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PREFACE.

THE treatise on Hydrodynamics, which I published in 1888,

was intended for the use of those who are acquainted with

the higher branches of mathematics, and its aim was to present to

the reader as comprehensive an account of the whole subject as

was possible. But although a somewhat formidable battery of

mathematical artilleiy is indispensable to those who desire to

possess an exhaustive knowledge of any branch of mathematical

physics, yet there are a variety of interesting and important

investigations, not only in Hydrodynamics, but also in Electricity

and other physical subjects, which are well within the reach of

every one, who possesses a knowledge of the elements of the

Differential and Integral Calculus and the fundamental principles

of Dynamics. I have accordingly, in the present work, abstained

from introducing any of the more advanced methods of analysis,

such as Spherical Harmonics, Elliptic Functions and the like;

and, as regards the dynamical portion of the subject, I have

endeavoured to solve the various problems which present them-

selves, by the aid of the Principles of Energy and Momentum, and

have avoided the use of Lagrange's equations. There are a few

problems, such as the helicoidal steady motion and stability of a

solid of revolution moving in an infinite liquid, which cannot be

conveniently treated without having recourse to moving axes ; but

as the theory of moving axes is not an altogether easy branch of

Dynamics, I have as far as possible abstained from introducing

them, and the reader who is unacquainted with the use of moving

axes is recommended to omit those sections in which they are

employed.

The present work is principally designed for those who are

reading for Part I. of the Mathematical Tripos, under the new

regulations, and for other examinations in which an elementary

knowledge of Hydrodynamics and Sound is required ; but I also

trust that it will be of service, not only to those who have neither

the time nor the inclination to become conversant with the intri-

cacies of the higher mathematics, but that it will also prepare the
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way for the acquisition of more elaborate knowledge, on the part

of those who have an opportunity of devoting their attention to

the more recondite portions of these subjects.

The first part, which relates to Hydrodynamics, has been taken

with certain alterations and additions from my larger treatise, and

the analytical treatment has been simplified as much as possible.

I have thought it advisable to devote a chapter to the discussion

of the motion of spheres and circular cylinders, in which the

equations of motion are obtained by the direct method of calcu-

lating the resultant pressure exerted by the liquid upon the solid
;

inasmuch as this method is far more elementary, and does not

necessitate the use of Green's Theorem, nor involve any further

knowledge of Dynamics on the part of the reader, than the ordinary

equations of motion of a rigid body. The methods of this chapter

can also be employed to solve the analogous problem of deter-

mining the electrostatic potential of cylindrical and spherical con-

ductors and accumulators, and the distribution of electricity upon

such surfaces. The theory of the motion of a solid body and the

surrounding liquid, regarded as a single dynamical system, is

explained in Chapter III., and the motion of an elliptic cylinder in

an infinite liquid, and the motion of a circular cylinder in a liquid

bounded by a rigid plane, are discussed at length.

The Chapter on Waves and on Rectilinear Vortex Motion

comprises the principal problems which admit of treatment by

elementary methods, and I have also included an investigation

due to Lord Rayleigh, respecting one of the simpler cases of the

instability of fluid motion.

In the second part, which deals with the Theory of Sound, I

have to acknowledge the great assistance which I have received

from Lord Rayleigh's classical treatise. This part contains the

solution of the simpler problems respecting the vibrations of strings,

membranes, bars and gases ; and I have also added a few pages on

the statical problem of the flexion of bars. A few sections are also

devoted to the Thermodynamics of perfect gases, principally for

the sake of supplementing Maxwell's treatise on Heat, by giving

a proof of some results which require the use of the Diftercntial

Calculus.

I have to express my best thanks to Professor Greenhill for

having read the proof sheets, and for having made many valuable

suggestions during the progress of the work.
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CHAPTEE I.

ON THE EQUATIONS OF MOTION OF A PERFECT FLUID.

1. The object of the science of Hydrodynamics, is to in-

vestigate the motion of fluids. All fluids with which we are

acquainted may be divided into two classes, viz. incompressible

fluids or liquids, and compressible fluids or gases. It must

however be recollected, that all liquids experience a slight com-

pression, when submitted to a sufficiently large pressure, and

therefore in strictness a liquid cannot be regarded as an incom-

pressible fluid; but inasmuch as the compression produced by

such pressures as ordinarily occur is very small, liquids may be

usually treated as incompressible fluids, without sensible error.

The physical interest arising from a study of the motion of

gases, is due to the fact that air is the vehicle by means of

which sound is transmitted. We shall therefore devote the first

part of this volume to the discussion of incompressible fluids

or liquids, reserving the discussion of gases for the second part,

which deals with the Theory of Sound.

We must now define a fluid.

2. A fluid may he defined to he an aggregation of molecules,

which yield to the slightest effort made to separate them from
each other, if it he continued long enough.

A perfect fluid, is one which is incapable of sustaining any

tangential stress or action in the nature of a shear; and it

will be shown in § 13 that the consequence of this property

is, that the pressure at every point of a perfect fluid, is equal

in all directions, whether the fluid be at rest or in motion. A
perfect fluid is however an entirely ideal substance, since all fluids

B. H. 1



2 EQUATIONS OF MOTION OF A PERFECT FLUID.

with which we are acquainted are capable of offering resistance

to tangential stresses. This property, which is known as viscosity,

gives rise to an action in the nature of friction, by which the

kinetic energy is gradually converted into heat.

In the case of gases, water and many other liquids, the effects

of viscosity are so small that such fluids may be approximately

regarded as perfect fluids. The neglect of viscosity very much
simplifies the mathematical treatment of the subject, and in the

present treatise, we shall confine our attention to perfect fluids.

Before entering upon the dynamical portion of the subject,

it will be convenient to investigate certain kinematical proposi-

tions, which are true for all fluids.

Kinematical Theorems.

3. The motion of a fluid may be investigated by two different

methods, the first of which is called the Lagrangian method, and

the second the Eulerian or flux method, although both are due

to Euler.

In the Lagrangian method, we fix our attention upon an

element of fluid, and follow its motion throughout its history.

The variables in this case are the initial coordinates a, h, c of the

particular element upon which we fix our attention, and the time.

This method has been successfully employed in the solution of

very few problems.

In the Eulerian or flux method, we fix our attention upon a

particular point of the space occupied by the fluid, and observe

what is going on there. The variables in this case are the

coordinates x, y, z of the particular point of space upon which

we fix our attention, and the time.

Velocity and Acceleration.

4. In forming expressions for the velocity and acceleration

of a fluid, it is necessary to carefully distinguish between the

Lagrangian and the flux method.

I. The Lagrangian method.

Let u, V, w be the component velocities parallel to fixed axes,

of an element of fluid whose coordinates are x, y, z and x -}- hx,

y + By, z + Sz at times t and t-\-Bt respectively, then

ti = dx/dt = x, v = y, w = z (1),
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where in forming x, y, z we must suppose x^ y, z to be expressed

in terms of the initial coordinates a, h, c and the time.

The expressions for the component accelerations are

f^ = u = x, fy = y, f, = z (2),

where u, v, w are supposed to be expressed in terms of a, h, c

and t.

II. The Flux Method. J^U LBZ
5. Let hQ be the quantity of fluid which in time ^t flows

across any small area A^ which passes through a fixed point P
in the fluid ; let p be the density of the fluid, q its resultant

velocity, and e the angle which the direction of q makes with

the normal to A, drawn towards the direction in which the

fluid flows. Then
gQ = pqASt cos 6,

therefore q = —-.
-~

.

^ pA cos 6 at

Now A cos 6 is the projection of A upon a plane passing

through P perpendicular to the direction of motion of the fluid

;

hence SQ is the independent of the direction of the area, and is

the same for all areas whose projections upon the above-mentioned

plane are equal. Hence the velocity is equal to the rate per unit

of area divided by the density, at which fluid flows across a plane

perpendicular to its direction of motion.

The velocity is therefore a function of the position of P and

the time.

In the present treatise the flux method will almost be ex-

clusively employed. We may therefore put u = F {x, y, z, t)
;

whence if u + hu be the velocity parallel to x at time t + ht of

the element of fluid which at time t was situated at the point

hu = F{x^- uU, y + vht, z + luU, t + St)-F (x, y, z, t).

Therefore the acceleration,

,. Su dii du du du

Hence if d/dt denotes the operator

d/dt + ud/dx + vd/dy + wd/dz,

the component accelerations will be given by the equations

du
J.

dv . dw .ox

-^^^dt' ^^ = dr -^'^di
^^^•

1—2
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The Equation of Continuity.

6. If an imaginary fixed closed surface* be described in a fluid,

the difference between the amounts of fluid which flow in and

flow out during a small interval of time ht, must be equal to

the increase in the amount of fluid during the same interval,

which the surface contains.

The analytical expression for this fact, is called the equation

of continuity.

c

X /)/^

/<;\ y^ A

B

Let Q be any point (oc., ?/, z), and consider an elementary

parallelopiped BxByBz.

The amount of fluid which flows in across the face CB in

time Bt is

piiByBzBt.

The amount which flows out across the opposite face AD is

puByBzBt-}- -r- ipu) BxByBzBt,

whence the gain of fluid due to the fluxes across the faces CB,

AD is

—
-J-

(pu) BxByBzBt

Treating the other faces in a precisely similar manner, it

follows that the total gain is

[dx
(pu) 4- J (pv)-\-

,7, (/3^^)[- BxByBzBt (4).
dz
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The amount of fluid within the element at time t is pBxBySz,

and therefore the amount at time i5 + SHs

hi^)
The gain is therefore

-~ BxSySzSt

Equating this to (4) we obtain the equation

dp
^

d (pn)
^

d (pv)
^

d (pw) ^ ^ ^ ^ ^

dt dx dy dz ^
''

This equation is called the equation of continuity.

In the case of a liquid, p is constant, and (5) takes the

simple form

^ J.^ +^ = C6)
dx dy dz ^

^'

We shall hereafter require the equation of continuity of a

liquid referred to polar coordinates. This may be obtained in

a similar manner by considering a polar element of volume

r^sin dSrSOBco, and it can be shown that if u, v, w be the velocities

in the directions in which r, 6, co increase, the required equation is

dr dU dco ^ ^

The Velocity Potential.

7. In a large and important class of problems, the quantity

udx + vdy + wdz is a perfect differential of a function of x, y, z

which we shall call </> ; when this is the case, we shall have

udx + vdy + wdz = d(j>,

whence 11 = ^, v — -^ , w = -^ (^)-
dx dy dz

Substituting these values of u, v, w in (6) we obtain

3-1^3=» (»'•

or as it is usually written

V'cj) = 0.

This equation is called Laplace s equation, from the name of

its discoverer ; it is a very important equation, which continually

occurs in a variety of branches of physics. The operator V^ is

called Laplace s operator.
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We can now obtain the transformation of Laplace's equation

when polar coordinates are employed. For in this case

udr + vrd6 + lur sin Odo) = rf<^,

whence ic=-^, v = - ,^, tu = —.
—j.-^ (10).

a?' ?' da r sm 6 dco ^ ^

Substituting in (7) we obtain

s(-S)*J-«i{"°''Sni.-.3=»-(")-
The equation of continuity and the theory of the velocity

potential, may therefore be employed to effect transformations,

which it would be very laborious to work out by the usual

methods for the change of the independent variables.

8. The existence of a velocity potential involves the conditions

that each of the three quantities

dw dv du dw dv du

dy dz ' dz dx' dx dy

should be zero ; when such is not the case we shall denote these

quantities by 2f, 2?;, 2^. The quantities f, 77, f for reasons which

will be explained hereafter, are called components of molecular

rotation, they evidently satisfy the equation

24>2=« (^2)-
U/iJU UjU U.^

When a velocity potential exists, the motion is called irrota-

tional ; and when a velocity potential does not exist, the motion

is called rotational or vortex motion.

Lines of Flow and Stream Lines.

9. Dee. A line of flow is a line whose direction coincides

with the direction of the resultant velocity of the fluid.

The differential equations of a line of flow are

dx _dy _ dz

u V w'

Hence if X\ i^y y> ^> = ^^i' X2 (^' y> ^> = ^2 ^^ ^^^^Y ^^^<^

independent integrals, the equations Xt — const., X2 — const., are

the equations of two families of surfaces whose intersections

determine the lines of flow.
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Def. a stream line or a line of motion, is a line whose
direction coincides with the direction of the actual paths of the

elements of fluid.

The equations of a stream line are determined by the simul-

taneous differential equations,

x = u, y = v, z = w,

where x, y, z must be regarded as unknown functions of t. The
integration of these equations will determine x, y, z in terms of

the initial coordinates and the time.

10. When a velocity potential exists, the equation

udx + vdy + wdz =

is the equation of a family of surfaces, at every point of which the

velocity potential has a definite constant value, and which may be

called surfaces of egiti-velocity potential.

If P be any point on the surface,
(f)
= const., and d7i be an

element of the normal at P which meets the neighbouring surface

(f) +'Scl> at Q, the velocity at P along PQ, will be equal to d(f}ldn ;

hence d(j> must be positive, and therefore a fluid always flows

from places of lower to places of higher velocity potential.

The lines of flow" evidently cut the surfaces of equi-velocity

potential at right angles.

11. The solution of hydrodynamical problems is much

simplified by the use of the velocity potential (whenever one exists),

since it enables us to express the velocities in terms of a single

function (/>. But when a velocity potential does not exist, this

cannot in general be done, unless ,the motion either takes place

in two dimensions, or is symmetrical with respect to an axis.

In the case of a hquid, if the motion takes place in planes

parallel to the plane of xy, the equation of the lines of flow is

udy — vdx = (13).

The equation of continuity is

dM <^v _o
dx dy '

which shows that the left-hand side of (13) is a perfect differ-

ential d"^, whence

.
•" = ':. —2 ^^^)-

The function i/r is called Earnshaw's current function.
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When the motion takes place in planes passing through the

axis of z, the equation of the lines of flow may be written

«r {xvd-^ — iidz) = (15),

where ct, ^, z are cylindrical coordinates.

The equation of continuity^ is

d(t!yu) dw
d'GT dz

which shows that the left-hand side of (15) is a perfect differential

dyfr, whence

'ST dsT 'GJ dz '

The function -v/r is called Stokes' current function.

Tlie Bounding Surface.

1 2. Besides the equations which must be satisfied within the

interior of a fluid, it is necessary that certain other conditions

should be satisfied at the boundary, which depend upon the

special problem under consideration.

If the fluid is bounded by a surface, whose equation referred

to axes fixed in space is F {x, y, z, t) = 0, the normal velocity of

the fluid at the surface, must be equal to the normal velocity

of the surface, hence the sheet of fluid of which the boundary

is composed, must always consist of the same elements of fluid.

Hence
Fiw + uSt, y + vBt, z + iuU, t + 8t) = 0,

, ,, „ dF dF dF dF ^ ,,.-
and thereiore -rr + ^^ 7—Hv , +w ^ =0 (17).

dt dx dy dz

If the boundary is fixed, the condition becomes

lu -\- mv -\- nw = ^ (18),

where I, m, n are the direction cosines of the normal to F.

Dynamical Theorems.

13. It has been already stated, that the pressure at every

point of a perfect fluid is equal in all directions, whether the fluid

be at rest i)r in motion. It will now be shown that this property

is the consequence of such a fluid being incapable of offering resist-

ance to a tangential stress.

^ The equation of continuity in cylindrical coordinates, may be obtained, as in

§ 6, by considering the fluxes across the sides of an element wbwdO^z.
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Let ABGD be a small tetrahedron of fluid, and \Qi p^p be the

pressures per unit of area upon

the faces ABG and BCD.

By D'Alembert's Principle,

the reversed effective forces and

the impressed forces which act

upon the volume of fluid, together

with the pressures upon its faces,

constitute a system in statical

equilibrium. The first two vary

as the volume, and the last vary as the areas of the faces of the

tetrahedron; and therefore if the tetrahedron be made to diminish

indefinitely, the former will vanish in comparison with the latter.

Hence the tetrahedron will ultimately be in equilibrium under the

action of the pressures upon its faces.

Resolve the pressures upon the faces ABG and BGD parallel

to AD. Since the projections of the two faces upon a plane

perpendicular to AD are equal, the conditions of equilibrium

require that p = p, which proves the proposition \

The Equations of Motion.

14. The equations of motion of a perfect fluid, may be

obtained by two different methods, which we shall proceed to

explain.

Let X, Y, Z be the components per unit of mass, of the

impressed forces (such as gravity and the like) which act upon

the fluid
; p the pressure, and p the density.

Let Q be any point of the fluid, whose coordinates are x, y, z
;

and consider an elementary parallelopiped hx, Sy, 82; (see figure to

§ 6) whose edges are parallel to the axes.

By D'Alembert's Principle, the reversed effective forces

together with the impressed forces, form a system in statical

equilibrium. Whence if Sm be the mass of an element of fluid

contained within this parallelopiped, /^ the component of its

acceleration parallel to x, and P^ the resultant parallel to x of the

pressure due to the surrounding fluid upon the faces GB, AD
;

D'Alembert's Principle gives

S(X-/.)Sm + P. = (18).

1 This proposition is true even in the case of viscous fluids, provided they

are at rest.
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Now P^ = phj hz-[p+^ h^ hj hz,

whence (18) becomes

t{X-f:)hm-^hxhjhz = i) (19).

Since the parallelopiped is supposed to be indefinitely small,

the fii'st term of this equation becomes in the limit

and therefore (19) becomes,

^^-|=«^' (^«)-

In all the applications which will occur, we shall use the flux

method, in which case f^ is given by (3) ; whence (20) may be

written

Y ^ dp _du
pdx dt

'

Resolving parallel to y and z and proceeding in a similar

manner, we shall obtain two other equations, which may be

deduced by cyclical interchange of the letters x, y, z, and u, v, w
respectively ; whence the equations of motion are

y 1 dp _ du du du du \

p dx dt dx dy dz

y _1 dp _dv^ dv dv dv
\^

,

p dy dt dx dy dz

y \ dp _ diu dw dw dw

p dz dt dx dy dz f

15. We shall now obtain the equations of motion by a different

method, which will enable us to illustrate some important Dynami-
cal Principles.

It is a well-known Dynamical Principle that

—

The rate of change of the component of the linear momentum,

parcdlel to an axis, of any dynamical system, is equal to the compo-

'iientforce along that axis.

In order to apply this principle to the motion of a fluid, let

APBQ represent the fluid, which at time t, is contained within

any imaginary closed surface S, described in the fluid. At the

end of an interval Bt, the fluid will no longer be contained within
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S, but will occupy a different position, which is shown by the line

ApBq in the figure.

Let M^, M^-\-BM^, be the component momenta parallel to x, of

the original fluid at times t, t+ St', X' and P^ the components

parallel to x of the impressed forces, and the pressure upon the

boundary of the given mass of fluid due to the action of the sur-

rounding fluid.

By the Principle stated above, we obtain immediately the

equation

^^ = X' + P, (22).

Let S//.,, M^-\-hM'^, 8/jL^ be the component momenta parallel

to X, of the fluid which at time t + 8t occupies the spaces ApBPA,
APBQA and AqBQA; then

whence 8M^ = 8M'.^ + hfju^ - S/x.^

,

and therefore (22) may be written

"f-t-t^^'^^^ <^^)-

Now dM'^/dt is the rate of increase of the component of

momentum parallel to x, of the fluid contained within S; and

dfjb^jdt — dfi^/dt is the rate at which momentum parallel to x, flows

into S. Whence (23) asserts that,

—

The rate of increase of the component ofmomentum parallel to x,

of the fluid contained within any given closed surface S, is equal to

the rate at which momentum parallel to x flows into x across the

boundary of S, together with the rate at which momentum parallel

to X, is generated by the component of the imjjressed force parallel

to X, and by the component parallel to x, of the pressure exerted by

the surrounding fluid upon the boundary of S.
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16. In order to apply this proposition, we must calculate the

momentum which flows into a surface across its boundary.

Let ABhe any element dS of the surface, GA the direction of

motion of the fluid, q its resultant velocity, and e the angle which

its direction makes with the normal to dS drawn outwards.

Through the perimeter of dS, describe a small cylinder, whose

curved side contains the lines of flow which pass through the

perimeter of dS; then if AM be the projection of dS upon a

plane perpendicular to the lines of flow, BAM = e. Hence the

total momentum which flows into S across the element dS in

time Bt is

pqdS cos e.qBt = pqqdSSt
;

where q =q cos e, is the component velocity perpendicular to dS.

The component in any assigned direction of the momentum
which flows into S, is found by multiplying this quantity by the

cosine of the angle between this direction and the direction of q ;

and may therefore be written pq'qdSBt, where q'' is the velocity in

the given direction.

Applying this to an elementary parallelopiped 5a;, Bt/, 8z, we

see at once that

dfi^ dfi^ _ \d (pu^) d (puv) d (pmv)\
^^^^^^^

dt~ dt~~ {~dx~ ^ 'dy ^ ~^dz' \
^^^^^^-

X' =pXBxhyhz,

whence the equation for motion parallel to x is

y dp _d ipu) d{pu^) d (puv) d (paw)

^ dx dt dx dy dz

Performing the differentiations on the right-hand side, and

taking account of the equation of continuity, this equation reduces

to the first of (21).
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17. The equations of motion together with the equation of

continuity, furnish four relations between the five unknown quan-

tities u, V, w, p, p; and are therefore not sufficient to determine

the motion.

If however the fluid be a liquid, p is constant, and the above-

mentioned equations together with the boundary conditions are

sufficient to determine the motion ; but in the case of a gas

another equation is required, which is furnished by means of a

relation which exists between p and p.

When the motion of the gas is such that the temperature

remains constant, we have by Boyle's Law the equation

p = kp (24),

where A; is a constant.

But when the motion is such as to cause a sudden compression

or dilatation, an increase or decrease of temperature will be

produced ; and if it is assumed (as is the case with sound waves),

that the compression is so sudden that loss or gain of heat by

radiation may be neglected, it will be shown in the second part,

that the required relation is

P = k'p-' (25),

where y is the ratio of the specific heat at constant pressure to

the specific heat at constant volume. This quantity for all gases

has the approximately constant value 1'408.

18. Let us now suppose that the forces arise from a con-

servative system whose potential is V. Since p is a function of

p, we may put

and the left-hand sides of (21) will be respectively equal to

dQjdx, dQ/dy, dQ/dz. If therefore we eliminate Q by diffe-

rentiating the second equation with respect to 2 and the third

with respect to y, and introduce the values of f, rj, f from § 8, we

shall obtain

^^ _ ydu dv ^dw y^

where f, t;, f are the components of molecular rotation and

= du/dx + dvjdy + dwjdz. Eliminating 6 by means of the equa-

tion of continuity dpldt + pd = 0, and taking account of the two
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other equations which may be written down from symmetry, we

shall obtain

d /f\ _ ^ du 7) dv t dw\

dt \p/ p dx p dx p dx

d frj\ f dii rj dv f ^'^^

it)
y (26).

dt \pJ pdy pdy p dy

d /fN _ f du Tj dv f dw
di \p) p dz p dz p dz

,

These equations may also be written in the form

ot \pj p ax p ay p dz

19. It was stated in § 7, that in many important problems,

the motion is such that a velocity potential exists. The con-

dition that such should be the case is, that f, 77, f should each

vanish. We shall now prove, that when the fluid is under the

action of a conservative system of forces, a velocity potential will

always exist whenever it exists at any particular instant.

Let us choose the particular instant at which a velocity poten-

tial exists, as the origin of the time ; then by hypotheses f, 9;, f
vanish when ^ = ; also the coefficients of these quantities in (26),

will not become infinite at any point of the interior of the fluid
;

it will therefore be possible to determine a quantity L, which shall

be a superior limit to the numerical values of these coefficients.

Hence f, ij, f cannot increase faster than if they satisfied the

equation

But if f 4- 77 + ? = H/a, we obtain by adding the above equations

whence H = Ae^'-\

Now n = when ^ = 0, therefore ^ = ; and since fl is the

sum of three quantities each of whicji^is essentially positive, it

follows that f, 7j, f must always remain zero, if they are so at any

particular instant. The above proof is due to Sir G. Stokes'.

1 "On the friction of fluids in motion," Section II. Trans. Camh. Phil. Soc.

vol. VIII.
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20. There is, as was first shown by Sir G. Stokes, an important

physical distinction in the character of the motion which takes

place, according as a velocity potential does or does not exist.

Conceive an indefinitely small spherical element of a fluid

in motion to become suddenly solidified, and the fluid about it

to be suddenly destroyed. By the instantaneous solidification,

velocities will be suddenly generated or destroyed in the different

portions of the element, and a set of mutual impulsive forces will

be called into action.

Let X, y, 2 be the coordinates of the centre of inertia G of the

element at the instant of solidification, x + of, y + y\ z-\- z those

of any other point P in it; let %i, v, w be the velocities of G along

the three axes just before solidification, it , v\ w' the velocities of P
relative to G ; also let u, v, w be the velocities of G, u^, v^, w^ the

relative velocities of P, and f, 77, f the angular velocities just

after solidification. Since all the impulsive forces are internal,

we have
u—u, v = v, w = w.

We have also by the principle of conservation of angular

momentum,

Sm [y (w^ — w) — z (Vj —v')\ = 0, &c.

m denoting an element of the mass of the element considered.

But u^ = 1)2 — ^y\ and ii is ultimately equal to

du , du , du ,

dx ' dy^ dz '

and similar expressions hold good for the other quantities. Sub-

stituting in the above equation, and observing that

^my'z = l^m'z'x = Xmx'y = 0, and ^mx^ = l^my'^ = Xmz^,

we have f=.g_g),&c.

We see then that an indefinitely small spherical element of

the fluid, if suddenly solidified and detached from the rest of the

fluid, will begin to move with a motion of translation alone, or

a motion of translation combined with one rotation, according as

udx -\- vdy + wdz is, or is not, an exact differential, and in the latter

case the angular velocities will be determined by the equations

^c._dw dv _du_dw 2y_dv_du
^ ~ dy~dz' ^~dz dx' ^~ dx dy'
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On account of the physical meaning of the quantities f, 97, f,

they are called the components of molecular rotation, and motion

which is such that they do not vanish is called rotational or vortex

motion ; when they vanish, the motion is called irrotational.

In the foregoing investigation, it has been assumed that the

pressure is a function of the density, and also that the fluid is

under the action of a conservative system of forces; it therefore

follows that vortex motion cannot be produced, and consequently,

if once set up, cannot be destroyed by such a system of forces. It

can however be shown that the theorem is not true if the pressure

is not a function of the density. If therefore by reason of any

chemical action, the pressure should cease to be a function of the

density during any interval of time however short, vortex motion

might be produced, or if in existence might be destroyed.

21. The equations of motion can be integrated whenever

a force and a velocity potential exist ; for putting

Q = -j^-r.

and multiplying (21) by dx, dy, dz respectively and adding, we

obtain

,^ du ^ dv J dw ,

Now in the present case

du _ du du dv dw
dt dt dx dx dx

where q is the resultant velocity. Integrating, we obtain

\^f+y+^-}t
+ W-F{t) (27),

where J?" is an arbitrary function.

22. When the motion is steady, dujdt, dv/dt and dw/dt are

each zero, and in this case the general equations of motion can

always be integrated. It will however be necessary to distinguish

between irrotational and rotational motion.
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The general equations of motion may be written,

dw dw .dq^ » , _ ^ dQ

y
•-(28).

When the motion is steady and irrotational u, v, w, f, rj, ^ are

each zero; whence multiplying by dx, dy, dz, adding and integrating

we obtain

j^+V+iq' = C (29).or

P

In this case the quantity C is evidently an absolute constant.

When the motion is rotational, let ds be an element of a stream

line, then
dx dy dz

Multiplying the general equations by u, v, w and adding,

dp

we obtain ^ = h i-

,

ds ^ ds'

fj-^V+iq^ = A (30).whence
P

This is Bernoulli's Theorem.

If we use c. G. s. units, the left-hand side of this equation

is the energy in ergs per gramme of liquid.

Since we have integrated along a stream line, the quantity A
is not an absolute constant, but a function of the parameter of a

stream line : in other words if i/r = const., % = const, be two surfaces

whose intersections determine the stream lines, ^ is a function

of ^fr and X-

Impulsive Motion.

23. The equations which determine the change of motion

when a fluid is acted upon by impulsive forces, may be deduced in

manner similar to that employed in § 14.

Let u, V, w and u\ v, w be the velocities of the fluid just

before and just after the impulse
; p the impulsive pressure.

B. H. 2
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Since impulsive forces are equal to the change of momentum
which they produce, it follows by considering the motion of a small

parallelopiped BxSyBz, that

p {u — u) hxhyhz =phyhz — [p + J^
S^'j S?/S^,

whence the equations of impulsive motion are

/ ' N ^P

Multiplying by dx, dy, dz and adding we obtain

— dpip = {u — u) dx + {v - v)dy + (to —w)dz (32).

In the case of a liquid p is constant, whence differentiating

with respect to x, y, z, adding and taking account of the equation

of continuity, we obtain

V^p = (33).

If the liquid were originally at rest, it is clear that the motion

produced by the impulse must be irrotational, whence if (/> be its

velocity potential

ij^ P = -9<^ (34),

^ nT which is a very important result.

Flow and Circidation.

24. The line integral j (udx -\- vdy -\- wdz), taken along any

curve joining a fixed point A with a variable point P, is called the

flow from A to P.

If the points A and P coincide, so that the curve along which

the integration takes place is a closed curve, this line integral is

called the circulation round the closed curve.

If the motion of a liquid is irrotational, and </)^, (\),. denote

the values of the velocity potential at A and P, the flow from A
to P is simply <^^ — (j>^, and is independent of the path from A
to P ; also the circulation round any closed curve is zero, provided

<f)
be a single-valued function. Cases however occur in which (p is

a many-valued function; and when this is the case, the value of

the circulation will depend upon the position of the closed curve
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round which the integration is taken, being zero for some curves,

whilst for others it has a finite value.

For example, when the motion is in two dimensions, </> satisfies

the equation

^ ^_
dx''

"^
df ~ '

and it can be verified by trial, that a particular solution of this

equation is

(f>
= m tan~^ yjx.

This value of </> therefore gives a possible kind of irrotational

motion. Let 6 be the least value of the angle tan~^ yjx ; then since

the equation = tein~^ y/x is satisfied by 6 -{-2n7r, where n is any

positive or negative integer, it follows that the most general value

of
(f)

is

(f)
= mO + 2m7i7r,

whence (/> is a many-valued function.

Let a point P start from any position, and describe a closed

curve which does not surround the origin. During the passage of

P from its original to its final position, the angle 6 increases to a

certain value, then diminishes, and finally arrives at its original

value, and therefore the circulation round such a curve is zero;

but if the closed curve surrounds the origin, 6 increases from its

original value to 27r + 6, as the point travels round the closed

curve, and therefore the circulation round a curve which encloses

the origin is 2m7r.

Irrotational motion which is characterized by a single-valued

velocity potential, is called acyclic irrotational motion; whilst

motion which is characterized by a many-valued velocity potential,

is called cyclic irrotational motion.

25. The importance of the distinction between cyclic and

acyclic motion will not be fully understood, until we discuss

the theory of rectilinear vortex motion ; but the results of § 23

will enable us to prove, that cyclic motion cannot be produced or

destroyed by impulsive forces.

Integrate (32) round any closed curve, then since pip (or

jp~^ dp in the case of a gas) is necessarily a single-valued function,

it vanishes when integrated round any closed curve, and we

obtain

j(u'dx + v'dy + w'dz) = f(udx + vdy 4 wdz),

which shows that the circulation is unaltered by the impulse.

2—2
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We can also show that cyclic irrotational motion cannot be

generated nor destroyed, when the liquid is under the action of

forces having a single-valued potential ; for if we put

^=ft+^+S-^i^/p dt

the equations of motion are

do) * dy ' dz

Multiply these equations by dx, dy, dz, add and integrate

round a closed curve, and let k be the circulation ; we obtain

/? + (^+i^^)-(^-^^^A^-2 +S-f = 0...(35).

where the suffixes refer to the initial and final positions of the

moving point. Since Jp'^dp and V+^q^ are single-valued

functions, the sum of the first three terms is zero, and (35) reduces

to

dt ^'

whence k = const.

If therefore /c is zero, or the motion is acyclic, it will remain

zero during the subsequent motion.

Sources, Doublets and Images.

26. When the motion of a liquid is irrotational and sym-
metrical with respect to a fixed point, which we shall choose as

the origin, the value of <^ at any other point P is a function of

the distance alone of P from the origin ; and Laplace's equation

becomes

dr' r dr

Therefore = - -
,

and ^ = !5
dr r^

The origin is therefore a singular point, from or to which the

stream lines either diverge or converge, according as m is positive

or negative. In the former case the singular point is called a

source, in the latter case a sink.
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The Hux across any closed surface surrounding the origin is,

= 4!7nn,

where dCl is the solid angle subtended by dS at the origin, and e

is the angle which the direction of motion makes with the normal

to S drawn outwards.

The constant m is called the strength of the source.

27. A doublet is formed by the coalescence of an equal source

and sink. To find its velocity potential, let there

be a source and sink at >Si and H respectively, and

let be the middle point of SH, thenmm
* =-^ + HP

mSH cos SOP
OP'

Now let SH diminish and m increase inde-

finitely, but so that the product 7n . SH remains

finite and equal to //., then

fjL cos SOP
4>
=

p

if the axis of z coincides with OS.

Hence the velocity potential due to a doublet, is equal to the

magnetic potential of a small magnet whose axis coincides with

the axis of the doublet, and whose negative pole corresponds to

the source end of the doublet.

28. When the motion is in two dimensions, and is sym-

metrical with respect to the axis of z, Laplace's equation becomes

dr' r dr

Therefore </> = rti log r,

d<^ m
dr" r

'

where r is the distance of ^any point from the axis. This value of

^ represents a line source of infinite length, whose strength per

unit of length is equal to m.
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If yjr be the current function, ^jcp \^if

Therefore ^=^md i^.^^^
= m tan~* - .

X

29. The velocity potential due to a doublet in two-dimen-

sional motion is

(l>
= m\ogSP'-m\ogHP

SH ^^o fi cos SOP= - m ^--^ cos SOP = — ^
OP r

fix

Theory of Images.

30. Let jETj, fi^2 ^® ^^y *w^ hydrodynamical systems situated

in an infinite liquid. Since the lines of flow either form closed

curves or have their extremities in the singular points or bound-

aries of the liquid, it will be possible to draw a surface S, which

is not cut by any of the lines of flow, and over which there is

therefore no flux, such that the two systems H^, H^ are completely

shut off from one another.

The surface S may be either a closed surface such as an

ellipsoid, or an infinite surface such as a paraboloid.

If therefore we remove one of the systems (say H^ and

substitute for it such a surface as S, everything will remain

unaltered on the side of S on which H^ is situated ; hence the

velocity of the liquid due to the combined effect of H^ and H^ will

be the same as the velocity due to the system U^ in a liquid

which is bounded by the surface S.

The system H^ is called the image of H^ with respect to the

surface S, and is such that if H^ were introduced and S removed,

there would be no flux across >S^

The method of images was invented by Sir William Thomson,

and has been developed by Helmholtz, Maxwell and other writers

;

it affords a powerful method of solving many important physical

problems.
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31. We shall now give some examples.

Let S, S' be two sources whose strengths

are m. Through A the middle point of SS'

draw a plane at right angles to SS'. The
normal component of the velocity of the liquid

at any point P on this plane is

^p2 cos PSA + -^, cos PS'

A

0.

Hence there is no flux across AP. If therefore Q be any

point on the right-hand side of AP, the velocity potential due

to a source at S, in a liquid which is bounded by the fixed plane

AP,is

"^''SQ'S'Q'

Hence the image of a source S with respect to a plane is an

equal source, situated at a point S' on the other side of the plane,

whose distance from it is equal to that of S.

^

32. The image in a sphere, of a doublet whose axis passes

through the centre of the sphere, can also be found by elementary

methods.

P

Let S be the doublet, the centre of the sphere, a its radius,

andletO/Sf=/.

The velocity potential of a doublet situated at the origin and

whose axis coincides with OS, has already been shown to be

m cos 6
9 = ^;i—

5

whence if R, be the radial and transversal velocities

^ d(l) 2m cos 6

^ _1 d(j) _m sin 6
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Hence if we have a doublet at S, the component velocity along

OP is

- 1^3 cos OSP cos OPS - -^ sin OSP sin OPS

= - ^pz {cos OSP COS OPS + cos (OPS - OSP)] (3G).

Let us take a point H inside the sphere such that OH = d^lf\

then it is known from geometry that the triangles OPR and OSP
are similar, and therefore the preceding expression may be written

-^ {cos OPE cos ORP + cos SPE\.

But the normal velocity due to a doublet of strength m placed

at E is by (36)

--^ {cos OPE cos OEP + cos 8PE\

and therefore the normal velocity will be zero if

m m' _
SP~^EF~

for all positions of P. But by a well-known theorem,

/_ a^
SP ~ EP '

and therefore the condition that the normal velocity should vanish,

is that

m = - 7na^/f\

Whence the image of a doublet of strength m in a liquid

bounded by a sphere, is another doublet placed at the inverse

point E, whose strength is — ma^jf^.

The theory of sources, sinks and doublets furnishes a powerful

method of solving certain problems relating to the motions of

solid bodies in a liquid *.

We shall conclude this chapter by working out some examples.

^ If a magnetic system be suddenly introduced into the neighbourhood of a

conducting spherical shell, it can be shown that the effect of the induced currents

at points outside the shell, is initiaVy equivalent to a magnetic system inside the

bhell, which is the hydrodynamical image of the external system ; and that the law

of decay of the currents, is obtained by supposing the radius of the shell to diminish

according to the law (u~''^^^^, where c is the specific resistance of the shell.

Analogous results liold good in the case of a plane current sheet; hence all results

concerning hydrodynamical images in sj)hercs and planes, are capable of an electro-

magnetic interpretation. See C. Niveu, Phil. Tram. 1881.
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33. A tnass of liquid whose external surface is a sphere of
radius a, and which is subject to a constant pressure IT, surrounds

a solid sphere of 7'adius b. The solid sphere is annihilated, it is

required to determine the motion of the liquid.

It is evident that the only possible motion which can take

place, is one in which each element of liquid moves towards the

centre, whence the free surfaces will remain spherical. Let R\ R
be their external and internal radii at any subsequent time, r

the distance of any point of the liquid from the centre. The
equation of continuity is

whence r^v — F{t).

The equation for the pressure is

i^U C«rM>CS^t

pdr dt dr
r^ -i^ t h r Jr

r' ^ dr .'^ 8v =^ v4ii
flt(. 4. dl^

whence £=A-,IM..,^^ ^^^% iC.^
^

when r = R', p = 11, and when r = R, p = 0, whence if V, V be

the velocities of the internal and external surfaces

?-^'(*)(i-i)-^^^'^-^")-

Since the volume of the liquid is constant,

R' -R' = a'-¥ = c^

also F'(t)=^j^{R'V),

whence

Putting z = R^V\ multiplying by 2R^ and integrating, we

obtain

.^
n (R' - h')

l__2 n
' pR" '

{{R' + c'f

which determines the velocity of the inner surface.
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If the liquid had extended to infinity, we must put c = x , and

we obtain

whence if ^ be the time of filling up the cavity

Jb'^^R''

/Sp [b R^dR

Putting b^x = R^, this becomes

V enrci)

The preceding example may be solved at once by the Principle

of Energy.

The kinetic energy of the liquid is

27rp rVdr = 27rpV'R* ~

= 27rpV'R'\l ^l.
l^ (R' + c'p

The work done by the external pressure is

47rn r r'dr = JHtt (a' - R'')
J B

whence in (b' - R') = V'R'p \ l
^

,1

.

34. The determination of the motion of a liquid in a vessel of

any given shape is one of great difficulty, and the solution has

been effected in only a comparatively few number of cases. If,

however, liquid is allowed to flow out of a vessel, the inclination s

of whose sides to the vertical are small, an approximate solution

may be obtained by neglecting the horizontal velocity of the

liquid. This method of dealing with the problem is called the

hypothesis of parallel sections.
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Let us suppose that the vessel is kept full, and the liquid is

allowed to escape by a small orifice at P.

Let h be the distance of P below the

free surface, and z that of any element

of liquid. Since the motion is steady,

the equation for the pressure will be

Now if the orifice be small in comparison with the area of the

top of the vessel, the velocity at the free surface will be so small

that it may be neglected ; hence if 11 be the atmospheric pressure,

when 2^=0, p = n, v — and therefore G = IT//?. At the orifice

p = U., z — h, whence the velocity of efflux is

V = J^gh,

and is therefore the same as that acquired by a body falling from

rest, through a height equal to the depth of the orifice below the

upper surface of the liquid. This result is called TorricelWs

Theorem.

35. Let us in the next place suppose that the vessel is a surface

of revolution, which has a finite horizontal aperture, and which is

kept full \

Let A be the area of the top AB of the vessel, U the velocity

of the liquid there ; let K, u; Z, v be similar quantities for the

aperture CD, and a section ah whose depth below AB is z : also

let h be the depth of CD below AB.

The conditions of continuity require that

AU=Ku=Zv,
and since the horizontal motion is neglected, the

equation for the pressure is

1 dj) _ dv dv

p dz ^ dt dz'

Now U and u are functions of t alone, whilst Z
is a function of z only, whence

dv _AdU _Kdu
Jt~ Z dt

~ Z dt'

dU f^dz

diJoZ

1 Besant's Hydromechanics.

whence P^=F(t) + gz -^ - iv
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when z = 0,p = ll,v = U, therefore

P
rh

when z = h,p = Ii,v = u, whence if a = Z'^dz,
Jo

^ =Fit)-^gh--AaU-hi\
P

whence Aatl = gh \- i (W - u')

Putting {AjKf — 1 = 2/?i, 2jgh7ti= aa, and integrating, we

obtain

/g_hG-e^

where G is the constant of integration. Now initially U=0 since

the motion is supposed to begin from rest, therefore (7=1, and we

obtain

= A / tanh tjghm/a.

The velocity of efflux is

11 =
/\/ (1 + 2m) ^- tanh t Jghm/a.

After a very long time has elapsed tanh tjghm/a becomes

equal to unity, and if K be very small compared with A, m = cc
,

and we obtain Torricelli's Theorem

u = J2gh.

The Vena Contracta.

36. When a jet of fluid escapes from a small hole in the

bottom of a cistern, it is found that the area of the jet is less than

the area of the hole ; so that if a be the area of the hole and a that

of the jet, the ratio a /a, which is called the coefficient of contraction

of the jet, is always less than unity. We shall now show that this

ratio must always be greater than ^.
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We shall suppose for simplicity, that no forces are in action, and

that the jet escapes in vacuo; we shall also suppose that the upper

surface of the liquid is subjected to a pressure p.

If the hole were absent, the pressure would be equal to p
throughout the vessel, and therefore since the hole is small, the

pressure may be taken to be sensibly equal to p except just in the

neighbourhood of the hole, where it is zero.

If a" be the area of the cistern, v" the velocity of the liquid

across any section which is at some distance from the hole, the

momentum which flows in across this section per unit of time is

pa'v"^ and the momentum which flows out of the hole is pa'v'^
;

whence by the principle stated at the end of § 15

pa V —pa- V =pa —pia —a)=pa.

But since the pressure is zero at the hole

P/P -¥" = -¥'
.

Also the equation of continuity is

a'v" = <Tv\

whence eliminating p, v , v" we obtain

2 11
or a a

which shows that the coeflicient of contraction is greater than \.

The quantity of liquid which flows out of the vessel per unit

of time is therefore pav. Now if a is small compared with a"

,

we may neglect cr"~^, and therefore a =\(r\ hence the discharge

is equal to

where v' is the velocity of efflux.

Giffard's Injector^.

87. If we suppose fluid of density p to escape through a small

hole, from a large closed vessel in which the pressure is p at points

where the motion is insensible, into an open space in which the

pressure is 11, then if q be the velocity of efflux,

U + ^pq'^C, p = 0;

whence q = \/{2 {p
—

11)//)}.

1 Greenhill, Art. Hydromechanics. Encyc. Brit.
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If A be the sectional area of the jet at the vena contracta, the

quantity of fluid which escapes per unit of time, is

iApq = A{2p{p-U)}.

The momentum per unit of time, is

Apq" = 2A(p- n).

The energy per unit of time, is

In Giffard's Injector, a jet of steam issuing by a pipe from the

upper part of the boiler, is directed at an equal pipe leading back

into the lower part cf the boiler, the jet being kept constantly just

surrounded with water. Now if we assume that the velocity of the

steam jet, is equal to the velocity at which the water flows into

the pipe leading to the lower part of the boiler, which must be

very nearly true ; it follows from the preceding equations that

velocity of steam jet

velocity of water jet ^/^
quantity of steam jet _ /a

quantity of water jet \/ p'

momentum of steam jet _
momentum of water jet '

energy of steam jet _ /p

energy of water jet V o"

'

where a is the density of the steam jet.

If the steam and water jets were directed at each other with

a small interval between them, the superior energy and equal

momentum of the steam jet would overcome the water jet, and

steam would be driven back into the boiler. But the steam jet

without losing its momentum, is capable of being mixed with

water to such an extent, as to become a condensed water jet moving

with the velocity of the water jet, and still entering the boiler,

a valve preventing the reversal of the motion. Consequently the

amount of water carried into the boiler per unit of time, will

theoretically at most be the difference between the quantities which

would e.scape by the water and steam jets, and therefore

and therefore the efficiency of the jet, i.e. the ratio of the quantity

of water pumped in, to the quantity of steam used, will be

V -1.
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EXAMPLES.

1. Find the equation of continuity in a form suitable for air

in a tube, and prove that if the density hef(at — x) where t is the

time and x the distance from one end of a uniform tube, the

velocity is

af (at- x) -h (V- a)f(at)

f{at-x) '
.

where V is the velocity at that end of the tube.

2. If the motion of a liquid be in two dimensions, prove that

if at any instant the velocity be everywhere the same in magni-

tude, it is so in direction.

3. If every particle of a fluid move in the surface of a sphere,

prove that the equation of continuity is

— cos ^ + -,^ (pay cos 6) + -^- {pw cos 6) — 0,

where p is the density, Q and </> the latitude and longitude of any

element, and <», w' the angular velocities of the element in latitude

and longitude respectively.

4. Fluid is moving in a fine tube of variable section k, prove

that the equation of continuity is

where v is the velocity at the point s.

5. If F {x, y, Zy t) is the equation of a moving surface, the

velocity of the surface normal to itself is

"
:SW ^^^^^ ^' ^ {dFjdxf + {dFjdyf + (dF/dzf.

6. If X, y and z are given functions of a, h, c and t, where a,

h and c are constants for any particular element of fluid, and if

u, V and w are the values of x, y, z when a, Z>, c are eliminated,

prove analytically that

^x du du du
.

du
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7. If the lines of flow of a fluid lie on the surfaces of coaxial

cones having the same vertex, prove that the equation of con-

tinuity is

^' J "^ ^'

c^ ^^^P^ "^ ^^" "^ ^^^^^ ^ d6 ^P^^ " ^•

8. Show that

w'liakty 4- kf [iylhy + {zjcY] = 1

is a possible form of the bounding surface at time ^ of a liquid.

9. A fine tube whose section k is a function of its length s, in

the form of a closed plane curve of area A filled with ice, is moved
in any manner. When the component angular velocity of the

tube about a normal to its plane is 12, the ice melts without

change of volume. Prove that the velocity of the liquid relatively

to the tube at a point where the section is K, at any subsequent

time when co is the angular velocity is

-^ (il - co),

where l/c = Jk'^ds, the integral being taken once round the tube.

10. A centre of force attracting inversely as the square of the

distance, is at the centre of a spherical cavity within an infinite

mass of liquid, the pressure on which at an infinite distance is ot,

and is such that the work done by this pressure on a unit of area

through a unit of length, is one half the work done by the attrac-

tive force on a unit of volume of the liquid from infinity to the

initial boundary of the cavity
;
prove that the time of filling up

the cavity will be

'Vj{-©'!
a being the initial radius of the cavity, and p the density of the

liquid.

11. A solid sphere of radius a is surrounded by a mass of

liquid whose volume is 47rc73, and its centre is a centre of attrac-

tive force varying directly as the square of the distance. If tlie

solid sphere be suddenly annihilated, show that the velocity of the

inner surface when its radius is a;, is given by

iV {{of + c")^ -x}={^ +
l

fic'^ (a'' - x') (c' + af)\

where p is the density, 11 the exteraal pressure and p, the absolute

force.
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12. Prove that if ct be the impulsive pressure,
(f>,

(/>' the

velocity potentials immediately before and after an impulse acts,

V the potential of the impulses,

'ST + pV -\- p ((f>'
-

cf)) = const.

13. The surface of a vessel consists of two equal right cones,

height 2c, with coincident bases ; it is fixed with its axis vertical

and filled with water to half way up the axis of the upper cone,

the air above this level being initially at atmospheric pressure and

the vessel closed. The water flows out of the vessel from a ring of

apertures on the level of bisection of the axis of the lower cone.

On the hypothesis of parallel sections, obtain a differential equation

for the velocity of efflux, while the free surface is above the mid-

way point, and show that one equation to find its maximum value

in this stage is

u'[l- {c/(2c - x)Y] -2g{c + x) = 2U [{c/(2c - x)Y - 1] p-\

where x = height of surface above midway point.

14. If the motion of a homogeneous liquid be given by a

single valued velocity potential, prove that the angular momentum
of any spherical portion of the liquid about its centre is always

zero.

15. Homogeneous liquid is moving so that

u = ryx + ay, V = ^x — yy, w = 0,

and a long cylindrical poition whose section is small, and whose

axis is parallel to the axis of z, is solidified and the rest of the

liquid destroyed. Prove that the initial angular velocity of the

cylinder is

B0~Aa- 2Fy

A+B
where A, B, F are the moments and products of inertia of the

section of the cylinder about the axes.

16. Fluid is contained within a sphere of small radius
;
prove

that the momentum of the mass in the direction of the axis of x is

greater than it would be if the whole were moving with the

velocity at the centre by

where p^ = dp/dx &c.

B. H. 3
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17. The motion of a liquid is in two dimensions, and there is

a constant source at one point A in the liquid and an equal sink

at another point B ; find the form of the stream lines, and prove

that the velocity at a point P varies as {AP.BPf\ the plane of

the motion being unlimited.

If the liquid is bounded by the planes x = 0, a: = a, y = 0, y = a,

and if the source is at the point (0, a) and the sink at (a, 0), find

an expression for the velocity potential.

18. The boundary of a liquid consists of an infinite plane

having a hemispherical boss, whose radius is a and centre 0. A
doublet of unit strength is situated at a point S, whose axis

coincides with OS, where OS is perpendicular to the plane. P is

any point on the plane, OP = y, OS = f. Prove that the velocity

of the liquid at P is

efy\ ^' , '—},

19. Prove that

(f>--=f{t) [if + a' - 2azy^ + {r' + a'* + 2azy^ - r"') + ^|r (t)

is the velocity potential of a liquid, and interpret it. Find the

surfaces of equal pressure if gravity in the negative direction of

the axis of -2^ be the only force acting.

20. Liquid enters a right circular cylindrical vessel by a

supply pipe at the centre 0, and escapes by a pipe at a point A
in the circumference ; show that the velocity at any point P is

proportional to PB/PA . PO, where B is the other end of the

diameter AO. The vessel is supposed so shallow that the motion

is in two dimensions.



CHAPTEE 11.

MOTION OP CYLINDERS AND SPHERES IN AN

INFINITE LIQUID.

38. The present chapter will be devoted to the consideration

of certain problems of two-dimensional motion, and we shall also

discuss the motion of a sphere in an infinite liquid.

If a right circular cylinder is moving in a liquid, the pressure

of the liquid at any point of the cylinder passes through its axis,

and therefore the resultant pressure of the liquid on the cylinder

reduces to a single force, which can be calculated as soon as the

pressure has been determined. Now the pressure at any point of

the liquid, is found by means of the equation

,.^plp + 4> + \,f=a,

and therefore p can be determined as soon as the velocity potential

is known. Hence the first step towards the solution of problems

of this character, is to find the velocity potential.

If the cylinder is not circular, the resultant pressure of the

liquid upon its surface will usually be reducible to a single force

and a couple, and the problem becomes more complicated. The

motion of cylinders which are not circular, can be most con-

veniently treated by means of the dynamical methods explained

in the next chapter. In the present chapter, we shall show how

to find the motion of an infinite liquid, in which cylinders of

certain given forms are moving, and we shall also work out the

solution of certain special problems relating to the motion of

circular cylinders and spheres.

3—2
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39. If the liquid be at rest, and a cylinder of any given

form be set in motion in any manner, the subsequent motion of

the liquid will be irrotational and ac;[clic, and is therefore com-

pletely determined by means of a velocity potential. It is however

more convenient to employ Earnshaw's current function yjr. This

function, when the motion is irrotational, satisfies the equation

^^ +^ = (1)

at all points of the liquid.

The integral* of this equation is

ylr=:f(x + cy) + F(x-ci/) (2),

also u= -^ , V——— (3).
dy dx

We must now consider the boundary conditions to be satisfied

by >/r.

If the liquid is at rest at infinity (which will usually be the

case), d-^lr/dx and dyfr/dy must vanish at infinity. If any portions

of the boundary consist of fixed surfaces, the normal component

of the velocity must vanish at such fixed boundaries, and there-

fore the fixed boundaries must coincide with a stream line. This

requires that yjr = const, at all points of fixed boundaries.

When the cylindrical boundary is in motion, the component

velocity of the liquid along the normal, must be equal to the

component velocity of the cylinder in the same direction.

(i) Let the cylinder be moving with velocity U parallel to the

axis of X, and let 6 be the angle which the normal to the cylinder

makes with this axis ; then at the surface

u cos ^ + 1; sin ^ = U cos 0,

Now cos 6 = dy/ds ; sin ^ = — dx/ds ; therefore by (3)

ds ds

'

Integrating along the boundary, we obtain

yjr = Uy + A (4),

where ^ is a constant.

* The easiest way of showing that (2) is a solution of (1), is to differentiate the

right-hand side of (2) twice with respect to .r, and twice with respect to y and add.

Since the result is zero, this shows that (2) satUfics (1) ; also since (2) contains two

arbitrary J'unctiom, it is the most general solution that can be obtained.



BOUNDARY CONDITIONS. 37

(ii) If the cylinder be moving with velocity V parallel to the

axis of ?/, the surface condition in the same manner can be shown

to be

f = - Vx + B (5).

(iii) Let the cylinder be rotating with angular velocity co
;

then at the surface

ucos6-\- V sin 6 = — coy cos 6 + (ooo sin 6,

dylf dr
or -^ =- cor-^ .

as as

Therefore yjr == - ^cor" -\-

C

(6),

where r— (x^ + if) .

When there are any number of moving cylinders in the liquid,

conditions (4), (5) and (6) must be satisfied at the surfaces of each

of the moving cylinders.

In addition to the surface conditions, i|r must satisfy the

following conditions at every point of space occupied by the

liquid
; viz. -^ must be a function which is a solution of Laplace's

equation (1), and which together with its first derivatives must be

finite and continuous at every point of the liquid.

If we take any solution of (1), and substitute its value in (4),

(5) or (6), we shall in many cases be able to determine the current

function due to the motion of a cylinder, w^hose cross section is

some curve, in one of the three prescribed manners.

In most of the applications which follow ^/r will be of the

form

^=f{x-\-Ly)-\-f{x-Ly) (7),

^'-^^(^) t = t' fy =-t («)•

From these equations we see that

<i>^ 1-^=^21,/ {x + Ly) (9),

and therefore when i/r is known, ^ can be found by equating the

real and imaginary parts of (9).
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Motion of a Circular Cylinder.

40. Let

^ = _ JFa^ f
—i- + -^V

^
\x-\- uy X — ly)

Transforming to polar coordinates, and using De Moivre's

theorem, we obtain

>/r=-FaV^-'' (10).

When r=a, ^= — Vx\ equation (10) consequently deter-

mines the current function, when a circular cylinder of radius a

is moving parallel to the axis of y, in an infinite liquid with

velocity F.

By (9) the velocity potential is

<f>
= -Voj'ylr' (11).

41. Let us now suppose that the cylinder is of finite length

unity, and that the liquid is bounded by two vertical parallel planes,

which are perpendicular to the axis of the cylinder.

In order to find the motion, when the cylinder is descending

vertically under the action of gravity, let ^ be the distance of the

axis of the cylinder at time t from some fixed point in its line of

motion which we shall choose as the origin, and let (x, y) be the

coordinates of any point of the liquid referred to the fixed origin,

the axis of y being measured vertically downwards ; also let (r, 6)

be polar coordinates of the same point referred to the axis of the

cylinder as origin. By (11)

</> = - ^-«»"^=-^+(y_^)».

and therefore since d^jdt = V,

6 = sin 6 -\—
J,

..
- sm^ 6,

r r r

and therefore at the surface, where r = a,

<^ = -aFsin^+ 7^0082^.

Also 'f= P+(7-
refore when r = a,

q' = V\
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Whence

p/p = at s'm e - V cos2e - ^V -{ g(/3 + asm 6) + C... (12).

The horizontal resultant of the pressure is evidently zero ; the

vertical resultant is

•277/•27r

Y=-a p sin Odd.
Jo

Substituting the value of p from (12) and integrating, we

obtain

Y = -7rpa'{V-\-g).

Hence if <r be the density of the cylinder, the equation of

motion is

TTo-a^V=Y-[- iraga^,

or (<r + p)V={o--p)g (13).

Integrating this equation, we obtain

(o- + f))

where v is the initial velocity measured vertically downwards.

We therefore see that the cylinder will move in a vertical

straight line, with a constant acceleration which is equal to

g{(r-p)l{(T + p).

In order to pass to the case in which there are no forces in

action, we must put ^ = 0, in which case V remains constant and

equal to its initial value. It thus appears that the only effect of

the liquid is, to produce an apparent increase in the inertia of the

cylinder, which is equal to the mass of the liquid displaced.

By combining these two results, we see that if the cylinder be

projected in any manner under the action of gravity, it will describe

a parabola with vertical acceleration g {a- — p)/{o- + p).

It is well known that if a solid body be projected in a liquid

of unlimited extent, and no impressed forces are in action, it will

not continue to move with constant velocity, but will gradually

come to rest. One reason of this discrepancy is, that we have

proceeded upon the supposition that the liquid is frictionless,

whereas all liquids with which we are acquainted are more or less

viscous, which produces a gradual conversion of kinetic energy

into heat. We shall consider this question more fully when

discussing the motion of a sphere.
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4:^. The motion of a cylinder in a liquid, which is bounded by

a fixed external cylinder, is a problem of considerable difficulty.

If however the cylinders are initially concentric, the initial motion

can easily be found ; and this problem will afford an example of

the use of the velocity potential.

The velocity potential, as we know, satisfies Laplace's equation,

which when transformed* into polar coordinates becomes

f^-;£4S-» (»)

Let us endeavour to satisfy this equation by assuming

<f)
= F {7') e"'^^ ; this will be possible, provided

d'F IdF n'F ^

dr' r dr r^

Assuming i' = r'", the equation reduces to vi'-n^ = 0, whence

m = ± n, and therefore the required solution is

(/) = (^r" + ^r*") e^'*« (15).

In this solution n may have any value whatever, and the real

and imaginary parts of the above expression will be independent

solutions of (14).

Let us now suppose that the radius of the outer cylinder, which

is supposed to be fixed, is c; and let the inner one be started

with velocity U.

Since the velocity of the liquid at the surface of the outer

cylinder must be wholly tangential, the boundary condition is

-^ = 0, when ?• = c (16).

At the surface of the inner cylinder, which is moving with

velocity (J, the component velocities of the cylinder and liquid

along the radius, must be equal ; whence the boundary condition

at the inner cylinder is

-^=t/'cos^, when r=a (17),

6 being measured from the direction of U.

If in (15) we put n=l, the function

(t)
= (Ar-\-Bl7')cose (18)

' Thi.s trantiforiiiatiou cuu be most easily effected, by forming the equation

ot continuity in polar coordinates.
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is a solution of Laplace's equation
; if therefore we can determine

A and B so as to satisfy (16) and (17), the problem will be

solved.

Substituting from (18) in (16) we obtain

Ac'-B = 0.

Substituting in (17) we obtain

Aa'-B= Ua\

Solving and substituting in (18) we obtain

</) = - -, 2 h' + - cos 6.^ c —d^ \ rJ

If we put c = X , we fall back on our previous result of a

cylinder moving in an infinite liquid.

We can now determine the impulsive force which must be

applied to the inner cylinder, in order to start it with velocity U.

By § 23, equation (34), it follows that if a liquid which is

at rest be set in motion by means of an impulse, and <^ be the

velocity potential of the initial motion, the impulsive pressure

at any point of the liquid is equal to — p(^.

Hence if M be the mass of the cylinder, F the impulse, the

equation of motion is

MU = F- pcosedO
Jo

r27r

= F -{ pa \ </) cos Odd
Jo

„ Uirpd" (c' + d")

whence since M= ira-d^

p(c^±a^)l
a-((f- a')]

The Lemniscate of Bernoulli.

43. The lemniscate of Bernoulli is a quartic curve whose

equation in Cartesian coordinates is {x"" + yy = 26^ {x'' - if), or

in polar coordinates r' = 2c' cos 2^. In order to find the current

function, when a cylinder, whose cross section is this curve, is

moving parallel to x in an infinite liquid, let us put n, = x-\r ly,

v = x — uy^ and assume

^'=*^^'t37r(.^^^
''''
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Now u^ - c' = r' (cos 20 + t sin 2(9) - c'

;

whence at the surface where r^ = 2c^ cos 26, the right-hand side

becomes

2c^ cos' 2^ + 4C* sin 4(9 - c' = c' (cos 2^ + i sin 2(9)'^

;

, u r (cos 6 -{- L sin 6)
whence ^ = -r^—7r?i -.—^ = r (cos ^ — t sin 6) c.

{'iij'-c')^ c{cos2e-\-i,sm2d) ^ ^'

Therefore at the surface

yjr^ = Ur sin 6 = Uy.

The value of -^^ given by (19), is therefore the current function

due to the motion parallel to x with velocity U, of a cylinder

whose cross section is a lemniscate of Bernoulli.

If we put ir^^-hVo 1-^. +—^1

,

it can be shown in a similar manner, that yjr^ is the current

function, when a cylinder of this form is moving parallel to y with

velocity V; and that yjr^ is the current function, when the cylinder

is rotating with angular velocity w about its axis.

If the cross section be the cardioid r = 2c (1 + cos 6), the values

of -i^, and yJTj^ can be obtained by writing (u^ — c^y, {v^ — c^Y for

{it^ — c'O^ {v^ — c^) in the preceding formulae ; but the value of -y^^

cannot be so simply obtained. See Quart. Jour. vol. xx. p. 24G.

An Equilateral Triangle.

44. The preceding methods may also be employed, to find

the motion of a liquid, which is contained within certain cylin-

drical cavities, which are rotating about an axis.

Let ^^ = lA[{x-\- tyY + (a; - cyf]

= A (x' - Sxy') = Ar"" cos 3^.

Substituting in (6), the boundary condition becomes

A{x'-Sxy') + i(o{x' + y') = G (20).

If we choose the constants so that the straight line x = a, may
form part of the boundary, we find
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Hence (20) splits up into the factors

{x — a)\ x + ?/\/3 + 2a ; x — y^S + 2a.

The boundary therefore consists of three straight lines forming

an equilateral triangle, whose centre of inertia is the origin.

Hence yjr is the current function due to liquid contained in an

equilateral prism, which is rotating with angular velocity co about

an axis through the centre of inertia of its cross section. The values

of yjr and cp, when cleared of imaginaries, are

'ylr=^r' cos 3^, 6= ^ r' sin 3(9.
^ 6a ^ 6a

An Elliptic Cylindrical Cavity.

45. Let yjr=:^A{{x + Lyy + {x-cyy}

= A(x'-y'),

Substituting in (6) we find

A(x'-f)+icoix'+f) = a

Puttmg --^0" = ^' ~^a" = 6^'

the equation of the boundary becomes

ana Y- 2{a' + b')^ ^ ^'

yfr is therefore the current function due to the motion of liquid

contained in an elliptic cylinder, which is rotating about its axis.

Elliptic Cylinder.

46. The problem of finding the motion of an elliptic cylinder

in an infinite liquid, cannot be solved by such simple methods as

the foregoing ; in order to effect the solution we require to employ

the method of Conjugate Functions.

Def. If ^ and rj arefunctions of x and y, such that

S + cv=f(ix + Ly) (21),

then ^ and rj are called conjugate functions of x and y.

If we differentiate (21) first with respect to x, and afterwards
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with respect to y, eliminate the arbitrary function, and then

equate the real and imaginary parts, we shall obtain the equations

di^d^i dS^_dri
dx dy' dy dx ^

^'

Comparing these equations with (8), we see that <^ and ^/r are

conjugate functions oi x and y.

From equations (22) we also see that

dx dx dy dy ^
''

V^f = 0, 7^^17 = (24).

Equation (23) shows that the curves f = const., t) = const., form

an orthogonal system ; and equations (24) show that f and 17 each

satisfy Laplace's equation.

If (f>
aiid yjr are conjugate functions of x and y, and f and

rj are also conjugate functions of x and y, then and -^jr are

conjugate functions of f and 7].

For <j) + Lylr = F{x-\- ly),

and f +*^=/(^ + ^2/)»

whence eliminating x + ty, we have

<^ + t>|^ = %(f+t^).

From this proposition combined with (24), it follows that if

the equation V'^/r = be transformed by taking f and 7; as

independent variables

i*-s=« <->

47. We can now find the current function due to the motion

of an elliptic cylinder.

Let X 4- t/y = c cos (f
-- at;)

= c cos f cosh rj -\- LC sin f sinh rj,

then a; = c cos f cosh rj^

y = c sin f sinh tj)

whence the curves rj = const, f = const., represent a family of

confocal ellipses and hyperbolas, the distance between the foci

being 2c.

If a and h be the serai-axes of the cross section of the elliptic

cylinder 77 = y3, then,

a = ccoshy3, 6 = csinhyS.
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If /3 is exceedingly large, sinh ^ and cosh yS both approximate

to the value \ce^ ; and therefore as the ellipse increases in size, it

approximates to a circle whose radius is ^ce^.

It can be verified by trial, that (25) can be satisfied by a series

of terms of the form 6""''(J.^cosn^ + ^„sin nf) ; and if n be a

positive quantity not less than unity, this is the proper form of y^

outside an elliptic cylinder, since it continually diminishes as t]

increases.

When the cylinder is moving parallel to its major axis with

velocity U, let us assume

^1^^ = J.e~''sinf.

Substituting in (4) we obtain

Ae~^ sin ^=Uc sinh /3 sin f+ (7,

where 7/ = y3 is the equation of the cross section of the cylinder.

Since this equation is to be satisfied at every point of the

boundary, we must have = 0, A = Uce^ sinh yS ; whence

yjr^^ Uce-''^^ sinh B sin ^ (27).

When the cylinder is moving parallel to its minor axis with

velocity V, it may be shown in the same manner that

A|r^ = -Fc6-''+^ cosh /S cos ^ (28).

Lastly let us suppose that the cylinder is rotating with angular

velocity w about its axis. Then

x^ -\-y^ = c'^ (cos^ f cosh^ 7) + sin^ f sinh'' t})

= lc' (cosh 27; + cos 2^).

Let us therefore assume

>fr3 = J56-2'» cos 2f

Substituting in (6) we obtain

Be-^P cos 2? + ift)c' (cosh 2/3 + cos 2f) = G,

whence 5 = -ift)cV^ G=lcoc' cosh 2/3,

and therefore ylr^ = -icoc'e-^<-^-P^cos2^ (29).

48. If we suppose that 13 = 0, the ellipse degenerates into a

straight line joining the foci, and (28) becomes

,|r^ = - Fee-" cos f (30).

It might therefore be supposed that (30) gives the value of the

current function, due to a lamina of breadth 2c, which moves with
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velocity F, perpendicularly to itself. This however is not the case,

inasmuch as the velocity at the edges of the lamina becomes

infinite, and therefore the solution fails. To prove this, we have

dyjr _ dyjt dx dy^ dy

dr) dx drj dy drj

= c sinh 7) cos ^ -—- 4- c cosh rj sin f J^- ,

and -^ = - c cosh 77 sin f -^— + c sinh 77 cos ^ -~

,

af ^ dx ^ dy

whence squaring and adding, we obtain

c" (sinh'' 7; cos'' f + cosh« 77 sin'' f) 5^ = (^V + (^|)
= FVe-^'' . . .(81 ).

The coordinates of an edge are a; = + c, 3/ = ; and therefore in

the neighbourhood of an edge 7; and f are very small quantities

;

and therefore by (31) the velocity in the neighbourhood of an

edge is

V
^ W + ^'f

which becomes infinite at the edge itself, where 7/ and f are zero.

It therefore follows that the pressure in the neighbourhood of an

edge is negative, which is physically impossible.

Since the pressure is positive at a sufficient distance from the

edge, there will be a surface of zero pressure dividing the regions

of positive and negative pressures ; and it might be thought that

the interpretation of the formulae would be, that a hollow space

exists in the liquid surrounding the edges, which is bounded by a

surface of zero pressure. But the condition that a free surface

should be a surface of zero (or constant) pressure, although a

necessary one, is not sufficient ; it is further necessary, that such

a surface should be a surface of no flux, which satisfies the kine-

matical condition of a bounding surface § 12, equation (17) ; and it

will be found on investigating the question, that no surface exists,

which is a surface of zero (or constant) pressure, and at the same

time satisfies the conditions of a bounding surface. The solution

altogether fails in the case of a lamina.

When the velocity of the solid is constant and equal to F,

the easiest way of dealing with a problem of this character, is

to reverse the motion by supposing the solid at rest, and the liquid

flowing past it, the velocity at infinity being equal to — F. The
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correct solution in the case of a lamina has been given by

Kirchhoff\ and he has shown that behind the lamina there is a

region of dead water, i.e. water at rest, which is separated from

the remainder of the liquid by two surfaces of discontinuity, which

commence at the two edges of the lamina, and proceed to infinity

in the direction in which the stream is flowing. Since the liquid

on one side of this surface of discontinuity is at rest, its pressure is

constant ; and therefore since the motion is steady, the pressure,

and therefore the velocity of the moving liquid, must be constant

at every point of the surface of discontinuity. It may be added,

that a surface of discontinuity, is an imaginary surface described

in the liquid, such that the tangential component of the velocity

suddenly changes as we pass from one side of the surface to the

other.

Motion of a Sphere.

49. The determination of the velocity potential, when a solid

body of any given shape is moving in an infinite liquid, is one of

great difficulty, and the only problem of the kind which has been

completely worked out, is that of an ellipsoid, which of course

includes a sphere as a particular case.

We shall however find it simpler in the case of a sphere, to

solve the problem directly, which we shall proceed to do.

Let the sphere be moving along a straight line with velocity

F, and let (r, 0, w) be polar coordinates referred to the centre of

the sphere as origin, and to the direction of motion as initial line.

The conditions of symmetry show that <^ must be a function of

(r, 6) and not of o), hence by § 7, equation (11), the equation

of continuity is

dr"" r dr r^ dd^ r^ dO ^ ^

The boundary condition, which expresses the fact, that the

normal component of the velocity of the liquid at the surface of

the sphere, is equal to the normal component of the velocity of

the sphere itself, is

^^ = Fcos(9 (33).

Equation (33) suggests that
(f>
must be of the form F {r) cos 6;

we shall therefore try whether we can determine F so as to satisfy

^ See also, Michell, On the theory of free stream lines, Proc. Roy. Soc. vol.

XLVii. p. 129.
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(32). Substitutiug this value of
<f),

we find that (32) will be

satisfied, provided

d'F 2dF 2F ^

d.^'-rdr-^^'' ('^^-

To solve (34), assume F=r*'*; whence on substitution we
obtain

(m-l)(m+2) = 0;

which requires that m=l or — 2.

A particular solution of (32) is therefore

(l>
= {Ar-{-Br-^) cose.

Since the liquid is supposed to be at rest at infinity, d(j)ldr =
when ?' = 00 , and therefore ^ = 0. To find B, substitute in (33)

and put r = a, and we find

whence </> = - ^
^^^ (35).

This is the expression for the velocity potential due to the

motion of a sphere in an infinite liquid.

In order to determine the motion, when a sphere is descending

vertically under the action of gravity, let 7 be the distance of its

centre at time t from some fixed point in its line of motion, which

we shall choose as the origin ; let the axis of z be measured

vertically downwards and let x, 3/, z be the coordinates of any

point of the liquid referred to the fixed origin.

By(35) <^ = E^^^7)_

and therefore since 7 == F,

d(f> ^ Va'cosd FV_3FVco8^
dt~ 2r'

"^ 2/ 2/ '

and therefore at the surface where r = a,

and therefore

;)/^ = a+ ^(7 + acos(9) + iFacos<9 + jF^(9cos'^<9-5)...(36).
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If Z be the force due to the liquid pressure, which opposes the

motion,

I
'p cos Q sisin ede

= f7r/)a»(iF+^) (37)

by {^^). If therefore a be the density of the sphere, the equation

of motion is

fTTo-a'F= - jTrpa' (iF + 5^) + ^TraV^jr

or {'^\-\9)y={^-9)g (38).

Hence the sphere descends with vertical acceleration

^((7-^)/((7+ip).

In order to pass to the case in which the sphere is projected

with a given velocity and no forces are in action, we must put

g = 0, and we see that F = const. = its initial value; hence the

sphere continues to move with its velocity of projection, and

the effect of the liquid is to produce an apparent increase in the

inertia of the sphere, which is equal to half the mass of the liquid

displaced.

It also follows that if the sphere be projected in any manner

under the action of gravity, it will describe a parabola with vertical

acceleration g {a — p)j{o- + ^p).

50. Let us now suppose that the sphere is moving with

constant velocity F under the action of no forces. The equation

determining the pressure is

p dz ^^

Since d(f>jdz and q vanish at infinity, it follows that C= Tljp,

where 11 is the pressure at infinity, whence

and therefore at the surface,

? = 5 + iF^(9cos'6>-5).
P P

The right-hand side of this equation will be a minimum when

= ^TT, in which case it becomes U/p — ^V\ Hence if

n<fF>
B. H. 4



50 MOTION OF CYLINDERS AND SPHERES.

the pressure will become negative within a certain region in the

neighbourhood of the equator, and the solution fails. If n be given,

it is by no means clear what happens when V exceeds the critical

value (811/5/))*, and the problem is one which awaits solution.

51. In discussing the motion of a cylinder, we also found that

if the solid were projected in a liquid and no forces were in action,

the solid would continue to move in a straight line with its original

velocity of projection ; and we called attention to the fact that

this result was contrary to experience ; and that one reason of

this discrepancy between theory and observation arose from the

fact that all liquids are more or less viscous, the result of which

is that the kinetic energy is gradually converted into heat. The

motion of viscous fluids is beyond the scope of an elementary

work such as the present, but a few remarks on the subject will

not be out of place.

Let us suppose that fluid is moving in strata parallel to the

plane xy, with a variable velocity U, which is parallel to the

axis of X. Let U be the velocity of the stratum AB, U -^ BIT

of the stratum CD, and let Bz be the distance between AB
and CD.

If the fluid were frictionless, the action between the fluid

on either side of the plane AB, would be a hydrostatic pressure p^

whose direction is perpendicular to this plane, and consequently

no tangential action or shearing stress could exist ; if however

the fluid is viscous, the action between the fluid on either side of

the plane AB, usually consists of an oblique pressure (or tension),

and may therefore be resolved into a normal component perpen-

dicular to the plane, and a tangential component in the plane.

The usual theory of viscosity supposes, that if F be the tan-

gential stress on AB per unit of area, F + BF the corresponding

stress on CD, then the latter stress is proportional to the relative

velocity of the two strata divided by the distance between the

strata, so that

whence proceeding to the limit

F^ ^.
dz

'

We may therefore put F = fjL , (-^9),
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1

where /x is a coiistaDt. The constant //, is called the coefficient of
viscosity, it is a numerical quantity whose value is different for

different fluids, and also depends upon the temperature.

The coefficient of viscosity is a quantity which corresponds

to the rigidity in the Theory of Elasticity. If a shearing stress F
be applied parallel to the axis of x, and in a plane parallel to

the plane xy, to an elastic solid, it is known from the Theory

of Elasticity, that

F=7idoLldz,

where a is the displacement parallel to x. Whence the ratio of

the shearing stress F, to the shearing strain dajdz produced by it,

is equal to a constant n, which is called the rigidity. Now in the

hydrodynamical theory of viscous fluids, dU/dz is equal to the

rate at which shearing strain is produced by the shearing stress F;
hence (39) asserts that the ratio of the shearing stress to the rate

at which shearing strain is produced, is equal to a constant /x,

which is called the coefficient of viscosity.

If the shearing stress F is applied in the plane z = c, and if

U=uz/c, (39) becomes

F= ixujc (40),

where u is the velocity of the fluid in the plane z = c. Hence

if i* = l, and c = 1, then F = /jl. We may therefore define the

coefficient of viscosity as follows \

The coeffi^cient of viscosity is equal to the tangential force per

unit of area, on either of two parallel planes at the unit of distance

apart, one of which is fixed, luhilst the other moves with the unit

of velocity, the space between being filled ivith the viscous fluid.

Equation (40) shows that the dimensions of /jl are [ML'^T'^].

If we put V = fjb/p, where p is the density, the quantity v is

called the kinematic coefficient of viscosity. The dimensions of v

are [UT-'].

The equations of motion of a viscous fluid are known, and the

motion of a sphere which is descending under the action of gravity

in a slightly viscous liquid, such as water, has been worked out by

myself ; and I have shown that if the sphere be initially projected

downwards with velocity F,its velocity at any subsequent time will

be approximately given by the equation

1 Maxwell's Heat, p. 298, fourth edition.

4—2
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where f=^^^. X =

-

, ^.^ , .
^"-^JL^

If no forces are in action, the velocity at time t is

v= Fe-^^

which shows that the velocity diminishes with the time.

If the liquid were frictionless, /j, would be zero, and we should

fall back on our previous results.

52. The resistance which a ship experiences in moving

through water, is principally due to the following three causes,

(i) viscosity, (ii) skin friction, (iii) wave resistance.

The first has been already considered, and since the coefficient

of viscosity of water is a small quantity, viz. '014 dynes per square

centimetre in c. G. s. units, the temperature being 24'5°C.; it

would appear that the effect of viscosity is small.

The second cause is due to the friction between the sides of

the vessel and the water in contact with it, and in the opinion of

Mr Froude^ is the principal cause of the resistance experienced

by ships.

The third cause is due to the fact, that when a ship is in

motion on a river or in the open sea, waves are continually being

generated, which require an expenditure of energy for their pro-

duction, and this is necessarily supplied by the mechanical power,

which is employed to propel the ship. If therefore the ship were

set in motion in a frictionless liquid and left to itself, the initial

energy would gradually be dissipated in forming waves, and

would be carried away by them, so that this cause alone would

ultimately bring the ship to rest.

53. Having made this digression upon viscosity and resistance,

we must return to the subject of this chapter.

Let us suppose that a spherical pendulum, which is sur-

rounded with liquid, is performing small oscillations in a vertical

plane.

Let ^ — a be the length of the pendulum rod, whose mass we
shall suppose small enough to be neglected, and let M' be the mass

of the liquid displaced.

1 On Stream lines in relation to the renistance of ships. Nature, Vol. iii.
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If V be the horizontal velocity of the pendulum, it follows from

(37), that the horizontal and vertical forces due to the pressure of

the liquid are ^<^^ X = iM'V, Y=M'g. io^cw^(j24^0

Now V=a6, whence taking moments about the point of sus-

pension, we obtain

M (|a^ + I') = - Mgie -Xl+ YW,

or [M (|a' + r) + WT] + {M- M') gW = 0.

Whence if T be the time of a small oscillation, we have

^-^^Sj {M-M')gl ^^^>-

If in (41) we put p = 0, or if = 0, we shall obtain the period

of a pendulum which is vibrating in vacuo, and (41) shows that

the effect of the liquid is to increase the period.

This result is in accordance with a general dynamical principle

(to which however there are certain exceptions), that when a

dynamical system is subject to constraint, the periods of oscillation

are usually greater than when the system is free.

54. In the last example we have supposed that the liquid

extends to infinity in all directions. In practice this is impossible,

and it is therefore desirable to ascertain what effect the vessel

which contains the liquid, produces on the period.

Let us therefore suppose that the sphere and liquid are con-

tained within a rigid fixed spherical envelop of radius c, whose

centre coincides with the equilibrium position of the sphere. The

vertical pressure of the liquid upon the sphere is evidently equal

to M'g ; and the horizontal pressure will be of the form

VF{x) + vy{x).

where x is the distance of the centre of the sphere at time t from

its mean position, and F and / are unknown functions. The

moment of the latter about the point of suspension is

l{VF{x)+V'f{x)]',

and since in all problems relating to small oscillations, the squares

and products of small quantities are neglected, it follows by

Maclaurin's theorem that the moment is IVF (0), and therefore

may be calculated on the supposition that the spheres are con-

centric. We must therefore first obtain the velocity potential
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when the two spheres are concentric, and the inner sphere is set

in motion with velocity V.

We have already shown that a solution of Laplace's equation is

(^ = (^7- + Br^) cos e.

The boundary condition at the moving sphere is

2=^''=o«^ (42).

when r — a.

The boundary condition at the fixed envelop is

g=o (*^)-

when )' = c. Substituting the above value of cp iu (42) and (48),

we obtain

A - 2Ba-'= V, A- 2Bc-' = ;

whence A=— ^ b

.

ij = —

and <^ = -^3(r4-|.)cos^ (44).

The pressure on the sphere may thus be obtained from our

previous results by writing ^Va (c^ -\- 2a^)/(c^ — a^) for ^Va;
whence

A' = ^M' ir (c-' + 2a')I{6' -a'), F= M'g,

and the equation of motion is

[M (§a' + I') + i Ml' [c' + 2a') lie' - a')} 6+ {M - M') gW = 0.

This equation shows that the etfect of the spherical envelop,

which produces an additional constraint, is to increase the period,

£is ought to be the case in conformity with the dynamical principle

stated above ; and that its action is equivalent to an increase in

the inertia of the pendulum which is equal to

^M'{c'+2a')l{c'-a').
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EXAMPLES.

1. Prove that 6 = log
(^ + ^)' + 3/

]

gives a possible motion in two dimensions. Find the form of the

stream lines, and prove that the curves of equal velocity are

lemniscates.

2. In the irrotational motion of a liquid, prove that the

motion derived from it, by turning the direction of motion at each

point in one direction through 90" without changing the velocity,

will also be a possible irrotational motion, the conditions at the

boundaries being altered so as to suit the new motion.

Discuss the motion obtained in this way from the preceding

example.

3. Liquid is moving irrotationally in two dimensions, between

the space bounded by the two lines = ± ^tt and the curve

r^ cos Sd = a^ The bounding curves being at rest, prove that the

velocity potential is of the form

= r^ sin 3^.

4. The space between the elliptic cylinder (x/aY + {y/by = l,

and a similarly situated and coaxial cylinder bounded by planes

perpendicular to the axis, is filled with liquid, and made to rotate

with angular velocity &> about a fixed axis. Prove that the

velocity potential with reference to the principal axes of the

cylinder is coxy (a^ — b^)l{a^ + h'^), and that the surfaces of equal

pressure when the angular velocity is constant, are the hyperbolic

cylinders

^ - y' -a

5. li^=f{x,y),'^ = F{x,y) are the velocity potential and

current function of a liquid, and if we write

and from these expressions find ^ and -^/r; prove that the new

values of <^ and i/r will be the velocity potential and current

function of some other motion of a liquid.

Hence prove that \i ^ = x'^ — y^, >/r = 2xy, the transformation

gives the motion of a liquid in the space bounded by two confocal

and coaxial parabolic cylinders.

O
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6. lu example 4 prove that the paths of the particles relative

to the cylinder are similar ellipses, and that the paths in space are

similar to the pericycloid

a; = (a + h) cos 0-\- {a — b) cos ( ,
j 0,

1/ = {a-\-b) sin 6 -{-(a — b) sin f

^
J 6.

7. Water is enclosed in a vessel bounded by the axis of y
and the hyperbola 2 (of — Sy^) -\-x-\- my = 0, and the vessel is set

rotating about the axis of z. Prove that

^ = 2(Sx'y-y') + xy-im{x'-y'),

'f = 2{x^-Sxy')-\-i(x^-y^)-hmxy.

8. The space between two confocal coaxial elliptic cylinders

is filled with liquid which is at rest. Prove that if the outer

cylinder be moved with velocity U parallel to the major axis, and

the inner with relative velocity V in the same direction, the

velocity potential of the initial motion will be

6= Uc cosh 77 cos P — Vc—r-h^ X sinh a cos P,^ ' ^ cosh (/8- a)
^

where tj = ^, y = a are the equations of the outer and inner

cylinders respectively, and 2c the distance between their foci.

y. If in the last example the outer cylinder were to rotate

with angular velocity n, and the inner with angular velocity to,

prove that initially

* - i"' ser2'0e - a)
''^ ^^ ^''^

sinh 2 (;8 - a)
'''' ^^'

10. Th(} transverse section of a uniform prismatic vessel, is of

the form bounded by the two intersecting hyperbolas represented

by the equations

; sf2{x^-f)-\-x' + y' = a', ^/2 (y' - x') -\~ x' -\-
y' = b\

: If tlie vessel be filled with water and made to rotate with

. angular velocity w about its axis, prove that the initial component

velocities at any point (x, y) of the water will be

respectively.
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11. In the midst of an infinite mass of liquid at rest, is a

sphere of radius a, which is suddenly strained into a spheroid of

small ellipticity. Find the kinetic energy due to the motion of

the liquid contained between the given surface, and an imaginary

concentric spherical surface of radius c ; and show that if this

imaginary surface were a real bounding surface which could not be

deformed, the kinetic energy in this case would be to that in the

former case in the ratio

& [Za' + 2c^) : 2 (c^ - aj.

12. The space between two coaxial cylinders is filled with

liquid, and the outer is surrounded by liquid, extending to infinity,

the whole being bounded by planes perpendicular to the axis. If

the inner cylinder be suddenly moved with given velocity, prove

that the velocity of the outer cylinder to that of the inner, will be

in the ratio

26VV : p (a'b' - aV + b' + hV) -ha (a'- h') (b' - c%

where a and b are the external and internal radii of the outer

cylinder, a its density, c the radius of the inner cylinder and p the

density of the liquid.

13. A solid cylinder of radius a immersed in an infinite liquid,

is attached to an axis about which it can turn, whose distance

from the axis of the cylinder is c, and oscillates under the action

of gravity. Prove that the length of the simple equivalent

pendulum is

ia' + c'{l+pla)

c{l-p/a) '

(T and p being the densities of the cylinder and liquid.

14. Liquid of density p is contained between two confocal

elliptic cylinders and two planes perpendicular to their axes. The

lengths of the semi-axes of the inner and outer cylinders are

c cosh a, c sinh a, c cosh /8, c sinh ^ respectively. Prove that if the

outer cylinder be made to rotate about its axis with angular

velocity H, the inner cylinder will begin to rotate with angular

velocity

Up cosech 2 (/8 — a)

p coth 2 (/3 - a) + ^o- sinh 4a

'

where cr is the density of the cylinder.
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15. A circular cylinder uf mass if, whose centre of inertia is

at a distance c from its axis, is projected in an infinite liquid under

the action of gravity. Prove that the centre of inertia of the

cylinder and the displaced liquid will describe a parabola, while

the cylinder oscillates like a pendulum of length

{{M-\-M')¥-\-M'c']I^M'c,

where M' is the mass of the liquid displaced, and k is the radius

of gyration of the cylinder about its axis.

16. A cylinder of radius a is surrounded by a concentric

cylinder of radius 6, and the intervening space is filled with

liquid. The inner cylinder is moved with velocity u, and the

outer with velocity v along the same straight line
;
prove that the

velocity potential is

¥v — a\i ^ (v — u) a^b^ cos 6
<b = -,^- 2 ^' cos + ^

Tf2^—2^ .

^ b^ — a^ (b — a^) r

17. A long cylinder of given radius is immersed in a mass

of liquid bounded by a very large cylindrical envelop. If the

envelop be suddenly moved in a direction perpendicular to the

cylinder with velocity F, the cylinder will begin to move with

velocity ^V, provided the density of the cylinder be three times

that of the liquid.



CHAPTER III.

MOTION OF A SINGLE SOLID IN AN INFINITE LIQUID.

55. In the previous chapter, we obtained expressions for the

velocity potential and current function in several cases in which a

solid was moving in a liquid ; and we also worked out several

problems relating to the motion of a right circular cylinder and a

sphere, by first calculating the pressure, and then by integration

determining the resultant force exerted by the liquid upon the

solid. This method, in the case of solids other than circular

cylinders and spheres, is excessively laborious ; and we shall devote

the present chapter to developing a dynamical theory, which will

enable us to dispense with this operation.

Since the solid and the surrounding liquid constitute a single

dynamical system, the pressure exerted by the latter upon the

former, is an unknown reaction arising from contiguous portions of

the system. Now it is shown in treatises on Rigid Dynamics, that

methods exist by means of which the motion of any dynamical

system can be determined without introducing any unknown

reactions. We shall therefore proceed to apply these methods to

the hydrodynamical problem of a solid moving in a liquid.

It will first be desirable to call attention to the following

fundamental propositions, viz.

I. The rate of change of the component of the linear momentum,

parallel to an axis, of any dynamical system, is equal to the

component parallel to that axis, of the iinpi^essed forces which

act upon the system.
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II. The rate of change of the component of the angular'

moinentinn of the system about any axis, is equal to the moment

of the impressed forces about that aads.

III. // the system is not acted vpon by any dissipative forces,

such as internal friction vjhich converts energy into heat, the sum of
the potential and kinetic energies of the system is constant throughout

the motion.

IV. The work done by an impulse, is equal to half the product

of the impidse into the sum of the components in the direction of the

impulse, of the initial and final velocities of the point at which it

is applied.

V. If a dynamical system be set in motion by given impulses,

the luork done by the impulses, is greater luhen the system is free,

than when it is subject to constraint^.

56. The kinetic energy of the system which we are considering,

is the sum of the kinetic energies of the moving solid and liquid.

The former can be calculated by the ordinary rules of Rigid

Dynamics; and we shall proceed to find an expression for the

latter. But before doing this, it will be advisable to consider a

certain theorem due to Green, which has important applications

in various branches of physics.

^ The last proposition, from the name of its discoverer, is known as Bertrand's

Theorem. In order to prove the theorem in a rigorous manner, a knowledge of

Abstract Dynamics would be required, but the following considerations may assist

the reader.

If the dynamical system is free, the whole of the given impulse is expended in

producing kinetic energy ; but if the system is subject to any constraint, part of

the impulse will be expended in producing impulsive reactions at the points at

which the constraint is applied, and therefore the impulse available for producing

kinetic energy, will be less than when the system is free.

The theorem may be easily verified by solving any simple dynamical problem.

For example, let a rod Ali of mass m and length 2a be lying on a smooth horizontal

table ; and let the rod be set in motion by means of an impulse F, applied at B,

pei-pendicularly to its length. The equations of motion are

inv = F, ^ ma^u=Fa ;

and therefore the kinetic energy, which is equal to the work done by the impulse, is

Now let the rod be capable of rotating about the end A , which is supposed to be

fixed ; then the equation of motion is

i ma-^<a= 2Fa ;

and the kinetic energy is

3i''2/2r/«,

which is less than in the former case.
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Greens Theorem.

Let <!> and yjr be any two functions, which throughout the interior

of a closed surface S are single valued, and luhich together with

their first and second derivatives, are finite and continuous at every

point luithin S ; then

rn/d^ d±^d±d±^d^ d-f\
^

Jj]\dx dx dy dy dz dz I ^

=^jJ4,
2 d8-jjJ4,V'f dxdydz (1)

= jjir^d8-jfj^V'<t>dxdyd. (2),

where the triple integrals extend throughout the volume of 8, and the

surface integrals over the surface of S, and dn denotes an element

of the normal to S drawn outwards.

Integrating the left-hand side by parts, we obtain

where the brackets denote that the double integral is to be taken

between proper limits. Now since the surface is a closed surface, any

line parallel to x, which enters the surface a given number of times,

must issue from it the same number of times ; also the ^-direction

cosine of the normal at the point of entrance, will be of contrary

sign to the same direction cosine at the corresponding point of

exit ; hence the surface integral

//*f«
Treating each of the other terms in a similar manner, we find

that the left-hand side of (3)

= jj<l>^dS-jjJ4>V^^dxdyd..

The second equation (2) is obtained by interchanging cf) and yjr.

57. We may deduce several important corollaries,

(i) Let ^/r = 1, and let <^ be the velocity potential of a liquid

;

then V^<^ = 0, and we obtain

= fjjv'<t>dxdydz = jf£dS (4).



62 MOTION OF A SINGLE SOLID.

The right-hand side is the analytical expression for the fact

that the total flux across the closed surface is zero ; in other words

as much liquid enters the surface as issues from it.

(ii) Let (j) and -yjr be both velocity potentials, then

IhU'^-ikt'^ <»)

D'*®'- (2)] -**=lf*2 "»<«)

(iii) Let </> = ^/r, where c^ is the velocity potential of a liquid
;

then

\dxJ ' \dy,

If we multiply both sides of (6) by ^p, the left-hand side is

equal to the kinetic energy of the liquid ; and the equation shows

that the kinetic energy of a liquid whose motion is acyclic and

irrotational, which is contained within a closed surface, depends

solely upon the motion of the surface.

58. Let us now suppose that liquid contained within such a

surface is originally at rest, and let the liquid be set in motion by

means of an impulsive pressure p applied to every point of the

surface. The motion produced must be necessarily irrotational,

and acyclic; also if (/> be its velocity potential, it follows from

§ 23 (34) that jJ = — p<j). Now by the fourth proposition of § 55,

the work done by the impulse is equal to

whence equation (6) shows that the work done by the impulse,

is equal to the kinetic energy of the motion produced by it, as

ought to be the case.

59. Let us in the next place suppose that liquid is contained

within a closed surface which is in motion ; and let the motion of

the liquid be irrotational and acyclic; also let the surface be

suddenly reduced to rest. Then if be the new velocity poten-

tial, d<t)/dn = 0, and therefore

whence f/(/)/c?ar, dcjy/dy, and d(f)/dz are each zero, and therefore the

liquid is reduced to rest.



GREENS THEOREM. 63

60. In proving Green's Theorem, we have supposed that the

region through which we integrate, is contained within a single

closed surface, but if the region were bounded externally and

internally by two or more closed surfaces, the theorem would still

be true, provided we take the surface integral with the positive

sign over the external boundary, and with the negative sign over

each of the internal boundaries.

61. Let us suppose that the liquid is bounded internally by
one or more closed surfaces S^, S^ &c., and externally by a very

large fixed sphere whose centre is the origin. If T be the kinetic

energy of the liquid,

where the square brackets indicate that the integral is to be taken

over each of the internal boundaries.

If the liquid be at rest at infinity, the value of
(f)

at S, will be

at most of the order on/r, where m is a constant, and

d<t)/dn = d^/dr = — m/r^

;

also if dfl be the solid angle subtended by dS at the origin,

dS = r'^dfl ; therefore

//S«=-"7^" r

which vanishes when r=QC. Hence the kinetic energy of an

infinite liquid bounded internally by closed surfaces is

T=-\P Ih#d5an
•(7),

where the surface integral is to be taken over each of the internal

boundaries.

The preceding expression for the kinetic energy shows, that

if the motion is acyclic and the internal boundaries of the liquid

be suddenly reduced to rest, the whole liqidd will be reduced to

rest.

62. When a single solid is moving in an infinite liquid, the

velocity potential must satisfy the following conditions

;

(i) <^ must be a single valued function, which at all points of

the liquid satisfies the equation V^<^ = 0,
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(ii) <^ and its first derivatives must be finite and continuous

at all points of the liquid, and must vanish at infinity, if any

portion of the liquid extends to infinity,

(iii) At all points of the liquid which are in contact with a

moving solid, dcp/dn must be equal to the normal velocity of the

solid, where dn is an element of the normal to the solid drawn

outwards; if any portion of the liquid is in contact with fixed

boundaries, dcpldn must be zero at every point of these fixed

boundaries.

The most general possible motion of a solid, may be resolved

into three component velocities parallel to three rectangular axes,

(which may either be fixed or in motion), together with three

angular velocities about these axes.

Let us therefore refer the motion to three rectangular axes

Ox, Oy, Oz fixed in the solid, and let <\>^ be the velocity potential

when the solid is moving with unit velocity parallel to Ox, and let

;j^j
be the velocity potential when the solid is rotating with unit

angular velocity about Ox. Let <\>^, <^g, %2> 'Xz
^^ similar quantities

with respect to Oy and Oz. Also let u, v, lu be the linear velocities

of the solid parallel to, and co^, co^, (o^ be its angular velocities

about the axes.

We can now show that the velocity potential of the whole

motion will be

</> = ucf)^ + V(j>^ + W03 + (o^Xi + ^2X2 + ^3X3 (8)-

For if \, fJL, V be the direction cosines of the normal at any

point X, y, z on the surface of the solid, we must have at the

surface

#i_^ ^*2_^ ^*8_^
rf^^-^' dn-^' dn""'

Hence -^ =(^-2/0)3+ z(ii^\-\-{v - Z(o^+x(o^) fjL + (w- xw^+yco^) v

= normal velocity of the solid.

63. If we substitute the value of 4> from (8) in (7), it follows

that T is a homogeneous quadratic function of the six velocities

w, V, w, ft),, G)^, ft>3, and therefore contains twenty-one terms. If

we choose as our axes Ox, Oy, Oz, the principal axes at the centre
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of inertia of the solid, the kinetic energy of the latter will be

equal to

where ilf is the mass of the solid, and A^, B^, G^ are its principal

moments of inertia. Hence the kinetic energy T of the system,

being the sum of the kinetic energies of the solid and liquid, is

determined by the equation,

2T=Pu' + Qv^ + Riif + 2Fvio + ^Q'wu + 2Euv

+ Aw;' + B(o^ + Cw^ + 2il «2«W3 + 25 «3ft), + 2C'(o^w^

+ 2ft)j {Lu -\-Mv-\- Nw)

-\-2<o^{L'u + M'v + N'w)

\-2(o^{L"u + M"v + N"io) (9).

The coeflfteients of the velocities in the preceding expression

for the kinetic energy, are called coefficients of inertia. The

quantities P, Q, R are called the effective inertias of the solid

parallel to the pi^incipal axes, and the quantities Ay B, C are called

the effective moments of inertia about the prinxiipal axes. If the

liquid extend to infinity, and there is only one moving solid, the

coefficients of inertia depend solely upon the form and density

of the solid and the density of the liquid, and not upon the

coordinates which determine the position of the solid m space.

The values of these coefficients are

by (5) ; with similar expressions for the other coefficients.

When the form of the solid resembles that of an ellipsoid,

which is symmetrical with respect to three perpendicular planes

through its centre of inertia, and the motion is referred to the

principal axes of the solid at that point, the kinetic energy must

remain unchanged when the direction of any one of the component

velocities is reversed ; hence the kinetic energy cannot contain

any of the products of the velocities, and must therefore be of the

form

;

2T=Pu'-^Qv'-^Rw' + Aco^'-\-Ba),'-{-Gco,' (11).

If in addition, the solid is one of revolution about the axis of 2,

B. H. 5

..(10)
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the kinetic energy will not he altered if u is changed into v, and

ft), into Wg ) whence P = Q, A—B, and

2r = P {u^ + v') + Rw'' + A (o),^ + o)/) 4- Co)/ (12).

Although every solid of revolution must be symmetrical with

respect to all planes through its axis, it is not necessarily sym-

metrical with respect to a plane perpendicular to its axis. The
solid formed by the revolution of a cardioid about its axis is an

example of such a solid. In this case the kinetic energy will be

unaltered when the signs of ii, v or Wg are changed, and also when

u is changed into v, and co^ into co^ ; hence in this case

2T= P (u'-^ v') + Riv'+ A («,'+ to/) -f (70)3^ 2mv («,+ (o^)...(lS).

If the solid moves with its axis in one plane, (say zoo), v and w,

must be zero, and the last term may be got rid of, by moving the

origin to a point on the axis of z, whose distance from the origin is

— N/R. This point is called the Centre of Reaction.

64. We must now find expressions for the component linear

and angular momenta.

Since we are confining our attention to acyclic irrotational

motion, it follows from § 57 that the motion of the liquid at any

instant, depends solely upon the motion of the surface of the solid

;

hence the motion which actually exists at any particular epoch,

could be produced instantaneously from rest, by the application of

suitable impulsive forces to the solid ; and since impulsive forces

are measured by the momenta which they produce, it follows that

the resultant impulse which must be applied to the solid, must be

equal to resultant momentum of the solid and liquid.

Let f, 7], f be the components parallel to the principal axes of

the solid, of the impulsive force which must be applied to the

solid, in order to produce the actual motion which exists at time t ;

and let \, jjl, v be the components about these axes, of the

impulsive couple. Then f, rj, f are the components of the linear

momentum, and X, /Lt, v of the angular momentum of the solid and

liquid.

Let p denote the impulsive pressure of the liquid, and let us

consider the effect produced upon the solid by the application of

the impulse whose components are f, ?;, f, X, /a, v.

By the ordinary equations of impulsive motion
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where I, m, n are the direction cosines of the normal at any T3oint

of S.

But if </) be the velocity potential of the motion instantaneously

generated by the impulse, and which is equal to the velocity

potential which actually exists at time t, it follows from § 23,

that p = — p(f>,
whence

^=:Mu- pJf(j>ldS

= Mu-plJ.^fdS,
d7

since at the surface of the solid

I = d(f>Jdn.

If '^\ ^ be the kinetic energies of the solid and liquid, it

follows from (7) and (8) that

du -i,jj^'^ds-yjj^^fds

^^dS,
dn

since by Green's Theorem both the double integrals are equal.

Also

du

^ ^ dW d'E
whence P = -^

f-
-y-

a^l du

^dT
du

'

We therefore see that the component momentum along the

axis of 00, is equal to the differential coefficient of the kinetic

energy, with respect to the component velocity of the solid along

the same axis ; and by precisely similar reasoning, it can be shown

that the component angular momentum about the axis of oc, is

equal to the differential coefficient of the kinetic energy, with

respect to the component angular velocity of the solid about this

axis. We thus obtain the following equations for determining the

momenta, viz.

:

(14).

dT
du'

dT
^^-dv'

dT
^~dw

dT
day,'

dT ^_dT
d(o^

Equations (14) are well-known dynamical equations.

5-
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65. The preceding expressions for the kinetic energy and

momenta, have been obtained in a direct manner, by means of

hydrodynamical principles ; but the reader who desires a short cut

to equations (9) and (14), may begin by assuming the theorem,

that the kinetic energy of a dynamical system is a homogeneous

quadratic function of the velocities of the system. Since the

kinetic energy of a liquid which surrounds a single moving solid,

and whose motion is acyclic and irrotational, must vanish when
the solid is reduced to rest, the kinetic energy of the liquid must

be a homogeneous quadratic function of the velocities of the solid.

This leads to (9). Also since the kinetic energy of an infinite

liquid, when expressed in the form (9), cannot depend upon the

position of the solid in space, the coefficients of the velocities

must be constant quantities.

If f, 77, 5", X, fi, V be the component impulses, which must be

applied to the solid, in order to generate from rest, the motion

which actually exists at time t, it follows from the fourth proposi-

tion of § 55, that

But since T is a homogeneous quadratic function of the

velocities,

^m dT dT dT dT dT dT
du dv aw ^dco^ do)^ day^

Comparing these two equations, we obtain (14).

We are now in a position to solve a variety of problems

connected with the motion of a single solid in an infinite liquid.

Motion of a Sphere.

66. Let us suppose that the centre of the sphere describes

a plane curve, and let u, v be its component velocities parallel

to the axes of x and y. Since every diameter of a sphere is

a principal axis, the axes of a; and y may be supposed to be fixed

in direction, whence

<^ = - ^8 (^^^ + ^2/)

;

and since on account of symmetry P = Q, we have
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where F =^M - p fJcfyJdS

= if 4- irpa^ r cos' sin Odd
Jo

where 31' is the mass of the liquid displaced. Whence

and therefore

Let us now suppose that the sphere is descending under the

action of gravity, and that the axis of y is drawn vertically

downwards; we shall also suppose that the sphere is initially

projected with a velocity, whose horizontal and vertical components

are [/"and V.

Since the momentum parallel to o) is constant throughout the

motion,

(M+ ^M') u =: const. = (M+ iM') U,

whence u = U.

The equation giving the vertical motion is,

or (M + iif') ^ = (^ - M') g.

Whence if a be the density of the sphere,

dv _ a — p

di~aTi^^'
and the sphere will describe a parabola with vertical acceleration

g{<r — p)/((T + ^p), in accordance with our previous result.

The motion of a right circular cylinder can be investigated in

a precisely similar manner.

Motion of an Elliptic Cylinder.

G7. Let % V be the velocities of the cylinder parallel to the

major and minor axes of its cross section, « its angular velocity

about its axis. On account of symmetry none of the products can

appear, and therefore

T=i(Fu'+Qv' + A(o') (15),

where P, Q, A are constant quantities.
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Let us now suppose that no forces are in action, and that the

solid and liquid are initially at rest ; and let the cylinder be set in

motion by means of a linear impulse F, whose line of action passes

through its axis, and a couple which produces an initial angular

velocity 12.

Let us refer the motion to two fixed rectangular axes x and y,

the former of which coincides with the direction of F, and let 6 be

the angle which the major axis of the cross section makes with the

axis of X at time t

Resolving the momenta along the axes of x and y, we obtain

f cos ^ — ?; sin ^ = i''

f sin ^ + t; cos ^ = 0,

whence since

we obtain

Pu = F cos 6, Qv = -Fsine (16).

Since the kinetic energy remains constant throughout the

motion, it follows that if we substitute the values of a, v from (16)

in (15), and put /3 for the initial value of 6, we shall obtain

or Ad' = An' + ^'
(^

-
^)

(sill' - sin^ ff) (17).

We shall presently show that Q> P\ it therefore follows

that if

Q-Pn<Fsin^ /^
APQ'

will vanish, and the cylinder will oscillate ; but if

6 will never vanish, and the cylinder will make a complete
revolution.

The integration of equation (17) requires elliptic functions, but
without introducing these quantities, we can easily ascertain the

character of the motion of the centre of inertia of the cylinder.

Let (j;, y) be the coordinates of the centre of inertia referred to

the fixed axes of a? and y; then

x = uco80-v sin 6, y = ii sin ^ + 1; cos ^ (18).
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Substituting the values of u, v from (16) we obtain

2/=i^^p-^)sin(9cos6>.

These equations show that the centre of inertia of the cross

section of the cylinder, moves along a straight line parallel to the

direction of F with a uniform velocity F/Q, superimposed upon

which is a variable periodic velocity, and that at the same time

it vibrates perpendicularly to this line. This kind of motion

frequently occurs in hydrodynamics, and a body moving in such a

manner is called a Quadrantal Pendulwn.

If AQ.' = F'{^-'^^^W^,

which is the limiting case between oscillation and rotation, the

equations of motion admit of complete integration. Putting

A\F QJ'

(17) becomes e = Ismd

whence It = log tan ^d.

Therefore

IA . .

dx F ^

dd = Fl'''''^-

lA . .

F lA
ic = pj log tan i^ + -jr cos 0.

Putting lAjF^c, and eliminating Q we obtain the equation of

the path, viz.

The curves described by the centre of inertia of the cylinder

in the three cases have been traced by Prof. Greenhill, and are

shown in Figures 1, 2, 3 of the accompanying diagram.
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68. We shall now show that for an elliptic cylinder Q > P.

When the cylinder is moving with unit velocity parallel to x,

we have shown in § 47 that

yjr^ = 06-''+'^ sinh /3 sin f,

and therefore (/>j = — ce"''"^^ sinh ^ cos f.

Now at the surface

—j(f>Jjds = c sinh /S/cos ^dy

Jo

= 7^6^

whence P =M— pf(l>Jds

\ a-aj

where a- is the density of the cylinder.

The value of Q is evidently obtained by interchanging a and b,

whence Q>P.

Similar results can be proved to be true in the case of an

ellipsoid; from which it is inferred that ivhen any solid body is

moving in an infinite liquid, the effective inertias corresponding

to the greatest, mean, and least principal axes, are in descending

order of magnitude.

69. If the cylinder be projected parallel to a principal axis

without rotation, it will continue to move in a straight line with

uniform velocity; but if the direction of projection is not a

principal axis, it will begin to rotate, and its angular velocity at

any subsequent time will be determined by putting H = in (17).

We shall now show that if the cylinder be projected parallel to

a principal axis, its motion will be stable or unstable according as

the direction of projection coincides with the minor or major

axis.

Let us first suppose the cylinder projected parallel to its major

axis, and that a slight disturbance is communicated to it. The

equation determining the angular velocity is obtained by putting

n = ^ = in (17) ; whence

Ae'=F'{y^^A.^0,
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and therefore ditTerentiating, and remembering that in the begin-

ning of the disturbed motion ^ is a small quantity, we obtain

Since Q>P, the coefficient of 6 is negative, which shows that

the motion is unstable.

If the cylinder is projected parallel to its minor axis we must

put yS = Jtt; also if % = i7r — ^, ^ will be a small quantity in the

beginning of the disturbed motion ; whence (17) becomes

whence Ax-\r F' (^-p- ^"j x = ^'

Since the coefficient of x is positive, the motion is stable.

It can also be shown that if an ellipsoid be projected parallel

to a principal axis, without rotation, the motion will be unstable

unless the direction of projection coincides with the least aoois.

We shall however presently show, that if an ovary ellipsoid be

projected parallel to its axis, the motion will be stable, provided a

sufficiently large angular velocity be communicated to the solid

about its axis.

70. Let us now investigate the motion of an elliptic cylinder,

which descends from rest under the action of gravity.

Let the axis of y be horizontal, and the axis of x be drawn

vertically downwards.

The equations of momentum are

^sinO -\-7) cos ^ = 0,

^(f cos ^ - 97 sin (9) = {M-M')g,

from the last of which we obtain

fcos^-97sin^ = (if-il/')^.

Solving these equations and recollecting that ^=PUj v — QVi

we obtain

Pu = {M- M') gt cos d, Qv=- (M - M') gt sin 6.
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Substituting these values of u and v in (18), we obtain

cos'^ d sin'^ e

P '^ Q
{M-M')gt

y^ip-QJgt sin 6 COS d

The equation of energy gives

/cos'O

(19).

sm"

V F Q-) (M -MJ gr + Ae' = 2 {M- M') gx.

If we differentiate this equation with respect to t, we can

eliminate x by means of (19) ; but the resulting equation would be

difficult to deal with. We see however from the first of (19), that

X is always positive, and therefore the cylinder moves downwards
with a variable velocity, which depends upon the inclination of its

major axis to the vertical, as well as upon the time. We also see

from the second equation, that the horizontal velocity vanishes,

whenever the major axis becomes horizontal or vertical ; but

if the motion should be of such a character that 6 always lies

between and ^ir, the horizontal velocity will never vanish.

Helicoidal Steady Motion of a Solid of Revolution.

71. In the figure let OC be the axis of the solid of revolution,

its centre of inertia, and let the solid be rotating with angular

velocity H about its axis.

Let the solid be set in motion by means of an impulsive force

i^ along OZ, and an impulsive couple G about OZ, and let a be

the angle which 00 initially makes with OZ.
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Let yjr be the angle which the plane ZOO makes at time t

with a plane ZOX, which is parallel to some fixed plane, and let

the former plane cut the equatorial plane in OA ; also let ZOG= 6.

It will be convenient to refer the motion to three movins: axes,

OA, OB, OC, where OB is the equatorial axis which is perpendicular

toO^.

Resolving the linear momentum of the system along OZ, OX
and a line OY perpendicular to the plane ZOX, we obtain

-fsin^+?cos^ = i^,

(f cos 6 4- f sin 6) cos i/r — ?; sin ^/r = 0,

(f cos ^ H- f sin 6) sin -v/r + ?; cos "^ — 0,

whence f=-i^sin^, 97 = 0, ^=Fcose (20).

Since the components of momentum parallel to the axes of X
and Y (which are fixed in direction, but not in position because

is in motion) are zero throughout the motion, the angular

momentum about OZ is constant, whence

-Aco^smd-\-Gncos0 = G-\-Cncosa (21).

The equation of energy gives

PyJ" + Rw^ + A ((o^''-he') = const (22),

and f = Pu, f= Rw,

and therefore by (20) and (21) this becomes

r (%l +22^ + ie+ofl(cos«-cos^)r
^ ^^ ^ ^„„^^

\ P R ) A sm^ 6

= its initial value (23).

This equation determines the inclination 6 of the axis.

So far our equations have been perfectly general, we shall now

introduce the conditions of steady motion. These are

e = a, yjr = fi, = = (24).

Now 0), = — >/r sin a = - /A sin a, whence (21) becomes

AfjLsm'a = G (25).

Differentiating (23) with respect to t and using (24) and

(25) we obtain

Afi*cosa-Gafi-\-(^--p)rcoaa = (26).

This is a quadratic equation for determining fi, when O and F
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are given. Now /a must necessarily be a real quantity, and there-

fore the condition that steady motion may be possible is that

C«n^ > ^F'A cos^ « (-i - i)
(27),

and since Rid = ^ = Fcosa,

the condition becomes

Cn^ > 4>AE'w
ii-'p) (28).

If the solid of revolution is oblate (such as a planetary ellipsoid)

R>P, and therefore (28) is always satisfied; but if the solid

is prolate (such as an ovary ellipsoid) P > R, and therefore steady

motion will not be possible unless (28) is satisfied.

In order to find the path described by the centre of inertia

of the solid in steady motion, we have, since a/t = fjut,

d) = (u cos a -\- w sm a) cos sjr = F I -^ — ^] sin a cos a cos fj,t,

y={ucosa + w sin a) sin i|r = i^
(
^ —

p J
sin a cos a sin fxt,

-r,
/sin^ a cos'^ a\

z = wcosoL — us\na ~ ^ (
"p—'

—

W~

I

'

which shows that the centre of inertia describes a helix.

72. In order to find whether the steady motion is stable or

unstable, differentiate (23) with respect to t, and we obtain

46' + /(^) = (29),

where

fiO) = 4^ (p - ^) «i° 2^ + -^^ [G + Gil (cos a - cos 6)}

The condition for steady motion is, that /(a) = 0, which leads

to (26), whence writing ^ = a + % where % is small, (29) becomes

^%+/(«)% = 0^

and the condition of stability requires that /'(a) should be

positive. Now

/ (a) = ^/x'^ (1 + 2 cos' a) - SCH/i cos a + ^^ - F'' {^ -^ cos 2a,
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whence eliminating H by (26) this becomes

The condition that the right-hand side should be positive

is that

A'F' (^ - pV sin= a (9 cos*^ a - 1) > 0,

which requires that a should lie between cos"* J and 0, or between

TT — COS"* J and tt.

As a particular example let the solid be projected point

foremost ; then a = and 6r = 0, and therefore since ^ is a small

quantity in the beginning of the disturbed motion

/<»)={^"-^-(?-j)}»-

If therefore R> P the motion is always stable, whether there

is or is not rotation, and consequently the forward motion of a

planetary ellipsoid is always stable; but if F > R, it follows that

since F=Rw, the motion will be unstable unless

^ 2Rw
'r^^{i-i)

The motion of an ovary ellipsoid is therefore unstable, unless

the ratio of its angular velocity to its forward velocity exceeds

a certain value.

These results have an application in gunnery.

When an elongated body, such as a bullet, is fired from a gun

with a high velocity, the effect of the air upon its motion cannot

be neglected ; and if the air is treated as an incompressible fluid,

the previous investigation shows that the bullet will tend to

present its flat side to the air, and also to deviate from its

approximately parabolic path, unless it be endowed with a rapid

rotation about its axis. Hence the bores of all guns destined

for long ranges are rifled, by means of which a rapid rotation

is communicated to the bullet before it leaves the barrel. The

effect of the rifling tends to keep the bullet moving point foremost,

and to ensure its travelling along an approximately parabolic path

in a vertical plane. Moreover when a bullet is moving with a

high velocity, the effect of friction cannot be entirely neglected

;

and it is tolerably obvious that when the bullet is moving with
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its flat side foremost, the effect of frictional resistance will be
- much greater than when it is moving point foremost, and therefore

the bullet will not carry so far in the former as in the latter case.

The hydrodynamical theory therefore explains the necessity of

rifling guns.

Motion of a Cylinder parallel to a Plane.

73. We have thus far supposed that the liquid extends to

infinity in all directions; we shall now suppose that the liquid

is bounded by a fixed plane, and shall enquire what effect the

plane boundary produces on the motion of a circular cylinder.

Let the axis of y be drawn perpendicularly to the plane, and

let the origin be in the plane, and let (x, y) be the coordinates of

the centre of the cylinder, {u, v) its velocities parallel to and

perpendicular to the plane.

The kinetic energy of the solid and liquid must be a homo-

geneous quadratic function of u and v, but since the kinetic energy

is necessarily unchanged w^hen the sign of u is reversed, the

product iiv cannot appear. We may therefore write

T=i(Ru'-^RV) (30).

The coefficients R, R' depend upon the distance of the

cylinder from the plane, and are therefore functions of y but not

of X ; and as a matter of fact their values are equal. It will not

however be necessary to assume the equality of R and R\ since

our object will be attained provided we can show that R and R'

diminish as y increases.

In order to produce from rest the motion which actually exists

at time t, we must apply to the cylinder impulsive forces whose

components are X, F; and we must also apply at every point

of the plane boundary an impulsive pressure, which is just

sufficient to prevent the liquid in contact with the plane, from

having any velocity perpendicular to the plane. The work done

by the impulsive pressure is zero, whilst the work done by the

impulses X, Y is

^[Xu+Yv) (31),

which must be equal to T. Now (30) may be written in the form

dT dT\

^=H«^ + ^a ^''''
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whence comparing (31) and (32) we see that

du
'

dv
X =^ = Ru, Y^^^R'v (33).

and therefore 1 f^' Y'\

The last equation gives the kinetic energy produced by given

impulses X, Y.

Let us now suppose that the cylinder instead of being at a

distance y from the plane, is at a distance y^, where y^>y ) and

let R^, R^ be the values of R, R' at y^. Then if the cylinder were

set in motion by the same impulses, the work done would be

Now the effect of the plane boundary is to produce a constraint,

and the effect of this constraint evidently diminishes as the

distance of the cylinder from the plane increases, and therefore by

the fifth proposition stated at the commencement of this Chapter,

T, > T. Hence

^\r~r)-^^'{r;'~w
is positive for all values of X and Y, which requires that

*

R > xtj, R > xLj
;

hence Ry R' diminish as y increases, and consequently their

differential coefficients with respect to y are negative.

74. We can now determine the motion of the cylinder.

The momentum parallel to x is equal to dT/du and is

constant ; whence

Ru = const. = G (36).

Since the kinetic energy is constant, we have

Rv!"hRV = const. = 2T (37).

Differentiating (37) with respect to t, and eliminating du/dt by

(36), we obtain

1 / ,dR ,dR\ ,.^,

From this equation we can ascertain the effect of the plane
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boundary ; for if the cylinder is projected perpendicularly to the

plane, u = 0, and
. _ _ f_dB[
'" ~ 2R' dy

'

Now dR'jdy is negative, and therefore v is positive ; whence it

follows that whether the cylinder be moving from or towards the

plane, the force exerted by the liquid upon the cylinder, will

always be a repulsion from the plane, which is equal to

Mv' dR
2R dy

'

Hence if the cylinder be in contact with the plane, and a small

velocity perpendicular to the plane be communicated to it, the

cylinder will begin to move away from the plane with gradually

increasing velocity. This velocity cannot however increase indefi-

nitel}^ for that would require the energy to become infinite, which

is impossible, since the energy remains constant and equal to its

initial value. If R^ denote the value of R' when the cylinder is

in contact with the plane, v^ the initial velocity, and v the velocity

when the cylinder is at an infinite distance from the plane, the

equation of energy gives

"0 "0

The value of RJ =M+M\ since the motion is the same as if

the plane boundary did not exist, whence the ratio of the terminal

to the initial velocity is

1- I ^0
v.'y M + M"

Let us now suppose that the cylinder is projected parallel to

the plane with initial velocity u^. By (38) the initial acceleration

Vq perpendicular to the plane is

. _uldR
^° ~ 2R' dy

'

and since dR/dy is negative, the cylinder will be attracted towards

the plane, and will ultimately strike it.

75. All the results of the last two sections are true in the case

of a sphere, and can be proved in the same manner. Moreover the

motion will be unaltered, if we remove the plane boundary, and

suppose that on the other side, an infinite liquid exists in which

B. H. 6
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another equal cylinder or sphere is moving with velocities ?/, — v.

The second cylinder or sphere is therefore the image of the first.

Our results are therefore applicable to the case of two equal

cylinders or spheres, which are moving with equal and opposite

velocities along the line joining their centres; or to the case

in which the cylinders or spheres are projected perpendicularly

to the line joining their centres, with velocities which are equal

and in the same direction.

These results have however a wider application, for according

to the views of Faraday and Maxwell, the action which is observed

to take place between electrified bodies, is not due to any direct

action which electrified bodies exert upon one another, but to

something which takes place in the dielectric medium surrounding

these bodies ; and although the preceding hydrodynamical results

do not of course furnish any explanation of what takes place in

dielectric media, they establish the fact that two bodies which are

incapable of exerting any direct influence upon one another, are

capable of producing an apparent attraction or repulsion upon one

another, when they are in motion in a medium which may be

treated as possessing the properties of an incompressible fluid.

EXAMPLES.

1. A light cylindrical shell whose cross section is an ellipse is

filled with water, and placed at rest on a smooth horizontal plane

in its position of unstable equilibrium. If it is slightly disturbed,

prove that it will pass through its position of stable equilibrium

with angular velocity o), given by the equation

2. An elliptic cylindrical shell, the mass of which may be

neglected, is filled with water, and placed on a horizontal plane

very nearly in the position of unstable equilibrium with its axis

horizontal, and is then let go. When it passes through the position

of stable equilibrium, find the angular velocity of the cylinder,

(i) when the horizontal plane is perfectly smooth, (ii) when it is
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perfectly rough ; and prove that in these two cases, the squares of

the angular velocities are in the ratio

2a and 26 being the axes of the cross section of the cylinder.

3. A pendulum with an elliptic cylindrical cavity filled with

liquid, the generating lines of the cylinder being parallel to the

axis of suspension, performs finite oscillations under the action of

gravity. If I be the length of the equivalent pendulum, and r the

length when the liquid is solidified, prove that

If _i _ ma^W

where M is the mass of the pendulum, m that of the liquid, h the

distance of the centre of gravity of the whole mass from the axis

of suspension, and a, h the semi-axes of the elliptic cavity.

4. Find the ratio of the kinetic energy of the infinite liquid

surrounding an oblate spheroid, moving with given velocity in

its equatorial plane, to the kinetic energy of the spheroid ; and

denoting this ratio by P, prove that if the spheroid swing as the

bob of a pendulum under gravity, the distance between the axis of

the suspension and the axis of the spheroid being c, the length of

the simple equivalent pendulum is

(1 + P) c + 2a75c

1-pla
'

where a is the equatorial radius, a and p the densities of the

spheroid and liquid respectively.

5. A pendulum has a cavity excavated within it, and this

cavity is filled with liquid. Prove that if any part of the liquid

be solidified, the time of oscillation will be increased.

6. A closed vessel filled with liquid of density p, is moved in

any manner about a fixed point 0. If at any time the liquid

were removed, and a pressure proportional to the velocity potential

were applied at every point of the surface, the resultant couple

due to the pressure would be of magnitude G, and its direction

in a line OQ. Show that the kinetic energy of the liquid was

proportional to ^pwG cos 6, where co is the angular velocity of the

surface, and 6 the angle between its direction and OQ.

6—2
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7. Liquid is contained in a simply-connected surface >Sf ; if ot

is the impulsive pressure at any point of the liquid due to any

arbitrary deformation of S, subject to the condition that the

enclosed volume is not changed, and -cr' the impulsive pressure

for a different deformation, show that

jh^^'ij' an

8. If a sphere be immersed in a liquid, prove that the kinetic

energy of the liquid due to a given deformation of its surface, will

be greater when the sphere is fixed than when it is free.



CHAPTEE IV.

WAVES.

76. Before discussing the dynamical theory of waves, we
shall commence by explaining what a wave is.

Let us suppose that the equation of the free surface of a liquid

at time t, is

y = a sin (mx — nt) (1),

where the axis of x is horizontal, the axis of y is measured vertically

upwards, and a, m and 7i are constants.

The initial form of the free surface, i.e. its form when ^ = 0, is

^ = asin7?i*', which is the curve of sines. The maximum values

of y occur when mx = {2i + -J)
tt, where i is zero or any positive

or negative integer; and this maximum value is equal to a. The

minimum values of y occur when m^ = (2^4-f)7^, where i is

zero or any positive or negative integer; and this minimum
value is equal to —a. As a? increases from to ^Tr/m, y increases

from to a, and as x increases from ^7r/m to 7r/??t, y decreases

from a to 0. As x increases from 7r/m to ^Tr/m, y is negative

;

and when x has the latter value, y has attained its greatest

negative value, which is equal to —a; 3iS x increases from f7r/m

to 27r/m, y decreases from — a to 0.

The values of y comprised between

X = 2i7r/m and x = 2(i-{-l) Trim,

evidently go through exactly the same cycle of changes.

When the motion of a liquid is such, that its free surface is

represented by an equation such as (1), the motion is called wave

motion.
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The quantity a, which is equal to the maximum vakie of y,

is called the amplitude ; and the distance 27r/m, between two

consecutive maxima values of y, is called the wave length.

In order to ascertain the form of the free surface at time t, let

us transfer the origin to a point f = nt/m ; then if x be the abscissa

at time t referred to the new origin, of the point whose abscissa

referred to the old origin is x, we have x = x + ^ and

7/ = a sin (jnx' + m^ — nt) = a sin nix.

The form of the free surface at time t, is therefore obtained by

making the point which initially coincided with the origin, travel

along the axis of x, with velocity n/m.

The velocity of this point is called the velocity of propagation

of the wave.

If V be the velocity of propagation, and \ the wave length, we

thus obtain the equations

m = 27r/X, V=7i/m (2),

and therefore (1) may be written

y = asm~{x-Vt) (3).
A.

If n, and therefore F, were negative, equations (1) and (3)

would represent a wave travelling in the opposite direction.

The position of the free surface at time t, is exactly the same

as at time ^ + 2i7r/?i, or t + 2i\/V, since n = 27rV/\; the quantity

X/V is called the periodic time, or shortly the period, and is equal

to the time which the crest of one wave occupies in travelling

from its position at time t, and the position occupied by the next

crest at the same epoch. If r denote the period, we evidently

have
X = Ft (4),

and (1) may be written in the form

?/=cisin27rf|--j (5),

which is a form sometimes convenient in Physical Optics.

From (4) we see that for waves travelling with the same

velocity, the period increases with the wave length.

The reciprocal of the period, which is the number of vibrations

executed per unit of time, is called t\\Q frequency. If therefore we
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have a medium which propagates waves of all lengths with the

same velocity, equation (4) shows that the number of vibrations

executed in a second, increases as the wave length diminishes.

This remark is of importance in the Theory of Sound.

Let us now suppose that two waves are represented by the

equations

y = a sin —- (^ — Vt),

y = a sm — (x —Vt — e).
A,

The amplitudes, wave lengths and velocities of propagation of

the two waves are equal, but the second wave is in advance of the

first; for if in the first equation we put t-\-e/V for t, the two

equations become identical. It therefore follows that the distance

at which the second wave is in advance of the first, is equal to

e. The quantity e is called the phase of the wave.

77. Waves which are represented by equations such as (1),

are called progressive waves ; their wave lengths are equal to

27r/m, and their velocities of propagation to n/m. If such waves

are travelling along the surface of water under the action of

gravity, they may be conceived to have been produced by com-

municating to the free surface an initial displacement y = aiimmx,

together with an initial velocity —an cos mx. We therefore see

that the wave length depends solely on the initial displacement,

but that the velocity of propagation depends upon the initial

velocity as well as upon the initial displacement.

If we combine the two waves, which are obtained by writing

±n ioY n in (1) and adding the results, we shall obtain

2/
= a sin {mx — nt)-^a sin (mx + nt)

= 2a sin mx cos nt (6).

Such a wave is called a stationary wave. It is produced by

means of an initial displacement alone, and gives the form of the

free surface at time t, when the latter is displaced into the form of

the curve y = 2a sin tux, and is then left to itself.

In equations (1) or (6), m, which is equal to 27r/X, is always

supposed to be given, and the problem we have to solve, consists

in finding the value of n, which determines the velocity of

propagation.
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78. We shall now proceed to consider the motion of irrota-

tional liquid waves in two dimensions, under the action of gravity.

The solution of the problem involves the determination of a

velocity potential </>, which satisfies the following three conditions

:

(i) (j) must satisfy Laplace's equation, and together with

its first derivatives, must be finite and continuous at every point

of the liquid.

(ii) </) must satisfy the given boundary conditions at the fixed

boundaries of the liquid.

(iii) (j) must be determined, so that the free surface of the

liquid is a surface of constant pressure.

The difficulties of the subject are so great, that no rigorous

solution of any problem has yet been obtained, except'in the case

of certain trochoidal waves, discovered by Gerstner, and which

involve molecular rotation. If however the motion is sufficiently

slow, terms involving the squares and products of the velocities

may be neglected, and when this is the case, an approximate

solution of a variety of problems can be obtained without difficulty.

We shall now find the condition to be satisfied at a free

surface, when waves are propagated under the action of gravity.

Let the origin be taken in the undisturbed surface, and let

the axis of x be measured in the direction of propagation of the

waves, and let the axis of z be measured vertically upwards.

The pressure at any point of the liquid is determined by

the equation

plp + (;z + (i>-{-iq'
= G (7).

The equation of the surfaces of constant pressure is j3 = const.,

and since the free surface is included in this family of surfaces,

and must also satisfy the kinematical condition of a hounding

surface, it follows from § 12, (17) that

dp
^

dp
^

dp
^

dp ^ .„.

at ax dy dz ^

Substituting the value of ^> from (7) in ^^8), and neglecting

squares and products of the velocity, we obtain

?-/i=» <»'

This is the condition to be satisfied at a free surface, where
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Waves in a Liquid of given Deptli.

79. We shall now find the velocity of propagation of two-

dimensional waves travelling in an ocean of depth h.

The equation of continuity is

3-S=» »
The boundary condition at the bottom of the liquid is

^ = 0, when z = -h (11).

To satisfy (10) assume

(j) = F(z) cos (mx-nt) (12).

Substituting in (10) we obtain

^-m^F=0,

the solution of which is

F=P cosh 7nz + Q sinh mz
;

whence </> = (^ cosh iriz + Q sinh mz) cos (mx — nt).

Substituting in (11) and (9) we obtain

P sinh mh = Q cosh m/t,

Pn"^ = Qmg
;

whence eliminating P and Q, and taking account of (2), we obtain

V^ = {g\/27r) tanh {27rh/X) (13),

which determines the velocity of propagation.

If the lengths of the waves are large in comparison with the

depth of the liquid, h/X is small, and the preceding result becomes

r' = gh (14),

which determines the velocity of propagation of long waves in

shallow water.

If the depth of the liquid is large in comparison with the wave

length, hjX is large, and tanh 27rh/X = 1 approximately, whence

V' = gX/2'7r (15),

which determines the velocity of propagation of deep sea waves.
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The last result may be obtained directly, for the value of F
may be written in the form

and since (/>, and therefore F, cannot be infinite when z = - cOy

B = 0, and (9) at once gives the required result.

80. Returning to the general case, we see that </> is of the

form

(l)
= A cosh m (z + li) cos (rnx — nt).

If 7] be the elevation of the free surface above the undisturbed

surface, we must have

rj = d<f>ldz when z = (16),

whence substituting the value of </> in (16), and suitably choosing

the origin we obtain

7] = — Amn~^ sinh mh sin {mx — nt).

Let {x, z) be the coordinates of an element of liquid when

undisturbed, (f, f) its horizontal and vertical displacements, also

let a;' = a; + f, / = ^ + f ; then

I = d(\>ldx = — Am cosh m (/ + h) sin {mx' — nt)

^ = dcfy/dz = Am sinh m {z' + K) cos {mx — nt).

Since the displacement is small we may put x = x\ z = z as a

first approximation, and we obtain

f = — a cosh m (z + h) cos {mx — nt)

f= — a sinh m {z + h) sin {inx — nt),

where Am/n = a] whence the elements of liquid describe the

ellipse

IVcosh'm (z + h) + ?*/sinh'7/i {z + h) = a\

When the depth of the liquid is very great we may put /t = oo
,

and the hyperbolic functions must be replaced by exponential

ones; we shall thus obtain

</> = ^ e*"* cos {mx - nt)

9; = — Amn^ sin {mx — nt),

and the elements of liquid will describe the circles

^' -\- ^ = (Am/nY €"".
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Waves at the Surface of Separation of Two Liquids.

81. Let us first suppose that two liquids of different densities

(such as water and mercury) are resting upon one another, which

are in repose except for the disturbance produced by the wave
motion, and which are confined between two planes parallel to

their surface of separation. Let p, p be the densities of the lower

and upper liquids respectively, h, h' their depths, and let the origin

be taken in the surface of separation when in repose.

In the lower liquid let

<f)
= A cosh m {z + h) cos {mx — nt),

and in the upper let

<f>
=A' cosh m{z — h') cos {inx — nt),

also let 7) = a sin {mx — nt)

be the equation of the surface of separation. At this surface, the

condition that the two liquids should remain in contact requires

that

dr)/dt = d(l)/dz=^d(l)'/dz, when z = 0.

Whence —na = niA sinh mh ——unA' sinh wk'.

If hp, B})' be the increments of the pressure due to the wave

motion just below and just above the surface of separation, then

Bp-^gpV + pd(j>ldt = 0,

and 8p^ + gp'rj + pd(p'/dt = 0,

and since 8p — Bp\ we obtain

g {p — p) V — - pd<f>ldt + pd<\>ldt

= n (— Ap cosh mh + A'p cosh mh') sin {mx — nt)

= {p coth mh + p coth mh') n^rj/m,

whence

U' = {n/my^ -^ J^^'^J ,, w, (17),
^ ' ^ m{p coth mh-\-p coth mh )

where m = Stt/X.

82. When \ is small compared with h and h' , then mh, mh'

are large, and coth mh and coth mh' may be replaced by unity: we

thus obtain

U^ = g{p-p')hn{p + p).

V
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If p > p, W is negative and therefore n is imaginary ; hence if

the upper liquid is denser than the lower, the motion cannot be

represented by a periodic term in t, and is therefore unstable.

If the density of the upper liquid is small compared with that

of the lower, we have approximately

tr'=£rm-'(l-2p7p).

If the liquid is water in contact with air, plp = '00\2'^, hence

if the air is treated as an incompressible fluid

^2 = -99750x(7m-\

83. Secondly, let us suppose that the upper liquid is moving

with velocity F', and the lower with velocity F; then we may put

<^=Vx-\- A cosh m{z-\- h) cos {mx — nt)

(j)' = V'o) + A' cosh m(2 — h') cos {iiix — nt).

Let the equation of the surface of separation be

F= 7} — asm {mx — nt) = 0.

Then in both liquids F must be a bounding surface, and

therefore by § 12 equation (17), when 2 = 0,

dF d^dF dc^dF^
dt dx dx dz drj '

dF d4dF d^dF^
dt dx dx dz di]~

Whence an — mVa-\- mA sinh mh =

an — mV'a — mA' sinh mJi = 0.

Hence ii U= njm be the velocity of propagation,

A sinh mh = a (F- U)

A'8iuhmh' = -a(r-U).

If Bp, hp' be the increments of pressure at the surface of

separation due to the wave motion

hpip -Y gr}-\- d<l)/dt + ^[V—Am cosh mh cos (ma; — nt)Y — JF^ ^*^

Bp/p -{-gv + d<l>'/dt + i{V'- Am cosh mh' cos {mx - nt)^ = i V'\

Therefore since Bp = Bp',

ag {p — p) = Ainp {V— U) cosh mh — A'mp {V — U) cosh mh'

or g{p- p) = rnp{V- Uf coth mh + mp {

V

- Uf coth mh'

.

. .(18)

which determines U.
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Stability and Instability.

84. We shall now consider a question which has excited

a good deal of attention of late years, viz. the stability or

instability of fluid motion.

If a disturbance be communicated to the two liquids which
are considered in §§ 81—83, the surface of separation may be

conceived to be initially of the form 7; = asinm^ or a cos ma?,

where m is a given real quantity, whose value depends upon the

nature of the disturbance. An equation of this kind does not of

course represent the most general possible kind of disturbance,

but in as much as by a general theorem due to Fourier, any

arbitrary function can be expressed in the form of a series of sines

or cosines, or by a definite integral involving such quantities, an

equation of this form is sufficient for our purpose.

We have pointed out that the object of the wave motion

problem is to determine ?^; if therefore n should be found to

be a real quantity, the subsequent motion will be periodic, and

therefore stable ; but if n should turn out to be an imaginary or

complex quantity, the final solution will involve real exponential

quantities, and therefore the motion will increase indefinitely with

the time and will be unstable.

To understand this more clearly let us employ complex

quantities, and assume that the initial form of the free surface

is the real part of

t; = (^ - lB) e^'^^

where A, B and m are real ; and let n be of the form a + t/9.

Since the form of the free surface at any subsequent time is

this becomes ^ = (^ - iB) 6^0»-^-«^)+^^,

the real part of which is

7) — e^* {A cos {mx — at)-{-B sin {mx — at)] (19).

If therefore yS is positive, the amplitude will increase inde-

finitely with the time, and the motion will be unstable. In such

a case the two liquids will, after a short time, become mixed

together, and will usually remain permanently mixed, if they are

capable of mixing; but if they are incapable of remaining
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permanently mixed, the lighter liquid will gradually work its

way upwards, and a stable condition will ultimately be arrived at.

85. If one liquid is resting upon another, equilibrium is

possible when the heavier liquid is at the top, but in this case

the equilibrium is unstable; for since p' > p, it follows from (17)

that n^ is negative and therefore n is of the form + t/3. Hence in

the beginning of the disturbed motion, the free surface is of the

form

7] = J. 6*^^ cos (mx — e).

If the upper liquid is moving with velocity V\ and the lower

with velocity V, the values of U or n/m are determined by the

quadratic (18) ; and the condition of stability requires that the

two roots of this quadratic should be real.

Putting k, k' for m coth mh and m coth mh\ (18) becomes

kp^V-Uf + k'p{r-Ur = g(p-p).

The condition that the roots of this quadratic in U should

be real, is

g {kp + k'p') (p - p) - kk'pp'iV- V'f > 0.

It therefore follows that if p> p', that is if the lower liquid

is denser than the upper liquid, the motion may be stable. But if

p > p; or if no forces are in action, so that g = 0, the motion will

be unstable.

86. If no forces are in action, and both liquids are of unlimited

extent so that h = h' = <x> , the equation for determining U becomes

p{v-ur+p'(r'-uf = o,

the roots of which are

^,_ pv+p'v±cj^'(v-r)
p + p

Hence U, and therefore n, is a complex quantity, and we may

therefore put
U =a ± t^ = nim,

where a and ^ are determined from (20). If therefore the initial

form of the free surface is

its form at any subsequent time may be written

r^ = ^^m{x-at)\f^f;^m^t ^y^-m^t\ (21),

where a -\-b' = a.
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If there is no initial displacement, ?) = when ^ = 0, in which
case a' = h' = ^a. To express this result in real quantities, let

a = A — iB, and (21) becomes

7] = [A cos m {x -0Lt) + B sin m (x - at)} cosh mfft,

corresponding to an initial displacement

7) = A cos mx + B sin mx.

87. When the initial velocity is zero there are three cases

worthy of notice.

(i) Let p = p, V= — V\ so that the densities of the two
liquids are equal, and their undisturbed velocities are equal and

opposite ; then from (20), a = 0, ^=F, whence

7) = (A cos 7nx + B sin mx) cosh m Vt.

(ii) Let p = p\ V = 0, then ol = \V, ^ = \V, whence

7} = {A cos 111 [x — \ Vt) + B sin m (^ — J Vt)} cosh \m Vt,

hence the waves travel in the direction of the stream and with

half its velocity.

(iii) Let p = p\ V=V'. In this case the roots are equal,

but the general solution may be obtained from (20) by putting

F' = F'(1 +7), where 7 ultimately vanishes. We thus obtain

a = 7+iF7, ;8 = -4F7,

and therefore since 7 is small, (21) may be written

7) = €«^ (^-^^) [a + ^mVr^t [a (1 - t) - 2a']}.

Putting c = ^mVfy [a (1 — l) — 2a'}, this becomes

7j = {a + ct)e''^^'^-^'^\

Let a = A — lB, c = G — lD, then the real part is

V = (A + Gt) cos m{x- Vt) +{B + Dt) sin m {x - Vt),

corresponding to an initial displacement 7; = J. cos m^ + 5 sin ma;.

If the initial velocity 17 is zero, G = mBV, D = — niA V, and

7j = (A-\- mBVt) cos m (x-Vt) -{-(B-mA Vt) sin m {x -Vt).

The peculiarity of this solution is, that previously to displace-

ment there is no real surface of separation at all. Hence if we

have a thin surface such as a flag, whose inertia may be neglected,

dividing the air, it appears from the last equation that (neglecting

changes in the density of the air), the motion of the flag will be

unstable and that it will flap.
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Long Waves in Shalloiu Water.

88. In the theory of long waves it is assumed, that the lengths

of the waves are so great in proportion to the depth of the water,

that the vertical component of the velocity can be neglected, and

that the horizontal component is uniform across each section of the

canal. In § 79 we saw that if the depth is small compared with

the wave length, then IT^ = gh, provided the square of the velocity

is neglected. We shall now examine this result in connection with

the above-mentioned assumption.

Let the motion be made steady by impressing on the whole

liquid a velocity equal and opposite to the velocity of propagation

of the waves. Let ij be the elevation of the liquid above the

undisturbed surface; Z7, u the velocities corresponding to h and

h -\- 7) respectively. The equation of continuity gives

u = hU/(h-\-rj),

whence IP -11^= IP (2h7j + 7j')l{h + vY-

If Bp be the excess of pressure due to the wave motion

. (lP(2h±7j)
I

When Tj/h is very small, the quantity in brackets is U^/h — g;
whence if JT^ = gh, the change of pressure at a height h-\-r] vanishes

to a first approximation, and therefore a free surface is possible.

If the condition IP = gh is satisfied, the chaoge of pressure to

a second approximation is

Bp = - Sgpv'l2h,

which shows that the pressure is defective at all parts of the wave

at which rj differs from zero. Unless therefore rf can he neglected,

it is impossible to satisfy the condition of a free surface for a

stationary long wave ;
—in other luords, it is impossible for a long

wave of finite height to he propagated in still water without change

of type. If however 77 be everywhere positive, a better result can

be obtained with a somewhat increased value of U\ and if rj be

everywhere negative, with a diminished value. We therefore infer

that positive waves travel with a somewhat higher, and negative

waves with a somewhat lower velocity than that due to half the

undisturbed depth

\

^ Lord Rayleigh, " On Waves," Phil. Mag. April, 1876.
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89. The theory of long waves in a canal may be investigated

analytically as follows*.

Let the origin be in the bottom of the liquid, /i the undisturbed

depth, 7j the elevation ; and let ^ be the abscissa of an element of

liquid when undisturbed, f the horizontal displacement. The
quantity of liquid originally between the planes x and x -\- dx is

hdx\ at the end of an interval t, the breadth of this stratum is

dx (1 + d^/dx), and its height is h + t], whence the equation of

continuity is

(l + d^/dx)(ih-\-7j) = h (22).

Let us now investigate the motion of a column of liquid

contained between the planes whose original distance was dx ; and

let us suppose that in addition to gravity, small horizontal and

vertical disturbing forces X and Y act. Since the vertical accelera-

tion is neglected, the pressure will be equal to the hydrostatic

pressure due to a column of liquid of height h + r), whence

rh+rt

p=gp(h + 7j-y) + p Ydy (23).
J y

The equation of motion of the stratum is

^^^3=-£(^^+^^+^^^^ (^^>

Now from (23),

dp dv ^^dri p'+'^dY , ,^^,

£-spi+p^i+pl d-Jy (20);

also in most problems to which the theory applies, the last two

terms on the right-hand side of (25) are very much smaller than

the first, and may therefore be neglected, whence (24) becomes

Substituting the value of 17 from (22) we obtain

J =
^'^^'i^ + <foj

+^ (2'^)-

For a first approximation, we may neglect squares and products

of small quantities, and (22) and (20) respectively become

v/h^-d^/dx .(27),

'^ =gjM + X '28).
dt dx

1 Airy, "Tides and Waves," Encyc. Met.

B. H. 7
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In order to solve (28) when X = 0, assume f = 6'('"^~"'), and we

obtain n/m = (gh)^, which shows that the velocity of propagation

is equal to (gh)^.

Stationary Waves in Flowing Water^.

90. Let us suppose that water is flowing uniformly along a

straight canal with vertical sides, and that between two points A
and B there are small inequalities, and that beyond these points

the bottom is perfectly level. Let a be the depth, it the velocity,

p the mean pressure beyond A ; b the depth, v the velocity, and q
the mean pressure beyond B : also let / be the difference of levels

of the bottom at A and B.

The total energy of the liquid per unit of the canal's length

and breadth, at points beyond B, is

rb

iv^b+g ydy -\- lu = ^ {v"^ -\- gb) b + lu,

Jo

where iv is the wave energy, and the density of the liquid is taken

as unity. At very great distances beyond B the wave motion will

have subsided and w will be zero.

The equation of continuity is

au = bv = M (29).

The dynamical equation is found from the consideration, that

the difference between the work done by the pressure p upon the

volume of water entering at A, and the work done by the pressure

q Sit B upon an equal volume of water passing away at B, is equal

to the difference between the energy which passes away at B, and

the energy which enters at A. Whence
fa+f

pau — qbv = {^v^b + ^gb^ + w)v — (^u^a + g I ydy) u,

which by (29) becomes,

Now p and q are the mean pressures, and therefore since the

pressure at the free surface is zero,

P = i«7«> q = \g^ + '^v'jb,

» Sir W. Thomson, Diil. Mac/. (5) vol. xxii. 353.
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where lo' denotes a quantity depending on the wave disturbance

;

whence (30) becomes

\W (a'

-

h^)\a%'' -g{a-h+f)-^{w- ^u)/h = (31).

If we put

D will denote a mean depth intermediate between a and h, and

approximately equal to their arithmetic mean when their differ-

ence is small in comparison with either; and V will similarly

denote a corresponding mean velocity of flow. We thus obtain

from (31)

h-n _/- {w - w')lgh
^ ^- l-V'/gD

'

li h — a were exactly equal tof, and there were no disturbance

of the water beyond B, the mean level of the water would be the

same at great distances beyond A and B; but if this is not the

case, there will be a rise or fall of level, determined by the formula

y-O-a-f- i^nr/p •

Let us now suppose that between A and B there are various

small inequalities ; each of these inequalities will produce small

waves whose nature is determined by the form of the functions w,

w'\ hence lo and w' will both be small quantities and the sign of

y will be independent of that of ^ — w'. Now / is positive or

negative according as the bottom at A is higher or lower than the

bottom at B. Hence if V^ < gD the upper surface of the water

rises when the bottom falls, and falls when the bottom rises ; and

the converse is the case when V^ > gD.

Theory of Group Velocity.

91. When a group of waves advances into still water, it is

observed that the velocity of the group is less than that of the

individual waves of which it is composed. This phenomenon was

first explained by Sir G. Stokes \ who regarded the group as

formed by the superposition of two infinite trains of waves of

equal amplitudes and nearly equal wave lengths, advancing in the

same direction.

1 Smith's Prize Examination, 1876 ; and Lord Eayleigh, " On Progressive

Waves " ; Proc. Lond. Soc. vol. ix.

7—2
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Let the two trains of waves be represented by cos h {Vt — x)

and cos k' [Vt — x) ; their resultant is equal to

cos h{Vt- X) + cos W {Vt - ^) = 2 cos i [{k'V - kV) t - {h' - k) x}

X cos i [(k'V + kV)t- {k' + k) x].

If k' — k, V —V be small, this represents a train of waves

whose amplitude varies slowly from one point to another between

the limits and 2, forming a series of groups separated from one

another by regions comparatively free from disturbance. The

position at time t of the middle of the group, which was initially at

the origin, is given by

{k'V -kV)t-{k' -k)x = {},

which shows that the velocity of propagation f/" of the group is

U= {k'V-kV)l{k'-k).

In the limit when the number of waves in each group is

indefinitely great we have k' = k-\-hk, V = V-\- BV, whence

d(kV)
Z7 =

dk

i
Capillary Waves.

92. Most liquids which are incapable of remaining perma-

nently mixed, exhibit a certain phenomenon called capillarity^

when in contact with one another. This phenomenon can be

explained, by supposing that the surface of separation is capable

of sustaining a tension, which is equal in all directions, and is

independent of the form of the surface of separation.

The surface tension depends upon the nature of both the

liquids which are in contact with one another. Thus at a tem-

perature of 20" C, the surface tension of water in contact with

air is 81 dynes per centimetre ; whilst the surface tension of

water in contact with mercury is 418 dynes per centimetre.

The surface tension diminishes as the temperature increases

;

also a surface tension cannot exist at the common surface of two

^ The reader who desires to study tlie theory of Capillarity is recommended

to consult Chapter xx. of Maxwell's Heat ; and also the article on Capillarity in the

Encyclopadia liritannica by the same author.

A table of the superficial tensions of various liquids will be found in Everett's

UniU and Physical Constants, p. 49.
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liquids, such as water and alcohol, which are capable of becoming

permanently mixed.

93. We shall now consider the effect of surface tension upon

the propagation of waves.

Let T be the surface tension, and let p and jp + hp be the

pressures just outside and just inside the free surface of a liquid

;

then

Bplp+gv + cl> = (32).

But if we resolve the forces which act upon a small element

8s of the free surface vertically, and neglect the vertical accelera-

tion, and put Bx for the angle which Bs subtends at the centre of

curvature, we obtain

BpBs = TBx,

whence ^'^t
Now

drj

therefore
d'v

dx^~

9 dy
= — cosec X -J

Since % is nearly equal to ^tt, we may put cosec % = 1, and

ds = dx, whence

Substituting in (32), differentiating the result with respect to

t, and remembering that ij = d(j)ldz, and that d^(\>ldx^ — — d^^/dz^,

we obtain

Td?<i> d,i, d?4,_

pW^^dz^W-'^ ^^^>-

This is the condition to be satisfied at the free surface.

94. We shall now apply the preceding result to determine

the capillary waves propagated in an ocean of depth h.

Let </) = J. cosh m(z + h) cos {moc — nt).

Substituting in (33) we obtain

{Tm^lp + mg) sinh mh = n^ cosh mh,

whence

U^ = ^^7m' = {g^l^-rr + ^irTlpX) tanh 2irhl\ (34).

Equation (34) determines the velocity of propagation corre-

sponding to a given wave length.
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Let us now suppose that the depth of the liquid is so great,

that tanh 27r/i/A, may be replaced by unity. Equation (34) becomes

gpX'-27rpU'X + 4>7r'T = (35),

whence X = tt U'jg ± irg-' ^( U' - Vfg/p),

In order that wave motion may be possible both values of X
must be real, which requires that

U= or >{iTgIp)\

Hence the minimum value of U is {^Tgjp)^, and the corre-

sponding value of X is 27r^(Tlgp).

Sir W. Thomson* defines a ripple to be a wave whose length is

less than the preceding critical value of X.

95. In § 80 we have considered the propagation of waves at

the surface of separation of two liquids, which are moving with

different velocities. We shall now consider the production of

ripples by wind blowing over the surface of still water.

Let V be the velocity of the wind, which is supposed to be

parallel to the undisturbed surface of the water, a- the density of

air referred to water.

Since the changes of density of the air are very small in the

neighbourhood of the water, the air may approximately be regarded

as an incompressible fluid, whence if the accented letters refer to

the water, the kinematical conditions at the boundary give

<l)=Vx + a{U-V)€~"" cos (mx - nt\

(f)'
= — a Ue"" cos (7nx — nt),

where U is the velocity of propagation of the waves in the water,

and 7] = asm {mx — nt) is the equation of its free surface.

Since the vertical acceleration is neglected the dynamical

condition at the free surface is

nx + {hp-hp')hs = 0,

¥-¥ = ^3 (36).

Now

hp-{-gai) + (^ + i [V-ain{U- V) sin {vix - nt)Y - ^V = 0,

or Bp + aa{g-{-n(U- V)'-rn(U- V)] sm {mx - nt) = 0.

' rhil. May. (4), vol. xlii.
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Similarly

Sp +(g — Un) a sin {mx — nt) = 0,

whence (36) becomes

g((r-l)+(7m{U- V)' + mU' - Tm^ = (37).

Let W be the velocity of propagation of waves in water when
there is no wind, then

/g(l-cT) + Tm^

V m(l + (7) '

or Tm' - m(l -i- (r)W'' +g {1 - (t) = (38).

The condition that the roots of this quadratic in m should be

real is that

W' = oT>^^/Tg{l-cT) (39),

which determines the minimum value of W. This value of W is

less than (4T(/) , which shows that when water is in contact with

air it is possible for ripples to travel over its surface.

Substituting the value of T from (38) in (37) we obtain

-^-- ^^i^Vh^-dSrl (''>•

We shall now discuss this equation.

Case(i). V<W^/{l + (T)|a,

In this case both values of U are real, and one of them is

positive and the other negative; hence waves can travel either

with or against the wind. Moreover since the positive value is

numerically greater than the negative value, waves travel faster

with the wind than against the wind ; also the velocity of waves

travelling against the wind is always less than W.

Case (ii). V> W ^/{l + (T)/o.

In this case both values of U if real, are positive ; hence waves

cannot travel against the wind.

Case (iii). When V<2W, the velocity of waves travelling

with the wind is > TF ; when V>2W this velocity is < TF ; and

when F= 2W, the velocity of waves travelling with the wind is

undisturbed.

Case (iv). If F > Tf (1 + o-) <t~\ both values of U are imaginary,

which shows that the motion is unstable.
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EXAMPLES.

1. A liquid of infinite depth is bounded by a fixed plane

perpendicular to the direction of propagation of the waves. Prove

that each element of liquid will vibrate in a straight line, and

draw a figure representing the free surface and the direction of

motion of the elements, when the crest of the wave reaches the

fixed plane.

2. Prove that the velocity of propagation of long waves in a

semicircular canal of radius a and whose banks are vertical, is

3. If two series of waves of equal amplitude and nearly equal

wave-length travel in the same direction, so as to form alternate

lulls and roughness, prove that in deep water these are propagated

with half the velocity of the waves ; and that as the ratio of the

depth to the wave length decreases from oo to 0, the ratio of the

two velocities of propagation increases from J to 1.

4. If a small system of rectilinear waves move parallel to and

over another large rectilinear system, prove that the path of a

particle of water is an epicycloid or hypocycloid, according as the

two systems are moving in the same or opposite directions.

5. A fine tube made of a thin slightly elastic substance is

filled with liquid; prove that the velocity of propagation of a

disturbance in the liquid is (KOjap)^, where a is the internal

diameter of the tube, 6 its thickness, \ the coefficient of elasticity

of the material of which it is made, and p the density of the liquid.

6. A horizontal rectangular box is completely filled with

three liquids which do not mix, whose densities reckoned down-

wards are o-j, o-j, Cg, and whose depths when in equilibrium are

l^, l^, Zg respectively. Show that if long waves are propagated at

their common surfaces, the velocity of propagation V must satisfy

the equation
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7. Prove that liquid of density p flowing with mean velocity

U through an elastic tube of radius a, will throw the surface into

slight stationary corrugations, of which the number per unit of

length is

{2paU'--\yy{2iraT)\

where X is the modulus of elasticity of the substance of the tube,

and T its total tension.

8. Prove that the velocity potential

(l>
= A(\ + ^irSflX) sin 2tt (vt - x)/\

satisfies the equation of continuity in a mass of water, provided

the ratio y/X is so small for all possible values of y, that its square

may be neglected. Hence prove that if the water in a canal of

uniform breadth and uniform depth k, be acted upon in addition

to gravity by the horizontal force Ha~^ sin 2 (mt - x/a), where H
and 771 are small and a is large, the equation of the free surface

may be of the form

Hk
y = k-\- ^ry—j a-2N cos 2 {7nt - osla).^ 2 {gk — ma) ^

'
^

9. Two liquids of density /3, p completely fill a shallow pipe

;

prove that the velocity of propagation of long waves is

^ ~l~(A'p + Ap')'

where A, A' are the areas of the vertical sections of the two

liquids when undisturbed, and h is the breadth of the surface of

separation.

10. If the upper liquid were moving with mean velocity U'y

and the lower with mean velocity U, and there is a surface tension

T, prove that the wave-length is determined by the equation

4>T'7ry\' = b (p U'/A + p' U'lA') -g(p- p').

11. If the bottom of a horizontal canal of depth h be con-

strained to execute a simple harmonic motion, such that the vertical

displacement at a distance x from a given line across the canal and

perpendicular to its length, be given by kco^m{x — vt), k being

small ; show that when the motion is steady, the form of the free

surface is given by

y = h-\- 2 , COS m {x - vt).
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12. A shallow trough is filled with uil and water, the depth

of the water being k and its density a, and that of the oil being

h and its density p. Prove that the velocity of propagation v of

long waves is

v'lg = i (^ + ^) + i ((^^ - ^')' + ^hkpla}\

(Note that there may be slipping between the oil and water.)

13. If water is flowing with velocity proportional to the

distance from the bottom, V being the velocity of the stream at

its surface, prove that the velocity of propagation U of waves in

the direction of the stream is given by

(^U- Vy- V(U- V) Wjgh- Tf= 0,

where W is the velocity of propagation of waves in still water.

14. Two liquids of densities p, p\ each of which half fills a pipe

of which the cross section is a square with a vertical diagonal of

length 2/?, are slightly disturbed. Neglecting the disturbing effect

of the boundary in the neighbourhood of the surface of separation,

prove that the velocity of propagation of progressive waves along

the pipe is given by the equation

U' = ^^^r^^K (tanh or coth) mh.
2m {p-hp}^



CHAPTER V.

RECTILINEAR VORTEX MOTION.

96. The present Chapter will be devoted to the considera-

tion of certain problems of two-dimensional motion, which involve

molecular rotation.

A vortex line may be defined to be a line whose direction

coincides with the direction of the instantaneous axis of molecular

rotation. Hence the differential equations of a vortex line are

dx _dy _ dz

When the motion is in two dimensions,

lu = 0, diildz = 0, dvjdz = 0, ? = 0, ?? = 0,

and therefore the vortex lines are all parallel to the axis of z.

In the case of a liquid, it follows from § 18, equation (26),

that the rotation f may be any function of x, y and t, which

satisfies the equation,

dt dx dy '

and this is satisfied by f= const., we shall therefore suppose that

^ is always constant at every point of the liquid where molecular

rotation exists.

97. We have already shown that when the motion is in two

dimensions, a current function always exists, such that

u = d^lr/dy, V = — d-yjrldx

;
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also w, V and f are connected together by the equation

whence substituting for u, v in terms of yjr, we obtain

S-f+^f=» »
This equation must be satisfied at every point of the liquid

where vortex motion exists. At every point of the irrotationally

moving Uquid which surrounds the vortices, ^ = 0, and therefore

Equations (2) and (3) show, that yjr is the potential of in-

definitely long cylinders composed of attracting matter of density

f/27r, which occupy the same positions as the vortices.

Let us now suppose that a single rectilinear vortex, whose

cross section is a circle of radius a, exists in an infinite liquid.

In order that the cross section may remain circular, it is necessary

that yjr should be a function of r alone.

Denoting the values of quantities inside the vortex by ac-

cented letters, equations (2) and (3) become

3^'*'f«f=» w.

which gives the values of yfr inside the vortex, and

ih\t'« «.

which gives the value outside.

The complete integrals of (4) and (5) are

'f'
= A\ogr + B- i^r^

and ^fr = C log r + D.

Now y^' must not be infinite when r = 0, and therefore J. = ;

also at the boundary of the vortex, where r=^a.

-^/r ' = i/r, dyjr'/dr = dyjr/dr

;

whence B — iJa* = G\oga-\-D

and therefore C = — fci'^ = — ^ajir = — wi/tt.
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where o- is the area of the cross section, and m is the strength of

the vortex. The constant D contributes nothing to th-e velocity,

and may therefore be omitted, whence

^lr' = i^(a'-r')-{ml'ir)\oga (6),

^/r = — (rti/ir) log r (7).

Now — d-^jdr is the velocity perpendicular to r, whence inside

the vortex

-dy{r'ldr=^r (8),

which vanishes when 7^ = 0, and outside

— dyfr/dr — mlirr (9).

Hence a single vortex luliose cross section is circidar, if existing

in an infinite liquid will remain at rest, and will rotate as a rigid

body. It will also produce at every point of the irrotationally

moving liquid luith which it is surrounded, a velocity which is

perpendicular to the line joining that point with the centre of its

cross section, and which is inversely proportional to the distance

of that point from the centre.

98. Outside the vortex, where the motion is irrotational, a

velocity potential of course exists. To find its value we have

d(l> _ dyjr __ my d<f> _ dsjr _ mx
dx~ dy~ irr"^ ' dy dx~ irr^

'

whence <^ = j^ ~
^ ^

^ = {mjif) tan"* yjx (10).

It therefore follows that (^ is a many valued function, whose

cyclic constant is 2m. The circulation, i.e. the line integral

j{udx + vdy), is zero when taken round any closed curve which

does not surround the vortex, and is equal to 2m, when the curve

surrounds the vortex ; whence if k be the circulation, m = \k, and

the values of </> and -^ may be written

</) = (A:/27r) tan"' yjx, ^/r = - {KJ^ir) log r.

99. The investigations of the last articles are kinematical, we

shall now calculate the value of the pressure within and without

the vortex.

Let the values of the quantities inside the vortex, be distin-

guished from those outside, by accented letters.
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Outside the vortex

and since (j> = 0, and q = mfTrr = KJiirr, we obtain

p/p=:G-KyS7r'r'' (11),

whence if IT be the pressure at an infinite distance

The equation of motion inside the vortex is

1 dp _ q^ _ K^r

p dr r 47r'V*

whence "^ = q!.2-4 + - (13)>
p oTT a p

where P is the pressure at the centre of the vortex.

At the surface of the vortex where r = a, p=p\ whence

P/p = U/p - /c747rV (14),

-2?) <1S)-and therefore — = t- .r-^ ( 1

c747rV.

P P *

Hence if IT < K^pjA^ir^a',

f' will become negative for some value of r<a, which shows that

a cylindrical hollow will exist in the vortex, which is concentric

with its outer boundary.

When there is no hollow, equations (12) and (15) show that

the pressure is a minimum at the centre of the vortex, where it is

equal to 11 — K^pj^ir^a^, and that it gradually increases until the

surface is reached, at which it attains its maximum value, which is

equal IT — /c'^/j/SttV, and that it then diminishes to infinity, where

its value is IT.

It is also possible to have a hollow cylindrical space, round

which there is cyclic irrotational motion. Such a space is called

a hollow vortex. The condition for its existence requires that p = 0,

when r = a, and therefore by (12)

n = /cV/SttV.

This equation determines the value of the radius of the hollow,

when the pressure at a very great distance is given.
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100. Kirchhoff has shown that it is possible for a vortex

whose cross section is an invariable ellipse, and whose molecular

rotation at every point is constant, to rotate in a state of steady

motion in an infinite liquid, provided a certain relation exists

between the molecular rotation and the angular velocity of the

axes of the cross section.

The current function is evidently equal to the potential of an

elliptic cylinder of density f/27r. Let a and b be the semi-axes of

the cross section, then the value of yjr inside the vortex may be

taken to be

where A, B, D are constants, for this value of yjr^ satisfies (2).

Let X = c cosh tj cos f, y = csm\\7] sin f, where c = (a^ — b'^) , and

let ?; = /S at the surface ; the value of -sjr' becomes

ylr' = D- fc' (A cosh'^ 7} cos'l + B sinh'^ 7} sin^f)/(^ + B).

Also let the value o( yjr outside the vortex be

ylr=A'€~^^COs2^ + D7]/l3.

When 7}=^, we must have

yjr —yjr' = const., d^jdT) — d-yfr'/dr].

Therefore A 'e-^^ = -^^c'(A cosh'/3 - B sm\{'l3)/(A + B)

and A'e-'^ = l^c' (A - B) sinh jS cosh ^/(A + B).

Whence ^> .^ _ j,y ^ _
^o' (^-' -m ^ ^^(A^) a^

wnence Ji {a O) 2(A+B) 2(A+B) '

Therefore Aa = Bb and

^fr' = D-^(bx'^af)/{a + b).

Let ft) be the angular velocity of the axes ; u, v the velocities

of the liquid parallel to them, then

x — yw = u = dy^'ldy = — 2a^y/{a + b),

y + oo(D = V = — dyjr'/dx = 2b^x/(a + 6).

The boundary condition is

.dF .dF^^
dx ^ dy

where F = {xjaf + (#)' -1=0. Whence

2ai;\ 1
, /26f \ 1 .

therefore a> = 2aby{a + b)\
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We therefore obtain

x = — acoi//h, y = hcox/a,

the integrals of which are

x= La cos {(ot + a), y = Lh sin {(ot + a),

where L and a are the constants of integration. Whence the

path of every particle relatively to the boundary, is a similar

ellipse.

101. A complete investigation respecting the stability of a

vortex, is given in my larger treatise ; but it may be stated that

when the cross section is circular, both cases of steady motion

which we have considered, viz. the steady motion of a solid vortex,

and the steady motion of a hollow vortex, are stable ; and conse-

quently if a small disturbance be communicated to either kind of

vortex, the vortex will proceed to oscillate about its mean form in

steady motion, and will not mix with the surrounding liquid. It

is otherwise if the liquid composing the vortex is of dififerent

density to the surrounding liquid, for in that case the motion

will be unstable; and consequently after a sufficient time has

elapsed, the two liquids will have become mixed together, and

will form what has been called a vortex sponge. The stability

of KirchhofF's elliptic vortex, does not appear to have been in-

vestigated.

The preceding results are however only applicable w^hen there

is a single vortex in an infinite liquid, and it is therefore im-

portant to enquire, whether the presence of other vortices or the

presence of plane or curved boundaries renders the motion un-

stable. This question has been dealt with by Prof. J. J. Thomson,

and he has shown that when there are two rectilinear vortices in

a liquid, the linear dimensions of whose cross sections are small in

comparison with the shortest distance between them, their cross

sections will always remain approximately circular; and it is

inferred from this that a similar result holds good in the case of

any number of vortices. We therefore conclude that when a

number of vortices of small cross section exist in a liquid, they

may be treated as if their cross sections remained circular through-

out the subsequent motion, provided none of the vortices approach

too closely to one another. It therefore follows, that the effect of

any number of vortices upon any external point of the liquid, is

equal to the sum of the effects due to each ; so that if m,, in^
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be the strengths of the vortices, 7\, i\ their distances from any

point P of the liquid, the current function due to the whole

motion is

•f
= - {mJir)\ogT^- {m^lirMogr^-

Moreover since a rectilinear vortex is incapable of producing

any motion of translation upon itself, it follows, that the motion

of any particular vortex, is the same as would be produced by all

the other vortices upon the point occupied by the particular

vortex, if the latter did not exist.

102. We shall pass on to consider the motion of a number of

vortices of small and approximately circular cross sections.

Putting m/TT = M, it follows that since we neglect deformations

of the cross sections, the current function due to each vortex will

be — if log r, and the velocity due to it at any point P will be M\t^

and will be perpendicular to the line joining P with the vortex.

Hence if two vortices of equal strengths exist in a liquid, each

vortex will describe a circle whose centre is the middle point of

the line joining them, with velocity il//2c, where 2c is the distance

between them ; and therefore each vortex will move as if there

existed a stress in the nature of a tension between them, of

magnitude M^l^c^}

To find the stream lines relative to the line joining the vortices,

take moving axes, in which the axis of x coincides with the above-

mentioned line ; then

^ = -\M log [f + (^ - of] [f H- (^ + of].

Also x — (oy = u = d-^/dy,

y + ft)X = v = — dyjridx,

where co = ilf/2c'. Let

therefore x = dx/dy, y = — d^/dx.

Multiplying by y, x respectively, subtracting and integrating,

we obtain

^ = const.= ^,

whence the equation of the relative stream lines is

io, (x' + f) - iM log if + (^ - o)'} \f + (^ + c/l = A.

1 Greenhill, " Plane Vortex Motion," Quart. Journ. vol. xv. p. 20.

B. H. 8



114 RECTILINEAR VORTEX MOTION.

103. If two opposite vortices of strengths m and — m are

present in the liquid, the vortices will move perpenjiicularly to the

line joining them with velocity Mj^c, where 2c is the distance

between them.

In this case there is evidently no flux across the plane which

bisects the line joining the vortices, and which is perpendicular to

it ; we may therefore remove one of the vortices and substitute

this plane for it. Hence a vortex in a liquid which is bounded by

a fixed plane will move parallel to the plane, and the motion of

the liquid will be the same as would be caused by the original

vortex, together with another vortex of equal and opposite strength,

which is at an equal distance and on the opposite side of the

plane.

This vortex is evidently the image of the original vortex, and

we may therefore apply the theory of images in considering the

motion of vortices in a liquid bounded by planes.

104. If there is a vortex at the point {x, y) moving in a

square comer bounded by the planes Ox, Oy, the images will

consist of two negative vortices at the points { — x, y), (x, — y), and

a positive vortex at the point ( — x, —y); for if these vortices be

substituted for the planes, their combined effect will be to cause

no tlux across them.

y

^ Oi

Since the vortex is incapable of producing any motion of

translation upon itself, its motion will be due solely to that pro-

duced by the combined effect of its images ; whence.

My ^ Mx'

-2yV + /)'

.^M_
•^

2y 2{x^-^f)

M Mx
•^ 2.r'^2(ar' /) 2x{a?-\-fy
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therefore xlx^ + yl'if = 0,

whence sc'^ + y~^ = oT^

or r sin 29 = 2a.

This is the equation of a Cotes' Spiral, which is the curve

described by the vortices : also since

xy — xy = — \M

the vortex describes the spiral in exactly the same way as a particle

would describe it, if repelled from the origin with a force 3if7'^^^-

105. The method of images may also be applied to determine

the current function due to a vortex in a liquid, which is bounded

externally or internally by a circular cylinder.

Let H be the vortex, a the radius of the cylinder, OH= c ; and

let /Sf be a point such that 08 =f= a^/c, then the triangles SOP
and POH are similar, therefore

SPO = OHP,

OPH=OSP,

also 08P + SPA = OAP = OPA
= OPH + HPA,

therefore SPA = HPA.

Let us place another vortex of equal and opposite strength

at S, then the velocity along OP due to the two vortices is

M M
u = -fpsmHPO+^smSPO.

sin HPO _ sin HPO
^"*

sin SPO ~
sin OHP

= OH/a

= HPISP,

hence a — and there is no flux across the cylinder.

8—2
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Hence the image of a vortex inside a cylinder, is another vortex of

equal and opposite strength situated on the line joining the vortex

with the centre of the cylinder, and at a distance a^jc from the

centre, and the vortex and its image will describe circles about the

centre with a velocity

MI8H=Mcl{a'-c').

The velocities of the vortex and its image are equal, but their

angular velocities about the axis of the cylinder will be different

;

hence the motion of the liquid inside the cylinder and the motion

of the liquid outside the cylinder are independent, and the vortex

and its image will not remain on the same radial plane in the

subsequent motion. Hence the motions of the liquid inside and

outside the cylinder do not correspond, as is the case with plane

boundaries, except at the instant when the vortex and its image

are on the same radial plane.

The current function of the liquid at a point (r, 6) within the

cylinder is

^ = -M\ogHPI8P

— _ 1 /If 1
^^ + c^ — 2rc cos ^-

t^»^ iog ^-^.^—^^^ ^

.

106. We have shown that the velocity potential due to a

source is m log r ; hence if we have a combination of a source of

strength m, and a vortex of strength m, the velocity potential due

to the two is

</) = m log r-^M tan"^ yjx,

where M = m'lir. Whence

_ ynx — My _ my + Mx

An arrangement of this kind is called Rankine's free spiral

vortex.

In order to find the stream Hues, let us transfer to polar co-

ordinates, and we find

dr_m dd_M
dt r ' dt r

'

whence if mjM = a, we obtain

r — Ae"^,

and therefore the stream lines are equiangular spirals.
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107. We shall conclude this Chapter by proving three funda-

mental properties of vortex motion.

We have defined a vortex line to be a line whose direction

coincides with the direction of the instantaneous axis of molecular

rotation. If through every point of a small closed curve a series of

vortex lines be drawn, they will enclose a volume of fluid which

may be called a vortex filament, or shortly a vortex.

We have shown, that if the forces which act on the fluid have a

potential, and the density is a function of the pressure, the motion

of the fluid constituting the vortex can never become irrotational.

It will now be shown that every vortex possesses the following

three fundamental properties

:

(i) Every vortex is always composed of the same elements of

fluid.

(ii) The product of the angular velocity of any vortex into its

cross section, is constant with respect to the time, and is the same

throughout its length.

(iii) Every vortex must either form a closed curve, or have its

extremities in the boundaries of the fluid.

To prove the first proposition, let P and Q be any two adjacent

points on a vortex, &> the molecular rotation at P. Then by the

definition of a vortex line, PQ is the direction about which the

rotation « takes place.

Let P', Q' be the positions of P and Q at the end of an interval

ht ; then we have to show that P'Q is the instantaneous axis of

rotation at P'.

Let X, y, z be the coordinates of P ; u, v,w the velocities of

the element of fluid which at time t is situated at P.

If PQ = h, the coordinates of Q are evidently

X -f h^jw, y + h7)l(o, z + h^w
;

also since u= F {x, y, z, t), it follows that if u^, v^, w^ be the

velocities of Q,

u^ = F(x + h^/(o, y + h7]/(o, z + h^/co, t)

a) \ dx dy dz

-^-'il$ (i«)-

by § 18.
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The coordinates of P' are

00 + uht, y + vht, z + wht^

and those of Q' are

= x-\- uU + -^
ft)/0

by (16), where p is the density, and f ', ?;', ^', the components of

molecular rotation at P'.

Hence if h! denote the length of P'Q', and V, \j! , v its direction

cosines, then

X7i' = hp^'/fop', imJi = hpr/l(op\ vh! = hp^'loap (17),

whence V/f' = /x'/t;' = z^Vf',

which shows that P'Q' is the instantaneous axis of rotation at P',

and therefore P'Q' is the element of the vortex line, which at time

t occupied the position PQ. This proves the first theorem.

To prove the second theorem, square and add (17) and we

obtain

h' = hp(o'/(op'.

But since the mass of the element is constant

ph(7 = ph'a,

whence o-w = a(o\

which proves that g(o is independent of the time.

Since ^1 +^ +^ = 0,
ax ay dz

it can be shown by integrating this expression by parts, through-

out the interior of any closed surface, as was done in proving

Green's Theorem, that

or //o) cos edS = 0,

where e is the angle between the axis of rotation and the normal

to S drawn outwards.

Now if we choose ^ so as to coincide with the surface of any

finite portion of a vortex of small section, together with its two
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ends, cos e vanishes except at the two ends; and is equal to + 1 at

one end, and — 1 at the other ; hence

(o^dSj^ — (o^dS^ = 0,

which proves the second part of (ii).

To prove the third theorem, we observe that if a vortex did

not form a closed curve or have its extremities in the boundary, it

would be possible to draw a closed surface cutting the vortex once

only, and the surface integral would not vanish.

The first theorem and the first part of the second theorem

depend on dynamical considerations ; the second part of this

theorem and the third theorem are kinematical.

EXAMPLES.

1. If the axis of a hollow vortex be the axis of z, measured

vertically downwards, the plane of xy being the asymptotic plane

to the free surface, and if w be the atmospheric pressure : prove

that the equation of the surface at which the pressure is 'sr+gpa is

wher^ c is a constant.

2. Three rectilinear vortices of equal strengths form the edges

of an equilateral triangular prism. Prove that they will always

form the three edges of an equal prism.

3. If n rectilinear vortex filaments of equal strengths,be initially

at the angles of a prism whose base is a regular polygon of n sides,

show that they will always be so situated, and that each filament

will describe the circumscribed cylinder with velocity k(n — l)/2a

where k is the velocity due to each vortex at unit distance and a is

the radius of the cylinder. Show also that the equation of the

relative stream lines referred to the radius through a vortex as

initial line is r^'' - 2aV cos n6 - 6'" = 0.

4. The space on one side of the concave branch of a rectangular

hyperbolic cylinder is filled with liquid, and a rectilinear vortex

exists in the liquid
;
prove that it moves in a cylinder having the

same asymptotic planes as the boundary.
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5. The motion of a liquid in two dimensions is such that the

rotation f is constant
;
prove that the general functional equation

of the stream lines is

Prove that if the space between one branch of the hyperbola

of — Sy^ = a^ and the tangent to its vertex be filled with liquid, it

will be possible for the liquid to move steadily with constant

rotation, and find the form of the stream lines.

6. A mass of liquid whose outer boundary is an infinitely long

cylinder of radius b, is in a state of cyclic irrotational motion and is

under the action of a uniform pressure 11 over its external surface.

Prove that there must be a concentric cylindrical hollow whose

radius a is determined by the equation

where M is the mass of unit length of the liquid, and k is the

circulation.

If the cylinder receive a small symmetrical displacement,

prove that the time of a small oscillation is

K

/log hia

7. Four straight vortex filaments with alternately positive

and negative rotations are placed symmetrically within a cylinder

filled with liquid
;
prove that if the motion is steady, the distance

of each filament from the axis of the cylinder is nearly three-

fifths of the radius of the latter.

8. Prove that three infinitely long straight cylindrical vortices

of equal strengths will be in stable steady motion, when situated at

the vertices of an equilateral triangle whose sides are large com-

pared with the radii of the sections of the vortices ; and that if they

are slightly displaced, prove that the time of a small oscillation

is the same as that of the time of revolution of the system in its

undisturbed state.

9. A straight cylindrical vortex column of uniform rotation

f, is surrounded by an infinite quantity of liquid moving irrota-

tionally which is at rest at infinity
;
prove that the difference be-

tween the kinetic energy included between two planes at right

angles to the axis of the cylinder and separated by unit distance
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when the cross section is an ellipse, and when it is a circle of equal

area A is

where p is the density of the liquid, and a and h are the semiaxes

of the ellipse.

10. A quantity of liquid whose rotation is uniform and equal to

^, and whose external surface is a circular cylinder, surrounds a con-

centric cylinder of radius a. The external surface is subjected to a

constant pressure IT. Prove that if the inner cylinder be removed,

the velocity of the internal surface \yhen its radius is a. is equal to

^(a^ -«-0(?V-2n/p)
log a'/ia' + c')

'

where Trpc' is the mass of the liquid per unit of length.

a V

11. If a vortex is moving in a liquid bounded by a fixed

plane, prove that a stream line can never coincide with a line of

constant pressure.

12. If a pair of equal and opposite vortices are situated inside

or outside a circular cylinder of radius a, prove that the equation

of the curve described by each vortex is,

(r' - ay (r' sin' e-¥) = 4^a'I)V am'e,

where 6 is a constant.
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CHAPTEE VI.

introduction'.

108. Sounds may be divided into two classes, musical sounds

or notes, and unmusical sounds or noises, and a little consideration

is sufficient to show that the former is the simpler phenomenon
of the two. If, for example, one of the keys of a pianoforte be

struck, we obtain a musical note, whereas if all the notes are

sounded together, the result is an unmusical sound or noise, in

which the different notes cannot be distinguished. We thus see

that a combination of a number of musical notes will produce a

noise, but on the other hand no combination of noises is capable

of producing a musical note.

The sensation of sound is produced by means of vibrations of

the atmosphere, which are first communicated to the tympanum
of the ear, and are afterwards transmitted by the auditory nerve

to the brain. That sound is produced by aerial vibrations, can

be experimentally verified in a number of ways. Thus if a bell

be placed under the receiver of an air pump, and the air is

gradually exhausted, the sound produced by the bell becomes

fainter and fainter, and at last ceases to be heard. If again, a

note is produced by striking an ordinary finger bowl, the latter

will be thrown into a state of tremor or vibration, the existence of

which can be perceived by cautiously touching the bowl with

the fingers; and if the vibrations are stopped by pressing the

bowl between the hands, the note ceases upon the stoppage of

the vibrations. In this case, the vibrations of the bowl are

communicated to the atmosphere, and waves are propagated

through the latter in all directions from the bowl.

1 This and the following Chapter have been principally derived from vol. i. of

Lord Kayleigh's Treatise.
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109. At the commencement of Chapter IV. we explained

the kinematics of wave motion, and we showed that the properties

of a wave depend upon three quantities, viz. the amplitude, the

velocity of propagation V, and the wave length X. We may also,

if we please, introduce the period t instead of the wave length,

since Vr = \. Notes also have three characteristics, viz. intensity,

pitch, and a quality called timbre ; and we must now enquire how
these three physical characteristics of a note, are connected with

the geometrical constants of a wave.

110. In the first place it can be shown that the velocity of

all notes in air and gases is very nearly the same*; for if this were

not the case, a piece of music which is played in tune, would

become hopelessly discordant when heard by an observer situated

at a considerable distance. A similar proposition is true of all

substances which are capable of propagating sound ; although the

magnitude of the velocity of propagation depends upon the

particular substance, being greater in the case of solids and

liquids than in gases. Thus in dry air, the velocity of sound at

0°C. is about 332 metres (i.e. 1089 feet) per second, whilst in

water at 8° C. it is about 1435 metres (i.e. 4708 feet) per second^

It therefore follows that the properties of a note do not depend

upon its velocity of propagation.

111. The intensity of sound is measured by the rate at which

energy is propagated across a given area parallel to the waves,

and is proportional to the square of the amplitude.

112. The pitch of a note is the quality by which its place in

the musical scale is recognised. Thus the middle c of a piano-

forte, is said to have a pitch an octave lower than the next

succeeding c in the scale. We shall now show that the pitch

of a note depends upon the frequency of vibration, which has in

Chapter IV. been defined to be the number of vibrations executed

per second ; and that the pitch rises as the frequency increases.

This is most easily shown by means of an apparatus called the

' It appears however, that violent sounds, such as are caused by explosions,

travel with a higher velocity than sounds produced by notes. Experiments made by

Krupp's firm at Essen, for the purpose of ascertaining the velocity with which the

reports of heavy guns travel, showed that the velocity may amount to 2034 feet per

second. See " Sound velocity applied to range finding," Captain G. G. Aston, Proc.

R(yy. Artillery Imt. April, 1890.

2 To reduce metres to feet, multiply by 3-2809.
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Siren, invented by Cagniard de la Tour. This instrument consists

of a stiff circular disc, which is capable of revolving about an axis,

and is pierced with one or more sets of holes arranged at equal

intervals around its circumference. A wind pipe in connection

with bellows is presented perpendicularly to one of the holes, and

the disc is made to revolve. When the time of revolution is

small, the wind escapes by means of a succession of puffs ; but

after the time of revolution has sufficiently increased, the puifs

blend into a single note of definite pitch; and if the time of

revolution is still further increased, the pitch of the note rises in

the scale. This shows that the pitch of a note depends upon the

frequency. Another point of importance is, that if the time of

revolution is doubled, the two notes stand to one another in the

relation of octaves ; so that if / be the frequency of any particular

note, the frequency of the note an octave higher is 2/.

If €'^*^ be the time factor of a vibration, the frequency is 7z/27r

;

but since n = 27rF/\, the frequency is also equal to V/\; we have

also shown that the pitch is independent of V, and it therefore

follows that the frequency varies inversely as the wave length

;

consequently the shorter the wave length, the higher the pitch

of the note.

The frequency of a given note, is to a slight extent arbitrary,

in as much as the ear is incapable of distinguishing slight differ-

ences of pitch. At the Stuttgart conference in 1834, it was

recommended that the middle c of a pianoforte, which is written

c\ should correspond to 264 vibrations per second. The pitch

usually adopted by acoustical instrument makers, is taken to be

c = 256 or 2^ vibrations per second, so that the frequencies of the

octaves and sub-octaves are represented by powers of 2. Hence

the wave length of c' is about 4*2 feet.

Trained ears are capable of recognising an enormous number

of gradations of pitch, but in as much as the power of perception

varies with different ears, it is somewhat difficult to assign limits

to the audibility of notes. It is probable that the perception of

pitch begins^ when the number of vibrations in a second lies

between 8 and 32, and ceases before it amounts to 40000.

113. All notes which are produced by musical instruments

are of a highly compound nature; and when we discuss the

1 Donkin's Acoustics, § 19.
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dynamical part of the subject, it will be shown that the vibrations

which are capable of being produced by a vibrating body, are

usually represented by an infinite series of terms of the form

iLe'"^, in which the frequency of each term is different. A note

which the ear is incapable of resolving, is called by Helmholtz

a tone. We thus see that a note which is represented by a series

of terms of the type Ae'^^, is a compound note consisting of a

number of tones, which are represented by the different terms of

the series. The component tone of this series, whose frequency

is the least, is called the gravest or fundamental tone, and the

other tones are called overtones. It frequently happens (although

there are exceptions), that the amplitudes of the component

tones diminish as their pitches rise, so that the amplitude of the

gravest tone is sufficiently large to impress its character upon the

whole vibration ; and in many cases is the note which is most

distinctly heard. Lord Rayleigh states \ that he has recently

examined a large metal bell weighing about 3 cwt., and that the

following tones could be plainly heard^ viz.

6^ f%, e", h".

The gravest tone e!7 had a long duration. When the bell was

struck by a hard body, the higher tones were at first predominant,

but after a time they died away leaving e\> in possession of the

field. When the striking body was soft, the original preponder-

ance of the higher elements was less marked.

114. The word timbre is used to express a quality by which

notes of the same intensity and pitch are distinguishable from

one another, and which probably depends upon the nature of the

instrument employed in producing the note.

115. Another phenomenon which we must notice, is that of

beats. Let us suppose for simplicity that two notes of the same

amplitude and phase, have slightly different frequencies m and n.

The vibration produced by the combination of these two notes,

may be represented by the equation

y = a cos 27rmt + a cos 27rnt

= 2 cos 7r(m — n)t cos 7r(m + n)t

= 2 cos 7r(m — n)t cos [27rm — tt [m — n)}t.

1 On Bells, Phil. Mag. Jan. 1890.

2 c is the octave below, and c" is the octave above the middle c of the

pianoforte.



BEATS. 129

Since m — n is small, the resultant vibration may be regarded

as one, whose amplitude and phase vary slowly with the time.

We thus see that the amplitude vanishes whenever

t = {2s + l)/2 (7n - n),

and is a maximum when t = s/(m. — n), where 5 is zero or any

positive integer. Hence at intervals (m — n)'^ there is absolute

silence, and midway between the intervals of absolute silence, the

intensity of the sound attains its maximum value. The intervals

of silence are called beats, and the number of beats per second

is m — n.

In order that beats may be heard distinctly, m — n, or the

difference between the frequencies of the two notes, must be

small.

B. H.



CHAPTER YII.

VIBRATIONS OF STRINGS AND MEMBRANES.

116. If a piece of string oY wire be tightly stretched between

two fixed points, and be set in motion, either by being struck or

rubbed with a bow, it is well known that a musical note will be

produced. This arises from the circumstance that the string or

wire is set into vibration, and we shall now proceed to investigate

the theory of these vibrations.

If a thin metal wire, whose natural form is straight, is bent

into a plane curve of any form, the resultant stresses across any

normal section, due to the action of contiguous portions of the wire,

consist of (i) a tension T perpendicular to the section, (ii) a

normal shearing stress N, (iii) a flexural couple G, whose axis

is perpendicular to the plane of the wire ; and consequently in

order to investigate the vibrations of instruments whose strings

are made of wire, it would be necessary to construct a theory

which would take all three stresses into account. It is however

obvious, that although a thin string, made for example of catgut,

is capable of sustaining a considerable tension, the resistance

which it is capable of offering to shearing stress and to bending,

is very small in comparison with the resistance which it is capable

of offering to stretching. We may therefore when dealing with

strings made of catgut and similar materials, neglect the shearing

stress and the couple, and may treat the string as perfectly fleooible.

We may define a perfectly flexible string to be a string, which is

incapable of offering any resistance to shearing stress or to

bending. A string of this kind is an ideal substance which does
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not exist in nature ; but in as much as most thin strings which

are not made of wire, approximate to the condition of perfect

flexibility, it will be desirable first of all to consider the vibrations

of a perfectly flexible string. If however the string is too stiff

to be treated as perfectly flexible, or is made of wire, the theory

of the vibrations which it is capable of executing, fall more properly

under the head of the vibrations of bars. These will be considered

in the next chapter.

The vibrations which a stretched string is capable of executing,

consist of two kinds, which may be treated as being independent

of one another. The first kind consists of trmisverse vibrations,

in which the displacement of every element is perpendicular (or

very approximately so), to the undisplaced position of the string.

The second class consists of longitudinal vibrations, in which the

displacement is parallel to the undisplaced position of the string.

It will thus be seen, that in the theory of transverse vibrations,

the longitudinal displacement is supposed to be so small in com-

parison with the transverse displacement, that the former may be

neglected in comparison with the latter.

Transverse Vibrations of Strings.

117. To find the equation of motion for transverse vibrations,

it will be sufficient to consider the case in which the motion takes

place in a plane. Let T^ be the tension, p the linear density, i.e.

the mass of a unit of length, y the displacement of the point

whose abscissa is oo, Y the impressed force per unit of mass.

If
(f)

be the angle which any element 8s makes with the axis of

oc, the equation of motion is

pj/Bs = f'^(T, sin (l))8s + p YBs.

Now sin
(f)
= dyjds ; also since the displacement y is small, the

curvature will also be small, and we may therefore put ds=^dx.

The tension T^ may also be regarded as constant throughout the

length of the string, whence the equation of motion becomes

df~p dx''^ ^
^•

If the motion does not take place in a plane, we may resolve

the displacements and forces into two components respectively

parallel to the axes of y and z, and we shall thus obtain a second

9—2
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equation of the same form as (1), in which z, Z are written for y,

Y respectively.

118. Let us now suppose that the length of the string is

equal to l^ and that there are no impressed forces ; also let

«'=3'> (2).

Equation (1) now becomes

W-''Tx' ^^^-

To solve this equation, assume

Substituting in (3) we obtain

ax
the solution of which is

F= (7 sin mx + D cos mx.

The solution of (3) may therefore be written in the form

y—l,(C sin mx + D cos mx) e'™^^ (4),

where m is at present undetermined, and G and D are complex

constants.

The value of m will depend upon the particular problem under

consideration. We shall now suppose that both ends of the string

are fixed ; in this case the conditions to be satisfied at the fixed

ends are, that y and y should vanish when x = and x = I. These

conditions evidently require that

D = 0, sin ml = ;

from the last of which we deduce,

m = S7r/l,

where s is a positive integer. Writing C = A — cB and rejecting

the imaginary part, the solution becomes

y = X (A, cos STrat/l + B,sm STrat/I) sin STTx/1 (5),

and therefore the period t, of the 5th component, is given by

and the frequency

_ 2^ _ 2^ /p^

•^' 21 \/ p'
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The gravest note corresponds to 5 = 1, and therefore its

frequency is

/-i /^

From these results we draw the following conclusions.

(i) The frequency is inversely proportional to the length

;

and therefore if the string be shortened, the pitch of the note will

rise, and conversely if the string be lengthened, the pitch will fall.

We thus see why it is that in playing a violin, different notes can

be obtained from the same string.

(ii) The frequency is proportional to the square root of the

tension, accordingly if the string be tightened the pitch will

rise.

(iii) The frequency is inversely proportional to the square

root of the density ; and therefore if two strings having the same

lengths, cross sections and tensions, be made of catgut and metal

respectively, the pitch of the note yielded by the catgut string,

will be higher than that yielded by the metal string; also the

pitch of the note yielded by a thick string, will be graver than

that of the note yielded by a thin string, of the same material,

length and tension.

If s be any integer other than unity, we learn from (5) that

the displacement is zero at all points for which x = rljs, where

r = 1, 2, 8, ...5 — 1 ; it therefore follows, that corresponding to the

sth harmonic, there are 5 — 1 points situated at equal intervals

along the string, at which there is no motion. These points are

called nodes.

119. The constants A and B depend upon the initial

circumstances of the motion. Now the motion of dynamical

systems of which a string is an example, may be produced either

by displacing every point in any arbitrary manner, subject to the

condition that the connections of the system are not violated

;

or by imparting to every point an arbitrary initial velocity,

subject to the same condition. Hence the most general possible

motion, is obtained by communicating to every point of the

string an initial displacement, and an initial velocity. We shall

now show that when the initial displacements and velocities are

given, the constants A and B are completely determined.
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Let
?/o, y^ be the initial displacements and velocities. Then it

follows from (5) that

y^ = \A^sixLSTrxll (6),

00

2/o
= X (sira/l) B^ sin sttx/I (7).

Now the integral I sin {sirxjl) sin {s'lrxjl) dx is equal to zero

if s and s' are different integers, and is equal to \l if s = s'
\

whence multiplying (6) by sin sirxjl and integrating between the

limits I and 0, we obtain

A =
7J

2/oSin ^ dx.. (8).

Similarly from (7)

„ 2 [^ . . STTX J ....

^• =
^a!o^'''''

— '^'' (^'-

Since i/o, 2/o
are given functions of x, these equations completely

determine the constants. We notice that B^ is zero when the

initial velocity is zero, and that A^ is zero when there is no

initial displacement.

120. As an example of these formulae, let us suppose that a

point P, whose abscissa is b, of a string fixed at A and By is

displaced to a distance y and then let go.

From x = to x = h, y^^ yx/b, and therefore for this portion

of the string

. , 27 [* . STTX , 2y / b sirb I . S7rb\
A, = jf xsm-j dx=-r\ cos —7- + -s—5 sm , .

bl Jo I b \ sir I sV I J

From x = b to x = l, yQ = y{l — x)/{l — 6), whence

27 f b sirb lb . sirb

6 (57r I {l-b)sV I

Whence adding we obtain

A -\- A = A = 2 2/~7i—T" sin —J— ,

which determines A^. This result shows that the amplitude of

the gravest tone, which corresponds to 5 = 1, is greater than the

amplitudes of any of the overtones. The gravest tone is therefore

the most predominant.
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121. The vibrations of a string which is set in motion by

means of an initial velocity communicated to every point of it,

may be investigated in a similar manner ; but in many practical

applications, a string is set in motion by means of an impulse

applied at some particular point. The reader who desires to

study the theory of the vibrations of a pianoforte wire, or of a

violin string, is recommended to consult Donkin's Acoustics, and

Lord Rayleigh's Theory of Sound. We shall confine ourselves

to the simple case of the motion produced by an impulse F,

applied at the point x = b.

Puting n = sirajl, the value of y will be

y = ^B^ sin (nx/a) sin nt (10),

in which B^ has to be determined.

Now the work done by an impulse, is equal to half the product

of the impulse and the initial velocity of the point at which it is

applied ; and since the work done is equal to the kinetic energy

of the initial motion, we immediately obtain the equation

^0
dx (11),

where rj is the value of y at the point at which the impulse is

applied.

From (10), it follows that

Fi]^ = FtB^n sin nhja,

and p I y^dx = p I 2 {B^n sin nxlaf dx
Jo Jo

and therefore restoring the value of 7i, (11) becomes

Fl^B^s sin sirb/l = ^piralBy .(12).

Comparing both sides of this equation, we see that

„ 2F . sirh
B, = sm -y-

,

and therefore

2F ^ 1 . sirb . sirx . sirat
y — z, - sin —j- sin —y— sin - , - .

nrpa s I I I

At the nodes corresponding to the 5th component, we have

X = rljs) and since in the preceding expression the sth component
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of the displacement vanishes when b = rl/s, it follows that when
the impulse is applied at a node, the corresponding component

is absent.

122. We must now consider the motion of a string which is

under the action of a periodic force F (a:) cos pt. It is well known
that when an elastic body is set into vibration and left to itself,

the motion gradually dies away and the system ultimately comes

to rest. The reason of this is, that all such systems possess a

property called viscosity or internal fiiction, by virtue of which

the kinetic energy of the motion is gradually converted into heat.

The effect of internal friction may be represented mathematically,

by supposing that every element is retarded by a force proportional

to its velocity, and we shall find it convenient in discussing motion

due to a periodic force, to include the effect of viscosity.

It therefore follows that in (1) we must put

Y =F (x) cos pt — ky,

where A; is a constant, and the equation becomes

^.^k% = a?P^^ + F{x).o.pt (18).
df dt dx^

Since the motion which we are considering is periodic with

respect to x as well as to t, we may assume

2/ = 116*'^*, F{x) = Ee''^,

where m = sirjl', whence ifmV = ?i*, (13) becomes

^j^kj^-¥n\i = Eco^pt (14).

The solution of this equation consists of two parts, viz. any

particular solution of (14), together with the complementary

function, which is the solution of the equation obtained by putting

the right-hand side equal to zero, and which therefore contains two

arbitrary constants. To find a particular solution, let us assume

t^ = c cos (pt - e).

Substituting in (14), we obtain

c (n' —p^) cos {pt — e) - kpc sin (pt — e) = E cos e cos (pt - e)

— Esine sin (pt — e)

;

whence equating coefficients of sin (pt — e), cos (pt — e), wc obtain

c(n^ — p') = E cose

cpk = E sin e,
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whence u= co8(pt-e) (15),

tane = -^^, (16).

In order to obtain the complementary function, let u = e'J^
;

substituting in (14) and putting E=0, we obtain

q'+kq + n' = 0,

the roots of which are

Since k is always a small quantity, n will usually be greater

than ^k ; it is moreover obvious that if n were less than ^k, the

time factor would be of the form e^"**^^^^ and would therefore not

be periodic with respect to t The complete solution of (14) may
therefore be written

u = Ae-^-'^ cos {^/ ()f - ik')t- a} +^^^ cos(pt-e)... (17).

123. The first term of this equation represents the /ree

vibrations ; that is to say the vibrations which the string is capable

of executing, when it is set in motion in any manner and then left

to itself. The period of these vibrations is 27r(n^ — JA;'^)~^ and the

amplitude is proportional to
6~^^*

; the free vibrations therefore

diminish as the time increases and ultimately die away.

In dissipative systems, it is usual to express the effect of friction

by means of a quantity called the modulus of decay ; which is

defined to be the time which must elapse before the amplitude has

fallen to e~^ of its original value. It therefore follows that if r be

the modulus of decay,

which determines the physical meaning of k. We thus see that

if the friction is small, so that the amplitude diminishes very

slowly with the time, r must be large, and therefore k must be

small.

In order to pass to the case of no friction, we must put k = 0,

in which case the frequency is proportional to n. Hence one of

the effects of friction is to lower the pitch of the free vibrations.

Since the free vibrations always disappear after a sufficient

time has elapsed, the expression for u ultimately reduces to the
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last term, which represents the forced vibrations, and which we

shall proceed to consider.

124. A forced vibration, is a vibration produced and main-

tained by an external force. Its period is the same as that of the

force, and it is consequently independent of the dimensions or

constitution of the system. The amplitude of the forced vibration

in the present case, when expressed in terms of n, p and k is

E

If the system were absolutely devoid of friction, k would be zero,

and the amplitude would be infinite when n=p. In practical

applications k is usually small ; and we thus obtain the important

theorem, that if a system is acted upon by a periodic force, luhose

period is equal, or nearly so, to one of the periods of the free vibra-

tions of the system, tJie coirresponding forced vibration luill be large.

This theorem can be illustrated in the case of stringed instru-

ments ; for if a note be sounded whose period is the same, or nearly

the same, as that of the fundamental note of one of the strings, the

string will often be heard to vibrate in unison with the note
;

whereas if the period of the note be different from that of any of

the natural periods of the string, no sound will be heard.

125. When both extremities of the string are fixed, the

general solution of (13) which of course includes (3) as a par-

ticular case, may be presented in the following form, which is

frequently useful.

In this case m = sirjl, and therefore n — sira/l, whence the

complete solution may be written

?/ = Sj
<l>,

sin sirx/l (18),

where </>, is a function of the time which satisfies (14), and whose

value is therefore determined by (17). The quantities denoted by

<^„ are called normal functions ; and we shall now prove that the

expressions for the kinetic and potential energies, do not contain

any of the products of the normal functions. This is the charac-

teristic property of these functions.

If Tho. the kinetic energy, we have

T=\p\ ifdx = i/3 I \^i<j>, sin sirx/l]* dx.
Jo JO
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Since all the products vanish when integrated between the

limits, we obtain

T^ipl^Af (19).

The potential energy is equal to the work done in displacing

the string to its actual position. In order to calculate its value,

let the string be held in equilibrium in its actual configuration at

time t by means of a force Y applied at every point of its length.

The value of this force per unit of mass is equal to

by (1). Let SF be the work which must be done by this force

in order to displace every element of the string through a space

S?/; then the work done upon an element Bs

and therefore since Bs = Bx, the whole work done is

Integrating by parts, and recollecting that % = at both ends,

we obtain

whence V=^tA^ {^Jdx (20).

Substituting the value of y from (18) in (20), we obtain

F= jr, f [tA (stt/I) cos sirxllYdx
Jo

=^ifK^'<t>:' (21)-

Longitudinal Vibrations of Strings.

126. We shall now obtain the equation of motion for the

longitudinal vibrations of a string.

Let P and Q be two points whose abscissae are x, x + Bx; and

let these points be displaced to P\ Q\ If a; + f be the abscissa of

P\ the abscissa of Q' will be ^ + f + (1 + d^jdx) Bx.



140 VIBRATIONS OF STRINGS AND MEMBRANES.

If T be the tension at any point,

^-^ PQ
where E is Hooke's modulus of elasticity, whence

aw
The equation of motion is

and therefore becomes

df ^ dx''^ '

where a^ = E/p, and X is the impressed force per unit of mass.

This equation is of the same form as the equation for trans-

verse vibrations, and can be solved in a similar manner.

The conditions to be satisfied at a fixed end are, that the

displacement and velocity must be zero throughout the motion;

and therefore at a fixed end

1=0, 1 =
for all values of t.

The condition to be satisfied at a free end is that T = ; and

therefore at a free end

dx
for all values of t.

Transverse Vibrations of Membranes.

127. The theory of the vibrations of membranes, is a par-

ticular case of the theory of the vibrations of thin elastic plates

and shells. In general the stresses across any section of a thin

plate or shell consist of* (i) a tension T, (ii) a tangential shearing

stress M, (iii) a normal shearing stress N, (iv) a flexural couple G,

(v) a torsional couple H. If however the membrane is very thin

and perfectly flexible, the stresses reduce to a tension T, which in

the dynamical problem of small transverse vibrations, may be taken

to be equal in all directions, and constant all over the membrane.

We shall now obtain the equation of motion of a plane mem-
brane.

' Proc. Lund. Math. Sac. Vol. xxi. p. '6'6.
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Let %v be the transverse displacement of any point, the coordi-

nates of whose undisplaced position are {x, y, 0) ; also let p be

the superficial density, i.e. the mass of a unit of area of the

membrane. If hs, 8s be the sides of any small element of the

membrane, we may write Bx, By for these quantities ; whence

the equation of motion is

which becomes

iic' = T/p.

128. If the boundary of the membrane consists of a rectangle,

whose sides are the axes and the lines x = a, y = h, we may assume

as a particular solution of (22),

10 = A sin mirx/a sin mry/b cos pt (23),

where p^ = cV{m^la^ + ri'IU') (24),

m and n being any integers ; for this expression satisfies (22) and

also makes w vanish at the boundaries. Equation (24) determines

the frequency of the different notes ; and from (23) we see that

the nodal lines (i.e. the lines of no motion) consist of a system

of *i — 1 lines parallel to x, whose distances apart are b/n, together

with m — 1 lines parallel to y, whose distances apart are equal to

a/m.

If the membrane be square, a = b, and (23) and (24) become

w = A sin mirx/a sin niryja cos pt,

p = C7r (m^ + nY/cc-

The gravest note is obtained by putting m = n = 1, and

corresponding to this note there are no nodes.

In the next place we shall determine the nodal lines cor-

responding to vibrations whose frequency is ^c\/5/a.

Here VS = \/(jn^ + n^),

which requires that m = 2, ?i = l or m=l,ri = 2; and therefore

the complete vibration corresponding to this period is,

w = {G sin ^irxja sin iryja + D sin irxja sin ^iryla) cos pt.

In this expression G and D depend solely upon the initial

circumstances of the motion, and may have any values whatever

consistent with the boundary conditions. If however we suppose
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that the initial conditions are such, that the ratio CjD has an

assigned value, we may obtain a variety of special cases.

(i) Let D = 0. The nodal system now consists of the line

X = ^a, which bisects the membrane.

(ii) Let (7=0, and we have a nodal line y = \a, similarly

bisecting the membrane.

(iii) Let C=D; then the value o^ w may be written

w = ^G sin irxja sin iryja cos ^tt (en + y)/a cos ^ir {x — y)la cos pt

This expression vanishes when,

x = a, y = a, x-\-y = a, x — y= a.

The first and second equations correspond to the edges; the

fourth must be rejected, because it does not represent a line

drawn on the membrane ; and the third represents one of the

diagonals of the square.

Since a nodal line may be supposed to be rigidly fixed without

interfering with the motion, the preceding solution determines

the frequency of the gravest note of a right-angled isosceles

triangle.

(iv) Let C= — D, and we shall find that the nodal line is

y = x, which represents the other diagonal of the square.

For further examples in this branch of the subject, the reader

is refeiTed to Chapter IX. of Lord Rayleigh's treatise.

129. The motion of a circular membrane, which is the best

representative of a drum, cannot be solved by elementary methods.

The simplest case of all, is when the vibrations are symmetrical

with respect to the centre, so that (22) becomes

d^w _ 2 fd*w 1 dw\

and if we put w = F{r) e'P^*, the equation for F is

^ IdF ,^^^^
dr* r dr ^

This equation cannot be integrated in finite terms. The two

solutions are usually called Bessel's functions, from the name of

their discoverer ; and the investigation of their properties consti-

tutes an important brancli of analysis. Algebraic solutions may

however be invented, by supposing that the density, and there-

fore c, is a function of r.
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EXAMPLES.

1. A string of length l + V, is stretched with tension T
between two fixed points. The linear densities of the lengths I, V

are m, on' respectively; prove that the periods r of transverse

vibrations are given by

mA tan (27rlm^/TT^) = m^ tan {^trVrn'^IrT^).

2. Investigate the motion of a string of length I, which is

initially at rest in a straight line, each extremity of which is

subject to the same obligatory motion y = h sin mat Show
that if a sufficient period be allowed to elapse for the natural

vibrations to subside, the position of the nodes will be given by

the equation

2mx = ml -\- {2i + 1) vr,

where i is any integer.

3. A uniform string in the form of a circle of radius a, rests

on a smooth plane under a central repulsion, whose value at

distance r is ^a"/r". Show that if the string be slightly displaced,

so that it is initially at rest and in the form of the curve
00

7' = a + S a,,^ cos mO,

its form at any subsequent time t, will be determined by the

equation

r = a-\-Z a„, cos md cos m {- r,

—:^- ^ t
1 [a\ m' + l J)

Discuss this result (i) when ?7^ = 1, n = l, and (ii) when n = S.

4. Three strings OA, OB, OC of the same material but of

different lengths, are united at 0, and are kept tight by being

fastened to fixed points A, B, 0, the angles BOG, COA, AOB
being denoted by a, /3, y. Show that the times of vibration of the

different notes sounded when is free, are determined by the

equation for T, viz.

(sin af cot ttTJT + (sin y8)^ cot ttTJT + (sin 7)* cot 7rTJT= 0,

where T^, T^, T^ are the times of the gravest notes of OA, OB, OC,

when is fixed.
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5. If a stretched string of length I be fastened to two equal

masses M, controlled by springs of strength /a allowing transversal

vibration, and be plucked at its middle point, prove that the

frequency n of vibration will be given by

pa tan nirlja = /jL/2n7r — 2n7rM,

where p is the line density, and pa^ the tension of the string.

6. A heterogeneous membrane in the shape of a circular

annuUis, whose edges are fixed and inner and outer radii are

b and c, and whose density is /^/?'^ where r is the distance from

the centre, is stretched with a tension T, and is performing small

symmetrical normal vibrations. Show that a possible motion is

given by

w={Asin{p log r/b) + B sin (^ log c/r)} sin (apt + a),

where ?i7r = p log c/b, n is an integer, and a* = T/fi.

7. The fixed boundary of a membrane is square, and the

centre of the membrane is displaced perpendicularly through a

small space k, the membrane being made to take the form of two

portions of intersecting circular cylinders. Prove that the origin

being at the centre of the square, the vibrations are given by the

equation

w = ^A„^, cos yt sin ?i7r (x + a)/2a sin rrr (y + a)12a,

where 4aV = oV {n^ + r^).

Prove that in this case n and r are odd integers, and that

. 128A; fn' + r' _ . , . . n

A-nr = 4 / 2 2T2 2 sm *7i7r sm i r7r ,

A - —f^ —\



CHAPTER YIII.

FLEXION OF BARS.

180. We shall now investigate the theory of the equilibrium

and the flexural vibrations of a thin rod or bar, and shall confine

our attention to two-dimensional motion.

When the bar is not subjected to torsion, the stresses across

any section, which are due to the action of contiguous portions of

the bar, are completely specified by the following three quanti-

ties :—(i) a tension T perpendicular to the section, (ii) a normal

shearing stress N, (iii) a flexural couple G. In the figure let PQ
be a small element hs, p the radius and the centre of curvature

at P after deformation, a the density and (o the area of the cross

section at P. Also let X, F, L be the tangential and normal

components of the impressed forces and the couple at P, per unit

of mass, measured in the directions of T, N, G.

T+dT

The equations of equilibrium of the bar, are obtained by

resolving all the forces along the tangent and normal at P, and

taking moments about this point ; whence

B. H. 10
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T-{T+ hT) cos h(f)-\-{N-{- 8N) sin
8<f> + acoXSs = 0,

N-(T-h ST) sin 8(/) - (N-]-BN) cos §</> + o-toFSs = 0,

Gt _ G! _ SG _ (iV + SxY) p' sin Bcj) + c7a)X8s = 0,

, dT N ^\
whence -^

, = (T(oA
as p

dN T
-y- +- =0-6)7
as p

dG .r T
-, + iV^ = acoL
ds

131. We must now find an expression for the flexural

couple G.

The curve which passes through the centre of inertia of each

cross section, is called the aads of the bar. When a bar is bent

in such a manner that its curvature is increased, the filaments

into which the bar may be conceived to be divided, which lie on

the outer side of the axis, will usually be extended ; and those

which lie on the inner side will usually be contracted, whilst the

axis itself undergoes no extension nor contraction. Cases of course

may occur, in which the axis undergoes extension or contraction,

and when this is the case, the difficulties of the problem are

greatly increased, and cannot be satisfactorily discussed without

a knowledge of the Theory of Elasticity. We shall therefore

confine our attention to the case in which the extension or

contraction of the axis is so small (if it exists), that it may be

neglected.

In the figure, let AB he the axis of the bar, PQ any filament,

whose distance from AB is h, the centre of

curvature at J5; also let these points after deforma-

tion be denoted by accented letters.

It has been usual to assume, that the tension T
at P", due to the action of contiguous portions of the

bar, is proportional to the extension of the element

PQ; in which case we should have*

P'Q'-PQr=q
PQ

* It would be impossible fully to discuss this assumption in an elementary

treatise, but the question may be put in a clearer light by means of the Theory
of Elasticity.



BENDING MOMENT. 147

where g' is a constant called Young's modulus, which depends

upon the physical constitution of the rod. Now if p, p be the

radii of curvature oi AB before and after deformation,

PQ ^ p + h PV _ p-\-h

AB p ' A'B' p '

Since we assume that the axis undergoes no extension,

AB = A'B'
',
whence

1 + hjp

P P
neglecting h^ etc. Whence

q/c

\p p>

where /c'^co is the moment of inertia of the cross section of the bar.

The quantity of qfc^co is sometimes called the flexiiral rigidity,

or the coefficient offlexion. We shall denote it by £^.

Let T", T'" be the two component tractions perpendicular to the line PQ
;

<'"i» <^2y <^3 th^ three extensions in the directions T', T", V". Then adopting

Thomson and Tait's notation for elastic constants we have

T' = (m + n) (Tj + (;?i - 7?) ( o-o + 0-3)

,

T"= (m + n) a.2 + (m - n) (0-3 + a^

,

T'"= {m + n) o-g + {m - n) {cr^ + a^)

.

Adding the last two, we obtain

T" + T"= 2m (o-g + 0-3) + 2 {m - n) o-j,

whence T'=-— ^0-1+ iT" + T"').

If the bar is thin, and is not subjected to external pressure, it is probable that

the second term in the expression for T' is so small in comparison with the first,

that it may be neglected, in which case we should have

T' = nm~^ (3m - n) o-j.

The coefficient n{dm-n)lm is called Young's modulus, and is the quantity-

denoted by q in the text. The assumption therefore supposes that the quantity

(w - n) (T" + T"')l2m may be neglected.

The assumption that T", T'" are rigorously zero, which appears to have been

made by many writers, is I think unquestionably erroneous except in very special

cases; but the retention of these stresses under the above circumstances, would

probably lead to terms of a higher order as regards the thickness than K^ca, and

which may be neglected.

10—2
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The flexural couple G, is therefore proportional to the change

of curvature. With regard to the assumption in italics, it is

doubtful whether it ought to be made when the surface of the

bar is under the action of an external pressure ; and we shall

therefore suppose that no forces of this description act upon

the bar.

In statical problems, the couple L will usually be zero, whilst

the forces A^, Y will be given ; equations (1) together with (2) are

therefore sufficient to determine the form of the bar.

132. The conditions to be satisfied at the ends of the bar are

the following.

If the ends are subjected to constraining forces and couples,

the values of the two stresses T and N at the ends, must be

respectively equal to the components along the tangent and

normal of the constraining forces ; and the couple G, must be

equal to the constraining couple.

At a free end, T, N and G must vanish.

133. As an example of these formulae, we shall consider the

Elastica of James Bernoulli, which is the curve assumed by a

naturally straight thin bar, whose ends are fastened together by a

string of any given length.

Since there are no impressed forces, X = F = X = ; also

p = ds/dcj), whence the first two of (1) become

and therefore

d<l>'^

the integral of which is

T= A cos<^ + J?sin </>,

whence A^ = - ^ sin <^ + 5 cos <^.

Let t be the tension of the string, and a and tt — a the values

of
(f)

at the two extremities, then

— ^ cos a = A^ = — ^ sin a + i? cos a,

— t3ma = T = A cos a + i? sin a,

therefore ^ = 0, B — — t.
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Writing E = (ik^w, and remembering that p = oo , since the

natural form of the bar is straight, we have G=E/p', whence

the third of (1) becomes

f.^©-^-^*=o (^)-

Integrating, we obtain

-7^ — ^ sm </) = G

.

P

Since G = when </> = «, C = — ^ sin a,

whence if Elt = a' ^= ""^
, (4),

»9 (sin (p — sin a)-

which determines the intrinsic equation to the curve.

We may also integrate (3) in a different manner, for if the

string be the axis of w, and its middle point be the origin,

cos
(f)
= dyjds,

and therefore (3) may be written

ds \p)
~ ds'

whence py = a^; (5),

no constant being required because p'~^ = when y = 0.

T^r / ds dy dy .

whence integrating (5) again

2/^ = 2a^ (sin — sin a) (6).

The forms of the various curves which the wire is capable of

assuming, are shown in Thomson and Tait's Natural Philosophy,

Part II. p. 148.

If a lies between and tt, the maxima values of y are obtained

by putting
<f)
= Jtt, and are therefore equal to + 2a sin (Jtt — |a).

The form of the curve is shown in the figures 1, 2 or 3 of that

work ; and if the curve be bent upon itself and the slight torsion

be neglected, the forms are shown in figures 4 and 5. In all these

cases except the first, in which the bar is bent into the shape of a

bow, the maximum value of y is numerically equal to its minimum

value. If, however, a lies between tt and 277, we may put it equal

to TT + yS, in which case (6) becomes

y^ = 2a^ (sin 4> + sin /3).
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In this case the maximum value of y occurs when (/> = ^tt, and

is equal to 2a cos {^tt — ^/3), and the minimum when

</, = 0, or ?/ = a(2sin)S)^

the form of the curve is shown in fig. 7.

The constants a and a are capable of being determined when

the lengths of the bar and string are given ; and the equation of

the curve in Cartesian coordinates can also be obtained, but to do

this a knowledge of elliptic functions is required \ If, however,

a = Itt, the integral in an algebraic form can be obtained ; for

since tan <^ = - dxjdy, (6) becomes

J y {^x^

= - (W - ff + a log {2a/y + (4a7i/^ - 1)^} + C.

Since y = a\/2 when x = 0, (7 = a\/2 — a log (\/2 + 1),

whence x = (4a' - yy - aV2 + a log /.^ , ..f
^

•

^ ^ ^ ^ y (V2 + 1)

It will be noticed that this curve is the same as that described

by an elliptic cylinder, in the limiting case between oscillation

and rotation. See page 71.

134. Equation (4) enables us to prove a theorem discovered

by Kirchhoff, and which is known as Kirchhoff's kinetic analogue.

The theorem is, that if a point move along the elastica luith uniform

velocity, the angular velocity of the tangent at that point, is the same

as that of a pendulum under the action of gravity.

If V be the velocity of the moving point, (4) may be written

zn = ~7^ (sin <f) - sin a)'

.

dt a\/2^ ^ '

If we put ;^ = Jtt + <^, a = ^TT + ^,

dy V 1
this becomes

Jj;
= —^ (cos x — cos /?)*

,

which is the equation of motion of a common pendulum, whose

length is equal 4!ga*/V^.

Further information relating to this subject will be found in

the following papers^

^ Greenhill, Mess. Math. vol. viii. p. 82.

2 Greenhill, •On the greatest height consistent with stability," Proc. Camb.
Phil. Soc. vol. IV. p. 65.

Ibid. "On the strength of shafting when exposed both to torsion and end

thrust," Proc. Imt. Mechan. Krifiiucns, Ap. 1883, p. 182.
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Lateral Vibrations.

(7).

135. The preceding example illustrates the use of these

equations in statical problems ; we must now proceed to consider

the dynamical theory of the small vibrations of bars.

In order to obtain the equations of motion, we must write

X—il, F — ^' for X and Y in the first two of (1), where u, v, are

the tangential and normal displacements; and in the third equa-

tion, we must write L + fc^cf) for L. The equations of motion are

thus

dT N ,„ ... \
-; 7=<r(»(A— U)
as p ^

136. We shall now obtain the equation for determining the

lateral vibrations of a bar, whose natural form is straight, when

under the action of no forces.

In this case - = 0, — =—^—„

.

p p dx^

Since the curvature of the bar is small, p'"^ is a small quantity
;

hence if there is no permanent tension, the quotient T/p is of the

second order of small quantities, and may therefore be neglected
;

we may also write — dx for ds (ds being measured in the figure in

the opposite direction to dx), and the last two of (7) become

dN .. ,„,

qK'co^, + I^=(TK'a)cl> (9).

Now cot <^ = — dv/dxy

and since </> is very nearly equal to Jtt,

^ = dv/dx,

and therefore (9) becomes

5««^3 + i^=<^«'>'5^ (^^^'
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whence eliminating N between (8) and (9) and putting qja- = l)\ we

obtain

Tf^"'' d^'-" Mdl^=^ ^^^>'

which is the required equation of motion.

137. The conditions to be satisfied at a tree end are, that G
and iV should vanish there. It therefore follows from (2) and

(10), that these conditions are

d'^v ^ d'v j^d^v .

d?='^'rf?rf^-''rf?=°
^^^)-

These results agree with those given b}^ Lord Rayleigh,

Theory of Sound, vol. i. § 162; but the method employed in the

text is different, and was suggested by a paper by Dr Besant\

138. The third term on the left-hand side of (11) is due to

the rotatory inertia of the bar, i.e. to say, to the angular motion of

the cross sections. This term is generally very small, and it may
usually be neglected. When this is the case the equation of

motion becomes
d^V

, 27 2 f^*^
r. /l.>\

dP + '^d.^-''
(''^-

whilst the boundary conditions at a free end are

f?,
=0,^ = () (U).

dx' dx^ ^ '

139. For the complete discussion of these equations, we must

refer the reader to Chapter viii. of Lord Rayleigh's treatise ; but

one or two special cases may be noticed.

If the bar is so long that it may be treated as infinite, we may
neglect the conditions to be satisfied at its extremities. If there-

fore the vibrations consist of waves of length \, we may assume as

a solution of (13) that v is proportional to e^i'<+2t»ra;/A^ Substituting

in (13) we obtain,

/=167^V67X^

and therefore the frequency is

* On the Equilibrium of a Bent Lamina, Quart. Journ. Vol. iv. p. 12.

When there is a permanent tension jf\, it will be found that we must write

q + r, for q in (2) ; and the term 'l\jp' in the second of (7), which becomes

—Tiwdh'jdx^ must be retained. We shall thus obtain the results f^iven by Lord

Rayleigh § 188.
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140. We shall now investigate the lateral vibrations of a bar^

of length L

Taking the origin at the middle point of the bar, we may
assume

v= IT exp (LKbmH/P),

where C/" is a function of o), and 7n is a constant whose value

has to be determined. Substituting in (13) we obtain

d'U_m'U

To solve this equation, assume U = exp (pmos/l), and we see

that the values of p are the four fourth roots of unity, viz. 1,-1,

t, — L The solution may therefore be written

17= A sin mx/l + B sinh mx/l

-f- C cos mx/l 4- D cosh inx/l (15).

141. We have now three cases to consider.

(i) Let both ends of the bar be free, so that the bar is what

is called a free-free bar. The first of (14) requires that

— A sin 7nx/l + B sinh mx/l — G cos mx/l + D cosh mx/l = 0,

when X = ± ^l. This equation of condition may be satisfied in

two different ways ; we may first suppose that C=D=0; and

— A sin Jm + 5 sinh J??i = '(l^X

or that A=B = 0, and

— C cos ^m + D cosh hii = (17).

The first solution corresponds to the first line of (15), which is

an odd function of x, and may therefore be called odd vibrations

;

whilst the second solution corresponds to the second line of (15),

which is an even function of x, and may be called even vibrations.

We thus see that the odd and even vibrations are independent of

one another.

Taking the case of the odd vibrations, the second of (14)

requires that
— A cos ^m + B cosh ^m = 0,

and therefore by (16)
tanh ^m = tan ^711 (18).

1 Greenhill, Mesa. Math. Vol. xvi. p. 115; Lord Rayleigh, Theory of Sound,

Ch. VIII.
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For the even vibrations, the second of (14) gives

G sin ^m + D sinh ^m = 0,

and therefore by (17)

tanh^??i = — tan^ m (19).

Equations (18) and (19) determine the values of m for the odd

and even vibrations respectively, and consequently the frequency

of the different notes can be found.

(ii) Let both ends of the bar be clamped, so that the bar is

clamped-clamped.

In this case the conditions to be satisfied at the ends are, that

U = 0, dU/dx=0 (20),

the first of which expresses the condition that the displacement

at each end should be zero, and the second that the direction of

the axis should be unchanged.

The solution for this case may evidently be obtained by

integrating the results for a free-free bar twice with respect to x,

and consequently the values of m for the odd and even vibrations

are given by (18) and (19).

(iii) Let the bar be clamped-free, i.e. clamped at ^ = — ^l, and

free at a? = ^l.

When X — —^l equations (20) have to be satisfied ; and when

X = ^l, the conditions are given by (14). Taking the value of U
given by (15) and writing out the four equations of condition in

full, it will be found that they can be satisfied in two ways, ie.

either i? = C = 0,

— -4 sin ^m + D cosh Jm = 0,

A cos ^711 — D sinh ^m = 0,

which gives tanh ^7^ = cot ^m (21),

or, ^ = D = 0,

— B sinh Jm + G cos \m = 0,

B cosh Jm + G sin ^m = 0,

which gives tanh \m = — cot ^m (22).

Equations (18) and (19) are both included in the equation

cos m cosh m = 1 (23),
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and (21) and (22) in the equation

cos m cosh m = — 1 (24).

For a discussion of the roots of these equations, we must refer

to Lord Rayleigh's Theory of Sound, Chapter viii. and to Prof.

Greenh ill's paper.

Longitudinal Vibrations.

142. The equation of motion for longitudinal vibrations of a

straight bar may be obtained immediately from the first of (7).

In this case p' = oo , ds = — dx, and therefore

dT d'u

d^=''''df'

u being the longitudinal displacement.

But T=,J£,

whence putting qja = If, we obtain

d\i _ ,2 dhi

d?~ W'
which is the same equation which we have obtained for the lateral

vibrations of a string. The condition to be satisfied at a fixed end

is that u = 0; whilst the condition to be satisfied at a free end is

that r=0, or duldx = 0.

In the case of a bar of infinite length, which propagates waves

of length \, we must put

and therefore p = 27r6/X = T" a/ •

In the corresponding case of lateral vibrations of the same

wave-length,

, 27rK la

whence p jp = kJX.

Since \ is usually very much greater than k, which is the

radius of gyration of the cross section, we see that the pitch of

notes arising from longitudinal vibrations, is usually much higher

than that of notes arisino^ from lateral vibrations.
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Vibrations of a Circular Bar.

143. We shall not discuss the theory of bars whose natural

form is curved, but there is one result which can be obtained

without difficulty, viz. the frequency of the vibrations of a bar

which forms a complete circle of radius a.

In this case we may in equations (7) put ds = ad<\}, and p = a,

since the difference between p~^ and a~^ may be neglected when

multiplied by T or N. Equations (7) therefore become, measuring

u in the opposite direction, so that ii and
<f>

increase together,

dT ,, .. \
-77 — iV = aacou
d(f>

dN^ ^
a<p

y (25),

the rotatory inertia being neglected.

We must now find an expression for the change of curvature

due to deformation.

If R, ^ be the coordinates after displacement, of the point on

the axis which was initially at (a, cp), then

R = a-\-v, 4> = </) + u/a.

Hence if P be the perpendicular from the centre on to the

tangent to the deformed axis, at the point in question, we have by

a well-known formula,

l^dP
RdR'

1^ (dR\
R' U^y

1

P

1

p2
=

1

=
1

Now ™ = tfJH-^^.
,

(dv/dci^y
^.\i +

R' (I + du/ad(l>y}

also the displacements and their differential coefficients are all

small quantities ; whence expanding and neglecting cubes of small

quantities, the above equation becomes

1 fdvV

whence ^^^ = (^ " a J^) dj
^*-
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Also dR = -j-r dcf),

therefore 1, _! = _;, (0^ + .) (26).

which determines the change of curvature in terms of the

normal displacement.

We must next find the condition that the axis undergoes no

extension.

The elementary arc ds' of the deformed surface is given by the

equation

ds" = (dvy + (a + vf (d4> + dujaf,

and since this is equal to a^dcf)"^, we obtain, neglecting squares of

small quantities,

S-=« i^n

which is the condition of inextensibility.

Substituting from (26) and (2) in the last of (25) we obtain

~^\M'^di)~
From the first two of (25) we obtain

d fd'N ,A /d'v du\

by (25), whence eliminating N we obtain

To solve this equation, assume that v a e'^*'^""^, and we obtain

'-^m^ »
This result was first obtained by Hoppe\

If the bar is a complete circle, v must necessarily be periodic

with respect to (p, and therefore s must be an integer, unity and

zero excluded. We therefore see that there are an infinite number
of modes of vibration, whose frequencies are obtained by putting

s = 2, 3, 4... in (29).

1 Crelle, Vol. lxiii,; and see Lord Eayleigh, Theonj of Sound § 233.
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If the bar is not a complete circle, s is not an integer ; its

values in terms of p are the six roots of (29), but since p is

unknown, another equation is necessary. This equation is obtained

by considering the boundary conditions to be satisfied at the free

ends, and which are that T, N and G should vanish there. These

conditions will furnish six additional equations, by means of

which the six constants which appear in the solution of (28) can

be eliminated, and the resulting determinantal equation combined

with (29), will determine the frequency \

EXAMPLES.

1. A naturally straight bar AB, of which the end A is fixed,

is lying on a smooth horizontal plane, and the other end is pulled

with a force F, whose direction is perpendicular to the undis-

placed position of the bar. Prove that the projection of any

length ^P on the undisplaced position AB, is equal to

(2F/Ef {V (cos /8) - V(cos - cos (/>)},

where ^ is the angle which the normal at P makes with AB, and

^ is the value of (j) at the end B.

2. If a uniform horizontal bar, both of whose ends are fixed,

be displaced horizontally, so that one half is uniformly extended,

and the other half is uniformly compressed, prove that the displace-

ment at time t of any particle whose abscissa is x, is

(4wZ/7r') X (2i + 1)"^ cos (2i + 1) 7rat/2l cos {2i + 1) 'n-x/21,

where 21 is the length of the bar, and the middle of which is the

origin, and nl is the initial displacement of that point.

3. The extremities of a uniform bar of length I, are at-

tached to two fixed points distant I apart by springs of equal

strength. Show that if the longitudinal displacement of the bar is

represented by P e''^^ sin {mxjl + a), the admissible values of m
are given by the equation

{ra^cf — T^fJ^) tanm -I- 2'mqlfi = 0,

where fi is the strength of either of the springs, and q the ratio of

the tension to the extension in the bar.

^ See Lamb, " On the flexure and the vibrations of a curved bar," Proc. Lond.

Math. Hoc. Vol. xix. p. 365.
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4. An elastic wire, indefinitely extended in one direction, is

firmly held in a clamp at the other end. If a series of simple

transverse waves travelling along the wire be reflected at the

clamp ; show that the reflected waves will have the same ampli-

tude as the incident waves, but that their phase is accelerated by

one quarter of a wave length.

5. A heavy wire of uniform section is carried on a series of

supports in the same horizontal plane, L^ is the bending moment
at the rth point of support, l^ the distance between the {r — l)th

and the rth support, and m the mass of the wire per unit of

length
;
prove that

4-,l + 2i (K +U + L,Jr„ = img (i; + Z„/).

6. Prove that if an elastic bar of length I with flat ends, im-

pinges directly with velocity F on a longer bar at rest, of length

nl and of the same material and cross section, also with flat ends,

the first bar will be reduced to rest by the impact ; and the second

bar will appear to move with successive advances of the ends

with velocity V for intervals of time 21/a, and intervals of

rest of 2(n — l)l/a, a denoting the velocity of propagation of

longitudinal vibrations.

7. An elastic rod of length I lies on a smooth plane, and is

longitudinally compressed between two pegs at a distance V apart.

One peg is suddenly removed
;
prove that the rod leaves the other

peg just as it reaches its natural state, and then proceeds with a

velocity equal to V(l- r)/l, where Fis the velocity of propagation

of a longitudinal wave in the rod.

8. A metal rod fits freely in a tube of the same length, but of

a different substance, and the extremities of each are united by

equal perfectly rigid discs fitted symmetrically at the end. Show
that the frequencies of the notes omissible, which have a node at

the centre of the system, are given by xj^ttI, where 21 is the length

of the rod or tube, and n is a root of the equation

2Mx = ma cot xja + ma' cot xja'
;

where M, m, m' are the masses of a disc, the bar, and the tube, and

a, a' are the velocities of propagation of sound along the bar and

the tube.
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9. Two equal and similar elastic rods AG, BG are hinged at G
so as to form a right angle, while their other extremities are

clamped. One vibrates transversely and the other longitudinally

;

prove that the periods are 2r/f^0^, where 6 is given by the

equation

1 + cosh 6 cos 6

+ (sin 6 cosh (9 - cos ^ sinh d) {gljf 6) cot i&'Plgl) = 0,

where I is the length of either rod, and /, g are two constants

depending on the material.

10. The natural form of a thin rod when at rest is a circular

arc, and the rod makes small oscillations about this form in its own

plane. Assuming that the couple due to bending varies as the

change of curvature, and that the tension follows Hooke's law,

prove that if the arc be a complete circle, the periods 27r/j9 are

given by the quadratic,

p' - {b (7f + 1) + an' (n' - 1)) p' + ahn!' {n' - 1) = 0,

where n is any integer, and a, b are two constants which depend

upon the moduli of stretching and bending, and on the radius of

the circle.

11. If in the last example the arc be not a complete circle, but

have both ends free and be inextensible, show that it can be made
to vibrate symmetrically about its middle point by suitable initial

conditions in a period 2'7r/p, provided the angle 26 which the arc

subtends at its centre, satisfies the equation

q (q" + 1) iq'" - q") cot qO + q [sp + 1) {si"" - q') cot q:e

+ q"(f'-\-l)(q'-q')cotfe = 0,

where q*, q'', ip are the roots, real or imaginary, of the cubic



CHAPTER IX.

EQUATIONS OF MOTION OF A PERFECT GAS.

144. We have already called attention to the fact, that air is

the vehicle by means of which sound is transmitted; we must
therefore investigate the equations of motion of a gas.

The general equations of fluid motion, which we obtained in

Chapter I, are of course applicable to elastic fluids such as air and

other gases, as well as to incompressible fluids such as water;

but in order to investigate the propagation of sound in gases, these

equations require modification.

In all problems relating to vibrations, the velocities upon which

the vibrations depend, are usually so small that their squares and

products may be neglected ; also the variation of the density of

the gas is usually a small quantity. If therefore a gas, which is

at rest, be disturbed by the passage of sound waves, we may write

djdt for djdt + udjdx 4- vdjdy + wd/dz, and also put p=^p^(l + s),

where s, which is called the condensation, is a small quantity.

The equations of motion therefore become

du _ y 1 dp\

dt p dx

dv_y 1 dp

dt p dy

dw _ „ 1 dp

dt p dz,

whilst the equation of continuity, § 6, equation (5), becomes

ds du dv dw _ ,

dt dx dy dz

B. H. 11

.(IX
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We shall also suppose that the bodily forces (if auy) which act

upon the gas arise from a potential U, and also tliat the motion is

irrotational
; (2) therefore becomes

S+^>=« (••^>-

We have already shown that when the motion is irrotational,

the pressure is determined by the equation

/?-^+f-^^/=^- w-

Now q^ is to be neglected, also if we assume Boyle's law to

hold, we shall have

p = kp = kp, (1 + s),

and therefore

neglecting s^ &c. Whence (4) becomes

If there were no forces in action and no motion, the first three

terms would be zero ; whence C = G, and therefore,

ks+U-]-(j> = (5),

or if Bp denote the small variable part of j3, (5) may be written

^^U-^cj> = (6).

Po

Eliminating s between (3) and (5) we obtain

dl=^^<^-w (7)-

Equation (6) and (7) are the fundamental equations of the

small vibrations of a iras.
ft"^

145. In almost all the applications of these equations, no

impressed forces act, and therefore CT= ; accordingly (7) becomes

f=^^> («)

Let us now suppose that plane waves of sound are propagated

in a gas of unlimited extent. Let I, m, n be the direction cosines
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of the wave front, a the velocity of propagation of the wave. We
may assume,

^ _ ^ giK {lx-\- my + nz - at)^

Substituting in (8) we obtain

k = a' (9).

This equation deterniines the physical meaning of k, and

shoAvs that it is equal to the square of the velocity of propagation.

We may therefore write (8) in the form

S=«'^^^ (!«)•

Let f, 77, f be the displacements of an element of fluid, then

dt dx '

whence ? = - {Alja) 6^''(^^+'»2/+«2-«0^

with similar expressions for tj and f. We thus obtain

which shows that the displacement is perpendicidar to the front

of the wave. This constitutes one of the fundamental distinctions

between sound waves and waves of light, for it is well known
that in a wave of light the direction of displacement always lies

in the wave front. It therefore follows that sound waves are

incapable of polarization ; they are, however, capable of interfering

with one another and also of being diffracted, since these phe-

nomena do not depend upon the direction of vibration.

146. Equation (9) enables us to calculate the velocity of

sound in a gas, and we shall now show how it may be applied to

obtain the velocity of sound in air.

We have

a = ^Jk = ^/ {pip),

where p is the pressure corresponding to a given density. Now
it is found by experiment that at 0° C. under a pressure equal to

the weight of 1033 grammes per square centimetre, at the place

where the experiment is made (i.e. a pressure equal to 1033 g
barads^), the density of dry air is '001293 grammes per cubic

1 In the report of the British Association at Bath, 1888, the Committee on Units

recommended the introduction of the following additional units, viz. that

(i) The unit of velocity on the c. g. s. system, i.e. the velocity of one centimetre

per second, should be called one kine.

11—2
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centimetre. Hence if we employ the c. G. s. system units, and

take g = 981, we obtain

p = 1033 g = 1033 x 981, p = -001293,

which gives

a = 27995

;

so that the velocity of sound at 0°C. is 279'95 metres per second,

or 918"49 feet per second.

The first theoretical investigation respecting the velocity of

sound in air was made by Newton, but when his result was sub-

mitted to experiment, it was found that it was too small by about

one-sixth, in as much as the correct result is about 1089 feet per

second. This discrepancy between theory and observation was not

explained for more than a century, until Laplace pointed out, that

the use of Boyle's law involved the assumption, that the tempe-

rature remains constant throughout the motion, whereas it is well

known that when a gas is suddenly compressed its temperature

rises. Now it was supposed by Laplace that in the case of sound

waves, the condensation and rarefaction take place so suddenly,

that the heat or cold produced have not time to disappear by

conduction, and consequently the motion which takes place is

much the same as it would be, if the air were confined in a non-

conducting vessel. We must therefore ascertain the relation

between the pressure and density under these circumstances, and

shall accordingly make a short digression on the Thermodynamics

of Gases.

Thermodynamics of Gases^.

147. Let us suppose that a unit mass of gas is contained in a

cylinder filled with a moveable piston, and let p, v, E be its pres-

sure volume and intrinsic energy. Also let 6 be the temperature

measured from the absolute zero of the air thermometer, Le.

-273"C.

(ii) The unit of momentum, i.e. the momentum of one gramme moving with

the velocity of one kine, should be called one bole.

(iii) The unit of pressure, i.e. the pressure of one dyne per square centimetre,

should be called one barad.

When employing absolute units, it is most important to recollect, that a

gramme represents a unit of mass and not a unit of weight.

^ The reader is supposed to have studied some elementary work on Thermo-
dynamics, such as Maxwell's Heat.
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Let a small (piantity c/// of heat (expressed in mechanical units)

ho communicated to the gas. If* the gas ha allowed to expand, the

et!'ect of this heat will be (i) to do an amount of work which is

e<jual to pdv, and (ii) to increase the intrinsic energy by dh\ Now
the first law of Thermodynamics asserts that

—

When ivork is trans-

formed into heat, or heat into vjor/c, the quantity of vjork is mechxni-

cally equivalent to the qu/xntity of heat. It therefore follows from

this law, that

dE=-dII-pdv (11).

iJy virtue of the laws of Boyle and Charles, the relation

pv = he (12)

exists between the pressure, volume and temperature of a gas.

Any two of the quantities p, v or 6 may accordingly be taken as

the independent variables. If therefore we take v and as inde-

pendent variables, we may write

dH=ldv + K,dd (13).

The quantity / is the latent fteat of expansion, and K, is the

specific heat at constant volume, both expressed in mechanical

units.

It is important to notice that the right hand-side of (13) is

not a perfect differential ; for although dll is in form the differ-

ential of a quantity dll of heat, yet it is not a definite function of

the volume and temperature. The amount of heat communicated

to a substance may be measured in mechanical or thermal units,

but it cannot be regarded as a function of the state of the substance

to which it is communicated.

The intrinsic energy on the other hand, is a function of the

state of the substance, and therefore dE is the dififerential of a

definite function of any two of the quantities p, v, 6.

ExjuationB (11) and (13) are therefore equivalent to

dE^{l'-p)dv-\-Kfi,e (14).

This equation ih true of all substances; but the experiments of

Joule and Sir W. Thomson have shown that, the intrinsic eneryy of

a v/nit ofrruiss of a perfect (jas is almost entirely dependent upon its

tew.peroXure^ a.ndj not upon its volume. Accordingly E ias^ function

of 6 and not of v, and therefore

dE <i^-F(0,
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From these equations combined with (14) we obtain

i=p, K=F{e)

which shows that the latent heat of expansion is equal to the

pressure, and that the specific heat at constant volume is a func-

tion of the temperature.

Equation (13) may therefore be written

dH=pdv + F{e)de,
whence by (12)

The right-hand side of this equation is a perfect differential of

a function which we shall denote by
<f>,

accordingly (15) may be

written

dll^edcj) (16).

148. This equation is the analytical expression of a very im-

portant but somewhat recondite law, known as the second law of

Thermodynamics. For a full discussion of the second law, we
must refer to treatises .on Thermodynamics, but a few remarks on

this subject may be useful.

If one substance at a temperature S be placed in contact with

another substance at a lower temperature T, heat will flow from

the hot substance into the cold substance; and this process will

continue until both substances are reduced to the same temperature.

It can however be shown by means of a theoretical heat engine

devised by Carnot, that it is possible to transfer heat from a cold

body to a hot body by means of the expenditure of work ; and the

second law asserts, that it is impossible to do this luithout ex-

penditure of work. The law was first enunciated by Clausius in

the following terms :

—

It 18 impossiblefor a self-acting machine, unaided by external

agency, to convey heat from one body to another at a higher

temperature.

Sir W. Thomson states the law in a slightly different form as

follows :

—

It is imp)0ssible by means of inanimate material agency, to

derive mechanical effect from any portion of matter, by cooling it

beloiv the temperature of the coldest surroimding objects.



SECOND LAW OF THEllMODYNAMICS. 167

By means of the experimental law, that the intrinsic energy of

a gas depends upon its temperature and not upon its volume, the

second law of Thermodynamics may be dispensed with in dealing

with gases ; or to put the matter more correctly, the second law

can be deduced as a consequence of the experimental law. But
in the case of substances which are not in the gaseous state, the

first law is not sufficient to enable us to investigate their thermo-

dynamical properties. Moreover, although it is always assumed

that the pressure, temperature and volume are connected together

by a certain relation, which may be mathematically expressed by

an equation of the form F{p, v, 6) = ; yet the form of the func-

tion F is not accurately known, except in the case of perfect gases.

It can be shown that for all substances the second law is mathe-

matically expressed by means of equation (16), and it thus leads

to a certain function 0, which is capable of being theoretically

expressed as a function of any two of the quantities p, v, 6, and

which specifies the properties of the substance when it is not

allowed to gain or lose heat.

The function
cf) was called the Thermodynamic Function by

Rankine
; but it is now always known as the Entropy.

149. Returning to § 147, let us take p and 6 to be the

independent variables ; equation (13) may then be written

dH = Rdp-^K^de,

where K^ is the specific heat at constant pressure. Substituting

in (11) and eliminating dp by (12) we obtain

dE = (Rpie + K^) de -p (1 + RIv) dv.

Since the right-hand side of this equation must be identical

with the right-hand side of (14), we must have

R = -v, Rpie + K, = K,;

whence K^-K^ = h (17).

Equation (17) shows that the difference between the two

specific heats is constant ; also since the specific heat at constant

volume has been shown to be a function of the temperature, it

follows that the specific heat at constant pressure must also be a

function of the temperature.

150. The value of the specific heat of air at constant pressure

has been determined by Regnault, and he finds that it is very

nearly independent of the temperature, and is equal to 183'6 foot-
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pounds^ per degree Fahrenheit. It therefore follows from (17)

that K^ is also very nearly independent of the temperature.

It also follows from Rcgnault's experiments, that the value of h

for ail- is 53*21 foot-pounds per degree Fahrenheit ; we thus obtain

= 183-6 -53-21 = 130-4.

The quantity with which we are most concerned in Acoustics,

is the ratio of the specific heat at constant pressure, to the

specific heat at constant volume, which is usually denoted by 7.

We accordingly find

7 = ir,/il^„=l-408.

The specific heats of all perfect gases are so very nearly

independent of the temperature, that they may be treated as

constant. The value of the ratio 7, is also approximately the

same for all fjases.&'

151. We have already proved the equation dH = 6d(j). The

quantity (/> is called by Clausius the entropy of the gas, and is a

quantity which specifies in an analytical form, the properties of a

gas which expands or contracts without loss or gain of heat ; for

when this is the case dH = 0, and therefore <^ = const. If there-

fore we suppose that (/> is expressed as a function of p and v, the

curve = a const, on the indicator diagram, will be a curve which

represents the state of the gas under these circumstances. Such

curves are called adiahatic lines, or isentropic lines.

In order to find the form of these curves, we must find an

expression for the entropy. Remembering that l=p, we obtain

from (13) and (16)

ed(i>=pdv + K„de (18),

= ^'^dv +KM
whence

(f)
= h log v-\- K„ log 6 + const (19).

By (12) and (17), this may be expressed in the form

(j> = [K^- K„) log V -f- K„ \ogpv/h -\- const.,

whence pv'' = A€'^'^' (20),

where ^ is a constant.

This is the equation of the adiabatic lines of a perfect gas.

' This calculation is taken from Chapter XI. of Maxwell's Ileat, in which

British units aru employed.
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If p be the density of the gas, v cc p~^
; whence by (20) the

relation between the pressure and density of a gas, which expands

without loss or gain of heat, is

i^=^V (21),

where k' is a constant.

The equation of the isothermal lines may be written

pv = {K^-K,)e (22).

152. The mechanical properties of perfect gases are specified

by two quantities, viz. their densities and their elasticities. The

density, as is well known, is defined to be the mass of a unit of

volume ; but in order to understand what is meant by the

elasticity of a gas, some further definitions will be necessary.

The elasticity of a gas imder any given conditions, is the ratio

of any small increase of pressure, to the voluminal compression

thereby produced.

The voluminal compression, is the ratio of the diminution of

volu7ne to the original volume.

Hence if v the original volume, be reduced by the application

of pressure hp, to i; + Si; [hv being of course negative), the elasticity

E is equal to

^=-l=^J (-^)-

The quantity E is called the compressibility by Lord Rayleigh

(Chapter XV.), and is denoted by him by m.

The value of dp/dp, and therefore E, depends upon the thermal

conditions under which the compression takes place. The two

most important cases are, (i) when the temperature remains

constant, (ii) when there is no loss or gain of heat. We shall,

following Maxwell, denote the elasticity under these two conditions

by E^ and E^,

In the first case p = kp, whence dp/dp = k ; accordingly

E,=^kp=p (24).

In the second case j^ = k'p"^, whence dpjdp = k'yp^~^ ; accordingly

E^=k'ryp'' = yp (25).

From (24) and (25) we obtain,

^^ K
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Velocity of Sound in Ai7\

153. Having made this digression upon the tliermodynamics

of gases, we are prepared to investigate the velocity of sound

in a gas.

From (21) we obtain

/'

P 7-1

Po -^'^ypo s,
ky v-i 7/ v-1

7-1
since p = p^(l-h a). Whence (4) becomes

k'ypJ~'s+U+ct> = 0.

Eliminating s from (3) we obtain

and therefore the velocity of sound is equal to {k'ypj~'^) .

Now J^==PoIPo>

and f^'=Po/Po'^y

whence ^'Pq'^ = ^'•

The velocity of sound is therefore equal to {hy) and is there-

fore augmented in the ratio s/y : 1. In the case of air, the value

of k^ in feet per second has already been shown to be equal to

91849, and therefore

(^7)* = 1083-82,

which nearly agrees with the value 1089 feet per second given

above.

Intensity of Sound^.

154. We have stated in § 111 that the intensity of sound is

measured by the rate at which energy is transmitted across unit

area of the wave front. We shall therefore find an expression for

this quantity.

Let the velocity potential of a plane wave be

(j) = A cos—-(a;- Vt),
A.

^ Lord Rayleigh, Tlttin-y uf Suund, § 246.
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, d(f> 27rA . 27r, .^.
then , = —- sm —- (w — Vt).

ax \ X ^ ^

If
i>o. A+ ^P be the pressures when the air is at rest and in

motion respectively, the rate dW/dt at which work is trans-

mitted is

dW , . ^dcl>

and since Bp = — p(j> = - p^^V --— sin (x - Vt),

we obtain

= p, ,^' + periodic terms,

since Vt = X.

We therefore see that the rate at which energy is transmitted,

consists of two terms : viz. a constant term, which shows that a

definite quantity of energy flows across the wave front per unit of

time ; and a periodic term, which fluctuates in value and con-

tributes nothing to the final effect. The first term measures the

intensity of sound, and shows that it varies directly as the square

of the amplitude, and inversely as the product of the velocity of

propagation in the medium and the square of the period.



CHAPTER X.

PLANE AND SPHERICAL WAVES.

155. We shall devote the present chapter to the consideration

of certain special problems relating to plane and spherical waves

of sound.

The theory of the vibrations of strings, which was discussed in

Chapter VII., explains the production of notes by means of stringed

instruments ; but in order to understand how notes are produced

by means of wind instruments, it will be necessary to investigate

the motion of air in a closed or partially closed vessel. The

simplest problem of this kind is the motion of plane waves of

sound in a cylindrical pipe, which vvc shall proceed to consider.

Motion in^ a Cylindrical Pipe.

156. Let I be the length of a cylindrical pipe, whose cross

section is any plane curve, and let the fronts of the waves be

perpendicular to the sides of the cylinder.

We shall suppose for simplicity, that the motion is in one

dimension, whence measuring x from one end of the pipe, the

equation of motion is

df-'' dx'
^^^'

where a is the velocity of sound in air.

Since the motion is periodic, we may assume that (/> = (f)e'^\

whence if

n/a=2'7rl\ = K (2).
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(1) becomes -^2 + ^^</>' = ^>

the solution of which is

</)' = {A cos Koo + B sin kx).

If the pipe is closed at both ends, dipjdx = when a? = and

x = l', and since

-^ = /c(B cos KX — A sin kx) e'^*,

the first condition gives B = 0, whilst the second condition gives

sin kI = 0,

which requires that /c = itt/I,

where i is an integer. The value of </> in real quantities therefore

becomes

({) = A cos iTTx/l cos nt (3).

The wave length and frequency are thus given by the equa-

tions

X=2l/i nl27r = {a/2l (4).

These equations determine the wave lengths and frequencies of

the notes, which can be produced by a pipe of length /, both

of whose ends are closed. The frequency of the gravest note is

a/21, and its wave length is 21; the frequencies and wave lengths

of the overtones are obtained by putting i = 2, 3....

157. From (3) we see that d(j>jdx vanishes whenever x = rl/i,

where r is any integer not greater than i. Corresponding to the

ith harmonic, there are therefore i— 1 nodes which divide the pipe

into i equal parts.

The increment of the pressure due to the wave motion is given

by the equation

and therefore Sp vanishes whenever cos i7rx/l = 0; i.e. whenever

X = (2r + 1) 1/21, where r is zero or any positive integer less than i.

Points at which there is no pressure variation are called loops.

We thus see that corresponding to the gravest note {{ = 1, r = 0),

there is a loop at the middle point of the pipe. The loops

corresponding to the overtones, occur at points x = l/2i, Sl/2i. .
.

;

and consequently the loops bisect the distances between the nodes.

The conditions that a node may exist at any point of the pipe,

can be secured by placing a rigid barrier across the interior of the
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pipe at that point. The conditions for a loop may be approxi-

mately realised, by making a communication at the point in

question with the external air ; and consequently it was assumed

by Euler and Lagrange, that the open end of a pipe may be

treated as a loop. This supposition is however only approximately

true, but the error is small provided the diameter of the pipe is

small in comparison with the wave length. Whenever a disturb-

ance is excited in a pipe which communicates with the air, the

external air is set in motion, and a complete solution of the

problem would necessitate the motion of the latter being taken

into account.

158. Let us in the next place suppose that one end of the

pipe is fitted with a disc, which is constrained to vibrate with a

velocity cos nt.

The condition to be satisfied at the origin, where the disc is

situated, is

-^ = cos nt, when x = 0.
ax

If therefore we assume

<l>
= {A cos KX + B sin kx) cos nt,

we obtain Bk = \.

If the other end of the pipe is closed, d(^ldx=0 when x = l,

whence
cos /€ (I — x)

<h = H—=—
^ cos nt

K Sm Kb

If the other end be open, the condition is that (/> = when x=l,

whence
sin K (I — x)

fk = ^^— cos nt
K cos KO

The value of k is of course n/a.

Reflection and Refraction^.

159. We shall now investigate the reflection and refraction of

plane waves of sound at the surface of separation of two ga.ses.

Let the origin be in the surface of separation, let the axis of

X be drawn into the first medium, and let the axis of z be parallel

1 Green, Tmvfi. Cmuh. Phil. Soc. 1838,
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to the line of intersection of the wave fronts with the surface

of separation.

Let i be the angle of incidence, r the angle of refraction ; also

let V, Fj, be the velocities of propagation in the two gases, and

p, p^ their densities when undisturbed. Then in the first medium
we must have

p = /) (1 + s), p = Mp" = h'p^ (1 + 7s)

and in the second medium

P\ = p. (1 + ^). P\ = ^\p7= k\p\ (1 + 7«.).

Since the two gases are supposed to be in equilibrium when

undisturbed by the sound waves, we must have

k'p' = k\p\ (5).

Again F^ = /;V"'. V,' = k\^pr\

whence V^p = V^p^ (6).

The equations of motion in the first medium are

de~ \dx''^ dyv ^
^'

s+^^^=^ (^)'

dy,_y.(d^.d^\ ...

df~' \da^' ^ difj ^ ^'

^^+F,X = (10).

The boundary conditions are,

(i) That the component velocity perpendicular to the surface

of separation should be the same in both media.

(ii) That the pressure in the two media should be equal at

their surface.

The first condition gives

#^#1
; ni),

and the second gives P = Piy

which by (5), (8) and (10) gives

V;'ciy=V'cly^ (12).
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If we suppose that the velocity potential of the incident wave

is

^^j^^^(ax+by+.t)
^^3^^

the velocity potentials of the reflected and the refracted waves

may be written

^> ^ ^.^.ia'x+bu+.t)
^^^y

<^^ = ^/«'^+^2^+"')
(15),

for the coefficient of t must be the same in these three equations,

because the periods 217/(0 of the three waves must be the same

;

whilst the coefficients of y must be the same, because the traces

of the three waves on the surface of separation must move together.

Substituting the value of </> + <^' in (7), and the value of <^j in

(9), we obtain

w'=V\a' + b')=V\a"^h') = V;(a^'-\-b') (16),

and therefore a' — — a. Also if \, \ be the wave lengths in the

two media

a = (27r/\) cos i, h = (27r/X) sin i = (27r/\) sin r)

a^ = (27rl\) cosr, co = 27rF/\ = 27rVJ\
|-"(17).

From the equation a = — a, we see that the angle of incidence

is equal to the angle of reflection ; and from (17) it follows

that

V V
.(18),

i_

sin i sin r

which is the law of sines.

To obtain the ratio of the amplitudes, we must substitute the

values of (^ + </)' and (/>, from (13), (14) and (15) in (11) and (12) ;

we thus obtain

(A-^A')V; = AJ'\
^'^^>'-

By (17) and (18) these become

(il-ilOtanr = ^,tani|

(A •{- A') sinV = A^ sin'^ i

from which we deduce
4_fcan(i-r)

"^ - tan(i + r)
^^^^•

A,= . ;^/f.^^;.^' (22).
* sin (i + r) sm (i — r) ^ ^
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The tirst formula is the same as Fresnel's tangent formula for

the intensity of the reflected light, when the incident light is

polarized perpendicularly to the plane of incidence ; and we ob-

serve that the reflected wave vanishes when i-{-r = ^7r, i.e. when
i = tan-^F/F,.

160. When light is reflected at the surface of a medium, which

propagates optical waves with a velocity which is greater than that

of the medium from which the light proceeds, it is well known

that the light will be totally reflected, when the angle of incidence

exceeds a certain value which is called the critical angle ;
and that

total reflection is accompanied with a change of phase. We shall

now show that a similar phenomenon occurs in the case of

sound.

Since cos ?' = [1 - ( VJVf sin^ i}K

it follows that if V^ > V, cos r will vanish when i = sin~*F/Fj, and

for angles of incidence greater than this value, cos r will become

imaginary; and therefore by (17), a^ will become a negative

imaginary quantity.

When cos r is imaginary, the values of A' and A^ given by

(21) and (22) become complex, and the formulae apparently fail.

The explanation of this is, that the incident, reflected and re-

fracted waves are the real parts of (13), (14) and (15) ; if therefore

A' and A^ are real, the reflected and refracted waves are given

by A' cos {— aoc -\- hy + (ot) and A ^ cos (a^x + by + cot) ; but if A' is

complex, we must put A' = a + i^, and the reflected wave, which

is the real part of (a + 1/3)
6^(-«a;+%+a,o is

a cos- (— ax + by + cot) — /3 sin (- ax + hy + wt)

= (a' + /3')* cos (-ax + hy + o)t-\- tan"*/3/a),

which shows that there is a change of phase.

In order to calculate the change of phase, we must put

A' = a + i^, A^ = a, + tl3^, fM=VJV;

also let q = {/jl^ sin\' — ly/fjb cos i.

From (17) we obtain

a, \cosr Fcosr
a XjCosi Kj cos ^

B. H. 12
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whence (19) become

A - a - i(3 = - iq {a^ + L0^),

(A-\-a-h 10) fJi^ = 0L^ + c0,.

Equating the real and imaginary parts we obtain

A-a = q/3^, = qa^

(A + a)^'' = a„ 0fi' = 0,
j

whence

^ ^(1-^V) _ 2Af.\ _ 2Af,*q

from which we see that

a'+ 0' = A\

0/oi = tan 2e,

where tan e = ^\ = /x (/z,^ tan* i — sec^ {)- (24).

The reflected wave is therefore

(f)'
= A cos (— ax-\-hy + (ot + 2e),

which shows that total reflection takes place, accompanied by a

change of phase, whose value is determined by (24).

Since ^i = ~ ^?^>

the refracted wave is

^' = (a^^ + ^;)^6^"^ cos (by + (ot + tan -'jSJa;).

where qa = (27r/\) (sin'^ i — fjT^f.

Since in the second medium x is negative, it follows that the

refracted wave is insensible at a distance of a few wave lengths,

and thus the refracted sound rapidly becomes stifled.

Spherical Waves\

161. We have already shown that the velocity potential

satisfies the equation

where a is the velocity of sound ; and if we assume that <^ = 4>€'*'*',

this becomes
(V* + /c')4> = (25).

1 The remainder of this Chapter is taken from Lord Rayleigh's Theory of Sound,

Vol. II. Chapter xvii. His original investigations are given in the Proc. Loud.

Math. Soc. Vol. iv. pp. 93 and 253.
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By (11) of § 7, it follows that if r, 0, co be polar coordinates,

the value of V^ is

^ ~dr''^ r dr
"^

r' sin 6> (^(9 r'""
^

(^(9;
"^

r^ sin^ 6 day''

'

if therefore the motion be symmetrical about the origin, so that <I>

is a function of r alone, (25) becomes

d'^ 2 c^^
. 2^ ^

dr r dr

which may be written in the form

the integral of which is

^ = r-^(il6"^'* + 5e-'''0 (26).

If the motion is finite at the origin, we must have A= — B,

in which case

</) = 2LAr~^ 6'"^^ sin /cr (27),

in which A may be complex.

162. This equation may be applied to determine the sym-

metrical vibrations of a gas, which is enclosed within a rigid

spherical envelop of radius c ; for the condition to be satisfied at

the surface of the envelop is

d4>ldr = 0,

which gives k cos kc — c~^ sin kc = 0,

or tan «;c = /cc (28).

Since the wave length X = 277/k, and the frequency is equal to

Ka/27r, (28) determines the notes which can be produced. The

roots of (28) have been investigated by Lord Kayleigh, and he

finds that the first root is kc = 1'4303 x tt. We therefore see that

the frequency of the gravest note is 7151 x (a/c)', accordingly the

pitch falls as the radius of the sphere increases. This result

exemplifies a general law, that the frequencies of vibration of

similar bodies formed of similar materials, are inversely pro-

portional to their linear dimensions.

The loops are determined by the equation sin«r = 0, which

gives r = m7r//c, where m is an integer.
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163. Since any circular cone whose vertex is the origin is a

nodal cone, the above solution determines the notes which could

be produced by a conical pipe closed by a spherical segment of

radius c.

If a conical pipe be open at one end, and we assume that the

condition to be satisfied at the open end is that it should be a

loop, we obtain k = mirjc, and therefore the value of </> is

</> = ^lAr'^ ^imnatic gj^ mirrlc.

The frequency of the gravest note is therefore ^«/c, which is

less than if the pipe were closed.

164. The most general value of <\> in the case of symmetrica

waves is

(/) = Ar~' 6^«(«^+^)
-f Br~' e'"

^""^-''^
(29),

the first term of which represents waves converging upon the

origin, whilst the second represents waves diverging from the

origin.

Let us now draw a very small sphere surrounding the origin
;

then taking the second term of (29), the flux across the sphere is

IJr'^J'
dn = -BJi{l + iKv) 6- («^ - '•) (in

when r = 0. The second term of (29) therefore represents a source

of sound diverging from the pole, of strength — ^irBe'""* ; similarly

the first term represents a source of sound converging towards the

pole \

165. The general solution of (25) cannot be effected without

the aid of spherical harmonic analysis, but there is one solution of

considerable utility, which we shall now consider.

Let (j) = Oe'""^ cos 6,

where 4> is a function of r alone. Substituting in (25), we obtain

dr^ r dr r

* The corresponding problems in two-dimensional motion, cannot be investi-

gated without employing the Bessel's function of the second kind YoiKv). It is

worth noticing, that certain expressions for these functions in the forms of series

and definite integrals, can be obtained by means of the theory of sources of sound.

See Lord Itayleigb, Pruc. Land. Math. Sue, Vol. xix. p. 501.
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To solve this equation, put <t> = dw/dr and integrate ; we at

once obtain

d^w 2 div

dr^ r dr

the sohition of which has already been shown to be

accordingly

Lie 1

0=-(Je-''-i?e—0- 2(^^"'*+-5e— (:>0).

In order to find the condition that the motion should be finite

at the origin, we must expand the exponentials in powers of lkv,

and equate the coefficients of negative powers of r to zero; we
shall thus find that A= — B, whence writing A for 2iK^A, the

solution becomes

, A / sin Kr\ ,„,,
(J) = — cos Kr 31).

Kr\ KV J ^ ^

If gas, contained in a spherical envelop, be vibrating in this

manner, the frequency is determined by the equation

d^jdr = 0, when r = c\

'Ikc
hich gives tan kc 2-«V
The least root of this equation (other than zero), is found by

Lord Kayleigh to be kc = "662 x tt ; and therefore the frequency of

the gravest note is *33I x (a/c).

This note is the gravest note which can be produced by gas

vibrating within a sphere ; it is more than an octave lower than

the gravest radial vibration, whose frequency has been shown to

be -7151 X (a/c).

Since the motion is symmetrical with respect to the diameter

6 = 0, every meridional plane is a nodal plane ; but since d^/dO

does not vanish anywhere except along the diameter in question,

there are no conical nodal sheets.

166. We shall now consider the motion of a spherical

pendulum surrounded with air, which is performing small oscil-

lations.

Since the periods of the pendulum and of the air must be the
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same, we may suppose the velocity of the pendulum to be re-

presented by Fe"*'*^ and therefore the condition to be satisfied at

the surface of the sphere is

d<l)ldr=Ve'''"f cos (32).

The form of this equation suggests that
(f)
must vary as cos 6

;

we shall therefore assume that </> = ^e'""^ cos 6, where ^ is given by

(30). Since the disturbance is propagated outwards, -4 = 0, and

therefore

(p = - Br~\l -^ lkt) e-""'.

Substituting in (32), we obtaiii

B=
^^ 7/ , (33),
2 — KC + 2lkc ^ ^

where c is the radius of the sphere.

IfX be the resistance experienced by the sphere,

X=JJBp cos eds

= - JJp^ cos 6dS

where ^= Fe'""^, is the velocity of the sphere.

Rationalising the denominator, and putting

_ 2 + ic'c' kV

and remembering that ^ = cKa^, we obtain

X = M'(p^-\-Kaq^),

where M' is the mass of the displaced fluid.

The first term of this expression represents an increase in the

inertia of the sphere ; whilst the second term represents a re-

sistance proportional to the velocity, which is therefore a viscous

term, and shows that initial energy is gradually dissipated into

space. If M be the mass of the sphere, I the distance of its centre

from the point of suspension, the equation of motion of the

pendulum is

i^Mii;* + f^c') + M'lp] <9 + MTKaqd -\- {M'-M')gie = 0.
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By § 122, the integral of this equation is of the form

6 = Ae-^^ sin (fit + a),

and the modulus of decay is

2 [M(r + fc^) + MTp}/MTKaq.

If the wave length X, of the vibrations of the gas, is large in

comparison with the radius of the sphere, kc will be of the order

c/X, and will therefore be small ; accordingly the value ofp will be

nearly equal to -|, whilst the value of Kq, upon which the viscous

term depends, will be of the order c^/W We therefore see that

in this case the viscous term will be very small, and the motion

will die away gradually; hence the sphere will vibrate very

nearly in the same manner as if the gas were an incompressible

fluid.

If, on the other hand, c were large compared with X, p would

be nearly equal to unity, and the apparent inertia of the sphere

would be greater than when c/X is small ; but Kq would be of the

order c~^ and would therefore be small.

167. Another interesting problem is that of the scattering of

a plane wave of sound by a fixed rigid sphere, whose diameter is

small compared with the wave length.

Measuring 6 from the direction of propagation, the velocity

potential of the plane waves may be taken to be

Jy _ gi(c (at+x) —. ^iii{at+r COS 9)

the positive sign being taken, because the waves are supposed to

be travelling in the negative direction of the axis of x.

If c be the radius of the sphere, it follows that in the

neighbourhood of the sphere, /cr or 27rr/X is a small quantity, and

therefore expanding the exponential and dropping the time factor

for the present, we may arrange </> in the form of the series^

(^ = 1 - i/cV^ + tKV cos e - i/cV^ (3 cos' ^ - 1). .

.

When the waves impinge upon the sphere, a reflected or

1 The reader, who is acquainted with Spherical Harraonic analysis, will observe

that we have arranged
<f>

in a series of zonal harmonics. It can be shown that the

solution of (25) can be expressed in a series of terms of the type F (r) S^, where ^S'^

is a spherical surface harmonic.
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scattered wave is thrown off, whose velocity potential may be

assumed to be

The quantities ^y, ^j are given by (26) and (30) respectively;

but since the scattered wave diverges from the sphere, we must

put ^ =0, and take B=l, since the constant B may be supposed

to be included in A^, A^... ; accordingly

With regard to <I>.^, it can be verified by trial, that a sohition

of (25) is ^2 (^ cos'* 6 — 1), where O^ is a function of r alone ; it will

not however be necessary to consider the form of Og, since it

introduces quantities of a higher order than k^c^, which will be

neglected.

The equation to be satisfied at the surface of the sphere is

# + #.' =
dr dr

'

when r = c. This equation must hold good for all vahies of 6,

whence

A^ —r^-{-iK = 0,
^ dr

which determine A^, A^. Substituting from (35) we obtain

^°""3(l + */^c)"
^'''''

^ 2 + ZLKC — K C

approximately, since we shall not retain powers of c Ijigher than

&. We thus obtain

At a considerable distance from the sphere, the term KC^jr'^ is

80 small that it may be neglected, we may therefore write

p-tKr
6' = -~ (l+^cos^)^:V.
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Restoring the time factor and putting /c = 27r/\, we finally

obtain in real quantities

<t>'
= -^^('^+^<^'^^^)'^os—(at-r) (36),

corresponding to the wave

27r
(j) = cos -- (at + x) (37).

A.

Equation (36) accordingly gives the velocity potential of the

scattered wave, corresponding to the incident wave whose velocity

potential is given by (37). This expression is however only an

approximate one, and the correctness of the approximation depends

upon the assumption, that the radius of the sphere is so small in

comparison with the wave length, that terms of a higher order

than (f/X^ may be neglected. We have also neglected KC^r^,

which is equivalent to supposing, that the point at which we are

observing the effect of the scattered wave, is at a considerable

distance from the sphere. For a more complete investigation, we
must refer to Lord Rayleigh's treatise.

EXAMPLES.

1. If two simple tones of equal intensity and having a given

small difference of pitch be heard together, prove that the number

of beats in a given time will be greater, the higher the two simple

tones are in the musical scale ; and prove that the pitch of the

resultant sound in the course of each beat is constant.

2. One end of a tube which contains air is open, whilst the

other is fitted with a disc, which vibrates in such a manner that

the pressure of the air in contact with the disc is

n(l-/;sin27ri5/T)

where k is a small quantity. Find the velocity potential of the

motion.

3. The radius of a solid sphere surrounded by an unlimited

mass of air, is given by M {l-\' a sin nat), where a is the velocity

of sound in air. Show that the mean energy per unit of mass

B. H. 13
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of air at a distance r from the centre of the sphere, due to tlie

motion of the latter is

iiMa'R' (1 + 211'}'')
Ir* (1 + n'R').

4. Prove that in order that indefinite plane waves may
be transmitted without alteration, with uniform velocity a in a

homogeneous fluid medium, the pressure and density must be

connected by the equation

where p^, p^ are the pressure and density in the undisturbed part

of the fluid.

5. Two gases of densities p, p^ are separated by a plane

uniform flexible membrane, whose equation is y = 0, and whose

superficial density and tension are cr and T. If plane waves of

sound impinge obliquely at an pngle i, and the displacements of

the incident reflected and refracted waves of sound and of the

membrane, be represented by

(i) A sin {m (x sin i — y cos i) — nt + a],

(ii) A' sin [m {x sin i ¥ y cos i) — nt + a'},

(iii) A^ sin [m^ {x sin r — y cos ?•) — ?i^ + aj,

(iv) a sin {mx sin i — nt),

respectively ; find the relations to be satisfied, and prove that the

ratio of the intensities of the reflected and incident waves is equal

to

(Tm^ sin* i — an^f + {p^m^ sec r — pm sec if

\Tm^ sin'* i — an^f + {pm sec r + pm sec if
'

6. If sound waves be travelling along a straight tube of

infinite length which is adiathermanous, and no conduction of

heat takes place through the air, prove that the ecjuations of

motion may be accurately satisfied by supposing a wave of con-

densation to travel along the tube, with a velocity of propagation

which at each point depends only on the condensation at that

point, and which for a density p is

-'---'{©'"""-)]/;;:

where y;^, p„ are the pressure and density at each end of the

wave.
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7. Prove that in a closed endless uniform tube of length I

filled with air, a piston of mass M will perform m complete small

vibrations under the elasticity of a spring, if

,, Mmirl fn^
tan mirl a = -^rir,— —^

—
' M'a \m'

where M' is the mass of the air in the tube, and a the velocity of

sound, supposing the piston to make n vibrations in a second

when the air is exhausted.

8. Investigate the forced oscillations in a straight pipe, which

will occur when the temperature of air in the pipe is compelled to

undergo small harmonic vibrations expressed by 6 co^ m{vt — x\

where x is measured along the axis of the pipe.

9. The greatest angle inclination of the adiabatic lines of a

gas to its isothermals occurs, when the slope of the isothermal to

the line of zero pressure is tt — cot"^ 7 ; and the locus of all these

points of maximum angle, is a straight line through the origin,

inclined to the line of zero pressure at an angle cot"^ 7^.

10. A sphere of mean radius R, executes simple harmonic

radial vibrations of amplitude a, in air of density p ;
prove that

its energy is radiated into the atmosphere in sound waves at the

rate

{lirRy
2.,ag)-

{^irRY + X'

per unit of time, where \ is the length of the waves propagated

in air, and a is their velocity.



NOTE TO § 53.

The proposition at the end of § 53 is not quite accurately stated,

inasmuch as the constraint contemplated must be equivalent to an

increase in the inertia of the system. When this is the case, the

periods of vibration are increased and consequently the frequency

is diminished. The proposition is not however true, when the constraint

is not of this character. For example, in § 163 we have shown tliat

the frequency of the gravest note of an open conical pipe of length

c is equal to Ja/c, whilst by § 162 the frequency of the gravest note

of a closed conical pipe is '7151 x (a/c); and therefore in this case, the

effect of constraint is to diminish the period and increase the frequency.
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Vol. I.—Olynthiacs—Philippics—De Pace—Halonnesus—Chersonese

—Letter of Philip—Duties of the State—Symmoriae—Rhodians—Mega-
lopolitans—Treaty with Alexander—Crown.

Vol. II.—Embassy— Leptines— Meidias — Androtion—Aristocrates

—

Timocrates—Aristogeiton.

— De Falsa Legatione. By the late r. shilleto, m,a., Fellow of St,

Peter's College, Cambridge. Jth edition. Post 8vo, 6j. [Pub. Sch. Ser.

— The Oration against the Law of Leptines. With English Notes.

By the late B. w. beatson, m.a.. Fellow of Pembroke College, "^rd

edition. Post 8vo, ^s. 6d. [Pub. Sch. Ser.

EURIPIDES. By f. a. palev, m.a., ll.d. 3 vols. 2nd edition, revised.

8vo, 8j. each. Vol. I. Out ofprint. [Bib. Class.

Vol. 1 1.—Preface—Ion—Helena—Andromache—Electra—Bacchae

—

Hecuba. 2 Indexes.

Vol. III. — Preface— Hercules Furens—Phoenissae—Orestes—Iphi-

genia in Tauris—Iphigenia in Aulide— Cyclops. 2 Indexes.
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EURIPIDES. Electra. Edited, with Introduction and Notes, by c. h.

KEENE, M.A., Dublin, Ex-Scholar and Gold Medallist in Classics. Demy
8vo, lo^. (id.

— Edited by F. a. paley, m.a., ll.d. 13 vols. Fcap. 8vo, \s. 6d. each.

[^Camb. Texts 7vith Notes.

Phoenissae.
Troades.
Hercules Furens.
Andromache.
Iphigenia in Tauris.
Supplices.

Alcestis.
Medea.
Hippolytus.
Hecuba.
Bacchae.
Ion {7.S.).

Orestes.
HERODOTUS. Edited by rev. j. w. blakesley, b.d. 2 vols. 8vo, I2j.

\_Bib. Class.

— Easy Selections from the Persian Wars. Edited by a. g. liddell,

m.a. With Introduction, Notes, and Vocabulary. i8mo, ij. 6^/.

[Primary Classics.

HESIOD. Edited by F. A. paley, m.a., ll.d. 2nd edition, revised. 8vo, Sj.

[Bib. Class.

HOMER. Edited by F. A. paley, m.a., ll.d. 2 vols. 2nd edition,

revised, i^. Vol. II. (Books 13-24) may be had separately, 6s.

[Bib. Class.

— Iliad. Books I. -XII. Edited by f. a. paley, m.a., ll.d. Fcap. 8vo,

^.6d.
Also in 2 Parts. Books I. -VI. 2s. 6d. Books VII. -XII. 2s.6d.

[Gram. Sch. Class.

— Iliad. Book I. Edited by f. a. paley, m.a., ll.d. Fcap. 8vo, is.

[Camb. Text with Notes.

HORACE. Edited by rev. a. J. macleane, m.a. 4/// edition, revised by

GEORGE LONG. 8vo, 8j. [Bib. Class.

— Edited by A. J. macleane, m.a. With a short Life. Fcap. 8vo, 3j-. 6d.

Or, Part L, Odes, Carmen Seculare, and Epodes, 2s.', Part II., wSatires,

Epistles, and Art of Poetry, 2s. [Gram. Sch. Class.

— Odes. Book I. Edited by A. j. macleane, m.a. With a Vocabulary

by A. H. DENNIS, M.A. Fcap. 8vo, IS. 6d. [Lower Form Ser.

JUVENAL: Sixteen Satires (expurgated). By Herman prior, m.a.,

late Scholar of Trinity College, Oxford. Fcap. 8vo, y. dd.

[Gram. Sch. Class.

LIVY. The first five Books, with English Notes. By j. prendeville.

A new edition revised throughout, and the notes in great part re-written,

by J. H. freese, m.a., late Fellow of St. John's College, Cambridge.

Books I. II. III. IV. V. With Maps and Introductions. Fcap. 8vo.

I J. bd. each.
— Book VI. Edited by E. s. WEYMOUTH, m.a., Lond., and G. F. Hamilton,

B.A. With Historical Introduction, Life of Livy, Notes, Examination

Questions, Dictionary of Proper Names, and Map. Crown 8vo, 2s. 6d.

— Book XXI. By the rev. l. d. dowdall, m.a., late Scholar and Uni-

versity Student of Trinity College, Dublin, B.D., Ch. Ch. Oxon. Post

8vo, 3J. 6d. [Pub. Sch. Ser.

— Book XXII. Edited by the rev. l. d. dowdall, m.a., b.d. Post 8vo,

3j. 6d. [BidK Sck. Ser.
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LIVY. Easy Selections from the Kings of Rome. Edited by A. m. m.
STKDMAN, M.A. With Introduction, Notes, and Vocabulary. i8mo,
\s. 6(i. [Primary Class.

LUCAN. The Pharsalia. By c. e. haskins, m.a., Fellow of St. John's
College, Cambridge, with an Introduction by w. e. iieitland, m.a.,
Fellow and Tutor of St. John's College, Cambridge. 8vo, i/\s.

LUCRETIUS. Titi Lucreti Cari De Return Natura Libri Sex. By
the late H. A. j. munro, M.a., Fellow of Trinity College, Cambridge.
a^th edition^ finally revised. 3 vols, demy 8vo. Vols. I., II., Introduc-

tion, Text, and Notes, 18^. Vol. III., Translation, ds.

MARTIAL: Select Epigrams. Edited by F. A. paley, m.a., LL.D.,

and the late vv. h. stone. Scholar of Trinity College, Cambridge. With
a Life of the Poet. Fcap. 8vo, \s. 6d. [Gram. Sch. Class.

OVID: Fasti. Edited by f. a. paley, m.a., LL.D. Second edition.

Fcap. 8vo, 35-. 6d. [Gram. Sch. Class.

Or in 3 vols, is. 6d. each [Grammar School Classics], or 2s. each [Camb.
Texts with Notes], Books I. and II., Books III. and IV., Books V.
and VI.

— Selections from the Amores, Tristia, Heroides, and Metamor-
phoses. By A. J. macleane, m.a. Fcap. 8vo, \s. 6d.

[Camb. Texts tuith Notes.
— Ars Amatoria et Amores. A School Edition. Carefully Revised and

Edited, with some Literary Notes, by j. Herbert Williams, m.a.,

late Demy of Magdalen College, Oxford. Fcap. 8vo, 3J. 6d.

— Heroides XIV. Edited, with Introductory Preface and English Notes,

by ARTHUR PALMER, M.A., Professor of Latin at Trinity College, Dublin.
Demy 8vo, 6s.

— Metamorphoses, Book XIII. A School Edition. With Introduction

and Notes, by CHARLES HAINES KEENE, M.A., Dublin, Ex-Scholar and
Gold Medallist in Classics, yd edition. Fcap. 8vo, 2.s. 6d.

— Epistolarum ex Ponto Liber Primus. With Introduction and Notes,

by CHARLES HAINES KEENE, M.A. Crown 8vO, 3J.

PLATO. The Apology of Socrates and Crito. With Notes, critical

and exegetical, by vvilhelm wagner, ph.d. 12th edition. Post 8vo,

2s. 6d. A Cheap Edition. Limp Cloth. 2s. 6d. [Pub. Sch. Ser.

— Phaedo. With Notes, critical and exegetical, and an Analysis, by
wiLH elm WAGNER, PH.D. ^th edition. Post 8vo, 5^. 6^. [Pub. Sch. Ser.

— Protagoras. The Greek Text revised, with an A nalysis and English

Notes, by w. wayte, m.a., Classical Examiner at University College,

London. 7/// edition. Post 8vo, 4J. 6d. [Pub. Sch. Ser.

— Euthyphro. With Notes and Introduction by c H. wells, m.a.,

Scholar of St. John's College, Oxford ; Assistant Master at Merchant
Taylors' School, yd edition. Post 8vo, 3J. [Pub. Sch. Ser.

— The Republic. Books I. and II. With Notes and Introduction by
G. H. WELLS, m.a. 4th edition, with the Introduction re-written. Post

8vo, 5T. [Pub. Sch. Ser.

— Euthydemus. With Notes and Introduction by g. h. wells, m.a.
Post 8vo, 4J. [Pub. Sch. Ser.

— Phaedrus, P>y the late W. H. THOMPSON, D.D., Master of Trinity College,

Cambridge. 8vo, 5^. [Bib. Class.

— Gorgias. By the late w. h. Thompson, d.d., Master of Trinity College,

Cambridge. New edition. 6s. [Pub. Sch. Ser.
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PLA.UTUS. Aulularia. With Notes, critical and exegetical, by w.
WAGNER, PH.D. ^th edition. Post 8vo, 4J-. dd. {Pub. Sch. Ser.

— Trinummus. With Notes, critical and exegetical, by wilhelm
WAGNER, PH.D. <^th edition. Post 8vo, 4^'. dd. \_Pub. Sch. Ser.

— Menaechmei. With Notes, critical and exegetical, by wilhelm
WAGNER, PH.D. 2nd editiofi. Post 8vo, 4J-. 6d. [Pub. Sch. Ser.— Mostellaria. By E. A. sonnenschein, m.a., Professor of Classics at

Mason College, Birmingham. Post Svo, 5^. [Ptib. Sch. Ser.— Captivi. Abridged and Edited for the Use of Schools. With Intro-

duction and Notes by j. h. freese, m.a., formerly Fellow of St. John's
College, Cambridge. Fcap. Svo, is. 6d.

PROPERTIUS. Sex. Aurelii Propertii Carmina. The Elegies of
Propertius, with English Notes. By f. a. paley, m.a., ll.d. 2nd
edition. Svo, 5^.

SALLUST : Catilina and Jugurtha. Edited, with Notes, by the late

GEORGE LONG. Netu edition, revised, with the addition of the Chief
Fragments of the Histories, by j. G. frazer, m.a.. Fellow of Trinity

College, Cambridge. Fcap. Svo, 3^. dd, or separately, 2s. each.

{Grayn. Sch. Class.

SOPHOCLES. Edited by rev. f. h. blaydes, m.a. Vol. I, Oedipus
Tyrannus—Oedipus Coloneus—Antigone. Svo, ?>s. {Bib. Class.

Vol. II. Philoctetes—Electra—Trachiniae—Ajax. By F. a. paley,
M.A., ll.d. Svo, 6s., or the four Plays separately in limp cloth, 2s. 6d.

each.
— Trachiniae. With Notes and Prolegomena. By Alfred pretor, m.a..

Fellow of St. Catherine's College, Cambridge. Post Svo, 4^. 6d.

{Pub. Sch. Ser.

— The Oedipus Tyrannus of Sophocles. By b. h. Kennedy, d.d.,

Regius Professor of Greek and Hon. Fellow of St. John's College, Cam-
bridge. With a Commentary containing a large number of Notes selected

from the MS. of the late T. PL steel, m.a. Crown Svo, Sj.

A School Edition, post Svo, 5.$-. {Pub. Sch. Ser.

— Edited by F. A. paley, m.a., ll.d. 5 vols. Fcap. Svo, is. 6d. each.

{Catnb. Texts with Notes.

Oedipus Tyrannus. Electra.
Oedipus Coloneus. Ajax.
Antigone.

TACITUS : Germania and Agricola. Edited by the late rev. p. frost,
late Fellow of St. John's College, Cambridge. Fcap. Svo, 2s. 6d.

{Gram. Sch. Class.

— The Germania. Edited, with Introduction and Notes, by r. f. davis,

m.a. Fcap. Svo, IS. 6d.

TERENCE. With Notes, critical and explanatory, by wilhelm WAGNER,
PH.D. yd edition. Post Svo, ^s. 6d. {Pub. Sch. Ser.

— Edited by wilhelm wagner, ph.d. 4 vols. Fcap. Svo, is. 6d. each.

{Catnb. Texts with Notes.

Andria. I Hautontimorumenos.
Adelphi.

|
Phormio.

THEOCRITUS. With short, critical and explanatory Latin Notes, by
F. A. paley, m.a., ll.d. 2nd edition, revised. Post Svo, dfS. 6d.

{Pub. Sch. Ser.
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THUCYDIDES, Book VI. By t. vv. dougan, m.a., Fellow of St. John's
College, Cambridge ; Professor of Latin in Queen's College, Belfast.

Edited with English notes. Post 8vo, is. bd. [Pub. Sch. Ser.

— The History of the Peloponnesian War. With Notes and a careful

Collation of the two Cambridge Manuscripts, and of the Aldine and
Juntine Editions. By the late RICHARD shilleto, m.a., Fellow of
St. Peter's College, Cambridge. 8vo. Book I. bs. 6d. Book II. 5^. 6d.

VIRGIL. By the late professor conington, m.a. Revised by the late

PROFESSOR NETfLESHIP, Corpus Professor of Latin at Oxford. 8vo.

[Bil>. Class.

Vol. I. The Bucolics and Georgics, with new Memoir and three Essays
on Virgil's Commentators, Text, and Critics, i^th edition, los. 6d.

Vol. ir. The Aeneid, Books I.-VI. ^th edition, los. (yd.

Vol. III. The Aeneid, Books VII.-XII. yd edition. \os. 6d.

— Abridged from professor conington's Edition, by the REV. j. G. shep-
PARU, D.C.L., H. NETTLESHIP, late Corpus Professor of Latin at the

University of Oxford, and W. wagner, PH.D. 2 vols. fcap. 8vo,

4^. 6d. each. [Gram. Sch. Class.

Vol. I. Bu colics, Georgics, and Aeneid, Books I. -IV.

Vol. II. Aeneid, Books V. -XII.

Also the Bucolics and Georgics, in one vol. 3j.

Or in 9 separate volumes {Gj'ammar School Classics^ with Azotes atfoot ofpage),
price \s. Gd. ecuh.

Bucolics.
Georgics, I. and II.

Georgics, III. and IV.

Aeneid, I. and II.

Aeneid, III. and IV.

Or in 12 separate volumes (^Cambridge Texts with Notes at end), price

is, 6d. each.

Aeneid, V. and VI.
Aeneid, VII. and VIIL
Aeneid, IX. and X.
Aeneid, XI. and XIL

Bucolics.
Georgics, I. and II.

Georgics, III. and IV.
Aeneid, I. and II.

Aeneid, III. and IV.

Aeneid, V. and VI. (price 2s.]

Aeneid, VII.
Aeneid, VIIL
Aeneid, IX.
Aeneid, X.
Aeneid, XI.
Aeneid, XIL

— Aeneid, Book I. conington's Edition abridged. With Vocabulary
by w F. r. shilleto, m.a. Fcap. 8vo, is. 6d. [Lower Form Ser.

XENOPHON : Anabasis. With Life, Itinerary, Index, and three Maps.
Edited by the late J. F. MACMICHAEL. Revised edition. Fcap. 8vo,

y. 6d. [Gram. Sch. Class.

Or in 4 separate volumes, price is. 6d. each.

Book I. (with Life, Introduction, Itinerary, and three Maps)—Books
II. and III.—Books IV. and V.—Books VI. and VII.

— Anabasis, macmichael's Edition, revised by j. e. melhuish, M.a.,

Assistant Master of St. Paul's School. In 6 volumes, fcap. 8vo. With
Life, Itinerary, and Map to each volume, is. 6d. each.

[Camb. Texts xvith Notes,

Book L—Books II. and III.—Book IV.—Book V.—Book VI.—
Book VII.
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XENOPHON. Cyropaedia. Edited by g. m. gorham, m.a., late Fellow
of Trinity College, Cambridge. New edition. Fcap. 8vo, 3^. dd.

[^Gram. Sch. Class.

Also Books I. and II,, is. 6d. ; Books V. and VI., is. 6d.

— Memorabilia. Edited by percival frost, m.a., late Fellow of St.

John's College, Cambridge. Fcap. 8vo, 3^. [Gram. Sch. Class.

— Hellenica. Book I. Edited by l. d. dowdall, m.a., b.d. Fcap. 8vo,
2s. [Camd. Texts with Notes.

— Hellenica. Book II. By l. d. dowdall, m.a., b.d. Fcap. 8vo, 2s.

[Camb. Texts with Notes.

TEXTS.

AESCHYLUS. Ex novissima recensione F. a. paley, a.m., ll.d. Fcap.
8vo, 2s. [Camb. Texts.

CAESAR De Bello Galileo. Recognovit g. long, a.m. Fcap. 8vo,

is. 6d. [Camb. Texts.

CATULLUS. A New Text, with Critical Notes and an Introduction, by

J. P. postgate, m.a., litt.d.. Fellow of Trinity College, Cambridge,
Professor of Comparative Philology at the University of London. Wide
fcap. 8vo, T)S.

CICERO De Senectute at de Amicitia, et Epistolae Selectae. Recen-
suit G. long, a.m. Fcap. 8vo, is. 6d. [Camb. Texts.

CICERONIS Orationes in Verrem. Ex recensione g. long, a.m.

Fcap. 8vo, 2s. 6d. [Camb. Texts.

CORPUS POETARUM LATINORUM, a se aliisque denuo recogni-

torum et brevi lectionum varietate instructorum, edidit JOHANNES perci-
val postgate. Tom. I.—Ennius, Lucretius, Catullus, Horatius, Vergilius,

Tibullus, Propertius, Ovidius. Large post 4to, 21s. net. Also in 2 Parts,

sewed, 95-. each, net.

^*^ To be completed in 4 parts, making 2 volumes.

CORPUS POETARUM LATINORUM. Edited by walker. Con-
taining :—Catullus, Lucretius, Virgilius, Tibullus, Propertius, Ovidius,

Horatius, Phaedrus, Lucanus, Persius, Juvenalis, Martialis, Sulpicia,

Statins, Silius Italicus, Valerius Flaccus, Calpurnius Siculus, Ausonius,

and Claudianus. i vol. 8vo, cloth, iSj.

EURIPIDES. Ex recensione f. a. paley, a.m., ll.d. 3 vols. Fcap.

8vo, 2s. each. [Camb. Texts.

Vol. I.—Rhesus—Medea— Hippolytus— Alcestis —Heraclidae—Sup-
plices—Troades

.

Vol. II.—Ion—Helena—Andromache—Electra—Bacchae—Hecuba.
Vol. III.—Hercules Furens—Phoenissae—Orestes—Iphigenia in Tauris

—Iphigenia in Aulide—Cyclops.

HERODOTUS. Recensuit j. g. blakesley, s.t.b. 2 vols. Fcap. 8vo,

2s. 6d. each. [Camb. Texts.

HOMERI ILIAS I. -XII. Ex novissima recensione F. a. paley, a.m.,

ll.d. Fcap. 8vo, is. 6d. [Camb. Texts.

HORATIUS. Ex recensione a. j. macleane. a.m. Fcap. 8vo, is. 6d.

[Camb. Texts.

JUVENAL ET PERSIUS. Ex recensione a. j. macleane, a.m.

Fcap. 8vo, is. 6d. [Camb. Texts.
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LUCRETIUS. Recognovit ii. A. j. munro, a.m. Fcap. 8vo, 2s.

\Camb. Texts.

PROPERTIUS. Sex. Propertii Elegiarum Libri IV. recensuit A.

PALMER, collegii sacrosanctae et individuae Trinitatis juxta Dublinum
Socius. Fcap. 8vo, 3^. dd.

SALLUSTI CRISPI CATILINA ET JUGURTHA, Recognovit
G. LONG, A.M. Fcap. 8vo, i^. 6</. \^Canib. Texts,

SOPHOCLES. Ex recensione F. a. paley, a.m., ll.d. Fcap. Svo, 25. dd.

YCavib. Texts.

TERENTI COMOEDIAE. gul. wagner relegit et emendavit. Fcap.
Svo, 2s. yCamb. Texts.

THUCYDIDES. Recensuit j. G. DONALDSON, s.T.P. 2 vols. Fcap.
Svo, is. each. ' {Caiiib. Texts.

VERGILIUS. Ex recensione J. CONINGTON, A.M. Fcap. Svo, 2j.

{Cainb. Texts.

XENOPHONTIS EXPEDITIO CYRL Recensuit j. f. macmichael.
A.B. Fcap. Svo, is. 6d. [Camb. 7exts.

TRANSLATIONS.

AESCHYLUS, The Tragedies of. Translated into English Prose. By
F. A. PALEY, M.A., LL.D., Editor of the Greek Text. 2nd edition

revised, Svo, 7j. (>d.

— The Tragedies of. Translated into English verse by ANNA SWANVVICK.
dfth edition revised. Small post Svo, 5^.

— The Tragedies of. Literally translated into Prose, by T. A. BUCKLEY, b.a.

Small post Svo, y. 6d.

— The Tragedies of. Translated by WALTER HEADLAM, m.a., Fellow of

King's College, Cambridge. ^Preparing.

ANTONINUS (M. Aurelius), The Thoughts of. Translated by
GEORGp: LONG, M.A. Revised edition. Small post Svo, 3^. (id.

Fine paper edition on handmade paper. Pott Svo, 6j.

APOLLONIUS RHODIUS. The Argonautica. Translated by e. p.

COLERIDGE. Small post Svo, 5j.

AMMIANUS MARCELLINUS. History of Rome during the

Reigns of Constantius, Julian, Jovianus, Valentinian, and Valens. Trans-
lated by PROF. c. D. YONGE, M.A. With a complete Index. Small post

Svo, 1$. dd.

ARISTOPHANES, The Comedies of. Literally translated by w. j.

HICK IE. With Portrait. 2 vols, small post Svo, 5^. each.

Vol. I.—Acharnians, Knights, Clouds, Wasps, Peace, and Birds.

Vol. II.—Lysistrata, Thesmophoriazusae, Frogs, Ecclesiazusae, and
Plulus.

— The Acharnians. Translated by w. h. Covington, b.a. With Memoir
and Introduction. Crown Svo, sewed, \s.

ARISTOTLE on the Athenian Constitution. Translated, with Notes
an'j Introduction, by F. g. kenyon, m.a., Fellow of Magdalen College,

Oxford. Pott Svo, printed on handmade paper. 2nd edition, 4^. dd.

— History of Animals. Translated by richard cresswell, m.a. Small

post Svo, 5^.
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ARISTOTLE. Organon : or, Logical Treatises, and the Introduction of

Porphyry. With Notes, Analysis, Introduction, and Index, by the rev.
O, F. OWEN, M.A. 2 vols. small post 8vo, 3i-. dd. each.

— Rhetoric and Poetics. Literally Translated, with Hobbes' Analysis,

&c., by T. BUCKLEY, B.A. Small post 8vo, ^s.

— Nicomachean Ethics. Literally Translated, with Notes, an Analytical

Introduction, &c., by the Venerable archdeacon BROWNE, late Classical

Professor of King's College. Small post 8vo, 5^-.

— Politics and Economics. Translated, with Notes, Analyses, and
Index, by E. walford, m.a., and an Introductory Essay and a Life by
DR. GILLIES. Small post 8vo, 5^-.

— Metaphysics. Literally Translated, with Notes, Analysis, &c., by the

REV. JOHN H. m'mahon, m.a. Small post 8vo, 5^-.

ARRIAN. Anabasis of Alexander, together with the Indica. Trans-

lated by E. J. CHiNNOCK, M.A., LL. D. With Introduction, Notes, Maps,
and Plans. Small post 8vo, 5^'.

CAESAR. Commentaries on the Gallic and Civil Wars, with the Supple-

mentary Books attributed to Hirtius, including the complete Alexandrian,

African, and Spanish Wars. Translated by w\ A. m'devitte, B.a.

Small post 8vo, 5^.— Gallic War. Translated by w. A. m'devitte, b.a. 2 vols., with Memoir
and Map. Crown 8vo, sewed. Books I. to IV., Books V. to VII.,

\s. each.

CALPURNIUS SICULUS, The Eclogues of. The Latin Text, with

English Translation by E. J. L. sco/T, m.a. Crown 8vo, 3^-. 6^.

CATULLUS, TIBULLUS, and the Vigil of Venus. Prose Translation.

Small post 8vo, 5^.

CICERO, The Orations of. Translated by prof. c. d. yonge, m.a.

With Index. 4 vols, small post 8vo, 5^. each.

— On Oratory and Orators. With Letters to Quintus and Brutus. Trans-

lated by the rev. j. s. watson, m.a. Small post 8vo, 5^.

— On the Nature of the Gods. Divination, Fate, Laws, a Republic,

Consulship. Translated by PROF. c. D yonge, m.a., and francis
BARHAM. Small post 8vo, 5.V.

— Academics, De Finibus, and Tusculan Questions. By prof. C. d.

YONGE, M.A. Small post 8vo, 5^.

— Offices ; or. Moral Duties. Cato Major, an Essay on Old Age ; Laelius,

an Essay on Friendship ; Scipio's Dream ; Paradoxes ; Letter to Quintus

on Magistrates. Translated by C. R. EDMONDS. With Portrait, y. 6d
— Old Age and Friendship. Translated, with Memoir and Notes, by

G. H. W'ELLS, M.A. Crown 8vo, sewed, is.

DEMOSTHENES, The Orations of. Translated, with Notes, Arguments,

a Chronological Abstract, Appendices, and Index, by C. RANN KENNEDY.
5 vols, small post 8vo.

Vol. I.—The Olynthiacs, Philippics. 3^. 6d.

Vol. II.—On the Crown and on the Embassy. 55-.

Vol. III.—Against Leptines, Midias, Androtion, and Aristocrates. 5^-.

Vols. IV. and V.—Private and Miscellaneous Orations. 5^-. each.

— On the Crown. Translated by c. rann Kennedy. Small post 8vo,

sewed, i^., cloth, is 6d.

DIOGENES LAERTIUS. Translated by prof. c. d. yonge, m.a.

Small post 8vo, 5^.



1

2

George Bell& Sons

EPICTETUS, The Discourses of. With the Encheiridion and
Fragments. Translated by GEORGE LONG, M.A. Small post 8vo, 55.

Fine Paper Edition, 2 vols. Pott 8vo, los. dd.

EURIPIDES. A Prose Translation, from the Text of Paley. By
E. P. COLERIDGE, B.A. 2 vols., ^S. each.

Vol. I.—Rhesus, Medea, Hippolytus, Alcestis, Heraclidce, Supplices,
Troades, Ion, Helena.

Vol. II.—Andromache, Electra, Bacchae, Hecuba, Hercules Furens,
Phoenissae, Orestes, Iphigenia in Tauris, Iphigenia in Aulis, Cyclops.

^*^ The plays separately (except Rhesus, Helena, Electra, Iphigenia in

Aulis, and Cyclops). Crown 8vo, sewed, \s. each.
— Translated from the Text ofDindorf. By t. a. Buckley, b.A. 2 vols.

small post Svo, 5^, each.

GREEK ANTHOLOGY. Translated by george burges, m.a. Small
post Svo, 5J-.

HERODOTUS. Translated by the REV. henry cary, m.a. Small post
Svo, 3^. dd.

— Analysis and Summary of. By j. T. wheeler. Small post Svo, 5^.

HESIOD, CALLIMACHUS, and THEOGNIS. Translated by the
REV. J. BANKS, M.A. Small post Svo, 5J-.

HOMER. The Iliad. Translated by T. A. Buckley, b.a. Small post

Svo, 5j.— The Odyssey, Hymns, Epigrams, and Battle of the Frogs and
Mice. Translated by t. a. buckley, b.a. Small post Svo, 5j.— The Iliad. Books I. -IV. Translated into English Hexameter Verse,
by HENRY SMITH WRIGHT, B.A., late Scholar of Trinity College, Cam-
bridge. Medium Svo, 5^.

HORACE. Translated by Smart. Revised edition. By T. A. BUCKLEY,
B.A. Small post Svo, 3.9. dd.

— The Odes and Carmen Saeculare. Translated into English Verse by
the late JOHN conington, m.a., Corpus Professor of Latin in the

University of Oxford, wth edition. Fcap. Svo. "^s. 6d.

— The Satires and Epistles. Translated into English Verse by prof.
JOHN conington, m.a. ?,th edition. Fcap. Svo, 3^. td.

— Odes and Epodes. Translated by sir Stephen e. de vere, bart.
yd edition, enlarged. Imperial i6mo. 7^^. dd. net.

ISOCRATES, The Orations of. Translated by j. h. freese, m.a., late

Fellow of St. John's College, Cambridge, with Introductions and Notes.
Vol. I. Small post Svo, 5x.

JUSTIN, CORNELIUS NEPOS, and EUTROPIUS. Translated
by the REV. j. s. WATSON, m.a. Small post Svo, 5^.

JUVENAL, PERSIUS, SULPICIA, and LUCILIUS. Translated
by L. EVANS, m.a. Small post Svo, 5^.

LIVY. The History of Rome. Translated by dr. spillan, c. edmonds,
and others. 4 vols, small post Svo, 5^. each.

— Books I., II., III., IV. A Revised Translation by j. 11. freese, m.a.,

late Fellow of St. John's College, Cambridge. With Memoir, and Maps.
4 vols., crown Svo, sewed, \s. each.

— Book V. A Revised Translation by E. s. weymouth, m.a., Lond. With
Memoir, and Maps. Crown Svo, sewed, \s.

— Book IX. Translated by francis stork, h.a. With Memoir. Crown
Svo, sewed, \s.
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LUCAN. The Pharsalia. Translated into Prose by H. T. riley. Small
post 8vo, 5J-.

— The Pharsalia. Book I. Translated by Frederick conway, m.a..

With Memoir and Introduction. Crown 8vo, sewed, \s.

LUCIAN'S Dialogues of the Gods, of the Sea-Gods, and of the
Dead. Translated by Howard williams, m.a. Small post 8vo, 5^.

LUCRETIUS. Translated by the rev. j. s. watson, m.a. Small post

Svo, 5^-.

— Literally translated by the late H. A. j. munro, m.A. c^th edition. Demy
Svo, ds.

MARTIAL'S Epigrams, complete. Literally translated into Prose, with

the addition of Verse Translations selected from the Works of English

Poets, and other sources. Small post Svo, ^s. 6d.

OVID, The Works of. Translated. 3 vols., small post Svo, 5^. each.

Vol. I.— Fasti, Tristia, Pontic Epistles, Ibis, and Halieuticon.

Vol. II.—Metamorphoses. Wiih Frontispiece.

Vol. III.—Ileroides, Amours, Art of Love, Remedy of Love, and
Minor Pieces. With Frontispiece.

PINDAR. Translated by dawson \v. turner. Small post Svo, 5^.

PLATO. Gorgias. Translated by the late e. m. cope, m.a., Fellow
of Trinity College. 2nd edition. Svo, 7j.

— Philebus. Translated by f.*a. paley, m.a., ll.d. Small Svo, 45.

— Theaetetus. Translated by F. a. paley, m.a., ll.d. Small Svo, 4^.

— The Works of. Translated, with Introduction and Notes. 6 vols, small

post Svo, 5j. each.

Vol. I.—The Apology of Socrates—Crito—Phaedo—Gorgias—Prota-

goras—Phaedrus—Theaetetus—Eutyphron—Lysis. Translated by the

rev. h. cary.
Vol. II.—The Republic—Timaeus—Critias. Translated by henry

DAVIS.
Vol. III.—Meno—Euthydemus—The Sophist—Statesman—Cratylus

—Parmenides—The Banquet. Translated by g. burges.
Vol. IV.—Philebus—Charmides—Laches—Menexenus—Hippias—Ion

—The Two Alcibiades—Theages—Rivals—Hipparchus—Minos—Cli-

topho—Epistles. Translated by G. burges.
Vol. V.—The Laws. Translated by G. burges.
Vol. VI.—The Doubtful Works. Edited by g. burges. With General

Index to the six volumes.
— Apology, Crito, Phaedo, and Protagoras. Translated by the rev. h.

GARY. Small post Svo, sewed, is., cloth, i.r. 6d.

— Dialogues. A Summary and Analysis of. With Analytical Index, giving

references to the Greek text of modern editions and to the above transla-

tions. By A. DAY, LL.D. Small post Svo, ^s.

PLAUTUS, The Comedies of. Translated by H. t. riley, b.a. 2 vols,

small post Svo, 5^. each.

Vol. 1.—Trinummus—Miles Gloriosus—Bacchides—Stichus—Pseudolus

—Menaechmei—Aulularia—Captivi—Asinaria—Curculio.

Vol. II.—Amphitryon—Rudens—Mercator—Cistellaria—Truculentus

—Persa—Casina—Poenulus—Epidicus—Mostellaria— Fragments.
— Trinummus, Menaechmei, Aulularia, and Captivi. Translated by

H. T. riley, b.a. Small post Svo, sewed, u., cloth, is. 6d.
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PLINY. The Letters of Pliny the Younger. Melmoth's Translation,

revised, by the REV. F, c. T. bosanquet, m.a. Small post 8vo, 5^.

PLUTARCH. Lives. Translated by a. stewart, m.a., late Fellow of

Trinity College, Cambridge, and GEORGE long, m.a. 4 vols, small post

8vo, 35. dd. each.
— Moials. Theosophical Essays. Translated by c w. king, m.a., late

Fellow of Trinity College, Cambridge. Small post 8vo, 5^.

— Morals. Ethical Essays. Translated by the rev. a. r. shilleto, M.a.
Small post 8vo, 5^.

PROPERTIUS. Translated by rev. p. j. F. gantillon, m.a., and
accompanied by Poetical Versions, from various sources. Small post 8vo,

3^. (>d.

PRUDENTIUS, Translations from. A Selection from his Works, with
a Translation into English Verse, and an Introduction and Notes, by
FRANCIS ST. JOHN THACKERAY, M.A., F.S.A., Vicar of Mapledurham,
formerly Fellow of Lincoln College, Oxford, and Assistant-Master at

Eton. Wide post 8vo, 7j. dd.

QUINTILIAN : Institutes of Oratory, or, Education of an Orator.

Translated by the REV. j. s. Watson, m.a. 2 vols, small post 8vo,

5^. each.

SALLUST, FLORUS, and VELLEIUS PATERCULUS. Trans-

lated by J. s. WATSON, m.a. Small post 8vp, 5j.

SENECA: On Benefits. Translated by A. stewart, m.a., lale Fellow
of Trinity College, Cambridge. Small post 8vo, 3.^. dd.

— Minor Essays and On Clemency. Translated by a. stewart, m.a.

Small post Svo, ^s.

SOPHOCLES. Translated, with Memoir, Notes, etc., by E. p. Coleridge,
b.a. Small post 8vo, 5^.

Or the plays separately, crown Svo, sewed, \s. each.

— The Tragedies of. The Oxford Translation, with Notes, Arguments,
and Introduction. Small post 8vo, ^s.

— The Dramas of. Rendered in English Verse, Dramatic and Lyric, by
sir GEORGE YOUNG, BART., M.A., formerly Fellow of Trinity College,

Cambridge. 8vo, 12s. dd.

— The CEdipus Tyrannus. Translated into English Prose. By prof. b.

H. KENNEDY. Crown 8vo, in paper wrapper, \s.

SUETONIUS. Lives of the Twelve Caesars and Lives of the

Grammarians. Thomson's revised Translation, by t. forester. Small

post Svo, 5^.

TACITUS, The Works of. Translated, with Notes and Index. 2 vols.

Small post Svo, 55-. each.

Vol. I.—The Annals.

Vol. II.—The History, Germania, Agricola, Oratory, and Index.

TERENCE and PHAEDRUS. Translated by H. T. riley, b.a. Small

post Svo, 5J-.

THEOCRITUS, BION, MOSCHUS, and TYRTAEUS. Translated

by the REV. j. BANKS, m.a. Small post Svo, 5^.

THEOCRITUS. Translated into English Verse by c. s. calverley,

M.A., late Fellow of Christ's College, Cambridge. New editiov, revised.

Crown Svo, Ts. 6d.
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THUCYDIDES. The Peloponnesian War. Translated by the rev. h.
DALE. With Portrait. 2 vols., 3^-. 6d. each.

— Analysis and Summary of. By j. t. wheeler. Small post 8vo, 5^.

VIRGIL. Translated by a. Hamilton bryce, ll.d. With Memoir and
Introduction. Small post 8vo, 3^-. dd.

Also in 6 vols., crown 8vo, sewed, \s. each.

Georgics.
Bucolics.
iEneid I. -III.

iEneidlV.-VI.
^neid VII. -IX.
iEneid X.-XII.

XENOPHON. The Works of. In 3 vols. Small post 8vo, 5^. each.

Vol. I.—The Anabasis, and Memorabilia. Translated by the rev. j. s.

WATSON, m.a. With a Geographical Commentary, by w. f. ainsworth,
F.S.A., F.R.G.S., etc.

Vol. II.—Cyropaedia and Hellenics. Translated by the rev. j. s.

WATSON, M.A., and the rev. h. dale.
Vol. III.—The Minor Works. Translated by the rev. j. s.

WATSON, M.A.

SABRINAE COROLLA In Hortulis Regiae Scholae Salopiensis con-
texuerunt tres viri floribus legendis. /^th edition, revised and re-arranged.

By the late benjamin hall Kennedy, d.d., Regius Professor of Greek
at the University of Cambridge. Large post 8vo, \os. 6d.

SERTUM CARTHUSIANUM Floribus trium Seculorum Contextum.
Cura GULiELMi haig brown, Scholae Carthusianae Archididascali.

Demy 8vo, 5j-.

TRANSLATIONS into English and Latin. By c. s. calverley, m.a.,
late Fellow of Christ's College, Cambridge. T^rd edition. Crown 8vo,
'js. 6d.

TRANSLATIONS from and into the Latin, Greek and English. By
R. C. JEBB, M.A., Regius Professor of Greek in the University of Cam-
bridge, h. JACKSON, M.A., LiTT. D., Fellows of Trinity College, Cam-
bridge, and w. E. CURREY, M.A., formerly Fellow of Trinity College,
Cambridge. Crown 8vo. 2nd edition, revised. ?>s.

GRAMMAR AND COMPOSITION.

BADDELEY. Auxilia Latina. A Series of Progressive Latin Exercises.

By M. J. B. BADDELEY, M.A. Fcap. 8vo. Part I., Accidence. 5M
edition. 2s. Part II. yh edition. 2s. Key to Part II. 2s. 6d.

BAIRD. Greek Verbs. A Catalogue of Verbs, Irregular and Defective ;

their leading formations, tenses in use, and dialectic inflexions, with a
copious Appendix, containing Paradigms for conjugation, Rules for

formation of tenses, &c., &c. By j. s. baird, t.c.d. New edition, re-

vised. 2s. 6d.

— Homeric Dialect. Its Leading Forms and Peculiarities. By j. s. baird,
T.C.D. New edition, revised. By the REV. w. gunion rutherford,
M.A., LL.D., Head Master at Westminster School. \s.

BAKER. Latin Prose for London Students. By Arthur baker,
M.A., Classical Master, Independent College, Taunton. Fcap. 8vo, 2s.
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BARRY. Notes on Greek Accents. By the right rev. a. barry,
D.D. New edition^ re-writtcn. \s.

CHURCH. Latin Prose Lessons. By a. j. church, m.a., Professor of
Latin at University College, London. ()th edition. Fcap. 8vo, 2s. 6d.

CLAPIN. Latin Primer. By the rev. a. c. clapin, m.a., Assistant

Master at Sherborne School, yd edition. Fcap. 8vo, is.

COLLINS. Latin Exercises and Grammar Papers. By t. collins,
m.a., Head Master of the Latin School, Newport, Salop. 7//; edition.

Fcap. 8vo, 2s. 6d.

— Unseen Papers in Latin Prose and Verse. "With Examination Questions.
6ih edition. Fcap. Svo, 2s. dd.

— Unseen Papers in Greek Prose and Verse. With Examination Ques-
tions, yd edition. Fcap. Svo, 3^.

— Easy Translations from Nepos, Caesar, Cicero, Livy, &c., for Retrans-
lation into Latin. With Notes. 2s.

COMPTON. Rudiments of Attic Construction and Idiom. An Intro-

duction to Greek Syntax for Beginners who have acquired some knowledge
of Latin. By the REV. w. cookworthy compton, m.a., Head Master
of Dover College. Crown Svo, 3^.

FROST. Eclogae Latinae ; or, First Latin Reading Book. With Notes
and Vocabulary by the late REV. p. frost, m.a. Fcap. Svo, \s. 6d,

— Analecta Graeca Minora. With Notes and Dictionary. New edition.

Fcap. Svo, 2s.

— Materials for Latin Prose Composition. By the late rev. p. frost,
m.a. New edition. Fcap. Svo. 2j. Key. 4j.net.

— A Latin Verse Book. New edition. Fcap. Svo, 2s. Key. 5^. net.

— Materials for Greek Prose Composition. New edition. Fcap. Svo,

2s. 6d. Key. $s. net.

— Greek Accidence. New editiott. is.

— Latin Accidence, is.

HARKNESS. A Latin Grammar. By albert harkness. Post Svo,

6s.

KEY. A Latin Grammar. By the late T. h. key, m.a., f.r.s. 6th thou-

sand. Post Svo, 8J.

— A Short Latin Grammar for Schools. i6th edition. Post Svo, 3^. 6d.

HOLDEN. Foliorum Silvula. Part I. Passages for Trarfslation into

Latin Elegiac and Heroic Verse. By H. A. holden, ll.d. nth edition.

Post Svo, ']s. 6d.

— Foliorum Silvula. Part II. Select Passages for Translation into Latin

Lyric and Comic Iambic Verse, yd edition. Post Svo, ^s.

— Foliorum Centuriae. Select Passages for Translation into Latin and
Greek Prose, loih edition. Post Svo, Sj.

JEBB, JACKSON, and CURREY. Extracts for Translation in

Greek, Latin, and English. By R. c. JEBB, litt.D., ll.d., Regius Pro-

fessor of Greek in the University of Cambridge ; H. JACKSon, litt.d.,

Fellow of Trinity College, Cambridge; and \V. E. CURREY, m.a., late

P'ellow of Trinity College, Cambridge. 4J. 6d.

Latin Syntax, Principles of. is.

Latin Versification, is.

MASON. Analytical Latin Exercises By c. p. mason, b.a. 4///

edition. Part I., is. 6d. Part II., 2s. 6d.

— The Analysis of Sentences Applied to Latin. Post Svo, is. 6d.
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NETTLESHIP. Passages for Translation into Latin Prose. Pre-
ceded by Essays on :— I. Political and Social Ideas II. Range of Meta-
phorical Expression. III. Historical Development of Latin Prose Style
in Antiquity. IV Cautions as to Orthography. By H. nettleship,
M.A., late Corpus Processor of Latin in the University of Oxford. Crown
8vo, 3i-. A Key. 4^. 6d. net.

Notabilia Quaedam ; or the Principal Tenses of most of the Irregular
Greek Verbs, and Elementary Greek, Latin, and French Constructions.
New edition. \s.

PA LEY. Greek Particles and their Combinations according to Attic
Usage. A Short Treatise. By f. a. paley, m.a., ll.d. 2j-. 6d.

PENROSE. Latin Elegiac Verse, Easy Exercises in. By the rev. j.

PENROSE. Neu) edition. 2s. (Key, 3^'. 6/. net.)

PRESTON. Greek Verse Composition. By g. preston, m.a. $tk
edition. Crown 8vo, /\.s. 6d.

PRUEN. Latin Examinati)n Papers. Comprising Lower, Middle, and
Upper School Paper<^, and a numl^er of the Woolwich and Sandhurst
Standards. By G. G. pruen, m.a.. Senior Classical Master in the Modern
Department, Cheltenham College. Crown 8vo, 2s. 6d.

SEAGEK. Faciliora. An Elementary Latin Book on a New Principle.

By the REV. J. L. seagek, m.a. 2s. 6d.

STEDMAN (A. M. M.). Fir-t Latin Lessons. By a. m. m. stedman,
M.A., Wadham College, Oxford. 2nd edition, enlarged. Crown 8vo, 2s.

— Initia Latii a. Easy Lessons on Elementary Accidence. 2nd edition.

Fcap. 8vo, \s.

— First Latin Reader. With Notes adapted to the Shorter Latin Primer
and Vocabulary. Crown 8vo, i^. dd.

— Eaby Latin Passages for Unseen Translation. 27td and enlarged'

edition. Fcap. 8vo, \s. 6d.

— Exempla Latina. First Exercises in Latin Accidence. With Vocabu-
lary. Crown 8vo, is. 6d.

— The Latin Compound Sentence ; Rules and Exercises. Crown 8vo,
15-. bd. With Vocabulary, 2s.

— Easy Latin Exerci es on the Syntax of the Shorter and Revised Latin-

Primers. With Vocabulary, yd edition. Crown 8vo, 25-. 6^'.

— Latin Examination Papers in Miscellaneous Grammar and Idioms.

yd edition. 2s. 6d. Key (for Tutors onlv), 6s. net.

— Notanda Quaedam. Miscellaneous Latin Exercises. On Common
Rules and Idioms. 2nd edition. Fcap. 8vo is. 6d. With Vocabulary, 2^.

— Latin Vocabularies for Repetition. Arranged according to Subjects.

yd edition. Fcap. 8vo, is. 6d.

— First Gieek Lesaons. [/jz preparation.
— Easy Gr :ek Passages for Unseen Translation. Fcap. 8vo, is. 6d.

— Easy Gieek Extremes on Elementary Syntax. \Jn pteparation.
— Greek Vot abularies for Repetition. Fcap. 8vo, is. 6d.

— Grt-ek Testament Selections for the Use of .Schools. 27td edition.

With Introduction, Notes, and Vocabuhoy. Fcap. 8vo, 2s. 6d.

— Gieek Examinatioa Papers in Miscellaneous Grammar and Idioms.

2nd edition. 2s. 6d. Key (for Tutors only), 6s. net.

THACKh-RAY. Anthologia Gratca. A Selection of Greek Poetry^

with Notes. By f. st. john Thackeray, ^th edition. i6mo, 4J. 6d.

B



1

8

George Bell df Sons

THACKERAY. Anthologia Latina. A Selection of Latin Poetry, from
Naevius to Boethius, with Notes. By rev. f. st. john thackeray.
6/A edition. i6mo, 4J. 6d.

— Hints and Cautions on Attic Greek Prose Composition. Crown
8vo, 3^. 6d.

— Exercises on the Irregular and Defective Greek Verbs, is. 6d.

WELLS. Tales for Latin Prose Composition. With Notes and
Vocabulary. By G. H. wells, m.a., Assistant Master at Merchant
Taylor's School. Fcap. 8vo, 2s.

HISTORY, GEOGRAPHY, AND REFERENCE BOOKS,
ETC.

TEUFFEL'S History of Roman Literature. $th edition, revised by
DR. SCHVVABE, translated by professor g. c. w. warr, m.a , King's

College, London. Medium 8vo. 2 vols. 30J-. Vol. I. (The Republican
Period), 15^. Vol. II. (The Imperial Period), 15J,

KEIGHTLEY'S Mythology of Ancient Greece and Italy. 4M edition,

revised by the late leonh.ard schmitz, PH.D., ll.d., Classical Examiner
to the University of London With 12 Plates. Small post 8vo, 5j-.

DONALDSON'S Theatre of the Greeks. 10th edition. Small post 8vo,

DICTIONARY OF LATIN AND GREEK QUOTATIONS; in-

cluding Proverbs, Maxims, Mottoes, Law Terms and Phrases. With all

the Quantities marked, and English Translations. With Index Verborum.
Small post 8vo, 5.r.

A GUIDE TO THE CHOICE OF CLASSICAL BOOKS. By j. b.

mayor, m.a.. Professor of Moral Philosophy at King's College, late

Fellow and Tutor of St. John's College, Cambridge, yd edition, with

Supplementary List. Crown 8vo, 4J-. tid. Supplement separate, i^. 6d.

PAUSANIAS' Description of Greece. Newly translated, with Notes
and Index, by A. R. SHILLETO, M.A. 2 vols. Small post 8vo, 5^. each.

STRABO'S Geography. Translated by w. falconer, m.a., and IL c.

HAMILTON. 3 vols. Small post 8vo, 5j-. each.

AN ATLAS OF CLASSICAL GEOGRAPHY. By w. hughes and
G. LONG, M.A. Containing Ten selected Maps. Imp. 8vo, 3^-.

AN ATLAS OF CLASSICAL GEOGRAPHY. Twenty-four Maps
by w. HUGHES and GEORGE LONG, M.A. With coloured outlines.

Imperial 8vo, 6s.

ATLAS OF CLASSICAL GEOGRAPHY. 22 large Coloured Maps.
With a complete Index. Imp. 8vo, chiefly engraved by the Mess? 5,

Walker, yj. (>d.
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MATHEMATICS.
ARITHMETIC AND ALGEBRA.

BARRACLOUGH (T.). The Eclipse Mental Arithmetic. By titus
BARRACLOUGH, Board School, Halifax. Standards I., II., and III.,

sewed, dd. ; Standards II., III., and IV., sewed, (>d, net ; Book III.,

Part A, sewed, 4<-/. ; Book III., Part B, cloth, \s. 6d.

BEARD (W. S.). Graduated Exercises in Addition (Simple and Com-
pound). For Candidates for Commercial Certificates and Civil Service
appointments. By w. s. beard, f.r.g.s.. Head Master of the Modern
School, Fareham. O-nd edition. Fcap. 4to, \s.— See PENDLEBURY.

ELSEE (C.). Arithmetic. By the rev. c. elsee, m.a., late Fellow of
St. John's College, Cambridge, Senior Mathematical Master at Rugby
School. 14M edition. Fcap. 8vo, 3^. 6d.

[ Camb. School and College Texts.— Algebra. By the rev. c. elsee, m.a. 2,tk edition. Fcap. 8vo, 4J.

{Camb. S. and C. Texts.

FILIPOWSKI (H. E.). Anti-Logarithms, A Table of. By h. e.

FILIPOWSKI. yd edition. 8vo, 15J.

GOUDIE (W. P.). Sec Watson.
HATHORNTHWAITE (J. T.). Elementary Algebra for Indian

Schools. By j. t. hathornthwaite, m.a.. Principal and Professor
of Mathematics at Elphinstone College, Bombay. Crown Svo, 2s.

HUNTER (J.). Supplementary Arithmetic, with Answers. By rev.

J. HUNTER, M.A. Fcap. 8vo, 3^.

MACMICHAEL (W. F.) and PROWDE SMITH (R.). Algebra.
A Progressive Course of Examples. By the rev. w. f. macmichael,
and R. PROWDE smith, m.a. ^h edition. Fcap. 8vo, 3J. 6d. With
answers, /^. 6d. [Camb. S. and C. Texts.

MATHEWS (G. B.). Theory of Numbers. An account of the Theories
of Congruencies and of Arithmetical Forms. By G. B. mathews, m.a..

Professor of Mathematics in the University College of North Wales.
Part I. Demy 8vo, I2s.

PENDLEBURY (C). Arithmetic. With Examination Papers and
8,000 Examples. By Charles pendlebury, m.a., f.r.a.s.. Senior
Mathematical Master of St. Paul's, Author of " Lenses and Systems of

Lenses, treated after the manner of Gauss." yt/i edition. Crown Svo.

Complete, with or without Answers, 4^. dd. In Two Parts, with or

without Answers, "zs. 6d. each.

Key to Part II. ^s. 6d. net. [Camb. Matk. Ser.

— Examples in Arithmetic. Extracted from Pendlebury's Arithmetic.

With or without Answers, ^th edition. Crown Svo, 3^., or in Two Parts,

I J. td. and is. [Camb. Math. Set:
— Examination Papers in Arithmetic. Consisting of 140 papers, each

containing 7 questions ; and a collection of 357 more difficult problems.

2nd edition. Crown Svo, 2s. 6d. Key, for Tutors only, 5^. net.
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PENDLEBURY (C.) and TAIT (T. S.). Arithmetic for Indian
Schools. By c. pendlebury, m.a. and t. s. tait, m.a., b.sc.
Principal of Baroda College. Crown 8vo, 3^. {Camb. Math. Ser.

PENDLEBURY (C.) and BEARD (W. S.). Arithmetic for the

Standards. By c. PENDLEBURY, M.A., F.R.A.s., and vv. s. beard,
F.R.G.s. Standards I., II., III., 2^. each ; IV., V., VI., ^d. each. VII.,

in the Press.

— Elementary Arithmetic, yd editio7i. Crown 8vo, is. 6d.

POPE (L.J.). Lessons in Elementary Algebra. By L. j. pope, b.a.

(Lond.), Assistant Master at the Oratory School, Birmingham. First

Series, up to and including Simple Equations and Problems. Crown 8vo,

IS 6d.

PROWDE SMITH (R.). See Macmichael.
SHAW (S. J. D.). Arithmetic Papers. Set in the Cambridge Higher

Local Examination, from June, 1869, to June, 1887, inclusive, reprinted

by permission of the Syndicate By S. j D. shaw. Mathematical
Lecturer of Newnham College. Crown 8vo, 2s. 6d. ; Key, 4J. 6d. net.

TAIT (T. S.). See Pendlebury.

WATSON (J.) and GOUDIE (W. P.). Arithmetic. A Progressive

Course of Examples With Answers. By J. WATSON, M.A., Corpus
Christi College, Cambridge, formerly Senior Mathematical Master of the

Ordnance School, Carshalton. 'jth edition^ revised and enlarged. By w.
p. GOUDIE, B.A. Lond. Fcap. 8vo, is. 6d. [Camd. S. and C. Texts.

WHITWORTH (W. A.). Algebra. Choice and Chance. An Ele-

mentary Treatise on Permutations, Combinations, and Probability, with

640 Exercises and Answers. By w. A. whitworth, m.a., Fellow of

St. John's College, Cambridge. /[tk edition, revised and enlarged.

Crown 8vo, ds. [Cafnb. Math. Ser.

WRIGLEY (A.) Arithmetic. By a. wrigley, m.a , St. John's College.

Fcap. 8vo, y. 6d. [Ca?nb. S. and C. Texts.

BOOK-KEEPING.

CRELLIN (P.). A New Manual of Book-keeping, combining the

Theory and Practice, with Specimens of a set of Books. By phillip
CRELI.IN, Chartered Accountant. Crown 8vo, 3^-. 6d.

— Book-keeping lor Teachers and Pupils. Crown 8vo, is. 6d. Key,
2s. net.

FOSTER (B. W.). Double Entry Elucidated. By b. w. foster.
14//^ edition. Fcap. 4to, 3^. dd.

MEDHURST (J. T.). Examination Papers in Book-keeping. Com-
piled by JOHN T. MEDHURST, A.K.C., F.S.S., F'ellow of the Society of

Accountants and Auditors, and Lecturer at the City of London College.

yd edition. Crown 8vo, y.
THOMSON (A. W.). A Text-Book of the Principles and Practice

of Book-keeping. By professor a. w. Thomson, b.sc, Royal
Agricultural College, Cirencester. Crown 8vo, ^s.
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GEOMETRY AND EUCLID.

BESANT (W. H.). Geometrical Conic Sections. By w. h. besant,
SCD., F. R.S., Fellow of St. John's College, Cambridge. 8//^ edition.

Fcap. 8vo, 4J-. 6^. Enunciations, separately, sewed, \s.

\^Canib. S. and C. Texts.

BRASSE (J.). The Enunciations and Figures of Euclid, prepared for

Students in Geometry By the rev. j. brasse, d.d. New edition.

Fcap. Svo, IS. Without the Figures, 6d.

DEIGHTON (H.). Euclid. Books I.-VI., and part of Book XL, newly
translated from the Greek Text, with Supplementary Propositions,

Chapters on Modern Geometry, and numerous Exercises. By Horace
DEIGHTON, M.A., Head Master of Harrison College, Barbados. T,rd

edition. 4J. dd. Key, for tutors only, 5J. net. [Cafnb. Math. Ser.

Also issued in parts :—Book I., is. ; Books I. and II., is. 6d. ; Books
I.-HL, 2s. 6d. ; Books HI. and IV., i^. 6d.

DIXON (E. T.). The Foundations of Geometry. By edward t.

DIXON, late Royal Artillery. Demy Svo, 6s.

MASON (C. P.). Euclid. The First Two Books Explained to Beginners.

By C. p. MASON, B.A. 2nd edition. Fcap. Svo, 2s. 6d.

McDowell (J.) Exercises on Euclid and in Modern Geometry, con-

taining Applications of the Principles and Processes of Modern Pure
Geometry. By the late j. Mcdowell, m.a., f.r.a.s., Pembroke College,

Cambridge, and Trinity College, Dublin. 4M edition, ds.

\Camb. Math. Ser.

TAYLOR (C). An Introduction to the Ancient and Modern Geo-
metry of Conies, with Plistorical Notes and Prolegomena. 15J.

— The Elementary Geometry of Conies. Bye. taylor, d.d., Master

of St. John's College. 7M edition, revised. With a Chapter on the Line

Infinity, and a new treatment of the Hyperbola. Crown Svo, 4^. 6d.

\_Camb. Math. Ser.

WEBB (R.). The Definitions of Euclid. With Explanations and

Exercises, and an Appendix of Exercises on the First Book by R. webb
M.A. Crown Svo, is. 6d.

WILLIS (H. G.). Geometrical Conic Sections. An Elementary

Treatise. By h. g. willis, m.a., Clare College, Cambridge, Assistant

Master of Manchester Grammar School. Crown Svo, 5^.

{Cafub. Math. Ser.

ANALYTICAL GEOMETRY, ETC.

ALDIS (^A^. S.). Solid Geometry, An Elementary Treatise on. By w.

s. ALDIS, M.A., late Professor of Mathematics in the University College,

Auckland, New Zealand. i\.th edition, revised. Crown Svo, 6s.

[Camb. Math. Ser.

BESANT (W. H.). Notes on Roulettes and Glissettes. By w. h.

BESANT, SCD., F.R.S. 2nd edition, enlarged. Crown Svo, 5j.

[Camb. Math. Ser.



2 2 George Bell& Sons*

CAYLEY (A.). Elliptic Functions, An Elementary Treatise on. By
ARTHUR CAYLEY, Sadlcrlan Professor of Pure Mathematics in the Univer-
sity of Cambridjre. Demy 8vo. //t'7C> edition in the Press.

TURNBULL (W. P.). Analytical Plane Geometry, An Introduction

to. By vv. r. turnbull, m.a., sometime Fellow of Trinity College.

8vo, I2J-.

VYVYAN (T. G.). Analytical Geometry for Schools. By rev. t.

VVVYAN, M.A., Fellow of Gonville and Caius College, and Mathematical
Master of Chartei'house. 6//; edition. 8vo, 4^. ^d.

{Camb. S. and C. Texts.

— Analytical Geometry for Beginners. Part I. The Straight Line and
Circle. Crown 8%'o, 2s. 6d. [Cnmk Math. Ser.

WHITWORTH (W. A.). Trilinear Co-ordinates, and other methods
of Modern Analytical Geometry of Two Dimensions. By W. A. WHIT-
WORTH, M.A., late Professor of Mathematics in Queen's College, Liver-

pool, and Scholar of St. John's College, Cambridge. 8vo, i6s.

TRIGONOMETRY.
DYER J. M.) and WHITCOMBE (R. H.). Elementary Trigono-

metry. By J. M. DYER, M.A. (Senior Mathematical Scholar at Oxford),

and REV. R. H. WHITCOM15E, Assistant Masters at Eton College. 2nd
edition. Crown 8vo, 4X. 6d. lCam/>. Math. Ser.

VYVYAN (T. G.). Introduction to Plane Trigonometry. By the

REV. T. G. VYVYAN, M. A., formerly Fellow of Gonville and Caius College,

Senior Mathematical Master of Charterhouse. yd edition, revised and
augmented. Crown 8vo, y. 6d. {Camb. Math. Ser.

WARD (G. H.). Examination Papers in Trigonometry. By G. H.

WARD, M.A., Assistant Master at St. Paul's School. Crown 8vo, 2s. 6d.

Key, ^s. net.

MECHANICS AND NATURAL PHILOSOPHY.

ALDIS (W. S.). Geometrical Optics, An Elementary Treatise on. By
w. s. ALDIS, M.A. ^th edition. Crown 8vo, 45. {Camb. Math. Ser.

— An Introductory Treatise on Rigid Dynamics. Crown 8vo, 4^.

[Camb. Math. Ser.

— Fresnel's Theory of Double Refraction, A Chapter on. 2nd edition^

revised. 8vo, 2s.

BASSET (A. B.). A Treatise on Hydrodynamics, with numerous
Examples. By A. k. basset, m.a., f.R.s., Trinity College, Cambridge.
Demy 8vo. Vol. I., price \os. 6d. ; Vol. II., 12s. 6d.

— An Elementary Treatise on Hydrodynamics and Sound. Demy
8vo, ys. 6d.

— A Treatise on Physical Optics. Demy 8vo, i6s.

BESANT (W. H.). Elementary Hydrostatics. By w. h. besant,
sc. D., F.R.S. 16th edition. Crown 8vo, 45. 6d. Solutions, 5^.

[Camb. Math. Ser.

— Hydromechanics, A Treatise on. Part I. Hydrostatics, ^th edition

revised, and enlarged. Crown 8vo, ^s. [Camb. Math. Ser.
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BESANT (W. H.). A Treatise on Dynamics. 2nd edition. Crown
8vo, lOi'. 6d. {^Carnb. Math. Ser.

CHALLIS (PROF.). Pure and Applied Calculation. By the late

REV. J. CHALLIS, M.A., F.R.S., &c. Demy 8vo, 15J.

— Physics, The Mathematical Principle of. Demy 8vo, ^s.

— Lectures on Practical Astronomy. Demy 8vo, \qs.

EVANS (J. H.) and MAIN (P. T.). Newton's Principia, The First

Three Sections of, with an Appendix ; and the Ninth and Eleventh

Sections. By j. H. evans, m.a., St. John's College. The ^th edition^

edited by P. T. MAIN, M.A., Lectm-er and Fellow of St. John's College.

Fcap. 8vo, 4J. [Camb. S. and C. Texts.

GALLATLY (W.). Elementary Physics, Examples and Examination
Papers in. Statics, Dynamics, Hydrostatics, Heat, Light, Chemistry,

Electricity, London Matriculation, Cambridge B.A., Edinburgh, Glasgow,

South Kensington, Cambridge Junior and Senior Papers, and Answers.

By w. GALLATLY, M.A., Pembroke College, Cambridge, Assistant

Examiner, London University. Crown 8vo, 45. [Ca?rib. Math. Ser.

GARNETT (W.), Elementary Dynamics for the use of Colleges and
Schools. By william garnett, m.a., d.c.l., Fellow of St. John's

College, late Principal of the Durham College of Science, Newcastle-upon-

Tyne, ^th edition, revised. Crown 8vo, 6s. \^Camb. Math. Ser.

— Heat, An Elementaiy Treatise on. dth edition, revised. Crown 8vo,

4i'. 6d. [Camb. Math. Ser.

GOODWIN (H.). Statics. By h. goodwin, d.d., late Bishop of

Carlisle. 2nd edition. Fcap. 8vo, 3^. [Camb. S. and C. l^exts.

HOROBIN (J. C). Elementary Mechanics. Stage I. II. and III.,

IS. 6d. each. By j. c. horobin, m.a., Principal of Homerton New
College, Cambridge.

— Theoretical Mechanics. Division I. Crown 8vo, 2s. 6d.
* ^* This book covers the ground ofthe Elementary Stage of Division I.

of Subject VI. of the " Science Directory," and is intended for the

examination of the Science and Art Department.

JESSOP (C. M.). The Elements of Applied Mathematics. In-

cluding Kinetics, Statics and Hydrostatics. By C. M. jessop, m.a., late

Fellow of Clare College, Cambridge, Lecturer in Mathematics in the

Durham College of Science, Newcastle-on-Tyne. Crown 8vo, 6s.

[Camb. A/ath. Ser.

MAIN (P. T.). Plane Astronomy, An Introduction to. By p. t. main,

M.A., Lecturer and Fellow of St. John's College. 6th edition, revised.

Fcap. 8vo, 4^. {Camb. S. and C. Texts.

PARKINSON (R. M.). Structural Mechanics. By r. m. Parkinson,

ASSOC. M.T.c.E. Crown 8vo, 4^. 6d.

PENDLEBURY (C). Lenses and Systems of Lenses, Treated after

the Manner of Gauss. By Charles penolebury, m.a., f.r.a.s., Senior

Mathematical Master of St. Paul's School, late Scholar of St. John's

College, Cambridge. Demy 8vo, 5^.

STEELE (R. E.). Natural Science Examination Papers. By
R. e. STEELE, M.A., F.C.S., Chief Natural Science Master, Bradford

Grammar School. Crown 8vo. Part L, Inorganic Chemistry, 2s. 6d.

Part II., Physics (Sound, Light, Heat, Magnetism, Electricity), 2s. 6d.

{School Exam. Series.
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WALTON (W.). Theoretical Mechanics, Problems in. By w. Wal-
ton, M.A , Fellow and Assistant Tutor of Trinity Hall, Mathematical
Lecturer at Magcialene Coliege. ^t^d edition, revised. I )emy 8vo, Yds.

— Elementary Mechanics, Problems in. ind edition. Crown 8vo, 6j.

\Camb. Math. Ser.

DAVIS (J. F.). Army Mathematical Papers. Being Ten Years'

Woolwich and Sandhurst Preliminary Papers. Edited, with Answers, by

J. F. DAVIS. D.LIT., M.A. Lond. Crown 8vo, is. 6d.

DYER (J. M.) and PROWDE SMITH (R.). Mathematical Ex-
amples. A Collection of Examples in Arithmetic, Algebra, Trigono-
metry, Mensuration, Theory of Equation'?, Analytical Geometry, Statics,

Dynamics, with Answers, &c. For Army and Indian Civil Service

Candidates. By J. M. DYER, M.A., Assistant Master, Eton College

(Senior Mathematical Scholar at Oxford), and R. prowde smith, m a.

Crown 8vo, 6^. \^Camb. Math. Ser.

GOODWIN (H.). Problems and Examples, adapted to "Goodwin's
Elementary Course of Mathematics." By T. G. VYVYAN, M.A. yd
edition. 8vo, ^s. ; Solutions, T^rd edition, 8vo, pj.

SMALLEY (G. R.). A Compendium of F^cts and Formulae in

Pure Mathemat cs and Natural Philosophy. By G. R. smalley,
F. R.A.s. New edition, reiised and enlarged. By J. Mcdowell, m.a.,

F. R.A.s. F"cap. 8vo, IS.

WRIGLEY (A.). Collection of Examples and Problems in Arith-

metic, Algebra, Geometry, Logarithms, Trigonometry, Conic Sections,

Mechanics, &c., with Answers and Occasional Hints. By the REV. A.

WRIOLEY. loM edition, loih thousand. Demy 8vo, 8j. dd.

A Key. By j. c. plati'S, m.a. and the rev. a. wrigley. 2nd edition.

Demy 8vo, loj. 6d.

MODERN LANGUAGES.
ENGLISH.

ADAMS (E.). The Elements of the English Language. By ernest
ADAMS, PH.D. 26/h edition. Revised by j. F. davis, d.LIT., M.a.,

(lond.). Post 8vo, 4J. 6d.

— The Rudiments of English Grammar and Analysis. By ernest
ADAMS, PH.D. igth thousand. Fcap. 8vo, is.

ALFORD (DEAN). The Queen's English: A Manual of Idiom and
Usage. By the late henry alford, d.d., Dean of Canterbury. 6th

edition. Small post 8vo. Sewed, is., cloth, is. 6d.

ASCHAM'S Scholemaster. Edited by professor j. e. b. mayor. Small
post 8vo, sewed, is.

BELL'S ENGLISH CLASSICS. A New Series, Edited for use in

Schools, with Introduction and Notes. Crown Svo.

JOHNSON'S Life of Addison. Edited by f. kylanu, Author of "The Students'

Handbook of Psychology," etc. 2s. 6d.

— Life of Swift. Edited by f. ryland, m.a. 2s.
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BELL'S ENGLISH C\.P^^^\Z^—continued.
JOHNSON'S Life of Pope. Edited by f. ryland, m.a. aj. 6a.
— Lrife of Milton. Edited by k. ryland, m.a. 2j. dd.
— Life of Dryden. Edited by v. ryland, m.a. [Preparing.
LAMB'S Essays. Selected and Edited by k. deighton. 3^. ; sewed, 2j.

BYRON'S Childe Harold. Edited by h. g. keene, m.a., c.i e., Author of "A
Manual of French Literature," etc. 3^. 6d. Also Cantos L and IL separately ;

sewed, is. gd.
— Siege of Corinth. Edited by p. hordern, late Director of Public Instruction in

Burma, is. 6d ; sewed, is.

MACAU LAY'S Lays of Ancient Rome. Edited by p. hordern. 2s. 6d. ;

sewed, u. gd.

MASSINGEK'S A New Way to Pay Old Debts. Edited by k. deighton.
3^. ; sewed, 2s.

BURKE'S Letters on a Regicide Peace. I. and IL Edited by h. g. keene,
m.a., c.i.e. 35-. ; sewed, 2s.

MILTON'S Paradise Regained. Edited by k. deighton. 25. 6d. ; sewed,
IS. gd.

SELECTIONS FROM POPE. Containing Essay on Criticism, Rape of the

Lock, Temple of Fame, Windsor Forest. Edited by k. deighton. 2S. 6d.
;

sewed, is. gd.

GOLDSMITH'S Good-Natured Man and She Stoops to Conquer. Edited
by K. deighton. Each, 2^. cloth ; is. 6d. sewed.

DE QUINCEY, Selections from. The English Mail-Coach and The
Revolt of the Tartars. Edited by cecil m. barkow, m.a., Principal of

Victoria College, Palghat. [In the press.

MILTON'S Paradise Lost. Books I. and II. Edited by r. g. oxenham, m.a.,
Principal of Elphinstone College, Bombay. [Preparing.

— Books III. and IV. Edited by r. g. oxenham. [Preparing.

SELECTIONS FROM CHAUCER. Edited by j. b. bilderbeck, b.a.,

Professor of English Literature, Presidency College, Madras. [Preparing.

MACAU LAY'S Essay on Clive. Edited by cecil barrow, m.a. [Preparing.
BROWNING'S Strafford. Edited by e. h. hickey. With Introduction by

S. R. GARDINER, I.I..D. Q.S. 6d.
SHAKESPEARE'S Julius Caesar. Edited by t. duff barnett, b.a. (Lond.).

— Merchant of Venice. Edited by t. duff barnett, B.y

— Tempest. Edited by t. duff barnett, b.a. (Load.).

Others to/olloiv.

(Lond.). 2S.

BELL'S READING
Infants.

Infant's Primer. 3//.

Tot and the Cat. 6d.

The Old Boathouse.
The Cat and the Hen.

BOOKS.

6d.

6d

Standard I.

School Primer. 6d.

The Two Parrots. 6d.

The Three Monkeys. 6d.

The New-born Lamb. 6d.

The Blind Boy. 6d.

Standard II.

The Lost Pigs. 6d.

Story of a Cat. td.

Queen Bee and Busy Bee. ed

Post 8vo, cloth, illustrated.

Gull's Crag. ed.

Great Deeds in English History.
is.

Standard III.

Adventures of a Donkey, is.

Grimm's Tales, is.

Great Englishmen, is.

Andersen's Tales, is.

Life of Columbus, is.

Standard IV.
Uncle Tom's Cabin, is.

Great Englishwomen, is.

Great Scotsmen, is.

Edgewoith's Tales, is.

Gatty's Parables from Nature, is.

Scott's Talisman, is.
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BELL'S READING 'QOO'Vi^—continued.

Standard V.
nickens' Oliver Twist, ix.

Dickens' Little Nell. \s.

Masterman Ready, ij.

Marryat's Poor Jack. u.
Arabian Nights. \s.

Gulliver's Travels. \s.

Lyrical Poetry for Boys and Girls.

\s.

Vicar of Wakefield. \s.

Standards VL and VIL
Lamb's Tales from Shakespeare.

Robinson Crusoe. \s.

Tales of the Coast. \s.

Settlers in Canada, i.r.

Southey's Life of Nelson. \s.

Sir Roger de Coverley. \s.

BELL'S GEOGRAPHICAL READERS.
WARD, M A. (Worcester College, Oxford).

By M. J. BARRINGTON-

The Child's Geography. Illus-

trated. Stiff paper cover, dd.

The Map and the Compass.
(Standard I ) Illustrated. Cloth,

The Round World. (Standard II.)

Illustrated. Cloth, \od.

About England. (Standard III.)

With Illustrations and Coloured
Map. Cloth, \s. 4^.

EDWARDS (F.). Examples for Analysis in Verse and Prose from
well-known sources, selected and arranged by F. edvvards. New edition.

Fcap. 8vo, cloth, \s.

GOLDSMITH. The Deserted Village. Edited, with Notes and Life,

by c. P. MASON, B.A., F.c.P. d^th editio7t. Crown 8vo, \s.

HANDBOOKS OF ENGLISH LITERATURE. Edited by j. w.
HALES, M.A., formerly Clark Lecturer in English Literature at Trinity

College, Cambridge, Professor of English Literature at King's College,

London. Crown 8vo, 3J'. dd. each.

The Age of Pope. By john dennis. \Rcady.

hi preparation.

The Age of Chaucer. By professor hales.
The Age of Shakespeare. By professor hales.
The Age of Milton. By j. bass mullinger, m.a.
The Age of Dryden. By v^^ garnett, ll.d.
The Age of W^ordsworth. By professor c. h. herford, litt.d

Other volumes to follo^v.

HAZLITT (^V.\ Lectures on the Literature of the Age of Elizabeth.
Small post Svo, sewed, \s.

- Lectures on the English Poets. Small post Svo, sewed, is.

— Lectures on the English Comic Writers. Small post Svo, sewed, \s.

LAMB (C). Specimens of English Dramatic Poets of the Time of
Elizabeth. With Notes, together with the Extracts from the Garrick

Plays.

MASON (C. P.). Grammars by C. P. MASON, B.A., F.C.P., Fellow of

University College, London,
— First Notions of Grammar for Young Learners. Fcap. Svo. 85M

thousand. Cloth, is.

— - First Steps in English Grammar, for Junior Classes. Demy iSmo. 54/A

thousand, is.
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MASON (C. P.). Outlines of English Grammar, for the Use of Junior
Classes. I'jih edition. <y]th tJioiisand. Crown 8vo, 2^.

— English Grammar ; including the principles of Grammatical Analysis.

35M edition, revised. 148//^ thotisand. Crown 8vo, green cloth, 3^-. 6(/.

— A Shorter English Grammar, with copious and carefully graduated
Exercises, based upon the author's English Gi-ammar. <^th edition. /\<)tk

thousand. Crown 8vo, brown cloth, 3^-. 6d.

— Practice and Help in the Analysis of Sentences. Piice 2s. Cloth.

— English Grammar Practice, consisting of the Exercises of the Shorter
English Grammar published in a separate form, ^^d edition. Crown 8vo,

IS.

— Remarks on the Subjunctive and the so-called Potential Mood.
6d., sewn.

— Blank Sheets Ruled and headed for A nalysis. \s. per dozen.

MILTON : Paradise Lost. Books I., II., and III. Edited, with Notes
on the Analysis and Parsing, and Explanatory Remarks, by C. P. MASON,
B.A., F.c.P. Crown 8vo.

Book I. With Life. $th edition, is.

Book II. With Life, yd edition, is.

Book III. With Life. 2nd edition, is.

— Paradise Lost. Books V -VIII. With Notes for the Use of Schools.

Bye. M. LUMBY. 2s.6d..

PRICE (A. C.\ Elements of Comparative Grammar and Philology.
For Use in Schools. By a. c. price, m.a., Assistant Master at Leeds
Grammar School ; late Scholar of Pembroke College, Oxford. Crown
8vo, 2s. 6d.

SHAKESPEARE. Notes on Shakespeare's Plays. With Introduction,

Summary, Notes (Etymological and Explanatory), Prosody, Grammatical
Peculiarities, etc. By T. duff barnett, b.a. Lond., late Second
Master in the Brighton Grammar School. Specially adapted for the Local

and Preliminary Examinations. Crown 8vo, is. each.

Midsummer Night's Dream.—Julius Caesar.—The Tempest.

—

Macbeth.—Henry V.— Hamlet.— Merchant of Venice.— King
Richard II.—King John.—King Lear.—Coriolanus.

**The Notes are comprehensive and concise.''

—

Educational Times.

"Comprehensive, practical, and reliable."

—

Sckoohnaster.

-- Hints for Shakespeare-Study. Exemplified in an Analytical Study ot

Julius Caesar. By mary grafton moberly. 2nd edition. Crown 8vo,

sewed, is.

— Coleridge's Lectures and Notes on Shakespeare and other English
Poets. Edited by t. ashe, b.a. Small post 8vo, 3^-. 6d.

— Shakespeare's Dramatic Art. The History and Character of Shake-

speare's Plays. By DR. HERMANN ULRici. Translated by L. dora
SCHMITZ. 2 vols, small post 8vo, 3^. 6d. each.

— William Shakespeare. A Literary Biography. By KARL elze, ph.d.,

LL.D. Translated by L. DORA SCHMITZ. Small post 8vo, 5^.

— Hazlitt's Lectures on the Characters of Shakespeare's Plays. Small

post 8vo, IS.

.9<ftf BELL'S ENGLISH CLASSICS.
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SKEAT (W. W.). Questions for Examinations in English Litera-
ture. With a I'reface containinir brief hints on the study of English.

Arranged by the REV. w. w. skp:at, litt. d., EIrington and Bosworth
Professor of Anglo-Saxon in the University of Cambridge, yd edition.

Crown 8vo, is. 6d.

SMITH (C.J.) Synonyms and Antonyms of the English Language.
Collected and Contrasted by the ven. c. j. smith, m.a. 2nd edition,

revised. Small post 8vo, ^s.

— Synonyms Discriminated. A Dictionary of Synonymous Words in the

English Language. Illustrated with Quotations from Standard Writers.

By the late VEN. C. J. smith, m.a. With the Author's latest Corrections

and Additions, edited by the rev. h. Percy smith, m.a., of Balliol

College, Oxford, Vicar of Great Barton, Suffolk. 4M edition. Demy
8vo, I4r.

TEN BRINK'S History of English Literature. Vol. L Early English

Literature (to Wiclif). Translated into English by HORACE M. KENNEDY,
Professfir of German Literature in the Brooklyn Collegiate Institute.

Small post Svo, 3^. 6d.

— Vol. II. (Wiclif, Chaucer, Earliest Drama, Renaissance). Translated by
vv. CLARKE ROBINSON, PH.D. Small post Svo, ^s. 6d.

THOMSON: Spring. Edited by c. P. mason, b.a., f.c.p. With Life.

2nd edition. Crown Svo, \s.

— Winter. Edited by c. P. mason, B. A., f.c.p. With Life. Crown Svo, \s.

WEBSTER'S INTERNATIONAL DICTIONARY of the English

Language. Including Scientific, Technical, and Biblical Words and
Terms, with their Significations, Pronunciuions, Alternative Spellings,

Derivations, Synonyms, and numerous illustrative Quotations, with various

valuable literary Appendices, with S3 extra pages of Illustrations grouped
and classified, rendering the work a Complete Literary and Scientific
Reference- Book. New edition (1890). Thoroughly revised and en-

larged under the supervision of noah porter, d.d., ll.d. i vol. (2,118

pages, 3,500 woodcuts), 4to, cloth, 3IJ. dd. ; half calf, £2 2s. ; halfrussia,

£,2 5j. ; calf, £2 ^s. ; or in 2 vols, cloth, £\ 14J.

Prospectuses^ with speci?nen pages, sent post free on application.

WEBSTERS BRIEF INTERNATIONAL DICTIONARY. A
Pronouncing Dictionary of the Knglish Langunge, abridged fiom WeV)ster's

International Dictionary. With a Treatise on Pronunciation, Li>-t of

Prefixes and Suffixes, Rules for Spelling, a Pronouncing Vocabulary of

Proper Names in History, Geography, and Mythology, and Tables of

English and Indian Money, Weights, and Measures. With 564 pages
and Sec Illustrations. Demy Svo, 35.

WRIGHT (T.). Dictionary of Obsolete and Provincial English.
Containing Words from the English Writers previous to the 19th century,

which are no longer in use, or are not used in the same .sense, and Words
which are now used only in the Provincial Dialects. Compiled by thomas
WRlcMiT, M.A., F.S.A., etc. 2 vol.s. 5^. each.
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FRENCH CLASS BOOKS.

BOWER (A. M.). The Public Examination French Reader. With
a Vocabulary to every extract, suitable for all Students who are preparing
for a French Examination. By A. M. bower, F.r.g.S., late Master in

University College School, etc. Cloth, 3^. dd.

BARBIER (PAUL). A Graduated French Examination Course.
By PAUL BARBIER, Lecturer in the South Wales University Colleji^e, etc.

Crown 8vo, 3^'.

BARRERE (A.) Junior Graduated French Course. Affording Mate-
rials for Translation, Grammar, and Conversation. By A. barrere.
Professor R.M.A., W oolwich. \s. dd.

— Elements ot French Grammar and First Steps in Idioms. With
numerous Exercises and a Vocabulary. Being an Introduction to the
Precis of Comparative French Grammar. Crown 8vo, 2.s.— Precis of Comparative French Grammar and Idioms and Guide to
Exammations. i^th edition. 3^. dd.

— Recits Militaire^. From Valmy (1792) to the Siege of Paris (1870).
With English Notes and Biographical Notices, ind edition. Crown
Svo, 3J.

CLAPIN (A. C). French Grammar for Public Schools. By the

rev. a. C, CLAPIN, RLA., St. John's College, Cambridge, and Bachelier-

es-lettres of the University of France. Fcap. Svo. 13M edition, is. 6d.

Key 'o I he Exen i-es. 3X. 6d. net.

— French Piimer. Elementary French Grammar and Exercises for Junior
Forms in Public and Preparatory Schools. Fcap. Svo. lo/h edition, is.

— Primer of French Philology. With Exercises for Public Schools.

6th edition. Fcap. Svo, is.

— English Passages for Translation into French. Crown Svo, 2s. 6d.

Key {for Tutors only), 45. net.

DAVIS fj. F.) Arriiv Exam natir.n Papers in French. Questions set

at the Preliminary Examinations for Sandhurst and Woolwich, from Nov.,
1S76, to June, 1890, with Vocabulary. By j. F. DAVIS, D.LIT., M.A.,

Lond. Crown Svo, 2s. 6d.

DAVIS (J. F.) and THOMAS (F.). An Elementary French
Reader. Compiled, with a Vocabulary, by J. F. davis, m.a., d.lit.,

and FERDINAND THOMAS, Assistant Examiners in the University of

London. Crown Svo, 2s.

DELILLE'S GRADUATED FRENCH COURSE.
Repertoire des Prosateurs. 3^. 6d.

Modeles de Poe^ie. 3^-. 6d.

Manuel Etymologique. 2s. bd.

Synoptical Table of French
Verbs. 6d.

The Beginner'sown French Book.
2s. Key, 2s.

Easy French Poetry for Be-
ginners. 2S.

French Grammar. 3.C. Key, 3^.

GASC (F. E. A,). First French Book; being a New, Practical, and
Easy Method of Learning the Elements of the French Language. Heset

and thoroughly 7-e7'ised. iidth thousand. Crown Svo, is.

— Second French Book; being a Grammar and Exercise Book, on a new
and practical plan, and intended as a sequel to the " First French Book."
^2nd thousand. Fcap. Svo, \s. 6d.
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GASC (F. E. A.). Key to First and Second French Books, ^th edition,

Fcap. Svo, 3^. dd. net.

— French Fables, for Beginners, in Prose, with an Index of all the Words
at the end of the work. i6M thousand. i2mo, \s. 6d.

— Select Fables of La Fontaine. 19/// thousand. Fcap. Svo, i,r. 6d.

— Histoires Amusantes et Instructives ; or, Selections of Complete
Stories from the best French modern authors, who have written for the
young. With English notes. 17M thousand. Fcap. Svo, 2J.

— Practical Guide to Modern French Conversation, containing:—
I. The most current and useful Phrases in Everyday Talk. II. Every-
body's necessary Questions and Answers in Travel-Talk. \<^th edition.

Fcap. Svo, \s. 6d.

— French Poetry for the Young. With Notes, and preceded by a few
plain Rules of French Prosody, ^th edition^ revised. Fcap. Svo, is. 6d.

— French Prose Composition, Materials for. With copious footnotes, and
hints for idiomatic renderings. 2ist thousand. Fcap. Svo, y.

Key. ind edition, ds. net.

— Prosateurs Contemporains ; or. Selections in Prose chiefly from con-

temporary French literature. With notes, lith edition. l2mo, 3^. 6^.

— Le Petit Compagnon ; a French Talk-Book for Little Children. 14//^

edition. i6mo, \s. 6d.

— French and English Dictionary, with upwards of Fifteen Thousand
new words, senses, &c., hitherto unpublished, ^th edition, with numerotis
additions and corrections. In one vol. Svo, cloth, los. 6d, In use at

Harrow, Rugby, Shrewsbury, &c.

— Pocket Dictionary of the French and English Languages ; for the every-

day purposes of Travellers and Students. Containing more than Five
Thousand modern and current words, senses, and idiomatic phrases

and renderings, not found in any other dictionary of the two languages.

New edition, ^ist thousand. lOmo, cloth, 2s. dd.

GOSSET (A.). Manual of French Prosody for the use of English

Students. By ARTHUR gosset, m.a., Fellow of New College, Oxford.

Crown Svo, 3^.

"This is the very book we have been looking for. We hailed the title

with delight, and were not disappointed by the perusal. The reader who
has mastered the contents will know, what not one in a thousand of

Englishmen who read French knows, the rules of French poetry."

—

Journal of Education.

LE NOUVEAU TRESOR ; designed to facilitate the Translation of

P^nglish into French at Sight. By M. E. .s. iSM edition. P'cap. Svo,

IS. 6d.

STEDMAN (A. M. M.). French Examination Papers in Miscel-

laneous Grammar and Idioms. Compiled by a. m. m. stedman, ma.
5/// edition. Crown Svo, 2s. 6d.

A Key. By G. A. schrumpf. For Tutors only. 6^^. net.

— Easy French Passages for Unseen Translation. F'cap. Svo, is. 6d.

— Easy French Exercises on Elementary Syntax. Crown Svo, 2s. 6d.

— First French Lessons. Crown Svo, is.

— French Vocabularies for Repetition. Fcap. Svo, is.

— Steps to French. i2mo, 2>d.
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FRENCH ANNOTATED EDITIONS.

BALZAC. Ursule Mirouet. By honors de balzac. Edited, with
Introduction and Notes, by JAMES BOIELLE, B.-es-L., Senior French
Master, Dulwich College. 3^.

CLARETIE. Pierrille. By jules clar^tie. With 27 Illustrations.

Edited, with Introduction and Notes, by james bo'ielle, b.-cs-l. is. 6d.

DAUDET. La Belle Nivernaise. Histoire d'un vieux bateau et de son
equipage. By alphonse daudet. Edited, with Introduction and
Notes, by james boielle, b. -es-L. With Six Illustrations. 2s.

FENELON. Aventures de Telemaque. Edited by c, j. delille.
^th edition. Fcap. 8vo, 2s. 6d.

GOMBERT'S FRENCH DRAMA. Re-edited, with Notes, by f. e. a.

GASC. Sewed, 6d. each.

MOLIERE.
Le Misanthrope. Les Fourberies de Scapin.
L'Avare. Les Pr^cieuses Ridicules.
Le Bourgeois Gentilhomme. L'Ecole des Femmes.
Le Tartuffe. i

L'Ecole des Maris.
Le Malade Imaginaire. Le Medecin Malgre LuL
Les Femmes Savantes.

RACINE.
La Thebaide, ou Les Freres

,
Britannicus.

Ennemis. Phedre.
Esther.
Athalie.

Andromaque.
Les Plaideurs.
Iphigenie.

CORNEILLE.
Le Cid.

I

Cinna.
Horace.

|

Polyeucte.
VOLTAIRE.—Zaire.

GREVILLE. Le Moulin Frappier. By henry greville. Edited,
with Introduction and Notes, by JAMES boielle, /B.-es-L, y.

HUGO. Bug Jargal. Edited, with Introduction and Notes, by james
BOIELLE, B.-es-L. 3^.

LA FONTAINE. Select Fables. Edited by f. e. a. gasc. igih
thotisand. Fcap. 8vo, is. 6d.

LAMARTINE. Le Tailleur de Pierres de Saint-Point. Edited with
Notes by james boielle, B.-es-L. bih thousand. Fcap. 8vo, i^. 6d.

SAINTINE. Picciola. Edited by dr. dubuc. i6th thousand. Fcap.
8vo, is. 6d.

VOLTAIRE. Charles XII. Edited by l. direy. ^th edition. Fcap.
8vo, is. 6d.

GERMAN CLASS BOOKS.
BUCHHEIM (DR. C. A.). German Prose Composition. Consist-

ing of Selections from Modern English Writers. With grammatical notes,

idiomatic renderings, and general introduction. By c. a. buchheim,ph.d.
,

Professor of the German Language and Literature in King's College, and
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Examiner in German to the London University. 14M edition, enlargedand
revised. With a list of subjects for original composition. Fcap. 8vo, 4J. dd.

A Key to the ist and 2nd parts, yd edition, y. net. To the 3rd and
4lh parts, d^s. net,

BUCHHEIM (DR. C. A.). First Book of German Prose. Being
Parts I. and II. of the above. With Vocabulary ])y ii, R. Fcap. 8vo, \s. bd.

CLAPIN (A. C). A German Grammar for Public Schools. By the

REV. A. c. CLAPIN, and F. HOLL-MULLER, Assistant Master at the Bruton
Grammar School. 6th edition. Fcap. 8vo, 2s. 6d.

— A German Primer. W^ith Exercises. 2nd edition. Fcap. 8vo, \s.

German. The Candidate's Vade Mecum. Five Hundred Easy
Sentences and Idioms. By an Army Tutor. Cloth, \s. For Army
Prelim. Exam.

LANGE (P.). A Complete German Course for Use in Public Schools.
By F. LANGE, PH.D., Professor R. M.A. Woolwich, Examiner in German
to the College of Preceptors, London ; Examiner in German at the Victoria

University, Manchester. Crown 8vo.

Concise German Grammar. With special reference to Phonology,
Comparative Philology, English and German Equivalents and Idioms.

Comprising Materials for Translation, Grammar, and Conversation.

Elementary, 2s. ; Intermediate, 2s. ; Advanced, y. 6d.

Progressive German Examination Course. Comprising the Elements
of German Grammar, an Historic Sketch of the Teutonic Languages,
English and German Equivalents, Materials for Translation, Dictation,

Extempore Conversation, and Complete Vocabularies. I. Elementary
Course, 2s. II. Intermediate Course, 2s. HI. Advanced Course.

.Second revised edition, is. 6d.

Elementary German Reader. A Graduated Collection of Readings in

Prose and Poetry. With English Notes and a Vocabulary. 4/A

edition. \s. 6d.

Advanced German Reader. A Graduated Collection of Readings in

Prose and Poetry. With English Notes by F. lange, ph.d., and

J. F. DAVIS, I). LIT. 2nd edition, y.
MORICH (R. J ). German Examination Papers in Miscellaneous

Grammar and Idioms. By R. J. MORICH, Manchester Grammar School.

2nd edition. Crown 8vo, 2s. bd. A Key, for Tutors only. ^s. net.

STOCK (DR.). Wortfolge, or Rules and Exercises on the order of Words
in German Sentences. With a Vocabulary. By the late Frederick
STOCK, D.LIT., M.A. Fcap. 8vo, I-f. 6d.

KLUGE'S Etymological Dictionary of the German Language.
Translated by j. F. davis, d.lit. (Lond.). Crown 4to, i8i-.

GERMAN ANNOTATED EDITIONS.

AUERBACH (B.). Auf Wache. Novelle von berthold auerbach.
Der Gefrorene Kuss. Novelle von otto roquette. Edited by a. a.

macdonell, M.A., PH.D. 2nd edition. Crown 8vo, 2^.

BENEDIX (J. R.). Doktor Wespe. Lustspiel in fiinf Aufziigen von
JULIUS RODERICK BENEDIX. Edited by professor F. lange, PH.D.

Crown 8vo, 2s. 6</.
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EBERS (G.). EineFrage. Idyll von georg ebers. Edited by f. storr,
B.A., Chief Master of Modern Subjects in Merchant Taylors' School.

Grown 8vo, 2s.

FREYTAG (G.). Die Journalisten. Lustspiel von gustav freytag.
Edited by professor f. lange, ph.d. a^threvisededition. CrownSvo, 2s. 6d.

— SOLL UND HABEN. Roman von gustav freytag. Edited by
w. HANBY CRUMP, M.A. Crown 8vo, 2S. 6d.

GERMAN BALLADS from Uhland, Goethe, and Schiller. With Intro-

ductions, Copious and Biographical Notices. Edited by c. L. Bielefeld.
^fh edition. Fcap. 8vo. \s. 6d.

GERMAN EPIC TALES IN PROSE. I. Die Nibelungen, von
A. F. c, viLMAR. II. Walther und Hildegund, von albert richter.
Edited by karl neuhaus, ph.d., the International College, Isleworth.

Crown 8vo, 2s. 6d.

GOETHE. Hermann und Dorothea. With Introduction, Notes, and Argu-
ments. By e. bell, M.A., and e. wolfel. 2nd edition. Fcap. 8vo, is. 6d.

GOETHE FAUST. Part I. German Text with Hayward's Prose
Translation and Notes. Revised, With Introduction by C. A. buchheim,
PH.D., Professor of German Language and Literature at King's College,

London. Small post 8vo, 5^-.

GUTZKOW (K.). Zopf und Schwert. Lustspiel von karl gutzkow.
Edited by professor f. lange, ph.d. Crown 8vo, 2s. 6d.

HEY'S FABELN FUR KINDER. Illustrated by o. speckter.
Edited, with an Introduction, Grammatical Summary, Words, and a com-
plete Vocabulary, by prokessok f. lange, PH.D. Crown 8vo, is. 6d.

— The same. With a Phonetic Introduction, and Phonetic Transcription of
the Text. By professor f. lange, ph.d. Crown 8vo, 2s.

HEYSE (P.). Hiins Lange. Schau^piel von paul heyse. Edited by
A. A. MACDONELL, M.A., PH.D., Taylorian Teacher, Oxford University.

Crown 8vo, 2s.

HOFFMANN (E. T. A.). Meister Martin, der Kiifner. Erzahlung
von E. T. A. HOFFMANN. Edited by f. lange, ph.d. 2nd edition.

Crown 8vo, is. 6d.

MOSER (G. VON). Der Bibliothekar. Lustspiel von g. von moser.
Edited by F. lange, PH.D. /^th editioji. Crown 8vo, 2s.

ROQUETTE (O.). 6'^^ Auerbach.
SCHEFFEL (V. VON). Ekkehard. Erzahlung des zehnten Jahr-

hunderts, von victor von scheffel. Abridged edition, with Intro-

duction and Notes by HERMAN hager, ph.d.. Lecturer in the German
Language and Literature in The Owens College, Victoria University,

Manchester. Crown 8vo, y.
SCHILLER'S Wallenstein. Complete Text, comprising the Weimar

Prologue, Lager, Piccolomini, and Wallenstein's Tod. Edited by dr.

buchheim, Professor of German in King's College, London. 6fh edition.

Fcap. 8v<), 5^. Or the Lager and Piccolomini, 2s. 6d. Wallenstein's

Tod, 2s. 6d.

— Maid of O I leans. With English Notes by dr. wilhelm wagner. ^rd
edition. Fcap. 8vo, is. 6d.

— Maria Stuart. Edited by v. KASTNER, B.-es-L., Lecturer on French
Language and Literature at Victoria University, Manchester, -^rd edition.

Fcap. Svo, IS. 6d.
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ITALIAN.
CLAPIN (A. C). Italian Primer. With Exercises. BytheREV. a. c.

CLAPIN, M.A., B.-es-L. yd edition. Fcap. 8vo, i^.

DANTE. The Inferno. A Literal Prose Translation, with the Text of the

Original collated with the best editions, printed on the same page, and
Explanatory Notes. By JOHN A. carlyle, m.d. With Portrait. 2//</

edition. Small post 8vo, 5^.— The Purgatorio. A Literal Prose Translation, with the Text of Bianchi
printed on the same page, and Explanatory Notes. By w. s. duguale.
Small post 8vo, 5^.

BELL'S MODERN TRANSLATIONS.
A Series of Translationsfrom Modern Lajtguages, with Memoirs,

Ifitroductio?iSy etc. Crown 87-^, is. each.

GOETHE. Egmont. Translated by anna swanwick. With Memoir.
— Iphigenia in Tauris. Translated by anna swanwick. With Memoir.
HAUFF. The Caravan. Translated by s. mendel. With Memoir.
— The Inn in the Spessart. Translated by s. mendel. With Memoir.
LESSING. Laokoon. Translated by e. c. beasley. With Memoir.
— Nathan the Wise. Translated by R. dillon boylan. With Memoir.
— Minna von Barnhelm. Translated by ernest bell, m.a. With

Memoir.

MOLIERE. The Misanthrope. Translated by c. heron wall. With
Memoir.

— The Doctor in Spite of Himself. (Le Medecin malgre lui). Trans-

lated by c. HERON WALL. With Memoir.
— Tartuffe; or, The Impostor. Translated by c. heron wall. With

Memoir.
— The Miser. (L'Avare). Translated by c. heron wall. With Memoir.
— The Shopkeeper turned Gentleman. (Le Bourgeois Gentilhomme).

Translated by c. HERON WALL. With Memoir.
RACINE. Athalie. Translated by r. bruce boswell, m.a. With

Memoir.
— Esther. Translated by r. bruce boswell, m.a. With Memoir.
SCHILLER. William Tell. Translated by sir Theodore martin,

K.C.B., LL. D. New edition, entirely revised. With Memoir.
— The Maid of Orleans. Translated by anna swanwick. With Memoir.
— Mary Stuart. Translated by j. mellish. With Memoir.

^* ^ For other Translations of Modern Languages, see the Catalogue of

Bohn's Libraries, which will be forwarded on application.

SCIENCE, TECHNOLOGY, AND ART.
CHEMISTRY.

STOCKHARDT (J. A.). Experimental Chemistry. Founded on the

work of J. a. STOCKHARDT. A Handbook for the Study of Science by

Simple Experiments. By c. W. HKATON, F.I.C, F.C.S., Lecturer in

Chemistry in the Medical School of Charing Cross Hospital, Examiner in

Chemistry to the Royal College of Physicians, etc. Revised edition, ^s.
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WILLIAMS (W. M.). The Framework of Chemistry. Part I. Typical
Facts and Elementary Theory. By w. m. Williams, m.a., St. John's
College, Oxford ; Science Master, King Henry VIII. 's School, Coventry.
Crown 8vo, paper boards, 9</. net.

BOTANY.
EGERTON-WARBURTON (G.). Names and Synonyms of British

Plants. By the REV. g. egerton-warburton. Fcap. 8vo, 3J-. 6^',

( Uniform with Haytvard's Botanisfs Pocket Book, )

HAYWARD (W. R.). The Botanist's Pocket-Book. Containing in

a tabulated form, the chief characteristics of British Plants, with the

botanical names, soil, or situation, colour, growth, and time of flowering

of every plant, arranged under its own order ; with a copious Index.

By w. R. HAYWARD. 6M edition, revised. Fcap. 8vo, cloth limp, 4^. 6^.

MASSEE (G.). British Fungus-Flora. A Classified Text-Book of

Mycology. By GEORGE massee. Author of "The Plant World." With
numerous Illustrations. 3 vols, post Svo. Vols. I., II., and III. ready,

7 J. dd. each. Vol. IV. in the Press.

SOWERBY'S English Botany. Containing a Description and Life-size

Drawing of every British Plant. Edited and brought up to the present

standard of scientific knowledge, by T. boswell (late syme), ll.d.,

F.L.s. , etc. T^rd edition, entirely revised. With Descriptions of all the

Species by the Editor, assisted by N. E. BROWN. 12 vols., with 1,937
coloured plates, £2/^ y. in cloth, ;^26 ii^-. in half-morocco, and £2P 9^-

in whole morocco. Also in 89 parts, ^s., except Part 89, containing

an Index to the whole work, ']s. 6d.

^*:^ A Supplement, to be completed in 8 or 9 parts, is now publishing.

Parts I., II., and III. ready, 5^. each, or bound together, making
Vol. XIII. of the complete work, I'js.

TURNBULL (R.). Index of British Plants, according to the London
Catalogue (Eighth Edition), including the Synonyms used by the principal

authors, an Alphabetical List of English Names, etc. By Robert
TURNBULL. Paper cover, 2s. 6d., cloth, 3J.

GEOLOGY.

JUKES-BROWNE (A. J.). Student's Handbook of Physical Geo-
logy. By a. J. JUKES-BROWNE, B.A., F.G.S., of the Geological Survey of

England and Wales. With numerous Diagrams and Illustrations. 2nd
edition, much enlarged, ']s. 6d.

— Student's Handbook of Historical Geology. With numerous Diagrams
and Illustrations. 6s.

*' An admirably planned and well executed ' Handbook of Historical

Geology.^ ^^—Journal ofEducation.
— The Building of the British Isles. A Study in Geographical Evolution.

With Maps. 2nd edition revised, ys. 6d.
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MEDICINE.
CARRINGTON (R. E.), and LANE (W. A.). A Manual of Dissec-

tions of the Human Body. By the late r. e. carrington, m.d.
(Lend.), F.R.c. P., Senior Assistant Physician, Guy's Hospital. ind
edition. Revised and enlarged by w. arbuthnot lane, M.S., F. R.C.S.,

Assistant Surgeon to Guy's Hospital, etc. Crown 8vo, qj.
" As solid a piece of work as ever was put into a book ; accurate from

beginning to end, and unique of its kind."

—

British MedicalJournal.
HILTON'S Rest and Pain. Lectures on the Influence of Mechanical and

Physiological Rest in the Treatment of Accidents and Surgical Diseases,

and the Diagnostic Value of Pain. By the late JOHN hilton, f.r.s.,

F.R.C.S., etc. Edited by w. H. A. jacobson, m.a., m.ch. (Oxon.),

F. R. c. s. $th edition, ^s.

HOBLYN'S Dictionary of Terms used in Medicine and the Collateral
Sciences. 12th edition. Revised and enlarged by j. a. p. price, b.a.,

M.D. (Oxon.). los. 6d.

LANE (W. A.). Manual of Operative Surgery. For Practitioners and
Students. By w. arbuthnot lane, m.b., M.S., f.r.c.s., Assistant

Surgeon to Guy's Hospital. Crown 8vo, 2>s. 6d.

SHARP (W.) Therapeutics founded on Antipraxy. By william
sharp, M.D., f.r.s. Demy 8vo, 6s.

BELL'S AGRICULTURAL SERIES.

In crown Sz'Oj Illustrated^ 160 pages, cloth, 2s. 6d. each.

CHEAL (J.). Fruit Culture. A Treatise on Planting, Growing, Storage
of Hardy PVuits for Market and Private Growers. By J. cheal, F.R.H.S.,

Member of Fruit Committee, Royal Hort. Society, etc.

FREAM (DR.). Soils and their Properties. By dr. william fream,
B.SC. (Lond.)., F.L.S., F.G.S., F.S.S., Associate of the Surveyor's Institu-

tion, Consulting Botanist to the British Dairy Farmers' Association and
the Royal Counties Agricultural Society ; Prof, of Nat. Hist, in Downton
College, and formerly in the Royal Agric. Coll., Cirencester.

GRIFFITHS (DR.). Manuresand their Uses. By dr. a. b. Griffiths,
F.R.S.E., F.c.s. , late Principal of the School of Science, Lincoln ; Membre
de la Societe Chimique de Paris ; Author of '* A Treatise on Manures,"
etc. , etc. Jn use at Downton College.

— The Diseases of Crops and their Remedies.
MALDEN (W. J.). Tillage and Implements. By w. j. malden,

Prof, of Agriculture in the College, Downton.
SHELDON (PROF.). The Farm and the Dairy. By professor

J. p. SHELDON, formerly of the Royal Agricultural College, and of the

Downton College of Agriculture, late Special Commissioner of the

Canadian Government . In use at Downton College.

Specially adapted for Agricultural Classes. Crown 8vo. Illustrated, is. each.

Practical Dairy Farming. By professor sheldon. Reprinted from the

Author's larger work entitled "The Farm and the Dairy."

Practical Fruit Growing. By j. cheal, f.r.h.s. Reprinted from the

author's larger work, entitled •' Fruit Culture."
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TECHNOLOGICAL HANDBOOKS.
Edited by Sir H. Trtiema7i Wood.

Specially adapted for candidates in the examinations of the City Guilds
Institute. Illustrated and uniformly printed in small post 8vo.

BEAUMONT (R.). \A/'oollen and \A/"orsted Cloth Manufacture. By
ROBERTS BEAUMONT, Professor of Textile Industry, Yorkshire College,

Leeds ; Examiner in Cloth Weaving to the City and Guilds of London
Institute. 2nd edition, ys. 6d.

BENEDIKT (R), and KNECHT (E.). Coal-tar Colours, The
Chemistry of. "With special reference to their application to Dyeing, etc.

By DR. R. BENEDIKT, Professor of Chemistry in the University of Vienna.
Translated by E. KNECHT, PH.D. of the Technical College, Bradford.

2nd and enlarged edition^ ds. 6d.

CROOKES{W.), Dyeing and Tissue-Printing. By William crookes,
F.R.S., V.P.C.S. 5^-.

GADD (W. L.). Soap Mauufacture. By \v. lawrence gadd, f.i.c,

F.C.S., Registered Lecturer on Soap-Making and the Technology of Oils

and Fats, also on Bleaching, Dyeing, and Calico Printing, to the City and
Guilds of London Institute. 5^-.

HELLYER (S. S.). Plumbing: Its Principles and Practice. By
s. STEVENS HELLYER. With numerous Illustrations. 5^.

HORNBY (J.). Gas Manufacture. By j. hornby, f.i.c, Lecturer

under the City and Guilds of London Institute. {Preparing.

HURST (G.H.). Silk-Dyeing and Finishing. Bye. h. hurst, f.c.s.,

Lecturer at the Manchester Technical School, Silver MedalHst, City and
Guilds of London Institute. With Illustrations and numerous Coloured

Patterns. 7^. 6d.

JACOBI (C. T.). Printing. A Practical Treatise. By c. T. jacobi,

Manager of the Chiswick Press, Examiner in Typography to the City and
Guilds of London Institute. With numerous Illustrations. 5^.

MARSDEN (R.). Cotton Spinning: Its Development, Principles,

and Practice, with Appendix on Steam Boilers and Engines. By r.

MARSDEN, Editor of the "Textile Manufacturer." ^h edition. 6s. 6d.

— Cotton Weaving With numerous Illustrations. [In the press.

POWELL (H.), CHANCE (H.), and HARRIS (H. G.). Glass
Manufacture. Introductory Essay, by h. powell, b.a. (Whitefriars

Glass Works) ; Sheet Glass, by henry chance, m.a. (Chance Bros.,

Birmingham) ; Plate Glass, by H. g. Harris, Assoc. Memb. Inst.

C.E. 3^-. ed.

ZAEHNSDORF (J. W.) Bookbinding. By j. w. zaehnsdorf.
Examiner in Bookbinding to the City and Guilds of London Institute.

With 8 Coloured Plates and numerous Diagrams. 2nd edition, revised

and enlarged, ^s.

*.^* Co7nplete List of Technical Books on Application.

MUSIC.
BANISTER (H. C). A Text Book of Music : By h. c. banister.

Professor of Harmony and Composition at the R. A. of Music, at the Guild-
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BANISTER (H. C.)—cofiimNcc/.

hall vSchool of Music, and at the Royal Normal Coll. and Acad, of Music
for the Blind, i^tk edition. Fcap. 8vo. ^s.

This Manual contains chapters on Notation, Harmony, and Counterpoint

;

Modulation, Rhythm, Canon, Fugue, Voices, and Instruments ; together

with exercises on Harmony, an Appendix of Examination Papers, and a
copious Index and Glossary of Musical Terms.

— Lectures on Musical Analysis. Embracing Sonata Form, Fugue,
etc., Illustrated by the Works of the Classical Masters. 27?^ edition^

revised. Crown 8vo, 7^. 6d.

— Musical Art and Study : Papers for Musicians. Fcap. 8vo, 2s.

CRATER (THOMAS). Scientific Voice, Artistic Singing, and
Effective Speaking. A Treatise on the Organs of the Voice, their

Natural Functions, Scientific Development, Proper Training, and Artistic

Use. By THOMAS chatkr. With Diagrams, Wide fcap. 2s. 6d.

HUNT (H. G. BONAVIA). A Concise History of Music, from the

Commencement of the Christian era to the present time. For the use ot

Students. By rev. h. g. bonavia hunt, Mus. Doc. Dublin ; Warden
of Trinity College, London ; and Lecturer on Musical History in the same
College. \2th edition^ revised to date (1893). Fcap. 8vo, 3^. 6d.

ART.
BARTER (S.) Manual Instruction—Woodwork. By s. barter

Organizer and Instructor for the London School Board, and to the Joint
Committee on Manual Training of the School Board for London, the City
and Guilds of London Institute, and the Worshipful Company of Drapers.
With over 300 Illustrations. Fcap. 4to, cloth, 'js. 6d.

BELL (SIR CHARLES). The Anatomy and Philosophy of Expres-
sion, as connected with the Fine Arts. By sir charles bell, k.h.
'jt/i edition, revised. $s.

BRYAN'S Biographical and Critical Dictionary of Painters and
Engravers. With a List of Ciphers, Monograms, and Marks. A new
Edition, thoroughly Revised and Enlarged. By r. e. graves and
WALTER ARMSTRONG. 2 volumes. Imp. 8vo, buckram, 3/. 3^.

CHEVREUL on Colour. Containing the Principles of Harmony and Con-
trast of Colours, and their Application to the Arts, "^rd edition, with
Introduction. Index and several Plates. 5J-.—With an additional series

of 16 Plates in Colours, 7j. 6d.

DELAMOTTE (P. H.). The Art of Sketching from Nature. By p.

h. DELAMOTTE, Professor of Drawing at King's College, London. Illus-

trated by Twenty-four Woodcuts and Twenty Coloured Plates, arranged
progressively, from Water-colour Drawings by prout, E. w. COOKE, R.A.,

GIRTIN, VARLEY, DE wiNT, and the Author. New edition. Imp. 4I0, 2ij.

FLAXMAN'S CLASSICAL COMPOSITIONS, reprinted in a cheap
form for the use of Art Students. Oblong paper covers, 2s. 6d. each.

The Iliad of Homer. 39 Designs.

The Odyssey of Homer. 34 Designs.

The Tragedies of iEschylus. 36 Designs.

The "Works and Days" and " Theogony " of Hesiod. 37
Designs.

Select Compositions from Dante's Divine Drama. 37 Designs.
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FLAXMAN'S Lectures on Sculpture, as delivered before the President
and Members of the Royal Academy. With Portrait and 53 plates. 6^.

HEAXON (MRS.). A Concise History of Painting. By the late MRS.
CHARLES HEATON. New edition. Revised by COSMO MONKHOUSE. 55.

LELAND (C. G.). Drawing and Designing. In a series of Lessons
for School use and Self Instruction. By CHARLES G. leland, m.a.,
F.R.L.s. Paper cover, \s. ; or in cloth, \s. 6d.

— Leather Work : Stamped, Moulded, and Cut, Cuir-Bouille, Sevi^n, etc.

With numerous Illustrations. Fcap. 4to, 5^.— Manual of Wood Carving. By charles g. leland, m.a., f.r.l.s.

Revised by j. j. holtzapffel, a.m. inst.c.e. With numerous Illustra-

tions. Fcap. 4to, 5^.— Metal Work With numerous Illustrations. Fcap. 4to, 5^.

LEONARDO DA VINCI'S Treatise on Painting. Translated from
the Italian by j. F. RIGAUD, R.A. With a Life of Leonardo and an
Account of his Works, by J. w. brown. With numerous Plates, ^s.

MOODY (F. W.). Lectures and Lessons on Art. By the late f. w.
MOODY, Instructor in Decorative Art at South Kensington Museum. With
Diagrams to illustrate Composition and other matters. A new and cheaper
edition. Demy 8vo, sewed, 4^-. 6^/.

WHITE (GLEESON). Practical Designing: A Handbook on the

Preparation of Working Drawings, showing the Technical Methods em-
ployed in preparing them for the Manufacturer and the Limits imposed on
the Design by the Mechanism of Reproduction and the Materials employed.
Edited by gleeson white. Freely Illustrated. 2nd edition. Crown
8vo, 6s. net.

Contents :—Bookbinding, by H. orrinsmith—Carpets, by ALEXANDER
MILLAR—Drawing for Reproduction, by the Editor—Pottery, by W. P.

Rix—Metal Work, by R. LL. rathbone—Stained Glass, by selwyn
IMAGE—Tiles, by owen carter—Woven Fabrics, Printed Fabrics, and
Floorcloths, by arthur silver—Wall Papers, by g. c. hait^.

MENTAL, MORAL, AND SOCIAL
SCIENCES.

PSYCHOLOGY AND ETHICS.
ANTONINUS (M. Aurelius). The Thoughts of. Translated literally,

with Notes, Biographical Sketch, Introductory Essay on the Philosophy,

and Index, by GEORGE LONG, M.A. Revised edition. Small post 8vo,

3J-. 6^., or nezu edition on Ha?idmadepaper, buckram, 6s.

BACON'S Novum Organum and Advancement of Learning. Edited,

with Notes, by J. devey, m.a. Small post 8vo, 5^-.

EPICTETUS. The Discourses of. With the Encheiridion and Frag-

ments. Translated with Notes, a Life of Epictetus, a View of his Philo-

sophy, and Index, by GEORGE long, M.a. Small post 8vo, 5^., or tiew

edition on Handmade paper, 2 vols., buckram, los. 6d.

KANT'S Critique of Pure Reason. Translated by j. M. D. meiklejohn,
Professor of Education at St. Andrew's University. Small post 8vo, 5J.

— Prolegomena and Metaphysical Foundations of Science. With
Life. Translated by e. belfort bax. Small post 8vo, 5J-.
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LOCKE'S Philosophical \A;'orks. Edited by j. a. st. john. 2 vols.

Small post 8vo, 3^. 6d. each.

RYLAND (F ). The Student's Manual of Psychology and Ethics,
designed chiefly for the London B.A. and B.Sc. By F. ryland, M.A,,
late Scholar of St. John's College, Cambridge. Cloth, red edges. $ih

edition, revised and enlargc'd. With lists of books for Students, and
Examination Papers set at London University. Crown 8vo, 3^. 6d.

— Ethics : An Introductory Manual for the use of University Students.
With an Appendix containing List of Books recommended, and Exami-
nation Questions. Crown 8vo, 3^^. 6d.

SCHOPENHAUER on the Fourfold Root of the Principle of Suffi-

cient Reason, and On the Will in Nature. Translated by madame
HILLEBRAND. Small post 8vo, 5J.

— Essays. Selected and Translated. With a Biographical Introduction
and Sketch of his Philosophy, by E. BELFORT bax. Small post 8vo, 5^.

SMITH (Adam). Theory of M.>ral Scnti,nents. With Memoir of the
Author by dugald Stewart. Small post 8vo, 3.?. 6d.

SPINOZA'S Chief Works. Translated with Introduction, by r. h. m.
ELVVES. 2 vols. Small post 8vo, 5^. each.

Vol. I.—Tractatus Theologico-Polilicus—Political Treatise.

II.—Improvement of the Understanding—Ethics—Letters.

HISTORY OF PHILOSOPHY.
BAX (E. B.). Handbook of the History of Philosophy. By e. bel-

FORT BAX. ind edition, revised. Small post 8vo, ^s.

DRAPER (J. W ). A History of the Intellectual Development of
Europe. By JOHN William draper, m.d., ll.d. With Index. 2

vols. Small post 8vo, 5^ each
HEGEL'S Lectures on the Philosophy of History. Translated by

J. sibree, M.A. Small post Svo, 5^.

LAW AND POLITICAL ECONOMY.
KENT'S Commentary on International Law. Edited by j. T. abdy,

LL.D., Judge of County Courts and Law Professor at Gresham College,

late Regius Professor of Laws in the Univer^iiy of Cambridge. 2nd
edition^ revised and brought doiun to a recent date. Crown 8vo, lOr. 6d.

LAWRENCE (T. J.).
' Essays on bome Disputed Questions in

Modern International Law. By T. j. Lawrence, m.a., ll.m. 2.nd

edition, revised and enla7'ged. Crown 8vo, ds.

— Handbook of Public International Law. 2nd edition. Fcap. Svo, 3i-.

MONTESQUIEU'S Spint of Laws. A New Edition, revised and
corrected, with D'Alembert's Analysis, Additional Notes, and a Memoir,
by J. V. pritchard, a.m. 2 vols. Small post 8vo, y. 6d. each.

RICARDO on the Pnnciples of Political Economy and Taxation.
Edited by E. c. K. gonner, m.a., Lecturer in University College,

Liverpool. Small post 8vo, ^s.

SMITH (Adam). Tne Wealtn of Nations. An Inquiry into the Nature
and Causes of. Reprinted from the Sixtli Edition, wi h an Introduction

by ERNEST BELFORT BAX. 2 vols. Small post 8vo, 3J. 6d. each.
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HISTORY.
BOWES (A.). A Practical Synopsis of English History; or, A

General Summary of Dates and Events. By ARTHUR BOWES. lOth

edition. Revised and brought down to the present time. Demy 8vo, i^.

COXE (W.). History of the House of Austria, 1218-1792. By
ARCHbN. COXE, M.A., F.R.s. Together with a Continuation from the

Accession of Francis I. to the Revolution of 1848. 4 vols. Small post

8vo. 3^. (id. each.

DENTON (W.). England in the Fifteenth Century. By the late

REV. w. DENTON, M.A., Worcester College, Oxford. Demy 8vo, \is.

DYER (Dr. T. H.). History of Modern Europe, from the Taking of

Constantinople to the Establishment of the German Empire, a.d. 1453-

1871. By DR. T. H. DYER. A new edition. In 5 vols. £2 xis. 6d.

GIBBON'S Decline and Fall of the Roman Empire. Complete and
Unabridged, with Variorum Notes. Edited by an English Churchman.
With 2 Maps. 7 vols. Small post 8vo, y. 6d. each.

GUIZOT'S History of the English Revolution of 1640. Translated by
WILLIAM HAZLITT. Small post 8vo, y. (id.

— History of Civilization, from the Fall of the Roman Empire to the

French Revolution. Translated by William hazlitt. 3 vols. Small
post 8vo, 3^'. dd. each.

HENDERSON (E. F.). Select Historical Documents of the Middle
Ages. Including the most famous Charters relating to England, the

Empire, the Church, etc., from the sixth to the fourteenth centuries.

Translated and edited, with Introductions, by ERNEST F. HENDERSON,
a.b., a.m., PH.D. Small post 8vo, 5^-.

— A History of Germany in the Middle Ages. Post 8vo, 75-. dd. net.

HOOPER (George). The Campaign of Sedan: The Downfall of the

Second Empire, August-September, 1870. By george hooper. With
General Map and Six Plans of Battle. Demy 8vo, 14J.

— Waterloo : The Downfall of the First Napoleon: a History of the

Campaign of 1815. With Maps and Plans. Small post 8vo, 3^-. dd.

LAMARTINE'S History of the Girondists. Translated by h. t. ryde.

3 vols. Small post 8vo, 3^. dd. each.
— History of the Restoration of Monarchy in France (a Sequel to his

History of the Girondists), 4 vols. Small post 8vo, 35-. dd. each.

— History of the French Revolution of 1848. Small post 8vo, y. dd.

LAPPENBERG'S History of England under the Anglo-Saxon
Kings. Translated by the late b, thorpe, f.s.a. New edition, revised

by e. c. ott£. 2 vols. Small post 8vo, 3^. dd. each.

LONG (G.). The Decline of the Roman Republic : From the

Destruction of Carthage to the Death of Coesar. By the late GEORGE
long, m.a. Demy 8vo. In 5 vols, 5^. each.

MACHIAVELLI'S History of Florence, and of the Affairs of Italy

from the Earliest Times to the Death of Lorenzo the Magnificent : together

with the Prince, Savonarola, various Historical Tracts, and a Memoir of

Machiavelli. Small post 8vo, 3^. dd.

MARTINEAU (H.). History of England from 1800-15. By Harriet
MARTIN EAU. Small post 8vo, 35-. dd.

— History of the Thirty Years' Peace, 1815-46. 4 vols. Small post

8vo, 3^-. dd. each.
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MAURICE (C. E.). The Revolutionary Movement of 1848-9 in
Italy, Austria, Hungary, and Germany. Wiih some Examination
of the previous Thirty-three Years. By C. EDMUND MAURICK. With an
engraved Frontispiece and other Illustrations. Demy 8vo, i6j.

MENZEL'S History of Germany, from the Earliest Period to 1842.

3 vols. Small post 8vo, y. 6^/. each.

MICHELET'S History of the French Revolution from its earliest

indications to the flight of the King in 1 791. Small post 8vo, 3.^. 6</.

MIGNET'S History^ of the French Revolution, from 1789 to 1814.

Small post 8vo, 35-. 6d.

PARNELL (A.). The War of the Succession in Spain during the
Reign of Queen Anne, 1702-1711. Based on Original Manuscripts
and Contemporaiy Records. By col. the HON. ARTHUR parnell,
K.E. Demy 8vo, 14J. With Map, etc.

RANKE (L.). History of the Latin and Teutonic Nations, 1494-
15 14. Translated by r. a. ashworth. Small post 8vo, 3^. 6d.

— History of the Popes, their Church and State, and especially of their

conflicts with Protestantism in the 1 6th and 17th centuries. Translated

by Y.. FOSTER. 3 vols. Small post 8vo, 3^. 6d. each.
— History of Servia and the Servian Revolution, Translated by MRS.

KERR. Small post 8vo, 3^. 6d.

SIX OLD ENGLISH CHRONICLES: viz., Asser's Life of Alfred

and the Chronicles of Ethelwerd, Gildas, Nennius, Geoffrey of Monmouth,
and Richard of Cirencester. Edited, with Notes and Index, by j. A.

GILES, D.c.L. Small post 8vo, 5^.

STRICKLAND (Agnes). The Lives of the Queens of England;
from the Norman Conquest to the Reign of Queen Anne. By agnes
STRICKLAND. 6 vols. 5^. each.

— The Lives of the Queens of England. Abridged edition for the

use of Schools and Families, Post 8vo, 6s. 6d.

THIERRY'S History of the Conquest of England by the Normans
;

its Causes, and its Consequences in England, Scotland, Ireland, and the

Continent. Translated from the 7th Paris edition by WILLIAM HAZLITT.
2 vols. Small post 8vo, 3.5-. 6d. each.

WRIGHT (H. F.). The Intermediate History of England, with Notes,

Supplements, Glossary, and a Mnemonic System. For Army and Civil

Service Candidates. By h. f. wright, m.a., ll.m. Crown 8vo, 6s.

For other Works of value to Students of History, see Catalogue of

Bohn's Libraries, sent post-free on application.

DIVINITY, ETC.

ALFORD (DEAN). Greek Testament. With a Critically revised Text,

a digest of Various Readings, Marginal References to verbal and idio-

matic usage, Prolegomena, and a Critical and Exegetical Commentary.
For ihe use of theological students and ministers. By the late HENRY
ALFOKD, D.D., Dean of Canterbury. 4vols. 8vo. ;^5 2j. Sold separately.

— The New Testament for English Readers. Containing the Authorized

Version, with additional Corrections of Readings and Renderings, Marginal

References, and a Critical and Explanatory Commentaiy. In 2 vols.

£2 14J. 6d. Also sold in 4 parts separately.
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AUGUSTINE de Civitate Dei. Books XL and XII. By the rev.
HENRY D. GEE, B.D., F.s.A. I. Text onl^. 2s. II. Introduction and
Translation. 3^.

BARRETT (A. C). Companion to the Greek Testament. By the late

A. C. BARRETT, M. A., Caius College, Cambridge, ^thedition. Fcap. 8vo, 5j-.

BARRY (BP.). Notes on the Catechism. For the use of Schools. By
the RT. REV. BISHOP BARRY, D. D. \oth editio7t. Fcap. 2.S.

BLEEK. Introduction to the Old Testament. By friedrich bleek.
Edited by johann bleek and adolf kamphausen. Translated from
the second edition of the German by G. h. venahles, under the super-
vision of the rev. e. venabi es, Residentiary Canon of Lincoln. 2nd
edition^ with Corrections. With Index. 2 vols, small post 8vo, 5^. each.

BUTLER (BP.). Analogy of Religion. With Analytical Introduction
and copious Index, by the late RT. rev. dr. steere. Fcap. 3^-. dd.

EUSEBIUS. Ecclesiastical History of Eusebius Pamphilus, Bishop
of Caesarea. Translated from the Greek by REV. c. F. cruse, m.a.
With Notes, a Life of Eusebius, and Chronological Table. Sm. post 8vo, 5^-.

GREGORY (DR.). Letters on the Evidences, Doctrines, and Duties
of the Christian Religion. By dr. olinthus Gregory, f.r.a.s.

Small post Svo, 3^-. 6d.

HUMPHRY (W. G.). Book of Common Prayer. An Historical and
Explanatory Treatise on the. By w. G. HUMPHRY, b.d,, late Fellow of
Trinity College, Cambridge, Prebendary of St. Paul's, and Vicar of St.

Martin's-in-the-Fields, Westminster, dth edition. Fcap. Svo, is. 6d.

Cheap Edition, for Sunday School Teachers, is.

JOSEPHUS (FLAVIUS). The Works of. whiston's Translation.

Revised by REV. A. R. SHILLETO, m.a. With Topographical and Geo-
graphical Notes by COLONEL SIR c. w. wilson, k.c.b. 5 vols. T,s. 6d. each.

LUMBY (DR.). The History of the Creeds. I. Ante-Nicene. II.

Nicene and Constantinopolitan. HI. The Apostolic Creed. IV. The
Quicunque, commonly called the Creed of St. Athanasius. By J. RAWSON
LUMBY, d. d., Norrisian Professor of Divinity, Fellow of St. Catherine's

College, and late Fellow of Magdalene College, Cambridge. T^rd editiwiy

revised. Crown Svo, ']s. 6d.
— Compendium of English Church History, from 1688-1830. With a

Preface by j. rawson lumby, d.d. Crown Svo, 6s.

MACMICHAEL (J. F.). The Nev^r Testament in Greek. With
English Notes and Preface, Synopsis, and Chronological Tables. By the

late REV. J. F. MACMICHAEL. Fcap. Svo (730 pp.), 4.$-. 6d.

Also the Four Gospels, and the Acts of the Apostles, separately.

In paper wrappers, 6d. each.

MILLER (E ). Guide to the Textual Criticism of the New Testa-
ment. By REV. E MILLER, M. A. , Oxon, Rector of Bucknell, Bicester.

Crown Svo, 45-.

NEANDER (DR. A). History of the Christian Religion and
Church. Translated by j. torrey. 10 vols, small post Svo, 3^-. 6d. each.

— Life ofJesus Chiist. Translated by j. mcclintock and c. blumenthal.
Small post Svo, t,s. 6d.

— History of the Planting and Training of the Christian Church by
the Apostles. Translated by j. e. ryland. 2 vols. 3^-. 6d. each.

— Lectures on the History of Christian Dogmas. Edited by dr.

JACOBI. Translated by j. e. ryland. 2 vols, small post Svo, 3J. 6d. each.
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NEANDER (DR. A.). Memorials of Christian Life in the Early and
Middle Ages. Translated by j. e. ryland. Small post 8vo, y. 6d.

PEARSON (BP.). On the Creed. Carefully printed from an Early
Edition. Edited by E. walford, m.a. Post 8vo, <,s.

PEROWNE (BP.). The Book of Psalms. A New Translation, with
Introductions and Notes, Critical and Explanatory. By the right REV.
T. J. STEWART PEROWNE, D.D., Bishop of Worcester. 8vo. Vol. I.

8//i edition, revised. \%s. Vol. II. 1th edition, revised, xds.

— The Book of Psalms. Abridged Edition for Schools. Crown 8vo.

']th edition. \os. 6d.

SADLER (M. F.). The Church Teacher's Manual of Christian Instruc-

tion. Being the Church Catechism, Expanded and Explained in Question
and Answer. For the use of the Clergyman, Parent, and Teacher. By the

REV. M. F. SADLER, Prebendary of Wells, and Rector of Honiton. /^^rd

thousand. 2s. 6d.

^*^ A Complete List of Prebendary Sadler's Works will be sent on
application.

SCRIVENER (DR.). A Plain Introduction to the Criticism of the New
Testament. With Forty-four Facsimiles from Ancient Manuscripts. For
the use of Biblical Students. By the late F. ii. scrivener, m.a., d.C.l.,

LL.D., Prebendary of Exeter. 4M edition, thoroughly revised, by the rev.
E. MILLER, formerly Fellow and Tutor of New College, Oxford. 2 vols,

demy 8vo, 32J.

— Novum Testamentum Graece, Textus Stephanici, 1550. Accedunt
• variae lectiones editionum Bezae, Elzeviri, Lachmanni, Tischendorfii,

Tregellesii, curante F. H. A. SCRIVENER, a.m., d.c.l., ll.d. Revised
edition, ^s. 6d.

— Novum Testamentum Graece [Editio Major] textus Stephanici,

A.D. 1556. Cum variis lectionibus editionum Bezae, Elzeviri, Lachmanni,
Tischendorfii, Tregellesii, Westcott-Hortii, versionis Anglicanas emendato-
rum curante F. H. A. scrivener, a.m., d.c.l., ll.d., accedunt parallela

s. scripturce loca. Small post 8vo. 2.nd edition, ^s. 6d.

An Edition on writing-paper, with marginfornotes. 4to, halfbound, I2J.

WHEATLEY. A Rational Illustration of the Book of Common
Prayer. Being the Substance of everything Liturgical in Bishop Sparrow,
Mr. L'Estrange, Dr. Comber, Dr. Nicholls, and all former Ritualist

Commentators upon the same subject. Small post 8vo, 3^. 6d.

WHITAKER (C). Rufinus and His Times. With the Text of his

Commentary on the Apostles' Creed and a Translation. To which
is added a Condensed History of the Creeds and Councils. By the REV.

CHARLES whitakir, B.A., Vicar of Natland, Kendal. I)emy8vo, 5^.

Or in separate Parts.— i. Latin Text, with Various Readings, 2s. 6d.

2. Summary of the History of the Creeds, \s. 6d. 3. Charts of the

Heresies of the Times preceding Rufinus, and the First Four General
Councils, 6d. each.

— St. Augustme : De Fide et Symbolo—Sermo ad Catechumenos. St. Leo
ad Flavianum Epistola— Latin Text, with Literal Translation, Notes, and
History of Creedsand Councils. <)S. Also separately. Literal Translation. 2s.

— Student's Help to the Prayer-Book. 3^,



Educational Catalogue. 45

SUMMARY OF SERIES.
PAGE

BlBLIOTHECA ClASSICA 45
Public School Series 45
Cambridge Greek and Latin Texts 46
Cambridge Texts with Notes 46
Grammar School Classics 46
Primary Classics 47
Bell's Classical Translations 47
Cambridge Mathematical Series 47
Cambridge School and College Text Books 49
Foreign Classics 49
Modern French Authors 49
Modern German Authors 49
Gombert's French Drama 50
Bell's Modern Translations 50
Bell's English Classics 50
Handbooks of English Literature 50
Technological Handbooks 50
Bell's Agricultural Series 50
Bell's Reading Books and Geographical Readers 50

BlBLIOTHECA CLASSICA.
AESCHYLUS. By dr. palev. 8^.

CICEKO. By G. long. Vols. I. and II. 8j. each.
DEMOSTHENES. By r. whiston. 2 Vols. 8j. each.
EURIPIDES. By DR paley. Vols. II. and III. 8.y. each.
HERODOTUS. By dr. blakesley. 2 Vols. -lis.

HESIOD. By DR. paley. ^s.

HOMER. By DR. PALEY. 2 Vols. 14.9.

HORACE. By A. G. MACLEANE. 8j.

PLATO. Phaedrus. By dr. Thompson. $s.

SOPHOCLES. Vol. I. By f. h. blaydes. 5^.

— Vol. II. By dr. PALEY. ts.

VIRGIL. By CONINGTON and NETTLESHiP. 3 Vols. iay.[6^. each.

PUBLIC SCHOOL SERIES.
ARISTOPHANES. Peace. By dr. paley. /^s. bd.
— Acharnians. By dr. paley. 45. 6^.
— Frogs. By dr. paley. 4^. dd.
CICERO. Letters to Atticus. Book I. By a. pretor. ^s.dd.
DEMOSTHENES. De Falsa Legatione. By r. shilleto. 6j.

— Adv. Leptinem. By b. w. beatson. 3.?. dd.

LIVY. Books XXI. and XXII. By l. d. dowdall. 35. 6rf. each.
PLATO. Apology of Socrates and Crito. By dr. w. wagnrr. 35. 6^. and

2J. td.— Pnaedo. By dr. w. wagner. 5^. bd.

— Protagoras. By w. wayte. 45. dd.
— Gorgias. By dk. Thompson. 6^.

— Eathyphro. By G. h. wells. 3^.— Euthydemus. By g. h. wells. 4^.— Republic. By g. h. wells, e^s.

PLAUTUS. Aulularia. By dr. w wagner. 4s. 6d.
— Trinummus. By dr. w. wacjner. 4s. 6d.
— Menaechmei. By dr. w. wagner. 4^. 6d.
— Mostellaria. By e. a. sonnenschein. sj.
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PUBLIC SCHOOL SERIKS—cofittuue^f.
SOPHOCLES. Trachiniae. By a. vrktor. 4^-. 6</.

— Oedipus Tyrannus. By b. h. Kennedy. 5s.

TERENCE. By dr. w. wagner. 7s. 6ti.

THEOCRITUS. By dr. haley. ^s. 6d.

THUCYDIDES. Book VI. By T. w. dougan. ^s. 6d.

CAMBRIDGE GREEK AND LATIN TEXTS.
AESCHYLUS. By dr. pai-ev. 2s.

Caesar. By g. long, xs.ed.
CICERO. De Senectute, de Amicitia, et Epistolae Selectae. By g. long.

IS. 6d.
— Orationes in Verrem. By g. long. 2j. 6d.

EURIPIDES. By DR. i'alev. 3 Vols. 2J. each.

HERODOTUS. By dr. ulakesley. 2 Vols. 2J. 6d. each.

HOMER'S Iliad. By dr. pai.ey. is. 6d.

HORACE. By a. j. macleanh. is. Sd.

JUVENAL AND PEkSIUS. By a. j. macleane. is. 6d.

LUCRETIUS. By H. A. J. MUNRO. 2s.

SOPHOCLES. By dr. PALEY. -zs. (>d.

TERENCE. By DR. w. WAGNER. 2s.

THUCYDIDES. By dr. Donaldson. 2 Vols. 2J. each.

VIRGIL. By PROF, conington. 2s.

XENOPHON. By J. F. macmichael. is.6d.
,NOVUM TESTAMENTUM GRAECE. By dr. scrivener. 4^.6^'.

CAMBRIDGE TEXTS WITH NOTES.
AESCHYLUS. By dr. paley. 6 Vols. xs. 6d. each.

EURIPIDES. By dr. paley. 13 Vols. (Ion, 25.) u. 6^/. each.

HOMER'S Iliad. By dr. paley. is.

SOPHOCLES. By DR. paley. 5 Vols. u. 6^. each.

XENOPHON. Hellenica. By rev. l. d. dowdall. Books Land II. 2i-. each.
— Anabasis. By j. f. macmichael. 6 Vols. is. 6d. each.

CICERO. De Senectute, de Amicitia, et Epistolae Selectae. By c. long.
3 Vols. is. 6d. each.

OVlD. Selections. By a. j. macleane. is. 6d.

— Fasti. By dr. paley. 3 Vols. 2s. each.

TERENCE. By dr. w. wagner. 4 Vols. is. 6d. each.

VIRGIL. By PROF, conington. 12 Vols. u. 6^. each.

GRAMMAR SCHOOL CLASSICS.
CAESAR, De Bello Gallico. By g. long. 4^., or in 3 parts, is. 6d. each.

CATULLUS, TIBULLUS, and PROPERTIUS. By a. h . wratislaw,
and F. N. SUTTON. 2S. 6d.

CORNELIUS NEPOS. By j. f. macmichael. 2s.

CICERO. De Senectute, De Amicitia, and Select Epistles. Bye;, long. 3^.

HOMER. Iliad. By dr. paley. Books I.-XII. 4.9. 6</.,or in 2 Parts, 2s. 6d.

each.
HORACE. By a. j. macleane. 3^. M., or in 2 Parts, 2^. e.-ich.

JUVENAL. By HERMAN PRIOR. 3s. 6d.
MARTIAL. By dr. paley and w. h. stonk. 4*. 6d.

OVID. Fasti. By dr. paley. 3^. 6</., or in 3 Parts, i*. 6</. each.
SALLUST. Catilina and Jugurtha. By g. long and j. g. frazer. 35. 6d.,

or in 2 Parts, 2J.each.
TACITUS. Germania and Agricola. By p. frost. 2s. 6d.
VIRGIL, conington's edition abridged. 2 Vols. 4J. 6d. each, or in 9 Parts,

IS. 6d. each.
— Bucolics and Georgics. conington's edition abridged. 3^.

XENOPHON, By j. f. macmichael. 3J. 6d., or in 4 Parts, is. 6d. each.
— Cyropaedia. By g. m. gorham. 3^. 6d., or in 2 Parts, js.6d. each.
— Memorabilia. By percival frost. 3*.

PRIMARY CLASSICS.
EASY SELECTIONS FROM CAESAR. By a. m. m. stedman. is.

EASY SELECTIONS FROM LIVY. By a. m. m. stedman. is. 6d.

EASY SELECTIONS FROM HERODOTUS. By a. g. liddkll. is. 6d.
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BELL'S CLASSICAL TRANSLATIONS.
AESCHYLUS. By walter headlam. 6 Vols. [In the press.

ARISTOPHANES. Acharnians. By vv. h. covington. i.s.

CAESAR'S Gallic War. By w. a. mcdevitte. 2 Vols. is. each.

CICERO. Friendship and Old Age. Bye. h. wells. \s.

DEMOSTHENES. On the Crown. By c. kann Kennedy, xs.

EURIPIDES. 14 Vols. By e. p. COLERIDGE, u. each.
LIVY. Books I. -IV. By j. h. freese. is. each.
— Book V. By e. s. weymouth. xs.

— Book IX. By f. stork, is.

LUCAN : The Pharsalia. Book I. By f. conway. \s.

SOPHOCLES. 7 Vols. By e. p. coleridge. ij. each.

VIRGIL. 6 Vols. By a. Hamilton bryce. li-. each.

CAMBRIDGE MATHEMATICAL SERIES.
ARITHMETIC. By c. pendlebury, 4J. 6d., or in 2 Part.s, 2s. 6d. each.

Key to Part II. 7.^. 6d. net.

EXAMPLES IN ARITHMETIC. By c. pendlebury. 3.?., or in 2 Parts,

i.y. td. and 2s.

ARITHMETIC FOR INDIAN SCHOOLS. By pendlebury and tait. 3J.

ELEMENTARY ALGEBRA. By j. t. hathornthwaite. 2s.

CHOICE AND CHANCE. By w. a. whitworth. 6s.

EUCLID. By h. deighton. ^s. 6d., or Book 1., is. ; Books I. and II., is. 6d.

;

Books I. -I II., 2S. 6d. ; Books III. and IV., is. 6d.
— Key. ss. net.

EXERCISES ON EUCLID, &c. By j. mcdowell. 6s.

ELEMENTARY TRIGONOMETRY. By dyer and whitcombe. ^s. 6ii.

PLANE TRIGONOMETRY. By t. g. vyvyan. 3.^.6^/.

ANALYTICAL GEOMETRY FOR BEGINNERS Part L By t. g.

VYVYAN. 2S. 6d.

ELEMENTARY GEOMETRY OF CONICS. By dr. taylor. 4^.6^'.

GEOMETRICAL CONIC SECTIONS. By h. G. willis. 5s.

SOLID GEOMETRY. By w. s. alois. 6s.

GEOMETRICAL OPTICS. By \v. s. aldis. 4^.

ROULETTES AND GLISSETTES. By dr. w. h. besant. 5s.

ELEMENTARY HYDROSTATICS. By dr. w. h. besant. 4s. 6d.

Solutions. 5.9.

HYDROMECHANICS. Part I. Hydrostatics. By dr. w. h. besant. 5s.

DYNAMICS. By UR. w. a. besant. ios. 6d.

RIGID DYNAMICS. By w. s. aldis. 4s.

ELEMENTARY DYNAMICS. By dr. w. garnett. 6s.

ELEMENTARY TREATISE ON' HEAT. By dr. w. garnett. 4^.6^.
ELEMENTS OF APPLIED MATHEMATICS. By c. m. jessop. 6s.

PROBLEMS IN ELEMENTARY MECHANICS. By w. walton. 6s.

EXAMPLES IN ELEMENTARY PHYSICS. By w. gallatly. 4s.

MATHEMATICAL EXAMPLES. By dyer and prowde smith. 6s.

CAMBRIDGE SCHOOL AND COLLEGE TEXT BOOKS.
ARITHMETIC. By c. elsee. 35.6^/.

By A. WRIGLEY. 3^. 6d.

EXAMPLES IN ARITHMETIC. By watson and goudie. zs. 6d.

ALGEBRA By c. elsee. 45.

EXAMPLES IN ALGEBRA. By macmichael and prowde smith. 3J. 6<A

and 4^. 6d.

PLANE ASTRONOMY. By p. t. main. 4J.

GEOMETRICAL CONIC SECTIONS. By dr. w. h. besant. 4s. 6d.

STATICS. By bishop goodwin. 3J.

NEWTON'S Principia. By evans and main. 4^.

ANALYTICAL GEOMETRY. By t. g. vyvyan. 4^.6^.
COMPANION TO THE GREEK TESTAMENT. By a. c. Barrett, sj.
TREATISE ON THE BOOK OF COMMON PRAYER. By w. g.

HUMPHRY. 2 J. 6d.

TEXT BOOK OF MUSIC. By h. c. banister. 5^.

CONCISE HISTORY OF MUSIC. By dr. h. g. bonavia hunt. 3^.6^.
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FOREIGN CLASSICS.
FENELON'S Tclcmaque. By c. j. delille. is. (>d.

LA FONTAINE'S Strlect Fables. By f. e. a. gasc. is. 6d.

LAMARTINE'S Le Tailleur de Pierres de Saint-Point. By ;. koielle.
I J. M.

SAINTINE'S Picciola. By dr. dlbec. ij. 6^.

VOLTAIRE'S Charles XII. By l. dikv. is. 6d.

GERMAN BALLADS. Bye. l. bielekkld. is. 6d.

GOETHE'S Hermann und Dorothea. By e. bell and e. wolfel. i.y. 6d.

SCHILLER'S Wallenstein. By dk. buchheim. 5.^., or in 2 Parts, -zs. td. each.
— Maid of Orleans. I'y dr. w. wagner. is. 6d.
— Maria Stuart. By v. k.a.stnkk. \s. 6d.

MODERN FRENCH AUTHORS.
BALZAC'S Ursule Mirouet. By j. boIelle. 3^.

CLARETIE'S Pierrille. By j. boielle. 25.6^.
DAUDET'S La Belle Nivernaise. By j. boielle. 2s.

GREVILLE'S Le Moulin Frappier. By j. BOi'ELLE. y.
HUGO'S Bug Jargal. By j. boielle. 3.r.

MODERN GERMAN AUTHORS.
HEY'S Fabeln fur Kinder. By prof, lange. ij. 6d.
— — with Phonetic Transcription of Text, &c. -zs.

FREYTAG'S Soil und Haben. By w. h. crump. 2s. 6d,
BENEDIX'S Doktor Wespe, By prof, lange. 2s. 6d.

HOFFMANN'S Meister Martin. By prof, lange. ij. 6^.

HEY6E'S Hans Lange. By a. a. macdonell. 2s.

AUERBACH'S Auf Wache, and Roquette's Der Gefrorene Kuss, By
a. a. macdonell. 2S.

MOSER'S Der Bibliothekar. By prof, lange. as.

EBERS' Eine Frage. By f. storr. 2s.

FREYTAG'S Die Journalisten. By prof, lange. 2s. 6d.

GUTZKOW'S Zopf und Schwert. By pkof. lange. 2s. 6d.
GERMAN EPIC TALES. By dr. karl neuhaus. 2s. 6d.
SCHEFFEL'S Ekkehard. By dr. h. hager. 3s.

The following Series are given in full in the body of the Catalogue.

GOMBERT'S French Drama. See page >,\.

BELL'S Modern Translations. Seepage-!,^.
BELL'S English Classics. Sec pp. 24, 25.
HANDBOOKS OF ENGLISH LITERATURE. See page iG.

TECHNOLOGICAL HANDBOOKS Seepage n.
BELL'S Agricultural Series. See page 2'^-

BELL'S Reading Books and Geographical Readers. Sec pp. 25, 26.

CHISWICK press:—C. WHITTINGHAM AND CO., TOOKS COURT, CHANCERY LANE.
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