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THE first edition of Olney's Special or Elementary
Geometry was issued nearly twelve years ago. It con-

tained many new features. The book has gone into use in every

State in the Union, and has been tested by practical teachers in

all grades of schools. This long and varied test has been watched

with care by the author, and it is with the greatest pleasure that

he has found that the general features of the book have been

well-nigh universally approved.

To make the book still more acceptable to the teachers and

schools of our country, and to keep it abreast with the real

advancement in science and methods of teaching, as well as to

make it a worthy exponent of the best style of the printer's art,

are some of the reasons which have led. to the preparation of this

edition.

1. The division into Chapters and Sections, instead of Books,

has been retained, as affording better means of classifying the

subject-matter, and also as conforming to the usage of modern

times in other literary and scientific treatises.

,

2. Part First of the old edition has been omitted, and the

definitions and illustrations necessary to the integrity of the

subject ha.ve been incorporated with the body of the work. This

has been done solely in deference to the general sentiment of the

teachers of our country. The author can but feel that this senti-

ment is wrong. That the best way to present the subject of

Geometry is tb^present some of its leading notions and practical

facts with their uses in drawing and in common life, before

attempting to reason upon them, appears to him quite clear. It

is in accord with one of the settled maxims of teaching which

a c -i -^ 7



IV PREFACE.

requires "facts before reasoning," and then it is in harmony
with the historic development of the science, and with the order

of mental development in the individual. Moreover, since this

method was presented to the American public in this treatise, the

author has received books on exactly the same plan, which are

in general use in Germany, and also "A Syllabus of Plane

Geometry, prepared by the Association for the improvement of

Geometrical teaching " in England, in which this principle

is recognized by recommending quite an extended course in

Geometrical constructions before entering upon the logical treat-

ment of the subject. The author hopes to revise his Part First,

and present it as a Httle treatise adapted to our Grammar or

lower schools ; as he can but think these subjects much more

interesting and usefuf to pupils of this grade than much of the

matter usually brought before them, especially the more advanced

portions of arithmetic, and as he is confident that they are the

proper preparation for the intelligent study of logical geometry.

3. The same general analysis of the subject is adhered to as in

the first edition. All must acknowledge it a reproach to the

oldest and most perfect of the sciences that, hitherto, no system-

atic classification of its subject-matter has been reached. That

the ordinary arrangement found in our Geometries is not

based upon a scientific analysis of the subject, and a systematic

classification of topics will be evident to any one who attempts

to give the subject-title of almost any so-called Book. A
glance at the table of contents of this volume will show that

the analysis of the subject-matter is simple and strictly philo-

sophical. There are two lines of inquiry in geometry, viz.,

concerning position (from which form results) and magni-

tude. The concepts of Plane Geometry are the point, straight

line, angle, and circle. Kow, the measurement of magnitude is

either direct or indirect. The direct measurement and compar-

ison of magnitudes is a simple arithmetical operation, and is

presented, as regards straight lines, in Section 4. The direct

measurement of other magnitudes is effected in a similar manner,

but is unimportant from a scientific point of view. The indirect

measurement of magnitude, as when we find the third side of a

triangle from the other two and their included angle, the circum-
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ference or area of a circle from the radius, etc., is a somewhat

remote application of more elementary principles. There is then

left, as the natural first object of inquiry, the relative position of

two (and hence of all) straight lines. Here we have philosophi-

cally the first inquiry of logical geometry. This inquiry divides

into the three inquiries concerning perpendicular, oblique and

parallel lines. In a similar manner the topics of the succeeding

sections unfold themselves from the principles stated.

4. This analysis and classification of the subject-matter re-

quires that a somewhat larger number of propositions be demon-

strated from fundamental principles, that did the old method, of

proving first any proposition you could, and then any other, and

so on ; but who will consider this a defect ? On the other hand,

it gives almost absolute unity of method of demonstration in

the propositions of any one section.

5. The freedom with which revolution is used as a method of

demonstration, will be observed upon a cursory reading. Of

course it is assumed that the old repugnance to the introduction

of the notions of time and motion into geometry is outgrown.

Indeed, the old geometers could not get on without the super-

position of magnitudes, and this idea involves motion. Now,

revolution is but a systematic method of effecting superposition,

which is well-nigh the only geometrical method of proving the

equality of magnitudes.

6. The author has long desired to introduce the idea of same-

ness of direction in treating parallels ; but could not accept

what seemed to him the vague methods of writers who have

made the attempt. If we cannot define the notion of direction,

we certainly should have some method of estimating and measur-

ing it before it can be made a proper subject of geometrical

inquiry. This the author thinks he has secured, by giving the

necessary precision to certain very common and simple notions.

7. As to the introduction of the infinitesimal method into

mathematics (and if introduced at all, why not in the elements

where it will do most service ?), the author is confident that no

one thing would do more to simplify, and hence to advance,

elementary mathematical study, than the general and hearty

acceptance of this method. No writer has succeeded in getting
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on far, even in pure mathematics, without openly or covertly

introducing the notion, and its directness, simplicity, if not

absolute necessity, in the applied mathematics make its intro-

duction into the elements exceedingly desirable. Nevertheless,

the author has given alternative demonstrations, either in the

body of the text or in the appendix, so that those who prefer

can omit the demonstrations involving the infinitesimal concep-

tion.

8. Thanks to the spirit of the times, no geometry can now
receive favor which does not give opportunity for the application

of principles and for independent investigation. As in the

former edition, so in this, large attention has been given to this

just demand of the times. As a help to independent thinking,

after the student has been fairly introduced to the methods, and

had time to imbibe somewhat of the spirit of geometrical reason-

ing, the references to the antecedent principles on which state-

ments in the demonstrations are based, are sometimes omitted,

and their place supplied by interrogation marks.

9. In the earlier part of the work, the demonstrations are

divided, according to the suggestion originally given by De
Morgan, into short paragraphs, each of which presents but a

single step. So, also, in this part, care has been taken to make
separate paragraphs of the statement of premises and the conclu-

sion, and to put the former in different type from the body of

the demonstration. But, in the latter part of the work, this

somewhat stiff and mechanical arrangement gives place to the

freer and more elegant forms with which the student will need to

be familiar in his subsequent reading.

10. In the preparation of the work the author has availed him-

self of the suggestions of a large number of the best practical

teachers in all parts of our country. His chief advisers have

been Professor Benjamin F. Clarke, of Brown University, K. I.,

and Professor H. N. Chute, of the Ann Arbor High School,

Mich. To Professor Clarke he is indebted for valuable sugges-

tions on the whole of Chapter II., and especially on triedrals.

Indeed, whatever merit there may be in the general method of

treatment of triedrals, is due more to him than to the writer.

His ability as a mathematician, and his knowledge of what is



PREFACE, yU

practical in methods of presentation, gained by long experience

in teaching the subject, appear on well-nigh every page of the

latter part of the work. Professor Chute, the able and accom-

plished teacher of geometry in the Ann Arbor High School, has

given me the free use of his careful and scholarly thought, and

long and successful experience as a teacher, by several readings

of the proofs, and by the use of the advance sheets of the entire

work in his classes. His logical acumen, practical skill, and

generous contribution of whatever he has found most valuable

in matter or method, have been of the highest service. The
same general acknowledgments are due to other authors as were

made in the earlier edition. To the taste and skill of the stereo-

typers, and the lavish expenditure of patience and money of the

PubHshers, the author is indebted for the elegant and beautiful

dress in which the book appears.

EDWAKD OLNEY.
University op Michigan,

Ann Arbor, September i, 1883.

N.B.—Part III. of the old edition will still be published for use in such

schools as wish to push the study of geometry still further than it is carried

in the ordinary treatises, and especially into the methods of what is called

the Modern Geometry. The topics embraced in that part are Exercises in

Geometrical Invention, including advanced theorems in Special or Elemen-

tary Geometry, Problems in the same, and Applications of Algebra to

Geometry ; and also an Introduction to Modern Geometry, including the

elements of the subjects of Loci, Symmetry, Maxima and Minima, Isoperi-

metry. Transversals, Harmonic Proportion, Pencils and Ratio, Poles and

Polars, Radical Axes and Centres of Similitude in respect to Circles.

The author's Trigonometry can also be had, bound separately or in con-

nection with the other parts of the Geometry, the same as formerly,

E. O.



SUGGESTIONS TO TEACHERS.

1. Fix firmly in mind the fundamental definitions of the

science, in exact language, and illustrate them so fully that

the terms cannot be used in the hearing of the pupil, or by

him, without bringing before his mind, witJiout conscious

effort, the geometrical conception.

2. By numerous and varied applications of the fundamental

principles of plane geometry to the most famihar and homely

things in common life, divest the pupil's mind of the impression

that he is studying " higher mathematics " (as he is not), and

beget in him the habit of seeing the applications and illustrations

of these principles everywhere about him.

3. By means of much experience in the elements of geometri-

cal drawing, train the taste to enjoy, the eye to perceive, and the

hand to execute, geometrical forms, and by so doing fix indelibly

in the mind the " working facts " of geometry.

4. Have all definitions, theorems, corollaries, &c., memorized

with perfect exactitude, and repeated till they can be given with-

out effort. Demonstrations should not be memorized by the

pupil ; and considerable latitude may be allowed in the use of

language, provided the argument is brought out clearly. But

errors in grammar, and inelegancies in style, should be carefully

guarded against. One of the chief benefits to be derived from

class-room drill in mathematics is the ability to think clearly

and logically, and to express the thought in concise, perspicuous,

and elegant language.

5. The teacher should never give a theorem or corollary in

proper form, but by some such half-questions as the following,

suggest the topic :

The relation between the hypotenuse and the sides of a right-

angled triangle ?

The relative position of two circles when the distance between

the centres is less than the sum and greater than the difference

of the radii ?
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The sum of the angles of a triangle ?

The relation between the angles and the sides of a triangle ?

etc.

In this manner the teacher should always designate the propo-

sition without stating it. The statement is one of the most

important things for the pupil to learn, and have at perfect com-

mand, and hence should not be given him by the teacher.

6. The construction of the figure is a necessary part of the

demonstration, and no assistance should be given the pupil, nor

aids allowed.

7. All figures in plane geometry should, upon first going over

the subject, be constructed by the pupils with strict accuracy, on

correct geometrical principles, using ruler and string ; and this

should be persisted in until it can be done with ease. In reviews,

free-hand drawing of figures may be allowed, and is even desir-

able.

8. The ordinary notation by letters should be used.

9. All the exercises in the book should be worked with care in

the study, and in the class, and be carefully explained by the

pupil ; and as many additional, impromptu exercises as may be

found necessary in order to render the pupil familiar with the

practical import of the propositions.

10. Little, if any, original demonstration of theorems not in

the book should be required of the pupil upon first going over

plane geometry. In review, more or less of such work may be

required.

11. Great pains should be taken that original demonstrations

be given in good, workmanlike form. For this purpose, they

should be written out with care by the pupil. Indeed, it is an

excellent occasional exercise, to have demonstrations written

out in full in class.

12. In review, much attention should be given to synopses of

demonstrations. They are the main reliancie for fixing in

memory the line of argument by which a proposition is demon-

strated.

I
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INTRODUCTION.
PRELIMINARY NOTIONS AND DEFINITIONS.

^gCtlOH I.

GENERAL DEFINITIONS.*

1. A Proposition is a statement of something to be con-

sidered or done.

Illustration.—Thus, the comraon statement, "Life is short," is a

proposition; so, also, we make, or state a proposition, when we say,

"Let us seek earnestly after truth."—"The product of the divisor and

quotient, plus the remainder, equals the dividend," and the requirement,

" To reduce a fraction to its lowest terms," are examples of Arithmetical

propositions.

2. Propositions are distinguished as Axioms, Theorems, Lem-

mas, Corollaries, Postulates, and Problems.

* The terms here defined are such as are used in the science in conee-

quence of its logical character, hence tliey are sometimes called logico-

mathematical terms. The science of the Pure Mathematics may be con-

sidered as a department of practical logic.
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3. An Axiom is a proposition which states a principle that

is so elementary, and so evidently true as to require no proof.

Illustration.—Thus, " A part of a thing is less than the whole of

it," " Equimultiples of equals are equal," are examples of axioms. If any

one does not admit the truth of axioms, when he understands the terms

used, we say that his mind is not sound, and that we cannot reason with

him.

4. A Theorem is a proposition which states a real or sup-

posed fact, whose truth or falsity we are to determine by

reasoning.

Illustration.—" If the same quantity be added to both numerator

and denominator of a proper fraction, the value of the fraction will be

increased," is a Theorem. It is a statement the truth or falsity of which

we are to determine by a course of reasoning.

6. A Demonstration is the course of reasoning by means

of which the truth or falsity of a theorem is made to appear.

The term is also applied to a logical statement of the reasons for

the processes of a rule.

A solution tells how a thing is done : a demonstration tells why it is

so done. A demonstration is often called proof.

6. A Lemma is a theorem demonstrated for the purpose

of using it in the demonstration of another theorem.

Illustration.—Thus, in order to demonstrate the rule for finding

the greatest common divisor of two or more numbers, it may be best first

to prove that " A divisor of two numbers is a divisor of their sum, and

also of their difference." This theorem, when proved for such a purpose,

is called a Lemma.

The term Lemma is not much used, and is not very important, since

most theorems, once proved, become in turn auxiliary to the proof of

others, and hence might be called lemmas.

7. A Corollary is a subordinate theorem which is sug-

gested, or the truth of which is made evident, in the course of

the demonstration of a more general theorem, or which is a

direct inference from a proposition, or a definition.

Illustration.—Thus, by the discussion of the ordinary process of

performing subtraction in Arithmetic, the following Gorolhry might be
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suggested :
" Subtraction may also be performed by addition, as we can

readily observe what number must be added to the subtrahend to pro-

duce the minuend."

8. A Postulate is a proposition which states that some-

thing can be done, and which is so evidently true as to require

no process of reasoning to show that it is possible to be done.

We may or may not know how to perform the operation.

Illustration.—Quantities of the same kind can be added together.

9. A Problem is a proposition to*do some specified thing,

and is stated with reference to developing the method of doing it

Illustration.—A problem is often stated as an incomplete sentence,

as, "To reduce fractions to forms having a common denominator."—This

incomplete statement means that " We propose to show how to reduce

fractions to forms having a common denominator." Again, the problem

" To construct a square," means that " We propose to draw a figure

which is called a square, and to tell how it is done."

10. A Rule is a formal statement of the method of solving

u general problem, and is designed for practical application in

solving special examples of the same class.

11. A Solution is the process of performing a problem or

an example.

A solution should usually be accompanied by a demonstration of the

process.

12. A Scholium is a remark made at the close of a dis-

cussion, and designed to call attention to some particular feature

or features of it.

Illustration. —Thus, after having discussed the subject of multipli-

cation and division in Arithmetic, the remark that " Division is the con-

verse of multiplication," is a scholium.

13. An Hypothesis is a supposition made in the state-

ment of a proposition, or in the course of a demonstration.

The Data are the things given or granted in a proposition.

The Conclusion is the thing to be proved.

The data of a proposition and the hypotheses are the same thing.
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THE GEOMETRICAL CONCEPTS.*

Points are designated

POINTS.

14. A Point is a place without size,

by letters.

Illustration.—If we wish to designate any particular point (place)

on the paper, we put a letter by it, and

sometimes a dot in it. Thus, in Fig. 1, the]

ends of the line, which are points, are desig-

nated as " point A," " point D ;" or, simply,

as A and D. The points marked in the I

line are designated as " point B," " point C,"

or as B and C. F and E are two points

above the line.

Fig. I.

LINES.
16. A Line is the path of a point in motion.

Lines are represented upon paper by marks made with a pen or pen-

cil, the point of the pen or pencil representing the moving point.

A line is designated by naming the letters written at its ex-

tremities, or somewhere upon it.

Illustration.—In each case in Fig. 2, conceive a point to start from

A and move along the path indicated by the mark to B. The path thus

traced is a line. Since a point has no size, a line hcts no breadth, though

* A concept is a thing thought about ;—a thought-object. Thus, in Arith-

metic, number is the concept ; in Botany, plants ; in Geometry, as will

appear in this section, points, lines, surfaces, and solids. These may also be

said to constitute the subject-matter of the science.
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the marks by which we represent lines have some breadth. The first and

third lines in the figure are each designated as "the line AB." The sec-

ond line is considered as traced by a point starting from A and coming

around to A again, so that B and A coincide. This line may he desig-

nated as the line AmnA, or AmnE. In the fourth case, there are three

lines represented, which are designated, respectively, as AmB, AnB, and

AcB ; or, the last, as AB.

16. Lines are of Two Kinds, Straight and Curved. A
straight line is also called a Eight Line. A curved line is often

called simply a Curve.

17. A Straight Line is a line traced by a point which

moves constantly in the same direction. (See 46, a.)

The word " line " used alone generally signifies a straight line.

18. A Curved Line is a line traced by a point which con-

stantly changes its direction of motion.

Illustration. —Thus, in (1), Fig. 2, if the line AB is conceived as

traced by a point moving from A to B, it is evident that this point moves

in the same direction throughout its course ; hence AB is a straight line.

If a body, as a stone, is let fall, it moves constantly toward the centre of

the earth
;
hence its path represents a straight line. If a weight is sus-

pended by a string, the string represents a straight line.

Considering the line represented by AtB, (3), Pig. 2, as the path of a

point moving from A to B, we see that the direction of motion is con-

stantly changing.
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Sometimes a path like that rep-

resented in Fig. 3 is called, though

improperly, a Broken Line. It is not

a line at all ; that is, not one line : it

is a combination of straight lines.

SURFACES.
19. A Surface is the path of a line in motion.

20. Surfaces are of Two Kinds^ Plane and Curved.

21. A Plane Surface, or simply a Plane, is a surface

such that a straight line passing through any two of its points

lies wholly in the surface. Such a surface may always be con-

ceived as the path of a straight line in motion.

Illustration.—Let AB, Fig. 4, be supposed to move to the right, so

that its extremities A and B move at the

same rate and in the same direction, A
tracing the line AD, and B the line BC. The

path of the line, the figure ABCD, is a sur-

face. This page is a surface, and may be

conceived as the path of a line sliding like a

ruler from top to bottom of it, or from one

side to the other. Such a path will have '^'
'

length and breadth, being in the latter respect unlike a line, which has

only length.

22. A Curved Surface is a surface in which, if various

lin€8 are drawn through any point, some or all of them will be

curved.

Illustration.—Suppose a fine wire bent into the form of the curve

AmB, Fig. 5, and its ends A and B stuck into a rod XY. Now, taking

the rod XY in the fingers and rolling it, it is evident that the path of the

line represented by the wire AwB will be the surface of a ball (sphere).

Again, suppose the rod XY placed on the surface of this paper so

that the wire AmB shall stand straight up from the paper, just as it
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would if we could take hold of the curve at tn and raise it right up,

letting XY lie as it does in the figure. Now slide the rod straight up or

down the page, making both ends move at the same rate. The path ol

Fig. 6. Fig. 7.

A/?iB will be like the surface of a half-round rod (a semi-cylinder). Thus

we see how surfaces, plane and curved, may be conceiyed as the paths of

lines in motion.

Ex. 1. If the curve AnB, Fig. 6, be conceived as revolved

about the line XY, the surface of what object will its path be like?

Ex. 2. If the figure OMNP, Fig. 7, be conceived as revolved

about OP, what kind of a path will MN trace ? What kind of

paths will FN and OM trace ?

Ans. One path will be like the surface of a joint of stove-

pipe, L e., a cylindrical surface ; and one will be like a flat wheel,

i. e., a circle.

Ex. 3. If you fasten one end of a cord at a point in the ceil-

ing and hang a ball on the other end, and then make the ball

swing around in a circle, what kind of a surface will the string

describe ?

Ex. 4. If on the surface of a stove-pipe, you were to draw

various lines through the same point, might any of them be

straight ? Could all of them be straight ? What kind of a sur-

face is this, therefore?

Ex. 5. Can you draw a straight line on the surface of a ball ?

On the surface of an egg ? What kind of surfaces are these ?
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Ex. 6. When the carpenter wishes to make the surface of a

board perfectly flat, he takes a ruler whose edge is a straight line,

and lays this straight edge on the surface in all directions,

watching closely to see if it touches at all points in all positions.

Which of our definitions is he illustrating by hig practice ^

Ex. 7. How can you conceive a straight line to move so that

it shall not generate a surface ?

OF TH E CI RCLE.
23. A Circle is a plane surface bounded by a curved line

all points in which are equally distant from a point within.

24. The Circumference of a circle is the curved line

all points in which are equally distant from a point within.

25. The Centre of a circle is the point within, which is

equally distant from all points in the circumference.

26. An Arc is a part of a circumference.

27. A Radius is a straight line drawn from the centre to

any point in the circumference of a circle.

By reason of (24) all radii of the same circle are equal.

28. A Diameter of a circle is a straight line passing

through the centre and limited by the circumference.

A diameter is equal to the sum of two radii; hence, all diam-

eters of the same circle are equal.

Illustration.—A circle may be conceived as the path of a line, like

OB, Fig. 8, one end of which, 0, remains at the same point, while the

other end, B, moves around it in the plane of the paper. OB is the radius,

and the path described by the point B is the circumference. ABis a diam-

eter. In Fig. 9, the curved line ABCDA is the circumference, is the

centref&n^ the surface within the circumference is the circle. Any part of
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Fig. 8. Fig. ». Fig. 10.

a circumference, as AB, or any one of tlie curved lines BB, Fig. 8, is an

arc. So also AM and EF, Fig. 10, are arcs. EF is an arc drawn from 0'

as a centre, with the radius O'B.

29. A Chord is a straight line joining any two points in a

circumference, as BC or AD, Fig. 9. The portion of the circle

included between the chord and its arc, as A/«D, is a Segfiiient.

30. A Tangent to a circle is a straight line which touches

the circumference, but does not intersect it, how far soever the

line be produced.

Two circles which touch each other in but one point are said

to be tangent to each other. A straight-line tangent is called a

Rectilinear Tangent.

31. A Secant is a straight line which intersects the circum-

ference.

ANGLES.
32. A Plane Angle, or simply an Angle, is the opening

between two lines which meet each other.

The point in which the lines meet is called the Vertex, and

the lines are called the Sides.

An angle is designated by pla. lui,' ;- letter at its vertex, and

one by each of its sides. In reaciiiig. we name the letter at the

vertex when there is but one vertex at the point, and the three
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letters when there are i^o or more vertices at the same point.

In the latter case, the letter at the vertex is put between the

other two.

Illustration.—Id com-

mon language an angle la

called a comer. The open-

ing between the two lines

AB and AC, in which the

ligure 1 stands, is called the

angle A ; or, if we choose,

we may call it the angle

BAC. At L there are two

vertices, so that were we to

say the angle L, one would

not know whether we meant

the angle (corner) in which

4 stands, or that in which

6 stands. To avoid this

ambiguity, we say the angle

HLR for the former, and

RLT for the latter. The

angle ZAY is the corner in

which 11 stands; that is,
^

the opening between the
'^'

two lines AY and AZ. In designating an angle by three letters, it is

immaterial which letter stands first, so that the one at the vertex is put

between the other two. Thus, PQS and SQP are both designations of

the angle in which 6 stands. An angle is also frequently designated by

putting a letter or figure in it and near the vertex.

33. The Size of an Angle depends upon the rapidity

with which its sides separate, and not upon their length.

Illustration. —The angles BAC and MON, Fig. 11, are equal, since

the sides separate at the same rate, although the sides of the latter are

more prolonged than those of the former. The sides DF and DE separate

faster than AB and AC, hence the angle EDF is greater than the angle

BAC.

34. AdUacent Angles are angles so situated as to have a

common vertex and one common side lying between them.
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Illustration.—In Fig. 12, angles 4 and

5 are adjdcenty since tliey have the common
vertex L, and the common side LR. Angles

9 and 10 are also adjacent.

35. Angles are distinguished as

Right Angles and Oblique Angles.

Oblique angles are either Acute or

Obtuse. Fig. 12.

36. A Right Angle is an angle included between two

straight lines which meet each other in such a manner as to

make the adjacent angles equal.

37. An Acute Angle is an angle which is less than a

right angle, i. e., one whose sides sepamte less rapidly than those

of a right angle.

38. An Obtuse Angle is an angle which is greater than a

right angle, i. e.^ one whose sides separate more rapidly than those

of a right angle.

39. A Straight Angle is an angle whose sides extend in

opposite directions, and hence form one and the same straight line.

Illustrations.—In comnjon language, a right angle is called a

square corner, and an acute angle a sharp comer.

Fig. 13.

Angles BAD and BAC, Fig. 13, are right angles^ PST is an acme arigle^

and HLR is an obtuse angle.

If HL were turned to the left until it fell in the dotted line, the angle

HLR would increase, and when HL fell in the dotted line, the angle would

become what is called a straight angle.
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40. The Sum of Two Angles is the angle included

between their non-coincident sides, when the two angles are so

placed as to be adjacent angles, and their sides lie in the same
plane.

Fig. 14.

Illustration.—Let and M be any two angles. Make EPB = M,

and APE = 0, thus placing the two angles and M so that they become

adjacent angles (34). Then is APB the sum of and M, and we write,

+ M = APB, or APE + EPB = APB.

That is, the sum of the angles and M, or APE and EPB, is APB.

41. The Difference between Two Angles is the

angle included by their non-coincident sides, when the angles

are so placed as to have a common vertex and side, the second

side of the less angle lying between the sides of the greater.

Fig. 15.

Illustration.—To find the difierence between the two angles and

S, we place the vertices and S at a common point, as at P, making

APB = RST, and APC = DOE. Then is CPB the difiference between

RST and DOE ; that is,

RST - DOE = CPB.

So also APB - APC = CPB,

and APB - CPB = APC.
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42. Corollary !.—(</) The sum of two right angles,

(6) Or, the sam of the two adjacent angles formed by

one straight line meeting another,

(c) Or, the sum of all the consecutive angles included

by several lines lying on the same side of a given line and
m^eeting it in a com^m^on point, is a straight angle.

Fig. 16.

Thus, ABP + PBC, or DEG + GEP, or HIL + LIM + MIN + NIK,

is a straight angle.

43. Corollary 2.—The sum of the four angles formed

by two intersecting lines, or the sum. of all the consecutive

angles formed by any numher of lines meeting in a com-

mon point is two straight angles, or four right angles.

Thus, the sum of the four angles ADC, CDB, BDE, and EDA is four

right angles, as also is the sum of AOB, BOC, COD, DOE, EOF, FOG,

and GOA.
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44. A Solid is a limited portion of space.

Illustration.—Suppose you have a block of wood like that repre.

sented in Fig. 17. Hold it still in

your fingers a moment, and fix your

mind upon it. Now take the block

away and think of the space (place)

where it was. This space is an ex-

ample of what we call a Solid in

Geometry. In fact, the solids of

Geometry are not solids at all, in

the common sense of the word

solid ; they are only places of certain shapes.

Again, hold your ball still a moment in your fingers, then let it drop,

and think of the place it filled when you had it in your fingers. It is

this^Zace, shaped just like your ball, that we think about and talk about

as a solid in Geometry.

GENERATION OF LINES, SURFACES,
AND ANGLES.

45. When one geometrical concept is conceived to move so

that its path is some other concept, the former is said to generate

the latter, and the latter is called the locus of the former.

The Locus of a Point is the line (either straight or

curved) generated by the motion of the point according to some

given law.

In the same manner, a surface is conceived as the locus of a

line moving in some determinate manner.

46. A Line is generated by a moving point (15-18). Hence,

the locus of a point is a line.
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(a) The came straight line may be conceived as generated by a point

moving in either of two opposite directions, or part of it may be con-

ceived as generated by a point moving in one direction, and part by a

point moving in the opposite direction. Thus, FA, Fig. 18, may be con-

ceived as generated by a point moving from F to A, or from A to F ; or

the part OA may be conceived as generated by a point moving from to

A, and the part OF by a point moving in the opposite direction, i. <?.,

I

from to F.

47. A Surface is generated by a moving line (19-22).

Hence, the locus of a line is a surface.

48. An Angle is generated by the revolution of a straight

line about one of its extremities, the line lying all the time in

the same plane.

Illustbation.—The angle BOA,

Fig. 18, may be considered as gen-

erated by the revolution of the line

BO from the position AO to its pres-

ent position. The angle COB may

be considered as generated by the

revolution of CO from the position

BO to its present position, etc.
i^

49. A Right Angle is generated by one-fourth of an en-

tire revolution, an Acute Angle by less than one-fourth of an

entire revolution, and an Obtuse Angle by more than one-

fourth. A Straight Angle is generated by one-half of a

revolution.

50. A Solid may be conceived as generated by the motion

of a plane, and hence may be defined as the path of a plane in

motion.

Illustration.—Thus the solid, Fig. 17, may be conceived as gener-

ated by the movement of the plane ABCD from its present position to the

position GHFE.

61. A Sphere may be conceived as generated by the revo-

lution of a semi-circle about its diameter. (See illustration at

the bottom of page 18.)
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QUERIES.
1. If the surface OMNP, Fig. 19, is conceived as reyolyed

around OP, what is the path through which it moves ?

Caution.—The student should distinguish between the surface gener-

ated by the line MN, and the solid generated by the surface OMNP.

Fig. 19. Fig. 20.

S5. If the surface represented by CAB, Fig. 20, is conceived as

revolved about its side CA, what kind of a solid is its path ?

3. As you fill a vessel with water, what is the solid traced by

the surface of the water ?

Ans. The same as the space within the vessel.

4. If a circle is conceived as lying horizontally, and then

moved directly up, what will be the solid described, i. e., its path ?

Do not confound the surface described with the solid. What
describes the surface ? What the solid ?

EXTENSION AND FORM.

52. Extension means a stretching, or reaching out.

Hence, a Point has no extension. It has only position (place).

A Line stretches or reaches out, but only in length, as it has

no width. Hence, a line is said to have One Dimension, viz.,

length.

A Surface extends not only in length, but also in breadth

;

and hence has Two Dimensions, viz., length and breadth.
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A Solid has Three Dimensions, viz., length, breadth, and

thickness.

Illustration. —Suppose we think of a point as capable of stretching

out (extending) in one direction. It would become a line. Now sup-

pose the line to stretch out (extend) in another direction—to widen. It

would become a surface. Finally, suppose the surface capable of thick-

ening, that is, extending in another direction. It would become a solid.

63. The Limits (extremities) of a line are points.

The Limits (boundaries) of a surface are lines.

The Limits (boundaries) of a solid are surfaces.

64. Magnitude (size) is the result of extension. lines,

surfaces, and solids are the geometrical magnitudes. A point is

not a magnitude, since it has no size. The magnitude of a line

is its length ; of a surface, its area ; of a solid, its volume.

55. Figure or Form (shape) is the result of position of

points. The form of a line (as straight or curved) depends upon

the relative position of the points in the line. The form of a

surface (as plane or curved) depends upon the relative position of

the points in it. The form of a solid depends upon the relative

position of the points in its surface.

QU ER I ES

1. Suppose a line to begin to contract in length, and continue

the operation till it can contract no longer, what does it become ?

That is, what is the minor limit of a line ?

2. If a surface contracts in one dimension, as width, till it

reaches its limit, what does it become ?

3. If a solid contracts to its limit in one dimension, what does

it pass into ? If in two dimensions ? If in three dimensions ?

4. What kind of a surface is that, every point in which is

equally distant from a given point?
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56. Geometry is that science which treats of magnitude
andform as the result of extension and position.

The Geometrical Concepts are points, lines, surfaces

(including plane and spherical angles), and solids (including

solid angles).*

The Object of the science is the measurement and compari-
son of these concepts.

Plane Geometry treats of figures all of whose parts are confined to one
plane. Solid Geometry^ called also Geometry of Spaxx^ and Geometry of
Three IHmensions, treats of figures whose parts lie in different planes.

The division of this treatise into two chapters is founded upon this dis-

tinction.

0irct!0H m
AXIOMS AND POSTULATES,

67. There are very many axioms ; but, as they are truths

which the mind grants on the mere statement, it is not needful

to enumerate them all. We give a few of the more important,

with some illustrative remarks.

58. All demonstration is based upon definitions, axioms, or

previously demonstrated propositions.

* A plane angle may be conceived as a portion of a plane, and hence as

itself a surface, and thus capable of increase or diminution like the other

magnitudes. The angle thus considered becomes a sort of infinity deter-

mined relatively by the rate of separation of the lines. It is thus analogous

to an infinite series the law of which is determined by a few of its first terms,

^e definitions 32, 33, and 48, with their illustrations.
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69. Axiom I.—A straight line is the slwrtest line be-

tween two points,

Illustbation.—If a cord is stretched across the table, it marks a

straight line. In this way the caipenter marks a straight line. Having

rubbed a cord, called a chalk-line, with chalk, he stretches it tightly from

one point to another on the surface upon which he wishes to mark the

line, and then raising the middle of the cord, lets it snap upon the sur-

face. So the gardener makes the edges of his paths straight by sti-etching

a cord along them. These operations depend upon the principle that

when the line between the points is the shortest possible, it is straight.

60. Axiom II.—Two points in a straight line deter-

mine its position.

Illustration.—If the farmer wants a straight fence built, he sets two

stakes to mark its ends. From these its entire course becomes known.

This is the principle upon which aligning (or sighting) depends. Two
points in the required line being given, by looking from one in the direc-

tion of the other, we look along a straight line, and are thus able to locate

other points in the

line. If the points A

and B are marked, by

putting the eye at A
and looking steadily

towards B, we can tell whether D and E are in the same straight line with

A and B, or not. So we can observe that C and C" are not in the line

;

but that C is. This process of discovering other points in a line with two

given points is called aligning, or sighting. In this way a row of trees is

made straight, or a line of stakes set. It is the principle upon which the

surveyor runs his lines, and the hunter aims his gun. In the latter case,

the two sights are the given points, and the mark, or game, is a third

point, which the marksman wishes to have in the same straight line as

the sights.

61. Axiom III.—Between the same two points there

is one straight line, and only one.

Illustration.—Let any two letters on this page represent the situa-

tion of two points ; we readily see that there is one, and only one, straight

path between them. A^ain, let a comer of the desk represent one point
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and a comer of the ceiling of the room represent another point ; we per-

ceive at once that, if a point is conceived to pass in a straight line from

one to the other, it will always trace the same path. In short, as soon as

two points are mentioned, we think of the distance between them as a

single straight line,—for example, the centre of the earth and the centre

of the sun.

Once more, conceive A and B, Fig. 21, to be two points in the path of

a point moving from A in the direction of B. Now all the points in the

same direction from A that B is, are in this path ; and any point out of this

line, as C or C", is in a different direction from A.

In this manner we draw a straight line on paper by laying the straight

edge of a ruler on two points through which we wish the line to pass,

and passing a pen or pencil along this edge.

62. To Intersect is to cross ; and a crossing is called an
Intersection,

63. Corollary.—Two straight lines can intersect in hut

one point; for, if they had two points common, they would

coincide and not intersect.

Ex. 1. A railroad is to be run from the town A to town B.

Kit is made straight^ through what points will it pass ? Can it

pass through any points not in the same direction from A that

B is?

Ex. 2. If I live on the south side of a straight railroad, and

my friend on the north side, but five miles farther east and two

miles farther north, and the road from my house to his is

straight, how many times does it cross the railroad ?

Ex. 3. Can you always draw a straight line which shall cut a

curve (whatever curve it may be) in two points at least ? Try it.

64. Axiom IV.—The whole is greater than any of its

parts.

65. Axiom V.—The whole is equal to the sum of all

its parts.
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66. Axiom VI.—Things which are equal to the same
thing are e^ual to each other.

67. Axiom VII.—// equals he increased or dimin-

ished equally, the results will he equal.

68. Axiom VIII.—// unequals he increased or di"

minished equally, the greater will give the greater result,

i. e., the inequality wUl exist in the same sense.

POSTULATES
69. Postulatel! like axioms, are very numerous, and it would

be useless to attempt to enumerate them all. We give a few

simply as specimens.

70. Postulate I. —A line can he produced to any
length.

71. Postulate II.—From^ any point a straight line

can he drawn to any other point.

72. Postulate III.—Geometrical magnitudes can he

added, suhtracted, multiplied, or divided.

73. Postulate FV.—A geometrical figure can he con-

ceived as moved at pleasure, without changing its size or

the relation of its parts (shape).

74. Postulate V.—Any nurriber of lines can he drawn
making equal angles with a given line,

75. Postulate Yl. — With any point as a centre, a
circumference can he drawn with any radius.
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jsiriCtlOM lY

MEASUREMENT OF RIGHT LINES.

76. The Measure of a line is another line which is con-

tained in it an exact number of times.

77. A Common Measure of two or more lines is a line

which measures each of them.

78. Commensurable Lines are lilies which have a

finite common measure.

79. The Sum ofTwo Lines is the line formed by uniting

them so that one shall be the prolongation of the other.

80. The Difference between Two Lines is the line

which remains after the length of the less has been taken from

the greater.

81. Problem.—To measure a straight line with the

dividers and scale.

Solution.—Let AB, Fig. 22, be the line to be measured. Take the

dividers, Fig. 2 (frontis-

piece), and placing the

sharp point A firmly

upon the end A of the

line AB, open the di-

viders till the other point

B (the pencil point) just

reaches the other end of

the line, B. Then letting Fig. 22.

the dividers remain open just this amount, place the point A on the

lower end of the left-hand scale, as at o, Fig. 1 (frontispiece), and notice

where the point B reaches. In this case, it reaches 3 spaces beyond the
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figure 1. Now, as this scale is inches and tenths of inches,* the line AB is

1.3 inches long.

Ex. 1. What is the length of CD ? Ans. .15 of a foot.

Ex. 2. What is the length of EF ? Ajis. .75 of an inch.

Ex. 3. What is the leng£h of GH ? Ans. 1\ inches.

Ex. 4. What is the length of IK ? Ans. .18 of a foot

Ex. 5. Draw a line 3 inches long.

Ex. 6. Draw a line 2.15 inches long.

Ex. 7. Draw a line 1.25 inches long.

Ex. 8. Draw a line .85 of an inch long.

[Note.—Suppose a fine elastic cord were attached by each of its ends

to the points A and B of the dividers; when they were opened so as to

reach from C to D, Fig. 22, the cord would represent the line CD. Now
applying the dividers to the scale is the same as laying this cord on the

scale. Without the cord, we can imagine the distance between the points

of the dividers to be a line of the same length as CD.]

Ex. 9. Find in the same way as above the length and width

of this page. Also the distance from one corner (angle) to the

opposite one (the diagonal).

82. Problem.—To find the suvi of two lines.

Solution.—To find the sum of AB and CD, If first draw the indefi-

nite line EX. With the di-

viders I obtain the length

of AB, by placing one point

on A and extending the

other to B. This length I

now lay off on the indefinite ^'S* 23.

line EX, by putting one point of the dividers at E and with the othei

marking the point F. EF is thus made equal to AB. In the same man-

* The next scale to the right is divided into lOths and lOOths of a foot.

Thus, from p to 10 is 1 tenth of a foot, and the smaller divisions are hun-

dredths.

f These elementary solutions are sometimes put in the singular, as the

more simple style.
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ner, taking the length of CD
with the dividers, I lay it

off from F on the line FX.

Thus I obtain

EG = EF + FG ^. ,,

= AB + CD.

Hence, the sum of AB and CD is EG.

Ex. 1. Find the sum of AB and EF, Fig. 22.

Ex. 2. Find the sum of EF, CD, and GH, Fig. 22.

Ex. 3. Make a line twice as long as CD, Fig. 22. Three

times as long.

83. Problem.—To find the difference of two lines.

Solution.—To find the difference of AB and CD, I take the length of

the less line AB with the dividers;

and placing one point of the dividers

at one extremity of CD, as C, make

CE = AB. Then is ED the differ-

ence of AB and CD, since

ED = CD - CE = CD

Ex. 1. Find the difference of IK and EF, Fig. 22.

Ex. 2. Find the difference of GH and CD, Fig. 22.

Ex. 3. Find how much longer IK, Fig. 22, is than the sum

of EF, Fig. 22, and CD, Fig. 23.

Ex. 4. Find the difference of the sum of AB and GH, and

the sum of CD and EF, Fig. 22.

84. Problem.—To find the ratio of two commensurable

lines.

Solution.—Let AB and CD (Fig. 25) be the two lines whose ratio we

seek.

Apply the shorter (AB) to the longer (CD) as many times as the latter

will contain the former. If AB is contained an integral number of times

(say 3, or m) in CD, then AB is a common measure of AB and CD, and we

, AB 1

^^'^^CD^^S'^"^-
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But if the shorter is not contained in the longer an integral number of

times, apply it as many times as it is contained, and note the remainder;

thus, AB is contained in CD once, with a remainder oD.

Now apply this remainder, «D, to AB as many times as AB will con-

tain it, which, in this case, is once with a remainder &B.

Fig. 25.

Again, apply this remainder, JB, to aD, the former remainder. In

this case, it is contained once with a remainder cD.

Again, apply cD to JB. It is contained twice, with a remainder dE.

^nally, applying dE to cD, we find it contained 3 times, without any

remainder.

Hence, dE is the common measure of AB and CD.

Calling dE the unit of measure, 1, we have,

dE = \]

cD = ZdE = 3;

^i = 2d) = 6;

M = })E = U + dE = 1',

aD = ac + cD = 10

;

AB = A6 + ftB — aD ->r ac = 17;

CD = Co + aD = AB + aD := 27.

Hence the lines AB and CD are to each other as the numbers 17 and

27 ; AB is ^ of CD ; or, expressed in the form of a proportion,

AB _17*
CD ~ 27 • '

[Note.—This process will be seen to be the same as that developed

in Arithmetic and Algebra for finding the greatest or highest Common
Measure of two numbers. See Practical Arithmetic, p. 362, and

Complete Algebra, (137).]

* This method will not always obtain the exact ratio, both because of

the imperfection of the measurement, and because some lines are incommen-

Burable by any finite unit, as will appear hereafter.
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Fig. 26.

Ex. 1. Find, as above, the approximate ratio of AB to CD.

Ratio, —

.

Ex. 2. Find, as above, the approximate ratio of CD and IK.

Ratio, -•
D

Ex. 3. Find, as above, the approximate ratio of EF to GH.

Ratio, jr«

Ex. 4. Find, as above, the approximate ratio of EF to CD.

Ratio, ~

CONTINUOUS VARIATION.

85. A magnitude is said to vary continuously when in

passing from one value to another it passes through all interme-

diate values.

Illustbation.—Let the line EF, Fig. 26, be produced by placing a

pencil at F and tracing the line to the right, until it becomes equal to IK.

EF has thus been made to be successively of all intermediate lengths be-

tween its present length and the length of IK ; i. e., it has varied continu-

ously.

In like manner, an angle may be conceived to vary continuously from

one magnitude to another. Thus, in Fig. 27, the angle CPB may be made
greater or less by revolving CP about P. By such a revolution of CP the

angle CPB may be conceived to vary, or grow, continuoudy till it becomes

CPB.
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PLANE GEOMETRY.

OF PERPENDICULAR STRAIGHT LINES.

86. A Perpendicular to a given line is a line which

makes a right angle (36) with the given line.

87. An Obliqvie line is a line which makes an oblique angle

with a given line.

PROPOSITION I.

88. Theorem.—At any point in a straight line, one

perpendicular can be erected to the line, and only one,

which shall lie on the same side of the line.

Demonstration.

Let AB represent any line, and P be any point therein.

We are to prove that, on the same side

of AB, there can be one, and only one,

perpendicular erected to AB at P.

From P draw any oblique line, as PC,

forming with AB the two angles CPB and

CPA.

Now, while the extremity P, of PC,

remains at P, conceive the line PC to re- pjg. 27.

volve so as to increase the less of the two

angles, as CPB, continuously. Since the sum of CPB and CPA remaillS

constant, CPA will diminish continuously.
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Hence, for a certain position of CP, as

C'P, these angles will become equal. In

this position, the line is perpendicular to

AB (36, 86). Therefore, there can be one

perpendicular, C'P, erected to AB at P.

Again, if the line C'P revolve from the

position in which the angles are equal, one

angle will increase and the other diminish

;

hence there is only one position of the line

on this side of AB in which the adjacent angles are equal.

Therefore there can be only one perpendicular erected to AB at P,

which shall lie on the same side of AB. Q. e. d.

89. Corollary 1.

—

On the other side of the line a second

perpendicular, and only one, can he erected from the same
point in the line,

90. Corollary 2.—// one straight line meets another

so as to make the angle on one side of it a right angle, the

angle on the other side is also a right angle.

PROPOSITION II.

91. Theorem.—// two straight lines intersect so as to

mahe one of the four angles formed a right angle, the

other three are right angles, and the lines are mutually
perpendicular to each other.

Demonstration".

Let CD intersect AB, making CEB a

right angle.

We are to prove that CEA, A ED, and

DEB are also right angles, and that CD is

perpendicular to AB, and AB to CD.

By (90), since CEB is a right angle,

CEA is also a right angle.

In like manner, as BE meets CD,
making CEB aright angle, BED is a right

angle, by (90).

Again, since DEB is right, DE meets

AB, making one angle right; hence the

Other, AED, is right also (90). Q. e. d.

ii^^^^^^H
Fig. 28.
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Finally, since CD meets AB, making AEC a right angle, CD is perpen-

dicular to AB (86) ; and, since AB meets CD, making AEC a right angle,

AB is perpendicular to CD. Q. e. d.

PROPOSITION III.

92. Theorem.— TFT^en. two straight lines intersect at
right angles, if the portion of the plane of the lines on one
side of either line he conceived to revolve on that line as
an axis until it coincides with the portion of the plane on
the other side, the parts of the second line will coincide,*

Demonstration.

Let the two lines AB and CD intersect at right angles at E ; and let

the portion of the plane of the lines on the side of CD on which B lies

be conceived to revolve on the line CD as an axis, until It falls In the

portion of the plane on the other side of CD.f

We are to prove that EB will fall in

and coincide with EA.

The point E being in CD, does not

change position in the revolution; and,

as EB remains perpendicular to CD, it

must coincide with EA after the revolu-

tion, or there would be two perpendicu-

lars to CD on the same side and from the

same point, E, which is impossible (88).

Hence, EB coincides with EA. Q. e. d.

Fig. 29.

•i^^^^^^H

PROPOSITION IV.

93. Theorem,—i^oTw. any point without a straight

line, one perpendicular can be let fall upon that line, and
only one.

* This has nothing to do with the lengths of EB and EA ; indeed, lines

are generally supposed indefinite in length, unless limited by the data.

f This revolution may be illustrated by conceiving the paper folded in

the line CD until EB is brought into EA.



42 ELEMENTARY GEOGRAPHY,

?'

P
\

\

\

\—
)

P'

A D /D"B A' D' B'

1
/

/
/

jP

Demoi^stration.

Let AB be any line and P any point without the line.

We are to prove that one per-

pendicular, and only one, can be

let fall from P upon AB.

Let A'B' be an auxiliary line;

and at any point in it, as D', let a

perpendicular P'D' be erected (88).

Now place A'B', bearing P'D'

with it, in AB, and move it to the

right or left till P'D' passes through

P, and when in this position let

D be the point in AB in which
^''^- 3°-

D' falls.

Connect P and D.

Then, since angle PDB coincides with the right angle P'D'B', PDB is a

right angle, and PD is a perpendicular from P to the line AB (86)- Q- e. d.

We are now to prove that PD is the only perpendicular from P to the

line AB.

Suppose that there can be another, and let it be PD".

Produce PD to P'", and take DP"=DP, and draw P"D".

Now let the portion of the plane above AB be revolved upon AB as

an axis until it falls in the plane on the opposite side of AB from its first

position. Then will DP' fall in DP'" (92), and since DP" is by construc-

tion equal to DP, P will fall in P".

Then, since PDB is a right angle BDP" is also a right angle, and PP"

is a straight line (42, a)-

For a like reason PD" P" is a straight line, and we have two straight

lines from P to P", which is impossible.

Hence there can be but one perpendicular, as PD, from P upon AB.

Q. E. D.

PROPOSITION V.

94. Theorem.^From a point laithout a straight line,

the -perpendicular is the shortest distance to the line.

Demonstration.

Let AB be any straight line, P any point without it, PD a perpen-

dicular, and PC any oblique line.

We are to prove th^t Pp is shorter than any oblique line, as PC.
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Ist. Since the shortest distance from P to

any point in the line AB is a straight line

(69), we are to examine only straight lines.

2d. Produce PD, making DP' = PD, and

draw P'C.

Now let the portion ofthe plane of the lines

above AB be revohed upon AB as an axis until

it coincides with the portion below AB.

Since PP' and AB intersect at right

angles, PD will fall in DP' (92); and, since

PD= DP', P will fall in P', and PC= P'C,

since they coincide when applied.

Finally, PP' being a straight line, is shorter than PCP' which is a broken

line, since a straight line is the shortest distance between two points (59).

Now PD, the half of PP', is less than PC, the halfof the broken line PCP

.

Therefore, the perpendicular, PD, is the shortest distance from R to

the line AB. q. e. d.

95. The Distance between two points is the straight line

which joins them, and the Distance from a point to a line is

the perpendicular from the point to the line.

S^^IH^^E

Fig. 31.

PROPOSITION VI.
96. Theorem.—// a perpendicular is erected at the

middle point of a straight line,

1st. Any point in the perpendicular is equally distant

from the extremities of the line.

2d. Any point without the perpendicular is nearer the

extremity ofthe line on its own side of the perpendicular.

Demonstration^.

Let PD be a perpendicular to AB at

its middle point, D, any point in this

perpendicular, and 0' any point without

the perpendicular.

Draw OA, OB, O'A, and O'B.

We are to prove, 1st, that OA= OB;
and 2d, that O'B < O'A.

Ist. Revolve ODB on PD as an axis,

Fig. 32.
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till B falls in the plane on the opposite

side of PD.

Then, since PD is perpendicular to AB,

DB will fall in DA (92)- And since DB
= DA by hypothesis, B will fall in A, and

OB will coincide with OA (61).

Hence OA = OB. q. e. d.

2d. 0' being on the opposite side of PD
from A, 0'A will cut PD at some point, as 0.

Draw CB.
^''^- ^^

Now, since C is a point in the perpendicular, CA = CB by the for-

mer part of the demonstration.

And, since O'B is a straight line and O'C 4- CB is a broken line,

OB < O'C + CB (59).

Whence, substituting CA for its equal CB, we have

OB < O'C + CA,

or O'B < O'A. Q. E. D.

97. Corollary.—Conversely, The locus of a point equi-

distant from the extremities of a given line is a perpen-

dicular to that line at its middle point, since any point in

such perpendicular is equidistant from the extremities of the line,

and any point not in the perpendicular is unequally distant from

the extremities.

PROPOSITION VII.

98. Theorem.—// each of two points in one line is

equally distant from the extremities of another line, the

former line is perpendicular to the latter at its middle

point.

Demonstration.

Every point equally distant from the extremities of a straight line lies

in a perpendicular to that line at its middle point, by (97)- But two

points determine the position of a straight line. Hence, two points, each

equally distant from the extremities of a straight line, determine the

position of the perpendicular at the middle point of the line. Q. e. d.
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PROPOSITION VIII.

99. Problem.

—

To erect a perpendicular to a given
line at a given point in the line.

SOL[JTION.

Let XY be the given line, and A the given point.

We are to erect a perpendicu-

lar to XY, at A.

From A lay off on each side

equal distances, as AC = AB.

From C and B as centres, with

a radius sufficiently great to cause

the arcs to intersect at some point

without XY, describe arcs intersecting at 0.

Pass a line through and A, and it will be the perpendicular sought.

Fig. 33.

Demoxstkatiok of Solution.

Since OA has two points, and A, each equally distant from B and

C, OA is a perpendicular to BC at A, its middle point (98)*

But BC coincides with XY ; hence OA is perpendicular to XY at A.

100. Definition.—To Bisect anything is to divide it into

two equal parts.

PROPOSITION IX.

101. Problem.

—

To bisect a given line.

Solution.

Let AB be the given line.

We are to bisect it, that is, to divide it

into two equal parts.

From the extremities A and B as cen-

tres, with any radius sufficiently great to

cause the arcs to intersect without the line

AB, describe arcs intersecting in two points,

as m and n.

i^^^^^if^^^^:

Fig. 34.
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Pass a line through m and n, intersect-

ing AB at 0.

Then is the middle point of AB, and

AO = OB.

Demonstration of Solution.

Since the line mn has two points, m and

n, eacli equally distant from A and B, it is

perpendicular to AB at its middle point (98) Fig. 34.

PROPOSITION X.

102. Problem.—From a point without a given line, to

let fall a perpendicular upon the line.

Solution.

Let XY be the given line, and the point without the line.

We are to let fall a perpendicular

from to XY.

From as a centre, with a radius

sufficiently great to cause the arcs to in-

tersect, descrilje an arc cutting XY in two

points, as B and C.

From B and C as centres, with a ra-

dius sufficiently great to cause the arcs to

intersect without XY, describe arcs in-

tersecting at some point, as D. Fig. 35.

Pass a line through and D, meeting XY in A. Then is OA the

perpendicular sought.

Demonstration of Solution.

OA being produced through D has two points, and D, each equally

distant from B and C, and hence is perpendicular to BC, which coincides

with XY. Hence, OA passes through and is perpendicular to XY.
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QU E R I ES.

103. 1. In the solution of Proposition IX, is it necessary

that the arcs which intersect at n should be struck with the same

radius as those which intersect at ?w ? Is it necessary that the

two intersections be on different sides of AB ?

2. In the solution of Proposition X, is it necessary that the

intersection D should fall on the opposite side of XY from ?

Why is it necessary to take the radius with which these arcs are

struck greater than half of BC ?

EXERCISES.
104. 1. A mason wishes to build a wall from (Fig. 36), in the

wall AB, '* straight across" (perpendicular) to the wall CD, which

is 8 feet from AB. He has only his 10-foot pole, which is subdi-

vided into feet and inches, with which to find the point in the

opposite wall at which the cross wall must join. How shall he

find it? What principle is involved?

Fig. 36.

Fig. 37.

2. Wishing to erect a line perpendicular to AB (Fig. 37) at

its centre, I take a cord or chain somewhat longer than AB, and

fastening its ends at A and B, take hold of the middle of the cord

or chain and carry it as far from AB as I can, first on one side

and then on the other, sticking pins at the most remote points,

as at P and P'. These points determine the perpendicular sought.

What is the principle involved ?
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3. Bisect a line by making marks on only one side of it.

4. With a measuring-tape as an instrument, how would you

erect on the shore a perpendicular to the straight bank of a lake,

at a given point in the bank ?

--•--

0]&Ct!iaH 11

OF OBLIQUE STRAIGHT LINES.

105. The Supplement of an angle is the angle which

remains after it has been taken from a straight angle, or two

right angles.

106. Supplemental Angles are, therefore, two angles

whose sum is a straight angle, or two right angles (42, h).

107. Vertical, or Opposite Angles are the non-adja-

cent angles formed by the intersection of two straight lines.

PROPOSITION I.

108. Theorem.— Vertical, or opposite angles are equal.

Demokstration.

Let AB and CE intersect at D.

We are to prove that ADC = BDE, and

CDB =ADE.
ADC + CDB = a straight angle (42, ft);

and for the same reason CDB + BDE = a

straight angle.

Hence, ADC + CDB = CDB + BDE ; and

subtracting CDB from each member, we have

ADC = BDE.

In like manner, CDB + BDE — BDE + ADE ; whence, CDB = ADE.

q. E. D.

Fig. 38.
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PROPOSITION II.

109. Theorem.—// two supplemental angles are so

placed as to he adjacent to each other, the two sides not

common fall in the same straight line.

Demonstration.

Let AOB and B'O'E' be two supplemental

angles, and let B'O'E' be placed so as to be

adjacent to AOB, e. e.^ as BOE.

We are to prove that AE is a straight line.

Before considering B'O'E' as placed adja-

cent to AOB, produce AO to E, forming AE.

By (42, ft), AOB + BOE = a straight

angle, i. e., two right angles, whence BOE is the

supplement of AOB.

Now, as by hypothesis B'O'E' is the supplement of AOB, B'O'E'

= BOE.

Place B'O'E' a^acent to AOB, 0' in 0, and O'B' in OB. Then will

O'E' fall m OE.

Therefore the two sides not common, i. e., AO and O'E', fall in the

same straight line AE- Q. e. d.

Fig. 39.

PROPOSITION III.

110. Theorem.—// from, a point without a line a
perpendicular is drawn to the line, and oblique lines are

drawn from, the same point, meeting the line at equal

distances from, the foot of the perpendicular,

1st. Tlie oblique lines are equal to each other.

2d. The angles which the oblique lines form ivith the

perpendicular are equal to each other.

3d. The angles formed by the oblique lines with the first

line are equal to each other.

Demonstration.

Let AB (Fig. 40) be any line, P any point without it, PD a perpendicular,

and PC and PE oblique lines meeting AB at and E, so that CD = DE.
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We are to prove, 1st, that PC = PE

;

2d, that CPD = DPE ; and 3d, that

PCD = PED.

Revolve PDE on PD as an axis, until

E falls in the plane on the other side of

PD.

Now, since AB is perpendicular to

PD, DB will fall in DA (92). And since

DE = DC by hypothesis, E will fall in

C. Hence the two figures PDE and PDC
coincide, and we have, 1st, PC = PE ; 2d, CPD = DPE ; and 3d, PCD
= PED. Q. E. D.

Fig. 40

Query.-

(96) y

-How would the equality of PC and PE follo\y from

PROPOSITION IV.

111. Theorem.—// from a point i^vithout a line a
perpendicular is draian to the line, and from the same
point two oblique lines are drawn, making equal angles

with the perpendicular and, meeting the first line,

1st. The oblique lines are equal to each other.

2d. The oblique lines cut off equal distances from the

foot of the perpendicular.

3d. The oblique lines make equal angles with the first

line.*

Demonstratioit.

Let AB be a straight line, P any point without it, and PD a perpen-

dicular to AB ; and let PE and PC be drawn, making CPD = EPD.

We are to prove, 1st, that PC = PE

;

2d, that DE = DC; and 3d, that PED
= PCD.

Revolve PDE upon PD as an axis,

until E falls in the plane on the opposite

side of PD.

Then, since EPD = CPD by hypoth-

esis, PE will fall in PF, and the point E

will be found somewhere in PF. c. -,
Fig. 41.

* This proposition is the converse of tlie last. The significance of this

statement will be more fully developed farther on (128).
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Again, DE will fall in DA (92), and E will fall somewhere in DA.

Now as E falls at the same time in DA and PF, it must fall at their

intersection C, and the figures PDE and PDC must coincide ; whence we

have,

1st, PC = PE ; 2d, DE = DC ; and 3d, PCD = PED. Q. e. d.

PROPOSITION V.

112. Theorem.—// from a point without a line a
perpendicular is drawn to the line, and from the sam^e

point two oblique lines are drawn making equal angles

with the first line,

1st. The oblique lines cut off equal distances from the

foot of the perpendicular,

2d. The oblique lines are equal to each other.

3d. The oblique lines make equal angles with the per-

pendicular.

Demonstration.

Let P be any point without the line AB, and PD a perpendicular from

P upon AB, and let PE and PC be drawn making the angle DEP = angle

DCP.

We are to prove, 1st, that DE = DC

;

2d, that PE = PC ; and 3d, that angle

DPE = angle DPC.

Conceive a perpendicular erected at

the middle point of CE, and let it intersect

CP, or CP produced, in some point as X.

Conceive X joined with E.

By (110, 3d.) XED= XCD, {i. c, PCD). Fig. 42.

But by hypothesis PED = PCD. Hence, XE falls in PE, and PD is the

perpendicular to CE at its middle point.

Therefore, DE = DC; and by (HO) PE = PC, and DPE = DPC.

Q. E. D.
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PROPOSITION VI.

113. Theorem.—Iffrom a point without a line a per-

pendicular is let fall on the line, and from the same point

two oblique lines are drawn, the oblique line which cuts off

the greater distance from the foot of the perpendicular is

the greater.

Demonstration.

Let AB be any straight line, P any point without it, and PC and PF

two oblique lines of which PF cuts off the greater distance from the foot

of the perpendicular PD; that is, DF > DC.

We are to prove that PF > PC.

If the two oblique lines do not lie on

the same side of the perpendicular, as in

the case of PF anfl PE, take DC = DE,

and on the side in which PF lies,

draw PC. Then PC will be equal to PE,

by (110, 1st). Hence, if we show the

proposition true when both oblique lines

lie on the same side of the perpendicular,

* it will be true in general. ^'9* *^'

Produce PD, making DP' = PD, and draw P'F and P'C, producing

the latter until it meets PF in H.

Revolve the figure FPD upon AB as an axis, until it falls in the plane

on the opposite side of AB.

Since PP' is perpendicular to AB, PD will fall in P'D; and, since

PD = P'D, P will fall at P'. Then P'C = PC and P'F = PF.

Now the broken line PCP' < than the broken line PHP', since the

straight line PC < the broken line PHC.

For a like reason, the broken line PHP' < PFP', since HP' < HFP'.

Hence PCP' < PFP', and PC (the half of PCP') < PF (the half of

PFP'). Q. E. D.

114. Corollary.—From a given point without a line,

there can he two, and only two, equal oblique lines draivn

to the line, and these will lie on opposite sides of the per-

pendicular drawn from the given point to the given line.

liH^^B!
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PROPOSITION VII.

116. Theorem.:—// two equal oblique lines are drawn
from the same point in a perpendicular to a given line,

they cut off equal distances on that line from, the foot

of the perpendicular.

Let PD be perpendicular to AB, and

PE = PC.

We are to prove that DE = DC.

If DE were greater than DC, PE would

be greater than PC, and if DE were less than

DC, PE would be less than PC (113) ;
but

both of these conclusions are contrary to

the hypothesis PE = PC.

Hence, as DE can neither be greater nor

equal to DC. Q. e. d.

Fig. 44.

than DC it must l^e

EXERCISES.
116. 1. Having an angle given, how can you construct its

supplement ? Draw on the blackboard any angle, and then con-

struct its supplement. What is the supplement of a right

angle ?

Fig. 45.

2. The several angles in Fig. 45 are such parts of a right

angle as are indicated by the fractions placed in them. If these

anghfs are added together by bringing the vertices together and

causing the adjacent sides of the angles to coincide, how will the

two sides not common lie ? Why ?
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3. If two times A, B (Fig. 45), two times D, three times E,

three times C, three times G, and two times F, are added in order,

how will AM and GN lie with reference to each other ? Why ?

Ans, They will coincide.

4. If you place the vertices of any two equal angles together

so that two of the sides shall extend in opposite directions and

form one and the same straight line, the other two sides lying on

opposite sides thereof, how will the latter sides lie? By what

principle ?

5. If two lines intersect, show that tlie line which hisects one

of the angles will, if produced, bisect the opposite angle.

6. If one line meet another, show that the two lines bisecting

these supplemental angles are perpendicular to each other.

7. If two lines intersect, show that two lines bisecting the

two pairs of opposite angles are perpendicular to each other.



PARALLELS. I«»

0irct!0H m.

OF PARALLELS.

117. The Direction of a straight line is defined or deter-

mined by the plane in which it lies and the angle which it makes

with some fixed line, this angle being generated (48) from the

fixed line around in the same direction,* in the same argument.

118. The assumed fixed line is called the Direction Line,

and the angle which the line makes with the direction hne is

called the Direction Angle.

Illustration.—Thus the directions

of the several lines AB, CD, and EF may

be defined by referring them to some as-

sumed fixed line, as XY.

The direction of AB is defined by say-

ing that its direction angle is YOA, or its

equal XOB, this angle l)cing conceived as

generated /r^'7/i the direction line, as indi-

cated by the arrows.

So also the direction of CD is defined

by the angle YMC, or its equal XMD; and

the direction of EF is in like manner de-

fined by YNE, or XNF. Fig. 46.

119. Witli reference to its generation, the same

line may be conceived as having either of two opposite directions,

or various parts of it may be conceived as having opposite direc-

tions.

Illustration.—Thus, the line AB (Fig. 47) may be considered as

generated by a point moving from A to B, whence its direction would

* Revolution around a fixed point is often designated as from left to

right, or from right to left. To comprehend these terms, one may conceive

himself in the centre of motion, and facing the moving point. Thus all the

motions represented by arrows in Fig. 46 will be seen to hefrom right to left.
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be from A towards B ; or, it may be considered

as generated by a point moving from B to A,

whence its direction would be from B towards A.

In like manner, part of the line, as PB, may
be considered as having the direction from P
towards B, while the other part is conceived as

having the opposite direction, i. e., from P towards A.
Fig. 47.

120. Lines have the Same Direction when they lie in

the same plane and make equal direction angles with the same

line.

Any line may be assumed at pleasure as the direction line,

provided that in comparing the directions of different Hnes they

all be referred to the same direction line.

121. Parallel Lines are lines which have the same or

opposite directions.

.122. A Transversal is a line cutting a system of lines.

123. When two lines are cut by a transversal, the angles

formed are named as follows

:

Exterior Angles are those without

the two lines, as 1, 2, 7, and 8.

Interior Angles are those within

the two lines, as 3, 4, 5, and 6.

Alternate Exterior Angles are

those without the two lines and on differ-

ent sides of the transversal, but not adja-

cent, as 2 and 7, 1 and 8.

Fig. 48.

Alternate Interior Angles are those within the two

lines and on different sides of the transversal, but not adjacent,

as 3 and 6, 4 and 5.

Corresponding Angles are one without and one within

the two lines, and on the same side of the transversal, but not

adjacent, as 2 and 6, 4 and 8, 1 and 5, 3 and 7.
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PROPOSITION I.

124. Theorem.—Through a given point one line can be

drawn parallel to a given line, and but one.

Demonstration.

Let AB be the given line, and P the given point.

We arc to prove that one line can

be drawn through P parallel to AB,

and but one.

Through P draw XY as the direc-

tion line, intersecting AB in E.

Also through P pass a line C'D',

making XPD' greater than XEB.

Then revolving CD' about P as a

centre, XPD' may be made to dimin-

ish continuously, and in some posi- Fig. 49.

tion, as CD, XPD will equal XEB. In this position, CD is parallel to AB

(120, 121).

Hence there can be one line drawn through P parallel to AB. q. e. d.

Again, there can be but one; since, if CD be revolved in either direc-

tion about P, the angle XPD will become unequal to XEB, and hence the

line CD will not be parallel to AB. Q. e. d.

PROPOSITION II.

125. Theorem.—// a transversal cuts two parallels,

1st. Any two corresponding angles are equal.

2d. Any two alternate interior, or any two alternate

exterior angles are equal.

3d. The sum of any two interior angles on the same
side of the transversal, or the sum of any two exterior

angles on the same side, is two right angles, or a straight

angle.

Demonstration.

Let AB and CD (Fig. 50) beany two parallels, and EF any transversal.
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We are to prove, Ist. Of the cor-

responding angles, b = d^ a = e,

e = g^ and/ = h.

2d. Of the alternate interior an-

gles, b =^f, and c = g; of the alter-

nate exterior angles, d = h, and

a = e.

3d. Of the interior angles on the

same side of the transversal,

& + c = 2 right angles,

and g -\- f = 2 right angles

;

ofthe exterior angles on the same side,

a + d = 2 right angles, and

Fig. 50.

e + h = 2 right angle

Let EF be taken as the direction line, the direction angles being esti-

mated from right to left (120, 121, and foot-note, p. 55). Then,

1st. Of the corresponding angles, b = d, these being the direction

angles, and AB and CD being parallel.

a = c, since they are supplements of the equal angles, b and d ; and

e = g, for the same reason.

Also, f = h^ since they are opposite angles to the equal angles, b

and d.

2d. Of the alternate interior angles, ft =/, since f — d (108) \ c — g^

since they are supplements of b and d.

Of the alternate exterior angles, d = h^ since h = b (108); and

« = a, since they are supplements of b and d.

3d. Of the interior angles on the same side, «

b + c = 2 right angles (or a straight angle),

since d -\- c = 2 right angles (or a straight angle), (42, *), and b = d;

and
1

since

g + f z=z 2 right angles,

g -{. b = a straight angle, and b =f.

Of the exterior angles on the same side,

a + d = 2 right angles,

since a + b = b, straight angle, and b = d;

also

since

e -\- h = 2 right an^

g -\- h = & straight angle, and e = g. Q. e. d.
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PROPOSITION III.

126. Theorem.—Conversely to Proposition II, When
two lines are cut by a transversal, the two lines are par-

allel,

|- 1st. // any two corresponding angles are equal,

2d. // a?nj two alternate interior, or any two alternate

exterior angles are equal.

3d. //' the sum of any two interior angles on the same
side, or the sum of any two exterior angles on the same
side is two right angles.

Demonstration.

Let AB and CD be two lines cut by the transversal EF, making any

pair of corresponding angles equal, as 6 = f/, a = r, y = e, h = /';

or any two alternate interior angles, or any two alternate exterior

angles equal, as ft = /, f/
— c, (i = e, or h = d; or the sum of any

two interior angles on the same side, or of any two exterior angles on

the same side, equal to 2 right angles, 3S h + c, y + f, a ^ d, h + e,

equal to 2 right angles.

Wc are to prove that AB and CD
are parallel.

Let EF be the direction line, and b

and d the direction angles. If, then,

these are granted or proved equal, the

lines are parallel (121)-

Now, 1st. Of the corresponding an-

1

gles, if h = d, AB and CD are parallel

by definition; but, if a = c, h = d,

since & and d arc supplements of a and

c; or, if ^ = e, b = d, since b and d " " Fig. 51.

are supplements of g and <?; or, if ^ =/, h = d^ since h = h and d =/
(108). Hence, in every case, h = d, and AB and CD are parallel.

2d. Of alternate interior angles, if ft = /, b = d, since / = d; or, if

g = c, b — d, since b and d are supplements of g and c. Hence, in either

case, b = d. and AB and CD are parallel.
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Of alternate exterior angles, if

h = d,I} = dy since b = h (108) ; o^i

if a = e, J = df, since ft and d are

supplements of a and e. Heuc^, in

either case, h = d and, AB and CD
are parallel.

3d. Of interior angles on the

same side, if & + « = 3 right angles,

h = d, since d + c = 2 right angles

(42) ; or, if ^ + / = 2 right angles,

l> = d, since
Pig, 5,^

g + f +i + c = A right angles
;

hence, ft + c = 2 right angles, and as <f + c = 2 right angles, d = h.

Hence, in either case, ft = <f, and AB and CD are parallel.

Of exterior angles on the same side, if a + <Z = 2 right angles, h = d,

since a -{- b = 2 right angles ; or, if h -\- e = 2 right angles, b = d, since

h + e-\-a-{-d = 4: right angles; hence, a ^ d = 2 right angles, and, as

a + ft = 2 right angles, d = b. Hence, in either case, ft = (?, and AB and

CD are parallel, q. E. D.

127. Corollary.—Two lines which are perpendicular

to a third are parallel to each other.

For, in such a case, all the eight angles formed are equal ; hence, any

of the conditions of the proposition are met.

128. Scholium.—The last two propositions are the converse

of each other; i.e., the hypotheses and conclusions are exchanged.

Thus, in Prop. II, the hypothesis is that the two lines are parallel,

and the conclusion is certain relations between the angles ; while

in Prop. Ill the hypotheses are certain relations among the angles,

and the conclusion is that the lines are parallel.

The learner may think that, if a proposition is true, its converse is

necessarily true ; and hence, that when a proposition has been proved, its

converse may be assumed as also proved. Now this is by no means the

case. Although in a great number of mathematical propositions, it hap-

pens that the proposition and its converse are both true, we never assume

one from having proved the other ; and we shall occasionally find a prop-

osition whose converse is not true.
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PROPOSITION IV,

129. Theorem. - When two straight lines are cut hy a
transversal, if the sum, of the two interior angles on either
side is less than two right angles, tiie two lines will meet
on this side of the transversal, if sufficiently extended.

Demoi^stration.

Let AB and CD be two lines cut by the transversal XY, making
BEP + EPD < 2 right angles.

We are to prove that AB and CD will meet on the side of XY on which

these angles lie.

Through P draw FG parallel to AB.

Take EH = EP and draw PH, and also ET perpendicular to PH By

(115), TH = TP. whence EHT = EPT (110)

But EHT = GPH 125) Hence GPH = ^GPE.

Again, take HI — PH and draw PI, and it may be shown in the same

manner that GPI -= ^GPH == ^GPE.

In this manner we may continue to draw oblique lines through P cut-

ing AB further and further from E, and may thus diminish at pleasure

the angle included by the oblique line and PG. Hence this angle may be

made less than GPD, the difference, between DPE and the supplement

of PEB, when the oblique line will fall between PD and PG. Call this

line PR. Now as PR and PE cut AB, and PD lies between them, it must

cat AB between E and R. q. e. d.
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130. Corollary 1.

—

If a transversal cuts one of two

parallels, it cuts the other also.

131. Corollary ^^i.
—JVon-jMirallel straight lines meety

if sufficiently produced.

132. Corollary 3.

—

Two straight lines in the same
plane which do not meet, however far they are extended,

are parallel.

For, let AB and CD be two such lines, and P any point in CD. Now
all lines through P which are not4)arallel to AB meet AB (131). Hence

as there can be one parallel to AB through P (124), it is the line which

does not meet AS.

PROPOSITION V.

133. Theorem.—A line which is perpendicular to one

of two parallels is perpendicular to the other also.

Demonstration.

Let AB and CD be two parallels, and let EF be perpendicular to AB.

We are to prove that EF is also

perpendicular to CD.

Since EF is a transversal cut-

ting AB and CD, angle EOB = angle

EMD (125, 1).

Now EOB is a right angle by

hypothesis (86),

Hence EMD is a right angle,

and EF is perpendicular to CD.

Q. E. D.
Fig. 53.

134. Corollary.—The shortest distance between two
parallels is the -perpendicular which joins them.

For, CM being a perpendicular from O to CD, is shorter than any

other line from to CD (94).
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135. The Distance between two parallels is the perpen-

dicular which joins them.

•

PROPOSITION VI.

136. Theorem.—Two parallels are everywhere equally

distant from each other, and hence never meet.

Demonstration.

Let E and F be any two points in the line CD, and EG and FH per-

pendiculars measuring the distances between the parallels CD and AB at

these points.

We are to prove EG = FH.

Let P t>e the middle point between

E and F, and PO a perpendicular at

this point.

Revolve the portion of the figure

on the right of PO, upon PO as an axis, f 'q- 54.

until it falls upon the plane of the paper at the left.

Then, since FPO and EPO are right angles, PD will fall in PC ; and,

as PF = PE, F will fall on E. As F and E are right angles, FH will

take the direction EG, and H will lie in EG or EG produced. Also,

as POH and POG are right angles, OB will fall in OA, and H, falling at the

same time in EG and OA, is at their intersection G.

Hence, FH coincides with and is equ.il to EG. Q. e. d.

Hence, also, CD cannot meet AB, since the distance from any point

in CD to AB is EG. Q. e. d.

PROPOSITION VII.

137. Theorem. —Conversely to Profwsition VI., // two
points in one straight line are equally distant from a
second straight line, and on the same side of it, the lines

are parallel to each other.

Demonstration.

Let AB and CD (Fig. 55) be two lines having the points P and S in CD
equally distant from AB, and on the same side of it.

We are to prove that CD and AB are parallel.
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From P and S draw PE and SF perpendicular to AB. Then is PE =
SF, by hypothesis.

Through 0, the middle point of PE,

draw GH parallel to AB.

Since PE is parallel to SF, GH cuts

SF in some point as I (130)-

By (136), OE = IF ; and since SF =
PE and OE is |PE, IF is ^SF, that is,

IF = IS. *''S- 55.

Now, as PE and SF are perpendicu-ar to GH (133), if we revolye the

figure OAEFBI on GH, E will fall in P, and F in S (92), and AB will have

two points in common with CD, and hence will coincide with it.

Hence, DPO = BEO, and as the latter is a right angle by construc-

tion, AB and CD are perpendicular to PE, and hence parallel (127).

Q. E. D.

PROPOSITION VIII.

138. Theorem.—t/i pair of parallel transversals inter-

cept equal portions of two parallels.

Demonstratioi^.

Let ST and RL be two parallel transversals, cutting the two parallels

AB and CD.

We are to prove that GE = HF.

From E and F let fall the per-

pendiculars EM and FK. Then

EM = FK (136).

Now apply the figure GEM to

HFK, placing EM in its equal FK.

Since M and K are right angles, MG
will fall in KH.

With the figures in this position,

FH and EG are lines drawn from the

same point in the perpendicular to

ST and making equal angles with it

(125), and are hence equal (112). Q- E. D,

Fig. 56.
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PROPOSITION IX.

139. Theorem.

—

Two straight lines which are parallel

to a third are parallel to each other.

Demonstration.

Let AB and CD be each parallel to EF

We are to prove that AB and CD are

parallel to each other.

Draw HI perpendicular to EF; then will

it be perpendicular to CD (133)-

For a like reason, HI is perpendicular

to AB.

Hence, CD and AB are both perpendic-

ular to HI, and consequently parallel (127)- Q. k. d

<»

Fig. 57.

PROPOSITION X.

140. Theorem.—// to each of two parallels perpendic-

ulars are drawn, then are the perpendiculars parallel.

Demonstration.

Let A and B be parallel lines, P be perpendicular to A, and Q to B.

We are to prove that P and Q are par-

allel to each other.

Q, which is perpendicular to B, one of

the two parallels, is perpendicular to A,

the other parallel, also (133).

Hence, P and Q are both perpendicu-

lar to A, and hence are parallel (127)- Q. e. d.|

Fig. 58.
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PROPOSITION XI.

141. Theorem.—// to each of two non-parallel lines

a perpendiGwlar is drawn, the perpendiculars are non-

parallel.

Demonstration.

Let A and B be non-parallel, and P a perpendicular to A, and Q to B.

We are to prove that P and Q are

non-parallel.

If P and Q were parallel, then, by the

preceding proposition, A and B would be

parallel, which is contrary to the hy-

pothesis. Hence, P and Q are non-par-

allel. <i. B. D.

Fig. 59.

PROPOSITION XII.

142. Problem.—Through a given point to draw a
parallel to a giveri line.

Solution.

Let AB be the given line, and P the given point.

Fig. 60.

"We are to draw through P a parallel to AB.

Let fall PF, a perpendicular from P to AB (102).

At P erect CD, a perpendicular to PF (99).

Then is CD parallel to AB (127). [Pupil give proof.]
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EXE RCISES.
143. 1. How can a farmer tell whether the opposite sides

of his farm are parallel ?

2. If we wish to cross over from one of two parallel roads to

the other, is it of any use to travel farther in the hope that the

distance across will be less ? Why ?

3. If a straight line intersects two parallel lines, how many
angles are formed ? How many angles of the same size ? May
they all be of the same size ? When ? Wlien will they not be

all of the same size ?

4. Are the two opposite walls of a building which are carried

up by the plumb line exactly parallel ? Why ?

6. A hetad (Fig. 61) is an instni-l

ment much used by carpenters, and[

consists of a main limb AB, in

which a tongue CD is placed, so as
1

to open and shut like the blade of

a knife. This tongue turns on the

pivot 0, which is a screw, and can

be tightened so as to hold the

tongue firmly at any angle with the

limb. The tongue can also be ad-

justed so as to allow a greater ori

less portion to extend on a given

side, as CB, of the limb. Now,'

suppose the tongue fixed in posi-

tion, as represented in the figure, and the side m of the limb to be placed

against the straight edge of a board, and slid up and down, while lines

are drawn along the side n of the tongue. What will be the relative

position of these lines ? Upon what proposition does their relative posi-

tion depend ? How can the carpenter adjust the bevel to a right angle

upon the principle in Prop. I, Sec. I ? At what angle is the bevel set,

when, drawing two lines from the same point in the edge of the board,

one with one edge m of the bevel against the edge of the board, and the

other with the other edge m', these lines are at right angles to each other?

Fig. 61.
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^^0]^cti0M ty

OF THE RELATIVE POSITIONS OF STRAIGHT LINES AND
CIRCUMFERENCES.

PROPOSITION I.

144. Theorem.—Any diameter divides a circle^ and
also its circumference, into two equal parts.

Demon^stkation.

Let AB be the diameter of the circle kin^n.

We are to prove that arc A»iB = arc

AwB, and that segment AwiB = segment AwB.

Revolve A^B upon AB as an axis, until

it falls in the plane on the opposite side of AB.

Then, since every point in AwB is at the

same distance from the centre C as every

point of A?nB (24), the arc AwB falls in AwB,

and both arcs and segments coincide;

whence, arc AwB = arc AmB, and segment

AnB = segment AwB. Q. e. d. Fig. 62.

PROPOSITION II.

145. Theorem.—The diameter of a circle is greater

than any other chord of the same circle.

Demonstration.

Let AB (Fig. 63) be a chord meeting the circumrerence in A and B,

and not passing through the centre ; and let AC be the diameter.
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We are to prove that AB is less than any

diameter, as AC (28).

Now as AB is not a diameter, it does not

pass through 0, or lie in AC Hence B is a

different point from C.

Draw OB.

Now AB being a straight line, is less than

A0 + OB, which is a broken line (69); hence,

as AO + OB = AC, AB < AC. Q. e. d.

146. An arc is said to be Siibteiicled by the chord which

joins its extremities, and the arc is said to subtend the angle in-

cluded by the radii drawn to its extremities.

PROPOSITION III.

147. Theorem.—^ radius which is perpendicidar to

a chord bisects the chord, the subtended arc, and the sub-

tended angle*

Demonstration.

Let AB be a chord subtending the arc AB, which arc subtends the

angle AOB. Let the radius EO be perpendicular to AB, cutting it in D.

We are to prove that DA = DB, arc AE

= arc EB, and angle AOE = angle BOE.

Produce EO, forming the diameter EC.

Revolve the semicircle EBC on EC as an

axis, till it falls in the plane on the other side

of EC.

The semicircles will coincide (144), and

since AB is perpendicular to EO, DB will fall

in DA.
Moreover, as OA = OB, and there cannot Fig. 64.

* Such statements in Plane Geometry are generally limited to the con-

sideration of arcs less than a semi circumference, yet all the propositions

in this section, except Prop. VIII, are equally true whatever the arcs

may be.
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be two equal oblique lines from a point to a line on the same side of a

perpendicular (114), OB falls in OA, and B falls in A.

Hence, DB coincides with DA, EB with EA. and angle BOE with angle

AOE, and we have DA = DB, arc AE = arc EB, and angle AOE = angle

BOE. Q. E. D.

PROPOSITION IV.

148. Theorem,—Conversely to Proposition Til, A radius
ivhich bisects an arc bisects the chord which subtends the

arCi, is perpendicular to the chord, and also bisects the

subtended angle.

Demonstration.

Let arc AB be bisected by the radius OE at E. Let the straight line

AB be the chord of this arc, and AOB the subtended angle.

We are to prove that OE bisects the chord

AB and is perpendicular to it, and also bisects

the angle AOB.

Produce EO, forming the diameter EC.

Revolve the semi-circumference EBC upon

EC as an axis, till it falls in the plane at the

left of EC.

Then will semi circumference EBC coincide

with EAC, and since arc BE = arc AE by hy-

pothesis, B will fall in A, and BD = AD. Fig. 64.

Hence, the line OE has two points, and D, each equally distant

from A and B, and is therefore perpendicular to AB (98)-

Furthermore, angle BOD coincides with AOD, and BOD = AOD-

Q. E. D.

^

PROPOSITION V.

149. Theorem.—Conversely to Propositions III and IV,

A radius which bisects the angle included by two other

radii bisects the arc subtending the angle, and the chord

of the arc, and is perpendicular to the chord.

[Let the student give the demonstration.]



STRAIGHT LINES AND CIRCUMFERENCES.

PROPOSITION VI.

150. Theorem.—In the same circle, or in equal cU'-

ales, equal chords are equally distant from the centre.

Demonstration.

Let EF and GH be equal chords in the same circle or in equal circles

;

and OL and ON be the perpendiculars from the centre upon the

chords, and thus be the distances of the chords from the centre (95).

Fig. 65.

We are to prove OL = ON.

Since OL and ON are perpendiculars from the centre upon the equal

chords EF and GH, HN = FL (147).

Now apply the figure HNO to FLO, placing HN in its equal FL. Then
will NO coincide with LO (88)-

In this position, HO and FO are equal lines drawn from the same
point in the perpendicular FL to the line LO- Hence, LO = NO (116).

Q. E. D.

[Let the student state and prove other converses to Propositions III.

IV and VI.]

PROPOSITION VII.

151. Theorem.—In the same circle, or in equal cir-

cles, if two arcs are equal, the chords ivhich subtend them

are equal; and, conversely, if two chords are equal, the

subtended arcs are equal.
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Demonstration.

Let AaitB and Cfi^D be equal arcs in the same circle or in equal

circles.

Fig. 66.

"We are to prove, first, that the chords AB and CD are equal.

Apply the figure C/iDO to AmBO, placing the radius CO in its equal

AO, and let the arc CD extend in the direction of arc AB.

Then, since each point in arc CD is at the same distance from the cen-

tre as each point in arc AB, arc CD falls in arc AB, and since arc CD =
arc AB by hypothesis, D falls in B.

Hence, chord AB = chord CD (61). Q. e. d.

Conversely, If chord AB = chord CD, arc AB = aro CD.

Draw the perpendiculars OL and ON. Then, since the chords are

equal, OL = ON (150).

Now apply the figure CnDO to At/iBO, placing ON in its equal OL.

Since CD is perpendicular to ON, and AB to OL, CD will fall in AB ; and,

since the chords are equal by hypothesis, and are bisected at N and L

(147), D falls in B and C in A.

Hence, arc CwD coincides with arc AmB, and arc CwD = arc AwB.

Q. E. D.

PROPOSITION VIII

152. Theorem.— /^i' the same circle, or in equal cir-

cles, if two arcs are unequal, the less arc has the less chord

;

and, conversely, if two chords are unequal, the less chord>

subtends the less arc.
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Demonstration.

In the same circle, or in equal circles, let arc AmB < arc CtiD

Fig. 67.

We are to prove, first, that chord AB < chord CD.

Draw OA, OB, OD, and OC
Apply the figure CnDO to AmBO, placing OC in its equal OA, and the

arc n in the arc m.

Since arc CnD > arc AwB, D will fall beyond B, as at D'. Draw OD'.

AD' will evidently cut OB. Let N be the point of intersection.

Now AB < AN + NB (59),

and BO = D'O < ND' + ON (59).

Adding, AB + BO < AN + ND' + ON + NB,

or AB + BO < AD' + BO.

Subtracting BO from each member, we have

AB < AD'. Q. E. D.

Conversely, if chord AB < chord CD.

We are to prove that arc AmB is less than arc CnD.

For, if arc AwiB = arc C/iD, chord AB = chord CD (151). And, if

arc AwB > arc C/iD, chord AB > chord CD, by the former part of this

demonstration. But both of these conclusions are contrary to the hy-

pothesis.

Hence, as arc AmB can neither be equal to nor greater than arc CwD,

it must be less. q. e. d.
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PROPOSITION IX.

163. Theorem.—In the same circle, or' in equal civ-

cles, of two unequal chords, the less is at the greater dis-

tance from the centre; and, conversely, of two chords

which are unequally distant from the centre, that which
is at the greater distance is the less.

Demonstration.

In the same circle, or In equal circles, let chord CE < chord AB,

and OD and OD' their respective distances from the centre.

Fig 68.

We are to prove, first, that OD > OD'.

From A, one extremity of the greater chord, lay oflF towards B, AE' =
CE. Since AE' < AB, arc AE' < arc AB (152), and E' falls somewhere

on the arc AB between A and B.

Draw OD" perpendicular to AE', and OD" = OD, since the equal

chords are equally distant from the centre (160).

Now OD" is a different line from OD', since OD" produced would

bisect arc AE', and OD' would bisect arc AB. Hence, as OD' is perpen-

dicular to AB, OD" must be oblique (93).

Again, OD" cuts the line AB in some point as H, since the chord AE'

lies on the opposite side of AB from the centre 0.

Hence, OH > OD' (94), and much more is OH + HD" (= OD") > OD'.

Q. E. D.

Conversely, let OD > OD'.

We are to prove that CE < AB.

If CE = AB, OD =r OD' (160), and if CE > AB, OD < OD', both

of which conclusions are contrary to the hypothesis OD > CD'.

Hence, as CE can neither be equal to nor greater than AB, it must be

less. q. E. D.
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PROPOSITION X.

154. Theorem.—A straight line which intersects a

circumference in one point intersects it also in a second

point, and can intersect it in hut two points.

Demonstration.

Let LM (Fig. 69) intersect the circumference in A.

We are to prove that it intersects in finother point, as B, and in only

these two points.

Since LM intersects the circumference in A,

I

it passes within it, and hence has points nearerj

the centre than A. OA is, therefore, anf

oblique line, and not the perpendicular from

upon LM (94).

Now two equal oblique lines can be drawn!

to a line from a point without (114). Let OBI

be the other oblique line equal to OA. But asl

OA is a radius, OB = OA must also be a radiu3,[

and B is in the circumference. Q. e. d.
'^"

Again, LM cannot have another point common with the circumfer-

ence, since if it had there could be more than two equal straight lines

drawn from to LM, which is impossible. Q. e. d.

155. Corollary.—Any line which is oblique to a radius

at its extremity is a secant line, since any such line has points

nearer the centre than the extremity of the radius, and hence

passes within the circumference.

PROPOSITION XI.

156. Theorem.—A straight line which is perpendicu-

lar to a radius at its outer extremity is tangent to the

circumference ; and, conversely, a tangent to a circumfer-

ence is perpendicular to a radius drawn to the point of
contact.

Demonstration.

A line perpendicular to a radius at its extremity touches the circum-

ference because the extremity of the radius is in the circumference.
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Moreover, it does not intersect the circumference, since, if it did, it would

have points nearer the centre than the extremity of the radius ; but these

it cannot have, as the perpendicular is the shortest distance from a point

to a line. Hence, as a line which is perpendicular to a radius at its ex-

tremity touches the circumference but does not intersect it, it is a tan-

gent (30). Q. E. D.

Conversely, as a tangent to a circumference does not pass within, the

point of contact is the nearest point to the centre, and hence is the foot

of a perpendicular from the centre, q. e. d.

157. Corollary.—A perpendicular from the centre of

a circle to a tangent meets the tangent in the point of tan-

gencij (93).

PROPOSITION XII.

158. Theorem.—The arcs of a circumference inter-

cepted by two parallels are equal.

Demonstration.

There may be three cases, 1st. When one parallel Is a tangent and

the other a secant, as AB and CD

;

2d. When both parallels are secants, as CD and EF; and

3d. When both parallels are tangents, as AB and GH.

In the first case we are to prove

Ml = MK; in the second, IL = KR;

and in the third, MwiN = M;iN.

Through draw MN perpendicular

to one of the parallels, in any case, and

it will be perpendicular to the other

also (133); anfl as a perpendicular

from the centre upon a tangent meets

the tangent at the point of tangency

(157), M and N are points of tangency,

and MN is a diameter.

Now, since the parallels are perpendicular to MN, and the chords IK

and LR are bisected by it, if we fold the right-hand portion of the figure

on MN as an axis until it falls in the plane on the left of MN, K will fall

in I, and R in L.

Hence, Ml = MK, IL = KR, and MmN = MwN. Q. e. d.
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PROPOSITION XIII.

159. Problem.—To bisect a given arc.

Solution.

Let ACB be the given arc.

We are to bisect it ; that is, find its mid-

dle point.

Draw the chord AB joining the extremi-

ties of the arc ; and bisect this chord by the

perpendicular 00' (101). Then will 00' bi-

sect the arc, as at C.

Demonstration of Solution.

Fig. 71.

00' being a perpendicular to the chord AB at its middle point, any

point in it is equally distant from the extremities. Hence chord BO -

chord AC, and arc BC = arc AC (151). Q- e. d.

PROPOSITION XIV.

160. Problem,—To find the centre of a circle whose

circumference is known, or of any arc of it.

Solution.

Let ACB be an arc of a circumference.

We are to find the centre of the

circle.

Draw any two chords of the arc, as

AC and BC, not parallel, and bisect each

by a perpendicular. Then will the in-

tersection of these perpendiculars, as 0,

be the centre of the circle. ^^^^^
Fig. 72.

Demonstration op Solution.

OL being perpendicular to the chord AC at its centre, passes through

the centre of the circle, since if the centre were out of OL it would

be unequally distant from A and C (96). And for a similar reason, CM
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being perpendicular to the chord BC at its centre, passes through the

centre of the circle.

Hence, as the centre of the circle lies at the same time in LO and MO,

it is their intersection 0. Q. e. d.

PROPOSITION XV.

161. Problem.—To pass a circumference through

three given points not in the same straight line.

SOLITTION.

Let A, B, and C be the three given points not in the same straight

line.

Join AB and BC.

Bisect AB by the perpendicular IVINj

(101), and BC by the perpendicular RS.

With 0, the intersection of MN and RS,|

as a centre, and any one of the distances 0A,|

OB, OC, say OA, as a radius, describe a cir-

cumference.

Then will this circumference pass]

through the three points A, B, and C.
Fig. 73.

Demonstration of Solution.

Since AB and BC are non-parallel by hypothesis, MN and RS are non-

parallel (141), and hence meet in some point, as (131).

Now as every point in MN is equally distant from the extremities of

AB (96), OA = OB.

In like manner, every point in RS is equally distant from B and C.

Hence, OB = OC.

Hence, OA = OB — OC, and a circumference struck from as a

centre, with a radius OA, will pass through A, B, and C. Q. e. d.

PROPOSITION XVI.

162. Problem.—To draw a tangent to a circle at a
given point in its circumference.
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Solution.

Let it be required to draw a tangent to'

the circle whose centre is 0, at the point P

in its circumference.

Draw the radius OP, and produce it to

any convenient distance beyond the circle.

Through P draw MT perpendicular to OP.

Then is MT a tangent to the circle at P.

Demonstration of Solution.

Fig. 74.

MT being a perpendicular to the radius at its extremity, is a tangent

to the circle by (166). Q- b. d.

EXE RCISES.

163. 1. Draw a circle and divide it into two equal parts.

What proposition is involved ?

2. Given a point in a circumference, to find where a semi-

circumference reckoned from this point terminates. Wliat

proposition is involved ?

3. In a circle whose radius is 11 there are drawn two chords,

one at 6 from the centre, and one at 4. Which chord is the

greater ? By what proposition ?

4. In a certain circle there are two chords, each 15 inches in

length. What are their relative distances from the centre?

Quote the principle.

5. There is a circular plat of ground whose diameter is 20

rods. A straight path in passing runs within 7 rods of the cen-

tre. What is the position of the path with reference to the plat ?

What is the position of a straight path whose nearest point is

10 rods from the centre? One whose nearest point is 11 rods

from the centre ?

6. Pass a line through a given point, and parallel to a given

line, by the principles contained in (151), (147), (148), and (127).
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OF THE RELATIVE POSITIONS OF CIRCUMFERENCES.

AXI OMS.
164. Two circles may occupy any one of five positions with

reference to each other

:

1st. One circle may be wholly exterior to the other.

2d. One circle may be tangent to the other externally, the

circles being exterior to each other.

3d. One circumference may intersect the other.

4th. One circle may be tangent to the other internally.

5th. One circle may be wholly interior to the other.

PROPOSITION I.

165. Theorem.— WTien one circle is wholly exterior to

another, the distance between their centres is greater than

the sum of their radii.

Demonstration.

Let M and N be two circles

whose centres are and 0',

and whose radii are OA = It,

and O'B = r, respectively; and

let N be wholly exterior to M,

We are to prove that 00'

> R + r.

Draw 00', and let it inter-

sect circumference M in A, and

N in B.
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Since N is wholly exterior to M, OB > OA.

Adding BO' to each memlxjr of this inequality, we have

OB + BO' > OA + BO',

or 00' > B + r,

since OB + BO' = 00', OA = i2, and OB = r. q. e. d.

PROPOSITION II.

166. Theorem.— When two circles arc tangent to each

other externally,

1st The distance between their centres is the sum of

their radii.

2d. They have a common rectilinear tangent at their

point of tangency.

3d. The point of tangency is in the straight line join-

ing their centres.

Demonstration.

Let M and N be two circles tangent to each other externally; let

and 0' be their respective centres, B and r their radii, D the point of

tangency, and TR a tangent to M at D.

prove, 1st. That

2d. That TR is

3d. That D is in

We are to

00' = B + r;

tangent to N

;

00'.

1st. Draw the radii OD = R,

and O'D = r.

If we show that OD + O'D =
R + r is the shortest path from

to 0', we show that it is a straight

line (59), and hence is the distance

from to 0' (95).

Consider any other path from to 0', crossing circumference N in

some other point than D, say in P.

Now the shortest path from to P is the straight line OP (59) ; and

the shortest path from P to 0' is the straight line PO'. Hence the

shortest path from to 0' passing through P is OP -f PO'.

Fig. 76.
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But OP > i? (?)-*^, and PO' = r, whence OP + PO' > 5 + r.

Hence, as P is the point where

any other path from to 0' crosses

circumference N, OD + D'O = R
+ r is the distance from to 0'.

Q. E. D.

2d. As TR is tangent to M at D,

by hypothesis, and as ODO' has

been shown to be a straight line, TR
is perpendicular to DO' (?) and

hence tangent to N (156). Q- e. d.

3d. As D is the point of tangency, and ODO is 00', D is in 00'.

Q. E. D.

Fig. 76.

PROPOSITION III.

167. Theorem.—Tw/o circumferences which intersect
in one point intersect also in a second point, and hence
have a cormnon chord.

DEMOi;rSTRATIOIT.

Let M and N be two circumferences intersecting in P.

Fig. 77.

We are to prove that they intersect in another point, as P', and hence

have a common chord PP'.

As M intersects N, it has points both without and within N.

Now consider the circumference M as generated by a point moving

from left to right, and let Y be a point within N. The generating point,

* Hereafter, minor references to principles on which a statement de-

pends will be omitted, and the interrogation mark substituted. This indi-

cates that the student is to give the principle. In this case. P is without M
since by hypothesis N is external to M.
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in passing from Y, a point within N, to X, any point in the circumference

M without N, must cross circumference N at some point, as P', since this

is a closed curve.

Moreover, this second point, P', is a different point from P, since a

circumference of a circle does not cut itself, or become tangent to itself.

Hence, if circumference M cuts circumference N in P, it cuts it also in

a second point, as P'. (j. e. d.

Finally, since P and P' are common to both circumferences, the

circles M and N have a common chord PP'. q. e. d.

PROPOSITION IV

168. Theorem.— Wken two circumferences intersect,

1st. The line joining their centres is perpendicular to

their common chord at its middle point.

2d. The distance between their centres is less than the

sum, of their radii and greater than their difference.

Demonstration.

Let M and N be two circumferences intersecting at P and P' ; let

and 0' be their centres, and li and r their radii respectively, li being

equal to or greater than r.

We are to prove, 1st. That

00' is perpendicular to PP' at

its middle point ; and 2d. That

00' < R -k- r, and 00' >
R-r.

Draw OP and O'P.

Ist. Since is equally dis-

tant from P and P', and 0' is

also equally distant from P and

P' (?) ,
00' is perpendicular to

PP' at its middle point (98).

Q. E. D.

2d. As P is not in 00', 00' <
Again, 00' +

OP + PO' (?), or 00' <
OP > OP,

R -^ r.

or 00' + r > R\
whence, subtracting r from each member,

00' > iJ - r. Q. E. D.
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PROPOSITION V.

169. Theorem.— WTien the less of two circles is tangent

to the other internally,

1st. They have a common rectilinear tangent at the

point of tangency.

2d. Their centres and the point of tangency lie in the

same straight line.

3d. The distance between the cerCtres is equal to the dif-

ference of their radii.

Demonstration-.

Let M and N be two circles whose centres are and 0' respectively,

N being less than M and tangent to it internally; let H and r be their

radii, and D the point of tangency.

We are to prove, 1st. That they have

a coramon rectilinear tangent at D ; 3d.

That 0, 0', and D are in the same straight

line ; and 3d. That 00' = i^ — r.

1st. Draw TR tangent to IVI at D.

Draw also O'D, and any other line from 0'

to TR, as O'E.

Now, since E is without the circle IVI

(?), and IVI is without N (?), O'E > O'D,

and O'D is perpendicular to TR (94).

Hence, TR is tangent to N (156), and

is therefore a common tangent, q. e. d.

2d. Since both OD and O'D are perpendicular to TR at D (?), OD

and O'D coincide (88), and and 0' lie in the same straight line with D.

Q. E. D.

3d. Since 00' and D are in the same straight line, and 0' is between

and D, 00' = OD — O'D ; that is, 00' = -B — r, q. e. d.

Fig. 79.
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PROPOSITION VI.

170. Theorem.— WTien the less of two circles is wholly

interior to the other, the distance between the centres is

less than the difference of their radii.

Demonstration.

Let M and N be two circles whose centres are and 0', and whose

radii are R and r respectively, and let N be wholly within M.

We are to prove that 00' < 22 — r.

Produce 00' till it meets both circumferences

on the same side of that 0' is ; and let the inter-

sections with N and M respectively be D and E.

Then, as 0, 0', D, and E lie in order in the

same straight line,

OD < OE; J-,

and subtracting O'D from each, and noticing that 00 — O'D = 00',

that OE = i?, and O'D = r, we have

00' < B—r. Q. E. D.

171. General Scholium.—The converse of each of Props. 1, 11, IV,

V, and VI is also true. Thus, if the distance between the centres is

greater than the sum of the radii, the circles are wholly exterior the one

to the other ; since if they occupied any one of the other four possible

positions, the distance between the centres would be equal to the sum of

the radii, less than their sum, equal to their diflference, or less than their

diflference ; any one of which conclusions vrould be contrary to the hy-

pothesis.

In like manner, the converse of any one of the five propositions may

be proved.

This method of proof is called The Reductio ad Absurdum, and

consists in showing that any conclusion other than the one stated would

lead to an absurdity.
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PROPOSITION VII.

172. Theorem.

—

All the circumferences which can be

passed through three points not in the same straight line

coincide, and are one and the same.

Demonstration.

Let A, B, and C be three points not in the same straight line.

We are to prove that all tb& circnmferences

which can be passed through them coincide, and

are one and the same circumference.

By (161) a circumftrence can be passed through

A, B, and C.

Now every point equally distant from A and B

lies in FD, a perpendicular to AB at its middle

point (?). And, in like manner, every point equally

distant from B and C is in HE, a perpendicular to

BC at its middle point.

But the two straight lines FD and HE can intersect in only one point.

Hence all circumferences which can pass through A, B, and C have

their centre in 0, and their radius OA, and therefore they constitute one

and the same circumference, q. e. d.

173. Cor. 1.

—

Through any three points not in the sam^e

straight line a circumference can he passed, and hut one.

174. Definition.—A circle is said to be determined when

the position of its centre and the length of its radius are known.

175. Cor. 2.—Three points not in the same straight line

determ^ine a circle.

176. Cor. 3.

—

Two circumferences can intersect in only

two points.

For, if they have three points common, they coincide, and form one

and the same circumference.
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EXERCISES.
177. 1. The centres of two circles whose radii are 10 and 7,

are at 4 from each other. What is the relative position of the

circumferences ? What if the distance between the centres is 17 ?

What if 20 ? What if 2 ? What if ? What if 3 ?

2. Given two circles and 0' (Fig. 82), to draw two others,

one of which shall be tangent to these externally, and to the

other of which the two given circles shall be tangent internally.

Give all the principles involved in the construction. Give other

methods.

Fig. 82. Fig. 83.

3. Given two circles whose radii are 6 and 10, and the dis-

tance between their centres 20. To draw a third circle whose

radius shall be 8, and which shall be tangent to the two given

circles. Can a third circle whose radius is 2 be drawn tangent to

the two given circles ? How will it be situated ? Can one be

drawn tangent to the given circles, whose radius shall be 1?

Why?

4. With a given radius, draw a circumference (Fig. 83) which

shall pass through a given point and be tangent to a given line.



ELEMENTABr GEOMETRY,

^^^tvnn^ yi

OF THE MEASUREMENT OF ANGLES.

178. Two angles are Commensurable when there is a

common finite angle which measures each. When they have no

such common measure, they are Incommensurable.

179. An Angle at the Centre is an angle included be-

tween two radii.

180. An Inscribed Angle is an angle whose vertex is in

a circumference, and whose sides are chords of that circumfer-

ence.

181. Angles are said to be measured by arcs, according to the

principles developed in the following f)ropositions.

PROPOSITION I.

182. Theorem.—In the same circle, or in eqnal circles,

two angles at the centre are in the same ratio as the arcs

intercepted between their sides.

Demonstration.

There are three cases :

CASE I.

When the angles are equal.

Let angle AOB = angle DOE (Fig. 84) in the same circle or in equal

circles.
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We are to prove that

AOB _ arc AB *

DOE arc DE

Apply tbe angle DOE
to the angle AOB, placing

the radius OD in its equal

OA. By reason of the

equality of the angles

DOE and AOB, OE will

fall in OB, and E in B (?).

Hence DE coincides with AB, and

arc AB
arc DE

Fig. 84.

= 1.

But, by hypothesis,

Hence,

AOB
DOE

AOB
DOE

= 1.

arc AB
arc DE (66). Q. E. D.

CASE II.

When tJie angles are commensurable.

Let AOB and DOE be two commensurable angles at the centre in the

same circle^ or in equal circles. .

Fig. 85.

* This method of writing a proportion is ado^ited in this book as the

more elegant, and as it appears to be coming into exclusive use. The above

is the same as

AOB : DOE :: arc AB : arc DE
and is to be read in the same manner.
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Fig. 85.

We are to prove that
AOB _ arc AB
DOE ~ arc DE

*

As the angles are commensurable by hyp()thesis, let m be their com-

mon measure, and let it be contained 5 times in AOB and 8 times in DOE.

8o that

AOB 5

DOE 8*

Conceive the angle AOB divided into 5 partial angles, each equal to

m, and the angle DOE divided into 8 such partial angles.

Now as these partial angles are equal, their intercepted arcs are equal

(?), and as AB contains 5 of them, and DE 8,

arc AB _ 5

Hence,

arc DE

AOB
DOE

arc AB
arc DE (?). q. E. D.

CASE III.

When the angles are incoinmensurahle.

Let AOB and DOE (Fig. 86) be two incommensurable angles at the

centre, in the same circle, or in equal circles.

«r . 1- . AOB arc AB
We are to prove that ^^ = ^^^-^

'

If the ratio^ is not equal to the ratio ^^5^, let it be ^rea<^r ;

and let

in which DL is less than DE-

AOB _ arc AB
DOE ~ arcDL'
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Fig. 86.

Draw OL, and divide AOB into equal parts, each less than LOE.
Apply this measure to DOE, beginning at DO. At least one line of di-

vision win fall between OL and OE. Let this be OK.

Now AOB and DOK are commensurable ; hence, by Case II,

but by hjrpothesis

AOB
DOK

AOB
DOE

arc AB
arc DK *

arc AB
arc DL*

-^. .,. AOB , AOB , arc AB , arcABDmdmg
DOK ^y DOE' ^"^ ai^DK ^^ ar^DL' ^" ^*^^

DOE
DOK

arc DL
arc DK

But this conclusion is absurd, since

DOE
DOK > 1, and

arc DL
arcDK

< 1.

AOB
Thus we show that the ratio ^-^ cannot be greater than the ratio

—=^p ; and in a similar manner we may show that -r^r^ cannot be less
arc DE ^ DOE

than
arc AB
arc^E

AOB .

DOE
Hence, as '^^ is neither greater nor less than ^^^^^ , it is equal to

arc AB
arc DE

arc AB . , AOB arc AB
=r^, and we have =r;^=. = ^^f.

arc DE

'

DOE arc DE
Q. E. D.

[For other methods of demonstrating this important theorem, see

Appendix.]
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188. Out of the truth developed in this proposition grows the

method of representing angles by degrees, minutes, and seconds, as given

in Trigonometry (Part IV, 3-6)- It will be observed, that in all cases, if

arcs be struck with the same radius^ from the vertices of angles as centres,

the angles bear the same ratio to each other as the arcs intercepted by

their sides. Hence the arc is mid to measure the angle. Though this lan-

guage is convenient, it is not quite natural ; for we naturally measure a

quantity by another of like kind. Thus, distance (length) we measure by

distance., as when we say a line is 10 inches long. The line is length ; and

its measure, an inch, is length also. So, likewise, we say the area of a

field is 4 acres: the quantity measured is a surface; and the measure, an

acre, is a surface also. Yet, notwithstanding the artificiality of the

method of measuring angles by arcs, instead of directly by angles, it is

not only convenient but universally used ; and the student should know

just what is meant by it.

189. A Degree is ^^ part of the circumference of a circle; a

Minute is ^^ of a degree, and a Second is ^V of a minute. This is the

primary signification of these terms. But as any angle at the centre sus-

tains the same ratio to any other angle at the centre as do their subtended

arcs, we speak of an angle as an angle of so many degrees, minutes,

and seconds. Thus, an angle of 45 degrees (written 45°) means an angle

at the centre 45 times as large as one which subtends ^^ of the circumfer-

ence, or half as large as one which subtends 90° of the circumference.

This idea, as well as the notation °,
', ", for degrees, minutes, and

seconds, has already been made familiar in Arithmetic.

190. As the vertex of any angle may be conceived as the centre of a

circle, the intercepted arc of whose circumference measures the angle, we
speak of all angles in the same manner as of angles at the centre. Thus,

a right angle is called an angle of 90°. one-half a right angle is an angle

of 45°, a straight angle is an angle of 180°, and the sum of four right

angles, being measured by the entire circumference, is an angle of 360°, etc.

PROPOSITION II.

191. Theorem.—An inscribed angle is measured by

half the arc intercepted between its sides.

Demonstration.

Let APB be an angle inscribed in a circle whose centre is 0.
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We are to prove that tlie angle APB is measured by one-half the

arc AB.

There are three cases : 1st. When the centre is in one side ; 2d. When

the centre is witliin the angle; and 3d. When it is without.

CASE I.

When the centre, 0, is in one side, ds PB,

Draw the diameter DC parallel to AP.

By reason of the parallels AP and CD,

arc AC = arc PD (158) ;

and, since COB = POD (?),

arc CB = arc PD (?).

Hence, arc AC = arc CB,

and arc CB = i arc AB. ^, „* Fig. 87.

Again, since the parallels AP and DC are cut by the transversal PB,

the angles APB and COB are equal (126).

But COB is measured by arc CB (?). Hence, APB is measured by

arc CB = ^ arc AB. Q. e. d.

CASE II.

When the centre is within the angle.

Draw the diameter PC.

Now by Case I, APC is measured by ^ arc AC,

and CPB by ^ arc CB. Hence the sum of these

angles, or APB, is measured by ^ arc AC -I- ^ arc

CB, or ^ arc AB. q. e. d.

CASE III.

Wlien the centre is withont the angle.

Draw the diameter PC.

By Case I, APC is measured by ^ arc AC, and

BPC by ^ arc BC. Hence, APB, which is APC —
BPC, is measured by

^ arc KQ — ^ arc BC

or \ arc AB. Q. e. d.

Fig. 88.

Fig. 89.
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192. Corollary.—In the same circle or in equal circles,

all angles inscribed in the same segment or in equal seg-

ments intercept equal arcs, and are consequently equal.

If the segment is less than a semicircle, the angles are

obtuse; if a semicircle, right; if greater than a semi-

circle, acute.

Fig. 90.

Illustration.—In each separate figure the angles P are equal to

each other, for they are each measured by half the same arc.

In 0, each angle P is acute, being measured by ^m, which is less than

a quarter of a circumference.

In 0', each angle P is a right angle, being measured by ^m', which is

a quadrant (quarter of a circumference).

In 0", each angle P is obtuse, being measured by ^m", which is

greater than a quadrant.

PROPOSITION III.

193. Theorem.—Any angle formed by two chords in-

tersecting in a circle is measured by one-half the sum of

the arcs intercepted between its sides and the sides of its

vertical, or opposite, angle.

Demonstration.

Let the chords AB and CD (Fig. 91) intersect in P.

We are to prove that angle APD (= angle CPB ?) is measured by

^ (arc AD + arc CB)

;

and that angle BPD (= angle CPA ?) is measured by

^ (arc BD + arc CA).
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•I Draw CE parallel to AB.

Arc AE = arc CB (?) ; whence, arc ED =
arc AD + arc CB.

Now the inscribed angle ECD is measured

by I arc ED = 1^ (arc AD + arc CB).

But ECD = APD (0 ; hence, APD (= CPB)

is measured by |^ (arc AD 4- arc CB). q. e. d.

Finally, that ARC, or its equal BPD, is

measured by | (AC + BD), appears from the f^'Q- ^••

fact that the sum of the four angles about P
being equal to four right angles, is measured by a whole circumference

(190).

But APD + CPB is measured by AD + CB ; whence APC + BPD, or

2APC, is measured by the whole circumference minus (AD + CB); that

is, by AC + BD. Hence APC is measured by \ (AC 4- BD). q. e. d.

194. Scholium.—The case of the angle included between two chords

passes into that of the inscribed angle in the preceding proposition, by

conceiving AB to move parallel to its present position until P arrives at

C and BA coincides with CE. The angle APD is all the time measured

by half the sum of the intercepted arcs; but, when P has reached C, CB
becomes 0, and APD becomes an inscribed angle measured by half its in-

tercepted arc.

In a similar manner we may pass to the case of an angle at the centre,

by supposing P to move toward the centre All the time APD is meas-

ured by ^(AD + CB); but, when P reaches the centre, AD = CB, and

|(AD + CB) = ^ (2AD) = AD ; i. e., an angle at the centre is measured

by its intercepted arc.

PROPOSITION IV.

196. Theorem.—An angle included between two se-

cants meeting iidthout the circle is measured by one-half
the difference of the intercepted arcs.

Demonstration.

Let APB (Fig. 92) be an angle included between the secants PA
and PB ; and let the intersections with the circumference be C and D.
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We are to prove that APB is measured by

^ (arc AB — arc CD).

Draw CE parallel to PB.

Now arc CD = arc EB (?). Hence, arc AE
= arc AB — arc CD.

Again, ACE = APB (0-

But ACE is measured by | arc AE (?).

Hence APB is measured by

^ arc AE = ^ (arc AB — arc CD), q. e. d.

196. Scholium.—This case passes into that

of an inscribed angle, by conceiving P to move Fig. 92.

toward C, thus diminishing the arc CD. When
P reaches C, the angle becomes inscribed ; and as CD is then 0, ^ (AB —
CD) = jr AB. Also, by conceiving P to continue to move along PA, CD
will reappear on the other side of PA, hence will change its sign,* and
|(AE — CD) will become ^ (AE + CD), as it should, since the anglejs

then formed by two chords intersecting within the circumference.

PROPOSITION V.

197. Theorem.—^11 equal angles whose sides inter-

cept a given line, and wJiose vertices lie on the same side

ofthat line, are inscribed in the same segment of which
the intercepted line is the chord.

Demonstration.

Let APB, APB, AP"B, etc., be any number of

equal angles whose sides intercept the given line AB.

We are to prove that the vertices P, P', P", etc.,

all lie in the same arc of which AB is the chord.

Through one of the vertices, as P, and A and B

describe a circumference.

Now the angle APB is measured by \ the arc

AwB, and as the other angles are equal to this, they

must have the same measure.

* In accordance with the law of positive and negative quantities as used

in mathematics, whenever a continuously varying quantity is conceived as

diminishing till it reaches 0, and then as reappearing by the same law of

change, it must change its sign.

Fig. 93.
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But suppose any one of them, as P', had its vertex within the

segment. It would then be an angle included between two chords

drawn from A and B, and hence would be measured by ^AmB plus some

arc (193).

If, on the other hand, the vertex P' was without the segment, the

angle would be an angle included between two secants, and would be

measured by ^A^nB less some arc (195)

Hence, as P' can lie neither without nor within the arc APB, it lies in

it. Q. E. D.

198. Corollary.—All right angles whose sides inter-

cept a given line are inscribed in a semicircle whose

diameter is the given line.

PROPOSITION VI.

199. Theorem.—An angle included between a tan-

gent and a chord drawn from the point of tangency is

measured by one-half the intercepted, arc.

Demonstration.

Let TPA be an angle included be-

tween the tangent TM and the chord

PA.

We are to prove that TPA is mea-

sured by \ arc PnA.

Through A draw the chord AD
parallel to TM.

Then is PAD = TPA (?).

Now PAD is measured by \Pmli (?).

Whence TPA is measured by

^PmD. But PwD equals PnA (?).

Hence TPA is measured by ^PnA.

Q. E. D.

Fig. 94.

Exercise.—Show that APM is measured by \ arc AwP.
Also, observe how the case of two secants (195), passes into this.
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PROPOSITION VII.

200. Theorem,—J_n angle included between two tan-

gents is measured by one-half the difference of the inter-

cepted arcs.

DEMONSTRATrON.

Let APB be an angle included between

the two tangents PA and PB, tangent at

C and D.

We are to prove that APB is measured

by

^ (arc CmD — arc CnD).

Draw the chord CE parallel to PB.

Now arc CnD = arc EwD (?).

Whence arc CE = arc CwD — arc OnD,

Again, ACE = APB (?).

But ACE is measured by \ arc CE = |

(arc CwiD — arc CnD). Hence APB is measured by ^ (arc CwD — arc

CwD). Q. E. D.

201. Scholium.—The case of two secants (195) becomes this by sup-

posing the secants to move parallel to their first position till they botk

become tangents.

Fig. 95.

PROPOSITION VIII

202. Tlieorem. — An angle

included between a secant and a

tangent is measured by one-half

the difference of the intercepted

arcs.

[Let the student write out the demon-

stration in form.]

Fig. 96.
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PROPOSITION IX.

203. Problem,—From a given point in a given line to

draw a line luhich shall mahe with the given line a given

angle.

SOLUTIOiT.

Let A be the given point in the given line AB, and the given angle.

We are to draw from A a

line which shall make with

AB an angle equal to 0.

From as a centre, with

any convenient radius, de-

scribe an arc, as a6, measuring

the angle 0.

From A as a centre, with

the same radius, describe an

arc en cutting AB and extend p. ^^

ing on that side of AB on

which the angle is to lie. Let this arc intersect AB in c.

From c as a centre, with a radius equal to the chord oJ, describe an

arc cutting cw, as at d.

From A draw a line through <Z, as AC.

Then will CAB be the angle required.

Demonstration of Solution.

Arc ab measures angle (?).

Arc cd = arc ah (?).

Hence, angle CAB = angle (?).

PROPOSITION X.

204. Problem.—Through a given point to draw a par-

allel to a given line,

SOLLTION.

Let P (Fig. 98) be the given point, and AB the given line.
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We are to draw a line through

P which shall be parallel to AB.

From P as a centre, with any

i-adius sufficiently great, strike an

arc cutting AB, as at a, and ex-

tending on the same side of AB
that the parallel is to lie. Let the arc be ac.

From a as a centre, with the same radius, pass an arc through P, cut-

ting AB in some point, as &.

With the chord IP as a radius and a as a centre, strike an arc cutting

«c, as in 0.

Draw a line through and P, and it will be the parallel required.

Demonstratioi?^ of Solution.

The arcs Oa and P6 are arcs of circles with equal radii, and have

equal chords, and are hence equal arcs (?).

Tiie angles OPa and Pab are equal, since they are measured by the

equal arcs Oa and P6 (?).

Hence the transversal Pa cuts the two lines MN and AB, making the

alternate angles MP« and BaP equal. Wherefore MN is parallel to AB,

and as it passes through the given point P, it is the parallel required.

Q. E. D.

PROPOSITION XI.

205. Problem.—From a point without a circle to draw

a tangent to the circle.

Solution.

Let O be the centre and OT the radius

of the given circle, and P the given point.

We are to draw from P a tangent to

the circle.

Join P with the centre by a straight

line.

On the line OP describe a circle inter-

secting the given circle in T and T'.

Through the points P and T, P and T'

draw the straight lines PM and PM'. These will be the required tangents.

Fig. 99.
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Demonstration of Solution.

Drawing OT, the angle OTP is a riglit angle, since it is inscribed in a

semicircle (192).

Hence PM is a tangent to the circle, as it is a perpendicular to a radius

at its extremity, and as it passes through P it fulfills the conditions of the

problem.

In like manner, PM' is seen to be a tangent passing through P, and

the problem has two solutions. Q. e. d.

206. Corollary.—Through any point mithout a circle

two tangents may he drawn to the circle.

PROPOSITION XII.

207. Problem.—On a given line to construct a segment

which shall contain a given inscribed angle.

Solution.

Let AB be the given line and the given angle.

We are to construct a segment

on AB which shall contain the as

an inscribed angle.

At one extremity of AB, as B,

construct an angle ABC equal to 0,

and on the side of AB opposite to

that on which the segment is to lie.

Erect a perpendicular to CB at

B, and one to AB at its middle point

E. Let F be the intersection of these Fig. lOO.

perpendiculars.

With FB (or FA) as a radius, describe a circle. Then will AWw"B be

the segment required ; and any angle inscribed in this segment, as AHB,

will be equal to 0.

Demonstration of Solution.

Since CB and AB are non-parallel lines, perpendiculars erected to

them will meet in some point as F (141) 131)-
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F being a point in the perpendicu-

lar to AB at its middle point FA =
FB (96), and a circle struck with FB

as a radius and F as a centre will

pass through A. Moreover CB will

be a tangent to this circle, since it is

perpendicular to a radius at its ex-

tremity (156).

Now = ABC by construction,

and ABC being an angle included

between a tangent and a chord, is

measured by half the intercepted arc AwB (?).

But any angle inscribed in the segment Am'm"B is measured by ^ arc

AwiB (0, and hence ijquals ABC =,0. Q. e. d. \ ^

cr.>L L

PROPOSITION XIII

208. Problem.

—

To bisect a given angle.

Solution.

Let BOA be the given angle.

We are to draw a line dividing BOA
into two equal angles.

With any convenient radius and as

a centre, describe an arc cutting the sides

OB and OA at h and a.

From a and & as centres, with equal

radii, strike arcs cutting in some point,

as P.

Through and P draw a straight line.

Then is the angle BOA bisected by OP, and BOP = POA.

Fig. lOf.

Demonstration of Solution.

OP being perpendicular to the chord of arc ab (?) bisects the arc

(147). Hence arc &D = arc aO.

But
»°gl«BOP=''J^*°

Therefore, BOP = POA. <i. e. d.
angle POA arc aD
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EXE RCISES

209. 1. To find a point in a plane having given its distances

from two known points.

When are there two sohitions?

When but one solution ?

When no solution ?

2. In Fig. 102 there are 4 pairs of equal angles. Which are

they, and why ?

Show that COB = ABD + CDB.

Show that DOB = ABC + DAB.

Fig. 102. Fig. 103.

210. Concentric Circles are circles which have a com-
mon centre.

3. Draw two concentric circles (Fig. 103), such that the

chords of the outer circle which are tangent to the inner shall

be equal to the diameter of the inner.

4. From a point out of a given straight line to draw a line

making a given angle with the first line.

5. Prove that if two circles are concentric, any chord of the

outer which is tangent to the inner is bisected at the point of

contact.

6. Prove that if D and B (Fig. 104) are right angles, A and C
are supplementary.
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7. Prove that if, in the adjoining

figure, the opposite sides AB and DC,

and AD and BC be produced till they

meet, the lines which bisect the in-

cluded angles will be perpendicular to

each other.

8. Draw a triangle, and then draw

a circle about it so that all its angles

shall be inscribed ; L e., circumscribe

a circle about a triangle. (See 161.)

Fig. 104.

<»

^^^irCTfoJI VII.

OF THE ANGLES OF POLYGONS, AND THE RELATION
' BETWEEN THE ANGLES AND SIDES.

OF TRIANGLES.
211. A Plane Triangle, or simply a Triangle, is a plane

figure bounded by three straight lines.

212. With respect to their sides, triangles are distin-

guished as Scalene, Isosceles,

and Equilateral.

A Scalene Triangle is

a triangle which has no two Fig. los.

sides equal, as (1) or (2). ^^^^^^
An Isosceles Triangle is a triangle HHRB

which has two of its sides equal to each other, ^E^^^^k
as (3). Fig. 106.
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An Equilateral Triangle is a triangle

which has all tliree of its sides equal each to each,

as (4).

213. With respect to their angles, triangles ^'9 io7.

are distinguished as acute angled, right angled, and obtuse

angled.

An Acute Angled Triangle is a triangle all of whose

angles are acute, as (4).

A Right Angled Triangle is a triangle one of whose

angles is right, as (2).

An Obtuse Angled Triangle is a triangle one of whose

angles is obtuse, as (1).

214. A circle Circumscribes a figure when all the angles

of the latter are inscribed.

PROPOSITION I.

215. Theorem.—The sum of the three angles of a tri-

angle is two right angles.

Demonstration.

Let ABC be any triangle.

We are to prove that

A + B + C = 2 right angles.

Circumscribe a circle about the triangle (161)-

Then the angle A is measured by ^ the arc

BaC (0, the angle B by | the arc C&A, and the

angle C by ^ the arc AcB.

Hence the sum of the three angles, or A + B + f^'9- '08.

C. is measured by ^ the sum of BaC + C&A 4 AcB, or ^ the circumference.

But a semi-circumference is the measure of two right angles (190)-

Hence A + B + C = 2 right angles, q. e. d.
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216. CoROLLAKY 1.

—

A triangle can have only one right

angle, or one obtuse angle. Why ?

217. Corollary 2.—Two angles of a triangle, or their

sum, being given, the third may be found by subtracting

this sum from two right angles, i. e., any angle is the

supplement of the sum of the other two.

218. Corollary 3.

—

The sum> of the two acute angles of
a right-angled triangle is equal to one right angle ; i. e.,

they are complements of each other.

219. Corollary 4.

—

If the angles of a, triangle are

equal each to each, any one is one-third of two right an-
gles, or two-thirds of one right angle.

PROPOSITION II.

220. Theorem.—IT^e sides of a triangle sustain the

same general relation to each other as their opposite an-

gles; that is, the greatest side is opposite the greatest

angle, the second greatest side opposite the second grea^test

angle, and the least side opposite the least angle.

Demonstration.

Let ABC be any triangle having the angle C greater than B. and B
greater than A.

We are to prove that AB opposite C is the

greatest side, AC opposite B the next greatest,

and BC opposite A the least.

Circumscribe a circle about the triangle (161).

If the triangle is acute-angled, the arc meas-

uring any angle is less than a quarter of a circum-

ference (191).

Now the angle C being greater than B, the

arc c is greater than arc & (?). Hence, the chord Fig. I09.

AB is greater than the chord AC.
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In like manner, the angle B being greater than the angle A, the arc

I is greater thaa^ arc a (?). Hence the chord AC is greater than the

chord BC.

If the triangle has one right angle, as C, Fig. 110, this angle is

measured by ^ the semi-circumference AcB, and inscribed in the semi-

circumference ACB. Hence the order of magnitude of the arcs is still

c>l>a (?), and of the sides AB > AC > BC.

Fig. 110. Fig. III.

If any angle of the triangle, as C, is obtuse. Fig. Ill, this angle is in-

scribed in a segment less than a semicircle (192), whence this arc ACB is

less than a semi-circumference, and greater than either a or J, as it is their

sum.

Hence the chord AB is greater than either AC or BC (?).

Thus we have shown that in all cases, the order of magnitude of the

angles being C > B > A, the order of magnitude of the sides is

AB > AC > BC. Q. E. D.

221. Corollary 1.—Conversely, TJie order of the Tnag-

nitudes of the sides being AB > AC > BC, the order of the

magnitudes of the angles is C> B > A.

[Let the student give the demonstration in

form.]

222. Corollary 2.

—

An equiangu-

lar triangle is also equilateral ; and,

conversely, an equilateral triangle is

equiangular.

Thus, if A = B = C, arc a = arc 6 = arc c, p. ,,2
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and, consequently, chord BC = chord AC = chord AB. Conversely, if

the chords are equal, the arcs are, and hence the angles subtended by
these arcs.

223. Corollary 3.

—

In an isosceles triangle the angles

opposite the equal sides are ecfual ; and,

conversely, if two angles of a triangle

are equal, the sides opposite are equal,

and the triangle is isosceles.

Thus, if AB = BC, arc a = arc c ; and hence,

angle A, measured by ^ a, = angle C, measured

by|c.

Conversely, if A = C, arc a = arc c ; and

hence chord BC = chord AB.

224. Scholium.—It should be observed that the proposition gives

only the general relation between the angles and sides of a triangle. It is

not meant that the sides are in the same ratio

as their opposite angles: this is not true.

Thus, in Fig. 114, angle C is twice as great as

angle A ; but side c is not twice as great as side

«, although it is greater. Trigonometry dis-

covers the exact relation which exists between

the sides and angles.

PROPOSITION III.

225. Theorem.—// from any point ivithin a triangle

lines are drawn to the extremities ofany side, the included

angle is greater than the angle of the

triangle opposite this side.

Demonstration.

Let ACB be any triangle, any point with-

in, and OB and DA lines drawn from this point

to the extremities of AB.

We are to prove that angle AOB > angle

ACB. Fig. 115.
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Circumscribe a circle about the triangle (161), and produce AO and

BO till they meet the circumference.

Now ACB is measured by ^AnB (191); but AOB is measured by

|(AnB + EmD) (193). Hence^ AOB > ACB. Q. e. d.

226. An Exterior Angle of a triangle is an angle formed

by any side with its adjacent side produced, as CBD, Fig. 116.

PROPOSITION IV.

227. Theorem.—v^/i'i/ exterior angle of a triangle is

equal to the sum of the two interior non-adjacent angles.

Demonstration.

Let ABC be a triangle, and CBD be^n ex-

terior angle.

We are to prove that CBD = A + C.

ABC + CBD = a straight angle (?).

But ABC + A + C = a straight angle (?).

Hence, ABC + CBD = ABC + A + C (?).

Hence, subtracting ABC from each member,

CBD = A + C. Q. E. D.

Fig. 116.

228. Corollary.—Either angle of a triangle not adja-

cent to a specified exterior angle, is cqiuil to the differ-

ence between this exterior angle and the other non-

adjacent angle.

Thus, since CBD = A + 0,

by transposition, CBD — A = C,

and CBD — C = A.
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OF QUADRILATERALS.

229. A Quadrilateral is a plane surface inclosed hj four

right lines.

230. There are three Classes of quadrilaterals, viz., Trape-

ziums, Trapezoids, and Parallelograms,

231. A Trapezium is a quadrilateral which has no two

of its sides parallel to each other.

232. A Trapezoid is a quadrilateral which has but two of

its sides parallel to each other.

233. A Parallelogram is a quadrilateral which has its

opposite sides parallel.

234. A Rectangle is a parallelogram whose angles are

right angles.

235. A Sqviare is an equilateral rectangle.

236. A Rhombus is an equilateral parallelogram whose

angles are oblique.

237. A Rhom-
boid is an oblique-

angled parallelogram

two of whose sides

are greater than the

other two.

III.—The figures in

the margin are all quad-

rilaterals. A is a trape-

zium. (Why ?) B is a

trapezoid. (Why?) C,

D, E, and F are paral-

lelograms. (Why?) D
and E are rectangles,

Fig. 117.
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although D is the form usually referred to by the term rectangle. So C
is the form usually referred to when a parallelogram is spoken of, without

saying what kind of a parallelogram. C is also a rhomboid. (Why ?)

E is a square. (Why ?) F is a rhombus. (Why?)

238. A Diagonal is a line joining the vertices of two non-

consecutive angles of a figure.

239. The Altitude of a parallelogram is a perpendicular

between its opposite sides ; of a trapezoid, it is a perpendicular

between its parallel sides ; of a triangle, it is the perpendicular

from any vertex to the side opposite or to that side produced.

240. The Bases of a parallelogram, or of a trapezoid, are

the sides between which the altitude is conceived as taken ; of a

triangle, the base is the side to which the altitude is perpendiculai*.

PROPOSITION V.

241. Theorem.—ITie sum of the angles of a quadri-

lateral is four right angles.*

Demonstration.

Let ABCD be any quadrilateral.

We are to prove that

DAB + B + BCD + D = 4 right angles.

Draw either diagonal, as AC.

The diagonal divides the quadrilateral

into two triangles, and the sum of the an-

gles of the two triangles is the same as the

sum of the angles of the quadrilateral, since

BCA + ACD = BCD,
and BAC + CAD = DAB.

But the sum of the angles of the triangles is four right angles (?).

Hence the sum of the angles of the quadrilateral is four rii;ht angles.

<l. B.D.

* See (261).

Fig. 118.
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PROPOSITION VI.

242. Theorem.—The opposite angles of any quadri-

lateral which can be inscribed in a circle are suppLe-

mentary.

DEMOKSTRATIOiq^.

Let ABCD be any inscribed quadrilateral.

We are to prove that

A + C = 2 right angles,

and also that D + B = 2 right angles.

A is measured by ^ the arc DCS, and C by ^

the arc BAD.

Hence, A + C is measured by ^(DCB + BAD),

that is, by a semi-circumference, and is therefore

2 right angles (190). Q- e. d. Fig. 119.

In like manner, B + D is measured by ^(ADC + CBA), and hence is

3 right angles. Q. e. d.

PROPOSITION VII.

243. Theorem.—The adjacent angles of a parallelo-

gram are supplemental, and the opposite angles are equal

to each other.

r Demokstration.

Let ABCD be any parallelogram.

We are to prove, 1st. That A + B, or

B + C, or C + D ,
or D + A is 2 right

angles ; and 2d. That A = C and D = B.

1st. Since, by definition (233), AD is
^'9- '^^•

parallel to BC, and the transversal AB cuts them, the sum of the two in-

terior angles on the same side, that is, A + B, is 2 right angles (126).

In like manner, B + C is two right angles, since they are the interior

angles on the same side of the transversal BC which cuts the parallels AB

and DC.
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In the same way, C + D, or D + A maybe shown equal to 2 right

angles.

Hence the sum of any two adjacent angles of a parallelogram is 2

right angles, q. e. d.

2d. A + B = B + C, since each sum is 2 right angles, by the pre-

ceding part of this demonstration.

Hence, subtracting B from each member, we have A = C.

In a similar manner, we may show that B = D.

Hence, either two opposite angles are equal to each other, q. k d.

244. Corollary 1.

—

The two angles

of a trapezoid adjacent to either one

of the two sides not parallel are sup-

plemental. Fig. 121.

[Let the student show why.]

245. Corollary 2.—// one angle of a parallelogram is

right, the others are also, and, the figure is a rectangle.

PROPOSITION VIII.

246. Theorem.—Conversely to the last, If three consec-

utive angles of a quadrilateral are such that the first

and the second, and the second, and the third, are sup-
plemental, or if the opposite angles are equal, the figure is

a parallelogram.

Demonstratiok.

Let ABCD be a quadrilateral having D and A, and A and B supple-

mental, or having A = C and D = B.

We are to prove that, in either case,

the figure is a parallelogram.

1st. If we have D and A, and A and B

supplemental.
^.^ ,22.

Since the transversal AD cuts the lines

AB and DC, making A + D = 2 right angles, the lines AS and DC are

parallel (126).
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Again, for a like reason, since A + B = 2 right angles, AD and BC are
parallel.

Hence the opposite sides of the quad-

rilateral are jDarallel, and the figure is a

parallelogram (23d)< Q. e. d.

Fig. 172.

2d. If A = C, and D = B, adding,

we have

A + D = C + B.

But A + D-l-C + B = 4 right angles.

Hence, substituting, we have

A + D + A + D = 4 right angles (?),

(Mr 2 (A + D) = 4 right angles,

or A + D = A + B (?) = 2 right angles,

and the figure is a parallelogram by the former part of the demonstration.

Q. B. D.

PROPOSITION IX.

247. Theorem.—// two opposite sides of a quadrilat-

eral are equal and parallel, the figure is a parallelogram,

Demokstratiok.

Let ABCD, in (a), be a quad-

rilateral having the sides AB and

DC equal and parallel.

We are to prove that AD and

BC are parallel, and hence that

the figure is a parallelogram.

Draw the diagonal AC.

Then, by reason of the paral-

lels AB and DC. the angles BAC
and DCA are equal (?)

Conceive the quadrilateral di-

vided in this diagonal into two

triangles, as in (b).

Reverse the triangle ACB and

place it as in (c). Since AC of

the triangle ADC = CA of the

triangle ABC, CA may be placed in AC, as in (c)

Fig. 123.
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Now revolve the triangle CBA on CA as an axis. Since, as we have

shown, the angle BAC = angle DCA, BA will take the direction CD, and

being equal to it, by hypothesis, B will fall in D, and the angle BCA co-

incides with and is equal to DAC.

But in {a) the angles BCA and DAC are alternate interior angles made
by the transversal AC cutting AD and BC. Hence AD and BC are paral-

lel, and as AB and DC are parallel by hypothesis, the quadrilateral is a

parallelogram (233). Q- e. d.

PROPOSITION X.

248. Theorem.—// the opposite sides of a quadrilat-

eral are equal, the figure is a parallelogram.

Demonstration.

Let ABCD, (a), be a quadrilateral, having AD = BC and AB = DC.

We are to prove that ABCD
is a parallelogram, i. e., that

AB is parallel to DC, and AD to

BC.

Draw the diagonal AC, and

conceive the quadrilateral di-

vided in this diagonal into two

triangles, as in (&).

Reverse the triangle ABC,

and place it as in (c). Since

AC of the triangle ADC equals

CA of the triangle ABC, CA
may be placed in AC, as in (c).

Draw DB, intersecting CA
(or CA produced), in 0.

As CD = AB, and AD =
CB, by hypothesis, the line AC
has two points each equally distant from the extremities of DB, and AC
and DB are perpendicular to each other (98)- Moreover, since AB and

CD are equal oblique lines drawn from the same point in the perpendic-

ular to the line DB, angle BAC = angle DCA (98, 110, 2d).

Now in (a), as angles BAC and DCA are the alternate interior angles

made by the transversal with the lines AB and DC, the latter are parallel,

Fig. 124.
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and as they are equal by hypothesis, the quadrilateral is a parallelogram

by the last proposition, q. e. d.

249. Corollary.—A diagonal of a parallelogranv di-

vides it into two equal triangles.

PROPOSITION XI.

250. Theorem.—Conversely to the last, The opposite

sides of a parallelogram are equal.

Demonstration.

Let ABCD be a parallelogram.

We are to prove that AD = BC,

and AS = DC.

AD and BC being parallel transver-

sals cutting the parallels AB and DC, their

intercepted portions, which are the oppo-

site sides of the parallelogram, are equal by (138)

For a like reason, AB = DC.

Hence, AD = BC and AB = DC. Q. e. d.

Fig. 125.

PROPOSITION XII.

251. Theorem.—The diagonals of a parallelogram

bisect each other.

Demonstration.

Let ABCD be a parallelogram whose

diagonals AC and DB intersect In Q.

We are to prove that AQ = QC, and

DQ = QB.

Angle QDC - angle QBA (?), angle

QCD = angle QAB (?), and DC = AB (?).
''g- '26.

For distinctness, let Q' represent the vertex at Q of the triangle DQC.

Now apply the triangle AQB to DQ'C, placing the side BA in its equal

DC, with the extremity B in D, and A in C, and the vertex Q on the same
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side of DC that the vertex Q' is, and the triangles will coincide. For,

since angle QAB = angle Q'CD, AQ will take the direction CQ', and the

vertex Q will fall somewhere in the line CQ'. In like manner, by reason

of the equality of angles QBA and Q'DC, the vertex Q will fall in DQ'.

Hence the vertex Q of the triangle AQB falling at the same time in CQ'
and DQ', falls at their intersection.

Hence, as these triangles coincide, AQ = Q'C, and DQ' = QB ; that is,

AQ = QC, and DQ = QB. q. e. d.

PROPOSITION XIII.

252. Theorem.

—

The diagonals of a rlLombus bisect

each other at Hght angles.

Demonstration.

Let ABCD be a rhombus, and AC and DB its diagonals intersecting

at Q.

We are to prove that DB and AC are per-

pendicular to each other.

Since AB = AD, and CD = CB (?), the

line AC has two points, A and C, each equally

distant from the extremities of DB. Hence AC
is a perpendicular to DB at its middle point Q
(98). Q. E. D. P5g- '27.

In like manner, DB may be shown to be perpendicular to AC at its

middle point. Q. e. d.

253. Corollary.—The diagonals of a rhombus bisect its

angles.

For, revolve ABC upon AC as an axis, and it will coincide with ADC.

Hence angles A and C are bisected. In like manner revolve DAB upon

DB, and it will coincide with DCB. Hence, D and B are bisected.

PROPOSITION XIV.

254. Theorem.

—

The diagonals of a rectangle are

equal.
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Demonstration.

Let AC and DB be the diagonals of the rectangle ABCD,

We are to prove that AC = DB;

Upon AC as a diameter describe a circle.

Since ADC and ABC are right angles whose

sides intercept AC, they are inscribed in the cir-

cumference of which AC is a diameter (198).

Again, since DCB is a right angle and is in-

scribed, DB is a diameter (?).

Hence AC and DB, being diameters of the same

circle, are equal, q. e. d.

Fig. 128.

255. Corollary.—Conversely, // the diagoTials of a par-

allelogram are equal, the figure is a rectangle.

By (251) the parallelogram is circuniscriptible ; whence, by (192) the

angles are right angles.

OF POLYGONS OF MORE THAN FOUR
SIDES.

256. A Polygon is a portion of a plane bounded by straight

lines.

The word polygon means many-angled ; so that with strict propriety

we might limit the definition to plane figures with five or more sides.

This limitation in the use of the word is frequently made.

267. A polygon of three sides is a triangle ; of four, a quad-

rilateral ; of five, a pentagon; of six, a hexagon; of seven, a

heptagon ; of eight, an octagon ; of nine, a nonagon ; of ten, a

decagon; of twelve, n dodecagon.

258. The Perimeter of a polygon is the distance around

it, or the sum of the bounding lines.

259. A Salient Angle of a polygon is one whose sides,

when produced, can only extend without the polygon.
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260. A Re-entrant Angle of a

polygon is one whose sides, when pro-

duced, can extend within the polygon.

Illustration.—In the polygon ABCDEFG,
all the angles are salient except D, which is

re-entrant.

261. A Convex Polygon is a

polygon which has only salient angles. F«fl- •«.

A polygon is always supposed to be convex, unless the contrary

is stated.

262. A Concave or Re-entrant Polygon is a polygon

with at least one re-entrant angle.

263. An Equilateral Polygon is a polygon whose sides

are equal, each to each ; and an Equiangular Polygon is

a polygon whose angles are equal, each to each.

PROPOSITION XV.

264. Theorem.—The sum of the interior angles of a
polygon is equal to twice as many right angles as the poly-

gon has sides, less four right angles.

Demonstration.

Let n be the number of sides of any polygon

We are to prove that the sum of its angles

is 71 times 2 right angles less 4 right angles.

From any point within, as 0, draw lines to

the vertices of the angles. As many triangles

will then be formed as the polygon has sides,

that is, n.

The sum of the angles of the triangles is n

times 2 right angles.

But this sum exceeds the sum of the angles

of the polygon by the sum of the angles around

the common vertex 0, that is, by 4 right angles.

f-iy. 130.
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Hence the sum of the angles of the polygon is

7* times 2 right angles less 4 right angles, q. k. d.

265. Scholium 1.—The sum of the angles of a pentagon is

5 times 2 right angles - 4 right angles, or 6 right angles.

The sum of the angles of a hexagon is 8 right angles ; of a heptagon,

10 ; of an octagon, 12, etc.

266. Scholium 2.—This proposition is equally applicable to triangles

and to quadrilaterals. Thus, the sum of the angles of a triangle is

3 times 2 right angles — 4 right angles = 2 right angles.

So also the sum of the angles of a quadrilateral is

4 times 2 right angles — 4 right angles, or 4 riglit angles.

267. Scholium 3.—To find the value of an angle of an equiangular

polygon, divide the sum of all the angles by the number of angles.

PROPOSITION XVI.

268. Theorem.—// one of the sides of a polygon is

produced (and only one) at each vertex, the sum of the

exterior angles thus formed is four right angles.

Demonstration.

Let n be the number of the sides of any

polygon, and one side be produced at each

vertex.

We are to prove that the sum of the ex-

terior angles thus formed, &8 a + h •\- c -\- d,

etc., is 4 right angles.

At each of the n vertices there are two

angles, an interior and an exterior one,

whose sum, as A + a, is 2 right angles.

Hence the sum of all the exterior and inte-

rior angles is

n times 2 right angl
Fig. 131.
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Now, from this sum subtracting the sum of the exterior angles, the

remainder is the sum of the interior angles.

But, by the preceding propositiim, 4 right angles subtracted from n

times 2 right angles leaves the sum of the interior angles.

Therefore the sum of the exterior angles is 4 right angles, q. e. d.

OF REGULAR POLYGONS.

269. A Regular Polygon is a polygon which is both

equilateral and equiangular (263).

270. An Inscribed Polygon is a polygon whose angles

are all inscribed in the same circumference.

271. A Circumscribed Polygon is a polygon whose

sides are all tangent to the same circle. The circumference is

said to be inscribed in the polygon.

PROPOSITION XVII.

272. Theorem.—The angles of an inscribed equilateral

polygon are equal ; and the polygon is regular.

Demonstration.

Let ABCDEF be an inscribed poly-

gon, having AB =r BC = CD, etc.

We are to prove that angle ABC =
angle BCD = angle CDE, etc.

The sides of the polygon being equal

chords, subtend equal arcs (151).

Now any angle of the polygon is

measured by ^ the diflference between

the circumference and the sum of two

of these equal arcs, as angle ABC meas-

ured by ^ (circumference — arc ABC)
= i arc AFEDC.

Hence all the angles are equal, and the polygon is regular (269). Q. E. D.

6

Fig. 132.
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PROPOSITION XVIII.

273. Theorem.—A circumference may he circum,-

scribed about any regular polygon.

Demonstration.

Let ABCDEF be a regular polygon.

We are to prove that a circumference can

be circumscribed about it.

Bisecting any two consecutive sides, as FA

and AB, by perpendiculars, as Oa and 06, pass

a circumference through the vertices F, A, and

B (161).

We will now show that this circumference

passes through all the other vertices.

Revolve the quadrilateral FO^A upon 06 as

an axis until it falls in the plane of C06B, 6A will fall in its equal IB (?)

;

and since angle A = angle B, and side AF = side BO, F will fall in C.

Thus it appears that the circumference described from 0, and pass-

ing through F, A, and B, also passes through 0.

In a similar manner it can be shown that the same circumference

passes through all the vertices, and hence is circumscribed. Q. e. d.

PROPOSITION XIX.

274. Theorem.—A circumference may be inscribed in

any regular polygon.

Demonstration.

Let ABCDEF be a regular polygon.

We are to show that a circumference may

be inscribed in it.

Let be the centre of the circumscribed

circumference (273); then the sides of the

polygon are equul chords of this circle, and

consequently equally distant from the centre

(160). Fig 134.
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Now draw the perpendiculars 0«, 0&, Oc, Orf, etc. These perpendic-

ulars are all equal, and a circumference struck from as a centre, with

anyone of them, as Oa, as a radius, will pass through 5, c, d^ etc.

Moreover, the sides AB, BC, CD, etc., being perpendicular to the

radii Oa, OJ, etc., are tangents to this circumference, which is therefore

an inscribed circumference (271). Q. e. d.

275. Corollary.—The centres of the inscribed and cir-

' curnscrihed circles coincide.

276. The Centre of a regular polygon is the common cen-

tre of its inscribed and circumscribed circles.

277. An Angle at the Centre of a regular polygon is

the angle included by two lines drawn from the centre to the

extremities of a side, as FOA, AOB (Fig. 133).

278. The Apotheni of a regular polygon is the distance

from the centre to any side, and is the radius of the inscribed

circle.

PROPOSITION XX.

279. Theorem.—The angles at the centre of a regular

polygon are equal each to each ; and any one is equal to

four right angles divided by the number of sides of the

polygon.

Demonstration.

Let P be a polygon ofn sides.

We are to prove, Ist. That the angles at the centre are equal ; and

2d. Tl.at any one of them is
^ ^ght angles

_

n

1st. Each angle at the centre intercepts one of the equal sides of the

polygon. But these sides are chords of equal arcs (?). Hence the sev-

eral angles at the centre have equal measures, and are therefore equal.

Q. E. D.
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2d. The sum of all the angles at the centre is 4 right angles (?), and

as they are equal and n in number, any one is

4 right angles
2 5 Q. E. D.

PROPOSITION XXI.

280. Theorem.—Any side of a regular inscribed hex-

agon is equal to the radius.

Demonstration.

Let ABCDEF be a regular hexagon inscribed in a circle whose radius

is 11.

We are to prove that any one of the equal

sides, as AB, equals B.

Let be the centre of the polygon, and draw

OA, OB, etc.

Now in the triangle AOB, angle is ^ of 4

right angles, or ^ of 2 right angles (?).

Whence the sum of the angles OAB and OBA
is I of 2 right angles (?).

But the triangle AOB is isosceles, OA and

OB being radii of the same circle. Hence, each ^"'9- '35.

one of the angles at the base is ^ of f of 2 right angles, or | of 2 right

angles. Therefore the triangle AOB is equiangular and consequently

equilateral (222), and AB = OA = i2. Q. e. d.

281. A Broken Line is said to be Convex when a straight line

cannot be drawn which shall cut it in more than two points.

PROPOSITION XXII.
282. Theorem.—A convex broken line is less than any

broken line which envelops it and has the same extremities,

the former lying between the latter and a straight line

joining its extremities.
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Demonstration.

Let ^hcd^ be a broken line enveloped by the broken line ACDEFB,

and having the same extremities A and B.

We are to prove that

Mcd^ < ACDEFB.

Produce the parts of A5aZB till they

meet the enveloping line, as Kb to e, he to

/, and cd to g.

Now, Kb-^he < ACe (?),

hc + cf <he + eDE/(0,

ed + dg <cf +ffg,
dB < dg -\- gB.

Fi{|. 136.

Hence, adding, and subtracting common terms,

Ab + be -^ cd -{- dB < ACe + cDEf + /Fg + gB,

or AbcdB < ACDEFB. Q. e. d.

angle.

PROPOSITION XXIII.

Problem.—To inscribe a circle in a given tri-

SOLUTION.

Let ABC be a triangle.

We are to inscribe a circle.

Bisect any two angles, as A and B (208).

From the intersection of the bisectors, as 0,

let fall a perpendicular, as OD*

Then is the centre of the inscribed circle,

and OD its radius.

Hence a circle described with as a centre

and OD as a radius will be inscribed.

Fig. 137.

Demonstration of Solution.

From let fall the perpendiculars OD, OE, and OG on the sides.
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Now the triangle AOE = AOG (?), BEO=
BOD (?).

Hence OD = OE = OG, and the circum-

ference struck from as a centre with a radius

OD, passes through E and G.

Moreover, AC, AS, and BC are perpendicu-

lar to the radii OG, OE, and OD respectively,

and hence are tangents to the circle.

Therefore the circle is inscribed in the

triangle. Q. b. d. Fig. 137.

PROPOSITION XXIV.

284. Problem.—In a given circle to inscribe a square,

and hence a regular octagon, and then a regular polygon

of 16 sides, etc.

[Let the pupil give the solution and demonstration.]

PROPOSITION XXV.
285. Problem.—In a given circle to inscribe a regular

hexagon, and hence an equilateral triangle and a dodec-

agon.

[Let the pupil give the solution.]

PROPOSITION XXVI.

286. Problem.

—

To circumscribe a square about a
given circle.

[Let the pupil give the solution.]
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PROPOSITION XXVII.

287. Problem.—To circumscribe an equilateral tri-

angle about a circle.

[Let the pupil give the solution.]

PROPOSITION XXVIII.

288. Problem.—To circumscribe a regular hexagon
about a given circle.

[Let the pupil give the solution.]

289. Query.—Given any regular inscribed polygon, how is

the regular cir(^m8cribed polygon of the same number of sides

constructed ?

EXERCISES
290. 1. Given two angles of a tri-

angle, to find the third.

Suggestions.—Tlie student should draw

two angles on the black lx)ard, as a and ft, and

then proceed to find the third. The figure

will suggest the method. The third angle

is c.

The solution is effected also by con-

structing the two given angles at the extrem- Fig. I38.

ities of any line, and producing the sides till they meet (?).

2. What part of a right angle is one of the angles of an equi-

lateral triangle ? From this fact, how can you obtain an angle

equal to | of a right angle ?

3. Two angles of a triangle are respectively | and J of a right

angle. What is the third angle ?
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4. The angles of a triangle are respectively f , J, and | of a

right angle. Which is the greatest side? Which the least?

Can you tell the ratio of the sides ?

5. What is the value of one of the equal angles of an isosceles

triangle whose third angle is J of a right angle ?

6. Two consecutive angles of a quadrilateral are respectively

I and f of a right angle, and the other two angles are mutually

equal to each other. What is the form of the quadrilateral ?

What the value of each of the two latter angles?

7. One of the angles of a parallelogram is f of a right angle.

What are the values of the other angles ?

8. The two opposite angles of a quadrilateral are respectively

I and i of a right angle. Can a circumference be circumscribed ?

If so, do it.

9. Two of the opposite sides of a quadrilateral are parallel,

and each is 15 in length. What is the figure ? Do these facts

determine the angles ?

10. Two of the opposite sides of a quadrilateral are 12 each,

and the other two 7 each. What do these facts determine with

reference to the form of the figure ?

11. What is the value of an angle of a regular dodecagon ?

12. What is the sum of the angles of a nonagon ? What is

the value of one angle of a regular nonagon ? Of one exterior

angle ?

13. What is the regular polygon, one of whose angles is l^nf

right angles ?

14. What is the regular polygon, one of whose exterior angles

is f of a right angle ?

15. Can you cover a plane surface with equilateral triangles

without overlapping them or leaving vacant spaces ? With

quadrilaterals? Of what form? With pentagons? Why?
With hexagons? Why? What insect puts the latter fact to

practical use ? Can you cover a plane surface thus with regular

polygons of more than 6 sides ? Why ?
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THEOREMS FOR ORIGINAL. INVESTI-
GATION.

[It is quite desirable that students have exercise, early in their course,

in the original demonstration of theorems. Those which are given in this

and the following lists are not such as are essential to the integrity of an

elementary course, and pupils may be encouraged to demonstrate more or

lesis of them, as their time and ability will allow. But all should do some

such work—it is the true test of mathematical ability and attainment.]

291. 1. Theorem.—The least chord that can he drawn
through a point within a circle is the chord which is per-

pendicular to a diameter passing through the same point.

2. Theorem.— Tlie shortest distance from a point

without a circle to the circumference is measured in a
line which passes through the centre.

3. Theorem.—The sum of the angles form,ed by pro-

ducing the alternate sides of any pentagon is two right

angles.

4. Theorem.—Prove that the sum^

of the angles of a triangle is two right

angles, by producing two of the sides

about an angle, and through the vertex

of this angle drawing a line parallel to

the third side.

Prove the same by producing one

side of the triangle, and drawing a line

through the vertex of the exterior angle

parallel to the non-adjacent side.
Fig. 139.

5. Theorem.—// AB is any chord, AC a tangent at A,

and CDE a line parallel to AB and cutting the circumfer-

ence in D and E, the triangles ACD, CAE, and ADB are

mutually equiangular.

6. Theorem.—// from any point in the base of an



130 ELEMENTARY GEOMETR Y.

isosceles triangle lines are drawn parallel to the equal
sides, a parallelogram is formed whose perimeter is equal
to the sum of the equal sides.

0UCTI0M H%
OF EQUALITY.

292. Equality signifies likeness in every respect.

293. The equality of magnitudes is usually shown by apply-

ing one to the other, and observing that the two coincide.

OF A NGLES.

PROPOSITION I.

294. Theorem.— rM;o angles whose corresponding

sides are parallel, and extend in the same or in opposite

directions from their vertices, are equal.

DEMONSTRATIOi?".

Mrst, In («) and {a'), let B and E be two

angles having BA parallel to ED and extending in

the same direction from the vertices, and also BC

parallel to EF and extending in the same direction

from the vertices.

We are to prove that angles B and E are equal.

Produce (if necessary) either two non-parallel

sides, as BC and ED, till they intersect, as in H.

ABC r= DHC (?),

and DHC = DEF (?).

Therefore, ABC = DEF. Q. e. d.
Fig. 140.
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Second. In (6) and (&'), let B' and E' have

B'A' parallel to ET', but extending in an oppo-

site direction from the vertices ; and in like man-

ner B'C parallel to^ but extending in an opposite

direction from E'D'.

We are to prove that B' and E' are equal.

Produce (it* necessary) either two non -parallel

sides, as A'B' and E'D', till they meet in some

point, as H'.

D'H B' = D E F' (?),

nnd D'H'B' = A'B'C (?).

Therefore D'ET' = A'B'C (?). H, e. d. Fig. I4r.

PROPOSITION II.

295. Theorem.— Two angles having their corres-

ponding sides parallel, ivhile two extend in the same
direction, and the other two in opposite directions from
the vertices, are supplemental.

Demonstration.

Let ABC and DEF be two

angles whose corresponding

sides BA and EF are parallel

and extend in the same direc-

tion from B and E, while BC
and ED extend in opposite

directions from the vertices.

We are to prove that ABC
and DEF are supplemental.

Produce one of the two '^* * '

sides having opposite directions as DE to H, in the same direction from

the vertex that BC extends.

Now DEF is supplemental to FEH (?), and FEH is equal to ABC (?)

Therefore, DEF and ABC are supplemental, q. e. d.



132 ELEMENTARY GEOMETRY,

^" PROPOSITION III.

296. Theorem.—If the sides of one angle are perpen-

dicular respectively to the sides of another, the angles are

either equal or supplemental.

Demonstration.

Let ABC be any angle and DE
and FH be two lines drawn through

any point 0, DE being perpendicular

to BC and FH to AB.

We are to prove that of the four

angles FOD, DOH, etc., two are

equal to ABC, and two are supple-

mental.

Draw BS bisecting ABC, and

from any point in this bisector, as L,

draw LM and LN, respectively paral-

lel to DE and FH.

Now, in the quadrilateral LNBM, the sum of the four angles is four

right angles (266) ; and, as LNB and LMB are right angles (?), NLM and

NBM (or ABC) are supplemental.

But NLM = FOD (?) = HOE C).

Therefore two of the four angles FOD, DOH, etc., namely, FOD and

HOE, are supplemental to ABC. Q. e. d.

Finally, FOE and DOH are supplements of FOD and HOE (?) and

hence equal to ABC. Q. k. d.

297. Scholium.—To determine whether the angles are equal, or

whether they are supplemental, we may consider one angle as moved

(if necessary) till its vertex falls in the bisector, its sides remaining

paraMel to their first position. Then, if both sides of one angle extend

towards, or both extend from the sides of the other, the angles are sup-

plemental, otherwise they are equal.

Fig. 143.

OF TRIANGLES.

PROPOSITION IV.

298. Theorem.—Two triangles which have two sides

and the included angle of one equal to two sides and the

included angle of the other, each to each, are equal.
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Demonstration".

Let ABC and DEF be

two triangles, having AC
= DF, AB - DE, and angle

A = angle D.

We are to prove that

the triangles are equal.

Place the triangle ABC
in the position (6), the side

AB in its equal DE, and

the angle A adjacent to its

equal angle D.

Then revolving ABC upon DE, until it falls in the plane on the oppo-

site side of DE, since angle A = angle D, AC will take the direction DF;

and as AC = DF, C will fall at F. Hence BC will fall in EF, and the

triangles will coincide. Therefore the two triangles are equal, q. e. d.

Scholium 1.—We may also make the application of ABC to

DEF directly. The method here given is used for the purpose of uni-

formity in this and the following. We may observe that in this, as in

the other cases, DB is perpendicular to FC, and bisects it at 0.

300- Scholium 2. —This proposition signifies that the two triangles

are equal in all respects^ L «., that the two remaining sides are equal, as

CB = FE; that angle C = angle F, angle B = angle E, and that the

areas are equal.

PROPOSITION V.

301. Theorem.—Tivo triangles which have two angles

and the included side of the one equal to two angles and
the included side of the other, each to each, are equal.

Demonstration.

Let ABC and DEF be two triangles, having angle A = angle D, angle

B = angle E, and side AB = side DE.

We are to prove that the triangles are equal.
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Place ABC in the po-

sition (5), the side AB in

its equal DE, the angle A
adjacent to its equal angle

D, and B adjacent to its

equal angle E.

Then revolving ABC
upon DE till it falls in the

plane on the same side as

DFE, since angle A = Fig. I45.

angle D, AC will take the

direction DF, and C will fall somewhere in DF, or DF produced.

Also, since angle B = angle E, BC will take the direction EF, and C
will fall somewhere in EF, or EF produced.

Hence, as C falls at the same time in DF and EF, it falls at their in-

tersection F. Therefore the two triangles coincide, and are consequently

equal. Q. e. d.

302. Corollary.—// one triangle has a side, its oppo-

site angle, and one adjacent angle, equal to the correspond-

ing parts in another triangle, the triangles are equal.

For the third angles are equal to each other, since each is the supple-

ment of the sum of the given angles. Whence the case is included in the

proposition.

303. Scholium.—A triangle may have a side and one adjacent angle

equal to a side and an adjacent angle in another, and the second adjacent

angle of the first equal to the angle opposite the equal side in the second,

and the triangles not be equal. Thus, in the figure, AB = C'A', A = A',

and B = B' ; but the triangles are evidently not equal. [Such triangles

are, however, simitar^ as will be shown hereafter.]
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PROPOSITION VI.

304. Theorem.—Two triangles which have two sides

and an angle opposite one of these sides, in the one, equal

to the corresponding parts in the other, are equal, if of
these two sides the one opposite the given angle is equal to

or greater than the one adjacent.

Demonstration.

In the triangles ABC and DEF, let AC = DF, CB - FE, A = D, and

CB (= FE)> AC (= DF).

We are to prove that

the triangles are equal.

Apply the triangle

ABC to DEF, placing AC
in its equal DF, the point

A falling at D, and C at

F.

Since A = D, AB
will take the direction

DE.

Let fall the perpen-

dicular FH upon DE, or

DE produced.

Now, CB being ^ DF, cannot fall between it and the perpendicular,

but must fall in FD or beyond both (?).

But CB cannot fall in FD, since it is a different line from CA.

Again, as CB = FE, and both lie on the same side of FH, they must

coincide (114).

Hence, the two triangles coincide, and are consequently equal.

Q. E. D.

PROPOSITION VII.

305. Theorem.—Two triangles which have the three

sides of the one equal to the three sides of the other, each

to each, are equal.
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Demon^stration.

Fig. 148.

l-et ABC and DEF be

two triangles, in which AB
= DE, AC = DF, and BC
= EF.

We are to prove that

the triangles are equal.

Place the triangle ABC
in the position (5), with

the longest side, AB, in its

equal, DE, so that the

other equal sides shall be

adjacent, as AC adjacent to DF, and BC to EF. Draw FC cutting

DE in 0.

Now, since AC = DF, and BC = EF, DE is peipendicular to FC at

its middle point (?).

Hence, revolving ABC upon DE, it will coincide with DEF when
brought into the plane of the latter, since OC will fall in OF (?) and is

equal to it.

Therefore the two triangles coincide, and hence are equal, q. e. d.

306. Corollary.—In two equal triangles, the equal an-
gles lie opposite the equal sides.

PROPOSITION VIII.

307. Theorem.—//^m;o triangles have two sides ofthe

one respectively equal to two sides of the other, and the

included^ angles unequal, the third sides are unequal,

and the greater third side belongs to the triangle having

the greater included angle.

Demonstration.

Let ABC and DEF be two triangles having AC = DF, CB = FE,

and C > F.

We are to prove that AB > DE.
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Make the angle ACE = DFE,

take CE = FE, and draw AE.

Then is the triangle ACE = DFE,

and AE = DE.

Bisect ECB with CH.

Now since angle DFE = ACE
< ACB by hypothesis, CE falls be-

tween CA and CB, and CH will

meet AB in some point, as H.

Draw HE.

The triangles HCB and HCE
have two sides and the included

angle of the one, equal to the cor-

responding parts of the other,

whence HE = HB (?).

Now AH + HE > AE

Fig. 149.

but

Therefore,

AH + HE = AH + HB = AB.

AB > AE, or AB > DE. q. e. d.

308. Corollary. —Conversely, // two sides of one tri-

angle are respectively equal to two sides of another, and
the third sides are unequal, the angle opposite this third

side is the greater in the triangle which has the greater

third side.

That is, if AC = DF, CB = FE, and AB > DE, angle C > angle F.

For, if C = F, the triangles would be equal, and AB = DE (298) ; and,

if C were less than F, AB would be less than DE, by the proposition.

But both these conclusions are contrary to the hypothesis. Hence, as C
cannot be equal to F, or less than F, it must be greater.

PROPOSITION IX.

309. Theorem. — Two right-angled triangles which
have the hypotenuse and one side of the one equal to the

hypotenuse and one side of the other, each to each, are

equal.
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Demonstration.

In the two triangles ABC and DEF, right-angled at B and E, let AC
DF, and BC = EF.

We are to prove that the

triangles are equal.

Place FE in its equal CB,

with FD on the same side of

CB that AC is.

Then, since two equal

oblique lines cannot be drawn

from C to AB on the same side

of CB, FD will coincide with

CA, and DE with AB (?)

Hence the two triangles

are equal, as they coincide

throughout when applied (292, 293). Q. e. d.

Fig. 150.

PROPOSITION X.

310. Theorem. —Two right-angled triangles having
any side and one acute angle of the one equal to the

corresponding parts of the other are equal.

Demonstration.

One acute angle in one triangle being equal to one in the other, the

other acute angles are equal, since they are complements of the same

angles (218). The case then falls under (301).

EXERCISES.
Exercise 1. Given the sides of a triangle, as 15, 8, and 5, to

construct the triangle.

Ex. 2. Given two sides of a triangle, a = 20, ^> = 8, and the

angle B opposite the side h equal J of a right angle, to construct

the triangle.
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Ex. 3. Same as in the preceding example, except h = 12.

Same, except that b = 25.

Ex. 4. Construct a triangle with angle A = J of a right

angle, angle B = ^ of a right angle, and side a opposite angle

A, 15.

Ex. 5. Construct an isosceles triangle whose vertical angle

is 30^.

Ex. 6. Construct a right-angled triangle whose hypotenuse

is 12 and one of whose acute angles is 60^

Ex. 7. Construct an equilateral triangle, and let fall a per-

pendicular from one vertex upon the opposite side. How is this

angle divided ? How many degrees measure the angle between

the perpendicular and one side ?

THE DETERMINATION OF POLYGONS.
311. A triangle, or any polygon, is said to be Determined

when a sufficient number of parts are known to enable us to

construct the figure, or to find the unknown parts. If two

different figures can be constructed, the case is said to be

Ambiguous.

312. Since, in such a case, if several polygons were to be con-

structed with the same given parts all would be equal, the condi-

tions which determine a polygon are, in general, the same as

those which insure equality (292). Hence, having shown that

certain given parts determine a polygon, we may assert that two

polygons having these parts respectively equal are equal, except

in the ambiguous cases.

PROPOSITION XI.

313. Theorem.—A triangle is determined in the fol-

lowing cases :

L W7ien two sides and the included angle are known.

II. WTien two angles and the included side are known.
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III. When the three sides are known.
IV. When two sides and an angle opposite one of them

are known,

(a.) If the known angle is right or obtuse.

(&.) If the known angle is acute and the known side

opposite it is equal to the perpendicular upon the unknown
side ; or equal to or greater than the other known side.

{c.) But, if the known angle is acute and the known
side opposite it is intermediate in length between the other

known side and the perpendicular upon the unknown side,

the case is ambiguous, i. e., there are two triangles possible.

Demonstration.

The demonstration of this proposition is effected in the solution of the

following problems.

314. Problem. — Given two sides and the included

angle, to construct a triangle.

Solution.

Let A and B be the given (or known) sides, and the given angle.

We are to construct a triangle having

an angle equal to included between sides

equal to A and B.

Draw any line, as O'D, equal to either

of the given sides, as A.

Lay off at either extremity of O'D, as

at 0', an angle equal to (203), and make

O'E equal to B, and draw ED.

Then will EO'D be the triangle re- Fig. isi.

quired.

For, if two triangles (or any number) be constructed with the sftme

sides and included angle, they will^all be equal to each other (298).

315. Problem.—Given two angles and the included

side, to construct a triangle.
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Solution.

Let M and N be the two given

angles, and A the given side.

We are to construct a triangle

having a side equal to A and in-

cluded between the vertices of two

angles equal respectively to M
and N.

Draw DE equal to A. At one

extremity, as D, make angle FDE =
M, and at E make FED = N.

Then is DEF the triangle re-

quired (?).

QuKRY.—What is the limit of the sum of the given

316. Problem.

angle.

Given three sides, to construct a tri-

Solution.

Let A, B, and C be the three given sides.

We are to construct a triangle which

shall have its three sides respectively

equal to A, B, and C.

Draw DE = A.

With D as a centre and a radius

equal to B, strike an arc intersecting an

arc struck from E as a centre, with a

radius C.

The triangle DEF is the triangle

sought (?).

Fig. 153.

317, ScHOLiDM.—If any one of the three proposed sides is greater

than the sum or less than the difference of the other two, a triangle is

impossible (?).

318. Problem.—To construct a triangle, havinggiven

two sides and the angle opposite one of them.
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Solution.

There are three cases.

CASE (a).

When the given angle is right or obtuse.

Let be the angle, and A and B

the sides, the angle to be opposite

the side A.

Construct angle NDM =: (203),

and take FD = B.

From F as a centre, with A as a

radius, strike an arc cutting DM in

E, and draw FE.

Then is FDE the triangle sought.

For it has FD = B, FE = A
(since FE is a radius of a circle

struck with A as a radius), and angle

FDE, opposite FE, equal to 0.

If the given angle were right, the construction would be the same.

Fig. 154.

CASE (h).

When the given angle is acute, and, 1st, the side opposite
equal to the jterpendicular upon the unknoivn side, and, 2d,
when the side opposite is equal to or greater than the other
given side,

1st, Let A and B be the given sides

and the given angle opposite B.

Proceed exactly as in the preceding

case, but when the arc is struck from F
as a centre with a radius equal to B,

instead of intersecting DM it will be

tangent to it, since B = FE is the per-

pendicular, and a line which is perpen-

dicular to a radius at its extremity is

tangent to the arc (156).

2d, If the side opposite the given angle is equal to the other
given side, the arc struck from F tvith it as a radius will cut
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DM at an equal distance tuith FD from the foot of the perpen-
dicular (?), and tite trUmgleformed will he isosceles {?),

If the side opposite is greater than the other given side, it

tu^iU cut MD hut once (?) and there ivUl he hut one triangle.

CASE (r).

When the given angle is acute, and the given side opposite
it is intermediate in length hetween the other given side and
the perpendicular to the unknown siile.

Let A and B be the given sides

and the angle opposite B, B

being intermediate in length be-

tween A and the perpendicular

FH on the unknown side.

Proceed as in the two preced-

ing cases, but instead of tangency

we get two intersections of DM
by the arc struck from F with

radius B. as E and E', since two

equal oblique lines can be drawn

from F to DM (114), and B being p;g ,55^

less than FD = A, FE will lie

between FD and FH, and FE' beyond FH (113).

Thus we have two triangles, DEF and DE'F, each of which fulfills the

required conditions.

319. Scholium.—In order that the triangle should be possible, the

side opposite the given angle must be equal to or greater than the per-

pendicular upon the unknown side.

OF QUADRILATERALS.
The subject of the conditions which determine a quadrilateral or

other polygon is quite an important and practical subject, especially in

surveying, and we treat the problem of the equality of polygons of more

than three sides in this way. (See 312.)
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PROPOSITION XII.

320. Theorem.—J_ quadrilateral is determined when
there are given in their order :

I. The four sides and either diagonal,

II. The four sides and one angle.

III. 1st. Three sides and two included angles.

2d. When the two angles are not both included between

the known sides, the case may be ambiguous.

IV. Three angles and two sides, the unknown sides

being non-parallel.

Demonstration.

CASE I.

Let a, hf c, d (Fig. 157), be the sides in order, and e the diagonal

joining the vertex of the angle between a and d with the vertex between

b and c.

With LO = a, OM = J, MN = e, NL = d^ and LM = e, construct, by

(316), the triangles LOM and MNL, on LM as a common side.

Then is LOMN the quadrilateral sought.

Fig. 157. Fig. 158.

CASE II.

Let <i, b, c, and d (Fig. 158), be the given sides in order, and the

angle included between a and b.

With the same notation as before, construct the triangle LOM by

(314), and then LMN by (316), and the quadrilateral is constructed, i.e.,

all the parts are found.
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CASE III.

Let a, b, and c (Fig. 159)

be the given sides in order.

1st, Let both the given

angles and M be in-

eluded between the given

sides, being included by
by a and b, and !A by b

and c.

Construct an angle LOM
= 0, and take OL = o and

OM = 5.

Now lay off the angle OMN
= M, and taking MN = c,

draw LN.

Then is LOMN the quadri-

lateral Bought.

Fig. I5».

2d, Ambiguous Cases. — If three sides and two angles of
a quadrilateral are given, and both the given angles are not
included between given sides, the case may be Ambiguous.

There may be three cases : 1st. "When the two given angles are con-

secutive, and one only is included between given sides; 2d. When the

given angles are consecutive, and the includ-

ed side is unknown ; 3d. When the given

angles are opposite.

Fig. 160 shows how an ambiguous solu-

tion may arise under Case 1. The given

parts are a, &, c, and angles L and 0.

Fig. 161 shows how such solutions

may arise under cases 2 and 3.

Fig. 161.
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CASE IV.

IsU Let the three given angles be 0, M, atid N, and,ftr8tf
let u and h he two consecutive given sides.

Since the sum of the angles of a quadrilateral is 4 right angles, and

0, M, and N are given, the fourth, L, can be found (241).

[Let the student make the construction.]

2d, Let 0, M, avid N he the given angles, and a and c the

given non-consecutive sides, d and h helug non-parallel,

i. e,, the angles L and iiot helng supplemental.

Find the fourth angle by subtract-

ing the sum of the three given angles

from 4 right angles. Whence all the

angles are known.

Lay off side a and at its extremities

make LOX = 0, and OLY = L.

Then draw any line, Arw, making

the angle m = M.

Take ink = c, and through A draw

AS parallel to OX. Let this intersect

LY in N. Through N draw NM parallel ^^^^^
^. ^^^

to Am.

Then is NM = the given side c (i), and OMN = the given angle M (?)^

and LNM = the given angle N (?).

Hence LOMN is the required quadrilateral.

321. Scholium.—With a given set of parts, as above, the possibility

of constructing a quadrilateral can be determined on the same principle

as the possibility of a triangle.

1. In Case I, if the diagonal is less than the sum and greater than the

difference of the sides of either of the two triangles into which it divides

the quadrilateral, the quadrilateral is possible, but not otherwise.

2. In Case II, the two given sides and their included angle always

make a triangle possible; whence the possibility of the quadrilateral will

be determined by the relation of the other two sides to the third side of

this triangle, as (Fig. 158) when c -^ d > LM, and c-d < LM, the

quadrilateral is possible, but not otherwise.

3. In Case III, the Ist problem is always possible. The student will

be able to determine when the several cases in the 2d are possible by in-

specting Figs. 160 and 161.

4. In Case I\', the first problem is always possible when the sum of

^?°f7^ ^f]
K -^0U--'"'^CA^

Kv ^^
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the given angles is less than 4 right angles. In the second problem, if

the unknown sides are parallel, the problem is indeterminate, i. e., there

may be any number of solutions, if any.

Note.—In problems of this class, it is usually understood that the

given parts are such as to allow the construction ; i. c., that they are parts

of a possible polygon.

322. Corollary 1.

—

A parallelogrartv is determined

when two sides and their included angle are given.

Since the opposite sides of a parallelogram are equal (250), all the

sides are known when two are given, and the case falls under Case II of

the proposition,

323. Corollary 2.

—

Ihvo rectangles having equal bases

and equal altitudes are equal.

Exercise 1. Construct a quadrilateral three of whose con-

secutive sides are 20, 12, and 15, and the angle included between

20 and the unknown side f of a right angle, and that between

15 and the unknown side J a right angle.

Ex. 2. Construct a quadrilateral three of whose sides shall be

5, 4.2, and 4, and in which the angle between the unknown side

and the side 5 shall be
J^

of a right angle, and that between the

unknown side and side 4, 1 J right angles. How many solutions

are there? How many solutions if the second side is made 1.2,

and the third 2 ? How many if the second side is made 1, and

the third 1.5 ?

OF PO L YGO NS

PROPOSITION XIII.

324. Theorem.—A polygon is determined when two

consecutive sides, the diagonals from the vertex of their

included angle, and the consecutive angles included he-

tween these lines are given.

[Let the student show how the construction is made, and thus demon-

strate the proposition.]
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PROPOSITION XIV.

325. Theorem.—./^ polygon is determined by vieans

of its sides and angles, when there are given in order :

I. All the parts except two angles and their included side.

TI. All the parts except three angles.

III. All the parts except two non-parallel sides.

C o If s T R u c T I N s

.

CASE I.

Beginning at one extremity of the unknown side, and constructing

the given sides and angles in order till all are constructed, and joining

the extremities of the broken line thus drawn, the polygon will be con-

structed.

CASE II.

Ist, When the three angles lire consecutive.

Suppose the polygon to be ABCDEFG, and the unknown angles A, G,

and F. Commencing with side AB, lay oflf the given sides and angles in

order till the unknown angle F is reached. Then from F as a centre,

with a radius equal to the known side FG, strike an arc intersecting an

arc struck from A as a centre with the side AG as a radius. This inter-

section determines the remaining vertex of the polygon.

Query —When does this case become impossible ?

2d, When two of the miknown angles are consecutive and
the third is separated from both the others.

Let A, B, and F be the unknown angles.

The two partial polygons AiHGF and

BCDEF can be constructed, and thus the

sides AF and BF will become known, as

also the angles AFG, lAF, BFE, and

FBC.

Then constructing the triangle ABF,

whose three sides are now known, the

angles AFB, ABF, and FAB become known.

Hence all the parts of the polygon are

found, for ^'9- '"•

the angle GFE = AFG + AFB -f- BFE, etc.
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3d, When no two of the three unknown angles are con-

secutive.

Let A, C, and F be the unknown

Constructing the broken lines ABC,

CDEF, and FGHIA separately, and

apart from the position where the

polygon is to be constructed, the diago-

nals which form the sides of the triangle

ACF can be determined by joining the

extremities A and C, C and F, and F

and A.

This triangle can then be con-

structed in the position desired, and Fig. 164.

the broken lines constructed on its sides, as in the figure

CASE III.

Under this case we have two problems:

1st, When the tivo unknotvn sides are consecutive,

2d, When the two unknown sides are separated.

[The student will be able to effect the construction. The first is

similar to that of Case II, 1st problem. The second is effected by

obtaining a quadrilateral similarly to the

construction in Case II, 3d problem.

326- In case the unknown parts are

two parallel sides, as a and 6, it is evident

that these may be varied in length at plea-

sure without changing the value of the other

parts.
'

327- It will be a profitable exercise for

the student to reduce the determination of polygons to that of quadri-

laterals, and both to that of triangles.
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PROPOSITIONS FOR ORIGINAL SOLU-
TION AND DEMONSTRATION.

328. 1. Theorem,— IT^e sum of the exterior angles of

a polygon is four right angles.

Prove by drawing lines from a point and parallel to the sides of the

polygon.

2. Theorem.—The sum of the angles of a polygon is

twice as many right angles as the polygon has sides,

less four right angles.

Having proved the jweceding, base the proof of this upon that.

3. Theorem.—// the sum of two opposite sides of a
quadrilateral is equal to the sum of the other two op-

posite sides, show that a circle can be inscribed in the

quadrilateral.

4. Theorem.—// from, a
point without a circle two

tangents aredrawn, and also

a chord joining the points of

tangency, the angle included

between a radius drawn to

either point of tangency and
the chord is half the angle

included between the tan-

gents.
^''^' "'•

5. Theorem.—In an isosceles triangle the line drawn

from the vertex to the middle of the base bisects the

triangle and also the angle at the vertex.

6. Problem.— With a given radius draw a circle tan-

gent to the sides of a given angle.

7. Problem.—Through a given point within a given

angle draw a line which shall make equal angles with

the sides.
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8. Problem.—To draw a circumference through two

given points and having its centre in a given line; or,

to find in a given line a point equally distant from two

points out of that line.

•9. Theorem.—// from the ^

extremities of a diameter per-

pendiculars are let fall ot^ any
secant, the parts intercepted

between the feet of these per-

pendiculars and the circum-

ference are equal. Fig. 167.

10. Problem.—To trisect a right angle.

Suggestion.—What is the value of an angle of an equilateral tri-

angle ?

OF EQUIVALENCY AND AREA.

329. Equivalent Figures are such as are equal in mag-

nitude.

330. The Area of a surface is the number of times it con-

tains some other surface taken as a unit of measure ; or it is the

ratio of one surface to another assumed as a standard of measure.

PROPOSITION I.

331. Theorem.—Parallelograms having equal bases

and equal altitudes are equivalent.
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Demonstration.

Let ABCD and EFGH be two parallelograms having equal bases, BC
and FG, and equal altitudes.

We are to prove

that the parallelo-

grams are equivalent.

Apply EFGH to

ABCD, placing FG in

its equal BC; and,

since the altitudes are ^'9'

equal, the upper base EH will fall in AD or AD produced, as E'H'.

Now, the two triangles AE'B and DH'C are equal, since they have two

sides and the included angle of the one equal to two sides and the in-

cluded angle of the other; viz., AB = DC, being opposite sides of a

parallelogram; and for a like reason BE' = CH'. Also, angle ABE' =
angle DCH', by reason of the parallelism of their sides (294)-

These triangles being equal,

the quadrilateral ABCH' — the triangle AE'B = ABCH' — DH'C.

But ABCH' - AE'B = E'BCH' = EFGH;

and ABCH' - DH'C = ABCD.

Hence, ABCD = EFGH. Q. e. d.

332. Corollary.—Any parallelogram is equivalent to a
rectangle having the same base and altitude.

PROPOSITION II.

333. Theorem.

—

A triangle is equivalent to one-half

of any parallelogram having an equal base and an

equal altitude with the triangle.

Demonstration.

Let ABC (Fig. 169) be a triangle.

We are to prove that ABC is equivalent to one-half a parallelogram

having an equal base and an equal altitude with the triangle.
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Consider AB as the base of the triangle,

and complete the parallelogram ABCD by

drawing AD parallel to EC, and DC to AB.

Now ABCD has the same base, AB, as

the triangle, and the same altitude, since

the altitude of each is the perpendicular

distance between the parallels DC and AB.

But ABC is half of ABCD (249), and as ^'9- '^^•

any other parallelogram having an equal base and altitude with ABCD is

equivalent to ABCD (331), ABC is equivalent to one-half of any parallel-

ogram having an equal base and altitude with ABC. Q. e. d.

334. Corollary 1.

—

J. tHangle is equivalent to one-half

of a rectangle having an equal base and an equal al-

titude with the triangle.

335. Corollary 2.~ Triangles of equal bases and equal

altitudes are equivalent, for they are halves of equivalent

parallelograms.

PROPOSITION III .

336. Theorem.—The square described on n times a
line is n^ times the square described on the line, n being

any integer.

Demonstration.

Let u be any line and AB a line n times as long, n being any integer.

We are to prove that the square de-

scribed on AB is V? times the square

on Aa.

Construct on AB the square ABCD.
Since m is a measure (76) of AB, by

hypothesis, divide AB into n equal parts

by applying m, and at the points of di-

vision a, ft, c, etc., draw parallels to AD.

In like manner divide AD, and draw

through the points of division a', 5', c',

etc., parallels to AB.

Then are the surfaces 1, 2, 3, 4, 5, 6, Pi^. 170
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etc., squares, since their opposite sides

are parallel (139) and equal (138), and

their angles are right angles (125)^

Now of these squares there are n in

each of the rectangles a'B, 5'E, etc. (?),

and as there are n divisions in AD, there

are n rectangles.

Hence there are n times n, or n^

squares in ABCD. q. e. d.

Fig. 170.

337. Corollary.—The square described on twice a line

is four times the square described on the line ; that on 3
times a line is 9 times the square on the line, etc.

PROPOSITION IV.

338. Theorem.—A trapezoid is equivalent to two tri-

angles having for their bases the upper and' lower bases of
the trapezoid, and for their common altitude the altitude

of the trapezoid.

By constructing any trapezoid, and drawing either diagonal, the stu-

dent can show the truth of this theorem.

PROPOSITION V.

339. Problem.-
lent triangle.

To reduce any polygon to an equiva-

SOLUTION.

Let ABCDEF (Fig. 171) be a polygon.

We are to reduce it to an equivalent triangle.

Draw any diagonal, as EC, between two alternate vertices, and through

the intermediate vertex, D, draw DH parallel to EC and meeting BC pro-

duced in H. Then draw EH.
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In like manner, draw

FH, and through E draw El

parallel thereto, meeting

BH produced in I. Then

draw Fl.

Again, draw the diag-

onal FB, and through A
draw AG parallel thereto,

meeting BC produced in G.

Then draw FG.

Now FGI is equivalent to ABCDEF

N K ^M\

Fig. 171.

Demonstration of Solution.

Consider the polygon ABCDEF as diminished by ECD and then in-

creased by ECH. Since these triangles have the same base EC, and the

same altitude (as their vertices lie in DH parallel to EC, and parallels are

everywhere equidistant), the triangles are equivalent (335)- Hence,

ABHEF is equivalent to ABCDEF (?).

In like manner ABIF is equivalent to ABHEF, and FGI to ABIF.

Hence FGI is equivalent to ABCDEF. q. e. d.

A R E A.

340. An Infinitesimal is a quantity conceived under such

a law as to be less than any assignable quantity.

Illustration.— Consider a line of any finite length, as one foot.

Conceive this line bisected, and one-half taken. Again conceive this half

bisected, and one-half of it taken. By this process it is evident that the

line may be reduced to a line less than any assignable line. Moreover, if

the process be considered as repeated infinitely, the result is an infini-

tesimal.

Tins is the familiar conception of the last term of a decreasing infinite

progression, the last term of which is called zero.

341. Principle I.

—

In comparison with finite quanti-

ties, an infinitesimal is zero.
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Thus, suppose — = a,

w, n, and a being finite quantities. Let i represent an infinitesimal ; then

m ± i m m ± i

, or ., or :,
n ' n ±1 n±i

is to be considered as still equal to a, for to consider it to difi*er from a

by any amount we might name, would be to assign some value to *'.

342. Principle II.

—

Any two geometrical magnitudes

of the sam^e kind are to he conceived as commensurable hy

an infinitesimal unit.

By the process for obtaimng the common measure of two lines (84),

the remainder may be made (in conception) less than any assignable quan-

tity, and hence in comparison with the lines should be considered zero.

The same conception may be applied to any geometrical magnitudes.

PROPOSITION VI.

343. Theorem.- Rectangles are to each other* as the

products of their respective bases and altitudes.

First Demonstration.

Lemma.—Two rectangles of equal altitudes are to each
other as their bases.

Let ABCD and abed be two rectangles having their altitudes AD and

ad equal.

Suppose rectangle ABCD gen-

erated by the movement of AD from

AD to BC,it remaining all the time

parallel to its first position, and

suppose ahcd generated in like man-

ner by the movement of ad.

Let these equal generatrices AD ^'3' '^^•

and ad move with uniform and equal velocities ; then it is evident that

the surfaces generated will be as the distances AB and ab.

That is,
ABCp^AB.
abed ab

* This is a common elliptical form, meaning that surfaces, or areas, are

to each other.
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Now let M and N be any two rectan-

gles, the base of M being AB and the

altitude BC, and the base of N BE and

its altitude BG.

We are to prove that

M AB X BC
N "" BExBG*

Place the rectaDgles so that the

angles ABC and GBE shall be opposite,

i. e., so that AG and CE shall be straight Fig. I73.

lines (109)

Complete the rectangle CBGH, and call it 0.

Since M and have equal altitudes,

- = — . (1)BG ^
'

In like manner, since N and have equal altitudes,

N_ BE
0~ BC (3)

Dividing the members of (1) by the corresponding members of (2),

we have

M AB X BC
n = beTbg-

^•^^•

Secon"d Demonstration.

Let ABCD and EFGH be any two rectangles.

We are to prove that

Fig. 174.

ABCD AB ) AD
EFGH EF X EH

The bases and altitudes of the two rectangles are at least to be con-

sidered as commensurable by an infinitesimal unit (342)-
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Fig. 174.

Let i be the common measure of AB, AD, EF, and EH, and suppose it

contained in AB m times, in AD ti times, in EF p times, and in EH q times.

AB AD
Whence, m = ^ , 7i = -;-

EF ^ EH

Now conceive the rectangles divided into squares by drawing through

the points of division of the bases and altitudes parallels to the altitudes

and bases, as in (336), whence the rectangles will be divided into equal

squares.

Of these equal squares, ABCD contains m x n, and EFGH p^-q.

Therefore
ABCD rnxn

AB AD
—r- X —r-

l I ABxAD
EFGH ~ pxg - EF EH EFxEH—:- X —r-

% %

Q. E. D.

PROPOSITION VII.

344. Theorem.—The area of a rectangle is equal to

the product of its base and
altitude.

Demonstration.

Let ABCD be a rectangle.

We are to prove that its area

is AB X AD.

Let the square u be the pro-

posed unit of measure, whose side

isl. Fig. 175. \^^V^l
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T, /«^A^ ABCD AB X AD .„ ._
By (343), —^- = , = AB X AD.

Hence, by (330), area ABCD = AB x AB. Q. E. D.

346. Corollary 1.

—

The area of a square is equal to the

second power of one of its sides, as in this case the base and

altitude are equal.

346. Corollary 2.

—

The area of any parallelogram is

equal to the product of its hose and altitude ; for any paral-

lelogram is equivalent to a rectangle of the same base and

altitude (332).

347. Corollary 3.

—

The area of a triangle is equal to

one-half the product of its base and altitude ; for a tnangle

is one-half of a parallelogram of the same base and altitude (333).

348. Corollary 4.

—

Parallelograms or triangles of

equal bases are to each other as their altitudes; of

equal altitudes, as their bases ; and in general they are

to each other as the product of their basses by their al^

titudes,

349. Scholium.—The arithmetical signification of the theorem, The

area of a rectangle is equal to the product of its hose and altitude^ is this

:

Let the base be 6 and the altitude a ; then we have, by the prop-

osition,

area = ah.

Now, in order that ah may represent a surface, one of the factors

must be conceived as a surface and the other as a number. Thus, we

may conceive h to represent h superficial units, i. e., the rectangle having

the base of the rectangle for its base and being 1 linear unit in.altitude.

The entire rectangle is, then, a times the rectangle which contains b

superficial units, or ah superficial units.

In the expression

area ABCD = AB x AD,

AB and AD may be given a similar interpretation.
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PROPOSITION VIII.

360. Theorem.—The area of a trapezoid is equal to

the product of its altitude into one-half the sum of its

parallel sides, or, what is the same thing, the product

of its altitude into a line joining the middle points of

its inclined sides.

Demonstration^.

Let ABCD be a trapezoid, whose parallel sides are AB and DC, and

whose altitude is IK.

We are to prove, Ist, that

An^n. .., AB + CD
area ABCD = IK x —^—

'

and, 2d, that area ABCD - \K x db, ^ .^r
.

' ' r ig. I/O.

ab being a line joining the middle points of AD and BC.

Draw either diagonal, as AC. The trapezoid is thus divided into two

triangles, whose areas are together equal to one-half the product of their

common altitude (the altitude of the trapezoid) into their bases DC and

AB, or this altitude into ^ (AB + DC). Q. B. D.

At a and h draw the perpendiculars om and pn, meeting DC, pro-

duced, if necessary.

Now the triangles aoD and A«w are equal, since

Aa = aD,

angle o = angle m,

both being right, and angle oaD = Aa>n, being opposite. Whence

f^m = oD.

In like manner, we may show that

Cp = nB.

Hence, ab = ^(op + mn) (?) = ^ (AB + DC) ; and area ABCD, which

equals | (AB + DC) x IK, = a5 x IK. Q. E. D.
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PROPOSITION IX.

351. Theorem.—The area of a regular polygon is

equal to one-half the product of its apothem into its

perimeter.
Demonstration.

Let ABCDEFG be a regular polygon, whose perimeter is AB + BC

+

CD + DE + EF + FG + GA, and whose apothem is Oa,

We are to prove that

area ABCDEFG = iOa(AB + BC + CD + DE + EF + FG + GA).

Draw the inscribed circle, the radii Oa, 05,

etc., to the points of tangency, and the radii of

the circumscribed circle OA, OB, etc. (273,

274).

The polygon is thus divided into as many
equal triangles as it has sides.

Now, the apothem (or radius of the in-

scribed circle) is the common altitude of these

triangles, and their bases make up the perimeter

of the polygon. *''9- "77.

Hence, the area = ^Oa (AB + BC + CD + DE + EF + FG -I- GA). q. e. d.

852. CoROLLART.

—

The area of any polygon in which
a circle can he inscribed is equal to one-half the

product of the radius of the inscribed circle into the

perimeter.

The student should draw a figure and observe the fact. It is espe-

cially worthy of note in the case of a triangle. See Fig. 187.

PROPOSITION X.

353. Lemma.—// any polygon is circum^scribed

about a circle and a second polygon is formed by draw-

ing tangents to the arcs intercepted between the con-

secutive points of tangency, thus forming a polygon of

double the number of sidles, the perimeter of the second

polygon is less than that of the first.
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Demonstration.

Let ABODE be any circumscribed polygon, whose consecutive sides

are tangent at K, F, G, etc., and let a second polygon be formed by

drawing tangents at f, g, etc.

We are to prove that the

perimeter ab -^-hc -\- cd^ etc., is less

than the perimeter EA + AB + etc.

Observing the portions of the

perimeters from K to F, for the

first polygon we have

KA + AF = Ka + (aA + Aft)-f5F,

and for the second

But db < ak-\-fib (?).

Hence,

Ka+ ab+W < KA + AF.

Now, as a similar reduction

will take place at each vertex, the entire perimeter of the second polygon

will be less than that of the first, q. e. d.

364. The Limit of a varying quantity is a fixed quantity

which it approaches by such a law as to be capable of b.eing

made to differ from it by less than any assignable quantity.

Such a varying quantity is often spoken of as reaching its

limit after an infinite number of steps of approach.

365. Corollary.—As the number of the sides of a cir-

cumscribed regular polygon is increased the perimeter

is diminished, andj approaches the circumference of the

circle as its limit, since tlie circle is the limit of such a poly-

gon.

Fig. 178.

PROPOSITION XI.

366. Tlieorem.—The area of a circle is equal to one-

half the product of its radius into its circumference.

Demonstration.

Let Oa (Fig. 179) be the radius ofthe circle.
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"We are to prove that the area of the circle

is ^Oa X the circumference.

Circumscribe any regular polygon.

Now the area of this j^olygon is one-half

the product of its apothem and perimeter.

Conceive the number of sides of the poly-

gon indefinitely increased, the polygon still

continuing to be circumscribed and regular.

The apothem continues to be the radius of

the circle, and the perimeter approaches the

circumference.

When, therefore, the number of sides of the polygon becomes infinite,

it is to be considered as coinciding with the circle, and its perimeter with

the circumference (366).

Hence the area of the circle is equal to one-half the product of its

radius into its circumference, q. e. d.

Fig. 179.

367. A Sector is a part of a circle included between two

radii and their intercepted arc.

368. Corollary 1.

—

The area of a sector is equal to

one-half the product of the radius into the arc of the

sector.

369. Corollary 2.

—

The area of a sector is to the area

of the circle as the arc of the sector is to the circumfer-

ence, or as the angle of the sector is to four right angles.

EXERCISES.
360. 1. What is the area in acres of a triangle whose base is

75 rods and altitude 110 rods ?

2. What is the area of a right-angled triangle whose sides

about the right angle are 126 feet and 72 feet ?

3. If two lines are drawn from the vertex of a triangle to the

base, dividing the base into parts which are to each other as 2, 3,

and 5, how is the triangle divided ? How does a line drawn
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from an angle to the middle of the opposite side divide a tri-

Vle

4. What is the area of the largest triangle which can be in-

scribed in a circle whose radius is 12, the diameter being one

side?

5. What is the area of a cross section of a ditch which is

6 feet wide at the bottom, 9 feet at the top, and 3 feet deep ?

6. If one of the angles at the base of an isosceles triangle is

double the angle at the vertex, how many degrees in each ?

OF SI M I LARITY.

361. The primary notion of similarity is likeness of form.

Two figures are said to be similar which have the same shape,

although they may differ in magnitude. A more scientific defi-

nition is as follows

:

362. Similar Figures are such as have their angles re-

spectively equal, and their homologous sides proportional.

363. Homologous Sides of similar figures are those

which are included between equal angles in the respective figures.

364. In similar triangles, the homologous sides are

those opposite the equal angles.

The student should be careful, at the outset, to mark the fact that

similarity involves two things^ equality of angles and proportionality

OP SIDES. It will appear that, in the case of triangles, if one of these

facts exists, the other exists also ; but this is not so in other polygons.

365. Two figures are said to be Mutually equiangular

when each angle in one has an equal angle in the other, and

Mutually equilateral when each side in the one has an equal

side in the other.
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PROPOSITION I.

366. Theorem.—Triangles which are mutually equi-

angular are similar.

Demonstration.

Let ABC and DEF be two mutually equiangular triangles, in which
A = D, B = E, C = F.

We are to prove that the sides

opposite these equal angles are pro-

portional, and thus that the triangles

possess both the requisites of similar-

ity, viz., equality of angles and pro-

portionality of sides.

Lay off on CA CD' = FD, and on

CB CE' = FE, and draw D'E'.

Triangle CD'E' equals triangle

FDE (?).

Draw AE' and BD'.
Pig. 180.

Since angle CE'D' = CBA, D'E' is
"

parallel to AB (?), and as the triangles D'E'B and D'E'A have a common
base D'E' and the same altitudes, their vertices being in a line parallel

to their base, they are equivalent (335).

Now the triangles CD'E' and D'E'A, having a common altitude, are to

each other as their buses (348).

or

or

Hence,
CD'E' CD'

D'E'A - DA*

For like reason,
CD'E' CE'

D'E'B - E B*

Whence, as DEB = D E'A,

CD' CE'

DA ~ E'B

By composition,
CD' CE'

CD' ' [>'* CE' + E'B

CD CE'

CA 'CB '

. - FE

CA CB
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In a similar manner, by laying off ED and EF in BA and BC respec-

tively, wenjan show that

FE ED
CB ~ BA

*

„ FD FE ED
^^^^^'

CA = CB^BA-^-^-^-

367. Corollary 1.—// two triangles have two angles of

one respectively equal to two angles of the other, the tri-

angles are similar (?).

368. Corollary 2.

—

A transversal parallel to any side

of a triangle divides the other sides proportionally, and
the sides are in the ratio of either two corresponding

segments.

For in the demonstration we have D'E' parallel to AB, and

or

And also

or, by alternation,

CD' CE'

DA ~ E'B'

CD' DA
CE' ~ E'B

'

CD' CE'

CA ~ CB '

CA CD'

CB ~ CE'
~ DA

E'B

PROPOSITION II.

369. Theorem.—// any iwo transversals cut a series

of parallels, their intercepted segments are proportional.

Demonstration.

l8t. Let OA and O'B' (Fig. 181) be any two parallel transversals

cutting the series of parallels ah, cd, r/, yh, etc.

We are to prove that =-= = v? = -^ , etc.
oa af . fh
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Now

Hence.

hd ' df '

= 1. etc. (?)

ac_ce_eg^
hd~ df~fV

Q. E. D.

2ih Let OA and OB
beanynon-paralleltrans-

versals cutting ah, cd,

«/> O^i'9 etc.

"We are to prove
Fig. 181.

ae _ce_ _eg

and

Since OA and OB are non-parallel, they meet in some point, as 0.

Then, by (368), we have q^ ^ ^
Oc _ C6

Od~df'

Whence, by equality of ratios, we have

ae _ M
bd~df'

ee eg
Similarly, we may show that ^= tt^ 6^c.

Hence, also, by alternation, and by equality of ratios,

- = ^.. ^^ = '^^ a«d ^ = ^, etc. Q.E.D.
ee df hd fh' eg fh'

PROPOSITION III.

370. Theorem.—Conversely to Prop. I, If two triangles

have their corresponding sides proportional, they are sim-

ilar.

Demonstration.

AC OB BA
Let ABC and DEF have

OF FE ~ ED
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We are to prove that ABC is

similar to DEF.

As one of the characteristics of

similarity, viz., proportionality of

sides, exists by hypothesis, we have

only to prove the other, i. e., that

A = D, C = F, and B = E.

Make CD' =
parallel to AB.

FD, and draw D'E'

Then, by (368),

CA CB
CD' ~ CE'

'

Fig. 182.

and since by construction

and by hypothesis

CD' = FD,

CA
FD

CB
FE'

CE' = FE.

Again the triangles D'E'C and ABC are mutually equiangular, since C
is common, angle CD'E'= CAB (?), and angle CE'D' = CBA (?).

Whence
CA^

CD'

AB
D'E'

But by hypothesis and construction

CA
CD'

CA
DF

AB
DE

Hence D'E' = DE, and the triangles CD'E' and DEF are equal (?).

Therefore ABC and D'E'C are similar; and as D'E'C = DEF, ABC and

DEF are similar, q. e. d.

371. Scholium.—As we now know that if two triangles are mutually

equiangular, they are similar ; or, if they have their corresponding sides

proportional, they are similar, it will be sufficient hereafter, in any given

case, to prove either one of these facts, in order to establish the similarity

of two triangles. For, either fact being proved, the other follows as a

consequence.
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PROPOSITION IV.

372. Theorem.—Two triangles which have the sides

of the one respectively parallel or perpendicular to the

sides of the other, are similar.

Demonstration.

Let ABC and A'B'C be two triangles whose sides are respectively

parallel or perpendicular to each other.

We are to prove that tlie tri-

angles are similar.

Any angle in one triangle is

either equal or supplemental to the

angle in the other which is included

between the sides which are parallel

or perpendicular to its own sides.

Thus, A either equals A', or A + A'

= 2 right angles (294, 295, 296).

Now, if the corresponding angles

are all supplemental, that is, if

A + A' = 2 right angles,

B + B' = 2 right angles,

and C + C' = 2 right angles,

the sum of the angles of the two

triangles is 6 right angles, which is

impossible.

Again, if one angle in one triangle equals the corresponding angle in

the other, as A = A', and the other angles are supplemental, the sum is

4 right angles plus twice the equal angle, wiiich is impossible. Hence,

two of the angles of one triangle must be equal respectively to two

angles of the other. Therefore the triangles are similar (367)- Q. e. d.

PROPOSITION V.

373. Theorem.—Two triangles having an angle in

one equal to an angle in the other, and the sides about the

equal angles proportional, are similar,

8
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AC
DF

CB
FE

Demonstration.

Let ABC and OEF have the angles C and F equal, and

We are to prove that ABC and DEF are similar.

Make CD' equal to FD, and draw

D'E' parallel to AB. Then is

angle CD'E' = angle CAB,

whence the triangles are similar (367),

and by (368),

AC CB^
DC (= DF) ~ CE'

'

But, by hypothesis,

AC CB
DF ~ FE'

Whence CE' = FE.

Hence the triangle CD'E' is equal to the triangle FDE. Now, CD'E'

and ABC are mutually equiangular. Hence DFE and ABC are mutually

equiangular and consequently similar, q. e. d.

Fig. 184.

PROPOSITION VI.

374. Theorem.—In any right-angled triangle, if a
line is drawn from the vertex of the right angle perpen-

dicular to the hypotenuse

:

1st. The perpendicular divides the triangle into two

triangles, which are similar to the given triangle, and
consequently similar to each other,

2d. Either side about the right angle is a mean propor-

tional between the jvhole hypotenuse and the adjacent

segment.

3d. The perpendicular is a jnean proportional between

the segments of the hypotenuse.

Demonstration.

Let ACB be a triangle right-angled at C, and CD a perpendicular

upon the hypotenuse AB ; then
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Ist. The triangles ACD and ACB have the

angle A common, and a riglit angle in each

;

hence they are similar (367). For a like rea-

son, CDB and ACB are similar. Finally, as ACD
and CDB are both similar to ACB, they are

similar to each other, q. e. d. ^'9- '^^•

2d. By reason of the similarity of ACD and ACB, we have

AD AC
AC ~ AB'

DB CB
and from CDB and ACB, we have

CB AB
Q. E. D.

3d. By reason of the similarity of ACD and CDB, we have

AD
CD

CD
DB"

^' E. D.

Queries.—To which triangle does the first CD belong ? To which

the second? Why is CD made the consequent of AD? Why, in the

second ratio, are CD and DB to be compared?

375. Corollary.—// a perpendicular is Let fall from
any point in a circumference upon a diameter, this per-

pendicular is a mean proportional between the segments

of the diameter.

Let CD be such perpendicular, and draw

AC and CB. Then, since ACB is a right angle

(192), we have, by Case 3d, the proportion

^^§i. or CD-AOxDB.
^" "° Fig. 186.

PROPOSITION VII.

376. Theorem.—The square described on the hypote-

nuse of a right-angled triangle is equivalent to the sum;

of the squares described on the other two sides.

First Demonstration.

Let ACB (Fig. 187) be any right-angled triangle.
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We are to prove that AB^ =: AC^ + CbI
For, let fall the perpendicular CD, and by

(374, 3d) we have

AD
AC

AC
AB
v^ , and

DB
CB

CB
AB

and

ADxAB = AC';

DB X AB = CB .

or

Fig. 187.

Adding, we have AB (AD + DB) = AC^ 4- CB^

AB X AB = AB' = AC^+ CB'. q. e. d.

Second Demonstration.

Let ABC be any right-angled triangle, right-angled at B.

Describe the squares AE, AG, and CL on

the hypotenuse and the other sides respect-

ively. From the right angle let fall upon

DE the perpendicular BK intersecting AC in

I, and draw the diagonals BE, DB, HC, and

AF.

Now the triangles BAD and HAC are

equal, having two sides and the included

angle of one equal to two sides and the in-

cluded angle of the other; viz., BA = HA,

being sides of the same square, and for a

like reason AD = AC ; and the angle HAC
= BAD, since each is made up of a right

angle and the angle BAC.

Since ABG and ABC are right angles, BG is the prolongation of BC,

and the triangle HAC has the same base, HA, and the same altitude, AB,

as the square AG. Hence the triangle HAC is half the square AG.

Moreover, the triangle BAD has the same base, AD, as the rectangle

AK, and the same altitude as Al. Hence,

triangle BAD = ^ADKI.

Therefore, as the rectangle ADKI and the square AG are twice the

equal triangles BAD and HAC respectively, they are equivalent.

In like manner, the square CL may be shown to be equivalent to the

rectangle CK.

Whence we have ADKI = ABGH,
and IKEC ^ BCFL;

and adding, ADEC = ABGH f BCFL. Q. e. d.

Fig. 188.
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377. Corollary 1.

—

The hypotenuse of a right-angled

triangle equals the square root of the sum of the squares

of the other two sides.

Also, either side about the right angle equals the square

root of the square of the hypotenuse minus tJie square of
the other side.

378. Corollary 2.

—

The diagonal of a square is a/2

times the side.

For, let S be the side. Drawing the diagonal, we have a right-angled

triangle of which the diagonal is the hypotenuse, and the sides about the

right angle are each S. Hence, by the proposition,

(diag.)« = S' + 8' = 25«,

or diag. = 8^'i.

379. Scholium.—Proposition VI with its corollary, and Prop. VII,

which is a direct result of Prop. VI, are perhaps the most Iruitful in

direct practical results of any in Geometry. Prop. VII is called the

Pythagorean Proposition, its original demonstration being attributed to

Pythagoras.

PROPOSITION VIII.

380. Theorem.

—

Regular polygons of the sam,e num-
ber of sides are similar figures.

Demonstration.

Let P and P' be two regular polygons of the same number of sides,

a, b, c, d, etc., being the sides of the former, and a', h' , c' , d' , etc.,

the sides of the latter.

Now, by the definition of regular polygons, the sides a, ft, c, d, etc.,

arc equal each to each, and also a\ b\ c', d\ etc. Hence, we have

a^ _ b _ c _ d

a'" V ~ d ~ W '

Again, the angles are equal, since n being the number of angles of

each polygon, each angle is equal to
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n X 2 right angles — 4 right angles (norj\

n

Hence the polygons are mutually equiangular, and have their corres-

ponding sides proportional ; that is, they are similar, q. e. d.

PROPOSITION IX.

381. Theorem.—The corresponding diagonals of reg-

ular polygons of the same number of sides are in the same
ratio as the sides of the polygons.

[Let the student give the demonstration.]

PROPOSITION X.

382. Theorem.—TJie radii of the circumscribed, and
also of the inscribed circles, of regular polygons of the same
numjber of sides, are in the saine ratio as the sides of the

polygons,

Demonstkatioij.

Fig 189.

Let ABCDEF and abcdefbe two regular polygons of the same num-

ber of sides, and It and r be the radii of their circumscribed circles,

and II' and r' of their inscribed.

We are to prove that — ( =— , etc.
J

z= — = — -
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Let and 0' be the centres of the polygons, and draw OA, OF, O'a,

and 0/, and also the apothenis 01 and O'i.

OA = R, and O'a = r (?);

also 01 = /?, and O'i = r' (?).

Now the triangles AFO and nfO' are equiangular (?), and hence

similar.

rru r AF/ FE ^ \ OA i?
Therefore, —-( = —-, etc. ) = -r- = - . q. e. d.

a/ V /« J O'a r ^

Again, the triangles AlO and aiO' are mutually equiangular (?), and

hence similar.

Therefore, _ . — ,rvr»>

Ai_qi
ai ~ or

whence, doubling the terms of the first ratio, we have

^F/ F£ ^ \ 0\ B'

383. Homologrous Altitudes in similar triangles are

perpendiculars let fall from the vertices of equal angles upon the

sides opposite.

384. Homologfous Diagonals in similar polygons are

diagonals joining the vertices of corresponding equal angles.

PROPOSITION XI.

385. Theorem.^-Hojnologous nZtitivdes in simUar trU

angles have the same ratio as the homologous sides.

[Let the student give the demonstration.]

PROPOSITION XII.

386. Theorem.—The bisectors of equal angles of simi^

lar triangles are to each other as the homologous sides of
the triangles, hence as the homologous perpendiculars,

[Let the student ^ve the demonstration,]
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PROPOSITION XIII.

387. Theorem.

—

Homologous diagonals in similar

polygons have the same ratio as the homologous sides.

Demonstration.

Let ABCDEFG and ahcdefg be two similar polygons, having angle

A = angle a, B = 6, C = c, etc.

Fig. 190.

We are to prove that

AC AD ^— , or —3 , etc.
oc ' ad

AB

AB
the ratio —r^ being the ratio of any two homologous sides of the polygons.

The triangles ABC and dbc are similar (?), and hence

AC^AB
ac ~ ab

Also, since triangle ABC is similar to a6c,

angle BCA = angle Jm,

and subtracting these respectively from the equal angles (?) BCD and Icd^

we have
angle ACD = angle acd.

Hence the two triangles ACD and acd have an angle in each equal

and the including sides proportional (?), and are consequently similar.

AD ^ AC ^ AB
ad ac ~ ab

Therefore
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In like manner, any homologous diagonals may be shown to have the

AB
ratio

'-^^
, which is the ratio of any two homologous sides.

ab
'

Q. E. D.

388. Corollary 1.

—

Any two similar polygons are di-

vided by their homologous diagonals into an equal number

of similar triangles similarly placed,

389. Corollary 2.—Conversely, Tivo polygons which can

be divided by diagonals into the same number of mutually

similar triangles, similarly placed, are similar.

PROPOSITION XIV.

390. Theorem.

—

Circles are similar figures.

Fig. 191.

Demonstration.

Let 0« and OA be the radii of any two circles.

Place the circles so that they shall be con-

centric, as in the figure. Inscribe the regular

hexagons, as ahcdef, ABCDEF.

Conceive the arcs AB, BC, etc., of the outer

circumference bisected, and the regular do-

decagon inscribed, and also the corresponding

regular dodecagon in the inner circumference.

These are similar figures by (380).

Now, as the process of bisecting the arcs

of the exterior circumference can be conceived

as indefinitely repeated, and the corresponding regular polygons as in-

scribed in each circle, the circles may be considered as regular polygons

of the same number of sides, and hence similar, q. e. d.

391. Corollary.—Sectors which correspond to equal

angles at the centre are similar figures.

Since a radius is perpendicular to the circumference of its circle, such

sectors are mutually equiangular ; and by the proposition it is evident

that the arcs are to each other as the radii.

i e
^^^^ = ^

' ' arc FE OF'

Scholium.—The circle is said to be the limit of the inscribed polygon,

and the circumference the limit of the perimeter. By this is meant that
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as the number of the sides of the inscribed polygon is increased it ap-
proaches nearer and nearer to equality with the circle. The apothem
approaches equality with the radius, and hence has the radius for its

limit.

PROPOSITION XV.
392. Problem.—To divide a given line into parts

which shall be proportional to several given lines.

Solution.*

Let it be required to divide OP into parts pro-
portional to the lines A, B, C, and D.

Draw ON making any convenient angle with

OP, and on it lay off A, B, 0, and D, in succession,

terminating at M.

Join M with the extremity P, and draw par-

allels to MP through the other points of division.

Then by reason of the parallels we shall have

A:B:C:D :: a : h : c : d (369).
Fig. 192.

393. The notation A : B : C : D : : a : 5 : c : c^ is of such frequent

occurrence in mathematical writing that we feel constrained to retain it.

It means that the successive ratios

ABCBC D'

are equal to the successive ratios

a b c

b' c/ d'

We may read the expression thus :
" The successive ratios A to B,

B to 0, to D = the successive ratios a to b.b to c, c to <Z." It does rwt

mean that the ratio A to B = B to 0, etc.

* Hereafter we shall change somewhat the style of our demonstrations,

from the elementary form hitherto used to the more common and free form

used by writers generally. In the " Solution " of a problem we shall here-

after usually include the " Demonstration of the Solution."
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PROPOSITION XVI.

394. Problem,— To find a fouHh proportional to three

given lines.

Solution.

Let it be required to find D, a fourth proportional to the lines A, B,

and C, so that we shall have g = q
'

From 8(1111e point 0, draw two

indefinite lines OX, OY. Lay off on

OX, Oa = A, and Oc = B. Also, on

OY lay off 06 = C, and draw (th.

Through c draw cd parallel to oh.

Then is Od the fourth proportional,

D, which was sought.

For, since ah and cd are parallel,

we have, by (368),

Oa (or A ) _ Oh or )
^

Oc (or B)
~ Od (or D)

'

Hence D is the fourth proportional sought.

Fig. 193.

395. Scholium.—In speaking of the fourth proportional to three

given lines, it is necessary that the order in which the three are to occur

be specified. This order is usually understood to be that in which the

lines are named. Thus, a fourth proportional to A, B, and 0, is D, as

found above. But a fourth proportional to B, A, and C is quite a differ-

ent line from D.

PROPOSITION XVII.

396. Problem.—To find a third proportional to two

given lines.

Solution.

Let A and B be the two given lines.
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We are to find a third proportional,

«, such that

A B

B~ x'

The usual solution is the same as the

last, C being equal to B. [Let the stu-

dent execute it.] Fig. I94.

Another Solution.

Let A and B be the two lines.

Draw an indefinite line AM, and take

AD = A

At D erect a perpendicular BD and

make it equal to B.

Join A and B, and bisect it by the per-

pendicular ON.

NO will intefsect AM ; since, as A is less Fig- '95.

than a right angle (?), the sum of the two angles ONA and OAN is less

than two right angles (129).

From as a centre, with OA as a radius, describe a semi-circumfer-

ence. It will pass through B (?).

Now AD (or A) BD (or B)
(?).BD (or B) DC (or x)

Hence, CD = a;, the required third proportional.

PROPOSITION XVIII.

397. Problem.—To find a mean proportional between

two given lines.

Solution.

Let it be required to find a mean
proportional, .r, between M and N, so

that

M _ «

a;
~ N

x= ^/Mx "N.

Fifl. 196.
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Draw an indefinite line, and on it lay off AD = M, and DB = N. On
AB as a diameter draw a semi-circumference, and erect DC perpendicular

to AB. Then CD = x, the mean proportional required.

[Let the student give the proof.]

PROPOSITION XIX.

I. Problem.—To construct a square equivalent to a
given triangle.

Find a mean proportional between the altitude and half the base. On
this construct a square.

[Let the student execute the problem and demonstrate it.]

EXERCISES.
399. 1. Draw any line, and divide it into 3, 5, 8, or 10 equal

parts.

2. Draw any line and divide it into parts which shall be to

each other as 2, 3, and 5.

3. Construct the square root of 7, 11, 2.

Fig. 197 will suggest the construction

of y/1.

4. The diameter of a circle is 20.

What is the perpendicular distance to

the circumference from a point in

the diameter 15 from one extremity ? ^'fl- '^^•

What are the distances from the point where this perpendicular

meets the circumference to the extremities of the diameter ?

5. The sides of one triangle are 7, 9, and 11. The side of a

second similar triangle, homologous with side 9, is A^. What
are the other sides of the latter ?
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6. DE being parallel to BC, prove that the tri-

angles DOE and BOC are similar, and hence that

OD OE
OC ~ OB

Are the following proportions true ?

OD OE OD 00
00 ~ OB DE ~ BC'

OD _ OC OB OE
OE BC BC " DE Fig. 198.

7. Draw any triangle or polygon, and then construct a similar

one whose homologous sides shall be f as long.

8. Show that if ABCDEF is a regular

polygon, khcdef is also regular, he, cd, etc.,

being parallel to BC, CD, etc. Show that

any two similar polygons may be placed

in similar relative positions, and hence

show that the corresponding diagonals are

in the same ratio as the homologous sides.

Fig. 199.

PROPOSITIONS FOR ORIGINAL INVES-
TIGATION.

400. 1. If two straight lines join

the alternate ends of two parallels,

the line joining their centres' is half

the difference of the parallels.

We are to prove that

EF = i(CD- AB).

^CH = EF = HCD-AB).
Fig. 200.

2. To construct a square equivalent to a given polygon.

First reduce the polygon to a triangle (339). Then construct an

equivalent square (398)-
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3. The area of a regular inscribed dodecagon is three

times the square on, the radius.

4. // the sides of a quadrilateral he divided into m
equal parts, and the ii^^ points of division, reckoning from
two opposite vertices, he joined so as to form a quadri-

lateral, the quadrilateral will he a parallelogram,.

Fig 201.

5. The line drawn from the vertex of the right angle

of a right-angled triangle to the middle of the hypotenuse

is half the hypotenuse.

Prove from either figure.

6. In any triangle the rectangle of two sides is equiva-

lent to the rectangle of the perpendicular

let fall from their included angle upon the

third side, into the diameter of the circum-

scribed circle.

This proposition is an immediate consequence ot

the similarity of two triangles in the figure. pjg^ 202!



184 ELEMENTARY GEOMETB Y,

APPLICATIONS OF THE DOCTRINE OF SIMILARITY TO
THE DEVELOPMENT OF GEOMETRICAL PROPERTIES

OF FIGURES.

401. The doctrine of similarity, as presented in the preceding

section, is the chief reliance for the development of the geomet-

rical properties of figures. This section will be devoted to the

investigation of a few of the more elementary properties of plane

figures, which we are able to discover by means of this doctrine.

OF THE RELATIONS
OFTHE SEGMENTS OF TWO LINES INTERSECT-

ING EACH OTHER, AND INTERSECTED BY A
CIRCUMFERENCE.

PROPOSITION I.

402. Theorem.—// two chords intersect each other in

a circle, • their segments are reciprocalhj proportioned

;

whence the product of the segments of one chord equals

the product of the segments of the other.

Demonstration.

Let the chords AC and BD (Fig. 203) intersect at 0.

We are to prove that OA ~ OD *

whence OB x OD = OA x OC.
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Draw AD and BC.

The two triangles AOD and BOC are simi-

lar (?).

OB qc
OA ~ OD'

OB X OD = OA X 00. Q. E. D.

Hance,

whence

Queries.—Why is OB compared with OA?
Why 00 with OD ? Would AO : CO : : BO : DO Fig. 203.

be true ? Would AO : DO : : BO : CO ? What is the force of the word
" reciprocally," as used in the proposition ?

PROPOSITION II.

403. Theorem.—// from> a point ivithout a circle, two

secants are draivn terminating in the concave arc, the whole

secants are reciprocally proportional to their external seg-

ments ; whence the product of one secant into its external

segm^ent equals the product of the other into its external

segment.

Demonstration.

Let OA and OB be two secants intersecting the circumference in D
and C respectively.

We are to prove

OB _ OD
OA ~ OC

'

whence, OB x OC = OA x OD.

Draw AC and BD.

The two triangles AOC and BOD are simi-

lar (?).

OB OD
OA ~ OC

'

Hence,

whence, OB x OC = OA x OD. q. e. d.
Fig. 204.

Queries. —Same as under preceding demonstration.



186 ELEMENTARY GEOMETRY,

PROPOSITION III.

404. Theorem.—// from a point without a circle a
tangent is drawn, and a secant terminating in the con-

cave arc, the tangent is a mean proportional between the

whole secant and its external segment ; whence the square

of the tangent equals the product of the secant into its

external segment.

Demonsteation.

Let OA be a tangent and OB a secant intersecting the circumference

in C.

We are to prove that

OB A
OA be *

whence, OB x OC = OA .

Draw AC and AB.

The two triangles AOB and AOC are simi'

lar, since angle is common, and angle OAC —
angle B (?).

„ OB OA
Hence,

Fig. 205.

whence,

OA 00*

OB X 00 = OAI q. e. d.

OF THE BISECTOR OF AN ANGLE OF
A TRIANGLE.

PROPOSITION IV.

405. Theorem.—A line which bisects any angle of a
triangle divides the opposite side into segments propor-

tional to the adjacent sides.

Demonstration.

In the triangle ABC (Fig. 206) let CD bisect the angle ACB.
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Then is

187

AD AC*
DB ~ CB

Draw BE parallel to CD, and produce it

till it meets AC produced in E.

By reason of the parallels CD and EB,

angle ACD = AEB,

and DCB = CBE.

But, by hypothesis, ACD = DCB.

Therefore, AEB (or CEB) = CBE,

and CE = CB (?).

AD _ AC
DB ~ CE(= CB)

Hence, finally,

Fig. 206.

(368). Q. E. D.

PROPOSITION V.

406. Theorem.—// a line is drawn from any vertex

of a triangle bisecting the exterior angle and intersecting

the opposite side produced, the distances from the other

vertices to this intersection are proportional to the adjacent

sides.

Demonstration.

Let CD bisect the exterior angle BCF of the triangle ACB.

AD _ AC
BD ~ CB'

Then is

Fig. 207.

For, draw BE parallel to AC.

By reason of these parallels,

angle FCE = CEB,

and BCE = FCE, by hypothesis.

Hence, CEB = BCE,

and CB = BE.

Also, by reason of the similar triangles ACD and BED,

AD AC
BD ~ BE(orCB)

Q. E. D.

* See note at the bottom of p. 178,
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PROPOSITION VI.

407. Theorem.—// a line is drawn bisecting any
angle of a triangle and intersecting the opposite side, the

product of the sides about the bisected angle equals the

product of the segments of the third side, plus the square

of the bisector.

Demokstration.

In the triangle ACB, let CD bisect the angle

ACB.

Then AC x CB = AD x DB + CD'.

For, circumscribe the circle about the trian-

gle, produce the bisector till it meets the circum-

ference at E, and draw EB. The triangles ADC
and CBE are similar, since angle ACD = ECB, by

hypothesis, and A = E, because each is measured

by ^ arc CB.

AC CD
CE ~ CB '

Fig. 208.

Therefore,

whence, ACxCB = CE xCD = (DE + CD) CD

= DE X CD + CdI

For DE X CD, substituting its equivalent AD x DB (402), we have

AC X CB = AD X DB + CD^. Q. e. d.

AREAS OF SIMILAR FIGURES.

PROPOSITION VII.

408. Theorem.—The areas of similar triangles are to

each other as the squares described on their homologous

sides.

Demonstration.

Let ABC and EFG be two similar triangles, the homologous sides

being AB and EF, BC and FG, and AC and EG.
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Then is

area ABC AC^ AT BC=^

area EFG e^^ e F^ FG^'

From the greatest * angle in each tri-

angle let fall a perpendicular upon the

opposite side. Let these perpendiculars

be BD and FH.

Now

and

BD _ AC (..

FH-EG^'^'

jAC _ AC ,as

iEG"EG^^*
Fig. 209.

Multiplying the corresponding ratios

together, we have

iAC^BD AC^

iEGxFH "
eg'

and

But

Hence,

And, finally, as

^AC X BD = area ABC,

iEG X FH ^ area EFG (?).

area ABC _ AC^

area EFG ~
eq^

AC AB' BC"

we have

EG EF'

area ABC AC
area EFG EG"

FG'

AT
EF^

(?),

Bc;

FG^

409.

PROPOSITION VIII.

Theorem.

—

The areas of similar polygons are to

each other as the squares of any two Jwmologous sides of
the polygons.

* The only object in taking the largest angles is to make the perpendic-

ular fall within the triangle. The demonstration is essentially the same

when the perpendiculars fall upon the opposite sides produced.
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Demonstration.

Let ABCDEF and abcdef be two similar polygons, the homologous

sides being AB and a&, BC and 6c, CD and cd, DE and de, EF and ef,

FA and /«.

Let area ABCDEF = P,

and area abcdef = p.

Then is

BC;

67

Fig. 210.

or as the squares of any two

homologous sides.

Draw the homologous di-

agimals AC, AD, AE, and ac, ad^ and ae, dividing the polygons into the

similar triangles M and m^ N and w, and o. and S and s (388)*

r2

Now - - ^^ (?)

ED"

-de'

S^CB'

But

whence,

cb;

a;'

Dc;

dc

= -

= %-%i^y,
ed fe

Taking this by composition, we have

M+N+O+S
m+n+o+8

CB
And as the ratio ^ is the same as that of the squares of any two

cb'

homologous sides, P and p are to each other as the squares of any two

homologous sides.
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Finally, as this argument can be extended to the case of any two

similar polygons, the areas of any two similar polygons are to each other

as the squares of any two homologous sides of the polygons, q. e. d.

410. Corollary 1.

—

Similar polijgons^ are to each other

as the squares of their corresponding diagonals.

In the demonstration we have - = — = —-.

P m cb^

By (388, 408) we have ^=^1-^-^^ ae^ adr a<r

P AE2
Hence - = ^=i , etc.

P ai
411. Corollary ^.—Regular polygons* of the same

number of sides are to each other as the squares of their

homologous sides. [They are similar figures (?)].

412. Corollary 3.

—

Regular polygons of the same num-
ber of sides are to each other as the squares of their

apothems.

For their apothems are to each other as their sides. Hence the

squares of their apothems are to eacli other as the squares of their sides.

413. Corollary 4.

—

Circles are to each other as the

squares of their radii (390), and as the squares of their

diameters.

OF PERIMETERS AND THE RECTIFI-
CATION OF THE CIRCUMFERENCE.

414. The Rectification of a curve is the process of find-

ing its length.

The term rectification signifies making straight, and is applied as

above, under the conception that the process consists in finding a straight

line equal in length to the curve.

* This is a common elliptical form for " The a/reas of, etc"
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PROPOSITION IX.

415. Theorem.—Tlie perimeters of similar polygons
are to each otlier as tJieir homologous sides, and as their

corresponding diagonals.

Demo:n^stration.

Let (If b, c, dy etc., and A, B, C, D, etc., be the homologous sides of

two similar polygons whose perimeters are^> and P.

and r and R being corresponding diagonals,

p _ r

P ~ R

Since the polygons are similar,

By composition,

a h c d ^

a + h-\-c + d4- etc. (or p) _ a

A + B + C + D + etc. (orP) ~ A .

or as any other homologous sides. Also, as the homologons sides are to

each other as the corresponding diagonals (387),

p r

P R ^

416. Corollary 1.

—

The perimeters of regular polygons

of the same number of sides are to each other as the apo-

thems of the polygons (382).

417. Corollary 2.

—

The circmnferences of circles are

to eojch other as their radii, and as their diam^eters (390).

PROPOSITION X.

418. Problem.—To find the relation between the

chord of an arc and the chord of half the arc in a circle

whose radius is v.
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Solution.

Let be the centre of the circle, AB any chord, and CB the chord

of half the arc AB.

Let AB = C, and CB = c.

We are to find the relation between C and c.

Draw the radii CO and BO, and call each r.

CO is perpendicular to AB (?).

In the right-angled triangle BDO,

DO = VBO'-iC-^ (?),

or DO = V*-' - iC". Fig. 211.

Hence, CD = r - ^/r^' (P,

Again, in the right-angled triangle CDB,

CB = Vcb' + bd'

= y 2r» - 2rv^r» — ;^(7»

= |/2r

iC«

.y'4r» - G\

Therefore, e = y 2r' — r>v/4r'» — C is the relation desired.

419. ScHOLroM.—The formula

= V 2r'-rV'4r*- (7«

is the value of the chord of half the arc in terms of the chord of the

whole arc and the radius. From this we readily obtain

C = - V4r' - c\

which is the value of the chord in terras of the chord of half the arc and
the radius.
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PROPOSITION XI.

420. Theorem.—The circumference of a circle whose

radius is 1, is 2-rT, the numerical value of n being approj^i-

matelyS.Uie.

Demonstration.

We will approximate the circumference of a

circle whose radius is 1, by obtaining, 1st, the

perimeter of the regular inscribed hexagon ; 2d,

the perimeter of the regular inscribed dodeca-

gon ; 3d, the perimeter of the regular inscribed

polygon of 24 sides ; then of 48, etc.

By varying the polygon in this manner, it is

evident that the perimeter approaches the cir-

cumference as its limit (282, 354), since at each '^' '^'

bisection the sum of two sides of a triangle is substituted for the third

side. Moreover, the perimeter can never pass the circumference, since a

chord is always less than its arc.

Now let AB = r (?) = 1 be the side of the inscribed hexagon. Then

by the formula (418), we have

= 1/2-CB = c = y2-V4-l = .51763809,

which is therefore the side of a regular dodecagon. Hence the perimeter

of the dodecagtm is

.51763809 X 12 ^ 6.21165708.

Again, let the side of the inscribed regular polygon of 24 sides be c\

and we have

5'-|/s y^4 _ c« = y 2 - ^4 - (.51763809)« = .26105238;

and the perimeter, .26105238 x 24 = 6.26525722.

Carrying the computation forward in this manner, we have the fol-

lowing :
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It now appears that the first four decimal figures do not change as

the number of sides is increased, but will remain the same 7ww far soever

we 2>Toceed. When the foregoing process is continued till 5 decimals be-

come constant, we have 6. 28318 + . We may therefore consider 6.28318

as app'oximatdy the circumference of a circle whose radius is 1,

Hence, letting 27r stand for the circumference, we have

27r = 6.28318 + ,

and TT — 3.1416, nearly, q. e. d.

421. Scholium.—The symbol ;r is much used in mathematics, and

signifies, primarily, the aemi-drcumference of a circle whose radius is 1.

^TT is therefore a symbol for a quadrant, 90°, or a right angle. \n is

equivalent to 45", and 2n to a circumference, the radius being always

supposed 1, unless statement is made to the contrary. The numerical

value of TT has been sought in a great variety of ways, all of which agree

in the conclusion that it cannot be exactly expressed in decimal numbers,

but is approximately as given in the proposition. From the time of

Archimedes (287 B.C.) to the present, much ingenious labor has been

bestowed upon this problem. The most expeditious and elegant methods

of approximation are furnished by the Calculus. The following is the

value of n extended to fifteen places of decimals : 3.141592653589793.

PROPOSITION XII.

422. Theorem.—The circumference of any circle is

2rrr, r being the radius.

' Demonstration.

The circumferences of circles being to each other as their radii (417),

and 27r being the circumference of a circle whose radius is 1, we have

27r _ 1^

circf. r

'

whence, circf. = 27rr. Q. b. d.

423. Corollary.— The circumference of any circle is

ttD, D being the diameter.
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AREA OF THE CIRCLE.

PROPOSITION XIII.

424. Theorem.—The area of a circle whose radius

is 1, is TT.

Demonstration.

The area of a circle is ^r x circf. (356). When r = 1,

circf. = 2t(420);

hence, area of circle whose radius is 1 = ^ x Stt = n^. q. e. d.

PROPOSITION XIV.

425. Theorem.—The area of any circle is nr^, r being

the radias.

Demonstration.

The areas of circles being to each other as the squares of their radii

(413), and tt being the area of a circle whose radius is 1, we have

n V
area of any circle r'

whence, area of any circle = tt?^ q. e. d.

426. Scholium 1.—Since the area of a sector is to the area of the

circle of the same radius as its angle is to 4 right angles (359), if we
d TT T^

represent the angle of the sector by a°, we have for its area •

427. Scholium 2.—As the value of tt cannot be exactly expressed in

numbers, it follows that the area cannot. Finding the area of a circle has

long been known as the problem of " Squaring the Circle ;" i. e., find-

ing a square equal in area to a circle of given radius. Doubtless many
hare-brained visionaries or ignoramuses will still continue the chase after

the phantom, although it has long ago been demonstrated that the diam-
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eter of a circle and its circumference are incommensurable by any finite

unit. It is, however, an easy matter to conceive a square of the same

area as any given circle. Thus, let there be a rectangle whose base is

equal to the circumference of the circle, and whose altitude is half the

radius ; its area is exactly equal to the area of the circle. Now, let there

be a square whose side is a mean proportional between the altitude and

base of this rectangle ; the area of the square is exactly equal to the area

of the circle.

PROPOSITION XV.

428. Theorem.—// a -perpendicular is let fall from

any angle of a triangle upon the opposite side (or on the

side produced), the difference of the squares of the segments

is equivalent to the difference of the squares of the other

two sides.

Demonstration.

Let ABC be any triangle, and CD be the perpendicular let fall from

C upon AB (or AB produced). Call the sides opposite the angles

A, B, and C, a, h, and c, respectively; and let the segment BD = m,

AD = ti, and CD = p.

Then is m'—n^ = «'—&».

For, from the right-angled tri-

angle BCD,

Also, from CDA,

Whence, o"— m^ = &^ — w

or m^ — n^ = a^ — 5'

429. Corollary,—Since

m' — n* = (m + n)(m — n),

and a'-h' = {a-\-l){a- I),

m + n (or c) a — b
we have —r— = -—-

a + m — n
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430. Scholium.—In case tlie perpendicular falls without, the dis-

tances BD and AD are still, for simplicity of expression, spoken of as

segments.

431. A line is said to be divided in Extreme and
Mean Ratio when it is so divided that the whole line is to the

greater segment as the greater segment is to tlie less, ?'. e.y when
the greater segment is a mean proportional between the whole

line and the less segment.

PROPOSITION XVI.

432. Problem.—To divide a line in extreme and
mean ratio.

Solution.

Let it be proposed to divide the line AB in extreme and mean ratio,

ue,, C being the point of division, so that

AB AC
AC ~ CB"

At one extremity of AB, as B, erect a

perpendicular BO, and make it equal to

iAB.

From as a centre, with OB as a ra-

dius, describe a circle.

Draw AO, cutting the circumference

in D.

Then is AD the greater segment, and taking AC = AD, AB is divided
in extreme and mean ratio at C.

Demonstbation.of Solution.

Produce AO to E.

Now ^ = ^('n
AB AO ^ ^'

or, by inversion, ^ = ^.
At AB

Fig. 214.
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By division, we have

AB AD
AE - AB ~ AB - AD

But, as DE = AB (?),

AE - AB = AE - DE = AD = AC;

and AB - AD = AB - AC = CB.

A Pi Kf\
Hence, substituting,

AC
~
CB

' ^ ^* ^•

PROPOSITION XVII.

433. Problem.

—

To inscribe a regular decagon in a
circle, and hence a regular pentagon, and regular polygons

of 20, 40, 80, etc., sides.

Solution.

Let it be required to inscribe a regular decagon in the circle whose
centre is and radius OA.

Divide the radius OA in

extreme and mean ratio, as

at («).

Then is ac, the greater

segment, the side of the in-

scribed decagon, ABODE,
etc.

To prove this, draw OA
and OB, and taking CM =

° Fig. 215.

ac = AB, draw BM.

^^^ OM ~ MA ' ^y construction
; and, as CM = AB, we have

0A_ AB
AB ~ MA

*

Hence, considering the antecedents as belonging to the triangle OAB,

and the consequents to the triangle BAM, we observe that the two sides

about the angle A, which is common to both triangles, are proportional

;

hence the triangles are similar (373).
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Therefore, ABM is isosceles, since OAB is, and

angle BMA = A = OBA,

and MB = BA = OM.

This makes 0MB also isosceles, and

the angle = OBM.

Again, the exterior angle BMA = + OBM = 20;

hence, A (which equals BMA) = 20.

Hence, also, OBA (which equals A) = 20.

Wherefore, is | the sum of the angles of the triangle OAB, or | of

2 right angles, = y^ of 4 right angles.

The arc AB is therefore the measure of^ of 4 right angles, and is

consequently ^V "^ t^e circumference. Hence AB is the chord of ^ of

the circumference, and if applied, as AB, BC, CD, DE, etc., will give an

equilateral inscribed decagon.

Moreover this inscribed polygon is equiangular, and hence regular

by (272).

To construct the pentagon, join the alternate angles of the decagon.

To construct the regular polygon of 20 sides, bisect the arcs subtended

by the sides of the decagon, etc.

MISCELLANEOUS EXERCISES.

434. f. Show that if a chord of a circle is conceived to re-

volve, varying in length as it revolves, so as to keep its extremities

in the circumference while it constantly passes through a fixed

point, the rectangle of its segments remains constant.

2. The two segments of a chord intersected by another chord

are 6 and 4, and one segment of the other chord is 3. What is

the other segment of the latter chord ?

3. Show how Propositions I, II, and III may be considered as

different cases of one and the same proposition.

Suggestions.—By stating Propositions I and IT thus, The distances

from the irUersection of the linen to their intersections with tlie circumference^

what follows? In Fig. 204, if the secant AO becomes a tangent, what

does OD become ?
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4. In a triangle whose sides are 48, 36, and 50, where do the

bisectors of the angles intersect the sides ?

5. In the last example, find the lengths of the bisectors.

6. A and B have farms of similar shape, with their homolo-

gous sides on the same road. A's is 150 rods on the road, and

B's 200 rods. How does A's farm compare with B's in size ?

7. Draw two similar triangles with their homologous sides in

the ratio of 3 to 5, and divide them into equal partial triangles,

showing that their areas are as 3^ to 5^, that is, as 9 to 25.

8. What are the relative capacities of a 5-inch and a 7-inch

stove-pipe ?

9. If a circle whose radius is 34 is divided into 5 equal parts

by concentric circumferences, what are the diameters of the sev-

eral circles ?

Solve geometrically as well as numerically.

10. The projection of one line upon another in the same plane

is the distance between the feet of two perpendiculars let fall

from the extremities of the former upon the latter. Show that

this projection is equal to the square root of the difference be-

tween the square of the line and the square of the difference of

the perpendiculars.

11. The three sides of a triangle being 4, 5, and 6, find the

segments of the last side made by a perpendicular from the op-

posite angle. Ans. 3.75 and 2.25.

12. Same as above, when the sides are 10, 4, and 7, and the

perpendicular is let fall from the angle included by the sides 10

and 4. Draw the figure. Why is one of the segments negative ?

13. What is the area of a regular octagon inscribed in a circle

whose radius is 1 ? What is its perimeter? What if the radius

is 10?

14. What is the side of an equilateral triangle inscribed in a

circle whose radius is 1 ?
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15. What is the side of a regular inscribed decagon in a circle

whose radius is 4 ? What the side of the inscribed pentagon?

What is the area of each ?

16. Draw two squares, and construct two others, one equal to

their sum, and the other to their difference.

17. Draw any two polygons, and construct two squares, one

equivalent to their sum, and the other equivalent to their differ-

ence.

18. Show that the length of a degree in any circle is -^y

and hence that the lengths of degrees in different circles are to

each other as the radii of the circles.

19. What is the length of a minute on a circle whose radius

is 10 miles ?

20. Calling the equatorial radius of the earth 3962.8 miles,

what is the length of a degree on the equator ?

21. How many degrees in the arc of a circle which is equal in

length to the radius ?

22. Compute the area of the triangle whose sides are 20, 30,

and 40.

Find the segments of the base (40) by (428)- Hence the perpendic-

ular.

23. Given the side of a regular inscribed pentagon, as 16, to

find the side of the similar circumscribed polygon.

24. Prove that if a triangle is circumscribed about a given

triangle by drawing lines through the vertices of the given tri-

angle and parallel to the opposite sides, the area of the circum-

scribed triangle is four times that of the given triangle.

25. Prove that the bisectors of the angles of a triangle pass

through a common point.

26. Prove that the perpendiculars to the three sides of a tri-

angle at their middle points pass through a common point.
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27. The three perpendiculars drawn from the angles of a tri-

angle upon the opposite sides intersect in a common point.

Draw through the vertices of the

triangle lines parallel to the opposite

sides. The proposition may then be

brought under the preceding.

28. The following triangles are

similar—viz., BOE, BDC, AOD, and

AEC, each to each ; also EOF, BDA,

DOC, and CFA. Prove it.

Fig. 216.

435. The Medial Lines in a triangle are the lines drawn

from the vertices to the middle points of the opposite sides.

29. The three medial lines of a triangle mutually trisect each

other, and hence intersect in a common point.

To prove that OE = ^BE (Fig. 317), draw FC parallel to AD until it

meets BE produced. Then the triangles AEO and FEC are equal (?);

whence
EF = OE.

Also, BO = OF (?).

Having shown that

OE = iBE,

by a similar construction we can show that

OD = iAD

Finally, we may show that the medial line

from C to AB cuts off ^ of BE, and hence cuts BE

at the same point as does AD.

I-—^c

Fig. 217.

Another Demonstration.—Lines through parallel to the sides

trisect the sides, etc.

Still Another.—Without EF and FC, draw ED, and prove by simi-

lar triangles.
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SOLID GEOMETRY.*

OF STRAIGHT LINES AND PLANES.

436. Solid Geometry is that department of Geometry

in which the magnitudes treated are not limited to a single

plane. " ^

437. A Plane (or a Plane Surface) is a surface such

that a straight line joining any two points in it lies wholly in the

surface.

PLANE, HOW DETERMINED.

438. A plane is said to be Determined by given conditions

which fix its position.

All planes are considered as indefinite in extent, unless the

contrary is stated.

* In some respects, perhaps, " Geometry of Space" is preferable to this

term ; but, as neither is free from objections, and as this has the advantage

of simplicity and long use, the author prefers to retain it.
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PROPOSITION I.

439. Theorem.—Three points not in the same straight

line determine a plane.

Demonstration.

Let A, B, and C be three points not in the same straight line.

Then one plane can be passed through

them, and only one; i. c, they determine the

position of a plane.

For, pass a straight line through any two of

these points, as A and B. Now, conceive any

plane containing these two points ; then will the

line passing through them lie wholly in the

plane (437). Conceive this plane to revolve on ^'9- 2i8.

the line as an axis until the point C falls in the plane. Thus we have one

plane passed through the three points.

That there can be only one is evident, since when C falls in the plane,

if the plane be revolved either way, C will not be in it. The same may

be shown by first passing a plane through B and C, or A and C. There

is, therefore, only one position ot the plane in which it will contain the

third point, q. e. d.

440. Corollary 1.

—

A line and a point witJwut it de^

termine a plane.
^

441. Corollary 2.

—

Through one line, or two points, an
infinite number of planes can he passed. ,

442. Corollary 3.

—

The intersection of two planes is a
straight line.

For two planes cannot have even three points, not in the same straight

line, common, much less an indefinite number, which would be required

if we conceived the intersection (that is, the common points) to be in any

other than a straight line.

443. The Trace of one plane in another is their intersection.



STRAIGHT LINES AND PLANES. 207

PROPOSITION II.

444. Theorem.—Two intersecting lines determine the

position of a plane.

Demonstration.

For, the point of intersection may be taken as one of the three points

requisite to determine the position of a plane, and any two other points,

one in each of the lines, as the other two requisite points. Now, the

plane passing through these, points contains lx)th the lines, for it contains

two points in each. q. e. d.

PROPOSITION III.

445. Theorem.—Two parallel lines determine the po-

sition of a plane.

Demonstration.

For, pass a plane through one of the parallels, and conceive it revolved

until it contains some point of the second parallel. Now, if the plane be

revolved either way from this position, the point will be left without it.

Hence, it is the only plane containing the first parallel and this point in

the second.

But parallels lie in the same plane (120, 121), whence the plane of the

parallels must contain the first line and the specified point in the second.

Therefore, the plane containing the first line and a point in the second

is the plane of the parallels, and is fixed in position, q. e. d.

446. Scholium.—When a plane is determined by two lines, accord-

ing to either of the last two propositions, it is spoken of as the Plane of

the Lines. In like manner, we may speak of the Plane of Three Points.

RELATIVE POSITION OF A LINE AND
A PLANE.

447. A line may have one of three positions in relation to a

plane : {a) It may be perpendicular, (b) oblique, or (c) parallel
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OF LINES PERPENDICULAR TO A PLANE.

448. A line is said to Pierce a plane at the point where it

passes through it.

449. The point where a perpendicular meets, or pierces, a

plane is called its Foot.

450. A Perpendicular to a Plane is a line which is

perpendicular to all lines of the plane passing through its foot,

and hence to every line of the plane. Conversely, the plane is

perpendicular to the line.

451. The Distance of a point from a plane is the length

of the perpendicular let fall from the point upon the plane.

PROPOSITION IV.

452. Theorem.—A line which is perpendicular to two

lines of a plane, at their intersection, is perpendicular to

the plane.

Demonstration^.

Let PD be perpendicular to AB and CF at D.

Then is it perpendicular to MN, the

plane of the lines AB and CF.

Let OQ be any other line of the

plane MN, passing through O. Draw
FB iutersecting the three lines AB, CF,

and OQ in B, E, and F. Produce PD
to P', making P'D = PD, and draw PF,

PE, PB, P'F, PE, P'B.

Then is PF ^ P'F,

and PB = P'B,

since FD and BD are perpendicular to

PP', and

PD = P'D(96)

Fig. 219.
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Hence, the triangles PFB and PTB are equal (305) ; and if PFB be
revolved upon FB till P falls at P', PE will fall in P'E.

Therefore, OQ has E equally distant from P and P', and as D is also

equidistant from the same points, OQ is perpendicular to PD at D (98).

Now, as OQ is any line, PD is perpendicular to any line of the plane
passing through its foot, and consequently perpendicular to the plane

(460). Q. E. D.

463. Corollary.—If one of two perpendiculars revolves

about the other as an axis, its path is avlane perpendicu-

lar to the axis, and this plane contains all the perpendicu-

lars to the axis at the common point.

ThUvS, if AB revolves about PP' as an axis, it describes the plane MN,

and MN contains all the perpendiculars to PP' at D. For, if there could

be a perpendicular to PP at D which did not lie in the plane M N, there

would be two perpendiculars to PP' at D, both'^' lying in the same plane,

which is impossible (88). '
^

PROPOSITION V.

454. Theorem.

—

M any point in a plane one perpen-

dicular can he erected to the plane, and only one.

Demonstration.

Let it be required to show that one perpendicular, and only one, can

be erected to the plane MN at D.

Through D draw two lines.of the plane, as

AB and CE, at right angles to each other. CE
being perpendicular to AB, let a line be con-

ceived as starting from the position ED to re-

volve about AB as an axis. It will remain per-

pendicular to AB (453). Conceive it to have

passed to P'D. Now, as it continues to revolve,

P'DC diminishes continuously, and at the same
, • . . rig. 220.

rate as P'DE increases; hence, in one position

of the revolving line, and in only one, as PD, PDE = PDC, and PD is

perpendicular to CE (86).

Again, any line which is perpendicular to MN at D is perpendicular
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to AB and CE (450). But the plane of the lines PD and DE contains all

lines perpendicular to AB at D. Hence, PD is perpendicular to the plane

(452), and is the only perpendicular, q. e. d.

PROPOSITION VI.

455. Theorem—From a point without a plane one

perpendicular can he drawn to the plane, and only one.

4

Demonstration.

Let It be required to show that one perpendicular can be drawn from

P to the plane MN, and only one.

Take RS as an aux-

iliary plane, and at any

point as C erect DC per-

pendicular to RS.

Now place the plane

RS in coincidence with

MN, and move it in MN
till the perpendicular DC
passes through P.

Then DC, which passes Fig. 221

through P and is pei-pen-

dicular to RS, is perpendicular to MN, with which RS is coincident.

Q. E. D.

To prove that there can be but one perpendicular from P to MN, sup-

pose that there could be two, as PA and PF.

Draw FA.

Then since FA is a line of the plane, and PF and PA are perpendic-

ulars to the plane, PFA and PAF are both right angles (?), and the tri-

angle PFA has two right angles, which is absurd. Hence there can be

but one perpendicular from P to MN. Q. e. d.

456. Corollary.— The perpendicular is the shortest line

that can he drawn to a plane from a point without.

Thus, let PA be a perpendicular and PF any oblique line,

PA < PF (?).
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PROPOSITION VII.

457. Theorem.—Conversely to the last. Through agiven

point in a line, one plane can be passed perpendicular to

the line, and only one.

Demonstration.

Let D be the point in the line PG.

Pass two lines through D, as

EF and AB, each perpendicular to

PD ; the plane of these lines is per-

pendicular to PD. Q. E. D.

To show that but one plane can

be passed through D perpendicular

to PG, assupie that M'N' is another

plane passing through D, and per-

pendicular to PG, but not contain-

ing BD. Through PD and BD pass

a plane, and let BD be its intersec-

tion with M'N'. Then, on the

hypothesis that M'N' is perpendic-

ular to PG, B'DP is a right angle, and we have two lines in the same

plane with PG, and perpendicular to it at the same point, which is

absurd. Hence there can be but one plane perpendicular to PG and pass-

ing through D. Q. e. d.

PROPOSITION VIII.

458. Theorem.—// from the foot of a perpendicular

to a plane a line is drawn at right angles to any line of
the plane, and their intersection is joined with any point

in the perpendicular, the last line is perpendicular to the

line of the plane.

Demonstration.

From the foot of the perpendicular PD (Fig. 223) let DE be drawn

perpendicular to AB, any line of the plane MN, and E joined with 0, any

point of the perpendicular.
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Then is OE perpendicular to AB.

Take EF = EC, and draw CD, FD, CO, and

FO. Now,
CD = DF (?),

whence CO = FO (?),

and OE has equally distant from F and C, and

also E. Therefore, OE is perpendicular to AB (?).

Q. E. D.
Fig. 223.

459. Corollary.—The line DE measures the shortest

distance between PD and AB.

For a line drawn from E to any other point in PD than D, as Ea, is

longer than DE (?).

Again, if from any other point in AB, as C, a line be drawn to D, it is

longer thari DE (?) ; and if drawn from C to «, any other point in PD
than D, Oa is longer than CD (?), and consequently longer than DE (?).

PROPOSITION IX.

460. Theorem.—// one of two parallels is perpendic-

ular to a plane, the other is perpendicular also.

Demonstration.

Let AB be parallel to CD and perpendicular to the plane MN.

Then is CD perpendicular to MN.

For, drawing BD in the plane MN, it is pcr-

pendiculaf to AB (?), and consequently to CD (?).

Through D draw EF in the plane and perpendic-

ular to BD, and join D with any point in AB, as

A; then is EF perpendicular to AD (?).

Now, EF being perpendicular to two lines, AD
and BD, of the plane ABDC, is perpendicular to F'g- 224.

the plane, and hence to any line of the plane passing through D, as CD.

Therefore, CD is perpendicular to BD and EF, and consequently to the

plane MN (?). Q. e. d.
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461. Corollary.— T/fo lines which are perpendicular
to the same plane are parallel.

Thus, AB and CD being perpendicular to the plane MN are parallel.

For, if AB is not parallel to CD, draw a line through B which shall be.

By the Proposition, this line is perpendicular to MN, and hence must
coincide with AB (454)-

PROPOSITION X.

462. Theorem. —Ta^o lines parallel to a third not in

their own plane are parallel to each other.

DEMONSTRATION-V

Let AB and CD be parallel to EF.

Then are they parallel to each other.

For, through F', any point in EF, pass a plane

MN perpendicular to EF.

Now AB and CD are respectively perpendicu-

lar to MN (?), and hence are parallel to each other

(?). Q. E. D.
Fig. 225.

OF LINES OBLIQUE TO A PLANE.

463. An Oblique Line is a line which pierces the plane

(if sufficiently produced), but is not perpendicular to the plane.

464. The Projection of a Point on a plane is the foot

of the perpendicular from the point to the plane.

465. The Projection of a Line upon a plane is the

locus of the projection of the point which generates the line.
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PROPOSITION XI.

466. Theorem.—The projection of a straight line upon

a plane is a straight line.

Demonstration.

Let AB be any line and MN the plane upon which it is projected.

Then is the projection of AB in MN
a straight line.

Let P be a point in AB, and D its

projection in IMN.

Pass a plane, S, through AB and PD

(444), and let CE be its trace in MN.

Now let P' be any point in AB
other than P, and let D' be its projec-

tion in MN.

As PD and P'D' are perpendicular

to MN, they are parallel to each other

(461), and a plane may be passed throug'i them (445).

But the plane of PD and P'D' is S, since it contains PD and P' (440).

Therefore D' lies in S, and as it lies in MN, it is in the trace of S in

MN, which trace is a straight line (442).

Hence, as P' is any point in AB, the projection of every point of AB is

in a straight line. q. e. d.

•^^BfS^H

Fig. 226.

467. Corollary.—The projection of a line upon a plane

is the trace of a plane containing the line and the projec-

tion of any point of the line.

468. The Projecting Plane is the plane of a line and its

projection upon another plane.

469. The Plane of Projection is the plane upon which

a point or a line is projected.

470. The Inclination of a Line to a plane is the angle

included between the line and its projection.
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PROPOSITION XII.

471. Theorem.—Iffrom any point in a perpendicular

to a plane, oblique lines are drawn to the plane, those which

pierce the plane at equal distances from the foot of the

perpendicular are equal ; and of those which pierce the

plane at unequal distances from the foot of the perpendic-

ular, those which pierce at the greater distances are the

greater.

Demonstration.

Let PD be a perpendiculdp to the plane MN, and PE, PE', PE",and

PE' " be oblique lines piercing the plane at equal distances ED, ED, E"D,

and E "D from the foot of the perpendicular.

Then PE = PE' = PE" = PE".

For each of the triangles PDE, PDE', etc.,

has two sides and the included angle equal

to the corresponding parts in the other.

Again, let FD be longer than E'D.

Then is PF > PE'.

For, take ED = E'D ; then PE = PE', by

the preceding part of the demonstration.

But PF > PE, by (113). Hence, PF > PE'. Q. e. d.

472. Corollary 1.

—

The angles which oblique lines

drawn from a common point in a perpendicular to a
plane, and piercing the plane at equal distances from the

foot of the perpendicular, make with the perpendicular,

are equal ; and the inclinations of such lines to the plane

are equal.

Thus, the equality of the triangles, as shown in the demonstration,

shows that

EPD = E'PD = E'PD = E "PD,

and PED = PE'D = PE"D = PE"D.

473. Corollary 2.—Conversely, // the angles which
oblique lines drawn from a point in a perpendicular to a
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plane, make with the perpendicular, are equal, the lines

are equal, and pierce the plane at equal distances from
the foot of the perpendicular.

Thus, let E'PD = E"PD
;

then the right-angled triangles PDE' and PDE" are equal (?). Hence,

PE' = PE", and DE' = DE".

474. Corollary 3.

—

Lines drawn from the same point

in a perpendicular, and equally inclined to the plane, are

equal, and pierce the plane at equal distances from the

foot of the perpendicular.

475. Corollary 4.

—

Equal oblique lines from the same
point in the perpendicular, pierce the plane at equal dis-

tances fror)v the foot of the perpendicular, a>re equally

inclined to the plane, and also to the perpendicular.

Since the right-angled triangles PDE' and PDE" have their altitudes

and hypotenuses equal, the triangles are equal (309), and

DE' = DE", PE'D = PE"D, and E'PD == E "PD.

OF LINES PARALLEL TO A PLANE.

476. A Line is Parallel to a Plane when it is paral-

lel to its projection in that plane.

PROPOSITION XIII.

477. Theorem.—A line parallel to a plane is every-

where equidistant from the plane, and hence can never

meet the plane ; and, conversely, a straight line which can-

not meet a plane is parallel to it.

Demonstration.

The distance between a point in the line and the plane being the per-

pendicular (451), is also the distance between the point and the projec-
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tiori of the line (464). But this is everywhere the same (476, 136)-

Hence a line parallel to a plane is everywhere equidistant from it, and

therefore can never meet it. Q. e. d.

Conversely ; A line which meets a plane meets it in the projection of

the line in the plane, since the projecting plane contains all the per-

pendiculars, or shortest lines, from the line to the plane. Hence a line

which never meets a plane is parallel to its projection in that plane, that

is, to the plane itself (476). Q- e. d.

PROPOSITION XIV.

478. Theorem.

—

Either of two parallel lines is paral-

lel to every plane containing the other.

Demonstration.

Let AB and CD be two parallel lines, and MN a plane containing CD.

Then is AB parallel to the plane MN.

Since AB and CD are in the same plane

(?), and as the intersection of their plane

with MN is CD (?), if AB meets the plane

MN, it must meet it in CD, or CD produced.

But this is impossible (?).

Whence AB is parallel to MN (477).

Q. E. D. Fig- 228.

479. Corollary 1. A line which is parallel to a line of
a plane is parallel to the plane.

480. Corollary 2.

—

Through any given line, a plane

may he passed parallel to any other given line not in the

plane of the first.

For, through any point of the line through which the plane is to pass,

conceive a line parallel to the second given line. The plane of the two

intersecting lines is parallel to the second given line (?).

481. Corollary 3.

—

Through any point in space a plane

may he passed parallel to any two lines in space.

For, through the given point conceive two lines respectively parallel

to the given lines ; then is the plane of these intersecting lines parallel to

the two given lines (?).

10
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PROPOSITION XV.

482. Theorem.—Of two lines perpendicular to each
other, if one is perpendicular to a plane the other is par-

allel to the plane.

Demonstration.

Let AB and PD be perpendicular to each other, and PD perpendicu-

lar to the plane MN.

Then is AB parallel to MN.

If AB does not intersect PD,

through any point in PD, as G,

draw A'B' parallel to AB ; then is

it perpendicular to PD (32, foot-

note).

Let CE be the projection of

A'B' in the plane MN. Then is H

the point where PD pierces the

plane in CE (?).

Hence A'B' is parallel to its

projection CE (?), and consequently

parallel to the plane MN.

Therefore AB is parallel to CE (?), and consequently to the plane MN

(479). Q. E. D.

483. Corollary.—A line and a plane which are both

perpendicular to the same line are parallel.

Fia. 229.

RELATIVE POSITION OF TWO PLANES.

OF PARALLEL PLANES.

484. Parallel Planes are such that either is parallel to

any line of the other.

485. The Distance between Two Parallel Planes

at any point is measured by the perpendicular.
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PROPOSITION XVI.
486. Theorem.—Parallel planes are everywhere equi-

distant and hence can never meet.

Demonstration.

Let P and Q be two parallel

planes.

Then are they everywhere equi-

distant, and hence can never meet.

Let A and B be any two points

in P, and pass a line through them.

Since Q is parallel to P, it is

parallel to the line AB (484). And
since it is parallel to AB it is every-

where equidistant from AB.

Hence A and B, any two points

in P, are equidistant from Q, and

consequently P and Q can never

meet. q. e. d.
Fig. 230.

PROPOSITION XVII.

487. Theorem.—Two planes perpendicular to the

same line are parallel to eoA^h other.

Demonstration.

Let P and Q be two planes perpen-

dicular to the line AB.

Then are P and Q parallel.

For any line in one plane is parallel

to its projection in the other, since any

line in either plane is perpendicular to

AB (?).

Hence either plane is parallel to any

line of the other (476), and therefore the

planes are parallel to each other, q. e. d. Fig. 231.

^
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PROPOSITION XVIII.

488. Theorem.—7/ a plane intersects two parallel

planes, the lines of intersection are parallel.

Demonstration.

Let RS intersect the parallel planes MN and PQ in AB and CD.

Then is AB parallel to CD.

For, if AB and CD could meet, the planes

MN and PQ would meet, as every point in AB is

in MN, and every point in CD in PQ. Hence,

AB and CD lie in the same plane, and do not

meet how far soever they be produced (132)

;

they are therefore parallel, q. e. d.

489. Corollary.—Parallel lines in-

tercepted between parallel planes are equal. Fig. 232.

Thus, AC = BD, if they are parallel. For, the intersections AB and

CD, of the plane of these parallels, are parallel (?), and the figure ABDC
is a parallelogram ; whence, AC = BD (?).

PROPOSITION XIX.

490. Theorem.—t^ line which is perpendicular to

one of two parallel planes, is perpendicular to the other

also.

Demonstration.

Let MN and PQ be two parallel planes; and

let AB be perpendicular to PQ.

Then is AB perpendicular to MN.

For, pass any plane through AB, and let AC
and BD be its intersections with MN and PQ re-

spectively Then are AC and BD parallel (?).

Now, AB is perpendicular to BD (?), and hence

to AC (?). Thus, AB is shown to be perpendic-

ular to any line of MN passing through its foot,

and hence perpendicular to MN (0- Q- e. d.
Fig. 233.
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PROPOSITION XX.

491. Theorem.—TJvrough any point without a plane,

one plane can be passed parallel to the given plane, and
only one.

Demonstration.

Let MN be a plane, and B any point without MN.

Let BA be a perpendicular from B

upon MN.

Through B draw DE and FG per-

pendicular to AB. Then is the plane of

DE and and FG parallel to MN (452,

487). Q. E. D.

Again, as any plane parallel to MN
is perpendicular to AB, and as only one

plane can be passed through B perpen-

dicular to AB (457), only one plane can

be passed through B parallel to MN. Q. e. d.

Fig. 234.

PROPOSITION XXI.

492. Theorem.—Two angles lying in different planes,

but having their sides parallel and extending in the

same direction, or in opposite directions, are equal, and
their planes are parallel.

Demonstration.

Let A and A' lie In the different planes

MN and PQ, and have AB parallel to AB ,

and AC to AC.

Then A = A', and MN and PQ are

parallel.

For, take AD = A'D', and AE = A'E',

and draw AA', DD', EE', ED, and E'D'.

Now, AD being equal and parallel to

AD',
AA' = DD' (?) Fig. 235.
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EE';

Again, since EE'

For like reason,

AA' =

therefore EE' = DD'.

and DD' are respectively parallel to AA',

they are parallel to each other (?) ; whence

EDO'E' is a parallelogram (?), and ED =
E'D'. Hence the triangles ADE and A'D'E'

are mutually equilateral, and A, opposite

ED, is equal to A', opposite E'D', equal to

ED. Q. E. D.

Again, the plane of the angle BAC, MN,
is parallel to PQ, the plane of B'A'C.

For, let a plane be passed through A and revolved until it is parallel

to PQ. It must cut DD' which is parallel to AA', and EE' which also is

parallel to AA', so that DD' and EE' shall equal AA' (?); hence it must

pass through D. Hence the planes of the angles are parallel, q. e. d.

493. Corollary l.—If two intersectiiig planes are cut

by parallel planes, the angles formed hy the intersections

are equal.

Thus, AS' and AC being cut by the parallel planes MN and PQ. AD is

parallel to A'D' (0, and extends in the same direction from vertex A that

A'D' does from A'; and the same may be said of AC and A'C. Hence,

BAC = B'A'C (?).

494. Corollary 2.—// the corresponding extremities

of three equal parallel lines not in the same plane are

joined, the triangles formed are equal, and their planes

parallel.

Thus, if AA' = DD' = EE', the sides of the triangle AED are equal

to the sides of A'E'D', since the figures AD', DE', and EA' are parallelo-

grams (?), and the corollary comes under the proposition {i).
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PROPOSITION XXII.

495. Theorem.—// two lines are cut by three parallel

planes, the corresponding intercepted segments are propor-

tional.

Demonstration.

Let AB and CD be cut by the three parallel planes M, N, and P, AB
piercing the planes in A, E, and B, and CD in C, F, and D.

^ . AE CF
^^^^^EB = FD-

Join the points A and D by the

straight line AD, and eoneeive planes

passing through AD and DC, and

through AB and AD.

Let EH and BD be the intersec-

tions of the planes N and P with the

plane BAD, and AC and HF the in-

tersections of M and N with ADC-

Now, since EH is parallel to BD (?),

AE _ AH
EB ~ HD ^''

"

Fig. 236.

In like manner, by reason of the parallelism of HF and AC,

CF_ AH
FD ~ HD'

Hence, by equality of ratios,

AE CF
Ei = FD- ^"•^-

[Note.—Planes perpendicular or oblique to each other give rise to one

species of solid angles; hence their consideration is reaeired for the next

Section.]
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EXERCISES.
496. 1. Designate any three points in the room, as one cor-

ner of the desk, a point on the stove, and some point in the

ceiling, and show how you can conceive the plane of these points.

2. Show the position of two lines which will not meet, and

yet are not parallel.

3. Conceive two lines, one line in the ceiling and one in the

floor, which shall not be parallel to each other.

4. The ceiling of my room is 10 feet above the floor. I have

a 12-foot pole, by the aid of which I wish to determine a point

in the floor directly under a certain point in the ceiling. How
can I do it ?

Suggestion.—Consult Proposition XII.

5. Upon what principle in this section is it that a stool with

three legs always stands firm on a level floor, when one with four

may not ?

6. By the use of two carpenter's squares you can determine a

perpendicular to a plane. How is it done ?

7. If you wish to test the perpendicularity of a stud to a level

floor, on how many sides of it is it necessary to measure the

angle which it makes with the floor? By applying the right

angle of the carpenter's square on any two sides of the stud, to

test the angle which it makes with the floor, can you determine

whether it is perpendicular or not ?

8. If a line is drawn at an inclination of 23° to a plane, what

is the greatest angle which any line of the plane, drawn through

the point where the inclined line pierces the plane, makes with

the line ? Can you conceive a line of the plane which makes an

angle of 50° with the inclined line ? Of 80° ? Of 15° ? Of 170° ?
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OF SOLID ANGLES.

497. • A Solid Angle is the opening between two or more
planes, each of which intersects all the others. The lines of in-

tersection are called Edges, and the planes, or the portion of

the planes between the edges where there are more than two,

are called Faces.

498. Solid Angles are of Three Species, viz., Diedral,
Triedral, and Polyedral, according as they have two, three,

or more than three faces.

OF DIEDRALS.
499. A Diedral Angle, or simply a Diedral, is the

opening between two intersecting planes.

600. A Diedral (Angle) is Measured by the plane

angle included by lines drawn in its faces from any point in the

edge, and perpendicular thereto.

A diedral angle is called Right, Acute, or Obtuse,
according as its measure is right, acute, or obtuse.

Two diedrals are said to be Supi)leinentary, when their

measures are supplementary.

Of course the magnitude of a solid angle is independent of the dis-

tances to which the edges may chance to be produced.

Illustrations.—The opening ])etween the two planes CABF and

DABE (Fig. 237) is a Diedral (angle), AB is the Edge, and CABF and

DABE are the Faces. Let MO lie in the plane AF, perpendicular to the

edge ; and NO in AE, and also perpendicular to the edge ; then the plane

angle MON is the measure of the diedral.
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Fig. 237. Fig. 238. Fig 239.

501. A diedral may be read by the letters on the edge, when

there would be no ambiguity, or otherwise by these letters and

one in each face.

Thus, the diedral in Fig. 237 may be designated as AB, or as C-AB-D.

502. A diedral may be considered as generated by the revolu-

tion of a plane about a line of the plane, and hence we may see

the propriety of measuring it by the angle included by two lines

in its faces perpendicular to its edge, as stated in the preceding

article.

Illustration.—Let AB (Fig. 338) be a line of the plane GB. Con-

ceive ^B perpendicular to A'B. Now, let the plane revolve upon AB as

an axis, whence grB describes a circle (?) ; and at any position of the re-

volving plane, as /BAF, since f^g measures the amount of revolution, it

may be taken as the measure of the diedral f-E^-g. When gB has made

^ of a revolution, the plane will have made ^ of a revolution, and the

diedral will be right.

503. When two planes intersect, four diedrals are formed, any

two of which are either At\jaceiit to each other, or Opposite.

504. Adjacent Diedrals are on the same side of one

plane, but on the opposite sides of the other.

As D-AB-C and D-AB-c, or c-AB-D and c-AB-d (Fig. 239).

Opposite Diedrals are on opposite sides of both planes.

As D-AB-C and ^AB-c, or D-AB-c and <^AB-C (Fig. 239).
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PROPOSITION I.

506. Theorem.— W%en two planes intersect, the op-

posite diedrals are equal, and the adjacent ones are
supplementary.

Demonstration.

Let the planes DE and CF intersect in AB.

Then D-AB-C = d-M-c,

and D-AB-r = <?-AB-C;

and D-AB-C + D-AB-C* = 180°,

c-AB-D + c-AB-</ = 180°, etc.

Through 0, any point in AB, let Mm J>e drawn
in the plane CF, and Nw in the plane DE, each

perpenrlicular to AB. Tlien is MON, the mcHsure

of D-AB C (?), = mOn, the measure of d-hB-c (?),

etc. Q. E. D.

Also, MON + NOm = 180° (?),

H0m-\-7n0n = 180°, etc.

Fig. 240.

q. E. D.

PROPOSITION II.

606. Theorem.—^/z,^ Une in one face of a right die-

dral, perpendicular to its edge, is perpendicular to the

other face.

Demonstration.

in the face CB of the right diedral C-AB-D^ let

MO be perpendicular to the edge AB.

Then is MO perpendicular to the face DB.

For, draw ON in the face DB, and perpendicu-

lar to AB. Now, since the diedral is right, and

MON measures its angle, MON is a right angle;

whence MO is perpendicular to two lines of the

plane DB, and consequently perpendicular to the

plane. Q. e. d. Fig. 241.

*" By this is meant the measure of the diedral.
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607. OoKOLLARY 1.—Conversely, If one

plane contains a line which is perpen-

dicular to another plane, the dtiedral is

right.

Thus, if MO is perpendicular to the plane

DB, C-AB-D is a right diedral. For MO is perpen-

dicular to every line of DB passing through its

foot (?) ; and hence is perpendicular to ON, drawn

at right angles to AB. When C-AB-D is a right

diedral, for it is measured by a right plane angle. ^'9- ^*'-

608. Two planes are Perpendicular to each other when

they intersect so as to make the adjacent diedrals equal. In this

case, all four of the diedrals are right.

609. Corollary 2.—The plane which projects a line

upon a plane (468) is perpendicular to the plane of projec-

tion.

PROPOSITION III.

610. Theorem.—// each of two intersecting planes is

perpendicular to a third, their intersection is perpendicu-

lar to the third plane.

Demonstration.

Let EF 3"'* CD bo twu planes perpendicular to the third plane MN,

and J^yt AB be the intersection of EF and CD.

Then is AB perpendicular to MN.

For, EF being perpendicular to MN,

D-FG-E is a right diedral, and a line in EF

perpendicular to FG at B is perpendicular to

MN ; also a line in the plane CD, and perpen-

dicular to DH at B, is perpendicular to MN (?).

Hence, as there can be one and only one

perpendicular to MN at B, and as this perpen-

dicular is in both planes, CD and EF, it is

their intersection, q. e. d.

Fig. 242.
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PROPOSITION IV.

511. Theorem.—me angle Uicluded by perpendicu-
lars drawn from any point within a diedral to its faces,
is the supplement of the diedral.

Demonstration.

Fig 243.

Let P' be any point within the diedral F-AB-C, and let the perpendic-

ulars P'D' and P'E' be drawn to the faces.

Then is D'P'E' the sup-

plement of F-AB-C.

From P, any point in

the plane which Insects the

diedral F-AB-C, draw PD
and PE perpendicular to

the same faces respectively

as P'D' and P'E'. Then is

DPE = D'P'E'.

Now pass a plane

through PE and PD, and

let EG and DO be its inter-

sections with FB and CB
respectively. Then, by

(507), FB and CB are perpendicular to the plane PEOD. Hence, A5 is

perpendicular to PEOD (?), and EOD is the measure of F-AB-C (?). But

in the quadrilateral PEOD, P is the supplement of EOD (?), and hence of

F-AB-C.

Hence, D'P'E' is the supplement of F-AB-C. Q. e. d.

512. Corollary 1.

—

If from, a point in the edge of a
diedral perpendiculars are erected to the faces on the same

sides of the planes respectively as the perpendiculars let

fall from a point within, the included angle is the sup-

plem^ent of the angle of the diedral.

513. Corollary 2.

—

The angle DPE is the supplement

of the opposite diedral H-AB-I, and equal to each of the ad-

jacent diedrals C-AB-I and F-AB-H-
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PROPOSITION V.

514. Theorem.—Between any two lines not in the

same plane one line, and only one, can he drawn which
shall he perpendicular to both, and this line is the shortest

distance between them.

Demonstration.

Let AB and CD be two lines not in the same plane.

Then one line, as HG, and only

one, can be drawn which is perpen-

dicular to both AB and CD, and HG
measures the shortest distance be-

tween AB and CD.

Through either line, as CD, pass

a plane MN parallel to AB (480).

From any point in AB, as E, let fall

EF perpendicular to MN.

Let EK be the plane of the lines

EF and EB, and let FK be its trace
Fig.m MN.

Now, as AB and CD are not in the same plane, EK, and hence its

trace FK, cuts CD in some point, as G.

From G draw GH perpendicular to AB.

laf nu i;-- :-> the plane EK (?) widch is perpendicular to MN (?), and

being perpendicular to AB is perpemUcuIar to FK , and hence to the

GH, which is perpendicular to AB, is perpendicular to

244.

ia. an IS the only line which is perpendicular U) oth AB and CD.

For ftny line which is prrpendicular to A5 aua C^ is perpendicular

to FK (?), and hence to MN (?).

Now every perpendicular from AB to the plane MN meets this plane

in FK (?).

But FK and CD have only one point common, viz., G. Hence, GH is

the only perpendicular from AB to CD.

3d. GH is the shortest distance between AB and CD. For a line from

any point in AB to any other point in CD, as LS, would be oblique to

MN (?), and hence longer than the perpendicular LR, = HG.
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PROPOSITION VI.

515. Theorem.—// one of two parallel planes is per-

pendicular to a third plane, the other is also.

Demonstration.

Let PO and QE be two paral

lei planes; and let PD be perpen-

dicular to the third plane MN.

Then is QE perpendicular to

MN.
Through PD and QE pass the

plane RS perpendicular to MN,

and let FK be its trace in QE, and

HI in PD.

Then is FK perpendicular to

MN (?).

And, as HI is parallel to FK

(?), it is perpendicular to MN
(460).

Hence, QE is perpendicular

to MN (507). Q. K. D.

Fig. 245.

OF TRIEDRALS.
516. As diedrals result from the intersection of two planes,

so triedrals result from the intersection of three planes.

Fifl. 24d.
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517. Three planes may intersect in three principal ways:

1st. Their intersections may all coincide, as in (a).

2d. They may have three parallel intersections, as in (h),

3d. They may have three non-parallel intersections, as in (c).

In this case the three intersections meet in a common point,

as at S.

In the first case the three planes have an infinite number of

common points. In the second case they have no common point.

In the third case they have but one common point.

The third case gives rise to Triedrals.

618. A Triedral is the opening between three planes which

meet in a common point.

519. When three planes meet so as to form one triedral, they

form also eight, as planes are to be considered indefinitely ex-

tended, unless otherwise stated.

520. The planes enclosing a particular triedral are called its

Faces, and their intersections its Edges. The common point

is called the Vertex.

521. A triedral may be designated by

naming the letter at the vertex and then

three other letters, one in each edge.

Thus, in the figure, the opening between the

three planes ASC, CSB, and BSA is the triedral

S-ABC. ThQfaces are ASC, CSB, and BSA.
Fig. 247.

522. The plane angles enclosing a solid angle are called

Facial Angles.

523. In every particular triedral there are six parts, Three
Facial Angles and Three Diedrals.
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524. Our study of triedrals will be confined to the relations

of the facial angles and the diedrals, and the comparison of dif-

ferent triedrals.

525. Triedrals are Rectangular, Bi-rectang^ular, or

Tri-rectangular, according as they have one, two, or three

right diedral angles.

Illubtbation.—The comer of a cube is a

Tinrectcmgular triedral, as S-ADC. Conceive the

upper portion of the cube removed by the plane

ASEF ; then the angle at S, i. e., S-AEC, is a Bi-

rectangular triedral, A-SC-E and A-SE-C being

right diedrals. Pig. 248.

626. An Isosceles Triedral is one that has two of ito

facial angles equal. An Equilateral Triedral is one that

has all three of its facial angles equal.

527. Opposite Triedrals are such as lie on opposite sides

of each of the intersecting planes, as S-ABC and %-ahc.

Opposite triedrals have mutually equal facial and equal

diedral angles, but these being differently disposed, such

triedrals are not in general capable of superposition.

Illustration.—Let the edges of the triedral S-ABC be

produced beyond the vertex, forming the opposite triedral

S-aZw. Now, the faces are equal plane angles, but disposed

in a different order. Thus, ASB = aS&, ASC = aSc, and

BSC = 6Sc, and the diedrals are also equal ; but the

triedrals cannot be superimposed, or made to coincide. To
show this fact, conceive the upper triedral detached, and

the face aSc placed in its equal face ASC, Sa in SA, and Sc ^'9- ^*^-

in SC. Now the edge S6, instead of falling in SB, in front of ASC, will

fall behind the plane ASC.

Or, otherwise, if %-ahc be revolved on S by bringing it forward and

turning it down on S-ABC, since the diedrals A-SB-C and o-Sh-a are

equal, they will coincide ; but, as facial angle aSh is not necessarily equal

to CSB, S/i will not necessarily fall in SC. For a like reason, %c will not

necessarily fall in SA.



234 ELEMENTARY GEOMETRY,

528. Symmetrical Triedrals are triedrals in which each

part in one has an equal part in the other ; but the equal parts

not being similarly disposed, the triedrals may not be capable of

superposition.

Symmetrical solids are of frequent occurrence : the two hands form

an illustration ; for, though the parts may be exactly alike, the hands

cannot be placed so that their like parts "will be similarly situated ; in

short, the left glove will not fit the right hand.

529. Atljaceiit Triedrals are such as lie on different

sides of one of the intersecting planes, and on the mme side of

two of them.

Thus, S-ADE is adjacent to

8.DRE.

In adjacent triedrals, two of

the facial angles of one are the

supplements of two of the other,

each to each, and one is equal in

each

Thus, in the adjacent triedrals

S-DRE and S-ADE, ASE and ASD
are supplements respectively of ESR
and DSR, while DSE is common to

both.

Fig. 250.

530. Of the eight triedrals formed by the intersection of

three planes, each has its Oi)i)Osite or Symmetrical
triedral, and each has three Adjacent triedrals.

631. Two triedrals are Supplementary when the facial

angles of the one are the supplements of tiie measures of the

corresponding diedrals of the other.

532. Equality, as has been before defined, means, in Geom-

etry, equality in all respects ; and two figures that are said to be

equal are capable of being so applied the one to the other that

they will coincide throughout. This absolute equality is hence



SOLID ANGLES, 235

often called Equality by Superposition^ in distinction

from Equality by Symmetry.

533. Two figures are said to be Equal by Symmetry, or

Symmetrically Equals or simply Symmetrical, when

each part in one has an equal part in the other ; but these equal

parts being differently arranged in the two figures, the one may
not be capable of being superimposed upon the other. (See 527.)

PROPOSITION VII.

534. Theorem.—Opposite triedrals are equal and may
be syninietrlcal.

Demonstration.

Let S-ABC and S-ahc be two opposite triedrals.

Then are the triedrals equal or syiiiiiietricul.

For the facial angle ASC = the facial angle aSc (?);

also, BSC = bSc, and ASB = aSh.

Again, the diedra' A-SB-C = a-Sft-c, since they are op-

posite diedrals.

For like reason, B SA-C = b-Sa-c, and A-SC-B = a-Sc-b.

Hence all the parts in one triedral have equal parts in

the other.

But, in general, these triedrals cannot be superimposed.

(See illustration, 527.)
'**

If, however, ASB = CSB, then aSb = cSb, and the triedrals can be

superimposed.

Thus, conceive the triedral S-ahc revolved on S, being brought over

towards the observer until Sb falls in SB.

Tiien, since CSB = ASB = aSb, aSb may be made to coincide with

BSC, and as the diedrals A-SB-C and ct-Sb-c are equal, cSb will fall in

ASB, and the triedrals will coincide, and will be equal.

Hence, opposite diedrals are equal and may be symmetrical, q. e. d.

535.

equal.

Corollary 1. — Opposite isosceles triedrals are
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PROPOSITION VIII.

536. Theorem.

—

Two syrmnetrical triedrals may al-

ways be conceived to be placed as opposite triedrals.

Demonstration.

Let S-ABC and S'-A'B'C be two symmetrical triedrals, B and B'

being in front of the planes ASC and A'S'C, ASB = A'S'B', ASC =
A'S'C, BSC = B'S'C', A-SB-C = A'-S'B-C', A-SC-B =- A'-SX'-B', and

B-SA-C = B'-S'A'-C.

Then may S-ABC and S'-A'B'C

be placed as opposite triedrals.

Produce the edges of either

triedral, as S'-A'B'C, beyond the

vertex, forming the opposite tri-

edral S'-aftc.

Then can S-ABC be super-

imposed upon ^'-dbc, and the latter

fulfills the requirements of the

proposition.

The application is made as

follows

:

Since B' is in front of the plane Fig. 252.

A'S'C, I is behind the plane aS'c.

Now conceive S-ABC inverted and reversed so that B shall fall

behind the plane ASC.

Then apply ASC to its equal aS'c, SA falling in S'a, and SC

in S'c.

By reason of the equality of A-SC-B and a-S'c-& (= A'-S'C'-B'), the

plane BSC will fall in 5S'c, and for a like reason ASB will fall in

aS'5 ; and since the planes coincide, their intersections SB and S'ft must

coincide.

Hence, S-ABC = S'-a5c, the opposite to S'-A'B'C Q. E. d.



SOLID ANGLES, 237

PROPOSITION IX.

537. Theorem.—Two triedrals which have two facial

angles and the included diedral equal, each to each, are

either equal or symmetrical,

Demonsteation.

Let I, 2, 3, be triedrals having the facial angle ASC = A'S'C = aS"c,
CSB = C'S'B' = cS"6, and A-SC-B = A -S'C'-B' = a-^'c-h.

Fig. 253.

Then are the triedrals either equal or symmetrical.

Ist. When the equal facial angles are on the same sides of the respec-

tive equal diedrals, as in Figs. 2 and 3, the triedrals may be appliecf the

one to the other.

Thus, let the facial angle A'S'C be placed in its equal oS"c, A'S' in

aS, and S'C in S"c; whence, by reason of the equality of the diedrals

A'-S'C'-B' and a-S"c-6, and since the facial angles B'S'C and hS"c lie on

the same sides respectively of their diedrals A'-S'C -B' and a-S"c-h, the

plane of B'S'C falls in the plane of 6S"c, and since angle B'S'C = angle

6S"c, B'S' falls in 6S", and A'S'B' coincides with aS"&.

Hence the triedrals coincide and are equal, q. e. d.

2d. But if the equal facial angles lie on different sides of the equal

diedrals, as in Figs. 1 and 3, let the opposite of S-ABC be drawn (627),
and call it S-a'Vcf. Then may 1 be applied to S-a'h'd.

[Let the student draw the figure and make the application.]
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PROPOSITION X.

538. Theorem.—Two triedrals which have two die-

drals and the included facial angles equal each to each,

are either equal or symmetrical,

Demoi^stbation.

[Same as preceding. Let the student draw figures like those for the

preceding, and go through with the details of the application.]

539. Corollary.—In equal or in symmetrical triedrals,

the equal facial angles are opposite the equal diedrals.

PROPOSITION XI.

540. Theorem.—The sum of any two facial angles of
a triedral is greater than the third-

Demonstration.

This proposition needs demonstration only in case of the sum of the

two smaller facial angles as compared with the greatest {().

Let ASB and BSC each be less than ASC ; then is

ASB + BSC > ASC.

For, in the face ASC, make the angle ASJ' = ASB,

and S5' = S&, and pass a plane through 5 and 6', cut-

ting SA and SC in « and c.

The two triangles aSh and a%V are equal (?), whence

Now, ab \-'bc> a^ (?), Fig, 254.

and subtracting ah from the first member, and its equal cikl from the sec-

ond, we have he > ft'c.

Whence the two triangles 5Sc and V%c have two sides in the one

equal to two sides in the other, each to each, but the third side he > than

the third side ft'c, and consequently angle BSC > h SC. Adding ASB to

the former, and its equal AS&' to the latter, we have

ASB + BSC > ASC. Q. E. D.

541. Corollary.—The difference hetween any two facial

angles of a triedral is less than the third facial angle (?).
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PROPOSITION XII.

542. Theorem.—Two triedrals which have two facial

angles of the one equal to two facial angles of the other,

each to each, and the included diedrals unequal, have the

third facial angles unequal, and the greater facial angle
belongs to the trledral having the greater included diedi'al.

Demonstr'ation.

Let ASC = asc, and ASB = asb, while the

diedral C-SA B > c-sa-b.

Then CSB > eab.

For, divide the diedral C-SA-B by a plane

ASO, making the diedral C-SA-0 = o-sa-b;

end taking ASO = aid, bisect the diedral

0-SA-B with the plane ISA. Conceive the

planes OSI and OSC. F«g- 255.

Now, the triedrals S-AOC and s-ahc are equal or symmetrical, having

two facial angles and the included diedral equul eael^^to each (637).

For a like reason, S-AIO and S-AIB are symmetrical, and the facial

angle OSI = ISB.

Again, in the triedral S-IOC>

OSI + ISC > OSC (640),

and substituting ISB for OSI, we have

ISB -I- ISC (or CSB) > OSC, or its equal csb. q. e. d.

643. Corollary.—Conversely, // tJte two facial angles

are equal, each to each, in two. triedrals, and the third

facial angles unequal, the diedral opposite the greater

facial angle is the greater.

That is, if ASB = asb, and ASC = anCy

while BSC > bsc,

the diedral B-AS-C > b-as-r.

For, if B-AS-C ^ b-as-c, BSC = bse (637, 639) ;

and if B-AS C < b-aa-c, BSC < bse, by the proposition.

Therefore, as B-AS-C cannot be equal to nor less than b-as-e, it must

be greater, q. e. d.
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PROPOSITION XIII.

M 544. Theorem.—Two triedrals which have the three

facial angles of the one equal to the three facial angles of

the other, each to each, are either equal or symmetrical,

Demokstration.

Let A, B, and C represent the facial angles of one, and a, 5, and c the

corresponding facial angles of the other. If A = a, B = &, and C :^ c,

the triedrals are equal or symmetrical.

For A being equal to a, and B to &, if, of their included diedrals, SM
were greater than «m, C would be greater than c (?) ; and if diedral SM
were less than diedral sm^ C would be less than c (?). Hence, as diedral

SM can neither be greater nor less than diedral sm, it must be equal to it.

Therefore the triedrals have two facial angles and the included diedral

equal, each to each, and are consequently equal or symmetrical. Q. e. d.

PROPOSITION XIV.

545. Theorem,—///roT^Z/ any point within a triedral

perpendiculars are drawn to the faces, they will be the edges

of a supplementary triedral.

Demonstratioit.

From S' within the triedral S-ABC, let S'A' be drawn perpendicular

to ASB, SB' to ASC, and S'C to BSC.

Then is S'-A'B'C supple-

mentary to S-ABC.

For the facial angle A'S'B'

is the supplement of the di-

edral B-AS-C (511); and for

like reason B'S'C is the sup-

plement of A-SC-B, andA'S'C

of A-SB-C.

Again, since S'A' is per-

pendicular to the face ASB,

and S'B' is perpendicular to

ASC, the plane of S'A' and ^. „^^
rig. Z5o.
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S'B' is perpendicular to ASB and ASC, and therefore to SA. Hence SA

is perpendicular to the face A'S'B'.

For a similar reason, SC is perpendicular to B'S'C Hence ASC is

the supplement of A'-S'B'-C

In like manner, it may be shown that BSC is the supplement of

A'-S'C'-B', and ASB of B'-S'A'-C. Q. e. d.

546. Scholium 1.—If perpendiculars were drawn from the point S,

or any other point, parallel to those from S', and in the same directions

respectively from S that S'A', etc., are from S', they would also l)e per-

pendicular to the faces of the diedral, and would form a supplementary

triedral.

547. Scholium 2.—The triedral S'-A'B'C is also supplementary to

the triedral opposite to S-ABC.

548. Scholium 3.—The triedral S'-A'B'C will not be supplementary

to the triedral adjacent to S-ABC, but one facial angle will be supple-

mentary to the corresponding diedral in the other, and the other facial

angles will be equal to their corresponding diedrals.

549. Scholium 4.—One triedral adjacent to S'-A'B'C will be sup-

plementary to one of those adjacent to S-ABC.

PROPOSITION XV.
550. Theorem.—In an isosceles triedral the diedrals

opposite the equal facial angles are equal ; and,

Conversely, If two diedrals of a triedral are equal, the

triedral is isosceles.

Demon^stration.

In the triedral S-ABC, let ASC = CSB.

Then is C-SA-B = C-SB-A.

For, pass the plane CSD through the edge

SC, bisecting the diedral A-SC-B. Then the

two triedrals S-ACD and S-CBD have two facial

angles of one equal to two facial angles of the

other, each to each ; that is, ASC = CSB, by
hypothesis, and CSD common; and the in-

P, 257
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eluded diedral8 equal by construction. Hence the triedrals are sym-
metrical, and

C-SA-B = C-SB-A (537, 639). Q. k. d.

Convereely, if C-SA-B = C-SB-A,

ASC = CSB.

For the supplementary triedral is isosceles ; whence the diedrals op-

posite those equal facial angles are equal. But ASC and CSB are the

supplements of these equal diedrals, and hence equal, q. e. d.

651. Corollary 1.

—

The plane which bisects the angle

included by the equal facial afigles of an isosceles triedral

is perpendicular to the opposite face, and bisects the oppo-

site facial angle.

662. Corollary 2.—// the^ three facial angles of a tri-

edral are equal, each to each, the diedrals are also equal,

each to each, and conversely.

PROPOSITION XVI.

663. Theorem.—Two triedrals which have the three

diedrals of the one equal to the three diedrals of the other,

each to each, are equal or symmetrical.

Demonstration.

In the two supplementary triedrals, the facial angles of the one are

equal to the facial angles of the other, each to each, since they are sup-

plements of equal diedrals (546). Hence, the supplementary triedrals

are equal or symmetrical (644).

Now, the facial angles of the first triedrals are supplements of the

diedrals of the supplementary ; whence the corresponding facial angles,

being the supplements of equal diedrals, are equal. Therefore, the pro-

posed triedrals have their facial angles equal, each to each, and are con-

sequently equal j or symmetrical. Q. E. D.

664. Corollary. — All tri-rectangular triedrals are

equal.
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^< V
PROPOSITION XVII.

565. Theorem.—The sum of the facial angles of a
-^ triedral may he anything between zero and four right

angles.

Demonstration.

Let ASB, BSC, and ASC be the facial angles

enclosing a triedral.

Then, as each must have some value, the sum

is greater than zero, and we have only to show

that ASB + ASC + BSC is less than 4 right angles.

Produce either edge, as AS, to D. Now, in the

triedral S-BCD, BSC is less than BSD + CSD (?). '"'s-
'^^^^

To each member of this inequality add ASB + ASC, and we have

ASB + ASC + BSC less than ASB + ASC + BSD + CSD (?).

But ASB + BSD = 2 right angles (?),

and ASC + CSD = 2 right angles;

whence ASB 4- ASC + BSD + CSD = 4 right angles,

and consequently ASB + ASC + BSC is less than 4 right angles, q. k. d.

PROPOSITION XVIII.

656. Tlxeorem.—The sum of the diedrals of a triedral

may he anything hetween two and six right angles.

Demonstration.

Each diedral being the supplement of a facial angle of the supple-

mentary triedral (531), the sum of the three diedrals is 3 times 2 right

angles, or 6 right angles, minus the sum of the facial angles of the sup-

plementary triedral.

But this latter sum may be anything between and 4 right angles (?).

Hence the sum of the diedrals may be anything between 2 and 6 right

angles, q. e. d.

\
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OF POLYEDRALS.

557. A Convex Polyedral is a polyedral none of the

faces of which, when produced, enter tlie solid angle. A sec-

tion of such a polyedral made by a plane cutting all its edges is

a convex polygon. (See Fig. 259.

)

PROPOSITION XIX.

558. Theorem.—Tke sum of the facial angles of any
convex polyedral is less than four right angles.

Demonstration.

Let S be the vertex of any convex polyedral.

Then is the sum of the angles ASB, BSC, CSD,

DSE, and ESA less than 4 right angles.

Let the edges of this polyedral be cut by any

plane, as ABODE, which section will be a convex

polygon, since the polyedral is convex.

From any point within this polygon, as 0,

draw lines to its vertices, as OA, OB, 00, etc.

There will thus be formed two sets of triangles,

one with their vertices at S, and the other with

their vertices at 0; and there will be an equal

number in each set, for the sides of the polygon

form the bases of both sets.

Now, the sum of the angles of each of these two sets of triangles is

the same. But the sum of the angles at the bases of the trian«;les having

their vertices at S is greater than the sum of the angles at the bases of

the triangles having their vertices at 0, since SBA + SBO is greater

than ABO, SOB + SOD is greater than BOD, etc. (540).

Therefore the sum of the angles at S is less than the sum of the angles

at 0> ». 6-, less than 4 right angles, q. e. d.

Fig. 259.
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EXERCISES
659. 1. I have an iron block whose corners are all square

(edges right diedrals, and the vertices tri-rectangular, or right,

triedrals). If I bend a wire square

around one of its edges, as c S't?, at

what angle do I bend the wire ? If

I bend a wire obliquely around the

edge, as aSh, at what angle can I

bend it ? If I bend it obliquely, as

e S"/, at what angle can I bend it ?

2. Fig. 260 represents the ap-

pearance of a rectangular parallelo- Fi7"26o7

piped, as seen from a certain position.

Now, all the angles of such a solid are right angles : why is it

that they nearly all appear oblique ? Can you see a right paral-

lelopiped from such a position that all the angles seen shall

appear as right angles ?

3. The diedral angles of crystals are measured with great

care, in order to determine the substances of which the crystals

consist. How must the measure be taken? If we measure

obliquely around the edge, shall we get the true value of the

angle ?

4. Prove that if three planes intersect so as to make two

traces parallel, the third is parallel to each of these.

5. From a piece of pasteboard cut two figures of the same

size, like ABCDS and ahcds (Fig. 261). Then drawing SB and

SC so as to make 1 the largest angle and 3 the smallest, cut the

pasteboard almost through in these lines, so that it will readily

bend in them. Now fold the edges AS and DS together, and a

triedral will be formed. From the piece ahcds form a triedral in

like manner, only let the lines sc and sh be drawn so as to make
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the angles 1, 2, and 3 of the same size as be-

fore, while they occur in the order given in

(ibcds. Now, see if you can slip one triedral

into the other, so that they will fit. What

is the difficulty?

6. In the last case, if 1 equals | of a right

angle, 2 = ^ of a right angle, and 3 = | of

a right angle, can you form the triedral?

Why ? If you keep increasing the size of 1,

2, and 3, until the sum becomes equal to 4

right angles, will it always be possible to
Fig. 26i.

form a triedral ? How is it when the sum equals 4 right angles?

7. What is the locus of a point in space equidistant from

three given points ?

To demonstrate that such a locus is a straight line, pass a plane

through the three points, and also a circumference. Now, 1st, a perpen-

dicular to this circle at its centre has every point equidistant from the

three points; and, 2d, any point out of the perpendicular is unequally

distant from the points. Hence this perpendicular is the locus sought.

Notice that in demonstrating such a proposition the two points should

both be proved.

8. The locus of a point equidistant from two planes is the

plane which bisects the diedral included between them. [Give

proof.]

9. What is the locus of a point in space equidistant from the

faces of a triedral ? [Give proof.]

10. If each of the projections ofa line upon three intersecting

planes is a straight line, the line is a straight line.

11. To find the point in a plane such that the sum of its dis-

tances from two given points without the plane, and on the

same side of it, shall be a minimum.

Solution.—Let the two points be P and P'. Let fall a perpendicular

from either point, as P, upon the plane, and call it PD. Produce PD on

the opposite side of the plane to P", making P"D = PD. Join P" and P'.

The point where P"P' pierces the plane is the point sought. [Give proof.]
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0irCtlOM m.

OF PRISMS AND CYLINDERS.

660. A Prism is a solid, two of whose faces are equal, par-

allel polygons, while the other faces are parallelograms. The
equal parallel polygons are the Bases, and the parallelograms

make up the Lateral or Convex Surface. Prisms are triangular,

quadrangular, pentagonal, etc., according to the number of sides

of the polygon forming a base.

561. A Right Prism is a prism whose lateral edges are

perpendicular to its bases. An Oblique Prism is a prism

whose lateral edges are oblique to its bases.

562. A Regular Prism is a right prism whose bases are

regular polygons ; whence its faces are equal rectangles.

563. The Altitude of a prism is the perpendicular distance

between its bases : the altitude of a right prism is equal to any

one of its lateral edges.

564. A Truncated Prism is a portion of a prism cut off

by a plane cutting the

lateral edges, but not

parallel to its base. A
section of a prism made

by a plane perpendicu-

lar to its lateral edges is

called a Right Section.

Illustrations.—In the

figure, (a) and (&) are both

prisms : (a) is oblique and

(b) right. PO represents

the altitude of (a) ; and '"'S- 262.

any edge of (J), as JB, is its altitude. ABCDEF and abcd^ are lower and
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upper bases, respectively. Either portion of (b) cut off by an oblique

plane, as a'l'c'd'e', is a truncated prism.

565. A Parallelepiped is a prism whose bases are paral-

lelograms ; its faces, inclusive of the bases, are consequently all

parallelograms. If its faces are all rectangular, it is a rectangu-

lar parallelopiped.

566. A Cube is a rectangular parallelopiped whose faces are

all equal squares.

567. The Volume or Contents of a solid is the number
of times it contains some other solid taken as the unit of meas-

ure ; or it is the ratio of one solid to another taken as the stand-

ard of measure.

In applied geometry the unit of volume is usually a cube de-

scribed on some linear unit, as an inch, a foot, a yard, etc. To
this the perch and the cord are exceptions.

PROPOSITION I.

568. Theorem.—Parallel plane sections of any prism

are equal polygons.

Demoksteation^.

Let ABODE and ahcde be parallel sections of the prism MN*

Then are they equal polygons.

For, the intersections with the lateral faces, as

ab and AB, etc., are parallel, since they are inter-

sections of parallel planes by a third plane (488)-

Moreover, these intersections are equal, that

is, db = AB, Ic = BC, cd = CD, etc., since they

are parallels included between parallels (138)-

Again, the corresponding angles of these

polygons are equal, that is, a = A, J = B, c = C,

etc., since their sides are parallel and lie in the

same direction (492)-

Therefore the polygons ABODE and abcde are

mutually equilateral and equiangular ; that is, they are



pJiiS3£S. 249

569. Corollary.—Any plane section of a prism, paral-

lel to its base, is equal to the base ; and all right sections

are equal.

PROPOSITION II.

570. Theorem.—// two prisms have equivalent bases,

any plane sections parallel to the bases are equivalent.

Demonstration.

Let M and N be any two prisms having equivalent bases B and B';

and let P and Q be sections parallel thereto.

Then, by the preceding proposition,

P = B,

and Q = B' = B

,

whence, P = Q. Q. b.d.

PROPOSITION III.

571. Theorem.—// three faeces including a triedral

of one prism—complete or truncated—are equal respective-

ly to three faces including a triedral of the other, and
similarly placed, the prisms are equal.

Demonstration.

In the prisms ^d and ^'d' (Fig. 264), let ABCDE equal A'B'C'D'E,

^Bba = ^'B'b'a', and BCcb = B'CV6'.

Then are the prisms equal.

For, since the facial angles of the triedrals B and B' are equal, the

triedrals are equal (544), and being applied they will coincide.

Now, conceiving ^'d' as applied to A^, with B' in B, since the bases

are equal polygons, they will coincide throughout ; and for like reason

aB will coincide with a'B', and cB witli c'B'.
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Furthermore, since the

coincide, CD' falls in CD, and as

C'c' falls in Cc, and D'd' is parallel

to CV, and Ud to Cc (?), [y'd' falls

in Dd.

In like manner, £'e' can be

shown to fall in Ee.

Finally, since the upper bases

have the angles a'l'c' and ahc co-

incident, they coincide (444).

Hence the prisms can be super-

imposed, and are therefore equal.

Fig. 264.

Q. E. D.

572. Corollary.—Two right prisms having equal bases

and equal altitudes are equal.

If the faces are not similarly arranged, as the edges are perpendicular

to the bases, one prism can be inverted and then superimposed on the

other.

PROPOSITION IV.

573. Theorem.—Any oblique prism is equivalent to a
right prism, whose bases are right sections of the oblique

prism, and whose edge is equal to the edge of the oblique

prism.

Demonstration.

Let LB be an oblique prism, of which abode
an6ff//iil are right sections, and gb = GB.

Then is lb equivalent to LB.

For the truncated prisms ^G and eB have the

faces including any two corresponding triedrals, as

G and B, respectively, equal and similarly placed

(?), whence these prisms are equal (571)-

Now, from the whole figure take away prism

ZG, and there remains the oblique prism LB ; also,

from the whole take away the prism cB, and there

remains the right prism lb.

Therefore, the right prism lb is equivalent to

the oblique prism LB. q. e. d.

Fig. 265.
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PROPOSITION V.

574. Theorem.—The opposite faces of a parcdlelopiped

are equal and parallel.

Demonstration.

Let Ac be a parallelopiped, AC and ac being its equal bases (560)

Then are its opposite faces equal and parallel.

Since the bases are parallelograms, AB is equal

and parallel to DC ; and, since the faces are paral-

lelograms, ah, is equal and parallel to d[). Hence,

angle aAB = d[>0,

and their planes are parallel, since their sides are

parallel and extend in the same directions.

Therefore, aS and dC are equal (322) and parallel parallelograms.

In like manner it may be shown that aO is equal and parallel to M).

Q. E. D.

Fig. 266.

PROPOSITION VI

575. Theorem.—me
bisect each other.

diagonals of a parallelopiped

«. ^

AVw--^f

Demonstration.

Let ABCD-A be a parallelopiped whose diagonals are frD, f/B, cA,

and aO.

Then do ftD, <iB, cA, and aC bisect each other.

Pass a plane through two opposite edges, as

&B and ^D.

Since the bases are parallel (?), hd and BD will

be parallel (488), and &BD<Z will be a parallelo-

gram. Hence, ftD and d^ are bisected at o (?).

For a like reason, pnssing a plane through dc

and AB, we may show that <iB and cA bisect each

other, and hence that cA passes through the com-

mon centre of c?B and &D.

So also aO is bisected by 5D, as appears from

passing a plane through ab and DC.

Hence, all the diagonals are bisected at o. q. b. d.

Fig. 267.
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576. Corollary.—The diagonals of a rectangular par-

allelopiped are equal.

PROPOSITION VII.

577. Theorem.— ITz/e diagonal of a right parallelo-

piped is equal to the square root of the sum of the squares

of the three adjacent edges of the parallelepiped.

Demonstration.

Let a, b, c be the three adjacent edges of a right parallelepiped, d
the diagonal of the face whose edges are h and c, and D the diagonal of

the parallelopiped.

Then ^» = &« + C (?),

and D' = 0? -\-d' = a' + ¥ -vc^ (?),

or D = ^a? + &' + c^ q. e. d.

578. Corollary.—The diagonal of a cube is Vs times

its edge.

PROPOSITION VIII.

579. Theorem.—^e area of the lateral surface of a
right prism is equal to the product of its altitude into the

perimeter of its base.

Demonstration.

The lateral faces are all rectangles, having for their common altitude

the altitude of the prism (563). Whence the area of any face is the

product of the altitude into the side of the base which forms its base

;

and the sum of the areas of the faces is the common altitude into the sum

of the bases of the faces, that is, into the perimeter of the base of the

prism. Ci. '^. d.
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580. A Cyliiitlrical Siu'face is a surface traced by a

straight line moving so as to remain constantly parallel to its

first position, while any point in it traces

some curve. The moving line is called the

Generateixy and the curve traced by a point

of the line the Directrix.

Illustration.— Suppose a line to start from

the position AB, and move towards N in such a

manner as to remain all the time parallel to its

first position AB, while A traces the curve

A123456....M.

The surface thus traced is a Cylindrical Surface

;

AB is the Geneiatrix^ and the curve ANM the

Directrix.
Fig. 268.

581. A Circular Cylinder, called also a Cylinder of
Revolution, is a solid generated by the revolution of a rectan-

gle around one of its sides as an axis.

Illustration.—Let COAB be a rectangle,

and conceive it revolved about CO as an axis,

taking successively the positions COAB',

COA'B', etc.; the solid generated is a Circular

Oylinder, or a cylinder of revolution. The re-

volving side AB is the generatrix of the surface,

and the circumference AA'A" (or BB'B") is the

directrix. This is the only cylinder treated in

Elementary Geometry, and is usually meant

when the word Cijlinder is used without specify-

ing the kind of cylinder. '"•a- 269.

682. The Axis of the cylinder is the fixed side of the rectan-

gle. The side of the rectangle opposite the axis generates the

Convex Surface ; while the other sides of the rectangle, as

OA and CB, generate the Bases, which in the cylinder of revo-

lution are circles. Any line of the surface corresponding to some

position of the generatrix is called an Element of the surface.

583. Any section of a cylinder of revolution made by a plane

parallel to its base is equal to its base, since such a section would

be a circle with a radius equal to OA.
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584. A Right Cylinder is one whose elements are perpen-

dicular to its base. In such a cylinder any element is equal to

the axis. A Cylinder of Revolution (581) is right.

685. A prism is said to be inscribed in a cylinder, when the

bases of the prism are inscribed in the bases of the cylinder, and

the edges of the prism coincide with elements of the cylinder.

PROPOSITION IX.

586. Theorem.—The area of the convex surface of a

cylinder of revolution is equal to the product of its axis

into the circumference of its base, i. e., 277RH, H being the

axis and R the radius of the base.

Demonstration.

Let AD be a cylinder of revolution, whose axis HO = H^ and the

radius of whose base is OB = It,

Then is the area of its convex surface ZnliH.

Let a right prism, with any regular polygon for

its base, be inscribed in the cylinder, as h-ahcdef.

The area of the lateral surface of the prism is

HO (= Kb) into the perimeter of its base, i. e.,

Y\Oy.(ah^'l)c-\-cd+ de + ef-\-fa).

Now, bisect the arcs a5, &c, etc., and inscribe a

regular polygon of twice the number of sides of the

preceding, and on this polygon as a base construct

the right inscribed prism with double the number of

faces that the first had. The area of the lateral sur-

face of this prism is

HO X the perimeter of its base.

In like manner, conceive the operation of inscribing right prisms with

regular polygonal bases continually repeated ; it will always be true that

the area of the lateral surface is equal to

HO X the perimeter of the base.

Fig. 270.
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By continually increasing the number of the sides of the inscribed

polygon in this manner, the perimeter of the polygon may be made to

differ from the circumference by less than any assignable quantity, i. e.,

by an infinitesimal, which is therefore in comparison with the perimeter

(341), and the prism of an infinite number of faces is to be considered as

the cylinder.

Therefore, the area of the convex surface of the cylinder is HO into

the circumference of the base.

Finally, if E is the radius of the base, 27ri2 is its circumference. This

multiplied by H, the altitude, i. e., Hx %-R, or 'inRH, is the area of the

convex surface of the cylinder, q. e. d.

PROPOSITION X.

587. Theorem.—Rectangular parallelopipeds are to

eoAih other* as the products of any three adjacent edges.

Demon^stration.

Let the adjacent edges of one rectangular parallelopiped, P, be three

lines, which we will call A, B, and C^ and of another, Q, the three lines

a, bf c.

Then ^ = ^^^4^-
Q axoxc

For Aj jP, C, a, 5, and c are at least commensurable by an infinitesimal

unit. Let the common measure of the edges be i ; and let it be contained

in A m times, in ^ n times, in Cp times, in a ^ times, in 5 r times, and in

e 8 times, so that ABC
a ^ J c

g = T , - r = T , and « = t •

Now let A and 5 be the sides of the rectangular base of P, and G its

altitude, and a, 5, and c corresponding edges of Q. The base of P may be

conceived as divided into mn units of surface. If upon each of these we
conceive a cube described, there will be mn such cubes. Now, of these

layers of cubes there will be p in the entire parallelopiped P. Hence P
will be composed of mnp equal cubes. In like manner, Q may be shown

* This means that their volumes are to each other.
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to be composed of qr* equal cubes, each equal to one of the mnp cubes

which compose P.

P mnp

and substituting their values for w, /i, 2*1 ?, ^% and s, we have

- - X -
P t i» AxBxG „

^ = -^
i:

=
J. Q- E- J^-

O a b c axo X.C

V X T X T
I I t

PROPOSITION XI.

588. Theorem.—The volume of a rectangular paral-

lelopiped is equal to the product of its three adjacent

edges.

Demonstration.

Let P be any rectangular parallelopiped whose adjacent edges are

Af Bf and C, and let Q be the proposed unit of measure, whose edges

are each I.

Then, by the last proposition,

P _ Aj<B^G
Q "" 1x1x1 '

or, P z= {AxByC)yQ

Thus, P contains the unit Q AxBx C times. Hence, AxBx G is

the volume of P. q. e. d.

589. Corollary 1.

—

The volume of a cube is the third

power of its edge,

590. Scholium.—This fact gives rise to the term cube, as used in

arithmetic and algebra, for " third power.'*

591. Corollary 2.

—

The volum^e of a rectangular par-

allelopiped is equal to the product of its altitude into the

area of its base, the linear unit being the same for the

measure of all its edges.

* For other demonstrations see Appendix.
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PROPOSITION XII.

692. Theorem.—Tlie volume of amj prism, or of any
solid whose plane sections parallel to the base are all equal

to the base, is equal to that of a rectangular pardUelopipecl

having an equivalent base and the same altitude, and
hence is equal to the product of its base into its altitude.

Demonstration.

Let Q be any prism or solid whose plane sections parallel to its base

are equal to its base, and P a rectangular parallelepiped of the same

altitude, and whose base li = B', the base of the first solid.

Then is volume Q = volume P.

If Q be a prism, any plane section parallel to its base is equal to its

base (?) ; hence the case is the same whether Q be a prism or any other

solid having its plane sections parallel to its base equal to its base.

Now conceive two planes to start from coincidence with B and B* at

the same time, and move upward at the same rate, generating the solids

P and Q. As these sections are always equivalent to each other, since

each is constantly equal to /? or 5', they generate equal volumes in equal

times, and by reason of the equal altitudes of the two solids, both

volumes are generated in the same time. Hence the two volumes are

equivalent, q. e. d.

593. Corollary 1.

—

The volume of a right prism is

equal to the product of its edge into its base.

594. Corollary 2.—Prisms of the same altitude are to

each other as their bases ; and prisms of the sam^e or equiv-

alent bases are to each other a§ their altitudes ; and, in

general, prisrns are to each other as the products of their

bases and altitudes.
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PROPOSITION XIII.

696. Theorem.—The volume of a cylinder of revolu-

tion is equal to the product of its base and altitude, i. e.,

ttR^H, H being the altitude and R the radius of the base.

Demonstration.

By (592) the volume of sucli a cylinder is equal to the product of its

base into its altitude, since all plane sections parallel to its base are equal

thereto (583).

But the base is a circle whose radius is i2, the area of which is ttR^ (?).

Hence the volume of the cylinder is ^x TTJS^ or TrijJ^fi; q. e. d.

596. Corollary.—The volume of any cylinder is equal

to the product of its base into its altitude.

This can be demonstrated in a manner altogether analogous to the

case given in the proposition.

697. Similar Solids are such as have their corresponding

solid angles equal and their homologous edges proportional.

698. Similar Cylinders of revolution are such as have

their altitudes in the same ratio as the radii of their bases.

699. Homologous Edges of similar solids are such as

are included between equal plane angles in corresponding faces.

Illustration.—The idea of similarity in the case of solids is the

same as in the case of plane figures, viz., that of likeness of form. Thus,

one would not think such a cylinder as one joint of stovepipe similar to

another composed of a hundred joints of the same pipe. One would be

long and very slim in proportion to its length, while the other would not

be thought of as slim. But, if we have two cylinders the radii of whose

bases are 2 and 4, and whose lengths are respectively 6 and 13, we readily

recognize them as of the same shape : they are similar.
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PROPOSITION XIV.

600. Theorem,—The altitudes of two similar prisms

are to each other as any two homologous edges, and the

areas of corresponding faces are to each other as the

squares of any two homologous edges, or as the squares of
the altitudes.

Demonstration.

Let P and /> be any two similar prisms, 11 and h their altitudes, Ka
and k'a' two homologous edges, and A6 and Mb' two corresponding

faces.

Then is
H Ha
T- = jTi > or as aTiy other two homologouB edges

:

and
Aft

A'6'

Aa H'
> / ,i= -^ ' *• *M as the squares of any
A' a'*

h^
n .7

other two homologous edges, or as the squares of the altitudes.

From the homologous vertices a and a' let fall the perpendiculars a\

and a' I', and draw Al and AT.

a\ = H,m(\a'\' = hO).

Now, since the prisms are

similar, they may be so placed

that their homologous edges

wHl be parallel ; hence, let AB

be parallel to A'B', AE to A'E',

and ^A to a'A'. Then is al

parallel to a'!', and Al to AT,

and the triangles aAl and a'AT
are similar.

Whence we have

H
h

Aa
k^a"

Fig. 271.
or as any other two homolo-

gous edges, since by definition

any two homologous edges bear the same ratio. Q. e. d.
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Again, since the corre-

sponding faces Kb and A'^'

have their homologous sides

proportional (597), and their

homologous angles, as aAB and

a'A'B', equal, being the ho-

mologous facial angles of equal

triedrals, the faces are similar

plane figures, and

ka IP

or as the squares of any two

homologous edges, q. b. d.

Fig. 271.

601. Corollary.—Tlie corresponding faces of any two

similar solids are to each other as the squares of any two

homologous edges of the solids.

PROPOSITION XV.

602. Theorem.—The lateral surfaces ofsimilar prisms

are to each other as the squares of any two homologous

edges, or as the squares of the altitudes of the prisms.

Demonstration.

Let Af B, C, I>, etc., and a, b, c, d, etc., be the corresponding

faces of two similar prisms, and M and in any two homologous edges,

and H and h the altitudes.

By the last proposition,

A
a
" Jf2 B M' CM' D

ce,
A_B_G_
a ~

b c
—

, etc. = -—^

,

d VI-

M^
etc.
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and, by coiuposition,

a + 6 + c + rf, etc.
~ m^ ~

h^ ^^' ^•^^^

603. Corollary.—The entire surfaces of any two simi-

lar solids are to each other as the squares of any two

homologous edges.

PROPOSITION XVI.

604. Theorem.—The volumes of similar prisms are to

each other as the cubes of their homologous edges, and as

the cubes of their altitudes.

Demonstration.

Let V and v be the volumes of any two similar prisms, M and m
any two homologous edges, and ^ and h their altitudes.

Then is -=-: = ^'-

Let B and h be the bases of the prisms ; whence their volumes are

5xJy and hxh respectively (592).

By (600),
B ^M^^H^
b ~ W ~

A^

Bat f=-=f(')-h m h ^
^

Multiplying, -r-T- ^ — - -^ ^ Ti' Q. E. D.
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PROPOSITION XVII.
605. Theorem.—The convex surfaces of similar cylin-

ders of revolution are to each other as the squares of their

altitudes, and as the squares of the radii of their bases.

Demonstration.

Let H^rxA h be the altitudes, and R and r the radii of the bases of

two similar cylinders.

The convex surfaces are 27ri2^and ^tttK (586).

T^ 2nRH RH R H
•Now, ——- = —- = - X ^ .

2irrA rh t h

By hypothesis, — = — •

Whence, by substitution, we have

27rrh ~ h?
'

, 2itRh m
and ——~ - —• Q. E. D.

2nrh T^

PROPOSITION XVIII.

606. Theorem.—The volumes of similar cylinders of
revolution are to each other as the cubes of their altitudes,

or as the cubes of the radii of their bases.

Demonstration.

Let H and fi be the altitudes of two similar cylinders of revolution,

M and r the radii of their bases, and V and v their volumes.

V H^ R^
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For, by (595), V = itHR',

and V = nhr^.

Hence, — = —ir-r — ^tt

and, since - = -(?)

we have, by substitution, — = — = -—. q. e. D.

607. Scholium.—It is a general truth, that the surfaces of similar

solids, of anyform^ are to each other as the squares of homologous lines;

and their volumes are as the cubes of such lines. These truths will be

further illustrated in the following section, but the methods of demon-

stration will be seen to be the same as used in this.

EXERCISES.
1. A farmer has two grain bins which are parallelo-

pipeds. The front of one bin is a rectangle 6 feet long by 4 high,

and the front of the other a rectangle 8 feet long by 4 high.

They are built between parallel walls 5 feet apart. The bottom

and ends of the first, he says, are " square " (he means,* it is a

rectangular parallelopiped), while the bottom and ends of the

other slope, i. e., are oblique to the front. What are the rela-

tive capacities of the bins ?

2. How many square feet of boards in the walls and bottom

of the first bin mentioned in Ex. 1 ?

3. An average sized honey bee's cell is a right hexagonal

prism, .8 of an inch long, with faces ^ of an inch wide. The

width of the face is always the same, but the length of the cell

varies according to the space the bee has to fill. Are honey bees*

cells similar ? Is a honey bee's cell, of the dimensions given

above, similar to a wasp's cell, which is 1.6 inches long, and

whose face is .3 of an incli wide? What are the relative capaci-

ties of the wasp's cell and the honey bee's?
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4. How many square inches of sheet iron docs it take to make

a joint of 7-inch stovepipe 2 feet 4 inches long, allowing an inch

and a half for making the seam ?

5. A certain water-pipe is 3 inches in diameter. How much
water is discharged through it in 24 hours, if the current flows

3 feet per minute ? How much through a pipe of twice as great

diameter, at the same rate of flow ?

6. What is the ratio of the length of a hogshead holding 125

gallons, to the length of a keg of the same shape, holding

8 gallons ?

7. What are the relative amounts of cloth required to clothe

three men of the same form (similar solids), one being 5 feet

high, another 5 feet 9 inches, and tlic other 6 feet, provided they

dress in the same style? If the second of these men weighs

156 lb., what do the others weigh

?

8. If a man 5J feet high weighs 160 lb., and a man 3 inches

taller weighs 180 lb., which is the stouter in proportion to his

height ?

9. I have a prismatic piece of timber, from which I cut two

blocks, both 5 feet long measured along one edge of the stick

;

but one block is made by cutting the stick square across (a right

section), and the other by cutting both ends of it obliquely,

making an angle of 45° with the same face of the timber. Which

block is the greater ? Which has the greater lateral surface ?

10. How many cubic feet in a log 12 feet long and 2 feet and

5 inches in diameter ? How many square feet of inch boards

can be cut from such a log, allowing one-quarter for waste in

slabs and sawing ?

11. How many square feet of sheet copper will it take to line

the sides and bottom of a cylindrical vat (cylinder of revolution)

6 feet deep, if the diameter of the bottom is 4 feet? How many
barrels does such a vat contain ?

12. What are the relative capacities < - of rovolntion

of the same diameter, but of different len.. \'5..
< of those

of the same length, but of different diamuttrs
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^irCTiOH lY,

OF PYRAMIDS AND CONES.

609. A Pyramid is a solid having a polygon for its base,

and triangles for its lateral faces. If the base is also a triangle,

it is called a triangular pyramid, or a tetraedron (i. e., a solid with

four faces). The vertex of tlie polyedral angle formed by the

lateral faces is the Vertex of the pyramid.

610. The Altitude of a pyramid is the perpendicular dis-

tance from its vertex to the plane of its base.

611. A Right Pyramid is a pyramid whose base is a regu-

lar polygon, and the perpendicular from whose vertex falls at

the centre of the base. This perpendicular is called the axis,

612. A Frustum of a pyramid is a portion of the pyramid

intercepted between the base and a plane parallel to the base.

If the cutting plane is not parallel to the base, the portion inter-

cepted is called a Truncated pyramid.

613. The Slaut Height of a right pyramid is the altitude

of one of the triangles which form its faces. The Slant Height

of a Frustum of a right pyramid is the portion of the slant height

of the pyramid intercepted between the bases of the frustum.

Fig. 272.

Illustrations.—The student will be able to find illustrations of the

definitions in the above figures.
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614. A Conical Surface is a surface traced by a line

which passes througli a fixed point, while any other point traces

a curve. The line is the Generatrix, and the curve the Direc-

trix. The fixed point is the Vertex. Any line of the surface

corresponding to some position of the generatrix is called an

Element of the surface.

615. A Cone of Revolution is a solid generated by the

revolution of a right-angled triangle around one of its sides,

called the Axis. The hypotenuse describes the Convex Surface

of the cone, and corresponds to the generatrix in the preceding

definition. The other side of tlie triangle describes the Base.

This cone is right, since the perpendicular (the axis) falls at the

centre of the base. The Slayit Height is the distance from the

vertex to tlie circumference of the base, and is the same as the

hypotenuse of the generating triangle.

616. The terms Frustum and Truncated are applied to

the cone in the same manner as to the pyramid.

617. A pyramid is said to be Inscribed in a cone when the

base of the pyramid is inscribed in the base of the cone, and the

edges of the pyramid are elements of the surface of the cone.

The two solids have a common vertex and a common altitude.

618. If the generatrix be considered as an indefinite straight

line passing through a fixed point, the portions of the line on

opposite sides of the point will each describe a conical surface.

These two surfaces, which in general discussions are considered

but one, are called Nappes. The two nappes of the same cone

are evidently alike.

Illustration. —In Fig, 273, (a) represents a conical surface which

has the curve ABC for its directrix^ and SA for its generatrix. The nu-

merals indicate the successive positions of the point A, as it passes around

the curve, while the point S remains fixed, (b) represents a Gorie of Rev-

olution^ or a right cone with a circular base. It may be considered as

generated in the general way, or by the right-angled triangle SOA revolv-

ing about SO as an axis. SA describes the convex surface, and OA the
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Fig. 273.

base. The figure (c) represents the Frustum of a cone, the portion above

the plane abc being supposed removed. Figure {d) represents the two

Nappes of an oblique cone.

PROPOSITION I.

619. Theorem.—Any section of a pyramid made by a
plane parallel to its base is a polygon similar to the base.

Demonstratiox.

Let ahcde be a section of the pyramid

S-ABCDE made by a plane parallel to ABODE.

Then is dbaJe similar to ABODE.
Since AB and ab are intersections of two

parallel planes by a third plane, they are paral-

lel (0. So also Ic is parallel to BO, cd to OD,
etc. Hence, angle 5 = B, c = 0, etc. (?), and the

polygons are mutually equiangular. Again,

ab Sb , be Sb

AB-SB- ""^ Be = is<^)-
Fig. 274.

Hence
(?)•

c^ _ bc^ a5 _ AB
AB ~ BO ' ^^ 6c ~ BC

In like manner, we can show that

bc_
ed~ CD'

Therefore, dhcde and ABODE are mutually equiangular, and have
tlu'ir corresponding *tles proportional, and are consequently similar.

Q. E. D.

etc.
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PROPOSITION II.

620. Theorem.—// two pyramids of equal altitudes

are cab by planes equally distant from and parallel to

their bases, the sections are to each other as the bases.

Demonstration^. ^

Let S-ABC and S'-A'B'C'D'E' be two pyramids of the same altitude,

cut by the planes abc and a'b'dd'e' , parallel to and at equal distances

from their bases.

Then is
abc ABC

<
a'h'c'd'i ABODE'

For, conceive the bases in the

same plane. Let SP and S'P' be the

equal altitudes, and Sp = S'p' the

distances of the cutting planes from

the vertices.

Conceive a plane passing through

the vertices parallel to the plane of

the bases. This plane, together with

the plane in which the sections lie,

and that in which the bases lie, make

three parallel planes which cut the

lines SA, SB, S'A', S'B', SP, and S'P',

whence
SB SP _ S^B

S6'
" Sp~ S'V

g. 275.

ST'
S'p'

Also, since the planes ASB and A'S'B' are cut by parallel planes in

AB, (il, A'B', and a'V, ab is parallel to AB, and a'h' to A'B' ; whence.

Now

and

AB SB
ab ~ S6

'

A'B' SB'

ABC
abc ~ ^' ^'^ -

S^''
^

^'

A'B'C'D'E

a'h'c'd'e'

:' AM3'' s^'
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Hence, by equality of ratios,

269

ABC A'B'C'D'E' ahc—r- = —,., ,,,-r, or
aJbc ah'cde

ABC
a'h'c'd'ef A'B'C'D'E'

(?). Q. E. D.

621. Corollary.—// two pTjramids having equivalent

bases and equal altitudes are cut by planes parallel to and
equidistant from their bases, the sections are equivalent.

PROPOSITION III.

622. Theorem.—The area of the lateral surface of a
right pyramid is equal to the perimeter of the base multi-

plied bij one-half the slant height.

Demonstration.

The faces of such a pyramid are equal isosceles tri-

angles (?), whose common altitude is the slant height of

the pyramid (?).

Hence, the area of these triangles is the product of

one-half the slant height into the sum of their bases. But

this sum is the perimeter of the base.

Hence the area is equal to the perimeter of the base

multiplied by one-half the slant height, q. e. d. Fig. 276.

623. Corollary.—The area of the lateral

surface of the frustum of a right pyrajnid is

equal to the product of its slant height into

half the sum, of the perimeters of its bases.

The proof is based upon (350) and definitions.

/<w^

Fig. 277.
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PROPOSITION IV.

624. Theorem.—The area of the convex surface of a
cone of revolution (a j^ight cone with a circular base) is

equal to the product of the circumference of its base and
one-half its slant height, i. e., -nRH', R being the radius of

the base, and H' the slant height.

Demonstration^.

In the circle which forms the base of the cone,

conceive a regular polygon inscribed, as abcdef. Join-

ing the vertices of the angles of this polygon with the

vertex of the cone, there will be constructed a right

pyramid inscribed in the cone. Now, if the arcs sub-

tended by the sides of this polygon be bisected, and

these are again bisected, etc., and at every step a right

pyramid is conceived as inscribed, it will always remain

true that the lateral surface of the pyramid is the pe-

rimeter of its base into half its slant height.

But, as the number of faces of the pyramid is in-
'^'

creased, the perimeter of the base approaches the circumference of the

base of the cone as its limit, and hence the slant height of the pyramid

approaches the slant height of the cone, and the lateral surface of the

pyramid approaches the convex surface of the cone as their limits, and all

reach their limits simultaneously.

Therefore, at the limit we still have the same expression for the area

of the convex surface, that is, the circumference of the base multiplied

by half the slant height.

Finally, if E is the radius of the base, its circumference is 2;r^, and

if being the slant height, we have for the area of the convex surface

2jR X ^H\ or ttBH'. q. e. d.

625. Corollary 1.

—

The area of the convex surface of a
cone is also equal to the product of the slant height into

the circumference of the circle parallel to tJie base, and
midway between the base and vertex.

This follows directly from the fact that the radius of the circle mid-

way between the base and vertex is one-half the radius of the base, i. e.,

^B (?), whence its circumference is tt/?. Now, tvRxII' is the area of the

convex surface, by the proposition.
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LLAEY '^.— rhe area of the convej&surfaceof

the fru of a cone is equal to the product of its slant

licight r%to half the sum of the circumferences of its

bases; i e., T{R-\-r)jr. R and r being the radii of its

bases, and M' its slant height.

From the corresponding property of the frustum of a pyramid, the

student will be able to deduce the fact that ^ {2nB-\-%Tn') H' or tt {H-\-r) IT

is the area of this surface by the same line of argument used in the

demonstration of the main theorem.

627. Corollary 3.

—

The area of the convex surface of
the frustum of a cone is equal to the product of its slant

lieight into the circumference of the circle midway between

the bases.

The radius of the circle midway between the bases is ^ (/•+/?), whence

its circumference is 7r(r+ i2). Now, Tr{r-\-R)xH' is the area of the con-

vex surface of the frustum, by the preceding corollary.

PROPOSITION V.

628. Theorem. — Two pyram^ids having equivalent

bases and the same altitudes are equivalent, i. e., equal in

volume.

First Demonstration.

Let S-ABCD and S'-A'B'C'D'E' be two pyramids having the same
altitudes, and base ABCD equivalent to base ABODE', /. e,, equal in

area.

Then is pyramid S-ABCD
equivalent to S'-A'B'C'D'E', L ^.,

equal in volume.

For, conceive the bases to be

in the same plane, and a plane to

start from coincidence with the

plane of the bases, and move to-

ward the vertices, remaining all

the time parallel to the bases. Fig. 279.
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Now each of the sections of the pyramids made by this plane may be

conceived as a varying polygon which generates its respective pyramid.

And as these polygons are always equivalent, and move at tbe same rate,

they generate equal volumes in equal times. Moreover, as the bases of

the pyramids are in the same plane, and their altitudes are equal, the

polygons generate their respective pyramids in the same time. Hence

these volumes are equal, q. e. d.

Second Demonstkation.

Consider the pyramids divided into an infinite number of laminae of

equal but infinitesimal thickness, as mc, m'c\ parallel to the bases. Now
each lamina in one will have a corresponding lamina in the other at the

same distance from the base since the laminae are of equal thickness, and

hence equivalent to it.

Hence the pyramids are composed of an equal number of equivalent

laminae, and are consequently equivalent, q. e. d.

PROPOSITION VI.

629. Theorem.—The volume of a triangular pyramid
is equal to one-third the product of its base and altitude,

"

>i Demonstration^.

Let S-ABC be a triangular pyramid, whose altitude is H,

Then is the volume equal to

^H X area ABC.

For, through A and B draw Aa and B&

parallel to SC; and through S draw Sa

and S& parallel to CA and CB, and join a

and J); then Sa6-ABC is a prism with its

base equal to the base of the pyramid.

Now, the solid added to the given pyr-

amid is a quadrangular pyramid with abB^

as its base, and its vertex at S.

Divide this into two triangular pyra- '^'9- 280.

mids by drawing aB and passing a plane through SB and aE. These tri-

angular pyramids are equivalent, since they have equal bases, aAB and

abS, and a common altitude, the vertices of both being at S.
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Again, S-«JB may be considered as having abS (equal to ABC) as its

base, and the altitude of the given pyramid (equal to the altitude of the

prism) for its altitude, and hence as equivalent to the given pyramid.

Thus the prism KBCdbS is divided into the three equivalent pyramidsi,

S-ABC, B-a&S, and S-«BA.

Hence, the pyramid S-ABC is one-third the prism Sa5-ABC, which

has the same base and altitude.

But the volume of the prism is

H X area ABC.

Therefore the volume of the pyramid S-ABC is

^H X area ABC. Q. e. d.

630. Corollary 1.

—

The volume of any
pyramid is equal to one-third the product

of its base and altitude.

Since any pyramid can be divided into triangular

pyramids by passing planes through any one edge, as

SE, and each of the other edges not adjacent, as SB

and SC, the volume of the pyramid is equal to the sum

of the volumes of several triangular pyramids having

the same altitude as the given pyramid, and the sum

of whose bases is the base of the given pyramid.
Fig. 281.

631. CoROLLART 2.

—

Pyramids having equivalent bases

are to each other as their altitudes ; such as have equal

altitudes are to each other as their bases ; and^ in general,

pyramids are to each other as the products of their bases

and altitudes.

Exercise.—A Regular Tetraedron is a triangular pyr-

amid whose base is an equilateral triangle and each of whose

lateral faces are equal to the base. What is the volume of such

a tetraedron whose edge is 1 inch ? Ans. iVV ^ cu- in.

What is the entire area of the surface of this tetraedron ?
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PROPOSITION VII.

632. Theorem,—The volume of the frustum of a tri-

angular pyramid is equal to the volume of three -pyramids

of the same altitude as the frustum, and whose bases are

the upper base, the lower base, and a mean proportional

between the two bases of the frustum.

Demonstration.

Let M&c-ABC (Fig. 282) be the frustum of a triangular pyramid.

Through db and C pass a plane cutting off the pyramid 0-abc. This

has for its base the upper base of the frustum, and for its altitude the

altitude of the frustum.

Again, draw Aft, and pass a plane through

Aft and ftC, cutting off the pyramid ft-ABC,

which has the same altitude as the frustum,

and for its base the lower base of the frustum.

There now remains a third pyramid, ft-AC«,

to be examined.

Through ft draw ftD parallel to «A, and

draw DC and «D.

The pyramid D-ACa is equivalent to

ft-ACrt, since it has the same base and the same

altitude (?). But the former may be considered

as having ADC for its base, and the altitude of the frustum for its altitude,

i. e., as pyramid «-ADC.

We are now to show that ADC is a mean proportional between ahc

and ABC.

Fig. 282,

ABC
abc

AEr ^1
ad"

(?).

Also, J—

—

ABC
ADC

AB
AD (?); or

abc;; ^ AT
ADC' ad'

(?).

Tj ,., „ ,. ABC ABCBy equality of ratios, —j— = 5

;

'-''-
ADC'abc

whence, ADC" = aftcxABC

i.e.^ ADC is a mean proportional between the upper and lower bases of

the frustum.

Hence the volume of the frustum is equal to the volume of three

pyramids, etc. q. e. d.
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633. Corollary.—The volume of the frustum of any
pyramid is equal to the volume of three pyramids hav-

ing the same altitude as the frustum, and for bases, the

upper base, the lower base, and a mean proportional

between the two bases of the frustum.

For, the frustum of any pyramid is equivalent to the corresponding

frustum of a triangular pyramid of the same altitude and an equivalent

base (?) ; and the bases of the frustum of the triangular pyramid being

both equivalent to the corresponding bases of the given frustum, a mean
proportional between the triangular bases is a mean proportional between

their equivalents.

PROPOSITION VIII.

634. Theorem.—The volum^e of a cone of revolution is

equal to one-third the product of its base and altitude

;

i. e. ,
^-n R^H, R being the radius of the base and H the alti-

tude.

Demonstration.

The volume of a pyramid is equal to one-third the product of the

base and altitude, and the cone being the limit of the pyramid, the vol-

ume of the cone is one-third the product of its base and altitude.

Now, R being the radius of the base of a cone of revolution, the

base (area of) is tt^, whence ^Tr^-fiTis the volume, -S" being the altitude.

Q. E. D.

636. Corollary 1.

—

The volum^e of any cone is equal

to one-third the product of its base and altitude.

636. Corollary 2.

—

The volume of the frustum of a

cone is equal to the volum^e of three cones having the

same altitude as the frustum,, and for bases, the upper

base, the lower base, and a mean proportional between

the two bases of the frustum.

The truth of this appears from the fact that the frustum of a cone is

the limit of the frustum of a regular inscribed pyramid.
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PROPOSITION IX.

637. Theorem.—The lateral surfaces ofsimilarpyra-
mids are to each other as the squares of their homologous
edges, or of their altitudes.

Demokstration.

Let A, A', A", etc., and a, a\ a", etc., be homologous sides of the

bases of two similar pyramids, E, E', E", etc., and e, e', e", etc.,

homologous lateral edges, H and h the altitudes of the pyramids, and

let S and &* be the lateral surfaces.

C A2 A/2 Kll-l

_ ^ _ ^' _ ^' f~
e" ~ e" ~ e'"" '

'

Since the pyramids are similar, the corresponding facial angles are

equal, and the homologous edges proportional (597, 532), hence the

bases are similar polygons, and the corresponding lateral faces are simi-

lar triangles.

Now let F, F', F", etc., and/,/',/", etc., be the corresponding lateral

faces, of which triangles. A, A', A", etc., and «, a', a'\ etc., are the bases

respectively, and E, E', E", etc., and e, e', e", etc., other homologous sides.

A A' A" F F' F" U™™ * = * = *"
•
^'<=- = J = 7 = ?-' '^*<=-' = " (')

A* A'"^ A"^ E^ E" E'" H^
^'^'^"'^^ a'=^ = ^' "^^ = ¥ = ^ = 7^' «'<=•' = F (^>

F A^ F' A'2 F" A"'
Moreover, -^=^, ^ = - _ = _, , etc.

Whence ^ + ^' + ^"^ ^'^- _ « _ A^ _ A'« _ A'"^

"^
i^

"^ ^ "^ e^ '

®*^-' ""
hF'

^^^'^'

638. Corollary.—The lateral surfaces ofsimilar right
pyramids are to each other as the squares of any homolo-
gous lines, as slant heights, altitudes, or of correspond-
ing diagonals of the bases..
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PROPOSITION X.

639. Theorem. — The convex surfaces of similar

cones of revolution are to each other as the squares of

their slant heights, the radii of their bases, or their

altitudes; i. e., as the squares of any two homologous

dimensions.

Demonstration.

Let H' and h' be the slant heights of two similar cones of revolution,

R and r the radii of their bases, and H and h their altitudes.

Their convex surfaces are ttRH' and TrrA'.

Now, since the cones are similar,

r h> ^' ''

Multiplying the terms of this proportion by the corresponding

terms of

vH' _ E'
ttA'

~
h'

'

. irRH' H'^
we have —^7- = -^7^ •

Hence the convex surfaces are as the squares of their slant heights.

Q. E. D.

But, as _=_(?) = _,

nRH^ _^ ^H*
Trrh! ~ r^

~ h*

That is, the convex surfaces are to each other as the squares of the

radii of the bases, or as the squares of the altitudes, q. e. d.
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PROPOSITION XI.

640. Theorem,—The volumes of similar pyramids
are to each other as the cubes of their homologous dimen-
sions.

Synopsis of Demonstration.

Let A and a be homologous sides of the bases of two similar pyra-

mids, B and b their bases, and J^and h their altitudes.

We have
B
b = f«'

W
P
_A

a =>
\BxH A^

~ a? = f«- Q. B. D.

PROPOSITION XII.

641. Theorem.—The volumes of similar cones are to

each other as the cubes of their altitudes, or as the cubes

of the radii of their bases.

Synopsis of Demonstration.

Let J? and r be the radii of their bases, and ^Tand h their altitudes.

We have ^ ^
'M^'^'

•• ^Trr^xh ~ h^^''

B?
or =^- QE.D.
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OF THE REGULAR POLYEDRONS.

642. A Polyedron is a solid bounded by plane surfaces.

A Regular Convex Polyedron is a polyedron whose faces are all

equal regular polygons, and each of whose solid angles is convex

outward, and is enclosed by the same number effaces.

PROPOSITION XIII.

643. Theorem.— There are five and only five regular

convex polyedrons, viz.

:

The TsTRAEDRONf whose faces are four equal equilat-

eral triangles

;

The Hexaedrox, or Cube, whose faces are six equal

squares

;

The OcTAEDRON, whose faces are eight equal equilateval

triangles

;

The DoDECAEDRON, whose faces are twelve equal regular

pentagons; and

The IcosAEDRON, whose faces are twenty equal equilat-

eral triangles.

Demonstration.

We demonstrate" this proposition by showing— Ist, that such solids

can be constructed ; and 2d, that no others are possible.

The Regular Tetraedron.—Taking three equilat-

eral triangles, as ASB, ASC, and BSC, it is possible to

enclose a solid angle, as S, with them, since the sum
of the three facial angles is (what ?) (555).

Then, since AC = AS = CB (?), considering ACB
the fourth face, we have a regular polyedron whose

four faces are equilateral triangles. ^'9- ^^^-

N
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The Regular Hexaedron op Cube.—This is a familiar solid, but for

purposes of uniformity and completeness we may conceive it constructefi

as follows: Taking three equal squares, as ASCB,
CSED, and ASEF, we can enclose a solid angle, as S,

with them (?).

Now, conceive the planes of CB and CD, AB and

AF, EF and ED produced. The plane of CB and CD
being parallel to ASEF (?), will intersect the plane of

EF and ED in HD parallel to FE (?). In like manner,

FH can be shown parallel to ED, BH to CD, and HD to

BC. Hence the solid has for its faces six equal squares. ^^^' ^^

The Regular Octaedron.—At the intersection, p,

of the diagonals of a square, ABCD, erect a perpendic-

ular SP to the plane of the square, and making SP =
AP (half of one of the diagonals) draw SA, SD, SC,

and SB.

Making a similar construction on the other side of

the plane ABCD, we have a solid having for faces eight

equal equilateral triangles (?). Fig. 185.

The Regular Dodecaedron:—Taking twelve equal regular pentagons,

we may group them in two sets of six each, as in the figure. Thus,

around we may place five, forming five triedrals at the vertices of 0.

These triedrals are possible,

since the sum of the facial

angles enclosing each is 3f
righ! angles (?)

—

i.e. , between

and 4 right angles (555).

In like manner, the other

six may be grouped by

placing five of them about

0'.

XT ' ' ^x.
'''9. 286.

Now, conceiving the con-

vexity of the group in front and the concavity o^ grovip 0', we may place

the two together so as to inclose a solid. Thus, placing A at &, the three

faces 5, 7, 1, will inclose a triedral, since the diedral included by 5 and 1

is the diedral of such a triedral. Then will vertex B fall at c, and a like

triedral will be formed at that point, and so of all the other vertices.

Hence we have a polyedron having for faces twelve equal regular penta-

gons.
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Fig. 287.

The Regular Icosaedron.—Taking twenty equal equilateral triangles,

they can be grouped in two sets, as in the figure, in a manner altogether

similar to the preceding case.

The solid angles in this case are

included by five facial angles

whose sum is 3^ right angles

(:•), which is a possible case

(555). As before, conceiving

the convexity of group in

front, and the concavity of 0',

we can place them together by

placing A at «, thus enclosing

a solid angle with five faces, whence B will fall at J, etc. Thus we obtain

a solid with twenty equal equilateral triangles for its faces.

That there can be no other regular polyedrons than these five is evi-

dent, since we can form no other convex solid angles by means of regular

polygons. Thus, with equilateral triangles (the simplest polygon) we
have formed solid angles with three faces (the least number possible), as

in the tetraedron ; with four, as in the octaedron ; and with five, as in the

icosaedron. Six such facial angles cannot enclose a solfd angle, since

their sum is four right angles (?), and much less can any greater number.

Again, with squares (the next most simple polygon) we have formed

solid angles with three faces, as in the hexaedron, and can form no other,

for the same reason as above. With regular i)entagons we can enclose

only a triedral, as in the dodecaedron, for a like reason. With regular

hexagons we cannot enclose a solid angle (?), and much less with any

regular polygon of more than six sides.

Fig. 288.
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644. Scholium.—Models of the regular polyedrons are easily formed

by cutting the preceding figures from cardboard, cutting half-way through

the board in the dotted lines, and bringing the edges together as the

forms will readily suggest.

PROPOSITION XIV.

645. Theorem.—Any regular polyedron is inscriptihle

and circumscriptible by a sphere.

Outline of Demonstration.

From the centres of any two adjacent faces, as c and

c', let fall perpendiculars upon the common edge, and

they will meet it in the same point o (?). The plane of

these lines will be perpendicular to this edge (?), and

perpendiculars to these faces from their centres, as cS,

c'S, will lie in this plane (?), and hence will intersect at

a point equally distant from these faces (?).

In like manner c"S = c'S, and the point S can be
^'^" ^^^'

shown to be equally distant from all of the faces, and is therefore the cen-

tre of the inscribed sphere.

Joining S with the vertices, we can readily show that S is also the

centre of the circumscribed sphere.

EXERCISES.
646. 1. What is the area of the lateral surface of a right

hexagonal pyramid whose base is inscribed in a circle whose

diameter is 20 feet, the altitude of the pyramid being 8 feet ?

What is the volume of this pyramid ?

2. What is the area of the lateral surface of a right pentago-

nal pyramid whose base is inscribed in a circle whose radius is

G yards, the slant height of the pyramid being 10 yards? What
is the volume of this pyramid ?
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3. How many quarts will a can contain, whose entire height

is 10 inches, the body being a cylinder 6 inches in diameter and

Q^ inches high, and the top a cone? How much tin does it take

to make such a can, allowing nothing for waste and the seams ?

4. If very fine dry sand is piled upon a smooth horizontal

surface, without any lateral support, the angle of slope (i. e., the

angle of inclination of the sloping side of the pile with the plane)

is about 31°. Suppose two circles be drawn on the floor, one

4 feet in diameter and the other 3, and sand piles be made as

large as possible on these circles as bases, no other support being

giyen. What is the relative magnitude of the piles ?

5. In the case of sand piles, as given in the last example, the

ratio of the radius of the base to the altitude of the pile is |.

How many cubic feet in each of the above piles ?

6. The frustum of a right pyramid was 72 feet square at the

lower base and 48 at the upper ; and its altitude was 60 feet.

What was the lateral surface ? What the volume ? [Such a

solid is called a Prismoid.]

7. Find the area of the surface, and the contents of a regular

tetraedron, one of whose edges is 10 inches. What is the diam-

eter of the inscribed sphere ? Of the circumscribed ?

647. A Wedge is a sohd

bounded by three quadrilaterals

and two triangles.

Thus, ABCD is a rectangle, and is

called the Head of the wedge, the two

Irianj^les AED and FBC are the Ends,

and the two trapezoids ABFE and

DCFE are the Sides. The Altitude is

the perpendicular to the head from the Fiq. 290.

edge opposite.

8. The base of a wedge being 18 feet by 9 feet, the edge 20

feet, and the altitude 6 feet, what are the contents ?

Ans. 504 cu. ft.
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OF THE SPHERE.*

648. A Sphere is a solid bounded by a surface every point
in which is equally distant from a point within called the Cejitre.

The distance from the centre to the surface is the Radius,
and a line passing through the centre and limited by the surface

is a Diameter. The diameter is equal to twice the radius.

CIRCLES OF THE SPHERE,

PROPOSITION I.

649. Theorem.—Every section of a sphere made hy a
plane is a circle.

Demonstration.

Let AFEBD be a section of a sphere,

whose centre is 0, made by a plane; then

is the section AFEBD a circle.

For, let fall from the centre a per-

pendicular upon the plane AFEBD, as OC,

and draw CA, CD, CE, CB, etc., lines of the

plane, from the foot of the perpendicular

to any points in which the plane cuts the Fig. 29i.

* A spherical blackboard is almost indispensable in teaching this section

as well as in teaching Spherical Trigonometry. A sphere about two feet in

diameter, mounted on a pedestal, and having its surface slated or painted as

a blackboard, is what is needed. It can be obtained of the manufacturers

of school apparatus, or made in any good turning-shop.
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surface of the sphere. Join these points with the centre, 0, of the

sphere.

Now OA, OD, OB, OE, etc., being radii, are equal; whence, CA, CD,

CB, CE, etc., are equal; i. e., every point in the line of intersection of a

plane and surface of a sphere is equally distant from a point in this

plane. Hence, the intersection is a circle, q. e. d.

650. A circle made by a plane not passing through the centre

is a Small Circle ; one made by a plane passing through the

centre is a Great Circle.

651. Corollary \.—A perpendicidar from the centre

of a sphere upon any small circle pierces the cii'de at its

centre; and, conversely, a perpendicular to a small circle

at its centre passes through the centre of the sphere.

652. A diameter perpendicular to any circle of a sphere is

called the Axis of that circle. The extremities of the axis are

the Poles of the circle.

663. Corollary 2.

—

The pole of a circle is equally dis-

tant from every point in its circumference.

The student should give the reason.

654. Corollary 3.

—

Every circle of a sphere has two
poles, which, in case of a great circle, are equally distant

from every point in the circumference of the circle ; hut,

in case of a small circle, one pole is nearer any point in

the circumference than the other pole is.

655. Corollary 4.

—

A small circle is less a; it.< dis-

tance from the centre of the sphere is greater ; ) enc£ tlie

circle whose plane passes through the centre is th greatest

circle of the sphere.

For, its diameter, being a chord of a great circle, is less as it i

ther from the centre of the great circle, which is also the cenfrr i < .

sphere.

656. Corollary 5.

—

All great circles of the same sphere

are equal (?).
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PROPOSITION II.

667. Theorem.

—

Any great circle divides the sphere

into two equal parts.

DEMOlfSTRATIOlir.

Conceive a sphere as divided by a great circle, i. e., by a plane pass-

ing through its centre, and let the great circle be considered as the base

of each portion. These bases being equal, reverse one of the portions and

conceive its base placed in the base of the other, the convex surfaces

being on the same side of the common base. Since the bases are equal

circles, they will coincide, and since all points in the convex surface of

each portion are equally distant from the centre of the common base, the

convex surfaces will coincide. Therefore, the portions coincide through-

out, and are consequently equal. Q. e. d.

657, a.—A Hemisphere is one of the two equal parts into

which a great circle divides a sphere.

PROPOSITION III.

658. Theorem.—The intersection of any two great cir-

cles of a sphere is a diameter of a sphere.

Demonstration.

The intersection of two planes is a straight line ; and in the case of

the two great circles, as they both pass through the centre of the sphere,

this is one point of their intersection. Hence, the intersection of two

great circles of a sphere is a straight line which passes through the cen-

tre. Q. E. D.

659. Corollary.—The intersections on the surface of a

sphere of two circumferences of great circles are a semi

circumference, or 180°, apart, since they are '^* /..r,v.c//

extremities of a diameter.
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DISTANCES ON THE SURFACE OF A
SPHERE.

660. Distances on the surface of a sphere are always to be

understood as measured on the arc of a great circle, unless it is

otherwise stated.

PROPOSITION IV.

661. Theorem.—The distance, measured on the sur-

face of a sphere, from the pole of a circle to any point in

the circumference of that circle, is the same.

Demonstration.

Let P be a pole of the small circle AEB.

Then are the arcs PA, PE, PB, etc.,

which measure the distances on the surface

of tlie sphere, from P to any points in the

circumference of circle AEB, equal.

For, by (653), the straight lines AP, PE,

PP, etc., are equal, and these equal chords

subtend equal arcs, as arc PA,^rc PE, arc

BB, etc., the great circles of which these

lines are chords and arcs being equal (656).

Thus, for like reasons,
Fig. 292.

arc P'QA = arc P'LE = arc P'RB, etc. q. e. d.

622. Corollary.—The distance from the pole of a great

circle to any point in the circumference of the circle is a
quadrant (a quarter of a circumference).

Since the poles are 180° apart (being the extremities of a diameter),

PAQP' = PELP' = a serai-circumference. But, in case of a great circle,

chord PL = chord P'L (= chord PQ = chord P'Q), whence arc PEL =
arc P'L = arc PAQ = arc P'Q. Hence, each of these arcs is a quadrant.
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663. Scholium.—By means of the facts

demonstrated in this proposition and corollary,

we are enabled to draw arcs of small and great

circles, in the surface of a sphere, with nearly the

same facility that we draw arcs and lines in a

plane. Thus, to draw the small circle AEB (Fig.

292), we take an arc equal to PE, and placing one

end of it at P, cause a pencil held at the other

end to trace the arc AEB, etc. To describe the

circumference of a great circle, a quadrant must

be used for the arc. By bending a wire into an arc of the circle, and

making a loop in each end, a wooden pin can be put through one loop

and a crayon through the other, and an arc drawn as represented in

Fig. 293.

Fig. 293.

PROPOSITION V.

664. Problem.—To pass a circumference of a great

circle through any two points on the surface of a sphere.

Solution.

Let A and B |3e two points on the surface of a sphere, through which

it is proposed to pass a circumference o/a great circle.

From B as a pole, with an arc equal to a quad-

rant, strike an arc on, as nearly where the pole of

the circle passing through A and B lies, as may be

determined by inspection. Then, from A, with

the same arc, strike an arc st intersecting on at P.

Now, P is the pole of the great circle passing

through A and B (?). Hence, from P as a pole, with

a quadrant arc drawing a circle, it will pass

through A and B ; and it will be a great circle,

since its pole is a quadrant's distance from its circumference.

[The student should make this construction on the spherical black-

board.]

Fig. 294.
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PROPOSITION VI.

665. Theorem,—Through any two points on the sur-

face of a sphere, one great circle^ can always he made to

pass, and only one, except when the two points are at the

extremities of the sam^e diameter, in which case an infi-

nite number ofgreat circles can he passed through the two

points.

Demonstration.

This proposition may be considered a corollary

to the preceding. Thus, in general, the two great

circles struck from A and B as poles, with a quad-

rant arc, can intersect in only two points (?), which

are the poles of the same great circle (?).

But, if the two given points were at the extrem-

ities of the same diameter, as at D and C, the arcs

st and m would coincide, and any point in this ^'8- 295.

circumference being takdn as a pole, great circles can be drawn through

D and C.

[The student should trace the work on the spherical blackboard.]

666. Scholium.—The truth of the proposition is also evident from

the fact that three points not in the same straight line determine the

position of a plane. Thus. A, B, and the centre of the sphere, fix the

position of one, and only one, great circle passing through A and B.

Moreover, if the two given points are at the extremities of the same diam-

eter, they are in the same straight line with the centre of the sphere,

whence an infinite number of planes can be passed through them and the

centre. The meridians on the earth's surface afford an example, the poles

(of the equator) being the given points.

667. Corollary.—// two points in the circumference of
a great circle of a sphere, not at the extremities of the

sam^e diameter, are at a quadrant's distance from a point

on the surface, this point is the pole of the circle,

" The word circle may be understood to refer either to the circle proper,

or to its circumference. The word is in constant use in the higher mathe-

matics in the latter sense.

13
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PROPOSITION VII.

668. Theorem.—The shortest distance on the surface

of a sphere, between any two points in that surface, is

measured on the arc less than a semi-circumference of the

great circle which joins them.

Demonstration.

Let A and B be two points in the surface of a sphere, AB the arc of a

great circle joining them, and kiuCn^ any other path in the surface be-

tween A and B.

Then is arc AB less than AmCwB.
Let C be any point in AmCwB, and pass the

arcs of great circles through A and C, and B and

C. Join A, B, and C with the centre of the sphere.

The angles AOB, AOC, and COB form the facial

angles of a triedral, of which angles the arcs AB,

AC, and CB are the measures.

Now, angle AOB < AOC + COB (540)

;

Fig. 296

whence arc AB < arc AC + arc CB (?),

and the path from A to B is less on arc AB than on arcs AC, CB.

In like manner, joining any point in AmC with A and C by arcs of

great circles, their sum will be greater than AC. So, also, joining any

point in CwB with C and B, the sum of the arcs will be greater than CB.

As this process is indefinitely repeated, the path from A to B on the

arcs of the great circles will continually increase, and also continually

approximate the path AmCwB. Hence, arc AB is less than the path

AmCwB. Q. E. D.

669. Corollary.—The least arc of a circle of a sphere

joining any two points in the surface, is the arc less than

a semi-circumference of the great circle passing through

the points; and the greatest arc is the circumference

minus this least arc.
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Thus, let Km^n be any small circle passing

through A and B, and ABD^^C the great circle;

then, as just shown, Ajt>B < A77iB.

Now, circf.*ABDoC > circf. AmB/i (655).

Subtracting the former inequality from the

latter, we have BDoCA > B/iA. Q. e. d.

670. Two arcs of great circles are said

to be perpendicular to each other when

their circles are.

Fig. 297.

• PROPOSITION VIII.

671. Theorem.—If at the middle point of an aro of a
great circle a perpendicular is drawn on the surface of a
sphere, the distances being measin^ed on great circles,

1st. Any p9^^ ^^ ^^^^ perpendicular is equally distant

from the extremities of the arc,

2d. Anij point out of the perpendicular is unequally

distant from the extremities of the arc.

Demonstration".

Let AB be any arc of a great circle, D its middle point, and PD a

perpendicular.

Then is PB = PA, the ares being all arcs of

great circles.

From 0, the centre of the sphere, draw OP,

OD, OB, and OA. The rectangular triedrals

0-PDB and 0-PDA are symmetrically equal (?)

;

whence PB = PA. Q. e. d.

Fig. 298.

Again, let P' be a point out of PD. Pass

arcs of great circles through P' and A, and P' and

B, as P'A, P'B. From P, where one of these

cuts PD, draw the arc of a great circle PB. Then is

P'B < P'P + PB (668),

whence, P'B < P'P + PA (?), and P'B < P'A (?). Q. e. d.
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672. Corollary 1.

—

The perpendicular at the middle
point of an arc contains all the points in the surface of

the sphere which are equally distant from tJJn>e extremities

of the arc,

673. Corollary 2.

—

An arc which has each of two points,

not at the ejotremity of the same diameter, equally distant

from the extremities of another arc of a great circle, is

perpendicular to the latter at its middle point.

This is apparent, since by Corollary 1 such points are in the perpen-

dicular, and two such points with the centre determine a great circle.

PROPOSITION IX.

674. Theorem.—The shortest path on the surface of a
hemisphere, from any point therein to the circumference

of the great circle forming its base, is the arc not greater

than a quadrant of a great circle perpendicular to the

base, and the longest path, on any arc of a great circle, is

the supplement of this shortest path*

Dbmokstration.

Let P be a point in the surface of the hemisphere whose base is

ADCBC, and DPmD' an arc of a great circle passing through P and per-

pendicular to ADCBC.

Then is PD the shortest path on the sur-

face from P to circumference ADCBC, and

P?7iD' is the longest path from P to the cir-

cumference, measured on the arc of a great

circle.

For, the shortest path from P to any point

in circumference ADBC is measured on the

arc of a great circle (?). Now, let PC be any

oblique arc of a great circle. We will show

that Fig. 29!

arc PD < arc PC.
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Produce PD until DP' = PD; and pass a great circle through P'

and C.

Then is the arc PC = arc P'C.

And, since PC + PC > PP',

PC, the half of PC 4- P'C, is greater than PD, the half of PP'. q. e. d.

Secondly, PmD' is the supplement of PD, and we are to show that it

Ml greater than any other arc of a great circle from P to the circumference

ADBC. Let FnC be any arc of a great circle oblique to ADCBC. Pro-

duce C'wP to C. Now CPtiC is a semi-circumference and consequently

equal to DPmD'. But we have before shown that

PD < PC,

and subtracting these from the equals CPnC and DPwD', we have

PwD' > PnC. Q. E. D.

675. Corollary.—From any point in the surface of a
hemisphere there are two perpendiculars to the circumfer-

ence of the great circle which forms the base of the hemi-
sphere; one of which perpendiculars measures the least

distance to that circumference, and the other the greatest,

on the arc of any great circle of the sphere.

SPHERICAL ANGLES.

676. The angle formed by two arcs

of circles of a sphere is conceived as

the same as the angle included by the

tangents to the arcs at the common
points.

Illubtbation.—Let AB and AC be two

arcs of circles of the sphere, meeting at A
;

then the angle BAC is conceived as the same

as the angle B'AC, B'A being tangent to the

circle BADm, and C'A to the circle CAEn. Fio. 300.
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677. A Spherical Angle is the angle included by two

arcs of grmt circles.

Illustration.—BAC is a spherical an-

gle, and is conceived as the same as the

angle B'AC, B'A and C'A being tangents to

the great circles BADF and CAEF. [The stu-

dent should not confound such an angle as

BAC Fig. 800) with a spherical angle.]

Fig. 301.

PROPOSITION X.

678. Theorem.—td spherical angle is equal to the

measicre of the diedral included by the great circles whose

arcs form the sides of the angle.

Demon^stration.

Let BAC be any spherical angle, and BADF and CAEF the great cir-

cles whose arcs BA and CA Include the angle.

Then is BAC equal to the measure of the

diedral C-AF-B.

For, since two great circles interaect in a

diameter (?), AF is a diameter.

Now B'A is a tangent to the circle BADF,

that is, it lies in the same plane and is per-

pendicular to AO at A.

In the like manner, C'A lies in the plane

CAEF and is perpendicular to AO. Hence

B'AC' is the measure of the diedral C-AF-B (?).

Fig. 302.

Therefore the spherical angle BAC, which is the same as the plane

angle B'Ab', is equal to the measure of the diedral C-AF-B. q. e. d.
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PROPOSITION XI

679. Theorem.—// one of two great circles passes

through the pole of the other, their circinriferences inter-

sect at right angles.

Demonstration.

Thus, P being the pole of the great circle

CABm, PO is its axis, and any plane passing

through PO is perpendicular to the plane

CABm. (?).

Hence, the diedral B-AO-P is right, and

the spherical angle PAB, which is equal to the

measure of the diedral, is also right, q. e. d.

Fig. 303.

680. Corollary 1.

—

A spherical angle is measured by

the arc of a great circle intercepted between its sides, and
at a quadrant's distance from its vertex.

Thus, the spherical angle CPA is measured by CA, PC and PA being

quadrants. For, since PC is a quadrant, CO is a perpendicular to PO,

the edge of the diedral C-PO-A, and for the like reason AO is perpendic-

ular to PO. Hence, COA is the measure of the diedral, and consequently

CA, its measure, is the measure of the spherical angle CPA. q. k. d.

681. Corollary 2.

—

The angle included by two arcs of
sm,all circles is the same as the angle included, bi/ two arcs

ofgreat circles passing through the vertex and having the

same .tangents.

Thus, BAC = B AC

For the angle BAC is, by definition, the

same as B'AC, B'A and CA being tangents

to BA and CA. Now, passing planes

through CA, B'A. and the centre of the

sphere, we have the arcs B"A, C'A, and B'A,

C'A tangents to them. Hence, B"AC" is

the same as B'AC, and consequently the

same as BAC. q. e. d. Fig. 304.
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682. Scholium.—To draw an arc of a great circle which

shall he perpendicular to another ; or, what is the same
thing, to construct a right spherical angle.

Let it be required to erect an arc of a great circle perpendicular to

CAB at A. Lay oflFfrom A, on the arc CAB,

a quadrant's distance, as AP', and from P' as

a pole, with a quadrant describe an arc pass-

ing through A. This will be the perpendic-

ular required.

In a similar manner we may let fall a per-

pendicular from any point in the surface,

upon any arc of a great circle. To let fall a

pei-pendicular from P" upon the arc CAB,

from P" as a pole, with a quadrant describe

an arc cutting CAB, as at P'. Then, from P'

as a pole, with a quadrant describe an arc passing through P" and cutting

CAB, and it will be perpendicular to CAB.

Fig. 305

PROPOSITION XII.

683. Problem.

—

To pass the circumference of a small

circle through any three points on the surface of a sphere.

Solution-.

Let A, B, and C be the three points in the surface of the sphere

through which we propose to pass the circumference of a circle.

Pass arcs of great circles through the points,

thus forming the spherical triangle ABC (664)-

Bisect two of these arcs, as BC and AC, by

arcs of great circles perpendicular to each (673,

682)- The intersection of these perpendiculars,

t>, will be the pole of the small circle required (?).

Then from <?, as a pole, with an arc oB draw

the circumference of a small circle: it will pass

through A, B, and C (?), and hence is the circum-

ference required.

QpERY. —If the three given points chance to be in the circumference

of a great circle, how will it appear in the construction?

Fig. 306.
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OF TANGENT PLANES.

684. A Tangent Plane to a curved surface at a given

point is the plane of two lines respectively tangent to two plane

sections through the point.

Illustration.—Let P be any

point in the curved surface. Pass any

two planes through the surface and

the point P, and let OPQ and MPN
represent the intersections of these

planes with the curved surface.

Draw UV and ST in the planes of

the sections, and tangent respectively to OPQ and MPN at P.

the plane of UV aud ST the tangent plane at P.

Fig. 307.

Then is

PROPOSITION XIII.

686. Theorem.—«^ tangent plane to a sphere is per-

pendicular to the radiios at the point of tangency.

Demonstration.

Let P be any point in the surface of a sphere
;
pass two great circles,

as Pa A, etc., and P///AR, through P, and draw ST tangent to the arc

mP, and UV tangent to the arc a?.

Then is the plane SVTU a tangent

plane at P, and perpendicular to the ra-

dius OP.

For, a tangent (as ST) to the arc mP
is perpendicular to the radius of the cir-

cle, i. e., to OP, and also a tangent (as VU)

to the arc AP is perpendicular to the ra-

dius of tliis circle, i. e., to OP.

Hence, OP is perpendicular to two

lines of the plane SVTU, and consequent-

ly to the plane of these lines (?). q. e. d.
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686. OoBOLLARY 1.

—

Jijvery point in a tangent plane to

a sphere, except the point of tangency, is without the

spherB,

For, OP, the perpendicular, is shorter than any line which can be

drawn from to any other point in the plane (?) ; hence any other point

in the plane than P lies farther from the centre of the sphere than the

length of the radius, and is, therefore, without the sphere.

687. Corollary 2.

—

A tangent through P to any circle

of the sphere passing through this point lies in the tan-

gent plane*

Thus, MN, tangent to the small circle PwRft through P, lies in the tan-

gent plane.

For, conceive the plane of the small circle extended till it intersects

the tangent plane. This intersection is tangent to the small circle, since

it touches at one point, but cannot cut it ; otherwise the tangent plane

would have another point than P common with the surface of the sphere.

But there can be only one tangent to a circle at a given point. Hence

this intersection is MN, which is consequently in the tangent plane.

OF SPHERICAL TRIANGLES.

688. A Spherical Triangle is a portion of the surface of

a sphere bounded by three arcs of great circles. In the present

treatise these arcs will be considered as each less than a semi-

circumference; and the triangle considered will be the one which

is less than a hemisphere.

The terms scalene, isosceles, equilateral, right-angled, and

oblique-angled, are applied to spherical triangles in the same

manner as to plane triangles.
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PROPOSITION XIV.

Theorem.—The sum of any two sides of a
spherical triangle is greater than the third side, and
their difference is less than the third side.

Demonstration.

Let ABC be any spherical triangle.

Then is BC < BA + AC,

and BC — AC < BA

;

and the same is true of the sides in any order.

For, join the vertices A, B, and C with the cen-

tre of the sphere, by drawing AO, BO, and CO.

There is thus formed a triedral 0-ABC, whose '"'S- ^°^-

facial angles are measured by the sides of the triangle (188). Now,

angle BOC is less than BOA + AOC (?), whence BC is less than BA + AC

;

and substracting AC from each member, we have BC—AC less than BA.

Q. E. D.

PROPOSITION XV.

690. Theorem.—The sum of the sides of a spherical

triangle may be anything between and a circumfer-

ence'

Demonstration.

The sides of a spherical triangle are measures of the facial angles of a

triedral whose vertex is at the centre of the sphere. Hence their sum

may be anything between and the measure of 4 right angles, as these

are the limits of the sum of the facial angles of a triedral (?). q. e. d.

691. Scholium.—As the sides of a spherical triangle are arcs, they

can be measured in degrees. Hence, we speak of the side of a spherical

triangle as 30°, 57°, 115°, 10', etc. In accordance with this, we say that

the limit of the sum of the sides of a spherical triangle is 360°.
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PBOrOSITXON XVI.

692. Theorem. -I?! i^ ci^ni ?f *h o angles of a spheri-

cal triangle may be anything between two and six right

angles.

Demonstration.

The sum of the angles of a spherical triangle is the same as the sum
ofthe measures ofthe diedrals of a triedral having' its vertex at the centre

of the sphere, as in (?). Now the limits of the sum of the measures of

these diedrals are 2 and 6 right angles (?). Hence the sura of the angles

of any spherical triangle may be anything between 2 and 6 right angles.

Q. E. D.

6^. Corollary.—A spherical triangle may have one,

two, or even three right angles; and, in fact, it may
have one, two, or three obtuse angles; since, in the

latter case, the sum^ of the angles will not necessarily be

greater than 540°.

694. A Trirectaiig^ular Spherical Triangle is a

spherical triangle which has three right angles.

695. Scholium.—It will be observed that the sum of the angles of a

spherical triangle is not constant, as is the sum of the angles of a plane

triangle. Thus, the sum of the angles of a spherical triangle may be

200°, 290°, 350°, 500°, anything between 180° and 540°.

696. Spherical Excess is the amount by which the sum

of the angles of a spherical triangle exceeds the sum of the

angles of a plane triangle ; i. «., it is the sum of the spherical

angles — 180°, or tt.

Exercise.—Prove that if from any point within a spherical

triangle arcs of great circles be drawn to the extremities of any

side, the sum of these two arcs is less than the sum of the other

two sides of the triangle.
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PROPOSITION XVII.

697. Theorem.—The trirectangular triangle is one-
eighth of the surface of the sphere.

Demonstration.

Pass three planes through the centre of a sphere, respectively perpen-

dicular to each other. They will divide the surface into eight tri-

rectangular triangles, any one of which may be applied to any other.

Thus, let ABA'B', ACA'C, and CBC'B' be

the great circles formed by the three planes,

mutually perpendicular to each other. The
planes being perpendicular to each other, the

diedrals, as A CO-B, C-BO-A, C-AO-B, etc., are

right, and hence the angles of the eight tri-

angles formed are all right.

Also, as AOB is a right angle, AB is a quad-

rant ; as BOC is a right angle, CB is a quadrant,

etc. Hence, each side of every triangle is a

quadrant.

Whence any one triangle may be applied to any other. [Let the stu-

dent make the application.]

Hence the trirectangular triangle is one-eighth of the surface of the

sphere, q. e. d.

698. Corollary. — The trirectangular triangle is

equilateral and its sides are quadrants.

Exercise 1. What is the spherical excess in a spherical tri-

angle whose angles are 117°, 84°, and 96°, expressed in degrees ?

Expressed in right angles ? Expressed in tt ?

Ans. 117°, 1A» and ^n.

2. Can there be a spherical triangle whose sides are 78°, 113°,

and 31° ? Can there be one whose sides are 152°, 136°, 148° ?

3. Can there be a spherical triangle whose sides are 52^,

126°, and 140°?
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PROPOSITION XVIII.

699. Theorem.—In an isosceles spherical triangle,

the angles opposite the equal sides are equal ; and, con-

versely, // two angles of a spherical triangle are equal,

the triangle is isosceles.

Demonstration.

Let ABC be an isosceles spherical triangle, in which AB = AC.

Then angle ABC = ACB.

For, draw the radii AO, CO, and BO, form-

ing the edges of the triedral 0-ABC.

Now, since AB = AC, the facial angles AOB
and AOC are equal, and the triedral is isosceles.

Hence the diedrals A-OB-C and A-OC-B are equal

(550), and consequently the spherical angles

ABC and ACB are equal (678). Q. e. d.

Fig. 311.Again, if angle ABC = angle ACB, side AC
= side AB. For in the triedral 0-ABC, the

diedrals A-OB-C and A-OC-B are equal, whence the facial angles AOB
and AOC are equal (550), and consequently the sides AB and AC, which

nieasure'these angles. Q. e. d.

700. Corollary.— ./^W/ equilateral spherical triangle

is also equiangular; and, conversely, ^n equiangular
spherical triangle is equilateral.

Queries.—1. What is the greatest angle which an equilateral

spherical triangle can have ?

2. What is the greatest side which an equilateral spherical

triangle can have ?
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PROPOSITION XIX.

701. Theorem.—On the same sphere, or on equal

spheres, two isosceles triangles having two sides and

the included angle of the one equal to two sides and

the included angle of the other, each to each, can be

superimposed, and are consequently equal.

Demonstration.

In the triangles ABC and AB C . let AB = AC, AB' = AC
;
and let

AB = AB', BC = B'C, and angle ABC = ABC .

Then can the triangle AB'C be superimposed

upon ABC.

For, since the triangles are isosceles, we have

angle ABC = ACB,

AB'C = ACB' (699),

and, as by hypothesis

ABC = AB'C,

these four angles are equal, each to each.

For a like reason, AB = AC = AB' = AC.

Now, applying AC to its equal AB, the extremity A at A, and C' at

B, with the angle B' on the same side of AB as C, the convexities of the

arcs AC and AB being the same, and in the same direction, the arcs will

coincide. Then, as

angle ACB' = ABC,

C'B' will take the direction BC, nnd since these arcs are equal by hypoth-

esis, B' will fall at C. Hence B'A will fall in CA, as only one arc of a

great circle can pass between C and A, and the triangle AB'C is super-

imposed upon ABC ; wherefore they are equal. Q. e. d.

Fig. 312.

702. Symmetrical Spherical Triangles are such as

have the parts of one respectively equal to the parts of the other,

but arranged in a different order ; hence such triangles are not

capable of superposition.
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Fig. 313. Fig. 314.

Illustration.—In Fig. 313, ABC and A'B'C represent symmetrical

spherical triangles. In these triangles,

A = A', 8 = 8', C = C',

AC = AC, AB = A'8', and 8C = BC;

nevertheless we cannot conceive one triangle superimposed upon the

other. Thus, were we to make the attempt by placing A' 8' in its equal

AB, A' at A, and B' at 8, the angle C would fall on the opposite side of

AB from C. Now, we cannot revolve A'C'B' on AB (or its chord), and

thus make the two coincide, for this would bring their convexities to-

gether. Nor can we make them coincide by reversing A'B'C, and placing

8' at A, and A' at 8. For, although these two arcs will thus coincide, as

the angle 8' is not equal to A, B'C will not fall in AC ; and, again, if it

did, C would not fall at C, since B'C and AC are not equal.

But, considering the triangles ABC and A'B'C in Fig. 314, in which

= 0',A

AC

A',

AC,

8 = 8',

AB = A'B', and 80 = B'C,

we can readily conceive the latter as superimposed upon the former.

[The student should make the application.] Now, the two triangles are

equivalent in each case, as will subseljueiltly appear ; and the former are

equal. Such triangles as those in Fig. 313 are called symmetrically equals

while the latter are said to be equal by superposition.

Fig. 315 represents the same triangles as Fig. 314, and exhibits a com-

plete projection* of the semi-circumferences of which the sides of the

* To understand what is meant by the projection of these lines, conceive

a hemisphere with its base on the paper, and represented by the circle abc,

and all the arcs raised up from the paper as they would be on the surface of

such a hemisphere. Thus, considering the arc a^Bb (Fig; 315), the ends a

and 6 would be in the paper just where they are, but the rest of the arc

would be off the paper, as though you could take hold of B and raise it from
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triangles are arcs. The student should become perfectly familiar with

i#, and be able to draw it readily. Thus, aAB6 is the projection of the

semi-circumference of which AB is an arc, aACc of the semi-circumfer-

ence of which AC is an arc, etc., etc.

PROPOSITION XX.

703. Theorem. — Two symmetrical spherical tri-

angles are equivdlent, i.e., equal in area.

DEMONSTRATIOlf.

Let ABC and MB'C be two symmetrical spherical triangles, with AB
=. AB', AC = AC, BC := B'C, A = A, B = B , and C = C.

Then are they equivalent.

Pass circumferences of small circles

through the vertices A, B, C, and A', B', C,

as abc and o'6V, of which o and o' are the

respective poles.

Now, by reason of the mutual equality

of the sides,

the chord AC = chord A'C,

chord AB = chord A'B',

and chord BC = chord B'C, Fig- 3i6.

and as the small circles are circumscribed about the equal plane triangles

ABC and A'B'C, these circles are equal Hence,

o\ = o'^' =oB = o'B' = oC = o'C\

and th^ triangles AoB and A'o'B', BoC and B'o'C, AoC and A'o'C are

isosceles.

Now call the centre of the sphere, and draw the radii OA, OB, DC,

Go, OA', OB', OC ,
and Oo'.

the paper while a and b remain fixed. The lines in the figure are represen-

tations of lines on the surface of such a hemisphere, as they would appear

to an eye situated in the axis of the circle abc, and at an infinite distance

from it ; that is, just as if each point in the lines dropped perpendirvlarlp

down upon the paper. Arcs of great circles perpendicular to the base are

projected in straight lines passing through the centre, and oblique arcs are

projected in ellipses. See Spherical TrigonoTnetry (97-109).
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Considering the triedrals 0-AoB and

0-AVB', their facial angles are equal, being

measured by equal arcs ; hence the diedral

A-oO-B ^ A'-o'O'-B' (0, and the spherical

angle AoB = AVB' (?). Therefore, the

isosceles triangle AoB = k'o'W (701).

In like manner, we may prove the tri-

angles <?BC and o'B'C equal, as also AoC
and k'o'C.

Hence, ABC is equivalent to A'B'C, as '^'9- 3i6

the two are composed of parts respectively equal. Q. e. d.

If the poles of the small circles fell without the given triangles, ABC
would be equivalent to the sum of two of the partial triangles minus the

third. What if the pole fell in a side?

PROPOSITION XXi.

704. Theorem.— 0«. the same sphere, or on equal
spheres, two spherical trian,gles having two sides and the
included angle of the one equal to two sides mid the in-

cluded angle of the other, each to each, are equal, or sym-
metrical and equivalent.

DEMONSTRATrOIsr.

Let ABC and A'B'C be two spherical triangles, having B = B',

BA = B'A', and BC = B'C.

Then are they either

equal, or symmetrical and

equivalent.

For, passing planes

through the sides of each

triangle and the centre of

the sphere, two absolutely

or symmetrically equal tri-

edrals will be formed (?). ''»9- 3I7. Fig. 3i8.

Whence the facial angles AOC and A'OC are equal, and consequently

AC ^ A'C (?). Also, the diedrals C-OA-B and C'OA'-B a - -' —

'

B-OC-A = B'-OC'-A' (?). Whence A = A' and C = C (?)

Hence the parts of ABC are respectively equal to the pan- .u A o ,

and the triangles are equal, or symmetrical and equivalent, according as

the equal parts are arranged in the same or in a different oner. t^. jl d,
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PROPOSITION XXII.

705. Theorem.—On the sctme sphere, or on equal

spheres, two spherical triangles having two angles and the

included side of the one equal to two angles and the in-

cluded side of the other, each to each, are equal, or sym-
metrical and equivalent.

This is a direct consequence of a proposition concerning triedrals.

Let the student give the deduction.

PROPOSITION XXIII.

706. Theorem.—On the sam^e sphere, or on equal

spheres, if two spherical triangles have two sides of the one

equal to two sides of the other, each to each, and the in-

cluded angles unequal, the third sides are unequal, and
the greater third side belongs to the triangle having the

greater included angle.

Conversely, // the two sides are equal, each to each, and
the third sides unequal, the angles included by the equal

sides are unequal, and the greater belongs to the triangle

having the greater third side.

Demonstration.

In the triangles ABC and ABC, let AB = A'B', AC = A'C, and

A>A.
Then is BC > B'C
For, join the vertices with the centre, form-

ing the two triedrals 0-ABC and 0-A'B'C'.

In these triedrals, AOB — A' OB', AOC =
A'OC, being measured by equal arcs; and

C-AO-B > C'-A'O-B', having the same measure

as A and A' (678). Hence COB > COB' (?).

Therefore CB, the measure of COB, > CB',

the measure of COB'. Fig. 3I9.

In like manner, the same sides of tVie triangles, and consequently the

same facial angles of the triedrals, being granted equal, and BC > B'C,

A > A'. For, BC being greater than B'C, COB > COB'; whence

B AO-C > B'-A'O-C (?), or A is greater than A'.
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PROPOSITION XXIV.

707. Theorem.— On the same sphere, or on equal

spheres, two spherical triangles having the sides of the one

respectively equal to the sides of the other, or the angles of

the one respectively equal to the angles of the other, are

equal, or symmetrical and equivalent.

Demonstration.

The sides of the triangles being equal, the facial angles of the triedrals

at the centre are equal, whence the triedrals are equal or symmetrical (?).

Consequently, the angles of the triangles are equal, and the triangles are

equal, or symmetrical and equivalent.

Again, the triangles being mutually equiangular, the triedrals have

their diedrals mutually equal ; whence the triedrals are equal or sym-

metrical (?). Therefore, the sides of the triangles are mutually equal, and

the triangles are equal, or symmetrical and equivalent. (See Figs. 313,

814.)

PROPOSITION XXV.

708. Theorem.—On spheres of different radii, mu-
tually equiangular triangles are similar (not equal).

Demonstration.

Let ABC and (ibc be two mutually equiangular spherical triangles on

spheres whose radii are respectively li and r, and let angle A = a^

B = 6, C = c.

r^. . AB BC CA
Then is -—=-—= —

.

cu) oc ca

For, joining the vertices of the triangles with the centres of the

spheres, and C, the triedrals 0-ABC and O'-ahc have their diedrals

mutually equal (?), whence their facial angles are mutually equal (?).

Therefore sector AOB is similar to sector aO% sector BOC to JO'c, and

sector COA to cO'a.
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From the similarity of these sectors, we have

db ~ r
^'^'

be
~ r

'

ca ~ r '

AB BC CA
and hence, —i: = ir — Q. e. d.

' ab be ca

709. Scholium.—In Spherical Trigonometry we are taught to find

the sides of a splierical triangle having the angles given. But in such a

case the sides are found in degrees, etc., which does not determine their

absolute lengths. The length of an arc of any number of degrees is not

known unless the radius of the sphere is known.

POLAR OR SUPPLEMENTAL TRIAN-
GLES.

710. One spherical triangle is Polar to another when the

vertices of one are the poles of the sides of the other, and the

corresponding vertices lie on the same side of the side opposite.

(For illustration, see 713.)

Such triangles are also called supplemental, since the angles

of one are the supplements of the sides opposite in the other, as

will appear hereafter.

PROPOSITION XXVI.

711. Problem.—Having a spherical triangle given,

to draw its polar.

Solution.

Let ABC (Fig. 320) be the given triangle.* From A as a pole, with

* This should be executed on a sphere. Few students get clear ideas of

polar triangles without it. Care should be taken to construct a variety of

triangles as the given triangle, since the polar triangle does not always lie

in the position indicated in the figure here given. Let the given triangle

have one side considerably greater than 90", another somewhat less, and the

third quite small. Also, let each of the sides of the given triangle be

greater than 90°.
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Fig. 320. Fig. 321.

a quadrant strike an arc, as C'B'. From B as a pole, with a quadrant

strike the arc C'A'; and from C, the arc A'B'. Then is A'B'C polar to

ABC.

712. Corollary.—If one triangle is polar to another,

conversely, the latter is polar to the former ; i. e., the rela-

tion is reciprocal.

Thus, A'B'C (Fig. 320) being polar to ABC, reciprocally, ABC is polar

to A'B'C ; that is, A' is the pole of CB, B' of AC, and C of AB. For

every point in A'B' is at^ quadrant's distance from C, and every point in

A'C is at a quadrant's distance from B. Hence, A' is ai a quadrant's dis-

tance from the two points C and B of CB, and is therefore its pole.

[In like manner, the student should show that B' is the pole of AC,

and C of AB.]

713. Scholium.—By producing (Fig. 331) each of the arcs struck

from the vertices of the given triangle sufficiently, four new triangles

will be formed, viz., A'B'C, QC'B', PCA', and RA'B'. Only the first of

these is called polar to the given triangle. Thus, in A'B'C, A', corre-

sponding to A, lies on the same side of CB or C'B' that A does, and so of

any other corresponding vertices.

It is easy to observe the relation of any of the parts of the other three

triangles to the parts of the polar. Thus,

QC = 180° - &',

QB' = 180° - c',

QC'B' = 180° - B'CA',

QB'C = 180° — CB'A',

and Q =-- A' = 180° - a,

as will appear hereafter.
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PROPOSITION XXVII.

714. Theorem.—Any angle of a spherical triangle is

the supplement of the side opposite in its polar triangle ;

and any side is the sicpplement of the angle opposite in

the polar triangle.

First Demonstration.

Let ABC and A'B'C be two spherical triangles polar to each other;

and let the sides of each be designated as a, b, c, a', h', d, a being op-

posite A, <e' opposite A', h opposite B, etc.

Then

and

A = 180° - a'^

P = 180° - l\

C = 180° - </,

a = 180° - A',

b = 180° - B',

c = 180° - C.

Let be the centre of the sphere, and

draw OA, OB, OC, OA', OB', and 00'.

The angles B'OA and B'OC being right

(?), B'O is perpendicular to the face AOC (?).

For like reasons, CO is perpendicular to

the face AOB.

Hence B'OC is the supplement of the

diedral B-AO-C (512).

But a' is the measure of B'OC, and

B-AO-C has the same measure as A.

Hence, A = 180° — a'.

In like manner, we may show that

B = 180° - h\ and C = 180° - d.

Again, since the edges AO, BO, and CO are perpendicular to the faces

R'OC, A'OC, and A'OB', we can show in like manner that

a = 180° - A',

h = 180° - B',

«*" 1 e = 180° — C'. Q. E. D.

Fig. 322.

Q. E. D.
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Second Demonsteatiok.

Let ABC and A'B'C be two polar triangles. Let BC, CA, and AB be

represented by a, 6, and c respectively, and B'C, C'A', and AB' by a',

b', and d.

To show A = 180° — a', produce h and c,

if necessary, till they meet the side a' of the

triangle polar to ABC in e and d.

Now A is measured by ed (?). But, since

^'e -= 90°, and C'd = 90°,

B'e + C'd, or B'C + ed = 180°

;

whence, transposing, and putting a/ for B'C,

we have
ed = ^ = 180° - a'

Fig. 323.

In like manner,

whence

So, also,

C'g + A'f= CA'+/^ = 180°;

fg =B = 180° - C'A', or 180^

= 180° - c'.

To show that A' = 180° — a, consider that A' being the pole of CB,

fi is measure of A'.

whi

Now

ence,

B/=90°(?), and Ci = 90°;

Bf+Ci= 180°.

But B/+ C^* =fi + a, wherefore fi-\-a = 180°
;

and transposing, and putting A' for/i, we have A' = 180° — a.

In like manner, we may show that

B' = 180" - h, and C = 180°— e. q. e. d.

[The student should give the details.]

714, a. Corollary.—The sum of the supplements of

any two angles of a spherical triangle is greater than ^'

supplem^ent of the third angle. (Consider 714, 689.)
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QUADRATURE OF THE SURFACE OF
THE SPHERE.

715. The Quadrature* of a surface is the process of find-

ing its area. The term is applied under the conception that the

process consists in finding a square which is equivalent to the

given surface.

PROPOSITION XXVIII.

716. Ijeiiiina.—The surfacegenerated hy the revolwtiofi

of a regular semi-polygon of an even number of sides,

ahout the^diameter of the circumscribed circle as an axis,

is equivalent to the circumference of the inscribed circle

multiplied by the axis.

Demonstration.

Let ABODE be one-half of a regular octagon, AE being the diameter

of the circumscribing circle.

If the semi-perimeter ABODE be revolved about AE
as an axis, the surface generated is 27Tr x AE, r being the

radius of the inscribed circle, as aO, or hO.

This surface is composed of the convex surfaces of

cones and fi-ustums of cones. Thus, AB generates the

surface of a cone, BO the frustum of a cone, etc.

Let a and 6 be the middle points of AB and BO re-

spectively, and draw ow, Be, Z>», and 00 perpendicular to

the axis, and B<Z parallel to it. Also draw the radii of the

inscribed circle, aO and JO. Indicate the surfaces gener- '9* ^ **

ated by the sides as Surf. BO, etc. The areas of these surfaces are

:

^

Surf. AB = 27r X am x AB (?), (1)

:^v
Surf. BO = 2- X hn x BO, etc. (?).

* Latin quadrcUus, squared.

14
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Now, from the similar triangles 0am and BAc, we
have

aO _ am
AB " Ac^'

or
2n X «0 _ 27rx am
~AB~ " ~Ac~"

'

Stt X am X AS = 2Kr x Ac,whence,

putting r for aO.

Also, from the similar triangles Obn and CB^,

we have

whence,

putting r for 50.

60 bn

BC~ Bd{=cO)

2'iTxbO _2nxbn

27r X J» X BO = 27rr x cO,

Fig. 324.

Substituting these values in (1) and (2), we obtain

Surf. AB = 27rrxAc,

Surf. BC = 2TTr x cO.

And, in like manner, Surf. CD = 27rr x Op,

and Surf. DE = 2T:rxpE.

Adding, Surf. ABODE = 27rr(Ac + eO + Op +pE)

= 27rr X AE.

Finally, since the same course of reasoning is applicable to the semi-

polygons of 16, 32, 64, etc., sides, the truth of the proposition is estab-

lished.

717- Scholium.—This proposition is only a particular case of sur

faces generated by any broken line roTolving about an axis; and fy*p

general proposition can be established in a manner altogether similar

the method given above. But this case is all that we need for our pres-

ent purpose.
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PROPOSITION XXIX.

718. Theorem,

—

The surface of a sphere is equivalent

to four great circles ; that is, to ^nR^, R being the radius

of the sphere.

Demonstration.

Let the semi-circumference ABODE revolve upon the diameter AE,

and thus generate the surface of a sphere.

Conceive the half of a regular octagon inscribed in

the semicircle ABODE; and let both the semi-polygon

and the semi-circumference be revolved about AE as an

axis.

Call the radius of the inscribed circle, as aO, r, and

let AO = R.

The surface generated by the broken line ABODE is,

by the last proposition, Stt?* x 2R = AnrB.

Now, conceive the arcs AB, BO, etc., bisected, and the

chords drawn, and let r' be the radius of the circle in-
Fig. 325.

scribed in the regular polygon thus formed. The surface generated by

the revolution of this semi-polygon is ^ttt'R

By repeating the bisections, the broken line approximates to the

semi-circumference, the radius of the inscribed circle to R, and the sur-

face generated to the surface of the sphere, the three quantities reaching

their limits at the same time. Hence, at the limit we have

Surf, of sphere = 2nRx2R = 4.7rR\ q. e. d.

719. Corollary 1.

—

The area of the surface of a sphere

is equivalent to the circumference of a great circle multi-

plied by the diameter, that is, to 2nR x 2R, as above.

720. Corollary 2.

—

The surfaces of spheres are to each
other as the squares of their radii.

Thus, if R and R' are the radii of two spheres, the surfaces are 47ri?*

and ^ttR". Now,
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721. A Zone is the portion of the surface of a sphere in-

cluded between the circumferences of two paral-

lel circles of a sphere. The altitude of a zone

is the distance between the parallel circles

whose circumferences form its bases.

Illustration.—The surface generated by CB, or

any arc of the circle ABODE, etc.. as the semicircle

revolves about AE as an axis, conforms to the defini-

tion, and is a zone. Such a portion of the surface as is

generated by AB is called a zone with one hase, the

circle whose circumference would form the upper base

having become tangent to the sphere. The altitude of

the zone generated by CB is a5, and of that generated by AB the alti-

tude is Aa.

Fig. 32G.

PROPOSITION XXX.

722. Theorem.

—

The area of a zone is equal to 27TaR,

a being the altitude of the zone and R the radius of the

sphere.

Demonstration.

It is evident that in passing to the limit, the surface generated by

such a portion of the broken line as lies between C and B, Fig. 326, is

measured by the circumference of the inscribed circle multiplied by db.

Hence, at the limit, the zone generated by arc BC is measured by

2rrifxaJ, that is, 3n-ai?,

representing db by a. Q. e. d.

723. Corollary.—On the same sphere, or on equal

spheres, zones are to each other as their altitudes, and any

zone is to the surface of the sphere as the altitude of the

zone is to the diameter of the sphere.
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OF LU N ES.

724. A Ijuiie is a portion of the surface of a sphere- included

by two semi-circumferences of great circles.

The surface km^n is a lune.

725. The Angle of the Lune is

the angle included by the arcs which form \

its sides ; or, what is the same thing, the

measure of the diedral included between the

great circles.

Thus, the spherical angle wAn, or the measure of the diedral w-AB-n

is the augle of the lune A^nB/i.

726. An Ungula, or Spherical Wedge, is that portion

of a sphere included between two semi-great-circles, as AwB and

knB. It has a lune for its convex surface and a diameter for its

edge.

PROPOSITION XXXI.

727. Theorem.—On the same sphere, or on equal

spheres, lunes which have equal angles are equal.

Demonstration.

[This is readily effected by applying one to the other. Let the stu-

dent make the application.]

Exercise.—Can there be a spherical triangle whose angles are 152°,-

136°, and 148°? One whose angles are 152°, 136°, and 168'/ (See

714, a.)



318 ELEMENTARY GEOMETRY.

PROPOSITION XXXII.

728. Theorem.—The area of a lune is to the area of
the surface of the sphere on which it is situated as the

angle of the lune is to four right angles.

First Demon^stration.

Let S represent the area of the surface of the sphere generated by

the revolution of the semicircle IV1AN about MN as an axis, and L the

area of the lune whose angle is AMD, or AOD.

Then is — = AOD
4 riglit angles

In the generation of 8 and L by the

semi-circumference MAN, the middle

point, A, of the semi-circumference gen-

erates the great circle ACDBF, on which

the angles of the lunes are measured (?).

Now A generates equal and coinci-

dent parts of arc AD and circumference

ACDBFA, in the same time that MAN
generates corresponding equal and co-

incident parts of L and 8.

arc AD

Fig. 328.

Hence, if
circf. ACDBF ""£'

and
arc AD AOD

circf. ACDBF 4 right angles
(?). Q. E. D.

Second Demonstration.

Let S represent the area of the surface of the sphere generated by

the revolution of the semicircle MAN about MN as an axis, and L the

area of the lune whose angle is AMD^ or AOD.

Now the angles AOD and the sum of the four right angles AOD,DOB^
BOF, FOA are at least commensurable by an infinitesimal unit. Let i be
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their common measure, and let it be contained in AOD n times, and* in

the four right angles m times, so that

AOD ^ n

4 right angles
~" m

Now conceive the circumference divided into m equal parts, and

radii drawn to the points of division ; and through their extremities let

serai-circumferences be drawn. Then is L divided into n lunes, each

equal to one of the m equal lunes into which S is divided (727), so that

Hence,

L _n
8 m

L AOD
8

~

4 right angles
Q. E. D.

Third Demonstration.

Let 5 be the surface of the sphere, and ACEB = X be a lune whose
angle is the spherical angle CAB, or what is the same thing, the plane

angle BOC measured by the arc CB, of which A is the pole.

Then is 7; =
CAB

4 right angles

For, first, suppose the arc CB commensurable

with the circumference BCwDra, and suppose that

they are to each other as 5 : 24.

Divide CB into five equal arcs, and the entire

circumference BCmDn into twenty-four arcs of the

same length, and pass arcs of great circles through

A and these points of division. Thus the lune is ^'9- ^29.

divided into five equal lunes, and the entire surface into twenty-four

equal lunes of the same size. These lunes are equal to each other (727).

Hence,

Now,
COB

4 right angles

24"

CB
BCmDw.

_5^

24'

Therefore
L _ COB (or CAB)
8 ~ ^ right angles

% E. D,
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• If the angle of the lune is incommensurable with four right angles,

or, what is the same thing, if the arc BC is not commensurable with the

circumference, let us assume

- = -?^ (1)

in which BL < BC.

Conceive the circumference BCmDTi divided

into equal parts, each of which is less than CL,

the assumed difference between BC and BL.

Then conceive one of these equal parts applied

to BC as a measure, beginning at B. Since the

measure is less than LC, one point of division, at ^'9' ^^°'

least, will fall between L and C. Let I be such a point, and pass the arc

of a great circle through A and I.

XT lune AIEB Bl

8 BCmDri ^ '

since the arc Bl is commensurable with the circumference. In (1) and

(2), the consequents being equal, the antecedents should be proportional

;

L BL
hence we should have

lune AIEB Bl

But this is absurd, since lune ACEB > lune AIEB, whereas BL < Bl,

that is, an improper fraction equals a proper fraction.

In a similar manner, we may reduce the assumption to an absurdity,

if we assume BL > BC.

L BC
Hence, as the ratio of -^ can neither be greater nor less than ,

it is equal thereto, and

L BC BOC
8 ' EQrnXin 4 right angles

Q. E. D.

^
729. Scholium.— To obtain the ourea of a lune whose angle is known,

find the area of the sphere, and multiply it by the ratio of the angle of

the lune (in degrees) to 360°. Thus, B being the radius of the sphere,

4i7rB^ is the surface of the sphere ; and the lune whose angle is 30° is ^jj

or
Y^2^

the surface of the sphere, i. e., ^^ oi A^nB^ = ^tzB^.

730. Corollary.—The sum of several lunes on the same
sphere is equal to a lune whose angle is the sum of the

angles of the lunes ; and the difference of two lunes is a
lune whose angle is the difference of their angles.
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731. Corollary.—Ungulas hear the same ratio to the
volume of the sphere that the corresponding lunes do to

the area of the surface.

PROPOSITION XXXIII.

732. Theorem.

—

If two semi-circumferences of great
circles intersect on the surface of a hemisphere, the sum
of the two opposite triangles thus formed is equivalent to

a lune whose angle is that included by the semi-circum-

ferences.

Demonstration.

Let the semi-circumferences CEB and DEA intersect at E on the sur-

face of the hemisphere whose base is CABD.

Then the sum of the triangles CED and

AEB is equivalent to a lune whose angle is

AEB.

For, let the semi-circumferences CEB and

DEA be produced around the sphere, inter-

secting on the opposite hemisphere, at the

extremity F of the diameter through E.

Now, FBEA is a lune whose angle is AEB.

Moreover, the triangle AFB is equivalent

to the triangle DEC ; since F'g- 33'-

angle AFB = AEB = DEC,

side AF = side ED,

each being the supplement of AE ; and

BF = CE,

each being the supplement of EB.

Hence, the sum of the triangles CED and AEB is equivalent to the

lune FBEA. Q. e. d.
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PROPOSITION XXXIV.

733. Theorem.—The area of a spherical triangle is to

the area of the surface of the hemisphere on which it is

situated, as its spherical excess is to four right angles, or

360°.

Demonstration.

Let ABC be a spherical triangle whose
angles are represented by A, B, and C; let T
represent the area of the triangle, and H the

area of the surface of the hemisphere.

T _ A + B + C-180°
R ~

360°
Then is

Let lune A represent the lune whose angle is

the angle A of the triangle, i. e., angle CAB, and

in like manner understand lune B and lune C.
Fig. 332.

Now, triangle AHG + AED = lune A (732),

BHI + BEF = lune B,

CGF + CDI = lune C.

Adding, 3ABC + hemisphere = lune (A + B + C)* (1)

by (730), and since the six triangles AHG, AED, BHI, BEF, CGF, and CDI
make the whole hemisphere and 2ABC besides, ABC being reckoned three

times

From (1) we have, by transposing, and remembering that a hemi-

sphere is a lune whose angle is 180° (730), and dividing by 2,

ABC = i lune (A + B + C - 180°).t

But, by (728),

i lune (A + B +
H

C-- 180°) A + B + C-
360°

180°

Therefore,
T
H ~.

A + B + C
• 360^

- 180°
Q. E, D.

* This signifies the lun<^whose angle is A -f B + C, which is of course

the sum of the three lunes whose angles are A, B. and C.

f This signifies one-half the lune whose angle is A + B +C— 180°.
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734. Scholium 1.— To find the area of a spherical triangle on a given

sphere, the angles of the triangle being given, we have simply to multiply

the area of the hemisphere, *. e. ,
2n-i2^, by the ratio of the spherical excess

to 360". Thus, if the angles are

A = 110°, B = 80°, and C = 50°, j s^

we have ^"^

area ABC = a.if' x ^^L?4^=J^1 = 2riP x^ = ^nS?.

735. Scholium 3.—This proposition is often stated thus: Tlie area

of a spherical triangle is equal to its spherical excess multiplied by the trirec-

tangular triangle. When so stated, the spherical excess is to be estimated

in terms of the right angle ; i. e., having subtracted 180^ from the sum of

its angles, we are to divide the remainder by 90°, thus getting the spheri-

cal excess in right angles. In the example in the preceding scholium,

the spherical excess estimated in this way would be

110° + 80^ + 50^ - 180° _ 2

90° ~3

and the area of the triangle would be | of the trirectangular triangle.

Now, the trirectangular triangle being |- of the surface of the sphere (?),

is ^ of 47ri?', or ^7ri^^ This multiplied by | gives ^Tri?*, the same as

above.

The proportion

ABC ^ A + B + C - 180°

surf, of hemisph. 360' '

is readily put into a form which agrees with the enunciation as given in

this scholium. Thus,

surf, of hemisph. = 27ri?»

;

whence,

ARP -c)^m ^ A + B + C-180^ , _- . A+B + C-180°ABC - 2^i? X ^— = ^.m X
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VOLUME OF SPHERE.

PROPOSITION XXXV.
736. Theorem.—The volume of a sphere is equal to

the area of its surface multiplied by one-third of the ra-

dius, that is, f7Ti23j R being the radius.

Demonstration.

Let OL = i^ be the radius of a sphere.

Conceive a circumscribed cube, that is, a

cube wliose faces are tangent planes to the

sphere. Draw lines from the vertices of each of

the polyedral angles of the cube to the centre

of the sphere, as AO, BO, DO, CO, etc. These

lines are the edges of six pyramids, having for

their bases the faces of the cube, and for a com-

mon altitude the radius of the sphere (?). Hence ^^'

the volume of the circumscribed cube is equal to its surface multiplied

by ^B.

Again, conceive each of the triedral angles of the cube truncated by

planes tangent to the sphere. A new circumscribed solid will thus be

formed, whose volume will be nearer that of the sphere than is that of the

circumscribed cube. Let a5c represent one of the tangent planes. Draw
from the polyedral angles of this new solid, lines to the centre of the

sphere, as^^O. 50, and cO, etc. ; these lines will form the edges of a set of

pyramids whose bases constitute the surface of the solid, and whose com-

mon altitude is the radius of the sphere (?). Hence the volume of this

solid is equal to the product of its surface (the sum of the bases of the

pyramids) into \R.

Now, this process of truncating the angles by tangent planes may be

conceived as continued indefinitely ; and, to whatever extent it is carried,

it will always be true that the volume of the solid is equal to its surface

multiplied by ^R. Therefore, as the sphere is the limit of this circum-

scribed solid, we have the volume of the sphere equal to the surface of

the sphere, which is 47ri2' multiplied by |i2, i. e., to ^nW. q,. e. d.
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737. CoEOLLARY.

—

The surface of the sphere may he

conceived as consisting of an infinite nuinher of infinitely

small plane faces, and the volume as composed of an infi-

nite number of pyramids having these faces for their

bases, and their vertices at the centre of the sphere, the

common altitude of the pyramids being the radius of the

sphere.

738. A Spherical Sector is a portion of a sphere gener-

ated by the revolution of a circular sector about the diameter

around which the semicircle which generates the sphere is con-

ceived to revolve. It has a zone for its base ; and it may have

as its other surfaces one or two conical surfaces, or one conical

and one plane surface.

Illustration.—Thus, let ab be the diam-

eter around which the semicircle aEl revolves

to generate the sphere. The solid generated

by the circular sector AOB will be a spherical

sector ha^^ng the zone generated by AB for its

base; and for its other surface, the conical sur-

face generated by AO. The spherical sector

generated by COD has the zone generated by

CD for its base; and for its other surfaces,

the concave conical surface generated by DO,

and the convex conical surface generated by CO. The spherical sector

generated by EOF has the zone generated by EF for its base, the plane

generated by EO for one surface, and the concave conical surface gener-

ated by FO for the other. ^ '
.,

739. A Spherical Segrment is a portion of the sphere

included by two parallel planes, it being understood that one of

the planes may become a tangent plane. In the latter case, the

segment has but one base ; in other cases, it has two. A spheri-

cal segment is bounded by a zone and one, or two, plane surfaces.
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PROPOSITION XXXVI.
740. Theorem.—The volume of a spherical sector is

equal to the product of the zone which forms its base into

one-third the radius of the sphere.

Demonstration.

A spherical sector, like the sphere itself, may be conceived as consist-

ing of an infinite number ofpyramids whose bases make up the base of the

sector, and whose common altitude is the radius of the sphere. Hence,

the volume of the sector is equal to the sum of the bases of these pyra-

mids, that is, the surface of the sector, multiplied by one-third their com-

mon altitude, which is one-third the radius of the sphere, q. e. d.

741. Corollary.—The volumes of spherical sectors of

the same sphere, or of equal spheres, are to each other as

the zones which form their bases ; and, since these zones are

to each other as their altitudes (723), the sectors are to each

other as the altitudes of tJie zones luhich form> their bases.

PROPOSITION XXXVII.

742. Theorem.— 17^6 volume of a spherical segment

of one base is ttA^{R — \A), A being the altitude of the

segment, and R the radius of the sphere.

Demonstration.

Let AG = JB, and CD = A.

Then is the volume of the spherical segment

generated by the revolution of ACD about CO
equal to ttA^ {R— ^A).

For, the volume of the spherical sector gener-

ated by AOC i^ the zone generated by AC, multi-

plied by \B, or ^TTAIty.^R = ^t:AR\ From

this we must subtract the cone, the radius of

whose base is AD, and whose altitude is DO. Fig. 335.
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To obtain this, we have

DO = R-A\

whence, from the right-angled triangle ADO,

327

AD = V^ -{E- Af = ^2AB - A\

Now, the volume of this cone is ^OD x ttAD^ or

^TT (B— A) i2AB - A"") = ^n {2AR' — 3A'B + A^).

Subtracting this from the volume of the spherical sector, we have

^kAB^ - ^TT (2^if - dA^'B + A') = n (A'R - ^A^

= nA^B-^A). Q. E. D.

743. Scholium.—The volume of a spherical

segment with two bases is readily obtained by

taking the difference between two segments of

one base each. Thus, to obtain the volumes of

the segment generated by the revolution of JCAc

about aO, take the difference of the segments

whose altitudes are ac and ab.

Fifl. 336.

SPHERICAL POLYGONS AND SPHERI-
CAL PYRAMIDS.

744. A Spherical Polygon is a portion of the surface of

a sphere bounded by several arcs of great circles.

745. The Diagonal of a spherical polygon is an arc of a

great circle joining any two non-adjacent vertices.

746. A Spherical Pyramid is a portion of a sphere hav-

ing for its base a spherical polygon, and for its lateral faces the

circular sectors formed by joining the vertices of the polygon

with the centre of the sphere.
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747. The elementary properties of spherical polygons and

spherical pyramids are so readily deduced from the corresponding

properties of polyedral angles, spherical triangles, etc., that we
leave them for the pupil to demonstrate, merely stating a few

fundamental theorems.

748. Theorem.—^6 angles of a spherical polygon

and its sides sustain the same general relations to each

other as the diedral and facial angles of a polyedral

angle having for its edges the radii of the sphere drawn
to the vertices of the polygon.

749. Theorem.— T^^e sum of the sides of a convex

spherical polygon may be anything between 0° and 360°.

760. Theorem.—The sum of the angles of a spherical

polygon may be anything between ^n— 4 and Qn— 12

right angles, n being the number of sides.

751. The Spherical Excess of a spherical polygon is the

excess of the sum of its angles over the sum of the angles of a

plane polygon of the same number of sides.

752. Theorem.—The spherical excess of a spherical

polygon of n sides, the sum of whose angles is S, is

^+ 360° -71.180°.

753. Theorem.—The area of a spherical polygon is to

the area of the surface of the hemisphere on which it is

situated as its spherical excess is to four right angles.

754. Theorem.—IT^e volume of a spherical pyramid

is the area of its base multiplied by one-third the radius

of the sphere on which it is situated.
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EXERCISES.

755. 1. What is the circumference of a small circle of a sphere

whose diameter is 10, the circle being at 3 from the centre ?

Ans. 25.1328.

2. Construct on the spherical blackboard a spherical angle of

60°. Of 45°. Of 90°. Of 120°. Of 250°.

Suggestions.—Let P be the point where the vertex of the required

angle is to be situated. With a quadrant strike an arc passing through

P, which shall represent one side of the required angle. From P as a

pole, with a quadrant strike an arc from the side before drawn, which

shall measure the required angle. On this last arc lay off from the firet

side the measure of the required angle,* as 60°, 45% etc. Through the

extremity of this arc and P pass a great circle (?).

3. On the spherical blackboard construct a spherical triangle

ABC, having AB = 100°, AC = 80°, and A = 58°.

4. Construct as above a spherical triangle ABC, having AB =
75°, A =. 110°, and B = 87°.

5. Construct as above, having AB = 150°, BC = 80°, and

AC = 100°. Also having AB = 160°, AC = 50°, and CB = 85°.

6. Construct as above, having A = 52°, AC = 47°, and CB
= 40°.

Suggestions.—Construct the angle A as before taught, and lay off

AC from A equal to 47'', with the tape. This determines the vertex C.

From C, as a pole, with an arc of 40°, describe an arc of a small circle;

in this case this arc will cut the opposite side of the angle A in two

places. Call these points B and B'. Pass circumferences of great circles

through C, and B, and B'. There are two triangles, ACB and ACB'.

7. Construct on the spherical blackboard a spherical triangle

ABC, having A = 59°, AC = 120°, and AB = 88°.

For this purpose, a tape equal in length to a semi-circumference of a

jrreat circle of the sphere used, and marked off into 180 equal parts, will be

convenient. A strip of paper may be used.
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8. Construct a triangle whose angles are 160°, 150°, and 140°.

9. Can there be a spherical triangle whose angles are 85°,

120°, and 150° ? Try to construct such a triangle by first con-

structing its polar.

10. What is the area of a spherical triangle on the surface of a

sphere whose radius is 10, the angles of the triangle being 85°,

120°, and 110°

?

Ans. 235.6-j-.

11. What is the area of a spherical triangle on a sphere whose

diameter is 12, the angles of the triangle being 82"", 98°, and
100°?

12. A sphere is cut by five parallel planes at 7 from each other.

What are the relative areas of the zones ? What of the segments ?

13. Considering the earth as a sphere, its radius would be

3958 miles, and the altitudes of the zones. North torrid = 1578,

North temperate = 2052, and North frigid = 328 miles. What
are the relative areas of the several zones ?

Suggestion.—The student should be careful to discriminate between

the width of a zone and its altitude. The altitudes are found from their

widths, as usually given in degrees, by means of Trigonometry.

14. The earth being regarded as a sphere whose radius is

3958 miles, what is the area of a spherical triangle on its surface,

the angles being 120°, 130°, and 150° ? What is the area of a

trirectangular triangle on the earth's surface ?

15. In the spherical triangle ABC, given A = 58°, B = 67°,

and AC = 81°
; what can you afiirm of the polar triangle ?

16. What is the volume of a globe which is 2 feet in diameter ?

What of a segment of the same globe included by two parallel

planes, one at 3 and the other at 9 inches from the centre, the

centre of the sphere being without the segment? What if the

centre is within the segment?

17. Compare the convex surfaces of a sphere and its circum-

scribed cylinder.

18. Compare the volumes of a sphere and its circumscribed

cube, cylinder, and cone, the vertical angle of the cone being 60°.

19. If a and b represent the distances from the centre of a

sphere whose radius is r, to the bases of a spherical segment, show

that the volume of the segment is tt [r^ (b— a) — \{h^— a^)].



THE INFINITESIMAL METHOD.

The author is a firm believer in both the logical soundness and the

practical advantages of the strict infinitesimal method. Hence he has intro-

duced it—though generally as an alternative method—in those cases in

which the incommensurability of geometrical magnitudes by a finite unit

makes the old demonstrations cumbrous.

As to the logical soundness of the method, he has not the shadow of a

doubt. The well-known logical principle, that, if we create a certain cate-

gory of concepts, under certain definite laws, use them in our argument in

accordance with these laws, and finally eliminate them, the argument being

conducted according to correct logical principles, the final results are

correct, covers the entire case. Now the two essential laws of infinitesimals

are, (1) Infinitesimals of the same order have the same relations among
themselves as finite quantities ; and (2) Infinitesimals in comparison with

finites, are zero.

But the simple exposition given in the text (340-342) is quite adequate

to show that the method can introduce no conceivable error. Thus, if

— — <r, all the quantities being finite, and if i is an infinitesimal, = a

must be true, and i must be in the relation. Otherwise solving the equa-

tion we have i = an—m, a finite quantity, unless a — —-

Of the immense practical utility of the method there can be no question.

All, from Lagrange down, have acknowledged it. I know of no extended

treatise which does not in some way imply it. Why, then, should not the

pupil become familiar with it early in his course ?

As to the method of limits it is not at all difficult to show that it is

identical with the infinitesimal method, in its fundamental principles.

Moreover, there is a sort of jugglery in the very first step in the method of

limits which quite transcends any difficulty that the method of infinitesimals

presents. Thus, we give the variable an increment, assume that the func-

tion takes a related increment, manipulate the function, and then make the

increment of the variable zero (whence the increment of the function

becomes zero), and, presto, we have a finite relation between two zeros!

And this is the " simple " fundamental conception which the tyro is sup-

posed to see at a glance

!
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NOTE ON (182), (343), (587), (628), AND (728).

These propositions are of a class in wliich the incommensurability by a

finite unit of certain lines introduces particular diflficulty, which difficulty

disappears at once if we admit, as in the infinitesimal theory, that these lines

are commensurable by an infinitesimal unit. Also, by the introduction of

the principle of the generation of one magnitude by the motion of another,

very simple demonstrations are afforded.

In the text the author has given illustrations of the three sorts of

demonstrations. In (182) we have the old method of avoiding the difficulty

which grows out of the incommensurability, by the reductio absurdum.

The objection to this is not any objection to the reductio absurdum as a

method of reasoning. But why use so cumbrous a method, when other

exceedingly simple methods are at hand, and methods involving principles

so necessary to subsequent use ?

In (728) tlie three methods are given. In (343) and (628) the methods

involving generation by motion, and the infinitesimal method, are given.

NOTE ON (182).

1. To prove this proposition by means of the conception of the genera-

tion of magnitudes by the motion of other magnitudes, we do not need the

AOB
Lemma. Thus, referring to Fig. 85, p. 89, we are to prove that —- =

arc AB
arc DE

Let the sector AOB be applied to DOE. OA being placed in OD. By

reason of the equality of the circles the arc AB will fall in DE.

Conceive the angles AOB and DOE as generated by a radius mov-

ing from the position -OA (which is now also OD) to OB and OE,

with uniform motion. Let the time of generating AOB be r, and that of

AOB r
generating DOE be s. Whence —^ = - (48, 49).

Again, the extremity of the radius, as A (or D), describes equal and (as

far as the less extends) coincident parts of AB and DE in equal times, whence

arcAB _ r „ , ,... _. __.: ,,„_ AOB _ arc AB

arc DE
Hence, by equality of ratios, we have pQ£ = a7c qE

2. To prove the same proposition by the infinitesimal method, we pro

ceed exactly as in Case II., pp. 89, 90. simply conceiving vi as infinitesimal

when the angles are incommensurable by a finite unit, and for 5 putting the

indefinite number r, and for 8 the indefinite number s.
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NOTE ON (343).

By the old method the Lemma on which this demonstration is based is

proved in two cases. 1st. When the bases are commensurable ; 2nd. When
the bases are incommensurable. Dividing the bases into equal parts and

erecting perpendiculars at the points of division the argument in the first

case proceeds exactly like the argument in Case II. of (182). When the

bases are incommensurable, we apply abed to ABCD placin«ir ad in its

equal AD, whence ab falls in AB, as far as it extends, and dc in DC. Then

^, ^ .- ABCD . ^ ,
AB .^ . ,

AB , . .^,
assume that, if — ;;

—

~ is not equal to -^r , it is equal to — , ag being either
abed ^ ab ag ^ °

greater or less than ab. Now divide the base AB into equal parts, each of

which is less than bg, and erect perpendiculars at each of the points of

division. We may then show, as in Case III. of (182), the absurdity of

supposing ag greater or less than ab.

FINIS.
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