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PREFACE.

THE usual point of view in the study of mechanies is that
where the attention is mainly directed to the changes which
take place in the course of time in a given system. The prin-
cipal problem is the determination of the condition of the
system with respect to configuration and velocities at any
required time, when its condition in these respects has been
given for some one time, and the fundamental equations are
those which express the changes continually taking place in
the system. Inquiries of this kind are often simplified by
taking into consideration conditions of the system other than
those through which it actually passes or is supposed to pass,
but our attention is not usually carried beyond conditions
differing infinitesimally from “those which are regarded as
actual.

For some purposes, however, it is desirable to take a broader
view of the subject. We may imagine a great number of
systems of the same nature, but differing in the configura-
tions and velocities which they have at 4 given instant, and
differing not merely infinitesimally, but it may be so as to
embrace every conceivable combination of configuration and
velocities. And here we may set the problem, not to follow
a particular system through its succession of configurations,
but to determine how the whole number of systems will be
distributed among the various conceivable configurations and
velocities at any required time, when the distribution has
been given for some one time. The fundamental equation
for this inquiry is that which gives the rate of change of the
number of systems which fall within any infinitesimal limits
of configuration and velocity.

94203
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Such inquiries have been called by Maxwell statistical.
They belong to a branch of mechanics which owes its origin to
the desire to'explain the laws of thermodynamics on mechan-
ical principles, and of which Clausius, Maxwell, and Boltz-
mann are to be regarded as the principal founders. The first
inquiries in this field were indeed somewhat narrower in their
scope than that which has been mentioned, being applied to
the particles of a system, rather than to independent systems.
Statistical inquiries were next directed to the phases (or con-
ditions with respect to configuration and velocity) which
succeed one another in a given system in the course of time.
The explicit consideration of a great number of systems and
their distribution in phase, and of the permanence or alteration
of this distribution in the course of time is perhaps first found
in Boltzmann’s paper on the “ Zusammenhang zwischen den
Sitzen iiber das Verhalten mehratomiger Gasmolekiile mit
Jacobi’s Princip des letzten Multiplicators” (1871).

But although, as a matter of history, statistical mechanics
owes its origin to investigations in thermodynamics, it seems
eminently worthy of an independent development, both on
account of the elegance and simplicity of its principles, and
because it yields new results and places old truths in a new
light in departments quite outside of thermodynamics. More-
over, the separate study of this branch of mechanics seems to
afford the best foundation for the study of rational thermody-
namics and molecular mechanics.

The laws of thermodynamics, as empirically determijned,
express the approximate and probable behavior of systéms of
a great number of particles, or, more precisely, they express
the laws of mechanics for such systems as they appear to
beings who have not the fineness of perception to enable
them to appreciate quantities of the order of magnitude of
those which relate to single particles, and who cannot repeat
their experiments often enough to obtain any but the most
probable results. The laws of statistical mechanics apply to
conservative systems of any number of degrees of freedom,
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and are exact. This does not make them more difficult to
establish than the approximate laws for systems of a great
many degrees of freedom, or for limited classes of such
systems. The reverse is rather the case, for our attention is
not diverted from what is essential by the peculiarities of the
system considered, and we are not obliged to satisfy ourselves
that the effect of the quantities and circumstances neglected
will be negligible in the result. The laws of thermodynamics
may be easily obtained from the principles of statistical me-
chanics, of which they are the incomplete expression, but
they make a somewhat blind guide in our search for those
laws. Thisis perhaps the principal cause of the slow progress
of rational thermodynamics, as contrasted with the rapid de-
duction of the consequences of its laws as empirically estab-
lished. To this must be added that the rational foundation
of thermodynamics lay in a branch of mechanics of which
the fundamental notions and prineiples, and the characteristic
operations, were alike unfamiliar to students of mechanics.
We may therefore confidently believe that nothing will
more conduce to the clear apprehension of the relation of
thermodynamics to rational mechanics, and to the interpreta-
- tion of observed phenomena with reference to their evidence
respecting the molecular constitution of bodies, than the
study of the fundamental notions and principles of that de-
partment of mechanics to which thermodynamics is especially
related. »
Moreover, we avoid the gravest difficulties when, giving up
the attempt to frame hypotheses concerning the constitution
of material bodies, we pursue statistical inquiries as a branch
of rational mechanics. In the present state of science, it
seerns hardly possible to frame a dynamic theory of molecular
action which shall embrace the phenomena of thermody-
namics, of radiation, and of the electrical manifestations
which accompany the union of atoms. Yet any theory is
obviously inadequate which does not take account of all
these phenomena. Even if we confine cur attention to the
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phenomena distinctively thermodynamic, we do not escape
difficulties in as simple a matter as the number of degrees
of freedom of a diatomic gas. Itis well known that while
theory would assign to the gas six degrees of freedom per
molecule, in our experiments on specific heat we cannot ac-
count for more than five. Certainly, one is building on an
insecure foundation, who rests his work on hypotheses con-
cerning the constitution of matter.

Difficulties of this kind have deterred the author from at-
tempting to explain the mysteries of nature, and have forced
him to be contented with the more modest aim of deducing
some of the more obvious propositions relating to the statis-
tical branch of mechanics. Here, there can be no mistake in
regard to the agreement of the hypotheses with the facts of
nature, for nothing is assumed in that respect. The only
error into which one can fall, is the want of agreement be-
tween the premises and the coneclusions, and this, with care,
one may hope, in the main, to avoid.

The matter of the present volume consists in large measure
of results which have been obtained by the investigators
mentioned above, although the point of view and the arrange-
ment may be different. These results, given to the public
one by one in the order of their discovery, have necessarily,
in their original presentation, not been arranged in the most
logical manner.

In the first chapter we consider the general problem which
has been mentioned, and find what may be called the funda-
mental equation of statistical mechanics. A particular case
of this equation will give the condition of statistical equi-
librium, <. e., the condition which the distribution of the
systems in phase must satisfy in order that the distribution
shall be permanent. In the general case, the fundamental
equation admits an integration, which gives a principle which
may be variously expressed, according to the point of view
from which it is regarded, as the conservation of density-in-
phase, or of extension-in-phase, or of probability of phase.
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In the second chapter, we apply this principle of conserva-
tion of probability of phase to the theory of errors in the
calculated phases of a system, when the determination of the
arbitrary constants of the integral equations are subject to
error. In this application, we do not go beyond the usual
approximations. In other words, we combine the principle
of conservation of probability of phase, which is exact, with
those approximate relations, which it is customary to assume
in the ¢ theory of errors.”

In the third chapter we apply the principle of conservation
of extension-in-phase to the integration of the differential
equations of motion. This gives Jacobi’s “last multiplier,”
as has been shown by Boltzmann.

In the fourth and following chapters we return to the con-
sideration of statistical equilibrium, and confine our attention
to conservative systems. We consider especially ensembles
of systems in which the index (or logarithm) of probability of
phase is a linear function of the energy. This distribution,
on account of its unique importance in the theory of statisti-
cal equilibrium, I have ventured to call canonical, and the
divisor of the energy, the modulus of distribution. The
moduli of ensembles have properties analogous to temperature,
in that equality of the moduli is a condition of equilibrium
with respect to exchange of energy, when such exchange is
made possible.

We find a differential equation relating to average values
in the ensemble which is identical in form with the funda-
mental differential equation of thermodynamics, the average
index of probability of phase, with change of sign, correspond-
ing to entropy, and the modulus to temperature.

For the average square of the anomalies of the energy, we
find an expression which vanishes in comparison with the
square of the average energy, when the number of degrees
of freedom is indefinitely increased. An ensemble of systems
in which the number of degrees of freedom is of the same
order of magnitude as the number of molecules in the bodies
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with which we experiment, if distributed canonically, would
therefore appear to human observation as an ensemble of
systems in which all have the same energy.

We meet with other quantities, in the development of the
subject, which, when the number of degrees of freedom is
very great, coincide sensibly with the modulus, and with the
average index of probability, taken negatively, in a canonical
ensemble, and which, therefore, may also be regarded as cor-
responding to temperature and entropy. The correspondence
is however imperfect, when the number of degrees of freedom
is not very great, and there is nothing to recommend these
quantities except that in definition they may be regarded as
more simple than those which have been mentioned. In

Chapter XIV, this subject of thermodynamic analogies is
discussed somewhat at length.

Finally, in Chapter XV, we consider the modification of
the preceding results which is necessary when we consider
systems composed of a number of entirely similar particles,
or, it may be, of a number of particles of several kinds, all of .
each kind being entirely similar to each other, and when one
of the variations to be considered is that of the numbers of
the particles of the various kinds which are contained in a
. system. This supposition would naturally have been intro-
duced earlier, if our object had been simply the expression of
the laws of nature. It seemed desirable, however, to separate
sharply the purely thermodynamic laws from those special
modifications which belong rather to the theory of the prop-
erties of matter.

J. W. G.

New Havex, December, 1901.
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ELEMENTARY PRINCIPLES IN
STATISTICAL - MECHANICS

CHAPTER 1. >

BN s vo, ®
s 02
OIS AR (e

GENERAL NOTIONS. THE PRINCIPLE CF CONSERVATION
OF EXTENSION-IN-PHASE,

WE shall use Hamilton’s form of the equations of motion for
a system of n degrees of freedom, writing ¢,, ...q, for the
(generalized) covrdinates, ¢i, .. .g, for the (generalized) ve-

locities, and
Fydq, + F, {Zgz oot Fodg, 1)

for the moment of the forces. We shall call the quantities
F,,...F, the (generalized) forces, and the quantities p,...p,,
defined by the equations

de, de,
= =2 ete. 2
2 i Pa ot s 2)

where ¢, denotes the kinetic energy of the system, the (gen-
eralized) momenta. The kinetic energy is here regarded as
a function of the velocities and covrdinates. We shall usually
regard it as a function of the momenta and cobrdinates,*
and on this account we denote it by e,. This will not pre-
vent us from occasionally using formule like (2), where it is
sufficiently evident the kinetic energy is regarded as function

of the ¢’s and ¢’s. But in expressions like de,/dg, , where the
denominator does not determine the question, the kinetic

* The use of the momenta instead of the. velocmes,,a.,s;ndeyendent variables
is the cﬁaracterlstxc of Hamilton’s method whieh gives his.equations.of motion
‘their remarkable degree of smphmty ‘We shall find that the fundamental
notions of statistical mechanics are most, easily defined, and are expressed in
the most simple form, when the momenta with the coordinates are used to
describe the state of a system.
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4 HAMILTON’S EQUATIONS.

energy is always to be treated in the differentiation as function
of the p’s and ¢’s.
We have then

de, » de
dp y P1=— :i—p + 7y, ete. 3)

o These equatlons will hold for any forces whatever. If the
¥ Ho“rces oux’e c{;mexvatlve, in other words, if the expression (1)
¢ is 2n exact d{ﬁQrenma,l we may set

<

¢=

«
e llg( TR

« :r e *ut (1111("‘(‘ ¢ de deq
1—'—dq1, Fg——-—d_qg, etc., (4)

where ¢, is a function of the covrdinates which we shall call
the potential energy of the system. If we write ¢ for the
total energy, we shall have

€=¢,+ €, 5)

and equations (3) may be written
| R e
ql-—dpl, pl——az, ete. [ (6)

The potential energy (e,) may depend on other variables
beside the covrdinates ¢;...q, We shall often suppose it to
depend in part on coordinates of external bodies, which we
shall denote by a,, a,, etec. We shall then have for the com-
plete value of the differential of the potential energy *

de,= — F,dy, .. — F,dq, — 4 da, — 4, doy—ete.,  (7)
where 4,, 4,, etc., represent forces (in the generalized sense)

exerted by the system on external bodies. For the total energy
(e) we shall have

de= éldpl et g.ndpn ""Z;l dql P
—1.771 dQn _Al da’l &, Ag d(lg — ete. (8)

It will be observed that the kinetic energy (e,) in the

| most general case is a quadratic function of the p’s (or ¢’s)

* It will be observed, that although we call LA the potential energy of the
system which we are considering, it is really so defined as to include that
energy which might be described as mutual to that system and exterml
bodies.
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involving also the ¢’s but not the a’s ; that the potential energy,
when it exists, is function of the ¢’s and a’s; and that the
total energy, when it exists, is function of the p’s (or ¢’s), the
¢'s, and the a’s. In expressions like de/dg,, the p’s, and not
the ¢’s, are to be taken as independent variables, as has already
been stated with respect to the kinetic energy.

Let us imagine a great number of independent systems, , !

identicar in nature, but differing in phase, that is, in their

condition with respect to configuration and velocity. The/ {

forces are supposed to be determined for every system by the
same law, being functions of the cotvrdinates of the system
¢1» - - - ¢, either alone or with the coordinates a;, a,, etc. of
certain external bodies. It is not necessary that they should
be derivable from a force-function. The external codrdinates
a,, a,, etc. may vary with the time, but at any given time
have fixed values. In this they differ from the internal
coordinates ¢;, ... ¢,, which at the same time have different
values in the different systems considered.

Let us especially consider the number of systems which at a
given instant fall within specified limits of phase, viz., those
for which :

101’ <m< 201”, Q{ << 91”’
pz’ < 102 < 102”’ 92’ < Qz < Qz”: (9)
b <P < P’y : % < HB< e

the accented letters denoting constants. We shall suppose
the differences p,” — p,’, ¢, — ¢/, ete. to be infinitesimal, and
that the systems are distributed in phase in some continuous
manner,* so that the number having phases within the limits
specified may be represented by

D(p” —p) ... @/ —p) (" — @) .- (&" —a), (10)

* In strictness, a finite number of systems cannot be distributed contin-
uously in phase. But by increasing indefinitely the number of systems, we
may approXimate to a continuous law of distribution, such as is here
described. To avoid tedious circumlocution, language like the above may
be allowed, although wanting in precision of expression, when the sense in
which it is to be taken appears sufficiently clear.

f 3
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or more briefly by /
Ddp;...dp,dg, ...dq, axr)

where D is a function of the p’s and ¢’s and in general of ¢ also,
for as time goes on, and the individual systems change their
phases, the distribution of the ensemble in phase will in gen-
eral vary. In special cases, the distribution in phase will/
remain unchanged. These are cases of statistical equilibrium.
If we regard all possible phases as forming a sort oi exten-
ision of 2# dimensions, we may regard the product of differ-
j jentials in (11) as expressing an element of this extension, and
D as expressing the density of the systems in that element,
We shall call the product

dp; ...dp,dq,...dg, (12)
an element of extension-in-phase, and D the densz‘ty—z'n—phase
of the systems.

It is evident that the changes which take place in the den-
sity of the systems in any given element of extension-in-
phase will depend on the dynamical nature of the systems
and their distribution in phase at the time considered. '

In the case of conservative systems, with which we shall be
principally concerned, their dynamical nature is completely
determined by the function which expresses the energy (e) in
terms of the p’s, ¢’s, and &’s (a function supposed identical
for all the systems); in the more general case which we are
considering, the dynamical nature of the systems is deter-
mined by the functions which express the kinetic energy (e,)
in terms of the p’s and ¢’s, and the forces in terms of the
¢’s and a’s. The distribution in phase is expressed for the
time considered by D as function of the p’s and ¢’s. To find
the value of dD/dt for the specified element of extension-in-
phase, we observe that the number of systems within the
limits can only be varied by systems passing the limits, which
may take place in 4n different ways, viz., by the p, of a sys-
tem passing the limit p,’, or the limit p,”, or by the ¢, of a
system passing the limit ¢,°, or the limit ¢,”, ete. Let us
consider these cases separately.

|

i
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In the first place, let us consider the number of systems
which in the time d¢ pass into or out of the specified element
by p, passing the limit p,’. It will be convenient, and it is
evidently allowable, to suppose d¢ so small that the quantities
]51 d¢, él dt, etc., which represent the increments of p,, ¢, ete.,
in the time dt¢ shall be infinitely small in comparison with
the infinitesimal differences p,” — p,’, ¢, — ¢,’, ete., which de-
termine the magnitude of the element of extension-in-phase.
The systems for which p, passes the limit p,” in the interval
dt are those for which at the commencement of this interval
the value of p, lies between p,” and p,” — p, dt, as is evident

if we consider separately the cases in which p, is positive and
negative. Those systems for which p, lies between these
limits, and the other p’s and ¢’s between the limits specified in
(9), will therefore pass into or out of the element considered
according aﬁo is positive or negative, unless indeed they also
pass some other limit specified in (9) during the same inter-

,val of time. But the number which pass any two of these

{limits will be represented by an expression containing the
'square of dt as a factor, and is evidently negligible, when dt

'is sufficiently small, compared with the number which we are

seeking to evaluate, and which (with neglect of terms contain-
ing dt?) may be found by substituting p, d¢ for p,” — p,’ ir
(10) or for dp, in (11).
The expression

Dp dtdp,...dp,dg; .. .dg, 13)
will therefore represent, according as it is positive or negative,
the increase or decrease of the number of systems within the
given limits which is due to systems passing the limit p,’. A
similar expression, in which however D and p will have
slightly different values (being determined for p,” instead of
py), will represent the decrease or increase of the number of
systems due to the passing of the limit p,”. The difference
of the two expressions, or

d(D7 :
-(TPI—;—deI...dp,, dgr - adg 14)
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will represent algebraically the decrease of the number of
systems within the limits due to systems passing the limits p,’
and p,”.

The decrease in the number of systems within the limits
due to systems passing the limits ¢," and ¢,” may be found in
the same way. This will give

d(D p) L 4D 7))

( dp, dq, ) ..dp,dgy...dg,dt (15)
for the decrease due to passing the four limits p,/, p,”, ¢/, ¢,”-
But since the equations of motion (3) give

dpl d91
=—'2=0, 16
A (16)

the expression reduces to

dD .

(dp et 22 G ql) dp - - . dp, dg, - . . dg.dé. an
If we prefix = to denote summation relative to the suffixes

1...n, weget the total decrease in the number of systems

within the limits in the time d¢. That is,

dD .. dD .
S| -— = dpi...dp.dgy...dg, dt =
(dp1p1+dq1 761 Pl‘ P 91A q
——ddel...dp,,dql...dq,,, 18)

or (——) — = ( n + 91), (19)

where the suffix applied to the dﬂferentml coefficient indicates
that the p’s and ¢’s are to be regarded as constant in the differ-
entiation. The condition of statistical equilibrium is therefore

b ( P + ) =0. (20)

If at any instant this condition is fulﬁlled for all values of the
p’s and ¢’s, (dD/dt), , vanishes, and therefore the condition
will continue to hold, and the distribution in phase will be
permanent, so long as the external cosrdinates remain constant.
But the statistical equilibrium would in general be disturbed
by a change in the values of the external codrdinates, which
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J'glvould alter the values of the p’s as determined by equations

(3), and thus disturb the relation expressed in the last equation.
If we write equation (19) in the form

gZ-Q)“dzwz( pldt+d qldt)—O @1)

dt
it will be seen to express a theorem of remarkable simplicity.
Since D is a function of ¢, py, ... Py, g1 5. qn, its complete
differential will consist of parts due to the variations of all
these quantities. Now the first term of the equation repre-
sents the increment of D due to an increment of ¢ (with con-
stant values of the p’s and ¢’s),and the rest of the first member
represents the increments of D due to increments of the p’s

and ¢’s, expressed by ]51 dt, q'l dt, ete. DBut these are precisely
the increments which the p’s and ¢’s receive in the movement
of a system in the time d¢z. The whole expression represents
the total increment of D for the varying phase of a moving
system. We have therefore the theorem: —

In an ensemble of mechanical systems identical in nature and
subject to forces determined by identical laws, but distributed
in phase in any continuous manner, the density-in-phase is
constant in time for the varying phases of a moving system ;
provided, that the forces of a system are functions of its co-
ordinates, either alone or with the time.*

This may be called the principle of conservation of density-
in-phase. It may also be written

(%) a,...h R e

where a, ... & represent the arbitrary constants of the integral
equations of motion, and are suffixed to the differential co-

* The condition that the forces F,...F, are functions of ¢y, ...¢n and
a4, ag, cte., which last are functions of the time, is analytically equivalent
to the condition that ¥, ...F, are functions of ¢, ...gs and the time.
Explicit mention of the external codrdinates, ay, as, etc., has been made in
the preceding pages, because our purpose will require us hereafter to con-
sider these codrdinates and the connected forces, 4;, 4,, etc., which repre-
sent the action of the systems on external bodies.
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efficient to indicate that they are to be regarded as constant
in the differentiation.

We may give to this principle a slightly different expres-
sion. Let us call the value of the integral

o e f...fdpl...dp,,dgl...dg,, @23)

taken within any limits the extension-in-phase within those
limits.

When the phases bounding an extension-in-phase vary in
the course of time according to the dynamical laws of a system
subject to forces which are functions of the codrdinates either
alone or with the time, the value of the extension-in-phase thus
bounded remains constant. In this form the principle may be
called the principle of conservation of extension-in-phase. In
some respects this may be regarded as the most simple state-
ment of the principle, since it contains no explicit reference
to an ensemble of systems.

Since any extension-in-phase may be divided into infinitesi-
mal portions, it is only necessary to prove the principle for
an infinitely small extension. The number of systems of an
ensemble which fall within the extension will be represented
by the integral -

f...fdel...dp,,dgl...dg,,.

If the extension is infinitely small, we may regard D as con-
stant in the extension and write

.Df...fdpl...dp,,dql...dg,,

for the number of systems. The value of this expression must
be constant in time, since no systems are supposed to be
created or destroyed, and none can pass the limits, because
the motion of the limits is identical with that of the systems.
But we have seen that D is constant in time, and therefore

the integral
f...fdpl...dpadql...dgn,
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which we have called the extension-in-phase, is also constant
in time.*

Since the system of cotrdinates employed in the foregoing
discussion is entirely arbitrary, the values of the cotrdinates
relating to any configuration and its immediate vicinity do
not impose any restriction upon the values relating to other
configurations. The fact that the quantity which we have
called density-in-phase is constant in time for any given sys-
_tem, implies therefore that its value is independent of the
coordinates which are used in its evaluation. For let the
density-in-phase as evaluated for the same time and phase by
one system of covrdinates be Dy/, and by another system .D,'.
A system which at that time has that phase will at another
time have another phase. Let the density as calculated for
this second time and phase by a third system of coordinates
be D;’. Now we may imagine a system of coordinates which
at and near the first configuration will coincide with the first
system of coordinates, and at and near the second configuration
will coincide with the third system of.coordinates. This will
give D,/ = D,”. Again we may imagine a system of coordi-
nates which at and near the first configuration will coincide
with the second system of cobrdinates, and at and near the

* If we regard a phase as represented by a point in space of 2n dimen-
sions, the changes which take place in the course of time in our ensemble of
systems will be represented by a current in such space. This current will
be steady so long as the external codrdinates are not varied. In any case
the current will satisfy a law which in its various expressions is analogous
to the hydrodynamic law which may be expressed by the phrases conserva-
tion of volumes or conservation qf density about a moving point, or by the equation

dz
+ dy 7

The analogue in statistical mechanices of this equation, viz.,

=0

_@erql dP2+d¢12+etc =0,

may be derived directly from equations (3) or (6), and may suggest such
theorems as have been enunciated, if indeed it is not regarded as making
them intuitively evident. The somewhat lengthy demonstrations given
above will at least serve to give precision to the notions involved, and
familiarity with their use.
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second configuration will coincide with the third system of
covrdinates. This will give D,/ = D,"”. We have therefore
= Dzl_

It follows, or it may be proved in the same way, that the
value of an extension-in-phase is independent of the system
of covrdinates which is used in its evaluation. This may
easily be verified directly. If ¢;,...¢,, @4,... @, are two
systems of courdinates, and p,,...p,, Py,... P, the cor-
responding momenta, we have to prove that

f...fdpl...dp,,dgl...dg,,=f...fdPl...dP,.dQl...dQ", @24)

when the multiple integrals are taken within limits consisting
of the same phases. And this will be evident from the prin-
ciple on which we change the variables in a multiple integral,
if we prove that

A R v A AUS T

APy - o Dz Gy oo s ) - X (25)
where the first member of the equation represents a Jacobian
or functional determinant. Since all its elements of the form
dQ/dp are equal to zero, the determinant reduces to a product
of two, and we have to prove that

d(Pl’ e -Pn) d(Q:[, “ o Q") 4y
Ay p) Ky (26)

We may transform any element of the first of these deter-
minants as follows. By equations (2) and (3), and in
view of the fact that the s are linear functions of the ¢'s
and therefore of the p’s, with coefficients involving the ¢’s, -
so that a differential coefficient of the form d§,/dp, is function
of the ¢’s alone, we get*

* The form of the equation
o i (Y
dpy d Qz d Q:c dPy
in (27) reminds us of the fundamental identity in the differential calculus
relating to the order of differentiation with respect to independent variables.
But it will be observed that here the variables Q= and p, are not independent
and that the proof depends on the linear relation between the Q’s and the p’s.
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dP, _ d_de, _r;n( d%, gzg',)=
r=1

dp,  dp, dQ, dQ, d§, dp,
d = de, d@), d de, dg
— — — ==, (27
ae; f‘l(er dp.,) @z dp, dQ, S
But since / (ZQQ” Qr),
d_é_L e @8)
4@, dQ,
Therefore,
APy ... P) _ gy, ...q) _ day, ... ) @9
d(}’u 28 pn) d(Ql) 3 e Qn) d(Ql; o e Qn). f
The equation to be proved is thus reduced to
d(q1, . - - Qn) d(le s ee Qn) arq (30)

d(Ql) SRS Qn) d(gh e s 911) g
which is easily proved by the ordinary rule for the multiplica-

. tion of determinants.

The numerical value of an extension-in-phase will however
depend on the units in which we measure energy and time.
For a product of the form dp dg has the dlmensmns of energy
multiplied by time, as appears from equation”(2), by which
the momenta are defined. Hence an extension-in-phase has
the dimensions of the nth power of the product of energy
and time. -In other words, it has the dimensions of the nth
power of action, as the term is used in the ¢ principle of Least
Action.’ -

If we distinguish by accents the values of the momenta
and codrdinates which belong to a time ¢, the unaccented
letters relating to the time ¢, the principle of the conserva-
tion of extension-in-phase may be written & .

f e f dpy...dp,dgy... == f f dp!...dp,dgy .. .dg,!, (31)

or more briefly

f...fd@...dg,.=f...fdp{...dg,.', (32)
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the limiting phases being those which belong to the same
systems at the times ¢ and ¢ respectively. But we have
identically

f...fdp,.. _f fj((ﬁll.'. ,)pl---dg,/

for such limits. The principle of conservation of extension-in-
phase may therefore be expressed in the form

Aps . - - g0)

T =1. 33

ari - 20) v
This equation is easily proved directly. For we have
identically

Uy -+ 9a) _ AUpry---90) Apts .. q.")
d(ptye--g2)  d(pty - @) APl - ql)
where the double accents distinguish the values of the momenta
and coordinates for a time ¢”. If we vary ¢, while ¢ and ¢’
remain constant, we have

_(_l d(plv LY Qn) pisd d(pln, prails Qn") _El_ d(pla AR S gn) ) (34)
dtd(ply ... q.) " d(py...g) dtd(ply... 9.
Now since the time ¢” is entirely arbitrary, nothing prevents
us from making ¢’ identical with ¢ at the moment considered.
Then the determinant

A(p1y -+ 9,)
At gl
will have unity for each of the elements on the principal
diagonal, and zefo for all the other elements. Since every
term of the determinant except the product of the elements
on the principal diagonal will have two zero factors, the differen-
tial of the determinant will reduce to that of the product of
these elements, 4. e., to the sum of the differentials of these
elements. This gives the equation
a d(prs-.-qs) £, dp, + dp, g dgn :
dtd(p, ...q) dp """ T dp' T A" dg,l!
Now since ¢ = ¢”, the double accents in the second member
of this equation may evidently be neglected. This will give,
in virtue of such relations as (16),

+

.+
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a d(pi, .. qn) il
dt d(p,", ... ")

which substituted in (84) will give

APy g)

dt d(pys - - - ¢')
The determinant in this equation is therefore a constant, the
value of which may be determined at the instant when ¢ =1,
when it is evidently unity. Equation (83) is therefore
demonstrated.

Again, if we write a, ... A for a system of 2 arbitrary con-
stants of the integral equations of motion, p,, ¢;, ete. will be
functions of a, . . . A, and ¢, and we may express an extension-
in-phase in the form

[ L. 35

If we suppose the limits specified by values of a,... 4%, a
system initially at the limits will remain at the limits.
The principle of conservation of extension-in-phase requires
that an extension thus bounded shall have a constant value.
This requires that the determinant under the integral sign
shall be constant, which may be written

4 d(p1y - - - gn)

dt d(a,...h) B (36)
This equation, which may be regarded as expressing the prin-
ciple of conservation of extension-in-phase, may be derived
directly from the identity

A(prs.--q0) _ AP1y...q) Apdy ... q))
gy ) T d(pls - gd) d(a .. k)
in connection with equation (33).

Since the coordinates and momenta are functions of 4, .-. . A,
and ¢, the determinant in (86) must be a function of the same
variables, and since it does not vary with the time, it must
be a function of @, . . . A alone. We have therefore

A P1s «+ - qa)
d(ay ... h)

= fane. (g, ... ). 37
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It is the relative numbers of systems which fall within dif-
ferent limits, rather than the absolute numbers, with which we
are most concerned. Tt is indeed only with regard to relative
numbers that such discussions as the preceding will apply
with literal precision, since the nature of our reasoning implies
that the number of systems in the smallest element of space
which we consider is very great. This is evidently inconsist-
ent with a finite value of the total number of systems, or of
the density-in-phase. Now if the value of D is infinite, we
cannot speak of any definite number of systems within any
finite limits, since all such numbers are infinite. But the
ratios of these infinite numbers may be perfectly definite. If
we write IV for the total number of systems, and set

D
P=x, (39)

P may remain finite, when IV and D become infinite. The

integral
f...depl...dq,, (39)

taken within any given limits, will evidently express the ratio
of the number of systems falling within those limits to the
whole number of systems. This is the same thing as the
probability that an unspecified system of the ensemble (<. e.
one of which we only know that it belongs to the ensemble)
will lie within the given limits. The product

Pdp,...dy, (40)

expresses the probability that an unspecified system of the
ensemble will be found in the element of extension-in-phase
dpy ...dq,. We shall call P the coefficient of probability of the
phase considered. Its natural logarithm we shall call the
indez of probability of the phase, and denote it by the letter ».
If we substitute N P and Ne" for D in equation (19), we get
&), =—= (G + o tar) )

and (gg)”—— 3 (bt 7 dgl) (42)
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The condition of statistical equilibrium may be expressed
by equating to zero the second member of either of these
equations.

The same substitutions in (22) give

d.
s B 43)
(df)m...h 0 #8)

@ E= 44

That is, the values of P and 7, like those of D, are constant
in time for moving systems of the ensemble. ¥rom this point
of view, the principle which otherwise regarded has been
called the principle of conservation of density-in-phase or
conservation of extension-in-phase, may be called the prin-
ciple of conservation of the coefficient (or index) of proba-
bility of a phase varying according to dynamical laws, or
more briefly, the principle of conservation of probability of
phase. 1t is subject to the limitation that the forces must be
functions of the coordinates of the system either alone or with
the time. ]

The application of this principle is not limited to cases in
which there is a formal and explicit reference to an ensemble of |
systems. Yet the conception of such an ensemble may serve
to give precision to notions of probability. It is in fact cus-
tomary in the discussion of probabilities to describe anything
which is imperfectly known as something taken at random
from a great number of things which are completely described.
But if we prefer to avoid any reference to an ensemble
of systems, we may observe that the probability that the |
phase of a system falls within certain limits at a certain time,
is equal to the probability that at some other time the phase
will fall within the limits formed by phases corresponding to
the first. For either occurrence necessitates the other. That
is, if we write P’ for the coefficient of probability of the
phase p/, ... ¢, at the time ¢, and P” for that of the phase
P v . ¢ at the time ¢,

2
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f-°-fP,dgl,"'dqu,=f"'f‘P”dp]-”"'dg"”’ (45)

where the limits in the two cases are formed by corresponding
phases. When the integrations cover infinitely small vari-
ations of the momenta and coordinates, we may regard P’ and
P as constant in the integrations and write

_P’f...fdpl’...dqn’(;-_P'f...fdpl”...dg,.”.

Now the principle of the conservation of extension-in-phase,
which has been proved (viz., in the second demonstration given
above) independently of any reference to an ensemble of
systems, requires that the values of the multiple integrals in
this equation shall be equal. This gives

Vel 2k

With reference to an important class of cases this principle
may be enunciated as follows.

When the differential equations of motion are exactly known,
but the constants of the integral equations imperfectly deter-
mined, the coefficient of probability of any phase at any time is
equal to the coefficient of probability of the corresponding phase
at any other time. By corresponding phases are meant those
which are calculated for different times from the same values
of the arbitrary constants of the integral equations.

Since the sum of the probabilities of all possible cases is
necessarily unity, it is evident that we must have

all
f...depl...dq,,=1, (46)
phases
where the integration extends over all phases. This is indeed
only a different form of the equation
all
N=f...f.de1...dg,,,
phases

which we may regard as defining V.
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The values of the coefficient and index of probability of
phase, like that of the density-in-phase, are independent of the
system of codrdinates which is employed to express the distri-
bution in phase of a given ensemble.

In dimensions, the coefficient of probability is the reciprocal
of an extension-in-phase, that is, the reciprocal of the nth
power of the product of time and energy. The index of prob-
ability is therefore affected by an additive constant when we
change our units of time and energy. If the unit of timeis
multiplied by ¢, and the unit of energy is multiplied by e., all
\mdloes of probability relating to systems of n degrees Tof
freedom will be increased by the addition of

n log ¢, + n log c.. (47)



CHAPTER 1II.

APPLICATION OF THE PRINCIPLE OF CONSERVATION
OF EXTENSION-IN-PHASE TO THE THEORY
OF ERRORS.

LET us now proceed to combine the principle which has been
demonstrated in the preceding chapter and which in its differ-
ent applications and regarded from different points of view
has been variously designated as the conservation of density-
in-phase, or of extension-in-phase, or of probability of phase,
with those approximate relations which are generally used in
the ¢theory of errors.’

We suppose that the differential equations of the motion of
a system are exactly known, but that the constants of the
integral equations are only approximately determined. It is
evident that the probability that the momenta and covrdinates
at the time ¢ fall between the limits p,’ and p," + dp,/, ¢,’ and
9, + dg, ete., may be expressed by the formula

e dpy! . .. dg,!, 48)

where 7' (the index of probability for the phase in question) is
a function of the covrdinates and momenta and of the time.

Let @/, P/, etc. be the values of the cosrdinates and momenta
which give the maximum value to 7, and let the general
value of n' be developed by Taylor’s theorem according to
ascending powers and products of the differences p,/ — P/,
9,/ — @, ete., and let us suppose that we have a sufficient
- approximation without going beyond terms of the second
degree in these differences. We may therefore set

W =¢— F, (49)

where ¢ is independent of the differences p,/ — P/, ¢/ — @,
etc.,, and #’ is a homogeneous quadratic function of these
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differences. The terms of the first degree vanish in virtue
of the maximum condition, which also requires that #' must
have a positive value except when all the differences men-
tioned vanish. If we set

0=¢, (50)

we may write for the probability that the phase lies within
the limits considered

CeF dp,...dg,. (51)

C is evidently the maximum value of the coefficient of proba-
bility at the time considered.

In regard to the degree of approximation represented by
these formule, it is to be observed that we suppose, as is
usual in the ¢theory of errors,” that the determination (ex-
plicit or implicit) of the constants of motion is of such
precision that the- coefficient of probability e” or Ce™¥ is
practically zero except for very small values of the differences
pd — P/, ¢/ — @, etec. For very small values of these
differences the approximation is evidently in general sufficient,
for larger values of these differences the value of Ce¢=* will
be sensibly zero, as it should be, and in this sense the formula
will represent the facts.

We shall suppose that the forces to which the system is
subject are functions of the cotrdinates either alone or with
the time. The principle of conservation of probability of
phase will therefore apply, which requires that at any other
time (#") the maximum value of the coefficient of probability
shall be the same as at the time ¢, and that the phase
(2", @,", etc.) which has this greatest probability-coefficient,
shall be that which"corresponds to the phase (P, @/, ete.),
i. e, which is calculated from the same values of the constants
of the integral equations of motion.

We may therefore write for the probability that the phase
at the time ¢" falls within the limits p,” and p,” + dp,", ¢,"
and ¢,” + dg,", etc.,

Ce=F'dp . ..dgl, (52)
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where C represents the same value asin the preceding
formula, viz., the constant value of the maximum coefficient
of probability, and #" is a quadratic function of the differences
p" — P, ¢"" — @, etc., the phase (P,", Q," etc.) being that
which at the time ¢” corresponds to the phase (P, @/, etc.)
at the time ¢.

Now we have necessarily

f f CePdpy...dgt= f f CeF"dpyl ... dg" =1, (53)

when the integration is extended over all possible phases.
It will be allowable to set £ oo for the limits of all the coor-
dinates and momenta, not because these values represent the
actual limits of possible phases, but because the portions of
the integrals lying outside of the limits of all possible phases
will have sensibly the value zero. With + oo for limits, the
equation gives
j Gt s 0 "
VF AT

where f/ is the-discriminant * of #, and /" that of #”. This
discriminant is therefore constant in time, and like €' an abso-
lute invariant in respect to the system of cotrdinates which
may be employed. In dimensions, like (% it is the reciprocal
of the 2nth power of the product of energy and time.

Let us see precisely how the functions #”and F" are related.
The principle of the conservation of the probability-coefficient
requires that any values of the covrdinates and momenta at the
time ¢ shall give the function #' the same value as the corre-
sponding covrdinates and momenta at the time ¢ give to #”.
Therefore F" may be derived from F’ by substituting for
Py's +..q, their values in terms of _pl sy +osqy"s Now we
have approximately

=1, G2

* This term is used to denote the determinant having for elements on the
principal diagonal the coefficients of the squares in the quadratic function
F’, and for its other elements the halves of the coefficients of the products
in F’,
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ary 3 ap,!
pl — P = Plf/ (2! — Py") ... + dQlH ! — Q.1

dQ.
— Q= T (n — P .+ T (0 — QU

and as in F" terms of higher degree than the second are to be
neglected, these equations may be considered accurate for the
purpose of the transformation required. Since by equation
(83) the eliminant of these equations has the value unity,
the discriminant of F" will be equal to that of #”, as has
already appeared from the consideration of the principle of
conservation of probability of phase, which is, in fact, essen-
tially the same as that expressed by equation (33).

At the time ¢, the phases satisfying the equation

F!=F, (56)
where % is any positive constant, have the probability-coeffi-

cient Ce™*. At the time ¢”, the corresponding phases satisfy
the equation

Fil =F, (57)

and have the same probability-coefficient. So also the phases
within the limits given by one or the other of these equations
are corresponding phases, and have probability-coefficients
greater than Ce~*, while phases without these limits have less
probability-coefficients. The probability that the phase at
the time ¢ falls within the limits #' = % is the same as the
probability that it falls within the limits 7" = % at the time ¢’
since either event necessitates the other. This probability
may be evaluated as follows. We may omit the accents, as
we need only consider a single time. Let us denote the ex-
tension-in-phase within the limits # =% by U, and the prob-
ability that the phase falls within these limits by £, also the
extension-in-phase within the limits #=1 by U;. We have

then by definition
= f e 9)



24 CONSERVATION OF EXTENSION-IN-PHASE
H=1;
R:f...fCe‘del...dq,,, (59)

F=1
U1=f...fdp1.,.dg,,. (60)

But since # is a homogeneous quadratic function of the
differences

IJI_PI)PZ_PZ! ceen— Qm
we have identically

Ji=% F
f...fd(pl—Pl)...d@n—Qn)

kF=k

=f...fk”d(_pl—P1)---d(gn—Qu)

F=1
=/c"f...fd(pl—Pl)...d(q,.—Q,,).

That is (BES (61)
whence dU = U, n k7 dk. (62)
But if % varies, equations (58) and (69) give
F=rk+dk
dU:f...fdpl...dg,, (63)
F=%
F = k--dk
dR:f...fO’e‘del e 2y (64)
F=k

Since the factor C'e=f has the constant value Ce~* in the
last multiple integral, we have
dR=Ce*dU=CUyne*kdk, (65)
kz kn—-l
R:—OUllZZe_k(l-l-k-l—-é-—l-..--Fl—m)+COIlSt. (66)

We may determine the constant of integration by the condition
that R vanishes with 2. This gives

o,
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We may determine the value of the constant U by the con-
dition that B =1 for £ = oo. This gives C' U, |n =1, and

k2
R=0U1]_1_1,—O'U1]11,e‘”<1+k+7+...+

4, ! kz ku—l
R_l—-e"(1+k+-2—---+'n_1)’ (68)
kn
U.—:C[ﬁ- (69)

It is worthy of notice that the form of these equations de-
pends only on the number of degrees of freedom of the system,
being in other respects independent of its dynamical nature,
except that the forces must be functions of the codrdinates
either alone or with the time.

If we write

4
for the value of & which substituted in equation (68) will give
R = 1, the phases determined by the equation

- b= o (70)
will have the following properties. :

The probability that the phase falls within the limits formed
by these phases is greater than the probability that it falls
within any other limits enclosing an equal extension-in-phase.
It is equal to the probability that the phase falls without the
same limits.

These properties are analogous to those which in the theory
of errors in the determination of a single quantity belong to

values expressed by A + a, when A is the most probable
value, and a the ¢probable error.’



CHAPTER III

APPLICATION OF THE PRINCIPLE OF CONSERVATION OF
EXTENSION-IN-PHASE TO THE INTEGRATION OF THE
DIFFERENTIAL EQUATIONS OF MOTION.*

WE have seen that the principle of conservation of exten-
sion-in-phase may be expressed as a differential relation be-
tween the coordinates and momenta and the arbitrary constants
of the integral equations of motion. Now the integration of
the differential equations of motion consists in the determina-
tion of these constants as functions of the covrdinates' and
momenta with the time, and the relation afforded by the prin-
ciple of conservation of extension-in-phase may assist us in
this determination.

It will be convenient to have a notation which shall not dis-
tinguish between the codrdinates and momenta. If we write
7y « . « 7y, for the covrdinates and momenta, and @ . . . % as be-
fore for the arbitrary constants, the principle of which we
wish to avail ourselves, and which is expressed by equation
(87), may be written

ATy, oo Toy)
d(a, ... h)

Let us first consider the case in which the forces are deter-
mined by the cotrdinates alone. Whether the forces are
¢ conservative’ or not is immaterial. Since the differential
equations of motion do not contain the time (¢) in the finite
form, if we eliminate d¢ from these equations, we obtain 27 — 1
equations in 7, ...7, and their differentials, the integration
of which will introduce 27 — 1 arbitrary constants which we
shall call &...A If we can effect these integrations, the

= func. (q, . . . k). (71)

* See Boltzmann: “Zusammenhang zwischen den S#tzen iiber das Ver-
halten mehratomiger Gasmoleciile mit Jacobi’s Princip des letzten Multi-
plicators. Sitzb. der Wiener Akad., Bd. LXIII, Abth. IL, 8. 679, (1871).
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remaining constant (@) will then be introduced in the final
integration, (viz., that of an equation containing dt,) and will
be added to or subtracted from ¢ in the integral equation.
Let us have it subtracted from ¢. It is evident then that

%=_7’3, %—_—-—%,, ete. (72)
Moreover, since b, . . . h and ¢ — a are independent functions
of 7, . . . ry, the latter variables are functions of the former.
The Jacobian in (71) is therefore function of 5, ... 7%, and
t — a, and since it does not vary with ¢ it cannot vary with a.
We have therefore in the case considered, viz., where the
forces are functions of the codrdinates alone,
%%’7'—'5%")—) = fune. (3, .. . B). (73)
Now let us suppose that of the first 2n — 1 integrations we
have accomplished all but one, determining 2n — 2 arbitrary
constants (say ¢, . . . k) as functions of », . . . 7, leaving b as
well as ¢ to be determined. Our 27 — 2 finite equations en-
able us to regard all the variables 7, . . . 74, and all functions
of these variables as functions of two of them, (say »; and r,,)
with the arbitrary constants ¢, ... % To determine b, we
have the following equations for constant values of ¢, . . . A.

dry = d_r1 da + %db,
dry = d“ da + 52 d"2 db,
d(rl, r3) db —

d(a, b) .
Now, by the ordinary formula for the change of variables,

d 7,
f ogzl’b?dadbdr,,...dm,,:f...fdrl...drg,.
GG AR
_f fd(a,_ it 5l

it (] (R ) d(c,...
—f"'fd(a,...h) d(rs’.“rzn)dadbdrs...drz,,,

drg d

d
whence r + ?i% dra. (74)
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where the limits of the multiple integrals are formed by the
same phases. Hence
d(ry, 1) i d(ry, . .72,) d(c, ... k) (75)
d(a, b) A Ry ity 2o Tae)
With the aid of this equation, which is an identity, and (72),
we may 