,  that  the  earth  described  equal  areas  round  the 
sun  in  equal  times,  to  deduce  the  law  that  the  earth  moved 
under  the  action  of  a  force  always  directed  towards  the 
sun. 

154.  To  illustrate  the  application  of  this  theorem,  take 

the  following  example — 
A  particle  of  mass  m  is  placed  on  a  smooth  horizontal  table  ;  it  is 

attached  by  a  string  which  passes  through  a  hole  in  the  table  to  a  particle 
of  mass  M,  which  hangs  freely ;  it  is  jnvjected  at  nght  angles  to  the 
string  with  velocity  u.  Deterinine  the  velocities  of  the  jmrticles  at  any 
fiUure  time  in  terms  of  the  distance  of  ni  from  the  hole. 
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Let  0  denote  the  hole,  r  the  distance  of  m  from  0  at  any  time,  and 
1\  its  initial  distance.  The  velocity  of  M  will  be  simply  a  vertical  one. 

Denote  it  by  v.  The  velocity  of  m  can  be  decomposed  into  two  com- 
ponents, one  along  the  string-  and  the  other  perpendicular  to  it.  Since 

the  string  is  inextensible,  that  along  the  string  must  be  equal  to  the 
velocity  of  M.  Denote  the  other  by  u.  There  will  then  be  only  two 
quantities  to  determine,  viz.  u,  v,  in  terms  of  r  and  the  initial  values 
of  r  and  u  (say  Tq,  Uq).  To  find  these,  two  conditions  are  necessary. 
One  is  given  by  the  fact  that  the  change  of  kinetic  energy  must  be 
equal  to  the  external  work  done.  Now  the  only  external  work  is  that 

of  gravity  acting  on  M,  and  this  has  pulled  M  down  a  distance  =  ro-r 
(for,  since  the  string  is  inextensible,  the  vertical  displacement  of  M  is 
equal  to  the  distance  m  has  moved  towards  the  hole).     Hence 

Work  done  =  Mg{rQ  -  r), 

and  change  of  kinetic  energy 

.*.  m(tc^  -  u^)  +  (M  +  m)v^  =  2^lg{r(,  -  r). 

For  the  second  condition,  notice  that  the  force  on  m  (which  is  the 
tension  of  the  string)  always  passes  through  a  fixed  point  0.  Hence 
m  moves  so  that  the  moment  of  its  momentum  round  0  remains  un- 

changed.    Therefore 

Substituting  this  value  of  u  in  the  previous  equation, 

or  (M  +  my  =  (ro  -  r)  {  2Mgr  -  m .  ̂̂ i^o^  ]- . 

If  M  remained  always  at  rest,  the  tension  of  the  string  would  equal 
its  weight,  that  is  M^,  and  in  that  case  in  would  describe  a  circle,  and 

sllg=m—- 
This  gives  the  value  of  Uq  necessary  for  this  purpose. 

Further,  the  formula  for  v  enables  us  to  find  between  what  limits 

M  will  oscillate,  for  in  its  two  positions  of  rest  v  =  0.     Hence 

{r,-r)(mg-m''-^uA=0, 
i.e.  r=rQ,  which  is  evidently  the  case  d priori  and  the  positive  root  of 

2Ma-m^^V=0 
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For  instance,  take  the  numerical  case  of  ?n-  =  4  lbs.,  M  =  l  lb.,  n  =  2\ 
feet,  and  Uq  =  \Q  feet  per  second.  • 

The  equation  to  find  r  is 
r2-16r-36  =  0, 

(r-18)(r  +  2)  =  0. 
Hence  m  will  reach  a  distance  of  18  feet  from  the  hole  and  then 

come  back  again  to  a  distance  of  2^  feet,  and  so  on  continually.  M 

will,  therefore,  oscillate  up  and  down  through  a  distance  18-2|  =  15| 
feet. 

155.  The  knowledge  we  have  gained  in  this  chapter 
about  angular  acceleration  enables  us  easily  to  settle  an 
important  question  as  to  the  stability  of  one  body  resting 

on  another.  If  a  body  A  rests  on  a 
rough  fixed  body  B,  the  centre  of  gravity 
of  A  must  be  vertically  above  the  point 
of  contact  G  of  the  two  bodies.  The 

question  then  arises,  if  this  condition  is 
satisfied,  will  the  equilibrium  be  stable 

or  unstable — in  other  words,  if  A  receive 
a  small  rolling  displacement  over  B  and  be  let  go,  will  it 
tend  to  return  to  its  former  position  or  to  recede  farther 
from  it  ?  Now,  as  A  rolls  over  B,  its  centre  of  gravity  Gr 
will  trace  out  a  certain  curve,  and,  by  §  108,  the  equilibrium 
is  stable  if  G  is  at  the  lowest  point  of  this  curve,  and 
unstable  if  at  the  highest  point.  That  is  to  say,  if  the  path 
of  G  turns  upwards  on  both  sides  the  equilibrium  is  stable, 
whereas  it  is  unstable  if  the  path  tends  downwards.  Now 

if  the  path  of  G  tends  upward  as  A  is  rolled  from  its  posi- 
tion of  rest,  the  vertical  acceleration  of  G  will  be  up, 

Avhereas  it  is  downwards  in  the  other  case.  The  question 
therefore  depends  on  whether  the  acceleration  of  G  is  up  or 
down  as  A  rolls  over  B. 

Now  suppose  the  surfaces  near  the  point  of  contact  are 

spherical,  and  let  0,  0'  denote  the  centres  for  A  and  B. 
Then  OGO'  is  a  vertical  straight  line. 

Let  R,  r  denote  the  radii  of  the  surfaces  at  C  of  the 
fixed  and  rolling  bodies,  viz. 
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0'C  =  R,     OC  =  r, 
also  let  OG  =  h. 

Now,  as  A  rolls  over  B,  O  moves  round  O'  as  in  a  circle 
of  radius  E  +  ?*,  whereas  G  turns  round  0  in  a  circle  of 
radius  h.  Hence  the  acceleration  of  G  in  any  direction  is 
equal  to  the  acceleration  of  0  in  that  direction  +  the 
acceleration  of  G  relative  to  0. 

Let  w',  (0  denote  the  angular  velocities  of  00'  round  0' 
and  of  OG  round  0.  Then  the  vertical  downward  ac- 

celeration of  G 

=  acceleration  of  0  along  00' 
-  acceleration  of  G  along  GO, 
=  a>'^00'-co^OG, 

=  co'XR  +  r)-o)^A. 

But,  as  A  rolls  over  B  without  slipping,  the  velocity  of 
the  point  of  contact  C  must  be  zero.  That  is,  velocity  of 

O  +  velocity  of  C  relative  to  0  =  0, 

.*.  a>'(r +  R)  -  (ur  =  0. 
Hence  the  equilibrium  is  stable  or  unstable 

as  Acceleration  of  G  is  up  or  down, 

as  A  ̂a)''(R  +  r). 

The  equilibrium  is  then 

?•
' 

stable,  if  OG  >  —   , 

K  +  ?• 

r'
 

unstable,  if  OG  <  ̂    . JcC  +  r 

Since  CG  =  r-h,  the  condition  may  be  stated  thus,  viz.  A 
is  stable  or  unstable 

as 

or 

-      h<r           ̂  ■>'      E  +  r' 

<   Er 

>E  +  r 

1   >^*^ 

cg<e'"? 
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For  instance,  a  solid  hemisphere  rests  with  its  curved 
surface  on  the  top  of  a  sphere.  Find  the  relation  between 
the  radii  that  the  equilibriuiri  may  be  stable. 

Here OG=fr,     CG 

juce  the  condition  is 8      11 

• 3      1 

5r^R' 

or  R>|r. 

If  the  hemisphere  rested  with  its  flat  surface  in  contact,  the  radius 

of  the  flat  surface  is  infinitely  great,  or  in  the  formula  r=  oo . 

Here  CG  =  |r, 
8      1^1 

•*'3r'"R"^oo''"R' 
or  R  >  |r. 

In  case  the  surfaces  are  not  s])herical,  the  radii  of  curvature  of  the 
surfaces  must  be  inserted  in  the  formula. 

AVhen  B  has  its  concavity  upwards,  R  must  be  considered  negative  ; 
and  when  A  has  its  concavity  downwards,  r  must  be  considered 
negative.     The  student  should  prove  this  in  each  case  as  an  exercise. 

EXAMPLES-XVI. 

1.  A  string  5  feet  long  can  just  sustain  a  weight  of  20  lbs ;  it  is 
fastened  to  a  fixed  point  at  one  end  and  to  the  other  to  a  mass  of  5 
lbs.,  which  revolves  round  the  point  in  a  horizontal  plane.  Determine 
the  greatest  number  of  complete  revolutions  that  can  be  made  by  the 
string  in  one  minute  without  breaking. 

2.  With  what  number  of  turns  per  minute  must  a  weight  of  10  lbs. 
revolve  on  a  horizontal  table  at  the  end  of  a  string  15  inches  long,  in 
order  to  cause  the  same  tension  on  the  string  as  if  a  1-lb.  weight  were 
hanging  at  rest  held  by  the  string  vertically  ? 

3.  A  weight  of  m  lbs.  is  tied  to  a  string  I  feet  long,  which  has  its 
other  end  tied  to  a  fixed  point  on  a  smooth  horizontal  table,  and 
makes  7i  revolutions  a  second.  Show  that  the  tension  of  the  string  is 

iir-lmii^  poundals. 
4.  A  locomotive  engine  weighing  9  tons  passes  round  a  curve  600 

feet  in  radius  with  a  velocity  of  30  miles  an  hour.  What  force  tending 
towards  the  centre  of  the  curve  must  be  exerted  by  the  rails  so  that  the 
engine  may  move  on  this  curve  ? 
-     5.  Find  the  horizontal  pressure  on  the  rails  exerted  by  an  engine  of 



CHAP.  XVI  MOTION  ON  CURVES  295 

20  tons  going  round   a  curve  of  600  yards  radius  at  30  miles  per 
hour. 

6.  A  string  4  feet  long  can  just  support  a  weight  of  9  lbs.  without 
breaking ;  a  weight  of  8  lbs.  fixed  to  one  end  of  the  string  describes 
a  circle  uniformly  round  the  other  end,  which  is  fixed  on  a  smooth 
horizontal  table.  Find  the  greatest  number  of  revolutions  the  revolving 
weight  can  make  in  one  minute  so  as  just  not  to  break  the  string. 

7.  A  particle  rests  on  a  rough  horizontal  disc  capable  of  motion 

round  its  centre  ;  it  is  distant  one  yard  from  the  centre  and  the  co- 
efficient of  friction  is-  §.  Determine  the  angular  velocity  of  the  disc 

when  the  particle  just  slips  over  the  disc. 
8.  A  particle  of  mass  ̂   oz.  rests  on  a  horizontal  disc  at  its  edge  and 

is  attached  by  two  strings,  which  are  4  feet  long,  to  the  extremities  of 
a  diameter.  If  the  disc  be  made  to  revolve  100  times  a  minute  about 

a  vertical  axis  through  its  centre,  find  the  tension  of  each  string. 
9.  If  the  force  of  attraction  for  different  distances  varies  inversely 

as  the  squares  of  the  distances,  and  for  different  bodies  directly  as  their 
masses,  prove  that  if  several  bodies  move  round  0  in  concentric  circles, 
the  squares  of  the  times  of  revolution  are  as  the  cubes  of  the  radii. 

10.  Two  weights  W  and  W  are  placed  on  a  smooth  table,  and  con- 
nected together  by  a  string  passing  through  a  small  fixed  ring  on  the 

table.  If  they  are  projected  with  the  velocities  v  and  v'  at  right  angles 
to  the  string,  find  the  ratio  in  which  the  string  must  be  divided  by 
the  ring  in  order  that  both  weights  may  describe  circles  round  the  ring 
as  centre. 

11.  If  a  railway  carriage  without  flanges  to  its  wheels  moves  on  a 
circular  curve,  show  how  the  effect  of  the  centrifugal  force  may  be 
counteracted  by  a  rise  of  the  outer  rail,  and  find  what  the  rise  of  the 
outer  above  the  inner  rail  should  be  if  the  radius  of  the  circle  be  1320 

feet,  the  velocity  of  the  train  30  miles  an  hour,  and  the  breadth  of 
the  track  5  feet. 

12.  If  trains  travel  generally  at  30  miles  an  hour,  find  how  much  the 
outer  rail  should  be  raised  on  a  curve  of  half  a  mile  radius,  the  gauge 
being  4  feet,  so  that  there  shall  be  no  side  thrust  on  the  flange. 

13.  Prove  that  a  railway  carriage  running  round  a  curve  of  radius  r 

will  upset  if  the  velocity  is  gi-eater  than  \/{gra/2h),  where  a  is  the 
distance  between  the  rails  and  h  the  height  of  the  centre  of  gravity  of 
the  carriage  above  the  rails. 

14.  A  heavy  particle  is  connected  by  an  inextensible  string  3  feet 
long  to  a  fixed  point,  and  describes  a  circle  in  a  vertical  plane  about 
that  point,  making  600  revolutions  per  minute.  Find  the  ratios  of  the 
tensions  of  the  strings  when  the  j^article  is  at  the  highest  and  lowest 
points  and  when  the  string  is  horizontal,  the  motion  of  the  particle 
being  kept  uniform. 
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15.  A  string  AP  of  length  a  is  fastened  to  a  point  A  and  carries  a 
weight  P.  If  P  be  projected  vertically  upwards  from  the  position  in 
which  AP  is  horizontal,  find  the  least  velocity  of  projection  with  Avhich 
it  may  describe  a  circle  round  A,  and  state  what  happens  if  the 
velocity  be  less  than  this.  If  P  be  projected  vertically  upwards 
when  AP  is  below  the  horizontal  line,  and  at  an  angle  a  to  it, 
find  the  least  value .  of  v  that  P  may  ultimately  describe  a  circle  in 
this  case. 

16.  Assuming  that  at  the  equator  bodies  "lose  1/289  of  their 
weight,"  find  the  radius  of  the  earth,  assuming  g  =  ̂ 2  when  referred 
to  1  foot  and  1  second. 

17.  Prove  that  at  the  equator  a  shot  fired  westward  with  velocity 

8333,  or  eastward  with  velocity  7407  meters  per  second,  will,  if  un- 
resisted, move  horizontally  round  the  earth  in  one  hour  and  twenty 

minutes  and  one  hour  and  a  half  respectively. 
18.  If  a  particle  move  in  a  smooth  vertical  circular  tube  of  radius  a, 

with  velocity  due  to  a  height  h  above  the  lowest  point  of  the  circle, 
prove  that  the  pressure  will  be  proportional  to  the  depth  below  a 
horizontal  line  at  a  height  |^  +  ̂ a  above  the  lowest  point. 

19.  If  a  railway  carriage  be  moving  at  the  rate  of  30  miles  an  hour, 
and  the  radius  of  one  of  its  wheels  be  2  feet,  what  is  the  angular 
velocity  of  the  wheel  ?  What  also  is  the  relative  velocity  of  the  centre 

and  highest  point  of  the  wheel  ?  ' 
20.  The  radius  of  the  wheel  of  a  railway  carriage  is  2  feet^  and  it 

makes  3|  revolutions  per  second  when  the  train  is  moving  at  30  miles  an 

hour.  If  7r  =  Y-,  find  the  actual  velocity  at  any  instant  (1)  of  the 
point  in  contact  with  the  ground,  (2)  of  either  of  the  two  points  one 

yard  above  the  gi'ound. 
21.  If  in  the  last  question  a  particle  weighing  1  oz.  be  attached  to  a 

point  of  the  circumference  of  the  wheel,  find  the  magnitude  of  the 
attaching  force  when  the  particle  is  (1)  at  its  highest  point,  (2)  in  the 
horizontal  line  through  the  centre. 

22.  A  tube  is  inclined  at  an  angle  a  to  a  vertical  axis  and  rotates 
round  it  with  angular  velocity  w.  Determine  the  position  in  which  a 
particle  would  rest  inside  the  tube,  the  latter  being  smooth. 

"Will  this  position  be  a  stable  or  unstable  one  ? 
23.  In  the  previous  question  determine  what  portion  of  the  tube 

the  particle  can  be  at  rest  on,  supposing  that  the  tube  is  rough  and 
the  coefficient  of  friction  is  /x. 

24.  A  particle  can  move  in  a  smooth  tube  in  the  form  of  a  circle 
which  is  rotating  with  angular  velocity  w  about  a  vertical  diameter. 
Determine  the  points  at  which  the  particle  can  be  at  rest  relatively  to 
the  tube. 
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25.  A  particle  of  mass  m  can  move  on  a  smooth  horizontal  plane  ; 
it  is  attached  to  one  end  of  a  weightless  string  which  passes  through  a 
hole  at  a  distance  a  in  the  plane,  then  under  a  pulley  beneath  the  plane, 
and  is  fastened  at  the  other  end  to  a  fixed  point ;  the  parts  on  both 

sides  of  the  pulley  are  vertical  ;  to  the  pulley  is  attached  an  equal 
mass  m  ;  the  first  particle  is  projected  at  right  angles  to  the  string. 
Find  its  velocity  that  the  second  particle  may  remain  at  rest  If  the 
velocity  be  twice  this,  determine  the  distance  through  which  the  second 
particle  will  oscillate. 

26.  An  elastic  string  is  fixed  to  a  point  A  and  just  reaches  to  a  small 
ring  in  a  horizontal  plane  without  stretching  ;  this  end  is  pulled 
through  the  ring  and  fastened  to  a  mass  m  whose  weight  would,  if 
hanging  vertically,  stretch  the  string  to  double  its  length  ;  the  particle 
is  then  projected  at  right  angles  to  the  string  with  velocity  u.  Find 
the  velocity  at  any  time  in  terms  of  the  distance  from  the  ring.  (For 
energy  see  §  95.) 

27.  In  the  previous  question,  find  the  greatest  and  least  distances 
which  the  particle  will  attain  from  the  ring. 

28.  A  cube  just  rests  in  Stable  equilibrium  on  the  top  of  a  rough 
sphere  of  radius  r.     Determine  its  size. 

29.  A  cone  and  a  hemisphere  on  the  same  base  and  of  the  same  uni- 
form material  are  joined  together.  Prove  that,  if  resting  with  the  hemi- 

sphere in  contact  with  a  horizontal  table,  the  equilibrium  of  the  body 

will  be  stable  oi^unstable  according  as  the  height  of  the  cone  is  less  or 
greater  than  Vs  times  the  radius  of  the  base. 

30.  A  cone  rests  with  its  base  on  the  top  of  a  sphere  of  1  foot  radius. 
Determine  the  greatest  height  of  the  cone  that  the  equilibrium  may  be 
stable. 

31.  A  homogeneous  sphere  of  given  radius  rests  at  the  bottom  of  a 
hemispherical  bowl  of  larger  radius.  If  the  sphere  is  so  loaded  that 
the  height  of  its  centre  of  gravity  above  the  lowest  point  is  f  of  its 
radius,  determine  the  radius  of  the  hemisphere  when  the  equilibrium 
is  neutral.  , 

32.  Two  equal  spheres  are  fastened  together  at  a  point  of  their 
surfaces,  and  are  placed  with  the  line  joining  their  centres  vertical  in 

a  spherical  cup  with  its  concavity  upwards.  Prove  that  if  the  equi- 
librium be  stable,  the  radius  of  the  cup  must  be  less  than  the  diameter 

of  either  of  the  spheres. 
33.  Find  the  periodic  time  of  the  pendulum  in  Example  ii.  p.  279, 

if  the  point  of  suspension  descends  with  a  constant  acceleration  g/A. 



CHAPTER   XVII 

HARMONIC   MOTION — SIMPLE   PENDULUM 

The  motion  to  be  considered  in  this  chapter  lies  at  the 
basis  of  all  vibratory  motion,  and  therefore  is  of  the  very 
highest  importance  in  applications  of  dynamics  to  the 
explanation  of  physical  phenomena. 

156.  Suppose  a  point  P  to  move  uniformly  round  the 

circle  ABA'B'.  Let  AOA'  be  any  diameter  and  draw  PM 

perpendicular  to  AOA'.  Then,  as 
P  travels  with  uniform  velocity 
round  the  circle,  M  travels  to  and 

fro  along  the  line  AOA'.  The 
motion  of  M  is  called  a  simple  har- 

monic motion  (S.H.M.) 
The  time  of  revolution  of  P,  or  of 

the  motion  of  M  from  A  to  A'  and 
back  again,  is  called  the  period  of 
the  motion. 

The  angle  POB  is  the  phase  at  M. 
The  distance  OA  is  called  the  amplitude. 
OM  is  called  the  displacement  at  any  time. 
For  the  sake  of  reference,  we  shall  call  the  circle  the 

generating  circle  and  P  the  generating  point. 

Such  a  motion  as  the  above  is  the  up-and-down  motion 
a  locomotive.  The  motion  of  a 

a  long   piston-rod,  is   also  very 

of  the  connecting  rod  of 
piston,  or  a  crank  with 
nearly  a  simple  harmonic  motion If  the  crank  worked  in 
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a  straight  slot  perpendicuLar  to  the  piston",  the  piston  would have  an  exact  S.H.M. 

Let  T  denote  the  period,  a  the  amplitude,  then  P  goes 
once  round  the  circle  in  time  T.     .Hence,  if  u  denote  its 
velocity, 

uT  =  Iway 

27ra 

or  u=-^. 

The  velocity  of  M  at  any  tim'e  is  equal  to  the  com- 
ponent of  the  velocity  of  P  in  a  direction  parallel  to  AOA'. PN 

Hence  Velocity  of  M  =  :^-^  velocity  of  P, 

PM 

Denote  the  velocity  of  M  by  v,  then 

„     PM'      ,     OP'  -  OM'  , l^  =    —5-    .  U  =    s   U  , ■  a  a 

This  gives  the  velocity  of  M  in  terms  of  its  distance 
frOm  0.  It  may  be  expressed  in  terms  of  the  phase  (6)  by 
means  of  trigonometry  thus, 

V  =  u  cos  By 

or,  if  (u  denote  the  angular  velocity  of  P  and  /  the  time 
from  0  to  M, 

6  =  ioty     u  =  a<i}j 
v  =  a(j}  cos  <i>t 

157.  So  also  the  acceleration  of  M  is  the  component 

parallel  to  AOA'  of  the  acceleration  of  P.  But  the  ac- 
celeration of  P  is  u^/a  along  PO.     Hence 

Acceleration  of  M  =.  ̂ ^  .  —  along  MO, 

a 

That  is,  the  acceleration   of  M  is  towards  0  and   is  pro- 
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portional  to  its  distance  from  0.  And  conversely,  if  a 
particle  move  along  a  straight  line  with  an  acceleration 
towards  a  fixed  point  in  it,  and  proportional  to  its  distance 
from  it,  it  moves  with  a  simple  harmonic  motion. 

This  may  also  be  extended  to  the  case  where  a  point 
is  moving  along  any  curve  with  an  acceleration  at  every 
point  along  the  curve,  and  proportional  to  its  distance 
measured  along  the  curve  from  a  fixed  point  on  it. 

Suppose  the  acceleration  to  the  point  to  be  given  by 

Acceleration  =  h  (distance). 

Then,  comparing  with  the  foregoing, 

a'
 

and  T  =  27r-  =  ̂. u      \/Jc 

Whence  we  learn  this  important  result,  that  if  a  particle 
move  under  such  an  acceleration  as  this  it  vibrates  about 

the  point  0  with  a  S.H.M.  in  a  period  which  is  inde- 
pendent of  the  amplitude.  That  is,  from  whatever  distance 

it  is  started,  the  particle  will  pass  through  0  to  the  other 

side  and  back  again  to  A  in  the  same  time — in  other 
words,  it  is  said  to  be  isochronous. 

In  the  case_ considered  of  acceleration  =  Jc  (distance)  the 

velocity  is  given  by  k\a^  -  OM^).  Our  results  may  then  be 
stated  thus,  s  denoting  the  distance  from  a  fixed  point. 

If  the  acceleration  of  a  particle  to  a  point  be  ks,  or 
if  its  velocity  be  given  by  an  equation  of  the  form 

v^  =  k(a^  -  /),  then  the  period  of  the  vibration  is  27r/  v  ̂  
and  the  amplitude  is  a. 

158.  It  is  very  easy  to  obtain  a  graphical  representa- 
tion of  the  motion  which  will  render  clear  to  the  eye  how 

the  motion  alters  with  the  time. 

Let  ACA'  denote  twice  the  amplitude  of  the  motion. On  it  as  diameter  draw  a  circle  and  divide  its  circumference 

into  any  number  of  equal  parts,  starting  from  A.  It  will 
be  convenient  to  take  a  multiple  of  4,  since  then  a  division 

falls  on  each  of  B,  A',  B'.     Let  P„  P,,  P3,  .  .  .  denote  them 
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These  parts  are  described  in  equal  times  by  the  point  P, 
which,  moving  along  the  circle,  determines  the  harmonic 

motion  along  AOA'.  If  PiM„  P^Ma, 
pendicular  to  AOA',  the  points  M  will 
denote  the  position  of  the  point  mov- 

ing with  the  S.H.M.  in  question,  at 
equal  intervals  of  time.  It  is  clear 

that  near  A  they  will  be  closer  to- 
gether— that  is,  that  M  is  rnoving  very 

slowly,  then  gets  quicker  and  quicker 
as  it  approaches  C,  and  after  passing 
C  gets  slower  and  slower  until  it 

comes  again  to  rest  at  A'  and  begins  to  return  back  over  its 
previous  course. 

The  motion  may,  however,  be  rendered  clearer  to  the 
eye  by  a  graphical  construction  in  which  distances  OM 
measured  along  a  line  Ox  denote  the  times,  and  distances 
MP  parallel  to  Oi/  represent  the  displacements  at  the 
times  in  question,  measured  up  when  the  displacement  is 
to  the  right  and  down  when  to  the  left. 

The  extremities  of  these  lines  will  lie  on  a  curve. 

To  illustrate  the  mode  of  drawing  the  curve,  take  the 
case  of  Fig.  I.,  in  which  the  circumference  (or  period)  has 

been  divided  into  twenty  equal  parts.  AYe  need  only  con- 
sider the  case  of  the  first  quarter  in  detail,  as  the  others 

are  similar. 

Take  (Fig.  II)  along  Ox  a  distance  06  to  represent  the 

period.  Divide  it  into  four  equal  parts  at  a,  b\  a',  b.  These 
will  represent  the  quarter,  half,  and  three-quarter  periods, 

corresponding  to  the  positions  A,  B',  A'  of  P.  Draw  at  a, 
ap^  equal  to  CA,  and  at  a'  draw  a'p^^  downward,  and  also 
equal  to  CA.  Then  at  starting  the  displacement  is  repre- 

sented by  zero;  at  a  quarter  period  it  is  ap^;  at  a  half  period 

it  is  at^io  or  b\  i.e.  again  at  zero  ;  at  three-quarters  it  is  a'p^^, 
and  back  to  its  former  position  or  zero  at  b  at  the  end  of 
the  period.  To  find  the  form  of  the  curve  between,  divide 
Oa  into  five  equal  parts  by  7?ii,  rri^,  m^,  m^  and  draw  m,^„ 

m^p^y .  .  .  equal  respectively  to  CM,,  CMg?  •  •  •  Draw  a  con- 
tinuous curve  passing  through  PoPiPiPsP^.     This  will  re- 
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present  very  accurately  the  curve  re- 
quired. If  more  accuracy  is  desired, 

it  is  only  necessary  to  increase  the 
number  of  divisions  (Pi,  Pg,  .  .  .)  or 

{mi,m.2,  .  .  .)  From  a  to  h'  the  curve is  clearly  similar  to  that  between  a  and 
0,  and  so  for  the  rest  of  the  period, 

the  curve  being  below  0^'.  The  whole 
curve  for  one  period  will  be  as  in 
Fig.  II.  As  the  time  increases  the 
curve  repeats  itself  over  and  over 

again. It  is  sometimes  more  convenient  to 

consider  the  time  as  commencing  from 
the  instant  when  the  point  is  at  its 
extreme  position,  or  when  its  velocity 
is  zero.  The  only  alteration  to  be 
made  is  that  now  0  must  be  taken  to 

be  at  a,  instead  of  as  in  the  figure. 

159.  Besides  having  a  simple  har- 
monic motion,  a  point  may  have  any 

number  of  other  kinds  of  motion  or 

other  simple  harmonic  motions  im- 
pressed on  it.  The  resulting  motion 

is  to  be  found  by  compounding  them 
all  according  to  the  parallelogram  law. 
On  account  of  its  high  importance,  we 
here  consider  more  in  detail  the  results 

of  compounding  various  S.H.M.  We 
may  consider  these  as  being  produced 
by  a  point  moving  with  one  S.H.M. 
on  a  board,  which  itself  moves  over  a 
second  board  with  another  S.H.M.  in 
the  same  or  a  different  direction  to 

that  of  the  former.  Again,  we  may 
suppose  this  second  board  to  have  a 
S.H.M.  of  its  own,  and  so  on.  We 
will  consider  first  the  case  where  the 

various  S.H.M.  are  all  along  the  same  line. 
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In  considering  different  S.H.M. 
it  is  to  be  noticed  that  not  only 
may  they  differ  in  amplitude  and 
in  period,  but  also  in  phase.  That 

is,  they  may  npt  attain  their  great- 
est amplitude  at  the  same  time. 

In  compounding,  therefore,  two  or 
more  S.H.M.  it  will  be  necessary 
to  know  the  instants  at  which  they 
first  attain  their  greatest  amplitudes 

— (??•,  which  amounts  to  the  same 
thing,  their  phases  at  the  com- 

mencement of  the  time.  The  phase 
at  the  commencement  is  called  the 

epoch. 
The  composition  of  collinear 

S.H.M.  is  a  simple  matter,  as  we 
have  only  to  add  algebraically  the 
displacements  at  any  time  to  obtain 
the  actual  displacement.  Thus  in 
Fig.  Ill  the  thin  lines  represent  two 
S.H.M.,  the  one  having  half  the 

period  and  one-third  the  amplitude  of 
the  other  and  having  its  epoch  equal 

to  one-quarter  of  its  period  behind 
the  second.  The  thick  line  repre- 

sents the  curve  obtained  by  adding 

together  algebraically  the  displace- 
ments of  the  components.  Thus 

MP  =  M^  +  Mp\  QN  =  Ng  -  Ng'. 
It  is  clear  that  the  curve  be- 

tween A  and  A^  will  be  repeated 
periodically.  This  will  always  be 
the  case  if  the  periods  of  the  two 
components  are  commensurate. 
Thus  suppose  lor  instance  the 
periods  were  5n,  In.  Then  after 
a  time  35/1  the  first  will  have  had 

seven  periods  and  the  second  five 
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periods,  consequently  each  will  be  in  the  same  condition 
as  at  starting,  and  the  same  form  must  therefore  begin  to 
recur.  From  the  example  given  it  is  clear  that  if  ̂i,  t^ 
denote  the  periods,  the  period  of  the  compound  curve 
will  be  given  by  the  least  common  multiple. of  /j,  t^. 

Similar  results  hold  for  any  number  of  components. 
The  student  should  himself  draw  the  compound  motion  for 
several  cases.     For  instance — 

(a)  Two  equal  S.H.M.,  one  being  half  a  period  behind 
the  other  (the  motion  is  always  zero). 

(/?)  Three     S.H.M.,     amphtudes^    -3,     '4,     '5     inches, 
periods  3,  5,  6  minutes,  and  (1)  all  with  the  same 
epoch,  (2)  the  phase  of  the  second  at  starting  a  half 
period  behind  the  first,  and  the  third   a   quarter 
behind. 

The  drawings  should  be  made  on  a  large  scale  on  paper 
ruled  into  squares. 

It  is  a  fact,  though  not  here  proved,  that  whatever  the 
form  of  any  curve  between  two  points  0,  A,  it  can  be 
regarded  as  the  resultant  of.  a  number  of  S.H.  curves  of 
suitable  amplitudes  and  phases,  and  whose  periods  are  all 
submultiples  of  OA. 

When  the  periods  are  the  same  and  they  differ  only  in 
phase  and  amplitude,  the  resultant  of  two  collinear  S.H.M. 

is  best  found  by  referring 
them  to  the  motions  of 

their  generating  points. 
In  the  figure  let  0  be 

the  centre  of  the  gener- 
ating circles,  P,  Q  simul- 

taneous positions  of  the 

generating  points  of  the 
two  component  motions.  Then  since  OP,  OQ  revolve  at 
the  same  rate  (periods  being  equal)  the  angle  POQ  is 
constant  and  measures  the  constant  phase-difference  of  the 
two  motions.  OA^,  OAg  are  the  amplitudes  of  the  two 
motions.  Complete  the  parallelogram  OPRQ.  Now  the 
velocities  of  P,  Q  are  proportional  to  OP,  OQ  respectively, 
and  are  perpendicular  to  them.     Hence  their  resultant  is 
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proportional  to  OR  and  is  perpendicular  to  it.  Since  OP, 
OQ  are  constant  and  POQ  is  constant,  OR  is  constant  and 
revolves  at  the  same  rate  as  OP  or  OQ.  Hence  R  moves 

in  a  circle  in  the  same  period  as  the  component  motions. 
Now  since  the  motion  of  R  is  the  resultant  of  those 

of  P  and  Q,  its  component  along  OA  is  the  resultant  of  the 
components  of  P  and  Q  in  the  same  direction.  Hence  the 
resultant  S.H.M.  is  another  S.H.M.  of  the  same  period, 
amplitude  OA,  and  whose  phase  is  in  advance  of  that  of 
P  by  the  angle  POR  and  behind  that  of  Q  by  ROQ. 

Let  €  denote  the  phase -difference  POQ  of  the  two 
component  motions,  a^,  a.^  their  amplitudes,  and  a  that  of 

their  resultant.     Then  ,a^  =  a^  +  a/  +  la^a^  cos  e. 
Also  if  Ox  be  the  lag  of  phase  of  R  behind  Q,  then 

tan  6^  =  «!  sin  e/(ft2  +  a^  cos  e). 
Suppose  we  have  three  S.H.M.  of  the  same  period  and 

amplitude  and  with  phases  differing  by  one-third  of  a 
period.  Then  the  resultant  of  the  generating  motion  is 

similar  to  that  of  three  equal  forces  inclined  120°  to  one another.  This  resultant  is  zero.  Hence  the  resultant 

S.H.M.  has  zero  amplitude.  Any  one  is  therefore  equal 
and  opposite  to  the  resultant  of  the  other  two.  This 
result  is  used  in  the  transmission  and  transformation  of 

electrical  power  by  the  "  three-phase  "  method. 
160.  It  remains  to  consider  the  case  of  composition  of 

two  or  more  S.H.M.  in  different  directions.  The  method 

will  best  be  understood  by  illustrations.  We  shall  suppose 
the  directions  perpendicular  to  one  another,  although  the 
method  is  the  same  when  they  are  inclined  at  any  angle. 
The  curves  we  shall  obtain  will  be  those  actually  traced 
out  by  a  particle  moving  with  the  two  given  S.H.M. 

Case  I.  Two  S.H.M.  of  equal  periods  but  not  necessarily 

equal  amplitudes. — Let  ACA',  BDB'  be  two  lines  represent- 
ing the  amplitudes  of  the  two  motions  in  direction  and 

magnitude.     Draw  the  corresponding  generating  circles. 
Divide  their  circumferences  into  the  same  number  (2/i) 

of  equal  parts,  and  mark  them,  starting  from  the  points 
corresponding  to  zero  phase,  the  first  by  the  numbers  0,  1, 
2,  3,  .      .   aud  the  second  by  0,  I,  H,  III,  .  .  . 

X 
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Through  the  points  1,  2,  3,  .  .  .  draw  lines  perpendicular 

to  ACA'  (and  therefore  parallel  to  BDB'),  and  through  I, 
II,   III,  .  .  .  draw  lines  perpendicular  to  BDB',      These lines  will  intersect  to  form 

a      rectangular     network 

(they  are  the  dotted  lines 
in  the  figure).     The  angles 
of  this  network   we  will 

denote  by  the  lines  meet- 
ing there.     Thus  the  point 

a  is  either  1,  III  or  7,  III 
or  1,  V  or  7,  V. 

The  compound  motion 

in  any  case  will  be  deter- 
mined by  the  intersection 

of  the  lines  drawn  through 
simultaneous  positions  of  the  generating  points  of  the  two 
S.H.M. 

Different  sub-cases  will  arise  according  to  the  differences 
in  phase  of  the  two  component  S.H.M. 

Sub-case  1.  Phase  the  same. — Here  the  generating  points 
start  from  0  and  0,  and  successively  arrive  at  1, 1 — 2,  II — 
3,  III,  etc.  If  the  points  of  the  network  represented  by 

1,  1 — 2,  II — 3,  HI  be  joined,  the  resulting  curve  will  be 
that  traced  in  the  compound  S.H.M.  It  is  in  this  case  a 
straight  line.  We  therefore  have  the  very  important  result 
that  two  perpendictilar  S.H.M.  of  the  same  period  and  the 
same  phase  produce  a  rectilinear  motion,  which  is  also  harmonic, 
of  the  same  period,  and  the  square  of  whose  amplitude  is  the  sum 
■of  the  squares  of  the  component  amplitudes.  This  last  result 
follows  at  once,  for 

OL^  =  OM'  +  LM'  =  AC'  +  BD^ 

Sub-case  2.  The  phase  of  one  being  ̂   ahead  of  the  other. 
— Let  D  be  that  which  is  J  ahead.  Then  when  the 
generating  point  of  C  is  at  0  that  of  D  will  be  at  II,  when 
the  first  is  at  1  the  second  is  at  III,  and  so  on.  Hence 

the  points  on  the  compound  motion  will  be  at  0,  II — 1, 
III — 2,  IV,  etc.     Join  them  and  we  get  an  oval  curve, 
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represented  in  the  figure  by  the  thin  curve  'Na ...  It  is actually  an  ellipse. 

Sub-case  3.  Differeiice  of  phase  J. — Here  the  points  start 
at  0,  IV,  and  the  series  of  points  on  the  compound  motion 

are  0,  IV — 1,  V — 2,  VI.  The  result  is  the  curve  repre- 
sented by  the  thin  line  Ma  ...  in  the  figure ;  when  the 

amplitudes  are  equal  it  is  a  circle. 

Note. — When  two  successive  points  on  the  curve  are  given 
we  can  trace  it  without  reference  again  to  the  generating 
circles ;  for  the  next  point  is  the  opposite  angle  of  the 
succeeding  rectangle,  and  so  on. 

The  student  can  now  easily  find  the  compound  motion 
for  the  cases  of  3/8,  and  1/2  difference  of  phase.  When 
the  difference  is  J,  the  motion  becomes  again  rectilinear. 

Case  II.  Two  S.H.M.  of  different  hut  commensurable 

periods. — Take   the  case  where  the  ratio   of  the    periods 

I  ̂   is  3  :  4.  Let  0  be  the  gen- 
-iL  crating  circle  for  the  first 

or  quicker  period  and  D 
for  the  secoiid.  Divide  the 

circumference  of  AC  A'  into 
3n  (say  twelve)  and  that  of 

BDB'  into  in  (say  sixteen) 
equal  parts.  Then  while 
the  generating  point  of  C 
describes  one  of  these  parts, 
that  of  D  will  describe  a 

corresponding  part  on  its 
circle.  Various  sub- cases 
will  occur,  as  in  Case  I. 

1.  Same  phase  at  starting. — Here  points  will  be 
0, Sub-case 

0—1,  I- 2,  II,  etc. 
The  resulting  curve  starts  from  0,  and  is  represented 

by  the  thin  line  Oa .  .  .  in  the  figure. 

Sub-case  2.  The  phase  of  D  y^  ahead  at  starting. — Here 

the  starting-point  is  01  or  0',  the  resulting  curve  is  shown 
by  the  thick  line  in  the  figure — it  goes  on  to  L,  stops, 

retraces  its  path  to  0',  and  on  to  L',  when  it  retraces  its 
former  path. 
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The  student  should  draw  the  curves  for  other  cases, 

especially  for  that  where  the  ratio  of  tlie  periods  is  1:2. 
Here,  when  both  start  with  their  maximum  amplitude,  the 
curve  is  a  parabola. 

The  Simple  Pendulum. 

161.  A  heavy  particle  suspended  from  a  fixed  point  by, 
a  weightless  string  is  called  a  simple  pendulum.  In  practice 
a  heavy  body  suspended  by  a  string  whose  weight  is  very 
small  compared  with  the  body  and  whose  length  is  great 
compared  with  any  linear  dimensions  of  the  body,  will 
behave  very  approximately  as  a  simple  pendulum. 

If,  however,  a  heavy  body  be  suspended  in  such  a  way 
that  it  always  moves  parallel  to  itself,  the  latter  condition 
is  not  necessary.  The  following  is  a  method  of  suspending 
a  body  so  that  it  must  always  move  parallel  to  itself. 

Let  A,  B  be  any  two  points  on  the  body  by  which  it 
is  to  be  suspended.  Attach  to  A,  B  two  strings  of  the 

same  length  fastened  to  two  fixed  points  0,  O',  where 
0,  0'  are  respectively  vertically  above  A,  B,  and  OA  =  O'B. 
Then  00'  is  equal  and  parallel  to  AB. 

If  now  the  body  be  pushed  on  one  side  so  that  A,  B 

come  to  (say)  A',  B',  then  OA'B'O'  is  a  parallelogram,  and 
A'B'  parallel  to  00'  and  therefore  to  AB.  That  is,  the 
new  position  of  the  body  is  such  that  it  has 
moved  into  it  without  any  rotation.  The 
question  of  the  oscillations  of  large  bodies 
about  a  fixed  point  will  be  considered  in 
Part  III. 

162.  The  time  of  oscillation  of  a  simple  peti- 
dulum. — In  the  figure  let  0  denote  the  point 
of  suspension,  I  the  length  of  the  string,  P 
the  position  of  the  particle  at  any  time. 

The  forces  on  P  are  (1)  its  weight  mg  down- 
wards, (2)  the  tension  (T)  of  the  string  along 

PO.  The  first,  or  the  weight,  can  be  replaced 
by  its  components  along  PB  and  OP.  These 
components  are  parallel  to  BP  and  OP,  whilst  mg  is  parallel 
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to  OB — that  is,  the  forces  are  parallel  to  the  sides  of  the 
triangle  OBP.     Hence 

.         1        T.13     PS  IN  PN 
Component  of  mg  along  Jri)  =  ̂ w  mg  =  ̂   mg  =  —  .  mg 

(oTmgsme,  if  PON  =  ̂). 
Therefore  the  acceleration  along  the  arc  PA  at  P  is 

PN -^' 

If  now  we  confine  our  attention  to  small  oscillations 

— that  is,  oscillations  in  which  the  angle  POA  is  never 
very  large — PN  is  very  nearly  equal  to  the  arc  AP.  In 

this    case   the   acceleration    along    the    arc   PA  *  to    A  is 

=  y  X  arc,  or  is  proportional  to  the  distance  from  A.     Con- 

sequently,  by  §  157  of  this  chapter,  the  period  is  given  by 

V'' 

Thus,  provided  the  string  is  never  inclined  at  a  large  angle 
to  the  vertical,  the  motion  is  very  nearly  isochronous. 

In  using  this  formula,  the  restriction  as  to  smallness  of 
amplitude  must  not  be  forgotten.  If  the  amplitude  is 
moderately  large,  it  will  have  to  be  taken  account  of,  but 
the  method  by  which  this  is  to  be  done  requires  a  more 
advanced  knowledge  of  mathematics  than  we  here  assume. 

The  student  should  also  realise  the  truth  of  the  result 

obtained  by  experimenting  himself.  A  heavy  weight 

suspended  from  the  ceiling  of  the  room  will  serve  excel- 
lently for  the  pendulum.  By  observing  the  time  of 

vibration  for  different  amplitudes  it  is  easy  to  verify  that 
the  motion  is  isochronous,  and  by  altering  the  length 

of  the  string  that  the -time  is  proportional  to  the  square 
root  of  the  length.  For  the  method  of  -determining  the 
time  accurately,  reference  must  be  made  to  the  various 

text-books  on  practical  physics.  The  method  depends  on 
observing  the  interval  between  a  large  number  of  vibra- 

tions, and  dividing  the  time  observed  by  the  number.  It 

is  to  be  remembered  that  a  vibration  is  a  complete  to  and- 
fro  movement 
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The  pendulum  affords  the  most  exact  method  for  deter- 
mining the  vahie  of  g,  the  acceleration  of  gravity.  For  it 

depends  on  the  measurement  of  the  time  of  vibration,  an 

operation  susceptible  of  extreme  accuracy.  When,  how- 
ever, very  extreme  accuracy  is  desired,  various  other  effects 

have  to  be  taken  account  of.  Such  are  the  buoyancy  of 
the  air,  the  resistance  due  to  the  viscosity  of  the  air,  the 
magnitude  of  the  arc  of  vibration,  together  with  other 
considerations  dependent  on  the  fact  that  the  experiments 
are  made,  not  with  simple  pendulums,  but  with  rigid 
bodies. 

163.  It  is  clear,  since  the  value  of  g  is  different  at  different 
parts  of  the  earth,  that  a  pendulum  clock  which  would  keep 
exact  time  at  one  place  would  not  keep  exact  time  at 
another  unless  readjusted.  For  instance,  suppose  a  clock, 

which  keeps  exact  time  at  a  place  w^here  the  acceleration 

of  gravity  is  g,  is  removed  to  a  place  where  it  is  g',  and  let 
us  find  how  much  the  clock  would  gain  or  lose  in  an 
hour. 

Let  I  denote  the  length  of  the  pendulum  and  t,  t'  the  times  of 
vibration  at  the  two  places,  then 

:27r 

V^' 

and  \'=  J'-' 
Now  at  both  places  the  hour-hand  makes  one  turn  in  the  same 

number  of  savings  of  the  pendulum,  and  hence  the  times  they  take  to 
make  those  turns  will  be  in  the  same  ratio  as  the  times  of  the  corre- 

sponding swings.     Therefore 

Apparent  hour  at  second  place  _<'_       fg 

hour  at  first  place  ~t~  \/  g'' 
Hence 

Gain  at  second  place  per  hour  _  <  ~^'  ~^  _       /^ 
1  hour  ~    t    "        \'  ̂' 
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Now  as  a  matter  of  fact  the  differences  between  g  and  g'  are  very 
small.     Let  a;  denote  the  difference.     Then  g' =  g  +  x,  &nd 

if  we  neglect  (  ■   \   and  higher  powers,  which  are  very  small ; 

.".  Gain  per  hour  at  second  place  =  ̂   hours, 
60  X  60a; =  — -^   seconds, 

^g 

=  —X  seconds  nearly. 

For  instance,  taking  the   numbers  given   on   p.  45,  if  the  clock 
were  taken  from  London  to  Edinburgh, 

ic=32-203.- 32-191  =  -012, 

or  it  would  gain  '675  seconds  per  hour,  or  16*2  seconds  in  the  course 
of  one  day. 

On  the  contrary,  if  it  were  taken  to  Paris, 

a;=32-183- 32-191  r=  -'008. 

It  would  gain  -  ---|-^  x  -008,  or  lose  '45  seconds  per  hour,  or  lO'S 
per  day. 

The  length  of  a  simple  pendulum  at  London  when  the 
time  of  vibration  is  one  second  is  given  by 

,32-191 
=  •8154  feet, 

=  9-7848  inches. 

This,  however,  is  the  length  when  the  time  of  a  to-and- 
fro  or  a  swing-swang  is  one  second.  If  the  time  of  swing 
from  one  side  to  the  other  is  to  be  one  second,  the  length 
must  be  four  times  this,  or 

/=  39-1392  inches. 

164.  A  pendulum  can  vibrate  in  any  vertical  plane 
through  the  point  of  suspension.     In  fact  we   may  take 

*  By  the  binomial  theorem.  A  student  not  acquainted  with  this 

must  work  out  in  any  case  the  numerical  value  of  1  -  ./~r 
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two  perpendicular  vertical  planes  through  this  point,  and 
the  particle  at  the  end  of  the  string  may  simultaneously 
be  vibrating  with  motions  belonging  to  both  of  them.  It 
will  therefore  move  in  a  curve  which  is  the  resultant  of 

two  perpendicular  S.H.M.  Since  the  length  of  string  is 
the  same  for  both  motions,  the  periods  of  the  component 
S.H.M.  are  the  same,  the  particle  will  therefore  describe 

-curves  similar  to  those  in  Case  I.  of  §  160.  For  instance, 
to  reproduce  sub-case  3,  pull  the  particle  through  a  distance 
AB  and  project  it  with  a  velocity  at  right  angles  to  AB. 
It  will  then  have  the  two  component  S.H.M.,  one  due  to 
AB  and  starting  from  rest  at  B  to  move  along  AB ;  the 
other  perpendicular  to  AB  and  initially  in  its  place  of 

greatest  velocity,  or  one-quarter  of  its  period  ahead  of  the 
other.  According  to  the  magnitude  of  velocity  of  pro- 

jection there  will  result  an  oval  (ellipse)  whose  longer  axis 
is  along  AB,  a  circle,  or  an  oval  whose  longer  axis  is 
perpendicular  to  AB. 

To  illustrate  the  general  case  of  the  composition  of 
S.H.M.  of  different  periods,  it  would  be  necessary  for  the 
lengths  of  the  pendulum  to  be  different  for  the  two  planes. 
This  can  be  managed  by  the  following  arrangement. 

To  two  points  A,  B  in  the  same  horizontal  plane  fasten 
a    string    ACB,    longer   than    -  n 
AB.  At  its  middle  point  C 
tie  another  string,  the  other 
end  of  which  is  fastened  to 

the  heavy  particle  P.  Let 
PC  produced  cut  AB  in  N, 

and  denote  CP  by  Z,  NP  by  /'. 
Then  notice,  if  P  be  pulled 

aside  in  the  plane  ACB,  it 
will  oscillate  about  C  as  a 

fixed  point,  the  strings  AC, 
BC  preventing  motion  of  C 

in  this  plane.     It  will  there-  _^ 
fore  vibrate  with  a  S.H.M.  in  period  27r  \/ljg. 

If,  however,  P  be  pulled  aside  in  a  line  perpendicular 
to  the  vertical  plane  through  AB,  it  will  swing  about  the 
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point  N,  and  will  therefore  move  with  a  S.H.M.  of  period 

If  now  P  receive  any  other  displacement  it  will  move 
with  these  two  harmonic  motions,  and  therefore  in  a  curve 
compounded  of  the  two  in  a  similar  manner  to  those  in 

Case  II  of  §  160.  If  I  and  /'  be  in  the  ratio  of  9:16, 
the  periods  will  be  in  the  ratio  3  :  4,  and  P  will  describe 

curves  of  the  same  kind  as  those'  there  determined.  By 
suitably  altering  the  length  of  CP,  the  resultant  of  any 
kind  of  perpendicular  S.H.M.  can  be  obtained. 

Several  contrivances  may  be  adopted  to  obtain  traces  of 
the  motion.  Thus  the  weight  may  carry  a  light  pointer 
Avhich  moves  over  a  plate  of  smoked  glass  placed  horizon- 

tally under  it,  clearing  away  the  sooty  layer  as  it  moves 
with  the  body.  Or  the  weight  may  carry  a  tube  through 
which  a  thin  stream  of  sand  or  ink  falls  on  a  sheet  of  paper 
under  it.  By  having  a  glass  tube  drawn  out  to  a  fine 
point  and  containing  ink,  it  may  be  made  to  just  move  over 
a  sheet  of  paper  loosely  held  under — or  the  glass  tube  may 
be  movable  in  a  small  vertical  hole  in  the  body  and  so 

adjust  its  position  automatically  as  to  always  just  rest  "with 
its  point  on  the  sheet  of  paper.  The  curves  thus  obtained 
are  very  beautiful.  It  affords  an  easy  and  extremely 
interesting  means  of  verifying  the  results  deduced  d>  priori 
by  the  method  of  §  160. 

EXAMPLES— XVIL 

1.  Represent  graphically  by  a  curve  the  nature  of  the  motion 
compounded  of  two  S.H.M.  in  the  same  direction,  of  equal  amplitude, 
with  periods  in  the  ratio  of  1  :  3  and  such  tliat  initially  the  first  is  at 

rest  while  the  second  has  its  greatest  velocity.     ' 
2.  The  same  as  in  the  previous  question  but  their  periods  as  3  :  5. 
3.  A  point  moves  in  a  path  produced  by  the  combination  of  two 

S.H.M.  of  equal  amplitude  in  two  rectangular  directions,  the  periods 

of  the  components  being  as  1 :  3.  Draw  the  paths  described  when  the 

epochs  are  the  same,  and  when  they  differ  by  90°. 
4.  A  particle  oscillates  in  a  smooth  straight  tube  of  narrow  bore 

attracted  to  a  centre  of  force  outside  the  tube,  the  force  varying  as 
the  distance.  Find  the  time  of  oscillation  and  the  point  about  which 
it  takes  place. 
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5.  If  a  pendulum  that  oscillates  seconds  be  lengthened  by  its 
hundredth  part,  find  the  number  of  oscillations  it  will  lose  in  24  hours. 

6.  A  simple  pendulum  beating  seconds  is  lengthened  by  one-twentieth 
of  an  inch.     Find  the  number  of  seconds  it  will  lose  in  24  hours. 

7.  If  a  seconds  pendulum  be  lengthened  1  inch,  find  the 
number  of  seconds  it  will  lose  in  12  liours. 

8.  A  pendulum  whose  length  is  I  makes  m  oscillations  in  24  hours  ; 
when  its  length  is  slightly  changed  it  makes  m  +  n  oscillations  in 
24  hours.  Show  that  the  pendulum  has  been  diminished  in  length 
by  a  part  equal  to  2nllm  nearly. 

9.  A  pendulum  oscillating  seconds  at  one  place  is  cari-ied  to 
another  place  at  which  it  loses  2  minutes  a  day.  Compare  the  accel- 

erations of  gravity  at  the  two  places. 
10.  A  pendulum  which  would  oscillate  seconds  at  the  equator 

would  if  carried  to  the  pole  gain  5  minutes  a  day.  Show  that  gravity 
at  the  equator  is  to  gravity  at  the  pole  as  144  is  to  145. 

11.  If  a  seconds  pendulum  be  carried  to  the  top  of  a  mountain  half 
a  mile  high,  how  many  seconds  will  it  lose  in  a  day  if  gravity  vary  as 

the  inverse  square  of  the  distance  from  the  earth's  centre,  which  is 
supposed  to  be  4000  miles  from  the  foot  of  the  mountain  ? 

12.  Two  pendulums  oscillating  at  two  different  places  lose  t  and  r 
seconds  a  day  respectively,  and  if  the  places  at  which  they  oscillate 

be  interchanged  they  lose  t'  and  r'  seconds.     Prove  that 

i  +  r=^'-|-T' nearly. 

13.  A  mass  of  1  lb.  attached  to  a  stiff  spring  executes  10  complete 

vibrations  per  second.  What  will  be  -its  rate  of  vibration  if  an 
additional  mass  of  1  lb.  be  attached  ?  Also  find  its  maximum  velocity 

in  inches  per  second  when  the  amplitude  of  oscillation  is  2  inches. 
14.  Determine  as  in  Art.  159  the  resultant  of  three  harmonic 

.motions  in  the  same  line,  whose  amplitudes  are  as    1   :  {^f  :  {\f  ; 

periods  1  :  A  :  |,  and  where  at  starting  the  first  and  third  are  in  the 

same  phase  and  the  second  180°  ahead. 
[  This  is  nearly  a  zigzag  line.  ] 
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CHAPTER  XVIII 

KINEMATICS   OF   THE  MOTION   OF   A   RIGID   BODY 

165.  We  pass  now  from  the  consideration  of  the  motion 
of  single  particles  to  that  of  a  system  or  systems  of  particles 
rigidly  connected  together,  so  that  their  relative  positions 
to  one  another  remain  unalterable.  Such  a  system  is  called 

a  "rigid  body."  We  shall  however,  as  in  the  previous 
pages,  confine  our  attention  only  to  cases  where  the  motion 
of  every  particle  of  the  system  is  parallel  to  a  fixed  plane, 
and  even  here  to  the  restricted  case  where  the  form  of  the 

body  is  symmetrical  on  both  sides  of  the  plane. 
166.  The  position  of  a  rigid  body  is  determined  as  soon 

as  we  know  the  positions  of  three  points  fixed  in  the  body, 
and  not  in  the  same  straight  line ;  for  if  two  of  the  fixed 
points  are  given,  the  body  may  have  any  position  found 
by  twisting  it  about  the  line  joining  the  points.  If  then 
another  point  outside  this  is  fixed,  the  body  itself  is  fixed 
and  its  position  determined.  If,  however,  the  body  be 
always  constrained  to  move  parallel  to  a  given  plane,  its 
position  will  be  determined  as  soon  as  two  points  of  it  in 
this  plane  are  known.  In  considering  then  the  change  of 
position  of  a  body  in  plane  motion  it  is  only  necessary  to 
consider  the  changes  in  position  of  two  points  fixed  in  the 
body.  Each  of  these  points  is  capable  of  any  change  of 
position  in  the  plane,  subject  to  the  sole  condition  that 
the  distance  between  them  is  invariable.  We  shall  call 

them  the  points  of  reference. 
A  body  can  be  removed  from  any  position  to  any  other 
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in  the  same  plane  by  rotating  it  about  any  fixed  point  in 
the  plane  and  then  moving  it  parallel  to  itself  into  the 

second  position.  For  let  A,  B 
denote  the  points  of  reference  of 
the  body  in  the  first  position  and 

A',  B'  in  the  second,  and  let  O 
be  any  point  whatever  in  the 
plane.  First  rotate  the  body 

round  O  until  AB  takes  a  posi- 

tion ah  parallel  to  ,A'B'.  Then 
the  body  may  be  moved  parallel 

to  the  line  aA!  or  hV>'  until  ah 

coincides  with  A'B',  when  the 
body  arrives  at  the  second  given 
position.  Thus  the  proposition  is 

■""O  at  once  seen  to  be  true. 
Draw  OL,  0/  perpendicular  to 

AB,  ah.  Then  LO/  is  the  ̂ angle 
through  which  the  body  has  been  turned.  Moreover, 

Udl  is  equal  to  the  angle  between  AB  and  ah — that  is, 

since  ah  is  parallel  to  A'B',  to  the  angle  between  AB  and 
A'B'.  Hence  the  angle  through  which  the  body  is  rotated 
is  the  same  wherever  the  point  0  may  be  taken. 

167.  The  same  result  can  be  attained  in  a  single  opera- 
tion by  rotating  the  body  around 

a  particular  point  in  the  plane. 

For  join  AA',  BB'.  Bisect  them 
in  L,  M,  and  draw  LO,  MO  at 

right  angles  to  AA',  BB'  respect- 
ively. Let  O  be  the  point  of 

their  intersection.  Then,  since 

0  is  a  point  on  LO  which  bisects 

A  A'  at  right  angles,  OA  =  OA'. 
Similarly  OB  =  OB'.  Also  AB 
=  A'B'.  Therefore  the  three  sides  of  the  triangle  OAB  are 
equal  to  the  sides  of  the  triangle  OA'B'.  Hence  the 
triangles  are  equal,  and  the  angle  AOB  equal  to  the  angle 

A'OB'.  Adding  the  angle  BOA',  it  follows  that 
AOA'-BOB'. 
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Hence,  if  the  body  be  turned  round  0  through  the  angle 

AOA',  A  -will  arrive  at  A'  and  B  will  turn  through  the 
same  angle  into  the  position  B'.  That  is,  the  body  has 
been  changed  from  its  first  position  to  its  second  by  rota- 

tion about  the  point  0. 
168.  In  considering  then  the  continuous  motion  of  a 

rigid  body,  we  may  either  take  a  fixed  point  in  it  and 
suppose  the  body  to  have  simultaneously  an  angular  velocity 

round  this  fixed  point,  together  with  a  motion  of  transla- 
tion of  this  point,  or  we  may  regard  it  as  having  an 

angular  velocity  about  a  single  point,  whose  position,  how- 
ever, is  not  fixed  in  the  body,  but  alters  with  the  time. 

In  either  case  three  things  will  be  needed  to  give  the 
motion  at  any  instant.  In  the  first  case,  the  angular 
velocity  and  the  magnitude  and  direction  of  the  motion  of 
the  fixed  point.  In  the  second  case,  the  angular  velocity 

and  the  two  co-ordinates  of  the  point  round  which  the 
body  moves.  If  this  point  be  0,  then  the  body  is  only 
turning  about  0  at  an  instant;  at  a  succeeding  instant 
it  is  turning  about  another  point,  in  general  close  to  O. 
For  this  reason  0  is  called  the  instantaneous  centre  of 
rotation. 

169.  We  may  suppose  any  displacement  of  a  rigid  body 
to  be  attained  by  two  or  more  steps.  Each  of  these  may 
be  produced  by  rotations  round  some  two  points.  Hence  it 
follows  that  two  rotations  round  two  points  are  equivalent 
to  a  resultant  rotation  round  some  other  point.  The 
amount  of  the  rotation  in  each  case  is  the  angle  through 
which  the  line  of  reference  has  turned.  It  is  therefore 

clear  that  the  magnitude  of  the  resultant  rotation  must 
be  the  algebraical  sum  of  the  several  component  ones. 

Kegarding  the  displacements  as  taking  place  in  a  definite 
time  by  angular  velocities  round  given  points,  we  see  that 
a  body  having  two  or  more  simultaneous  angular  velocities 
about  diiferent  points  moves  as  if  under  the  action  of  an 

angular  velocity  about  some  other  point  whose  magnitude 
is  the  algebraical  sum  of  the  component  ones. 

It  remains  to  find  this  point  about  which  the  resultant 

angular  velocity  acts.     Take  first  the  case  of  two  com- 
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ponents.  Let  the  body  have  angular  velocities  represented 
by  a>i,  W2  about  A,  B.  Let  C  be  the  position  of  the  axis  of 

the   resultant  angular  velocity  and  12  =  Wi  +  w^  denote  its 

magnitude. 
We  shall  determine  C 

from  the  fact  that  its  velo- 
city due  to  the  two  angular 

velocities  about  A  and  B 

must  vanish.  That  is,  the 
velocity  of  C  due  to  Wi  at 
A  must  be  equal  and 

opposite  to  that  due  to  Wg 
at  B.  It  is  clear,  there- 

fore, that  C  must  lie  in  the 
line  joining  AB.  If  (o„  Wg  are  in  the  same  direction,  C  must 
lie  between  A  and  B,  if  in  opposite  directions,  outside. 
For  in  the  first  case  (Fig.  1)  and  in  the  second  case 
(Fig.  2), 

Velocity  of  C  =  velocity  due  to  Wi  +  velocity  due  to  Wg, 
=  0)1 .  AC  -  0)2 .  BC  =  0, 

,  AC     w, 
whence  z^^t^  =  — . 

That  is,  the  resultant  of  Wj,  Wg  is  found  in  the  same  way 
as  that  of  two  parallel  forces  w.,  Wg  at  A  and  B. 

Similarly  the  resultant  of  any  number  of  rotations  may 
be  obtained. 

If  Wi,  (02  are  equal  and  opposite,  the  result  is  a  trans- 
lation =  (o .  AB.  For  the  velocity  of  any  point  P  on  AB 

=  (UiAP  +  WgBP  =  (o(AP  +  BP)  =  (0 .  AB,  and  is  the  same  for 
all  points. 

170.  Having  now  seen  how  to  determine  the  motion  of 

the  body  as  a  whole,  it  will  be^  necessary  further  to  express the  velocities  of  the  different  particles  of  the  body. 

If  O  denote  a  fixed  point  in  the  body,  we-  have  seen 
that  the  motion  of  the  body  is  determined  by  a  velocity  of 
translation  of  0  and  a  rotation  round  an  axis  through  0. 
The  first  is  a  translation  of  the  body  as  a  whole,  and  each 
particle  will  partake  of  the  same. 



CHAP.  XVIII  KINEMATICS  OF  MOTION  OF  A  RIGID  BODY  321 

In  addition  each  particle  will  have  a  velocity  depending 
on  the  angular  velocity  round  0  and  its  position  in  the 

body.  Thus,  if  w  denote  the- 
angular  velocity,  it  will  produce 

in  a  point  P  a  velocity  =  w .  OP' 
perpendicular  to  OP,  where  OP 
is  the  perpendicular  from  P  on 
the  axis  of  rotation.  The  velo- 

city of  P  will  therefore  be  com- 
pounded of  that  of  0  and  of 

(o .  OP  perpendicular  to  OP. 
Let  u,  V  denote  the  components  of  the  first  along  the 

two  lines  Ox  and  Oy. 
We  must  find  the  components  of  the  velocity  of  P  along 

Ox  and  Oy  also.  Now  notice  that  ON,  PN  are  perpen- 
dicular to  Ox  and  Oy,  whilst  OP  is  perpendicular  to  the 

velocity  of  P.  Hence,  if  the  triangle  PON  be  turned 
through  a  right  angle,  its  sides  will  be  parallel  to  the 
velocities.     Hence 

ON  ON 

Velocity  along  Ox=  -  j-^ .  vel.  of  P  =  -  -^yp  •  w  •  OP =  -  (o .  ON, 

PN  OM 

Velocity  along  Oy=^.  vel.  of  P  =  ̂  .  a> .  OP  =  co .  OM. 

Therefore  the  whole  velocity  of  P  is 
u-  ii).  ON  along  Ox 

and  v  +  0).  OM  along  Oy. 

171.  If  the  body  is  altering  its  motion,  its  rate  of  change 
will  be  determined  by  the  acceleration  of  the  velocity  of 
the  point  0  fixed  in  it  and  the  acceleration  of  the  angular 
velocity  round  0.  In  this  case  what  will  be  the  actual 

acceleration  of  a  given  particle  P  in  the  body  ?  It  is  com- 
pounded of  the  acceleration  of  0  and  the  acceleration  of  P 

relative  to  0.  But  if  OP  is  the  perpendicular  from  P  on 
the  axis  of  rotation,  the  latter  is  (o  .  OP  along  PO  and 

u).  OP  perpendicular  to  OP — d>  being  the  angular  accelera- 

tion. The  components  of  w' .  OP  along  the  lines  Ox,  Oy 
are  -  J' .  OM,  -  w^ .  ON   respectively ;  those  of  ti .  OP  are 
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-  iu  .  ON  and  w  .  OM.     Hence,  if  ii,  v  denote  the  accelera- 
tion of  0  itself,  the  accelerations  of  P  are 

'M.-o)^6M-w.OX, 
i;  -  to^  ON  +  ai .  OM. 

EXAMPLES— XVIIL 

1.  A  rigid  body  is  moving  in  a  plane.  Prove  that  those  points 
whose  directions  of  motion  at  any  instant  pass  through  a  fixed  point 
lie  on  a  citcle. 

2.  A  rigid  body  is  moving  in  a  plane.  If  0  be  the  instantaneous 
centre  of  rotation,  show  how  to  find  the  position  of  a  particle  of  the 
body  whose  direction  of  motion  passes  through  two  given  points. 

3.  Find  the  instantaneous  centre  of  rotation  of  a  carriage  wheel. 

Hence  find  the  actual  velocity  of  a  point  on  the  wheel  30°  in  front 
of  the  top  when  the  velocity  of  the  carriage  is  given. 

4.  A  fixed  point  in  a  rigid  body  moves  round  a  circle  with  constant 
velocity,  whilst  the  body  itself  rotates  with  a  constant  angular  velocity. 
Find  the  instantaneous  centre  of  rotation  at  any  time. 

5.  A  circle  rolls  inside  another  of  twice  the  radius.  Show  that  every 
point  on  the  rim  of  the  moving  circle  moves  in  a  direction  passing 
through  the  centre  of  the  fixed  one. 

Hence  prove  that  a  point  fixed  on  the  moving  circle  oscillates  along 
a  diameter  of  the  other. 

6.  A  rod  AB  is  rotating  with  constant  angular  velocity  w  round  A, 
while  A  moves  with  constant  velocity  u  along  a  straight  line  CD, 
Determine  the  velocity  and  the  acceleration  of  its  centre  of  gravity  at 

the  instants  when  (1)  BAC  =  0°,  (2)  BAC  =  90°. 
7.  If  in  the  previous  case  A  moves  with  constant  velocity  along 

the  (circumference  of  a  circle  of  radius  r,  determine  the  velocity  and 
acceleration  of  its  centre  of  gravity  when  (1)  AB  is  a  tangent  to  the 
circle,  (2)  is  perpendicular  to  it. 
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MOMENTUM  AND   ENERGY 

172.  We  have  seen  that  a  moving  particle  can  be 
brought  to  rest  by  a  blow,  whose  impulse  is  measured  by  the 
momentum  of  tlie  particle.  If  then  we  have  any  system 
of  particles  in  motion,  they  can  be  brought  to  rest  by  the 
application  of  a  system  of  blows  to  each  particle  equal  and 
opposite  to  the  momentum  of  each.  Now  these  blows  may  be 
represented  by  a  resultant.  In  the  most  general  case  (not 
proved  here)  this  consists  of  a  single  blow,  together  with 
an  impulsive  twist  round  it.  In  the  cases  here  considered, 

where  the  motion  is  always  parallel  to  a  plane,  the  re- 
sultant (as  we  have  seen  in  §  62)  may  be  represented  by  a 

single  blow  acting  at  any  arbitrary  point  together  with 

a  couple — or,  a  single  blow  alone  acting  along  a  definite 
straight  line.  In  some  cases,  however,  there  is  no  single 
blow,  but  the  resultant  becomes  a  couple  only.  If  we  reverse 
the  directions  of  the  impulses  we  arrive  at  a  resultant  which 
is  the  equivalent  of  the  momenta  of  the  different  parts 
together.     This  is  called  the  momentum  of  the  motion. 

Now  suppose  that  in  a  system  of  particles  the  particles 
are  connected  either  by  rigid  or  elastic  connections,  or 
mutual  forces,  or  in  any  way  whatever.  Let  a  blow  (or 

couple)  equal  and  opposite  to  the  "momentum"  of  the 
system  be  applied  to  it.  This  will  call  into  play  a  system* 
of  impulsive  reactions  between  the  different  connections  of 
the  particles.  But  the  change  of  momentum  produced  by 
these  connections  alone  will  be  zero.     For  consider  two 
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particles  A,  B.  The  reactions  between  them  will  be  equal 
and  opposite,  hence  the  changes  of  momentum  produced 
by  them  will  on  the  whole  destroy  one  another.  Con- 

sequently, whatever  be  the  nature  of  the  connection  between 
the  particles,  the  change  in  the  momentum  of  the  system 
will  be  measured  by.  the  external  blow.  Since  this  was 
equal  and  opposite  to  the  original  momentum,  the  system 
is  reduced  to  such  a  state  that  its  momentum  is  zero.  It 

does  not  follow  that  every  particle  will  be  reduced  to  rest, 
as  they  may  be  capable  of  relative  motion.  But  in  the 
case  of  a  rigid  body  such  relative  motion  cannot  take  place, 
and  consequently  the  body  must  be  reduced  completely 
to  rest.  We  learn  then  this  very  important  fact,  that  a 

rigid  body  moving  with  plane  motion  can  always  be  re- 
duced to  rest  by  applying  a  suitable  blow  at  any  point 

rigidly  connected  with  it,  together  with  a  suitable  blow- 
couple. 

By  suitably  choosing  the  point,  the  blow-couple  may  in 
general  be  made  to  vanish.  In  particular  cases,  however,  the 

single  blow  is  zero,  and  the  blow-couple  is  then  necessary. 
In  a  similar  way  it  is  clear  that  if  any  blow  be  given  to 

a  body,  the  resulting  motion  is  such  that  the  momentum  of 

the  body  is  exactly  equivalent  to  the  blow.  The  im- 
portance then  of  being  able  to  determine  the  momentum 

in  any  case  when  the  motion  is  given  by  either  of  the 
methods  of  the  preceding  chapter  is  evident. 

173.  It  will  be  necessary  here  to  define  more  precisely 
the  nature  of  the  bodies,  and  the  motions,  which  will  be 
considered  in  the  succeeding  pages.  In  the  first  place,  every 
particle  of  the  body  will  be  supposed  to  be  moving  parallel 
to  a  fixed  plane,  in  which  lie  the  centres  of  gravity  of  all 
the  separate  bodies  considered.  This  plane  we  shall  call  the 
plane  of  motion.  In  the  second  place,  the  shape  and  nature 
of  each  body  will  be  such  that  it  is  symmetrical  both 
geometrically  and  mechanically  on  both  sides  of  this  plane. 

%That  is,  for  every  point  on  one  side  there  will  be  a  corre- 
sponding point  on  the  other,  and  the  masses  of  the  corre- 
sponding particles  will  be  the  same.  Such  bodies  are,  for 

instance,  a  uniform  sphere  spinning  about  any  diameter  and 
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moving  in  a  plane  perpendicular  to  that  diameter ;  a  prism 
moving  round  an  axis  parallel  to  one  edge ;  or  the  same 
shaped  bodies,  with  the  densities  at  any  point  depending 
only  on  the  distance  from  the  centre  of  the  sphere,  or  the 
distance  from  the  plane  through  the  centre  of  the  prism 
perpendicular  to  its  axis. 

174.  Momentum  of  a  body  moving  parallel  to  itself  without 

rotation. — Here  the  velocity  of  every  particle  is  the  same,  and 
the  momentum  of  each  is  therefore  proportional  to  its  mass. 

We  have  then  to  find  the  resultant  of  a  system  of  parallel 
blows  acting  on  particles  and  proportional  to  those  particles. 
It  is  therefore  the  same  as  the  sum  of  the  momenta  acting 
at  the  centre  of  gravity  of  the  particles.  But,  since  every 
particle  has  the  same  velocity,  the  magnitude  is  the  same  as 

that  of  the  w^hole  mass  moving  with  the  given  velocity. 
Hence,  if  M  denote  the  mass  of  the  whole  body  and  u  its 
velocity,  the  momentum  is  Mw,  and  acts  at  the  centre  of 
gravity  of  the  body. 

Momentum  of  a  body  rotating  round  a  fixed  axis. — The 
.momentum  can  be  expressed  (§  172)  by  a  single  impulse 

acting  at  the  point,  together  with  an  impulse-couple  round 
it.     Each  of  these  will  have  to  be  found. 

Let  O  be  the  point  where  the  axis  of  rotation  cuts  the 
plane  of  motion,  and  let  w  denote 
the  angular  velocity  of  the  system 
of  particles  forming  the  body. 
Let  Pi  denote  one  of  the  particles 
of  the  body,  and  let  r^  be  its 
distance  from  the  axis. 

Take  any  two  perpendicular 

planes  through  the  axis  of  rota- 
tion, and  cutting  the  plane  of 

motion  in  Oaj,  Oy ;  and  draw  P,M„  PiN,  perpendicular  to 
them.  Then,  by  §  170,  the  velocity  of  Pj  is  equivalent 
to 

-  w .  ON,  along  Ox, 
w .  OMi  along  Oy, 

and  the  momenta  will  be,  if  wii  denote  the  mass  of  Pj, 
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-  m^io .  ONi  along  Ox  and  rn^o) .  OM"i  along  Oy.  Similarly for  each  of  the  other  particles.  Hence  the  resultant  will 
be  equivalent  to 

X  =  -  {o{mi .  ONi  +  m^ .  ON2  +  .  .  .}  along  Ox 
and 

Y  =  (o{mi .  OMi  +  m.2 .  OM^  +  .  .  .}  along  Op. 

But,  if  G  denote  the  centre  of  gravity  of  the  particles  and 
GM,  GN  are  perpendiculars  on  Ox,  Oy, 

7}\  +  7)12+    .    '    ' 

7/ij  +  m2+  .  .  . 
and mi  +  m^  +  .  .  .  =  whole  mass  =  m  sj 
Hence X=  -w.m.ON, 

Y  =  a).m.OM. 

That  is,  the  same  as  if  the  whole  mass  m  were  placed  at 
the  centre  of  gravity  G,  and  revolved  with  it  round  0. 
For  this  reason  the  point  is  sometimes  called  the  centre  of. 
inertia.  Hence  the  single  resultant  impulse  is  m.u) .  OG, 
and  acts  perpendicular  to  OG. 

To  find  the  impulse-couple  we  have  to  take  moments 
round  the  axis  through  O. 

Now  the  velocity  of  Pj  is  w .  OPj  and  is  perpendicular 
to  OP,.  Hence  the  moment  of  its  momentum  round  O 

=  m^o) ,  OPi .  OPj  =  0) .  WiOPjl  Therefore  the  moment  of 
the  whole  momentum  round  0 

-o>{mi.OP,'  +  m2.0P/+  .   .  .}, 
=  (u{mi .  r,^  +  m^ .  rj"  +...}. 

The  value  of  m,ri^  +  tWo  .  r/  +  .  .  .  depends  not  only  on  the 
position  of  0  but  also  on  the  shape  and  distribution  of  the 
particles  in  the  body.  It  is  called  the  moment  of  inertia  of 
the  body  about  the  given  axis  of  rotation  through  O.  We  shall 
denote  it  by  I.     We  may  then  write 

Moment  of  impulse  round  0  =  wl. 

Let  I'  denote  such  a  length  that 

mk^  =  I  =  m, .  r/  +  m^ .  r^  +  .  ,  ., 
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then  h  is  called  the* "  radius  of  gyration  "  of  the  body  round  the 
axis.  No  kinetical  behaviour  of  a  body  can  be  determined 
until  we  know  the  value  of  its  radius  of  gyration.  Hence 
its  determination  is  of  very  great  importance.  With  this 
notation 

Moment  of  impulse  round  0  =  m^w. 

175.  Any  instantaneous  motion  of  a  body  can  be  re- 
presented (Chapter  XVIII)  by  a  rotation  round  some  point. 

Hence  the  preceding  paragraph  gives  us  the  means  of  find- 
ing the  resultant  impulse  when  this  instantaneous  centre 

is  known.  It  is,  however,  generally  most  convenient  to 
represent  the  motion  in  the  alternative  way,  viz.  by  taking 
a  fixed  point  in  the  body  and  referring  the  motion  to  it. 
This  we  shall  do  by  taking  the  centre  of  gravity  for  the 
point  of  reference.  The  angular  velocity  will  be  the  same 
whatever  the  point  of  reference.     Denote  it  by  w. 

The  velocity  of  any  particle  is  composed  now  of  two 

parts — one  of  translation  equal  to  that  of  the  centre  of 
gravity,  the  other  of  rotation  round  the  centre  of  gravity. 
These  parts  may  be  treated  separately.  The  first  is  the 
same  as  if  the  whole  mass  were  concentrated  at  the  centre 

of  gravity  and  moving  with  its  velocity. 
In  the  second  part,  due  to  rotation  round  G,  the  single 

impulse  disappears  (since*  OG  =  0)  and  the  impulse  reduces 
to  an  impulse- couple 
whose  moment  is  wl, 
where  I  is  the  moment 
of  inertia  round  the  axis 

through  the  centre  of 
gravity.  . 

If  U  then  denote  the  wU     O 

velocity  of  the  centre  of  ^ 
gravity,  the  momentum 
of  the  motion  reduces 

to  a  system  of  a  single 

impulse  77iU  and  an  im- 
pulsive couple  whose 

moment  is  <ul.     This  is  in  general  the  most  useful  form. 

mU 

m\J 
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It  is,  however,  sometimes  necessary  to  know  the  single  im- 
pulse which  is  the  equivalent.  To  find  the  position  of  this, 

take  Ox  parallel  to  the  velocity  of  translation.  Then  we 

have  an  impulse  mU  along  0^  and  an  impulse-couple  wl 
round  0.  Take  OA  perpendicular  to  Ox  and  of  such  a  length 
that 

cul  =  mix .  0  A, 

then  0)1  is  equivalent  to  mJJ  at  0  along  xO,  and  rnU  at  A 
parallel  to  Ox.  The  first  counterbalances  the  impulse  mil 
along  Ox,  and  there  remains  only  the  single  impulse  mU 
acting  at  A. 

Note. — OA  will  be  to  the  right  of  mlJ  when  col  is 
positive,  and  to  the  left  when  wl  is  negative — the  positive 
direction  of  rotation  being  opposite  to  that  of  the  hands  of 
a  watch. 

176.  The  value  of  I  or  wZf  will  not  only  be  different 
for  different  bodies,  but  will  also 
depend  on  the  position  of  the  point 
O  in  the  body.  Let  k  denote  the 
radius  of  gyration  about  an  axis 
through  the  centre  of  gravity,  and 

k'  about  a  parallel  axis  through 
any  other  point  0.  Suppose  the 

body  rotating  round  0  with  angu- 
lar velocity  w.  Then  the  velocity 

of  the  centre  of  gravity  is  w .  OG-  perpendicular  to  OG. 
Hence  the  momentum  is  equivalent  to  a  single  impulse 
at  G 

=  m.  (o.  OG  perpendicular  to  OG, 

and  an  impulsive  couple  =  moyJc^. 
But  it  is  also  equivalent  to  a  single  impulse  at 

0  =  m.o>.  OG, 

and  an  impulsive  couple  =  nudJc'^ 
These    two    systems    of    impulses    must   therefore    be 

equivalent.     Hence,  taking  moments  round  G, 

'  mw^^  =  rrnok'^  -  m .  w  .  OG .  OG, 
.'.k'  =  k"-Oa\ 

r  =  A;'  +  OG% 
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or,  if  k  be  the  radius  of  gyration  about  an  axis  through 
the  centre  of  gravity,  that  about  any  parallel  axis  at  a 
distance  r  is  given  by 

and  similarly 
I'  =  I  +  w^r^ 

This  theorem  enables  us  then  to  find  the  moment  of 

inertia  about  any  axis  when  that  about  a  parallel  axis 
through  the  centre  of  gravity  is  known.  It  will  conse- 

quently only  be  necessary  to  find  their  values  for  different 
bodies  for  axes  through  their  centres  of  gravity.  This  is 
done  for  certain  cases  in  the  next  chapter. 

177.  The  change  in  the  momentum  of  a  body  is  equal  to 
the  blow  which  acts  upon  it.  This  will  always  enable  us  to 
find  the  motion  ensuing  when  a  body  is  struck  in  a  given 
way.  JVe  have  simply  to  find  the  change  of  mo^mentum  and 
express  the  condition  that  it  is  equivalent  to  the  blow.  An 
example  or  two  will  make  the  method  plain. 

A  sy stein  of  two  heavy  particles  (4,  8  Ihs. )  connected  by  a  Hgid  bar  1/oot 
long,  ichose  mdss  is  so  small  that  it  may  be  neglected,  is  struck  by  a  blow 

at  a  point  3  inches  from  the  ̂ -Ib.  mass  and  perpendicular  to  the  bar. 
How  will  it  move  just  subsequently  ? 

Let  A,  B  be  the  particles.     The  centre  of  gravity  is  at  G,  where 
BG  =  ̂ AB  =  4  inches.     Let  P  denote  the  magnitude  of  the 
blow  at  C. 

Then  after  the  blow  the  system  will  begin  to  move  so  that 
G  moves  with  a  certain  velocity  (i«  say),  and  it  rotates  round    p 
G  with  a  certain  angular  velocity  w.      The  momentum  of 

this  motion  is  {8  +  4)it  =  12u  acting  at  G,  and  an  impulsive 
couple  wl  round  G,  where 

.      I  =  4xGA2  +  8xGB2, 

=  4  X  82  +  8  X  42=384  (pound  inch  units). 

These  are  equivalent  to  P  at  C.     Hence,  resolving  perpen- 
dicular to  AB, 

12m=P, 

p 

"=r2- 

Taking  moments  about  G, 
384w=PxCG  =  5P, 

384         384         32  ' 
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the  units  being  inch,  pound,  second.      Thus  the   motion  is  exactly 
determined  so  soon  as  the  magnitude  of  P  is  known. 

Further,  if  Q  be  a  point  on  the  side  of  G  remote  from  C,  the  velocity 
of  Q  is  that  due  to  u  +  that  due  to  w 

=  w-w.GQ. 

If  then  GQ  =  -,  this  velocity  is  nothing,  or  Q  is  at  rest,  i.e.  just  after 

the  blow  the  system  begins  to  turn  round  Q,  where 

GQ=^  ..^  =  61  inches, wo 

Suppose  the  blow  had  been  caused  by  the  impact  of  an  inelastic 
sphere  of  5  lbs.  moving  with  a  velocity  of  2  feet  per  second,  then  the 
subsequent  motion  of  the  two  will  have  to  be  found. 

The  sphere  will  behave  as  a  particle  (no  rotations  being  set  up).  Let 
V  denote  its  velocity  after  impact.  Then,  since  2  feet  per  second  =  24 

inches  per  second,  change  of  momentum  of  sphere  =  5(24  --y). 

This  measures  the  blow  P  on  the  bar,  ' 

:.   12^=5(24-'?;)  "I. 32w  =  5w  J 

Further,  since  the  sphere  is  inelastic,  the  sphere  and  the  bar  just 
after  impact  have  the  same  velocity  at  the  point  of  contact.  But  the 

velocity  of  C = w  +  w .  GO.     Hence 

Putting  this  in  the  first  of  the  two  equations, 
12m  =  120-5w-25w, 

or  I7w  =  120-25w. 

But  w  =  -^u. 
:.  17?t  +  25x^\w  =  120, 

544w  +  125w=3840, 
669m  =  3840, 

■^  =  ̂we^  =  0  \%%  inches  per  second, 
and  w  =  -^-^u = Iff  per  second.  ^ 

In  other  words,  AB  will  make  one  complete  turn  in 

2'7r     223     „  _ , ,  -  , 
—  = -TT-- x3"1416  seconds, w      100 

=  7  seconds  about. 

As  illustrating  another  question,  suppose  the  above  body  to  be  rotating 

round  its  centre  of  gravity  and  making  2  revolutions  'per  second  ;  let  the 
point  C  suddenly  strike  a  fixed  obstacle.  What  tvill  be  the  subseqiient 
molio7i  1 

In  the  former  case  the  blow  was  supposed  given.    Here  the  subsequent 
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velocity  of  the  point  C,  viz.  0,  is  given.  Now  the  blow  acts  through 
C  and  afterwards  it  begins  to  move  round  C  with,  say,  angular  velocity 

w'.  Hence  the  change  of  momentum,  being  equivalent  to  the  blow, 
has  a  zero  moment  of  momentum  round  C.     That  is, 

wI  =  w'(I  +  m.GC2). 
Here  1  =  384,    m  =  12,    GC  =  5  ; 

.'(»'_      384  32 
*•   «  "■384  +  300~57* 

Now  the  number  of  revolutions  per  second  afterwards 
w'     32  w 32  64 

2x     57  27r     57^        57' 
and  G  moves  with  a  velocity 

=  w'  X  GO  =  5  X  -^w, 

5/ 

160 
57 X  47r  inches  per  second. 

178.  As  the  question  of  the  motion  of  a  body  just  after 
being  struck  a  blow  is  important,  we  here  consider  the 
general  case  for  symmetrical  bodies. 

Let  G  be  the  centre  of  gravity  of  the  body  supposed  at 
rest,  and  let  the  direction 
of  the  blow  P  be  along  AB 
at  a  distance  GL  =  h  from  G. 
Also  let  k  denote  the  radius 

of  gyration  round  an  axis 
througli  G  and  perpendicular 

to  the  blow  (which  is  sup- 
posed to  be  in  the  plane  of 

symmetry  through  G).  The 
velocity  of  G  will  after  the 
blow  be  parallel  to  AB. 
Denote  it  by  u  and  the 
angular  velocity  round  G 
by  (u.     Then,  by  the  foregoing  principles, 

Hence 

mu  =  P, 

mk'io  =  P .  GL 
uh 

PA. 
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Let  now  0  be  a  point  on  LG-  produced  at  a  distance  x 
from  G.  Its  velocity  will  be  composed  of  that  of  G 
together  with  that  due  to  the  rotation.     Hence 

Velocity  of  0  =  u  -  mx. 
u 

If  then  0  be  at  such  a  distance  that  x  =  —,  it  does  not w 

move,  and  the  body  therefore  begins  to  move  round  0. 
The  value  of  OG  is 

and  depends  only  on  the  radius  of  gyration  of  the  body 
round  G  and  the  distance  of  the  blow  from  G.  If  then 

the  body  be  held  at  0,  the  hand  will  experience  no  jar 

when  the  body  is  struck.  Every  one  knows  by  ex- 
perience that  unless  a  heavy  bar  is  held  at  a  certain  point 

when  a  blow  is  delivered  by  it,  the  jar  on  the  hand  is  very 
unpleasant.     The  above  result  explains  this  fact. 

179.  If  the  body  is  held  at  some  other  point  than  0,  a 

blow  will  be  felt  there.  The  'magnitude  of  the  blow  will 
depend  on  the  -fixedness  with  which  it  is  held.  If  the 
body  is  capable  of  motion  about  an  axis,  the  axis  will 
experience  a  blow,  the  magnitude  of  which  is  easily 
determinable. 

Let  O  denote  the  axis  of  suspension^  and  let  h  be  the 
distance  of  the  direction  of 

the  blow  from  0,  k  the 
radius  of  gyration  through 
the  centre  of  gravity,  and  / 
the  distance  OG. 

After  the  blow,  G  will 

begin  to  move'  perpendicu- 
larly to  OG.  Let  u  be  its 

velocity  and  w  the  angular 
velocity  round  0.  Then 
clearly  u  =  Iw.  The  reaction 
at  0  may  be  decomposed 

into  two  parts,  X  along  GO  and  Y  perpendicular  to  it. 

Then  the  momentum  mu  and  couple  niiok^  are  equivalent 
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to  X,  Y,  and  P.  Hence  their  moments  round  0  are  the 

same.-  Therefore,  if  Q,  E  denote  the  components  of  P 
along  OG  and  perpendicular, 

mwk!'  +  mu.OG  =  F.OL, 
or  •  irnok^  +  rrnaf  =  P .  A, 

whence  w  =  —772 — ^, •     m{k  +  /  ) 
Vlh """tt^F  +  O* 

This  fully  determines  
the  subsequent  

motion.     To  find 
the  jerk  on  O,  resolve  along  and  perpendicular  

to   OG. 

Then  X  -  Q  =  0, 
-  Y  +  K,  =  mu. 

Hence  X  =  Q, 
Y  =  R  —  mUj 

Y  = 
If  the  blow  is  perpendicular  to  OG,  ̂   =  0,  and  the  jerk 

at  0  =  f  1  -JO     ,2)1*'     The  jerk  on  the  axis  is  of  course  in 

the  opposite  direction. 

180.  Kinetic  energy. — The  kinetic  energy  of  motion  of 
a  body,  like  its  momentum,  depends  only  on  its  state  at  the 
instant.  In  finding  it,  therefore,  it  is  permissible  to 
consider  the  motion  as  given  by  an  angular  velocity  around 
its  instantaneous  axis. 

Let  0  denote  the  instantaneous  centre  of  rotation  and  P 

any  point  of  the  body  at  a  distance  r  from  the  axis  of 
rotation.  Let  m  be  the  mass  of  the  particle  at  P,  M  the 
whole  mass  of  the  body,  k^  its  radius  of  gyration  about  0 
and  k  about  a  parallel  axis  through  its  centre  of  gravity  G. 
Further,  let  o>  denote  the  angular  velocity. 

Then  the.  velocity  of  P  is  a>r  perpendicular  to  OP, 

.'.its  energy  =  JmwV. 
Therefore  the  energy  of  the  whole  body 
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But  k^  =  k'  +  0G^ 

.'.  Energy  =  |M(F  +  OG')(o', 

Now  (u .  OG  is  the  velocity  of  the  centre  of  gravity. 
Denote  it  by  u.     Tlien 

Energy  =  IMA-V  +  JMw'. 
We  therefore  learn  this  important  fact,  that  the  energy 

of  a  body  consists  of  two  parts — one  the  same  as  if  the 
whole  mass  were  collected  at  the  centre  of  gravity  and 
moved  with  its  velocity.  This  is  the  energy  of  translation. 
The  second  is  the  energy  the  body  would  have  if  it  rotated 
around  its  centre  of  gravity  without  translation.  This  is 
the  energy  of  rotation. 

EXAMPLJlS— XIX. 

[Farther  examples  on  this  chapter  will  be  given  at  the  end  of  the  next  ; 
when  not  know7i,  the  moment  of  inertia  is  to  he  taken  =  1.] 

1.  A  sphere  is  rolling  along  a  plane  with  velocity  v.  Determine 
the  line  of  action  and  magnitude  of  its  momentum  ^  also  its  energy. 
Its  moment  of  inertia  is  mJc^. 

2.  A  rod  AB  is  rotating  with  constant  angular  velocity  w,  while 
the  point  A  is  moving  along  a  straight  line  CD  with  constant  velocity 
ti.  Determine  the  magnitude  and  line  of  action  of  the  momentum, 

and  the  energy  at  the  instants  when  (1)  BAC  =  0°,  (2)  BAC  =  90°. 
3.  Two  equal  rods  AB,  BC  are  freely  jointed  at  B  ;  A  is  fixed  to  z 

point  about  which  it  can  turn  ;  they  are  rotating  with  equal  and 
opposite  angular  velocities.  Determine  the  momentum  and  energy  of 

the  motion  at  the  instants  when  (1)  ABC  =  180°,  (2)  ABC  =  90°,  (3) 

ABC  =  0°. 
4.  Particles  of  1  lb.,  2  lbs.  are  fastened  to  the  ends  of  a  rigid  rod 

AB  without  mass ;  it  is  rotating  about  A,  making  4  revolutions  a 
second ;  A  is  suddenly  set  free  and  B  fixed.  Find  (1)  the  angular 
velocity  round  B  afterwards,  and  (2)  the  impulsive  blow  on  B. 

5.  Find  the  moment  of  inertia  through  the  centre  of  gravity  of  three 
particles  of  mass  1,  2,  3  lbs.  fastened  to  a  rigid  rod  without  mass  at 
distances  of  3  and  4  inches.  The  system  rotates  at  10  revolutions  per 
second  round  the  first  particle  regarded  as  fixed.  Find  the  energy  of 
the  motion  and  the  velocity  of  translation  which  would  give  it  the 
same  energy. 

6.  Find  the  moment  of  inertia  of  three  equal  particles  rigidly  con- 
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nected  at  the  angles  of  an  equilateral  triangle  about  a  line  perpeiidicular 
to  the  plane. 

7.  Three  equal  particles  are  placed  at  the  angles  of  an  equilateral 
triangle  without  mass  :  the  system  rotates  in  its  plane  about  one 
angle.     Find  the  total  momentum  and  energy. 

8.  The  system  in  question  6  is  struck  by  a  blow  P  at  one  angle 

parallel  to  the  opposite  side.  '  Find  the  subsequent  motion  and  the 
point  about  Avhich  it  begins  to  move. 

9.  Find  the  moment  of  inertia  of  eight  equal  particles  at  the  angles 
of  a  cube  (1)  about  a  line  through  the  centre  parallel  to  an  edge,  (2) 
about  a  diagonal. 

10.  The  previous  system  is  rotating  about  a  line  through  the  centre 
of  gravity  and  parallel  to  an  edge  with  angular  velocity  w  ;  this  edge  is 
suddenly  fixed.  Determine  the  angular  velocity  afterwards  and  what 
proportion  of  the  original  energy  is  lost. 



CHAPTER   XX 

MOMENTS    OF   INERTIA 

181.  When  the  form  and  distribution  of  mass  of  a  body 
are  known,  it  requires  in  general  the  methods  of  the 
integral  calculus  to  determine  its  moments  of  inertia.  In 
cases  of  irregular  bodies,  however,  even  these  methods  fail 
of  application,  and  it  becomes  necessary  to  determine  the 
moments  of  inertia  by  experiment.  The  method  by  which 
this  is  done  is  given  in  the  next  chapter.  In  this  chapter 
we  deduce  the  moments  of  inertia  for  some  important  cases 
which  are  capable  of  determination  by  elementary  methods. 

We  have  represented  the  moment  of  inertia  I  as  the 

product  of  two  factors.  ??iF,  in  which  m  denotes  the  mass 
of  the  body  and  k  denotes  a  length.  Now  suppose  we 
have  two  bodies  geometrically  similar  to  one  another,  the 

question  arises — How  are  their  moments  of  inertia  related  ? 
To  answer  this,  suppose  the  body  B  to  be  %  times  the 
linear  magnitude  of  A.  Regard  them  for  a  moment  as 
composed  of  the  same  number  of  particles  similarly  placed, 
only  in  B  their  distances  from  one  another  are  n  times 
the  corresponding  distances  in  A.  If  then  r  denote  the 
distance  of  any  particle  in  A  from  the  axis  of  rotation,  the 
distance  of  the  corresponding  particle  in  B  from  its  similar 
axis  will  be  7ir.  Hence  the  moments  of  inertia  of  the  two 
about  similar  axes  will  be 

and  m^rir^  +  m.^n\^  +  .  .   .  =  mn^k^  =  mk'^. 

"1'  1      ̂    '"2' 2 
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We  therefore  learn  that  k'  =  nk,  or  tlie  radius  of  gyration 
is  proportional  to  the  linear  dimensions  of  the  body. 

In  the  body  B,  however,  the  particles  will  be  farther 
apart  thail  in  A,  or  the  density  of  the  body  will  be  less. 

Suppose  now  each  pai-ticle  increased  to  /  times  its  former 
amount,  the  whole  mass  becomes  m'  =  Im,  and  the  moment of  inertia  becomes 

lm^n\^  +l.m.  n\^  +  .  .  .  =  Imk"  =  m'k'^. 
Thus,  provided  the  law  of  distribution  of  mass  (or  density) 
remain  similar  in  the  two  bodies,  the  moments  of  inertia 

of  the  two  bodies  will  be  proportional  to  their  total  masses 
and  to  the  squares  of  their  linear  dimensions.  For  instance, 
if  the  moment  of  inertia  of  one  body  be  I,  that  of  a  similar 

body  /  times  as  heavy  and  n  times  as  long  will  be  In^I. 
Since  k  is  a  length,  it  is  clear  that  the  dimensions  of 

moment  of  inertia  are  represented  by  [ML^. 
182.  When  we  have  to  deal  with  a  long  thin  wire  or  a 

very  thin  plate,  we  may  clearly  regard  them  as,  in  the 
first  case,  a  distribution  along  a  Hn^,  and  in  the  second  a 
distribution  over  an  area. 

The  cases  of  motion  here  considered  are  those  in  which 

the  body  is  symmetrical  about  the  axis  of  rotation,  or  else 
symmetrical  on  both  sides  of  the  plane  of  motion  through 
the  centre  of  inertia.  When  the  bodies  then  are  thin 

plates,  the  only  axes  of  rota- 
tion we  have  to  consider  are 

(1)  an  axis  perpendicular  to 
the  plane  of  the  area,  and  (2) 
axes  lying  in  the  area.  In 
any  case  let  I  denote  the 
moment  of  inertia  of  an  area 

about  a  line  perpendicular  to 
the  area,  and  Ij,  Ig  moments 
about  two  lines  perpendicular 
to  each  other  in  the  area. 

Then  I  =  I,  +  L. 

For  first  consider  one  par- 
ticle (m)  at  the  point  P.      Let 

Oz  denote  the  axis  of  rotation  perpendicular  to  the  area 
z 



338 ELEMENTARY  DYNAMICS 

or 

and  Ox,  Oy  the  two  others  in  the  area.     Draw  PM,  PN 
perpendicular  to  Ox,  Oy. 

Then  the  moment  of  inertia  of  P  round  Oz  =  m.  OP^, 

=  m{VW  +  OM')  =  mVW  +  m .  PN^ 
=  sum  of  the  moments  of  inertia  round  Ox^  Oy. 

The  same  is  true  for  all  the  particles  of  which  the  plate  is 
composed.     Hence  it  is  true  for  their  sum, 

183.  A  relation  also  holds  between  the  moments  of 

inertia  of  a  solid  body  round 

any  three  mutually  perpen- 
dicular axes  through  a  point. 

Let  Ox,  Oy,  Oz  be  three  mutu- 
ally rectangular  axes  through 

a  point  0  of  a  body,  and  let 

Ii,  I3,  I3  denote  its  moments 
of  inertia  round  Ox,  Oy,  Oz. 
Further,    let    Pj    denote    the 

position  of  the  particle  m^  of  the  body,  and  so  on,  and  let 
OPi  =  r„etc.     Then 

Ii  +  I2  +  I3  =  2(min' +  m// +  .  .  .) 
For,  considering  first  a  single  particle  at  P,,  let  i^,  4,  4 

denote  its  moments  about  the  axes.  Draw  the  rectangular 
parallel opiped,  diagonal  OP  and  sides  along  Ox,  Oy,  Oz. 
Then 

i,  =  mVV  =  m(PW'  +  LW)  =  m(OM'  +  ON^. 

Similarly  i,  =  m(ON  V  OL^), 
*3  =  M0LV0M^); 

.-.  i,  +  h  +  is=  2m(0V  +  OW  +  OW), 

=  2m(0N'  +  ON'^), =  2m.  OF  =2771/. 

But  I,  is  the  sum  of  the  i^  of  all  the  particles  in  the  body, 
and  similarly  for  Ig,  I3.     Hence 

I,  -t- 12  +  I3  =  2('m,r/  -I-  7^2?-/  +  .  .  .) 

By  means  of  the  foregoing  propositions  we  can  now 
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find  the  values  of  the  moments  of  inertia  for  a  few  simple 
but  important  bodies. 

184.  Straight  wire. — Let  AB  denote  the  wire,  O  being 
its  middle  point,  and  let  la  be  its  length. 

We  may  regard  it  as  made  of  two  wires  AO,  OB  placed 
end  to  end.     The  moment  of        u^   -v   -^   
the  whole  about  0  is  the  sum 
of  the  moments  of  the  two.  Let  wF  denote  the 
moment  of  AB  about  0.  Then  OB  has  half  the  mass  of 

AB  and  is  half  the  length,  and  in  other  respects  is  similar. 
Hence  the  radius  of  gyration  round  its  centre  of  gravity 

=  \k.  Therefore  its  moment  of  inertia  about  its  centre  of 
gravity  C 

.-.  rf  =  |(0C"  +  f )  +  f  (OC"  +  f )        (§  176) ; 

.-.  F  =  OC'  +  ̂> 

0,2      ■ 

and  the  moment  of  inertia  of  a  wire  whose  length  is  2a  is 

Cor.  If  r,  denote  the  distance  of  a  particle  m^  of  the 
wire  from  0,  then  the  sum  of  m{r^  between  0  and  B,  or 

IJ^mr^,  is  half  the  moment  of  inertia  of  AB.  We  hence 
get  the  theorem 

or,  if  M  denote  the  whole  mass  between  0  and  B,  M  =  Jm 

and2o^m/=JMal    ' 
185.  Circular  wire. — In  a  wire  bent  into  the  form  of  a 

circle,  every  particle  is  at  the  same  distance  from  the 
centre.  Hence  the  moment  of  inertia  about  an  axis 

through  the  centre  and  perpendicular  to  the  plane  =  mr\ 
where  r  is  the  radius  of  the  circle. 
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To  find  the  moment  of  inertia  about  a  diameter,  notice 
that  it  will  be  the  same  round  every  diameter.  If  then 
I  denote  its  magnitude,  it  follows  by  the  theorem  of  §  182 
and  from  the  preceding  result  that 

mr^  =  21, 

or 

1 

The  radius  of  gyration 

r     ■ 186.  Rectangular  lamina.- 
>A 

-A  similar  method  to  that  of 

§  184  will  enable  us  to  find 
the  moment  of  inertia  of  a 

rectangular  lamina  about  an 
axis  perpendicular  to  it.  Let 
2«,  26  be  the  length  and 
breadth  of  the  lamina  and  0 
its  centre.  Divide  the  lamina 

into  four  equal  parts  by  lines  through  0  parallel  to  its 
sides.  These  parts  will  be  similar  to  the  original  lamina, 

half  its  linear  size,  and  one-quarter  its  mass.  The  moment 
of  inertia  of  each  about  its  centre  of  gravity  will  therefore 
be,  if  ml^  be  that  of  the  original, 

O  L 

mfl^      1     ̂ , 

?7zF-m(0L'  +  GL'), 

-rmW  =  m  —  +  -     smce  OL  =  -a,  etc. ; 4  \4      4/  2 

.*.  ml^  =  m 

a'  +  lf 

or 

3     ' 
The  radius 

 
of  gyratio

n  
=  ̂  

a'  +  lf  ̂   OA 

"3      ~\ll' 
That  is,  the  moment  is  the  same  as  that  of  a  wire  of  the 

same  mass  and  whose  length  is  the  diagonal  of  the  rectangle. 
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The  moment  of  inertia  about  an  axis  through  O  parallel 
to  a  side  is  easily  found  by  the  same  method.     For,  if  ml^ . 
denote  the  moment  about  the  axis  parallel  to  DA, 

16  4 

■mT^  =  m 

&■
 

wJ(^  =  m. 

3*
 

The  moment  about  the  axis  parallel  to  the  side  2 J  is 

a'
 

We  might  have  first  determined  these  moments,  and 
then  obtained  that  for  an  axis  perpendicular  to  the  plane, 

viz. — 

I  =  Ij  +  l2  =  m-y-. 

"  187.  Parallelogram,  sides  2a,  2b. — As  in  the  former 
case,  divide  the  parallelogram  into  four  equal  and  similar 

parts, 

rf  =  2(moment  of  OFAE  +  moment  of  OF'BE  about  0;, 

Kj(»*°'')"j:t-*')}^ 
,-.  rf.'J-k5((y.0rt. 
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Now  .    0^  =  |0A,     0/  =  iOB, 

4  o 

Now  E  is  the  mid  point  of  AB ;  therefore,  by  a  well- 

knoAvn  theorem,'' 
OA^  +  OB^=20E^+2AE^ 

/.  ̂nk'  =  |(0E^  +  AE^)  =  |(r/  +  b"), 

,.        a'  +  b' 
.'.    mk  =m — - — , o 

a  similar  result  to  that  for  a  rectangle. 

To  find  the  moment  round  the  axis  FF',  compare  with 
the  case  of  a  rectangle  on  FF'  and  between  the  same 
parallels  AB,  CD.  '  The  areas  are  in  both  cases  the  same, 
and  corresponding  particles  are  at  the  same  distance  from 

FF'.  Hence  the  moments  are  the  same  for  both.  If  then 
2p  denote  the  perpendicular  distance  of  the  two  sides  AB, 

CD  from  one  another,  the  moment  round  FF' 
3*
 

It  is  to  be  noticed  that  rotations  round  FF'  belong  to 
a  class  of  motion  explicitly  excluded  from  our  consideration 
in  this  book,  such  a  motion  not  being  symmetrical  about  a 

plane  through  0  perpendicular  to  FF'.  If,  however,  we 
turn  round  the  part  CF  so  as  to  take  the  position  D'FF'C, 
the  figure  D'FABF'C  is  symmetrical  about  FF',  and  the moment  of  inertia  is  the  same  as  before. 

188.     Triangular   lamina. — Let   ABC   be   the    lamina. 

*  This  theorem  being  of  great  use,  it  may  be  well  to  recall  the 
proof.  Let  D  be  the  middle  point  of  the  side  BC  of  a  triangle  ABC. 
Join  AD  and  draw  AL  j^erpendicular  to  BC.  Siippose  ADC  is  the 
acute  angle.     Then 

AB2=BD2  +  AD2  +  2BD.  DL  (Eucl.  II  12) ; 
AC2  =  CD2  +  AD2  -  2CD .  DL  (Eucl.  II  13)  ; 

.*,  adding  and  remembering  that  CD  =  BD, 
AB2  +  AC2=2(AD2  +  BD2). 
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2m. 

Complete  the  parallelogram  ABEC. 
triangle  equal  to  ABC.  Let  mF  be 
the  moment  of  inertia  of  ABC  about 

its  centre  of  gravity  g.  Then  moment 
of  inertia  of  ABEC  about  D 

^(AB^  +  AC) 

But  it  is  also  equal  to  twice  that  of  the 

triangle  ABC,  viz.  1{mk^  +  m.  D^^, 
ABVAC^     o    7^     o      r.^ 

ABVAC^    ^» 

Then   EBC   is   a 

A 

*.  m- 

F  = 12 

But,  since  D  is  the  mid  point  of BC, 

also 

now 

and 

AF  +  AC'=2DA^+2BD^ 
B/  +  C/=2BDV2D/, 

•.  AB^  +  AC^  =  B/  +  C/  +  2DA^  -  2D/ 

DA  =  |a^,     T)g=iAg, 

•.  AF  +  AC^  =  B/  +  C/  +  4A/, 

L^  =  ̂^l±9(^'-iAg^ 

=  J^(A/  +  B/4-C/). 

This  may  be  put  in  various  forms.     Thus 

(L)  Ag  =  2J)g,  etc., 
.•.F  =  J(D/  +  E/  +  F/), 

where  D,  E,  F  are  the  mid  points  of  ABC.  The  moment 
of  inertia  is  therefore  the  same  as  that  of  three  equal 
particles  ̂ in  placed  at  the  mid  points  of  the  sides. 

(ii.)  Since       AF  +  AC'  =  2BD'  +  2DA', 
or 

c'  +  b' 

2=2^^- 
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With  similar  equations  for  B^,  Cg, 

and rf 

2 
m 

36 
{a'  +  h'  +  c'). 

Perhaps  a  simpler  way  to  find  the  moment  of  inertia  of 
a  triangle  is  to  use  the  artifice  already  employed  to  find 
those  of  a  line  and  a  parallelogram. 

Let  D,  E,  F  denote  the  mid  points  of  the  sides  BC, 
CA,  AF.  Join  DE,  EF,  FD. 
Then  the  triangles  AFE,  FED, 
EDO,  DEF  are  all  equal  and 
similar,  each  being  one-half  the 
linear  size  and  one-quarter  the 
mass  of  the  whole  triangle 
ABO. 

The  moment  of  inertia  of 
each,  therefore,  about  its  centre 
of  gravity  =  J .  J .  that  of  ABO 
about  its  centre  of  gravity.  It 
is  necessary  first  to  find  the 

distances  of  the  centre  of  gravity  of  each  from  G. 
Let  AD  meet  FE  in  a. 

Aa  =  JAD,     aG  =  ̂ oD  =  J  AD. 
Also,  if  ffi  be  the  centre  of  gravity  of  AFE, 

ag^  =  JAft  =  JAD  ; 

.•.'G^,  =  iAD  +  JAD  =  iAD, 
and  GD  =  JAD. 

Similarly  the  centres  of  gravity  of  FBD,  EDO  are  JBE 
and  JOF  from  G. 

Let  now  I  denote  the  moment  of  inertia  of  ABC  round 

a  perpendicular  axis  through  G.  Then  the  moment  of 
inertia  of  AFE  round  g^  is  by  the  above  y\-I. 

It     m 

G?>'  + 

It     wi 

16^-^4 

.  G^, 
1  ,     m -,    2      1  T 

16 

=  il  +  |(Gi//  +  Gi,/  +  Gy3^; 
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or 

m, 

I  =  -(Gg;  +  Gg,'  + 
m 

^(GD'  +  GE^  +  GF^). 
o 

Hence  it  is  the  same  as  that  of  three  masses  \m  at  the 
mid  points  of  the  sides. 

The  moment  about  a  line  through  the  centre  of  gravity 
l)arallel  to  the  base  of  the  triangle  will  be  required  (1)  for 
the  case  of  an  isosceles  triangle,  and  (2)  in  order  to  find 

the  moments  for  symmetrical  figures  made  up  of  ti'iangles 
arranged  in  any  manner. 

Let  ABC  be  the  triangle  and  BC  the  base. 

N     L     M'MC      \L 

Complete  the  parallelogram  BACD. 

Let  G,  G'  be  the  centres  of  gravity  of  ABC,  ACD  and 
O  the  intersection  of  the  diagonals. 

The  triangles  are  equal  in  all  respects.  Therefore  their 
moments  round  axes  parallel  to  BC  or  AD  through  their 
centres  of  gravity  will  be  the  same.  Denote  it  by  I  and 

their  mass  by  m.  Draw  GL,  G'L',  OM,  AM'  perpendicular 
to  BC.  Then  moment  of  inertia  of  the  parallelogram 
ABCD  round  BC 

-—  +  OMM  =  ̂ ^ .  OM' 
=  9i r 

But  it  is  also  equal  to  the  sum  of  the  moments  of  the  two 
triangles,  and  therefore 

=  I  +  m.GL'  +  I  +  m.G'L''; 
or,  since         GL  =  |0M,  G'L'  =  f  AM'  =  -*0M, 

The  moment  =  21  +  m  {^OW  +  -V«OM'). 
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Hence 

2r  +  -y-m.0M'  =  fm.0M', 
and  I  =  fm .  OM", 
or,  since  OM  =  f .  GL, 

The  moment  of  inertia  of  the  triangle  about  BC  is 

I  +  m.GL-"  =  fm.GL', =  -|.im.OM^ 

If  now  0'  is  the  middle  point  of  AB  and  O'N  be  per- 
pendicular to  BC,  OM  =  O'N,  whence 

Moment  of  inertia  round  BC  =  -m .  OM'  -  -(OM'  +  O'N'). 

That  is,  it  is  the  same  as  that  of  three  particles  Jm  placed 
at  the  mid  points  of  the  sides.  And  this  will,  therefore,  be 
the  case  for  axes  through  the  centre  of  gravity,  since  these 
particles  have  the  same  centre  of  gravity  as  the  triangle. 

Now  we  have  seen  the  same  result  holds  for  axes  per- 
pendicular to  the  plane  of  the  triangle.  And  the  particles 

together  have  the  same  mass  and  the  same  centre  of  gravity 
as  the  triangle.  Hence  we  learn  that  a  triangular  lamina 
and  a  system  of  particles,  each  equal  to  one-third  the  mass 
of  the  lamina  and  placed  rigidly  at  the  mid  points  of  its 
sides,  are  not  only  statically  similar,  but  also  kinetically, 
at  least  so  far  as  occurs  in  the  cases  of  motion  here  con- 

sidered.* 
The  moment  of  inertia  of  a  triangle  or  any  rectilinear 

lamina  about  any  axis  in  its  plane  can  be  found  by  suppos- 
ing it  divided  up  into  triangles. 
The  student  should  employ  the  second  method  to  find 

the  moment  of  inertia  about  a  line  parallel  to  a  side. 
189.  Circular  disc. — Consider  first  the  case  of  a  lamina 

of  the  shape  of  any  regular  polygon  inscribed  in  the  circle. 
It  may  be  supposed  to  be  made  up  of  a  series  of  equal 
isosceles  triangles  with  their  vertices  all  at  the  centre  of 
the  circle.     The  moment  of  inertia  of  the  polygon  round 

*  It  is  so  in  all  cases. 
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an  axis  through  its  centre  0  perpendicular  to  its  plane  is 
then  the  same  as  the  sum  of  those  of  the  triangles  round 
their  vertices  0. 

Let  AB  be  any  side  of  the  polygon.  Join  OA,  OB  and 
draw  OL  perpendicular  to  AB.  Then 
the  moment  of  inertia  of  OAB  is  the 

same  as  that  of  particles  of  one- third 
its  mass  placed  at  the  middle  points 
of  OA,  AB,  BO.  Hence  its  moment  of 
inertia  is,  if  m  denote  the  mass  of  the 
triangle, 

1    /OA'     ̂ ^,     0B^ 
=-w 

If  r  denote  the  radius  of  the  circle  and  p  the  perpen- 
dicular OL  from  0  on  a  side,  this  is 

This  is  the  same  for  every  triangle.     Hence,  if  M  be  the 
mass  of  the  whole  polygon,  its  moment  of  inertia 

=  KK  +/)(m  +  m  +  .  .  .)  =  i^m^  +/)• 
This  is  the  moment  of  inertia,  therefore,  of  any  regular 
polygon,  whatever  the  number  of  sides. 

But  if  the  number  of  sides  be  indefinitely  increased,  the 
polygon  tends  more  and  more  to  become  a  circle  and  p  =  r. 
Hence  in  a  disc  the  moment  of  inertia  is 

T 

or  the  radius  of  gyration  is  — ^. 

To  find  the  moment  of  inertia  round  any  diameter,  note 
that  it  must  be  the  same  for  all.  Hence,  by  the  theorem 
of  §  182,  if  I  denote  the  moment  required, 

JM7-'=2I, 

I  =  M^^, or  the  radius  of  gyration  is  half  the  radius  of  the  circle. 
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190.  Thin  spherical  shell. — Clearly  the  moments  of  inertia 
about  any  diameter  are  the  same.  Hence,  by  §  183,  if 
I  denote  its  value, 

31  =  S^TW?-". Now  in  this  case  all  the  particles  of  the  body  are  at 
the  same  distance  from  the  centre.     Hence 

I  =  ̂ r^m, 

or  the  radius  of  gyration  is  r  ̂ J^. 

191.  Rectangular parallelopiped,  sides  2a,  2b,  2c. — Suppose 
the  axis  of  rotation  through  the  centre  of  gravity  to  be 
perpendicular  to  the  face  &,  c.  The  body  can  be  divided 
in  a  series  of  thin  laminae  parallel  to  this  face,  the  radius /  72  2 

of  gyration  of  each  of  them  being      /  — - — .      Hence  the 

radius  of  gyration  of  the  whole  body  is  the  same,  and  its 
moment  of  inertia 

So  also  for  the  axis  perpendicular  to  the  face  a,  h  it  is 

The  same  result  can  also  be  obtained  by  dividing  the 
solid  into  eight  similar  parallelepipeds  and  using  the  artifice 
employed  in  the  case  of  the  parallelograms. 

In  the  cube  the  moments  of  inertia  about  all  axes 

through  the  centre  are  equal.  This  is,  however,  not  proved 
here  (see  examples  9,  10).  The  same  is  true  of  the  regular 
tetrahedron. 

192.  Right  prism  on  any  base. — Let  AB,  CD  be  the  two 

A    ^C    ends,     GG'     the      axis through  the  centres   of 
gravity  of  the  ends. 

^       ,    Let  21  be  the  length r- 

°  D     of  the  prism,  also  let  k 
denote  the  radius  of  gyration  of  a  lamina  of  the  shape  of 
the  ends  about  GG'. 
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Firstly,  with  regard  to  the  moment  of  inertia  about  GG', 
notice  that  the  prism  can  be  divided  in  thin  laminae  all 
equal  to  one  another  and  having  the  same  radius  of  gyra- 

tion h  Hence  the  prism  has  the  same  radiUs  of  gyration, 
and  if  m  be  its  mass,  its  moment  of  inertia  is 

mJc. 

Secondly,  to  find  the  moment  of  inertia  about  a  line 
through  the  centre  of  gravity  O  perpendicular  to  the  axis. 

Let  k'  denote  the  radius  of  gyration  of  a  lamina  of  the 
form  of  the  section  about  an  axis  through  its  centre  of 
gravity  parallel  to  the  one  in  question. 

Let  g  be  its  centre  of  gravity  and  m'  its  mass.  Then  its 
moment  about  the  axis  through  0  is 

m'{k"  +  0/). 

Hence  the  moment  for  the  whole  prism  is  the  sum  of  all 
these,  or 

2m'(F  +  0/). 

Here  k'  is  the  same  for  all.     Hence 

l^m'k"  =  k"2m'  =  mk'\ 

also  1m' .  0/  is  the  moment  of  inertia  of  the  whole  mass 
supposed  collected  along  ilie  axis  GG'. 

It  is  theMore,  by  §  184,  J mf. 
The  whole  moment  of  inertia  is  therefore 

m(r+Jf). 
For  instance,  we  have  at  once  for 

(1)  Circular  cylinder,  length  2/,  radius  r, 

Round  axis,  m- , z 

Perpendicular  to  axis,  m(  -  +  - ). 

(2)  Triangular  prism,  sides  a,  \  c, 
a^  +  h^  +  (^ 

Kound  axis,  m- 36 

Perpendicular  to  axis  and  parallel  to  side  *>  ̂ H  i^  +  o  ) : 
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where  p  is  the  perpendicular  from  A  on  the  base  BC  of 
the  triangle. 

193.  Sphere. — The  moments  about  any  diameter  are 
the  same.     Hence  (§  183) 

31  =  217111''. 
Divide  the  sphere  into  a  very  large  number  of  con- 

centric shells,  the  thickness  of  each  being  a  small  quantity 
h.  All  the  particles  contained  in  one  of  these  shells  are 
at  the  same  distance  from  the  centre. 

Let  m'  denote  the  mass  of  a  particle  and  m  that  of  the 
whole  sphere. 

Since  the  distribution  of  the  particles  is  uniform,  the 
number  in  any  volume  will  be  proportional  to  the  volume. 

™,  mass  of  shell       number  in  shell 
1  hus    =   ^   .   r — J 

m  number  in  sphere 
volume  of  shell 

'  volume  of  sphere' 
_  iirr'h  _  3r^ 

if  R  denote  the  radius  of  the  sphere,  and  r  of  the  shell. 
2)711 

Hence  for  the  shell  in  question  2m/  =  pa"^*'^- 

Therefore,  adding  together  all  the  shells, 

3I  =  2^jP2A 

or 

But  we  may  divide  the  sphere  in 
another  way,  viz.  into  a  series  of  discs 
of  the  same  thickness  h  perpendicular 
to  the  axis  of  rotation.  Consider  one 
of  these  at  a  distance  ON.  Its  volume 

is  ttPN''  .  h  and  therefore,  as  before,  its mass 

TrVW.h        3PN^^ 

E^
 

nu 
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and  its  moment  of  inertia  round  ON  is  therefore 

3     PN'.^t      PN' 

Hence  for  the  whole  sphere 

the  summation  extending  for  all  the  parallel  discs  along 

AA', 

or  I  =  j^2PN\A, 

the  summation  extending  to  discs  between  O  and  A 

Now  PN''  =  E'-ON'  =  K'-/. 

Hence  I  =  |  |ls(R*  -  2RV^  +  /)/i, 
3  _,^,      3   m^  o,      Sm  ̂   4, 

=  -7riR2h  ~  -  .  ̂ 2r%  +  -  iTgS?'  A. 4  2    K  4ii 

But  we  have  already  seen  that 

and  -  ̂ rVi  is  the  moment  for  the  line  OA  of  mass  — ^,  and 
therefore 

3  m  R'     1    ̂ 2 

.  Hence  I  =  LiR' -ImR' +  h; 4  2  8 

T  2R" 
or  the  radius  of  gyration  of  a  sphere  =     /  _ .  R 

(7(?r.  It  follows  that  2/  .  A  =  - 5 
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The  foregoing  method  involves  the  dividing  the  sphere 
into  an  infinitely  large  number  of  infinitely  small  parts. 
The  following  proof,  however,  is  perhaps  more  direct.  The 
radius  of  gyration  will  clearly  be  proportional  to  the  radius 
of  the  sphere.     Let  us  then  put  for  the  sphere 

I  =  mA?-*, where  m  is  the  mass,  r  the  radius,  and  X  some  numerical 

quantity  which  it  is  our  object  to  determine. 

We  have  I  =  -iTr/aA/, 

where  p  is  the  density  of  the  material. 
Hence  the  moment  of  inertia  of  a  spherical  shell  whose 

external  and  internal  radii  are  a,  h  is 

I'  =  iirpXjci''  -  iTrp\h\ 

=  -|7rpA(a'  -  b'y 
But,  if  m'  denote  the  mass  of  the  shell, 

m'  =  i7rp{a'  -  b% 

Hence  1  =  m  A— 5 — ^3, a  -  0 

a  +  ab  +  0 

This  gives  the  moment  of  inertia  about  a  diameter  for  a 
shell  of  any  radius  and  thickness  whatever. 

Hence,  by  putting  b  =  am  this,  we  obtain  the  moment  for 
a  spherical  surface  distribution  of  matter.     In  this  case 

But,  by  §  190,  r  =  tm'a'. 
Hence,  comparing  the  two, 

and   the   moment   of   inertia    of  a   solid  sphere  about  a 
diameter  is  therefore 

I  =  m— -. 0 
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194.  Right  cone. — Let  r  be  the  radius  of  the  base  and  a 
the  altitude. 

I.  About  the  axis. — Let  mk^  denote  the  moment  of  inertia 
about  the    axis.      AVe   shall  proceed 
first  to  express  that  of  the  frustum 
PNBA  in  terms  of  its  mass  and  //. 

This  is  equal  to  the  difference  of 
the  gmoments  of  the  two  cones  OAB 
and  OPN.  Let  PN  =  l  and  the  mass 

of  OPN  =  m'.  Then  the  cone  OPN  is 
similar  to  OAB,  and  therefore,  by  the 

theorem  of  §  181,  if  h'  be  its  radius 
of  gyration, 

also  the  mass  is  proportional  to  the  volume^     Hence 

,     h'
 

r 

and  if  M  be  the  mass  of  the  frustum, 

M  =  ?7z  -  m'  =  f  1  -  -ajm. 

Its  moment  of  inertia  =  mF  -  mT*, 

^  r"  +  r%  +  r%'  +  rJf  +  h'  Jc^ 

Suppose  now  the  frustum  to  become  very  thin.  Then 
r  =  h  and  the  frustum  becomes  a  circular  disc  of  radius  r 
In  this  case  the  moment  of  inertia  becomes 

1^- 
2  A 
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But  the  moment  of  inertia  of  a  disc  is 

Im/, "         10  ' 
and  the  moment  of  inertia  of  a  cone  about  its  axis  is 

3      , 

To""
'- 

II.  About  a  line  through  its  centre  of  gravity  parallel  to  the 
base. — A  similar  device  will  enable  us  to  find  the  moment 
of  inertia  in  this  case  also.  Let  ml^  denote  its  value. 

Then  the  moment  about  a  parallel  axis  through  0  is 

and  the  corresponding  moment  for  the  cone  OPN  is 

Hence,  as  in  the  former  case,  the  corresponding  moment 
for  the  frustum  is 

/  +  r%  +  r%'  +  rb^  +  b\, M 
r'  +  rb  +  b' 

When  the  frustum  becomes  a  disc  this  is 

5 

i^'^rA 

3^
 

i^-vA 
But  the  moment  of  the  disc  AB  about  the  axis  through 
Ois 

Ml 

■■i(*'*.v)-:.-' 

whence  '^'  =  4(''-^!) 
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The  moment  of  inertia  of  a  cone  about  a  liYie  through 
its  centre  of  gravity  parallel  to  the  base  is  therefore 

3    /,   a^ 

20^  V*-^  J- 195.  Tlie  results  of  this  chapter  are  here  collected  for 
reference.  They  give  the  moments  of  inertia  about  axes 
through  the  centre  of  gravity. 

1.  Straight  line,  length  la — 
About  axis  perpendicular  to  the 

,.  «'  ■■ line    .....     m-' o 

2.  Circular  wire,  radius  /* — 
Axis  perpendicular  to  plane  of 

wire  .....     wrl 

About  a  diameter    .         .         .     m-- 

3.  Kectangular  lamina,  sides  2a,  2b — 
2  72 

Perpendicular  to  plane    .         .     m — —  • o 
12 

Parallel  to  side  a    .         .         .     m— • 

4.  Triangular  lamina,  sides  a,  b,  c — 
Same  as  that  of  three  equal 

particles  at  the  mid  points 
of  the  sides. 

3         l2  3 

Perpendicular  to  plane     .         .     m  — k-^    • 36 

5.  Circular  disc,  radius  r — 

Perpendicular  to  plane     .  .     m-. 

About  diameter       .  .    m~. 4 

6.  Spherical  shell,  radius  r — 

2r2 

Abou
t  

diame
ter  

     
 

.      
   
. 
 

.     w  — 
3 
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7-  Rectangular  parallelepiped,  sides  2a, 

2b,  2c— 

About  axis  perpendicular  to  b,  c    m  — — — . 

8.  Right  prism,  length   21,   and  k,  ¥ 

radii  of  gyration  of  a  section — 
About  axis     ....     wF. 

Perpendicular  to  axis       .  .     m{k''^  +  \i 
9.  Circular  cylinder,  radius  r,  length  21 — 

About  axis 
r 

Perpendicular  to  axis      ,  ,        m  (  -  +  - 

1 0.  Sphere,  radius  r — 

About  a  diameter  .         .  .     nv^ . 5 

11.  Right  cone,  altitude  =  a,  radius  of 

base  =  T — 

About  axis     .         ,          ,  .     '^Yh' 

Perpendicular  to  axis      .  .     m  —  f  r^  -t-  - 

EXAMPLES— XX. 

[  The  moments  of  inertia,  except  v5liere  otherwise  stated,  are  supposed  to 
he  taken  about  lines  through  the  centre  qf  gravity.} 

1.  A  uniform  wire  is  bent  into  a  rectangle  (sides  a,  b).  Find  its 
moments  of  inertia  about  lines  (1)  perpendicular  to  its  plane,  and 

(2)  parallel  to  its  sides. 
2.  Prove  that  the  moment  of  inertia  of  a  rod  about  a  line  inclined 

at  an  angle  a  to  it  is  I  sin^a,  where  I  is  the  moment  of  inertia  about 
a  line  perpendicular  to  it. 

3.  A  uniform  wire  is  bent  into  an  equilateral  triangle  (side  2«). 
Find  the  moments  of  inertia  about  a  line  perpendicular  to  its  plane 
and  about  the  line  through  one  angle  perpendicular  to  the  opposite 
side. 

4.  Find  the  moment  of  inertia  of  a  triangle  about  an  axis  parallel 
to  the  base  by  the  second  method  of  §  188. 
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5.  A  wheel  and  axle  arccomposed  of  the  same  material.  The  wheel 
is  4  feet  radius  and  6  inches  thick.  The  axle  is  6  inches  radius  and 

4  feet  long.     Find  the  radius  of  gyration  about  the  axis. 

6.  A  fly-wheel  weighing  ̂   ton  has  the  following  dinaensions — 
Rim,  of  rectangular  section,  1  foot  broad,  6  inches  thick,  and  out- 

side radius  6  feet. 

Axle,  a  cylinder  2  feet  long,  radius  6  inches.  Eight  cylindrical 
spokes  of  4  inches  diameter.  Find  its  moment  of  inertia  about  the 
axis,  supposing  the  material  uniform  throughout. 

7.  Find  the  moment  of  inertia  of  a  square  lamina  about  a  diagonal. 
8.  Show  that  the  moment  of  inertia  of  a  square  lamina  about  any 

axis  in  its  plane  through  its  centre  is  the  same. 
9.  Prove  that  the  moment  of  inertia  about  the  diagonal  of  a  cube  is 

the  same  as  about  a  line  parallel  to  a  side. 
10.  Prove  that  the  moments  of  inertia  of  a  cube  about  a  line 

parallel  to  a  face  are  the  same. 
11.  Find  the  moment  of  inertia  of  a  solid  hemisphere  about  a  line 

through  its  centre  of  gravity  parallel  to  the  base. 
12.  Deduce,  by  considering  the  case  of  a  right  cone,  the  moment  of 

inertia  of  a  disc  about  an  axis  perpendicular  to  it»  plane,  when  the 
density  at  any  point  is  proportional  to  the  distance  from  the  rim. 

Find  also  the  moment  round  any  diameter. 
13.  Find  the  moment  of  inertia  about  the  axis  of  the  solid  formed 

by  cutting  a  right  Icone  out  of  a  cylinder  of  the  same  height  and 
diameter. 

14.  Deduce  from  the  foregoing  the  moment  of  inertia  of  a  disc  about 
an  axis  perpendicular  to  its  plane,  when  the  density  at  any  point  is 
proportional  to  the  distance  from  the  centre. 

Find  also  the  moment  round  any  diameter. 
15.  Find  the  moment  of  inertia  of  a  hollow  circular  cylinder  about 

its  axis,  and  about  a  line  perpendicular  to  the  axis.  Given  length  6 
inches,  outside  diameter  6  inches,  inside  diameter  4  inches,  mass  3  lbs. 

16.  A  spherical  cavity  is  cut  out  of  a  solid  sphere.  Find  the 
moments  of  inertia  about  lines  (1)  through  the  two  centres,  and  (2) 
perpendicular  to  the  former.  Given  radius  of  inner  sphere  1  inch,  radius 
of  outer  4  inches,  distance  of  centres  2  inches,  mass  of  solid  sphere  64  oz. 

17.  Compare  the  energies  possessed  by  a  straight  uniform  wire  when 
rotating  with  the  same  angular  velocity  round  its  centre  of  gravity 
and  round  one  end. 

18.  Two  equal  cubes  are  revolving  with  the  same  angular  velocity, 
one  about  its  diagonal,  the  other  about  a  line  through  its  centre  of 
gravity  parallel  to  an  edge.     Compare  the  energies  of  the  two. 

19.  A  sphere  rolls  along  a  rough  plane.     Compare  its  energy  with 



358  ELEMENTARY  DYNAMICS  part  hi 

that  of  an  equal  sphere  moving  with  the  same  velocity  along  a  smooth 
plane  without  rolling. 

20.  The  fly-wheel  in  question  6  makes  120  revolutions  per  minute. 
How  many  foot-pounds  of  work  can  be  done  by  bringing  it  to  rest  ? 

21.  Determine  the  energy  of  rotation  of  the  earth,  supposed  a  uni- 

form sphere  of  4000  miles  radius  and  density  5*6. 
22.  A  rod  AB  (4  feet  long)  is  moving  with  a  velocity  of  20  feet  per 

second  in  a  direction  perpendicular  to  its  length ;  the  end  A  is 
suddenly  fixed.     Determine  the  subsequent  motion. 

Also  determine  the  motion  if  a  point  C  in  it  had  been  fixed  where 
AC=iAB. 

23.  In  the  previous  question,  the  point  C  instead  of  being  fixed 
strikes  against  an  inelastic  spherical  body  of  equal  mass.  Determine 
the  motion  just  afterwards.     Also  find  the  loss  of  energy. 

24.  The  rod  AB  moving  as  above  strikes  simultaneously  at  A  and 
B  on  two  particles  respectively  of  the  same,  and  one-half  the  mass  of 
the  rod.     Determine  the  motion  just  after  the  impact. 

25.  A  square  is  moving  freely  about  a  diagonal  with  angular  velocity 
w,  when  one  of  the  angular  points  not  in  that  diagonal  becomes  fixed. 
Determine  the  impulsive  pressure  on  the  fixed  point  and  show  that 
the  angular  velocity  afterwards  will  be  aj/7- 

26.  A  triangular  lamina  ABC  is  rotating  with  angular  velocity  w 
about  a  line  through  the  centre  of  gravity  perpendicular  to  its  plane  ; 
A  is  suddenly  fixed.     Show  that  the  angular  velocity  afterwards 

_^    l^  +  c^  +  a? 

27.  A  cylinder  has  a  string  wound  round  its  middle  in  a  plane  per- 
pendicular to  its  axis  ;  the  string  is  suddenly  jerked.  Determine  the 

subsequent  motion. 
Also  compare  the  energies  of  translation  and  rotation. 
28.  If  in  the  previous  question  the  cylinder  were  rotating  Avith 

angular  velocity  w  and  the  string  were  attached  to  a  particle  at  rest  of 

the  same  mass  as  the  cylinder,  determine  the  alteration' in  ̂ he  motion 
when  the  string  became  tight. 

29.  A  square  is  rotating  round  a  diagonal ;  it  strikes  against  an  in- 
elastic particle  of  half  the  mass  at  a  point  on  the  other  diagonal  half 

way  between  the  centre  and  angle.     Determine  the  change  of  motion. 
30.  If  in  the  previous  case  the  particle  were  elastic,  and  the  points 

of  the  body  where  the  collision  took  place  followed  Newton's  law  for 
elastic  bodies  with  coefficient  of  rebound  =e,  determine  the  change  of 
motion. 

31.  A  uniform  hoop,  radios  a,  mass  M,  hangs  at  rest  over  k  perfectly 
rough  peg  ;  a  blow  P  is  struck  upon  the  hoop  in  the  horizontal  line 
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through  its  centre.     Show  that  the   initial  angular  velocity  of  the 
hoop  is  P/2M«. 

32.  Two  equal  rods  AB,  BC  are  freely  jointed  at  B  ;  BC  receives  a 
blow  through  its  centre  perpendicular  to  its  length.  Determine  the 
initial  motion  (1)  when  the  rods  are  in  the  same  line,  (2)  when  ABC  is 
a  right  angle.  Determine  in  each  case  the  proportion  of  the  energy 
taken  up  by  each  rod. 

33.  A  uniform  rod  is  set  in  motion  by  impressing  a  given  impulse  on 
it  at  one  end  in  a  direction  at  right  angles  to.  the  rod.  Show  that  the 
kinetic  energy  set  up  in  the  rod  is  to  that  which  would  result  were  the 
rod  divided  into  two  equal  portions  and  the  parts  smoothly  jointed 
together  as  the  ratio  4  :  7. 

34.  Find  where  a  uniform  rod  hung  up  by  one  end  and  freely  jointed 
at  some  point  of  its  length  must  be  struck  in  order  that  the  lower 
part  may  begin  to  move  without  rotation. 

35.  Show  that  the  moment  of  inertia  of  a  conical  surface  is  the 

same  as  that  of  two  rings  on  it — one  half  way  up  and  of  two-thirds 
the  mass,  the  other  at  the  base  and  of  one-third  the  mass. 

36.  Find  the  moment  of  inertia  of  the  surface  of  a  cone  about  its 

principal  axes  at  its  centre  of  gravity,  by  considering  it  as  formed  by 

cutting  a  similar  co-axal  cone  out  of  a  larger  one. 
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CHAPTEE    XXI 

MOTION   UNDER   FORCE 

196.  We  have  seen  in  Part  I.  that  force  and  rate  of 

change  of  momentum  are  related  in  precisely  the  same  way 
as  impulse  and  change  of  momentum.  Now  it  has  been 

shown  in  Chapter  XIX  that  the  momentum  of  a  body  con- 
sists of  the  momentum  or  impulse  of  the  whole  mass  acting 

at  the  centre  of  gravity  together  with  a  moment  of 

momentum  or  impulse -couple  round  it.  These  two  are 
measured  respectively  by  M.u  and  MFw,  where  ̂ l  is  the 
velocity  of  the  centre  of  gravity  and  w  the  angular  velocity 
round  it.  When  u  and  w  are  changing  with  the  time,  let 
a  denote  the  acceleration  of  u  and  w  that  of  o>.  Then  the 

rate  of  change  of  momentum  is  Ma  and  MFw.  Ma  is  the 

•  same  as  if  the  mass  were  collected  at  the  centre  of  gravity. 
These  will  be  equivalent  to  the  forces  acting  on  the 
body. 

If  a  force  F  act  at  a  point  P  we  have  seen  that  it  is 
equivalent  to  two  forces  X,  Y  at  right  angles  to  one 
another  acting  at  the  centre  of  gravity,  together  with 
a  couple  L  round  it.  Let  the  motion  of  the  body  be  given 

by  velocities  u,  v,  accelerations  a,  a',  angular  velocity  w  and 
acceleration  u>.  Then,  X,  Y  being  in  the  direction  of  u,  v, 
we  have  at  once Ma  =  X) 

Ma'  =  Y\  , 
Mk'i^y  =  L  \ 
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These  equations  hold  whether  the  body  is  rigid,  or 
whether  its  parts  are  capable  of  relative  motion.  In  case 
no  external  forces  act  on  the  body  the  momentum  is 
constant.  If  the  external  forces  always  pass  through  a 
fixed  line,  then  the  moment  of  the  forces  about  this  line 
vanishes,  and  it  follows  that  the  angular  momentum  round 
it  remains  constant.  This  is  a  very  important  result.  To 

illustrate  its  application  take  the  following  example — 
Sujyposing  the  earth  a  unifortn  sphere  and  thai  in  the  course  of  a^es 

its  radius  Tias  contracted  1/n  of  its  present  value,  find  the  alteration  in 
the  length  of  the  day. 

The  angular  momentum  has  remained  the  same  always. 
Hence,  if  u  be  the  angular  velocity  now  and  Q  its  original  angular 

velocity,  this  condition  gives 

5  5    \       nj 

.•.n=(i.yv 
But,  taking  the  day  for  the  unit  of  time, 

1  day  =  27r/Q, 

.'.  the  day  is  shortened  by 

27r_27r_27r/       O' 

ft       u  ~  fi  V 

.{.-(.-i)n... 
=  —  hours, 

n 

since  1/n  is  very  small. 
For  instance,  if  the  radiijs  had  decreased  one  mile,  n  would  be  4000, 

and  the  shortening  of  the  day  would  be 
48x60x60      .-  „  , 

4000       -43-2  secon
ds. 

197.  When  forces  act  on  a  system  .of  particles,  the 

change  in  kinetic  energy  is  equal  to  the  work  done  by  the 

forces.  When  the  particles  can  change  their  relative 

positions,  the  forces  between  them  can  do  work  and  the 
kinetic  energy  can  change.  In  the  cases,  however,  here 
considered  the  bodies  are  rigid,  and  no  internal  work  can 
be  done.  Any  change  of  energy  is  therefore  only  due 
to  external  force,  and  is  iiieasured  by  the  work  done 

by  it. 
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The  student  will  get  a  clearer  insight  into  the  foregoing 
principles  by  considering  their  applications  to  special  cases. 

The  rest  of  the  chapter  is  therefore  devoted  to  the  con- 
sideration of  examples,  many  of  which  are  important  for 

their  own  sakes." 
In  working  examples  the  student  should  commence  by 

drawing  a  diagram,  drawing  lines  to  represent  the  rates  of 
change  of  momenta  and  also  the  forces.  He  should  next 
determine  the  geometrical  relations  between  the  various 
velocities  and  accelerations.  By  then  expressing  in  the 

form  of  equations  that  the  two  sets  of  quantities  are  equi- 
valent, he  will  obtain  sufficient  equations  to  determine  the 

motion. 

198.  A  sphere  rolls  down  a  rough  inclined  plane  ;  deten'mine 
the  motion. 

First,  suppose  the  plane  so  rough  that  no  slipping  takes  place. 
If  we  desire  only  to  know  the  velocity  at  any  point,  the  simplest 

way  will  be  to  equate  the  energy  to  the  work  done  by  gravity. 
Let  m  denote  the  mass,  r  the  radius  of  the  sphere,  w  its  angular 

velocity  at  any  time,  and  u  the  velo- 
city of  the  centre  qf  gravity  down  the 

plane. The  moment  of  inertia  is  ̂ mi^. 

Its  energy  =^?nw-  +  ̂.  fvir^ur. 
But  as  the  sphere  rolls  down  with- 

out slii>ping,  the  point  of  contact  P 
is   "the  instantaneous  centre  of  rota- 

tion "   at  .every  instant.     Hence   the 
geometrical    relation    is    rw  =  w,    and 

the  energy  =  ̂ m{u-  +  |w-)  =  -^^mu^. 
We  might  also  have  obtained  this  at  once  by  noting  that  P  is 

the    instantaneous    centre,    and    the    moment    of    inertia    about    it 

The  work  done  by  gravity  =  ')ngh,  where  h  is  the  vertical  height 
descended.     Hence 

r-xww^  =  nigh. 

lOgh 

i 

and  is  therefore  the  same  as  if  the  plane  bad  been  smooth  and  gravity 
diminished  in  the  ratio  5:7. 
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If  we  desire  further  to  know  the  forces  called  into  play  we  must 

deal  with  the  rates  of  change  of  momenta.  We  work  it  out  inde- 
pendently in  this  way. 

The  forces  are  the  weight  'nig  through  the  centre  of  gravity,  the 
reaction  R  at  the  point  of  contact,  and  the  friction  F  acting  up  the 
plane.     They  are  represented  in  the  diagram  by  thick  lines. 

The  momentum  rates  of  change  are  ma,  down  the  plane,  mTc^C} 
round  the  centre  of  gravity.  They  are  represented  in  the  diagram  by 
thhi  lines. 

Also,  as  before,  the  geometrical  relation  is  a  =  ra). 
Take  moments  about  P.     Then 

ina .  r  +  mPw  =  mgr  sin  6, 

or,  since  F  =  fr-  and  rC)  =  a, 
^mra  =  mgrsmd, 

a  =  ̂ g.  sin  6. 
To  find  F,  resolve  parallel  to  the  plane,  then 

ma=mg  sin  ̂   -  F, 
whence  F  =  m{g  sin  6  -a)  =  %mg  sin  0, 
and  R  is  found  by  resolving  perpendicular  to  the  plane, 

0  =  mg  cos  ̂   -  R, 
or  R=mg'cqs^. 

In  the ''above  we  have  supposed  the  limiting  friction  so  large  that 
the  sphere  -will  not  slip.  Let  us  now  find  the  condition  that  this  may 
be  true.  Let  fx  be  the  coefficient  of  friction.  Then,  if  F^  denote 
the  largest  possible  value  of  F, 

Fi=/iR. 
X.  .  ,  F     fvig  sin  6     2^      ̂  
But  here  ^  =  ̂-^ — -r  =  =  tan  6. R  •    mg  cos  6     7 
Hence  f  tan  d<fi. 

Hence,  if  the  inclination  of  the  plane  be  greater  than  6i,  where 

tan^,  =  ̂|, 

the  sphere  will  begin  to  slip. 
It  will  be  interesting  to  consider  the  motion  in  this  case. 
Tire  point  of  contact  is  no  longer  the  instantaneous  centre,  and 

consequently  ru>  does  not  equal  a. 
But  now  F  is  known,  viz.  fiK. 

Consequently  the  equations  of  motion  become, 

Moments  about  0,  ??tPa>=/tR.r  ^ 

Resolving  down  i)lane,  ma  =  mg  sin  6  -  fiR  v  j 
Perpendicular  to  plane,  0  =  mg  cos  0 -R    I 
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]'
 

or,  putting  in  k^  =  fr^, 
fru)  =  ix^jm  =  fig  cos  6 
rco  =  ̂ fxg  cos  6 

and  (^=9  sin  0  -  fig  cos  ̂  . 
/.  a  =  (sin  6  -  ft  cos  ̂ )gr. 

That  is,  r(h  is  a  constant  acceleration.     Hence,  after  any  time  t  from 
rest, 

no  =  -^/xg  cos  6 .  t, 

also  u  =  at=  (sin  0-  /x  eosd  )gt. 

Hence  rw/it  is  a  constant  ratio,  and  they  never  become  equal 
Therefore  the  point  of  contact  is  never  the  instantaneous  centre,  and 
the  sphere  continues  to  slide  throughout  the  motion. 

199.  A  cube,  side  2a,  rests  with  one  edge  on  a  rough  plane, 
and  the  opposite  edge  vertically  above  the  first ;  it  is  let  fall. 
Determine  if  it  will  rise  after  striking  the  plane,  and  if  so  the 
height  to  ivhich  the  centre  of  gravity  will  rise. 

B 

Let  w  be  the  angular  velocity  of  the  cube  about  the  edge  when  tlie 
face  AB  strikes  the  plane.     Then  the  moment  of  inertia  about  A 

„{^.A0^. 

and 

=  m(|  +  2y  = 
1      8)>l«2         ̂  via~oiP. The  energy ^2-     3     •  -      3- 

The  centre  of  gravity  has  fallen  from  a  height  AG   to  a  height  a. 

Ima^ojS  =  mg{  AG  -  a), 

=  wgf(\/2-l)a. 

Hence 
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At  the  moment  of  striking,  the  momentum  is  m .  AG .  w  along  GB 
and  rnk'o}  about  G. 

After  impact  let  w'  be  the  angular  velocity  about  B.     The  momentum 
is  then 

m .  BG .  ta  along  GC  and  mT<?(a'  about  G. 
The  difference  of  these  is  equivalent  to  a  blow  acting  through  B. 

Its  moment,  therefore,  about  B  must  vanish,  or  the  moments  of  each 

about  B  must  be  the  same.     Hence,  since  AG  =  BG=aV2, 

Tna V2w'  X  BG  +  mk-u)'  =  mTc^o}, 

or  (2a2  +'%a?)o}'  =  ̂ a-w, 

and  (a' =  \(j}. 

That   is,    the  cube  will   begin   to  turn   about  B  with  an  angular 

velocity  one-quarter  of  that  just  before  striking. 
If  h  denote  the  height  to  which  G  will  rise,  we  get  by  the  energy 

\ma-(a''^  =  ing{h  -  a), 

.'.   tV  •  5ma^io^=7ng{h  -  a), 
^tng{\/2-l)a=mg{h-a)  ; 

\/2-l       I5  +  V2       I5  +  V2,.,    .  ,    .,^, -a=   j^  (its  former  height). h=a  + 
16 

16 
I6V2 

200.  Atwood^s  machine. — Two  masses  are  connected  by 
a  string  which  passes  over  a  pulley  of 
radius  r.  Find  the  motion  when  the  mass 

of  the  pulley  is  not  neglected.  Let  m,  m! 

be  the  masses,  M  the  mass  of  the  pul- 
ley, and  k  its  radius  of  gyration.  Let  t 

be  the  tension  of  the  string  on  the  side 

of  m  and  t'  on  the  side  of  ni\  Suppose 
also  that  m  >  m'.    Then 

.       ,      ̂ .         -.         force  on  m 
Acceleration  of  m  =   , 

m^ 

m 

so         Acceleration  on 

m  up  =  «  = 

M/w'
 t'

 

mg 

m 

The  rate  of  change  of  momentum  of  the  pulley  is  the 

couple  M^'^w  only.  Hence,  taking  moments  about  its 
centre, 

Wc'^  =  {t-  t')r. 
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Further,  since  there  is  no  slip  of  the  string  over  the 
pulley,  the  acceleration  of  the  string  must  be  the  same  as 
that  of  the  rim  of  the  pulley.  Hence  the  geometrical 
relation  is 

TO)  =  a, 

therefore  Mk'a  =  {t-  ty\ 
Now  t-t'  =  (in  -  m')g  -  (m  +  m')a, 

.\  MFa  =  {ni  -  m')fjr^  -  (m  +  m')ar'^^ 
.'.  {MF  +  {m  +  m')r^]a  =  {vi  -  m)rfi'^, 

{m  -  m')r^  (m  -  m') 

Wc^  +  {m  +  m')i 

WU 
r 

If  then  ]\I-2  is  comparable  with  m  +  ?Ji',  a  considerable 

error  is  introduced  by  neglecting  the  mass  of  the  pulley, 

and  consequently  the  value  of  g  as  obtained  on  that  sup- 
position (§  23)  will  not  be  correct.     (See  example  9.) 

201.  Motion  of  a  body  about  an  axis  under  gravity. — The 
body  in  equilibrium  will  rest  with  its  centre  of  gravity 
vertically  under  the  axis,  and  the  reaction  on  the  axis  will 
be  equal  to  the  weight  of  the  body. 

When  in  motion  it  will  vibrate  about  this  position  of 
equilibrium.  Let  0  denote 
the  axis  of  suspension,  G  the 

centre  of  gravity,  OGr  =  A,  and 
the  moment  of  inertia  about 
G  be  ml^. 

In  any  position  OG'  draw 
G'N  perpendicular  to  the  ver- 

tical through  0,  and  suppose 
that  in  the  farthest  position 
of  G  to  one  side  in  the  motion 
N 

is 

at    N'.       Then this 

position  the  kinetic  energy  is 
zero,  and  at  any  other  the  work 

done  is  mgl^W  =  mg(GW  -  GN). 
The  moment  of  inertia  about  0  is  w(F  +  Jf).      Hence, 

if   w    denote    the    angular    velocity   when    the    centre    of 
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gravity  is   at    a   height  GN  above  its    position  of    equi- 
librium, 

^m{L^  +  A>'  =  mg{GW  -  GN). 
This  gives  the  velocity  in  any  position. 

To  find  the  reaction  ou  the  axis  we  require  the  accelera- 
tion. Now  the  rate  of  change  of  momentum  is  equivalent 

to  (1)  rate  of  change  of  ink^M,  or  m/J^M,  (2)  to  rate  of  change 
of  momentum  of  the  whole  mass  supposed  collected  at  G'. 
But  this  is  mho)  perpendicular  to  OG'  and  iini/h  along  G'O. 

The  forces  are  mg  vertically  through  G'  and  the  reaction 
at  O.  Suppose  this  given  by  components  X  perpendicular 

to  OG'  and  Y  along  G'O.  The  forces  and  the  rates  of  change 
of  momenta  are  equivalent.  Hence,  if  6  denote  the  inclina- 

tion of  OG'  to  the  vertical,  we  have, 

resolving  along  G'O, 

mo)'/i  =  Y  -  mg  cos  6, 

resolving  perpendicular  to  G'O, 
mho)  =  X-mg  sin  0 ; 

also,  taldng  moments  about  0, 

mFu)  +  mhci)  .h=  -mg.  G'N, 
=  -  mgh  sin  d. 

Hence  X  =   TTs—rzx'^ff^  sin  6  +  mq  sin  6, 

Y  =  mA  +  mg  cos  0. 

But  Jm(F  +  h'y  =  mg{G^'  -  GN). 
If  a  be  the  greatest  amplitude  of  swing, 

ON'  =  h  cos  a, 
ON  =  ̂  cos  e, 

and  (F  +  h")ta  =  2gh(cos  6  -  cos  a), 
.-.  Y  = 

mg  I  cos  ̂   +  p — T2(cos  ̂   -  cos  a)  k 

From  these  values  of  X,  Y  the  magnitude  and  direction  of 
the  resultant  pressure  at  O  can  be  determined  in  any  case. 
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As  a,  special  case,  take  a  sphere  suspended  from  a 
point  on  its  surface,  held  so  that  its  centre  is  on  the 
horizontal  through  the  point  of  support,  and  then  let  fall. 
Here 

a  =  90°,     k'  =  %r\     h  =  r: 

The  energy  equation  gives 

or 'o)'  =  i^gr  cos  e  =  -VV 

g .  r  cos  0, 
ON. 

This  gives  the  velocity  of  the  centre  at  any  depth, 
reactions  are, 

X  =  ̂ mg  sin  0, 

Y  =  ̂ -mg  cos  6. 

The 

If  then  the  reaction  makes  an  angle  cfj  with  OG', 

tan  (f) X       2 -=-tanft 

This  enables  us  to  draw  the  direction  graphically. 

Take  any  point  M  in  G'O  produced, 
draw  MP  perpendicular  to  G'O  and  meet- 

ing the  vertical  through  0  in  P.  Take  Q 
so  that  MQ  -  tVMP.  Then 

QM 

tan  QOM-^  =  t^^tt^  =  T^  tan  6. 
2YM. 

MO     Ft  MO     17 

Hence  OQ  is  the  direction  of  the  resultant 

pressure. 
202.  Pendulum. — The  motion  is  given 

by    the     equation     in     the      preceding 
article,    viz.    that    obtained    by  taking 

moments  round  0.     It  is 

m{)i  +  A^)a)  =  mgh  sin  Q. 
Now  Ao)  is  the   acceleration  of   G   along  the  path  it 

G'N 

h  
' 

describes  and  sin  6 Hence 

Acceleration  of  G  along  its  path  =  /iw  = 

h'  +  k' 
.G'N 
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But,  comparing  this  with  the  acceleration  in  tlie  case  of 
a  simple  pendulum  as  given  in  §  162,  viz. 

Acceleration  =  j  .  G^N, 

we  see  that  the  two  are  analogous,  and  that  the  rigid  body 

will  move  in  precisely  the  same  manner  as  a  simple  pen- 
dulum whose  length  is 

.  _  F  +  h" This  length  is  called  the  length  of  the  simple  equivalent 
pendulum.     The  time  of  a  small  vibration  is 

■Vr-s
/''*'

' 

g  V       hg 
For  instance,  if  the  body  be  a  bar  suspended  at  one  end, 
of  length  2L  the  time  of  vibration  will  be 

*CJ' 

-yi 

ig 

Wliereas,  if  the  mass  of  the  bar  had  been  collected  at  its 
centre  of  gravity,  the  time  would  have  been 

V? 
9 

The  first  is  therefore  slower  and  in  the  ratio  ——  =  1*15 .. . 

Take  a  point  0'  on  the  other  side  of  G  from  0,  and 

such  that  GO'  =  r*     Then  00'  =  — = —  =  /,  and  the  motion h  h 

will  be  the  same  as  if  the  whole  mass  were  collected  at  0'. 

Now  suppose  the  body  suspended  from  0'.     Then  the 
length  of  the  simple  equivalent  pendulum  is 

,,     k'     F     k'-vli'     . h . 

or  the  same  as  before,  and  the  body  will  now  oscillate  in 
the  same  way  as  if  the  whole  mass  were  collected  at  O  and 
in  the  same  time  as  before. 

2  B 
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The  point  0'  is  called  the  centre  of  oscillation  of  0. 
The  points  are  interchangeable. 

203.  The  most  accurate  method  for  determining  the 
value  of  g  is  by  observing  the  time  of  vibration  of  a 
pendulum.  It  is  not  possible  to  get  a  perfect  simple 

pendulum — that  is,  a  heavy  particle  at  the  end  of  a  string 
without  mass.  It  is  therefore  necessary  to  use  a  rigid 
body,  such  as  a  bar  or  otherwise,  determine  the  value  of 
h  and  h  and  deduce  the  length  of  the  simple  equivalent 

pendulum.  Captain  Kater,  however,  got  over  the  diffi- 
culty of  accurately  determining  these  by  making  use  of 

the  property  of  the  convertibility  of  the  centres  of  sus- 
pension and  oscillation.  His  pendulum  can  be  swung 

from  either  of  two  points  in  a  line  with  the  centre  of 
gravity,  and  so  fixed  as  to  be  very  nearly  in  the  relation 
of  centres  of  suspension  and  oscillation.  On  the  pendulum 
also  in  line  with  the  points  is  a  small  movable  weight. 
The  pendulum  is  swung  on  knife  edges  alternately  from 
the  two  points,  and  the  movable  weight  adjusted  until  the 
times  of  vibration  are  the  same.  The  points  are  then 
accurately  in  the  relation  of  centres  of  suspension  and 
oscillation,  and  the  distance  between  is  the  accurate  length 
of  the  simple  equivalent  pendulum.  The  time  of  vibration 
being  accurately  determined,  the  value  of  g  is  found  with 

very  great  exactness. 
The  centre  of  oscillation  has  another  property.  If  the 

body  be  struck  by  a  blow  perpendicular  to  OG  and  through 

0',  there  will  be  no  jerk  on  the  point  of  suspension.  For, 
by  §  179,  in  this  case  the  jerk  on  a  point  distant  h  from 
the  centre  of  gravity  by  a  blow  at  a  distance  I  from  it  is 

V    lif  +  hV 

p. 

But  here  00'  =  /  =  —-. — ,  and  the  jerk  is  therefore  zero. 

204.  TorsioTuil  vibration  of  a  hody  suspended  hy  a  wire. — Tf 
a  mass  be  suspended  from  a  fixed  point  by  a  wire  so  that 
the  mass  is  symmetrical  about  the  direction  of  the  wire,  it 
is  capable  of  simple  rotational  motion  about  the  wire.    The 
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forces  brought  into  play  are  those  caused  by  the  torsion  on 
the  wire,  and  these  are  proportional  to  the  amount  of  twist 
which  the  wire  has. 

Suppose  the  lower  end  of  the  wire  to  be  twisted  through 
an  angle  6,  the  forces  called  into  play  have  a  moment 
round  the  axis  of  the  wire  proportional  to  6.  Denote  it 
by  A^,  where  A  is  a  constant  depending  on  (1)  the  material 
of  the  wire,  (2)  its  length,  and  (3)  its  diameter. 

Let  I  denote  the  moment  of  inertia  of  the  body  about 
tlie  axis  of  rotation.  Then  the  moment  of  rate  of  change 
of  angular  momentum  is  Iw.  This  is  equivalent  to  the 
moment  of  the  forces,  that  is 

iw  =  -  xe. 

Now  w  is  the  acceleration  of  6.     Hence 

Acceleration  of  ̂ =  -  j^- 

The  motion  is  therefore  a  simple  harmonic  one  for  large 
motions  as  well  as  small,  provided  the  amplitude  is  not  so 
great  as  to  give  a  permanent  twist  on  the  wire.  The  time 
of  vibration  is 

■-'A 

This  result  can  be  made  use  of  to  determine  the  value 

of  X  and  its  dependence  on  the  length  and  diameter  of  the 
wire.  The  student  is  advised  to  carry  out  himself  the 
experiments  here  indicated.     Thus 

(1)  Observe  the  number  of  vibrations  per  minute  for 
different  lengths  of  the  wire.  If  they  be  Wi, 
^2,  .  .  .,  then  the  times  of  vibration  are  1/n^, 

l/n„  .  .  .  Then 

Ai  =  47r^?,%  etc., 

or         Ai  :  A^ :  .  .  .  =  ?ti* :  w/  :  .  .  . 

It  will  then  be  found  that  A  is  inversely  propor- 
tional to  the  length  of  the  wire. 
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(2)  Keeping  the  length  the  same,  and  using  wires  of  the 
same  material  but  different  diameters,  make  the 

same  experiments ;  it  will  be  found  that  A  is  pro- 
portional to  the  fourth  power  of  the  diameters. 

(3)  By  using  bodies  in  which  the  value  of  I  is  known, 
the  value  of  A  can  be  found  absolutely,  and  thus 
determined  for  different  substances. 

205.  We  have  seen  in  Chapter  XX  how  to  calculate 
the  moments  of  inertia  in  certain  simple  cases.  In  practice, 

however,  we  have  to  deal  with  bodies  whose  shape  is  com- 
plicated, and  in  which  the  distribution  of  density  may  be 

unknown.  In  this  case  the  value  of  their  moments  of 

inertia  must  be  determined  by  experiment. 
One  of  the  best  ways  to  do  this  is  to  compare  the 

moment  in  question  with  that  of  a  body  whose  moment  is 
known.  This  can  be  done  as  follows.  We  have  seen  in 

the  previous  article  that  if  a  body  whose  moment  of  inertia 

is  I  is  suspended  by  a  wire,  the  time  of  vibration  is  pro- 

portional to   \/l,  or l  =  ct\ 

where  c  is  a  constant  depending  on  the  wire  only.  Suspend 
the  body  whose  moment  of  inertia  I  we  require,  and 
observe  the  time  of  vibration  t. 

Next  fasten  a  body  of  known  moment  of  inertia  to  the 
former  so  that  the  axis  of  rotation  passes  through  the 

centre  of  gravity,  and  let  I'  denote  the  known  moment  of inertia  about  this  axis. 

Again  observe  the  time  (say  t^).  Then  the  motion  is 

that  of  one  mass  of  moment  I  +  I',  and 

I  +.  I'  =  d,\ 
I         f 

Here  r,  t,  /i  are  known  and  I  can  be  found. 
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Or  we  might  first  suspend  the  known  body  and  then 
the  two  together.     In  this  case 

r    _f 

I  +  r  ~  tr 

onr  we  might  suspend  each  by  itself,  and  then ^  tri 

but  in  this  experiment  it  would  be  necessary  to  ensure  that 
the  suspensions  were  accurately  the  same  in  the  two  cases. 

The  student  is  advised  to  verify  by  experiment  the 

moments  found  for  various  simple  bodies,  such  as  a  par- 
allelopiped,  taking  in  this  case  for  the  knoivn  mass  two 
equal  weights  suspended  by  threads  over  the  ends  of  the 
parallelopiped.  Their  moment  of  inertia  will  be  2mf, 
where  m  is  the  mass  of  one  and  21  their  distance.  The 

strings  must  be  so  thin  that  no  rotations  are  set  up  in  the 
weights. 

206.  The  following  examples  are  given  in  further  il- 
lustration of  the  application  of  the  foregoing  methods. 

The  student  should  attempt  to  solve  them  himself  before 
reading  the  solutions  given. 

Example  I.  A  uniform,  disc  has  a  weightless  stnng  loound  round 
its  rim  ;  one  end  of  the  string  is  fixed  and  the  disc  is  allowed  to  fall. 
Detennine  the  motion  and  the  tension  of  the  string. 

Perhaps  the  easiest  way  to  solve  this  is  to  notice  that  tlie  kinetic 

energy  at  any  time  is  equal  to  the  work  done  by  gi-avity.  If  u  be  the 
velocity  of  the  disc  and  w  its  angular  velocity,  w  -  rw  =  0  since  the  point 
where  the  string  leaves  the  rim  has  zero  velocity.  The  above  condition 
then  gives 

1  1       r* 

or,  since  rw=«*, 

2 
Hence  the  disc  falls  with  acceleration  -j 
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Next,  to  find  the  tension,  notice  that  the  forces  on  the  centre  of 

gravity  are  ong  down  and  T  up.     Hence 

mg  -  T  =  ?n-  X  acceleration, 
2 

T  =  3m9r=- weight. 
It  will  be  instructive  to  see  how  the  same  result  is  arrived  at  by 

starting  from  the  equations  of  motion. 
The  rates  of  change  of  the  momenta  are,  if  a  denote  the  acceleration, 

(1)  ma  down, 

(2)  -mr^^  round  the  centre. 

The  geometrical  equation  is 
Cyr=a. 

The  forces  are 

(1)  mg  down, 
(2)  T  acting  up  at  the  rim. 

The  first  set  are  equivalent  to  the  second.     Hence, 

resolving  vertical ly ,  ma  =  mg-T' 

taking  moments  round  the  centre,  ̂ mr'^u)  =  Tr 

whence  {g-a)r=  -r^Co = -^a  ; .*.  %a  =  1g, 

2 
«  =  3^, 

and  T  =  -m^. o 

Example  II.  A  sphere  of  radius  r  rolls  down  a  fixed  sphere  of  radius 
Rfrom  the  highest  point.     Determine  where  it  will  leave  the  sphere. 

Here  the  centre  of  the  sphere  moves  along  a  circle  of  radius  R  +  r. 
The  case  is  therefore  similar  to  that  of  Examj^le  III  in  §  149. 

Hence  (see  figure  of  §  149) v2=^.0N. 

But  here,  by  the  equation  of  energy, 
1  12 

^iiP'  +  2  •  g^/ir^w^ = mg .  AN, 
or,  since  v=rw, 

a;2=^.^gr.AN=y^(R  +  r-0N), 

.-.  y(R  +  r-ON)  =  ON, 

ON  =  ̂J(R  +  r). 

■
}
■
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If  the  sphere  had  been  smooth,  so  that  there  would  have  been  no 
rolling,  it  would  have  left  the  lower  sphere  when  ON  =  §(R  +  r).  (See 
§  149.) 

Example  III.  A  mass  M  is  attached  to  a  pulley  which  is  supported 

by  strings  which  pass  round  a  differential  axle.  The  masses  and  gyra- 
tion radii  of  the  axle  and  pulley  are  respectively  Wj,  k^  ;  m^,  ko.  Deter- 

mine the  tnotion  and  the  tension  of  the  string. 

The  easiest  way  to  determine  the  motion  is  to  use  the  equation  of 
energy.  Let  u  denote  the  velocity  of  M,  Wj,  Wg^he  angular  velocities 
of  the  axle  and  pulley,  and  h  the  distance  fallen  through  from  rest. 

Then  Kinetic  energy  =  work  done  by  gravity, 

.  •.  ̂(M  +  m^)u^  +  hn^k^u,^^  +  \mjc^^i.)^^  =  (M  +  m^)gh. J,  A  'A 
It  is  now  necessary  to  find  the  connection  between  ii,  Wj,  (a^. 
Let  a,  b  denote  the  two  radii  of  the  axle  {a>b)  and  c  of  the  pulley. 

Then  in  one  second  the  string  has  been  lengthened  w^a  and  shortened 

Wi&,  i.e.  on  the  whole  lengthened  b)^{a-b).  Hence  the  pulley  falls 
^ajj(a  -  J)  in  a  second,  or 

u  =  ̂ (Oi{a-b). 

Again,  considering  the  motion  of  the  point  of  the  pulley  at  which 
the  string  is  running  on, 

U  +  Cb}^  =  03-^a, 
2a 

a-b' 

a  +  b 

a  -  b 
Hence 

This  gives  the  velocity  after  falling  any  distance  h.  Comparing  it 

with  the  formula  v^  =  1as^  it  follows  that  the  acceleration  is 

,*.  CW2=   tW-w, 

4A:2  '/a  +  bV-k^'^    ̂' 

Let  Ti.Tg  denote  the  tensions.    Then 

(M + m2)g  —  (Tj  +  Tg) = acceleration  of  mass, 
=  (hi +  1712)11, 

or  Ti  +  T2=(M  +  ?»2Xflr-w). 

Again  the  acceleration  of  the  rotation  of  the  pulley  gives 

^  m^2''u'^  =  {T,-T,)c. 
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But  cw2=  — ,w  always, ^    a-o 
a  +  6. 

^    a-h  ' 
Tc^    a  +  h  M  +  ?/?o 

Ti-T2  =  ̂  

{a-hf    ̂      \a-hj  c-     2 
From  these  two  equations  Tj  and  T2  may  be  found. 

EXAMPLES— XXL 

1.  A  cylinder  1  foot  long  and  6  inches  diameter  rolls  down  a  rough 
plane  of  1  in  10.  Find  its  velocity  after  rolling  down  20  feet.  Also 
find  the  least  coefficient  of  friction  that  it  may  roll  without  slipping. 

If  the  coefficient  of  friction  is  one -half  this,  find  the  velocity  in 
this  case. 

2.  A  rod  AB  4  feet  long  can  move  freely  round  a  pia  at  A  ;  it  is 
placed  with  B  vertically  above  A  and  let  go.  Find  the  velocity  of  B 
when  it  arrives  at  the  lowest  position. 

Also  find  in  that  case  the  pressure  on  the  pin. 
3.  A  sphere  is  projected  so  as  to  roll  up  a  rough  inclined  plane. 

Determine  how  far  it  will  rise. 

4.  Prove  that  the  kinetic  energy  stored  up  in  a  train  of  railway 
carriages  moving  with  velocity  v  is 

foot-pounds,  where  w  denotes  the  mass  of  the  wheels  and  axles,  W  the 
mass  of  the  rest  of  the  train  in  lbs. ,  a  denotes  the  radius  of  the  wheels, 

and  K  the  radius  of  gyration   of  a   pair  of  wheels  about   the  axis.  - 
Determine  the  acceleration  with  which  the  train  would  run  freely  down 
a  given  incline. 

5.  A  four-wheeled  waggon  weighs  \  ton  without  the  wheels  ;  each 
wheel  weighs  28  lbs.  and  is  similar  in  all  respects  to  the  fly-wheel  in 
question  6  of  Chapter  XX,  only  it  is  one-third  the  linear  dimensions  ; 
the  waggon  runs  down  an  inclined  plane  of  1  in  100.  Find  its  velocity 
after  travelling  300  yards. 

6.  A  homogeneous  sphere  is  rotating  about  a  horizontal  diameter 
and  is  gently  placed  on  a  rough  horizontal  plane,  the  coefficient  of 
friction  being  /t.     Determine  the  subsequent  motion. 

7.  Show  that  a  uniform  rod  of  mass  m  moving  in  any  manner  is  dy- 

namically  equivalent  to  the  system  of  three  particles  of  masses  — ,  — ,  -— - 
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placed  at  its  ends  and  centre  of  inertia  respectively,  and  connected  by 
stiff  weightless  wires. 

8.  If'you  try  to  spin  a  good  egg  on  the  table,  it  partly  comes  to  rest 
and  then  moves  on  again.     Why  is  this  ? 

9.  In  an  Atwood's  machine  the  wheel  consists  of  a  disc  8  oz. 
in  mass  ;  the  suspended  masses  are  63  and  65  oz.  Find  the  motion 
and  the  percentage  error  caused  by  neglecting  to  take  account  of  the 
inertia  of  the  wheel. 

10.  A  cylinder  has  a  string  wound  round  it  in  a  plane  through  its 
centre  perpendicular  to  its  axis,  and  one  end  of  the  string  is  held  fast 
while  the  cylinder  is  allowed  to  fall.  How  long  will  it  take  to  fall 
16  feet,  and  what  will  be  its  velocity  then  ?  Find  also  the  tension  of 
the  string. 

11.  In  the  preceding  case  determine  how  the  free  end  must  be  moved 
so  that  the  cylinder  neither  rises  nor  falls. 

12.  In  question  10  the  string  passes  over  a  pulley  without  mass 
and  is  fixed  to  a  body  of  the  same  mass  as  the  cylinder.  Determine 
the  motion. 

13.  A  uniform  thread  whose  mass  may  be  neglected  passes  over  a 
smooth  peg,  and  unwinds  itself  under  gravity  from  two  cylindrical 
reels  freely  suspended  by  the  thread.  Show  that  the  portion  of  string 
unwound  increases  with  uniform  acceleration 

Ii{a2  +  fc--=)  +  IK^  +  /fi2)' 
where  I,  a,  k  denote  moment  of  inertia,  radius,  and  radius  of  gyration 
of  a  reel.     Also  find  the  tension  of  the  string. 

14.  A  sphere  rolling  on  a  rough  horizontal  plane  witli  velocity  10 

feet  per  second  comes  to  the  foot  of  an  inclined  plane  (60°).  The 
impact  being  inelastic,  determine  how  far  the  sphere  will  rise  (1) 
supposing  the  inclined  plane  smooth,  (2)  with  coefficient  of  friction  4^. 

15.  A  cube  slips  down  a  rough  plane  inclined  at  15°  to  the  horizon  ; 

V3 
the  coefficient  of  friction  is  less  than  -^  tan  15° ;  it  suddenly  strikes 

against  a  pin  in  the  plane.    Determine  the  vertical  height  it  has  fallen 
through  when  the  cube  just  topples  over  the  pin. 

16.  A  sphere  (radius  r)  is  placed  at  the  highest  point  of  a  horizontal 
cylinder  (radius  R)  and  allowed  to  fall.  Determine  the  point  at  which 
it  will  leave  the  cylinder  (1)  when  the  cylinder  is  smooth,  (2)  perfectly 
rough. 

17.  A  sphere  rolls  down  the  inside  of  another  sphere  of  double  the 
radius,  starting  from  the  end  of  a  horizontal  diameter.  Find  the  pres- 

sure between  them  at  the  lowest  point. 
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18.  A  uniform  cube  is  free  to  turn  about  one  edge  which  is  hori- 
zontal. Find  the  length  of  the  edge  of  the  cube,  that  it  may  swing  to 

and  fro  in  1  second. 

19.  An  equilateral  triangle  is  suspended  from  one  angle.  Determine 
the  length  of  the  simple  equivalent  pendulum  when  it  vibrates  (1)  in 
its  plane,  (2)  about  a  line  parallel  to  its  base. 

20.  A  thin  spherical  vessel  contains  water  of  twice  its  mass  ;  it  is 
fastened  to  a  vertical  wire  and  oscillates  round  it.  Compare  the  times 
of  oscillation  when  the  water  is  (1)  frozen,  and  (2)  is  liquid. 

21.  If  the  vessel  in  the  preceding  question  were  fastened  to  a  fixed 
point  on  its  surface  and  oscillated  under  gravity,  determine  the  times 
of  vibration  under  similar  circumstances. 

22.  Four  equal  uniform  rods  are  jointed  to  form  a  square  ;  they  are 

held  with  one  diagonal  vertical,  the  lowest  corner  resting  on  a  table 
and  let  go.     Determine  the  velocity  with  which  the  opposite  angles 
strike  one  another. 

23.  A  uniform  rod  is  supported  by  two  vertical  strings  at  its  ends  ; 
one  is  suddenly  cut.     Find  the  change  in  the  tension  of  the  other. 

24.  Prove  that  the  horse-power  consumed  in  keeping  a  fly-wheel 

weighing  "VV  lbs.  rotating  with  r  revolutions  a  second  about  a  horizontal 
axis  by  means  of  a  couple  transmitted  by  the  axle  is  27rrW&  sin  0-^550, 
where  h  denotes  the  radius  of  the  axle  in  feet  and  0  is  the  angle  of 
friction. 

Prove  that,  if  left  to  itself,  the  wheel  will  come  to  rest  after 

revolutions  m  — — -. — -  seconds, gh  sin  0  gh  sin  0 

w*here  k  denotes  the  radius  of  gyration  of  the  wheel. 
25.  A  cone  is  fastened  by  its  vertex  to  a  vertical  wire,  and  oscillates 

about  its  axis  ;  it  makes  1 0  complete  vibrations  a  minute.  Find  the 
force  necessary  to  be  applied  at  the  ends  of  a  diameter  of  the  base  to 
twist  the  end  of  the  wire  through  a  right  angle,  having  given  mass 
t=6  lbs.    diameter  of  base  =  4  inches,  height  =  4  inches. 
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CHAPTER   XVI  (a) 

Central  Orbits 

155  a.  "We  shall  devote  this  chapter  to  the  consideration  of 
certain  interesting  and  important  cases  of  orbits  described  by 
particles  when  moving  under  forces  directed  to  fixed  points. 
The  general  question  presents  itself  under  two  aspects  :  (1)  to 
determine  the  law  of  force  required  to  make  a  particle  describe 
a  given  orbit ;  (2)  to  determine  the  orbit  when  it  moves  under 
given  forces.  The  most  important  and  the  simplest  of  sucb 
orbits  is  that  in  which  a  circle  is  described  under  the  action  of 
a  force  directed  to  its  centre.  The  solution  of  this  has  been 

given  in  Chap.  XVI.  The  velocity  is  constant  and  the 

acceleration  to  the  centre  v^ja^  where  v  denotes  the  velocity 
and  a  the  radius  ;  or  conversely  if  the  force  per  unit  mass  be 

F,  the  velocity  is   J{a¥),  and  the  period  27r  /^(a/F). 
But  a  circle  may  be  described  under  the  action  of  a  force 

to  a  point  which  is  not  the  centre. 

The  discussion  of  this  problem  will 
serve  as  an  example  of  the  problem 

under  the  first  aspect.  It  is  also  im- 
portant for  its  applications  to  problems 

which  follow. 

In  the  rest  of  this  chapter  the  word 

*'  force  "  will  be  used  shortly  for  "  force 
per  unit  mass."  It  is  the  same  as 
acceleration. 

1 55  h.     In  the  figure  let  C  be  the  centre  of  the  circle  of  which 

the  radius  is  a.     Let  O  be  the  centre  of  force  and  P  the  position 
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of  the  particle  at  any  instant  on  the  circle.  Then  if  v  denote  the 

velocity  at  P,  the  component  acceleration  along  PC  is  v^ja. 
But  this  is  equal  to  the  component  of  the  central  force  along 
PC,     If  this  central  force  be  denoted  by  F, 

FcosOPC  =  — . 
 * 

a 

Also  by  §  153 
OY  xv  =  const  =  h  (say), 

where  h  is  twice  the  rate  at  which  OP  is  sweeping  out  area. 
Now  OY  =  PN 

=  r  cos  OPC, -A 
**'^~PN 

r  cos  OPC 

''^"^^  ^^^Tpn^opc 

~  af^  cos3  OPC* 
This  may  be  expressed  otherwise,  for  since 

cos  OPC  =  g 

OP^.PQ^ 

It  is  to  be  noted  that  although  F  is  a  central  force,  its 

magnitude  does  not  depend  on  the  distance  of  P  from  0  alone, 
but  also  on  the  direction  of  OP. 

If  the  law  of  force  is  given  in  general  by 

F=  
>" 

then  ^  = 

PN2  cos  OPC 

> 
a 

and  the  velocity  at  any  point  is  given  by 
v^  =  aF  cos  OPC 

_  /^ 

PN2' 
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VW 

-    PN 

The  period  (T)  is  easily  found,  for  h  is  twice  the  rate  of  describ- 
ing the  area,  and  an  area  tra^  is  described  in  time  T. 

.-.  7ra2  =  j;i.T, 

.   T  =  ̂ ^ 

=  — T-.a. 

A  specially  interesting  case  is  when  the  centre  of  force  is  on 

the  circumference  of  the  circle.     Here  O'P  =  PQ  =  r,  and 

or  the  force  must  vary  sis  the  inverse  fifth  power  of  the 
distance.  In  this  case,  however,  it  is  to  be  noted  that  the 

particle  passes  through  0'  with  an  infinite  velocity,  while  the 
momentum  in  direction  CO'  remains  finite  and  in  the  same 

direction  after  the  particle  has  passed  through  0',  and  its 
velocity  again  become  finite.  It  follows  therefore  that  after 

passing  0'  the  particle  will  describe  an  equal  circle  touching 
the  original  orbit  at  0',  and  will  complete  the  original  circle 
only  after  passing  through  0'  the  second  time. 

Since  PN  =  rcosO'PP' 

2a' 

This  corresponds  to  the  energy  equation.      It  follows  that  if  the 
velocity  is  zero  at  a  distance  c  under  a  force  of  this  kind 

v^  =  A/j/r 

The  converse  of  the  preceding  theorems  are  not  necessarily 
true.  The  particle  will  only  describe  a  circle  under  the 
specified  force  if  it  be  properly  projected. 

155  c.  The  governing  condition  in  a  central  orbit  is  (§  153) 
that  the  rate  of  description  of  area  around  the  centre  of  force  is 
constant.  Now  if  any  plane  curve  be  projected  orthogonally 
on  a  second  plane,  inclined  at  an  angle  a  to  the  first,  the  ratio 
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of  any  area  of  the  projection  to  the  area  from  which  it  was 
projected  is  uniform  and  equal  to  cos  a.  If  then  a  point 
moves  on  any  curve  so  as  to  describe  equal  areas  in  equal  times 
round  a  fixed  point,  its  projection  will  do  the  same  round  the 
projection  of  the  fixed  point.  The  acceleration  and  the  velocity 
in  the  second  case  will  simply  be  the  components  in  the  new 
plane  of  the  corresponding  quantities  in  the  first.  As  the 
orthogonal  projection  of  a  circle  is  an  ellipse,  this  remark 
enables  us  to  solve  easily  the  problem  of  determining  the  law 
of  force  required  to  describe  an  ellipse  about  any  point  in  the 

plane  of  the  ellipse,  merely  by  projecting  the  case  of  circular 
,  motion    which    has  just    been    solved. 

We   shall,  however,  confine   our  atten- 
tion only   to    the  two   cases  when  the 

p'    centre  of    force   is    (1)   at    the    centre ; 

^^^^miTTT^A      (2)  at  a  focus. ^  165    d.     Ellipse  about    the  centre. — 
Here  the  original  orbit  must  be  a  circle 

'^         described  about  the  centre.     Let  AB'A' 

be  the  circle,  ABA'  the  ellipse  into  which  it  projects.     Let  P' 
be  any  point  on  the  circle  and  P  its  projection  on  the  ellipse. 

Then  if  F'  denote  the  force  in  the  circle 

and  F'  acts  along   P'C.     The   acceleration   of   P  will   be  the 

component  of  F'  along  PC,  that  is" "f=^.f' 
P'C 

r =  — r 

a 

=  fir  (say). 

Hence  the  force  must  vary  directly  as  the  distance.     Also 

_  2;r 
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Hence  the  periodic  time  is  independent  of  the  size  and  eccen- 
tricity of  the  ellipse. 

Draw  in  the  circle  CD'  perpendicular  to  CP'.  Then  the 
velocity  of  F  can  be  represented  by  CD'.  Hence  the  velocity 
of  P  is  given  by  CD,  the  projection  of  CD'.     That  is — 

CD   , 
v  =   .V 

CD' 
=  >.CD, 

where  CD  is  the  semi-diameter  in  the  ellipse  conjugate  to  CP. 
This  gives  a  complete  solution  of  the  problem. 
Conversely,  suppose  given  the  centre  of  force  (0),  the  value 

of  /x,  and  that  a  particle  is  projected  from  a  point  P  in  a  given 
direction  with  a  given  velocity  (v).  Draw  from  O  a  line  OD 
parallel  to  the  direction  of  projection,  and  of  such  a  length  that 

OD  =  Y/JfJ''.  Draw  the  ellipse  with  OP,  OD  for  conjugate 
diameters.  The  particle  will,  by  what  has  gone  before,  proceed 
to  describe  this  ellipse.  Hence  we  see  that  in  this  case,^whatever 
the  circumstances  of  projection,  the  orbit  will  be  an  ellipse 
when  the  force  varies  directly  as  the  distance  towards  the  centre 
of  the  force.  This  is  not  true,  however,  when  the  force  is 
repulsive.  In  this  case  it  is  clear  that  the  orbit  must  extend 
to  infinity.     It  will  be  shown  later  that  it  is  a  hyperbola, 

155  g.     Before  treating  the  case  of  an  ellipse  about  a  focus, 
it  will  be  necessary  to  consider  a  geometrical 
theorem. 

Let,  as  before,  AB'A'  be  a  circle,  and  K<^-  -  -  -3^!^^!\  r' 
ABA'  its  projection.  Let  a  be  the  angle  S^^?y^5^^^\ 
between  the  planes.  M^^^-'^?\ 

Take  SC  =  S'C  =  BB'  =  a  sin  a.  ^^^^^0 
Since  BB'2  =  CB'2  -  CB2  ^S^ 

=  a^  —  0-, 

it  follows  that  0,  0'  are  the  foci  of  the  ellipse. 
Let  P'  be  any  point  on  the  circle,  P  its  projection.  Join  SF, 

SP,  CP',  and  draw  SN  perpendicular  to  CF.  Also  let  PMF  be 

perpendicular  to  AA'. 
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Tlien  PP'  =  P'M  sin  a 
=  CF  sin  P'CM  sin  a 
=--a  sin  a  sin  P'CM 
=  SCsinSCN       • -SN. 

Thus  in  the  right-angled  triangles  SPP',  SNP',  SP'  is  common, 
and  SN  =  PP'.     Hence 

SP'N  =  P'SP 

and  P'N  =  SP. 

That  is,  the  projection  of  SP'  is  equal  to  P'N",  and  SN  is  the 
height  of  P'  above  P ;  also  CN  is  the  height  of  D'  above  D  if 
CD'  is  perpendicular  to  CP. 

155/     Ellipse  about  a  focus. — Here  the  case  to  be  projected 
is  the  circle  described  about  S,  in  which,  as  has  been  proved, 

17'  /^ 
P'N2  cos  SP'G' 

27r T'  =  ̂af 

Hence  projecting, 
P'N2 

F  =  F'  cos  P'SP 

^  cos  SP'C 
P'N"-^  cos  SP'C 

sp-^'
 

since  by  the  preceding  theorem  P'SP  =  SP'C  and  SP  =  P'N. 
Thus  the  force  must  vary  inversely  as  the  square  of  the  distance 
from  the  centre  of  force, 

T  =  T'  =  -?fa?, 

or  the  period  depends  only  on  the  length  of  the  major  axis. 

Draw  CD'  ̂ perpendicular  to  CP'.     The  velocity  v    is  along 
CD'.     Hence 

CD      , 

^  =  CD"^' 
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„     CD2     ixa 

/iSP.ST 
~a     SP2    ' 

and  S'P  =  2rt  -  r  where  SP  =  r, 

This  gives  the  velocity  at  any  point  of  the  orbit. 

Since  ̂ iv^  is  the  kinetic  energy  produced  by  a  force  fim/r^ 
acting  on  the  particle  from  a  certain  distance,  we  learn  incident- 

ally that  the  work  done  by  a  force  /i/r^  is  given  by 

-  +  const, 
r 

a  result  already  given  in  Ex.  50,  Chap.  I.     In  fact 

is  the  energy  equation. 
Since  v  =  0  if  r  be  put  =  2a,  it  follows  that  the  velocity  at 

any  point  is  that  due  to  a  fall  to  the  point  from  rest  from  a 
point  distant  from  the  focus  by  a  length  equal  to  the  major  axis 
of  the  ellipse. 

If  a  be  made  infinitely  great, 

r 

gives  the  velocity  at  P  of  a  particle  which  has  fallen  to  P  from 
an  infinite  distance.  If  v  be  greater  than  this  it  follows  that  P 
cannot  describe  an  elliptic  orbit,  for  it  will  pass  again  to  infinity. 
If  it  is  equal  to  this  the  orbit  will  be  an  ellipse  whose  other 
focus  is  at  an  infinite  distance — that  is,  it  will  be  a  parabola. 

155  r/.  The  methods  of  the  preceding  paragraphs  are  not 
applicfible  to  hyperbolic  orbits.  Parabolic  orbits  about  the  focus 
are  a  case  of  elliptic  orbits,  and  are  traced  when  the  velocity  of 
projection  is  that  due  to  a  fall  from  an  infinite  distance.  In  the 
case  of  hyperbolic  orbits  about  the  centre  it  is  clear  that  the 
force  must  be  repulsive  as  the  path  is  convex  to  the  centre.     It 

2  c 
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is  natural  to  suspect  from  analogy  that  tliis  orbit  requires  a 

repulsive  force  varying  as  the  distance.  In  the  case  of  hyjDer- 
bolic  orbits  about  a  focus  two  cases  occur.  To  describe  that 

branch  within  which  the  focus  in  question  lies,  that  is  the  path 
wliich  is  everywhere  concave  to  the  centre  of  force,  the  force 
must  be  attractive.  To  describe  that  branch  outside  the  focus, 

that  is  the  path  which  is  everywhere  convex  to  the  centre  of 
force,  the  force  must  be  repulsive.  We  have  seen  that  an  ellipse 
is  described  about  a  focus  when  the  force  is  attractive,  and  varies 

inversely  as  the  square  of  the  distance  provided  tlie  velocity  of 

projection  be  less  than  that  due  to  a  fall  from  infinity.  It  is 

then  natural  to  suspect  that  the  concave  branch  of  the  hyper- 
bola will  be  described  under  the  same  law  of  force  if  the  velocity 

of  projection  is  greater  than  that  due  to  a  fall  from  infinity,  and 
that  the  convex  branch  will  be  described  when  the  force  is 

repulsive  and  follows  the  same  law.  We  shall  prove  that  these 
suspicions  are  correct  by  considering  the  question  under  the 

second  of  the  two  aspects  referred  to  in  §  155  a,  and  by  deter- 
mining the  orbits  described  when  the  forces  are 

(1)  Repulsive  and  varying  as  the  distance. 
(2)  Attractive  and  inversely  as  the  square  of  the  distance. 
(3)  Repulsive  and  inversely  as  the  square  of  the  distance. 

155  ̂ z.     Force  repulsive  and  varying  as  the  distance  (jxr). — The 

work  done  under  a  force  of  this  kind  is  (§  97)  J/xr2  + const. 
Hence  the  energy  equation  gives 

where  c  is  of  the  dimeiision  of  a  length. 

[If  the  force  is  attractive     v^  =  /^(c^  -  r^)] 
But  pv  =  h 

.'.  iMp^{r^  ±  C^)  =^2^2  _  }^2^ 
But  this  is  the  relation  between  the  perpendicular  from  the 

centre  on  the  tangent  to  a  hyperbola  and  the  focal  distance  (r) 
of  its  point  of  contact  P.     For  if  CD  be  conjugate  to  CP 

p.QT>  =  ah and  CP2~CD2  =  r2~CD2  =  a2-62. 

Hence  f{r^±{a^-'b'^}  =  a%'^. Comparing,  it  follows  that  the  orbit  is  a  hyperbola  in  which 

a2  -  62  =  c2j  a2j2  _  Ji^jix^  and v'^  =  li.(^\ 
The  student  should  treat  the  case  of  the  attractive  force  in 

the  same  way. 

155  i.  Force  inversely  as  the  square  of  the  distance. — It  has 
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been  shown  in  §  155/  that  the  work  done  under  an  attractive 
force  of  this  kind  is 

II 

—  ±  const, 
r 

So  for  a  repulsive  force  the  work  done  is  of  the  same  form  with 
sign  changed.     Hence  the  energy  equation  gives 

Xv^  =  +  -  +  const. 
2  -  |.  - 

Therefore  for  an  attractive  force 

for  a  repulsive  force 

where  a  is  of  the  dimension  of  a  length. 
But  pv  =  h. 
Hence  for  an  attractive  force 

and  for  a  repulsive 

But 

gives  the  relation  between  the  perpendicular  from  the  focus  of 
an  ellipse  on  the  tangent  and  the  focal  distance  of  the  point  of 
contact ;  also 

j}2  ( _  _|.  _  J  =      and  »2  (   )  =  — 
•^  \r      aj      a*         ̂     \a     rj      a 

give  similar  relations  for  the  concave  and  convex  branches 
respectively  of  a  hyperbola.  These  statements  are  easily 

proved,  for  if  S,  S'  be  the  foci  and  SY,  S'Z  denote  the  per- 
pendiculars on  the  tangent  to  an  ellipse  or  hyperbola  at  a 

point  P, 

SY.S'Z=62 
SY     SP 

«.'(;. 

=3- 

-h'^i 

■■)■ 

4)- 

=  — 

a 
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Therefore  SY2~=62 

^S'P     62 
or 

 
V  —  =  — ar       a 

In  the  ellipse  S'P  +  r  =  2a. 

Hence  vH   )— —  • 
\r      a)       a 

In  the  hyperbola  for  the  branch  concave  to  S S'P-r  =  2a, 

and  rfi  {  -  +  -  )  =  —  • 
\r      a)       a 

In  the  hyperbola  for  the  branch  convex  to  S 

r  -  S'P  =  2rt 

and  «2|   )  =  —  • 
\a      r)      a 

The  first  case  belongs  to 

that  is  where  the  velocity  is  less  than  that  from  infinity.     The 
orbit  is  therefore  an  ellipse,  as  has  been  already  found. 

The  second  class  belongs  to v  — 

"^=^1+3- 
that  is  where  the  velocity  is  greater  than  that  from  infinity. 
The  orbit  is  therefore  the  branch  of  a  hyperbola  concave  to  the 
centre  of  force. 

The  third  case  belongs  to 

\a     r) 

that  is  where  the  force  is  repulsive.     The  orbit  is  therefore  the 
branch  of  a  hyperbola  convex  to  the  centre  of  force. 

155  Ic.  Any  point  in  a  central  orbit  at  which  the  particle 
is  moving  perpendicularly  to  the  central  force  is  called  an  apse, 
and  its  distance  from  the  centre  of  force  is  then  called  an 

apsidal  distance.     In  all  cases  where  the  force  depends  on  the 
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distance  alone  the  orbit  must  be  symmetrical  on  the  two  sides 
of  an  apse.  For  suppose  the  motion  of  the  particle  reversed 
when  it  comes  to  an  apse,  it  will  travel  back  over  its  former 
path  and  it  will  be  similar  to  that  which  it  would  have 
described  had  it  continued  in  its  original  direction  since  the 
forces  at  similar  points  are  alike.  After  leaving  one  apse  the 
particle  may,  or  may  not,  arrive  at  a  second  apse.  If  it  does 
the  orbit  is  symmetrical  about  this  also ;  consequently  after 
passing  this  second  apse  it  will  come  again  to  an  apse  of  the 
same  kind  as  the  first ;  and  so  on  alternately.  Consequently, 
although  an  orbit  may  have  several  apses  there  cannot  be 
more  than  two  values  of  the  apsidal  distance.  Thus,  in  the 

ellipse  about  the  centre  there  are  four  apses'  but  two  apsidal 
distances,  viz.  the  lengths  of  the  major  and  minor  semi-axes. 
In  the  ellipse  about  the  focus  there  are  two  apses  and  two 
apsidal  distances.  In  the  hyperbola  about  a  focus  (either 
attractive  or  repulsive)  there  is  only  one  apse  and  one  apsidal 
distance.  Another  instance  of  many  apses  and  two  apsidal 
distances  may  be  found  in  the  complicated  orbit  discussed 
in  §154. 

155?.  The  preceding  theorems  were  first  published  by  Newton 

in  1685,  and  more  fully  in  the  Principia^  in  the  succeeding 
year.  They  are  of  the  greatest  importance,  for  it  enabled  him 
to  practically  demonstrate  the  truth  of  the  law  of  gravitation. 
From  the  observed  motions  of  the  planets,  specially  of  Mars, 
Kepler  had  been  able  to  deduce  three  laws  which  have  since 
borne  his  name.     They  are  : — 

(1)  The  planets  describe  ellipses  round  the  sun  in  one  focus. 
(2)  The  line  joining  a  planet  to  the  sun  sweeps  over  equal 

areas  in  equal  times. 
(3)  The  squares  of  the  periodic  times  of  the  planets  are  as  the 

cubes  of  their  mean  distances  from  the  sun. 

Combining  these  laws  of  observation  with  the  results 
obtained  in  this  chapter,  we  deduce,  as  Newton  did,  the 
following  facts : — 

From  the  second  law  that  the  planets  are  acted  on  by  forces 
directed  to  the  sun. 

From  the  first,  that  the  force  varies  inversely  as  the  square 
of  the  distance. 

From  the  third,  that  the  same  cause  acts  on  each  planet  ;  in 

other  words  " /jl"  is  the  same  for  all  the  planets. 
'  Philosophioe  NcUuralis  Principia  MatJwincdica. 
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For  by  §155/ 

Hence,  as  T^/a^  is  the  same  for  all,  so  must  also  fx  be. 
Kepler's  laws  do  not  state  the  exact  truth.     They  are  true 

only  to  a  first  approximation,  and  this  for  three  reasons  : — 
(1)  The  planets  and  the  sun  not  being   exact  spheres,  the 

force  between  them  does  not  pass  exactly  through  their 
centres  of  inertia.  It  is  only,  however,  where  bodies  are 
comparatively  close,  as  in  the  case  of  the  earth  and  moon, 
that  this  produces  any  appreciable  effect. 

(2)  The  sun  and  planets  are  all  free,  the  sun  is  not  fixed. 
(3)  The   planets  also  act  on  each   other   and   disturb   each 

other's  motions  round  the  sun. 
155  m.  In  the  case  of  two  bodies,  say  a  planet  and  the  sun, 

moving  under  each  other's  attraction,  neither  can  be  considered 
a  fixed  point.  We  must  consider  the  modification  introduced 
by  this. 

We  can  regard  the  planets  and  the  sun  as  collected  at  their 
respective  centres  of  inertia.  Their  mutual  gravitation  produces 
a  stress  between  them  given  by 

/.E.S 

where  E,  S  are  the  masses  of  the  planet  and  the  sun,  r  the 
distance  between  them,  and/  the  force  between  two  unit  masses 
at  unit  distance  (Exs.  22-24,  Chap.  III.). 

This  mutual  stress  can  produce  no  motion  of  the  common 
centre  of  inertia.     The  bodies  will  therefore  move  in  relative 
motion  about  their  centre  of  inertia  as  if  it  were  fixed  ;  and  the 
force   on  either  will  therefore  always  pass  through  it.     They 
will  therefore  each  describe  equal  areas  in  equal  times  round  it. 
But  further,  if  the  masses  be  E  and  S,  r  the  distance  between 
them,  and  R  the  distance  of  say  E  from  the  centre  of  inertia 

R        S 

r  ~E  +  S* Hence  the  force  on  E  is 
E.S3    / 

,   (E  +  S)2R2* 
In  other  words,  it  varies  inversely  as  the  square  of  the 

distance  from  the  centre  of  inertia  G. 
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The  path  is,  therefore,  an  ellipse  about  G  in  the  focus.  So 
also  with  the  path  of  S.  This  being  proved,  it  is  now  easy  to 
deduce  further  that  the  motion  of  E  relative  to  S  is  that  described 

in  Kepler's  laws. 
Also  the  periodic  time  is 

SttE  +  Ss 

where  b  is  the  mean  distance  of  E  from  the  centre  of  inertia  of 
the  two. 

If  a  is  the  mean  distance  of  one  from  the  other 
aS  =  6(E  +  S) 

27r  3 

That  is  the  same  as  if  the  combined  mass  of  the  two  bodies 

were  condensed  at  the  centre  of  S  for  E's  motion,  and  at  the 

centre  of  E  for  the  motion  of  S.  Kepler's  third  law  is  there- 
fore not  exactly  true.  In  the  cases  to  which  it  refers,  however, 

the  ratio  E/S  is  extremely  small,  in  the  case  of  the  earth 
1  :  326,000.  The  largest  ratio  is  in  the  case  of  Jupiter,  viz. 
about  1  :  1050. 

EXAMPLES— XVI  (a). 

1.  A  number  of  particles  are  projected  from  the  same  point  P  with 
the  same  velocity,  and  are  subjected  to  the  same  force.  They  all 
move  in  ellipses  :  prove  that  the  rate  of  description  of  areas  is  greatest 
in  that  ellipse  which  has  its  centre  in  PS. 

2.  Prove  that  the  velocity  with  which  a  particle  must  be  projected 

upwards  from  the  earth's  surface  in  order  to  escape  from  the  earth's 
attraction  must  be  not  less  than  seven  miles  per  second. 

3.  The  period  of  the  moon  round  the  earth  is  27  J  days  nearly  ;  her 

mean  distance  from  the  centre  is  equal  to  sixty  times  the  earth's 
radius.  Calculate  approximately  the  value  of  gravity  at  the  earth's surface. 

4.  The  law  of  force  in  a  central  orbit  varies  inversely  as  the  square 
of  the  distance.  A  particle  is  projected  from  a  given  point  with  a 
gtven  velocity :  prove  that  the  periodic  time  is  independent  of  the 
direction. 

5.  In  what  ratio  would  the  earth's  orbital  velocity  have  to  be 
increased  in  order  that  it  might  escape  from  the  solar  system,  sup- 

posing its  actual  orbit  circular  ? 
6.  Supposing  a  cannon  ball  could  be  projected  horizontally  with  a 
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velocity  of  6  miles  per  second,  find  how  long  it  would  be  before  it 
returned  to  the  same  point,  and  the  greatest  distance  it  would  attain 
from  the  point  of  projection. 

7.  If  the  velocity  of  the  moon  were  suddenly  halved,  determine  the 
new  length  of  the  month. 

8.  Deimos  revolves  round  Mars  in  30^^  17"^  54s  at  a  mean  distance 
of  14,500  miles.  Hence  determine  the  ratio  of  the  mass  of  Iilars  to 
the  sun. 

Phobos  revolves  round  Mars  in  7^  39i"  14^.  What  is  his  mean 
distance  from  Mars  ? 

9.  Two  spherical  kilogram  masses  are  placed  in  space  at  a  distance 
of  5  cm.  from  one  another,  and  revolve  in  circles  round  one  another. 
How  long  do  they  take  to  make  a  complete  revolution  ?  (See  Ex. 
iii.  22.) 

10.  A  body  describes  a  circle  about  its  ce'ntre,  the  law  of  force 
being  that  of  the  inverse  square.  The  velocity  is  suddenly  increased 
in  the  ratio  of  \/S  :  \/2.     Determine  the  new  orbit. 

11.  Two  centres  of  force,  varying  as  the  distance,  of  equal  absolute 

intensity,  reside  in  the  foci  of  an  ellipse  :  prove  that  if  properly  pro- 
jected, a  particle  will  describe  the  ellipse  in  a  time  which  is  \/i  of  the 

period  about  either  centre  of  force  separately. 
12.  A  planet  moving  round  the  sun  in  an  ellipse  receives  at  a 

point  in  its  orbit  a  sudden  velocity  in  the  direction  of  the  normal  out- 
wards, which  transforms  its  orbit  into  a  parabola :  prove  that  this 

added  velocity  is  the  same  for  all  points  in  its  orbit. 
If  this  velocity  is  added  at  the  end  of  the  minor  axis,  prove  that 

the  axis  of  the  parabola  will  make  with  the  major  axia  of  the  ellipse 
an  angle  whose  sine  is  equal  to  the  eccentricity. 

13.  A  particle  describes  a  circle  (rad.  R)  round  a  centre  of  force 
varying  inversely  as  the  square  of  the  distance.  If  its  direction  of 
motion  be  altered  so  as  to  make  an  angle  j8  with  the  radius  to  the 
centre,  prove  that  the  apsidal  distances  are  R(lib  cos  /S).  Thence 
prove  that  the  eccentricity  is  cos  p. 

14.  Prove  that  in  a  nearly  circular  orbit  about  a  force  varying  in- 
versely as  the  square  of  the  distance,  if  the  intensity  of  the  central 

force  be  increased  by  l/7ith,  the  periodic  time  will  be  diminished  by 
2/71  of  its  amount,  n  being  large. 

15.  A  particle  revolves  in  an  ellipse  under  the  action  of  a  force  t^ 
the  centre.  When  the  particle  is  at  the  extremity  of  the  minor  axis, 
the  centre  of  force  is  suddenly  transferred  to  a  focus.  Show  that  the 
new  orbit  is  an  ellipse  whose  axes  bisect  tho  angles  between  the 
original  major  axis  and  the  focal  distance  at  the  instant. 

16.  Two   particles   describe  an   ellipse  and   a  confocal  hyperbola 
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respectively,  under  forces  in  the  centre  of  the  same  absolute  magnitude 
fi,  and  the  velocities  at  the  apses  are  the  same.  Show  that  the  velocity 
of  either  particle  at  a.  point  where  the  curves  intersect  is  6\/2yu,  where 

h  is  the  semi-minor  axis  of  the  ellipse. 
17.  Show  that  the  hodograph  of  a  circle  described  under  a  force  to 

a  point  on  the  circumference  is  a  parabola. 
18.  The  hodograph  of  a  particle  describing  an  ellipse  under  the 

action  of  a  force  to  the  centre  can  be  represented  by  the  ellipse  itself. 
19.  The  hodograph  of  a  particle  describing  an  ellipse  under  the 

action  of  a  force  to  the  focus  is  a  circle. 

20.  A  particle  is  describing  an  ellipse  under  the  action  of  a  force  to 
the  focus  ;  a  blow  is  given  to  it  and  the  subsequent  orbit  is  a  circle. 
Determine  the  magnitude  and  direction  of  the  blow. 

21.  A  particle  describes  a  hyperbola  under  a  repulsive  force  from 
the  centre.  Show  that  if  the  force  and  velocity  are  each  resolved  into 

two  components  parallel  to  the  asymptotes,  either  component  of  force 
varies  as  the  corresponding  component  of  velocity. 

Note  to  §  7 

Ballistic  Balance. — Actual  experiments  made  by  the  student 
himself  with  this   apparatus  are  so  valuable  in  making  him 
realise    the    fundamental    fact    of  . 

inertia  that  I  give  here  a  descrip- 
tion of  a  form  of  the  apparatus, 

which  I  have  found  very  useful, 
and  which  any  one  may  make  at 
the  cost  of  a  few  pence. 

For  the  carriers  take  two 

pieces  of  hard  wood  about  6"  x  4"  and  weighing  with  fittings 
exactly  1  lb.  or  -J  kilogram  each.  One  is  shown  in  perspective 
in  the  figure. 

A  is  a  small  ledge  screwed  on  to  prevent  the  weights 

placed  on  the  carrier  from  moving  when  the  collision  takes 

place. 
B  is  one  of  the  catches  ;  on  the  other  carrier  there  is  a 

notch  for  it  to  slip  into.  It  will  be  well  to  glue  on  the 
colliding  ends  of  the  carriers  a  piece  of  woollen  cloth. 

C  is  a  forked  piece  cut  from  a  brass  strip.  It  serves  as  the 

pointer. 
At  a,  6,  c  put  in  three  small  screw  eyes,  ah  being  parallel  to 

the  end  of  the  carrier,  c  in  the  middle  of  the  back,  and  all  three 

in  a  plane  parallel  to  the  top  of  the  carrier. 
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We  shall  denote  the  corresponding  screw  eyes  on  the  other 

carrier  by  a\  h',  c'.  On  a  large  hoard  (say  2'  and  1',  6"),  which  is 
to  be  fixed  to  the  ceiling  of  the  room,  and  from  which  the 
carriers  are  to  be  suspended,  put  in  screw  eyes  as  shown  in  the 

second  figure  at  1,  2,  3,  4,  etc.  The  distance  between  1  and  1' 
and  between  2  and  2'  must  be  the  same  as 
between  the  line  joining  ab  and  the  line 

joining  ab'  on  the  carriers  when  they  are 
in  contact.  This  is  to  ensure  the  plane 
of  the  suspensions  being  vertical  when  the 
carriers  collide.  For  the  same  reason  the  dis- 

tance between  12  and  34  must  be  the  same 
as  that  between  c  and  the  line  of  ab.  The 

line  ef  should  accurately  lie  midway  between 

the  parallels  3'1'13  and  4'2'24.  Small 
weights  should  be  suspended  from  e,  f  for  a  purpose  to  be 
described  below. 

Tie  one  end  of  a  long  string  to  say  1,  and  pass  the  other  end 
successively  through  the  screw  eyes  at  a2&13c4,  and  let  this 
end  be  brought  to  some  fixed  peg  or  hook  within  reach.  The 
carrier  is  now  suspended  from  the  ceiling.  By  slackening  or 
otherwise  the  free  end  the  carrier  can  easily  be  brought  to  any 
desired  height  above  the  flocr.  By  pressing  on  it  with  the  hand 
it  can  easily  be  brought  into  any  desired  position  as  the  string 
smoothly  slips  through  the  eyes.  The  other  carrier  is  suspended 

in  a  similar  way  to  1'2'3'4'.  Now  let  the  small  weights  from 
ef  hang  vertically."  Stretch  on  a  table  or  a  counter  below  the 
carriers  a  horizontal  wire,  so  as  to  just  touch  the  strings  sus- 

pending these  weights.  This  can  easily  be  done  by  fastening 
the  ends  and  stretching  the  wires  by  two  bridges  as  in  a  violin. 
This  wire  gives  the  direction  in  which  the  carriers  must  move. 
Pull  aside  the  suspended  weights  for  similar  use  on  a  future 
occasion. 

Take  two  pieces  of  cardboard  (each  about  1',  6"  X  2i")  and 
draw  on  them  a  scale  of  lengths  (say  a  centimeter  scale).  Punch 
holes  along  one  side  and  the  ends,  and  put  in  shoe-eyes  (any 
shoemaker  will  do  this).  Pass  small  wire  S-hooks  through  the 
top  holes  and  suspend  from  the  stretched  wire  fixed  as  above. 
Connect  the  end  holes  of  one  to  the  corresponding  holes  in  the 
other  card  by  elastic  strings.  Tie  a  piece  of  string  to  each  of 
the  other  ends. 

Adjust  the  carriers  so  that  their  pointers  straddle  over  the 
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wire  and  they  move  along  the  wire  without  touching  it.  While 
the  carriers  hang  in  contact  at  rest  adjust  the  card-scales  by  the 
strings,  so  that  their  zeros  are  just  under  the  pointers.  The 
elastic  strings  keep  them  tight  and  allow  each  to  be  adjusted. 
Tie  threads  to  the  back  eyes  {cc)  of  each  carrier,  pass  them 
through  screw  eyes  at  the  bridges,  or  other  support,  so  that  the 
threads  when  tight  are  in  the  same  vertical  plane  as  the 
stretched  wire.  Bring  their  ends  back  in  front  of  the  apparatus 

and  see  that  the  catches  on  the  carriers  act  properly.  "We  are now  in  a  position  to  make  an  observation. 
Place  given  masses  on  the  carriers,  remembering  to  take 

account  of  the  masses  of  the  carriers  themselves.  Place  the  two 

threads  on  the  table  under  the  first  finger  of  one  hand  and 
across  one  another.  With  the  other  hand  draw  each  thread 

tight  until  its  carrier  is  pulled  back  to  the  desired  points  on 
the  scale.  Lift  the  finger  suddenly  and  the  carriers  start 
simultaneously.  The  threads  are  so  light  that  they  slip  easily 
through  the  eyes  and  produce  no  appreciable  retardation. 

One  advantage  of  this  suspension  is  that,  although  the 
carriers  are  easily  put  out  of  adjustment,  they  can  be  brought 
back  again  immediately  ;  whereas,  with  separate  suspensions 
to  each  hook  it  is  very  difficult  to  adjust  accurately,  and  any 
extra  tensions  due  to  altering  the  masses  in  the  carriers  throw  it 
out,  and  another  troublesome  adjustment  is  required. 

Note  to  §  91 

The  essential  condition  in  constructions  involving  frame- 
works is  that  the  reactions  at  the  joints  shall  not  involve 

couples.  In  other  words  the  joints  shall  behave  practically 

as  if  the  ties  and  struts  at  any  point  of  the  system  are  con- 
nected by  a  single  pin.  The  reactions  are  in. general  very 

much  greater  than  the  weights  of  the  ties  or  struts,  so  that 
practically  the  latter  are  in  equilibrium  under  the  action  of 
force  at  their  ends  only.  These  two  forces,  therefore,  cannot 
balance  unless  they  each  act  along  the  strut  or  tie.  If  it  is 
necessary  to  take  into  consideration  the  weights  of  the  parts  of 
the  framework,  we  may  suppose  half  the  weight  of  any  part 
collected  at  each  end,  and  attached  to  pivots  binding  the  bars 
together.  This  will  produce  the  same  action  on  the  pivots  and 
other  connections  as  the  actual  weights  do.  The  problem  is 
thus  reduced  to  one  of  the  same  kind  as  when  the  bars  are 
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weightless.  As  graphical  methods  of  determining  stresses  are 
of  very  great  importance,  and  the  first  example  given  in  §  91  is 
perhaps  difficult,  the  easier  example  in  iii.  36  is  here  worked 
out. 

Draw  the  figure  to  the  scale  of  say  1  inch  per  foot.     The  reactions 
on  the  supports  at  A  and  B  are  each  1   ton  ;   at  A  the   forces   are 

parallel  to  DA,  AC,  CD.  Hence  CD 
represents  the  weight  of  1  ton,  and 
in  same  proportion  AC,  AD  the  other 
forces.  Tiie  scale  is,  therefore,  |  ton 

per  inch. 

Hence  stress  in  AC  is  —  =  3^  tons, 
o 

in  AD  is  x  =  2f  tons, o 

Draw  Kd,  Ac  j)arallel  to  DB,  cB. 

^"■Jf/  Clearly  Ac=:  AC,  and  the  sides  of  ACc 
!  are  parallel  to  the  forces  acting  at  C, 

^\«  i.e,  that  in  CB  =  that  AC  =  3J  tons. 
!  The  length  of  Cc  when  measured 

is  15*3  inches, 

.  •.  force  along  CD  =  weight  of  5'1  tons. 

So  also  D(f  is  the  resultant  offerees  in  AD,  BD.     It  is  3*1  tons,  as  it 
ought  to  be. 

As  an  example,  when  the  weights  are  supposed  to  be  too  large  to  be 

neglected,  let  us  take  the  same  framework  without  any  weight  sup- 

ported at  D,  and  the  weight  of  the  "bars"  to  be  4  lbs.  per  linear  foot. 
Thus  the  problem  is  the  same  as  if  we  had     • 

20  +  16  =  36  lbs.  at  A  and  B, 
20  +  20  +  6  =  46  at  C, 
16  +  16  +  6  =  38  at  D. 

The   pressure   on   the   wall   at   A   or   B    is    |(80  +  64  +  12)  =  78    lbs. 
The  former  two  (36  at  A  and  B)  only  increase  the  stress  on  the  walls 

and  do  not  affect  the  stresses  in  the  framework.     "We  have  then  to 
consider  only  a  pressure  78  -  36  =  42. 

In  the  figure  then,  now  CD  represents  42  lbs.,  and  the  scale  is  14  lbs, 

per  inch. 
Hence  stresses  in  AC,  CD  are  140  lbs.  and  112  lbs. 
At  C  we  have  an  applied  force  46  lbs.  down. 
Draw  Cc  down  and  equal  f^  inches. 
Then  the  forces  at  C  are  cA  +  AC  +  Ce  +  ec. 
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Tlie  force  along  the  tie  CD  is  therefore 

ec  =  Cc-Ce  =  U  {16-Z-ii)  =  169-2  \hs. 
The  actual  force  which  AC  produces  at  A  is  conijioundcd  of  the 

20  lbs.  which  is  half  the  weight  of  the  bar  applied  at  A  and  the 

force  CA.  Draw  A/  vertically  downwards  and  equal  to  20-r-14  =  lY 
inches.  The  force  which  the  rod  AC  exerts  at  C  is  then  proportional 

to  C/and  C/=ll-14  inches, 
.-.  force  =  ll'14xU='155-96  1bs. 

Addi-mon  to  §§  140,   141,   142 

140  a.  That  the  path  is  a  parabola  may  be  shown  as 
follows.  Whatever  the  velocity  of  projection  it  may  be 

regarded  as  being  produced  by 
a  fall  from  a  certain  height. 
Draw  a  horizontal  line,  XY,  at 

a  height  above  the  point  of 

projection  (0)  equal  to  this 
height.  Then  in  the  subsequent 
motion  the  velocity  at  any  point 
of  the  path  will  be  that  due 
to  a  fall  to  the  point  from  this 
horizontal  line.  At  some  point 

of  its  path  the  motion  will  be 
horizontal.  After       passing 

through  this  point  the  path  will 

clearly  be  similar  to  that  it  had  previously  traversed.  "We  may 
then  consider  the  particle  as  projected  horizontally  from  this 
point  with  the  velocity  due  to  a  fall  from  XY.  Let  A  be  the 
vertex  of  the  path.  The  horizontal  velocity  of  projection  is 

fj{2g ,  AX).      If  P  be  the  j)osition  t  seconds  later, 

PM  =  «V(2f/.AX) 

PN  =  fall  from  rest  from  AN  =  ̂gt^y 
.-.  PM2  =  4AX.PN, 

that  is,  the  path  is  a  parabola  in  which  the  line  XY  is  the 
directrix. 

Let  S  be  the  focus,  and  O  the  original  point  of  projection, 
OT  the  direction  of  projection,  V  the  velocity,  and  jS  the  angle 
OT  makes  with  the  vertical. 
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OT  bisects  SOY, •.  SOY 

SOL 

=  2/5, 

=  90  -  2/?. 

Also  AL  =  height  due  to  the  vertical  component of  the 

velocity 

V2C0S2/? 

^9 

The  range  is 
20L  = 

20S  cos  SOL 

2— sin2R 
9 

Since  SO  depends  only  on  the  velocity  of  projection  and  not 
on  the  direction,  the  range  is  clearly  greatest  when  OS  =  OL  or 
S  is  at  L.  In  this  case  OT  bisects  a  right  angle  and  the  angle 

of  projection  must  be  45° 



MISCELLANEOUS  EXAMPLES 

[Many  of  the  following  examples  require  a  knowledge  of  trigonometry 

for  their  8oh(iion.'[  • 

1.  Two  perfectly  elastic  balls  whose  masses  are  m,  m'  moving  in  the 
same  direction  strike  each  other.  If  the  hindmost  ball  is  reduced  to 

rest  by  the  blow,  show  that  its  velocity  must  have  been  more  than 
double  that  of  the  other. 

2.  Particles  are  placed  at  A,  B,  C,  and  the  centres  of  gravity  of  A,  B 
and  of  B,  C  are  known.     Show  how  to  determine  that  of  A  and  C. 

3.  A  heavy  particle  is  placed  at  a  distance  of  24  inches  from  a  point 
of  suspension.  At  what  distance  must  another  particle  treble  its  weight 
be  placed  so  that  when  connected  together  they  may  oscillate  in  1 

second,  the  length  of  the  second's  pendulum  being  taken  as  39*14 
inches. 

4.  A  right  cone  whose  vertical  angle  is  d  and  weight  W  is  placed 
with  its  vertex  on  a  smooth  horizontal  plane  and  slant  side  vertical. 
Show  that  a  couple  whose  arm  is  the  slant  side,  and  of  which  each 
force  is  §^V  sin  6,  will  keep  the  cone  in  equilibrium. 

5.  Find  the  centre  of  gravity  of  one  of  the  figures  formed  by 
dividing  an  equilateral  and  equiangular  hexagon  by  a  line  joining 
opposite  angular  points. 

6.  Two  forces  Pi,  Po  act  at  a  point.  Find  the  angle  between  their 

directions  that  the  magnitude  of  their  resultant  may  equal  the  arith- 
metical mean  between  them. 

7.  The  i-adii  of  two  spheres  are  r  and  ri,  and  their  densities  p  and 
Pi-  Find  the  condition  that  their  centre  of  gravity  may  lie  in  the 
point  of  contact  when  they  touch  each  other. 

8.  A,  B,  C  are  three  equal  spheres  whose  common  elasticity  is  \,  and 
whose  centres  are  in  a  straight  line  ;  B  and  C  are  contiguous  and  at 
rest ;  A,  moving  with  a  velocity  of  1  foot  |)er  second,  iinpiiigcs  upon 
B,  What  will  be  the  positions  and  velocities  of  the  spheres  one  second 
after  the  impact  ? 
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9.  Two  equal  weights  P  and  Q  are  connected  by  a  thread  ;  P  is 

placed  at  the  bottom  of  a  smooth  jjlane  of  30°  ;  the  thread  is  passed 
over  a  pulley  at  tlic  top  of  the  plane  and  Q  hangs  freely  at  its  extremity. 
Compare  the  time  in  which  P  will  be  drawn  to  the  top  with  the  time 
in  which  if  separated  from  Q  it  would  fall  down  the  plane. 

10.  Parallel  forces  act  at  the  corners  of  a  triangle,  eacli  force  being 
proportional  to  the  length  of  the  opposite  side.  Show  that  if  the 
forces  all  act  in  the  same  direction  their  resultant  passes  tlirough  the 
centre  of  tlie  circle  inscribed  in  the  triangle. 

11  Three  balls  of  equal  elasticity  and  ec^ual  radii,  the  masses  of 
whicli,  taken  in  order,  are  as  1  :  2  :  4,  rest  upon  a  smooth  table,  their 
centres  being  in  a  straight  line  ;  a  velocity  is  impressed  upon  the  first 
ball  so  as  to  cause  it  to  impinge  directly  upon  the  second.  Prove  that 
the  first  ball  will  bump  the  second  more  than  once  if  the  coefficient  of 
rebound  of  the  balls  be  less  than  ̂ . 

12.  ABCDEF  is  a  regular  hexagon  formed  of  six  rods  jointed 
together ;  it  is  suspended  from  the  middle  point  of  AB,  and  AD,  BE 
are  connected  by  inextensible  strings.  Find  the  tension  of  these 
strings. 

13.  If  the  acceleration  of  a  falling  body  be  the  unit  of  acceleration, 
the  velocity  acquired  in  1  minute  the  unit  of  velocity,  and  the  unit 
of  mass  that  of  a  body  in  which  a  force  of  1  lb.  weight  would 
produce  an  acceleration  of  1  yard  per  minute  per  minute,  find  the 
unit  of  mass. 

14.  A  railway  train  of  mass  100  tons  is  moving  at  20  miles  per  hour. 

What  horse-power  would  be  required  to  impart  to  it  this  velocity  in 
five  minutes  from  starting,  in  addition  to  overcoming  the  resistances 
supposed  uniform  and  equal  to  12  lbs.  per  ton  ? 

15.  A  projectile  is  discharged  with  velocity  V  at  an  elevation  a,  and  n 
seconds  afterwards  another  is  discharged  after  it  so  as  to  strike  it. 

Prove  that,  if  V',  a'  be  its  velocity  and  elevation, 

2VV'  sin  {a-a')=n(V  cos  a  +  V'  cos  a')g'. 

16.  If  two  small  perfectly  ̂ elastic  balls  are  projected  at  the  same 

instant  with  velocities  which  are  as  2  tan ^  :  Vl  +  4  tan^ ^,  one  up  an 
inclined  plane  /3  and  the  other  in  the  same  vertical  plane  but  in  a 
direction  making  an  angle  6  with  the  plane  such  that  2  tan  6  =  cot  p, 
prove  that  they  will  return  to  the  point  of  projection  at  the  same 
instant. 

17.  Three  balls  A,  B,  C  of  masses  proportional  to  17,  1,  4  re- 
spectively are  lying  in  a  straight  line  on  a  smooth  horizontal  table. 

If  A  impinge  on  B  at  rest,  and  then  B  impinge  on  C  at  rest,  and  then 
B  recoils  and  meets  A  again,  prove  that  the  velocity  of  B  after 
im2>act  on  A  =  its  velocity  after  A  impinged  upon  it. 
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18.  One  end  of  a  string  I  feet  long  is  fastened  to  a  |X)iut  on  a  fixed 

smooth  vertical  i-od,  the  other  to  a  small  ring  of  mass  m  which  slides 

on  the  rod  ;  another  mass  m'  is  fastened  to  a  point  of  the  string  and 
revolves  with  uniform  velocity  v  in  a  horizontal  circle  so  that  the  two 
parts  of  the  string  make  angles  a  and  /3  with  the  rod  (a  above  /3). 

T>         . ,    .    «    (m  +  w')  tan  a  +  7n-  tan  /3 Prove  that  v^=- — rr-^   ik^9^' m  (cosec  a  +  cosec  p) 
19.  A  particle  is  projected  from  a  point  on  a  level  plain  at  the  foot 

of  a  hill,  with  a  velocity  u  parallel  to  the  hill  in  a  principal  plane 
and  strikes  the  hill  at  right  angles.  Find  the  distances  from  the  foot 
of  the  hill  of  the  point  of  projection  and  the  point  where  the  particle 
strikes. 

20.  Weights  W  +  w,  'W  +  2w,  W  +  Sw,  W  +  Aw  are  placed  at  the 
angular  points  of  a  square.  Prove  that  the  centre  of  gravity  of 
these  weights  is  distant  w/{2W  +  5w)  of  the  side  of  the  square  from 
its  centre. 

21.  A  ball  of  elasticity  e  is  projected  from  a  point  A  in  the  circum- 
ference of  a  circle,  and  after  impinging  at  three  points  on  the  circum- 
ference returns  to  A.     Show  that  the  four  tangents  of  incidence  are 

22.  Bodies  are  projected  vertically  downwards  from  heights  ̂ ^,  h»,  h^ 
with  velocities  v^,  v.^,  v^  respectively,  and  they  all  reach  the  ground  at 

the  same  moment.     Show  that  ̂ ~^— ^— -3=  ~ — ^ '^2-^3     ''s-^i     '^i-'^z 
23.  A  ball  falling  from  the  top  of  a  tower  had  descended  a  feet  when 

another  was  dropped  at  a  distance  b  feet  from  the  top  of  the  tower. 
Show  that,  if  they  reach  the  ground  together,  the  height  of  the  tower  is 

4a 

24.  A  particle  is  projected  horizontally  from  the  top  of  a  tower  64 
feet  high  with  a  velocity  of  50  feet  per  second.  Show  that  it  will  strike 
the  ground  after  2  seconds  at  a  distance  of  100  feet  from  the  foot  of 
the  tower  measured  horizontally,  with  a  velocity  of  64  feet  per  second, 
at  an  acute  angle  whose  tangent  is  f  |. 

25.  A  uniform  rod  CD  rests  over  the  rim  of  a  fixed  bowl  at  a 

point  A,  the  lower  end  C  of  the  rod  being  in  contact  with  the  inner 
surface  of  the  bowl ;  the  axis  of  the  bowl,  which  is  in  the  form  of  a 
segment  of  a  sphere  of  which  0  is  the  centre,  is  vertical.  If  2a  be  the 
length  of  the  rod,  and  r  the  radius  of  the  sphere,  prove  that  the 
position  of  the  rod  is  determined  by  the  equation  a  cos  0=2r  cos  (a  +  20), 
where  a,  </>  are  the  respective  inclinations  of  OA,  CD  to  the  horizon. 

26.  The  centre  of  gravity  of  three  thin  uniform  rods,  placed  end  to 
end  so  as  to  fonn  a  triangle,  is  at  the  centre  of  the  circle  inscribed  in 

2  D 
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the  triangle.     If  a,  h,  c  be  the  lengths  of  the  rods  and  X,  /*,  v  their 
respective  densities,  prove  that 

.  b+c-a    c+a-b    a+b-c 
A-.fjL-.vi:   :  —    :   . a  b  c 

27.  A  body  is  supported  on  a  rough  plane,  inclined  to  the  horizon 
at  an  angle  a,  by  a  force  acting  along  the  plane  in  a  direction  at  right 
angles   to  horizontal    lines  in   the    plane.      Supposing   the  greatest 
magnitude  of  the  force  to  be  n  times  its  least  magnitude,  prove  that 

n-1 
the  coefficient  of  friction  is = — v  tan  a. n  +  l 

28.  A  particle  descends  from  rest  through  a  certain  space  down  a 
rough  plane,  the  inclination,  of  which  is  a  and  of  which  the  co- 

efficient of  friction  is  tan  e  ;  it  is  then  projected  directly  up  the  plane 
with  a  velocity  equal  to  that  acquired  in  its  descent.  Prove  that  the 

ratio  of  its  greatest  ascent  to  that  of  its  descent  =  sin  (a  -  e) :  sin  (a  +  e). 
29.  A  body  is  projected  at  an  angle  a  to  the  horizon,  so  as  just  to 

clear  the  summits  of  two  vertical  posts  of  equal  height  a,  at  a  distance 
h  from  one  another,  the  point  of  projection  being  in  the  horizontal 
line  through  the  lower  ends  of  the  posts.  Prove  that  the  horizontal 

range  of  the  body  =  2a  cot  a  +  (4a^  cot^  a  +  J^)*- 
30.  A  particle  is  projected  at  an  angle  a  to  the  horizon  from  a 

point  in  a  horizontal  plane.  Prove  that  when  it  arrives  again  at  the 
horizontal  plane  its  distance  from  the  point  of  projection  is  greater 
than  at  any  preceding  moment,  provided  that  cot  a  is  greater  than a 

the  least  value  of  cos  d  tan  -. 

31.  A  man,  who  has  just  dined  at  an  hotel,  stands  on  the  floor  of 
the  lift,  which  is  descending  with  an  acceleration/;  his  feet  press 
the  floor  with  a  force  equal  to  his  weight  just  before  dinner.  Supposing 
W  to  have  been  liis  weight  before  he  had  dined,  find  the  weight  of 
what  he  has  consumed. 

32.  A  ball,  of  w'hich  e  is  the  modulus  of  elasticity,  after  dropping 
through  a  height  h,  strikes  at  a  point  A  a  plane  inclined  to  the  horizon 
at  an  angle  a,  and  afterwards  passes  through  a  point  B  in  a  horizontal 
line  through  A.  Find  the  time  of  moving  from  A  to  B,  and  show 

that  the  problem  is  impossible  if  e  <  tan^^a. 
33.  A  square  picture-frame  is  suspended  by  a  string  attached  to  a 

point  whose  distance  from  the  nearest  corner  is  one-third  the  side  of 
the  square.     Find  the  stresses  at  the  joints. 

34.  Three  equal  and  equally  elastic  balls  start  simultaneously  from 
three  corners  of  a  square  in  the  direction  of  the  centre  with  the  same 
velocity.  Find  the  motion  of  eacl>  after  impact,  and  show  that,  if  one 
ball  be  reduced  to  rest,  the  elasticity  must  be  perfect. 

35.  If  a  ball  after  falling  freely  under  the  action  of  gravity  for  1 
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second  is  brought  to  rest  with  uniform  acceleration  in  the  space  of  1 
inch,  how  long  will  this  take  ? 

36.  A  heavy  sphere  rests  on  three  pegs  A,  B,  C  situated  in  one 
horizontal  plane.  Prove  that  if  P,  Q,  K  be  the  pressures  on  the  pegs 
A,  B,  C  respectively, 

P  :  Q  :  R  : :  area  BOG  :  area  COA  :  area  AOB, 

where  0  is  the  centre  of  the  circle  circumscribing  the  triangle  ABC. 
37.  A  uniform  sphere  rests  upon  three  equal  spheres  of  the  same 

material  placed  in  contact  upon  a  rough  horizontal  plane.  Prove 
that  the  lower  spheres  will  just  begin  to  slide  if  the  coefficient  of 
friction  between  the  spheres  and  the  plane  is  given  by 

fi{b^  +  3a3)  {(362  +  6^6  -  a^)^  +  {a  +  b)s/B}  =  2ab^, 
where  a  is  the  radius  of  one  of  the  lower  spheres,  and  h  is  the  radius 
of  the  upper  sphere. 

38.  A  uniform  circular  disc,  whose  weight  is  lo  and  radius  a,  is 
suspended  by  three  vertical  strings  attached  to  three  points  on  the 
circumference  separated  by  equal  intervals  ;  a  weight  W  may  be  put 
down  anywhere  within  a  concentric  circle  of  radius  ma.  Prove 
that  the  strings  will  not  break  if  they  can  support  a  tension 
=  ̂ (2mW  +  W  +  M;). 

39.  A  bowler  at  cricket  delivers  the  ball  at  a  height  of  6  feet 
above  the  ground  ;  the  ball  reaches  a  height  of  10  feet  and  it  strikes 
the  foot  of  the  stumps  at  a  distance  22  yards.  Find  the  velocity  of 
delivery  in  miles  per  hour. 

40.  A  particle  placed  at  the  centre  0  of  a  circle  is  acted  on  by 
forces  P,  Q,  R  in  the  directions  OA,  OB,  OC,  where  A,  B,  C  are  the 
angular  points  of  a  triangle  circumscribed  about  the  circle.  Prove 
that  if  the  particle  be  in  equilibrium, 

P2:Q2:R2::a(6  +  c-a):&(c  +  a-&):c{a  +  &-c),    * 
where  a,  b,  c  are  the  sides  of  the  triangle. 

41.  The  moon's  distance  from  the  earth  is  about  239,000  miles, 
and  she  revolves  once  round  the  earth  in  about  27  ̂   days.  Find 
her  acceleration  relatively  to  the  earth  with  feet  and  seconds  as 
units. 

42.  Three  equal  uniform  rods  of  equal  weight  are  jointed  together 
to  form  an  equilateral  triangle,  which  is  suspended  from  the  middle 
point  of  a  side.  Show  that  the  action  at  one  of  the  upper  joints  is 
V13  times  that  at  the  lower  joint. 

43.  Two  equal  particles  are  connected  by  a  string  and  movable  in 
a  smooth  vertical  circular  tube,  the  string  lying  in  the  tube  and 

subtending  an  angle  2  tan~*2  at  the  centre  ;  the  particles  are  just 
disturbed  from  the  position  of  equilibrium.  Show  that  the  pressure 
between  one  particle  and  the  tube  changes  sign  when  the  radius  to 
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the  middle  point  of  the  string  makes  an  angle  2  tan"^^  with  the vertical. 

44.  Two  inelastic  spheres  m,  m'  are  in  contact,  and  m  receives  a 
blow  through  its  centre  in  a  direction  making  an  angle  a  with  the 
line  of  centres.  Show  that  the  kinetic  energy  generated  is  less  than 

if  m  had  been  free  in  the  ratio  of  m  +  m'  sin^  a:m  +  m'. 
45.  Three  equal  balls  are  placed  in  contact  on  a  smooth  horizontal 

table  ;  let  A,  B,  C  be  their  centres,  AD  is  the  perpendicular  to  BC,  A 
is  withdrawn  to  a  point  in  DA  produced  and  projected  in  the  direction 
AD.  Show  that  (1)  if  the  balls  be  perfectly  elastic,  A  will  move  back 

with  one-fifth  of  its  original  velocity  ;  and  (2)  that  if  they  be  perfectly 
inelastic,  the  three  will  be  in  a  straight  line  when  A  has-  described 
after  impact  a  distance  ten  times  AD. 

46  A  jncture  is  hung  by  a  single  string  of  length  I  which  passes 

through  two  rings  (supposed  smooth)  at  a  distance  a  apart  symmetri- 
cally attached  to  it ;  the  ends  of  the  string  are  fastened  to  rings  which 

can  slide  along  a  horizontal  rod  at  the  top  of  the  room.  Show  that  the 
greatest  distance  which  these  rings  can  be  apart  on  the  rod  is 

a  +  {l-a)  sin  X,  where  \  is  the  angle  of  fiiction. 
47.  A  uniform  rod  of  weight  W  rests  rn  a  limiting  position  of 

equilibrium  in  a  vertical  plane  ;  one  end  rests  on  a  rough  horizontal 
plane  and  the  other  on  an  equally  rough  plane  inclined  at  an  angle  a 
to  the  horizon.  If  tan  X  be  the  coefficient  of  friction  and  d  the  inclina- 

tion of  the  rod  to  the  horizon,  prove  that  tan^  =  ̂    .    }  .    , — —^,,  and 
2  sm  X  sin  (a  -  X) 

find  the  normal  pressure  on  the  inclined  plane. 
48.  A  particle  is  projected  in  a  vertical  plane  perpendicular  to  the 

line  of  intersection  of  a  given  inclined  plane  with  the  horizontal  plane 
through  Ijhe  point  of  projection.  Find  the  range  on  the  given  inclined 

plane,  measured  from  this  line  of  intersection.  If  the  angle  of  pro- 
jection be  equal  to  the  inclination  to  the  horizon  of  the  inclined 

plane,  prove  that  the   range  is  a  j    j^  —  tan  a  -  sec  a  |- ,   u   being 
the  velocity,   a  the  angle  of  projection,  and  a  the  distance  of  the 
point  of  projection  from  the  above  line  of  intersection. 

49.  A  heavy  semicircular  disc  is  in  equilibrium  in  a  vertical  plane, 
with  its  straight  edge  supported  by  a  peg,  and  its  curved  edge  resting 
against  a  vertical  wall,  the  wall  and  peg  being  smooth  ;  a  weight  is 

hung  from  the  lower  corner  of  the  disc,  and  the  jieg  occupies  the  ])osi- 
tion  required  for  equilibrium  if  the  disc  were  without  weight.  Show 
that  if  the  straight  edge  be  inclined  at  an  angle  a  to  the  horizontal, 

1  +  tan  (tan  a)  =  0. 

50.  In  a  tunnel  the  sparks  from  the  chimuey  of  the  engine  of  a  train 
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are  noticed  to  pass  the  carriage  windows,  making  an  angle  tan-^|  with 
the  horizon,  and  they  are  known  to  have  fallen  4  feet  from  rest. 
Assuming  that  they  move  in  vertical  lines  and  that  the  eflfect  of  the  air 
may  be  neglected,  find  the  speed  of  the  train. 

51.  In  the  system  of  pulleys  in  which  only  one  string  is  employed, 

if  a  weight  of  mass  m  be  more  than  is  necessary  to  lift  a'wcight  of  mass 
M,  and  the  system  be  left  to  itsejf,  find  the  accelerations  of  m 
and  M. 

52.  A  square  lamina  in  a  vertical  plane  is  resting  on  an  inclined 
plane  and  is  acted  on  by  a  force  parallel  to  the  plane  and  acting  down 
it,  whose  point  of  application  is  one  of  the  upper  angular  points.  Show 
that  the  lamina  will  turn  over  before  it  slides  if /A>i(l  +  tana),  where 
a  is  the  angle  of  the  plane. 

53.  The  time  of  quickest  descent  from  a  vertical  circle,  radius  5,  to 
another  fixed  vertical  circle  in  the  same  plane,  radius  a,  is  constant  and 
equal  to  T.  Show  that  the  locus  of  the  centre  of  the  first  vertical 

circle  is  a  circle  whose  radius  =  a  +  h  +  Igl^. 
54.  A  triangular  lamina  ABC  hangs  at  rest  from  the  point  A.  If 

AB  =  <!,  A.C  =  h,  and  A  represent  the  area  of  the  lamina,  prove  that  the. 4  a 

tangent  of  the  inclination  of  EC  to  the  vertical =p—^. 

55.  A  given  rectangular  plank  is  placed  upon  a  smooth  inclined 
plane  so  that  its  two  ends  are  horizontal ;  a  given  insect  is  placed  upon 
the  plank  at  the  middle  point  of  its  lower  end.  Supposing  the  insect 
to  start  off  at  once  up  the  middle  line  of  the  plank  and  that  the  plank 
moves  with  a  given  uniform  acceleration,  find  how  long  it  will  take  the 
insect  to  reach  the  upper  end  of  the  plank. 

56.  AB,  BC,  CD  are  equal  rods  jointed  at  B,  C  ;  A  and  D  rest  on  a 
horizontal  plane,  and  B  and  C  are  joined  to  the  middle  points  of  CD 
and  AB  by  equal  strings  of  such  a  length  that  the  angles  at  B  and 

C  are  each  120°.     Show  that  the  action  at  B  on  BC  makes  an  angle /  10\ 

tan-^  (  ~/^  )  with  the  vertical. 
57.  A  rectangular  frame  ABCD  consists  of  four  bars  without  weight 

freely  jointed,  the  bar  AD  being  held  fast  in  a  vertical  position.  If 
the  weight  W  is  placed  on  the  upper  horizontal  bar  AB  at  a  given 
point  and  the  frame  is  kept  in  a  rectangular  form  by  a  diagonal  string 
AC,  find  the  tension  of  the  string.  Show  that  this  tension  is  unaltered 
if  the  weight  be  placed  on  the  lower  bar  CD  vertically  under  its  former 

position. 
58.  A  rough  circular  cylinder  of  weight  W  lies  with  its  axis  hori- 

zontal on  a  plane  whose  inclination  to  the  horizon  is  a,  while  a  man  of 
weight  W  stands  with  his  body  vertical  upon  the  cylinder  and  keeps 

it  at  rest.     If  the  man's  feet  are  at  A,  and  a  vertical  section  through 
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A  touch  the  plane  iu  B  and  the  friction  be  sufficient  to  prevent  sliding, 
then  the  angle  6  subtended  by  AB  at  the  centre  of  the  section  will  be 

,     sin(^  +  a)     -     W 
given  by  — ^   =  1  +  ;r^. ^  -^      sina  W 

59.  A  weight  Wi  is  placed  on  a  rough  table  and  has  tied  to  it  a  light 
string  which  hangs  over  the  edge  and  supports  a  pulley  whose  weight  is 

"^^2  ;  round  this  pulley  hangs  another  light  string  which  has  attached 
to  it  two  equal  weights  W3,  W4.  Find  the  accelerations  of  the  different 
parts  of  the  system.  Find  also  the  relation  between  the  weights  and 
the  coefficient  of  friction  that  Wi  may  just  remain  at  rest. 

60.  A  mass  of  1  gram  vibrates  through  a  millimeter  on  each  side  of 
its  middle  position  256  times  per  second.  Assuming  the  motion  to  be 
simple  harmonic,  find  the  maximum  force  upon  the  particle  in  grams 

weight,  taking  g'=981  centimeters  per  second  per  second. 
61.  A  man  wishes  to  overturn  an  upright  cylinder  standing  on  a 

horizontal  plane  by  means  of  a  tension  exerted  along  a  string  attached 
to  a  point  of  the  cylinder,  and  passing  through  a  smooth  ring  which  is 
fixed  at  height  h  above  the  horizontal  plane,  and  at  a  horizontal  distance 
a  from  the  cylinder.  If  the  magnitude  of  the  tension  be  the  least 
possible,  prove  that  the  point  of  the  cylinder  to  which  the  string  is 

attached  is  at  a  height  {a?  +  &2)yj  above  the  horizontal  plane. 
62.  A  particle  is  projected  from  the  lowest  point  0  of  a  hollow 

sphere  in  such  a  direction  and  with  such  velocity  that  it  strikes  the 
sphere  at  right  angles  at  some  point  P.  If  a,  6  be  the  angles  which 
the  direction  of  projection  and  the  line  OP  respectively  make  with  the 
horizontal,  show  that  tan  a  =  cot  6  +  2  tan  6. 

63.  Show  that  the  dift*eren.ce  in  the  apparent  weights  of  a  lb. 
carried  in  a  train  moving  at  the  rate  of  60  miles  per  hour,  fii-st  west 
and  then  east,  along  the  circle  of  latitude  cos-^j^^  is  about  5  grains 
weight ;  the  earth  is  to  be  considered  spherical,  and  its  attraction  on 
the  mass  of  a  lb.  to  be  32  British  absolute  units  of  force. 

64.  Four  rods  are  hinged  at  the  angular  points  so  as  to  form  a  par- 
allelogram ABCD,  whose  sides  are  in  the  ratio  of  7:1.  A  and  C  are 

joined  by  a  string  of  such  a  length  that  the  frame  forms  a  rectangle 
which  is  hung  up  by  the  angle  A.  Show  that  if  W  be  the  weight  of 
the  frame,  the  tension  of  the  string  is  ̂ W  while  the  action  at  each  of 

the  hinges  at  B,  D'is  7W/160.  If  the  frame  were  hung  up  by  the  angle 
B,  what  would  the  tension  of  the  string  be  ? 

65.  Any  triangular  lamina  ABC  has  the  angular  point  C  fixed,  and 
is  capable  of  free  motion  about  it ;  a  blow  is  struck  at  B  perpendicular 
to  the  plane  of  the  triangle.  Show  that  the  instantaneous  axis  is  that 
trisector  of  the  side  AB  which  is  farthest  from  B. 

QQ.  Six  thin  uniform  rods  of  equal  length  and  each  of  weight  W 
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are  connected  by  smooth  hinge  joints  at  their  extremities  so  as  to  c  on- 
stitute  the  six  edges  of  a  regular  tetrahedron  ;  one  face  of  the  tetra- 

hedron rests  on  a  smooth  horizontal  plane.  Prove  that  the  longitudinal 
strain  of  each  of  the  rods  at  the  base  is  W/2n/6. 

67.  A  smooth  circular  tube  of  mass  M  has  placed  within  it  two  equal 

particles  of  mass  m,  which  are  connected  by  an  elastic  string  whose 
natural  length  is  two  -  thirds  of  the  circumference  ;  the  string  is 
stretched  until  the  particles  are  in  contact,  and  the  tube  is  placed  flat 
on  a  smooth  horizontal  table  and  left  to  itself.  Show  that  when  the 

string  arrives  at  its  natural  length  the  actual  energy  of  the  two  par- 
ticles is  to  the  work  done  in  stretching  the  string  as 

2(M.^  +  Um  +  7nP)  :  (M  +  2m)(2M  +  m). 
68.  A  ladder  AB  rests  against  a  smooth  wall  at  B,  and  on  a  rough 

horizontal  plane  at  A ;  -a  man  whose  weight  is  equal  to  that  of  the 
ladder  climbs  up  it.  Prove  that  the  frictions  at  A  in  the  two  extreme 
cases  in  which  the  man  is  at  the  two  ends  of  the  ladder  are  in  the 

ratio  of  3  :  1.  Consider  the  case  when  the  weight  of  the  ladder  can 
be  neglected  in  comparison  with  that  of  the  man. 

69.  Two  buckets  "W  and  W  are  suspended  by  a  fine  inelastic  string 
placed  over  a  fixed  pulley  ;  at  the  centre  of  the  base  of  W  a  frog  of 
weight  w  is  sitting  ;  at  an  instant  of  instantaneous  rest  of  the  buckets 
the  frog  leaps  vertically  upwards  so  as  to  just  arrive  at  the  level  of  the 
rim  of  the  bucket.  Show  that  the  ratio  of  the  absolute  length  of  the 

frog's  vertical  ascent  in  space  to  the  depth  h  of  the  bucket  is  as 
2W'(W  + W)  :  {W  +  W  +  wf,  and  that  the  time  which  elapses  before 

the  frog  again  arrives  at  the  base  of  the  bucket =2  \/  -(  —^, —  )• 

70.  A  smooth  heavy  particle  is  projected  from  the  lowest  point  of 
a  fixed  circular  arc,  whose  plane  is  vertical,  up  the  curve,  with  a  velocity 
due  to  the  diameter.  Prove  that  if  the  length  of  the  arc  be  such  that 
the  range  of  the  particle  on  the  horizontal  plane  through  the  point 

of  projection  is  the  greatest  possible,  this  range  =  av9  +  6V3,  where 
a  =  radius  of  the  arc. 

71.  A  particle  is  suspended  by  three  equal  strings  of  length  a  from 
three  points  forming  an  equilateral  triangle  of  side  2b  in  a  horizontal 

plane.  If  one  string  be  cut,  the  tension  of  each  of  the  other  strings  is 
instantaneously  changed  in  the  ratio  of  Ba^  -  ib^  :  2{a^  -  b-). 

72.  Two  rods  AB,  BC  of  equal  weight  but  of  unequal  lengths  are 
hinged  together  at  B  and  their  other  extremities  are  attached  to  two 
fixed  hinges  A  and  C  in  the  same  vertical  line.  Prove  that  the 
direction  of  the  reaction  at  B  bisects  the  straight  line  AC. 

73.  Three  equal  weights  are  attached  to  a  string  of  length  4«,  one 
at  its  middle  point  and  the  others  half  way  between  it  and  the  ex- 
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tremities,  which  are  attached  to  two  points  A,  B  in  a  horizontal  line  at 
a  distance  a{\/3  + 1)  from  each  other.  Find  the  position  of  equilibrium. 

74.  An  elastic  string  of  length  a  has  a  heavy  particle  of  weight  W 
attached  to  one  end,  and  the  other  end  is  fastened  to  a  peg  at  a  height 
h  from  the  ground ;  the  particle  is  dropped  from  the  peg  and  in  its 
fall  breaks  the  string  and  reaches  the  ground  with  (l/?i)th  of  the  velocity 
that  it  would  have  had  if  free.  If  W  be  the  greatest  weight  which 
similarly  dropped  would  not  break  the  string  and  if  T  be  the  breaking 

tension,  show  that 
T      W 

(-^0' 

75.  The  hind-wheel  of  a  carriage  has  a  radius  =  5,  and  the  fore- 
wheel  a  radius  =  a,  and  the  horizontal  distances  between  the  centres 

=  c  ;  a  particle  of  mud  leaves  the  highest  point  of  the  hind-wheel  and 
strikes  the  fore-wlteel  at  the  extremity  of  a  horizontal  diameter.  Show 
that  the  rate  of  travelling 

:(C. 

«)\/^ 

2(26 -a)* 
76.  A  railway  train  is  running  smoothly  along  a  curve  at  the  rate 

of  60  miles  an  hour,  and  in  one  of  the  cars  a  pendulum  which  would 
ordinarily  oscillate  seconds  is  observed  to  oscillate  121  times  in  two 

minutes.     Show  that  the  radius  of  the  curve  is  =  2^  furlongs  nearly. 
77.  Equal  rods  AB,  BC  are  jointed  at  B,  and  AC  is  a  string  of  such 

length  that  ABC  is  a  right  angle  ;  A  is  a  given  fixed  hinge  about 
which  the  whole  can  turn,  and  C  rests  on  a  given  horizontal  table. 
Find  the  action  of  the  joint  B  and  the  tension  of  the  string. 

78.  A  ball  moving  on  a  smooth  horizontal  plane  impinges  in 
succession  on  two  vertical  planes  of  the  same  material  which  are  at 
right  angles  to  each  other.  Show  that  the  directions  of  motion  before 
the  first  impact  and  after  the  second  impact  are  parallel. 

79.  Two  small  smooth  unequal  spheres  are  placed  in  a  fixed  hemi- 
splierical  bowl.  When  in  equilibrium  under  the  action  of  gravity, 
find  the  inclination  to  the  horizon  of  the  line  joining  their  centres. 

80.  A  uniform  beam  of  length  2a  rests  in  a  horizontal  position  on 
two  props  ;  the  equilibrium  is  just  on  the  point  of  being  disturbed, 
(1)  if  a  weight  P  is  suspended  from  either  end  of  the  beam,  (2)  if  a 

weight  "W  is  suspended  from  the  middle  point  and  a  weight  Q  from 
either  end.  Determine  the  weight  of  the  beam  and  the  distance  of 
the  props  from  its  extremities, 

81.  Two  unequal  rods  AC,  BC  hinged  at  C,  rest  in  a  vertical  plane 
with  their  extremities  on  a  smooth  horizontal  plane  connected  by  a 

COS  A.  cos  B 
string  AB.    Show  that  the  tension  of  the  string  =  \V   t—^ — ,  where 

°  sinU 
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W  is  half  the  sum  of  the  two  weights  and  A,  B,  C  are  the  angles  of 

the  triangle.     -^ 
82.  Three  weights  are  placed  at  the  three  vertices  of  a  given  triangle, 

and  it  is  found  that  their  centre  of  gravity  coincides  with  the  centre 

of  the  circle  inscribed  in  the  triangle.  Determine  the  ratios  of  the 

weights  to  one  another. 
83.  In  the  first  system  of  pulleys,  if  the  weights  of  the  n  movable 

pulleys  are  in  G,  P  with  a  common  ratio  I  commencing  from  the  bottom, 

thai  V  =  -T;pN'  +  nw)  where  w  =  the  weight  of  the  lowest  pulley. 

84.  In  the  third  system  of  pulleys,  if  the  weights  of  the  n-1  mov- 
able pulleys  are  in  G,  P  with  a  common  ratio  2  commencing  from  the 

bottom,  prove  that  W  =  P(2"  -  1)  +  w{n  .  2«-i  -  2«  + 1). 
85.  In  the  last  question,  if  w  =  T,  prove  that  the  mechanical  advan- 

tage is.?i  times  the  mechanical  advantage  of  the  first  system  of  pulleys 

when  the  weights  of  the  pulleys  are  neglected  and  there  are  {n-1) 
movable  pulleys. 

86.  A  uniform  rod  of  weight  W  is  supported  in  equilibrium  by  a 
string  of  length  21  attached  to  its  ends  and  passing  over  a  smooth  peg. 
If  a  weight  W  be  now  attached  to  one  end  of  the  rod,  prove  that  a 

ZW  
' length  -ry^     ,„,  of  the  string  will  slip  over  the  peg. 

87.  Two  balls  of  equal  size  and  of  unequal  masses  in  and  mk,  where 
k>l,  are  projected  with  equal  velocities  from  the  middle  points  of  the 
opposite  ends  of  a  billiard- table  of  length  2a  so  as  to  impinge  directly. 
If  g  be  the  coefficient  of  elasticity  between  the  balls  and  between 

either  ball  and  the  cushion,  show  that  if  e>^{k-  1),  the  second  collision 

between  the  balls  will  take  place  at  a  distance  — ^ — 77^-\\ — ^^  from  the '■  e{k  +  l) 

centre  of  the  table,  the  radii  of  the  balls  being  neglected. 

88.  Two  particles  of  masses  m,  m'  are  projected  with  equal  velocities 
and  at  the  same  angle  in  opposite  directions  from  two  points  in  the 
same  horizontal  plane,  so  that  the  particles  strike  one  another.  If  the 
two  coalesce,  find  the  greatest  height  which  the  particle  attains. 

89.  A  smooth  rod  of  length  2a  has  one  end  resting  on  a  plane  of 
inclination  a  to  the  horizon,  and  is  supported  by  a  horizontal  rail 

parallel  to  the  i)lane  at  a  distance  c  from  it.  Prove  that  the  inclina- 

tion 6  of  the  rod  to  the  plane  is  given  by  c  sin  a  =  a  sin^  d  cos  [9  -  a). 
Prove  also  that  the  equilibrium  is  stable  or  unstable  according  as 

the  rod  rests  on  a  point  of  the  plane  above  or  below  the  foot  of  the 
perpendicular  from  the  rail  on  the  plane. 

90.  Two  bodies  of  equal  weights  are  attached  to  the  ends  of  a  fine 
inelastic  string  which  hangs  over  a  smooth  pulley  ;  one  of  the  bodies  is 
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hard  and  the  other  melts  so  that  the  decrement  of  its  mass  varies  as  the 

time.  If  /,  /',  /"  be  the  accelerations  of  the  bodies  at  the  end  of  times 

t,  t\  t'\  reckoned  from  the  beginning  of  motion,  prove  that 

91.  A  number  of  equally  elastic  balls  projected  from  a  point  return 
to  the  point  after  striking  a  vertical  wall.  Prove  that  the  tangents  of 
their  angle  of  projection  are  proportional  to  the  squares  of  their  times 

of  flight.      ̂ 
92.  A  sphere  of  radius  a,  Avhose  centre  of  gravity  is  at  a  distance  h 

from  its  geometrical  centre,  rests  in  limiting  equilibrium  on  a  rough 
plane  inclined  at  an  angle  a  to  the  horizon.  If  it  can  be  turned 
through  an  angle  26  without  disturbing  the  equilibrium,  prove  that 

6cos^  =  a  sin  a. 

93.  A  spherical  shell,  external  radius  70  feet,  internal  radius  35  feet, 
is  suspended  by  a  point  in  its  circumference,  and  oscillates  so  as  to  keep 
its  centre  in  the  same  vertical  plane.  Show  that  the  length  of  the  simple 
equivalent  pendulum  is  nearly  101  feet. 

94.  The  points  A,  B,  C,  D  are  the  angular  points  of  a  square ;  AB 
and  CD  are  two  equal  similar  rods  connected  by  a  string  BC  equal  in 
length  to  either  rod ;  the  point  A  receives  an  impulse  in  the  direction 
AD.     Show  that  the  initial  velocity  of  A  is  seven  times  that  of  D. 

95.  A  perfectly  rough  and  rigid  hoop  rolling  down  an  inclined 
plane  comes  in  contact  with  an  obstacle  in  the  shape  of  a  spike.  Show 

that  if  the  radius  of  the  hooper,  the  height  of  the  spike  =  \r  above 
the  plane,  and  V  =  the  velocity  just  before  impact,  then  the  condition 
that  the  hoop  will  surmount  the  spike  is  that 

y^>-^gr\  1  -  sin  (  a  +  ̂  )  (  ,  a  being  the  angle  of  the  plane. 

96.  In  the  last  question  show  that  the  hoop  will  jiot  remain  in 

contact  with  the  spike  at  all  unless  'Y^<--^grBm  ( c'  +  ̂   )  5  ̂ "^  i^  it 
does,  it  will  leave  it  when  the  diameter  through  the  point  of  contact 
makes  an  angle  with  the  horizon 

7,  +  2^-(«+6)|- I  32 
97.  An  inelastic  rod  which  can  turn  about  one  end  fixed  in  a  vertical 

plane  falls  from  the  horizontal  position,  and  when  it  is  inclined  at  45° 
to  the  horizon  impinges  at  its  middle  point  on  a  fixed  peg.  Determine 
the  impulse  on  the  axis. 
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ANSWEKS 

I. 

(1.)  22y\  seconds.     (2.)  66  feet  per  second  ;  1320  yards  per  minute. 

(3.)    3657-48  centimeters  per  minute.      (4.)    18-317;  1582-6-2.      (6.) 
17,960,011  kilometers  per  minute.     (6.)  8- minutes  9ff  seconds.     (7.) 

17-338  and  8-669  miles  per  minute.    (8.)  13/t  ;  27fV    (9.)  5  seconds. 
(10.)  35  seconds ;  2310  feet ;  3080  feet.    (11.)  if  minute  ;  U  minute  ; 

20/i-  seconds.     (12.)  640  feet;   1120  feet.     (13.)  12  minutes;   3168 
feet   from  first.      (14.)    2^  miles.      (16.)   60  ;  10  hours  25  minutes. 

(16.)  2166§;  83^  miles  per  hour.       (17.)   -628  .  .  .  inch  per  minute. 22 

(18.)  1:20:360.      (19.)  1  foot.      (20.)  {l-df'D)Y.      (21.)^-  revolu- 

tions  per  minute.  (23.)  38,400;  975*228  .  .  .  (24.)  4,976,640,000.  (25.) 
Equal.  (26.)  200  feet  per  second  per  second.  (27.)  90  yards;  20| 
yards.  (28.)  17  centimeters  per  second.  (29.)  8  yards  per  second  per 
second  ;  24  yards  per  second.  (30.)  4J  feet  per  second  per  second  ;  576 
feet.  (31.)  6\  seconds.  (32.)  5{^  feet  per  second  per  second.  (33.)  22 
feet  per  second  per  second.  (34.)  21  feet  per  second  ;  30  feet  per  second 
per  second,  (35.)  256  feet  per  second  ;  1024  feet.  (36.)  100  yards. 

(37.)  15,625  feet.  (38.)  At  starting-point  ;  62^  seconds  after  first  starts  ; 
no.  (39.)  96  feet  per  second;  at  rest.  (40.)  No.  (41.)  10  seconds 
after  projection  ;  3600  feet  below.  (42.)  75  miles  per  hour.  (43.)  In 
3^  hours  ;  3S|  miles  ;  13^  and  21 1  miles  per  hour.  (44.)  5  seconds  ; 
64  feet  per  second.  (45.)  450  miles  per  hour  per  hour.  (46.)  484  feet. 
(47.)  172iVfeet;  5|i  seconds.     (48.)  1360  yards. 

II. 

(1.)  5-80078125  tons.     (2.)  21*5  ;  19-3  ;  10-5  ;  2-6  kilograms.  (3.) 
6;16...xl0-i  tons.     (4.)  55^^  square  feet.     (5.)  8  kilograms.  (6.) 
135  lbs.    (7.)  ̂   cubit  foot;  f^  cubic  decimeter.    (8.)  -8.    (9.)  7  168. 
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(10.)  7-623...  (11.)  6/3  gallons.  (12.)  10-8768.  (13.)  4ft  feet  per 
second  ;  lf|  foot  per  second  in  direction  of  5-5.  (14.)  In  direction 
of  first.  (15.)  14|  miles  per  hour.  (16.)  8f  lbs.  (17.)  37^  (18.)  3 

centimeters  per  second.  (19.)  11*6  centimeters  per  second.  (20.)  26{l 
feet  per  second.  (21.)  128^  feet  per  second.  (22.)  No;  no.  (23.) 

2{l ;  SxV?  feet  per  second  ;  6y\  reversed  ;  6^*^  reversed.  (25.)  ̂ i^. 
(26.)  2  feet  per  second  ;  c  =  |.     (27.)  ̂   ;  one  double  the  other. 

III. 

(1.)  7  lbs.  9  oz.  ;  8  lbs.  2  oz.  ;  7  lbs.  (2.)  7031-25  feet.  (3.)  3^  feet 
per  second  per  second.  (4.)  2-24.  (5.)  40,296^.  (6.)  4^  ;  234f.  (7.) 
13,825.  (8.)  6  feet  per  second  per  second  ;  1|  second.  (9.)  14-4  centi- 

meters per  second.    (10.)  2117^  feet.    (12.)  25  :  4  ;  1^  inch  per  second 

per  second.     (13.)  9600  yards.    (14.)  400  yards.     (16.)  ̂ ;  ~.     (16.) 

\5-  weight  of  bullet.  (ir)  16  feet;  .6  seconds.  (20.)  Ah.  (21.) 
3-72  seconds;  4-54  seconds.  (23.)  3*16  x  lO"*  lbs.  (24.)  3-1  x  10"". 
(25.)  26-88  poundals.     (28.)  704:9.      (29.)  1  millimeter  per  second 

per  second;  800  dynes.      (30.)  ̂ ;  weight  of  14-4  grams.     (31.)  21^ 
feet;  10§  feet,  both  down.  (32.)  ̂ g;  50|  lbs.  weight.  (33.)  ̂ g ; 
weight  of  36  lbs.  (34.)  10  seconds  ;  2  feet  per  second.  (35.)  1^ 

second;   16  feet  per   second.      (36.)  "Weight  of  4|  oz.      (37.)  9:10. 

(38.)  |W.     (39.)  f.     (40.)  20  seconds.     (46.)  Same  as  if  g  were  in- o 

,  ̂                   /.- \    A       1      J..         c  -Kr     M(m  +  m')-4mm' creased  to  g  +  a.     (46. )  Acceleration  of  M  =  -^-r-.   /^ —   ,0  ;    ac- 

eeleration  of  m  and  m'  relative  to  M  =  r^T   ^—r. — ■— — ,g ;  tension  of 

M(7;i  +  m')  +  imm'^  ' 4-  AT  7)1/ 771 
lower  string  =  ̂ 7   7, —   ,g  =  twice  tension  of  upper  string.    (47. ) 

^     M(7ft  +  m')  +  4mw'^  '■'■  t,     \      j 

Acceleration   of  20  lbs.  =|<7;  of  10  lbs.  =^gr;  tension  =  weight  of  4^ 
lbs.  ;  acceleration  of  20  lbs.  =§(/;  of  10  lbs.  =:^;  tension  =  weight  of 

6|  lbs.     (49.)  lst,^|  up  ;  2nd,  ̂   up  ;  3rd,  ̂   down  ;  4th,  ̂   down  ; 

^  tension  of  upper  string  =  tension  of  either  of  lower  =  weight  of  l^V  lbs. 

IV. 

(1.)  24,000  foot-pounds ;  160  feet  per  second.  (2.)  60^  foot-poundals. 
(3.)  1,893,698,400  foot-pounds  per  second.  (4.)  10  feet  per  second; 
shot  can  do  162  that  of  gun.     (6.)  18^  foot-pounds  ;  6^  feet;  102| 
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foot-pounds.  (7.)  421,372;  13,483,904  (taking (y  =  32-2).  (8.)  746-25. 
(9.)  6300  foot-pounds;  ̂ tV  horse-power.  (10.)  ̂ /^.  (11.)  134,400 
foot-pounds  ;  20 j*j:  minutes.  (12.)  288.  (13.)  64.  (14.)  60  miles  per 
hour.  (15.)  12|ff.  (16.)  Weight  of  151, 029HI  lbs.  (17.)  30.  (19.) 

11,520,000.  (21.)  3300  foot-poundals  per  minute  =  102-5  foot-pounds 
per  minute  in  London. 

(1.)  F.P.S.:  y^  =4,320,000:1.;  13,500:7;  4500:7.  (2.)  In- 

verse to  those  in  (1).'  "(3.)  28  :  5  ;  7  :  75  ;  7  :  1500.  (4.)*  13,825  : 1.  (6.) 
1,356,480,000.  (6.)  21,600.  (7.)  746-25.  (8.)  l/4\/2  second.  (9.) 
1/12,800  foot;  1/640  second.  (10.)  32  feet;  1  second.  (11.)  38,400 

yards.  (12.)  2c/62  feet ;  ct^/ft  seconds.  (13.)  32  lbs.  (14.)  [ML-iT-^]. 
(16.)  a,  ̂,  5  no  ;  7  yes.  (17.)  First  may  be  right  ;  second  must  be 
wrong. 

VL 

(1.)  20  feet.  (3.)  6*47  feet  per  minute.  (4.)  2-35  feet  per  second. 
(6.)  Both  =  37r/\/2  inches  per  second.  (6.)  -Oil  foot  per  second.  (8.) 

88V3'=  152-41  feet  per  second.     (11.)  W.  of  S.  by  0,  where  tan  ̂   =  ̂ . 
(13.)  Sin  ̂   =  — -  ;  v=  12.69.     (16.)  2  feet  1  inch  per  second,  making  d 

with  BA  where  tan  ̂   =  3/4  ;  3  feet ;  48/25  seconds.  (16.)  i.  udtv;  ii. 

^Ju^^l^i^±uv^  ;  iii.  V(^*^  +  ̂ )-  (17.)  If  d  be  the  angle,  cos  6  = 
(au  +  bv)/{bu  +  av). 

VII  (a). 

(1.)  5\/2  =  7-07  .  .  .  (2.)  5-77  .  .  .  (3.)  8-7  ;  7-21  ;  130*8  poundals; 
5-06.  (4.)  30-41  .  .  .  (5.)  1:732.  (6. )  7 '66  at  22°  with  the  3  lbs.  ;  '96 
at  111°  7'  with  the  3  lbs.  (7.)  Same  as  (6).  (9.)  5-83  .  .  .  F.P.S. 
units.  (12.)  13.  (13.)  256*12  .  .  .  feet  per  second.  (14.)  10  ;  26  lbs. 
weight.  (15.)  Perpendicular  to  the  6  lbs.  (16.)  5:4.  (18.)  7-32. 
(19. )  7  -96  at  angle  6  with  the  1  produced  backwards,  where  tan  ̂   =  1  -720. 
(20.)  10  opposite  to  the  8.  (22.)  2BC  along  BC.  (24.)  Line  joining 

mid  points  of  BC,  DE.  (26.)  2-645  lbs.  weight.  (26.)  4  lbs.  weight. 
(27.)  Vl06  =  10-3  parallel  to  line  joining  A  to  mid  point  of  OB.  (30.) 
If  A  be  tlie  destroyed  point,  0  the  centre  of  force,  force  =  /i  x  distance, 

force  at  V  =  /x{n.  OP- AP)=/x(7i-l)0T,  where  0'  divides  OA  so  that 
AO'  =  7i.OO'. 
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VII  (b). 

(4.)  lOVS;  20.  (6.)  15  lbs.  weight;  3  feet.  (6.)  30°.  ̂ .)  4  lbs. 
(8.)  sin  a/(sin^- sin  a)  tons  weight.  (9.)  wj/V35  ;  6i^/V35.  (11.) 

•293W.  (12.)  12  lbs.  weight.  (14.)  Intersection  of  lines  through 
the  mid  point  of  one  diagonal  parallel  to  the  other.     (18.)  l  =  2aT 

{(4T2  -  W2)  -  ̂  +  (4T2  -  W'2)  - i} .     (19. )  Weight  of  m V2  ;  weight  of  m. 

YII  (c). 

(2.)  27*71 .  .  .  feet  per  second  ;  1*08  second  ;  '866  second.  (3.)  56 
feet.  (4.)  If  h  be  the  height  of  the  plane,  velocity  of  projection  = 

's/gh  ;  velocity  at  meeting  of  first  =  0,  of  second  =  Vf/Zi.  (5.)  400.  (6.) 

180f|.  (8.)  1-8  mile.  (9.)  26 4/ V7  feet  per  second.  (10.)  64^V  lbs. 
per  ton.  (11.)  12-49  lbs.  per  ton.  (15.)  6  lbs.  weight.  (17.)  If  I  be 
measured  in  feet,  v  =  i\/l  feet  per  second.  (18.)  "183  .  .  .  g -,  "683 
weight;  '965  weight.  (20.)  17-32  lbs.  weight;  8 -66  lbs.  weight ;  0. 
(21.)  Change  in  vertical  pressure ^^^  weight ;  ̂g.  (23.)  Line  passes 

through  lowest  point  of  circle  and  at  45°  to  vertical. 

VIIL 

(2.)  5  feet  4  inches.  (3.)  21^  lbs.  weight.  (5.)  At  A  is  W.  BC/AB  ;  at 
B  is  W.  AC/AB.  (6.)  12  lbs.  weight.  (7.)  6  inches  from  27  oz. ;  If  inch 

fai-ther.  (8.)  4J  ;  3§  tons  weight-  (9.)  3^  cwts.  ;  2 J  cwts.  ;  1  foot. 
(10.)  JBC  from  B  ;  f  W.  (11.)  |  length  of  heam.  (13.)  Bisects  line  join- 

ing 3  to  that  trisection  of  opposite  side  nearer  2.  (14.)  1  ;  at  distances 

2  X  side  from  side  8,  7,  6,  5,  2  and  -  2  x  side  from  side  5,  6,  7,  8,  8  ;  0 ;  no 
centre.  (15.)  Half  way  between  1,  4  and  2,  3  and  3/10  side  from  4,  3  ; 
tensions  10  lbs.  weight.  (17.)  Yes.  (18.)  If  a  be  a  side,  A  the  area, 

and  P  the  force  along  a  side,  force  necessary  =  2A .  P/a^.  (19.)  Yertical 
through  A  trisects  BC  ;  no.  (20.)  50  lbs.  weight.  (21.)  763.  (23.) 

Through  0  such  that  CAO  =  CBO  =  90°  -  C.  (24.)  40  lbs.  weight  parallel 
to  BC  and  3  feet  from  it.     (26.)  Equal  to  force  along  BC. 

IX. 

(1.)  4^f  feet  from  end.     (2.)  16xV  inches  from  first.     (3.)  ̂ length 
from  centre.      (4.)  Mid  point  of  line  joining  3  to  point  of  trisection  of 

1,  2  ;  1:1;  1  : 5  ;  1  :  2.    (7.)   ,th  of  radius  from  centre.     (8.)  Inter- ^    '  n-l 

section  of'diagonals.    (10.)  8^  inches  from  B  ;  11^  inches  from  C.    (11.) 
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2  oz.  (12.)  Centre  of  inscribed  circle.  (13.)  15  ;  16  ;  17  lbs.  (14.)  1-4 
foot  from  junction.  (16.)  (V3-l)/6  the  base  frOm  the  base.  (16.)  ̂  

height  of  given  triangle.  (17.)  t?-^!^  ̂ ^'^^  ̂ j  the  mid  point  of  BC. 

(18.)  60°.  (19.)  -866"^;  1-322W.  (20.)  i.  .^  =  14  inches,  y  =  20 
inches  ;  ii.  x=^-^  foot  =  ?/ ;  iii.  x=^^-hot,  y=^  foot;  1"122  foot  from 
point  of  contact.  (21.)  18J  inches  from  end.  (22.)  '3535  inch.  (23.) 
Back  29  ;  front  85^  lbs.  weight.  (24.)  5  inches  from  point  of  contact. 
(29.)  Distance  from  vertex  =  |f  altitude.  (30.)  Same  as  the  others. 
(31.)  fj  the  heigljt.  (32.)  If  a  denote  area  of  face  opposite  to  A,  then 
distance  of  centre  of  gravity  from  a  =  ̂(/3  +  7  +  5)/(a  +  ̂  +  7  +  5)  x  height 

of  A  above  a.     (34.)  tan  a  =  2.     (39.)   •634...   x  a  inches. 

X. 

(1.)  Reaction = tension =|(length  of  rope)/(height)  x  weight  of  beam. 
(3.)  W  cot  a  on  vertical ;  W/sin  a  on  other.  (4.)  15a.  (11.)  U.  (12.) 

Wand  |W  (W  =  weight  of  triangle).  (13.)  Horizontal,  and  =  |  weigfit 
of  rods.  (16.)  2a;  WVS;  aVS;  3W.  (17.)  Tension  =  oneof  the  weights. 

(21.)  W  cos  a/2  sin  (a  -  j3),  where  a  ==  inclination  of  rod  and  /S  of  string 
to  horizontal,  AD>iAB  if  B  is  below  C,  AD<HB  if  B  is  above  C. 

(22.)  §W.  (23.)  2ra,  where  sin  a  =  W/2w; ;  w  >  ̂ W.  (24.)  T  +  W/Vs ; 

T  -  W72V3.  (27.)  If  W  be  weight  of  a  sphere  and  w  of  the  required 
one,  I  =  length  of  string,  a  =  radiws  of  spheres,  and  r  of  top  one, 

(30.)  (1)  V2  lbs.  weight;  2  lbs.  weight— (2)  Top  bars  2 '121  lbs. ;  bottom 
=  3-53  lbs.;  T  =  4  lbs.  (31.)  A11  =  W^  (33.)  On  strut -3 -464 W  ; 

upper  inclined  rod  3"464W  ;  lower  inclined  rod  =  2 "31 W.  (34.)  7'  bar, 
a  tie,  =7  tons  ;  15'  bar,  a  strut,  =15  tons  ;  upright,  a  strut,  =7'7  tons  ; 
back,  a  tie,  =13  tons.  (36.)  i.  side  struts  =  l'5  ton  ;  bottom  tie  =  l*13 
ton  ;  ii.  upper  strut  3^  tons ;  lower  strut  2|  tons ;  vertical  tie  4*96  tons; 
iii.  top  half  of  strut  78  ton  ;  lower  half  1  '66  ton  ;  cross  strut  '5  ton ; 
two  ties=  "67  ton ;  horizontal  tie  =  '57  ton. 

w- 

XI. 

(1.)  1-87  ..  .  feet.  (2.)  1,280,000  foot-poundals.  (3.)  108.  (4.) 
148-48.  (6.)  387,360  foot-pounds.  (7.)  8-925.  (8.)  26,345,088  foot- 

pounds ;  4-435  .  .  .  hom-s.  (9.)  88/iR/E.  (10.)  2y/gr  ;  \/{gr{2  -  '^2)\  ; 
VM2-i-V2)}.  (11.)  ̂   radius;  J  radius.  (12.)  16  feet  per  second. 
(13.)  6  feet  per  second.  (14.)  \/gl.  (16.)  8V{W('^  +  M)}  feet  per 

second.  (16.)  V{w^  +  2»iflr(r-a)/M}.  (17.)  \/ {Kr^  -  a-)} .  (18.) 
\/  {u^  +  /i(a^  -  r^)} .     (19.)  2  x  weight  of  one  rod. 2  E 
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XII. 

(2.)  15  lbs.  weight.     (3.)  7-2  feet.     (4.)  160  lbs.  weight.     (5.)  Gains 
yV  lb.  if  tea  is  placed  in  heavier  pan,  loses  ̂ V  1^.  in  other  case.     (6.) 

Loses  on  average  ■       ,     lb.  per  lb.        (7.)  34f  inches  from  fulcrum. 

(8.)  1  inch  from  end.  (9.)  50  oz.  (10.)  4  (inch  Ib.-weight  units) 
against  the  body  weighed.  (11.)  78  cwts.  (13.)  4  cwts.;  4^  horse- 

power. (14.)  a,  2a,  3a,  .  .  .  (15.)  f  radius  from  last  string.  (16.)  4f 
jnches  from  first  string.  (17.)  W  =  P.  (18.)  7  ;  7.  (19.)  210  lbs.;  \^ 

'lb.  ;  221  lbs.  ;  i  lb.  (22.)  Q  =  4P.  (23.)  30  about.  (24.)  1*346  inch. (25.)  47,040  foot-pounds;  2  cwts.;  210  feet.  (26.)  31416  .  .  .  (27.) 

g'/25  down;  79'/25  up;  15*36  lbs.  weight.  (28.)  \g  down;  8f  lbs. 
weight ;  ̂g  up  ;  If  lb.  weight.     (30.)  137^  feet  per  second. 

XIII. 

(2.)  ̂ .  (3.)  7,392,000  foot-pounds  ;  1^  horse-power.  (5.)  '25  ; 
•6..  (6.)  V- lb. ;  30  lbs.  (8.)  8  feet.  (9.)  80  feet.  (10.)  16\/5  feetper 
second  ;  100  feet.     (11.)  2e  -  a.     (12.)  Yes.     (13.)  tan  ̂   =  (/iW  +  / W')/ 

(W  + W).  (16.)  fi .  ~^gcos  a.  (19.)  If  2a  be  angle  of  cone,  6  in- 

clination of  plane,  tan  6  =  i  tan  a ;  tan  a  =  l/4\/3.  (21.)  7  feet  1  inch. 

(22.)  50  feet.     (24.)  45°.     (27.)  tan  a  =  /i/(l -yw). 

XIV. 

(1.)  9*01  feet  per  second;  tan  (angle)  = '289  ...  (4.)  ̂   with  side, 

where  tan  6  =  ̂ .  (5.)  8*610^_^.  seconds.  (6.)  16  lbs.  has  -*/\/2  miles 
per  hour;  8  lbs.  has  -^^VlGi  at  angle  0  in  same  direction,  where 
tan  ̂   =  9. 

XV. 

(2.)  u-Jgi  u\f2.  (3.)  80,000_reet.  (4.)  32\/|  feet  per  second; 
tan  (inclination  to  vertical)  =  \/3/5.  (5.)  15°.  (6.)  100  yards.  (7.) 
6000  yards.     (10.)  3  lbs.     (16.)  45°.     (18. )  J  previous  range  and  time. 

(19. )  tan2  a  -  —  tan  a  +  -p-  -f- 1  =  0.     (24. )  2v^lg\/3.     (25. )  If  ̂   be  in- 

clination to  the  plane,  2  tan  ̂   =  cot  a.     (26.)  30°.     (28.)  v=9\/gr. 
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XVI. 

(1.)  48.     (2.)  —  =  15  about.    (4.)  Weight  ofl  8-15  cwts.    (5.)  Weight IT 

ofl3^cwts.     (6.) -  =  28-6.     (7.)  |.     (8.)  Weight  of] -71  .  .  .  oz.    (10.) IT  O 

liViiWir":  Wv'\  (11.)  2|  inches.  (12.)  1  "l  inch.  (14.)  374  :  375  : 

376.  (16. )  \/{Zga) ;  string  becomes  slack  when  sin  (inclination)  =  i^jZag  ; 

rcosa>V{(^a(3  +  2sinacos2a)}^  (16.)  3967  miles.  (19.)  22;  30 
miles  per  hour.     (20.)  0  ;  44\/3  feet  per  second.     (21.)  Weight  of  29^ 

oz.;    weight   of  ̂ V(14,657)    oz.  (22.)  -^2^^?^  ;   unstable.       (23.) 

Between  ̂ Q^^^^^^"^ .  _^   (24.)  Lowest ;  highest ;  depth  below 
smaif/ACOSo    w- sin  a 

centre  ==f7/col  {25.)  ̂ {^ga);  a -^.  (26.)  ̂ / |^''-^~T^'^}  ;  ̂̂^'^ 
a  ;  u  j^/  ~.     (28.)  Side  =  2r.     (30.)  4  feet.     (31.)  5r. 

xvn. 

(6.)  428-76.     (6.)  221-8.     (7.)  2015.     (9.)   '9986.     (11.)  10-8. 

xvin. 

(3.)  v>y(2  + Vs).  (4.)  On  radius  to  point  at  distance  vju  from  it. 

(6.)  If  2a  =  le7igth  of  rod,  ̂ {u^  +  o^a^);  u^a;  w±aw  ;  w^a.  (7.) 

V(wHwV) ;  sJiu'^lr^  +  M) ;  w±aw  ;  u^r  +  u'^a. 

XIX. 

(1.)  Momentum  =  m'y  horizontally  at  k^/r  above  the  centre.  (2.) 
Momentum  =  m\J{u^  +  ur^a^),  making  d  with  CD  where  tan  6  =  ua/u,  and 

at  a  distance  k''^(o/\/{u^  +  ui^a^)  from  the  centre;  momentum  =  7;i(w± aw) 
parallel  to  CD  at  a  distance  a  +  k-wKudcau).  (3.)  Momentum  =  2maw 

through B  perpendicular  to  ABC;  momentum  =  mawVlO, making  tan"*^ 
with  AB  distant  from  B  =  aV|  ;  imau)  perpendicular  to  mid  point  of 
AB.  (4.)  16/7r  units,  where  Z- length.  (5.)  43^11.  inch  units  ;  2261 

foot-poundals ;  27*4  feet  per  second.  (6.)  ma-,  where  side  =  a,  mass 
of  one  =  m.  (7.)  Momentum  =?Maw/\/3  ;  parallel  to  base  and  same 
distance  from  it  as  the  centre  of  gravity.  (8.)  Instantaneous  centre 
on  perpendicular  to  base  at  twice  distance  of  centre  of  gravity  from 

point.  (9.)  If  side  =  2a,  whole  mass  =  M,  21Aa^ ;  2Ma'^.  (10.)  ̂ w ; 
one-half. 
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(a  +  &)2  Za  +  b  ir-  ,  ̂ 2  ,1 

^  T2-  '  ̂ '^1^  •  12-  (3.)3^n«^-. 
(6.)  27-5.  .  .  xmass,  foot  units.  (7.)  -^naK  (11.)  -i^^mr\  (12.) 
■ivn-i^  ;  ̂ wr-.  (13.)  fmr2.  (14.)  fwjr^.  (15.)  -V*- ;  V"  1^-  inch  units. 
(16. )  409*2  oz.  inch  units  ;  405*2  if  axis  is  through  centre  of  large  sphere. 
(17.)  1  :  4.  (18.)  1  : 1.  (19.)  7  :  5.  (20.)  76,057  foot-pounds  (tt^V-). 

(21.)  2*036x1029  foot-pounds.  (22.)  15  feet  per  second  ;  8 f  feet  per 
second.  (23.)  Velocity  =  12y\  feet  per  second  ;  angular  velocity  =:f^  ; 

loss=j^i^^  original.      (24.)    Velocity  =  8 y*'^  feet  per  second;    angular 

velocity  =  ̂.     (25.)  —'*^-^.     (27.)  If  T  be  magnitude  of  jerk,  veloc- 
2P 

ity  =  P/;;^ ;  angular  velocity  =  — ; ;   1  :  2.     (28. )  Angular  velocity  after 

—  \u  ;  velocities  of  centre  of  cylinder  and  particle  are  opposite  and  both 

=  -rw.     (29.)  Angular   velocity  =  -aj  ;  velocity   of  particle  =  — -—  co  ; 4  6  V 

velocity  of  centre  of  gravity  =  — -  -  w.      (30.)  Angular  velocity  =  -— —  w  ; 

velocity  of  particle  =  -^0-  +  ̂ Y^  \  velocity  of  centre-   ̂ ^        \    (32. ) 

If  P  be  the  blow,  ?^i*the  mass  of  each,  and  2a  the  length — (1)  angular 

3P 
velocity  of  AB  =  angular  velocity  of  BC  =  ̂  — ;  velocity  of  centre  of 
P  7P 

AB  =  — •  ;  of  BC  =  —  ;  ratio  pf  energies  =13  : 1  ;  (2)  angular  velocity 
3P  P  4P 

of  BC  =  r —  :  velocity  of  centre  of  AB  =  :^-  ;  of  BC  =  ̂   ;  ratio  of 

energies  19  : 1.     (34.)  If  2a,  2b  be  lengths  of  top  and  bottom  parts,  it 

must  be  struck  at   r-r  above  the  centre  of  the  lower  part. 
a  +  Sb  ^ 

XXI. 

(1.)  16/ V3  feet  per  second;  m^^;^;  8  ̂ /|  feet  per  second. 
(2.)  I6V3  feet  i>er  second  ;  4  x  weight.     (3.)  |  height  if  smooth.     (5.) 

23*20  .  .  .  fi-et  per  second.     (6.)  Slips  for  a  time  -  — ,  then  rolls  with ^  i  Ml  _ 

angular  velocity  -w.     (9.)   ~;  S^V  P^r  cent.     (10.)    \/ «  seconds; 
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32\/§  feet  per  second  ;  ̂  weight  of  cylinder.  (11.)  With  acceleration 
2g  up.  (12.)  Both  fall  with  \g.  (14.)  Vertical  height  =  M  foot ;  |f| 

foot.  (16.)  1'885  times  a  side.  (16.)  At  heights  above  centre  =  -§(R+?') 
and  xV(I^  +  **)  J"  t^^e  two  cases.  (17.)  V^  the  weight.  (18.)  1*06  ..  . 

length  of  seconds'  pendulum.     (19.)  %  and  f  height  of  triangle.     (20.) 

VrirVS.     (2i.)^^(|.-);|^/nr.   (22.)4V(3«V2)feetper 3 

second,  if  side  =  2a  feet.     (23.)  Tension  is  halved.     (25.)  ̂ rx^poundals. 

XVI  (a). 

(6.)  1-414.  (6.)  About  5  day  si  hour  ;  3f  earth's  radius.  (7.)  '432 
months.  (8.)  1  :  3,093,500  ;  5800  miles.  (9.)  1  71  hours,  (lo:)  Tiie 

centre  is  at  the  other  extremity  of  the  diameter,  eccentricity  =  ̂.     (20.) 

A  blow  of  m  \/  fjt.  (  ap  -  -  )  directed  in  the  line  to  the  focus. 

THE  END 

Printed  by  R.  &  R.  Clark,  Limited,  Edinburgh. 
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