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PREFACE

This text-book aims to carry out the spirit of the admi-

rable suggestions made by the Committee on Secondary

School studies, appointed by the National Educational Asso-

ciation. While the book speaks for itself, some of its lead-

ing features may here be pointed out.

(1) It aims at a combination of Euclidean rigor with

modern methods of presentation suitable for beginners in

the study of demonstrative geometry ; but the rigor is not

regarded as consisting so much in excessive formality of

expression as in soundness of structural development.

(2) It regards the postulates as a body of fundamental

conventions that constitute a definition of Euclidean space,

from which (with the definitions of particular figures) other

properties of such space are to be unfolded by a series of

logical steps.

(3) It regards the postulates of construction as determin-

ing or defining the province of elementary as distinguished

from higher geometry. Accordingly no hypothetical figure

is made the basis of an argument until its construction has

been proved to be reducible to the construction postulates;

and thus problems, no less than theorems, have their place

in the logical development of the subject.

(4) The theorems and problems are arranged in natural

groups and subgroups with reference to their underlying

principle, thus exhibiting the gradual unfolding of the

space relations.

(5) Elementary ideas of logic are introduced comparatively

early, so that the student may easily recognize the equiva-
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vi PREFACE

lence of statements that differ only in form, and also dis-

tinguish between different statements that may seem to be

alike.

(6) The mode of treating ordinary size-relations is purely

geometrical. " This method being pure and thoroughly ele-

mentary, and involving no abstraction, is surely better suited

to the beginner. Indeed, the student is most likely to be-

come a sound geometer who is not introduced to the notion

of numerical measures until he has learned that geometry

can be developed independently of it altogether. For this

notion is subtle, and highly artificial from a purely geomet-

rical point of view, and its rigorous treatment is difficult.

The student generally only half comprehends it, so that for

him demonstrations lose more in rigor as well as in vivid-

ness and objectivity by its use than they gain in apparent

simplicity. Moreover, the constant association of number

with the geometric magnitudes as one of their properties,

tends to obscure the fundamental characteristic of these

magnitudes— their continuity."* Words suggestive of

measurement, such as length, area, distance, etc., are

accordingly not used in the purely geometrical chapters.

(7) The Euclidean doctrine of ratio and proportion is pre-

sented in a modernized form, which shows its naturalness

and generality, and renders it easier of application than the

unsatisfactory numerical theory which is so often allowed

to usurp its place, although it is generally conceded by
mathematicians that Euclid's treatment of proportion is

one of the most admirable and beautiful of his contribu-

tions to geometry.

(8) There is a chapter on mensuration, in which measure-

numbers are introduced as a natural outgrowth from the

general notion of ratio, and the irrational numbers that cor-

* See Report of Conference of School and College Teachers em-
bodied in the Report of the Committee of Ten, p. 113. (Published
for the National Educational Association by American Book Company,
1894.)
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respond to the ratios of incommensurable magnitudes are

given simple logical treatment based on the general theory

of ratio, without resorting to the notion of a limit, which

has no natural connection with the subject.

(9) The measurement of the circle is based on the cor-

rect definition of the length of a curved line (in terms

of a straight measuring-unit) given by the best continental

writers. Here the idea of a limit is imbedded in the defi-

nition ; but the existence and uniqueness of the limit must

be proved before we can speak of the " length of an arc " so

as to make it the subject of our discourse ; otherwise we are

using a word that has not been completely defined. Similar

statements may be made with regard to the area of the circle.

As far as the author is aware this plan has not hitherto

been followed in any text-book in the English language. It

is hoped that this important topic has been presented in a

rigorous and simple manner.

(10) Throughout the book there is an endeavor to develop

the student's power of invention and generalization, with-

out encouraging looseness, or introducing discouraging diffi-

culties.

These features have received the approval of several ex-

perienced educators. Special acknowledgments are due to

Professors Wait, Jones, Tanner, and Stecker for assistance

and advice.



SUGGESTIONS TO TEACHERS

It is suggested to teachers that the introductory articles

be read and discussed in class in an informal way, with the

aim of drawing out and clarifying those ideas of space-

relations which the students may already possess. Some

of the introductory matter can be passed over lightly on

first reading, and returned to when necessary. Teachers

may exercise their discretion with regard to articles in small

print throughout the book.

For a shorter course, any of the following groups of arti-

cles may be omitted without breaking the continuity of the

subject :
—

Book I. 180-186, 195-213, 232-247.

Book II. 2-3, 79-88, 90-107.

Book III. 141-198.

Book IV. 10.

Most of the exercises that are given in immediate connec-

tion with the propositions should be solved by the student;

but only a few of those placed at the end of sections need

be taken on a first reading. They are all carefully graded,

and many suggestions are given. The author will be glad

to hear from any person who may meet with any error or

difficulty.

As some teachers may wish to use the Socratic or heuristic

methods of instruction in certain parts of the work, the

arrangement and development of the topics are such as

to lend themselves easily to these valuable pedagogical

methods, without interfering with the more formal presen-

tation that is appropriate to a course in demonstrative

geometry. The actual details of any such method are, how-
ever, left to individual discretion, as the skillful teacher has

usually no difficulty in reconciling the claims of pedagogy
and sound reasoning.

viii
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ELEMENTARY GEOMETRY

INTRODUCTION

The Four Fundamental Space Concepts

1. Geometry is that branch of mathematical science which

treats of the properties of space.

The space in which we live is divisible into parts. Every

portion of matter occupies a part of space. The portion of

space occupied by a body, considered separately from the

matter which it contains, may be regarded as existing

unchanged when the body moves into another portion of

space.

2. Any portion of space capable of being occupied by a

physical solid is called a geometrical solid, or simply a

solid.

3. The common boundary of two adjoining solids, or of a

solid and the surrounding space, is not a solid ;
it is a second

kind of space element, called a surface.

4. Any surface is likewise divisible into parts; and the

common boundary of two adjoining parts of a surface is not

a surface ; it is a third kind of space element, called a line.

5. Again, any line is divisible into parts ;
and the common

extremity of two adjoining parts of a line is a fourth kind

of space element, called a point.

A point is not divisible into parts ; hence, the point is the

simplest space element.

6. A fine tracing point, or a dot on a sheet of paper, gives

an approximate representation of the ideal geometric point.
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Similarly the lines which we trace on the surface of a

sheet of paper give some idea of geometric lines. They are,

however, only approximations to ideal geometric lines, no

matter how finely they may be traced.

7. It is often convenient to think of a geometric line as

traced or generated by a point of a moving body.

The line is then called the path of the point.

In the same way a surface may be imagined as generated

by a line that is traced on a moving body.

Again, the surface of a moving body may be imagined as

tracing or sweeping out a solid portion of space.

We cannot go on, however, and imagine any motion of a

solid that will generate any higher space concept.

Hence, the solid is the most comprehensive space concept

we can form.

8. Thus whether we begin with the notion of a solid and

proceed downwards to the notion of a point, or whether we

begin with the point and build up the solid, there are but

three steps in the process : from solid to surface, surface to

line, line to point ; or else from point to line, line to surface,

surface to solid.

Accordingly, the space of our experience is said to have

three dimensions.

A point is said to have no extension and no dimensions; a

line is said to be extended in one dimension ; a surface to be

extended in two dimensions ; a solid to be extended in three

dimensions.

9. Any combination of points, lines, surfaces, or solids, is

called a geometric figure.

Two Primary Space Postulates

10. The postulates of geometry are fundamental agree-

ments or conventions concerning the starting point and
scope of the science.
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11. Postulate of space-dimensions. It is commonly agreed

that ordinary geometry shall treat only of a space of three

dimensions.

We cannot, however, assert that a space of four dimensions could

not exist under any conditions. We are not able to form a mental

picture of such a space, but it does not follow that no one will ever be

able to form such a picture.

12. Postulate of figure-transference. It is also commonly
agreed that ordinary geometry shall consider only a space in

which figures can be transferred in thought from one posi-

tion to another without further change.

There is a branch of higher geometry which considers the possible

existence of a space in which figures are not transferable without

change. (See Art. 34.

)

Besides the two postulates just stated, other postulates

will be introduced in due course.

Primary Definitions

13. In geometry a definition is a statement of what is

to be regarded as the fundamental property of a certain class

of figures, sufficient to distinguish the class, and also suffi-

cient to furnish a starting point for deriving other proper-

ties by logical inference.

The definitions will be introduced wherever occasion

arises. The name to be applied to the class of figures so

defined will be italicized when used for the first time in

the definition.

14. Superposable figures. Equal figures. If two figures are

such that they can, by transference, be so applied to each

other that every point of one falls on some point of the

other, point for point, the two figures when so applied are

said to be coincident, or to be superposed. Figures that

are capable of superposition are said to be superposable.

Superposable figures are also said to be equal to each other.

Thus the phrase "equal figures'' will always have the

same meaning as "superposable figures."
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Straightness as a quality of certain lines.

15. The fundamental meaning of straightness as a geomet-

ric concept is to be obtained by idealizing our experience.

It is well known that the practical straightness of two

rulers, for instance, is tested by observing whether their

edges seem to fit each other, no matter how they may be

moved or turned. If no want of coincidence could be revealed

by any microscope, however powerful, both edges would

have the ideal quality of straightness in the geometric sense.

Accordingly the notion of straightness as possessed by

certain ideal lines is embodied in the following definition.

16. Straight lines are lines of unlimited extent such

that any portion of any of them will coincide with any other

portion of any of them, however applied, if the extremities

of the two portions coincide.

17. It follows from this definition that if two straight

lines pass through the same two points, the lines coincide,

and may then be regarded as the same line.

This may be conveniently expressed thus

:

Only one straight line can pass through the same two

points.

18. Broken line. Curved line. A line composed of parts

of different straight lines is called a broken line. A line

of which no part is straight is called a curved line, or curve.

Flatness as a quality of certain surfaces.

19. Again, it is well known that the practical flatness of

a surface is tested by observing whether a straightedge fits

it, however placed on the surface.

Accordingly the notion of perfect flatness as possessed by
certain ideal surfaces is embodied in the following definition.

20. A flat surface, or plane, is a surface of unlimited

extent such that a straight line passing through any two of

its points lies wholly in the surface.
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21. It follows from this definition, and from the definition

of a straight line, that plane surfaces are such that any
portion of any of them will coincide with any other portion

of any of them, however applied, if the boundaries of the

two portions coincide. For the straight line passing through
any two points of the common boundary must lie in both
planes.

22. Figures formed by points and lines traced on a plane

surface are called plane ftgures.

The study of plane figures is called plane geometry, or

geometry of two dimensions. The consideration of all other

figures belongs to solid geometry.

Boundaries of Separation

23. Two portions of a plane that have a common bound-

ing line are said to be separated by that boundary if every

line passing from a point of one portion to a point of the

other, and not passing out of both portions, passes through

some point of the common bounding line.

Two portions of space that have a common bounding sur-

face are said to be separated by that boundary if every

line passing from a point of one portion to a point of the

other, and not passing out of both portions, passes through

some point of the common bounding surface.

24. Postulate of separation. Let it be granted that an un-

limited straight line on a plane surface divides the whole

plane into two portions that are separated from each other

by the straight line.

25. Each of the two parts into which a plane is divided

by an unlimited straight line is called a half plane. Two

figures in the same half plane are said to be at the same

side of the straight line. Two figures, one in each half

plane, are said to be at opposite sides of the line ; and the

line is said to pass between the two figures.
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26. A straight line terminating at a point and extending

indefinitely the other way is called an indefinite half line.

Thus any assigned point on an unlimited straight line

divides the line into two indefinite half lines. Two points

on the same half line are said to be at the same side of the

assigned point. Two points, one on each half line, are said

to be at opposite sides of the point of separation, and the

latter point is said to be between the two former.

CLOSED FIGURES

27. A line on a plane surface is said to be closed if it

separates a finite portion of the plane from the remaining

indefinite portion.

A surface is said to be closed if it separates a finite por-

tion of space from the remaining indefinite portion.

In both cases the finite portion is said to be inclosed by

the boundary. All points of the finite portion, not on the

boundary, are said to be within the figure ; and all other

points, not on the boundary, are said to be without the figure.

Thus any line passing from any point within to any point

without a closed figure passes through some point of the

boundary.

Hence an unlimited straight line passing through any

point within the closed figure passes through at least two

points of the boundary.

Roundness as a quality of certain closed figures.

28. The notion of roundness as applied to certain figures

is embodied in the following definitions

:

A circle is a plane closed line such that all straight lines

joining any point on this line to a certain point within the

figure are equal. This point is called the center of the circle.

A sphere is a closed surface such that all straight lines

joining any point on the surface to a certain point within

the figure are equal. This point is called the center of the

sphere.
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In the circle or the sphere a line joining the center to any
point on the boundary is called a radius.
The property of having equal radii from a certain point

to the boundary is called roundness.
Thus a circle is a round plane curve; and a sphere is a

round surface. A portion of a circle is called an arc.

The Construction Postulates

29. The conventions in elementary geometry with regard

to the recognized ways of constructing figures on a plane

surface are expressed in the following construction postu-

lates :

Let it be granted

:

1. That a straight line may be drawn from any one point

to any other.

2. That a terminated straight line may be prolonged in-

definitely.

3. That a circle may be described on a plane surface with

any point of the plane as center, and with a radius equal to

any finite straight line.

30. We are thus to be allowed the use of the straightedge

for drawing and prolonging lines on a plane surface ; and

also the use of the compasses for describing circles, and for

transferring portions of straight lines.

The lines so drawn will not indeed be true geometrical

lines, however finely they may be traced. One of the pur-

poses of the postulates is to make an agreement by which

the lines so traced shall be regarded as representing true

lines. They will be supposed to have no irregularities, and

to cover no portion of the surface, being thought of as mere

boundaries.

31. Besides this positive use of the construction postulates,

they have also a negative or restrictive use. No construction

is to be allowed in elementary plane geometry which cannot

be performed by a combination of the primary constructions.

MCM. ELEM. GEOM.—

2
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On the Fundamental Conventions

32. Postulates of existence. Besides the postulates that

have been formally stated above, or that may hereafter be

introduced, there are certain other fundamental conventions,

which should be noticed. The foregoing definitions contain

implied agreements that the thing defined shall be regarded

as existing. These implied agreements are called postulates

of existence. Thus by means of the definitions we have

postulated the existence of points, lines, and surfaces, in

general, and also the existence of particular lines and sur-

faces having the respective qualities of straightness, flatness,

closedness, and roundness.

33. Twofold purpose of the postulates. It should be observed

that our space postulates, whether expressed or implied, are

not of an arbitrary nature, for they are the outcome of our

actual space-experience. The postulates, however, go be-

yond our experience in two ways. In the first place they

raise to ideal exactness our ordinary perceptions of space,

which are more or less crude. Again, by means of the postu-

lates, we extend to the space outside of our experience the

primary notions suggested by our perception of the limited

portion of space that we inhabit.

34. The postulates as defining £uclidean space. A space that

fulfills the conditions embodied in the postulates and primary definitions

is called a Euclidean space after the name of Euclid, who wrote the first

systematic treatise on geometry. We can never be absolutely certain,

at least with our present mode of perception, that our space is of the

ideal Euclidean character, but there is no doubt that, for all human
needs, it may be regarded as accurately Euclidean.

A perfect system of postulates should embody the primary notions

that are necessary and sufficient to distinguish Euclidean space from

other kinds of space, and to furnish a starting point from which all its

properties could be derived by a chain of reasoning without further

resort to experience. Euclid and the ancient geometers did not give

close attention to the necessity and sufficiency of their system of con-

ventions. They silently took for granted certain things that do not
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follow from previously accepted principles ; and some of their fimda-

mental conventions are not independent of each other. Modern geom-
eters are not yet entirely agreed on a complete system of mutually

independent postulates for Euclidean space, and the full discussion of

this question goes beyond the limits set for elementary geometry.

Several different systems of non-Euclidean geometry have been

studied, each of which dispenses with one or more of the characteristic

properties of Euclidean space. The most celebrated of these systems

dispenses with the 'postulate of parallels,' which will be introduced in

the proper place. It should be observed that if only the ' postulate of

dimensions ' is dispensed with, the space is still Euclidean in character,

for a Euclidean three-dimensional space may be regarded as existing in

a Euclidean space of four or more dimensions, just as a two-dimensional

space exists in a three-dimensional one. A Euclidean space of more

than three dimensions is called a Euclidean hyper-space.

Primary Magnitude Relations

35. Definitions. A magnitude is anything that is divis-

ible into parts.

A magnitude is said to be the sum of all its parts.

A magnitude is said to be greater than any part of it,

and also greater than any other magnitude which is super-

posable on a part of it.

In the same way a part is said to be less than the whole
;

and any magnitude that is superposable on a part is also

said to be less than the whole.

If a magnitude is divided into any two parts, either part

is said to be the difference of the whole and the other part.

If a magnitude is divided into two superposable parts, each

part is said to be half of the whole, and the whole is said to

be double of either part.

36. It will next be shown how to construct the sum and

difference of certain magnitudes ; and some of the terms in-

troduced above will receive more detailed definition in con-

nection with the special magnitudes to which they are applied.

The simplest magnitudes are straight lines and plane

angles. These will be considered in the next section.
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BOOK I.— RECTILINEAR FIGURES

LINE-SEGMENTS AND ANGLES

Definitions concerning Line-segments

1. Any portion of a straight line is called a line-segment.

It is usually designated by two letters, one placed at each

extremity.

Any two segments of the same straight line are called

collinear segments.

If two collinear segments have a common extremity, and

are at opposite sides of this common point, they are called

adjacent collinear segments; and the segment which is

composed of them is called their sum.
Several collinear segments are said to be consecutive when

the second is adjacent to the first, the third to the second, and

so on without overlapping; and the whole segment com-

posed of them is called their suw/.

For instance, the segment

AE is the sum of the segments -^ ^ g—J -^
—

AB, BCy CD, DE.

The segment AE is also the sum of the segments AB, BD, DE
;

and of AC, CE.

Again, the sum of any line-segments, however situated, is

the segment obtained by transferring them so as to be con-

secutive collinear segments, and then taking their sum by the

preceding definition.

10
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Comparison of line-segments.

2. Two given line-segments may be compared by trans-

ferring one or both so that they may become collinear, have

a common extremity, and lie on the same side of this

extremity.

E.g., to compare the segments PQ and RS, take an indefinite

line, and transfer PQ to the position AC, and RS to the posi-

tion AB. Then they have a com-

mon extremity A. If the other

two extremities B and C happen

to coincide, the segments PQ and

RS are equal. If these extremi- s"

ties do not coincide, and if the

three points are in the order A, B, C, then the segment ^C is

the sum of AB and another segment BC.

In this case AC is said to be greater than its part AB, and

the latter is said to be less than the former. Accordingly,

PQ is said to be greater than RS, and RS is said to be less

than PQ (Introd. 35).

The other segment BC which when added to the less pro-

duces the greater is called the difference of the two given

segments. It is also called the excess of the greater over

the less, or the remainder obtained by subtraxjting the less

from the greater.

3. The sum of two equal line-segments is called the

double of either of them ; and each of the equal segments

is said to be half of the whole segment which is composed

of them.

4. Hereafter the word line when used without a quali-

fying word will mean straight line.

Sometimes a line-segment will be called a line when

there is no possibility of mistaking it for an indefinite line.

The figure which next presents itself is that formed by

two lines terminated at the same point.
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Definitions concerning Angles

5. An angle is the figure formed by two indefinite half

lines issuing from the same point. This point is called the

vertex of the angle, and the half lines are called its sides.

An angle is usually designated by three letters, the middle

one being placed at the vertex and the other two

on the sides ; thus the angle of the straight lines

ABj AC \% called the angle BAC. When, however,

there is no other angle having the same vertex,

the letter at the vertex is a sufficient designation.

6. A useful notion of an angle may be obtained by the

conception of a revolving line.

In the angle AOB, imagine a line at first to coincide with

OA and then to revolve about the point

(that is, to coincide in succession with dif-

ferent lines passing through O) until it

arrives in the position OB. The revolving

line is then said to have turned through

the angle AOB.

As there are two ways of turning a line from the position

OA to the position 05, there are two angles AOB formed by

the same two half lines. These are said to be conjunct

angles.

7. Two angles are said to be equal (in accordance with

the definition of equal figures in general) when either angle

may be transferred so as to coincide with the other, i.e. so

that their sides may be coincident, and so that the two

angles in question can then be turned through at the same

time by the revolving half line.

When two angles are in coincidence, their conjunct angles

are also in coincidence.

8. Two angles that have the same vertex with one side

common, and are situated at opposite sides of this common
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line, are called adjacent angles, and the whole angle

formed by the two extreme lines, of which

these two angles are parts, is called the

sum of the two adjacent angles. Thus,

the sum of the angles AOB and BOC is the

angle AOC.
^ A.

9. Several angles are said to be adjacent in succession

when they have a common vertex and are such that the

second is adjacent with the first, the

third with the second, and so on with-

out overlapping; and the whole angle

formed by the two extreme lines, of

which these angles are parts, is called

the sum of the several angles. For

instance, the angle AOE is the sum of the angles AOB, BOC,

COD, and DOE. It is likewise the sum of the angles AOCy

COD, and DOE.

10. Again, the sum of several angles not adjacent in suc-

cession is the angle obtained by transferring them so as to

be adjacent in succession, and then taking their sum accord-

ing to the preceding definition. This process is called the

addition of angles, and the given angles are then said to

be added or summed. It may be stated as the process of

letting a revolving line turn successively through angles

equal to the given angles (such as 1, 2, 3) ; the wliole angle

thus turned through being the required sum of the separate

angles.
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Comparison of angles.

11. Two angles are compared in regard to magnitude by

transferring one or both so that they may have the same

vertex, a common side, and lie at the same side of this com-

mon line. If the other two sides happen to coincide, the

angles are equal. If these sides do not coincide, one of

the given angles is equal to the sum of the other given angle

and a third angle. The first given angle is then said to be

greater than the other, and the latter is said to be less than

the former (Introd. 35).

12. The third angle, mentioned above (11), which when
added to the less produces the greater, is called the differ-

ence of the two given angles. It is called also the excess

of the greater over the less, or the remainder obtained by

taking the less away from the greater.

13. One angle is said to be the double of another, if it

is the sum of two angles each equal to the other ; and the

latter angle is called the half of the former.

14. It will be seen from the above definitions of the words

equal, sum, difference, greater, less, double, half, when

applied to angles, that in comparing the magnitude of differ-

ent angles nothing is said about the magnitude of their

sides. In fact, the sides of an angle may always be thought

of as indefinitely prolonged.

Species of angles.

15. When the revolving half line turns from the position

OA into the position OA', the prolongation of OA^ it is then

said to have turned through a straight angle.

a:

Thus, an angle whose sides are in the same straight line

at opposite sides of the vertex, is a straight angle.



LINE-SEGMENTS AND ANGLES 15

16. If this revolving line turns through another straight

angle, from OA' to OA, so as to complete a revolution, the

angle turned through is called a perigon.

A' K^ A

17. The half of a straight angle is called a right angle.

B

L.

18. An angle less than a right angle is called an acute

angle.

19. An angle greater than a right angle and less than a

straight angle is called an obtuse angle.

20. An angle less than a straight angle is called a con-

cave angle. Two concave angles are said to be of the

same species when they are both acute, both right, or both

obtuse.

21. An angle greater than a straight angle and less than

a perigon is called a convex angle.

22. The definitions above given and illustrated (1-21)

form the basis of the statements in the next section. Fur-

ther definitions will be introduced as occasion requires.
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Axioms concerning Lines and Angles*

23. An axiom is a general statement whose truth can be

immediately inferred from the definitions of the terms used.

It is convenient for purpose of reference to designate

specially by the term axiom some fundamental statements,

relating to the equality and inequality of magnitudes, whose

truth can be inferred directly from the above definitions.

We apply these axioms only to those magnitudes for

which the appropriate methods of comparison have been

already explained.

When other kinds of magnitude are introduced, and when
all the terms employed receive precise definitions as applied

to such magnitudes, then the appropriate axioms will be

stated, and their truth inferred from the definitions.

The first seven of the following axioms relate to the

equality of magnitudes, the remaining seven to inequality.

24. Ax. 1. Magnitudes which are equal to the same mag-

nitude are equal to each other.

25. Ax. 2. If equal magnitudes are added respectively to

equal magnitudes, the sums are equal.

26. Ax. 3. If equal magnitudes are subtracted respectively

from equal magnitudes, the differences are equal.

27. Ax. 4. The doubles of equal magnitudes are equal.

28. Ax. 5. The halves of equal magnitudes are equal.

29. (a) Ax. 6. The sum of several magnitudes taken in

any order is equal to their sum taken in any other order.

(h) Ax. 7. The double of the sum of two magnitudes is

equal to the sum of their doubles.

* The student need not dwell on Arts. 23-40 at first reading, but

should refer back to them when necessary.
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30. Ax. 8. If one magnitude is equal to or greater than

a second magnitude, and the second greater than a third,

then the first is greater than the third, and also greater than

any magnitude equal to the third.

31. (a) Ax. 9. If equal magnitudes are added respectively

to unequal magnitudes, the sums are unequal, the greater sum
arising from the addition of the greater magnitude.

(b) Ax. 10. If equal magnitudes are subtracted respec-

tively from unequal magnitudes, the differences are unequal,

the greater difference being part of the greater magni-

tude.

(c) Ax. 11. If unequal magnitudes are subtracted respec-

tively from equal magnitudes, the differences are unequal,

the greater difference arising from the subtraction of the

less magnitude.

32. (a) Ax. 12. If unequal magnitudes are added to un-

equal magnitudes, the sum of the two greater magnitudes

is greater than the sum of the two less.

(6) Ax. 13. If two magnitudes are unequal, the double of

the greater is greater than the double of the less.

(c) Ax. 14. If two magnitudes are unequal, the half of

the greater is greater than the half of the less.

33. The method by which the truth of any one of these

axioms is derived from the definitions is called hmnediate

inference, because the whole process consists of only a

single step.

We have next to show how a new geometric truth may be

derived from definitions, postulates, axioms, or other accepted

facts, by a process of mediate inference, that is, by a series

of steps intermediate between the accepted facts and the

new truth.

It is here that geometry, like other sciences, calls in the

aid of logic, the science of reasoning.
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Some Logical Terms used in Geometry

34. A theorem is a statement enunciating a fact whose

truth can be inferred from other statements previously

accepted as true.

The enunciation of a theorem consists of two parts : the

hypothesis, or formal statement of the conditions ; and the

conclusion, or that which is asserted to follow necessarily

from the hypothesis.

35. The process by which it is made clear, step by step,

that the conclusion must be true if the hypothesis is true is

called the clemonsti^ation or proof of the theorem. Each

step in the demonstration must be authorized by something

previously accepted as true.

36. A corollary to a theorem is a statement whose truth

follows at once from the truth of the theorem, or which can

be proved by a similar course of reasoning.

A corollary to a theorem may be used (like the theorem

itself) in the proof of a subsequent theorem or corollary.

37. In geometry a theorem relates to a certain kind of

figure, and asserts that if the figure possesses a certain prop-

erty stated in the hypothesis, then it must also possess a

certain other property stated in the conclusion.

The theorem will first be stated in general terms so as

to apply to a whole class of figures possessing a certain com-

mon property. This statement is called the general enun-
ciation, or simply the enunciation, of the theorem.

38. For convenience a single representative figure will

be drawn ; and the assumed hypothesis, with the conclusion

to be derived from it, will both be restated with special

reference to the particular figure so drawn. Such restate-

ment is called the special enunciation of the theorem.

The successive steps of the demonstration will also be

explained with regard to this figure, the authority for each

advance being quoted until the conclusion is reached.
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39. Typical fonn of geometric theorem. The hypothesis

of a geometric theorem can usually be put in the type-form

'^A is 5," and the conclusion in the form " C is D."

Each of these, considered separately, is called a simple
statement, or a simple proposition.

When two simple propositions are brought together, the

first being preceded by the word if or the word when, and

the second by the word then, they are said to form a

hypothetical proposition.

In the type-form of hypothetical proposition,

" if A is B, then C is D,"

the assertion is that the second statement (the conclusion)

is a necessary consequence of the first (the hypothesis), so

that any one who agrees to the first must also accept the

second. The hypothesis is sometimes called the antecedent,

and the conclusion the consequent.

It is to be understood that when A and C stand for plural

nouns, the plural verb will be used.

All geometric theorems are of the above tjrpe-form, or can

be put in this form.

For instance, " The halves of equal angles are equal " can

be stated in the hypothetical form,

" If two angles are equal, then their halves are equal."

Sometimes it is more convenient not to use the hypothetical

form of statement in the general enunciation of a theorem

;

but the hypothetical form (or something equivalent to it) is

always used in the special enunciation.

For instance, in Theorem 2, below, the general enunciation,

"All right angles are equal," is an abbreviation of the hypo-

thetical proposition,

" If any two angles are right angles, then they are equal."

In the special enunciation the word if is replaced by the

word let; and the word then by the words to prove:

"Let AOB and A^O'B^ (referring to the figure) be any two

right angles. To prove that they are equal."
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40. Method of arrangement. The general enunciation

is placed first, and printed in italics.

Next in order is the special enunciation, which consists

of two parts : (1) the special statement of the hypothesis,

introduced by the word let, and preceding the figure to

which it refers
; (2) the special statement of the conclusion

to be demonstrated, introduced by the words to prove, fol-

lowing immediately after the figure.

Any construction lines that may aid in the proof are next

indicated, and are usually dotted in the drawing to distin-

guish them from the lines mentioned in the hypothesis,

which are drawn full.

The successive steps in the demonstration leading from

hypothesis to conclusion are then made clear with reference

to the figure so drawn, the previous authority for each

step being quoted, or referred to. The authority may con-

sist in the hypothesis, a definition, a postulate, an axiom,

a previous theorem, or corollary.

Theorems concerning Angles

41. Theorem 1. All straight angles are equal.

Let the indefinite lines OA, OB be the sides of a straight

angle whose vertex is o ; and let 0'A\ O'b' be the sides of

a straight angle whose vertex is 0'.

:t-4—i = ^•W—

'

B A B' 0' A'

To prove that the straight angle formed by the lines OA

and OB is equal to the straight angle formed by the lines

O'A' and 0'B\

Because the first-mentioned angle is a straight angle,

therefore BO and OA are in the same straight line [by the

definition of a straight angle (15)].

Similarly B^O^ and O'^' are in the same straight line.

Then the line BOA can be superposed on the line B^O^A^
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SO that the point falls on 0', by the postulate of trans-

ference (Introd. 12), and the definition of straight lines

(Introd. 16). The two straight angles will then have their

vertices and sides in exact coincidence. Therefore they are

equal [by the definition of equal angles (7)].

42. Theorem 2. All right angles are equal.

Let AOB, A'O'B' be any two right angles.

B B'

A 0' A'

To prove that these angles are equal.

Every right angle is half a straight angle (17, def.).

Now all straight angles are equal (theor. 1) ; and the

halves of equal angles are equal (ax. 5, 28).

Therefore all right angles are equal.

43. Cor. Tlie sum of any two ^ right angles is equal to a

straight angle.

44. Theorem 3. All perigons are equal.

Let a straight line terminated at and indefinitely ex-

tended toward A revolve about its extremity from the

position OA through a perigon into the position OA again.

Similarly let a line revolve about O' from the position OU'

through a perigon into the position O'J' again.

l-Tt-

To prove that these perigons are equal.

Each perigon is the sum of two straight angles (15, 16).

Now all straight angles are equal (theor. 1) ; and the sums

of equal angles are equal (25, ax. 2).

Therefore the perigons are equal.



22 PLANE GEOMETRY— BOOK I

45. Cor. The sum of any four right angles is equM to a
perigon.

COMPLEMENTS, SUPPLEMENTS, ETC.

46. Definitions. If two lines form a right angle each is

said to be perpendicular to the other.

If two perpendicular lines are prolonged through their in-

tersection, they divide the perigon into four equal parts (17).

47. When the sum of two angles is a right angle, each is

called the complement of the other.

When the sum of two angles is a straight angle, each is

called the supplement of the other.

When the sum of two angles is a perigon, each is called

the conjunct of the other.

From the definitions the two following statements are

immediate inferences.

48. Two adjacent angles are complemental if their ex-

terior sides form a right angle which includes the two angles.

49. Two adjacent angles are supplemental if their exterior

sides form a straight angle.

50. Theorem 4. Covzplem^nts of equal angles are

equal.

Proof. The complement of each angle is obtained by-

subtracting it from a right angle (def., 47).

Now all right angles are equal (theor. 2, 42) ; and if equal

angles are subtracted from equal angles, the remainders are

equal (ax. 3, 2Q).

Therefore the complements of equal angles are equal.

51. Theorem 5. The supplements of equal angles

are equal. [The proof is left to the student. ]
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52. Theorem 6. // two adjacent angles are supple-
mental, then their exterior sides are in a straight line.

Let the adjacent angles AOB and bog be supplemental.

To prove that OC is the prolongation of OA.

Suppose, if possible, that OC is not the prolongation of OA
;

and let OC^ be that prolongation.
^

Then the angle BOC' is the supplement of AOB (49).

Therefore BOC^ and BOC are equal, being supplements of

the same angle (51).

Hence a part of the angle BOC \^ equal to the whole angle,

which is impossible.

Thus the supposition made is proved false, since it leads, by

correct reasoning, to an absurdity.

Therefore OC' and OA are not in the same straight line.

In the same way it can be shown that no other line than

OC is in a straight line with OA.

Therefore OC and OA are in one straight line.

63. Indirect proof, or proof by exclusion. It may be

noticed that the two statements above, ^'OC is the prolonga-

tion of 0^," and " OC is not the prolongation of OA," are

opposite statements ; i.e. if either is false, the other is true.

Instead of proving the truth of the first statement directly,

it was easier to prove the falsity of its opposite, or, in other

words, " to exclude the opposite.''

The process of proving the truth of a statement indirectly,

by proving the falsity of its opposite, is called indirect

proof or proof hy exclusion.
MCM. ELEM. GEOM. 3
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54. Converse theorems. There is a close relation between

52 and 49, which will be seen more clearly if the latter is

stated in the following form

;

If two concave adjacent angles have their exterior

sides in a straight line, then the two adjacent angles

are supplemental.

Art. 52 differs from this by having the hypothesis and

conclusion interchanged. The interchange of hypothesis

and conclusion is called conversion.

Definition. Two theorems are said to be converse to each

other when the hypothesis of each is the conclusion of the

other. Two converse theorems have the type-forms

:

If A is Bj then C is Z) ; If C is D, then A is B.

In many cases two converse theorems are both true ; but

there are cases in which a theorem is true while its converse

is not true. The truth of the converse is not a logical conse-

quence of the truth of the original theorem, but always

requires separate examination.

55. Definition. Two angles that are situated so that the

sides of each are the prolongations of the sides of the other

are said to be vertically opposite angles.

56. Theorem 7. Two vertically opposite angles are

equal.

Let the vertically opposite angles AOB, A'OB' be formed

by the straight lines AOa'^ bob'.

A' b

O

B' A.

To prove that the angles AOB and A'OB' are equal.

The angle AOB is the supplement of BOA' (def., 49) ; and

^OB' is also the supplement of BOA'.

Now supplements of the same angle are equal (51).

Therefore the angles AOB and A' OB' are equal.
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TRIANGLES

57. The preceding articles treated of the figure formed by
two intersecting lines. The next figure in order of simplicity

is that formed by three lines each of which intersects the

other two.

58. Definitions. A plane figure formed by three straight

lines that inclose a portion of the plane surface is called a

triangle.

These lines are called the sides, and their intersections

the vertices of the triangle.

Unless otherwise stated, the sides will be taken to mean
the segments lying between the vertices ; but they may also

be thought of as indefinitely prolonged.

The angles formed by the sides, situated toward the

interior of the triangle, are called the interior angles, or

simply the angles, of the triangle.

An exterior angle of the triangle is the concave angle

formed by one of the sides and the prolongation of

another.

It is sometimes convenient to regard a triangle as stand-

ing on a selected side. We then call that side the base;

the two angles adjacent to it, the base angles; the opposite

angle, the vertical angle; the sides of this angle, the two

sides of the triangle ; and its vertex, the vertex of the tri-

angle.

An isosceles triangle is one that has any two of its sides

equal.

The vertex common to the equal sides of an isosceles

triangle is called the vertex, and the side opposite to it is

called the base.

An equilateral triangle is one that has its three sides

equal.

A scalene triangle is one that has no two of its sides

equal.
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Isosceles Triangles

59. Theorem 8. In a triangle, if two sides are equal,

then the angles opposite tJie equal sides are equal.

Let the triangle ABC have the sides AB and AC equal.

To prove that the angles ABC and ACB are equal.

Imagine the triangle turned over on itself

so that AB takes the position AC, and AC
takes the position AB.

Since AB and AC are equal, the point B
takes the position of C, and C takes tlje posi-

tion of B ; hence the new position of the line

BC coincides with its old position (Introd. 17).

Therefore the angles ABC and ACB, being superposable,

are equal.

60. Cor. I. If the equal sides AB and AC are extended

through B and C, the angles below the base are equal.

61. Cor. 2. If two angles of a triangle are not equal, then

the opposite sides are not equal.

Proof. Suppose, if possible, that the opposite sides are equal.

Then the angles opposite these sides are equal (59).

This is inconsistent with the hypothesis. Therefore the supposi-

tion made is false. Hence the opposite sides are not equal.

Converse of theorem 8,

62. Theorem 9. In a triangle, if two angles are

equal, then the sides opposite the equal angles are

equal.

Let the triangle ABC have the angles B and C equal.

To prove that the sides AB and AC are equal.

Imagine the figure turned over on itself so that B falls on

C, and C on B.
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Then the line BA takes the position CA, since the angles

B and C are equal.

Similarly the line CA takes the position CB.

Therefore the point A, being the intersection of BA and
CA, falls on its former position.

Hence the sides BA and CA, being superposable, are equal.

63. Cor. If two sides of a triangle are not equal, then the

opposite angles are not equal. [Prove by exclusion as in 61.]

Equality of Triangles— Three Primary Cases

Two sides and included angle,

64. Theorem 10. // two triangles have two sides

and the included angle of one respectively equal to

two sides and the included angle of the other, the

triangles are equal.

Let the triangles ABC and a'b^C^ have the sides AB, AC,

and the angle BAC, respectively equal to the sides a'b', A'c',

and the angle b'a'c'.

.A A'

To prove that the triangles ABC and A^B^c' are equal.

Imagine the angle A placed on the equal angle A ', the side

AB taking the position A'b', and AC the position A'c'.

Since AB equals A'b', and AC equals A'c', the point B falls

on B', and C on c'. Hence the line BC coincides throughout

with B'C' (Introd. 17).

Therefore the triangles, being superposable, are equal.

Note. Sometimes two equal triangles cannot be superposed with-

out turning one of them over. (See 73, 76.)
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Two angles and the included aide,

65. Theorem 11. If two triangles have two angles

and the intervening side of one respectively equal to

two angles and the intervening side of the other, the

triangles are equal.

Let the triangles ABC and a'b'c' have the angles B, c, and

the side BC, respectively equal to the angles b', c\ and the

side B'&.

B c B' c'

To prove that the triangles ABC and a'b'c' are equal.

Imagine the angle B placed on the angle B\ the side BC
taking the position B'c'j and BA the position b'a'.

Since BC equals B'c', the point C falls on C'; and since

the angles C and C' are equal, the line CA falls on c'a'.

Therefore the points, the intersection of BA and CA, falls

on A', the intersection oi B'A' and c'A'.

Hence the triangles are superposable and equal.

Three sides,

66. Theorem 12. If two triangles have three sides

of one equal respectively to three sides of tJie other, the

triangles are equal.

Let the triangles ABC and A'b'c' have the sides AB, BC,

AC equal respectively to A' b', b'c', A'c'.

B B'
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To prove that the triangles ABC and A'b'c' are equal.

Place the triangle ABC so that AC coincides with its equal

A'C'; the point B falling at the same side as B'.

It is then to be proved that B falls on B'.

This is evident either if AB falls on A'b', or BC on B'c'.

Suppose if possible that neither of these coincidences

takes place; and first let ABC take the position A'b"c',

each of the vertices B' and B" being without the triangle

to which the other belongs. Join^'jB".

Then the triangle A'b'b" is isosceles because A'b' equals

A'B" ; hence the angles A'b'b" and A'b"b' are equal (59).

Therefore the angle C'^'^" is less than the angle c'b"b'

(the former being less than one of the equal angles and the

latter being greater than the other).

But the triangle c'b'b" is isosceles, since the sides C'b'

and C'B" are equal ; therefore the angles C'b'b" and c'b"b'

are equal (59).

Hence these angles are at the same time unequal and

equal ; which is impossible.

Therefore the supposition made is false.

Next let one of the vertices B' and B" lie within the tri-

angle to which the other belongs.

It may be proved in a similar manner that this sup-

position leads to an impossibility. [The student may draw

a figure and prove.] Therefore the point B falls on B'.

Hence the triangles ABC and a'b'c' are superposable, and

equal.

Some Fundamental Constructions

67. A geometrical problem is a proposition whose object

is the construction of a figure which shall conform to certain

prescribed conditions.

The solution consists: (1) in showing how to use the

ruler and compass so as to make the required figure
; (2) in

demonstrating that the figure so constructed satisfies the
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prescribed conditions ; and (3) in discussing what limitations

there are on these conditions so that a solution may be

possible, and under what circumstances there may be more
than one solution.

68. Problem 1. On a given finite line to construct

an equilateral triangle.

Let AB be the given line on which it is required to con-

struct an equilateral triangle.

With A as center and AB as radius,

describe the arc BLC (post. 3, Introd.

29). With B as center and BA as radius,

describe the arc AMC. Let the two

arcs intersect in C. Draw CA and CB.

Then ABC is an equilateral triangle.

For AC and AB are equal, being radii of the same circle

;

and BC and AB are equal, being radii of the same circle.

Hence the triangle ABC has its three sides equal ; and it

is therefore equilateral.

Transference of line-segment,

69. Problem 2. On a given straight line to lay off a
part equal to a given finite straight line.

Let LL' be the given line from which it is required to lay

off a part equal to the given finite line AB.

L P—Z J^ L'

Take any point on the line LZ*'; and with O as center

and a radius equal to AB, describe a circle cutting the given

line in the points P, P'.

Then either of the parts OP, OP' answers the requirements

of the problem, since they are each equal to AB.
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Bisection of line-segtnent,

70. Problem 3. To bisect a given finite straight line

;

that is, to divide it into two equal parts.

Let AA^ be the given line which it is required to bisect.

/y1
1

^N w IB ^
-^A

N^
\

1 /'

/ y

r
With A as center, and any convenient radius AB, describe

the arc GBC\ With A^ as center and an equal radius,

describe the arc CB^G\ Let these arcs intersect in C, C'.

Draw CC\ meeting AA' at O.

Then is the required mid-point of AA\

For in the triangles AC& and A^CC\ the sides AC and A^C

are equal, since the circles have equal radii. Similarly the

sides AC' and A'c' are equal. Also the side CC' is common

to the two triangles.

Therefore the angles ACC' and A^CC' are equal {^^).

Again, in the triangles ACQ and A' CO, the sides AC and A^C

are equal ; the side CO is common ; and the included angles

ACO and OCA' have been proved equal ; therefore AO and OA'

are equal (64),

Hence AA' is bisected at 0.

Note. Observe that if the radius AB is taken too small the circles

will not intersect. It is always possible to take such a radius that the

circles shall intersect at each side of the given line ;
this may be in-

ferred from the statements with regard to closed figures (Introd. 27).

Experience will show what length of radius is preferable for conven-

ience and accuracy.

71. Cor. I. Prove that a line-segment has only one mid-point
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72. Cor. 2. If three finite lines are such that the difference

of the first and second is equal to the difference of the- second

and third, then the sum of the first ai\d third is equal to double

the second.

I:: hO A 'B C D

Outline. On an indefinite line lay off OA, OB, OC, equal respec-

tively to the given lines. Then by liypothesis AB and BC are equal.

Take CD equal to OA. Prove OD equal to double OB.

Bisection of angle*

73. Problem 4. To bisect a given angle; that is, to

divide it into two equal parts.

Let AOB be the given angle which it is required to bisect.

Lay off any convenient equal segments OM and ON.

With if, N as centers and any convenient equal radii,

describe arcs intersecting at C. Draw OC.

The straight line OC bisects the given angle AOB.

To prove this, draw MC and NC.

The triangles OMC and ONC have their sides respectively

equal ; therefore the angles MOC and NOC are equal (66).

Ex. 1. A given angle has only one bisector.

Ex. 2. Bisect a given convex angle.

Ex. 3. Bisect a given straight angle.

Ex. 4. Show how to divide a given angle into four, eight, sixteen,

. . . equal parts.
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Erecting perpendicular,

74. Problems. To erect a perpendicular to a given
line at a given point of the line.

[Bisect the straight angle by the method of Problem 4.]

Dropping perpendicular.

75. Problem 6. To drop a perpendicular to a given
line from agiven point not on the line.

Let iZ/' be the given line, and the given point from

which a perpendicular is to be drawn.

With O as center and any convenient radius, describe an

arc cutting the given line in the two points M, N.

Bisect MN at the point P (70). Draw OP.

Then OF is the required perpendicular.

For the triangles MOP and NOP have their sides respec-

tively equal by construction.

Therefore the angles MPO and NPO are equal (pQ).

Hence these angles are right angles (17).

Therefore OP is perpendicular to MN.

76. Discussion. There is only one solution to this problem.

In other words

:

There is only one perpendicular

from a given point to a given line.

Outline proof. Suppose, if possible, that

O^ is a second perpendicular. Prolong OP^

making PiY equal to OP. JoiniV^. Prove

that the angles OQP and NQP are equal

;

and that QN is a straight line (52) . Show
the absurdity from Art. 17 of Introduction.

Draw conclusion. N

\
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Transference ofan angle,

77. Problem 7. At agiven point in a given straight

line to construct an angle equal to a given angle.

Let be the given point in the given line OA, and a'o'b'

the given angle. It is required to draw a line OB making
the angle AOB equal to a'o'b'.

O A O' A
With and 0' as centers, and any convenient equal radii

OA and 0U\ draw the arcs AB and A'b'. Let the latter
arc cut the sides of the given angle at the points A\ B'.

Draw the line A'b'.

With A as center and a radius equal to A'b', draw an arc
cutting the arc AB at the point B. Draw the line OB.

This line OB makes with OA an angle equal to the angle
A'O'B'. (Prove by 66.)

Note. By this construction the isosceles triangle O'A'B' is trans-
ferred to the position OAB. The possibility of such transference

iatereect
'' '''*^' ^"""'^ ^'"""^ ^' ^^ ^* ""^^'^ ^^^ ^^^ ^^^«

Transference of a triangle,

I'^'^rr f r "'^' ^^""^ ^'^ -^^^^ ^^ ^ ^^'^^^ ^^^^«^ ^^-^^
^A B

) iby actual construction with ruler and compassl

0'
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Inequalities relating to Triangles

The following six theorems with their corollaries treat of

the fundamental inequalities involving the angles or sides of

a triangle.

Exterior and interior angles,

79. Theorem 13. If any side of a triangle is pro-

longed, the exterior angle is greater than either of
the two opposite interior angles.

Let the side AB of the triangle ABC be prolonged to D.

To prove that the exterior angle CBD is greater than either

of the interior angles 5^C and BCA.

Bisect BC at E. Draw AE and prolong it to F, making EF
equal to AE. Join BF.

In the triangles AEC and BEF, the sides AE and EC are

respectively equal to EF and EB (const.), and the included

angles AEG and BEF are equal (p^).

Therefore the angles ACE and FBE are equal (64).

Now the angle CBD is greater than its part FBE.

Therefore the angle CBD is greater than ACE (Introd. 35).

In the same way (by bisecting the side AB and making a

similar construction) the angle ABG can be proved greater

than BAC] hence the vertically opposite angle CBD is also

greater than BAC.

Therefore the exterior angle CBD is greater than either of

the interior and opposite angles.
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80. Cor. The mm of two angles of a triangle is less than a

straight angle.

Outline. Prove the sum of CAB and CBA less than the sum of

CBD and CBA.

Ex. If a triangle has one right angle or obtuse angle, its remaining

angles are acute.

Definitions. A triangle is called a right triangle when

one of its angles is a right angle ;
an obtuse triangle when

one angle is obtuse ; an acute triangle when all its angles

are acute.

Ex. Prove that an equilateral triangle is an acute triangle.

Unequal sides and unequal angles,

81. Theorem 14. If one side of a triangle is greater
than another, the angle opposite the greater side is

greater than the angle opposite the less.

In the triangle ABC, let the side ^c be greater than AB.

G ^^

To prove that the angle ABC is greater than ACB.

From the greater side lay off a part AD equal to the less
side AB. Draw db.

In the isosceles triangle abd, the angles abb and ABB
are equal (59).

Now the angle ADB is greater than the interior angle ACB
(79).

Therefore ABD is greater than ACB (30, ax. 8).
Hence the whole angle abc is greater than ACB.
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82. Combined statement. For brevity, denote the angles

of a triangle by the single capital letters A, B, c, and the op-

posite sides by the corresponding small letters a, b, c ; then,

by Theorems 8 and 14 the following statements are true:

(1) If b is equal to c, then B is equal to C;

(2) If b is greater than c, then B is greater than C;

(3) If b is less than c, then B is less than a

These three statements may be conveniently combined into

one general statement as follows

:

According as one side of a triangle is greater than,

equal to, or less than, another side, so is tJie angle

opposite the first side greater than, equal to, or less

than, the angle opposite the second side.

Here the word If is replaced by the distributive phrase

According as, and the word then by the words so is.

Converse of 81,

83. Theorem 15. If one angle of a triangle is

greater than another, then the side opposite the

greater angle is greater than the side opposite the less.

In the triangle ABC, let the angle ABC be greater than ^ OB.

A

C B

To prove that the side ^C is greater than AB.

The side AC is either equal to, less than, or greater than,

the side AB.

Now^C is not equal to AB-, for then the angle B would be

equal to C (59), contrary to the hypothesis.

Again, ^C is not less than AB ; for then the angle B would

be less than C (81), contrary to the hypothesis.

It only remains that the side AC is greater than AB.
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84. Combined statement. By 62 and 83 the following

statements are true:

If B is equal to C, then b is equal to c;

If B is greater than C, then b is greater than c

;

If /? is less than C, then b is less than c.

These three statements are respectively converse to those

of Art. 82 ; and, like them, may be combined into one com-

plete statement as follows

:

According as one angle of a triangle is greater than,

equal to, or less than, another, so is the side opposite

the first angle greater than, equal to, or less than, the

side opposite the second angle.

Perpendicular and oblique lines,

85. Theorem 16. Of all the straight lines that can
he draum from a given point to a given line :

(1) t?ie perpendicular is the least;

(2) any two that make equal angles with the per-

pendicular are equal;

(3) one that makes a greater angle with the perpen-

dicular is greater than one that makes a less angle.

Let OP be the perpendicular

from the given point to the

given line LL\ Let ON, OQ be

any lines making equal angles

NOP, QOP, with OP. Let OR

make with OP the angle POR
greater than the angle POQ or L N P Q B i^

NOP.

(1) To prove that OP is less than OQ.

The angle OQP is less than the exterior angle OPL (79).

!N'ow the angles OPL and OPQ are equal, being right angles.

Hence OQP is less than OPQ; therefore the opposite side

OP is less than OQ (83).
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(2) To prove that the lines ON, OQ are equal. [Apply 65.]

(3) To prove that OR is greater than OQ or ON
The angle OQR is greater than the right angle OPR (79)

;

which equals the right angle OPN\ which is greater than
the interior angle ORQ (79).

Hence the angle OQR is greater than ORQ (30) ; and there-

fore the side OR is greater than OQ (83).

86. Cor. I7i an isosceles triangle, a line joining the vertex

to any point in the base is less than either side ; and a line

joining the vertex to any point in the base extended is greater

than either side.

Sum of two sides,

87. Theorem 17. Any side of a triangle is less than
the sum of the other two.

Let ABC be a triangle.

To prove that any side AR is less than y1
the sum of the other two sides AC and
BC.

Prolong the side AC until the pro-

longation CD equals the side CB; and

draw BD.

In the isosceles triangle BCD, the angle CBD equals CDB.

Hence the whole angle ABD is greater than the angle CDB.

Therefore, in the triangle ADB, the side AD, opposite the

greater angle, is greater than the side AB (83).

Now AD equals the sum of ^C and CD, which equals the

sum of ^C and CB.

Therefore the sum of ^C and CB is greater than AB.

88. Cor. I. Any side of a triangle is greater than the

difference of the other two.

89. Cor. 2. Any straight line is less than the sum of the

parts of a broken line having the same extremities.

MCM. ELEM. GEOM. —

4
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90. Cor. 3. If from the ends of a side of a tnangle two

straight lines are drawn to a point within the triangle, their

sum is less than the sum of the other two sides of the tnangle.

Definition. The sum of the three sides is called the perim-
eter of the triangle.

Ex. The sum of the lines joining any point within a triangle to the

three vertices is less than the perimeter of the triangle, and greater

than half the perimeter.

A case of unequal triangles,

91. Theorem 18. If two triangles have two sides

of one respectively equal to two sides of the other, and
the included angle in the first greater than the in-

cluded angle in the second, then the third side of the

first is greater than the third side of the second.

Let the two triangles ABC and A^B'c' have the sides AB, BC
respectively equal to A^B\ B'&y and the included angle ABC
greater than a'b'C'.

B

To prove that the third side ^C is greater than A'C'.

Draw the line BC" making the angle ABC" equal to the

less angle B'. Take BC" equal to B'c* ; and draw AC", CC".

First let the point C" fall within the triangle ABC. Let

M and N be points on the prolongations of BC and BC".

The triangles ABC" and a'b'c' are equal ; and the sides

AC"y A'C' are equal (64).

In Ijhe isosceles triangle BCC", the angles C&'N' and C"CM
below the base are equal (60).
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Hence the whole angle AC"C, being greater than one of

the equal angles, is greater than ACC", which is a part of the

other. Therefore, in the triangle AC"C, the side AC, being
opposite the greater angle, is greater than AC" (83).

Therefore AC is greater than A'c'.

Next let C" fall without the triangle ABC.

The proof for the second figure is left to the student ; also the con-

sideration of the intermediate case in which C" falls on AC.

Combined statement,

92. Cor. I. If two triangles have two sides of one equal

to two sides of the other, then according as the vertical angle

of the first is greater than, equal to, or less than, the vertical

angle of the second, so is the base of the first greater than,

equal to, or less than, the base of the second. [Combine 64

and 91.]

93. Cor. 2 (Converse of 91). If two triangles have two

sides of the first equal respectively to two sides of the second,

and the base of the first greater than the base of the second,

then the vertical angle of the first is greater than that of the

second. [Prove by exclusion, using 92 ; see 83.]

Coinhined statement,

94. Cor. 3. If two triangles have two sides of the first

equal to two sides of the second, then, according as the base

of the first is greater than, equal to, or less than, the base of

the second, so is the vertical angle of the first greater than,

equal to, or less than, the vertical angle of the second. [66, 93.]
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Equality of Triangles.— Two Secondary Cases

Two angles and the aide opposite one,

95. Theorem 19. If two triangles have two angles

of one respectively equal to two angles of the other, and
the sides opposite one pair of angles equal in each tri-

angle, then the triangles are equal.

Let the two triangles ABC and A^B'cf have the angles 5, C,

and the side AB respectively equal to the angles B\ cf, and

the side a'b'. a a'

B C" c B' C
To prove that the triangles are equal.

Place the triangle A^B'c^ on ABC so that A^B^ falls on its

equal AB, and the angle A'b'C^ on its equal ABC\ then the

line B'C' falls in the line BC.

Suppose, if possible, that B'c' is not equal to BC, and that

the point C' falls on c" instead of falling on C.

Then the triangles a'b'c^ and ABC'^ have the sides ^'5',

B'C^, and the included angle a'b'c', respectively equal to AB,

BC", ABC". Therefore these triangles are equal; and the

angles AC"B Sind A'c'b' are equal (64).

But the angles a'c'b' and ACB are equal by hypothesis.

Therefore the angles AC"B and ACB are equal; which is

impossible (79).

Similar reasoning applies if C" falls at the other side of C.

Thus the supposition that C' does not fall on c is false
j

hence C' falls on C, and the triangle A'b'c' on ABC.

Therefore the triangles ABC and a'b'c' are equal.

96. Cor. The tivo perpendiculars drawn from any point in

the bisector of an angle to the sides of the angle are equal.
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Two sides and the angle opposite one.

97. Theorem 20. // two triangles have two sides

of one respectively equal to two sides of the other, and
the angle opposite one of these equal to the correspond-
ing angle in the other triangle, then the angles opposite
to the other pair of equal sides are equal or supple-
mental ; and if equal, the triangles are equal.

Let the two triangles ABC and A'b'c' have the sides AB
and BC respectively equal to the sides A'B^ and ^'c/, and
the angle BAC equal to the angle b'a'C'.

To prove that the angles BCA and B^c'A' are either equal

or supplemental.

The tvs^o sides, AC and A'c', are either equal or unequal.

If they are equal (as in fig. 1), the triangles are equal in

all their parts (66).

If they are unequal (as in fig. 2), let ^C be the greater.

Lay off AC" equal to A'c'; and draw BC".

In the triangle ABC" and A'b'c', the sides AB and AC" and

the included angle BAC" are equal respectively to the sides

a'b' and A'c' and the included angle B'a'c'. Therefore the

angles BC"A and B'c'A' are equal, and the sides BC" and B'C*

are equal (64).

Therefore BC" equals BC-, and hence the angles BCC" and

BC"C are equal (59).

Now BC"C is the supplement of BC"A; therefore BCA, be-

ing equal to BC"C, is equal to the supplement of BC"A, and

hence equal to the supplement of b'c'a'.
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98. Cor. I. If two triangles have tivo sides of one respec-

tively equal to two sides of the other, and the angle opposite

one of these sides equal to the corresponding angle in the other

triangle, then the triangles are equal :

(1) If the two angles given equal are right angles or obtuse

angles ;

(2) if the angles opposite to the other two equal sides are

both acute, or both obtuse, or if one of tJiem is a right angle ;

(3) if the side opposite the given angle in each triangle is not

less than the other given side.

99. Cor. 2. Jlie perperidicular from the vertex of an isos-

celes triangle to the base bisects both the base and the vertical

angle. Conversely, the perpendicular bisector of the base of an

isosceles triangle passes through the vertex.

100. Cor. 3. If the two peipendiculars drawn from a point

to the sides of an angle are equal, then the point is on the bi-

sector of the angle. (Converse of 96.)

EXERCISES

1. Summarize the five cases of the equality of two triangles.

2. The bisectors of two adjacent supplemental angles are perpen-

dicular to each other.

3. The bisectors of two adjacent conjunct angles are in the same
straight line.

4. The bisectors of two vertically opposite angles are in the same
straight line.

5. The lines drawn from the extremities of the base of an isosceles

triangle to the middle points of the opposite sides are equal.

6. The bisector of the vertical angle of an isosceles triangle bisects

the base at right angles.

7. If the bisector of an angle of a triangle is perpendicular to the

opposite side, the triangle is isosceles.

8. If the perpendicular from a vertex to the opposite side bisects

that side, then the triangle is isosceles.

9. If two triangles have a common base, and if the vertex of the

second triangle is within the first, or on a side of the first, then the

vertical angle of the first triangle is less than that of the second.

10. Three equal lines cannot be drawn from a point to a line.
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SUMMARY OF TYPES OF INFERENCE

The foregoing propositions have illustrated various

methods of drawing conclusions from given premises. It is

now time for us to consider some of the essential features of

the modes of inference we have been using, and to see the

simple logical principles that underlie them. It will be seen

that there are a few general type-forms which appear again

and again under various modes of expression; and the

student will thus early learn to recognize the logical equiv-

alence of certain statements that differ only in form ; also

to distinguish between different statements that may seem

to be alike; and gradually will come to see the legitimate

conclusions that can be inferred from any given premises.

101. Related statements. Hereafter when the word " state-

ment'' is used without qualification, it will be understood

to mean a simple assertion of the form "^ is -B."

It has been seen that a " theorem " is made up of two such

statements placed in a certain relation to each other, the

relation of hypothesis (or antecedent) to conclusion (or con-

sequent).

When we say that the theorem is " true," we do not mean

that either statement is true in itself, but only that the con-

sequent is true whenever the antecedent is true.

This may be conveniently expressed by saying that the

truth of the consequent is a necessary result of the truth of

the antecedent.

When any two statements are related to each other so that

the truth of each is a necessary consequence of the truth of

the other, they are said to be equivalent statements.

For instance, the two statements,

X is equal to r,

half X is equal to half r,

are equivalent. When either is true, so is the other ;
and

hence when either is false, so is the other.
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Two statements are said to be partially equivalent when the truth of

one is a necessary consequence of the truth of the other, but the truth

of the latter not a necessary consequence of the truth of the former.

For instance, the two statements,

X is greater than F,

X is greater than half T,

are partially equivalent. The truth of the second is a necessary conse-

quence of the truth of the first, but the truth of the first is not a necessary

consequence of the truth of the second. When the second is true,

the first may be trae or false.

Two statements are said to be independent when neither

is a necessary consequence of the other.

For instance, the two statements,

X is greater than F,

X is less than double F,

are independent. When either is true, the other may be

true or false.

Two statements are said to be inconsistent when they

cannot both be true at the same time.

Inconsistency is of two kinds, opposition and partial

opposition.

Two statements are said to be opposite, if, when either

is true the other is false, and when either is false the other

is true.

For instance, the two statements,

X is equal to F,

X is not equal to F,

are opposite.

Two statements are said to be partially opposite, if when either is

true the other is false, and when either is false the other may be true

or false.

For instance, the two statements,

X is equal to F,

X is less than F,
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are inconsistent but only partially opposite. They cannot be true at

the same time, but they may be false at the same time, for there is a
third alternative, X may be greater than Y.

In the preceding case there is no third alternative to the two state-

ments, for Xis either equal to I" or not equal to Y.

102. Reductio ad absurdum. It was remarked in 53 that

instead of proving the truth of a statement directly it is

sometimes easier to prove the falsity of its opposite. Ex-

amples of such indirect proof have occurred in 52, 61, 66,

83, 93, 95. The usual way of conducting an indirect proof

is to suppose " for the sake of argument " (as in theor. 6)

that the opposite of the desired conclusion is true. Combine

this provisional supposition with the given hypothesis ; and

then show that it leads by correct reasoning to a conclusion

which is inconsistent with something previously accepted as

true. There must then be an error somewhere. If no flaw

exists in the reasoning, then the error must lie in the pro-

visional hypothesis. The provisional supposition is then

declared to be false ; and its opposite (i.e. the desired con-

clusion) is finally pronounced true.

This mode of reasoning is called reductio ad dbsurdum,
which may be briefly defined as the process of proving

the truth of a statement by reducing its opposite to an

absurdity.

103. Conversion. The relation of a theorem to its con-

verse was explained in 54. Examples of pairs of converse

theorems have presented themselves in 59 and 62, 81 and 83,

91 and 93, 96 and 100. In no case was the truth of the

converse theorem a direct logical inference from the truth

of the original theorem, but required separate investigation.

This inquiry is of the same nature as seeking the cause of a given

effect in physical science.

In a theorem, we may regard the hypothesis as the cause, and the

conclusion as the effect.

The question to be decided is this : Can we from the presence of the

effect infer the presence of this particular cause ?
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The doubt arises from the fact that the same effect may follow from

different causes.

In order to prove that any particular fact is the true cause it is suf-

ficient to show that if this fact is not present the effect in question does

not follow.

Thus from the fact that " C is i> " we can infer the fact that "^ is

5" if we can show that

" when A is not B, C is not D."

This would exclude the supposition that "J. is not J5," leaving the

only alternative that " ^ is 5."

The method of exclusion is usually the most convenient method of

proving the converse of a theorem. This is exemplified in the proofs

of 52 and 83.

Conversion is thus not a process of logical inference. The truth or

falsity of the result is to be proved by a fresh appeal to geometric facts.

For instance, the truth of 83 was derived by the method

of exclusion from the combined statement of 82. The
proof consisted in showing that there were only three

alternatives, namely, the three hypotheses of Art. 82, then

excluding two of these alternatives by showing that each

leads to a contradiction of the assumed fact, thus leaving

the third alternative as the true one.

By the same method the converse of each of the state-

ments of Art. 82 can be proved by using the other two.

As this method of conversion will be frequently used, it is

now convenient to state and prove the general principle

involved, once for all, so that it may be available for

reference.

104. Rule of conversion. The principle may be stated in

general terms as follows :
*

"If the hypotheses of a group of demonstrated theorems

be exhaustive— that is, form a set of alternatives of which

one must be true; and if the conclusions be mutually

exclusive— that is, be such that no two of them can be true

* This admirable statement is quoted from the Syllabus of the Asso-

ciation for the Improvement of Qeometrical Teaching (London).
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at the same time, then the converse of every theorem of the

group will necessarily be true."

For instance, suppose the following theorems have been

demonstrated

:

(1) When A is B, C is i);

(2) When A is B', (7 is 2)';

(3) When A is B",C is D"

;

and suppose it is also known that A must have one of the

qualities B, B', B"
; and that C cannot have more than one

of the qualities D, D', D". We can then prove that the fol-

lowing three converse theorems are all true

:

When C is D, A is B;

When C is D', A is B';

When C is Z)", A is B",

Take, for instance, the third one.

Suppose, if possible, that

When C is B", A is not B".

Then, since the hypotheses of (1), (2), (3) are exhaustive,

A must be either B or B'.

Therefore, by (1) and (2), C must be either D ot D'.

Then, since the conclusions of (1), (2), (3) are exclusive,

C cannot he D".

Hence, when C is D", C is not B", which is impossible.

Therefore the supposition made is false. Hence,

When C is D", A is B".

Thus the " Rule of Conversion " is established.

Case of two alternatives. In 82 and 84 there are three

alternatives. The rule of conversion can likewise be applied

to the case of tivo demonstrated theorems whose hypotheses

are exhaustive and whose conclusions are exclusive.

Ex. Assuming the truth of the following two theorems :

When A is B, C is D

;

When A is not B, C is not D;

apply the rule of conversion to prove the truth of the converse of each.
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105. Equivalent theorems. If two theorems are such that

each follows logically from the other, the two theorems are

said to be equivalent.

If one of two equivalent theorems is true, so is the other.

Hence, if one of them is false, so is the other.

Two equivalent theorems are not in strictness diiferent the-

orems, but diiferent ways of enunciating the same theorem.

A simple example of such equivalence is seen on comparing 59 and
61. It will appear in the next Article that each of these theorems is a

logical consequence of the other. They are related to each other in

a peculiar way. The first asserts that a certain hypothesis leads to a

certain conclusion ; the second asserts that the opposite of that con-

clusion leads to the opposite of that hypothesis. Theorems related in

this way are said to be contraposed to each other.

106. Contraposition. Two theorems are said to be contra'

posed to each other when the hypothesis of each is the

opposite of the conclusion of the other. They may be rep-

resented by the type-forms :

(1) If A is 5, then Cis D;

(2) If C is not Dj then A is not B.

Each of these theorems is called the contraposite of the

other.

Equivalence of contraposed theorems. Each of two
contraposed theorems follows logically from the other.

For instance, assuming the first to be true, we may infer

the truth of the second, by the method of exclusion, as

follows

:

To prove that

when C is not 2), then A is not B.

Suppose, if possible, that

when C is not D, then A is B.

Now, when A is B, then C is Z), by (1), whose truth was
assumed.
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Hence, when C is not D, then C is jD ; which is impossible,

since these two statements are opposite.

Therefore the supposition made is false. Hence,

when C is not 2), then A is not B.

In the same way the first theorem may be shown to be a

logical consequence of the second-

Two contraposed theorems may thus be regarded as different ways
of expressing the logical dependence of one fact or property upon

another.

The first form asserts that the property expressed by the statement

"J. is jB" is always accompanied by the property expressed by the

statement " O is D."

The second form asserts that the absence of the latter property

shows the absence of the former.

Sometimes one form may be more convenient, and some-

times the other, according to the use we wish to make of the

fact in question.

Thus contraposition is a process of purely logical inference.

It requires no fresh appeal to geometric facts.

107. The four related types. Comparing 59, its converse 62,

and their two contraposites (61, 63), we have a group of four theorems

of the types

:

(1) If A is B, then C is D
;

(2) If C is not D, then A is not B
;

(3) If O is D, then ^ is 5;

(4) If A is not B, then C is not D.

Of these four theorems

the first and second are contraposed,

the first and third are converse,

the third and fourth are contraposed,

the second and fourth are converse.

We have now to introduce a third term, the word obverse, to ex-

press the relation that exists between the fii-st theorem and the fourth,

and also between the second and the third.
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108. Obversion. Two theorems are said to be obverse to each

other when their hypotheses are opposite, and their conclusions also

opposite.

To ohvert a theorem is to change the hypothesis into its opposite,

and the conclusion into its opposite.

The obverse of a theorem is then the contraposite of its converse.

For instance, the converse of (1) is (3), and the contraposite of (3) is

(4), which is itself the obverse of (1).

Similarly the converse of (2) is (4), and the contraposite of (4) is

(3), which is itself the obverse of (2).

Of the four theorems, the first and second are equivalent, each be-

ing a logical consequence of the other; and similarly the third and

fourth are equivalent.

109. Logical independence. Two theorems are said to be logically

independent when neither theorem is a logical consequence of the

other ; that is, when neither theorem is sufficient to prove the other,

even though it may do so when aided by some fresh geometric fact.

The converse theorems, (1) and (3) above, are logically independent,

neither being a necessary consequence of the other (103). Similarly

the converse theorems, (2) and (4), are independent.

Again, the obverse theorems, (1) and (4), are logically independent,

because (1) and (3) are independent and (3) is equivalent to (4).

Similarly the obverse theorems, (2) and (3), are independent.

110. The three transformations. We have considered three pro-

cesses of transforming a known theorem ; viz. contraposition, conver-

sion, and obversion. Of these, only the first is a process of logical

inference. In the other two cases further geometric facts must be

introduced to aid the inquiry into the truth or falsity of the two new
theorems. It is only necessary to examine one of the two, however,

for they are logically equivalent, being contraposites. Hence it will

never be necessary to demonstrate more than two of the four related

theorems, care being taken that the two selected are not contraposites
;

i.e. the two selected should be either converse or obverse to each other.

Ex. 1. In which of the theorems 1-20 is the converse not true ?

In which are the four related types all true ? Only two of them true ?

Ex. 2. Show that 91 has three converses. [Here the hypothesis

has two parts ; and the xjonclusion may be interchanged with the

whole hypothesis, or with either of the parts.] Which one of these is

true ? State the three converses oi ' when .4 is ^ and C is D, then E
is f:
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PARALLEL LINES

The previous sections have treated of the figures formed

by two or three intersecting lines. The next plane figure

to be considered is that formed by two indefinite lines that

never meet.

111. Definitions. Two straight lines lying in one plane,

which will never meet however far they are extended both

ways, are said to be parallel.

A line that intersects two or more other lines (whether

parallel or not) is said to be a transversal to those lines.

A transversal to two other lines forms with them four

interior angles and four exterior angles.

An exterior angle and the non-adjacent interior angle on

the same side of the transversal are called corresponding

angles.

Two non-adjacent interior angles on opposite sides of the

transversal are called alternate angles.

In the figure there are four pairs of corresponding angles

(a,a'), (6,6'), (c,c'), Kci');

cm

and there are two pairs of alternate angles

(6, c'), (d, a').

The angles made with two lines by a transversal play an

important part in the theory of parallel lines ;
this will be

seen in the following theorem, which relates to alternate

angles, and lays a foundation for the succeeding problem on

the construction of parallel lines.
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Use of transversal in proving parallelism,

112. Theorem 21. If two lines in one plane are such
that a transversal makes a pair of alternate angles

equal, then the two lines are parallel.

Let the lines iZ,' and MM' be cut by the transversal OP

in the points 0, P, making the alternate angles LOP and M'PO

equal (fig. 1).

L o L'

MP M'
Fig. 1

To prove that the lines LL' and MM' are parallel.

Suppose, if possible, that the lines are not parallel, that

is to say that they meet if extended far enough to one side

or the other.

Let them meet in the point Q (fig. 2).

Then OPQ is a triangle; and the exterior angle LOP is

greater than the interior angle OPQ (79).

This is contrary to the hypothesis ; hence the supposition

made is false.

Therefore the lines LL' and MM* do not meet, however far

they may be extended both ways ; that is to say they are

parallel.

State the contraposite of this theorem, and compare it with 79.

113. Cor. I. If two lines in one plane are such that a trans-

versal snakes a pair of corresponding angles equals then the two

lines are parallel.

Ex. 1. If two lines are cut by a transversal, and if two interior

angles on the same side of the transversal are together equal to a

straight angle, then the two lines are parallel.

Ex. 2. Two lines perpendicular to the same line are parallel.
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Drawing a parallel,

114. Pkoblem 8. Through a given point to draw a
line parallel to a given line.

y
A.

Outline. Use problem 7 (Art. 77), and prove by theorem 21

(Art. 112).

115. Note. This solution establishes the actual existence of

parallel straight lines. It shows that there is at least one line pass-

ing through a given point parallel to a given line. The possibility of

there being more than one is considered in the next article.

Some Properties of Parallels

116. The parallel-postulate. The properties of parallel

lines rest upon a fundamental assumption, usually called

the postulate of parallels, which in its modern form may-

be stated as follows

:

Let it he granted that two intersecting straight lines cannot

both he parallel to the same third straight line.

This is equivalent to an agreement that only one line can

be drawn through a given point parallel to a given line. In

other words, it assumes that there is only one solution to

problem 8, viz.

:

" Through a given point to draw a line parallel to a given

line."

The truth of this postulate cannot be proved from any of

the preceding definitions or theorems. It may be regarded

as expressing an independent property of Euclidean space

;

and thus, like the other postulates, it has the nature of a

definition.

MoM. ELEM. GEOM. 6
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From the parallel-postulate, by the aid of theorem 21,

the following theorem is derived, which is the converse of

theorem 21, and establishes the characteristic property of

parallel lines.

Equality of alternate angles,

117. Theorem 22. If two parallels are cut by a
transversals, the alternate angles are equal.

Let the parallels LL\ MM* be met by the transversal OP.

N'

N

M P M'

To prove that the alternate angles LOP and M^PO are equal.

Suppose, if possible, that one of them, say LOP, is the

greater.

Draw the line NON^ cutting off from the greater angle

a part NOP equal to the less angle M^PO (77).

Then NON' is parallel to MPM* (112).

Hence, the two intersecting lines are parallel to the same

line; contrary to the postulate of parallels.

Therefore the supposition fails; that is to say, neither

alternate angle is greater than the other ; hence the alter-

nate angles are equal.

Why could 117 not be derived directly from 112? What new
geometric fact had to be introduced ? Compare the statement at the

end of 103.

Contraposite of theorem 22,

118. Cor. I. If the alternate angles are not equal, the lines

are not parallel; and they meet at that side of the transversal

at which the smaller angle lies.
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The first part of this corollary is the contraposite of theorem 22, and
is, therefore, true by 106. The student may, as an exercise, prove it by
the method of exclusion. Compare 112, 118, and their two contra-

posites. How is the latter part of 118 related to 79 ?

119. Test of parallelism. Arts. 112 and 118 together show
that the equality of the alternate angles is a complete test

of parallelism. We could test conclusively whether two

lines are parallel or not by comparing the alternate angles

which they make with any transversal. If the angles are

equal, the lines are parallel ; and if the angles are not equal,

the lines are not parallel. Such a complete test is some-

times called " a necessary and sufficient condition.^'

120. Sufficient condition. One statement is said to be a sufficient

condition of another when the truth of the first is sufficient to insure

the truth of the second ; or, in other words, when the truth of the

second is a necessary consequence of the truth of the first.

For instance, when we say that the statement " ^ is 5 " is a suf-

ficient condition of the statement " O is D" we mean only that

When A is B, is D:

Thus Art. 112 asserts that the equality of the alternate angles is a

sufficient condition of parallelism.

121. Necessary condition. One^statement is said to be a neces-

sary condition of another when the second cannot be true unless the

first is true ; or, in other words, when the opposite of the second is a

necessary consequence of the opposite of the first.

For instance, when we say that the statement "^ is ^" is a neces-

sary condition of the statement " O is D" we mean only that

When A is not J5, C is not D.

Thus Art. 118 asserts that the equality of the alternate angles is a

necessary condition of parallelism.

Arts. 112 and 118 together show that the equality of the alternate

angles is both a necessary and a sufficient condition of parallelism.

Ex. 1. If one statement is a sufficient condition of another, show

that the latter is a necessary condition of the former.

Ex. 2. If one statement is a necessary condition of another, show

that the latter is a sufficient condition of the former.
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Ex. 3. If one statement is a necessary and suflBcient condition of

another, then the latter is a necessary and sufficient condition of the

former.

Ex. 4. Show that the statement "X equals F" is a sufficient (but

not a necessary) condition of the statement " X is greater than half

F" ; and that the latter is a necessary (but not a sufficient) condition

of the former.

Equality of corresponding angles,

122. Cor. 2. If two parallels are cut by a transversal, the

corresponding angles are equal ; and conversely.

Interior angles supplemental,

123. Cor. 3. If tico parallels are cut by a transversal

j

the two interior angles on the same side are together equal to a

straight angle ; and conversely.

Interior angles not supplemental,

124. Cor. 4. If two lines are cut by a transversal^ and if

the interior angles on the same side of the transversal are

together less than a straigfU angle, then the lines will meet at

that side of the transversal at which these angles are.*

What relation does 124 bear to 80 ? What relation does 124 bear

to each of the parts of 123 ? Which of these four theorems are logical

equivalents ? Which of them are not logical equivalents ?

* The statement in corollary 4 was adopted as a postulate by Euclid,

and was placed at the foundation of his theory of parallels. The
form stated in 116 was first given in Playfair's edition of Euclid's

'Elements of Geometry' (1813), and has been generally adopted by

modern writers. An earlier suggestion of this form of the postulate is

found in ' Rudiments of Mathematics,' by W. Ludlam, St. John's

College, Cambridge (1794).
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Another test of parallelism. Arts. 123 and 124 furnish a

useful test as to whether two lines are parallel or not (com-

pare 119). Art. 124 is often used to prove that certain lines

will meet if prolonged in a certain way.

125. Cor. 5. Lines that are parallel to the same line are

parallel to each other. (Use 122.)

Ex. A line perpendicular to one of two parallels is perpendicular

to the other.
'

Angles having parallel sides,

126. Theorem 23. If two angles have the two sides of

one respectively parallel to the two sides of the other

( parallel lines being at the same side of the line joining

the vertices of the angles), then the angles are equal.

Let AOB, a'o'b' be the angles having OA and 0'^' parallel

and on the same side of 00'
; and similarly for OB and O'B'.

To prove that the angles AOB and A'O'b' are equal.

Let O'A' meet OB (extended if necessary) in C.

The angles AOB, A'O'b' are each equal to A'CB (122).

Hence, they are equal to each other.

127(a). Cor. i. If tivo angles have the two sides of one

respectively parallel to the two sides of the other (parallel lines

being at opposite sides of the lirie joining the vertices of the

angles), then the angles are equal.
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127 (b). Cor. 2. If two angles have the two sides of one re-

spectively parallel to the tivo sides of the other {two of the

parallels being at the same side of the line joining the vertices

and the other two being on opposite sides of that line), then the

angles are supplemental.

Theory op Parallels applied to Angle-sums

The following twO theorems, with their inferences, illus-

trate how the theory of parallels may be used in the addi-

tion and subtraction of angles.

Sum of two angles of a triangle,

128. Theorem 24. When any side of a triangle is

extended, the exterior angle is equal to the sum of the

two interior opposite angles.

Let the side AC of the triangle ABChQ extended to E,

To prove that the exterior angle BCE is equal to the sum
of the opposite interior angles CAB and CBA.

Draw the line CD parallel to AB (114).

The angles BCD and CAB are equal (122).

Also the angles DCB and CBA are equal (117).

Therefore, by addition of equals, the angle ECB is equal

to the sum of the angles CAB and CBA.

Ex. 1. When two lines are met by a transversal, the difference of

two corresponding angles is equal to the angle between the two lines.

Ex. 2. The difference between two alternate angles is equal to

what angle ?



PARALLEL LINES 61

By how much does the sum of the two interior angles at one side of

a transversal exceed the sum of the interior angles at the other side ?

Ex. 3. In the figure of Art. 87, prove that the angle ADB equals

half ACB.
Ex. 4. In the figure of Art. 81, prove that the difference of the

angles ABG and ACB equals double DBG.

[Angle ABC equals the sum of ABD and DBC, which equals the

sum of ADB and DBC, etc.]

Angle-sum in a triangle,

129. Theorem 25. The sum of the three interior

angles of a triangle is equal to a straight angle.

[Use the equality proved in 128 ; and add to both members the

third interior angle.]

Ex. 1. In a right triangle the acute angles are complemental ; and

in an isosceles right triangle the acute angles are each equal to half a

right angle.

Ex. 2. In any isosceles triangle each of the equal angles is equal to

the complement of half the third angle.

Ex. 3. In an equilateral triangle each angle is equal to two thirds

of a right angle.

Ex. 4. Show how to construct an angle equal to one third of a

right angle. Hence show how to trisect a given right angle.

Ex. 5. Trisect a given straight angle.

130. Cor. If tivo triangles have two angles of one equal to

two angles of the other, then the third angles are equal.

EXERCISES

1. Through a given point draw a line making with a given line an

angle equal to a given angle.

2. If two lines are respectively perpendicular to two other lines, the

angles formed by the first pair are respectively equal to the angles

formed by the second pair.

3. Two lines perpendicular to two parallel lines, respectively, are

parallel.
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CONSTRUCTION OF TRIANGLES

131. There is a large class of problems involving the

construction of triangles to satisfy certain prescribed con-

ditions involving the sides and angles.

In a triangle the three sides and the three angles are

called its six parts. For convenience the sides will be

denoted by a, 6, c and the opposite angles respectively by

A, Bj a In a right triangle the side opposite the right

angle is called the hypotenuse.

The simplest condition that can be imposed on the con-

struction of a triangle is the assignment of certain line

segments or angles to which some of the six parts are to

be made equal. Those parts which are to be made equal

to prescribed segments or angles are said to be given or

known, and the remaining parts, about which nothing is

prescribed, are said to be unknown.
In each of the five following problems three of the six

parts are given, and it is required to find by a geometric

construction a triangle answering to the prescribed con-

ditions, and incidentally to determine the three unknown
parts of the triangle.

The solution of such a problem has three divisions

:

(1) To make the actual construction by means of processes

that ultimately involve only the drawing of straight lines

and of circular arcs.

(2) To prove by the use of previous propositions that the

figure so constructed satisfies the prescribed conditions.

(3) To discuss the solution ; i.e. to examine what limita-

tions there are on the data so that it may be possible to

satisfy the demands ; and under what circumstances it will

be possible to satisfy them in only one way, or in more

than one way ; and also to examine certain special and

limiting cases.

When the data are such that the demands cannot be
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satisfied by any triangle, the problem is said to have no
solution.

If they can be satisfied by one, and only one, type of

triangle (i.e. if all the triangles fulfilling the stated con-

ditions can be superposed), the problem is said to have

a unique solution.

If the demands can be satisfied by two or some greater

definite number of distinct types of triangles not capable of

superposition, the problem is said to have a determinate

but ambiguous solution.

If the demands can be satisfied by an indefinite number

of triangles, the problem is said to have an indeterminate

solution.

To prepare the way for the solution it is usually best to

make a preliminary analysis of each problem. This may
be described in a general way as follows

:

Suppose the problem solved, and the required figure

drawn. Mark the parts that are supposed to be equal to

"given" lines or angles. Analyze the figure to discover

the relations of the known and unknown parts. Draw any

lines that may help to bring them into closer relations to

each other. Observe which of the problems already solved

could be used to construct the various parts subject to the

given conditions. This is called " reducing the problem to

previous ones."

After this reduction (or analysis) has been made, perform

these simpler constructions in their proper order, thus build-

ing up the figure step by step. Such building-up process is

called a synthesis. Then will follow the proof, and the

discussion as already stated.

In many cases the preliminary analysis is so simple that

it will not be given, but the student should always make

such analysis before consulting the synthetic solution.

It is advisable to make some of the actual constructions

with ruler and compasses; and it affords better geometrical

training to dispense with all other mechanical aids.
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Three sides given,

132. Problem 9. To construct a triangle having its

sides equal to three given lines.

Let a, h, c, be the three given lines.

c V

Draw any line equal to a. With its ends as centers, and

radii equal to 6, c respectively, describe circles. Join their

point of intersection to the ends of a.

The triangle so formed fulfills the given conditions, since

it has its sides respectively equal to the given lines.

Discussion. The limitations on the data, in order that a

triangle satisfying the demands may exist, are that the sum
of any two of the given segments must be greater than the

third (87).

/'c

\

Show that this appears in the actual process of construction. (In

the figure the sum of a and c is less than 6, and the circles do not in-

tersect.) Examine the limiting cases in which the sum of any two

of the given lines is equal to the third.

If the other intersection of the two circles had been selected ; or if

the side h had been taken first, and with its ends as centers, circles

had been described with radii a and c ; the different triangles so obtained

could all be superposed upon the first by suitable movement (66).

Thus there is a unique solution when each of the given segments is

less than the sum of the other two ; and if any of these conditions be

violated there is no solution.
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Given two sides and the included angle,

133. Problem 10. To construct a triangle having
two of its sides equal to two given lines, and the in-

cluded angle equal to a given angle.

Let a, 6 be the given lines and C the given angle. -

B

On any line lay off a segment CB equal to a. Through

one extremity C of this segment draw a line making an

angle equal to the given angle C. On this line lay off from

C a segment CA equal to b, and join AB.

The triangle so formed has the prescribed parts.

Discussion. Show that the only limitation on the data is

that the given angle must be less than a straight angle (129).

Show, as in 132, that the solution is unique (64).

Criven two angles and the included side,

134. Problem 11. To construct a triangle having

two of its angles equal to two given angles, and the

included side equal to a given line.

Make two applications of 77.

What limitation is there on the sum of the two given

angles (129) ?

Show that the solution is unique.

Ex. Construct a right triangle being given one of the sides form-

ing the right angle and either of the acute angles.
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Given two angles and the side opposite one,

135. Problem 12. To construct a triangle having

two of its angles equal to two given angles, and the

side opposite to a specified one of these angles equal

to a given line.

Let Ay B be the given angles and a the given line.

First add the angles A and B together, and subtract the

sum from a straight angle. (This can be conveniently

done by taking any line, then at any point O constructing

an angle equal to A, and an adjacent angle equal to B.)

The remaining part of the straight angle is equal to the

third angle, C, of the required triangle (129).

Then in the triangle ABC the angles B, C are known, and

the included side a. Hence the triangle can be constructed

as in 134.

Discussion. When is there no solution (129) ? Is there

any ambiguity (65, 95) ?

Ex. 1. Construct an isosceles triangle, being given its base and

opposite angle (129).

Ex. 2. Construct a right triangle, being given the hypotenuse and

one acute angle.

Ex. 3. Draw a line parallel to the base of a triangle so that the

portion intercepted between the sides may be equal to a given line.

Given two sides and the angle opposite one,

136. Problem 13. To construct a triangle having

two of its sides equal to two given lines, and the
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angle opposite a specified one of these sides equal to

a given angle.

Let a, h be the given lines and A the given angle.

In any line AB take any point A
; and draw AC making

the angle BAC equal to the given angle (77). Lay off AC
equal to that one of the given segments which is to be equal

to the side adjacent to the given angle. With C as center

and radius equal to the other given segment draw a circle

cutting the line AB in the point B ; and join CB.

The triangle so formed evidently fulfills the stated con-

ditions.

Discussion. The discussion of this problem falls into

three divisions according to the species of the given angle,

and each division has a number of cases according to the

greater or less magnitude of the two given segments. An
examination of the different cases will be found very in-

structive.

I. Let the given angle A be acute.

(1) In the process of construction let the

segment a be less than the perpendicular p
drawn from C to AB.

No solution is possible (85).

(2) Let a equal p.

There is one and only one triangle answer-

ing the conditions ; because any triangle having

the specified parts equal to a, b, A, is right

angled, and is therefore superposable on the

triangle ABC (98).
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(3) Let a be greater than p and less than b.

The arc meets AB in two points B, B\ both

situated on that portion of the line AB which

forms one side of the given angle BAC. Hence

there are two triangles ABC, AB'C, each having

the specified parts equal to a, b, A.

The other parts c, B, C and c', B\ C' are respectively

unequal in the two triangles. In particular the angle B' in

the triangle AB'c is the supplement of the angle B in the

triangle ABC.

The stated conditions are not satisfied by any other type

of triangle ; because any other triangle having the specified

parts equal to a, 6, A, would have the angle opposite the

side b equal either to the angle B or to its supplement (97),

and is therefore superposable on one or the other of the

triangles ABC, AB'c (65).

Thus there are two and only two solutions.

(4) Let a equal b.

The point B' coincides with A. Show that

the solution is unique (64, 65).

(5) Let a exceed b.

Show that B, B' fall at opposite

sides of A, and that the solution

IS unique.

II. Let the given angle A
B' A

be a right angle.

(1) Let a be less than 6, or a equal 6. No triangle.

(2) Let a exceed b.

The points 5, B' are at opposite sides of A; and the

triangles ABC, AB'c each answer the conditions.
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Show that these triangles are superposable ; that so are

all other triangles fulfilling the stated conditions j and that

the sohition is then unique.

III. Let the given angle A be obtuse.

(1) Let a be less than b, or a equal b. No solution.

Show that this conclusion could also be drawn from the

fact that there cannot be two obtuse angles in a triangle (80).

(2) Let a exceed b.

The points B, b' are on opposite sides of A, and the triangle

AB'c is not a solution.

Any other triangle having the specified parts equal to a,

6, A, would have the angle opposite b equal either to B or to

its supplement (97). In the former case the triangle would

be superposable on ABC. In the latter case the triangle

could not exist since the supplement of B is obtuse, and

there cannot be two obtuse angles in a triangle.

Hence there is but one type of triangle answering the

requirements, and the solution is unique.

Ex. 1. Give a summary of the limitations there are on the data in

order that any solution may be possible.

Ex. 2. Summarize the circumstances under which there is a unique

solution.

Ex. 3. When is the solution ambiguous ? Quote the previous

theorem from which it is inferred that there can be no third type of

triangle fulfilling the conditions.

137. Determinate and indeterminate solutions. It has per-

haps been noticed that the assigned conditions in these five

problems of construction of a triangle correspond respec-
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tively to the five conditions of equality of two triangles (64-

66, 95, 97) ; and that the determinateness of the solution

is in each case tested by applying the corresponding condition

of equality.

For instance, the solution of 134 is uniquely determinate,

because any two triangles that have two sides and the in-

cluded angle in each respectively equal, are superposable by

the first condition of equality.

Again, the solution of 136 is in one case ambiguously

determinate, because any two triangles that have two sides

and the angle opposite one of them in each equal have the

angles opposite the other equal sides either equal or supple-

mental, and because there is (in the case referred to) no way

of deciding the species of the angle in question from previous

principles.

In each of these problems three parts were given. If

only two parts are assigned, an indefinite number of distinct

types of triangles answering the requirements can be con-

structed.

For instance, if only two sides are given, the included

angle can be assumed at pleasure, and an indefinite number

of distinct triangles can be formed so as to have the given

sides.

Similarly if only two angles are given, the adjacent side

can be assumed arbitrarily, and the solution is indeter-

minate.

The three angles, however, do not constitute three inde-

pendent data; for then nothing more is given than when

only two angles are assigned (as the third angle could be

found by subtracting the sum of the first two from a straight

angle).

Thus the problem to construct a triangle having its three

angles equal to three assigned angles, is either impossible or

indeterminate; impossible if the sum of the three given

angles is not equal to a straight angle; indeterminate if

it is.
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EXERCISES

1. Given base, vertical angle, and sum of sides, construct the

triangle.

Outline, In the figure of Art. 87, in which AD is the sum of the

sides AC and CB, show that the angle ADB is half the vertical angle

ACB ;
and hence that the triangle ABB can be constmcted from the

data (136). Then show how to construct the triangle ABC.

2. Given base, vertical angle, and difference of sides, construct the

triangle.

Outline. In the figure of Art. 81, in which CD is the difference of

sides, show that the angle CDB equals the sum of the vertical angle

and half its supplement. Construct the triangle CDB by 136, and
then the triangle ABC.

3. Given base, difference of sides, and difference of base angles,

construct the triangle.

[Use 128, ex. 4.]

4. Given base, an adjacent angle, and the sum (or difference) of

the other two sides, construct the triangle.

5. Given the angles and the perimeter, construct the triangle.

Analysis. Prolong base BC both ways, making BB' equal BA, and

CC equal CA. Prove B'C equal to perimeter ; and angle B' equal

half B, etc. Give synthesis.

6. Given the angles and the sum (or difference) of two sides, con-

struct the triangle.

7. In the figure of Art. 81, prolong CA until AE equals AB, and

draw EB; prove that angle DBE equals the sum of DEB and BDE,
and is a right angle.

8. Construct a triangle, being given the base, the sum of sides,

and the difference of the base angles. [Use ex. 7.]

9. Construct an equilateral triangle such that the perpendicular

from the vertex to the base may be equal to a given line.

McM. ET.EM. GEOM.
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QUADRANGLES

Attention has hitherto been given to various properties

of the plane figures formed by two or three straight lines.

The figure that next presents itself is that formed by four

lines each of which meets the next one in order.

138. Definitions. A plane figure formed by four line-seg-

ments that inclose a portion of the plane surface is called

a quddrilatercuL figure, or a quadrangle.

These line-segments are called the sides, and their

extremities the vertices of the quadrangle.

The angles formed by adjacent sides, and situated toward

the interior of the boundary, are called the interior angles

of the quadrangle, or briefly the angles.

The exterior angles conjunct to these will be called for

brevity the conjunct angles.

A concave angle formed by one side and the prolongation

of an adjacent side is called an exterior angle.

If all of the conjunct angles are convex (21), the quadrangle

is called convex.

If one of the conjunct angles is concave, the figure is said

to be concave at that angle.

In a convex quadrangle all the interior angles are concave,

and no side when prolonged traverses the figure ; but a con-

cave quadrangle has one of the interior angles convex, and

the sides of this angle traverse the figure when prolonged.
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A line connecting two non-adjacent vertices is called a

diagonal.

The sum of the sides is called the perimetery and the

sum of the angles the angle-sum.
In a convex quadrangle the sum of the exterior angles

formed by prolonging each side one way, no two adjacent

sides being prolonged through the same vertex, is called the

exterior angle-sum.

The four sides and four angles are called the eight parts
of the quadrangle.

JPrimary relations of parts,

139. Eelation 1. The suin of any three sides is

greater than tlw fourth (89).

140. Cor. The sum of any two sides is greater tJian the

difference of the other two.

141. Eelation 2. The angle-sum is equal to a
perigon.

[Divide the quadrangle into two triangles by a diagonal and apply

129.]

142. Cor. I. A conjunct angle is equal to the sum of the

three non-adjacent interior angles.

143. Cor. 2. Only one of the interior angles in a quad-

rangle can he convex.

144. Cor. 3. If two quadrangles have three angles of one

equal respectively to three angles of the other, the remaining

angles are equal.

Ex. 1. The sum of the four sides of a quadrangle is greater than

the double of either diagonal, and greater than the sum of the diago-

nals.

Ex. 2. The sum of the four interior angles is equal to one third of

the sum of the four conjunct angles.
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Some Conditions of Equality

The following three theorems relate to the equality of two

quadrangles under certain conditions.

Three sides and two included angles,

145. Theorem 26. If two quadrangles have three

sides and the two included angles of one equal to the

corresponding parts in the other, the figures are equal.

Outline. Superpose the equal parts, and show that the coincidence

of the remaining parts will follow as in (>4.

Tivo adjacent sides and three angles.

146. Theorem 27. If two quadrangles have two ad-

jacent sides and any three angles of one- equal to the

corresponding parts in the other, the figures are equal.

Outline. The remaining angles are equal (144). Superpose the

equal parts, and show that the remaining parts will coincide.

Tivo opposite sides and three angles,

147. Theorem 28. If two quadrangles have two op-

posite sides and any three angles of one equal to the

corresponding parts in the other, the figures are

equal.



QUADRANGLES 75

In the quadrangles ABCD and j'b'c'd', let AB equal A'B',

CD equal C'D'. Also let angle A equal A', B equal ^', c equal

C', and consequently jD equal D' (144).

To prove that the quadrangles are equal.

Prolong BC and AD to meet in P; also 5'c' and A'd' to

meet in P'.

The angle PCZ) equals p'c'd', and Ci)P equals (7'i>'P'.

Therefore the triangles PCD and p'c'd', having a side and

the two adjacent angles in each equal, are themselves equal.

For a similar reason the triangle PDA equals p'b'a'.

By subtraction of equals from equals the line BC equals

B'C', and AD equals A'd'.

Hence the quadrangles are equal by the preceding theorem.

Special Kinds of Quadrangles

148. Definitions. A quadrangle that has a pair of its op-

posite sides parallel, and the other pair not parallel, is

called a trapezoid. One that has both pairs of opposite

sides parallel is a parallelograwb.

In contradistinction a quadrangle that has neither pair of

sides parallel is called a trapezium.
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A trapezoid whose opposite non-parallel sides are equal is

said to be isosceles.

A parallelogram that has two adjacent sides equal is called

a rhonibus.

[It is shown later (154) that the four sides of a rhombus are equal.]

A parallelogram that has one of its angles right is called

a rectangle.

[It will appear (150) that all the angles of a rectangle are right

angles.]

A rectangle that has two adjacent sides equal is a square.

[It is shown later (154) that all the sides of a square are equal. A
square is at once a rhombus and a rectangle.]

PARALLELOGRAMS AND TRAPEZOIDS

Theorems 29-36 with their corollaries establish the prin-

cipal properties of parallelograms and trapezoids.

Angles of a parallelogram.

149. Theorem 29. Any two consecutive angles of a
parallelogram are supplemental; and any two oppo-

site angles are equal.

[Apply 126 and corollaries, or prove independently by the method

of that article.]
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150. Cor. All the angles of a rectangle are right angles.

Ex. Show that in a trapezoid the sum of a certain pair of angles is

equal to the sum of the other pair.

Converse of last theorem,

151. Theorem 30. A quadrangle that has both pairs
of opposite angles equal is a parallelogram.

Outline. The sum of two consecutive angles is equal to the sum of

the other two, and is therefore equal to a straight angle (141) ; hence
the opposite sides are parallel (113).

Ex. State and prove the converse of the first part of theorem 29.

152. Cor. If the sum of one pair of angles of a quadrangle

is equal to the sum of the other pair, the figure is a trapezoid.

Sides of a parallelogram,

153. Theorem 31. In a parallelogram the opposite

sides are equal, and a diagonal divides the figure

into two equal triangles.

Let ABCD be a parallelogram, and AC its diagonal. •

To prove that AB equals CD, EC equals AD, and that the

triangle ABC equals ACD.

Comparing the triangles ABC and CDA, the angles BAC

and ACD are equal (117); the angle BCA equals DAC; and

the side ^C is common ; therefore the triangles are equal

(65), and hence AB equals CD, and BC equals AD.

154. Cor. I. All the sides of a rhombus are equal ; and so

are all the sides of a square.
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155. Cor. 2. Parallel lines intercept equal segments on

parallel lines.

Ex. 1. Show how to construct a square on a given line as side.

Ex. 2. Show how to construct a square on a given line as diagonal.

Ex. 3. To construct a rhombus, being given one side and one angle.

Ex. 4. To construct a rectangle so that two adjacent sides may be

equal to two given lines. Show that

there is only one solution.

Ex. 6. In an isosceles trapezoid the

equal sides make equal angles with

each of the other sides.

Outline. Draw BE parallel to AD.
Prove BE, AD, BC all equal. Hence,

prove angle ADC equal to BCD.

Converse of theoretn 31,

156. Theorem 32. In a quadrangle, if the opposite

sides are equal, the figure is a parallelogram.

[Draw a diagonal. Prove triangles equal, angles equal, and lines

parallel. ]

Ex. State and prove the converse of the second part of theorem 31.

Two sides equal and parallel,

157. Theorem 33. If a quadrangle has one pair of

sides equal and parallel, the figure is a parallelogram.

Let the quadrangle ABCD have EC equal and parallel to AD.

To prove that ABCD is a parallelogram.

Draw a diagonal AC.

Since the parallel lines BC, AD are met by a transversal

AC^ the alternate angles BCA, DAC are equal (117).
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Then in the triangles ABC and CDA^ the side BC equals

AD (hyp.) ; the side ^C is common ; and the included angles

BCA and CAD are equal ; therefore the triangles are equal (64).

Thus the angles BAC and ACD (opposite equal sides) are

equal ; hence AB is parallel to CD (112).

Therefore ABCD is a parallelogram (def.).

158. Cor. The lines joining the adjacent extremities of equal

and parallel lines are themselves equal and jmrallel.

Ex. If the parallel sides of a trapezoid are equal, it is a parallelo-

gram.

Diagonals,

159. Theorem 34. The diagonals of a paraZlelogram

bisect each other.

A.

[Compare two triangles formed by the diagonals and a pair of

opposite sides (as ABE, CDE)\ and thus prove the sides opposite

equal angles equal.]

160. Cor. I. The diagonals of a rhombus bisect each other

at right angles.

161. Cor. 2. The diagonals of a rhombus bisect its angles.

Converse of theorein 34,

162. Theorem 35. If the diagonals of a quadrangle

bisect each other, the figure is a parallelogram.

[Compare the two pairs of vertically opposite triangles, and apply

64, 112.]

Ex. 1. If the diagonals of a quadrangle bisect each other at right

angles, the figure is a rhombus.
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Ex. 2. The diagonals of a rectangle are equal.

Ex. 3. Conversely, if the diagonals of a parallelogram are equal, it

is a rectangle.

Ex. 4. The diagonals of an isosceles trapezoid are equal.

Ex. 5. Any line drawn through the intersection of the diagonals of

a parallelogram divides it into two equal trapezoids. [Apply 145.]

Projections,

163. Definition. The prqjection of a point upon a line

is the foot of the perpendicular from the point to the line.

The projection of a line-segment upon a line is the seg-

ment between the projections of its extremities.

A' B'

B

In these figures the segment A^B^ is the projection of AB.

164. Cor. If two lines are equal and parallel, then their

projections upon any other line are equal.

[Consider first the case in which the third line is parallel to the others.

Next, when this is not the case, show that the equal and parallel

lines can be made the h3rpotenu8es of equal right triangles whose

bases are the projections.]

Ex. 1. Parallel lines that have equal projections on another line are

equal.

Ex. 2. Equal lines that have equal projections on another line

make equal angles with it, or else they are parallel to it.

Equal trapezoids, or parallelograms,

165. Theorem 36. Tivo trapezoids are equal if they

have two Ojdjacent sides and any two opposite angles of

one equal to the corresponding parts in the other.

Outline. Show that the remaining angles are respectively equal, and

that the figures can be superposed as in 146.
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166. Cor. Two parallelograms are equal if they have two

adjacent sides and any angle of one equal to the corresponding

parts in the other.

Ex. Show how to construct a parallelogram, being given two
adjacent sides and one angle. Prove that there is always one, and
only one, solution.

SERIES OF PARALLELS

167. Theorem 37. If a series of parallel lines inter-

cept equal segments on any one transversal, then they

intercept equal segments on any other transversal.

Let the parallels make intercepts AB, BC, CD, etc., on the

first transversal, and EF, FG, GH, etc., on the second j and

let the first set of intercepts be equal.

To prove that the second set of intercepts are equal.

Draw EK, FL, GM, etc., parallel to the first transversal, and

terminated by the successive parallels.

Since EK and AB are parallels intercepted between paral-

lels, they are equal (155). Similarly FL equals BC ;
GiJfequals

CD; etc.

Now AB, BC, CD, etc., are all equal by hypothesis, therefore

EK, FL, GM, etc., are all equal.

Also in the triangles EKF, FLG, GMH, etc., the angles KEF,

LEG, MGH, etc., are all equal (122) ; and the angles EFK,

FGL, GHM, etc., are all equal (122).

Therefore these triangles are all equal; and hence EFy

FGy GHf etc., are all equal.
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168. Definition. A series of parallels (as in 167) that

intercept equal segments on any transversal is called a

regular series of parallels.

169. Cor. I. If a regular series of parallels is cut by two

transversals, the segments intercepted on consecutive parallels

have a common difference.

170. Cor. 2. TTie line drawn through the m,iddle point of

one of the non-parallel sides of a trapezoid parallel to the pair

of parallel sides bisects the remaining side.

171. Cor. 3. The line joining the midrpoints of the non-

parallel sides of a trapezoid is parallel to the other sides.

Prove by reductio ad absurdum, using cor. 2 and 116.

172. Cor. 4. T7te line joining the mid-points of the non-

parallel sides of a trapezoid is equal to half the sum of the

X>ardllel sides.

The three parallels have a common difference (169). Apply 72.

173. Cor. 5. Tlie line joining the middle points of the sides

of a triangle is parallel to the third side ; and equal to its half

174. Cor. 6. If one side of a triangle is divided into any

number of equal parts, and if through the points of division

parallels are draion to a second side, then these parallels divide

the third side into equal parts. (Prove by 167.)

175. Definitions. A line is said to be trisected if it is

divided into three equal parts. Thus a line has two points

of trisection.

One line is said to trisect another when the first line

passes through one of the points of trisection of the other.

Ex. 1. Apply 174 to trisect a given line.

Outline. Let AB be the given Une. Draw another line ^A^ at a

convenient angle. Lay off any three equal successive segments AL,
LM, MN. Join NB. By 114 draw through L and iW parallels to NB.
Prove by 174 that these parallels trisect the line AB.
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Ex. 2. The lines joining the mid-points of adjacent sides of a quad-

rangle form a parallelogram (173).

Ex. 3. The mid-points of a pair of opposite sides of a quadrangle

and the mid-points of the diagonals are the vertices of a parallelogram.

Medians of a triangle,

176. Definition. In a triangle the line joining any vertex

to the mid-point of the opposite side is called a median
line (or median) of the triangle.

177. Theorem 38. Two medians of a triangle tri-

sect each other.

Outline. In the triangle ABC let the medians AD and BE inter-

sect in 0.

Let M and N be the mid-points of AO and BO. Show that MN is

equal and parallel to DE (173) ; hence that MD is bisected at 0, and

AD trisected at 0.

Concurrence of three medians,

178. Cor. Tlie three medians of a triangle meet in a com-

mon point, and trisect each other.

179. Definition. The point of concurrence of the three

medians is called the median center of the triangle.

Ex. Construct a triangle whose medians shall be equal to three

given lines.

Outline of analysis. Prolong the median COF to G so that FG

equals OF. Join AG, BG. Prove AOBG a parallelogram. Show

that the triangle AOG has its sides equal respectively to two thirds of

the medians ; and that the problem is thus reduced to a previous one.

Give the complete construction, and proof.
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Construction of Quadrangles

180. The following problems are solved by an extension

of the methods exemplified in 131-136. The student should

make the usual " preliminary analysis " as described in 131,

and also endeavor to perform the synthetic construction

before consulting the solution given for any problem.

The vertices of the quadrangle will be lettered A, i?, C, Z>,

in order ; and the consecutive sides ABj BC, CD, DA will be

denoted by the small letters a, 6, c, d, in order.

Given two adjacent sides and three angles,

181. Problem 14. To construct a quadrangle hav-

ing two a^a/^nt sides equal to two given lines and
three angles equal to three given angles, the order in

which the five parts are to be taken being specified.

Let a, h be the given lines, and A^ C, 2), the given angles.

L
b \. c

1

^^--^sik
CJr-^^^^

T 7 \
The fourth angle B equals the conjunct of the sum of

Ay C, D (141), which is obtained by subtracting the sum of

Ay C, D from a perigon as shown in the figure.

Lay off AB equal to a ; construct angle ABC equal to B
;

lay off BC equal to h. At C, A draw lines CD, AD making

angles BCD, BAD equal respectively to the given angles.

The quadrangle ABCD evidently fulfills the requirements.

Discussion. The limitation on the data is that the sum of

the three given angles must be less than a perigon (146).
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Given two opposite sides and three angles,

182. Problem 15. To construct a quadrangle hav-
ing two opposite sides equal to two given lines, and
three angles equal to three given angles.

Let a, c be the given lines, and A, B, c, the given angles.

D
/a b

C -^
1̂

a

- ^

:^

Take AB equal to a, and make angles ABC equal to B, BAD
equal to A. On BC take any point P ; make angle BPN equal

to C ; take PN equal to c ; draw ND parallel to 5C, meeting

AD m. D'^ and draw DC parallel to NP, meeting BC in C.

The quadrangle ABCD thus formed has the specified parts

equal to the given parts.

Prove that angle BCD equals C, and that side CD equals c.

Discussion. State limitation on data. Prove the solution

unique (147).

Given three sides and two included angles.

183. Problem 16. To construct a quadrangle hav-

ing three sides equal to three given lines, and the two

included angles equal to two given angles.

I^L B «

Construct as in 134. State limitation. Prove solution unique (146).
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Given three sides and two angles adjacent to fourth,

184. Problem 17. To construct a quadrangle hav-
ing three sides equal to three given lines and the two
angles adjacent to the fourth side equal to two given

angles.

Let a, 6, c be the given lines, and A, D, the given angles.

Take AB equal to a ; make angle BAM equal A ; take any

point M in the line AM, and make the angle AMN equal D
;

lay off MN equal c, and draw NP parallel to AM. With B as

center and radius equal to b, draw an arc cutting NP in C;

draw CD parallel to NM.

The quadrangle ABCb has then the prescribed parts.

Prove CD equal to c, and angle ADC equal to D.

Discussion. In certain cases there are two solutions to

the problem, viz. when the arc described with B as center

and radius equal to b meets NP in two points both situated

within the angle DAB.

Show when there is a unique solution, and when none.

Given three sides and two consecutive angles,

185. Problem 18. To construct a quadrangle hav-
ing three sides equal to three given lines and two
consecutive angles equal to two given angles, one of
the consecutive angles being Oydjacent to the fourth
side, and the other not.
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Let the parts a, c, d, A^ B, be given.

Construct in succession DA, DAB, AB, ABM respectively-

equal to the given parts. With radius equal to c and center

D, describe an arc cutting BM in C, C'.

State when there is no solution, when two solutions, when only one.

Given four sides and an angle,

186. Problem 19. To construct a quadrangle having

four sides equal to four given lines and one angle

equal to a given angle.

Let a, h, c, d be the given lines, and A the given angle.

1^
d

Let it be required to construct a quadrangle whose sides

taken in order may be equal to a, b, c, d, and such that the

sides a and d may contain an angle equal to A.

Construct the triangle ABD having AB equal to a, AD equal

to d, and the included angle DAB equal to A (133). Next on

BD construct the triangle BCD having BC equal to b, and CD

equal to c (132).

McM. ELEM. GEOM. — 7
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Show by suitable figures that there may be two solutions, only one

solution, or no solution.

Note. The case in which three sides and two opposite angles are

given is postponed (III, 198).

Ex. 1. Compare the data in the three unique solutions above with

the three conditions of equality (145-147).

Ex. 2. Construct a trapezoid being given two adjacent sides, the

included angle, and the angle opposite to the latter. Which case does

this come under ? Discuss the solution.

EXERCISES

1. Draw a line such that its segment intercepted between two given

fixed indefinite lines shall be equal and parallel to a given finite line.

2. Draw a line parallel to the base of a triangle, cutting the sides so

that the sum of the two segments adjacent to the base shall be equal

to a given line.

Analysis. Let PB, QC he the two segments. Draw PD parallel

to QC. Then in the triangle BPD, the angles and the sum of two

sides are given (137, ex. 6). Give synthesis.

3. Construct a parallelogram being given two adjacent sides and a

diagonal.

4. Construct a parallelogram being given a side and two diagonals.

5. Inscribe a rhombus in a triangle having one of its angles coinci-

dent with an angle of the triangle.

6. One angle of a parallelogram is given in position and the point of

intersection of the diagonals is given ; construct the parallelogram.

7. If the diagonals of a quadrangle bisect its angles, then it is a

rhombus.

8. The perimeter of a quadrangle is greater than the sum of its

diagonals.

9. The sum of two sides of a triangle is greater than double the

median drawn to the third side ; and the perimeter of the triangle

is greater than the sum of the three medians.

10. Given two medians and their included angle, construct the

triangle.
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POLYGONS

This section considers the figure formed by any number
of lines each of, which meets the next in order, and gen-
eralizes some of the results obtained in the preceding
sections.

187. Definitions. A plane figure composed of segments of

straight lines that inclose a portion of the plane surface, is

called a polygon.

These segments are called the sides, their extremities the

vertices, and their sum the perimeter, of the polygon.

Aline joining any two non-adjacent vertices is called a

diagonal.

The angles formed by consecutive sides, and situated

towards the interior of the boundary, are called the interior

angles of the polygon.

The exterior angles conjunct to these will be called for

brevity the conjunct angles.

If all of the conjunct angles are convex, the polygon is

called a convex polygon.

If one of the conjunct angles is concave, the polygon is

said to be concave at that angle.

In a convex polygon each of the interior angles is concave,

and its exterior conjunct angle is convex.

A concave polygon has at least one of the

conjunct angles concave, and the corre-

sponding interior angle convex. The sides

of this angle traverse the figure if prolonged.

In any polygon the concave angle formed by one side and

the prolongation of an adjacent side is called sm eMerior

angle of the polygon.

A polygon whose sides are all equal is equilateral, and

one whose angles are all equal is equiangular.

A polygon which is both equilateral and equiangular is

regular.
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Two polygons that have the sides of one respectively-

equal to the sides of the oth^, taken in order, are said to be

mutually equilateral^ or one is said to be equilateral to

the other.
^

Two polygons that have the angles of one respectively

equal to the angles of the other, taken in order, are said to

be mutually equiangular^ or one is said to be equiangular

to the other.

In two mutually equiangular polygons the vertices of

equal angles are said to correspond; and the sides join-

ing corresponding vertices are called corresponding sides.

The t^o polygons are said to be directly equiangular if

the sides of two corresponding angles can be brought into

coincidence in such a way that their corresponding sides

may coincide, without turning either polygon out of the

plane ; otherwise the polygons are said to be obversely

equiangular to each other.

Two equal polygons are said to be directly superposahle

when they can be superposed without turning either poly-

gon out of its plane ; otherwise the equal polygons are said

to be obversely superposahle.

The number of interior angles in a polygon is equal to the

number of sides.

A polygon of five sides is called a pentagon^ of six sides

a hexagonJ
of seven sides a heptagon, of eight sides an

octagon, of nine sides a nonagon, of ten sides a decagon.

A twelve-sided polygon is called a dodecagon, and a

fifteen-sided one a pentadecagon. In the discussion of

general properties, a polygon of n sides is called an

n-gon.

The sum of the n interior angles is called the interior

angle-sum.

In a convex polygon, the sum of the exterior angles

formed by prolonging each side one way, no two adjacent

sides being prolonged through the same vertex, is called

the exterior angle-sum.
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General Properties op Polygons

The following preliminary general theorems will be of

frequent use in the theory of the polygon.

Division into triangles by diagonals,

188. Theorem 39. In ^ny n-gon if all possible di-

agonals are drawn in any manner, except that no two
intersect within the polygon, then there will be n—3
such diagonals, and the n-gon will be divided inton—

2

triangles.*

Let the diagonals be drawn as stated. Begin with a

diagonal, such as AC, that joins two alternate vertices, and-

call this the first diagonal. This first diagonal cuts off one

triangle from the n-gon and leaves an (ji— l)-gon. Similarly

some second diagonal cuts off a second triangle from this

and leaves an {n — 2)-gon. A third diagonal cuts off a third

triangle from the latter and leaves an {n — 3)-gon, and so on.

When n—Z diagonals are so drawn, there are w-—3 triangles

cut off, and there is left an [n-{n- 3)]-gon, that is a 3-gon,

or triangle. Thus there are n — 3 diagonals and w, — 3 + 1

triangles. Hence the 7Z-gon is divided into n — 2 triangles.

Note. The student who may not be familiar with algebraic symbols

may apply this method of reasoning to the special case of the hexagon

or heptagon.

Another mode of proof consists in beginning with a single triangle,

and then adding other triangles, so as to form in succession a quad-

rangle, a pentagon, a hexagon, etc.

* The symbol n-2 is read n minus 2, and stands for the number

which is 2 units less than n.
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Interior angle-sum,

189. Theorem 40. The sum of the interior angles of
any n-gon is equal to n—2 straight angles.

[Use 188 and 129.]

Ex. 1. An internal angle of an equiangular hexagon is equal to

twice the angle of an equilateral tridngle ; and that of a regular oc-

tagon is equal to a right angle and a half.

Ex. 2. The angle of a regular dodecagon is equal to five sixths of a

straight angle ; that is, equal to the angle of a square together with

the angle of an equilateral triangle.

Exterior angle-stun,

190. Cor. If each side of a convex n-gon is prolonged one

way, no two adjcwent sides being extended through the same
vertex, then the sum of the exterior angles so formed is equal to

a perigon.

For all the exterior angles with all the interior angles

together make up /i straight angles ; but the interior angles

alone make up n — 2 straight angles ; hence the exterior

angles are together equal to two straight angles, and there-

fore equal to a perigon.

Ex. 1. Give an independent proof by applying 126 as indicated in

figure.

Ex. 2. An exterior angle of an equiangular hexagon is equal to

an interior angle of an equilateral triangle.

Ex. 3. The exterior angle of a regular dodecagon is equal to half

the angle of an equilateral triangle.
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EQUALITY OF POLYGONS.— PRIMARY CASES

The following four theorems relate to the primary condi-

tions of equality of two polygons.

Mutually equilateral and equiangular,

191. Theorem 41. If two polygons are muiTiially

equiangular, and have the corresponding sides equal,

the polygons are equal.

[Show that the polygons are either directly or obversely super-

posable.]

Note. In this theorem more conditions are given than are necessary

to insure equality. This will be evident from the next two theorems.

n 1 sides and n — 2 included angles.

192. Theorem 42. // two n-gons have n—1 sides of

one equal respectively ton—1 sides of the other {taken

in order), and the n — 2 interior angles formed hy the

first set equal to the corresponding angles formed hy

the second set, then the polygons are equal.

Outline. Bring the equal parts into coincidence as in 145, and show

that this will necessitate the coincidence of the remaining side and the

two remaining angles of one polygon with their corresponding parts in

the other.
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n— 1 angles and n— 2 intervening sides,

193. Theorem 43. If two n-gons have n— 1 angles of

one equal to the corresponding angles of the other, and
the n — 2 sides situated between the vertices equal to

the corresponding sides in the other, then the polygons

are equal'.

Outline. Show from the given conditions that n — 2 consecutive

sides can be brought into coincidence with their corresponding parts,

and that the equality of the angles necessitates the coincidence of the

two remaining sides of one polygon with the corresponding sides of

the other.

n— 1 angles and n— 2 consecutive sides,

194. Theorem 44. If two n-gons have n—1 angles of

one equal to corresponding angles of the other, and any
n~2 consecutive sides of one equal to the respective like-

placed sides of the other, then the polygons are equal.

Outline. Show that the remaining angle of one is equal to the re-

maining angle of the other ; and then apply the preceding theorem to

prove that the polygons are equal.

Construction of Polygons

Problems 20-27 are concerned with the construction of a

polygon that shall conform to certain prescribed conditions

relating to the magnitude and position of some or all of its

parts.

some regular polygons

Some of the preceding general principles will be used to

construct regular polygons of six, eight, and twelve sides,

with the aid of previous problems. It would be a good ex-

ercise for the student to analyze the constructions down to

their simplest elements, namely those authorized in the con-

struction postulates. Some other regular polygons will be

considered in Book III.
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195. Problem 20. On a given line to construct a
regular hexagon.

Let AB be the given line on which a regular hexagon is to

be constructed.

On AB construct the equilateral triangle AOB-^ continue

AG, BO until OD equals JO, OE equals 0B\ join ED. Draw
BC, DC parallel to OD, OB

; and draw AF, EF parallel to OE,

OA. The figure ABCDEF is a regular hexagon.

Outline proof. Show that each of the triangles whose vertices are

at is equal to the triangle AOB ; and hence that the hexagon is

equilateral and equiangular.

196. Problem 21. On a given line to construct a
regular octagon.

Let AB be the given line on which a regular octagon is to

be constructed.

Since the angle of a regular octagon is equal to a right

angle and a half (189), the figure may be constructed as

follows

:

Prolong AB to P, and draw 5Jf perpendicular to J5; draw

BC bisecting the right angle BBM, and lay off pc equal to
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AB. Similarly construct the side AH; draw CD, EG parallel

to BM, and take CD and HG each equal to AB. Draw G'i'',

DE, making the angles NGF, MDE each equal to half a right

angle, and connect FE.

The figure ABCDEFGH is a regular octagon.

Outline proof. Show that each angle is equal to a right angle and

a half. Also prove the sides equal.

197. Problem 22. On a given line to construct a
regular dodecagon.

Let AB be the given line on which a regular dodecagon is

to be constructed.
H O

Lf-

rQ
/ /

A JJ

Since the angle of a regular dodecagon is equal to the angle

of a square plus the angle of an equilateral triangle, the

figure may be constructed as follows:

On the given line AB construct a square ABPQ. On BP
and AQ construct equilateral triangles BPC, AQN. On PC
and QN describe squares PCD V, QNMR. On VD and MR con-

struct equilateral triangles VDE, MRL ; and so on.

The figure ABCDEFGUKLMN is a regular dodecagon.

[Prove that the twelve sides are equal, and that each angle is equal

to five sixths of a straight angle.]

Ex. To construct a pentagon, being given four angles and three

consecutive si^es.
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TRANSFERENCE OF POLYGONS

198. To transfer a given polygon is to construct another

polygon equal to the given one so that certain of its sides or

vertices may take assigned positions. This is in accordance

with the postulate of figure transference (Introd. 12).

The first polygon is called the trace of the second ; and
any side or vertex of the first is called the trace of the cor-

responding part of the second.

General transference construction,

199. Problem 23. 2'o transfer a given polygon so

that one of the sides may fall on a given and equal

line.

Let ABODE be the given polygon of n sides. Let A^B^ be

equal to AB. It is required to construct on A^B^ a polygon

equal to ABODE.

Draw A'E\ B'o', making angles b'a'e', a'b'c' equal, respec-

tively, to BAE, ABC. Lay off A'e' equal to AE, and B'C'

to BO. Continue this process until n — 1 sides and the n — 2

included angles have been made equal to their correspond-

ing parts; and then complete the n-gon by joining the un-

connected ends of the last two segments.

The two polygons are equal (192).

Note. If A'E' and B'C be drawn at the other side of A'B'^ and

the polygon be completed as before, the new polygon is obversely

superposable on the given one (187).
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Translation construction,

200. Problem 24. To transfer a given polygon so

that corresponding sides in the two positions shall be

parallel, and so that the lines joining corresponding

vertices may be equal and parallel to one and the same
given line.

Let ABCB be the given polygon, and L the given line.

To construct a polygon a'b'c'd' equal to ABCD, so that

the sides a'b', B'c'f C'D\ B'A' may be respectively equal and

parallel to AB, BC, CD, DA, and so that AA\ BB\ CC\ DD^ may

be each equal and parallel to L.

Draw AA\ bb\ CC\ DD' each equal and parallel to L. Join

A'B', B'C', C'D', D'A'.

Then A'B'CfD' fulfills the given conditions.

[Prove corresponding sides of the polygons equal and parallel and

corresponding angles equal. ]

Note. This kind of transference is called translation. The given

line is called the line of translation. The construction used in this

problem is called the translation construction.

201. Definition. Two equal polygons are said to be siw^i-

larly placed when any side and its corresponding side are

parallel and are on the same side of the line joining corre-

sponding extremities.

Thus if a polygon is translated as in 200, the polygon and

its trace are similarly placed.
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The rotation construction,

202. Problem 25. To transfer a given polygon so
that one verte^v may he unchanged, and so that each
side may make with its trace an angle equal to one
and the same given angle.

Let ABCD be the given polygon, A the vertex that is to be

unchanged, and L the given angle.

To construct an equal polygon AB'c'd' so that the angle

between corresponding sides (or their prolongation) shall be

equal to L.

Join A to the other vertices. Turn the lines AB, AC, AD
in the same sense through an angle equal to L, into the posi-

tions AB', AC', ad'. In other words, make the angles BAB',

CAC', DAD' each equal to L, and make AB' equal to AB, AC*

to AC, AD' to AD. Join B'c', C'D'.

Since the angles BAB' and CAC' are equal, the angles BAG

and b'AC' are equal ; hence the triangles BAC and B'AC' are

equal.

Similarly the triangles CAD and C'AD' are equal.

Hence the polygons ABCD and AB'C'd' are equal.

Next, to prove that the angle formed by the prolongations

of the sides BC and b'C' equals the angle L.

Let BC meet AC' in P; and let BC prolonged meet B'C* in

(not shown in figure).

The angles ACB and AC'b' have been proved equal; hence

the triangles FAC and POC' have two angles of one equal to
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two angles of the other ; therefore, the third angles PAC and

POC' are equal.

But the angle PAC equals i; therefore POC' equals the

given angle.

Similarly the angle formed by CD and C'i)' equals the

given angle.

203. Definition. The kind of transference described in

202 is called rotation. The fixed vertex is called the cen-

ter of rotation; and the given angle the angle of rotation.

The construction used is called the rotation construction.

204. Again, if any point O is taken in the plane of the

polygon and joined with the vertices, and if the whole figure

is turned about o by a similar construction, then is called

the center of rotation.

205. Construction for center of rotation. It will next be

shown how to find a center of rotation by means of which a

given polygon can be transferred to any other given position.

We begin with the simpler problem of rotating a line.

Center of rotation for transferring a line.

206. Problem 2^. Given two equal lines not -paral-

lel, and not in tlie same straight line ; to find a point

in the plane such that it may he taken as a center of

rotation for the purpose of transferring one line into

coincidence with the otJier.

Let AB and a'b' be the two equal ^B'
lines. ^'^^/ \

.^^' / •

It is required to find a point 0, q^:"^' _ _ / J

such that if it be joined to the ex- jVnT^* / J

tremities of the lines, the triangle ; \ \ /^\
j

OAB can be rotated about into the
'>-''^l—

—

--^'r
position OA!b\ ^
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Analysis. Suppose the point satisfies the condition.

Then GAB is directly superposable on OA^B\

Therefore OA is equal to 0A\ and OB to 0B\

Hence, lies on the line bisecting AA^ at right angles

;

and also on the line bisecting BB' at right angles. It is

therefore to be determined as follows :

Construction. Join AA\ bb'. Draw the perpendicular bi-

sector of each of these lines. Let the perpendiculars meet

in 0. Then O is the required center of rotation.

Prove by showing that OAB is directly superposable on OA'ff.

Discussion. There is another solution if A is taken to

correspond to B', and B to A'.

If the lines AB and A'b' are parallel as well as equal, and

if they are on the same side of the line AA', the two lines

bisecting AA', BB' perpendicularly do not meet, and there is

no center of rotation. In this case the line AB can be trans-

ferred to the position A'b' by translation. Show that there

is, however, a center of rotation that transfers B to the

position A', and A to the position B'.

Consider the special case in which the mid-points of AA'

and BB' coincide at a point M. Show that M is then the

required center.

Center of rotation for transferring a polygon.

207. Problem 27. Given two equal and directly

superposable polygons, ivhich are not similarly placed,

to find a center of rotation in order to transfer one

polygon into coincidence with the other.

Outline. By the last problem, find a point about which one side

AB may be rotated to coincidence with A'B', in which A corresponds

to A', and B to B'. Show that the polygons will then coincide.

Note. Of two equal and similarly placed polygons, one can be

transferred to the position of the other by translation (200).

Ex. Show how to rotate a given square into coincidence with any

given equal square. Show that in this case there are four solutions.
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Rotation through a straight angle,

208. Theorem 45. // a polygon is rotated through
a straight angle about any point of its plane, then

any side and its trace are parallel, hut lie on opposite

sides of the line joining corresponding extremities.

Let ABCD be the polygon, O the center of rotation. Let

the lines OAy OB, 00, OD be each turned through a straight

angle into the opposite position 0A\ OB', OC', OB',

C

To prove that any side AB and its trace a'b' are parallel,

and on opposite sides of the line AA'.

[Compare the triangles O^B and OA'B'."]

209. Definition. Two equal polygons are said to be oppo-

sitely placed when any side and its corresponding side are

parallel and are on opposite sides of the line joining corre-

sponding extremities. (See figure in 208.)

210. Cor. I. If a polygon is turned through a straight

angky the polygon and its tra^e are oppositely placed.

211. Cor. 2. If two polygons are equal and oppositely placed,

the lines joining corresponding points meet in the same point

and bisect each other.

[The diagonals of a parallelogram bisect each other.]

Center of Rotation.

211 (a). Cor. 3. If tivo polygons are equal and oppositely

placed, one of them can he transferred into the position of the

other by rotation through a straight angle about the intersection

of the lines joining corresponding vertices.

Prove by means of 211. Also show that this is the " special case "

referred to in the discussion of problem 26.
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Equiangular polygons placed in parallelism,,

212. Theorem 46. // any two polygons are directly
equiangular, and if they are placed so as to have a
pair of corresponding sides parallel, then each side of
one is parallel to the corresponding side of the other.

Let the equiangular polygons ABCD, A'b'c'D^ have the
corresponding angles A and ^', B and B', c and C\ D and D\
occurring in direct order. Let the sides AB and A'b' be
parallel.

(J
To prove that BC is paral- /\^

lei to 5'C', CD to C'D', DA to /gr_\v - C

First, let the parallels AB \ ^y^r \-—-^B'
and A^B^ lie on the same side \^ \^A A
of the line AA}.

By the translation construction (prob. 24) transfer the

polygon A'B'C'D' (using AA' as the line of translation) so

that A' may coincide with A.

Since the sides are equal and parallel to their traces, A'b'

falls on the parallel line AB
; let it take the position AB".

Since the polygons are directly equiangular, A'D' falls on AD
;

let it take the position AD".

Since the angle D" is equal to D, and B" to B, it follows

that the sides of ABCD are parallel to those of ab"C"d" and

therefore to those of A'b'c'd'.

Next let the parallels AB and a'b' lie on opposite sides of

the line AA'. ^ ,,

Kotate the polygon A'b'C'd' A^>..^^ / ^--^

through a straight angle about / ^^^
-OV^^ 4 /^

a point in its plane into the / y ^.^-^^
position ^1^1CiDi (208). ,^\ / """^'^b'^ ^
The side A^B^ is parallel to \.<^' ^""^^

AB, and on the same side of

the line AA^; hence, by the first part, the sides of ABCD are

parallel to those of A^B.C^D^ and therefore to those of a'b'&D'.

MOM. ELEM. GEOM. — 8
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213. Cor. If two polygons are directly equal and have a pair

of corresponding sides parallel, the polygons are either similarly

placed or oppositely placed.

Axial Symmetry

The theory of symmetric figures is of importance in con-

nection with the equality of polygons. We begin with the

case of two symmetric points.

214. Definition. Two points are said to be symmetric
to each other with regard to a certain line, called the axis

of symmetry, if the line joining the two points is bisected

perpendicularly by the axis.

Pritnary construction,

216. Problem 28. To construct tJie symmstric point

of a given point with regard to a given axis.

Let AA^ be the given axis, and P the given point.

»F

4 10 Af'

\p'

Draw PO perpendicular to AA^ and prolong it to J*' so that

OP' equals PO.

The points P and P' are symmetric, by definition.

Discussion. Prove that a point has only one symmetrical

point with regard to a given axis.

Show that the construction does not apply if the given

point lies on the given axis. Show that if P be taken nearer

and nearer to the axis, then P' comes nearer and nearer to P.

This fact suggests the definition that follows.

216. Definition. Any point on the axis will be said to

have its symmetric point coincident with itself.

217. Definition. The construction just given is called

reflection. To reflect a given point with regard to a given

axis is to find its symmetric point.
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218. Definition. Any two lines (straight or curved) are
said to be syrmnetric lines with regard to a given axis
when every point of each line has its symmetric point on
the other line.

219. Definition. Any two figures are said to be sym-
metric figures with regard to an axis when their bounding
lines are symmetric.

Superposition by folding over,

220. Theorem. 47. If the portion of the plane at
one side of the axis is conceived to he revolved about
the axis {or folded over), so that it coincides with the

portion at the other side of the axis, then every point

of the plane will coincide with its symmetric point.

Let P, P' be any two symmetric points with regard to ^^l'.

,P

To prove that P and P' may be made to coincide by re-

volving the portion of the plane on one side of AA^ into

coincidence with the other portion.

Let the line PP' meet AA' at 0.

By definition PP^ is bisected at right angles by AA\

The revolution of either portion of the plane about OA

leaves all points of OA unchanged, and the angles AOP, AOP'

remain right angles.

Hence the lines OP and OP' come into coincidence, other-

wise the right angles would not be equal.

Then, since OP equals OP', the points P and P' come into

coincidence.
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221. Cor. I. Any Jigure can be brought into coincidence

with its symmetric jigure (or reflection) by folding over.

222. Cor. 2. If two points are symmetiric to two other points

respectively, the line-segment joining the first two is symmetric

loith the line-segment joining the other two.

223. Cor. 3. Tlie symmetric figure of a finite straight line

is an equal straight line.

224. Cor. 4. Tlie symmetric figure of an indefinite straight

line is another such line, and the two lines m^ke equal angles

with the a^is of symmetry.

225. Cor. 5. Tlie symmetric figure of a 2)lane angle is an

equal plane angle.

Symmetric polygons,

226. Problem 29. To construct the figure symmetric

to a given polygon with regard to a given axis of sym-

metry.

Let ABCD be the given polygon, LL' the given axis of

symmetry.

To construct the figure symmetric

to ABCD with regard to LL\

Construct the symmetric points

of the vertices with regard to XL'

(215).

Join the new points in the same

order as their symmetric points are

joined.

The polygon A'b'c'd' so formed is symmetric to ABCD.

Prove by 222 and definition in 219.

227. Definition. The figure symmetric to a given figure

is called its reflection or image with regard to the given

axis. As the two figures are obversely superposable, this

construction will be called the ohversion construction.
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228. Cor. I. If tivo polygoiis are obversely equals it is pos-

sible to translate one of them so as to he symmetric to the other

with regard to some axis.

229. Cor. 2. If two polygons are obversely equal, it is pos-

sible to rotate one so as to be symmetric to the other vnth regard

to a given axis.

AXIS OF SYMMETRY OF A FIGURE

230. Definition. If a straight line divides a figure into

two parts that are symmetric with respect to that line as an

axis, the figure is said to be a symmetric figure, and the

line is called an axis of symmetry of the figure.

E.g. in an isosceles triangle the bisector of the vertical

angle is an axis of symmetry.

Some figures have two or more axes of symmetry. A
rectangle has two axes of symmetry, a rhombus two, and an

equilateral triangle three ;
hence the rectangle and rhombus

are said to have biaxial symmetry; and the equilateral

trangle to have triaxial symmetry.

Ex. 1. A square has four axes of symmetry, a regular pentagon

five, and a regular hexagon six.

W-.
—

Ex. 2. If two points are symmetric as to an axis, and if each of

them is reflected with regard to another axis perpendicular to the first,

then the two points and their two reflections are at the vertices of a

rectangle ; and this rectangle is a symmetric figure with regard to each

of the two given axes.
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Central Symmetry

231. Definition. Two points are said to be symmetric with

regard to a fixed point, called the center ofsymmetry, when
the line joining the two points is bisected at the center.

The line joining any point to the center of symmetry is

called its radius of symmetry.

Prhnary constt^uction,

232. Problem 30. To construct the symmetric point

of a given point with regard to a given center.

Let be the given center, and P the given point.

P' 0_ p

Draw the radius of symmetry PO and prolong it so that

OP' equals PO.

The points P and P' are symmetric by definition.

Discussion. Prove that a given point has only one sym-

metric point with regard to a given center.

Show that if P be taken nearer and nearer to O, then P'

comes nearer and nearer to O. This fact suggests the defini-

tion that follows:

233. Definition. The center of symmetry will be said to

have its symmetric point coincident with itself.

234. Cor. The point P can be brought into coincidence with

its symmetric point P' by revolving the radius of symmetry OP
through two right angles into the position OP'.

235. Definition. Any two lines (straight or curved) are

said to be symmetric lines with regard to a given center

when every point of each has its symmetric point on the

other line.
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236. Definition. Any two figures are said to be ST/m-
metric figures with regard to a given center when their

bounding lines are symmetric.

Symmetric line-segments,

237. Theorem 48. // two points are syrrvmetric to

two other points respectively, the line joining the first

two is symmetric to the line joining the other two.

Let be the center of symmetry ; and let P be symmetric
to P', and Q to Q'.

To prove that the line PQ is symmetric to P*Q\

Take any point i? in PQ. Draw RO and prolong it to meet

P'Q' in R\

Rotate the triangle OPQ about O through a straight angle

so that OP falls on OP' ; then, by the equality of angles and

sides, OQ falls on OQ' ; hence PQ falls on P'Q\ But OR falls

along OR' by the equality of angles. Therefore, the point R

falls on R' ; hence OR' equals OR, and the points R and i?' are

symmetric.

Therefore, any point in PQ has its symmetric point in

P'Q\ and thus the lines PQ and P'Q' are symmetric.

238. Cor. I. The symmetric Jigure of a Jinite straight line

is an equal and parallel line.

239. Cor. 2. The symmetric Jigure of a triangle is another

triangle equal and oppositely placed.

240. Cor. 3. The symmetric Jigure of a plane angle is an

equal angle, whose sides are parallel to the sides of the first.
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Symmetric polygons,

241. Problem 31. To construct the symmetric figure

of a given polygon with regard to a given center.

Let ABCD be the given polygon, O the center of symmetry.

To construct the symmetric figure of ABCD.

Find the points A\ B', C', D', symmetric respectively to

the vertices A, By C, D.

Join these points in the same order as the given vertices

are joined. Then A'b'c'd' is symmetric to ABCD. [236, 237.]

Note. The two polygons are directly equal, but oppositely placed.

They can be brought into coincidence by rotating either of them through

a straight angle about O.

242. Cor. I. If tivojyolygons are directly equal, it is possible

to rotate one of them so as to be symmetric to the other with

regard to a given center of symmetry.

243. Cor. 2. Any two equal and oppositely placed polygons

have a center of symmetry.

244. Definition. A single figure is called a sym,m^tri^

figure as to a certain center, if any point on the boundary

has its symmetric point also on the boundary.

E.g. a parallelogram is symmetric as to the intersection

of its diagonals.

Ex. 1. An equilateral triangle has no center of symmetry.

Ex. 2. A regular hexagon has a center of symmetry.

Ex. 3. No pentagon has a center of symmetry.

Ex. 4. Any polygon of an even number of sides whose opposite

sides are equal and parallel has a center of symmetry.
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jBi-axial related to central symmetry,

245. Theorem 49. Two points that are symmetric
to the same point with regard to two rectangular axes,

respectively, are symmetric to each other as to the

intersection of these axes.

Let OL, DM be two axes at right angles. Let the symmet-

ric points of P as to these axes be Q, R, respectively.

-iP

To prove that Q and R are symmetric as to 0.

Join OQ, OR. Prove that the triangles RLO and OMQ are

equal ; that the angles ROL, LOM, MOQ are together equal to

a straight angle ; and that ROQ is a. straight line.

246. Cor. I. Two figures that are symmetric to the same

figure with regard to two rectangular axes, respectively, are

symmetric to each other as to the intersection of these axes.

.247. Cor. 2. If a single figure has two axes of symmetry

at right angles, their intersection is a center of symmetry.

ea
Ex. If a figure has a center of symmetry and an axis of symmetry,

then the center lies on the axis ; and there is another axis of symmetry

perpendicular to the first.
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LOCUS PROBLEMS

248. Many geometric problems are concerned with finding

the position of a point so that it may fulfill certain prescribed

conditions.

It may happen, however, that the prescribed conditions

do not suffice to fix the point entirely, but are sufficient to

restrict it to some line or group of lines. Hence arises the

idea of a locuSj which may be defined as follows.

249. Definition. If every point on a certain line or group

of lines (straight or curved) satisfies prescribed conditions,

and if no other point does so, then that line or group of

lines is called the locios of the points fulfilling those con-

ditions.

The locus may be conveniently imagined as the path

traced by a moving point that continues to satisfy the pre-

scribed conditions.

250. Method of investigation. The investigation of a locus

may be divided into an analysis and a synthesis.

Analysis. Take any point and suppose it to satisfy the

prescribed conditions. By changing its position subject to

these conditions, try to form some idea of the path of the

moving point, noting any special positions which it passes

tlirough, and thus endeavor to discover what fixed line

(straight or curved) is traced by the moving point.

Draw such line and try to demonstrate, by means of the

given conditions, that it is actually fixed. When this is

done, the analysis is completed.

Synthesis. Draw the logical inference from the preceding

that every point satisfying the conditions must lie on the

fixed line in question.

The next step is to prove conversely that every point on

the line satisfies the prescribed conditions.
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It can then be concluded that this line contains all those

points (and those only) which fulfill the conditions assigned.

Note. The word line is here used as an abbreviation for the phrase
" line or group of lines (straight or curved)."

251. This method may be briefly summarized thus

:

In order to prove that a certain line L is the locus of a

point P fulfilling the condition A, it is necessary and suf-

ficient to demonstrate the following two converse proposi-

tions :

(1) If P fulfills the condition A, then P lies on the line i;

(2) If P lies on z, then P satisfies A.

Instead of proving (1) it may sometimes be more con-

venient to prove its contraposite

:

If P does not lie on L, then P does not satisfy A. Show
that this proposition is equivalent to (1). See Arts. 105, 106.

252. Definition. For convenience the line-segment con-

necting two points is sometimes called the Join of one point

to the other.

253. Problem 32. To find the locus of a point such

that its joins to two given points are equal.

Let A and B be the two given points. Let P be any point

such that the lines PA and PB are equal.

/

\

M B

To find and construct the locus of P.
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Analysis. Taking successive positions of P subject to the

condition that PA equals PB, and observing that M the mid-

point oi AB fulfills this condition, we are led to surmise that

the path of P is the straight line joining P to the mid-point

of AB.

To prove that this line PM remains actually fixed as P
moves.

The triangles PAM and PBM have their sides respectively

equal. Therefore the angles PMA and PMB are equal, and

each equal to a right angle.

Hence MP is perpendicular to the fixed line ^5 at its mid-

dle point, and is therefore fixed, no matter what position

the moving point P takes while subject to the assigned con-

dition.

It follows that P moves along this fixed line.

Synthesis. It has now been proved that every point which

satisfies the prescribed condition lies on the perpendicular

bisector MP.

It remains to be proved conversely that every point on MP
satisfies the condition.

- Let P be any point on the perpendicular bisector. Join

PA and PB.

The two right triangles have the sides about the right

angles respectively equal ; therefore the hypotenuses PA
and PB are equal.

Hence all those points (and those only) that satisfy the

given condition lie on the line MP.

Therefore the perpendicular bisector extended indefinitely

both ways is the locus required.

Ex. 1. Find the locus of the vertex of an isosceles triangle whose
base is given in magnitude and position.

Ex. 2. Show that a simple construction for bisecting a given line-

segment can be derived from the locus problem solved above. (Com-
pare 70.)

Ex. 3. Show that this locus problem also furnishes a solution to the

problem of erecting or dropping a perpendicular to a given line.
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254. Problem 33. To find the locus of a point from
which the perpendiculars to two given intersecting lines
are equal.

Let AB and CD be the two given lines. Let P be any
point such that PM, the perpendicular to AB, is equal to PN,
the perpendicular to CD.

To find the locus of P.

Analysis. Taking successive positions of P subject to the

given condition, and observing that the moving point can

come nearer and nearer to 0, we are led to think that is a

point on the locus, and that the straight line OP is the path

of P.

To prove that this line is actually fixed in position as P
moves.

The triangles POM, PON have two sides of one respectively

equal to two sides of the other, and the angles opposite a

pair of equal sides are right angles ; therefore the angles

POM and PON are equal (98).

HeuQe OP is a bisector of the angle HON, and is therefore

a fixed line.

It follows that the point P is on one or other of the bi-

sectors of the angles contained by the two given intersecting

lines.

Synthesis. It has now been proved that every point which

satisfies the prescribed condition lies on one or other of the

two angle-bisectors.

It will next be proved conversely that every point on

either of these lines satisfies the condition.
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Let Q be any point on either angle-bisector. Draw QR
perpendicular to AB^ and QS perpendicular to CD.

The two right triangles QOR, QOS have the acute angles

QOR and QOS equal, and a common hypotenuse; therefore

the sides QR and QS are equal.

Hence the two bisectors of the angles between the two
given lines constitute the locus required.

Ex. Find the locus of a point from which the perpendiculars to

two given parallel lines are equal.

265. Problem 34. To find the locus of a point from
which the perpendicular to a given line shall he equal

to a given line-segment.

Show that the locus consists of a pair of lines parallel to the given

line.

Ex. Find the locus of the mid-points of all the lines drawn from a

given point to a given line not passing through the point.

Intersection of Loci

256. Many problems relating to the determination of

points satisfying given conditions can be solved by means of

the intersection of loci.

For instance, the problem to determine all the points that

satisfy two prescribed conditions A and B may be solved as

follows

:

Construct the locus of the points satisfying the condition

A ; and also construct the locus of the points satisfying the

condition B.

The points of intersection of the two loci (and these points

only) satisfy both the assigned conditions.
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257. Problem 35. To find a point such that its

joins to three given points not collinear are equal.

Let A, B, c be the three given points.

"B

It is required to find a point 0, such that OA, OB, 00 are

all equal.

Draw PP' and QQ' the perpendicular bisectors of the lines

AB and BC.

The lines PP' and QQ' intersect, for if they were parallel,

then the lines AB and BC, being respectively perpendicular

to them, would be in one straight line. Let the lines PP'

and QQ' intersect in 0.

To prove that the point 0, and no other point, satisfies

the given conditions.

The line PP' contains all those points and only those,

whose joins to A and B are equal (253).

The line QQ' contains all those points, and only those,

whose joins to B and C are equal.

Therefore the point common to PP' and QQ', and no other

point, has its joins to A, B, and C equal.

Note. This construction is used later (III. 76) in finding the center

of a given circle.

Ex. 1. In a given line find a point whose joins to two given points

are equal.

Ex. 2. Find a point from which the perpendiculars to two given

intersecting lines are respectively equal to two given line-segments.

Four solutions (255).
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258. Problem 36. To find a poiiit from which the

perpendiculars to three given lines {forming a tri-

angle) shall he equal.

Let the three lines LL', MM', NN' form a triangle ABC.

It is required to find a point 0, such that the perpendicu-

lars from to these lines are equal.

[The construction and proof are left to the student. Show that

there are four solutions.]

Ex. 1. If two of the three lines are parallel, how many solutions

are there ?

Ex. 2. On a given line find those points from which the perpen-

diculars to another given line are equal to an assigned line-segment.

Ex. 3. On a given line how many points are there from which the

perpendiculars to two given lines are equal ?

THEOREMS ON CONCURRENCE

259. Definition. Three or more lines that meet in a com-

mon point (when prolonged if necessary) are said to be con-

current.

The principle of the intersection of loci may be used to

prove the first two of the following theorems relating to

the concurrence of certain lines in a triangle. The third is

then derived from the first by the theory of parallels.
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Concurrence of perpendicular bisectors of sides,

260. Theorem 50. In any triangle the three per-
pendicular bisectors of the sides are concurrent.

Outline. Use the construction of 267. Then show that lies on
the perpendicular bisector of the side AC.

Concurrence of angle-bisectors,

261. Theorem 51. In any triangle the three bisec-

tors of the interior angles are concurrent.

Outline. Let the point in 258 be the intersection of two of the

angle-bisectors. Show that lies on the third angle-bisector.

262. Cor. Tlie exterior angle-bisectors through two vertices

and the interior angle-bisector through the third vertex are con-

current.

263. Definition. The lines drawn from the vertices of a

triangle perpendicular to the opposite sides, respectively,

are called the principal perpendiculars of the triangle.

Concurrence of principal perpendiculars,

264. Theorem 52. The three principal perpendicu-

lars of a triangle are concurrent.

Let ABC be any triangle. Let AB, BE, and CF be the

principal perpendiculars.

C' A B'

K'
sX 1> /cr

To prove that AD, BE, and CF are concurrent.

MCM. £LEM. GEOM.— 9
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Through the vertices A, B, C draw lines parallel respec-

tively to the opposite sides, so as to form a second triangle

A'B'C'.

Outline. Prove by 153 that A is the mid-point of B'C, B the mid-

point of A'C, and C of A'B' ; hence that AD, BE, CF are the per-

pendicular bisectors of the sides of the new triangle A'B'C, Then
draw desired conclusion and quote authority.

On Methods of Analysis

265. When a new theorem or problem is presented for investiga-

tion (as in the miscellaneous exercises that follow), we try to discover

some connection or relationship between the new proposition and the

previous ones with which we are familiar. This relationship is to be

discovered by means of a preliminary analysis. The words analysis

and synthesis and the corresponding adjectives analytic and synthetic

are much used in mathematics. In general, analysis means the sepa-

ration of a whole into its parts, and synthesis means bringing the parts

together to make a whole. In geometry the words are used in a more

restricted sense. In synthesis we begin with admitted facts, and, by

the aid of principles or tlieorems already accepted and problems al-

ready solved, we prove some new theorem or solve some new problem.

This is usually the most convenient way of presenting the result when
it is once obtained ; but the actual discovery is often made in the

reverse, way by means of an analysis, in which we begin with the con-

clusion and then examine the different conditions that are necessary

or sufficient to lead to the result in question. The analysis of a prob-

lem was described in 131, and illustrated in various subsequent articles.

The analysis of a theorem is somewhat similar, and may be conducted

in two ways, which may be called, respectively, the analysis of ante-

cedents and the analysis of consequents.

266. Analysis of antecedents. In this method we examine

the antecedent conditions from which the conclusion in question would

follow, and then compare these conditions with the given hypothesis.

For example, let the conclusion be called ' statement iS",' then the analy-

sis of antecedents may be put in the following form :
—

The statement S is true, if the statement B is true

;

the statement R is true, if the statement Q is true

;

the statement Q is true, if the statement P is true

;
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and so on. If by this method we get back to some antecedent state-

ment A which we know to be true by some principle already accepted,

or which would follow from the given hypothesis, then we are war-

ranted in asserting the truth of statement iS. The successive steps

from A to S can then be presented in the reverse of the order just

given, and the proof can be arranged in the usual synthetic form

beginning with the hypothesis and ending with the conclusion to be

demonstrated.

If, however, we come only to a statement that we know to be false

(or do not know to be true) , then the statement S may or may not be

true, and nothing is proved. A new set of antecedent conditions may
then be examined. This method often proves the truth of a theorem

;

it cannot by itself prove any statement false.

267. Analysis of consequents, in this method we examine

the consequences that would follow if the theorem were supposed to be

true, and then compare these consequences vsrith the hypothesis and

other accepted facts. The analysis of consequents may be put in the

following form

:

If the statement S is true, then the statement T is true

;

if the statement T is true, then the statement U is true
;

and so on. If by this method we arrive at some statement that we

know to be false (or inconsistent with the hypothesis), then we con-

clude that the statement S is false, since it can be reduced to an

absurdity.

If, however, we come only to a statement Z that we know to be true

(or do not know to be false), then the statement S may or may not be

true, and nothing is proved. This method of analysis often proves the

falsity of a statement ; it cannot by itself prove any statement true,

since the steps taken from S to Z are not always reversible ;
it some-

times, however, points the way to a synthetic proof by reversal of the

steps.

268. Analysis of the opposite. Either of the two methods

of analysis may be applied to the opposite of the statement S. The

analysis of antecedents gives a decisive result if we arrive at an ante-

cedent known to be true, for then the opposite of S is true, and ^ is

false. The analysis of consequents gives a decisive result if we arrive

at a consequent known to be false, for then the opposite of 8 is false,

and S is true ; this case is the familiar reductio ad absurdum of which

several illustrations have been given (see 102).
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EXERCISES ON BOOK I

1. In an isosceles triangle, if a perpendicular is drawn from an
extremity of the base to the opposite side, then the angle between this

perpendicular and the base is equal to half the vertical angle.

2. In a right triangle, prove that a line can be drawn dividing the

right angle into two parts equal respectively to the other angles, and so

as to divide the right triangle into two isosceles triangles.

3. In a right triangle the median drawn to the mid-point of the

hypotenuse equals half the latter.

4. Through two given points draw two lines forming with a given

indefinite line an equilateral triangle. How many solutions are there ?

5. The bisectors of the base angles of an isosceles triangle contain

an angle equal to an exterior angle of the triangle.

6. The lines joining the adjacent extremities of unequal and paral-

lel lines will meet if prolonged through the extremities of the shorter

parallel (124).

7. Construct a right triangle, being given the hypotenuse and
the sum (or difference) of the two sides (137, ex. 1). Construct a

right triangle, being given one side and the sum (or difference) of the

other side and the hypotenuse (137, ex. 3).

8. Lines drawn from two opposite vertices of a parallelogram to

the mid-points of a pair of opposite sides trisect a diagonal (167).

9. Lines drawn from any vertex of a parallelogram to the mid-

points of the two non-adjacent sides trisect a diagonal (178).

10. If alternate sides of a pentagon are prolonged to meet, then

the sum of the five angles so formed is equal to two right angles (190).

11. If alternate sides of a hexagon are prolonged to meet, then the

sum of the six angles so formed is equal to four right angles. Consider

also the general case of an n-gon.

12. Through a given point draw a line so that the part intercepted

between two given parallel lines may be equal to a given line.

13. Through a given point within a given fixed angle draw a line

so that the segment between the sides may be bisected at the point

(186, ex. 6).

14. Construct a triangle, being given two sides and the median
drawn to the mid-point of the third side.

15. Construct a triangle being given one side and the medians to

the mid-points of the other two sides.
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16. Any line through the intersection of the diagonals of a paral-

lelogram and terminated by opposite sides is bisected at that point.

17. In a given triangle inscribe a parallelogram having one side

resting on the base, and having the intersection of its diagonals at a
given point.

18. The bisectors of the angles of a parallelogram form a rectangle

(123).

19. The bisectors of the angles of a rectangle form a square.

20. In an isosceles triangle the bisector of a base angle, and the

bisector of the external angle supplemental to the other base angle,

form an angle equal to half the vertical angle.

21. Construct a triangle, being given the angles, and one of the

principal perpendiculars.

22. Construct a triangle, being given the mid-points of the three

sides (see figure in 264).

23. Draw a parallel to the base of a triangle, so that the intercept

may be equal to one of the segments adjacent to the base (compare

186, ex. 5).

24. Draw a parallel to the base of a triangle, so that the intercept

may be equal to the sum of the segments adjacent to the base.

25. Draw a parallel to a base of the triangle, so that the intercept

may be equal to the difference of the segments adjacent to the base.

26. Given the sum (or difference) of the side and principal per-

pendicular of an equilateral triangle, construct it (137, ex. 6).
^

27. Given the sum (or difference) of the side and diagonal of a

square, construct it.

28. If the opposite sides of a hexagon are parallel, then its diagonals

are concurrent.

29. Given two indefinite lines and a point : to find a point in one of

the lines so that the line joining it to the given point may be bisected

by the other line. How many solutions are there ?

30. If through any vertex of a parallelogram a line is drawn, and

if perpendiculars to this line are drawn from the other vertices, then

the perpendicular from the vertex opposite the first is equal to the

sum or difference of the other two, according as the line passes without

or within the parallelogram.

31. In any quadrangle the two lines joining the mid-points of oppo-

site sides, and the line joining the mid-points of the diagonals, all meet

in a point and bisect each other (175, ex. 3).
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32. If three parallel lines make equal intercepts on a transversal,

and if a second transversal cross the first between two of the parallels,

then the intercept on the middle parallel equals half the difference of

the intercepts on the other two (compare 172).

33. If through the extremities of the base of a triangle whose sides

are unequal, lines are drawn to any point in the bisector of the vertical

angle, their differences are less than the difference of the sides.

[Let side AB be greater than AC. On AB take AC equal to AC.
Join C to the point in the bisector.]

34. If the lines in ex. 33 are drawn to any point in the bisector

of the external vertical angle, then their sum is greater than the sum
of the sides.

35. If one of the acute angles of a right triangle is double the other,

the hypotenuse is double the shortest side.

36. If a quadrangle is inscribed in a parallelogram and has its oppo-

site vertices symmetric as to the center of symmetry of the parallelo-

gram (244), then the quadrangle is a parallelogram.

37. If a parallelogram is inscribed in a rectangle, having its sides

parallel to the diagonals of the rectangle, then two adjacent sides of

the parallelogram make equal angles with a side of the rectangle.

38. A billiard ball is placed at any point of a rectangular table.

In what direction must it be struck so that it shall return to the first

point after being reflected successively at the four sides, the lines of

motion, before and after impact, making equal angles with the suc-

cessive sides of the table ?

39. If two sides of a triangle are unequal then the bisector of the

angle between them divides the opposite side into unequal segments,

the greater segment being adjacent to the greater side.

Outline. In triangle ABC, let AD bisect the angled. Given AB
'greater than ^C ; to prove BD greater than BC. On AB lay off AC
equal to AC, and join CD. By equality and inequality of angles

prove angle B less than BCD. Draw conclusion.

40. To inscribe a square in a right triangle.

41. To inscribe a square in a rhombus.

42. If two isosceles triangles have equal bases, and if one of the

equal sides of the first triangle is greater than one of the equal sides of

the second, then the vertical angle of the first triangle is less than the

vertical angle of the second.
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GENERAL PRINCIPLES

1. Definitions. Two polygons are said to be joined when
they are brought together, without overlapping, so that a
side of one coincides in whole or in part with a side of the

other.

When the common portion of the boundaries of two joined

polygons is erased (or ignored), the third polygon so formed

is called the sum of the two original polygons, which are

then said to be added together.

A polygon is said to be dissected when its surface is

divided np into any number of smaller polygons by drawing

straight lines.

Two polygons are called equivalent if their surfaces can

be dissected so that each part of one is separately super-

posable on some part of the other by suitable rearrangement

of parts if necessary.

F
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Thus the triangle ABC and the rectangle DEFG are equiva-

lent if the parts marked with corresponding numerals are

superposable.

To make this definition of the equivalence of polygons consistent

with itself, it is necessary to prove the following two lemmas relating

to the permanence of such equivalence.

2. Lemma 1. If one polygon incloses another within its boundary

so that the latter is part of the former, it is not possible to dissect the

inner polygon and then rearrange and join its parts in such a way as

to cover the whole of the outer polygon.

For suppose that this operation is possible ; and let the outer poly-

gon be supposed actually covered by the rearranged parts of the inner

one. Remove the excess of the outer polygon over the original inner

one. Dissect the remaining inner polygon as before and then rearrange

the parts so as to cover the outer polygon. Remove the excess again
;

and repeat the process as often as desired. The excess can be accumu-

lated until it is more than sufficient to cover any polygon however

large. But this excess is only a part of the original surface of the

inner polygon. Therefore the surface of this finite polygon can be so

rearranged as to cover an indefinitely extended surface, which is absurd.

Hence the lemma is established.

3. Lemma 2. If two polygons are equivalent for one mode of dissec-

tion and superposition, they will be equivalent for all possible modes
of dissection and superposition.

Let the polygons A and B be such that there is one way of dissecting

them so that every part of A can be fitted on an equal and corre-

sponding part of jB, the latter polygon being then just covered by the

parts of the former.



GENERAL PRINCIPLES 127

Next let the polygon A be dissected in any second way, and let the

parts be placed in any order upon B, these smaller polygons being

joined so as not to overlap. Should portions of any of them extend

over the boundary of B, let the surplus be cut off, and then used to

cover any uncovered portion of the surface of B. Continue this process

until either

(a) the parts of A are exhausted, leaving a portion of B uncovered, or

(/3) the surface of B is covered, leaving a portion of A extending over

the boundary of B, or

(7) the surface of B is just covered by the parts of A without excess

or defect.

In case (a) let the second mode of dissection and superposition cover

B', leaving a portion C uncovered. Dissect this covering of B' by the

second mode and fit the parts back so as to form the original polygon

A. Then dissect A by the original mode, and rearrange the parts so

as to cover the polygon B (in accordance with the hypothesis). Thus

the surface of the inner polygon B' has been rearranged to cover the

surface of the outer polygon B, contrary to the preceding lemma ; hence

case (a) cannot occur.

In case (^) let the second mode of superposition cover a polygon

made up of B and the surplus D. Dissect this covering of B by the

first mode, and use the parts to form the polygon A (in accordance

with the hypothesis); then dissect A by the second mode, and cover

the polygon made up of B and D. Thus the surface of the inner

polygon B has been rearranged to cover the outer polygon, contrary to

the preceding lemma ; hence case (/3) cannot occur.

Therefore case (7) is the only one that can occur ; that is to say,

the polygon B is just covered by the second mode of dissecting A and

of superposing the parts on B.

4. Definitions continued. One polygon is said to be greater

than a second polygon if a portion of the first can be dis-

sected and rearranged so as to cover the second. In the

same case the second is said to be less than the first.

5. Any polygon whieh, when added to the less of two

given polygons, forms a polygon equivalent to the greater,

is called the difference of the two given polygons.

6. If two polygons are equivalent, any polygon equivalent

to their sum is said to be the double of either polygon, and

each of the former is said to be equivalent to Judf the latter.
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Axioms op Equivalence and Non-equivalence*

From the foregoing definitions, the following statements

are direct inferences by means of the principle of superposi-

tion:

7. Polygons which are equivalent to the same poly-

gon are equivalent to each other.

%. If a nurnber of polygons are added together in a
certain way and order, the sum is equivalent to the sum
that would have been obtained if the polygons had been

added together in a different way or in a different

order.

For the two resulting polygons can be dissected into superposable

parts.

9. If equivalent polygons are added to equiva-

lent polygons, the sums are equivalent polygons. In
particular the doubles of equivalent polygons are

equivalent.

10 (a). // two unequivalent polygons are added re-

spectively to unequivalent polygons, tlie sum of the two

greater polygons is greater than the sum of tlie two

less ones.

10 (^). If one polygon is greater than a second, the

double of the first is greater than the double of the

second.

11

.

The halves ofequivalent polygons are equivalent.

Apply indirect proof and use 10 (6).

12. If one polygon is greater than a second, then the

half of the first polygon is greater than the half of the

second.

* The student need not dwell on Arts. 7-17 at first reading, but

should refer back to them when necessary.
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General Theorems relating to Equivalence

13. Theorem 1. The double of the sum of two poly-

gons is equivalent to the sum of the doubles of the two
polygons.

For the double of the sum of two polygons A and -B is a

polygon made up of the four parts A, B, A, B; and the sum
of the doubles of A and 5 is a polygon made up of the four

parts A, A,B, B; differing only in the order of arrangement;

hence the two sums are equivalent (8).

14. Theorem 2. The half of the sum^ of two polygons

is equivalent to the sum of the halves of the polygons.

For the sum of the halves when doubled becomes equiva-

lent to the sum of the two whole polygons (13), and is there-

fore, by definition, equivalent to half this sum.

15. Theorem 3. // equivalent polygons are taken

away from, equivalent polygons, the remaining figures

are equivalent.

Let the polygons A and B be equivalent; and let the

polygons C and D be equivalent ; then the remaining figures

M and N are equivalent.

For, by Lemma 2, A can be fitted on J5 by any mode of

dissection. Choose a mode in which the parts of C are made

to cover its equivalent D. Then the parts of 3/ will cover

the remaining figure N.

15 («). Ex. Prove the axioms of non-equivalence relating to sub-

traction. (See ax. 10, 11, p. 17.)
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16. Theorem 4. The double of the difference of two
polygons is equivalent to the difference of their doubles.

For let the difference of the polygons A and B be the poly-

gon C; then the sum of B and C is equivalent to A (5).

Therefore the sum of the doubles of B and C is equivalent

to the double of A (13); hence the difference between the

double of A and the double of B is equivalent to the double

of C (5), and is therefore equivalent to double the difference

between A and B.

17. Theorem 5. The half of the difference of two
polygons is equivalent to the difference of their halves.

Use a similar proof, substituting the word half for the word double.

COMPARISON OF PARALLELOGRAMS

18. Definitions. In a given triangle the line drawn from

any vertex perpendicular to the opposite side is called the

altitude of the triangle with reference to that sicle taken as

base. Any side may be so regarded as base and the corre-

sponding perpendicular as the altitude; hence a triangle

has three altitudes.

Similarly any side of a parallelogram may be regarded as

its base, and the line drawn perpendicular to it from any

point of the opposite side may be taken as corresponding

altitude. All such altitudes drawn to the same side are

equal, and are also equal to the altitudes drawn to the

opposite side. Thus a parallelogram has only two altitudes.

19. In the case of a rectangle, when any particular side

is taken as base, either of the adjacent sides is the altitude.
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20. A rectangle is completely determined by two adjacent

sides; that is to say, all the rectangles whose adjacent sides

are equal to two given lines are superposable (I. 166) ; and,

for this reason, each of these rectangles is called the rec-

tangle of the two given lines.

Rectangles of equal altitudes,

21. Theorem 6. If two rectangles have equal alti-

tudes and unequal bases, that which hojS the greater

base is the greater rectangle.

Let the rectangles ABCD, EFGH have their altitudes AB

and EF equal. Let the base AD he greater than the base EH.

L G

K D H

To prove that ABCD is greater than EFGH.

Lay off ^^ equal to EH, and complete the rectangle ABLE.

This rectangle is equal to EFGH (I. 166). Hence a por-

tion of ABCD will cover EFGH. Therefore ABCD \s greater

than EFGH (4).

22. Cor. I. If two rectangles have equal altitudes, then

according as the base of the first is greater than, equal to, or

less than the base of the second, so is the first rectangle greater

than, equal to, or less than the second. (21 ; and I. 166.)

23. Cor. 2. If two rectangles have equal altitudes, then

according as the first rectangle is greater thxn, equal to, or less
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than the second, so is the base of the first greater than, equal to,

or less than the base ofthe second. (Rule of Conversion, 1. 104.)

Ex. Show that 22 and 23 are still true if the words base and altitude

are interchanged throughout.

24. Cor. 3. According as the side of one square is greater

than, equal to, or less than the side of another square, so is the

first square greater than, equal to, or less than the second; and

conversely.

The student may give an independent proof by superposition ; and

then state the converse.

JParallelogratns and rectangles,

25. Theorem 7. A parallelogranv is equivalent to

the rectangle of its base and altitude.

Let ABCD be the given parallelogram, having ^5 for base

and AF OT BE for altitude.

To prove that ABCD is equivalent to ABEF, the rectangle

of its base and altitude.

In the triangles AFD and BEG: the side AF equals BE
(I. 153) ; the side AD equals BC; and the angle FAD equals

EBC, having parallel sides (I. 126).

Therefore the triangles AFD and BEC are equal.

Take these equivalents in turn away from the quadrilateral

ABCF; then the remainders ABCD and ABEF are equiva-

lent (15).

Ex. Prove the theorem for the case in which D and E coincide.
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26. Cor. I. Two parallelograms having equal bases and
equal altitudes are equivalent.

Ex. Show how to dissect any two parallelograms having the same
base and equal altitudes, so that the parts may be superposable.

27. Cor. 2. If two parallelograms have equal altitudes^

then according as the base of the first is greater than, equal to,

or less than the base of the second, so is the first parallelogram

greater than, equivalent to, or less than the second. (Use 22

and 25.)

28. Cor. 3- If two parallelograms have equal altitudes, then

according as the first parallelogram is greater than, equivalent

to, or less than the second, so is the base of the first greater

than, equal to, or less than the base of the second. (Rule of

Conversion.)

Ex. Show that 27 and 28 are still true if the words base and altitude

are interchanged throughout.

Triangles and rectangles,

29. Theorem 8. A triangle is equivalent to half the

rectangle of its base and altitude.

AD B

Let ABC be the triangle, having AB for base and CD for

altitude.
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To prove that ABCi^ equivalent to the rectangle oi AB, CD.

Complete the parallelogram ABEC.

The triangle ABC is equivalent to half the parallelogram

ABEC (1. 153) ; and therefore equivalent to half the rectangle

oi AB and CD (25).

p]x. Prove this theorem directly by applying 14, 17 to the adjoin-

iug figures.

30. Cor. I. A trapezoid is equivalent to the rectangle con-

tained by its altitude and half tJie sum of its parallel sides.

31. Cor. 2. If two triangles have equal altitudeSf then

accordiiig as the base of the first is greater thaiiy equal to, or

less than the base of the second, so is the first triangle greater

than, equivalent to, or less than the second. (Use 23, 29.)

32. Cor. 3. If two triangles have equal altitudes, then

according as the first tnangle is greater than, equivalent to, or

less than the second, so is the base of the first greater than,

equivalent to, or less than the base of the second.

Ex. If there are two equilateral triangles, then according as a side

of the first is greater than, equal to, or less than a side of the second,

so is the first triangle greater than, equal to, or less than the second.

33. Cor. 4. Two triangles having the same base, and having

their opposite vertices on the same line parallel to the base, are

equivalent. Conversely, two equivalent triangles on the same

base and at the same side of it are between the same parallels.

34. Cor. 5. If a parallelogram and a triangle are upon the

same base and betiveen the same parallels, the parallelogram is

double the triangle.
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Parallelograms about a diagonal,

35. Definition. If through any point on the diagonal of a

parallelogram two lines be drawn parallel to the sides, so as

to divide the parallelogram into four smaller parallelograms,

the two whose diagonals are portions of the diagonal first

mentioned are called the parallelograms about the diago-

nal ; and the two which lie one on each side of the diagonal

are called the complements of the parallelogram,s about

the diagonal.

36. Theorem 9. The complements of the parallelo-

grams about the diagonal of a paraZlelogramj are

equivalent.

Let ABCD be the parallelogram, BD its diagonal, K any

point on it, FH and EG lines through K parallel to the sides,

forming KGBF and DHKE parallelograms about the diagonal,

and KFAE and CGKH the complements of these parallelo-

grams.

A F B

To prove that these complements are equivalent.

Since the diagonal of a parallelogram bisects it (I. 153),

the triangle DBA is equivalent to CBD
;

similarly KBF is

equivalent to KGB ;
and RED to DHK.

Take KBF and KED away from DBA, and take KGB and

DHK away from CBD ;
then the remainders KFAE and KHCQ

are equivalent (15).

Note. This theorem is useful in the construction of equivalent

parallelograms (72).

MCM. ELEM. GEOM. 10
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37. Theorem 10. Parallelograms about the diagonal

of a rhombus are rhombuses, and their complements

are equal parallelograms.

Use 161, 117, 166 of Book I. .

38. Cor. Parallelograms about the diagonal of a square

are squareSj and their complements are equal rectangles.

EXERCISES

1. If one diagonal of a quadrangle bisects the other, it also bisects

the quadrangle.

2. If a parallelogram and a triangle are such that the base and

altitude of the parallelogram are respectively equal to half the base

and altitude of the triangle, then the parallelogram is equivalent to

half the triangle.

3. Lines joining the mid-points of adjacent sides of a quadrangle

form a parallelogram equivalent to half the quadrangle.

4. If two triangles stand on the same base and at the same side of

it, and if the middle points of the sides are joined, then the joining lines

form a parallelogram equivalent to half the difference of the triangles.

5. To construct an isosceles triangle equivalent to a given triangle

and standing on the same base.

6. To construct a rhombus equivalent to a given parallelogram and

having the same diagonal.

7. A triangle whose base is one of the non-parallel sides of a trape-

zoid and whose vertex is at the mid-point of the opposite side is equiva-

lent to half the trapezoid.

[Through the mid-point in question draw a parallel to the oppo-

site side and complete the parallelogram.]



EQUIVALENCES INVOLVING RECTANGLES 137

EQUIVALENCES INVOLVING RECTANGLES

Rectangles of wholes and parts,

39. Theorem 11. If there are two lines, one ofwhich
is divided into any number of parts at ^iven points,

the rectangle of the two given lines is equivalent to

the sum of the rectangles of the undivided line and the

several parts of the divided line.

Let ABy CF be the two lines, and let CF be divided at

the points D and E into the parts C7i), DEy EF.

To prove that the rectangle oi AB and CF is equal to the

sum of the rectangles of AB, CD ;
AB, DE

;
AB, EF.

Draw the line CG perpendicular to CF and equal to AB.

Complete the rectangle CFLG, and draw DH, EK perpendicu-

lar to CF.

The lines DH, EK are equal to CG (I. 153) and therefore

equal to AB.

The rectangle CL is equivalent to the sum of the rec-

tangles CH, DK, EL.

Now CH is the rectangle of CG and CD, that is, of AB and

CD ; also DK is the rectangle of AB and DE] and EL is the

rectangle of AB and EF.

Therefore the theorem is established.

Note. Two of the following corollaries are special

theorem, and the third is an extension of it.

cases of this
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Rectangle of whole line and one parU

40 (a). Cor. i. If a line is divided into any two partSy the

rectangle of the whole line and one part is equivalent to the

square on that part together with the rectangle of the two parts.

Square on whole line,

40 (6). Cor. 2. If a line is divided into any two parts, the

square on the ivhole line is equivalent to the sum of the rec-

tangles of the ivhole line and each of the parts.

Distributive property of rectangles,

41. Cor. 3. If each of two lines is divided into any number

ofparts, then the rectangle contained by the whole lines is equiv-

alent to the S7tm of all the rectangles contained by each part of

one and each part of the other.

[Prove by repeated applications of 39 ; or else by an independent

figure.]

Note. This important principle will be referred to as " the dis-

tributive property of rectangles" ; it lies at the foundation of many
of the subsequent theorems.

Ex. 1. Show that 39, 40 are special cases of the "distributive

property."

Ex. 2. If a line is divided into three parts, then the square on the

whole line is equivalent to the sum of the rectangles of the whole line

and each of its parts.
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Squares on whole and parts,

42. Theorem 12. // a line is divided into any two
parts, the square on the whole line is equivalent to

the sum of the squares of the parts and double the
rectangle contained hy the parts.

Let AB be the given line divided at E.

V G n

F

A E B

To prove that the square on AB is equivalent to the sum
of the squares on AE and EBj and twice the rectangle of AE
and EB.

[Use36, 37, 38.]

Symbolic Proof. Another simple proof may be given by using

the distributive property of rectangles. For brevity denote the rec-

tangle of two lines AB and CD by [AB, OZ)], and the square on AB
by the symbol sq. AB. Let the symbol o stand for the phrase "is

equivalent to " ; the sign + for " added to " or " increased by "
; and

the sign — for "diminished by."

Since sq. AB =0= [AB, AE] + [AB, EB] ; [40 (6)

and [AB, AE]^ sq. AE + [AE, EB], [40 (a)

[AB, EB]^sq. EB + [AE, EB]
;

hence sq. AB ^sq. AE + sq. EB + 2 [AE, EB],

Square on sum,

43. Cor. I . The square on the sum of two lines is equivalent

to the sum of their squares and twice their rectangle.

44. Cor. 2. Tlie square on any line is equivalent to four

times the sqxiare on its half.
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Ex. 1. Prove 43 by applying the distributive property to two lines

each equal to the sura of the two given lines.

Ex. 2. Prove 44 by applying the distributive property to two equal

lines each of which is bisected.

Ex. 3. If a line is divided into three parts, the square on the whole

line is equivalent to the sum of the squares on the parts together with

twice the rectangles of the parts taken two and two.

Sum of squares on whole and part,

45. Theorem 13. If a line is divided into any two

parts, the sum of the squares on tlve whole line and
one part is equivalent to twice the rectangle of the

whole line and that part, together with the square on

the other part.

Let ABhQ the given line divided at E.

To prove that the sum of the squares of J5 and EB is

equivalent to twice the rectangle of ^i? and EBj together

with the square on AE.

On AB describe a square, and complete the construction

as in the figure of the preceding theorem.

The square DB is equivalent to the sum of the square DF
and the rectangles HE and GB. Add to each of these equiv-

alents the square FB. Then the sum of the squares DB and

FB is equivalent to the sum of the square DF and the rec-

tangles HB and GB. Now the latter rectangles are each

equal to the rectangle oi AB and EB. Hence the theorem

is proved.

Otherwise

:

sq. AB<> [AB, EB] -{- \_AB, AE], . [40 (6)

=0= lAB, EB] + sq. AE + ^AE, EB]. [40 (a)

Add the square on EB, then

sq. AB + sq. EB<^ \_AB, EB] + sq. AE -V \_AE, EB] + sq. EB,

^ [AB, EB] + sq. AE + \,AB, EB], [40 (a)

=^sq. AE+2iAB,EB].
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Square on difference.

46. Cor. Tlie square on the difference of two lines is

equivalent to the sum of their squares diminished by twice their

rectangle.

Square on sum, of whole and part,

47. Theorem 14. If a line is divided into any two
parts, the square on the sum of the whole line and one

part is equivalent to four times the rectangle of the

whole line and that part, together with the square on
the other part.

Let the line ^i? be divided at E.

To prove that the square on the sum of AB and EB is

equivalent to four times the rectangle of AB and EB^ together

with the square on AE.

Since sq. {AB -f- EB) o= sq. AB + sq. EB +2 [AB, EB^
; [43

and sq. AB + sq. EB =o 2 [AB, EB^ -f sq. AE
;

[45

hence sq. (AB + EB) =c= 4 [AB, EB^ 4- sq. AE.

48. Cor. TJie square on the sum of two segments exceeds

the square on their difference by four times their rectangle.

Rectangles of equal parts and of unequal parts,

49. Theorem 15. // a line is divided into two equal

parts, and also into two unequal parts, the rectangle

of the unequal parts, together with the square on the

intermediate part, is equivalent to the square on half

the line.

Let the line AB be divided into equal parts at C, and into

unequal parts at D.
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F M E

To prove that the rectangle oi AD and DB together with

the square on CD is equivalent to the square on CB.

On CB describe the square CBEF. Through D draw DM
perpendicular to CB and meeting the diagonal BF in H.

Through H draw the line GHKL parallel U) AB \ and com-

plete the rectangle ACKL.

The figures DG, KM are squares; and the rectangles CH,

HE are equivalent (36).

Add to each of these the figure DG ; then the rectangles

CG and DE are equivalent.

Now the rectangles AK and CG are equivalent, because AC
equals CB and CK is common.

Therefore the rectangles AK and DE are equivalent.

Add the rectangle CH and also the square KM ; then the

rectangle AH and the square KM are together equivalent to

the square CE.

Now AH is the rectangle of AD and DH, that is of AD and

DB ; and the square KM is equal to the square on CD.

Therefore the rectangle oi AD and DB together with the

square on CD is equivalent to the square on CB.

Otherwise :

[AD, DB^ =c= [AC, DB^ + [CD, DB^. [39

Replace AC\)y its equal CB^ and add the square on CD, then

[AD, Z>5] + sq. CD^ICB, DB] + [CD, DB] + sq. CD,

<^[CB. DB] + [CB, CD], [40 (a)

<>sq.CB. [40 (ft)
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50. Cor. I. The rectangle of any two lines, together with
the square on half their differerice, is equivalent to the square on
half their sum.

A P i D B

Let AD and DB be the lines, AB their sum and CB their

half sum.

Take CD' equal to CD. Then DB equals AD', and the

difference of the two lines AD and DB is equal to the differ-

ence of AD and AD', which is D'd.

Therefore CD is half the difference of AD and DB.

Now the rectangle of AD and DB together with the square

on CD is equivalent to the square on CB (49).

Hence the rectangle of two lines, together with the square

on half their difference, is equivalent to the square on half

their sum.

Difference of two squares expressed as a rectangle.

51. Cor. 2. The rectangle of the sum and difference of tivo

lines is equivalent to the difference of the squares on the lines.

Let AC, CD be the two lines; then AD is their sum, and

DB is their difference.

Hence, by 49, the rectangle of the sum and difference of

two lines, together with the square on the less, is equivalent

to the square on the greater.

In other words, the rectangle of the sum and difference of

two lines -is equivalent to the difference of the squares on

the lines.

Ex. 1. If there are two given squares, show how to construct a

rectangle equivalent to their difference.

Ex. 2. If a line is divided into two equal parts and also into two

unequal parts, show that the rectangle of the unequal parts is less than

the rectangle of the equal parts.



144 PLANE GEOMETRY— BOOK II

Modification of 49,

52. Theorem 16. // a given line is bisected and then

extended to any point, the rectangle contained by the

extension and the whole line so extended, together with

the square on half the original line, is equivalent to

the square on the line between the point of bisection

and the point of extension.

A c

Prove as in theorem preceding.

Otherwise

:

[AD, BD] o [AC, BD] + [CZ), BD]. [39

Replace AG by its equal CB, and add the square on CB ; then

IAD, BD] + sq. CB^[CB, BD] + sq. CB + [CD, BD],

o [CA CB] + [CD, BD], [40 (a)

=c=sq. CD. [40 (6)

53. Cor. Show that CB is half the difference of AD, DB ;

and that CD is half the sum of AD, DB ; and hence prove again

that " the rectangle of two lines together with the square on half

their difference is equivalent to the square on half their sum.''

Ex. Prove again that " the rectangle of the sum and difference of

two lines is equivalent to the difference of their squares."

[Let CD, CB be the segments, AD their sum, BD their difference.]
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Squares on equal parts and on unequal parts,

54. Theorem 17. // a line is divided into two eqiud

parts and also into unequal parts, the sum of tlie

squares on the unequal parts is equivalent to double

the sum on the squares on the half line and on the

intermediate part.

Let AB be the given line, divided into two equal parts at

C and into two unequal parts at D.

A i D B

To prove that the sum of the squares on AD, DB is equiva-

lent to double the sum of the squares on J.C, CD.

By 43 and 46

sq. AD^sq. AC + sq. CD + 2 [AC, CD],

sq. DB =0= sq. CB + sq. CD - 2 [CD, CD^.

Add these equivalents, observing that AC equals CD, and

that the equal rectangles disappear since one is added and

the other subtracted. Therefore

sq. AD + sq. DD =0= 2 sq. AC + 2 sq. CD.

55. Cor. I. The sum of the squares on any two lines is

equivaleyit to twice the square on half their sum together with

twice the square on half their difference. (See 50.)

56. Cor. 2. The square on the sum of tivo lines together

with the square on their difference is equivalent to double the

sum of the squares on the two lines.

[Let AC, CD be the given lines, AD their ^um, DB their differ-

ence.]

Ex. Prove 56 directly from 43 and 46.
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Modification of 54,

57. Theorem 18. If a given line is bisected and then
extended to any point, the sum of the squares on tJie

extension and on tJie whole line so extended is equivor

lent to twice the square on half the original line,

together with twice the square on the line between the

point of bisection and the point of extension.

Let AB be the given line, bisected at C, and then extended

toD.

i Z ;§ ~D

To prove that

sq. AB + sq. 52) =c= 2 sq. ^C 4- 2 sq. CD,

Show that the proof of the preceding theorem applies, letter by

letter, to this theorem.

Cotnbined statement of theorems 17^ 18,

In order to combine these two theorems in one statement

an extended meaning will now be given to the phrase " the

two segments of a line."

58. Definition. If on the line AB the point C is taken

between A and B, then the line AB is said to be divided

internally into the two segments AC, BC.

Again, if the point C is taken on the prolongation of AB,

then the line AB i^ said to be divided externally into the

two segments AC, BC.

59. Restatement. The two theorems may then be re-

stated as follows

:

If a given line is bisected and divided unequally
{either internally or externally), then the sum of the

squares on the unequal parts is equivalent to twice the

square on half the original line, together with twice

the square on the line between the points of division.
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EXERCISES

1. The square on the sum of two lines is greater than the sum of

the squares on the two lines.

2. The sum of the squares on two lines is never less than twice their

rectangle.

3. If a line is divided into two equal parts and also into two unequal

parts, how does the sura of the squares on the equal parts compare
with the sum of the squares on the unequal parts ?

4. If a line is divided into two equal parts and also into two unequal

parts, then the sum of the squares on the unequal parts exceeds twice

their rectangle by four times the square on the intermediate segment.

EQUIVALENCES IN A TRIANGLE

Relations in a right triangle.

60. Theorem 19. In a right triangle the rectangle

of the hypotenuse and the projection upon it of one

of the other sides is equivalent to the square on that

side.

Let the triangle ABC have the angle C a right angle, and

let BD he the projection of the side BG upon the hypote-

nuse BA.
K

To prove that the rectangle of ^^ and DB is equivalent

to the square on BC.

On BC describe the square BCFE. Prolong EF to meet

in H the line BH drawn perpendicular to AB. Complete

the rectangle DBHK, and join CH.
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In the triangles BCA and BEU, the angles ABC and EBH
are equal, being each complemental to CBH; also the angles

BCA and BEH Sive equal, being right; and the sides BC and

BE are equal, being sides of a square. Hence the side BA
equals BH (I. 65).

Therefore the rectangle BK is the rectangle of AB aud

DB.

Now this rectangle is double the triangle CBHy since they

have the same base BHy and the same altitude DB (29).

Also the square BF is double the same triangle, since

they have the same base BC and the same altitude BE.

Therefore the rectangle and square are. equivalent (9).

That is to say, the square on the side BC is equivalent to

the rectangle of the projection BD and the hypotenuse BA.

In the same way it can be proved that the square on the

side JC is equivalent to the rectangle of its projection AD
and the hypotenuse BA.

Theoretn of Pythagoras.

61. Theorem 20. In any right triangle the square

on the hypotenuse is equivalent to the sum of the

squares on the other two sides.

Let ^5C be a triangle having c a right angle.

To prove that the square on the hypotenuse AB is

equivalent to the sum of the squares on the sides ACy CB.

The square on AB is equivalent to

the sum of the rectangles oi AB and

ADy and oi AB and BD [40 (cor. 1)].

Now the rectangle of ^5 and AD
is equivalent to the square on ^C

(60); and the rectangle of AB and DB is equivalent to

the square on CB.

Therefore the square on AB is equivalent to the sum of

the squares on AC and CB,
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Ex. Show how to dissect the squares on ^Cand CB so that the
parts may cover the square on AB.

\
Note. The earliest proof of this cele-

brated theorem is attributed to Pythagoras

(550 B.C.), the founder of the famous Pytha-
gorean School in lower Italy. The theorem
itself was, however, probably known as an
experimental fact to the ancient Egyptians,

a thousand years earlier. It is conjectured

that the Pythagorean proof was based on

some method of dissection similar to that

shown. The proof given by Euclid (300 b.c.) is a combination of 60

and 61. The first part is here enunciated as a separate theorem on

account of its great importance.

Relation in an obtuse triangle.

62. Theorem 21. In an obtuse-angled triangle the

square on the side opposite the obtuse angle is greater

than the sum of the squares on the other two sides

by twice the rectangle contained by either of these

sides and the projection of the other upon it.

Let the triangle ABC have the angle C obtuse, and let CD

be the projection of the side CB on AC extended.

To prove that the square on ^J5 is

greater than the sum of the squares

on ^C and CB by twice the rectangle

of ^C and CD.

The square on 4Z> is equivalent to

the sum of the squares on AC and

CD
J
together with twice the rectangle

of ^C and CD (42).

Add to each member of this equivalence the square on BD.

Then the sum of the squares on AD and BD is equivalent

to the sum of the squares on AC, CD, and DB together with

twice the rectangle of ^C7 and CD.

Now the sum of the squares on AD and DB is equivalent
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to the square on AB (61); and the sum of the squares on

CD and DB is equivalent to the square on CB.

Therefore the square on AB is equivalent to the sum of

the squares on ^C and C5, together with twice the rectangle

of ^C and CD.

In other words, the square on AB exceeds the sum of the

squares on AC and BC hy twice the rectangle of ^C and CD.

Relations in any triangle.

63. Theorem 22. In any triangle the square on the

side opposite an a^icte angle is less than the sum of

the squares on the sides containing that angle hy

twice the rectangle of either of these sides and the

projection of the other upon it.

Let ABC be a triangle having the angle C acute, and let

DC be the projection of the side BC upon the side AC.

To prove that the square on AB is

less than the sum of the squares on

AC and CB by twice the rectangle

of AG and DC.

The sum of the squares on ^c and

DC is equivalent to twice the rectangle

of ^C and DC together with the square

on AD (45).

To each member of this equivalence add the square on DB.

Then the sum of the squares on AC, CD, DB is equivalent

to twice the rectangle of AC and DC together with the sum

of the squares on AD and DB.

But the sum of the squares on DC and DD is equivalent

to the square on BC (61) ; and the sum of the squares on

AD, DB is equivalent to the square on AB.

Therefore, the sum of the squares on ^ C and CB is equiva-

lent to twice the rectangle of ^C and DC together with the

square on AB.

That is, the square on AB \^ less than the sum of the

squares on AC and CB by twice the rectangle of ^C and DC.
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64. Cor. I. In any triangle, according as one angle is

greater than, equal to, or less than a right angle, so is the
square on the opposite side greater than, equivalent to, or less

than the sum of the squares on the other two sides. (61, 62, 63.)

65. Cor. 2. In any triangle, according as the square on one
side is equivalent to, greater than, or less than the sum of the

squares on the other tivo sides, so is the angle opposite the first

side greater than, equal to, or less than a right angle.

Melatlon involving perpendicular.

66. Theorem 23. In any triangle, if a perpendic-
ular is dramn from the vertex to the hase, then
according as the vertical angle is greater than, equal
to, or less than a right angle, so is the rectangle of
the segments of the base greater than, equivalent to,

or less than the square on the perpendicular.

Let BD he the perpendicular from the vertex to the base

in the triangle ABC.

To prove that the square on BD is equivalent to, greater

than, or less than the rectangle of AD and DC according as

the angle B is right, acute, or obtuse.

The square on AC is equivalent to, less than, or greater

than the sum of the squares on AB and CB according as the

angle B is right, acute, or obtuse (64).

Now the square on AG is equivalent to the sum of the

squares on AD and DC with twice the rectangle of ^/>*and

DC (42) ; the square on AB is equivalent to the sum of the

squares on AD and DB ; and the square on BC is equivalent

to the sum of the squares on DC and DB (61).

Rejecting the common sum of squares on AD and DC, it

remains that twice the rectangle oi AD and DC is equivalent

to, less than, or greater than twice the square on DB,

according as the angle B is right, acute, or obtuse ; whence

by taking halves the theorem follows (11, 12).

MCM. ELEM. GEOM. — 11
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Relation involving median,

67. Theorem 24. In any triangle, if a line is

drawn from the vertex to the mid-point of the base,

the sum of the squares on the two sides is equiva-

lent to twice the square on half the ba^e, together

with twice the square on the median line.

Let BD be a median line of the triangle ABC.

To prove that the sum of

the squares on the sides AB
and 5C is equivalent to twice

the square on DC and twice

the square on BD.

Case 1. Let the angles BDA
and BDC be equal.

Then BD is perpendicular to AC. Therefore the square

on AB is equivalent to the sum of the squares on AD and

BD (61) ; and the square on BC is equivalent to the sum of

the squares on BD and DC.

Hence the sum of the squares on AB and BC is equivalent

to twice the square on BDj together with twice the square

on AD.

Case 2. Let the angles BDA and BDC be unequal.

Then one of them is the greater. Let the angle ADB be

greater than BDC. The angle ADB is then obtuse, and BDC
is acute.

Let BE be the perpendicular from B to the base AC.

Then in the triangle ADB the square on AB is equivalent

to the sum of the squares on AD and BD together with twice

the rectangle of AD and DE (62).

Again, in the triangle BDC, the square on BC is equivalent

to the sum of the squares on BD and DC diminished by

twice the rectangle oi DC and DE (63).

Add these equivalences, member to member, and reject

the equivalent double rectangles.
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Then the sum of the squares on AB and BC is equivalent
to twice the square on BD and twice the square on AD.

68. Cor. The sum of the squares on the four sides of a
parallelogram is equivalent to the sum of the squares on the

two diagonals. (Use I. 159 ; and 67, 44.)

Ex. The sum of the squares on the four sides of a quadrilateral is

equivalent to the sum of the squares on the two diagonals, and four
times the square on the segment joining the mid-points of the diagonals.

Difference of squares on sides,

69. Theorem 25. In any triangle, if a line is

drawn from the vertex perpendicular to the base
{or base prolonged), then the difference of the squares
on the two sides is equivalent to the difference of
the squares on the segments of the base.

[Take the figure of 62, or 63. Apply 61 to each of the right

triangles. Then subtract.]

70. Cor. In an isosceles triangle, if a line is drawn from
the vertex to any point of the base (or base prolonged), then the

difference of the squares on this line and on one side of the

triangle is equivalent to the rectangle of the segments of the base.

Outline. Let BA, BC be the equal sides, P any point on the base

AC. Draw perpendicular JSil/, which bisects ^C at Jf. Apply 69 to

the triangle ABP. Then use 50. Give the proof in the usual form.

EXERCISES

1. In an isosceles right triangle the square on one side is equivalent

to half the square on the hypotenuse ; and the square on the perpen-

dicular is equivalentlo one fourth of the square on the hypotenuse.

2. If the acute angles of a right triangle are respectively equal to

one third and two thirds of a right angle, then the squares on the

opposite sides are respectively equivalent to one fourth and three

fourths of the square on the hypotenuse.

3. In the same case the square on the perpendicular is equivalent

to three fourths of the square on the side.
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4. In an equilateral triangle the square on the altitude is equivalent

to three fourths of the square on the side.

5. In an isosceles triangle, if a perpendicular is drawn from an

extremity of the base to the opposite side, then twice the rectangle

contained by that side and its segment adjacent to the base is equiva-

lent to the square on the base.

6. In any triangle, if an angle is equal to two thirds of a straight

angle, then the square on the side opposite is equivalent to the sum of

the squares on the other two sides and the rectangle contained by them.

7. If any point is joined to the four vertices of a rectangle, the sum
of the squares on the lines drawn to two opposite vertices is equivalent

to the sum of the squares on the other two joining lines.

CONSTRUCTION OF EQUIVALENT POLYGONS

Reduction of polygon to equivalent triangle,

71. Problem 1. To construct a triangle equivalent

to a given polygon.

Let ABODE be the given polygon.

To construct a triangle equivalent

to it.

Draw any diagonal AC connect-

ing the ends of two adjacent sides.

Through the intermediate vertex B
draw BH parallel to this diagonal to

meet one of the sides next in order, say EA, in Hy and

draw CH.

The triangles CAB and CAH are equivalent (33).

To each add the polygon ACDE-^ then the given polygon

ABODE is equivalent to the polygon EHOD.
The number of sides of the latter polygon is one less than

the number of sides of the given polygon.

Repeating this process a set of equivalent polygons having

fewer and fewer sides is obtained; and the process ends

when a three-sided figure is reached.
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Conversion of triangle into equivalent rectangle,

72. Problem 2. To construct a parallelogram equiva-
lent to a given triangle, and having an angle equal to
agiven angle.

Let ABChQ the given triangle, and M the given angle.

To construct a parallelogram equivalent to the triangle

ABC, and having an angle equal to M.

Bisect AB at D, and draw DE, making the angle BDE equal

to M. Draw CEF parallel to AB, and complete the parallelo-

gram DBFE.
This parallelogram is equivalent to the triangle ABC.

To prove this, draw CD.

The parallelogram DBFE is double the triangle BDC, since

they have the same base and equal altitudes (34).

The triangles ADC, DBC are equivalent, having equal bases

and the same altitude (29). Hence the triangle ABC is

double the triangle DBC.

Therefore the parallelogram DBFE is equivalent to the

given triangle ABC (9); and it has an angle equal to the

given angle.

Ex. 1. To construct a rectangle that shall be equivalent to a given

triangle.

Ex. 2. To construct an isosceles triangle equivalent to a given

triangle.

Ex. 3. To construct a parallelogram equivalent to a given parallel-

ogram, and having an angle equal to a given angle.
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Conversion of parcUlelograin into equivalent one,

73. Problem 3. On a given line to CA)nstruct a
parallelogram equLivalent to a given parallelogram,
and having its angles equal to tJie angles of this

parallelogram.

Let ABCD he the given parallelogram and FK the given

line.

D c HO L

I
—7 r^T ":-~^

LJ eU,J^ /k

It is required to construct on FK a parallelogram equivalent

to ABCD and having its angles respectively equal to the

angles of ABCD.

Prolong KF, and lay off FE equal to BA^ one of the sides

of the given parallelogram.

Transfer the figure ABCD to the position EFGH, so that

BA may fall on FE (I. 199).

Draw KL parallel to FG to meet IIG extended in L. Draw
LF^ and prolong it to meet HE extended in M. Draw MP
parallel to EF, and let it meet the extensions of GF and LK
in N and P.

Then NPKF is the required parallelogram.

For it is equivalent to EFGH (36) ; its angles are equal

to the angles of EFGH (I. 126) ; and it is described on the

given line FK.

73 (a). Cor. On a given line to construct a rectangle equiva-

lent to a given rectangle.

Ex, 1. Given one side of a rectangle and the equivalent square,

find the adjacent side.

Ex. 2. On a given line to construct a rectangle equivalent to a given

triangle (72, 73).
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To ** square'' a rectangle,

74. Problem 4. To construct a square equivalent
to a given rectangle.

Let ABCB be the given rectangle.

/
t

A,—
H

D

B E

To construct a square equivalent to it.

Prolong AB to E, making BE equal to BC. Bisect AE at

H (I. 70). With H as center and HE as radius describe the

arc ERA. Prolong CB to meet this arc in K.

The square constructed on BK is equivalent to the given

rectangle.

To prove this, draw the radius HK.

The rectangle oi AB and BE with the square on HB is

equivalent to the square on HE (49) ; that is, to the square

on HK, which is equivalent to the sum of the squares on HB
and BK (61).

Reject the common square on HB. Then the rectangle of

AB and BE is equivalent to the square on BK.

Now the rectangle ABCD is the rectangle of AB and BC,

that is, oi AB and BE.

Therefore the square on BK is equivalent to the given

rectangle.

75. Summary. By combining the constructions given in

problems 1, 2, 4, a square can be constructed equivalent to

any given polygon.

This square is called its equivalent square; and the

process of construction is called squaring the polygon.
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Ex. 1. Give the complete construction for squaring a given triangle.

Ex. 2. Also for squaring a given quadrangle.

Ex. 3. If the lines AK, KE are drawn, prove that the angle AKE
is equal to the sum of the angles KAE^ AEK\ and hence that AKE
is a right angle.

Ex. 4. Use ex. 3 to construct on a given line a rectangle equivalent

to a given square.

[Here AB, BKare given, to find BE. Compare with 73, ex. 1.]

Addition of squares,

76. Problem 5. To construct a square equivalent
to the sum of two given squares.

Let KLj MN be the sides of the given squares.

nM iV

K L

To construct a square equivalent to the sum of the squares

on these lines.

Draw CA equal to KL. Erect CB perpendicular to CA
and equal to MN. Draw the line AB.

The square on AB is equivalent to the sum of the squares

on KL and MN.

For the square on AB is equivalent to the sum of the

squares on AC and CB (61) and hence equivalent to the sum
of the squares on KL and MN.

Ex. To constnict a square equivalent to the sum of three or more
given squares.

Subtraction of squares,

77. Problem 6. To construct a square equivalent

to the difference of two given squares.

[This is a particular case of I. 136.]

Ex. Show how to construct a square equivalent to the difference of

two polygons.
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To halve a square,

78. Problem 7. To construct a square equivaUnt
to tialf a given square.

Let ABhQ the side of the given square.

To construct a square equivalent
to half the square on AB.

Draw AC, BC, making the angles
BAC, ABC each equal to half a right

angle.

Show that the square on AC is half the square on AB.

DIVISION OF A LINE

In the following problems a given line is to be divided so
that the two parts may fulfill given conditions : e.g., have a
given difference

; a given sum of squares ; etc.

lyifference given,

79. Problem 8. To divide a given line into two
parts so that the difference of the parts shall be equal
to another given line.

Let AB, CD be the given lines, of which AB is the greater.

To divide AB into two c n
parts whose difference shall

be equal to CD.

Prolong AB, making BE "^ F B E

equal to CD. Bisect AE in F. This point F divides AB so

that the difference between AF and FB is equal to CD.

For, since AF equals FE, the difference between AF and

FB is equal to the difference between FE and FB, which is

equal to be, that is to CD.

Bestriction. The line CD must be less than AB, otherwise there

is no solution to the problem.
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Difference of squares,

80. Problem 9. To divide a given line internally

so that the difference of the squares on the two seg-

ments may he equivalent to a given square.

Let AB hQ the given line, and let CD be the side of the

given square. ^ P
To divide AB so that the ^^''^ '

difference of the squares on ^^''^

the parts may be equivalent ^.-'^
^__

to the square on CD. ^ M B L C

Erect BK perpendicular to AB and equal to CD. Draw
AKj and erect KL perpendicular to AKj meeting AB extended

in L. Bisect AL in M.

Then M divides AB so that the difference of the squares

on ^if and MB is equivalent to the square on CD.

For the rectangle of AB and BL is equivalent to the square

on BK (66). Also the rectangle of ^JS and BL with the

square on MB is equivalent to the square on ML (49).

Hence the rectangle of ^J5 and BL is equivalent to the

difference of the squares on AM and MB.

Therefore the difference of the squares on AM and MB is

equivalent to the square on BK, that is to the square on CD.

'
Restriction. The given square must be less than the square on the

given line.

81. Note. This problem may also be solved by drawing KM so

as to make the angle ^A'Jf equal to MAK, and then proving by 61.

82. Cor. To divide a given y'\
line exteiiially so that the y^ !

^^

difference of the squares on y
the two segments shall be y
equivalent to a given square, /"
nahen the latter is greater than ^ ^

^y
the square on the given line.



DIVISION OF A LINE 161

Rectangle given*

83. Problem 10. To divide a given line internally
so that the rectangle of the two segments may be
equivalent to a given square.

Let AB hQ the given line, and HK the side of the given
square.

H

To divide AB into two parts AD and DB so that the

rectangle of AD and DB may be equivalent to the square

on HK.

Bisect AB at M. With JWas center and radius MB describe

the arc ACB. Erect BE perpendicular to AB and equal to

HK. Draw EC parallel to BA, meeting the arc in C. Draw

CD perpendicular to AB.

The point D divides ^2? so that the rectangle oi AD and

2)5 is equivalent to the square on HK.

Prove as in 74.

Bestriction. The given square must be less than the square on half

the given line.

84. Note. This problem can also be solved by the use of 61 and

73, etc.

85. Problem 11. To divide a given line externally

so that the rectangle of tJie two segments shall he

equivalent to a given square.

Outline. Let AB be the given line ; draw the perpendicular EC

equal to side of given square; take ilf mid-point of AB
;
join MC\ on

AB prolonged lay off MD equal to MC. Prove by 52 that rectangle of

AD and BD is equivalent to the square on EC.
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Sum of squares given.

86. Problem 12. To divide a given line internally

so that the sum of the squares on the parts may be

equivalent to a given square.

Let AB be the given line, and HK a side of the given

square.

A S B
H K

To divide AB at D so that the sum of the squares on AD
and Z>5 may be equivalent to the square on UK.

Construct the angle ABC equal to half a right angle.

With A as center and radius equal to HK, describe an arc

cutting J5C in C. Draw CD perpendicular to AB.

The point D is the required point of division.

To prove this, draw the line AC.

The angle BCD, being equal to the diiference of the angles

ADC and DBCy is equal to Jjalf a right angle, and is therefore

equal to the angle DBC. Hence DC equals DB (I. 62).

Therefore the sum of the squares on AD and DB is equiva-

lent to the sum of the squares on AD and DC-, which is

equivalent to the square on AC, that is to the square on the

given line HK.

Restriction. The given square must be less than the square on the

whole line, and greater than twice the square on half the line, other-

wise there is no solution.

87. Note. This problem can also be solved by means of 55.

88. Cor. To divide a given line externally so that the sum

of the squares on the two segments shall he equivalent to a

given square, which is greater than the square on the given

line.
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Medial section,

89. Problem 13. To divide a given line into two
parts such that the rectangle of the whole line and
one part may be equivalent to the square on the other
part.

Let AB hQ the given line, on which it is required to find
a point P such that the rectangle oi AB and BP may be
equivalent to the square on AP.

D N c
r

i
1

4.^
1

"

i
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1
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1

1
i''

jB

On AB construct the square ABCD. Bisect AD at E, and

join EB. Prolong EA, and take EF equal to EB. On AF
construct the square AFKP.

Then P is the required point of division.

To prove this, complete the rectangle FEND.

Since AD is bisected at E and prolonged to F, therefore

the rectangle of DF and AF together with the square on EA

is equivalent to the square on EF (52).

Therefore the rectangle DK\^ equivalent to the difference

of the squares on EF and EA ; that is, to the difference of

the squares on EB and EA ; that is, to the square on AB.

Hence the rectangle DK is equivalent to the square ABCD.

Take away the common part AN\ then the square AKis

equivalent to the rectangle PC.

Now PC is the rectangle oi BC and PB, that is, of AB and

PB ; and AK is the square on AP.
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Therefore the rectangle of AB and PB is equivalent to the

square on AF.

Note. When a line is divided as in this problem, it is said to be

divided in medial section^ for reasons that appear later (V. 97). The
ancients called this mode of division sectio aurea, the golden section,

on account of its important applications.

LOCUS PROBLEMS

90. Problem 14. To find the locus of the vertex of
a triangle whose base is given in magnitude and
position, and whose equivalent square is given.

Outline. On the given base construct a rectangle equivalent to

double the given sqvflp|[78 (a)). The side parallel to the given line,

extended indefinitely, is the required locus. Prove by 29, 33, 31.

Ex. On a given line construct an isosceles triangle equivalent to a

given square. [Intersection of loci, I. 253 (ex.)].

91. Problem 15. To find the locus of the vertex of
a triangle whose base is given in magnitude and
position, and the difference of the squares on whose
sides is equivalent to a given square.

Outline analysis. Take any point P satisfying the given

conditions, and from it draw a perpendicular P Q to the base

AB. Show that any point on PQ satisfies the conditions

(see 69); and that any point not on PQ does not satisfy

them.

Show that the locus is constructed by dividing AB inter-

nally or externally at Q so that the difference of the squares

on the segments shall be equivalent to the given square

(internally as in 80 if the given square is less than the

square on the given line, externally as in 82 if greater), and

then drawing QP perpendicular.

Ex, Show how to construct a triangle, being given the base, the

equivalent square, and the difference of squares on sides. (Intersection

of loci.)
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MAXIMA AND MINIMA

92. Definition. Of all the magnitudes of a certain class

that fulfill prescribed conditions the greatest is called the

maximum, and the least the minimum.
Among the magnitudes that fulfill the prescribed con-

ditions there may be a number of equal magnitudes that

are each greater (or less) than any of the others ; in such

case each of the equal magnitudes will be called a max-

imum (or minimum).

93. In each of the following theorems it is important to

distinguish clearly between the prescribed conditions that

define the class of figures considered, and the additional

condition that characterizes a maximum (or minimum) figure

of the class. The theorems concerning maxima come under

one of the following type-forms, which are converse to each

other

:

1. Among all the magnitudes that fulfill the set of con-

ditions A, any one that is a maximum fulfills the additional

condition B.

2. Among all the magnitudes that fulfill the set of con-

ditions A, any one that fulfills the additional condition B is

a maximum.
The first form asserts that the additional condition B is

necessary for a maximum ; the second form asserts that the

additional condition B is sufficient for a maximum. As we

shall be concerned with the complete conditions for a max-

imum, both of the converse theorems will be considered;

which of them is to be proved first will depend on the

nature of the prescribed conditions. Similar type-forms

apply also to theorems concerning minima.

Greatest triangle having tivo given sides.

94. Theorem 26. // two sides of a triangle are

given, the triangle is a maximmn ivJwn tJie given

sides include a right angle.



166 PLANE GEOMETRY— BOOK II

Let the triangles ABC and A'bc have

the sides AB and BC equal to the sides

A'b and BC respectively. Let the angle

ABC be a right angle, and a'bc an

oblique angle.

To prove the triangle ABC greater

than A'BC.

[Prove the altitudeAB greater than the alti-

tude A'D.^

95. Cor. I. Conversely, if two sides are given, and if the tri-

angle is a maximum, then the given sides include a right angle.

For if not, a greater triangle could be constructed by

making the included angle a right angle, contrapy to the

hypothesis that the given triangle is a maximum.

96. Cor. 2. Of all jyarallelograms having given sides, one

that is rectangular is a maximum; and conversely.

Least perimeter in equivalent triangles.

97. Theorem 27. Of all equivalent triangles having
the same base, tJiat which is isosceles ha^ the least

perimeter.

Let ABC and A'BC be equivalent triangles having the

same base BC, the first triangle

being isosceles and the second not.

To prove that the perimeter of

ABC is less than the perimeter of

A'BC.

Draw CE perpendicular to AA',

and prolong it to meet the prolonga-

tion of BA in D. Join A'n.

Outline proof. Prove in succession: AA' parallel to BC (33);

angle EAD equal to EAC ; AD equal to AC; A'D equal to ^'C;
sum of BA and AC equal to BD ; which is less than sum of BA' and

A'D ; which equals the sum of BA' and A'C. Draw conclusion.

D
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98. Cor. I. Conversely, of all equivalent triangles having
the saine base, that which has the least perimeter is isosceles.

[Prove by reductio ad absurdum, as in 95.]

99. Cor. 2. Of all equivalent triangles, one that has a
minimum perimeter is equilateral.

Let ABC be a triangle of minimum perimeter belonging to the
given set of equivalent triangles. Take BC as base. Then the sides

AC and AB are equal by 98. Similarly, the other pairs of sides are

equal. Hence ABC is equilateral.

100. Cor. 3. Conversely, of all equivalent triangles, one

that is equilateral has a minimum perimeter.

Outline. Let ABC be an equilateral triangle belonging to the given

set of equivalent triangles. Let A'B'C be a triangle of minimum
perimeter in the set. Then A'B'C is equilateral (99). Since these

two equilateral triangles are equivalent, hence their sides are equal

(32, ex.). Therefore ABC is isoperimetric with A'B'C, and has thus

the minimum perimeter in the set of equivalent triangles.

Greatest surface in isoperimetric triangles,

101. Theorem 28. Of all triangles having a given

perimeter and agiven base, one thai is isoscelss has a
majciTnum surface. a

Let ABC be an isosceles triangle,

and let ^'^C be any other triangle

having an equal perimeter and the /
same base BC. //

To prove the triangle ABC 1/

greater than ^'5 C. Draw ^Z) per- I' /
pendicular to BC, and A^E parallel f/^
to 5C; join BE, CE. B D C

Outline proof. Prove in succession : triangle BEC isosceles

;

perimeter of BEC less than that of BA'C (97) ;
which is equal to that

of BAC (hyp.) ; hence BE less than BA ;
ED less than AD; triangle

BAC greater than BEC; hence greater than BA'C. Draw general

conclusion.

MCM. ELEM. GEOM.— 12
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102. Cor. I. Conversely, of all triangles having a given

perimeter and a given base, one that has a maximum surface

is isosceles.

103. Cor. 2. Of all triangles having a given perimeter, one

that has a maximum surface is equilateral. [Compare 102.]

104. Cor. 3. Conversely, of all triangles having a given

perimeter, one that is equilateral has a maximum surface.

Rectangle of parts greatest,

105. Theorem 29. If a line is divided into any two
parts, the rectangle of the parts is a maximum wJien

the two parts are equal.

[Divide the line equally and unequally, and show by 49 that the

rectangle of the unequal parts is less than that of the equal parts. ]

106. Cor. Ifa square and a rectangle have equal perimeters,

the square is greater than the rectangle.

Sum of squares least,

107. Theorem 30. // a line is divided into any two
parts, the sum of the squares on tJie parts is a mini-
mum wlxen the two parts are equal.

[Show that the sum of the squares on the unequal parts is greater

than the sum of the squares on the equal parts (54).]

EXERCISES

1. Divide a given line into two parts such that the square on one

of them may be double the square on the other.

2. If A,B,C^ and D are four points in order on a line, then the

rectangle of AD and BC is equivalent to the sum of the rectangles of

AB and CD, and of AD and BC.
3. Divide a given line into three parts so that the sura of the squares

on them may be a minimum.

4. Construct a rectangle equivalent to a given square, and having

(1) the sum, (2) the difference of adjacent sides equal to a given line.

5. Show that 42 may be regarded as a limiting case of 62 ; and 46

of 63. Show that 54 and 57 may be regarded as limiting cases of 67.
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FUNDAMENTAL PROPERTIES

1. The circle and its center and radius were defined in

Introduction 28; and the postulate relating to drawing a

circle was stated in the next article.

Since the circle is a closed curve, a line drawn from any

point within the circle to any point without intersects the

circle at least once; and an indefinite line drawn through

any point within the circle intersects it at least twice.

That no straight line intersects a circle more than twice

will be shown in theorem 4, and corollary.

Pkopositions relating to the Center

2. Theorem 1. A circle has only one center.

Let ^5(7 be a circle described with center o (post. 3).

To prove that there is no other cen-

ter than 0.

Suppose, if possible, that the circle

has another center F. a\ -^-p-

Draw OP, and let it meet the circle

in the points A and B.

Since is a center, therefore OA

equals OB. Hence is the mid-point oi AB.

Similarly, P is the mid-point of AB, which is impossible

unless and P coincide.

Therefore a circle has only one center.



170 PLANE GEOMETRY— BOOK III

3. Theorem 2. If any two points are taken on a
circle, the perpendicular bisector of the line joining

them passes through the center.

For since the two lines drawn from the center to the two

given points are equal, therefore the center lies on the

perpendicular bisector of the line joining the two given

points (I. 253).

Ex. What is the locus of the centers of all the circles that pass

through two given points ?

4. Problem 1. To find tlie center of a given circle.

Let ABC be the given circle of which it is required to

find the center.

V

Take four points A, B, C, and D on the circle, and let them

be so situated that the lines AB and CD are not parallel.

Through the mid-points of AB and CD draw the perpendicu-

lars EO and FO ; these lines are not parallel, for otherwise

the lines AB and CD would be parallel. Let the perpendicu-

lars intersect in O.

The point is the required center.

For the center lies on each of the lines EOf FO (3).

Therefore the center is at 0, the intersection of the two

perpendiculars.

Note. This construction may be regarded as an application of the

method of intersection of loci (I. 256).

Ex. Being given any portion of a circle, show how to find the

center, and how to complete the circle.
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5. Theorem 3. The line joining any point to the

center of a circle is less than, equal to, or greater

than the radius, according as the point is within,

on, or without, the circle.

Let ABC be a circle whose center is 0. Let P, Q, R be

any points within, on, and without, the circle, respectively.

To prove that OP is less than a ^ ^x,,^^^

radius, OQ equal to a radius, and OR /^ >.
j^

greater than a radius. ' / ^—

^

Extend OP to meet the circle in ^4, I tX. I

and let OR cut the circle in c. \ p« ^/q
The lines OA, OQ, and OC are ^-^_L^''^^

equal, being radii.

But OP is less than OA ; and 07? is greater than OC.

Therefore OP, OQ, OR are respectively less than, equal to,

and greater than, the radius.

6. Cor. I. A point is luithin, on, or without, the circle,

according as the line joining it with the center is less than,

equal to, or greater than, the radius.

7. Cor. 2. The locus of a point, such that its join to a given

point shall be equal to a given line, is a circle described with

the given point as center and the given line as radius.

Intersections of Line and Circle

8. Theorem 4. // any two points of a circle are

joined by a straight line, all points of this line

situated between the given points lie within the

circle; and^ all points in the line extended either

way beyond the given points, lie without the circle.

Let A, BhQ any two points on the circle ; D a point in the

line AB, situated between A and B
;
F any point on the line

AB extended either way.
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To prove that D is within, and F without, the circle.

Find O, the center of the

circle (4). Join OAy OBy OD,

0F\ and extend OD through

D to meet the circle in E.

Since the triangle OAB is

isosceles, OD is less than 05,

and OF is greater than OB
(1.86).

Then since OD is less than the radius, the point D is

within the circle ; and since OF is greater than the radius,

the point F is without the circle (5).

9. Cor. A straight line cannot meet a circle in more than

two points.

Chorda and secants,

10. Definitions. A straight line that meets a circle in two

points is called a secant. The portion of a secant included

within the circle is called a chord. A chord that passes

through the center is called a diameter.

11. Theorem 5. The perpendicular from the center

to a chord bisects it; and, conversely, tJie line drawn
from the center to the mid-point of a chord is per-

pendicular to the chord.

Let ABhQ any chord of the circle ABC,

whose center is 0. Let OD be the per-

pendicular from to AB.

To prove that AB is bisected at D.

(Use I. 99.)

Converse. Let uiB be bisected at D.

To prove OD perpendicular to AB. (Use I. 66.)
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Ex. 1. The line which bisects perpendicularly one of two parallel

chords of a circle also bisects the other perpendicularly.

Ex. 2. If a line intersects two concentric circles, the intercepts

between the circles are equal.

Ex. 3. Any diameter of a circle is an axis of symmetry.

12. Theorem 6. The least line that can he drawn
from agiven point to a given circle is a segment of the

line that passes through the center, and the ejotremities

of this segment are at the same side of the center.

Let ABCD be a circle whose center is 0. Let P be any

point, either without the circle (fig. 1), or within the circle

(fig. 2). Let the

line PO meet the

circle in the points

A and D, of which A
is at the same side

of the center as P is.

Let PBC be any

other secant through,.,,., Fig. 1 Fig. 2
P meeting the circle

in the points B and G, of which B is at the same side of

the mid-point of the chord i?C' as P is.

To prove that PA is less than PB.

In the triangle POB (fig. 1), the side OP is less than the

sum of the sides OB and PB (I. 87).

Taking away the equals OA and OB, it follows that PA is

less than PB.

Again, in the triangle POB (fig. 2), the sum of OP and

PB is greater than OB, and therefore greater than OA.

Taking away the common part OP, it follows that PB is

greater than PA, that is, PA is less than PB.

13. Cor. I. The greatest line from any point to the circle

is a ^portion of the same secant as the least line is.

14. Cor. 2. The greatest chord of a circle is a diameter.
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PROPERTIES OF EQUAL CIRCLES

Conditions fob Coincidence

15. Theorem 7. Circles of equal radii are equal.

Let ABC
J
a'b'c' be two circles of equal radii, whose

centers are and O'.

c &

To prove that the circles are equal.

Let P be any point on the circle ABC.

Place the circle ABC upon a'b'c' so that the center O

may coincide with the center O'. Let the point P fall

on P'.

The line O'p' equals OP, being coincident with it; and

OP equals the radius of the circle A'b'c' (hyp.).

Therefore O'P' equals the radius of the circle a'b'c'.

Hence P' is on the circle A'b'c' (6).

Thus any point of the circle ABC will fall on the circle

A'B'C'.

In like manner, any point of the circle A 'b'c' will coincide

with a point of the circle ABC.

Hence the two circles coincide in all their parts, and are

therefore equal.

16. Cor. I. If tivo circles are equal, their radii are equal.

What are the contraposites of 15 and 16 ?

17. Cor. 2. Two circles which have one point in common,

and which have the same center, coincide throughout.
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18. Cor. 3. Two circles which have 07ie point in common,
and which do not coincide throughout, have not the same center.

How is this corollary related to the preceding ?

19. Cor. 4. Two circles which have the same center and

have unequal radii have no point in common.

20. Theorem 8. Through three given points not in

the same straight line, one, and only one, circle can
-pass.

Let A, B, C be three given points not in the same straight

line.

First, to prove that a circle can pass

through A, B, C.

Find the point such that the three

lines OA, OB, OC are equal (I. 257).

The circle described with as center

and a radius equal to OA passes through

A, B, C, and thus fulfills the requirements.

]N"ext, to prove that only one circle can pass through

A, B, C.

The point O is the only point such that OA, OB, OC are

equal (I. 257).

Therefore all the circles passing through A, B, G have the

same center and equal radii ; and hence they coincide (17).

Therefore there is only one circle passing through A, B, G.

21. Cor. I. Two circles having three poiyits in common

coincide.

Show that this is only another statement of the second part of 20.

22. Cor. 2. Two circles that do not coincide do not meet in

more than tivo points.

How is this corollary related to the preceding ?
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23. Cor. 3. If from any point within a circle more than

two lines drawn to the circle are equal, then that point is the

center.

Outline. Show that the opposite of this conclusion would lead to

the opposite of I. 257.

24. Cor. 4. If two triangles be equal, the circle passing

through the vertices of one is equal to the circle parsing through

the vertices of the other.

25. Cor. 5. Two circles cannot have a common portion

without coinciding throughout.

Arcs and Central Angles

26. Definitions. An arc is part of a circle. Two arcs

which together make up the whole circle are said to be

conjunct arcs. When two conjunct arcs are equal, each is

called a semicircle. When two conjunct arcs are unequal,

the greater is called the major conjunct arc and the less

the minor conjunct arc.

An angle at the center of a circle formed by two radii is

called a central angle. Of the two conjunct central angles

formed by the same two radii, the less is called the jninor

and the other the major.

The two conjunct central angles are said to stand on

the two arcs intercepted by the sides, the minor angle on

the minor arc, and the major angle on the major arc.

In the same case the minor arc is said to subtend the

minor angle, and the major arc the major angle. An arc

subtending a central right angle is called a quadrant.

A sector is a figure composed of an arc and the two radii

drawn to its extremities. The central angle formed by the

radii is called the angle of the sector ; and the sector is

said to contain the central angle.

In any two circles,- arcs that subtend equal central angles

are said to be similar, and so are the corresponding sectors.
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27. Theorem 9. In equal circles, or in the same
circle, equal central angles stand on equal arcs.

Let ABC, a'b'c' be equal circles whose centers are 0, O'.

Let A OB, a'o'b' be equal central angles.

To prove that the

arc AB is equal to the

arc A 'b'.

Let the circle ABC
be applied to A'b'c'

so that the radius OA
coincides with the

equal radius O'a', and

the angle AOB with its equal angle a'o'b'.

Then the radius OB coincides with the equal radius O'B'
-,

and the circle ABC with the circle A'b'c' (15).

Hence the arc AB coincides with the arc A'b'; and these

arcs are therefore equal.

Ex. 1. A diameter divides a circle into two equal arcs ; and two
diameters at right angles divide it into four equal arcs.

Ex. 2. All quadrants of the same circle are equal ; and each is

equal to one fourth of the circle.

27 (fl). Cor. In equal circles, or in the same circle, sectors

which include equal central angles are equal.

Note. As it is evident that the theorems proved for equal circles

are also true for the same circle, the words " or in the same circle"

will usually be omitted.

28. Definition. As equal circles have equal radii, any two

arcs of equal circles will be called equira^dial arcs; and

any two sectors of equal circles will be called equiradial

sectors.

29. Comparison of equiradial arcs. Two equiradial arcs are

compared in the same way as two line-segments are com-

pared, viz. by transferring one so that an extremity falls on

an extremity of the other and so that one of the arcs may
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coincide with the whole or part of the other. The terms

equal, greater, and less are then applied in accordance

with the general definitions (Introd. 35).

The surfaces of two equiradial sectors are compared in the

same way as two angles are (I. 11).

30. Theorem 10. In equal circles two unequal
central angles stand on unequal arcs, tlie greater

angle standing on the greater arc.

In the equal circles ABC^ A^B'c\ let the central angle AOB
be less than the central angle A'o'c'.

C

To prove that the arc AB is less than the arc A'c'.

Draw the line O'b' cutting off from the greater angle A'o'c'

a part A'o'b' equal to the less angle AOB (I. 77).

Then the arc a'b' equals the arc AB (27).

Therefore the arc A 'c', being greater than its part A 'b', is

greater than the arc AB.

Combined statement,

31. Cor. I. In two equal circlesj according as a central

angle of one is greater thauy equal to, or less than, a central

angle of the other, so is the arc subtending the first greater than,

equal to, or less than, the arc subtending the second.

32. Cor. 2. In two equal circles, according as a central

angle of one is greater than, equal to, or less than, a central

angle of the other, so is the sector containing the first greater

than, equal to, or less than, the sector containing the second.
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33. Cor. 3. According as a central angle is greater than,

equal to, or less than, a right angle, so is the opposite arc greater

than, equal to, or less than, a quadrant ; and conversely.

34. Cor. 4. According as a central angle is greater than,

equal to, or less thayi, a straight angle, so is the opposite arc

greater than, equal to, or less than, a semicircle ; and conversely.

Converse of 31,

35. Theorem 11. In two equal circles, according as

an arc of one is greater than, equal to, or less than,

an arc of the other, so is the central angle standing
on the first greater than, equal to, or less than, the

central angle standing on the second.

Addition of equiradial arcs, or sectors,

36. Definitions. The sum of two equiradial arcs is the

arc obtained by laying off on any equiradial circle two arcs

respectively equal to the given arcs, so as to have a common
extremity without overlapping. This sum is called the

result of adding the two arcs.

The supi of three or more equiradial arcs is the result of

adding the third arc to the sum of the first two, and so on.

The arc obtained by adding two equal arcs is called the

double of either, and each of the latter is said to be half of

the former.

The difference of two unequal equiradial a^cs is the arc

which must be added to the less to produce the greater.

The sum of two or more equiradial sectors is the whole

sector obtained by placing them so that their angles are

adjacent in succession (I. 9). The words double, half, dif-

ference, are applied to equiradial sectors in the usual way.

37. Magnitudes directly comparable. We have met with

four kinds of magnitudes such that two of the same kind

may always be directly compared by superposition (without

previous dissection). They are: line-segments (I. 2);

angles (I. 9) ; equiradial arcs (29) ; equiradial sectors.
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38. Axioms of equality and inequality. The axioms given

in I. 24-32 for line-segmeuts and angles may now be proved

for equiradial arcs and sectors as direct inferences from the

definitions given in 29, 36.

39. Additional principles of equality. The following addi-

tional principles can be easily proved for these four kinds of

magnitudes and will be of frequent use

:

a. The half of the sum of two magnitudes is equal to the

sum of their halves.

b. The double of the difference of two magnitudes is equal

to the difference of their doubles.

c. The half of the difference of two magnitudes is equal

to the difference of their halves.

These are left as exercises. The corresponding proofs for "equiva-

lence " in II. 13-17 may be consulted.

40. Theorem 12. The sum of two or more arcs of
equal circles subtends a central angle equal to the

sum of the central angles standing on the separate

arcs. [Use 35.]

40 (a). Cor. i. The difference of two arcs of equal circles

subtends a central angle equal to the difference of the central

angles standing on the separate arcs.

p]x. 1. In equal circles, if one central angle is three times another,

the arc opposite*the first is three times the arc opposite the second.

Ex. 2. Show how to bisect a given arc, or a given sector.

Ex. 3. Show how to trisect a given quadrant, or semicircle, or

circle (I. 129, exs.).

41. Definition. Two equiradial arcs are said to be cottv-

pleniental, supplemental, or conjunct, according as

their sum is equal to a quadrant, a semicircle, or a circle.

41 (a). Cor. 2. In equal circles, according as two central

angles are comj)lemental, supplemental, or conjunct, so are the

opposite arcs complemental, supplemental^ or conjunct.
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Arcs and Chords

42. Definitions. The line joining the extremities of an

arc is called the chord of the arc, and the chord is said

to subtend the arc. Every chord subtends two arcs, one

on each side of it. If the chord is not a diameter, the two
subtended arcs are unequal, and the greater is called the

major arc subtended by the chord, and the less the minor.
When the " arc subtended by a chord " is mentioned without

qualification, the minor arc will be understood, that is, the

one less than a semicircle.

43. Theorem 13. In equal circles, equal arcs have
equal chords.

Let the equal circles ABC, a'b'c' have the arcs AB, and
A'b' equal.

To prove that the

chords AB and A'b'

are equal.

Let 0, o' be the

centers of the circles.

Join OJ, OB,0'A', O'B'.

Since the arcs AB,

a'b' are equal, therefore, whether these are major or minor

arcs, the angles AOB, A'o'b' of the triangles AOB, A'O'B'

are equal (35).

Hence these triangles, having two sides and the included

angle in each respectively equal, have their bases AB and
A'b' also equal.

44. Theorem 14. In equal circles, of two unequal
minor arcs the greater has the greater chord ; and of
two unequal major arcs the greater has the less chord.

Let the equal circles ABC, a'b'c' have the minor arc AB
greater than the minor arc A'B'.
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To prove that the chord ^-B is greater than the chord a'b\

Let 0, O' be the cen-

ters of the circles. C ^^-^..^^

Joino^, 05, 0'J', 0'^'. ^^^ \ / ^
Since the minor arc

AB \^ greater than the

minor arc A^B\ the

central angle AOB is

greater than the cen-

tral angle ^'o'J5' (35).

Hence, in the triangles AOB, A'o'b', the sides OA, OB are

equal to the sides o'A'y o'b', and the angle AOB is greater

than the angle a'o'b' -, therefore the base ^J5 is greater than

the base a'b' (I. 91).

Next, let the major arc ACB be less than the major arc

A'C'B'.

To prove that the chord ^B is greater than the chord ^'B'.

Subtracting the unequal major arcs from the equal circles,

it follows that the minor arc AB is greater than the minor

arc ^'5' (38; 1.31).

Therefore, by the preceding case, the chord AB is greater

than the chord A'b'.

Combined statement,

44 (a). Cor. In equal circles, according as a minor arc of

one circle is greater than, equal to, or less than, a minor arc

of the other, so is the chord of the first arc greater than, equal

to, or less than, the chord of the other arc. [Combine 43, 44.]

Converse statement,

45. Theorem 15. In equal circles, according as one

chord is greater than, equal to, or less than, another

chord, so is the minor arc subtended hy tJve first clwrd

greater than, equal to, or less than, the minor arc

subtended by the second chord. [Rule of Conversion.]
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45 (a). Cor. In equal circles, according as one chord is

greater than, equal to, or less than, another chord, so is the

major arc subtending the Jirst chord less than, equal to, or

greater than, the major arc subtending the second chord.

First combine 43 and the second part of 44 into a triple state-

ment ; and then apply Rule of Conversion.

Chords and Central Perpendiculars

46. Theorem 16. In equal circles, the perpendicu-

lars from the centers to equal chords are equal.

In the equal circles ABC, A'b'c', let OM, O'm' be the per-

pendiculars from the centers to the two equal chords AB,

A'B'.

C C

To prove that the perpendiculars DM and o'm' are equal.

The two right triangles 0AM, O'a'm' have their hy-

potenuses equal, and the sides AM, A'm' equal, being halves

of equal chords (11).

Therefore the third sides OM and o'm' are equal (I. 98).

47. Theorem 17. In equal circles, if perpendicu-

lars are drawn from the centers to two unequal

chords, the perpendicular drawn to the less chord is

the greater.

In the equal circles ABC, A'b'c', let the chord AB of the

first be less than the chord A'b' of the second. Let OM,

o'm' be the perpendiculars from the centers to these chords.

MCM. ELEM. GEOM. 13
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C O'

To prove that DM is greater than O^M^.

The chord AB is less than ^'-B'; and AM, a'm' are halves

of ^5,^V (11).

Therefore ^Af is less than a'm' (I. 32, ax. 14).

Then, in the right triangles GAM, O'a'm' the hypotenuses

are equal, and the side ^^ of the first is less than the side

a'm' of the second.

Now the square on OM is equivalent to the difference of the

squares on OA and AM (II. 61); and the square on O'm' is

equivalent to the difference of the squares on o'A' and A'm'.

Subtracting unequals from equals, it follows that the square

on OM is greater than the square on o'm' (I. 31, ax. 11, and

II. 15 (a)). Hence OM is greater than o'm' (II. 24).

Cotnbined statement,

48. Cor. In equal circles, ifperpendiculars are drawn from

the centers to any two chords, then according as the first chord

is greater than, equal to, or less than, the second chord, so is

the perpendicular to the first less than, equal to, or greater than,

the perpendicular to the second.

Converse statement,

49. Theorem 18. In equal circles, if perpendicu-

lars are draivn from the centers to any two chords,

tlien according as the first perpendicular is less than,

equal to, or greater than, the second, so is the first

chord greater than, equal to, or less than, the second

chord.
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Concerning Order-theorems

50. Order of size of a pair. When two magnitudes A and

B of the same kind are compared as to whether A is greater

than, equal to, or less than, B, the statement of the result is

called the order of size of the pair {A, b).

When the two magnitudes are named or written in any

order, this order will be called ascending when the first is

less than the second, descending when the first is greater

than the second, and indifferent when the two magnitudes

are equal.

To illustrate the convenience of this phraseology, the two

converse propositions in I. 82, 84, each containing a triple

statement, may be enunciated thus

:

In a triangle, the pair of sides {a, h) and the pair

of opposite angles {A, B) are in the same order of size.

This asserts that if either pair is in ascending order, so is

the other; if either pair is in descending order, so is the

other ; and if the order of either pair is indifferent, so is that

of the other. Hence this statement includes six different

statements.

A theorem that compares the order of size of two pairs

of magnitudes is called an order-theorem.

As another illustration, I. 94 and its converse may be

enunciated as an order-theorem ; thus :

If two triangles have two sides of one equal to two
sides of the other, then the pair of included angles

{A, A') and the pair of opposite sides {a, a') are in

the same order of size.

Similarly, the two triple statements in II. 23, 24 may be

abbreviated as follows

:

If two rectangles have equal altitudes, then the

pair of rectangles (H, It') and the pair of bases (b, b')

are in the same order of size.

What are the six statements included in this enunciation ?
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51. Summary of order-theorems in equal circles. All the

order-theorems proved for equal circles may be conveniently

summarized thus

:

In equal circles the following pairs of magnitudes
are all in the same order of size:

(1) Any two central angles {A, A');

(2) The two opposite arcs {a, a')

;

(3) The containing sectors {S, S')

;

(4) The subtending chords {c, c')

;

(6) The central perpendiculars ip', p).

EXERCISES

1. The chords cut off by two equal circles from any line parallel to

the line joining their centers are equal.

2. The chords cut off by two equal circles from any line drawn

through the mid-point of the line joining their centers are equal.

3. If a line is drawn intersecting two concentric circles, the two

parts intercepted between the circles are equal.

4. If two equal chords are drawn in a circle, the two portions

intercepted by a concentric circle are equal.

5. Find the locus of the mid-points of equal chords of a circle.

6. Find the locus of the points of trisection of equal chords.

7. Through a given point inside a circle draw the least chord.

ANGLES IN SEGMENTS

52. Definitions. The figure formed by an arc of a circle

and its chord is called a segment of the circle.

Two segments are said to be conjunct when their arcs

are conjunct (41). Segments of different circles are said

to be similar if their arcs are similar (26).

A segment not semicircular is called a major or a minor
segment, according as its arc is a major or a minor arc.

The angle, not convex, formed by any two chords that

meet on the circle, is called an inscribed angle, and is said

to stand upon the arc which is between the sides of the

angle. In the same case the arc is said to subtend the angle.
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The angle, not convex, formed by two straight lines

drawn from a point in the arc of a segment to the extremi-

ties of its chord is called an angle in the segment.

Angles standing on the Same Arc

53. Theorem 19. An inscribed angle is equal to

half the central angle standing on the same arc.

Let BCA be an inscribed angle stand-

ing on the arc AB. Let BOA be the

central angle standing on the same arc.

To prove the angle ACB equals half

the angle AOB.

First let the center lie on one of

the sides of the angle, say AC.

Since the radii OB and OC are equal, the angles OCB and

0£Care equal (I. 59).

Therefore the angle OCB equals half the sum of the

angles OCB and OBC.

Now the sum of the angles OCB and OBC equals the

exterior angle AOB (I. 128).

Therefore the angle OCB equals half the angle AOB,

Next let lie within the angle ACB.

Draw AO, BO, CO. Prolong GO to meet the circle in Z).

By the previous case the angle ACO is half the angle

AOD, and OCB is half DOB. Hence the whole angle ACB is

half the whole angle AOB standing on the same arc (39, a).
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Lastly let the center lie without the

angle AGB.

Draw AO^ BOy CO. Prolong CO to

meet the circle in D.

By the first case the angle ACD is

half the angle ^0/>,an(i BCD is half BOD,

Therefore the remaining angle BCA is

half the remaining angle BOA (39, c).

Ex. In equal circles, equal inscribed angles stand on equal arcs.

54. Theorem 20. Angles in the same segment are

equal.

Let ACBy AC'b be angles in the same segment of the circle

ABc'C whose center is 0.

To prove that the angles ACB and

AC'B are equal.

Draw the lines OA and OB.

Since the angles ACB and AC'B stand

on the same arc ADBj they are halves

of the same central angle AOB stand-

ing on the arc ADB (53).

Therefore the angles ACB and AC'B are equal (I. 28).

Note. Since all angles in the same segment are equal, any one of

them may be called the angle contained in the segment.

55. Cor. The angle subteiided by the chord of a segment at

a point within the segment is greater than the angle in the seg-

ment ; and the angle subtended at a point witJiout the segment

and on the same side of the chord as the segment, is less than

the angle in the segment. (Use I. 79, and ex. 9, p. 44.)

Ex. 1. In equal circles, two segments that contain equal angles are

equal. (Prove the arcs equal, and superpose.)

Ex. 2. In any two circles, segments that contain equal angles are

similar.
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Species of Inscribed Angle

56. Theorem 21. According as the arc of a segment
is greater than, equal to, or less than, a seinicircle, so

is the angle in the segment less than, equal to, or

greater than, a right angle.

Let ACB be an angle in the segment ABC.

To prove that ACB is less than, equal to, or greater than,

a right angle, according as the arc A CB is greater than, equal

to, or less than, a semicircle.

Take the center 0, and draw OA, OB.

According as the arc ACB is greater than, equal to, or less

than, a semicircle, so is the conjunct arc ADB less than, equal

to, or greater than, a semicircle, and thus the central angle

AOB standing on the arc ABB is less than, equal to, or greater

than, a straight angle (34).

Now the angle ACB is half the central angle AOB standing

on the same arc (53).

Therefore, according as the arc ACB is greater than, equal

to, or less than, a semicircle, the angle ACB is less than,

equal to, or greater than, a right angle.

57. Theorem 22. According as the angle in a seg-

ment is greater than, equal to, or less than, a right

angle, so is the arc of the segment less than, equal to,

or greater than, a semicircle. (Rule of Conversion.)
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Angles in Conjunct Segments

58. Theorem 23. The angles in two conjunct seg-

ments are supplemental.

Let AB be the chord of the two conjunct segments ABC and

ABB. Let ACBy ABB be angles in these segments, respectively.

To prove that the angles ACB and ABB are supplemental.

The angle ACB is half the central angle AOB standing on

the same arc ABB (53).

The angle ABB is half the central angle AOB standing on

the same arc ACB.

Now the two central angles AOB together make up a

perigon. Therefore their halves, ACB and ADB, together

make up a straight angle ; and hence are supplemental.

59. Definition. If all the vertices of a polygon are on a

circle, the polygon is said to be inscribed in the circle, and

the circle to be circumscribed about the polygon.

60. Cor. I . The opposite angles of a quadrangle inscribed

in a circle are supplemental.

61. Cor. 2. An extenor angle of a quadrangle inscribed in

a circle equals the interior opposite angle.

Ex. 1. The angle in a segment is the supplement of half the

central angle subtended by the arc of the segment.

Ex. 2. Similar segments of circles contain equal angles.

Ex. 3. Similar segments having equal chords are equal. (Super-

pose, use 56.)
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62. Theorem 24. If the opposite angles of a quad-
rangle are supplemental, a circle may be circum-
scribed about the quadrangle.

Let the quadrangle ABCD have the angles ABC and ADC
supplemental.

To prove that a circle may be described

through the vertices A, B, C, D.

Describe a circle through the three

points A, B, c (20).

Suppose, if possible, that it does not

pass through the point D. Let it inter-

sect AD in the point D'.

The angle AD'C is supplemental to ABC (58).

Therefore the angles ADC and AD'C are equal (I. 51).

But this equality is impossible (I. 79).

Therefore the supposition is false ; hence the circle pass-

ing through Ay B, c, passes also through D.

EXERCISES

1. If two triangles standing on the same base and at the same side

of it have equal vertical angles, then the circle that circumscribes one

triangle will circumscribe the other. (Prove similarly to 62.)

2. If two chords intersect within a circle, their included angle is

equal to half the sum of the central angles standing on the two arcs

intercepted by the sides of thq angle.

3. If two chords when extended intersect without the circle, their

included angle is equal to half the difference of the central angles

standing on the two arcs intercepted by the sides of the angle.

4. The bisectors of all the angles in a given segment pass through

a fixed point. The bisectors of all the supplemental angles also pass

through a fixed point.

5. The lines joining adjacent extremities of equal chords of a circle

are parallel.

6. The lines joining the extremities of parallel chords of a circle

are equal.

7. In an inscribed quadrangle, the bisector of an exterior angle

and the bisector of the opposite interior angle intersect on the circle.
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8. If a parallelogram is circumscribable, then it is a rectangle.

9. If two chords of a circle bisect each other, then their intersec-

tion is the center.

10. If a triangle is inscribed in a circle, then the sum of the angles

in the three segments exterior to the triangle is equal to a perigon.

11. If a quadrangle is inscribed in a circle, then the sum of the

angles in the four segments exterior to the quadrangle is equal to six

right angles.

12. If an octagon is inscribed in a circle, then the sum of four al-

ternate angles is equal to the sum of the other four.

TANGENTS

Conditions for Tangency

The following fundamental theorem leads up to the defi-

nition of a tangent line given in the succeeding article. This

theorem and the next establish necessary and sufficient con-

ditions for tangency, and lay a foundation for the general

theory, and for the problems connected with it.

63. Theorem 25. Of all the straight lines that can
be drawn through a given point on a circle, tJiere is

one, and one only, that does not meet the circle

again, and this line is perpendicular to the raMus
drawn to the given point.

Let P be a point on the circle whose center is 0. Let

NPQ be the line drawn through P perpendicular to the

radius OP.

To prove that P is the only point in

which the line NPQ meets the circle.

Take any point Q on the perpendicular

NPQ\ and draw OQ.

The line OQ is greater than OP (1. 85).

Therefore Q is without the circle (6).
^ ^ ^

Hence the line NPQ meets the circle in one, and only one,

point.
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Next, let MPR be any line through P not perpendicular to

the radius OP.

To prove that MPR meets the circle

in a second point.

Draw OL perpendicular to MPR.

On the line LR lay off iQ equal to

LP ; and draw Q.

In the triangles OLP, OLQ, the

sides PL, LO are respectively equal

to the sides QL, LO, and the included angles are equal.

Therefore the side OQ equals 'P (I. 64).

Hence Q is a point on the circle (6).

Therefore the line MPR meets the circle in a second point Q.

64. Definition. The straight line which meets the circle

in a given point and does not meet it again is said to

touch or be tangent to the circle at that point. The point

is called the point of contact or point of tangency.

65. Cor. I. Only one tangent can he drawn at a given

'point on a circle.

66. Cor. 2. A tangent is perpendicular to the radius

drawn to the poiyit of contact; and a line passing through the

extremity of a radius, not perpendicular to it, is not a tangent.

67. Cor. 3. The center lies on the perpendicular drawn to

any tangent at the point of contact.

68. Cor. 4. The perpendicular from the center to any

tangent meets it in the point of contact.

69. Problem 2. To draw a tangent to a given circle

at a given point on the circle. [Use 63.]

70. Cor. To a given circle, draw a tangent that shall be

parallel to a given line.

Let the perpendicular from the center to the given line meet the

circle in P and Q. The tangents drawn at P and Q are each parallel

to the given line. Prove.
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71. Theorem 26. A given line- cuts, touches, or does

not meet, a given circle, according as the perpendicu-

lar to the line from the center is less than, equal to,

or greater than, the radius.

Let be the center of the given circle; and let LN be

the given line. Let OM be the perpendicular from the center

to the given line.

L ^ ^L

First, let OM be less than the radius.

To prove that the line LMN cuts the circle.

On the line LMN lay off Af/>, MN^ each greater than the

radius ; and draw Oi, ON.

Since OL is greater than LM (1. 85) OL is greater than the

radius and the point L is without the circle (6). Similarly,

the point N is without the circle. But since OM is less than

the radius, the point M is within the circle (6). Thus LMN is

a secant.

Next, let the perpendicular OM be equal to the radius.

Then the line LMN touches the circle at M (63).

Finally, let OM be greater than the radius.

To prove that the line LMN does not meet the circle.

Let L be any point on the line LMN except the point M.

Since the oblique line OL is greater than OM, it is greater

than the radius, and the point L is without the cirde.

Again, since OM is greater than the radius, the point M is

without the circle. Thus LMN is entirely without the circle.

72. Cor. According as a line cuts, touches, or does not meet,

a circle, so is the peiyendicular to the line from the center less

than, equal to, or greater than, the radius.
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Tangents from External Point

73. Theorem 27. Through a given external point,

two, and only two, lines pass that touch a given circle.

Let LMN be the circle, P the given external point.

First, to prove that

two tangents to the ^^^^
,,

,'•''' ~"^^^

circle pass through '~~"^^~%''^ A^'^-^ \
the point P.

/
'^^"""^/

^-Ar"^""""""--^
^^

Take the center 0, r/ V/ \ ^~""^^^^^:>>«^\

and draw OP. On OP \ V\\ / ^-z^:^^^^^^^'i

as diameter describe \ ^^^--''/QiS^^^^'^'^
'

the circle OMPN. ,,-.-^^*<ClI,J<r*^

Since is within ^^^^""^^ ^^-^^^ ^^^-^^

and P is without the

circle LMNj hence part of the circle OMPN is within and

part is without the circle LMN \ therefore the two circles

cut in at least two points. Moreover, they do not cut in

more than two points (22). Let M and N be the two points

;

draw PM, PN, OM.

The angle OMP is a right angle {^Q),

Therefore PM is tangent at the point M (63).

Similarly, PN is tangent at N.

Therefore two tangents pass through the given point P.

Next, to prove that only two tangents pass through P.

Draw any other line PR meeting the circle LMN in at

least one point.

If this point is within the circle OMPN as at Q, the angle

OQP is greater than the angle ONP, and hence greater than

a right angle (b^). Therefore PQR is not tangent at Q (63).

Again, if any line PR^ meets the circle LMN in a point

outside the circle OMPN, as at O', the angle OQ^P is less

than OMP, and hence less than a right angle {^^)' There-

fore PQ^R^ is not a tangent at Q' (63).

Hence the lines PM, PN are the only tangents through P.



196 PLANE GEOMETRY— BOOK III

74. Problem 3. To draw a tangent to a given cir-

cle from a given external point.

Use the construction and proof given in 73. Two solutions.

75. Cor. The two tangents to a circle from an external

X)oint are equal, and make equal angles with the line joining

that point to the center.

Angle of Chord and Tangent

76. Theorem 28. If through any point on a circle

a chord and a tangent are drawn, each of the adjo/-

cent included angles is equal to tlie angle in the

alternate segment of the circle cut off by the chord.

Through the point P on the circle PQR, let the chord PQ
and the tangent MPN be drawn.

First, to prove that the acute angle y^
NPQ is equal to the angle in the alter- /
nate segment PRQ. I

Draw the diameter PR ; and join RQ. I

Since Pff is a diameter and PN is \
a tangent, the angle NPR is a right ^^ \/':>^

angle (66).

Therefore the angle NPQ is the complement of QPR,

Now, since PQR is a semicircle, the angle PQi? is a right

angle {hQ>).

Therefore the angle PRQ is the complement of QPR
(I. 129).

Therefore the angles NPQ and PRQ are equal, being com-

plements of the same angle (I. 50).

Hence the angle NPQ is equal to any angle in the seg-

ment PRQ (54).

Next, to prove that the obtuse angle MPQ is equal to any

angle in the alternate segment PSQ.

The angle MPQ is equal to the supplement of NPQy and

the angle PSQ is equal to the supplement of PRQ (58).
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Hence the angles MPQ, FSQ, being equal to supplements

of equal angles, are equal (I. 51).

Applications of Theorem 28

77. Problem 4. On a given line, to describe a seg-

ment of a circle containing an angle equal to a
given angle.

Let AB be the given line, and C the given angle.

To describe on AB a segment

of a circle containing an angle

equal to C.

Draw AD, making the angle

BAD equal to the given angle

C (I. 77).

Draw AO perpendicular to

AD
; and draw MO bisecting

AB at right angles. Let these 'n^^)

lines meet in ; and draw OB.

The lines OA and OB are equal (I. 64).

Therefore the circle described with as center, and with

radius OA, passes through B. Let ABN be this circle.

The segment ABN, alternate to the angle BAD, is the

required segment.

Since OAD is a right angle, AD touches the circle (63).

Therefore the angle BAD is equal to the angle in the

alternate segment ABN (76).

Hence the angle in the segment ABN is equal to C.

78i Ex. Consider the case in which the angle O is a right angle.

79. Cor. If the base and vertical angle of a triangle are

given, the locus of its vertex consists of the arcs of the two

segments described on the base, containing an angle equal to

the given vertical angle.

Show that a triangle on the given base satisfies the requirements

if its vertex is on one of these arcs, and not otherwise.
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80. Problem 5. From a given circle, to cut off a
segment containing an angle equal to a given angle.

Let ABC be the given circle, and D the given angle.

To cut off from the cir-

cle ABC a segment con- Ay

taining an angle equal to

D.

Through any point B
on the circle draw the

tangent EBF (69). Draw
the chord BC making the

angle FBC equal to the given angle D (I. 77).

The segment BAG, alternate to the angle FBC, is the

segment required.

Since BF is a tangent, the angle FBC is equal to the angle

in the alternate segment bIc (76).

Therefore the angle in the segment BAC is equal to the

given angle D.

Discussion. How many solutions are there to this

problem ? How many solutions will there be if the state-

ment of the problem is modified in the following manner:

Through a given point on a circle, to draw a line that shall

cut off a segment containing an angle equal to a given angle.

EXERCISES

1. All chords of a circle that touch a concentric circle are equal.

2. Through a given point draw a line so that the chord intercepted

by a given circle shall be equal to a given line. [Use ex. 1 and

art. 74. State the restrictions on the data when the point is within

the circle ; also when the point is without or on the circle. ]

3. The part of any tangent intercepted by two parallel tangents

subtends a right angle at the center of the circle.

4. If through the center of a circle two perpendicular lines are

drawn to meet any tangent, then the tangents drawn from the two

points of intersection are parallel.



TWO CIRCLES 199

5. To draw a tangent to a given circle making a given angle with

a given line.

6. Any chord of a circle bisects the angle between the diameter

through one extremity and the perpendicular from it on the tangent

at the other.

7. Draw a circle through a given point to touch a given line at a

given point. [Use 3 and 67.]

8. If a quadrangle is.circumscribed about a circle, the sum of one

pair of opposite sides is equal to the sum of the other pair.

9. If a convex quadrangle is such that the sum of one pair of oppo-

site sides is equal to the sum of the other pair, then a circle may be

inscribed in it.

TWO CIRCLES

81. Definitions. Two circles are said to intersect at a

point where they meet if they cross each other at this

common point.

Two circles are said to touch at a point where they meet

if they do not cross each other at this common point ; and

this point is called the point of contact.

82. The line passing through the centers of two circles

is called their central line.

Points Common to Two Circles

Common point not on central line,

83. Theorem 29. If two circles have one common
-point, not on their central line, then tlxey have a

second common point; and the circles intersect at

each of these two points.

Let two circles whose centers are and O' have the

common point P, not on their central line.

MCM. ELEM, GEOM. 14
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First, to prove that they have a second common point.

Draw PN perpendicular to 00', and prolong it to Q making

NQ equal to PJ^. Draw OP, OQ, O'P, o'Q.

By equality of triangles it follows that OP equals OQ, and

O'P equals O'Q.

Therefore Q is a point on each of the circles (6).

Moreover, there is no third common point (22).

Next, to prove that the circles intersect at each of the

points P, Q.

Let R, S be any two points on the circle whose center is

O', situated at opposite sides of the point P. Draw OR, O'R,

OS, O'S.

In the triangles 00'R and OO'P, the sides 00' and O'R are

respectively equal to the sides 00' and O'P, and the included

angle OO'R is greater than OO'P.

Therefore the third side 07? is greater than the third side

OP (I. 91).

Therefore the point R is without the circle whose center

is (6).

In a similar way it is proved that OS is less than OP.

Therefore the point S is within the circle whose center

is O.

Now R and S are aiiy two points on the circle whose

center is o', situated at opposite sides of P.

Hence the two circles cross each other at P.

Similarly it can be proved that they cross at Q.
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Common point on central line,

84. Theorem 30. If two circles have one common
point, situated on their central line, then they have
no other common point; and the circles touch at this

point.

Let 0, 0' be the centers of the two circles, and P the

common point on the central line 00'.

First, to prove that there is ^li

no other common point on the ^,'y''

central line. q 'o^' P
Suppose, if possible, that Q is

another point on the line 00', common to the two circles.

Then the segment PQ is a diameter of each circle. Hence
the middle point of PQ is the center of each circle; which

is impossible since the centers 0, O' do not coincide.

Therefore there is no second common point on the central

line.

Next, to prove that there is no second common point not

on the central line.

Suppose, if possible, that R is another common point not

on the central line. Then there is a third common point

22', not on the central line (83).

Since there are three common points, the two circles coin-

cide throughout (21).

This is contrary to the hypothesis ; therefore there is no

common point not on the central line.

Hence P is the only common point.

Again, to prove that the circles touch at P.

Let R be any other point on the circle whose center is 0\

Draw OR and O'iji.

Since O'R equals O'P, therefore the sum of O'R and 00' is

equal to OP.

But OR is less than the sum of oo' and O'R (L 87).
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Therefore OB is less than OP.

Hence the point R is within the circle whose center is

and whose radius is OP.

Since R is any point (other than P) on the circle whose

center is O', it follows that the circles do not cross at their

common point P. Therefore they touch at this point

(81).

JPoint of contact,

85. Theorem 31. If two circles touch, then their

point of contact is on the central line; and they have
no other common point.

Let there be two circles touching each other at a point.

To prove that the point of contact is on the central line

;

and that the circles have no other common point.

Suppose, if possible, that the point of contact is not on

the central line.

Then, since the circles have a common point not on the

central line, they intersect at this point (83).

This is contrary to the hypothesis ; hence the supposition

made is false. Therefore the point of contact is on the

central line.

Further, since the two circles have a common point on

their central line, it follows that they have no other common
point (84).

86. Cor. I. If two circles touch each other externallyy the

line joining their centers is equal to the sum of their radii.
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87. Cor. 2. If two circles touch, one being internal to the

other, the line joining their centers is equal to the difference of

their radii.

88. Cor. 3. If two circles do not meet, and each is tvholly

outside the other, the line joining their centers is greater than

the sum of their radii.

89. Cor. 4. If two circles do not meet, and one is wholly

inside the other, the line joining their centers is less than the

difference of their radii.

90. Cor. 5. If two circles intersect, the line joining their

centers is less than the sum of their radii, and greater than the

differenxie of their radii.

91. Note. The relation of these live cases to each other is well

shown by taking first the case in which each circle lies wholly outside

the other, and then moving one center toward the other, as succes-

sively shown in the figures.

Ex. 1. In the five preceding corollaries, show that the hypotheses

are exhaustive, and that the conclusions are mutually exclusive ; then

apply the rule of conversion (I. 104) to prove the converse of each

corollary. JS.g.^

If the line joining the centers of two circles is less than the differ-

ence of the radii, then one circle is wholly within the other.

Ex. 2. Find a point such that its joins to two given points may be

equal respectively to two given lines. (Intersection of loci.)

Show when there are two solutions, when only one solution, and

when none. Compare I. 132.

Ex. 3. If two circles touch, they have a common tangent at the

point of contact.
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Tangents Common to Two Circles

92. Problem 6. To draw a common tangent to two

given circles.

Let 0, 0' be the centers of the given circles QRS, Q'b's',

to which it is required to draw a common tangent.

First, let the radii be

unequal; and let the cir-

cle QRS have the greater

radius.

Draw any radii OS and

O's'. From the greater

OS lay off sr equal to the

less o's'. With O as center and OT as radius describe

a circle TPN. From the point O' draw a tangent o'P to

the latter circle. Join OP and prolong it to meet the circle

QRS in Q. Draw O'Q' parallel to OQ, and join QQ'.

The line QQ' touches each circle.

[The proof is left to the student ; also the construction of a second

common tangent by nhe same method. How is the method to be

modified when the radii are equal ? Give construction and proof.]

If the circles have no common point and are external to

each other, two other common tangents can be drawn as

follows

:

Let OS be any radius of

either circle. Prolong it so

that ST equals the radius

of the other circle. With

O as center and OT as

radius, draw the circle

TPN. From the point O'

draw O'N tangent to TPN.

Draw ON cutting the circle QRS in R. Draw the radius O'r'

parallel to ORj and join RR'. Then RR' touches each circle.

[The proof is left to the student ; also the construction of a second

common tangent.]

P\
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Discussion. By successively moving O' toward O, as in 91, show
when there are four common tangents, when only three, when only

two, when only one, when none.

Definition. A line touching two circles is said to be a

direct or a transverse common tangent according as the two
radii drawn to the points of contact are at the same side or

at opposite sides of the central line.

In the different cases just mentioned, how many of the common
tangents are direct, and how many transverse ?

EXERCISES

1. Draw a tangent to one given circle so that the part intercepted

by another given circle shall be equal to a given line.

2. Draw a line so that the chords intercepted by two given circles

shall be respectively equal to two given lines.

3. If two circles touch, and through the point of contact two lines

are drawn cutting the circles again, then the chords joining the other

intersections are parallel.

4. If two circles touch, and through the point of contact a line is

drawn to cut the circles again, then the tangents at the other intersec-

tions are parallel ; and the line divides the two circles into arcs that

are respectively similar,

5. If two circles touch, and if two parallel diameters are drawn,

then an extremity of each diameter and the point of contact are in the

same straight line.

6. Describe a circle through a given point and touching a given

circle at a given point. (Determine its center by 85 and ex. 5.)

7. Describe a circle to touch a given line, and touching a given

circle at a given point. (Draw a diameter perpendicular to the given

line, and use ex. 5.)

8. Describe a circle to touch a given circle, and touching a given

line at a given point.

9. The two circles described witU two sides of a triangle as diam-

eters intersect on the third side.

10. If two equal circles do not intersect, show how to draw a line

so that its extremities and points of trisection may be on the two

circles. (When are there two solutions ; only one solution ; no

solution ?)
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CONCURRENT CHORDS

Rectangle of segments of chord,

93. Theorem 32. // a chord of a circle is divided
into two segments hy a point taken either in the

chord or in its prolongation, the rectangle of the two
segments is equivalent to the difference of the squares

on the radius and on the linejoining the given point

to the center of the circle.

Let the chord BC of the circle whose center is be divided

at the point A into the two segments AB and AC.

To prove that the

rectangle of AB and

AC is equivalent to

the difference of the

squares on OB and

OA.

Draw the radius

OC.

Since the triangle OBC is isosceles, and A is any point in

the base or its prolongation, therefore the rectangle of the

segments AB and AC is equivalent to the difference of the

squares on OB and OA (II. 70).

[Consider the special case in which BC passes through 0.]

Several concurrent chords.

94(a). Cor. i. If several chords pass through the same
point, the rectangle of the segments of any one chord is equiva-

lent to the rectangle of the segments of any other.

Converse.

94 (6). Cor. 2. If two given lines cut each other, either

internally or externally, so that the rectangle of the segments

of one is equivalent to the rectangle of the segments of the other,

then the four extremities of the lines lie on the same circle.
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Chord and tangent,

95. Theorem 33. If a chord of a circle is prolonged
to any point, then the rectangle of the segments of
the chord is equivalent to the square on the tangent
drawn from that point to the circle.

Let the tangent CP and the chord AB meet in P.

To prove that the rectangle

of AP and BP is equivalent to

the square on CP.

Take the center 0, and draw

OA, OB, OC, OP.

The rectangle of AP and BP
is equivalent to the difference

of the squares on OP and OB

(93).

But this difference is equivalent to the difference of the

squares on OP and OC, which is equivalent to the square

on CP (II. 61). Therefore the rectangle of AP and BP is

equivalent to the square on CP.

Ex. Show that this may be considered a special case of 94 (a).

Converse,

96. Cor. I. If the rectangle contained by the segments of a

chord passing through an external point is equivalent to the

square on the line joining that point to a point on the circle,

then this line touches the circle.

Ex. Draw a circle through two given points to touch a given line.

97. Cor. 2. If several circles pass through the same two

points, then the tangents drawn to them Jrom any point on the

prolongation of their common chord are all equal.

Ex. If two circles intersect, and if a tangent is drawn to each

from a point not on the prolongation of their common chord, then

these two tangents are not equal. [Draw a secant through the point

and one of the intersections. Use 95.]
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EXERCISES

1. If two circles intersect, then the prolongation of their common
chord bisects their common tangent.

2. If three circles intersect, then their three chords of intersection

meet in a point. [Prove indirectly, using 94.]

3. If two circles touch, and if a third circle intersects them, then

the tangent at the point of contact and the two chords of intersection

are all concurrent.

4. Draw a circle through two given points to touch a given circle.

[Determine the point of contact by means of ex. 3. Two solutions

in general. Examine the case in which one of the given points is on

the given circle. When is there no solution ?]

INSCRIPTION AND CIRCUMSCRIPTION

98. Definitions. If all the sides of a polygon touch a

circle lying within the polygon, then the circle is said to be

inscribed in the polygon, and the polygon to be circum-

scribed about the circle.

If a circle passes through all the vertices of a polygon

lying within the circle, then the polygon is said to be

inscribed in the circle, and the circle to be circinnscribed

about the polygon. A circle that touches one side of a tri-

angle and the prolongations of the other two is said to be

escribed to the triangle.

This section will consist chiefly of problems relating to

the inscription and circumscription of certain regular poly-

gons to a circle, and of a circle to any regular polygon. In

the particular case of the triangle, however, we shall not be

restricted to the equilateral triangle.

Circles and Triangles

Circumscribed circle,

99. Problem 7. To circumscribe a circle about a
given triangle. [Use the method and proof of 20.]

100. Cor. Every triangle has oney and only one, circumr

scribed circle.
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Inscribed circle,

101. Problem 8.

triangle.

To inscribe a circle in a given

Let ABC be the triangle in which it is required to inscribe

a circle.

Bisect any two of the internal

angles, say B and C. Let the bisectors

BO and CO meet in 0. Draw OM, ON,

OP, perpendicidar respectively to the

sides BC, CA, AB.

The perpendiculars OM, ON, and OP

are all equal (I. 258).

Therefore the circle described with as center and OM as

radius, passes through the points M, N, P.

The circle MNP, so described, touches the sides of the

triangle at M, N, P, because the angles 0MB, ONC, and OPA-

are right angles by construction (63).

102. Cor. I. Every triangle has one, and only one, inscribed

circle.

Ex. The inscribed and circumscribed circles of an equilateral

triangle are concentric.

Escribed circles,

103. Cor. 2. To escribe a cir-

cle to a given triangle.

[Construct and prove as in 101.]

104. Cor. 3. There is one, and

only one, circle touching a given

side of any triangle and the pro-

longations of the other two sides;

and there are three, and only

three, escribed circles to any given

triangle.
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Definitions. The centers of the circum scribed, the inscribed,

and the three escribed circles are called respectively the

circum-center, the in-center, and the three ex-centers

of the triangle.

Ex. 1. The join of two ex-centers passes through a vertex of the

triangle ; the join of the third ex-center to the in-center passes through

the same vertex ; and these lines are perpendicular to each other.

Inscribed triangle,

105. Problem 9. In a given circle, to inscribe a
triangle equiangular to a given triangle, and having
one vertex at a given point on the circle.

Let ABC be the given circle, A^B^Cf the given triangle, and

A the given point.

To inscribe in ABC a triangle equiangular to A'B'Cf, and

having one vertex at A.

At the point A on the circle draw the tangent LAM.

Draw the chord AB making the angle LAB equal to C';

draw the chord AC making the angle MAC equal to B' ; and

join BC.

Then ABC is the required triangle.

The angle LAB equals the angle ACB in the alternate

segment of the circle (76). Therefore the angle C equals C'.

Similarly, the angle B equals B'. Hence the remaining

angle BAC equals the remaining angle A' (I. 130).

Therefore the inscribed triangle ABC is equiangular to

the triangle A'b'c'.
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Discussion. If the angle LAB had been made equal to B', and

MAC to C, another triangle answering the requirements would have

been obtained. In both these solutions A corresponds to A'. Two
more solutions can be obtained in which A corresponds to B', and two

in which A corresponds to C
Show that the number of solutions would be reduced to two if we

should insert in the statement of the problem the additional condi-

tion: "the vertex to which the given point is to correspond being

previously assigned." In what case would these two solutions reduce

to one 9

Ex. Prove that all triangles inscribed in the same circle and equi-

angular to each other, are equal.

Circumscribed triangle,

106. Problem 10. About a given circle to circum-
scribe a triangle equiangular to a given triangle.

[Use 72 ; and I. 126.]

Ex. 1. About a given circle to circumscribe a triangle equiangu-

lar to a given triangle, one of the three points of contact being

[Rotate the given triangle so that one of the sides shall be parallel

to the tangent at the given point (I. 202), and then use 72, Three

choices of correspondence ; and two ways of rotating. Discuss as

in 105.]

Ex. 2. Prove that all triangles circumscribed about the same circle

and equiangular to each other, are equal.

Principles of Inscription and Circumscription

The two following theorems establish the general prin-

ciples that will be used in the problems of inscribing and

circumscribing regular polygons to given circles. These

theorems presuppose the division of the circle into a num-

ber of equal arcs. This division cannot, however, be

actually performed by the constructions of elementary

geometry, except in the case of certain special numbers,

the chief of which are shown in the succeeding group of

problems.
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Principle of inscription,

107. Theorem 34. If a circle is divided into a
number of equal arcs, the chords of these arcs form
a regular inscribed polygon.

Let the circle ABC be divided into a

number of equal arcs at the points A,

B, c, '", z, and let the chords of these

arcs be AB, BC, CDy •••, ZA.

To prove that the inscribed polygon

ABCD-"Z is regular.

Since the arcs AB^ BC, ••• are all

equal, their chords are all equal (43). Therefore the poly-

gon is equilateral.

Again, the angles of the polygon are equal since they are

angles in equal segments of the circle (54). Therefore the

polygon is equiangular.

Hence, by definition, the polygon is regular.

108. Definitions. If the extremities of a broken line

coincide with the extremities of an arc, and if all its ver-

tices are on the arc, then the broken line is said to be

inscribed in the arc.

A regular broken line is one whose sides are equal, and

whose successive angles are equal, the equal angles all lying

at one side of the line.

109. Cor. If an arc is divided into a number of equal arcs,

then their chords fomi a regular inscribed broken line.

Ex. 1. Any equilateral polygon inscribed in a circle is also

equiangular.

Ex. 2. If an equilateral polygon is not equiangular, it is not cir-

cumscribable.

Ex. 3. In any equiangular polygon inscribed in a circle, each side

is equal to the next but one ; and hence an inscribed equiangular poly-

gon of an odd number of sides is equilateral.
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JPrinciple of circumscription,

110. Theorem 35. The tangents at the vertices of
an inscribed regular polygon form a circumscribed

regular polygon.

Let A, B, C, D, ••• be the vertices of an inscribed regular

polygon ; and let tangents MAN, NBP, PCQ, QBE, • • • be drawn

at these vertices.

To prove that the circumscribed

polygon so formed is regular.

Find the center O, and draw OA,

OB, oc, on, •...

Conceive the figure turned about O

until OA coincides with the trace of

OB, then the arc AB coincides with

its equal arc BC, and the line OB with the trace of OC.

Similarly OC coincides with the trace of OD, and so on.

Therefore the tangents at A, B, C, •••, being perpendicular

to the radii, coincide respectively with the traces of the

tangents at B, C, D, ••• ; and hence the polygon coincides

with its trace.

Therefore the angles are all equal, and the sides are all

equal ; hence the circumscribed polygon is regular.

Ex. If a circumscribed polygon is equiangular, then it is regular.

[Prove the central angles AOB and BOC equal, etc.]

Certain Regular Polygons

111. Division of the Circle. By the two preceding theorems

the inscription and circumscription of regular polygons have

been reduced to the division of the circle into a given num-

ber of equal parts. The next four problems with their corol-

laries show how to perform the actual division when the

given number belongs to one of the four following series

:

2, 4, 8, 16, 32, ...

;

5, 10, 20, 40, 80, ...

;

3, 6, 12, 24, 48, ...

;

15, 30, 60, 120, 240, ...
5
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in each of which the numbers after the first are obtained by
successive doubling. These numbers will for convenience

be called Euclid's numbers, as the problems in question

were first systematically treated in Euclid's " Elements of

Geometry."

The division of a circle into two equal parts is easily per-

formed by drawing a diameter. As this division does not

give an inscribed polygon, we begin with the second number
of the first series.

Four, eight, sixteen • • • sides,

112. Problem 11. To inscribe a square in a given
circle.

[Draw two diameters at right angles, and join their extremities.]

113. Cor. I. To inscribe a regular octagon in a given

circle.

Outline. Draw two diameters at right angles ; bisect the four arcs
;

draw the eight chords. Prove by 107.

114. Cor. 2. To inscribe regular polygons of 16, 32 • • • sides.

115. Cor. 3. To circumscribe regular polygons of 4, 8, 16,

32, ... sides (110).

116. Cor. 4. In any given arc to inscribe a regular broken

line of 2, 4, 8, 16, ••• sides.

117. Cor. 5. TJte inscribed square is equivalent to double

the square on the radius, and to half the circumscribed square.

Three, six, twelve • • • sides,

118. Problem 12. To inscribe an equilateral tri-

angle in a given circle.

Let ABC be the circle in which an equilateral triangle^ is

to be inscribed.
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Find the center 0, and take any point P
on the circle. With center P and radius

PO, describe an arc cutting the circle at

B and C. Draw PO to meet the circle

again in A
; and draw AB, BC, CA.

The inscribed triangle ABC is equi-

lateral.

The triangles BOP, COP are each equilateral by construc-

tion; therefore the angles BOP, COP are each equal to one

third of a straight angle (I. 129).

Therefore their supplements BOA, COA are each equal to

two thirds of a straight angle; hence the central angles

BOA, COA, and BOC are all equal ; and are therefore sub-

tended by equal arcs and equal chords.

Therefore the inscribed triangle ABC is equilateral.

Note. This problem could be solved as a special case of problem 9,

but the construction would not be so simple as that just given.

119. Cor. I. To inscribe a regular hexagon.

Outline. Bisect the arcs AB, BC, CA, and draw the six chords.

Ex. Prove that the side of a regular inscribed hexagon is equal to

the radius of the circle. Hence give another method of inscribing a

regular hexagon.

120. Cor. 2. To inscribe regular polygons of 12, 24, 48, •••

sides.

121. Cor. 3. To circumscribe regular polygons of 3, 6, 12,

24, ... sides {110).

Five, ten, twenty, • • • sides.

122. Problem 13. In a given circle, to inscribe a
regular decagon.

Let ABC be the given circle in which a regular decagon is

to be inscribed.

MCM. ELEM. GEOM. 15
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Take the center 0, and draw
any radius OA. Divide OA at

P, so that the rectangle of OA
and AP is equivalent to the

square on OP (II. 89).

With center A and radius

equal to OP, describe an arc

cutting the circle in B\ and
join AB.

Then AB is the side of a

regular decagon inscribed in ABC.

To prove this, draw OB and PB ; and draw a circle through

the points 0, P, B.

The square on AB is equivalent to the rectangle of OA

and APy by construction.

Therefore the line AB i^ tangent to the circle OPB (96).

Hence the angle ABP is equal to the angle POB in the

alternate segment (76).

Therefore the whole angle ABO is equal to the sum of the

angles POB and PBO, and therefore equal to the exterior

angle APB (I. 128).

Now, the angle ABO is equal to the angle BAO (I. 59).

Therefore the angle APB equals the angle BAO.

Hence the opposite sides AB and PB are equal.

Also, AB equals OP by construction; therefore OP equals

PB'y and hence the opposite angles POB and PBO are

equal.

Therefore the angle ABO, which has been proved equal to

the sum of POB and PBO, is double the angle POB.

Hence the isosceles triangle OAB has each of the angles

at the base equal to double the vertical angle AOB.

Therefore the angle AOB \^ equal to one fifth of the sura

of the three angles of the triangle OAB, that is, equal to

one fifth of a straight angle, and hence equal to one tenth of

a perigon. Thus the arc ^jB is a tenth part of the circle (31).
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Hence the circle can be divided into ten arcs equal to AB
;

and the chords of these arcs will form a regular inscribed

decagon (107).

123. Cor. I. To inscribe a regular pentagon in a given

circle. [Join alternate vertices of an inscribed regular

decagon (107).]

124. Cor. 2. To inscribe regular polygons of 20, 40, •••

sides.

125. Cor. 3. To circumscribe regular polygons of 5, 10,

20, ••• sides.

126. Cor. 4. Show that the central angle subtended by the

side of an inscribed regidar decagon is two fifths of a right

angle. Show how to divide a right angle into five equal parts.

127. Cor. 5. On a given line, to construct a regular

decagon.

[In any circle inscribe a regular decagon. At the extremities of

the given line, make angles equal to the angle of the regular decagon,

and so on.]

Ex. 1. The triangle OAB is an isosceles triangle having each angle

at the base equal to double the vertical angle.

Ex. 2. The triangle FOB is an isosceles triangle having each angle

at the base equal to one third of the vertical angle.

Ex. 3. If C is the second point of intersection of the circles OPB
and ABC, then BC equals AB. li D is the next vertex, and if the

circle OPB cuts the radius OD again in Q, then OPBCQ is a regular

pentagon.

Ex. 4. Prove that BP prolonged passes through a vertex I of the

decagon ; and that the difference of jB/and BA is equal to the radius.

Ex. 5. Show that OCP is an isosceles triangle, and that the rec-

tangle of OA and PA is equivalent to the difference of the squares on

AC and OC ; that is to say, the difference of the squares on the sides

of the inscribed pentagon and decagon is equivalent to the square on

the radius.

Ex. 6. If a regular pentagon and a regular decagon are inscribed in

the same circle, then the apothem of the pentagon equals half the sum

of "a side of the decagon and a radius of the circle. [BK bisects AP

;

use I. 72.]
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Fifteen, thirty, sixty, . . . sides,

128. Problem 14. To inscribe a regular qulndeca-
gon in a given circle.

Let ABC he the circle in which it is required to inscribe

a regular polygon of fifteen sides.

Find the center 0, and draw a radius OA. Divide OA at

the point JV, so that the rectangle of

OA and ON is equivalent to the square /^^^ ^^\
on AN (II. 89). / \
With A as center, and AN and AO sls I q \

radii, describe arcs cutting the circle in I A\ I

B and C; and draw BC. \ j \ \
,
/

Then the chord BC is a side of a ^v.^x^r^;^^^'^

regular inscribed quindecagon. '^

The chord ^B is a side of a regular inscribed decagon

(122); and the chord ^C is a side of a regular inscribed

hexagon (119).

Therefore, if the whole circle were divided into thirty

equal parts, the arc AB would contain three of them, and

the arc AC would contain five. Therefore, the arc BC would

contain two of these parts, and is hence one fifteenth of the

whole circle. Thus the circle is divisible into fifteen arcs, each

equal to the arc BC] therefore the polygon formed by the

chords of these arcs is a regular quindecagon (107). Hence

the chord 5(7 is a side of a regular inscribed quindecagon.

129. Cor. To inscribe regular polygons of 30, 60 sides;

and to circurmcnhe regular polygons of 15, 30, 60 sides.

Ex. 1. To divide a right angle into fifteen equal parts.

Ex. 2. To divide the angle of an equilateral triangle into five equal

parts.

Ex. 3. To trisect the angle of a regular pentagon.

Note on the numbers of Gauss. The four preceding problems

with their corollaries have shown how to divide the circle into n equal

parts, if n is any one of Euclid's numbers (111). From the time of
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Euclid no essential advance was made in the problem of dividing the

circle until the year 1790, when Gauss* proved the possibility of divid-

ing the circle into n equal parts, if n is any prime number that exceeds

a power of 2 by unity. The first four numbers that satisfy this con-

dition are 8, 5, 17, 257. Gauss further proved that the division can

be performed if n is the product of any two or more different numbers
of this series ; the first four numbers that satisfy this condition are 15,

51, 85, 255. Gauss gave the complete analysis for the case of 17

parts, and proved that the problem can be reduced to simpler ones

that depend ultimately on the postulates of construction ; but the

method of proof is beyond the range of elementary geometry.

Inscribed and Circumscribed Circles

The following theorem and its corollaries furnish the

basis for the two succeeding problems, which relate to the

construction of the inscribed and circumscribed circles of

any given regular polygon.

Concurrence of angle-bisectors,

130. Theorem 36. The lines that bisect the angles

of any regular polygon all meet in a point.

Outline. Let A, B, C, D be consecutive angles of any

regular polygon. Bisect the angles A and B\ and prove

that the bisectors meet at that side of the line, AB, at which

the polygon itself is (I. 124). Let the bisectors meet at the

point 0, and draw 00. Prove that 00 bisects the angle 0.

(This is done by proving that the angle OOB equals OAB,
which equals half of the angle A, and hence equals half O.)

Prove similarly that OD bisects the angle D ;
and so on.

131. Cor. I. In any regular polygon, the segments of the

angle-bisedors intercepted between the vertices and the point of

concurrence are all equal.

132. Cor. 2. Inany regular polygon, the perpendicularsfrom

the intersection of the angle-bisectors to the sides are all equal.

* " Disquisitiones Arithraeticae," published in 1801.
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Circumscribed circle,

133. Problem 15. To circumscribe a circle about a
given regular polygon. (Use 130, 131.)

Inscribed circle,

134. Problem 16. To inscribe a circle in a given
regular polygon. (Use 130, 132.)

135. Cor. Tlie inscribed and circumscribed circles of a

regular polygon are concentric.

Ex. 1. If two regular polygons are equal, then their inscribed

circles are equal, and so are their circumscribed circles.

Ex. 2. If two regular polygons of the same number of sides are

inscribed in equal circles, then the two polygons are equal.

136. Definitions. The common center of the inscribed

and circumscribed circles of a regular polygon is called* the

center of the regular polygon. The angle at the center

subtended by any side of the polygon is called the central

angle of the regular polygon.

In a regular polygon, a line joining the center to any

vertex is called a radius, and a perpendicular from the

center to any of the sides is called an apothem. Thus a

radius of a regular polygon is a radius of its circumscribed

circle, and an apothem is a radius of its inscribed circle.

Ex. 1. If any two regular polygons have the same number of sides,

then their central angles are equal.

Ex. 2. If two regular polygons have the same number of sides, and

if the radius of one is greater than the radius of the other, then the

apothem of the first is greater than the apothem of tlie second, the side

of the first is greater than the side of the second, and the surface of

the first is greater than the surface of the second.

[Place the polygons with their centers in coincidence, and so that

each radius of the first may fall on a radius of the second ; then prove

that each side of the first is parallel to a side of the second ; etc.]

Ex. 3. If two regular polygons have the same number of sides, then

the following pairs of magnitudes are in the same order of size :

The bases (/>, &'); the radii (r, r'); the apothems (a, a'); the sur-

faces (s, s'); the perimeters (p, ;>').
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Equivalent rectangle,

137. Theorem 37. A polygon circumscribed about a
circle is equivalent to the rectangle contained by the

perimeter and half the radius of the circle.

Ex. A regular polygon is equivalent to the rectangle contained by

the perimeter and half the apothem.

MUTUALLY EQUILATERAL POLYGONS

138. Theorem 38. If two circles are equal, and if

two mutually equilateral polygons are inscribed i?i

them, then the polygons are equal.

Outline. Compare the respective triangles whose vertices

are at the centers and whose bases are corresponding sides

of the polygons.

139. Theorem 39. // two mutually equilateral

polygons are each circumscribable by a circle, then

the circles are equal, and tJie polygons are equal.

Outline. Suppose the radii unequal. Compare the respec-

tive central angles subtended by corresponding sides; see

ex. 42 at end of Book I. Eeduce to absurdity.

140. Cor. If in two semicircles are inscribed two broken

lines, and if the segments of one broken line are respectively

equal to those of the other, taken in order, then the semicircles

are equal, and the two figures are superposable. [Prove as in

139.]

EXERCISES

1. Two regular polygons of the same number of sides circumscribed

about equal circles are equal.

2. The center of the inscribed circle of a triangle is the ortho-

center of the triangle formed by the centers of the escribed circles.

3. Show how to cut off the corners of an equilateral triangle so

as to leave a regular hexagon ; also of a square to leave a regular

octagon.

4. If a parallelogram is circumscribed to a circle, then it is a

rhombus.
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5. Show that it is possible to trisect the central angle of a regular

n-gon, when n is any one of the first or third series of Euclid's num-

bers (111).

6. In the same cases show that it is possible to trisect the interior

or exterior angle of the regular w-gon.

7. Show that it is possible to divide a right angle into n equal

parts, when n is any of Euclid's numbers.

8. Show that it is possible to divide the angle of an equilateral tri-

angle into n equal parts, when n is any number belonging to the first

three series of Euclid's numbers.

Note on exs. 5-8. The general problem to trisect a given arbitrary

angle is one of the famous problems of antiquity, and has never been

solved by methods permitted in elementary geometry. Modern

mathematicians have demonstrated that this general problem cannot

be analyzed into simpler ones that require only the drawing of straight

lines and circles.* Thus the construction cannot be performed by

means of only a pair of compasses and an unmarked straightedge.

Several general solutions are known which overstep these limitations

to a greater or less degree. One of the simplest employs the sliding

motion of a straightedge on which two points are marked. There

are, however, certain special angles that can be trisected by the

methods of elementary geometry. (See exs. 5-8 above.)

The still more general problem of dividing a given arbitrary angle

into n equal parts can be solved only when n is one of the first series

of Euclid's numbers (111 ; I. 73) ; but in the case of certain special

angles the problem can be solved for some other values of n (exs. 7, 8).

MAXIMA AND MINIMA t

141. Certain principles of maxima and minima relating

to triangles were considered in Book II. 92-108. Similar

principles can now be extended to polygons in general, sub-

ject to certain given conditions. The theorems here con-

sidered fall into five groups according to the nature of the

assigned conditions.

* See Klein's "Vortrage iiber ausgewahlte Fragen der Elementar

Geometrie." (Translated by Professors Beman and Smith.)

t This topic is discussed here on account of its intimate connection

with the properties of the circle, and of inscribed and circumscribed

polygons. It may, however, be postponed without inconvenience.
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Given Sides

This group of two theorems with their corollaries will

show how to make the surface of a polygon a maximum
subject to various assigned conditions relating to the magni-

tude of the sides. In each case the additional condition is

to be proved both necessary and sufficient for a maximum
;

and accordingly each theorem is accompanied by its con-

verse (II. 93).

Greatest polygon with one arbitrary side,

142. Theorem 40. Ainong the polygons that have
all the sides hut one equal respectively to given lines

taken in order, ariy one that is a maxiwium is cir-

cumscrihable hy a semicircle having the undetermined
side as diameter.

Let the polygon ABCDEF be a maximum subject to the

condition that the sides AB, BC, CD, BE, EFsltq respectively

equal to given lines taken in

order.

To prove that the semi-

circle described on AF as

diameter passes through all

the points B, C, D, E.

Suppose, if possible, that

the semicircle does not pass through C ; and draw CA, CF.

Then the angle ACF is not a right angle (55, bOt).

Hence, by rotating the figures ABC and FEDC about the

point C until ACF becomes a right angle, the triangle ACF
could be increased (II. 94); and therefore the whole polygon

ABCDEF could be increased without changing any of the

given sides. This is contrary to the hypothesis that

ABCDEF is a maximum under the given conditions.

Hence the semicircle described on ^i^ passes through the

point C. Similarly it passes through the other vertices.
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143. Cor. Among the x>olygons that have all the sides but

one equal resj)ectively to given lines taken in order, any poly-

gon that is circumscribable by a semicircle having the undeter-

mined side as diameter, is a maximum.

For all polygons that satisfy the given conditions, and the

further condition of being circumscribable by a semicircle

having the undetermined side as diameter, are equal (140),

and are therefore equal to any one that is a maximum (142).

Ex. Show how to enunciate II. 94 so as to make it a particular

of 143.

Greatest polygon with nil the sides given,

144. Theorem 41. Among the polygons that have

their sides equal respectively to given lines taken in

order, any polygon that is cvrcumscrvbable by a circle

IS a maximum.

Let ABCD and a'b'c'd' be two polygons that satisfy the

conditions of having their sides equal respectively to given

lines taken in order, and let the former be circumscribable

and the latter not.

First to prove that ABCD is greater than A'b'c'd'.

Draw the diameter AP ; and join CP, DP. On C'd', which

equals CD, construct a triangle c'd'p' equal to the triangle

CDP'j and draw A'p'.

The circle whose diameter is A'P* does not pass through all the points

B', C", D' (hyp.). Use 143 and add ; then subtract the equal triangles.
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Next, to prove that ABCDiss, Tnaximum under the given

conditions.

The polygon ABCD is superposable on any other polygon

that satisfies the given conditions and the further con-

dition of being circumscribable (139); and it has just

been proved greater than any polygon that satisfies the

given conditions without satisfying the further condition.

Therefore the polygon ABCD is a maximum under the given

conditions.

145. Cor. I. Among the polygons that have their sides

respectively equal to the given lines taken in order, any polygon

that is a maximum is circumscribable. (Indirect proof.)

Equilateral n-gon ivUh given side,

146. Cor. 2. Of all equilateral polygons having a given

side and a given number of sides, one that is regidar is a

maximum.

Among the polygons that satisfy the given conditions,

one that is equilateral and equiangular is circumscribable

;

and one that is equilateral and not equiangular is not cir-

cumscribable (109, ex. 2) ; hence one that is equilateral and

equiangular is a maximum (144).

147. Cor. 3. Of all equilateral polygons haviiig a given

side and a given number of sides, any polygon that is a

maximum is regular. (Use 145.)

Given Perimeter

The following theorems show how to make the surface of

a polygon a maximum, when the perimeter is given, and

when another assigned condition is fulfilled.

The n-gon of greatest surface,

148. Theorem 42. Among the polygons that have a

given perimeter and a given number of sides, one

that is a majoimuin is regular.
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Let the polygon ABCD . . . be a maximum, subject to the

conditions of having a given perimeter and a given number

of sides.

First, to prove that ABCD ... is an ^^'0^^\
equilateral polygon. a^

Suppose, if possible, that the two

adjacent sides AB and BC are not

equal.

On ^C as base construct an isosceles

triangle B^AC having the sum of the

sides b'a and B'c equal to the sum of J5^ and BC.

The isosceles triangle B*AC is greater than the isoperi-

metric triangle BAC (II. 101).

Therefore the polygon AB'CD ... is isoperimetric with,

and greater than, the polygon ABCD . . .] but this is im-

possible, since ABCD . . . is one of the greatest of the

isoperimetric set, by hypothesis.

Hence the supposition fails, and the adjacent sides J B and

BC are equal.

Similarly all the sides are equal. Therefore the polygon

ABCD ... is equilateral.

Next, to prove that the equilateral polygon ABCD ... is a

regular polygon.

Since ABCD . . . is an equilateral polygon having a given

perimeter (that is to say, a given side) and a given number

of sides, and since it is a maximum, hence it is a regular

polygon (147).

149. Cor. Among the polygons that have a given perimeter

and a given number of sides, one that is regular is a maxi-

mum.

For all polygons that satisfy the given conditions and the

additional condition of being regular are equal, and are

hence equal to any one that is a maximum.
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Regular polygon of greatest surface,

150. Theorem 43. Of two isoperimetric regular

polygons, that which has the greater number of sides

has the greater surface.

Let the polygons P and Q have equal perimeters, and let P
have one side more than Q.

C

To prove that P is greater than Q.

On one of the sides of Q take any point D.

The figure ADBC md^j be regarded as an irregular polygon

having the same number of sides as P ; and hence ADBC is

less than the isoperimetric regular polygon P (148, 149).

Therefore Q is less than P.

Given Surface

The follovring two theorems show how to make the pe-

rimeter of a polygon a minimum when the surface is given

and when another assigned condition is fulfilled.

The n-gon of least perimeter,

151. Theorem 44. Among the polygons having a
given surface, and a given numher of sides, one

that is regular has a minimuin perimeter.

Let P and Q be two polygons, each having the given sur-

face, and the given number of sides ; and let P be regular,

and Q not regular.
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First, to prove that P has a less perimeter than Q has.

Let i? be a regular polygon having the same number of

sides, and the same perimeter, as Q has.

Of the two isoperimetric polygons Q and /?, the latter,

being regular, has the greater surface. Thus the surface of

R is greater than that of Q, and hence greater than the

surface of P.

Now the regular polygons P and R have the same number
of sides, hence the one that has the less surface has the less

perimeter (136, ex. 3). Thus the perimeter of P is less than

that of i?, and hence less than that of Q.

Next, to prove that the perimeter of P is a minimum under

the given conditions.

The perimeter of P is equal to that of any regular polygon

satisfying the given conditions (136, ex. 3), and has been

proved less than the perimeter of any irregular polygon

satisfying the given conditions. Hence the perimeter of P
is a minimum under the given conditions.

152. Cor. Among the poIygo7i8 having a given number of

sides and a given surface^ one that has a minimum perimeter

is regular. [Use indirect proof.]

Regular polygon of least peHmeter,

153. Theorem 45. If any two regular polygons

have equivalent surfa/^es, then the one that has the

greater numher of sides has the less perimeter.

Let P and Q represent any two equivalent regular poly-

gons, and let Q have more sides than P has.



MAXIMA AND MINIMA 229

To prove that the perimeter of Q is less than that of P.

Let i? be a regular polygon having the same number of

sides as F, and the same perimeter as Q.

Then, of the two isoperimetric regular polygons Q and 7?,

the former has the greater number of sides, therefore it has

the greater surface (150) ; thus the surface of R is less than

that of Q, and hence less than that of P.

Now the regular polygons P and R have the same number

of sides, hence the one that has the less surface has the less

perimeter (136, ex. 3) ; thus the perimeter of R is less than

that of P. Hence the perimeter of Q is less than that of P.

Inscribed in Given Circle

154. In this group of theorems one of the stated con-

ditions is that the polygons in question are inscribed in a

given circle. The theorems show how to make the surface,

or the perimeter, greatest when the polygon is subject to

assigned conditions. In each of the two divisions of this

group we begin as usual with the case of the triangle and

proceed from it to the general polygon.

MAXIMUM SURFACE

Greatest triangle in segment,

155. Theorem 46. Ainong the triangles inscribed

in the same segment of a circle having their bases

coincident with the chord, the triangle that is

isosceles is the maximum.
[The tangent at the mid-point of the arc is parallel to the chord. ]
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156. Cor. I. Among the Mangles inscribed in the same
segment of a circle having their bases coincident with the chordj

the triangle that is the maximum is isosceles,

157. Cor. 2. Of all triangles inscribed in the same cirdey

one that is a maximum is equilateral. [Indirect proof.]

158. Cor. 3. Of all triangles inscribed in the same circle,

one that is equilateral is a maximum. [Prove as in 149.]

Greatest n-gon in circle,

159. Theorem 47. Among the polygons having a
given number of sides and inscribed in a given circle,

one that is a myO^vimum is regular. [Prove as in 157.]

160. Cor. Among the polygons having a given number of
sides and inscribed in a given circle, one that is regular is

a maximum. [Prove as in 138 and 149.]

Greatest regular polygon in circle,

161. Theorem 48. If any two regular polygons are

inscribed in the same circle, then the one that has
the greater number of sides ha^ the greater surface.

Outline. Let there be two regular inscribed polygons P
and Q, and let Q have one more side than P has.

To prove that the surface of Q is greater than that of P.

Let AB be one side of P. On the arc AB take any point

M\ and draw MA, MB. Let the new polygon made up of

the polygon P and the triangle MAB be denoted by P'.

Then p' and Q have the same number of sides. Show that

Q is greater than P' (160) ; and hence greater than P.

MAXIMUM perimeter

Triangle in given segment,

162. Theorem 49. Among the triangles inscribed

in a given segment of a circle having their bases

coincident with the chord, the triangle that is isosce-

les has the maximum perimeter.
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Outline. Let ABC and AB'C be triangles inscribed in the

same segment ; and let ABC be isosceles, having the side AB
equal to BC.

To prove that the perimeter of ABC is greater than that

oiAB'c.

Prolong AB to D so that BD equals BC ; and prolong AB'

to Z)' so that 5 'Z)' equals 5' C.

Prove that the angles ADC and ad'c are equal, being

halves of equal angles ; and hence that the four points C,

A, B\ D, are on the same circle, whose center is B. Then
prove AD greater than AD'

; etc.

163. Cor. I. Among the triangles inscribed in a given seg-

ment of a circle having their bases coincident with the chord,

the triangle that has the maximum perimeter is isosceles.

Triangle in given circle,

164. Cor. 2. Among the triangles inscribed in a given circle,

one that has a maximum perimeter is equilateral.

Prove as in 157, using 163.

165. Cor. 3. Among the triangles inscribed in a given circle,

one that is equilateral has a maximum perimeter. [See 149.]

The n-gon of greatest perimeter,

166. Theorem 50. A-mong the polygons having a
given number of sides and inscribed in a given circle,

one that has a majcimum perimeter is regular,

[See 164.]

167. Cor. Among the polygons having a given number of

sides and inscribed in a given circle, one that is regular has

a maximum perimeter. [Prove as in 149, 165.]

Regular polygon of greatest perimeter,

168. Theorem 51. If any two regular polygons are

inscribed in the same circle, then the one that has the

greater number of sides has the greater pervmeter.

MCM. ELEM. GEOM. — 16
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Outline. Let there be two regular inscribed polygons

P and Q, and let Q have one side more than P has.

To prove that the perimeter of Q is greater than that of P.

Let AB \yQ one side of P. On the arc AB take any

point M\ and draw MA, MB. Let the new polygon, made
up of the polygon P and the triangle MABy be denoted by P'.

Show that the perimeter of the regular polygon Q is

greater than that of P' (167); and that the perimeter of

P' is greater than that of P.

Circumscribed about Given Circle

169. In this group of theorems one of the stated con-

ditions is that the polygons in question are circumscribed

about a given circle; and it is shown how to make the

surface, or the perimeter, a minimum when the polygon is

subject to assigned conditions. The first division of this

group relates to minimum surface, the second to minimum
perimeter. In each case the additional condition should be

proved to be both necessary and sufficient for a minimum.

MINIMUM SURFACE

Least triangle about sector,

170. Theorem 52. If at any point on the arc of a
given sector a tangent is drawn to meet the two
ra^ii prolonged, then the triangle so formed is the

minim,um^ when the tangent is drawn at the mid-
point of the arc.

Outline. Let OAB be the given sector, M the mid-point

of the arc AB, and m' any other point of the arc. Suppose

3/' to be taken on the half arc MB. Let the tangent at M
meet the prolongations of the radii OA and OB in the points

L and N. Let the tangent at 3/' meet the same prolonga-

tions in the points L' and N' \ and let it intersect the pre-

ceding tangent in the point I.

Prove that the triangle NIN' is less than iiz.'; etc.
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One point of contact arbitrary,

171. Theorem 53. If all the points of contact but

one are assigned, at which the sides of a circum-

scribed polygon touch a given circle, and if all the

points of contact have an assigned order on the circle,

then the circumscribed polygon is least when the arbi-

trary point of contact bisects the arc whose cjctremi-

ties are at the two points of contact adjacent to that

arbitrary point.

Outline. Let be the center of the given circle. Among
the assigned points of contact let P and R be the two which

are to be adjacent to the unassigned point, and let Q be any

position of the unassigned point on the arc PR. Let the

tangents at P and R meet the tangent at Q in the points L

and N respectively. Draw OL and ON^ meeting the circle

in A and B respectively.

Show that the angle LON is half the angle POR, and is

hence of constant magnitude, whatever be the position of Q

on the arc PR\ that the sector AOB is of constant magni-

tude; and hence that the triangle LON is least when Q is

at the mid-point of the arc AB (170) ;
that the pentagon

OPLNR is double the triangle LON, and is therefore least

w\\Qn Q is at the mid-point of the arc AB ; show that Q is

then at the mid-point of the arc PR ; and draw conclusion.

The n-ffon of least surface,

172. Theorem 54. Among all the polygons of a
given number of sides circumscribed about a given

circle, one that is a minimum is regular.

Outline. By indirect proof, using 171 , show that any point

of contact bisects the arc lying between the two adjacent

points of contact ; and then show that the polygon is regular.

173. Cor. Among all the polygons of a given number of

sides circumscribed about a given circle, one that is regidar

is a minimum. [Prove as in 149. See 140, ex. 1.]
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Regular polygon of least surface,

174. Theorem oo. If any two regular polygons are

circumscribed about a given circle, the one that has

the greater number of sides has the less surface.

Outline. Let there be two regular circumscribed poly-

gons P and Q, and let Q have one more side than P has.

To prove that the surface of Q is less than that of P.

Let T be any one of the vei-tices of P, and let A and B be

the points of contact of the tangents from T. At any point

M of the arc AB draw the tangent LMN, meeting TA in L

and TB in N.

The tangent LMN cuts off a triangle LTN from the poly-

gon P, leaving a circumscribed polygon which has one side

more than P has. Let the new polygon be denoted by P'.

Then P' and Q have the same number of sides.

Show that the regular polygon Q is less than P' (172, 173),

and hence less than P.

MINIMUM PERIMETER

175. Theorem 56. Among the polygons of a given

number of sides circumscribed about a given circle,

one that has a minimum perimeter is regular.

Outline. The surface of a circumscribed polygon is equiva-

lent to half the rectangle of the perimeter and the radius of

the circle (137) ; hence, when the perimeter is a minimum,

the surface is a minimum. Then apply 172.

176. Cor. Among the polygons of a given number of sides

circumscribed about a given circle, one that is regular has a

minimum perimeter. [Prove as in 173.]

Regular polygon of least peHmeter,

177. Theorem 57. If any two regular polygons

are circumscribed about a given circle, the one

thojt has the greater number of sides hOjS the less

perimeter. [Prove as in 174, and use 176.]
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LOCUS PROBLEMS

Equal tangents to two circles,

178. Problem 17. To fund the locus of a point

from which the tangents drawn to two given circles

are equal.

Outline. If the circles intersect, show by means of 97

and ex. that the locus is the extension of the common chord.

If the circles do not intersect, let P be a point from which

the tangents PT and PT' drawn to the circles are equal;

and let and O' be the centers. Using II. 61, prove that

the difference of the squares on OP and o'P is equivalent to

the difference of the squares on the radii OT and O'r'.

Thus the finding of the locus is reduced to II. 91.

Consider also the case in which the circles touch.

179. Definition. The line which is the locus of a point

from which the tangents to two given circles are equal is

called the radical axis of the two circles.

If the two circles intersect, then their common chord is

the radical axis.

180. Cor. I. Tlie radical axis of tivo circles is perpendicu-

lar to their central line, and divides it either internally or

externally so that the difference of the squares on the segments

is eqidvalent to the difference of the squares on the radii.

Equal tangents to three circles,

181. Cor. 2. To find 'a point from which the tangents to

three given circles are equal.

[Intersection of loci. When is there no solution ?]

182. Cor. 3. Tlie three radical axes of three circles meet in

a point.

Use 178, 181. Consider separately the case in which there are

three chords of intersection that divide each other internally ; and use

ex. 2 following Art. 97.
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183. Definition. The point of concurrence of the three

radical axes of three circles is called the radical center of

the three circles.

Circles intersecting orthogonally,

184. Definition. If two circles intersect, and if the two

tangents drawn at one of their common points are at right

angles, then the circles are said to intersect orthogonally.

Ex. If two circles intersect orthogonally at one of their common
points, then they intersect orthogonally at the other common point.

185. Theorem 58. // two circles intersect orthog-

onally, then the tangent drawn to one of them
at a common point parses through the center of the

other.

186. Cor. To find the locus of the center of a circle that

cuts a given circle orthogonally at a given j^oint.

Ex. To describe a circle through a given point, and cutting a given

circle orthogonally at a given point.

[Determine the center of the required circle by the intersection of

two loci.]

187. Theorem 59. // two tangents are drawn to

a circle from an external point, then the circle

described with the point as center, and either of

the tangents as radius, cuts the given circle orthog-

onally.

188. Cor. To find the locus of the center of a circle that

cuts two given circles orthogonally.

Show that the required locus is the radical axis.

Ex. To describe a circle cutting three given circles orthogonally.

[Show that there is no solution if each circle intersects the other

two.]
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Points in a Triangle

189. There is a class of locus problems in which the base

and vertical angle of a triangle are given, to find the loci of

certain important points connected with the triangle. It

has been shown in 79 that the locus of the vertex of a tri-

angle which has a given fixed base and a given vertical

angle consists of the arcs of two segments described on the

base (one on each side of it) containing an angle equal to

the given vertical angle. The problems and corollaries in

190-193 are reducible to the one just mentioned.

190. Problem 18. To find the locus of the ortho-

centers of all the triangles that have a given fixed

base and a given vertical angle.

Outline. Let P be the ortho-center of any triangle ABC
standing on the given base BC, and having the vertical

angle A equal to the given angle.

Show that the triangle BPC, standing on the given base,

has its vertical angle P equal to the supplement of the given

angle ; hence that the locus of P consists of the two arcs

obtained by describing on B C two segments, each containing

an angle equal to the supplement of the given angle.

191. Cor. I. To find the locus of the inrcenters of all the

triangles that have a given fixed base and a given vertical angle.

Outline. If P is the in-center, show that the angle BPC is

equal to the sum of the given vertical angle and half its

supplement, and apply 79 as before.

192. Cor. 2. With the same data, find the locus of each of

the three ex-centers.

Outline. If P is any of these centers, show that the

angle BPC can be expressed in terms of .4. In two of the

cases BPC equals half A ; and in the third case BPC equals

the complement of half A.

Ex. With the same data, show that the circum-center is fixed.
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193. Problem 19. To find the locus of the median-
centers of all the triangles that have a given fixed

hase and a given vertical angle.

Outline. Through the median-center P draw parallels to

the two sides AB and AC, meeting the base in Q and R.

Prove that Q and R trisect the base. Show that the

triangle PQR, standing on the middle segment, has a given

fixed base and a given vertical angle. Then apply 79.

194. Problem 20. Find tJie locus of the vertices of
all the triangles that have a given fixed base, and
the sum of tJw squares on the two sides equivalent

to a given square.

Outline. Show from II. 67, 76-78, that the median AD
can be constructed from the data. Show that the locus of

^ is a circle with D as center, and with radius equal to the

line AD ^o found.

Subtended Angles

195. Definitions. The angle subtended at a given point

by a given line is the angle included by the two lines drawn

from the given point to the extremities of the given line.

The angle subtended at a given point by a given circle

is the angle included between the two tangents drawn from

the given point to the circle.

196. Problem 21. To find the locus of a point at

which the angle subtended by a given line is equal

to a given angle. [Compare 79.]

Ex. 1. To find on a given indefinite line a point at which the angle

subtended by a given line-segment shall be equal to a given angle.

[When are there two solutions, when only one, and when none ?]

Ex. 2. To find on a given indefinite line a point at which a given

line-segment shall subtend the greatest angle. [See ex. following

Art. 96. Observe the change in the subtended angle as the point takes

different positions on the line. Is there any position at which the sub-

tended angle is least ?]
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Ex. 3. To find on a given circle a point at which a given line shall

subtend a given angle.

[Discuss the solution as in ex. 1. Show that in certain cases there

is no solution unless the given angle is restricted in magnitude.]

Ex. 4. To find on a given circle the points at which the angle

subtended by a given line is a maximum or minimum. [97, ex. 4.]

197. Problem 22. To find the locus of a point at

which the angle subtended by a given circle shall be

equal to a given angle.

Outline. Show that the locus is a concentric circle, and

that its radius may be constructed as follows: Construct

a right triangle having one side equal to the radius of

the given circle, and the adjacent acute angle equal to the

complement of half the given angle; then the hypotenuse is

the required radius.

Ex. In the four exercises of 196, replace the given line-segment by

a given circle, and show that similar solutions can be obtained.

Intersection of Loci

198. Each of the following constructions is a combination

of two locus problems already solved.

Ex. 1. To construct a triangle, being given :

(a) its base, vertical angle, and altitude (79, I. 255) ;

(5) its base, vertical angle, and difference of squares on

sides (79, II. 91) ;

(c) its base, vertical angle, and sum of squares on sides

;

{d) its base, altitude, and sum of squares on sides (194) ;

(e) its base, vertical angle, and one side ; the base being

given in position as well as magnitude.

Ex. 2. To construct a quadrangle, being given two opposite angles,

and three sides ; the order in which the five parts are to be taken

being specified.

Outline. Let the sides AB, BC^ CD be given ; and also the angles

B and D. First construct the triangle ABC (I. 133) ; and then the

triangle ACD (ex. 1, e).

[Examine the case in which one of the given angles is convex. Show
that there is always a solution when the sum of the two given angles

is less than a perigon. Show that there is only one solution.]
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EXERCISES

1. If from any point on a given circle a line is drawn equal and

parallel to a given line, then the locus of the other extremity consists

of two circles each equal to the given circle.

[Take the given line as " line of translation " (I. 200), and translate

the center and any radius, thus reducing the locus problem to a

previous one (7).]

2. If from any point on a given circle a line is drawn to a given

point, and if this line is turned about the given point through a given

angle, then the locus of the other extremity of the line so turned con-

sists of two circles each equal to the given one.

[Take the given angle as "angle of rotation" (I. 202), and rotate

the circle and any radius about the given point.]

3. To describe three circles of given radii to touch each other

externally.

4. To describe three circles of given radii to touch each other so

that two may be within the third.

5. In an equilateral triangle the radius of each of the escribed

circles is equal to the altitude ; and the radii of the circumscribed and

inscribed circles are respectively equal to two thirds, and one third of

the altitude.

6. If two chords of a circle cut at right angles, then the sum of either

pair of opposite arcs is equal to a semicircle.

[Through an extremity of one chord, draw a chord parallel to the

other, and join its extremity to the other extremity of the first chord.]

7. If two chords of a circle cut at right angles, then the sum of the

squares on the four segments is constant, and equivalent to the square

on the diameter.

8. If any chord of a given circle passes through a fixed point, then

the rectangle of the segments of the chord is constant.

9. If through a fixed point within a given circle any two chords are

drawn at right angles, then the sum of the squares on the two chords

is constant (exs. 7, 8).

10. If each of two equal circles has its center on the circumference

of the other, then the square on their common chord is equivalent to

three times the square on the radius.
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11. If two given circles have external contact ; show how to draw

a line through the point of contact so that the whole intercepted part

may be equal to a given line.

[Form an isosceles triangle whose base is the given line and each of

whose other sides equals the sum of the radii. Then the angle which

the required line makes with the central line equals one of the base

angles; prove.]

12. To construct a triangle, being given the vertical angle, one of

adjacent sides, and the perpendicular from the vertex to the base.

[Show that the foot of the perpendicular can be found by intersec-

tion of loci.]

13. K two circles intersect, then any common tangent subtends,

at the common points, angles which are supplemental.

14. If a common tangent is drawn to two circles, and if each point

of contact is joined to the two points where the central line meets the

corresponding circle, then the two chords so drawn in one circle are

respectively parallel to the two chords in the other circle.

15. Find the locus of a point such that the tangent from it to a

given circle shall be equal to the line joining it to a given point.

[This is a limiting case of the radical axis of two circles (179) when

the radius of one of the circles diminishes so that the circle reduces to

a point.]

16. Find a point such that the tangent from it to a given circle

shall be equal to each of the lines joining it to two given points.

17. Find the locus of the center of a circle which passes through a

given point and cuts a given circle orthogonally.

[In 188 let one of the circles reduce to a point.]

18. Describe a circle through a given point so as to cut two given

circles orthogonally.

19. Describe a circle through two given points so as to cut a given

circle orthogonally.

20. Given the vertical angle and the altitude of a triangle, prove

that the surface is a minimum when the triangle is isosceles (170).

21. Given the vertical angle and altitude of a triangle, when is the

base a minimum ?

22. The inscribed regular hexagon is equivalent to three fourths

of the circumscribed one, to half the circumscribed equilateral triangle,

and to double the inscribed one, in the same circle.
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1. That relation between two magnitudes which is ex-

pressed by the word ratio will receive a precise definition

after certain preliminary notions are explained.

The principles will be made sufficiently general to apply

to any geometric magnitudes for which appropriate methods

of comparison have been given, such as two line-segments,

two angles, the surfaces of two polygons, etc.

It will not be necessary to restrict our thoughts even to

geometric magnitudes. The notion of ratio is applicable to

any magnitudes for which the words equivalent, greater,

less, sum, difference, etc., have a definite and consistent

meaning. Such magnitudes are found in the sciences that

deal with number, weight, velocity, probability, etc.

MULTIPLES AND MEASURES

Definitions

2. Multiples. If any number of equivalent magnitudes

are added together, then their sum is called a multiple of

any one of them.

If any magnitude P is equivalent to the sum of n magni-

tudes each equivalent to ^, then P is said to be equivalent

to n times the magnitude A^ or to the nth multiple of A,

which is sometimes denoted by the symbol n- A ov nA.

Thus the double of A, previously defined, means the same

as twice A, or the second multiple of A. We may regard A

itself as once A, and call it the first multiple of A.

3. Series of multiples. The magnitudes denoted by the

symbols ^^ 2.1, 3^, 4^, "-nA, ...

242
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may be thought of as formed by beginning with the magni-

tude A and successively adding other magnitudes equivalent

to A, as often as desired. The whole set of magnitudes so

thought of is called the series of multiples of A.

In considering the mutual relations of certain magnitudes,

their series of mutiples will play an important part.

4. Magnitudes of the same kind. Two magnitudes will

be said to be of the same kind when their two series of

multiples can be directly compared so as to test the equiva-

lence or non-equivalence of any of them.

In particular two geometric magnitudes A and B will be

said to be of the same kind when it is possible to compare

the multiples of A with the multiples of B by means of

superposition. Such, for instance, are two line-segments,

two angles, two equiradial arcs, the surfaces of two polygons
;

but not a straight line and a curved line, nor two arcs of

unequal circles, nor the surfaces of a circle and a polygon.

For a simple example of the comparison of two series of

multiples, the student may glance forward to the figure in

Art. 12, in which the successive multiples of two line-seg-

ments A and B are laid off on an indefinite line, all begin-

ning at the same point 0.

Again, the natural numbers 1, 2, 3, 4, "-n, ...,

which we have used to indicate the order in a series of mul-

tiples, belong to another class of magnitudes called numeri-

cal TYiainitudes. The terms equivalent (or equal),

greater, less, sum, multiple, etc., have definite meanings

when applied to them. Thus, the number 3 has its series

of multiples, 3^ 6, 9, 12, ••.,

and the number n has its series of multiples,

71, 2w, 3n, •••, pn, •••.

Any two natural numbers are magnitudes of the same

kind, since they, or any of their multiples, are directly

comparable.
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When any two magnitudes are mentioned together, they

are understood to be of the same kind, unless otherwise

stated. Numerical magnitudes are denoted by small letters.

5. Common multiple. If it should happen that some mul-

tiple of A is also a multiple of 5, then this is said to be a

common multiple of A and B.

It rarely happens that two geometrical magnitudes taken

at random have a common multiple ; but if they have one,

then they have an indefinite number of other common mul-

tiples. For instance, if the magnitudes A and B have a

common multiple P which is equivalent to 2 A and also to

3 Bf then the double of P is equivalent to 4 A and also to

6b, and is therefore a common multiple of A and B.

The least magnitude (if any) which is a common multiple

of two given magnitudes is called their least common
multiple. The other common multiples could be obtained

by starting with the least common multiple, and then form-

ing its series of multiples.

In the figure of Art. 12, if ^ and B have a common mul-

tiple, this fact will be shown by the coincidence of two of

the points of division ; and such coincidence will recur at

regular intervals.

6. Submultiples or measures. If one magnitude is a

multiple of another, then the latter is said 'to be a sub-

multiple of the former.

Thus the series of submultiples of a magnitude Aj in

descending order of size, are : one half of A, one third of

A, one fourth of ^, . . . one nth of ^, . .

.

A submultiple of A is often called a measure of A, be-

cause it is contained in ^ a certain number of times without

remainder. It is also called an aliquot part of A, because

it may be obtained by dividing A into a certain number of

equal or equivalent parts. We can use the term that seems

most suggestive in any particular connection. The magni-

tude A itself may be included among the measures of A.
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7. Common measure. If it should happen that some meas-

ure of A is also a measure of B, then this is said to be a

comiTion measure of A and B. Two magnitudes that have

a common measure are said to be commensuraJ)le.

It rarely happens that two geometrical magnitudes taken

at random have a common measure ; but if they have one,

then they have an indefinite number of other common
measures. For instance, if the magnitudes A and B have a

common measure, M, which is contained just three times in

A and five times in B, then the half of M is contained just

six times in A and ten times in B, and is therefore a com-

mon measure of A and B.

The greatest magnitude which is contained a whole num-

ber of times in each of two commensurable magnitudes is

called their greatest eoTmnon measure. The other com-

mon measures could be obtained by starting with the greatest

common measure and then taking its series of submultiples.

8. Like multiples and like measures. If there are any two

given magnitudes (not necessarily of the same kind), and if

two multiples of them are formed by taking each of them

the same number of times, then the two resulting magni-

tudes are called liJce multiples of the two given magni-

tudes, and the given magnitudes are called like measures
of the resulting magnitudes.

Thus, if the magnitudes A and X are each taken n times,

then the resulting magnitudes nA and nX are called like

multiples of A and X, and the magnitudes A and X are

called like measures of nA and nX.

Properties of Multiples and Measures

9. The following general statements are immediate infer-

ences from the preceding definitions. They apply to any

two magnitudes of the same kind, and are verified by direct

comparison. A good illustration is furnished by two line-

segments, or two whole numbers.
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1. Two magnitudes of the same kind are such that some

multiple of one is greater than any given multiple of the other.

2. According as one magnitude is greater than, equivalent

to, or less than another, so is any multiple of the first greater

than, equivalent to, or less than the like multiple of the

other.

3. According as one magnitude is greater than, equivalent

to, or less than another, so is any measure of the first greater

than, equivalent to, or less than the like measure of the

other.

This statement is converse to the preceding; they can be put

together in a single order-theorem thus

:

The two pairs of magnitudes

A, B
and mA^ mB
are in the same order of size.

4. Any multiple of the sum of two or more magnitudes

is equivalent to the sum of like multiples of these magnitudes.

Symbolically : m{A -\- B \-C)<^mA -\- mB -\- mC.

5. Any multiple of the difference of two magnitudes is

equivalent to the difference of their like multiples.

Symbolically : m{A — B)<>mA — mB.

6. A common measure of two magnitudes is a measure of

their sum, and of their difference.

7. A measure of any magnitude is a measure of any

multiple of the same magnitude.

8. A multiple of any magnitude is a multiple of any

measure of the same magnitude.

9. The mth multiple of the 7ith multiple of any magnitude

is equivalent to the mnth multiple of the same magnitude.

10. The mth multiple of the nth. multiple of any magni-

tude is equivalent to the nth multiple of the mth multiple of

the same magnitude.

For instance, the third multiple of the fourth multiple of A is

equivalent to the fourth multiple of the third multiple of -4, each being

equivalent to twelve times A.
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11. According as m is greater than, equal to, or less than

n, so is the mth multiple of any magnitude greater than,

equivalent to, or less than the nth. multiple of the same

magnitude; and conversely.

These two converse statements may be expressed as an order-

theorem thus

:

The two pairs of magnitudes
w, n

and mA, nA
are in the same order of size.

EXAMPLES FOR ILLUSTRATION

10. The following examples are inserted here to illustrate

the preceding principles
;
but they are not essential to the

understanding of the subsequent articles.

1. If the mth multiple of A is equivalent to the

nth multiple of B, then the nth suhmultiple of A
is equivalent to the mth suhmultiple of B.

Denote the nth suhmultiple of ^ by ^', and the mth sub-

multiple of Bhj B\ then

A^7iA', B^mB'.

Take m times each of the first pair, and n times each of

the second pair, then

mA =0= mnA', nB ^ nmB'. [9 (2, 9)

Now, by hypothesis, mA is equivalent to nB. Hence.

mnA ' =0= nmB ' =c= mnB '. [9 (10)

Take the mnth suhmultiple of each of these equivalents.

Then a'^b'. [9(3)

Cor. I. If two magnitudes have a common multiple, then

they are commensurable.

Cor. 2. If two magnitudes are incommensurable, then they

have no common multiple.

Ex. Any two whole numbers, m and w, have a common multiple

mn, and a common measure unity.

«MCM. ELEM. GEOM. 17
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2. If the nth suhmultiple of A is equivalent to the

mth suhmultiple of B, then the mth multiple of A is

equivalent to the nth multiple of B,

Outline. With the same notation as before

A<>nA\ B^mB';
and we are given ^

' =0= 5
'

;

to prove mA =onB.

Cor. I. If two magnitudes are commensurable, then they

have a common multiple.

Cor. 2. If two magnitudes have no common multiple, then

they are incommensurable.

3. To find whether two given magnitudes are com^-

mensura^le or not; and, if so, to find their greatest

common measure.

For convenience, let the magnitudes be represented by the

lines AE and FK.

A CDS
F G H K

(a) From the greater AE take away as many parts as

possible each equivalent to the less FK. If there is a

remainder, as CE, take away from FK as many parts as

possible each equivalent to CE. If there is a second re-

mainder, as HK, take away from the preceding remainder, CE,

as many parts as possible, each equivalent to HK, and so on.

It is evident that this process will terminate only when
a remainder is obtained which is a measure of the remainder

immediately preceding.

(6) If this process terminates, then the two given magnitudes

are commensurable, and the last remainder is their greatest

common measure.

First, to prove that the last remainder is a common
measure.
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Suppose that HK is the last remainder. Then, by hypothe-

sis, UK is a measure of CE, and hence of FH, which is a

multiple of CE [9 (7)] ; therefore HK is also a measure of

FK, which is the sum of FH and HK [9- (6)], and therefore

HK is a measure of ^c, which is some multiple of FK, by
construction ; hence, again, HK is a measure of AE, which
is the sum of ^C and GE-^ therefore HK is a common
measure of FK and AE.

Next, to prove that HK is the greatest common measure

of FK and AE.

Every measure of Fir is a measure of its multiple AC
[9 (7)]; hence every common measure of FK and AE is a

common measure of ^C and AE, and therefore a measure of

their difference CE, and therefore of FH, which is a multiple

of CE; hence every common measure of FK and AE is a

common measure of FK and FH, and therefore a measure of

their difference HK [9 (6)].

Hence no common measure of FK and AE can exceed ifiT.

Therefore HK is the greatest common measure of FK and ^F.

(c) i/* ^^.e ^?/;o magnitudes have a common measure, then the

process in (a) will terminate.

Proof. Any common measure is a measure of each re-

mainder, as shown above. Now any remainder is evidently

less than half the second preceding remainder; hence, if

the process does not terminate, a remainder will be reached

which is less than any assigned magnitude, and therefore

less than the greatest common measure ; but this is impos-

sible, since the greatest common measure is a measure of

every remainder. Therefore the process does terminate if

the two given magnitudes have a common measure.

(cT) If the process in (a) does not terminate, then the two

magnitudes are incommensurable.

For if they were commensurable the process would ter-

minate (c).
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We conclude from (b), (c), (d), that the process in (a) is a

complete test of commensurability, and that it furnishes the

greatest common measure when one exists.

Note. The same principles can be used in finding the greatest

common measure of two polygons ; but the actual process may be

difficult in certain cases. In the case of two numerical magnitudes

the method is easily applied, and corresponds to the ordinary arith-

metical rule.

4. The side and diagonal of a square are incom-

mensurable.

Let ABCDhQdi square, whose side is AB, and diagonal AC.

To prove that AB and AC have

no common measure. /'^\^

On AC lay off a part AE equal

to AB. The remainder, EC^ is

less than AB (I. 88).

Hence AB \% contained once in

AC with a remainder EC.

Draw EF perpendicular to EC^

and join AF. Since AE equals

AD, the right triangles AEF and

ADF are equal (I. 98). Therefore

EF equals FD.

Again, since the right triangle CEF is isosceles, the lines

CE, EFj and FD are equal.

Lay off FG equal to FD. Then EC is contained twice in

the side DC, with remainder GC.

This remainder GC is for a similar reason contained twice

in EC with remainder EC; and so on.

Hence this process of finding the greatest common measure

repeats itself indefinitely, and will never terminate.

Therefore AC and AB are incommensurable [10 (3)].

Ex. The squares on ^C and AB are commensurable.

Note. Unless two magnitudes are specially selected, they are in all

probability incommensurable. Commensurability is a rare exception.
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Scale op Relation

11. Definition. If there are two magnitudes, A and B, of

the same kind, and if their two series of multiples, namely,
A, 2 A, Sa, ..-, and B, 2b, Sb, •••, are supposed written in

a single scale in the ascending order of size of all these mul-
tiples, the resulting arrangement is called the scale of
relation of the two magnitudes A and B.

12. Two line-segments. The scale of relation of two
given line-segments is easy to construct, and furnishes a
good illustration of the definition.

Let the two given lines be A and B,

B

B SB S^ fB SB 6B

2^A S A Ya 6a 7a <?k "^

Take an indefinite line OX, and, beginning at 0, lay off

successive segments each equal to A. Mark the consecu-

tive points of division with the symbols A, 2 A, SA, «...

Beginning again at o, lay off successive segments each

equal to B ; and mark the points of division with the sym-

bols B, 2 b, 3 b, ..-.

The order in which the symbols occur on the line evi-

dently shows the order of succession of the various multiples

of the two given magnitudes, all arranged in one scale in

the ascending order of their size. This order of succession

constitutes the scale of relation of the two given magnitudes

A and B. One use of such a scale is to tell between what

two consecutive multiples of B any assigned multiple of A
lies. For instance, in the figure 8 ^ is greater than 5 B and

less than 6b. The scale will also show whether A and B

have any common multiple. If two of the points of divi-

sion happen to coincide at any point P, then the line OP is

a common multiple of the two given lines. If A and B are
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incommensurable, they have no common multiple, and none

of the points of division will coincide.

13. Two numerical magnitudes. As another illustration,

the scale of relation of two given whole numbers may be

found by a method similar to that just given. For instance,

the scale of relation of the numbers 3 and 14 may be ar-

ranged as follows (letting t stand for 3 and / for 14)

:

t, 2t, 3t, 4:t,f, 5t, 6t, 7t, St, 9t, 2f, lOi, lit, 12t, ISt,

14« = 3/, 15 ty 16 ty 17 1, ISt, 4/, ....

RATIO

On the Notion of Ratio

14. Definitions. That relation of two magnitudes of the

same kind which is exhibited by the order of succession of

their multiples when arranged in one ascending scale is

called the ratio of one magnitude to the other.

The ratio of a magnitude A to another magnitude B of

the same kind is denoted by the symbol A : B ; and A is

called the antecedent and B the consequent of the ratio.

If there are two other magnitudes of the same kind, X
and r (not necessarily of the same kind as A and B), the

definitions of the next two articles furnish a basis for a

comparison of the two ratios A : B and X : T, so that the

terms equal, greater, and less may have definite meanings

when applied to any two ratios.

The two antecedents are said to be homologous terms in

the two ratios, and so are the two consequents.

15. Equal ratios. The two ratios A : B and X : Y are said

to be equal ratios, if, on comparison of the scale of rela-

tion of A and B with the scale of relation of X and r, it is

found that the successive multiples of A and B interlie in

the same order in the first scale as the corresponding multi-

ples of X and r do in the second scale.
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In the same case the two scales of relation are said to be

similar to each other.

In applying this definition, the similarity of the scale of

A and B with the scale of X and Y can be established in the

following manner

:

Take any like multiples of the antecedents, say

mA, mX\

and take any like multiples of the consequents, say

nB, nY\

then, to prove that the two scales are similar throughout,

we have to show that the two pairs of multiples

mA, nB
and mX, nY

are in the same order of size, no matter what whole numbers

m and n are.

The phrase " in the same order of size " has been defined

and fully illustrated in connection with "order-theorems"

in III. 50. The student is requested now to review that

article, and then to read the simple application of the above

definition of equal ratios, which will be found in art. 90,

Book V, where it is proved that

If any two rectangles have equal altitudes, then

the ratio of the rectangles is equal to the ratio of
their bases.

The method may be stated in outline as follows

:

Let the rectangles be denoted by R and R\ and their bases

by h and h\ then we have to prove that the ratio R: R' is

equal to the ratio 6:6'.

Of the base 6 we take any multiple mh ; and then show

that the rectangle standing on the base mh, and having the

given altitude, is equivalent to mR.

Of the base 6' we take any multiple n6'; and then show

that the rectangle standing on the base w6', and having the

given altitude, is equivalent to 7iR'.
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We then quote the order-theorem that any two rectangles

of the same altitude are in the same order of size as their

bases are ; and thence infer that the two pairs of multiples

mR, nR'

and mbj nb'

are in the same order of size, whatever whole numbers m
and n may be.

We conclude that the scale of relation of R and R' is

similar throughoi^t its whole extent to the scale of relation

of b and b' ; and hence, by definitions of equal ratios, that

R:R'==b:b'.

16. Unequal ratios. The ratio A: B is said to be greater

than the ratio X : r, if, on comparison of the scale of rela-

tion of A and B with the scale of relation of X and Y, it is

found that some multiple of A has a more advanced position

among the multiples of B than the like multiple of X has

among the multiples of Y.

In other words, the ratio A: B is said to be greater than

the ratio X : Y when it is possible to find any single pair of

whole numbers m and n such that

mA is greater than n5, and

mx is not greater than wF,

or else such that

mA is equivalent to nB, and

mX is less than nY.

In the same case the ratio X : F is said to be less than
the ratio A : B. This is expressed symbolically by

A:B>X:Y or X : Y < A : B.

Note. A ratio is not to be confused with its number-correspondent,

introduced later, in mensuration (VI. 14). It will appear that the

general theory of ratio furnishes a natural and logical basis for the

science of numerical measurement, which is one of its applications.
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Properties of Ratios

17. In the following articles, magnitudes of the same kind

will usually be denoted by adjacent letters of the alphabet

;

and magnitudes that are not necessarily of the same kind

will be denoted by non-adjacent letters. For instance, if

there are three ratios whose terms are not restricted to be

of the same kind, they may be represented by A : B, P : Q,

X : Y. A small letter will denote a whole number.

PRINCIPLES OF EQUALITY AND INEQUALITY

18. It has been seen that a ratio is not a magnitude, but a

relation between two magnitudes.* Two ratios can, however,

be compared with each other by means of the conven-

tions laid down in 15, 16; and it will be proved in theo-

rems 1 and 2 that the definitions of the words equal,

greater, and less, as applied to ratios, lead to principles

that correspond to the axioms of equality and inequality.

Principle of equality,

19. Theorem 1. If two ratios are each equal to the

same third ratio, then they are equal to each other.

Let A : B = X : Yj

and P'.Q = X'.Y'^

to prove A : B = P '. Q.

The multiples of A and B have the same inter-order as

the multiples of X and F; and the same thing is true of the

multiples of P and Q ; therefore, the multiples of A and B
have the same inter-order as those of P and Q; thus the

scales of relation are similar ; hence, by definition (15),

A'.B = P\Q.

* This statement applies even to numerical ratios ; the ratio m : n is

distinct from the quotient — , which is its number-correspondent
n

(VI. 14).
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Principle of inequality,

20. Theorem 2. If two ratios are equal, then any
third ratio which is less than one of them is also less

than the other.

Let A. B = X:Yj

and P'.Q<X:Y',

to prove P : Q <A: B.

Since P:Q<X:Yy
hence, by the definition of unequal ratios, some multiple of

P, say the ?7ith, occupies a less advanced position among the

multiples of Q than the mth multiple of X does among the

multiples of F; therefore, by the first part of the hypothe-

sis, the mth multiple of P occupies a less advanced position

among the multiples of Q than the mth multiple of A does

among the multiples of B. Hence, by definition (16),

P:Q<A:B.

21. Cor. If two ratios are equal, then any third ratio

which is greater than one is also greater than the other.

RECIPROCAL RATIOS

22. Definition. Two ratios are said to be reciprocal to

each other when the antecedent of each ratio is the conse-

quent of the other.

Thus, the ratios A : B and B : A are reciprocal to each

other.

Reciprocals of equal ratios,

23. Theorem 3. // two ratios are equal, then their

reciprocal ratios are equal.

Given A\B = X'. F;

to prove B . A = Y : X.

From the hypothesis, any multiple of A occupies a posi-

tion among the multiples of B, similar to that which the like

multiple of X occupies among the multiples of Y.
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Hence any multiple of B occupies a position among the

multiples of A similar to that which the like multiple of Y

occupies among the multiples of X.

Therefore the ratio ^ : ^ is equal to the ratio Y : X (15).

Reciprocals of unequal ratios,

24. Theorem 4. If one ratio is greater than an-

other, tJwn the reciprocal of the first is less than
the reciprocal of the second.

Given A: B> X: F;

to prove B : A < Y '. X.

From the hypothesis, some multiple of A occupies a more

advanced position among the multiples of B than the like

multiple of X does among those of Y.

Hence some multiple of B occupies a less advanced posi-

tion among the multiples of A than the like multiple of Y

does among the multiples of X.

Therefore, by definition, the ratio B : A i^ less than the

ratio r : X (16).

EQUIVALENCE OF ANTECEDENTS OR CONSEQUENTS

This group of theorems is concerned with the comparison

of ratios whose antecedents or consequents are equivalent.

Equivalent antecedents and consequents,

25. Theorem 5. If two ratios have equivalent ante-

cedents and equivalent consequents, then the ratios

are equal.

Griven A equivalent to A\ and B equivalent to 5';

to prove A : B = A' : b'.

Since the multiples of A are equivalent to the like mul-

tiples of ^' [9 (2)] ; and the multiples of B are equivalent

to the like multiples oi B'; therefore, the multiples of A are

distributed among the multiples of B in the same inter-order

as the multiples of A' are among those of B'.

Hence, by definition, the ratio A : B equals the ratio A^ : bK
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26. According to the theorem just proved, a ratio is not

altered when either its antecedent or its consequent is re-

placed by an equivalent magnitude. For this reason two

equivalent magnitudes will sometimes be denoted by the

same letter; and the symbol of equality (=) will be used

as the symbol of equivalence. The symbols for greater

than (>) and for less than (<) will also be used.

Equivalent consequents, unequivalent antecedents,

27. Theorem 6. If two ratios have equivalent

consequents, then the one that has the greater ante-

cedent is the grea;ter ratio.

Let each of the consequents be equivalent to a magnitude

C; and let the antecedents be A and B.

Given A>B',

to prove A:C> B : C.

Let A exceed 5 by a magnitude .Y.

Take a multiple of X that shall exceed c ; and let mX be

such a multiple. Take the like multiples of A and B. Then

mA exceeds mB by mX [9 (5)].

Therefore mA exceeds mB by more than C; or, in other

words, mB falls short of mA by more than C.

Next, take the successive multiples of C, and let nC be

the first one that does not fall short of mA.

Then either mA is equivalent to nC, or else mA lies be-

tween nC and the next lower multiple of C.

But mB falls short of mA by more than C ;
therefore mB

lies in a less advanced interval among the multiples of C

than mA does.

Hence the ratio ^ : C is greater than the ratio B : C (16).

Combined statement.

28. Cor. I. If tivo ratios have equivalent consequents, then

according as the first antecedent is greater than, equivalent to,

or less than the second, so is the first ratio greater than, equal

to, or less than the second. (Combination of 25 and 27.)
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Converse statement.

29. Cor. 2. If two ratios have equivalent consequents, then

according as the first ratio is greater than, equal to, or less than

the second, so is the first antecedeiit greater than, equivalent to,

or less than the second.

Equivalent antecedents, unequivalent consequents,

30. Theorem 7. If two ratios have equivalent ante-

cedents, then the one that has the greater conse-

quent is the less ratio.

Let each of the antecedents be equivalent to A ; and let

the consequents be B and C.

Given ^ > C

;

to prove A: B < A: C.

Take B and G as antecedents, and compare them with the

same consequent A.

Then, since B is greater than C,

hence, B : A> C: A, [27

Therefore, by taking reciprocals,

A'.B<A'.C. [24

Conibined statement.

31. Cor. I. If two ratios have equivalent antecedents, then

according as the first consequent is greater than, equivalent to,

or less than the second, so is the first ratio less thari, equal to,

or greater than the second. (Combination of 25 and 30.)

Converse statement.

32. Cor. 2. If two ratios have equivalent antecedents, then

according as the first ratio is less than, equal to, or greater

than the second, so is the first consequent greater than, equlvor-

lent to, or less thari the second.

Note. It follows from 27 and 30 that the scale of relation of two
given magnitudes is altered somewhere, if the slightest change is made
in either one of the given magnitudes.



260 PLANE GEOMETRY— BOOK IV

Homologous terms of equal ratios compared,

33. Theorem 8. If there are two equal ratios^ the

four magnitudes being of the same kind, then a/i-

cording as the antecedent of tlxe first is greater than,

equivalent to, or less than the antecedent of the sec-

ond, so is the consequent of the first greater than,

equivalent to, or less than the consequent of the

second.

Let Aj BjCfDyhe four magnitudes of the same kmd,"such

*l^t A '. B = C : D,

To prove that the two pairs

^, C
and B, D

are in the same .order of size.

First, let A be equivalent to C.

Then the two equal ratios written above have equivalent

antecedents ; hence their consequents are equivalent,

i.e. B is equivalent to D. [32

Next, let A be greater than C.

Take A and c as antecedents, and compare them with the

same consequent 5,

then A'.B>C.B^ [27

but A:B = C:Df [hyp.

therefore, by the principle of inequality,

C: D> C:B. [20

Since these unequal ratios have the same antecedent,

hence the less ratio has the greater consequent,

i.e, B is greater than D. [32

Lastly, let A be less than c.

The student may prove in a similar way that in this case B is less

than D.

Thus the two pairs above are always in like order of size.
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33 (a). Ex. If there are two equal ratios A : B and X : F, then

the two pairs

A, B
and X, T
are in the same order of size.

(Put m = n = 1 in the order-statement given in Article 15.)

N.B. This principle, which follows immediately from the defini-

tion of equal ratios, is not to be confused with the principle in 33.

RATIOS OF MULTIPLES

34. The next three theorems with their corollaries relate

to the comparison of multiples of given magnitudes.

LiTce multiples of two magnitudes,

35. Theorem 9. The ratio of like multiples of two
magnitudes is equal to the ratio of the magnitudes.

Let A and B be tv^^o magnitudes of the same kind, and let

pA and pB be any like multiples of A and B.

To prove pA : pB = A : B.

Take the mth multiple of each of these antecedents, and

the nth. multiple of each consequent, and compare the order

of size of the resulting pairs of multiples,

m 'pA, n 'pB

and m ' A, n- B.

Since the mth multiple of the pth multiple is equivalent

to the pth multiple of the mth multiple, the first pair may
be written in the form

P'mA,p'nB. [9(10)

Now the members of this pair are like multiples of mA
and nB ; hence this pair is in the same order of size as the

pair mA, nB, [9 (3)

which is the second pair of multiples above.

Hence the above pairs of multiples are in the same order

of size whatever m and n are.

Therefore pA:pB = A:B.
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Special case.

36. Cor. I. The ratio of two whole numbers is not altered

by multiplying both of them by the same number.

37. Cor. 2. If A:B = X: Y,

then pA : pB = qX : qY,

Multiples of one magnitude.

38. Theorem 10. The ratio of the mth multiple of

any magnitude to the nth multiple of the same mag-
nitude is equal to the ratio of the number m to the

number n.

To prove mA : nA = m :n.

Take p times each antecedent, and q times each conse-

quent, and compare the order of size of the two pairs of

multiples

p • mA, q • nA

and p -m, q-n.

The first pair may be written in the form

pm • A, qn • A, [9 (9)

and these two multiples of A are in the same order of size

as the pair of numbers
pm, qn, [9 (11)

which is the second pair of multiples above.

Hence the two pairs of multiples above are in the same

order of size whatever the whole numbers p and q are.

Therefore, by the definition of equal ratios,

mA :nA — m:n.

Another statement of 38.

39. Cor. If two magnitudes have a common measure

which is contained m times in the first magnitude and n times

in the second, then the ratio of the tivo magnitudes is equal to

the ratio of the number m to the number n.
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Equivalent multiples,

40. Theorem 11. If the ratio of one magnitude to

another is equal to the ratio of the number m to the

number n, then the nth multiple of the first magni-
tude is equivalent to the mth multiple of the second.

Given A-. B = m-.n]

to prove nA —mB.

Take the nth multiple of each antecedent and the mth
multiple of each consequent ; then, from the hypothesis, the

pairs of multiples

n- A, m • B

and n-m, m-n

are in the same order of size ; but the members of the latter

pair are equivalent; therefore the members of the former

pair are equivalent.

Hence nA = mB.

Uneqiiivalent tnultiples,

41. Cor. I. If the ratio of tivo magnitudes is greater than

the ratio of two ivhole numbers m and n, then the 7ith multiple

of the first magnitude is greater than the mth multiple of the

second.

[Show that the first pair of multiples above are then in descending

order (16).]

Combined statement.

42. Cor. 2. According as A : B > = <^m:n,

so is nJ^ > = < mB.

Converse statement.

43. Cor. 3. According as nA > = < mB,

so is A : B '^ = <m:n.
MCM. ELEM. GEOM. — 18
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PROPORTION

Properties of a Proportion

44. Definition. A proportion is a statement of the

equality of two ratios, 2iS A: B = X: Y.

These four magnitudes are said to form a proportion, of

which A and Y are the extrejnes, and B and X the means

;

and Y is called the fourth proportional to the three terms

A
J
B, and X. The proportion is sometimes read thus : A is

to, i? as X is to Y.

The next three theorems are concerned with the establish-

ment of certain general " rules of inference," by which, from

a given proportion, certain other proportions can be at once

derived. They are the Rules of Equi-multiplication, Alter-

nation, and Composition.

Equi-tnultiplea of homologous terms,

45. Theorem 12. // two ratios are equal, and if

any like multiples of the antecedents are taken,

and also any like multiples of the consequents, then

the m^ultiple of the first antecedent is to tJie mul-
tiple of the first consequ^ent as the multiple of the

second antecedent is to the multiple of the second

consequent.

Given A-.B — X-.T-,

to prove mA : nB = mx : nY.

To compare the latter two ratios, take the p\h. multiple of

each antecedent, and the gth multiple of each consequent,

and compare the order of size of the two pairs of resulting

multiples

p • mA, q • nB

and p'lnX, q-nY.

According to 9 (9), these may be written in the form

pm 'A, qri' B

and ptn *Xj qn- Y.
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Now these two pairs of multiples are in the same order of

size, because the ratios A : B and X : Y are equal.

Therefore the former pairs of multiples are in the same

order of size, whatever whole numbers p and q may be.

Hence mA : itB = mX : nY.

Special case.

46. Cor. Given A : B = x : Y,

and mA = nB
;

then mX = nY.

Note. This corollary may be stated in words as follows

:

Iffour magnitudes form a proportion, and if the first is any

multiple, or part, or multiple of a part, of the second, then the

third is the like multiple, or part, or multiple of a part, of the

fourth.

Rule of alternation.

47. Theorem 13. If four magnitudes of the same
kind form a proportion, then the first is to the third

as the second is to the fourth.

Let A, B, C, D be four magnitudes of the same kind such

*^^^ A: B = C : D.

To prove A:C = B:D.

Since the ratio of two magnitudes equals the ratio of their

like multiples,

hence mA : mB = nC : nD. [35

Therefore, by comparison of homologous terms in equal

ratios, the two pairs

mA, nC
and mB, nD

are in the same order of size. [33

Now m and n are any whole numbers ; hence, by definition

of equal ratios, A- C = B D
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Rule of composition,

48. Theorem 14. If four magnitudes form a pro-

portion, then the sum of the first and second is to

the second as the sujjv of the third and fourth is to

the fourth.

Given A:B = X:Y;

to prove A + B :B = X-\-Y:Y.

In order to compare the latter two ratios take any like

multiples of the antecedents, and any like multiples of the

consequents ; and then compare the order of size in the two

resulting pairs

m (J + B), nB
and m{x -\- r), nY,

First, let n be greater than m.

The order of the first pair of multiples is not altered by

subtracting inB from each ; and the order of the second pair

is not altered by subtracting mY from each.

Therefore the above pairs of multiples are in the same

order, respectively, as the pairs

mA, (71 — m)B
and mA", (n — m) Y.

Now, from the hypothesis, these are in the same order of

size ; hence the above pairs are in the same order of size.

Next, let 11 be not greater than m.

Then the pairs of multiples in question are evidently both

in descending order.

Therefore m(A -{- B), nB

and m(.Y-f r), nY

are always in the same order of size whatever m and n are.

Hence A -\- B : B = X + Y :Y.

Rule of separation.

49. Cor. In the same case A — B : B = X — Y:Y.

The complete statement and proof are left to the student.
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50. It is convenient to insert here the following restate-

ment of theorem 3, to be called the " rule of reciprocation."

51. Iffour magnitudes form a proportion, then the second

is to the first as the fourth is to the third.

Two OR More Proportions

52. The next three theorems are concerned with rules of

inference from two or more proportions. They are the

Rules of Combination, of Succession, and of Addition.

Rule of combination,

53. Theorem 15. If there are any number of equal
ratios, all the magnitudes being of the same hind,

then as any of the antecedents is to its consequent so

is the sum of all the antecedents to the sum of all

the consequents.

Given A : B = A' :B' = A" : B"-,

to prove A : B = A + A' -\- a" : B -\- B' -\- B".

From the hypothesis, and the definition of equal ratios,

the three pairs of multiples

mA, nB

mA', nB'

mA", 7iB"

are in the same order of size ; hence the pair

m(A -\-A'-\- A"), n(B -{- B' + B")

is also in the same order as any of the preceding pairs,

whatever m and n are (axioms I. 25, 32 ; II. 9, 10 ; III. 38).

Therefore A : B = A + A' + A" : B -\- b' -\- B".

54. Definitions. A set of ratios will be called successive

when the consequent of each is the antecedent of the next.

The first antecedent and the last consequent are called the

extremes of the set. E.g., the ratios A : B, B : C, C : D, D : E
are a set of successive ratios, whose extremes are A and E.
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Rule of succession,

55. Theorem 16. // there are any nuinber of like

magnitudes and an equal number of any other like

magnitudes, such that the successive ratios in tJie

first set are equivalent respectively to the correspond-

ing successive ratios in the second set, then the ratios

of the extremes in the two sets are equal.

1. Let there be three magnitudes in eaxjh setj and let

them be
Ay B, c

and X, r, z.

Let the successive ratios A : B and 5 : c be equal to the

successive ratios A' : Y and Y : Z, respectively.

To prove that the ratios of the extremes are equal,

i.e. A', c = X \ z.

Take any like multiples of the antecedents, and any like

multiples of the consequents ; and compare the order of size

in the two pairs

mA, nC
and mXy nZ.

First, suppose the first pair to be in descending order,

i.e. mA > nC
;

then, comparing each of these magnitudes with the same

consequent mB,
,,^^ . ^^^ ^ ^^ . ^^ ^^

Now, by hypothesis and rule of equi-multiples,

mA : mB = mX : mYj

and nC : mB = nZ : mY. [45

Hence mX:mY> nZ'.mY\

therefore, the consequents being identical,

mX > nZ. [29

Thus the second pair of the above multiples are also in

descending order of size.
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Next, suppose the first pair to be in ascending order.

The student may treat this case in a similar way ; and also the

remaining case, in which the order is indifferent.

It follows that the pairs of multiples

mA, nC
and mX, nZ

are in the same order of size, whatever m and n are.

Therefore A : C = X : Z.

2. Let there be four magnitudes in each set ; namely,

A, B, C, D
and X, r, z, w.

Let the successive ratios A : B, B : C, C : I) he respectively

equal to the successive ratios x : Y, Y: z, Z : W.

To prove that the ratios of the extremes are equal,

i.e. A : D = X : W.

The student may prove by using Case 1 twice in succession ; and

may then generalize.

Applications of rule of succession.

Equivalent consequents in two proportions.

56. Cor. I. If there are two proportions, and if the two

consequents in one proportion are equivalent respectively to the

two consequents in the other, then their aiUecedents form a

proportion.

Given A : B = X : Y,

and
^

^'
: 5 = X' : F;

to prove A: A' = X: X\

Outline. Compare the successive ratios in the two sets

A, B, A'

and X, Y, x'.

Note. Observe that the rule of alternation (47) cannot be used in

proving (56), for A and X may not be magnitudes of the same kind.



270 PLANE GEOMETRY— BOOK IV

Equivalent antecedents in two proportions.

57. Cor. 2. If there are two proportions^ and if the two

antecedents in one proportion are equivalent respectively to the

two antecedents in the other, then their consequents form a

proportion.

Three terms equivalent in two proportions.

58. Cor. 3. If two proportions have any three terms of one

equivalent respectively to the three corresponding terms of the

other, then tJie remaining terms are equivalent.

Rule of addition,

59. Theorem 17. If there are two proportions, and if

the two consequents in one are equivalent respectively

to the two consequents in the other, then the sums
of corresponding antecedents form a proportion with

the same consequents.

Given A : B = x : Y,

and A':B = X''.T',

to prove A -\- A' : B = X -^ X' : T.

Since the two given proportions have their consequents

respectively equivalent, hence their antecedents form a pro-

portion ;
that is, a : A' = X : x', [56

therefore, by the rule of composition,

A-}-A':A' = X + X':X'', [48

now, by hypothesis,

A' : B = X' : Y;

therefore, by the rule of succession, •

A-{-A':B=X-\-X':Y, [55

Rule of subtraction.

60. Cor. In the same case

A — A':B = X—X': Y.

The student may give the complete statement and proof.
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1. The general principles established in Book IV will

now be used in comparing particular magnitudes of the same

kind,— chiefly segments of lines and surfaces of polygons.

SIMILARLY DIVIDED LINES

Parallel transversals,

2. Theorem 1. If two lines are cut hy three par-

allels, any two of the intercepts on one line form
a proportion with the corresponding intercepts on the

other line.

Let the lines OL, o'l' be cut by the parallels 00', A^A'^^

B^b\ making the three pairs of corresponding intercepts OA^

and oU'i, OB^ and 0'b\, A^B^^ and J'iB\.

1

, A2 /gi^--
! i 1

1

j

f11
1

/ /
» 1
I 1

1

I i

!

'

1

1

i

!

1 !

! i

1 i

i i

i

i

A, B, A, A^ B,A,

First to prove OA^ : OBj^ = 0'A\: 0'b\.

On OL lay off consecutive segments equal to OA^-, and

mark their extremities with the symbols A^, A^, •••. Through

these points draw parallels to 00' meeting o'l' in ^'2, ^'g,---.

271
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Again, on OL lay off consecutive segments equal to O^^;

and mark their extremities B2, B3, •••. Through these

points draw parallels to OO' meeting o'l' in B'2, B'^, •••.

Any segment 0A„ is equal to the mth multiple of O^i;

and OBn is equal to the ?ith multiple of Ofij. Hence the

scale of relation of OA^ and OB^ is as shown on the line

OL. (IV. 11.)

The parallels through A^, A.2, A^, ••• make equal intercepts

on the line O'l' (1. 167) ; thus 0'a'„ equals the mth multiple

of 0'A\. Similarly, O'b'^ equals the ;<th multiple of 0'b\.'

Hence the scale of relation of 0'A\ and o'b\ is as shown

on the line O'l'.

Since like multiples evidently occur in the same (frder in

the two scales, hence these scales of relation are everywhere

similar ; and it follows, by definition of equal ratios, that

OAi : Oi^i = O'A'i : O'b'^. [IV. 15

Next to prove that

OAi.AiBi= O'A'i'. A'^B'^.

Since OA^ : OB^ = O'a'^ : o'b'^

therefore, by the rule of separation,

OAi :0Bi— OAi= O'a'^ : O'B'^ — O'A'^, [IV. 49

i.e, '

'

OA^: A^Bi = O'A'i : A'^B'^.

3. Cor. I. If two lines ore cut by any number of parallels

the segments of one line taken in order as antecedents form a

series of equal ratios with the segments of the other line taken

in order as consequents.

For, by the rule of alternation,

0^1 : O'A'^ = Jjfii : ^'iB'i= •••. [IV. 47

Special case.

4. Cor. 2. If two sides of a triangle are cut by parallels to

the third side, the segments of the first side taken in order as

antecedents form a seines of equal ratios ivith the segments of

the second side taken in order as consequents.
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Definition. Two finite lines are said to be similarly

divided if the segments of the first taken in order as ante-

cedents form a series of equal ratios with the segments of

the second taken in order as consequents.

The antecedent and consequent of any one of the equal

ratios are called corresponding segments of the two lines.

Two points of division are said to correspond if the two

segments adjacent to the first point correspond respectively

to the two segments adjacent to the second point. Two end-

points are said to correspond if the segment adjacent to one

corresponds to the segment adjacent to the other.

Similar Division

5. Problem 1. To divide a given line similarly to

a given divided line, tJiose end-points which are to

correspond being started.

Let ^'^' be the given line divided at the points P' and Q';

let AB be the other given line which it is required to divide

similarly ; and let A

be that end-point

which is to corre-

spond to A\

Transfer ^'J?' so

that A^ may fall on

the corresponding

point A, and so that the two lines may form a convenient

angle. Join B^B, and draw P^P and Q'Q parallel to B^B.

Then, from the principle of parallel transversals,

AP: A'P^ = PQ:P'Q^=QB: Q'b'
; [3,4

therefore the lines AB and A'b' are similarly divided.

6. Cor. I. WJien two lines are similarly divided, the ratio

of tivo corresponding segments equals the ratio of the whole lines.

[In a set of equal ratios any antecedent is to its consequent as the

sum of the antecedents is to the sum of the consequents (IV. 53).]
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7. Cor. 2. When two lines are similarly divided, the ratio

of two corresponding segments is the same whatever he the

mode of division.

8. Discussion of Problem 1. It follows from 7 that when

any segment PQ of the first line is given, then the corre-

• sponding segment P'Q^ of the second line is 'uniquely

determined.' Therefore there is only one solution.

Ex. Divide a given line into three parts so that the ratios of the

parts may equal the ratios of three given lines, or of given numbers.

Converse of 2,

9. Theorem 2. If two similarly divided lines are

plaxied so that tJie li?ie joining one pair of corre-

sponding points is parallel to the line joining an-

other pair of corresponding points, then the lines

joining all pairs of corresponding points are parallel.

Let the line OP be divided at the points A and B ; and let

O^P^ be divided similarly at A^ and B\ in such a way that

corresponds to 0\ A \,o A\B to

b\ p to P\ Let 00^ be par- /^^^^ ^/

allel to PP\

To prove that OQ', AA\ and

55' are parallel to each other.

Suppose, if possible, that

they are not all parallel ; and

let lines be drawn through A and B parallel to 00^ and PP\

These parallels will divide O^P^ similarly to OP ; and will

therefore pass through the points A ' and B' ; because there is

only one way of dividing the line O'P' similarly to OP (8).

Hence A A' and BB' are parallel to 00' and PP'.

Converse of 4,

10. Cor. If t2co similarly divided lines are placed so as to

have two corresponding points in coincidence, then the lines

joining the other corresponding points are parallel.
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DIVISION IN A GIVEN RATIO

11. Definition. A ratio is said to be given when its ante-

cedent and consequent are given magnitudes. Usually the

most convenient magnitudes by which a ratio can be as-

signed are either line-segments or whole numbers. The
latter can, however, express only the ratio of commensur-

able magnitudes.

A line is said to be divided in a given ratio at a point when
the ratio of the two segments is equal to the given ratio.

Internal division,

12. Problem 2. To divide a given line internally

into two segments whose ratio shall Ibe equal to a
given ratio ; that end of the line to which the antece-

dent is to he adjacent being stated.

Let AB be the given line

;

and let L and i»f be the ante-

cedent and consequent of the

given ratio.

To find a point P in the

line AB such that

AP •.PB=L\M.

Draw AD, making a convenient angle with AB. Lay off

AC equal to L, and CD equal to M. Join z>5; and draw CP
parallel to DB.

Then, from the principle of parallel transversals,

AP :PB — L: M. [4

Show that there is only one sokition. (8.)

Ex. 1. Divide a given line internally in the ratio 2 : 3.

Ex. 2. Find two lines whose ratio shall be equal to a given ratio

and whose sum shall be equal to a given line.

Ex. 3. Divide a line into three parts in the ratios 2:3:4.

L D

M

^^

c.--""\

y
"^\

\
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External division,

13. Cor. To divide a given line externally so that the two

segments may have a given ratio ; that end of the line to which

the antecedent is to be adjaceiit being stated.

The construction is similar

to 12. Show that there is only —
one solution ; and that there is C
no solution when L and M are M.— ,,''' \^
equal. .<''

Ex. 1. Find two lines whose ,,''"' \ \
ratio shall be equal to a given ,.-''

ratio and whose difference shall j^
^ ^

be equal to a given line.

Ex. 2. Divide a given line externally in the ratio 3 : 2.

CONVERSION OF LINE-RATIOS

Arts. 14-21 will treat of several problems in the construc-

tion of ratios subject to assigned conditions. These problems

are classified under the heading " Conversion of line-ratios,"

which will be explained in Art. 15. They are solved by

the principle of " similar division," which has been exempli-

fied in the preceding articles.

Fourth proportional,

14. Problem 3. To find a fourth proportional to

three given lines.

Let L, Mj and N be the three given lines.

To find a fourth line, P,

such that
^ «.-L : M = N : P. jy

G'^'^'P \
Place two indefinite lines ,-- \

OB and OD at any convenient ,,--''

angle. Lay off OA equal to q'--- jj-.4f_...>^.

L, AB equal to M, OC equal

to N. Join AC ; and draw BD parallel to AC.
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The line CD is the required fourth proportional.

Since OA: AB = OC : CD, [2

therefore, CD is a fourth proportional to the three lines

OA, AB, and OC ; that is, to the three given lines L, M, and N.

Discussion. All the fourth proportionals to three given

magnitudes are equivalent (IV. 58).

Therefore there is only one solution to this problem.

Note. Problem 3 may also be stated thus

:

Given a line N, to find another line P such that the ratio of
NtoP may he equal to a given ratio;

or thus

:

Given the ratio of two lines, and given the antecedent, find

the consequent.

Ex. 1. Given a line N, con- ,'-^,

struct another line P such that

iV^:P=3:4.

Ex. 2. Given a line P, con-

struct another line N such that

iV^:P=3:4.
N

15. Definition. To convert a given ratio is to find an

equal ratio so as to satisfy stated conditions.

E.g., problem 3 may be enunciated thus

:

To convert a given ratio {L : M) so that the new antecedent

may equal a given line (iV).

16. Cor. 1. Convert the line-ratio L: M so that the new

consequent may equal P.

Lay off M, L, P as in figure, ^,,'''' \^
and construct as before. Then ,.--'''' '"-.

N is the required antecedent. M L

Ex. Given a numerical ratio m:n, convert it into a line-ratio

whose consequent shall be a given line (see 14, ex. 2).
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17. Cor. 2. Given any two line-ratioSf convert them so as

to have a common consequent.

Note. By this method two ratios can be compared with each other,

so as to determine whether the first is greater than, equal to, or less

than the second.

Ex. Convert the ratios 3 : 4 and 4 : 5 so as to have a common con-

sequent (IV. 36), and then show which ratio is the greater.

18. Definition. To enlarge or reduce a given line in a

given ratio is to find another line such that the given line is

to the new line in the given ratio.

E.g.^ the line P in 14, ex. 1, is an enlargement of N in the ratio

3:4.

An enlargement or reduction is called an alteration.

E.g.., the line P in 14 is an alteration of N in the ratio L : M.

Ex. ^To reduce a given line OA in

the ratio 6 : 2.

Here OA : OA' = 6:2. Show also

that A'A is an enlargement of OA' in

the ratio of 2 : 3.

19. Definition. Any set of magnitudes of the same kind

are said to be in continued proportion when the successive

ratios of the set are all equal (IV. 54). When three mag-

nitudes are in continued proportion, the third magnitude is

said to be a third proportional to the first and second;

and the second is said to be a mean proportional between

the first and third.

Third proportionaL

20. Problem 4. To find a third proportional to two

given lines.

Let L and M be the two given lines.

To find a third line N such that

L'.M = M'.N.

[Find a fourth proportional to i, M^ and N, by means of 14.]
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21. Cor. Given two lines L and M ; find N and P, such that

L, M, N, and P may form a continued proportion.

Ex. Find a third proportional to the numbers 2 and 6. Continue

this proportion for two terms more.

COMPOUNDING OF RATIOS

22. Definition. If there is any set of like magnitudes,

the first is said to have to the last the ratio compounded
of the successive ratios of the set (see IV. 54).

E.g., if there are four like magnitudes A, B, c, D, then the

ratio of the extremes A: D i^ compounded of the successive

ratios a:B, B : C, C : D.

If there is any number of given ratios, whether successive

or not, and if there is found a set of magnitudes whose

successive ratios are respectively equal to the given ratios,

then the extremes of this set are said to have a ratio com-
pounded of the given ratios.

E.g., if there are any three ratios

A:B, M: N, X: Y]

and if there are found any four like magnitudes

P, Q, R, S,

such that their three successive ratios are respectively equal

to the given ratios, then the ratio of their extremes, P : S

(which by the preceding definition is compounded of the

three successive ratios

P.Q, Q:R, R:S),

is by the present definition also said to be compounded of

the respectively equal ratios

A: B, M: N, X : Y.

The set of magnitudes just mentioned whose successive

ratios are respectively equal to the given ratios are called

aujciliary jnagnitudes to the given ratios.

The use of auxiliary magnitudes is illustrated in the next

theorem.

MOM. ELEM. GEOM.— 19



280 PLANE GEOMETRY— BOOK V

Fundamental principle in cotnpounding ratios,

23. Theorem 3. If there is any set of ratios and
another set severally equal to them, then the ratio

compounded of the first set is equal to the ratio com^-

pounded of the second set.

Let the ratios of the first set be

A : Bj P : Qj X : T,

and those of the second set

A' : B', P' : Q', X' : 7',

the former ratios being respectively equal to the latter.

To prove that the ratio compounded of the first set is

equal to that compounded of the second set.

Take an auxiliary set of lines

F, (?, H, K,

such that their successive ratios are respectively equal to

the ratios of the first set.

[This may be done by taking an arbitrary line -F; then

finding so that A : B = F : ; next finding H so that P : Q

= G : Hy and so on (14).]

Similarly take a set of lines

F'y (?', H\ K\

such that their successive ratios are respectively equal to

the ratios of the second set.

Then, by hypothesis and IV. 19, the successive ratios of the

set Fj G, H, K are respectively equal to the successive ratios

of the set F', G', H\ K'.

Hence the ratios of their extremes are equal (IV. 55);

that is, F : K = F' : K'.

But F : K is by definition the ratio compounded of the

ratios of the first set ; and F' : K' is the ratio compounded

of the ratios of the second set.

Hence the theorem is established.
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24. Note. It follows from this fundamental theorem

that in compounding any given ratios it makes no difference

what auxiliary magnitudes are chosen provided their suc-

cessive ratios are respectively equal to the given ratios.

The operation may be conveniently regarded as the per-

formance of several successive 'alterations' (18). If there

are any magnitudes of the same kind L, M, N, P, the successive

operations of altering L to M, M to N, N to P, give the same

result as altering L directly to P. Thus the ratio L : P is

appropriately said to be compounded of the successive ratios

L : M, M : N, N : P, or oi any three ratios equal to these.

Hence any given ratios a:b, c:d, e-.f may be compounded

as follows

:

Assume any line L^ alter it to M in the ratio a : b, alter M
to N in the ratio c : d, alter iv to P in the ratio e : /, then

L : P is equal to the ratio compounded of the three ratios

a:b, c: d, e:f.

Compounding line-ratios.

25. Cor. I. To give a

simple construction for ^^^'^^^'^

compounding the line- a^^^\ I

ratios a:b, c: d into one ^^^-^^ .' m I N
ratio L : N whose effect

shall be the same as their

joint effects.

Compounding numerical ratios,

26. Cor. 2. If the terms of two ratios are numbers, the ratio

compounded of them is equal to the ratio whose antecedent is

the product of their antecedents and whose consequent is the

product of their consequents.

[Show that the ratios m : n and p : q have the auxiliary magnitudes

mp, np, ng.]

Ex. Show that the ratio compounded of ^ : J5 and m : w is mA : nB.

[The auxiliary magnitudes are mA, mB, nB (IV. 35, 38).]
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Order of compounding,

27. Theorem 4. The order in which two given

ratios are compounded is indifferent.

Let there be two ratios A\ B^ X : Y.

To prove that the ratio obtained by compounding them is

the same in whichever order they be taken.

Take any line L. Alter L to 3/ in the ratio A: B. Alter

M to N in the ratio X : Y. Then the two ratios (taken in

the order named) have the auxiliary magnitudes

L, 3f, Ny

and hence compound into the ratio L : N.

Next take the two ratios in the order X : r, A: B.

Take any line L\ Alter L' to M^ in the ratio X : Y. Alter

3f' to JV' in the ratio A: B. Then the two ratios (taken in

this order) have the auxiliary magnitudes

L\ M', N',

and hence compound into the ratio L' : N'.

Now it is to be proved that

L:N = L':N'.

Find P a fourth proportional such that L : M = N : P,

Then the two sets, m N P

and L\ M\ N\

have their successive ratios respectively equal,

for L^'.M^ = X'.Y= M'.Nj

and M* : N' = A : B = L : M = N : P.

Hence the extremes of the two sets are proportional,

i.e. M:P=L':N'; [IV. 55

now M : P = L : N,^ [alternation

therefore L:N = L':N', [IV. 19

Hence the theorem is proved.

Ex. The order of compounding three ratios is indifferent.
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Equal ratios compounded tvith unequal ratios.

28. Theorem 5. If one ratio is greater than another,

then the ratio compounded of the greater and any
third ratio is greater than that compounded of the.

less and the same third ratio.

Let A\B > P:Q,

and let X : r be any other ratio.

To prove that the ratio compounded of

A : B and X : Y

is greater than the ratio compounded of

P : Q and X : Y.

Take any line L. Alter it to M in the ratio X: Y. Alter

M to N in the ratio A: B.

Then the ratios X : Y and A : B have the auxiliary magni-

t"<ies jr^ M^ ^, |-22, def.

Again alter 3f to iV^' in the ratio P : Q.

Then the ratios X : Y and P : Q have the auxiliary niagni-

t^^des L,M,N'.

It is now to be proved that

L:N > L:N'.

Since A:B > P : Q^ V^JV-

therefore M:N > M:N\

hence .v' > N, [IV. 32

therefore L:N> L:N'. [IV. 30

Hence the required result is proved.

29. Cor. If A.B >P:Q
and L:M> X:Y,

then the ratio compounded of A: B and L: M is greater than

that compounded of P : Q and X:Y.

[Apply the theorem twice.]
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Duplication of a ratio,

30. Definition. When two ratios are equal, the ratio com-

pounded of them is called the duplicate of either of them.

When three ratios are equal, the ratio compounded of them
is called the triplicate of any one of the original ratios.

31. Theorem 6. // three magnitudes are propor-

tional, then the ratio of the first to the third is equal

to the duplicate of the ratio of the first to the second.

Given A. B = 5 : C

;

to prove A:C — duplicate oi A:B.

The ratio of ^ : C is compounded of the successive ratios

A : B and B : C (22, def.). But these two ratios are equal.

Therefore the ratio compounded of them is the duplicate of

either (30, def.). Hence A : C equals the duplicate of A: B.

32. Cor. I. Iffour magnitudes are in continued proportion
J

the ratio of the first to the fotirth is equal to the triplicate of the

ratio of the first to the second.

33. Cor. 2. To find a ratio equal to the duplicate of a given

line-ratio ; also of a given numerical ratio.

34. Cor. 3. To find the triplicate of a given line-ratio.

Comparison of duplicate ratios,

35. Theorem 7. According as one ratio is greater

than, equal to, or less than another, so is the duplicate

of the former greater than, equal to, or less than the

duplicate of the latter.

If A-.B^P'.Qy

the ratio compounded oi A: B and A:B is equal to the ratio

compounded of P : Q and P : Q (23).

If A:B>P:Q,
the ratio compounded oi A:B and A:B i?, greater than that

compounded of P : Q and P : Q (29).

Hence the theorem is established.
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36. Cor. One ratio is greater than, equal to, or less than

another according as the duplicate of the first ratio is greater

than, equal to, or less than the duplicate of the second.

SIMILAR TRIANGLES

This section and the next will treat of similar triangles

and similar polygons, respectively. In the following general

definitions the word " polygon " will be understood to include

"triangle." A former definition is here repeated for con-

venience.

37. Definitions. Two polygons are said to be mutually
equiangular if the angles of one, taken in order, are equal

respectively to those of the other taken in order. The equal

angles are said to correspond; and the sides joining the

vertices of corresponding angles are called corresponding

sides.

Two polygons are said to have their sides proportional

if the sides of one, taken in order as antecedents, form a

series of equal ratios with the sides of the other taken in

order as consequents.

Two polygons are said to be similar if they are mutually

equiangular, and if the corresponding sides are proportional.

The ratio of any two corresponding sides is called the

ratio of similitude of the similar polygons.

E.g., the quadrangles ABCD and a'b'c'd' are similar if

the angles A, B, C, D are equal respectively to A\ B\ C', D',

and if AB : A'b' = BC : B'c' = CD : C'd' = DA : D'A'.

Each of these ratios is equal to the ratio of similitude of

the similar quadrangles.

Two similar polygons are said to be directly or ohversely

similar according as they are directly or obversely equi-

angular (I. 187).

Ex. Two regular polygons of the same number of sides are similar.
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Conditions op Similarity

The next four theorems relate to the conditions of simi-

larity of two triangles.

Angles equal,

38. Theorem 8. If two triangles are mutually
equiangular, then their sides are proportional; and
the triangles are similar.

Let the triangles ABC and A'b'c' be equiangular.

C

A'

To prove that

AB : A'B^ = BC : 5'c' = CA : &A\

Apply the triangle A'B^c' to ABC so that A^ coincides

with A, and ^'5' falls on ^s ; then A^c' falls on AC^ because

the angles A and A^ are equal. Let B' and cf take the

respective positions iJ" and c" on the sides AB and ^c or

else on their prolongations.

Since the angles B and B" are equal, the lines BC and

5"C" are parallel; therefore, by theorem 1,

AB : AB" = AC : AC"y

i.e. AB : A'B' = AC : A'c'.

Similarly by applying the angle B' to the angle B it may
be shown that aB:A'b' = BC: B'c'.

39. Cor. I. A parallel to one side of a triangle foims with

the other two sides a similar triangle.

40. Cor. 2. Triangles whose sides are parallel, respectively
J

are similar.
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Construction of similar triangles,

41. Problem 5. To construct a triangle similar to

a given one, arid such that the ratio of similitude is

equal to a given ratio.

Let ABC be the given triangle, and L : M the given ratio.

/
/'

/'

TA"'

\

\ .

-::^^''

,^:'-
A' ~'yB'

M

To construct a triangle A^B^& similar to ABC, and such

*^^* AB : A'B^ = L: M.

Take any point ; and draw OA, OB, OC. Find the fourth

proportional to L, M, and OA (14). Lay off OA' equal to

this fourth proportional. Draw A'b' parallel to AB, and

A'c' parallel to AC; and join B'c'.

Then A'b'c' is the required triangle.

Since AB is parallel to A'b', hence

OA : OA' = OB : OB'
',

[2

and since ^C is parallel to B'c', then

OA: OA' = OC: OC'.

Therefore, by equality of ratios,

OB : OB' = OC: OC'. [IV. 19

Hence BC is parallel to B'c'. [10

Therefore the triangles ABC and A'b'c' are similar.

Moreover, their ratio of similitude, AB : A'B', is equal to

OA : OA', and is therefore equal, by construction, to the

given ratio L : M.
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42. Definition. The new triangle is called a reduction
or enlargement of the given one, according as the conse-

quent of the given ratio is less or greater than the antecedent.

Two similar triangles (or polygons) are said to have the

same shape or pattern. Thus, in a reduction or enlarge-

ment, the size is altered, but the shape is preserved.

Sides proportional,

43. Theorem 9. If two triangles have their sides

proportional, then they are Tiiutually equiangular,
and the triangles are similar.

Let the triangles ABC and A'B^& have their sides such

that AB :A'b' = BCB'C'^ ^' ^'"

To prove that the triangles are similar.

Lay off AB" equal to A'b'; and draw B"c" parallel to BC.

The triangles ABC and AB"c" are mutually equiangular.

Therefore, AB : AB" = AC : AC"; [38

now A'B:A'B' = AC:A'c'f [hyp.

and AB" = a'b', [constr.

hence the two proportions have three corresponding terms

respectively equal

;

therefore, AC" = A'c'. [IV. 58

Similarly, it may be proved that

B"c" = B'c'.

Hence the triangle a'b'c' is equal to AB"c"f and there-

fore similar to ABC.
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Two sides and included angle,

44. Theorem 10. If two triangles have an angle

of one equal to an angle of the other, and the sides

ahoiAjt these angles proportional, then the triangles

are similar.

Let the triaDgles ABC and A^B^& have the angles A and

A^ equal, and also have

AB :A'B^ = AC: A'C\

G

A' B A

To prove the triangles similar.

Lay off ^^" equal to ^'j5' ; and draw jB"c" parallel to BC.

The triangles ABC and AB"c" are similar (38).

Therefore, AB : AB" = AC : Ac"
;

now AB :A'b' = AC lA'C'y [hyp.

and AB" = A'b', [constr.

therefore, AC" = A'c'. [IV. 58

Hence the triangle A'b'C' equals AB"c"j and is therefore

similar to ABC.

Two sides and a non-included angle,

45. Theorem 11. If two triangles have an angle of

one equal to an angle of the other, and if the sides

about another angle in each are proportional {in

such a way that the sides opposite the equal angles

correspond), then the third angles are either squal or

supplemental.

Let the triangles ABC and a'b'c' have the angles B and

B' equal, and have the sides about the angles A and A' pro-

portional such that AB : A'b' =z AC : A 'C'.
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To prove that the angles C and c' are either equal or

supplemental.

The angles A and A'

included by the propor-

tional sides are either

equal or unequal.

If these angles are

equal, as in figure 1, the

third angles C and c' are

equal (I. 130).

If the angles A and A^

are unequal, let A be the

greater, as in figure 2.

Draw AC'^ cutting off

from A a part5^ C" equal

to^'.

The triangles BAC" and b'A'c' are mutually equiangular,

since they have two angles of one equal to two angles of the

other.

Therefore AB:AC'' = A'li' :A'C'', [38

now AB'.AC =A'b' :A'C'; [hyp.

therefore AC" =AC. [IV. 58

Hence the angle C equals AC"C, which equals the supple-

ment of AC"B. Now ^c"J5 equals C'; therefore the angle

C equals the supplement of C'.

Ex. 1. Summarize the four conditions under which two triangles

are similar. Compare them with the five conditions under which two

triangles are equal. What two of the latter correspond to the first of

the former ?

Ex. 2. The ratio of the perimeters of two similar triangles is equal

to their ratio of similitude. (Use IV. 53.)

Ex. 3. Prove by the principle of similarity that the line joining the

mid-points of two sides of a triangle is parallel to the third side, and

equal to half of it.
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Applications op Similar Triangles

Might triangle divisible into similar parts

o

46. Theorem 12. In a right triangle, the perpen-

dicular from the vertex of the right angle to the

hypotenuse divides the triangle into two parts sim-

ilar to the whole and to each other.

Let ABC he, a triangle, right angled at c, and let GD be

perpendicular to AB. ^

To prove that the triangles ACD
and CBD are similar to ABC and to

each other.

[Prove the three triangles equiangular ;
^ ^

the corresponding angles being those marked in figure.]

47. Note. The corresponding sides are opposite equal

angles. In the triangles ACD and CBD, the side AD of the

first corresponds to CD of the second, and the side CD of the

first corresponds to DB of the second.

The ratio of similitude of these two triangles equals either

of the ratios AD : CD, CD : DB, AC: CB.

MEAN proportional

48. Cor. I. In a right triangle the perpendicular on the

hypotenuse is a mean proportional between the segments of the

hypotenuse. (19, def.)

49. Cor. 2. Conversely, if the perpendicular from the vertex

to the base is a mean proportional between the segments of the

base, then the vertical ayigle is a right angle.

50. Cor. 3. In a right triangle either side is a mean pro-

portional between the hypotenuse and. the adjacent segment of

the hypotenuse made by the perpendicular.

[Compare corresponding sides of the triangles ABC and ACD.']
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51. Cor. 4. The segments of the hypotenuse are in the

duplicate ratio of the two sides.

Outline. The ratio AD : J)B is compounded of the ratios

AD : CD and CD : DB, by definition. Now each of these equals

AC : CB ; and the ratio compounded of a ratio and itself is

its duplicate ratio (30). Therefore, etc.

Ex, 1. By means of theorem 12 find a third proportional to two

given lines.

[Let AD and DC he the two lines.]

Ex. 2. If in a right triangle one of the sides is double the other, in

what ratio does the perpendicular divide the hypotenuse ?

Ex. "3. A perpendicular drawn from any point of a circle to a

diameter is a mean proportional between the segments of the diameter.

Ex. 4. The radius of a circle is a mean proportional between the

segments of a tangent between the point of contact and any pair of

parallel tangents.

Construction of mean proportioned,

52. Problem 6. To find a mean proportional he-

tween two given lines.

Afj N

N

Use theorem 12, cor. 1, and ex. 3.

Show that there is only one mean proportional. (Use 49.)

Ex. 1. Give another construction by taking AB equal to the greater

of the two given lines and AD equal to the less, and then using

theorem 12, cor. 3.

Ex. 2. To find a ratio whose duplicate shall be equal to a given

ratio. Show that there is only one solution.

Ex. 3. Show that the mean proportional between two unequal

lines is less than half their sum.
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Division of base by angle-bisector,

53. Theorem 13. If the interior or exterior vertical

angle of a triangle is bisected by a line which cuts

the base, then the latter is divided internally or

proportional to the twoeX'ternally into segments
adjacent sides.

Let AP and AP^ bi-

sect the interior and

exterior angles of the

triangle ABC, and meet

the opposite sides in

P and P\

First, to prove that

BA : AC = BP : PC.

Draw CD parallel to the bisector PA, meeting the pro-

longation of the side J5^ in the point D.

Outline. By hypothesis and the properties of parallels,

prove the angles ADC and ACD equal; and AD equal to AC.

Then use theorem 1.

Next, to prove that

BA: AC BP' : P'C.

Draw CD' parallel to the bisector p'a, meeting the side

BA in the point D'.

Outline. Prove AD' equal to ^C; and use theorem 1.

Converse,

54. Cor. I. If the base of a triangle is divided internally

or externally in the ratio of the sides, the line drawn from the

point of division to the vertex bisects the interior or exterior

vertical angle.

For there is only one point P in which BC can be divided

internally so that BP : PC shall be equal to a given ratio

;

and only one point P' in which BC can be divided externally

so that BP' : P'c shall be equal to a given ratio (12, 13).
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HARMONIC DIVISION

55. Definition. When a line is divided internally and

externally into segments having equal ratios, the line is

said to be divided harmonically.

56. Cor. 2. In a triangle the bisectors of an interior and

its adjacent exterior angle divide the opposite side harmonically.

57. Cor. 3. The hypotenuse of a right triangle is cut

harmonically by any two lines through the vertex of the right

angUy making equal angles with one of the sides.

Harmonic conjugates. The following corollaries are im-

mediate inferences from the above definition and from

certain previous propositions.

58. Cor. I. If a line LL' is divided harmonically at the

points M and M\ then the line MM' is divided harmonically at

the points L and L'.

L M L' M'

Outline. Given LM : ML' = LM' : L'm' ; prove by recipro-

cation and alternation that L'm' : ML'= LM' : LM (IV. 47, 51).

59. Definition. When the line LL ' is divided harmonically

at the points M and m', then the four points i, if, L', and M'

are said to form a harmonic range. The points M and M'

are said to be harjnonic conjugates with regard to the

points L and L'; and the points L and L' are said to be

harmonic conjugates with regard to the points M and m'.

60. Cor. 2. Given any three collinear points L, M, L' ; to

find the harmonic conjugate ofM with regard to L and L'.

[Divide LV externally in the ratio LM : ML' (13).]

61

.

Cor. 3. A point has only one harmonic conjugate with

regard to tico other collinear points.
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SIMILAR POLYGONS

This section, which treats of the construction and proper-

ties of similar polygons, is based on the properties of similar

triangles established in the preceding articles.

Construction of Similar Polygons

62. Problem 7. To construct a polygon similar to

a given polygon and such that the ratio of similitude

shall be equal to a given ratio.

Let ABCD be

the given polygon, /\^ ,.--'1 L
and Z : iJf the given / ^y^\ '7"^^'

1 M
ratio. / ^.---Vs' i \

To construct a ^^^^^"^"^-^ "\
\ \

Similar polygon ^^---^^^^^ ~^n^ 1

A'b'c'd' such that ^^^""^^^^z>
the ratio of two

corresponding sides AB : A'B^ may be equal to the given

ratio L : M. (Similar in construction and proof to 41.)

63. Note. As in 42, the new polygon is called an enlarge-

ment or reduction of the given one according as the consequent

of the given ratio is greater or less than the antecedent.

64. Cor. If a polygon P is similar to a polygon Q, and if

Q is similar to a third polygon R, then P is similar to R ; and

the ratio of similitude of P to R is equal to the ratio compounded

of the two ratios of similitude of P to Q, and Q to R.

From the hypothesis, the three polygons are mutually

equiangular. Let L, L', and L" be any corresponding sides.

Then the ratio L : L" is by definition compounded of the

ratios L : L' and L' : L"y that is, of the two ratios of simili-

tude. Hence P and R have each pair of corresponding sides

in the same ratio, and are therefore similar.

Ex. If a given polygon is first enlarged in a ratio of similitude equal

to 2 : 5, and the result reduced as 3 : 1, what is the whole alteration ?

MOM. ELEM. GEOM. — 20



296 PLANE GEOMETRY— BOOK V

65. Definition. Two broken lines are said to be similar if

the segments of one taken in order as antecedents, form a

series of equal ratios with the segments of the other taken

in order as consequents, and if the angle between two adja-

cent segments equals the angle between the corresponding

segments. The ratio of two corresponding segments is called

the ratio of similitude of the two similar broken lines.

Ex. To construct a broken line similar to a given broken line and

such that they shall have a given ratio of similitude.

Similar polygon on given line,

66. Problem 8. On a given line to construct a polygon

similar to a given polygon, and such that the given line shall

correspond to an assigned side of the given polygon.

Let ABCD he the given polygon, and L the given line.

D" f
\

^'f^^-.. ...-.\^- ->B' / \

L

J!

To construct a polygon on L similar to ABCD, and such

that L shall correspond to the side AB.

Draw a line A'B^ parallel to AB and equal to the given

line L. Let the lines AA^ and BB^ meet at 0. Draw 5'c'

parallel to BC, meeting DC at C'. Draw ^'Z>' parallel to ADj

meeting OD at D' ; and join CfD\

Outline. Prove OC' : DC = OD' : CD ; and hence prove C'd'

parallel to CD. Show that ABCD and A'b'c'd' are mutually

equiangular. Also prove that

A'B' : AB = B'C' : BC — C'D' : CD = D'A' : DA.

Then transfer A'b'c'd' to the position a"b"c"d" (I. 199).
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Properties of Similar Polygons

Transference into parallelism,

67. Theorem 14. If two polygons are similar, one

of them can always he so transferred that the corre-

sponding sides shall he parallel.

If the polygons are directly similar, turn one of them about

a vertex by the rotation construction (I. 202) until a side

becomes parallel to its corresponding side.

Each side of one is then parallel to the corresponding side

of the other (I. 212).

If the polygons are obversely similar, obvert one of them
with regard to a convenient axis (I. 227). The obverse is

then directly similar to the given one. Rotate as before.

68. Note. As one line can be rotated into parallelism

with another in either of two ways, there are two cases to be

distinguished, as in the following definition.

69. Definition. When two similar polygons are placed

so that corresponding sides are parallel, the polygons are

said to be plojced in parallelism. When the parallel sides

are at the same side of the line joining corresponding

extremities, the polygons are said to be similarly placed.

When the parallel sides are at opposite sides of the line

joining corresponding extremities, the polygons are said to

be oppositely placed.

Concurrence of certain lines,

70. Theorem 15. If two similar polygons are placed

in parallelism, then the lines joining corresponding

vertices are concurrent ; except when tlie polygons are

equal and similarly plojced, in which case the lines

joining corresponding vertices are parallel.

Let the two similar polygons ABCD, A'b'c'd' be so placed

that the sides AB, BC, CD, DA are parallel respectively to

the homologous sides A'b', b'c', C'd', d'A'j and let the
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polygons be similarly placed in the left-hand figure, and

oppositely placed in the right-hand figure.

To prove that the four lines A A', bb\ ccfj and DD' are con-

current in all cases, except when the polygons are equal

and similarly placed.

In the left-hand figure, if the polygons are equal, the

quadrangle abb'A' is a parallelogram
; hence AA' is parallel

to BB\ Similarly BB' is parallel to C'C'; and so on.

If the polygons in the left-hand figure are not equal, pro-

long AA' to meet BB' in 0.

The triangles ABO and A'B^O are similar (38).

Therefore AO: A'0 = AB: a'b'.

That is to say, the line A A' is divided externally by the

line BB' in the ratio of similitude of the polygons.

Similarly the same line AA' is divided externally by each

of the lines CCf and dd' in the same ratio.

Hence the four lines intersect in the same point (13).

Next take the right-hand figure, in which the similar

polygons are oppositely placed. Then by similar reasoning,

the line BB' cuts AA' internally in the ratio of similitude.

Similarly AA' is cut internally in the same ratio by CCf

and dd'. Hence the lines A A', BB', CCf, and dd' intersect in

the same point. In this case the proof holds even when the

polygons are equal.
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71. Definition. The point of concurrence of the lines

joining corresponding vertices of two similar polygons

placed in parallelism, is called the center of similitude of

the polygons.

72. Cor. I. If a line is drawn through the center of simili-

tude to meet two corresponding sides of the polygons, then the

segment intercepted between these sides is divided at the center

of similitude {internally or externally) in the ratio of similitude.

Ex. 1. If two similar broken lines are placed with corresponding

segments parallel, then the lines joining corresponding vertices are

either parallel or concurrent.

Ex. 2. If two similarly divided straight lines are placed parallel,

then the lines joining corresponding points of division are either

parallel or concurrent.

Ex. 3. If the vertices of a polygon are joined to a given point,

and if the joining lines are each divided internally (or externally) in

any given ratio, then the lines joining the points of division form a

polygon similar to the given one and similarly (or oppositely) placed.

(Converse of 7.2. Compare 62.)

If the given (internal) ratio is equal to 3 : 5, show that the ratio of

similitude is equal to 8 : 5.

Principle of Correspondence

73. Definition. Any two points are said to be similarly

placed (or to correspond) with regard to any two similar

polygons, respectively, if the triangles having corresponding

sides for bases, and the two points for vertices, are similar

in pairs.

Construction of corresponding points.

74. Problem 9. Given any two similar polygons,

and a certain point within, without, or on the bound-

ary of the first polygon; to find a similarly placed

point with regard to the second.

Let ABCD, A'b'c'd' be the given similar polygons; and

let be the given point.
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To find a point O' such that and 0' shall be similarly

placed with regard to the similar polygons.

Join to two adjacent vertices A and B. Draw A'O',

making the angle b'a'O' equal to BAG. Also draw B'O'j

making the angle A'b'O' equal to ABO. Let these lines

intersect in o'.

Then O' corresponds to 0.

Since the triangles GAB and G'a'b' are similar, hence the

ratio BG: b'O' equals the ratio of similitude of the polygons,

and therefore equals the ratio BC: B'C'.

Also the angles GBC and G'b'C' are equal, being the

differences of angles that are respectively equal.

Hence the triangles GBC and G'B'C' are similar.

Similarly the other triangles whose vertices are at and
0' are similar in pairs.

Therefore 0' corresponds to G, by definition.

Discussion. Prove that no other point but 0' can corre-

spond to G.

Show that when comes nearer and nearer to one of the

sides, then 0' comes nearer and nearer to the corresponding

side.

If coincides with one vertex, prove that O' then coin-

cides with the corresponding vertex.

Show that a similar construction applies when the given

point is within the first given polygon.
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CORRESPONDING LINES

76. Definition. The lines joining two corresponding points

(with regard to two similar polygons) are called corre-

sponding lines.

From the definitions of corresponding points and lines,

and from the properties of similar triangles, the following

corollaries are easily derived.

76. Cor. I. In two similarpolygons, the linesjoining two cor-

responding points to two corresponding vertices are in the ratio

of similitude. (Use 73, and a property of similar triangles.)

77. Cor. 2. In tivo similar polygons, any two correspond-

ing lines are in the ratio of similitude.

Outline. Let ABCD and A'b'c'd' be the polygons. Let

the point P correspond to P', and Q to Q'.

To prove that the ratio PQ : P'Q' is equal to the ratio of

similitude.

The angles PAQ and p'a'q' are equal, being differences of

equal angles. Also AP : A'P' = AQ: A'Q', each ratio being

equal to the ratio of similitude. Draw conclusion.

78. Cor. 3. In two similar polygons, two triangles, whose

respective vertices are at corresponding points, are similar.

Use 77, and conditions of similarity.

79. Cor. 4. If two polygons are similar, then two other

polygons, whose respective vertices taken in order are at cor-

responding points, are similar.

80. Cor. 5. If two similar polygons are transferred so as

to he similarly placed, then any two corresponding lines become

parallel.

Show that lines joining two corresponding points to two correspond-

ing vertices become parallel, and apply 76 and 78.
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81. Ck)r. 6. If three points are on a straight line, then their

corresponding points are on a straight line (80).

82. Cor. 7. If two lines correspond respectively to two

other lines ivith regard to two similar j^olygons, then the inter-

section of the first two lines corresponds to the intersection of

the other two.

Ex. 1. In two similar triangles the feet of the perpendiculars

drawn from two corresponding points to the opposite sides are cor-

responding points ; and these perpendiculars are in the ratio of

similitude.

Ex. 2. In two similar triangles the ratio of the radii of their in-

scribed circles is equal to the ratio of similitude ; so is the ratio of the

radii of their circumscribed circles.

Ex. 3. Given two similar polygons, to find a point such that it

coincides with its corresponding point.

Analysis. Suppose that P is the required point. Let the two cor-

responding sides AB and A' B' meet in 0. The triangles ABP and

A'B'P are equiangular. Prove that the quadrangles OPAA' and

OPBB' are each circumscriptible (III. 62). Show that we can deter-

mine P by the intersection of the circles described about OAA' and

OBB' ; and prove that this point is self-correspondent.

Note. This point may be called the center of similitude of the two
similar polygons. Show that the center of similitude of two similar

and similarly (or oppositely) situated polygons is a special case of this.

Similar partition of similar polygons,

83. Problem 10. To divide two similar polygons

into triangles similar in pairs, and having corre-

sponding points for corresponding vertices.
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Outline. Take any point within one of the polygons,

and find its correspondent (74). Join these two points with

the vertices of the respective polygons. The triangles so

formed are similar in pairs, and have the same ratio of

similitude as the polygons have.

Note. The first polygon may be dissected into triangles

in an arbitrary manner, by taking as vertices any number of

points inside the polygon. The second polygon can then be

divided into similar triangles by joining the respective cor-

responding points inside that polygon.

84. Cor. When two similar polygons are divided as in 83,

then two similarly placed points in a pair of corresponding tri-

angles are also similarly placed with regard to the polygons.

POLYGONS INSCRIBED IN POLYGONS

85. Definition. One polygon is said to be inscribed in

another if each vertex of the one is on a side of the other.

Similar polygons in similar polygons,

86. Problem 11. Given two similar polygons and
given any polygon inscribed in the first; to inscribe

a similar polygon in the second.

Outline. Let P and P' be two similar polygons. Let a

polygon Q be inscribed in P. To inscribe a similar one in P'.

Let the vertices of Q hQ A, B, C, ... , all situated on the

sides of P. Find their correspondents A', B', C', ... , all

situated on the sides of P' (74). The inscribed polygon

A'b'c' ... is similar to the inscribed polygon ABC ... (79).

87. Cor. I. In a given triangle (P) to inscribe a tnangle

similar to a given triangle (Q).

Outline. Through the vertices of Q draw lines respec-

tively parallel to the sides of P, thus forming a triangle

similar to P, and having Q as an inscribed triangle. Then,

by means of 86, inscribe in P a triangle similar to Q.
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88. Cor. 2. In a given triangle (ABC) to inscribe a parallelo-

gram similar to a given x>arallelogram (LMNP)

.

Outline. Transfer LMNP so that NP may be parallel to

BC. Through L and M draw parallels to AB and AC, thus

forming a triangle similar to ABC, and having LMNP as an

inscribed parallelogram. Then, by means of 86, inscribe in

ABC a parallelogram similar to LMNP.

Ex. 1. In a given triangle to inscribe a square.

Ex. 2. In a triangle to inscribe a rectangle similar to a given one.

RATIO OF SURFACES OF POLYGONS

89. All the ratios hitherto considered have been ratios of

segments of lines. It will now be shown how to compare

the surfaces of polygons. The ratio of the surfaces of two

polygons will be called the ratio of the polygons. We
begin with the polygons that are most easily compared,

namely, two rectangles of equal altitudes, and thence ad-

vance, step by step, to the comparison of polygons in general.

90. Theorem 16. If two rectangles have equal alti-

tudes, then the ra^io of the rectangles is equal to the

ratio of their bases.

Let the rectangles OJBC, O'a'b'c' have the bases OA, O'a',

and the equal altitudes AB, a'b'. Let the rectangles be

denoted by R, R', and their bases
, , ,, C' B ' B'o p.,
by h, b. r r -r-<-—

I

To prove R: R' = b:b'.

Prolong OA and lay off consecu-

tive segments equal to OA. Mark J
the points of division with the

symbols A2, A^ ... ; and draw

perpendiculars through these

points to meet the prolongation

of CB. Prolong O'A', and make a similar construction.

i

i !

cr-A'-AVAV"^'
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The segment OA^ is equal to mb ; and the rectangle stand-

ing on it is equal to mR.

The segment o'A'^ is equal to nb' ; and the rectangle stand-

ing on it is equal to nR'.

Since the altitudes are equal, the pairs of magnitudes

rect. OB^, rect. OB'^

and base OA^, base 0A'„

are in the same order of size (II. 22, III. 50),

i.e., the pairs of multiples
^

mRj nR'

and mb, nb'

are in the same order of size, whatever m and n are ; there-

fore the scale of relation of R and R' is everywhere similar

to the scale of relation of b and b' ; hence, by definition of

equal ratios, R- r' = b -b'

Parallelograms of equal altitudes.

91. Cor. I. Two parallelograms of equal altitudes have

a ratio equal to the ratio of their bases.

Triangles of equal altitudes.

92. Cor. 2. Two triangles of equal altitudes have a ratio

equal to the ratio of their bases.

Cor. 3. Two parallelograms or triangles of equal bases

have a ratio equal to the ratio of their altitudes.

Ex. 1. Perpendiculars are drawn from any point within an equi-

lateral triangle on the three sides : show that their sum is equal to the

altitude of the triangle (IV. 59, 33).

Ex. 2. A quadrangle is divided by its diagonals Into four triangles

that form a proportion.

Ex. 3. If two triangles have their bases in the same straight line,

and their vertices on the same line parallel to the bases, then any

other parallel, cutting the sides, cuts off two triangles that form a pro-

portion with the given triangles.
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Relation among four propoHional lines,

93. Theorem 17. // four lines form a proportion,

then the rectangle of the extremes is equivalent to

the rectangle of the means.

Let a, 6, c, d be four lines such that a:b = c:d.

To prove that the rectangle of a and d is equivalent to the

rectangle of b and c.

On one of the sides of any right angle lay off OA, OB equal

to a, 6 ; and on the other side lay off OC, OD equal to c, d.

Complete the rectangles AD and BC.

Compare each of these rectangles with the rectangle BDj

which is their common part.

Since rectangles of equal altitudes have a ratio equal to

the ratio of their bases, therefore

rect. AD : rect. BD = OA

and rect. BC : rect. BD = OC

now OA: OB = OC

therefore, by equality of ratios,

rect. AD : rect. BD = rect. BC : rect. BD
;

since these equal ratios have a common consequent, hence the

rectangles AD and BC are equivalent; that is, the rectangle

of the extremes is equivalent to the rectangle of the means.

Special case.

94. Cor. If three lines are proportional, the rectangle of the

extremes is equivalent to the square on the mean.

Ex. 1. Apply the theorem to prove III. 94.

Ex. 2. Apply the corollary to prove II. 60.

OB, [90

OD;

OD, [liyp-
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Converse of 93,

95. Theorem 'IS. If two rectangles are equivalent,

the sides of one will form the extremes, and the sides

of the other the means, of a proportion.

In figure of theorem 17, if rectangles AD and BC are

equivalent, they have equal ratios to rectangle BD (IV.

25). Therefore, etc.

Converse of 94-

96. Cor. If there are three lines such that the rectangle of

the extremes is equivalent to the square on the mean, then the

three lines form a proportion.

Extreme and Mean Ratio

97. Definition. If a given line is divided into two parts

such that one of the parts is a mean proportional between

the whole line and the other part, the line is said to be

divided in extreme and mean ratio or in medial
section.

Application of 94,

98. Problem 12. To divide a given line in extreme

and mean ratio.

By means of the construction in II. 89, divide the given

line so that the rectangle of the whole line and one part is

equivalent to the square on the other part.

The line is then divided in extreme and mean ratio;

because the latter part is, by 96, a mean proportional

between the whole line and the first part.

Note. This mode of division is the ancient sectio aurea (II. 89).

Ex. If the radius of a circle is divided in extreme and mean ratio,

the greater segment is equal to the side of an inscribed regular deca-

gon (III. 122).
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Mutually Equiangular Parallelograms
#

99. From the comparison of two parallelograms of equal

altitudes, or of equal bases (91, 92), we can advance to the

comparison of any two mutually equiangular parallelograms.

This is done by introducing an intermediate parallelogram

having a side in common with each, and then compound-

ing the two successive ratios. The ratio of the two given

surfaces is thus expressed as a ratio compounded of two

line-ratios by means of the following theorem.

100. Theorem 19. If two parallelograms are mutu-
ally equiangular, then their ratio is equal to the ratio

compounded of the ratios of two a^acent sides of tlie

first to the respective adja^cent sides of the second.

Let ABCD and BEFG be two parallelograms that have the

angles ABC and EBG equal. Let these parallelograms be

noted by P and R. ^ en
To prove that the ratio P : R / p ~7 n"

7

equals the ratio compounded of L _/ J^

the two ratios / i? /

AB : BG and CB : BE. E Ji

Place the two parallelograms so that the sides AB and BG
are in one line, and so that the equal angles ABC and GBE
are vertically opposite. Then the sides CB and BE are in

one line (I. 52).

Complete the parallelogram BGHC, and denote it by Q.

In the set of three magnitudes P, Q, R, the ratio P : P is,

by definition (22), compounded of the successive ratios P : Q

and Q : R.

Now P: Q=AB:BG, [91

and Q: R=CB: BE.

Therefore the ratio of the two parallelograms P and R is

equal to the ratio compounded of the ratios of their sides.
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Ex. 1. Given two mutually equiangular parallelograms, show how
to convert their ratio into a line-ratio, by a construction. (See 25.)

Ex. 2. The sides of one rectangle are to the respective sides of an-

other in the two ratios 3 : 2 and 4:5. Show that the first rectangle is

to the second as 6 : 5.

101. Cor. I. The ratio compounded of two line-ratios is

equal to the ratio of the rectangle constructed on the antecedents

to the rectangle of the consequents.

102. Cor. 2. If two triangles have an angle of the one equal

or supplemental to an angle of the other, the ratio of the tri-

angles is equal to the ratio compounded of the two ratios of the

including sides of the one to the including sides of the other.

[Show that the triangles are halves of mutually equiangular

parallelograms.
]

Ex. If two triangles have an angle of the one equal to an angle of

the other, and if the including sides are respectively as 1 : 3 and 1 : 4,

show that the first triangle is one twelfth of the second.

103. Cor. 3. The ratio of two mutually equiangular paral-

lelograms is equal to the ratio of the two rectangles contained

by the adjacent sides respectively.

Ratio of similar parallelograms,

104. Theorem 20. If two parallelograms are simi-

lar, then their ratio is equal to the duplicate of their

ratio of similitude.

For their ratio is equal to the ratio compounded of the

ratios of two adjacent sides of one to the corresponding

sides of the other (100).

Now each of these ratios is equal to the ratio of simili-

tude. Hence the ratio of the parallelograms is equal to the

duplicate of the ratio of similitude (30).

Ratio of similar triangles,

105. Cor. I. Two similar triangles have a ratio equal to

the duplicate of their ratio of similitude.
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106. Cor. 2. Two squares have a ratio equal to the dupli-

cate of the raiio of their sides.

107. Cor. 3. Two similar triangles have a ratio equal to

the ratio of the squares on corresponding sides.

Ex. If the ratio of similitude of two similar triangles is equal to

3:1, how often is the less contained in the greater ?

Ratio op Similar Polygons

108. Theorem 21. Two similar polygons have a

ratio equal to the duplicate of tJzeir ratio of simili-

tude. (Apply 83, 105.)

108 (a). Cor. i. The ratio of two similar polygons is

equal to the ratio of the squares on corresponding sides.

109. Cor. 2. A polygon is greater than^ eqvxd tOy or less

than a similar polygon^ according as a side of the first is

greater than, equal to, or less than the corresponding side of the

second; and conversely (II, 24).

110. Cor. 3. If three lines are proportional, then the first is

to the third as any polygon standing on the first is to the simi-

lar and similarly situated polygon standing on the second.

Q

L M JV -

Use 31 and 108.

Surface-ratio converted into line-ratio,

111. Cor. 4. 7(9 find two lines in the ratio of tJie surfaces

of two given similar polygons.

To two corresponding sides L and M find a third propor-

tional N. Then L and N are the required lines (110).

Ex. 1. To enlarge (or reduce) the surface of a given polygon P in

the given ratio L : N. (Use C2 and 52, ex. 2.)

Ex. 2. Show how to double a given polygon, preserving its shape.

Ex. 3. Construct a square equivalent to one third of a given one.
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Sum of two similar polygons.

112. Theorem 22. In a right triangle, any polygon

standing on the hypotenuse is equivalent to the

sum of two similar and similarly situated polygons

standing on the sides.

Let ABC be a triangle, right angled at C ; and let P, Q, R

be similar and similarly situated polygons on AB, BC, CA,

respectively.

To prove that P is equivalent to the sum of Q and R.

Draw CD perpendicular to AB.

Then, from the similarity of the triangles ABC and CBD

AB : BC = BC : DB. [46

Therefore, by 110,

P:Q = AB:DB.

Similarly, P\R = AB\AD.

Hence, by reciprocation and the rule of addition,

P : Q -{- R = AB : DB -\- AD. [IV. 51, 59

Now AB equals DB + AD.

Therefore P is equivalent to the sum of Q and R (IV. 33).

Note. This theorem includes II. 61 as a special case.

Ex. Given two similar polygons, show how to construct a third

polygon similar to them, and equivalent to their sum.

MCM. ELEM. GEOM. 21
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GENERAL CONSTRUCTION OF POLYGONS

Given the shape and size.

113. Problem 13. To construct a polygon similar

to one and equivalent to another £iven polygon.

Let P and Q be the two given polygons.

To construct a polygon

R similar to P and equiva-

lent to Q.

On AB, a side of P, con-

struct the rectangle ABCD
equivalent to P (II. 71-73).

On AD construct the rec-

tangle ^ZJ-Ei^equivalent to Q.

Find GH the mean proportional between BA and AF {52).

On GH construct a polygon R similar to P and such that

GH and BA are corresponding sides {(^Q).

Then R is the polygon required.

Since BA:GH= GHiAF, [constr.

therefore BA:AF= P:R, [110

hence BD:AE=P:R. [90

Now these equal ratios have equivalent antecedents (by

construction) ; hence they have equivalent consequents.

Thus R is equivalent to AE, and therefore to Q.

Ex. Construct an equilateral triangle equivalent to a given square.

Conversion of a polygon-ratio.

114. Problem 14. To find two lines whose ratio is

equal to ths ratio of the surfaces of two given polygons.

Let P and P' be the given polygons.

To find two lines h and 6' such that P : P' = 6 :
6'.

As in 113, construct two rectangles R and b! respectively

equivalent to P and P\ and having equal altitudes (II. 71-3).

Let the bases of the rectangles be denoted by 6 and 6'.

Then P : P' = P: iJ' = 6 :
6'. [IV. 25, V. 90
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Ex. Given any two ratios, P : Q and R : S, show how to con-

vert them into line-ratios having equal consequents ;
and hence show

how to determine which of the two given ratios is the greater.

Addition of Eatios

115. Definition. If two ratios have the same consequent,

then a third ratio having the same consequent and having

its antecedent equivalent to the sum of their antecedents is

called the sum of the first two ratios.

E.g., the sum of the ratios A : B and A^ : B \?, A -\- A^ : B.

The sum oi any two ratios is the ratio obtained by con-

verting them so as to have equivalent consequents, and then

taking the sum by the preceding definition.

To add two ratios,

116. Pkoblem 15. To construct a line-ratio equal

to the sum of any two given ratios, whether of lines,

polygons, or whole numbers.

Outline. If either ratio is not a line-ratio, convert it into a line-

ratio (114 ; 16, ex.). Convert these two line-ratios so as to have a

common consequent (17). Then the required ratio has the same con-

sequent, and its antecedent is the sum of the new antecedents.

Ex. Show that the sum of the two numerical ratios m : n and

p : q \& mq + np : nq.

Equals added to equals,

117. Theorem 23. If equal ratios are added respec-

tively to equal ratios, then the sums are equal.

Outline. Convert the ratios so that those which are to

be added may have common consequents. Let the given

equalities then be written,

A:B = X:Y,

A':B = X^:Y.

Then by the rule of addition (IV. 59),

A-\-A^:B = X-\-X': T.

Now these ratios are the sums of the given ratios (def.,

115). Hence the sums are equal.
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Addition commutcubive.

118. Cor. Tlie sum of two ratios is the same^ however they

are converted so as to have a coinmon consequent and in wliai-

ever order they are taken.

Ex. Frame a similar definition for the difference of two ratios;

and show that if equal ratios are subtracted respectively from equal

ratios, then the differences are equal.

Equals added to unequeUs,

119. Theorem 24. If one ratio is greater than an-

other, tJien the sum of the greater, and any third

ratio is greater than the sum of the less and the

same third ratio.

Convert all the ratios as before, and apply IV. 28, 29.

120. Cor. If two ratios are respectively greater than two

others, then the sum of the two greater ratios is greater than

the sum of the two less ratios.

DISTRIBUTIVE PROPERTY OF RATIOS

Cofnjyounding a sutn ivith a third ratio,

121. Theorem 25. If the sum, of two ratios is com-

pounded with any third ratio, the result is tlie same
as if the two ratios are first separately compounded
with the third rajbio, and the results then added.

Convert the first two ratios into line-ratios with a common
consequent; let them be ^ : 5 and A* -. B. Convert the third

ratio into any line-ratio R : S.

To prove that the ratio compounded of A -\- A^ -.B and

2? : S is equal to the sum of the ratio compounded of ^ : ^
and R : S, and the ratio compounded of .i' : B and R : S.

Outline. Replace each compound ratio by the ratio of two

rectangles (101) ; the resulting ratios have a common conse-

quent, namely rect. {B, S). To the antecedents apply the

distributive property of rectangles (II. 41), i.e. that rect.

(A-^ a\ R) is equivalent to the sum of rect. (A, R) and rect.

(^',* R). Draw conclusion by definition in 115.
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RATIOS IN THE CIRCLE

Arc-ratios and Angle-ratios

Equiradial arcs,

122. Theorem 26. In two equal circles or in the

same circle the ratio of any two central angles is

equal to the ratio of their subtending arcs.

Let AB, A'b' be arcs of equal circles subtending the central

angles AOB, a'o'b'. Let the arcs be denoted by a, b, and

the angles by a, 13.

To prove that a: ft
= a:b.

Take the arc ABL equal to m times a, and arc A'b'l' equal

to n times 6, it being understood that either or both of these

multiples may exceed a whole circle, and accordingly that

the corresponding central angles may exceed a perigon.

The arc ABL is made up of m parts each equal to AB, and

each subtending an angle a, hence the arc ma subtends an

angle equal to m«. Similarly the arc nb subtends an angle

equal to n(S.

Hence, from the order-theorem of arcs and central angles,

the two pairs of multiples

ma, nb

and ma, nfi

are in like order of size whatever m and n are (III. 35, 51).

Therefore, by definition of equal ratios,

a: ^ = a:b.
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123. Cor. In two equal circles, or in the same circle, the

ratio of any two sectors is equal to the ratio of their arcs, and
also equal to the ratio of their angles.

Inscribed Polygons

Rectangle of sides of inscribed triangle.

124. Theorem 27. The rectangle of two sides of a
triangle is equivalent to the rectangle of two lines

drawn from the vertex, making equal angles with
these sides respectively, one of the lines being ter-

minated by the base, and tJie other by tJie arc of
the circumscribed circle below the ba^e.

Let ABEC be the circumscribed circle of the triangle ABC.

Let the lines AD, AE be drawn through the vertex A making
with the sides AB, AC the equal angles BAD, CAE respec-

tively. Let AD be terminated by the base, and AE by the

arc BC below the base.

To prove that the rectangle of AB and AC is equivalent to

the rectangle of AD and AE.

[Draw EC. Prove the triangles ACE and ADB mutually

equiangular (III. 54) ; and apply 38, 93.]

125. Cor. I. Tlie rectangle of two sides of a triangle is

equivalent to the rectangle contained by the diameter of the

circumscribed circle and the altitude drawn to the base.

126. Cor. 2. The rectangle contained by two sides of a

triangle is equivalent to the rectangle contained by two lines.
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one of which bisects the vertical angle and is terminated by

the circumscribed circle, and the other is the portion of that

bisector intercepted between the vertex and the base.

127. Cor. 3. Hie rectangle of two sides of a triangle is

equivalent to the square of the line that bisects the vertical

angle and is terminated by the base, together with the rectangle

of the segments of the base made by that bisector.

Sides of inscribed quadrangle,

128. Theorem 28. If a quadrangle is inscribed

in a circle, the rectangle of its diagonals is equiva-

lent to the sum of the two rectangles contained
respectively by each pair of opposite sides.

Let ABCD be the inscribed quadrangle. '

To prove that the rectangle oi AC and BD is equivalent

to the sum of the rectangle of AB and CD and the rectangle

of AD and BC.

Draw AE, making the angle BAE equal to the angle CAD.

Outline. Prove the triangles ABE and ACD similar; and

rectangle \_AB, CD'] equivalent to rectangle \_AC, BE]. Also

prove rectangle \_AD, BC] equivalent to rectangle \_AC, DE].

Add, and apply II. 39.

Note. This result is called Ptolemy's theorem, after Claudius

Ptolemaeus of Alexandria, one of the chief geometers among the later

Greeks (died 165 a.d.).

Ex. If the three vertices of an equilateral triangle are joined to a

point on the circumscribed circle, then one of the joining lines is equal

to the sum of the other two.
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CIRCUMSCKIPTIBLE POLYGONS

129. Theorem 29. If a polygon is circumscriptible,

then any similar polygon is also circunvscriptihle.

Let the similar polygons be ABC •••, A'b'c' •••, and let the

former be circumscriptible.

To prove that the latter is also circumscriptible.

Find 0, the center of the circumscribing circle of the

former; and find its corresponding point O' in the other

polygon (74).

Then, by similar triangles,

OA : O'A' = OB : O'B' = O'C: O'Cf = •...

But OA = OB= OC=z •".

Hence O'A' = o'B' = o'c' = •••.

Therefore, the circle described with O' as center and O'A'

as radius passes through all the vertices of the polygon

a'b'c' "'. This polygon is therefore circumscriptible.

130. Cor. I. If two similar polygons are circumscriptible,

the centers of the circumscribed circles are corresponding points,

and the ratio of the radii is equal to the ratio of similitude of

the polygons (76).

131. Cor. 2. If a polygon is such that a circle can be in-

scribed, then any similar polygon has the same property, and

the centers of the inscribed circles are corresponding points.

132. Theorem 30. The perimeters of any two regu-

lar ii'gons have a ratio equal to the ratio of the radii

of their eircumscrihed circles, and also equal to the

ratio of the raxlii of their inscribed circles.

Use 130, 131, and 45, ex. 2.

133. Cor. Tlie ratio of the surfaces of two similar poly-

gons is equM to the ratio of the squares on the radii of their

circumscribed circles.
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134. Problem 16. To inscribe in a given circle a
polygon similar to a given circumscriptible polygon.

Outline. Let ABCD be the given polygon, the center of

its circumscribed circle, and O' the center of the given circle.

Draw radii O'^', 0'B\ O'c', O'd' parallel to the radii OA,

OB, OC, OD.

The inscribed polygon A'b'C'b' is similar to ABCD.

Cor. In a given circle to inscribe a rectangle similar to a

given rectangle.

Ex. 1. In a given semicircle inscribe a rectangle similar to a given

rectangle ABCD.
[Place the rectangle so that any side AB is parallel to the diameter

of the semicircle. Bisect AB in 0. Draw OC, OD. In the semicircle

draw radii O'C, O'D' parallel to OC, OD. Complete the rectangle

A'B'G'D'. Prove it similar to ABCD. Obtain another solution by

placing the side BC parallel to the diameter. When are the two

solutions identical ?]

Ex. 2. In a given quadrant inscribe a rectangle similar to a given

rectangle. How many solutions are possible ?

Ex. 3. Given the ratio of two lines, and their mean proportional,

find them. [Take two lines in the given ratio, find their mean propor-

tional, enlarge or reduce the figure to suit the condition (42).]

135. Regular n-gons and 2 n-gons. When an inscribed

regular n-gon is given, it has been shown that if the arcs

are bisected, then the chords of the half arcs form an in-

scribed regular 2 n-gon, and that the tangents at the vertices

of the latter form a circumscribed regular 2 n-gon.

It has also been seen that the perimeter of the inscribed

n-gon is less than the perimeter of the inscribed 2 7i-gon,

that the latter perimeter is less than the perimeter of the

circumscribed 2 n-gon, and that this is in turn less than the

perimeter of the circumscribed 7i-gon. It is important, for

reasons which will appear later, to obtain more definite rela-

tions among these four perimeters. Theorem 31 establishes

a simple relation among the first three, and theorem 32

gives a relation among the first, third, and fourth.



320 PLANE GEOMETRY— BOOK V

136. Theorem 31. If in a circle are inscribed a
regular n-gon and a regular 2n-gon, and if about
the circle is circumscribed a regular 2 n-gon, then
the perimeters of these three polygons form a pro-

portion.

Let AB be the side of an inscribed regular n-gon, and C
the mid-point of the arc AB-^ then the lines ^C and 5 Care
sides of an inscribed reg-

ular 2 w-gon, and the two ^ J^ __ E
tangents at A and B inter-

cept on the tangent at

C a line DE equal to the _
side of a circumscribed

regular 2 7i-gon. The perimeters of these three polygons

are, respectively, ^.^^^ 2n-AC,2n.DE

To prove n- AB:2n' AC=2n' AC:2n' DE.

The angles ACD and ABC are equal. Therefore the isos-

celes triangles ACD and ^fiCare equiangular (III. 76).

Hence AB : AC= AC : DC.

Now n:2n = 2n:4ri.

Hence, by compounding equal ratios,

n ' AB .2 n ' AC=2 n ' AC : 4:71 ' DC. [23, 26

But 4 n'DC—2n'DE'^

therefore ri' AB'.2n - AC = 2n' AC:2n' DE.

Note. If the perimeters of the inscribed and circum-

scribed regular 7i-gons are denoted by p,„ P„, then this

result may be written in the form, p,, : P^^ = Po„ : po^.

137. Theorem 32. If in a circle a regular n-gon is

inscribed, and if about the circle are circumscribed

a regular n-gon and a regular 2 n-gon, then the sum
of the perimeters of the first and second, of these

polygons is to ths perimeter of the first as the perim-
eter of the second is to the semiperimeter of the third.
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Let AB be the side of a regular inscribed n-gon, and draw
the lines as in the preceding figure. Join the center to

A, B, D, E. Prolong OA and OB to meet DE prolonged in F
and G; then FG is evidently a side of a regular circum-

scribed n-gon. The perimeters of the inscribed n-gon, the

circumscribed n-gon, and the circumscribed 2 n-gon are,

respectively, n - AB, n - FG, 2 n • DE.

The semiperimeter of the latter polygon is n • DE,

F D a E G

^x

AB = 71' FG : n ' DE.To prove n • AB \- n • FG : n

By similar triangles,

FG: AB = OF: OA,

= OF : OC.

By equality of right triangles, OD bisects the angle COA.

Hence OF: OC = FD : DC. [53

Therefore, by equality of ratios,

FG: AB = FD: DC.

Hence, by composition,

FG -}- AB: AB = FD + DC: DC, [IV. 48

= EC : DC,

= FG : DE.

Therefore, taking ?ith multiples,

n ' FG -{- n • AB : n ' AB = n ' FG : n ' DE.

Note. With the same notation as in note to 136, this

result may be written in the form,
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LOCUS PROBLEMS

138. Problem 17. To find tJie locus of a point such
that the perpendiculars from it to two given lines

shall have a given ratio.

Let OR and OS be the given lines. Let P be a point such

that the perpendiculars PM and PN have a given ratio A : B.

To find the locus of the point P.

As in I. 254 the point O is a point on the locus. Another
point of the locus is obtained by finding Q such that the per-

pendiculars QR, QS are respectively equal to A, B (I. 257,

ex. 2).

Now the line QP must pass through 0, because the

broken lines RQS and MPN are similar and similarly placed

(72, ex. 1). Hence any point P, situated in the angle ROS
and satisfying the given condition, lies on the fixed line OQ.

Conversely, any point on the line OQ satisfies the given

condition. [The proof is left to the student.]

Show that there is another part of the locus.

Ex. Find a point from which the perpendiculars to three given

lines shall have given ratios L-.M: N. How many solutions are there ?

139. Problem 18. To find the locus of a point such
that its joins to two given points shall have a given
ratio.
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Let A and B be the given points, and H : K the given ratio.

Let P be a point such

that PA : PB = H : K.

To find the locus of P.

The points M and iV

which divide AB inter-

nally and externally in

the ratio H: K are evi-

dently points on the

locus.

The line PM bisects

the angle APB, because PA: PB = AM : MB. [54

Similarly PiV bisects the external angle between PA and PB.

Then the angle MPN is a right angle (I. 100, ex. 1),

Hence P is on the circle whose diameter is M]^ (III. 57).

It follows that any point satisfying the given condition

lies on this circle.

Conversely, to prove that every point on this circle satis-

fies the given condition.

Let P be any point on the circle.

To prove that PA:PB = H: K.

Draw PA' making the angle MPA' equal to MPB, and meet-

ing AB in some point A', which is to be proved coincident

with A.

Since MPN is a right angle, hence PN bisects the external

angle between PA' and PB. Therefore A' is the harmonic

conjugate of B with regard to M and N (59).

But A is also the harmonic conjugate of B with regard to

M and N'. Therefore A' coincides with A (61).

Hence PM bisects the angle APB ;
and therefore

PA: PB = AM : MB =H:K.
Ex. 1, Compare the position of the locus in the three cases

H< =>K.
Ex. 2. Find the position of a point, whose joins to three given

points have given ratios H: K:L; show that there may be two soki-

tions, one solution, or none.
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EXERCISES

1. The rectangle of two lines is a mean proportional between the

squares on the lines.

2. Find a line such that the perpendiculars to it from three given

points may have given ratios to each other.

3. A regular polygon inscribed in a circle is a mean proportional

between the inscribed and circumscribed circles of half the number of

sides.

4. Construct a triangle, being given its base, ratio of sides, and

either altitude or vertical angle.

6. Find the locus of a point at which two given circles shall

subtend equal angles.

6. Two diagonals of a regular pentagon divide each other in

extreme and mean ratio.

Definition. Two points P and P are said to be similarly situated

(or to correspond) with regard to two circles, whose centers are C and

C", when CP and CF* are parallel and in the ratio of the radii. The
correspondence is called direct or transverse according as OP and

O'P are at the same or opposite sides of the central line. The fol-

lowing exercises illustrate the theory of correspondence.

7. The line PP* divides the central line either externally or inter-

nally in the ratio of the radii, and each of the points of division is a

self-corresponding point (called a center of similitude).

8. Two polygons whose respective vertices are all in direct (or

transverse) correspondence are similar and have the point S (or S') for

center of similitude.

9. The line joining a fixed point to a variable point on a fixed

circle is divided in a constant ratio
;
prove that the locus of the point

of division is a circle, and that the two circles have the fixed point as

center of similitude.

10. In a given sector OAB inscribe a square, so that two corners

may be on the arc AB. [Take any square having a side parallel to

AB ; circumscribe it by a sector having its radii parallel to OA and
OB; then use the principle of correspondence.]

11. A common tangent passes through a center of similitude.

12. Describe a circle through a given point (P) to touch two given

lines (0^, OB). [Draw any circle touching the two lines ; let it meet
OP in P ; then considering P and P as corresponding points, find

the center of the required circle. Two solutions.]
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1. Mensuration is the science of measurement. The
operation of measuring a magnitude by means of another

magnitude of the same kind will be defined after certain

,

preliminary notions are explained. It will be shown to be

intimately connected with the theory of ratio set forth in

Book IV and applied in Book V.

In Art. 11 of Book IV the scale of relation of two magni-

tudes of the same kind was explained, and it was shown
that any two such magnitudes have a definite ascending

order in which their various multiples occur. The theorems

of Books IV and V are based on the mere fact that this

scale is definite, and their proofs do not require the actual

determination of any particular scale of relation.

The determination of a scale (or of a selected portion of

it) is, however, important for other purposes, and is the

fundamental problem in Mensuration.

ABBREVIATED SCALE

2. If two magnitudes A and B are commensurable, then

some of their multiples are equivalent and occupy the same

place in the ascending scale of magnitude. If any two

multiple-s mA and nB are known to be equivalent, then the

ratio A: B is completely defined, for it is equal to the ratio

of two whole numbers n : m (IV. 43), and hence the order

of any assigned multiples could be written down.

Any ratio that is equal to the ratio of two whole numbers

is called a rational ratio; thus the ratio of two commen-

surable magnitudes is a rational ratio, and the ratio of two

incommensurable magnitudes is an irrational ratio.

325
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If two magnitudes A and B are incommensurable, it will

be proved presently that their ratio can be sufficiently char-

acterized by assigning the intervals in which merely the

decimal multiples of the antecedent (A, 10 a, 100^, •••) are

found among all the multiples of the consequent {B, 25,

3 By •••). Such an arrangement is called the abbreviated

scale of A and B.

The following is an example of an abbreviated scale

:

2b, a, 3b, •"21b, 10a, 22b, ... 215 5, 100^, 216^,
... 21595, 1000^,21605, ....

This exhibits the position of the decimal multiples of the

antecedent, showing that

A lies between 2 b and 3 b,

10 a lies between 21 5 and 225,

100^ lies between 215 5 and 216 5,

1000^ lies between 2159 5 and 2160 5.

The abbreviated scale of /* and Q is said to be similar to

that of A and 5 if all the like decimal multiples of P and A

lie between like multiples of Q and 5.

E.g., if the abbreviated scale of P and Q is

2q, P, 3Q, ..., 21 Q, 10 P, 22 Q, ...,

then the abbreviated scale of P and Q is said to be similar

to that of A and 5 written above.

Similar scales,

3. Theorem 1. // the abbreviated scale of A and B
is similar to tJie dbbreviojted scale of P and Q, tlien

the complete scales are similar, that is to say, the

ratios A '• B and P ' Q are equal.

For suppose, if possible, that the complete scales are

somewhere unlike, then, by definition, the two ratios are

unequal, say^ ' -^ A'.B^P.Q
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Convert these ratios so as to have a common consequent

T (V. 17, 114), and let them become R : T and S : r,

then R: T> S: T,

hence R>S. [IV. 29

Divide T successively into 10, 100, 1000, .•• parts, until

a part (say the one thousandth) is found which is less than

the difference between R and S. Take a sufficient number

(say m) of these parts, so that m of the parts shall be less

than R, and not less than S. Then R contains more than m
thousandths of r, while S contains not more than m thou-

sandths of T. Hence
R:T>m: 1000,

and S:T-:^m: 1000

;

that is A:B > m : 1000,

and P\Q^m: 1000

;

therefore 1000 A > mB, [IV. 41

and 1000 P> 7/1 Q. [IV. 42

Hence the thousandth multiples of the antecedents occupy

different positions in the two scales.

Therefore the abbreviated scales are unlike, which is con-

trary to the hypothesis. Hence the supposition made is

false; that is to say, the complete scales are everywhere

alike, and A: B = P : Q,

Disshnilar scales,

4. Cor. If A:B>P'.Q,

then some decimal multiple of A occupies a more advanced

position among the multiples of B than the like decimal multiple

of P occupies among the multiples of Q.

(This is proved in the course of the proof of theorem 1.)

5. Note. It follows from 3 and 4 that the abbreviated

scale will serve the same purpose as the complete scale, and

is sufficient to characterize the corresponding ratio.

MCM. ELEM. GEOM. — 22
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Associated Numerical Ratios

6. The abbreviated scale may be used to write down two

sets of numerical ratios, such that the ratios of one set are

each less than the given ratio, and those of the other set

each greater than the given ratio.

E.g.j from the abbreviated scale in Art. 2

A>2b,
hence A:B>2:1, [IV. 43

again A<S By

hence A:B <S:1.

In the same way ^ : 5 > 21 : 10,

and A:B<22:10.

Thus the ratio A: B is greater than each of the numerical

ratios 2 : 1, 21 : 10, 215 : 100, 2159 : 1000, •..,

and less than each of the ratios

3 : 1, 22 : 10, 216 : 100, 2160 : 1000, ....

Each ratio of the first set is called an inferior decimal

proximate of the given ratio, and each ratio of the second

set a superior decimal proximate. The successive proxi-

mates are said to be of the first order, the second order, and

so on.

E.g.j the ratio 216 : 100 is the third superior proximate of*

the ratio A : B above.

A general definition will now be given.

7. Definition. If a certain ratio lies between two numeri-

cal ratios whose consequents are each equal to the n*** power

of 10, and whose antecedents differ by unity, then the less

of the two ratios is called the inferior (and the greater the

superior) decimal proximate^ of the (n -\- 1)"' order, to

the ratio that lies between them.

From this definition and Arts. 3, 4 the following corolla-

ries are immediate inferences.
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8. Cor. I. If two ratios are equal, then their corresponding

decimal proximates are equal.

9. Cor. 2. If one ratio is greater than another, then some

inferior decimal j^roximate of the first is greater than any infe-

rior decimal proximate of the second.

10. While the use of decimal proximates is especially

applicable to irrational ratios, it is to be observed that

rational ratios also have their inferior and superior decimal

proximates.

E.g., the ratio 1 : 3 has the inferior proximates

3:10,33:100,333:1000, ..-,

and the superior proximates

4:10,34:100,334:1000, ....

The series of proximates to a certain ratio A : B will termi-

nate if it happens that some decimal multiple of A is exactly-

equivalent to some multiple of B.

E.g., if the magnitudes A and B mentioned above are such

tliat 10000 A = 21593 B,

then A:B = 21593 : 10000, [IV. 43

which is both a rational ratio and a decimal ratio. This

ratio would be the last of the series of decimal proximates

to the ratio A: B.

11. Definition. The ratio of any two magnitudes of the

same kind is called a decimal ratio if it can be exactly

expressed as a numerical ratio whose consequent is a power

of 10. If it cannot be so expressed it is called a non-deci-

mal ratio.

A non-decimal ratio may be either rational or irrational.

12. Ex. 1. If a given non-decimal ratio is greater than any other

given ratio, then some inferior decimal proximate of the first ratio is

greater than the second ratio. (The line of proof is as in Arts. 2, 3.)

13. Ex. 2. If a given non-decimal ratio is less than any other

given ratio, then some superior decimal proximate of the first ratio is

greater than the second.
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NUMBER-CORRESPONDENT

14. Definition. If the antecedent of a numerical ratio is

divided by its consequent, the quotient is called the num-
ber-correspondent of the given ratio, or of any ratio equal

to it.

E.g. J the ratio 10 : 5 has the number-correspondent 2 ; the

ratio 5 : 10 has the number-correspondent y^^ or ^ ; the ratio

9 : 5 has the number-correspondent f

.

If two commensurable magnitudes A and B have the

common measure P, and if P is contained m times in A, and

n times in 5, then

A'.B=zmP:nP = m: n. [IV. 38

Hence the number-correspondent of the ratio A: Bis —

•

n

Any number that can be expressed as the quotient of two

whole numbers is called a rationed^ number.
Hence the number-corresjjondent of the ratio of any two

commensurable magnitudes is a rational number.

For this reason such a ratio is called a rational ratio (2).

Cofnparlson of two ratios,

15. Theorem 2. According as one rational ratio is

greater than, equal to, or less than another rational

ratio, so is the number-coi^espondent of the first

greaiycr than, equal to, or less than tlie number-
correspondent of the second.

Let the two ratios be respectively equal to the numerical

ratios m : n and p : q.

If m:n>p:qj

then mq > np, [IV. 41

hence, by division, — >—

,

' "^
' nq nq
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therefore, by reducing the fractions to lowest terms,

n q

If the sign > is replaced by either < or ==, the proof is

similar.

Addition of ratios.

16. Theorem 3. The number-correspondent of the

sum of two rational ratios is equal to the sum of

their number-correspondents.

For the numerical ratios m : n and p : q are respectively

equal to the ratios mq : 7iq, np : nq ; hence their sum is equal

to the ratio ^^ ^ ,,^ .

,,^^ [-y, 115

whose number-correspondent is — —^ which equals the

sum of the numbers — and -•
n q

17. Cor. The number-correspondent of the difference of two

ratios equals the difference of their number-correspondents.

Compounding ratios, '

18. Theorem 4. The ratio compounded of two

rational ratios has a number-correspondent equal to

the product of their nuinber-correspondents.

For the ratio compounded of the numerical ratios m : n

and p : q equals mp : nq (V. 26) ; and the number-corre-

spondent of this ratio is ^, which equals the product of the

numbers — and -•

nq

and -•
n Q

19. It follows from 15, 16, 18 that any two rational

ratios can be compared, added, compounded, etc., by means

of their number-correspondents. Hence the number-corre-

spondent of a rational ratio is sufficient to characterize it.
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IRRATIONAL NUMBERS

20. If A and B are incommeDsurable, the ratio A : B has

no rational number-correspondent. Such a ratio has been

shown, however, to have two series of proximate numerical

ratios, and each proximate has its own number-correspondent.

These number-correspondents collectively characterize the

ratio.

By general agreement it is usual to say that the irrational

ratio A : B has then an irrational number-correspondent,

characterized or defined by the two categories of rational

numbers, the decimal proximates, just as the ratio itself is

characterized or defined by the order of certain multiples.

These categories of rational numbers are called the two

decimal categories belonging to the irrational niunber.

The number-correspondent of any ratio A: B is, denoted by

the symbol —
It is now necessary to give definitions of the words equal,

greater, less, sum, product, etc., when applied to the irra-

tional numbers just defined. The definitions, and cTertain

inferences from them, are given in the following articles.

21. Definition. An irrational number is said to be greater

than, equal to, or less than another number (whether rational

or irrational) according as the ratio to which the first number
corresponds is greater than, equal to, or less than the ratio

to which the second number corresponds.

22. Theorem 2 may now be restated without restriction :

According as one ratio is greater than, equal to,

or less than another ratio, so is the number-corre-

spondent of the first greater than, equal to, or less

than the numher-correspondent of the second.

A C
I.e., according as A -. B > = < c : Dy so is —> = <-.

B D
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23. Cor. I. When two irrational numbers are equal, their

decimal categones are identical, respectively.

For the abbreviated scales of their corresponding ratios are similar

(def. and 3), hence the decimal proximates are alike (6).

24. Cor. 2. If two irrational numbers have identical deci-

mal categories, then the irrational numbers are equal.

For then the decimal proximates are alike, hence the abbreviated

scales are alike (6), and hence the corresponding ratios are equal.

25. Cor. 3. If one irrational number is greater than an-

other, then some inferior decimal proximate of the first is

greater than any inferior decimal proximate of the second (9).

Ex. 1. If an irrational (or a non-decimal number) is greater than

any other given number, then some inferior decimal proximate of the

first number is greater than the second (12).

Ex. 2. If an irrational number (or a non-decimal number) is less

than any other given number, then some superior decimal proximate

of the first number is less than the second (13).

26. Definition. The suTn of two irrational numbers is

defined as the number-correspondent of the ratio which is

the sum of the two ratios corresponding to the two irra-

tional numbers.

A similar definition applies to the difference of two irra-

tional numbers, and also to the sum (or difference) of a

rational and an irrational number.

27. Theorem 3 may now be restated without restriction :

The numher-correspofident of the sum of any two
ratios is equal to the sum of their number-corre-

spondents.

28. Cor. I. The sum of two irrational numbers is greater

than the sum of any two numbers that are inferior proximates

to them, respectively, and less than the sum of any two supenor

^proximates. (Use 22, 27 ; and V. 120.)
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Addition cormnutaMve.

29. Cor. 2. Tlie addition of numbers is a commutative

operation, i.e. the sum of any two or more numbers is the

same, in whatever order they may be taken (V. 118).

30. Definition. The product of two irrational numbers

(or of a rational number and an irrational number) is defined

as the number-correspondent of that ratio which is com-

pounded of the ratios corresponding to the given numbers.

31. Theorem 4 may now be stated without restriction

:

The ratio compounded' of any two or more ratios

ha^ a number-correspondent equal to the product of
their nuviber-correspondents.

The process of finding the product of two or more num-

bers is called multiplication.

Multiplication commutative.

32. Cor. I. Multiplication is a commutative operation, i.e.

the product of any two or more numbers is the same, in what-

ever order they may be taken. (Use definition, and V. 27.)

Multiplication distributive.

33. Cor. 2. Multiplication is distributive as to addition,

i.e. the product of any number by the sum of any other num-

bers is equal to tlie sum of the products of the first number

by the other numbers separ^ely (V. 121).

MEASURE-NUMBER

34. Definitions. The ratio which any magnitude bears

to a standard magnitude of the same kind is called the

measure-ratio of the first magnitude.

The number-correspondent of the measure-ratio of any

magnitude is called the measure-number of that magni-

tude.
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The measure-number of a magnitude is rational or irrar

tional according as the magnitude is or is not commensur-

able with the standard magnitude (14).

If M is any magnitude, and S the standard magnitude of

the same kind, then the measure-ratio of M, and the measure-

number of M, are respectively

M
if: Sand-.

S

The measure-number of a straight line is called its length

with reference to the standard line.

The measure-number of a polygon is called its area with

reference to the standard polygon.

The square described on the standard line is usually taken

as the standard polygon.

The universal standard of line-magnitude adopted by

scientific men is the meter. It is the largest dimension

of a certain standard bar of platinum when taken at the

temperature of melting ice. This standard bar is carefully

preserved in the Paris observatory.

The first three decimal multiples of the meter are denoted

by prefixes formed from the Greek words for 10, 100, 1000.

Name Magnitude Abbreviation

meter standard m.

dekameter 10 meters Dm.
hektometer 100 meters Hm.
kilometer 1000 meters Km.

The first three decimal submultiples of the meter are

denoted by prefixes formed from the Latin words for 10,

100, 1000.

Name Magnitude Abbreviation

decimeter one tenth meter dm.

centimeter one hundredth meter cm.

millimeter one thousandth meter mm.
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=.— OD

A straightedge on which are marked divisions equal to a

meter and to its decimal submultiples is called a measur-
ing'line.

With such a measuring-line the succes-

sive decimal proximates to the measure-

number of any other accessible line can

be found as follows

:

Apply the meter in succession as often

as it will go until the remainder is less

than a meter. Suppose the meter goes

3 times. Then 3 is the first inferior

proximate, and 4 the first superior proxi-

mate, to the measure-number of the given

line.

Next, to the remainder apply the deci-

meter as often as it will go until there

is a remainder less than a decimeter.

Suppose the decimeter goes 5 times.

Then the proximates of the second order

3 + ^,3 + A.

I

^^00

Again, to the last remainder apply the

centimeter until the remainder is less

than a centimeter. Suppose it goes 8

times. Then the proximates of the third

order are

3 +A + T*tr. S + A + T^TT-

Next, to the last remainder apply the

millimeter, and suppose it goes twice

with a remainder less than a millimeter.

Then the proximates of the fourth order

are
S +A + yfr + TAir, 3-f^-f-rf + 1000*

;o

-LD

to

CVJ

Again, to the last remainder apply the tenth of the milli-

meter; suppose it goes four times with a remainder less
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than the divisor. Then the proximates of the fifth order

are

^ + A + TTo + T oV^ + loooo ^ + A + yfo + Tihu + Tnhfdy

or, in the decimal notation, 3.5821, 3.5822. The error of

either of these last proximates is less than one tenth of a

millimeter, i.e. one ten-thousandth of a meter.

MEASUREMENT OF RECTANGLES

35. Theorem 5. If the standard polygon is the

square described on the standard line, then the

measure-numher of a rectangle equals the product

of the measure-numhers of two adjacent sides.

Let I be the standard line ; S the standard square whose

side \^l\ R the rectangle whose adjacent sides are the lines

a and h.

The surface-ratio R : S equals the ratio compounded of the

line-ratios a : I and b:l (V. 100).

Therefore, by 31, the number-correspondent oi R: S equals

the product of the number-correspondents of a : ^ and b il-^

that is to say „ ,

i.e. the measure-number of R equals the product of the

measure-numbers of its adjacent sides a and b.

Ex. 1. Find the measure-number of a rectangle whose sides are 3

and 4 centimeters respectively.

Taking the centimeter as stand-

ard line and the square centimeter

as standard surface, it is evident

from the figure that the measure-

number of the rectangle is 12, which

agrees with the theorem. This

method of proof does not apply

when either of the sides is incom-

mensurable with the standard line.
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Ex. 2. Find the measure-number of a rectangle whose sides are

2 meters and 1 decimeter.

In terms of the meter the sides are 2, ^^ ; hence the area equals

2-rff> or ^ of the square meter.

When the decimeter is used as standard line, the measure-numbers of

the sides are 20, 1 ; and the area equals 20. 1, or 2*0 square decimeters.

Ex. 3. The sides of a rectangle are 2.21 m. 14 cm. ; find its area.

Answer, .3094 sq. m., or 30.94 sq. dm., or 3004 sq. cm.

Ex. 4. A rectangle contains 3 sq. ra., one side is 6 cm., find the

other side.

Ex. 6. What theorem in Book II corresponds to the following

algebraic theorem : a (b + c + d) = ah -^ ac -^ ad?

36. Cor. I. The mecisure-number of a square equals the

second power of the measure-number of its side.

37. Note. For this reason the second power of a num-

ber is often called its square ; and the number whose second

power is equal to the given number is called the square root

of the given number.

Ex. State what theorems in Book II correspond to the following

algebraic theorems : a{a -\- h) = a^ -^ ah\ (a + 6)'^ = a2 _|_ 52 ^ 2 ah.

38. Cor. 2. Tlie measure-nii^mher of the side of a square

equals the square root of the measure-number of the square

itself

Ex. A square contains two square meters, find its side. Answer,

V2 = 1.4142... m.

39. Cor. 3. In a right triangle the measure-number of the

hyi)otenuse equals the square root of the sum of the squares

of the measure-numbers of the other two sides; and the

measure-number of one of the perpendicular sides equals the

square root of the difference of the squares of the mea.sure-

numbers of the other two sides (II. 61).

In symbols, if the lengths of the perpendicular sides are a, b, and

of the hypotenuse c, then c^ = a^ -\- b"^, a^=c^ — h^.
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DIRECTED LINES

40. The line joining two points A and B may be regarded

as reaching either from ^ to 5 or from i? to ^. A segment

having the initial point A and the terminal point B is denoted

by AB, and the segment having the initial point B and the

terminal point A is denoted by BA.

The two segments AB and BA are said to be equal in

magnitude and opposite in direction or sense.

Any two collinear segments AB and CD may be compared

by imagining CD to slide, without turning out of its line,

until the initial point C falls on the initial point A. If the

terminal points are then on the same side of the common
initial point, the two segments are said to have the same
sense. If not they are said to have opposite sense.

Similarly any indefinite line may be regarded as traced in

either of two opposite senses or directions. The sense in

which it is supposed to be traced is indicated by the order

of naming its leading letters.

Any segment of a directed indefinite line is called a

forward or a hachward segment according as its sense is

similar or opposite to that of the indefinite line.

U A B L

For instance, AB is a forward segment of the line L'L, and

BA is a backward segment.

All forward segments of the same or different lines are

said to be of the same quality, and so are all backward

segments ; but any forward segment and any backward seg-

ment are said to be of opposite quality.

The ratio of any two segments of opposite quality will be

represented by a negative number.

A forward segment is commonly taken as the standard,

and then any forward segment has a positive measure-

number, and any backward segment has a negative measure-

number.
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The distance from a point A to another point B is defined as the

measure-number of the segment AB.
A point on a directed indefinite line is said to divide it into a for-

ward part and a backward part, which are distinguished by the fact

that a segment reaching from any point of the latter to any point of

the former is a forward segment. If two parallel directed lines are

cut by a transversal, and if their forward parts are at the same side

of the transversal, then the parallels are said to be similar in direc-

tion ; but if the forward parts are at opposite sides of the transversal,

then the parallels are said to be opposite in direction.

Addition of segments*

41. Two collinear segments are added by sliding one of

them so that its initial point falls on the terminal point of

the first. The segment reaching from the initial point of the

first to the terminal point of the second is called the sum
of the two segments.

From this definition it follows that the sum of the col-

linear segments AB and BC is AC^ no matter in what order

the three points come on the line.

B

The measure-number of the segment AB will be denoted

by the symbol AB.

Hence, AB and BA have opposite algebraic signs.

That is, AB =—BA-^ BA= —AB.

Addition of tneasure-ninnhers,

42. The meaning just given to the addition of segments

corresponds to the algebraic addition of their measure-

numbers.

E.g., if AB = 7 and BC = "3, then AC = 1 \- ("3) = 4.

This principle may be stated in general terms thus

:
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The sum of two or more collinear segments has a
measure-number equal to the algebraic sujn of the

measure-num,bers of the several segments.

E.g.y AB + BC + CD = AD,

AB + BC-^ CA = AA^ 0.

A segment is subtracted by adding its opposite.

E.g.j AC — BG = AC -\- CB = AB,

DA — DB = DA + BD = BD + DA = BA.

MEASUREMENT OF TRIANGLES

43. Algebraic relations. One advantage of the conven-

tions just laid down is that by taking account of the sense

of collinear segments, two different geometric theorems can

often be made to correspond to one algebraic statement.

This is illustrated in some of the following examples

:

Ex. 1. The lengths of the sides of a triangle are 8, 10, 5 ; find the

segments of the base made by the perpendicular to the third side from

the*opposite vertex, and also the length of this perpendicular.

When the angle ACB is obtuse, the relation between the measure-

numbers of the sides and of the projections is furnished by II. 62, of

which the corresponding algebraic statement is

AB^ = AG^ + BG^ + 2 AG' GD,

in which AB^ stands for the second power of the measure-number of

the side AB, and AG - GD for the product of the measure-numbers

of the lines AG and GD, this product being the measure-number of

the rectangle contained by these two lines.

Again, when the angle AGB is acute, the appropriate relation is

furnished by II. 63, of which the corresponding algebraic statement is

AB^ = AG-^ + BG-^ -2 AG- DG.

Now it will be seen that, when account is taken of the sense of the

segments GD and DG, the two algebraic statements are identical, for

the second could be derived from the first by replacing GD by its

equivalent — DG. Either of these equivalent statements may be taken

to apply to all cases, attention being paid to the proper signs to be

given to the segments GD, DG, and AG. We shall use the latter form,
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and shall take ^C as positive. Then DC ia positive when D and A
are at the same side of C ; and DC is negative when Z>and A are at

opposite sides of C.

When AB, AC, and 5Care given, then i>C is found correctly both

in magnitude and sign by solving the above equation.

Then AD, the other segment of the base, is found from the equa-

^>^" AD -\- DC = AC,

which is true irrespective of the order of the points A, D, C.

Substituting the numbers given above, DO is to be found from the

equation 52 = 8^ + lO* - 2 • 10 • DC.

Hence DC = '^ + ^^ " ^^ = 6.95 m.
20

It may be observed that since DC and AC have the same sign,

hence D and A are at the same side of C, and the angle ACB is acute.

Since AD + 6.95 = 10, hence AD = 3.06 m.

Again, the altitude BD is given by

BD = VBC^ - DC^ = \/64 - 48.3025

= Vl5.6975 = 3.962 m.

And the area is given by A = ^ ^C • BD = 19.81 sq. m.

Ex. 2. The lengths of the sides of a triangle are a, b, c ; find the

perpendicular to the side h and the area. As in the last example,

c2 = a2 + ^'2 _ 2 & . DC,

hence DC = «^+-^i^^
26

and DD2 = a2- («^ + ^^-^^)^ = ^«^^^-(«^+^^-^^)'
4 62 4 62

^ (2a6 + a2 + 62 - c^) (2ab-a^-I^ + c^)

4 62

^ [(g -r6)2 - c2] [c2 -(a- 6)2]

4 62

_ (a+6+c) (a+ 6-c) (c+a-6) (c-a+b)
4 62

Now let s be the semi-perimeter ; then a + 6 -f c = 2 s, and a + 6 - c

= 2(s - c). Similarly c + a - 6 = 2(s - 6), c - a + 6 = 2(s - a).

Hence ^^.^ 16.(5 - a) (s - 6) (. - c)^

4 62
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2
and BD = - Vs(s - a) (s - 6) (s - c).

This is the length of the perpendicular on the side 6. The other two

perpendiculars can be written down by algebraic symmetry.

The area is found from the relation

A=lb-BD= Vs(s -a) (s - b) (s - c).

Thus the area of a triangle equals the square root of the continued

product of the semi-perimeter and the differences between the semi-

perimeter and each side in turn. [Heron's Rule (110 b.c.).]

Ex. 3. The lengths of the sides of a triangle are a, &, c. Find the

lengths of the three medians.

In the figure of II. 67, let the lengths of the sides opposite the angles

A, B, C, be a, &, c ; and let the length of the median BD be m.

then a2 + c2 = 2m2 + 2Z)C=2 = 2m2 + 2
(!)•

Therefore m = lV2a^ + 2 c^ - b^.

By algebraic symmetry the other two medians are

^V2 62 + 2 c2 - a2, ^V2a2 + 262_c2.

Ex. 4. Find the lengths of the three bisectors of the angles.

The bisector CD of the angle C divides c in the ratio a:b ; hence

the segments are

AD = -^^— . c, DB
a-h b a + b

Now AC ' CB = AD • DB + CD^
;

[V. 127

hence ab = ^^
(a + by

therefore 02)2 _ ^^fi _
L (a + &)2.

The lengths of the two other bisectors can be written by symmetry.

Ex. 5. Find the radius of the circumscribed circle.

From V. 125, a-6 = 2i2.j9,

thus
j^^^^abc^abc

2p 2pc 4 A
where A stands for the area of the triangle.

Ex. 6. Find the radius of the inscribed circle.

Let O be the center of the inscribed circle and r its radius.

.Then OAB + OAC + OBC = ABC,
McM. ELEM. GEOM.— 23
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hence ^r • AB + ^r - AC -\- ^r - BC = A, [UI. 101

riAB + AC-{-BC)=2Ay

2 A
therefore r =

a + b + c

Ex. 7. Prove that the radii of the escribed circles are

-- 2A ,^^ 2A ^^^^ 2A . ^i,i_jo3
b + c — a a — b + c a-^b — c

Ex. 8. To compute the two parts of a Hue wliose length is a, when
divided in extreme and mean ratio.

In the figure of II. 89, let AB - a. Then BE^iyZ-a;

and AP = K>/6 - l)a ; PB = K3 - V5)a.

MEASUREBIENT OF REGULAR POLYGONS

44. General relations. Take a circle of radius r ; and let

the sides of the regular inscribed and circumscribed ?i-gons

be denoted by s„, S^ ; and the apothem of the former by a^.

(No special symbol is needed for the apothem of the latter,

since it is always equal to r.)

Among the four numbers, s„, s„, a^, r, there are two simple

general relations

:

Since the apothems of two regular w-gons are in the ratio

of similitude, hence „ „

and, since the apothem bisects the side perpendicularly,

hence r, a„, i s„, are the lengths of the sides of a right tri-

angle, therefore ^^ = a\-{-^ s^^. (2)

46. Special relations. In the case of the simpler polygons,

the figure usually furnishes some special relation between

two of the lengths s„, a„, S„, r. This special relation together

with the two general relations stated above will be sufficient

to express any three of these lengths in terms of the fourth.

In the following examples, .s„, a„, S„, are each expressed in

terms of r ; the values of n are taken in order of simplicity.



MEASUREMENT OF REGULAR POLYGONS 345

Ex. 1. For w = 6: show from a figure that SQ = r; hence, by (2),

that ae = iV3 r ; and, by (3), that Se = fV3 r.

Ex. 2. For w = 4 : show from a figure that a^ = | S4 ; hence, by

(2), that S4 = V2 r ; also that S^ = 2r.

Ex. 3. For n = S: show that as = | r ; S3 = VS r ; iSb = 2\/3 r.

Ex. 4. For n = 10 : show (III. 122, V. 98, and VI. 43, ex. 8) that

Sio=^{V6-l) r ; hence that aio=iVlO+2 V5 • r, Sio= ^{ ^^ -
'^)

. r.

V1O+2V5
Ex. 5. For n = 5 : show from the figure of III. 122 that BK bisects

AP perpendicularly, and 2 ^5 = r + sio ; hence that as = i (^5 + 1) r,

Vs + i

Ex. 6. For w = 16 : in figure of III. 128, ^O = Se, AB = sio,

BC = Sis. Let AO meet circle again in D. Prove BD = 2aio,

CD = 2 ae, ^Z> = 2 r. Show by V. 128 that 2 r • sis + 2 ae • Sio

= 2 aio • Sq, and hence that

si5 = (aiose - aesio) --=k [VlO + 2V5 - V3 (V5 - 1)] • r.

r

Then show how to find ais, Sis.

46. Regular 2 n-gon. The next step is to show how to

proceed from any of the above regular polygons to another

of double the number of sides.

Let s.2n, S2n, be the sides of the inscribed and circumscribed

2 w-gon ; then by V. 136, 137, the following two relations

exist between the four numbers s„, S,^, Sg^, S2n -

Sr. S

(3)

(4)
^2n "2" ^2»

I.e. ^m'-^2«
'= -^ ^'2n'

^2n ^''

eliminating^,,,
r • .„ = 2 .,,,

. a,„. (5)

This can also be proved directly from the figure of V. 137.

Now from (1), Art. 44, -~ = ~, whence (4) becomes, by
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Ex. 7. For 2n = 8: put n = 4 in (3), and solve for 8%. Use

the values of s^ and 8^ found in ex. 2. The reduced result is

6^8 = 2(V2 - 1) -r. Then show, from (4), that sg = V2 - V2 • r,

/ /~

and, from (1), that a% = ^^ • r.

2(>/2-l)

Ex. 8. Show that S12 =V 2 - \/3 . r.

47. Apothem in terms of side. It is often convenient to

know the value of a^ in terms of s^. In the above examples

a„ and s^ are each expressed in terms of r. Hence a„ can

be expressed in terms of s^, when n is 3, 4, 5, 6, 8, etc.

a3=iV3.Ss; a^=^^s^', a8=iV3.S6; Og = i(V2 + I)s8;

_v^+j_ _ 2VlO + 2V5
2V 10 - 2V5 V5 - 1

48. Area in terms of side. A regular w-gon is equivalent

to the sum of n triangles, each having its base equal to the

side, and its altitude equal to the apothem. Hence the area

.„ is given by
^. = j „.,.„..

Therefore, by 47,

^« = (V2 + l).s^^=
5 (V5 + 1) ,.,

•

4V10 - 2V5

Ex. The regular pentagon is about 1.72 times the square on its side.

The regular hexagon is about 2.6 times the square on its side.

MEASUREMENT OF THE CIRCLE

49. Hitherto we have been concerned with the measure-

ment of figures bounded by straight lines. To lead up to

the measurement of the circle, it is necessary to give some

elementary principles relating to variables and their limits.
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Variables and Limits

50. Definitions. A number which takes a series of differ-

ent values in succession is called a variable.

E.g., the population of a city in successive years; the

number of seconds between sunrise and sunset on succes-

sive days ; the perimeter of a regular polygon inscribed in

a given circle, when the number of sides is 3, 4, 5, 6, ••• in

succession.

When the law of change of a variable is such that its

successive values approach nearer and nearer to a certain

fixed number so that the difference between the latter and

the variable can become and remain smaller than any

assigned number, then the fixed number is called the

limit of the variable in question.

E.g., the series of fractions, \, f, f, |, -f^, W, ••• (in

which each term is derived from the preceding by add-

ing two units to numerator and denominator), approaches

unity as a limit; for by continuing the series far enough

under the same law, a term will be reached that differs

from unity by less than any assigned number, however

small ; for instance, if the assigned number is y^Vttj ^^ ^^^

continue the series up to the term \%^, which differs from

unity by less than the assigned number.

Again, the series of numbers 8, 4, 2, 1, i
\, \i ^, ••• (in

which each term is half the preceding), tends toward zero

as a limit; for the series can be continued until a term is

reached which is less than any assigned number.

Two variables are said to be related when one depends

on the other, so that when the value of one is known, the

value of the other can be found.

E.g., the length of the side of a square and its area are

related variables. If the side takes the series of values

1, 2, 3, 4, •••, then the area takes the series of values 1, 4,

9, 16, •••, each term in the latter series being the second

power of the corresponding term in the former series.
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ELEMENTARY PRINCIPLES OF LIMITS

51. Principle 1. If two variable numbers are so

related that they remain always equal, and if one of
them approaclves a limit, then the other approaxihes

the same limit.

For the two equal variables are at all stages represented

by one number, and this number has only one limit.

52. Principle 2. If two finite related variables are

such that their quotient apj)roaches unity as a limit,

then their difference approaches zero as a limit.

Let the two variables be represented by the measure-

numbers of the finite lines OA and OB.

By hypothesis, the measure-number of the ratio OA : OB

approaches unity as a limit ; hence the points A and B can

come as near together as desired. Therefore, the difference

of the two variables approaches zero as a limit.

53. Cor. If two finite related variables are such that their

difference approaches zero as a limity then their quotient ap-

proaches unity as a limit.

54. Principles. If a variable continually increases,

and never exceeds a certain fixed number, then the

variable approa/ihes some limit not greater than the

fixed number.

For if the variable has no limit, it must (since it continu-

ally increases) ultimately exceed any assigned number.

55. Cor. If a variable continually decreases, and never be-

comes less than a certain fixed number^ then the variable

approaches some limit, not less than the fixed number.

Ex. If a variable increases toward a certain limit, and if the

variable always exceeds a certain fixed number, then the limit exceeds

this fixed number.



-t—

I

1

MEASUREMENT OF THE CIRCLE 349

56. Principle 4. If one of two related variables is

always less than the other, and if the former eon-

tinually increases, and the latter continually de-

creases, so that their difference approaches zero as a
limit, then the two variables have a common limit

which lies between them.

Let any successive values of the first variable be repre-

sented by the measure-numbers of the lines OA, OB, OC ...
;

and let the correspond-

ing values of the second Q ABC
variable be represented

by the measure-num-

bers of the lines 0A% OB', 00' ..., all measured from the

same point 0.

Since the first variable continually increases and by

hypothesis remains less than OC', hence the first variable

has some limit (54). Since the second variable continually

decreases and remains greater than OC, hence the second

variable has some limit (55). These two limits are equal

;

for if not, the difference of the two variables could not be

made less than the difference of the two limits, contrary to

the hypothesis. Hence the two variables have a common
limit which lies between them.

57. Principle 5. If there are any two variables,

one of which is never greater, and the other never

less, than a certain fixed number L, and if the dif-

ference of the two variables tends to zero as a limit,

then the two variables approach L as a common limit.

From the hypothesis, the difference of either variable from

L is not greater than the difference of the two variables, and

will therefore become and remain less than any assigned

number. Hence by definition each variable tends to L as

a limit.

58. Cor. If two variables have a common lim,it, then any

third variable that always lies between them has the same limit.
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59. Principle 6. If while approaching their limits

the ratio of two related variables remains constant,

the ratio of their limits equals the same constant.

Take two parallel „
lines, OL, O^L' aud let

any successive values

of the first variable

be represented by the

measure-numbers of

the lines OAj OB, OCj

•••; and let the cor-

responding values of

the second variable

be represented by the measure-numbers of the lines O'^',

0'j5', O'C', •••.

T> 1 ., • OA OB OCBy hypothesis --- = —— = —^ = • •
..

^ ^^ O'A' O'B' O'C'

Hence the two lines, OL, 0'l\ are similarly divided at the

points A, Bf C, •••, and A', B', c',-".

Therefore the lines 00', AA', BB\ ••• meet in a point P
(V. 72, ex. 2). Thus if a line starts in the position PO, and

turns about P, it will in its successive positions mark off on

OL and O'Z' corresponding values of the two variables.

Let the first variable have the limit OL, and let PL meet

O'Z' in the point L\

Then O'V is the limit of the second variable. For since

OL is the limit of the first variable, hence the revolving line

can come as close to PL as desired, therefore its intersection

with o'l' can come as close to L' as desired; thus O'z' is the

limit of the second variable.

Therefore the ratio of the limits is the same as the ratio

of the variables.

Length of a Circle

60. The length of a straight line has been defined as its

measure-number in terms of a certain standard straight line.
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Such measurement presupposes the possibility of the super-

position of the standard line, or of some of its submultiples,

on the line to be measured. Hence the word " length " has as

yet no meaning when applied to a curved line. The phrase

" length of a circle " will now be given a precise definition.

61. Definition. If in a circle a series of convex polygons

of 3, 4, 5, ..., sides are inscribed, the limit approached

by the length of the successive perimeters, as the number

of sides is continually increased and each side tends to zero

as a limit, is called the length of the circle.

62. To justify this definition it is necessary to prove that

this series of perimeters has a limit, and that this limit is

the same by whatever law the sides tend to zero.

It will first be proved that there is a limit when the suc-

cessive inscribed polygons are regular and when the number

of sides is continually doubled. It will then be proved that

the same limit is obtained whatever the law of inscription

may be.

63. Theorem 6. The lengths of the perimeters of
two similar regular polygons, one inscribed, the other

circumscribed, to a given circle, tend to a com-

mon limit, when the number of sides is continually

doubled.

The ratio of the perimeters of these two polygons equals

the ratio of their apothems (V. 132), and hence equals the

ratio of the apothem of the inscribed polygon to the radius.

But the latter ratio tends to unity as a limit (53), hence

the former ratio tends to unity as a limit (51). Therefore

the difference of the perimeters tends to zero as a limit (52).

Now as the number of sides is continually doubled the

circumscribed perimeter continually diminishes and the

inscribed perimeter continually increases (V. 135).

Therefore the two variable perimeters have a common
limit which lies between them (56).
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64. Theorem 7. The length of blie perimeter of any
convex polygon, inscribed or circumscribed, tends to

one and the same limit, by whatever law eojch side

tends to zero as a limit.

Let ahc be a convex inscribed polygon, ABG the convex

circumscribed polygon formed by the tangents drawn at the

points Qf b, c, •••. Let ^) and P be the perimeters of these

polygons. Let L be the limit obtained when the law is that of

the preceding theorem.

To prove that^; and P A^

have the common limit

L by whatever law the

sides of each polygon

tend to zero as a limit.

The inscribed perim-

eter p is less than any

of the circumscribed perimeters considered in the preceding

theorem, hencep never exceeds the limit L of those perimeters.

Again, the circumscribed perimeter P is greater than any

of the inscribed perimeters considered in the preceding

theorem ; hence P never becomes less than the limit L of

those inscribed perimeters.

It will next be proved that p can come as near to P as

desired. Let the length of the radius be denoted by R.

Since OA bisects ah at right angles, hence

aA-\- Ah _aA _ R
ah ~ aM~ OM^

also
hB^Bc ^^ ^^^ g^ ^^ py ^g

he ON -

By combining the numerators and denominators of the frac-

tions on the left, another fraction is formed which (by a theo-

rem in algebra) lies between the greatest and least of these

P
fractions. Therefore the fraction — lies between the greatest

R R P
and least of the fractions— , — , • • •

OM ON
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Now, when each side of the polygons is continually

diminished, the fractions — , — ,
••• each tend to unity

T -4. /Kox OM ON ^

as a limit (53).

Hence the fraction —, which lies between two of them,

tends to unity as a limit (58) ; and therefore the difference

P —p tends to zero as a limit (52).

But P never becomes less than L, and p never becomes

greater than L ; hence L is the common limit of P andp (57).

65- Note. It should be observed that, mider the uiost general law

of approach now supposed, it is not necessary that P should continually

decrease, nor thatp should continually increase. Hence 57 has been

used instead of 56, which was properly employed in the last proposition.

66. Theorem 8. The lengths of any two circles have
the same ratio as the radii.

Outline. In the two circles inscribe similar regular poly-

gons ; and apply V. 132. Imagine the number of sides to

be increased ; and apply 59, 61.

67. Cor. I. TJie ratio of the length of the circle to that

of the diameter is the same for all circles.

Apply alternation to QtQ.

Note. The number-correspondent of this constant ratio

is denoted by the Greek letter tt. Thus, tt is the quotient

of the length of the circle by the length of the diameter.

The length of a circle is called the circu7nference.

68. Cor. 2. If R is the length of the radius, and C the

circumference, then C =2-^ - R.

COMPUTATION OF THE NUMBER TT

69. The successive decimal proximates to the ratio of the

circumference to the diameter may be computed as follows

:

Take the perimeters of some regular inscribed and the

corresponding circumscribed polygons as found in 45. Com-
pute the perimeters of regular inscribed and circumscribed

polygons of double the number of sides by 46. From these
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in turn compute the perimeters of polygons of double the

number of sides; and so on. These successive perimeters

will be closer and closer approximations to the length of

the circle. E.g., if a decimal proximate of the fourth order

is required, continue the process until the expressions for

the inscribed and circumscribed perimeters agree to the

third decimal place.

For convenience take the diameter as standard line;

then its measure-number is unity.

The perimeters of the inscribed and circumscribed squares

and octagons have been found to be

p, = 4V2 . r = 4:V2 . J == 2.8284271,

P4 = 8r = 4,

Ps = 8V2-V2 . r = 3.0614675,

P, = 16 (V2 - 1) . r = 3.3137085.

Now, to compute P^, use the result of V. 137, viz.

Pn + Pn _2Pn
Pn

"^-'

whicl1 gives P2n =
Pn-\-Pn

hence1 ^16 =

_ 2/)«P« _

i>8 + ^8
-- 3.1825979.

To compute Pie, use the result of V. 136, viz.

P2n

/>2n

=p.:

i.e.

PlB-

= Pn'P2n,

hence = Vps • ^16 = 3.1214452.

For polygons of 32 sides

^32 =

2puP^^

Pie + Pie
= 3.1517249,

i>32 = Vpie • ^82 = 3.1365485.
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The results obtained by continuing this process for eight

more steps are shown in the following table

:

Number Perimeter of Perimeter of

of sides inscribed polygon , circumscribed polygon

4 2.8284271 4.0000000

8 3.0614675 3.3137085

16 3.1214452 3.1825979

32 3.1365485 3.1517249

64 3.1403312 3.1441184

128 3.1412773 3.1422236

266 3.1415138 3.1417504

512 3.1415729 3.1416321

1024 3.1415877 3.1416025

2048 3.1415914 3.1415951

4096 3.1415923 3.1415933

8192 3.1415926 3.1415928

The last numbers show that the length of the circle

whose diameter is unity lies between 3.1415926 and

3.1415928. Hence, the value tt = 3.1415927 has an error of

less than one unit in the seventh decimal place.

Archimedes (250 b.c.) obtained the value Y» which is correct to

two decimal places. Metius of Holland (1600 a.b.) gave fff, correct

to six places. More recently by methods of the Calculus, ir has been

computed to several hundred figures. Lambert (1750 a.d.) proved

that T is an irrational number (14). Lindemann (1882) proved it

transcendental, i.e. not expressible by a finite combination of radicals.

LENGTH OF A CIRCULAR ARC

70. Definition. The length of a circular arc is defined as

the limit to which tend the perimeters of any inscribed (or

circumscribed) convex broken line when each side tends to

zero as a limit.

The existence of a unique limit is proved by the method

employed in the two preceding theorems, i.e. by first con-

sidering the case of a regular inscribed broken line, and the
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corresponding circumscribed line, the number of sides being

continually doubled ; and from this case passing to the most

general law of approach.

71. Cor. I. The length of any arc of a circle is greater than

the length of its chord. (Use I. 89, and VI. 55, ex.)

72. Cor. 2. Tlie length of any arc of a circle is less than

the length of any broken line exterior to it and Jiaving the

same extremities.

For a continually decreasing series of circumscribed broken

lines can be constructed, all less than the given broken line,

hence their limit is less than the same line.

73. Cor. 3. Equal arcs have equal lengths,

74. Cor. 4. In equal circles, according cw one arc is greater

than, equal to, or less than another, so is the length of the first

arc greater than, equal to, or less than the length of the second.

75. Cor. 5. In equal circles, the ratio of any two ai'cs is

equal to the ratio of the lengths of the arcs.

Take any equimultiples of the antecedents, and any equi-

multiples of the consequents, and apply 74.

Area of a Circle

76. The definition of the measure-number of a polygon in

terms of a standard polygon presupposes the possibility of

the superposition of their parts by some mode of dissection.

As this is not possible when the boundary of the figure

to be measured is a curved line, it becomes necessary to

give a precise definition to the phrase " area of a circle."

77. Definition. The limit to which the area of a polygon

inscribed in a circle tends, when each side tends to zero

as a limit, is called the area of the circle.

To justify this definition, it is necessary to prove that

there is such a limit, and that its value is the same by what-

ever law each side approaches zero.
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78. Theorem 9. The areas of two similar regular

polygons, one inscribed, the other circumscribed, to a
given circle, tend to a common limit when the num-
ber of sides is continually doubled.

The ratio of the areas equals the ratio of the squares of

their apothems, and hence equals the ratio of the square of

the apothem of the inscribed polygon to the square of the

radius. (V. 132, 133 ; III. 136.) Conclude the proof as in 64.

79. Theorem 10. The area of any convex polygon,

inscribed or circumscribed, tends to the same limit by

whatever law ea^ch side tends to zero as a limit.

Use the figure of art. 64 ; and let a and A be the areas of

the two polygons. Let S be the limit obtained when the

law is that of the preceding theorem.

Show as in 64 that a never becomes greater than S, and

that A never becomes less than S. Prove that

OaAh i?2 055 c R^

Oah OM^' Obc ON^'
[V. 107

Hence prove that - tends to unity as a limit ; and finally
a

that S is the common limit of A and a.

80. Theorem 11. The area of a circle equals the

product of the circumference by half the radius.

Draw a regular circumscribed polygon.

Its apothem is equal to the radius. Hence the area A of

the polygon equals the product of its perimeter P by half

the radius ; that is, A = ^R'P, [III. 137

A R
or — = t:-P 2

On continually increasing the number of sides, A tends to

the area of the circle (s), and P to the length (c). [79, 64

Since the quotient of the variables A and P is constant,

the quotient of their limits equals the same constant (59).

Therefore - = -, and S=l R-C.
C 2'
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81. Cor. S=2 7rR'iR = TrI^.

82. Definition. The area of a sector of a circle is defined

as the limit to which the area of an inscribed polygonal

sector tends, when each side of the corresponding inscribed

broken line tends to zero.

The existence of this limit is established as in 78, 79.

The area of a segment of a circle may be defined in a

similar way. It is equal either to the difference or the sum

of the areas of the corresponding sector and the correspond-

ing triangle, according as the arc of the segment is less or

greater than a semicircle.

83. Theorem 12. The area of a circular sector

equals the product of the length of its arc hy half
the radius. (Prove as in 80.)

Ex. Show how to find the area of any portion of a plane bounded

by either straight lines or by arcs of circles.

Measurement of Angles

84. The standard unit for measuring angles is the right

angle.

As it is too large for convenient use, a certain fraction of

it, called a degree^ is employed in practice.

A degree is defined as ^ of a right angle.

Hence a right angle equals 90 degrees, written 90°; a

straight angle equals 180°; and a perigon equals 360°.

Ex. 1. How many degrees are there in the sum of the angles of a

triangle ? In the angle of an equilateral triangle ? In each of the

angles of an isosceles right triangle ?

Ex. 2. How many degrees are there in the angle of a regular penta-

gon ? A regular hexagon ? A regular octagon ?

The sixtieth part of a degree is called a minute, written

1'; and the sixtieth part of a minute is called a second^

written 1".

E.g. the seventh part of a right angle equals 12° 61' 251^".
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