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PREFACE

Elementary Geometry deals only with forms whose deter-

mining parts are points, straight lines, and circles. Its method

is that employed by the ancient writers. The amount of such

study to be included in the high school or academy course has

been fixed by tradition, as, in plane geometry, the equivalent

of Euclid's first six books together with some additional

material on mensuration ; and, in solid geometry, the equiva-

lent of Euclid's eleventh and twelfth books, to which is also

added the mensuration of solids. Modern concepts and modern

methods have given to this old material a correlation and a

symmetry which it did not at one time present, and have

opened fields of investigation which were entirely beyond the

range of the early geometers. From the modern point of view,

many isolated and apparently independent theorems have

proved to be but special cases of broader and more general

ones, or to be related to eaxjh other in an easily defined way.

The so-called modern geometry possesses great beauty and

strength, but how much of it can be wisely woven into a first

course is a matter about which there is no general concensus of

opinion. Some recent writers have deemed it wise to introduce

general principles very early, while others have held rigorously

to the old methods and old materials. My own belief is that

the pupil must become quite familiar with the incidental and

particular facts of geometry before he is capable of much
generalization, and while I have written with the modern notions

distinctly in mind, I have preferred not to depart far from the

well-beaten path.

The attempt has been made to arrange the contents of this

918229



VI PREFACE

book in a natural and attractive pedagogical order. After the

introductory chapter there are presented a few easy problems

of construction in which the pupil will make free use of his

ruler and compasses, and be introduced to the idea of a formal

proof in connection with matters which he clearly sees need

proving; other similar problems are inserted where they come

in most naturally and are of most immediate interest.

Abstract discussions, such as the theory of limits, have been

postponed as far as possible in order to secure for their com-

prehension greater mathematical maturity. Young pupils do

not readily assimilate theoretical or abstract principles, and it

is best that these should be brought into but little prominence

in the early parts of the subject.

The exercises have been carefully selected and are intended

to form an integral part of the work. They bear a direct

relation, in most cases, to the propositions with which they

are associated ; those inserted at the ends of sections or chap-

ters are for the most part of a more difficult character and may
be omitted on a first reading.

It is hoped that the classified summary at the end of each

chapter will prove serviceable for purposes of review and for

reference, and will also aid the pupil in systematizing his

knowledge.

Care has been taken to state the fundamental assumptions

— the postulates— upon which the science rests, in as clear

a form as possible, and to distinguish between assumption and

axiomatic truth. Some things have been assumed which are

often made matters of demonstration; for example, the fact

that the perimeter of a regular polygon inscribed in a circle

approaches a limit as the number of its sides is indefinitely

increased. This admits of a rigorous proof, to be sure, but

the proofs given in text-books on elementary geometry are

as a rule either unsatisfactory or beyond the appreciation

of the pupil. I have preferred openly to assume the property,

— an assumption at which the pupil does not hesitate.
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A circle has been defined as a particular kind of line, and a

polygon as a figure made up of points and lines. The area of

such a figure is defined to be the surface enclosed by it. This

accords, I believe, with the best usage, though perhaps not

with the common usage. Everywhere outside of a class in

elementary geometry a circle is so understood. Neither in more

advanced mathematics nor in everyday life is it thought of ao

a portion of a plane, in accordance with the common definition,

and I see no reason why the pupil should be obliged to change

his idea of such a figure upon entering the geometry class, and

change back again immediately upon leaving that class.

The Appendix contains a short chapter on Plane Trigo-

nometry, which is intended to serve as a brief introduction

to the subject, to meet the needs of those preparatory pupils

who take up the study of physics or mechanics, not as a

substitute for a complete course. It may be found sufficient

also to meet the practical needs of those who do not continue

their studies beyond the high school.

The teacher will do well to consider the following sugges-

tions :
—

1. Eead the introductory chapter carefully, then talk it

over with the class in an informal way, calling attention to

the geometrical principles involved, most of which will be

readily accepted by your pupils. Do not assign this chapter

as a lesson.

2. Proceed very slowly at first. Eemember that your pupils

already have some geometrical ideas. Draw these out, clarify

and fix them. Do not break down, but build on what your

pupils already have.

3. Do not be too strenuous at first about a formal demon-

stration. Emphasize the geometric truth presented. Fix as

your ideal an elegant, faultless proof, and gradually work

up to it.
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4. Eemember that in this subject the primary object should

be the acquisition of geometric knowledge and the develop-

ment of the geometric sense. Logical reasoning and rhetorical

demonstration are secondary aims, to be sure, but the first

object should be Geometry.

Since my chief desire has been to produce a text-book

adapted to the needs of the class-room, I have not hesitated

to make free use of many existing texts, both old and new,

and from them have derived much valuable help and many
suggestions. The exercises in particular have been gathered

from a variety of sources; only a few of them are new. To
many friends, and in particular to my colleague. Professor

Henry S. White, to Mr. B. Annis, of the Hartford, Connecticut,

High School, and to Mr. J. F. Petrie, of North-western Uni-

versity Academy, I am greatly indebted for valuable sugges-

tions and criticisms. Also to my pupil. Miss Elda L. Smith

of Springfield, Illinois, my sincerest thanks are due for patient

and careful work in testing all exercises and in the tedious

task of proof-reading.

I shall be glad to be informed of any errors that may have

been overlooked, and to receive suggestions for improvement

either in matter or arrangement.

THOMAS F. HOLGATE.

EvANSTON, Illinois,

May 30, 1901.
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PART I— PLANE GEOMETRY

INTRODUCTION

PRELIMINARY NOTIONS AND DEFINITIONS

When we speak of a point or a line, a straight line or a

crooked line, everybody knows in a general way what is

meant. In the minds of persons not familiar with the strict

sense in which these terms are used in Geometry, it may be

that the words * point ' and ' line ' are associated with marks of

some sort, made for example with a pen or pencil ; they may
think of a point as a dot, and of a line as a long, narrow

mark, but in spite of this association the true meaning of the

terms 'point,' Mine,' 'straight,' 'crooked,' etc., is pretty clearly

understood.

It is not at all certain that definitions could be given in

words which would convey an intelligent idea of the meaning

of these terms to a person not already familiar with the thought

conveyed by them, still a few words of comment may serve to

fix the attention upon some properties of points and lines

which are fundamental in the study of Geometry.

1. A point has no magnitude ; it has only position.

The smallest mark that can be made with the finest pencil

or pen will have some magnitude, and consequently is not a

true point in the sense in which this term is used in Geometry.

We can thin\of points as having position only, but in making

diagrams we are obliged to use pencil or pen marks to repre-

sent them.

B 1



ELEMENTARY GEOMETRY [Introd.

2. A line has position and length, but no breadth or thickness.

Whenever we speak of a line it suggests the idea of exten-

sion in one way, namely, length, without regard to breadth or

thickness; but if we try to represent a line by a mark, this

mark will of necessity have some breadth and so cannot be a

true geometrical line. You should endeavor to think of a line

without actually drawing a mark to represent it.

A line is sometimes spoken of as the path of a moving point.

On a line you can choose as many points as you please.

Through two points you can draw as many lines, of one kind

or another, as you please.

•D

3. In order to tell one point from another we give them

names, conveniently the names of the letters of the alphabet,

and place the letter by the side of the point bear-

ing its name.

Thus we speak of the point A, the point B, etc.

If we wish to designate different points by the

same letter, P say, we distinguish them as Pj, P^y Ps, and

so on.

•o •B

We denote a line by naming a sufficient number of points on

it to distinguish it from every other line.

Thus we have in the diagram the

line ABC, the line DE, the line FBE.
The two points B and E would not

distinguish the line DBE from the line

FBE, since B and E are points of both

lines, or as we say, are common to both

lines. The lines PQ and RS in the second diagram are, how-

ever, distinguished by naming two points on each.
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4. A straight line is such that only one of that kind can

pass through the same two points.

That is to say, if two straight lines pass through the same

two points, they must occupy the same position, and there

is no point of one which does not also lie on the other.

This is sometimes expressed by saying that, " If two straight

lines coincide at two points, they coincide throughout"; or,

" Two points determine a straight line," i.e. fix the location of

the line and distinguish it from every other straight line.

Two different straight lines therefore can have only one

point in common ; in other words, two straight lines intersect

in only one point.

Any two straight lines can be made to coincide at every

point by placing them so that they coincide at two points.

5. Suppose that on a given straight line we choose two points

and mark them by the letters A and B. These will serve to

distinguish this straight line

from every other, since no ^ £
other straight line can pass

through both of these points. We may therefore call this line

the straight line AB,

That portion of the line which lies between the points A and

B is called the segment AB of the line. If other points are

chosen on the line,

as C, D, E, etc., a o B D_
the portion of the

line lying between the points A and G is called the segment

AC ; that between C and D, the segment CD^ etc.

It should be observed that two points chosen anytbhere on a

straight line determine it; the line may be as long as you

please, i.e. it may be unlimited in extent, yet these two points

will distinguish it from every other straight line. When we
have in mind only that segment of a straight line lying between
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two fixed points A and B, we shall usually speak of it as the

line-segment AB.

The distinction thus made between tJie straight line and the

line-segment is sometimes effected by calling the former an

unlimited straight line, and the latter a terminated straight line.

Of course any mark that we make to represent a straight

line must be terminated both ways by points; but the term
' line-segment ' will be used only when we wish to restrict our

thought to that portion of the whole line which lies between

two particular points.

6. When two line-segments having one end-point in com-

mon lie in the same straight

line and do not overlap, for -A C_ £
example, the segments AG and

CB, then the segment which is made up of these two, i.e. the

segment AB, is called their sum.

If the line-segments have one end-point in common and do

overlap, then that segment of the one which is not covered by

the other is called their difference.

Thus the difference of the segments AB and GB, in the last

diagram, is the segment AG.

7. A surface extends in two ways, i.e. it has length and

breadth, but no thickness.

We speak of the surface of the blackboard, the surface of

the table, the surface of the earth, and think of their extension

in two ways only, not at all of depth or thickness. A geo-

metrical surface has no thickness.

Any mimber of lines can be drawn on a surface, and any

number of points can be chosen on a surface.

If a surface is such that every straight line joining two

points of it lies wholly on the surface, it is called a plane

surface.
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The top of a table is approximately a plane surface, while

the surface of an apple is clearly not plane.

For brevity we sometimes use the term a plane instead of

a plane surface.

8. A solid extends in three ways, i.e. it has length, breadth,

and thickness.

9. A geometrical figure is any combination of points, lines,

and surfaces.

A plane geometrical figure is one whose points and lines all

lie in one plane.

Triangles and Angles

10. One of the simplest geometrical figures is what is

called a triangle. It consists of three straight lines which

intersect two and two in three points.

The three points are called the vertices of the triangle, and

the three straight lines its sides.

In most cases when we speak of a triangle we shall have in

mind only the figure consisting of the three vertices and the

three line-segments lying between them, and then the three

line-segments are thought of as the sides of the triangle. It

should be remembered, however, that these sides may be

extended as far as we wish at any time,
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The length of a side will always mean the length of the line-

segment between the vertices.

A triangle may be designated by
naming its vertices since no differ-

ent triangle can have the same three

vertices.

Thus the triangle in the diagram

is the triangle ABC, or the triangle

BAC.

Exercise. Name the triangle in the diagram in six different ways.

Sometimes it is found convenient to

designate a straight line by a single let-

ter, and in this case we commonly use a

small letter, reserving the capital letters

to denote points. When the sides' of a

triangle are so marked we can designate

the triangle by naming its three sides.

11. In looking at the figure of a triangle it will be noticed

that the two sides which meet in any vertex start out from the

vertex in different directions.

Whenever tw^o straight lines which meet diverge from their

common point in this way, they are said to form a plane angle,

or simply an angle, with each other.

The idea of an angle will be made clearer by the accompany-

ing figure. The straight lines AB and

AC meet at the point A. They make

with each other an angle at this point.

This angle we name the angle BAC, or

the angle CAB, meaning by that the angle

formed by the lines BA and AC It is

sometimes spoken of as " the angle between the lines AB and

u4(7," or "the angle contained by the lines AB and J.O."

If we keep the line AB fixed in position and rotate the line
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AC about the point A in the way indicated by the arrowhead,

we enlarge the angle BAG] that is, we increase the divergence

between the lines AB and AC, and so enlarge the angle. If,

however, we rotate the line the other way, the divergence be-

comes less; that is, the angle formed by the lines becomes

smaller.

The size of the angle formed by two lines does not depend on

the length of the lines, or on anything except the amount of

their divergence.

The straight lines AB and AG drawn from A are called the

boundaries of the angle, and their point of intersection A, the

vertex of the angle.

It will readily be seen that there are three angles in any

triangle, namely, the angle made by the sides AB and AG at

A, that made by the sides BA and BG at B, and that made by

the sides GA and GB at G. For brevity we shall sometimes

speak of these as the angle A, or the angle B, or the angle

G, but it must always be borne in mind that we mean the angle

at A, or B, or O, made by the two straight lines which meet at

that point.

The pupil should carefully observe that in reading an angle

the letter at the vertex is always named between the other two
letters. The angle BAG and the angle GAB are the same,

having the same vertex at A and the same boundaries AB and

AG, while the angle ABG is different, having its vertex at B.

12. When two angles are placed so as to have the same point

for vertex and one boundary in common without overlapping,

the angle formed by the other two boundaries, of which these

two angles are parts, is called the sum of the two angles.

If, on the other hand, the two angles have the vertex and
one boundary in common and do overlap, then the angle formed

by the other two boundaries is called the difference of the two
given angles.
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For instance, the angle BAD in the figure is the sum of the

angle ^^(7 and the angle GAD,
while the angle BAC is the

difference of the angle BAD
and the angle CAD.
When two angles have a com-

mon vertex and one common
boundary, without overlap-

ping, they are called adjacent

angles.

Thus in the figure the angle BAC and the angle CAD are

adjacent angles.

13. Suppose that on a straight line AB we choose any point (7,

and from it draw another straight line CD (Fig. 1). This line

makes two adjacent angles

with AB, namely, the angle /D
BCD and the angle DCA.
If the line be drawn, as ED
(Fig. 2), so as to cross AB,
then it also makes with AB
two adjacent angles on the

other side, namely, the angle

ECB and the angle ECA.
In Fig. 2 the angles whose

boundaries lie in the same

straight line, but which have

only their vertices in com-

mon, for example, the angle

ACE and the angle BCD,
are called vertically opposite

angles, or briefly, vertical

angles.

Exercise. In this figure point out and name all pairs of adjacent

angles and all pairs of vertically opposite angles. How many pairs of

each kind do you find ?

C
Fig. 1

Fig. 2
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Test of Equality

14. In Elementary Geometry we assume that figures can be

moved about in any manner without altering their size or

shape. Upon this assumption we have the following tests of

equality

:

1. If two line-segments can be so. placed that their end-

points coincide, they are equal; and conversely, if two line-

segments are equal, they can be placed so that their end-points

will coincide.

2. If two plane angles can be so placed that their boundaries

coincide, they are equal ; and conversely, if two plane angles

are equal, they can be placed so that their boundaries coincide.

3. If two triangles can be so placed that their vertices coin-

cide, and consequently also their sides and angles, they are

identically equal ; and conversely, if two triangles are identi-

cally equal, they can be placed so that their vertices, their

sides, and their angles will coincide.

In general, two geometrical figures are said to be identically

equal when, and only when, they can be made to occupy, point

for point, and line for line, the same positions.

Right Angles and Straight Angles

15. Suppose that from any point (7 in a straight line AB, a

straight line CD is drawn so as to make

the adjacent angles BCD and ACD equal, ^
then each of these equal angles is called

a right angle, and CD is said to be at

right angles to AB, or perpendicular to

AB.

Definition. If one straight line meets another so as to

make the two adjacent angles equal, each of these angles is

called a right angle.
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16. Let us take any straight line AB and another straight

line CD meeting it at the point C so as to make two adja-

cent angles ACD and BCD. If

now we let the line AB remain ^
fixed in position, and rotate the ^ \
line CD about the point C so ^^

that it takes up successively the

positions CD^, CD^, CD^, etc., the
^ ""

effect will be to gradually increase one of the two adjacent

angles made by the lines, and to decrease the other.

The sum of the two angles however will remain unaltered,

since the boundaries of the sum, viz. CB and CA, are not

changed by the rotation of CD.

In some one position, as at CD^, each of the adjacent angles

is aright angle, and their sum is, therefore, two right angles.

Hence in whatever position the line CD is drawn the sum of

the two adjacent angles BCD and ACD is always equal to

two right angles.

If the line CD should cross AB, the sum of the two angles

on the other side of AB would also be equal to two right angles.

That is to say,

TJie sum of the tivo migles ivhich one straight line makes with

another on one side of it is equal to two right angles; and when

tivo straight lines intersect, the sum of the four angles formed at

their point of intersection is equal to four right angles.

17. The pupil should notice carefully the argument which led up to

the above conclusion.

(1) The straight line CD makes two adjacent angles with the straight

line AB., which vary in size as CD rotates about C.

(2) The sum of these adjacent angles does not vary by the rotation

of GD.

(3) For one position of CD, each of the adjacent angles is a right

angle, and consequently their sum is equal to two right angles.

(4) Therefore for every position of CD, the sum of the two adjacent

angles is equal to two right angles.
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Finally, the argument which applies to the two angles on one side of

AB would apply equally well to the two angles on the other side, if the

line CD were drawn so as to cross AB at C.

18. From Article 16 it follows at once that— If from a

point in a straight line any number of straight lines are drawn

in a plane on one side of the line, the sum of all the angles so

formed is equal to two right angles; and,

If any number of straight lines are draivn from a point in a

plane, the sum of all the angles so formed is equal to four right

angles.

19. When the sum of two angles is equal to two right

angles, each of them is called the supplement of the other.

If two supplementary angles are not equal, one of them must

be less than a right angle, and the other, greater than a right

angle.

An angle which is less than a right angle is

called an acute angle.

An angle which is greater than a right angle

and less than two right angles is called an obtuse \

angle. \ ^^

An acute angle is always less than its sup-

plement, while an obtuse angle is greater than its supplement.

The supplement of an acute angle is obtuse, and the supple-

ment of an obtuse angle is acute.

What is the supplement of a right angle ?

20. Suppose again we let one boundary OB of an angle

BOG remain fixed while we
rotate the other boundary

OC about the vertex so as to \
increase the angle. In one \^
position, say the position ^
OCi, the two boundaries are ' ^,-''''' ^

in the same straight line.

c
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The angle BOC has then become a so-called straight angle,

and if OC continues to rotate beyond this position the angle

becoiues reflex.

Definitions. A straight angle is an angle whose bound-

aries extend from the vertex in opposite ways, and lie in the

same straight line.

A reflex angle is an ,''""-.

angle which is greater i—.—i

than a straight angle.

A straight angle is ,'—-^

equal to the sum of two

right angles ; in other

words, a right angle is

half of a straight angle.

21. If we place one straight angle upon another so that

their vertices coincide, and so that one boundary of the first

shall coincide with one boundary of the second, then the other

boundary of the first must also coincide with the other bound-

ary of the second. For the two boundaries of each angle lie in

a straight line, and these straight lines have been made to

coincide in more than one point. Hence they must coincide

throughout. Art. 4.

Therefore any one straight ayigle is equal to any other straight

angle; or, all straight angles are equal.

Since a right angle is always half of a straight angle, and all

straight angles are equal, therefore all right angles are equal.

The sum of any angle and its supplement is a straight angle.

Hence, if two angles are equal their supplements are equal, and

two different supplements of the same angle are equal.

22. Let us now take two supplementary angles AOC and

BOC and place them so that they will be adjacent, that is, so

that their vertices will coincide and one boundary of one will

fall on one boundary of the other, while the angles do not

overlap.
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The other boundaries AO and OB must then be parts of the

same straight line.

For, if we should prolong '^

the straight line AO through

the vertex, the angle so

formed with CO would be

the supplement of ^OC. But ^
'

BOC is the supplement of

AOC. Therefore OB must coincide with the extension oi AO
through the vertex. That is to say,

//' ti(jo adjacent angles are supplementary^ their outer boundaries

lie in the same straight line.

On Closed Lines

23. By a closed line we mean one that can be followed with

a pencil or a pen, starting from any point of it

and returning to the same point, without remov-

ing the pencil or pen from the paper, and with-

out passing twice over the same portion of the

line.

Any figure which can be traced in a similar

way, starting at one point and returning to the same point, is

called a closed figure.

If a closed figure is made up wholly of segments of straight

lines, it is called a closed rectilinear figure.

Any connected set of line-

segments which is not closed

may be called a broken line. \
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Properties of Closed Lines

24. If a point is chosen inside of any closed line, every

straight line drawn through it must, if extended far enough,

cut the closed line in at least two points.

If one closed line lies partly inside and partly outside of

another closed line, these two closed lines must intersect in at

least two points.

25. Definition. A circle is a closed line so drawn that

all points of it are equally distant from a certain fixed point

within it.

This fixed point is called the centre of the circle.

A line-segment drawn from the centre to any point of the

circle is called a radius of the circle, while a line-segment drawn

through the centre and terminated both ways by the circle is

called a diameter of the circle.

A diameter of a circle is twice as long as a radius, or is equal

to the sum of two radii.

If a straight line intersects a circle, it must cut it at two

points if extended far enough, and when one circle lies partly

within and partly without another, they must intersect at two

points.

On the use of Instruments

26. In the construction of figures in Elementary Geometry

it is customary to limit ourselves to the use of a straight-edge

or ruler and a pair of compasses.

With the ruler we are able to draw a straight line between

any two points and also to extend or produce, as far as we

please, any terminated or finite straight line or line-segment

already drawn.

Tlie ruler is supposed to have no scale of measurements

marked on it, so that it cannot be used to compare lengths.
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The compasses are used for describing circles and for mark-

ing off equal lengths.

The pupil will readily see how this instrument can be made
use of—

(1) To describe a circle having a given point for centre and

its radius equal to a given line-segment.

(2) To mark otf on the longer of two given line-segments a

part equal to the shorter.

(3) To draw from a given point a line-segment equal to a

given line-segment.

Postulates

27. In geometry, whenever we assume a fundamental prop-

erty or the possibility of constructing some simple figure, we
say that we postulate these things.

A few of these fundamental assumptions or postulates have

already crept into our discussions along with the definitions

and descriptions of simple figures.

Examples op Postulates

(1) A straight line can be drawn from any one point to any

other point.

From the defining property of a straight line there is only one such

line. Art. 4.

(2) A terminated straight line, or a line-segment, can be

produced to any length in the same straight line.

(3) A circle can be described having any given point for centre

and its radius of any given length.

(4) Geometrical figures can be moved about in space without

altering their size or shape.

Other postulates will be added as we proceed, and these will

be collected in tabulated form at the end of the chapter in

which they first appear.



16 ELEMENTARY GEOMETRY [Introd.

Axioms

28. A simple statement or proposition which is readily

admitted to be true as soon as its meaning is understood, is

called an axiom. In other words, an axiom is a statement the

truth of which does not need to be demonstrated, and, in gen-

eral, cannot be demonstrated ; it is, as we say, self-evident.

Many of the axioms to which we shall make reference apply

not only to geometrical magnitudes, but to magnitudes of all

kinds.

The term ' magnitude ' is applied to anything that has size, i.e. to any-

thing that can be increased or diminished. For example, a line-segment,

an angle, the surface within a closed figure, are magnitudes. A point is

not a magnitude, since it has no size.

The following are a few examples of such axioms, but it

must not be supposed that this list includes all that could be

stated. Other axioms will be announced when there is occa-

sion for their use.

Examples of Axioms

1. Magyiitudes which are equal to the same magiiitude are equal

to each other.

If A equals C, and B equals C, then A equals B.

2. If equal maynitudes are added to equal magnitudes the sums

are equal.

If A equals B, and C equals Z>, then the sum of A and C equals the

sum of B and D.

3. If equal magnitudes he taken from equals, the remainders

are equal.

4. If equal magnitudes he added to unequals, or unequals to

equals, the sums are unequal.

5. If equal magnitudes he taken from unequals, or uyiequals

from equals, the remainders are unequal.

6. Doubles of the same magnitude, or of equal marinitudes, are

equal; and douhles of unequals are uneqiial.
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7. Halves of the same magnitude, or of equal magnitudes, are

equal; and halves of unequals are unequal.

8. The whole of anything is greater than a part of the same

thing.

9. If one magyiitude is greater than a second, and the second

greater than a third, then the first is greater than the third.

29. A theorem is a statement of fact which is usually not

self-evident, but which needs to be demonstrated before its

truth becomes apparent.

For example,

(1) If two adjacent angles are supplementary, their outer boundaries

lie in the same straight line. Art. 22.

(2) The sum of any two angles of a triangle is less than two right

angles.

A theorem, the truth of which is self-evident, has already

been called an axiom.

30. To demonstrate a theorem is to establish its truth by a

process of reasoning in which reference is made only to the

accepted definitions and axioms, and to the facts contained in

previously established theorems.

When the truth of a theorem has once been established, the

theorem is used without further question whenever it will be

serviceable in the demonstration of other theorems.

31. A problem is a task to be accomplished by the use of the

ruler and compasses.

Tor example,

(1) To draw a straight line which will divide a given angle into two

equal parts.

(2) To construct a triangle whose sides shall be'equal to three given

line-segments.

The general term Proposition is used to include both theorems

and problems.

c
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EXERCISES

1. Using only the ruler and compasses, draw a line-segment which shall

be (1) twice as long as a given line-segment, (2) three times as long as a

given line-segment.

2. Draw a line-segment equal in length (1) to the sum of two given

line-segments, (2) to the difference of two given line-segments.

3. Describe a circle whose radius is (1) equal to a given line-segment,

(2) double of a given line-segment.

4. Describe two circles with the same centre such that the radius of

one is equal to the diameter of the other.

Definition. Circles having the same centre and unequal radii are

called concentric circles.

5. Describe two circles so situated that a radius of one is a diameter

of the other.

6. Describe two circles so that the same line-segment is a radius of

each, but so situated that the circles do not coincide.

7. Express the supplement of (1) half a right angle, (2) two-thirds of

a right angle, in terms of a right angle.

8. Draw three straight lines in a plane so that they do not all pass

through one point and each intersects the other two. How many points

of intersection are there ?

9. Choose three points in a plane, not in the same straight line, and
join each point to both the others. How many straight lines are there ?

10. Draw four straight lines in a plane so that no three pass through

the same point and each intersects all the others. How many points of

intersection are there ?

Name the lines a, &, c, <?, and mark the points of intersection with

capital letters, J[, B^ C, etc.

Point out and name the vertices of the triangles whose sides are any

three of the four lines. How many such triangles are there ?

To how many of these triangles does each line belong ?

To how many of the triangles does each vertex belong ?

11. Choose four points in a plane so that no three lie in the same

straight line, and join each point to' all the others. How many lines are

thus drawn ? Name the points A, B^ O, Z>, and the lines a, 6, c, etc.

Point out and name the sides of all the triangles whose vertices art

any three of the four points. How many such triangles are there?

To how many of these triangles does each vertex belong ?

To how many of these triangles does each line belong ?
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SUMMARY
1. Simple Elements.

Points, Lines, Surfaces.

2. Properties of the Simple Elements.

(1) Point— has no magnitude or extension. § 1.

has position pnly. § 1.

(2) Line— has extension in one way, viz. length. § 2.

path of a moving point. § 2.

contains an unlimited number of points. § 2.

(3) Surface— has extension in two ways, viz. length and breadth. § 7.

contains an unlimited number of points and lines. § 7.

3. Definitions.

(1) Straight Line— aline such that only one of the kind can pass

through two points. § 4.

(2) Plane Surface or Plane— a surface such that every straight line

joining two points of it lies wholly on the surface. § 7.

(3) Geometrical Figure— any combination of points, lines, and sur-

faces. § 9.

(4) Equal Geometrical Figures— two figures which can be made to

occupy identically the same position. § 14.

(5) Line-segment— the portion of a straight line which lies between

two fixed points. § 5.

Sum or Difference of Two Line-segments— see § 6.

(6) Angle— the inclination of two straight lines which meet. § 11.

Boundaries of the Angle— the two straight lines forming it.

Vertex of the Angle— their common point.

Sum or Difference of Two Angles— see § 12.

(7) Adjacent Angles— two angles which have a common vertex and

one common boundary, without overlapping. § 12.

(8) Vertically Opposite Angles or Vertical Angles— two angles which

have a common vertex, the boundaries of each being the

extensions of the boundaries of the other. § 13.

(9) Bight Angle— an angle formed by one straight line meeting

another when the two adjacent angles formed by them

are equal. § 15.

Acute Angle, Obtuse Angle, Reflex Angle— see §§19 and 20.

(10) Supplementary Angles— two angles whose sum is equal to two

right angles. § 19.

(11) Straight Angle— an angle whose boundaries extend in opposite

ways from the vertex and lie in the same straight line. § 20.
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(12) Perpendicular Lines— lines which form a right angle. § 15.

(13) Triangle — a geometrical figure consisting of three straight lines

intersecting, two and two, in three points. § 10.

Vertices of a Triangle— the points in which the three lines

intersect. § 10.

Sides of a Triangle— the three lines, the line-segments be-

tween the vertices. § 10.

Angles of a Triangle— the angles formed by the sides, two

and two. § 11.

(14) Circle— a closed line so drawn that all points of it are equally

distant from a certain fixed point within it. § 25.

Centre of the Circle— the point from which all of its points

are equally distant. § 25.

Radius of a Circle— a line-segment drawn from the centre to

any point of the circle. § 25.

Diameter of a Circle — a line-segment drawn through the

centre and terminated both ways by the circle. § 25.

(15) Concentric Circles— those having the same centre and unequal

radii. Ex. 4, p. 18.

(16) Postulate — a fundamental geometrical property, or construction,

which is assumed. § 27.

(17) Axiom— a statement the truth of which is admitted as soon as

its meaning is understood. § 28.

(18) Theorem— a statement of fact which is usually not self-evident,

but which needs to be demonstrated before its truth be-

comes apparent. § 29.

(19) Problem— a task to be accomplished by the use of the ruler and

compasses. § 31.

4. Postulates.

See § 27 for Postulates 1-4.

5. Axioms.

See § 28 for Axioms 1-9.

6. Theorems.

(1) The sum of the two angles which one straight line makes with

another on one side of it is equal to two right angles ; and

when two straight lines intersect, the sum of the four angles

formed at their point of intersection is equal to four right

angles. § 16.
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(2) If from a point in a straight line any number of straight lines

are drawn in a plane on one side of the line, the sum of all

the angles so formed is equal to two right angles. § 18.

(3) If from a point any number of straight lines are drawn in a

plane, the sum of all the angles so formed is equal to four

right angles. § 18.

(4) All straight angles are equal. § 21.

(5) All right angles are equal. § 21.

(6) If two angles are equal, their supplements are equal, and two

different supplements of the same angle are equal. § 21.

(7) If two adjacent angles are supplementary, their outer boun-

daries lie in the same straight line. § 22.

7. On the Use of Instruments.

See § 26.



CHAPTER I

TRIANGLES AND PARALLELOGRAMS

Section I

GENERAL PROPERTIES OF TRIANGLES

32. After laying so much of a foundation we are ready to

proceed with the task of building up the main body of geo-

metrical knowledge, and it must be constantly borne in mind

that this subject is a continuous development. We shall meet

new truths at every turn, and every new truth will aid us in

the establishment of still other new truths.

We shall first present a few easy problems connected with

the construction of triangles.

Definitions

33. A triangle whose three sides are unequal in length is

called a scalene triangle.

A triangle which has two equal sides is called an isosceles

triangle.

A triangle whose three sides are all equal is called an

equilateral triangle.

Is an equilateral triangle also isosceles ?

Is an isosceles triangle ever equilateral ?

22
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Proposition I

34. It is required to construct an equilateral triangle

of which a given line-segment is one side.

First, recall what an equilateral triangle is. If one side is

given in length, how long are the other two sides ?

Now state the proposition in specific terms, thus :

Let AB (see the diagram) be the given line-segment.

It is required to construct an equilateral triangle, of which

AB is one side.

Next proceed with the construction.

With centre A, and radius AB, describe a circle.

With centre B, and radius BA, describe a circle.

These circles will intersect in two points. Why? (See

Art. 25.)

Let C be one of their points of intersection.

Join AC and BC.

Note. When we say 'Join ^C,' we mean draw a straight line from

the point A to the point C.

The triangle ACB so constructed has the line-segment AB
for one side ; but it remains to show that this triangle is equi-

lateral.

Proof. Because A is the centre of the first circle, and the

line-segments AB and AC are radii, therefore AG equals AB.
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Because B is the centre of the other circle, and the line-

segments BA and BG are radii, therefore BC equals BA.
That is, AC and BC are each equal to AB.
Hence AC equals BC. (Axiom 1)

Therefore AB, AC, BC are all equal, and the triangle ABC
is equilateral.

EXERCISES

1. Is this proposition a problem or a theorem ?

2. If F is the other point of intersection of the two circles, and we
join AF and BF, prove that AFB is also an equilateral triangle.

3. Join CF. Show that the triangles ACF and BCF are each isosceles.

35. The student should carefully note the order of arrange-

ment in the preceding proposition. The same order, written

out in less detail, perhaps, will be followed in all the proposi-

tions. We have

1. The general enunciation of the proposition ; that is, the

statement of the proposition in general terms, and the student,

after reading the enunciation, should proceed no further until

he thoroughly understands just w^hat he is expected to do.

2. A re-statement of the proposition applied to a particular

figure, or what is sometimes called the particular enunciation."

3. Making the necessary construction.

4. Proof that the thing constructed is what was required.

In the case of a theorem the proof goes to show that the state-

ment made in the enunciation is true.

36. In naming a circle we usually mention three points on

it, these being sufficient to distinguish it from every other circle.

Thus, in the diagram of this proposition, the circle whose

centre is A would be called the circle BCD, and the circle

whose centre is B would be called the circle ACE.

Exercise. Would naming its centre and one point on it be

sufficient to distinguish a circle from all other circles ?
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Proposition II

[General Enunciation]

37. To construct a triangle two of whose sides shall he

each equal to one given line-segment, and the third side

equal to another given line-segment.

What sort of a triangle will this be ?

[Particular Enunciation]

Let m and n be the given line-segments.

It is required to construct a triangle, of which two sides are

each equal to m and the third side equal to n.

[Construction]

Draw anywhere in the plane a line-segment AB equal to n.

With centre A, and radius equal to m, describe a circle CDF.
With centre B, and radius also equal to m, describe a circle

CEF.
Suppose these two circles intersect at C.

Do these circles necessarily intersect ? If so, at how many
points ?

Join CA and CB.

Then CAB is the triangle required.
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[Proof]

Let the pupil make a diagram for himself and letter it as in

the construction.

In the triangle CAB, the side AC is a radius of the circle

CDF, hence AC equals m.

All radii of a circle are equal by definition. (See Art. 25.)

The side BC is a radius of the circle CEF, hence BC equals

m. Explain why.

The side AB was constructed equal to w.

Hence the triangle CAB fulfils the given conditions, having

two sides equal to m, and one side equal to n.

EXERCISES

1. Do the two circles in the above construction necessarily intersect ?

Suppose the line n were more than twice as long as m, what then ? Can

a triangle be formed with sides 6 feet, 6 feet, and 13 feet in length ?

2. If the line-segments m and n are equal, what sort of triangle does

CAB become ?

3. Construct a triangle two of whose sides shall be each equal to the

longer line-segment n, and the third side equal to the shorter line-

segment »n.

4. If AF, BF, and Ci^ are joined, show that ACF and BCF are each

isosceles triangles.

5. Show how to find a point equidistant from two given points,

making use only of the compasses.

38. For convenience, one side of a triangle is sometimes

called the base of the triangle, and the other two, the sides.

The base may be any side whatever ; the opposite angle is then

called the vertical angle, and the vertex of that angle, the vertex

of the triangle. The two angles adjacent to the base are called

the base angles.

In an isosceles triangle it is usually the unequal side which

is called the base.
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Proposition III

39. To construct a triangle having its sides respectively

equal to three given line-segments.

Let m, n, p, be the three given line-segments.

It is required to construct a triangle whose sides are respec-

tively equal to m, 7i, and p.

Construction. Draw a line-segment AB anywhere in the

plane equal, say, to m, the longest of the three given line-seg-

ments.

With centre A, and radius equal to n, describe a circle

CDE.
With centre B, and radius equal to p, describe a circle

CHF.
Suppose these two circles intersect at C.

Join CA and CB.

The triangle CAB is the triangle required.

Proof. In the triangle CAB, the side CA equals the given

line-segment n [why ?] ; the side CB equals the given line-

segment p [why ?] ; and the side AB was chosen equal to the

given line-segment m.

Hence the triangle CAB fulfils the given conditions.
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EXERCISES

1. Under what conditions would the circle CDE pass through the

point 5, or the circle CHF through the point A ?

2. Under what conditions would the two circles CDE and CHF not

intersect ? Could the required triangle be constructed in that case ?

3. If the line m is greater than the sum of n and p, see what the dia-

gram would look like if, instead of choosing the first line equal to m, you

should choose it equal to n ov p.

4. Can you infer from this solution that one side of a triangle cannot

be greater than the sum of the other two sides ? Keep this in mind for

future consideration.

40. If two triangles are identically equal, either of them can

be made to occupy the position of the other (Art. 14) ; or, in

other words, the one can be placed on the other so that their

vertices will coincide and their sides coincide. In this case the

three sides of either triangle must be equal, respectively, to

the three sides of the other, and tlie three angles of either,

equal respectively to the three angles of the other, and the

two triangles are said to be equal in all respects.

But the question arises immediately, If two triangles are

equal in some respects, is not this sufficient to make them

equal in other respects, or perhaps in all respects ?

In other words, if two triangles can be made to coincide in

some of their parts, will they not necessarily coincide in all

their parts ?

We speak of the three sides and the three angles of a triangle

as the parts of the triangle.

The next two or three propositions will relate to questions

of this kind.

The method of testing the equality of two geometrical figures

by placing the one on the other is known as the method of

superposition.
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Proposition IV

41. If two triangles have two sides and the included

angle of the one equal, respectively, to two sides and the

included angle of the other, the triangles are identi-

cally equal.

Let ABC and DEF be the two given triangles in which the

side AB equals the side DE, the side AC equals the side BF,
and the angle BAC equals the angle EDF.

It is required to prove that the third side BC equals the third

side EF, that the angle ABC equals the angle DEF, and that

the angle ACB equals the angle DFE.

Proof. Place the triangle DEF upon the triangle ABC so

that the vertex D shall coincide with the vertex A, and the

side DE shall fall on its equal side AB.
Then because DE equals AB, E must coincide with B.

Since the angle EDF equals the angle BAC, and DE coincides

with AB, DF will fall on AC.

It may be necessary to turn the triangle over in order to make
BF fall on AC, as would be the case with the triangle

D'E'F', but this is allowable. (See Postulate 4.)

And because DF equals AC, F must coincide with C

Call to mind at this point what three parts of one triangle

were given equal to three parts of the other.

Now, two points E and F of the straight line EF have been

made to coincide, respectively, with two points B and C of the

straight line BC.
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Hence these two straight lines must coincide throughout.

If two straight lines coincide in two points, ttiey coincide at

every point. (Art. 4.)

And the line-segment EF must equal the line-segment BC.

Therefore, since the two triangles ABC and DBF have been

made to coincide in all their vertices and all their sides, their

angles must be equal, respectively, and the two triangles must
be identically equal.

Notice particularly that in these two triangles the angles

which are equal are opposite sides which are equal.

Such angles or sides are said to be similarly situated in the

two triangles. They are sometimes called corresponding angles

or sides ; or homologous angles or sides.

42. In a theorem there are always two distinct parts. It

reads

:

If certain things are true, the^i certain other things are true.

The first part, the z/part, is called the hypothesis. The second

part, the then part, is called the conclusion.

The theorem of Proposition IV may be divided into hypothe-

sis and conclusion, thus

:

Hypothesis. If two triangles have two sides and the in-

cluded angle of the one equal, respectively, to two sides and the

included angle of the other,

Conclusion. TJien the triangles are identically equal.

Separate the next proposition into hypothesis and conclusion.

EXERCISES

In the two triangles ABC and DEF,

1. If AB equals DE, and AC equals DF, but the angle BAC is greater

than the angle EDF, where would DF fall when the /triangle DEF is

placed upon the triangle ABC as in this proposition ?

2. If the angles were equal, but AC greater than DF, where would

F fall ?

3. Is Proposition IV a problem or a theorem ?
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Proposition V

43. If two triangles have a side and the two adjacent

angles of the one equal, respectively, to a side and the

two adjacent angles of the other, the triangles are iden-

tically equal.*

This proposition, like the last one, is proved by superposition.

Let ABC and DEF (or D'E'F') be two given triangles in

which the side EF is equal to the side BC, and the angles at

E and F are respectively equal to the angles at B and C.

It is required to prove that the two triangles are identically

equal.

Proof. Place the triangle DEF upon the triangle ABO so

that the side EF shall coincide with its equal side BC, the

point E coinciding with B, and F with C, and so that the ver-

tices D and A lie on the same side of BC.

Then, since the angle FED equals the angle CBA, the side

ED must fall on BA, and the point D will coincide with some

point of the line BA.

Why do we not know at this stage that D coincides with A ?

Also, since the angle EFD equals the angle BCA, the side

FD must fall on the side CA, and the point D will coincide

with some point of the line CA.

* It should be observed that by ' the two adjacent angles ' we mean
the two angles adjacent to this side, or of which this side is a common
boundary. Do not confuse this with ' adjacent angles ' defined on p. 8.
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Since D coincides both with some point of BA and with

some point of GA, it must coincide with their point of inter-

section, namely, with A.

Therefore, since the two triangles have been made to coin-

cide in all their vertices and all their sides, they are identically

equal.

44. It will be interesting to notice the relation between the

last two propositions.

Proposition IV may be stated :

Hypothesis. If two triangles have two sides and the included angle

of the one equal, respectively, to two sides and the included angle of the

other,

Conclusion. Then the base and the two adjacent angles of the one are

equal, respectively, to the base and the two adjacent angles of the other.

Proposition V may be stated:

Hypothesis. If two triangles have the base and the two adjacent

angles of the one equal, respectively, to the base and the two adjacent

angles of the other,

Conclusion. Then the two sides and the included angle of the one are

equal, respectively, to the two sides and the included angle of the other.

Stated in this way, the hypothesis in Proposition IV becomes

the conclusion in Proposition V, and the conclusion in Propo-

sition IV, the hypothesis in Proposition V.

Two theorems so related are said to be converse.

Definition. Two theorems are converse when the hypothe-

sis of each is the conclusion of the other.

Notation

45. Hereafter, whenever it is desirable, we shall make use

of certain symbols to abbreviate our forms of statement. For

instance, instead of writing in full ' the angle ABC,' we shall

write Z ABC, instead of 'the angle at B,' we shall write Z5;
instead of ' the triangle HKL,' we shall write A HKL ;

and

instead of ' is equal to,' or ' equals,' we shall sometimes use the
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algebraic symbol =. But care should be taken in every case

to read the symbol as though the statement were written out

in full.

On Bisectors

46. If through the vertex of an angle BAG, we draw any

straight line AD, it divides the angle into two parts, BAD
and DAC. These two parts may be

equal, or they may be unequal. If

they are equal, the line AD is said

to bisect the angle BAC.
If the angles BAD and DAC are

unequal, suppose that BAD is smaller

than DAC, and rotate AD in the way
indicated by the arrowhead. This

will continuously increase the one angle and continuously de-

crease the other, while it leaves their sum unaltered.

It is clear that there must be some position of AD for

which the angles BAD and DAC are equal ; and that if AD
is uioved ever so little from that position, one of these angles

will be increased while the other is diminished, so that they

will become unequal.

Hence,

Tlirough the vertex of any angle there can be drawn one, and

only one, straight line which bisects the angle.

If the angle bisected is a straight angle (see Art. 20), the

bisector is perpendicular to the straight line which bounds the

angle. From this it follows immediately that

At any point in a straight line there cari be drawn one, and

only one, perpendicular to the line.

47. Just as we are able to show that there is one, and only

one, 'bisector' of an angle, so we might show that there is

one, and only one, ' point of bisection ' or ' mid-point ' of a line-

segment.
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Proposition VI

48. If two sides of a triangle are equals the angles

opposite those sides are also equal.

A

Let ABC be an isosceles triangle, BA and CA being the

equal sides.

It is required to prove that the angle at (7, opposite the side

BA, equals the angle at J5, opposite the side CA.

Proof. Suppose that the line AB is the bisector of Z BAC,
and that it meets BC at Z). It thus divides A BAC into two

triangles ; namely, A BAT) and A CAD.
In these two triangles, the sides BA and AD are equal,

respectively, to the sides CA and AD, and the included angle

BAD equals the included angle CAD.
Hence As BAD and CAD are equal in all respects.

(Prop. IV.)

Therefore Z B equals A C, these being corresponding angles,

i.e. opposite equal sides, in the two triangles.

49. The proof of this proposition contains the proof of the

following theorem:

Tlie straight line which bisects the vertical angle of an isosceles

triangle also bisects the base, and is perpendicular to the base.

For since As BAD and CAD are identically equal, BD = CD
and Z BDA = Z CDA. Therefore BC is bisected at the

point D, and AD is perpendicular to BC.



48-50] TRIANGLES AND PARALLELOGRAMS 35

50. Definition. A theorem, the truth of which is easily

deduced from another, or the proof of which is easily obtained

from the proof of another, is said to be a corollary of that

other.

The following is a second corollary to Proposition VI

:

Corollary. An equilateral triangle is also equiangular.

The pupil should show that if the three sides of a triangle are

equal, the three angles are equal.

While the proof of a corollary is easily deduced from that

of the main proposition, it should never be neglected, but

should in most cases be carefully written out by the pupil.

EXERCISES

1. If two isosceles triangles, ABC and DBO, are on the same base,

BC, but on opposite sides of it, prove (1) that the angle ABD is equal

to the angle ACD, (2) that if AD be drawn AABD is identically-

equal to AACD, (3) that AD bisects the vertical angle of each triangle,

(4) that AD bisects the common base of the triangles, (5) that AD
makes right angles with the base.

2. Prove the same things when the two triangles lie on the same side

of the base.

3. If the vertex of an isosceles triangle is joined to the mid-point of

the base, prove that the line so drawn bisects the vertical angle of the

triangle, and also that it is perpendicular to the base.

4. On a given line-segment construct two different isosceles triangles,

and make use of these to find the mid-point of the given line-segment.

5. Prove that the triangle whose vertices are the mid-points of the

sides of an equilateral triangle is equilateral. (Apply Prop. IV.)

6. Prove that the triangle whose vertices are the raid-points of the

sides of an isosceles triangle is isosceles. (Apply Prop. IV.)

7. If on the sides AB, BC, CA, of an equilateral triangle ABC, equal

lengths AP^ BQ^ CB, are taken, prove that the triangle PQB is also

equilateral.
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Proposition YII

51. If two angles of a triangle are equal, the sides

opposite those angles are also equal.

Let ABC be a triangle in which the angle ABC equals the

angle ACB.

It is required to prove that the side CA is equal to the

side BA.

Proof. Mark the positions of the vertices and sides of the

triangle, and then suppose the triangle to be turned over and

put down so that the vertex B takes the former position of the

vertex C, and the vertex C the former position of the vertex B.

The side BC will thus occupy its former position, but will

be turned end for end.

Since Z B equals Z C, the side BA, when the triangle is

turned over, will fall upon the former position of the side

CA, and the side CA will fall upon the former position of

the side BA.

Therefore the point A will occupy its former position, and

the side BA will coincide with the former position of the

side CA.

Therefore the side BA equals the side CA.

52. Corollary. An equiangular triangle is also equilateral.

The pupil should prove that if the three angles of a triangle

are equal, the three sides must be equal.
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Proposition VIII

53. // two triangles have the three sides of the one

equal, respectively, to the three sides of the other, the two

triangles are identically equal.

Let ABC and DEF be two triangles having the side AB
equal to the side DE, BC equal to EF, and CA equal to FD.

It is required to prove that the two triangles are identically

equal.

Proof. Place the triangle DEF so that the side EF will

coincide with its equal side BC, the point E with B, and the

point F with C, and so that the vertex D will fall on the oppo-

site side of BC from the vertex A.

Join AD.

Then in A ABD, Z BAD = Z BDA,

and in A ACD, Z CAD = Z CDA.

Therefore ZBAC=ZBDa

(Prop. VI.)

Why?

(Axiom 2.)

But Z BDC is Z EDF, which is therefore equal to Z BAC.
Hence in As BAC and EDF, two sides and the included

angle of one are equal, respectively, to two sides and the in-

cluded angle of the other. Name them.

Therefore the two triangles are identically equal. (Prop. IV.)
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In Article 46 we showed that for every angle there is one

and only one bisector, and also stated in Art. 47 that for every

line-segment there is one and only one mid-point, or bisecting

point. In the next two propositions, we shall give simple

methods for finding these bisectors with the ruler and

compasses.

Proposition IX

54. To bisect a given angle.

Let BAC be a given angle.

It is required to draw the straight line which will bisect it.

From AB and AC cut off any equal segments

[Use compasses.]

Construction.

AD and AE.
Join DE.
Upon DE as base construct any isosceles triangle having its

vertex F on the opposite side of DE from A. (Prop. II.)

Join AF.

Then AF is the required line.

Proof. Compare As ADF and AEF side for side.

These triangles are equal in all respects. Where proved ?

Therefore Z DAF equals Z EAF. That is Z BAC is bisected

by .4i^.
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55. It should be noticed that in order to draw the bisector

AF, it is not necessary to draw the straight lines DE, DF, and

EF. The points D, E, and F can be located with the com-

passes, and then the line AF drawn, and in actual practice

this is all that should be done. The other lines, however, are

necessary for the proof.

EXERCISES

1. If ABC is an isosceles triangle, and the equal angles ABC and

ACB are bisected by the lines BD and CD which meet at i>, prove that

DBC is also an isosceles triangle.

2. ABC is an isosceles triangle having AB equal to AC. In AB and

AC tvs^o points D and E are taken equally distant from A
;
prove that

the line-segments BE and CD are equal. (Prop. IV.)

3. If two line-segments bisect each other at right angles, prove that

any point in one of them is equidistant from the extremities of the other.

4. BAC is a triangle having the angle B double of the angle A ; if BD
bisects the angle B and meets J C at Z>, prove that BD equals AD.

5. ACB and ADB are two triangles on the same side of AB., such that

AC IS equal to BD., and AD is equal to BC, AC and BD intersecting

at 0. Show that the triangle AOB is isosceles.

6. Divide a given angle into four equal parts.

7. If in a triangle DEF the angles D and E are bisected by straight

lines meeting at H, and Di/ equals EH., prove that Z)F equals EF.

8. Prove that the bisectors of the angles of an equilateral triangle

meet in one point. Is the same thing true of an isosceles triangle?

Suggestion. Draw the bisectors of two equal angles and let them

meet at 0. Join to the third vertex, and show that the line so drawn

bisects the third angle.

9. Apply the construction of Proposition IX to bisect a straight angle,

i.e. to draw a perpendicular to a given straight line at a given point.

10. If D and E are the mid-points of the equal sides AC and AB of an

isosceles triangle ABC^ prove that BD equals CE.

11. Let D be any point on the bisector of an angle BA C
;
prove that if

AB equals AC, the angle ADB equals the angle ADC.
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Proposition X

56. To bisect a given line-segment.

)^y
^<

\.
N.

E

y:D

V
/T^

Let AB be a given line-segment, which it is required to

bisect.

Construction. With centre A and any convenient radius

describe a circle.

With centre B, and an equal radius, describe another circle.

Let these circles intersect at points C and D.

Note. The radius must be chosen long enough to make the two

circles intersect.

Draw the straight line CD, meeting AB at E.

Then E is the mid-point of the line-segment AB.

Proof. Join CA and CB, also DA and DB.
Since these line-segments are all equal. As ACD and BCD

are identically equal. (Prop. VIII.)

Therefore Z ACD = Z BCD.

In the triangles ACE and BCE, two sides and the included

angle in one are equal to two sides and the included angle in

the other.

Therefore these triangles are identically equal. (Prop. IV.)

And the line-segment AB is bisected at the point E.
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Since CD not only bisects AB at E, but is also perpendicular

to AB, it may be called the perpendicular bisector of AB.

57. Corollary. Two points each equidistant from the ex-

tremities of a given line-segment determine the perpendicular

bisector of the segment.

/

/

\
\

E
Fig. 1.

The figure of the proposition illustrates one case of the theorem stated

in the corollary. Another case arises when C is equidistant from A and

B^ and also D equidistant from A and B^ as in Fig. 1.

Suggestion. It is here required to prove that DC bisects AB at

right angles. From As ^Z>C and BDC prove ZADC= /.BDC.
(Prop. VIII.)

From As ADE and BDE prove AE = BE and Z AED = Z BED.
(Prop. IV.)

EXERCISES

1. What lines of the figure of Proposition X were necessary to find

the point E, and what lines had to be added for the proof ?

2. In the figure of Proposition X show that CD is also bisected at

right angles by AB.

3. If two circles intersect, the straight line joining their centres bisects

at right angles the line-segment joining their points of intersection.

4. Find a line-segment equal to (1) half the sum of two given line-

segments, (2) half the difference of two given line-segments.

6. Find a line-segment half as long again as a given line-segment.

6. Prove that every point on the perpendicular bisector of a line-

segment is equidistant from the extremities of the line-segment.
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Proposition XI

58. If two straight lines intersect, the vertical angles
are equal.

Let the straight lines AB and CD intersect at 0.

It is required to prove that the vertical angles AOC and BOD
are equal.

Proof. Zs^OC and AOD are together equal to two right

angles. (Art. 16.)

Hence Z AOC is the supplement of Z AOD.
The Zs BOD and AOD are together equal to two right angles.

Why?
Hence Z BOD is the supplement of Z AOD.
Therefore Z AOC and Z jBOZ>, being supplements of the

same angle, are equal. (Art. 21.)

Similarly it may be shown that the vertical angles AOD and

BOC are equal.

EXERCISES

1. The straight line which bisects one of two vertical angles bisects

also the other.

2. The straight lines which bisect two adjacent supplementary angles

are at right angles to each other.

3. If one straight line is perpendicular to a second, the second is per-

pendicular to the first.

In connection with this example you will need carefully to recall the

definition of a perpendicular given in Art. 15.

4. If one of the four angles made by two intersecting straight lines is a

right angle, the other three are also right angles.
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Proposition XII

59. If any side of a triangle is produced, the exterior

angle so formed is greater than either of the two interior

non-adjacent angles.

Let the triangle ABC have the side BC produced to D.

It is required to prove that the angle ACD is greater than

either the angle at A or the angle at B.

Proof. Bisect the side AC at E, join BE, and produce to

F, making EF equal to BE. Join FC
A EEC is identically equal to A EBA. Why ?

Apply Propositions XI and IV.

Therefore Z ECF equals its corresponding Z EAB.
But Z ACD is greater than Z ECF. Therefore Z.ACD is

greater than Z CAB, or Z.A.

To prove Z ACD greater than Z B, it is only necessary to

produce the side AC, thus forming a vertical angle equal to

Z ACD, then proceed just as before, bisecting the side BC
instead of the side AC.

EXERCISES

1. Show that ZA is less than ZAEF, and that Zi^ is less than

ZBEC.

2. Draw three figures to show that an exterior angle of a triangle may
be greater than, equal to, or less than the interior adjacent angle.
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Proposition XIII

60. Any two angles of a triangle are together less

than two right angles.

Suggestions for Proof. Produce one side of the triangle

and so form an exterior angle.

This exterior angle is greater than either of the interior non-

adjacent angles. (Prop. XII.)

The sum of the interior adjacent angle and this exterior

angle is equal to two right angles. (Art. 16.)

Therefore the sum of the interior adjacent angle and either

of the other interior angles is less than two right angles.

By producing a different side of the triangle the angles can

be taken in pairs in other ways, and the theorem can thus be

proved for all possible pairs.

The pupil should make his own diagram and write out the

proof in full, naming the angles used.

61. Corollary I. If a triangle has one light angle or one

obtuse angle, the other two angles must he acute.

Definition. A triangle which has a right angle is called

a right triangle.

The side opposite the right angle is called the hypotenuse.

62. Corollary II. From a point outside a given straight

line, not more than one perpendicular to the line can he drawn.

EXERCISES

1. Show by joining the vertex yl of a triangle ABC with any point of

the opposite side between B and C that the angles at B and C are together

less than two right angles.

2. If any side of a triangle is produced both ways, the two exterior

angles so formed are together greater than two right angles.

3. The angles at the base of an isosceles triangle are both acute.
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Proposition XIV

63. If two sides of a triangle are unequal, the angle
opposite the greater side is greater than the angle oppo-

site the less.

Let ABC be a triangle in which the side AC is greater than

the side AB.

It is required to prove that the angle B is greater than the

angle C.

Proof. From AC cut off a part AD equal to AB. Join BD.
The line BD necessarily falls within Z ABC.

In A ABD, ZABD equals Z ADB. Why ?

But Z ^Z)J3 is greater than Z ACB. Why ?

Therefore Z ^J5i) is greater than Z ^C^.
But Z ABC is greater than Z ABD. (Axiom 8.)

Therefore Z ABC is greater than Z ACB. (Axiom 9.)

EXERCISES

1. The angles in a scalene triangle are all unequal.

2. If one side of a triangle is less than another, the angle opposite it

must be acute.

3. Prove the proposition by producing AB to D, making AD equal to

AC and joining DC.

4. If straight lines are drawn from any point within a triangle to two

of the vertices of the triangle, the angle contained by these lines is greater

than the angle at the third vertex.

Suggestion. Draw a line from the third vertex through the chosen

point. Then compare angles. Find also a second proof.



46 ELEMENTAEY GEOMETBY [CBur. I

64. Axiom 10. Two magjiitudes A and B of the same kind

are either equal, or A is greater than B, or A is less than B,

Proposition XV

65. If two angles of a triangle are unequal, the side

opposite the greater angle is greater than the side oppo-

site the less.

Let ABC be a triangle in which the angle B is greater than

the angle C.

It is required to prove that the side AC is greater than the

side AB.

Proof. If the side AG is not greater than AB, it must be

equal to AB, or less than AB. (Axiom 10.

If AC were equal to AB, how would Zs J5 and C compare ?

Give reference.

If AC were less than AB, how would Zs B and C compare ?

Give reference.

Conclusion.

66. Corollary I. In a right triangle the hypotenuse is the

greatest side.

67. Corollary II. Not more than two equal straight lines

can be drawn from a giveri point to a given straight line.

Suppose a third line AD, equal to the first two, AB and AC, can be

drawn. Then ZABC=ZACB, ZABD=ZADB, and ZACD=ZADC.
(Prop. VI.) But this is impossible by Proposition XII.
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68. The theorems of Propositions XIV and XV are converse,

as are also those of Propositions VI and VII.

Proposition VIII may be stated

:

If two triangles have the three sides of the one equal, respectively, to

the three sides of the other, then the three angles of the one are equal,

respectively, to the three angles of the other.

S^e the converse. Is the converse true ? Can a theorem

be true and its converse be false ?

69. Special attention should be paid to the method of proof

in Proposition XV. It is a method very frequently used

when we wish to prove the converse of a theorem whose truth

has already been established.

In the theorem of this proposition the statement to be proved

is that one side p of a triangle is greater than another side q,

upon the hypothesis that the opposite angle P is greater than

the opposite angle Q, and we proceed as follows

:

1. Suppose that the statement is not true. The only other possibili-

ties are : First, p is equal to g, or second, p is less than q.

2. Show by reference to a previous theorem (Prop. VI.) that if p is

equal to q, then the hypothesis cannot be true.

3. Show also by reference to a previous theorem (Prop. XIV.) that if j?

is less than g, then again the hypothesis cannot be true.

4. Conclude that since with the given hypothesis neither of the other

possibilities can be true, the statement of the theorem must be true.

Care must be taken in such a proof that all possible cases

have been examined before drawing a conclusion.

Such a proof is called an indirect proof.

EXERCISES

1. Prove that if D be any point in the base BC of an isosceles triangle

ABC, between 5 and C, AD is less than AB ; but if D lie on the base

produced either way, then AD is greater than AB.

2. ABC is a triangle in which OB and OC bisect the angles B and C,

respectively
; show that if AB is greater than AC, then OB is greater

than OC.
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Propositiox XVI

70. tdny two sides of a triangle are together greater

than the third side.

Let ABC be any triangle.

It is required to prove that any two sides AB and BC are

together greater than the third side AC.

Proof. Produce the side AB to D, making BD equal to BC.

Join DC.
Then AD is the sum of AB and BC, and it is required to

prove that AD is greater than AC.

Z BCD equals Z BDC Why ?

Therefore Z ACD is greater than Z BDC, or Z ^Z)a
Therefore in A ADC, the side ^Z> is greater than the side

AC. Give reference.

Hence in A ABC, the sides AB and BC are together greater

than the side AC.

EXERCISES

1. Prove this theorem by bisecting one angle and producing the bisector

to meet the opposite side.

2. Could a triangle be formed whose sides are 7, 11, and 19 feet,

respectively ? What is the limitation on the construction in Proposition

III.

3. Prove that the difference between any two sides of a triangle is less

than the third side.

4. A side of an isosceles triangle is always greater than half the base.
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Proposition XVII

71. Fi^om a given point in a straight line to^ draw a

perpendicular to the line.

/

/

A E C D B

Let AB be the given straight line and C the given point in it.

It is required to draw from C a straight line which is per-

pendicular to AB.

Construction. From C, on opposite sides, mark off any equal

segments CD and CE.

Upon the line-segment ED as base, construct any isosceles

triangle whose vertex is F. Draw the straight line CF.

Then CF is perpendicular to AB.

Proof. Compare As FCE and FCD, making use of Propo-

sition VIII. The triangles are identically equal.

Hence Z FCE equals Z FCD and each of them is a right

angle.

Therefore CF is the required line.

Compare the proof of this proposition with Ex. 9, p. 39.

For a proof that not more than one perpendicular can be drawn

from any point, see Article 6

EXERCISES

1. Repeat the above construction, using the compasses and ruler,

drawing only such arcs and lines as are necessary.

2. In the figure above, show that any point in the straight line CF,

produced ever so far either way, is equidistant from D and E^ while a

point of the plane, not on CF^ is not equidistant from D and E.
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On Loci

72. If you should be given the problem to find a point in

a plane equidistant from two given points in that plane, you

would at once recognize that there are many points which will

satisfy this condition. In fact, every point of a particular

straight line fulfils the. condition, while no point off that line

does so. (Ex. 2; p. 49.)

This particular straight line is called the locus of the points

fulfilling the given conditions.

The locLis of points in a plane which are at a given distance

from a given point is a circle of which the given point is the

centre, and the given distance equal to a radius, since all points

of the circle are at the given distance from the given point,

and there is no other point of the plane which is at that dis-

tance from the given point.

73. Definition. If every point of a line or group of lines

satisfies given conditions, while no other point satisfies those

conditions, that line or group of lines is called the locus of

the points satisfying the given conditions.

If any moving point continues to satisfy the given conditions,

it is evident that it must follow the locus.

74. The properties of loci can be utilized for the solution of

man}^ problems in geometry, for example the problem,— to

find a point which is equidistant from three given points A, B,

and a
The locus of points equidistant from A and B is the perpen-

dicular bisector of the line-segment AB.

The locus of points equidistant from B and C is the per-

pendicular bisector of the line-segment BC.

If these two perpendicular bisectors m and n intersect at O,

then is equidistant from Aj B, and C, and is the only such

point.
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For,

1. Every point of m is equidistant from A and B
;

Every point of n is equidistant from B and C.

is a point of both m and 7i, and is therefore equidistant

from A, B, and C.

2. No point outside of m is equidistant from A and B
;

No point outside of n is equidistant from B and C.

Therefore, no point other than their intersection, can be

equidistant from A, B, and C.

if m and n do not intersect, there is no point equidistant

from A, B, and (7.

EXERCISES

1. If Unes are drawn to the extremities of a given line-segment from

any point of its perpendicular bisector, these lines are not only equal but

make equal angles, both with the given line-segment and with its perpen-

dicular bisector.

2. Find a point in a given straight line such that its distance from two

given points may be equal.

3. If from any point within a triangle line-segments are drawn to the

extremities of one side, these are together less than the other two sides of

the triangle.

Suggestion. Produce one of these line-segments backward to meet

a side of the triangle, then apply Proposition XVI twice.

Notice what was proved concerning lines so drawn in Ex. 4, p. 45.

4. If be any point within a triangle ABC, show that the sum of OA,

OB, and OC is less than the sum of the sides of the triangle, but greater

than half the sum of the sides,

5. The segment of a straight line between any two points is shorter

than any broken line connecting those points.

6. Find a point which is equidistant from two given points and at a

given distance from a fixed point.

How many such points can there be ? Is it always possible to find a

point which will satisfy the given conditions ?
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Proposition XVIII

75. From a given point without a given straight line

to draw a perpendicular to the line.

m

«

A

o'\ E yh
B- -''

Let m be the given straight line and A the given point.

It is required to draw from A a straight line perpendicular

to m.

Construction. Choose a point B on the opposite side of m
from A. With radius AB describe a circle which must inter-

sect m in two points, say C and D. (See Art. 25.)

Bisect the line-segment CD at E. Join AE.
Then AE is the required perpendicular.

Proof. Compare As AEC and AED, using Proposition VIII.

The triangles are identically equal, hence Z AEO equals

Z AED, and therefore AE is perpendicular to m.

The pupil should repeat this construction, drawing only such

lines as are necessary to find the point E.

76. It was shown on p. 44 that from a point A there could

not be drawn two perpendiculars to the same straight line;

that there can be one perpendicular, we have here shown by

actually constructing it. Hence the theorem:

From a point outside a straight line, there can he draivn one

perpendicular to that line, and only one.

The point E in the diagram is called the foot of the perpen-

dicular drawn from the point A to the line m.
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77. By the distance from a point to a straight line, we mean

the length of the line-segment between the given point and the

foot of the perpendicular drawn from the point to the line. In

other words, the distance from a point to a straight line is

measured along the perpendicular from the point to the line.

EXERCISES

1. Of all the line-segments which can be drawn from a given point

to a given straight hne not passing through it, the perpendicular is the

shortest.

2. From a given point line-segments are drawn to a given straight

line, making equal angles with the perpendicular, on opposite sides
;
prove

that these line-segments are equal and intercept equal segments of the

given line on opposite sides of the perpendicular ; and, conversely, if they

intercept equal segments of the line, then they are equal and make eqife-l

angles with the perpendicular.

3. From a given point two line-segments are drawn to a given straight

line, making unequal angles with the perpendicular
;
prove that the one

which makes the greater angle with the perpendicular is the greater.

Suggestion. Let PA and PB be the lines, drawn say on the same
side of the perpendicular P3I, PA making the lesser angle with it. Draw
PB' on the opposite side of the perpendicular making Z B'PM- Z BP^f.

Then Z PAM is greater than Z PBM and therefore greater than Z PB'M.

4. Suppose D is any point in one side BC of a given triangle ABC.
Find a straight line such that if the paper on which the triangle is drawn
be folded along it, then A will coincide with D.

5. A right triangle has one of its acute angles double the other. Prove

that the hypotenuse is double the lesser side.

Suggestion. If A ABC is risrht-anscled at C, and Z A double of Z B,

produce AC to D making CD = AC. Prove ABD equilateral.

6. If D is the mid-point ot BC the base of an isosceles triangle ABC,
and E any point in AC, prove that the difference between BD and DE is

less than the difference between AB and AE.

7. On one boundary of an angle whose vertex is A points B and D
are taken, and on the other boundary points C and E, such that AB is

equal to AC, and AD equal to AE
;
prove that BE is equal to CD,
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Proposition XIX

78. If two right triangles have the hypotenuse and a
side of one equal, respectively, to the hypotenuse and a
side of the other, the triangles are identically equal.

Let ABC and DEF be two triangles, right-angled at C and

F, respectively, having the hypotenuse AB equal to the hypot-

enuse DE, and the side AC equal to the side DF.

It is required to prove that the triangles ABC and DEF are

identically equal.

Proof. Place A ABC beside A DEF so that the side AC
coincides with its equal side DF, the point A with the point

D, and the point C with the point F, and so that the vertices

B and E lie on opposite sides of DF.

Then EF and CB will lie in one straight line. Why ?

Since by hypothesis DE equals AB, in A DEB, DE equals

DB, and therefore Z E equals Z B. Give reference.

Again, if BC is not equal to EF, then F is not the mid-point

oiEB.
Suppose H is the mid-point of EB, and join DH.
Then DH must be perpendicular to EB (Prop. VIII), and

from D there are drawn two perpendiculars to EB, which is

impossible.

Therefore H is not the mid-point of EB, and similarly it

may be shown that no other point than F is the mid-point.

Hence EF and FB are equal ; that is, EF and BC are equal.

V Therefore As ABC and DEF are identically equal.

\ (Prop. VIII.)



78-79] TRIANGLES AND PARALLELOGRAMS 55

Proposition XX

79. If two triangles have two sides of the one equal,

respectively, to two sides of the other, and the included

angles unequal, the triangle which has the greater

included angle has also the greater third side.

Let ABC and A'B'O be the two given triangles in which the

side AB equals the side A'B', the side AC equals the side A'C,

and the angle BAC is greater than the angle B'A'C.

It is required to prove that the side BC is greater than the

side B'C.

Proof. Place A A'B'C upon A ABC so that the side A'B'

will coincide with the side AB, the point A' with the point A,

and B' with B.

The side A'C will not coincide with the side AC [why ?],

but will fall within Z BAC, while the point C may fall out-

side AABC as in the figure, or it may fall on the side BC,
or within A ABC, according to the lengths of the equal sides

AC and A'C.

The pupil should draw figures for the other two cases. The
proof is the same in all three cases.

Bisect Z CAC by the straight line AD, meeting BC at D.

Join CD.
As AC'D and ACD are identically equal. (Prop. IV.)

Therefore CD equals CD.
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Hence BD and DC are togetlier equal to BC.

But BD and DC are togetlier greater than BC. Why ?

Iherelore BC is greater than BC. That is, BC is greater

than B'C.

Pkoposition XXI

80. If two triangles have two sides of the one equal,

respectively, to two sides of the other, and the third

sides unequal, the triangle which has the greater third

side has also the greater included angle.

Let ABC and A'B'C be the given triangles having the side

AB equal to the side A'B', AG equal to A'C, but the third

side BC greater than the third side B'C.

It is required to prove that the included angle BAC is greater

than the included angle B'A'C.

Proof. If Z BAC is not greater than Z B'A'C, it must be

equal to, or less than Z B'A'C.

First, suppose Z BAC is equal to Z B'A'C.

Then the side BC must equal the side B'C (Prop. IV.)

But this is contrary to the hypothesis.

Next, suppose Z BAC is less than Z B'A'C.

Then the side BC must be less than B'C. (Prop. XX.)

But this is also contrary to the hypothesis.

Therefore Z BAC must be greater than Z B'A'C.

What ^ind of proof do you call this ?
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Propositiox XXII

81. // two triangles have two sides of the one equal,
respectiveli/, to ^ two sides of the other, and the angles
opposite one pair of equal sides equal, then the angles
opposite the other pair of equal sides are either equal
or supplementary, and if equal, then the triangles are
identically equal.

tet ^^^^ and A'B'C be two triangles having the side AB
ec^iial to the side A'B', AC equal to A'C, and the angle at B
eqi ^th*^ angle at B', these being opposite equal sides.

It iffequired to prove that the angles ACB and A'C'B' are

either equal or supplementary, and if equal, then the tri-

angles are identically equal.

Proof. Place A A'B'C upon A ABC so that the side A'B'

will coincide with its equal side AB, the point A' with the

point A, and the point B' with the point B.

Then since Z B' equals Z B, the side B'C will fall on the

side BC, and C will either coincide with C or with some other

point of the straight line BC.
If C coincides with C, the two triangles coincide through-

out and are identically equal.

If C falls at some other point, as D, Z ADC equals ZACD
[why?], and Z ADB is supplementary to Z ADC, or Z ACB.
That is, Z A'C'B' is either equal to ZACB or supplementary

to Z ACB, and if equal the triangles are identically equal.
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82. Corollary. If the two angles given equal are right

angles or obtuse angles, the tivo triangles must be identically

equal.

Proposition XIX thus becomes a special case of Proposition XXII.

Cases in which Two Triangles are Identically Equal

83. It may be well at this point to collect in tabulated form

the theorems which have already been proved relating to the

identical equality of two triangles.

Two triangles are identically equal when the following parts

in each are respectively equal

:

1. Two sides and the included angle. (Prop. IV.)

2. Two angles and the adjacent side. (Prop. V.)

3. The three sides. (Prop. VIII.)

4. A right angle, the hypotenuse, and a side. (Prop. XIX.)

5. Two sides and an angle opposite one of them. (Prop. XXII.)

It should be noticed that in each of the five cases there are

three parts of the one triangle equal, respectively, to three

parts of the other.

It must not, however, be concluded that if any three parts

of one triangle are respectively equal to the three correspond-

ing parts of another, the triangles are identically equal. For

example, it is not necessarily true that if the three angles of

one triangle are respectively equal to the three angles of

another, the triangles are identically equal.

In every case it is necessary that at least one of the three

given parts should be a side.

If the three given parts are two sides and an angle opposite

one of them, as in Case 5, there is an additional condition neces-

sary, namely, that the angles opposite one pair of equal sides

being equal, the angles opposite the other pair shall also be

equal, not supplementary.
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Proposition XXIII

84. At a given point on a given straight line to con-

struct an angle equal to a given angle.

Let A be the given angle, m the given straight line, and

the given point on it.

It is required to construct an angle equal to A, having its

vertex at 0, and having the line m for one boundary.

Construction. With the point xi as centre describe a circle

of any radius cutting the boundaries of the given angle at B
and C.

With as centre and the same radius describe a circle cut-

ting the line m at the point P.

With centre P and radius equal to the line-segment BC
describe a circle cutting the former circle at Q. Draw OQ.

The angle POQ is the required angle.

Proof. Join BC, also PQ. Prove A POQ identically equal

to ABAC (Prop. VIII), and hence Z equal to Z A.

How many such angles can be constructed at ?

EXERCISES

1. At a given point in a given straight line construct an angle equal to

the supplement of a given angle.

2. If the straight line bisecting the vertical angle of a triangle also

bisects the base, the triangle is isosceles. (Apply Proposition XXII.)

8. Prove Proposition VIII indirectly by assuming the included angles

between two pairs of corresponding sides unequal.
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MISCELLANEOUS EXERCISES

1. If one angle of a triangle is equal to the sum of the other two, the

triangle can be divided into two isosceles triangles.

2. If the angle C of a triangle ABC is equal to the sum of the angles

A and B, the side AB is equal to twice the straight line joining C to the

mid-point of AB.

3. ^ is a given point, and B a given point in a given straight line. It

is required to draw from A to the given straight line, a line-segment AP
such that the sum of AB and BP may be of given length.

4. If BE and CF are drawn from the extremities of the base of an

isosceles triangle ABC meeting the equal sides at E and F, and making

equal angles with the bases then A BCF and CBE are identically equal.

5. The equal sides AB and J.C of an isosceles triangle are produced

to E and F, respectively, so that AE equals AF ; BF and EC are joined
;

show (1) that 5F equals EC, (2) that Z Ci?F equals Zi^C^", (3) Z ABC
equals /.ACB, making use only of Proposition IV.

Note. This is Euclid's order of proving that the angles at the base

of an isosceles triangle are equal.

6. On the same base and on the same side of it there are given two

triangles, ACB and ADB, such that the sides AC and AD are equal.

Show that the sides BC and BD cannot be equal.

Note. This is Euclid's Proposition VII of Book I.

7. In a triangle ABC in which AB is greater than AC, if the bisector

of the angle at A meets BC a,t D, show that BB is greater than CD.

Suggestion-. In AB make AE equal to AC, join DE. As ADE
and ADC are identically equal. Then apply Proposition XII and I'ropo-

sition XV.

8. Show that the line drawn from the vertex of a triangle to any point

in the base (between the vertices) is less than the greater of the two

sides, or than either of them if they are equal.

9. If D is the mid-point of the side BC of a triangle ABC, in which

AC is greater than AB, the angle ADC is obtuse.

10. If in the sides AB, ^C of a triangle ABC, in which AC is greater

than AB, points D and E ave taken such that BD and CE are equal, then

CD is greater than BE.
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Section II

PARALLEL LINES

85. If we have given a point and a straight line a, not

passing through it, and draw through any straight line p.

unlimited on either side of 0, it will ordinarily intersect a

in some point A. If now the line p is rotated about as indi-

cated by the arrow-head, j^ and a will continue to intersect and

the point of intersection A will move off to the right. As
the rotation proceeds, the lines will by and by intersect far out

to the left, but the point of intersection will still move from

the left to the right.

The question arises. Do these lines always intersect? and

we are accustomed to say, No, there is one position of p for

which they do not intersect. When p is in that position it is

said to ba parallel to a.

Defixition. Parallel straight lines are straight lines lying

in the same plane, and such that if they are drawn ever

so far either way they will not intersect.

Straight lines in the same plane which are not parallel must

intersect, if produced far enough.

86. Postulate 5. Through ariy jwint one and only one

straight line can he drawn parallel to a given straight line.
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87. If two straight lines, parallel or not, are intersected by

a third line, called a transversal, four angles are made at each

intersection. These may be

designated by writing a let-

ter in each angle, and calling

the angle by the name of the

letter.

At each intersection there

are two pairs of vertical angles

and four pairs of adjacent an-

gles.

Other pairs of angles have

also received special names.

6', c and c', d and d' are called corresponding angles.

The angles a and d', b and c', c and b', d and a', are called

alternate angles.

The angles a, b, c', d', are called exterior angles, and the

angles c, d, a', b', are called interior angles.

Thus the angles a and a', b and

Proposition XXIV

88. // two straight lines lying in one plane are such

that a transversal makes the interior alternate angles

equal these two lines are parallel.

Let the straight lines a and b lie in one plane and be such

that the transversal c makes the alternate angles m and n equal.
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It is required to prove that a and b are parallel.

Proof. If a and b are not parallel they will intersect if

produced far enough either one way or the other.

If they intersect, they and the transversal will form a tri-

angle in which one of the two angles m and n will be an exterior

angle formed by producing a side, and the other, an interior

non-adjacent angle, in which case they could not be equal.

(Prop. XII.)

Hence a and b cannot intersect, and therefore must be

parallel.

Exercise. Show that if any one pair of alternate angles are equal,

all pairs are equal.

89. Corollary I. If two straight lines lying in one plane

are such that a transversal makes a pair of corresponding angles

equal, these two lines are parallel.

Prove by showing that if a pair of corresponding angles are

equal a pair of alternate angles must also be equal.

90. Corollary II. If two straight lines lying in one plane

are such that a transversal makes a 2')air of interior angles, or a

pair of exterior angles, on the same side of it supplementary,

these two lines are parallel.

91. Corollary III. Straight lines lying in one plane and

perpendicular to the same straight line are parallel.

92. Corollary IV. Two straight lines parallel to the same

straight line are parallel to each other.

For, if they are not parallel they must intersect when pro-

duced ; then there would be through their point of inter-

section two straight lines parallel to the same line,

contrary to Postulate 5.
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Proposition XXV

93. If two parallel straight lines are cut by any trans-

versal, the interior alternate angles are equal.

Let a and h be two parallel lines and c any transversal inter-

secting a at J. and h at B.

It is required to prove that the interior alternate angles m and

n are equal.

Proof. If Z m is not equal to Z n, through A draw the

straight line a' making with the transversal c an angle m^

which is equal to Z n.

Then the straight lines a' and b must be parallel. (Prop.

XXIV.)
Bat, by hypothesis, a and h are parallel.

Therefore, since through A but one straight line can be drawn

parallel to h, a' must coincide with a, and Z ?/i' must coincide

with Z 771.

But by construction Zm' = Z. n.

Therefore Zm = Z n.

94. Corollary I. If two parallel lines are cut hi/ a trans-

versal, any two alternate angles and any two corresponding angles

are equal.
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95. Corollary II. If two parallel lines are cut by any trans-

versal, the interior angles, and also the exterior aiigles, on the

same side of the transversal, are supplementary.

96. Corollary III. If any pair of alterjiate angles foryned

by two straight lines and a transversal are unequal, or if any

pair of corresponding angles are unequal, or if the interior angles

on one side are 7wt supplementary, the two lines are not parallel

and therefore will meet if produced.

For if the lines are parallel, we have just proved that alternate

angles must be equal, corresponding angles must be equal,

and interior angles on one side must be supplementary, con-

trary to the assumption.

97. Corollary IV. If a straight lirie is perpendicular to

one of two parallel lines, it is perpendicular also to the other.

98. Corollary V. If two straight lines intersect, lines per-

pendicular to them in the same plane will also intersect.

Let a and b be two intersecting straight

lines and let c be perpendicular to a, and d

perpendicular to b. If c and d do not in-

tersect, they must be parallel, and then

since a is perpendicular to c it must also

be perpendicular to d (Cor. IV). Hence

a and b are both perpendicular to d and

must themselves be parallel (Art. 91),

contrary to hypothesis.

EXERCISES

1. Any straight line drawn parallel to the base of an isosceles triangle

forms with the sides another isosceles triangle.

2. Is it always true that if two angles are equal and one boundary of

the one parallel to one boundary of the other, then their other boundaries

are also parallel ?

Illustrate your answer by diagrams.

3. Prove that two parallel lines are everywhere equidistant.

4. If any two straight lines intersect, lines parallel to them must also

intersect.
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Proposition XXVI

99. Through a given point to draw the straight line

parallel to a given straight line.

v^ J^X

Let A be the given point and BC the given straight line.

It is required to draw through A the straight line parallel to

BC.

Construction. Through A draw any straight line intersect-

ing BC at a point D.

At A, in the straight line AD, construct Z DAE equal to

AADB. (Prop. XXIII.)

Then the straight line AE is parallel to BC. (Prop. XXIV.)

EXERCISES

1. Through a given point draw a straight line making with a given

straight Hne an angle equal to a given angle. How many such lines can

be drawn ?

2. Two line-segments AB and CD bisect each other at 0. Prove that

the lines AC and BD are parallel. How about AD and BC ?

3. If through the vertex of an isosceles triangle a straight line is drawn

parallel to the base, it will bisect the exterior vertical angle.

4. Through a given point draw a straight line which will make equal

angles with two given intersecting straight lines.

SuGGESTioy. Draw the perpendicular to the bisector of the angle be-

tween the lines.
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Proposition XXVII

100. // one side of a triangle is produced, the exterior

angle so formed is equal to the sum of the two interior

hon-adjacent angles.

Let ABC be any triangle having the side BC produced to D.

It is required to prove that the exterior angle ACD is equal

to the sum of the two interior non-adjacent angles, viz. the

angles CAB and CBA.

Proof. From C draw the straight line CE parallel to BA.
(Prop. XXVI.)

Then Z BCD = Z CBA and Z ACE = Z CAB. Why ?

Therefore the sum of Zs ACE and ECD equals the sum of

Zs CAB and CBA
That is, /-ACD equals the sum of Zs CAB and CBA.

101. Corollary I. Tlie sum of the three angles of a triangle

is equal to two right angles.

102. Corollary II. The two acute angles of any right tri-

angle are complementary ; i.e. their sum is a right angle.

Definition. One angle is said to be the complement of

another when the sum of the two is a right angle.

103. Corollary III. Each angle of a triangle is the supple-

ment of the sum of the other two.
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104. Corollary IV. If tico triangles have tico angles of the

one equal respectively to tico angles of the other^ their third angles

are also equal; or, if the sum of two angles in the one is equal to

the sum of two angles in the other, their third angles are equal.

•

105. Corollary V. If the boundaries of one angle are re-

spectively parallel or perpendicidar to the boundaries of another,

these two angles are either equal or supplementary.

Make diagrams representing all the cases.

106. Corollary VI. If two triangles have two angles of the

one equal respectively to two aiigles of the other, and the sides

opposite one pair of equal angles also equal, the triangles are

identically equal.

For then the third angles are also equal, and the theorem falls

under Proposition V. This theorem may be easily proved

by superposition, making use of Proposition XII.

EXERCISES

1. If an isosceles triangle is right-angled, each of the angles, at the

base is half a right angle,

2. If two isosceles triangles have their vertical angles equal, they are

mutually equiangular ; i.e. each angle of the one is equal to an angle of

the other.

3. If one angle of a triangle is equal to

the sum of the other two, it must be a right

angle.

4. Divide a right triangle into two isos-

celes triangles, and hence show that the mid-

point of the hypotenuse is equidistant from

the three vertices.

Suggestion. Construct /.ACT) = ZA, and show that Z BCD = ZB.
Hence DA = DC ^ DB.

6. Each angle of an equilateral triangle is two-thirds of a right angle.
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Proposition XXVIII

107. Every point on the bisector of an angle is equi-

distant from the boundaries of the angle; and every

point within the angle which is equidistant from
the boundaries is on the bisector; that is, the bisector

of an angle is the locus of points within the angle

which are equidistant from its boundaries.

First, let AD be the bisector of the angle BAG and let P
be any point on AD.

It is required to prove that P is equidistant from AB
and AC.

Proof. From P draw the lines PM and PN peri^endicular,

respectively, to AB and AC.
Then As PAM and PAN are identically equal. Why?

(Apply Prop. V.)

Therefore PM equals PN-, that is, P is equidistant from

AB and AC.

Next, let Q be any point equidistant from AB and AC
within the angle BAC.

It is required to prove that Q lies on the bisector of the angle

BAC.

Proof. From Q draw QS and QT perpendicular to AB and

AC, respectively, and join QA.

By hypothesis, QS and QTare equal.
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Then As QSA and QTA are identically equal. Why?
(Apply Prop. XIX.)

Therefore /LQAS equals ZQAT; that is, Q lies on the

bisector of the angle BAC.
Since the bisector of the angle BAC contains all points

within the angle which are equidistant from the boundaries,

and no point which is not equidistant from the boundaries, it

is the locus of such points.

108. Corollary. The locus of jwlnts equidistant from two

intersecting straight lines consists of the two lines which bisect

the angles formed by the given lines.

EXERCISES

1. Prove that the locus of points equidistant from two intersecting

straight lines consists of two straight lines at right angles.

2. If the straight line drawn from one vertex of a triangle to the mid-

point of the opposite side is equal to half of this side, prove that the

triangle has one right angle.

3. If, in a right triangle, a perpendicular is drawn from the vertex

of the right angle to the opposite side, the two triangles so formed are

equiangular with each other and with the whole triangle.

4. A straight line drawn perpendicular to the base 5C of an isosceles

triangle ABC meets the side AB at E and the side CA produced at F.

Prove that the triangle EAF is isosceles.

6. If a point is equidistant from two parallel straight lines, any line-

segment drawn through it and terminated by the parallel lines is bisected

at the point.

6. If a point is equidistant from two parallel straight lines, any two

straight lines drawn through it intercept equal segments of the parallel

lines.

7. Construct a triangle having given two angles and the length of the

perpendicular from the third vertex to the opposite side.

8. If two exterior angles of a triangle be bisected, and from the point

of intersection of the bisecting lines a straight line is drawn to the third

vertex, it bisects the third angle. (Apply Proposition XXVIII.)
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Section III

CLOSED RECTILINEAR FIGURES OF MORE THAN
THREE SIDES

109. On page 13 a closed figure was defined as one which

can be traversed by starting at any point of it, and moving

continuously along the lines of the figure in order, returning

to the same point without passing twice over any portion of

the figure.

A closed rectilinear figure is one which is made up wholly of

line-segments and the points in which they intersect, two and

two, in order.

The line-segments are called the sides of the figure, and the

points in which the sides intersect are called the vertices of

the figure.

Two sides which intersect in a vertex are called adjacent

sides.

The angles formed by pairs of adjacent sides are called the

angles of the figure.

A straight line joining any two vertices not

on the same side is a diagonal.

In the diagram, the points A, B, C, D, E
are vertices, the line-segments AB, BC, CD,

etc., are sides, and AC, AD, CE, etc., are

diagonals.

If the number of sides of any closed rectilinear figure is n,

the number of diagonals which can pass through any one

vertex is n — 3, and since each diagonal passes through two

vertices, the total number of diagonals is ^n{n — 3).
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110. A convex rectilinear figure is one which lies wholly on

one side or the other of each of its sides.

Figures 1 and 2 above are convex rectilinear figures, while

figures 3 and 4 are closed but not convex.

Could a triangle be anything else than convex ?

111. We shall usually denote a closed rectilinear figure by placing

capital letters at its vertices and naming them in

order. Thus, the figure at the right is the figure

ABCDEF, or CBAFED, etc. When no misunder-

standing is likely to arise, the figure may be named
by mentioning two non-consecutive vertices.

Sometimes it will be convenient to letter the sides

of the figure a, 6, c, d, e,f, and then the figure can

be named by mentioning the sides in order.

112. It will be observed that in any closed rectilinear figure there are

just as many vertices as sides. The vertices and sides together make up

the elements of the figure, so that the number of elements is always even,

and equal to twice the number of sides of the polygon.

113. Two elements are said to be opposite when just as many ele-

ments lie between them the one way round as the other way round the

figure.

If the number of sides in the figure is even, a side is always opposite a

side, and a vertex opposite a vertex. lu the figure above, the side CD is

opposite the side AF, the vertex B opposite the vertex E, etc. the number

of elements between the pairs of opposite elements being in each case

five.

If the number of sides in the figure is odd, a side is always opposite

a vertex.

We have already assumed that the pupil will know the opposite ele-

ments in a triangle ; it is not, however, so easy to detect opposite elements

when the figure has more than three sides.
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114. A closed rectilinear figure having three sides is a tri-

angle, one of four sides is a quadrilateral.

A general name applied to any closed rectilinear figure, with-

out regard to the number of sides, is a polygon.

115. A convex polygon is a closed rectilinear figure which

lies wholly on one side or the other of each of its sides.

Proposition XXIX

116. The sum of the interior angles of any convex

polygon, together with four right angles, uxahes up
twice as many right angles as the polygon has sides.

Let ABODE be any convex polygon.

It is required to prove that the sum of the interior angles

A, B, C, D, E, together with four right angles, makes up twice

as many right angles as the figure has sides.

Proof. Choose any point O within the polygon, and join

to each vertex of the polygon.

This divides the polygon into as many triangles as the poly-

gon has sides.

The three angles of each triangle are together equal to two

right angles. (Prop. XXVII, Cor. I.)

Hence all the angles of all the triangles are together equal

to two right angles for each side, or to twice as many right

angles as the polygon has sides.

But these angles include the interior angles of the polygon,

together with four right angles about the point 0.

Therefore . . .
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117. Corollary I. If the sides of a con- ^^

vex polygon are produced in order, the exterior >^\^ /

angles so formed are together equal to four right ,*'\
j

angles. \ /

Suggestion. Each exterior angle and its adjacent \

interior angle make two right angles. \

118. Corollary II. If S represents the sum of the interior

angles of a convex polygon, and n the number of sides, then S 4-

four right angles = 2n right angles, or S = (n — 2) times two

right angles.

Definitions

119. A parallelogram is a quadrilateral whose opposite sides

are parallel.

If only two opposite sides of a quadrilateral are parallel,

the figure is called a trapezoid.

If no two sides of a quadrilateral are parallel, the figure is

called a trapezium.

120. A parallelogram having two adjacent sides equal is

called a rhombus.

121. A parallelogram having one right angle is called a

rectangle.

122. A square is a parallelogram having one right angle

and two adjacent sides equal.

EXERCISES

1. The sum of the interior angles of any quadrilateral is equal to four

right angles.

To how many right angles is the sum of the interior angles of a con-

vex polygon of five sides equal ? of six sides ? of eight sides ?

2. If two angles of a quadrilateral are right angles, the other two are

supplementary.

3. If any one angle of an isoceles triangle equals two thirds of a right

angle, the triangle is equilateral.
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Proposition XXX

123. The opposite sides and the opposite angles of a
parallelogram are equal.

D

Let ABCD be a parallelogram

It is required to prove that AB is equal to DC and AD equal

to BC\ also that the angle A is equal to the angle C, and the

angle B equal to the angle D.

Proof. Join a pair of opposite vertices A and C.

Because AB is jjarallel to DC, by definition,

Z BAC = Z DCA. (Prop. XXV.)

And because AD is parallel to BC,

ZBCA^ZDAG.
Therefore AsABC and CDA are identically equal. (Prop. V.)

Conclusion . . .

124. Corollary. Either diagonal of a x>arallelogram divides

the figure into two superposable triangles.

125. In writing out the proofs of propositions and in the

exercises, the pupil is advised to make use of certain well

established symbols in order to abbreviate his work. For

instance, instead of the expression *is parallel to,' or the word
*^ parallel,' he may use the symbol

|| ; and instead of 4s perpen-

dicular to,' or ^ perpendicular,' he may use the symbol X. Thus

'AB is parallel to CD' would be written 'AB
||
CD; and 'AB

is perpendicular to OZ)' would be written 'AB±CD\ The
pupil is also advised to make free use of algebraic symbols in

all written work.
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Proposition XXXI

126. The diagonals of a parallelogram bisect each

other.

A B

Let ABCD be a parallelogram whose diagonals intersect at 0.

It is required to prove that is the mid-point of both AC
and BD.

Proof. Compare the two triangles AGE and COD, making

use of Propositions XXV, XXX, and V.

Proposition XXXII

127. // two sides of a quadrilateral are parallel and
equal, the figure is a parallelogram.

Let ABCD be a quadrilateral having the sides AB and Z)C

parallel and equal.

It is required to prove that AD and BC are parallel, and

hence that the figure is a parallelogram.

Proof. Draw a diagonal AC. Then As BAC and DCA are

identically equal by Propositions XXV and IV.

Therefore Z BCA = Z DAC,

and the sides AD and BC are parallel. (Prop. XXIV.)
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Proposition XXXIII

128. If both pairs of opposite sides of a quadrilateral

are equal, the figure is a parallelogram.

Given a quadrilateral whose opposite sides are equal.

It is required to prove that the opposite sides are parallel,

and hence that the figure is a parallelogram.

Proof. Draw a diagonal and compare the triangles so formed.

[The pupil should make the necessaiy diagram for himself.]

Proposition XXXIV

129. // two parallelograms have two adjacent sides

and the included angle of the one equal, respectively, to

two adjacent sides and the included angle of the other,

the parallelograms are identically equal.

Prove by superposition, placing the one parallelogram on the

other so that parts given equal will coincide, and showing that

the remaining parts must also coincide.

EXERCISES

1. If the diagonals of a quadrilateral bisect each other, the quadrilateral

is a parallelogram.

2. In a parallelogram the perpendiculars drawn from one pair of oppo-

. site vertices, to the diagonal through the other pair, are equal.

3. If the diagonals of a parallelogram are equal, the parallelogram is

rectangular.

4. If ABCD is a parallelogram, and X, F, respectively, the mid-points

of the sides AD, BC ; show that the figure ^FOX is a parallelogram.

5. If both pairs of opposite angles of a quadrilateral are equal, the

figure is a parallelogram.

6. If one angle of a parallelogram is a right angle, all the angles are

right angles.

7. If two sides of a quadrilateral are parallel, and the other two equal

but not parallel, the diagonals are equal.

Such a figure is called an isosceles trapezoid.
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Section IV

MISCELLANEOUS THEOREMS

Proposition XXXV

130. T?ie line-segment joining the mid-points of two
sides of a triangle is parallel to the third side and
equal to half of it.

A

Let ABC be any triangle, D and E the mid-points of the two

sides AB and AC.

It is required to prove that the line-segment DE is parallel to

the third side BC, and equal to half of it.

Proof. From B draw 5ii^ parallel to CA, meeting the straight

line ED in F.

A BDF is identically equal to A ADE. Prove.

Therefore DF= DE, and BF=AE.
But AE = CE by hypothesis.

Therefore BF = CE, and is parallel to CE by construction.

Therefore BFEC is a parallelogram (Prop. XXXII), and FE,

i.e. DE, is parallel to BC.

It is left for the pupil to prove that DE equals half of BC.

131. Corollary I. If the mid-points of the sides of any

quadrilateral be joined in order, the figure so formed is a paral-
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lelogranij and the sum of the sides of this parallelogram equals

the sum of the diagonals of the quadrilateral.

Suggestion. Draw the diagonals of the quadrilateral and apply

Proposition XXXV.

132. Definition. The sum of the sides of any polygon is

called the perimeter of the polygon.

133. Corollary II. If from the mid-point of one side of a

triangle there is drawn a straight line parallel to a second side^

this line passes through the mid-point of the third side.

Else through one point there could be drawn two parallels to

the same line.

134. Definition. A straight line drawn from any vertex

of a triangle to the mid-point of the opposite side is called

a median of the triangle. Every triangle has three medians.

135. Definition. By concurrent lines we mean lines which

pass through the same point.

EXERCISES

1. The mid-points of a pair of opposite sides of a quadrilateral and the

mid-points of the diagonals are the vertices of a parallelogram.

2. In a trapezoid the mid-points of the non-parallel sides and the mid-

points of the diagonals lie upon the same straight line parallel to the other

two sides. The distance between the mid-points of the non-parallel sides

is equal to half the sum of the parallel sides ; and the distance between

the mid-points of the diagonals is equal to half the difference between the

parallel sides.

3. Find on one side of a triangle the point from which straight lines

drawn parallel to the other two sides, and terminated by these sides, are

equal.

Suggestion, Bisect the opposite angle.

4. It ABCD and AEFG are two squares so situated that the angles A
coincide, then A, C, and F are in the same straight line.

6. If two parallelograms have a diagonal and two vertices in common,

show that the other four vertices are the vertices of another parallelogram.
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Proposition XXXVI

136. The medians of a triangle are concurrent.

B

Let ABC be any triangle, AE and CD, two of its medians

meeting at 0. Join BO and produce to meet AC at F.

It is required to prove that F is the mid-point of AC, and

hence that BF is the third median of the triangle.

Proof. Through A draw AK parallel to DC, meeting BF
at K. Join CK.

Then in A BAK, since BD = DA, BO = OK.
(Prop. XXXV., Cor. II.)

In ABCK, since BE = EC, and BO = OK,

EO is parallel to CK; that is, OA is parallel to CK
Therefore AOCK is a parallelogram, and AF equals FC

Therefore BF, passing through 0, is a median of the triangle.

(Prop. XXXI.)

137. Definition. The point 0, in which the medians inter-

sect, is called the centroid of the triangle.

138. Corollary. The centroid of a triangle is a trisection

point of each median of the triangle.

For, since 0K= OB, and 0F=\ OK, therefore, OF=l OB,
or \ BF.

Similarly O may be shown to be a point of trisection of the

other medians.
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Proposition XXXVII

139. The bisectors of the angles of a triangle are con-

current.
A

Let ABC be any triangle, and AO^, BO2, CO^, the bisectors

of the angles.

It is required to prove that AOi^ BO2, and CO3 meet in

one point, or are concurrent.

Proof. Since Zs ABO2 and BAOi are together less than

two right angles [why?], AOi and BO^ will meet.

( Prop. XXV, Cor. III.)

Let them meet in X.

Now AOi is the locus of points within the angle BAC
equidistant from AB and AC. (Prop. XXVIII.)

Also, BO2 is the locus of points within the angle ABC
equidistant from AB and AC.
The point X must therefore be equidistant from AC and BC,

and consequently must lie on CO3, which is the locus of points

within the angle ACB equidistant from AC and BC.

Therefore AOi, BO2, CO^ meet in the point X

1. Produce the sides of the triangle and bisect two external angles and

the third internal angle. Are these bisectors concurrent ? Prove.

By this means we find four points X, Y, Z, W associated with the tri-

angle. Notice that when the figure is completed, these four points are

joined in all possible ways, and that the line joining any two of them is

perpendicular to the line joining the other two.
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Proposition XXXVIII

140. The perpendicular bisectors of the sides of a
triangle are concurrent.

Let ABC be any triangle ; i), E^ F, the mid-points of the

sides.

It is required to prove that the perpendiculars erected at

D, E, and F meet in a point.

Proof. The perpendicular at F is the locus of points equi-

distant from A and B. (Art. 72.)

The perpendicular at E is the locus of points equidistant

from A and C.

These two perpendiculars intersect. Why?
Their point of intersection being equidistant from B and

(7, must lie on the perpendicular at D. (Art. 74.)

Therefore the three perpendiculars meet in a point.

EXERCISES

1. If from the pointsA and J5 of a straight line, and their mid-point C,

perpendiculars are drawn to a given straight line, the perpendicular from

C is equal to the half-sum, or the half-difference of the perpendiculars

from A and i?, according as A and B are on the same or on opposite sides

of the given straight line.

2. If D and E are the mid-points of the sides AB and J. (7 of a triangle

ABC, and BE is produced to i^ making ^ii^ equal to BE, and CD is pro-

duced to Q making DCr equal to CD, show that G, A, and F are in a

straight line.

Suggestion. Show that DE is parallel to both AF and AG.

3. An angle of a triangle is right, acute, or obtuse according as the

median drawn from its vertex is equal to, greater than, or less than half

the side it bisects.

4. The feet of the four perpendiculars, drawn from one vertex of a

triangle to the internal and external bisectors of the other two angles, lie

on one straight line which passes through the mid-points of two sides of

the triangle.
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Proposition XXXIX

141. The straight lines drawn from the vertices of a
triangle perpendicular to the opposite sides are con-

current.

A L

Let ABC be any triangle, and from the three vertices draw

the straight lines AO^y BO^, GO^ perpendicular to the opposite

sides.

con-It is required to prove that AO^ BO2, and CO3 are

current.

Proof. Through A, B, and C draw the straight lines KL,
KM, and LM parallel respectively to the opposite sides of the

triangle.

Then ACBK is a parallelogram, as is also ABCL.
Hence A is the mid-point of KL, and AO^ is perpendicular

to KL since it is perpendicular to BC. (Prop. XXV., Cor. IV.)

Similarly BO2 is perpendicular to KMsit its mid-point.

And CO3 is perpendicular to LM at its mid-point.

Therefore AO^, BO2, CO^ are concurrent. (Prop. XXXVIII.)

Definition. The point X, in which the three perpendicu-

lars from A, B, C, to the opposite sides intersect, is called the

orthocentre of the triangle ABC.
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EXERCISES

1. If the pointD is the orthocentre of the triangle ABC, show that A is

the orthocentre of the triangle BCD, B, the orthocentre of the triangle

ACD, and C, the orthocentre of the triangle ABD.
2. If the opposite sides of a quadrilateral are perpendicular to each

other, the diagonals are also perpendicular to each other (Carnot's

theorem). Could such a quadrilateral be convex?

Sectioist V
ADDITIONAL PROBLEMS OF CONSTRUCTION

142. In the preceding propositions we have introduced at

convenient places several problems of construction, not because

they form an indispensable part of the body of geometrical

truth, but rather because of their inherent interest, and because

they present to the beginner matters for proof which he clearly

sees ought not to be accepted without proof.

By making use of the principles employed in the preceding

problems the following can easily be solved

:

1. To construct a triangle when two sides and the included

angle are given.

2. To construct a triangle when a side and the two adjacent

angles are given.

3. To construct a triangle when two angles and a side

opposite to one of them are given.

This problem can easily be reduced to (2) by making use of

the property of Proposition XXVII, Cor. I.

4. To construct a triangle when two sides and an angle

opposite to one of them are given.

The pupil should notice all the cases that may arise in this

problem according as the given angle is acute, obtuse, or a

right angle ; also according as the given angle is opposite the

greater or the less of the two given sides ; and should deter-

mine under what conditions there are two solutions, one

solution, or no solution.
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5. To trisect a right angle.

Suggestion. Upon any segment AG of one

boundary, terminated at one end by the vertex, con-

struct an equilateral triangle AEG. Similarly on an

equal segment AB construct an equilateral triangle

ADB. AD and ^^are the required trisectors. What
lines might be omitted in the construction ?

6. To trisect a given segment of a straight line.

Suggestion. Upon the given segment as base construct an equilateral

triangle. Bisect the base angles. From the point where these bisectors

meet, draw lines parallel to the sides.

Typical Solutions

143. We shall here insert a few typical problems with their

solutions representing the principal methods of attack when a

solution does not readily appear,

1. To construct a triangle Jiavirig given one side, an adjacent

angle, and the sum of the other two sides.

Let a be equal to the given side, b the sum of the other two sides, and

P the given angle.

Construction. Draw any line AB equal to a. At one extremity A
construct an angle BAG equal to ZP, and make ^C equal to b. Now
arises the problem to find a point D in AG such that if it be joined

to B, DB will equal DG, and so the

sum of AD and DB will equal AC. a •

Assume the thing done. That is,

choose some point D and assume that

it fulfils the given conditions.

Join DB and BG. Then BDG is

an isosceles triangle, and a perpen-

dicular from D upon BG would bi-

sect BG.
But we were able to draw BG with-

out knowing D, also to bisect BG and

erect the perpendicular ED, and thus

determine D.

So the construction would be as fol-

lows :
—
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Draw AB and AC as before.

Join BC. Bisect BC aX E and draw the perpendicular bisector cutting

AC Sit D. Join DB.
AADB is the required triangle.

This method of solution is called Solving by Analysis.

Notice the order. We first assumed the required construction to have

been made, then analyzed the diagram and sought to find upon what

principles the construction rests and what steps would lead to it. Then
by taking these steps in order the solution is accomplished.

2. Find a j)oint in a given straight liyie, which is equidistant

from tico given points, (1) on the same side of the line, (2) on

opposite sides of the line.

If A and B are the given points and p the given straight line, the

required point clearly is the intersection with p, of the perpendicular

bisector of AB. For, this perpendicular bisector is the locus of points

which are equidistant from A and B.

Thus, by considering the locus of points satisfying given conditions we
are led to the solution of the stated problem. This method may be

called the method of Intersection of Loci.

3. Two points A and B are on opposite sides of a river whose

hanks are parallel straight lines. If the river must be crossed in

a given direction, find the shortest path that can be taken from

A to B.

Let the parallel lines p and q represent the banks of the river, and MN
the direction in which the river must be crossed.

The line-segment MN will indicate the distance that roust be travelled

in the given direction.
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From A draw a line AC equal and parallel to MN. Then AC is the

distance that must be travelled in the given direction ; the remaining

distance is to be as short as possible, and so will be equal to the line-

segment CB.

Let CB cut q at E. Draw ED parallel to NM or CA, meeting p at D.

Join AD. Then ADEB is the required path.

The pupil can easily prove that ACED is a parallelogram, and hence

that the sum of the distances ^i>, DE^ and EB is equal to the sum of

the distances AC and CB. The distance travelled in going from A to B
would have been the same if we had crossed from the line AD to the

parallel line CB., in the given direction, at any point, and the only prob-

lem was to shift the given distance AC parallel to itself till it reached

from one bank of the river to the other.

When a straight line is moved so as to remain always parallel to its

original position it is said to be translated, and the motion is called a

translation.

When any figure is moved so that all of its points describe parallel

straight lines it is said to be translated.

Since the solution of this problem required the translation of the line

AC, which satisfied some of the conditions of the problem into such a

position as to satisfy the remaining conditions, the method is sometimes

called the method of Translation.

EXERCISES

1. Through a given point to draw a straight line to make equal angles

with two given intersecting lines.

Suggestion. Translate the bisector of the angle between the lines till

it passes through the given point. See another solution on p. QQ.

2. Construct a triangle having given one side and the orthocentre.

3. Construct a triangle having given the base, the altitude, and the

length of one side. Is the solution always possible ?

4. Through a given point P draw a straight line such that the perpen-

diculars to it from two fixed points meet it at equal distances from P.

5. Through a given point draw a line-segment terminated by two given

intersecting straight lines, which shall be bisected at the given point.

6. Construct a right triangle having given the hypotenuse and the

difference of the two sides.

7. Construct a triangle equiangular with a given triangle and having a

given perimeter.
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Section VI

SYMMETRICAL FIGURES

144. If there be given any straight line a, and from a point

A we draw AM perpendicular to the given line, and produce it

to a point A' such that MA equals MA, then A and A' are

called inverse points relative to the

line a.

In the figure, B and B^ form an-

other pair of inverse points relative

to a.

Definition. If two figures are

such that for every point of the one

there is an inverse point in the other,

relative to a certain straight line,

the two figures are said to be sym-

metrical with respect to this line,

and the line is called an axis of sym-

metry for the two figures.

a

4. 4'

M

B

A A

A A
C B B' C

145. If you think of the plane in which there lie two figures

symmetrical with respect to a certain straight line, as being

folded along this line, just as you would fold a sheet of paper

along a given straight line, it is clear that the two figures would

come to coincide, since all lines perpendicular to the axis of

symmetry would fold over upon themselves.

Hence,

Theorem. If two figures are symmetrical with respect to a

straight line, they are superposable by inversion.

A figure symmetrical with a given figure can easily be obtained

by tracing it with ink and then folding the paper along a

straight line before the ink is dry.
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146. Two parts of the same figure may be

symmetrical with respect to a given straight

line, as in the diagram. In such cases we say

that the figure is symmetrical with respect to

the line.

Theorem. A circle is symmetrical with respect

to any of its diameters.

Let APB be a circle whose centre is 0, AB
any diameter, P any point on the circle.

From P draw PM perpendicular to the diame-

ter, and produce it to meet the circle again at P'. Join PO
and P'O.

The As 0PM and 0PM are identically equal. Hence P is

the inverse point of P, and for every point of the circle there

is an inverse point with respect to the diameter.

EXERCISES

1. Show that a square is symmetrical with respect to each of its

diagonals.

2. Show that an equiangular triangle is symmetrical with respect to

each of its medians.

3» If a quadrilateral is symmetrical with respect to one of its diagonals,

show that the two diagonals are at right angles.

4. If a triangle is symmetrical with respect to a median, it must be

isosceles.
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MISCELLANEOUS EXERCISES

1. In a quadrilateral ABCD, if AB is the greatest side and CD the

least, show that ABCD is greater than Z DAB, and Z CDA greater than

ZABC.

2. Show that the sum of the diagonals of a convex quadrilateral is

greater than the sum of either pair of opposite sides, and also greater

than half the sum of the four sides.

3. The sum of the distances of any point within a rectilinear figure

from the vertices is greater than half the sum of the sides.

4. If D is any point on the side BC of & triangle ABC, show that the

sum of the sides of the triangle is greater than twice AD.

5. Show that no convex polygon can have more than three of its

interior angles acute, nor more than three of its exterior angles obtuse.

6. On a given straight line find a point which is equidistant from two

given lines. Under what conditions is the solution impossible ?

7. Show how to find a point which is at a given distance from each

of two intersecting straight lines. How many such points are there ?

8. If two quadrilaterals are mutually equiangular, and two adjacent

sides of the one are respectively equal to the two corresponding adjacent

sides of the other, show that the quadrilaterals are identically equal.

9. Show that the sum of any two medians of a triangle is greater

than the third median.

10. Show that the sum of the three medians of a triangle is greater

than three-fourths of the sum of the sides of the triangle.

11. Show that if two of the medians of a triangle are equal, the tri-

angle must be isosceles.

12. If E and F are the mid-points of the sides AB and CD of the

parallelogram ABCD, show that the lines ED and BF will trisect the

diagonal AC.

13. If the vertices of one parallelogram lie on the sides of another,

show that all four diagonals pass through the same point.

14. If an exterior angle of a triangle be bisected, and also one of the

interior non-adjacent angles, the angle made by the two bisectors is equal

to half of the other interior non-adjacent angle.
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16. If two triangles on the same side of a common base have their

sides which are terminated in opposite extremities of the base equal, the

line joining the vertices will be parallel to the common base.

16. From the vertex A of any triangle ABC two straight lines are

drawn meeting the opposite side at D and E, so as to make the angle

BAD equal to the angle O, and the angle CAE equal to the angle B.

Show that the triangle DAE is isosceles.

17. In any triangle ABC, the bisector of the angle A makes wit'h the

perpendicular drawn from A to the opposite side an angle equal to half

the difference between the angles B and C.

18. In any triangle ABC, the bisectors of the angles B and C make
with each other an angle greater by a right angle than one-half A.

19. In any triangle ABC, the bisectors of the exterior angles at B and

C make with each other an angle less by a right angle than one-half A.

20. In any convex quadrilateral, the bisectors of two consecutive angles

make with each other an angle equal to the half-sum of the other two

angles.

21. If through the point of intersection of the bisectors of the angles B
and C in any triangle ABC, a line-segment MN is drawn parallel to the

side BC, and terminated by the sides AB and AC, show that 3IN equals

the sum of BM and CN.

22. If upon one boundary OX of an angle you choose two points A
and A', and upon the other boundary OF you choose two points B and

B', such that OB equals OA and OB' equals OA', and join crosswise AB'
and A'B, show that the intersection of these lines is upon the bisector

of the angle XO Y.

23. If two sides of a triangle are unequal, the median through their

intersection makes the greater angle with the lesser side.

24. A quadrilateral which has two sides equal and the other two sides

parallel may be a parallelogram, or it may be a trapezoid having an axis

of symmetry.

25. In an isosceles triangle the sum of the distances of a point in the

base from the two sides is the same, no matter where in the base the point

is chosen.

If the point should be chosen in the base produced, how would this

theorem be altered ?

26. In an equilateral triangle the sum of the distances of a point within

the triangle from the three sides is the same, no matter where the point

is chosen.
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SUMMARY OF CHAPTER I

1. Definitions.

(1) Scalene Triangle, Isosceles Triangle, Equilateral Triangle.

See § 33.

(2) Right Triangle— a triangle having one right angle. § 61.

(3) Hypotenuse of a Right Triangle— the side opposite the right

angle. § 61.

(4) Complementary Angles— two angles whose sum is equal to a

right angle. § 102.

(5) Corollary— a theorem, the truth of which is easily deduced from

another, or the proof of which is easily deduced from the proof

of another. § 50.

(6) Converse Theorems— two theorems such that the hypothesis of

each is the conclusion of the other. § 44.

(7) Locus— a line or group of lines such that all their points satisfy

certain conditions while no other points satisfy those conditions.

§73.

(8) Parallel Lines— straight lines lying in the same plane, and such

that if they are drawn ever so far either way they will not in-

tersect. § 85.

(9) Polygon— a closed rectilinear figure of any number of sides.

§114.

(10) Convex Polygon— one which lies wholly on one side or the other

of each of its sides. § 115.

(11) Diagonal of a Polygon— a straight line joining any two non-

consecutive vertices. § 109.

(12) Quadrilateral— a closed rectilinear figure having four sides.

§114.

(13) Parallelogram— a quadrilateral whose opposite sides are parallel.

§119.

(14) Trapezoid— a quadrilateral having one and only one pair of op-

posite sides parallel. § 119.

(15) Isosceles Trapezoid— a trapezoid having its non-parallel sides

equal. Ex. 7, p. 77.

(16) Trapezium— a quadrilateral having no two sides parallel. § 119.

(17) Rhombus— a parallelogram having two adjacent sides equal.

§120.

(18) Rectangle— a parallelogram having one right angle. § 121.

(19) Square— a parallelogram having one right angle and a pair of

adjacent sides equal. § 122.
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(20) Perimeter of a Polygon— the sum of its sides. § 132.

(21) Median of a Triangle— a straight line drawn from any vertex

to the mid-point of the opposite side. § 134.

(22) Centroid of a Triangle— the point at which its medians intersect.

§137.

(23) Concurrent Lines— straight lines which pass through the same

point. § 135.

(24) Inverse Points— two points are inverse relative to a given straight

line when the line-segment joining them is bisected perpendicu-

larly by the given line. § 144.

(25) Symmetrical Figures— a figure is symmetrical relative to a given

straight line when for every point of the figure there is an in-

verse point of the figure relative to that line. § 144.

Two figures are symmetrical relative to a given straight line

when for every point of one figure there is an inverse point of

the other, relative to that line. § 144.

(26) Axis of Symmetry— a straight line relative to which a figure is

symmetrical. § 144.

2. Axioms.

Two magnitudes A and B of the same kind are either equal, or A is

greater than B, or A is less than B (Axiom 10). § 64.

3. Postulates.

Through any point one and only one straight line can be drawn parallel

to a given straight line (Postulate 5). § 86.

4. Problems.

(1) To construct an equilateral triangle, having given the length of

each side. § 34.

(2) To construct an isosceles triangle, having given the lengths of

the sides. § 37.

(3) To construct any triangle, having given the lengths of the sides.

§39.

(4) To bisect a given angle. § 54.

(5) To bisect a given line-segment. § 56.

(6) Prom a given point in a straight line to draw a perpendicular to

the line. §71.

(7) From a given point without a given straight line, to draw a per-

pendicular to the line. § 75.

(8) At a given point on a given straight line to construct an angle

equal to a given angle. § 84.
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(9) Through a given point to draw the straight line parallel to a

given straight line. § 99.

(10) To construct a triangle having given one side, an adjacent angle,

and the sum of the other two sides. § 143. 1.

(11) In a given straight line to find a point equidistant from two

given points. § 143. 2.

(12) To find the shortest path between two given points when a part

of the path is given both in length and direction. § 143. 3.

5. Theorems on Bisectors.

(1) Through the vertex of an angle there can be drawn one and only

one straight line which bisects the angle. § 46.

(2) In a given line-segment there can be found one and only one

point which bisects the line-segment. § 47.

(3) Two points each equidistant from the extremities of a given

line-segment determine the perpendicular bisector of the line-

segment. § 57.

(4) The bisector of an angle is the locus of points within the angle

which are equidistant from its boundaries. § 107.

6. Theorems on Perpendiculars.

(1) At any point in a straight line there can be drawn one, and only

one, perpendicular to the line. § 46.

(2) From a point outside a given straight line not more than one

perpendicular to the line can be drawn. § 62.

(3) Perpendiculars to the same straight line, lying in the same plane,

are parallel. § 91.

(4) If a straight line is perpendicular to one of two parallel lines, it

is perpendicular also to the other. § 97.

(6) If two straight lines intersect, lines perpendicular to them in the

same plane will also intersect. § 98.

7. Theorems on the Equality of Triangles.

Two triangles are identically equal if they have—
(1) Two sides and the included angle of one equal, respectively, to

two sides and the included angle of the other. § 41.

(2) A side and the two adjacent angles of one equal, respectively, to

a side and the two adjacent angles of the other. § 43.

(3) The three sides of one equal, respectively, to the three sides of

the other. § 53.

(4) Each a right angle, and the hypotenuse and a side of one equal,

respectively, to the hypotenuse and a side of the other. § 78.
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(5) Two sides of one equal, respectively, to two sides of the other

and the angles opposite a pair of equal sides also equal

§§81,82.

(6) Two angles of one equal, respectively, to two angles of the other,

and the sides opposite one pair of equal angles also equal.

§106.

8. Theorems on Unequal Triangles.

(1) If two triangles have two sides of the one equal, respectively, to

two sides of the other, and the included angles unequal, the

triangle which has the greater included angle has also the

greater third side. § 79.

(2) If two triangles have two sides of the one equal, respectively, to

two sides of the other, and the third sides unequal, the triangle

which has the greater third side has also the greater included

angle. § 80.

9. Theorems on the Properties of Triangles.

(1) In an isosceles triangle, the angles opposite the equal sides are

equal. § 48.

(2) The straight line which bisects the vertical angle of an isosceles

triangle also bisects the base, and is perpendicular to the

base. § 49.

(3) An equilateral triangle is also equiangular. § 50.

(4) If two angles of a triangle are equal, the sides opposite those

angles are also equal. § 51.

(5) An equiangular triangle is also equilateral. § 52,

(6) If one side of a triangle is produced, the exterior angle so formed

is greater than either of the two interior non-adjacent angles.

§59.

(7) Any two angles of a triangle are together less than two right

angles. § 00.

(8) If a triangle has one right angle or one obtuse angle, the othei

two angles must be acute. § 61.

(9) If two sides of a triangle are unequal, the angle opposite the greater

side is greater than the angle opposite the less. § 63.

(10) If two angles of a triangle are unequal, the side opposite

the greater angle is greater than the side opposite the less.

§65.

(11) In a right triangle the hypotenuse is the greatest side. § 66.
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(12) Any two sides of a triangle are together greater than the third

side. § 70.

(13) If one side of a triangle is produced, the exterior angle so formed
is equal to the sum of the two interior non-adjacent angles.

§100.

(14) The sum of the three angles of a triangle is equal to two right

angles. § 101.

(15) The line-segment joining the mid-points of two sides of a triangle

is parallel to the third side and equal to half of it. § 130.

(16) If from the mid-point of one side of a triangle there is drawn a

straight line parallel to a second side, this line passes through

the mid-point of the third side. § 133.

(17) The medians of a triangle are concurrent. § 136.

(18) The centroid of a triangle is a trisection point of each median.

§138.

(19) The bisectors of the angles of a triangle are concurrent. § 139.

(20) The perpendicular bisectors of the sides of a triangle are con-

current. § 140.

(21) The straight lines drawn from the vertices of a triangle perpen-

dicular to the opposite sides are concurrent. § 141.

10. Theorems on Parallel Lines.

(1) If two straight lines lying in one plane are such that a transversal

makes a pair of alternate angles equal, or any pair of corre-

sponding angles equal, these two lines are parallel. §§ 88, 89.

(2) If two straight lines lying in one plane are such that a transversal

makes a pair of interior angles, or a pair of exterior angles, on

the same side of it supplementary, these two lines are parallel.

§90.

(3) Two straight lines parallel to the same straight line are parallel to

each other. § 92.

(4) If two parallel straight lines are cut by a transversal, any two

alternate angles, and any two correspojiding angles, are equal.

§§ 93, 94.

(5) If two parallel straight lines are cut by any transversal, the interior

angles, and also the exterior angles, on the same side, are

supplementary. § 96.

11. Theorems on Convex Polygons.

(1) The sum of the interior angles of any convex polygon, together

with four right angles, makes up twice as many right angles as

the polygon has sides. § 116.
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(2) If the sides of a convex polygon are produced in order, the

exterior angles so formed are together equal to four right

angles. § 117.

12. Theorems on Parallelograms.

(1) The opposite sides and the opposite angles of a parallelogram are

equal. § 123.

(2) Either diagonal of a parallelogram divides the figure into two

superposable triangles. § 124.

(3) The diagonals of a parallelogram bisect each other. § 126.

(4) If two sides of a quadrilateral are parallel and equal, the figure

is a parallelogram. § 127.

(5) If both pairs of opposite sides of a quadrilateral are equal, the

figure is a parallelogram. § 128.

(6) If two parallelograms have two adjacent sides and the included

angle of one equal, respectively, to two adjacent sides and the

included angle of the other, the parallelograms are identically

equal. § 129.

13. Miscellaneous Theorems.

(1) If two straight lines intersect, the vertical angles are equal. § 58.

(2) Not more than two equal line-segments can be drawn from a given

point to a given straight line. § 67.

(3) If any pair of alternate angles formed by two straight lines and

a transversal are unequal, or if any pair of corresponding angles

are unequal, or if the interior angles on one side are not sup-

plementary, the two lines are not parallel, and therefore will

meet if produced. § 96.

(4) If the boundaries of one angle are respectively parallel or per-

pendicular to the boundaries of another, these two angles are

either equal or supplementary. § 105.

(5) If the mid-points of the sides of any quadrilateral be joined in

order, the figure so formed is a parallelogram, and the sum of

the sides of this parallelogram equals the sum of the diagonals

of the quadrilateral. § 131.

14. On Symmetry.

(1) If two figures are symmetrical with respect to a straight line,

they are superposable by inversion. § 145.

(2) A circle is symmetrical with respect to any of its diameters.

§146.



CHAPTER II

THE CIRCLE

Section I

DEFINITIONS AND PRELIMINARY THEOREMS

147. In the introductory chapter the following definitions

were given

:

A circle is a closed line all points of which are equally

distant from a certain point within it called the centre.

The line-segment joining the centre to any point of the circle

is called a radius, and a line-segment through the centre

terminated both ways by the circle is called a diameter.

From these definitions it follows that all radii of the same

circle are equal, and all diameters of the same circle are equal.

The distance from the centre of any point inside the circle

is less than a radius, and of any point outside the circle is

greater than a radius.

148. Theorem I. Two circles in a plane which have the

same centre and equal radii coincide throughout.

For, if there is any point of one circle which does not

coincide with a point of the other, it must lie either inside or

outside of the other, and hence its distance from the centre is

either less or greater than a radius of the other. But this is

not the case, since all radii of the same circle are equal by

definition and radii of the two circles are assumed to be equal.

Corollary I. Two circles in a plane which have the same

centre and one point in common coincide throughout.

98
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For they have the same centre and equal radii, since the

line joining their common point to the centre is a radius of

each circle.

Corollary II. Two circles which have equal radii can he

made to coincide, and hence are identically equal; and conversely,

equal circles have equal radii.

149. Theorem II. Through a given point any number of

different circles can he described.

For, if A is the given point, we may choose any point

whatever for centre, and with radius OA describe a circle

which passes through A.

Since a circle is a closed curve, two circles which intersect

at one point must also intersect at a second point. (Art. 25.)

150. Theorem III. Through two given points any number

of different circles can be described.

Let A and B be the given points; then every point of

the perpendicular bisector of the line-segment AB is equi-

distant from A and B (Art. 72). Choose any point on this

perpendicular bisector for centre, and the circle described with

radius OA will pass through both A and B.

151. Theorem IV. Through three given points not in the

same straight line, one and only one circle can be described.

Let A, B, and C be the three given points. Then the locus

of points equidistant from A and B is the perpendicular bisector

of the line-segment AB, and the locus of points equidistant

from B and C is the perpendicular bisector of the line-seg-

ment BC. These two loci have one (Art. 98) and only one

common point ; which point, say, is equidistant from A, B,

and C, and is the only such point.

With as centre and with radius OA a circle may be

described through A, B, and C, while no other circle can be
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described through these three points, since no other point than

can be found for centre.

Corollary I. Two circles which coincide at three points

coincide throughout.

For they must have the same centre and equal radii.

Corollary II. Two different circles can have at most tivo

points in common;

Or, two circles can intersect in at most tivo points.

Incidentally in this article we have solved the problem

:

To find the centre of the circle which passes through three

given points, or of which at least three points are given.

This is the same problem as To pass a circle through the three

vertices of a triangle, a thing which can always be done.

152. The questions arise:

Can a circle be described through three given points which lie

in a straight line ?

If you should proceed as in the case where the three points do

not lie in one straight line, in what particular would the con-

struction fail ?

How many points of a straight line are equidistant from any

given point ? (See Art. 67.)

Theorem V. A straight line can intersect a circle in at most

two points;

Or, what is the same thing, a straight line can have at most

tico points in common with any circle,

153. Definitions. Any portion of a circle terminated by

two points is called an arc of the circle.

The straight line joining any two points of a circle, i.e.

joining the extremities of an arc, is called a chord of the circle.
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The chord is said to subtend the arc, the a7C to bo .subtended

by the chord.

Every chord subtends two arcs of the circle, one on either

side of it, called the greater or major arc and the lesser or minor

arc.

The two arcs subtended by any chord together make up

the whole circle. Each of these arcs is called the conjugate

of the other.

When we speak of the arc subtended by a given chord we
shall always have in mind the lesser or minor arc unless the

contrary is expressly stated.

154. The arc of a circle subtended by a diameter is called a

semicircle.

Since a circle is symmetrical with respect to any of its

diameters (Art. 146), a semicircle and its conjugate semicircle

are equal. If you should fold the circle over, along the

diameter, the two semicircles would coincide.

Hence any semicircle is half of a circle, and all semicircles

belonging to the same or equal circles are equal.

155. Theorem VI. The perpendicular bisector of any chord

of a circle passes through the centre.

For it is the locus of points equidistant from the extremities

of the chord, and the centre being equidistant from the
• extremities of the chord must lie on this locus.

156. Definitions. The figure formed by an arc of a

circle and its subtending chord is called a segment of the

circle.

The figure formed by an arc and the two

ladii to its extremities is called a sector of

the circle. The angle at the centre formed

by two radii is called the angle at the centre

subtended by the intercepted arc, or by the

chord of that arc.
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Proposition I

157. If in equal circles two angles at the centre are

equal, the arcs subtending them are also equal; and of
two unequal angles at the centre, the greater is sub-

tended by the greater arc.

In the equal circles AiB^H^ and A2B2H2, of which the centres

are Oj and O2,

First, let the angle A^i^i be equal to the angle ^2^2-^2-

It is required to prove that the arc A^Bi is equal to the arc

A2B2.

Proof. Superpose the circle Oi on the circle O2 so that their

centres coincide. Then the circles will coincide throughout,

since by hypothesis they are equal, and every point of the one

will coincide with a point of the other.

Further, make Z A^O^Bi coincide with its equal Z A2O2B2.

Since the radii of the two circles are equal, Ai will coincide

with A2, and B^ with B2, so that the arc AiBi will coincide

with and be equal to the arc ^2-^2.

Next, let the angle A^O^B^ be greater than the angle ^2^2-52-

It is required to prove that the arc A^B^ is greater than the

arc ^2^2-

Proof. As before, superpose the circle Oj on the circle O2 so

that their centres coincide, and so that the radius OiA^ coin-

cides with the radius 02^2-
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Since /. AiOiBi is greater than /. AiOA^ the radius OiB^

will not coincide with O2B2, but will fall outside Z A2O2B2 in

some position such as O2B.

The arc A^B^, which will coincide with the arc A^B, will

therefore overlap and be greater than the arc A2B2.

158. Corollary. If in the same circle two angles at the

centre are equal, the arcs subtending them are also equal; and of

two unequal angles at the centre, the greater is subtended by the

greater arc.

Proposition II

159. // in equal circles two arcs are equal, the angles

at the centre which they subtend are also equal; and of

two unequal arcs the greater subtends the greater angle

at the centre.

[This theorem is the converse of the theorem in Proposition I,

and may be proved either indirectly or by superposition.

The pupil should write out the proof by both methods.]

160. Corollary. If in the same circle two arcs are equal,

the angles at the centre which they subtend are also equal ; and of

two unequal arcs, the greater subtends the greater angle at the

centre.

EXERCISES

1. Every point of a chord of a circle, except its extremities, lies inside

the circle.

Let O be the centre of the circle, A and B the extremities of

the chord, E any other point of the chord. Prove that OE
is less than OA.

2. Find the centre of a circle having given any arc of it.

3. What is the locus of the centres of circles passing through two

given points ?

4. Describe a circle that shall pass through two given points and have

a given radius.
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Proposition III

161. // in the same circle or in equal circles two arcs

are equal, the chords subtending them are also equal;

and of two unequal minor arcs, the greater is subtended

by the greater chord.

Let the pupil give a particular enunciation of the theorem,

applying it to the diagram.

Suggestions for Proof. First, (a) equal arcs subtend equal

angles at the centre. (Prop. II.)

(6) As OiA^Bi and O^A^B., are identically equal. (Art. 41.)

(c) Therefore the chord A^B^ equals the chord ^2^2-

Next, (a) the greater arc subtends the greater angle at the

centre. (Prop. II.)

(6) Apply Proposition XX, Ch. I, to the As OiA^B^ and

C'2-^2-^2*

Therefore ...

162. Corollary. If in the same circle, or in equal circles,

two angles at the centre are equal, the chords subtending them are

also equal; and of two unequal angles at the centre, both less than

straight angles, the greater is subtended by the greater chord.

Exercise.—Why is it necessary in this proposition and its corollary to

assume that the unequal arcs are minor arcs, and that the unequal angles

are less than straight angles ?
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Proposition IV

163. // in the same circle, or in equal circles, two

chords are equal, the arcs subtended by them are also

equal ; and of two unequal chords, the greater subtends

the greater minor arc.

164. Corollary. If in the same circle, or in equal circles,

two chords are equal, the angles at the centre luhich they subtend

are also equal; and of two unequal chords, the greater subtends

the greater angle.

Proposition V

165. The straight line drawn from the centre of a
circle perpendicular to a chord bisects the chord, and
if produced, bisects the arc subtended by the chord.

Let AB be any chord of the circle AEB whose centre is 0,

and OC a line drawn from perpendicular to AB.

It is required to prove that OC bisects the chord AB at C, and

if produced, bisects the arc AB at D.

Proof. Join OA and OB.

As OAP and OBC are identically equal. Why ?

Therefore AC = BC.

Also ZAOD = ZBOD.
Therefore arc AD = arc BD. (Art. 158.)
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166. Corollary I. The straight line drawn fror)i the centime

of a circle to the mid-point of a chord is perpendicidar to the

chord.

167. Corollary II. Tlie mid-points of a system of parallel

chords all lie on a diameter perpendicular to the chords.

For the diameter drawn to the mid-point of one chord is per-

pendicular to that chord (Cor. 1), and therefore to every

chord of the system (Art. 97). Hence this diameter passes

through the mid-point of every chord of the system.

168. Corollary III. Tlie straight line joining the centres

of tico intersecting circles bisects their common chord at right

angles.

Suggestion. Join the mid-point of the common chord with the centre

of one circle. This line, if produced backward, will pass through the

centre of the other circle. Why ?

169. Corollary IV. The diameter which bisects a chord

also bisects the angle at the centre subtended by the chord.

EXERCISES

1. If two chords of a circle intersect, they cannot both be bisected at

their common point, unless that point is the centre.

2. Through a given point within a circle, not the centre, draw a chord

which is bisected at that point. Is there more than one such chord ?

3. Prove that the arcs of a circle which lie between two parallel chords

are equal.

4. The straight line joining the mid-point of an arc of a circle and the

mid-point of its chord is perpendicular to the chord, and will, if produced,

pass through the centre of the circle.

5. The diameter which bisects an arc of a circle also bisects its chord

at right angles.

6. Show how to bisect a given arc of a circle.

7. If a quadrilateral is inscribed in a circle, the perpendiculars to the

sides at their mid-points meet in one point.
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Proposition VI

170. In the same circle, or in equal circles, equal
chords are equidistant from the centre ; and of two un-
equal chords, the greater is nearer to the centre than
the less.

^, ^ ^^
C.

First, let Oi and O^ be the centres of two equal circles,

AiBi and A2B2 equal chords in them.

It is required to prove that the perpendiculars O^Ci and

O2C2 from the centre upon the chords are equal.

Proof. The angles at the centre A^O^B^^ and ^202^83 are

equal. Give reasons. Also Z AiOiCi = Z. A2O2C2. Why ?

A AiOiCi is identically equal to A A2O2C2. Prove.

Therefore O^C^ = O2O2.

Next, let the chord A2D2 be greater than the chord ^2-52-

It is required to prove that the perpendicular O2C2 upon the

lesser chord is greater than the perpendicular O2E2 upon the

greater chord.

Proof. Since the chord A2D2 is greater than the chord ^2-^2?

the arc A2D2 is greater than the arc A2B2. (Prop. IV.)

If the chords be so placed as to coincide at one extremity

and lie on the same side of the centre, the arc A2D2 will ex-

tend beyond the arc A2B2, and the chord ^2-^2 will lie on the

opposite side of A2D2 from the centre. Consequently, the per-

pendicular O2C2 will intersect the chord A2D2 at some point F2.

Now O2C2 is greater than O2F2, and 02i^2 is greater than 02^2-

Why ? Therefore O2C2 is greater than 02-E^2-
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Proposition VII

171. In the same circle, or in equal circles, chords

equidistant from the centre are equal; and of two
chords unequally distant, the one nearer the centre is

the greater.

What is the relation of this proposition to Proposition VI ?

The proof is left to the pupil, with the suggestion that the indirect

method will probably be easiest.

Thus, if in the first case, the chords are not equal, one or the other of

them must be nearer the centre. Which ? Prop. VI.

In the second case, if the one nearer the centre is not the greater, what ?

172. Corollary. A diameter is the greatest chord that can

he drawn in any circle.

This follows directly from the above proposition,

or it may be shown otherwise, as follows :
—

The diameter AB equals the sum of the radii A
AO and 0(7, which is greater than any chord ^C,
not a diameter.

EXERCISES

1. If an equilateral triangle is inscribed in a circle, the sides are

equidistant from the centre.

2. If two chords of a circle which intersect make equal angles with the

line joining their common point to the centre, show that the chords are

equal.

3. A chord which is perpendicular to a radius is less than any other

chord through their point of intersection.

4. If from a point within a circle more than two equal straight lines

can be drawn to the circle, that point must be the centre.

Suggestion.— Suppose that three equal lines can be drawn from the

point, and show that the point is the intersection of two lines upon each

of which the centre lies. See Art. 155.

5. Describe two concentric circles each of which passes through two

given points, the first through A and B, say, and the second through

C and D.
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Proposition VIII

173. Of all line-segments which can he drawn to a

circle from a point within it, not the centre, the greatest

is that which passes through the centre, and the least is

that ivhich, if produced backward, would pass through

the centre; and of any two others, the greater is that

which makes the less angle with the greater segment of
the diameter through the point.

Let S be any point within a circle other than the centre, SA
the line drawn from S through the centre to the circle, SB the

line from S to the circle which, if produced backward, would

pass through the centre, >iS(7 and SD any other straight lines

from S to the circle, of which SC makes a less angle with the

diameter through S than does SD.

It is required to prove (1) that SA is the greatest line from S
to the circle, (2) that SB is the least line, and (3) that SC is

greater than SD.

Proof. Join DC and OD.

Eirst, SA equals the sum of ^0 and 00.

But the sum of SO and 00 is greater than SO. Why ?

Therefore SA is greater than SO, any other line drawn

from S to the circle.

Next, SB equals the difference between SO and 00.

But the difference between SO and 00 is less than SO.

(Ex. 3, p. 48.)
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Therefore SB is less than SC, any other line drawn from S
to the circle.

Lastly, if we rotate the line SG about S into the position SD,

thereby increasing Z ASC (hypothesis), we at the same time

increase Z AOC till it becomes Z AOD.
Since Z AOC is less than Z AOD, the supplementary Z /S'OC

is greater than the supplementary Z SOD, while the sides con-

taining these angles are respectively equal.

Therefore SG is greater than SD. (Art. 79.)

174. Corollary. From any point within a circle two equal

straight lines can he drawn to the circle ; these make equal angles

with the diameter through the point.

EXERCISES

1. State and prove a theorem for a point without a circle similar to

that of Proposition VIII.

2. If two circles intersect, any two parallel lines drawn through the

points of intersection and terminated both ways by the circles are equal.

3. If two circles intersect, any two lines drawn through one point of

intersection, making equal angles with the line of centres and terminated

both ways by the circles, are equal.

4. If with the vertex of an isosceles triangle for centre a circle is

described which cuts the base or the base produced, show that the seg-

ments of the base line intercepted between the extremities of the base

and the circle are equal.

175. In Proposition VIII we saw that if from S, any point

within a circle, not the centre, a straight line SP is drawn to

the circle, and the line rotated about S
in the way indicated by the arrowhead,

while P traverses the circle, the magni-

tude SP will continuously increase till P
reaches the point A. After this it will

continuously decrease till P comes to coin-

cide with B, when it will again begin to

increase.
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The magnitude 8P is thus a variable quantity, varying con-

tinuously as the angle ASP varies continuously. It has a maxi-

mum value, viz. 8A, and a minimum value, viz. SB.

If the point S is chosen on the circle, SP is a variable chord

whose maximum value is a diameter and whose minimum value

is zero.

Section II

ANGLES INSCRIBED IN ARCS

176. Definition. If a point is chosen on any arc of a circle,

and the chords are drawn from it to the extremities of the arc,

the angle between these chords is said to be an angle in the

arc, or an angle inscribed in the arc, and the arc is said to

contain the angle.

An angle in an arc is often spoken of as an angle in the seg-

ment formed by the arc and its chord, and the segment then is

said to contain the angle.

The angle ACB is said to be inscribed C

in the arc AEB, or i7i the segment AEB ; X^ /\\
it is an angle at a point of the circle sub- / / \ \

tended by the ai'c AFB, or subtended by the I / \ ]

chord AB.
\ / \

Sometimes the expression ^an angle \Z. y
stands upon an arc' is used instead of ^ ^
*is subtended by an arc' ^

Exercise. In what arc is ZABC inscribed ? What arc does it sub-

tend ? What chord does it subtend ?

177. Definition. A polygon is said to be inscribed in a

circle when its vertices lie on the circle ; and the circle is said

to be circumscribed about the polygon.

Each angle of an inscribed polygon is subtended by an arc of

the circle, and is inscribed in the conjugate arc.



112 ELEMENTARY GEOMETRY [Chap. II

Proposition IX

178. An angle whose vertex is on a circle equals half
the angle at the centre subtended by the same arc.

G

Fig. 2

Let AB be any arc of a circle, ACB an angle at the point G
of the circle, and AOB the angle at the centre subtended by

the same arc AB.

It is required to prove that the angle ACB equals half the

angle AOB.

Proof. Draw CO and produce it to meet the circle at D.

Z OCA = Z OAC. Why ?

And Z AOD equals the sum of A 0.40 and OCA. (Art. 100.)

Therefore Z ACO equals half of ZAOD.
Similarly Z jBOO equals half of Z BOD. Prove.

Therefore the sum (Fig. 1), or difference (Fig. 2), of Z ^00
and BCO equals half the sum, or difference, of A AOD and BOD.
That is, Z ACB equals half of Z AOB.

o

If the arc subtending the angle is greater than a semicircle,

then the angle at the centre becomes the reflex angle AOB-,
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and if the arc is a semicircle, the angle at the centre becomes

the straight angle AOB. The same method of proof will show-

that the theorem holds in these cases as well as in the cases

treated in the proposition.

179. Corollary I. An angle in a semicircle is a light

angle.

For it is half of a straight angle. Prove also by joining the

centre with the vertex C.

180. Corollary II. A71 angle in an arc greater than a

semicircle is acute, and an angle in an arc less than a semicircle

is obtuse.

181. Corollary III. All angles in a circle subtended by the

same arc, or by equal arcs, are equal ;

Or in other words, all angles inscribed in the same segment,

or in equal segments, of a circle are equal.

For they are all equal to half of the same angle at the centre of

the circle.

182. Corollary IV. Equal angles on the same base, and

on the same side of it, have their vertices on an arc of a circle

of which the given base is the chord.

If ACB and ADB are equal angles on the same
side of AB, the circle passing through A^ C, and

B^ must also pass through D. For if not it will

cut AD at some other point as E. Then ZAEB
will equal ZACB. (Cor. III.)

But ZAEB is greater (or less) than Z ADB.
(Art. 59.)

^"^ ^
Therefore Z.ACB is not equal to /.ADB, contrary to hypothesis.

Therefore, etc.

183. Corollary V. Tlie circle described upon the hypote-

nuse of a right triangle as diameter passes through the vertex of

the right angle.
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Proposition X

184. The opposite angles of any convex quadrilateral

inscribed in a circle are supplementary.

Let ABCD be any convex quadrilateral inscribed in a given

circle.

It is required to prove that the angles BAD and BCD, also

that the angles ABC and ADC are supplementary.

Proof. Join AC and BD.

Z BAC = Z BDC
',
also Z DAC = Z DBC Why ?

Therefore the sum of ABAC and DAC equals the sum of

ABDCsindDBC
That is, Z BAD equals the sum of A BDC and DBC
But the sum of ABDC and DBC is the supplement of

Z BCD. Why ?

Therefore Z BAD is the supplement of Z BCD.
That the angles AlBC and ADC are supplementary may be

proved in the same way, or it follows directly from the fact

that the sum of the interior angles of any quadrilateral is

equal to four right angles.

Conversely. If two opposite angles of a convex quadrilateral

are supplementary, its four vertices lie on a circle.

Definition. Four points which lie on the same circle are

said to be concyclic
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Alternative Proof of Proposition X.

To prove that of the inscribed quadrilateral ABCD, A ABC
and ADC are supplementary.

ZADC equals half of Z AOC, being

the centre of the circle. (Prop. IX.)

Z ABC equals half of the reflex angle

AOC
The sum of AABC and ADC equals

half of the sum of the two angles at 0,

i.e. half of four right angles.

Therefore the sum of A ABC and ADB
equals two right angles, or A ABC and ADCq^yq supplementary.

EXERCISES

1. If a parallelogram is inscribed in a circle it must be a rectangle.

Section III

SECANTS AND TANGENTS

185. Definition. An unlimited straight line which inter-

sects a circle in two points is called a secant of the circle.

186. If a secant AB of any circle is rotated about one of its

points of intersection A, the other point of intersection B will

move along the circle till it comes j,

to coincide with A, and then if the

rotation is continued will reappear

jn the other side of A.

In that position of the secant

in which the two points of inter-

section coincide the straight line

is said to touch the circle, or to

be tangent to it, and the common
point of the line and circle is

called the point of contact. The line itself is called a tangent

to the circle.
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Definition. A tangent to a circle is a straight line which

meets the circle, but which when produced does not cut it.

In consequence of this definition every point of a tangent to

a circle lies outside the circle except the point of contact.

Proposition XI

187. The perpendicular to a diameter of a circle at

one extremity is a tangent to the circle; and any other

straight line through that extremity will cut the circle

at a second point.

B

Let AKB be any circle, its centre, AB a diameter, AF a

straight line perpendicular to the diameter at the point A, and

AH any other straight line through A.

It is required to prove, (1), that AF is a tangent to the circle,

and (2), that AH will meet the circle at a second point and

consequently is not a tangent.

Proof. First, choose any point C in AF, and join 0(7.

Since AF is perpendicular to AB, OC is greater than OA.
Hence C lies outside the circle.

Since AF meets the circle at A, while every other point of it

lies outside the circle, it is a tangent by definition.

Next, draw OD perpendicular to AH, meeting AH at D.

Then OD is less than OA, so that D lies within the circle,

and AD produced must meet the circle a second time. (Art. 25.)

Hence AH is not a tangent to the circle.
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188. Corollary I. At any point of a circle there can he

drawn one and only one tangent.

For at the extremity of the diameter through the point there can

be drawn one and only one perpendicular to this diameter.

189. Corollary II. Any tangent to a circle is perpendicular

to the radius drawn to the point of contact.

For, if not, it must cut the circle at a second point.

190. Corollary III. The centre of a circle lies on the

perpendicular to a tangent drawii from the point of contact.

For the straight line joining the centre to the point of contact

is perpendicular to the tangent, and there can be only one

perpendicular to the tangent drawn from the point of contact.

191. Corollary IV. The straight line drawn from the

centre of a circle perpendicular to a tangent meets it at the

point of contact.

192. Corollary V. The tangent to a circle at the mid-point

of any arc is parallel to the chord of the arc.

For it is perpendicular to the radius drawn to its point of con-

tact, and the chord is also perpendicular to this radius.

(Ex. 5. p. 106.)

EXERCISES

1. Draw a tangent to a circle from a given point on the circle.

2. Draw a tangent to a circle which shall be (1) parallel to a given

straight line; (2) perpendicular to a given straight line. How many
such tangents can be drawn ?

3. Draw a tangent to a circle which shall make a given angle with a

given straight line. How many such tangents can be drawn ?

4. A straight line will intersect, touch, or lie wholly outside of a given

circle according as its distance from the centre is less than, equal to, or

greater than a radius of the circle.
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Proposition XII

193. To draw a tangent to a circle from a given point
without it.

Let BCD be any given circle whose centre is 0, and let A be

any point without it.

It is required to draw from A a straight line tangent to the

given circle.

Construction. Join AO, and upon ^0 as diameter describe a

circle intersecting the given circle at B and C. Join AB.
Then AB is a tangent to the given circle.

Proof. Join OB. Z OBA is a right angle. Why ?

Therefore AB is tangent to the given circle at B. (Prop. XI.)

Similarly ^C is tangent to the given circle at G.

194. Corollary. The segments of two tangents to a circle

which lie between their point of intersection and their points of

contact are equal, and make equal angles with the line joining

their intersection to the cent7'e of the circle.

Suggestion. In the above diagram prove AB equal to AC, and

ZBAO equal to Z CAO.

Sometimes, when no misunderstanding is likely to arise, the

segment of a tangent lying between the point of contact and

the point A from which it is drawn will be spoken of as the

tangent from A. In that case the above corollary may be

stated as follows

:
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Corollary. The two tmigents to a circle drawn from any

outside point are equal, and the straight line from the point to

the centre of the circle bisects the angle between them.

Definition. The straight line joining the points of contact

of two tangents is called their chord of contact.

195. From the above construction two tangents can be drawn to a

circle from any outside point, and the question immediately arises, can

more than two tangents be drawn from the same point ?

Suppose in the above diagram another straight line be drawn through

A meeting the given circle at a point E, different from B or C.

Then if AE is also tangent to the circle, Z OEA is a right angle, and

the circle whose diameter is ^0 would pass through E (Art. 183),

and would therefore intersect the given circle at E.

But this is impossible since this circle already intersects the given circle

at two points, B and C. (Art. 151.)

Therefore no third tangent can be drawn through a given point.

Hence the theorem,

Two tangents and only two can be drawn to a circle from an

outside point.

196. A polygon is said to be circumscribed about a circle

when its sides are all tangent to the circle; and the circle is

said to be inscribed in the polygon.

If a triangle is circumscribed about a circle, the bisector

of any of its angles passes through the centre of the circle

(Art. 194).

Hence to solve the problem

:

To inscribe a circle in a given triangle,

you need only to bisect two of the angles of the triangle, and
the point of intersection of these bisectors will be the centre of

th^ required circle. For each bisector is the locus of points

equidistant from two sides of the triangle, hence their point

of intersection is equidistant from all three sides.
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EXERCISES

1. The angle between any two tangents to a circle is supplementary to

the angle between the radii drawn to their points of contact.

2. If a quadrilateral is circumscribed about a circle, the sum of two

opposite sides is equal to the sum of the other two opposite sides.

3. If a parallelogram is circumscribed about a circle it must be a

rhombus and its diagonals must pass through the centre.

4. The diameter through the intersection of two tangents bisects their

chord of contact at right angles.

5. Prove that the chord which joins the points of contact of two

parallel tangents to a circle is a diameter.

6. If a circle is described upon one side of an isosceles triangle as

diameter, show that it will pass through the mid-point of the base.

7. Construct a right triangle having given the hypotenuse and one

side.

8. If ABC is a triangle whose vertices lie on a circle and AD bisects

the angle at A meeting the circle again at Z>, show that the diameter

through D bisects J5(7 at right angles.

9. If the opposite sides AB and CD of a quadrilateral ABCD inscribed

in a circle are produced to meet in E^ the triangles AEC and DEB are

equiangular, as are also the triangles AED and CEB.

10. Divide a circle into two arcs such that the angle contained by one

shall be twice ^the angle contained by the other.

11. Chords of a circle whose centre is pass through a fixed point P;

show that the locus of the mid-points of the chord is a circle whose

diameter is OP.

12. Two circles intersect at the points A and B, and a straight line

PA Q is drawn through A cutting the circles at P and Q, respectively.

Show that if the circles are equal the chords PB and QB are equal, and

conversely, if PB and QB are equal the circles must be equal.

13. If a circle is inscribed in a right triangle, the sum of its diameter

and the hypotenuse of the triangle is equal to the sum of the other two

sides.
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Proposition XIII

197. The angle formed by a tangent to a circle and a

chord through its point of contact equals half the angle

at the centre, subtended by the intercepted arc.

Let be the centre of the given circle, PQ a tangent at A,

and AB a chord.

It is required to prove that the angle QAB equals half the

angle AOB at the centre, subtended by the arc AB.

Proof. Draw the diameter AO, meeting the circle a second

time at C, and join BO and BC.
Z BAQ is the complement of Z BAC. Why ?

/-ACB is also the complement of Z BAC. Why ?

Therefore Z BAQ equals AACB.
But Z ACB equals half of Z AOB. (Prop. IX.)

Therefore Z BAQ equals half of ZAOB.

Show in a similar manner, or otherwise, that the angle FAB equals

half of the reflex angle AOB.

198. Corollary. The angle between a tangent to a circle

and a chord through its point of contact is equal to any angle

inscribed in the segment on the opposite side of the chord.

By 'the intercepted arc' is meant the arc falling within the angle.

Thus, if we have in mind Z QAB as the angle between the tangent and
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the chord, the intercepted arc is the minor arc AB ; but if we think of

Z PAB as the angle between the tangent and the chord, the intercepted

arc is the major arc AB.
The corollary states that Z QAB equals any angle inscribed in the

segment ACB^ and that ZPAB equals any angle inscribed in the seg-

ment ADB.

Proposition XIV

199. On a given line-segment as chord, to construct an
arc of a circle which shall contain a given angle.

Let AB be the given line-segment, and C the given angle.

It is required to construct on AB an arc of a circle which

shall contain an angle equal to the angle C.

Construction. From one extremity of the given line-segment

draw a straight line AD making Z BAD equal to the given

angle C
AB is to be the chord of the required arc, and if AD were a

tangent the given angle would be equal to the angle between

a tangent and chord of the required circle.

The problem then becomes : To describe a circle tangent to

AD at A and passing through B.

Find the centre of such a circle and complete the problem,

giving references to all theorems employed.
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Proposition XV

200. The angle formed hy two secants which intersect

within a circle is equal to the sum of the two angles

whose vertices are on the circle, and which are sub-

tended hy the intercepted arcs.

Let AB and CD be any two secants of a circle intersect-

ing at P within the circle.

It is required to prove that the angle APC is equal to the

sum of the angles at points of the circle, subtended by the

arcs AC and BD.

Proof. Join EC Then Z APC equals the sum of Zs PEG
and ECP. Why ?

But Z PECy or Z AEC, has its vertex on the circle and is

subtended by the arc AC.
And Z ECP, or Z BCD, is subtended by the arc ED.

Therefore, etc.

In just the same way it can be shown that the supplementary

angle APD equals the sum of the angles subtended by the

arcs AD and EC.

201. If the point of intersection P lies on the circle one of the inter-

cepted arcs vanishes, but the theorem as

stated for an internal point is still true.

For ZAPC, or its vertical angle, is sub-

tended by the arc BD, while ZAPD
equals the sum of the angles whose vertices

are on the circle and which are subtended

by the arcs BP and PD. This wUl readily

be seen if you join BD,
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Proposition XVI

202. The angle formed by two secants which intersect

without a circle is equal to the difference between the

two angles whose vertices are on the circle and which
are subtended by the intercepted arcs.

Let AB and CD be any two secants of a circle, intersecting

at P, without the circle.

It is required to prove that the angle APC is equal to the

difference between the angles at points of the circle, subtended

by the arcs AC and BD.

Proof. Join BC. Then Z APC equals the difference be-

tween Zs ABC and BCD. (Art. 100.)

But Z.ABC is subtended by the arc AC.

And Z BCD is subtended by the arc BD.
Therefore, etc.

In this case the supplementary angle APx equals the sum,

not the difference, of Zs ABD and BDC, or the sum of the

angles subtended by the arcs AD and BC.

EXERCISES

1. Construct a triangle having given the base, the vertical angle, and

one side. What is the limitation on the length of this side ?

2. Construct a triangle having given the base, the vertical angle,

and the altitude. What is the limitation upon the altitude ?

3. Construct a triangle having given the base, the vertical angle, and

the sum of the sides.
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203. Suppose one of the

secants AB becomes a tangent

at A^ the two intersection

points A and B thus coinciding

at A. Then ZAPC between

the tangent and the secant

equals the difference between

Z ACD and Z CAP. But

/LACD is subtended by the in-

tercepted arc AD^ or BD since A and B coincide ; and Z CAP equals

an angle subtended by the intercepted arc AC. (Prop. XIII.)

Hence, just as in the case of two secants, we have,

Theorem. The angle between a tangent and a secant equals the differ-

ence between the angles whose vertices are on the circle and which are

subtended by the intercepted arcs.

The supplementary angle APx equals the sum of Zs PAD and PDA.
But Z PAD equals an angle subtended by the arc ACD, while Z PDA

is subtended by the arc AC.

That is, the supplementary angle APx equals the sum of the angles

subtended by the arcs AD
and AC (or BC), just as in \ , w
the case of the two secants.

Suppose, finally, that both

secants become tangents, the

intersection points A and B
coinciding at A, while C and

D coincide at C.

Then ZAPC equals the

difference between Zs ACz
and PAC, i.e. equals the

differencebetween the angles

subtended by the arcs AKC
and ALC. And ZAPy equals the sum of ZsP^C and PCA, i.e. equals

twice the angle subtended by the arc ALC.

Principle of Continuity

204. The preceding discussion of the different phases of Propositions

XV and XVI leads us to the consideration of a principle which is gen-

erally recognized in geometry as fundamental. We shall take up in the

first place some very simple illustrations of the principle and then proceed
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to more complicated ones, such as are involved in the theorems just con-

sidered.

1. Suppose we have given any line-segment AB marked out on an

unlimited straight line m. If we choose a point C on this line between A

and 5, we say that the line-segment AB equals the sum of the line-

segments AC and CB.

Or, expressed algebraically,

AB = AC-{-CB.

This is true no matter where the point C is chosen between A and B^

or if C coincides with either A or B^ for in the latter case one of the seg-

ments becomes zero and the other equals AB.
If, however, G is chosen on the line m, not between A and B, we

are accustomed to say that the line-segment AB equals the difference

between the line-segments ^C and BC^
Or, expressed algebraically,

AB = AC-BC.
In order to avoid the necessity of varying the statement for different

positions of the point O, it is convenient to think of a line-segment AB as

having a definite sense, i.e. as though it started at A and ran to B. The

line-segment BA would then run in the opposite sense.

If we attach the algebraic term positive to the line-segment AB^ then

the line-segment BA should be thought of as negative., since positive and

negative always indicate opposites in sense.

Thus the line-segment AB = — the line-segment BA,

and " " BA = - " " AB.

So for any line-segment whatever PQ = — QP.

With this understanding, the expression AC — BC is just the same as

AC+ CB.

Hence, if we attach to a line-segment a distinguishing sign, positive or

negative, according as it is traversed in the one seiise or in the other, no

matter where the point C may be chosen upon the unlimited straight line,

wheiher between A and B or not, it is always true that

AB = AC-{-CB.
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So also, no matter how the points M^ JV, P, may be placed upon a

straight line,

MN-\-NP=MP,

or expressed in words, the result of going from M to N and then from N
to P is the same as going from M to P.

So again for any four points P, ^, P, iS', upon a straight line,

Pq+ QE-^BS=FS,

or PB + IiS+ SQ = PQ.

Many theorems in geometry consist simply of a statement of some

relation among the parts of a geometrical figure, and the principle to

which we have referred affirms that this relation, once true and properly

interpreted, remains true when the figure changes continuously from one

form to another, subject to the conditions under which it was first de-

scribed. For this reason the principle is called the principle of con-

tinuity.

Thus in the case just considered

AB = AC-^ CB

when C lies on the line m between A and B. The principle of continuity

affirms that this relation remains true when C moves anywhere along the

line ?7i, if the signs of the segments be taken into account.

2. In Proposition X we proved that if AQBP is a convex quadri-

lateral inscribed in a circle, the angles BQA and BPA are supplementary,

and it follows immediately that Z PPT equals ZBQA.
Now suppose in the figure that the points A, Q, P, remain fixed while

P moves along the circle toward A, and finally coincides with A. During

this motion ZBPA remains constant (Prop. IX, Cor. Ill), as does also

Z.BPT. When P comes to coincide with A^ AP becomes the tangent

at A, and BP takes the position BA and Z BPT ijf

falls into the position of ZBAT. /

But ZBPT^ZBQA. \^ I

Therefore ZBATz= ZB^A. \ I J:^^—^^

This last statement, however, is nothing else l^^^"'''^ _ 1^ r
than the theorem of Proposition XIII. So, by /^^ ^y\
letting the secant A T vary continuously till it I \\ ^^^ / I

takes the position of a tangent, we pass from
\ \ \

^''''
/ /

the theorem of Proposition X to that of Propo- \\ •'' \ / /
sition XIII. In other words, Proposition XIII P^'^^-J^S/^'-'^

is merely a special case of Proposition X. Q
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If the rotation of the secant A T is continued beyond the position of a

tangent, Zs^PTand BQA become angles in the same segment.

During the process our figure has changed its form continuously, and
the theorem with which we started has developed forms which were at

first considered to be different, but which we now see to be merely differ-

ent phases of the same theorem.

3. Now turn to Proposition XV. The theorem states that ZBPD
equals the sum of the angles whose vertices are on the circle and w^hich

are subtended by the arcs BD and AC, and it was shown in connection

with this proposition that ZAPD equals the sum of the angles subtended

in the same way by the arcs

AD and BC. ^
It should be noticed that ^^^^*v^ /'"" "\

the arcs mentioned above have -f/^<;;^~-

—

C// \
been named in each case, start- _l!!^^:^ _ V"~—::^~- \
ing from the points A and B; '\^^^''^^ ^^^-^^l
also that if we think of an in- \ ^..-----^pCr /
itial and a terminal point of ^-^^"^^x ^"^^Nc
an arc, as we did of a line- \^^^ _^^''^^'^*^

segment, then AC and BD
run round the circle in the same sense

; so also do AD and BG.

Suppose now we make an agreement as to the signs to be attached to

arcs, similar to that which was made upon line-segments, viz., arcs

which run round the circle in the same sense shall have the same sign,

while arcs which run round the circle in opposite senses shall have oppo-

site signs.

So also angles subtended by arcs of the same sign shall be of the same

sign, while angles subtended by arcs of opposite signs shall be of opposite

signs.

In the figure before us let us hold the points A, B, D, fixed and rotate

the line DC about D in the sense indicated by the arrowhead. Then C
will move along the circle toward A till it coincides with A, and will

then pass to the other side. The intersection point P of the two secants

must move out along BA till it likewise coincides with A and will then go

beyond.

To start with we have these two relations from Proposition XV.

ZDPB = angle subtended by arc DB + angle subtended by arc CA.

ZDPA = angle subtended by arc DA + angle subtended by arc CB.

When, by the rotation of DC, C comes to coincide with A, the arc CA
vanishes, but the two relations are easily seen to remain true.
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If G passes beyond A into the position Ci, say, so that P goes outside

the circle, the arcs CiA and DB have opposite signs, and the angles

subtending them must also be considered as having opposite signs. The

algebraic sum on the right of the first relation then becomes the numeri-

cal difference of the angles, and the relation expressed becomes the same

as that stated in Proposition XVI.

As P passes outside the circle, the arcs CB and DA overlap, but

remain of the same sign. So the second relation is unaltered for Propo-

sition XVI.

The figure is capable of still further variation which would serve to

develop the other special cases given under Proposition XVI. For

instance, when the point P is outside, we might hold P fixed, and rotate

PD till it becomes a tangent. The arcs AC and BD still have opposite

signs, while AD and BC have the same signs, etc.

Thus by making application of the principle of continuity, and by

suitable conventions as to sign, Proposition XVI and the special cases

which were considered under it, are shown to be simply modifications of

Proposition XV. And so it frequently happens that propositions which

are at first glance very different, can, by the application of the principle

of continuity, be harmonized under one general statement.

EXERCISES

1. If from the point of contact of a tangent to a circle, a chord is drawn,

the perpendiculars from the mid-point of either of the arcs so formed to

the chord and the tangent are equal.

2. ABC is a triangle inscribed in a circle, and from any point D inBC
a straight line DE is drawn parallel to CA^ meeting the tangent at A in E.

Show that a circle may be described through the four points J., E, B, D.

3. Two circles intersect at A and J5, and through A two straight lines*

PAQ and BAS are drawn cutting one circle in P and B, respectively,

and the other in Q and S. Show that if the chord PB is equal to the

chord QS, the circles must be equal ; and conversely, that if the circles

are equal the chords PB and QS will be equal.

4. Prove that the line bisecting any interior angle of a quadrilateral

inscribed in a circle and the line bisecting the opposite exterior angle

intersect on the circle.

5. Prove that the straight lines which bisect the vertical angles of all

triangles having the same base and equal vertical angles, have one point

in common.
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Section IV

CIRCLES IN CONTACT

205. Definition. Two circles are said to touch each other,

or to be in contact, when they have a common tangent at a com-

mon point.

This common point is called the point of contact.

Proposition XVII

206. When two circles touch each other their point of
contact and their tiuo centres lie in a straight line.

For the perpendicular to their common tangent at the point

of contact must pass through the centre of each circle.

(Prop. XI. Cor. III.)

Proposition XVIII

207. Two circles which touch each other can have no
other point in cominon than the point of contaxit.

O Oi

O ^--^^.

By the preceding theorem the point of contact and the two

centres are collinear.

The two centres cannot coincide, for then the circles would

be identical, having a common centre and a common point.

Two cases must then be considered, according as the centres

lie (1) on the same side, (2) on opposite sides of the point of

contact.

Let and Oj be the centres of the two circles, and let A be

their point of contact.
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If possible, let P be another point common to the two circles.

Then OA = OP, and O^A = 0,P.

Hence in either of the two possible cases,

one side of the triangle OPOi must equal

the sum of the other two sides, which is

impossible.

Therefore, two circles tangent at A can

have no other common point.

When the two centres lie on the same

side of the common tangent, the circles

are said to have internal contact, or to

touch each other internally ; when the

centres lie on opposite sides the circles have external contact,

or touch each other externally.

In the first case one circle lies inside of the other, in the

second case each lies outside of the other.

208. Corollary. If two circles have a common point on their

line of centres, they must have a common tangent at that point.

For the tangent to either circle at that point is perpendicular to the

line of centres and the two tangents must therefore coincide. That is

the two circles have a common tangent at that point.

EXERCISES

1. Two circles touch each other externally or internally at a point, and

through that point a straight line is drawn to cut the two circles. If the

points of intersection be joined to the respective centres, the two straight

lines so drawn will be parallel.

2. If the distance between the centres of two circles is equal to the sum

of their radii, the two circles must touch each other externally.

3. If the distance between the centres of two circles is equal to the

difference of their radii, the two circles must touch each other internally.

4. Describe a circle passing through a given point and touching a given

circle at a given point.
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Proposition XIX

209. To draw a cormnon tangent to two given circles,

each of which lies wholly outside of the other.

Let C and Oj be the given circles, and Oi their centres,

and suppose the radius of C greater than the radius of Ci-

It is required to draw a straight line which shall touch both

of these circles.

Construction. With centre and radius equal to the differ-

ence between the radii of C and (7i describe a circle Gz-

From Oi draw a tangent to C^, the point of contact being Tg.

[Notice that two such tangents can be drawn.]

Join 07^2 and produce to meet C at T.

From Oi draw a radius of C^, viz. OiT^, parallel to OT, and

on the same side of the line of centres.

Draw the straight line TT^, which shall be the required

common tangent.

Proof. The quadrilateral TT^O^T^ is a parallelogram. Show
why.

The angle O^T^T is a right angle. Why ?

Therefore the straight line TT^ is perpendicular to a radius

of each of the given circles at points T and T^ of the circles.

It is therefore tangent to both circles.

EXERCISES

1. Show that by drawing the other tangent from Oi to the circle C2,

a second common tangent to the two given circles could be found.
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2. Show that by drawing a circle Cs with centre Ox instead of 0,

and with radius equal to the sum of the radii of the given circles, and also

by drawing the parallel radii on opposite sides of the line of centres, two

other common tangents to the given circles could be found.

The two common tangents first drawn are called the direct common
tangents, the other two the transverse common tangents.

3. Show that when the two given circles are equal the direct common
tangents are parallel. How does the construction differ in this case ?

4. Show that when the two given circles are in contact, the centre

lies upon the circle Cz (as drawn to obtain the transverse tangents)
;

and that when the given circles intersect, the centre O lies within the

circle O3.

Hence, when the two given circles are in contact, the two transverse

common tangents coincide and become the common tangent at the point of

contact ; and when the two given circles intersect, the transverse common
tangents cannot be drawn.

5. If in any two given circles which are in contact there be drawn two

parallel diameters, the point of contact and an extremity of each diameter

lie in the same straight line.

Suggestion. Draw the line of centres, and join an extremity of each

diameter to the point of contact. Show that the two lines so drawn make
equal angles with the line of centres.

6. If two circles have a common point not on the line of centres, the

circles must intersect at that point, and also at another point which is

situated symmetrically with it relative to the line of centres.

Suggestion. The foot of the perpendicular from the common point

to the line of centres lies inside of both circles ; hence the circles must

intersect.

7. Two circles touch each other internally or externally at the point A,

and through A two straight lines are drawn cutting one circle in P and i?,

respectively, and the other circle in A and 8. Show that PE is parallel

to ^.S'.

8. Two circles touch one another at the point A^ and have a common
tangent meeting them at the points B and C, respectively. Show that the

circle whose diameter is JBO passes through A. Show also that if the

lines BA and CA are produced to cut the circles again at C and 5',

respectively, the lines BB' and CC will be diameters.

Suggestion. If the common tangent at A intersects the common
tangent BC at M, MA = MB = MG (Art. 194). Therefore Z 5^(7 is a

right angle.
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MISCELLANEOUS EXERCISES

1. All chords of the greater of two given concentric circles which are

tangent to the smaller are equal.

2. What is the locus of the centres of circles touching two given

straight lines which intersect ?

3. Describe a circle of given radius which shall touch two given inter-

secting straight lines. Show that there are four such circles.

4. A circle is described on the radius of another as diameter. Prove

that any chord of the greater circle drawn through their point of contact

is bisected by the lesser circle.

6. Through a point of intersection of two given circles draw the

greatest possible line-segment which is terminated both ways by the

circles.

6. If AB and CD are two equal chords in a circle, prove that of the

two pairs of straight lines AD, BC, and AC, BD, one pair are equal and

the other parallel.

7. Given two circles and a tangent to each, these being parallel ; if

the points of contact of the tangents be joined by a straight line, the tan-

gents at the points where this straight line cuts the circles a second time

are also parallel.

8. Two radii of a circle are at right angles and when produced are cut

by a straight line which touches the circle. Show that the other tangents

drawn from the points of intersection with the radii are parallel.

9. If two circles touch each other and a chord be drawn through the

point of contact, the tangents at the other points where the chord meets

the circles are parallel.

10. From all the points of a circle equal and parallel line-segments are

drawn in the same direction. What is the locus of their extremities ?

11. From any point within a circle straight lines are drawn to the

circle ; show that the locus of their mid-points is a circle. What would

be the locus of the mid-points if the lines were drawn from a point on or

outside the circle ?

12. Let AB be any diameter of a circle whose centre is 0, and let C
be any point on this diameter produced. Through C draw any secant

cutting the circle at D and E. If the exterior part CD of this secant is

equal to a radius of the circle, show that the angle EOA is three times

the angle DOB.
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13. What is the locus of the mid-points of equal chords of a circle ?

14. If two equal chords of a circle are produced to meet outside the

circle, prove that the exterior parts are equal. What is the correspond-

ing property when the chords intersect inside the circle ? Notice the

principle of continuity.

15. What is the locus of the centres of circles of constant radius which

touch a given circle ?

16. A straight line is drawn intersecting two concentric circles. Show
that the line-segments intercepted between the circles are equal.

17. Circles are described on the sides of a quadrilateral as diameters.

Show that the common chord of the circles described on two adjacent

sides is parallel to the common chord of the other two circles.

18. If AB and A' B' are two equal line-segments lying in a plane, but

not parallel, find a point such that if the line J.0 be rotated about it

through a certain angle, A will coincide with A' and at the same time

B with B'.

19. Three circles touch one another externally (each touching the

other two), at the points^, B, C ; the straight lines AB, AC, are pro-

duced to meet the circle BC aX D and E. Show that DE is a diameter

of this circle parallel to the line of centres of the other two circles.

20. If AB is a fixed diameter, and DE an arc of constant length in a

given circle, and the lines AE, BD intersect at P, show that the angle

APB is constant.

21. Three concurrent straight lines make fixed angles with each other.

If they be moved so that two of them constantly pass through fixed

points, the third must also pass through a fixed point.

22. A triangle is inscribed in a circle. Show that the sura of the

angles contained in the three arcs subtended by the sides is equal to four

right angles.

23. If ABC is any triangle and a circle is described through the ver-

tices B and O, cutting the sides BA and CA, at the points P and Q,

prove that PQ is parallel to a fixed straight line.

24. If ^ is a point on one of the diagonals ^C of a parallelogram

ABCD, and circles are described about DEA and BEC, show that the

other point of intersection of these two circles must lie on BD.

25. If through P, any point on one of two circles which intersect at A
and P, the straight lines PA and PB are drawn to meet the other circle

at Q and P, prove that the arc QB is of constant length, or that the

length of QB is independent of the position of the point P.
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SUMMARY OF CHAPTER II

1. Definitions.

(1) Circle, centre, radius, diameter. § 147. See also p. 20.

(2) Arc of a Circle— any portion of a circle terminated by two

points. § 153.

(3) Chord of a Circle— the straight line joining two points of a

circle. § 153.

(4) Conjugate Arcs of a Circle— two arcs which together make up

the whole circle. § 153.

(5) Semicircle— the arc of a circle subtended by a diameter. § 154.

(6) Segment of a Circle— the figure formed by an arc and its sub-

tending chord. § 156.

(7) Sector of a Circle— the figure formed by an arc and the two

radii to its extremities. § 156.

(8) Inscribed Figure— a rectilinear figure is said to be inscribed in a

circle when its vertices lie on the circle. § 177.

(9) Circumscribed Figure— a rectilinear figure is said to be circum-

scribed about a circle when its sides are all tangent to the circle.

§196.

(10) Concyclic Points— points which lie on the same circle. § 184.

(11) Secant of a Circle— an unlimited straight line which intersects a

circle in two points. § 185.

(12) Tangent to a Circle— a straight line which meets a circle, but

which when produced does not cut it. § 186.

(13) Chord of Contact— i\i& straight line joining the points of contact

of two tangents. § 194.

(14) Circles in Contact— two circles which have a common tangent at

a common point. § 205.

(15) Direct and Transverse Common Tangents. See Ex. 2, p. 133.

(16) Principle of Continuity— the principle which asserts that a rela-

tion among the parts of a geometrical figure, once true and

properly interpreted, remains true when the figure changes

continuously from one form to another, subject to the con-

ditions under which it was first described. § 204.

2. Problems.

(1) To find the centre of a circle which passes through three given

points, or to circumscribe a circle about a given triangle. § 151.

(2) To inscribe a circle in a given triangle. § 196.

(3) To draw a tangent to a circle from a given point on it. § 187.
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(4) T6 draw a tangent to a circle from a given point without it.

§ 193.

(5) On a given line-segment to construct an arc of a circle which shall

contain a given angle. § 199.

(6) To draw a common tangent to two given circles, each of which

lies wholly outside of the other. § 209.

3. Theorems on the Coincidence of Circles.

(1) Two circles in a plane which have the same centre and equal

radii coincide throughout. § 148.

(2) Two circles in a plane which have the same centre and one point

in common coincide throughout. § 148.

(3) Two circles which have equal radii can be made to coincide, and

hence are identically equal ; and, conversely, equal circles have

equal radii. § 148.

(4) Through three points not in the same straight line, one and only

one circle can be described. § 151.

(5) Two circles which coincide at three points coincide throughout.

§ 151.

(6) Two different circles can have at most two points in common.

§151.

(7) A straight line can intersect a circle in at most two points. § 152.

4. Theorems on Arcs, their Chords and Angles.

(1) In equal circles or in the same circle

:

(a) Equal angles at the centre are subtended by equal arcs

;

and of two unequal angles the greater is subtended by

the greater arc. §§ 157, 158.

(6) Equal arcs subtend equal angles at the centre ; and of two

unequal arcs the greater subtends the greater angle at

the centre. §§ 159, 160.

(c) Equal arcs are subtended by equal chords ; and of two

unequal minor arcs, the greater is subtended by the

greater chord. §§ 161, 162.

(df) Equal chords subtend equal arcs ; and of two unequal

chords, the greater subtends the greater arc. § 163.

(e) Equal chords subtend equal angles at the centre, and of

two unequal chords, the greater subtends the greater

angle. § 164.

(2) An angle whose vertex is on a circle equals half the angle at the

centre subtended by the same arc. § 178.

(3) The angle in a semicircle is a right angle. § 179.
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(4) An angle in an arc greater than a semicircle is acute, and an

angle in an arc less than a semicircle is obtuse. § 180.

(5) All angles in a circle subtended by the same arc, or by equal

arcs, are equal. § 181.

(6) Equal angles on the same base, and on the same side of it, have

their vertices on an arc of a circle of which the given base is the

chord. § 182.

5. Theorems on Chords in relation to the Centre.

(1) The perpendicular bisector of any chord of a circle passes through

the centre. § 155.

(2) The line drawn from the centre perpendicular to a chord bisects

the chord, and, if produced, bisects the arc subtended by the

chord. § 165.

(3) The straight line drawn from the centre to the mid-point of a

chord is perpendicular to the chord. § 166.

(4) The mid-points of a system of parallel chords all lie on a diameter

perpendicular to the chords. § 167.

(5) The diameter which bisects a chord also bisects the angle at the

centre subtended by the chord. § 169.

(6) In the same circle or in equal circles :

(a) Equal chords are equidistant from the centre ; and of

two unequal chords, the greater is nearer to the centre

than the less. § 170. And, conversely —
(6) Chords equidistant from the centre are equal ; and of

two chords unequally distant, the one nearer the centre

is the greater. § 171.

(7) A diameter is the greatest chord that can be drawn in any circle.

§172.

6. Theorems relating to Tangents.

(1) The perpendicular to a diameter of a circle at one extremity is a

tangent to the circle ; and any other straight line through that

extremity will cut this circle at a second point. § 187.

(2) Any tangent to a circle is perpendicular to the radius drawn to

the point of contact. § 189.

(3) The centre of a circle lies on the perpendicular to a tangent drawn

from the point of contact. § 190.

(4) The straight line drawn from the centre of a circle perpendicular

to a tangent meets it at the point of contact. § 191.

(5) The tangent to a circle at the mid-point of any arc is parallel to

the chord of the arc. § 192.



Summary] THE CIRCLE 139

(6) At any point of a circle there can be drawn one and only one

tangent. § 188.

(7) From a point outside of a circle there can be drawn two and only

two tangents. § 195.

(8) The two tangents to a circle drawn from any outside point are

equal, and the straight line from the point to the centre of the

circle bisects the angle between them. § 194.

(9) The angle formed by a tangent to a circle and a chord through its

point of contact equals half the angle at the centre, subtended

by the intercepted arc ; or is equal to the angle in the segment

on the opposite side of the chord. §§ 197, 198.

7. Theorems on Two Circles.

(1) The straight line joining the centres of two intersecting circles

bisects their common chord at right angles. § 168.

(2) When two circles touch each other, their point of contact and

their two centres are collinear. § 206.

(3) Two circles which touch each other can have no other point in

common than the point of contact. § 207.

(4) When two circles have a common point on their line of centres,

they must have a common tangent at that point. § 208.

8. Miscellaneous Theorems.

(1) Of all straight lines which can be drawn to a circle from a point

within it, not the centre, the greatest is that which passes

through the centre, and the least is that which, if produced

backward, would pass through the centre ; and of any two

others, the greater is that which makes the less angle with the

diameter through the point. § 173.

(2) From any point within a circle two equal straight lines can be

drawn to the circle ; these make equal angles with the diameter

through the point. § 174.

(3) The circle described upon the hypotenuse of a right triangle as

diameter passes through the vertex of the right angle. § 183.

(4) The opposite angles of any convex quadrilateral inscribed in a

circle are supplementary. § 184.

Conversely, if two opposite angles of a convex quadrilateral are

supplementary, its vertices are concyclic. § 184.

(5) The angle formed by two secants of a circle is equal to the sum

or the difference of the angles whose vertices are on the circle

and which are subtended by the intercepted arcs, according as

the secants intersect within or without the circle. §§ 200, 202.



CHAPTER III

SIMILAR RECTILINEAR FIGURES

Section I

MEASUREMENT, RATIO, AND PROPORTION

1. On Measurement

210. If you are asked to measure a stick or a piece of cloth,

you first select a magnitude which is well known, say a foot-

rule or a yard-stick, and then compare the length of the given

stick or piece of cloth with the chosen unit length. You find

perhaps that the given stick is four feet long, or that the piece

of cloth is five yards long.

What is meant by saying that the stick is four feet long ?

Simply that the length of the stick is four times the length of

the foot-rule.

211. Definition. To measure anything is to find out by

experiment how many times it will contain a chosen unit.

If one magnitude contains another an integral number of

times, the first is called a multiple of the second, and the

second a measure of the first.

The measure of any magnitude is a number expressing how
many times it contains the unit of measure.

212. The unit of measure and the thing to be measured

must of course be magnitudes of the same kind.

In the case mentioned we had two magnitudes of the same
140
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kind, viz. the length of the stick and the length of the foot-

rule, and we say that the measure of the former is four when

the latter is taken for unit.

Exercise. What is the measure of 12 feet when a yard is taken for

unit ? Of a dollar when a dime is taken for unit ? Of a mile when a

foot is taken for unit ? Of 68 when 4 is taken for unit ?

213. If two magnitudes are multiples of the same magni-

tude, or, in other words, if two magnitudes have a common
measure, they are said to be commensurable.

The numbers 21 and 33 have a common measure 3 ; the num-
bers 17 and 43 have a common measure 1 ; the numbers 4^
and 3^ have a common measure | or Jj.

Two magnitudes which have no common measure are called

incommensurable.

As examples of incommensurable magnitudes the following

may be mentioned

:

(1) The circumference and diameter of a circle
; (2) the side

and diagonal of a square.

The numbers 7 and VIl, 1 and V2 are incommensurable.

214. The standard unit for measuring lengths in the English

or common system is the yard, and in the French system, which

is coming to be used almost universally for scientific purposes,

the standard unit is the metre.

These units are defined to be lengths equal to the lengths of

certain pieces of metal which are carefully preserved, the first

in London, the second in Paris.

For making small measurements these units are too large

for convenient use, and so fractional parts of them are used in

such cases ; for example, ' a foot ' is J of a yard ;
' an inch ' is

jL of a foot or -j^ of a yard ;
^ a centimetre ' is y^-g- of a metre,

and so on.

On the other hand, for making large measurements we use

' a mile,' which equals 1760 yards, and so on.
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215. For measuring angles the standard unit is the right

angle, defined in Article 15, page 9.

This unit again is too large for convenient use, and a smaller

unit is commonly employed in making actual measurements,

namely, a degree.

A degree is defined to be -^^ of a right angle.

A minute is -^^ of a degree, and a second, ^-^ of a minute.

EXERCISES

1. How many degrees in two right angles ? In two-thirds of a right

angle ? In one-fifth of a right angle ?

2. How many degrees in the sum of the angles of a triangle ?

3. How many degrees in each of the angles of an equilateral triangle ?

4. How many degrees in each of the angles of an isosceles right triangle ?

5. One angle of a right triangle equals 30°. How many degrees in each

of the others ?

6. The vertical angle of an isosceles triangle equals 18°. How many
degrees in each of the base angles ?

7. One of the base angles of an isosceles triangle equals 50°. How
large is the vertical angle ?

8. One angle of a parallelogram equals 45^ What is the measure of

each of the other angles ?

2. On Eatio

216. When we speak of the ratio of one quantity to another,

we have in mind their relative magnitude. By this we mean
not how much the one is greater or less than the other, but how

many times the one is as great as the other.

A ratio can be expressed only between two quantities of the

same kind.

When dealing with numbers we say that the ratio of one to

another is the quotient arising from dividing the first by the
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second, since the quotient expresses how many times the one

is as great as the other.

Thus the ratio of 8 to 4 is 2, the ratio of 7 to 3 is 2i the

ratio of 5 to 9 is f, etc. ; but the division of one geometrical

magnitude by another has no meaning unless the first is an

exact multiple of the second, or until a meaning is assigned

by definition. Consequently, the numerical value of the ratio

of two such magnitudes must sometimes be got at in a round-

about way.

217. The same two quantities A and B have two different

ratios, viz. the magnitude of A as compared with B, and the

magnitude of B as compared with A.

The first is expressed A : B, and should be read ' the ratio of

A to ^
'

; the second is expressed B : A and should be read

* the ratio of B to A.'

In any ratio the first term is called the antecedent, the second

term, the consequent.

218. The following postulates will serve to add definiteness

to the meaning of the term ' ratio.'

Postulate 6. IfP and Q are any two equal magnitudes and

R is a third magnitude of the same kind, then the ratio ofP to R
is equal to the ratio of Q to R, i.e. if P = Q, then P: R= Q: R;
and, conversely, if P and Q are such that P : R = Q : R, then

P=Q.

Postulate 7. If P and Q are two unequal magnitudes, and

R is a third magnitude of the same kind, then the ratio of Pto R
is greater or less than the ratio of Q to R, according as P is

greater or less than Q.

219. In order to show how the ratio of one geometrical

magnitude to another can be expressed numerically, it is neces-

sary to consider two distinct cases.
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(a) When the two given magnitudes have a common
measure, or are commensurable.

(6) When the two given magnitudes have no common
measure, or are incommensurable.

(a) RATIO OF COMMENSURABLE MAGNITUDES

220. Definition. The ratio of two commensurable magni-

tudes is the ratio of their numerical measures by a common
unit.

Let A and B be any two magnitudes of the same kind which

have a common measure S, and let S be contained in ^ m
times, and in 5 n times, so that m is the measure of A, and n

the measure of B, by the common unit S.

Then by definition

A : B = m : n.

But the ratio of the number m to the number n is the

quotient —
n

Therefore A:B='^'
n

221. If instead of A and B we take any equimultiples of

these magnitudes, say pA and pB, their measures by the

common unit S would be pm and pn.

Then by definition

pA : pB —pm : pn
pm m~
pn ~~ n'

But — is the ratio of A to B.
n

Therefore, the ratio of any two commensurable magnitudes is

equal to the ratio of any equimultiples of those magnitudes, taken

in the same order.

The ratio of 5 ft. to 7 ft. is the same as the ratio of 10 ft. to 14

ft., or of 25 ft, to 35 ft.
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222. Again, if instead of the common measure S we use a

different common measure, say —, so that the measure of A
t

becomes tm and the measure of B becomes tn, then

A: B = tm:tn

_tm __m
tn n

That is, the ratio of A to B is not altered by a change in the

unit of measure.

The ratio of 5 ft. to 7 ft. is not altered if those lengths are

expressed in inches, or in yards, instead of feet.

223. For convenience we frequently write A: B in the

form — even when A and B represent geometrical magnitudes

;

B
but the symbol so used should always be read as 'the ratio

of A to B/ and should not be confounded with an ordinary

fraction, or symbol of division.

/ i Tip
Thus, ^ ^ expresses the ratio of Z ABC to Z PQR, and

Z PQR
may be written in that form or in the usual ratio form

Z ABC : Z PQR.

If Z AOB is at the centre of a circle subtended by the arc

AB, and Z.ACB is at a point of the circle subtended by the

., ZAOB 2 -, ZACB 1 ,, . .^„same arc, then ———-— = - and ———- = -, the angle AUB
Z ACB 1 ZAOB 2

being taken for unit of measure in each case. (Art. 178.)

224. Whenever the first of the two given magnitudes is an

exact multiple of the second, the second may be taken as the

common unit of measure ; and then the ratio of the first to the

second is equal to the measure of the first by the second.

The ratio of 8. to 4 is 2, of 20 to 5 is 4, of the diameter to a

radius of a circle is 2, of the perimeter to a side of an equi-

lateral triangle is 3, etc.

L
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(b) RATIO OF INCOMMENSURABLE MAGNITUDES

225. Next suppose that A and B are two magnitudes such

that no unit however small will measure them both integrally,

that is, suppose that A and B are incommensurable.

In that case the ratio of ^ to ^ cannot be expressed either

as a whole number (Art. 224) or as a fraction whose numerator

and denominator are both whole numbers (Art. 220), since they

have no common measure.

But while the ratio of two such magnitudes does not abso-

lutely equal any integer or common fraction, it is always pos-

sible to find a common numerical fraction which will differ in

value from their ratio by less than any assigned quantity how-

ever small, as we shall now proceed to show.

226. It is necessary before going further to introduce a new

idea, which we shall do by means of an illustration.

A boy is to walk from P to Q, a distance of two miles. He
goes half the distance the first hour, half the remaining dis-

tance the second hour,

half the remaining dis- P>— ' ^ '—'

—

Q

tance the third hour,

and so on. Would he ever absolutely reach his distination ?

Could you fix a point between P and Q, as near as you like

to Q, beyond which he would not pass in time ? Would he

ever get beyond Q ? .

In the first hour the boy would go 1 mile, in the second, \

mile ; in the third, \ mile ; in the fourth, i mile ; and so on.

Take these numbers 1, \, J, \, yV? A? '"^ ^^^ ^^* '^ represent

the sum of n of them.

Then when w = 1, iS = 1

;

when n = 2, /S' = l + i = f;

when 71 = 3, >S = l-h| + i = };

when n = 4, ^ = l + i-|-i + i = V;
and so on.
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Here /S is a variable quantity dependent upon the value of

the integer n. As n increases, S increases. By taking n large

enough, we can make S as nearly equal to the fixed number

two as we please, but it can never be absolutely equal to two,

and can never exceed two.

The fixed quantity two is called the limit of the variable

quantity S.

227. Definition. If a quantity is made to vary, by chang-

ing in some definite way another quantity on which it depends,

and its value approaches a fixed • quantity nearer than for any

assignable difference, though it cannot be made absolutely iden-

tical with it, this fixed quantity is called the limit of the vari-

able quantity.

In the illustration of Article 226, the variable quantity S is

called the dependent variable, and the quantity n on which it

depends the independent variable.

228. Now let A and B be two incommensurable magnitudes,

for example, two line-segments. Then AiBissi so-called incom-

mensurable ratio. Take a unit .
, .

length X, which will measure **

B integrally n times, and apply -

it as often as possible to A, say
*

m times, m and n being thus both integers. Since A and B
are incommensurable, the unit x will not measure A exactly,

and there must be a remainder which is less than x.

If we repeat the process, taking for unit a measure of B
smaller than x, then m and n will ordinarily be greater than

before, and the remainder for A will again be smaller than the

chosen unit. By taking the unit small enough, we can make
this remainder as small as we please, though it can never be

made to disappear altogether.

When the chosen unit of measure is x, A is greater than mx,

but less than (m + 1) x, while B equals nx.
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Therefore A : B is greater than mx : nx, but less than

(m + l)x: 7ix, (Art. 218, Post. 7.)

or A : B is greater than m : n, but less than (m+ 1) : n.

That is, A: B lies between — and ^^^^±1.
n n

Now - differs from ^^i+i by -•

n n n

Therefore A : B differs from — by less than —
n n

By taking the unit of measure x small enough, n can be

made as great as we please, i.e. - as small as we please, and,
n

consequently, smaller than any number you may choose to

name.

Therefore by choosing x small enough, we can always find a

fractional number — (whose numerator and denominator are
n

both integers) which differs in value from the incommensura-

ble ratio ^ : jB by less than any number you choose to name,

no matter how small, i.e. by less than any assigned quantity.

The variable fraction — approaches a limit, and this limit
n

is taken as the numerical value of the ratio of A to B.

229. Definition. The ratio of two incommensurable mag-

nitudes A and B is the limit which the fraction — (defined
n

in Article 228) approaches as the unit x upon which it depends

is indefinitely dirainished.

If A and B are commensurable as in Article 220, some one

of the fractions found in proceeding to the limit will itself

be their ratio.

230. General Theorem on Limits. If there are two varia-

ble quantities dependent cm the same quantity in such a way that
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they remain always equal while each approaches a limits then

their limits are equal.

For, if the limits are not equal, they must differ by some

finite quantity, say k; and since each variable approaches

indefinitely near to its own limit, the limits differing by k,

the two variables must come finally to differ by a finite quan-

tity, which is contrary to the assumption that they remain

always equal. Therefore the limits cannot differ by any

finite quantity ; in other words, the limits are equal.

231. By the definition given in Art. 220, the ratio of two

commensurable magnitudes can always be expressed as the

ratio between two fixed integral numbers (viz. their measures

by a common unit) ; and by the definition of Article 229, the

ratio of two incommensurable magnitudes is the limit of the

ratio of two variable integral numbers.

Hence the properties of the ratios of integral numbers can

be applied directly to geometrical magnitudes.

3. Proportion

232. Definition. If four quantities are such that the ratio

of the first to the second equals the ratio of the third to the

fourth, these four quantities are said to form a proportion.

That is, if the four quantities, a, b, c, d, are such that a: b =
c : d, then they form a proportion, or are in proportion ; or, the

terms a and b are proportional to c and d.

A proportion may be written in the form a : b = c : d, ot in

the fractional form - = - , and should be read ' the ratio of a
b d'

to b equals the ratio of c to d,' or ' a is to b as c is to d.'

Sometimes, in expressing the equality of two ratios, the

double colon (: :) is used instead of the ordinary sign of equal-

ity. Thus a:b::c:d means the same as a : 6 = c : d.

In a proportion the first and fourth terms are called the

extremes, the second and third, the means.
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233. Theorem. Iffour numbers are in proportion, the prod-

uct of the extremes equals the product of the means.

For ii a:b =c:d, then - = -, and multiplying both sides of

this equation by bd, we obtain ad = be.

Conversely. If the product of two numbers equals the prod-

uct of two others, one pair can be the extremes and the other pair

the means in a proportion.

If ad = be, dividing by bd gives - = - or a:6 = c:d
b d

234. The property expressed in the above theorem, namely,

that the product of the extremes equals the product of the

means, may be called the essential property of a proportion,

and the terms of the proportion may be written in any order

which will preserve this property.

Thus, if (1) a'.b = c:d,

then ad = be, and the proportion may be written either in the

form (2), b :a = d: c,

or (3), a:c = b: d,

since these forms (2) and (3) have the same essential property

as form (1).

Form (2) may be deduced from the essential property by

dividing both sides by ac after interchanging the sides.

Thus be = ad,

be _ad
ac ac

Therefore - = -, ot b : a = d : c.

a c

And form (3) may be deduced by dividing the essential prop-

erty by cd.
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Thus ad = bCy

ad _bc
cd cd

Therefore -=-, or a:c = 5:d
c d

If the two sides of the proportions (1), (2), and (3) are inter-

changed, we have

(4) c : d = a : b,

(5) d:c = b: a,

(6) b:d = a:c.

Form (2) is said to be obtained from form (1) by inversion,

and form (3) from form (1) by alternation.

EXERCISES

1. How are (5) and (6) obtained from (4) ?

2. Deduce forms (4), (5), and (6) from the essential property.

235. It should be remembered that the two terms of any

ratio must be magnitudes of the same kind, since magnitudes

of different kinds cannot be compared. But it is not neces-

sary that the two ratios involved in a proportion should relate

to magnitudes of the same kind, since the value of any ratio

is a pure number, and the proportion merely expresses the

equality of the two numbers.

For example, a proportion among four abstract numbers,

4 : 6 = 10 : 15,

may be written in any one of the six forms of the preceding

article. But if the terms involved are concrete, while we may
write

4 men : 6 men = 10 apples : 15 apx^les,

or 6 men : 4 men = 15 apples : 10 apples,

there would be no meaning in the statement,

4 men : 10 apples = 6 men : 15 apples,

since no ratio can exist between magnitudes of different kinds.
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Hence, when a proportion exists among four quantities, two

of one sort and two of another, care should always be taken to

express the ratios between the pairs of quantities of the same

sort.

236. Definition. If three quantities, a, b, c, are so related

that a:h =:b : c, they are said to be in continued proportion, and

b is called the mean proportional between a and c, while c is

called the third proportional to a and b.

In such a relation b'^ = ac.

So also if a, b, c, d, e, . . . are so related that a:b = b: c =
c : d, etc., these quantities are said to be in continued proportion.

237. Theorem. If any four quantities, a, b, c, d are in pro-

portion, then (1) a-\-b :b = c-\-d: d; (2) a — b:b=c — d:d;

and (3) a + b : a —b = c -{- d : c — d.

Proof. (1) li a:b = c:d, then

a_c^
b~"d

Adding one to both sides gives

or

5 + 1 = ^ + 1,
b d

a-^b c-\-d
(^)

b d

Therefore a -^b :b = c -\- d: d.

This relation is said to be derived from the given relation

by Composition.

(2) Similarly, ^_1 = £_1,

or

b d

a — b c — d

b d

Therefore a — b : b = c — d : d.

(-B)
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This relation is said to be derived from the given relation

by Division.

(3) Dividing each member of equation (A) by the corre-

sponding member of equation (B), we have

a-j- b c + d

b _ d

b d

a -\-b c-\- d

a— b c — d

Therefore a-{-b:a — b = c-{-d:c — d.

This relation is said to be derived from the given relation

by Composition and Division.

EXERCISES
If a : & = c : d, show that

(1) ma : 7ib = mc : nd,

(2) a :a ±b = c:c ±d,

(3) ma : ma ±nb = mc :mc ± nd,

(4) a2 . 52 3= c2 : (?2,

(5) a" : ft'* = c" : d".

238. Theorem. If three terms of one proportion are equal,

respectively, to the three corresjjonding terms of another, their

fourth terms must be equal.

That is, if a:b = c: d,

and a : b = c' : d,

then c = c'.

Proof. Since the ratios c : d and c' : d are each equal to a : 6,

therefore, c : d = c' : d,

and c must equal c'. (Art. 218, Post. 6.)
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239. Theorem. If P : Q equals h : k, and Q : B equals

m : n, then P : R equals hm : kn.

For, if|=|thenP= |.Q;

and, if ^ = « thenQ= ™.i?.
B n n

Therefore, P=-'-'E, or - = ^-^, that P:R = hm'. kn.
k n R k ' n

240. Theorem. Tf aiiy number of ratios are equal, then the

sum of all the antecederits is to the smn of all the consequents as

any one antecedent is to its consequent.

Let tti : 6i = ttg : 62 = cts : &3 = • ••.

It is required to prove that

«! + 0^2 4- «3 H : ?>i + ?>2 + ^3 H = «i ' K or <^2 ' h--'-

Suppose r to be the common value of the given ratios, so

that

ttj : bi = r, then a^ = rbi,

ttg : 62 = ^j then a2 = rb2,

ttg : 63 = r, then a^ = rb^,

etc., etc.

Adding, we have tti + ag + ag + ••• = r6i + r^a -\-rb^-]

= (&l+?>2 + &3 +•••)»••

Therefore,
a, + a^ + % + . ^^ ^o, ^ a^^

,,

6l+&2 + ^3+- ^ ^2

or «! + «2 + «3 H ' bi -\- bz -\- b^ ] = a^
: 61 = ag ^ ^2 = ••••

241. While it requires four quantities to form a proportion,

we sometimes speak of one quantity being proportional to

another. When we say that A is proportional to B, we mean
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that A and B are connected in some way so that if A changes

to A'J B will change to a value B' such that

A:A' = B:B',

or A:B = A':B'.

The same thing may be expressed by saying that the ratio

A: B is constant.

Suppose A: B = m, 3l constant.

Then A = mB,

and any change in A will cause a proportional change in B, or,

what is the same thing, we may say A varies as B.

If, on the other hand, the product of A and B is constant,

that is, AB = m, a constant,

then any increase or decrease in'^ will cause a proportional

decrease or increase in B, and we say that A is inversely pro-

portional to B, or that A varies inversely as B.

EXERCISES

1. What number bears the same ratio to 6 as 5 bears to 10 ? As
3 to 9 ? As 6 to 9 ?

2. Find the fourth proportional to 5, 8, 10 ; also the fourth propor-

tional to 10, 5, 8.

Definition. If a, b, c, d are in proportion, d is called the fourth

proportional to a, 6, and c.

3. It a:b = c:d, show that Sa + 2b:a = Zc-{-2d:c.

4. li a :b = 2, and 6 : c = 5, show that a : c = 10.

5. Find the mean proportional between 4 and 9, between 2 and 32,

between 4 and 36, between 5 and 125.

6. If A varies as B, and when ^ = 10, ^ = 4, what is the value of A
when jB = 14 ?

7. If A varies inversely as B, and when A = 2, B = 9, what is the

value of B when A = S?

8. If a :b = b: c, show that a:c = a^ :b^.
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Section II

SIMILAR POLYGONS

Proposition I

242. A straight line parallel to one side of a triangle

divides the other two sides in the same ratio.

Let a straight line parallel to the base BC of the triangle

ABC meet the other two sides at D and E.

It is required to prove that AD : DB = AE : EC.

Proof. There are two cases to be considered, according as

AD and DB are commensurable or incommensurable.

Case I. When AD and DB are commensurable.

Let AD and DB have a common measure which is contained

m times in AD, and n times in DB.
Then AD : DB = m : n.

Apply this measure to AD and DB, and through the points of

division draw lines parallel to BC, producing them to cut the

side AC.
The number of segments thus formed in ^^and ECis equal

to the number in AD and DB, respectively, namely, pi seg-

ments in AE, and n in EC.

Through the several points of division in the side AC draw

lines parallel to AB. These are all equal. Why ?
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Therefore the small triangles in the figure are identically-

equal, and the segments of AC are all equal, (Arts. 94, 43.)

consequently AE : EC = m:n.

But AD:DB = m:n.

Therefore AD:I)B = AE: EC. (Axiom 1.)

Case II. When AD and DB are incommensurable.

Take any measure of AD for unit, and with it mark off

segments on AD and DB.
Since AD and DB are incommensurable, this unit will not

measure DB integrally, but will leave a remainder less than

the unit, say B'B.

Through B' draw a line parallel to BC, or to DE, meeting

AC at C.
Then in AAB'O, since AD and DB' are commensurable,

AD AE , ^
-r

DB=EC''
^^^'''^'

If now the length of the unit of measure be repeatedly

diminished, B' will approach more and more nearly to B,

and C more and more nearly to C, since B'B is always less

than the unit of measure; and in this way B'B can be made
less than any assigned quantity.

AD
Therefore the ratio —— will approach as its limit the
,. AD DB'

ratio —

;
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And the ratio ——- will approach as its limit the ratioEC EG
A.D A.EBut these ratios, '—

—

and ——, are always equal to each
UIj eo

other.

Therefore their limits, — and^ are equal. (Art. 230.)

That is, AD:DB = AE: EC.

Note. The theorem of this proposition might be stated : A straight line

parallel to one side of a triangle cuts the other tioo sides proportionally.

243. Corollary. In the diagram for this proposition

AB:DB = AC:EC', (Art. 237.)

AD:AB = AE:AC; (Art. 237.)

AD : AE = AB: AC', (Art. 234.)

etc.

244. Converse of Proposition I. If a straight line divides

two sides of a triangle in the same ratio, it is parallel to the

third side.

A

Let the straight line DE divide the sides AB and AC of the

triangle ABC in the same ratio, so that

AB:AD = AC:AE.
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If DE is not parallel to BC, draw DE' parallel to BG.

Then AB:AD = AC: AE'. (Prop. I, Cor.)

But by hypothesis AB:AD = AC: AE.

Therefore AE' = AE (Art. 238), so that the lines DE and

DE' coincide.

Therefore DE is parallel to BG.

EXERCISES

1. If two sides of a quadrilateral are parallel, any straight line drawn

parallel to them will cut the other two sides, or these two sides produced,

proportionally.

2. ABC is a triangle, and through D, a point in AB, DE is drawn

parallel to BC, meeting AC in E. Through C a straight line CF is

drawn parallel to BE, meeting AB produced in F. Prove that AB is

a mean proportional between AD and AF, i.e. AD : AB = AB : AF.

3. The straight line which joins the mid-points of two sides of a

triangle is parallel to the third side.

4. The straight line drawn through the mid-point of one side of a

triangle parallel to a second side bisects the third side.

5. Any two straight lines cut by any three parallel straight lines are

cut proportionally.

6. BAC is any angle and P any point within it. Through P draw

a straight line terminated both ways by the boundaries of the angle

which is bisected at P.

Suggestion. Through Pdraw PD parallel to BA meeting AC in D.

Find E in AC so that AD = DE. Join EP and produce to meet AB
in F. EF is the required line.

7. BAC is any angle and P any point within it. Through P draw

a straight line terminated both ways by the boundaries of the angle

and divided in a given ratio at P.

Suggestion. Notice the difference between this problem and Ex. 6.

Follow the construction there given, making changes corresponding to the

changes in the problem.

8. If a system of parallel lines intercept equal segments on one trans-

versal, they will intercept equal segments on every other transversal.
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Proposition II

245. The bisector of an angle of a triangle divides the

opposite side into segments proportional to the adjacent

sides.

Let AD bisect the angle A of the triangle ABC, meeting the

opposite side at D.

It is required to prove that BD : DC = BA : AC.

Proof. Through B draw a line parallel to DA, meeting CA
produced at E.

Then ZABE = Z.BAD.

= Z CAD.

Why?

= Z AEB. Why?

Therefore AE = AB. (Art. 51.)

Now BD:DC=EA: AC. (Prop. I.)

Therefore BD:DC=BA: AC.

EXERCISES

1. State and prove the converse of the theorem in Proposition II.

2. Apply this theorem to prove that the straight line bisecting the

vertical angle of an isosceles triangle also bisects the base.

3. ABC is any triangle whose base is bisected at D ; the Zs ADB and

ADC are bisected by straight lines meeting the sides AB and AC at E
and F, respectively. Prove that EF is parallel to BC.
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4. Trisect a given line-segment.

Suggestion. Construct a triangle having the given line-segment for

base, and one of the sides double of the other. Bisect the vertical angle.

Definitions

246. If AB is a given line-segment and C any point between

A and B, C is said to divide AB internally into the two seg-

ments AC and CB. But

if C lies on the given line , £ . £
A B

outside the segment AB,
as at C", then it is said to divide AB externally into the

segments AC and OB.
The two segments are the intercepts between the point and

the extremities of the given line-segment, and their sum, proper

attention being paid to signs, is always equal to the given line-

segment. See Article 204.

With this definition the following theorem may be stated

and proved similarly to that of Proposition II.

Theorem. The bisector of an external ayigle of a triangle

divides the opposite side externally into segments proportional

to the adjacent side; and conversely.

247. If the angles of one rectilinear figure taken in order

are equal, respectively, to the angles of another rectilinear

figure taken in order, the two figures are said to be mutually-

equiangular.

248. Two polygons are said to be similar when they have

the same number of sides, are mutually equiangular, and have

their pairs of corresponding sides proportional.

Two polygons of the same number of sides may in general be mutually

equiangular without having their corresponding sides proportional ; or,

they may have their corresponding sides proportional and not be mutually

equiangular. Such polygons are not similar since they do not fulfil all

the conditions of similarity.

Similar polygons are, so to speak, of the same shape but not necessarily

of the same size. «
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Proposition III

249. Two triangles are similar if the three angles of
one are equal, respectively, to the three angles of the
other.

Let ABC and A'B'C be two triangles in which the angle A
equals the angle A', B equals B' and C equals C

It is required to prove that AB : BC = A'B' : B'C'y

BO: CA = B'C': C'A',

CA:AB=CA':A'B',

or, more briefly, that AB : BC : CA = A'B' : B'C : C'A'.

[Will this prove the triangles similar ? Recall the definition of

similar polygons.]

Proof. Place A A'B'C upon A ABC so that the vertex B'

coincides with the vertex B and Z A'B'C with Z ABC.
Then A' will fall on BA or BA produced, and C will fall on

BC or BC produced, and A'C will be parallel to AC Why ?

Therefore AB:BC= A'B' : B'C. (Prop. I.)

Similarly the other pairs of sides may be shown proportional,

two and two.

250. Corollary. If two triangles have two angles of one

equal, respectively, to two angles of the other, the triangles are

similar.
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Proposition IV

251. If two triangles have an angle of one equal to an
angle of the other, and the sides including these angles

proportional, the triangles are similar.

B C B'

Let ABC and A'B'C be two triangles having the angle at A
equal to the angle at A', and the sides AB and AC propor-

tional to AB' and A'O, that is, having

AB:AC=AB':A'C'.

It is required to prove that the two triangles are similar.

What do we need to show in order to prove the two triangles

similar ?

Proof. Suggestions. (1) Superpose the. triangles so that

the equal angles coincide.

(2) The sides B'C and BC are then parallel. Why ?

(3) The triangles are therefore mutually equiangular and

hence similar. (Prop. III.)

EXERCISES

1. Two right triangles are similar if an acute angle of the one equals

an acute angle of the other.

2. Two isosceles triangles are similar if their vertical angles are equal.

3. Two chords A C and BD of a circle ABC intersect at E, either within

or without the circle
;
prove AsAEB and CED similar, and also /SsAED

and BEC.

4. The straight line joining the mid-points of two sides of a triangle

is equal to half of the third side.
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252. Corollary to Proposition IV. If two similar poly-

gons are divided into triangles by the diagonals drawn from a

pair of liomologous vertices, these triangles are similar each to

each and are similarly placed.

Suggestions for Proof.

First. By hypothesis polygons ABODE and A'B'C'D'E' are similar.

That is ZB = ZB' and AB:BC= A'B> : B'C.
Therefore As ABC and A'B'C are similar.

Next. ZACB = ZA' CD'. Why ?

AC:CD = A'C: CD'. Why ?

Therefore As ACD and A' CD' are similar. And so on.

Conversely. If the diagonals drawn from one vertex in

each of two polygons divide them into the same number of tri-

angles, similar each to each and similarly placed^ the two polygons

are similar.

EXERCISES

1. State the theorem in the first chapter analogous to Proposition IV,

proving the equality of two triangles.

2. From a point E in the common base of the triangles ACB and ADB
straight lines are drawn parallel to ^C and AD meeting BC and BD in

F and G ; show that FG and CD are parallel.

3. If two sides of a quadrilateral are parallel, the diagonals cut each

other in the same ratio.

4. The bisector of an external angle of a triangle divides the opposite

side externally into segments proportional to the adjacent sides, and

conversely.
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Proposition V

253. If the ratios of the three sides of one triangle to

the three sides of another, two and two, are equal, the

triangles are similar.

A '

B OB' O'

Let ABC and A'B'C be two triangles such that

AB : A'B' = AC:A'C' = BC : B'C.

It is required to prove that the two triangles are similar.

What must be shown in order to prove the triangles similar ?

Proof. On AB mark off a length AD equal to A'B', and on

AC, a length AE equal to A'C Join DE.
Then because AB : AD = AC : AE

A ADE is similar to A ABC; (Prop. TV.)

Therefore AB : AD = BC : DE.

But, by hypothesis, AB : A'B' = BC : B'C,

and by construction, AD = A'B'.

Therefore DE = B'C. (Art. 238.)

Hence A ADE is identically equal to A A'B'C. (Art. 53.)

But A ADE is similar to A ABC.
Therefore A A'B'C is similar to A ABC.

EXERCISES

1. State the analogous proposition on the equality of two triangles.

2. Two triangles are similar when their sides are respectively parallel

or respectively perpendicular to each other,

3. If any quantities A, B, C. and p, q, r, are so related that A : C =p : r

and B : C = q : r, show that then A + B : G = p + q : r.
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Proposition VI

254. The periineters of two similar polygons are in the

same ratio as any two corresponding sides.

Suggestions for Proof.

1. Let ABODE ... and A'B'C'D'E' •" be any two similar

polygons.

2. By definition AB : A'B' = BC:B'C'=CD: CD' etc.

3. Applying Art. 240,

AB -}- BC -{- CD + ...
: A'B' + B'C + CD' ... = AB.A'B'.

Therefore

Proposition VII

255. If in a right triangle the perpendicular is drawn
from the vertex of the right angle to the hypotenuse

:

(1) The two triangles thus formed are similar to each

other, and to the whole triangle;

(2) The perpendicular is a mean proportional between

the segments of the hypotenuse

;

(3) Each side of the triangle is a mea^n proportional

between the hypotenuse and the segm^ent adjacent to that

side.

C

Let ABC be a right triangle, right-angled at C, and CD the

perpendicular from C to AB.

It is required to prove

(1) That the triangles ACD and CBD are similar to each

other and to ABC.

All these triangles are easily shown to be mutually equi-

angular and therefore similar by Proposition III.
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(2) That AD: DC = DC: DB.

This follows immediately from the fact that As ADC and

CDB are similar.

(3) That AB'.AG=AC:AD,

and AB:BC = BC:BD.

These relations follow from the fact that each small triangle is

similar to the whole triangle.

256. Corollary. A perpendicular drawn from any point

of a circle to a diameter is a mean proportional between the

segments into which it divides the diameter.

EXERCISES

1. Show that the radius of a circle is a mean proportional between the

segments of a tangent intercepted between its point of contact and any

pair of parallel tangents.

2. If in two similar triangles perpendiculars are drawn from homolo-

gous vertices to the opposite sides, these are in the same ratio as a,ny pair

of homologous sides.

3. The sides of a triangle ABC are 6, 7, and 8 feet, respectively ; find

the lengths of the segments into which the bisector of the opposite angle

will divide each side.

4. Show that the diagonals of any quadrilateral inscribed in a circle

divide the quadrilateral into four triangles, which are similar, two and

two.

5. Sum up the conditions under which two triangles are similar and

compare these with the conditions under which two triangles are identi-

cally equal as given in Chapter I.

*257. We shall hereafter frequently find it convenient to

speak of the product of two line-segments, by which we shall

mean the product of their measures by a common unit. With

this understanding we may enunciate the following two

theorems.
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Proposition VIII

258. If two chords of a circle intersect within the circle

the product of the segments of the one equals the product

of the segments of the other.

Let AB and CD be two chords intersecting at S within a

given circle.

It is required to prove that the product of the segments AS
and SB equals the product of the segments CS and SD.

Proof. Join AD and BC.
As ASD and CSB are mutually equiangular. (Art. 181.)

Therefore these triangles are similar, (Prop. III.)

and AS:SD=CS: SB.

Therefore the product AS - SB = the product CS - SD.
(Art. 233.)

This theorem might be stated

:

If two cJiords intersect within a circle, their segments are

recipi'ocally proportional

A segment of the first chord is to a segment of the second as the re-

maining segment of the second is to the remaining segment of the first;

that is the segments are taken in reciprocal orders in the two ratios.

259. Corollary I. If through a fixed point within a circle

any chord is di'aivn, the product of its segments is the same

whatever its direction.



258-262] SIMILAR RECTILINEAR FIGURES 169

260. Corollary II. Either segment of the least chord that

can he drawn through a fixed point within a circle is a mean pro-

portional between the segments of any other chord draivn through

that point.

Proposition IX

261. If two chords of a circle, when produced, intersect

without the circle, the product of the seginents of the one

equals the product of the segments of the other.

Let AB and CD be two chords intersecting at S without the

circle.

It is required to prove that the product of the segments AS
and SB equals the product of the segments CS and SD.

Proof. Join AD and BC.

The proof is identical with that of Proposition VIII.

•

262. Corollary I. If a tangent and a secant of a circle

intersect, the tangent is a mean proportional between the whole

secant and its external segment.

This follows directly from the preceding T
proposition on considering a tangent as the

limit of a secant, i.e. as a secant whose

points of intersection coincide. Or it may
easily be proved after the same general

method as was used in the two preceding

propositions, joining TA and TB.
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263. Corollary II. Iffrom any point on the common chord

of two intersecting circles produced, tangents are drawn to the

circles, the lengths of these tangents are equal.

For either tangent is a mean proportional between the seg-

ments into which the chord is divided externally by the

point.

Definition". The common chord of two intersecting circles

produced indefinitely is called the Radical Axis of the circles

;

and a system of circles through the same two points is called

a coaxial system, since all pairs of the circles have the same
radical axis.

264. It will be interesting to recall the principle of continuity in

connection with Propositions VIII and IX.

Proposition VIII states that if two chords AB and CD intersect

within a circle at S, then AS • SB
= CS . SD. ^/

Named in that order the two X-^^

segments of each chord are of the ^N^"*^^

same sign.

Suppose, now we rotate the

chord CD about the point D.

Then when C coincides with A,

S will also coincide with A and

one segment of each chord will

vanish. Both products AS • SB
and CS • SD then become zero

and are still equal.

If we continue the rotation, S will pass outside the circle, i.e. the two

chords will intersect outside the circle, as in Proposition IX, and the

point of intersection will divide them both externally. The two segments

AS and SB will then be of opposite signs, as will also CS and SD, and

the products AS SB and CS • SD still remain equal.

These two propositions may thus be comprised under a single more

general theorem, as follows

:

The products of the segments of any two chords of a circle.^

determined by their point of intersection, are equal.
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EXERCISES

1. If two line-segments intersect so as to make the product of the seg-

ments of one equal to the product of the segments of the other, their four

extremities are concyclic.

Suggestion. Pass a circle through three of their extremities, and

apply Proposition VIII.

2. If two circles intersect and through any point of their common
chord two other chords are drawn, one in eacji circle, their four extremi-

ties are concyclic.

3. If two circles intersect, their common chord bisects their common
tangents.

4. If two circles touch each other, the tangent at their point of contact

bisects their other common tangents.

6. If three circles intersect two and two, their three common chords

pass through one point.

SuGGESTiox. If AB and CD, the common chords of X, Y, and X, Z,

intersect at 0, and P, one of the common points of Y and Z, is joined to

0, then PO must pass through the other common point of Y and Z. If

not let it cut Y a second time at Q, and Z a second time at R, and prove

OQ = OR.

6. AB is a given line-segment, D and E two points on it ; DF and EG
are parallel and proportional to AD and AE. Prove that Aj F, and G
lie on one straight line.

7. The line-segment AB is divided internally at C and Z>, so that

AB : AG = AC : AD. From A any other line-segment AE is drawn equal

to AC. Prove that the triangles ABE and AED are similar, and that

EC bisects the angle BED.

265. We shall here insert a proposition which has no direct

connection Avith the properties considered in this chapter, but

which will serve as an additional example of a demonstration

by the Method of Limits, and recall some of our fundamental

notions of Ratio. It will be well for the pupil to review the

proof of Proposition I in this connection. These two propo-

sitions are of the same general character, and the method

used in demonstrating them will be frequently used in subse-

quent demonstrations.
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Proposition X

266. I^^ equal circles, angles at the centre are in the

same ratio as the arcs subtending them.

Let AOB and A'O'B' be angles at the centres of two equal

circles, subtended by the arcs AB and A'B', respectively.

It is required to prove

Z AOB : Z A'O'B' = arc AB : arc A'B'.

Proof. Two cases arise according as the arcs AB and A'B'

are commensurable or not.

Case I. Suppose AB and A'B' to have a common measure,

which is contained m times in AB and n times in A'B'.

Apply this measure to the arcs and mark the points of division.

Draw radii to the points of division.

These radii divide Z.AOB into m equal parts and Z A'O'B'

into n parts, equal to each other and to the parts of Z AOB.
(Arts. 159, 160.)

arc AB m
Then

and

Therefore

arc A'B' n

ZAOB m
Z A'O'B' n

ZAOB arc ^5
Z A'O'B' arc A'B'

or Z AOB : Z AO'B' = arc AB : arc A'B'.
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Case II. Suppose AB and A'B' to be incommensurable.

Take any measure of A'B', say x, and apply it to AB as often

as possible. Let the last point of division be C, so that the

arc CB is less than x.

Then the arcs AG and A'B' are commensurable, so that

Z^OC^arc^O^
by Case I.

ZA'O'B' SiVG A'B'
^

By repeatedly decreasing the unit measure x, the arc CB
cau be made smaller than any assigned quantity, so that the

arc AC will approach as its limit the arc AB, and at the same

time Z AOG will approach as its limit Z AOB.

Therefore the ratios
^^

and f" ,
approach as their

ZA'O'B' 3i,vG A'B' ^^

limits the ratios —

—

-——- and —
-, respectively.

ZA'O'B' 3bVG A'B'

But
^^^^ = avG AC

^ ^^^.^ measure x.

ZA'O'B' ^vcA'B'
^

Therefore the limit ^^^^ = the limit _?^£^_4^.
ZA'O'B' SiVGA'B'

(Art. 230.)

Or Z AOB : Z A'O'B' = arc AB : arc A'B'.

267. Corollary I. In the same circle, angles at the centre

are in the same ratio as the arcs subtending them.

268. Corollary II. In the same circle, or in equal circles,

angles whose vertices lie on the circle are in the same ratio as the

arcs subtending them.
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Section III

PROBLEMS OF CONSTRUCTION

Proposition XI

269. To divide a given line-segment into any re-

quired number of equal parts*

It is required to divide a giVen line-segment AB into say n

equal parts.

Construction. From one end of the given line-segment draw

any straight line AC making an angle with AB.
On AG mark off n equal parts of any convenient length, be-

ginning at the point A, and call the points of division P, Q, R, ••-,

the last one being X.

Join XB and through the points of division P, Q, R, • • • draw

lines parallel to XB, cutting AB in the points P^, Qi, 7?i,
•••.

Then AB is divided into n equal parts AP^, l\Qi, QiRi, ••••

Proof. Since PPi, QQi, BRi, -••, XB are parallel and inter-

cept equal segments on AC, they likewise intercept equal

segments on AB. (Prop. I.)

EXERCISES

1. Apply the method of this proposition to bisect a given line-segment,

to trisect a given line-segment.

2. Show how to find three-fifths of a given line-segment



269-271] SIMILAR RECTILINEAR FIGURES 175

Proposition XII

270. To divide a given line-segment into parts pro-

portional to other given line-seginents.

It is required to divide a given line-segment AB into parts

proportional to the given segments a, h, c.

The construction is similar to that for Proposition XI, except

that on the arbitrary line AC, segments equal to a, b, c, re-

spectively, are marked off, instead of segments equal to each

other.
The pupil should write out the construction and proof in full.

271. If it is required to divide a given line-segment AB in

the ratio of a to b, we must know whether the division is to be

internal or external. If internal, proceed just as in the propo-

sition above; but if external, mark on the line AC the segment

AP equal to a, and PQ equal to b as before, but instead of PQ
being an extension of AP, it should lie upon AP so that AQ is

divided externally at P in the given ratio. Then join QB and

draw PM parallel to QB. M will be the required point of

division.

EXERCISES

1. Divide a given line-segment eight inches long into three parts pro-

portional to one, two, and three.

2. Divide a given line-segment eight inches long (1) internally in the

ratio 3:2; (2) externally in the ratio 3 : 2.
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Proposition XIII

272. To find the fourth proportional to three given

line-segments.

1^ b

jy^^^\

\
It is required to find the fourth proportional to the three

given line-segments, a, b, c.

Construction. Draw two straight lines AB and AC, making
any angle with each other.

Upon AB mark off the segments AD and DE, equal respec-

tively to a and b.

Upon AC mark off the segment AF equal to c.

Join DF, and through E draw EH parallel to DF.

Then FH is the fourth proportional to a, b, c.

The proof is apparent from Proposition I.

It should be noticed that if a, 6, c are taken in a different

order the fourth proportional will be different.

EXERCISES

1. To find the third proportional to two given line-segments.

What is meant by a third proportional to two quantities ?

2. How many different fourth proportionals can be found with three

given line-segments ?

3. AB and AC are two straight lines drawn from A. Produce CA
backward to Z>, making AD = AG; describe a circle through the three

points B, C, Z), and produce BA to meet this circle at E. AE is a third

proportional to AB and AG.
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Proposition XIV

273. To find the mean proportional between two

given line-segments.

It is required to find the mean proportional between the two

given line-segments a and h.

Construction. Upon any straight line mark off the segments

AB and BC equal to a and h, respectively.

Upon ^O as diameter describe a circle, and at B erect a per-

pendicular to AC, meeting the circle at D.

Then BD is the mean proportional between a and c.

(Art. 256.)

EXERCISES

1. If the given line-segments were ^Cand BC, placed as in the dia-

gram, show how to find a mean proportional between them.

2. Show that half the sura of two unequal line-segments is greater

than the mean proportional between them.

\'

274. Definition. When a given line-segment is divided

into two parts such that one of the parts is a mean proportional

between the whole segment and the other part, it is said to be

divided in extreme and mean ratio.

For example, if AB is divided internally • -t, :•

at C so that
^ ^

AB : AC = AC : CB,

then AB is divided internally in extreme and mean ratio ; while if C is so

chosen on AB produced that

AB:BC=BC:AC,
then AB is divided externally in extreme and mean ratio.

N
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Proposition XV

275. To divide a given line-segment in extreme and
mean ratio.

It is required to divide the line-segment AB at a point 0, so

that AB.AC=AC.CB.
Construction. At B draw a straight line BO perpendicular

to AB and equal to half of AB.

With centre and radius OB describe a circle. Draw AO,
cutting the circle at D and D\
On AB mark off a segment AC equal to the shorter segment

AD.
Then C is the point required.

Proof. AB is tangent to the circle DBD\ (Art. 187.)

Therefore AD' :AB = AB: AD or AC. (Art. 262.)

Whence, AD' - AB: AB = AB - AC : AC. (Art. 237.)

Now AB = 2 0B = DD',

and AD' -AB= AD' - DD' = AD = AC;

also AB-AC=BC.
Therefore AC:AB = BC: AC,

or, by inversion, AB : AC = AC : BC

EXERCISE

1. Suppose on BA produced you should mark off a segment ^^ equal

to AD'. Prove tliat AB : AK= AK : BK^ or that AB is divided exter-

nally at D in extreme and mean ratio.



275-276] SIMILAR RECTILINEAR FIGURES 179

Proposition XVI

276. Upon a given line-segment to construct a polygon
similar to a given polygon, and such that the given
line-segment shall be homologous to a given side.

It is required to construct upon A^B^ a polygon similar to

ABODE, so that A'B' shall be homologous to the side AB.

Construction. Divide the given polygon into triangles by

drawing the diagonals from the vertex A.

Make ZsA'B'C and B'A'C equal to ZsABC and BAC,
respectively.

Then A A'B'C is similar to A ABC. (Prop. II.)

Similarly, construct

A A'C'D' similar and similarly situated to A ACD,

and A A'D'E' similar and similarly situated to A ADE.

Then the polygon

A'B'C'D'E' is similar to the polygon ABODE. (Art. 252.)

EXERCISES

1. Inscribe in a given circle a triangle similar to a given triangle.

Suggestion. At any point of the circle draw the tangent and chord

making an angle equal to one angle of the given triangle. Then apply

Article 198.

2. Circumscribe about a given circle a triangle similar to a given

triangle.
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Section IV

ADDITIONAL PROPOSITIONS

Proposition XVII

277. // the sides of a triangle are cut by any straight
line, the product of the ratios of their segments taken
in order equals unity.

Let the sides BC, CA, AB, or these sides produced, be cut

by a straight line in the points A', B', C, respectively.

It is required to prove that — •— .— = 1.^ A'C B'A C'B

If we give heed to the signs of the segments, this product is

— 1, since BA' and ^'C are of opposite signs, while CB' and
B'A^ AC and C'B are of the same sign ; that is, the first

ratio is negative, the second and third positive. If the line

cuts all three sides produced, the three ratios are all nega-

tive, and their product likewise is negative.

Proof. Draw perpendiculars a, b, c from the vertices A, B, C,

of the triangle, to the given transversal.

Then M = ^.,
CB[^c A^^ a.

A'C c B'A a' C'B b ^ ^ ^

Therefore
BA' CB' AC^b c a^^
A'C' B'A C'B c' a'

b

This theorem is attributed to Menelaus, a Greek geometer

who lived in the latter part of the first century.
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278. Conversely. If on the sides BC, CA, AB of a tri-

angle ABC, three points, A', B', C, respectively, be so chosen

BA' PR' AC
as to fulfil the relation ^-^ *^= ~ ^ (attention being

paid to the signs of the segments), these three points are collinear.

Proof. Let the straight line A'B^ cut the side AB of the

triangle at O/.

Then — •^ . ^^ = - 1 by the direct theorem.
AC B'A C'B

^

But it was assumed that

BA' CB' AC ^ ^
A'C ' B'A ' CB

Therefore ^=^,
whence C and O/ coincide.

If attention were not paid to the signs of the segments, the

last proportion could be true and C and Ci' not coincide, for

in that case C and Ci' might divide the side AB internally

and externally in the same ratio.

EXERCISES

1. Points E and F are taken on the sides AC and AB of a triangle

ABC, such that AE is twice EC and BF is twice FA ; the straight line

FE produced cuts the side BC bX D. Find the ratio of BD to DC.

2. If the bisectors of the angles B and O of a triangle meet the oppo-

site sides at D and E, and if the straight line BE produced meet BC
produced at F, then the external angle at A is bisected by AF.

3. If a side BC of a triangle ABC is bisected by a straight line which

meets the sides AB and AC, produced if necessary, at D and E respec-

tively, then AE : EC = AD : DB.

4. Two straight lines intersect at A, and Z) is a point between them.

Draw through D a straight line such that the segments of it intercepted

between D and the given lines shall be in a given ratio.

Suggestion. Join AD and produce to E so that AD : DE in the

given ratio. Through E draw a straight line parallel to one of the given

lines, meeting the other at H. Then H is a point of the required line.
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Proposition XVIII

279. If two triangles ABC and A'B'C are so situated

that the straight lines joining the pairs of correspond-

ing vertices A, A' ; B, B' ; C, C are concurrent, then the

points of intersection of tlw three pairs of correspond-

ing sides are collinear.

Let the two triangles ABC and A'B'C be so situated that

the straight lines AA', BB', CC meet in 0.

It is required to prove that the points of intersection x, y, z,

of the three pairs of corresponding sides BC, B'C ] CA, C'A'

;

AB, A'B', are collinear.

Proof. In order to prove vi^hat is stated it will be sufficient

to show,

Az Bx Qi^_i
zB ' xC ' yA

For if this relation is satisfied, x, y, z, points on the sides

of the triangle ABC, must be collinear. (Art. 278.)

First, if we consider A OAB to be cut by the transversal

B'A'z, we have
OA' Az BB[

A'A ' zB ' B'O
(1) = -1. (Prop. XVII.)
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Similarly, from As OBG and OCA cut by the transversals

B'C'x and A'C'y, respectively, we get

.^x qB[ Bx CO ^ .

^ ^ bb' xC' CO '

^ ^ A'O CO yA

Multiplying together the left-hand members of equations

(1), (2), and (3), and also their right-hand members, we obtain

Az Bx Cy _ ^

zB xC yA

Therefore x, y, z, are collinear.

280. Conversely. If two triangles ABC and A'B'C are so

situated that the points of intersection, x, y, z, of the three pairs

of corresponding sides, BC, B'C ; CA, CA'; AB, A'B', are

coUinear, then the straight lines AA', BB', CC, joining the pairs

of corresponding vertices, are concurrent.

This may be proved indirectly as follows

:

Let be the intersection of the lines BB^ and CC; and

let the straight line AO cut B'z at A^, which, so far as we

know, may or may not coincide with A\
Then As ABC and A^B'O fulfil the conditions of the direct

theorem; therefore A^C and AC must intersect on the straight

line xz.

But AC cuts xz at y.

Therefore A^C must pass through y, and hence A^ must

coincide with A^,

This theorem and its converse are known as Desargues's theorems,

named from Gerard Desargues (born at Lyons, France, 1593, died 1662),

to whom they are usually attributed, though the geometric properties

involved in them were known much earlier.
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Proposition XIX

281. If through any point O straight lines are drawn
to the vertices A, B, C of a triangle, meeting the oppo-

site sides at A', B' , C, respectively, then the product of
the ratios of the segments of the sides taken in order

equals unity, that is,

BA' CB' AC ^.
A'C ' B'A ' CB

Proof. Take A AA'C and consider BOB' a transversal of it.

Then 4^..^.^ = _1
OA' BC B'A

also from AAA'B and the transversal COC we get

AO A'C BC ^ ^
OA' ' CB ' CA

'

Dividing the first of these results by the second, and

remembering that BC = — CB, A'B = — BA', etc., we obtain,

BA' CB' AC ^^
A'C ' B'A ' CB

The converse of this theorem may easily be proved in-

directly.

In the diagram we have chosen the point within the

triangle ABC The relation is equally true if the point is

chosen outside the triangle. This should be verified both for

a point obtained by passing out of the triangle across a side,

and through a vertex.
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Proposition XX
282. To find the locus of a point whose distances

from two fixed points are in a constant ratio differ-

ent from unity,

*A.

Let A and B be the two fixed points, and M any point,

such that MA : MB equals a given fixed quantity p.

It is required to find the locus of M.

Construction. Join AB and divide this line-segment inter-

nally at O and externally at D in the given ratio jh i-e. so that

AC :CB = AD:DB=p. (Art. 271.)

Then MA : 3fB ^ AC : GB.

Therefore MC bisects Z AMB. (Ex. 1, p. 160.)

Also MA: MB = AD: DB.
Therefore MD bisects Z A^MB. (Ex. 4, p. 164.)

Therefore Z CMD is a right angle.

Whence the locus of Jf is a circle of which CD is a

diameter.

EXERCISES

1. What is the locus of a point equidistant from two fixed points?

(See Art. 57.)

That is, what is the locus of a point whose distances from two fixed

points are in a constant ratio, equal to unity f

2. How would the diagram for Proposition XX change if the given

constant ratio were made more and more nearly equal to unity ? As the

ratio approaches unity how does the point C move ? How does the point

D move ? What about the circle ?
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Harmonic Division *

283. Definition. Any line-segment which is divided in-

ternally and externally in the same ratio is said to be divided

harmonically.

For example, if the seg- 2 C B 7j

ment AB, as in the last

proposition, is divided internally at C and externally at D in

such way that

AC:CB = AD:DB,

then AB is divided harmonically at and D, and the four

points A, B, C, D, are said to form a harmonic range.

284. Theorem. If any line-segment AB is divided har-

monically at C and D, the line-segment CD is also divided

harmonically at A and B.

For if AC:CB = AD: DB,

so also is CA.AD=CB: BD, (Art. 234.)

which shows that the segment CD is divided at A and B
internally and externally in the same ratio.

Thus in a harmonic range of four points there are two pairs

of points such that each pair bears the same relation to the

other pair.

The points of each pair are called ^harmonic conjugates'

relative to the points of the other pair, and are said to be sepa-

rated harmonically by them.

285. For the sake of symmetry we have written the ratios

in the form AC : CB = AD : DB, but since the point D divides

the segment AB externally, while C divides it internally, one

* This section may be omitted on a first reading.
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of the four segments AC, CB, AD, DB, must be opposite in

sign from the other three ; and so, if attention be given to signs,

we should write either

AG:CB = AD'.- DB,

or AC:CB=AD:BD.

Choosing the latter form, we may write

CB BD
AC AD

or, since CB =-AB-- AC and BD = AD- AB,

AB-AC AD-AB
AC AD

Hence AB ^ ^ AB
AC ^ = ^ ad'

or
AB AB^^
AC^AD

Therefore
11 2

AC AD AB (1)

a formula of great value in the theory of Harmonic Division.

286. Another important relation among harmonic points on

a line can be deduced in a similar way.

Let A, C, B, D he Si har-

monic range, A and B being J J-—J •

^
harmonica]ly separated by

C and D, and let M be the mid-point of the line-segment CD.

Then AM'BM=CM\
Proof. Since the points A, C, B, D are harmonic. A, B and

C, D being the pairs of conjugates,

AG^AD
CB BD
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Moreover, giving attention to the signs of segments,

AC=AM^MC,
CB=CM-{-MB,

AD=AM+MD,
BD = BM+MD;

and since M is the mid-point of CD,

CM= MD.

Substituting in the relation

we have

or

AG
CB

AM-\-MC

AD
~-bd'

AM+MD
CM+MB
AM- CM

BM + ML)

AM+ CM
CM-BM BM+CM

Whence, multiplying by the common denominator and col-

lecting terms,

AM' BM= CM- CM= CM\

EXERCISES

1. Show that two points of a straight line which are harmonically

separated by two others are both on the same side of the mid-point of the

line-segment determined by the two others.

2. The base of any triangle is cut harmonically by the bisectors of the

internal and external vertical angles.

3. The hypotenuse of a right triangle is cut harmonically by two lines

through the vertex of the right angle which make equal angles with one of

the sides.

^ 4. A straight line meets two intersecting circles at P, Q, R, S, and

their common chord at 0; prove that OP, OQ, OB, OS, taken in a

proper order, are proportional.
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MISCELLANEOUS EXERCISES

1. If two triangles have one angle of the one equal to one angle of the

other, and a second angle of the one supplementary to a second angle of

the other, then the sides about the third angles are proportional.

2. AE bisects the vertical angle of the triangle ABC and meets the

base in E ; show that if circles are described about the triangles ABE
and ACE, their diameters are to each other in the same ratio as the

segments of the base.

3. Two circles touch internally at O ; AB a chord of the larger circle

touches the smaller at C which is cut by the lines OA, OB at P and Q ;

show that OP: OQ = AC:CB.

4. If two triangles have their sides parallel in pairs, the straight lines

joining their vertices meet in a point, or are parallel.

5. If any two similar polygons have three pairs of corresponding sides

parallel, the straight lines joining the corresponding vertices meet in a

point or are parallel.

6. If A, B, C, D are any four points on a circle and E, F, G, H are

the mid-points of the arcs AB, BC, CD, DA, respectively, prove that the

straight lines EG and FH are at right angles.

7. The sum of the perpendiculars drawn from any point within an

equilateral triangle on the three sides is invariable.

8. Prove that the straight lines which trisect one angle of a triangle

do not trisect the opposite side.

9. That part of any tangent to a circle which is intercepted between

tangents at the extremities of a diameter is divided at the point of con-

tact into segments such that the radius of the circle is a mean proportional

between them.

10. If two chords AB and A C, drawn from a point ^ on a circle ABC,
are produced to meet the tangent at the other extremity of the diameter

through A, in the points D and E respectively, show that the triangle

AED is similar to the triangle ABC.

11. On a circle of which AB is a diameter take any point P. Draw
PC and PD on opposite sides of AP and equally inclined to it, meeting

AB at C and D. Prove AC:BC = AD: BD.
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SUMMARY OF CHAPTER III

1. Definitions.

(1) To Measure — to find out by experiment how many times a

given magnitude will contain a chosen unit. § 211.

(2) Multiple of a Given Magnitude— a magnitude which will con-

tain that magnitude an integral number of times. § 211.

(3) Measure of a Given Magnitude— a magnitude which is con-

tained in that magnitude an integral number of times. § 211.

(4) Commensurable Magnitudes— such as can be measured with a

common unit. § 213.

(5) Incommensurable Magnitudes— such as cannot be measured by
any common unit. § 213.

(6) Ratio of Two Quantities— their relative magnitude, i.e. how
many times one is as great as the other. § 216.

(7) Ratio of Two Commensurable Magnitudes — the ratio of their

numerical measures by a common unit. § 220.

(8) Ratio of Two Incommensurable Magnitudes— the limit which

the ratio of their approximate measures by a common unit

approaches, as this unit is indefinitely diminished. § 229.

(9) Limit of a Variable Quantity — a fixed quantity to which the

variable approaches nearer than for any assignable difference,

though it cannot be made absolutely identical with it, § 227.

(10) Proportion— a statement of the equality of two ratios. § 232.

(11) Continued proportion., mean proportional^ third proportional.

See § 236.

(12) Mutually Equiangular Polygons— those having their angles

equal, each to each, and in the same order. § 247.

(13) Similar Polygons— two polygons which have the same number

of sides, are mutually equiangular, and have their pairs of cor-

responding sides proportional. § 248.

(14) Radical Axis of Two Intersecting Circles— the line of their

common chord. § 263.

(15) Coaxial System of Circles — the circles through two fixed points.

§ 2(53.

(16) Division in Extreme and Mean Ratio — division of a line-segment

into two parts, such that one of them is a mean proportional

between the whole segment and the other part. § 274.

(17) Harmonic Division— division of a line-segment internally and

externally in the same ratio. § 283.
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2. Postulates.

(1) If P and Q are any two equal magnitudes, and i? is a third mag-

nitude of the same kind, then the ratio oi Pto R is equal to the

ratio of Q to i?, i.e. if F= Q, then P:R= Q:R; and con-

versely, if P and Q are such that F:R= Q:R^ then F= Q.

(Postulate 6.) § 218.

(2) If P and Q are two unequal magnitudes, and P is a third magni-

tude of the same kind, then the ratio of P to P is greater or

less than the ratio of Q to P, according as P is greater or less

than Q. (Postulate 7.) § 218.

3. Problems.

(1) To divide a given line-segment into any required number of equal

parts. § 269.

(2) To divide a given line-segment into parts proportional to other

given line-segments. § 270.

(3) To divide a given line-segment internally or externally in a

given ratio. § 271.

(4) To find a fourth proportional to three given line-segments.

§ 272.

(5) To find a mean proportional between two given line-segments.

§273.

(6) To divide a given line-segment in extreme and mean ratio. § 275.

(7) Upon a given line-segment to construct a polygon similar to a

given polygon, and such that the given line-segment shall be

homologous to a given side. § 276.

(8) To find the locus of a point whose distances from two fixed points

are in a constant ratio different from unity. § 282.

4. Theorem on Limits.

If there are two variable quantities dependent on the same quantity

in such a way that they remain always equal while each

approaches a limit, then their limits are equal. § 230.

5. Theorems on Proportion.

(1) If four numbers are in proportion, the product of the extremes

equals the product of the means. § 233,

(2) If a:b = c:d, then by inversion b :a = d:c, and by alternation

a:C = b:d. § 234.

(3) It a:b = c:d, then by composition a + b :b = c -\- did, by divi-

sion a — b :b = c — d:d, and by composition and division

a-\-b:a-b = c + d:c-d. § 237.
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(4) If three terms of one proportion are equal, respectively, to the

three corresponding terms of another, their fourth terms must
be equal. § 238.

(5) If any number of ratios are equal, then the sum of all the ante-

cedents is to the sum of all the consequents njs any one antece-

dent is to its consequent. § 240.

6. Theorems on the Similarity of Triangles.

(1) Two triangles are similar if the three angles of one are equal,

respectively, to the three angles of the other. § 249.

(2) If two triangles have two angles of one equal, respectively, to two
angles of the other, the triangles are similar. § 250.

(3) If two triangles have an angle of one equal to an angle of the

other, and the sides including these angles proportional, the

triangles are similar. § 251.

(4) If the ratios of the three sides of one triangle to the three sides

of another, two and two, are equal, the triangles are similar.

§253.

7. Theorems on Chords of Circles.

(1) If two chords of a circle intersect within the circle, the product

of the segments of the one equals the product of the segments

of the other. § 258.

(2) If through a fixed point within a circle any chord is drawn, the

product of its segments is the same whatever its direction.

§259.

(3) Either segment of the least chord that can be drawn through a

fixed point within a circle is a mean proportional between the

segments of any other chord drawn through that point. § 260.

(4) A perpendicular drawn from any point of a circle to a diameter

is a mean proportional between the segments into which it

divides the diameter. § 256.

(5) If two chords of a circle, when produced, intersect without the

circle, the product of the segments of the one equals the

product of the segments of the other. § 261.

(6) If a tangent and a secant of a circle intersect, the tangent is a

mean proportional between the whole secant and its external

segment. § 262,

(7) If from any point on the common chord of two intersecting

circles produced, tangents are drawn to the circles, the lengths

of these tangents are equal. § 263.
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8. Miscellaneous Theorems.

(1) A straight line parallel to one side of a triangle divides the other

two sides in the same ratio, and conversely. §§ 242, 244.

(2) The bisector of an angle of a triangle divides the opposite side

into segments proportional to the adjacent sides. § 245.

(3) If two similar polygons are divided into triangles by the diagonals

drawn from a pair of homologous vertices, these triangles are

similar each to each and are similarly placed, and conversely.

§ 252.

(4) The perimeters of two similar polygons are in the same ratio as

any two corresponding sides. § 254.

(5) If in a right triangle the perpendicular is drawn from the vertex

of the right angle to the hypotenuse : (1) the two triangles

thus formed are similar to each other and to the whole tri-

angle
; (2) the perpendicular is a mean proportional between

the segments of the hypotenuse
; (3) each side of the triangle

is a mean proportional between the hypotenuse and the segment

adjacent to that side. § 255.

(6) In equal circles, angles at the centre are in the same ratio as the

arcs subtending them, § 266.

(7) If the sides of a triangle are cut by any straight line, the product

of the ratios of their segments taken in order equals unity, and

conversely (Menelaus's theorem). §§ 277, 278.

(8) If two triangles are so situated that the straight lines joining the

pairs of corresponding vertices are concurrent, then the points

of intersection of the three pairs of corresponding sides are

collinear, and conversely (Desargues's theorem). §§ 279, 280.

(9) If through any point straight lines are drawn to the vertices of a

triangle, intersecting the sides, the product of the ratios of the

segments of the sides taken in order equals unity. § 281.

(10) If any line-segment AB is divided harmonically at C and D, the

line-segment CD is also divided harmonically at A and B. § 284.



CHAPTER IV

AREAS OF PLANE POLYGONS

Section I

PARALLELOGRAMS AND TRIANGLES

287. In the preceding chapters we have discussed for the

most part only geometrical figures (combinations of points and

lines) and the conditions under which two such figures can be

made to coincide. We have spoken of the length of a line-

segment and of the relative lengths of two line-segments, of the

size of an angle and of the relative sizes of two angles ; but so

far have had nothing to do with surfaces or the measurement

of surfaces.

In this chapter we shall consider the measurement of sur-

faces enclosed by certain plane rectilinear figures.

288. When two polygons are placed so as to have one or

more sides or parts of sides

in common, without over-

lapping, they are said to

be adjacent.

By disregarding the com-

mon parts of the boundaries

of two adjacent polygons, a third polygon is obtained which

is defined to be the sum of the first two.

The sum of two polygons is thus a polygon such that within

194
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it lie all the points which are inside of either of the first two,

and no other points.

If we have two polygons A and B whose sum as defined

above is C, then the difference between the polygons C and A
is the polygon By or the difference between the polygons C and

B is the polygon A,

289. Definition. The area of a plane closed figure is the

surface lying within the figure.

The area of a circle is the surface lying within the circle, i.e. enclosed

by the circle.

The area of a triangle is the surface enclosed by the three sides of the

triangle.

Axiom 11. If tivo plane polygons or other closed figures are

identically equal, their areas are equal.

Axiom 12. The sum of the areas of two plane polygons is

equal to the area of their sum.

290. To measure a surface, we must first fix upon a unit of

surface.

The unit most frequently chosen is the surface enclosed by

a square whose sides are each of unit length.

If the unit length is one inch, the unit of surface is the surface enclosed

by a square each of whose sides is an inch in length. Such a surface is

called a square inch.

If the unit of length is a foot, then the unit of surface is a square foot

;

or, if the unit of length is a yard, or a centimetre, the unit of surface is a

square yard, or a square centimetre, and so on.

291. The measure of the area of any geometrical figure is

the number which expresses how many times this area will

contain the chosen unit of surface.

For brevity we shall frequently speak of ' the area of a figure' as though

it were 'the measure of the area,' and in that sense the area is a number.

Notation. Hereafter the symbol ZZ7 will frequently be used as an

abbreviation for the word ' parallelogram,'
| |

for the word 'rectangle,'

and for the word ' square.'
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Proposition I

292. Paralleloirams upon the same base and between
the same parallels are equal in area.

Let ABCD and ABC'D' be two parallelograms on the same

base AB, such that the sides opposite to AB, viz. CD and C'B'j

are in the same straight line.

It is required to prove that these parallelograms are equal in

area.

Proof. The whole polygon ABC'D is the sum of CJ ABCD
and A BC'C (Def.)

It is also the sum of O ABC'D' and A AD'D. (Def.)

Therefore the area of OABCD + the area of A BC'C = the

area of O ABC'D' + the area of A AD'D. (Ax. 12.)

But As BC'C and AD'D are identically equal. Prove.

Therefore the area of A BC'C = the area of A AD'D.
(Ax. 11.)

Hence the area of O ABCD = the area of O ABC'D'.

Notice that the proof applies equally well to any of the three possible

cases represented in the diagrams, viz. (1) when DC and D'C overlap,

(2) when C and D' coincide, (3) when DC and D'C are separated.

293. When we say that two polygons are equal, we shall

mean simply that they have equal areas, and not that they are

necessarily superposable. If it is meant that two figures

are superposable, we shall say as heretofore that they are iden-

tically equal.

294. Corollary I. Parallelograms upon eqiial bases and

between the same parallels are equal in area.
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Let ABCD and A'B'C'D' be two parallelograms upon equal bases and

between the same parallels. Join A'D and B'G. A'B'CD is also a

parallelogram. Why ?

V C D' &
Then UABCD =0 A'B'CD. /"--^^ /^--^^^ \ V

For they are upon the same base / / ^"^"^^^ \^^^->^ \
CD and between the same parallels. J ^ ^^^^jp ^^/

Similarly O A'B' CD = O A'B' CD'.

Therefore O ABCD = OA'B' CD'.

295. Corollary II. If a triangle arid a parallelogram, are

ujjon the same base, or upon equal bases, and between the same

parallels, the area of the triangle equals half the area of the

parallelogram.

Let A ABE and O ABCD be upon the same, or equal bases, and

between the same parallels. n w w
It is required to prove that the area of the

triangle equals half the area of the parallelo-

gram. Complete O^BF^.

Then CJABCD = O ABFE. (Prop. I. ) ^

Also A ABE is identically equal to A FEB (Art. 124) and its area is

therefore half the area of CJ ABFE.
Therefore the area of AABE equals half the area of O ABCD.

296. Corollary III. Triangles upon the same base, or upon

equal bases, and between the same parallels are equal in area.

297. Corollary IV. Triangles upon equal bases in the

same straight line, having their opposite vertices in coynmon, are

equal in area.

Definitions

298. When one side of a parallelogram has been named the

base, the perpendicular distance between it and the opposite

side is called the altitude of the parallelogram.
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When one side of a triangle has been named the base,

the perpendicular distance of the opposite vertex from it is

called the altitude of the triangle.

299. Corollary V. Any parallelogram is equal in area to

a rectangle having an equal base and an equal altitude.

EXERCISES

1. The straight line joining any vertex of a triangle to the mid-point

of the opposite side forms with the sides two triangles of equal areas.

2. Of two triangles which are between the same parallels, that has the

greater area which has the greater base.

3. If two triangles, equal in area, are upon the same base and upon
the same side of it, the straight line joining their vertices is parallel to the

base.

4. ABC is any triangle and DE is drawn parallel to the base BC,
meeting AB and AC ?it D and E ; BE and CD aire joined. Prove that

A DBC = A EBC, A BDE = A CED, and A ABE = AACD.

5. ABCD is a quadrilateral having AB parallel to CD; its diagonals

AC and BD intersect at O. Prove that AAOD = ABOG.

6. If through the vertices of a triangle, straight lines are drawn par-

allel to the opposite sides and produced to meet, the triangle so formed is

the sum of four equal triangles.

7. On the same base and between the same parallels as a given paral-

lelogram, construct a rhombus equal in area to the given parallelogram.

8. Divide a given parallelogram into two equal parallelograms. In

how many ways can this be done ?

9. ABC is any triangle, and D any point in AB. Find a point E in

BC produced such that ADBE=AABC.

10. If one diagonal of a quadrilateral bisects the other diagonal, it

divides the quadrilateral into two triangles equal in area.

11. ABCD is any quadrilateral, AC and BD its diagonals. A paral-

lelogram EFGH is constructed by drawing through the vertices straight

lines parallel to the diagonals. Prove that ABCD equals half of EFGH.



298-300] AREAS OF PLANE POLYGONS 199

Proposition II

300. The areas of two rectangles having equal alti-

tudes are in the same ratio as their bases.

D G

E

Let ABCD and EFGH be two rectangles of equal altitudes

AD and EH.

It is required to prove that

area of ABCD : area of EFGH AB : EF.

Proof. There are two cases to be considered according as

AB and EF are commensurable or incommensurable.

Case I. When AB and EF are commensurable.

Let AB and EF have a common measure x which is contained

m times in AB and n times in EF.

Then
AB
EF (Art. 220.)

Divide AB and EF into segments each equal to x, and

through the points of division draw lines parallel to AD and

EH, respectively, thus dividing the rectangle ABCD into m
rectangles, and the rectangle EFGH into n rectangles, all identi-

cally equal (Art. 129), and therefore equal in area.

Since I I ABCD is the sum of m of these equal rectangles,

and I I EFGH is the sum of n of them,

area of ABCD _ m
area of EFGH ~ n

area of ABCD ^ AB
area of EFGH ~ EF

or, area of ABCD : area of EFGH= AB : EF.

Therefore
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Case II. When AB and EF are incommensurable.

Take any measure of EF, say x, and apply it to AB as often

as possible, letting B' be the last point of division, so that B'B
is a remainder less than x.

J) CfO H G

A B'B E .F

Through B' draw B'C parallel to BC.

Then AB'C'D and EFGH are two rectangles of equal alti-

tudes whose bases AB' and EF are commensurable.

rru f area of AB'C'D AB' ,p^^^ t ^

Therefore = (Case 1.)
area of EFGH EF ^ ^

If now the measure x be repeatedly diminished, the base

AB' approaches the base AB as its limit, while the rectangle

AB'C'D approaches the rectangle ABCD as its limit.

Therefore the limit of the variable ratio — . ^^^.^
area of EFGH

is the ratio
area of ABCD ^^^ ^^^ j.^^.^ ^^ ^-^^ variable ratio
area of EFGH

AB' • ,. ,. AB
IS the ratio ——-•

EF EF
But these variable ratios are always equal ; therefore their

limits are equal. That is

area of ABCD ^ AB ,^^,^ 230.)
avesioiEFGH EF ^ ^

Or, area of ABCD : area of EFGH= AB : EF.

301. Corollary I. The areas oftwo rectangles having equal

bases are in the same ratio as their altitudes.

302. Corollary II. Tlie areas of two triangles having equal

altitudes are in the same ratio as their bases ; or, having equal

bases are in the same ratio as their altitudes.
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Proposition III

303. TJie areas of any two rectangles are in the same
ratio as the products of their bases and altitudes.

D
d

A IT

Let ABCD and A'B'C'D' be two rectangles whose areas are

denoted by P and P', whose bases are b and b', and whose

altitudes are h and h', respectively.

It is required to prove that — = ——-•

P' bh'

Proof. Construct a third rectangle, denoting its area by Q,

whose base is equal to b', and altitude equal to h.

h''

P ^ bh

P' b'h''

or P:P' = bh:b'h'.

Then

Therefore

P ^ A (Prop. II.)

(Art. 239.)

EXERCISES

1. One rectangle has a base of 12 ft. and an altitude of 3 ft,, another a

base of 7 ft. and an altitude of 5 ft. What is the ratio of their areas ?

2. The ratio of the area of one rectangle to the area of another is 3 : 2.

The first has an altitude of 8 ft. and a base of 15 ft. The second has an

altitude of 5 ft. Find its base.

3. In two rectangles, the base of the first is double that of the second,

but the altitude of the first is only one-third that of the second ; what is

the ratio of their areas ?

4. The lengths of two rectangular fields are in the ratio 2 : 3. What
must be the ratio of their widths in order that the first may have an

area twice as great as the second ?
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304. Suppose that in the last proposition the rectangle

A'B'C'D' is a square having unit base and unit altitude.

Then P' is the unit of surface; in other words, it is unit

area. And since b' and h' are in that case each unity, the

relation P:P' = bh:b'h'

becomes P : unit area = 6/i : 1,

or P=bh times unit area.

That is, the area of the rectangle ABCD is equal to the

product of its base and altitude times unit area.

In other words, P contains the unit area bh times, or the

measure of P is bh.

Theorem. Tlie measure of the area of a rectangle is equal

to the product of its base and its altitude.

Or, more briefly, the area of a rectangle is equal to the product

of its base and altitude.

Exercise. Divide a given rectangle into unit squares by straight

lines drawn through points of division in its sides, and show that it con-

tains as many squares as is represented by the product of its base and
altitude.

305. Corollary I. The area of a parallelogram is equal to

the product of its base and altitude.

For, any parallelogram is equal in area to a rectangle having the same
base and an equal altitude. (Art. 299.

)

306. Corollary II. The area of a triangle is equal to half

the product of its base and altitude.

For, the area of a triangle is half the area of a parallelogram having the

same base and an equal altitude. (Art. 295.

)

307. Corollary III. The area of a square is equal to the

square of any one of its sides.



304-309] AREAS OF PLANE POLYGONS 203

Proposition IV

308. The areas of two triangles having an angle of the

one equal to an angle of the other are in the same ratio

as the products of the sides containing the equal angles.

B G

Let BAC and B'AC be two triangles having the angles at A
equal.

It is required to prove that area of BAC: area of BAC =
BA'AG'.B'A^AC.

Proof. Place the tria.ngles so that the equal angles coincide

as in the figure, and join B'C.

area oi BAC_ BA
2ivesioiBAC~ B'A'

Then : .;^.^= -^> (Art. 302.)

and
Siresi oi BAC^ AC
Sivesioi B'AC AC'

Therefore
area, of BAC BA - AC

(Art. 239.)
area of 5'^ C" BA - AC' ^ ^

or area of BAC : area of B'AC = BA-AC : B'A • AC.

309. Corollary. The areas of two jjarallelograms having

an angle of the one equal to an angle of the other are in the same

ratio as the products of the sides containing the equal angles.

EXERCISE

1. ABCD is any parallelogram. Through E^ any point in the diagonal

^C, straight lines are drawn parallel to the sides. Show that the area of

the parallelogram EB equals the area of the parallelogram ED.
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310. It should be remembered that by the product of two

line-segments we mean the product of their measures, and that

by the square of a line-segment we mean the square of its

measure.

Thus the product of two given line-segments equals the area

of a rectangle whose adjacent sides are respectively equal to

the given segments ; and the square of a given line-segment

equals the area of a square each of whose sides equals the

given segment.

311. Theorem. If a given line-segment is divided iyiternally

into any tivo parts, the square on the whole segment is equal in

area to the sum of the squares on the two parts together with twice

the rectangle contained by the two parts.

If we let a and b be the measures of the

parts, then (a -f b) is the measure of the

given segment and the theorem may be

stated algebraically thus

:

(a-i-by = a'-^b'-{-2ab.

The accompanying diagram illustrates

geometrically the truth of the theorem.

312. Theorem. If a given line-segment is divided externally

into any tvjo parts, the square on the given segment is equal in

area to the sum of the squares on the two parts less twice the

rectangle contained by the two parts.

As before, let a and b be the measures of the parts ; then

(a — b) is the measure of the given segment, and the theorem

may be stated algebraically thus :

(a - by- = a^ + &2 _ 2 ab.

Make a diagram illustrating this theorem. If G divides AB
externally, and you let AC = a, and BG = 6,

then AB — a — b.

Construct the squares on a and a—b producing the sides of

the latter to meet the former.

"T ab b'

i
r 4

a« ab

.
——-^M



310-313] AREAS OF PLANE POLYGONS 205

313. The relation between tlie two theorems stated above

can be best shown by placing them side by side thus

:

Theorem (1) a o £

Iff = AG'' +CB' + 2AC' CB.

Theorem (2) a b c

AB'==AC'-\-Cff-2AC'CB.

The two theorems are identical if we attach a sign to the

segments. If C divides the segment AB internally, the parts

AC and CB are of the same sign, while if C divides AB ex-

ternally the parts are of opposite signs.

Thus the product AC • CB is in the first case positive, and

in the second case negative. The square of either a positive

or a negative segment is of course positive.

With this interpretation the relation

Aff = AC'-{-CB'-{-2AC' CB

is true no matter how the points A, B, C, are placed on a

straight line.

This relation furnishes us with another illustration of the

Principle of Continuity.

EXERCISES

1. Illustrate the following relations geometrically and state in words

the theorem contained in each.

(1) a(6 + c)= db -{• ac.

(2) «. =
4(1)1

(3) a^-h^:=(a + b)ia-b).

(4) (rt + by + (a - &)2 = 2 a2 4. 2 &2.

(5) (a + by -(a -by = 4 ab.
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EXERCISES

1. The rectangle contained by two line-segments is equal to twice the

rectangle contained by one of them and half of the other.

2. If a line-segment is divided internally into any three parts, the

square on the whole segment is equal to the sum of the rectangles con-

tained by the whole segment and its three parts.

3. Show that if a square and a rectangle have equal perimeters the

square has the greater area.

4. If through the vertices of any triangle straight lines parallel to the

sides are drawn to meet, two and two, the resulting triangle will contain

three equal parallelograms.

5. Equal parallelograms on opposite sides of the same base are of

equal altitude.

6. If two equal triangles are upon the same base and on opposite sides

of it, the straight line joining their vertices is bisected by the base.

7. If a quadrilateral is divided into equal triangles by each of its

diagonals, it is a parallelogram.

8. On the base of a given triangle construct another triangle of equal

area having its vertex on a given straight line. In what case is this im-

possible ?

9. The area of a trapezoid is equal to the product of its altitude and

half the sum of its parallel sides.

10. Show that the sum of the squares on the two segments of a given

line-segment is the least possible when it is bisected.

11. The sum of the squares on two internal segments of a given line-

segment becomes greater as the point of section approaches one extremity.

12. Inscribe a square in a given semicircle.

13. If A, C, Z>, B are four points on a straight line so situated that D
bisects OjB, prove that the square on AC is less than the sum of the

squares on AD and DB by twice the rectangle AD • DB.

14. If BAC is any acute angle and BD, CE, are drawn perpendicular

to its boundaries AC, AB, respectively, show that the rectangle whose

sides are equal to AB and AE is equal in area to the rectangle whose

sides are equal to ^C and AD.

15. If ^J?C be a right-angled triangle and CD be drawn perpendicular

to the hypotenuse, then AD : DB = ACf : BG^.
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Section II

AREAS OF SIMILAR POLYGONS

Proposition V

314. The areas of similar triangles are in the same
ratio as the squares of any two homologous sides.

B' D'

Let ^5(7 and A'B'C be two similar triangles, of which AB
and A'B' are homologous sides.

It is required to prove that

area of ABC : area of A'B'C = AB' : A^^-
Proof. Let AD and A'D' be the altitudes of the two triangles.

T^^^
area of .150 ^ i BC ^ AD ^B^,A^,

^j,^,^ 30e.)
area of ^'^'C ^B'C-A'D' B'C A'D' ^

^

Now As ABC and A'B'C are similar

;

therefore 11 =
if."

And since As ADB and A'D'B' are also similar, (Art. 249.)

AD AB

Therefore

A'D' A'B'

Sivesioi ABC AB AB AB"
area of yl'^'C A'B^ A'B' Jjb''

EXERCISES

1. If the mid-points of two sides of a triangle are joined by a straight

line, what part of the whole triangle is the smaller one so formed ?
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Proposition VI

315. The areas of similar polygons are in the same
ratio as tlve squares of any two homologous sides.

B

ED E' D

Let ABCDEF and A'B'C'D'E'F' be any two similar polygons

of which AB and A'B' are homologous sides.

It is required to prove that

area oiAB'-F: area of A'B' ... i^' = ab" : A^'\

Proof. Divide the two polygons into triangles by drawing

the diagonals from two homologous vertices, A and A'. These

triangles will be similar, two and two.

Let the areas of the triangles be P, Q, E, S
R', S', ....

Then
p_ab' q_ac'_ab'

A^'
R
R'

AD

Q' A'C' A'B

AC AB

f2'

(Art. 252.)

and P, Q',

(Prop. V.)

2 rp^

etc.

A'B'

Whence

Therefore

That is,

A'B'

A'D'^ A'C"

^=R=^=^= =
P Q' R' S' '" A^'

P^Q^R^S + -" ^A^
P+Q'^-R'+S'+'' aJB''

areaof ^JB...F ^ Al^
areaof ^'5'...i^' ^Tgf2*

(Art. 240.)

316. Corollary. The areas of similar polygons are in the

same ratio as the squares of any two homologous diagonals.
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Proposition VII

317. The area of the square described on the hypot-

enuse of a right triangle is equal to the sum of the

areas of the squares described on the other two sides.

Let ABG be a triangle, right-angled at C, and let AH, BD,
and CG be squares described upon the three sides.

It is required to prove that the area of the square AH is equal

to the sum of the areas of the two squares BD and CG.

Proof. Draw CK parallel to AJ or BH, and join CJ and BG.
FC and GB are in the same straight line. Why ?

Therefore A GAB = half of D GACF, . (Art. 295.)

Also A AJC = half of IZZ] AJKL.
But As GAB and AJC or CAJ are identically equal. Why ?

Therefore D GACF = CD AJKL.
By joining AE and CH, it may be similarly proved that

nBEDC = CI}BHKL.

This statement .should be fully verified by the pupil.

But
I Is AJKL and BHKL together make up D AJHB.

Therefore the areas of Ds ACFG and BEDC are together

equal to the area of n\AJHB.

This theorem is usually attributed to Pythagoras, a Greek

mathematician who lived about 550 b.c.
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Alternate Proofs

1. In the triangle ABC, right-angled at C, draw CD perpen-

dicular to the hypotenuse.

Then

or

Also

(Art. 255.)

(Art. 255.)

AD B

AB:AC=AG:AD,
ACf = AB'AD,

AB:BC=BC:DB,

or BO^ = AB' DB.

Therefore AC^ -\- BC^ = AB - AD + AB - DB
= AB(AD-{-DB)

= AB'AB
=.AB\

2. With centre A and radius AC describe a circle.

Let the side BA meet this circle in the points E and F.

Then BC is tangent to the circle. Why ?

Hence BE'BF= BC\ (Art. 262.)

But BE = BA-EA=^BA-AC,

and BF===BA-\-AF=BA + AG.
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Therefore BE - BF = {BA - AC) {BA + AC) = BA' - AC'-

Hence BA^ - AC^ == BC\

That is, BA' = AC' + BC\

Many other methods for proving this theorem have been devised. The
proof presented in the main proposition is that found in Euclid's Ele-

ments. The nature of the proof given by Pythagoras is not certainly

known.

318. Corollary. The area of any polygon described on the

hypotenuse of a right triangle is equal to the sum of the areas of

the similar polygons similarly described on the other two sides.

Let a, b, c, be the sides of the right triangle, and A, B, C, be

the areas of the polygons similarly described on them.

Then A:C = a':c\ (Prop. V.)

B:C=b-':c\

Therefore A-h B: C = a' -{-b^ : c". ( Ex. 3, p. 165.)

But a^ + 62 = c^

;

(Prop. VII.)

therefore A + B=C.

EXERCISES

1. State and prove the converse of Proposition VII.

2. If the difference of the squares on two sides of a triangle is equal

to the square on the third side, the triangle is right-angled.

3. The square described on the diagonal of a given square is equal to

twice the given square.
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4. A quadrilateral is such that its diagonals intersect at right angles.

Prove that the sum of the squares on one pair of opposite sides is equal to

the sum of the squares on the other pair of opposite sides.

6. If is the point of intersection of the perpendiculars drawn from

the vertices of a triangle ABC to the opposite sides, the squares on OA
and BC are together equal to the squares on OB and CA, and also to the

squares on 0(7 and AB.

6. If the hypotenuse and a side of one right triangle are equal to the

hypotenuse and a side of another right triangle, show that the triangles

are identically equal.

Prove by use of Proposition VII. See also a different proof

in Chapter I, Proposition XIX.

7. Find a line-segment the square on which is equal to three times

the square on a given line-segment.

8. Find a line-segment the square on which is equal to the difference

of the squares on two given line-segments.

9. Five times the square on the hypotenuse of a right triangle is equal

to four times the sum of the squares on the medians to the other two

sides.

10. Three times the square on any side of an equilateral triangle is

equal to four times the square on the perpendicular drawn from a vertex

to the opposite side.

PROJECTIONS

319. If from a given point a perpendicular is drawn to a

given straight line, the point of intersection, or, as we say,

the foot of the perpendicular, is called the projection of the given

point upon the given line.

The projection of the point F
upon the straight line AB is the

point P', and the projection of

Q is Q', if PF and QQ' are per-

pendicular to AB. A P' Q' B

The projection of a given line-segment upon any straight line

is the intercept between the projections of its extremities upon

the line.
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The projection of the line-segment PQ upon the straight line

AB is the segment P'Q'; the projection of the line-segment

RS upon AB is the segment RS'.

A line-segment is equal to its projection upon any straight

line parallel to it, but is greater than its projection upon any

strais^ht line not narallel to it.straight line not parallel to it.

What is the projection upon a given straight line of a segment at right

angles to it ?

320. Theorem. If two line-segments OA and OB have one

extremity in common, the product of OA and the projection of

OB upon the line of OA equals the product of OB and the

projection of OA upon the line of OB.

From A and B draw the perpendiculars AA^ and BB\
respectively.

A
'A

Then OA' is the projection of OA upon the straight line

OB, and OB' is the projection of OB upon the straight line

OA, and we are required to prove that OA • OB' = OB • OA'.

As OAA' and OBB' are similar. Whyf

Therefore OA : OA' = OB : OB',

or OA ' OB' = OB • OA'. (See Ex. 14, p. 206.)
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Proposition VIII

321. In any triangle the square on the side opposite

an acute angle is less than the sum of the squares on

the other two sides hy twice the product of either of

these sides and the projection of the other upon it.

B' A

Let the angle C of the triangle ABO be acute, and from B
draw the perpendicular BB' to the line AC, so that GB' is

the projection of CB upon the line AC.

It is required to prove that

AB" = AC' +C^-2AC' CB'.

Proof. Since in either diagram AB' is divided externally

at C, AB'' = AC' + CB'' -2 AC' CB'. (Art. 312.)

To each side of this relation add BB'

.

Then AB'' + BB'' = AC' + CB'' + BB^ - 2 AC - CB'.

But AB'' + BB''=^ A&, (Prop. YII.)

and CB'' + BB'' = CB'. (Prop. VII.)

Therefore AS = AC' -{- CB" - 2 AC - CB'.

What does this relation become in case B' coincides with A, i.e. in

case ^ is a right angle ?

EXERCISE

If AB and CD are any two given line-segments, prove that the product

of AB and the projection of CD upon the line of AB equals the product of

CD and the projection of AB upon the line of CD.
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Proposition IX

322. In an obtuse-angled triangle the square on the

side opposite the obtuse angle is greater than the sum
of the squares on the other two sides by twice the product

of either of these sides and the projection of the other

upon it'

A G B

Let the angle C of the triangle ABC be obtuse, and from B
draw the perpendicular BB' to the line AG, so that CB' is

the projection of CB upon the line AG.

It is required to prove that

^^ = JC' + CB' + 2 AG'GB\

Proof. Since AB^ is divided internally at (7,

JLB^ = J^ +W + 2 AG' GB'. (Art. 311.)

To each side of this relation add BB'^.

ThenJ^' + BB'^ = AG" + GB'"" + BB'^ + 2 AG -OB'.

But AB' + BB^" = A^,

and CB^^ + BB'^ = GB".

Therefore AB" = AG' + US' -\- 2 AG - GB'.

323. No doubt the pupil has already noticed the close

similarity between the proofs of Propositions VIII and IX.

In fact, except for the change of sign of the segment GB', the

proofs are identical.
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We might with perfect propriety consider the theorem of

Proposition IX a general theorem of which both Propositions

VII and YIII are special cases, though, ^
of course, the proof of Proposition IX
must follow that of Proposition VII, since y/^

it depends upon it. / I

Suppose, for example, in the diagram y^ /

for Proposition IX we rotate the side ^/^ -^
CB about C in the way indicated by the jL. L

arrow-head. The angle ACB gradually
^

decreases in magnitude, while the point B' approaches G and

coincides with C when Z ACB becomes a right angle.

In this position the segment CB' is zero and the product

2 AC ' CB' is also zero.

The relation AB' = AG^ + CB^ -h 2 AC • CB'

thus becomes AB' = AC + CR,

which is the relation proved for a right triangle in Proposition

VII.

If the rotation of CB about C continues, Z ACB becomes

acute, B' moves in between C and A, the segment CB' changes

sign, and we have the relation

A^ = AG'-\-W-2AC'CB',
which was proved independently in Proposition VIII.

Here again is an illustration of the Principle of Continuity.

EXERCISE

The sum of the squares on two sides of any triangle is equal to twice

the squares on half the third side, and on the median drawn to that

side.

Suggestion. The median makes in general one acute angle and one

obtuse angle with the third side. Apply Propositions VIII and IX, and

add.
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The Area of a Triangle in Terms of its Three Sides

324. The area of a triangle has been found (Art. 306) to be

half the product of its base and altitude, but it is sometimes

more convenient to have at hand a formula expressing the area

in terms of the lengths of the three sides. Such a formula we
are now ready to deduce.

B D C

Letter the triangle ABC symmetrically, denoting by a the

length of the side opposite the vertex A, by b the length of

the side opposite the vertex B, and by c the length of the

side opposite the vertex C.

• Giving proper attention to the sign of the segment CD,

AB' = BC'-hGA' + 2BC- CD,

(Prop. VIII and IX.)

or c2 = a2 + &2 _^ 2 a . CD.

Whence, CD = -¥
2a

If Z O is acute, the segment CD is negative as appears from the

diagram.

Now BD=BC-\- CD

2a

^ a2 ^ c^ _ 52

2a

That is to say, whether Z (7 is acute or obtuse, the projection

of the side c upon the side a equals —— —

•

2 a
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Next, ad' = aS-BT? (Prop. VII.)

= {AB + BD) (AB - BD)

^ (g + cf - &^
^
b^-(a-cy

2a 2 a

^ (a+ b-\-c)(a — b-^c)(a-\-b— c)(b+ c-a)

4 a'

or u4Z> =^ V(aH-&+ G)(a— 6+c)(a+ &— c)(6+c— ci)..

This expression for the length of AD can be written more

conveniently if we let ci + 6 + c = 2 s,

so that a-\-b — c = 2s — 2c = 2{s — c),

a-b-{-c = 2s-2b = 2(s-b),

and b-{-c — a = 2s — 2a = 2{s — a).

Substituting these values in the expression for AD gives

AD=^V2s'2{s-a)- 2(s - b) • 2{s - c)

Z a

= - Vs(s — a)(s — b){s — c).

a

That is, the length of the perpendicular upoi% the side of a tri-

angle from the opposite vertex A equals -\/s{s — d)(s — b){s — c).

a

Finally, the area of A ABC = ^ BC - AD, (Art. 306.)

o
= 1 a • -^s{s — a)(s — b)(s — c)

a

= Vs(5 — a)(s — b)(s — c).
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EXERCISES

1. What does the formula in Article 324 for the projection of the

side c upon the side a become when C is a right angle ?

2. From symmetry write out the projections of (1) the side c upon the

side 6, (2) the side a upon the side &, etc.

3. By symmetry, write out the expressions for the lengths of the

perpendiculars from the vertices B and C upon the opposite sides.

4. Show that the shortest perpendicular falls upon the longest side of

the triangle, and that any two perpendiculars are inversely proportional

to the sides upon which they fall.

5. The three sides of a triangle are 58 ft., 51 ft., and 41 ft., respec-

tively, find its area.

6. Find the lengths of the perpendiculars from the three vertices on

the opposite sides of a triangle whose sides are 7 in., 9 in., and 11 in.,

respectively.

7. The sides a, &, c, of a triangle are 5, 9, 11 feet, respectively ; find

whether or not it contains an obtuse angle, and the length of the projec-

tions of the sides a and b upon the side c.

8. Find the area in acres of a triangular field whose sides are 320,

426, and 261 yards, respectively.

9. Find the sides of a right triangle if their projections upon the

hypotenuse are 3if and 13^7 feet, respectively.

10. The two parallel sides of a trapezoid are 16 and 21 feet, respectively,

and their distance apart is 5 feet. Find the area.

11. The sum of the squares on the four sides of a parallelogram is equal

to the sum of the squares on the diagonals.

12. The square on the base of an isosceles triangle is equal to twice the

rectangle contained by either of the equal sides and the projection on it

of the base.

13. If the square on one side of a triangle is less than the sum of

the squares on the other two sides, how does the angle contained by these

two sides compare with a right angle ?

14. The base of a triangle being given, find the locus of the vertex when

the sum of the squares on the two sides is also given.

Suggestion. Apply Ex. 1, p. 216.
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Section III

CONSTRUCTIONS

Proposition X

325. To construct a rectangle equal in area to a given

parallelogram, and having one side equal to a given

line-segment.

D' D & O S^ \(^

I^J
A B E F

It is required to construct a rectangle upon the given line-

segment EF which shall be equal in area to the given paral-

lelogram ABGD.

Construction. Draw AD' and BC perpendicular to CD, thus

forming a rectangle ABC'D' equal in area to the given paral-

lelogram ABGD. (Art. 299.)

If we suppose EFGH to be the required rectangle, of which

the side FG is as yet unknown,

then EF'FG = AB'BC\

since the area of a rectangle equals the product of two adja-

cent sides. .
(Art. 304.)

Therefore EF:AB = BC : FG

and the required side FG can be found as the fourth propor-

tional to EF, AB, and BC. (Art. 272.)

The length of the side FG having been thus found, the re-

quired rectangle is easily constructed as follows :
—

At E and F draw straight lines perpendicular to EF.

Cut off FG of the proper length, determined above, and make

EH equal to it. Join HG.
Prove that the figure as constructed is a rectangle.
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326. The method of analysis employed in the preceding con-

struction (see page 86) should be resorted to whenever a direct

solution of a problem does not readily appear.

It is strongly advised that the pupil actually make the con-

structions indicated in the exercises, drawing all lines carefully

with ruler and compasses.

EXERCISES

1. Construct a parallelogram equal in area to a given triangle.

2. Construct a rectangle equal in area to a given triangle and having

one side equal to a given line-segment.

3. Construct a square equal in area to a given parallelogram or triangle.

Proposition XI

327. To construct a square equal in area to the sum
of two given squares.

Let a and h be sides of the given squares. If they are

placed at right angles, as in the diagram, then c will equal a

side of the required square. Why ?

EXERCISES

1. Construct a square equal in area to the difference of tw^o given

squares.

2. Construct a square equal in area to the sum of two given triangles.

3. Construct a square which shall he equal to the sura of three given

squares.

4. Construct a rectangle equal in area to a given square and having

one side of given length.
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Proposition XII

328. To find two line-segments having the same ratio

as the areas of two given squares.

Let a and h be sides of the given squares.

Place these lines as in the diagram so as to form a right

angle ACB and join AB. The areas of the given squares are

in the ratio BC : AC .

From C draw CD perpendicular to AB.

Then (Art. 2^5.)

or

Also

or

Hence

AD:AC=AC:AB,

AG' = AD . AB.

BD:BC=BC:BA,

BC"" = BD'BA = DB- AB.

BC' : A~G' = DB'AB:AD'AB = DB: AD.

Therefore DB and AD are the required line-segments.

EXERCISES

1. Construct a square which shall have a given ratio to a given square.

2. If c is the third proportional to a and &, show that a is to c as the

square on a is to the square on b.

3. Find two line-segments, one of given length, which shall be in the

same ratio as the areas of two given squares.

4. Find two line-segments, one of given length, which shall be in the

same ratio as the areas of two equilateral triangles.
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Proposition XIII

329. To construct a triangle equal in area to a given

triangle and having one side of given length.

M N

B b B' b' G'

It is required to construct on the line-segment JB'C a triangle

equal in area to a given triangle ABC.

Construction. Let h and h be the base and altitude, respec-

tively, of the given triangle, and 6' and ^' the base and altitude

of the required triangle, of which h' is unknown.

Then \lib = \ h'b', or hb = h'b'. (Art. 306.)

Therefore b':b = k:h';

and h' can be determined as the fourth proportional to 6',

6, and h. (Art. 272.)

When h' has been so determined, draw a line MN parallel to

B'C, whose distance from B'C equals h'.

Then any triangle having B'C for base and its vertex in

MN will satisfy the given conditions.

Proposition XIV

330. To construct a triangle equal in area to the sum
of two given triangles and having one side of given

length.

1. Construct two triangles, P and Q, equal in area to the

given triangles, each having one side (the base) of the given

length. (Prop. XIII.)

2. Construct a triangle, R, having its base of the given

length and its altitude equal to the sum of the altitudes of

P and Q.

The triangle R fulfils the given conditions. Prove.
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Proposition XV

331. To reduce the number of sides of a polygon with-

out altering the measure of its area.

Let ABODE be the given polygon in which A, B, and C are

consecutive vertices.

Join AC and through B dravr BC parallel to AC, meeting

the line DC at C. Join AC.
' AAC'C= AABC. Why?

Therefore the polygon AC'DE is equal in area to the origi-

nal polygon ABCDE, and it has one less side.

By repeated applications of this process, the number of

sides of any polygon can be reduced to three without altering

the area.

EXERCISES

1. Apply the method of Proposition XV to reduce the number of

sides of a polygon having a reentrant angle, as in the dia-

gram, the area to remain unaltered.

2. Construct a square equal in area to a given polygon.

First apply Proposition XV to reduce the polygon

to a triangle.

3. Construct a polygon similar to a given polygon, P, and equal in

area to another given polygon, Q.

Find squares equal in area to P and Q. Let m and n be sides

of these. Let a be any side of P, and find a' a fourth pro-

portional to m, w, and a. On a' construct a polygon, P,

similar to P, a and a' being homologous sides. R is the

required polygon. Prove.
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Proposition XVI

332. To construct a rectangle having given its area

and the sum of two adjacent sides, or its perimeter.

A F B

Let P be equal to the given area and AB the sum of two

adjacent sides.

It is required to construct a rectangle having its area equal

to P and its perimeter equal to twice AB.
Construction. Find m a side of the square whose area is

equal to P. (Ex. 2, p. 224.)

On AB describe a semicircle.

At A erect a perpendicular AC equal to m, and through

C draw a straight line parallel to AB, cutting the semicircle

at D and E.

Draw DF perpendicular to AB, and join AD and BD.
DF= m, and DF' = AF'FB= m\ (Art. 255.)

Therefore the rectangle whose adjacent sides are AF and

FB is the one required.

333. In the above proposition suppose that AB remains unaltered

while P, the given area, is chosen larger. Then m, the side of the equiva-

lent square, becomes longer and may be so long that the line drawn
through C parallel to AB will not cut the semicircle. In that case, no

rectangle can be constructed satisfying the conditions.

From a consideration of the conditions of this problem answers to the

following questions will readily present themselves :

1. What is the greatest length of m for which the required rectangle

can be constructed ?

2. What rectangle of given perimeter will have the greatest area ?

3. What parallelogram with a given base and given perimeter will

have the greatest area ?

Such questions naturally lead to a further consideration of what we
have called maximum and minimum values. (See Art. 175.)

Q
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Section IV

MAXIMA AND MINIMA

334. When a geometrical figure varies continuously it some-

times happens that one or more of the variable magnitudes

connected with it gradually increases for a time and afterward

begins to decrease. When such a magnitude has reached its

greatest value, that is, just when it ceases to increase and

begins to decrease, it is said to have a maximum value. On
the other hand, if the magnitude is first decreasing and then

begins to increase, at the time the change takes place the

magnitude is said to have a minimum value.

Suppose we recall the example given in Article 175.

Take within a circle any point P, not the centre, and join it to a point

A on the circle. LetA move continuously along the

circle in the way indicated by the arrowhead. The

straight line PA will steadily increase in length till

it reaches that position in which it passes through

the centre ; after that it will steadily decrease for a

time.

So we say, the line PA is a maximum when it

passes through the centre.

As the rotation continues, the line PA will reach

a minimum in that position where, if produced backward, it would pass

through the centre.

Since a maximum or minimum value of a variable magnitude

occurs at a critical position which may be approached from

either side, we naturally look for a maximum or a minimum

when the variable magnitude is symmetrically situated with

respect to the rest of the figure, and this usually proves to be

the case.

Thus, the shortest straight line from a given point to a

straight line not passing through it is the perpendicular to

the line.
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Examples of Maxima and Minima

1. If two sides of a triangle are of given lengths while the

third side varies, the triangle ivill have the maximum area

when the first two sides are at right angles.

Let AB and AC be given sides of a triangle ABC, and let

the angle between them vary con-

tinuously, so that, while AB re-

mains fixed, the side AC rotates

about A, taking up successively

the positions AC^, AC2, AC^, . . .

The area of A ABC equals one-

half the product of AB and the

perpendicular from C upon AB. The perpendicular CD steadily

increases with the rotation until AC makes right angles with

AB, after which it begins to decrease.

The area of A ABC therefore gradually increases with the ro-

tation till ^C is perpendicular to AB, after which it decreases.

Hence the area is a maximum when AC and AB are at

right angles.

2. In a straight line, to find a point such that the sum of its

distances from tivo given points on the same side of the line shall

be a minimum.
G D

<2\.

D

The problem is to find a point Q in AB such that CQ -f- QD
has a minimum value.

Let D' be the inverse point (Art. 144) of D with respect to

the line AB. Take any point Q in AB. Then QD' = QD.

Why?
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O

Therefore CQ + QD' = CQ + QD.

Hence CQ -\- QD is least when CQ + QD' is least.

What then is the required position of. Q?

3. Given two intersecting straight lines AB, AC, and a point P
between them; of all line-segments ichich pass through P and are

terminated byAB and AC, that which is bisected at P makes with

AB and AC the triangle of minimum area.

Let the line-segment DE be bisected at P. It is required to

show that A DAE is less than A FAG, where FG is any other

line-segment through P.

Through D draw DM parallel

to^C.
Then APDM is identically equal

to A PEG. Why ?

But A PDM is less than A PDF.
Therefore A PEG is less than

A PDF.
To each add the figure ADPG.
Therefore A DAE is less than

A FAG.
EXERCISES

1. What is the maximum chord of a circle ? What is the minimum line-

segment from a given point outside to a given circle ?

2. Of all triangles having the same base and equal areas, that which is

isosceles has the minimum perimeter.

8. Of all triangles having the same area, that which is equilateral has

the minimum perimeter.

4. Of all triangles having the same base and equal perimeters, that

which is isosceles has the maximum area.

Definition. Figures having equal perimeters are called isoperimetric.

5. Given the base and the vertical angle of a triangle, construct the

triangle so that its area may be a maximum.

6. Divide a given line-segment into two parts so that the sum of the

squares on the parts may be a minimum.

7. Divide a given line-segment into two parts so that the rectangle

contained by the parts is a maximum.

E/

a/

/\ P

X
D
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MISCELLANEOUS EXERCISES

1. Construct a parallelogram equal in area to a given parallelogram,

and having one of its angles equal to a given angle.

2. ABC is a given triangle ; construct a triangle of equal area having

AB for base and its vertex in a given straight line.

3. ABCD is a parallelogram ; from any point P in the diagonal BD^
the straight lines P^l, PC are drawn. Show that the triangles PAB and

PCB are equal in area.

4. The sides AB, AC ot a. triangle are bisected at C'B\ respectively
;

CC, BB' intersect at F. Prove that the triangle BFC is equal to the

quadrilateral AC'FB'.

5. The locus of a point such that the sum of the squares on its dis-

tances from two fixed points is equal to the square on the distance between

the points is a circle passing through the two points.

6. The locus of a point such that the difference of the squares on its

distances from two fixed points is equal to the square on the distance

between the points is a straight line.

7. If ABCD is a square and the vertex A is joined to the mid-point of

the side BC, B to the mid-point of CD, C to the mid-point of DA, and D
to the mid-point of AB, the lines so drawn are the sides of a square whose

area is one-fifth of the area of the original square.

8. Construct two line-segments in the ratio 1 : V2.

9. Divide a given triangle into two equal parts by a straight line

parallel to one of its sides.

10. Construct two line-segments in the ratio 1 : VS.

11. Draw a straight line-parallel to one side of a given triangle so as to

form a triangle equal to one-third of the original triangle.

12. If three line-segments are in continued proportion, the first is to

the third as the area of a triangle described on the first is to the area of

the similar triangle described on the second.

13. If any point within a parallelogram is joined to the four vertices,

the sum of either pair of triangles having parallel bases is half the area of

the parallelogram.

14. The sides of a triangle are 21, 24, 35 feet, respectively. Find the

area of the triangle and the projection of the lesser side upon each of the

others.
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SUMMARY OF CHAPTER IV
1. Definitions.

(1) Adjacent Polygons— polygons having one or more sides or parts

of sides in common. § 288.

(2) Sum of Two Polygons— a polygon formed by making the two
adjacent and disregarding the common boundary. § 288.

(3) Area of a Plane Closed Figure— surface enclosed by the figure,

or the measure of that surface. §§ 289, 291.

(4) Altitude of a Parallelogram— the distance between the base and

the opposite side. § 298.

(5) Altitude of a Triangle.— the distance between the base and the

opposite vertex. § 298.

(6) Projection of a Point on a Line— the foot of the perpendicular

drawn from the point to the line. § 319.

(7) Projection of a Given Line-segment on Any Straight Line— the

intercept between the projections of the extremities of the

segment on the line. § 319.

(8) Isoperimetric Figures— those having equal perimeters. Ex. 4,

p. 228.

2. Axioms.

(1) If two plane polygons or other closed figures are identically

equal, their areas are equal (Axiom 11). § 289.

(2) The sum of the areas of two plane polygons is equal to the area

of their sum (Axiom 12). § 289.

3. Problems.

(1) To construct a rectangle equal in area to a given parallelogram,

and having one side equal to a given line-segment. § 325.

(2) To construct a square equal in area to the sum of two given

squares. § 327.

(3) To find two line-segments having the same ratio as the areas of

two given squares. § 328.

(4) To construct a triangle equal in area to a given triangle and

having one side of given length. § 329.

(5) To construct a triangle equal in area to the sum of two given

triangles and having one side of given length. § 330.

(6) To reduce the number of sides of a polygon without altering the

measure of its area. § 331.

(7) To construct a rectangle having given its area and the sum of two

adjacent sides, or its perimeter. § 332.
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(8) In a straight line to find a point such that the sum of its distances

from two given points on the same side of the line shall be a

minimum. § 334. 2.

4. Theorems on the Areas of Parallelograms.

(1) Parallelograms upon the same base and between the same par-

allels are equal in area. § 292.

(2) Parallelograms upon equal bases and between the same parallels

are equal in area. § 294.

(3) Any parallelogram is equal in area to a rectangle having an equal

base and an equal altitude. § 299.

(4) The areas of two rectangles having equal altitudes are in the

same ratio as their bases. § 300.

(5) The areas of any two rectangles are in the same ratio as the

products of their bases and altitudes. § 303.

(6) The area of any rectangle is equal to the product of its base and

its altitude. § 304.

(7) The area of a parallelogram is equal to the product of its base

and its altitude. § 305.

(8) The area of a square is equal to the square of any one of its

sides. § 307.

(9) The areas of two parallelograms having an angle of the one equal

to an angle of the other are in the same ratio as the products

of the sides containing the equal angles. § 309.

5. Theorems on the Areas of Triangles.

(1) If a triangle and a parallelogram are upon the same base, or upon

equal bases, and between the same parallels, the ar^a of the

triangle equals half the area of the parallelogram. § 295.

(2) Triangles upon the same base, or upon equal bases, and between

the same parallels, are equal in area. § 296.

(3) Triangles upon equal bases in the same straight line, having their

opposite vertices in common, are equal in area. § 297.

(4) The areas of two triangles having equal altitudes are in the same

ratio as their bases ; or having equal bases are in the same

ratio as their altitudes. § 302.

(5) The area of a triangle is equal to half the product of its base and

altitude. § 306.

(6) The areas of two triangles having an angle of the one equal to an

angle of the other are in the same ratio as the products of the

sides containing the equal angles. § 308.

(7) Area of a triangle in terms of the sides. See § 324.
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6. Theorems on the Areas of Similar Polygons.

(1) The areas of similar triangles are in the same ratio as the squares

of any two homologous sides. § 314.

(2) The areas of similar polygons are in the same ratio as the squares

of any two homologous sides. § 315.

(3) The areas of similar polygons are in the same ratio as the squares

of any two homologous diagonals. § 316.

(4) The area of the square described on the hypotenuse of a right

triangle is equal to the sum of the areas of the squares described

on the other two sides. § 317.

(5) The area of any polygon described on the hypotenuse of a right

triangle is equal to the sum of the areas of the similar polygons

similarly described on the other two sides. § 318.

7. Miscellaneous Theorems.

(1) If a given line-segment is divided internally into any two parts,

the square on the whole segment is equal in area to the sum of

the squares on the two parts together with twice the rectangle

contained by the two parts. § 311.

(2) If a given line-segment is divided externally into any two parts,

the square on the given segment is equal in area to the sum of

the squares on the two parts less twice the rectangle contained

by the two parts. § 312.

(3) In any triangle the square on the side opposite an acute angle is

less than the sum of the squares on the other two sides by

twice the product of either of these sides and the projection of

the other upon it. § 321.

(4) In an obtuse-angled triangle the square on the side opposite the

obtuse angle is greater than the sum of the squares on the

other two sides by twice the product of either of these sides

and the projection of the other upon it. § 322.

(5) If two sides of a triangle are of given lengths while the third side

varies, the triangle will have the maximum area when the first

two sides are at right angles. § 334. 1.

(6) Given two intersecting straight lines AB^ AC, and a point P
between them ; of all line-segments which pass through P and
are terminated by AB and AC, that which is bisected at P
makes with AB and ^(7 the triangle of minimum area. § 334. 3.



CHAPTER V

MEASUREMENT OF THE CIRCLE

Section I

REGULAR POLYGONS

Definitions

335. A regular polygon is a polygon which is both equi-

lateral and equiangular.

For example, an equilateral triangle is a regular polygon of

three sides ; a square is a regular polygon of four sides.

A polygon of more than three sides may be equilateral with-

out being equiangular, or it may be equiangular without being

equilateral ; but in order to be classed as regular it must be

both equilateral and equiangular.

That there can be regular polygons of any given number of

sides will be seen from the first proposition of this chapter.

Make a diagram of a quadrilateral that is (1) equilateral, but not equi-

angular
; (2) equiangular, but not equilateral; (3) both equilateral and

equiangular
; (4) neither equilateral nor equiangular.

336. A regular polygon of more than four sides may or may
not be convex, but unless the contrary is stated, it will be

understood that any figure under discussion is convex.

A polygon of five sides is called a pentagon ; one of six sides,

a hexagon ; one of seven sides, a heptagon ; one of eight sides,

an octagon ; one of ten sides, a decagon ; one of twelve sides, a

dodecagon.

233
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337. Postulate 8. A circle may he divided into any given

number of equal arcs.

The problem " to divide a circle, or any arc of a circle, into a

given number of equal parts" is not always solvable by the

methods of elementary geometry. The method of solution, if

there is one, must of course depend on the number of such

parts required. All that the above postulate affirms is that

the circle may be thought of as made up of any specified

number of equal parts, and the points of division may be

assumed. It says nothing at all about a method of finding

these points of division.

338. In the preceding chapters we have shown how to divide

line-segments, angles, and arcs of circles, into certain numbers

of equal parts. The following exercises will recall the

methods employed.

EXERCISES

1. Divide' a given line-segment into two equal parts ; into four equal

parts ; into eight equal parts (Art. 56).

2. Divide a given line-segment into three equal parts ; into six equal

parts ; into nine equal parts (Art. 142)

.

3. Divide a given line-segment into any required number of equal

parts (Art. 269).

4. Divide a given angle into two, four, eight, etc. equal parts (Art. 54).

5. Divide a right angle into three equal parts (Art. 142).

6. Divide a given arc of a circle into two, four, eight, etc., equal parts

(Art. 165).

The problem to divide any given angle or arc of a circle into

three equal parts has been found to be impossible of solution

by the methods of elementary geometry, in which we make
use of the ruler and compasses only.

7. Divide a circle into two, four, eight, etc., equal arcs.

S' Divide a circle into three, six, or twelve equal arcs. (Make use of

Ex. 5.)
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Proposition I

339. If a circle is divided into any number of equal

arcs:

I. The chords joining the points of division, taken in

order, form a regular inscribed polygon.

II. The tangents to the circle at the points of division,

tahen in order, form a regular circumscribed polygon.

Remakk. The number of sides of the polygon is equal in each

case to the number of points of division in the circle.

Let a given circle be divided into any number of equal arcs

AB, BC, CD, etc., and let the points of division be joined in

order, thus forming the polygon ABODE ; also at the points of

division, let the tangents to the circle be drawn, thus forming

the polygon FGHJK.

It is required to prove that the polygon ABCDE is a regular

polygon ; and also, that the polygon FGHJK is a regular poly-

gon.

Proof. First, since by hypothesis the arcs AB, BC, CD, etc.,

are equal, the chords AB, BC, CD, etc., are equal. (Art. 161.)

Therefore the polygon ABCDE is equilateral.

Also, the arc EAB = the arc ABC Why ?

Therefore, Z EAB = Z ABC. (Art. 181.)
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Similarly Z BCD = Z ABC, and so on.

Therefore the polygon ABCDE is equiangular.

That is, the polygon ABCDE being both equilateral and

equiangular is regular.

Next, let the points A, B, C, etc., be joined to the centre 0.

Then Zs AOB, BOC, COD, etc., are all equal. Why ?

Therefore, Zs AFB. BOC, CUD, being supplements of equal

angles at the centre [why ?] are also equal.

Hence the polygon FOHJK is equiangular.

Also, the line-segment AF = the line-segment FB. (Art. 194.)

Also, the line-segment FB = the line-segment BG. Prove.

Similarly BG = GC, GC = CH, and so on.

Therefore the sideFG = the side GH, = the side HJ, and so on.

Hence the polygon FGHJK is equilateral.

That is, the polygon FGHJK is also regular.

340. Corollary T. If the vertices of a regular inscribed

polygon are joined to the mid-points of the arcs subtended by the

sides of the polygon, the joining lines will form another regidar

polygon of twice the number of sides.

341. Corollary II. If tangents are drawn at the mid-points

of the arcs between the points of contact of the sides of a regular

circumscribed polygon, these together with the sides of the original

polygon form a regular polygon of twice the number of sides.
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Proposition II

342. Any equilateral polygon inscribed in a circle is

also equiangular, and hence regular.

For the equal sides of the polygon subtend equal arcs of the

circle (Art. 163), these arcs together making up the whole circle

(or some multiple of the circle, if the polygon is not convex).

The angles between consecutive sides of the polygon also sub-

tend equal arcs, and are therefore equal. Hence the polygon

is regular.

Is the converse of this theorem true ?

EXERCISES

1. If a circle is divided into five equal arcs at the points A^ B, C, D, E,

and the points are joined, each to the next but

one, as in the diagram, prove that the result-

ing figure is a regular polygon, according to

the definition, though not a convex regular

polygon.

Suppose the circle is divided into seven

equal arcs, construct an inscribed polygon by

joining each vertex to the next but one, next

but two, next but three, etc. Show that the

polygons so constructed are regular.

2. All regular convex polygons of the same number of sides inscribed

in the same circle are equal ; and all regular convex polygons of the

same number of sides circumscribed about the same circle are equal.

3. The perimeter of a regular polygon inscribed in a circle is less than

the perimeter of a circumscribed polygon of the same number of sides.

4. The perimeter of a regular polygon inscribed in a circle is less than

an inscribed polygon of twice the number of sides.

5. Any parallelogram inscribed in a circle is rectangular.

6. If a rectangle is circumscribed about a circle it must be a square.

7. What is the measure of the angle at the centre of a circle subtended

by the side of a circumscribed square ?
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Proposition III

343. t^ circle can be circumscribed about any regular

polygon, and another circle can be inscribed in it.

B.^'-' H

Let ABODE ... be any regular polygon.

It is required to prove that a circle can be circumscribed about

it, and that another circle can be inscribed in it.

Proof. First, at the mid-points H and K of two adjacent

sides, AB and BC, of the given polygon, draw the perpendicu-

lars to these sides, and let them meet at the point 0.

Then is the centre of the circle which can be made to pass

through the three vertices A, B, and C. (Art. 151.)

Since OA = OB= 00, and AB = BO, As OAB and OBO are

equal isosceles triangles, and therefore

Z OAB = Z OBA = Z OBO=Z OOB,

That is, Z OBO is one half of Z ABO.
Therefore Z OOB is one half of the equal angle BODy

or Z OOB = Z OOD.
Join OD.

Then As OBO and ODO are identically equal. (Art. 41.)

Therefore

and

OD = OB,

Z ODO=Z 0B0=\ Z ODE.
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Similarly, OE may be shown to be equal to OC, and so on

for other vertices.

Therefore the circle which passes through the vertices A, B,

and C will also pass through the remaining vertices Z>, E, etc.

Hence, a circle can be circumscribed about the given polygon.

Next, since As AOB, BOC, COD, etc., are equal isosceles tri-

angles, their altitudes OH, OK, OL, OM, and O^are all equal.

Prove.

Therefore the circle described with centre 0, and radius OH,
will pass through the points K, L, M, N, and the sides of the

polygon will be tangent to the circle, since each side is at right

angles to a radius at its extremity. (Art. 187.)

Therefore a circle can be inscribed in the given polygon.

Definitions

344. The common centre of the inscribed and circumscribed

circles of a regular polygon is called the centre of the polygon.

345. The radius of the circumscribed circle, or the line-

segment joining the centre and a vertex of a regular polygon, is

called the radius of the polygon.

346. The radius of the inscribed circle, or the perpendicular

from the centre on a side of a regular polygon, is called the

apothem of the polygon.

347. Corollary I. Aiiy radius of a regular polygon bisects

the angle at the vertex.

348. Corollary II. The angle formed by two consecutive

radii of a regular polygon equals four right angles divided by the

number of sides of the polygon.

This angle is sometimes spoken of as ^ the angle at the centre

of the polygon.'
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Proposition IV

349. Any two regular polygons of the same numher
of sides are similar.

4^'-

Let ABCDE and A'B'OD'E' be two regular polygons of the

same number of sides.

It is required to prove that they are similar.

Proof. First, the two polygons are mutually equiangular,

since in each polygon the interior angles are all equal, and the

magnitude of an interior angle of either polygon depends only

on the number of sides, which is the same in both.

Next, the homologous sides are proportional.

For AB = BC=CD = etc.,

and A'B^ = B'C = CD' = etc.

Therefore AB : A'B' = BC : B'C = CD : CD' = etc.

Therefore the two polygons are similar.

350. Corollary I. Homologous sides in two regular poly-

gons of the same number of sides are in the same ratio as the

radii of the circumscribed circles, or as the radii of the inscribed

circles; that is, as the radii of the polygons, or as the apothems of

the polygons.

Suggestion. Draw the radii and apothems and so obtain similar tri-

angles in the two polygons.
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351. Corollary II. The perimeters of two regular polygons

of the same number of sides are in the same ratio as their radiiy

or as their apothems.

Let S\ and ^'2 be the lengths of the sides in two regular polygons of n

sides, of which A\ and Ao are the apothems. Then 8]_: S^^Ai : Ai (Cor. I).

Therefore n8\ : n8i = A\ : A2, that is, the perimeters are in the same ratio

as the apothems. The same holds true for the radii.

352. Corollary III. The areas of two regular pyolygons of

the same number of sides are in the same ratio as the squares of

their radii, or as the squares of their apothems. (Art. 315.)

EXERCISES

1. Tangents to a circle at the mid-points of the arcs subtended by the

sides of a regular inscribed polygon form a regular circumscribed polygon.

The sides of the circumscribed polygon are

parallel to the sides of the inscribed polygon

(Art. 192), and the vertices of the circumscribed

lie upon the radii, produced, of the inscribed.

Suggestion. To show that the vertex P lies

on the radius OA^ show by similar triangles that

the tangent at H cuts OA in the same ratio as

does the tangent at K.

Are these two polygons similar ?

o
2. The interior angle of a regular polygon of n sides equals - (w — 2)

right angles. (Art. 118.)
'*

3. The interior angle of any regular polygon is the supplement of the

angle at the centre of the polygon ; that is, it is equal to 180°——

.

n
Show that this statement agrees with the statement of Ex. 2.

4. Prove that the side of a regular hexagon is equal to a radius of the

circumscribed circle.

5. Find in degrees the angle (1) of a regular pentagon, (2) of a regular

hexagon, (3) of a regular octagon.

6. Kegular pentagons are inscribed in two circles of five and eight feet

radius, respectively. Find the ratio of their perimeters and of their areas.
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Proposition V

353. The area of a regular polygon is equal to half

the product of its perimeter and its apothem.

Proof. If all the vertices of the polygon are joined to the

centre, the triangles so formed are all equal, and the area of

each equals half the product of a side and the apothem.

(Art. 306.)

Therefore the area of the whole polygon equals half the

product of its perimeter and its apothem.

Proposition VI

354. If the numher of sides of a regular inscribed

polygon be doubled the perimeter will be increased, but

if the nujnber of sides of a regular circumscribed poly-

gon be doubled the perimeter will be diminished.

Let ABODE be any regular polygon inscribed in a circle, and

FGHJK a regular polygon circumscribed about the same circle.

For convenience, we may let the two polygons have the

same number of sides and be so arranged that the vertices of

the inscribed coincide with the points of contact of the

circumscribed.
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It is required to prove that if the number of sides of the

inscribed polygon be doubled, say by joining the mid-points of

the arcs of the circle to the vertices, the perimeter will be

increased; but if the number of sides of the circumscribed

polygon be doubled, say by drawing tangents at the mid-points

of the arcs of the circle, the perimeter will be diminished.

Proof. Let L be the mid-point of the arc AE, and PQ be

tangent to the circle at L.

First, in A ALE, the sum of AL and LE is greater than

AE. (Art. 70.)

Therefore the perimeter of the regular polygon of which AL
andLE are two adjacent sides is greater than the perimeter of

the polygon of which AE is a side.

Next, in A FPQ, the side FQ is less than the sum of PF and

FQ.

Therefore the sum of AP, PQ, and QE is less than the sum
oiAFsiudFE.
Hence the perimeter of the regular polygon of which PQ is

one side is less than the perimeter of the given circumscribed

polygon.

Proposition VII

355. The area of a regular inscribed polygon is in-

creased, and the area of a regular circumscribed polygon

is diminished, when the number of sides is doubled.

Proof. The area of a regular polygon equals half the product

of its perimeter and its apothem. (Prop. V.)

When the number of sides of a regular inscribed polygon is

doubled, the perimeter is increased (Prop. VI), as is also the

apothem [why ?]. Hence the area is increased.

When the number of sides of a regular circumscribed polygon

is doubled, the perimeter is diminished (Prop. VI), while the

apothem remains unaltered. Hence the area is diminished.
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Section II

MEASUREMENT OF THE CIRCLE

356. In the preceding chapters, whenever we have spoken

of a length, we have had in mind a straight line distance ; it

has been in every case the measure of a line-seginent.

What is meant by the length of a curved line is not so evi-

dent, and hence it is necessary to give this expression a mean-

ing by definition,

357. If any regular polygon is inscribed in a given circle,

and the number of its sides is repeatedly

doubled (or is indefinitely increased in

any regular way), the polygon can be

made as nearly as you please to coincide

with the circle.

In other words, the circle is the limit

which the regular inscribed polygon ap-

proaches, as the number of its sides is

indefinitely increased.

The apothem of the inscribed polygon approaches the radius

of the circle as its limit.

358. Definition. The length of a circle is defined to be

the limit of the perimeter of an inscribed regular polygon, as

the number of sides of the polygon is indefinitely increased.

The fact that the perimeter of a variable inscribed regular polygon has

a limit admits of a formal proof, the essential points of which are

:

(1) the series of perimeters is constantly increasing (Prop. VI); (2) the

perimeter never exceeds a fixed finite quantity, for example, the perime-

ter of a particular circumscribed polygon.

The length of a circle is called its circumference.

When the number of sides of an inscribed regular polygon is indefi-

nitely increased, the ' circle ' is the limit of the ' polygon ' ; the ' circum-

ference of the circle ' is the limit of the ' perimeter of the polygon.'
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The length of an arc of a circle is defined in the same way
to be the limit of the sum of chords in the arc when the num-

ber of such chords is indefinitely increased in some regular

way.

359. Definition. The area of a circle is the surface en-

closed by the circle. It is equal to the limit of the area of

a regular inscribed polygon as the

number of its sides is indefinitely

increased.

360. The circumference of a circle

could just as well be defined as the

limit of the perimeter of a regular

circumscribed polygon when the num-

ber of its sides is indefinitely in-

creased, since the limit of the perim-

eter of the circumscribed polygon is the same as the limit of

the perimeter of the inscribed polygon.

This statement again admits of a formal proof, which however involves

a greater knowledge of algebra than the pupil is supposed to have at this

stage. The assertions that the circle is the limit of the regular inscribed

polygon (Art. 357), and also of the regular circumscribed polygon (Art.

360) may be taken as postulates.

The radius of the circumscribed polygon approaches the

radius of the circle as its limit, and the area of the polygon

the area of the circle as its limit.

361. Since the perimeter of the inscribed polygon continually

increases and the perimeter of the circumscribed polygon con-

tinually decreases as the number of their sides is indefinitely

increased (Prop. VI)

:

1. The circumference of a circle is greater than the perimeter

of any regular polygon inscribed in it.

2. The circumference of a circle is less than the perimeter of

any regular polygon circumscribed about it.
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Pboposition VIII

362. The ratio of the circumference of a circle to its

diameter is the same for all circles.

Let and 0' be the centres of any two circles whose circum-

ferences are denoted by C and C, their diameters by d and d\
and their radii by r and r'.

It is required to prove that

C:d = G':d'.

Proof. Inscribe in the two given circles regular polygons

ABODE and A'B'C'B'E' of the same number of sides. The
perimeters of these polygons are in the same ratio as their

radii, i.e. as the radii of the circles in which they are

inscribed. (Prop. IV, Cor. II.)

Let P and P' be the perimeters of the two polygons.

Then P:P' = r:r',

P P
or _ ——

.

Suppose now the number of sides in each polygon is doubled,

and let the perimeters of the polygons so formed be denoted

by Pi and P/.

Then ?1= El.
r r'

If this process is repeated indefinitely, the perimeter P will

approach the circumference C as its limit, and the perimeter

P' will approach the circumference O as its limit. (Art. 357.)
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(Art. 230.)Therefore
l^ Ky

7-r^-

Also
c a
2r = 2r"

c a
d d''

or

Since the two given circles are any circles whatsoever, the

ratio of the circumference to the diameter in any one circle is

equal to the ratio of the circumference to the diameter in any

other circle.

This ratio is denoted by the symbol tt (called Pi), so that for

all circles

C— = TT,

d '

or C = 7rd = 2 ttt.

363. It should be carefully noted that the symbol tt represents a fixed

and definite number, whose relation to other numbers however we have

not yet determined. The old problem of 'squaring the circle,' upon

•which so much time and labor were expended, was "to find the side

of a square whose area is equal to the area of a given circle," and this

involved finding the value of ir in terms of ordinary numbers. It was

shown in 1882, by Lindemann, a German mathematician, that ir cannot

be so expressed. "We can, however, approximate its value in ordinary

numbers, and this will be done in a subsequent proposition.

EXERCISES

1. Show that the area of an inscribed square equals 2 r^.

2. Show that the area of an inscribed regular hexagon equals Sr^—-,

,— ^

and that the distance of any side from the centre is r-^-

3. The ratio of the circumference of a circle to the perimeter of an

inscribed square is ir : 2\/2, and to the perimeter of an inscribed hexagon

is IT : 3.
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Proposition IX

364. The area of a circle is equal to one-half the

product of its circumference and radius.

Let A be the area of the given circle, r its radius, and C its

circumference.

It is required to prove that A = \Cr.

Proof. Circumscribe a regular polygon about the given circle,

and denote its perimeter by P, and its area by H.

Then since the apothem of this polygon is r,

H 1 Py.
2
^f- (Prop. V.)

If now the number of sides of the polygon be doubled, and

the perimeter of this new polygon be denoted by Pi and its

area by Hi, then again

If this process is repeated indefinitely, the ^perimeter P
approaches the circumference C as its limit, iPr approaches

i Cr as its limit, and the area H approaches the area of the

circle A as its limit. (Art. 360.)

Since the variable H always equals the variable i Pr, the

limit A equals the limit ^ Cr. (Art. 230.)

Or A = iCr.
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365. Corollary I. The area of a circle is equal to tt times

the square of its radius, or - times the square of its diameter.

For since C = 2 Trr = 7rd,

where d is the diameter of the circle.

366. Corollary II. Tlie areas of two circles are in the same

ratio as the squares of their radii, or as the squares of their

diameters.

If A is the area of a circle whose radius is r and A' is the area of a

circle whose radius is r',

and A = il^ = ^.
A' \ird'-^ d'-^

Definitions

367. Similar arcs of circles are arcs which subtend equal

angles at the centres of

the circles of which they

are parts.

Thus AB and A'B' are

similar arcs of the circles

and 0', if the angles at

the centres and 0' are equah

368. Similar segments of circles are segments which have

similar arcs.

Show that the angles inscribed in similar arcs or similar segments are

equal.
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369. Similar sectors of circles are sectors which have similar

arcs, or which have equal angles between their radii.

370. Theorem. The area of a sector of a circle bears the

same ratio to the area of the circle as the length of its arc hears to

the whole circumference.

371. Corollary I. The area of a sector of a circle equals

one-half the product of its arc and radius.

Let the arc of a sector equal a in a circle of radius r, and denote the

area of the sector by S.

Then S : irr^ = a : 2 vr,

that is S = I ar.

372. Corollary II. The arcs of similar sectors are in the

same ratio as the radii, and the areas of similar sectors are in

the same ratio as the squares of the radii.

EXERCISES

1. The area of one circle is four times that of another. Show that the

radius of the first is double that of the second.

2. The diameter of one circle is three times that of another ; compare

their circumferences and their areas.

3. A pond is fifty yards in diameter ; what is the diameter of a pond

having half the area ?

4. The arc of a sector of a circle equals the radius ; show that the area

of the sector is to the area of the circle in the ratio 1 : 2 tt.

5. If the radius of a circle is 10 inches, find the length of a side of an

inscribed equilateral triangle,

6. The area of the surface between two concentric circles is equal to

twice the area of the smaller circle. Find the ratio between their radii.

7. Through any vertex of a regular pentagon two diagonals can be

drawn. Find in degrees the angle between them.



369-375] MEASUREMENT OF THE CIRCLE 251

Section III

PROBLEMS

Proposition X
373. To inscribe a square in a given circle.

First, suppose ABCD is the required square.

Draw the diagonals AC and BD.
These are equal and bisect each other at right angles. Prove.

Hence each is a diameter.

Therefore, to inscribe a square in a circle, draw two diame-

ters at right angles and join their extremities in order.

Make the construction in this order and prove that the

resulting figure is a square.

374. Theorem. If r is the length of a radius of a given

circle, and a is the side of an inscribed square, then a = rV2.

The proof follows easily from the application of Proposition VII,

Chapter IV.

375. Corollary. All squares inscribed in the same circle

are identically equal.

EXERCISES

1, Inscribe a regular octagon (polygon of eight sides) in a given circle.

2. A square is inscribed in a circle of radius 3 inches ; find the length,

of each sid^ s-hd its distance from the centre of the circle.
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Proposition XI

• 376. To inscribe a regular hexagon in a given circle.

If ABCDEF is the required hexagon, and the centre of

the given circle, each side of the hexagon subtends at the

centre an angle equal to
J-
of four right angles, or | of one right

angle. Therefore A AOB is equilateral, and AB— OA.

Hence, to construct a regular inscribed hexagon, mark off

with the compasses arcs of the circle whose chords are each

equal to a radius, and join the points of division in order.

377. Theorem. Tlie side of a regular inscribed hexagon is

equal to a radius of the circle.

378. Theorem. If the alternate vertices of a regidar inscribed

hexagon be joined, the figure so formed is an inscribed equilateral

triangle.

379. Theorem. The side of an inscribed equilateral triangle

is equal to r V3, and its distance from the centre is ^ r.

380. Definition. The straight lines joining the pairs of

opposite vertices in a polygon of an even number of sides are

called the principal diagonals of the polygon.

EXERCISES

1. The pairs of opposite sides of a regular inscribed hexagon are

parallel.

2. Each principal diagonal of a regular inscribed hexagon is a diameter.
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Proposition XII

381. To inscribe a regular decagon in a circle.

A

Construction. Take any radius OA, and divide it at C in

extreme and mean ratio, OC being the greater segment, so that

OA:OC=OC: CA. (Art. 275.)

From A draw a chord AB equal to OC. Join OB and BC.

Proof. Since OA:AB = AB:AC, As OAB and BAC are

similar. (Art. 251.)

Therefore Z AOB = Z ABC.

And AB = BG, since A 5^0 must be isosceles.

But since AB=OC, BC= OC,

and Z COB or ^05 = Z CBO.

That is Zs ^5(7 and CBO are each equal to Z ^OB.

Therefore Z AOB = one-half Z 05^.

Now Z 0^5 = Z OBA.

Therefore Z ^OB is one-fifth of two right angles, or one-

tenth of four right angles.

Therefore AB is one side of a regular inscribed decagon.

382. Theorem. If the alternate vertices of a regular inscribed

decagon are joined, the figure so formed is a regular inscribed

pentagon.
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383. Theorem. If from any point A of a circle ttvo chords

AB and AC are drawn on the same side of A, the first a side of a

regular inscribed decagon^ and the second a side of a regular

inscribed hexagon, then the chord BC is a side of a regular

inscribed polygon of fifteen sides.

Suggestion. What fraction of four right angles does the chord AB
subtend at the centre ? AC? BG f

Proposition XIII

384. Given the radius of a circle and a side of an
inscribed regular polygon of n sides; to find the length

of a side of an inscribed regular polygon of 2n sides.

Let OA (= r) be a radius of the given circle, AB (=p) be a

side of an inscribed regular polygon of n sides, and AC (= g)

be a side of an inscribed regular polygon of 2n sides. The
problem is to find the value of q in terms of r and p.

Join OC. This line bisects AB at right angles, at K.

Then ok'= 02"- AK' (Art. 317

)

_4or^—p^

4

or OK

whence KO=r- ^'^'l-P'= ^'~^y~P' .
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Now AC' = KC +AK%

or

whence
"

g' = v 2 r^ — r V4 r^ — p\

Writing - instead of r, this formula becomes
2

^=Vf-f^^^-^'

1 V2d2_2c«V(^'-i)'.

If now we let Qgn represent the perimeter of an inscribed

regular polygon of 2n sides, while p represents the length of

one side of a regular inscribed polygon of n sides, we have

Q2„=2nq=n^2d^-2d-Vd^-p\

EXERCISES

1. Does the above formula for the value of q hold true when p = 2 r, in

which case g is a side of an inscribed square ? Compare the result with

that given on page 251.

2. Apply the formula to find the side of an inscribed regular octagon.

3. In a circle of radius r, the side of an inscribed cegular dodecagon

equals r V2 — VS.

4. In a circle of radius 3 feet, what is the length of a side of an inscribed

regular dodecagon ?

5. The area of a regular octagon inscribed in a circle is equal to the

product of the sides of the inscribed and circumscribed squares.

6. The square of the side of an inscribed equilateral triangle is equal

to the sum of the squares of the sides of the inscribed square and of the

inscribed regular hexagon.
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Proposition XIV

385. To find approximately the value of ir.

First, find the perimeter of a regular inscribed polygon of 12

sides.

In the formula of the preceding problem

let 2 n = 12, then 7i = 6, and p = r = - • (Art. 377.)

Then Qi, = 6\2d'-2dyjd'- -.

= 6 d V2 - V3

= d X 3.105828.

Next, find the perimeter of a regular inscribed polygon of 24

sides.

If 2 n = 24, n = 12, and p = ^' = d X .258819,

§24 = 12 V2 d'-2d Vd^ -{dx .258819)2

= 12 d V2 - 2 Vr^.258819)2

= dx 3.132628.

Similarly,

§48 =t^x 3.139350

Qgg =dx 3.141032

Q,^=dx 3.141452

Q^ =dx 3.141557

Q,es=dx 3.141584

§1536 = dx 3.1415904

When the number of sides of the inscribed polygon is indefi-

nitely increased, Q2n approaches the circumference C as its

limit.

But 0=dX7r. (Art. 362.)
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Hence the multipliers of d in the above computation are

approximate values of tt corresponding to inscribed polygons of

12, 24, 48, 96 • • • sides, respectively.

The value tt = 3.1415904 is correct to five decimal places.

If the number of sides of the polygon weve again doubled, a

still closer approximation v^ould be obtained.

The value of tt has been computed correctly to over seven

hundred decimal places. In practice it is customary to use

TT = 3.1416.

TT = -2y2- is an approximate value correct to two decimal places,

while TT = fff ^s correct to five decimal places.

A rough approximation to the value of ir can be obtained by rolling a

circular piece of cardboard, of say 6 inches radius, along a straight line

until it makes a complete revolution, then measuring carefully the length

of the line-segment so traced, and comparing it with the diameter of the

cardboard. A smaller error will probably be made if the cardboard is

given two or three revolutions, and the whole distance divided by the

number of revolutions.

A second method is to mark out a circle on a piece of cardboard ruled

in squares, ordinary centimetre paper, then find approximately the area of

the circle by counting the squares enclosed by it, reckoning each frac-

tional square enclosed by the circle, a half square, this being an approxi-

mate average value. Setting this area equal to wr^ gives an approximate

value for tt.

EXERCISES

In these exercises use ^^ as the value of ir.

1. The diameter of a circle is 5 feet, what is its circumference ?

2. The radius of a circle is 1 foot 8 inches, what is its circumference ?

3. A wheel is twelve feet in circumference, what is its diameter ?

4. A circular field is 1000 yards in circumference, what is its diameter

and its area ?

5. Two fields are each 1600 yards around. One is circular and the

other is square. What is the difference in their areas ?

6. From a circular piece of paper of 10 inches radius, a circular piece

is cut which has a radius of the first for its diameter. Find the area of

the remaining piece.
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MISCELLANEOUS EXERCISES

1. Divide a given circle into two arcs such that any angle inscribed in

one arc is three times an angle inscribed in the other.

Suggestion. The side of an inscribed square is the chord of the

required arcs.

2. Divide a given circle into two arcs such that any angle inscribed in

one arc is five times an angle inscribed in the other arc.

3. From a point without a circle two tangents are drawn which, with

their chord of contact, form an equilateral triangle whose side is 18 inches.

Find the diameter of the circle.

4. In a regular polygon of n sides the straight lines which join any

vertex to the non-adjacent vertices divide the angle at that vertex into

n — 2 equal parts.

5. An equilateral triangle and a regular hexagon are inscribed in a

given circle ; show that—
(1) The area of the triangle is half that of the hexagon

;

(2) The square on a side of the triangle is three times the square on a

side of the hexagon.

6. If ABODE is a regular pentagon and AC^ BE intersect at IT, show

that—
(1) CH and EH are each equal to a side of the pentagon

;

(2) J.B is a tangent to the circle circumscribed about the triangle BHG.

7. Show that the area of a regular hexagon inscribed in a circle is

three-fourths of that of the corresponding circumscribed hexagon.

8. The area of a square circumscribed about a circle is double of the

area of the inscribed square.

9. If ABGD is a square inscribed in a circle and P is any point on the

circle, show that the sum of the squares on PA, PB, PC, PD is double

the square on the diameter.

10. An equilateral triangle is inscribed in a circle, and tangents are

drawn at its vertices
;
prove that—

(1) The resulting figure is an equilateral triangle

;

(2) Its area is four times that of the given triangle.

11. What is the area of a circular ring if the radii of the outer and

inner circles are 132 and 120 feet, respectively ?

12. A carriage wheel makes 168 revolutions in going half a mile.

What is its height?
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13. The diameter of a circle is 12 feet. Find the diameter of a circle

having (1) twice its circumference, (2) twice its area.

14. A circular pond is surrounded by a gravel walk, such that the

area of the walk equals the area of the pond. What is the ratio of the

diameter of the pond to the width of the walk ?

15. A bicycle wheel is 28 inches in diameter. How many revolutions

will it make in going 3 miles ?

16. Three circles are concentric and are such that the area of the first

equals the area between the first and the second, and also between the

second and third. The radius of the smallest is 10 inches. What are the

radii of the other two ?

17. A circle is inscribed in a given square. What fraction of the area

of the square lies outside of the circle ? Is the fraction changed by

enlarging the square and the inscribed circle ?

18. A square is inscribed in a given circle. What fraction of the area

of the circle lies outside of the square ?

19. Show that the altitude of an equilateral triangle is to the radius of

the circumscribed circle in the ratio of 3 to 2.

20. Prove that the area of a circular ring is equal to the area of a

circle whose diameter equals a chord of the outer boundary which is

tangent to the inner.

21. Prove that any equilateral polygon circumscribing a circle is

regular.

22. Each side of an inscribed equilateral triangle is parallel to the tan-

gent at the opposite vertex.

23. Describe a circle whose area is equal to the sum of the areas of two

given circles.

24. Describe a circle whose circumference is equal to the sum of the

circumferences of two given circles.

26. Prove that the radius of an inscribed regular polygon is a mean
proportional between its apothem and the radius of a similar circum-

scribed polygon.

26. If squares are described outwardly on the sides of a regular hexa-

gon, prove that the outer vertices of the squares are the vertices of a

regular dodecagon.

27. Find in degrees the angle at the centre of a circle of radius 2 feet,

which is subtended by an arc whose length is 18 inches.
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SUMMARY OF CHAPTER V
1. Definitions.

(1) Regular Polygon— one which is both equilateral and equian-

gular. § 335.

(2) Centre of a Regular Polygon— the common centre of the in-

scribed and circumscribed circles. § 344.

(3) Radius of a Regular Polygon— the radius of the circumscribed

circle, i.e. the line from the centre to a vertex. § 345.

(4) Apothem of a Regular Polygo7i — the radius of the inscribed

circle, i.e. the perpendicular from the centre on a side, § 346.

(5) Circumference of a Circle — the limit of the perimeter of a

regular inscribed polygon as the number of its sides is in-

definitely increased. § 358.

Or, the limit of the perimeter of a regular circumscribed polygon

as the number of its sides is indefinitely increased. § 360.

(6) Length of an Arc of a Circle— the limit of the sum of chords in

the arc as the number of such chords is indefinitely increased.

§358.

(7) Area of a Circle— the surface enclosed by the circle, equal to

the limit of the area of a regular inscribed polygon as the

number of its sides is indefinitely increased. § 359.

(8) Similar Arcs of Circles— arcs which subtend equal angles at the

centres of the circles. § 367.

(9) Similar Segments — those which have similar arcs. § 368.

(10) Similar Sectors — those which have similar arcs. § 369.

(11) Principal Diagonals of a Polygon — the diagonals joining pairs

of opposite vertices in a polygon of an even number of sides.

§380.
(12) Pentagon., Hexagon, Octagon, Decagon, Dodecagon. See § 336.

2. Postulates.

(1) A circle may be divided into any given number of equal parts.

(Postulate 8.) § 337.

3. Problems.

(1) To inscribe a square in a given circle. § 373.

(2) To inscribe a regular hexagon in a given circle. § 376.

(3) To inscribe an equilateral triangle in a given circle. § 378.

(4) To inscribe a regular decagon in a given circle. § 381.

(5) To inscribe a regular pentagon in a given circle. § 382.
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(6) To inscribe a regular polygon of fifteen sides in a given circle.

§383.

(7) To find the length of a side of an inscribed regular polygon of 2 w

sides, having given the length of the side of the inscribed poly-

gon of 71 sides. § 384.

(8) To find approximately the ratio of the circumference to the

diameter of a circle, i.e. the value of ir. § 386.

The last two are numerical rather than geometrical problems.

4. Theorems on Inscribed and Circumscribed Regular Polygons.

(1) If a circle is divided into any number of equal arcs, (1) the

chords joining the points of division taken in order form a

regular inscribed polygon, (2) the tangents to the circle at

the points of division taken in order form a regular circum-

scribed polygon. § 339.

(2) An equilateral polygon inscribed in a circle is also equiangular,

and hence regular. § 342.

(3) A circle can be circumscribed about any regular polygon, and

another circle can be inscribed in it. § 343.

(4) If the number of sides of a regular inscribed polygon be doubled,

the perimeter will be increased, but if the number of sides of a

regular circumscribed polygon be doubled, the perimeter will

be diminished. § 354.

(5) The area of a regular inscribed polygon is increased, and the area

of a regular circumscribed polygon is diminished, when the

number of sides is doubled. § 355.

(6) The side of an inscribed square is equal to r-\/2. § 374.

(7) All squares inscribed in the same circle are identically equal.

§ 375.

(8) The side of a regular inscribed hexagon is equal to a radius of

the circle. § 377.

(9) The side of an inscribed equilateral triangle is equal to r\/3,

and its distance from the centre is ^ r. § 379.

5. Theorems on the Properties of Regular Polygons.

(1) Any radius of a regular polygon bisects the angle at the vertex.

§ 347.

(2) The angle formed by two consecutive radii of a regular polygon

equals four right angles divided by the number of sides of the

polygon. § 348.

(3) Any two regular polygons of the same number of sides are

similar. § 349.
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(4) Homologous sides in two regular polygons of the same number-

of sides are in the same ratio as tlie radii of the circumscribed

circles, or as the radii of the inscribed circles ; that is, as the

radii of the polygons or as the apothems of the polygons. § 350.

(5) The perimeters of two regular polygons of the same number of

sides are in the same ratio as their radii, or as their apothems.

§351.

(6) The areas of two regular polygons of the same number of sides

are in the same ratio as the squares of their radii, or as the

squares of their apothems. § 352.

(7) The area of a regular polygon is equal to half the product of its

perimeter and its apothem. § 353.

6. Theorems on the Circumferences and Areas of Circles.

(1) The circumference of a circle is greater than the perimeter of any

regular inscribed polygon, and less than the perimeter of any

regular circumscribed polygon. § 361.

(2) The ratio of the circumference of a circle to its diameter is the

same for all circles. C = ird = 2 tv. § 362.

(3) The area of a circle is equal to one-half the product of its circum-

ference and radius. § 364. A = ^Cr = irr^ = l tcP. § 365.

(4) The areas of two circles are in the same ratio as the squares of

their radii, or as the squares of their diameters. § 366.

7. Theorems on Sectors of a Circle.

(1) The area of a sector of a circle bears the same ratio to the area

of the circle as the length of its arc bears to the whole circum-

ference. § 370.

(2) The area of a sector of a circle equals one-half the product of its

arc and radius. S=lar. §371.

(3) The arcs of similar sectors are in the same ratio as the radii,

and the areas of similar sectors are in the same ratio as the

squares of the radii. § 372.



PART II— SOLID GEOMETRY

aXKc

CHAPTER VI

LINES AND PLANES IN SPACE

Section I

INTEESECTING PLANES—PAKALLELS AND PERPENDICULARS

386. We come now to the study of geometrical figures whose

points and lines do not all lie in the same plane. Such a figure

is called a solid figure, or a figure of three dimensions.

A solid figure is spread out or extended in three ways.

A plane figure is two-dimensional since it is spread out in but

two ways.

A straight line is one-dimensional since it has only length.

387. It should be remembered that in geometry we are con-

cerned only with forms and relations, not at all with matter

;

and so it is necessary to distinguish between a three-dimensional

figure, or a so-called solid figure, and a physically solid body.

A solid figure is a combination of points, lines, and surfaces.

It contains no matter.

Since in Solid Geometry the diagrams are intended to represent figures

which do not lie wholly in one plane, they are drawn as we say in per-

spective, to give an idea of how the figure would look at a distance.

Straight lines and planes are supposed to extend indefinitely in any of

their directions, though they must be represented in a diagram by limited

portions of a line or a plane. For the most part lines are dotted when
they are supposed to be seen through a surface which forms a part of the

figure.

263
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388. When we said (p. 3) that two points determine a

straight line, we meant that through two points there can pass

one straight line, and only one.

In just the same way, three points which do not lie on the

same straight line determine a plane, and the possibility of

constructing this plane is assumed.

Postulate 9. Through three points not in the same straight

line there can he passed one and only one plane.

If then we name three points in any plane, not lying in the

same straight line, they will be sufficient to distinguish this

plane from every other.

Through two points (or, through the straight line joining two

points), any number of planes can be passed.

It follows immediately that

A straight line and a point not lying on it determine a plane.

If two points are chosen on the given line, these two and the

given point determine the plane. Does the given line lie

wholly in that plane ? (See definition of a plane, p. 4.)

Two intersecting straight lines determine a plane.

The point of intersection and one other point on each line

determine the plane. Do each of the given lines lie in that

plane ?

Two parallel straight lines determiyie a plane.

For, two parallel straight lines lie in one plane by definition

(Art. 85), and this must be the plane determined by one of

them and a point of the other.

389. Two straight lines which intersect have in common a

single point. A straight line and a curved line, or two curved

lines, may have in common more than one point.

A straight line and a surface intersect in one or more points.

If the surface is plane a straight line can intersect it in but

one point.

Two surfaces intersect in one or more lines. These contain

all points common to the two surfaces.
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Proposition I

390. The intersection of two planes is a straight line.

p

Let HKL and PQR be any two intersecting planes.

It is required to prove that their intersection is a straight

line, or in other words, that the locus of points common to the

two planes is a straight line.

Proof. First, let A and B be any two points common to the

planes HKL and PQB.
From the delinition of a plane every point of the straight

line AB lies in the plane HKL. (Art. 7.)

For the same reason, every point of the straight line AB lies

in the plane PQR.
Therefore the straight line AB is common to the two planes.

Next, no point outside of AB can be common to the two

planes, for then the two planes would coincide. (Art. 388.)

Therefore the intersection of the planes HKL and PQR is a

straight line.

When no confusion is likely to arise a plane may be denoted by a single

letter, as H, or P, in the above diagram.
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A'' G

391. Theorem. If two planes have one point in common
they must have a second point, and hence a straight line, in

common.

Let the planes M and iV

have the point A in common.

To prove that they must

have a second point in

common.

In the plane iV choose two

points B and C on the same

side of the plane M. Join

BA and produce to F, so that

B and i^are on opposite sides

of M. Then C and F are also on opposite sides of 3f, and the

straight line CF must penetrate the plane M at some point G
different from A. . But since CF lies wholly in the plane N, the

point G is common to the two planes.

By the preceding theorem the straight line AG is common
to the two planes and is the locus of their common points.

N

Definitions

392. If a straight line and a given plane do not meet, how-

ever far they are extended, they are said to be parallel.

A straight line not lying in a given plane, and not parallel to

it, intersects the plane at one point. For convenience, this point

is sometimes called the foot of the line.

393. A straight line is perpendicular to a given plane when,

and only when, it is perpendicular to every straight line in the

plane, drawn through their point of intersection. In that case

the plane is also said to be perpendicular to the line.

A straight line neither parallel nor perpendicular to a given

plane is said to be oblique to it.

Two planes are parallel when they do not meet, however far

they may be extended.
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Proposition II

394. If three planes intersect, two and two, their three

lines of intersection are either concurrent, or are parallel

two and two.

-^O

Let L, M, and N be the three given planes, and let a be the

intersection of L and M,h the intersection of L and N, and c

the intersection of M and N.

It is required to prove that the straight lines a, b, and c all

pass through one point, or are parallel, two and two.

Proof. First, suppose the lines a and b, which both lie in

the plane L, to intersect at a point 0. Then because is a

point of a it lies on the plane M, and because it is a point of b

it lies on the plane N.

Therefore, is a point of c, the intersection of M and N.

That is, a, b, and c all pass through one point.

Next, suppose a and b are parallel.

Then, if a and c are not parallel, they must intersect, since

they both lie in the plane M; and it may be shown just as

before that their common point lies upon 6, which is impossi-

ble since a and b are parallel.

Therefore a and c must be parallel.

Similarly, b and c must be parallel.
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Proposition III

395. The two planes determined hy two given parallel

lines and a point not lying in their plane intersect in a
line parallel to each of the given lines.

Let a and h be the given parallel lines lying in the plane Z,

and let C be the given point.

Also, letM be the plane determined by C and a, N the plane

determined by C and 6, and letM and N intersect in the line c.

It is required to prove that c is parallel to both a and h.

Proof. The planes X, M, and N intersect, two and two, in

the straight lines a, b, and c.

These lines must therefore be concurrent, or be parallel two

and two. (Prop. II.)

They cannot be concurrent, since a and b are parallel, by

hypothesis.

Therefore c must be parallel to both a and b.

396. Corollary. Tico straight lines each parallel to a third

line, are parallel to each other.
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Proposition IV

397. If a straight line is perpendicular to each of

two given straight lines at their point of intersection, it

is perpendicular to the plane of those lines.

Let the straight line ^0 be perpendicular to both the

straight lines BO and CO at their common point 0, and let

M be the plane determined by BO and CO.

It is required to prove that -40 is perpendicular to the

plane M.

Proof. Suppose OE is any other straight line drawn in the

plane M, through the point O. Then if AO is perpendicular to

OE, it is perpendicular to the plane M. (Art. 393.)

Draw a straight line in the plane M cutting BO and CO at

B and C, and the line OE at E.

Join AB, AE, AC.
Produce ^0 to Z>, making OD equal to OA.

Join DB, DE, DC.
Since OB is a perpendicular bisector of the line-segment AD,

BA equals BD. (Art. 72.)

Similarly CA equals CD, and hence, A s ABC and DBC are

identically equal. (Art. 53.)

If these two triangles were superposed, DE would coincide

with AEf and is therefore equal to AE.



270 ELEMENTARY GEOMETRY [Chap. VI

Since E and are each equidistant from A Siud D, EO must

be a perpendicular bisector of AD. (Art. 72.)

Therefore Z AOE is a right angle, and consequently ^0 is

perpendicular to the plane M.

398. Corollary I. At any point of a straight line 07ie

plane can be constructed perperidicular to that line, and only one.

First, two perpendiculars, OB and 00,
drawn to the given line AD at the given

point 0, and the plane of these is perpen-

dicular to the given line (Prop. IV).

Next, if any plane Other than the plane

BOG can be constructed perpendicular to

AD at 0, say the plane BOG', it must cut

the line AG in a point G' different from C,

and the line OG' must then be perpendicu-

lar to AO, which is impossible, since OG
lies in the same plane as OG' and is perpen-

dicular to AD at 0.

in different planes, can be

399. Corollary II. Tlirough a given j)oint not on a given

straight line, one plane and only one can be constructed perpen-

dicular to the given line.

Let P be the given point and a the given straight line. In the plane Pa
draw PA perpendicular to a, and from A draw another line AQ perpen-

dicular to a. The plane of AP and AQ passes through P and is per-

pendicular to a (Prop. IV). No other plane can pass through P and be

perpendicular to a, for such a plane must either intersect a at J. and not

contain AQ, or else it must intersect a at a point different from A, both

of which suppositions are impossible. Show why ?

400. Corollary III. Two intersecting planes cannot both be

perpendicular to the same straight line.

401. Corollary IV. All the straight lines perpendicidar to

a given line at a given point lie in one plane perpendicular to the

given line.
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Let OB and OC be two lines perpendicular to the straight line AD
at 0. Their plane is perpendicular to AD at 0.

Let OE be any other straight line perpendicular

to AD at 0, and suppose, if possible, that it

does not lie in the plane BOG. Then the plane

BOO will cut the plane AOE in a straight line

OE' different from OE. Since OE' lies in the

plane BOC, ZAOE' is a right angle. But this

is impossible since ZAOE is a right angle.

Therefore OE cannot lie out of the plane BOC.

402. Corollary V. If a plane bisects a given line-segment

perpendicularly, every point of the plane is equidistant from
the extremities of the line-segment.

And conversely : Every poi^it ivhich is equidistant from
two fixed points lies in the plane bisecting perpendicularly the

line Joining them.

EXERCISES

1. Through four points not lying in the same plane, how many planes

can be passed, each containing three of the points? In how many of

these planes would any one of the given points lie ?

2. Through five points, no four of which lie in the same plane, how
many planes can be passed, each containing three of the points ?

3. Show how to draw through a given point a straight line which will

intersect two given lines not lying in the same plane. Can more than one

such line be drawn ?

Definition. Two straight lines so situated that no plane can contain

them both are said to be skew or gauche to each other.

Hold two pencils so that they are gauche to each other.

4. Find the locus of points in a plane which are equidistant from two

given points not lying in the plane.

5. Find a point in a plane equidistant from three given 'points not lying

in that plane.

6. A three-legged table will always stand firmly on a level floor, while

a four-legged table will not. How do you account for this ?
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Proposition V

403. At a given point in a given plane to erect a
perpendicular to the plane.

Let L be the given plane and the given point in it.

It is required to draw through a straight line perpen-

dicular to the plane L.

Construction. Through draw any two straight lines OA
and OB in the plane L. At construct a plane M perpendicu-

lar to OA^ and a plane N perpendicular to OB. (Art. 398.)

These two planes, M and N, will intersect in a straight line

OP which is perpendicular to L.

Proof. Since OP lies in the plane M and passes through 0,

it is perpendicular to OA. (Art. 393.)

And since it lies in the plane N, it is perpendicular to OB.
Therefore OP is perpendicular to the plane L. (Prop. IV.)

404. Theorem. At a point in a plane, hut one straight line

can he drawn perpendicular to the plane.

If there were a second straight

line OQ perpendicular to the plane

X, the plane of OP and 0^ would

intersect Z in a straight line OR^
to which OP and OQ are both per-

pendicular. But this is impossible.

.^'R
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Proposition VI

405. Two straight lines perpendicular to the same
plane are parallel.

a h

A-^--":

Let a and h be straight lines perpendicular to the plane

Lj at the points A and B, respectively.

It is required to prove that a and h are parallel.

Proof. First, to show that a and h are in the same plane.

Join AB, and in the plane L draw BQ perpendicular to AB.

In a choose any point P, and make BQ equal to AP.

Join PB, PQ, and AQ.
A PAB is identically equal to A QBA. Why ?

Therefore BP=AQ.
Also, A PBQ is identically equal to A QAP. Why ?

Therefore Z.PBQ is a right angle.

Hence b, BP, and BA must lie in one plane. (Art. 401.)

But since a meets both BP and BA, it also must lie in that

plane.

Next, the interior angles which a and b make with the

transversal AB are both right angles.

Therefore a and b are parallel. (Art. 90.)

406. Corollary I. Iffrom the foot of a given perpendicular

to a plane, a straight line is drawn at right angles to any line

in the plane, any line through their intersection, ivhich meets the

given perpendicular, is at right angles to the line of the plane.

That is, BP drawn to meet a is perpendicular to BQ.
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407. Corollary II. If one of two parallel lines is per-

pendicular to a plane, the other is also.

For, if not, at its point of intersection with the plane erect

a perpendicular. This lies in a plane with the first perpen-
dicular and is parallel to it.

Proposition VII

408. From a given point without a given plane to

draw a perpendicular to the plane.

Let L be the given plane, and P the given point without it.

It is required to draw from P a straight line perpendicular

to the plane L.

Construction. In L take any straight line a, and through

P construct the plane M perpendicular to a. (Art. 399.)

This plane will intersect L along some line AE.
From P in the plane M draw PB perpendicular to AE.
PB is the required line.

Proof. From B in the plane L draw the straight line h

parallel to a.

Then h is perpendicular to the plane M (Art. 407), and

hence perpendicular to PB which lies in M.

But PB was drawn perpendicular to AE.
Therefore PB, being perpendicular to both AE and h, is

perpendicular to their plane, namely, the plane L.
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409. Theorem. From a point without a plane only one

perpendicular to the plane can he drawn.

For if there are two perpendicu-

lars from P, their plane will intersect

the given plane in a straight line per-

pendicular to them both, which is

impossible.

410. Corollary. Ofall straight

lines which can he drawn from a

point to a plane, the perpendicular is the shortest.

411. Definition. The distance from a point to a plane is

the length of the perpendicular from the point to the plane.

EXERCISES

1. AB and CD are two straight lines of which AB lies in a plane

perpendicular to CD. Prove that the perpendiculars to AB from the

different points of CD all pass through one point.

Suggestion. Compare this exercise with the theorem stated in Article

406. What is the relation between them ?

2. If D is any point on the straight line drawn through the ortho-

centre of a triangle ABC, perpendicular to the plane of the triangle, then

DA is at right angles to the straight line drawn through A parallel

to BC.

3. Find the locus of points in space equidistant from the points of a

circle.

4. Equal oblique lines drawn from a point to a plane make equal

angles with the perpendicular from the point, and meet the plane at

equal distances from the foot of the perpendicular. Of two unequal

lines so drawn, which makes the greater angle with the perpendicular ?

5. If two straight lines are each parallel to a third line, they are

parallel to each other. Prove. (See Article 396.)

Suggestion, A plane perpendicular to the third line is perpendicular

to each of the others.

6. If two straight lines are not in the same plane, no two straight lines

joining points of the one to points of the other can be parallel.
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Proposition VIII

412. Two planes perpendicular to the same straight

line are parallel.

'M

7

7

Let L and M be two planes, each perpendicular to the

straight line a, at the points P and Q, respectively.

It is required to prove that these planes are parallel.

Proof. If L and M are not parallel they must intersect

in some straight line. Let E be any point of their inter-

section.

Then through E there would pass two planes perpendicular

to a, which is impossible. (Art. 399.)

Therefore L and M are parallel.

EXERCISES

1. If two planes are perpendicular to the same straight line, any plane

containing that line intersects them in parallel lines.

2. Find the locus of points equidistant from two given parallel planes.

3. Prove that through a given point outside a given plane, any required

number of straight lines can be drawn parallel to the given plane.
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Proposition IX

413. If two straight lines are parallel, any plane con-
taining one of them, and not the other, is parallel to

the other.

N

Let a and 6 be two parallel straight lines, and let the plane

M contain the line 6, but not a.

It is required to prove that the plane M is parallel to the

line a.

Proof. Since a and h are parallel, they lie in one plane by-

definition, say the plane N.

All the points common to M and N lie on the straight

line h. (Prop. I.)

Therefore, if a intersects M at any point, it must be at some
point of h.

But a is parallel to h, by hypothesis, and therefore, can have

no point in common with 6, or with the plane M. ThereforeM
is parallel to a.

414. Corollary I. Through either of two given straight

lines not lying in the same plane, one plane can be passed parallel

to the other line. a

If a and b are the given straight

lines, from any point P of 6 draw
PQ parallel to a. Then the plane

of b and PQ is parallel to a, and
passes through b.

Can more than one plane be so

passed through b ?
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415. Corollary II. Through a given point, a plane can he

passed parallel to any tivo given straight lines in space.

Suggestion. Through the given point draw straight lines parallel to

the given straight lines.
'

Proposition X

416. If a straight line is parallel to a given plane, it

is parallel to the intersection of any plane through it,

with tJie given plane.

The proof is left to the student with the following queries

:

(1) Are the two straight lines under consideration in the

same plane ?

(2) Will they meet if produced ?

417. Corollary. If a straight line is parallel to a given

plane, a line drawn from any point m the plane parallel to the

given line lies in the given plane.

Suggestion. The chosen point and the given line determine a plane.

EXERCISES

1. If from any point perpendiculars are dravsrn to two parallel planes,

these perpendiculars must coincide,

2. Prove that if one of two parallel planes is perpendicular to a given

straight line, the other must be.

3. Prove that if through each of two parallel straight lines, a plane is

passed, these two planes will intersect, if at all, in a straight line parallel

to both the given lines.

4. If a and 6 are two straight lines which do not lie in the same plane,

and c and d^ two straight lines meeting them, prove that either c and d

intersect on a, or on &, or else have no common plane.

5. If two straight lines are parallel, any straight line joinhig a point in

one of them to a point in the other lies in the plane determined by the

two parallel lines.
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Proposition XI

418. If two intersecting straight lines are each parallel

to a given plane, the plane determined by these lines is

also parallel to the given plane.

A^7
/'k /

Let a and h be two straight lines, intersecting at P, which

are each parallel to the plane L.

It is required to prove that the plane M, determined by a and

h, is also parallel to L.

Proof. From P draw a perpendicular to the plane L, meeting

it at Q. (Prop. VII.)

From Q draw a' and 6' parallel to a and h, respectively.

These will lie in the plane L (Prop. X, Cor.) and hence be

perpendicular to PQ.
The straight lines a and h, being parallel to a' and 6' re-

spectively, are also perpendicular to PQ. (Art. 97.)

Hence the plane M is perpendicular to PQ. (Prop. IV.)

But PQ was drawn perpendicular to L.

Therefore the planes L and M are parallel to each other.

(Prop. VIII.)

EXERCISES

1. If three straight lines intersect at one point, and all meet a fourth

straight line not through that point, the first three must lie in one plane.

2. If three straight lines are such that each intersects the other two,

they must all lie in one plane, or must all pass through one point.
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Proposition XII

419. Two parallel planes are intersected hy any third

plane in parallel lines.

Let L and Jf be any two parallel planes, and let JVbe a third

plane intersecting L in the straight line AB, and M in the

straight line PQ.

It is required to prove that AB and PQ are parallel.

Proof. First, AB and PQ lie in the same plane N.

Next, AB and PQ cannot meet since the planes L and M
have no point in common however far they are extended.

Therefore AB and PQ are parallel.

420. Corollary I. Parallel line-segments terminated hy

parallel planes are equal.

Pass a plane through the two parallel line-segraents. The two

given line-segments and the intersections of this plane with

the parallel planes form a parallelogram.
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421. Corollary II. Two parallel planes are everywhere

equidistant.

422. Corollary III. A straight line perpendicular to one

of two parallel ])lanes is also perpendicular to the other.

Pass two planes through the given line and study their inter-

sections with the given planes.

423. Corollary IV. Tlirough any point one plane can he

passed parallel to a given plane, and only one.

Let P be the given point and L the given

plane.

From P draw PQ perpendicular to L.

At P construct a plane M perpendicular

to PQ.
Then Jf is parallel to L. (Prop. VIII.)

If there is a second plane through P
parallel to L, PQ must also be perpen-

dicular to it (Cor. Ill) . This is impossible.

(Art. 400.)

EXERCISES

1. Three planes in general intersect at one point. Can three planes

have a straight line in common without coinciding ?

2. There is one rectilinear figure which is necessarily plane. What
is it?

3. Four planes are such that no three of them pass through the same

straight line and no four of them contain the same point. In how many

straight lines do they intersect, two and two ? In how many points do

they intersect, three and three ? How many lines of intersection through

each point ? How many points of intersection on each line ?

4. A and B are two points on the same side of a plane, P a point in

the plane. Determine P so that the sum of the line-segments AP and

PB shall be the least possible.

5. If four planes are given, and the common line of the first two inter-

sects the common line of the last two, the four planes meet in one point.

/ ' /

/ '' /
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Proposition XIII

424. If two intersecting straight lines lying in one

plane are parallel, respectively, to two intersecting

straight lines lying in another plane, the two planes

must be parallel, and the angles formed hy the lines

are equal.

Let the straight lines AB and AC, lying in the plane L, be

parallel, respectively, to the straight lines A'B' and AO, lying

in the plane Jf, and let them extend in the same way from the

vertex.

It is required to prove that the planes L and M are parallel,

and that the angle BAG equals the angle B'A'C

Proof. First, the lines AB and AC are both parallel to the

plane M. (Prop. IX.)

Therefore the plane L is parallel to the plane M. (Prop. XI.)

Next, from AB and A'B' cufc oft' equal segments AD and A'D'.

Also from AC and A'C cut off equal segments AE and A'E'.

Join AA', DD', EE', also DE and D'E'.

AA'D'D is a parallelogram. Why ?

Therefore DD' is equal and parallel to AA\
AA'E'E is also a parallelogram. Why ?

Therefore EE' is equal and parallel to AA'.

Hence EE' is equal and parallel to DD'. (Art. 396.)

Therefore EE'D'D is a parallelogram, and ED is equal to

E'D'.

ThereioTe A DAE is identically equal to AD'A'E' (Art. 53),

and Z DAE is equal to Z D'A'E'.
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Proposition XIV

425. If two straight lines are eut by three parallel

planes, the corresponding segments are proportional.

Let AB and CD be two straight lines which are intersected

by the parallel planes L, M, N, in the points A, E, B and

C, F, D, respectively.

It is required to prove that AE : EB = CF : FD.

Proof. Draw the straight line AD cutting the plane M at

the point K.

Join EK 2ind KF, also AC and BD.
Now, the plane BAD must intersect M and N in parallel

lines. (Prop. XII.)

Therefore EK is parallel to BD.

Hence AE:EB = AK: KD. (Art. 242.)

Similarly, AK : KD = CF : FD.

Therefore AE:EB = CF: FD.

EXERCISES

1. If n parallel planes intercept equal segments on one straight line,

they will intercept equal segments on any other straight line.
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Section II

DIHEDRAL ANGLES

426. When two planes intersect they are said to form a

dihedral angle.

The line of intersection of the planes is called the edge of

the dihedral angle, and the planes are the boundaries or faces

of the angle.

By rotating one of the planes about their line of intersection,

the other being held stationary, the dihedral angle is increased

or diminished, according as the

plane is rotated in the one way,

or in the other.

A dihedral angle may be desig-

nated by mentioning two points in

its edge and one other point in

each boundary.

Thus the dihedral angle in the diagram may be designated

by P-AB-Q.
When no confusion can arise it will be sufficient in speaking

of a dihedral angle to name its edge.

427. Two planes which extend both ways from their line

of intersection form, in all,

four dihedral angles having

the same edge, those being

adjacent angles which have

one boundary in common,

and those being vertical

angles in which the boun-

daries of one are the ex-

tensions of the boundaries

of the other.

Thus in the diagram

P-AB-Q and P-AB-R
are adjacent angles, P-AB-Q and R-AB-S are vertical angles.



426-431] LI^ES AND PLANES IN SPACE 285

428. Two dihedral angles are equal when their boundaries

can be made to coincide.

429. Definition. If one plane meets another so as to make
the adjacent dihedral angles equal, the first plane is said to be

perpendicular to the second, and the angles so formed are called

right dihedral angles.

430. If we choose a point in the edge of a dihedral angle,

and from it draw two straight lines at random, one in each

boundary of the dihedral angle, the plane angle formed by

these lines may have any magnitude from zero to two right

angles, the dihedral angle remaining unaltered.

How must the two lines be drawn in ^.
order that the angle between them shall y^^^m.
be (1) zero ? (2) two right angles ? j^^^^^^W^

Definition. If from any point y[y__ /^/^ _^

of the edge of a dihedral angle, two ^^-

—

/

/

—^^^^
straight lines are drawn perpen- \/X ^^m
dicular to that edge, one in each ^\/ ^ %^
boundary of the angle, the plane ^
angle formed by these lines is called the inclination of the

planes forming the dihedral angle; or it is called the plane

angle of the dihedral angle.

Thus in the diagram Z PQR is the inclination of the planes

P and i?, if PQ and J?Q are both perpendicular to the edge AB.

431. That the inclination of the planes is the same no

matter from what point of the edge the perpendiculars are

drawn follows from Proposition XIII. For since QP and Q'P
lie in the same plane and are both perpendicular to AB^ they

are parallel (Art. 91). Similarly QP and Q'P' are parallel.

Therefore /.PQR equals ZP'Q'P' wherever on the edge Q
may be chosen.

In other words.

All plane angles of the same dihedral angle are equal.
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432. From the definition of the plane angle of a dihedral

angle it follows that,

The lines of intersection with the boundaries of a dihedral

angle, of any plane perpendicular to the edge of thai angle, form
the plane angle of the dihedral angle.

Proposition XV
433. Two dihedral angles are equal if their -plane

angles are equal.

Let P-AB-Q and P'-A'B'-Q' be two dihedral angles whose

plane angles, JfOiV and M'O'N', are equal.

It is required to prove that the dihedral angles are equal.

Proof. Place the one figure upon the other so that Z M'O'N'
coincides with its equal Z MON.
The edge AB' must then coincide with the edge AB, since

both are perpendicular to the plane MON at the point 0.

(Art. 404.)

The plane P' must coincide with the plane P, since two

lines determining F, viz.', A'B' and O'M', coincide with two

lines determining P, viz., AB and OM.
Similarly the plane Q' must coincide with the plane Q.

Therefore the tw^o dihedral angles, having been made to coin-

cide, are equal.
EXERCISE

1. State and prove the converse of the above theorem.
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Proposition XVI

434. Two dihedral angles are in the same ratio as

their plane angles.

Outline of proof.

Case I. When the plane angles are commensurable.

1. Choose a common measure for the plane angles, and

divide them both into equal parts. The numbers of parts will

give the ratio of the plane angles.

2. Through the edges of the two dihedral angles and the

lines of division of the plane angles pass planes. These will

divide the dihedral angles into equal parts, the same in number

as the equal parts of the plane angles.

3. The ratio of the dihedral angles will be given by the

numbers of parts into which they are divided. This ratio will

be the same as the ratio of the plane angles.

Case II. When the plane angles are incommensurable.

1. Choose a measure of one of the plane angles ; with it as

unit divide that angle into equal parts and apply the unit as

often as possible to the other plane angle.

2. Proceed with the proof as in Case II, Prop. X, Chap.

Ill, applying the Principle of Limits. Give the full demon-

stration.

435. Note. Since dihedral angles are in the same ratio as

their plane angles, the measure of the plane angle gives the

measure of the dihedral angle. Or we may say that to measure

a dihedral angle, we measure its plane angle. Thus we have

a dihedral angle of 90°, or 30°, or 10°, when its plane angle is

90°, or 30°, or 10°.

A right dihedral angle has its plane angle equal to a right

angle; and two planes are thus perpendicular to each other,

when the plane angle of any one of the dihedral angles formed

by them, is a right angle.
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Proposition XVII

436. If a straight line is perpendicular to a given

plane, every plane containing that line is perpendicular

to tJie given plane.

Let AB be a straight line perpendicular to the given plane

L, at the point A, and let M be any plane containing AB.

It is required to prove that the plane M is perpendicular to

the plane L.

Proof. From A draw the straight line ^C in the plane L,

perpendicular to AE, the intersection of L and M.

Z BAG is the plane angle of the dihedral angle formed by

L and M. Why ?

ZBAC is a right angle. Why ?

Therefore the planeM i^ perpendicular to the plane L.

437. Corollary I. If a plane is perpendicular to any

straight line of another plane, it is perpendicular to that other

plane.

438. Corollary II. Any plane perpendicular to the edge

of a dihedral angle is perpendicular to each of its faces.

EXERCISES

1. Through a given straight line pass a plane perpendicular to a given

plane.
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Proposition XVIII

439. If two plaiies are perpendicular to each other, a
straight line drawn in one of them, perpendicular to

tl%eir intersection, is perpendicular to the other.

Let L and M be two planes perpendicular to each other, and

let PQ be drawn in the plane L perpendicular to their inter-

section AB.

It is required to prove that PQ is perpendicular to the plane M.

Proof. From P drawPR in the planeM perpendicular to PB.

Z PPQ is the plane angle of the dihedral angle formed

by the planes L and M, and is therefore a right angle by

hypothesis.

Since PQ is at right angles to both PB and PP it is perpen-

dicular to the plane M. (Prop. IV.)

440. Corollary I. If two planes are perpendicular to each

other, a straight line drawn from any point of their intersection,

perpendicular to one plane, must lie in the other.

For if the line PQ is drawn in L perpendicular to the inter-

section of L and M^ it is perpendicular to 31. Hence no

other line drawn from P can be perpendicular to 31 (Art. 404)

.

That is, the perpendicular to iHf, drawn from P, must lie

in L.

u
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441. Corollary II. Every plane through a point, perpen-

dicular to a given plane, contains the line from the point, perpen-

dicular to the giuen plane.

442. Corollary III. If tivo planes are perpendicular to each

other, a straight line drawn from any p)oint in one of them, per-

pe7idicular to the other, must lie in the first plane.

For the line QP, drawn from Q perpendicular to the intersec-

tion of L and M, lies in L, and is perpendicular to M.
Hence, no other line drawn from Q can be perpendicular

to M. (Art. 409.)

That is, the perpendicular to Jf, drawn from any point of X,

must lie in L.

443. Corollary IV. If two intersecting planes are each

perpendicular to a third plane, their intersection is also perpen-

dicular to that plane.

If M and JSf are each perpendicu-

lar to i, and is the point in which

L intersects the common line of M
and N, the perpendicular to L drawn

from O must lie in both M and N
(Cor. I). Hence it must be their

intersection. That is, the intersec-

tion of M and N is perpendicular

to L.

EXERCISES

1. Construct the plane which bisects a given dihedral angle.

2. Through a given point pass a plane perpendicular to each of two

given planes.

3. Perpendiculars to a plane are drawn from the points of a straight

line not lying in the plane. Show that the intersections of these perpen-

diculars with the plane are all in one straight line.

4. Through a point without a straight line any number of planes can

pass parallel to that line.

5. Find the locus of points equidistant from two given parallel planes

and at the same time equidistant from two given points.



441-444] LINES AND PLANES IN SPACE 291

Proposition XIX

444. The locus of points equidistant from the

boundaries of a dihedral angle is the plane bisecting

that angle.

Let the planes L and M form a dihedral angle whose edge is

AB, and let the plane N bisect this angle.

It is required to prove that every point of N is equidistant

from L and M, and that no point outside of N is equidistant

from L and M.

Proof. First, in N choose any point P, and from it draw PQ
and PR perpendicular to L and M, respectively. (Prop. VII.)

The plane of PQ and PR is perpendicular to both L and M,

and hence is perpendicular to the edge AB. (Art. 443.)

Let this plane intersect AB at S, and join SP, SQ, SR.

Then Zs QSR, QSP, and PSR are the plane angles of the

dihedral angles L-AB-M, L-AB-N, and N-AB-M, re-

spectively. (Art. 432.)

Therefore Z QSP = Z PSR by hypothesis.

Also Zs PQS and PRS are right angles. Why ?

Therefore As PQS and PRS are identically equal, and PQ
equals PR. (Art. 106.)

Therefore P, any point of N, is equidistant from the planes

L and M.
Next, let P' be any point outside of the plane N, and from it
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draw perpendiculars P'Q and FR^ to the planes L and M,
respectively. Let P'Q intersect the plane N at the point P.

Join FR. FR' is less than FR. Why ?

But FR is less than FP + PR, i.e. less than FQ. Why ?

Therefore P'i?' is less than FQ.
Hence P' is not equidistant from L and M.
Therefore the locus • • •

Definitions

445. The projection of a point upon a plane is the foot of the

perpendicular drawn from the point to the plane.

The projection of a line upon a plane is the locus of the

projections of its points upon the plane.

446. Theorem. The projection of a straight line upon a
plane must he a straight line.

For, if A be any point of the given line, and P its projection

upon the given plane, AP and the given line determine a

plane perpendicular to the given plane, in which lie the per-

pendiculars from all the points of the given line. (Art. 442.)

The projection of a curved line upon a plane is in general

another curved line. Might it in any case be a straight line ?

447. The angle which a straight line makes with its projec-

tion on a plane is called the inclination of the line to the plane.

Whenever we speak of ' the angle which a straight line makes
with a plane,' it is always the angle which it makes with

its projection on the plane that is referred to.

448. Properly speaking, two straight lines form an angle

only when they intersect. For convenience, however, we some-

times speak of the angle between two non-intersecting straight

lines, or of the inclination of one straight line to another which

does not meet it.

By the angle between two non-intersecting straight lines

is meant the angle formed by two intersecting straight lines

which are parallel to them.



444-449] LINES AND PLANES IN SPACE 293

Proposition XX

449. The acute angle which a straight line makes
with its own -projection ujton a plane is the least angle

it makes with any line of that plane.

Let AB be any straight line oblique to the plane L, and let

BC be its projection upon L.

It is required to prove that /.ABC is less than the angle

which AB makes with any other line of the plane.

Proof. From any point A of the line AB draw the perpen-

dicular to the plane, meeting BC at C.

From B draw any other straight line BD in the plane, mak-

ing the segment BD equal to BC.

Join AD.
Then AD is greater than AC. Why ?

Therefore Z ABD is greater than Z ABC. (Art. 80.)

That is, Z ABC is less than the angle which AB makes with

any other line of the plane.

EXERCISES

1. The projection of any straight line upon a given plane lies in a plane

through the given line, perpendicular to the given plane.

2. If a straight line is parallel to a given plane, the projection of the

line upon the plane is parallel to the line.

3. Parallel lines intersecting the same plane make equal angles with it.
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Proposition XXI

450. To draw a straight Uite which shall he perpen-

dicular to each of two given straight lines not lying in

the same plane.

Q R

Let a and b be two straight lines not lying in the same plane.

It is required to find a straight line which shall be perpen-

dicular to both a and b.

Construction. Let L be the plane through a which is par-

allel to b. (Art. 414.)

Also let c be the projection of b upon the plane L.

Then c is parallel to b, and the plane of b and c is perpen-

dicular to L. Why ?

The straight lines a and c cannot be parallel, for then a and

b must be parallel, contrary to hypothesis. (Art. 396.)

Let a and c intersect at P, and from P draw PQ perpen-

dicular to the plane L.

Then PQ is the line required.

Proof. Since PQ was drawn perpendicular to the plane L,

at the point P, it is perpendicular to the line a, and lies in the

plane of b and c. (Art. 440.)

And since PQ is perpendicular to the line c [why?], it is

also perpendicular to b, meeting it, say, at the point Q.

Therefore the straight line PQ, meeting both a and b, is

perpendicular to both.
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451. Theorem. Only one straight line can be drawn perpen-

dicular to each of two given straight lines not lying in the same

plane.

If possible let RS be a second straight line perpendicular to

both a and h.

Let the plane of h and RS intersect the plane L in the line d.

Then h is parallel to d (Prop. X), and RS being perpen-

dicular to h is also perpendicular to d.

Now RS was assumed perpendicular to a.

Therefore RS is perpendicular to the plane L. (Prop. IV.)

But RT drawn in the plane of h and c, perpendicular to c, is

perpendicular to L. (Prop. XVIII.)

Thus we have two perpendiculars from R to the plane L,

which is impossible.

Therefore RS cannot be perpendicular to both a and 6, and

similarly no other line than PQ can be perpendicular to both.

452. Theorem. Tlie common perpendicular to two given

straight lines not lying in the same plane, is the shortest line be-

tween them.

The shortest line from a point of a to the line b is perpen-

dicular to b, and the shortest line from a point of b to the line

a is perpendicular to a.

Therefore the shortest line from a point of a to a point of b

must be perpendicular to both a and b.

EXERCISES

1. Construct a plane parallel to each of two given non-intersecting

straight lines and equidistant from them.

2. Draw a straight line to intersect three given non-intersecting straight

lines at P, Q^ B, respectively, so that PQ shall equal QP.

3. If the points of intersection of four parallel straight lines with any-

plane form the vertices of a parallelogram, their points of intersection

with every plane form the vertices of a parallelogram.
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Section III

POLYHEDRAL ANGLES

453. Definition. Three planes meeting at a point form

what is called a trihedral angle.

The planes are the boundaries, or the faces, of the angle ; the

point is the vertex of the angle ; and the straight lines in which

the planes intersect, two and two, are the edges of the angle.

In general, the figure formed by several planes meeting at

a point is called a polyhedral angle. The planes intersect,

two and two, in a certain order to form the ^
edges.

A polyhedral angle may be designated by

naming the vertex and another point in each

edge in order. Thus the polyhedral angle in

the diagram may be designated A-BCDE.
y

A. polyhedral angle of four faces is called bL

a tetrahedral angle. ' ^l^
A polyhedral angle, or as it may be called, a solid angle, is a geometrical

magnitude of a character essentially different from a plane angle. Like

a plane angle, however, its magnitude depends, not upon the length of its

edges, but only upon the amount of their divergence.

454. In a polyhedral angle the pairs of adjacent faces form

dihedral angles, and the two edges lying in any face form a

plane angle.

These are called respectively the dihedral angles and the

face angles of the polyhedral angle.

The dihedral angles and the face angles are called the parts

of a polyhedral angle.

A polyhedral angle is convex when the section of its faces

made by any plane is a convex polygon.

455. Two polyhedral angles are identically equal when they

can be made to coincide, each face with its corresponding face

and each edge with its corresponding edge.
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456. Two polyhedral angles are symmetrical when the parts

of the one are equal respectively to the

parts of the other, but are arranged in

reverse order.

Suppose the edges of any polyhedral

angle 0-ABCD to be extended through

the vertex, to points A\ B', C, D'.

The polyhedral angle 0-A'B'C'D'

so formed is symmetrical to the angle

0-ABCD. For the face angles and

the dihedral angles are equal, each to

each, being vertically opposite in each case, but the edges are

arranged in one order for the lower angle, and in the opposite

order for the upper angle.

This will readily be seen if you imagine the eye placed at 0,

and look out along the edges in order, first for the lower angle,

and then for the upper.

457. Two symmetrical polyhedral angles cannot in general

be made to coincide.

Just as two triangles ABC and A'B'C lying in the same

plane may be identically

equal, but cannot be

made to coincide with-

out turning one of them

over, so two symmetri-

cal polyhedral angles

can in general be made
to coincide only by

turning one of them
inside out, so to speak, by drawing the vertex down through

the plane section.

In the same way one of your hands is symmetrical to the

other, not identically equal to it. The one hand cannot be made
to occupy exactly the same space as the other, and the left glove

will fit the right hand only when it has been turned inside out.
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Proposition XXII

458. The sum of any two face angles of a trihedral

angle is greater than the third face angle.

Let A-BCD be any trihedral angle in which, the face angle

BAD is greater than either of the other two.

It is required to prove that the sum of the face angles BAC
and CAD is greater than the face angle BAD.

Proof. In the face BAD draw the straight line AE making

Z BAE equal to Z BAC.
Make the line-segments AE and AC equal, and through C

and E pass a plane cutting the other two edges at B and D.

Then BE = BC. (Art. 41.)

Therefore CD is greater than ED, since BC and CD are

together greater than BD. (Art. 70.)

In As CAD and EAD, AC=AE, AD = AD, while CD is

greater than ED.

Therefore Z CAD is greater than Z EAD. (Art. 80.)

Therefore the sum of Zs BAC and CAD is greater than

ZBAD.

459. Corollary. Any face angle of a polyhedral angle is

less than the sum of the remaining face angles.
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Proposition XXIII

460. The sum of the face angles of any convex poly-

hedral angle is less than four right angles.

Let A-BCDE be any convex polyhedral angle.

It is required to prove that the sum of the face angl.es BAC,
CAD, DAE, etc., is less than four right angles.

Proof. Choose any plane cutting all the faces and edges of

the given polyhedral angle. The section will be a convex

polygon BCDE. Why ?

The interior angles of the polygon BCDE, together with

four right angles, make twice as many right angles as the poly-

gon has sides. (Art. 116.)

In any triangular face, as A BAC, the sum of the angles is

two right angles. (Art. 101.)

Hence, the sum of all the angles in all the triangular

faces equals twice as many right angles as the polyhedral

angle has faces, i.e., twice as many right angles as the polygon

BCDE has sides.

The angles in all the triangular faces may be grouped as the

face angles at the vertices, B, C, D, etc., together with the face

angles at A.

Therefore, the face angles at B, C, D, etc., -f- the face angles

at J. = the angles of the polygon BCDE + four right angles,
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since each of these sums equals twice as many right angles as

the polygon BCDE has sides.

Now at any vertex, as B, the two face angles, ABC and
ABE, are together greater than the angle of the polygon EBG.

(Prop. XXII.)

Hence the sum of the face angles at all the vertices, B, C, D,

etc., is greater than the sum of the angles of the polygon BCDE.
Therefore, the sum of the face angles at A must be less

than four right angles.

Proposition XXIV

461. If two trihedral angles have the three face angles

of one equal, respectively, to the three face angles of the

other, their corresponding dihedral angles are also equal.

Let A-BCD and A'-B'C'D' be two trihedral angles having

the face angles BAC, CAD, DAB equal, respectively, to the

face angles BA'C, C'A'D', D'A'B'.

It is required to prove that the dihedral angles whose edt^es

are AB, AC, AD are equal, respectively, to the dihedral angles

whose edges are A'B', A'C, A'D'.

Proof. Let the planes BCD and B'C'D' cut the edges of the

two trihedral angles so as to make the segments AB, AC, AD,
A'B', A'C, A'D' all equal.

In AB and A'B' choose two points, P and P', equidistant

from A and A', and through these points pass planes perpen-

dicular to the edges AB and A'B'.
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The plane through P perpendicular to AB will intersect BC
and BD at some points Q and K. Why ?

Notice that Q and B are not necessarily within the segments

BC and BD.

Join PQ, PjR, and QR.

Similarly construct the triangle P'Q'E'.

Zs QPR and Q'P'Ii' are the plane angles of the dihedral

angles whose edges are AB and A'B' [why?], and it is

required to prove them equal.

As ABC and A'B'C are identically equal isosceles triangles,

by hypothesis and construction.

As QBP and Q'B'P' are identically equal. (Art. 43.)

Therefore BQ = B'Q',

and PQ = PQ'.

Similarly from As EBP and P'B'P,

BR = B'R'.

PR = PR'.

Now As BCD and B'OD' are identically equal. (Art. 53.)

Point out all the steps necessary to show this.

Therefore . Z CBD = Z OB'D\

Therefore As QBR and Q'B'R' are identically equal (Art. 41),

and QR = Q'R'.

Therefore As QPR and Q'P'R' are identically equal (Art. 53),

and Z QPR = Z Q'PR'.

That is, the dihedral angle whose edge is AB equals the

dihedral angle whose edge is A'B'.

Similarly it may be shown that the other dihedral angles

are equal.
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Note. If the parts of the trihedral angles A-BCD and A'-B'C'D'

are arranged in the same order around A^ the trihedral angles are equal,

and if in the reverse order, they are symmetrical but not equal. In the

first case, they could be superposed ; in the second case, they could not

be superposed.

The pupil should try to superpose the one trihedral angle on the other,

beginning with the vertices A and A' and the equal face angles BAC and

B'A'C. Will the edges AD and A'D' then lie on the same side of this

face?

If the edge AB is made to coincide with its corresponding edge A'B'^

and AC with A'C, how will AD and A'D< lie ?

If AB is made to coincide with A'C and AC with A'B', how will AD
and A'D' lie ?

462. Definition. An isosceles trihedral angle is one in

which two of the face angles are equal.

463. Theorem. An isosceles trihedral angle and its symmet-

rical trihedral angle are identically equal, i.e. can be superposed.

Suppose that A-BCD is an isosceles trihedral angle havin^;^

the face angles BACsmd BAD equal ; and suppose that A'-B'C'D'

is a trihedral angle having its

face angles respectively equal

to those of A-BCD, but ar-

ranged in reverse order.

The corresponding dihedral

angles are equal by Proposition

XXiy. Therefore the dihedral

angle whose edge is AB is equal

to the dihedral angle whose edge is A'B'.

Place the trihedral angle A'-B'C'D' upon the trihedral

angle A-BCD so that the dihedral angle A'B' coincides with

the dihedral angle AB, the vertex A' coinciding with the

vertex A.

Then since Z B'A'D' = Z BAD = Z BAC, by hypothesis, the

edge A'D' will coincide with the edge AC
Similarly, the edge A'C will coincide with the edge AD,

and the two trihedral angles will coincide in all their parts.
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Why could not two symmetrical trihedral angles whose face

angles are all unequal be superposed in the same way? At

what point would the process of superposition fail ?

464. Corollary I. If two face angles of a trihedral angle

are equals the dihedral angles opposite them are also equal.

For, the trihedral angle and its symmetrical trihedral angle

can be superposed.

465. Corollary II. If two isosceles trihedral angles have

the three face ayigles of one equal, respectively, to the three face

angles of the other, they are identically equal.

They can be superposed whether their parts are arranged in

the same order or in opposite orders.

466. Theorem. If two trihedral ayigles have two face angles

and the included dihedral arigle of one equal, respectively, to two

face angles and the included dihedral angle of the other, they

are either identically equal or symmetrical, according as the parts

are arranged in the same order or in opposite orders.

n the parts are arranged in the same order, the two can be

superposed ; if arranged in opposite orders, one can be super-

posed to the symmetric of the other,

467. Theorem. If two trihedral angles iiave a face angle

and the two adjacent dihedral angles of one equal, respectively,

to a face angle and the two adjacent dihedral angles of the other,

they are either identically equal or symmetrical, according as the

parts are arranged in the same order or in opposite orders.

EXERCISES

1. The planes that bisect the dihedral angles of any trihedral angle

intersect in the same straight line.

2. If the face angle AOB of the trihedral angle 0-ABC is bisected by
the straight line OD^ the angle COD is less than half the sum of the face

angles ^OC and ^00.
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MISCELLANEOUS EXERCISES

1. From a point A in one of two intersecting planes, AB is drawn
perpendicular to the first plane, meeting the second plane at B, and AC
is drawn perpendicular to the second plane, meeting it at C. Show that

^O is perpendicular to the line of intersection of the two planes.

2. Two line segments AB and DC are such that if BC and AD are

joined each of the angles A, B, C, D, is a right angle. Prove that AB
and DC are parallel.

3. If two triangles ABC and A'B'C in different planes are so situ-

ated that the lines AA', BB\ CC meet in a point S^ then the pairs of

corresponding sides AB, A'B' ; AC, A'C ; BC, B'C intersect in points

of one straight line.

Suggestion. Let the planes of ABC and A'B'C intersect in a straight

line s. The points S, A, A', B, B' lie in one plane intersecting s at X,
say. AB and A'B' must intersect at X. Similarly for the other pairs.

4. Show that the locus of a point equidistant from three given points

is a straight line through the centre of the circle determined by the three

points.

5. Prove that if AP makes equal angles with AB and AC, it must lie

in one or other of two fixed planes.

6. Of three given planes each is perpendicular to the other two. Show
that of their three lines of intersection each is perpendicular to the other

two.

7. If two intersecting planes are cut by two parallel planes, the lines

of section of the first two by each of the parallel planes will make equal

angles.

8. If a straight line is equally inclined to two given planes, show that

it is perpendicular to the plane bisecting one of the dihedral angles formed

by the two planes.

9. Show that the locus of the foot of the perpendiculars drawn from

a fixed point to the planes through a fixed straight line is a circle.

10. Draw through the vertex of a trihedral angle a straight line which

will make equal angles with the three edges of the trihedral angle. How
many such lines are there ?

11. The projections qp a plane of two equal and parallel line-segments

are equal and parallel.
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SUMMARY OF CHAPTER VI

1. Definitions.

(1) Solid Figure— one whose points and lines do not all lie in the

same plane. § 386.

(2) Line Parallel to a Plane— a straight line which does not meet

the plane, however far they may be extended. § 392.

(3) Line Perpendicular to a Plane— a, straight line which is perpen-

dicular to every line of the plane passing through their inter-

section. § 393.

(4) Line Oblique to a Plane — a straight line neither parallel nor

^ perpendicular to the plane. § 393.

(5) Parallel Planes— planes which do not meet, however far they

may be extended. § 393.

(6) Skeiv or Gauche Lines— straight lines so situated that no plane

can contain them both. Ex. 3, p. 271.

(7) Distance from a Point to a Plane— the length of the perpen-

dicular from the point to the plane. § 411.

(8) Dihedral Angle— the figure formed by two planes meeting in a

straight line. § 426.

(9) Bight Dihedral Angle — an angle formed by two intersecting

planes when the adjacent angles so formed are equal. § 429.

(10) Plane Angle of a Dihedral Angle— the angle between two straight

lines drawn perpendicular to the edge from the same point, one

in each boundary, § 430.

(11) Projection of a Point upon a Plane— the foot of the perpen-

dicular drawn from the point to the plane. § 445.

(12) Projection of a Line upon a Plane— the locus of the projections

of its points upon the plane. § 445.

(13) Tnclination of a Line to a Plane— the angle between the line

and its projection upon the plane. § 447.

(14) Trihedral Angle — the figure formed by three planes meeting at

a point. § 453.

(15) Polyhedral Angle — the figure formed by several planes meeting

at a point. § 453.

(16) Identically Equal Polyhedral Angles— two which can be made
to coincide. § 455.

(17) Symmetrical Polyhedral Angles— two whose parts are equal,

respectively, but arranged in reverse order. § 456.

(18) Isosceles Trihedral Angle— one having two face angles equal.

§462.

X
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2. Postulate.

(1) Through three points not in the same straight line there can
pass one and only one plane (Postulate 9). § 388.

^/

^. Elements which determine a Plane.

(1) Three points (Postulate 9). § 388.

(2) A straight line and a point not lying on it. § 388.

(3) Two intersecting straight lines. § 388.

(4) Two parallel straight lines. § 388.

4. Problems.

(1) At a given point in a given plane to erect a perpendicular to the

plane. § 403.

(2) From a given point without a given plane to draw a perpendicular

to the plane. § 408.

(3) To draw a straight line which shall be perpendicular to each of

two given straight lines not lying in the same plane. § 450.

5. Theorems on the Intersections of Planes.

(1) The intersection of two planes is a straight line. § 390.

(2) If two planes have one point in common, they must have a second

point, and hence a straight line, in common. § 391.

(3) If three planes intersect, two and two, their three lines of inter-

section are either concurrent, or are parallel, two and two.

§ 394.

(4) The two planes determined by two given parallel lines and a

point not lying in their plane, intersect in a line parallel to

each of the given lines. § 395.

(5) Two parallel planes are intersected by any third plane in parallel

lines. § 419.

6. Theorems on Straight Lines perpendicular to Planes.

(1) If a straight line is perpendicular to each of two given straight

lines at their point of intersection, it is perpendicular to the

plane of these lines. § 397.

(2) At any point of a straight line one plane can be constructed per-

pendicular to that line, and only one. § 398.

(3) Through a given point not on a given straight line, one plane and

only one can be constructed perpendicular to the given line.

§ 399.

(4) Two intersecting planes cannot both be perpendicular to the same

straight line. § 400.
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(5) All the straight lines perpendicular to a given line at a given

point lie in one plane perpendicular to the given line. § 401.

(6) If a plane bisects a given line-segment perpendicularly, every

point of the plane is equidistant from the extremities of the

line-segment, and conversely. § 402.

(7) At a point in a plane but one straight line can be drav^n perpen-

dicular to the plane. § 404.

(8) From a point without a plane only one perpendicular to the plane

can be drawn. § 409.

(9) Two straight lines perpendicular to the same plane are parallel.

§405.

(10) If one of two parallel lines is perpendicular to a plane, the other

is also. § 407.

(11) Two planes perpendicular to the same straight line are parallel.

§412.

(12) A straight line perpendicular to one of two parallel planes is also

perpendicular to the other. § 422.

(13) If a straight line is perpendicular to a given plane, every plane

containing that line is perpendicular to the given plane. § 436.

7. Theorems on Straight Lines and Planes parallel to them.

(1) If two straight lines are parallel, any plane containing one of

them, and not the other, is parallel to the other. § 413.

(2) Through either of two given straight lines not lying in the same

plane, one plane can be passed parallel to the other line. § 414.

(3) Through "a given point a plane can be passed parallel to any two

given straight lines in space. § 415.

-—^(4) If a straight line is parallel to a given plane, it is parallel to the

intersection of any plane through it, with the given plane.

§ 416.

(5) If a straight line is parallel to a given plane, a line drawn from

any point in the plane parallel to the given line lies in the given

plane. § 417.

(6) If two intersecting straight lines are each parallel to a given plane,

the plane determined by these lines is also parallel to the given

plane. § 418.

8. Theorems on Planes perpendicular to Each Other.

(1) If a straight line is perpendicular to a given plane, every plane

containing that line is perpendicular to the given plane. § 436.

(2) Any plane perpendicular to the edge of a dihedral angle is per-

pendicular to each of its faces. § 438.
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(3) If two planes are perpendicular to each other, a straight line

drawn in one of them, perpendicular to their intersection, is

perpendicular to the other. § 439.

(4) If two planes are perpendicular to each other, a straight line

drawn from any point of their intersection, perpendicular to

one plane, must lie in the other. § 440.

(5) If two planes are perpendicular to each other, a straight line

drawn from any point in one of them, perpendicular to the

other, must lie in the first plane. § 442.

(6) If two intersecting planes are each perpendicular to a third plane,

their intersection is also perpendicular to that plane. § 443.

9. Theorems on Parallel Planes.

^ (1) Two parallel planes are intersected by any third plane in parallel

lines. § 419.

(2) Parallel line-segments terminated by parallel planes are equal.

§420.

(3) Two parallel planes are everywhere equidistant. § 421.

(4) A straight line perpendicular to one of two parallel planes is also

perpendicular to the other. § 422.

(5) If two straight lines are cut by three parallel planes, the corre-

sponding segments are proportional. § 425.

10. Theorems on Dihedral Angles.

(1) All plane angles of the same dihedral angle are equal. § 431.

• (2) The lines of intersection with the boundaries of a dihedral angle,

of any plane perpendicular to the edge of that angle, form the

plane angle of the dihedral angle. § 432.

(3) Two dihedral angles are equal if their plane angles are equal.

§ 433.

(4) Two dihedral angles are in the same ratio as their plane angles.

§ 434.

(5) The locus of points equidistant from the boundaries of a dihedral

angle is the plane bisecting that angle. § 444.

11. Theorems on Trihedral and Polyhedral Angles.

(1) The sum of any two face angles of a trihedral angle is greater

than the third face angle. § 458.

(2) Any face angle of a polyhedral angle is less than the sum of the

remaining face angles. § 459.

(3) The sum of the face angles of any convex polyhedral angle is less

than four right angles. § 460.
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(4) If two trihedral angles have the three face angles of one equal,

respectively, to the three face angles of the other, their corre-

sponding dihedral angles are also equal. § 461.

(5) An isosceles trihedral angle and its symmetrical trihedral angle

are identically equal. § 4G;3.

(6) If two face angles of a trihedral angle are equal, the dihedral

angles opposite them are also equal. § 464.

(7) If two isosceles trihedral angles have the three face angles of one

equal, respectively, to the three face angles of the other, they

are identically equal. § 465.

(8) If two trihedral angles have two face angles and the included

dihedral angle of one equal, respectively, to two face angles and

the included dihedral angle of the other, they are either iden-

tically equal or symmetrical, according as the parts are arranged

in the same order or in opposite orders. § 466.

(9) If two trihedral angles have a face angle and the two adjacent

dihedral angles of one equal, respectively, to a face angle and

the two adjacent dihedral angles of the other, they are either

identically equal or symmetrical, according as the parts are

arranged in the same order or in opposite orders. § 467.

12, Miscellaneous Theorems.

(1) Two straight lines each parallel to a third line are parallel to each

other. § 396.

(2) If from the foot of a given perpendicular to a plane, a straight

line is drawn at right angles to any line of the plane, any line

through their intersection which meets the given perpendicular

is at right angles to the line of the plane. § 406.

(3) Of all straight lines which can be drawn from a point to a plane,

the perpendicular is the shortest. § 410.

(4) If two intersecting straight lines lying in one plane are parallel,

respectively, to two intersecting straight lines lying in another

plane, the two planes must be parallel, and the angles formed

by the lines are equal. § 424.

(5) The acute angle which a straight line makes with its own projec-

tion upon a plane is the least angle it makes with any line of

that plane. § 449.

(6) Only one straight line can be drawn perpendicular to each of two

given straight lines not lying in the same plane. § 451.

(7) The common perpendicular to two given straight lines not lying

in the same plane is the shortest line between them. § 452.



CHAPTER VII

PRISMS AND PYRAMIDS

Section I

AREA AND VOLUME OF A PRISM

Definitions

468. A section of a surface made by an intersecting plane

is the locus of points common to the surface and the plane.

469. A surface, such that every section of it made by an

intersecting plane consists of one or more closed lines, is called

a closed surface.

470. A closed surface which is made up wholly of intersect-

ing planes is called a polyhedron.

The planes are called the faces of

the polyhedron ; the lines in which

the faces intersect are called the

edges; the points in which the edges

intersect are called the vertices.

The line-segment connecting any two vertices not lying in

the same face is called a diagonal of the polyhedron.

If a polyhedron lies wholly on one side or the other of each

of its faces, it is called a convex polyhedron.

Any section of a convex polyhedron made by a plane is a

convex polygon.

310

4-f
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A polyhedron of four faces is called a tetrahedron ; one of

five faces is called a pentahedron ; one of six faces is called a

hexahedron ; one of eight faces is called an octahedron ; one of

twelve faces is called a dodecahedron ; one of twenty faces is

called an icosahedron.

471. A polyhedron of which two faces are convex polygons

lying in parallel planes and identically

equal, while the remaining faces are

parallelograms, is called a prism.

The equal parallel faces are called

the bases of the prism; the remaining

faces, the lateral faces. The edges

lying in the bases are called the base

edges ; and the intersections of the lateral faces, the lateral

edges.

The base edges of a prism are equal and parallel, two and

two, each edge of one base being equal and parallel to an edge

of the other base.

The lateral edges of a prism are all equal and parallel

(Art. 420), and make equal angles with the plane of either base.

A prism is called triangular, quadrilateral, etc., according as

its bases are triangles, quadrilaterals, etc.

472. A right prism is one whose lateral edges are perpen-

dicular to its bases.

If the lateral edges are not perpendicular to the bases, the

prism is called oblique.

473. A right section of a prism is the section made by any

plane perpendicular to the lateral edges.

474. The lateral area of a prism is the sum of the areas of

the lateral faces of the prism.

475. The altitude of a prism is the perpendicular distance

between its bases.
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Proposition I

476. The sections of a prism made hy parallel planes

are polygons which are identically equal.

Let the sections of the prism PQ, made by the parallel

planes L and M, be ABODE and A'B'C'D'E'.

It is required to prove that the polygons ABODE and

A'B'O'D'E' are identically equal.

Proof. First, AB is parallel to A'B'. (Art. 419.)

And since AA' is parallel to BB' by definition, AA'B'B is a

parallelogram. Therefore AB = A'B'.

Similarly, BO=B'0', OD = O'D, and so on.

Hence, ABODE and A'B'O'D'E' are mutually equilateral.

Next, since AB is parallel to A'B', and BO is parallel to B'O',

Z ABO= Z A'B'O. (Art. 424.)

Similarly, Z BOD=ZB'0'D', Z ODE=Z O'D'E', and soon.

Hence, ABODE and A'B'O'D'E' are mutually equiangular.

Therefore the polygons ABODE and A'B'O'D'E' are identi-

cally equal.

Note. The same proof applies if the planes of section intersect some

or all of the edges produced.
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477. Corollary I. All right sections of the same prism are

identically equal.

478. Corollary II. The section of a prism made by a plane

parallel to either base is identically equal to the base.

Proposition II

479. The lateral area of a prism is equal to the prod-

uct of a lateral edge and the perimeter of a right sec-

tion of the prism.

Q

Let ABCDE be a right section of the prism PQ, and PR be

any one of the lateral edges.

It is required to prove that the lateral area of PQ is equal to

the product of PR and the perimeter of ABCDE.
Proof. AB is perpendicular to PR. Why ?

Therefore the area of the lateral face PS is equal to the

product of PR and AB. (Art. 305.)

Similarly, the area of each lateral face is equal to the

product of a lateral edge (= PR) and a side of ABCDE.
Therefore the lateral area of PQ is equal to the product of

PR and {AB ^ BC + CD + etc.).

That is, the lateral area of PQ is equal to the product of

PR and the perimeter of ABCDE.

480. Corollary. The lateral area of a right prism is equal

to the product of its altitude and the perimeter of its base.
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Proposition III

481. Two prisms are identically equal if the three

faces forming a trihedral angle in one are identically

equal to the three faces forming a trihedral angle in

the other and are similarly placed.

Let AJ and A'J^ be two prisms having the three faces BE,
BF, and BII, forming the trihedral angle B, identically equal,

respectively, to the three faces B'E', B'F', B'H', forming the

trihedral angle B', the equal faces being similarly placed.

It is required to prove that the two prisms AJ and A'J' are

identically equal.

Proof. First, the trihedral angles B and B' are identically

equal. (Art. 461.)

Apply the prism A'J' to the prism AJ so that the trihedral

angle B' coincides with the trihedral angle B.

Then, since the faces forming these angles are identically

equal, two and two, the vertices A', B', C, D', E', F', G', H',

will coincide with the vertices A, B, C, D, E, F, G, II', and the

edges connecting these vertices will also coincide.

Now, since the lateral edges of each prism are parallel and

equal (Art. 471), and the edges A'F', B'G', C'H', coincide

respectively with the edges AF, BG, CH, while the vertices

/>', E', coincide with D, E, therefore the remaining lateral

edges D'J' and E'K' must coincide with the remaining edges
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DJ and EK^ and the remaining vertices J' and K' with the

remaining vertices J and K.

Hence the two prisms coincide throughout.

482. Corollary I. Two right prisms are identically equal

if their bases are identically equal and they have equal altitudes.

If the sides of the bases are not arranged in the same order,

one of the prisms may be turned over, and then they can be

made to coincide.

Could this be done if the prisms were not right prisms ?

Why is it necessary to have the words 'and similarly placed'

in the enunciation of the main theorem ?

483. Definition. A truncated prism is a poly-

hedron having parallel lateral edges like a prism,

but bases which are neither parallel nor equal.

The lateral faces cannot all be parallelograms,

though some of them may be.

^^
484. Theorem. Two truncated prisms are identically equal

if the three faces forming a trihedral angle in one are identically

equal to the three faces forming a trihedral angle in the other, and

are similarly placed.

485. Definition. The space contained within a closed sur-

face is called the volume of the figure.

The volume of a polyhedron is thus the space enclosed by

its faces.

If two closed surfaces are placed side by side so as to have

some portion in common, and this common portion is disre-

garded, the volume of the resulting figure is called the sum of

the volumes of the two given figures.

486. Axiom 13. If two figures are identically equal, their

volumes are equal.

487. Axiom 14. If equal volumes he added to equal volumes,

or to the same volume, their sums are equal.
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Proposition IV

488. An oblique prism is equal in volume to a right

prism whose base is a right section of the oblique prism
and whose altitude is equal to a lateral edge of the

oblique prism.

Let AJhe any oblique prism of which F'G'H'J'K' is a right

section made by the plane L.

It is required to prove that the prism AJ is equal in volume

to a right prism whose base is F'G'H'J'K', and whose altitude

is equal to an edge of AJ.

Proof. Produce the edge FA to A' making F'A' equal to FA.
Through A' pass a plane M parallel to the plane L, and

meeting the other lateral edges of the prism produced in

B', C, D', E'.

Then the figure A'J' is a prism whose lateral edges are

equal to the lateral edges of AJ and whose bases are right

sections of AJ.

Does A'J' satisfy the definition of a prism ?

The quadrilateral ABB'A' is identically equal to the quadri-

lateral i^(? 6? 'i^'. Why?



488-492] PBISMS AND PYRAMIDS 317

Similarly, the quadrilateral BCC'B' is identically equal to

the quadrilateral GHH'G'.
And the polygon ABODE is identically equal to the poly-

gon FGHJK, by hypothesis.

Therefore the truncated prism A'D is identically equal to

the truncated prism F'J, having the three faces forming the

trihedral angle B identically equal, two and two, to the three

faces forming the trihedral angle G. (Art. 484.)

To each of these truncated prisms add the figure AJ'.

Then the volume of the right prism ji'J' is equal to the

volume of the given prism AJ. (Axioms 13 and 14.)

Therefore • • •

Definitions

489. A prism whose bases are parallelograms is called a

parallelepiped.

A parallelepiped is thus a hexahedron, all of whose faces are

parallelograms.

Lateral faces which contain opposite sides of the bases are

called opposite faces.

490. A right parallelepiped is one in which one set of lateral

edges is perpendicular to the bases.

491. A rectangular parallelepiped is a right parallelepiped

whose bases are rectangles.

492. A cube is a parallelepiped whose faces are all squares.

EXERCISES

1. At least four of the faces of a right parallepiped are rectangles.

2. All the faces of a rectangular parallelepiped are rectangles.

3. If the three faces of a parallelepiped which meet in any vertex are

squares, the figure is a cube.
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Proposition V

493. The opposite lateral faces of any parallelepiped

are parallel and identically equal.

Let AG hQ 2i parallelepiped whose bases are ABCD and

EFOH.
It is required to prove that the opposite lateral faces AF and

DG, also AH and BG are parallel and identically equal.

Proof. First, since AB is parallel to DC, and AE to DH,
the lateral face AF is parallel to DG. (Art. 424.)

Similarly, AH is parallel to BG.
Next, in the parallelogramsAFand DG,AE=DH, AB=DC,

and Z EAB = Z HDC. (Art. 424.)

Therefore AF is identically equal to DG. (Art. 129.)

494. Corollary. Any two opposite faces of a parallelepiped

may he takeri as the bases.

When any pair of opposite faces have been chosen as bases,

the edges meeting them must be looked upon as the lateral

edges.

EXERCISES

1. Any section of a parallelepiped cutting four edges between the

vertices is a parallelogram.

2. Prove that in a rectangular parallelepiped each edge is perpendicular

to all the edges meeting it.
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Proposition VI

495. The plane passed through two diagonally oppo-

site edges of a parallelepiped divides it into two trian-

gular prisms which are equal in volume.

Let BH be any parallelepiped, and let a plane be passed

through the opposite edges AE and GG,

It is required to prove that the triangular prism ABC-F is

equal in volume to the triangular prism ADC-H.
Proof. Take a right section PQRS of the parallelepiped, its

plane intersecting the plane through the edges in the line PR.
Then PQRS is a parallelogram of which PR is a diagonal.

The volume of ABC-F is equal to the volume of a right prism

having A PQR for base and AE for lateral edge. (Prop. IV.)

Similarly, the volume of ADC-H is equal to the volume of a

right prism having A PSR for base and AE for lateral edge.

But A PQR is identically equal to A PSR. (Art. 124.)

Hence the right prism whose base is A PQR and lateral edge

AE is identically equal to the right prism whose base is A PSR
and lateral edge AE. (Art. 482.)

Therefore the triangular prism ABC-F is equal in volume to

the triangular prism ADC-H.
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Proposition VII

496. The volumes of two rectangular parallelepipeds

having identically equal bases are in the same ratio as

their altitudes.

Let AO and AG^ be two rectangular parallelepipeds having

their bases ABCD and A'B'C'D' identically equal.

It is required to prove that the volume of AG is to the volume

of A'G' as the altitude AE is to the altitude A'E'.

Proof. Case I. When AE and A'E' are commensurable.

Choose unit length which will measure both AE and A'E'.

Apply this unit length to the altitudes, and suppose that it

divides AE m times, and A'E' n times.

Then AE : A'E' =:m:n. (Art. 220.)

Through all the points of division of AE and A'E' pass

planes parallel to the bases.

These planes divide AG into m and A'G' into n right paral-

lelepipeds, which are identically equal. (Art. 482.)

volume of AG m
Hence

Therefore

volume of A'G' n

volume oi AG _ AE
volume of A'G' ~ A'E'
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Case II. When AE and A'E' are incommensurable.

Choose any unit length which will measure AE, and apply

it as often as possible to A'E'.

Let P' be the last point of exact division so that A'P' is a

multiple of the unit length, and the remainder P'E' is less than

the unit length.

Through P' pass a plane P'Q'R'S' parallel to the base.

Then A'R' is a parallelepiped, and since AE and A'P' are

commensurable,
volume of AG ^ AE

CCase I ^

volume of ^'i?' A'P'
^ '^

If now the length of the unit measure be repeatedly di-

minished, the remainder P'E' can be made smaller than any

assigned quantity, so that ^'P' approaches A'E' as its limit,

and the parallelepiped A'B' approaches the parallelepiped A'G'

as its limit.

Also,
^0'"'"^ »f ^Cf

^in approach ^°'"'"" "^ "^^

volume of A'W volume of A'G'

as its limit.

And will approach —

—

- as its limit.

-D , volume of AG _ AE
volume QiAR'~~^^'

for every unit of measure.

Therefore
volume of ^(^^ ^ AE^^

volumeof ^'(?' AE' ^
it. ^ou.;

497. Definition. The lengths of the three edges which
meet in any vertex are called the dimensions of a rectangular

parallelepiped.

498. Theorem. If two rectangular parallelepipeds have two

dimensions ofone equal, respectively, to two dimensions of the other,

their volumes are in the same ratio as their third dimensions.

This is merely a restatement of Proposition VII.

Y
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Proposition VIII

499. The volumes of two rectangular parallelepipeds

having equal altitudes are in the same ratio as the

areas of their bases.

\

\ Q |\
c

k
-A

h' b'

Let P and Q be the volumes of two rectangular parallele-

pipeds having equal altitudes c, and the dimensions of whose

bases are a, b, and a', b\

It is required to prove that

P a xb
Q a'xb'

Proof. Construct a third rectangular parallelepiped whose

volume is R, and whose dimensions are a, b', c.

Then
P b

R b"
(Art. 498.)

also
R a

Q a''

Therefore r"" Q-b'^'a"

or
P axb
Q a' xb'

500. Theorem. If tico rectangular parallelepipeds have one

dimension of the one equal to one dimeyision of the other, their

volumes are in the same ratio as the products of their other tivo

dimensions.

This is again a restatement of Proposition VIII.



499-502] PRISMS AND PYRAMIDS 323

Proposition IX

501 The volumes of any two rectangular parallele-

pipeds are in the same ratio as the products of their

three dimensions.

Let P and Q be the volumes of two rectangular parallele-

pipeds whose dimensions are a, 6, c, and a', 6', c', respectively.

It is required to prove that

P_ a X b X c

Q a' xb' X c'

Proof. Construct a third rectangular parallelepiped whose

volume is B and whose dimensions are a', b', c.

Then

and

Therefore

or

P
R
E
Q

^x?

P
Q

a xb
a' X b''

c

c''

a xb c

a' X b' c'

a X b X c

a' xb' X c'

(Art. 500.)

(Art. 498.)

502. In order to express the measure of any volume it is

first necessary to select a unit volume, with which the given

volume is to be compared.

The unit volume usually chosen is the volume of a cube,

each of whose edges is of unit length.
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When the unit of length is a foot, the unit of volume is the

volume of a cube each of whose edges is a foot in length ; or,

as we say, the unit of volume is a cubic foot.

When the unit of length is an inch, or a

yard, the unit of volume is a cubic inch,

or a cubic yard.

The measure of a volume is the number
which expresses how many times it will

contain the unit of volume.

If in a rectangular parallelepiped, the

three edges which meet in any vertex are commensurable

magnitudes, and these are divided into unit lengths, the whole

volume can be divided into unit volumes by passing planes

through the points of division. Thus the parallelepiped in the

diagram contains thirty-six units of volume.

For brevity we frequently say "the volume of a parallele-

piped'' is a certain number, when it would be more exact to

say " the measure of the volume."

In the preceding proposition, if the parallelepiped whose

volume is Q should have each edge of unit length, so that

a' = 6' = c' = l,

then Q would be the unit volume.

In that case

Q
a xb X c,

or P=a X h X c times unit volume.

That is, a X 6 X c is the measure of the volume P.

503. Theorem. The measure of the volume of any rectangu-

lar parallelepiped is the product of its three dimensions.

504. Corollary. TJie volume of ayiy rectangular parallele-

nped is the product of its altitude and the area of its base.
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Proposition X
505. The volume of any parallelepiped is equal to the

product of its altitude and the area of its hase.

E
,/\^" /

1 /
F

/d" /
Let ^(t be any oblique parallelepiped whose base is ABCD

and altitude KE.

It is required to prove that the volume of ^6r is equal to the

product of KE and the area of ABCD.

Proof. Produce the edges AB, DC, HG, EF, and cut them

perpendicularly at A', D', H', E', and B,' C,' G', F', by two

parallel planes whose distance apart A'B' is equal to AB.

Then A'G' is a right parallelepiped, A'H' being the base,

equal in volume to AG. (Prop. IV.)

Again, produce the edges D'A', C'B', G'F', H'E', of the

parallelepiped A'G', and cut them perpendicularly at D", C",

G", H", and A", B", F", E", by two parallel planes whose dis-

tance apart B"C" is equal to B'C.

Then A"G" is a rectangular parallelepiped [why?] equal in

volume to A'G' (Prop. IV), and hence equal to AG.

Now the volume of A"G" is equal to the product of the alti-

tude A"E" and the area of the base A"C' (Art. 504.)

But since all three parallelepipeds lie between the same two

parallel planes, the altitude KE equals the altitude A"E".
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Also the parallelograms ACj A'C, and A"C" are equal in

area. (Art. 294)

Therefore, volume of ^G^ = volume of A"G"
= area of A"C" x A"E''

= area of AG x KE.

Proposition XI

506. The volume of a triangular prism is equal to

the product of its altitude and the area of its base.

Let ABC-DEF be any triangular prism whose altitude is h.

It is required to prove that the volume of this prism is equal

to h times the area of the base ABC.

Proof. Complete the parallelogram ^jBC^. Through /fdraw

a line parallel to a lateral edge AD, meeting the plane DEF
at L, and complete the parallelepiped BL having the same

altitude as the prism.

The prism ABC-DEF is one-half of the parallelepiped

BL. (Prop. VI.)

Now the volume of BL is the prodixit of its altitude h and

the area of the base ABGK. (Prop. X.)

Therefore the volume of the prism ABG-DEF is equal to

h times the area of ABG^ which is half of the base ABGK.
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507. Corollary I. Hie volume of any prism

is equal to the product of its altitude and the area

of its base.

Any prism can be divided into triangular prisms by

passing planes through one lateral edge and all the non-

adjacent lateral edges.

508. Corollary II. The volumes of any two

prisms are equal if they have equal altitudes and

bases of equal areas.

, --'- ~

EXERCISES

1. The square on the diagonal of a rectangular parallelepiped is equal

to the sum of the squares on the three edges meeting in one extremity of

the diagonal.

2. The square on the diagonal of a cube is three times the square on

one of its edges.

3. Show that all the diagonals of a rectangular parallelepiped^are

equal.

4. The sum of the squares on the four diagonals of a parallelepiped is

equal to the sum of the squares on the twelve edges.

5. Every section of a prism made by a plane parallel to an edge is a

parallelogram.

6. Find the volume and the length of the diagonal of a cube whose

edge is 3 feet.

7. Show that all the diagonals of any parallelepiped pass through one

point, and are bisected at that point.

8. The edge of a cube is 4 feet. Find the edge of a cube having twice

the volume.

9. The dimensions of a rectangular parallelepiped are 3, 5, and 7

decimeters. Find its volume and the length of its diagonals.

10. A box, covered top and bottom, which is made of boards 2 inches

thick, has outside dimensions of 18, 24, and 30 inches. Find its entire

contents.

11. Find the volume of a right prism whose base is a regular hexagon

of 6 inches side, and whose altitude is 15 inches.

12. The diagonal of a cube is 27 inches, find its volume.
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Section II

PYRAMIDS

509. A pyramid is a polyhedron one of whose faces is a poly-

gon, and the remaining faces are triangles having a common
vertex.

The polygonal face is called the base of the

pyramid, the triangular faces are the lateral faces,

and the common vertex of the lateral faces is the /

vertex of the pyramid. A'

The sum of the areas of the lateral faces is called ^
the lateral area of the pyramid.

The perpendicular distance from the vertex to the base is

the altitude of the pyramid.

A triangular pyramid is one whose base is a triangle •, a quad-

rangular pyramid, one whose base is a quadrilateral, etc.

A triangular pyramid is a tetrahedron since it has four faces.

All the faces of a tetrahedron are triangles. Any face may
be taken as the base, and the opposite vertex as the vertex.

How many vertices has a tetrahedron ? how many edges ? how
many pairs of non-intersecting edges ? These are called the

pairs of opposite edges.

510. A regular pyramid is one whose base is a regular poly-

gon and whose vertex lies on the perpendicular to the base

drawn from its centre.

The slant height of a regular pyramid is the altitude of any

one of its lateral faces; i.e. it is the perpendicular distance

of the vertex from any side of the base.

511. A truncated pyramid is the figure formed by the base

and any section of a pyramid, and the por-
^r-—-""^^^

tions of the lateral faces intercepted between A I /\

them. / /--!--.A \
If the upper section is parallel to the base, V / \ /

the figure is called a frustum of a pyramid. ^ ^
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The altitude of a frustum of a pyramid is the perpendicular

distance between its bases.

The slant height of the frustum of a regular pyramid is the

perpendicular distance between the parallel edges of a lateral

face.

Proposition XII

512. The lateral area of a regular pyramid is equal

to one-half the product of the perimeter of the base and
the slant height.

Let S-ABODE be any regular pyramid whose slant height

isASP.

It is required to prove that its lateral area is equal to one-

half the product of the perimeter of the polygon ABGDE and

the slant height SP.

Proof. 1. What is the area of A SAB ? (Art. 306.)

2. As SAB, SBC, etc., have equal altitudes.

3. What is the area of all the triangles ?

4. What is the lateral area ?

EXERCISES

1. Prove that the lateral edges of a regular pyramid are all equal, and

hence that the lateral faces are equal isosceles triangles.

2. Show that the lateral faces of the frustum of a pyramid are all

trapezoids, and of a regular pyramid are all equal trapezoids.

3. Show that the lateral area of the frustum of a regular pyramid is

equal to half the sum of the perimeters of its bases multiplied by the

slant height.
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Proposition XIII

513. If a pyramid is cut by a plane parallel to its

base, the edges and the altitude are divided in the same
ratio, the section made by the plane is sunilar to the

base, and the area of the section is to the area of the

base as the squares of their distances from the vertex.

Let S-ABCDE be any pyramid whose altitude is SO, and
let it be cut by a plane L parallel to the base, in the polygon

A'B'C'D'E' whose distance from S is SO'.

It is required to prove

1. That M =^ = ^==etc. =^.
SA SB SO SO

2. That A'B'C'D'E' is similar to ABODE. _
3. That area of A'B'C'D'E' : area of ABODE=SO^ '• SO^-

Proof. First. In A SAB, A'B' is parallel to AB. (Art. 419.)

Therefore — = ^'.
(Art. 242.)

SA SB ^ ^

Q. -1 1
SB' SC

Similarly, ^ =^^ * '
'

Also, since 0' must lie upon SO, A'O' is parallel to AO.

Therefore
SA^^SO^^

(Art. 242.)
SA SO ^ ^

Whence M =^ =^=. .. = ^.
SA SB SC SO



AB SB

SB' B'C
SB BC'

A'B' B'C CD'
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Second. Since A'B' is parallel to AB, and B'C is parallel

to BC,
Z A'B'C = Z.ABa (Art. 424.)

Similarly, Z B'CD' = Z BCD, . . .

Hence the polygons A'B'CD'E' and ABODE are mutually

equiangular.

., A'B' SB'
Also,

' Similarly,

Therefore ^=^ =^ = «t<'-

Hence, in the polygons A'B'CD'E' and ABODE, pairs of

homologous sides are in the same ratio.

Therefore the polygons A'B'O'D'E' and ABODE are similar.

Third. Area of A'B'O'D'E' : area of ABODE

= AJB^' : AS (Art. 315.)

= SA^ : SAL

= SO'' : so".

514. Corollary I. Sections of the same pyramid made by

parallel planes are similar.

515. Corollary II. Hie areas of parallel sections of a

pyramid are in the same ratio as the squares of their distances

from the vertex.

516. Corollary III. If two 2W^^^^^ ^^^^^ equal altitudes

and bases of equal areas, the areas of sections made by planes

equidistant from their vertices are equal.
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Proposition XIV

517. If two triangular pyramids have equal altitudes

and equal bases, they have equal volumes.

Let S-ABC and S'-A'B'C be two triangular pyramids hav-

ing their bases ABC and A'B'C equal in area, and their alti-

tudes SO and S'O' also equal.

It is required to prove that the volume of S-ABC is equal to

the volume of S'-A'B'C.

Proof. Divide the altitudes of the pyramids S and S' into

any number of equal parts, each into the same number, and

through the points of division pass planes parallel to the bases.

Let the sections made by these planes be DEF, GHK, etc.,

in the one pyramid, and D'E'F', G'H'K', etc., in the other.

Then
the area of DEF= the area of D'E'F', (Art. 516.)

area of OHK= area of G'H'K', etc.

With the sections DEF, GHK, etc., as upper bases, con-

struct prisms Y, Z, etc., having their edges equal and parallel

to DA, GD, etc.

Also with A'B'C, D'E'F', G'H'K', etc., as lower bases, con-

struct prisms X', Y', Z', etc., having their edges equal and

parallel to D'A', G'D', S'G', etc.
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These prisms are all of the same altitude, and in volume

T= Y', Z= Z\ etc. (Art. 508.)

Therefore the sum of all the prisms in the figure S^ is greater

than the sum of all the prisms in the figure 8 by the lowest

prism X'.

Denote the sum of the volumes of the prisms in the figure S
by P, in the figure >S' by P, and the volume of X ' by E.

Then P=P'-E.
Now, if the number of parts into which the altitudes are

divided is indefinitely increased, and the altitudes of the prisms

consequently indefinitely diminished, P will approach the

volume of the pyramid S-ABC as its limit, P' will approach

the volume of the pyramid S'-A'B'C as its limit, while E will

become indefinitely small, and is ultimately less than any

assignable quantity.

Therefore the difference between the volumes of the pyra-

mids S-ABC and S'-A'B'C is less than any assignable quantity.

That is, the volumes of the two pyramids are equal.

518. Note. The test for geometrical equality is superposition.

Tliat is to say, two geometrical magnitudes are equal when they can be

made to occupy the same position.

The test for numerical equality is given by the following definition :

Two numerical magnitudes are equal when their difference is less than

any assignable quantity.

519. Corollary I. Triang2ilar pyramids upon the same base

and having their vertices in a plane parallel to the base, are equal

• in volume.

The vertex of a tetrahedron may be moved anywhere in a

, plane parallel to the base without altering the volume.

520. Corollary II. Triangular pyramids having equal

bases in the same plane and their vertices at the same point, are

equal in volume.

If the base of a pyramid is a parallelogram, the plane through

the vertex and two opposite vertices of the base divides the

pyramid into two triangular pyramids having equal volumes.



334 ELEMENTARY GEOMETRY [Chap. VII

Proposition XV

521. The volume of a triangular pyramid is one-

third the volum^e of a triangular j)risT)% of the same
base and altitude.

Let S-ABC be any triangular pyramid and ABC-STV be a

triangular prism having the same base and altitude.

It is required to prove that the volume of S-ABC is equal to

one-third the volume of ABC-STV.

Proof. In the face BCVT of the prism draw the diagonal

CTj and through the points S, C, T, pass a plane.

The given prism is thus composed of the three triangular

pyramids S-ABC, S-BCT, and S-VCT.
Now the volumes of the two pyramids S-BCT and S-VCT

are equal. Why ?

The pyramid S-VCT may also be read C-SVT
And the volume of C-SVT is equal to the volume of S-ABC.

Why?
Therefore the prism ABC-STV is composed of three tri-

angular pyramids, each of which is equal in volume to S-ABC.
Therefore the volume of S-ABC is equal to one-third of the

volume of the prism ABC-STV

522. Corollary I. The volume of a triangular pyramid is

equal to one-third the product of its altitude and the area of its

base. (Art. 506.)
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523. Corollary II. The volume of any pyramid is equal to

one-third the product of its altitude and the area of its base.

The pyramid can be divided into triangular pyramids by
passing planes through the vertex.

524. Corollary III. TJie volumes of any two pyramids are

in the same ratio as the products of their altitudes by the areas

of their bases.

If V and V are the volumes of two pyramids, A and A' the

areas of their bases, h and h' their altitudes,

then V=^hA, V = i h'A'. (Art. 523.)

Whence i: = lM.= hA,
V \h<A> h'A'

525. Corollary IV. Tlie volumes of two pyramids having

equal altitudes are in the same ratio as the areas of their bases,

or having equal bases are in the same ratio as their altitudes.

EXERCISES

1. A pyramid is cut by a plane midway between the vertex and the

base. Find the ratio of the area of the section to the area of the base.

2. In the figure of Proposition XIV, assuming the altitude of the pyr-

amid S to have been divided into three equal parts, show that the volume

of the prism Y is four times the volume of the prism Z.

3. The section of a pyramid made by a plane parallel to the base is

equal in area to four-ninths of the area of the base. In what ratio does

the plane of section divide the lateral area ?

4. A regular pyramid and a regular prism have equal hexagonal bases,

and altitudes equal to three times the radius of the circles circumscribing

the bases. What is the ratio of their lateral areas ?

6. Find the lateral area and the volume of a regular octagonal pyramid

whose slant height is 5 metres and a side of whose base is 2 metres.

6. The total surface of a regular pyramid, whose base is a square of 10

feet side, is 360 square feet. Find its altitude.
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Proposition XVI

526. The volumes of two tetrahedrons having a tri-

hedral angle of the one equal to a trihedral angle of the

other, are in the same ratio as the products of the edges

which meet in the vertices of these angles.

G'

Let 0-ABC and O-A'B'C be two tetrahedrons having the

trihedral angles at equal, and let their volumes be Fand V.
It is required to prove that

V: V' = A0xB0xC0: A'O x B'O x CO.

Proof. Place the tetrahedrons so that their equal trihedral

angles coincide.

From A and A' draw perpendiculars AP and A'P' to the

plane OBO. These will lie in a plane with OAA' and will

meet OBC in points of a straight line OPP'. (Art. 405.)

Then A^ =^. Why?
A'P' A'O ^

Also
volume of 0-ABC
volume of 0-A'B'C

^ APx area of OBC
A'P' X area of OB'C

AO area of OBC

(Art. 524.)

A'O area of OB'C

Now area of 0^(7^^0x00.
(Art. 308.)

area of O^'O' B'O x CO ^ ^

Therefore ^^^^™® ^^ 0-ABC AO x BO x CO
volume of 0-A'B'C A'O x B'O x CO
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Proposition XVII

527. The volume of a truncated triangular prism is

equal to the sum of the volumes of three pyramids whose

common base is one base of the prism and whose vertices

are the three vertices of the other base.

Let ABC-DEF be any truncated triangular prism.

It is required to prove that the volume of this figure is

equal to the sum of the volumes of three pyramids whose

common base is ABC, and whose vertices are D, E, F, respec-

tively.

Proof. Through the points E, A, C, and E, D, C, pass

planes, thus dividing the given figure into the three pyramids

E-ABC, E-ADC, and E-DFC.
The first of these, viz. E-ABC, has the base ABC and ver-

tex jEJ.

The second, E-ABC may be read C-AED.
Now the baseAED is equal in area to the baseABD. (Art. 296.)

Therefore the volume of C-AED is equal to the volume of

C-ABD (Prop. XIV), which is the same as D-ABC.
The third, E-DFC, is equal in volume to E-AFC, which is

the same as A-EFC. And this is equal in volume to A-BFC,
which is the same as F-ABC

Therefore the prism ABC-DEF is equal in volume to the

pyramids E-ABC ^- D-ABC ^- F-ABC.
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528. Corollary I. The volume of a truncated right tri-

angular prism is equal to the product of the ai-ea of that face to

which the edges are perpendicular and one-third

the sum of the lateral edges.

For the lateral edges are the altitudes of the

three pyramids to the sum of which the

volume of the prism is equal.

529. Corollary II. The volume ofany trun-

cated triangular prism is equal to the product of

the area of a right section and one-third the sum

of the lateral edges.

On either side of the right section lies a truncated right prism

EXERCISES

1. Any two vertices of a tetrahedron may move along straight lines

drawn through them parallel to the edge through the other two, without

altering the volume of the tetrahedron.

The proof of this theorem is contained in Proposition XVII,

where it was shown that the volume of the tetrahedron

E — DEC is unaltered when E moves to J5, and D to A.

2. If A is the area of the lower base of a frustum of a pyramid, a the

area of the upper base, and h the altitude, then the

volume of the frustum = -{A-\- a-\- ^/Aa). /J\"n^

Let I be the altitude, above the base a, of the / | \ \

pyramid of which the figure considered is a frustum. /
j

\ \

Then A: a ={h + ly :l\

or y/A : Va = h -h 1:1,

VA-Va:Va = h:l; (Art. 237.)and

whence

Va — Va Va

Yolnme =-A(h-i- I) -I al

1 = hVA

^HAVA-aValh^j^^^^^^^^
3L VA-Va J 3

VA-Va
ir AhVA ahVa -

sLv^-Va VA-Va.
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Section III

SIMILAR POLYHEDRONS

530. Definition. Two polyhedrons are said to be similar

when they have the same number of faces similar each to each

and similarly placed, and have their corresponding polyhedral

angles identically equal.

Similar polyhedrons not only have the same number of faces,

but also the same number of vertices and the same number of

edges. They have the same number of faces meeting at corre-

sponding vertices, and consequently the same number of edges

meeting at corresponding vertices.

If two prisms are similar, their bases must be similar polygons,

and their homologous lateral faces similar parallelograms
;

while if two pyramids are similar, their bases are similar

polygons, and their homologous lateral faces are similar

triangles.

531. Since corresponding faces in two similar polyhedrons

are similar polygons, and homologous sides of two similar poly-

gons are proportional,

Therefore, any two edges or diagonals of a polyhedron are in

the same ratio as the homologous edges or diagonals in a similar

polyhedron.

Show that this is true when the edges do not lie in the same

face of the polyhedron.

532. The areas of two similar polygons are in the same

ratio as the squares of any two homologous sides. (Art. 315.)

Therefore, the surfaces of two similar polyhedrons (i.e. the

sums of the areas of all the faces) are in the same ratio as the

squares of any two homologous edges or homologous diagonals.

EXERCISES

1. A plane parallel to the base cuts from the top of a pyramid a figure

similar to the given pyramid. Can the same be said of a prism ?
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Proposition XVIII

533. Two tetrahedrons are similar if the three faces

meeting in a vertex of the one are similar and similarly

situated to the three faces meeting in a vertex of the

other.
A

If the tetrahedrons are A-BCD and A'-B'C'D', and the faces

meeting at the vertex A are similar and similarly situated to

the faces meeting at the vertex A', the face opposite A is simi-

lar and similarly situated to the face opposite A', since the

three sides of one of these faces are proportional to the three

sides of the other. (Art. 253.)

Also the trihedral angle A is equal to the trihedral angle A\
since the three face angles of the one are equal, respectively,

and are similarly placed to the three face angles of the other.

(Art. 461.)

For the same reason the trihedral angles B, C, D, are equal,

respectively, to the trihedral angles B', G\ D\
Therefore the tetrahedrons are similar.

534. Theorem. Any two similar polyhedrons can he divided

into the same number of tetrahedrons, similar two and two.

For, if AB^ AC, AD, and A'B', A'C, A'D' are consecutive homologous

edges of the two polyhedrons, meeting in the homologous vertices A and

A' the three pairs of planes determined by these edges, together with the

planes BCD and B'C'D', form the faces of two tetrahedrons which are

similar by the above proposition, and are similarly placed. This process

of cutting off similar tetrahedrons can be continued till only two similar

tetrahedrons remain.
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Proposition XIX

535. Tlie volumes of two similar tetrahedrons are in

the same ratio as the cubes of their homologous edges.

Let A-BCD and A'-B'C'D' be two similar tetrahedrons

whose volumes are denoted by Fand V.

It is required to prove that V : V = A& : J^l

Proof. If A and A' are two homologous vertices, the tri-

hedral angles A and A' must be equal by definition.

n^i, V
F_ ABy<ACxAD ,p ^^.

.

Therefore ^ -
^,^^ ^ ^,^, ^ ^,^,

(Prop. XVI.)

AB ^AC^^ AD
A'B' A'C A'D'

Therefore Z.,=A^.A^.^B ^
V A'B' A'B' A'B' JJB^'

536. Corollary. TJie volumes of any two similar polyhe-

drons are in the same ratio as the cubes of ttvo homologous edges.

For the polyhedrons can be divided into the same number of

similar tetrahedrons, and any two of these which are simi-

larly placed are in the same ratio as the cubes of homologous

edges. Hence the sums of all the tetrahedrons are in the

same ratio as the cubes of homologous edges. (Art. 240.)

EXERCISES

1. Any two cubes are similar polyhedrons, and hence their volumes

are in the same ratio as the cubes of homologous, or any, edges.

2. A plane is passed through the mid-points of three edges of a tetra-

hedron ; compare the volume of the original tetrahedron with the volumes

of the parts into which it is divided by the plane.
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Section IV

REGULAR POLYHEDRONS

537. Definition. A regular polyhedron is one whose faces

are equal regular polygons and whose polyhedral angles are all

equal.

Since the polyhedral angles are all equal, the same number

of faces and edges must meet at each vertex ; and since the

faces are all equal, the same number of vertices and edges

must lie on each face.

All the edges of a regular polyhedron are equal.

The faces of a convex regular polyhedron are all convex

polygons, and the polyhedral angles are all convex.

538. At each vertex there must meet at least three faces,

and in each face there must lie at least three vertices.

Moreover, the sum of the face angles at any vertex of a

convex regular polyhedron is less than four right angles, or

360 degrees. (Art. 460.)

From these two properties we are able to show that the

greatest possible number of convex regular polyhedrons is five.

The faces of a regular convex polyhedron must be regular

convex polygons, equilateral triangles, squares, etc.

1. Since the interior angle of an equilateral triangle is 60

degrees, if the faces of a regular convex polyhedron are equi-

lateral triangles, at each vertex there may meet three, four, or

Jive faces; but not six.

2. Since the interior angle of a square is 90 degrees, if the

faces of a regular convex polyhedron are squares, at each

vertex there may meet three faces, but not four.

3. Since the interior angle of a regular pentagon is 108

degrees, if the faces of a regular convex polyhedron are pen-

tagons, at each vertex there may meet three faces, but not four.

4. The interior angle of a regular hexagon is 120 degrees

;

hence it is impossible for three or more regular hexagons to
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meet at a vertex so as to form a convex polyhedral angle.

Similarly no regular polygon of more than six sides can be

a face of a regular convex polyhedron.

Therefore the only polygons which can enter into the con-

struction of regular convex polyhedrons are equilateral triangles,

squares, and regular pentagons and the ways in which these can

be combined are

:

(1) triangular faces meeting three at a vertex.

(2) triangular faces meeting four at a vertex.

(3) triangular faces meeting Jive at a vertex.

(4) square faces meeting three at a vertex.

(5) pentagonal faces meeting three at a vertex.

What is here shown is that no other regular convex poly-

hedrons than the five answering the above conditions can

exist; that these five varieties do exist can most easily be

demonstrated by actually making models of them.

r
^—

V

Tetrahedron Octahedron Dodecahedron Icosahedron

539. . The five regular polyhedrons are

:

1. The regular tetrahedron, having four triangular faces meet-

ing three in a vertex.

It has four vertices and six edges.

2. The regular octahedron, having eight triangular faces meet-

ing four in a vertex.

It has six vertices and twelve edges.

3. The regular icosahedron, having twenty triangular faces

meeting five in a vertex.

It has twelve vertices and thirty edges.

4. The regular hexahedron or cube, having six square faces

meeting three in a vertex.

It has eight vertices and twelve edges.
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5. The regular dodecahedron, having twelve pentagonal faces

meeting three in a vertex.

It has twenty vertices and thirty edges.

540. Models of the five regular convex polyhedrons can

easily be constructed by cutting pieces of cardboard in the

shape of the diagrams below, and folding them along the

dotted lines till the edges come together. The edges should

then be glued or pasted over with strips of cloth or paper. To
make the folding easy it would be well to cut the cardboard

halfway through along the dotted lines.

Tetrahedron
Octahedron

Dodecahedron
looaahedron
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Section V
POLYHEDRONS IN GENERAL

Proposition XX

541. In any polyhedron the numher of edges increased

hy two is equal to the number of faces together with the

number of vertices. [Euler's Theorem.]

Let E be the number of edges in any given polyhedron, F
the number of faces, and V the number of vertices.

It is required to prove that E -^2 = F+ F.

Proof. Imagine the polyhedron to be built up by taking one

face and to it attaching another, and another, and so on, till

the whole figure is completed.

Let / be the number of faces of the incomplete figure at

any stage, e the number of edges, and v the number of vertices.

In any face taken alone, the number of vertices equals the

number of edges.

So that when/= 1, e = u

Now to the first face add a second. One edge of the second

is made to coincide with an edge of the first, while two vertices

of the second coincide with two vertices of the first.

That is, in the new face by itself the number of edges equals

the number of vertices, but when this face is attached to the

one already taken, two vertices are lost, while only one edge is

lost.

Therefore, when/= 2, e = v + 1.

To these attach a third face, and again the numtJer of vertices

lost will exceed the number of edges lost by one^

Therefore, when /= 3, e = v + 2.

Continue this process till all the faces are added but the

last one.
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Then, when f=F—l, e = v-{-(F—2), since the number of

vertices lost for each of the F—2 faces added has exceeded

the number of edges lost by one.

When the last face is added, all of its edges and vertices are

made to coincide with edges and vertices already counted. So

that adding the last face merely completes the figure without

changing the relation between the numbers of edges and

vertices.

Therefore, for the complete figure,

E= r+(i^-2),

or E + 2 = V-\-F.

Proposition XXI

542. The sum of the face angles of any polyhedron,

together with eight right angles, is equal to four times

as many right angles as the polyhedron has vertices.

Let F denote the number of faces, E the number of edges, V
the number of vertices, and S the sum of the face angles of

any polyhedron.

It is required to prove that S -{-S right angles = 4 F right

angles.

Proof. In any face, the sum of the face angles + 4 right

angles = twice as many right angles as the face has edges.

(Art. 116.)

Therefore, adding for all the faces, remembering that each

edge is counted twice,

S -\-^F right angles = 2^x2 right angles,

or S = 4:(E — F) right angles

= 4 (F- 2) right angles, (Prop. XX.)

i.e. S + S right angles = 4 Fright angles.
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MISCELLANEOUS EXERCISES

1. There can be no polyhedron with less than four faces, or less than

six edges.

2. No polyhedron can be constructed having seven edges.

3. The sum of the areas of any three faces of a tetrahedron is greater

than the area of the fourth face.

4. If a tetrahedron is cut by a plane parallel to a pair of opposite edges,

the section will be a parallelogram.

5. The straight lines which join the mid-points of opposite edges of a

tetrahedron are concurrent.

6. If a perpendicular is drawn from a vertex of a regular tetrahedron

to its opposite face, show that the foot of the perpendicular will intersect

each median of that face, dividing it in the ratio 2:1.

7. Show that the perpendicular from the vertex of a regular tetrahedron

upon the opposite face is three times that drawn from its foot to any of

the other faces.

8. Prove that the lateral area of any pyramid is greater than the area

of the base.

Suggestion. Project the vertex on the base and join its projection to

the vertices of the base.

9. If planes are passed through three concurrent edges of a tetrahedron

and the mid-points of their opposite edges, they will intersect in one straight

line.

10. The volume of a triangular prism is equal to one-half the product of

the area of one lateral face and the perpendicular distance of it from the

opposite- edge.

11. The plane which bisects a dihedral angle of a tetrahedron cuts the

opposite edge into segments proportional to the areas of " the adjacent

faces.

12. The altitude of a regular tetrahedron is equal to the sum of the

four perpendiculars drawn from any point within it to the four faces.

13. The area of any lateral face of a prism is less than the sum of the

areas of the other lateral faces.

14. Show that the six planes bisecting the dihedral angles of any tetra-

hedron meet in one point.

• Suggestion. Compare Ex. 1, p. 303.
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15. The six planes each passing through one edge of a tetrahedron and
the mid-point of the opposite edge, meet in one point.

16. Given the number and kind of faces in each of the regular poly-

hedrons, and the number of faces meeting at a vertex, compute the num-
ber of vertices and edges.

For example, in the regular dodecahedron there are twelve pentagonal

faces meeting three in a vertex.

12 faces, 5 vertices in each face gives 60 face angles.

fin
3 face angles at each vertex, gives — = 20 vertices.

o

Also 12 faces, 5 edges in each face gives 60 edges,

but this counts each edge twice, since each edge lies in two faces.

60
Therefore the actual number of edges is — = 30 edges.

Ji

17. Verify Euler's formula, E -\- 2 = V-\- F, for the case of each of the

regular convex polyhedrons.

18. Verify Euler's formula for the case of a hexagonal pyramid and a

hexagonal prism.

19. The total number of plane angles in the faces of any polyhedron

is even, and equal to twice the number of edges.

20. The homologous edges of two similar tetrahedrons are in the ratio

5 : 6. Find the ratio of their total areas and their volumes.

21. One edge of a tetrahedron is 6 inches. Find the length of the

homologous edge of a similar tetrahedron having (1) twice the volume,

(2) twice the total area.

22. Two parallelepipeds are similar if the three faces meeting at any

vertex are similar and similarly placed.

23. If four straight lines, of which no three lie in the same plane, in-

tersect in one point, and are cut by two parallel planes on opposite sides

of their common point, show that the eight points of intersection are the

vertices of a parallelepiped.

24. The base of a pyramid is 12 square feet and its altitude is 6 feet.

Find the area of a section parallel to the base and 2 feet from it.

25. The bases of a frustum of a pyramid are 8 square feet and 4J

square feet, respectively, and its altitude is 5 feet. Find its volume.

26. A cistern is 8 feet square at the top, 6 feet square at the bottom,

and 8 feet deep. How many gallons of water will it hold, assuming 7|

gallons to the cubic foot ?
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SUMMARY OF CHAPTER VII

1, Definitions.

(1) Plane Section of a Surface— the points common to a surface

and an intersecting plane. § 468.

(2) Closed Surface— a surface such that every plane section of it

consists of one or more closed lines. § 469.

(3) Polyhedron— a surface made up of intersecting planes. § 470.

(4) Convex Polyhedron— one which lies wholly on one side or the

other of each of its faces. § 470.

(5) Tetrahedron, Pentahedron, Hexahedron, Octahedron, Dodecahe-

dron, Icosahedron. See § 470.

(6) Prism— a polyhedron of which two faces are convex polygons

lying in parallel planes and identically equal, while the remain-

ing faces are parallelograms. § 471.

(7) RigJit Prism— one whose lateral edges are perpendicular to its

bases. § 472.

(8) Right Section of a Prism— a section made by a plane perpen-

dicular to the lateral edges. § 473.

(9) Lateral Area of a Prism— the sum of the areas of the lateral

faces. § 474.

(10) Altitude of a Prism— the perpendicular distance between its

bases. § 475.

(11) Truncated Prism— a polyhedron having parallel lateral edges

like a prism, but bases which are neither parallel nor equal.

§ 483.

(12) Volume ofa Polyhedron— the space enclosed by the polyhedron,

or the measure of that space. §§ 485, 502.

(13) Parallelepiped— a prism whose bases are parallelograms. § 489.

(14) Right Parallelepiped— one in which a set of lateral edges is

perpendicular to the bases. § 490.

(15) Rectangular Parallelepiped— a, right parallelepiped whose bases

are rectangles. § 491.

(16) Cube— a parallelepiped whose faces are all squares. § 492.

(17) Pyramid— a polyhedron one of whose faces is a polygon, and

the remaining faces are triangles having a common vertex.

§509.

(18) Altitude of a Pyramid— the perpendicular distance from the

vertex to the base. § 509.

(19) Regular Pyramid— one whose base is a regular polygon and

whose vertex lies on the perpendicular to the base drawn

from its centre. § 510.
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(20) Slant Height of a Regular Pyramid— the altitude of any of its

lateral faces. § 510.

(21) Truncated Pyramid— the figure determined by the base and any

section of a pyramid and the portions of the lateral faces inter-

cepted between them. § 511.

(22) Frustum of a Pyramid— a truncated pyramid whose bases are

parallel. § 511.

(23) Similar Polyhedrons— two polyhedrons which have the same

number of faces similar, each to each, and similarly placed,

and have their corresponding polyhedral angles equal. § 530.

(24) Regular Polyhedron— one whose faces are equal regular poly-

gons, and whose polyhedral angles are all equal. § 537.

2. Axioms.

(1) If two figures are identically equal, their volumes are equal

(Axiom 13). § 486.

(2) If equal volumes be added to equal volumes, or to the same

volume, their sums are equal (Axiom 14). § 487.

3. Theorems on the Equality of Prisms.

(1) Two prisms, or truncated prisms, are identically equal if the

three faces forming a trihedral angle in one are identically

equal to the three faces forming a trihedral angle in the other,

and are similarly placed. §§ 481, 484.

(2) Two right prisms are identically equal if their bases are identically

equal and they have equal altitudes. § 482.

4. Theorems on the Sections of Prisms and Pyramids.

(1) The sections of a prism made by parallel planes are polygons

which are identically equal. § 476.

(2) If a pyramid is cut by a plane parallel to its base, the edges and

the altitude are divided in the same ratio, the section made by

the plane is similar to the base, and the area of the section is

to the area of the base as the squares of their distances from

the vertex. § 513.

(3) If two pyramids have equal altitudes and bases of equal areas,

the areas of sections made by planes equidistant from their

vertices are equal. § 516.

6. Theorems on the Lateral Areas of Prisms and Pyramids.

(1) The lateral area of a prism is equal to the product of a lateral

edge and the perimeter of a right section of the prism. § 479.
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(2) The lateral area of a right prism is equal to the product of its

altitude aud the perimeter of its base. § 480.

(3) The lateral area of a regular pyramid is equal to one-half the

product of the perimeter of the base and the slant height.

§512.

6. Theorems on the Volume of a Prism.

• (1) An oblique prism is equal in volume to a right prism whose base

is a right section of the oblique prism and whose altitude is

equal to a lateral edge of the oblique prism. § 488.

(2) The volumes of two rectangular parallelepipeds having identically

equal bases are in the same ratio as their altitudes. § 496.

(3) The volumes of two rectangular parallelepipeds having equal

altitudes are in the same ratio as the areas of their bases.

§499.

(4) The volume of any rectangular parallelepiped is the product of

its altitude and the area of its base, § 504.

(5) The volume of any parallelepiped is equal to the product of its

altitude and the area of its base. § 505.

(6) The volume of a prism is equal to the product of its altitude and

the area of its base. §§506, 507.

(7) The volume of a truncated triangular prism is equal to the sum
of the volumes of three pyramids whose common base is one

base of the prism and whose vertices are the three vertices of

the other base. § 527.

(8) The volume of a truncated right triangular prism is equal to the

product of the area of that face to which the edges are perpen-

dicular and one-third the sum of the lateral edges. § 528.

(9) The volume of any truncated triangular prism is equal to the

product of the area of a right section and one-third the sum of

the lateral edges. § 529.

7. Theorems on the Volume of a Pyramid.

(1) If two triangular pyramids have equal altitudes and equal bases,

they have equal volumes. § 517.

(2) The volume of a triangular pyramid is one-third the volume of a

triangular prism of the same base and altitude. § 521.

(3) The volume of a triangular pyramid is equal to one-third the

product of its altitude and the area of its base. § 522.

(4) The volume of any pyramid is equal to one-third the product of

its altitude and the area of its base. § 523.
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(5) The volumes of any two pyramids are in the same ratio as the

products of their altitudes and the areas of their bases. § 524.

(6) The volumes of two pyramids having equal altitudes are in the

same ratio as the areas of their bases, or having equal bases

are in the same ratio as their altitudes. § 525.

(7) The volumes of two tetrahedrons having a trihedral angle of the

one equal to a trihedral angle of the other are in the same ratio

as the products of the edges which meet in the vertices of these

angles. § 526.

8. Theorems on Similar Polyhedrons.

(1) Any two edges or diagonals of a polyhedron are in the same ratio

as the homologous edges or diagonals of a similar polyhedron.

§531.

(2) The surfaces of two similar polyhedrons {i.e. the sums of the

areas of all the faces) are in the same ratio as the squares of

any two homologous edges or homologous diagonals. § 532.

(3) Two tetrahedrons are similar if the three faces meeting in a

vertex of the one are similar and similarly situated to the

three faces meeting in a vertex of the other. § 533.

(4) The volumes of two similar tetrahedrons are in the same ratio as

the cubes of their homologous edges. § 535.

(5) The volumes of any two similar polyhedrons are in the same ratio

as the cubes of two homologous edges. §.53G.

9. Miscellaneous Theorems.

(1) The opposite lateral faces of a parallelepiped are parallel and

Identically equal. § 493.

(2) Any two opposite faces of a parallelepiped may be taken as the

bases. § 494.

(3) The plane passed through two diagonally opposite edges of a

parallelepiped divides it into two triangular prisms which are

equal in volume. § 495.

(4) In any polyhedron the number of edges increased by two is equal

to the number of faces together with the number of vertices

(Euler's Theorem). § 541.

(5) The sum of the face angles of any polyhedron together with eight

right angles is equal to four times as many right angles as the

polyhedron has vertices. § 542.



CHAPTER VIII

CYLINDERS AND CONES

Section I

CYLINDERS

543. Definitions. If a straight line moves so as always to

remain parallel to a fixed straight line, while some point of it

traverses a fixed curve not in a plane with the fixed line, it is

said to describe a cylindrical surface.

Cylindrical sitrface

Each position of the moving line is parallel to its former

position, hence the line is said to move parallel to itself.

The moving line is called the generator of the cylindrical

surface, and the guiding curve, the director.

2 A 353
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The generator in any position is an element of the surface.

A closed cylindrical surface is one whose section, made by any
plane cutting all of its elements, is a closed curve.

544. A cylinder is a figure consisting of

two parallel plane surfaces and a closed

cylindrical surface intercepted between

them.

The two plane surfaces are called the

bases, and the cylindrical surface, the

lateral surface of the cylinder. Through
every point of the lateral surface there

passes an element of the surface.

A circular cylinder is one whose bases

are circular.

A cylinder is called a right cylinder when the elements of its

lateral surface are perpendicular to the bases ; otherwise it is

an oblique cylinder.

Oblique cylinder

545. A right circular cylinder may be generated by revolv-

ing a rectangle about one of its sides. The opposite side

will then generate the cylindrical surface,

and the adjacent sides will generate the

bases.

For this reason a right circular cylinder is

sometimes called a cylinder of revolution.

The side of the rectangle about which the

rotation takes place is called the axis of the

cylinder.

Right cylinder

546. A right section of a cylinder is the

section made by a plane perpendicular to

the elements of the lateral surface.

The altitude of a cylinder is the perpendicular distance between

its bases.
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547. Theorem 1. If a plane contains one element of the

lateral surface of a cylinder and meets the lateral surface at any

other point, it contains also a second element, and the section of

the cylinder by the plane is a parallelogram.

If the plane L contains the element AB of the lateral surface of the

cylinder PQ, and meets the lateral surface again

at D, it must contain also the element through

Z>, since that element is parallel to AB^ and

must lie in a plane with AB.
The plane L therefore cuts the lateral surface

of the cylinder along two parallel lines AB and

CD, and the bases along two straight lines AD
and BC which are also parallel (Art. 419).

Hence the section of the cylinder made by the

plane is a parallelogram.

548. Corollary. Tlie section of a

right cylinder made by a plane containing

an element of the lateral surface is a

rectangle.

549. Definition. If a plane contains one element of the

lateral surface of a cylinder, and only one, it is said to be

tangent to the cylinder.

The element which the tangent plane contains is called the

element of contact.

A straight line is tangent to a cylinder when it meets an

element of the lateral surface, and lies in the tangent plane

containing that element.

550. Theorem II. Tlie plane determined by a tangent to any

circular section of a cylinder and the element of the lateral sur-

face passing through its point of contact is tangent to the cylinder.

For if it is not tangent to the cylinder it must contain a second

element of the lateral surface, and so contain a chord of the

section instead of the tangent to the section.

Conversely. If a plane is tangent to a circular cylinder it

intersects the plane of the base in a tangent to the base.
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551. Definition. If sections of a cylindrical surface are

made by two planes, those are corresponding points of the

sections which lie upon the same element of the surface.

Proposition I

552. Parallel sections of a cylindrical surface are

identically equal.

Let QR be any cylindrical surface of which PABC and

P'A'B'C are parallel sections.

It is required to prove that PABC and P'A'B'C are identi-

cally equal.

Proof. Suppose A, A' ; B, B' ; C, C are any three pairs of

corresponding points in the two sections.

Then, AA' and BB' are not only parallel but also equal

(Art. 420), and hence ABB'A' is a parallelogram. (Art. 127.)

Therefore

Similarly,

AB = A'B'.

AC=A'C',2iSidL

(Art. 123.)

BC=B'0'.
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Therefore As^50 and A'B'C are identically equal, and

can be superposed. (Art. 53.)

Suppose now that the section P'A'B'C is placed upon the

section PABC so that the points A', B', C coincide with their

corresponding points A, B, C, and let A, A' and C, C remain

fixed while B traverses the section PABC. Since B will

always coincide with its corresponding point B', every point

of the one section will coincide with its corresponding point

in the other.

Therefore the two sections are identically equal.

553. Corollary I. The bases of a cylinder are identically

equal.

554. Corollary II. A7iy two right sectioiis of a cylinder are

identically equal.

555. Corollary III. Any section of a cylinder parallel to

the base is identically equal to the base.

556. Corollary IV. All sections of a circular cylinder

parallel to its bases are equal circles, and the straight line joining

the centres of the bases passes through the centres of all the parallel

sections.

EXERCISES

1. If through any point of the lateral surface of a cylinder a straight

line is drawn parallel to any element of the surface, this straight line is

also an element of the surface.

2. Show that all the elements of the lateral surface of a cylinder are of

equal lengths.

3. The line of intersection of two planes tangent to a cylinder is

parallel to an element of the lateral surface, and to the plane through

their two elements of contact.

4. Find the locus of points (1) at a given distance from a given straight

line
; (2) at given distances from each of two given parallel straight lines.
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Definitions

557. A prism is inscribed in a cylinder

when its bases and the bases of the cylin-

der lie in the same planes, and its lateral

edges are elements of the lateral surface of

the cylinder.

The cylinder is at the same time circum-

scribed about the prism.

The section of an inscribed prism made
by any plane is inscribed in the section of

the cylinder made by the same plane. Priam inscribed in

a cylinder

558. A prism is circumscribed about

a cylinder when its bases and the

bases of the cylinder lie in the same

planes, and its lateral faces are tan-

gent to the cylinder.

The cylinder is at the same time

inscribed in the prism.

The section of a circumscribed

prism made by any plane is circum-

scribed about the section of the cylin-

der made by the same plane.

559. If a regular prism is inscribed,

or circumscribed, to a circular cylin-

der, and the number of its lateral faces

is indefinitely increased in some regu-

lar way, the lateral surface of the prism approaches the lateral

surface of the cylinder as its limit, the volume of the prism

approaches the volume of the cylinder as its limit, and the

perimeter and area of a right section of the prism approach

the perimeter and area of a right section of the cylinder as

their limits.

Prism circmnscribed about a
cylinder
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Proposition II

560. The lateral area of a circular cylinder is equal

to the product of the perimeter of a right section of the

cylinder and the length of an element of its lateral

surface.

Let PQ be a circular cylinder of which S is the perimeter of

a right section, and AB an element of the lateral surface.

It is required to prove that the lateral area of PQ is equal to

S times AB.

Proof. In the cylinder PQ inscribe a regular prism AH,
one of whose elements is AB. Let KM be a right section of

this prism. The lateral area of AH= perimeter of KM x AB.
(Art. 479.)

If the number of lateral faces ofAH is indefinitely increased,

the lateral area of AH approaches the lateral area of PQ as

its limit, and the perimeter of KM approaches S as its limit.

Therefore the lateral area of PQ = S x AB. (Art. 230.)

561. Corollary. The lateral area of a right circular cylin-

der is equal to the product of the altitude and the circumference of
the base.

If the lateral area is represented by A, the radius of the base

by r, and the altitude by h,

A = 2 Tvh.
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Proposition III

562. The volume of a circular cylinder is equal to the product

of its altitude and the area of its base.

The proof of this theorem is similar to that of Proposition II,

and is left to the pupil. Reference should be made to

Article 507.

If the volume is represented by F, the altitude by h, and the

radius of the base by r,

V = irr^h.

563. Corollary. Tfie volumes of all circular cylinders,

whether right or oblique, having equal bases and equal altitudes

are equal.

EXERCISES

Note. Use 3^ as the approximate value of rr.

1. Find the volume, the lateral area, and the total area of a right cir-

cular cylinder the diameter of whose base is 14 inches, and whose altitude

is 11 inches.

2. The lateral area of a right circular cylinder is 528 square feet, and

its volume is 1584 cubic feet. Find the diameter and circumference of

its base, and its altitude.

3. Two right circular cylinders are of equal height while the circum-

ference of one is double the circumference of the other. What is the

ratio of their lateral areas ? Also of their volumes ?

4. A hollow cylindrical iron tube has an outer diameter of 12 inches

and an inner diameter of 9 inches. How many cubic inches of iron are

there in a piece of the tube 2 feet long ?

5. When a tap is opened the water in a pipe of one inch inner diam-

eter flows at the rate of two miles an hour. How many gallons of water

would flow from the tap in 20 minutes ?

Take 1\ gallons to a cubic foot.

6. Show that the volumes of two similar right circular cylinders are in

the same ratio as the cubes of their altitudes, or as the cubes of the radii

of their bases.

7. What is the altitude of a right circular cylinder if its lateral area

equals the sum of the areas of its bases ?
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Section II

THE CONE

564. Definition. If a straight line moves so as always

to pass through a fixed point, while some point of the line

traverses a fixed curve not in a plane with the

fixed point, it will describe a conical surface. m^_ ^^
As in the cylindrical surface, the generating W~ "W^

line in any position is an element of the surface. \ W
The directing curve will always be considered \X

a closed curve. /\

The fixed point through which the generating / \
line always passes is called the vertex of the J Ik

surface. m" 1^
If the generating line is indefinite in length,

the surface is divided into two parts at the ver- ^"*^" mrface

tex, called the two sheets, or the two nappes of the conical surface.

When we speak of a pla.ne section of a conical surface, we
shall always have in mind the section made by a plane which

cuts all the elements on the same side of the vertex, that is, a

section of one of the sheets.

565. Definition. A cone is a figure consisting of a plane

surface and a conical surface intercepted

between the plane surface and the vertex. a

The plane surface is called the base, and / \
the conical surface the lateral surface. The £' \
vertex of the conical surface is the vertex M m,

of the cone. ^^_ ]«.

The straight line joining any point of the ^P^ ^^m
lateral surface to the vertex is an element of ^^«1.^__^ \^
the lateral surface, since it must coincide circular cone

with the generating line in one position.

A circular cone is one whose base is circular. The straight

line joining the vertex to the centre of the base is called the

axis of the cone.
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When the vertex lies on the perpendicular to the base drawn

from its centre, the cone is called a right circular cone.

566. The altitude of a cone is the perpendicular distance

from the vertex to the plane of the base.

567. The slant height of a right circular cone is the length of

an element of the lateral surface.

568. Theorem I. Any plane which contains one element of the

lateral surface of a cone and meets the sur-

face at any other point, contains also a second

elemeyit, and the section of the cone by the

plane is a triangle.

If the plane L contains the element SB of the

cone S-ABC, and meets the surface again at the

point D it must contain the element SD, since it

contains two points of this element.

The section of the cone by the plane L there-

fore consists of the line-segments SB, SD, and

BD, and is thus a triangle.

569. Corollary. The section of a right

circular cone by a plane through the vertex is

an isosceles triangle.

570. Definition. If a plane contains one element of the

lateral surface of a cone and only one, it is said to be tangent

to the cone, and the element which it contains is called the

element of contact.

571. Theorem II. The plane determined by a tangent to the

base of a circular cone and the element of the lateral surface

passing through its point of contact is tangent to the cone.

Conversely. If a plane is tangent to a circular cone, its

intersection with the plane of the base is tangent to the base.

See Article 550.
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Proposition IV

572. t^ny section of a circular cone made hy a plane

parallel to the base is a circle, and its centre lies upon
the straight line joining the vertex to the centre of the

hose.

77" "'

" -
*"

X 7

Let A'B'Q' be the section of the circular cone S-ABQ made

by a plane L parallel to the base, and let SO he the straight

line joining S to the centre of the base.

It is required to prove that A'B'Q' is a circle whose centre

lies on SO.

Proof. Let A' and B' be any two points of the section, and

let the planes determined by the line SO and A', SO and B'

intersect the lateral surface of the cone in the straight lines

SA'A, SB'B, the base in the lines AO, BO, and the plane L in

the lines A'O', B'O', parallel to J.0 and BO, respectively.

Therefore ^^^^ = 9^. (Art. 242.)
OA OS OB ^ ^

But OA = OB. Therefore 0'A'=0'B'.

Since A' and B' are any points whatever in the section made

by L, all points of the section are equidistant from 0'.

Therefore the section is a circle with its centre at 0'.

573. Corollary. The radii of two sections of a circular

cone, parallel to the base, are in the same ratio as their distances

from the vertex.
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574. Definitions. A pyramid is inscribed in a cone when
their bases lie in the same plane, and the lateral edges of the

pyramid are elements of the lateral surface of the cone.

Pyramid inscribed

in a cone

Pyramid circumHcrihed

about a cone

The vertex of the inscribed pyramid coincides with the

vertex of the cone, and the base of the pyramid is inscribed in

the base of the cone. The section of the inscribed pyramid

made by any plane is inscribed in the section of the cone made
by the same plane.

575. A pyramid is circumscribed about a cone when their bases

lie in the same plane, and the lateral faces of the pyramid are

tangent to the cone.

The vertex of the circumscribed pyramid coincides with the

vertex of the cone, and the base of the pyramid is circum-

scribed about the base of the cone. The section of the circum-

scribed pyramid made by any plane is circumscribed about

the section of the cone made by the same plane.

576. If a regular pyramid is inscribed, or circumscribed, to

a circular cone and the number of its lateral faces is indefinitely

increased in some regular way, the lateral surface of the pyr-

amid approaches the lateral surface of the cone as its limit,

and the volume of the pyramid approaches the volume of the

cone as its limit.
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Proposition V

577. The lateral area of a right circular cone is equal

to one-half the product of the circumference of the base

and the slant height.

S

Let S-ACE be a right circular cone, of which I is the slant

height, and M the circumference of the base.

It is required to prove that the lateral area of S-ACE is

equal to \ Ml.

Proof. Inscribe in the cone S-ACE a regular pyramid P,

one of whose elements is SA = I, and the perimeter of whose

base is H.

Then the lateral area oi P=\Hl (Art. 512.)

If the number of lateral faces of P is indefinitely increased,

the lateral area of P approaches the lateral area of S-ACE as

its limit, and the perimeter H approaches the circumferenceM
as its limit.

Therefore the lateral area of S-ACE = \ Ml (Art. 230.)

If the radius of the base is r, and the lateral area is represented

by A
A = irrl.

578. Definition. The frustum of a cone is that portion

of a cone intercepted between the base and a plane parallel

to the base intersecting the lateral surface.



366 ELEMENTARY GEOMETRY [Chap. VIII

Proposition VI

579. The volume of a circular cone is equal to one-

third the product of its altitude and the area of its

base.
The proof of this theorem is similar to that of Proposition V,

and is left to the pupil.

If the volume is represented by F, the altitude by ^, and the

radius of the base by r,
*

V= \TrrVi.

MISCELLANEOUS EXERCISES

1. Find the lateral area and the volume of a right circular cone, the

area of whose base is 154 square inches and whose altitude is 11 mches.

2. The slant height of a right circular cone is 4 metres. How far from

the vertex must a section parallel to the base be taken so as to divide the

lateral area into two equal parts ?

3. A right triangle whose sides are 3, 4, 5 feet, respectively, is rotated

about the shortest side. Find the area of the surface described by the

hypotenuse.

4. Show that the lateral areas of similar right circular cylinders are

in the same ratio as the squares of their altitudes, or as the squares of the

radii of their bases.

Definition. Similar right circular cylinders are generated by the

rotation of similar rectangles about homologous sides;

6. Show that the lateral areas of two similar cones of revolution are

in the same ratio as the squares of their slant heights, or as the squares

of their altitudes, or as the squares of the radii of their bases.

Definition. Similar cones of revolution, or right circular cones, are

generated by similar right triangles rotating about homologous sides.

6. Show that the volumes of two similar right circular cones are in

the same ratio as the cubes of their altitudes, or as the cubes of the radii

of their bases.

7, The volumes of two similar cones of revolution are in the ratio of

512 . 729. What is the ratio of their lateral areas ?.
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8. Show that the lateral area of the frustum of a right circular cone is

equal to the sum of the circumferences of its bases multiplied by one- half

the slant height.

9. Show that the lateral area of the frustum of a right circular cone is

equal to the circumference of a section midway between the bases multi-

plied by the slant height.

10. Show that the volume of the frustum of a circular cone, the areas

of whose bases are B and b and whose altitude is h, is given by the

formula

V=lh(B+b-hVBb).
See Ex. 2, p. 338.

11. A right circular cylinder of height 2 ft. and the radius of whose

base is 6 in. rolls on a plane making one complete revolution. What is

the shape of the surface covered by it ? Find its area.

12. A right circular cone whose altitude is 12 in. and the radius of whose

base is 5 in. rolls on a plane, without slipping, making one complete revo-

lution. What is the shape of the surface covered ? Find its area.

13. A regular hexagonal prism is inscribed in a right circular cylinder.

Compare their lateral areas and their volumes.

14. The base of a right circular cylinder has a radius of 7 cm. and an

altitude of 7 cm. Find its total surface area and its volume.

15. A rectangle whose adjacent sides are 5 ft. and 7 ft., respectively,

revolves in succession about these sides; show that the volumes of the

cylinders generated are in the ratio 7 : 5.

16. The total surface of a right circular cone is 462 sq. cm., and the

slant height is twice the radius of the base ; find the volume.

17. In a right circular cylinder of height 3 ft. and 8 in. radius, a square

prism is inscribed. Find its volume.

18. A square whose side is 50 cm. revolves about one of its diagonals
;

find the area and volume of the figure so generated.

19. Show that in a right circular cone all the elements of the lateral

surface are equal in length.

20. Show that the total area T of a right circular cylinder, including

the areas of the two bases, is given by the formula :

T=2 irrh + 2 Trr^=: 2irr(h-\- r).

21. A circular cistern is 22 ft. in circumference at the top, 16 ft. at the

bottom, and 8 ft. deep. How many gallons of water will it hold, assum-

ing 7 1 gallons to the cubic foot ?
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SUMMARY OF CHAPTER VIII
1. Definitions.

(1) Cylindrical Surface— the surface described by a straight line

moving parallel to a fixed straight line, while some point of it

traverses a fixed curve not in a plane W\t\\ the fixed line. § 543.

(2) Conical Surface— the surface described by a straight fine which

moves so as always to pass through a fixed point, while some

point of it traverses a fixed curve not in a plane with the fixed

point. § 564.

(3) Closed Cylindrical Surface— one for which the directing curve

is closed. § 543.

(4) Vertex of a Conical Surface— the point through which all the

elements of the surface pass. § 564.

(5) Cylinder— a figure consisting of two parallel plane surfaces and

a closed cylindrical surface intercepted between them. § 544.

(6) Circular Cylinder— one whose bases are circular. § 544.

(7) Bight Cylinder— one in which the elements of the lateral surface

are perpendicular to the bases. § 544.

(8) Cone— a figure consisting of a plane and the conical surface

intercepted between it and the vertex. § 565.

(9) Circidar Cone— one whose base is circular. § 565.

(10) Bight Circular Cone— one whose vertex lies on the perpen-

dicular to the base drawn from its centre. § 565.

(11) Tangent to a Cylinder or a Cone— a plane containing one element

of the lateral surface, and only one ; also, a line meeting one

element of the surface, and only one. § 549. § 570.

(12) Frustum of a Cone— that portion of a cone intercepted between

its base and a plane parallel to the base, intersecting the lateral

surface. § 578.

2. Theorems on the Properties of Cylinders.

(1) A plane which contains one element of the lateral surface of a

cylinder in general contains also another element, and the

section is a parallelogram. § 547.

(2) The section of a right cylinder made by a plane containing an

element of the lateral surface is a rectangle. § 548.

(3) The plane determined by a tangent to any circular section of a

cylinder and the element of the lateral surface passing through

its point of contact is tangent to the cylinder ; and conversely,

if a plane is tangent to a circular cylinder it intersects the

plane of the base in a tangent to the base. § 550.
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(4) Parallel sections of a cylindrical surface are identically equal.

§552.

(5) The bases of a cylinder are identically equal. § 553.

(6) Any two right sections of a cylinder are identically equal. § 554.

(7) Any section of a cylinder parallel to the base is identically equal

to the base. § 555.

(8) All the sections of a circular cylinder parallel to its bases are

equal circles, and the straight line joining the centres of the

bases passes through the centres of all the parallel sections.

§566.

3. Theorems on the Properties of Cones.

(1) Any plane containing one element of the lateral surface of a cone

contains in general a second element and the section of the cone

by the plane is a triangle. § 568.

(2) The plane determined by a tangent to the base of a circular cone

and the element of the lateral surface passing through its point

of contact is tangent to the cone ; and conversely, if a plane is

tangent to a circular cone, its intersection with the plane of

the base is tangent to the base. § 571.

(3) Any section of a circular cone made by a plane parallel to the

base is a circle, and its centre lies upon the straight line joining

the vertex to the centre of the base. § 572.

4. Theorems on the Lateral Area and the Volume of a Cylinder.

(1) The lateral area of a circular cylinder is equal to the product of

the perimeter of a right section of the cylinder and the length

of an element of its lateral surface. § 560.

(2) The lateral area of a right circular cylinder is equal to the product

of the circumference of the base and the altitude. A = 2 irrh.

§561.

(3) The volume of a circular cylinder is equal to the product of its

altitude and the area of its base, V= irr^h. § 562.

(4) The volumes of all circular cylinders, whether right or oblique,

having equal bases and equal altitudes are equal. § 563.

5. Theorems on the Lateral Area and the Volume of a Cone.

(1) The lateral area of a right circular cone is equal to one-half the

product of the circumference of the base and the slant height.

A = Trrh. §577.

(2) The volume of a circular cone is equal to one-third the product

of its altitude and the area of its base. V=\ irr^h. § 579.

2b



CHAPTER IX

THE SPHERE

Section I

PLANE SECTIONS AND TANGENT PLANES

580. Definitions. A sphere is a closed surface such that

all points of it are equidistant from a fixed point within it.

The fixed point is called the centre of the sphere.

If a circle is rotated about its diameter, the surface described

by it is a sphere.

Any straight line drawn from the centre to a point on the

sphere is called a radius of the sphere.

A straight line drawn through the centre and terminated both

ways by the sphere is called a diameter of the sphere.

The length of a diameter is twice the length of a radius.

It follows from the definition of a sphere that all radii of the

same sphere are equal, and hence that all diameters of the same

sphere are equal.

581. Theorem. Equal spheres have equal radii and equal

diameters.

Conversely. Spheres which have equal radii or equal diame-

ters are equal.

582. Spheres which have the same centre but do not coincide

are called concentric spheres.

Spheres having the same centre and one point in common
must coincide throughout.

370
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Proposition I

583. The section of a sphere made by a plane is a
circle.

Let be tlie centre of the given sphere and A^ B, C three

points on the section made by any plane L.

It is required to prove that ABC is a circle.

Proof. From draw OP perpendicular to the plane L, draw

the radii OA and OB, and join PA and PB.

As OPA and OPB are identically equal. (Art. 78.)

Hence PA = PB.

But A and B are any two points common to the plane and

sphere.

Therefore all points common to the plane and sphere are

equidistant from P.

Therefore the section of the sphere made by the plane Z is a

circle.

584. Corollary I. Sections of a sphere made by planes

equidistant from the centre are equal circles, and of two sections

made by planes unequally distant from the ceritre, that is the

greater circle which is made by the nearer plane.

585. Definition. Any circle lying on a sphere is called

a circle of the sphere.

A circle whose plane passes through the centre of the sphere

is called a great circle of the sphere; one whose plane does

not pass through the centre is called a small circle of the sphere.
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A quadrant is one quarter of a great circle of a sphere, and
subtends a right angle at the centre of the sphere.

586. Corollary II. TJie centre of any circle of a sphere is

the foot of the pei'pendicular drawn from the centre of the sphere

to the plane of the circle.

587. Corollary III. The centres of all great circles coin-

cide with the centre of the sphere^ and all great circles on the same

sphere are equal.

588. Corollary IV. Every great circle divides the sphere

into two equal parts.

589. Corollary V. Any two great circles on the same sphere

bisect each other.

Their planes intersect in a diameter of each circle.

590. Corollary VI. An arc of a great circle can he drawn

through any two given points on a sphere, and if the two given

points are not the extremities of a diameter, only one such arc less

than a semicircle can he drawn.

The two given points and the centre of the sphere determine

the plane of the great circle.

591. Corollary VII. TJirough three given points on a sphere

one and only one circle can he drawn.

592. Definition. The diameter of a sphere perpendicular

to the plane of any circle of the sphere is called the axis of that

circle, and the extremities of the diameter are called the poles

of the circle.

Are the poles of a circle of a sphere equally or unequally dis-

tant from the plane of the circle ?

593. By the distance between two points on a sphere is

meant the length of the arc, not greater than a semicircle, of

the great circle passing through them.

A distinction is made here between the distance measured on

a sphere and measured along a straight line.



585-596] THE SPHERE 373

Proposition II

594. All points of any circle of a sphere are equidis-

tant from either of its poles.

Let A, B, C be any three points of a given circle of the

sphere whose centre is 0, and let P and P' be the poles of

that circle.

It is required to prove that A, B^ C are equidistant from P,

and also equidistant from P'.

Proof. If planes are passed through the line PP^ and the

points A, B, C, the arcs determined by them, PA, PB, PC,

P'A, P'B, P'C, are arcs of great circles. Hence the distance

from P to J. is the length of the arc PA, etc.

Since PP' is perpendicular to the plane of the circle ABC at

its centre, the chords PA, PB, PC are all equal. Prove.

Therefore the arcs PA, PB, PO'are all equal. (Art. 163.)

Similarly, the arcs PA, P'B, P'C are all equal.

595. Definition. The distance on a sphere of any point

of a circle from its nearer pole is called the polar distance of

the circle.

596. Corollary I. TTie polar distance of any point of a

great circle is one-fourth the circumference of a great circle, or

more briefly, is a quadrant.
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597. Corollary II. If a point on a sphere is a quadrant's

distance from each of two given points on the sphere, it is the pole

of the great circle passing through the two

points.

Let P be a quadrant's distance from A and
B ;

throuj?h PA, PB, and AB pass great circles.

Then Z POA is a right angle. Also Z POB is a

right angle. Therefore PO is perpendicular to

the plane AOB. (Art. 397.) Hence P is the

pole of the great circle through A and B.

Corollary III. If one point on a sphere is a quad-

rant's distance from another, it is the pole of some great circle

passing through the other.

599. The study of the geometry of a sphere, or Spherical Geometry,

is greatly simplified by the use of a slated globe upon which chalk marks

can be made and erased. If the length of the radius of such a spherical

surface is known, Corollary II enables us to draw on it the arc of a

great circle passing through any two given points.

To do this first draw in any plane a circle

whose radius r is equal to the radius of the

given spherical surface, and make an opening

in the compasses equal to EF., the chord of

a quadrant.

Then, if A and B are the given points on

the spherical surface, arcs described on the

sphere, with the stationary arm of the com-

passes at A and B in turn, will intersect at P,

the pole of the great circle through A and B.

The arc described with the stationary arm at P, and with the same open-

ing, will then be the arc of a great circle through A and B.

By the same method we can find the pole of a given arc of a great

circle, or draw the great circle of which a given point is the pole.

A geometrical method of finding the length of the diameter of a given

material spherical solid will be found in Proposition XIX, page 393.

For all work on a sphere, a pair of compasses with curved arms will be

found most convenient.
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600. Definitions. A plane which meets a sphere at one

and only one point is tangent to the sphere. The point which

the sphere and plane have in common is called the point of

contact.

A straight line is tangent to a sphere when it meets the sphere

at one and only one point, no matter how far it is produced.

A straight line tangent to a sphere is tangent to every sec-

tion of the sphere made by planes through the line.

Proposition III

601. A plane which is perpendicular to a radius of
a sphere at its extremity is tangent to the sphere.

Let the plane L be perpendicular to the radius OA of the

sphere whose centre is 0, at its extremity A.

It is required to prove that the plane L is tangent to the

sphere.

Proof. First, the plane has the point A in common with

the sphere.

Next, every other point of L lies outside of the sphere.

Why?
Therefore the plane L is tangent to the sphere.

Conversely. A plane tvhich is tangent to a sphere is perpen-

dicular to the radius drawn to its point of contact.

For if not, the perpendicular to it drawn from the centre is less

than a radius, and the plane must pass inside the sphere.
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602. Corollary I. All lines tangent to a sphere at one

point lie in a plane tangent to the sphere at that point.

For they are all perpendicular to the radius through the

point. Why ?

603. Corollary II. TTie plane of two straight lines tangent

to a sphere at the same point is also tangent to the sphere at that

point.

Proposition IV

604. The intersection of two spheres is a circle, the

plane of which is perpendicular to the straight line

joining the centres of the spheres, and the centre of

which is on that line.

Let and 0' be the centres of two spheres which intersect.

It is required to prove that their intersection is a circle

whose plane is perpendicular to 00' and whose centre lies

on 00\

Proof. Let A be any point common to the two spheres.

Through A and 00' pass a plane. This will cut the spheres

in two circles, which intersect at A and another point B.

The chord AB is perpendicular to 00', and is bisected by

it at C. . (Art. 168.)

If the plane of OAO' is revolved about 00', the two circles

will describe the given spheres, and the point A will trace

their line of intersection.

Since AC is perpendicular to 00' and remains of constant

length, A will describe a circle whose plane is perpendicular

to 00' and whose centre is C.
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Proposition V

605. Through any four points not lying in the same
plane, one and only one sphere can be passed.

Let A, B, C, D be four points not lying in the same plane.

It is required to prove that one and only one sphere can be

passed through A^ B, C, and D.

Proof. Pass planes through the points A, B, C and A, D, C,

and find the centres M and N of the circles circumscribing

As ABC and ADC, respectively. (Art. 151.)

Let K be the mid-point of the line-segment AC, and join

MK and NK
These lines will be perpendicular to ^C at K (Art. 166.)

The plane MKN is perpendicular to both planes ABC and

ADC, being perpendicular to their intersection AC. (Art. 438.)

The perpendiculars to the planes ABC and ADC erected at

M and N will therefore lie in the plane MKN, and must inter-

sect at some point 0. (Arts. 440, 98.)

Then is the centre of a sphere which passes through the

four points A, B, C, D.

For, the straight line MO is the locus of points equidistant

from A, B, and C.

The straight line NO is the locus of points equidistant from

A, D, and C.
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Hence the point is equidistant from A, B, C, and D, and

a sphere whose centre is and radius equal to OA will pass

through the four given points.

Also, since MO and NO have no other common point than O,

no other sphere can be passed through the four given points.

606. Definition. A polyhedron is said to be inscribed in a

sphere (or the sphere to be circumscribed about the polyhedron)

when the vertices of the polyhedron lie on the sphere. A
polyhedron is said to be circumscribed about a sphere (or the

sphere to be inscribed in the polyhedron) when the faces of

the polyhedron are tangent to the sphere.

607. Corollary I. One and only one sphere can be circuTn-

scribed about a tetrahedron.

608. Corollary II. TTie perpendiculars to the four faces of

a tetrahedron, erected at the centres of the circumscribed circleSy

all pass through one point.

609. Corollary III. The six planes perpendicular to the

edges of a tetrahedron at their mid-points have one point in

common.

EXERCISES

1. If from a point outside of a sphere straight lines are drawn tangent

to the sphere, the line-segments lying between the point and the points of

contact are all equal.

2. Show that in the preceding example the points of contact all lie on

a small circle of the sphere whose axis is the straight line joining the

given point to the centre of the sphere.

3. Construct a sphere which will pass through the eight vertices of a

cube.

4. Show that the sphere which is passed through two pairs of diagonally

opposite vertices of a rectangular parallelepiped passes also through the

other vertices.
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Pboposition VI

610. One and only one sphere can be inscribed in

any given tetrahedron.

D

Let ABCD be any given tetrahedron.

It is required to prove that one and only one sphere can be

inscribed in ABCD.

The proof is left to the pupil.

Suggestion. Pass planes through the three edges of any one side, as

ABC, bisecting the dihedral angles.

611. Corollary. The planes ivhich bisect the six dihedral

angles of any tetrahedron have one point in common.

EXERCISES

1. What is the locus of points at a distance a from a point A, and at a

distance h from a point B ?

2. What is the locus of points in space whose distances from two

fixed points are in a given ratio ? (See Prop. XX, Chap. III.)

3. What is the locus of the centres of the spheres to which three given

mtersecting planes are tangent ?

4. If two spheres are tangent to the same plane at the same point, the

straight line joining their centres passes through that point.

5. How many spheres can be made to touch four planes not all passing

through the same point ?
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Section II

SPHERICAL ANGLES, TRLA.NGLES, AND POLYGONS

612. Definition. The angle formed by any two intersect-

ing circles is defined to be the angle formed by their tangents

at their common point.

The same definition holds for the angle formed by any two

intersecting curves.

The angle formed by two intersecting arcs of great circles of

a sphere is called a spherical angle.

When the tangents to the two arcs are at right angles the

spherical angle is called a right spherical angle.

The point at which the two arcs intersect is called the

vertex of the spherical angle.

613. The planes of two great circles of a sphere intersect

in a diameter. Hence the tangents of

two intersecting arcs of great circles at

their common point are perpendicular

to the edge of the dihedral angle formed

by their planes, and the angle between

the tangents is the plane angle of the

dihedral angle formed by the planes of

the circles. (Art. 430.)

Therefore

Theorem I. The angle formed by two intersectiyig arcs of

great circles has the same measure as the dihedral angle formed

by the planes of the circles.

614. Suppose PA and PB are two given arcs of great

circles. Draw the great circle of which P is the pole, and let

it intersect PA at Q, and PB at R. Join QO and RO, being

the centre of the sphere.

Since PQ is a quadrant, Z.POQ is a right angle. Similarly

Z POR is a right angle. Therefore Z QOR is the plane angle
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of the dihedral angle formed by the planes of FA and PB,

and is equal to the angle between the tangents at P, i.e. to the

spherical angle APB.
Now Z QOR : four right angles = arc QM : a great circle.

(Art. 267.)

rpi p spherical angle APB _ arc QR
four right spherical angles a great circle

Since the second and fourth terms in this proportion are

constant quantities, the above relation is sometimes briefly

expressed by saying that " the spherical angle APB Is propor-

tioned to the arc Qi?," meaning thereby that any change in the

one causes a proportional change in the other.

Therefore

Theorem II. The angle formed by two intersecting arcs of

great circles is proportional to the arc of the great circle of

ivhich the vertex of the angle is the pole, intercepted between the

given arcs (produced if necessary).

615. Suppose we choose any unit of measure for angles, as for ex-

ample, a degree, and take as unit of measure for arcs that arc of a great

circle which subtends a unit angle at the cen-

tre of the sphere.

Thus if ABC is a great circle of a sphere,

and AOB is a unit angle, the arc AB is taken

as the unit arc.

This unit arc is also frequently called a

' degree,' but care must be taken to distinguish

between 'angle degree' and 'arc degree.'

Arc degrees are all equal in the same circle,

or in equal circles, but are unequal in unequal

circles.

Any quadrant of a circle contains 90 arc degrees, a semicircle 180 arc

degrees, and a circle 360 arc degrees.

In the diagram of Art. 613, Z QOR will have the same measure as the

arc QR, the units of measure being chosen as above. But the spherical

angle QPR has the same measure as Z QOR. Therefore the spherical

angle QPR has the same measure as the arc QR.
Hence Theorem II can be stated as follows :
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Theorem II. The angle formed by two intersecting arcs of

great circles has the same measure as the arc of the great circle

of which the vertex of the angle is the pole, intercepted between the

given arcs {produced if necessary).

616. If, in the diagram of Article 613, Q is the pole of the

great circle PSP', as it is the pole of some great circle through

P (Prop. II, Cor. Ill), then the spherical angle PQS has the

same measure as the arc PS.

But the arc PS is a quadrant, hence /.PQS is a right

spherical angle. Now PQ is any arc drawn from P to the great

circle of which P is the pole.

Therefore

Theorem III. All arcs of great circles drawn through the pole

of a given great circle are perpendicular to the given great circle.

617. Definition. A spherical polygon is

a closed figure on a sphere consisting of arcs

of great circles which intersect, two and two,

in order.

The points in which the arcs intersect are

the vertices of the polygon, the arcs inter-

cepted between consecutive vertices are the

sides, and the spherical angles formed by consecutive sides are

the angles of the polygon.

A spherical polygon of three sides is called a spherical

triangle.

A convex spherical polygon lies wholly on one side or the

other of each of its sides produced ever so far.

618. Theorem IV. No side of a convex spherical polygon

can be greater than a semicircle.

For, if the side AD of the spherical polygon ABCD in the

diagram is greater than a semicircle, AB produced must inter-

sect AD between A and Z), since great circles of a sphere bisect
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each other. In that case the polygon would lie partly on one

side of AB and partly on the other, and hence could not be

convex.

619. Definition. Two spherical polygons are identically

equal when they can be made to occupy the same position, i.e.

when they can be superposed.

620. The planes of the great circles, of which the sides of a

spherical polygon are arcs, form at the centre of the sphere a

polyhedral angle whose face angles have the same numerical

measures as the sides of the polygon, and whose dihedral angles

have the same measures as the angles of the polygon.

. If the spherical polygon is convex, the corresponding poly-

hedral angle is convex, and conversely.

Two spherical polygons are identically equal if the cor-

responding polyhedral angles are equal, and conversely.

Many properties of spherical polygons can be derived directly

from known properties of the corresponding polyhedral angles.

Proposition VII

621. The sum of any two sides of a spherical triangle

is greater than the third side.

Suggestions for Proof. The sum of any two face angles of a tri-

hedral angle is greater than the third face angle. (Art. 459.)

How do the measures of the sides of the spherical triangle compare

with the measures of the face angles of the corresponding trihedral

angle ?
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Proposition VIII

622. The sum of the sides of a convex spherical poly-

gon is less than a great circle.

For the sum of the face angles of the corresponding polyhedral

angle is less than four right angles. (Art. 460.)

Proposition IX

623. // two spherical triangles lying on the same
sphere, or on equal spheres, have the three sides of one

equal, respectively, to the three sides of the other, their

corresponding angles are also equal.

Compare Proposition XXIV, Chapter VI.

624. It should be carefully noticed that while two mutually

equilateral spherical triangles are also mutually equiangular,

they are not necessarily superposable.

Suppose that the two triangles ABC y<^ "y^

and A'B'C lie on the same sphere, and

are such that the straight lines AA',

BE', CC are diameters of the sphere.

The two trihedral angles formed at

have their face angles respectively equal,

and likewise their dihedral angles equal

;

but they are not identically equal since

their parts are arranged in opposite orders around the vertex.

So also the triangles ABC and A'B'C are mutually equi-

lateral, and likewise mutually equiangular, but their parts are

arranged in opposite orders.

Such triangles cannot be superposed, but are symmetrical.

If A A'B'C were moved on the surface of the sphere so as

to make the vertices A' and B' coincide with A and B, respec-
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tively, the vertex C would lie on the opposite side of AB
from C.

Two plane triangles which are mutually equilateral, and

consequently mutually equiangular, could be made to coincide

by turning one of them over (see Prop. IV, Chap. I), but if you

should turn a spherical triangle over, it would no longer lie

on the sphere.

Hence, in spherical triangles whose parts are respectively

equal, it is necessary to distinguish two whose parts are

arranged in the same order from two whose parts are arranged

in opposite orders.

The first are identically equal, the second are symmetrical.

Proposition IX can then be stated as follows:

// two spherical triangles lying on the same sphere,

or on equal spheres, have the three sides of one equal,

respectively, to the three sides of the other, they are

either identically equal or syrmnetrical, according as

their parts are arranged in the same order or in

opposite orders.

625. Definition. If two sides of a spherical triangle are

equal, the triangle is an isosceles spherical triangle.

Proposition X

626. An isosceles spherical triangle and its symmet-
rical spherical triangle are identically equal.

Compare Article 463.

627. Corollary. If two sides of a spherical triangle are

equal, the angles opposite those sides are equal.

Form its symmetrical triangle on the opposite side of the

sphere and superpose the'm.

2c
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Proposition XI

628. If two spherical triangles lying on the same
sphere, or on equal spheres, have two sides and the

included angle of the one equal, respectively, to two sides

and the included angle of the other, they are either

identically equal or symmetrical, according as the parts

are arranged in the same order or in opposite orders.

Compare Article 466.

Or, the triangles may be superposed if the parts are arranged

in the same order, or one may be superposed to the symmetric

of the other if the parts are arranged in opposite orders.

• Proposition XII

629. // two spherical triangles lying on the same
sphere, or on equal spheres, have one side and the two

adjacent angles of the one equal, respectively, to one side

and the two adjacent angles of the other, they are iden-

tically equal or symmetrical, according as the parts are

arranged in the same order or in opposite orders.

Compare Article 467, or prove by superposition.

EXERCISES

1. If two angles of a spherical triangle are equal, the sides opposite

those angles are also equal.

2. The arcs of great circles which bisect the angles of a spherical tri-

angle are concurrent.

3. The angle between the planes of two great circles has the same

measure as the arc of the great circle which joins their nearef poles.

4. If two equal circles lying in different planes have a common
diameter, any plane perpendicular to that diameter intersects the circles

in four points which lie upon a circle.
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Section III

POLAR TRIANGLES

630. Definition. If on a sphere arcs of great circles are

described which have the vertices of a given spherical triangle

for poles, another spherical triangle will be formed which is

called the polar of the given triangle.

Let ABC be any spherical triangle, and let a', b\ c' be arcs of

great circles whose poles are A, B, C. If these great circles

are fully drawn, they will divide the sphere into eight spherical

triangles. That one, A'B'C, of the eight is called the polar

of ABC which lies so that A and A' are on the same side of

BC', B and B', on the same side of AC; C and C", on the same

side of AB.
That the great circles a', b', c' divide the sphere into eight

triangles is easily seen if it is observed that b' and c' divide

the sphere into four parts, and that a' divides each of these

into two triangles.

When A, B, C are used to denote the vertices of any spheri-

cal triangle, a, b, c will be used to denote the opposite sides

of that triangle. A', B', C to denote the vertices of the polar

triangle, a', b', c' to denote the opposite sides of the polar tri-

angle.

Thus A, B, Care the poles of the arcs a', 6', c', and A', B', C
are the poles of the arcs a, b, c.



388 ELEMENTARY GEOMETRY [Chap. IX

Proposition XIII

631. // the first of two spherical triangles is the polar

of the second, then the second is also the polar of the

first.

Let the two triangles ABC and A'B'C lie on the same sphere,

and suppose that A'B'C is the polar triangle of ABC.

It is required to prove that ABC is also the polar triangle

of A'B'C

Proof. Because A is the pole of the arc B' C, B' is a quad-

rant's distance from A. (Art. 596.)

And because C is the pole of A'B', B' is a quadrant's dis-

tance from C.

Therefore B' is the pole of the arc AC. (Art. 597.)

Similarly, A' is the pole of the arc BCy and C is the pole of

the arc AB.
Therefore A ABC is the polar triangle of A'B'C

632. Definition. The supplement of any arc of a circle is

that arc which taken with it makes up a semicircle.

EXERCISES -^^^ ^^ ^/=

1. Every point of the great circle which bisects a given arc of a ^ea^) '

circle at right angles is equidistant from the extremities of the arc. fh r r

2. Through a given point on a sphere describe an arc of a great circle

making right angles with a given arc of a great circle.
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Proposition XIV

633. In two polar triangles, the measure of any angle

in one is equal to the measure of the supplement of
that side in the other of which its vertex is the pole.

Let ABC and A'B'C be two polar triangles lying on any

sphere, so that A is the pole of B'C, B is the pole of A'C,
and C is the pole of A'B'.

It is required to prove that the measure of the angle A is

equal to the measure of the supplement of the arc B'C, the

measure of the angle B is equal to the measure of the supple-

ment of the arc A'C, etc.

Proof. Produce the sides AB and AC, if necessary, to meet

the side B'C in the points D and E.

Then the measure of Z^ = the measure of arc BE. (Art. 615.)

The arc B'E is a quadrant. Why ?

For the same reason DC is a quadrant.

Therefore the sum of B'E and DC is a semicircle.

But the sum of B'E and DC = the sum of B'E, DE, and EC
= the sum of B'C and DE.

Therefore the sum oi B'C and DE is a semicircle, and the

arc DE is the supplement of the arc B'C.

Therefore the measure of Z ^ = the measure of the supple-

ment of the arc B'C.

Similarly the other relations can be proved.
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634. Corollary I. IfA is any angle of a spherical triangle

a7id a' the corresponding side of its polar triangle, theii the meas-

ure of a' is equal to the measure of the supplement of A.

635. Corollary II. If any spherical triangle is equiangu-

lar, its polar triangle is equilateral ; and conversely.

636. Corollary III. If two spherical triangles on the same

sphere, or on equal spheres, are mutually equiangular, their polar

triangles are mutually equilateral ; and conversely.

Proposition XV

637. The sum of the angles of any spherical triangle

is greater than two, and less than six, right angles.

First, let A, B, C be the measures of the angles of a spherical

triangle, and a\ b', c' the measures of the corresponding sides

of its polar triangle, the units of measure in the two cases being

the angle degree and the arc degree, respectively.

Then a' = 180 - A. (Art. 634.)

b' = 180 - B.

c' = 180 - a
Therefore a' -{- b' -{- c' = 540 - (A + B -{- C).

Now a' + 6' + c' is less than 360, the measure of a great

circle. (Prop. VIII.)

Therefore 540 -{A + B + C)i^ less than 360.

Hence, A-\- B -{ C must be greater than 180, which is the

measure of two right angles.

That is, the sum of the angles of the triangle is greater than

two right angles.

Next, a' 4- 6' 4- c' must have some value greater than zero.

Therefore A -{- B -\- C \^ less than 540, which is the measure

of six right angles.
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Proposition XVI

638. If two triangles on the same sphere, or on equal

spheres, are mutually equiangular, they are also mutu-
ally equilateral, and are either identically equal or sym-
metrical, according as their parts are arranged in the

same order or in opposite orders.

The proof is left to the pupil. Apply Article 636, and Proposi-

tion IX.

639. Corollary. A spherical triangle may have one, two, or

three right angles, or one, two, or three obtuse angles.

Definitions

640. A spherical triangle having two right angles is called

a bi-rectangular triangle, and one having three right angles is

called a tri-rectangular triangle.

641. The excess of the sum of the angles of a spherical tri-

angle over two right angles is called the spherical excess of the

triangle.

EXERCISES

1. Prove that in a bi-rectangular spherical triangle the sides opposite

the right angles are both quadrants.

2. Prove that if two sides of a spherical triangle are quadrants, the

third side has the same measure as the opposite angle.

3. Each side of a tri-rectangular spherical triangle is a quadrant.

4. If two angles of a spherical triangle are supplementary, the sum of

the sides opposite them is equal to a semicircle.

Suggestion. Produce two sides of the triangle to intersect, thus

forming an adjacent triangle having two equal angles.

5. The spherical excess of a bi-rectangular spherical triangle is equal

to the measure of the third angle. . ^
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Proposition XVII

642. The shortest line that can be drawn on a sphere

between two points is the arc of a ^reat circle, not greater

than a semicircle, joining the two points.

Let A and B be any two points on a sphere, and AFB the

arc of a great circle, not greater than a semicircle, joining

them ; also let ADCEB be any other path on the sphere from

A to B.

It is required to prove that the path AFB is shorter than the

path ADCEB.
Proof. In the path ADCEB take any point C, and draw the

arcs of great circles AC and CB.

Then ACB is a spherical triangle, and the sum of AC and

CB is greater than AB. (Prop. VII.)

In the path ADC choose any point D, and draw the arcs of

great circles AD and DC.
Then AD -h DC is greater than AC.
Therefore AD + DC -{- CB is greater than AC + CB, which

is again greater than AB.
By repeating this process indefinitely the broken path of

arcs of great circles increases in length with each repetition,

and so differs more and more from the path AFB.
Also the broken path of arcs of great circles can eventually

be made to differ as little as we please from the given path

ADCEB.
Therefore the path AFB is shorter than the path ADCEB.
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Proposition XVIII

643. To find the length of the diameter of a given
material sphere.

Let PABC be a given material sphere.

It is required to find tlie lengtti of its diameter.

Construction. With any point P on the given sphere as

pole describe a circle ABC.
With the compasses take the lengths of the chords AB, BC,

CA, and construct in any plane a triangle A'B'C whose sides

are equal to these three lengths. About A'B'C describe a

circle which will be equal to the circle ABC. Find its centre

Q' and the length of its radius B'Q' = BQ
With the compasses take the length of the chord BP and

construct a right triangle pbq, having the hypotenuse b}^ — BP
and the side 6g = BQ.

Draw hp perpendicular to &p, meeting ipq produced at p'.

Then /?p' is equal in length to a diameter of the given sphere.

The proof is left to the pupil.

EXERCISES

1. Three great circles of a sphere which do not intersect in a common
point, divide the surface of the sphere into four pairs of symmetrical

triangles.

2. A tri-rectangular spherical triangle coincides with its polar triangle.
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Section IV

AREAS OF SPHERICAL TRIANGLES

644. Definition. The area of a spherical triangle is that

portion of the sphere which is enclosed by the triangle.

645. Axiom 15. Two spherical triangles which are identically

equal have equal areas.

Proposition XIX

646. Two symmetrical spherical triangles have equal

areas.

Let yl^Cand A'B'C be two symmetrical spherical triangles

lying on the same sphere.

It is required to prove that ABC and A'B'C have equal areas.

Proof. Two symmetrical spherical triangles can always be

placed so as to be vertically opposite on the sphere. Why ?

Assume that the given triangles are so placed.

Let P be the pole of the small circle through A, B, C, and

draw the diameter POP'.

Draw also the arcs of great circles PA^ PB, PC, PA', PB\
PC.
Now PA = PA', PB = PB', PC = P'C, (Art. 157.)

also PA= PB== PC. (Prop. II.)

Therefore PA' = PB' = PC
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As FAB and P'A'B' are symmetrical triangles on the sphere,

and they are also isosceles triangles.

Therefore As PAB and PA'B' are identically equal and

have equal areas. (Prop. X.)

Similarly As PBC and P'B'C have equal areas.

Also As PAC and PA'C have equal areas.

Therefore, adding. As ABC and A'B'C have equal areas.

If the pole P falls outside of A ABC, instead of adding all

three isosceles triangles, two should be added and the third

subtracted from their sum, in order that the result may give

A ABC.

Note. The triangles mentioned in Propositions IX, XI, and XII,

as being either identically equal or symmetrical, are in every case equal

Definitions

647. Two great circles on a sphere divide the sphere into

four parts, each of which is called a lune.

A lune then is that portion of a

sphere enclosed by two halves of great

circles.

The spherical angle made by the semi-

circles is called the angle of the lune.

Of the four lunes formed by two great

circles the opposite ones have equal

angles.

Opposite lunes on a sphere are equal, since they can be

superposed.

648, Theorem. Any two lunes, having equal angles, on the

same sphere or on equal spheres are identically equal.

Of two lunes having unequal angles, on the same sphere or

on equal spheres, that which has the greater angle is the

greater ; and of two lunes having equal angles on unequal

spheres, that which lies on the greater sphere is the greater.
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Proposition XX

649. The ratio of two lunes on the same sphere or on
equal spheres is equal to the ratio of their angles.

Let PAP'B and PBFC be two lunes on the same sphere

whose angles are APB and BPC.

It is required to prove that

lune PAPB : lune PBP'C = Z APB : Z BPC.

Outline of proof. There are two cases to be considered.

First, when ZsAPB and BPC are commensurable.

Take a common measure of the two angles and divide them

into equal parts.

By planes through the centre of the sphere divide the lunes

into parts having equal angles, and hence equal.

Next, when Zs APB and BPC are incommensurable.

Take a measure of one angle and apply it as often as possible

to the other. Then proceed as above, and finally make the

unit of measure indefinitely small.

As a model take the proof of Prop. X in Chap, III.

650. Corollary. The area of a lune is to the area of the

whole sphere in the same ratio as the angle of the lune is to four

right angles.
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Proposition XXI

651. // twogreat circles intersect on a hemisphere, the

areas of the two triangles formed by their arcs and arcs

of the great circle hounding the hemisphere are together

equal to a lune having the same angle as the angle

between the great circles.

Let ABA'B' be the great circle of the hemisphere PABA'B',
and let the two great circles APA' and BPB' intersect at P.

It is required to prove that the triangles APB and A'PB' are

together equal to the lune PAP'B whose angle is APB.
Proof. A PA'B' is symmetrical with A PAB.
Hence theareaofAP^'J5'=theareaofAP'^jB. (Prop XIX.)

But A PAB and A PAB make up the lune PAPB.
Therefore A PAB and A PA'B' are together equal in area to

the lune PAPB.
SPHERICAL UNITS

652. The ordinary unit of surface is the area of a plane

square whose dimensions are of unit length, but a different

unit is sometimes found convenient p
in the measurement of spherical areas.

This unit we shall call a spherical unit

of surface.

Definition. A spherical unit of sur-

face is the area of a bi-rectangular

spherical triangle whose third angle is

one degree.
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In other words, the spherical unit of surface is a half lune

whose angle is one degree, the bisection being made by an arc

of a great circle perpendicular to both arcs of the lune.

It should be carefully noticed that the spherical unit of

surface is different on different spheres.

The area of a hemisphere is 360 spherical units; of a sphere is 720

spherical units.

The area of a bi-rectangular triangle expressed in spherical units is

equal to the measure of its third angle.

The area of a lune expressed in spherical units is equal to twice the

measure of its angle.

Proposition XXII

653. The area of any spherical triarigle expressed in

spherical units is equal to the spherical excess of the

triangle.

Q

G

Let ABC be any spherical triangle lying on the hemisphere

ABCPQ.

It is required to prove- that the area of ABC expressed in

spherical units equals the excess of the sum of the angles A,

B, C, over two right angles.

Proof. The hemisphere consists of the four triangles ABC,
ACP, APQ, AQB.

A ABC + A APQ = lune whose angle is A. (Prop. XXI.)

A ABC + A ACP = lune whose angle is B.

A ABC + A AQB = lune whose angle is C.



652-654] THE SPHERE

Adding the areas we get

:

Twice area of A ABC + area of hemisphere

= area of lune whose angle is J. + area of lune whose angle is B
+ area of lune whose angle is C.

Now the area of a hemisphere equals 360 spherical units,

and the area of the lune whose angle is A equals 2A spherical

units. Therefore, (Art. 652.)

Twice area of A^^C + 360 spherical units = (2 ^ + 2 i3

+ 2 C) spherical units. Or,

Area of A ABC -f 180 spherical units = (A -{- B -{- C) spheri-

cal units.

Therefore area of A ABC = (A -]- B + C - 180) spherical

units.

But A-{-B-{- O— 180 is the spherical excess of the triangle.

Therefore area of A ABC = as many spherical units as repre-

sents its spherical excess.

654. Corollary. If S is the sum of the angles of a spherical

polygon of n sides, the area of the polygon is [«S — (n — 2) 180]

spherical units.

Divide the polygon into triangles by passing arcs of great circles

tiirougli one vertex.

EXERCISES

1. If three great circles are so drawn on a sphere that each is perpen-

dicular to the other two, into what sort of triangles do they divide the

sphere ? What are their areas expressed in spherical units ?

2. If the sides of a spherical triangle are 75, 120, and 95 arc degrees,

respectively, what is the measure of the angles of its polar triangle ?

What is the area of the polar triangle ?

3. If the angles of a spherical triangle are 85, 1.35, and 65 degrees,

respectively, what is its area, and what are the lengths of the sides of its

polar triangle ?

4. The sum of the interior angles of a convex spherical hexagon is

greater than eight and less than twelve right angles.
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Proposition XXIII

655. The area of the surface generated by a line-seg-

merit revolving about an axis in its plane is equal to

the length of the projection of the line-segment on the

axis multiplied by the circuinference of the circle whose

radius is equal to that segment of the perpendicular

bisector of the revolving line-segmjent which is inter-

cepted between it and the axis.

Let PQ be any given line-segment which revolves about an

axis a lying in a plane with it ; let pq be the projection of PQ
on a, and RS be the perpendicular bisector of PQ intercepted

between PQ and a.

It is required to prove that the area of the surface generated

by PQ is equal to pq multiplied by the circumference of the

circle whose radius is RS.

Proof. Draw Rr perpendicular to a, and PT parallel to a.

As PQ revolves about a it generates the lateral surface of the

frustum of a right circular cone.

The area of this surface = PQ x circ. of circle of radius Rr.

(Ex. 9, p. 367.)

Now A PTQ and RrS are similar. Why ?

Therefore, since PT — pq,

PQ^RS^ circ. of circle of rad. RS
pq Rr circ. of circle of rad. Rr

(Art. 362.)
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Hence PQ x circ. of circle of rad. Rr=pq x circ. of circle

of rad. MS.

Therefore area of surface generated by PQ = j)^ x circ. of

circle of rad. RS.

If PQ meets a at P, the surface generated is conical, but

the proposition and proof still hold, as is easily shown.

Also, if PQ is parallel to a the proposition holds.

What changes are necessary in the statement of the theorem

and in the proof if PQ intersects a ?

Note. The pupil should be careful to observe that in this proposition

the area spoken of is the measure of the surface expressed in ordinary

plane units, so many square feet, or square inches, not in spherical units.

Definitions

656. A segment of a sphere, or a spherical segment, is the

figure formed by the planes of two parallel sections of the sphere

and the spherical surface intercepted be-

tween them.

The plane faces of a segment are called

its bases, and the spherical surface is called

a zone.

Hence, a zone is a portion of a sphere

intercepted between two parallel planes

which cut the sphere.

If one of the parallel planes forming

the bases of a spherical segment is tan-

gent to the sphere, the segment is a

segment of one base, and its spherical sur-

face is a zone of one base.

The perpendicular distance between

the bases of a spherical segment is the

altitude of the segment. It is also the

altitude of the zone.

2d

Spherical segment

Segment of base
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Proposition XXIV

657. The area of a zone is equal to the product of its

altitude and the circumference of a great circle.

Let AB be an arc of a great circle of a sphere whose centre

is and diameter PP'
-^
and suppose AB to rotate about the

diameter PP so as to generate a zone whose altitude is ah.

It is required to prove that the area of the zone generated by

AB is equal to the product of ah and the circumference of a

great circle of the sphere.

Proof. Draw the chord AB and the perpendicular bisector

EO, which passes through the centre of the sphere.

The area of the surface generated by the chord AB as it

rotates about PP = ah X circ. of a circle of rad. OE.

(Prop. XXIII.)

Let the arc AB he bisected at C, and draw the chords AC
and GB. Also the perpendicular bisectors OF and OH.

Let c be the projection of C upon PP.
Then the area of the surface generated by the two chords

AC and CB as they rotate about PP' = ac x circ. of circle of

rad. OF+ c6 X circ. of circle of rad. OH
= ah X circ. of circle of rad. OF, since 0H= OF Why ?
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If this process of bisecting the arcs is repeated indefinitely,

the series of chords approaches the arc AB as a limit, and the

perpendicular bisector approaches a radius r of the sphere as a

limit.

Therefore the area of the surface generated by the arc AB
as it rotates about PP — ah x circ. of circle of rad. r.

That is, the area of a zone whose altitude is ab = ab x circ.

of a great circle.

658. Corollary I. Hie area of a zone whose altitude is h,

lying on a sphere of radius r, equals 2 irrh.

659. Definition. A right circular cylinder the radius of

whose base equals the radius of a sphere, and whose altitude

equals the diameter of the sphere, when placed so as to enclose

the sphere, is called the enveloping cylinder of the sphere.

660. Corollary II. The area of a zone is equal to that

portion of the lateral area of the enveloping cylinder which is inter-

cepted between the same planes as the zone.

For the circumference of the base of the enveloping cylinder

is 2 7rr, and if h is the distance between the planes of section,

the lateral area of the cylinder intercepted between them is

2 irrh (Art. 561) and this is also the area of the intercepted

zone.

EXERCISES

1. Find the area of a zone of altitude 3 inches on a sphere whose

radius is 10 inches.

2. The diameter of a given sphere is 10 inches and it is desired to cut

the surface by parallel planes, into five parts of equal area. Locate the

planes of section.

3. A slice is cut from a sphere of radius 5 inches by a plane passing

3 inches from the centre ; what is the area of the spherical surface, and

also of the plane surface of the slice ?

4. Prove that the area of a zone of one base is equal to the area of a

circle whose radius is the chord of the generating arc of the zone.
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Proposition XXV

661. The area of a sphere is equal to the product of a
diameter and the circumference of a great circle.

This follows directly from Proposition XXIV, the generating

arc being a semicircle.

662. CoROLLAKY I. Tlie area of a sphere ivJiose radius is r

is given by the formula :

A = 2rx27rr=:4:7rr'.

663. Corollary II. The areas of two spheres are in the

same ratio as the squares of their radii, or as the squares of their

diameters.

664. Corollary III. Tlie area of a sphere equals four
times the area of one of its great circles.

665. Corollary IV. Tlie area of a sphere equals the lateral

area of its enveloping cylinder.

666. Corollary Y. The area of a spherical unit expressed

in plane units equals^
180

Note. All the above areas are expressed in plane units.

EXERCISES

1. What is the area of a sphere whose radius is 10 inches ?

2. A sphere has a radius of 9 inches. What is the radius of a sphere

having double the area ?

3. Two parallel planes cut a sphere of radius 10 inches, 6 and 8 inches,

respectively, from the centre. Find the area of the zone so formed (1)

when the planes are on the same side of the centre, (2) when the planes

are on opposite sides of the centre.

4. A triangle whose angles are 80°, 120°, 135° lies on a sphere of radius

16 inches. Find its area.

Suggestion. First find the area in spherical units and then reduce to

plane units.
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Section V
VOLUME OF THE SPHERE

Proposition XXVI

667. The volume of a sphere is equal to one-third the

product of its area and its radius.

Suppose that a polyhedron of any number of sides has been

circumscribed about a sphere. Through all the edges of the

polyhedron and the centre of the sphere pass planes.

This divides the polyhedron into as many pyramids as the

polyhedron has faces. The altitude of each pyramid is equal

to a radius of the sphere, since each face of the polyhedron is

tangent to the sphere.

The volume of any one of the pyramids = i r x area of its

base (Art. 523), and the sum of all the bases of the pyramids

equals the surface of the polyhedron.

Therefore, volume of the polyhedron = | r x the surface area

of the polyhedron, and this relation holds no matter how many
faces the polyhedron may have.

Now by increasing the number of faces of the circumscribed

polyhedron indefinitely, it can be made to approach the sphere

as its limit, and its volume will approach the volume of the

sphere as its limit.

Therefore, volume of a sphere = J r x area of the sphere.

668. Corollary I. The volume of a sphere can be expressed

by the following formula:

F= 1 r X 4 TT?^ = 1 7r7-3. (Art. 662.)

669. Corollary II. The volumes of two spheres are in the

same ratio as the cubes of their radii, or as the cubes of their

diameters.
EXERCISES

1. Show that the volume of a sphere is equal to two-thirds of the

volume of the enveloping cylinder.
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Spherical pyramid

Definitions

670. A spherical pyramid is a figure consisting of a spherical

polygon for base and plane faces through

the sides of the polygon.

The lateral edges of the pyramid are

all radii of the sphere.

671. A spherical sector is a figure

consisting of a zone and two conical sur-

faces, having the centre of the sphere

for vertex, and passing through the cir-

cular boundaries of the zone.

If the zone is a zone of one base, then the

spherical sector has but one conical surface.

The zone is called the base of the

spherical sector.

If a sector of a circle is rotated about

any diameter of the circle, it will gener-

ate a spherical sector. If it is rotated

about one of its own radii, the base of Spherical sector

the spherical sector will be a zone of one base.

672. Theorem. Tlie volume of a spherical pyramid or a

spherical sector is to the volume of its sp)here in the same ratio

as the area of its base is to the area of the sphere.

673. If V represents the volume of a spherical pyramid or sector, V
the volume of the sphere, A the area of the base of the pyramid or sector,

and A' the area of the sphere,

whence F= ^1 •
-' = J • i^ = i ^r.
A' 4 7rr2 ^

That is to say :

The volume of a spherical pyramid, or of a spherical sector, is

equal to one-third the product of the area of its base arid the

radius of the sphere.
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Proposition XXVII

674. To find the volume of a spherical segment.

First, to find the volume of a spherical segment of one base.

Suggestions. Find the area of the zone G-ABC. (Art. 657.)

Find the volume of the spherical sector 0-ABCO. (Art. 673.)

Subtract the volume of the cone 0-ABC. (Art. 579.)

Hence volume of the segment G-ABC

where r = radius of the sphere, a = radius of base of the seg-

ment, h = altitude of the segment.

(Art. 255.)

Then V=-[2i''h-ah-{-a%].
o

Now h(2 r-h) = a\ (A

Hence 2r'h = ah + hh.

Therefore F=|[^V + a2^]

= ^ ira^h + \ irh^, since r
a' + h^

2h

Next, to find the volume of a spherical segment of two bases

lying on the same side of the centre of the sphere.

Let a and b be the radii of the two bases, a being the greater,

and III the altitude of a segment of one base of radius a, h^ the
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altitude of a segment of one base of radius h, so that hi — hz = h,

the altitude of the given segment.

Then the volume of the given segment

= [i /^l
• TT a^ + I TT 7^1^ - [I-

7,2 . TT 6^ + i TT ^/]

= ^[^1^' + hb' - ha' - hjf] + 1 [7i/ _ /i/ + 3 h^a? - 3 hyh''']

2i 6

having added and subtracted li^' and li<fi'.

Now 7ii(2 r - 7ii) = a\ or 2 r7ii - 7^1^ = a^

;

7i2(2 r - 7i2) = 6^ or 2 rU^ - hi = 61

Multiplying the first line by 3 h^, the second by 3 h^^ and

subtracting, gives

3 h^i' - 3 Ai62 = 3 fi^i _ 3 7ij2^2.

Therefore

^ o

This result may be stated in words as follows

:

The volume of a spherical segment is equal to the product of its

altitude and half the sum of the areas of its bases together with

the volume of a sphere whose diameter is equal to the altitude of

the segment.

The algebraic difficulties in the reduction are only intro-

duced for the sake of giving the result in a convenient form.

It should be noticed that the last formula for the volume will

reduce to that given for a segment of one base by putting & = 0.
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MISCELLANEOUS EXERCISES

Note. Use 3^ as the approximate value of tt.

1. Find the area and the volume of a sphere whose radius is 10 inches.

2. How many square inches in the spherical unit on a sphere whose

diameter is 14 inches ?

3. Find in square inches the area of a spherical triangle the sum of

whose angles is 210 degrees, on a sphere whose radius is 15 inches.

4. On a sphere of radius 12 inches, there is described a spherical tri-

angle and a spherical quadrilateral, the sum of each of whose angles is

450 degrees. What is the difference in their areas ?

5. Find the area of a zone of height 3 inches on a sphere of radius 10

inches. Does it matter where the zone is placed on the sphere ?

6. The radii of two spheres are in the ratio of 2 : 3. Compare their

areas and their volumes.

7. The area of a sphere is 1000 square inches ; what is the area of one

of its great circles ?

8. Two spheres of lead, of radius 2 inches and 3 inches, respectively,

are melted into a single sphere. Find its radius.

9. A sphere is such that its number of units of volume equals twice

its number of units of area. Find its radius.

10. The base of a spherical pyramid is a pentagon the sum of whose

angles is 900 degrees. Find the volume of the pyramid if the radius of

the sphere is 12 inches.

11. If the area of a zone of one base is one-quarter of the area of the

isphere, show that the altitude of the zone is half the radius of the sphere.

12. How far must the eye be from a sphere of radius 16 inches in order

to see one-quarter of it ?

13. If the radius of the base of a circular cone and of a circular cylinder

equals the radius of a sphere and they are all of the same height, show
tiiat the volumes of the cone and sphere are together equal to the volume

of the cylinder.

14. The radii of the bases of a spherical segment are 6 and 8 inches,

respectively, and its altitude is 2 inches. Find its volume, the radius of

the sphere from which it was cut, the areas of its bases, and its lateral

area.

15. Find the volume of a sphere whose radius is 14 feet.

16. The volume of a sphere is 10286 cubic inches. Find its area.
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SUMMARY OF CHAPTER IX
1. Definitions.

(1) Sphere— a closed surface such that all points of it are equidistant

from a fixed point within it. § 680.

(2) Centre, Radius, Diameter. § 580.

(3) Concentric Spheres— two spheres having the same centre, but not

coinciding. § 582.

(4) Great Circle of a Sphere— a circle lying on the sphere, whose
plane passes through the centre of the sphere. § 585.

(5) Quadrant— one-quarter of a great circle. § 585.

(6) Axis of a Circle of a Sphere— the diameter of the sphere perpen-

dicular to the plane of the circle. § 592.

(7) Poles of a Circle of a Sphere— the extremities of the axis of the

circle. § 592.

(8) Tangent to a Sphere— a line or plane which meets the sphere at

one, and only one, point. § 600.

(9) Inscribed Polyhedron— one whose vertices lie on the sphere

§ 606.

(10) Circumscribed Polyhedron— one whose faces are tangent to the

sphere. § 606.

(11) Spherical Angle— the angle formed by two intersecting arcs of

great circles, i.e. by the tangents at their common point. § 612.

(12) Spherical Polygon— a closed figure on a sphere consisting of arcs

of great circles which intersect, two and two, in order. § 617.

(13) Spherical Excess of a Triangle— the excess of the sum of the

angles of a spherical triangle over two right angles. § 641.

(14) Area of a Spherical Triangle— that portion of the sphere which

is enclosed by the triangle, or the measure of that portion.

§644.

(15) Lune— a portion of a sphere enclosed by two halves of great

circles. § 647.

(16) Angle of a Lune— the angle between its boundaries. § 647.

(17) Spherical Unit of Surface— the area of a bi-rectangular spherical

triangle whose third angle is one degree. § 652.

(18) Spherical Segment— the figure formed by the planes of two

parallel sections of a sphere and the spherical surface inter-

cepted between them. § 656.

(19) Zone— the portion of a sphere intercepted between two parallel

planes which cut the sphere. § 656.

(20) Altitude of a Spherical Segment or Zone— the distance between

its bases. § 666.
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(21) Spherical Pyramid— a figure consisting of a spherical polygon

for base, and plane faces through the sides of the polygon.

§ 670.

(22) Spherical Sector— a figure consisting of a zone and two conical

surfaces through the circular boundaries of the zone, having the

centre of the sphere for vertex. § 671.

(23) Enveloping cylinder of a sphere— a right circular cylinder the

radius of whose base equals the radius of the sphere, and

whose altitude equals the diameter of the sphere, placed so

as to enclose the sphere. § 659.

2. Axioms.

(1) Two spherical triangles which are identically equal have equal

areas (Axiom 15). § 645.

3. Problems.

(1) To find the length of the diameter of a given material sphere.

§643.

4. Theorems on the Properties of a Sphere and its Plane Sections.

(1) Equal spheres have equal radii and equal diameters, and con-

versely. § 581.

(2) The section of a sphere made by a plane is a circle. § 583.

(3) Sections of a sphere made by planes equidistant from the centre

are equal circles, and of two sections made by planes unequally

distant from the centre, that is the greater circle which is made
by the nearer plane. § 584.

(4) The centre of any circle of a sphere is the foot of the perpen-

dicular drawn from the centre of the spl.ere to the plane of the

circle. § 586.

(5) The centres of all great circles coincide with the centre of the

sphere, and all great circles on the same sphere are equal.

§587.

(6) Every great circle divides the sphere into two equal parts. § 588.

(7) Any two great circles on the same sphere bisect each other.

§589.

(8) An arc of a great circle can be drawn through any two given

points on a sphere, and if the two given points are not the

extremities of a diameter, only one such arc less than a semi-

circle can be drawn. S 590.
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(9) Through three given points on a sphere, one and only one circle

can be drawn. § 591.

(10) All points of any circle of a sphere are equidistant from either of

Its poles. § 594.

(11) The polar distance of any point of a great circle is a quadrant.

§596.

(12) If a point on a sphere is a quadrant's distance from each of two

given points on the sphere, it is the pole of the great circle

passing through these two points. § 597.

(13) If one point on a sphere is a quadrant's distance from another,

it is the pole of some great circle passing through the other.

§598.

(14) The intersection of two spheres is a circle, the plane of which is

perpendicular to the straight line joining the centres of the

spheres, and the centre of which is on that line. § 604.

6. Theorems relating to Tangents to a Sphere.

(1) A plane which is perpendicular to a radius of a sphere at its

extremity is tangent to the sphere, and conversely. § 601.

(2) All lines tangent to a sphere at one point lie in a plane tangent

to the sphere at that point. § 602.

(8) The plane of two straight lines tangent to a sphere at the same

point is also tangent to the sphere at that point. § 603.

6. Theorems relating to the Properties of Spherical Angles,

Triangles, and Polygons.

(1) The angle formed by two intersecting arcs of great circles has

the same measure as the dihedral angle formed by the planes

of the circles. § 613.

(2) The angle formed by two intersecting arcs of great circles has the

same measure as the arc of the great circle of which the vertex

of the angle is the pole, intercepted between the given arcs

(produced if necessary). § 615.

(3) All arcs of great circles drawn through the pole of a given great

circle are perpendicular to the given great circle. § 616.

(4) No side of a convex spherical polygon can be greater than a semi-

circle. § 618.

(6) The sum of any two sides of a spherical triangle is greater than

the third side. § 621.

(6) The sum of the sides of a convex spherical polygon is less than a

great circle. § 622.
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(7) An isosceles spherical triangle and its symmetrical spherical tri-

angle are identically equal. § 626.

(8) If two sides of a spherical triangle are equal, the angles opposite

those sides are equal. § 627.

(9) If the first of two spherical triangles is the polar of the second,

then the second is also the polar of the first. § 631.

(10) In two polar triangles, the measure of any angle in one is equal

to the measure of the supplement of that side in the other of

which its vertex is the pole. § 633.

(11) If ^ is any angle of a spherical triangle, and a' the corresponding

side of the polar triangle, then the measure of a' is equal to the

measure of the supplement of A. § 634.

(12) If any spherical triangle is equiangular, its polar triangle is equi-

lateral, and conversely. § 635.

(13) If two spherical triangles on the same sphere, or on equal spheres,

are mutually equiangular, their polar triangles are mutually

equilateral, and conversely. § 636.

(14) The sum of the angles of any spherical triangle is greater than

two right angles and less than six right angles. § 637.

(15) A spherical triangle may have one, two, or three right angles, or

one, two, or three obtuse angles. § 639.

7. Theorems on the Equality op Spherical Triangles.

Two spherical triangles lying on the same or equal spheres are iden-

tically equal, or symmetrical, if they have—

(1) Three sides of the one equal, respectively, to the three sides of

the other. § 623.

(2) Two sides and the included angle of the one equal, respectively,

to two sides and the included angle of the other. § 628.

(3) One side and the two adjacent angles of the one equal, respect-

ively, to one side and the two adjacent angles of the other.

§629.

(4) Three angles of the one equal, respectively, to the three angles

of the other. § 638.

8. Theorems relating to Areas.

(1) Two symmetrical spherical triangles have equal areas. § 646.

(2) Any two lunes on the same sphere or on equal spheres, having

equal angles, are equal. § 648.

(3) The ratio of two lunes on the same sphere or on equal spheres is

equal to the ratio of their angles. § 649.
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(4) The area of a lune is to the area of the whole sphere in the same

ratio as the angle of the lune is to four right angles. § 650.

(5) If two great circles intersect on a hemisphere, the two triangles

formed by their arcs and arcs of the great circle bounding the

hemisphere are together equal to a lune having the same angle

as the angle between the great circles. § 651.

(6) The area of any spherical triangle expressed in spherical units is

equal to the spherical excess of the triangle. Area = A-\- B -{

C-180. §653.

(7) It S is the sum of the angles of a spherical polygon of n sides, the

area of the polygon is [S - (n — 2) 180] spherical units. § 654.

(8) The area of the surface generated by a line-segment revolving

about an axis in its plane is equal to the length of the projec-

tion of the line-segment on the axis multiplied by the circum-

ference of the circle whose radius is equal to that segment of

the perpendicular bisector of the revolving line-segment which

is intercepted between it and the axis. § 655.

(9) The area of a zone is equal to the product of its altitude and the

circumference of a great circle. A = 2 wrh. § 657.

(10) The area of a zone is equal to that portion of the lateral area of

the enveloping cylinder which is intercepted between the same

planes as the zone. ^ 660.

(11) The area of a sphere is equal to the product of a diameter and

the circumference of a great circle. A = 2 irrd = 4 irr^. § 661.

(12) The areas of two spheres are in the same ratio as the squares of

their radii, or as the squares of their diameters. A:A' = r^: r'^,

or (?2 : d'i. § 663.

(13) The area of a sphere equals four times the area of one of its

great circles. § 664.

(14) The area of a sphere equals the lateral area of its enveloping

cylinder. § 665.

(15) The area of a spherical unit expressed in plane units equals

-^. §666.
180 ^

9. Theorems relating to Volumes.

(1) The volume of a sphere is equal to one-third the product of its

area and its radius. F = | irr^. § 667.

(2) The volumes of two spheres are in the same ratio as the cubes of

their radii, or as the cubes of their diameters. V:V' = r'^ : r'^,

or d^ : d'^ § 669.
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(3) The volume of a spherical pyramid or a spherical sector is equal

to one-third the product of the area of its base and the radius

of the sphere. V=\ Ar. § 673.

(4) The volume of a spherical segment is equal to \h (jcfi + irh'^)

+ \ irh^, where a and b are the radii of its bases and h its

altitude. § 674.

10. Miscellaneous Theorems.

(1) Through any four points not lying in the same plane, one and

only one sphere can be passed. § 605.

(2) The perpendiculars to the four faces of a tetrahedron, erected at

the centres of the circumscribed circles, all pass through one

point. § 608.

(3) The six planes perpendicular to the edges of a tetrahedron at

their mid-points have one point in common. § 609.

(4) One and only one sphere can be inscribed in any given tetra-

hedron. § 610.

(5) The planes which bisect the six dihedral angles of any tetrahedron

have one point in common. § 611.

(6) The shortest line that can be drawn on a sphere between two

points is the arc of a great circle, not greater than a semicircle,

joining the two points. § 642.
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o^^c

The following brief introduction to Trigonometry is designed

to give to the high school or academy pupil as much of that

subject as he may need for a course in Physics or Elementary

Mechanics. It contains no solid geometry, and may be read as

soon as the pupil has completed Chapter V of this text, or

earlier if desired.

1. Trigonometric Ratios

Let BAC be any angle (for conven-

ience at present, an acute angle),

and from a point P in one boundary

let a perpendicular PM be drawn to

the other.

Then considering the lengths of the

line-segments AP, AM, MP,

MP
the ratio —— is called the sine of the angle A,

AM
the ratio —— is called the cosine of the angle A,

MP
the ratio —— is called the tangent of the angle A.AM

If the point P were chosen differently on the boundary AC, and the

perpendicular were drawn to AB^ would the ratios of the sides of this new
triangle be equal to the corresponding ratios of the sides of the triangle

PAM?
Or, if the point P were chosen in the boundary AB and the perpen-

dicular drawn to AC, would the ratios of the sides be altered ?

416
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If the size of the angle A were changed, would the values of these ratios

be changed ?

The answers to these questions will show that the values of the sine,

cosine, and tangent of the angle A do not depend upon the position of the

point P, but do depend upon the size of the angle.

From these considerations it follows that equal angles have equal sines,

cosines, and tangents ; unequal angles have unequal sines, cosines, and

tangents.

In the right triangle PAM, the side AP is the hypotenuse ;

MP, the side opposite the vertex A, may be called the per-

pendicular ; and AM, the side adjacent to A, may be called the

base.

Then sine oiZA =^= ""'^^ "PP"^'*^^ or P^'^P'""^'""^'^'^,

AP hypotenuse hypotenuse

cosine of Z ^ =^= ^^^^ ^'^1'^^°*
or

^^^
,AP hypotenuse hypotenuse

tangent of Z ^ =^= side opposite
^^

perpendicular^

AM side adjacent base

The reciprocals of these ratios have also received particular

names as follows

:

= cosecant of Z ^ = ^= hyPotenuse
^MP side opposite

= secant of Z^ ^ ^^ hypotenuse
^AM side adjacent

J. xt / A AM side adiacent
. o y A= cotangent of Z ^ = —— = -^^ ^

—

-.
—

tangent of Z ^ MP side opposite

For brevity, we write ^sin A^ instead of 'sine of Z ^' but

this symbol should always be understood to mean 'the sine

of the angle A.'

Similarly we write cos A, tan A, cot A, sec A, cosec A, instead

of ' cosine of Z A,^ ' tangent of Z A,^ etc.

It should be noticed carefully that sin A, cos A, etc., are

mere numbers, being ratios between the lengths of certain line-

segments.

2e

sine of Z ^
1

cosine of Z ^
1
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To find the trigonometric ratios oi Z A (Fig. 1), PM was

drawn from a point in one boundary perpendicular to the other.

If we wish to find the ratios of Z P, we can look upon A3f
as drawn from a point A in one boundary of P, perpendicular

to the other boundary, so that A PAM, which is right-angled

at M, will give us the ratios of both Z A and Z P.

Thus sin ^ = i^ = cos P,AP

cos A = —— = sm P,
AP

. MP ^ Dtan A = = cot P.AM
That is to say,

the sine of an angle = the cosine of its complement,

the cosine of an angle = the sine of its complement,

the tangent of an arigle — the cotangent of its complement.

2. Relations Among the Ratios

In the right triangle ABC, C being the right

angle, W 4- A(f = Aff,

no matter how large or how small the angles

A and ^ may be.

Divide this relation through hy AB and you obtain

BO^ ^ ^ A&
ab' ab' aW'

(S)"*(S)='-
AT BC • . AC .Now — = sm A, = cos A.

AB ' AB
Hence (sin Ay + (cos Af = 1.
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This relation is usually written

sin^ A -f COS" A = l,

and should be read " sine-squared A plus cosine-squared A
equals one.'^

Also, in the right triangle ABO,

smA^BG_^Aq^BC^^^^^^
cos A AB AB AC

sin A
cos A

^.e.
?i5-4 = tan A

EXERCISES

1. Is sin A greater or less than unity ? cos ^ ? sec A ? cosec A ?

2. Suppose you keep the point P fixed on the line AC (Fig. 1), while

the line rotates so as to make the angle A increase. Will sin A increase

or decrease ? cos A ? tan A ?

3. Can tan A ever be greater than unity ? Can it be less than unity ?

For what value of A will it be equal to unity ?

4. ABC is a triangle right-angled at C, A being the least angle. If

the lengths of the sides are 3 ft., 4 ft., and 5 ft. respectively, find the

values of sin A^ cos A^ tan A^ cos B, tan P, sin B.

5. Construct an angle whose sine is \.

Suggestion. Construct a right triangle whose hypotenuse is equal to

twice one side.

6. Construct an angle whose cosine is |.

7. Construct an angle whose tangent is ^\.

8. If the sine of an angle is y^^, find it cosine and its tangent.

9. If the cosine of an angle is f, find its sine and its tangent.

10. If the sine of an angle is \\^ find its cosine and its tangent.

11. Divide the relation BC^ + AC^ = AB^ through by uiC^, and what

formula do you obtain ?

12. Prove that (sin yl + cos ^)2 = 1 + 2 sin ^ cos A.

13. Prove that cos2 A - sin2 A = 2 cos2 A - 1.
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3. Numerical Values op the Ratios of Given Angles

First, let the right triangle ABC be such that the side AC
equals the side BC.

Then Z.A = ZB, and each is half a right angle, or 45°.

If

then

and

Hence

the measure of the side AC = 1,

the measure of the side BC = 1,

the measure of the side AB=\^2.

1
sin 45°=-^= .7071,

V2

cos 45°

tan 45° =

V2
1

= .7071,

1.0000.

Why?

The decimal values given are computed correctly to four

places.

Next, suppose that AABD is equi-

lateral. Then Z^ = Z 5 = Z D, and each

is one-third of two right angles, or 60°.

From B draw a perpendicular BC to

AD. This bisects both Z B and the side

AD.
The measure of Z ABC is thus 30°.

If the measure of each side of the equilateral triangle is

two, then in A ABC,

the measure of the side AB = 2, of AC= 1, and of BC = V3.

BG^V^
AB 2

1

Hence sin 60°

cos 60° =— =
AB 2

= .8660;

.5000;

tan 60° =^=^ = 1.7321.
AC 1
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Also, sin 30° =4?= \ = .5000

cos 30° =^=^= .8660;
AB 2

tan 30°=:^=—= .5774.
BO V3

By simple geometrical means, we have thus computed the

sine, cosine, and tangent of angles whose measures are 30°,

45°, and 60°. It will be very easy to memorize the fractional

values of these ratios if the diagrams from which they have

been derived are firmly fixed in the mind.

For example, it should be noticed that in the triangle whose

angles are 45°, 45°, and 90°, the opposite sides are proportional

to 1, 1, and V2; and in the triangle whose angles are 30°, 60°,

and 90°, the opposite sides are proportional to 1, V3, and 2.

Suppose that in the right triangle CAB, the hypotenuse AB
remains of fixed length, while ZA is gradually decreased by

the rotation of AB about the point A. The perpendicular BC
will become less and less, while the base AC will increase in

length. Finally when ZA= 0°, BC= 0, and AC= AB.

Hence sin 0° =^ = 0, cos 0° =^= 1, tan 0° =— = 0.
AB ' AB AC

Similarly by rotating AB the other way until ZA = 90°, it

may be shown that sine 90° = 1, cos 90° = 0, tan 90° = oo.

The trigonometric ratios of angles, or as they are frequently

called, the trigonometric functions, have been carefully com-

puted, by one means or another, for very minute subdivisions

of the angles, and have been tabulated so as to be ready

for use.

. In the following table we give the sines, cosines, and tangents

of angles from 0° to 90°, at intervals of one degree, calculated

correctly to four decimal places.
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TABLE OF TRIGONOMETRIC RATIOS

Degrees Sine Cosine Tangent Degrees Sine Cosine Tangent

.0000 1.0000 .0000 46 .7193 .6947 1.0355
1 .0175 .9998 .0175 47 .7314 .6820 1.0724

2 .0349 .9994 .0349 48 .7431 .6691 1.1106

3 .0523 .9986 .0524 49 .7547 .6561 1.1504

4 .0698 .9976 .0699 50 .7660 .6428 1.1918

5 .0872 .9962 .0875 51 .7771 .6293 1.2349

6 .1045 .9945 .1051 52 .7880 .6157 1.2799

7 .1219 .9925 .1228 53 .7986 .6018 1.3270

8 • 1392 .9903 .1405 54 .8090 .5878 1.3764

9 .1564 .9877 .1584 55 .8192 .5736 1.4281

10 .1736 .9848 .1763 56 .8290 .5592 1.4826

11 .1908 .9816 .1944 57 .8387 .5446 1.5399
12 .2079 .9781 .2126 58 .8480 .5299 1.6003

13 .2250 .9744 .2309 59 .8572 .5150 1.6643

14 .2419 .9703 .2493 60 .8660 .5000 1.7321

15 .2588 .9659 .2679 61 .8746 .4848 1.8040

16 •2756 .9613 .2867 62 .8829 .4695 1.8807

17 .2924 .9563 .3057 63 .8910 .4540 1.9626

18 .3090 .9511 .3249 64 .8988 .4384 2.0503

19 .3256 .9455 .3443 65 .9063 .4226 2.1445

20 .3420 .9397 .3640 66 .9135 .4067 2.2460

21 .3584 .9336 .38.39 67 .0205 .3907 2.3559

22 .3746 .9272 .4040 68 .9272 .3746 2.4751

23 .3907 .9205 .4245 69 .9336 .3584 2.6051

24 .4067 .9135 .4452 70 .9397 .3420 2.7475

25 .4226 .9063 .4663 71 .9455 .3256 2.9042

26 .4384 .8988 .4877 72 .9511 .3090 3.0777

27 .4540 .8910 .5095 73 .9563 .2924 3.2709

28 .4695 .8829 .5317 74 .9613 .2756 3.4874

29 .4848 .8746 .5543 75 .9659 .2588 3.7321

30 .5000 .8660 .5774 76 .9703 .2419 4.0108

31 .5160 .8572 .6009 77 .9744 .2250 4.3315

32 .5299 .8480 .6249 78 .9781 .2079 4.7046

33 .5446 .8387 .6494 79 .9816 .1908 5.1446

34 .5592 .8290 .6745 80 .9848 .1736 5.6713

35 .5736 .8192 .7002 81 .9877 .1564 6.3138

36 .5878 .8090 .7265 82 .9903 .1392 7.1154

37 .6018 .7986 .7536 83 .9925 .1219 8.1443

38 .6157 .7880 .7813 84 .9945 .1045 9.5144

39 .6293 .7771 .8098 85 .9962 .0872 11.4301

40 .6428 .7660 .8391 86 .9976 .0698 14.3007

41 .6561 .7547 .8693 87 .9986 .0523 19.0811

42 .6691 .7431 .9004 88 .9994 .0349 28.6368

43 .6820 .7314 .9325 89 .9998 .0175 57.2900 .

44 .6947 .7193 .9657 90 1.0000 .0000 QO

45 .7071 .7071 1.0000
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EXERCISES

1. In a right triangle the hypotenuse is 25 feet, and one adjacent

angle is 32°. Find the other parts of the triangle.

Solution. In the right triangle ABC^ suppose Z^ = 32° and c = 25

feet.

Then, to find the side a,

- = sin ^ = sin 32°,
c

or a = c . sin 32° = 25 x .5299 = 13.25 feet nearly.

To find the side 6,

- = cos ^ = cos 32°,
c

or 6 = c . cos 32° = 25 x .8480 = 21.20 feet.

To find the angle B,

5 = 90° - ^ = 90° - 32° = 58°.

Test the approximate accuracy of these results by showing

(1)

(2)

a2 + h\

tan^ =

2. In a right triangle one side is 36 feet and the adjacent angle is 54°.

Find the other parts of the triangle.

3. In an isosceles triangle the base is 18 feet and the vertical angle 48°.

Find its sides.

4. A regular pentagon inscribed in a circle has a side of 20 inches.

Find the radius of the circle.

5. Find the length of the side of a regular octagon circumscribed about

a circle of radius 15 inches.
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4. Ratios of Twice an Angle and Half an Angle

The following useful formulas can be easily deduced from

well-known geometrical relations:

(1) sin 2 ^ = 2 sin A cos A,

(2) cos 2 ^ = cos2 A - sin2 A.

Let be the centre of a circle of which ^(7 is a diameter,

and ABC an inscribed triangle.

Z ABC is a right angle. Why ? Draw BD perpendicular

to AC.

If Z CAB = A, Z. COB =2 A. Why ?

T?' ^ ' o A ^D 2BD
First, ^-2^=05^^10"'

^J5 ' AC'

= 2 sin ^ • cos A.

^^ ^ ^ . CD 2 CD AD -DC
Next, cos2^ =— =^^ =-^^—

,

(since AD = radius + OD, and DC = radius - OD),

^AD DC
AC AC'

^AD AB_DG CB
AB ' AC CB ' AG

>T AD AB ^ . DC CB . .. onn\^^^ AB = AC^^''^CB==AC'
^^^'-''^-^
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Therefore - 2 ^ =(fJ
-
(gj

= cos^A — sin^ A.

If we remember that sin^^ + cos^^ = 1, and in the last

formula substitute for cos^^l its value, viz., 1 — sin^^, we

obtain
cos 2^ = 1-2 sin2 A.

Or, if we substitute for sin^A its value, 1 — cos^^, we obtain

cos 2 A = 2 cos^ A-1,

If in these formulas P is written in place of 2 A, and conse-

quently — in place of A, they become

P P
sin P = 2 sin— cos—

-

cos P— cos^— — sin^—

»

Z LI

= l-2sin2|,

= 2 008^:^-1.
LI

The latter two formulas may be rewritten in the form,

2 siii2^=l-cos J*.
Li

2 cos2^=l + cosI*.
LI

EXERCISES

sin lA
1. From the last diagram produce the formula tan A

1 + cos 2^

2. Deduce the values of the sine, cosine, and tangent of 16° from the

formulas given above, and compare your results with those given in the

table.

3. Find in a similar way the values of the sine, cosine, and tangent

of 22^ degrees.
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5. Ratios of an Obtuse Angle

Suppose Z.BAG is obtuse. Then the perpendicular PM
drawn from a point in one q
boundary meets, not the

other boundary, but the

boundary produced back-

ward through the vertex.

In that case, the baseAM, _

i.e. the intercept between

the vertex and the foot of the perpendicular, is considered to be

negative. The perpendicular PM and the hypotenuse AP are

considered positive, just as in the case of an acute angle.

The definitions of the functions of the obtuse angle BAG
are the same as for the acute angle BAC.

Hence, sine of the obtuse angle BAC = , and is positive.

Cosine of the obtuse angle BAC = -——, and is negative, since

AM'\^ negative.

MP
Tangent of the obtuse angle BAC — , and is negative,AM

Since AM is negative.

The functions of an acute angle are all positive since the

perpendicular PM falls upon the other boundary, and not

upon that boundary produced backward.

The thing to be remembered in this connection is that if the

perpendicular drawn from a point in one boundary of the angle

meets the other boundary, the base is considered positive ; but if it

meets the other boundary produced backward through the vertex,

the base is considered 7iegative.

. MPThe sine of the obtuse angle BAC is ; but this ratio is

also the sine of the supplementary angle B'AC, and for both

angles the ratio is positive.

Hence, the sine of any angle equals the sine of its supplement.

The cosine of the obtuse an^rle BAC is , which is also
AP
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the cosine of the supplementary angle B'AC. But for the

latter angle the base AM must be considered positive, since

the perpendicular PM meets the boundary AB' of that angle,

while for the former angle AM is negative.

That is, the cosine of an obtuse angle is equal in magnitude

to the cosine of its supplement, but is negative. In other

words, the cosine of any angle equals minus the cosine of its

supplement.

Similarly, the tangent of an obtuse angle is equal in magni-

tude to the tangent of its supplement, but is negative. In

other words, the tangent of any angle equals minus the tangent

of its supplement.

EXERCISES

1. Write the values of sin 120°, cos 135°, tan 150°.

2. What are the values of the sine, cosine, and tangent of an angle

of 105° ?

3. What is the difference in value between sin 45° and sin 135°

;

between cos 45^ and cos 135° ?

4. Find the value of sin 2 A when cos A = ^.

5. Find the value of cos 2 A when sin A = j%.

6. If tan A = j^, find the value of sin A, cos A, sin 2 A, cos2 ^.

7. If a chord 8 ft. in length is placed in a circle of 5 ft. radius, find

approximately the size of the angle it subtends at the centre, and the

length of its arc.

8. The sides of a right triangle are 5, 12, and 13 feet, respectively.

Find the angles of the triangle. The mid-point of the side 12 is joined to

the opposite vertex ; into what two parts does the line so drawn divide

the opposite angle ?

9. The upper part of a tree broken off with the wind makes an angle

of 30° with the ground, and the distance from the root to the point where

the top of the tree touches the ground is 50 ft. What was the height of

the tree ?

10. The angular elevation of the top of a chimney when viewed from

one position is 32°, and on walking 96 ft. in a straight lijae toward the foot

of the chimney the angular elevation of the top becomes 48°. Find the

height of ih^ chimnejr,
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6. Relations between the Sides and Angles of a
Triangle

1. In any triangle
sin A sin B sin C

Then

Also

= sin JB ; hence AD = AB sinB = c sin B.

= sin C; hence AD = AC sinC =b sin C.

D « G

From any vertex ^ of A ABC draw the perpendicular AD
to the opposite side.

AD
AB
AD
AC

Therefore c sin B = b sin C.

Dividing through by be gives

sin B _ sin C
b ~ c '

If the perpendicular were drawn from the vertex B to the

opposite side, we should find in just the same way that

sin A sin C

Therefore

a c

sin A sin B sin C

EXERCISES

1. What relation would be produced by drawing the perpendicular

from the vertex C ?

2. In a triangle a = 18 ft., B = 27°, C = 65°. Find the other parts of

the triangle.

3. If A = 86°, a = 15 ft. and b = 24, show that B might have either of

two values, and find those values approximately.
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2. In any triangle d^ = a^ ^-b^ -2ah cos C

429

First, when the angle C is acute,

Al^ = BC'' + 10^-2 BC • DC.

But DO= AC cos C.

(Art. 321.)

Therefore A^ = B^ + AC"" - 2 BC - AC cos O,

or <^ = a^ -{- b^ — 2ab cos (7.

Next, when the angle C is obtuse,

AB'^BC'-h AC'+2 BC - CD. (Art. 322.)

But CD = AC cos ACD = -AC cos ACB.

Therefore AB" = BG"" + JZ'' - 2 50 • ^(7 cos O,

or c^ = a^ + 6^ — 2 a6 cos C

Similarly, 6^ = c^ + a^ — 2 ca cos 5,

a2 = ^,2_|_^2_25ccosA

These formulas may be written, cos A

cos B = C2 -I- a2 _ 1)2

2ca
, cos = a^-^b'

2 6c '

2a6
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3. In any triangle siii-^ = 'y^ y-——•
2 ^ be

2 sin^^ = 1 - cos ^ (Page 425.)

= 1 _ ^' + c^ - g' ^ 2 6c - 6^ - c^ + g^

2 be 2 be

^ g^ -(6 - c)^ ^ (g - 6 + c)(a + b - c)

2 be 2 be

If, as in Art. 324, we let g -h 6 + c = 2 s,

then g - 5 + c =^ 2 6' - 2 6 = 2(.9 - 6),

a-i-b-e=2s-2e = 2(s — c).

Hence 2 sin^ ^ = ^(^^I^Uli^,
2 2&C

and sin4 = J(i^Mi^.
2 >/ be

4. /?i g^i?/ triangle cos -^ = 'y "^ ^'

6c

2 cos- :^ = 1 + cos ^ (Page 425.)

^^ 6^-f c^-g^^ 2 6c + 6- + c'-a-

2 6c ~ 2 6c

^ (6 + ef - g.2 ^ (6 + c + g.)(64-c - g)

2 6c 2 6c

_ 2s'2(s-a)
2 6c

Hence cos--^ = "^'^ - ^\
2 . 6c

and cos^-a/'<^-^I
2 -\ 6c
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5. In any triangle a = 6 cos C + c cos B,

B D a G B C

From the vertex A draw the perpendicular AD to the oppo-

site side.

In case B and C are both acute angles,

a = BD-\-DC
= AB cos B -f AC cos C
= c cos B + h cos C.

In case one angle, say C, is obtuse,

a = BD-CD
= ^^ cos 5-^0 cos AGD.

But cos^CZ) = — cos ^(7^, since these are supplementary-

angles. The angle ACB is Z (7 of the given triangle.

Therefore a = AB go^ B-\- AG cos C.

= c cos B -\-h cos C

EXERCISES

1. In a triangle whose sides are 7 ft., 9 ft., and 12 ft., find the angles

(1) from their cosines, (2) from the sine of half of each angle.

2. Two adjacent sides of a triangle are 11 and 15 ft., respectively, and
the included angle is 60°. Find the other parts.

3. The sides of a triangle are 10 ft., 13 ft., and 15 ft., respectively

;

find the greatest and the least angle.

4. Two angles of a triangle are 36° and 63°, respectively, and the

greatest side is 20 ft. ; find the remaining parts of the triangle.

5. Two sides of a triangle are 15 ft. and 18 ft., respectively, and the

included angle is 105°. Find the third side.
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7. Areas of Triangles

1. The area of any triangle is equal to i be sin A,

B

The area of a triangle = Ihhj where h is the side AC, and h

the altitude.

But

(Art. 306.)

h = sin A, or h = c sin A.

Substituting this value of h, we have

area = ^bc sin A.

Similarly it may be shown that

area = ^ ab sin (7,

-^ ac sin B.

2. The area of any triangle equals y/s{8 — a){s — b)(s — c),

area = ^bc sin ^,

= i 6c . 2 sin ^ cos ^. (Page 425.)

But sin V(s
— 6)(s — c) -I

A \s(s — a

Therefore area = 6cJ5^ME«). J?5^,
^ oc ^ oc

= Vs(s — a){s — b)(s — c).
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8. Inscribed and Circumscribed Circles

1. The radius of the circle inscribed in a triangle equals —

>

s

where A denotes the area of the triangle, and s, half the sum of

the sides.

Let be the centre of the inscribed circle, and OF, OG, OH,

radii drawn to the points of contact, and therefore perpen-

dicular to the sides of the given triangle. Join OA, OB, OC.

A OBG + A OCA + A OAB = AABC whose area is A.

Area of A OBC = ^ OF- BC=\r'a.

Area of AOCA = ^OG - CA= ^r-h.

A.xQ2,oiAOAB = ^OH'AB = \r'C.

Therefore A=:\ r(a + 6 -f c),

= r ' s

Therefore r =—
s

In a similar way it may be shown that for a circle tangent

to the side a and to the sides b and c produced,

A
s — a

2f
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2. :

equals ^^

2. Tlie radius of the circle circumscribed about a triangle

ahc

Let be the centre of the circumsoribed circle, and OD be

drawn perpendicular to the side BC.

Then ZBOD = i Z BOC = ZA (Art. 178.)

—— = sin BOD = sin A,
BO

or ^a = R sin A.

Therefore ^ = o • . = o
abc abc

A A A
(Page 432.)

EXERCISES

1. If the sides of a triangle are 56, 65, and 33 ft., find the greatest

angle and the area of the triangle.

2. The sides of a parallelogram are 15 and 17 ft., and one of its

smaller angles is 42°. Find its area and the lengths of its diagonals.

3. The sides of a triangular field are 119, 111, and 92 yds. Show
that its area is 10 sq. yds. less than an acre.

4. Two angles of a triangle are 42° and 68°, respectively, and the least

side is 20 ft. Find its area.

5. The sides of a triangle are 11 ft., 13 ft., and 18 ft., respectively.

Find the radius of the inscribed circle.

6. Two sides of a triangle are 21 ft. and 24 ft., respectively, and the

included angle is 110°. Find its area.



MENSURATION FORMULAS

In the following table, unless otherwise specified, A denotes

the area ; a, b, c, the sides of a triangle ; 6, the base ; c, the

hypotenuse of a right triangle ; r, the radius ; d, the diameter

;

I, the lateral edge ; s, the slant height ; C, the circumference

;

P, the perimeter ; L, the lateral area ; F, the volume.

1. In any parallelogram

A= bh. Art. 305

2. In aright triangle c'2 = ^2 + &2, Art. 317

3. In any triangle; A = l bh. Art. 306

A =Vs(s ~ a)(s - b)(s - c). Art. 324, Pg. 432

A = Ibc sin A. Pg. 432

a2 ^ 52 + c2 - 2 &c cos A. Pg. 429

sin A shi B sin C
a b c

Pg. 428

sin^=V(^-^)(^-^).
2 > 6c

Pg. 430

4. In a circle C = Trd = 2 Trr. Art. 362

A = -1 Cr = 7rr2 = 1 7r^2. Art. 365

5. In a regular polygon

A = ^ Pa, where a is the apothem.

6. In a parallelepiped or any prism

L = IP,

where P is the perimeter of a right section.

V=hA,

where A is the area of the base.

435

Art. 353

Art. 479

Art. 507
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7. In a regular pyramid

where P is the perimeter of the base. Art. 512

where A is the area of the base. Art. 523

8. In a circular cylinder

L = IP,

where P is the perimeter of a right section. Art. 560

V= irrVi. Art. 562

9. In a right circular cone
L = irrs,

where r is the radius of the base. Art. 577

F = 1 TrrVi. Art. 579

10. In a sphere A = 4 Tr\ Art. 661

^ = 720 spherical units. Art. 652

F = |7rr3 = |^r. Art. 667

11. In a spherical segment '

L = 2 wrh. Art. 657

F=i/i(7ra2 + ^62) + i,^h%

where a and b are the radii of the two bases. Art. 674



INDEX TO DEFINITIONS

The numbers refer to pages

Acute angle, 11.

Adjacent, angles, 8.

polygons, 194.

Altitude, 197, 198, 311, 329.

Angle, 6.

acute, 11.

cosine of, 416,

dihedral, 284.

in an arc. 111.

obtuse, 11.

polyhedral, 296.

reflex, 12.

right, 9.

sine of, 416.

spherical, 380.

straight, 12.

tangent of, 416.

trihedral, 296.

Angles, adjacent, 8.

alternate, 62.

complementary, 67.

supplemetary, 11.

of a triangle, 7.

vertical, 8.

Apothem, 239.

Arc of a circle , 100.

length of, 245.

Arcs, similar, 249.

Area, 195, 245, 394.

Axiom, 16.

Axis, of a circle, 372.

Axis, radical, 170.

of symmetry, 88.

Centroid of a triangle, 80.

Chord, of a circle, 100.

of contact, 119.

Circle, 14.

arc of, 100.

centre of, 14.

chord of, 100.

diameter of, 14.

radius of, 14.

secant of, 115.

sector of, 101.

segment of, 101.

tangent of, 116.

Circles, coaxial system of, 170.

concentric, 18.

in contact, 130.

Circular, cone, 361.

cylinder, 354.

Circumference of a circle, 244.

Circumscribed figure, 1 19.

Closed surface, 310.

Coaxial circles, 170,

Commensurable magnitudes, 141.

Common tangents, direct and in-

verse, 133.

Concentric, circles, 18.

spheres, 370.

Concurrent lines, 79.

437
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Coneyclic points, 114.

Cone, 361.

frustum of, 365.

right circular, 362.

Conical surface, 361.

Conjugate arcs, 101.

Contact, chord of, 119,

circles in, 130.

Continued proportion, 152.

Continuity, principle of, 125.

Converse theorems, 32.

Corollary, 35.

Corresponding angles, 62.

Cosine of an angle, 416.

Cube, 317.

Cylinder, 354.

right circular, 354.

Cylindrical surface, 353.

Decagon, 233.

Diagonal, 71.

Diagonals, principal, 252.

Diameter, 14.

Dihedral angle, 284.

plane angle of, 285.

Distance from a point, to a straight

line, 53.

to a plane, 275.

Dodecagon, 233.

Dodecahedron, 311.

Equilateral triangles, 22.

Extreme and mean ratio, 177.

Extremes, 149.

Figure, circumscribed, 119.

closed, 13.

inscribed. 111.

plane, 5.
*

rectilinear, 13.

solid, 263.

Figures, identically equal, 9.

isoperimetric, 228.

symmetrical, 88.

Frustum, of a cone, 365.

of a pyramid, 328.

Great circle, 371.

Harmonic division, 186.

Hexagon, 233.

principal diagonals of, 252.

Hexahedron, 311.

Homologous sides, 30.

Hypotenuse, 44.

Icosahedron, 311.

Incommensurable magnitudes, 141.

Indirect proof, 47.

Inscribed figure, 111.

Inverse points, 88.

Isoperimetric figures, 228.

Isosceles, triangle, 22.

trihedral angle, 302.

Length of an arc, 245.

Limit, 147.

Line, oblique to a plane, 266.

parallel to a plane, 266.

perpendicular to a plane, 266.

straight, 3.

Line-segments, 3.

Lines, concurrent, 79.

parallel, 61.

perpendicular, 9.

skew or gauche, 271.

Locus, 50.

Lune, 395.

angle of, 395.
> •

Magnitude, 16.

Maximum value, 111, 226.
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Mean proportional, 152.

Means, 149.

Measure, 140.

Median of a triangle, 79.

Minimum value, 111, 226.

Multiple, 140.

Octagon, 233.

Octahedron, 311.

Orthocentre of a triangle, 83.

Parallel, lines, 61.

planes, 266.

Parallelepiped, 317.

rectangular, 317.

right, 317.

Parallelogram, 74.

altitude of, 197.

Pentagon, 233.

Pentahedron, 311.

Perimeter, 79.

Perpendicular, to a line, 9.

to a plane, 266.

Plane surface, 4.

Points, coneyclic, 114.

inverse, 88.

Polar spherical triangles, 387.

Poles of a circle, 372.

Polygon, 71, 73.

convex, 71, 73.

diagonal of, 71.

opposite sides of, 72.

perimeter of, 79.

regular, 233.

spherical, 382.

Polygons, adjacent, 194.

mutually equiangular, 161.

similar, 161.

Polyhedral angle, 296.

Polyhedral angles, symmetrical, 297.

Polyhedron, 310.

circumscribed, 378.

Polyhedron, convex, 310.

inscribed, 378.

regular, 342.

Polyhedrons, similar, 339.

Postulate, 15.

Principle of continuity, 126.

Prism, 311.

truncated, 315.

Problem, 17.

Projection, 212, 292.

Proportion, 149.

Pyramid, 328.

Quadrant, 372.

Quadrilateral, 73.

Radical axis, 170.

Radius, 14.

Ratio, 142, 144, 148.

extreme and mean, 177.

Rectangle, 74.

Regular polygon, 233.

apothem of, 239.

centre of, 239.

radius of, 239.

Regular pyramid, 328.

slant height of, 328.

Regular polyhedron, 342.

Rhombus, 74.

Right angle, 9.

Right triangle, 44.

Right circular, cone, 362.

cylinder, 354.

prism 311.

Scalene triangles, 22.

Secant of a circle, 115.

Section of a surface, 310.

Sector, of a circle, 101.

of a sphere, 406.

Segment, of a circle, 101,

of a sphere, 401.
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Semicircle, 101.

Similar, arcs, 249.

polygons, 161.

polyhedrons, 339.

sectors, 250.

segments, 249.

Sine of an angle, 416.

Sphere, 370.

Spherical, angle, 380.

excess, 391.

polygon, 382.

pyramid, 406.

sector, 406.

segment, 401.

triangle, 382.

unit of surface, 397.

Square, 74.

Surface, closed, 310.

conical, 361.

cylindrical, 353.

plane, 4.

Symmetrical, figures, 88.

polyhedral angles, 297.

spherical triangles, 384.

Symmetry, axis of, 88.

Tangent, of an angle, 416.

to a circle, 116.

to a cone, 362.

Tangent, to a cylinder, 355.

to a sphere, 375.

Tangents, common, direct and in-

verse, 133.

Tetrahedron, 311.

Theorem, 17.

Third proportional, 152.

Transversal, 62.

Trapezium, 74.

Trapezoid, 74.

isoceles, 77.

Triangle, 5.

altitude of, 198.

centroid of, 80.

equilateral, 22.

isosceles, 22.

median of, 79.

right, 44.

scalene, 22.

spherical, 382.

Trihedral angle, 296.

isosceles, 302.

Truncated, prism, 315.

pyramid, 328.

Vertex, 5, 71, 310.

Volume of a polyhedron, 315, 324.

Zone, 401.
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