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EDITOR S PREFACE.

THE publication of the present reprint of De Morgan s Ele

mentary Illustrations of the Differential and Integral Cal

culus forms, quite independently of its interest to professional

students of mathematics, an integral portion of the general educa

tional plan which the Open Court Publishing Company has been

systematically pursuing since its inception, which is the dissemi

nation among the public at large of sound views of science and of

an adequate and correct appreciation of the methods by which

truth generally is reached. Of these methods, mathematics, by
its simplicity, has always formed the type and ideal, and it is

nothing less than imperative that its ways of procedure, both in

the discovery of new truth and in the demonstration of the neces

sity and universality of old truth, should be laid at the foundation

of every philosophical education. The greatest achievements in

the history of thought Plato, Descartes, Kant are associated

with the recognition of this principle.

But it is precisely mathematics, and the pure sciences gener

ally, from which the general educated public and independent
students have been debarred, and into which they have only rarely

attained more than a very meagre insight. The reason of this is

twofold. In the first place, the ascendant and consecutive charac

ter of mathematical knowledge renders its results absolutely un

susceptible of presentation to persons who are unacquainted with

what has gone before, and so necessitates on the part of its devo

tees a thorough and patient exploration of the field from the very

beginning, as distinguished from those sciences which may, so to

speak, be begun at the end, and which are consequently cultivated

with the greatest zeal. The second reason is that, partly through
the exigencies of academic instruction, but mainly through the

martinet traditions of antiquity and the influence of mediaeval
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logic-mongers, the great bulk of the elementary text-books of

mathematics have unconsciously assumed a very repellent form,

something similar to what is termed in the theory of protective

mimicry in biology &quot;the terrifying form.&quot; And it is mainly to

this formidableness and touch-me-not character of exterior, con

cealing withal a harmless body, that the undue neglect of typical

mathematical studies is to be attributed.

To this class of books the present work forms a notable ex

ception. It was originally issued as numbers 135 and 140 of the

Library of Useful Knowledge (1832), and is usually bound up with

De Morgan s large Treatise on the Differential and Integral

Calculus (1842). Its style is fluent and familiar; the treatment

continuous and undogmatic. The main difficulties which encom

pass the early study of the Calculus are analysed and discussed in

connexion with practical and historical illustrations which in point

of simplicity and clearness leave little to be desired. No one who

will read the book through, pencil in hand, will rise from its peru

sal without a clear perception of the aim and the simpler funda

mental principles of the Calculus, or without finding that the pro-

founder study of the science in the more advanced and more

methodical treatises has been greatly facilitated.

The book has been reprinted substantially as it stood in its

original form ; but the typography has been greatly improved, and

in order to render the subject-matter more synoptic in form and

more capable of survey, the text has been re-paragraphed and a

great number of descriptive sub-headings have been introduced, a

list of which will be found in the Contents of the book. An index

also has been added.

Persons desirous of continuing their studies in this branch of

mathematics, will find at the end of the text a bibliography of the

principal English, French, and German works on the subject, as

well as of the main Collections of Examples. From the informa

tion there given, they may be able to select what will suit their

special needs.

THOMAS). MCCORMACK.

LA SALLE, 111., August, 1899.
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DIFFERENTIAL AND INTEGRAL
CALCULUS.

ELEMENTARY ILLUSTRATIONS.

rTvHE Differential and Integral Calculus, or, as it

JL was formerly called in this country [England],
the Doctrine of Fluxions, has always been supposed
to present remarkable obstacles to the beginner. It

is matter of common observation, that any one who
commences this study, even with the best elementary

works, finds himself in the dark as to the real meaning
of the processes which he learns, until, at a certain

stage of his progress, depending upon his capacity,

some accidental combination of his own ideas throws

light upon the subject. The reason of this may be, that

it is usual to introduce him at the same time to new

principles, processes, and symbols, thus preventing
his attention from being exclusively directed to one

new thing at a time. It is our belief that this should

be avoided ; and we propose, therefore, to try the ex

periment, whether by undertaking the solution of

some problems by common algebraical methods, with

out calling for the reception of more than one new

symbol at once, or lessening the immediate evidence

of each investigation by reference to general rules, the

study of more methodical treatises may not be some-
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what facilitated. We would not, nevertheless, that

the student should imagine we can remove all ob

stacles
;
we must introduce notions, the consideration

of which has not hitherto occupied his mind
;
and

shall therefore consider our object as gained, if we
can succeed in so placing the subject before him, that

two independent difficulties shall never occupy his

mind at once.

ON THE RATIO OR PROPORTION OF TWO MAGNITUDES.

The ratio or proportion of two magnitudes is best

conceived by expressing them in numbers of some
unit when they are commensurable

; or, when this is

not the case, the same may still be done as nearly as

we please by means of numbers. Thus, the ratio of

the diagonal of a square to its side is that of1/2 to 1,

which is very nearly that of 14142 to 10000, and is

certainly between this and that of 14143 to 10000.

Again, any ratio, whatever numbers express it, may
be the ratio of two magnitudes, each of which is as

small as we please ; by which we mean, that if we
take any given magnitude, however small, such as the

line A, we may find two other lines B and C, each

less than A, whose ratio shall be whatever we please.

Let the given ratio be that of the numbers m and n.

Then, P being a line, mP and nP are in the propor
tion of m to n

;
and it is evident, that let m, n, and A

be what they may, P can be so taken that mP shall be

less than A. This is only saying that P can be taken

less than the #z
th
part of A, which is obvious, since A,

however small it may be, has its tenth, its hundredth,

its thousandth part, etc., as certainly as if it were

larger. We are not, therefore, entitled to say that

because two magnitudes are diminished, their ratio is
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diminished
;

it is possible that B, which we will sup

pose to be at first a hundredth part of C, may, after

a diminution of both, be its tenth or thousandth, or

may still remain its hundredth, as the following ex

ample will show :

C 3600 1800 36 90

B 36 1 3 9

B=c B==c B==
oo i oo

Here the values of B and C in the second, third, and

fourth column are less than those in the first
;
never

theless, the ratio of B to C is less in the second col

umn than it was in the first, remains the same in the

third, and is greater in the fourth.

In estimating the approach to, or departure from

equality, which two magnitudes undergo in conse

quence of a change in their values, we must not look

at their differences, but at the proportions which those

differences bear to the whole magnitudes. For ex

ample, if a geometrical figure, two of whose sides are

3 and 4 inches now, be altered in dimensions, so that

the corresponding sides are 100 and 101 inches, they
are nearer to equality in the second case than in the

first ; because, though the difference is the same in

both, namely one inch, it is one third of the least side

in the first case, and only one hundredth in the sec

ond. This corresponds to the common usage, which

rejects quantities, not merely because they are small,

but because they are small in proportion to those of

which they are considered as parts. Thus, twenty
miles would be a material error in talking of a day s

journey, but would not be considered worth mention

ing in one of three months, and would be called to-
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tally insensible in stating the distance between the

earth and sun. More generally, if in the two quanti

ties x and x-}-a, an increase of m be given to x,

the two resulting quantities x -j- m and x -\-m-\- a are

nearer to equality as to their ratio than x and x-\-a,

though they continue the same as to their difference; for

x-\-a . a , x -\-m-\- a a ..*.
! =14-- and

.

= 1 -\ ;

of which
x x x-\- m x -\-m

is less than , and therefore 1 -\ is nearer
x-\-m x x-\-m

to unity than 1 -\ . In future, when we talk of an
OC ~

. .

approach towards equality, we mean that the ratio is

made more nearly equal to unity, not that the differ

ence is more nearly equal to nothing. The second

may follow from the first, but not necessarily; still

less does the first follow from the second.

ON THE RATIO OF MAGNITUDES THAT VANISH TOGETHER.

It is conceivable that two magnitudes should de

crease simultaneously,* so as to vanish or become

nothing, together. For example, let a point A move

on a circle towards a fixed point B. The arc AB will

then diminish, as also the chord AB, and by bringing

the point A sufficiently near to B, we may obtain an

arc and its chord, both of which shall be smaller than

a given line, however small this last may be. But

while the magnitudes diminish, we may not assume

either that their ratio increases, diminishes, or re

mains the same, for we have shown that a diminution

of two magnitudes is consistent with either of these.

* In introducing the notion of time, .ve consult only simplicity. It would

do equally well to write any number of successive values of the two quanti

ties, and place them in two columns.
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We must, therefore, look to each particular case for

the change, if any, which is made in the ratio by the

diminution of its terms.

Now two suppositions are possible in every in

crease or diminution of the ratio, as follows : Let M
and N be two quantities which we suppose in a state

of decrease. The first possible case is that the ratio

of M to N may decrease without limit, that is, M may
be a smaller fraction of N after a decrease than it was

before, and a still smaller after a further decrease,

and so on
;
in such a way, that there is no fraction so

small, to which
=^

shall not be equal or inferior, if the

decrease of M and N be carried sufficiently far. As
an instance, form two sets of numbers as in the ad

joining table :..,11
jjt _

20 400 8000 160000111 1
1 T T T 16

etc-

Ratio of M to Nl etc.

Here both M and N decrease at every step, but M
loses at each step a larger fraction of itself than N,
and their ratio continually diminishes. To show that

this decrease is without limit, observe that M is at

first equal to N, next it is one tenth, then one hun

dredth, then one thousandth of N, and so on
; by con

tinuing the values of M and N according to the same

law, we should arrive at a value of M which is a

smaller part of N than any which we choose to name
;

for example, -000003. The second value of M beyond
our table is only one millionth of the corresponding
value of N ; the ratio is therefore expressed by -000001
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which is less than -000003. In the same law of forma

tion, the ratio of N to M is also increased without limit.

The second possible case is that in which the ratio

of M to N, though it increases or decreases, does not

increase or decrease without limit, that is, continually

approaches to some ratio, which it never will exactly

reach, however far the diminution of M and N may
be carried. The following is an example :

iv/r
111111M l T T TO 15 21 28

etC

111111
4 T 16 25 36 49

6t

4 9 16 25 36 49
RatloofMtoNl - - - - - -etc.

The ratio here increases at each step, for -^ is greater94
than 1, -^-than-pr-, and so on. The difference between

o o

this case and the last is, that the ratio of M to N,

though perpetually increasing, does not increase with

out limit
;

it is never so great as 2, though it may be

brought as near to 2 as we please.

To show this, observe that in the successive values

of M, the denominator of the second is 1 -f- 2, that of

the third 1 -|- 2 -|- 3, and so on ; whence the denom
inator of the xth value of M is

+ 2 + 3+ .....

Therefore the xth value of M is f r-^- 9 and it is

x(

evident that the x^ value of N is
-g,

which gives the

M 2*2 2*
* value of the raho =--, or or
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.. X 2. If x be made sufficiently great, ^ may

be brought as near as we please to 1, since, being

1--
TJ,

it differs from 1 by .., which may be
OC j

-|~
X OC I

* X

made as small as we please. But as -r-, however
x -\- 1

great x may be, is always less than 1, r
is always

M x -{- i

less than 2. Therefore (1) -^- continually increases ;

(2) may be brought as near to 2 as we please ; (3) can

never be greater than 2. This is what we mean by
M

saying that -^=- is an increasing ratio, the limit of
N N

which is 2. Similarly of -=-:=-, which is the reciprocal

of
-^=-,

we may show (1) that it continually decreases
;

(2) that it can be brought as near as we please to ^ ;

(3) that it can never be less than i. This we express
N

by saying that^ is a decreasing ratio, whose limit

isf

ON THE RATIOS OF CONTINUOUSLY INCREASING OR

DECREASING QUANTITIES.

To the fractions here introduced, there are inter

mediate fractions, which we have not considered.

Thus, in the last instance, M passed from 1 to with

out any intermediate change. In geometry and me
chanics, it is necessary to consider quantities as

increasing or decreasing continuously ; that is, a mag
nitude does not pass from one value to another with

out passing through every intermediate value. Thus
if one point move towards another on a circle, both

the arc and its chord decrease continuously. Let AB
(Fig. 1) be an arc of a circle, the centre of which is
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O. Let A remain fixed, but let B, and with it the ra

dius OB, move towards A, the point B always remain

ing on the circle. At every position of B, suppose
the following figure. Draw AT touching the circle at

A, produce OB to meet AT in T, draw BM and BN
perpendicular and parallel to OA, and join BA. Bisect

the arc AB in C, and draw OC meeting the chord in

D and bisecting it. The right-angled triangles ODA
and BMA having a common angle, and also right

angles, are similar, as are also BOM and TEN. If

now we suppose B to move towards A, before B

Fig.
1

reaches A, we shall have the following results : The
arc and chord BA, the lines BM, MA, BT, TN, the

angles BOA, COA, MBA, and TBN, will diminish

without limit ;
that is, assign a line and an angle,

however small, B can be placed so near to A that the

lines and angles above alluded to shall be severally

less than the assigned line and angle. Again, OT di

minishes and OM increases, but neither without limit,

for the first is never less, nor the second greater, than

the radius. The angles OBM, MAB, and BTN, in

crease, but not without limit, each being always less

than the right angle, but capable of being made as
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near to it as we please, by bringing B sufficiently near

to A.

So much for the magnitudes which compose the

figure : we proceed to consider their ratios, premising
that the arc AB is greater than the chord AB, and

less than BN + NA. The triangle BMA being always
similar to ODA, their sides change always in the same

proportion ;
and the sides of the first decrease with

out limit, which is the case with only one side of the

second. And since OA and OD differ by DC, which

diminishes without limit as compared with OA, the

ratio OD -=- OA is an increasing ratio whose limit is 1.

But OD -T- OA=BM -7- BA. We can therefore bring
B so near to A that BM and BA shall differ by as

small a fraction of either of them as we please.

To illustrate this result from the trigonometrical

tables, observe that if the radius OA be the linear

unit, and /BOA= 0, BM and BA are respectively

sine and 2sin|0. Let (9=1; then sin0= -0174524

and 2sin0= -0174530; whence 2sin J0-j-sin 6=
1 00003 very nearly, so that BM differs from BA by
less than four of its own hundred-thousandth parts.

If /BOA= 4
,
the same ratio is 1-0000002, differing

from unity by less than the hundredth part of the

difference in the last example.

Again, since DA diminishes continually and with

out limit, which is not the case either with OD or

OA, the ratios OD -~- DA and OA-r- DA increase with

out limit. These are respectively equal to BM -4- MA
and BA -5- MA ;

whence it appears that, let a number
be ever so great, B can be brought so near to A, that

BM and BA shall each contain MA more times than

there are units in that number. Thus if / BOA= 1,
BM-j-MA= 114-589 and BA -r- MA= 114-593 very
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nearly ; that is, BM and BA both contain MA
more than 114 times. If /BOA= 4

,
BM-r-MA=

1718-8732, and BA~ MA= 1718 -8375 very nearly;
or BM and BA both contain MA more than 1718

times.

No difficulty can arise in conceiving this result, if

the student recollect that the degree of greatness or

smallness of two magnitudes determines nothing as

to their ratio
; since every quantity N, however small,

can be divided into as many parts as we please, and

has therefore another small quantity which is its mil-

lionth or hundred-millionth part, as certainly as if it

had been greater. There is another instance in the

line TN, which, since TBN is similar to BOM, de

creases continually with respect to TB, in the same

manner as does BM with respect to OB.

The arc BA always lies between BA and BN-j-NA,

or BM -j- MA ;
hence

chord BA lies between 1 and

BM MA BM
BA BA

But -~-r- has been shown to approachBA MA
to decrease withoutcontinually towards 1, and

arcBA sjr̂

limit
;
hence -, T^FTT continually approaches towards

chord r&amp;gt;A
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1. If /BOA-:I,r=- 0174533 --0174530=
chord BA

1-00002, very nearly. If ,/BOA= 4
,

it is less than

1-0000001.

We now proceed to illustrate the various phrases

which have been used in enunciating these and sim

ilar propositions.

THE NOTION OF INFINITELY SMALL QUANTITIES.

It appears that it is possible for two quantities m
and m -}- n to decrease together in such a way, that n

continually decreases with respect to m, that is, be

comes a less and less part of m, so that also de-
m

creases when n and m decrease. Leibnitz,* in intro

ducing the Differential Calculus, presumed that in

such a case, n might be taken so small as to be utterly

inconsiderable when compared with m, so that m-\- n

might be put for m, or vice versa, without any error at

all. In this case he used the phrase that n is infinitely

small with respect to m.

The following example will illustrate this term.

Since (a -f /fc)

2 == 2
-f 2 a h -j- /*

2
,

it appears that if a be

increased by h, a2 is increased by Zah-\-/i
2

. But if h

be taken very small, h* is very small with respect to

//, for since \\h\\h\ffi, as many times as 1 contains

h, so many times does h contain h*
;
so that by taking

* Leibnitz was a native of Leipsic, and died in 1716, aged 70. His dispute
with Newton, or rather with the English mathematicians in general, about

the invention of Fluxions, and the virulence with which it was carried on,

are well known. The decision of modern times appears to be that both New
ton and Leibnitz were independent inventors of this method. It has, perhaps,
not been sufficiently remarked how nearly several of their predecessors ap
proached the same ground ; and it is a question worthy of discussion, whether
either Newton or Leibnitz might not have found broader hints in writings
accessible to both, than the latter was ever asserted to have received from
the former.
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h sufficiently small, h may be made to be as many
times W as we please. Hence, in the words of Leib

nitz, if h be taken infinitely small, h* is infinitely small

with respect to h, and therefore 2ah-\-/fi is the same

as 2 ah; or if a be increased by an infinitely small

quantity h, a1 is increased by another infinitely small

quantity 2 ah, which is to h in the proportion of 2 a

to 1.

In this reasoning there is evidently an absolute

error
;
for it is impossible that h can be so small, that

Zah+ W and 2ah shall be the same. The word small

itself has no precise meaning ; though the word smaller,

or less, as applied in comparing one of two magnitudes
with another, is perfectly intelligible. Nothing is

either small or great in itself, these terms only imply

ing a relation to some other magnitude of the same

kind, and even then varying their meaning with the

subject in talking of which the magnitude occurs, so

that both terms may be applied to the same magni
tude : thus a large field is a very small part of the

earth. Even in such cases there is no natural point

at which smallness or greatness commences. The

thousandth part of an inch may be called a small dis

tance, a mile moderate, and a thousand leagues great,

but no one can fix, even for himself, the precise mean

between any of these two, at which the one quality

ceases and the other begins. These terms are not

therefore a fit subject for mathematical discussion,

until some more precise sense can be given to them,

which shall prevent the danger of carrying away with

the words, some of the confusion attending their use

in ordinary language. It has been usual to say that

when h decreases from any given value towards noth

ing, h* will become small as compared with h, because,
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let a number be ever so great, h will, before it be

comes nothing, contain ft2 more than that number of

times. Here all dispute about a standard of smallness

isavoided, because, be the standard whatever it may,
the proportion of h2 to h may be brought under it. It

is indifferent whether the thousandth, ten-thousandth,

or hundred-millionth part of a quantity is to be con

sidered small enough to be rejected by the side of the

whole, for let h be^j^ or
iw&amp;gt;
^

&amp;gt;m

of the

unit, and h will contain A?, 1000, 10,000, or 100,000,000
of times.

The proposition, therefore, that h can be taken so

small that 2ah-\-h? and 2aA are rigorously equal,

though not true, and therefore entailing error upon
all its subsequent consequences, yet is of this charac

ter, that, by taking h sufficiently small, all errors may
be made as small as we please. The desire of com

bining simplicity with the appearance of rigorous

demonstration, probably introduced the notion of in

finitely small quantities; which was further estab

lished by observing that their careful use never led to

any error. The method of stating the above-mentioned

proposition in strict and rational terms is as follows :

If a be increased by h, a2 is increased by 2 a h -\- h* ,

which, whatever may be the value of h, is to h in the

proportion of 2a-\-h to 1. The smaller h is made,
the more near does this proportion diminish towards
that of 2 a to 1, to which it may be made to approach
within any quantity, if it be allowable to take h as

small as we please. Hence the ratio, increment of &amp;lt;P-

increment of a, is a decreasing ratio, whose limit is 2 a.

In further illustration of the language of Leibnitz,
we observe, that according to his phraseology, if AB
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be an infinitely small arc, the chord and arc AB are

equal, or the circle is a polygon of an infinite num
ber of infinitely small rectilinear sides. This should

be considered as an abbreviation of the proposition

proved (page 10), and of the following: If a polygon
be inscribed in a circle, the greater the number of its

sides, and the smaller their lengths, the more nearly

will the perimeters of the polygon and circle be equal
to one another; and further, if any straight line be

given, however small, the difference between the pe
rimeters of the polygon and circle may be made less

than that line, by sufficient increase of the number of

sides and diminution of their lengths. Again, it would

be said (Fig. 1) that if AB be infinitely small, MA is

infinitely less than BM. What we have proved is,

that MA may be made as small a part of BM as we

please, by sufficiently diminishing the arc BA.

ON FUNCTIONS.

An algebraical expression which contains x in any

way, is called a function of x. Such are x2
-j- a

2
,

,
sin2#. An expression may be a

t

a x
function of more quantities than one, but it is usual

only to name those quantities of which it is necessary

to consider a change in the value. Thus if in x* -\- a*

x only is considered as changing its value, this is

called a function of x
;

if x and a both change, it is

called a function of x and a. Quantities which change
their values during a process, are called variables, and

those which remain the same, constants
;
and variables

which we change at pleasure are called independent,

while those whose changes necessarily follow from
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the changes of others are called dependent. Thus in

Fig. 1, the length of the radius OB is a constant, the

arc AB is the independent variable, while BM, MA,
the chord AB, etc., are dependent. And, as in alge

bra we reason on numbers by means of general sym
bols, each of which may afterwards be particularised

as standing for any number we please, unless specially

prevented by the conditions of the problem, so, in

treating of functions, we use general symbols, which

may, under the restrictions of the problem, stand for

any function whatever. The symbols used are the let

ters F,/, &amp;lt;,
&amp;lt;p, ip ; cp(x] and $ (#), or

&amp;lt;px
and ipx, may

represent any functions of x, just as x may represent

any number. Here it must be borne in mind that cp

and ip do not represent numbers which multiply x, but

are the abbreviated directions to perform certain opera

tions with x and constant quantities. Thus, if
&amp;lt;px

=
x -\- x2

,
&amp;lt;p

is equivalent to a direction to add x to its

square, and the whole tpx stands for the result of this

operation. Thus, in this case, &amp;lt;p(l)
= 2; ^&amp;gt;(2) 6;

(pa= a-\-a?; &amp;lt;p(x-\- h}= x-{-h-}- (x-\- h^ ; &amp;lt;psin-#
=

sin x -f- (sin x)
2

. It may be easily conceived that this

notion is useless, unless there are propositions which

are generally true of all functions, and which may be

made the foundation of general reasoning.

INFINITE SERIES.

To exercise the student in this notation, we pro
ceed to explain one of these functions which is of

most extensive application and is known by the name
of Taylor s Theorem. If in cpx, any function of x, the

value of x be increased by h, or x -{- h be substituted

instead of x, the result is denoted by (p(x-\-h}. It
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will generally* happen that this is either greater or

less than
&amp;lt;px,

and h is called the increment of x, and

cp(x-\-h} cpx is called the increment of cpx, which is

negative when cp(x+ fy&amp;lt;(px.
It may be proved

that q)(x-}-h} can generally be expanded in a series

of the form

&amp;lt;px-\-ph + qh*-\-rh
l
-\- etc. ,

ad infinitum,

which contains none but whole and positive powers
of h. It will happen, however, in many functions,

that one or more values can be given to x for which

it is impossible to expand f(x -\- h) without introdu

cing negative or fractional powers. These cases are

considered by themselves, and the values of x which

produce them are called singular values.

As the notion of a series which has no end of its

terms, may be new to the student, we will now pro

ceed to show that there may be series so constructed,

that the addition of any number of their terms, how
ever great, will always give a result less than some

determinate quantity. Take the series

l+x+ x*-\-x*-\-x*+ etc.,

in which x is supposed to be less than unity. The
first two terms of this series may be obtained by di

viding 1 x* by 1 x] the first three by dividing

1 x* by 1 x
;
and the first n terms by dividing

1 x&quot; by 1 x. If or be less than unity, its succes

sive powers decrease without limit ;f that is, there is

*This word is used in making assertions which are for the most part

true, but admit of exceptions, few in number when compared with the other

cases. Thus it generally happens that x% IO.T -f 40 is greater than 15, with

the exception only of the cas where x= $. It is generally true that a line

which meets a circle in a given point meets it again, with the exception only

of the tangent.

tThis may be proved by means of the proposition established in theS/a&amp;gt;

ofMathematics (Chicago : The Open Court Publishing Co., Reprint Edition),
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no quantity so small, that a power of x cannot be

found which shall be smaller. Hence by taking n

1 xn ^ %n
sufficiently great, or may be

JL X JL X i. X

brought as near to as we please, than which,
x xn

however, it must always be less, since can never

entirely vanish, whatever value n may have, and there

fore there is always something subtracted from
^

.

It follows, nevertheless, that 1 -f x+ x* + etc.
,

if we
are at liberty to take as many terms as we please, can

be brought as near as we please to = , and in this

sense we say that

= l-f-^-f *2 -{-**-{- etc.
,
ad infinitum.

CONVERGENT AND DIVERGENT SERIES.

A series is said to be convergent when the sum of

its terms tends towards some limit
;
that is, when, by

taking any number of terms, however great, we shall

never exceed some certain quantity. On the other

hand, a series is said to be divergent when the sum of

a number of terms may be made to surpass any quan

tity, however great. Thus of the two series,

and

1+2 + 4 + 8 + etc.

the first is convergent, by what has been shown, and
the second is evidently divergent. A series cannot be

convergent, unless its separate terms decrease, so as,

page 247. For ~X is formed (if m be less than ) by dividing~ into n

parts, and taking away n m of them.
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at last, to become less than any given quantity. And
the terms of a series may at first increase and after

wards decrease, being apparently divergent for a finite

number of terms, and convergent afterwards. It will

only be necessary to consider the latter part of the

series.

Let the following series consist of terms decreas

ing without limit :

which may be put under the form

the same change of form may be made, beginning
from any term of the series, thus :

k+ /+ m+ etc. =* (1 + L +
*

.L
_|_ etc.).

We have introduced the new terms -, -y-, etc., or the
a b

ratios which the several terms of the original series

bear to those immediately preceding. It may be shown

(i) that if the terms of the series
, , , etc., come

a b c

at last to be less than unity, and afterwards either

continue to approximate to a limit which is less than

unity, or decrease without limit, the series a-\-b-\-

&amp;lt;r-j-etc.,
is convergent; (2) if the limit of the terms

, , etc., is either greater than unity, or if they in

crease without limit, the series is divergent.

(1#). Let be the first which is less than unity,
W?

and let the succeeding ratios
, etc., decrease, either

/ m n
with or without limit, so that

&amp;gt; &amp;gt; ,
etc.

;

k I m
whence it follows, that of the two series,
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i + Tj +m + etc
-&amp;gt;

the first is greater than the second. But since is

less than unity, the first can never surpass k X -
r,

& ^

or
,
and is convergent ;

the second is therefore
K /

convergent. But the second is no other than k + /-f

m -j- etc. ; therefore the series a -f- b -\- c -j- etc., is con

vergent from the term k.

(1 .)
Let be less than unity, and let the succes-

K
I m

sive ratios
, , etc., increase, never surpassing a

limit A, which is less than unity. Hence of the two

series,

*(!+ A + A A -|- A A A -f etc.),

H _L
^

J_
^ m

_L
^ m

k k I k I m
the first is the greater. But since A is less than unity,

the first is convergent; whence, as before, a-\-b-\-

r-|-etc., converges from the term k.

(2) The second theorem on the divergence of series

we leave to the student s consideration, as it is not

immediately connected with our object.

TAYLOR S THEOREM. DERIVED FUNCTIONS.

We now proceed to the series

ph + qh* + rW + -r^4 -f etc.,

in which we are at liberty to suppose h as small as

we please. The successive ratios of the terms to those

-4 -- -1- etc^&quot;
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,. L , a . rh* r .

immediately preceding are y- or ft, or h,
pit p qi? q

TTT or h, etc. If, then, the terms --, , , etc.,filr-T p q r

are always less than a finite limit A, or become so after

a definite number of terms, h, h, etc., will always
P &amp;lt;1

be, or will at length become, less than Aft. And since h

may be what we please, it may be so chosen that Aft

shall be less than unity, for which h must be less than

-r-. In this case, by theorem (1), the series is con-A
vergent ;

it follows, therefore, that a value of h can

always be found so small that ph-\- qlP -f^8 + etc.,

shall be convergent, at least unless the coefficients

p, q, r, etc., be such that the ratio of any one to the

preceding increases without limit, as we take more

distant terms of the series. This never happens in

the developments which we shall be required to con

sider in the Differential Calculus.

We now return to
&amp;lt;p(x+ /*),

which we have as

serted (page 16) can be expanded (with the exception
of some particular values of #) in a series of the form

q)X-\-ph-\- qh* -f- etc. The following are some in

stances of this development derived from the Differ

ential Calculus, most of which are also to be found in

treatises on algebra :

7,2 JA
(x +k)=x +nxM-lft+n(nl)x-* -fn(nl) (w 2)**-* etc.

2 2.O
2 JA

a*+*=*a* +kaxh* +&a* + &a* etc.
2 2. o

1 1 7*
2 2 ft

3

sm(x+ft)=sinx + cosxft sin* cos x etc.
6 a.o

Here k is the Naperian or hyperbolic logarithm of a; that is, the com
mon logarithm of a divided by .434294482.

tin the last two series the terms are positive and negative in pairs.
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A1 h*
cos(x+h)=cosx sinxTt cos* - + sin x- etc.

a )

It appears, then, that the development of cp(x-\-h)

consists of certain functions of x, the first of which is

cpx itself, and the remainder of which are multiplied
h? h* /z

4

by h, -n-j 17 Q-, 3-Q-7 and so on. It is usual to denote
_ . o Zi. _&amp;gt;. 4

the coefficients of these divided powers of h by cp x,

qj x, qj&quot;x,* etc., where cp , cp&quot;, etc., are merely func

tional symbols, as is cp itself
;
but it must be recol

lected that cp x, cp&quot;x, etc., are rarely, if ever, employed
&

to signify anything except the coefficients of h, -^-,

etc., in the development of (p(x-\-h). Hence this de

velopment is usually expressed as follows :

p(*+ A)= 9&amp;gt;*+ qfxh+&amp;lt;p&quot;x ^ + &amp;lt;p?&quot;x ^ + etc.

Thus, when cpx= xn
, (p x= nxn~l

, gj&quot;x
= n(n 1)

xn~2
, etc.; when ^^= sin^, cp x= cosxy cp&quot;x

=
sin^, etc. In the first case q) (x-}-?i}= n(x-[-hy-

1
,

cp \x -\- //)
= #(# 1

) (x -j- /z)

n~2
,

and in the second

&amp;lt;p (x H- ^)= cos (x + /), cp&quot;(x+ h}= sin(^r -f h}.

The following relation exists between cpx, cp x,

cp&quot;x,
etc. In the same manner as cp x is the coefficient

of h in the development of cp(x-\-Ji}, so qj x is the co

efficient of h in the development of cp (x+ ^)&amp;gt;
and

&amp;lt;/&quot;.# is the coefficient of h in the development of
cp&quot;

(x-\- /); &amp;lt;p

iv# is the coefficient of ^ in the development
of

cp&quot; (x -f- ^), and so on.

The proof of this is equivalent to Taylor s Theorem

already alluded to (page 15); and the fact may be

verified in the examples already given. When cpx
= a*,

&amp;lt;p

x= ka*, and cp
r

(x -{- %}= & a*+A= k(a*-\-ka*h

-fete.). The coefficient of h is here k?ax
, which is the

* Called derivedfunctions or derivatives. Ed.
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same as
cp&quot;x. (See the second example of the pre

ceding table.) Again, &amp;lt;ft
(x-\- h}=&ax+h=& (a* -\-

ka*h-\- etc.), in which the coefficient of h is k*ax
, the

same as cp &quot;x. Again, if cpx= \ogx, cp
fx= ,

and
1 1 * u

cp (x -{- h)= - -f = = -f- etc - as appears byx -{- n x x
^

common division. Here the coefficient of h is
j,

which is the same as
cp&quot;x

in the third example. Also

-f- Ji\= r-5 = (x 4- /^)~
2

,
which by the

Binomial Theorem is (a-
2 2x~s

/i -f etc.). The
2

coefficient of h is 2x~* or
^,

which is cp &quot;x in the

same example.

DIFFERENTIAL COEFFICIENTS.

It appears, then, that if we are able to obtain the

coefficient of h in the development of any function

whatever of x -(- h, we can obtain all the other coeffi

cients, since we can thus deduce cp x from cpx, cp&quot;x

from cp x, and so on. It is usual to call cp x the first

differential coefficient of cpx, cp&quot;x
the second differen

tial coefficient of cpx, or the first differential coefficient

of cp x; cp &quot;x the third differential coefficient of cpx,

or the second of cp x, or the first of
cp&quot;x ;

and so on.*

The name is derived from a method of obtaining cp x,

etc., which we now proceed to explain.

Let there be any function of x, which we call cpx,

in which x is increased by an increment h
;
the func

tion then becomes

h2
/I
B

&amp;lt;px-\- cp x h -f- cp&quot;x

-
-f- cp &quot;x

--
-f etc.

*The first, second, third, etc., differential coefficients, as thus obtained,

are also called the first, second, third, etc., derivatives. Ed.
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The original value cpx is increased by the increment

h? h*

cp x h + cp&quot;x -^ + &amp;lt;p&quot;

x
j-g -I- etc.;

whence (h being the increment of x)

increment of q)x h h*
v-

, f
=

(p x-\-cp&quot;x -5- -f cp *o-o- + etc.,
increment of x 2 2.3

which is an expression for the ratio which the incre

ment of a function bears to the increment of its vari

able. It consists of two parts. The one, (p x, into

which h does not enter, depends on x only ;
the re

mainder is a series, every term of which is multiplied

by some power of h, and which therefore diminishes

as h diminishes, and may be made as sma. l as we

please by making h sufficiently small.

To make this last assertion clear, observe that all

the ratio, except its first term cp x, may be written as

follows :

h (9&quot;x
1 + &amp;lt;?

&quot;*
-A. + etc.);

the second factor of which (page 19) is a convergent

series whenever h is taken less than -r-, where A is
A

the limit towards which we approximate by taking

the coefficients
cp&quot;x X -o-,

&amp;lt;p
&quot;xX IT-K^ etc., and form

ing the ratio of each to the one immediately preced

ing. This limit, as has been observed, is finite in

every series which we have occasion to use
;
and

therefore a value for h can be chosen so small, that

for it the series in the last-named formula is conver

gent ;
still more will it be so for every smaller value

of h. Let the series be called P. If P be a finite quan
tity, which decreases when h decreases, Ph can be

made as small as we please by sufficiently diminishing
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h
;
whence (p x -f- P^ can be brought as near as we

please to cp x. Hence the ratio of the increments of

cpx and x, produced by changing x into x-\- h, though
never equal to (p x, approaches towards it as h is di

minished, and may be brought as near as we please

to it, by sufficiently diminishing h. Therefore to find

the coefficient of h in the development of (p(x-\-K),

find
&amp;lt;p(x-{- h} &amp;lt;px,

divide it by h, and find the limit

towards which it tends as k is diminished.

In any series such as

a+ bh + cft -{-# + /#+!+ w/**+2+ etc.

which is such that some given value of h will make it

convergent, it may be shown that h can be taken so

small that any one term shall contain all the succeed

ing ones as often as we please. Take any one term,

as khn
. It is evident that, be h what it may,

khH \lh +* + mh +*-\- etc., :: :M-f-#+ etc.,

the last term of which is /^(/-f-w^-j-etc.). By rea

soning similar to that in the last paragraph, we can

show that this may be made as small as we please,

since one factor is a series which is always finite when

h is less than
-^-,

and the other factor h can be made
A.

as small as we please. Hence, since k is a given

quantity, independent of h, and which therefore re

mains the same during all the changes of h, the series

h (/_j_ m h _|_ etc. ) can be made as small a part of k as

we please, since the first diminishes without limit,

and the second remains the same. By the proportion

above established, it follows then that lhn+l -\- mh n+&amp;lt;*

-fete., can be made as small a part as we please of

khn
. It follows, therefore, that if, instead of the full

development of
&amp;lt;p(x-\~A),

we use only its two first
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terms cpx -\-qfxh, the error thereby introduced may,

by taking h sufficiently small, be made as small a por

tion as we please of the small term cp xh.

THE NOTATION OF THE DIFFERENTIAL CALCULUS.

The first step usually made in the Differential Cal

culus is the determination of cp x for all possible val

ues of cpx, and the construction of general rules for

that purpose. Without entering into these we pro

ceed to explain the notation which is used, and to ap

ply the principles already established to the solution

of some of those problems which are the peculiar

province of the Differential Calculus.

When any quantity is increased by an increment,

which, consistently with the conditions of the prob

lem, may be supposed as small as we please, this in

crement is denoted, not by a separate letter, but by

prefixing the letter d, either followed by a full stop or

not, to that already used to signify the quantity. For

example, the increment of x is denoted under these

circumstances by dx
;
that of cpx by d.cpx; that of

xn
by d.xn

. If instead of an increment a decrement

be used, the sign of dx, etc., must be changed in all

expressions which have been obtained on the suppo
sition of an increment

;
and if an increment obtained

by calculation proves to be negative, it is a sign that

a quantity which we imagined was increased by our

previous changes, was in fact diminished. Thus, if

x becomes x -f dx, x2 becomes X* -f d.x
2

. But this is

also (x+dx}2 or x2 + 2x dx+ (dx}
2

;
whence d.x2=

2x dx-\- (dx]
2

. Care must be taken not to confound

d.x1
,
the increment of x2

,
with (dx}

2
, or, as it is often

written, dx2
, the square of the increment of x. Again,
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if x becomes x-\-dx. becomes --\-d. and the
x xx

,1.1 1 dx . .

change of is-;
--- or--^---

; showing
x x dx x *

that an increment of x produces a decrement in .

oc

It must not be imagined that because x occurs in

the symbol dx, the value of the latter in any way de

pends upon that of the former : both the first value of

x, and the quantity by which it is made to differ from

its first value, are at our pleasure, and the letter &amp;lt;/must

merely be regarded as an abbreviation of the words

&quot;difference of.&quot;
In the first example, if we divide

both sides of the resulting equation by dx, we have
d.x*
- =2x-\- dx. The smaller dx is supposed to be,
ct oc

the more nearly will this equation assume the form
d.x&quot;

2

=2x, and the ratio of 2 x to 1 is the limit of the
dx
ratio of the increment of x* to that of x\ to which

this ratio may be made to approximate as nearly as

we please, but which it can never actually reach. In

the Differential Calculus, the limit of the ratio only is

retained, to the exclusion of the rest, which may be

explained in either of the two following ways :

d.x*
(1) The fraction - may be considered as stand-

(IX

ing, not for any value which it can actually have as

long as dx has a real value, but for the limit of all

those values which it assumes while dx diminishes.

d x^
In this sense the equation -^

=2x is strictly true.

But here it must be observed that the algebraical

meaning of the sign of division is altered, in such a

way that it is no longer allowable to use the numera

tor and denominator separately, or even at all to con-
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dy
sider them as quantities. If -7 stands, not for the

ratio of two quantities, but for the limit of that ratio,

which cannot be obtained by taking any real value of

dy
dx, however small, the whole

-^- may, by convention,
(T OC

have a meaning, but the separate parts dy and dx
have none, and can no more be considered as sep-

dy
arate quantities whose ratio is -~

t
than the two loops

of the figure 8 can be considered as separate numbers

whose sum is eight. This would be productive of no

great inconvenience if it were never required to sep
arate the two

;
but since all books on the Differential

Calculus and its applications are full of examples in

which deductions equivalent to assuming dy=%xdx
dy

are drawn from such an equation as - 2x, it be

comes necessary that the first should be explained, in

dependently of the meaning first given to the second.

It may be said, indeed, that if y= x*
9 it follows that

dy
~=2x-}-dx, in which, if we make dx= Q, the re-
**

dy
suit is 2x. But if dx= Q, dy also =0, and this

ax
Q

equation should be written =2x, as is actually done

in some treatises on the Differential Calculus,* to the

great confusion of the learner. Passing over the diffi-

cultiesf of the fraction
-^-,

still the former objection

recurs, that the equation dy= 2xdx cannot be used

*This practice was far more common in the early part of the century
than now, and was due to the precedent of Euler (1755). For the sense in

which Euler s view was correct, see the Encyclopedia Britannica, art. Infin
itesimal Calculus, Vol. XII, p. 14, 2nd column. Ed.

t See Study of Mathematics (Reprint Edition, Chicago : The Open Court

Publishing Co., 1898), page 126.
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(and it is used even by those who adopt this explana

tion) without supposing that 0, which merely implies

an absence of all magnitude, can be used in different

senses, so that one may be contained in another a

certain number of times. This, even if it can be con

sidered as intelligible, is a notion of much too refined

a nature for a beginner.

(2) The presence of the letter d is an indication,

not only of an increment, but of an increment which

we are at liberty to suppose as small as we please.

The processes of the Differential Calculus are intended

to deduce relations, not between the ratios of different

increments, but between the limits to which those ra

tios approximate, when the increments are decreased.

And it may be true of some parts of an equation, that

though the taking of them away would alter the rela

tion between dy and dx, it would not alter the limit

towards which their ratio approximates, when dx

and dy are diminished. For example, dy 2xdx-\-

(dx)*. If #= 4 and &amp;lt;/*= -01, then #=-0801 and

^=8-01. If &amp;lt;**=-0001, ^=-00080001 and ^ =dx dx
8-0001. The limit of this ratio, to which we shall

come still nearer by making dx still smaller, is 8. The
term (dx)*, though its presence affects the value of dy

dy
and the ratio ~, does not affect the limit of the latter,

dy
dx

for in
-J-

or 2x -j- dx, the latter term dx, which arose
dx

from the term (dx)*, diminishes continually and with

out limit. If, then, we throw away the term (dfc)
2

,

the consequence is that, make dx what we may, we
never obtain dy as it would be if correctly deduced

from the equation y x*, but we obtain the limit of

the ratio of dy to dx. If we throw away all powers of
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dx above the first, and use the equations so obtained,

all ratios formed from these last, or their consequences,
are themselves the limiting ratios of which we are in

search. The equations which we thus use are not abso

lutely true in any case, but may be brought as near as we

please to the truth, by making dy and dx sufficiently

small. If the student at first, instead of using dy=
Zxdx, were to write it thus, dy 2x dx -{- etc. , the etc.

would remind him that there are other terms
; neces

sary, if the value of dy corresponding to any value of

dx is to be obtained
; unnecessary, if the limit of the

ratio of dy to dx is all that is required.

We must adopt the first of these explanations when

dy and dx appear in a fraction, and the second when

they are on opposite sides of an equation.

ALGEBRAICAL GEOMETRY.

If two straight lines be drawn at right angles to

each other, dividing the whole of their plane into four

parts, one lying in each right angle, the situation

of any point is determined when we know, (1) in

which angle it lies, and (2) its perpendicular distances

from the two right lines. Thus (Fig. 2) the point P

lying in the angle AOB, is known when PM and PN,
or when OM and PM are known

; for, though there

is an infinite number of points whose distance from

OA only is the same as that of P, and an infinite num
ber of others, whose distance from OB is the same as

that of P, there is no other point whose distances

from both lines are the same as those of P. The line

OA is called the axis of x, because it is usual to de

note any variable distance measured on or parallel to

OA by the letter x. For a similar reason, OB is called
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the axis of y. The co-ordinates* or perpendicular dis

tances of a point P which is supposed to vary its po

sition, are thus denoted by x and jy; hence OM or PN
is x, and PM or ON is y. Let a linear unit be chosen,

so that any number may be represented by a straight

line. Let the point M, setting out from O, move in

the direction OA, always carrying with it the indef

initely extended line MP perpendicular to OA. While

this goes on, let P move upon the line MP in such a

way, that MP or y is always equal to a given function

of OM or x\ for example, let y= x*, or let the num-

Fig.

\
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ON THE CONNEXION OF THE SIGNS OF ALGEBRAICAL AND

THE DIRECTIONS OF GEOMETRICAL MAGNITUDES.

It is shown in algebra, that if, through misappre
hension of a problem, we measure in one direction, a

line which ought to lie in the exactly opposite direc

tion, or if such a mistake be a consequence of some

previous misconstruction of the figure, any attempt

to deduce the length of that line by algebraical rea

soning, will give a negative quantity as the result.

And conversely it may be proved by any number of

examples, that when an equation in which a occurs

has been deduced strictly on the supposition that a is

a line measured in one direction, a change of sign in

a will turn the equation into that which would have

been deduced by the same reasoning, had we begun

by measuring the line a in the contrary direction.

Hence the change of -j- a into a, or of a into -f- #,

corresponds in geometry to a change of direction of

the line represented by a, and vice versa.

In illustration of this general fact, the following

problem may be useful. Having a circle of given ra

dius, whose centre is in the intersection of the axes

of x and y, and also a straight line cutting the axes in

two given points, required the co-ordinates of the

points (if any) in which the straight line cuts the cir

cle. Let OA, the radius of the circle =r, OE= 0,

OF=:, and let the co-ordinates of P, one of the

points of intersection required, be OM= x, M.P=y.
(Fig. 3.) The point P being in the circle whose ra

dius is r, we have from the right-angled triangle

OMP, x2
-\-}/

2=r2
, which equation belongs to the co

ordinates of every point in the circle, and is called
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the equation of the circle. Again, EM : MP : : EO : OF
by similar triangles ; or a x \y : : a : b, whence ay-\-

bx= ab, which is true, by similar reasoning, for every

point of the line EF. But for a point P lying in EF
produced, we have EM : M P : : EO : OF, or x+a :y

: : a : b, whence ay bx= ab, an equation which may
be obtained from the former by changing the sign of

x; and it is evident that the direction of x, in the

Tig.

second case, is opposite to that in the first. Again,

for a point P&quot; in FE produced, we have EM&quot; : M&quot;P&quot; : :

EO : OF, or x a :y : : a : b, whence bxay= ab, which

may be deduced from the first by changing the sign

of y ;
and it is evident that y is measured in different

directions in the first and third cases. Hence the

equation ay-\-bx= ab belongs to all parts of the

straight line EF, if we agree to consider M&quot;P&quot; as

negative, when MP is positive, and OM as negative
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when OM is positive. Thus, if OE= 4, and OF= 5,

and OM 1, we can determine MP from the equation

ay-\-bx= ab, or 4y-\-5= 2Q, which gives y or MP=
3J. But if OM be 1 in length, we can determine

M P either by calling OM , 1, and using the equation

ay bx= ab, or calling OM , 1, and using the equa
tion ay-\-bx a&, as before. Either gives M P = 6J.

The latter method is preferable, inasmuch as it en

ables us to contain, in one investigation, all the differ

ent cases of a problem.
We shall proceed to show that this may be done

in the present instance. We have to determine the

co-ordinates of the point P, from the following equa
tions :

=. ab,

Substituting in the second the value of y derived from

the first, or b
a x

\ we have

or

and proceeding in a similar manner to nndjy, we have

O2

which give

the upper or the lower sign to be taken in both.

Hence when (0
2
-J-

2
)r

2
;&amp;gt;tf

2
&amp;lt;

2
,
that is, when r is greater

than the perpendicular let fall from O upon EF, which

perpendicular is
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ab

i/a2 + t2

there are two points of intersection. When (a
2

-}-
2
)/-

2

= a2
l&amp;gt;

2
,
the two values of x become equal, and also

those of y, and there is only one point in which the

straight line meets the circle
; in this case EF is a

tangent to the circle. And if (a* -f fiy* &amp;lt;
a2&2

,
the

values of x and
j&amp;gt;

are impossible, and the straight line

does not meet the circle.

Of these three cases, we confine ourselves to the

first, in which there are two points of intersection.

The product of the values of x, with their proper

sign, is*

and of y,

the signs of which are the same as those of ft r2
,

and a2 r2 . If b and a be both
&amp;gt; r, the two values

of x have the same sign ; and it will appear from the

figure, that the lines they represent are measured in

the same direction. And this whether b and a be pos
itive or negative, since ft r2 and a2 r2 are both

positive when a and b are numerically greater than r,

whatever their signs may be. That is, if our rule,

connecting the signs of algebraical and the directions

of geometrical magnitudes, be true, let the directions

of OE and OF be altered in any way, so long as OE
and OF are both greater than OA, the two values of

OM will have the same direction, and also those of

MP. This result may easily be verified from the

figure.

* See Study ofMathematics (Chicago : The Open Court Pub. Co.), page 136.



THE DIFFERENTIAL AND INTEGRAL CALCULUS. 35

Again, the values of x and y having the same sign,

that sign will be (see the equations) the same as that

of 20 2 for x, and of 2a2
fr for y, or the same as that of

a for x and of b for
j&amp;gt;.

That is, when OE and OF are

both greater than OA, the direction of each set of co

ordinates will be the same as those of OE and OF,
which may also be readily verified from the figure.

Many other verifications might thus be obtained of

the same principle, viz., that any equation which cor

responds to, and is true for, all points in the angle

AOB, may be used without error for all points lying

in the other three angles, by substituting the proper

numerical values, with a negative sign, for those co

ordinates whose directions are opposite to those of

the co-ordinates in the angle AOB. In this manner,

if four points be taken similarly situated in the four

angles, the numerical values of whose co-ordinates

are #= 4 and y= 6, and if the co-ordinates of that

point which lies in the angle AOB, are called -f- 4 and

-f- 6; those of the points lying in the angle BOC will

be 4 and +6; in the angle COD 4 and 6;

and in the angle DOE -f- 4 and 6.

To return to Fig. 2, if, after having completed the

branch of the curve which lies on the right of BC,
and whose equation isjy=#2

, we seek that which lies

on the left of BC, we must, by the principles estab

lished, substitute x instead of x, when the numeri

cal value obtained for ( #)
2 will be that of y, and the

sign will show whether y is to be measured in a simi

lar or contrary direction to that of MP. Since ( #)
2

= x2
,
the direction and value of y, for a given value

of x, remains the same as on the right of BC; whence
the remaining branch of the curve is similar and equal
in all respects to OP, only lying in the angle BOD.
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And thus, if y be any function of x, we can obtain a

geometrical representation of the same, by making y
the ordinate, and x the abscissa of a curve, every or-

dinate of which shall be the linear representation of

the numerical value of the given function correspond

ing to the numerical value of the abscissa, the linear

unit being a given line.

THE DRAWING OF A TANGENT TO A CURVE.

If the point P (Fig. 2), setting out from O, move

along the branch OP, it will continually change the

direction of its motion, never moving, at one point, in

the direction which it had at any previous point. Let

the moving point have reached P, and let OM=#,
MP=^. Let x receive the increment MM =//je, in

consequence of which y or MP becomes M P
,
and

receives the increment QP =dy, so thatx-\-dx and

y-\-dy are the co-ordinates of the moving point P,

when it arrives at P . Join PP
,
which makes, with

PQ or OM, an angle, whose tangent is
^T

or ~.

Since the relation y= x* is true for the co-ordinates of

every point in the curve, we have y-\- dy= (x-\- dx)
2

,



THE DIFFERENTIAL AND INTEGRAL CALCULUS. 37

the subtraction of the former equation from which

gives 4&amp;gt; 2xdx+ (dx)*, or - = Zx+dx. If the
(lOC

point P be now supposed to move backwards towards

P, the chord PP will diminish without limit, and the

inclination of PP to PQ will also diminish, but not

without limit, since the tangent of the angle P PQ, or

dv
-j-,

is always greater than the limit 2x. If, therefore,
ctoc

a line PV be drawn through P, making with PQ an

angle whose tangent is 2x, the chord PP will, as P

approaches towards P, or as dx is diminished, con

tinually approximate towards PV, so that the angle

P PV may be made smaller than any given angle, by

sufficiently diminishing dx. And the line PV cannot

again meet the curve on the side of PP ,
nor can any

straight line be drawn between it and the curve, the

proof of which we leave to the student.

Again, if P be placed on the other side of P, so that

its co-ordinates are x dx and y dy, we have
j&amp;gt; dy

= (x dx)*, which, subtracted from y= x*, gives dy

= 2xdx (dx)*, or- =%x dx. By similar reason-
dx

ing, if the straight line PT be drawn in continuation

of PV, making with PN an angle, whose tangent is

2x, the chord PP will continually approach to this

line, as before.

The line TPV indicates the direction in which the

point P is proceeding, and is called the tangent of the

curve at the point P. If the curve were the interior

of a small solid tube, in which an atom of matter were

made to move, being projected into it at O, and if all

the tube above P were removed, the line PV is in the

direction which the atom would take on emerging at

P, and is the line which it would describe. The an-
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gle which the tangent makes with the axis of x in any

curve, may be found by giving x an increment, find

ing the ratio which the corresponding increment of y
bears to that of x, and determining the limit of that

ratio, or the differential coefficient. This limit is the

trigonometrical tangent* of the angle which the geo
metrical tangent makes with the axis of x. Iiy=(px,

qjx is this trigonometrical tangent. Thus, if the curve

be such that the ordinates are the Naperian loga-

rithmsf of the abscissae, or y= logx, and^-j-^v=
log#-|--- dx x

g-dfo
8

, etc., the geometrical tangent

of any point whose abscissa is x, makes with the axis

an angle whose trigonometrical tangent is .

x
This problem, of drawing a tangent to any curve,

was one, the consideration of which gave rise to the

methods of the Differential Calculus.

RATIONAL EXPLANATION OF THE LANGUAGE OF LEIBNITZ.

As the peculiar language of the theory of infinitely

small quantities is extensively used, especially in

works of natural philosophy, it has appeared right to

us to introduce it, in order to show how the terms

which are used may be made to refer to some natural

and rational mode of explanation. In applying this

language to Fig. 2, it would be said that the curve

OP is a polygon consisting of an infinite number of

* There is some confusion between these different uses of the word tan

gent. The geometrical tangent is, as already defined, the line between which

and a curve no straight line can be drawn
;
the trigonometrical tangent has

reference to an angle, and is the ratio which, in any right-angled triangle,

the side opposite the angle bears to that which is adjacent.

t It may be well to notice that in analysis the Naperian logarithms are

the only ones used ;
while in practice the common, or Briggs s- logarithms,

are always preferred.
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infinitely small sides, each of which produced is a

tangent to the curve
;
also that if MM be taken in

finitely small, the chord and arc PP coincide with

one of these rectilinear elements
;
and that an infin

itely small arc coincides with its chord. All which

must be interpreted to mean that, the chord and arc

being diminished, approach more and more nearly to

a ratio of equality as to their lengths ; and also that

the greatest separation between an arc and its chord

may be made as small a part as we please of the whole

chord or arc, by sufficiently diminishing the chord.

We shall proceed to a strict proof of this
;
but in

the meanwhile, as a familiar illustration, imagine a

small arc to be cut off from a curve, and its extremi

ties joined by a chord, thus forming an arch, of which

the chord is the base. From the middle point of the

chord, erect a perpendicular to it, meeting the arc,

which will thus represent the height of the arch.

Imagine this figure to be magnified, without distortion

or alteration of its proportions, so that the larger fig

ure may be, as it is expressed, a true picture of the

smaller one. However the original arc may be dimin

ished, let the magnified base continue of a given

length. This is possible, since on any line a figure

may be constructed similar to a given figure. If the

original curve could be such that the height of the

arch could never be reduced below a certain part of

the chord, say one thousandth, the height of the mag
nified arch could never be reduced below one thou

sandth of the magnified chord, since the proportions
of the two figures are the same. But if, in the origi

nal curve, an arc can be taken so small that the height
of the arch is as small a part as we please of the

chord, it will follow that in the magnified figure where
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the chord is always of one length, the height of the

arch can be made as small as we please, seeing that

it can be made as small a part as we please of a given

line. It is possible in this way to conceive a whole

curve so magnified, that a given arc, however small,

shall be represented by an arc of any given length,

however great ;
and the proposition amounts to this,

that let the dimensions of the magnified curve be any

given number of times the original, however great, an

arch can be taken upon the original curve so small,

that the height of the corresponding arch in the mag
nified figure shall be as small as we please.

Fid.

M MT

Let PP (Fig. 4) be a part of a curve, whose equa
tion is y= (p(x), that is, PM may always be found by

substituting the numerical value of OM in a given

function of x. Let OM=x receive the increment

MM :=*/#, which we may afterwards suppose as small

as we please, but which, in order to render the figure

more distinct, is here considerable. The value of PM
or y is

&amp;lt;px,
and that of P M or y -\- dy is cp(x-\-dx).

Draw PV, the tangent at P, which, as has been

shown, makes, with PQ, an angle, whose trigonomet-
dy

rical tangent is the limit of the ratio
-^-, when x is de

creased, or (p x. Draw the chord PP
,
and from any
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point in it, for example, its middle point/, draw/? 1

parallel to PM, cutting the curve in a. The value of

P Q, or dy, or
&amp;lt;p(x -\-dx~) (px is

P Q= ft dx+ 9&quot;x
- + &amp;lt;p

&quot;x + etc.

But
&amp;lt;p

x dx is tanVPQ . PQ= VQ. Hence VQ is the

first term of this series, and P V the aggregate of the

rest. But it has been shown that dx can be taken so

small, that any one term of the above series shall con

tain the rest, as often as we please. Hence PQ can

be taken so small that VQ shall contain VP as often

as we please, or the ratio of VQ to VP shall be as

great as we please. And the ratio VQ to PQ contin

ues finite, being always cp x ;
hence P V also decreases

without limit as compared with PQ.
Next, the chord PP or V (dx}* -f (dy)*, or

is to PQ or dx in the ratio of x|l + (-f-\
: 1, which,

^ \axj

as PQ is diminished, continually approximates to that

of 1/1 + (cp x^ : 1, which is the ratio of PV: PQ.
Hence the ratio of PP : PV continually approaches to

unity, or PQ may be taken so small that the differ

ence of PP and PV shall be as small a part of either

of them as we please.

Finally, the arc PP f

is greater than the chord PP
arr pp

and less than PV -f VP . Hence -J:t^__. iies be-

PV VP chord PP
tween 1 and

pp&amp;gt;
+

pt&amp;gt;T&amp;gt;

^ne former of which two

fractions can be brought as near as we please to unity,

and the latter can be made as small as we please ; for
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since P V can be made as small a part of PQ as we

please, still more can it be made as small a part as we

please of PP , which is greater than PQ. Therefore

the arc and chord PP may be made to have a ratio as

nearly equal to unity as we please. And because /#
is less than pv, and therefore less than P V, it follows

that pa may be made as small a part as we please of

PQ, and still more of PP .

In these propositions is contained the rational ex

planation of the proposition of Leibnitz, that &quot;an in

finitely small arc is equal to, and coincides with, its

chord.&quot;

ORDERS OF INFINITY.

Let there be any number of series, arranged in

powers of h, so that the lowest power is first ;
let

them contain none but whole powers, and let them all

be such, that each will be convergent, on giving to h

a sufficiently small value : as follows,

Gfc+ D&amp;gt;*4 + E/^-f-etc. (1)

C /&
8+ D ^4+ EW+ etc. (2)

(3)

etc. (4)

etc. etc.

As h is diminished, all these expressions decrease

without limit ; but the first increases with respect to

the second, that is, contains it more times after a de

crease of h, than it did before. For the ratio of (1)

to (2) is that of A+ Bh -f C#* -f etc. to B ^-f-C /*
2

-}-etc., the ratio of the two not being changed by di

viding both by h. The first term of the latter ratio

approximates continually to A, as h is diminished,

and the second can be made as small as we please,

and therefore can be contained in the first as often as
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we please. Hence the ratio (1) to (2) can be made

as great as we please. By similar reasoning, the ratio

(2) to (3), of (3) to (4), etc., can be made as great as

we please. We have, then, a series of quantities,

each of which, by making h sufficiently small, can be

made as small as we please. Nevertheless this de

crease increases the ratio of the first to the second, of

the second to the third, and so on, and the increase is

without limit.

Again, if we take (1) and h, the ratio of (1) to h is

that of A -f Bh -f Ctf -f etc. to 1, which, by a suffi

cient decrease of h, may be brought as near as we

please to that of A to 1. But if we take (1) and h*,

the ratio of (1) to h* is that of A -f- Bh -f etc. to h,

which, by previous reasoning, may be increased with

out limit
;
and the same for any higher power of h.

Hence (1) is said to be comparable to the first power
of h, or of the first order, since this is the only power
of h whose ratio to (1) tends towards a finite limit.

By the same reasoning, the ratio of -(2) to h*, which is

that of B -f C h -f etc. to 1, continually approaches
that of B to 1

;
but the ratio (2) to h, which is that

of B / -j- C7/
8

-f- etc. to 1, diminishes without limit, as

h is decreased, while the ratio of (2) to h9
, or of B -J-

C ^-|-etc. to h, increases without limit. Hence (2) is

said to be comparable to the second power of h, or of
the second order, since this is the only power of h whose
ratio to (2) tends towards a finite limit. In the lan

guage of Leibnitz, if h be an infinitely small quan

tity, (1) is an infinitely small quantity of the first or

der, (2) is an infinitely small quantity of the second

order, and so on.

We may also add that the ratio of two series of

the same order continually approximates to the ratio
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of their lowest terms. For example, the ratio of Ah*

-f B/i* -f etc. to A /fc
8 + B /;

4
-f etc. is that of A+ B^

-fete, to A -j- ~B h -\- etc.
, which, as h is diminished,

continually approximates to the ratio of A to A ,
which

is also that of A/i3 to A /$
8

,
or the ratio of the lowest

terms. In Fig. 4, PQ or dx being put in place of h,

QP ,
or q/xdx+ q/x-, etc., is of the first or-

22

der, as are PV, and the chord PP
;
while P V, or

(dx^
&amp;lt;p&quot;x

-^-
f- etc., is of the second order.

The converse proposition is readily shown, that if

the ratio of two series arranged in powers of h con

tinually approaches to some finite limit as h is dimin

ished, the two series are of the same order, or the ex

ponent of the lowest power of h is the same in both.

Let Aha and B&amp;gt;6* be the lowest powers of h, whose ra

tio, as has just been shown, continually approximates
to the actual ratio of the two series, as h is diminished.

The hypothesis is that the ratio of the two series, and

therefore that of Ah&quot; to
B#&amp;gt;,

has a finite limit. This

cannot be if a
&amp;gt; b, for then the ratio of Ah&quot; to B^* is

that of Aha~h to B, which diminishes without limit ;

neither can it be when a
&amp;lt; b, for then the same ratio

is that of A to ~Bh6~a
,
which increases without limit ;

hence a must be equal to b.

We leave it to the student to prove strictly a prop
osition assumed in the preceding; viz., that if the

ratio of P to Q has unity for its limit, when h is di

minished, the limiting ratio of P to R will be the same

as the limiting ratio of Q to R. We proceed further

to illustrate the Differential Calculus as applied to

Geometry.
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A GEOMETRICAL ILLUSTRATION.

Let OC and OD (Fig. 5) be two axes at right an

gles to one another, and let a line AB of given length

be placed with one extremity in each axis. Let this

line move from its first position into that of A B on

one side, and afterwards into that of A&quot;B&quot; on the

other side, always preserving its first length. The

motion of a ladder, one end of which is against a wall,

and the other on the ground, is an instance.

Let A B and A&quot;B&quot; intersect AB in P and P&quot;. If

A&quot;B&quot; were gradually moved from its present position

into that of A B
,
the point P&quot; would also move grad-

F1J.S

A A A

ually from its present position into that of P
, passing,

in its course, through every point in the line P P&quot;.

But here it is necessary to remark that AB is itself

one of the positions intermediate between A B and

A&quot;
B&quot;,

and when two lines are, by the motion of one

of them, brought into one and the same straight line,

they intersect one another (if this phrase can be here

applied at all) in every point, and all idea of one dis

tinct point of intersection is lost. Nevertheless P&quot;

describes one part of P&quot;P before A&quot; B&quot; has come into

the position AB, and the rest afterwards, when it is

between AB and A B .
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Let P be the point of separation ;
then every point

of P
P&quot;, except P, is a real point of intersection of

AB, with one of the positions of A&quot;B&quot;, and when
A&quot; B&quot; has moved very near to AB, the point P&quot; will

be very near to P
;
and there is no point so near to P,

that it may not be made the intersection of A&quot; B&quot; and

AB, by bringing the former sufficiently near to the

latter. This point P is, therefore, the limit of the in

tersections of A&quot; B&quot; and AB, and cannot be found by
the ordinary application of algebra to geometry, but

may be made the subject of an inquiry similar to those

A&quot; A A. G

which have hitherto occupied us, in the following

manner :

LetOA= rf, OB=l&amp;gt;, AB=A B = A&quot;B&quot;= /. Let

AA =
&amp;lt;fo,

BB =&amp;lt;#, whence OA =
db. We have then &amp;lt;*

2
-{-

2= / 2
,
and

(b d#)
2= / 2

; subtracting the former of which from

the development of the latter, we have

2a da+ (dd? 2bdb + (dtf=
20 -f da

r
da Zb (1)

As A B moves towards AB, da and db are diminished

without limit, a and b remaining the same
;
hence the

db . 2a a
limit of the ratio is ^ or .

da Zb b
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Let the co-ordinates* of P be OW=x and M P,

=y. Then (page 32) the co-ordinates of any point in

AB have the equation

ay-\-bx= ab (2)

The point P is in this line, and also in the one which

cuts off a-}- da and b db from the axes, whence

(a+da)y+(t db)x= (a + da) (b dt&amp;gt;) (3)

subtract (2) from (3) after developing the latter, which

gives

yda xdb= bda adb dadb (4)

If we now suppose A B to move towards AB, equa
tion (4) gives no result, since each of its terms dimin

ishes without limit. If, however, we divide (4) by da,

and substitute in the result the value of -^ obtained
da

from (1) we have

2a+ da 2a-\-day-* vy- =* ^ga -* (&)

From this and (2) we might deduce the values of y
and x, for the point P ,

as the figure actually stands.

Then by diminishing db and da without limit, and

observing the limit towards which x and y tend, we

might deduce the co-ordinates of P, the limit of the

intersections.

The same result may be more simply obtained, by
diminishing da and db in equation (5), before obtain

ing the values of y and x. This gives

y -r oc=.b or by ax fl a9 (6)

From (6) and (2) we find (Fig. 6)

*The lines OM and M P are omitted, to avoid crowding the figure.
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This limit of the intersections is different for every
different position of the line AB, but may be deter

mined, in every case, by the following simple con

struction.

Since (Fig. 6) BP : PN, or OM : : BA : AO, we
1- -Dr, rMV/T , .

.,have BP=OM -r-^- = ; and, similarly,
12 AU l a I

PA= . Let OQ be drawn perpendicular to BA;

then since OA is a mean proportional between AQ
2 #*

and AB, we have AQ=, and similarly BQ= .

Hence BP=AQ and AP= BQ, or the point P is

as far from either extremity of AB as Q is from the

other.

O M

THE SAME PROBLEM SOLVED BY THE PRINCIPLES OF

LEIBNITZ.

We proceed to solve the same problem, using the

principles of Leibnitz, that is, supposing magnitudes
can be taken so small, that those proportions may be

regarded as absolutely correct, which are not so in

reality, but which only approach more nearly to the

truth, the smaller the magnitudes are taken. The in

accuracy of this supposition has been already pointed

out
; yet it must be confessed that this once got over,
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the results are deduced with a degree of simplicity

and consequent clearness, not to be found in any other

method. The following cannot be regarded as a dem

onstration, except by a mind so accustomed to the

subject that it can readily convert the various inaccu

racies into their corresponding truths, and see, at one

glance, how far any proposition will affect the final

result. The beginner will be struck with the extra

ordinary assertions which follow, given in their most

naked form, without any attempt at a less startling

mode of expression.

B

B
Pig.

7

Let A B (Fig. 7) be a position of AB infinitely

near to it
;

that is, let A PA be an infinitely small

angle. With the centre P, and the radii PA and PB,
describe the infinitely small arcs A a, Bfr. An infin

itely small arc of a circle is a straight line perpendic
ular to its radius

;
hence A aA and BB are right-

angled triangles, the first similar to BOA, the two

having the angle A in common, and the second simi

lar to B OA . Again, since the angles of BOA, which

are finite, only differ from those of B OA by the infin

itely small angle A PA, they may be regarded as
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equal; whence A aA and B B are similar to BOA,
and to one another. Also P is the point of which we
are in search, or infinitely near to it

;
and since BA=

B A
,
of which BP= t&amp;gt;P and aP=A P, the remain

ders ~B b and Aa are equal. Moreover, B and A a

being arcs of circles subtending equal angles, are in

the proportion of the radii BP and PA .

Hence we have the following proportions :

Aa : A a : : OA : OB : : a : b

B : B J : : OA : OB : : a : b.

The composition of which gives, since A#= B :

B : A a : : a9
: P.

Also B : A a : : BP : Pa,

whence BP : Pa : : a? :
t&amp;gt;*,

and BP + Pa : Pa ::a*+ P : P.

But Pa only differs from PA by the infinitely small

quantity Aa, and BP-j-PA= /, and 2
-f-

z= / 2 ;

whence

/:PA::/ 2
:^, or PA= ~,

which is the result already obtained.

In this reasoning we observe four independent

errors, from which others follow : (1) that B and A a

are straight lines at right-angles to Pa-} (2) that BOA
B OA are similar triangles ; (3) that P is really the

point of which we are in search
; (4) that PA and Pa

are equal. But at the same time we observe that

every one of these assumptions approaches the truth,

as we diminish the angle A PA, so that there is no

magnitude, line or angle, so small that the linear or

angular errors, arising from the above-mentioned sup

positions, may not be made smaller.

We now proceed to put the same demonstration
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in a stricter form, so as to neglect no quantity during

the process. This should always be done by the be

ginner, until he is so far master of the subject as to be

able to annex to the inaccurate terms the ideas neces

sary for their rational explanation. To the former fig

ure add Bj3 and Aa, the real perpendiculars, with

which the arcs have been confounded. Let / A PA=
d6, PA=/, Aa= dp, BP= ^ B l&amp;gt;

= dq; and

OB=fi, and AB= /. Then* A a= (p

qdO, and the triangles A Aor and B Bfi are similar to

SB

Fig.
7

O JL A
BOA and B OA . The perpendiculars A a and B/?

are equal to PA sin dO and PBsmdff, or (/ dp)

sin dO and q sin dO. Let aa= fA and tfi= r. These

(p. 9) will diminish without limit as compared with

A or and B/3 and since the ratios of A ex to aA and B/3

to /?B continue finite (these being sides of triangles

similar to AOB and A OB ), aa and bft will diminish

indefinitely with respect to aA and /?B . Hence the

ratio Aa to fiB or dp -\- p to dq-\-v will continually

approximate to that of dp to dq, or a ratio of equality.

*For the unit employed in measuring an angle, see Study ofMathtmatics

(Chicago, 1898), pages 273-277.
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The exact proportions, to which those in the last

page are approximations, are as follows :

&amp;lt;#+ /&quot; (p dp)smdd::a : b,

gsmdd: dq-\-v \\a da\b + db\

by composition of which, recollecting that dp= dq

(which is rigorously true) and dividing the two first

terms of the resulting proportion by dp, we have

If &amp;lt;/0 be diminished without limit, the quantities

&amp;lt;/0, &amp;lt;/,
and dp, and also the ratios -~- and as

dp dp
above-mentioned, are diminished without limit, so

that the limit of the proportion just obtained, or the

proportion which gives the limits of the lines into

which P divides AB, is

q-p-.a* :P,
hence q+p= Z-.p :: a + = / : 03,

the same as before.

AN ILLUSTRATION FROM DYNAMICS.

We proceed to apply the preceding principles to

dynamics, or the theory of motion.

Suppose a point moving along a straight line uni

formly ;
that is, if the whole length described be di

vided into any number of equal parts, however great,

each of those parts is described in the same time.

Thus, whatever length is described in the first second

of time, or in any part of the first second, the same
is described in any other second, or in the same part
of any other second. The number of units of length
described in a unit of time is called the velocity \ thus

a velocity of 3-01 feet in a second means that the
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point describes three feet and one hundredth in each

second, and a proportional part of the same in any

part of a second. Hence, if v be the velocity, and

t the units of time elapsed from the beginning of the

motion, vt is the length described
;
and if any length

described be known, the velocity can be determined

by dividing that length by the time of describing it.

Thus, a point which moves uniformly through 3 feet

in \\ second, moves with a velocity of 3-j-lJ, or 2

feet per second.

Let the point not move uniformly ; that is, let dif

ferent parts of the line, having the same length, be

described in different times
;

at the same time let the

motion be continuous, that is, not suddenly increased

or decreased, as it would be if the point were com

posed of some hard matter, and received a blow while

it was moving. This will be the case if its motion be

represented by some algebraical function of the time,

or if, / being the number of units of time during which

the point has moved, the number of units of length
described can be represented by cpt. This, for ex

ample, we will suppose to be /-j- /
2

,
the unit of time

being one second, and the unit of length one inch
;

so that -f J, or | of an inch, is described in the first

half second
;
1 -j- 1, or two inches, in the first second

;

2 -f- 4, or six inches, in the first two seconds, and so on.

Here we have no longer an evident measure of the

velocity of the point ; we can only say that it obvi

ously increases from the beginning of the motion to

the end, and is different at every two different points.

Let the time / elapse, during which the point will de

scribe the distance /-f fl
,

let a further time dt elapse,

during which the point will increase its distance to

/ -\- dt -|- (t -f &amp;lt;#)

2
, which, diminished by /-}-/*, gives
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dt+2tdt-\-(dff* for the length described during the

increment of time dt. This varies with the value of

/
; thus, in the interval dt after the first second, the

length described is 3*# -}- dfl
;
after the second second,

it is 5dfr-j-(V/)
2

,
and so on. Nor can we, as in the

case of uniform motion, divide the length described

by the time, and call the result the velocity with which

that length is described ; for no length, however small,

is here uniformly described. If we were to divide a

length by the time in which it is described, and also

its first and second halves by the times in which they
are respectively described, the three results would be

all different from one another.

Here a difficulty arises, similar to that already no

ticed, when a point moves along a curve
;
in which,

as we have seen, it is improper to say that it is mov

ing in any one direction through an arc, however

small. Nevertheless a straight line was found at every

point, which did, more nearly than any other straight

line, represent the direction of the motion. So, in

this case, though it is incorrect to say that there is

any uniform velocity with which the point continues

to move for any portion of time, however small, we

can, at the end of every time, assign a uniform ve

locity, which shall represent, more nearly than any

other, the rate at which the point is moving. If we

say that, at the end of the time /, the point is moving
with a velocity v, we must not now say that the length

vdt is described in the succeeding interval of time dt
;

but we mean that dt may be taken so small, that vdt

shall bear to the distance actually described a ratio as

near to equality as we please.

Let the point have moved during the time /, after

which let successive intervals of time elapse, each
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equal to dt. At the end of the times, t, t-\-dt, t+Zdt,

t-\-*&dt, etc., the whole lengths described will be t-\-P,

t -f- dt -f (/ -f &amp;lt;//)

2
,

t + 2dt -f (/ -j- 2&amp;lt;//)

2
,

/ + 3&amp;lt;# +
(V-f 3rt7)

2
, etc.; the differences of which, or dt -\-2tdt

+ (X/)
2

, ///+ 2^/-f3(^/)
2
, *//+2/&amp;lt;#+ 5

(&amp;lt;//)*,
etc.,

are the lengths described in the first, second, third,

etc., intervals dt. These are not equal to one another,

as would be the case if the velocity were uniform
;
but

by making dt sufficiently small, their ratio may be

brought as near to equality as we please, since the

terms O//)
2

, 3(/#)
a

, etc., by which they all differ from

the common part (1 -|- 2/) dt, may be made as small as

we please, in comparison of this common part. If we
divide the above-mentioned lengths by dt, which does

not alter their ratio, they become \-\-Zt-\-dt, 1-f 2/

-(- 3///, 1 -}- 2/ -{- 5rt#, etc., which may be brought as

near as we please to equality, by sufficient diminution

of dt. Hence 1 -f- 2/ is said to be the velocity of the

point after the time /; and if we take a succession of

equal intervals of time, each equal to dty and suffi

ciently small, the lengths described in those intervals

will bear to (1 -f 2/) dt, the length which would be de

scribed in the same interval with the uniform velocity

1 -f- 2/, a ratio as near to equality as we please. And

observe, that if cpt is /-f- /2
, q!t is 1 -f 2/, or the coeffi

cient of h in (/ -j- h] -f (/ -f /%).

In the same way it may be shown, that if the point

moves so that cpt always represents the length de

scribed in the time /, the differential coefficient of cpt

or cp t, is the velocity with which the point is moving
at the end of the time /. For the time / having elapsed,

the whole lengths described at the end of the times /

and t-\- dt are cpt and cp (/ -j- dt) ; whence the length

described during the time dt is
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cp (t 4- df) q&amp;gt;t,
or cp t dt 4- cp&quot;t

-
4- etc.

Similarly, the length described in the next interval

dt is

or
&amp;gt;

&amp;lt;pt 4- cpt 2dt 4- cp t
J

4- etc.
A

(^&amp;gt;/ -f- ^&amp;gt;

^ dt 4- 9&amp;gt;

V 5i-
f- etc.),

which is

(X/)
2

cp t dt
-\-^cp&quot;

t 4~ etc.
;

the length described in the third interval dt is

4- etc., etc.
2

Now, it has been shown for each of these, that the

first term can be made to contain the aggregate of all

the rest as often as we please, by making dt sufficiently

small; this first term is cp tdt in all, or the length

which would be described in the time dt by the velo

city cp t continued uniformly : it is possible, therefore,

to take dt so small, that the lengths actually described

in a succession of intervals equal to dt, shall be as

nearly as we please in a ratio of equality with those

described in the same intervals of time by the velocity

cp t. For example, it is observed in bodies which fall

to the earth from a height above it, when the resist

ance of the air is removed, that if the time be taken

in seconds, and the distance in feet, the number of

feet fallen through in / seconds is always at*, where

a= 16^ very nearly ;
what is the velocity of a body

which has fallen in vacuo for four seconds? Here cpt

being at*, we find, by substituting t -\- h, or t-\-dt, in

stead of t, that cp t is 2at, or 2 X 16yVX *
, which, at



THE DIFFERENTIAL AND INTEGRAL CALCULUS. 57

the end of four seconds, is 32 X 4, or 128| feet. That

is, at the end of four seconds a falling body moves at

the rate of 128J feet per second. By which we do

not mean that it continues to move with this velocity

for any appreciable time, since the rate is always

varying ; but that the length described in the interval

dt after the fourth second, may be made as nearly as

we please in a ratio of equality with 128f X&amp;lt;#, by

taking dt sufficiently small. This velocity Zat is said

to be uniformly accelerated
;
since in each second the

same velocity 2a is gained. And since, when x is the

space described, cp t is the limit of
, the velocity is

also this limit
;
that is, when a point does not move

uniformly, the velocity is not represented by any in

crement of length divided by its increment of time,

but by the limit to which that ratio continually tends,

as the increment of time is diminished.

SIMPLE HARMONIC MOTION.

We now propose the following problem : A point
moves uniformly round a circle

;
with what velocities

do the abscissa and ordinate increase or decrease, at

any given point? (Fig. 8.)

Let the point P, setting out from A, describe the

arc AP, etc., with the uniform velocity of a inches

per second. Let

From the first principles of trigonometry

x= rcosO

x dx= r cos (0 -f- dO)= r cos cos d& r sin sin dO
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Subtracting the second from the first, and the third

from the fourth, we have

dx r sin sin dO -\-rcos 0(1 cos dO) (1)

dy= rcosOsindO-}-rsinO(l cos&amp;lt;/0) (2)

But if dO be taken sufficiently small, sindO, and dO,

may be made as nearly in a ratio of equality as we

please, and 1 cos dO may be made as small a part
as we please, either of dO or sin dO. These follow from

Fig. 1, in which it was shown that BM and the arc

BA, or (if OA= r and AOB=dO), r sindO and rdO,

may be brought as near to a ratio of equality as we

Fig.
8

O Mx M A
please, which is therefore true of sin dO and dO. Again,
it was shown that AM, or r rcosdO, can be made
as small a part as we please, either of BM or the arc

BA, that is, either of r smdO, or rdQ\ the same is

therefore true of 1 cosdO, and either sindO or dO.

Hence, if we write equations (1) and (2) thus,

dx= rsinOdO (1) dy= r cosOdO (2),

we have equations, which, though never exactly true,

are such that by making dO sufficiently small, the

errors may be made as small parts of dO as we please.

Again, since the arc AP is uniformly described, so

also is the angle POA ;
and since an arc a is described
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in one second, the angle is described in the same

time; this is, therefore, the angular velocity.* If we
divide equations (1) and (2) by dt, we have

dx dB dy A dB

these become more nearly true as dt and dB are dimin-

dx
ished, so that if for

, etc., the limits of these ratios
at

be substituted, the equations will become rigorously

true. But these limits are the velocities of x, y, and

B, the last of which is also
;
hence

velocity of x= r sin0 X =a sin0,

velocity of y=r cos 6 X =a cos0;

that is, the point M moves towards O with a variable

velocity, which is always such a part of the velocity

of P, as sin0 is of unity, or as PM is of OB
;
and the

distance PM increases, or the point N moves from O,
with a velocity which is such a part of the velocity of

P as cos0 is of unity, or as OM is of OA. [The mo
tion of the point M or the point N is called in physics
a simple harmonic motion. ]

In the language of Leibnitz, the results of the two

foregoing sections would be expressed thus : If a

point move, but not uniformly, it may still be con

sidered as moving uniformly for any infinitely small

*The same considerations of velocity which have been applied to the

motion of a point along a line may also be applied to the motion of a line

round a point. If the angle so described be always increased by equal angles
in equal portions of time, the angular velocity is said to be uniform, and is

measured by the number of angular units described in a unit of time. By
similar reasoning to that already described, if the velocity with which the

angle increases be not uniform, so that at the end of the time t the angle de

scribed is = $t t the angular velocity is
&amp;lt;7,

or the limit of the ratio -j- .
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time
;
and the velocity with which it moves is the in

finitely small space thus described, divided by the in

finitely small time.

THE METHOD OF FLUXIONS.

The foregoing process contains the method em

ployed by Newton, known by the name of the Method

of Fluxions. If we suppose y to be any function of x,

and that x increases with a given velocity, y will also

increase or decrease with a velocity depending : (1)

upon the velocity of x
; (2) upon the function which

y is of x. These velocities Newton called the fluxions

of y and x, and denoted them by y and x. Thus, if

y= x2
,
and if in the interval of time dt, x becomes

x -\- dx, and y becomes y -f dy, we have y-{-dy=
and dy= 2x dx + (dx}*, or = 2x ~

- dx. If we diminish dt, the term dx will dimin-
at at

ish without limit, since one factor continually ap

proaches to a given quantity, viz., the velocity of x,

and the other diminishes without limit. Hence we
obtain the velocity of y= 2x X the velocity of x, or

y= 2x x, which is used in the method of fluxions in

stead of dy= 2x dx considered in the manner already
described. The processes are the same in both meth

ods, since the ratio of the velocities is the limiting

ratio of the corresponding increments, or, according
to Leibnitz, the ratio of the infinitely small incre

ments. We shall hereafter notice the common objec
tion to the Method of Fluxions.

ACCELERATED MOTION.

When the velocity of a material point is suddenly

increased, an impulse is said to be given to it, and the
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magnitude of the impulse or impulsive force is in pro

portion to the velocity created by it. Thus, an im

pulse which changes the velocity from 50 to 70 feet

per second, is twice as great as one which changes it

from 50 to 60 feet. When the velocity of the point is

altered, not suddenly but continuously, so that before

the velocity can change from 50 to 70 feet, it goes

through all possible intermediate velocities, the point

is said to be acted on by an acceleratingforce. Force

is a name given to that which causes a change in the

velocity of a body. It is said to act uniformly, when
the velocity acquired by the point in any one interval

of time is the same as that acquired in any other in

terval of equal duration. It is plain that we cannot,

by supposing any succession of impulses, however

small, and however quickly repeated, arrive at a uni

formly accelerated motion
;
because the length de

scribed between any two impulses will be uniformly

described, which is inconsistent with the idea of con

tinually accelerated velocity. Nevertheless, by di

minishing the magnitude of the impulses, and increas

ing their number, we may come as near as we please
to such a continued motion, in the same way as, by

diminishing the magnitudes of the sides of a polygon,
and increasing their number, we may approximate as

near as we please to a continous curve.

Let a point, setting out from a state of rest, in

crease its velocity uniformly, so that in the time /, it

may acquire the velocity v what length will have

been described during that time / ? Let the time /

and the velocity v be both divided into n equal parts,

each of which is / and v
\
so that #/ ==/, and nv = v.

Let the velocity v be communicated to the point at

rest
; after an interval of / let another velocity v be
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communicated, so that during the second interval f

the point has a velocity 2z/
; during the third interval

let the point have the velocity 3z/, and so on
;
so that

in the last or /z
th interval the point has the velocity

nv . The space described in the first interval is, there

fore, v t
-,
in the second, 2z;Y; in the third

3z&amp;gt;Y;
and

so on, till in the th interval it is nv f. The whole

space described is, therefore,

v t -f 2z&amp;gt;Y + 30Y + . . . -f (n 1 ) v f + nv f

or [1 + 2 + 3 (n l^ + n^v t ^n.^^v f
m

tfv t + wY_.___

In this substitute v for # ,
and / for nf, which gives

for the space described %v(t-{-f}. The smaller we

suppose /, the more nearly will this approach to \vt.

But the smaller we suppose f, the greater must be n,

the number of parts into which / is divided
;
and the

more nearly do we render the motion of the point uni

formly accelerated. Hence the limit to which we ap

proximate by diminishing /without limit, is the length

described in the time / by a uniformly accelerated

velocity, which shall increase from to v in that time.

This is \vt, or half the length which would have been

described by the velocity v continued uniformly from

the beginning of the motion.

It is usual to measure the accelerating force by the

velocity acquired in one second. Let this be g\ then

since the same velocity is acquired in every other sec

ond, the velocity acquired in / seconds will be gtt or

v=gt. Hence the space described is J^/X * or \&-
If the point, instead of being at rest at the beginning

of the acceleration, had had the velocity a, the lengths
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described in the successive intervals would have been

tf/ -f- z/Y, at -\- Zv t
,
etc.

;
so that to the space described

by the accelerated motion would have been added

naf, or at, and the whole length would have been

at-}-%gfi. By similar reasoning, had the force been

a uniformly retarding force, that is, one which dimin

ished the initial velocity a equally in equal times, the

length described in the time / would have been at

Now let the point move in such a way, that the

velocity is accelerated or retarded, but not uniformly ;

that is, in different times of equal duration, let differ

ent velocities be lost or gained. For example, let the

point, setting out from a state of rest, move in such a

Tig.
9

O AB C D

way that the number of inches passed over in / sec

onds is always ts . Here (pt
= tB

,
and the velocity ac

quired by the body at the end of the time /, is the co

efficient of dt in (/-f-///)
3

,
or 3/2 inches per second.

Let the point (Fig. 9) be at A at the end of the time

/; and let AB, BC, CD, etc., be lengths described in

successive equal intervals of time, each of which is dt.

Then the velocities at A, B, C, etc., are 3^, 3(7 -f /#),

3(/+2&amp;lt;#)
2

, etc., and the lengths AB, BC, CD, etc.,

are (/+ &amp;lt;#)

3 /3
,

(/+2&amp;lt;#)
8
, etc.

VELOCITY AT

A 3/2

B 3/2+
C 3/2 +
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LENGTH OF

BC 3/V/+ 9/(X/)
2
-f 7(X/)3

CD 3A//+ 15/0//)
2 + 19(X/)

8

If we could, without error, reject the terms con

taining (X/)
2 in the velocities, and those containing

(dt)* in the lengths, we should then reduce the mo
tion of the point to the case already considered, the

initial velocity being 3/2
,
and the accelerating force 6/.

For we have already shown that a being the initial

velocity, and g the accelerating force, the space de

scribed in the time / is at+ \gfi. Hence, 3/2 being
the initial velocity, and 6^ the accelerating force, the

space in the time dt is 3/V/ -f 3/ (dt)
2

,
which is the

same as AB after (dt)* is rejected. The velocity ac

quired is gt, and the whole velocity is, therefore,

&-\-gt\ or making the same substitutions 3P -f- tdt.

This is the velocity at B, after the term 3(X/)
2 is

rejected. Again, the velocity being %fl-^-tdt, and

the force 6/, the space described in the time dt is

(ZP + tdt)dt-\- 3/(X/)
2

, or 3/V/-f9/(X/)
2

. This is

what the space BC becomes after 7(*//)
8 is rejected.

The velocity acquired is Qtdt; and the whole velocity

is3/2 -f tdt+tdt, or3/2
-f I2tdt; which is the velo

city at C after 12 (X/)
2 is rejected.

But as the terms involving (dt)* in the velocities,

etc., cannot be rejected without error, the above sup

position of a uniform force cannot be made. Never

theless, as we may take dt so small that these terms

shall be as small parts as we please of those which

precede, the results of the erroneous and correct sup

positions may be brought as near to equality as we

please ;
hence we conclude, that though there is no

force, which, continued uniformly, would preserve
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the motion of the point A, so that OA should always

be tz in inches, yet an interval of time may be taken

so small, that the length actually described by A in

that time, and the one which would be described if

the force 6/ were continued uniformly, shall have a

ratio as near to equality as we please. Hence, on a

principle similar to that by which we called 3fl the

velocity at A, though, in truth, no space, however

small, is described with that velocity, we call 6/ the

accelerating force at A. And it must be observed

that t is the differential coefficient of S^2
, or the co

efficient of dt, in the development of 3(/-j- df}*.

Generally, let the point move so that the length
described in any time t is

&amp;lt;pt.

Hence the length de

scribed at the end of the time /-f dt is cp(t-\-df}, and

that described in the interval dt is cp(t -\- df) &amp;lt;pt,

or

in which dt may be taken so small, that either of the

first two terms shall contain the aggregate of all the

rest, as often as we please. These two first terms are

&amp;lt;p tdt-\-%&amp;lt;p&quot;t(dt}*,
and represent the length described

during dt, with a uniform velocity cp t, and an accel

erating force
&amp;lt;p&quot;t.

The interval dt may then generally
be taken so small, that this supposition shall represent
the motion during that interval as nearly as we please.

LIMITING RATIOS OF MAGNITUDES THAT INCREASE

WITHOUT LIMIT.

We have hitherto considered the limiting ratio of

quantities only as to their state of decrease : we now

proceed to some cases in which the limiting ratio of

different magnitudes which increase without limit is

investigated.
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It is easy to show that the increase of two magni
tudes may cause a decrease of their ratio ;

so that, as

the two increase without limit, their ratio may dimin

ish without limit. The limit of any ratio may be found

by rejecting any terms or aggregate of terms (Q) which

are connected with another term (P) by the sign of

addition or subtraction, provided that by increasing

x, Q may be made as small a part of P as we please.

For example, to find the limit of , ,

, ,
when

Ax1&quot;

-j- vx

x is increased without limit. By increasing x we can,

as will be shown immediately, cause 2x -f- 3 and x to

be contained in x2 and 2#2
,
as often as we please ;

re-

x2

jecting these terms, we have
^ ^,

or J, for the limit.

The demonstration is as follows : Divide both

numerator and denominator by x*, which gives 1 -{-

o q &

H zr, and 2H , for the numerator and denom-
x x2 x

inator of a fraction equal in value to the one proposed.
These can be brought as near as we please to 1 and 2

by making x sufficiently great, or sufficiently small
;

and, consequently, their ratio can be brought as near

as we please to -^.
2

We will now prove the following : That in any
series of decreasing powers of x, any one term will, if

x be taken sufficiently great, contain the aggregate of

all which follow, as many times as we please. Take,
for example,

ax -f bx
m~^

-f ex-* + +px+ q
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The ratio of the several terms will not be altered if we

divide the whole by xm
,
which gives

etc -

It has been shown that by taking sufficiently small,
oc

that is, by taking x sufficiently great, any term of this

series may be made to contain the aggregate of the

succeeding terms, as often as we please ;
which rela

tion is not altered if we multiply every term by tf&quot;,

and so restore the original series.

(x \
V\m

It follows from this, that m has unity for its
oc

limit when x is increased without limit. For (x -f- 1)&quot;*

is xm -J- mx-1
-|- etc.

,
in which x can be made as

great as we please with respect to the rest of the

O-f IV*
,

mx&quot;-
1
-\-etc.

series. Hence v l

m
}

\-\
--

5
-

,
the nu-

x x
merator of which last fraction decreases indefinitely

as compared with its denominator.

In a similar way it may be shown that the limit of

(*+!)_*-
when * is increased, is -i^. For

since (*+ l)
m+l= xm+1 -\- (m-\- 1) x~+ (m-

-\- etc., this fraction is

etc.

in which the first term of the denominator may be

made to contain all the rest as often as we please ;

xm
that is, if the fraction be written thus, T

A can be made as small a part of (#*-j- I)*&quot;*
as we
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please. Hence this fraction can, by a sufficient in

crease of x, be brought as near as we please to

xm 1

A similar proposition may be shown of the fraction

(x 4.
M

-
+1 j^pp

which may be immediately reduced

to the form -, where x may be taken
(M-\- l)ax

m
-\- A

so great that xm shall contain A and B any number of

times.

We will now consider the sums of x terms of the

following series, each of which may evidently be made
as great as we please, by taking a sufficient number
of its terms,
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say one thousandth, of the sum of those which pre

cede, or of !3
-j-2

8 +(* I)
8

.

First, x may be taken so great that x* and (x

1000)
8 shall have a ratio as near to equality as we

please. For the ratio of these quantities being the

/, 1000V , 1000
, .

same as that of 1 to (1
J

,
and being as

small as we please if x may be as great as we please, it

1000 /, 1000\
3

follows that 1
, and, consequently, 1 1

x \ x j

may be made as near to unity as we please, or the

ratio of 1 to (1 :

]
, may be brought as near as

\ x /

we please to that of 1 to 1, or a ratio of equality. But

this ratio is that of x9 to (x 1000)
8

. Similarly the

ratios of x* to (x 999)
8

,
of x8 to (x 998)

8
, etc., up

to the ratio of XB to (x I)
3 may be made as near as

we please to ratios of equality ;
there being one thou

sand in all. If, then, (x l)*
= axs

, (x2^= fix*,

etc., up to (x lOOO)
3 ^^^3

,
x can be taken so great

that each of the fractions a, /?, etc., shall be as near

to unity, or a -j- ft -f- . . . . -\- GO as near * to 1000 as we

please. Hence ^ which is

ax* -f fix
3
-f -f GOX*

--a or

_ 1000V*l)
8
-f-O 2

* Observe that this conclusion depends upon the number of quantities a,

ft, etc., being determinate. If there be ten quantities, each of which can be

brought ?s near to unity as we please, their sum can be brought as near to 10

as we please; for, take any fraction A, and make each of those quantities
differ from unity by less than the tenth part of A, then will the sum differ

from 10 by less than A. This argument fails, if the number of quantities be
unlimited.



70 ELEMENTARY ILLUSTRATIONS OF

can be brought as near to Tc as we please ; and by

the same reasoning, the fraction

(*!) -f- ...... -fO 1001)
8

may be brought as near to nT as we please ;
that is,

may be made less than T- Still more then may__
(X I) + . . . . + (* 1001)

3
-f . . . . -f 23 -}- 18

be made less than or x* ma^ ^e ^ess t*ian

thousandth part of the sum of all the preceding terms.

In the same way it may be shown that a term may
be taken in any one of the series, which shall be less

than any given part of the sum of all the preceding
terms. It is also true that the difference of any two

succeeding terms may be made as small a part of

either as we please. For (x-\-I}
m xm

,
when devel

oped, will only contain exponents less than m, being

mxm~1
-f- m 5 a:&quot;*-

2
-f etc.

; and we have shown
a

(page 66) that the sum of such a series may be made
less than any given part of xm . It is also evident

that, whatever number of terms we may sum, if a

sufficient number of succeeding terms be taken, the

sum of the latter shall exceed that of the former in

any ratio we please.

Let there be a series of fractions

__

pa -f *&amp;gt; p
in which a, a

, etc., b, V
, etc., increase without limit;

but in which the ratio of b to a, b to a, etc., dimin

ishes without limit. If it be allowable to begin by
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supposing b as small as we please with respect to a,

or as small as we please, the first, and all the suc-
a

1

ceeding fractions, will be as near as we please to -,

which is evident from the equations

a 1 a 1__ _____ *tc
.A,. I L i JL. _ I I A U c ^*

* t+ lS

Form a new fraction by summing the numerators and

denominators of the preceding, such as

&quot; + etc.,

the etc. extending to any given number of terms.

This may also be brought as near to as we please.
P

For this fraction is the same as

etc.

and it can be shown* that

I, -L. y 4. etc.

a -f a -f etc.

must lie between the least and greatest of the fractions
7 7/

, 7, etc. If, then, each of these latter fractions
a a
can be made as small as we please, so also can

b + V + etc.

a -j- # + etc.

No difference will be made in this result, if we use

the following fraction,

A -f- (a-\-a -\-a&quot; -f etc. )

B + p (a -}- a + a&quot; + etc. )+ + b + &quot;

-f etc.
(1)

* See Study of Mathematics (Reprint Edition, Chicago : The Open Court

Publishing Co.), page 270.
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A and B being given quantities ; provided that we
can take a number of the original fractions sufficient

to make a-\- a -}- a&quot; -\- etc., as great as we please,

compared with A and B. This will appear on divid

ing the numerator and denominator of (1) by a-\-a
r

-f-

a&quot; -f etc.

Let the fractions be

S)
3

. ..,,, etc.

%
The first of which, or may, as we have

4x* -f- etc.
j

shown, be within any given difference of . and the
4

others still nearer, by taking a value of x sufficiently

great. Let us suppose each of these fractions to be

within
-, AAAAA of r-. The fraction formed by sum-
100000 4

ming the numerators and denominators of these frac

tions (n in number) will be within the same degree of

nearness to J. But this is

all the terms of the denominator disappearing, except
two from the first and last. If, then, we add #4 to

the denominator, and I 3
-f- 23

-f- 3
8

. . . . -}- jc
3 to the nu

merator, we can still take n so great that (x -J- I)
3

-f- ____ -f (x -f )
8 shall contain I 3

-f- . . -f- xs as often

as we please, and that (x -j- )
4

.*
4 shall contain x*

in the same manner. To prove the latter, observe

that the ratio of (x -\- n)* x* to x* being l
-j
--

\ x
can be made as great as we please, if it be permitted
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to take for it a number containing x as often as we

please. Hence, by the preceding reasoning, the frac

tion, with its numerator and denominator thus in

creased, or

may be brought to lie within the same degree of near

ness to J as (2); and since this degree of nearness

could be named at pleasure, it follows that (3) can

be brought as near to J as we please. Hence the

limit of the ratio of (l
8
-f2-f- ---- + *) to #*, as x

is increased without limit, is J ; and, in a similar man

ner, it may be proved that the limit of the ratio of

(!*_{_ 2&quot;-f
----

+#*&quot;)
to x*+l is the same as that of

This result will be of use when we come to the

first principles of the integral calculus. It may also

be noticed that the limits of the ratios which x
~

,

ZJ

x ^
--

5 , etc. , bear to x*, x9, etc., are severally -JT-,a O Li

^r-n-, etc. ; the limit being that to which the ratios ap-A- 6 x_ i
proximate as x increases without limit. For x 5

a

x 1 x Ix 2 xlx Z
-&quot; * = -&- * ~2- -g-

-H^=~T -TEr-
etc

&quot;

..._ i _ o

and the limits of ,
-

, are severally equal to

unity.

We now resume the elementary principles of the

Differential Calculus.
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RECAPITULATION OF RESULTS.

The following is a recapitulation of the principal
results which have hitherto been noticed in the gen
eral theory of functions :

(1) That if in the equation y=(p(x), the variable

x receives an increment dx, y is increased by the se

ries

&amp;lt;p

X dx + 9
&quot;X . + &amp;lt;p

X + etc.

(2) That
(p&quot;x

is derived in the same manner from

cp x, that cp x is from
&amp;lt;px ; viz., that in like manner as

&amp;lt;p

x is the coefficient of dx in the development of

&amp;lt;p(x-\-dx),
so

cp&quot;x
is the coefficient of dx in the de

velopment of
&amp;lt;p

(x -j- dx ) , similarly (p&quot;
x is the coeffi

cient of dx in the development of
cp&quot;(x-\-dx), and

so on.

(3) That qfx is the limit of S^ or the quantity to

which the latter will approach, and to which it may
be brought as near as we please, when dx is dimin

ished. It is called the differential coefficient of y.

(4) That in every case which occurs in practice,

dx may be taken so small, that any term of the series

above written may be made to contain the aggregate
of those which follow, as often as we please ; whence,

though qfxdx is not the actual increment produced

by changing x into x -f- dx in the function cpx, yet, by

taking dx sufficiently small, it may be brought as near

as we please to a ratio of equality with the actual in

crement.

APPROXIMATIONS.

The last of the above-mentioned principles is of

the greatest utility, since, by means of it, (pxdx may
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be made as nearly as we please the actual increment ;

and it will generally happen in practice, that qfxdx
may be used for the increment of (px without sensible

error ; that is, if in (px, x be changed into x -j- dx, dx

being very small, &amp;lt;px
is changed into (px+ cp xdx,

very nearly. Suppose that x being the correct value

of the variable, x-\-h and x-\- k have been succes

sively substituted for it, or the errors h and k have

been committed in the valuation of x, h and k being

very small. Hence
&amp;lt;p(x-\-h)

and cp(x-\-k) will be

erroneously used for cpx. But these are nearly cpx-\-

&amp;lt;p

xh and
cpx-\-&amp;lt;p xk, and the errors committed in

taking cpx are qfxh and
&amp;lt;p
xk, very nearly. These

last are in the proportion of h to k, and hence results

a proposition of the utmost importance in every prac
tical application of mathematics, viz., that if two dif

ferent, but small, errors be committed in the valua

tion of any quantity, the errors arising therefrom at

the end of any process, in which both the supposed
values of x are successively adopted, are very nearly
in the proportion of the errors committed at the be

ginning. For example, let there be a right-angled

triangle, whose base is 3, and whose other side should

be 4, so that the hypothenuse should be 1/32
-}- 4

2

or 5. But suppose that the other side has been twice

erroneously measured, the first measurement giving

4-001, and the second 4-002, the errors being -001

and -002. The two values of the hypothenuse thus
obtained are

T/32
_|_4-001

2
, or 1/25-008001,

and ]/38+ 4-0022
, or 1/25-016004,

which are very nearly 5-0008 and 5-0016. The errors

of the hypothenuse are then -0008 and -0016 nearly ;

and these last are in the proportion of -001 and -002.



76 ELEMENTARY ILLUSTRATIONS OF

It also follows, that if x increase by successive equal

steps, any function of x will, for a few steps, increase

so nearly in the same manner, that the supposition of

such an increase will not be materially wrong. For,

if h, 2h, 3^, etc. , be successive small increments given

to x, the successive increments of (px will be qfxh,

&amp;lt;pxZh, cp xSh, etc. nearly; which being proportional

to h, Zh, 3^, etc., the increase of the function is nearly

doubled, trebled, etc., if the increase of x be doubled,

trebled, etc.

This result may be rendered conspicuous by ref

erence to any astronomical ephemeris, in which the

positions of a heavenly body are given from day to

day. The intervals of time at which the positions are

given differ by 24 hours, or nearly -g-J-gth part of the

whole year. And even for this interval, though it can

hardly be called small in an astronomical point of view,

the increments or decrements will be found so nearly

the same for four or five days together, as to enable

the student to form an idea how much more near they

would be to equality, if the interval had been less, say

one hour instead of twenty-four. For example, the

sun s longitude on the following days at noon is writ

ten underneath, with the increments from day to day.

Proportion which the differences

1st
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found by an algebraical expression which may be

called cpx. If we date from the first of January, 1834,

x is -666, which is the decimal part of a year between

the first days of January and September. The incre

ment is one day, or nearly -0027 of a year. Here x is

successively made equal to -666, -666+ -0027, -666-}-

2 X 0027, etc. ; and the intervals of the corresponding
values of

&amp;lt;pxt
if we consider only minutes, are the

same ; but if we take in the seconds, they differ from

one another, though only by very small parts of them

selves, as the last column shows.

SOLUTION OF EQUATIONS.

This property is also used* in finding logarithms
intermediate to those given in the tables ; and may
be applied to find a nearer solution to an equation,

than one already found. For example, suppose it re

quired to find the value of x in the equation &amp;lt;px

= Q,

a being a near approximation to the required value.

Let a -f- h be the real value, in which h will be a small

quantity. It follows that cp(a-\- h)= (), or, which is

nearly true, &amp;lt;pa-\- (p ah= Q. Hence the real value of

h is nearly , . or the value a ^r- is a nearer
cp a cp a

approximation to the value of x. For example, let

x* -f x 4= be the equation. Here cpx= x*-\- x 4,

and cp(x + h) = (x + ?i)* + x + h 4= x* + x 4+
(2#+ l) + /*

8
;
so that

&amp;lt;p

x= 2x+ l. A near value

of x is 1-57; let this be a. Then
&amp;lt;pa

= -0349, and

cp a= 4 14. Hence -??- = 00843. Hence
cp a

1 . 57_ .

00843, or 1 56157, is a nearer value of x. If

* See Study of Mathematics (Reprint Edition, Chicago : The Open Court

Publishing Co., 1898), page 169 et seq.
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we proceed in the same way with 1-5616, we shall

find a still nearer value of x, viz., 1-561553. We
have here chosen an equation of the second degree,

in order that the student may be able to verify the

result in the common way ;
it is, however, obvious

that the same method may be applied to equations
of higher degrees, and even to those which are not

to be treated by common algebraical method, such as

tan x= ax.

PARTIAL AND TOTAL DIFFERENTIALS.

We have already observed, that in a function of

more quantities than one, those only are mentioned

which are considered as variable ;
so that all which

we have said upon functions of one variable, applies

equally to functions of several variables, so far as a

change in one only is concerned. Take for example
x2
y-{-2xy

8
. If x be changed into x-\-dx, y remaining

the same, this function is increased by 2xy dx -j- 2y*dx

-{-etc., in which, as in page 29, no terms are con

tained in the etc. except those which, by diminishing

dx, can be made to bear as small a proportion as we

please to the first terms. Again, if y be changed into

y-\-dy, x remaining the same, the function receives

the increment oPdy -\- xy*dy -f- etc. ; and if x be changed
into x -\-dx, y being at the same time changed into

y-{- dy, the increment of the function is (2xy-\-Zp)dx

_j_ (a* _|_ QXy^dy -f etc. If, then, u= x*y+ 2xy*, and

du denote the increment of u, we have the three fol

lowing equations, answering to the various supposi

tions above mentioned,

(1) when x only varies,

du= (2xy + 2/) dx + etc.
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(2) when y only varies,

du O2
-f 6#/) dy -f etc.

(3) when both x and y vary,

du= (2xy+ 2/) dx+ (x* + 6^2
) dy -f etc.

in which, however, it must be remembered, that du

does not stand for the same thing in any two of the

three equations : it is true that it always represents
an increment of u, but as far as we have yet gone, we
have used it indifferently, whether the increment of u

was the result of a change in x only, or y only, or both

together.

To distinguish the different increments of
,
we

must therefore seek an additional notation, which,
without sacrificing the du that serves to remind us

that it was u which received an increment, may also

point out from what supposition the increment arose.

For this purpose we might use dxu and dyu9 and d
Xtji,

to distinguish the three ; and this will appear to the

learner more simple than the one in common use,

which we shall proceed to explain. We must, how

ever, remind the student, that though in matters of

reasoning, he has a right to expect a solution of every

difficulty, in all that relates to notation, he must trust

entirely to his instructor ; since he cannot judge be

tween the convenience or inconvenience of two sym
bols without a degree of experience which he evi

dently cannot have had. Instead of the notation above

described, the increments arising from a change in x

and y are severally denoted by -y- dx and dy, on

the following principle : If there be a number of re

sults obtained by the same species of process, but on
different suppositions with regard to the quantities



80 ELEMENTARY ILLUSTRATIONS OF

used
; if, for example, p be derived from some suppo

sition with regard to a, in the same manner as are q

and r with regard to b and c, and if it be inconvenient

and unsymmetrical to use separate letters /, ^, and r,

for the three results, they may be distinguished by

using the same letter p for all, and writing the three

results thus, -
a,
~

b, c. Each of these, in com-
a b c

mon algebra, is equal to /, but the letter / does not

stand for the same thing in the three expressions.

The first is the /, so to speak, which belongs to , the

second that which belongs to b, the third that which

belongs to c. Therefore the numerator of each of the

fractions -, -, and , must never be separateda o c

from its denominator, because the value of the former

depends, in part, upon the latter
;
and one p cannot

be distinguished from another without its denomina
tor. The numerator by itself only indicates what op
eration is to be performed, and on what quantity; the

denominator shows what quantity is to be made use

of in performing it. Neither are we allowed to say

that divided by -~ is
;
for this supposes that /a b a

means the same thing in both quantities.

In the expressions -- dx, and -
dy, each denotes

that u has received an increment
;
but the first points

out that x, and the second that^y, was supposed to in

crease, in order to produce that increment ; while du

by itself, or sometimes d.u, is employed to express
the increment derived from both suppositions at once.

And since, as we have already remarked, it is not the

ratios of the increments themselves, but the limits of

those ratios, which are the objects of investigation in
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the Differential Calculus, here, as in page 28, - dx,
7 (IX

and
-j-dyt are generally considered as representing

those terms which are of use in obtaining the limiting

ratios, and do not include those terms, which, from

their containing higher powers of dx or dy than the

first, may be made as small as we please with respect

to dx or dy. Hence in the example just given, where

2xy*, we have

dx= (fry+ 2/) dx, 0* = Zx? +

-

du du
du or a.u= ~ ax A =- ay.

dx d &quot;

The last equation gives a striking illustration of

the method of notation. Treated according to the

common rules of algebra, it is du= du-\- du, which is

absurd, but which appears rational when we recollect

that the second du arises from a change in x only, the

third from a change in y only, and the first from a

change in both. The same equation may be proved
to be generally true for all functions of x and y, if we
bear in mind that no term is retained, or need be re

tained, as far as the limit is concerned, which, when
dx or dy is diminished, diminishes without limit as

compared with them. In using and -=- as differ

ential coefficients of u with respect to x and y, the ob

jection (page 27) against considering these as the

limits of the ratios, and not the ratios themselves,

does not hold, since the numerator is not to be sep
arated from its denominator.
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Let u be a function of x and^y, represented* by

cp(x, y). It is indifferent whether x and y be changed
at once into x -\- dx and jy -f- dy, or whether # be first

changed into x -\- dx, and y be changed into y-\-dy in

the result. Thus, x*y -f- _y
3 will become (#-[-d&)

2

Oy+ d&O + (y -f ^v)
3 in either case. If x be changed

into x-\-dx, u becomes u -}- u dx -f- etc. , (where is

what we have called the differential coefficient of u

with respect to x, and is itself a function of x and_y;
and the corresponding increment of u is u dx-\- etc.)

If in this result y be changed into y -\- dy, u will as

sume the form u -f- u t dy -f- etc. , where u
t
is the differen

tial coefficient of u with respect to y ;
and the incre

ment which u receives will be u
t dy -|- etc. Again,

when^ is changed mto y-\-dy, u
,
which is a function

of x andjy, will assume the form u -\-pdy-\-etc. ;
and

u -\- u dx -f- etc. becomes u -f- ucly -f- etc. -|- (u -f- p dy

+ etc. )
dx -f- etc. , or u-\- u

t dy + u dx -\-p dx dy -\- etc.,

in which the termfldxdy is useless in finding the limit.

For since dy can be made as small as we please,

pdxdy can be made as small a part of pdx as we please,

and therefore can be made as small a part of dx as

we please. Hence on the three suppositions already

made, we have the following results :

(1) when x only is changed

u receives

the

increment

(2) when y only is changed
into y -f- dy,

(3) when x becomes x-\-dx
and y becomes y-\-dy
at once,

u
tdy 4- etc.

u dx -f- utdy -f- etc.

*The symbol $(x,y) must not be confounded with $(xy). The former rep
resents any function of^-and^; the latter a function in which x andy only
enter so far as they are contained in their product. The second is therefore

a particular case of the first
; but the first is not necessarily represented by
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the etc. in each case containing those terms only which

can be made as small as we please, with respect to

the preceding terms. In the language of Leibnitz,

we should say that if x and y receive infinitely small

increments, the sum of the infinitely small increments

of u obtained by making these changes separately, is

equal to the infinitely small increment obtained by

making them both at once. As before, we may cor

rect this inaccurate method of speaking. The several

increments in (1), (2), and (3), maybe expressed by
u dx -f- P, u

t dy -f Q, and u dx -\- ut dy -f R ;
where P,

Q, and R can be made such parts of dx or dy as we

please, by taking dx or dy sufficiently small. The sum
of the two first is u dx -f- udy -j- P -{- Q, which differs

from the third byP-J-Q R; which, since each of

its terms can be made as small a part of dx or dy as

we please, can itself be made less than any given part
of dx or dy.

This theorem is not confined to functions of two

variables only, but may be extended to those of any
number whatever. Thus, if z be a function of /, q, r,

and s, we have
dz .

,
dz .

,
dz .

,
dz .

d.z or dz= - dp 4- dq -4- -7
- dr -f- ds 4- etc.

dp dq ar as

in which dp-\- etc. is the increment which a change

in/ only gives to z, and so on. The etc. is the repre
sentative of an infinite series of terms, the aggregate
of which diminishes continually with respect to dp,

dq, etc., as the latter are diminished, and which, there-

the second. For example, take the function xy + sin jcy, which, though it

contains both x and^, yet can only be altered by such a change in x andjy as

will alter their product, and if the product be called/, will be/ + sin/. This

may properly be represented by $(xy) ; whereas x + ,ry2 cannot be represented
in the same way, since other functions besides the product are contained
in it.
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fore, has no effect on the limit of the ratio of d.z to

any other quantity.

PRACTICAL APPLICATION OF THE PRECEDING THEOREM.

We proceed to an important practical use of this

theorem. If the increments dp, dq, etc., be small,

this last-mentioned equation, (the terms included in

the etc. being omitted,) though not actually true, is

sufficiently near the truth for all practical purposes ;

which renders the proposition, from its simplicity, of

the highest use in the applications of mathematics.

For if any result be obtained from a set of data, no

one of which is exactly correct, the error in the result

would be a very complicated function of the errors in

the data, if the latter were considerable. When they
are small, the error in the results is very nearly the

sum of the errors which would arise from the error in

each datum, if all the others were correct. For if /,

q9 r, and s, are the presumed values of the data, which

give a certain value z to the function required to be

found
;
and if p -j- dp, q -f- dqt etc., be the correct values

of the data, the correction of the function z will be

very nearly made, if z be increased by dp -f -=- dq -f-

fly /fv dp dq
-j- dr 4- ds

, being the sum of terms which would
ar as

arise from each separate error, if each were made in

turn by itself.

For example : A transit instrument is a telescope

mounted on an axis, so as to move in the plane of the

meridian only, that is, the line joining the centres of

the two glasses ought, if the telescope be moved, to

pass successively through the zenith and the pole.

Hence can be determined the exact time, as shown by
a clock, at which any star passes a vertical thread,
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fixed inside the telescope so as apparently to cut the

field of view exactly in half, which thread will always
cover a part of the meridian, if the telescope be cor

rectly adjusted. In trying to do this, three errors

may, and generally will be committed, in some small

degree. (1) The axis of the telescope may not be ex

actly level
; (2) the ends of the same axis may not be

exactly east and west; (3) the line which joins the

centres of the two glasses, instead of being perpen
dicular to the axis of the telescope, may be inclined

to it. If each of these errors were considerable, and

the time at which a star passed the thread were ob

served, the calculation of the time at which the same

star passes the real meridian would require compli
cated formulae, and be a work of much labor. But if

the errors exist in small quantities only, the calcula

tion is very much simplified by the preceding princi

ple. For, suppose only the first error to exist, and

calculate the corresponding error in the time of pass

ing the thread. Next suppose only the second error,

and then only the third to exist, and calculate the

effect of each separately, all which may be done by

simple formula?. The effect of all the errors will then

be the sum of the effects of each separate error, at

least with sufficient accuracy for practical purposes.
The formulae employed, like the equations in page 28,

are not actually true in any case, but approach more
near to the truth as the errors are diminished.

RULES FOR DIFFERENTIATION.

In order to give the student an opportunity of ex

ercising himself in the principles laid down, we will

so far anticipate the treatises on the Differential Cal

culus as to give the results of all the common rules
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for differentiation ; that is, assuming y to stand for

various functions of x, we find the increment of y aris

ing from an increment in the value of x, or rather,

that term of the increment which contains the first

power of dx. This term, in theory, is the only one

on which the limit of the ratio of the increments de

pends ; in practice, it is sufficiently near to the real

increment of y, if the increment of x be small.

(1) y=xm
,
where m is either whole or fractional,

positive or negative ;
then dy= mx&quot;*

1 dx. Thus the

increment of x$ or the first term of (x-\-dx)% x$

is \x%~idx, or-. Again, if y= x8
, dy= 8x1 dx.

When the exponent is negative, or when y= ,

dy= --^-j,
or when y= x~m

) dy= mx~m~l
dx,

which is according to the rule. The negative sign

indicates that an increase in x decreases the value

of y\ which, in this case, is evident.

(2) y= a*. Here dy= a* log a dx where the log

arithm (as is always the case in analysis, except
where the contrary is specially mentioned) is the Na-

perian or hyperbolic logarithm. When a is the base

of these logarithms, that is when a= 2- 7182818= e,

or when y= *, dy= e*dx.

(3) y= logx (the Naperian logarithm). Here

dy= . Ify= common log*, ^= -4342944 .

x x

(4) y=
sinxdx; y= ta.nx, dy=

ILLUSTRATION OF THE PRECEDING FORMULA.

At the risk of being tedious to some readers, we
will proceed to illustrate these formulae by examples



THE DIFFERENTIAL AND INTEGRAL CALCULUS. 87

from the tables of logarithms and sines. Let
j&amp;gt;

= com
mon log x. If x be changed into x-\-dx, the real in

crement of y is

in which the law of continuation is evident. The cor

responding series for Naperian logarithms is to be

found in page 20. From the first term of this the

limit of the ratio of dy to dx can be found ; and if dx

be small, this will represent the increment with suffi

cient accuracy. Let #= 1000, whence y= common

loglOOO= 3; and let dx= ~L, or let it be required to

find the common logarithm of 1000 -f- 1, or 1001. The
first term of the series is therefore -4342944Xy^Viy or

0004343, taking seven decimal places only. Hence

log 1001 =log 1000+ -0004343 or 3-0004343 nearly.

The tables give 3-0004341, differing from the former

only in the 7th place of decimals.

Again, let y= sinx; from which, by page 20, as

before, if x be increased by dx, sinx is increased by
cosxdx ^smx(dx)^ etc., of which we take only
the first term. Let #= 16, in which case sin#=
2756374, and cos #= -9612617. Let dx= l

, or, as

it is represented in analysis, where the angular unit is

that angle whose arc is equal to the radius*, ^f ^.
Hence sin 16 1 = sin 16 + 9612617 X *dHfro =
2756374 -f 0002797= 2759171, nearly. The tables

give -2759170. These examples may serve to show
how nearly the real ratio of two increments approaches
to their limit, when the increments themselves are

small.

*See Study ofMathematics (Chicago : The Open Court Pub. Co.), page 273
et seg.
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DIFFERENTIAL COEFFICIENTS OF DIFFERENTIAL

COEFFICIENTS.

When the differential coefficient of a function of x

has been found, the result, being a function of x, may
be also differentiated, which gives the differential co

efficient of the differential coefficient, or, as it is called,

the second differential coefficient. Similarly the differ

ential coefficient of the second differential coefficient

is called the third differential coefficient, and so on.

We have already had occasion to notice these succes

sive differential coefficients in page 22, where it ap

pears that cp x being the first differential coefficient of

cpx, &amp;lt;p&quot;x

is the coefficient of h in the development

cp (x -{ #), and is therefore the differential coefficient

of cp x, or what we have called the second differential

coefficient of cpx. Similarly cp &quot;x is the third differ

ential coefficient of cpx. If we were strictly to ad

here to our system of notation, we should denote the

several differential coefficients of cpx or y by
dy

dy .*?*
J ** ** etc -

dx dx dx

In order to avoid so cumbrous a system of notation,

the following symbols are usually preferred,

dy d*y d*y

dx 2? Z?

CALCULUS OF FINITE DIFFERENCES. SUCCESSIVE

DIFFERENTIATION.

We proceed to explain the manner in which this

notation is connected with our previous ideas on the

subject.
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When in any function of x, an increase is given to

x, which is not supposed to be as small as we please,

it is usual to denote it by Ax instead of dx, and the

corresponding increment of y or cpx, by Ay or Acpx,

instead of dy or dcpx. The symbol Ax is called the

difference of x, being the difference between the value

of the variable x, before and after its increase.

Let x increase at successive steps by the same dif

ference
;
that is, let a variable, whose first value is x,

successively become x-}-Ax, x+ ZAx, x-}-%Ax, etc.,

and let the successive values of cpx corresponding to

these values of x be y, yi, y%, j8 ,
etc.

;
that is, cpx is

called^, &amp;lt;p(x-\-Ax}
is y\, &amp;lt;p(x-}-2Ax) is y*, etc., and,

generally, cp(x -\-mAx] isym . Then, by our previous
definition y\ y is Ay, y^ y\ is Ay\, J3 y% is Ay^
etc., the letter A before a quantity always denoting
the increment it would receive if x-\-Ax were substi

tuted for x. Thus yi or cp(x-\-*&Ax) becomes
&amp;lt;p(x-{-

Ax -\- 3Ax), or cp(x -j- Ax), when x is changed into

x+ Ax, and receives the increment cp(x -J- Ax)
cp(x -\-ZAx), or

j&amp;gt;4 j8 . If y be a function which de

creases when x is increased, y\ y, or Ay is negative.

It must be observed, as in page 26, that Ax does

not depend upon x, because x occurs in it j the sym
bol merely signifies an increment given to x, which

increment is not necessarily dependent upon the value

of x. For instance, in the present case we suppose
it a given quantity; that is, when x-\-Ax is changed
into x -\-Ax-\- Ax, or x -\-2Ax, x is changed, and Ax
is not.

In this way we get the two first of the columns un

derneath, in which each term of the second column is

formed by subtracting the term which immediately

precedes it in the first column from the one which im-
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mediately follows. Thus Ay is_yi y, Ay\ is jy2 y\,

etc.

&amp;gt;.+ ^)....j

(p(x

Ay
Ay\

Ay*

etc.

In the first column is to be found a series of suc

cessive values of the same function cpx, that is, it con

tains terms produced by substituting successively in

cpx the quantities x, x-\-Ax, x -\-2Ax, etc., instead of

x. The second column contains the successive values

of another function
&amp;lt;p(x-\-Ax) cpx, or A cpx, made by

the same substitutions
; if, for example, we substitute

x -\-ZAx for x, we obtain cp(x -\-3Ax) (p(x -\-2Ax),

or ys J2, or Ay*. If, then, we form the successive

differences of the terms in the second column, we ob

tain a new series, which we might call the differences

of the differences of the first column, but which are

called the second differences of the first column. And
as we have denoted the operation which deduces the

second column from the first by A, so that which de

duces the third from the second may be denoted by
AA, which is abbreviated into A*. Hence as y\ y
was written Ay, Ay\ Ay is written AAy, or A^y. And
the student must recollect, that in like manner as A
is not the symbol of a number, but of an operation,

so A9 does not denote a number multiplied by itself,

but an operation repeated upon its own result ; just

as the logarithm of the logarithm of x might be writ

ten Iog
2
#; (logjc)

2
being reserved to signify the square

of the logarithm of x. We do not enlarge on this no

tation, as the subject is discussed in most treatises on
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algebra.* Similarly the terms of the fourth column,
or the differences of the second differences, have the

prefix AAA abbreviated into A*, so that A^y\ A*y

A*y, etc.

When we have occasion to examine the results

which arise from supposing Ax to diminish without

limit, we use dx instead of Ax, dy instead of Ay, d^y in

stead of A*y, and so on. If we suppose this case, we
can show that the ratio which the term in any column

bears to its corresponding term in any preceding col

umn, diminishes without Hmit. Take for example,

d*y and dy. The latter is
&amp;lt;p(x -f- dx) cpx, which, as

we have often noticed already, is of the form / dx -f-

q(dxf -\- etc., in which p, q, etc., are also functions

of x. To obtain d*y, we must, in this series, change
x into x-\-dx, and subtract pdx-\- q(dx)* -\- etc. from

the result. But since p, q, etc., are functions of x,

this change gives them the form

f+ fdx+ etc., ?4Y*fcr-f etc.;

so that d*y is

(p +p dx + etc. ) dx -f (q -f q dx -f etc. ) (dx)* -f etc.

(pdx -f- q (dx)*+ etc. )

in which the first power of dx is destroyed. Hence

(pages 42-44), the ratio of d*y to dx diminishes with

out limit, while that of d*y to (dx)* has a finite limit,

except in those particular cases in which the second

power of dx is destroyed, in the previous subtraction,

as well as the first. In the same way it may be shown
that the ratio of dzy to dx and (dx)* decreases without

limit, while that of d*y to (dx)* remains finite
;
and so

*The reference of the original text is to &quot; the treatise on Algebraical Ex
pressions,&quot; Number 105 of the Library of Useful Knowledge, the same series

in which the present work appeared. The first six pages of this treatise are

particularly recommended by De Morgan in relation to the present point. Ed.
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TT t - dy d*y d*y
on. Hence we have a succession of ratios -f-,

~ -^=.
dx dx* dx*

etc., which tend towards finite limits when dx is di

minished.

We now proceed to show that in the development
of cp(x -f A), which has been shown to be of the form

h* h*

&amp;lt;px-\- cp xh -f cp&quot;x

- + &amp;lt;jt&quot;x g-g -f etc.,

in the same manner as
&amp;lt;p

x is the limit of
-j-

(page 23),

d^v d^y
so

(p&quot;x
is the limit of

^, &amp;lt;p

&quot;x is that of
-^~,

and so

forth.

From the manner in which the preceding table

was formed, the following relations are seen imme

diately :

Ayi =Ay

etc.

etc.

Hence y\, y^ etc., can be expressed in terms of y, Ay,

A*y, etc. For yi=y+Ay\ y* =yi + Ayi= (y -f Ay} -f

(Ay -^-A^f) =y+ 24y -f A^y. In the same way Ay* =
Ay -f- 2A^y -\- A*y ;

hence _y8
=j

Jy) + (J_y -f 2A*y + A*y) =y
Proceeding in this way we have

A*y

,
etc.

from the whole of which it appears that yn or cp(x -f

nAx} is a series consisting of y, Ay, etc., up to An
y,

severally multiplied by the coefficients which occur in

the expansion (1 -f )&quot;

r
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Let us now suppose that x becomes x -f- h by n

h 2/t nh
equal steps ;

that is, x, x -j ,
x -\ ,

etc x -f-

or x -f- h, are the successive values of x, so that

nAx h. Since the product of a number of factors is

not altered by multiplying one of them, provided we

divide another of them by the same quantity, multiply

every factor which contains n by Ax, and divide the

accompanying difference of y by Ax as often as there

are factors which contain n, substituting h for nAx,

which gives
Ay A nAx Ax A*y

cp(x -f nAx} =y -f nAx -- -f nAx
Zj OC

nAx Ax nAx 2Ax

*

If h remain the same, the more steps we make be

tween x and x-\- h, the smaller will each of those

steps be, and the number of steps may be increased,

until each of them is as small as we please. We can

therefore suppose Ax to decrease without limit, with

out affecting the truth of the series just deduced.

Write dx for Axt etc., and recollect that h dx,

h 2dx, etc., continually approximate to h. The se

ries then becomes

dy .
, d*yh* , d*y
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in which, according to the view taken of the symbols

~- etc. in pages 26-27, S- stands for the limit of the
ax ax

dy d^y
ratio of the increments, -f-

is cp x, -. is
cp&quot;x,

etc.
uX uX

According to the method proposed in pages 28-29,

the series written above is the first term of the devel

opment of cp(x-}-fr), the remaining terms (which we

might include under an additional -f- etc.) being such

as to diminish without limit in comparison with the

first, when dx is diminished without limit. And we

d*y
may show that the limit of -^4 is the differential co-J dx*

dy
efficient of the limit of -/-; or if by these fractions

dx di

themselves are understood their limits, that -^ is the

dy
dx

differential coefficient of
-^-

: for since dy, or (p(x -j- dx)
itOC

cpx, becomes dy -f- d*y, when x is changed into

x -\- dx ;
and since dx does not change in this process,

dy dy d^y d^y
-4- will become -^- -f- -r-t

or its increment is =-. The
dx dx dx dx

d^y
ratio of this to dx is ^2 ,

the limit of which, in the

definition of page 22, is the differential coefficient of

-. Similarly the limit of -^ is the differential co-
dx dx*

d*y
efficient of the limit of -~\ and so on.

dx*

TOTAL AND PARTIAL DIFFERENTIAL COEFFICIENTS.

IMPLICIT DIFFERENTIATION.

We now proceed to apply the principles laid down,

to some cases in which the variable enters into its

function in a less direct and more complicated man

ner.
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For example, let z be a given function of x and y,

and let y be another given function of x ;
so that z

contains x both directly and indirectly ;
the latter as

it contains y, which is a function of x. This will be

the case if z= x\ogy, where y= sin x. If we were to

substitute for y its value in terms of x, the value of z

would then be a function of x only ;
in the instance

just given it would be xlogsmx. But if it be not con

venient to combine the two equations at the beginning
of the process, let us first consider z as a function of

x andy, in which the two variables are independent.

In this case, if x and y respectively receive the incre

ments dx and dy, the whole increment of z, or d.z, (or

at least that part which gives the limit of the ratios)

is represented by
dz dz

,

dx 4- -=- dy.dx dy

liy be now considered as a function of x, the conse

quence is that dy, instead of being independent of dx,

is a series of the form pdx -f- q (dxf -f etc., in which p
is the differential coefficient of y with respect to x.

Hence
dz

,
dz d.z dz dz

d. z= -3 dx -f -j- pdx or - =
\-

-=- p,dx dy
* dx dx dy

r

in which the difference between ^ and -y- is this,
dx ax

that in the second, x is only considered as varying

where it is directly contained in z, or z is considered

in the form in which it first appeared, as a function of

x and y, where y is independent of x
;
in the first, or

-^ ,
the total variation of z is denoted, that is, y is

(IOC

now considered as a function of x, by which means if

x become x -j- dx, z will receive a different increment
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from that which it would have received, had y been

independent of x. In the instance above cited, where

z= x\ogy andy= smx, if the first equation be taken,

and x becomes x+ dx, y remaining the same, z be

comes x logy -f- logydx or is log_y. If y only varies,
dX

since (page 20) z will then become

dyx \Q%y+ x- etc.,

-j- is . And -2- is cos* when y= smx (page 20)
dy y dx

dz dz dz dz dy .
,

x
HenCe

-& + Tyt
r TX + TyTX S Iog + 7

C S*

or log sin AH : cosx. This is =^ ,
which mightsm x dx

have been obtained by a more complicated process, if

sinx had been substituted lory, before the operation

commenced. It is called the complete or total differen

tial coefficient with respect to x, the word total indi

cating that every way in which z contains x has been

used ; in opposition to -7-, which is called the partialuX
differential coefficient, x having been considered as

varying only where it is directly contained in z.

Generally, the complete differential coefficient of z

with respect to x, will contain as many terms as there

are different ways in which z contains x. From look

ing at a complete differential coefficient, we may see

in what manner the function contained its variable.

Take, for example, the following,

d.z dz dz dy dz da dy dz da

dx dx dy dx da dy dx da dx*

Before proceeding to demonstrate this formula, we

will collect from itself the hypothesis from which it
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must have arisen. When x is contained in z, we shall

say that z is a direct* function of x. When x is con

tained in y, and y is contained in z, we shall say that

z is an indirect function of x through y. It is evident

that an indirect function may be reduced to one which

is direct, by substituting for the quantities which con

tain x, their values in terms of x.

The first side of the equation ^
is shown by the

point to be a complete differential coefficient, and in

dicates that z is a function of x in several ways; either

directly, and indirectly through one quantity at least,

or indirectly through several. If z be a direct function

only, or indirectly through one quantity only, the

symbol , without the point, would represent its

total differential coefficient with respect to x.

On the second side of the equation we see :

(1) -=- : which shows that z is a direct function of
dx

x, and is that part of the differential coefficient which
we should get by changing x into x-\-dx throughout
Zj not supposing any other quantity which enters into

z to contain x.

(2) -f-: which shows that z is an indirect func-J
dy dx

tion of x through y. If x and y had been supposed to

vary independently of each other, the increment of 5,

(or those terms which give the limiting ratio of this

increment to any other,) would have been dx-\-
dz .

dx
-j- dy, in which, if dy had arisen from y being a func-

*It may be right to warn the student that this phraseology is new, to the

best of our knowledge. The nomenclature of the Differential Calculus has

by no means kept pace with its wants ; indeed the same may be said of alge
bra generally. [Written in 1832. Ed.}
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tion of x, dy would have been a series of the form

pdx -f- q (dx^f -J- etc., of which only the differential co

efficient/ would have appeared in the limit. Hence
dz . dz dz dy

dy would have given -r-/, or ~.
dy dy* dy dx

(3)
--

: this arises from z containing a, whichJ da dy dx
contains y, which contains x. If z had been differen

tiated with respect to a only, the increment would

have been represented by 7 da
;

if da had arisen from
da

an increment of y, this would have been expressed by
dz da .

- dy ; if y had arisen from an increment given to
da dy //////
x. this would have been expressed by r- dx.J da dy dx

which, after dx has been struck out, is the part of the

differential coefficient answering to that increment.

(4)
-

: arising from a containing x directly,

and z therefore containing x indirectly through a.

Hence z is directly a function of x, y, and a, of

which y is a function of x, and a ot y and x.

If we suppose x, y and a to vary independently,

we have

d.z= ^ dx + ^ dy+ ^ da+ etc. (pages 28-29).

But as a varies as a function of y and x,

da da
da dx-\- dy.dx dy

If we substitute this instead of da, and divide by dx,

taking the limit of the ratios, we have the result first

given.

For example, let (1) z= x*ya*, (2)y=x*, and (3)

a= x6
y. Taking the first equation only, and substi-
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tuting x -f dx for x etc. ,
we find = 2xya

9
,
-=- = x2

a?,

s7w {I V &amp;lt;*

and = 3x
f

*ya
2

. From the second - = 2x, and from
da da

*

ja dx
the third =3jc2

y, and -3- =xs
. Substituting these

dx d z y
in the value of ,

we find
ax

d.z dz dz dy dz da dy dz da

dx dx dy dx da dy dx da dx

2xya* + *2a3 X 2x + Zx2
ya? X & X 2* + 3^2j a2 X

If for
j&amp;gt;

and # in the first equation we substitute their

values x1 and x*y, or x5
,
we have z= x19

,
the differen

tial coefficient of which 19^tr18 . This is the same as

arises from the formula just obtained, after x2 and x5

have been substituted for y and a
; for this formula

then becomes

2 *w __ 6 *&quot; 9 ^c
18 or 19 x16

.

In saying that 2 is a function of x and^, and that

y is a function of x, we have first supposed x to vary,

jy remaining the same. The student must not imagine
that y is then a function of x

;
for if so, it would vary

when x varied. There are two parts of the total dif

ferential coefficient, arising from the direct and indi

rect manner in which z contains x. That these two

parts may be obtained separately, and that their sum
constitutes the complete differential coefficient, is the

theorem we have proved. The first part is what

would have been obtained if y had not been a function

of x
;
and on this supposition we therefore proceed to

find it. The other part
-j- -j~-

is the product (1) of

, which would have resulted from a variation of y
dy

%

only, not considered as a function of x; and (2) of
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dy
-f-, the coefficient which arises from considering^ as a
ax
function of x. These partial suppositions, however

useful in obtaining the total differential coefficient,

cannot be separately admitted or used, except for this

purpose; since ify be a function of x, x and^ must

vary together.

If z be a function of x in various ways, the theorem

obtained may be stated as follows :

Find the differential coefficient belonging to each

of the ways in which z will contain x, as if it were the

only way ;
the sum of these results (with their proper

signs) will be the total differential coefficient.

Thus, if z only contains x indirectly through y,

dz . dz dy ,, . . . , ^ . , , . ,

-j- is -r -f-. If * contains a, which contains b, which
dx dy dx

dz dz da db
contains x, -=- = -=- -77

-r .

dx da db dx

This theorem is useful in the differentiation of com

plicated functions; for example, let z= log(x* -}-a?).

If we makejy=#2
-f a

2
,
we have s= log^y, and-y-= ;

while from the first equation -~ 2x. Hence or

2x dx dx
s2

-\-

If s= log log sin#, or the logarithm of the loga

rithm of sin#, let sin#=j&amp;gt; and logy= a; whence

z:=log0, and contains x, because a contains^, which

contains x. Hence

dz _ dz da dy ^

dx dady~dx
y

but since z= loga,

~da
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since a logy,

** -~L
dy
~

y&amp;gt;

and since y= sin x,

dy
dx~

Hence

dz dz da dy 11 cos*
-.- = -=- -=- -f- = COSX= -: : : .

dx da dy dx ay logsm^sin*

We now put some rules in the form of applications

of this theorem, though they may be deduced more

simply.

APPLICATIONS OF THE PRECEDING THEOREM.

(1) Let z= ab, where a and b are functions of x.

The general formula, since z contains x indirectly

through a and b, is (in this case as well as in those

which follow,)

dz dz da dz db

dx da dx db dx

We must leave and as we find them, until we
dx dx

know what functions a and b are of x\ but as we

know what function z is of a and 3, we substitute for

and . Since z= ab, if a becomes a-}- da, g be-
da db jz
comes ab -\- bda, whence -=b. In this case, and part

of the following, the limiting ratio of the increments

is the same as that of the increments themselves.

Similarly -jr=a, whence from z= ab follows
ao

dz , da .
db
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(2) Letz= --. If a become a-\-da, z becomes

a-\-da a
,
da . da . 1 _. .

-- or -f ,
and is -7-. If b become b -}- db, z

b bo da b

a a adb . dz . a
becomes .

, ., or ----7=- -f- etc. ,
whence is -75.

b b P db b 1

Hence from z= follows
b

i da dt&amp;gt;

dz 1 da a db
-&amp;lt;

a irx

(3) Let z-=a*. Here (a + da)*= a* + fa*-* da

-j-etc. (page 21), whence -^ = bab~l
. Again, ab+db =

ab adb= ab
(\ -f log^t^ -f- etc.) whence =*

Therefore from z= a* follows

dz , . da . . . db
~- = bab~^

-j- + ab
log a .

dx dx dx

INVERSE FUNCTIONS.

If y be a function of x, such as y=cpx, we may,

by solution of the equation, determine x in terms of

y, or produce another equation of the form x= $y.

For example, when y= x2
, x=y%. It is not neces

sary that we should be able to solve the equation

y=cpx in finite terms, that is, so as to give a value

of x without infinite series
;

it is sufficient that x can

be so expressed that the value of x corresponding to

any value of y may be found as near as we please

from x
i/jy,

in the same manner as the value of y

corresponding to any value of x is found from y= cpx.

The equations y= g&amp;gt;x,
and x=

ip&amp;gt;y,

are connected,

being, in fact, the same relation in different forms ;

and if the value of y from the first be substituted in
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the second, the second becomes x= tp((px
&amp;gt;

),
or as it is

more commonly written, ty(px. That is, the effect of

the operation or set of operations denoted by ip
is de

stroyed by the effect of those denoted by cp ;
as in the

instances (#
2
)^, (#

8
), & sx

, angle whose sine is (sin#),

etc., each of which is equal to x.

By differentiating the first equation y=&amp;lt;px,
we ob

tain -=- = qjx, and from the second tb y. But
dx dy

whatever values of x and y together satisfy the first

equation, satisfy the second also
; hence, if when x be

comes x -\- dx in the first, y becomes y -f- dy ;
the same

y-^dy substituted for y in the second, will give the

same x-\- dx. Hence -- as deduced from the second,

and
-J-

as deduced from the first, are reciprocals for
doc

every value of dx. The limit of one is therefore the

reciprocal of the limit of the other
;
the student may

easily prove that if a is always equal to
,
and if a

continually approaches to the limit a, while b at the

same time approaches the limit y#, a is equal to -^ .

dx P.
But or

if&amp;gt; y, deduced from x rpy, is expressed in

dv
terms of y, while

-j-
or cp x, deduced from y= (px is

ctoc

expressed in terms of x. Therefore ipy and cp x are

reciprocals for all such values of x and y as satisfy

either of the two first equations.

For example lety= *, from which x= logy. From

the first (page 20) -J-
= *

; from the second =
;

and it is evident that s* and are reciprocals, when

ever y= *.

If we differentiate the above equations twice, we get
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-~~ =
q&amp;gt;&quot;x,

and -j-^ =tb&quot;x. There is no very obvious
dx1

dy*

analogy between -~ and ^ ;
indeed no such appearsdx dy

from the method in which these coefficients were first

formed. Turn to the table in page 90, and substitute

d for A throughout, to indicate that the increments

may be taken as small as we please. We there sub

stitute in (px what we will call a set of equidistant val

ues of x, or values in arithmetical progression, viz.,

x, x-\-dx, x -\-2dx, etc. The resulting values of y,

or y, y\, etc., are not equidistant, except in one func

tion only, when y=ax-\-b, where a and b are con

stant. Therefore dy, dy\, etc., are not equal ;
whence

arises the next column of second differences, or d*y,

d*yi, etc. The limiting ratio of d*y to (dfcr)
8

, expressed
d2

y
by TTJI

is the second differential coefficient of y with

respect to x. If from y cpx we deduce x= $y, and

take a set of equidistant values of y, viz., y, y-\-dy,

y-^-2dy, etc., to which the corresponding values of x

are x, x\, x%, etc., a similar table may be formed,

which will give dx, dxi, etc., d2
x, d*x\, etc., and the

d2 x
limit of the ratio of d*x to

(/#&amp;gt;)

8 or
^-

is the second

differential coefficient of x with respect to y. These

are entirely different suppositions, dx being given in

the first table, and dy varying ;
while in the second dy

is given and dx varies. We may show how to deduce

one from the other as follows :

When, as before, y=cpx and x= fiy, we have

dy _ ,
1 1

dx-V*
&quot;ft p

if tyy be called /. Calling this u, and considering it
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as a function of x from containing /, which contains

y, which contains x, we have

du dp dy

dp dy dx

for its differential coefficient with respect to x. But

since

_ ^

therefore

du
= _1.

dp~ f
since p rp y, therefore

and
if&amp;gt;&quot;y

is the differential coefficient of
i/&amp;gt;y, and is

or or (*)!\W
Hence the differential coefficient of u or -^-, with re-

d*y .

dx

spect to x, which is - is also

dx dy* dx \dx) dy*

If y= e*, whence #= logjy, we have--=* and

d*y _ dx 1 , //
8^ 1 _, .n = * But = and -ry = ^. Therefore

8 ^^. _/ 1\ &* $*
or s- or --

y
which is fi*, the value just found for -
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d^y
In the same way -~ might be expressed in terms

x d*x , d*x
-

, -}-=-, and
-T-J:-

dy dy* dy*

, dx ,
of -

, -}-=-, and -T-J:-; and so on.
* *

IMPLICIT FUNCTIONS.

The variable which appears in the denominator of

the differential coefficients is called the independent

variable. In any function, one quantity at least is

changed at pleasure ; and the changes of the rest,

with the limiting ratio of the changes, follow from the

form of the function. The number of independent
variables depends upon the number of quantities

which enter into the equations, and upon the number
of equations which connect them. If there be only
one equation, all the variables except one are inde

pendent, or may be changed at pleasure, without ceas

ing to satisfy the equation ; for in such a case the

common rules of algebra tell us, that as long as one

quantity is left to be determined from the rest, it can

be determined by one equation ;
that is, the values of

all but one are at our pleasure, it being still in our

power to satisfy one equation, by giving a proper
value to the remaining one. Similarly, if there be

two equations, all variables except two are independ

ent, and so on. If there be two equations with two

unknown quantities only, there are no variables ; for

by algebra, a finite number of values, and a finite

number only, can satisfy these equations ; whereas it

is the nature of a variable to receive any value, or at

least any value which will not give impossible values

for other variables. If then there be m equations con

taining n variables, (n must be greater than m), we
have n m independent variables, to each of which
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we may give what values we please, and by the equa

tions, deduce the values of the rest. We have thus

various sets of differential coefficients, arising out of

the various choices which we may make of independ
ent variables.

If, for example, a, b, x, y, and z, being variables,

we have

&amp;lt;p(a, b, x,y, *,)=
if&amp;gt;(a, b, x,y, *,)

= 0,

X(a, t&amp;gt;, x, y, *,)
= 0,

we have two independent variables, which may be

either x and y, x and z, a and b, or any other com
bination. If we choose x and^, we should determine

a, b, and z in terms of x and y from the three equa
tions

;
in which case we can obtain

da da db

Jx~
~fy&amp;gt;

Jx~
e

Wheny is a function of x, as in y &amp;lt;px,
it is called

an explicit function of x. This equation tells us not

only that y is a function of x, but also what function

it is. The value of x being given, nothing more is

necessary to determine the corresponding value of y,

than the substitution of the value of x in the several

terms of (px.

But it may happen that though y is a function of

x, the relation between them is contained in a form

from which y must be deduced by the solution of an

equation. For example, in #2
xy-\-y

2 ==at when #
is known, y must be determined by the solution of an

equation of the second degree. Here, though we know
that y must be a function of x, we do not know, with

out further investigation, what function it is. In this

case y is said to be implicitly a function of x
}
or an im-
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plicit function. By bringing all the terms on one side

of the equation, we may always reduce it to the form

cp(x, y)= 0. Thus, in the case just cited, we have

We now want to deduce the differential coefficient

dy
-j-

from an equation of the form
q&amp;gt;(x, y)= 0. If we

(t

take the equation u= cp(x, jv), in which when x and y
become x -|- dx and y -f dy, u becomes u -{- du, we have,

by our former principles,

du= u dx -\- ut dy -}- etc.
, (page 82),

in which and u
t
can be directly obtained from the

equation, as in page 82. Here x and y are independ

ent, as also dx and dy ; whatever values are given to

them, it is sufficient that u and du satisfy the two last

equations. But if x and y must be always so taken

that u may =0, (which is implied in the equation

&amp;lt;p(x, y)= 0, ) we have #= 0, and du=
\
and this,

whatever may be the values of dx and dy. Hence dx

and dy are connected by the equation

= u dx -f u
tdy -f etc. ,

and their limiting ratio must be obtained by the equa
tion

y and x are no longer independent ; for, one of them

being given, the other must be so taken that the equa
tion (p(x, _y)

= maybe satisfied. The quantities u

and u we have denoted by -3 and -=-, so that
dx dy

_

dx
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We must again call attention to the different mean

ings of the same symbol du in the numerator and de

nominator of the last fraction. Had du, dx, and dy

been common algebraical quantities, the first meaning

the same thing throughout, the last equation would

not have been true until the negative sign had been

removed. We will give an instance in which du shall

mean the same thing in both.

Let u=
&amp;lt;p(x),

and let u= t/y, in which two equa
tions is implied a third

&amp;lt;px

= ipy, and y is a function

of x. Here, x being given, u is known from the first

equation ;
and u being known, y is known from the

second. Again, x and dx being given, du, which is

&amp;lt;p(x-\-dx} &amp;lt;px
is known, and being substituted in

the result of the second equation, we have du

^(y ~\~ dy} tyy, which dy must be so taken as to

satisfy. From the first equation we deduce du=
qjx dx -j- etc. and from the second du

il&amp;gt;ydy-\- etc. ,

whence

qjx dx -f- etc.= ipy dy -j- etc.
;

the etc. only containing terms which disappear in find

ing the limiting ratios. Hence,

Q ^ ZL t*\
dx~~ Wy

&quot; *
dy

a result in accordance with common algebra.

But the equation (1) was obtained from u= (p(x,y\
on the supposition that x and y were always so taken

that u should =0, while (2) was obtained from =
&amp;lt;p(x)

and u= Sy, in which no new supposition can be

made
;
since one more equation between u, x, and y

would give three equations connecting these three

quantities, in which case they would cease to be vari

able (page 106).
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As an example of (1) let xy *= 1, or xy x
1= 0. From u= xy x 1 we deduce (page 81)
du . du

y if =x; whence, by equation (1),

dx~ x

By solution of xy x= l, we fmdy= l-\
--

,
and

dy 1
Hence ~ (meaning the limit) is ---

v which will also

be the result of (3) if 1 H-- be substituted for.y.

FLUXIONS, AND THE IDEA OF TIME.

To follow this subject farther would lead us be

yond our limits ; we will therefore proceed to some

observations on the differential coefficient, which, at

this stage of his progress, may be of use to the stu

dent, who should never take it for granted that be

cause he has made some progress in a science, he un

derstands the first principles, which are often, if not

always, the last to be learned well. If the mind were

so constituted as to receive with facility any perfectly

new idea, as soon as the same was legitimately ap

plied in mathematical demonstration, it would doubt

less be an advantage not to have any notion upon a

mathematical subject, previous to the time when it is

to become a subject of consideration after a strictly

mathematical method.

This not being the case, it is a cause of embarrass

ment to the student, that he is introduced at once to a

definition so refined as that of the limiting ratio which

* See page 26.
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the increment of a function bears to the increment of

its variable. Of this he has not had that previous ex

perience, which is the case in regard to the words

force, velocity, or length. Nevertheless, he can easily

conceive a mathematical quantity in a state of con

tinuous increase or decrease, such as the distance be

tween two points, one of which is in motion. The
number which represents this line (reference being
made to a given linear unit) is in a corresponding
state of increase or decrease, and so is every function

of this number, or every algebraical expression in the

formation of which it is required. And the nature of

the change which takes place in the function, that is,

whether the function will increase or decrease when
the variable increases ;

whether that increase or de

crease corresponding to a given change in the vari

able will be smaller or greater, etc., depends on the

manner in which the variable enters as a component

part of its function.

Here we want a new word, which has not been in

vented for the world at large, since none but mathe
maticians consider the subject ; which word, if the

change considered were change of place, depending

upon change of time, would be velocity. Newton

adopted this word, and the corresponding idea, ex

pressing many numbers in succession, instead of at

once, by supposing a point to generate a straight line

by its motion, which line would at different instants

contain any different numbers of linear units.

To this it was objected that the idea of time is in

troduced, which is foreign to the subject. We may
answer that the notion of time is only necessary, in

asmuch as we are not able to consider more than one

thing at a time. Imagine the diameter of a circle di-
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vided into a million of equal parts, from each of which

a perpendicular is drawn meeting the circle. A mind

which could at a view take in every one of these lines,

and compare the differences between every two con

tiguous perpendiculars with one another, could, by

subdividing the diameter still further, prove those

propositions which arise from supposing a point to

move uniformly along the diameter, carrying with it

a perpendicular which lengthens or shortens itself so

as always to have one extremity on the circle. But

we, who cannot consider all these perpendiculars at

once, are obliged to take one after another. If one

perpendicular only were considered, and the differen

tial coefficient of that perpendicular deduced, we might

certainly appear to avoid the idea of time
;
but if all

the states of a function are to be considered, corre

sponding to the different states of its variable, we
have no alternative, with our bounded faculties, but

to consider them in succession ;
and succession, dis

guise it as we may, is the identical idea of time intro

duced in Newton s Method of Fluxions.

THE DIFFERENTIAL COEFFICIENT CONSIDERED WITH RE

SPECT TO ITS MAGNITUDE.

The differential coefficient corresponding to a par

ticular value of the variable, is, if we may use the

phrase, the index of the change which the function

would receive if the value of the variable were in

creased. Every value of the variable, gives not only

a different value to the function, but a different quan

tity of increase or decrease in passing to what we may
call contiguous values, obtained by a given increase of

the variable.

If, for example, we take the common logarithm of
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x, and let x be 100, we have common log 100= 2. If

x be increased by 2, this gives common log 102=
2-0086002, the ratio of the increment of the function

to that of the variable being that of 0086002 to 2, or

0043001. In passing from 1000 to 1003, we have the

logarithms 3 and 3-0013009, the above-mentioned ra

tio being -0004336, little more than a. tenth of the

former. We do not take the increments themselves,

but the proportion they bear to the changes in the

variable which gave rise to them
;
so in estimating

the rate of motion of two points, we either consider

lengths described in the same time, or if that cannot

be done, we judge, not by the lengths described in

different times, but by the proportion of those lengths

to the times, or the proportions of the units which

express them.

The above rough process, though from it some

might draw the conclusion that the logarithm of x is

increasing faster when #= 100 than when #= 1000,

is defective; for, in passing from 100 to 102, the

change of the logarithm is not a sufficient index of the

change which is taking place when x is 100
; since,

for any thing we can be supposed to know to the con

trary, the logarithm might be decreasing when #=
100, and might afterwards begin to increase between

#==100 and #= 102, so as, on the whole, to cause

the increase above mentioned. The same objection
would remain good, however small the increment

might be, which we suppose # to have. If, for ex

ample, we suppose # to change from #= 100 to #=
100-00001, which increases the logarithm from 2 to

2-00000004343, we cannot yet say but that the log
arithm may be decreasing when #= 100, and may be

gin to increase between #= 100 and #= 100 -00001.
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In the same way, if a point is moving, so that at

the end of 1 second it is at 3 feet from a fixed point,
and at the end of 2 seconds it is at 5 feet from the

fixed point, we cannot say which way it is moving at

the end of one second. On the whole, it increases its

distance from the fixed point in the second second ;

but it is possible that at the end of the first second it

may be moving back towards the fixed point, and may
turn the contrary way during the second second. And
the same argument holds, if we attempt to ascertain

the way in which the point is moving by supposing

any finite portion to elapse after the first second. But

if on adding any interval, however small, to the first

second, the moving point does, during that interval,

increase its distance from the fixed point, we can then

certainly say that at the end of the first second the

point is moving from the fixed point.

On the same principle, we cannot say whether the

logarithm of x is increasing or decreasing when x in

creases and becomes 100, unless we can be sure that

any increment, however small, added to x, will in

crease the logarithm. Neither does the ratio of the

increment of the function to the increment of its vari

able furnish any distinct idea of the change which is

taking place when the variable has attained or is pass

ing through a given value. For example, when x

passes from 100 to 102, the difference between log 102

and log 100 is the united effect of all the changes
which have taken place between #= 100 and x=
100^; #= 100^ and #= 100^, and so on. Again,

the change which takes place between #= 100 and

#= 100^ may be further compounded of those which

take place between x = 100 and x = lOOyJ^ ; x =
and #= 100^, and so on. The objection
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becomes of less force as the increment diminishes,

but always exists unless we take the limit of the ratio

of the increments, instead of that ratio.

How well this answers to our previously formed

ideas on such subjects as direction, velocity, and

force, has already appeared.

THE INTEGRAL CALCULUS.

We now proceed to the Integral Calculus, which

is the inverse of the Differential Calculus, as will after

wards appear.

We have already shown, that when two functions

increase or decrease without limit, their ratio may either

increase or decrease without limit, or may tend to

some finite limit. Which of these will be the case de

pends upon the manner in which the functions are re

lated to their variable and to one another.

This same proposition may be put in another form,

as follows : If there be two functions, the first of which

decreases without limit, on the same supposition which

makes the second increase without limit, the product
of the two may either remain finite, and never exceed

a certain finite limit ; or it may increase without limit,

or diminish without limit.

For example, take cos and tan 0. As the angle 6

approaches a right angle, cos0 diminishes without

limit
;

it is nothing when 6 is a right angle ;
and any

fraction being named, can be taken so near to a

right angle that cos0 shall be smaller. Again, as 6

approaches to a right angle, tan0 increases without

limit
;

it is called infinite when is a right angle, by
which we mean that, let any number be named, how
ever great, can be taken so near a right angle that

tan0 shall be greater. Nevertheless the product cos0X
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tan 0, of which the first factor diminishes without limit,

while the second increases without limit, is always

finite, and tends towards the limit 1
;
for cos#X tan0

is always sin0, which last approaches to 1 as ap

proaches to a right angle, and is 1 when is a right

angle.

Generally, if A diminishes without limit at the

same time as B increases without limit, the product
AB may, and often will, tend towards a finite limit.

This product AB is the representative of A divided by

^g- or the ratio of A to -=-. If B increases without
-tJ -i r&amp;gt;

limit, =- decreases without limit
;
and as A also de-

1
creases without limit, the ratio of A to

-^ may have a

finite limit. But it may also diminish without limit
;

as in the instance of cos2 X tan0, when approaches
to a right angle. Here cos2 diminishes without limit,

and tan0 increases without limit; but cos20X*an0
being cos0Xsin0, or a diminishing magnitude multi

plied by one which remains finite, diminishes without

limit. Or it may increase without limit, as in the case

of cos0 X tan20, which is also sin X tan0
;
which last

has one factor finite, and the other increasing without

limit. We shall soon see an instance of this.

If we take any numbers, such as 1 and 2, it is evi

dent that between the two we may interpose any num
ber of fractions, however great, either in arithmetical

progression, or according to any other law. Suppose,
for example, we wish to interpose 9 fractions in arith

metical progression between 1 and 2. These are 1^,
1-jj^, etc., up to

1-^j- ; and, generally, if m fractions in

arithmetical progression be interposed between a and

a -\- h, the complete series is
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mh
up to a -\ r-

The sum of these can evidently be made as great as

we please, since no one is less than the given quan

tity a, and the number is as great as we please. Again,

if we take
&amp;lt;px, any function of x, and let the values

just written be successively substituted for x, we shall

have the series

................... up to
&amp;lt;p(a+ R) (2);

the sum of which may, in many cases, also be made

as great as we please by sufficiently increasing the

number of fractions interposed, that is, by sufficiently

increasing m. But though the two sums increase with

out limit when m increases without limit, it does not

therefore follow that their ratio increases without

limit
;
indeed we can show that this cannot be the

case when all the separate terms of (2) remain finite.

For let A be greater than any term in (2), whence,

as there are (w-j-2) terms, (w + 2)A is greater than

their sum. Again, every term of (1), except the first,

being greater than a, and the terms being m-\-2 in

number, (m -|- 2)0 is less than the sum of the terms in

(1). Consequently,

(m -L- 2)A . . sum of terms in (2)
T
- ~ is greater than the ratio--f

-
: ^,

(m -f 2)# sum of terms in (1)

since its numerator is greater than the last numerator,

and its denominator less than the last denominator.

But
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A
(m + 2)a ~a

which is independent of m, and is a finite quantity.
Hence the ratio of the sums of the terms is always

finite, whatever may be the number of terms, at least

unless the terms in (2) increase without limit.

As the number of interposed values increases, the

interval or difference between them diminishes ; if,

therefore, we multiply this difference by the sum of

the values, or form

T \(pa -j- &amp;lt;p{

a -\
-- - 4-

+\\J ^\ an
n

m-\-

we have a product, one term of which diminishes, and
the other increases, when m is increased. The pro
duct may therefore remain finite, or never pass a cer

tain limit, when m is increased without limit, and \\e

shall show that this is the case.

As an example, let the given function of x be ^2
,

and let the intermediate values of x be interposed be

tween x= a and x= a4-h. Let v= =-, whencem + l

the above-mentioned product is

................ -f tf4-(^+l&amp;gt;

(m+ 2) va* -f- 2av* {
1 + 2 + 3+ . . + (m+ 1) }

of which, l + 2 + ....-K + l)==Kai+l)(-f2)
and (page 73), !2 -f 22 + . . . . -f ( + 1) approaches
without limit to a ratio of equality with $(;-}- 1)

8
,

when m is increased without limit. Hence this last

sum may be put under the form
|(&amp;gt;-f 1)

8
(1 + a),
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where a diminishes without limit when m is increased

without limit. Making these substitutions, and put

ting for v its value r-= t the above expression be-
m -j- 1

comes

in which ~ has the limit 1 when m increases with-
m-\-I

out limit, and 1-f- a has also the limit 1, since, in that

case, a diminishes without limit. Therefore the limit

of the last expression is

ha*+ tfa+- or

This result may be stated as follows : If the vari

able x, setting out from a value a, becomes succes

sively a-^-dx, a -\-2dx, etc., until the total increment

is h, the smaller dx is taken, the more nearly will the

sum of all the values of x^dx, or a?dx -\-(a-\- dx^f dx -f-

(a-\-2dx)
2
dx-\-etc. t be equal to

and to this the aforesaid sum may be brought within

any given degree of nearness, by taking dx sufficiently

small.

This result is called the integral of x*dx, between

the limits a and a -\- h, and is written fx^dx, when it

is not necessary to specify the limits, andy],
a h

x*dx,

or* fx^dx?**, or fx
2dx%^+h in the contrary case. We

*This notation f3?dx+
h
appears to me to avoid the objections which

may be raised againstJ^i^dx as contrary to analogy, which would require

that /&quot; jrdxr should stand for the second integral of x^dx. It will be found

convenient in such integrals &sfzdx*dy&
x

. There is as yet no general agree

ment on this point of notation. Zte Morgan, 1832.
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now proceed to show the connexion of this process
with the principles of the Differential Calculus.

CONNEXION OF THE INTEGRAL WITH THE DIFFERENTIAL

CALCULUS.

Let x have the successive values a, a 4 dx, a -f- Zdx,

etc. ,
. . . . up to a 4- mdx, or a -f h

t
h being a given

quantity, and dx the /0
th
part of h, so that as m is in

creased without limit, dx is diminished without limit.

Develop the successive values (px, or cpa, cp(a -f- dx}

(page 21),

4, a
*
+ etc.

&amp;gt;&quot;a + ^
&quot;

-f etc.

+ etc.

+ etc.

If we multiply each development by dx and add the

results, we have a series made up of the following

terms, arising from the different columns,

&amp;lt;pa X mdx

cp a X(l +2 +3 +...+*) (&amp;lt;/*)

etc.

and, as in the last example, we may represent (page

73),
1 4.2 4-3 -f ..... +m byw2

(14-tf)

12 _|_ 2
2
4- 32 + ..... 4- m* . . \m* (1 4- ft)

- 4 l- etc -
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where a, /?, y, etc., diminish without limit, when m
is increased without limit. If we substitute these val

ues, and also put instead of dx
t
we have, for the

M
sum of the terms,

&amp;lt;f/a

~
(1 + ) + &amp;lt;p&quot;a^ (1 + fS)

2

which, when m is increased without limit, in conse

quence of which a, ft, etc., diminish without limit,

continually approaches to

h* h* h*
(pah+ (p a^-\- cp&quot;a^ + (p &quot;a ^-^ + etc.

which is the limit arising from supposing x to increase

from a through a-\-dx, a -\-2dx, etc., up to a-\-h,

multiplying every value of
&amp;lt;px

so obtained by dx
t
sum

ming the results, and decreasing dx without limit.

This is the integral of cpxdx from x= a to x=
a-\-h. It is evident that this series bears a great re

semblance to the development in page 21, deprived
of its first term. Let us suppose that fya is the func

tion of which (pa is the differential coefficient, that is,

that fy a=&amp;lt;pa.
These two functions being the same,

their differential coefficients will be the same, that is,

il)&quot;a
=

(p a. Similarly if&amp;gt;

&quot;a=
(p&quot;a )

and so on. Sub

stituting these, the above series becomes

*/&amp;gt;

&amp;lt;*& + fa +fa ^~ + $a ^-^ + etc.

which is (page 21) the same as ip(a-\-Ji) i/&amp;gt;a.

That

is, the integral of cpxdx between the limits a and a-\-h,

is
il&amp;gt;(a-\-?f) fa, where $x is the function, which,
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when differentiated, gives (px. For a -j- h we may
write

, so that
?/ ipa is the integral of

&amp;lt;pxdx
from

x= a to x= b. Or we may make the second limit in

definite by writing x instead of b, which gives ipx ipa,

which is said to be the integral of (pxdx, beginning
when x a, the summation being supposed to be con

tinued from x= a until x has the value which it may
be convenient to give it.

NATURE OF INTEGRATION.

Hence results a new branch of the inquiry, the re

verse of the Differential Calculus, the object of which

is, not to find the differential coefficient, having given
the function, but to find the function, having given
the differential coefficient. This is called the Integral

Calculus.

From the definition given, it is obvious that the

value of an integral is not to be determined, unless

we know the values of x corresponding to the begin

ning and end of the summation, whose limit furnishes

the integral. We might, instead of defining the in

tegral in the manner above stated, have made the

word mean merely the converse of the differential co

efficient
; thus, if (px be the differential coefficient of

ipx, ipx might have been called the integral of (pxdx.

We should then have had to show that the integral,

thus defined, is equivalent to the limit of the summa
tion already explained. We have preferred bringing

the former method before the student first, as it is

most analogous to the manner in which he will deduce

integrals in questions of geometry or mechanics.

With the last-mentioned definition, it is also obvi

ous that every function has an unlimited number of

integrals. For whatever differential coefficient fyx
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gives, C -}- tyx will give the same, if C be a constant,

that is, not varying when x varies. In this case, if x
become x -f- h, C -}- i/&amp;gt;x

becomes C -j- if&amp;gt;x -f- fy x h -f etc. ,

from which the subtraction of the original form C -f i/&amp;gt;x

gives ffi
x ft -\-etc.; whence, by the process in page 23,

i/j
x is the differential coefficient of C+ i/?x as well as

of
i/&amp;gt;x.

As many values, therefore, positive or nega
tive, as can be given to C, so many different integrals

can be found for fy x \ and these answer to the various

limits between which the summation in our original

definition may be made. To make this problem def

inite, not only ip x the function to be integrated, must
be given, but also that value of x from which the sum
mation is to begin. If this be a, the integral of ip x is,

as before determined, ipx ipa, and C= ipa. We
may afterwards end at any value of x which we please.
If x= a, tpx i/}a

= Q, as is evident also from the

formation of the integral. We may thus, having given
an integral in terms of x, find the value at which it

began, by equating the integral to zero, and finding
the value of x. Thus, since x2

,
when differentiated,

gives 2x, x2 is the integral of 2x, beginning at x= Q
j

and x2 4 is the integral beginning at x= 2.

In the language of Leibnitz, an integral would be

the sum of an infinite number of infinitely small quan
tities, which are the differentials or infinitely small in

crements of a function. Thus, a circle being, accord

ing to him, a rectilinear polygon of an infinite number
of infinitely small sides, the sum of these would be

the circumference of the figure. As before (pages

13-14, 38 et seq., 48 et seq.) we proceed to interpret

this inaccuracy of language. If, in a circle, we suc

cessively describe regular polygons of 3, 4, 5, 6, etc.,

sides, we may, by this means, at last attain to a poly-
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gon whose side shall differ from the arc of which it is

the chord, by as small a fraction, either of the chord

or arc, as we please (pages 7-11). That is, A being
the arc, C the chord, and D their difference, there is

no fraction so small that D cannot be made a smaller

part of C. Hence, if m be the number of sides of the

polygon, mC -f- mD or mA is the real circumference
;

and since mD is the same part of mC which D is of C,

niD may be made as small a part of mC as we please ;

so that mC, or the sum of all the sides of the polygon,
can be made as nearly equal to the circumference as

we please.

As in other cases, the expressions of Leibnitz are

the most convenient and the shortest, for all who can

immediately put a rational construction upon them
;

this, and the fact that, good or bad, they have been,

and are, used in the works of Lagrange, Laplace,

Euler, and many others, which the student who really

desires to know the present state of physical science,

cannot dispense with, must be our excuse for contin

ually bringing before him modes of speech, which,

taken quite literally, are absurd.

DETERMINATION OF CURVILINEAR AREAS. THE PARABOLA.

We will now suppose such a part of a curve, each

ordinate of which is a given function of the corre

sponding abscissa, as lies between two given ordi-

nates ; for example, MPP M . Divide the line MM
into a number of equal parts, which we may suppose
as great as we please, and construct Figure 10. Let

O be the origin of co-ordinates, and let OM, the value

of x, at which we begin, be a
;
and OM

,
the value

at which we end, be b. Though we have only divided
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MM into four equal parts in the figure, the reasoning

to which we proceed would apply equally, had we di

vided it into four million of parts. The sum of the

parallelograms Mr, mr, m
r&quot;,

and m&quot;R, is less than

the area MPP M
,
the value of which it is our object

to investigate, by the sum of the curvilinear triangles

Prp, prp , /// ,
and / RP . The sum of these tri

angles is less than the sum of the parallelograms Qr,

qr , q r&quot;,
and

^&quot;R ;
but these parallelograms are to-

p

R

gether equal to the parallelogram q&quot;w,
as appears by

inspection of the figure, since the base of each of the

above-mentioned parallelograms is equal to m&quot;M
,
or

/ P
,
and the altitude P w is equal to the sum of the

altitudes of the same parallelograms. Hence the sum

of the parallelograms Mr, mr m
r&quot;,

and m&quot;R, differs

from the curvilinear area MPP M by less than the

parallelogram q&quot;w.
But this last parallelogram may

be made as small as we please by sufficiently increas

ing the number of parts into which MM is divided
;
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for since one side of it, P w, is always less than P M
,

and the other side P / ,
or m&quot;M

,
is as small a part as

we please of MM the number of square units in
g&quot;w,

is the product of the number of linear units in P w
and

PV&quot;,
the first of which numbers being finite, and

the second as small as we please, the product is

as small as we please. Hence the curvilinear area

MPP M is the limit towards which we continually

approach, but which we never reach, by dividing MM
into a greater and greater number of equal parts, and

adding the parallelograms Mr, mr
, etc., so obtained.

If each of the equal parts into which MM is divided

be called dx, we have OM= a, Om= a-\-dx, Omr=
a -\-2Jx, etc. And MP, mp, m/, etc., are the values

of the function which expresses the ordinates, corre

sponding to a, a-\-dx, a -\-2dx, etc., and may there

fore be represented by (pa, (p(a-{-dx), cp(a -\-Zdx),

etc. These are the altitudes of a set of parallelo

grams, the base of each of which is dx\ hence the

sum of their area is

(pa dx -f- (p(a -\- dx) dx -j- cp(a -J- 2dx) dx -f- etc.
,

and the limit of this, to which we approach by dimin

ishing dx, is the area required.

This limit is what we have defined to be the in

tegral of
&amp;lt;pxdx

from x= a to x= fr; or if ipx be the

function, which, when differentiated, gives cpx, it is

fyb i/&amp;gt;a.
Hence, y being the ordinate, the area in

cluded between the axis of x, any two values of y, and

the portion of the curve they cut off, is fydx, begin

ning at the one ordinate and ending at the other.

Suppose that the curve is a part of a parabola
of which O is the vertex, and whose equation* is

*If the student has not any acquaintance with the conic sections, he must
nevertheless be aware that there is some curve whose abscissa and ordinate
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therefore y* =px where p is the double ordinate which

passes through the focus. Here y=p*x%, and we
must find the integral of p^x\dx, or the function

whose differential coefficient is p%x*, p% being a con

stant. If we take the function cxnt
c being independ

ent of x, and substitute x-\-h for x, we have for the

development cxn -\- cnx
n~l h + etc. Hence the differ

ential coefficient of cxn is cnxn~l
;
and as c and may

be any numbers or fractions we please, we may take

them such that en shall =/i and n 1
J, in which

case n= % and c=^p*. Therefore the differential co

efficient of %p%x% is p%x^, and conversely, the integral

oip^x^dx is f/^rl
The area MPP M of the parabola is therefore

^p\b\ -|/W. If we begin the integral at the vertex

O, in which case a= 0, we have for the area OM P
,

where =OM . This is f/W X b
t which, since

M P is fP M X OM , or two-thirds of the rect

angle* contained by OM and M P .

METHOD OF INDIVISIBLES.

We may mention, in illustration of the preceding

problem, a method of establishing the principles of

the Integral Calculus, which generally goes by the

name of the Method of Indivisibles. A line is consid

ered as the sum of an infinite number of points, a

surface of an infinite number of lines, and a solid of

an infinite number of surfaces. One line twice as long
as another would be said to contain twice as many

are connected by the equation y% =Ar . This, to him, must be the definition

of parabola; by which word he must understand, a curve whose equation is

yi =Ar.
*This proposition is famous as having been discovered by Archimedes

at a time when such a step was one of no small magnitude.
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points, though the number of points in each is unlim
ited. To this there are two objections. First, the

word infinite, in this absolute sense, really has no

meaning, since it will be admitted that the mind has

no conception of a number greater than any number.
The word infinite* can only be justifiably used as an

abbreviation of a distinct and intelligible proposition -,

for example, when we say that a -\ is equal to a

when x is infinite, we only mean that as x is increased,

a-\ becomes nearer to a, and may be made as near
oc

to it as we please, if x may be as great as we please.

The second objection is, that the notion of a line

being the sum of a number of points is not true, nor

does it approach nearer the truth as we increase the

number of points. If twenty points be taken on a

straight line, the sum of the twenty-one lines which

lie between point and point is equal to the whole line :

which cannot be if the points by themselves constitute

any part of the line, however small. Nor will the sum
of the points be a part of the line, if twenty thousand

be taken instead of twenty. There is then, in this

method, neither the rigor of geometry, nor that ap

proach to truth, which, in the method of Leibnitz,

may be carried to any extent we please, short of abso

lute correctness. We would therefore recommend to

the student not to regard any proposition derived

from this method as true on that account ; for false

hoods, as well as truths, may be deduced from it. In

deed, the primary notion, that the number of points

in a line is proportional to its length, is manifestly in

correct. Suppose (Fig. 6, page 48) that the point Q
*See Study of Mathematics (Chicago : The Open Court Publishing Co ),

page 123 et seq.



THE DIFFERENTIAL AND INTEGRAL CALCULUS. I2Q

moves from A to P. It is evident that in whatever

number of points OQ cuts AP, it cuts MP in the same
number. But PM and PA are not equal. A defender

of the system of indivisibles, if there were such a per

son, would say something equivalent to supposing
that the points on the two lines are of different sizes,

which would, in fact, be an abandonment of the

method, and an adoption of the idea of Leibnitz, us

ing the word point to stand for the infinitely small

line.

This notion of indivisibles, or at least a way of

speaking which looks like it, prevails in many works

on mechanics. Though a point is not treated as a

length, or as any part of space whatever, it is consid

ered as having weight ; and two points are spoken of

as having different weights. The same is said of a

line and a surface, neither of which can correctly be

supposed to possess weight. If a solid be of the same

density throughout, that is, if the weight of a cubic

inch of it be the same from whatever part it is cut, it

is plain that the weight may be found by finding the

number of cubic inches in the whole, and multiplying
this number by the weight of one cubic inch. But if

the weight of every two cubic inches is different, we
can only find the weight of the whole by the integral

calculus.

Let AB (Fig. 11) be a line possessing weight, or

a very thin parallelepiped of matter, which is such,

that if we were to divide it into any number of equal

parts, as in the figure, the weight of the several parts

would be different. We suppose the weight to vary

continuously, that is, if two contiguous parts of equal

length be taken, as pq and qr, the ratio of the weights



130 ELEMENTARY ILLUSTRATIONS OF

of these two parts may, by taking them sufficiently

small, be as near to equality as we please.

The density of a body is a mathematical term, which

may be explained as follows : A cubic inch of gold

weighs more than a cubic inch of water
;
hence gold

is denser than water. If the first weighs 19 times as

much as the second, gold is said to be 19 times more

dense than water, or the density of gold is 19 times

that of water. Hence we might define the density by
the weight of a cubic inch of the substance, but it is

usual to take, not this weight, but the proportion
which it bears to the same weight of water. Thus,
when we say the density, or specific gravity (these terms

are used indifferently), of cast iron is 7-207, we mean
that if any vessel of pure water were emptied and

filled with cast iron, the iron would weigh 7-207 times

as much as the water.

If the density of a body were uniform throughout,
we might easily determine it by dividing the weight
of any bulk of the body, by the weight of an equal
bulk of water. In the same manner (pages 52 et seq.)

we could, from our definition of velocity, determine

any uniform velocity by dividing the length described

by the time. But if the density vary continuously,
no such measure can be adopted. For if by the side

of AB (which we will suppose to be of iron) we placed
a similar body of water similarly divided, and if we
divided the weight of the part pq of iron by the weight
of the same part of water, we should get different

densities, according as the part/^ is longer or shorter.

The water is supposed to be homogeneous, that is,

any part of it pr, being twice the length of pq, is twice

the weight of pq, and so on. The iron, on the con

trary, being supposed to vary in density, the doubling
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the length gives either more or less than twice the

weight. But if we suppose q to move towards/, both

on the iron and the water, the limit of the ratio pq of

iron to pq of water, may be chosen as a measure of

the density of /, on the same principle as in pages

54-55, the limit of the ratio of the length described to

the time of describing it, was called the velocity. If

we call k this limit, and if the weight varies contin

uously, though no part pq, however small, of iron,

would be exactly k times the same part of water in

weight, we may nevertheless take pq so small that

these weights shall be as nearly as we please in the

ratio of k to 1.

Let us now suppose that this density, expressed

by the limiting ratio aforesaid, is always oc* at any

Fig. 11.

point whose distance from A is x feet
;
that is, the

density at q, 2 feet distance from A, is 4, and so on.

Let the whole distance AB=#. If we divide a into

n equal parts, each of which is dx, so that ndx= a,

and if we call b the area of the section of the paral

lelepiped, (b being a fraction of a square foot,) the

solid content of each of the parts will be bdx in

cubic feet ;
and if w be the weight of a cubic foot of

water, the weight of the same bulk of water will be

wbdx. If the solid AB were homogeneous in the im

mediate neighborhood of the point /, the density being
then x9

,
would give x* X bwdx for the weight of the

same part of the substance. This is not true, but can

be brought as near to the truth as we please, by tak

ing dx sufficiently small, or dividing AB into a suffi-
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cient number of parts. Hence the real weight of pq

may be represented by bwx^dx -j- a, where a may be

made as small a part as we please of the term which

precedes it.

In the sum of any number of these terms, the sum

arising from the term a diminishes without limit as

compared with the sum arising from the term bwx^dx
;

for if a be less than the thousandth part of/, a less

than the thousandth part of p t etc., then a-}- a -f- etc.

will be less than the thousandth part of / -j- p -}- etc. :

which is also true of any number of quantities, and of

any fraction, however small, which each term of one

set is of its corresponding term in the other. Hence
the taking of the integral of bwx^dx dispenses with

the necessity of considering the term a
;
for in taking

the integral, we find a limit which supposes dx to

have decreased without limit, and the integral which

would arise from a has therefore diminished without

limit.

The integral of bw x^dx is \bwx*, which taken from

x= Q to x= a is \bwcP. This is therefore the weight
in pounds of the bar whose length is a feet, and whose

section is b square feet, when the density at any point
distant by x feet from the beginning is x2

;
w being

the weight in pounds of a cubic foot of water.

CONCLUDING REMARKS ON THE STUDY OF THE CALCULUS.

We would recommend it to the student, in pur

suing any problem of the Integral Calculus, never for

one moment to lose sight of the manner in which he

would do it, if a rough solution for practical purposes

only were required. Thus, if he has the area of a

curve to find, instead of merely saying that y, the

ordinate, being a certain function of the abscissa x,
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fydx within the given limits would be the area re

quired ;
and then proceeding to the mechanical solu

tion of the question : let him remark that if an ap

proximate solution only were required, it might be

obtained by dividing the curvilinear area into a num
ber of four-sided figures, as in Figure 10, one side of

which only is curvilinear, and embracing so small an

arc that it may, without visible error, be considered

as rectilinear. The mathematical method begins with

the same principle, investigating upon this supposi

tion, not the sum of these rectilinear areas, but the

limit towards which this sum approaches, as the sub

division is rendered more minute. This limit is shown

to be that of which we are in search, since it is proved
that the error diminishes without limit, as the subdi

vision is indefinitely continued.

We now leave our reader to any elementary work

which may fall in his way, having done our best to

place before him those considerations, something

equivalent to which he must turn over in his mind be

fore he can understand the subject. The method so

generally followed in our elementary works, of lead

ing the student at once into the mechanical processes
of the science, postponing entirely all other considera

tions, is to many students a source of obscurity at

least, if not an absolute impediment to their progress ;

since they cannot imagine what is the object of that

which they are required to do. That they shall un

derstand everything contained in these treatises, on

the first or second reading, we cannot promise ; but

that the want of illustration and the preponderance of

technical reasoning are the great causes of the difficul

ties which students experience, is the opinion of many
who have had experience in teaching this subject.
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Accelerating force, 62.
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132, 133-
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an, 51.
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Calculus, 132, 133.

Arc and its chord, a continuously

decreasing, 7 et seq., 39 et seq.

Archimedes, 127.

Astronomical ephemeris, 76.

Calculus, notation of, 25, 79 et seq.

Circle, equation of, 31 et seq.

Circle cut by straight line, investi

gated, 31 et seq.

Coefficients, differential, 22 et seq.,

38, 55, 82, 88, 96, 100, 112.

Complete Differential Coefficients,

96.

Constants, 14.

Contiguous values, 112.

Continuous quantities, 7 et seq., 53.

Co-ordinates, 30.

Curve, magnified, 40.

Curvilinear areas, determination of,

124 et seq.

Density, continuously varying, 130 et

seq.

Derivatives, 19, 21, 22.

Derived Functions, 19 et seq., 21.

Differences, arithmetical, 4; of incre

ments, 26; calculus of, 89.

Differential coefficients, 22 et seq..

38, 55, 82, as the index of the change

of a function, 112; of higher orders,

88.

Differentials, partial, 78 et seq.; total

78 et seq.

Differentiation, of the common func

tions, 85, 86; successive, 88 et seq.;

implicit, 94 et seq.; of complicatpd

functions, 100 et seq.

Direct function, 97.

Direction, 36.

Equality, 4.

Equations, solution of, 77.

Equidistant values, 104.

Euler, 27, 124.

Errors, in the valuation of quantities,

75, 84.

Explicit functions, 107.

Falling bodies, 56.

Finite differences, 88 et seq.

Fluxions, n, 60, 112.
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Functions, definition of, 14 et seq.;

derived, 19 et seq., 21; direct and

indirect, 97; implicit and explicit,

107, 108; inverse, 102 et seq.. of sev

eral variables,78 etseq.; recapitula

tion of results in the theory of, 74.

Generally, the word, 16.

Implicit, differentiation, 94 et seq.;

function, 107, 108.

Impulse, 60.

Increase without limit, 5 et seq., 65

et seq.

Increment, 16, 11,3.
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Independent variables, 106.

Indirect function, 97.

Indivisibles, method of, 127 et seq.;

notion of, in mechanics, 129 et seq.

Infinite, the word, 128.

Infinitely small, the notion of, 12, 38
et seq., 49, 59, 83.

Infinity, orders of, 42 et seq.

Integral Calculus, 73, 115 et seq., no
tation of, 119.

Integrals, definition of, 119 et seq.;

relations between differential co

efficients and, 121 ; indefinite, 122,

123.

Intersections, limit of, 46 et seq.
Inverse functions, 102 et seq.
Iron bar continually varying in dens

ity, weight of, 130 et seq.

Ladder against wall, 45 et seq.

Lagrange, 124.

Laplace, 124.

Leibnitz, n, 13, 38, 42, 48, 59, 60, 83,

123, 124, 128, 129.

Limit of intersections, 46 et seq.

Limits, 26 et seq.

Limiting ratios, 65 et seq., 81.

Logarithms, 20, 38, 86, 87, 112 et seq.

Magnified curve, 40.

Motion, accelerated, 60; simple har

monic, 57.

Newton, u, 60.

Notation, of the Differential Calcu

lus, as, 79 et seq.; of the Integral

Calculus, 119.

Orders, differential coefficients of

higher, 88.

Orders of infinity, 42 et seq.

Parabola, the, 30, 124 et seq., 127.

Partial, differentials, 78 et seq.; dif

ferential coefficients, 96.

Paint, the word, 129.

Points, the number of, in a straight

line, 129.

Polygon, 38.

Proportion, 2 et seq.

Quantities, continuous, 7 et seq., 53

Ratio, defined, 2 et seq.; of two in

crements, 87.

Ratios, limiting, 65 et seq., 81.

Rough methods of solution in the In

tegral Calculus, 132, 133.

Series, 15 et seq., 24 et seq.

Signs, 31 et seq.

Simple harmonic motion, 57.

Sines, 87.

Singular values, 16.

Small, has no precise meaning, 12.

Specific gravity, continuously vary

ing, 130 et seq.

Successive differentiation, 88 et seq.

Sun s longitude, 76.

Tangent, 37, 38, 40.

Taylor s Theorem, 15 et seq., 19 et

seq.

Time, idea of, 4, no et seq.

Total, differential coefficient, 100,

differentials, 78 et seq.; variations,

95-

Transit instrument, 84.

Uniformly accelerated, 57, 60.

Values, contiguous, 112; equidistant,

104.

Variables, independent and depen
dent, 14, 15, 106; functions of sev

eral, 78 et seq.

Variations, total, 95.

Velocity, linear, 53 et seq., uij a-.

gular, 59.

Weight of an iron bar of which the

density varies from point to point,

130 et seq.
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Jr., and Introduction by Paul Carus.

206 pp., cloth binding, gilt top. PRICE $1.50 Net (7s. 6d.)

Mr. W. S. Andrews of Schenectady, N. Y., was one of Mr.
Edison s trusted assistants in the early 80 s of the last century
when that great inventor was perfecting his system of electric

lighting by incandescent lamps, and he is still taking an active

part in the Electrical Engineering field.
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Foundations of Mathematics
A Contribution to the Philosophy of Geometry

By DR. PAUL CARUS
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