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HYDEOSTATICS.

SECTION I.

PRELIMINARY DEFINITIONS AND EXPLANATIONS.

1. Def. a fluid is a collection of material particles so

eituated in contact with each other as to form a continuous

aass, and such that the application of the slightest possible

|brce to any one of them is sufficient to displace it from its

position relative to the rest.

That part of Statics^ where a fluid appears as the principal

Cleans of transmission of force, is termed Hydrostatics. The
aw of that transmission must, like the law of transmission

by a rigid body, by a free rod or string, or by contact of

surfaces, &c., be established by experiment.

The mutual forces called into action by the contact of

surfaces are in Statics called pressures: this term is used in

the same sense in Hydrostatics, where it is applied to denote

the forces of resistance, which adjacent particles of the fluid

exert, either upon one another, or upon rigid surfaces in con-

tact with them. The nature of the reaction between a rigid

surface and a fluid in contact with it might perhaps be arrived

at by the aid of analysis from the above definition. But such

an investigation, even if entirely satisfactory in itself, would

P. H. 1
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be out of place in this treatise. It may 'here therefore be

taken as the result of experiment that

:

When a fluid rests in contact with a rigid hody^ a mutual

force of resistance is called into action at every point of the

common surface of contact^ the direction of which force is

normal to that surface.

2. If in the side of a vessel, containing fluid upon which

forces are acting, a piston be placed, the pressure exerted

upon it by the fluid particles with which it is in contact,

would thrust it out, unless a force sufficient to counteract this

pressure were applied to the back : this counteracting force is

of course exactly the measure of the pressure of the fluid

upon the piston. It is not difficult to conceive that, generally,

the magnitude of this pressure would be different for different

positions of the piston in the sides of the vessel ; inasmuch

as the portions of the fluid which it would touch at those

different places, would not necessarily be similarly circum-

stanced, and would not therefore require for the maintenance

of their equilibrium that the piston should exert the same

force upon them : when, however, the pressure for every such

supposed position of the piston, wherever taken, is the same,

the fluid is said to press uniformly; and when not so, its

pressure is said to be not uniform.

Again, it is clear that the pressure upon the piston in

any given position must vary with the magnitude of its sur-

face, and if this were reduced to a mathematical point the

pressure upon it would be, strictly speaking, absolutely

nothing, because the surface pressed is nothing; but even in

this case the conception of the pressure at the point is perfectly

definite; it signifies the capability or tendency which the

fluid there has to press, and which, if existing over a

definite area, would produce a definite pressure; and this
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view of it leads us to the following usual definition of its

measure.

The pressure at any point of a fluid is measured hy the

pressure which would he produced upon a unit of surface^ if

the whole of that unit were pressed uniformly with a pressure

equal to that which it is proposed to measure,

3. It is usual to represent this measure of the pressure

at a point by the general symbol p ; and whenever it is said

that a surface, in contact with a fluid and containing A units

of area, is pressed uniformly with a pressure p^ it is meant

that the pressure of the fluid at every point of it, measured

as above defined, is equal to p units of force : hence if P be

the pressure which the fluid exerts upon this surface A^ since

the pressure is uniform^ and therefore the actual pressure

upon each unit is jt?, the pressure upon the A units must be

A times ^, or P=pA,

It may be here remarked, that as P is of four linear

dimensions, being the measure of a moving force, and A is of

two, therefore p must be of two dimensions, i, e. if the linear

unit be supposed increased n fold, the numerical value of p
for a given pressure will be increased n^ fold.

4. In the foregoing explanation of the meaning of the

term " pressure at a point" in a fluid, the point has been

assumed to be in contact with a rigid surface, which was

supposed to be the subject of the pressure ; now if we con-

sider any portion of fluid, within a larger mass and forming

part of it, no force but that of resistance can be exerted upon

it by the surrounding fluid; for we may imagine it to be

isolated from the rest by an excessively thin enveloping film,

which will manifestly produce no disturbance among the par-

ticles of either portion of the fluid, because its existence

neither introduces new forces nor destroys any of those which

1—2
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are acting ; further, this film may be supposed rigid, without

affecting the relative positions or equilibrium of the particles

forming the interior and exterior portions of fluid : but under

this hypothesis the pressure at any point, of either the inte-

rior or exterior fluid, which is in contact with the rigid film,

acquires the meaning given above, and as the introduction of

the film in no way alters the actions of the portions of fluid

upon one another, we thus arrive at the conclusion that

different portions of a mass of uniform fluid only press against

each other in the same way as they would against rigid sur-

faces of the same form, and therefore the term ^* pressure at

a point" means the same thing whether the point be within

a fluid or be in one of its bounding surfaces.*

5. This last conclusion with regard to the action of

different portions of the same fluid upon one another, which

is of considerable importance in the solution of hydrostatical

problems, does not rest solely upon reasoning analogous to

that just given. It may be considered as a fact deduced from

experiment, in the same way as all other physical laws (Art.

7), that

:

The statical action of any one portion ofa fluid upon that

which adjoins it, is the same as if the latter portion were a

rigid hody having the imaginary surface, which divides the two

portions^ as its surface of contact with the fluid.

We are therefore justified, whenever it concerns us to in-

vestigate the pressures exerted by a surrounding fluid upon an

included portion, in replacing this portion by a conterminous

solid. It is generally convenient to take for such a purpose

* The analogy between " pressure at a point" in a fluid, and " velocity at

any instant" of a moving particle, and between their respective measures, is

too striking to escape the notice of the student ; both terms are abstractions

employed for the purpose of avoiding the constant use of the periphrasis, which

is given once for all in the definitions of their measures.
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the solid which would be formed by supposing the constitu-

ent particles of the portion of fluid, which it is wanted to

replace, to become by any means rigidly fixed in their relative

positions and to be still affected by the same external forces

as before: it is manifest that such a solid could not differ

from the fluid which it replaces, as regards its action upon the

surrounding fluid, for it would itself be identical with it in

every way, were it not for the circumstance that its particles

are supposed to be provided with an artificial check against

moving from their relative positions, in addition to, or rather

instead of, the mutual resistances which effect the same end

in the fluid state.

6. If a surface opposed to a fluid be itself rough or

capable of exerting friction, the particles of fluid adjacent to

it would, as it were, adhere to it and thus form a sort of

polished veneer, because the definition of a fluid, which states

that the application of the slightest force is capable of dis-

placing the particles, precludes all idea of the existence of any

tangential action between the particles themselves ; and there-

fore although there may be resistance to the tangential motion

of the particles in contact with the surface, there can be none

between them and their next neighbours. For the same

reason, whenever a portion of fluid is supposed to become

solidified, its surfaces must be considered perfectly smooth.

Hence in all cases the pressure of fluids is normal to the sur-

faces pressed. (Art. 1.)

It is true that very few fluids answer strictly to the defi-

nition given above (Art. 1) ; there is generally a certain

amount of friction or viscosity between their particles, and in

all cases, where the instantaneous effect of forces upon a fluid

is the subject of investigation, this mutual tangential action

between the particles cannot be neglected. But it is found

practically that when once equilibrium is established, the
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particles have always assumed such a position inter se that no

tangential action is called forth ; and therefore it is immate-

rial to consider whether the capability for it exists or not.

Thus if any semi-fluid such as honey or treacle be allowed to

assume its position of equilibrium under the action of gravity,

it will do so very slowly compared with water under the

same circumstances, but in the end it will be found that its

position is exactly the same as that of the water. Hence in

Hydrostatics all fluids whatever may be assumed to be perfect

fluids.

7. The law of transmission of pressure through fluids,

which was alluded to above, may be stated as follows

:

A force applied to the surface of a fluid at rest is trans-

mittedy unchanged in intensity^ in all directions through the

fluid.

Like all other physical laws, this is experimental; or

rather it is suggested by experiment, and its proof is deduced

from a comparison of the results of calculation based upon it,

with those of corresponding observations: in this sense the

following experiment may be said to prove it.

The annexed figure represents a vessel of any shape con-

taining a fluid, which may be supposed to be acted upon by

gravity, as must generally be the

case, or by any other forces what-

ever: into the sides of this vessel

are fitted any number of pistons,

represented by A^^ A^,.,A^j and

having plane faces whose areas are

respectively a^, aa'-'^n? sufficient

forces are also supposed to be ap-

plied to these pistons to keep them

in their places ; in fact whatever be

the forces whether only gravity or
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any thing else which are acting upon the system, the whole

is supposed to be in equilibrium. If now any additional

force as P^ be applied to the piston A^^ it is found that to

preserve equilibrium additional forces Pg? P^'**Pn must be

also applied to the pistons A^^ A^.,,A^ respectively such in

P P P .

magnitude that —^ = —^ = &c. = -^
: this result clearly shews

p
that the application of a pressure —^ upon each unit of area

of the piston A^ has caused the same additional pressure upon

every un t of area in each of the other pistons. In this way
may the ruth of the principle enunciated be verified.

COE. It follows from this that the pressure at any point

within a iuid mass is the same for all directions. For the

action betveen any two adjacent portions of the fluid at any

point woud be the same as would exist if we suppose one

of the porions to become rigid (Art. 5). In this case the

pressure a the point would be caused by a rigid surface

pressing oi the fluid, and therefore, by the principle just

enunciated,would be the same in all directions.*

8. Of iuids there are some, such as air, whose volumes

or dimensiois are increased by diminishing the pressure upon

them and vie versa; these are commonly called elastic fluids,

and all othors inelastic. Inelastic fluids are also often dis-

tinguished \ the name of liquids^ while elastic are called

either gases t vapours according as their state is one of per-

manent or tmporary elasticity. It is probable that every

fluid is comjressible, when very great pressure is employed

for the purpoe, although within the limits of the forces with

which we shll be concerned no appreciable error will be

* The fact oifluid pressure at a point being equal in all directions, leads

immediately to tis: that the resultant pressure upon any indefinitely small

surface passing ttough that point must be normal to the surface. (Art. i.)
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committed by considering water, mercury, &c. which con-

stitute the inelastic fluids, or liquids, as incompressible.

9. The conception of the mass of any portion of a fluid

is the same as that of a solid, and its measure is also the

same : thus if M be the mass of a portion of fluid whose

weight is TF, the accelerating force of gravity being g, we
have the relation,

W=Mg (1)

10. If any equal volumes of a fluid, wherew taken

throughout its extent, always contain the same itiass, the

fluid is said to be of uniform density or homogeneois: other-

wise its density is not uniform ; it may evidentljj vary by
insensible degrees from point to point.

j

The density at any point is measured by the ratp between

the mass which would be contained in a unit of ^olume, if

the fluid throughout that volume were of the same/density as

at the proposed point, and the mass contained ii a unit of

volume of some homogeneous standard substancj. Thus if

V be the volume of the mass M in the previous eiample, and

if the density of the mass be the same at every pint and be

represented by />, the mass in each unit of the voiime V will

be = p, and .*. M= Vp, the unit in which tjis mass is

estimated being the mass of a unit of volume of he standard

substance. We might write therefore, instead f the above

form, 1

W=pVg (2).

Note.—It is very important to remember the unit of

weight in terms of which W is here given.

It can be discovered as follows

:

The equation

W=^pVg,
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signifies that the weight of the volume V of any substance of

which the density is measured by p, equals pVg times the

unit of weight

;

/. putting F= 1, /> = 1,

the weight of the volume unity of any substance, of which

the density is unity, equals g times the unit of weight.

Hence, the unit of weight assumed in formula (2) equals

the g*^ part of the weight of the unit of volume of the substance

hy reference to which p is estimated,

11. It is sometimes convenient in reference to uniform

fluids, to consider the weight of the portion contained in a

unit of volume, rather than the mass of the same portion as

we do when we speak of density ; the term used to designate

the particular quality thus referred to is specific gravity^ which

is generally defined as follows :

The specific gravity of a uniform fluid is measured hy the

weight of a unit of its volume estimated in terms (?/'the weight

OF A UNIT OF VOLUME of some particular standard fluid^

taken as THE UNIT OF WEIGHT; i,e, the specific gravity of

any substance is the ratio between the weight of any given

volume of it and the weight of the same volume of the

standard substance.

If therefore V and W denote the same things as in the

preceding examples, and 8 be the specific gravity of the

fluid, we get

W^SV, (3).

Note,—By expressing in words the meaning of this

equation, it appears very clearly, as in (Art. 10, Note), what

[
is the unit of weight here assumed.
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The equation (3) declares that

the weight of a volume V of any substance of which the

specific gravity is 8, equals /SF times the unit of weight;

.-. putting F= 1, 8 = 1,

it follows, that

the weight of a volume unity of a substance of which

the specific gravity is unity equals the unit of weight

;

or the assumed unit, in terms of which W is given

in equation (3), is the weight of the unit of volume of

the substance hy reference to which 8 is estimated.

It may be well to caution against the following error,

which results from forgetting that the units of weight in (2)

and (3) are difierent.

It is frequently concluded that, because (2) gives

and (3) gives W=^8V,

,\ numerically 9P^— 'S'F, and gp= 8.

The true numerical statement is

gpV times the unit of weight in (2) = 8V times the

unit of weight in (3)

;

whence we get, if the substances to which p and 8
refer be the same, p = 8]

a result clearly consistent with the definitions of p and 8:

for, since weight varies as mass, the ratio between the masses

of two substances equals the ratio between their weights.

12. In order to reduce the weight of a given substance,

determined by (2) or (3), to pounds or ounces, it is neces-

sary to know in pounds or ounces the weight of the unit of

volume of the standard substance.
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If, as is generally the case, distilled water be the sub-

stance to which specific gravities and densities refer, and a

cubic foot be the unit of volume, the unit of weight in (3)

nearly equals —x~ lbs., because the weight of one cubic foot

of distilled water is nearly 1000 oz.

The unit of weight in (2) will then be oz., and there-

fore is still arbitrary as long as the unit of time is arbitrary,

for upon this, as well as upon the unit of length, the numerical

value of^ depends.

EXAMPLES TO ARTICLES 10, 11, 12.

(1) If one second be the unit of time, what must be the

unit of length in order that the formula W=gpVm8ij give

the weight in lbs., supposing the unit of volume of the

standard substance to weigh 16 lbs. ?

(2) Determine, approximately, the unit of time that the

unit assumed in W=gpV msij equal five ounces when one

foot is the unit of length and water the standard substance.

(3) Find the unit of time, when two feet is the unit of

length, in order that the units of weight in gpV smi /SFmay
be equal.

(4) Obtain the specific gravity of the standard substance

referred to water, when W= SVgives the weight in pounds.



SECTION II.

INELASTIC FLUIDS.

13. The pressure at any point below the surface of a uni-

form fluid, which is at rest under the action of gravity alone,

varies as the vertical distance below the surface.

[Definitions. The vertical line at any given place is the

direction of gravity at that place. It can, therefore, be practi-

cally defined as the direction of a plumb-line at rest under

the action of gravity only.

The horizontal plane at a given place is the plane to

which the vertical line at the same place is perpendicular.]

— Let P be the point below the surface, p the

pressure at that point, measured as in Art. (2),

M the point where a vertical through P meets

the surface : let MP be represented by z and let

a prism of fluid of very small transverse section

a, having MP for its axis, be considered. No
P circumstances affecting the equilibrium of the

particles of fluid will be introduced by supposing those form-

ing the prism to be solidified into one mass, (Art. 5).

But under this supposition the rigid prism MP is in equi-

librium under the action of

its own weight vertically downwards,

the pressure of the fluid vertically upwards upon

its base a.
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and the pressures upon its sides which, being normal

to these sides, (Arts. 5 and 1), are all perpendicular to

the axis and therefore horizontal.

These two systems of vertical and horizontal forces must

be separately in equilibrium, and hence the pressure on the

base equals the weight of the prism.

Since a is very small the pressure upon it may be con-

sidered uniform throughout its area, because the error intro-

duced by this will not be comparable with the whole pressure

;

it is therefore at every point approximately equal to ^, the

value which it has at P*: hence the whole pressure on the

base is approximately jpo. : also the volume of the prism is

very nearly az^ and if the density of the fluid be p, the mass

of the prism is equally nearly p(kz and its weight pazg ; we

get therefore from the foregoing considerations,

pa = pcLzg (1)

the more nearly as a is diminished indefinitely,

or p=gpz, accurately

;

hence for the same fluid p <x^ z.

Note. It must be remembered that the unit of force in

terms of which p is here expressed is a force equal to the

weiffht of -th of the unit of volume of the substance to which

p refers. This is introduced in equation (1) where the weight

of the prism of fluid is put equal to gp x its volume. It is

* It appears from (Art. 14) that pa strictly gives tlie pressure on the hori-

zontal area a for any value of a ; but in the proof of the proposition of this

Article, we of course are not at liberty to assume the result of a subsequent

proposition. Moreover, as we know nothing as yet of the form of the surface

of the fluid, we must consider a indefinitely small, in order confidently to put

az as the volume of the prism.
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necessary also to observe that the unit of volume is the cube,

of which each edge equals the unit of length.

13*. If the upper surface of the fluid be subject to a

pressure of which the measure isp^, (1) becomes

poL=^paLzg+p^OLj ultimately;

r.p=p,+gpz,

which determines the pressure at every point.

14. Withm a uniform fluid, which is at rest under the

action of gravity alone, the pressure at every point in the

same horizontal plane is the same.

Let P, Q be any two points lying in the same horizontal

plane below the surface of the

proposed fluid ; suppose a prism

of fluid having FQ for its axis,

and a very small transverse sec-

tion a to become solid ; this can

in no way affect the conditions

of equilibrium of the fluid.

(Art. 5.)

This prism is kept at rest by

the pressures on its two ends P, Q normal to these

terminal planes, and therefore in the direction of PQ^

i, e. horizontal

;

the pressures upon its sides normal to these sides,

and therefore perpendicular to the axis PQ
;

and its own weight acting vertically downwards,

and therefore also perpendicular to PQ
;

therefore resolving along PQ the pressures upon the two ends,

which are t(ie only forces in this direction, must counteract
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each other. Let p and q be the pressures at the points P
and Qj then since a is very small, the pressure over each end

of the prism will be very nearly uniform and of the same

intensity as at the middle point, and therefore the pressure

at the end P is pa, and that at Q is ^a ; but these must be

equal, therefore

poL = qa ultimately,

or p = q.

Hence, as P and Q are any points in the same horizontal

plane, it follows that the pressure at all points in the same

horizontal plane is constant.

In the preceding proposition it was assumed that Pif, and

in this one that PQ^ lay entirely within the fluid ; {. e, that

the rigid sides of the vessel or material containing the fluid

were never inclined from the vertical towards the body of the

fluid: but these propositions are also true whatever be the

form of the sides, provided the difierent parts of the fluid

contained by them are in free communication with each

other.

For let the annexed figure represent a quantity of fluid

contained by the irregular sides ABGDEF, The circum-

stances of the different par-

ticles of this fluid cannot be k.\

different from what they

would have been had AE
merely formed a portion of

a larger quantity FAKLEj
whose surface coincides with

FA as far as it goes; but in this case the proof of the fore-

going propositions would have held for any points in the

portion ABGDEF: the propositions are therefore always

true, P's depth in the first one being its vertical distance below
the surface or the surface produced.
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15. The surface of a uniform fluid which is at rest under

the action ofgravity alone is horizontal.

For taking the first figure of Article (14) if P' and Q' be

the points where vertical lines through P and Q meet the

surface, then by [13) p:q:: PPiQQ'; but by Art. (14) and

Cor. Art. (7) p=^q, .\PP=QQ\ But P and ^ are any

two points in the same horizontal plane below the surface of

the fluid, hence any two points in the same horizontal plane

within the fluid are at the same vertical distance from the

surface; .'. the surface being parallel to a horizontal plane

is itself horizontal.*

16. The common surface of any two fluids at rest in the

same vessel will he a horizontal plane.

To shew this, let KL be the

common surface of any two

fluids in contact, AB any given

horizontal plane in the one,

A'B' in the other : take P any

point whatever in the plane

AB^ draw PF vertical to meet

A'B' in P', cutting KL in Q.

Then by Art. (14) the pressure at P will be constant for

all its positions in the plane AB, call this pressure jp. ^ Simi-

larly the pressure at P' will be constant and may be repre-

sented by p.

Now consider the equilibrium of a prism of fluid whose

axis is PP' and whose transverse section is very small and

equal a ; this prism of fluid is kept at rest by the normal and

therefore horizontal pressures of the fluids upon its sides, the

pressure downwards at P, equal to jt?a, the pressure upwards

at P' equal to^'a, and its own weight;

* This result was not assumed in the figures of Art. 14.
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.-. as these two systems, horizontal and vertical,

must separately balance

{p —p) 0.= weight of prism

;

call PQ, h and QF, h\ and PP', a, and let the densities of

the fluids, in which AB and A'B' respectively are, be p and

p', then since the weight of the column is the sum of the

weights of the two parts PQ^ and QP\ if a be taken small

enough, this will become gpha-\-gph'a^ hence we get

g{ph + ph')=p'-p',

also h-\-h! = a,

or h — -—
J-
—^TT- = a constant,

9{P-P)
'

the vertical distance of every point in the common surface

om a given horizontal plane is the same, or the common
lurface is horizontal.

17. If two heavy fluids^ each of uniform density^ he placed^

Yie in each of two tubes or vessels which communicate with

ch othery the heights of their upper orfree surfaces above their

Yimon horizontal plane of contact will be inversely as their

Suppose h and h' to be these heights, p and p the densi-

ties of the corresponding fluids : now the pressure at any

point at a depth h below the surface of the first fluid is gph\
(Art. 13) similarly the pressure due to a depth h! below the

surface of the second is gph! ; but either of these estimates

must give us the pressure at a point in the plane of contact,

hence they must be the same, (Art. 14)

;

.-. ph = p'h', or^ =
^,

which proves the proposition.

P. H. 2
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18. If a surface he immersed in a fluid which is kept in

equilibrium hy the action of gravity alone, the total normal

pressure upon it is the same as would he exerted upon a plane

surface of equal area placed horizontally in the same fluid at

the depth of the center ofgravity of the immersed surface.

Let the area of the given surface be A, and suppose this

so divided into n portions represented by a^ a^,.M^, that by in-

creasing n indefinitely these may all be diminished indefinitely,

and may be ultimately considered plain areas all points of

any one of which are at the same depth below the surface

;

hence the normal pressure over any area would be approxi-

mately uniform, and equal to that due to its depth : if there-

fore z^ be the depth of the center of gravity of the area a^,

p the density of the fluid, then as n is indefinitely increased,

and therefore a^ diminished, the normal pressure upon a^ con-

tinually approaches to gpz^ca^.

The same thing will be true for each of the other portions

into which the surface has been divided; hence the total

normal pressure will upon the same supposition approach the

sum of the terms

or if we represent this pressure by P, then

P=^p(^,a, + ^A+---+^nan) (1) ultimately.

But if z be the depth of the center of gravity of the

whole area A below the surface, then

zA=-z^a^-\-z^ci.^-[-..,-]rz,,a^ (2).

This is true whatever be the magnitudes of a^, a^^ &c, ; it will

therefore be true when they are indefinitely small, which was

the condition by which the equation (1) was obtained, and we

may substitute from (2) into (1) : we thus get

P=gpzA',
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but the right-hand side of this equation is evidently the pres-

sure which would be exerted upon a surface A immersed at

a uniform depth z in the fluid in question, and hence the

truth of the proposition.

This proposition admits of the following statement

:

If a surface be immersed in a fluid which is kept in equi-

librium by the action of gravity alone, the total normal pressure

upon it is equal to the weight of a prism of the same fluid, of

transverse section equal to the area of the given surface and

of altitude equal to the depth of the center of gravity of the

immersed surface.

It appears that P is given in terms of the unit of weight

of Art (10).

18*. If the surface of the fluid be subject to a uniform

pressure of which p^ is the measure, the total pressure on the

immersed surface A will be

p^A+gpzA.

This will be understood at once on considering that the pres-

sure on the surface is transmitted with equal intensity in all

directions through the fluid. (Art. 7.)

19. The last proposition gives only the sum of the nor-

mal pressures upon a surface of a body immersed in a fluid

which is acted upon by gravity alone: the resultant of the

same pressures is equal to the weight of the fluid displaced hy

the hody^ its direction is vertical^ and passes through the center

of gravity of the fluid so displaced.

Let Q represent the portion of the body which is im-

mersed, whether it be totally so or not. It is evident that

the pressures upon the surface of Q in contact with the fluid

depend only upon the position and extent of that surface,

2—2
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and not at all upon the nature of Q itself: they will there-

fore be unaltered if any other

body conterminous with Q be (^ \
substituted for it. Suppose then ^^--

1 -j

some of the fluid under consider- ^^ Q. \ ,
-^

ation to be solidified into the B^ ^-^^/ n^^B
form of Q and placed in its

""^^^-^ y^ _^^S
stead, the pressures on the sur- —

:_

face of this solidified fluid are

the same as those on Q ; but this solidified fluid so placed

will be at rest, for it would be so if it were not solid, and

its solidification cannot affect equilibrium, (Art. 5) : now the

only forces acting upon this solidified fluid are its own
weight, vertically downwards through its center of gravity,

and the before-mentioned fluid pressures upon its surface,

hence the resultant of these pressures must be equal and

opposite to this weight. The fluid which we have supposed

solidified is that which would exactly filj the place of the im-

mersed portion of the body, if the body were removed ; it is

generally spoken of as the fluid displaced by it : the propo-

sition is therefore proved.

20. When a hody floats in a fluid under the action of

gravity only^ the weight of the fluid displaced hy it is equal to

its own weighty and the centers of gravity of the fluid displaced

and of the hody itself are in the same vertical lifie.

The only forces acting upon the body are its own weight,

in a vertical direction at its center of gravity, and the pressures

of the fluid upon the surface immersed : hence since there is

equilibrium, the resultant of these pressures must be equal

and opposite to the weight of the body, and it must act

vertically upwards through the center of gravity of the body

;

but by the last proposition the resultant of these pressures

was shewn to be equal to the weight of the fluid displaced
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and to act vertically upwards through the center of gravity

of the fluid displaced. From these two assertions then we

obtain that: the weight of the fluid displaced equals the

weight of the floating body, and that the centers of gravity

of the two lie in the same vertical line.

21. If a floating body be disturbed in its position in

such a way that the amount of fluid displaced by it remains

the same, the forces acting upon it will be unaltered as regards

magnitude and direction, for they will be, its own weight

acting vertically downwards at its center of gravity and the

weight of the displaced fluid, which is, as before, equal to the

weight of the body, and acts vertically upwards through its

center of gravity : but in the general case these two centers of

gravity will be no longer in the same vertical line, and thus a

couple will have been produced, under whose action the body

will either return to its original position of equilibrium or will

be removed further from it, according as the new direction of

the resultant of the fluid pressures, i. e. the weight of the fluid

displaced, meets that fixed line in the body, which passes

through its center of gravity and was vertical in the body's

floating position, above or below the center of gravity. This

is made evident by the annexed figure, where the body is

represented in its disturbed position, g is its center of gravity,
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g' that of the fluid displaced, W the weight of the body, B
the resultant of the fluid pressures on its surface and therefore

equal TF, M the point where the direction of R meets the

fixed line through g^—the dotted figures refer to the original

position of equilibrium.

The original position of the floating body is said to be one

of stable equilibrium, when upon a very slight disturbance of

this kind the couple produced tends to bring the body back

again, and unstahle when the contrary is the case : instances

of these two are given in the figure. The equilibrium is said

to be neutral wlienever this very small displacement fails to

produce a couple, i. e. when the two centers of gravity are

still brought by it into the same vertical line.

It is not difficult to see that when a body floats with its

center of gravity below that of the fluid displaced, the equi-

librium will be stable.

Ex. In illustration of this article, consider the case of a

floating body, of which the portion immersed is part of a

sphere.

The direction of the fluid pressures being normal will at

every point pass through the center of this spherical surface.

Therefore the direction of the resultant of the fluid pres-

sures must, as well in the disturbed as in the floating position,

pass vertically through this center.

Hence, clearly, equilibrium will be stable or unstable

according as the center of gravity of the body falls below or

above the center of the spherical surface.

22. If cc hody he immersed in a fluid of less specific

gravity than itself it will sink.

Let V be the volume of such a body Q ; S, 8' the specific

gravities of the fluid and body respectively ; then the forces
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acting upon Q are its own weight = VS' acting vertically

downwards through its center of gra-

vity, and the resultant of the fluid

pressures upon its surface; but this

resultant is equal to the weight of the

fluid displaced by Qj = V8, and acts

vertically upwards through the center

of gravity of the fluid displaced, which

is also that of the body, if we sup-

pose the body and fluid each to be of

uniform density; therefore on the whole the body is acted

upon by a vertical force equal to the difference between these

two, i. e. of the weight of the body and that of the fluid

displaced by it, = ¥{8'— 8) in a downward direction; it

must therefore sink.

23. If it be required to find the force to be applied

by means of a string in order to hold the body in its posi-

tion, it must evidently be equal and opposite to this force

V{8'-8).

But the force requisite to support a heavy body or to keep

it from falling under the action of gravity is taken as the

measure of its weight. Hence the foregoing shews that the

apparent weight of a body when immersed in a fluid is less

than its real weight hy the weight of the fluid displaced.

This result is very useful in finding the specific gravities

of bodies.

24. If on the contrary the specific gravity of the body

immersed be less than that of the fluid, it will rise : for, as

before, the resultant force upon the body is a single vertical

force passing through its center of gravity, equal to the

difference between the weight of the body and that of the

fluid displaced by it, and acting in the direction of the larger
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force, which in this case is upwards,

explain the ascent of a balloon.

25.

This will serve to

If the specific gravities of the body and fluid be the

same, i. e. if 8 and S' be equal, this resultant force clearly

vanishes, and hence the body would rest in any position of

total immersion.

The remainder of this section gives some methods of

comparing the specific gravities of different substances

whether solid or fluid, and describes instruments called

Hydrometers, which are used for the purpose: it may be

remarked that in all cases the ratio between the weights

of equal volumes of the two substances is the quantity

sought. (Art. 11.)

26. An ordinary balance adapted to weighing bodies in

fluids is sometimes termed an Hydrostatic balance : one of the

scales is small and hung very short; at the bottom of the

pan is a hook from which the body, while immersed in a fluid
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contained in any vessel below it, may be suspended by a small

string or wire.

27. To find the specific gravity of a solid hody^ that of

distilled water being taken as the unit.

(1) When the specific gravity of the body is greater than

that of the distilled water, or in other words when the body

sinks upon immersion

:

Let the weight of the body in vacuum be determined

= W suppose ; then let its apparent weight in distilled water

be ascertained by the hydrostatic balance, suppose it = TF';

then W- W is (Art. 23) the weight of the distilled water

displaced by it; if then 8 be the specific gravity required,

(Art. 11),

^_ weight of the body
~"
weight of an equal volume of distilled water

(2) When the specific gravity of the body is less than

that of the distilled water

:

Let a piece of some heavy substance be attached to the

body, such that the whole will sink upon immersion ; let w be

the ascertained weight of this attached portion in vacuum, w
in the water, W^ the weight of the compound body in vacuum,

TT/ the weight of the same in the water, and TF, as before,

the weight of the body itself in vacuum ; then

the weight of water displaced by the compound body

when immersed — W^— TF/,

of that displaced by the attached body =w — w\
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hence the weight of water displaced by the proposed body,

which must be the difference between these, is

therefore by the preceding case

W8= W^-W^-w + ^i

28. To find the specific gravity of afiuid.

Let a vessel be filled with it and then weighed in vacuum,

and let the weight so found be W\ let also the weight of the

vessel itself when quite empty be W\ and when filled with

distilled water W"\ if care be taken to fill the vessel accu-

rately, the volumes of the proposed fluid and of the water

weighed will be the same ; now the weight of the first is

TT- W\ and of the latter TF"- W\ hence if 8 be the

specific gravity required,

W-W8= W"-W"

By this method also the specific gravities of air, or any

gases, or even of very fine powders, may be obtained.

29. The specific gravities of two fluids may he compared

hy weighing the same solid in each.

Thus, let W be the weight of the solid in vacuum,

W^ its weight when immersed in the first fluid,

TFg when in the second fluid,

then W — W^ is the weight of the first fluid displaced

by it,

W — W^ \^ the weight of the second fluid displaced

by it;
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but these are the same in volume, therefore if S^^, 8^ be their

specific gravities,

S~W-W,
2

30. Of the weights which enter the preceding formulae,

those stated to be found by weighing in a vacuum, are very

properly termed true weights; those found by weighing in

any medium are usually called apparent weights. The differ-

*ence between the true and apparent weights is affected by

two causes, which tend to counteract each other ; on the one

side, the weight which the body requires to balance it, is less

than what it would require in vacuum by the weight of the

medium which it displaces ; on the other, the balancing body

is less than the weight which it is supposed to represent

by the weight of the medium which itself displaces ; thus if

a true lib. weight and a body Q when placed in the two

scales of a balance in the air keep the beam horizontal, it can

only be concluded that the 1 lb. weight diminished by the

weight of air which it displaces, is equal to the weight of Q
diminished by the weight of air which Q displaces ; it will be

seen that when the weight of air displaced by the two bodies

is the same, the weight of ^ is 1 lb. and not otherwise.

However, since the specific gravity of air is not greater

than —— , water being the standard substance, therefore the
800

apparent weight in air and the true weight of a substance

whose specific gravity is not small, will differ veri/ slightly,

and may practically be considered equal.

31. In the foregoing methods of finding the specific

gravities of substances we have deduced them by considering

them to be proportional to the weights of equal volumes ; it

may be seen from the formula (3) of Art. (11), that they are

also inversely proportional to the volumes which have equal
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weights. The two hydrometers which are most generally

employed, are constructed respectively upon these two prin-

ciples.

The Common Hydrometer

gives the ratio between the volumes of two liquids

which have the same weight: the annexed figure

represents it. AB is a thin graduated stem of uni-

form transverse section, which at its lower extremity

expands into a hollow globe BG] and to this is fixed

a ball of lead D sulSSciently large to bring the center

of gravity of the whole instrument within it.

To apply the instrument, it is immersed in a pro-

posed fluid and allowed to find its position of equi-

librium, which it will very readily do on account of

the lowness of its center of gravity, (Art. 19) ; the

stem will be vertical and the number of its gradua-

tions cut off by the surface of the fluid, can be easily ob-

served ; the comparison of this number with that given by

immersion in the other fluid will lead us to the ratio between

their specific gravities; for let 8 and S' be these, W the

whole weight of the instrument, V its volume, and a^ the

transverse area of the stem AB : when the instrument is im-

mersed in the first fluid suppose it to sink to P, then

W^S{V-oL,AP)',

again, when immersed in the second fluid suppose it to sink

to P ; then,

W=8'[V--oL,AP)',

8 _ V- d^AP'
" 8'~ F-a,^P'

hence the ratio between 8 and 8' is known when the numbers

of graduations in AP and AP' are known.



INELASTIC FLUIDS. 29

Nicholson's Hydrometer,

32. This instrument is adapted for finding the ratio

between the weights of equal volumes of two

fluids, or between the weights of a solid and an

equal volume of fluid. It is represented in the an-

nexed figure ; ^(7 is a hollow buoyant body of any

symmetrical shape, ^ is a cup supported upon it by

a rigid wire ABj and i) is a similar cup suspended

below by a wire CD. This cup is frequently capable

of inversion, so as to hold down a body specifically

lighter than the fluid.

(1) To use this instrument for comparing the

specific gravities of two fluids.

Let TFbe the weight of the instrument, W^ the

weight which must be placed in A in order to make

it sink in the first fluid to a point P in the stem AB^
W^ the weight to be placed in A in order to make

it sink to the same point in the second fluid : then

the weight of the fluid displaced in the first case is TF+ W^j

in the second TF+ W^^ and the volumes are the same in

both, therefore if S and 8' be the specific gravities whose

ratio is required,

S _ W-\-W
^

(2) To compare the specific gravities of a solid and fluid

:

Let W^ be the weight required to be put in A in order to

sink the instrument up to P in the fluid ; remove this and

place the solid in A ; and let W^ be the weight which must

in addition be put in A in order to sink the hydrometer in the

fluid to the same point P; next place the solid in D and let
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PFg be the weight which must now be put in A to sink the

instrument to the same point

;

then the weight of the solid is TFj — W^,

also its apparent weight in the fluid is W^ — W^]

but this must be its real weight diminished by the weight of

the fluid it displaces ; .'. the weight of fluid displayed by it

since then this displaced fluid is equal in volume to the dis-

placing solid, if S and 8' represent the respective specific

gravities required,

33. When two or more fluids are thrown together in the

same vessel, if they do not lie in masses superimposed so that

the common surfaces are horizontal planes (Art. 16) they will

become so intimately mixed as to form a new fluid.

In this case, if the fluids be incompressible, the specific

gravity of the compound will be known when that of each

of the composing fluids is so. For let Fj, V^,.,Vn be the

volumes of the different fluids thus mixed together, /Sj, S^..,8n

their respective specific gravities; V^ + V^+ ,,,+Vn is the

volume of the resulting mixture, and if 8 be its specific

gravity, since the weight of the whole must equal the sum of

the weights of the parts

and therefore

^" K + V,+ + T/-
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EXAMPLES TO SECTIOl^ II.

(1) Let ABC be a rigid pipe of small bore, communi-

cating at C with* a vessel DCE,
whose top DE is moveable up and

down by some means which allows

of the vessel remaining water-

tight: it may be a piston fitting

closely to a cylinder, or it may be ^^^——^^B
more simply a board connected )

—

r J^^
with the bottom by leather sides. \=^—

If the whole of this be filled with \- ~'::-g=^

water, it is found that a man may HHHBkBHiBB
easily support himself upon DE^
by merely closing the top of AB with his finger, or he may
even raise himself by blowing into AB from his mouth.

This phenomenon is sometimes called the Hydrostatic Para-

dox : explain it.

When the man applies his finger to Aj he presses the

surface of the water in the pipe with a certain force, which

(by Art. 7), is thence transmitted through the fluid to every

portion of surface in contact with it: if then a be the cross

section of the tube at A and P the force he applies, a force

equal to P will be transmitted to every portion of DE which

is equal to a ; but if A be the whole area of DEj it contains

A— such portions ; therefore the whole force applied upwards

to I)E=—P, which may be quite large enough to support

the man's weight, although P is small, provided the area a

A
be small compared with A, and therefore the fraction —

a very large number.
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If P be increased beyond this previously supposed value,

by blowing or otherwise, the man will evidently raise himself.

Ex. Find P that it may just support the man's weight

W.
n

(2) The pressure at a point P within a body of water,

under the action of gravity only, is 50 lbs., given that the

weight of a cubic foot of water is 1000 oz., and that the unit

of area is a square foot, find the depth of P below the

surface.

Let z be this depth in feet, then (by Art. 13) if p be the

density of the water and p the pressure at P:

weight of unit of volume of standard substance
p^^gp^^^—

;

.*. -by the question, considering a foot as the unit of length

and water as the standard substance, and .'. /o= 1,

_„ 1000 „
50 lbs. = zx -—— lbs.

16

_4

4
or the required depth is -ths of a foot.

(3) A cylinder is immersed in water in such a way
that its axis is vertical and its top is just level with the

surface; find the total normal pressure upon its bottom and

sides.

By Art. (16), this total pressure is equal to the weight

of a cylindrical column of water whose base equals the area

of the given surface pressed, and whose height is equal to the

depth of the center of gravity of this given surface below the

surface of the water.
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But if r be the radius of the base and h the height of our

cylinder, the area of the surface pressed is

= area of base + area of sides

Again, the depth of the center of gravity of this pressed

surface below the top of the water

7rr^.A + 27rrA.-

irr + ^irrJi,

.'. the column of fluid whose weight is sought has a

volume

= (7rr^ + 27rrh) x

= irr^h + 27rr —
;

7rr% + 27rr —
J

7rr% + 27rr -
]

= 7rgprh {r + h),

p being the density of the water.

(4) A triangle ABG is

immersed in a fluid, its

plane being vertical and the

side AB in the surface : if

be the center of the cir-

cumscribing circle, prove

that the pressure on the

triangle GA : pressure on

triangle OCB :: sin 2B :

sin 2^.

P. H.
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The pressures on the two triangles will be to each other

in the same proportion as the product of the area of each

triangle into the depth of its center of gravity below AB,
(Art. 18).

But if g and g' be these centers of gravity, they will divide

the lines Ok, 01, drawn from to the points of bisection of

AG and BG respectively, in the same proportion; therefore

they will be in a straight line parallel to that joining k and I,

and therefore parallel to AB.

Hence the pressures required will be as the areas only,

i, e. pressure on OGA : pressure on GB.

:: area OGA : area 0GB

:: sin^0(7:sin50(7

:: &in2ABG: sm2BAG.
*

q. E. D.

(5) A regular hexagon is immersed vertically in a fluid,

so that one side coincides with the surface; compare the

pressures on the triangles into which it is divided by lines

drawn from its center to the angular points.

(6) A cylinder whose height is 4 feet is sunk in water

with the axis vertical till its upper face is 805 feet below the

surface and the pressure on the top is found to be 35 lbs. ; find

the pressure on the lower face, neglecting the pressure of the

atmosphere.

(7) A square is just immersed in a fluid of density 8,

with one side horizontal and with its plane inclined at 60° to

the vertical : given that a cubic foot of the standard substance

weighs 1000 ozs., find the side of the square that the pressure

on it may be 216 lbs.
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(8) A vessel containing water is placed on a table;

supposing the vessel of such a shape that only half the

fluid is vertically over its base, what is the pressure on the

base? Is this the pressure on the table? Explain your

answer.

The reasoning of Art. (4) aided by a reference to the

second figure of Art. (14) will explain how a rigid surface

may supply the place of a vertical column of fluid. The

rigidity is the result of internal forces and does not affect the

pressure on the table.

(9) The same quantity of fluid which will just fill a

hollow cone is poured into a cylinder whose base equals that

of the cone : compare the pressures on the bases, the axes of

both vessels being vertical.

If the cone and cylinder be resting on a horizontal plane,

state how the pressures on this plane will be affected, and

explain the case fully.

(10) Suppose a pound weight of a substance twice as

specifically heavy as water to be hung into the water con-

tained in a vessel, which is standing on a table, by a string

not attached to the vessel, what would be the increase of

pressure on the table ?

(11) A cylinder of given radius, height, and specific

gravity, is partially immersed with its axis vertical in water,

being held up by a string which is attached by one end to its

top, and by the other to a fixed point vertically above the

cylinder: supposing the string to stretch 1 inch for every

5 lbs. which it supports, and that its unstretched length just

allows the bottom of the cylinder to touch the water, and

that a cubic foot of water weighs 1000 ozs., find the depth of

immersion.

3—2
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Let this depth be z feet : also let h be the height of the

cylinder and r the radius of its base in feet, cr its specific

gravity.

Then the volume of water displaced by the cylinder is

Tvr^z cubic feet, and therefore the weight of it, which is the

same as the resultant of the fluid pressures upwards upon the

cylinder, must be (Art. 19)

2 1000 „= irr z —— lbs.
lb

Also, since the string is stretched z feet, its tension must

by question

= Viz X 5 lbs.

Now these two forces, each acting vertically upwards

upon the cylinder through its center of gravity, and the

weight of the cylinder itself acting vertically downwards

through the same point, are the only forces which are acting

upon the cylinder ; therefore, for equilibrium it is only neces-

sary that the sum of the first two equal the last ; but the

weight of the cylinder = irr^h x a x —^ lbs.,

/ 2 1000
.

^A 27 1000
.-. z f ot' -jg- + 60j = irarh x —-

;

or z= —; leet.

It should be observed that all the symbols here used are

necessarily by the statement numerical quantities.

(12) What weight is just sufficient to hold down a bal-

loon containing 2500 cubic feet of hydrogen gas (specific

gravity .069 referred to air) supposing the weight of the
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material enclosing the gas 4 lbs. and the weight of a cubic

foot of common air 1.1 oz.?

i (13) A cylinder which floats in water -tinder an exhausted

I receiver has f of its axis immersed ; find the alteration in the

depth of immersion when air, whose specific gravity is .0013,

is admitted.

(14) A cone 7 inches in height and 2 inches in diameter

at its base is attached to a hemisphere of equal diameter : the

specific gravity of the cone is 1.5, that of the hemisphere is

1.75, find the specific gravity of the fluid in which this com-

pound body will sink to a depth of 3 inches with the vertex

of the cone upwards.

(15) When 30ozs. of an acid A whose specific gravity

is 1.5 are mixed with 35 ozs. of au acid B whose specific

gravity is 1.25, and with 35 ozs. of water, the specific gravity

of the resulting mixture is found to be 1.35 ; find the con-

traction of volume, assuming the specific gravity of water

to be 1, and the weight of a cubic foot of its volume to be

1000 ozs.

n .
35 ,. , .

±ne volume oi iio ozS. OI WJ ~ 1000 '

30 1_ 30

1.5x1000 '

35 B - ^^
1.25x1000

Also the volume of the 100 ozs. of mixture

100
oi-iT-Mo -Koof •

1.35 X 1000



38 INELASTIC FLUIDS.

.•. the loss of volume is

/ . 30
,

35 100\ 1 . f .

r +O + 1:25
- E35J 1000

^^^^-^ ^''''

(16) A man whose weight is 168 lbs. can just float in water

when a certain quantity of cork is attached to him. Given

that his specific gravity is 1.12, that of cork .24, and that of

water 1, find the quantity of cork in cubic feet, assuming a

cubic foot of water to weigh 1000 ozs.

Let V be the required number of cubic feet of cork, then

Fx .24 X -—- + 168 is the weight of the man and cork to-
16

gether in lbs.

By the question this must be just equal to the weight of

the same volume of water ; and the volume of the man in

cubic feet is ——r—777777;, because each cubic foot of him
1.12 X 1000'

weighs 1.12 X 1000 ozs. (Art. 11), and his whole weight is

given to be 168 lbs.

;

1.12 xiooo; 16
^"^--^

• 16 ^

F(l.-)T = ^^^
1.12

12
= 112^^^^'

V=
16 X

112 X

12 X 168

.76 X 1000

16 X 12 X 168

112x760

6 X 168 6 X 42

7x380~7x95'

/, F= .37895 of a cubic foot.
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(17) If in a circular tube two fluids be placed so as

to occupy 90° each, and

if the diameter joining

the two open surfaces be

inclined at 60° to the ver-

tical, prove that the den-

sities are as

V3 + 1:V3-1.

Let ACBD be the

tube; AD
J
BD the por-

tions of it occupied by the

two fluids whose specific

gravities may be repre-

sented by p and p respec-

tively: if the diameter

A OB be drawn, it will be inclined to the vertical at an angle

60°. Let the horizontal line through i>, the common surface

of the two. fluids, meet the verticals through A^ 0, and B
respectively in M, N, and P, and draw Af^ Bg perpendicular

to OK

Then, by Art. 33,

l^BP_^ 0N+ Og ^ Oi) sin 60°+ OP cos 60°

p' AM ON- Of OD sin 60° - OA cos 60°

_ tan60° + l

~tan60°-i

^ V3 + l

Vs-i'

(18) Equal volumes of oil and alcohol are poured into

a circular tube so as to fill half the circle, shew that the

common surface rests at a point whose angular distance from

the lower point is tan'^jV^j ^'^ specific gravities of oil and

alcohol being .915 and .795.
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(19) A body P weighs 10 lbs. in air and 7 lbs. in a fluid

A: if it be attached to a denser body Q^ and then suspended

in another fluid B^ the apparent weight of both bodies is

5 lbs. less than that of Q alone ; compare the specific gravities

of A and B.

(20) A cone floats in a fluid with its axis vertical, the

vertex being downwards and half its axis immersed ; compare

the specific gravity of the cone with that of the fluid.

(21) The specific gravities of sea-water, olive-oil, and

alcohol are 1.027, .915, and .795; the oil and alcohol have

depths one inch and two inches above the water. Find the

pressure on 3 square inches of a plane surface which is im-

mersed horizontally at a depth of 5 inches below the upper

surface of the oil : the weight of a cubic foot of distilled water

being 1000 ozs.

(22) If s be the specific gravity referred to water of a

body whose bulk is n cubic inches and weight m ozs., then

771X1728 = 1000X72X5.

(23) The mean specific gravity of a plated cup is 7.6

;

that of the silver is 10.45 ; that of the unplated metal 7.3

;

compare the volumes and weight of the metals.

(24) The specific gravity of zinc is 6.862, what is the

weight of the water displaced by a portion of it, which when

immersed weighs 5.862 lbs. ?

(25) The volume between two successive divisions of

the stem of a hydrometer is toVo^^^ P^^^ ^^ ^^^^ \yu\k of the

whole instrument ; it floats in water with 20 divisions above

the surface ; find the least specific gravity of a fluid in which

it will float.
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(26) A hydrometer that weighs 250 grains, requires 94

grains to sink it in water to the requisite point, and 8 grains

in naphtha ; when a substance is placed successively in the

upper and lower cup, 1^ grains and 14 grains are respectively

sufficient to sink the instrument in naphtha to the requisite

point ; required the specific gravity of the substance.

(27) How many inches are there in the edge of a cubical

mass of coal which weighs 2 tons, its specific gravity being

1.12 ; and what is the specific gravity of silver one cubic inch

of which weighs 6.1 ozs. ; also what is the weight in ozs. of

30 cubic inches of mercury, its specific gravity being 13.6?

(28) If w^ w^ w?3 be the apparent weights of a body when

weighed in three fluids whose densities are respectively p^ p^ p^y

shew that

^1 ipS - P2) + ^2 [pl - Ps) + ^3 {P2 - Pi) = ^' '

(29) Two metals of which the specific gravities are 11.22

and 7.25, when mixed in certain proportions without con-

densation, form an alloy whose specific gravity is 8.72 ; find

the proportion by volume of the metals in the alloy.

(30) A small vessel when entirely filled with distilled

water weighs 530 grains ; 26 grains of sand are thrown into

the vessel, and the whole then weighs 546 grains. Shew that

the specific gravity of the sand is 2.6.

(31) A crystal of saltpetre weighs 19 grains : when

covered with wax (the specific gravity of which is .96) the

whole weighs 43 grains in vacuo and 8 grains in water. Shew
that the specific gravity of saltpetre is 1.9.

(32) 37 lbs. of tin loses 5 lbs. in water, 23 lbs. of lead

loses 2 lbs. in water, a composition of lead and tin weighing

120 lbs. loses 14 lbs. in water, find the proportion of lead to

tin in the composition.
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(33) A solid hemisphere turning round a fixed horizontal

axis fits into a fixed hemispherical cup: shew that if the

hemisphere be turned through anj angle, and the cup then

filled up with fluid of double the specific gravity of the solid,

the solid will rest in that position.

Let ADB be a section of the hemispherical cup made

by the plane of the paper, perpendicular to the fixed axis

about which the solid turns, G this axis, and HDBK' the

solid turned through any angle A CH, If the part AEG of

the cup be now filled up with fluid whose specific gravity is

double that of the solid, equilibrium will be preserved.

For it is manifest that equilibrium would obtain, if the

space HGK were filled up with a portion of the same sub-

stance as the solid hemisphere. Also, since the centers of

gravity of the two figures, HGA, AGK are necessarily in the

same vertical line, the efiect oiHGK'm producing equilibrium

must be the same as a uniform solid EGA whose weight is

equal to the sum of the weights of EGA and AGK together,

^. e. as a uniform solid EGA having double the specific gravity

of the given solid. But sinceAGh horizontal no new circum-

stances affecting the pressure on EG would be introduced by
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supposing this solid to become liquid, which would produce

the proposed case : hence the truth of the proposition.

(34) Is it advantageous to a buyer of diamonds that the

weighing of them should be made when the barometer is high

or when it is low, supposing their specific gravity to be less

than that of the substance used as the weight ? (Art. 30.)

(35) A sphere of weight W with its center of gravity

bisecting a radius floats in a fluid : W is the weight of a

volume of the fluid equal to the volume of the sphere ; shew

that if W'>S W, there is a point within the sphere where a

weight may be placed so that the sphere may float in any

position with half its volume immersed.

(36) Find the vertical angle of an isosceles triangle in

. order that, when floating with an angle at the base downwards

in any fluid of greater specific gravity than itself, the opposite

side may be horizontal.

(37) A cylinder [s, g. a) floats with its axis vertical partly

in one fluid {s,g,a^ partly in another {s.ff.o-^), shew that

the common surface divides the axis in the proportion of

(38) A rod of density p and length a is freely moveable

about one end fixed at a depth c below the surface of a fluid

of density cr : shew that the rod may rest in a position inclined

to the vertical provided that

a- ^ d^
- > 1 < -2,

P c

and that such a position is stable.



SECTION III.

ELASTIC FLUIDS.

34. Elastic fluids are either permanent gases, or vapours

which upon a sufficient reduction of temperature assume the

state of liquids : of these last steam may afford an example.

There is however no hjdrostatical distinction between gases

and vapours, indeed there is every reason to think that they

only differ physically in the range of circumstances under

which they may be severally considered permanent.

As is the case in inelastic fluids, so the pressure at any

point within an elastic fluid is due partly to the transmis-

sion of forces from the surfaces of the fluid, according to the

law of (Art. 7), and partly to the direct action, at that point,

of gravity or any other external force. But the one great dis-

tinction between the two kinds of fluids is, that in the inelastic

this pressure does not alter the relative distances of the adja-

cent particles from each other ; they appear capable of affording

reactions to any required amount, as is the case with rigid

surfaces in contact, without their geometrical relations to each

other being affected; while in elastic fluids, the reactions

between adjacent particles seem to depend upon their mutual

distances, the greater the force thus required to be called

forth the nearer the particles approach each other, and the

smaller the volume of the mass becomes (Art. 8) ; upon the

diminution of this force they again recede, and the volume

increases. The resultant of these reactions may therefore

very well be termed the elastic force of the fluid at that point

:
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an experiment directed to ascertain its relation to the state of

compression of the particles, i, e, to the density of the fluid,

will presently be described.

35. The weight of elastic fluids such as air, is generally,

for the ordinary volumes and densities which come under our

notice, so small that it may be entirely omitted in comparison

w4th the transmitted forces ; the pressure then becomes uniform

for every point throughout the mass, unless the circumstances

of the case introduce other external forces. But the efiect of

gravity upon the mass of air contained in the enormous volume

of the atmosphere produces a pressure at the earth's surface

which can never be neglected; its amount may be easily

estimated by the aid of

The Barometer.

36. Suppose a tube BA of considerable length

and filled with mercury, to be inverted into a vessel

DQ also containing mercury; and if the end B
remain closed and A be opened, the mercury in the

tube will be observed to sink to a certain point G
and no farther, leaving a vacuum in the upper part

BG oi the tube ; let DKE be the common surface of

the external air, and the mercury ; then the pressure

at every point of this must be the same (Art. 14)

;

that at any point without the tube is due to the

weight of the atmosphere, call it U, and at any point

within the tube it is due to the weight of the column '

GK of mercury, hence if a be the specific gravity of

mercury, and h be the vertical height of KG, we must

have (Art. 13)

n = (tL
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Hence since a-, the specific gravity of mercury, may be

generally considered constant, we get

Ucchj-

or h will serve to measure IT, the pressure of the atmosphere

on a unit of area.

Any instrument, as we have here described, furnished with

graduations or any other means of observing the length KC
or h, is called a Barometer. It is obvious that any other

heavy inelastic fluid might be used instead of mercury, but as

h varies inversely as a for a given value of IT, it is always

advantageous to employ as heavy a fluid as possible, because

the instrument becomes very awkward when BK is required

to be long ; even with mercury the length of h is about 30

inches for the ordinary pressure of the atmosphere.

Note, a- is not absolutely constant, since the volume of

mercury, and therefore its specific gravity, changes with a

change of temperature. This variation being very slight is

neglected in rough observations. If, however, close accuracy

be required the thermometer must be noted at the time, and

from the observed temperature and a known law connecting

temperature and volume, may be determined the height at

which the column would stand for a given standard specific

gravity of mercury.

In the adjustment of the Barometer it is essential that the

graduated scale, by which h is measured, should be vertical.

For further observations on the Barometer, see Art. 71.

The following two examples are given to illustrate the

equation

(1) Find the atmospheric pressure on the square inch,

when the height of the mercurial barometer is 30 inches.
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assuming the specific gravity of mercury^ referred to water to

be 13.6.

From the equation

we have, if an inch be taken as the unit of length, the pressure

on the square inch = ah times the weight of a cubic inch of

water,

= 13-6x30x]^ozs.
1728

since a cubic foot of water weighs 1000 ozs. nearly,

or the required pressure = 14f lbs. nearly.

(2) Given that the pressure of the atmosphere on the

square inch is Plbs., find the height of the barometer.

In this case

n = ah, gives us

Plbs. = ah times the weight of a cubic inch of water

= 13-6 xhx
yf2s'iQ^^^'

nearly;

/. A =--—.P inches.
425

37. The elastic force of air at a given temperature varies

inversely as the volume which it occupies.

This law, which is generally called Boyle's Law, after its

discoverer, is verified by the following experiment.

Let a tube, bent so that its two branches AB and BG
are parallel, be partially filled with mercury, and placed so

that each branch is vertical ; the mercury will then stand at

the same level, DEj in each of them ; let the extremity C of
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the branch BG he now closed; the pressure

at every point of the air thus shut in GE is

uniform (Art. 35), and of course equal to the

atmospheric pressure ; now let more mercury be

poured into the open end A ; this will cause the

surface of the mercury to rise both in JBA and

BGy but unequally: the point F, to which it

ascends in BG, being much lower than G, which

it attains in AB. It is always found upon

ascertaining the volumes GF and GF, which

may be done by weighing the mercury which

they would separately contain, and upon mea-

suring the vertical length FG, that if h be the

height of the barometer observed at the time of

making the experiment,

h +FG _ YolGF
h ~Yo\.GF'

vy^

But if <7 be the specific gravity of the mercury, 11 the pressure

of air in GF before the additional mercury was poured in,

since, as above remarked, this must equal the pressure of the

atmosphere.

Also if IT' be the pressure of the air when compressed into

the space CF, since this must be the same as that of the

mercury at the level F in the tube, and therefore equal to the

atmospheric pressure at G, together with the weight of the

column FG,

n' = ah + <TFG = (7{h + FG),

n' _ h+FG
" n~ h

_ Yo\. GF
~Yol GF'
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Therefore when compressed the elastic force of air

varies inversely as the space which it occupies.

Next let the experiment be so far altered that

instead of the step of pouring more mercury into

A^ a portion of the mercury already in the tube

be removed; F and O may, as before, represent

the surfaces of the mercury \n BC and BA respec-

tively, but in this case F will be higher than G^

and both of them lower than DE,

A

A(

D

C

\ \J
/

Upon measuring, as before, it will now be

found that

h-FG vol. CE
k ~yoicr

^_^
B

Also IT and IT' having the same meaning as before,
,

and because IT' is the pressure at Fj and therefore less than

the atmospheric pressure at G by the weight of the column

of mercury FGj
n' = c7{h^GF),

n' vol. CF
hence ^pp = ,—^^.

IT vol. CF

And therefore the Law enunciated holds equally whether the

air is compressed or expanded.

It can in a similar way be verified for all other elastic

fluids.

38. As the density of the same quantity of an elastic

fluid varies inversely as the space which it occupies, we may
put the above law into a more convenient form, and say, that

the pressure at any point within a portion of uniform and

elastic fluid varies as the density of that portion ; or, since it

P. H. 4
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is quite unimportant how large this portion may be, we arrive

at the general conclusion, that if p be the pressure at any
point of an elastic fluid, and p the density of the fluid at that

point, then

p = kp,

where k is constant for the same fluid at the same tempera-

ture ; its value may be ascertained by experiment.

The formula which connects p and p when the temperature

of the fluid varies will be the subject of investigation in

Section V.

Also, for a description of the Thermometer and its use in

measuring changes of temperature, see the same Section.

^. To find k for air.

Let p be the pressure and p the density of the air at a

place where the barometer stands at h inches, p the density

of mercury,

Then, (Art. 38) p = kp,

by the barometer p =gph,

.\k = QA.L
^ P

The ratio ^ may be found by any method for determining
r

the specific gravities t)f gases and solids. The numerical value

of
ff,

for given units of time and space, is known by experi-

ments with the pendulum : the value of h in terms of the

unit of length assumed in the value of g is observed. Hence

the numerical value of k for air is ascertained. A similar

method will serve for any gas, the pressure of which can be

determined by a barometer.

It must be remembered that the value of k thus found

belongs to p, referred to the square on the assumed unit of

length as unit of area, and expressed in terms of the weight of
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of a cube of the substance by reference to which p and

p are estimated, and of which each edge is the unit of length.

39. By the aid of the result of Art. 38 we may discover

the law of variation of the density of the atmosphere in refer-

ence to the elevation above the earth's surface, supposing the

temperature to be constant, and the force of gravity to be the

same as at the earth's surface.

Suppose the atmosphere up to any proposed height z feet

from the earth, to be divided into a great number of horizontal

layers of equal thickness r; by taking this number (which

may be represented by n) large enough, r may be made so

small that the density throughout each layer may be con-

sidered approximately uniform, and equal to that at its lowest

surface ; let p^ represent generally the density ^^ the pressure

at the lowest surface of the 5*^ layer, reckoning upwards from

the earth's surface, k the known constant proportion for air

at the given temperature between the pressure and th6

density: then (Art. 38)

Ps.^=hs-v

Now consider the equilibrium of a small vertical prism

of the s^^ layer of horizontal section a, and height t: the

vertical forces on it will be the pressures on its end and its

weight.
.'. i?5_ia=p,a + ^/>,_iTa, nearly,

or Ps.,-Ps=9Ps.Jy nearly;

.-. by substitution.

or ^ = 1--^

Ps-r
'^

4—2
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a ratio which is constant and less than unity, and therefore

the densities of the successive layers, proceeding upwards

from the earth's surface, form the terms of a decreasing

geometric series.

If z be the height above the earth's surface of the top of

the n^^ layer, a convenient form may be found for comparing

the densities at the two heights z and z ^ which will indicate

a means of finding by the aid of the barometer the difference

between them.

Writing down the ratios of all the successive densities

between z and z we have

,^=i-¥ (1).

^•=l-f -•(2).
Pru.2 ^

&C. =&C.

^•=i-f («-«');
A

but Z — UT^

z =nT]

, z — z

T '

and, by substitution,

z—z

The smaller t is made, the more nearly does our reasoning

approach the real case, and therefore the more nearly will this

result be true.
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But putting for convenience z — z\ the difference between

the two heights, equal to ic, and expanding

CC ftJC \

i_.£Tr.=i_?.2:+ik;2f.2rV_&e.
hi rk 1.2 \k

1_I _ l-I I-2II
"

yt
"^

1.2 A:'^ 1.2.3 k'
"^ ^•

which, as t is made smaller and smaller and approaches zero,

approaches to the value

k^l.2 K' 1.2.3 A'
^^^'

that is, the more nearly our supposed case approaches the real

one, the more nearly true is the equation

£i-l_^4.J_-9^'_&c
p„,-^ k^\.2 k" ^-

_gx
= S k

We may therefore take this to be the true value of the

ratio between the densities of the air at two heights, z and z

feet above the earth's surface, upon the supposition of gravity

and temperature being both constant.

40. If Ji and li be the observed heights of the barometer

at places whose elevations above the earth's surface are z and

z\ these must be proportional to the pressures, and therefore

to the densities of the atmosphere at those places, hence,

?:-=- = £ ap
;



54 ELASTIC FLUIDS.

.-. .-.'=|log,(J),

a formula from which the difference between the heights

above the earth of the two places z and z may be readily

found.

It need hardly be observed that the lengths z^ z\ t, h, Ji

are all necessarily estimated in terms of the same unit.

In practically finding the height of a place by barometrical

observation, the variation in temperature and in gravity

cannot be neglected; the hygrometrical state, too, of the

atmosphere must be considered; for these reasons the pre-

ceding formula cannot be confidently made use of when

great accuracy is required, but the method by which it was

obtained suflSciently well illustrates the ^principles followed

in the general case.

Example. At the base of a mountain the barometer stands

at 30 inches ; on the summit at 25 inches ; the ratio of the

density of mercury to the density of air at the base is 10,000;

find the height of the mountain, given that

log^^e = -7781, log,,5 = -6989, loge 10 = 2-3025.

By the formula,

the height required = - loge —

= -loga0.log,,-

h
= -2-3025 X (-7781 --6989)

z.

= -x 2-3025 X -0792
9

• h
= -x-1823.
9
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Now the pressure of air at the base = hp =gph
;

- = ^A = 10000x30,

55

9 P

if an inch be the unit of length

;

, . ,^ 10000 X 30 X -1823 p ^
/. height = feet

= 4557^ feet.

41. The instruments whose description fills up the

remainder of this Section are some of those whose action

depends upon hydrostatical principles.

The Air-Pump

is employed to exhaust the air from a closed vessel called a

receiver. There are many modifications of this instrument,

but the principles upon which they all depend, and the parts

of them essential to their working, are illustrated by the

annexed figure.

A is the receiver, gene-

rally a large glass vessel,

having its edges groundvery

smooth ; it is placed upon a

polished platform, through

which it communicates by

the tube HC with the cy-

linder B] DE is a piston

closely fitting this cylinder

and worked by the rod G
;

in the piston DE and at

the extremity of the tube

EC are the valves F and (7, both opening outwards.
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Suppose the receiver A to be full of air at atmospheric

pressure, and the piston DE to be at the bottom of the cylin-

der B : next suppose JDE to be drawn up by the rod G; as it

rises the valve F must remain shut, for it will be pressed in

by the external atmosphere, therefore no air can enter B from

without, and G being thus free from any downward pressure,

will be opened by the pressure from the air witliin the cylin-

der A ; hence this air will flow into B, and when BE gets to

the top of the cylinder, the quantity of air which at first filled

A alone will fill A and B together; and therefore the quantity

which is now in ^, is to the quantity which was there at

first, SiS is A: A + B, A and B representing the volumes of

A and B. Now suppose BE to descend; G immediately

shuts, and the air in B being compressed by the descent of

BE, overcomes the pressure of the external air upon F and

therefore opens the valve and escapes, the air in A remaining

undisturbed ; hence when the piston has returned to its first

position at the bottom of the cylinder, or, as it is usually

termed, has completed its stroke,

quantity of air in A at the end of stroke

A= -2 ^x (quantity there at beginning).^ -f- Jj

By a repetition of the strokes, the quantity of air in A
may be diminished in the same proportion every time, and

by proceeding long enough, although we cannot reduce it to

absolute zero, we may make it as small as we like.

42. If Qy Q^yQn represent the mass of the air in A
originally, and at the end of the first, second, and n^^ strokes

respectively, we have from the above reasoning

• ^.=jf5^ • -w-



ELASTIC FLUIDS. 57

<2^=ra^.- (2)'

&c, = &c.

Qn=j~^j^Qn-, W;

.'. by multiplication,

Also, if p, p^,..pn represent the densities of the air in A at

these times respectively, since the density varies as the mass

in the same volume,

^""U+-^.

43. It will be remarked that, for the effective working

of this instrument, the valve F must open as DE descends,

and shut when it rises, while just the reverse must be the

case with G. The first will clearly be insured if DE be made

to fit very closely to the bottom of the cylinder, for by that

means, however small the quantity of air in B, as DE de-

scends, it will always at the end of the stroke be so com-

pressed that its elastic force upwards shall exceed the pressure

of the external atmosphere upon F together with F's own

weight, which are the two forces tending to keep jPshut ; and it

is manifest that as Dorises, the first of these two forces acting

downwards on F is greater than that of the rarefied air in A
and B, and hence F will never open at this stage. As regards

(7, when BF first moves towards the top of the cylinder, there

will be no air to press it downwards from B, and the sole force

acting upon it from that direction will be its own weight ; if

therefore the elasticity of the air left in A can overcome this,

the valve must open and admit a portion of the air into By
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which will be very approximately of the same density as that

left in A, the only check to the equalization being the weight

of C: hence clearly there will be no difficulty about (7's

shutting as D descends. It thus appears that the weight of

G is the only cause which limits the amount of exhaustion

capable of being produced in ^. In considering the action of

the valves friction ought not perhaps to be neglected, but in

the kind of valve most generally used, which is merely a

square or triangular piece of oiled silk fastened by its corners

over a wire grating, it seems to be reduced to an extremely

small amount.

44. The force, required in an instru-

ment of the above construction, to draw

up the piston, is the difference between

the pressure downwards of the external

atmosphere upon DE and that of the

rarefied air in B upon the same surface

upwards : at every stroke this difference

increases and soon becomes very con-

siderable; of course the same force acts

in aid of the downward stroke, when it

is not wanted: Hawhsbee^s air-pump is

distinguished by a contrivance which

neutralizes these forces : the annexed

figure represents a portion of it ; two cylinders B and B' of

exactly the same dimensions and provided with valves and

piston-rods, as before described, communicate by pipes lead-

ing from the lower valves G with the same receiver H.

Both piston-rods are worked by the same crank and toothed

wheel, and consequently as one ascends the other descends

;

the atmospheric pressure therefore which retards the ascend-

ing one is exactly balanced by that which accelerates the

descent of the other.
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45. In Smeaton's air-pump one cylin-

der only is used, but this is provided with a

valve K at its upper extremity opening out-

wards: the effect of this is to take off the

external atmospheric pressure during a part

of the stroke.
A

46. The CondenseTy

as its name denotes, is employed to force air

into a vessel or receiver up to any required

density. The annexed figure represents it.

A is the receiver, generally a very strong

hollow copper sphere ; ^ is a hollow cylinder

within which a piston BE works, carrying a

valve F which opens downwards : JB and A
communicate by means of a pipe, at the orifice

of which is a valve G also opening down-

wards ; the piston DE is worked up and down

by means of the rod G.

Suppose A and B to be filled with air at

atmospheric pressure, then as BE descends, F
shuts and G opens, and thus the air which

was initially in B is forced into A : when BE
begins to rise the pressure of the air in A shuts (7, so that

during the whole ascent the quantity of air in A remains un-

altered, but meanwhile F opens, and at the end of the stroke

B is again as at first full of air at atmospheric pressure ; hence

it is clear that by a repetition of this process, at every com-

plete stroke a quantity of air equal to that contained by B at
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atmospheric pressure will be forced into A. Hence if A and B
represent the volumes of A and B respectively, and if Q be

the quantity of air estimated by its mass, which is contained in

A at atmospheric pressure, then since -^ Q will be what B
contains at atmospheric pressure, after n strokes A will contain

Ti

the quantity Q + n -j Q: or, representing this by ^„,

If p„ and p represent the corresponding densities,

Pn

P
-=:.„|.

The Common Pump.

47. The construction of this pump is explained by the

annexed figure : AB is a cylinder in which a tight fitting pis-

ton JEF is worked by means of a rod H;
EF carries a valve G which opens upwards,

and at the bottom of the cylinder is a valve

D also opening upwards, and covering the

orifice of a pipe D which communicates

with a reservoir of water at i: 5(7 is the

highest range of the piston, and K is an

open spout.

For the explanation of the working of

this pump, suppose EF to be at A the bot-

tom of the cylinder; then when it begins

to rise, there being no longer any downward

pressure upon D, the air in DI will open it

by its elasticity and will flow into the space

between A and EF\ it will thus become
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rarefied, and therefore its pressure upon the water within the

pipe DI will be less than that of the atmosphere upon the

external surface of the water; the water will consequently

be forced a little way up the pipe, until the pressure due to

the rarefied air and this column of water is equal to that of

the atmosphere. Since the air in the pipe becomes more

and more rarefied as EF ascends, until it has attained its

greatest height BG^ the column of water in the pipe will

all this time be continually increasing. When EF descends,

D will shut, and, as in the air-pump, the air between EF
and A will be gradually condensed until it opens the valve

Gj and entirely escapes by it, while the condition of the air

and water in the pipe DI will remain unchanged. When
EF has returned to A the stroke is completed, and it is

easy to see that a repetition of it will cause the water to rise

gradually higher and higher in DI^ until at length it will

enter the cylinder BA : the next rise of the piston will, of

course, remove all the air remaining above the surface of the

water in BA together with some of the water itself, and ever

after, provided AD be not higher above the surface of the

water / than the height of the column of water required to

balance the atmosphere, the water in the pipe will follow the

rise of the piston up to same level in BA^ and hence at every

successive stroke the piston which returns through this with-

out disturbing it will lift out at the spout K the quantity of

water contained above A,

The cause which makes the water rise in the pump is, as

appears by the above explanation, the excess of the atmo-

spheric pressure upon the surface of the external water, above

the pressure of the rarefied air upon the internal water, and

therefore the extreme limit to which this internal water can

rise, is the height of the column in the water barometer, or

about 32 feet : but it is clearly necessary, for even a partial

working of the machine, that the free surface of the water
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within the pipe should come above A; hence it is essential

that the lower part of the cylinder of a pump be at a distance

less than 32 feet from the surface of the reservoir, from which

it is required to raise the water.

If the piston in its range does not descend to B, let L be

the lowest point of its descent. Then, unless the air occu-

pying BD when the piston is at its highest, gives, when con-

densed into LD, a pressure greater than that of the atmosphere

the valve G will not open. Therefore not only must L be, as

we have already seen, within 32 feet vertically above the

surface of the water in the reservoir, but also it must not be

so near that limit, that any stroke of the piston before the

water reaches it, shall reduce the air in BI) below the just

mentioned density.

48. If a be the area of the piston EF, the force employed

by means of the rod Hto raise it at any stroke, is, omitting

the consideration of friction, equal to the difference between

the pressure upon a of the external air downwards and the

pressure upon a of the internal rarefied air upwards ; now if a-

be the specific gravity of water, h the height of the water

barometer, the pressure of the air is ah : also ifPbe the height

of the water in the pipe at the time of the stroke, the pressure

of the rarefied air at the piston being the same as that at P,

must be the same as that externally at I diminished by that

due to the column P/; it therefore equals

therefore pressure downwards upon piston = aha

upwards —a{h — PI) a

.*. the tension of the rod which is the difference between

these = aPIa

= weight of column of water whose base is EF and

height PL
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49. The Lifting Pump

is the same as the common pump, except that*^

the rod H plays through a water-tight socket,

and the spout K is replaced by a pipe of any

required length, provided at its junction with

the cylinder with a valve i, which opens out-

wards. It is evident that as the piston descends

this valve will shut and prevent the water,

raised into the pipe K by the previous ascent

of the piston, from returning, and hence every

stroke will lift more water into K until it be

raised to any required height.

60. The Forcing Pump

is another modification of the pump, by which

water may be raised to any height. In this

case the piston EF contains no valve, but is

quite solid : at the bottom of the cylinder BA
enters a pipe MN of any length whatever, pro-

vided with a valve M which opens outwards.

At the descent of the piston D shuts and the

water between EF and A is forced up the pipe

MN; upon the rise of the piston the return of

the water from MNis prevented by the valve M.T
Bramah^s Press.

51. The annexed figure represents this machine

:

^ is a very large solid cylinder or piston, working freely

through a water-tight collar EF into a hollow cylinderEFGH;
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A supports a large platform BG^ which is carried up or down
by the ascent or descent of A, At jS" is a pipe whose orifice

is covered by a valve opening into the large cylinder GH and

which leads into a smaller cylinder LM\ in this cylinder works

a piston L by means of a rod N^ and at the bottom is a pipe

leading to a reservoir of water and covered by a valve M
which opens into the cylinder LM,

Suppose both cylinders to be filled with water and the

valve M to be closed ; if then a force be applied to the piston

jL, it will be transmitted through the fluid to all surfaces in

contact with it, and therefore to the lower surface of A ; by
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this means A will be pushed upwards, and any substance

placed upon the platform may be pressed against a fixed

framework BK; when L has arrived at the bottom of the

cylinder it can be drawn back, the water in GH will then be

prevented from returning by the valve H, and water will also

be pumped through If into the cylinder LM] L may now
again be forced down, and therefore A be raised higher, until

the substance between 5(7 and i>^has been sufficiently com-

pressed. This machine may also be employed for the purpose

of producing tension, in rods and chains, &c., by rigidly at-

taching a piston-rod to the lower part of A^ which should

pass through a water-tight collar in the bottom of the cylinder

GFj and carry a ring at its outer extremity, to which the rod

or chain to be strained may be connected.

The pressure exerted by A may at any instant be removed

by unscrewing a cock at G^ by which means the water is

allowed to escape.

Let TF represent the force with which A is pressed up-

wards, during a stroke of L downwards, made under the action

of a force F] we may consider these forces as just balancing

one another, and the pressure at all points of the water to be

uniform, as the efiect of gravity may be neglected in com-

parison with the pressure transmitted from F and W\ let this

be represented by p ; if then r be the radius of the lower end

of Aj r the radius of the surface of i, we have,

W= pressure on end of^ ^pirr^^

jP= pressure L=pirr^]

If, moreover, as is usually the case, i^is produced by the

aid of a lever, whose arms are represented by a and a', and

the power by P,

p. H. 5
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P a'

a'

F a'r"

This ratio may be rendered excessively small by reducing

a and r as compared with a and r, and the only limit to the

enormous force which this machine may be made to exert, is

put by the strength of the materials of which it is framed. It

will appear, on considering the result of Art. 69, that the

larger cylinder is required to be the stronger.

The Siphon.

52. If a bent tube, as ABC, in the annexed figure, be

filled with water, and then, both

its extremities being closed to pre-

vent the escape of the water, if it

be inverted and one of its ends A
immersed in a vessel of water whose

surface is exposed to atmospheric

pressure, while the other G remains

outside the vessel at a level lower

than the surface D of the water in

the vessel, and if, when in this po-

sition, the ends A and C be opened,

the water will be observed to flow

continuously from the vessel, along

the tube and out at the extremity (7, until the surface D has

been lowered to the level of C or of A, if G be lower than A,

A bent tube so employed is called a siphon.
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The explanation of this phenomenon is as follows : If in

the side of a cylinder OH containing

water, an orifice F be made below the '

level of the free surface GE^ the water

will of course flow out ; for the parti-

cles of fluid inside at F are pressed

outwards with a fluid pressure equal

to the pressure of the atmosphere at

the level GE together with that due to the height EF of

water
J
while they are pressed inwards by the pressure of the

air at i^ equal to the pressure of the atmosphere at the level E
together with that due to the height EF of air; it is therefore

on the whole pressed outwards with a force proportional to the

depth EFj the proportion being the difierence between the

specific gravities of water and air. The same would be true

for a vessel of any shape, because, whenever a fluid is con-

tinuous throughout a vessel, and is acted upon by gravity

alone, the pressures at the same level below the surface are

the same in every portion of the fluid. In the first figure of

this Article, the water in the tube and in the vessel forms

one continuous mass, hence the pressure at all points in the

same level, wherever taken, must be the same, and therefore

the fluid pressure in the tube at G must be the same as the

fluid pressure in the vessel at C\ G and G' being in the same

horizontal line : if then G be lower than the free surface i>,

the water will flow out at (7: by the removal of each particle

of water, all resistance to the motion of the next behind it,

under the pressure to which it is subjected, disappears, and

thus a continuous stream will be produced towards G,

If we further consider the pressure at different points in

the tube ABG, for all those which are in the leg BG below the

level of D, it will, from what is said above, be greater than

that of the outside atmosphere, and therefore if an aperture

were made at any such point, the water would flow out as it

5—2
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does at G] for all those, however, which are above this level

in either leg, as for instance in any level I)', it nrnst be less

than that at D by the amount of the pressure due to the

weight of the intervening column D'J) of water, while the

pressure of the exterior atmosphere in the same level differs

from that at D by the weight of the same height of air only

:

hence the pressure of the fluid in the tube at the level D' is

less than the corresponding pressure of the external air-, and

if therefore an aperture were made at any such point D\ the

air would flow in and drive the water out along each leg of

the tube.

The highest point B of the tube must not be more than

32 feet above the free surface D of the water in the vessel,

otherwise the water in AB would not be supported.

53. Perhaps the action of the siphon may be advan-

tageously illustrated by the con-

sideration of the following case.

ABB'A' is a bent uniform tube

with both branches parallel and

vertical ; it is occupied by a fluid,

(say water or air,) and the whole is

surrounded by another fluid, (say

air or water) ; the two fluids are

kept separate, if necessary, in the

tubes by very thin laminae G and

G\ whose areas will be that of the

section of the tube = a suppose.

Let n represent the pressure at

the level BB' in the external fluid, a its specific gravity,

a that of the fluid in the tube : IT' the pressure of the tube

BB' vertically downwards upon the included fluid : then the

pressure at the depth G in the external fluid is II + aBGy
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while at the same depth in the internal fluid it is 11' -\-(r'BC,

hence the resultant pressure upwards upon the surface C,

which is the difference between these two over each unit of

area of a

= {n-n' + BC{<T- (T')}a = P for shortness.

Similarly the pressure upwards upon the surface C
= {n-n' + B'C'{cT-a')}a==F.

Supposing IT to be so large that each of these expressions

is positive when o- — o-' is negative, we see that these pressures

will always balance each other when BG=B'C\ but that

when one leg as B'C is longer than the other BG, then P is

greater or less than P, according as a — a' is negative or posi-

tive : thus if the interior fluid be water and the exterior air,

as in the case of the siphon, a is less than o"', and therefore P
is greater than P', and the water will be pushed round

from the shorter to the longer leg: if however the interior

fluid be air and the outer water, a- being greater than a-', P is

greater than P, and therefore the air will be pushed round

from the longer to the shorter leg.

Ifn were too small to make P and P' positive when cr — a
is negative, the resultant pressures upon and C would be

downwards, and the fluid in the tubes would flow out until its

height in each was just enough to make P and P' zero : this

supposed case is analogous to that of the siphon when B is

more than 32 feet from the surface B.
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The Diving Bell.

54. Suppose a heavy hollow cylinder as ABCD, open at

CD and closed at the top AB, to be lowered by a rope EF
out of air into water ; when

the mouth CD is at the

surface of the water the

vessel would be full of air

at atmospheric pressure, as

it descends this air becomes

compressed into a smaller

space and the water rises

into the vessel ; but if seats

be affixed within it- at a

sufficient height, persons

seated upon them might by this means safely descend to a

considerable depth ; such a contrivance is called a Diving

Bell; the object of its being open at the bottom is to afford

means of access to external subjects of investigation.

[Note. The weight of the bell must be greater than the

weight of the volume of water displaced by the inclosed air

when AB is level with the upper surface of the water.]

The height to which the water rises in the bell, when its

lower extremity D has descended to a depth d below the

surface of the water, may be found without difficulty.

Let GH be the level required of the water in the bell, and

call DH, z : the atmospheric pressure at the surface of the

water may be represented by IT, the specific gravity of the

water by o", and the altitude BD of the bell by a : then the

pressure of water at depth H, which is ^ — ^, must be
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Since this is counteracted by the pressure of the com-

pressed air which is to that of the atmosphere : : vol. AJD : vol.

AH, we must have

n + o-
{
d-z) _ vol. AD __ a

n ~ vol. AH" a-z'

a quadratic equation from which z may be determined.

The tension of the string FE is equal to the weight of the

bell and the inclosed air, minus that of the water displaced

;

or if T be this tension, W the weight of the bell, w that of

the inclosed air, and A be the area of the horizontal section

of the cylinder,

T^W'\-w-^gA,BH.

In practice a flexible tube is passed down to the bell

under its lower edge, and air is forced through it from a

condenser, so that the surface of the water GH is kept ^t

any desired level and not allowed to rise to an inconvenient

height. Other tubes provided with valves are also employed,

by the aid of which the air may be changed when it is unfit

for respiration.

The Atmospheric Engine,^

55. The annexed diagram represents a section of the

Atmospheric Engine invented by Newcomen in the year 1705,

for working the pumps of mines.

AB is a massive wooden beam, (turning about an axis (7,

strongly supported), having its extremities terminated by

circular arcs, which are connected by chains, the one {A) to

the pump-rods (loaded, if necessary), the other to the rod of

* For the following description of the Atmospheric and Double-Action

Steam Engine I am indebted to the kindness of a friend.
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a solid piston E working steam-tight in an accurately bored

cylinder F, This cylinder is open at the top, but closed at

the bottom, in which are the orifices of three tubes, jff, G^, K,

each furnished with a cock, and passing, respectively, into

the boiler, an elevated cistern of cold water and a waste pipe.

Suppose steam to be generated in the boiler, the three cocks

all closed and the piston at the bottom of the cylinder, it will

be kept in this position by the atmospheric pressure on its

upper surface. Let the cock H be opened, steam from the

boiler will enter the cylinder below the piston and counter-

balance the atmospheric pressure on its upper surface. The

weight of the pump-rods being now unsupported will depress

the extremity A of the beam and raise the piston to the top

of the cylinder : the cock H is now closed and G opened,

through which a jet of cold water rushing into the cylinder

condenses the steam and forms a vacuum, more or less per-

fect, below the piston which is now driven down by the
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atmospheric pressure on its tipper surface, raising in its

descent the pump-rods connected with A together with their

load of water ; the cock G is now closed, and the condensed

steam and water let off by the cock K which is then also

closed. The machine has now completed one stroke and is

in the same condition as at first. Hence the operation may
be repeated at pleasure.

The cocks H, G, K, originally turned by hand, were, by
a contrivance of a youth named Potter, afterwards worked by
the machine itself.

Watt's Improvements.

56. Such was the engine which came under the observa-

tion of James Watt, whose comprehensive genius perceiving

its various defects, suggested amendments so complete as to

bring it almost to the perfection of the beautiful engines of

the present day. The following is an outline of his most

material improvements.

The source of the motive power is the heat which is

applied to the water in the boiler, and which calls into play

the elastic force of the steam ; and the real expense of work-

ing the machine is caused by the consumption of fuel required

for generating this heat. It occurred to Watt that a great

useless expenditure of heat was entailed by the foregoing

method of condensing the steam at the end of each stroke
;

for while it is only wanted to cool the steam itself, the jet of

cold water evidently lowered the temperature of the cylinder

also, and therefore caused it every time to abstract a portion

of the heat of the newly-introduced steam. To obviate this
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he added a separate vessel (the condenser), in which the

operation of condensing the steam might be performed, so that

the cylinder should remain constantly of the same tempera-

ture. A further saving was also effected by pumping the

contents of the condenser back to the boiler.

He now closed the cylinder at the top, and admitting

steam alternately above and below the piston, converted the

atmospheric into the double-action steam-engine.

He also invented that beautiful contrivance, the parallel

motion, for keeping the extremity of the piston-rod in the

same vertical line, while the end of the beam with which it

is connected describes an arc of a circle.

The Double-action condensing Engine,

57. The annexed diagram represents a section of a double-

action condensing engine, in its simplest form.

-4 is a tube by which steam is conveyed from the boiler

to the steam-box B^ which is a closed chamber having its side

adjacent to the cylinder truly flat. In this side are the aper-

tures of three tubes E^ F^ (?, of which the two former enter

the cylinder at the top and bottom respectively ; the third

passes into the condenser i; (7 is the slide-valve, being a

piece of metal having one side accurately flat so as to slide

in steam-tight contact with the flat face of the steam-box. In

this face of the slide is cut a groove in length not greater

than the distance between the apertures E^ F^ diminished by

the width of the aperture, as in fig. (2). The rod of the slide-

valve passes through a steam-tight collar in the bottom of the

steam-box, and is connected by a lever OP and a rod PQ
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with the beam of the engine, by which it receives a motion

the reverse of that of the piston-rods. D is the cylinder

closed at both ends, truly bored and accurately fitted with

a solid piston whose rod H works in a steam-tight collar in

the top of the cylinder, and is connected with the beam by

the parallel motion KaR, BS is the beam turning about an

axis T and having its extremity 8 connected by a rod and

crank with an axle on which is the fly-wheel W. L is the

condenser, a closed vessel in which a jet of cold water is con-

stantly playing, illf is a force-pump, worked by a rod con-

nected to the beam, which returns the condensed steam and

water from the condenser by the tube N to the boiler.
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Suppose the piston at the top of the cylin- _ Fig. 2.

der, the lower part filled with steam, the slide-

valve being in the position shewn in fig. (2).

A passage is now open by which steam will

pass from the boiler through the tube A, the

steam-box B, and the tube E into the upper

part of the cylinder, and another by which the

steam from the lower part of the cylinder will

pass by the tube F^ the groove of the slide,

and the tube G to the condenser, and being

there condensed a vacuum will be formed be-

low the piston, which will now be driven down

by the unsupported pressure of the steam on its

upper surface. When the piston has reached the bottom of

the cylinder the slide-valve will have been shifted to the po-

sition shewn by the dotted part of fig. (2). The passage will

now be open from the boiler to the lower part of the cylinder,

and from the upper part to the condenser ; a vacuum will thus

be formed above the piston, which will then be driven up by

the pressure of the steam below it, and when the piston has

reached the top of the cylinder the slide-valve will have

reassumed its original position, the engine has now made one

stroke, and its parts are in the same positions as at first ; the

operation will therefore continue.

Remarks,

It will be observed that the force exerted by the engine

tending to produce a rotatory motion in the axle F, is greatest

when the arm of a crank is in a position at right angles to the

direction of its connecting rod Y^ and that it diminishes to

nothing as the arm revolves to a position in which it coincides

in direction with it. The object of the fly-wheel is by its
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momentum to convert this variable into a constant force, and

also to prevent the mischief which might arise from shocks or

sudden variations, in the resistance to be overcome.

In practice the steam is frequently shut off from the cylin-

der when the piston has performed half or even less of its

stroke ; by this means fuel is saved, and the motion is ren-

dered more even and smooth.

EXAMPLES TO SECTIOIT III.

(1) A piston fits closely in a cylinder^ a length a of the

cylinder below the piston contains air at atmospheric pressure

:

compare the forces sufficient to hold the piston drawn out

through a distance h with that sufficient to maintain it pushed

in through the same distance.

Let IT represent the atmospheric pressure, and A the area

of the piston, then at first the pressure upon the piston, both

of the external and the internal air, is IT^ ; by the compres-

sion through the space h the volume of the internal air is

diminished in the ratio of a to a — Z> ; and therefore by Boyle's

law its pressure is increased in the same ratio: hence the

difference between the internal and external pressures over

the area of the piston is in this case 11^ -,—11A. or^ a — b '

HA 7 : the force, required to maintain the piston so far

pushed in, is of course equal to this.

Similarly, by pulling the piston out through a distance 5,

the volume of the internal air is increased, and therefore its

pressure diminished in the ratio of a + & : « ; hence the differ-

ence between the external and internal pressures over the
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area of the cylinder, which is the same as the force required

to hold it in this position, is now

nA^nA-\, oyHA-^.

The ratio asked for between these two forces is manifestly

a + 5

a — h'

(2) If a cylinder be full of air at atmospheric pressure,

and a close-fitting piston be forced in through \ of the length

of the cylinder by a weight of 10 lbs., shew that it will require

an additional weight of 30 lbs. to force it through f of the

length.

IfH be the pressure, estimated in pounds, of the air in the

cylinder at first, L e. be the pressure of the atmosphere, the

pressure after the given compression into f of the volume is,

by Boyle's law, fIT ; therefore if A be the area of the piston,

the pressure upon it upwards is ^HA, and by question this

must balance the pressure of the external atmosphere together

with 10 lbs. acting downwards, hence

^nA=nA + io,

or 11^ = 20 lbs.;

and therefore ^UA = 30 lbs.

This pressure will be doubled, by the same law, when the

compression is extended to another J of the cylinder ; there-

fore the compressing force must be 60 lbs. ; hence 30 lbs. must

be added to that which is already acting. Q. E. D.

(3) A bubble of gas ascends through a fluid, whose free

surface is open to the atmosphere, and whose specific gravity

is s'j supposing the bubble to be always a small sphere, com-

pare its diameters, when at depths d and d\ having given that
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the height of the barometer is h and the specific gravity of

mercury cr.

Since the bubble is always small, the pressure of the fluid

upon its surface may be considered to be everywhere the same,

and to be that which is due to the depth of the center of the

bubble ; also since this pressure is the only force limiting the

volume of the bubble, it must be exactly equal to the elastic

force of the air forming the bubble.

Now the pressure of the fluid at the depth d is ah + sd,

d' ... ah + sd';

and the elastic force of the air in the bubble varies inversely

as its volume, that is, inversely as the cube of the diameter

;

hence if a, a be the diameters corresponding to the depths of

d, d'y we must have

a^ ^aJi-^-sd

a^ ah + sd'^

which gives the required ratio between the diameters.

(4) An imperfect barometer is compared at two different

times with a true one, and it is found that the readings A^, h^

are less than the true readings by the quantities e^, e^ respect-

ively. Shew that the true reading may at any other time be

obtained by adding to the observed reading h the correction

The error in the height of the mercury must be due to the

presence of a certain quantity of air in the upper part of the

tube, whose elastic pressure supplies the place of the weight

of the deficient length of mercury ; this pressure will not be

constant, but will continually alter, for, the quantity of air

remaining the same, its volume diminishes as the barometer

rises, and increases as it falls.



80 ' ELASTIC FLUIDS.

Let izjj, x^j X be the length of tube occupied by it when the

barometer is at height \^ h^^ and h respectively, p^, p^j p its cor-

responding densities, and h the proportion between the pressure

and the density of air, (Art. 38), then, by question, the pres-

sure of this air, when included in the length x^, must be equi-

valent to the weight of a length s^ of mercury ; hence if a be

the specific gravity of mercury,

similarly kp^ = (^eA [A],

kp = (T€
J

And since the volume of the air remains the same, the trans-

verse section of the tube being constant,

p,x^ = P,x^ = px {B).

Also since the length occupied by air, together with that occu-

pied by mercury, must always make up the whole length of

tube above the zero point,

\ + x^ = h^ + x^ = h + x ((7).

These seven equations will enable us to determine the

seven unknown quantities p^, p^^ p, x^, x^, cc, e ; but as e is the

only pne of these which we want, it will be convenient to

eliminate all the others.

Multiplying the equations [A) hj x^, x^, x respectively,

and then comparing them with those of (5), we find

e^ajj = e^ajg = ea? = X, suppose

;

therefore, substituting these values of x^, x^, x in ((7), we get

h^-{--X = h^ + ~\ = k + -\ = fi, suppose,

or more conveniently,
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K+jx-fi^O (1),

A,+ -\-/. = (2),

h +-\-fjL = (3).

Multiplying (1) by [h,-h), (2) by {h^\), (3) by {h,^h,),

and adding the resulting equations, we obtain

and therefore e = —7^^

—

^A~^,—x~

(5) If a barometer be standing at the height of 30 inches

and be placed under the receiver of an air-pump in which the

capacity of the barrel and receiver is the same, what will be

the height of the mercury after three strokes of the pump ?

The height of the barometer is directly proportional to the

pressure of the air upon it and therefore to the density of that

air ; now since the capacity of the receiver is the same as that

of the barrel, the density of the air in it is diminished one half

at each stroke of the piston (Art. 42) ; therefore at the end of

the third stroke it will be ^th of what it was at first, i. e, of

atmospheric density, and, consequently, the corresponding

height of the barometer will be ^th of 30 inches, or 3f inches.

(6) The receiver of an air-pump has 20 times the volume

which the barrel has, and a piece of bladder is placed over a

hole in the top of it : the bladder is able to bear a pressure of

3 lbs. the square inch, and the pressure of the atmosphere is

15 lbs., shew that the bladder will burst between the 4th and

5th strokes. Given that log 2 = .30103, log 21 = 1.3222193.

P. H. 6
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The resultant pressure upon the bladder is the difference

between the pressure of the air outside and that of the air

inside the receiver ; hence, by question, the bladder will burst

when this difference becomes as great as 3 lbs. the square inch;

i, e, since the pressure of air varies as its density, when the

density of the inside air is to that of the atmosphere as 12 : 15,

or as 4 : 5.

Now after the nih. stroke the density of the inside air

equals —
j

of that of the atmosphere (Art. 42), therefore
^21y

the bladder will burst during the stroke, whose number being

/20\'*
put for n is the first whole number which makes I

—
j

less

4
than -, or which makes

5

7i{l+log2-log21} less than 3log2-l;

this number may by the aid of the given logarithms be shewn

to be 4.

(7) A cylinder whose length is 3 feet is fitted with an

air-tight piston : when the piston is forced down to within

9 inches of the bottom what will be the pressure of the air

within, supposing the pressure at first to have been 15 lbs.

on the square inch ?

(8) A cylinder whose base equals a square foot and whose

height is 7 inches is filled with common air whose pressure

may be assumed to be 14 lbs. per square inch and covered

with a moveable lid without weight ; shew that if a weight of

336 lbs. be placed on the lid it will sink 1 inch.

(9) A bubble of air one foot below the surface of a

pond had a diameter of one inch : what was its diameter

when it was 8 feet below, neglecting the pressure of the

atmosphere?
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(10) The barometer in ascending a mountain sinks from

29 to 23 inches : find the change in the pressure on each

square inch, the specific gravity of mercury being 14.

(11) A closed cylinder with its axis vertical is filled with

two gases which are separated by a heavy piston. Determine

the position of the piston, it being given that either fluid,

if it filled the whole cylinder, w^ould support a pressure equal
/3\ths

to ( -
I

of the weight of the piston.

(12) A tube of uniform bore, open at one end, is fixed

with its axis vertical and open end upwards : shew that, unless

its height be greater than that of the barometric column, no

amount of mercury, so poured in that no air escapes, will

produce equilibrium.

(13) When the mercury in a barometer stands at 30

inches, shew that the pressure of the atmosphere on a square

inch is about 14f lbs., the specific gravity of mercury being

13.6, and the weight of a cubic foot of water 1000 ozs.

(14) A barometer has the area of the cistern four times

that of the tube, and when the mercury stands at 30 inches,

2 inches of the tube remain unfilled : if a mass of air, which

at the density of the atmosphere would fill one inch of the

tube, were admitted into the upper portion, shew that the

column would be depressed 4 inches.

(15) Compare roughly the masses of the atmosphere and

the earth : given that, the mean height of the barometer is 30

inches, the density of mercury is 13, the mean density of the

earth is 5, and the radius of the earth is 4000 miles.

(16) Given that the specific gravity of air at the earth's

surface at a given place is .00125, and of mercury is 13, when
the barometer is at 30 inches ; find the height of the homo-

geneous atmosphere.

6—2
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(17) If the volume of the receiver of an air-pump be six

times that of the piston-cylinder, and if a barometer intro-

duced into the receiver stand at 28 inches after one ascent of

the piston, at what height will it stand after two more ascents

of the piston ?

(18) Supposing the upper valve of Smeaton's air-pump to

open when the piston is half-way up, what was the density

of air in the receiver at the beginning of the ascent ?

(19) If the volume of the receiver of an air-pump be ten

times that of the barrel, shew that before the eighth motion

of the piston is completed, the density of the air in the re-

ceiver will be reduced one-half, having given log 2 = .30103,

log 11 = 1.0413927.

(20) If the capacity of the receiver of a condenser be ten

times that of the barrel, after how many descents of the

piston will the force of the condensed air be doubled ?

(21) If a pump be employed to raise a fluid whose

specific gravity is .915, find the greatest distance which is

admissible between the lower valve and the surface of the

fluid.

(22) In what position must a siphon ABC (having angle

ABC a right angle, and AB= BC) be placed in a vessel full

of water, so as to empty from it the greatest quantity

possible ?

(23) Find the limit to the height of the highest point of

a siphon above the surface of water, at a place where the

mercurial barometer stands at 25 inches, the specific gravity

of mercury being 13.58.

(24) Two equal cylinders containing equal quantities V
of different fluids (of specific gravities a^ o-^), which will not

mix, are connected by an exhausted siphon of small bore,
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which reaches to the bottom of each cylinder ; find how much
fluid will run from one vessel into the other.

(25) Does the tension of the rope of the diving-bell in-

crease or decrease as the bell is lowered ?

(26) Find the position of unstable equilibrium of a light

diving-bell.

(27) Find the volume of air at atmospheric density which

may be pumped into the bell at a given depth.

(28) Two diving-bells are suspended at the ends of a rope

which passes over a smooth wheel; find how much the one

must be heavier than the other, that they may rest in a given

position.

What would happen if the rope were hollow, so as to form

a tube of communication between them ?

(29) If a valve be made in the top of a diving-bell

opening upwards, what will be the result ?

(30) In the hydraulic press used at the Britannia bridge,

the internal diameter of the great cylinder was 20 inches, and

that of the small tube 1| inch; find the lifting power of the

press, supposing a pressure of 8 tons to be exerted by the

piston in the small tube.



SECTION IV.

GENERAL PROPOSITIONS.

58. The Statical principle of Virtual Velocities asserts

that if any forces as R^ E^,,,B^ acting upon a system of points

keep each, other in equilibrium, and if r^, ^2---^n ^^ ^^^ virtual

velocities of these forces respectively, consequent upon any

very small displacement of the system, which does not alter

the molecular connexion of its different points, then

i?,r, + i?,r,+...+ i?,r„ = 0.

The same principle can be proved to hold, when B^ E^ &c.

instead of being applied to points of a rigid system, act nor-

mally upon the surfaces of a weightless inelastic fluid, the

condition of displacement being in this case that the volume

of the fluid remain constant and continuous.

Let ttj ttg, a„ be the portions of surfaces, taken small

enough to be considered plane, upon which R^ &c. ...i?„

respectively act; then since these forces are in equilibrium,

the pressure per unit of surface must be the same throughout

(Art. 7), and if it be represented by^, we shall have

^ = ^2 = &c ^=p (1).

Suppose the displacement of a^ &c. to be made by moving

them respectively through distances r^, r^y,,r^ along tubes

perpendicular to them and closely fitting them ; these distances

will be proportional to the virtual velocity of the correspond-

ing force ; also the alteration in volume of tlie including vessel

which the movement of each area a has thus produced in ar,

and is an increase or decrease according as r is positive or

negative, and therefore the total alteration will be the sum of

these quantities, each r being supposed affected with its proper
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sign ; but since by the supposition the disturbance was not

such as to break the continuity of the fluid or to alter its

volume, whatever space was gained in the displacement of

any of the pistons, an equal space must have been lost in the

displacement of some of the others, so that by this means the

total alteration is nothing ; therefore we must have

a,r^ + a/2+ + a„^« = (2),

and hence by substitution from equations (1)

B,r^ + B,r^+ +Bj', = (3).

If the fluid be heavy the principle will still be true, and

can be proved upon the assumption that normal resistance is

the only mutual action between the particles. And even in

this case, if B^ B^.,,B^ represent respectively the excess of

the forces acting upon the several pistons a^ ag.-.a^ beyond

the forces which would be required to balance the efi'ect of

gravity alone, since then equations (1) (see Art. 7) and (2)

will still hold, the truth of (3) will be established as before.

59. If a heavy fluid be contained in a vessel and the

pressures on its sides be resolved in three directions at right

angles to each other, to find the sum of the resolved parts in

each direction.

Let HLK represent any such vessel, HK being the level

of the fluid contained in it ; let AA' be a line in the fluid

drawn parallel to the direction of one of the required resolved

forces, to meet the sides in A and A',

Let a very small cylinder be constructed, having AA' for

its axis, ft) for its transverse section, a and a the sections of its

extremities made by the sides of the vessel, and therefore

portions of those sides, these will be approximately plane.

Let P, P' be the normal pressures of the fluid upon these,

not generally in one plane, and let 0, 6' be the angles which

they respectively make with AA'] then resolving P and P'
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along AA' and perpendicular to it, if B be the resultant of

the resolved parts ofF and F' along AA',

5 = Pcos(9-P'cos(9';

but if IT be the pressure of the atmosphere, or any other

pressure which is uniform throughout the surface UK, and a

be the specific gravity of the fluid,

F= (21 + (TAB)oi, F= [n + (rA'B)oi'',

.\ B =n {acos0 - a COS0') + a[ABacos0 - A'B'ol' co^0').

Also a cos5 = ft) = a' cos ^', therefore this expression is re-

duced to

B = aco{AB-A'B').

If (j) be the angle which AA' makes with the vertical,

AB-A'B'=AA'cos(l>',

.'. B=^a-(oAA' cos(j>.

But o-(oAA' is the weight of the column of fluid AA', let it

be represented by w^ then

B = w cos ^ (I).

This result is true for all the columns parallel to AA
which have both their extremities meeting the sides of the

vessel ; let ad in the figure be a column, one extremity only

of which, i. e. a, meets the side, the other a is made by the

surface of the fluid, and let the same letters, as above, be

used with the same meanings in this case, then P'=0, and
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.-. B = Pcos6 = {TI -{- aah)oLCO&0

= Tla cos 6' + a-aho)

= JTa' cos (j) + (Tcoaa cos
(f)

= {na-\-w)co8(l> (II).

Now the magnitude of the resultant required of the re-

solved forces is the sum of all the i?'s for which (I) holds,

together with the sum of all the i?'s for which (II) holds, i, e.

it is the sum of all the quantities {w cosc^), together with the

sum of the quantities JTa'cos</> as long as a is the section

of the cylinders made by HK] but the sum of all these sec-

tions is the whole area of the surface itself, let it be repre-

sented by A, and the sum of all the w^s is the weight of the

fluid contained in the vessel, let this be W: we thus come to

the conclusion, that the magnitude of the resultant of the re-

solved parts in directions parallel to AA' of the fluid pressures

upon the sides of the vessel containing the fluid is

{nA+W)co8^ (Ill)

where <^ is the inclination of AA' to the vertical ; the other

resolved parts of the pressures are in a plane perpendicular to

AA'.

60. Also this force being the resultant of a set of parallel

forces, each of which acts along the axis of a column of the

fluid as AA', and is proportional to the magnitude of that

column (for even the R in (II) may be considered as pro-

portional to the magnitude of aa increased by a constant

quantity), its direction must pass through the center of gravity

of the mass, which is made up of these columns, i, e, in the

case under consideration, the resultant of the resolved pres-

sures parallel to AA' must pass through the center of gravity

of a mass of fluid represented by HLKK'H', the portion

H'HKK' being made up of the portions which must be added

to the columns aa in order to make up the pressure 27 in the

formula (II).
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Ifn be zero, it appears that the resultant of each resolved

part will always pass through the center of gravity of the fluid

HLK.

61. If instead of the preceding case we had considered a

body HLK immersed in a fluid whose free surface was HK
produced, we should have obtained the same result as (III)

for the magnitude of the resolved pressure in the direction

parallel to AA'j but its direction would have been reversed.

62. It is easy to deduce from (III) that, if the pressures

be resolved in directions vertical and horizontal, the horizontal

portions vanish while the vertical one equals IIA + W: this,

then, is the magnitude of the total resultant of all the pres-

sures, which accords with Art. (18).

63. If the fluid contained in HLK were without weight,

the pressure at every point of its surface would be U, which

might be supposed to be the result of any such cause as that

mentioned above, or to be produced by the elasticity of the

fluid itself: in the latter case, of course, HK could not be

open.

Under these circumstances, if the fluid pressure upon the

surface HLK he resolved in any direction AA', whose inclina-

tion to the plane HK which cuts off* this surface, is ^ — ^, its

resultant is by the preceding investigations

= IIA cos </),

where A is, as before, the area of the plane HK.

Or, this result may be stated more generally as follows, so

as to include the cases where the boundary of the surface

HLK is not a plane section.

Ifthe surface HLK be projected upon a plane perpendicular

to AA', then the resolved part in the direction AA' of a normal

pressure over the surface HLK, which is uniform and equal to
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JT at every pointj is the same as would he produced if the pro-

jected area were pressed uniformly with a pressure IT.

64. Def. When anj surface is submitted to fluid pres-

sures, the point in it, where the direction of the resultant of

these pressures would meet it, is called the Center ofPressure

;

if the pressures are such that they have no single resultant,

there is no center of pressure.

In general, to determine this point it is necessary to em-

ploy the Integral Calculus, but in some simple cases of fluid

pressures on plane surfaces its position may be inferred from

a knowledge of the position of the center of gravity of some

solid.

Take the case of any plane surface immersed vertically in

a fluid, which is at rest under the action of gravity alone

:

suppose this surface divided into horizontal strips, each so

narrow that the pressure on it may ultimately be considered

uniform.

Then the pressure upon each strip will be equal to the

weight of a rectangular slice of the fluid, which has the strip

for its base, and the depth of the strip below the surface for its

height (Art. 18).

Therefore the condition of the pressed surface will be the

same as if it were placed horizontally with the just mentioned

slices of fluid (considered rigid for the purpose) standing upon

the corresponding strips of surface.

These slices in the aggregate form a solidified mass of

fluid, and the resultant of their weights is the weight of this

mass acting through its center of gravity.

Therefore the pressure on the surface immersed is equal to

the weight of the solid, constructed as just mentioned, and

acts through its center of gravity in a direction normal to the

surface.
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By construction this solid is always the frustrum, made by
a plane, of the right prism which has the surface immersed for

its base and the greatest depth of such surface for its greatest

height (see also Art. 18).

Thus if the surface immersed be a triangle with its base in

the surface of the fluid, the solid of pressure is a pyramid

having the triangle for its base and the altitude of the triangle

for the edge which passes through the vertex. The depth of

the center of gravity of this pyramid below the surface of the

fluid is easily ascertained to be ^ the altitude of the triangle

immersed : the required center of pressure will be therefore at

the same depth and in the line joining the vertex of the

triangle with the middle point of its base.

65. Let GD be a tube, capable of revolving freely about

a vertical axis, and having at its lower extremity C one or

more arms GA^ CB, &c. horizontal and closed at their ends

A, B, &c. : suppose this to be filled with water and then orifices

to be opened in GA, GB, one in each, and always on the same

side looking from the center (7; as the water flows out at these

orifices the whole instrument will revolve in the opposite

direction about the axis GB.

termed Barker's Mill.

Tc

Such an instrument is usually
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The explanation of the cause of the revolution is very

simple ; the fluid may be divided into a number of horizontal

cylinders, each perpendicular to the axis of AB, and the

resolved part along these of the pressure at their extremities

will be zero by (I) of Art. (59), excepting for those cylinders,

one of whose extremities terminates in an orifice ; the pressure

at the other extremity of such cylinders is not counteracted,

and will therefore tend to turn the arm round the axis. By
the above-mentioned arrangement of the orifices in the different

arms, the uncounteracted pressures in each will all tend to

turn them in the same direction, and thus a rapid revolution

of the instrument will be produced. By keeping CD full, this

rotation may be maintained for any length of time, and be

applied to mechanical purposes.

66. The surface of a heavy fluid contained in a vessel,

which revolves with a uniform angular velocity about a fixed

vertical axis^ is a 'paraboloid.

Each particle in the fluid evidently describes with a uni-

form velocity a horizontal circle, having its center in the

vertical axis ; hence, by the principles of Mechanics, the re-

sultant accelerating force upon the particle must tend to the

center, and must = — , where v is its linear velocity and r the

radius of the circle it describes : but this resultant is the effect

of gravity and the fluid-pressures only.

Now let us consider a particle if in the surface of the fluid,

having a mass m, and let the next figure represent a vertical

section of the fluid made through the axis BE of the vessel

ADFG and the particle if, AMBG being the curve in which

it cuts the fluid. Since if is on the surface of a fluid, which

from the mobility of the particles must be perfectly smooth,

the pressure of this surface upon it may be assumed to be
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normal; let this direction meet the

axis in P and draw MN horizontal

;

then by what precedes the fluid-

pressure in the direction MP, and

the weight of M in the direction

of the vertical must have a resultant

along MN: the three sides then of

the triangle MPN being in the di-

rections of, must be proportional to,

these three forces : we therefore ob-

tain

FN m(,

MN' Vm—
r

Now ft) being the angular velocity of the whole vessel

about the axis NBF, expressed in terms of the angular unit

of the circular measure, v the linear velocity of M must be

mMN\ also r is the distance MN\ hence the preceding rela-

tion becomes

PN _ g
MN'w'MN'

PN-- .9_

that is, the subnormal PN is a constant quantity, wherever

in the curve M be taken, a result which is characteristic of

the parabola where the subnormal is always equal to ^ the

latus rectum ; the section ABC of the surface of the revolving

2
fluid is therefore a parabola whose latus rectum ——^g, and,

since this section is any whatever through the axis, the whole

surface must be a paraboloid having the axis of revolution

for its axis.
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It is apparent from the investigation that the form of the

surface of the revolving fluid is quite independent of the shape

of the including vessel.

Example. A cylinder full of fluid is set to revolve twice

in a second about its vertical axis. Find the quantity of fluid

spilt, supposing the radius of the cylinder to be one foot.

The form of equilibrium of the free surface must be a

paraboloid passing through the rim of the vessel.

Let h be the depth of the vertex of the paraboloid below

the plane through the rim. Then if r be the radius

but (o = AtTj r = 1

;

and ^ = 32, since one foot and one second are respectively the

units of length and time
;

/. 1 = -,-

—

r^.h, which gives h in feet

:

(47r)

.'. quantity spilt = volume of paraboloid

= -7r.r ,h

_1 (4,rr

= — cubic feet nearly. 3*^^ ^"'^^^^ '

It is assumed here that the height of the cylinder is suffi-

cient to keep the vertex of the paraboloid above the base.

67. If a body he immersed in a fluid^ which is at rest

under the action of any forces whatsoever^ the resultant of the

pressures upon its surface is exactly equal and opposite to the

resultant of the forces which would act upon the fluid lohich it

displaces.
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For if the body were taken away and the displaced fluid

put back again and supposed to assume a solid form, equi-

librium would obtain, for the mere solidification can produce

no disturbance ; but to maintain this equilibrium the resultant

of the pressures on the surface of the solidified fluid must be

exactly equal and opposite to the resultant of the forces

applied to it; now these pressures are identical with those

upon the immersed solid, because the surfaces are the same

in both cases ; hence the truth of the proposition.

68. When fluid, contained in a vessel, exerts a pressure on

the enveloping surface, this pressure has to be resisted by the

cohesion of the particles forming the mass of the envelope.

This exertion of the power of cohesion is called tension^ and

the intensity of its action, as in the case of every other force

of resistance, will depend on the amount of pressure to be

counteracted. Every solid body admits of a tension up to a

certain amount being exerted between its constituent particles.

But when the forces applied require for their counteraction a

tension beyond this amount, the material yields to the strain

and is broken, or the vessel bursts.

To understand how the tension at a point in a solid body

may be measured, let us consider for simplicity, a weight

supported by a prismatic bar of iron or other material, with

its axis vertical and with transverse section a. If the bar

were cut through transversely in any section, the lower part

would, unless otherwise supported, fall. An action therefore

takes place between the particles in contact throughout any

transverse section suflScient to counteract the tendency of the

weight below to pull them asunder. This is the effect of the

tenacity of the material, and is what has just been termed

tension. Of course this whole tension is the aggregate of the

strain or tension at every point of the section, and although,

for the reason given in Art. (2) for the case of pressure^ the
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tension exerted by an actual point must be nothing, still, as

the tension really called into play over different parts of the

section may vary greatly, the conception of tension at a point

remains. It may very well be measured, as pressure is

measured in a fluid, by the tension that would he exerted over

a unit of area of a section of the mass, supposing the action

between the particles in contact throughout that unit the same as

at the proposed point. If, then, w be the weight supported,

t the measure of the tension at any point in any transverse

section a, we have, supposing the tension uniform over a,

w = t,a.

If we consider the tension of the material forming a vessel,

subject to any surface pressure, let k be the thickness of the

side of the vessel at the point in question. Suppose a normal

section of the side made at the point. Then the area of the

section of length Z, and uniform thickness of kj would be k.l^

and the tension over this (in a direction perpendicular to the

section) would be tJd,

If in the vessel under consideration k be the same through-

out, ^.^ is taken as the measure of the tension, and is gener-

ally denoted by T.

69. To find the tension at any point of a cylindrical

surface inclosing fluid in terms of the normal pressure of the

fluid.

The annexed figure represents a

section of the cylinder having a breadth

AB made by two planes perpendicular

to the axis which passes through 0,

If AB be small enough, the tension

at every point of it tending to break

the band may be considered the same throughout ; call it T]

here T is, as explained in the last article, the tension that

P. H. 7
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would be exerted over a normal section of the surface, of

thickness equal to that of the surface, and of length equal to

the linear unit, if each point of this area were solicited by

a tension equal td that at the proposed point of section. Con-

sidering the thickness of the surface very small, this tension

is manifestly always perpendicular to AB and in the tangent

plane passing through the point at which it acts.

Draw ah, a'b' parallel to AB one on each side of it, and

very close to it, and dcd' a circular section through c the mid-

dle point of AB and parallel to aa or hh' ; then the tensions

at every point of ab and a'b' are very approximately equal to

T, and act in their respective tangent planes. Draw the radii

Odj Ocy Od'; the small area ab' is kept at rest by the normal

pressures of the fluid upon it which are approximately the

same at every point as that at A, and the tensions T at every

point of ab and a'b' acting tangentially. Hence, resolving

along cO and in a plane perpendicular to it, we have

resolved tensions along c

= Tab sin cOd+ Tab' sin c Od', very nearly

= Tab —Fi + Tab' —f:, nearly
cO cO^ ''

rj^AB.aa! ,

Also the resolved pressures in the same direction will, if p
represent the pressure at ^, be

=p . aa! .AB very nearly

:

the smaller we take ab' the more nearly will these equations

be true, and will be absolutely so in the limit ; but in all cases

these two resolved forces must be equal to one another

;

, A rt m AB.aa!.\p.aa.AB=T 7^—7



GENERAL PROPOSITION'S. 99

or T=p,cO=pr^

if we represent the radius of the cylinder by r,

69*. This result may be obtained perhaps more simply

as follows, provided that the pressure of the contained fluid

throughout any plane perpendicular to the axis be supposed

constant.

Suppose a section of the cylinder of breadth AB to be made

by two planes perpendicular to the axis of the cylinder, and

suppose this section divided into two semi-cylindrical bands

by a plane through the axis. Let AB be small and h be the

thickness of the material at the section. Then the plane

through the axis will cut the cylindrical section in what will

be, always if k be constant, ultimately as AB is indefinitely

diminished if h vary, two rectangles of breadth h and length

AB.

Now either of the above semi-cylindrical portions is in

equilibrium under the action of the tensions between their two

surfaces of junction, perpendicular to their planes, and the

fluid-pressure on the concave surface. The resultant pressure

parallel to the tensions will be equal to that on a rectangle

of breadth AB and length equal the diameter of the cylinder

(Art. 63).

Let p be the measure of the fluid-pressure, t the measure

of the tension, h the thickness at the proposed section : then

we have
^t.h.AB^p.^r.AB,

or t.k=^p.r.

Example.—Tp find the law of thickness of a vessel of

cylindrical bore, in order that when filled with fluid of uniform

density, with its axis vertical, the tendency to burst, as

measured by the tension at every point, may be the same

throughout.

7—2
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Let t be the tension, k the thickness at the depth z^ r the

radius of the bore ; a the specific gravity of the fluid.

Then by the proposition,

t,k—pr,

but 'p — crz]

, (TV
.*. Ic —— ,z.

But by the question t must be constant, and or is so,

,\ k Of: z]

or the thickness must vary as the depth.

(69 a). By a similar investigation to that of (Art. 69) we

can find the tension at any point K of a spherical surface con-

taining fluids the fluid pressure at that point heing p.

Take ah h'a\ a very small rectangular portion of the surface

having A as its middle point, and let be

the center of the sphere, the tension at A may
be resolved into two, at right angles to each

other, both in the tangent plane at A ; let

that parallel to ah be represented by Tj and

that parallel to aa! by T: these may be

assumed to be equal on account of the symmetry of the surface

about A : then the very small surface ah' may be considered

to be kept in equilibrium by the normal pressures at every

point which are approximately equal to p^ the tangential

tensions at every point of aa and hh' approximately equal to

Tj and those at every point of ah and a!h' approximately equal

to T\

Now the resolved parts along ^ of the tensions T at the

points in aa and hh'

.
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= T '^ approximately, by the last proposition,

and similarly resolved parts along AO oi the tensions of ah

and ah'

TdV,ad . , 1=—-T-z^— approximately;

.•. the sum of these = 2 T-^yy- approximately.

Again, the resolved part of the normal pressure in the same

direction

= paa! . dV very nearly.

But these two resolved parts must always counteract each

other ; therefore, since the above expressions for them are true

in the limit,

2^

or if, as before, r denote the radius AO,

(69*a). If ^ be the same throughout the vessel, T may
be found shortly by a method similar to that of Art. (69*).

Suppose the sphere divided into two hemispherical shells by
a plane through the center. Either of these is in equilibrium

under the action of the tension throughout the annular band

of junction, and the fluid-pressures on its concave surface. If

7c be the thickness of the shell, r the radius, t the measure of

the tension, supposed uniform throughout, and p the pressure,

we have, as in (Art. 69*),
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It must be remarked, that if the surface be pressed outside

as well as within, by a fluid, the 'p which enters the above

equations is the difference between these two normal pressures

at the point A.

It appears from these formulae, that when ^ is constant, T
and r are proportional to each other, or that the tension which

a given normal pressure calls into action at any point of a

cylindrical or spherical surface containing it is proportional to

the radius.

70. In the description of the Barometer given in Article 36,

no explanation was offered of any method of measuring the

length of the column of mercury ; a fixed scale of gradua-

tions would manifestly not answer the purpose directly, as

both extremities of the column necessarily shift at once: a

descent of the mercury in the tube must cause the surface of

the mercury in the basin to rise, and the sura of these two

decrements of length makes up the total decrement ; and

similarly in the case of an elongation of the column. Now a

fixed scale could only mark the absolute alteration at one end,

say the upper (7, of the column, but by a simple arrangement

this may be made to indicate the total alteration. For, sup-

pose G to sink d inches, as measured by a fixed scale ; then, if

a be the cross section of the tube, a volume c?a of mercury

must thus descend into the basin, and the corresponding rise

of the surface of the mercury in the basin must be due to this

increase of volume ; or supposing this rise to be 3! inches, and

the cross section of the basin to be A^ we must have

c?a = d!A
;

hence the total diminution of the column, being, as before

said, c?+cZ',

=.(i+?
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But it is clear that if the fixed scale be divided into equal

parts, each of which is to an inch as 1 : f 1 + ^ j, the length

d inches will contain ^ M + -^ j
of these, and hence the

number of such graduations observed upon the length d

inches, through which (7 has sunk, will be the real number

of inches by which the column has been shortened.

It only needs that the real length of the column should be

practically ascertained by measuring, when G is opposite any

known graduation of this scale, and be there registered, in

order that all future lengths be ascertained by inspection.

71. If the section of the tube be very small compared

with that of the basin or lower vessel, -r will be a small

fraction, and d-^-d' will differ inappreciably from d\ this is

the case with most barometers in common use, so that the

graduations on their scales are made without respect to the

considerations of the previous article.

72. In some barometers the bottom of the basin contain-

ing the mercury [FG in fig. of Art. 36) is adjustable by means

of a screw, and thus at the time when an observation is

required to be taken, the whole mass of mercury can be raised

or lowered until the surface DE is brought to a fixed level

with regard to the instrument ; an ivory pin, projecting from

the side DF and pointing downwards, is generally used to

mark this level, and the mercury can be easily brought into it

by turning the screw until the image of the ivory point in the

surface is made to coincide with the point itself: the fixed

scale then measures upwards from this point.
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73. The Wheel or Siphon Barometer diflfers slightly from

those previously described : instead of the end A (fig. Art. 36)

being plunged into a vessel of mercury it is bent round ; the

second branch so formed is similar to BA in the fig. of Art.

(37), and has its extremity open to the atmosphere; by this

arrangement the column of mercury in the second branch, to-

gether with the pressure of air on its surface, balances the

column of mercury in the first ; and therefore the difference

between the length of these columns is the same as the h of

Art. (36). If the tube be uniform throughout, the variation

of either column is exactly half the total variation of ^ ; it is

therefore only necessary to observe the variation of the open

one. This is done by attaching one end of a light string to

a small body which is allowed to float on the surface of the

mercury, and the other, after the string has been passed over

a small pulley, to a weight less than that which would be

suflScient to balance the float : then as the float rises and falls

with the mercury, the pulley is turned round by the friction

of the string, and an index needle fixed to it is made to

traverse a sort of clock-face : if the circle of the face be large

and carefully graduated, any very small motion of the float

will be indicated and measured by the extremity of the needle.

EXAMPLES TO SECTION IV.

(1) A cylinder, the radius of whose base is 1 foot and

whose weight is 100 lbs., is filled with water, a cubic foot of

which weighs 1000 ozs. : if the cylinder be inverted on a

smooth horizontal table, find the greatest number of revolu-

tions per second which the water may make about the axis of

the cylinder consistent with no escape of water.
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Let ABGD represent they cylinder

inverted upon the smooth plane, and oc-

cupied by fluid which is revolving about

the dotted axis of the cylinder, say n

times per second; its angular velocity

is therefore n.2ir^ but we may for con-

venience call it (o.

If the water were not revolving at all

there would be no pressure upon BC]
and again, ii EC were taken away,

during the revolution the water would rise at the sides until

the surface took a parabolic form ; BG must therefore supply

some force sufficient to keep the water down, and it must be

itself pressed upwards by the same : when this upward pres-

sure becomes by reason of the magnitude of the angular ve-

locity greater than the weight of the cylinder, i. e. 100 lbs.,

ABGD will be lifted up and the water will escape below its

edges. We want then to find this pressure corresponding

to the angular velocity co.

Suppose the sides of the cylinder to be produced upwards

as represented by the dotted lines BJc, Ge in the figure, and

suppose BG to be a rigid plate capable of being made to slide

in and out: now let BG be drawn out while the water is

revolving, and a sufficient quantity of water be added to make*

the curve free-surface /^^^^ take the position given in the figure

where the vertex h of the parabola is exactly where the mid-

dle point oi BG was : if when this is the case BG he again

pushed in, its presence can produce no disturbance in the

revolving water either above it or below it ; but by this means

the lower part is quite shut off from the upper, which may
therefore be removed and neglected ; and then the lower is

only under the circumstances which were proposed by the

problem. We thus see that the state of the revolving fluid

ABGD (and therefore its pressure at every point, because it is
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SO at one point h) is the same whether we suppose the portion

of fluid fBh Cg to be superincumbent, or whether we suppose

BG to be stretched rigidly across : hence the pressure which

BG exerts downwards and which we wanted to find, is ex-

actly equal to the weight of the volume of fluid fBhGg,
Call this volume F.

Now the volume of the paraboloid fhg is \ of that of the

cylinder fBGg^ therefore V which is the remaining half of

the cylinder = ^7r^A^.^. Also since the latus rectum of the

parabola fh = ^,, (Art. 66), Bf^^ Bh'
;

''*

4 g
2

= -.
—

T^^TK cubic feet, because Bh is 1 foot

;

4 X 32.2
^ '

This, as before explained, is the force tending to lift the

cylinder, and therefore the greatest value that ay can have,

without escape of water taking place, is when this just equals

the weight of the cylinder, or when

1000 ^^^

4x32.2 16

47iV 10 ,

"^ 4^r32r2^T6 = ''

nV= 16x3.22;

.-. log 7i = ^ (log 16 + log 3.22 -Slog tt)

= 1 (1.20412 + .50786 - 1.49145)

= lx.22053
= .110265

= log 1.289;

.-. n = 1.289.
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Hence the water can only make 1.289 of a revolution per

second, or about IJ, without escaping.

When would a cover, turning upon a hinge and unsym-

metrically loaded, be raised ?

(2) An Indian-rubber ball containing air has a radius a

when the temperature of the air is 0° (centigrade). Supposing

the tension of the Indian-rubber = /-6 x (radius)^, shew that the

radius r of the ball when the temperature is f will be given

by the equation

r^ TT + 2^7*

a 7r-\-2fia
= l-\-et,

e being the ratio (Sect. V.) between the increase of volume

and of temperature for air at a constant pressure, and tt being

the pressure of the atmosphere.

Let p and p be the pressures of the included air, p and p
its densities when the temperature is t° and 0° respectively,

then we have (Art. 82),

Also, since the densities are inversely as the volumes,

p _a?
^

p r

r^ p ^

a p

but (Art. 69* a), i (^ — tt) r = tension = fir^ by question
;

.*. ^ = 7r-f 2yLtr

;

similarly, p' = tt 4- 2/Lta

;
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.*. by substitution

a^7r + 2fjia

= l-\-et.

(3) A spherical vessel contains a quantity of water whose

volume is to the volume of the vessel as ti : 1 ; shew that no

water can escape through a small hole at the lowest point, if

the vessel and the water in it have an angular velocity about

the vertical diameter not less than

{r{Zn^)\

r being the radius of the vessel, and ^ the accelerating force

of gravity.

Let ADBE be the spherical vessel revolving with an

angular velocity ay about

its vertical diameter ^CB:
the surface of the inclosed

water will be a paraboloid

(Art. 66) J whose latus rec-

tum is -^; let the upper

part of this surface meet

the sides of the shell in D
and E : by the question no

water must run out at a

small hole at A^ hence

there must be no water

lying upon the hole, or in other words, the angular velocity

is least possible when the lower part of the surface of the

water just passes through A,

Now because -E is a point in the parabola DAE^ whose

latus rectum is
2^
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CO

Also because E is. a point in the circle ADBE^ whose dia-

meter is ABj
/. GE'=BaAG]

'
.-. BG=%

CO

Again, the volume of the contained water is evidently the

difference between the volume of the portion DAE of the

sphere, and the volume DAE of the paraboloid; but this

difference is equal to the volume of a sphere whose diameter

is ^(7*;

vol. of water AG^ _ ,

vol. of vessel containing it ^^^ ~ ^ ^ '

or
/AB-BGV

1 ^^ *

* This is easily apparent if the slice which would be cut off from the whole

sphere by any two horizontal planes very close to each other be considered, say

that cut off by KLM in the figure, and a plane parallel to it at a small distance

f1^ for the portion which belongs to the paraboloid is irLM'^.d, while the whole

slice is irKM^.d: the difference between these is tt^ICM"^— LM'^)d

= TT {AM, BM—AM, BC) d

= irA3f{BM—BC)d

= 'irAM.MC.d;

but if AK'C be a section of the sphere described upon AC as diameter

AM.MC==MK''^y therefore the difference between the portion of the sphere

BDEAE, and the portion of the paraboloid BAE cut off by these two parallel

planes, is equal to the slice of the sphere CE'A cut off by the same planes ; and

this is true wherever the planes be taken, and hence the above result may be

deduced.
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/. substituting from above,

i-4-=«,

Q) r

y ril-(l-ni)

This is the value of the angular velocity which makes the

surface of the revolving fluid pass through A ; all less veloci-

ties would make the surface pass above A, and all greater

would make the surface, produced, pass below A ; hence the

truth of the proposition.

(4) A bent tube of very small uniform bore throughout,

consists of two straight legs, of which one is horizontal and

closed at the end, and the other is vertical and open. If the

horizontal leg be filled with mercury, and the tube be made

to revolve about a vertical axis passing through the closed

end, so that the mercury rises in the vertical leg to a distance

d from the bend, shew that the angular velocity is

v^
2g{h + d)

I being the length of the horizontal leg, and h the height

of the mercury in the barometer at the time of the experi-

ment.

Shew also that the mercury will not rise at all in the

vertical leg unless the angular velocity be greater than —j~.
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Let ABC represent the tube revolving about a vertical

axis through the closed end -4, F the

height to which the mercury rises in

the open vertical tube BC, and Q the

distance to which it recedes from the

axis in the horizontal one, then, since

the tube is uniform, AQ = PB = d
;

also by question AB— I, Suppose the

pressure of the atmospheric air upon P
to be replaced by the weight of ad-

ditional mercury poured into the open

tube BCj and let the upper surface of

this mercury be at P', then PF = h.

Now it is evident that since the

pressure is notliing both at P' and Q, these two points must

be in the free surface of the paraboloid, which would have

been formed by the revolution about the vertical axis through

^ of a sufficient quantity of mercury contained in an open

vessel, with an angular velocity exactly equal to that of the

tube in the given case; call this velocity co, and let the

dotted line FQK be the supposed surface: draw PA'
perpendicular to the axis. Then, since the latus rectum of

the parabolaPQK is (Art. 66) equal to -^, we have

AQ^ =% AK,

P'A" = %A'K-

.-. PA!' - A(^ =%BF

;

or o) ^ /"igih + d)
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The least value of o) for which the mercury will rise in the

tube BG is clearly that just greater than the value which

makes the parabola of the surface pass through P' and A,

when P will of course be at jB; but under these circumstances

P = %h, oro,' =^. Q.E.D.

(5) Two hemispheres of equal radius are placed in close

contact, so that their common surface is horizontal ; the upper

one is fixed firmly and communicates with an air-pump : find

the least number of strokes of the piston in order that a given

weight may be suspended from the lower hemisphere.

The internal air must be so rarefied that the difiTerence

between its normal pressure upon the lower hemisphere and

that of the external air upon the same shall be great enough

for its vertical resolved part (Art. 63) to be equal to the given

weight, together with the weight of the lower hemisphere.

Ex. Given the pressure of the atmosphere is 15 lbs. per

square inch, the volume of the sphere is 20 times that of the

pump, the area of a great circle of the sphere is 2 square

feet, and the weight to be suspended, together w^ith that of

the lower hemisphere, is 19f cwt.

Also log 2 = .3010300, log 2.1 = .3222193.

(6) A vertical prismatic vessel, closed at the base and

filled with fluid, is formed of rectangular staves held together

by a single string passing round them, as a hoop. Find the

position of the string. (Art. 64.)

(7) A cylinder, into which water has been poured, re-

volves uniformly about its axis, which is vertical, bubbles of

air rise from the base; shew that these will all converge

towards the axis in their ascent. (Art. 67.)



SECTION V.

MIXTURE OF GASES.—VAPOUR.

74. Boyle's law obtains for a mixture of gases as well

as for a simple one ; indeed, air, upon whicli tlie first experi-

mental proof of it Was practised, is made up of two gases,

oxygen and nitrogen, in the proportion of 1 to 4 by weight

:

the experimental facts upon which the more general form of

this law is based are the two following

:

(1) Whenever two gases of different densities are allowed

to come into contact with each other, they very quickly inter-

mix and form a compound which is of uniform density

throughout and iii which any equal volumes, wherever taken,

always contain the same proportion of the two component

gases. The rapidity with which the homogeneity is attained

increases with the difierence between the densities of the two

gases. It may here be remarked, that no such intermixture

ever results from the combination of inelastic fluids unless

they be of equal densities ;• and if it be produced among them

artificially, however complete it may appear, as in milk and

tea, the fluids will in time separate themselves, and lie super-

imposed upon one another in the order of stable equilibrium.

The case of fluids, whether elastic or not, which act chemically

upon one another is not here considered.

(2) If a gas compounded of given quantities of two

different gases be put into a closed vessel, the pressure at

every point of it, or its elastic force (Art. 34), is the sum of the

two pressures w^hich would be respectively due by Boyle's law

to the given quantities of the two gases, if inclosed separately

p. H- 8
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in the same vessel and at the same temperature as the com-

pound : thus, let U be the capacity of the vessel, IT the

pressure of the compound occupying it, and let the quantities

of the two gases, forming the compound, be such that the

pressure of the first when occupying a volume V is P, and of

the second in a volume V is P', then the pressure of the

V V
first in the volume ?7would be Pyv, and of the second P' yj >

V V
and therefore our result is U = Pjj + JPjj,y which takes the

simple form

IT?7=PF4-P'F' (1).

Dr. Dalton has very concisely stated this fact by saying

that *^ One gas acts as a vacuum with respect to another."

From this formula it can be immediately shewn that

Boyle's law holds for the mixture; for supposing the same

quantities of the two gases had been put into a space U' in-

stead of Uj then the pressure IT' would have been given by

the equation

n'U'=PV+FV\

Now it is manifest that this latter compound is the same

as the former, and therefore IT and IT' are its pressures

corresponding to the volumes ?7 and U'; but TIU=II'U'

n u'
or ~ =

77? ^^^ same result as that which Boyle's law gives.

(Art. 37.)

75. A gas and a liquid, when in contact with each other,

and of such a character as not to act chemically upon each

other, generally intermix in a partial manner: if there be

several gases present a portion of each penetrates the liquid

and pervades its whole extent uniformly ; the amount of this

portion is quite independent of the number of gases which

may be so penetrating, but is always such that if it occupied



MIXTURE OF GASES. 115

alone the volume which the liquid does, its density would

bear a certain proportion to that of the same gas, which is left

outside and also supposed to occupy its space alone, this pro-

portion depending upon the liquid and the gas together.

This experimental fact may be stated more generally as

follows : if the volume of a closed vessel be F+ U, and the

part ?7be occupied by a given liquid, and if into the remain-

ing space V any number n of gases be introduced in any

quantities whatsoever, a portion of each of them will pene-

trate the liquid, and the ratio which the quantity of each gas

remaining in V bears to the quantity of the same which per-

vades the liquid in i7 will be independent of n : thus if Vp be

the one quantity, Up the other for a particular gas, it is always

found that p=-p^ whether there be only one, or whether there

be fifty gases submitted to the liquid at once ; as mentioned

above, /jl will difier with different gases, but is constant as

long as the gas and the liquid which are referred to remain

the same.

To take an instance : this proportion is found to be j^^ for

oxygen and water, but only 3^^ for nitrogen and water ; hence

assuming common air to consist of 1 part of oxygen and 4 of

nitrogen, their densities would be in the same proportion if

they occupied space alone, and therefore, by our rule, the

amount of oxygen absorbed by a given portion of water in

contact with air would be, when compared with the amount

of nitrogen absorbed by the same portion of water, as is

tV ' sV or as 1 : 2.

76. In all our previous investigations the effect of heat

in modifying the action of fluids has been left out of con-

sideration, or rather has been supposed to be invariable : this

supposition holds true whenever the circumstances of the case

presume the temperature to remain constant, but if changes
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take place in it, there will generally be corresponding changes

in the hydrostatical properties of the fluids.

It would .seem from experiment, that a free mass, whether

solid or fluid, never experiences a change in its temperature

without undergoing some alteration in its dimensions ; and

conversely. We may say generally, that additional heat im-

parted to a body causes it to expand, while the withdrawal of

heat is followed by its contraction; the converse of this is

equally general, that the forcible compression of a body makes

it give out some of the heat which was necessary for its more

expanded state, and the extension of it in the same way
obliges it to absorb heat. Whenever, too, the temperature

of any body after suffering any succession of changes returns

to any particular state, it is always observed that the dimen-

sions of the body return also to a constant corresponding

magnitude.

77. By accurate observation of effects of this kind it

appears also that interchanges of heat always take place

between portions of matter, whether in contact or at a distance

from each other, until a species of equilibrium has been

attained ; when this is the case the different portions are said

to have the same temperature. These facts lead us to the

means of estimating and defining different stages of tem-

perature and of measuring the amount of its increase or

diminution. Any instrument constructed for this purpose is

termed a thermometer; of these there are many kinds, but it

will be sufficient, for the purpose of illustrating the above-

mentioned principle, to describe the mercurial thermometer.
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The Thermometer,

78. The construction of this instrument is based upon

the fact, that for low temperatures the expansion of mercury

under the action of heat is such that the increase of its volume

is always proportional to the increase of the heat.

It is merely a glass tube, of uniform bore, developed into a

bulb at one extremity ; this bulb, together with a portion of the

tube, is occupied by very pure mercury, and a vacuum is pre-

served in the remainder of the tube by the extremity being

hermetically sealed ; the bore of the tube is uniform and ex-

tremely small, and therefore a slight expansion of the whole

mass of mercury makes a great difference in the length of the

tube occupied. By the aid of graduations along the tube,

the increase or decrease in the volume of the mercury con-

sequent upon an alteration of temperature may be readily

observed, and therefore the difference between temperatures

compared. If the difference between two known temperatures,

or any part of it, be taken as the unit of measurement of tem-

perature, this instrument affords us the means of expressing

any other difference of temperature in terms of it. The two

temperatures taken for this purpose are those of melting ice,

and of the steam of water boiling under an atmospheric

pressure of 29.8 inches of the mercurial barometer. In some

kinds of thermometers, as the centigrade, the j^^- part of the

difference between these temperatures is chosen for the unit

;

in others, as in Fahrenheit's, the j^^ part is taken. To gra-

duate the thermometer accordingly, the instrument must first

be plunged in melting ice, and the level of the mercury in the

tube marked ; it must then be submitted to the steam of water

boiling under a given atmospheric pressure, and the level of

the mercury again marked ; the volume of the tube between

these two marks must be divided in the centigrade into 100,



118 MIXTURE OF GASES.

and in Fahrenheit's into 180 equal parts ; each of these parts

is termed a degree. These two kinds of thermometers also

differ in respect to the division on the tube at which the

numbering of the degrees commences ; in the centigrade the

reckoning starts from the freezing point, and therefore 100°

indicates the temperature of boiling water, while in Fah-

renheit's the initial point on the tube is 32° below the freezing

point, thus making 212° the boiling water point.

These distinctions must always be carefully regarded in

the consideration of the temperature as given by either ther-

mometer ; for instance, 40° centigrade indicates a temperature

which is greater than freezing temperature by 40 degrees of

that thermometer, {i. e. by j%^^ of difference between freezing

and boiling) ; but 40° Fahrenheit is only eight of its degrees

[i. e, Y^Q of difference between freezing and boiling) above

freezing point: and generally, if F° and (7° be the cor-

responding numbers of degrees upon Fahrenheit's and the

centigrade thermometers respectively, which indicate the same

given temperature, they must belong to graduations which

divide the distance between the boiling and freezing point,

on each thermometer, in the same proportion. Now F° of

Fahrenheit denotes a graduation (i^— 32) degrees beyond

F— 32
freezing point, and therefore one which cuts off - of the

distance between boiling and freezing points, while the gra-

duation on the centigrade whose number is (7, is at a distance

G
from its freezing point equal to — of the length between

boiling and freezing ; therefore

G
100'

or 5 (i^- 32) = 9 (7;

a formula connecting the numbers of those graduations on the

two thermometers which correspond to the same temperature.



MIXTUKE OF GASES. 119

In a similar manner might be investigated a formula for any-

other two thermometers whose mode of graduation was known.

The advantage of Fahrenheit's thermometer over the cen-

tigrade and others is, that the degrees are small, and therefore

fractional parts of them are the less frequently requisite in ob-

servations, and that the commencement of the scale is placed

so low that it is seldom necessary to speak of negative degrees,

79. The filling and graduating of a thermometer is an

affair requiring great skill and precaution. The object to be

attained in filling the instrument, is to introduce a quantity of

pure mercury, which shall occupy, at ordinary temperatures, the

bulb and part of the tube, leaving a vacuum in the remainder.

The method generally adopted is somewhat as follows.

The instrument is held vertically with its open end upwards.

A small funnel-shaped vessel containing mercury is placed

over this open end. The flame of a spirit lamp is applied to

the bulb, which, increasing the temperature of the included

air, increases its pressure, and some of it forces its way in

bubbles through the mercury. If the lamp be now removed,

the temperature of the air in the instrument falls, its pressure

diminishes, and some of the mercury is forced in by atmo-

spheric pressure to occupy the space of the air expelled. By
continually repeating this process all the air may be dislodged

and the instrument filled with mercury. If now the funnel

be removed, and the instrument heated, the volume of the

mercury will increase so that some will flow out at the open

end. The heat is raised to the highest temperature which the

thermometer can be required to indicate, and then the hitherto

open end is hermetically closed. As the mercury cools, it

sinks in the tube, leaving a vacuum above it.

In graduating the instrument it must be remembered that

the temperature at which ice melts seems to be absolutely

constant under all circumstances, but that at which water
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boils is not so, unless the pressure and hygrometrical state of

the atmosphere is also the same.

It ought, perhaps, to be here remarked that the expansion

of the mercury measured by the thermometer is not absolutely

that of the mercury itself, inasmuch as the tube too expands

;

it is therefore the difference between these two expansions

which the graduations give us: but this fact introduces no

diflSculty, because the expansion of the glass, like that of the

mercury, is proportional to the increase of heat, and therefore

the difference between the two expansions must also be pro-

portional to it.

The expansion of solids is not so often made use of for the

measurement of temperature as that of fluids, both because it

is much smaller in amount and is less easily measured.

80. When a thermometer is brought into the neighbour-

hood of a medium or substance whose temperature is desired,

its presence alters that temperature by the interchange of heat

which immediately takes place, and which is indeed essential

to the use of the thermometer; it is this new temperature

which is the subject of observation, and not the original;

under ordinary circumstances, however, when the mass of the

thermometer is small compared with that of the substance

around it (Art. 87), there is no appreciable difference between

them.

81. It is a curious circumstance with regard to water,

that although it decreases in volume as its temperature di-

minishes down to about 40° Fahrenheit, for a still further

diminution its volume increases again.* Some most import-

ant results following from this fact will be noticed below,

Art. 111.

* Recent experiments seem to shew that this property belongs to many

,other substances as weU as water.
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82. It is discovered by experiment that the following

very simple law regulates the expansion of gases under heat

:

—the ratio of the increase of volume to the original volume is

for all gases in the same proportion to the increase of tem-

peraturCj provided the pressure exerted upon them remains un-

changed^ whatever that pressure he ; thus if Fbe the volume of

a gas at a given pressure and temperature, V its volume at

the same pressure, but at a temperature increased by f, then

V- V ,—y-~ = at,

where a is a number which is the same for all gases, but

varies, of course, with the magnitude of tlie degrees in terms

of which t is measured.

It appears then from this law and from Boyle's law (Art.

37) (each of them deduced from experiment) that the density

of gas depends both on the temperature and pressure.

To find the relation between these three, suppose p^, /Oq, 0,

p, /9, t corresponding values of the pressure, density, and tem-

perature for two conditions of a given gas. Then the change

.

of density from p^ to p would be produced, by first changing

the temperature from to t, and then changing the pressure

from Pq to p. .

Let Pq become p by the first change, and let F^, V^ be the

corresponding volumes of the gas. Then, by the law above

enunciated, we have, since the pressure is unaltered,

_
Po

11/. ^

or, — = — (1 -\-at),

P Po
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We have now a pressure ^q, a density p^ and a temperature

t Now increase p^ to p, the temperature remaining t Then
the density becomes p^ and by Boyle's law (Art. 38),

Po P Po

But whatever was the original density p^, for a tempera-

ture 0, it was connected with the pressure by the relation

i>o=^/>oJ (Art. 38);

ho Po

.•. p = kp (1 + a^),

the required relation.

It should be remembered carefully, that Jc and a are quan-

tities which must be determined by experiment.

k is found to differ for different gases ; a is the same for

all. An explanation of a method for determining k for air has

been given in (Art. 38*).

83. We are unable to ascertain the amount of heat actu-

ally contained by a body when exhibiting a given temperature,

but by careful thermometric experiments we can discover how
much heat is absorbed or given out by it in passing from one

known temperature to another ; the amount of this heat so

absorbed or evolved being estimated by the number of degrees

to which it will raise the temperature of a given mass of

water. The results of such experiments are, that for the same

substance

:

(1) The quantity of heat required to be absorbed or

given out, in order to produce a given increase or decrease

respectively of temperature, is proportional to the mass

:
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(2) The quantity absorbed or given out by a given mass

is in a constant proportion to the consequent increase or de-

crease of temperature.

84. This may be concisely illustrated by saying that if

m and m be two masses of the same substance exhibiting

temperatures t and t' respectively, and if r be the uniform

temperature which these two masses united will attain, then

{m + m')T — mt + m't\

Thus if any volume of water heated to 70^ of any ther-

mometer, be mixed with twice the same volume of water at

100^, the mixture will be found to have the temperature of

90° by the same thermometer.

85. When we come to the consideration of different sub-

stances, we find the constant ratio of law (2) is different for

each : if q represent the quantity of heat absorbed by a unit

of mass of distilled water in order to increase its temperature

by one degree of heat, and q the quantity required for the

same purpose by a unit of mass of mercury, q and 5' are

very different ; of course their absolute magnitudes would, by

both laws, vary in proportion to the magnitude of the unit

of mass and the degree of heat; but their ratio, instead of

being unity, is ^ = .033 nearly: if q refer to spermaceti

oil,
^' = .5.

This general fact may be got at by a variety of experi-

ments. For instance, if equal weights of quicksilver and

water be mixed, the first having a temperature 40*^, and the

second 156°, the temperature of the resulting mixture is found

to be 152°.3 ; it thus appears that the water has lost heat while

the mercury has gained some, and it cannot be doubted but
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that these quantities are equal; but then this quantity ab-

stracted from the water only diminishes its temperature 3^7,

while it raises the temperature of the mass of merdury, to

which it is added, and which is equal to the mass of water,

112^3. From this it may be inferred, that for raising a given

mass of mercury 1^ it requires jff^ of the heat which will

produce the same result in an equal mass of water.

Again, if a pound of water at 100^ be mixed with two

pounds of oil at 60^, the resulting temperature will be 75%-

therefore the same heat which will lower 1 lb. of water 25^,

will raise 2 lbs. of oil the same amount.

86. These quantities, q and q, are generally denominated

the specific heats of the respective substances, and are most

commonly measured in terms of the specific heat of some one

substance, taken as the unit ; if this one be distilled water, as

is usually the case, we should have q, the specific heat of

mercury, = .033 ; and similarly for all other substances.

87. To include these results under a general formula^ let

T^ be the temperature resulting from the combination of a mass

m, say of mercury, at a temperature f, with a mass m, say of

water, at a temperature f ; and let q, q, as before, be the spe-

cific heats of mercury and water respectively.

Suppose t to be greater than t', and C, estimated in terms

of the same unit as q and q, the quantity of heat lost by the

whole mass of mercury and therefore gained by the water;

since then it would require a loss of heat = mq to reduce the

temperature of the mercury one degree, its actual reduction is

—
; similarly the increase of the water's temperature must be

—r-,. therefore we have
mq'
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G , G
mq mq

from whicli results by the elimination of (7,

[mq + m'q)T = mqt + mq^t' (a),

the equation (Art. 84) is evidently only a particular case

of (a).

88. The foregoing definition of specific heat is not ex-

tended to gases. It is found more convenient in such cases to

speak of two kinds of specific heat: the Jirst refers to the

quantity of heat required to raise by one degree the tempera-

ture of a gas contained by the rigid sides of vessels of constant

volume: the second, to be the quantity required to increase

by one degree the temperature of a gas contained by the ex-

tensible sides of a vessel of such nature that the pressure is

maintained constant.

89. It has been remarked (Art. 76) that an alteration of

the temperature is always accompanied by an alteration of the

dimensions of a body, unless some constraining force be in

action : it may be further asserted that all solid bodies may
by a sufficient increase of heat be rendered liquid, and by

a still greater increase, changed into vapour. The converse

seems also to be true, that all elastic fluids will upon a with-

drawal of heat become inelastic, and, if the process be con-

tinued long enough, at length solid. In short, alteration of

temperature in any substance is always accompanied by either

change of volume or change of chemical character. Also

with elastic fluids increase or decrease of pressure produces

the same efiects as decrease or increase of temperature re-

spectively.
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90. The term vapour is usually applied to those elastic

fluids which at ordinary atmospheric pressure and temperature

lose their elasticity. The laws connecting their changes of

temperature, pressure, and fluid state, are very important, the

more so as one of them, steam, is now of such extensive

application as a motive power.

91. When an inelastic fluid occupies a portion of an

inclosed vessel, the remainder being at first a perfect vacuum,

a certain amount of vapour is disengaged from the fluid and

passes into the empty space, until the space will hold no more

at that temperature; this space is then said to be saturated

with the vapour and the vapour itself to be at saturating

density : the temperature at which a given density of vapour

saturates space is termed the Dew Point of that density : the

origin of this term will be explained in a later article (Art. 110).

If the temperature be now increased, without any alteration

in the volume of the inclosing vessel, the elastic force of the

vapour increases also : and it does so to a much greater extent

than accords with Boyle's law ; this arises from the circum-

stance that additional vapour is generated by the fluid, and

therefore the space in its new state of saturation corresponding

to the new temperature contains more vapour than before.

The law which connects the density of a vapour with its dew

point is not simple, and need not be introduced here.

92. If the space containing the vapour be shut ofi" from

all communication with the fluid, an increase or decrease of

temperature in the vapour will cause an alteration in its pres-

sure, accordant with the law of Art. 82, down to the point

when the temperature is just sufficient to retain the given

vapour in an elastic state, ^. e, down to the dew point of its

density; at this point and below it, just so much of the vapour

will be deposited in its liquid state as will leave the remainder

at the required saturating density.
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Again, if the temperature remaining constant, the space

above the liquid be increased, sufiScient vapour will be disen-

gaged to keep the space saturated.

Generally, then, if vapour rise into a void space, it will,

whether in contact with its own liquid or not, maintain a given

density at a given temperature, a portion of it, if necessary,

becoming condensed : excepting beyond the limiting tempera-

ture when its quantity is not sufficient to effect this, and then

it follows Boyle's law.

93. There is every probability that what are usually

termed permanent gases are vapours whose saturating densities

are very great for low temperatures, and thence arises the

difficulty of reducing them to the liquid state.

94. The results which have just been stated with respect

to the quantity of vapour which rises at a given temperature

into a void space from a liquid exposed to it, are also true

when the space is already occupied by any other gases or

vapours ; the only difference is, that in this case time is re-

quired to complete the saturation.

95. When a space is occupied by any number of gases

and vapours together (these last being supposed at saturation

density, otherwise they are, as far as we are concerned, gases,)

the laws of Art. (74) obtain for the mixture : it is uniform

throughout, and the pressure at every point is the sum of

those pressures which would be separately due to the indi-

vidual gases or vapours if they occupied the space alone.

96. The curious phenomenon of ebullition which takes

place when water is heated to boiling point admits of explan-

ation by the aid of the foregoing principles. When the

vessel is placed upon the fire the particles of water next its
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sides become heated, rise to the surface, and there give off

their vapour: the colder particles which take their places

become heated in turn, and by a continuation of this process

the whole mass becomes gradually heated; but so far the

operation of heating is quite tranquil. At length the lower

layers attain such a temperature, that the pressure of their

vapour at the corresponding saturating density is greater than

that of the superincumbent fluid : this vapour therefore ex-

pands, forms itself into bubbles and rises towards the surface

;

but in its progress it comes into fluid of a lower temperature

and is consequently suddenly condensed ; this produces the

bubbling noise and disturbance in the water which precedes

the boiling. These heated bubbles of vapour however greatly

accelerate the equalization of the temperature of the whole

fluid : it finally becomes uniform, and the bubbles of vapour

generated in all parts of the fluid pass out to the surface at

uniform pressure, which must manifestly equal that of the

atmosphere : the disturbance arising from the passage of these

bubbles continues, but the crackling and bubbling has ceased

and the boiling is completed. Ebullition, then, which is the

criterion of boiling, occurs as soon as the temperature of the

interior particles of the fluid becomes such that the pressure

of their vapour at the corresponding saturating density is

greater than the pressure of the surrounding fluid.

We see from this explanation that the pressure of the

atmosphere upon the surface of water, must materially affect

the temperature at which water will boil, and must therefore

be taken into consideration in the graduation of the thermo-'

meter. The height of the barometer is about 30 inches when

boiling water has the temperature 212° indicated by Fahren-

heit's thermometer. (Art. 78.)

97. The preceding laws connecting the pressures, &c. of

a mixture of a gas with vapour may be exhibited in an alge-
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braical form. Suppose the gas to be always in contact with

liquid affording the vapour, and its quantity to be given, then

if Fbe the space it occupies at temperature t, and if p denote

what would be its pressure if it occupied that space alone, by

Art. (82),

i^ = ^(l+«0 (1),

because the quantity of gas remaining the same its density

varies inversely as its volume. Now by Art. (74) if P be the

whole pressure of the mixture, F the elastic force or pressure

of the vapour at saturating density,

P=P +F (2),

therefore substituting above,

P-F (3).

98. From the preceding remarks it may be collected that,

when bodies change their state and dimensions, a portion of

heat is always either absorbed or given out by them, and that

this portion is not all accounted for by the consequent altera-

tion in their temperature. In fact one part of the heat absorbed

or given out is employed in producing mechanical changes in

the body itself, ^. e. in making it larger or smaller, or in

altering its chemical nature, the other goes towards increasing

or decreasing the temperature. The definition above given of

specific heat takes the whole of this heat into consideration,

* while the first part is usually distinguished by the name of

latent or insensible heat,

99. The quantity of heat which becomes latent in the

passage of an inelastic fluid into the gaseous state is very

great, all of which is absorbed by the vapour at the moment
of its generation either from its parent fluid or from any solid

P.H. 9
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body with which it may then be in contact, such as would be

the case if the evaporating liquid were percolating any sub-

stance. The vapour and liquid, like all bodies wliich are in

contact, and which readily impart heat to each other, are

always of the same temperature, and therefore during the

evaporation, if no extraneous heat be supplied them, they will

both gradually cool, and thus, if the pressure above the liquid

be diminished sufficiently to keep it boiling notwithstanding

the lowered temperature, a freezing of the liquid will actually

be the result of its boiling.

With the aid of the air-pump many experiments may be

made to shew this remarkable phenomenon : but perhaps the

most instructive of all is the following : If two bulbs of glass

be connected by a bent tube and one be filled w4th water and

then heated so that the vapour rises sufficiently to drive all air

out of the tube through an orifice in the empty bowl, and if

this orifice be then closed, the pressure of the included steam

will after cooling be reduced to that which is due to the

temperature of the air : if now the empty bulb be immersed in

a freezing mixture the steam will have its pressure so di-

minished that the water in the other bulb will immediately

boil very rapidly, and the consequent vapour will carry off

from it to the freezing mixture enough latent heat to convert

the remaining water into ice : this apparatus was invente4 by

Wollaston, and called by him the Cryophorus, or frost-bearer.

100. This explanation fully accounts for the well-known

cooling effect of evaporation. A sudden dilatation of a gas

produces the same result, as does also the reduction of a solid

to a liquid state, such as the thawing of ice. On the contrary,

physical changes of an opposite kind cause the body to evolve

heat : thus when quicklime is slaked and a species of con-

cretion or solidification of the water thereby produced, con-

siderable heat is given forth. Also in some neat contrivances
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for lighting matches the necessary heat is produced by a sud-

den forcible condensation of gas, or compression of a solid.

101. Many meteorological phenomena, such as clouds,

fogs, rain, dew, &c., are caused by changes of temperature

taking place in an atmosphere charged with moisture. We
are now in a position to offer some explanation of them.

The water at the surface of the earth in contact with the

atmosphere is continually giving off vapour, but not with

sufficient rapidity, compared with the compensating causes, to

produce general saturation: the portion of air nearest the

earth's surface is found at mean temperature to contain about

half the quantity of vapour required to saturate it. It may be

here mentioned that the ratio which the quantity of vapour

actually present at any time in a portion of air bears to the

quantity which would saturate it at the temperature then

existing, is taken as the measure of the hygrometrical state of

the air at that time. The instruments, of which there are

various kinds, used for ascertaining this ratio are termed

hygrometers.

102. The vapour formed at the surface of the earth has

a much less specific gravity than the air, it therefore rises

rapidly, and becoming in consequence exposed to a diminu-

tion of atmospheric pressure, expands; this expansion cools

the surrounding air, which was probably at a lower tempera-

ture already than that near the earth ; and it thus happens

that at a certain height the vapour is very nearly sufficient to

produce saturation ; here, therefore, if any reduction of tem-

perature is by any means effected, vapour must be condensed.

Now the first form of condensation of a mass of vapour is that

which is exhibited by steam issuing into the atmosphere and

which makes it visible: the vapour seems to condense into

little hollow spheres, or vesicles, having a nucleus of air in

9—2
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the center, which owing to the evolution of latent heat is of a

temperature certainly not less than that which the vapour had

previous to condensation; each sphere, together with its in-

cluded air, possesses a specific gravity which need not be

greater than that of the surrounding atmosphere, and thus the

whole mass will float in a visible form, which we call a cloud,

103. A still further diminution of temperature causes the

vesicles of the clouds to collect into solid drops, which being

necessarily of greater specific gravity than air, immediately

fall to the surface of the earth and produce what is called

rain.

104. Changes of temperature of the kind here supposed

may be often attributed to electrical causes, but generally, no

doubt, they result from the passage of a current of hotter or

colder air. It is possible that masses of air, each charged

with vapour, should by meeting form a mixture, whose re-

duced temperature would require for saturation less vapour

than that which they all together brought with them; this

would cause the instantaneous appearance of a cloud, and,

perhaps, rain ; and would very well account for a phenomenon

which is by no means uncommon.

Any mechanical means which would bring a quantity of air

already saturated into a space where a temperature lower than

its dew-point obtains (Art. 110), would produce a manifestation

of vapour or rain ; it thus happens that the tops of mountains

are very generally capped with clouds ; for the currents of air

charged with moisture, which are carried along by the winds

nearly parallel to the surface of a leyel country, slide up the

sides of any hills which they meet with, and are thus raised

by them, as by inclined planes, into an elevation, where the

temperature perhaps, for reasons mentioned in Art. 102, is

always lower than it is below.
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105. Snoio results from the freezing of vapour at the

moment of condensation, while hail proceeds from the freezing

taking place after the drops have been formed, and during

their passage, in falling, through a portion of air having a

very low temperature.

106. Fogs and mists are only clouds in diiferent states of

density actually in contact with the earth's surface.

107. Dew
J
and hoarfrostj and night fogs are phenomena

of the same class as the preceding : although their imme-

diately acting cause is peculiar. They are produced by the

earth and the objects near its surface becoming colder than

the superincumbent air, and then acting upon it as a refrige-*

rator ; the layer next the earth may thus have its temperature

so much reduced that the vapour contained by it is too much
for its saturation, the superfluous quantity will then be de-

posited in the form of Dew; at the same time, a little higher

up, the temperature may be only just low enough to exhibit the

condensed vapour in the shape of a fog, while above this the

air will be clear. If, again, the temperature of the earth

under consideration be as low as freezing-point, the vapour

will freeze upon condensation, and an effect similar to snow

will be produced on the surface of the earth ; this is hoar

frost. It is sufficiently apparent that the air in valleys, and

above streams and pieces of water, will receive more vapour

in the course of the day than that elsewhere, and will there-

fore be the more nearly saturated ; hence it is that these places

are the most favourable for exhibiting fogs, dews, &c.

108. It remains now to explain how it is that the earth

so often becomes colder at night than the air above, and thus

produces the effects thus described. There are three distinct

modes in which heat may be transmitted from body to body,

Conduction^ Convection^ and Radiation, It is conduction when
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the heat passes from one part of a body to another, through

the intermediate particles, or from one body to another which

is in contact with it ; thus if one end of a metal wire be heated

in a candle, the other will become hot by conduction; and

both the warmth experienced when the finger is immersed in

boiling-water, and the cold, when it touches ice, are the effects

of conduction ; in the first case it communicates heat from the

water to the finger, and in the other it takes from the finger

to give it to the ice. Some bodies are so much better con-

ductors than others, as to produce very diff*erent sensations of

heat upon being touched by the hand, although the real tem-

perature of all may be the same; all metals are so in com-

.parison with wood, &c.; and of this fact practical use is made

when ivory handles are attached to teapots. Silk and wool

are well-known non-conductors, and are therefore admirably

adapted for clothes, to prevent the animal heat from escaping

too rapidly.

When any fluid, elastic or not, after receiving heat, passes

to another place, and there gives it up again, the process of

transmission is termed Convection.

Radiation is of quite a different character; it is a term

used to designate the process of interchange of heat which is

continually going on between all substances at all distances

from each other. Each body seems to throw out its own heat

in all directions around itself, just as light radiates from a lu-

minous point, and to absorb that which comes to it in the

same way from its neighbours. It is an ascertained fact, that

when a portion of the surface of any body receives heat from

a source which is at the same temperature as itself, it absorbs

exactly the same quantity which it radiates ; and thus when

equilibrium of heat is once established amongst bodies sur-

rounding each other, it will be always maintained, unless dis-

turbed by some extraneous cause ; but if the portion of radiating
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surface be opposed to no source of heat whatever, it will lose

all the heat which radiates from it, and the whole of the body

of which it forms a part will cool by conduction.

109. Our promised explanation is now easy, for it so

happens that the radiating power differs extremely with dif-

ferent substances, and that with air, as with all perfect fluids,

it is almost zero ; at the same time air presents little or no ob-

stacle to the free radiation of heat through it : thus at night,

when the sun and all extraneous sources of heat are removed,

the surface of the earth and the bodies upon it will entirely

lose just so much of their heat as radiates through the air into

empty space, supposing no such objects as clouds, trees, &c.,

exist in that direction to return it ; they may therefore cool

sufficiently below the temperature of the air with which they

are in contact, to effect by conduction the results described.

This explanation is confirmed by the extraordinary differ-

ence in the quantity of dew which is observed to be deposited

in the same place, upon objects of different kinds ; thus grass,

and the leaves of most vegetables, glass, chalk, and generally

bodies with rough or dense surfaces, all of which have a

power of rapid radiation, will be covered with dew at a time

when metals and many bodies with smooth surfaces lie almost

dry by the side of them.

110. If a solid body be introduced any where into the

atmosphere, and if its temperature be just below that point at

which the vapour in the atmosphere around it is sufficient to

saturate it, some of this vapour must be deposited upon its

surface in the form of dew. Hence if the temperature of such

a body be observed, as it is gradually made to cool down till

dew is seen upon it, and if also it be observed when it is

reheated till this dew disappears again, the real temperature at

which the vapour in that particular part of the atmosphere
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saturates it, and which must evidently be intermediate to these

two, can be approximately ascertained. This temperature is

called the dew-point (a term which we have already used) for

that portion of atmosphere at that time, and from it can be

obtained the actual quantity of vapour present, by the aid of

tables which connect the saturating density of vapour with the

corresponding temperature.

111. The heating or cooling of liquids is almost entirely

effected by convection, as their conducting powers are slight.

This has been already assumed to be the case in the explana-

tion given of the boiling of water, and is confirmed by the

circumstance, that to make water boil by heating it from

above is a process requiring much time : the upper particles

are in this case the first to have their temperature heightened,

and they do not then, as the lower would under like circum-

stances, give place to others, because their diminished specific

gravity is a suflScient reason for their remaining where they

are.

When liquids cool from above, ^. e. when they lose the

heat which radiates from their upper surfaces, each layer of

particles, as it becomes cooler than the rest, and therefore has

its specific gravity by the contraction of its volume increased

beyond that of the liquid below it, sinks, and is replaced by

the adjacent portions of the same liquid, which will in turn

undergo the same fate; thus the whole mass has its tem-

perature uniformly reduced ; and if this reduction goes as far

as the freezing point, the whole will be congealed.

If such were the result of the cooling of water, it would

be most disastrous in the present condition of our globe : all

aquatic life would be destroyed every time that a severe frost

occurred, and a lake or river when once converted into solid

ice would never melt again in our climates, for the lieated
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water resulting from the partial thawing of the surface, would

not, for the reasons just given, convey downwards sufficient

heat for the thawing of the remainder. Fortunately for us

the law given above, by which water contracts, prevents these

unpleasant consequences : after a volume of water has been

reduced down to a uniform temperature of 40^, upon a con-

tinuation of the cooling process, its upper particles will cease

to descend, and will soon become a sheet of ice, which by its

non-conducting power materially preserves the remaining

water from the further effect of cold.
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GENEEAL EXAMPLES.

(1) A thin conical siarface (weight W) just sinks to the

surface of a fluid when immersed with its open end down-

wards : but when immersed with its vertex downwards, a

weight equal to mW must be placed within it to make it sink

to the same depth as before : shew that, if a be the length of

the axis, h the height of the column of the fluid, the weight

of which equals the atmospheric pressure,

- = m^l + m,
a

It is evident from the question that the weight of the fluid

displaced in the second immersion is to the weight of that

displaced in the first \:\-\-m:m.

But the volume displaced in the first case is that occupied

by the compressed air within the shell, and is therefore a

cone whose axis may be represented by z, while that in the

second case is the volume of the whole cone ; now the volumes

of these cones are in the ratio of the cubes of their axes;

therefore,

a

z'

;=l+m (1).

Again, the pressure of the air compressed into the cone

whose axis is z must balance the pressure due to the depth z

below the surface of the fluid ; and before compression when
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it occupied the whole volume of the cone, its pressure balanced

a column of fluid equal to h ; therefore

hence, substituting in (1)

(2),

h

or z = mhy

1 + w,

d 3 y

and therefore again from (1) y = ^wVl + w.

(2) A hollow conical vessel floats in water with its ver-

tex downwards and its base on the level of the water's

surface : it is retained in that position by means of a cord,

one end of which is attached to the vertex and the other to

the center of a circular disc lying in contact with the hori-

zontal plane upon which the water rests
;
given the dimen-

sions of the cone and the depth of the water, find the smallest

disc which will answer the purpose, neglecting the weight of

the cord, cone, and disc.

As there is no fluid under the disc the resultant fluid pres-

sure upon it is the same as the total pressure upon its upper

surface: it is therefore equal to the weight of a cylindrical

column of the fluid having the disc for its base and the depth

of the fluid for its height : since the horizontal plane can only

exert a force of resistance, the smallest disc is evidently that,

upon which this downward fluid pressure is just sufficient to

balance the tension of the string upwards, when the cone is in

the given state of immersion : but the force required to be

exerted by the string in order to hold the cone in this

position is equal and opposite to the resultant of the fluid

pressures upon the surface of the cone, {, e. to the weight of

the fluid displaced by it. Hence we conclude that the smallest
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disc required will equal the base of a cylinder of the fluid,

whose altitude is that of the fluid and whose volume is that

of the given cone,

(3) Find the depth in water at which the pressure is

140 lbs., assuming the atmospheric pressure to be 15 lbs. the

square inch, and an inch the unit of length.

(4) A vertical cylinder contains four cubic feet of water,

of depth nine inches ; find the pressure in lbs. at any point

in the base, considering four inches the unit of length, and

assuming one cubic foot of water to weigh 1000 ozs.

(5) A body in the form of an equilateral triangle floats

in water ; determine the condition to be satisfied in order that

one angular point may be in the surface of the water and the

opposite side vertical.

The centers of gravity of both the triangle and the fluid

displaced by it may be easily proved to be in the same vertical

line ; the condition referred to therefore concerns the specific

gravities of the triangle and fluid.

(6) A pyramid with a square base and with sides which

are equilateral triangles is placed on a horizontal plane and

filled with a fluid through an aperture in the vertex ; find the

pressure on one of the sides.

If the pyramid have no base find its least weight con-

sistent with its not being raised from the plane.

(7) The surface of a man's body contains 14J square

feet ; find the pressure on it when at a depth of 20 fathoms in

salt water whose specific gravity is 1.026. State also how the

resultant of this pressure might be found.

(8) If a cubic inch of distilled water weighs 253 grains,

and the specific gravity of salt water be 1.026, what will be
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the pressure on a square inch at a depth of 20 feet below the

level of the sea ?

(9) The lighter of two fluids (s. g. 1 : 2) rests to a depth

of four inches on the heavier, a square is immersed vertically

with one side in the surface ; determine the side of the square

that the pressure on the portions in the two fluids may be

equal.

(10) A hemispherical vessel with its base horizontal is

filled with fluid through an orifice at its highest point
;
prove

that the whole pressure on the curved surface equals that on

the base.

(11) A cylindrical vessel with its axis vertical is filled

with equal masses of two fluids which do not mix ; compare

their densities, supposing the pressures on the upper and

lower portions of the concave surfaces equal.

(12) A cone with its axis vertical and base downwards is

filled with fluid ; find the normal pressure on the curved sur-

face, and compare it with the weight of the fluid.

(13) A cubical box filled with a fluid of a given weight

W, is supported in such a position that one of its edges is

horizontal, and that one of its sides passing through this edge

is inclined at an angle a to the horizon ; shew that the sum

of the pressures on the six faces is equal to

3TF(sina + cosa).

(14) An isosceles triangle has its vertex in the surface of

a fluid and base parallel to it ; find the pressure and center of

pressure.

(15) A figure bounded by the arc of a parabola APy the

tangent at the vertex AB, and the line FB parallel to the

axis, is immersed vertically in a uniform fluid, with A in

the surface and BF horizontal ; find the depth of the center

of pressure.
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(16) If the side of a rectangle be horizontal and at a

given depth below the surface of a fluid, determine the whole

pressure on the rectangle ; and shew that the center of pres-

sure lies below the center of gravity of the rectangle.

(17) A hemispherical bowl is filled with fluid, and difi'er-

ent sections of it are taken through the same tangent line to

its rim ; determine the section upon which the pressure is the

greatest.

(18) A portion of a paraboloid, of density p, cut off by
a plane perpendicular to its axis, floats with its axis vertical

in a cylinder containing two fluids, of densities p and Sp,

which do not mix. Having given that the radius of the

cylinder, the latus rectum, and length of axis of the parabo-

loid are all equal, find the volume of the upper fluid when
the two ends of the axis of the paraboloid project equal

distances above and below the surface of that fluid when there

is equilibrium.

(19) ABC is a right-angled triangular plate, and it floats

with its plane vertical and the right angle C immersed in

water
;
prove that if its specific gravity be to that of water as

2 : 5, and CB : OA = 5:4, CB is cut by the surface of the

water at a distance from (7= CA,

(20) One end of a uniform rod is attached to a hinge

fixed in a mass of fluid ; to the other is attached by a free

joint the vertex of a cone which floats in the fluid. Given

that the volume of the cone is 9 times that of the rod and the

specific gravity of the rod 20 times that of the cone, find the

specific gravity of the fluid in order that the cone may float

with I of its axis immersed.

(21) A right cylinder of radius a and height 2h floats in

a fluid of double its density with one of its circular ends
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entirely out of the fluid ; shew that it can rest with its axis

inclined at a certain ansrle to the vertical ii h> -j=,

(22) A piece of zinc (whose specific gravity is 6.9) weighs

59 ozs. in distilled water and 61 in alcohol ; find the specific

gravity of alcohol.

(23) A lump of metal weighs 59 ozs. in water and 61 ozs.

in alcohol whose specific gravity is .8 ; find its weight and

specific gravity.

(24) A uniform cylinder when floating with its axis

vertical in distilled water sinks to a depth of 3.2 inches and

when floating in alcohol sinks to a depth of 4 inches ; find the

specific gravity of alcohol.

(25) A vessel, of weight W times that of the cubic foot

of water, in sailing down a river leaks V cubic feet of water

and is observed to be immersed to a given depth. On reaching

the sea V cubic feet are pumped out : and after V" cubic feet

of sea water have been leaked, the vessel is observed to

be immersed at the same depth as before: find the specific

gravity of sea water.

Obtain a numerical result, taking specific gravity of fresh

water = 1, weight of ship = 100 tons, F= 1000, F' = 500,

F" = 600.

(26) Find the greatest amount of water displaced by the

air in a cylindrical diving-bell.

Also find the interior pressure then on the upper surface of

the bell.

(27) Given \j \^ the heights of the barometer in a

diving-bell before descent and at a certain depth respectively,

find the depth.
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(28) Assuming that 100 cubic inches of air weigh 31.0117

grains and a cubic foot of water weighs 1000 ozs., compare the

specific gravities of air and water : and if 34 feet be the height

of a column of water which the atmosphere will support, shew

that the height of the atmosphere considered homogeneous is

about 5 miles.

(29) The weight of a cubic foot of water being 1000 ozs.

and its specific gravity unity, determine the specific gravity

of a substance whose bulk is m cubic inches and weight n ozs.

(30) A cubic foot of water weighs 1000 ozs. ; what is the

specific gravity of a solid of which a cubic yard weighs

540 lbs.?

(31) A cube of wood floating in water descends 1 inch

when a weight of 30 ozs. is placed on it ; find the size of the

cube supposing a cubic foot of water to weigh 1000 ozs.

(32) If the specific gravity of air be «, that of water being

1, and if TF, W be the weights of a body in air and water

respectively, shew that its weight in vacuo will be

1 — 5
^

(33) A metal cylinder floats in mercury with one-fourth

of its bulk above the surface ; find the specific gravity of the

metal, that of mercury being 13.6.

(34) A piece of wood weighs 6 lbs. in air ; a piece of lead

which weighs 12 lbs. in water is fastened to it, and the two

together weigh 10 lbs. in water; find the specific gravity of

the wood.

(35) What weight of oil (specific gravity .75) must be

added to a pound of fluid of specific gravity .5, that in the
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mixture a pound of a substance of specific gravity 4 may-

weigh 13.5 ozs. ?

(36) To a piece of wood which weighs 4 ozs. in vacuo a

piece of metal is attached whose weight in water is 3 ozs. and

the two together are found to weigh 2 ozs. in water ; find the

specific gravity of the wood.

(37) A lump of silver weighs 550 grains in air and 506

grains in water, find the specific gravity of silver, and also the

volume of the lump, having given that the weight of a cubic

inch of water is 250 grains.

(38) A cubical block of marble whose edge measures

2 feet and whose specific gravity is 2.7 has to be raised out of

a river; determine its weight when entirely immersed and

also when lifted out of the water.

(39) Two bodies A and 5 in air weigh 10 lbs. and 15 lbs.

respectively; in mercury B alone and A andB together weigh

respectively 9 lbs. and 1 lb. : what is ^'s specific gravity, that

of mercury being 13.5 ?

(40) A cubic inch of pure gold (specific gravity 16^) is

mixed with two cubic inches of mercury (specific gravity 13.6)

;

find the specific gravity of the compound.

(41) What weight of water must be added to a pound of

fluid whose specific gravity is ^ in order that the specific

gravity of the mixture may be f ?

(42) The apparent weight of a sinker, in water, is four

times the weight in vacuum of a piece of material, whose spe-

cific gravity is required : that of the sinker and piece together

is three times the weight. Shew that the specific of the

material = .5.

P. H. 10
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(43) If the three weights used in Nicholson's Hydrometer

be 10, 12, and 18 lbs., find the volume of the solid in inches;

a cubic foot of the fluid weighing 1000 ozs.

(43*) If jp parts by weight of a metal whose specific

gravity is 5, when fu^ed with p' parts of a metal whose

specific gravity is s form an alloy whose specific gravity is >?,

shew that -th part of the volume of the whole has been lost
n ^

by condensation during the mixture where

n S{ps'+p'sy

(44) Find k, for air, that p = kp may give the pressure

in ounces; the barometer standing at 30 inches when the

density of air referred to mercury is .0001 ; the unit of length

being one inch, and a cubic foot of the standard substance

weighing 1000 ozs.

How will k be altered if the unit of length be increased to

6 inches?

(45) p^, p,, t^, p^j p,,t^, Psi Ps^ h are corresponding

values of the pressure, density, and temperature of the same

gas ; shew that

^\P2 Pz) 'Vs Pi

-^-'] + tA^'-^] = 0,

Pi P,

(46) The temperature at one place is 24^ by the centi-

grade and at another 52^ by Fahrenheit ; what is the differ-

ence by Fahrenheit's?

(47) What is meant by the sensibility of the thermometer?

What degree of a centigrade corresponds to 60 of Fahrenheit,

and what degree of Fahrenheit's to 60 of the centigrade ?

(48) Having given a certain temperature in degrees ac-

cording to Fahrenheit's thermometer, find the number of de-
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grees indicating it on De Lisle's thermometer, where the space

between boiling and freezing point is divided into 150 degrees,

and the boiling point is taken as the zero of the scale.

(49) The point at which mercury freezes is indicated by

the same number on the centigrade and on Fahrenheit's scale

:

determine the number.

(50) In a vessel not quite full of water^ and closed at the

top by a flexible membrane, a small glass balloon, open at the

lower part, contains sufficient air just to make it float, explain

the principle upon which the balloon sinks when the mem-
brane is pushed in.

(51) A weightless conical shell is filled with fluid and

suspended by its vertex from a fixed point : it is then divided

symmetrically by a vertical plane, and kept from falling asun-

der by a hinge at the vertex, and a ligament at the base,

coinciding with that diameter of the base which is perpen-

dicular to the dividing plane: determine the tension of the

ligament.

(52) A closed vessel is filled with water containing in it

a piece of cork which is free to move : if the vessel be sud-

denly moved forward by a blow, shew that the cork will shoot

forward relatively to the water.

(53) A piece of cork is attached by a string to the bottom

of a bucket of water so as to be completely immersed, and

the bucket being placed in the scale of a balance is supported

by a weight in the other scale ; if the string be cut, will the

weight begin to rise or fall ? State your reasons.

(54) A cylindrical vessel containing fluid revolves uni-

formly about its axis with an angular velocity «, and a solid

cylinder of less specific gravity than that of the fluid floats in
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it with its axis coincident with that of the revolving vessel

;

find how deep it is immersed.

(55) A transparent closed cylinder filled with fluid, in

which there are extraneous particles, some lying at the bottom

and some floating at the top, is set revolving about its axis

:

it is then observed that the floating particles all flow in

towards the axis, while those at the bottom recede from it:

explain this.

(56) If a vertical cylinder containing heavy fluid revolves

about a generating line with a uniform angular velocity, the

depth to which the surface sinks below its original level : the

height to which it rises above that level ': : 3 : 5.

(57) A circular tube is half full of fluid, and is made to

revolve uniformly round a vertical tangent-line with angular

velocity w: if a be the radius, prove that the diameter passing

through the open surfaces of the fluid is inclined at an angle

tan"^ to the horizon.
9

(58) If a spherical envelope, of thickness h and radius r,

be formed of a substance, which, if made into a line having

a section K, would bear a weight W: find the number of

strokes of the piston after which this envelope placed under

the receiver of an air-pump would burst.

(59) A vertical cylindrical vessel, closed at the base, is

formed of staves held together by two strings, which serve as

hoops, and is filled with fluid ; shew that the tension of the

upper string is to that of the lower : : A — 3a : 2A — 3a, where

h is the altitude of the cylinder, and a the distance of the

upper and lower strings from the top and bottom of the

cylinder respectively.
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(60) In the case of the previous question, how much of

the fluid must be withdrawn from the cylinder in order that

the tension of the upper string may vanish ?

(61) A cylindrical boiler, the interior radius of which is

10 inches, and the thickness -^q of an inch, is formed of a

material such that a bar of it, one square inch in section, can

just support a weight of 10,000 lbs. without being torn asun-

der; find the greatest pressure which the boiler can sustain

without bursting.

(62) At 18^9 (centigrade) the weight of a cubic foot of

distilled water is 997.84 ozs., and at 16'f its weight is 998.24

ozs. ; find the temperature at which it shall be 1000.

(63) A cubic inch of water which weighs 252.458 grains

will produce a cubic foot of steam at atmospheric pressure;

find the specific gravity of steam.

(64) A quantity of air under the pressure of mlbs. to

the square inch, occupies n cubic inches when the temperature

is i^^; find its volume under a pressure of m lbs. to the square

inch when the temperature is t'^.

(65) Having given that m\hs. of steam at the boiling-

point, mixed with n lbs. of water at temperature t, produces

m + n lbs. of water at the boiling-point, compare the latent

heat of steam and the specific heat of water.

(66) Upon what principle might the height of a moun-

tain be approximately found by observing the temperature at

which water boils at the top ?

(67) A vessel contains air at atmospheric pressure ; find

the force in pounds necessary to be applied to a piston of
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area A in the vessel to prevent its being forced out when the

air is heated to temperature T above what it was at first.

(68) A thermometer-tube, open at the top and filled with

mercury, contains 1000 grains at 32^ temperature; if the tube

be heated till its temperature is 84^, find how many grains of

mercury will be expelled. The expansion of mercury in

volume between 32^ and 212^ being .018, and the linear ex-

pansion of glass between the same points .0008.



ANSWEES TO EXAMPLES.

SECTIOIT I.

(1) 2 feet nearly. (2) 2.5 seconds.

(3) .25 of a second. (4) .016.

SECTIOIT II.

(1) ^=3Ti-^' (5) l-.2:4:5.

(6) 35/3 lbs. (7) 1.2 of a foot.

(8) Half the weight of the fluid. IN'o, the pressure on the

table equals the whole weight of the fluid and vessel.

(9) 3:1; the same in both cases. (10) J pound.

(12) 156 lbs. i ozs. (13) It rises ^^ of its height nearly.

(14) 2 nearly. (19) 1:5. (20) 1:8.

(21) 11.48 ozs. nearly.

(23) Eatio of volumes = 19 : 2 ; ratio of weights = 17:11.

(24) lib. (25) .98. (26) .39.

(27) 48 inches; 10.5408; 236^. (29) 250:147.

(32) 23:37. (34) When high. (35) 60^

SECTIOjS" III.

(7) 60 lbs. (9) 5 inches. (10) 3 lbs. nearly.

(11) 1 of height from base. (15) 1:1083077.

(16) 26000 feet. (17) 20f inches.

(18) ^ that of the atmosphere. (20)10. (21) 35 ft. nearly.
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(22) When ABj BC are equally inclined to the vertical.

(23) 28 ft. 3i in. (24) -^""^ V, (25) Increase.

(26) The depth of the surface of the water in the bell

^ d — fi ^ ^

5= h . —7— where h is the height of the water-barometer, li the

altitude of the cylinder of water of the same weight and transverse

section as the bell, and a the altitude of the bell.

(27) —T— times the original quantity, where h is the height of

the water-barometer, and d the depth of the lower rim of the bell.

(28) Their apparent weights in the given positions must be

equal. In the second case the water must be at the same level in

both.

(29) All the air would rise in bubbles, and the bell wojild sink.

(30) 2528 tons nearly.

sectio:n' IV.

(5) 15 strokes.

(6) The string must pass round in a horizontal plane at one-

third of the height of the prism from the base.

GEJS^ERAL EXAMPLES.

(3) 288 feet. (4) 7flbs.

(5) The specific gravities must be in the ratio of 1 : 2.
,

\/3
(6) Pressure =^ x weight of fluid. The least weight of the

pyramid = 2 . weight of fluid.

(7) 49 tons 16cwt. 25 lbs. 8 ozs. + pressure of atmosphere.

The resultant pressure = the weight of water displaced. •
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(8) 62298.72 grains. (9) 2 (Vs + 1 ) inches.

(11) p,:p,::l:S.

2
(12) !N'ormal pressure = -^— . W where a is the semi-vertical•^ sma

angle of the cone, and Wis, the weight of the fluid.

(14) For the pressure, see Art. 18. The center of pressure is

on the bisecting line at f of its length from the vertex.

(15) Four-fifths of ^^.

(16) For the pressure, see Art. 18.

(17) Inclination to horizon = 30'^.

(18) I the paraboloid. (20) Six times that of the cone.

(22) .8. (23) 69 0ZS.; 6.9. (24) .8.

r25^
^+^

(26) The amount displaced when the upper surface is level with

the fluid, equals the weight of water displaced.

(27) ey(/*2-^i) where <r is the specific gravity of mercury re-

ferred to water.

(29) 1.728 X -. (30) .32. (31) The edge = 7.2 inches.

(33) 10.2. (34) .75. (35) l|lb. (36) .8.

(37) 12.25; .176 inches. (38) 850 lbs.; 13501bs.

(39) 7.5. (40) 14.56. (41) 2 lbs. (43) .032 feet.

(44) 173611. i; 36 fold. (46) 23.2^ (47) 15f; 140.

(48) A where F denotes the number of degrees Fah-

renheit. (49) -40.

(50) The volume of air between the membrane and water is

diminished, and therefore its pressure is increased. Hence the

pressure throughout the fluid is increased, and therefore the volume

of air in the glass balloon is diminished. Therefore the specific

gravity of the balloon and included air, considered as one body, is

increased, and, being at first just equal to, is now greater than that

of the water, and the balloon consequently sinks.

P.H. 11
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(51) ^—7
. TF" where TFis the weight of the fluid, and a is

the half of the vertical angle of the cone.

(53) To descend : for, when the string is cut, the cork rises,

and some heavier fluid takes its place ; the center of gravity of the

bucket and its contents descends ; less force therefore is called into

action at that end of the balance than was the case when this center

of gravity was in equilibrium ; hence the weight at the other end

of the balance is no longer supported, and consequently begins to

descend.

(54) - 7i + j^ . o>^. /-„ where ^i is the radius, h is the height of

the floating cylinder, and a a are the specific gravities of the fluid

and cylinder respectively.

{^h) Let v be the volume of one of the particles, p its density,

^ the density of the fluid, w the angular velocity of the cylinder,

and r the distance of the particle from the axis. Then the particle

will move towards the axis or recede from it, according as the

resultant force acting on it towards the axis be greater or less than

^v . wV. But this force equals pVwV (see Art. 67)

;

therefore the particle will tend to the axis or away from it,

according as p' > or < p

;

i, e. the lighter particles will flow towards, whilst the heavier

will recede from, the axis.

(58) The number of strokes is the value of n given by the

inequality

n [l - [j;:^ } 5
fii'st greater than -^ . W,

where A and B are respectively the volumes of the receiver and

piston-barrel.

(60) To within a distance Za of the bottom.

(61) 100 lbs. per square inch.

(62) 6.84 degrees centigrade.
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(63) T^^^ referred to water.

(64) —
, {1 -Vait-t )} n cubic inches nearly.

,^., latent heat of steam n ,^^^ „ , , . .

i^b) TiT-T

—

T—c r— = — (212-n where t is m degrees
^ ' specific heat of water m^ ' °

Fahrenheit.

(66) On the principle that the temperature at which water

boils depends upon the atmospheric pressure, and that the one being

given, the other is known. Thus the observed boiling temperature

would give the height of the barometer, and thence the height of

the mountain (Art. 40).

(67) aT, UA, where 11 is the pressure of the atmosphere in lbs.

on the unit of area, at the temperature from which T is measured.

(68) 5.19 grains nearly.

THE END.



J. PALMER, PRINTER, SIDNEY STREET, CAMBRIDGE.
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CAMBEIDGE CLASS BOOKS
FOE

SCHOOLS AND COLLEGES.

WORKS by the Rev. BARNARD SMITH, M.A.

Fellow of St. Peter's College, Cambridge.

1.

Arithiiietic & Algebra
In their Principles and Applications.

With numerous Examples^ systemat-

ically arranged.

Eighth Edit. 696 pp. (1861). Cr. 8vo.

strongly bound in cloth. 10*. ^d.

The first edition of this work was published
in 1854. It was primarily intended for
the use of students at the Universities,
and for Schools which prepare for the
Universities. It has however been found
to meet the requirements of a much
larger class, and is now extensively used
in Schools and Colleges both at home and
in the Colonies, It has also been found
of great service for students prepaiing
for the Middle-Class and Civil and
Military Service Examinations, from
the care that has been taken to elucidate
the principles of all the Rules. Testi-
mony of its excellence has been borne by
some of the highest practical and theo-
retical authorities ; of which the follow-
ing from the late DEAN PEACOCK may
be taken as a specimen :

"Mr. Smith's Work is a most useful
publication. The Rules are stated with
great clearness. The Examples are well
selected and worked out with just suffi-

cient detail without being encumbered by
too minute explanations ; and there pre-
vails throughout it that just proportion of
theory and practice, which is the crown-
ing excellence of an elementary work."

2. Arithmetic
For the Use of Schools.

New Edition (1862) 348 pp.
Crown 8vo. strongly bound in cloth,

4s. Qd. Answers to all the Ques-
tions.

3. Key to the above, contain-
ing Solutions to all the Questions
in the latest Edition. Crown 8vo.

cloth. 392 pp. Second Edit. 85. M.
To meet a widely expressed wish, the

ARITHMETIC was pubUshed separately
from the larger work in 1854, with so
much alteration as was necessary to make
it quite independent of the ALGEBRA. It
has now a very large sale in all classes of
Schools at home and in the Colonies. A
copious collection of Examples, under
each rule, has been embodied in the work
in a systematic order, and a Collection of
Miscellaneous Papers in all branches of
Arithmetic is appended to the book.

4. Exercises in Arith-
metic. 104 pp. Cr. 8vo. (1860)
25. Or with Answers, 2s. Qd.

Also sold separately in 2 Parts
\s. each. Answers, M.

These EXERCISES have been published
in order to give the pupil examples in
every rule of Arithmetic. The greater
number have been carefully ^compiled
from the latest University and School
Examination Papers.
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WORKS by ISAAC TODHUNTER, M.A. F.R.S.

Fellow and Principal Mathematical Lecturer of St. Jolin's College, Cambridge.

1. Algebra.
For the Use of Colleges and Schools.

Third Edition. 542 pp. (1862).

Strongly bound in cloth. 7*. M.

This work contains all the propositions
which are usually included in elementary
treatises on Algebra, and a large number
of Examples for JExercise. The author
has sought to render the work easily in-
telligible to students without impairing the
accuracy of the demonstrations, or con-
tracting the limits of the subject. The
Examples have been selected with a view
to illustrate every part of the subject, and
as the number of them is about Sixteen
hundred and fifty, it is hoped they will
supply ample exercise for the student.
Each set of Examples has been carefully
arranged, commencing with very simple
exercises, and proceeding gradually to
those which are less obvious.

2. Plane Trigonometry
For Schools and Colleges.

2nd Edit. 279 pp. (I860). Cm. 8vo.

Strongly bound in cloth. 5s.

The design of this work has been to ren-
der the subject intelligible to beginners,
and at the same time to afford the student
the opportunity of obtaining all the infor-

mation which he will require on this branch
of Mathematics. Each chapter is followed
by a set of Examples ; those which are
entitled Miscellaneous Examples, together
with a few in some of the other sets, may
be advantageously reserved by the student
for exercise after he has made some pro-
gress in the subject. As the Text and Ex-
amples have been tested by considerable
experience in teaching, the hope is enter-
tained that they will be suitable for impart-
ing a sound and comprehensive knowledge
of Plane Trigonometry, together with
readiness in the application of this know-
ledge to the solution of problems. In the
Second Edition the hints for the solution
of the Examples have been considerably
increased.

3. Spherical Trigonometry.
For the Use of Colleges and Schools.

112 pp. Crown 8vo. (1859).

Strongly bound in cloth. 4*. M.
This work is constructed on the same

plan as the Treatise on Plane Trigono-
metry, to which it is intended as a sequel.
Considerable labour has been expended
on the text in order to render it compre-
hensive and accurate, and the Examples,
which have been chiefly selected from Uni-
versity and College Papers, have all been
carefully verified.

The Elements ofEuclid
For the Use of Schools and Colleges.

Comprising the First Six Books and
Portions of the Eleventh and
Twelfth Books, with Notes, Ap-
pendix, AND Exercises.

384pp. 18mo. bound. (1862). 2>s.U.

As the Elements of Euclid are usually
placed in the hands of yoimg students, it

is important to exhibit the work in such
a form as will assist them in overcoming
the difficulties which they experience on
their first introduction to processes of con-
tinuous argument. No method appears to
be so useful as that of breaking up the
demonstrations into their constituent parts,
and this plan has been adopted in the
present edition. Each distinct assertion in
the argument begins a new line ; and at
the end of the lines are placed the necessary
references to the preceding principles on
which the assertions depend. The longer
propositions are distributed into subordi-
nate parts, which are distinguished by
breaks at the beginnmg of the lines. The
Notes are intended to indicate and explain
the principal difficulties, and to supply the
most important inferences which can be
di-awn from the propositions. The work
finishes with a collection of Six hundred
and twenty-five Exercises, which have been
selected principally from Cambridge Ex-
amination papers and have been tested by
long experience. As far as possible they
are arranged in order of difficulty. The
Figures will be found to be large and dis-
tinct, and have been repeated when neces-
sary, so that they always occur in immedi-
ate connexion with the corresponding text.
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WORKS by ISAAC TODHXJNTER, M.A., 'F.'R.S -continued.

5.

The Integral Calculus

And its Applications.

With numerous Examples.

Second Edition. 342 pp. (1862).

Crown 8vo. cloth. 10s. ^d.

In writing the present Treatise on the

Integral Calculus^ the object has been to

produce a work at once elementary and
complete—adapted for the use ofbeginners,

and sufficient for the wants of advanced
students. In the selection of the propo-
sitions, and in the mode of establishing

them, the author has endeavoured to ex-
hibit fully and clearly the piinciples of

the subject, and to illustrate all their most
important results. In order that the stu-

dent may find in the volume all that he
requires, a large collection of Examples
for exercise has been appended to the
different chapters.

6. Analytical Statics.

With numerous Examples.

Second Edition. 330 pp. (1858).

Crown 8vo. cloth. 10s. M.

In this work will be found all the pro-
positions which usually appear in treatises

on Theoretical Statics. To the different

chapters Examples are appended, which
have been selected principally from the
University and College Examination Pa-
pers ; these will furnish ample exercise in

the application of the principles of the
subject.

7. EXAMPLES OF

Analytical Geometry
of Three Dimensions.
76 pp. (1858). Crn. 8vo. cloth. 4s.

A collection of examples in illustration

of Analytical Geometry of Three Dimen-
sions has long been required both by
students and teachers, and the present
work is published with the view of sup-
plying the want.

8. The

Differential Calculus.
With numerous Examples.

Third Edition, 398 pp. (1860).

Crown 8vo. cloth, 10s. Qd.

This work is intended to exhibit a com-
prehensive view of the Differential Calcu-
lus on the method of Limits. In the more
elementary portions, explanations have
been given in considerable detail, with
the hope that a reader who is without the
assistance of a tutor may be enabled to ac-
quire a competent acquaintance with the
subject. More than one investigation of
a theorem has been frequently given,
because it is believed that the student de-
rives advantage from viewing the same
proposition under different aspects, and
that in order to succeed in the examina-
tions which he may have to undergo, he
should be prepared for a considerable va-
riety in the order of arranging the several

branches of the subject, and for a corres-

ponding variety in the mode of demonstra-
tion.

9. Plane Co-Ordinate
Geometry

AS APPLIED TO THE STRAIGHT LINE

AND THE CONIC SECTIONS.

With numerous Examples.

Third and Cheaper Edition.

Crn. 8vo. cL 326 pp. (1862). 7s. 6^.

This Treatise exhibits the subject in a

simple manner for the benefit of beginners,

and at the same time includes in one
volume all that students usually require.

The Examples at the end of each chapter

will, it is hoped, furnish sufficient exercise,

as they have been carefully selected with
the view of illustrating the most impor-
tant points, and have been tested by re-

peated experience with pupils. In con-

sequence of the demand for the work
proving much greater than had been
originally anticipated, a large number of

copies of the Third Edition has been

printed, and a considerable reduction

effected in the price.
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By ISAAC TODHUNTER, M.A.

10. ELEMENTARY TREATISE ON THE

Theory of Equations.

With a Collection of Examples.

Crown 8vo. clotli. 279 pp. (1861).

Is, ea.

This treatise contains all the proposi-

tions which are usually included in ele-

mentary treatises on the Theory of Equa-
tions, together with a collection of Ex-
amples for exercise. This work may in

fact be regarded as a sequel to that on
Algebra by the same writer, and accord-

ingly the student has occasionally been
referred to the treatise on Algebra for pre-

liminary information on some topics here
discussed. The work includes three
chapters on Determinants.

11. History of the Progress

of tlie

Calculus of Variations
During the Nineteenth Century.

Svo. clotli. 532 pp. (1861). 12&

It is of importance that those who wish
to cultivate any subject may be able to

ascertain what results have already been
obtained, and thus reserve their strength
for difficulties which have not yet been
conquered. The Author has endeavoured
in this work to ascertain distinctly what
has been effected in the Progress of the
Calculus, and to form some estimate of

the manner in which it has been effected.

A TREATISE ON

Mechanics and Hydro-
statics.

With Solutions of Questions

PROPOSED IN THE CAMBRIDGE SENATE HOUSE

i?y W. H. OIRDLESTONEy M.A.

Christ's College.

8vo. cloth. 100 pp. 1862.

By J. H. PRATT, M.A.

Archdeacon of Calcutta, late Fellow of
Gonville and Caius College, Cambridge.

A Treatise on
Attractions,

Za Place's Functions, and the Figure

of the Earth.

Second Edition. Crown 8vo. 126 pp.

(1861). cloth. 6s. M.
In the present Treatise the author has

endeavoured to supply the want of a work
on a subject of great importance and high
interest—La Place's Coefficients and Func-
tions and the calculation of the Figure of
the Earth by means of his remarkable ana-
lysis. No student of the higher branches
of Physical Astronomy should be ignorant
of La Place's analysis and its result—" a
calculus," says Airy, "the most singular
in its nature and the most powerful in its

application that has ever appeared."

By G. B. AIRY, M.A.
Astronomer Royal.

1. Mathematical Tracts
On the Lunar and Planetary Theories.,

Figure ofthe Earth, the TJndulatory

Theory of Optics, ^e.

Fourth Edition. 400 pp. (1858).

8vo. 155.

2. Theory of Errors of
Observations

And the Combination of Observations.

103 pp. (1861). Crown 8vo. 6*. 6^.

In order to spare astronomers and ob-
servers in natural philosophy the confusion
and loss of time which are produced by
referring to the ordinary treatises em-
bracing both branches of Probabilities, the
author has thought it desirable to draw
up this work, relating only to Errors of
Observation, and to the rules derivable
from the consideration of these Errors, for
the Combination of the Results of Obser-
vations. The Author has thus also the
advantage of entering somewhat more
fully into several points of interest to the
observer, than can possibly be done in a
General Theory of Probabilities.
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By GEORGE BOOLE, D.C.L., F.R.S.

Professor of Mathematics in the Queen's
University, Ireland.

Differential Equations
468 pp. (1859). Cm. 8vo. cloth. Us.

The Author has endeavoured in this

treatise to convey as complete an account
of the present state of knowledge on the
subject of Differential Equations as was
consistent with the idea of a work in-
tended, primarily, for elementary instruc-
tion. The object has been first of all to
meet the wants of those who had no pre-
vious acquaintance with the subject, and
also not quite to disappoint others who
might seek for more advanced informa-
tion. The earlier sections of each chapter
contain that kind of matter which has
usually been thought suitable for the
beginner, while the latter ones are devoted
either to an account of recent discovery,
or to the discussion of such deeper ques-
tions of principle as are likely to present
themselves to the reflective student in con-
nection with the methods and processes
of his previous course.

2. The Calculus of
Finite Differences.

248 pp. (1860). Crown 8vo. cloth.

10*. Qd,

In this work particular attention has
been paid to the connexion of the methods
with those of the Differential Calculus—

a

connexion which in some instances in-
volves far more than a merely formal
analogy. The work is in some measure
designed as a sequel to the Author's Trea-
tise on Differential Equations, and it has
been composed on the same plan.

Elementary Statics.
By the Rev. GEORGE RAWLINSON
Professor of Applied Sciences, Elphin-

stone Coll., Bombay.
Edited by the Rev. E. STURGES, M.A.

Rector of Kencott, Oxfordshire.

(150 pp.) 1860. Crn. 8vo. cl. 4s. 6^.

This work is published under the au-
thority of H. M. Secretary of State for
India for use in the Government Schools
and Colleges in India.

By P. G. TAIT, M.A., and
W. J. STEELE, B.A.

Late Fellows of St. Peter's Coll. Camb.

Dynamics of a Particle.
With numerous Examples.

304 pp. (1856). Cr. 8vo. cl. 10s. Qd.

In this Treatise will be foimd all the
ordinary propositions connected -with the
Dynamics of Particles which can be con-
veniently deduced vdthout the use of
D'Alembert's Piinciples. Throughout the
book will be found a number of illus-

trative Examples introduced in the text,
and for the most part completely worked
out ; others, with occasional solutions or
hints to assist the student are appended to
each Chapter.

By the Rev. G. F. CHILBE, M.A.
Mathematical Professor in the South

African College.

Singular Properties of
the Ellipsoid

And Associated Surfaces of the Nth

Degree.

152 pp. (1861). 8vo. boards. 10s. 6^.

As the title of this volume indicates,
its object is to develope peculiarities in
the Ellipsoid; and further, to establish
analogous properties in unlimited con-
generic series of which this remarkable
surface is a constituent.

By J. B. PHEAR, M.A.
Fellow and late Mathematical Lecturer of

Clare College.

Elementary Hydrostatics
With numerous Examples and

Solutionis.

Second Edition. 156 pp. (1857).
Crown 8vo. cloth. 5s. Qd.

" An excellent Introductory Book. The
definitions are very clear ; the descriptions
and explanations are sufficiently full and
intelligible ; the investigations are simple
and scientific. The examples greatly en-
hance its value."

—

English Journal of
Education.
This Edition contains 147 Examples, and

solutions to all these examples are given
at the end of the book.



CAMBBIDGE CLASS BOOKS.
By Rev. S. PARKINSON, B.D.

Fellow and Prselector of St. John's Coll.
Cambridge.

1. Elementary Treatise
on Mechanics.

With a Collection of Examples.

Second Edition. 345 pp. (1861).
Crown 8vo. cloth. 95. M.

The Author has endeavoured to render
the present volume suitable as a Manual
for the junior classes in Universities and
the higher classes in Schools. With this
object there have been included in it those
portions of theoretical Mechanics which
can be conveniently investigated without
the Differential Calculus, and with one
or two short exceptions the student is not
presumed to require a knowledge of any
branches of Mathematics beyond the ele-
ments of Algebra, Geometry, and Trigo-
nometry. A collection of Problems and
Examples has been added, chiefly taken
from the Senate-House and College Ex-
amination Papers—which will be found
usefxd as an exercise for the student.
In the Second Edition several additional
propositions have been incorporated in
the work for the purpose of rendering
it more complete, and the Collection of
Examples and Problems has been largely
increased.

2. A Treatise on Optics

304 pp. (1859). Crown 8vo. IO5. M.

A collection of Examples and Problems
has been appended to this work which
are sufficiently numerous and varied
in character to afford useful exercise
for the student : for the greater part of
them recourse has been had to the Ex-
amination Papers set in the University and
the several Colleges during the last twenty
years.

Subjoined to the copious Table of Con-
tents the author has ventured to indicate
an elementary course of reading not un-
suitable for the requirements of the First
Three Days in the Cambridge Senate
House Examinations.

By R. D. BEASLEY, M.A.

Head Master of Grantham School.

AN ELEMENTARY TREATISE ON

Plane Trigonometry.
With a numerous Collection of

Examples.

106 pp. (1858), strongly bound in

cloth. 3s. Qd.

This Treatise is specially intended for
use in Schools. The choice of matter has

I been chiefly guided by the requirements
i of the three days' Examination at Cam-
bridge, with the exception of proportional
parts in logarithms, which have been

j

omitted. About Fo^lr hundred Examples
have been added, mainly collected from
the Examination Papers of the last ten
years, and great pains have been taken
to exclude from ths body of the work any
which might dishearten a beginner by
their difficulty.

By J. BROOK SMITH, M.A.

St. John's College, Cambridge.

Arithmetic in Theory
and Practice.

For Advanced Fupils.

Part I. Crown 8vo. cloth. 3s. M.

This work forms the first part of a Trea-
tise on Arithmetic, in which the Author
has endeavoured, from very simple prin-
ciples, to explain in a full and satisfactory
manner all the important processes in that
subject.

The proofs have in all cases been given
in a form entirely arithmetical : for the
author does not think that recourse ought
to be had to Algebra until the arithmetical
proof has become hopelessly long and per-
plexing.
At the end of every chapter several ex-

amples have been worked out at length,
in which the best practical methods of
operation have been carefully pointed out.



FOB SCROOLS AND COLLEGES.

By G. H. PUCKLE, M.A.

Principal of Windermere College.

Conic Sections and
Algebraic Geometry.
JFitk numerous Easy Examples Pro-

gressively arranged.

Second Edition. 264 pp. (1856).

Crown 8vo. 7s. 6^.

This book has been written with special

reference to those difficulties and misap-
prehensions which commonly beset the

student when he commences. With this

object in view, the earlier part of the
subject has been dwelt on at length, and
geometrical and numerical illustrations of

the analysis have been introduced. The
Examples appended to each section are

mostly of an elementary description. The
work will, it is hoped, be found to con-
tain aU that is required by the upper
classes of schools and by the generality

of students at the Universities.

By EDWARD JOHN ROUTH, M.A.

Fellow and Assistant Tutor of St. Peter's

College, Cambridge.

Dynamics of a System
of Rigid Bodies.

With nvmerom Examples.

336 pp. (1860). Crown 8vo. cloth.

10s. M.

Contents : Chap. I. Of Moments of

Inertia.— II. D'Alembert's Principle.—
III. Motion about a Fixed Axis.—IV.
Motion in Two Dimensions.—V. Motion
of a Kigid Body in Three Dimensions.

—

VI. Motion of a Flexible String.—VII.
Motion of a System of Rigid Bodies.—
VIII. Of Impulsive Forces.—IX. Miscel-

laneous Examples.

The numerous Examples which will be
found at the end of each chapter have
been chiefly selected from the Examina-
tion Papers set in the University and
Colleges of Cambridge during the last few
years.

The

Cambridge Year Book
AND UNIVERSITY ALMANACK

For 1863.

Crown 8vo. 228 pp. price 25. Qd.

The specific features of this annual pub-
lication will be obvious at a glance, and
its value to teachers engaged in preparing
students for, and to parents who are send-
ing their sons to, the University, and to

the public generally, wDl be clear.

1. The whole mode of proceeding in
entering a student at the University and
at any particular College is stated.

2. The course of the studies as regulated
by the University examinations, the man-
ner of these examinations, and the specific

subjects and times for the year 1863, are

given.

3. A complete account of all Scholar-

ships and Exhibitions at the several Col-

leges, their value, and the means by which
they are gained.

4. A brief summary of all Graces of the
Senate, Degrees conferred during the year

1861, and University news generally are

given.
5. The Regulations for the Local Ex-

amination of those who are not members
of the University, to be held this year,

with the names of the books on which the
Examination will be based, and the date

on which the Examination will be held.

By N. M. FERRERS, M.A.

Fellow and Mathematical Lecturer of

Gonville and Caius College, Cambridge.

AN ELEMENTARY TREATISE ON

Trilinear Co-Ordinates
The Method of Reciprocal Folars,

and the Theory of Projections.

154 pp. (1861). Cr. 8vo. cl. 6s. U.

The object of the Author in writing

on this subject has mainly been to place

it on a basis altogether independent of the

ordinary Cartesian System, instead of re-

garding it as only a special form of abridged
Notation. A short chapter on Determi-
nants has been introduced.
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By J. C. SNOWBALL, M.A.

Late Fellow of St. John's Coll. Cambridge.

Plane and Spherical
Trigonometry.

With the Construction and Use of
Tables of Logarithms.

Ninth Edition. 240 pp. (1857).
Crown 8vo. Is. M,

In preparing a new edition, the proofs
of some of the more important propositions
have been rendered more strict and ge-
neral ; and a considerable addition of more
than Two hundred Examples, taken prin-
cipally from the questions in the Examina-
tions of Colleges and the University, has
been made to the collection of Examples
and Problems for practice.

By W. H. DREW, M.A.

Second Master of Blackheath School.

Geometrical Treatise
on Conic Sections.

With a copious Collection ofExamples.

Second Edition. Crown Svo. cloth.

45. U.
In this work the subject of Conic Sec-

tions has been placed before the student
in such a form that, it is hoped, after

mastering the elements of Euclid, he may
find it an easy and interesting continuation
of his geometrical studies. With a view
also of rendering the work a complete
Manual of what is required at the Uni-
versities, there have been either embodied
into the text, or inserted among the ex-
amples, every book work question, prob-
lem, and rider, which has been proposed
in the Cambridge examinations up to the
present time.

Solutions to the Pro-
blems in Drew's Co-
nic Sections.

Crown Svo. cloth. 4s. M.

Senate-House Mathe -

matical Problems.
With Solutions.

1848-51. By Ferrers and Jackson. Svo.
155. U.

1848-51. (Riders), By Jameson, Svo.
75. Qd.

1854. By "Walton and Mackenzie.
105. 6^.

1857. By Campion and Walton. Svo.
8s. M.

1860. By RouTH and Watson. Crown
Svo. 75. Qd.

The above books contain Problems and
Examples which ha-ve been set in the
Cambridge Senate-house Examinations at
various periods during the last twelve
years, together with Solutions of the same.
The Solutions are in all cases given by
the Examiners themselves or under their
sanction.

By m A. MORGAN, M.A.
Fellow of Jesus College, Cambridge.

A Collection of Mathe-
matical Problems and
Examples.

With Answers.

190 pp. (1858). Crown Svo. 6*. 6^.

This book contains a number of prob-
lems, chiefly elementary, in the Mathe-
matical subjects usually read at Cam-
bridge. They have been selected from
the papers set during late yeai's at Jesus
College. Very few of them are to be met
with in other collections, and by far the
larger number are due to some of the most
distinguished Mathematicians in the Uni-
versity.

Cambridge University
Examination Papers.
Crown Svo. 184 pp. 2s. Qd.

A Collection of all the Papers set at the
Examinations for the Degrees, the
various Triposes, and the Theological
Certificates in the University, with List
of Candidates Examined and of those
Approved, and an Index to the Subjects.
1860-61.



I

FOB SCHOOLS AND COLLEGES. 11

A Treatise on

Solid Geometry.

By PEECIVAL FROST, M.A.,

St. John's College, and

JOSEPH WOLSTENHOLME, M.A.,

Christ's Coll. Cambridge.

472 pp. 8vo. cloth. I85. 1863.

The authors have endeavoured to present
before students as comprehensive a view of
the subject as possible. Intending as they
have done to make the subject accessible,

at least in the earlier portion, to all classes

of students, they have endeavoured to ex-
plain fidly all the processes which are
most useful in dealing with ordinary theo-
rems and problems, thus directing the
student to the selection of methods which
are best adapted to the exigencies of each
problem. In the more difficult portions of
the subject, they have considered them-
selves to be addressing a higher class of
students ; there they have tried to lay
a good foundation on which to build, if

any reader should wish to pursue the
science beyond the limits to which the
work extends.

AN ELEMENTARY TREATISE ON

The Planetary Theory.

WITH A COLLECTION OF PROBLEMS.

By C. H. m CEEYNE, B.A.

Scholar of St. John's College, Cambridge.

148 pp. 1862. Cm. 8vo. cloth. Qs.Qd.

In this volume, an attempt has been
made to produce a Treatise on the Planetary
Theory, which being elementary in cha-
racter,' should be so far complete, as to

contain all that is usually required by
students in the University. A collection

of Problems has been added, taken chiefly

from Cambridge Examination papers of
the last twenty years.

By JOHN E. B. MAYOR, M.A.

Fellow and Classical Lecturer of St. John's
College, Cambridge.

1. Juvenal.
With English Notes.

464 pp. (1854). Crown 8vo. cloth.

105. 6^.

" A School edition of Juvenal, which,
for really ripe scholarship, extensive ac-
quaintance with Latin literature, and fa-

miliar knowledge of Continental criti-

cism, ancient and modern, is unsurpassed,
we do not sayamong English School-books,
but among English editions generally."

—

Edinburgh Review.

2. Cicero's

Second Philippic.

With English Notes,

168 pp. (1861). Fcp. 8vo. cloth. 5s.

The Text is that of Halm's 2nd edition,

(Leipzig, Weidmann, 1858), with some
corrections from Madvig's 4th Edition
(Copenhagen, 1858). Halm's Introduction
has been closely translated, with some
additions. His notes have been curtailed,

omitted, or enlarged, at discretion; pas-
sages to which he gives a bare reference,

are for the most part printed at length

;

for the Greek extracl^ an English version
has been substituted. A large body of
notes, chiefly grammatical and historical,

has been added from various sources. A
list of books useful to the student of

Cicero, a copious Argument, and an Index
to the introduction and notes, complete the
book.

By P. FROST, Jun., M.A.
Late Fellow of St. John's Coll. Cambridge.

Thucydides. Book VI.
With English Notes, Map and Index.

8vo. cloth. 75. 6^.

It has been attempted in this work to
facilitate the attainment of accuracy in

translation. With this end in view the
Text has been treated grammatically.



12 CAMBBIBGE CLASS BOOKS
By B. DRAKE, M.A.

Late Fellow of King's Coll. Cambridge.

1. Demosthenes on the
Cro^wn.

With English Notes.

Second Edition. To which is pre-

fixed -ZESCHINES AGAINST CtESI-

PHON. With English Notes.

287 pp. (1860). Fcap. 8vo. el. 5s.

The first edition of the late Mr. Drake's
edition of Demosthenes de Corona having
met with considerable acceptance in vari-

ous Schools, and a new edition being called

for, the Oration of ^schines against Ctesi-

phon, in accordance with the wishes of
many teachers, has been appended with
useful notes by a competent scholar.

2. -ffischyli Eumenides
With JEnglish Verse Translation,

Copious Introduction, and Notes.

8vo. 144. pp. (1853). 7s. 6^.

" Mr. Drake's ability as a critical Scho-
lar is known and admitted. In the edition

of the Eumenides before us we meet with
him also in the capacity of a Poet and
Historical Essayist. The translation is

flowing and melodious, elegant and scho-

larlike. The Greek Text is well printed :

the notes are clear and useful."

—

Guar-
dian.

By a MURIVALU, B.D.

Author of "History of Rome," &c,

Sallust.
With English Notes.

Second Edition. 172 pp. (1858).

Fcap. 8vo. 4s. M.
" This School edition of Sallust is pre-

cisely what the School edition of a Latin
author ought to be. No useless words
are spent in it, and no words that could

be of use are spared. The text has been
carefully collated with the best editions.

"With the work is given a full current of

extremely well-selected annotations."

—

The Examiner.

The " Catilina" and " Jugurtha" may
be had separately, price 2s. 6d. each*

bound in cloth.

By J. WRIGHT, M.A.
Head Master of Sutton Coldfield School.

1. Help to Latin
Grammar.

With Easy Exercises, and Vocabulary.

Crown 8vo. cloth. 4s. Qd.

Never was there a better aid offered

alike to teacher and scholar in that ardu-
ous pass. The style is at once familiar

and strikingly simple and lucid; and the
explanations precisely hit the difficulties,

and thoroughly explain them."—English
Journal of Education.

2. Hellenica.
A FIRST GREEK READING BOOK.

Second Edit. Fcap. 8vo. cl. 3s. Qd.

In the last twenty chapters of this

volume, Thucydides sketches the rise and
progress of the Athenian Empire in so
clear a style and in such simple language,
that the author doubts whether any easier

or more instructive passages can be
selected for the use of the pupil who is

commencing Greek.

3. The Seven Kings of

Rome.
A First Latin Beading Book.

Second Edit. Fcap. 8vo. cloth. 3s.

This work is intended to supply the
pupil with an easy Construing-book, which
may, at the same time, be made the
vehicle for instructing him in the rules of

grammar and principles of composition.
Here Livy tells his own pleasant stories

in his own pleasant words. Let Livy be
the master to teach a boy Latin, not some
English collector of sentences, and he will

not be found a dull one.

4. Vocabulary and Ex-
ercises on " The Seven
Kings of Rome."

Fcp. 8vo. cloth. 2s. Q>d.

*^* The Vocabulary and Exercises may
^ also be had bound up with " The

Seven Kings of Rome.^^ 5s. cloth.
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By EDWARD THRING, M.A.

Head Master of Uppingham School.

Elements of Grammar
Taught in English.

With Questions,

Third Edition. 136 pp. (1860).

Demy ISmo. 2s.

2. The Child's English
Grammar.

New Edition. 86 pp. (1859). Demy
18mo. 1*.

The Author's effort in these two books

has been to point out the broad, beaten,

every-day path, carefully avoiding digres-

sions into the byeways and eccentricities

of language. This Work took its rise

from questionings in National Schools,

and the whole of the first part is merely
the writing out in order the answers to

questions which have been used already

with success. The study of Grammar in

English has been much neglected, naj by
some put on one side as an impossibility.

There was perhaps much ground for this

opinion, in the medley of arbitrary rules

thrown before the student, which applied

indeed to a certain number of instances,

but would not work at all in many others,

as must always be the case when princi-

ples are not put forward in a language
full of ambiguities. The present work
does not, therefore, pretend to be a com-
pendium of idioms, or a philological trea-

tise, but a Grammar. Or in other words,

its intention is to teach the learner how to

speak and write correctly, and to under-

stand and explain the speech and writings

of others. Its success, not only in National

Schools, from practical work in which it

took its rise, but also in classical schools,

is full of encouragement.

3. School Songs.
A COLLECTION OF SONGS FOR

SCHOOLS.

AVITH THE MUSIC ARRANGED FOR
FOUR VOICES.

Edited by Rev. E. THRING and

H. RICCIUS.

Music Size. 76'. 6^.

By EDWARD TURING, M.A.

4. A First Latin Con-
struing Book.

104 pp. (1855). Fcap. 8vo. Is. U.
This Construing Book is drawn up on

the same sort of graduated scale as the
Author's English Grammar. Passages
out of the best Latin Poets are gradually
built up into their perfect shape. The
few words altered, or inserted as the pass-
ages go on, are printed in Italics. It is

hoped by this plan that the learner, whilst
acquiring the rudiments of language, may
store his mind with good poetry and a
good vocabulary.

By C. J. VAUGHAN, D.D.

Head Master of Harrow School.

St. Paul's Epistle

the Romans.
to

The Greek Text with English Notes.

Second Edition. Crown Svo. cloth.

(1861). 5s.

By dedicating this work to his elder
Pupils at Harrow, the Author hopes that
he sufficiently indicates what is and what
is not to be looked for in it. He desires

to record his impression, derived from the
experience of many years, that the Epis-
tles of the New Testament, no less than
the Gospels, are capable of furnishing
useful and solid instruction to the highest
classes of our Public Schools. If they are
taught accurately, not controversially;
positively, not negatively; authorita-
tively, yet not dogmatically ; taught with
close and constant reference to their literal

meaning, to the connexion of their parts,

to the sequence of their argument, as well
as to their moral and spiritual instruc-

tion ; they will interest, they wiU inform,
they will elevate ; they will inspire a re-

verence for Scripture never to be dis-

carded, they will awaken a desire to drink
more deeply of the Word of God, certain
hereafter to be gratified and fulfilled.
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By a J. VAVGHAK, D.D.

Notes for

Lectures on Confirmation.

"With Suitable Prayers.

4th Edition. 70 pp. (1862). Fcp.
8vo. \s. %d.

This work, originally prepared for the

use of Harrow School, is published in the

belief that it may assist the labours of

those who are engaged in preparing can-

didates for Confirmation, and who find it

difficult to lay their hand upon any one
book of suitable instruction at once suffi-

ciently full to furnish a synopsis of the

subject, and sufficiently elastic to give free

scope to the individual judgment in the

use of it. It will also be found a hand-
book for those who are being prepared, as

presenting in a compact form the very
points which a lecturer would wish his

hearers to remember.

2.

The Church Catechism Illus-

trated and Explained. By
ARTHUR RAMSAY, M.A.

ISino. cloth. 2&

Hand-Book to Butler's Ana-
logy. By C. A. SWAINSON,
M.A. 55 pp. (1856). Crown 8yo.

1*. U.

History of the Christian
Church during the First

Three Centuries, and the
Reformation in England.
By W. SIMPSON, M.A. Fourth

Edition. Fcp. 8vo. cloth. Zs, 6d.

5.

Analysis of Paley's Eviden-
ces of Christianity. By
CHARLES H. CROSSE, M.A.
115 pp. (1855). ISmo. 3*. 6cl.

FOETHCOMING BOOKS.

1.

An Elementary Treatise on
Natural Philosophy.
By WILLIAM THOMSON, LL.D.,
F.R.S., late Fellow of St. Peter's Coll.,

Cambridge, Professor of Natural Phi-
losophy in the University of Glasgow

;

and PETER GUTHRIE TAIT, M.A.,
late Fellow of St. Peter's College,
Cambridge, Professor of Natural Phi-
losophy in the University of Edin-
burgh. With numerous Illustrations.

[In the Presi.

The Narrative of Odysseus.
Homer's Odyssey, Books ix—xii. The
Greek Text with English Notes. For
Schools and CoUeges. By JOHN
E. B. MAYOR, M.A., Fellow and
Principal Classical Lecturer of St.

John's College, Cambridge.
{Nearly Ready.

3.

First Book of Alegbra. For
Schools. By J. C. W. ELLIS, M.A.,
and P. M. CLARKE, M.A., Sidney
Sussex College, Cambridge.

{^Preparing.

AristoteHs de Rhetorica.
With Notes and Introduction. By
E. M. COPE, M.A., FeUow and Assist-

ant Tutor of Trinity College, Cam-
bridge.

The New Testament in the
Original Greek. Text re\ised by
B. F. WESTCOTT, M.A., and F. J.

HORT, M.A., formerly Fellows of

Trinity College.
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CAMBEIDGE MANUALS

FOR THEOLOGhlCAL STTIDBHSTTS.

1. History of the Christian
Church during the Middle
Ages. By Archdeacon HARD-
WICK. Second Edition. 482 pp.

(1861). With Maps. Crown Svo.

cloth. 105. 6d.

This Volume claims to be regarded as

an integral and independent treatise on
the Mediaeval Church. The History com-
mences with the time of Gregory the Great,

to the year 1520,—the year wlien Luther,
having been extruded from those Churches
that adhered to the Communion of the
Pope, established a provisional form of
government and opened a fresh era in the
history of Europe.

2. History of the Christian
Church during the Refor-
mation. By Archdn. HAKD-
WICK. 459 pp. (1856). Crown
Svo. cloth. 10*. 6d.

This "Work forms a Sequel to the Au-
thor's Book on The Middle Ages. The
Author's wish has been to give the reader
a trustworthy version of those stirring

incidents which mark the Reformation
period.

3. History ofthe Book ofCom-
mon Prayer. With a Eationale

of its Offices. By FRANCIS
PROCTER, M.A. Fifth Edition.

464 pp. (1860). Crown Svo. cloth.

105. 6d,

In the course of the last twenty years

the whole question of liturgical knowledge

has been reopened with great learning and
accurate research, and it is mainly with
the view of epitomizing their extensive
publications, and correcting by their help
the errors and misconceptions which had
obtained currency, that the present
volume has been put together.

4. History of the Canon of
the New Testament during
the First Four Centuries.
By BROOKE FOSS WEST-
COTT, M.A. 594 pp. (1855).

Crown Svo. cloth. 12*. 6d.

The Author has endeavoured to connect
the history of the New Testament Canon
with the growth and consolidation of the
Church, and to point out the relation

existing between the amoimt of evidence
for the authenticity of its component parts

and the whole mass of Christian literature.

Such a method of inquiry will convey both
the truest notion of the connexion of the
written Word with the living Body of

Christ, and the surest conviction of its

divine authority.

6. Introduction to the Study
ofthe GOSPELS. ByBROOKE
FOSS WESTCOTT, M.A. 458

pp. (1860). Crown Svo. cloth.

105. 6d.

This book is intended to be an Intro-
duction to the Study of the Gospels. In
a subject which involves so vast a literature

much must have been overlooked ; but the
Author has made it a point at least to

study the researches of the great writers,

and consciously to neglect none.

This Series of Theological- Manuals has been published with

the aim of supplying Books concise, comprehensive, and accurate

;

convenient for the Student, and yet interesting to the general

reader.



Uniformly printed in 18mo.

with Vignette Titles by

T. Woolner, W. Holman
Hunt, &c.

Handsomely bound in ex-

tra cloth, 4s. 6d. Morocco
plain, 7s. 6d. Morocco ex-

tra, 105. 6d. each Volume.

1. THE GOLDEJS" TEEASUEY
OF THE BEST SONGS AND LYRICAL POEMS IN THE ENGLISH

LANGUAGE.
Selected and arranged, with Notes, by F. T. PALGBAVE.

Twelfth Thousand, with a Vignette by T. Woolner.
" There is no book in the English language which will make a more delightful

companion than this . . . which must not only be read, but possessed, in order to
be adequately valued."—Spectator.

2. THE childee:^'s gaeland.
FROM THE BEST POETS.

Selected and Arranged by COVENTEY PATMORE.
Fourth Thousand, with Vignette by T. Woolner.

"Mr. Patmore deserves our gratitude for ha-\dng searched through the wide field

of English poetry for these flowers which youth and age can equally enjoy, and
woven them into 'The Children's Garland.'"—London Review.

3. THE PILGEIM'S PEOGEESS.
By JOHN BUNYAN.

With Vignette by W. Holman Hunt.

Large paper copies,. crown 8vo. cloth, 7s. 6d., half morocco, 10s. 6d.

" A prettier and better edition and one more exactly suited for use as an elegant
and inexpensive Gift Book is not to be found,"—Examiner.

4. THE BOOK OE PEAISE.
FROM THE BEST ENGLISH HYMN WRITERS.

Selected and arranged by EOUNDELL PALMER.
Eighth Thousand, with Vignette by T, Woolner.

*' Comprehending nearly all that is excellent in the hymnology of the language.

.... In the details of editorial labours the most exquisite finish is manifest."

—

The
Freeman.

5. BACON'S ESSAYS AND COLOTJES OF GOOD
A^B EYIL.

With Notes and Glossarial Index, by W. ALDIS WEIGHT, M.A.,
Trinity College, Cambridge.

And a Vignette of Woolner's Statue of Lord Bacon.

Large Paper Copies, Crown 8vo. cloth, 7s. 6d.y half-morocco, 10s, 6d.

" Edited in a manner worthy of their merit and fame, as an English classic ought

to be edited."—Daily News.
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