

THE LIBRARY OF
THE UNIVERSITY OF CALIFORNIA LOS ANGELES
.
+

	0°	30°	45°	60°	90°
\sin	0	$1 / 2$	$1 / 2 \sqrt{2}$	$1 / \sqrt{3}$	1
cos	1	$1 / 2 \sqrt{3}$	$12 \sqrt{2}$	$\frac{1}{2}$	0
\tan	0				

Whenimisple 72

$$
\begin{gathered}
0 \times 3,4,-79 \mathrm{~kg} . \\
\prime 19,20,8
\end{gathered}
$$

$$
41^{\prime}+4^{\prime \prime}, 4,20
$$

form A.C. 7 zester

Afrilo $8: 1950$.
33 lollege st.

Gin we hack pg $800^{5} 11-10$
 Fr puxt time.

Digitized by the Internet Archive in 2007 with funding from Microsoft Corporation

JOHN WILEY \& SONS

PUBLISH,

By the same Author,

the elementary principles of mechanics. By Prof. A. J. Du Bois. Designed as a text-book for technical schools. Three Volumes.

- 8vo, cloth.

Vol. I-Kinematics, $\$ 3.50$. Vol. II—Statics, $\$ 4.00$. Vol. III—Kinetics, $\$ 30$

THEORY OF THE STEAM ENGINE. Translated from the fourth edition
of Weisbach's Mechanics, by Prof. A. J. Du Bois. Containing notes giving
practical examples of Stationary, Marine, and Locomotive Engines,
showing American practice. By R. H. Buel. Numerous illustrations.
8vo, cloth, 500

THERMO-DYNAMICS, THE PRINCIPLES OF. With Special Applications to Hot Air, Gas, and Steam Engines. By Robert Röntgen. With additions from Profs. Verdet, Zeuner, and Pernolet. Translated, revised, and enlarged by Prof. A. J. Du Bois, of Sheffield Scientific School. 670 pages... . . 8 vvo , cloth,

THE CALCULATIONS OF STRENGTH AND DIMENSIONS OF IRON AND STEEL CONSTRUCTIONS. With reference to the latest experiments. By Prof. J. J. Weyrauch, Polytechnic Institute of Stuttgart. Translated by A. J. Du Bois. With Plates.... 8 vo, cloth,

[^0]
THE

ELEMENTARY PRINCIPLES

of
MECHANICS.

Vol. II.

sTATICS.

BY
A. JAY DU BOIS, C.E., Ph.D.,

Professor of Civil Engineering
in the Sheffield Scientific School of Yale University;
Author of "Elements of Graphical Statics":
"The Strains in Framed Structures";
etc.

FIRST EDITION.
FIRST THOUSAND.
JOHN S. PRELL
Civil \& Mechanical Engineer.
san francisco, cal. NEW YORK:
JOHN WILEY \& SONS,
53 East Tentit Street.
1894.
weigh r $\frac{1}{4}$ Trope t " The 2 ry ford itrpu ft ard the of of $\frac{1}{2}$ tor pu fe.

Copyright, 1894,
A. JAY DU BOIL.

Pq107. 17.421.8 $8 \rightarrow$

 mph ot it mpor fow ok w the folate Silve alo. owpport

 citue an on No tioneq fuceby a tical plame O, ${ }^{2}$, No.te ford the o fow puinhb.

NOTE.

The large type by itself constitutes an abridged course. Articles in small type are for advanced students. Articles containing applications of the Calculus are inclosed in brackets.
43.

beam earisima it a dant of 8 : Bar A, ayd a

(a)

Mur fot
(1) Whar 12t 3...

$$
733<82
$$

MECHANICS.

TABLE OF CONTENTS.

Vol. II.

STATICS.

INTRODUCTION.

CHAPTER I.

MATTER, BODY, PARTICLE, INERTIA. FORCE. DYNAMICS.

Abstract

Matter, Body, Particle. Inertia. Force. Dynamics. Force proportional to acceleration. Mechanical illustration of force. Uniform and variable force. Criterion of the action of force. Mass. Unit of mass. Measurement of mass. Mass independent of gravity. Relation between force, mass and acceleration. Unit of force. Dimensions of unit of force. Weight of a body. Gravitation unit of force. Tension, compression, shear. Action and Reaction. Stress. External stress. Strain. Examples.

CHAPTER II.

DENSITY. SPECIFIC MASS. DETERMINATION OF SPECIFIC MASS.
Density. Unit of density. Specific mass. Determination of specific mass. Table of specific mass. Examples.

CHAPTER III.
CENTRE OF MASS.
Centre of mass. Centre of gravity. Property of centre of mass. Determination of centre of mass. Material line, area, volume. Moment of mass, volume, area. Plane and axis of symmetry. Centre of mass of homogeneous material lines. Centre of mass of homogeneous areas. Centre of mass of volumes. Theorem of Pappus and Guldinus. Examples. Determination of centre of mass by Calculus. Centre of mass of lines. Examples. Centre of mass of plane surfaces. Examples. Centre of mass of curved surfaces: Examples. Centre of mass of bodies. Examples.....

CHAPTER IV.

COMPOSITION AND RESOLUTION OF FORCES. ATTRACTION.

Line representative of a force. Composition and resolution of forces. Force of gravitation. Centre of gravity. Value of constant of gravitation. Astronomical unit of mass. Value of a^{\prime} for planetary motion. Attraction of a circular arc. Attraction of a straight line. Attraction of a circular ring. Attraction of a circular disk. Attraction of a cylinder. Attraction of a cone. Value of g above sea-level. Examples.

44-56

STATICS.

CHAPTER I.

CONCURRING FORCES.

Forces in equilibrium. Statics. Line representative of a force. Composition and resolution of forces. Concurring forces. Static equilibrium. Molar equilibrium. Dynamic or kinetic equilibrium. Composition and resolution of co-planar forces. Analytical determination of the resultant for concurring co-planar forces. Analytical determination of the resultant for concurring forces not in the same plane. Conditions of equilibrium for concurring forces. Conditions of equilibrium for concurring forces in special cases. Examples

CHAPTER II.

PARALLEL FORCES.

Non-concurring forces. Moment of a force. Line representative of moment of a force. Resultant of two non-concurring co-planar forces. Resultant of two parallel forces. Moment of a couple. Line representative of a couple. Composition and resolution of couples. Centre of parallel forces. Properties of the centre of mass. Resultant force and couple for any number of parallel forces. Equilibrium of a rigid body. Conditions of equilibrium of a rigid body acted upon by parallel forces. Examples.

CHAPTER III.

NON-CONCURRING FORCES IN GENERAL.

Composition and resolution of forces and couples. Central axis of a force system. Condition of equilibrium of a rigid body. Analytical determination of resultant force and couple for any number of non-concurring forces in space. Equivalent wrench. The invariant. Composition and resolution of wrenches. Special cases. Examples

CHAPTER IV.

NON-CONCURRING CO-PLANAR FORCES.

Conditions of equilibrium of a body acted upon by non-concurring co-planar forces. Framed structure. Stress. Determination of the reactions of a framed structure. Determination of the stresses in a framed structure. Method by resolution of forces. Method by moments or the method of sections. Superfluous members. Criterion for superfluous members. Examples.

CHAPTER V.

EQUILIBRIUM OF STRINGS.

Equilibrium of a perfectly flexible inextensible string. General equations of equilibrium. External forces vertical. Continuous curve, tangential and normal components. Load uniform over the horizontal. Solution by Calculus. Load uniform over the string. Catenary of uniform strength. Load proportional to the area between the string and horizontal. String acted on by central force. Central force inversely as the square of the distance. Examples.
PAGES

CHAPTER VI.

GRAPHICAL STATICS. CO-PLANAR FORCES.

Graphical statics. Concurring co-planar forces. Notation for framed structures. Character of the stresses. Application of preceding principles to a frame. Apparent indetermination of stresses. Remarks upon the method. Choice of scales. Examples. Nonconcurring forces. Position of pole indifferent. Pole, equilibrium polygon, rays, closing line. Recapitulation. Graphicconstruction for centre of parallel co-planar forces. Properties of the equilibrium polygon. Application to parallel forces. Closing line at right angles to the forces. Choice of pole distance. Methods of solution of framed structures. Examples.

133-157

CHAPTER VII.

WORK.
Work. Work independent of the path. Work when force is variable. Unit of work. Virtual displacement. Virtual work. Principle of virtual work. Examples.

158-168

CHAPTER VIII.

CONSTRAINED EQUILIBRIUM. SMOOTH CURVE OR SURFACE.

Reaction of a curve or surface. Equilibrium of a body on any curve or surface. Reaction of a smooth curve or surface. Equilibrium of a body on a smooth curve or surface. Examples.

169-185

CHAPTER IX.

CONSTRAINED EQUILIBRIUM. ROUGH CURVE OR SURFACE.

Friction. Adhesion. Kinds of friction. Reaction of a rough curve or surface. Equilibrium of a body on a rough curve or surface. Angle of friction or repose. Cone of friction. Coefficient of friction. Limiting equilibrium. Coefficient of static sliding friction. Experimental determination. Laws of static sliding friction. Limitations of the laws. Values of the coefficients of static sliding friction. Static friction for pivots. Static friction of axles. Static friction of cords and chains. Rigidity of ropes. Equilibrium of a body at any point of a rough curve or surface. Stable, unstable, neutral and indifferent equilibrium. Criterion for. Stability in rolling contact. Examples.

APPLICATIONS OF STATICS.

CHAPTER I.

RETAINING WALLS. DAMS. EARTH SLOPES.

Definition of parts of a wall. Weight and friction of masonry. Stability of a masonry joint. Stability of a wall. Low and high wall. Low gravity dam. Direction of water pressure. Point of application of water pressure. Magnitude of water pressure. Factor of safety for sliding. Stability and proportions. Economic section for high masonry dam. Arch dam. Retaining wall. Point of application of pressure. Magnitude and direction of pressure, graphic determination. Magnitude and direction of pressure, analytic determination. Surface of rupture. Special cases. Cohesion of earth. Equilibrium of a mass of earth. Angle of rupture. Curve of slope. Examples.

CHAPTER II.

STRENGTH AND ELASTICIT'Y OF MATERIALS.

Moment of inertia of an area. Definition of. Determination of. Radius of gyration. Rule for moment of inertia of a rectangle, parallelogram, circle or ellipse. Stress and strain. Tensile, compressive and shearing stress. Experimental laws. Determination of the elastic limit. Coefficient of elasticity. Work and coefficient of resilience. Conditions of equilibrium of a deflected beam. Reactions of the supports. Shearing force and stress. Bending moment. Graphic representation of bending moment. Neutral axis. Resisting moment. Coefficient of rupture. Table of properties of materials. Factor of safety and working stress. Variable working stress. Strength of pipes and cylinders. Riveted joints. Theory and practice of riveting. Diameter of rivets. Pitch of rivets. Number of rivets. Rivet table. Investigation and designing of beams. Theory of pins and eyebars. Torsion. Twisting moment and resisting moment. Coefficient of rupture for torsion. Coefficient of elasticity for shearing determined by torsion. Work of torsion. Transmission of power by shafts. Combined stresses. Combined tension and flexure. Combined compression and flexure. Combined tension and shear. Combined compression and shear. Combined flexure and torsion. Stress due to temperature. Examples

CHAPTER III.

THEORY OF F'LEXURE.
Change of shape of neutral axis of a beam. Assumptions of the theory. Application to beams. Deflection of a framed structure. Deflection of beams found by the same method. Formulas for long struts. Euler's formula. Limiting length for Euler's formula. The straight-line and parabola formulas. The RankineGordon formula. Recapitulation of formulas for long struts. Examples.

325-366

CHAPTER IV.

THE CONTINUOUS GIRDER.

Continuous girder. Conditions of equilibrium. Equation of the curve of deflection. Theorem of three moments. Determination of the moment at any support. Recapitulation, general formulas. Examples.
Index.. . . . 387-392

DYNAMICS.

INTRODUCTION.

CHAPTER I.

MATTER, BODY, PARTICLE. INERTIA. FORCE. DYNAMICS.

FORCE PROPORTIONAL TO ACCELERATION. UNIFORM AND VARIABLE FORCE. mass. UNIT OF MASS. MEASUREMENT OF MASS. RELATION BETWEEN FORCE, MASS AND ACCELERATION. ABSOLUTE UNIT OF FORCE. GRAVITATION UNIT OF FORCE.

Matter-Body-Particle.-What matter is in itself we do not know. We recognize it as existing in space and possessing certain observed properties, such as extension and impenetrability.

Any limited portion of matter we call a body. A body so small that, so far as its motion is concerned, we can disregard its size we call a material point or particle. Just as a mathematical point, having no dimensions, cannot rotate, but can have motion of translation only, so a material point or particle is considered as having motion of translation only.

Every body may be considered as a system composed of such material points or particles.

The diagram representation of a particle is then a mathematical point, having position only.

When a body has motion of translation only, the motion of every one of its points at any instant is the same (page 13, Vol. I), and in such case we may then consider the entire body, whatever its size, as a particle and represent it by a mathematical point.

Hence, whatever the size of a body, when we consider its motion of translation only, we may treat the body as a particle and represent it by a point.

Inertia-Force.-It is a fact of universal experience that no material particle is able of itself to change its own motion. If it is at
rest, it must always remain at rest, unless acted upon by some other particle. If it is moving at any instant in a given direction with a given speed, it must always preserve that direction and speed unchanged, unless acted upon by some other particle.

We express this fact by saying that matter is inert, that is, has no power of itself to change its own state of rest or motion. This property of matter we call inertia. We recognize, then, not only extension. and impenetrability, but also inertia, as properties of matter.

Whenever, then, the motion of a particle is observed to change either in speed or direction, we can always refer such change to the influence of some other particle upon it.

This external influence which we thus recognize as the cause of the change of motion we call force. We can define force, then, as the cause of change of motion of matter. We measure force, therefore, by its observed effect, that is, by the change of motion it causes.

It should be noted that inertia, as already defined, is a property of matter. To speak then, as is sometimes done, of the "force of inertia," as though inertness could cause change of motion or change of anything, is as unmeaning as though we should speak of "force of hardness" or "force of softness." Incapacity of self-change of motion, or inertia, cannot be spoken of as the cause of observed change. By reason of such incapacity force is necessary for change of motion.

Dynamics.-We have treated in the first portion of this work of the science of Kinematics ($\kappa \imath \nu \eta \mu \alpha$, motion), or the measurable relations of space and time, that is, of pure motion. We have therefore considered the motion of a point, or of a system of points, without reference to matter or force. But we have to deal in nature with force and material points or bodies. The science which treats of those measurable relations of matter, space and time involved in the study of the change of motion of bodies due to force is called Dynamics ($\delta \dot{v} v \alpha \mu z s$, force).

Force Proportional to Acceleration.-Let v_{1} be the initial ve-
locity of a material point or particle P_{1}

ity in the time t.
The limiting magnitude and direction of $\frac{Q_{1} Q}{t}$ when the time t is indefinitely small is the acceleration, or instantaneous time-rate of change of velocity.

Now this change of velocity is due to the force at that instant. If there were no force, v_{1} would remain unchanged both in magnitude and direction.

Since we can only measure force by its effects, and since here the effect is shown by change of velocity, the force must be proportional to this change of velocity.

We conclude, therefore, that the direction of the force is the same as the direction of the acceleration it causes, and the magnitude of the force is proportional to the magnitude of the acceleration it causes.

Mechanical Illustration of Force.-The student may figure to himself such a force as the pressure or pull of an imponderable spiral spring acting upon the body, the axis of the spring having always the direction of the acceleration, and the spring moving with the body so that its pressure or pull is exerted during the entire time of action and is alway proportional to the acceleration.

If the acceleration changes in direction, the axis of the spring changes, so that it always has the same direction as the acceleration.

If the acceleration changes in magnitude, the pull or push of the spring changes accordingly.

If the acceleration is uniform, that is, does not change either in direction or magnitude, the axis of the spring does not change in direction and its pull or push is constant.

The force of gravity upon bodies near the surface of the earth is like the action of such a spring. Its action is practically constant in intensity and direction.

The student should note that the direction of the force or acceleration is not necessarily that of the motion, except in the case of rectilinear motion.

Thus in the case of a point moving with uniform speed in a circle, the direction of motion at any instant is tangent to the circle, but the acceleration is always directed towards the centre (page 53, Vol. I).

In the case of a projectile, the motion at any instant is tangent to the path, but the acceleration is always vertical and downwards.

Uniform and Variable Force.-A force, then, like acceleration, page 49, Vol. I, is uniform or constant when it has the same magnitude and the same direction whatever the time of action. When either the magnitude or direction changes it is variable.

Criterion of the Action of a Force. -The action of a force on a particle, then, is made evident by the change of motion it causes. If the particle is at rest or moves with uniform speed in a straight line, there is no force acting upon it. If either the speed changes or the direction of motion changes, a force must act upon it to cause such change. The magnitude of the acceleration is proportional to the magnitude of the force, and the direction of the acceleration is the direction of the force. The force is uniform when the acceleration is uniform, and variable when the acceleration is variable.

Mass.-Let such a spring, F, as described, act with constant pressure in a constant direction upon a given body A for a given time.

Then the acceleration or change of velocity per second is constant and in the direction of the force or axis of the spring.

Let the same spring act upon another body, B, with the same constant pressure in the same
 constant direction for the same time. Then the acceleration or change of velocity per second in this case is also constant and in the direction of the axis of the spring.

If the magnitude of the acceleration in the second case is equal to the magnitude in the first case, the body B is said to have the same mass as the body A. In general,

Equal masses are those to which the same uniform force gives the same acceleration in the direction of the force in the same time.

Unit of Mass.-We take as the unit of mass the standard pound avoirdupois, or the standard gram, or the standard kilogram.

These are definite bodies (page 5, Vol. I). Any other body which when acted upon by any given constant force would receive in the same time the same acceleration in the direction of the force as the standard mass under the same circumstances is an equal mass.

When, then, the mass of a body is unity, or one unit of mass, the same constant force acting upon it gives it the same acceleration in the same time in the direction of the force that the standard mass would receive under like circumstances.

Measurement of Mass.-We know by experiment that the force of gravity, or the earth's attraction at any place, gives to all bodies falling in vacuum, whatever their nature, the same acceleration in the same time.

This acceleration is vertical or in the direction of the force of gravity which causes it.

When two bodies exactly balance in an equal-armed balance, we also know that the force of gravity on each must be the same.

Since then, under the action of this equal force, each body would acquire the same acceleration in the same time in the direction of the force, their masses are equal.

By means of the balance, then, we can readily duplicate standard masses. By finding how many such standard masses balance any given body, that is, by "weighing" the body, we can determine its mass relatively to the standard.

Thus if any body exactly balances 2,3 or 4 standard pounds or kilograms or grams, its mass is 2,3 or 4 times the mass of the standard used.

Mass Independent of Gravity. - It must be carefully noted that the mass of a body has nothing to do with the actual intensity of the force of gravity. This varies with the locality and the height above sea-level in the same locality. But two bodies of equal mass which therefore exactly balance in one locality would balance in any locality, because the force of gravity, whatever it may be, is always the same on each wherever they are weighed.

When we speak of a mass of one pound, one gram, or one kilogram, we refer then to a definite quantity of matter, not to the force of gravity acting at any place upon that matter.

But when a body balances two standard pounds, we know that the force of gravity upon that body at any locality is twice as great as for one pound. The force of gravity upon any body at any locality, or the weight of the body, is thus proportional to its mass, but the mass is independent of this weight.

The term "weighing" as applied to a balance should not be allowed to mislead. "Weighing" a body in a balance always determines its mass and not its weight, or the force of gravity upon it.

Relation between Force, Mass and Acceleration. - Since the weight of a body is proportional to its mass, and since all bodies fall in vacuum with the same acceleration under the action of gravity at any locality or of their weights, it follows that to give different bodies the same acceleration in the direction of the force, the force must be proportional to the mass.

But we also know by experiment that when we give the same body different accelerations in the direction of the force, the force is proportional to the acceleration.

In general, then, any force which produces in a given body, free to move, an acceleration in its direction, must be proportional both to the mass of the body and the acceleration.

If then $[\boldsymbol{F}]$ is the unit of force adopted and F the number of units of force, $[M]$ the unit of mass and m the number of units of
mass, $[f]$ the unit of acceleration and f the number of units of acceleration in the direction of the force, we must have the relation

$$
\begin{equation*}
F[F]=c . m[M] \times f[f], \tag{1}
\end{equation*}
$$

where c is a constant number.
Equation (1) expresses the fact that force must be proportional both to the mass and the acceleration given to the mass in the direction of the force.

Unit of Force. -We see from (1) that we shall always have the numeric equation

$$
\begin{equation*}
F=m f \tag{2}
\end{equation*}
$$

if we make c unity, and

$$
\left[F^{\prime}\right]=[M] \times[f] .
$$

That is, equation (2) holds provided we take as our unit of force that constant force which will give one unit of mass one unit of acceleration in the direction of the force.

This is called "Gauss's absolute unit," or the absolute unit of force, because it furnishes a standard force in any system, independent of the force of gravity at different localities.

In the foot-pound-second or "F. P.S. system," then, the absolute unit of force is that constant force which will give one pound a change of velocity in the direction of the force of one foot per second in a second. This has been called by Prof. James Thompson the poundal. It is then the English absolute unit of force.

The French absolute unit of force is that constant force which will give one kilogram a change of velocity in the direction of the force of one meter per second in a second.

In the centimeter-gram-second or "C. G. S. system" the absolute unit of force is the constant force which will give one gram a change of velocity in the direction of the force of one centimeter per second in a second. This is called the dyne.

Dimensions of Unit of Force.-Let $[F$] represent the unit of force, $[f]$ the unit of acceleration, $[M]$ the unit of mass, $[V]$ the unit of velocity, $[L]$ the unit of distance, and $[T]$ the unit of time. Then we have

$$
[F]=[M] \times[f]=[M] \times \frac{[V]}{[T]}=[M] \times \frac{[L]}{[T]^{2}} .
$$

Weight of a Body.-The student should again be cautioned to keep clearly distinguished in his mind the difference between the mass of a body and its weight. The weight of any mass is the force with which the earth attracts it, and it therefore varies with the locality. The mass is invariable at all places.

If the weight of a body is W, and its mass m units, then, since the weight produces the acceleration g, we have from (2),

$$
W=m g \text { units of force. }
$$

If m is one unit of mass, W is numerically equal to g units of force, or
one ponnd weighs g poundals, one gram weighs g dynes,
according to the system in use.
Since g is about 32 ft .-per-sec. per sec., the weight of one pound is about 32 poundals, or
one poundal is the weight of about half an ounce.

Strictly speaking, it is the weight of $\frac{1}{g}$ part of a pound, where g must be taken for the locality in ft.-per-sec. per sec.

In the same way, the weight of one gram is about 981 dynes, or

> one dyne is the weight of about one milligram.

Strictly speaking, it is the weight of $\frac{1}{g}$ part of a gram, where g must be taken for the locality in centimeters-per-sec. per sec.
An athlete throwing a hammer of 16 pounds in New Haven and the same hammer in Edinburgh has a heavier hammer to throw in the latter place, by the weight of about three tenths of an ounce more. (See page 93, Vol. I.) The mass of the hammer is of course the same in both places.

Gravitation Unit of Force.-It is often convenient to express a force by comparing it with the weight of the unit of mass at the locality. The weight of the unit of mass at the place is then the gravitation unit of force. It is evidently not constant. Or we can express a force by comparing it with the weight of the unit of mass at some given place. The weight of the unit of mass at this place is then the gravitation unit of force. In this case it is constant.

When, then, we speak of a "force of ten pounds" or a "force of ten kilograms" we mean the force of gravity at a given place upon a mass of ten pounds or ten kilograms. The expression is of course incorrect, because pound and kilogram denote mass only. The expression is thus a brief and allowable locution for the phrase -" attraction of the earth for a mass of ten pounds at the place considered."

A "force of ten pounds" means, then, a force of 10 g poundals, where g is the acceleration of gravity in ft.-per-sec. per sec. at the place considered. A "force of ten grams" means a force of 10 g dynes, where g is the acceleration of gravity in centimeters-per-sec. per sec. at the place considered. In all cases,

Mass (in lbs.) × acceleration (in ft.-per-sec. per sec.) = Force in direction of acceleration (in poundals).

If we divide the force thus found by g in ft.-per-sec. per sec., we obtain the force in gravitation units.

Mass (in grams) \times acceleration (in centimeters-per-sec. per sec.) $=$ Force in direction of acceleration (in dynes).

If we divide the force thus found by g in centimeters-per-sec. per sec., we obtain the force in gravitation units.

Thus if a mass of 25 pounds has an acceleration in any direction of 6.4 ft .-per-sec. per sec., the force in that direction which causes this acceleration is $25 \times 6.4=160$ poundals, or 160 times the force necessary to give a mass of one pound an acceleration of 1 ft .-per-sec. in one second. If g for the locality is 32 ft .-per-sec per sec., we can speak of this as a force of $\frac{6.4}{32} \times 25$ pounds, or a " force of 5 pounds." meaning thereby the force of gravity upon a mass of 5 pounds at the locality in question.

Again, if a mass of 25 grams has an acceleration in any direction of 200 centimeters-per-sec. per sec., the force in that direction which causes this acceleration is $25 \times 200=5000$ dynes, or 5000 times the force necessary to give a mass of one gram an acceleration of 1 centimeter-per-sec. in one second. If g for the locality is 981 centimeters-per-sec. per sec., we can speak of this as a force of $\frac{200}{981} \times 25$ grams, or a "force of about 5 grams," meaning thereby the force of gravity upon a mass of 5 grams at the locality in question.

Tension-Compression-Shear.-When a force acts to separate two particles of a body in the direction of the line joining them, it is called a force of tension, or tensile force. When it acts to bring the particles together in the direction of the line joining them, it is a force of compression, or compressive force. When it acts to displace the particles in a direction at right angles to the line joining them, it is called shear, or shearing force.

Action and Reaction.-When one body or particle presses or pulls another, it is itself pressed or pulled by this other with an equal force in an opposite direction. If we speak of the force exerted by one body or particle as action, we can call the force exerted on it by the other reaction. To every action, then, there is always an equal and opposite reaction, or the mutual actions of any two bodies are always equal and oppositely directed.

Stress.-The exertion of force upon a body or particle is thus only one side of the entire phenomenon, which really consists of the simultaneous exertion of equal and opposite forces between two bodies or particles.

When we fix our attention upon one only of the bodies or particles and, disregarding the other, consider only its action upon the first, we have called this action force. It is that external action due to some other particle which causes change of motion of the particle considered (page 2). But when we have both bodies or particles in mind and wish to be understood as viewing this force as one of the two mutual, equal and opposite actions between two bodies or between two particles of the same body, we call it a stress.

When the stress is such as to make the two bodies or particles move towards one another, or to resist tensile force, it is called attraction or tensile stress. When it is such as to increase their distance, or to resist compressive force, it is called repulsion or compressive stress. When it resists shearing force it is called shearing stress.

In this sense, then, we always speak of the stress in a body or between two bodies or particles; the prepositions "in" or "between" indicating at once that we have to do with one of the mutual actions between two bodies or particles. Force then is always external to the body or system considered. Stress is internal to that body or system, and resists change of configuration due to force.

External Stress.-There is, however, a sense in which we speak of stress on a body, and thus consider it as external, which need never be confounded with that just given.

Force is often exerted upon some definite portion of the bounding surface of a body and acts then over an area. In such case the number of units in its magnitude divided by the number of units in the area gives the number of units of force per unit of area. When a force thus acts we may speak of it as the stress on the body, and the force per unit of area we call unit stress.

This use of stress is convenient and leads to no confusion. Where necessary to discriminate we may speak of internal stress and external stress, but in general the use of the preposition "on" and "in" or "between" sufficiently indicates the sense in which the term is used.

Strain.-The change of distance between two particles of a body in a direction opposite to internal stress is called strain.

If no internal stress exists, there is no strain, but simply displacement.

Illustration.-Thus let a spring whose original " unstrained " length is $A B$ be compressed so that its length is $A B_{1}$. When we consider the external action which compresses it, we speak of the force of compression F. When we consider one of the mutual actions between any two points A and B_{1} which resist compression, we speak of the compressive stress S in the spring at B_{1} or at A.

The strain is the distance $B B_{1}$, or the displacement opposite to the stress.

If the compressive force F is removed and the spring allowed to expand to C_{1}, the distance $B_{1} C_{1}$ is not strain because it is not opposite in direction to the stress, but simply displacement. When the spring reaches B there is no stress in it. As it passes B tensile stress is developed, and any distance $B C_{2}$ is strain. The point B is the position of zero strain, and any displacement on either side of this point is strain because opposite in direction to the-stress in the spring.

EXAMPLES.

(1) With 1 ft . and 1 sec . as units of distance and time, find the unit of mass, in order that the derived unit of force may be equal to the weight of 1 lb .

Ans. g lbs.
(2) Find the unit of force in order that the unit of mass may be g lbs.

Ans. g poundals.
(3) The unit of acceleration being 6 ft.-per-sec. per sec., find (a) the unit of mass when the derived unit of force is equal to the weight of 20 lbs., and (b) the unit of force when the derived unit of mass is a mass of 20 lbs .

(4) The unit of mass being a mass of 10 lbs., the unit of time 1 min., and the unit of length $1 y$ d., compare the derived unit of force with the poundal.

Ans. 1 to 20 .
(5) With 20 lbs . and 40 sec . as units of mass and time respectively, find the unit of length that the derived unit of force may be equal to. the weight of 1 lb . at a place where $g=32.2 f \mathrm{ft}$.-per-sec. per sec.

Ans. 2576 ft .
(6) The unit of velocity being. 20 cm . per sec., the unit of mass 15 grams, and the derived unit of force the weight of a kilogram, find the unit of time.

Ans. $\frac{1}{3270} \mathrm{sec}$.
(7) The value of a force expressed in dynes is to be expressed in absolute units of the meter-kilogram-minute system. By what number must it be multiplied?

Ans. 0.036 .
(8) Show that the weight of one pound is equal to 4.45×10^{5} dynes approximately.
(9) Show that 1 poundal is equivalent to 13825 dynes.
(10) With 1 ft . and 1 sec. as units of distance and time, find the unit of mass, in order that the derived unit of force may be equal to the weight of 1 lb . at a place where $g=32.16 \mathrm{ft}$.-per-sec. per sec.

Ans. 32.16 lbs .
(11) The unit of mass being $20 \mathrm{lbs} .$, the unit of time 1 min., and the unit of length 1 yard, compare the derived unit of force with the poundal.

Ans. 1 to 60.
(12) Compare the values of the mass of a body as expressed in gravitation units of the ft.-lb.-sec. and yard-ton-min. systems (ton = 2240 lbs.).

Ans. 2688000 to 1.
(13) Show that the value of one dyne expressed in terms of the weight of one ton (2240 lbs .) is 1003×10^{-12} approximately.
(14) Reduce 20 poundals to absolute units of the yd.-cwt.-min. system ($1 \mathrm{cwt} .=112 \mathrm{lbs}$.$) .$

Ans. $214 \frac{8}{7}$ units.
(15) Determine the unit of time in order that, the foot being the unit of length, the value of the intensity of gravity may be expressed by 1 instead of g.

Ans. $\frac{1}{\sqrt{g}}$ sec.
(16) The unit of acceleration being 6 ft.-per-sec. per sec., find a) the unit of mass when the derived unit of force is equal to the weight of 20 lbs., and (b) the unit of force when the derived unit of mass is a mass of 20 lbs . $(g=32)$.

Ans. (a) 107.2 lbs . (b) 120 poundals or the weight of 3.73 lbs.

CHAPTER II.

DENSITY. SPECIFIC MASS. DETERMINATION OF SPECIFIC MASS.

Density.-The number of units of mass of a body divided by its number of units of volume, or the mass per unit of volume, is the mean density of the body.

The mean density gives then the number of pounds in a cubic foot, or the number of grams in a cubic centimeter.

The density at a given point of a body is the ratio of mass to volume of an indefinitely small portion of the body at that point. If this is the same at all points, the body is homogeneous, or the density is uniform. If it varies, the density is variable and the body is non-homogeneous.

The density of a body in a given state is the mass per unit of volume of any portion of the body in that state.

When the length of a body is great relatively to its other dimensions, the mass per unit of length is called its mean linear density.

For a thin body the mass per unit of area is called its mean surface density.

If m is the mass of a homogeneous body and V its volume and δ its density, we have

$$
\delta=\frac{m}{\bar{V}}
$$

or density equals mass per unit of volume.
Unit of Density.-If [M] is the unit of mass and m the number of units of mass, [V] the unit of volume and V the number of units of volume, $[D]$ the unit of density and δ the number of units of density, we have

$$
\delta[D]=\frac{m[M]}{V[V]}
$$

We shall have

$$
\delta=\frac{m}{\bar{V}}
$$

provided we take

$$
[D]=\frac{[M]}{[V]}
$$

The unit of density, then, is one unit of mass per unit of volume, as one pound per cubic foot, or one gram per cubic centimeter.

Specific Mass. -The density-ratio of a body relatively to that of some standard substance is properly called its specific mass. It is often called "specific gravity," as a consequence of not distinguishing between weight and mass. The ideas are different, but the
numerical values the same, since the weight of a body is proportional to its mass.

The standard substance taken is water. If y is the density or mass of a unit of volume of water, and δ the density or mass of a unit of volume of any other body, then the specific mass ϵ is given by

$$
\begin{equation*}
\epsilon=\frac{\delta}{\gamma} . \tag{1}
\end{equation*}
$$

Since $\delta=\frac{m}{V}$, where m is the mass and V the volume of the body, we have

$$
\begin{equation*}
\epsilon=\frac{m}{\gamma V} . \tag{2}
\end{equation*}
$$

Since y is the mass of a unit of volume of water, γV is the mass of a volume of water equal in volume to the body. Hence the specific mass of any body is equal to the ratio of its mass to the mass of an equal volume of water.

In the English system the mass of one cubic foot of pure water at 4° C., or the point of maximum density, is nearly 1000 ounces, or 62.5 lbs. (more exactly 998.6 ounces). The density of water is then about 62.5 lbs. per cubic foot, or

$$
\gamma=\frac{62.5 \mathrm{lbs} .}{1 \text { cub. } \mathrm{ft} .}
$$

If then V is one cubic foot, we have, from (2),

$$
\epsilon=\frac{m \mathrm{lbs} .}{62.5 \mathrm{lbs} .}
$$

where m is the mass in pounds of one cubic foot of any body.
In the C.G. S. system, the mass of one cubic centimeter of pure water at $4^{\circ} \mathrm{C}$. is very nearly one gram, and was intended to be so exactly. The density of water by this system is then

$$
\gamma=\frac{1 \mathrm{gram}}{1 \text { cub. } \mathrm{c} .}
$$

If then V is one cubic centimeter, we have, from (2),

$$
\epsilon=\frac{m \text { grams }}{1 \text { gram }},
$$

where m is the mass in grams of one cubic centimeter. That is, the mass in grams of one cubic centimeter gives at once the specific mass, while in the English system the mass in pounds of one cubic foot must be divided by 62.5 . Or inversely the specific mass of any body gives at once the mass in grams of one cubic centimeter of the body, while it must be multiplied by 62.5 to obtain the mass in pounds of one cubic foot.

Determination of Specific Mass.-A body totally immersed in water displaces its own volume of water. It is a well-known physical fact that a body so immersed is buoyed up by a force equal to the weight of the volume of water displaced.

If then a body is "weighed," i.e., its mass determined, and then weighed again while wholly immersed in water, the loss of weight in gravitation units gives the mass of the displaced water, or gives the mass of a volume of water equal to the volume of the body.

To determine the specific mass, then, we have only to divide the weight of the body in gravitation units by its loss of weight in water in gravitation units.*

When very great accuracy is required the body should be weighed in a vacuum, or allowance must be made for the buoyant force of the air. But in all practical cases in mechanics this is an unnecessary refinement, and the weight in air may be taken as the measure of the true mass of the body.

Table of Specific Mass.-In the following table the density-ratios or specific masses, or so-called "specific gravity" with reference to water, of a few substances are given.

The exact value in any case will depend on the temperature and the mechanical process, such as hammering, etc., to which the bodies may have been subjected.

Air at $0^{\circ} \mathrm{C}$. 0.0012759	Tin 7.4
Alcohol at $0^{\circ} \mathrm{C}$....... 0.791	Iron...................... . 7.7
Turpentine at $0^{\circ} \mathrm{C}$.... 0.870	Copper.................... 8.8
Ice.................... 0.92	Silver... 10.5
Sea-water at 0° C...... 1.026	Lead. 11.4
Crown glass 2.5	Mercury at $0^{\circ} \mathrm{C}$........ 13.596
Flint glass 3.0	Gold 19.3
Aluminum........... . 2.6	Platinum 21.5

EXAMPLES.

(1) The mass of a piece of limestone is 310 grams. When immersed in water it is balanced by a mass of 188.5 grams. What is the specific mass?

Ans. Weight in air is $310 g$ dynes. Weight in water is $188.5 g$ dynes. Loss of weight is $310 g-188.5 g=121.5 g$ dynes. Hence specific mass $=\frac{310 g}{121.5 g}=2.55$.
(2) In order to find the specific mass of a piece of oak, a piece of lead wire, which lost 10.5 grams when weighed in water, was wrapped around the wood, which weighed 426.5 grams. The compound mass was 484.5 grams lighter in the water than in the air. Find the specific mass.

Ans. The loss of the wood alone was $484.5-10.5=474$. Hence specific mass $=\frac{426.5}{474}=0.9$.
(3) An iron vessel completely filled with mercury weighed 500 pounds, and lost when weighed in water 40 pounds. If the specific mass of the iron is 7.2 and of the mercury 13.6, find the mass of the vessel and of the mercury.

Ans. Since specific mass $\epsilon=\frac{\delta}{\gamma}$, where δ is density and γ is density of water, and since $\delta=\frac{m}{v}$, where m is mass and v is volume, we have $\epsilon=\frac{m}{v \gamma}$, or $v=\frac{m}{\epsilon \gamma}$.

Let m_{1} be the mass of the iron and m_{2} the mass of the mercury, and m the combined mass.

[^1]Then for the volume of the iron we have $v_{1}=\frac{m_{1}}{\epsilon_{1} \gamma}$, for the volume of the mercury $v_{2}=\frac{m_{2}}{\epsilon_{2} \gamma}$, and for the combined volume $v=\frac{m}{\epsilon \gamma}$. Hence we have

$$
\frac{m_{1}}{\epsilon_{1} \gamma}+\frac{m_{2}}{\epsilon_{2} \gamma}=\frac{m}{\epsilon \gamma}, \text { or } \frac{m_{1}}{\epsilon_{1}}+\frac{m_{2}}{\epsilon_{2}}=\frac{m}{\epsilon} .
$$

Also $m_{1}+m_{2}=m$. Combining we have

$$
m_{1}=m \cdot \frac{\frac{1}{\epsilon}-\frac{1}{\epsilon_{2}}}{\frac{1}{\epsilon_{1}}-\frac{1}{\epsilon_{2}}}, \quad m_{2}=m \cdot \frac{\frac{1}{\epsilon}-\frac{1}{\epsilon_{1}}}{\frac{1}{\epsilon_{2}}-\frac{1}{\epsilon_{1}}}
$$

In the present case we have $\epsilon=\frac{500}{40}, \epsilon_{1}=7.2, \epsilon_{2}=13.6$ and $m=500$. Hence $m_{1}=49.54$ pounds, $m_{2}=450.46$ pounds.

Note.-This is called the problem of Archimedes, because first solved by him with reference to any alloy of gold and silver. Its application to alloys or chemical compositions is, however, limited, as in general in such cases there is a change of volume so that the combined volume is not equal to the sum of the volumes of the components.
(4) In order to obtain the specific mass of rye in bulk, a bottle was filled with grains of rye well shaken together, and weighed. The weight of the bottle was found to be 115 grams when empty and 235.75 grams when filled with rye. When filled with water it weighed 270.65 grams. Find the specific mass of the grain.

Ans. The weight of the grain is 120.75 grams, and the weight of an equal volume of water is 155.65 grams. Therefore specific mass $=\frac{120.75}{155.65}=0.776$. A cubic foot of the grain weighs then $0.776 \times 62.5=48.5$ pounds.
(5) To find the specific mass of a mixture, given the volume or mass, and specific mass, of each constituent.

Ans. We must assume that the volume of a mixture is equal to the sum of the volumes of the constituents. This is not invariably the case, especially where there is chemical union.

Let m_{1}, m_{2}, m_{3}, etc., be the masses of the constituents;

$$
\begin{array}{llllll}
\epsilon_{1}, & \epsilon_{2}, & \epsilon_{3}, & \text { " } & \text { " } & \text { specific masses of the constituents; } \\
v_{1}, & v_{2}, & v_{3}, & \text { " } & \text { " volumes } & \text { " }
\end{array}
$$

Let m, v and ϵ be the mass, volume and specific mass of the mixture. Let γ be the density or mass of a unit of volume of water.

Then $m_{1}+m_{2}+m_{3}+$ etc. $=m . \quad$ But $m_{1}=\epsilon_{1} \gamma v_{1}, m_{2}=\epsilon_{2} \gamma v_{2}$, etc. Hence
$\epsilon_{1} v_{1} \gamma+\epsilon_{2} v_{2} \gamma+\epsilon_{3} v_{3} \gamma+$ etc. $=\epsilon v \gamma, \quad$ or $\quad \epsilon=\frac{\epsilon_{1} v_{1}+\epsilon_{2} v_{2}+\epsilon_{3} v_{3}+\text { etc. }}{v}$
But $v=v_{1}+v_{2}+v_{\mathrm{s}}+$ etc. Therefore

$$
\begin{equation*}
\epsilon=\frac{\epsilon_{1} v_{1}+\epsilon_{2} v_{2}+\epsilon_{3} v_{3}+\text { etc. }}{v_{1}+v_{2}+v_{3}+\text { etc. }} \tag{1}
\end{equation*}
$$

Again, we have $v_{1}=\frac{m_{1}}{\epsilon_{1} \gamma}, \quad v_{2}=\frac{m_{2}}{\epsilon_{2} \gamma}$, etc. Hence

$$
\frac{m}{\epsilon \gamma}=\frac{m_{1}}{\epsilon_{1} \gamma}+\frac{m_{2}}{\epsilon_{2} \gamma}+\frac{m_{3}}{\epsilon_{3} \gamma}+\text { etc }
$$

Therefore

$$
\begin{equation*}
\epsilon=\frac{m_{1}+m_{2}+m_{3}+\text { etc. }}{\frac{m_{1}}{\epsilon_{1}}+\frac{m_{2}}{\epsilon_{2}}+\frac{m_{\mathrm{s}}}{\epsilon_{3}}+\text { etc. }} \tag{2}
\end{equation*}
$$

(6) Two equal vessels A and B are full and half full, respectively, of liquids of densities δ_{1} and δ_{2}. If B is filled up from A and then A filled up from B, find the density of the mixture in A, the liquids being supposed to mix completely.

Ans. $\frac{3 \delta_{1}+\delta_{2}}{4}$.
(7) Three equal vessels A, B, C are halffull of liquids of densities $\delta_{1}, \delta_{2}, \delta_{3}$ respectively. If now B is filled up from A, and then Cfrom B, find the density of the mixture in C, the liquids being supposed to mix completely.

Ans. $\frac{\delta_{1}+\delta_{2}+2 \delta_{3}}{4}$.
(8) To a salt solution whose specific mass is 1.08 and mass 27 ounces, 4 ounces of water are added. Find the specific mass of the mixture.

Ans. $\frac{31}{29}$.
(9) Find how much water must be added to 27 ounces of a salt solution whose specific mass is 1.08 , in order that the specific mass of the mixture may be 1.05 .

Ans. 15 ounces.
(10) When equal volumes of two substances are mixed, the specific mass of the mixture is 3 . When equal weights are mixed the specific mass of the mixture is $2 \frac{9}{8}$. Find the specific masses of the two substances.

Ans. 2 and 4.
(11) The masses and diameters of two spheres are as 1 to 2. Show that their densities are as 4 to 1 .
(12) The diameter of the earth being $1.275 \times 10^{9} \mathrm{~cm}$. and its density 5.67 times as great as that of water, find its mass.

Ans. 6.15×10^{27} grams.
(13) The linear density of a round bar of cast iron one inch in diameter is 2.45 lbs. per foot. Find the weight of a pipe 2 yards long, having a bore of 16 inches and a thickness of $\frac{3}{4}$ inch.

Ans. 739 lbs.
(14) A flat bar of iron $4 \frac{9}{4}$ inches wide and $\frac{5}{8}$ inch thick has a linear density of 9.91 lbs. per ft. Find the weight of a bar of iron 1 inch square and 1 yard long.

Ans. 10 lbs .
(15) From the preceding example state a rule for finding the weight per foot of a bar of iron of any given constant area; also for finding the area if the weight per foot is given.

Ans. To find the weight per foot in pounds, multiply the area in square inches by 10 and divide by 3 .

To find the area in square inches, multiply the weight per foot by 3 and divide by 10 .
(16) The density of granite is 160 lbs. per cubic foot. A pavingblock is 4 inches wide, 9 inches deep and 12 inches long. Find the number of tons (2240 lbs.) required to pave a street one mile long and 20 yards broad, allowing an interval of 10 per cent between the blocks.

Ans. 15274 tons.
(17) If the population of a country is 35262762 souls, and the area is 120830 square miles, what is the average "density" of the population?

Ans. 292 inhabitants per square mile.
(18) Find the specific mass of a piece of cork from the following data : Weight in air 2 grams, weight of cork and sinker in water 4 grams, weight of sinker in water 12 grams.

Ans. 0.2.
(19) A raft whose weight and specific mass are known floats in water. Show how to determine the greatest weight it can support without sinking.

Ans. Let m be the mass and ϵ the specific mass of the raft. Then load $=$ $\frac{m(1-\epsilon)}{\epsilon}$.
(20) An empty balloon with its car and appendages weighs in air 1200 lbs. If a cubic foot of air weighs $1 \frac{1}{4}$ oz., find how many cubic feet of gas must be used before the balloon will begin to ascend. Specific mass of the gas 0.52, compared to air.
(21) An iceberg has the form of a cube and floats flat with a height of 30 ft . above the ocean. Find the depth under water. Specific mass of ice 0.92, of sea-water 1.026.

Ans. 260 feet.
(22) Find the mass of the earth in tons (2240 lbs.), having given mean specific mass 5.6, mean radius 4000 miles.

Ans. 6.16×10^{21} tons.
(23) The unit of density being that of water, and the units of time and mass 1 minute and 112 lbs., find the magnitude of the derived unit of force.

Ans. 0.0378 poundals.
(24) The number of seconds in the unit of time being equal to the number of feet in the unit of length, the unit of force being the weight of 750 lbs . ($g=32$), and a cubic foot of the standard substance having a mass of 13500 oz., find the unit of time.

Ans. $5 \frac{1}{3} \mathrm{sec}$.

CHAPTER III.

CENTRE OF MASS.

CENTRE OF MASS. CENTRE OF GRAVITY. PROPERTY OF TEE CENTRE OF MASS. DETERMINATION OF CENTRE OF MASS. THEOREM OF PAPPUS AND GULDINUS, DETERMINATION OF CENTRE OF MASS BY CALCULUS.

Centre of Mass.-We may consider a material body as composed of an indefinitely large number of indefinitely small particles of equal mass.

The centre of mass of such a body is that point whose distance from any plane is equal to the average distance of all the equal particles from that plane.

If then we take three co-ordinate planes $X Y, Y Z, Z X$, at right angles, the distance of the centre of mass from each plane is equal

to the average distance of all the equal particles from each plane.

Thus suppose a body composed of a number N of particles of equal mass. Let x_{1}, x_{2}, x_{3}, etc., be the distance of each particle from the co-ordinate plane $Y Z$. Then we have for the average distance of all the particles, or for the distance \bar{x} of the centre of mass from the plane $Y Z$,

$$
\bar{x}=\frac{x_{1}+x_{2}+x_{3}+\text { etc. }}{N}=\frac{\Sigma x}{N}
$$

In taking the summation $x_{1}+x_{2}+x_{3}+$ etc. $=\Sigma x$, each distance x_{1}, x_{2}, x_{3}, etc., must be taken with its appropriate sign (+) or (-) according as it is on the right or left of the plane YZ. If then the plane $Y Z$ passes through the centre of mass, $\bar{x}=0$ and $\Sigma x=0$.

Now if the mass of each equal particle is m, the total mass or mass of the body is $M=N m$. If then we multiply numerator and denominator by m, we have

$$
\bar{x}=\frac{m \Sigma x}{M}
$$

If a material body is composed of particles of unequal mass, we may consider each of these particles as itself composed of particles of equal mass.

Thus suppose a body composed of particles whose masses are
m_{1}, m_{2}, m_{3}, etc. Let the first consist of a number n_{1} of particles of equal mass m, the second of a number n_{2} of particles of equal mass m, and so on. Then $m_{1}=n_{1} m, m_{2}=$ $n_{2} m, m_{3}=n_{3} m$, etc. Let the entire number of equal particles be N, so that the total mass, or mass of the body, is $M=N m$.

Then if x_{1}, x_{2}, x_{3}, etc., are the distances of the particles of unequal mass from the co-ordinate plane $Y Z$, we have for the average distance of all the particles, or for the distance
 x of the centre of mass from the plane $Y Z$,

$$
\bar{x}=\frac{n_{1} x_{1}+n_{2} x_{2}+n_{3} x_{3}+\text { etc. }}{N}
$$

If we multiply numerator and denominator by m, we have

$$
\begin{equation*}
\bar{x}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+\text { etc. }}{M}=\frac{\Sigma m x}{M} . \tag{1}
\end{equation*}
$$

In the same way we have for the distance \bar{y} of the centre of mass from the co-ordinate plane $Z X$

$$
\begin{equation*}
\bar{y}=\frac{\Sigma m y}{M} \tag{2}
\end{equation*}
$$

and for the distance \bar{z} of the centre of mass from the co-ordinate plane $X Y$

$$
\begin{equation*}
\bar{z}=\frac{\Sigma m z}{M} \tag{3}
\end{equation*}
$$

We see then that the centre of mass of a body is such a point that if the number of units in the whole mass be multiplied by the number of units in the distance of this point from any plane, the result will be equal to the algebraic sum of the products obtained by multiplying the number of units in the mass of each elementary particle by the number of units in its distance from the same plane.

Cor. In taking tne sums of the products $\Sigma m x, \Sigma m y, \Sigma m z$, for each elementary mass or particle, we must take x, y, z with their proper signs.

If then we take the origin of co-ordinates at the centre of mass, we have $\bar{x}=0, \bar{y}=0, \bar{z}=0$; hence

$$
\Sigma m x=0, \quad \Sigma m y=0, \quad \Sigma m z=0 .
$$

If we take polar co-ordinates and take the pole at the centre of mass, we have

$$
\Sigma m r=0,
$$

where r is the distance of any particle from the pole.
That is, the algebraic sum of the moments of the masses (page 19) of all the particles with reference to the centre of mass is zero.

Centre of Gravity.-We shall see hereafter (page 75) that the centre of mass of a body conincides with the point of application of the resultant of that system of parallel forces which acts upon all
the particles of a translating body; that is, when each parallel particle force causes in the particle on which it acts the same acceleration in the same direction.

The earth's attraction for a body is the resultant of a system of forces acting upon the particles of the body, each particle force being directed towards the centre of the earth, and causing in the particle on which it acts an acceleration of the same magnitude. We have thus a system of forces not strictly parallel, but causing in each particle an acceleration of the same magnitude.

But practically the deviation from parallelism is insignificant, since the longest dimension of any body on the earth with which we have to deal is insignificant in comparison with the radius of the earth. Hence the accelerations are practically parallel as well as equal and the resultant force of gravity upon a body passes practically through the centre of mass. This resultant is the weight of the body. The weight of a body acts practically, therefore, at the centre of mass.

The centre of mass is therefore often called the "centre of gravity." The term is, however, strictly speaking, incorrect. The term "centre of gravity" can only be properly applied to that point at which, if the entire mass of the body were concentrated, this point would attract and be attracted in all positions of the body, just the same as the body itself. In this sense, as we shall see (page 47), only a few bodies possess a centre of gravity, while all bodies have a centre of mass.

Centre of mass then has nothing to do with gravity. Gravity furnishes only a convenient practical method of locating it. The two ideas are entirely distinct.

Property of the Centre of Mass.-The importance of the centre of mass of a body, in Dynamics, depends on a property of it which we shall prove hereafter (page 83).

This property is as follows:
Whatever the motion of a rigid body may be, the centre of mass of the body moves precisely the same as if the body were replaced by a particle of equal mass at the centre of mass, and all the forces acting upon the body were transferred to this particle, without change in direction or magnitude. (For other properties of the centre of mass see page 75).

Determination of Centre of Mass.-We have just seen that the centre of mass of a body is such a point that if the number of
 units in the whole mass be multiplied by the number of units in the distance of this point from any plane, the result will be equal to the algebraic sum of the products obtained by multiplying the number of units in the mass of each elementary particle by the number of units in its distance from the same plane.

If we denote the volumes of the indefinitely small elements of a body by $v_{1}, v_{2}, v_{\mathbf{2}}$, etc., and their densities by $\delta_{1}, \delta_{2}, \delta_{3}$, etc., then the masses of these elements will be given by $m_{1}=\delta_{1} v_{1}, m_{2}=\delta_{2} v_{2}, m_{3}=\delta_{3} v_{3}$, etc. (page 10).

If then x_{1}, x_{2}, x_{3}, etc., are the distances, from the co-ordinate plane $Y Z, y_{1}, y_{2}, y_{3}$, etc., from the co-ordinate plane $Z X, z_{1}, z_{2}, z_{3}$, etc., from the co-ordinate plane $X Y$, we have for the co-ordinates $\bar{x}, \bar{y}, \bar{z}$ of the centre of mass in general

$$
\left.\begin{array}{l}
\bar{x}=\frac{\delta_{1} v_{1} x_{1}+\delta_{2} v_{2} x_{2}+\text { etc. }}{\delta_{1} v_{1}+\delta_{2} v_{2}+\text { etc. }} \\
\bar{y}=\frac{\delta_{1} v_{1} y_{1}+\delta_{2} v_{2} y_{2}+\text { etc. }}{\delta_{2} v_{2}+\delta_{2} v_{2}+\text { etc. }} \tag{1}\\
\bar{z}=\frac{\delta_{1} v_{2} z_{1}+\delta_{2} v_{3} z_{2}+\text { etc. }}{\delta_{2} v_{1}+\delta_{2} v_{2}+\text { etc. }}
\end{array}\right\}
$$

If the body is homogeneous, we have $\delta_{1}=\delta_{2}=\delta_{3}$, etc. Hence if V is the volume of the body, we have for a homogeneous body,

$$
\begin{align*}
& \bar{x}=\frac{v_{1} x_{1}+v_{2} x_{2}+\text { etc. }}{v_{1}+v_{2}+\text { etc. }}=\frac{\Sigma v x}{V} ; \\
& \bar{y}=\frac{v_{1} y_{1}+v_{2} y_{2}+\text { etc. }}{v_{1}+v_{2}+\text { etc. }}=\frac{\Sigma v y}{V} ; \tag{2}\\
& \bar{z}=\frac{v_{1} z_{1}+v_{2} z_{2}+\text { etc. }}{v_{1}+v_{2}+\text { etc. }}=\frac{\Sigma v z}{V} .
\end{align*}
$$

Equations (1) and (2) give the position of the centre of mass for volumes, non-homogeneous or homogeneous.

For surfaces or areas we can put α for v and A for V, where α is the area of an element and A the entire area, and δ the surface density (page 10).

For lines we can put l for v and L for V, where l is the length of an element and L the entire length, and δ is the linear density (page 10).

Material Line, Area and Volume.-There is of course a certain inconsistency in speaking of the centre of mass of geometrical lines, areas and volumes, since they have no mass. The expression is, however, allowable, since we are understood to mean a physical or material line whose cross-section is constant and therefore cancels out of equations (1) and (2), δ being then the linear density; or a material area whose thickness is constant and therefore cancels out, δ being the surface density; or a volume filled with matter of uniform density, in which case δ cancels out and we have equations (2).

Moment of Mass, Volume, Area.-We may call the product of the magnitude of a mass, volume or area by the magnitude of the distance of its centre of mass from any plane or axis, the magnitude of the moment of the mass, volume or area, relatively to that plane or axis.

We can then express equations (1) and (2) by saying that the moment of the total mass, volume or area of a body with reference to any plane or axis is equal to the sum of the moments of the elementary masses, volumes or areas.

Plane and Axis of Symmetry.-A body is symmetrical with respect to a plane when the lines joining itspparticles, two and two, are parallel and bisected by the plane. In such case the centre of mass is in the plane and the equations for \bar{x} and \bar{y} are sufficient.

A body is symmetrical with respect to an axis when it is symmetrical with respect to two planes passing through that axis. In such case the centre of mass is in the axis and the equation for \bar{x} is sufficient.

If a body is symmetrical with respect to two axes, the centre of mass is at their intersection. This point is then the centre of figure.

Many cases are simplified by the application of this principle of symmetry.

Thus the centre of mass of a homogeneous straight line is at the middle of the line; of a homogeneous circle or circular area
 or sphere, at the centre. For a parallelogram $A B C D$ the line $a b$ through the middle points of the sides $A B, C D$, bisects all lines parallel to those sides and is therefore an axis of symmetry. So is $c d$ through the middle points of $A C, B D$. The diagonal $A D$ bisects all lines parallel to the other diagonal and is an axis of symmetry. So is the diagonal $B C$. The surface would balance on a knife-edge along either of these lines. The centre of mass is then at S, their point of intersection.

We shall make constant use of this principle of symmetry.
Centre of Mass of Homogeneous Material Lines.
(1) Centre of Mass of Homogeneous Straight Line.-The centre of mass of a homogeneous straight line is, by the principle of symmetry, at its middle point. For the line itself is one axis of symmetry, and a line at right angles to it at its middle point is another.
(2) Homogeneous Circular Arc.-The centre of mass for a homogeneous circular arc, if the arc is a full circle, is, by the principle of symmetry, at its centre of figure, or at the centre of the circle, because any diameter is an axis of symmetry. For any homogeneous arc in general, we may find the position of the centre of mass as follows:

Let $A B C$ be a homogeneous circular arc with centre at O. Take the origin at O and let the axis of X pass through O and the centre B of the arc.

Then $O B$ is an axis of symmetry, and the centre of mass S is on this axis. Let the chord $A C=c$, and the length of the arc $A B C$ be L, and $r=$ radius. Take an indefinitely small element $P Q$ whose length is l and whose centre of mass is at a, and let $P R$ be the vertical projection of $P Q$.

Then we have by similar triangles

$$
l: P R:: r: O N
$$

or, since $O N=x$, the moment of the mass of the element $P Q$ with reference to an axis through
 O parallel to $A C$ is proportional to $l x=r P R$. The sum of the projections $P R$ of all the elements is $A C=c$. Hence the sum of the moments of all the elements is proportional to $\Sigma l x=r \Sigma P R=r c$. Since the entire length is L, we have from equation (2), page 19,

$$
\bar{x}=\frac{\Sigma l x}{L}=\frac{r c}{\bar{L}} .
$$

Therefore the centre of mass S of a circular arc $A B C$ is on the axis of symmetry $O B$ at a distance $\bar{x}=O S$ from the centre of the arc, which is a fourth proportional to the arc, the radius and the chord, or

$$
L: r:: c: \bar{x}
$$

For a semicircle, $c=2 r$ and $L=\pi r$, hence $\bar{x}=\frac{2 r}{\pi}$. For an entire circle, $c=0$ and $\bar{x}=0$, or the centre of mass is at the centre of figure.

Centre of Mass of Homogeneous Areas.

(3) Homogeneous Parallelogram.-Every line of the homogeneous parallelogram $A B C D$ parallel to $A B$ or $C D$ is bisected by the line $a b$ drawn through the centres of the sides $A B C D$. Hence $a b$ is an axis of symmetry. So is the line $c d$, or $A D$ or $B C$. The centre of mass is then, by the primciple of symmetry, at the centre of figure, or at
 the intersection S of the diagonals, or of the lines drawn between the middle points of opposite sides.
(4) Homogeneous Triangle. - Every line of the homogeneous triangle $A B C$ parallel to $B C$ is bisected by the line $A D$ drawn
 from the vertex A to the centre D of the opposite side.

Hence $A D$ is an axis of symmetry. So also is the line $C E$ drawn from the vertex C to the centre E of the opposite side. The centre of mass is then at S. Since E and D are the middle points of $A B, B C$, and therefore $D E$ is parallel to $C A$ and equal to $\frac{1}{2} C A$, the triangles $A S C$ and $D \frac{1}{5} E$ are similar, and

$$
5 \quad D S: S A:: D E: A C \text { or }:: 1: 2
$$

Hence the centre of mass is on the line $D A$ at a distance from D equal to $\frac{1}{3} D A$. In general the centre of mass is on the line from any vertex to the middle of the opposite side, at a distance from the vertex of $\frac{2}{3}$ the length of this line.
(5) Homogeneous Trapezoid.-We can determine the centre of mass of a homogeneous trapezoid as follows:

The line $M N$ which joins the centres of the two bases $A B$ and $C D$ is an axis of symmetry, and the centre of mass S is on this line.

Denote the base $A B$ by b_{2} and $C D$ by b_{1}, and the altitude $D O$ by h. If we draw $D E$ parallel to the side $B C$, we have a parallelogram $B C D E$ whose area is $b_{1} h$ and the distance of whose centre of mass S_{1} from $A B$ is $\frac{h}{2}$, and a triangle $A D E$ whose area is $\frac{\left(b_{2}-b_{1}\right) h}{2}$ and the distance of whose centre of mass S_{2} from $A B$ is $\frac{h}{3}$.

The area of the trapezoid is $\left(b_{1}+b_{2} \frac{h}{2}\right.$. If \bar{y} is the distance $H S$ of the centre of mass of the trapezoid from $A B$, we have

$$
\left(b_{1}+b_{2}\right) \frac{h}{2} \cdot \bar{y}=b_{1} h \cdot \frac{h}{2}+\frac{\left(b_{2}-b_{1}\right) h}{2} \cdot \frac{h}{3}=\left(b_{2}+2 b_{1}\right) \frac{h^{2}}{6} .
$$

$$
\bar{y}=\sum \frac{a y}{A}
$$

Hence

$$
\bar{y}=H S=\frac{b_{2}+2 b_{1}}{b_{1}+b_{2}} \cdot \frac{h}{3}
$$

We have also

$$
\frac{H M}{\bar{y}}=\frac{I M}{h}, \quad \text { or } \quad H M=\frac{\bar{y}}{h} I M
$$

Let the angle $A D O=\beta$, then

$$
A O=h \tan \beta, \quad \text { and } \quad I M=\frac{b_{2}}{2}-h \tan \beta-\frac{b_{1}}{2}
$$

Therefore

$$
H M=\frac{b_{2}+2 b_{1}}{3\left(b_{1}+b_{2}\right)}\left(\frac{b_{2}-b_{1}}{2}-h \tan \beta\right) .
$$

If \bar{x} is the distance $A H$ of the centre of mass from A, we have, if $A O=\alpha=h \tan \beta$,

$$
\begin{gathered}
\bar{x}=A H=\frac{b_{2}}{2}-\frac{b_{2}+2 b_{1}}{3\left(b_{1}+b_{2}\right)}\left(\frac{b_{2}-b_{1}}{2}-h \tan \beta\right) \\
=\frac{b_{1}{ }^{2}+b_{1} b_{2}+b_{2}{ }^{2}+a\left(b_{2}+2 b_{1}\right)}{3\left(b_{1}+b_{2}\right)} .
\end{gathered}
$$

We have also

$$
\frac{M S}{\bar{y}}=\frac{N M}{h}, \quad \text { and } \quad \frac{N S}{h-\bar{y}}=\frac{N M}{h}
$$

Hence

$$
M S=\frac{b_{2}+2 b_{1}}{b_{1}+b_{2}} \cdot \frac{N M}{3}, \quad \text { and } \quad N S=\frac{2 b_{2}+b_{1}}{b_{1}+b_{2}} \cdot \frac{N M}{3}
$$

Therefore

$$
\frac{M S}{N S}=\frac{b_{2}+2 b_{1}}{2 b_{2}+b_{1}}=\frac{\frac{1}{2} b_{2}+b_{1}}{b_{2}+\frac{1}{2} b_{1}}=\frac{A M+D C}{A B+N C}=\frac{A M+A F}{G C+N C} .
$$

1st Construction.-If then we lay off $A F=D C$, and $C G=A B$,
 and join $F G$, the intersection S of $F G$ with $N M$ gives the centre of mass.

- $2 d$ Construction.-Another convenient construction is as follows: Draw the diagonals $A C, B D$, intersecting at T. Lay off along $A C$ the distance $A T_{1}=C T$ and along $B D$ the distance $B T_{2}=D T$. Bisect the diagonals at R ${ }^{8}$ and P and join $R T_{1}$ and $P T_{2}$. The intersection S is the centre of mass. Student will prove.
(6) Homogeneous Trapezium.-In order to find the centre of mass of any homogeneous four-sided area $A B C D$, we can divide it by means of a diagonal $A C$ into two triangles and determine their centres of mass S_{1} and S_{2} by (4). We thus obtain a line $S_{1} S_{2}$. If we again divide the area by the diagonal $B D$ into two other triangles and determine their centres of
 mass, we obtain a second line whose intersection with $S_{1} S_{2}$ gives the centre of mass S of the whole area.

We can, however, proceed more simply by bisecting the diagonal $A C$ at M and laying off the longer segment $B E$ of the other diagonal from D to F so that $D F=B E$.

Then draw $F M$ and take $M S=\frac{1}{3} F M$. Then S is the centre of mass.

For we have $M S_{1}=\frac{1}{3} M D$ and $M S_{2}=\frac{1}{3} M B$, hence $S_{1} S_{2}$ is parallel to $B D$. But $S S_{1} \times$ area $A C D=S S_{2} \times$ area $A C B$, or $S S_{1} \times D E$ $=S S_{2} \times B E$, whence $S S_{1}: S S_{2}:: B E: D E$. But we have by construction $B E=D F$, and $D E=B F$; hence $S S_{1}: S S_{2}:: D F: B F$. Hence $M F^{F}$ cuts $S_{1} S_{2}$ at the centre of mass S.

1st Construction.-We have then the following construction:
Bisect one diagonal $A C$ at M. Lay off the longer segment $B E$ of the other diagonal from D to F, so that $D F=B E$. Then join $M F$ and take $M S=\frac{1}{3} M F$. Then S is the centre of mass.
$2 d$ Construction.-We have also the following construction:

Let E be the intersection of the diagonals, and M_{1}, M_{2} their middle points. Join M_{1}, M_{2}, and let M be its middle point. Draw the line $E M$ and produce it to S, so that $M S$ equals one third of $E M$. Then S is the centre ${ }_{D}$
 of mass. Student will prove.

3d Construction.-Draw the diagonal $D B$, dividing the figure
 into the two triangles $D A B$ and $B D C$. The centres of mass α_{2} and α_{1} of each of these triangles are in the lines $D M_{2}$ and $B M_{1}$ drawn from the vertices D and B to the middle points M_{2} and M_{1} of the opposite sides, so that $D \alpha_{2}=\frac{2}{3} D M_{2}$ and $B a_{1}=\frac{2}{3} B M_{1}$. The centre of mass is then in the line $a_{2} a_{1}$.
Now draw the diagonal $C A$, dividing the figure into the two triangles $C A B$ and $A D C$. The centres of mass b_{2} and b_{1} of each of these triangles are in the lines $C M_{2}$ and $A M_{1}$, so that $C b_{2}=\frac{2}{3} C M_{2}$ and $A b_{1}=\frac{2}{3} A M$. The centre of mass is then in the line $b_{1} b_{2}$. The centre of mass S is then at the intersection of $a_{2} a_{1}$ and $b_{2} b_{1}$.
any homogeneous plane polygon, we -To find the centre of mass of consider the area of each triangle concentrated at its triangles, and centre of mass, and find the moments of each with reference to two rectangular axes.

A convenient and sufficiently accurate method which is often employed is to draw the polygon to scale upon stiff manilla paper. Then cut the area out and balance it in two positions upon a knifeedge. Two axes of symmetry are thus determined, and the centre of mass of the area is at their intersection.

A similar method may be employed for finding the area of an irregular figure. Draw the area upon paper. Measure carefully the area of the sheet and weigh it in a delicate laboratory balance. Then cut the area out and weigh it. The areas are as their weights.
(8) Homogeneous Circular Sector. - The centre of mass of a homogeneous circular sector $A C O$ coincides
 with the centre of mass S of the arc $A_{1} B_{1} C_{1}$ which has the same central angle and whose radius $O A_{1}$ is two thirds that of the sector $O A$. For the sector can be divided into an indefinite number of small triangles, the centre of mass of each of which is at a distance from O of two thirds of the radius. These centres give the arc $A_{1} B_{1} C_{1}$.

The centre of mass S of the sector lies, therefore, upon the radius of symmetry $O B$ which bisects this arc $A_{1} B_{1} C_{1}$, and at a distance $O S$ from the centre (page 20) given by
where r denotes the radius of the sector and θ the central angle $A O C$ in radians.

For the semicircle $\theta=\pi, \sin \frac{\theta}{2}=1$ and

$$
O S=\frac{4}{3 \pi} r=\frac{14}{33} r, \text { approximately. }
$$

For a quadrant

$$
O S=\frac{4 \sqrt{2}}{3 \pi} r=0.6002 r
$$

For a sextant

$$
O S=\frac{2}{\pi} r=0.6366 r
$$

(9) Homogeneous Segment of a Circle.-The centre of mass of the homogeneous segment of a circle $A B C$ is in the radius of symmetry $O B$ and may be found by placing the moment of its area relative to an axis through O parallel to $A C$ equal to the difference of the moments of the areas of the sector $A B C O$ and of the triangle $A C O$.

Let r be the radius $O A, c$ the chord $A C$ and A the area of the segment $A B C$, and l the length of arc $A B C$. Then the area of the sector is $\frac{r l}{2}$. The distance $O S_{1}$ for
 the centre of mass of the sector is $\frac{c}{l} \cdot \frac{2}{3} r$, and the moment of its area is $\frac{c r^{2}}{3}$.

The height of the triangle is $\sqrt{r^{2}-\frac{c^{2}}{4}}$. Its area is $\frac{c}{2} \sqrt{r^{2}-\frac{c^{2}}{4}}$. The distance $O S_{2}$ for the centre of mass is $\frac{2}{3} \sqrt{r^{2}-\frac{c^{2}}{4}}$. The moment of the area of the triangle is then $\frac{c r^{2}}{3}-\frac{c^{3}}{12}$. Hence we have

$$
A . O S=\frac{1}{3} c r^{2}-\left(\frac{c r^{2}}{3}-\frac{c^{3}}{12}\right)=\frac{c^{3}}{12}, \quad \text { or } \quad O S=\frac{c^{3}}{12 A}
$$

That is, the centre of mass of a segment of a circle is on the radius of symmetry $O B$, at a distance $O S$ from the centre of the circle equal to the cube of the chord $A C$ divided by 12 times the area of the segment.

For a semicircular segment, $c=2 r$ and $A=\frac{\pi r^{2}}{2}$ and $C S=\begin{aligned} & 4 r \\ & 3 \pi\end{aligned}$, as we have already found it (8).
(10) Homogeneous Circular Ring.-The centre of mass of a homogeneous circular ring can now be found. It is in the radius of symmetry $O B_{1}$. The area of the ring is the difference of area of two sectors $O A_{1} B_{1} C_{1}$ and $O A_{2} B_{2} C_{2}$. If $O A_{1}=r_{1}$ and $O A_{2}=r_{2}$ and the chords $A_{1} C_{1}=c_{1}, A_{2} C_{2}=c_{2}$, we have the moments of the areas of the sectors relative to an axis through O parallel to $A_{1} C_{1}$ equal to $\frac{c_{1} r_{1}{ }^{2}}{3}$ and $\frac{c_{2} r_{2}{ }^{2}}{3}$. The area of the ring is

$$
\frac{r_{1}^{2} \theta}{2}-\frac{r_{2}^{2} \theta}{2}=9\left(\frac{r_{1}^{2}-r_{2}^{2}}{2}\right)
$$

where θ is the central angle $A_{1} O C_{1}$ in radians. Hence, since $\frac{c_{2}}{c_{1}}=\frac{r_{2}}{r_{1}}$,

$$
\theta\left(\frac{r_{1}{ }^{2}-r_{2}{ }^{2}}{2}\right) \cdot O S=\frac{c_{1}}{3 r_{1}}\left(r_{1}^{3}-r_{2}^{3}\right), \quad \text { or } \quad O S=\frac{r_{1}{ }^{3}-r_{2}{ }^{3}}{r_{1}^{2}-r_{2}^{2}} \cdot \frac{2 c_{1}}{3 r_{1} \theta}
$$

If l is the length of the $\operatorname{arc} A_{1} B_{1} C_{1}$, this becomes

$$
O S=\frac{2 c_{1}}{3 l}\left(\frac{r_{1}{ }^{3}-r_{2}{ }^{3}}{r_{1}^{2}-r_{2}^{2}}\right)
$$

or, since $l=r_{1} \partial$ and $c_{1}=2 r_{1} \sin \frac{\theta}{2}$,

$$
O S=\frac{4 \sin \frac{\theta}{2}}{3 \theta} \cdot \frac{r_{1}{ }^{3}-r_{2}{ }^{3}}{r_{1}{ }^{2}-r_{2}{ }^{2}}=\frac{\sin \frac{1}{2} \theta}{\theta}\left[1+\frac{1}{12}\left(\frac{b}{R}\right)^{2}\right] 2 R,
$$

where $b=r_{1}-r_{2}$ and $R=\frac{r_{1}+r_{2}}{2}$.
(11) Surface of a Cylinder.-The centre of mass of the homogeneous surface of a cylinder lies at the centre of its axis. For all the equal-circle elements of the surface obtained by taking slices parallel to the base have their centres and centres of mass upon this axis. At these centres of mass the mass of each element may be concentrated. The centre of mass of the cylindrical surface is then the centre of mass of the axis.

For the same reason the centre of mass of the surface of a prism lies in the middle of the line which unites the centres of mass of its bases.
(12) Surface of a Right Cone.-The centre of mass of the homogeneous surface of a right cone lies in the axis of the cone at two thirds of its length from the apex. For the curved surface can be divided into an indefinite number of small triangles. The centres of mass of all these triangles form a circle which is situated at a distance of two thirds of the axis from the apex, and whose centre of mass lies in the axis.

The same holds true for a right pyramid.
(13) Surface of a Spherical Segment, Zone or Hemisphere.-The centre of mass of the homogeneous surface of a spherical segment or zone or hemisphere is at the middle of its axis or height.

For, according to Geometry, the spherical zone $A B D E$ has the
 same area as the surface $F G H K$ of a cylinder whose height is equal to the height $M N$ of the zone and whose radius is the radius $C O$ of the sphere. This holds for all ring-shaped elements obtained by passing planes parallel to the base through the zone. Hence the centre of mass for the surface of the spherical zone, segment or hemisphere is at the middle S of its height $M N$ and coincides with that of the cylinder.
Centre of Mass of Volumes.
(14) Volume of a Homogeneous Prism.-The centre of mass for a solid homogeneous prism is at the middle of its axis, or the line joining the centres of mass of its two bases. For by passing planes parallel to the bases we divide it into equal slices whose centres of mass lie in the axis.
(15) Homogeneous Pyramid and Cone-Let $A B C D$ be a homogeneous triangular pyramid. Take E at the middle point of $B C$ and draw $A E$ and $D E . \quad$ Let $M E=\frac{1}{3} A E$, and $E N=\frac{1}{3} D E$.

Draw $D M$ and $A N$. Then $D M$ and $A N$ are axes of symmetry, and the centre of mass is at their intersection S. But $M N$ must be parallel to $A D$ and equal to $\frac{1}{3} A D$, and the triangle $M N S$ is similar to $D A S$.
 Hence $M S=\frac{1}{3} D S$, or $D S=3 M S$; and $M D=4 M S$, or $M S=\frac{1}{4} M D$.

The centre of mass for the pyramid is then on the line joining a vertex with the centre of mass of the opposite base, at a distance from the vertex of three fourths the length of this line.

Since every pyramid and cone is composed of triangular pyramids with a common vertex, the centre of mass of any pyramid or cone is in the line joining the apex with the centre of mass of the base, at a distance from the vertex of three fourths the length of this line, or at a vertical distance of three fourths the altitude.

We can therefore determine the centre of mass of a pyramid or cone by passing a plane through the body parallel to the base at a distance of three fourths the altitude from the vertex, and finding the centre of mass of this section.

of a Cone or Pyramid.-The centre of mass of a homogeneous frustum of a cone or pyramid lies in the line $G M$ joining the centres of mass of the two parallel bases. If we denote by A_{1} the area of the base $A B$, and by A_{2} the area of the base $D C$, and by h the altitude between them, the height x of the point F above $D C$ is given by

$$
\frac{A_{1}}{A_{2}}=\frac{(h+x)^{2}}{x^{2}}, \quad \text { or } \quad x=\frac{h \sqrt{A_{2}}}{\sqrt{A_{1}}-\sqrt{A_{2}}}
$$

and

$$
x+h=\frac{h \sqrt{A_{1}}}{\sqrt{A_{1}}-\sqrt{A_{2}}}
$$

The moment of the entire pyramid with reference to its face is

$$
\frac{A_{1}(x+h)}{3} \cdot \frac{x+h}{4}=\frac{1}{12} \cdot \frac{h^{2} A_{1}{ }^{2}}{\left(\sqrt{\left.\overline{A_{1}}-\sqrt{A_{2}}\right)^{2}},\right.}
$$

and that of the part of the pyramid which is wanting is

$$
\frac{A_{2} x}{3}\left(h+\frac{x}{4}\right)=\frac{1}{3} \cdot \frac{h^{2}{\sqrt{A_{2}}}^{3}}{\sqrt{A_{1}}-\sqrt{A_{2}}}+\frac{1}{12} \cdot \frac{h^{2} A_{2}{ }^{2}}{\left(\sqrt{A_{1}}-\sqrt{A_{2}}\right)^{2}} .
$$

Hence the moment of the truncated pyramid is found by subtracting the second from the first, after reduction, to be

$$
\frac{h^{2}}{12}\left(A_{1}+2 \sqrt{A_{1} A_{2}}+3 A_{2}\right)
$$

The volume of the frustum is $\left(A_{1}+\sqrt{A_{1} A_{2}}+A_{2}\right) \frac{h}{3}$. Therefore the distance of the centre of mass S from the base is

$$
S E=\frac{A_{1}+2 \sqrt{A_{1} A_{2}}+3 A_{2}}{A_{1}+\sqrt{A_{1} A_{2}}+A_{2}} \cdot{ }_{4}^{h} .
$$

The distance $S_{0} S$ of this point from the plane $K L$ passing through the middle of the body parallel to the base and dividing the altitude into two equal parts is

$$
S_{0} S=\frac{h}{2}-S E=\frac{A_{1}-A_{2}}{\left(A_{1}+\sqrt{A_{1} A_{2}}+A_{2}\right)} \cdot \frac{h}{4} .
$$

If the radii of the bases of a frustum of a cone are r_{1} and r_{2}, we have

$$
A_{1}=\pi r_{1}^{2}, \quad A_{2}=\pi r_{2}^{2}
$$

and

$$
\begin{aligned}
& S E=\frac{r_{1}^{2}+2 r_{1} r_{2}+3 r_{2}^{2}}{r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}} \cdot \frac{h}{4} \\
& S_{0} S=\frac{r_{1}^{2}-r_{2}^{2}}{r_{1}^{2}+r_{1} r_{2}+r_{2}^{2}} \cdot \frac{h}{4}
\end{aligned}
$$

(17) Spherical Sector.-If the homogeneous circular sector $A O B$ is revolved about its radius $O B$, a homogeneous spherical sector $A O C$ is generated.

We can consider this body as composed of an indefinite number of pyramids, whose common apex is at O and whose bases form the spherical zone $A B C$. The centres of mass of each of these pyramids are at a distance of three fourths of the radius $O B$ of the sphere from O, and they form a second spherical zone $A_{1} B_{1} C_{1}$, whose radius $O B_{1}=\frac{3}{4} O B$.

The centre of mass of this zone is then the centre of mass of the spherical sector. If we
 put $O A=O C=r$, and the altitude $B M$ of the exterior zone $=h$, we have

$$
O B_{1}=\frac{3}{4} r \quad \text { and } \quad B_{1} M_{1}=\frac{3}{4} h .
$$

Hence, by (13),

$$
S B_{1}=\frac{1}{2} M_{1} B_{1}=\frac{3}{8} h
$$

and the distance of the centre of mass of the spherical sector from the centre O is

$$
O S=O B_{1}-S B_{1}=\frac{3}{4} r-\frac{3}{8} h=\frac{3}{4}\left(r-\frac{h}{2}\right)
$$

For a hemisphere, $r=h$, and $O S=\frac{3}{8} r$, or the centre of mass of a hemisphere is on its radius of symmetry at a distance of $\frac{3}{8}$ this radius from the centre.
(18) Spherical Segment or Spheroid.-We may obtain the centre
 of mass for a homogeneous spherical segment by putting the moment of the segment equal to that of the spherical sector $A B C O$ less that of the cone $A C O$.

Denoting again the radius $O B$ of the sphere by r, and the altitude $B M$ by h, we have the moment of the sector

$$
=\frac{2}{3} \pi r^{2} h \cdot \frac{3}{4}\left(r-\frac{h}{2}\right)=\frac{1}{4} \pi r^{2} h(2 r-h)
$$

and that of the cone

$$
=\frac{1}{3} \pi h(2 r-h)(r-h) \cdot \frac{3}{4}(r-h)=\frac{1}{4} \pi h(2 r-h)(r-h)^{2} .
$$

Hence the moment of the segment is

$$
V \times O S=\frac{1}{4} \pi h(2 r-h)\left[r^{2}-(r-h)^{2}\right]=\frac{1}{4} \pi h^{2}(2 r-h)^{2}
$$

The volume of the segment is $V=\frac{1}{3} \pi h^{2}(3 r-h)$, hence

$$
O S=\frac{\frac{1}{4} \pi h^{2}(2 r-h)^{2}}{\frac{1}{3} \pi h^{2}(3 r-h)}=\frac{3}{4} \frac{(2 r-h)^{2}}{3 r-h}
$$

If we put $h=r$, the segment becomes a hemisphere, and, as before, $O S=\frac{3}{8} r$.

The result holds good for the segment $A_{1} B C_{1}$ of a spheroid generated by the resolution of the $\operatorname{arc} B A_{1}$ of an ellipse about its major axis $O B=r$. For if we make $B M=x$ and $M A_{1}=y$, the equation of the ellipse is

$$
y^{2}=\frac{b^{2}}{r^{2}}\left(2 r x-x^{2}\right)
$$

where $b=O E_{1}$. The equation of the circle is $y^{2}=2 r x-x^{2}$. Hence $\frac{M A_{1}{ }^{2}}{M A^{2}}=\frac{b^{2}}{r^{2}}$. We must then multiply not only the volume but also
the moment of the spherical segment by $\frac{b^{2}}{r^{2}}$ to obtain the volume and moment of the segment of the spheroid. Therefore the quotient $O S=\frac{\text { moment }}{\text { volume }}$ is not changed.

In general, then, we have

$$
O S=\frac{3}{4} \frac{(2 r-h)^{2}}{3 r-h},
$$

Where r denotes that semi-axis about which the ellipse is revolved whergenerating the spheroid.

Theorem of Pappus and Guldinus.-If a plane surface $A B C$ is revolved about an axis $O X$, every element of it, as a_{1}, a_{2}, etc., describes a volume. If the distances of these elements from $O X$ are y_{1}, y_{3}, etc., and the angle of rotation is 9 radians, we have for the entire volume V generated

$$
V=\alpha_{1} y_{1} \theta+\alpha_{2} y_{2} \theta+\ldots=\theta \Sigma \alpha y
$$

If \bar{y} is the distance of the centre of mass of the surface $A B C$ from $O X$, and A is its area, we have

$$
A \bar{y}=a_{1} y_{1}+a_{2} y_{2}+\ldots=\Sigma \alpha y
$$

Hence

$$
\overline{A y} \theta=\theta \Sigma a y=V
$$

That is, the volume generated by the revolution of a plane area which lies wholly on one side of the axis equals the area multiplied by the distance described by its centre of mass.

In the same way, if a plane curve $A B C$ is revolved about an axis $O X$, every element of it, as s_{1}, s_{2}, etc., describes a surface. The entire surface generated is

$$
A=s_{1} y_{1} \theta+s_{2} y_{2} \theta+\ldots=0 \Sigma s y
$$

If \bar{y} is the distance of the centre of mass of the curve, we have

$$
L \bar{y}=s_{1} y_{1}+s_{2} y_{2}+\ldots=\Sigma s y
$$

Hence

$$
L \bar{y} \theta=\theta \Sigma s y=A
$$

That is, the area generated by the revolution of a line about a fixed axis equals the length of the line multiplied by the distance described by its centre of mass.

These properties are known as the theorems of Pappus and Guldinus. By means of them, the volume, or the centre of mass, in many cases, may be very simply determined.

EXAMPLES.

(1) The surface of a sphere is $4 \pi r^{2}$, and the length of a semi-circumference is πr. Find the centre of mass for a semi-circle.

Ans. On the radius of symmetry at a distance from the centre of $\frac{2 r}{\pi}$. [See (2), page 20.]
(2) The volume of a sphere is $\frac{4}{3} \pi r^{3}$, and the area of a semi-circle is $\frac{1}{2} \pi r^{2}$. Find the centre of mass of the surface of a semi-circle.

Ans. On the radius of symmetry at a distance from the centre of $\frac{4 r}{3 \pi}$. [See (8), page 24.]
(3) An ellipse revolves about a line in its plane, the perpendicular distance of which from the centre is equal to c. Find the volume of the ring generated by a complete revolution.

Ans. Let a and b be the semi-axes of the generating ellipse. Then the generating area is $A=\pi a b$. The path described by the centre of mass is $2 \pi c$. Hence the volume is $2 \pi^{2} a b c$. This volume is the same whatever the position or direction of the axis of revolution with respect to the axes of the ellipse, provided that the perpendicular distance c from the centre to the axis is the same.
[Determination of Centre of Mass by Calculus. - When a body is of such form that we know the relations between its co-ordinates for any point, and its density is a function of the co-ordinates, we may write (1) and (2), page 19, in Calculus notation:

$$
\begin{equation*}
\bar{x}=\frac{\int \delta x d V}{\int \delta d V}, \quad \bar{y}=\frac{\int^{\rho} \delta y d V}{\int \delta d V}, \quad \bar{z}=\frac{\int \delta z d V}{\int \delta d V}, . \tag{3}
\end{equation*}
$$

where δ is the density for any elementary volume $d V$. If the body is homogeneous, δ is constant and $\int a V=V=$ the entire volume, and

$$
\begin{equation*}
\bar{x}=\frac{\int x d d V}{V}, \quad \bar{y}=\frac{\int y d V}{V}, \quad \bar{z}=\frac{\int z d V}{V} \ldots \tag{4}
\end{equation*}
$$

From these equations the co-ordinates of the centre of mass are found by integrating between the limits which determine the volume.

From these general formulas we can readily deduce special formulas for special cases.
[Centre of Mass of Lines.-Thus if s is the length of a line and a its transverse section at any point, then $d s$ is an element of length, and $d V$ $=a d s$, and (3) becomes

$$
\begin{equation*}
\bar{x}=\frac{\int a \delta x d s}{\int a \delta d s}, \quad \bar{y}=\frac{\int a \delta y d s}{\int a \delta d s}, \quad \bar{z}=\frac{\int a \delta z d s}{\int a \delta d s} . \tag{5}
\end{equation*}
$$

If the line is homogeneous and the transverse section constant we have

$$
\begin{equation*}
\bar{x}=\frac{\int x d s}{s}, \quad \bar{y}=\frac{\int y d s}{s}, \quad \bar{z}=\frac{\int z d s}{s} \tag{6}
\end{equation*}
$$

If the line is a plane curve, we can take its plane that of $x y$. Then $\bar{z}=$ 0 , and the first two of (5) and (6) are insufficient. If the line is a straight line, we may take it coinciding with the axis of x. Then \bar{y} and \bar{z} are zero, $d s=d x$, and the first of (5) and (6) are sufficient.

- EXAMPLES.

(1) Find the center of mass of a homogeneous straight line.

Ans. In this case we have $\bar{x}=\frac{\int_{0}^{s} x d x}{8}=\frac{8}{2}$, which is also evident from the principle of symmetry.
(2) Find the center of mass of a straight fine wire of uniform section, in which the density varies directly as the distance from one end.

Ans. If δ_{1} is the density at a distance unity, and the axis of x coincides with the line, and the origin is taken at the end of the line, the density δ at any distance x is proportional to $\delta_{1} x$, and $d s=d x$; hence from equation (5)

$$
x=\frac{\int_{0}^{s} \delta_{1} x^{2} d x}{\int_{0}^{s} \delta_{1} x d x}=\frac{2}{3} s
$$

Cor. If the density is constant but the section varies directly as the distance, we have the same result. The wire in this case would become a homogeneous triangular plate of uniform thickness. Hence the centre of mass of a triangle is on the axis of symmetry at a distance from the vertex of two thirds the length of that axis. [See (4), page 2.]
(3) Find the center of mass of a straight fine wire of uniform section, in which the density varies as the square of the distance from one end.

In this case we have

$$
\bar{x}=\frac{\int_{0}^{s} \delta_{1} x^{3} d x}{\int_{0}^{s} \delta_{1} x^{2} d x}=\frac{3}{4} s
$$

Cor. If the density is constant but the section varies as the square of the distance, we have the same result. The wire then becomes a homogeneous cone or pyramid, whether right or oblique, or whether the base be regular or irregular. [See (15), page 26.]
(4) Find the center of mass of a homogeneous cycloid.

Take the origin at O and let the axis $O X$ be the axis of symmetry. Then if s is the length of the curve and r the radius of the generating circle, we have for the equation of the cycloid

$$
s^{2}=8 r x
$$

Hence

$$
d s=(2 r)^{\frac{1}{4}} x^{-\frac{1}{3}} d x .
$$

From equation (6), therefore,

$$
\bar{x}=\frac{\int_{0}^{x}(2 r)^{\frac{1}{3}} x}{(8 r x)^{\frac{1}{2}}}=\frac{x}{3}
$$

When $x=2 r$, we have the carve corresponding to one complete revolution of the generating circle, and $\bar{x}=\frac{2}{3} r$. That is, the centre of mass for the curve is on the axis of symmetry at a distance $O S$ from the vertex equal to one third of the diameter of the generating circle.
(5) Find the centre of mass of a homogeneous circular arc.

Let $A B C$ be a circular arc, with centre at O. Take the origin at O and let
 the axis of x coincide with the axis of symmetry $O B$. Let $A C=$ chord $=c$, and the length of arc $A B C=s$, and $r=$ radius. Take an indefinitely small element $P Q=d s$, whose centre of mass is at a, so that $a N=y$ and the horizontal projection $Q R=d x$.

Then

$$
d s: d x:: r: y, \quad \text { or } \quad d s=\frac{r d x}{y} \text {. }
$$

Hence $x d s=\frac{r x d x}{y}$. But the equation of the circle is

$$
x^{2}+y^{2}=r^{2}, \therefore x d x=-y d y
$$

and, therefore, $x d s=-r d y$. From equation (6)

$$
\bar{x}=\frac{\int_{+\frac{c}{2}}^{-\frac{c}{2}}-r d y}{l}=\frac{r c}{l}
$$

Hence the distance $O S$ of the centre of mass from the centre of the circle is a fourth proportional to the arc, the radius, and the chord, or [see (2), page 20]

$$
s: r:: c: \bar{x} .
$$

[Centre of Mass of Plane Surfaces. - Let the plane of $x y$ coincide with the surface. Then $\bar{z}=0$. If we consider the surface as a thin material plate of density δ at any point and thickness τ, we have the elementary area $d x d y$ and the elementary volume $\tau d x d y=d V$, and equation (3), page 30, becomes

$$
\begin{equation*}
\bar{x}=\frac{\iint \tau \delta x d x d y}{\iint \tau \delta d x d y}, \bar{y}=\frac{\iint \tau \delta y d x d y}{\iint \tau \delta d x d y} \tag{7}
\end{equation*}
$$

If τ is constant and the material homogeneous, or δ constant, we have the entire area

$$
\begin{equation*}
A=\iint d x d y=\int x d y=\int y d x \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{x}=\frac{\int y x d x}{A}, \bar{y}=\frac{\frac{1}{2} \int y^{2} d x}{A} \tag{9}
\end{equation*}
$$

If the axis of x is an axis of symmetry, $\bar{y}=0$, and the value of \bar{x} is sufficient.

The student will note that $y d x$ is any elementary area $a b d c$. Hence $\int y d x$ is the entire area A. Also $y d x \times x$ is the moment of the elementary area with reference to the axis of Y; and since the centre of mass of this area is at a distance $\frac{y}{2}$ above the axis of $x, y d x \times \frac{1}{2} y$ is its moment with reference to the axis of x. Hence we have equations (9).

If we take polar co-ordinates, we can replace $d V$ in equations (3), page 30 , by $\tau \rho d \rho d \theta$; and since $x=\rho \cos \theta, y=\rho \sin \theta$, where θ is the angle of the radius vector ρ with the horizontal, we obtain

$$
\begin{equation*}
\bar{x}=\frac{\iint \tau \delta \rho^{2} d \rho \cos \theta d \theta}{\iint \tau \delta \rho d \rho d \theta}, \bar{y}=\frac{\iint \tau \delta \rho^{2} d \rho \sin \theta d \theta}{\iint \tau \delta \rho d \rho d \theta} . \tag{10}
\end{equation*}
$$

If the thickness is constant and the material homogeneous, τ and δ disappear and

$$
\begin{equation*}
\bar{x}=\frac{\iint \rho^{2} d \rho \cos \theta d \theta}{A}, \bar{y}=\frac{\iint \rho^{2} d \rho \sin \theta d \theta}{A} \tag{11}
\end{equation*}
$$

EXAMPLES.

(1) Find the centre of mass of a homogeneous semi-parabolic area whose length is a and height b.

The equation of the parabola referred to the vertex is $y^{2}=2 p x$. When
 $x=a$, we have $y=b$; hence $2 p=\frac{b^{2}}{a}$, and the equation becomes

$$
y^{2}=\frac{b^{2}}{a} x
$$

From equation (8)

$$
A=\int_{0}^{a} y d x=\int_{0}^{a} \frac{b}{\sqrt{a}} x^{\frac{1}{2}} d x=\frac{2}{3} a b
$$

Therefore, from equation (9), we have for the distance of the centre of mass S_{1} from O, upon $O X$,

$$
\bar{x}=\frac{\int_{0}^{a} \frac{b}{\sqrt{a}} x^{\frac{8}{2}} d x}{\frac{2}{3} a b}=\frac{3}{5} a
$$

and for the distance above $O X$

$$
\bar{y}=\frac{\frac{1}{2} \int_{0}^{a}{ }^{\frac{b^{2}}{a}} x d x}{\frac{2}{3} a b}=\frac{3}{8} b .
$$

For the entire parabola we have two equal elementary areas $y d x$, one above and one below $O X$. The centre of mass S_{2} is then in the axis of symmetry $O X$ at a distance from the vertex

$$
\bar{x}=\frac{2 \int_{0}^{a} \frac{b}{\sqrt{a}} x^{\frac{8}{2}} d x}{2 \times \frac{2}{3} a b}=\frac{3}{5} a
$$

For the parabolic area $O B C$ we have for origin at C the equation

$$
y=b-b \sqrt{\frac{x}{a}}, \quad \text { and } \quad A=\frac{1}{3} a b .
$$

Hence, from equation (9), we have for the centre of mass S_{3}

$$
\begin{aligned}
& \bar{x}=\frac{\int_{0}^{a} b x d x-\frac{b}{\sqrt{a}} x^{\frac{3}{3}} d x}{\frac{1}{3} a b}=\frac{3}{10} a \text { from } O C \\
& \bar{y}=\frac{\frac{1}{2} \int b^{2} d x-\frac{2 b^{2}}{\sqrt{a}} x^{\frac{1}{2}} d x+\frac{b^{2}}{a} x d x}{\frac{1}{3} a b}=\frac{1}{4} b \text { from } B C,
\end{aligned}
$$

or $\frac{3}{4}$ of $O C$ from $O A$.
These last two values can be readily determined from the first two by the application of the principle of moments.

Thus the area $O B A=\frac{2}{3} a b$, and area $O B C=\frac{1}{3} a b$, and the sum of the moments of these areas with reference to the axes of x and y must equal the moment of the rectangle $O A B C$. Hence

$$
\begin{array}{ll}
\frac{2}{3} a b \times \frac{3}{5} a+\frac{1}{3} a b \times \bar{x}=a b \times \frac{1}{2} a, & \text { or } \quad \bar{x}=\frac{3}{10} a \\
\frac{2}{3} a b \times \frac{3}{8} b+\frac{1}{3} a b \times \bar{y}=a b \times \frac{1}{2} b, & \text { or } \quad \bar{y}=\frac{3}{4} b .
\end{array}
$$

(2) Find the centre of mass for the area of a quadrant of a circle in which the density increases directly as the distance from the centre.

If δ_{1} is the surface density at a units distance, the density at any distance ρ
is proportional to $\delta_{1} \rho$. Putting this in the place of δ in equation (10) we have, if τ is constant,

$$
\bar{x}=\bar{y}=\frac{\delta_{1} \int_{0}^{\frac{\pi}{2}} \int_{0}^{r} \rho^{3} d \rho \cos \theta d \theta}{\delta_{1} \int_{0}^{\frac{\pi}{2}} \int_{0}^{r} \rho^{2} d \rho d \theta}=\frac{\frac{1}{4} r^{4}}{\frac{1}{6} \pi r^{3}}=\frac{3 r}{2 \pi}
$$

If the density is constant, we have from equation (11)

$$
\bar{x}=\bar{y}=\frac{\int_{0}^{\frac{\pi}{2}} \int_{0}^{r} \rho^{2} d \rho \cos \theta d \theta}{\frac{1}{4} \pi r^{2}}=\frac{4 r}{3 \pi}
$$

(3) Find the centre of mass of the area of a homogeneous circular segment.

Let the origin be at the centre of the circle, and the axis of x the axis of symmetry. Let the chord $A C=c$ and the radius r. Then the equation of the circle is $x^{2}+y^{2}=r^{2} . \quad$ Hence $x d x=-y d y . \quad$ From equation (9)

$$
\bar{x}=\frac{\int_{+\frac{c}{2}}^{-\frac{c}{2}}-y^{2} d y}{A}=\frac{c^{3}}{12 A}
$$

The centre of mass of a homogeneous circular segment is on the radius drawn to the middle of the arc, at a distance $O S$ from the centre of the circle equal to the cube of the chord divided by twelve times the area of the segment. [See (9), page 24.]

From equation (9) we have

$$
\begin{aligned}
& \bar{x}=\frac{\int_{0}^{-b}-\frac{a^{2}}{b^{2}} y^{2} d y}{\frac{1}{4} \pi a b}=\frac{4 a}{3 \pi} \\
& \bar{y}=\frac{\frac{1}{2} \int_{0}^{a} b^{2} d x-\frac{b^{2}}{a^{2}} x^{2} d x}{\frac{1}{4} \pi a b}=\frac{4 b}{3 \pi}
\end{aligned}
$$

If $a=b$, the ellipse becomes a circle, and the co-ordinates of the centre of mass of a circular quadrant referred to its centre are $\bar{x}=\bar{y}=\frac{4 r}{3 \pi}$, as in example (2).
[Centre of Mass of Curved Surfaces.-If the surface is one of revolution, let the axis of x coincide with the axis of
 revolution, which is also an axis of symmetry. The surface can be divided by planes perpendicular to the axis into a series of circular rings. Let $d s$ be the length element of the generating curve. The elementary surface generated by its revolution will be $2 \pi y d s$. If the thickness of the surface is τ, the elementary volume is $d V=2 r \pi y d s$, and equation (3)
becomes

$$
\begin{equation*}
\bar{x}=\frac{\int 2 \tau \pi \delta x y d s}{\int 2 \tau \pi \delta y d s}=\frac{\int \tau \delta x y d s}{\int \tau \delta y d s} \tag{12}
\end{equation*}
$$

If τ is constant and the surface homogeneous, δ is constant, and $\int 2 \pi y d s=A=$ the entire area of the surface, and

$$
\begin{equation*}
\bar{x}=\frac{2 \pi \int x y d s}{A} \tag{13}
\end{equation*}
$$

For curved surfaces in general we have $d V=\tau d a$ and equation (3) becomes

$$
\begin{equation*}
\bar{x}=\frac{\int \tau \delta x d a}{\int \tau \delta d a}, \quad \vec{y}=\frac{\int \tau \delta y d a}{\int \tau \delta d a}, \quad \bar{z}=\frac{\int \tau \delta z d a}{\int \tau \delta d a} . \tag{14}
\end{equation*}
$$

If τ is constant and the surface homogeneous, we have

$$
\begin{equation*}
\bar{x}=\frac{\int x d a}{A}, \quad \bar{y}=\frac{\int y d a}{A}, \quad \bar{z}=\frac{\int z d a}{A} \ldots . \tag{15}
\end{equation*}
$$

The elementary area

$$
\begin{equation*}
d a=\frac{d x d y}{\cos \theta} \tag{16}
\end{equation*}
$$

where θ is the angle which the tangent plaue to the surface makes with the plane $x y$, and is given by

$$
\begin{equation*}
\cos \theta= \pm \frac{\frac{d L}{d z}}{\sqrt{\frac{d L^{2}}{d x^{2}}+\frac{d L^{2}}{d y^{2}}+\frac{d L^{2}}{d z^{2}}}} \tag{17}
\end{equation*}
$$

where $L=f(x, y, z)=0$ is the functional equation of the surface.

EXAMPLES.

(1) Find the centre of mass of one eighth of the surface of a spherical shell of uniform thickness and density.

The equation of the sphere, if r is the radius, is

$$
L=x^{2}+y^{2}+z^{2}-r^{2}=0 .
$$

Hence $\frac{d L}{d x}=2 x, \frac{d L}{d y}=2 y, \quad \frac{d L}{d z}=2 z$, and equations (17) and (16) become

$$
\cos \theta=\frac{2 z}{\sqrt{4 x^{2}+4 y^{2}+4 z^{2}}}=\frac{z}{r}, \quad d a=\frac{r d x d y}{z}=\frac{r d x d y}{\sqrt{r^{2}-x^{2}-y^{2}}} .
$$

Therefore from equation (15), if we put $r^{2}-x^{2}=v^{2}$, since $A=\frac{1}{2} \pi r^{2}$,

$$
\bar{x}=\frac{\int_{0}^{r} \int_{0}^{v} \frac{r x d x d y}{\sqrt{v^{2}-y^{2}}}}{\frac{1}{3} \pi r^{2}}=\frac{\int_{0}^{r} \frac{\pi r}{2} x d x}{\frac{1}{2} \pi r^{2}}=\frac{1}{2} r .
$$

Also

$$
\begin{aligned}
& \bar{y}=\frac{\int_{0}^{r} \int_{0}^{v} \frac{r d x \cdot y d y}{\sqrt{v^{2}-y^{2}}}}{\frac{1}{2} \pi r^{2}}=\frac{\int_{0}^{r} r \sqrt{r^{2}-x^{2} d x}}{\sqrt{\frac{1}{2} \pi r^{2}}}=\frac{1}{2} r ; \\
& \bar{z}=\frac{\int_{0}^{r} \int_{0}^{v} r d x d y}{\frac{1}{2} \pi r^{2}}=\frac{\int_{0}^{r} r \sqrt{r^{2}-x^{2} d x}}{\frac{1}{2} \pi r^{2}}=\frac{1}{2} r .
\end{aligned}
$$

If the thickness of the shell varies as the ordinate z, then $\tau=c z$, and from equation (14)

$$
\begin{aligned}
& \bar{x}=\frac{\int_{0}^{r} \int_{0}^{v} r x d x d y}{\int_{0}^{r} \int_{0}^{v} r d x d y}=\frac{4 r}{3 \pi} ; \\
& \bar{y}=\frac{\int_{0}^{r} \int_{0}^{v} r y d x d y}{\int_{0}^{r} \int_{0}^{v} r d x d y}=\frac{4 r}{3 \pi} ; \\
& \bar{z}=\frac{\int_{0}^{r} \int_{0}^{v} r\left(r^{2}-x^{2}-y^{2}\right) \frac{1}{2} d x d y}{\int_{0}^{r} \int_{0}^{v} r d x d y}=\frac{2 r}{3} .
\end{aligned}
$$

(2) Find the centre of mass of a thin shell of uniform density and thickness, generated by the recolution of a quadrant of a circle about one radius.

The equation of the generating carve is $x^{2}+y^{2}=r^{2}$, hence $d y=-\frac{x d x}{y}$, $d s=\sqrt{d x^{2}+d y^{2}}=\frac{r d x}{y}$ and $y d s=r d x$. Since $A=2 \pi r^{2}$, we have from equation (13).

$$
\bar{x}=\frac{2 \pi \int_{0}^{r} r x d x}{2 \pi r^{2}}=\frac{r}{2}
$$

(3) Find the centre of mass of a right conical surface of uniform thickness and density.

and $y x d s=\frac{r l}{h^{2}} x^{2} d x$. The area $A=\pi r l$. Hence from equation (13)

$$
\bar{x}=\frac{2 \pi \int_{0}^{h} \frac{r l}{h^{2}} x^{2} d x}{\pi r l}=\frac{2}{3} h .
$$

Or the centre of mass of a right conical surface is on the axis at a distance from the vertex of two thirds the altitude (page 25).
(4) Find the centre of mass of the surface of a spherical segment, zone or hemisphere, of uniform thickness and density.

The equation of the generating curve is $x^{2}+y^{2}=r^{2}$, hence $d y=-\frac{x d x}{y}$ and $d s=\sqrt{\overline{d x^{2}+d y^{2}}}=\frac{r d x}{y}$.

The area of the surface is then

$$
A=\int_{x_{1}}^{x_{2}} 2 \pi r d x=2 \pi r\left(x_{2}-x_{1}\right)=2 \pi r a,
$$

where a is the altitude $A B$ of the segment or zone, and $x_{2}=O B, x_{1}=O A$.
From (13) we have

$$
\bar{x}=\frac{2 \pi \int_{x_{1}}^{x_{2}} r x d x}{2 \pi r a}=\frac{x_{2}+x_{1}}{2}
$$

Hence the centre of mass is at the middle of its altitude (page 26).
(5) Find the centre of mass of the surface of a paraboloid of revolution, of uniform density and thickness.

We have for the equation of the generating curve $y^{2}=2 p x$, hence $d y=\frac{p d x}{y}$ and

$$
d s=\sqrt{d x^{2}+\frac{p^{2} d x^{2}}{y^{2}}}=\frac{d x}{y} \sqrt{2 p x+p^{2}}
$$

Therefore

$$
y d s=d x \sqrt{2 p x+p^{2}}
$$

$$
A=2 \pi \int^{x} y d s=\frac{2 \pi}{3 p} \sqrt{\left(2 p x+p^{2}\right)^{2}}
$$

and

$$
\begin{gathered}
\bar{x}=\frac{2 \pi \int_{0}^{x} y x d s}{A}=\frac{2 \pi \int_{0}^{x} x d x \sqrt{2 p x+p^{2}}}{A}=\frac{2 \pi\left(3 p x-p^{2}\right) \sqrt{\left(2 p x+p^{2}\right)^{3}}}{15 p^{2} A} \\
\text { or } \quad \bar{x}=\frac{3 x-p}{5}
\end{gathered}
$$

(6) Find the centre of mass of a thin shell of uniform thickness and density formed by the revolution of a semi-cycloid about its base.

The equation of the generating curve is

$$
x=r \operatorname{versin}^{-1} \frac{y}{r}-\left(2 r y-y^{2}\right)^{\frac{1}{2}}
$$

Hence

$$
\begin{aligned}
& \frac{d x}{y}=\frac{d y}{\left(2 r y-y^{2}\right)^{\frac{1}{2}}}=\frac{d s}{(2 r y)^{\frac{1}{2}}} \\
& \bar{x}=\frac{\int_{0}^{2 r} \frac{x y d y}{(2 r-y)^{\frac{1}{2}}}}{\int_{0}^{2 r} \frac{y d y}{(2 r-y)^{\frac{1}{2}}}}=\frac{26 r}{15} .
\end{aligned}
$$

[Centre of Mass of Bodies.-Let us consider first a solid of revolution, and take the axis of revolution as the axis of x. Take a slice at right angles to x, whose thickness is $d x$. Take a particle of this slice at a distance r from the axis, and let the plane which passes through x and the particle make the angle θ with the plane of $x y$. Then the volume of an element is $d V=r d \theta d r d x$. If δ is the density, the mass is $\delta r d \theta d r d x$.

If the density is symmetrical with respect to the axis of revolution, the centre of mass is on this axis, and we have

$$
x=\frac{\iiint \delta r x d \theta d r d x}{\iiint \delta r d \theta d r d x}
$$

If we perform the θ integration between $\theta=0$ and $\theta=2 \pi$, since the symmetry of the body renders δ independent of θ, we have

$$
\begin{equation*}
\bar{x}=\frac{\pi \iint \delta r x d r d x}{\pi \iint \delta r d r d x} \tag{18}
\end{equation*}
$$

If the density is uniform throughout a complete slice, we may perform the r integration between $r=0$ and $r=y$, where y is the ordinate of the generating curve, and we have

$$
\begin{equation*}
\bar{x}=\frac{\pi \int \delta y^{2} x d x}{\pi \int \delta y^{2} d x} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot . \tag{19}
\end{equation*}
$$

If δ is uniform, the total volume is

$$
\begin{equation*}
V=\pi \int y^{2} d x \tag{20}
\end{equation*}
$$

and we have for homogeneous solids of revolution

$$
\bar{x}=\frac{\pi \int x y^{2} d x}{V}
$$

We see at once from the figure that $\pi y^{2} d x$ is the volume of a slice, and the moment of this slice with reference to the axis of y is $\pi y^{2} d x \times x$. Hence (20) and (21).

For a body in general we have $d V=d x d y d z$, and hence equations (3) become

$$
\left.\begin{array}{l}
\bar{x}=\frac{\iiint \delta x d x d y d z}{\iiint \delta d x d y d z} \tag{22}\\
\bar{y}=\frac{\iiint \delta y d x d y d z}{\iiint \delta d x d y d z} \\
\bar{z}=\frac{\iiint \delta z d x d y d z}{\iiint \delta d x d y d z}
\end{array}\right\}
$$

If the axis of x is an axis of symmetry, \bar{x} is sufficient.
For polar co-ordinates let $\phi=A O X, \theta=d O A, \rho=O h$. Then $h d=$ $d \rho, h g=\rho d \theta, h e=\rho \cos \theta d \phi, d V=h d \times h g \times h e=\rho^{2} d \rho \cos \theta d 9 d \phi$.

Also, $\quad x=\rho \cos \theta \cos \phi, \quad y=\rho \sin \theta, \quad z=\rho \cos \theta \sin \phi$.
Hence, from equations (3),

$$
\left.\begin{array}{rl}
\bar{x} & =\frac{\iiint \delta \rho^{s} d \rho \cos ^{2} \theta d \theta \cos \phi d \phi}{\iiint \delta \rho^{2} d \rho \cos \theta d \theta d \phi} ; \\
\bar{y} & =\frac{\iiint \delta \rho^{3} d \rho \cos \theta \sin \theta d \theta d \phi}{\iiint \delta \rho^{2} d \rho \cos \theta d \theta d \phi} ; \tag{23}\\
\bar{z} & =\frac{\iiint \delta \rho^{3} d \rho \cos ^{2} \theta d y \sin \phi d \phi}{\iiint \delta \rho^{2} d \rho \cos \theta d \theta d \phi}
\end{array}\right\}
$$

For a homogeneous body δ disappears in (23) and the denominator becomes the total volume ∇.

EXAMPLES.

(1) Find the centre of mass of a right cone of uniform density.

The equation of the generating line is $y=\frac{r}{h} x$, where h is the altitude and r the radius of the base. The volume is $V=\frac{\pi r^{2} h}{3}$. Hence from equation (21)

$$
\bar{x}=\frac{\pi \int_{0}^{h} \frac{r^{2}}{\bar{h}^{2}} x^{3} d x}{\frac{1}{3} \pi r^{2} h}=\frac{\mathbf{3}}{4} h
$$

That is, the centre of mass is at a distance from the vertex equal to three fourths of the axis. [See (15), page 26.]
(2) Find the centre of mass of a paraboloid of revolution of uniform density the length of whose axis measured from the vertex is h.

The equation of the generating curve is $y^{2}=\frac{r^{2}}{\hbar} x$, where r is the radius of the base. The volume is $V=\frac{\pi r^{2} h}{2}$. Hence from equation (21)

$$
\bar{x}=\frac{\pi \int_{0}^{h} \frac{r^{2}}{h} x^{2} d x}{\frac{1}{2} \pi r^{2} h}=\frac{2}{3} h
$$

That is, the centre of mass is at a distance from the vertex equal to two thirds of the axis.
(3) Find the centre of mass of a semi-circular spherical wedge, of uniform density, and radius r.

From equation (23), integrating between the limits $\rho=0, \rho=r$, and $\theta=+\frac{\pi}{2}, \theta=-\frac{\pi}{2}$, we have, since $V=\frac{\phi}{2 \pi} \cdot \frac{4}{3} x r^{3}$,

$$
\bar{x}=\frac{\frac{r^{4}}{4} \cdot \frac{\pi}{2} \sin \phi}{\frac{\phi}{2 \pi} \cdot \frac{4}{3} \pi r^{3}}=\frac{3 \pi r}{16} \cdot \frac{\sin \phi}{\phi}
$$

If the angle ϕ is small, $\sin \phi=\phi$ and $\bar{x}=\frac{3 \pi r}{16}$.
If $\phi=\frac{\pi}{2}$, we have for the hemisphere $\bar{x}=\frac{3}{8} r$ (page 28).
(4) Find the centre of mass of a portion of a spheroid of uniform density, the length of whose axis measured from the vertex is h.

Let the equation of the generating curve be the ellipse referred to its vertex,

$$
y^{2}=\frac{b^{2}}{r^{2}}\left(2 r x-x^{2}\right)
$$

where r is the semi-major axis and b is the semi-minor axis.
Then from equation (19)

$$
\bar{x}=\frac{\int_{0}^{h}\left(2 r x-x^{2}\right) x d x}{\int_{0}^{h}\left(2 r x-x^{2}\right) d x}=\frac{h}{4} \frac{8 r-3 h}{3 r-h} .
$$

For a hemispheroid $h=r$ and $\bar{x}=\frac{5}{8} r$ from the vertex.
As b does not enter into these values, they are the same for a spherical segment and for a hemisphere.

For the distance from the centre we have

$$
O S=r-\bar{x}=\frac{3}{4} \frac{(2 r-h)^{2}}{3 r-h}
$$

as already found in (18), page 28.
(5) Find the centre of mass of an octant of a sphere of uniform density.

From equation (23) we have, since δ disappears and $V=\frac{1}{6} \pi r^{3}$,

$$
\begin{aligned}
& \bar{x}=\frac{\int_{0}^{r} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \rho^{3} d \rho \cos ^{2} \theta d \theta \cos \phi d \phi}{\frac{1}{6} \pi r^{3}}=\frac{3}{8} r ; \\
& \bar{y}=\frac{\int_{0}^{r} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \rho^{3} d \rho \cos \theta \sin \theta d \theta d \phi}{\frac{1}{6} \pi r^{3}}=\frac{3}{8} r ; \\
& \bar{z}=\frac{\int_{0}^{r} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \rho^{3} d \rho \cos ^{2} \theta d \theta \sin \phi d \phi}{\frac{1}{6} \pi r^{3}}=\frac{3}{8} r .
\end{aligned}
$$

(6) Let the density in the preceding example vary as the nth power of the distance from the centre.

Let $\delta=c \rho^{n}$. Then from equations (23) we have

$$
\bar{x}=\frac{\int_{0}^{r} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \rho^{n+3} \dot{d} \rho \cos ^{2} \theta d \theta \cos \phi d \phi}{\int_{0}^{r} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \rho^{n+2} d \rho \cos \theta d \theta d \phi}=\frac{n+3}{n+4} \overline{2}=\bar{y}=\bar{z} .
$$

(7) Find the centre of mass of one eighth of the volume of an ellipsoid of uniform density contained within the three principal planes.

Let the semi-axes of the ellipsoid be a, b, c.
The volume of the ellipsoid is $\frac{4}{3} \pi a b c$. The volume of one eighth is therefore $V=\frac{1}{6} \pi a b c$.

The equations of the curve on the three principal planes are

$$
a^{2} y^{2}+b^{2} x^{2}=a^{2} b^{2}, \quad a^{2} z^{2}+c^{2} x^{2}=a^{2} c^{2}, \quad b^{2} z^{2}+c^{2} y^{2}=b^{2} c^{2} .
$$

Therefore we have

$$
\begin{array}{lll}
y=\frac{b}{a}\left(a^{2}-x^{2}\right)^{\frac{1}{2}}, & z=\frac{c}{a}\left(a^{2}-x^{2}\right)^{\frac{1}{2}}, & z=\frac{c}{b}\left(b^{2}-y^{2}\right)^{\frac{1}{2}} . \\
x=\frac{a}{b}\left(b^{2}-y^{2}\right)^{\frac{1}{3}}, & x=\frac{a}{c}\left(c^{2}-z^{2}\right)^{\frac{1}{2}}, & y=\frac{b}{c}\left(c^{2}-z^{2}\right)^{\frac{1}{2}} .
\end{array}
$$

The volume of a slice parallel to $Y Z$, of thickness $d x$, is $\frac{\pi y z}{4} d x$.
" " ، " ، ، " $X Z$, " " $\quad d y$, is $\frac{\pi x z}{4} d y$.

Hence

$$
\begin{aligned}
& \bar{x}=\frac{\int \frac{\pi y z}{4} x d x}{\frac{1}{6} \pi a b c}=\frac{\frac{\pi b c}{4 a^{2}} \int_{0}^{a}\left(a^{2}-x^{2}\right) x d x}{\frac{1}{6} \pi a b c}=\frac{\frac{1}{16} \pi b c a^{2}}{\frac{1}{6} \pi a b c}=\frac{3}{8} a \\
& \bar{y}=\frac{\int \frac{\pi x z}{4} y d y}{\frac{1}{6} \pi a b c}=\frac{\frac{\pi a c}{4 b^{2}} \int_{0}^{b}\left(b^{2}-y^{2}\right) y d y}{\frac{1}{6} \pi a b c}=\frac{\frac{1}{16} \pi a c b^{2}}{\frac{1}{6} \pi a b c}=\frac{3}{8} b \\
& \bar{z}=\frac{\int \frac{\pi x y}{4} z d z}{\frac{1}{6} \pi a b c}=\frac{\frac{\pi a b}{4 c^{2}} \int_{0}^{c}\left(c^{2}-z^{2}\right) z d z}{\frac{1}{6} \pi a b c}=\frac{\frac{1}{16} \pi a b c^{2}}{\frac{1}{6}}=\frac{3}{8} c
\end{aligned}
$$

CHAPTER IV.

LINE REPRESENTATIVE OF A FORCE. COMPOSITION AND RESOLUTION OF FORCES.

FORCE OF GRAVITATION. ATTRACTION OF A HOMOGENEOUS SHELL OR SPHERE. CENTRE OF GRAVITY. VALUE OF CONSTANT OF GRAVITATION. ASTRONOMICAL UNIT OF MASS. VALUE OF a^{\prime} FOR PLANETARY MOTION. ATTRACTION OF A CIRCULAR ARC. ATTRACTION OF A STRAIGHT LINE. ATTRACTION OF A CIRCULAR RING. ATTRACTION OF A CIRCULAR DISK. ATTRACTION OF A CYLINDER. ATTRACTION OF A CONE. VALUE OF g ABOVE SEA-LEVEL.

Line Representative of a Force.-We have seen (page 2) that the force on a particle acts in the direction of the acceleration it causes, and that the magnitude of the force is proportional to the acceleration.

Force then has magnitude and direction, and is therefore a vector quantity, and can be represented, like $A \longrightarrow B=m f$ linear acceleration, by a straight line.

Thus the length of the line $A B$ represents the magnitude of the force $F=m f$ (page 5). Its point of application is A, and its direction of action is indicated by the arrow and is always the same as that of the acceleration f.

Composition and Resolution of Forces.-The principles, therefore, of pages $35,43,49$ (Vol. I, Kinematics) hold good for forces as well as for displacements, velocities and accelerations, and we can resolve and combine forces and have the "triangle and polygon of forces" as well as the triangle and polygon of displacements, velocities or accelerations.

An important case of the composition of forces is the determination of the attractive force exerted on a particle by an extended body. The attraction on the particle in such case is the resultant of all the attractions exerted upon it by the particles of the body.

Force of Gravitation.-The "law of gravitation" as formulated by Newton asserts that every particle of matter attracts every other particle with a force which acts in the straight line joining the particles and whose magnitude is directly proportional to the product of the masses of the particles and inversely proportional to the square of the distance between them.

If then M and m are the masses of two particles and r the distance between them, the mutual force of attraction F is given by

$$
\begin{equation*}
F=\kappa \frac{M m}{r^{2}} \tag{1}
\end{equation*}
$$

where κ is a constant to be determined by experiment.
For absolute accuracy and universal generality, as well as for far-reaching consequences, this statement is without parallel in the
history of science. The facts that by means of it the motions of all the bodies of the solar system are explained completely; that their past and future positions can be told; that the existence of Neptune was deduced from the assumption that certain disturbances in the motion of Uranus were due to the attraction of an unknown planet according to this law, all go to prove that the law holds with absolute accuracy, so far as the action upon each other of large masses separated by distances which are great compared with their linear dimensions is concerned.

The terms of the enunciation of the law expressly confine it to such cases, since only when the linear dimensions of the attracting bodies are insignificant compared to the distance between them can we consider them as particles and speak of the distance between them.

We shall, however, show in the next Article that if bodies are homogeneous and spherical, this limitation may be removed and the "distance between them" is the distance between their centres.

Attraction of a Homogeneous Shell or Sphere.-Let the circle $A D A^{\prime}$, with centre at C, represent a uniform thin homogeneous spherical shell whose surface density (page 10) is δ. Suppose a particle at P whose mass is m. Join C and P. Take any point A of the shell and draw $C A$ and $A P$. Let $A P$ make the angle θ with $C P$, and draw a line $A B$ through A, making the same angle θ with $C A$.

Then in the two triangles $C A B$ and $C A P$ we have the side $C A$ and the angle at C common to both, and the angles at A and P equal by construction. These triangles are therefore similar and we have

$$
\frac{A B}{\overline{A P}}=\frac{C A}{C P}
$$

Now let $A s$ represent any small elementary area of the spherical surface, and $A n$ its projection normal to $A B$.

Let ω square radians (Vol. I, page 7) denote the conical angle subtended at B by $A n$. Then the area denoted by $A n$ is equal to $\overline{A B}^{2} . \omega$, and the area denoted by $A s$ is equal to $\frac{\overline{A B}^{2} . \omega}{\cos \theta}$, since the angle $n A s=B A C=\theta$, and the angle $s n A$ is a right angle.

The mass of the elementary area denoted by $A s$ is then $\frac{\delta \overline{A B}^{2} . \omega}{\cos \theta}$, and the attraction of this mass for the particle of mass m at P is, by Newton's law,

$$
\kappa \frac{m \cdot \delta \overline{A B}^{2} \cdot \omega}{{\overline{A P^{2}}}^{2} \cos \theta}
$$

and acts in the line $A P$.
If we draw $A A^{\prime}$ perpendicular to $C P$, we have evidently the same attraction between the equal elementary mass at A^{\prime} and the particle of mass m at P acting in the line $A^{\prime} P$.

We can resolve each of these equal forces into a component along the line $C P$ and at right angles to $C P$ at P. Since the angles $A P C$ and $A^{\prime} P C$ are each equal to 0 , the two components at right angles to $C P$ at P are equal and opposite and therefore produce no
effect upon P. The resultant attraction of the two elements at A and A^{\prime} upon the particle of mass m at P acts then in the line $C P$ and is equal to
or since $\frac{A B}{A P}=\frac{C A}{C P}$, the resultant attraction is

$$
2 \kappa \frac{m \cdot \delta \overline{C A}^{2} \cdot \omega}{\overline{C P} \bar{P}^{2}}
$$

But $\overline{C A}^{2} . \omega$ is the area of the elementary area at A or A^{\prime}, and $2 \kappa \frac{m \delta}{\overline{C P}^{2}}$ is constant for all pairs of elements A and A^{\prime}. The total attraction of the shell for the particle of mass m at P acts then in the line $C P$ and is equal to

$$
2 \kappa \frac{m \cdot \delta}{\dot{C} \bar{P}^{2}} \Sigma \overline{C A}^{2} \cdot \omega
$$

where the summation is to be taken for an entire hemisphere. But $\Sigma \overline{C A}^{2}$. ω for a hemisphere is $2 \pi C A^{2}$, and hence the attraction is equal to

$$
F=\kappa \frac{4 \pi \delta \overline{C A}^{2} \cdot m}{\overline{C P}^{2}}=\kappa \frac{m M}{\overline{C P}},
$$

where $M=4 \pi \delta \overline{C A}^{2}$ is the total mass of the spherical shell.
We see, then, that the spherical shell attracts a mass m at any outside point P, just as if its entire mass were condensed at the centre of the shell.

If instead of a homogeneous spherical shell we have a solid homogeneous sphere, we may consider it as composed of an indefinite number of concentric homogeneous spherical shells, each of which attracts the mass at P as if its entire mass were condensed at its centre.

Hence, the attraction of a homogeneous spherical shell or of a homogeneous sphere upon a particle at any outside point is the same as if the entire mass of the shell or sphere were condensed in a point at the centre.

We can therefore consider a homogeneous shell or sphere as a particle of equal mass at the centre, so far as its attraction upon an outside particle is concerned.

Cor. If the sphere is not homogeneous, but the density of every point at the same distance from the centre is the same, we may still consider the sphere as composed of homogeneous spherical concentric shells, each one of which attracts an outside mass as if its entire mass were condensed at the centre. Hence the same holds true for the sphere.

Centre of Gravity. - When a body attracts and is attracted by all external bodies, whatever their distance and position, as though its mass were condensed in a single point fixed relatively to the body, that point is properly called the centre of gravity (see page 18).

A body which has a centre of gravity is said to be centrobaric or barycentric. In general, bodies are not centrobaric if the law of at-
traction follows Newton's law-that is, if the force is inversely proportional to the square of the distance.

As we have just seen, a homogeneous spherical shell or a homogeneous sphere is centrobaric, and the centre of gravity is at the centre. So also for a non-homogeneous sphere whose density at every point equally distant from the centre is the same. The centre of gravity in each of these cases coincides with the centre of mass (page 16). In general, if a body has a centre of gravity at all, it must always coincide with the centre of mass, because the attraction upon it of an infinitely distant body constitutes a system of parallel particle forces (page 18), and the point of application of the resultant of such a system coincides with the centre of mass.

But while all bodies have a centre of mass, only homogeneous spherical shells and spheres, or spheres whose density at any point equally distant from the centre is the same, possess a centre of gravity.

If, then, the term "centre of gravity" is used to denote centre of mass, as is often done, we should denote the centre of gravity proper by some other term, such as barycentric point or centrobaric point.

It is, however, much preferable to restrict the term centre of gravity to the definition here given, and use centre of mass as defined (page 16).

Cor. If we consider the earth as a sphere whose density is either constant or the same at all points at the same distance from the centre of mass, then, as we have seen, we may consider it as a particle of equal mass at the centre of mass so far as its attraction upon any outside particle is concerned, and the centre of mass is the centre of figure.

The earth is not strictly spherical, but its deviation from sphericity is insignificant. Also, the density is not strictly constant nor strictly the same at all points at the same distance from the centre of mass. But the small distance between the centre of mass of the earth and that point at which in any case of attraction we may consider its mass condensed is insignificant compared to its radius. So far as its attraction for any outside particle is concerned, then, we may consider it as a particle of equal mass at its centre of mass, and the centre of mass as the centre of figure.

Also, since the dimensions of any body with which we experiment at the earth's surface are insignificant compared to the earth's radius, we may consider any such body as a particle.

Value of Constant of Gravitation.-We have seen (page 44) that if M and m are the masses of two particles and r the distance between them, the mutual force of gravitation is given by

$$
\begin{equation*}
F=k \frac{m M}{r^{2}}, \tag{1}
\end{equation*}
$$

where k is a constant to be determined by experiment. This constant k is called the constant of gravitation. We are now able to determine it.

Since force is always equal to mass multiplied by the acceleration in the direction of the force (page 5), we have the acceleration of the particle whose mass is m equal to $\frac{F}{m}=\frac{\kappa M}{r^{2}}$, and the acceleration of the particle whose mass is M equal to $\frac{F}{M}=\frac{\kappa m}{r^{2}}$. Hence $\frac{\text { accel. of } m}{\text { accel. of } M}=\frac{M}{m}$;
that is, the accelerations are inversely as the masses. The acceleration, then, of one particle relative to the other considered as fixed. is equal to the sum of the accelerations of each, or

$$
\begin{equation*}
\text { relative acceleration }=\frac{k(M+m)}{r^{2}} \tag{2}
\end{equation*}
$$

We have just seen (page 47, Cor.) that we may treat the earth and any body with which we experiment on its surface as particles, and can take the mass of the earth as condensed at its centre of mass, and the centre of mass as the centre of figure. Equation (1) therefore applies to any body on the earth's surface.

Now when we experiment with a body at the earth's surface, we know that the observed acceleration g due to gravity is the acceleration of the body relative to the earth. We have then from (2), if m^{\prime} is the mass of the earth and b the mass of the body, and if r^{\prime} is the radius of the earth at the locality for which g is observed,

$$
g=\frac{\kappa\left(m^{\prime}+b\right)}{\boldsymbol{r}^{\prime 2}}
$$

But the mass of the body is insignificant compared to the mass of the earth; or what is the same thing, since the accelerations are inversely as the masses, the acceleration of the earth is insignificant relatively to that of the body. We accordingly find by experiment that g is constant at the same locality for all bodies, and neglecting b, this value of g is given by

$$
\begin{equation*}
g=\frac{\kappa m^{\prime}}{r^{\prime 2}}, \text { or } \kappa=\frac{g r^{\prime 2}}{m^{\prime}} \tag{3}
\end{equation*}
$$

If we substitute this value of k in equation (1), we have

$$
\begin{equation*}
F=\frac{g r^{\prime 2}}{m^{\prime}} \cdot \frac{m M}{r^{2}} \tag{4}
\end{equation*}
$$

Equation (4) gives the force of attraction between two particles of mass m and M at a distance r, the mass of the earth being m^{\prime}, its radius r^{\prime} at the locality where the acceleration of gravity is g. We see that equation (4) is homogeneous, and we have force equal to mass multiplied by acceleration.

If we take mass in pounds and distance in feet and acceleration in ft.-per-sec. per sec., we have F in poundals. If we take mass in grams and distance in centimeters and acceleration in cm.-per-sec. per sec., we have F in dynes (page 5). If we divide out the g, we have F in gravitation units (page 6).

Astronomical Unit of Mass.-The astronomical unit of mass is that mass which at units distance attracts an equal mass with unit force.

From equation (4) of the preceding Article, if we take m and M each equal to m_{0}, and take r equal to one unit of distance [L], and F equal to one unit of force $[F]$, we have

$$
\begin{equation*}
\left[F^{\prime}\right]=\frac{g r^{\prime 2} m_{0}^{2}}{m^{\prime}[L]^{2}}, \quad \text { or } \quad m_{0}=\sqrt{\frac{m^{\prime}[L}{g]^{2}[F]}} . \tag{1}
\end{equation*}
$$

Equation (1) gives by definition the astronomical unit of mass. We see that it is homogeneous.

If we insert the mean radius of the earth r^{\prime} in feet, the corresponding value of g in ft.-per-sec. per sec. and the mass of the earth
m^{\prime} in pounds, we have very nearly, for the astronomical unit of mass,

$$
m_{0}=29063 \mathrm{lbs} .
$$

If we insert r^{\prime} in centimeters, g in cm.-per-sec. per sec. and m^{\prime} in grams, we have very nearly, for the astronomical unit of mass,

$$
m_{0}=3928 \text { grams. }
$$

If we take m and M in equation (4) of the preceding Article in units of astronomical mass, we have

$$
\dot{F}=\frac{g r^{2}}{m^{\prime}} \cdot \frac{m M}{r^{2}} \cdot m_{0}{ }^{2}=\frac{m M[L]^{2}}{r^{2}}\left[F^{\prime}\right] .
$$

This equation we see is homogeneous. If, then, we adopt the astronomical unit of mass instead of the ordinary unit of mass, we have simply the numeric equation

$$
\begin{equation*}
F=\frac{m M}{r^{2}}, \tag{2}
\end{equation*}
$$

where m and M are the number of astronomical units of mass in the two attracting particles, r the number of units of length in the distance between them, and F the number of units of force in the attraction,

Value of a^{\prime} for Planetary Motion.-The sun and planets may be considered like the earth, so far as mutual attraction is concerned, as particles of equal mass condensed at the centre of mass. From equation (2), page 48, if we insert the value of $\kappa=\frac{g r^{\prime 2}}{m^{\prime}}$ already found, we have then for the relative acceleration of a planet of mass m with reference to the sun of mass M, considered as a fixed point, when the distance is r,

$$
\text { relative accel. }=\frac{M+m}{r^{2}} \cdot \frac{g r^{\prime 2}}{m^{\prime}},
$$

where m^{\prime} is the mass of the earth, \dot{r}^{\prime} the mean radius of the earth, and g the corresponding acceleration due to gravity at the earth's surface.

At the distance $r=r^{\prime}=$ radius of the earth the relative acceleration of the planet with reference to the sun regarded as fixed would be then

$$
\text { relative accel. }=\left(\frac{M+m}{m^{\prime}}\right) g
$$

Now in all our equations for planetary motion (Vol. I, Kinematics, page 139) we denoted by α^{\prime} the known acceleration of a point at a known distance r^{\prime} from a fixed point. If, then, we take this distance r^{\prime} equal to the earth's radius, we have

$$
\begin{equation*}
\alpha^{\prime}=\frac{M+m}{m^{\prime}} g \tag{1}
\end{equation*}
$$

This is the value for α^{\prime} given on page 144, Vol. I, Kinematics, which must be inserted in all our equations for planetary motion (page 139), where M and m are the mass of sun and planet, m^{\prime} the mass of the earth, and g the acceleration of gravity at the earth's surface.

Cor. If $M=m^{\prime}=$ the mass of the earth and m is the mass of a body at the earth's surface, we have

$$
a^{\prime}=\frac{m^{\prime}+m}{m^{\prime}} g
$$

or if m is insignificant compared to m^{\prime},

$$
a^{\prime}=g
$$

Attraction of a Circular Arc.-The attraction of a circular are $A D B$ of uniform density δ upon a particle at the centre C is the same as the attraction of a mass equal to the chord with the arc's density concentrated at the middle of the arc at D.

Take any element of the arc $a b$, and let it subtend the angle $a C b=\omega$ radians. Then if r is the radius of the circle, $r \omega$ is the length of αb; and if δ is the linear density of the arc, $\delta r \omega$ is the mass of $a b$. If M is the mass of the particle at C, then $\kappa M \frac{\delta r \omega}{r^{2}}$ is the attraction of $a b$ for the particle at C, where $\kappa=\frac{g r^{\prime 2}}{m^{\prime}}$ (page 48). The attraction of the element $a^{\prime} b^{\prime}$ at the same distance on the other side of D will be the same. Each of these can be resolved into components along $C D$ and at right angles to $C D$ at C. The latter components will balance. The sum of the two former is

$$
\kappa M . \frac{2 \delta r \omega \cos \theta}{r^{2}}
$$

in the direction $C D$, where θ is the angle $a C D$.
But $r_{\omega} \cos \theta$ is the projection of $a b$ upon the chord, and if the linear density of the chord is also δ, the mass of the chord projection of $a b$ is $\delta r \omega \cos \theta$. The sum of the attractions of all the pairs of elements will then be

$$
A=\kappa M \cdot \frac{\delta \cdot A B}{r^{2}}
$$

or the attraction due to the mass of the chord $A B$ concentrated at D.

Since $A B=2 r \sin A C D$, we have for the attraction

$$
A=\kappa M \cdot \frac{2 \delta \sin A C D}{r}
$$

Using the astronomical unit of mass (page 48), we have for the attraction upon a unit mass at C

$$
A=\frac{2 \delta \sin A C D}{r}
$$

Attraction of a Straight Line.-A limited straight line $A^{\prime} B^{\prime}$ of uniform density δ attracts any external particle at C with the same force and in the same direction as the corresponding arc of a circle $A B$, of the same density, which has the point C for centre and is tangent to the straight line.

Let $A^{\prime} B^{\prime}$ be the straight line of uniform linear density δ. Draw the arc $A B$ with the
 centre at C, tangent to the line $A^{\prime} B^{\prime}$.

If $C p P$ be drawn cutting the circle at p and the line at P, and we take any element at p and P, subtending the angle ω, then if the angle $P C D=\theta$, we have for the length of the element at $p, C p . \omega$, and for the length of the element at $P, \frac{C P \cdot \omega}{\cos \theta}$. The masses of these elements, if the linear density of arc and line is δ, are $\delta . C p . \omega$ and $\frac{\delta \cdot C p \cdot \omega}{\cos \theta}$. Their attractions for a mass M at C are

$$
\kappa M \frac{\delta \cdot C p \cdot \omega}{C p^{2}}=\kappa M \frac{\delta \omega}{C p} \quad \text { and } \quad \kappa M \frac{\delta \cdot C P \cdot \omega}{C P^{2} \cos \theta}=\kappa M \frac{\delta \omega}{C P \cos \theta},
$$

where $\kappa=\frac{g r^{\prime 2}}{m^{\prime}}$ (page 48). But $C P \cos \theta=C D=C p=r$. Hence the attractions of an element at p and P are equal. The arc $A B$ then attracts C as the line $A^{\prime} B^{\prime}$ does; and by the preceding Article, using the astronomical unit of mass (page 48), we have for the attraction upon a unit mass at C

$$
A=\frac{2 \delta \sin \frac{1}{8} A C B^{\prime}}{r}
$$

in the direction $C F$ which bisects the angle $A^{\prime} C B^{\prime}$.
Attraction of a Circular Ring.-Let r be the radius of the ring, and d the distance of a particle at C of mass M in the perpendicular $C O$ to the plane of the ring through its centre. Take an element of the ring at b which subtends the angle ω. The length of this element is ras and if δ is the
 linear density, the mass in the element is $\delta r \omega$.

The attraction on C is then $\kappa M \frac{\delta r \omega}{r^{2}+d^{2}}$, where $\kappa=\frac{g r^{\prime 2}}{m^{\prime}}$ (page 48).
The attraction of the element at b^{\prime} at the same distance at the other end of the diameter is the same. Each of these can be resolved into components at right angles to $C O$ at C, which balance, and along $C O$. The sum of the latter is

$$
\kappa M \frac{2 \delta r \omega \cos \theta}{r^{2}+d^{2}}
$$

where θ is the angle $b C O$. But $\cos \theta=\frac{d}{r}=\frac{d}{\sqrt{r^{2}+d^{2}}}$. Hence we have for each pair of elements the attraction $\kappa M \frac{2 \delta r \omega d}{\left(r^{2}+d^{2}\right)^{\frac{3}{2}}}$.

For the entire ring $\omega=\pi$, and we have, using the astronomical unit of mass (page 48), for the attraction upon a unit mass at C

$$
A=\frac{2 \pi r d \delta}{\left(r^{2}+d^{2}\right)^{\frac{3}{2}}}
$$

Attraction of a Circular Disk.-If the line $A^{\prime} D$ revolves about $C D$ it will generate a circular disk. The arc $A D$ with centre at C and tangent at D to $A^{\prime} D$ will generate a spherical surface. Then, as we have seen, the attraction of an element at p and P will be equal. If the element at p subtends ω square radians (Vol. I, page 7), its area will be $r^{2} \omega$, its mass $\delta r^{2} \omega$, where δ is the surface density, and its attraction
upon a mass M at C will be $\kappa M \frac{\delta r^{2} \omega}{r^{2}}=\kappa M \delta \omega$, where $\kappa \frac{g r^{\prime 2}}{m^{\prime}}$ (page 48).

The attraction of the disk whose radius is $A^{\prime} D=R$ is then the same as the attraction of the spherical surface generated by $A D$. The number of square radians subtended by the disk of radius R at a distance r from C is $2 \pi\left(1-\frac{r}{\sqrt{r^{2}+\overline{R^{2}}}}\right)$. The attraction of the disk is then

$$
A=\kappa M .2 \pi \delta\left(1-\frac{r}{\sqrt{r^{2}+R^{2}}}\right)
$$

Using the astronomical unit of mass (page 48), we have for the attraction upon a unit mass at C

$$
A=2 \pi \delta\left(1-\frac{r}{\sqrt{r^{2}+R^{2}}}\right) .
$$

[Attraction of a Cylinder.]-For the attraction of a cylinder of length l and radius a upon a particle of mass M in the axis at a distance d from its nearest end, let δ be the volume density. Then for the attraction of one of its circular slices of a thickness $d x$, at a distance x, we have, from the preceding Article,

$$
\kappa M .2 \pi \delta\left[1-\frac{x}{\sqrt{x^{2}+a^{2}}}\right] d x
$$

If we integrate this between the limits $d+l$ and d, we have

$$
A=\kappa M .2 \pi \delta\left[l-\sqrt{(d+l)^{2}+a^{2}}+\sqrt{d^{2}+a^{2}}\right] .
$$

If we suppose $d=0$, so that the particle is on the end surface of the cylinder, we have

$$
A=\kappa M \cdot 2 \pi \delta\left[l-\sqrt{l^{2}+a^{2}}+a\right]
$$

where $\kappa=\frac{g r^{\prime 2}}{m^{\prime}}$ (page 48).
Using the astronomical unit of mass (page 48) we have for the attraction upon a unit mass on the end surface of the cylinder

$$
A=2 \pi \delta\left[l-\sqrt{l^{2}+a^{2}}+a\right] .
$$

[Attraction of a Right Circular Cone.]-For any circular slice we have as before $\kappa M .2 \pi \delta\left[1-\frac{x}{\sqrt{x^{2}+a^{2}}}\right] d x$. If θ is the semivertical angle of the cone, we have $\cos \theta=\frac{x}{\sqrt{x^{2}+a^{2}}}$. Hence the attraction for a particle of mass M at the vertex is

$$
\kappa M \cdot 2 \pi \delta[1-\cos \theta] \int_{0}^{h} d x=\kappa M \cdot 2 \pi \delta(1-\cos \theta) h
$$

where h is the height of the cone.
Using the astronomical unit of mass (page 48), we have for the attraction for a particle of unit mass at the vertex

$$
A=2 \pi \delta(1-\cos \theta) h
$$

Value of g above Sea-level.-Let r^{\prime} be the mean radius of the earth, x the height on a mountain above sea-level, and g the acceleration of gravity at sea-level. Then since the acceleration is inversely as the square of the distance, the acceleration at a distance x above sea-level, if we disregard the attraction of the mountain, would be $\frac{r^{\prime 2}}{\left(r^{\prime}+x\right)^{2}} g$. To this we must add the acceleration due to the mountain.

Suppose the mountain of uniform density δ and cylindrical in shape, and the particle at the centre of its upper surface. Then the resultant attraction of the mountain for a particle of mass m is, from page 52 , if we use the astronomical unit of mass (page 48),

$$
A=m \cdot 2 \pi \delta\left[x-\sqrt{x^{2}+a^{2}}+a\right]
$$

where α is the radius of the cylinder. If we divide the force by m, we obtain the acceleration due to the mountain

$$
2 \pi \delta\left[x-\sqrt{x^{2}+a^{2}}+\alpha\right]=2 \pi \delta\left[x-a \sqrt{1+\frac{x^{2}}{a^{2}}}+a\right]
$$

If α is so large compared to x that $\frac{x^{2}}{\alpha^{2}}$ can be neglected, this reduces to $2 \pi \delta x$. If we use the ordinary unit of mass, we have, multiplying by $\kappa=\frac{g r^{\prime 2}}{m^{\prime}}$ (page 48), for the acceleration due to the mountain

$$
2 \pi \delta x \cdot \frac{g r^{\prime 2}}{m^{\prime}}
$$

Let δ^{\prime} denote the mean density of the earth, so that the mass of the earth is $m^{\prime}=\frac{4}{3} \pi \delta^{\prime} r^{\prime 3}$, then the acceleration due to the mountain is, if we substitute this value of m^{\prime},

$$
\frac{3}{2} \cdot \frac{\delta x}{\delta^{\prime} \boldsymbol{r}^{\prime}} g
$$

We have then for the acceleration g^{\prime} at the height x above sea-level

$$
g^{\prime}=g\left[\frac{r^{\prime 2}}{\left(r^{\prime}+x\right)^{2}}+\frac{3 \delta x}{2 \delta^{\prime} r^{\prime}}\right]
$$

The mean density of the earth δ^{\prime} is about $5 \frac{1}{3}$ times that of water, and $\frac{\delta}{\delta^{\prime}}$, from what we know of the density of matter at the earth's surface, may be taken equal to $\frac{1}{2}$. Also we may write

$$
\frac{r^{\prime 2}}{\left(r^{\prime}+x\right)^{2}}=1-\frac{2 x}{r^{\prime}} \text { approximately. }
$$

Hence we have approximately

$$
g^{\prime}=g\left(1-\frac{2 x}{r^{\prime}}+\frac{3 x}{4 r^{\prime}}\right)=g\left(1-\frac{5 x}{4 r^{\prime}}\right)
$$

where x is the height above sea-level, r^{\prime} is the mean radius of the earth, and g the corresponding acceleration due to gravity.

The assumptions made in this investigation are more applicable to elevated table-land than to a mountain. The equation obtained
is the accepted formula for estimating the difference in the value of g at two places so far as dependent on the heights above sealevel.

EXAMPLES.

(1) If the mass of the earth is 6.14×10^{27} grams, the mean radius of the earth $6.37 \times 10^{8} \mathrm{~cm}$., and $g=981 \mathrm{~cm}$.-per-sec. per sec., find the astronomical unit of mass.

Ans. 3928 grams.
(2) If the mass of the earth is 11920×10^{21} lbs., the mean radius of the earth $21 \times 10^{6} \mathrm{ft}$., and $g=32 \mathrm{ft}$.-per-sec. per sec., find the astronomical unit of mass.

Ans. 29063 lbs .
(3) Show that the attraction of a thin spherical shell of uniform thickness and density upon a particle inside is zero.

Ans. Let P be the particle of mass M. Take any point A on the spherical surface. Join $A P$ and produce to A^{\prime}. If from all points of a small element
 of the surface at A lines be drawn through P, they will mark off a corresponding element at A^{\prime}. Both these elements subtend the same conical angle (Vol. I, page 7), ω square radians. The area of the element at A is then $\overline{A P}^{2} . \omega$ (Vol. I, page 7), and the area of the element at A^{\prime} is $\overline{A^{\prime} P^{*}} . \varrho$. If δ is the nniform surface density, the mass of the element at A is $m=\delta \overline{A P}^{2}$. ω and the mass of the element at A^{\prime} is $m^{\prime}=\delta \overline{A^{\prime} P^{2}}$. ω. The attraction of the element at A for a particle of mass M at P is then (page 44)

$$
\frac{\kappa M \delta \overline{A^{\prime} \bar{P}^{2}} \cdot \omega}{\overline{A P}^{2}}=\kappa M \delta \omega
$$

and acts in the line $P A$. The attraction of the element at A^{\prime} for the particle of mass M at P is

$$
\frac{\kappa M \delta{\overline{A^{\prime} P^{2}}}^{2} \cdot \omega}{{\overline{A^{\prime} P^{2}}}^{2}}=\kappa M \delta \omega
$$

and acts in the line $P A^{\prime}$. The resultant attraction upon the particle at P of the pair of elements at A and A^{\prime} is then zero. The whole shell consists of such pairs of elements. Hence the resultant attraction of the shell on a particle at P is zero.
(4) Show that the attraction of a homogeneous sphere on a particle within it is directly proportional to its distance from the centre.

Ans. Let P be a particle of mass M situated within a homogeneous sphere at any distance $P C$ from the centre C. Then from the preceding example we know that the attraction upon the particle at P due to the shell outside of the sphere whose radius is $P C$ is zero. The attraction upon the particle of mass M at P is then due to the attraction of the sphere whose radius is $P C$. The volume of the sphere is $\frac{4}{3} \pi \overline{P C}^{3}$. If δ is the uniform density, the mass of
 this sphere is $\frac{4}{3} \delta \pi \overline{P C}$. Its attraction for a particle of mass M at P is (page 46) the same as if the entire mass of the sphere were condensed at the centre,
or (page 44) $\kappa M \frac{\frac{4}{3} \delta \pi \overline{P C}^{3}}{\overline{P C^{3}}}=\kappa M \cdot \frac{4}{3} \delta \pi \cdot \overline{P C}$.

The attraction is therefore directly proportional to the distance $P C$ of the particle from the centre.
(5) Assuming the earth to be a homogeneous sphere, compare its attraction on a given mass at a distance from its centre equal to one half its radius, with the attraction when the given mass is at a distance equal to twice the radius.

Ans. 2 to 1.
(6) Find in dynes the attraction of two homogeneous spheres, each of 100 kilograms mass, with their centres 1 metre apart.

Ans. 0.0648 dynes nearly.
(7) How far would a body fall toward the earth in one second from a point at a distance from the earth's surface equal to the radius of the earth?

Ans. The acceleration is inversely as the square of the distance. We have then $g^{\prime}: g:: r^{2}: 4 r^{2}$, or $g^{\prime}=\frac{1}{4} g$. That is, the acceleration is one fourth of the acceleration at the surface.

The distance is then $s=\frac{1}{2} g^{\prime} t^{2}$, or, taking $g=32$ ft.-per-sec. per sec. and $t=1, s=4 \mathrm{ft}$.
(8) The moon's mass is 136×10^{21} lbs.; the moon's radius, $5.70 \times$ $10^{6} \mathrm{ft}$.; the mass of the earth, 11920×10^{21} lbs.; the radius of the earth, $21 \times 10^{6} \mathrm{ft}$. Find how far a stone at the moon's surface would fall in a second, the attraction of the earth being neglected.

Ans. If M is the mass of the moon and m that of the stone, the force of attraction, if r is the radius of the moon, is, from equation (4), page 48,

$$
F^{\prime}=\frac{g r^{\prime 2}}{m^{\prime}} \frac{m M}{r^{2}} .
$$

The acceleration of the stone is then
$g^{\prime}=\frac{F}{m}=\frac{g r^{\prime 2}}{m^{\prime}} \cdot \frac{M}{r^{2}}=\frac{32 \times 21^{2} \times 10^{12} \times 136 \times 10^{21}}{11920 \times 10^{21} \times(5.7)^{2} \times 10^{12}}=5 \mathrm{ft}$. -per-sec. per sec.
The distance then is $\frac{1}{2} g^{\prime} t^{2}$, or, taking $t=1 \mathrm{sec} ., s=2.5 \mathrm{ft}$.
(9) Suppose the earth to contract until its diameter is 6000 miles, what would be the effect on the weight of an inhabitant? The diameter of the earth to be taken at 8000 miles.

Ans. Increased in the ratio of 16 to 9 .
(10) If the mass of the sun is 300,000 times the mass of the earth, and its radius is 100 times the radius of the earth, find the attraction at the surface of the sun of a mass which at the surface of the earth is attracted by the force of one pound weight.

Ans. 30 g poundals, or the attraction of the earth for 30 lbs .
(11) The diameter of Jupiter is 10 times that of the earth, and its mass 300 times. By how much per cent of his former weight would the weight of a man be increased by being removed to the surface of Jupiter?

Ans. By 200 per cent. He would weigh by a spring-balance three times as much as before. The same number of standard pounds would, however, balance him in a lever-balance. The standard pound at Jupiter would be attracted by a force three times as great as the earth's attraction here. The lever-balance weight which gives his mass is unchanged.
(12) If the intensity of gravity at the surface of Jupiter is about 2.6 times as great as at the surface of the earth, find approximately the time which a body would take in falling from a height of 167 ft. to the surface of Jupiter.

Ans. 2 sec.
(13) Find the intensity of the earth's attraction oxt the distance of the moon, taking 32 ft.-per-sec. per sec. as its value at the surface of the earth. The diameter of the moon's orbit is 480,000 miles, the diameter of the earth 8000 miles.

Ans. $0.0089 \mathrm{ft} .-\mathrm{per}$-sec. per sec.
[(14)] Tuo particles of mass M and m are placed a distunce s apart. Find the time it would take them to come together by reason of their mutual attraction, if uninfluenced by any external force.

Ans. The acceleration of one particle with reference to the other is (page 48)

$$
\frac{d^{2} x}{d t^{2}}=-\kappa \frac{(M+m)}{x^{2}}
$$

Integrating (Vol. I, page 102), we have

$$
t=\left[\frac{s}{2 \kappa(M+m)}\right]^{\frac{1}{2}} \times\left[\left(s x-x^{2}\right)^{\frac{1}{2}}+s \cos ^{-1}\left(\frac{x}{s}\right)^{\frac{1}{2}}\right]
$$

When $x=s, t=0$; when $x=0$, we have

$$
t=\frac{1}{2} \pi s\left[\frac{s}{2 \kappa(M)+m)}\right]^{\frac{1}{2}} .
$$

If the particles are spheres of density δ and radii R and r, and the density of the earth is δ^{\prime}, we have (page 48)

$$
\kappa=\frac{g r^{\prime 2}}{m^{\prime}}=\frac{g}{\frac{4}{3} \pi r^{\prime} \delta^{\prime}}, \quad M=\frac{4}{3} \pi R^{3} \delta, \quad m=\frac{4}{3} \pi r^{3} \delta
$$

and

$$
t=\frac{1}{2} \pi s\left[\frac{s r^{\prime} \delta^{\prime}}{2 \delta g\left(R^{3}+r^{3}\right)}\right]^{\frac{1}{2}} .
$$

If the spheres are of the same density as the earth, $\delta=\delta^{\prime}$ and

$$
t=\frac{1}{2} \pi s\left[\frac{s r^{\prime}}{2 g\left(R^{3}+r^{3}\right)}\right]^{\frac{1}{2}}
$$

The last equation, then, gives the time of coming together of two spheres of radii R and r, of same density as the earth, if considered as concentrated at their centres. If the spheres are equal,

$$
t=\frac{1}{4} \pi s\left(\frac{8 r^{\prime}}{g r^{3}}\right)^{\frac{1}{2}} .
$$

If, for instance, $s=1 \mathrm{ft}$., $g=32 \frac{1}{6} \mathrm{ft} .-$ per-sec. per sec., $r=\frac{1}{2} \mathrm{ft}$., $r^{\prime}=20,850$,000 ft.,

$$
t=1788 \text { sec., or } 29.8 \text { minutes nearly. }
$$

DYNAMICS.

PART I. STATICS.

CHAPTER I.

STATICS-CONCURRING FORCES.

FORCES IN EQUILIBRIUM. STATICS. LINE REPRESENTATIVE OF A FORCE. COMPOSITION AND RESOLUTION OF FORCES. SIGN OF COMPONENTS OF A FORCE. CONCURRING FORCES. STATIC, MOLAR AND DYNAMIC EQUILIBRIUM. COMPOSITION AND RESOLUTION OF CO-PLANAR FORCES. CONCURRING FORCES NOT IN THE SAME PLANE. CONDITIONS OF EQUILIBRIUM FOIR CONCURRING FORCES.

Forces in Equilibrium.-When all the forces acting upon a particle mutually balance, so that the particle moves as if no force acted upon it, the forces are said to be in equilibrium. In such case the particle is either at rest or moves with uniform speed in a straight line (page 2).

Statics.-That portion of Dynamics which treats of those principles which are necessary for the discussion of forces and bodies in equilibrium, and generally of forces without reference to the change of motion caused by them, is called Statics. That portion which treats of forces with reference to the change of motion caused by them is called Kinetics.
[Many writers employ the term Dynamics in the sense in which we have used Kinetics, and use the term Mechanics for what we have called Dynamics. They thus have Mechanics divided into Statics and Dynamics, instead of Dynamics divided into Statics and Kinetics.]

Line Representative of a Force.-We have seen (page 2) that the force on a particle acts in the direction of the acceleration it causes, and that the magnitude of the force is proportional to the magnitude of the acceleration.

Force, then, has magnitude and direction, and is therefore a vector quantity, and can be represented, like linear acceleration, by a straight line.

Thus the length of the line $A B$ represents the magnitude of the force $F=m f$ (page 5). Its point of application is
 A, and its direction of action is indicated by the arrow and is always the same as that of the linear acceleration f.

Composition and Resolution of Forces.-The principles, therefore, of pages $35,43,49$, (Vol. I, Kinematics) hold good for forces also, and we can resolve and combine forces and have the "triangle and polygon of forces" as well as the triangle and polygon of displacements, velocities or accelerations.

We have also the same rule for the signs of the horizontal and vertical components F_{x}, F_{y}, F_{z} of a force as for the corresponding components f_{x}, f_{y}, f_{z} of its acceleration. Thus (+) signifies in the directions $O_{x}, O_{y}, O z$, and (-) in the opposite directions.

If polar co-ordinates are used, the component force along the radius vector is $(+)$ when it acts away from the pole, $(-)$ when it acts towards the pole.

Evidently, then, we must measure angles in the plane $X Y$, from $O X$ around towards $O Y$; in the plane $Y Z$, from $O Y$ around towards $O Z$; in the plane $Z X$, from $O Z$ around towards
 $O X$.

Concurring Forces, etc.-Forces which act at the same point are called concurring forces. Forces acting at different points are nonconcurring. Forces acting in the same direction in the same line may be called conspiring forces; when they act in opposite directions in the same line or in parallel lines they are opposite forces; when in the same or opposite direction in parallel lines they are parallel forces. Forces whose line representatives lie in the same plane are co-planar. Two equal and opposite forces applied at the same point mutually balance, so that the point moves as if no force were applied. (Compare Vol. I, Kinematics, page 178.)

Static Equilibrium. - When all the forces acting upon every particle of a rigid body mutually balance, so that every particle of the body moves as if no force acted upon it, the body is said to be in static or molecular equilibrium. All points of the body in such case are either at rest or they all move with the same uniform speed in parallel straight lines, and the body has a uniform motion of translation (Vol. I, Kinematics, page 91).

The motion of a body is then the same as that of any one of its points, and the body, whatever its size, may be treated as a particle so far as its motion is concerned, and represented by a point.

All the forces acting upon the body itself may then be considered and treated as a system of concurring forces in equilibrium, and all the forces acting upon any one particle of the body also constitute a system of concurring forces in equilibrium.

Molar Equilibrium.-When the centre of mass only of a rigid body moves as if no force acted upon it, that is, is either at rest or moves with uniform speed in a straight line, we have equilibrium of the body as a whole, or molar equilibrium, as distinguished from molecular or static equilibrium as just defined.

Now the centre of mass of a rigid body always moves as if the mass of the body were condensed into a particle of equal mass at the centre of mass, and all the forces acting upon the entire body were transferred to this particle without change in magnitude and direction (page 18).

When there is molar equilibrium, then, all the forces acting upon the body if appliedat a point would constitute a system of concurring forces in equilibrium. Also all the forces acting upon any particle at the centre of mass of the body constitute a system of concurring forces in equilibrium. But all the forces acting upon any particle not at the centre of mass are not in equilibrium, and we have rotation of the body about the centre of mass.

So far as translation of the body alone is concerned, however, we may consider it as a particle of equal mass at the centre of mass, acted upon by a system of concurring forces in equilibrium.

Dynamic or Kinetic Equilibrium.-When one point only of a rigid body not at the centre of mass moves as though no force acted upon it, the body is said to be in dynamic or kinetic equilibrium about that point.

In such case all the forces acting at this one point constitute a systemof concurring forces in equilibrium. But the forces acting at any other point do not constitute a system of forces in equilibrium, and we have instantaneous rotation about this point.

Composition and Resolution of Co-planar Forces.-Let the forces F_{1}, F_{2}, F_{3}, etc., be all in the same plane and act either at a common point, P (Fig. 1), or at different points, A, B, C (Fig. 2), of a rigid body.

In either case, lay off the forces so as to obtain the force polygon $A \quad F_{1} \quad F_{2} \quad F_{3}$ (Fig. 3). Then the line $A F_{3}$ necessary to close
this force polygon, taken as acting the other way round, gives the direction and magnitude of the resultant F_{r} in the plane of the forces (pages 35, 36, Vol. I, Kinematics).

If the forces are concurring, or all act at the same point P, Fig. 1, the resultant F_{r}. must act at this point also, in the plane of the forces.

If the forces are non-concurring, or act at different points A, B, C, D, Fig. 2, the magni-

 tude and direction of the resultant F_{r} will still be given by $A F_{3}$ in the force polygon, Fig. 3, but its position in the plane of the forces is as yet unknown.

Cor. 1. If the forces are all parallel, the force polygon Fig. 3 becomes a straight line, and the resultant F_{r} is equal to the algebraic sum of the forces, or $F_{r}=\Sigma F$.

Cor. 2. The component $A N$ or $N F_{3}$ of the resultant F_{r}, Fig. 3, in any direction is equal to the algebraic sum of the components of the forces in that direction.

Cor. 3. Any number of forces acting upon the same point, whether in the same plane or not, can be reduced to a single resultant force. For the resultant of any two is a force in their plane. This resultant can then be combined with another force, and so on.

Cor. 4. If the algebraic sums of the components of the forces in any two directions, as $A N$ and $N F_{3}$, are zero, the points A and F_{3} in the force polygon Fig. 3 conicide, and the resultant F_{r} is zero. The forces are then in equilibrium.

Analytical Determination of the Resultant for Concurring Coplanar Forces.-We have evidently the same expressions for the magnitude and direction of the resultant for concurring forces
as for concurring accelerations (page 50, Vol. I, Kinematics).

Thus let any number of co-planar forces, F_{1} F_{2}, etc., all act at the same point O. Take this point as the origin and draw the rectangular axes $O X, O Y$ in the plane of the forces. Let F_{1} make the angle α_{1} with $O X$, and β_{1} with $O Y$; let F_{2} make the angle α_{2} with $O X$, and β_{2} with $O Y$; and so on.
Denote the algebraic sum of the horizontal components of all the forces by F_{x}, and the algebraic sum of the vertical components of all the forces by F_{y}. Then

$$
\left.\begin{array}{l}
F_{x}=\Sigma F \cos \alpha=F_{1} \cos \alpha_{1}+F_{2} \cos \alpha_{2}+F_{3} \cos \alpha_{3}+\text { etc. } ; \tag{1}\\
F_{y}=\Sigma F \cos \beta=F_{1} \cos \beta_{1}+F_{2} \cos \beta_{2}+F_{3} \cos \beta_{2}+\text { etc. }
\end{array}\right\}
$$

If F_{r} is the resultant and a, b the angles which it makes with the axes of x and y respectively, we have for the horizontal and vertical components of F_{r} (Corollary 2, page 59).

$$
\left.\begin{array}{l}
F_{r} \cos a=F_{x} \tag{2}\\
F_{r} \cos b=F_{y}
\end{array}\right\}
$$

Hence

$$
\left.\begin{array}{l}
\cos a=\frac{F_{x}}{F_{r}} \tag{3}\\
\cos b=\frac{F_{y}}{F_{r}}
\end{array}\right\}
$$

Squaring and adding, since $\cos b=\sin a$, and $\cos ^{2} a+\cos ^{2} b=1$,

$$
\begin{equation*}
F_{r}=\sqrt{F x^{2}+F_{y}^{2}} \tag{4}
\end{equation*}
$$

The equation of the line of direction of the resultant, when all the forces act at the origin, is

$$
\begin{equation*}
y=\frac{F_{y}}{F_{x}} x \tag{5}
\end{equation*}
$$

If the co-ordinates of the point at which the forces act are x^{\prime} and y^{\prime}, the equation of the line of direction of the resultant is in general

$$
\begin{equation*}
y-y^{\prime}=\frac{F_{y}}{\bar{F}_{x}}\left(x-x^{\prime}\right) \tag{6}
\end{equation*}
$$

Equations (1) give the values of F_{x} and F_{y}, by which we obtain a, b and F_{r} from (3) and (4).

The algebraic sums in (1) are found by taking components acting towards the right or upwards as
 positive, towards the left or downwards as negative (page 58).

Analytical Expression for the Magnitude and Direction of the Resultant of Any Number of Concurring Forces not in the Same Plane.-Let F_{1}, F_{2}, F_{3}, etc., be any number of forces all acting at the same point O. Take this point as the origin for three rectangular axes $O X$, $O Y, O Z$. Let F_{1} make the angles α_{1}, β_{1}, γ_{1} with these axes respectively, and F_{2} make the angles $\alpha_{2}, \beta_{2}, \gamma_{2}$, and so on.

Denote the algebraic sum of the components of all the forces along $O X$ by F_{x}; along $O Y$ by F_{y}; along $O Z$ by F_{z}. Then

$$
\left.\begin{array}{l}
F_{x}=\Sigma F \cos \alpha=F_{1} \cos \alpha_{1}+F_{2} \cos \alpha_{2}+F_{3} \cos \alpha_{3}+\text { etc.; } \tag{1}\\
F_{y}=\Sigma F \cos \beta=F_{1} \cos \beta_{1}+F_{2} \cos \beta_{2}+F_{3} \cos \beta_{3}+\text { etc. } ; \\
F_{z}=\Sigma F \cos \gamma=F_{1} \cos \gamma_{1}+F_{2} \cos \gamma_{2}+F_{3} \cos \gamma_{3}+\text { etc. }
\end{array}\right\}
$$

If F_{r} is the resultant and a, b, c the angles which it makes with the axes of x, y and z respectively, we have

$$
\left.\begin{array}{l}
F_{r} \cos a=F_{x} \tag{2}\\
F_{r} \cos b=F_{y} \\
F_{r} \cos c=F_{z}
\end{array}\right\}
$$

Hence

$$
\left.\begin{array}{l}
\cos \alpha=\frac{F_{x}}{F_{r}} \\
\cos b=\frac{F_{y}}{F_{r}} \tag{3}\\
\cos c=\frac{F_{z}}{F_{r}}
\end{array}\right\}
$$

Squaring and adding, since $\cos ^{2} \alpha+\cos ^{2} b+\cos ^{2} c=1$, we have

$$
\begin{equation*}
F_{r}=\sqrt{F_{x^{2}}^{2}+\overline{F y^{2}}+F_{z}^{2}} . \tag{4}
\end{equation*}
$$

The equations of the projection of the resultant upon the planes of $Z X, Y X$ and $Y Z$ are

$$
x=\frac{F_{x}}{F_{z}} z, \quad y=\frac{F_{y}}{F_{x}} x, \quad z=\frac{F_{z}}{F_{y}} y .
$$

Hence from (3) we have for the equation of the line of direction of the resultant, when all the forces act at the origin,

$$
\begin{equation*}
\frac{x}{\cos a}=\frac{y}{\cos b}=\frac{z}{\cos c}, \quad \text { or } \quad \frac{x}{F_{x}}=\frac{y}{F_{y}}=\frac{z}{F_{z}} \tag{5}
\end{equation*}
$$

If the coördinates of the point at which the forces act are x^{\prime}, y^{\prime}, z^{\prime}, we have for the equation of the line of direction of the resultant in general

$$
\begin{equation*}
\frac{x-x^{\prime}}{\cos a}=\frac{y-y^{\prime}}{\cos b}=\frac{z-z^{\prime}}{\cos c}, \quad \text { or } \quad \frac{x-x^{\prime}}{F_{x}}=\frac{y-y^{\prime}}{F_{y}}=\frac{z-z^{\prime}}{F_{z}} . \tag{6}
\end{equation*}
$$

When z and F_{z} equal zero, these equations reduce to the equations of the preceding Article for co-planar forces.

The algebraic sums in (1) are found by taking components acting towards the right along $O X$, or upwards along $O Y$, or in the direction $O Z$ as positive. The opposite directions are negative.

Conditions of Equilibrium for Concurring Forces. - A point is in equilibrium when its acceleration is zero. In order that the acceleration may be zero, the resultant force acting upon the point must be zero. Hence, the vanishing of the resultant is the necessary and sufficient condition for equilibrium of any number of concurring forces.

We have then, in general, the algebraic conditions

$$
F_{x}=\Sigma F \cos \alpha=0, \quad F_{y}=\Sigma F \cos \beta=0, \quad F_{z}=\Sigma F \cos \gamma=0
$$

That is, the algebraic sum of the components of the forces in each of any three rectangular directions must be zero. This is equivalent to saying that all the forces acting upon the point reduce to two forces equal in magnitude and opposite in direction.

It is also evident that if any number of forces acting upon a point are in equilibrium, any one of the forces must be equal and opposite to the resultant of all the others.

Conditions for Equilibrium for Concurring Forces in Special Cases.-We obtain then the following obvious results from the condition for equilibrium of concurring forces, which will be found useful in special cases :
(1) If two concurring forces are in equilibrium, they must be equal in magnitude and opposite in direction.
(2) If three concurring forces are in equilibrium, they must all act in the same plane. For the resultant of any two must act in their plane and be equal and opposite to the third.
(3) If three concurring forces are represented in magnitude and direction by the sides of a triangle taken the same way round, the resultant is zero and the forces are in equilibrium.
(4) Hence, if three concurring forces are in equilibrium, each one is proportional to the sine of the angle between the other two.
(5) If three concurring forces are in equilibrium and their directions are represented by the sides of a triangle taken the same way round, their magnitudes will also be represented by the sides of that triangle, and vice versa.
(6) If any number of concurring co-planar forces are represented in magnitude and direction by the sides of a plane closed polygon taken the same way round, they are in equilibrium. If their magnitudes are given by the sides of the polygon, their directions are also given by the directions of the sides.

But if the directions only of the forces are given by the sides of the plane polygon, it does not follow that the sides of this polygon represent the magnitudes, because any number of plane polygons witht parallel sides may be drawn, the magnitudes of the sides varying.
(7) If three concurring forces in different planes are represented by the three edges of a parallelopipedon, the diagonal taken the opposite way round will represent the resultant in direction and magnitude. This is called the parallelopipedon of forces.

EXAMPLES.

(1) Find the resultant of forces of 7, 1, 1, 3 units, represented by lines drawn from one angle of a regular pentagon towards the other angles taken in order.

Ans: $\sqrt{74}$ units.
(2) P and Q are two component forces at right angles, whose resultant is R. S is the resultant of R and P. If $Q=2 P$ what is S?

Ans. $S=2 P \sqrt{2}$.
(3) Component forces P, Q, R are represented in direction by the sides of an equilateral triangle taken the same way round. Find the magnitude of the resultant.

$$
\text { Ans. } \sqrt{ } P^{2}+Q^{2} \mp R^{2}-Q R-P R-P Q
$$

CHAP. I.]
EXAMPLES-CONCURRING FORCES.
(4) Three component forces are represented by lines drawn from the vertices of a triangle to the middle points of the opposite sides. Show that the resultant is zero.
(5) Three component forces are represented by lines drawn from the vertices A, B, C of a triangle to the middle points of the opposite sides, and have magnitudes equal to the cosines of the angles at A, B and Crespectively. Find the resultant.

Ans. $\sqrt{1-8 \cos A \cos B \cos C}$ units of force.
(6) The centre of the circumscribed circle of a triangle $A B C$ is O, and the intersection of the perpendiculars from angular points on opposite sides is P. Prove that the resultant of forces represented in magnitude and direction by $O A, O B, O C$ will be represented by $O P$.
(7) Three forces are represented by the sides $A B, A C, B C$ of a triangle. Show that the resultant has the direction AC and is represented in magnitude by $2 A C$.
(8) $A B C D$ is a parallelogram. From $A B, A E$ is cut off equal to one third $A B$. Prove that the resultant of forces represented by $A C$ and $2 A D$ is equal to three times the resultant of forces represented by $A D$ and $A E$.
(9) Four forces of 24, 10, 16, 16 dynes act'on a particle, the angle between the first and second being 30°, between the second and third 90°, and between the third and fourth 120°. Calculate the resultant.

Ans. 17.4 dynes.
X(10) A weight of 10 tons is hanging by a chain 20 feet long. Find how much the tension in the chain is increased by the weight being pulled out by a horizontal force to a distance of 12 feet from the vertical.

Ans. By 2.5 tons.
(11) A weight of 4 pounds is suspended by a string, and is acted upon by a horizontal force. If in the position of equilibrium the tension of the string is 5 pounds, what is the horizontal force?

Ans. 3 lbs.
(12) A mass of 10 lbs. is supported by strings of lengths 3 and 4 feet attached to two points in the ceiling 5 feet apart. What is the tension of each string?

Ans. 8 lbs . and 6 lbs .
(13) A particle is acted on by a force whose magnitude is unknown, but whose divection makes an angle of 60° with the horizon. The horizontal component of the force is 1.35 dynes. Determine the total force and its vertical component.

Ans. 2.7 dynes and 2.34 dynes.
(14) Three forces proportional to 1, 2, 3, act on a point. The angle between the first and second is 60°, between the second and third 30°. Find the angle which the resultant makes with the first.

Ans. About 67°.
(15) Three cords are tied together at a point. One is pulled in a northerly direction with a force of 6 pounds, and another in an easterly direction with a force of 8 pounds. With what force must the third be pulled in order to keep the whole at rest?

Ans. 10 pounds, at an angle with the horizon whose $\operatorname{tang}=\frac{3}{4}$.
(16) If P and Q are two concurring forces and the angle made by their directions is θ, find the magnitude of the resultant R when. $\theta=0$ and $\theta=\pi$.

Ans. $(P+Q)$ and $(P-Q)$.
(17) Find R when $P=Q$ and $\theta=60^{\circ}, 135^{\circ}$, and 120°.

Ans. $R=P \sqrt{3} ; R=P \sqrt{2-\sqrt{2}} ; R=P$.
(18) If three concurring forces 3,4 and 5 are in equilibrium, find the angle between the first two.

Ans. 90°.
(19) If $P=6, Q=11$, units, and the angle between P and Q is 30°, cmbont find the resultant R, and the angle between P and R and that be-ard sir tween Q and R.

Ans. $R=16.47$ units; $19^{\circ} 30^{\circ} ; 10^{\circ} 30^{\prime}$.
(20) A cord is tied round a pin at the fixed point A, and its two ends are drawn in different directions by the forces P and Q. If the pressure on the pin is $\frac{P+Q}{2}$, find the angle θ between the forces.

Ans. $\operatorname{Cos} \theta=\frac{2 P Q-3\left(P^{2}+Q^{2}\right)}{8 P Q}$.
(21) A cord whose length is $2 l$ is tied to the points A and B in the same horizontal line, whose distance is $2 a$. A smooth ring upon the cord sustains a weight W. Find the tension in the cord.

$$
\text { Ans. } T=\frac{W}{2 \sqrt{1-\frac{a^{2}}{l^{2}}}} .
$$

(22) Given the four concurring forces $F_{1}=1, F_{2}=2, F_{3}=3$, $F_{4}=4$, and the angles $F_{1} F_{3}=90^{\circ}, F_{2} F_{4}=90^{\circ}$, and $F_{1} F_{2}=60^{\circ}$. Find the magnitude of the resultant and its inclination to F_{1}.

Ans. $R=6.889 ; 102^{\circ} 16^{\prime}$.
(23) Two rafters making an angle of 120° support 112 lbs. at the apex. Find the compressive force on each rafter.

Ans, 112 lbs. compression.
(24) Resolve a force of 120 lbs . into two rectangular components, (a) of which one is 75 lbs ; (b) one of which makes an angle of $34^{\circ} \boldsymbol{\gamma}^{7} \mathbf{g}^{\prime \prime}$ with the resultant.

Ans. (a) 93.65 lbs . making an angle of $38^{\circ} 40^{\prime} 56^{\prime \prime} .25$ with resultant.

$$
\text { (b) } 99.343 \mathrm{lbs} \text { adjacent to the given angle and } 67.306 \mathrm{lbs} \text {. }
$$

(25) The mutually rectangular forces of 35,67 and 98 lbs . act on a point. Determine the magnitude and direction of the resultant.
Ans. 123.766 lbs . making angles of $73^{\circ} 34^{\prime} 24^{\prime \prime}, 57^{\circ} 13^{\prime} 30^{\prime \prime}, 37^{\circ} 38^{\prime} 42^{\prime \prime}$ with the forces respectively.
(26) A force of 550 lbs . acts on a point. Resolve it in three rectangular directions, (a) when two of the components are 100 and 230 lbs.; (b) one of the components is 120 lbs . and the given force makes with one of the other two components the angle $15^{\circ} 6^{\prime} 14^{\prime \prime}$; (c) the given force makes with two of the components the angles $87^{\circ} 13^{\prime} 12^{\prime \prime}$. and $54^{\circ} 17^{\prime} 8^{\prime \prime}$.

Ans. (a) 489.49 lbs . angles $79^{\circ} 31^{\prime} 27^{\prime \prime}, 65^{\circ} 16^{\prime} 49^{\prime \prime}$ and $27^{\circ} 7^{\prime} 43^{\prime \prime}$. (b) 120 lbs., angle $77^{\circ} 23^{\prime} 51^{\prime \prime} ; 531.02 \mathrm{lbs} .$, angle $15^{\circ} 6^{\prime} 14^{\prime \prime} ; 78.2 \mathrm{lbs}$., angle $81^{\circ} 49^{\prime} 32^{\prime \prime}$, with resultant. (c) 445.7 lbs., 321.06 lbs., 26.676 lbs .

CHAP. I.]

EXAMPLES -CONCURRING FORCES.

(27) A force in space makes with the three co-ordinate axes the angles α, β, γ. Show that (page 12, Vol. I, Kinematics)

$$
\begin{aligned}
& \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1 \\
& \cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=-1 \\
& \cos (\alpha+\beta) \cos (\alpha-\beta)+\cos ^{2} \gamma=0
\end{aligned}
$$

(28) Two forces acting on a point make the angle ϵ, and make with the coordinate axes the angles $\alpha_{1}, \beta_{1}, \gamma_{1}$, and $\alpha_{2}, \beta_{2}, \gamma_{2}$. Show that

$$
\cos \epsilon=\cos \alpha_{1} \cos \alpha_{2}+\cos \beta_{1} \cos \beta_{2}+\cos \gamma_{1} \cos \gamma_{2} .
$$

(29) Three forces P, Q, R, acting on a point O, are inclined at angles α, β, γ to a given line passing through O. Find the magnitude and direction of the resultant.

Ans. If θ is the inclination of the resultant to the given line,

$$
\tan \theta=\frac{P \sin \alpha+Q \sin \beta+R \sin \gamma}{P \cos \alpha+Q \cos \beta+R \cos \gamma},
$$

and the resultant is the square root of

$$
P^{2}+Q^{2}+R^{2}+2 Q R \cos (\beta-\gamma)+2 R P \cos (\gamma-\alpha)+2 P Q \cos (\alpha-\beta)
$$

(30) Three forces, each equal to P, act at a point O in directions $O A, O B, O C$; the angle $A O C$ being a right angle, and the line $O B$ bisecting the angle AOC. Find the magnitude of the resultant.

Ans. $P(1+\sqrt{2})$ making an angle of 45° with $O A$.
(31) A force P is applied at the hinge A of the knee-joint BAC,
 making the angle α with $A B$ and $A C$. Show that the pressure at C and B is $\frac{1}{2} P$ tan α, and that if $P=50 \mathrm{lbs}$. and $\alpha=15^{\circ}, 35^{\circ}, 65^{\circ}, 85^{\circ}, 90^{\circ}$, the pressuse is 6.7, 17.5, 53.6, 285.75 lbs. and ∞.
(32) A force P is applied to the compound lenee-joint shown in the accompanying figure. Show that the pressure exerted at B, C and B_{1}, C_{1} is $\frac{1}{4} P \tan \alpha \tan \beta$.
(33) Find the resultant for a system of
 eight forces acting upon a point, given as follows:

$$
\begin{aligned}
& F_{1}=75 \text { lbs.; } \alpha_{1}=63^{\circ} 27^{\prime}, \quad \beta_{1}=48^{\circ} 36^{\prime}, \quad \gamma_{1} \text { acute; } \\
& 120: \text { : Fatso } F_{2}=80 \mathrm{lbs} \text {; } \alpha_{2}=153^{\circ} 44^{\prime}, \quad \beta_{2}=67^{\circ} 13^{\prime}, \quad \gamma_{2} \text { obtuse; } \\
& F_{x}^{\prime}=\frac{120}{\frac{\sqrt{3}}{2}} \\
& F_{3}=95 \text { lbs.; } \alpha_{3}=76^{\circ} 14^{\prime}, \quad \beta_{3}=147^{\circ} 12^{\prime}, \gamma_{3} \text { obtuse; } \\
& F_{4}^{\prime}=135 \mathrm{lbs} . ; \quad \alpha_{4}=115^{\circ} 7^{\prime}, \quad \beta_{4}=137^{\circ} 9^{\prime}, \quad \gamma_{4} \text { obtuse; } \\
& F_{b}=670 \mathrm{lbs} ; \alpha_{5}=76^{\circ} 3^{\prime}, \quad \beta_{5}=35^{\circ} 3, \quad \gamma_{5} \text { acute; } \\
& F_{\mathrm{B}}=37 \mathrm{lbs} \text {; } \alpha_{\mathrm{B}}=145^{\circ} 7^{\prime}, \quad \beta_{6}=78^{\circ} 3^{\prime}, \quad \gamma_{6} \text { acute; } \\
& F_{7}=95 \mathrm{lbs} ; \quad \alpha_{7}=62^{\circ} 10^{\prime}, \quad \beta_{7}=149^{\circ} 8^{\prime}, \quad \gamma_{7} \text { acute; } \\
& F_{\mathrm{B}}=140 \mathrm{lbs} . ; \quad \alpha_{8}=123^{\circ} 58^{\prime}, \quad \beta_{\mathrm{B}}=127^{\circ} 56^{\prime}, \gamma_{\mathrm{s}} \text { obtuse. }
\end{aligned}
$$

Ans. The angles γ can be found (page 12, Vol. I, Kinematics) from

$$
\cos (\alpha+\beta) \cos (\alpha-\beta)+\cos ^{2} \gamma=0
$$

Hence

$$
\begin{array}{cll}
\gamma_{1}=52^{\circ} 57^{\prime} 32^{\prime \prime}, & \gamma_{2}=102^{\circ} 22^{\prime} 10^{\prime \prime} .35, & \gamma_{3}=119^{\circ} 7^{\prime} 13^{\prime \prime}, \\
\gamma_{4}=122^{\circ} 5^{\prime} 48^{\prime \prime}, & \gamma_{\mathrm{b}}=58^{\circ} 25^{\prime}, & \gamma_{\mathrm{t}}=57^{\circ} 21^{\prime} 54^{\prime \prime}, \\
\gamma_{7}=77^{\circ} 43^{\prime} 22^{\prime \prime} .7, \quad \gamma_{\mathrm{a}}=123^{\circ} 49^{\prime} 44^{\prime \prime} .2 . & \\
F_{x}=+24.393 \mathrm{lbs} ., \quad F_{y}=+290.29 \mathrm{lbs} ., \quad F_{z}=+221.295 \mathrm{lbs} ., \quad F_{r}^{\prime}=365.84 \mathrm{lbs} . \\
\cos a=\frac{24.393}{365.84}, \quad \text { or } a=86^{\circ} 10^{\prime} 36^{\prime \prime} ; \quad \cos b=\frac{290.29}{365.84^{\prime}}, \quad \text { or } \quad b=37^{\circ} 29^{\prime} 14^{\prime \prime} ;
\end{array}
$$

Ifanpowits.

The jomerals used The ncountent万rか. Encmin? artury in a migid brody me,

STATICS-PARALLEL FORCES.

NON-CONCURRING FORCES. MOMENT OF A FORCE. LINE REPRESENTATIVE OF MOMENT OF A FORCE. RESOLUTION AND COMPOSITION OF MOMENTS. TWO NON-CONCURRING CO-PLANAR FORCES. TWO PARALLEL FOIRCES. MOMENT OF A COUPLE. LINE REPRESENTATIVE OF A COUPLE. COMPOSITION AND RESOLUTION OF COUPLES. CENTRE OF PARALLEL FORCES. PROPERTIES OF CENTRE OF MASS. CONDITIONS OF EQUILIBRIUM FOR PARALLEL FORCES.

Non-concurring Forces.*-In the preceding Chapter we have considered concurring forces, that is, forces which act at a common point. We shall now consider non-concurring parallel forces, that is, parallel forces which act at different points of a rigid body.

Moment of a Force. - Since force is proportional to the acceleration it causes, the moment of a force relative to any point or axis is defined precisely like moment of acceleration (page 60, Vol. I, Kinematics).

Hence the product of the magnitude of a force by the magnitude of the perpendicular let fall from any given point upon the direction of the force gives the magnitude of the moment of the force relative to that point.

The point is called the centre of moments. The perpendicular is called the lever-arm of the force.

The unit of moment of a force is then one poundal-foot, or one poundal with a lever-arm of one foot, or in gravitation units one pound-foot, or the weight of one pound with a lever-arm of one foot.

The same conventions as to sign are adopted as for moment of acceleration (page 60, Vol. I, Kinematics). Thus rotation counterclockwise is positive (+) and clockwise negative (-).

The same principles must evidently hold for the moment of a force as for the moment of its acceleration. Hence

A force may be considered as acting at any point in its line of direction.

The algebraic sum of the moments of any number of forces is equal to the moment of their resultant (page 62, Vol. I, Kinematics).

Line Representative of Moment of a Force.- Since the moment of a force has thus magnitude and direction, it is a vector quantity and can be represented by a straight line like moment of acceleration.

[^2]Thus the line $A B$ represents by its length the magnitude of the
 moment. The plane of rotation is at right angles to this line. The direction of rotation is clockwise in this plane when we look in the direction of the arrow. When we speak of direction of a moment we mean the direction of its line representative.

Resolution and Composition of Moments.-The principles of pages 35, 36, Vol. I, Kinematics, hold good then for force moments as well as for acceleration moments (page 62, Vol. I, Kinematics), and we have the triangle and polygon of moments.

The signs of the line representatives of the components along the axes of X, Y, Z of a force moment follow the same rule as for components of acceleration (page 62, Vol. I, Kinematics). Hence components in the direction $O X, O Y, O Z$ are positive (+), in the opposite directions negative (-). If then we look along the line representatives of the components towards the origin O, the rotation is always counter-clockwise. Therefore rotation from X towards Y, Y to-
 wards Z, Z towards X is positive, in the opposite directions negative.

For polar co-ordinates directions away from the pole are positive, towards the pole negative.

Evidently, then, we measure angles in the plane $X Y$, around from $O X$ towards $O Y$; in the plane $Y Z$, around from $O Y$ towards $O Z$; in the plane $Z X$, around from $O Z$ towards $O X$, as shown by the arrows in the figure.

Resultant of Two Non-concurring Co-planar Forces.*-Let the two forces F_{1}, F_{2} act in the same plane at the points A, B of a rigid body, Fig. 1, in different directions, and let $O F_{r}$ be the direction of the resultant F_{r}.

Take a point P anywhere in the plane of the forces and draw the lever-arms $P n_{1}=p_{1}, P n_{2}=p_{2}, P n=r$.

Then, since the moment of the resultant with reference to any point is equal to the algebraic sum of the moments of the compo. nents, we have in general

$$
\begin{equation*}
F_{r} r=F_{1} p_{1}+F_{2} p_{2} . \tag{1}
\end{equation*}
$$

[Regard must be paid to the signs. Thus if the forces are as represented in the figure, we have $+F_{1} p_{1}-F_{2} p_{2}$.]

[^3]Since this holds good wherever we take the point P in the plane, let us suppose the point P at the intersection O of the given forces. For this point, the lever-arms p_{1} and p_{2} will be zero, the moments $F_{1} p_{1}$ and $F_{2} p_{2}$ will be zero, and hence $F_{r} r$ must be zero, or the lever-arm r is zero. We can therefore take the point O as the common point of application of F_{1} and F_{2} and the system reduces to two forces acting at the point O or to a system of concurring forces. Hence-
(1) A force acting at any point of a rigid body can be considered as acting at any point in its line of direction.
(2) The resultant of two non-concurring co-planar forces lies in the plane of the forces and passes through the point of intersection of the forces.

Position of the Resultant. - Draw the line $A B$ intersecting the resultant F_{r} at the point C.

Let α_{1} be the angle of F_{1} with $A B$, and α_{2} the angle of F_{2} with $A B$. If we take moments about the point C, we have for the leverarm of $F_{1}, A C \sin \alpha_{1}$, and for the lever-arm of $F_{2}, B C \sin \alpha_{2}$. From equation (1),

$$
F_{1} . A C \sin \alpha_{1}=F_{2} . B C \sin \alpha_{2}
$$

But $A C+B C=A B$. Hence

$$
\begin{equation*}
A C=\frac{F_{2} \cdot A B \sin \alpha_{2} \because \because}{F_{1} \sin \alpha_{1}+F_{2}^{\prime}} \sin \alpha_{2} \quad, \quad B C=\frac{F_{1} \cdot A B \sin \alpha_{1}}{F_{1} \sin \alpha_{1}+F_{2}^{\prime} \sin \alpha_{2}} . \tag{2}
\end{equation*}
$$

We thus know the position of the resultant in the plane of the forces. (Compare page 179, Kinematics of a Rigid System.)

Magnitude and Direction of the Resultant.-The magnitude and direction of the resultant can now be found, precisely as for concurring forces.

Thus if we lay off F_{1} and F_{2} in the force polygon Fig. 2, $A F_{2}$ gives the magnitude and direction of the resultant F, .

Take the rectangular axes $O X$ and $O Y$ in the plane of the forces and let $O X$ be parallel to $A B$. Let F_{1} make the angle α_{1} with $O X$, and β_{1} with $O Y$, and F_{2} make the angle α_{2} with $O X$, and β_{2} with $O Y$. Denote the algebraic sum of the components parallel to $O X$ by F_{x} and parallel to $O Y$ by F_{y}. Then the equations of page 61 hold, and we have

$$
\left.\begin{array}{l}
F_{x}=F_{1} \cos \alpha_{1}+F_{2} \cos \alpha_{2} ; \tag{3}\\
F_{y}=F_{1} \cos \beta_{1}+F_{2} \cos \beta_{2} .
\end{array}\right\} .
$$

[Regard must be paid to the signs. Thus in the figure $F_{2} \cos \alpha_{2}$ is positive, all the other terms are negative.]

If the resultant F_{r} makes the angles α and b with the axes of x and y, we have

$$
\begin{equation*}
\cos a=\frac{F_{x}}{F_{r}}, \quad \cos b=\frac{F_{y}}{F_{r}} \tag{4}
\end{equation*}
$$

Squaring and adding,

$$
\begin{equation*}
F_{r}=\sqrt{F_{x^{2}}^{2}+F_{y^{2}}^{2}} . \tag{5}
\end{equation*}
$$

In taking the summation indicated by (3), components in the direction $O X$ or $O Y$ are positive, in the directions $X O$ or $Y O$ negative.

If θ_{1} is the angle of F_{1} with the resultant, and 0_{2} the angle of F_{2}
with the resultant, and θ the angle between F_{1} and F_{2}, we have directly from the force polygon, Fig. 2,

$$
\begin{equation*}
\sin \theta_{1}=\frac{F_{2}}{F_{r}} \sin \theta, \quad \sin \theta_{2}=\frac{F_{1}}{F_{r}} \sin \theta \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{r}=\sqrt{F_{1}^{2}+F_{2}^{2} \pm 2 F_{2} F_{2} \cos \theta} \tag{7}
\end{equation*}
$$

where the $(+) \operatorname{sign}$ is used when θ is less then 90°, and the (-) sign when θ is greater than 90°.

The tangent of the angle a which the resultant makes with $A B$ or $O X$ is

$$
\begin{equation*}
\tan a=\frac{F_{y}}{F_{x}} \tag{8}
\end{equation*}
$$

From (6) and (7) we can find the magnitude and direction of the resultant directly if θ is known. If α_{1} and α_{2} are given, (3) and (5) give F_{r}, and (4) or (8) the direction.

From (1) we have also

$$
\begin{equation*}
r=\frac{F_{1} p_{1}+F_{2} p_{2}}{F_{r}} \tag{9}
\end{equation*}
$$

where regard must be had for the signs of $F_{1} p_{1}$ and $F_{2} p_{2}$ in any case.

From (9) for any given point P, for which p_{1} and p_{2} are known, we can locate the resultant by describing a circle with centre P and radius r, and drawing F_{r} tangent to this circle in the direction given by (6). (Compare page 180, Kinematics of a Rigid System.)

Example.-Two forces $F_{1}=20 \mathrm{lbs}$. and $F_{2}=30 \mathrm{lbs}$. act at points A,

B of a rigid body, in the directions shown in the figure. The distance $A B=2 \mathrm{ft}$. and the anglest $F_{1} A B=120^{\circ}, F_{2} B A=150^{\circ}$. Find the point of ap. plication Cof the resultant, and its magnitude and direction.
Ans. $\operatorname{Cos} \alpha_{1}=\sin \beta_{1}=0.5, \cos \alpha_{2}=\sin \beta_{2}=0.866$, $\theta=90^{\circ}$. Hence

$$
A C=\frac{30 \times 2 \times 0.5}{20 \times 0.866+30 \times 0.5}=0.928 \mathrm{ft} .
$$

$$
\left.\begin{array}{l}
F_{x}=-20 \times 0.5+30 \times 0.866=+15.98 ; \\
F_{y}=-20 \times 0.866-30 \times 0.5=-32.32 .
\end{array}\right\} \tan a=-\frac{32.32}{15.98}=-2.022
$$

Or $B C F_{r}=63^{\circ} 41^{\prime}$.

$$
F_{r}=\sqrt{(15.98)^{2}+(32.32)^{2}}=36.05 \mathrm{lbs}
$$

We obtain the same result from equation (7) directly. Thus

$$
F_{r}=\sqrt{20^{2}+30^{2}}=36.05
$$

We also obtain from equation (6)

$$
\sin \theta_{1}=\frac{30}{36.05}=0.832, \quad \text { or } \quad \theta_{1}=56^{\circ} 19^{\prime}
$$

Therefore $O C A=180-\left(60^{\circ}+56^{\circ} 19^{\prime}\right)=63^{\circ} 41^{\prime}$, as before.
Resultant of Two Parallel Forces.-This is but a special case of the preceding Article. Thus if two non-concurring forces are parallel, their intersection is at an infinite distance and α_{1} and α_{2}
become equal, and $\theta=0$. We have from equations (5) or (7), page 70,

$$
F_{r}=F_{1}+F_{2},
$$

where the forces F_{1} and F_{2} are to be taken with proper signs (+) in one direction and (-) in the opposite. From equation (2), page 69, we have

$$
\begin{equation*}
A C=\frac{F_{2}}{F_{r}} \cdot A B, \quad B C=\frac{F_{1}}{F_{r}} \cdot A B . \tag{1}
\end{equation*}
$$

Multiplying the first by F_{1} and the second by F_{2}, we have

$$
\begin{equation*}
F_{1} \cdot A C=F_{2} \cdot B C, \quad \text { or } \quad \frac{F_{1}}{F_{2}}=\frac{B C}{A C} . \tag{2}
\end{equation*}
$$

To prove this independently, take C as centre of moments.

Then, whether the forces act in the same or in opposite directions, we have

$$
F_{1} p_{1}-F_{2} p_{2}=0, \quad \text { or } \quad F_{1} p_{1}=F_{2} p_{2},
$$

where p_{1} and p_{2} are the lever-arms. But from similar triangles $\frac{p_{1}}{p_{2}}=\frac{A C}{B C}$. Hence

$$
\frac{F_{1}}{F_{2}}=\frac{B C}{A C} .
$$

We see from (1) that the distances $A C$ and $B C$ depend only upon the magnitudes of F_{1} and F_{2} and the distance $A B$ between their points of application, and not at all upon the common direction of F_{1} and F_{2}. Therefore if the forces F_{1}, F_{2} are turned about A and B preserving their parallelism, or if the body is turned, the forces F_{1} and F_{2} having always the same direction and the same points of application, the resultant F. will always pass through C. The point C is then the point of application of the resultant.

Hence, the resultant of two parallel forces acting at the extremities of a rigid straight line is in their plane and equal in magnitude to their algebraic sum. It acts parallel to the forces in the direction of the greater force, and its point of application is on the straight line or the straight line produced, and divides it into segments inversely as the forces. Or the products of the forces into the adjacent segments are equal. (Compare page 181, Kinematics of a Rigid System.)

This principle is known as the "law of the lever."
If we take the centre of moments at B and at A, we obtain directly equations (1).

COR. 1. When the forces act in the same direction, the resultant lies within the components. When the forces act in opposite
directions, the resultant lies without the components and on the side of the larger.

Cor. 2. When the forces are equal and opposite, $F_{r}=0$. Also, from (1), $A C=\infty, B C=\infty$, or the resultant is zero and acts at an infinite distance. That is, two equal and opposite parallel forces cannot have a single force as a resultant.

Such a system is called a force couple. (Compare page 182, Kinematics of a Rigid System.)

Since the resultant is zero, there is no force of translation, and the effect on $A B$ is to cause rotation only. All tendency to rotation can be referred to forces forming such couples.

Moment of a Couple.*--From the last corollary, we see that a couple consists of two equal and parallel forces acting in opposite directions at different points of a rigid body.

The perpendicular distance between the directions of the forces is called the arm of the couple.

The product of the arm by one of the forces is the moment of the couple. This moment represents tendency to rotation of the rigid body.

Let the two equal, parallel and opposite forces, $+F,-F$, act at
 the points A and B of a rigid body. Draw any line $C_{1} a b C_{2}$ at right angles to the direction of the forces.

Take any point C_{1} on the left as a centre of moments. Then we have for the resultant moment about $C_{1}, F . C_{1} a-F\left(C_{1} a+a b\right)=$ F. ab.
For any point C_{2} on the right, we have

$$
F \cdot C_{2} b-F\left(C_{2} b+a b=-F . a b\right.
$$

For any point C between the forces,

$$
-F \cdot C a-F \cdot C b=-F \cdot a b
$$

The minus sign denotes clockwise rotation.
In general, the moment of a couple about any point in its plane is constant and equal to the product of the arm by one of the forces. (Compare page 186, Kinematics of a Rigid System.)

Cor. 1. A couple may be turned round in any manner in its own plane without altering its effect, the arm $a b$ being unchanged.

Cor. 2. A couple may be removed to any position in its own plane without altering its effect, the arm $a b$ being unchanged.

Cor. 3. A couple may be transferred to any other plane parallel to its own plane without altering its effect.

Cor. 4. All couples whose planes are parallel and moments equal, are equivalent.

Cor. 5. Any couple may be replaced by another which shall be equivalent and have an arm of any given length.

Cor. 6. We have for any point C_{2} the resultant moment

$$
F . C_{1} a-F\left(C_{1} a+a b\right)
$$

If $C_{1} a=\infty$, then, since αb is insignificant with respect to $C_{1} a$, we have $F_{\infty}-F_{\infty}=0$. The algebraic sum of the forces or the resultant force is also zero. The moment of a force is the algebraic sum of the moments of its components (page 6'7). The resultant there-

[^4]fore acts through any point where the moment sum of the components is zero. The resultant of a couple is therefore zero at an infinite distance in any direction in the plane of the couple. This is Cor. 2, page 72.

Cor. 7. A couple cannot be replaced by a single force, but only by another equivalent couple.

Cor. 8. A couple cannot be held in equilibrium by a single force, but only by another equivalent couple.

Line Representative of a Couple.-A line perpendicular to the plane of a couple is called the axis of the couple.

A couple can then be completely represented by a straight line. The length of the line represents the moment of the couple. The plane of the couple is at right angles to its line representative. The direction of rotation may be indicated by an arrow, so that looking along the line representative in the direction of the arrou, rotation is seen to be clockwise. Thus the line $A B$ represents the magnitude of a couple causing rotation as indicated in a plane at right angles to the axis $A B$. The line representative coincides with the axis of rotation.

A couple is thus a vector quantity, like displacement, velocity, acceleration, moment, force, and the same principles apply as to composition and resolution of forces.

When we speak of the "direction of a couple" we mean the direction of its line representative.

Composition and Resolution of Conples.-We have then the "parallelogram and polygon of couples."

When couples are in the same plane, or parallel planes, their line representatives are all parallel. Hence the resultant of any number of couples in the same or in parallel planes equals the algebraic sum of the component couples.

The resultant of two couples in different planes is given by the diagonal of the parallelogram constructed on the line representatives of the components, taken the other way round.

The resultant of any number of couples in different planes, the axes being all in the same plane, is given by the line which closes the polygon formed by the line representatives taken the other way round.

The line representatives can then be combined and resolved just like forces in general.

The action of a couple acting upon a rigid body is to cause angular acceleration of the body about an axis perpendicular to its plane.

Centre of Parallel Forces. ${ }^{*}$-Let F_{1}, F_{2}, F_{3}, etc., be any number of parallel forces acting at the points A_{1}, A_{2}, A_{3}, etc., of a rigid body.

Then the resultant F_{r} must be parallel to the forces and equal in magnitude to their algebraic sum, or

$$
F_{r}=F_{1}+F_{2}+F_{s}+\ldots=\Sigma F .
$$

In taking the summation, all forces in one direction are (+), in the opposite direction (一).

Take any two of the parallel forces, as F_{1}, F_{2}, and draw a line
 (Compare page 192, Kine
$A_{1} A_{2}$ through their points of application and produce it to intersection K with the plane of $Z X$. Drop perpendiculars $A_{1} B_{1}, A_{2} B_{2}$ to this plane and draw the line $K B_{1} B_{2}$ in this plane.

Now, from page 71, the resultant of F_{1} and F_{2} is $R_{1}=F_{1}+F_{2}$ and its point of application is at A on the line $A_{1} A_{2}$, such that

$$
\frac{F_{1}}{F_{2}}=\frac{A_{2} A}{A_{1} A}
$$

Drop the perpendicular $A B$ to the plane $Z X$. Then we have by similar triangles

$$
\frac{A_{2} A}{A_{1} A}=\frac{B_{2} B}{B B_{2}}
$$

Denote the distances $A_{2} B_{1}, A_{2} B_{2}$ by y_{1}, y_{2} respectively, and the distance $A B$, or the ordinate of the point of application of the resultant R_{1} of F_{1} and F_{2}, by \bar{y}_{1}. Then we have by similar triangles

$$
\frac{B_{2} B}{B B_{1}}=\frac{y_{2}-\bar{y}_{1}}{\bar{y}_{1}-y_{1}}
$$

Hence

$$
\frac{F_{1}}{F_{2}}=\frac{y_{2}-\bar{y}_{1}}{\bar{y}_{1}-y_{1}}, \quad \text { or } \quad \bar{y}_{1}=\frac{F_{1} y_{1}+F_{2} y_{2}}{F_{1}+F_{2}}
$$

In the same way for three forces F_{1}, F_{2}, F_{3} we can combine the resultant R_{1} of F_{1} and F_{2} acting at the point A, with F_{3}. We thus obtain for the ordinate of the point of application of the resultant of three forces

$$
\vec{y}_{2}=\frac{F_{1} y_{1}+F_{2} y_{2}+F_{3} y_{3}}{F_{1}+F_{2}+F_{3}}
$$

In general, then, for any number of parallel forces we have for the ordinate \bar{y} of the point of application of the resultant

$$
\begin{equation*}
\bar{y}=\frac{\Sigma F y}{\Sigma F} \tag{1}
\end{equation*}
$$

In precisely similar manner, if we denote the distances $A C$ and $A D$ of the point of application of the resultant from the planes of $Y Z$ and $X Y$ by \bar{x} and \bar{z}, we have

$$
\begin{align*}
& \bar{x}=\frac{\Sigma F x}{\Sigma F} \tag{2}\\
& \bar{z}=\frac{\Sigma F z}{\Sigma F} \tag{3}
\end{align*}
$$

Equations (1), (2) and (3) give the co-ordinates of the point of application of the resultant for any number of parallel forces. This point is called the centre of parallel forces.

We see that its position depends only upon the magnitude of the forces and the position of their points of application, and is independent of the common direction of the forces.
Cor. 1. If \bar{z} is zero, then z_{1}, z_{2}, etc., must be zero, and the parallel forces are co-planar and all lie in the plane $X Y$. The centre is then given by (1) and (2). If \bar{z} and y are zero, the points of application are all in the axis of X, and the centre is given by (2). (Compare page 192, Kinematics of a Rigid System.) If \bar{x}, \bar{y} and \bar{z} are
zero, the centre is at the origin. If \bar{x} and \bar{z} are zero, the centre is in the axis of Y and the points of application are all in the axis of Y, etc.

Cor. 2. If a force equal and opposite to the resultant is applied at the centre of parallel forces, we have a system of parallel forces in equilibrium.

Cor. 3. If a body has a motion of translation only, all the points of the body move in parallel paths with the same acceleration, if any, in the same direction at any instant. Let f be this common acceleration. Then if we consider the body to be composed of an indefinitely large number of indefinitely small particles of mass m_{1}, m_{2}, m_{3}, etc., the parallel forces on each of them are $F_{1}=m_{1} f$, $F_{2}=m_{2} f, F_{3}=m_{3} f$, etc. The total resultant force in the common direction is then

$$
R=m_{1} f^{2}+m_{2} f+m_{3} f+\text { etc. }=f\left(m_{1}+m_{2}+m_{3}+\text { etc. }\right) ;
$$

or if the total mass $M=m_{1}+m_{2}+m_{3}+$ etc.,

$$
R=f M
$$

Also, if the co-ordinates of the particles m_{1}, m_{2}, m_{s}, etc., are $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$, etc., and the co-ordinates of the point of application of the resultant are denoted by $\bar{x}, \bar{y}, \bar{z}$, we have, since the moment of the resultant is equal to the algebraic sum of the moments of the components,

$$
\begin{align*}
& \overline{R \bar{x}}=f M \bar{x}=m_{1} f x_{1}+m_{2} f x_{2}+\text { etc. }=f \Sigma m x \\
& \text { or } \\
& \quad \bar{x}=\frac{\Sigma m x}{M} \tag{1}
\end{align*}
$$

In the same way we have

$$
\begin{align*}
& \stackrel{\Sigma}{y}=\frac{\Sigma m y}{M} \tag{2}\\
& \bar{z}=\frac{\Sigma m z}{M} \tag{3}
\end{align*}
$$

The point given by equations (1), (2) and (3) coincides with the centre of mass of the body (page 17).

Hence, the centre of mass of a body coincides with the point of application of the resultant of that system of parallel forces which acts upon all the particles of a translating body; that is, when each parallel particle force causes in the particle on which it acts the same acceleration in the same direction (page 18).

Properties of the Centre of Mass.-We have then the following properties of the centre of mass:

1. The centre of mass coincides with the point of application of the resultant of that system of parallel forces which acts upon all the particles of a translating body.
2. Hence, inversely, if all the forces acting upon a rigid body reduce to a single resultant force acting at the centre of mass, the motion of the body is one of translation only.
3. The algebraic sum of the moments of the masses (page 19) of all the particles with reference to the centre of mass is zero (page 17).

If, then, the origin of co-ordinates is taken at the centre of mass, we have

$$
\Sigma m x=0, \quad \Sigma m y=0, \quad \Sigma m z=0
$$

If polar co-ordinates are taken, and the pole is taken at the centre of mass, we have

$$
\Sigma m r=0
$$

where r is the distance of any particle from the centre of mass.
4. Since the attraction of the earth for a body at or above its surface, whose longest dimension is insignificant compared to the earth's radius, is practically an equal and parallel force on every equal particle of the body, the weight of the body in such case acts at its centre of mass, and a body acted upon only by its weight has a motion of translation only.

Hence the centre of mass is often erroneously called the "centre of gravity" (pages 18, 46).
5. In all positions of a rigid body about the centre of mass, the weight then passes practically through the centre of mass, because changing the direction of a system of parallel forces does not, as we have seen (page 74), change the point of application of the resultant, provided the points of application of the forces and their magnitudes are unchanged.

Hence if a rigid body free to move is supported at its centre of mass, it will be at rest in all positions about this centre, because in all positions we have two equal and opposite forces acting at the same point.

We can therefore locate the centre of mass of a rigid body by suspending it successively in two different positions. The two directions of the suspending string relative to the body must intersect practically at the centre of mass, since in each case, if the body is at rest, the centre of mass must be vertically under the point of suspension.
6. If a rigid body free to move is supported at a point vertically below the centre of mass, it will then be in equilibrium. But if the body be moved in any direction, however slightly, around the point of support, we shall have the weight of the body and the upward pressure on the support forming a couple causing the body to rotate away from its former position of equilibrium.

A body in such a position is said to be in unstable equilibrium.

If a rigid body is supported at any point vertically above the centre of mass, it will be in equilibrium also. If the body is moved in any direction however slightly around the point of support, we shall have a couple causing rotation towards the former position of equilibrium.

A body in such a position is said to be in stable equilibrium.
If the body is supported at the centre of mass, it will remain in equilibrium in any position about the point of support. It is then said to be in indifferent equilibrium.
7. The centre of mass may lie outside the limits of the body, as for example in the case of a circular ring or a spherical shell.
8. The motion of the centre of mass of a rigid body is the same as if the body were replaced by a particle of equal mass at the centre of mass, and all the forces acting upon the body were transferred to this particle without change in magnitude or direction (pages 18, 83).

Resultant Force and Couple for any Number of Parallel Forces.

-Take the axis of Y parallel to the common direction of the parallel forces F_{1}, F_{2}, F_{3}, etc., and let these forces be applied at the points of a rigid body whose co-ordinates are $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$, etc.

Then the resultant will be the algebraic sum of all the forces, or

$$
\begin{equation*}
F_{r}=F_{1}+F_{2}+F_{3}+\ldots=\Sigma F \tag{1}
\end{equation*}
$$

all forces acting in the direction $O Y$
 being positive, and all in the opposite direction being negative in the algebraic sum.

The point of application $(\bar{x}, \bar{y}, \bar{z})$ of this resultant, or the centre of force, is given by

$$
\begin{equation*}
\bar{x}=\frac{\Sigma F x}{\Sigma F}, \quad \bar{y}=\frac{\Sigma F y}{\Sigma F}, \quad \bar{z}=\frac{\Sigma F z}{\Sigma F} \tag{2}
\end{equation*}
$$

Taking positive rotation in each co-ordinate plane as indicated in the figure from X to Y, Y to Z, Z to X, we have for the moment about the axis of X in the plane $Y Z$

$$
\begin{equation*}
M_{x}=\bar{z} \Sigma F=\Sigma F z \tag{3}
\end{equation*}
$$

and for the moment about the axis of Z in the plane $X Y$

$$
\begin{equation*}
M_{z}=\bar{x} \Sigma F=\Sigma F x \tag{4}
\end{equation*}
$$

There is no moment about the axis of Y, or $M_{y}=0$. The line representatives of these moments are positive in the direction $O X$ and $O Z$, negative in the opposite directions.

The resultant moment is then

$$
\begin{equation*}
M_{r}=\sqrt{M_{x}^{2}+M z^{2}} . \tag{5}
\end{equation*}
$$

The line representative of the resultant moment makes angles d, e and f with the axes of X, Y and Z whose cosines are given by

$$
\begin{equation*}
\cos d=\frac{M_{x}}{M_{r}}, \quad \cos e=\frac{M_{y}}{\overline{M_{r}}}=0, \quad \cos f=\frac{M_{z}}{M_{r}} \ldots . \tag{6}
\end{equation*}
$$

Looking along this line representative towards the origin, the direction of rotation is always seen counter-clockwise.

Equilibrium of a Rigid Body.-If a rigid body acted upon by any number of forces applied at different points is in static equilibrium (page 58), all the forces must evidently reduce to two equal and opposite resultant forces acting in the same straight line. That is, the algebraic sum of the moments of all the forces about every point in space must be zero. Or, any one of the forces must be equal and opposite to the respltant of all the others and act in the same straight line with it. If any one of the forces is equal and opposite to the resultant of all the others, but does not act in the same straight line with it, we have molar equilibrium (page 58).

Conditions of Equilibrium of a Rigid Body acted upon by Parallel Forces.-If all the forces acting at different points of a rigid body are parallel, we have then for the necessary and sufficient conditions of static equilibrium:

- 1st. The algebraic sum of the forces must be zero, or

$$
\begin{equation*}
\Sigma F=0 \tag{1}
\end{equation*}
$$

When this condition only is complied with, there is no resultant force, or any one of the forces is equal and opposite to the resultant of all the others, but does not necessarily act in the same straight line with it. We have then molar equilibrium.

2d. The algebraic sum of the moments of the forces with refer-
 ence to any two co-ordinate planes, parallel to the forces, must be zero.

That is, if we take the common direction of the forces parallel to the axis of Y, and take the origin O as the centre of moments, we have the resultant moment $M_{r}=0$, or

$$
\begin{equation*}
\Sigma F x=0, \quad \Sigma F z=0 . \tag{2}
\end{equation*}
$$

When this condition only is complied with, there is no rotation about the origin O, or about any point in the axis $O Y$.

The resultant then coincides with the axis $O Y$. If this resultant is not also zero, there can be no static equilibrium. If it is zero, then the 1st condition is also fulfilled, and we have the algebraic sum of the moments of all the forces about every point in space, equal to zero.

In order, then, that there may be static equilibrium, both conditions (1) and (2) must be satisfied.

Cor. 1. If equilibrium, molar or static, exists for any one direction of the parallel forces, it will exist whatever the common direction, provided the magnitudes and points of application of the parallel forces are unchanged.

Cor. 2. If the parallel forces are co-planar, let their common plane be the plane of $X Y$, and let their common direction be parallel to the axis of Y.

Then we have for the conditions of equilibrium

$$
\begin{align*}
\Sigma F & =0 \tag{1}\\
\Sigma F x & =0 \tag{2}
\end{align*}
$$

If the first condition alone is satisfied, we have molar equilibrium.

If the second alone is fulfilled, the resultant coincides with the axis of Y.

If both are fulfilled, we have the moment about every point in the plane zero, and hence static equilibrium.

EXAMPLES.

(1) Shonv that the centre of mass of the perimeter of a triangle cannot coincide with the centre of mass of the trianguilar area, except in the case of an equilateral triangle.
(2) A mass P at rest on an inclined plane is attached to one end of a string which passes over a pulley at the top of the plane and supports at the other end a mass Q. The pressure of the plane upon P is normal to the plane. Show that when Q is moved vertically, the centre of mass of P and Q will neither rise nor fall.

Ans. Let α be the angle of the plane with the horizontal. Let the string make the angle β with the plane.

The weight of P is the attraction of the earth for P. The tension of the string is the same as the weight of Q. Since P is at rest, the tension of the string Q, the weight P and the normal pressure N are in equilibrium and concur at the centre of mass C. Let l be the length of the string, and x the length of that portion of it, $C c$,
 between the body and the pulley, and y that portion of it, $c Q$, between the pulley and the body Q. Then $x+y=l$, no matter where the body P is on the plane. The distance of the centre of mass of P and Q below the pulley is then

$$
\frac{P x \sin (\alpha \pm \beta)+Q y}{P+Q}
$$

where the $(+)$ sign for β is taken when β is above and the $(-)$ sign when β, as in the figure, is below the parallel to the plane through C.

But since P is at rest, the component of its weight parallel to $C c$ must be equal and opposite to the tension of the string Q. Hence $P \sin (\alpha \pm \beta)=Q$, and the distance of the centre of mass of P and Q below the pulley is $\frac{Q(x+y)}{P+Q}=\frac{Q l}{P+Q}$, which is independent of the position of Q.
(5) Three masses of 2,3, 4 ounces respectively lie in a straight line. The distance between the first and second is 10 inches, between the second and third 5 inches. Find the centre of mass.

Ans. At the centre of mass of the middle mass.
(4) Four masses of 1, 2, 3, 4 pounds are placed in order at equal distances one inch apart on a rod. Neglecting the rod, find the point at which they will balance.

Ans. At the centre of mass of the third mass.
(5) At the corners of a square, taken in order, are placed masses 1, 3, 5, 7. Find the centre of mass.

Ans. If s is the length of a side of the square, the distance of the centre of mass from the side $(1,7)$ is $\frac{8}{2}$, and from the side $(5,7) \frac{8}{4}$.
(6) From a fixed horizontal rod are suspended a given number of equal masses by strings, the sum of the lengths of which is given. Find the distance of the centre of mass from the rod.

Ans. If n is the number of masses and l the whole length of string used, the required distance is $\frac{l}{n}$.
(7) Two masses support each other on two smooth inclined planes by means of a fine string passing over the common vertex of the planes. If the masses are moved, show that the centre of mass moves in a horizontal line.
(8) A solid right cone stands on a plane inclined at an angle of 30° to the horizon and is prevented from sliding. Find the height of the cone in terms of the radius of the base, in order that it may be on the point of overturning.

Ans. $4 r \sqrt{3}$.
(9) A circular table weighing w lbs. has three equal legs at equidistant points on its circumference. The table is placed on a level floor. Neglecting the legs, find the smallest weight which, placed anywhere on the table, will just bring it to the point of overturning.

Ans. w Ibs.
(10) If the table has four legs at equidistant points, find the least weight that will upset it.

Ans. 2.420.
(11) The centre of mass of a ladder weighing 50 lbs. is 12 ft. from one end, which is fixed. What force must a man apply at a distance of 6 ft . from this end to raise the ladder?

Ans. 100 lbs .
(12) Two parallel forces, acting in the same direction, are 17 and 33 lbs. respectively, and their points of application A, B are 8 ft . apart. Find the resultant and its intersection C with the line $A B$.

Ans. $F_{r}=50 \mathrm{lbs}$. parallel to the forces

$$
A C=5.28 \mathrm{ft} ., \quad B C=2.72 \mathrm{ft}
$$

(13) Find the resultant and the point C when the forces in the preceding example act in opposite directions.

Ans. $F_{r}=16 \mathrm{lbs}$. in the direction of the larger force

$$
A C=16.5 \mathrm{ft} ., \quad B C=8.5 \mathrm{ft}
$$

(14) Two parallel forces F_{1}, F_{2} of 12.5 and 25 lbs. act in the same direction upon two points. The resultant acts at a distance of 4 ft . from F_{1}. What is the distance between the forces?

Ans. 6 ft .
(15) Resolve a force $F_{r}=52$ lbs. into two parallel forces acting in the same direction, F_{1} and F_{2} : (a) when the distances from F_{r} are. 2 and 3 ft .; (b) when $F_{1}=20 \mathrm{lbs}$. at a distance of 2 ft .

Ans. (a) $F_{1}=31.2 \mathrm{lbs}$., $F_{2}=20.8 \mathrm{lbs}$.
(b) $F_{2}=32 \mathrm{lbs}$. at a distance from F_{r} of 1.25 ft .
(16) Resolve a force $F_{r}=20 \mathrm{lbs}$. into two parallel forces F_{1}, F_{2}, one of which, F_{1}, acts opposite to F_{2} : (a) when the forces are distant from $F_{r} 8$ and 3 ft.; (b) when F_{1} is 30 lbs. and distant from $F_{r} 6 \mathrm{ft}$.

Ans. (a) $F_{1}=12 \mathrm{lbs}$., $F_{2}=32 \mathrm{lbs}$.
(b) $F_{3}=50$ lbs. at a distance of 3.6 ft .
(17) A beam of length lis supported at its ends. Parallel forces F_{1}, F_{2}, F_{3} act upon it at right angles to its length, dividing the beam into the segments b, c, d and e. Find the pressures R_{1} and R_{2} at the supports at the left and right ends, neglecting the weight of the beam.

Ans. $R_{1}=\frac{F_{1}(l-b)+F_{2}(d+e)+F_{3} e}{l}, R_{2}=\frac{F_{3}(l-e)+F_{2}(b+c)+F_{1} b}{l}$.
(18) A table is supported by three legs at the points A, B, C. A load F is placed upon the table at the point F. Find the pressures on the legs.

Ans. Let the upward pressures on the legs be F_{1}, F_{2}, F_{3}. Then

$$
\begin{equation*}
F_{1}+F_{2}+F_{3}-F=0 . \tag{1}
\end{equation*}
$$

Let n_{2} be the distance of F from the line $A C$, and h_{2} the distance of B. Then, taking moments about $A C$,

$$
\begin{equation*}
F n_{2}-F_{2} h_{2}=0 . \tag{2}
\end{equation*}
$$

Let n_{3} be the distance of F from the line $A B$, and h_{3} the distance of C. Then, taking moments about $A B$,

$$
\begin{equation*}
F n_{3}-F_{3} h_{2}=0 \tag{3}
\end{equation*}
$$

From these three equations we have

$$
F_{2}=\frac{F n_{2}}{h_{2}}, \quad F_{3}=\frac{F n_{3}}{h_{2}}, \quad F_{1}=\frac{F n_{1}}{h_{1}},
$$

where n_{1} is the distance of F from $B C$, and h_{1} the distance of A.

If the sides of the triangle $A B C$ are a, b, c, and the angles $B F C, C F A$, $A F B$ are α, β, γ, and the distances of F from A, B and C are p, q and r, we have

$$
F_{1}=\frac{F n_{1}}{h_{1}}=F \frac{\frac{1}{2} n_{1} a}{\frac{1}{2} h_{1} a}=F \frac{q r \sin \alpha}{q r \sin \alpha+p r \sin \beta+p q \sin \gamma}
$$

In the same way we can find F_{2} and F_{3}. If there are four legs, we have four unknown quantities and only three equations of condition. The problem is then indeterminate.
(19) Find the resultant for a system of parallel co-planar forces given by

$$
\begin{array}{lcl}
F_{1}=+33 \mathrm{lbs} ., & x_{1}=+25 \mathrm{ft} ., & y_{1}=+13 \mathrm{ft} . ; \\
F_{2}=+20 & \prime & x_{2}=-10 \\
F_{3}=-35 & y_{2}=-15 & \\
F_{4}=-72 & x_{3}=+15 & \\
F_{5}=+120 & y_{3}=-27 & x_{4}=-31 ، \\
F_{5}=+23 & y_{4}=+17 & x_{\mathrm{s}}=-19
\end{array}
$$

Ans. $F_{r}=+66 \mathrm{lbs}$, $\bar{x}=+77.15 \mathrm{ft} ., \bar{y}=-36.82 \mathrm{ft}$.
If the forces are parallel to the axis of $Y_{2} M_{z}=+5091.9 \mathrm{lb}$.ft.
If the forces are parallel to the axis of $X, M_{z}=+2430.12 \mathrm{lb} . \mathrm{ft}$.
If we look along the line representative of the moment towards the origin, the rotation ie seen eounternctock wise.
(20) Find the resultant for the parallel-force system given by

$$
\begin{aligned}
& F_{1}=+60 \text { lbs., } x_{1}=0, \quad y_{1}=0, \quad z_{1}=0 ; \\
& \boldsymbol{F}_{2}=+70 \quad \text { " } \quad x_{2}=+1 \mathrm{ft} ., \quad y_{2}=+2 \mathrm{ft} ., \quad z_{2}=+3 \mathrm{ft} ; \\
& F_{3}=-90 " \quad x_{3}=+2 " \quad y_{3}=+3 " \quad z_{2}=+4 " \\
& F_{4}=-150 ، \quad x_{4}=+3 ، \quad y_{4}=+4 " \quad z_{4}=+5 " \\
& F_{6}=+200 " \quad x_{5}=+4 " \quad y_{5}=+5 " \quad z_{5}=+6 "
\end{aligned}
$$

Ans. $F_{r}=+90 \mathrm{lbs} ., \bar{x}=+2 \frac{2}{2} \mathrm{ft} ., \bar{y}=+3 \mathrm{ft} ., \bar{z}=+3 \frac{1}{2} \mathrm{ft}$. If the forces are parallel to the axis of Y, we have

$$
M_{x}=+315 \mathrm{lb} . \mathrm{ft} e M_{x}=+2401 \mathrm{~b} . \mathrm{ft} ., \quad M_{r}=396 \mathrm{lb} . \mathrm{ft} .
$$

The line representative making the angles with the axes of X, Y, Z given by

$$
\cos d=+\frac{315}{390^{2}} \quad \cos f=+\frac{240}{396}
$$

or

$$
d=322^{\circ} 41^{\prime} 41^{\prime \prime}, \quad e=90^{\circ}, \quad f=52^{\circ} 41^{\prime} 41^{\prime \prime}
$$

If we look along the line representative towards the origin, the rotation is seen connter-clockwise.

CHAPTER III.

STATICS-NON-CONCURRING FORCES IN GENERAL.

COMPOSITION AND RESOLUTION OF FORCES AND COUPLES. CENTRAL AXIS OF A FORCE SYSTEM. CONDITIONS OF EQUILIBRIOM OF A RIGID BODY. ANALYTICAI DETERMINATION OF RESULTANT FORCE AND COUPLE FOR ANY NUMBER OF NON-CONCURRING FORCES IN SPACE. EQUIVALENT WRENCH. THE INVARIANT. COMPOSITION AND RESOLUTION OF WRENCHES.

In the preceding Chapter we have considered non-concurring forces when they are parallel. We shall now consider non-concurring forces in general, whatever their direction.

Composition and Resolntion of Forces and Couples.-Let a force $A B=+F$ act at any point A of a rigid body.

If at any other point O of the body we introduce two equal and

opposite forces, $O b=+F$ and $O a=$
$-F$, each equal in magnitude to $A B$ and parallel to it, the motion of the body is obviously unaffected by such introduction. We have then the force $A B=+F$ acting upon the body at A, reduced to an equal and parallel force $O b=+F$, acting at any point O we please, and a couple consisting of $A B$ and $O \alpha$. The moment of this couple is the same for every point in its plane and equal to $F p$, where p is the perpendicular distance between the forces $A B$ and $O b$ (page 72). The action of this couple is to cause angular acceleration of the body about an axis perpendicular to its plane (page 72).

Since the motion of the point O is not affected by the introduction of the equal and opposite forces $O b$ and $O a$, the axis of rotation passes through O. The motion of the body is therefore that of the point O at any instant, combined with rotation about the axis through O, perpendicular to the plane of the couple.

Hence (compare page 189, Vol. I, Kinematics), A force F acting at any point of a rigid body can be resolved into an equal and parallel force at any point O of the body at a distance p from the line of direction of F, and a couple whose moment is Fp, whose plane is that of the forces, and whose axis of rotation passes through the point O perpendicular to this plane.

Conversely, The resultant of a force F acting at any point O of a rigid body and a couple whose moment is Fp and whose axis of rotation passes through the point O at right angles to the plane of the couple, is an equal and parallel force acting at a distance p in the plane of the couple.

Cor. 1. Any number of forces acting at different points of a rigid body in different directions can then be reduced to a system
of concurring forces acting at any given point of the body, and a number of couples whose line representatives pass through that point. The forces can be reduced to a single resultant (page 58), and the couples can be reduced to a single resultant (page 73).

Hence any number of forces acting at different points of a rigid body in different directions can be reduced in general to a single force R acting at that point and a couple whose line representative passes through that point. The couple will vary with the point chosen. The force is the same no matter what point is chosen.

Cor. 2. This resultant force R and couple whose moment is $R p$ can again be reduced to a single resultant equal and parallel force R at the distance p in the plane of the couple.

If this single resultant force R passes through the centre of mass, every point of the body has the same acceleration f in the same direction and the motion of the body is one of translation (page 75). The single resultant force is then $R=f \Sigma m$, or $f=\frac{R}{\Sigma m}$, where Σm is the mass of the body.

If this resultant force R does not pass through the centre of mass, it can be reduced to an equal and parallel force $R=f \Sigma m$ which does, and a couple whose plane is that of the forces and whose axis of rotation passes through the centre of mass. This couple then does not affect the acceleration of the centre of mass, which is therefore in both cases in the same direction and equal to $f=\frac{R}{\Sigma m}$.

Therefore, when a rigid body is acted upon by any number of forces applied at different points and acting in different directions, that is, whatever the motion of the body may be, the motion of the centre of mass is precisely the same as if the body were replaced by a particle of equal mass at the centre of mass, and all the forces were transferred to this particle without change in direction or magnitude.

Central Axis of a Force System.-Any number of forces acting at different points of a rigid body in different directions may be reduced to a single force and a couple whose axis is in the line of action of the force.

Let $O R$ be the line representative of the force R, and $O M$ the line representative of the couple M, passing through O, to which, as we have seen, any number of forces acting upon a rigid body may be reduced. Resolve $O M$ into the components $O N$ at right angles to $O R$, and $O C$ along $O R$. The couple represented by $O N$ can be replaced by the equal parallel and opposite
 forces $-R$ at O and $+R$ at a point O_{1}, the distance $O O_{1}$ being perpendicular to the plane of $O N$ and $O R$ and equal to $\frac{O N}{R}$. Then $-R$ and $+R$ at O balance, and the system is reduced to R at O_{1} and the couple represented by $O C$, whose axis is parallel to R (compare page 191, Vol. I, Kinematics of a Rigid System). The couple represented by $O C$ causes rotation of the body about the axis $O C$ with a certain angular acceleration α, and therefore O_{1} has the acceleration of translation $O O_{1} . \alpha$.

But (page 190. Vol. I, Kinematics of a Rigid System) an angular acceleration c of a rigid system about any axis can be resolved into an equal angular acceleration about a parallel axis at any distance
$O O_{1}$ and an acceleration of translation $O O_{1} . \alpha$ in a direction at right angles to the plane of the axis. The axis through O can then be shifted to O_{1}. The entire system of forces reduces then to the resultant force R at O_{1} and a couple whose axis is in the line $O_{1} R$.

When this reduction is made, the line of action of the force is called the central axis of the force system, or Pointsot's central axis. (Compare page 191, Vol. I, Kinematics of a Rigid System.)

Sir R. S. Ball has given the name wrench to the resultant force and couple to which a given system of forces may be reduced when the line of action of the resultant force is the central axis.

Cor. 1. Since $O M$ is always greater than $O C$, it is evident that the magnitude of the resultant couple is less when its direction is that of the central axis than when it has any other direction.

Cor. 2. If ϕ is the angle between R and M, then denoting $O N$ by N, and $O C$ by C,

$$
O O_{1}=\frac{N}{R}=\frac{M \sin \phi}{R} C=M \cos \phi,
$$

and this value of C gives the least value of the resultant moment. This is called Pointsot's moment.

Conditions of Equilibrium of a Rigid Body.-We have proved in the preceding Article that any forces acting on a rigid body can be reduced to a single resultant force R and a couple whose axis is parallel to that force or whose plane is at right angles to it.

In order, then, that static equilibrium may exist, R must be zero and the moment of the couple must be zero. Or, as we have stated
 (page ${ }^{77}$), all the forces must evidently reduce
to two equal and opposite forces acting in the same straight line. Hence, the algebraic sum of the moments of all the forces about every point in space must be zero. Any one of the forces, then, must be equal and opposite to the resultant of all the others and act in the same straight line with it. If any one of the forces is equal and opposite to the resultant of all the others, but does not act in the same line with it, we have molar equilibrium (page 58).

We have then two necessary and sufficient conditions for static equilibrium :*

1st. The algebraic sum of the components of all the forces in each of any three rectangular directions must be zero.

If the forces F_{1}, F_{2}, F_{3}, etc., make the angles ($\alpha_{1}, \beta_{1}, \gamma_{1}$), $\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)$, etc., with the co-ordinate axes, then we must have

$$
\left.\begin{array}{l}
F_{x}=F_{1} \cos \alpha_{1}+F_{2} \cos \alpha_{2}+\text { etc. }=\Sigma F \cos \alpha=0 \tag{1}\\
F_{y}=F_{1} \cos \beta_{1}+F_{2} \cos \beta_{2}+\text { etc. }=\Sigma F \cos \beta=0 \\
F_{z}=F_{1} \cos \gamma_{1}+F_{2} \cos \gamma_{2}+\text { etc. }=\Sigma F \cos \gamma=0
\end{array}\right\}
$$

When these equations only are complied with, there is no resultant force and any one of the forces is equal and opposite to the resultant of all the others, but does not necessarily act in the same line with it. We have then molar equilibrium.

2d. The algebraic sum of the component moments in each of any three given planes at right angles must be zero.

[^5]If $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$, etc., are the co-ordinates of the points of application of the forces F_{1}, F_{2}, etc., then

$$
\left.\begin{array}{l}
M_{x}=\Sigma F y \cos \gamma-\Sigma F z \cos \beta=0 \\
M_{y}=\Sigma F z \cos \alpha-\Sigma F x \cos \gamma=0 \tag{2}\\
M_{z}=\Sigma F x \cos \beta-\Sigma F y \cos \alpha=0
\end{array}\right\}
$$

The figure shows the direction of positive rotation in each plane and of positive components $F^{\prime} \cos \alpha, F^{\prime} \cos \beta, F \cos \gamma$.

When these equations only are satisfied, there is no rotation about the origin O. The resultant then passes through 0 .

If this resultant is not also zero, there can be no static equilibrium. If it is zero, then the 1st condition is also satisfied and we have the algebraic sum of the moments of all the forces about every point in space equal to zero.

In order, then, that there may be static equilibrium, both conditions (1) and (2) must be fulfilled.

Cor. 1. If the forces are all co-planar, let $X Y$ be their plane. Then $z=0, \cos \gamma=0$, and the general conditions of static equilibrium become

$$
\begin{array}{r}
F_{x}=\Sigma F \cos \alpha=0 ; \\
F_{y}=\Sigma F \cos \beta=0 ; \tag{2}\\
M_{z}=\Sigma F x \cos \beta-\Sigma F y \cos \alpha=0 .
\end{array}
$$

That is,
1st. The algebraic sum of the components of the forces in each of any two rectangular directions in the plane of the forces must be zero.

2d. The algebraic sum of the moments of the forces about any point in this plane must be zero.

If the first condition only is satisfied, we have molar equilibrium.

If the second only is satisfied, there is no rotation about the axis $O Z$. The resultant then coincides with this axis.

When this resultant is also zero, we have the algebraic sum of the moments of the forces about every point in the plane zero; both conditions are satisfied and there is static equilibrium.

Cor. 2. If three non-concurring forces acting at different points of a rigid body are in equilibrium, their lines of direction produced must intersect in a common point and the forces must be co-planar.

For the resultant of any two must pass through their point of intersection and lie in their plane. The third force must be equal and opposite to this resultant and act in the same straight line.

Cor. 3. If the forces are parallel, take their common direction parallel to the axis of Y. Then $\cos \alpha=0, \cos \gamma=0, \cos \beta=1$, $F_{x}=0, F_{z}=0, F_{y}=\Sigma F$, and we have

$$
\begin{align*}
\Sigma F & =0 ; \tag{1}\\
\Sigma F x & =0, \quad \Sigma F z=0 . \tag{2}
\end{align*}
$$

That is,
1st. The algebraic sum of the forces must be zero.
2d. The algebraic sum of the moments of the forces with reference
to any two co-ordinate planes parallel to the forces must be zero.
These are the same conditions given on page 78.

If the first condition only is satisfied, we have molar equilibrium. If the second condition only is satisfied, the resultant passes through the origin and coincides with the axis of Y.

Cor. 4. If the forces are parallel and co-planar, let their common plane be the plane of $X Y$, and let them all be parallel to the axis of Y. Then we have

$$
\begin{align*}
\Sigma F & =0 \tag{1}\\
\Sigma F x & =0 . \tag{2}
\end{align*}
$$

That is,
$1 s t$. The algebraic sum of the forces must be zero.
$2 d$. The algebraic sum of the moments of the forces about any point in their plane must be zero.

Analytical Determination of Resultant Force and Couple for Any Namber of Non-concurring Forces in Space.-(Compare page 197, Vol. I, Kinematics of a Rigid System.) Let any number of forces F_{1}, F_{2}, F_{3}, etc., acting at different points of a rigid body be given by $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$, etc., the origin being taken at some point of the rigid body. Let F_{1} make with the co-ordinate axes of X, Y, Z the angles $\left(\alpha_{1}, \beta_{1}, \gamma_{1}\right)$ respectively; F_{2}, the angles $\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)$, etc. Then we have for the algebraic sum of the components parallel to the axes

$$
\left.\begin{array}{l}
F_{x}=F_{1} \cos \alpha_{1}+F_{2} \cos \alpha_{2}+\ldots=\Sigma F \cos \alpha \\
F_{y}=F_{1} \cos \beta_{1}+F_{2} \cos \beta_{2}+\ldots=\Sigma F \cos \beta \tag{1}\\
F_{z}=F_{1} \cos \gamma_{1}+F_{2} \cos \gamma_{2}+\ldots=\Sigma F \cos \gamma
\end{array}\right\}
$$

Resultant Force.-If the resultant F_{r} makes the angles a, b, c with the axes, we have

$$
F_{r} \cos a=F_{x}, \quad F_{r} \cos b=F_{y}, \quad F_{r} \cos c=F_{z}
$$

and hence the direction cosines are given by

$$
\begin{equation*}
\cos a=\frac{F_{x}}{F_{r}}, \quad \cos b=\frac{F_{y}}{F_{r}}, \quad \cos c=\frac{F_{z}}{F_{r}} \tag{2}
\end{equation*}
$$

Squaring and adding, since $\cos ^{2} a+\cos ^{2} b+\cos ^{2} c=1$,

$$
\begin{equation*}
F_{r}=\sqrt{\overline{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}}} . \tag{3}
\end{equation*}
$$

The magnitude and direction of the resultant force are thus determined.

There are precisely the same equations as for concurring forces, page 60 .

Resultant Couple.-We can resolve each force, $\boldsymbol{F}_{1}, F_{2}$, etc. (page 82), into an equal and parallel force acting at the origin O, and a couple causing a moment about O. Each couple can be resolved into component couples in the planes $X Y, Y Z, Z X$.

Taking, then, positive rotation as indicated by the figure in each plane, we have for the component moments in each plane about each axis (compare page 198, Vol. I, Kinematics of a Rigid System):

$$
\left.\begin{array}{l}
\text { about axis of } X \\
\text { in plane } Y Z, \tag{4}\\
\text { about axis of } Y \\
\text { in plane } Z X,
\end{array}\right\} M_{x}=\Sigma F y \cos \gamma-\Sigma F z \cos \beta ;
$$

The moment of the resultant couple is then given by

$$
\begin{equation*}
M_{r}=\sqrt{M_{x}^{2}+M_{y}^{2}+M_{z}^{2}}, . \tag{5}
\end{equation*}
$$

and its direction cosines are given by

$$
\begin{equation*}
\cos d=\frac{M_{x}}{M_{r}}, \quad \cos e=\frac{M_{y}}{M_{r}}, \quad \cos f=\frac{M_{z}}{M_{r}} . \tag{6}
\end{equation*}
$$

The axis passing through the origin is thus known in direction. The line representative coincides with this axis and is given in magnitude by (5). Looking along the line representative towards the origin, the direction of rotation is seen counter-clockwise.

The magnitude and direction of the resultant couple are thus known.

We have thus reduced the forces acting upon the body to a resultant force F_{r} acting at any point of the body taken as the origin O and a couple whose moment is $M I_{r}$. The resultant force F_{r} is the same in magnitude and direction whatever point be taken. The moment M. depends upon the point.

If r is the lever-arm of the resultant with reference to the origin O, we have

$$
F_{r} r=M_{r}, \quad \text { or } \quad r=\frac{M_{r}}{F_{r}}
$$

Conditions of Equilibrium. - If the body is in static equilibrium, we must have
$F_{x}=0, \quad F_{y}=0, \quad F_{z}=0, \quad$ and also $\quad M_{x}=0, \quad M_{y}=0, \quad M_{z}=0$.
We see from (3) that the first condition is fulfilled when $F_{r}=0$, or the resultant force is zero. Therefore all the forces must reduce to two equal and opposite forces, or any one of the forces must be equal and opposite in direction to the resultant of all the others.

We see from (5) that the second condition is fulfilled when $M_{r}=0$, that is, the two equal and opposite forces must act in the same line.

We have then for the equations of condition for equilibrium, from (1),

$$
\left.\begin{array}{l}
\Sigma F \cos \alpha=0 \\
\Sigma F \cos \beta=0 \tag{7}\\
\Sigma F \cos \gamma=0
\end{array}\right\}
$$

and from (4),

$$
\left.\begin{array}{l}
\Sigma F y \cos \gamma-\Sigma F z \cos \beta=0 \tag{8}\\
\Sigma F z \cos \alpha-\Sigma F x \cos \gamma=0 \\
\Sigma F x \cos \beta-\Sigma F y \cos \alpha=0
\end{array}\right\}
$$

If equations (8) only are fulfilled, the two opposite resultant forces pass through the origin O, but unless (7) is also fulfilled they are not equal. (Compare page 199, Vol. I, Kinematics of a Rigid

System.) If (7) only is fulfilled, we have molar equilibrium (page 58). These are the same equations as on page 85.

Condition that there shall be a Single Resultant Force only.-If all the forces intersect at a single point, the moment at that point is zero, and all the forces acting upon the rigid body reduce then to a single resultant force at this point.

There is, however, one case in which the forces may not all intersect at a single point, and yet we may have a single resultant force. In this case all the forces must reduce to three, any two of which intersect, while the other, although it does not pass through their point of intersection, yet intersects their resultant.

Thus let the resultant forces parallel to the plane $X Y, F_{x}$ and F_{y}, intersect in a point A. We can then take them as acting at any point in the line of their resultant $A C$. Now suppose that the resultant force F_{z} parallel to the axis
 $O Z$ intersects this resultant $A C$ at B. Then we can take all three as acting at B, and thus have a single resultant force passing through B.

Let $\bar{x}, \bar{y}, \bar{z}$ be the co-ordinates of the point B. Then considering F_{x}, F_{y}, F_{z} acting at this point, we have

$$
\begin{aligned}
M_{x} & =F_{z} \bar{y}-F_{y} \bar{z} \\
M_{y} & =F_{x} \bar{z}-F_{z} \bar{x} \\
M_{z} & =F_{y} \bar{x}-F_{x} \bar{y}
\end{aligned}
$$

If we multiply the first of these by F_{x}, the second by F_{y}, and the third by F_{z} and add, we have (compare page 200, Vol. I, Kinematics of a Rigid System)

$$
\begin{equation*}
F_{x} M_{x}+F_{y} M_{y}+F_{z} M_{z}=0 \tag{9}
\end{equation*}
$$

Equation (9) gives the condition which must be satisfied in order that all the forces may reduce to a single resultant.

We have evidently for the projection of the line of this resultant on the co-ordinate planes

$$
y=\frac{F_{y}}{F_{x}} x-\frac{M_{z}}{F_{x}}, \quad x=\frac{F_{x}}{F_{z}} z-\frac{M_{y}}{F_{z}}, \quad z=\frac{F_{z}}{F_{y}} y-\frac{M_{x}}{F_{y}} .
$$

Co-planar Forces.-If the forces are all co-planar, take their plane as the plane of $X Y$. Then $z=0, \cos \gamma=0$, and, from equations (1),

$$
\begin{aligned}
& F_{x}=F_{1} \cos \alpha_{1}+F_{2} \cos \alpha_{2}+\ldots=\Sigma F \cos \alpha \\
& F_{y}=F_{1} \cos \beta_{1}+F_{2} \cos \beta_{2}+\ldots=\Sigma F \cos \beta \\
& F_{z}=0
\end{aligned}
$$

and from equations (4),

$$
M_{x}=0, \quad M_{y}=0, \quad M_{z}=\Sigma F x \cos \beta-\Sigma F y \cos \alpha
$$

We see, then, that equation (9) is satisfied. When the forces are co-planar, therefore, they reduce to a single resultant.

The equation of this resultant, if the plane of the forces is the plane of $X Y$, is

$$
y=\frac{F_{y}}{F_{x}} x-\frac{M_{z}}{F_{x}}
$$

The magnitude of the resultant is

$$
F_{r}=\sqrt{\overline{F_{x}^{2}+} \overline{F_{y}^{2}}}
$$

The resultant moment is M_{z}; and if r is the lever-arm of the resultant with reference to the origin,

$$
r=\frac{M_{z}}{F_{r}} .
$$

Parallel Forces.*-If the forces are all parallel, we have α, β, γ constant for all the forces. Hence from (1) and (2)

$$
\left.\begin{array}{l}
F_{x}=\cos \alpha \Sigma F=F_{r} \cos \alpha \tag{10}\\
F_{y}=\cos \beta \Sigma F=F_{r} \cos b \\
F_{z}=\cos \gamma \Sigma F=F_{r} \cos c
\end{array}\right\}
$$

The resultant F_{r} must have the common direction of the parallel forces, or

$$
a=\alpha, \quad b=\beta, \quad c=\gamma, \quad \text { and } \quad F_{r}=\Sigma F
$$

That is, the resultant F_{r} is equal to the algebraic sum of the forces and is parallel to them.

If we transfer the origin to any other point of the body whose co-ordinates are $x^{\prime}, y^{\prime}, z^{\prime}$, we have from (4), by putting $y-y^{\prime}$, $x-x^{\prime}, z-z^{\prime}$ in place of y, x, z, and taking α, β, γ constant,
$\left.\begin{array}{l}M_{x}=\cos \gamma \Sigma F\left(y-y^{\prime}\right)-\cos \beta \Sigma F\left(z-z^{\prime}\right)=\cos \gamma\left[\Sigma F y-y^{\prime} \Sigma F\right]-\cos \beta\left[\Sigma F z-z^{\prime} \Sigma F\right] ; \\ M_{y}=\cos a \Sigma F\left(z-z^{\prime}\right)-\cos \gamma \Sigma F\left(x-x^{\prime}\right)=\cos a\left[\Sigma F z-z^{\prime} \Sigma^{\prime} F^{\prime}\right]-\cos \gamma\left[\Sigma F x-x^{\prime} \Sigma F\right] ; \\ M_{z}=\cos \beta \Sigma F\left(x-x^{\prime}\right)-\cos a \Sigma F\left(y-y^{\prime}\right)=\cos \beta\left[\Sigma F x-x^{\prime} \Sigma F\right]-\cos a\left[\Sigma F y-y^{\prime} \Sigma F\right] .\end{array}\right\}$.
If we substitute (11) and (10) in equation (9), we see that equation (9) is satisfied. All the forces reduce then to a single resultant force. The point of application of this force is given by the values of $x^{\prime}, y^{\prime}, z^{\prime}$ which make M_{x}, M_{y}, M_{z} zero. Hence the co-ordinates of the point of application of the resultant force are

$$
\begin{equation*}
\bar{x}=\frac{\Sigma F x}{\Sigma F}, \quad \bar{y}=\frac{\Sigma F y}{\Sigma F}, \quad \bar{z}=\frac{\Sigma F z}{\Sigma F} \tag{12}
\end{equation*}
$$

This point is the centre of parallel forces (page 73).
Equivalent Wrench.-(Compare page 201, Vol. I, Kinematics of a Rigid System.) We have seen (pages 83, 86) that all the forces acting upon a rigid body may be reduced to a resultant force F_{r} acting at any point of the body taken as the origin and a couple M_{r} causing rotation about an axis through that point. The resultant force F_{r} is the same in magnitude and direction no matter what point is taken. The couple M_{r} varies with the point. We have also seen (page 83) that this force and couple can be reduced to the resultant force F_{r} at a certain point and a resultant couple c_{r} whose axis is in the line of direction of F_{r}. The name wrench is given to this resultant force and couple; the axis is the central axis; the magnitude of the resultant force $F r$ is called the intensity of the wrench; the ratio of the moment c_{r} to the force F_{r}, or $\frac{c_{r}}{F_{r}}$, is evidently a linear magnitude and is called the pitch. It is the lever-arm of the couple which gives the moment c_{r} when the forces of the couple are equal to F_{r}.

A single force may thus be regarded as a wrench of zero pitch, a couple alone as a wrench of infinite pitch.

[^6](1) The resultant force along the central axis is given by (3)
$$
F_{r}=\sqrt{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}}
$$
(2) The direction-cosines of the central axis are given by (2)
$$
\cos a=\frac{F_{x}}{F_{r}}, \quad \cos b=\frac{F_{y}}{F_{r}}, \quad \cos c=\frac{F_{z}}{F_{r}} .
$$
(3) The moment at every point resolved in a direction parallel to the central axis must be the same and equal to that in the direction of the central axis. Let c_{r} be the resultant moment along the central axis and let its components along the co-ordinate axes be c_{x}, c_{y}, c_{z}.

Take any point for which F_{x}, F_{y}, F_{z} and M_{x}, M_{y}, M_{z} are given as the origin, and let the co-ordinates of any point of the central axis be ($\left.x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}\right)$. Then the components m_{x}, m_{y}, m_{z} of the moment at the origin due to the couple in the plane at right angles to the central axis are from equations (4), page 87,

$$
\left.\begin{array}{l}
m_{x}=F_{z} y^{\prime \prime}-F_{y} z^{\prime \prime} \tag{13}\\
m_{y}=F_{x} z^{\prime \prime}-F_{z} x^{\prime \prime} \\
m_{z}=F_{y} x^{\prime \prime}-F_{x} y^{\prime \prime}
\end{array}\right\}
$$

We have then

$$
\begin{array}{ll}
M_{x}=c_{x}+m_{x}, \quad M_{y}=c_{y}+m_{y}, \quad M_{z}=c_{z}+m_{z} \\
\text { or } \\
c_{x}=M_{x}-m_{x}, \quad c_{y}=M_{y}-m_{y}, \quad c_{z}=M_{z}-m_{z} \tag{14}
\end{array}
$$

Hence

$$
c_{r}=\left(M_{x}-m_{x}\right) \cos a+\left(M_{y}-m_{y}\right) \cos b+\left(M_{z}-m_{z}\right) \cos c
$$

Inserting the values of the direction-cosines of the central axis, we obtain

$$
c_{r} F_{r}=\left(M_{x}-m_{x}\right) F_{x}+\left(M_{y}-m_{y}\right) F_{y}+\left(M_{z}-m_{z}\right) F_{z}
$$

But since $m_{x} F_{x}+m_{y} F_{y}+m_{z} F_{z}=0$, this becomes

$$
\begin{equation*}
c_{r} F_{r}=F_{x} M_{x}+F_{y} M_{y}+F_{z} M_{z} \tag{15}
\end{equation*}
$$

We also have from (14)
$c_{r} \cos a=c_{x}=M_{x}-m_{x}, c_{r} \cos b=M_{y}-m_{y}, c_{r} \cos c=M_{z}-m_{z}$.
Hence from (13), inserting the values of the direction-cosines,
$\frac{c_{r}}{\bar{F}_{r}^{\prime}}=\frac{M_{x}+F_{y} z^{\prime \prime}-F_{z} y^{\prime \prime}}{F_{x}}=\frac{M_{y}+F_{z} x^{\prime \prime}-F_{x} z^{\prime \prime}}{F_{y}}=\frac{M_{z}+F_{x} y^{\prime \prime}-F_{y} x^{\prime \prime}}{F_{z}}$.
Equations (17) give the equation of the central axis.
From (15) we have

$$
\begin{equation*}
\frac{c_{r}}{F_{r}}=\frac{F_{x} M_{x}+F_{y} M_{y}+F_{z} M_{z}}{F_{x}^{2}+F_{y}^{2}+F_{z}^{2}} \tag{18}
\end{equation*}
$$

This we have called the pitch (compare page 202, Vol. I, Kinematics of a Rigid System). It is the lever-arm of the couple which gives the moment c_{r} when the forces of the couple are equal to F_{r}.

If we insert (17) in (16) and reduce, we have for the equation of the central axis

$$
\left.\begin{array}{rl}
\frac{1}{F_{x}}\left(x^{\prime \prime}-\frac{F_{y} M_{z}-F_{z} M_{y}}{F_{r}^{2}}\right) & =\frac{1}{F_{y}}\left(y^{\prime \prime}-\frac{F_{z} M_{x}-F_{x} M_{z}}{F_{r}^{2}}\right) \\
& =\frac{1}{F_{z}}\left(z^{\prime \prime}-\frac{F_{x} M_{y}-F_{y} M_{x}}{F_{r}^{2}}\right) \tag{19}
\end{array}\right\}
$$

Therefore the central axis passes through a point whose coordinates are*

$$
\begin{equation*}
x^{\prime \prime}=\frac{F_{y} M_{z}-F_{z} M_{y}}{F_{r}^{2}}, \quad y^{\prime \prime}=\frac{F_{z} M_{x}-F_{x} M_{z}}{F_{r}^{2}}, \quad z^{\prime \prime}=\frac{F_{x} M_{y}-F_{y} M_{x}}{F_{r}^{2}} \tag{20}
\end{equation*}
$$

If we substitute these values of $x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}$ in (13) and (16), we have
$\left.\begin{array}{ll}M_{x}=c_{r} \cos a-F_{r}\left(z^{\prime \prime} \cos b-y^{\prime \prime} \cos c\right), & F_{x}=F_{r} \cos \alpha ; \\ M_{y}=c_{r} \cos b-F_{r}\left(x^{\prime \prime} \cos c-z^{\prime \prime} \cos \alpha\right), & F_{y}=F_{r} \cos b ; \\ M_{z}=c_{r} \cos c-F_{r}\left(y^{\prime \prime} \cos \alpha-x^{\prime \prime} \cos b\right), & F_{z}=F_{r} \cos a .\end{array}\right\}$.
When, therefore, $M_{x}, M_{y}, M_{z}, F_{x}, F_{y}, F_{z}$ are given for any point of the body, we can find the equivalent wrench, that is, the resultant force F_{r}, the direction of the central axis, and from (20) its position with reference to that point as an origin. We have also the couple c_{r} in the direction of the axis from (18).

On the other hand, if the position ($x^{\prime \prime}, y^{\prime \prime}, z^{\prime \prime}$) of the central axis is given, together with c_{r} and F_{r}, we can find M_{x}, M_{y}, M_{z} and F_{x}, F_{y}, F_{z} for the origin. The quantities F_{x}, F_{y}, F_{z} and M_{x}, M_{y}, M_{z} are called the components of the wrench. The wrench is known when these six quantities are known.

The Invariant.-(Compare page 203, Vol. I, Kinematics of a Rigid System.) From (15) we see that the quantity

$$
F_{x} M_{x}+F_{y} M_{y}+F_{z} M_{z}
$$

is always equal to $F_{r} c_{r}$, and is therefore invariable no matter what point is taken and whatever the values of F_{x}, F_{y}, F_{z}, that is, whatever the direction of the axes. This quantity is therefore called the Invariant of the components. Since F_{r} is also invariable whatever the direction of the axes, it may also be called the invariant of the couple.

If the invariant is zero, it follows that either F_{r} is zero or c_{r} is zero. The condition

$$
F_{x} M_{x}+F_{y} M_{y}+F_{z} M_{z}=0
$$

is therefore the condition that there is no resultant force. or rotation only, or that there is no rotation and therefore a single resultant force only (ste equation (9)).

Composition and Resolution of Wrenches.-(Compare page 203, Vol. I, Kinematics of a Rigid System.) If two wrenches are given, then by (21) we can find the six components of each wrench. Adding these two and two, we have the six components of the resultant wrench. Then by equations (2), (3), (15) and (20) the resultant wrench may be found.

[^7]Conversely, we may resolve any given wrench into two wrenches in an infinite number of ways. Since a wrench is given by six components at any point, we have in the two wrenches twelve quantities at our disposal. Six of these are required to make the two wrenches equivalent to the given wrench. We may therefore in general satisfy six other conditions at pleasure.

Thus we may choose the axis of one wrench to be any given straight line we please.

Special Cases.-All cases are included by the general formulas (1) to (21) of the preceding Article.
(a) For concurring forces in space, take the origin as the point of concurrence. Then $M_{x}=0, M_{y}=0, M_{z}=0$. If the concurring forces are in equilibrium, we have also $F_{x}=0, F_{y}=0, F_{z}=0$.
(b) For concurring co-planar forces, take the origin as the point of concurrence. Then $M_{x}=0, M_{y}=0, M_{z}=0$, and $F_{z}=0, z=0$.
(c) For non-concurring co-planar forces, take $X Y$ as the plane. Then $z=0, F_{z}=0, M_{x}=0, M_{y}=0$.
(d) If one point of the body is fixed, take that point as origin. Then since there can be no translation, $F_{x}=0, F_{y}=0, F_{z}=0$.
(e) If an axis parallel to X is fixed, there can only be translation along this axis and rotation about it. Hence $F_{y}=0, F_{z}=0, M_{y}=0$, $M_{z}=0$.
(f) If two points are fixed, there can be no translation, but only rotation. If we take the axis of X through the points, we have $F_{x}=0, F_{y}=0, F_{z}=0, M_{y}=0, M_{z}=0$.
(g) If one point is always in the plane $X Y$, the body can have no translation parallel to z. Hence $F_{z}=0$:
(h) If three points not in the same straight line are confined to the plane $X Y$, we have rotation about Z only and no translation along Z. Hence $F_{z}=0, M_{x}=0, M_{y}=0$.
(i) If two axes parallel to X are fixed, we can only have translation parallel to X. Hence $F_{y}=0, F_{z}=0$, and $M_{x}=0, M_{y}=0$, $M_{z}=0$.
(j) If the forces are all parallel to Y, there is translation parallel to Y only, and rotation only about Z and X. Hence $F_{x}=0$, $F_{z}=0, F_{y}=0$.

EXAMPLES.

(1) Let a rigid body be acted upon by the co-planar forces
$F_{1}=50 \mathrm{lbs} ., \quad F_{2}=30 \mathrm{lbs} ., \quad F_{3}=70 \mathrm{lbs} ., \quad F_{4}=90 \mathrm{lbs}, \quad F_{5}=120 \mathrm{lbs}$. acting at the points given by

$$
\begin{aligned}
& x_{1}=+5 \mathrm{ft} ., \quad y_{1}=+10 \mathrm{ft} . ; \quad x_{2}=+9 \mathrm{ft} ., y_{2}=+12 \mathrm{ft} . ; \\
& x_{3}=+17 \mathrm{ft} ., y_{3}=+14 \mathrm{ft} \text {; } x_{4}=+20 \mathrm{ft} ., y_{4}=+13 \mathrm{ft} . ; \\
& x_{5}=+15 \mathrm{ft} ., y_{5}=+8 \mathrm{ft} .
\end{aligned}
$$

Let the forces make angles with the axes of X and Y, given by

$$
\begin{array}{ll}
\alpha_{1}=70^{\circ}, \beta_{1}=20^{\circ} ; & \alpha_{2}=60^{\circ}, \quad \beta_{2}=150^{\circ} ; \quad \alpha_{3}=120^{\circ}, \beta_{3}=30^{\circ} ; \\
\alpha_{4}=150^{\circ}, \beta_{4}=120^{\circ} ; & \alpha_{5}=90^{\circ}, \beta_{5}=0^{\circ} .
\end{array}
$$

Find the resultant, etc. (Compare Ex. (13), Vol. I, page 207.)
Ans. We have (page 86) for the components parallel to the axes of X and Y :
$F_{. c}=50 \cos 70^{\circ}+30 \cos 60^{\circ}-70 \cos 60^{\circ}-90 \cos 30^{\circ}=-80.842$ lbs.;
$F y=50 \cos 20^{\circ}-30 \cos 30^{\circ}+120+70 \cos 30^{\circ}-90 \cos 60^{\circ}=+156.626$ lbs.;
$F_{z}=0$.

The resultant is given in magnitude by

$$
F_{r}=\sqrt{F_{x^{2}}^{2}+F_{y}^{2}}=176.259 \mathrm{lbs} .
$$

and its direction-cosines by

$$
\begin{aligned}
& \cos a=\frac{F_{x}}{F_{r}}=\frac{-80.842}{176.259}, \quad \text { or } \quad a=117^{\circ} 18^{\prime} 1^{\prime \prime} \\
& \cos b=\frac{F_{y}}{F_{r}}=\frac{+156.626}{176.259}, \quad \text { or } \quad b=27^{\circ} 18^{\prime} 1^{\prime \prime}
\end{aligned}
$$

We have from equation (4), page 87 ,
$\Sigma F x \cos \beta=+50 \cos 20^{\circ} \times 5-30 \cos 30^{\circ} \times 9+70 \cos 30^{\circ}$

$$
\times 17-90 \cos 60^{\circ} \times 20+120 \times 15=+1931.670 \mathrm{lb} . \mathrm{ft} . ;
$$

$\Sigma F y \cos \alpha=+50 \cos 70^{\circ} \times 10+30 \cos 60^{\circ} \times 12-70 \cos 60^{\circ}$

$$
\times 14-90 \cos 30^{\circ} \times 13=-1152.245 \mathrm{lb} . \mathrm{ft}
$$

$M_{x}=0, M_{y}=0, M_{z}=\Sigma F x \cos \beta-\Sigma F y \cos \alpha=+3083.915 \mathrm{lb} . \mathrm{ft}$.
Since, then, equation (9), page 88,

$$
F_{x} M_{x}+F_{y} M_{y}+F_{z} M_{z}=0
$$

is satisfied, the forces reduce to a single resultant force.
The moment of this resultant force relative to the origin is

$$
M_{r}=\sqrt{M x^{2}+M y^{2}+M z^{2}}=M_{z}=+3083.915 \mathrm{lb} .-\mathrm{ft}
$$

Its lever-arm is

$$
r=\frac{M_{r}}{F_{r}}=\frac{3083.915}{176.259}=17.5 \mathrm{ft}
$$

The equation of the line of direction of the resultant (page 88) is

$$
y=\frac{F_{y}}{F_{x}} x-\frac{M_{z}}{F_{x}}=-1.95 x+38.14
$$

The co-ordinates of the point of application of the resultant are given from equations (12), page 89 :

$$
\begin{aligned}
& \bar{x}=\frac{\Sigma F x \cos \beta}{F_{y}}=\frac{+1931.67}{+156.626}=+121 \mathrm{ft} . ; \\
& \bar{y}=\frac{\Sigma F y \cos \alpha}{F_{x}}=\frac{-1152.245}{-80.842}=+14.25 \mathrm{ft} .
\end{aligned}
$$

(2) Find the resultant, etc., for the force system acting on a rigid body given by

$$
\begin{array}{lll}
F_{1}=50 \mathrm{lbs} ; & \alpha_{1}=60^{\circ}, & \beta_{1}=40^{\circ}, \\
\gamma_{1} \text { acute; } \\
F_{2}=70 ، & \alpha_{2}=65^{\circ}, \quad \beta_{2}=45^{\circ}, & \gamma_{2} \text { obtuse; } \\
F_{3}=90 ، & \alpha_{3}=70^{\circ}, \quad \beta_{3}=50^{\circ}, \gamma_{3} \text { acute; } \\
F_{4}=120 ، & \alpha_{4}=75^{\circ}, \quad \beta_{4}=55^{\circ}, \gamma_{4} \text { obtuse. } \\
x_{1}=0, & y_{1}=0, & z_{1}=0 ; \\
x_{2}=+1 \mathrm{ft} ., & y_{2}=+4 \mathrm{ft} ., & z_{2}=+7 \mathrm{ft} . ; \\
x_{3}=+2 ، & y_{3}=+5 ، & z_{3}=+8 " \\
x_{4}=+3 " & y_{4}=+6 " & z_{4}=+9 "
\end{array}
$$

(Compare Ex. (15), Vol. I, page 208.)

Ans. We find the angles γ by the formula, Vol. I, page 12,

$$
\cos ^{2} \gamma=-\cos (\alpha+\beta) \cos (\alpha-\beta)
$$

Then from page 86 we have
$F_{x}=+116.423 \mathrm{lbs} ., \quad F_{y}=+214.480 \mathrm{lbs} ., \quad F_{z}=-51.057 \mathrm{lbs}$.
Therefore the resultant is

$$
F_{r}=\sqrt{F_{x}^{2}+F_{y^{2}}^{2}+F_{z}^{2}}=+249.325 \mathrm{lbs} .
$$

and its direction-cosines are given by

$$
\cos a=\frac{F_{x}}{F_{r}}, \quad \cos b=\frac{F_{y}}{F_{r}}, \quad \cos c=\frac{F_{z}}{F_{r}},
$$

or

$$
a=62^{\circ} 9^{\prime} 48^{\prime \prime}, \quad b=30^{\circ} 39^{\prime} 20^{\prime \prime}, \quad c=101^{\circ} 49^{\prime}
$$

We also have for the moments from equation (4), page 87,

$$
M_{x}=-1838.604, \quad M_{y}=+928.947, \quad M_{z}=-86.903 \mathrm{lb} .-\mathrm{ft} .
$$

The resultant moment about the origin is

$$
M_{r}=\sqrt{M_{x^{2}}+M_{y}^{2}+M_{z}^{2}}=+2061.789 \mathrm{lb} . \mathrm{ft} .,
$$

and the direction-cosines of its line representative are given by

$$
\cos d=\frac{M_{x}}{M_{r}}, \quad \cos e=\frac{M_{y}}{M_{r}}, \quad \cos f=\frac{M_{z}}{M_{r}},
$$

or

$$
d=153^{\circ} 5^{\prime} 40^{\prime \prime}, \quad e=63^{\circ} 14^{\prime} 15^{\prime \prime}, \quad f=92^{\circ} 24^{\prime} 56^{\prime \prime}
$$

Looking along this line representative towards the origin, the direction of rotation is seen counter-clockwise.

The equations of the projection of the resultant on the co-ordinate planes are

$$
y=1.885 x+0.746, \quad x=-2.28 z+18.19, \quad z=-0.238 y-8.57
$$

We see that

$$
F_{x} M_{x}+F_{y} M_{y}+F_{z} M_{z}
$$

does not in this case equal zero. Hence, page 88, the forces do not reduce to a single resultant force, but to a resultant force along the central axis and a couple whose axis is the central axis.

The resultant force along the central axis is, as already found, $F_{r}=249.325$ lbs., and its angles with the co-ordinate axes are as already found.

The co-ordinates of the central axis are given by equation (20), page 91 ,

$$
\begin{gathered}
x^{\prime \prime}=\frac{F_{y} M_{z}-F_{z} M_{y}}{F_{r}^{2}}=+0.463 \mathrm{ft} ., \quad y^{\prime \prime}=\frac{F_{z} M_{x}-F_{x} M_{z}}{F_{r}^{2}}=+1.673 \mathrm{ft} ., \\
z^{\prime \prime}=\frac{F_{x} M_{y}-F_{y} M_{x}}{F_{r}^{2}}=+8.08 \mathrm{ft} .
\end{gathered}
$$

The resultant couple c_{r} is given by equation (15), page 90 ,

$$
c_{r}=\frac{F_{x} M_{x}+F_{y} M_{y}+F_{z} M_{z}}{F_{r}}=-41.624 \mathrm{lb} . \mathrm{ft} .
$$

The direction cosines of its line representative are the same as for the resultant F_{r}, and looking along this line representative towards the origin the rotation is seen counter-clockwise.

The components of c_{r} are given by equation (16), page 90 ,

$$
\begin{gathered}
c_{x}=c_{r} \cos a=-19.481 \mathrm{lb} . \mathrm{ft} ., \quad c_{y}=c_{r} \cos b=-35.806 \mathrm{lb} . \mathrm{ft} ., \\
c_{z}=c_{r} \cdot \cos c=+8.5238 \mathrm{lb} . \mathrm{ft} .
\end{gathered}
$$

(3) In the preceding example find what the co-ordinates x_{4}, y_{4}, z_{4} of the force $F_{4}=120$ lbs. must be in order that all the forces may reduce to a single resultant. (Compare Ex. 16, page 362.)

Ans. We evidently have $F_{x}, F_{y}, F_{z}, F_{r}$ and the angles a, b, c unchanged, since changing the point of application of F_{4} without changing its direction or magnitude has no effect on the magnitude of the resultant or its direction.

We have then

$$
\left.\begin{array}{l}
\boldsymbol{M}_{x}=-659.571-93.262 y_{4}-68.829 z_{4} \tag{1}\\
\boldsymbol{M}_{y}=+369.629+31.059 z_{4}+93.262 x_{4} \\
\boldsymbol{M}_{z}=-107.036+68.829 x_{4}-31.059 y_{4}
\end{array}\right\}
$$

We have as the equation of condition for a single resultant, equation (9), page 88,

$$
F_{x} M x+F_{y} M_{y}+F_{z} M_{z}=0,
$$

or

$$
116.423 M_{x}+214.48 M_{y}-51.057 M_{z}=0
$$ or

$$
\begin{equation*}
M_{x}+1.842 M_{y}-0.4386 M_{z}=0 . \tag{2}
\end{equation*}
$$

From (1) we obtain

$$
\left(M_{x}+659.571\right) 31.059+\left(M_{y}-369.629\right) 68.829=\left(M_{z}+107.036\right) 93.262,
$$ or

$$
\begin{equation*}
M_{x}+2.216 M_{y}-3.003 M_{z}=+481.034 \tag{3}
\end{equation*}
$$

From (2) and (3) we obtain

$$
0.374 M_{y}-2.564 M_{z}=+481.034
$$

If we retain for M_{y} its value in the preceding example, $+928.947 \mathrm{lb} .-\mathrm{ft}$., we shall have

$$
\begin{aligned}
& M_{z}=-52.108 \mathrm{lb} .-\mathrm{ft} . \\
& M_{x}=-1733.95 \quad "
\end{aligned}
$$

If we substitute these values in (1), we obtain

$$
\begin{aligned}
& 93.262 y_{4}+68.829 z_{4}=+1074.4 ; \\
& 31.059 z_{4}+93.262 x_{4}=+559.308 ; \\
& 68.829 x_{4}-31.059 y_{4}=+54.934
\end{aligned}
$$

Hence

$$
\begin{aligned}
& x_{4}=-0.333 z_{4}+5.997 ; \\
& y_{4}=-0.738 z_{4}+11.520 .
\end{aligned}
$$

If then we assume $z_{4}=0$, we have

$$
x_{4}=+5.997, \quad y_{4}=+11.520
$$

(4) Using the values of the preceding example, find the point of application of the resultant. (Compare Ex. 17, Vol. I, page 210.)

Ans. We have

$$
\begin{gathered}
F_{x}=+116.423 \mathrm{lbs} ., \quad \begin{array}{c}
F_{y}=+214.480 \mathrm{lbs} ., \quad F_{z}=-51.057 \mathrm{lbs} ., \\
F_{r}=+249.325 \mathrm{lbs} ;
\end{array} \\
a=62^{\circ} 9^{\prime} 48^{\prime \prime}, \quad b=30^{\circ} 39^{\prime} 20^{\prime \prime}, \quad c=101^{\circ} 49^{\prime} ; \\
M_{x}=-1733.975 \mathrm{lb} . \mathrm{ft} ., \quad M_{y}=+928.947 \mathrm{lb} .-\mathrm{ft} ., \quad M_{z}=-52.108 \mathrm{lb} . \mathrm{ft} ., \\
M_{r}=+1967.823 \mathrm{lb} . \mathrm{ft} . ; \\
d=151^{\circ} 47^{\prime}, \quad e=61^{\circ} 49^{\prime} 53^{\prime \prime}, \quad f=91^{\circ} 31^{\prime} 3^{\prime \prime} .
\end{gathered}
$$

The co-ordinates $\bar{x}, \bar{y}, \bar{z}$ of the point of application of the resultant are given (page 89) by

$$
\begin{aligned}
-1733.975 & =F_{z} \bar{y}-F_{y} \bar{z}=-51.057 \bar{y}-214.480 \bar{z} ; \\
+928.947 & =F_{x} \bar{z}-F_{z} \bar{x}=+116.423 \bar{z}+51.057 \bar{x} ; \\
-\quad 52.108 & =F_{y} \bar{x}-F_{x} \bar{y}=\quad 214.480 \bar{x}-116.423 \bar{y} .
\end{aligned}
$$

Hence we obtain

$$
\begin{aligned}
& \bar{x}=-2.2802 \bar{z}+18.194 \\
& \bar{y}=-4.2008 \bar{z}+33.961
\end{aligned}
$$

If we assume $\bar{z}=0$, we have then

$$
\bar{x}=+18.194 \mathrm{ft} ., \quad \bar{y}=+33.961 \mathrm{ft} .
$$

If we introduce, then, a fifth force, $F_{\mathrm{s}}=+249.325 \mathrm{lbs}$., whose direction makes with the axes the angles

$$
\alpha_{5}=117^{\circ} 50^{\prime} 12^{\prime \prime}, \quad \beta_{5}=149^{\circ} 20^{\prime} 40^{\prime \prime}, \quad \gamma_{5}=78^{\circ} 11^{\prime},
$$

acting at a point whose co-ordinates are $\bar{x}=+18.194 \mathrm{ft}$. and $\bar{y}=33.961 \mathrm{ft}$., $\bar{z}=0$, we have a system of forces in equilibrium.
(5) Find the resultant, etc., for the parallel-force system given by

$$
\begin{aligned}
& F_{1}=+60 \mathrm{lbs} . ; x_{1}=0, \quad y_{1}=0, \quad z_{1}=0 ; \\
& F_{2}=+70 \text { " } \quad x_{2}=+1 \mathrm{ft} ., \quad y_{2}=+2 \mathrm{ft} ., \quad z_{2}=+3 \mathrm{ft} . ; \\
& F_{3}=-90 " \quad x_{3}=+2 " \quad y_{3}=+3 " z_{3}=+4 " \\
& F_{4}=-150 " \quad x_{4}=+3 " \quad y_{4}=+4 ، \quad z_{4}=+5 " \\
& F_{5}=+200 " \quad x_{5}=+4 " \quad y_{6}=+5 " \quad z_{5}=+6 "
\end{aligned}
$$

Ans. $F_{r}=\Sigma F=+90 \mathrm{lbs}$.;

$$
\bar{x}=\frac{\Sigma F x}{F_{r}}=+2 \frac{2}{\mathrm{ft}}, \quad \bar{y}=\frac{\Sigma F y}{F_{r}}=+3 \mathrm{ft} ., \quad \bar{z}=\frac{\Sigma F z}{F_{r}}=+3 \frac{\mathrm{ft}}{} .
$$

(6) A rigid body is acted upon by two forces $F_{1}=40$ lbs. and $F_{2}=30$ lbs. applied at points whose co-ordinates are $x_{1}=2 \mathrm{ft}$., $y_{1}=3 \mathrm{ft} ., z_{1}=0$, and $x_{2}=0, y_{2}=0, z_{2}=0$, and making angles with the axes given by $\alpha_{1}=0^{\circ}, \beta_{1}=90^{\circ}, \gamma_{1}=90^{\circ}$, and $\alpha_{2}=90^{\circ}, \beta_{2}=90^{\circ}$, $\gamma_{2}=0 . \quad$ Find the equivalent wrench.

Ans. (page 89). We have the components of the wrench

$$
\begin{array}{ll}
F_{x}=+40 \mathrm{lbs} ., & F_{y}=0, \quad F_{z}=+30 \mathrm{lbs} . \\
M_{x}=0, & M_{y}=0, \quad M_{z}=-120 \mathrm{lb} . \cdot \mathrm{ft} .
\end{array}
$$

The resultant force is $F_{r}=50 \mathrm{lbs}$., and its direction-cosines are

$$
\cos a=\frac{+40}{50}, \quad \cos b=0, \quad \cos c=\frac{+30}{50},
$$

or

$$
a=36^{\circ} 52^{\prime}, \quad b=90^{\circ}, \quad c=53^{\circ} 8^{\prime} .
$$

The central axis coincides with F_{r} and makes the same angles with the axes. It passes through the point whose co-ordinates are

$$
x^{\prime \prime}=0, \quad y^{\prime \prime}=+1.92 \mathrm{ft} .=00_{1}, \quad z^{\prime \prime}=0
$$

The moment of the couple whose axis coincides with the central axis is $c r=-72 \mathrm{lb} .-\mathrm{ft}$.

The minus sign indicates that the line representative acts opposite to F_{r}, that is, its components in the direction of the axes are

$$
c_{x}=-57.6 \mathrm{lb} .-\mathrm{ft} ., \quad c y=0, \quad c_{z}=-120 \mathrm{lb} .-\mathrm{ft}
$$

Its line representative acts then in the opposite direction from \boldsymbol{F}_{r} and makes angles with the axes given by

$$
a=143^{\circ} 8^{\prime}, \quad b=90^{\circ}, \quad c=126^{\circ} 2^{\prime}
$$

Looking along this line representative towards the origin, rotation is seen counter-clockwise.

The moment c_{r} can be replaced by the two equal and opposite forces P, P acting at O_{1} and O as shown in the figure, each equal to $\frac{c_{r}}{y^{\prime \prime}}=\frac{72}{1.92}=37.5 \mathrm{lbs}$.

If O is the centre of mass, then since the motion of the centre of mass is the same as if the entire mass of the body were concentrated at the centre of mass and all the forces acted at that point (page 83), the motion of O is the same as if F_{r} acted upon the entire mass M concentrated at O. 'The acceleration of O is then $\bar{f}=\frac{F_{r}}{M}$. The motion of the lody is then a motion of translation due to F_{r} acting at the centre of mass and an angular acceleration α, due to the moment c_{r}, or the two equal opposite forces P, P acting at O_{1} and O about an axis through O coinciding with the direction of F_{r}.

If we divide c_{r} by F_{r}, we obtain $\frac{c_{r}}{F_{r}}=\frac{\% 2}{50}=1.44 \mathrm{ft}$. That is, we can replace the moment c_{r} by two equal and opposite forces F_{r}, F_{r} acting at O_{1} and $O_{2} \ldots$ The distance $O_{1} O_{22}$ is then the pitch.
(7) All the forces acting upon a rigid body reduce to a resultant force $F_{v}=10 \mathrm{lbs}$. acting at a given point and a couple whose moment is $M_{r}=8 \mathrm{lb} .-f t$. causing rotation about an axis through the point, which makes an angle of 45° with the direction of F_{r}. Find the equivalent wrench.

Ans. Take the direction of F_{r} as the axis of X, and the plane of F_{r} and the axis as the plane of $X Z$, and the point as origin. Then the components of the equivalent wrench are

$$
\begin{gathered}
F_{x}=+10 \text { lbs. }, \quad F_{y}=0, \quad F_{z}=0 \\
M_{x}=+\frac{8}{\sqrt{2}} \mathrm{lb} . \mathrm{ft} . \\
M_{y}=0, \\
M_{z}=-\frac{8}{\sqrt{2}} \mathrm{lb} .-\mathrm{ft}
\end{gathered}
$$

We have then for the intensity of the wrench

$$
F_{r}=10 \mathrm{lbs} .,
$$

unaking the angles with the co-ordinate axes

$$
a=0, \quad b=90^{\circ}, \quad c=90^{\circ}
$$

The central axis passes through the point O_{1} whose co-ordinates are

$$
x^{\prime \prime}=0, \quad y^{\prime \prime}=+\frac{8}{10 \sqrt{2}} \mathrm{ft} .=O O_{1}, \quad z^{\prime \prime}=0
$$

and coincides with the direction of F_{r}.

The moment of the couple whose axis coincides with the central axis is

$$
c_{r}=+\frac{8}{\sqrt{2}} \mathrm{lb} . \mathrm{ft.}=M_{x}
$$

The (+) sign indicates that the line representative acts in the same direction as F_{r}, that is, its components in the direction of the axes are

$$
c_{x}=+\frac{8}{\sqrt{2}} \mathrm{lb} .-\mathrm{ft} ., \quad c_{y}=0, \quad c_{z}=0
$$

Its line representative acts then in the same direction as F_{r} and makes the same angles with the axes as F_{r}. Looking along this line representative towards the origin, rotation is seen counter-clockwise.

The moment $c r$ can be replaced by two equal and opposite forces each equal to F_{r} acting at a distance given by

$$
\frac{c_{r}}{\bar{F}_{r}}=\frac{8}{10 \sqrt{2}} \mathrm{ft} .
$$

Since this distance is equal to $y^{\prime \prime}=O O_{1}$, the pitch is in this case $O O_{1}$.

CHAPTER IV.

STATICS-NON-CONCURRING CO-PLANAR FORCES.

CONDITIONS OF EQUILIBRIUM OF A RIGID BODY ACTED UPON BY NON-CONCURRING CO-PLANAR FORCES. DETERMINATION OF THE REACTIONS OF A FRAMED STRUCTURE. DETERMINATION OF THE STRESSES IN A FRAMED STRUCTURE. SUPERFLUOUS MEMBERS. CRITEIRION FOR SUPERFLUOUS MEMBERS.

Conditions of Equilibrium of a Rigid Body Acted Upon by Nonconcurring Co-planar Forces.-We have seen (page 84) that when a rigid body is acted upon by any number of non-concurring coplanar forces, the conditions of static equilibrium are two, viz.:

1st. The algebraic sum of the components of the forces in each of any two rectangular directions in the plane of the forces must be zero.

Hence if the forces F_{1}, F_{2}, etc., make the angles (α_{1}, β_{1}), (α_{2}, β_{2}), etc., with the co-ordinate axes, we must have

$$
\begin{align*}
& F_{1} \cos \alpha_{1}+F_{2} \cos \alpha_{2}+F_{3} \cos \alpha_{3}+\ldots=\Sigma F \cos \alpha=0 ; \tag{1}\\
& F_{1} \cos \beta_{1}+F_{2} \cos \beta_{2}+F_{3} \cos \beta_{3}+\ldots=\Sigma F \cos \beta=0 . \tag{2}
\end{align*}
$$

When these equations are complied with there is no resultant force, and any one of the forces is equal and opposite to the resultant of all the others, but does not necessarily act in the same straight line with it. We have then molar equilibrium (page 58), but not necessarily static equilibrium.

In taking the algebraic sum, $\Sigma F \cos \alpha$, or $\Sigma F \cos \beta$, components acting in the directions $O X$ and $O Y$ are positive (+), in the opposite directions negative (-). Also angles with $O X$
 and $O Y$ are measured from $O X$ and $O Y$ around towards the left.

2d. The algebraic sum of the moments of the forces about any point in their plane must be zero.

Hence if p_{1}, p_{2}, p_{3}, etc., are the perpendiculars from any given point in the plane upon the directions of the forces F_{1}, F_{2}, F_{3}, etc., then

$$
\begin{equation*}
F_{1} p_{1}+F_{2} p_{2}+F_{3} p_{3}+\ldots=\Sigma F p=0 . \tag{3}
\end{equation*}
$$

When this condition is complied with, there is no rotation about the point selected. But there may be rotation about some other point. In order, then, that there may be static equilibrium, both of these conditions must be complied with. We have therefore three equations of condition.

In taking the algebraic sum $\Sigma F p$ of the moments of the forces, rotation counter-clockwise is taken as positive (+), and clockwise as negative (-).

Cor. If three co-planar forces act on a rigid body at different points, and the body is in equilibrium, the line representatives of these three forces, if produced, intersect in a common point. For the resultant of any two of them must pass through their point of intersection and be equal and opposite to the third and in the same straight line with it.

Framed Structure-Stress, etc.-A framed or jointed structure or "truss" is a collection of straight members pinned or jointed together at the ends so as to make a rigid frame.

The simplest rigid frame is obviously a triangle, because that is the only figure whose shape cannot be altered without changing the length of the sides. All rigid frames must consist, therefore, of a combination of triangles.

Any point where two or more members meet is called an apex of the frame.

The force in any member which resists change of its length is called the stress in that member (page 7). If the stress resists elongation, it is called tensile stress. If it resists slortening, it is called compressive stress. Any member in tensile stress is called a tie; in compressive stress, a strut. A vertical strut is called a post. An inclined member generally is called a brace.

Determination of the Reactions of a Framed Structure. -In general a framed structure rests upon supports. The pressures exerted by these supports are called the reactions of the supports.
 These reactions usually have to be determined.

Thus if the co-planar forces F_{1}, F_{2}, F_{3} act at the apices a, c, d of a rigid framed structure, and if $R_{1}, R_{2}, ~ R_{3}$ are the unknown reactions or pressures in the same plane exerted by the supports at the apices A, B, and e, then if there is equilibrium of the frame, the algebraic sum of all the vertical components must be zero; the algebraic sum of all the horizontal components must be zero; the algebraic sum of all the moments about any point in the plane of the frame must be zero.

If $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are the angles made by the forces F_{1}, F_{2}, F_{3} with the horizontal, and a_{1}, a_{2}, a_{3} the angles made by the reactions R_{1}, R_{2}, R_{3} with the horizontal, we have then
$F_{1} \cos \alpha_{1}+F_{2} \cos \alpha_{2}+F_{3} \cos \alpha_{3}+R_{1} \cos \alpha_{1}+R_{2} \cos \alpha_{2}+R_{3} \cos \alpha_{3}=0$.
In this equation components towards the right are positive (+), and towards the left negative (-).

If $\beta_{1}, \beta_{2}, \beta_{3}$ are the angles made by the forces F_{1}, F_{2}, F_{3} with the vertical, and b_{1}, b_{2}, b_{3} the angles made by the reactions R_{1}, R_{2}, R_{3} with the vertical, we have
$F_{1} \cos \beta_{1}+F_{2} \cos \dot{\beta}_{2}+F_{3} \cos \beta_{3}+R_{1} \cos b_{1}+R_{2} \cos b_{2}+R_{3} \cos b_{3}=0$.
In this equation components upwards are positive (+), and downwards negative (-).

Again, if we take any point, as for instance the point B, as a centre of moments, and let p_{1}, p_{2}, p_{3} be the lever-arms of the forces
F_{1}, F_{2}, F_{3}, and L_{1}, L_{2}, L_{3} be the lever-arms of the reactions, we have, since in this case $L_{2}=0$,

$$
\begin{equation*}
R_{1} L_{1}+R_{3} L_{3}+F_{1} p_{1}+F_{2} p_{3}+F_{3} p_{3}=0 . \tag{3}
\end{equation*}
$$

Each moment in equation (3) must be taken with its proper sign $(+)$ for counter-clockwise rotation, and (-) for clock wise rotation.

If the directions of all the forces and reactions are known as well as their points of application, and if the forces F_{1}, F_{2}, F_{3} are also known, we have then three equations between three unknown quantities, R_{1}, R_{2}, and R_{3}, and can therefore determine them. If there are more than three reactions unknown, we cannot determine them. There are then more unknown quantities than equations of condition.

If there are but two reactions, R_{1} and R_{2}, that is, if R_{3} then is zero, we can determine R_{1} and R_{2} from the equations (1) and (2).

We can also in such case determine R_{1} directly from equation (3), and thus have, since $R_{3}=0$,

$$
R_{1} L_{1}+F_{2} p_{1}+F_{2} p_{2}+F_{3} p_{3}=0 .
$$

By taking moments about A, we can in the same way determine R_{3} directly, when $R_{3}=0$.

Determination of the Stresses in a Framed Structure.-As soon as all the external forces acting upon a framed structure, including the reactions, are known we can proceed to find the stresses in the various members. We can make use of two methods. The first method is based upon the fact that the algebraic sum of vertical and horizontal components is zero. We call it the "method by resolution of forces." The second method is based upon the fact that the algebraic sum of moments is zero. We call it the "method by moments," or the "method by sections."

1. Method by Resolution of Forces.*-Since the frame is in equilibrium there must be equilibrium at every apex of the frame. Hence all the forces acting at any apex must form a system of concurring forces in equilibrium.

But the necessary and sufficient condition for equilibrium for a system of concurring forces is that the resultant shall be zero. That is, the algebraic sum of the horizontal components of all forces acting at an apex must be zero, and the algebraic sum of all the vertical components must be zero.

Take for instance the apex a of the preceding figure (page 100). At this point we have acting the force F_{1} and the stresses in the members $A a, a b$, and $a c$. These four forces form a system of concurring forces in equilibrium.

Hence if $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are the angles made by the members $A a, a b$ and $a c$ with the horizontal, and α_{1} the angle made by F_{1}
 with the horizontal, and we denote the stresses in the corresponding members by $a A, a b, a c$, we have

$$
\begin{equation*}
F_{1} \cos a_{1}+a A \cos \alpha_{1}+a b \cos \alpha_{2}+a c \cos \alpha_{3}=0 \tag{1}
\end{equation*}
$$

If $\beta_{1}, \beta_{2}, \beta_{3}$ are the angles made be the members $A a, a b$, and $a c$ with the vertical, and b_{1} the angle made by F_{1} with the vertical,

[^8]and we denote the stresses in the corresponding members by αA, $a b, a c$, we have
\[

$$
\begin{equation*}
F_{1} \cos b_{1}+a A \cos \beta_{1}+a b \cos \beta_{2}+a c \cos \beta_{2}=0 \tag{2}
\end{equation*}
$$

\]

Components towards the right or upwards are positive, towards the left or downwards negative. Angles are measured from the horizontal $a X$ and vertical $a Y$ around towards the left.

Since we have thus two equations of condition, this method can be applied at any apex when all the forces except two are known.

If more than two are unknown at any apex, it cannot be applied at that apex.

If the value of a stress as found by (1) and (2) comes out positive $(+)$, it shows that the stress in the member is away from the apex or tensile. If it comes out negative, the stress is towards the apex or compressive. (See Example 2, page 104, for illustration.)
2. Method by Moments, or the "Method of Sections." *-Suppose the frame completely divided into two parts by a section cutting any member the stress in which is desired. Then the stresses which existed in the members before they were cut must evidently hold in equilibrium the external forces acting upon each of the two parts into which the frame is divided.

Thus if we wish to find the stress in any member αc (see figure, page 100), take a section cutting $a c, b c$ and $b e$, thus completely divid-

ing the frame into two portions, and consider the lefthand portion only. Then the stresses in $a c, b c$ and be must hold in equilibrium the external forces R_{1} and F_{1}.

Place arrows on each of the cut pieces as in the figure, always pointing towards the section. Now if we take moments about the apex b, that is, if we take the point of moments at the point of intersection of the other members cut by the section, whose stresses are unknown, their moments relative to this point will be zero. We have then the algebraic sum of the moments of the external forces F_{1} and R_{1} and the moment of the stress in $a c$, all with reference to b, equal to zero. Hence, denoting the stress in $a c$ by $a c$ and its lever-arm by p, we have

$$
a c \times p+\Sigma \text { moments of external forces }=0
$$

If then the external forces and their lever-arms are known and the lever-arm p of $a c$ is known, we can find the stress $a c$.

The moments in the algebraic sum must be taken with their proper signs, $(+)$ for rotation counter-clockwise, and (-) for rotation clockwise, and the moment of $a c$ with the sign indicated by the rotation due to its arrow. Thus in our figure the moment of R_{1} is negative, of F_{1} negative, and of $a c$ negative. If the stress comes out positive, it indicates, as before, that it acts away from the apex of the cut member or is tensile. If negative, towards the apex or compression. (See Example 2, page 104, for illustration.)

This method is general and can always be applied when all the cut members whose stresses are unknown, except the one whose stress is desired, meet in a point.

Thus if two of the cut pieces are parallel, their intersection is at an infinite distance.

Then if we wish to find the stress in $c b$, we take a section cutting $a b, b c$ and $c d$. The intersection of $a b$ and $c d$ is at an infinite dis-

[^9]tance. We therefore have the lever-arm for $c b, \infty \cos \beta$, where β is the angle of $c b$ with the vertical. Hence
\[

$$
\begin{gathered}
R_{1} \infty-F_{1} \infty-F_{2} \infty+c b \times \infty \cos \beta=0 \\
c b=-\left(R_{1}-F_{1}-F_{2}\right) \sec \beta .
\end{gathered}
$$
\]

The algebraic sum of the external forces ($R_{1}-F_{1}-F_{2}$) is called in this case the shearing force. For horizontal chords and vertical forces we have, then, the stress in any brace equal to the shear multiplied by the secant of the angle which the brace makes with the

vertical. This shear should always be taken as acting at the end c of the brace belonging to the left-hand portion. If, then, it is positive, or if R_{1} is greater than $F_{1}+F_{2}$, it acts upward at c and hence gives compression in $c b$. Therefore we have the minus sign in the equation above for the value of the stress in $c b$. (See Example 4, page 106.)

Superfluous Members.-In general the external forces acting upon a rigid frame are always known or must first be found. The stresses in the members are required. Since every apex of the frame is in equilibrium, we have at every apex a system of concurring forces in equilibrium.

We have then two equations of condition in order that the resultant shall be zero, viz.,

$$
\begin{aligned}
& \Sigma F \cos \alpha=0 \\
& \Sigma F \cos \beta=0
\end{aligned}
$$

or the algebraic sums of the horizontal and vertical components must be zero.

If, then, all the forces acting at any apex except two are known, these two can be found. But if at every apex there are more than two forces which are necessarily unknown, the problem is indeterminate, and the frame has superfluous members.

Criterion for Superfluous Members.-The simplest rigid frame is a triangle, because that is the only figure whose shape cannot change without changing the length of its sides. All rigid frames must consist therefore of a combination of triangles.

Any one member of the frame fixes the position of two apices, one at each end. Every other apex after the first two requires two members to fix its position. If then, n, is the number of apices, $2(n-2)$ will be the number of members lacking one. Let m be the number of members. Then, if there are no superfluous members, we must have

$$
m=2(n-2)+1=2 n-3
$$

If m is less than $2 n-3$, there are not members enough.
If m is greater than $2 n-3$, there are superfluous members.

EXAMPLES.

(1) In the cases of the three frames represented by Figs. 1, 2, 3; each supporting a weight F at the apex, show that in the first case there are not enough members and the frame is not rigid; in the second case the frame is rigid; in the third case there is a superfluous member.

Ans. From our criterion, $n=2 n-3$, page 103, we have the number of

Fig. 2.
 apices in the first case $n=6$. Hence the number of members should be $m=9$. But the number of members is only 8 , or less than the number necessary.

In the second case $n=6$ and m should be 9 , and the number of members is 9 .
In the third case $n=6$ and m should be 9 , but the number of members is 10 , or greater than the number necessary.
(2) A rigid frame $A B C$, consisting of two rafters $A B$ and $A C$ and a horizontal tie BC, supports a load F at the apex A. If the angles made by the rafters with the horizontal are α_{1} and α_{2} at B and C, find the stresses S_{1}, S_{2}, S_{3} in the rafters $A B, A C$ and the tie $B C$, for equilibrium; also the pressures R_{1} and R_{2} of the supports. The weight of rafters and tie neglected.

Ans. Let the pressures or reactions of the support be R_{1} and R_{2} at B and C, Fig. 1, and the stresses be S_{1}, S_{2} and S_{3} in the rafters $A B$ and $A C$ and the tie $B C$.

1st Method: By Resolation of Forces.(Page 101.) The forces acting at each apex must constitute a system of forces in equilibrium.

Let us take first the apex A as origin, Fig. 2.
 We have here the force F and the two stresses

S_{1} and S_{2}, constituting a system of concurring forces in equilibrium. Therefore the algebraic sum of the horizontal forces must be zero and the algebraic sum of the vertical forces must be zero. Hence giving the proper signs to F and the sines and cosines of the angles α_{1} and α_{2} (page 102), we have

$$
\begin{align*}
& -S_{1} \cos \alpha_{1}+S_{2} \cos \alpha_{2}=0 ; \tag{1}\\
& -S_{1} \sin \alpha_{1}-S_{2} \sin \alpha_{2}-F=0 \tag{2}
\end{align*}
$$

From (1) and (2) we obtain

$$
\begin{equation*}
S_{1}=-\frac{F \cos \alpha_{2}}{\sin \left(\alpha_{1}+\alpha_{2}\right)}, \quad S_{2}=-\frac{F \cos \alpha_{1}}{\sin \left(\alpha_{1}+\alpha_{2}\right)} . \tag{3}
\end{equation*}
$$

In equations (3) the (-) sign denotes direction towards the origin A as indicated in Fig. (1). A negative result then denotes compression.

At the apex B we have the stresses S_{1} and S_{3} and the reaction R_{1} in equilibrium. At the apex C we have S_{2}, S_{3} and R_{2} in equilibrium. Hence for the algebraic sum of the horizontal components at B we have, taking the origin at B,

$$
S_{3}+S_{1} \cos \alpha_{1}=0
$$

and for the algebraic sum of the horizontal components at C we have, taking the origin at C.

$$
-S_{3}-S_{2} \cos \alpha_{2}=0
$$

From both equations we have, from (3),

$$
\begin{equation*}
S_{3}=-S_{1} \cos \alpha_{1}=-\mathrm{S}_{2} \cos \alpha_{2}=+\frac{F \cos \alpha_{1} \cos \alpha_{2}}{\sin \left(\alpha_{1}+\alpha_{2}\right)} \tag{4}
\end{equation*}
$$

The positive result denotes direction away from the origin in each case, or tension, as shown in Fig. 1.

At the apex B we have for the algebraic sum of the vertical components

$$
\begin{equation*}
S_{1} \sin \alpha_{1}+R_{1}=0, \quad \text { or } \quad R_{1}=+\frac{F \cos \alpha_{2} \sin \alpha_{1}}{\sin \left(\alpha_{1}+\alpha_{2}\right)} \tag{5}
\end{equation*}
$$

At the apex C we have

$$
\begin{equation*}
S_{2} \sin \alpha_{2}+R_{2}=0, \quad \text { or } \quad R_{2}=+\frac{F \cos \alpha_{1} \sin \alpha_{2}}{\sin \left(\alpha_{1}+\alpha_{2}\right)} \tag{6}
\end{equation*}
$$

The positive result denotes upward direction for R_{1} and R_{2}.
In all formulas the acute values of the angles are to be used.
2d Method: By Moments.-Let the horizontal distances of F from B and C be c and d.

Let the length of the rafters be a and b.
Then we have $a \cos \alpha_{1}=c, \quad b \cos \alpha_{2}=d, \quad b \sin \alpha_{2}=a \sin \alpha_{1}$.

Since all the forces acting on the frame are in equilibrium we have the algebraic sum of the horizontal and vertical external forces zero.
 Hence

$$
R_{1}+R_{2}-F=0
$$

Also taking moments about C, we have

$$
-R_{1}(c+d)+F d=0, \quad \text { or } \quad R_{1}=\frac{F d}{c+d}=\frac{F \cos \alpha_{2} \sin \alpha_{1}}{\sin \left(\alpha_{1}+\alpha_{2}\right)}
$$

and taking moments about B, we have

$$
\left.R_{2}(c+d)-F c=0, \quad \text { or } \quad R_{2}=\frac{F c}{c+d}=\frac{F \cos \alpha_{1} \sin \alpha_{2}}{\sin \left(\alpha_{1}\right.}+\alpha_{2}\right) .
$$

If we conceive a section through $A B$ and $B C$, we have as on page 102 , taking moments about C,
$-S_{1}(c+d) \sin \alpha_{1}-R_{1}(c+d)=0, \quad$ or $\quad S_{1}=-\frac{R_{1}}{\sin \alpha_{1}}=-\frac{F \cos \alpha_{2}}{\sin \left(\alpha_{1}+\alpha_{2}\right)}$
The minus sign denotes compression. If in the same way we cut $A C$ and $C B$ and take moments about B, we have
$-S_{2}(c+d) \sin \alpha_{2}-F c=0, \quad$ or $\quad S_{2}=-\frac{F c}{(c+d) \sin \alpha_{2}}=-\frac{F \cos \alpha_{1}}{\sin \left(\alpha_{1}+\alpha_{2}\right)}$.
Again, cut $A B$ and $B C$ and take moments about A, and we have

$$
S_{3} \times a \sin \alpha_{1}-R_{1} c=0, \quad \text { or } \quad S_{s}=\frac{R_{1}}{\tan \alpha_{1}}=\frac{F \cos \alpha_{1} \cos \alpha_{2}}{\sin \left(\alpha_{1}+\alpha_{2}\right)}
$$

ft. Each rafter is divided into four equal panels, and the lower horizontal tie is divided into six equal panels. The bracing is as shown in the figure. Find the stresses in the members by two methods, for a weight of 800 lbs. at each upper apex.

Ans. $R_{1}=R_{2}=+2800 \mathrm{lbs}$.

$$
\begin{aligned}
\text { Stress in } \begin{aligned}
A a & =-6260 \mathrm{lbs} ., \quad a b=-5813 \mathrm{lbs} ., b c=-4696 \mathrm{lbs} ., \\
c d & =-3577 \mathrm{lbs} ., \quad A e=+5600 \mathrm{lbs} ., \\
f g & =+4003 \mathrm{lbs} ., a e=-7202 \mathrm{lbs} ., \\
f g & =+720 \mathrm{lbs} ., e b=+720 \mathrm{lbs} ., \\
b f & =-1081 \mathrm{lbs} ., \quad f c=+920 \mathrm{lbs} ., c g=-1443 \mathrm{lbs} ., \\
g d & =+2401 \mathrm{lbs} . \quad \text { (See Example (1), page 104.) }
\end{aligned} .
\end{aligned}
$$

(4) A bridge-truss l ft. long is divided into five equal panels in
 the lower chord and four equal panels in the upper chord. The depth is constant and equal to d; the panel length is p. The bracing is isosceles as shown in the figure. Find the stresses for a load Flbs. at each upper apex.

Ans. $R_{1}=R_{2}=+2.5 F$;

$$
\begin{gathered}
A a=+\frac{R_{1} p}{2 d}, \quad a b=\frac{1.5 R_{1} p-F p}{d}, \quad b c=\frac{2.5 R_{1} p-3 F p}{d}, \\
d e=-\frac{R_{1} p-\frac{1}{2} F p}{d}, \quad e f=-\frac{2 R_{1} p-2 F p}{d} ;
\end{gathered}
$$

$A d=-R_{1} \sec \beta, \quad a e=-\left(R_{1}-F\right) \sec \beta, \quad b f=-\left(R_{1}-2 F\right)$ sec β, $d a=+R_{1} \sec \beta, \quad e b=+\left(R_{1}-F\right) \sec \beta$,
where β is the angle made by the braces with the vertical.
(5) A weight of 6 lbs. hangs on the arm of a safety-valve at a distance of 18 inches from the fulcrum. The valve-spindle is attached at 1 inch from the fulcrum. Disregarding friction and the weight of the arm, find the steam pressure for equilibrium.

Ans. 108 lbs .
(6) In a wheel and axle the radius of the axle is r, and of the wheel R. A weight Q hangs by a rope wound about the axle. Find the force P acting tangent to the wheel in order to hold Q suspended, disregarding friction.

Ans. $P=\frac{Q r}{R}$.
(7) A shopkeeper has correct weights but an untrue balance, one arm of uhich is a and the other b. He serves out to each of two customers, as indicated by his balance, Wlbs. of a commodity, using first one scale-pan and then the other for the commodity. Does he gain or lose?

Ans. Loses $W \frac{(a-b)^{2}}{a b}$ lbs.
(8) The arms of a balance are unequal, and one of the scales is loaded. A body, the true weight of which is P lbs., appears, when placed in the loaded scale, to weigh W lbs., and when placed in the other scale to weigh W^{\prime} lbs. Find the ratio of the arms and the weight with which the scale is loaded.

Ans. Ratio of arms $=\frac{W-P}{P-W^{\prime}} ;$ weight required $=\frac{P^{2}-W W^{\prime}}{W-P}$
(9) A square and a rectangle of uniform thickness and density are joined in one plane at a common side. Find the length of the rectangle in order that the two may balance about that side, the density of the rectangle being one half of that of the square.

Ans. The length of the rectangle $=$ a diagonal of the square .
(10) The inscribed circle being cut out of a right-angled triangle, the sides of which are 3, 4, 5, find the centre of mass of the remainder.

Ans. Take side 3 as axis of X, and side 4 as axis of Y. Then

$$
\bar{x}=1, \quad \bar{y}=\frac{8-\pi}{6-\pi} .
$$

(11) A cubical box half filled with water is placed upon a rectangular board, so that the edges of its base are parallel to those of the board. If the board is slowly inclined to the horizon about an edge, and the box is prevented from sliding, at what angle will the box just tend to overturn?

Ans. 45°.
(12) Let the forces $+4,-7{ }_{.}+8,-3$ lbs. act perpendicularly to a straight line at points A, B, C and D, so that $A B=5 \mathrm{ft} ., B C=4 \mathrm{ft}$., $C D=2 f t$. Find the resultant and its point of application E.

Ans. $R=2$ lbs., $A E=2 \mathrm{ft}$.
(13) Let three forces which, if concurring, would be in equilibrium act each in the side of a triangle which represents them in magnitude and direction. If not concurring, show that they are equivalent to a couple whose moment is proportional to the area of the triangle.
(14) Three forces act at the middle points of the sides of a rigid triangular plate in its plane, each force being perpendicular and proportional to the side on which it acts. If the forces are all inward or outward, show that the resultant is zero.
(15) A system of any number of co-planar forces being represented in magnitude and direction by the sides of a closed polygon taken the same way round, show that the sum of their moments about any point in their plane is constant and independent of the position of the point? $7, y=$
(16) Forces of 10, 20, 30 and 40 pounds act on a rigid body at A, B, C, D, the four corners of a square whose side is 2 ft . and in its plane. Their inclinations to $A B, B C, C D, D A$ are $45^{\circ}, 90^{\circ}, 30^{\circ}, 60^{\circ}$ respectively. Show that the resultant is a force of 35.65 lbs., and that its line of action is distant 3.03 ft . from C.
X17) Parallel forces in the same direction, and of the magnitudes 10, 15, 20, 25 lbs., act at points A, B, C, D respectively of a straight rod, the distances $A B, B C, C D$ being 2, 3, 4 ft . respectively. Find the distance of the point of application from A.

Ans. 5.07 feet.
(18) Two parallel forces in opposite directions of 20 and 5 lbs. act at points A and B of a rigid body 4 ft . apart. Find the distances from A and B of the point in which their resultant line of action cuts AB.

Ans. $1 \frac{1}{8}$ and $5 \frac{1}{8} \mathrm{ft}$.
(19) The numerical measures of the magnitude of a force which acts upon a point in a given direction, and of the co-ordinates of the
point in the plane of the force, are denoted by a, b, c; but it is not known which is which. Find the centre of all the forces which may be represented.

$$
\text { Ans. } \bar{x}=\bar{y}=\frac{a b+b c+c a}{a+b+c}
$$

(20) Forces 1, $-3,-5,7$ act on a rigid rod at points A, B, C, D, whose distances are such that $A B=3, B C=2, C D=2$. Find the resultant.

Ans. A couple whose moment is 15 units.
(21) Three equal and co-directional forces (F) act at three corners of a square (side $=a$) perpendicularly to the square. Find the magnitude of the force which, applied at the other corner of the square, would with the given forces constitute a couple, and the moment of the couple.

Ans. $3 F ; 2 a F \sqrt{2}$.

(22) $A B C$ is a triangle right-angled at B. At A a force F is applied in the plane of the triangle perpendicular to AC; at C a force $2 F$ in the same direction; at B a force $3 F$ in the opposite direction. Find the moment of the resulting couple.

$$
\text { Ans. } \frac{F\left(A B^{2}-2 B C^{2}\right)}{A C}
$$

(23) Two forces P and Q act at the ends A and B of a straight lever $A B$ without mass. To find the position of the fulcrum in order that equilibrium may be produced, the inclination of P and Q with $A B$ being a and β.

Ans. Let $A B=c$, and x, y the distances of the fulcrum from A and B respectively. Then

$$
x=\frac{Q c \sin \beta}{P \sin \alpha+Q \sin \beta}, \quad y=\frac{P c \sin . \alpha}{P \sin \alpha+P \sin \beta}
$$

(24) A rod CD, without mass, moving about a smooth hinge at C, presses at D against a wall inclined at an angle α with the horizon, and has a weight W suspended at its centre. Find the inclination θ of the rod to the horizon in order that the pressure at D may be $\frac{1}{2} W$.

Ans. $\theta=\frac{1}{2} \alpha$.
(25) Two weights P and Q are suspended from the extremities of a lever without mass, in the form of a circular arc, which rests with its convexity downwards upon a horizontal plane. If 2α is the central angle of the arc and g the central angle from the point of attachment of P to the point of tangency with the horizontal plane, find θ for equilibrium.

Ans. $\tan \theta=\frac{P-Q}{P+Q} \cdot \tan \alpha$.
(26) The arms of a balance are unequal, and a substance placed successively in each scale appears to weigh P and Q lbs. Show that the lengths of the arms, disregarding the mass of the balance, are as $\sqrt{ } \vec{P}$ to \sqrt{Q}.
(27) If weights P and Q, P being the greater, balance on a lever $A C B$ without mass, about a fulcrum at C, and the weights are inter-
changed, show that the additional weight required at A for equilibrum will be

$$
\frac{P^{2}-Q^{2}}{Q}
$$

(28) It is found that a body weighs P when suspended at the end A of a balance without mass, and Q when suspended at B. Show that the fulcrum ought to be shifted towards A a distance equal to

$$
\frac{\sqrt{P}-\sqrt{Q}}{\sqrt{P}+\sqrt{Q}} \cdot \frac{A B}{2}
$$

(29) The length of a false balance-beam is 3 ft . A body in one scale weighs 4 lbs.; in the other, 6 lbs. 4 oz. Find the true weight of the body and the lengths of the lever-arms.

Ans. True weight $=5 \mathrm{lbs}$.; lengths of arms, 1 ft .4 in . and $1 \mathrm{ft}, 8 \mathrm{in}$.
(30) Three uniform rods $A B, B C, C D$, rigidly connected so as to form three sides of a square, rest upon a fulcrum at A. Suppose the weight of each rod to act at its centre. Find the inclination 0 of $A B$ with the horizon.

Ans. $\tan \theta=\frac{4}{3}$.
(31) $A B, C D, D E$ are three equal uniform rods, rigidly connected at right angles, B being the middle point of $C D$. Suppose the weight of each rod to act at its centre, and the system to hang from a futcrumb at A. Find the inclination 0 of $A B$ to the horizon for equilibrium.

$$
\text { Ans. } \tan \theta=6
$$

CHAPTER V.

EQUILIBRIUM OF A PERFECTLY FLEXIBLE INEXTENSIBLE STRING.

GENERAL EQUATIONS OF EQUILIBRIUM. EXTERNAL FORCES VERTICAL. CONTINUOUS CURVE. LOAD UNIFORMLY DISTRIBUTED OVER TIE IORIZONTAL. CATENARY. CATENARY OF UNIFORM STRENGTH. LOAD PROPORTIONAL TO THE AREA BETWEEN THE STRING AND HORIZONTAL, STRING ACTED UPON BY A CENTRAL FORCE.

Equilibrium of a Perfectly Flexible Inextensible String.-If a perfectly flexible inextensible string is fixed at two points and acted upon by forces applied at any given points in any directions, we may consider the string, when in its position of equilibrium, as a rigid body.

The resultant force at any point must then act in a direction tangent to the string at that point; for otherwise there would be a normal component, which, as the string is perfectly flexible, would act to change the position of equilibrium of that point.

We shall consider only co-planar forces.
General Equations of Equilibrium.-Let a perfectly flexible inextensible string be fixed at the two points A and B and be acted
 upon by external forces in its plane. It is required to determine the tension T of the string at any point P, and the position of any point P for equilibrium, disregarding the weight of the string.

The string when in equilibrium will evidently take the form of a polygon, if the forces are applied at points or are "discontinuous"; the tension in any segment, as $b c$, being the resultant of the tension in the preceding segment $a b$ and the force F_{2} at b.

Take the origin of co ordinates at the lowest point O of the string, and let the co-ordinates of any point P of the string be x and y. Let the external forces acting upon the portion $O P$ of the string be F_{1}, F_{2}^{\prime}, etc.; the co-ordinates of their points of application a, b, etc., be given by $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$; etc.; and their angles with the axes of X and Y be given by $\left(\alpha_{1}, \beta_{1}\right),\left(\alpha_{2}, \beta_{2}\right)$, etc.

Then the algebraic sum of the horizontal and vertical components of the external forces between O and P is

$$
\begin{align*}
& F_{x}=F_{1} \cos \alpha_{1}+F_{2} \cos \alpha_{2}+\ldots=\sum_{P}^{0} F \cos \alpha ; \ldots \tag{1}\\
& F_{y}=F_{1} \cos \beta_{1}+F_{2} \cos \beta_{2}+\ldots=\Sigma_{P}^{0} F \cos \beta . \tag{2}
\end{align*}
$$

Also the algebraic sum of the moments of all the external forces between O and P with reference to O, or the moment about the axis of Z, is

$$
\begin{equation*}
M_{z}=\sum_{P}^{0} F x \cos \beta-\Sigma_{P}^{0} F y \cos \alpha \tag{3}
\end{equation*}
$$

In taking the algebraic sums, components to the right or upward are positive, to the left or downwards negative. Also rotation counter-clockwise is positive, and clockwise negative.

Let the tension at the point P be T, making the angles α and β with the axes of X and Y, and let the horizontal tension at the lowest point O be H.

If the portion of the string from O to P is in equilibrium, we can treat it as rigid, and we have then the algebraic sum of the horizontal and vertical components of all the forces acting upon it equal to zero; also the algebraic sum of the moments of all the forces acting upon it, with reference to any point as O, equal to zero.

Hence the conditions for equilibrium are

$$
\begin{align*}
& -H+F_{x}+T \cos \alpha=0 ; \\
& \begin{array}{l}
\left.V+\begin{array}{l}
F_{y}+T \cos \beta=0 ; \\
M_{z}+T x \cos \beta-T y \cos \alpha=0 .
\end{array}\right\} . ~ . ~ . ~ . ~ . ~
\end{array} \tag{4}
\end{align*}
$$

$$
\begin{aligned}
& \cos ^{2} \alpha+\cos ^{2} \beta=1 .
\end{aligned}
$$

We have then four equations between the four qnantities H, T, α and β, and can therefore find them for any given x and y. Equations (4) are general and apply whether the forces are discontinuous or applied continuously along the string.

External Forces Vertical.-If all the external forces acting upon the string are vertical, we have $F_{x}=0$ and $F_{y}=\Sigma_{P}^{0} F$. Hence from equations (4) of the preceding Article,

$$
\begin{aligned}
& T \cos \alpha=H \\
& T \cos \beta=-\Sigma_{P}^{0} F .
\end{aligned}
$$

That is, for a perfectly flexible inextensible string in equilibrium under the action of vertical external forces, whether the forces are applied continuously along the string or discontinuously :

1st. The horizontal component of the tension at any point is constant and equal to the horizontal tension at the lowest point.
$2 d$. The vertical component of the tension at any point is equal to the algebraic sum of all the forces between that point and the lowest point.

Continuous Curve-Tangential and Normal Components.-If the forces are applied continuously along the string, then the shape of the string when in equilibrium will be a continuous curve instead of a polygon.

Let $a b=d s$ be the length of an indefinitely small portion of the curve. Let the resultant force in any direction continu-
 ously applied over $d s$ be F, so that the force per unit of length is $\frac{d s}{F}$. Let the tension of the string at α be T_{1}, tangent to the curve at a, and the tension at b be T_{2}, tangent to the curve at b. Let the very small angle between these tangents be $d f$, and let the force F make the angle ϕ with the tangent at a.

Then since for equilibrium we may consider $a b$ as rigid, the three co-planar forces T_{1}, T_{2} and F are in equilibrium and must intersect at a common point c (page 85).

We can consider them, then, as three forces concurring at c and in equilibrium. If then we resolve these forces along the tangent at a, we have

$$
T_{2} \cos d \theta+F \cos \phi-T_{1}=0
$$

When $a b=d s$ is indefinitely small, the points a and b come together, $d \theta$ becomes zero, and $\cos d \rho=1$. Hence

$$
\begin{equation*}
-\frac{F}{d s} \cos \phi=\frac{T_{2}-T_{1}}{d s}=\frac{d T}{d s} \tag{1}
\end{equation*}
$$

That is, the tangential component of the external force per unit of length at any point is cqual to the variation of tension per unit of length at that point.

Again, resolving the forces along the normal at a, we have

$$
T_{2} \sin d \theta-F \sin \phi=0
$$

If ρ is the radius of curvature, we have $b d=\rho \sin d 0$. When $d s$ is indefinitely small, we can take $b d=d s=a b$. Hence $\sin d \rho=\frac{d s}{\rho}$. Substituting this, we have, when the points a and b come together,

$$
\begin{equation*}
\frac{F}{d s} \sin \phi=\stackrel{T_{2}}{\rho} \tag{2}
\end{equation*}
$$

That is, the normal component of the external force per unit of length at any point is equal to the tension at that point divided by the radius of curvature at that point.

Cor. If the external force per unit of length at every point of the string is normal to the string, $\phi=90^{\circ}$, and, from equation (1), $T_{2}-T_{1}=0$ or $T_{1}=T_{2}$ at every point. That is, the tension is constant throughout the string. This is the case when the string is stretched over any smooth surface whose pressure on the string at every point is normal, and acted upon by no forces except the normal pressure of the surface and two equal terminal tensions. In such case $u=\frac{T}{\rho}$, or the normal pressure of the surface per unit of length at any point is inversely proportional to the radius of curvature at that point. That is, $u_{\rho}=T=$ the constant tension in the string.

Load Uniformly Distributed over the Horizontal Projection of the String.-This is approximately the case of the ordinary suspension bridge.

Let the mass of the unit load or load per unit of horizontal projection be constant and equal to w in gravitation units (page 6) or $w g$ in absolute units. Let H be the horizontal tension at the lowest point O, and T be the tension at any point P of the string, both in gravitation units.

Equation of the Curve.-Let \boldsymbol{x} and y be the co-ordinates of any
 point P of the string, the origin being taken at the lowest point O. Then we can consider any portion of the string $O P$ when in equilibrium as rigid and acted upon by the forces H, T, and the entire load $w x$ between O and P. The resultant force $w x$ of the load between O and P acts at the centre of mass of the load, or, since the load is uniformly distributed, half way between O and P. If then we take moments about P, we have for the moment of the load with reference to P,

$$
w x \times \frac{x}{2}=\frac{w x^{2}}{2}
$$

We have then for equilibrium

$$
\begin{equation*}
\frac{w x^{2}}{2}-H y=0, \quad \text { or } \quad x^{2}=\frac{2 H}{w} y \tag{1}
\end{equation*}
$$

The curve of the string is then a parabola whose axis is vertical and whose parameter is $\frac{2 H}{w}$. If w is constant and the parameter is constant, H is constant. Hence, the tension at the lowest point is constant for all parabolas having the same parameter, when the load per unit of horizontal projection is constant, whatever may be the length of the curve.

Tension at the Lowest Point.-To find the tension H at the lowest point, we have only to substitute in equation (1) the co-ordinates of some known point. Thus let x_{b} and y_{b} be the co-ordinates of the end B. Then equation (1) gives

$$
\begin{equation*}
H=\frac{w x_{b}{ }^{2}}{2 y_{b}} . \tag{2}
\end{equation*}
$$

Or we may find this value of H directly by taking moments about B. Thus the resultant of the load between the lowest point O and B is $w x_{b}$ and it acts at the centre of mass of the load, or, since the load is uniformly distributed, half way between the lowest point O and B. If then we take moments about B, the moment of the load is $w x_{b} \times \frac{x_{b}}{2}=\frac{w x_{b}^{2}}{2}$. We have then for equilibrium

$$
\frac{w x_{b}^{2}}{2}-H y_{b}=0, \quad \text { or } \quad H=\frac{w x_{b}^{2}}{2 y_{b}}
$$

Slope of the Curve.-For the slope or inclination α of the curve at any point with the horizontal, we have seen already, page 111,
that for vertical forces the horizontal component of the tension at any point is constant and equal to H, and the vertical component is $w x$. We have then for the slope at any point P

$$
\begin{equation*}
\tan \alpha=\frac{w x}{H} \tag{3}
\end{equation*}
$$

For the slope at the end B we have then

$$
\begin{equation*}
\tan \alpha_{b}=\frac{2 y_{b}}{x_{b}} . \tag{4}
\end{equation*}
$$

Tension at Any Point.-For the tension T at any point P we have then

$$
\begin{equation*}
T=H \sqrt{1+\left(\frac{w x}{H}\right)^{2}}=H \sec \alpha \tag{5}
\end{equation*}
$$

For the tension at the end B we have

$$
\begin{equation*}
T_{b}=\frac{w x_{b}}{2 y_{b}} \sqrt{x b^{2}+4 y_{b}{ }^{2}} \tag{6}
\end{equation*}
$$

[Solution of Preceding Case by Calculus.]-Let the unit load or load per unit of horizontal projection be constant and equal to w in gravitation units (page 6).

Then referring to our general equations (4), page 111, we have in graritation units $F_{y}=-u x, F_{x}=0, \cos \alpha=\frac{d x}{d s}, \cos \beta=\frac{d y}{d s}$, where $d s$ is the length of an element of the curre and $d x, d y$ its horizontal and vertical projections. Therefore from equations (4), page 111,

$$
\begin{aligned}
& -H+T \frac{d x}{d s}=0 \\
& -w x+T \frac{d y}{d s}=0
\end{aligned}
$$

where H and T are to be taken in gravitation units if w is taken in gravitatiou units.

Eliminating T, we obtain

$$
H d y=w x d x
$$

Integrating, and taking the origin at the lowest point O, so that when $x=0, y$ is also zero, we have

$$
\begin{equation*}
H y=\frac{w x^{2}}{2}, \quad \text { or } \quad x^{2}=\frac{2 H}{w} y \tag{1}
\end{equation*}
$$

This is the equation of the curve as already found, page 113.
If we substitute the co-ordinates of the end B, x_{b} and y_{b}, in place of x and y, we have from (1), for the tension H at the lowest point,

$$
\begin{equation*}
H=\frac{w x_{b}{ }^{2}}{2 y_{b}} \tag{2}
\end{equation*}
$$

For the slope or inclination α of the curve at any point we have, by differentiating (1),

$$
\begin{equation*}
\tan \alpha=\frac{d y}{d x}=\frac{w x}{H} \tag{3}
\end{equation*}
$$

The slope at the end B is then

$$
\begin{equation*}
\tan \alpha_{b}=\frac{2 y_{b}}{x_{b}} \tag{4}
\end{equation*}
$$

For the tension T at any point p we have

$$
\begin{equation*}
T=H \frac{d s}{d x}=H \frac{\sqrt{d x^{2}+d y^{2}}}{d x}=H \sqrt{1+\frac{d y^{2}}{d x^{2}}}=H \sqrt{1+\left(\frac{w x}{H}\right)^{2}}=H \sec \alpha \tag{5}
\end{equation*}
$$

For the tension at the end B,

$$
\begin{equation*}
T_{b}=\frac{w x_{b}}{2 y_{b}} \sqrt{x_{b}^{2}+4 y_{b}^{2}} \tag{6}
\end{equation*}
$$

[Load Uniformly Distributed over the String.]-The curve of equilibrium assumed under the action of gravity, by a perfectly flexible string of uniform normal section and density, when suspended from two points not in the same vertical, is called the catenary. In such case the load is the weight of the string and is uniformly distributed over the curve. If the unit load or weight of a unit length of the string is not constant, but varies continuously according to any law, the curve of equilibrium is called a catenarian curve.

Let w be the mass of the unit load, or the load per unit of length of the string, in gravitation units (page 6).
 Then if δ is the uniform density of the string, or the mass per unit of volume, A the constant area of normal section, and s the length of any portion of the string, the mass of that portion is $\delta A s$, and the mass per unit of length, or the load per unit of length in gravitation units, is

$$
\begin{equation*}
w=\delta A \tag{1}
\end{equation*}
$$

In absolute units we have $w=\delta A g$.
Referring to our general equations (4), page 111, we have in gravitation units $F_{y}=-w$, where s is the length of the string from the lowest point C to any point P. We also have $F_{x}=0, \cos \alpha=\frac{d x}{d s}, \cos \beta=\frac{d y}{d s}$, where $d s$ is the length of an element of the string and $d x, d y$ its horizontal and vertical projections.

Hence from equations (4). page 111,

$$
\begin{aligned}
& -H+T \frac{d x}{d s}=0 \\
& -w s+T \frac{d y}{d x}=0
\end{aligned}
$$

where H and T are to be taken in gravitation units if w is taken in gravitation units.

Eliminating T, we have for the slope α at any point P

$$
\begin{equation*}
\tan \alpha=\frac{d y}{d x}=\frac{w}{H} s . \tag{2}
\end{equation*}
$$

Let $H=v c$, or $c=\frac{H}{w}$, where c is then the length of that portion of the string whose weight is equal to the tension H at the lowest point C. Then

$$
\begin{equation*}
\frac{d y}{d x}=\frac{s}{c} \tag{3}
\end{equation*}
$$

Differentiating (3), substituting $d s=\sqrt{d x^{2}+d y^{2}}$, and reducing,

$$
d\left(\frac{d y}{d x}\right)=\frac{d s}{c}=\frac{d x}{c} \sqrt{1+\frac{d y^{2}}{d x^{2}}},
$$

or

$$
\frac{d x}{c}=\frac{d\left(\frac{d y}{d x}\right)}{\sqrt{1+\frac{d y^{2}}{d x^{2}}}} .
$$

Integrating this, we have

$$
\frac{x}{c}=\log \text { nat }\left[\frac{d y}{d x}+\sqrt{1+\frac{d y^{2}}{d x^{2}}}\right]+\text { const. }
$$

If we take the axis of Y passing through the lowest point C, we have $\frac{d y}{d x}=0$, where $x=0$. Therefore const. $=0$ and

$$
\begin{equation*}
\frac{x}{c}=\log \operatorname{nat}\left[\frac{d y}{d x}+\sqrt{1+\frac{d y^{2}}{d x^{2}}}\right]=\log \operatorname{nat}\left[\frac{s}{c}+\sqrt{1+\frac{s^{2}}{c^{2}}}\right] \tag{4}
\end{equation*}
$$

Or, if $e=2.718282$ is the base of the Naperian system of logarithms,

$$
\begin{gathered}
e^{\frac{x}{c}}=\frac{d y}{d x}+\sqrt{1+\frac{d y^{2}}{d x^{2}}}=\frac{d y}{d x}+\frac{d s}{d x}=\frac{s}{c}+\sqrt{1+\frac{s^{2}}{c^{2}}} \\
\text { or } \quad 1+\frac{d y^{2}}{d x^{2}}=\left[e^{\frac{x}{c}}-\frac{d y}{d x}\right]^{2}
\end{gathered}
$$

Solving this equation, we hare for the slope α at any point (see (3))

$$
\begin{equation*}
\tan \alpha=\frac{d y}{d x}=\frac{1}{2}\left(e^{\frac{x}{c}}-e^{-\frac{x}{c}}\right)=\frac{8}{c} . \tag{6}
\end{equation*}
$$

Integrating (6), we obtain

$$
y=\frac{c}{2}\left(e^{\frac{x}{c}}+e^{-\frac{x}{c}}\right)+\text { const. }
$$

Now, taking the origin O (see figure) at a distance equal to $C O=c$ below the lowest point C, we have $y=c$ when $x=0$. This gives const. $=0$. The horizontal line $O X$ at the distance $c=\frac{H}{w}$ below the lowest point C is called the directrix. The distance $O C=c=\frac{H}{w}$ is called the parameter.

We have then for the equation of the curve, taking the origin O at the distance $C O=c=\frac{H}{w}$ below the lowest point C,

$$
\begin{equation*}
y=\frac{c}{2}\left(e^{\frac{x}{c}}+e^{-\frac{x}{c}}\right) \tag{7}
\end{equation*}
$$

The point O at the distance $C O=c=\frac{H}{w}$ below the lowest point C is called the origin of the catenary, and equation (7) is the equation of the catenary referred to this origin.

We have from (6),

$$
\begin{equation*}
s=\frac{c}{2}\left(e^{\frac{x}{c}}-e^{-\frac{x}{c}}\right) \tag{8}
\end{equation*}
$$

Equation (8) gives the length of the curve from the lowest point C to any point P.

From (7) and (8) we have

$$
\begin{equation*}
y^{2}=s^{2}+c^{2} ; \tag{9}
\end{equation*}
$$

and differentiating (9),

$$
\begin{equation*}
s=y \frac{d y}{d s}=y \cos \beta \tag{10}
\end{equation*}
$$

Let $P M$ and $P T$ be the ordinate and tangent at P, and let fall the perpendicular $M N$ on $P T$. Then

$$
\begin{equation*}
P N=y \cos \beta=s ; \tag{11}
\end{equation*}
$$

and since $y^{2}-s^{2}=c^{2}$, we have

$$
\begin{equation*}
M N=c \tag{12}
\end{equation*}
$$

Hence, given the catenary, we can construct its origin and direction as follows :

On the tangent at any point P measure off $P N$ equal to the arc $C P$. At N erect a perpendicular $N M$ to the tangent meeting the orainate of P in M. Then the horizontal line through M is the directrix.

We have seen (page 111) that for vertical external forces the horizontal projection of the tension at any point is constant and equal to H, and the vertical component is $w s$. Therefore the tension T at any point is

$$
\begin{equation*}
T=\sqrt{H^{2}+w^{2} s^{2}}=H \sqrt{1+\frac{s^{2}}{c^{2}}} \tag{13}
\end{equation*}
$$

But, from (9), $c^{2}+s^{2}=y^{2}$; therefore, since $w=\frac{H}{c}$,

$$
\begin{equation*}
T^{\prime}=\frac{H}{c} y=w y \tag{14}
\end{equation*}
$$

That is, the tension at any point of the catenary is equal to the weight of a portion of the string whose length is equal to the ordinate of that point.

From page 112 we have $w \sin \phi=\frac{T}{\rho}$, where ρ is the radius of curvature. In the present case $\phi=\beta=$ angle made by vertical with the tangent at P. Substituting $T=w y$, we have

$$
\rho \sin \beta=\rho \cos \alpha=y
$$

We see then from the figure (page 115) that the length of the radius of curvature at any point is equal to the length of the normal between that point and the directrix.

We also see from the figure that $y \cos \alpha=c$, or $y=\frac{c}{\cos \alpha}$. Therefore

$$
\begin{equation*}
\rho=\frac{c}{\cos ^{2} \alpha}=c \sin ^{2} \alpha \tag{15}
\end{equation*}
$$

We also have

$$
c=s \tan \beta, \quad \text { or } \quad \frac{s}{c}=\frac{\cos \beta}{\sin \beta} .
$$

Hence from equation (3), after reduction,

$$
\begin{equation*}
x=s \tan \beta \log \text { nat } \cot \frac{1}{2} \beta . \tag{16}
\end{equation*}
$$

The catenary possesses other interesting properties, among which are the following:

The centre of mass of the catenary is lower than for any other curve of the same length joining the same two points.

If a common parabola is rolled on a straight line, its focus describes a catenary whose parameter c is equal to the focal distance of the parabola.

If an indefinite number of strings (without weight) are hung from the catenary, so that their lower ends are in a horizontal line and then the catenary is drawn out into a straight line, the lower ends of the strings will be in the arc of a parabola.
[Catenary of Uniform Strength.]-If the area of the normal section of the string at every point is proportional to the tension at that point, the
 unit tension, or tension per unit of area, will be the same at all points, and the curve assumed under the action of gravity by such a string of uniform density and perfectly flexible is called the catenary of uniform strength.

Let A_{0} be the area of normal section of the string at its lowest point C, where the horizontal tension is H, and let t be the constant unit tension, or tension per unit of area. Then

$$
\begin{equation*}
H=t A_{0} \tag{1}
\end{equation*}
$$

The tension at any other point P, where the area of normal section is A, is

$$
\begin{equation*}
T=t A \tag{2}
\end{equation*}
$$

Hence, from (1) and (2),

$$
\begin{equation*}
A: A_{0}:: T: H, \quad \text { or } \quad A=A_{0} \frac{T}{H} \tag{3}
\end{equation*}
$$

Let δ be the uniform density of the string. Then the mass of an element of the string of length $d s$, or the weight in gravitation units (page6), is $\delta A d s$. The weight in absolute units is $\delta A d s \times g$.

Referring to our general equations (4), page 111, we have for the weight in gravitation units of the string from the lowest point C to any* point P

$$
F_{y}=-\int_{0}^{s} \delta A d s
$$

We have also $F_{x}^{\prime}=0, \cos \alpha=\frac{d x}{d s}, \cos \beta=\frac{d y}{d s}$, where $d s$ is the length of an element of the string, and $d x, d y$ its horizontal and vertical components. Hence, from equations (4), page 111,

$$
\begin{aligned}
& -H+T \frac{d x}{d s}=0 \\
& -\int_{0}^{s} \delta A d s+T \frac{d y}{d s}=0
\end{aligned}
$$

where H and T are to be taken in gravitation units.
Eliminating T, we have

$$
\frac{d y}{d x}=\frac{\int_{0}^{s} \delta A d s}{H}, \quad \text { or } \quad d\left(\frac{d y}{d x}\right)=\frac{\delta A d s}{H}=\frac{\delta A d s^{2}}{T d x}
$$

Inserting the value of $A=\frac{A_{0} T}{H}$, we have

$$
d\left(\frac{d y}{d x}\right)=\frac{\delta A_{0} d s^{2}}{H d x}
$$

Let $d s^{2}=d x^{2}+d y^{2}$, and let

$$
\begin{equation*}
\frac{\delta A_{0}}{H}=\frac{1}{c}, \quad \text { or } \quad c=\frac{H}{\delta A_{0}}=\frac{t}{\delta} . \tag{4}
\end{equation*}
$$

That is, c is the length of a string of constant cross-section A_{0} equal to the cross-section at the lowest point C, and the same uniform density δ as the curve, whose weight is equal to the horizontal tension H at the lowest point. Then

$$
d\left(\frac{d y}{d x}\right)=\frac{d s^{2}}{c d x}=\frac{d x^{2}+d y^{2}}{c d x}
$$

or

$$
\frac{d^{2} y}{d x^{2}}=\frac{1}{c}\left(1+\frac{d y^{2}}{d x^{2}}\right)
$$

or

$$
\frac{\frac{d^{2} y}{\overline{d x^{2}}}}{1+\frac{d y^{2}}{d x^{2}}}=\frac{1}{c}
$$

Integrating this, we obtain

$$
\tan ^{-1}\left(\frac{d y}{d x}\right)=\frac{x}{c}+\text { Const. }
$$

Let the axis of \bar{Y} pass through the lowest point C of the curve. Then, when $x=0$, we have

$$
\frac{d y}{d x}=0 \quad \text { and } \quad \text { Const. }=0
$$

Hence

$$
\begin{equation*}
\tan \alpha=\frac{d y}{d x}=\tan \frac{x}{c} . \tag{5}
\end{equation*}
$$

Integrating again, we have

$$
y=-c \log \text { nat } \cos \frac{x}{c}+\text { Const. }
$$

If we take the origin at the lowest point C, then, when $x=0$, we have $y=0$ and Const. $=0$. Hence

$$
\begin{equation*}
y=-c \log \text { nat } \cos \frac{x}{c}=c \log \text { nat sec }{ }_{c}^{x} . \tag{6}
\end{equation*}
$$

Equation (6) is the equation of the catenary of uniform strength.
From equation (5) we have

$$
\alpha=\frac{x}{c} \quad \text { and } \quad d \alpha=\frac{d x}{c} .
$$

If ρ is the radius of curvature, we have $\rho d \alpha=d s$, and hence

$$
\begin{equation*}
\rho=\frac{d s}{d \alpha}=c \frac{d s}{d x}=c \sec \frac{x}{c} \tag{7}
\end{equation*}
$$

If we integrate the equation $\frac{d x}{d s}=\cos \alpha=\cos \frac{x}{c}$, or $d s=\sec \frac{x}{c} d x$, we have, since, when $x=0, s=0$ and the Const. of integration is zero,

$$
\begin{equation*}
s=c \operatorname{logn} \tan \left(45^{\circ}+\frac{x}{2 c}\right) \tag{8}
\end{equation*}
$$

Equation (8) gives the length of the curve from the lowest point C to any point P.

From (8) we hare

$$
e^{\frac{s}{c}}=\tan \left(45^{\circ}+\frac{x}{2 c}\right)=\frac{1+\sin \frac{x}{c}}{\cos \frac{x}{c}}
$$

where $e=2.718282$ is the base of the Naperian system of logarithms.
If we substitute $\sin \frac{x}{c}=\sqrt{1-\cos ^{2} \frac{x}{e}}$ and reduce, we obtain

$$
\begin{equation*}
\frac{1}{\cos \frac{x}{c}}=\sec \frac{x}{c}=\frac{1}{2}\left(e^{\frac{s}{c}}+e^{-\frac{s}{c}}\right) \tag{9}
\end{equation*}
$$

Substituting (9) in (7), we hare

$$
\begin{equation*}
\rho=\frac{c}{2}\left(e^{\frac{s}{c}}+e^{-\frac{1}{c}}\right) \tag{10}
\end{equation*}
$$

We have seen (page 111) that for vertical external forces the horizontal projection of the tension at any point is constant and equal to H, and the vertical component is therefore $H \tan \alpha=H \tan \frac{x}{c}$. We have then for the tension at any point P

$$
\begin{equation*}
T=H \sqrt{1+\frac{d y^{2}}{d x^{2}}}=H \sqrt{1+\tan ^{2} \frac{x}{c}}=H \sec \frac{x}{c} \tag{11}
\end{equation*}
$$

Let the two points of support A and B lie in a horizontal line $A B$. Then the curve will be symmetrical with respect to the lowest point C. Let the entire length of span $A B$ be $2 l$, then the weight of the entire string W will be given by

$$
W=2 H \tan \frac{l}{c}
$$

or, since, by equation (4), $c=\frac{t}{\delta}$,

$$
W=2 H \tan \frac{\delta l}{t}, \quad \text { or } \quad H=\frac{W}{2} \cot \frac{\delta l}{t}
$$

The area of normal section at any point P is then, from (2) and (11),

$$
A=\frac{T}{t}=\frac{H}{t} \sec \frac{x}{c}=\frac{W}{2 t} \cot \frac{\delta l}{t} \sec \frac{x}{c}
$$

Substituting the value of sec $\frac{x}{c}$ from (9) and putting $c=\frac{t}{\delta}$, we have for the area of cross-section A at any point P at a distance measured along the curve from the lowest point C equal to $s=C P$,

$$
\begin{equation*}
A=\frac{W}{4 t}\left(e^{\frac{\delta s}{t}}+e^{-\frac{\delta s}{t}}\right) \cot \frac{\delta l}{t} \tag{12}
\end{equation*}
$$

From equation (12), if the points of support are on a horizontal, and the span $A B$, the weight of the entire string, its density and the unit tension are given, we can find the area of normal section at any point P at a distance s along the curve from the lowest point C.
[Load Proportional to the Area between the String and a Horizon-
 tal.]-Let the load on any portion of the string $C P$ be proportional to the area $O C P x$ between the curve and a horizontal line $O X$. Take the origin at O in the vertical through the lowest point C, and let the distance $O C=y_{0}$.

Let w be the mass, or weight in gravitation units (page 6), of one unit of area of the load area between the curve and $O X$.

Let $H=w c^{2}$, or

$$
\begin{equation*}
\frac{H}{w}=c^{2} ; \tag{1}
\end{equation*}
$$

that is, c^{2} is the area of that portion of the load area whose weight is equal to the tension H at the lowest point C.

Let the area $O C P x$ be denoted by u. We have then for the load from C to any point P,

$$
\begin{equation*}
F_{y}=-w u=-w \int_{0}^{x} y d x \tag{2}
\end{equation*}
$$

Referring to our general equations (4), page 111, we have also $F_{x}=0$, $\cos \alpha=\frac{d x}{d s}, \quad \cos \beta=\frac{d y}{d s}$, and

$$
\begin{aligned}
& -H+T \frac{d x}{d s}=0 \\
& -w \int_{0}^{x} y d x+T \frac{d y}{d z}=0
\end{aligned}
$$

Eliminating T, we have

$$
\begin{equation*}
\frac{d y}{d x}=\frac{d^{2} u}{d x^{2}}=\frac{F_{y}}{H}=\frac{u}{c^{2}} . \tag{3}
\end{equation*}
$$

Multiplying by $2 d u$,

$$
\frac{2 d u d^{2} u}{d x^{2}}=\frac{2 u d u}{c^{2}} .
$$

Integrating,

$$
\frac{d u^{2}}{d x^{2}}=\frac{u^{2}}{c^{2}}+\text { Const. }
$$

Now $u=\int_{0}^{x} y d x$, and $d u=y d x$, or $\frac{d u}{d x}=y$. Therefore, when $u=0$, $\frac{d u}{d x}$ will be equal to $y_{0}=O C$, and Const. $=y_{0}$. Hence

$$
\frac{d u^{2}}{d x^{2}}=\frac{u^{2}}{c^{2}}+y_{0}^{2}, \quad \text { or } \quad d x=\frac{d u}{\sqrt{\frac{u^{2}}{c^{2}}+y_{0}{ }^{2}}}
$$

Integrating,

$$
x=c \log a\left[\frac{u}{c}+\sqrt{\frac{u^{2}}{c^{2}}+y_{0}^{2}}\right]+\text { Const. }
$$

When $u=0$, we have $x=0$, and Const. $=-c \operatorname{logn} y_{0}$. Hence

$$
\begin{equation*}
\frac{x}{c}=\log n\left[\frac{u}{c y_{0}}+\sqrt{\frac{u^{2}}{c^{2} y_{0}^{2}}+1}\right] . \tag{4}
\end{equation*}
$$

Or, if $e=2.718282$ is the base of the Naperian system of logarithms,

$$
\begin{equation*}
e^{\frac{x}{c}}=\frac{u}{c y_{0}}+\sqrt{\frac{u^{2}}{c^{2} y_{0}^{2}}+1} \tag{5}
\end{equation*}
$$

Solving this for u, we obtain

$$
\begin{equation*}
\text { area }=u=\frac{c y_{0}}{2}\left(e^{\frac{x}{c}}-e^{-\frac{x}{c}}\right) \tag{6}
\end{equation*}
$$

Also, since $y=\frac{d u}{d x}=\sqrt{\frac{u^{2}}{c^{2}}+y_{0}{ }^{2}}$,

$$
\begin{equation*}
y=\frac{y_{0}}{2}\left(e^{\frac{x}{c}}+e^{-\frac{x}{c}}\right) \tag{7}
\end{equation*}
$$

We have from (3) also

$$
\begin{equation*}
\tan \alpha=\frac{d y}{d x}=\frac{u}{c^{2}}=\frac{y_{0}}{2 c}\left(e^{\frac{x}{c}}-e^{-\frac{x}{c}}\right) \tag{9}
\end{equation*}
$$

For the tension T at any point P, since $F_{y}=H \frac{u}{c^{2}}=H \frac{d y}{d x}$,

$$
\begin{equation*}
T=\sqrt{F_{y}^{2}+H^{2}}=H \sqrt{1+\frac{d y^{2}}{d x^{2}}}=H \sec \alpha \ldots . \tag{10}
\end{equation*}
$$

The length c is the parameter of the curve. From (6) we have

$$
\frac{y}{y_{0}}=\sqrt{\frac{u^{2}}{c^{2} y_{0}{ }^{2}}+1}, \quad \text { and } \quad \frac{u}{c y_{0}}=\sqrt{\frac{y^{2}}{y_{0}^{2}}-1}
$$

Therefore, from (4),

$$
\begin{equation*}
x=c \operatorname{logn}\left(\frac{y}{y_{0}}+\sqrt{\frac{y^{2}}{y_{0}{ }^{2}}-1}\right) \tag{11}
\end{equation*}
$$

and hence

$$
\begin{equation*}
c=\frac{x}{\operatorname{logn}\left(\frac{y}{y_{0}}+\sqrt{\frac{y^{2}}{y_{0}{ }^{2}}-1}\right)} \tag{12}
\end{equation*}
$$

String Acted on by Central Force.-When the lines of action of the forces applied to the elements of the string all pass through the same point, the force acting on the string is said to be central, and this point is the centre of force.

Let P be any point of the curve, and take the centre of force O as the origin, and let the radius vector $O P=r$ make the angle θ with the axis of X. Then we have

$$
\begin{equation*}
\cos \theta=\frac{x}{r}, \quad \sin \theta=\frac{y}{r} . \tag{1}
\end{equation*}
$$

Let the force F upon the element $d s$ at
 any point P make the angle ϕ with the tangent at P, and let the tangent make the angle α with the axis of x. Then

$$
\begin{equation*}
\cos \alpha=\frac{d x}{d s}, \quad \sin \alpha=\frac{d y}{d s} \tag{2}
\end{equation*}
$$

$\cos \phi=\cos (\alpha-\theta)=\cos \alpha \cos \theta+\sin \alpha \sin \theta=\frac{x}{r} \frac{d x}{d s}+\frac{y}{r} \frac{d y}{d s} ;$
$\left.\sin \phi=\sin (\alpha-\theta)=\sin \alpha \cos \theta-\cos \alpha \sin \theta=\frac{x}{r} \frac{d y}{d s}-\frac{y}{r} \frac{d x}{d s}.\right\}$.
If p is the perpendicular $O N$ let fall from O on the tangent at P, and ρ is the radius of curvature of the cnrve at P, we have, page 88, Vol. I, Kinematics,

$$
\begin{equation*}
\rho=\frac{r d r}{d p} \tag{4}
\end{equation*}
$$

Now from equation (1), page 112, if F is the force upon the element $d s$, we have

$$
T_{2}-T_{1}=d T=-F \cos \phi
$$

or, substituting the value of $\cos \phi$ from (3),

$$
d T=-\frac{F}{r d s}(x d x+y d y)
$$

But $x^{2}+y^{2}=r^{2}$, he nce $x d x+y d y=r d r$, and therefore

$$
\begin{equation*}
d T=-\frac{F}{d s} d r \tag{5}
\end{equation*}
$$

From equation (2), page 112, we have

$$
\frac{T}{\rho}=\frac{F}{d s} \sin \phi
$$

or, substituting the value of $\sin \phi$ from (3),

$$
\frac{T}{\rho}=\frac{F}{r d s}\left(x \frac{d y}{d s}-y \frac{d x}{d s}\right)
$$

But $x \frac{d y}{d s}-y \frac{d x}{d s}=x \sin \alpha-y \cos \alpha=p$. Therefore

$$
\begin{equation*}
\operatorname{Tr}=\frac{F}{d s} \rho p \tag{6}
\end{equation*}
$$

Substituting the value of $\frac{F}{d s}$ from (5), we obtain

$$
d T^{\prime}=-\frac{T r d r}{\rho p}
$$

Substituting the value of ρ from (4), we obtain

$$
\frac{d T}{T}=-\frac{d p}{p}
$$

If we integrate this and let $T=T_{1}$ when $p=p_{1}$, we have

$$
\begin{equation*}
T p=T_{1} p_{1}=\text { a Constant. } \tag{7}
\end{equation*}
$$

Hence we see that the moment of the tension with respect to the centre of force is constant, or the tension varies inversely as the perpendicular p on the tangent from the centre of force.*

Eliminating T between (7) and (6) and putting for ρ its value from (4), we have

$$
\frac{d p}{p^{2}}=\frac{d r}{T_{1}^{\prime} p_{1}} \cdot \frac{F}{d s}
$$

or integrating,

$$
\begin{equation*}
\frac{1}{p}=-\int \frac{d r}{T_{1}^{\prime} p_{1}} \cdot \frac{F}{d s} \tag{8}
\end{equation*}
$$

the limits of the integral being given by the conditions of the problem. If the force is away from the centre, or repulsive, F is positive; if towards the centre, or attractive, F is negative.

From (8), when F is given, the equation to the curve is to be found, or, if the curve is given, F may be found.

Also from (7) and (5) the tension at any point of the curve may be found.

From equation (46), page 88, Vol. I, Kinematics, we have

$$
p^{2}=\frac{r^{2} d \xi^{2}}{d r^{2}+r^{2} d \theta^{2}}, \quad \text { or } \quad \frac{1}{p^{2}}=\frac{1}{r^{2}}+\frac{d r^{2}}{r^{4} d \theta^{2}}
$$

or if we denote $\frac{1}{r}$ by u,

$$
\begin{equation*}
\frac{1}{p^{2}}=u^{2}+\frac{d u^{2}}{d \varsigma^{2}} \tag{9}
\end{equation*}
$$

Equation (9) will be found useful in reductions.

[^10][Central Force Inversely as the Square of the Distance.]-As an application of the preceding Article, let us suppose the force F upon an element $d s$ of the string to be repulsive and to vary inversely as the square of the distance from the centre of force.

Let δ be the density of the string or the mass of a unit of volume. Then the mass of an element of length $d s$ whose area of normal section is A is $\delta A d s$. Let the central acceleration of one unit of mass at a known distance of r^{\prime} from
 the centre be a^{\prime}. Then the acceleration a at any distance r is given by

$$
\frac{a}{a^{\prime}}=\frac{r^{\prime 2}}{r^{2}}, \quad \text { or } \quad a=\frac{a^{\prime} r^{2}}{r^{2}}
$$

The force F upon an element $d s$ at the distance r is

$$
F= \pm \frac{a^{\prime} r^{\prime 2}}{r^{2}} \cdot \delta A d s
$$

where the $(+)$ sign is to be taken for repulsive force and the (-) sign for attractive force. Let the density δ and area A of normal section be constant, and let

$$
\begin{equation*}
\mu=a^{\prime} r^{\prime 2} \delta A \tag{1}
\end{equation*}
$$

where the constant μ is evidently numerically equal to the force on the mass of one unit of length of the string at a distance unity.

Then if the force is repulsive, we have

$$
\begin{equation*}
\frac{F}{d s}=+\frac{\mu}{r^{2}} \tag{2}
\end{equation*}
$$

From equation (5), page 123,

$$
d T=-\frac{\mu}{r^{2}} d r
$$

Integrating,

$$
T=\frac{\mu}{r}+\text { Const. }
$$

When the initial value of r is r_{1}, let the corresponding value of T be $p_{t=1}^{S}$ Then Const. $=T_{1}-\frac{\mu}{r_{1}}$, and we have ${ }^{*}$

$$
\begin{equation*}
T=T_{1}+\mu\left(\frac{1}{r}-\frac{1}{r_{1}}\right) . \tag{3}
\end{equation*}
$$

From equation (8), page 124,

$$
\frac{1}{p}=-\int \frac{\mu}{T_{1} p_{1}} \cdot \frac{d r}{r^{2}}=-\int \frac{\mu}{m_{1}} \cdot \frac{d r}{r^{2}}
$$

where we denote the moment $T_{1} p_{1}$ by m_{1}.
Integrating,

$$
\frac{1}{p}=\frac{\mu}{m_{1}} \cdot \frac{1}{r}+\text { Const. }
$$

[^11]Let $p=p_{1}$ when $r=r_{1}$. Then Const. $=\frac{1}{p_{1}}-\frac{\mu}{m_{1} r_{1}}$ and

$$
\begin{equation*}
\frac{1}{p}=\frac{1}{p_{1}}+\frac{\mu}{m_{1}}\left(\frac{1}{r}-\frac{1}{r_{1}}\right) \tag{4}
\end{equation*}
$$

If we put for the sake of simplicity

$$
\begin{equation*}
\frac{\mu}{m_{1}}=c \quad \text { and } \quad \frac{1}{p_{1}}-\frac{\mu}{m_{1} r_{1}}=-c \kappa, \quad . \quad . \tag{5}
\end{equation*}
$$

equation (4) becomes

$$
\frac{1}{p}=\frac{c}{r}-c \kappa
$$

or if we denote $\frac{1}{r}$ by u,

$$
\begin{equation*}
\frac{1}{p}=c u-c \kappa \tag{6}
\end{equation*}
$$

We have then from equation (9), page 124,

$$
\frac{1}{p^{2}}=u^{2}+\frac{d u^{2}}{d \theta^{2}}=c^{2}(u-\kappa)^{2}
$$

Hence

$$
\begin{equation*}
\frac{d u^{2}}{d \theta^{2}}=\left(c^{2}-1\right) u^{2}-2 c^{2} \kappa u+c^{2} \kappa^{2} . \tag{7}
\end{equation*}
$$

The integral of this equation will give the equation of the curve of equilibrium.

We have evidently three cases: when $c^{2}>1$; when $c^{2}=1$; when $c^{2}<1$.
Case I: When c^{2} is Greater than Unity.-Let c^{2} be greater than unity. Then let

$$
c^{2}-1=n^{2}
$$

and we have from equation (6), after reduction,

$$
\begin{equation*}
d \theta=\frac{d u}{n \sqrt{\left(u-\frac{c^{2} \kappa}{n^{2}}\right)^{2}-\frac{c^{2} \kappa^{2}}{n^{4}}}} \tag{8}
\end{equation*}
$$

From equation (3) we have $d T=\mu d \mu$. But we have seen, page 112, that when $d T=0$, the force is normal to the curve of the string. That
 value of u in equation (8) which makes $d u=0$ will then give an apse A, that is, a point where the string is perpendicular to the force. Let this value of u be $u_{0}=\frac{1}{r_{0}}$.
From equation (8), putting $\frac{d u}{d \theta}=0$, we obtain

$$
\begin{equation*}
u_{0}=\frac{1}{r_{0}}=\frac{c \kappa}{n^{2}}(1+c) \tag{9}
\end{equation*}
$$

For any value of u less than this, equation (8) becomes imaginary. All values of u must therefore be greater than u_{0}, that is, u increases or r diminishes each way from the apse. We have then $d u$ positive in equation (8).

Integrating equation (8), we obtain

$$
\theta=\frac{1}{n} \log n\left[u-\frac{c^{2} \kappa}{n^{2}}+\sqrt{\left(u-\frac{c^{2} \kappa}{n^{2}}\right)^{2}-\frac{c^{2} \kappa^{2}}{n^{4}}}\right]+\text { Const. }
$$

Le $\theta=\phi$ when $u=u_{0}=\frac{c k}{n^{2}}(1+c) . \quad$ Then Const. $=\phi-\frac{1}{n} \operatorname{logn} \frac{c K}{n^{2}}$.
If $e=2.718282$ is the base of the Naperian system of logarithms, we have

$$
\frac{c \kappa}{n^{2}} e^{n(\theta-\phi)}-\left(u-\frac{c^{2} \kappa}{n^{2}}\right)=\sqrt{\left(u-\frac{c^{2} \kappa}{n^{2}}\right)^{2}-\frac{c^{2} \kappa^{2}}{n^{4}}}
$$

Squaring and reducing, we have

$$
\begin{equation*}
u=\frac{c K}{n^{2}}\left(c+\frac{e^{n(\theta-\phi)}+e^{-n(\theta-\phi)}}{2}\right) \cdots \cdot \cdots \tag{10}
\end{equation*}
$$

Equation (10) is the polar equation of the curve of equilibrium.
The values of c and κ are given by equations (5) and (1).
If we measure θ from the initial radius vector r_{1} through the apse, we have $\phi=0$, and $u_{1}=u_{0}$. Therefore, from (9),

$$
u_{1}=\frac{c k}{n^{2}}(1+c), \quad \text { or } \quad \kappa=\frac{n^{2} u^{1}}{c(1+c)}
$$

Substituting this value of k in (10), we obtain

$$
\begin{equation*}
u=\frac{u_{1}}{\frac{\mu}{m_{1}}+1}\left[\frac{\mu}{m_{1}}+\frac{e^{n \theta}+e^{-n \theta}}{2}\right] \tag{11}
\end{equation*}
$$

Equation (11) is the polar equation of the curve of equilibrium when the angle θ is measured from the initial radius vector r_{1} through the apse. We have $u=\frac{1}{r}, u_{1}=\frac{1}{r_{1}}$, and the value of μ is given by equation (1).

Case 2: When c^{2} is Equal to Unity. - When $c^{2}=1$, we have $c=+1$ or $c=-1$. When $c=+1$, we have $n^{2}=c^{2}-1=0$, and from equation (11), $u=u_{1}$, or $r=r_{1}$. The centre of equilibrium when $c=$ +1 is therefore a circle.

When $c=-1$, we have also $n^{2}=c^{2}-1=0$, and, from equation (11), $u=\frac{0}{0}$ or indeterminate. In this case we have, from equation '(7),

$$
\begin{equation*}
d \theta=\frac{-d u}{\kappa \sqrt{1-\frac{2 u}{\kappa}}} \tag{12}
\end{equation*}
$$

Putting $\frac{d u}{d \theta}=0$, we have for the value of u at the apse

$$
u_{0}=\frac{\kappa}{2}
$$

For any value of u greater than this equation (12) is imaginary. All values of u must then be less than u_{0}, or u diminishes each way from tho apse. Hence $d u$ is negative.

Integrating (12), we have

$$
\theta=\sqrt{1-\frac{2 u}{\kappa}}+\text { Const. }
$$

Let $\theta=\phi$ when $u=u_{0}=\frac{k}{2} . \quad$ Then Const. $=\phi$, and

$$
\theta-\phi=\sqrt{1-\frac{2 u}{k}}, \quad \text { or } \quad u=\frac{k}{2}\left[1-(\theta-\phi)^{2}\right] .
$$

Hence

$$
\begin{equation*}
r=\frac{\frac{2}{\kappa}}{1-(\theta-\phi)^{2}} . \tag{13}
\end{equation*}
$$

Equation (13) is the polar equation of the curve of equilibrium when $c=-1$. The value of k is given by (5).

If we measure θ from the initial radius vector r_{1} through the apse, we have $\phi=0$, and $u_{1}=\frac{\kappa}{2}=\frac{1}{r_{1}}$, or $\kappa=\frac{2}{r_{1}}$. Substituting this value of κ, we have

$$
\begin{equation*}
r=\frac{r_{1}}{1-\theta^{2}} \ldots \tag{14}
\end{equation*}
$$

Equation (14) is the polar equation of the curve of equilibrium when $c=-1$, when the angle θ is measured from the initial value of r through the apse.

Case 3: When c^{2} is Less than Unity.-Let $c^{2}<1$ and put $1-c^{2}=n^{2}$. Then from equation (7), after reduction, we have

$$
\begin{equation*}
d \theta=\frac{-d u}{u \sqrt{\frac{c^{2} \kappa^{2}}{n^{4}}-\left(u+\frac{c^{2} \kappa}{n^{2}}\right)^{2}}} \tag{15}
\end{equation*}
$$

Puttlng $\frac{d u}{d \theta}=0$, we have for the value of u at the apse

$$
u_{0}=\frac{c \kappa}{n^{2}}(1-c)
$$

Any value of u greater than u_{0} gives equation (15) imaginary. All values of u must then be less than u_{0}, or u diminishes each way from the apse. Hence we take $d u$ negative in equation (15). Integrating, we have

$$
\theta=\frac{1}{n} \cos ^{-1} \frac{u+\frac{c^{2} \kappa}{n^{2}}}{\frac{c \kappa}{n^{2}}}+\text { Const. }
$$

Let $\partial=\phi$ when $u=u u_{0} . \quad$ Then Const. $=\phi$, and

$$
(\theta-\phi)=\frac{1}{n} \cos ^{-1}\left(c+\frac{n^{2} u}{c \kappa}\right)
$$

or

$$
\cos n(\theta-\phi)=c+\frac{n^{2} u}{c \kappa}
$$

Hence

$$
\begin{equation*}
u=-\frac{c \kappa}{n^{2}}[c-\cos n(\theta-\phi)] . \tag{16}
\end{equation*}
$$

Equation (16) is the polar equation of the curve of equilibrium.
The value of κ is given by (5).
If we measure θ from the initial radius vector r_{1} through the apse, we have $\phi=0$, and $u_{1}=u_{0}=\frac{c k}{n^{2}}(1-c), \quad$ or $\kappa=\frac{u_{1} n^{2}}{c(1-c)}$.

Substituting this value of κ iu equation (16), we have, if we put $c=-\frac{\mu}{m_{1}}$, where μ is given by equation (1),

$$
\begin{equation*}
u=\frac{u_{1}}{1+\frac{\mu}{m_{1}}}\left(\frac{\mu}{m_{1}}+\cos n \theta\right) \tag{17}
\end{equation*}
$$

Equation (17) differs from the focal polar equation of a conic only in having the angle θ multiplied by a number n less than unity.

EXAMPLES.

(1) An endless flexible string of uniform linear density but without weight is moving so that the velocity of each element has a constant magnitude v and a direction always tangential to the string. Show that the tension is the same at every point of the string, and find it.

Ans. Since the tangential velocity is constant, there is no tangential acceleration and hence no tangential force.

Therefore from equation (1), page $112, T_{2}-T_{1}=0$, or there is no variation in tension.

If ρ is the radius of curvature at any point, then the normal acceleration of hat point is $f_{n}=\frac{v^{2}}{\rho}$ (page 53, Vol. I, Kinematics).

If δ is the linear density, or the mass per unit of length, then the normal force per unit of length is $\delta f_{n}=\frac{\delta v^{2}}{\rho}$. From equation (2), page 112, we have then

$$
\frac{\delta v^{2}}{\rho}=\frac{T}{\rho}, \quad \text { or } \quad T=\delta v^{2}
$$

where T is given in poundals. In gravitation units (page 6),

$$
T=\frac{\delta v^{2}}{g}
$$

where g is the acceleration of gravity.
(2) An endless flexible circular string of radius r and of uniform linear density δ, but without weight, rotates in its own plane about its centre with the angular velocity ω. Find its tension.

Ans. The tangential velocity $r \omega$ is constant, and hence there is no tangential force. Therefore, just as in the preceding example, there is no variation in tension.

The normal acceleration is $f_{n}=r \omega^{2}$ (page 76, Vol. I, Kinematics).
If δ is the mass per unit of length, then the normal force per unit of length is $\delta r \omega^{2}$. From equation (2), page 112, we have then

$$
\delta r \omega^{2}=\frac{T}{r}, \quad \text { or } \quad T=\delta r^{2} \omega^{2}
$$

where T is given in poundals. In gravitation units (page 6),

$$
T=\frac{\delta r^{2} \omega^{2}}{g}
$$

where g is the acceleration of gravity.
(3) A body weighing 7 lbs . is suspended from a fixed point by a uniform string, 12 inches long, weighing 18 oz . Find the stress in the string at its middle point and at its upper and lower ends.

Ans. 7_{16}^{9} lbs., $8 \frac{1}{8} \mathrm{lbs}$, 7 lbs ., in gravitation units; or, taking $g=32,242$ poundals, 260 poundals, 224 poundals.
(4) Show that the horizontal component of the tension at any point of a uniform flexible string hanging in equilibrium from two fixed points is equal to the tension at the lowest point, and that the vertical component is equal to the weight of the portion of the string between the given point and the louest point.

Ans. See page 111.
(5) Show that at any point of a uniform flexible string which is hanging in equilibrium with two points fixed, its inclination to the horizon is the angle whose tangent is the ratio of the weight of the portion of the string between the given point and the lowest point to the tension at the lowest point.

Ans. See page 116.
(6) In the preceding example, show that the square of the tension at any point is equal to the sum of the squares of the weight of the portion. of the string between the given point and the lowest point, and of the tension at the lowest point.

Ans. See page 117.
(7) A telegraph wire, weighing 400 lbs. per mile, is stretched between two points in the same horizontal line at a distance of 100 yds . with a horizontal tension of 400 lbs . Find the deflection of the lowest point of the wire below the fixed points, neglecting stretch and supposing the wire perfectly flexible.

Ans. From equation (6), page 116, $x=150 \mathrm{ft} ., c=5280 \mathrm{ft}$., deflection $=$ 2.1 ft .
(8) A uniform wire weighs w lbs. per foot and is just able to stand a stress of P pounds. It is hung between two points in the same horizontal line, distant d ft., so as to be on the point of breaking. Obtain an equation to determine the half length s, the wire being supposed to be perfectly flexible and inextensible.

Ans. From page 117 we have $P^{2}=H^{2}+w^{2} s^{2}$. Hence $H=\sqrt{P^{2}-w^{2} s^{2}}$. Also $c=\frac{H}{w}=\frac{\sqrt{P^{2}-v^{2} s^{2}}}{w}$, and $x=\frac{d}{2}$. Therefore, from equation (8),

$$
s=\frac{\sqrt{P^{2}-w^{2} s^{2}}}{2 v}\left(e^{\frac{d w}{2 \sqrt{P^{2}-w^{2} s^{2}}}}-e^{-\frac{d w}{\sqrt{2 P^{2}-w^{2} s^{2}}}}\right)
$$

(9) A string 202 ft . long, which weighs 1 lb. for every 10 ft., is hung between two points in the same horizontal line distant 200 ft . Obtain an equation to determine the tension H at the lowest point in gravitation units.

Ans. We have $s=101 \mathrm{ft} ., v=\frac{1}{10} \mathrm{lb} ., x=100 \mathrm{ft} ., c=\frac{H}{w}=10 H$.

From equation (8), page 117,

$$
101=5 H\left(e^{\frac{10}{H}}-e^{-\frac{10}{H}}\right)
$$

Solving this equation by a series of approximations, we find H to be about $40 \mathrm{lbs} .$, provided the string is perfectly flexible and inextensible.
(10) Find the law of variation of the mass per unit of length at each point of a string acted on by gravity in order that it may hang in the form of a semi-circle whose diameter is horizontal.

Ans. Let $A B=2 r$ be the horizontal diameter and O the centre of the semicircle. Let P be any point of the curve, and the angle $P O O=\alpha$. Let the co-ordinates of P be x and y.

Then $\cos \alpha=\frac{d x}{d s}, \sin \alpha=\frac{d y}{d s}$.

We have from equations (4), page 111,

$$
\begin{aligned}
-H+T \frac{d x}{d s} & =0 \\
-\int_{0}^{s} \delta d s+T \frac{d y}{d s} & =0
\end{aligned}
$$

where δ is the linear density or mass per unit of length, and H and T are in gravitation units.

Dividing the second by the first, we have

$$
H \frac{d y}{d x}=\int_{0}^{s} \delta d s
$$

or

$$
H \frac{d^{9} y}{d x^{2}}=\frac{\delta d s}{d x}
$$

But the equation of the curve is $x^{2}+y^{2}=r^{2}$. Hence

$$
\frac{d y}{d x}=-\frac{x}{y}, \quad \text { and } \quad \frac{d^{2} y}{d x^{2}}=-\frac{y-x \frac{d y}{d x}}{y^{2}}=-\frac{r^{2}}{y^{3}}
$$

Therefore

$$
\frac{\delta d s}{d x}=-H \frac{r^{2}}{y^{3}}, \quad \text { or } \quad \delta=-H \frac{r^{2}}{y^{3}} \frac{d x}{d s} .
$$

But $\frac{d x}{d s}=\cos \alpha$, and $r \frac{d x}{d s}=-y$. Hence

$$
\delta=+\frac{H r}{y^{2}} .
$$

That is, the mass per unit of length varies inversely as the square of the distance of the point below the horizontal diameter.
(11) A telegraph line is constructed of wire which weighs 7.3 lbs. per 100 feet. The distance between the posts is 150 feet and the wire sags 1 foot in the middle. Show that it is screwed up to a tension of about 820 lbs.
(12) Find the law of variation of the mass per unit of length in order that a string may hang under the action of gravity in a parabola.

Ans. From page 113, the load per unit of horizontal projection is constant and equal to 20 . The load per unit of length is then proportional to the tangent of the slope, or $\frac{F}{d s}=20 \tan \alpha$.

But $\tan \alpha$ is proportional to the horizontal projection of the length. Hence the mass per unit of length is proportional to the horizontal projection of the unit of length.
(13) Show that the area of normal section at any point in the catenary of uniform strength is proportional to the radius of curvature.

Ans. From page 121, we see that A is proportional to sec $\frac{x}{c}$. From page 120, equation (7), we see that $\sec \frac{x}{c}$ is proportional to the radius of curvature.
(14) A uniform inextensible string assumes the form of a circle under the action of a repulsive force emanating from a point on its circumference. Find the law of force.

Ans. From page 124, $T p=$ Const. $=c$, or $T=\frac{c}{p}$. But if r is the radius
 vector of any point $P, p=r \cos \theta$. Hence $T=\frac{c}{r \cos \theta^{\circ}}$. From page 112, $\frac{T}{R}=\frac{F}{d \delta} \cos \theta$, where R is the radius of the circle. Hence $\frac{F}{d s} \cdot R \cos \theta=\frac{c}{r \cos \theta}$. But $R \cos \theta$ $=\frac{1}{2} r$ and $\cos \theta=\frac{1}{2} \frac{r}{R}$. Hence $\frac{F}{d s}=\frac{4 c R}{r^{3}}$, or the force varies inversely as the cube of the distance.

CHAPTER VI.

GRAPHICAL STATICS-CO-PLANAR FORCES.

CONCURRING CO-PLANAR FORCES. APPLICATION TO FRAMED STRUCTURES. APPARENT INDETERMINATION. NON-CONCURRING FORCES. EQUILIBRIUM POLYGON. GRAPHIC CONSTRUCTION FOR CENTRE OF PARALLEL FORCES. PROPERTIES OF EQUILIBRIUM POLYGON, APPLICATION TO PARALLEL FORCES.

Graphical Statics.-While the solution of statical problems by computation and analytical methods is sometimes tedious and involved, they may often be solved with comparative ease and sufficient accuracy by graphic construction.

The solution of statical problems by graphic methods gives rise to graphical statics. We shall consider only co-planar forces.

Concurring Co-planar Forces. - Let any number of co-planar forces $F_{1}, F_{2}, F_{3}, F_{4}$, etc., given in magnitude and direction, act at a point A, Fig. 1.

In Fig. 2, from any point 0, lay off to scale the line representative of F_{1} from 0 to 1 , then the line representative of
 F_{2} from 1 to 2, then the line representative of F_{3} from 2 to 3 , then the line representative of F_{4} from 3 to 4 , and so on. The polygon 01234 thus obtained we call the force polygon.

If all these forces are in equilibrium, the algebraic sum of their horizontal and vertical components must be zero. But when this is the case, evidently 4 and 0 , in Fig. 2, must coincide, or the force polygon must close. We have then the following principle:

If any number of concurring forces are in equilibrium, the force polygon is closed. If the force polygon is not closed, the line 04 necessary to make it close gives the magnitude and direction of the resultant R. If we consider this resultant acting at the point of application A in the direction from 4 to 0 , obtained by following round the polygon in the direction of the forces, it will hold the forces at A in equilibrium. If taken as acting in the opposite direction at A, it will replace the forces.

Cor. 1. The order in which the forces are laid off in the force polygon is immaterial. Thus in Fig. 2, if we had laid off 01 , then the line representative of F_{3} from 1 to 3^{\prime}, and then the line representative of F_{2}, we should arrive at 3 just as before. By a similar change of two and two we can have any order we please.

Cor. 2. Any line in the force polygon, as 02,03 , or 13 , is the resultant of the forces on either side. Thus 02 is the resultant of F_{1} and F_{2}, and, acting in the direction from 2 to 0 , holds F_{1} and F_{2} in equilibrium and replaces F_{3}, F_{4} and R.

Cor. 3. If the forces are all parallel, the force polygon becomes
 a straight line. Thus in Fig. 1, if the parallel forces $F_{2}, F_{2}, F_{3}, F_{4}$, etc., act at the point A, we have the force polygon Fig. 2, 01234 , and the closing line 40 is as before, the resultant R and equal to the algebraic sum of the forces.

If taken as acting from 4 to 0 , it will hold the forces at A in equilibrium. In the opposite direction it will replace the forces.

Notation for Framed Structures. - Let the figure represent a roof-truss composed of two rafters, a horizontal tie-rod and intermediate braces consisting of struts and ties.

The notation which we adopt in order to designate any number of a framed structure, or any force acting upon the structure, is as follows:

We place a letter in each of the triangular spaces into which the frame is divided by the members, and also a letter between any two forces. Any number or force is then denoted by the letter on each side of it. Thus in the figure $A B$ denotes the force $F_{2}, B C$ denotes the force $F_{2}, C D$ denotes the force $F_{3}, D E$ denotes the upward pressure of the right-hand support $R_{3}, E A$ denotes the upward pressure of the left-hand support R_{1}. Also $A a$, $B b, C d, D e$ denote the portions of the rafters which have these letters on each side. The portions into which the lower
 tie is divided are in the same way Ea,Ec, Ee. The braces are $a b, b c, c d, d e$.

The student should carefully adhere to this notation for the frame whenever using the graphic method.

Character of the Stresses.-The determination of the kind of stress in a member of a frame, whether tension or compression, is as important as the determination of the magnitude of the stress.

In the preceding figure, suppose we know the upward pressure at the left support R_{1} or $E A$, and we wish to find the stresses in the members Ea and $A a$, Fig. 1, which meet at the lower left-hand

Fig. 2.
apex. If these stresses and R_{1} are in equilibrium, they will make a closed polygon. If then we lay off EA in Fig. 2, upwards, equal to R_{1}, and then from A and E draw lines parallel to $A \alpha$ and $E \alpha$ in Fig. 1, and produce them till they intersect at a, Fig. 2, evidently the lines $A a$ and Ea in Fig. 2, taken to the same scale as. $E A$, will give the magnitude of the stresses in $E a$ and $A a$ in Fig. 1.

Thus, lines in the force polygon which have letters at each end give the stresses in those members of the frame denoted by the same letters at the sides.

Now as to the character of these stresses, the directions $A \alpha$ and $a E$ in Fig. 2, obtained by following round in the known direction of R_{1}, are the directions for equilibrium (page 133).

Since we are considering the concurring forces acting at the lefthand apex, transfer these directions to Fig. 1, and we see that A α acts towards the apex we are considering and thus resists compression, and $a E$ acts away from it and therefore resists tension. The stress in $A \alpha$ is therefore compressive (-) and in $a E$ tensile (+).

In general, then, if we take any apex of the frame in Fig. 1, and consider the concurring forces acting at that apex as a system of concurring forces in equilibrium, we have the following rule:

Follow round the force polygon in Fig. 2 in the direction indicated by any one of these forces already known, and transfer the directions thus obtained for the stresses to the apex in Fig. 1 under consideration. If the stress in any member is thus found acting away from the apex, it is tension $(+)$; if towards the apex, it is compression (-).

Application of Preceding Principles to a Frame. - Let Fig. 1 be a frame consisting of two rafters, a horizontal tie-rod and bracing as shown, carefully drawn to a scale of a certain number of feet to an inch. This we call the frame diagram.

Let the forces F_{1}, F_{2}, F_{3} act at the upper apices, and let the reactions or upward pressures of the supports be R_{1} and R_{2}. Notate the frame and these forces as directed, so that $F_{1}=A B$, $F_{2}=B C, F_{3}=C D, R_{2}=D E, R_{1}=E A$, while the members are $A a$, $B b, C d, D e, E e, E c, E a, a b, b c, c d, d e$.

The outer forces acting upon the frame cause stresses in the members. These outer forces must first be all known, or if any are unknown, they must first be found.

Lay off these outer forces $A B, B C, C D, D E, E A$ in Fig. 2 to a scale of a certain number of pounds to an inch. Each force in Fig. 2, having letters at its ends, is equal and parallel to those forces in Fig. 1 which have the same letters at the sides.

The polygon formed by $A B, B C, C D, D E, E A$ (in this case a straight line, Cor. 3, page 134) we have called the force polygon.

If the frame is in equilibrium, this polygon must always close, that is, the outer forces acting upon the frame must be in equilibrium. If it does not close, these outer forces are not in equilibrium and the frame will move. That is, the frame itself, so far as its motion as a whole is considered, may be treated as a point (page 83).

Having thus drawn and notated the frame Fig. 1 and constructed the force polygon Fig. 2, we can find the stresses in the members. The forces and stresses at each apex must be in equilibrium, and therefore form a closed polygon.

Thus consider first the left-hand apex, Fig. 1. At this point we have the reaction $E A$ and the stresses in $A \alpha$ and $E \alpha$, constituting a system of concurring forces in equilibrium. But we already have $E A$ laid off in Fig. 2. If then we draw $A \alpha$ and $E a$ in Fig. 2 parallel to $A \alpha$ and Ea in Fig. 1, and produce to intersection a, the polygon is closed and we have in Fig. 2 the stresses in $A \alpha$ and Ea, to the same scale employed in laying off $E A$. Since $E A$ acts upwards, if we follow round from E to A and A to α, and α to E, in Fig. 2, and transfer the directions thus obtained for $A \alpha$ and $a E$ to the left-hand apex in Fig. 1, we have the stress in $A \alpha$ towards this apex or compression (-), and the stress in αE away from the apex and therefore tension (+).
[The student should follow with his own sketch and mark each stress with its proper sign as he finds it.]

Let us now pass to the next upper apex, at F_{1}, Fig. 1. Here we have F_{1} or $A B$ and the stresses in $A a, a b$ and $B b$ in equilibrium. But we already have the stresses in $A \alpha$ and $A B$ laid off in Fig. 2.

If then we draw from a and B in Fig. 2 lines parallel to $a b$ and $B b$ in Fig. 1, and produce to intersection b, the polygon is closed and we have in Fig. 2 the stresses in $a b$ and $B b$. Since $A B$ is known to act downward, we follow round in Fig. 2, from A to B, B to d, d to a, and α to A, and transfer the directions thus obtained to the apex at F_{1}, Fig. 1, under consideration. We thus obtain the stress in $B b$ towards the apex or compression, the stress in $b a$ towards the apex or compression, and the stress in $a A$ towards the apex or compression, just as already found.

Note that in the first case, when we were considering the apex at R_{1}, we found the stress in $a A$ acting towards that apex. Now when we consider the apex at F_{1} we find the stress in $a A$ acting towards that apex-in both cases, then, compression.

Let us now consider the second lower apex, Fig. 1. We have here no outer force, but the stresses in $E a, a b, b c$ and $c E$ must be in equilibrium and therefore form a closed polygon. But in Fig. 2 we have already found the stresses in $E a$ and $a b$. If then we draw from b a line parallel to $b c$ in Fig. 1, and produce it to intersection c with Ea, the polygon closes, and we have in Fig. 2 the stresses in $b c$ and $c E$. We have already found $a E$ to be tension. It must therefore act away from the apex we are considering. We therefore follow round in Fig. 2, from E to a, a to b, b to c, and c to E, and transfer the directions thus found to the corresponding members in Fig. 1. We thus obtain the stress in Ea tension and the stress in $a b$ compression as already found, and the stress in $b c$ tension and in $c E$ tension.

Let us now consider the top apex. We have here the force $F_{2}=B C$, and the stresses in $B b, b c, c d$ and $d C$, in equilibrium. But in Fig. 2 we have already laid off $B C$, and we have found the stresses in $B b$ and $b c$. If then we draw from c and C lines parallel to $c d$ and $C d$ in Fig. 1, and produce to intersection d, the polygon closes and we have in Fig. 2 the stresses in $c d$ and $C d$. Since BC acts downwards, we follow round from B to C, C to d, d to c, c to b, and b to B. Transferring these directions to the corresponding members in Fig. 1, we obtain the stress in Cd compression and in $d c$ tension, while the stress in $c b$ is tension and in $b B$ compression as already found.

We can thus go to each apex and find the stresses in every member.

The lines in Fig. 2 which thus give the stresses in the members constitute the stress diagram. Each stress having letters at its
ends in Fig. 2 is parallel to that member in Fig. 1 which has the same letters at its sides.

Apparent Indetermination of Stresses.-It sometimes happens that a frame has no superfluous members and yet in applying the graphic method we are unable to find any apex at which all the forces but two are known. In such case the difficulty may be overcome by taking out one or more of the members and replacing them by another member, and then applying the method until we find the stress in some member which is not affected by the change. Or we may find the stress in this member by the method of sections (page 102). Having found this stress, we can replace the members taken out and find the actual stresses.

Thus let Fig. 1 be a frame* acted upon by the forces F_{1}, F_{3}, F_{3}, F_{4}, etc., and the reactions or upward pressures of the supports R_{1}, R_{2}.

Notate the frame and the forces by letters on each side as directed (page 134).

Then lay off to scale the outer forces in Fig. 2, thus forming the force polygon $A B C D \ldots H I A$. This polygon is a straight line in this case, because all the forces are parallel, and it must close, that is, the outer forces are in equilibrium.

We can now proceed to find the stresses as follows:
Consider first the left-hand apex, Fig. 1. At this point we have the reaction $I A$ and the stresses in $A a$ and $I a$ constituting a system of concurring forces in equilibrium. But we already have IA laid off in Fig. 2. If then we draw $A \alpha$ and Ia in Fig. 2 parallel to Ia and $A \alpha$ in Fig. 1, and produce to intersection α, the polygon is closed and we have in Fig. 2 the stresses in $A a$ and $I a$ to the same scale employed in laying off the forces. Since $I A$ acts upwards, we follow round from I to A, A to a, and α to I, in Fig. 2, and transfer the directions thus obtained for $A a$ and $a I$ to the corresponding members in Fig. 1.

We have then the stress in $A a$ towards the apex we are considering or compression (- , and the stress in αI away from that apex or tension (+).

Considering now the next upper apex, we have here the force $A B$ known, the stress in $A a$ already found, and the stresses in $a b$ and $B b$ unknown. If then in Fig. 2 we draw $a b$ and $B b$, thus closing the polygon, we obtain the stresses in $a b$ and $B b$.

[^12]Since $A B$ acts down, we follow round in Fig. 2 from A to B, B to b, b to a, and a back to A, and transfer the directions thus obtained to the corresponding members in Fig. 1. We have then the stress in $B b$ towards the apex we are considering or compression $(-)$, the stress in $b a$ towards that apex or compression (-), and the stress in αA also towards that apex or compression (-), just as we have already found it.

Note that when we were considering the apex at R_{1}, we found the stress in αA acting towards that apex. Now when we consider the apex at F_{1} we find the stress in αA acting towards that apex. In both cases, then, compression.

We can now consider the next lower apex, where we have the stresses in $I a, a b, b c$ and $c I$ in equilibrium. We already know $I a$. and $a b$, and if we draw in Fig. $2 b c$ and $c I$, we obtain the stresses, in $b c$ tension (+), and in $c I$ tension.

Thus far there has been no difficulty in the application of the graphic method. But now we cannot consider the next upper or lower apex, because at each we have more than two unknown forces. If we should start at the right end, we should soon come to the same difficulty on the right side. Apparently we can go no farther.

The number of members is 27 (we disregard the dotted member in Fig. 1). The number of apices is 15. We have then, applying the criterion for superfluous members (page 103), $m=2 n-3$. There are then no superfluous members.

If now we remove the two members de and ef and replace them by the dotted member $e^{\prime} f$, where e^{\prime} takes the place in the new notation of the two letters e and d, we have still a rigid frame with no superfluous members. For the number of members is now $m=25$ and the number of apices is $n=14$. We have then $m=2 n-3$.

But this change has evidently not affected the stress in the member Ig. We can therefore now carry on the diagram until we find the stress in $I g$, or we may compute the stress in $I g$ directly by the method of sections (page 102).

Thus if we now consider the apex at F_{2}, Fig. 1, we have at this point the stresses in the members $B b, b c, c e^{\prime}$ and $e^{\prime} C$, and the force $B C$, all in equilibrium. We know $B C, B b$ and $b c$, and if we draw in Fig. $2 c e$ and $e C$, we obtain the stresses in $e C$ compression and in $c e^{\prime}$ compression.

We can then pass to the apex at F_{3}, Fig. 1, where we know all the forces except the stresses in $D f$ and $f e^{\prime}$. We draw then $D f$ and $f e^{\prime}$ in Fig. 2, and obtain the stresses in Df compression and in $f e^{\prime}$ tension.

We can now pass to the next lower apex, where we have the stresses in $I c, c e^{\prime}$ and $e^{\prime} f$, and can therefore find $f g$ and $I g$. We draw then $f g$ and $I g$ in Fig. 2, and obtain the stresses in $f g$ and $I g$ tension.

We have thus found the stress in the member $I g$, and since this is unchanged by the removal of the members $d e$ and $e f$, we can now replace those members and remove $e^{\prime} f$.

We can now consider the second lower apex and find the stresses in $c d$ and $d g$, and can then pass to the apex at F_{3} and find the stresses in ef and $D f$, and so on. We can thus find the stress in every member of the frame, and there is no real indeterminateness.

Remarks upon the Method.-The method just illustrated we may call the "graphic method by resolution of forces." The student will note that he must always know all but two of the forces concurring at any apex before he can consider that apex.

It is evident that if the frame is completely divided into two portions by cutting the members, the stresses which existed in the cut members before the section was made must hold in equilibrium the outer forces acting upon each portion of the frame (page 102).

This is at once made evident by Fig. 2, page 137.
Thus suppose a section cutting the members $B b, b c$ and $c E, F i g$. 1, and thus dividing the frame into two portions. We see from Fig. 2 that the stresses in the cut pieces make a closed polygon with $E A$ and $A B$, the outer forces on the left-hand portion, or with $B C, C D$ and $D E$, the outer forces on the right-hand portion.

If we solve the triangles in Fig. 2, page 137, we obtain algebraic expressions for the stresses identical with those obtained by the "algebraic method by resolution of forces" (page 101).

Thus since the algebraic sum of the horizontal and vertical components of the forces acting at each apex must be zero, we have $+R_{1}+A a \cos \alpha=0$, or $A \alpha=-\frac{R_{1}}{\cos a}$, where α is the angle of the rafter with the vertical. We get the same result at once from Fig. 2 by solving the triangle $A a E$. In the same way we have at once, from Fig. $2, a b=-F_{1} \cos \beta$, where β is the angle of $a b$ with the vertical.

We see also from Fig. 2, page 137, other relations. Thus we see that the stress in $a b$ will be the least possible when it is perpendicular to the rafter. We also see at a glance how the stress in any member is affected by a change of inclination of the member.

Finally, the application of the method is equally simple no matter how irregular the frame may be.

If the frame is symmetrical with respect to the centre, and the forces F_{1}, F_{3} in Fig. 2 (page 137) are equal, it is evident that the stresses in each half will be the same. We have then $C d=B b$, $c d=c b$, and so on.

Choice of Scales, etc.-In general the larger the frame is drawn in Fig. 1, the better, as it then gives more accurately the direction of the members composing it.

The force polygon Fig. 2, on the other hand, should be taken to no larger scale than consistent with scaling off the forces to the degree of accuracy required, so as to avoid the intersection of very long lines, where a slight deviation from true direction multiplies the error. If an error of one twenty-fifth of an inch is considered the allowable limit, the scale should be so chosen that one twentyfifth of an inch shall represent a small number of pounds, within the degree of accuracy required.

The stress polygon Fig. 2 should be completely finished and the signs for tension (+) and compression (-) placed on the frame for each member as its stress is found, to avoid confusion, before the stresses are taken off to scale. A good scale, dividers, straight-edge, triangle, and hard fine-pointed pencil are all the tools required. The work should be done with care, all lines drawn light, points of intersection accurately located and the frame properly notated to correspond with the force polygon. Care should be exercised to secure perfect parallelism in the lines of the frame and stress polygon. Some practice is necessary in order to obtain close results. It should be remembered that careful habits of manipulation, while they tend to give constantly-increased skill and more accurate results, affect very slightly the rapidity and ease with which these results are obtained.

EXAMPLES.

(1) A roof-truss has a span of 50 feet and rise of 12.5 feet. Each rafter is divided into four equal panels, and the lower horizontal tie into six equal panels. The bracing is as shown in the figure. A weight of 800 lbs. is sustained at each upper apex. Find the stresses.

Ans. Draw the frame in Fig. 1 to a scale of, say, 12 feet to an inch, and notate it. Then construct the force polygon $A B C D E F G H 1 A$, Fig. 2.

Note that R_{2} or $H I$ and R_{1} or $I A$ are
 equal and each 2800 lbs . The force polygon then closes as it should. We can take the scale of Fig. 2 as 3200 lbs . to an inch. Then an error of $\frac{1}{25}$ of an inch will be about 128 lbs.

We can then find the stresses as shown in Fig. 2.

$A a$	$B b$	$C d$	$D f$	$I a$
-6280	-5816	-4700	-3580	+5624
$I c$	$I e$	$a b$	$b c$	$c d$

 $+4832+4024-720+720-1060$ $+928-1452+2400 \mathrm{lbs}$

The accurate results (Ex. (3), page 542) as found by computation are
$-6260-5813-4696-3577+5600$
$+4802+4003-720+720-1081$
$+920-1443+2401 \mathrm{lbs}$.
It will be seen that the greatest error is only 30 lbs . The above results were actually obtained from the diagram, nsing the scales given.
(2) Sketch the stress diagram for a roof-truss as shown in the following Fig. 1, equal forces acting at every upper and lower apex.

Ans. The student should note that the reactions $D E$ and $G A$ are each equal to half the sum of the downward forces or $2 \frac{1}{2}$ forces.

We lay off then in Fig. $2 A B, B C, O D$ downwards. Then, $D E$ upwards equal to $2 \frac{1}{2}$ forces. Then $E F, F G$ downwards. Then $G A$ upwards equal to $2 \frac{1}{2}$ forces, and closing the force polygon.

The stresses can now be found as always.
(3) We give in the following figures a number of frames with their stress diagrams.* For the sake of generality, the outer forces and reactions are often taken inclined as well as vertical.

[^13]

Fig. 1.

Fig. 4.

Fig. 7.

Fig. 2.

Fig. 5.

Fig. 8.

Fig. 3.

Fig. 6.

Kig. 9.

Fig. 10.

Fig. 13.

Fig. 11.

$$
0.00
$$

Fig. 14.

Fig. 16.

Fig. 1\%。

Fig. 12.

Fig. 15.

Fig. 18.

Fig. 19.

Fig. 20.

Fig. 21.

Fig. 22.

Fig. 23.

Fig. 24.

Fig. 25.

Fig. 26.

Fig. 27.

Fig. 28.
Non-concurring Forces.-Let the co-planar forces F_{1}, F_{2}, F_{3}, F_{4}, etc., act at the points $A_{1}, A_{2}, A_{3}, A_{4}$ of any rigid body, Fig. 1 .
 If we lay off the forces to scale in Fig. 2, we have as before the force polygon 01234 , and the closing line 04 gives as before the resultant. If this resultant acts in the direction 40 upon the rigid body, it will hold the given forces in equilibrium. If it acts in the direction 04 , it will replace the given forces.

We thus know the magnitude and direction of the resultant. But its position in the plane of the forces in Fig. 1 is as yet unknown.

In order to determine this, choose any point O in Fig. 2, and draw the lines $O 0$ and $O 4$. This point O we call the pole of the force polygon. Now since every line in the force polygon represents a force, by thus choosing a pole O and drawing lines $O 0, O 4$ to the extremities of the resultant 04 , we have resolved the resultant into the two forces represented by $O 0$ and $O 4$. This is evident from the fact that these two lines make a closed polygon with 04, and hence taken as acting from 4 to O and ' O to 0 , as shown by the arrows, hold the forces $F_{1}, F_{2}, F_{3}, F_{4}$ in equilibrium, or replace the resultant 40 (page 133). As the pole O is taken anywhere we please, we
can thus resolve the resultant 40 for equilibrium into forces in any two directions we wish.

Let us then consider the resultant 40 for equilibrium, replaced by the two forces $4 O$ and $O 0$. Anywhere in the plane of the forces in Fig. 1 draw a line s_{v} parallel to $O 0$ and produce it till it meets F_{1}, produced if necessary, at a.

If then we take s_{0} and F_{1}, Fig. 1, as acting at α, their resultant will pass through α and be parallel to s_{1} in the force polygon Fig. 2 , because s_{1} in the force polygon is the resultant of F_{1} and s_{0}, since it closes the polygon for those forces. Through α in Fig. 1, then, draw a line parallel to s_{1} and produce it to intersection b with F_{2}, produced if necessary. The line s_{2} in the force polygon is the resultant of s_{1} and F_{2}. Parallel to this line then draw s_{2} through b, Fig. 1, and produce to intersection c with F_{s}, produced if necessary. The line s_{3} in the force polygon is the resutlant of s_{2} and F_{3}. Parallel to this line then draw s_{3} through c, Fig. 1, and produce to intersection d with F_{4}, produced if necessary. Finally through d in Fig. 1 draw a line s_{4} parallel to s_{4} in the force polygon.

We thus find for any assumed position of s_{0} in the plane of the forces in Fig. 1 the proper corresponding position of s_{4}. Since now s_{0} and s_{4} are components of the resultant in proper position and each may be considered as acting at any point in its line of direction, we have only to prolong them, and their intersection gives a point e on the line of direction of the resultant.

We prolong s_{0} and s_{4} then in Fig. 1 to intersection e. The line of direction of the resultant passes through e. Acting in the direction from 4 to 0 , it will hold the forces in equilibrium. We thus know the magnitude, direction and position of the resultant for equilibrium.

Position of Pole and of s_{0} Indifferent.-The method is evidently general no matter where in the plane of the forces in Fig. 1 we take s_{0} as acting, and no matter where we take the pole in Fig. 2.

Pole, Equilibrium Polygon, Rays, Closing Line.-The point O we call the pole in the force polygon. It may be taken where we please. The polygon $a b c d$ in Fig. 1 we call the equilibrium polygon, and $a b, b c, c d$, etc., are its segments. In the present case it is evidently the shape a string would take if suspended at any two points as A and B, in Fig. 1, on s_{0} and s_{4}. The stresses in the segments would be tensile. These stresses are given by the lines $\mathrm{O} 0, \mathrm{O} 1, \mathrm{O} 2$, in the force polygon, and we call these lines rays. In general forces may act up as well as down, in which case some of the segments would sustain compressive stresses and our equilibrium polygon would contain struts as well as ties.

Let us take any two points, as A and B, upon the end segments s_{0} and s_{4}, Fig. 1, and suppose them fixed. The force s_{0} acting at A we shall then have to replace by two forces, one parallel to the resultant and one in the direction $A B$. So also for s_{4} at B. The sum of the two components parallel to the resultant must be equal and opposite to the resultant, and the component in the direction $A B$ must be resisted by a strut or compression member $A B$. This resolution we make at once by drawing through O in the force polygon a line $O L$ parallel to $A B$. The line $A B$ we call the closing line. Thus we see from Fig. 2 that the sum of the components $4 L$ and $L 0$ equals the resultant.

In any case, then, we can fix any two points of the equilibrium polygon as A, B, by drawing the closing line $A B$. A line $O L$ through O parallel to $A B$, in the force polygon, gives the components into which s_{0} and s_{4} are resolved.

We can then consider the entire polygon $A a b c d B$, with its closing line $A B$, as a frame in equilibrium with the given forces, and can apply to it the principles of page 135.

Thus take the apex A. Here we have the reaction $R_{1}=L 0$ in equilibrium with the stresses in $A B$ and $A a$. Following round in the force polygon from L to 0 ,

 0 to O, and O to L, and transferring these directions to the apex A, we find S_{0} away from A or tension, and $O L$ towards A or compression, just as on page 136.

So also at the other apex B we have $R_{2}=4 L$ in equilibrium with the stresses in $A B$ and Bd. Following round in the force polygon from 4 to L, L to O, and O to 4 , we find S_{4} away from B or tension, and $L O$ towards B or compression, as before. The components R_{1} and R_{2} act opposite to the resultant 04 which replaces the forces, and equal to it in magnitude. The forces at A and B parallel to $O L$ are equal and opposite. Hence the frame is in equilibrium.
Recapitulation.--Our method, then, is as follows:
1st. Draw the force polygon by laying off the forces to scale one after the other, in any order. The line which closes this polygon gives the resultant in magnitude and direction. When it is taken as acting in the direction obtained by following round the force polygon in the direction of the forces, it will cause equilibrium. In the opposite direction it replaces the forces.

2 d . Choose a pole O, and draw the rays s_{0}, s_{1}, s_{2}, etc.
3d. Draw the equilibrium polygon.
4th. Fix any two points in the end segments of the equilibrium polygon by drawing the closing line of the equilibrium polygon between those two points.

5th. A line drawn in the force polygon parallel to the closing line of the equilibrium polygon will divide the resultant into the two reactions at the ends. We thus have a frame the stresses in which can be found as on page 136.

Graphic Construction for Centre of Parallel Co-planar Forces. Let F_{1}, F_{2}, F_{3}, etc., be parallel co-planar forces acting at the points A_{1}, A_{2}, A_{3}, etc., of a rigid body.

We construct the force polygon Fig. 2 by laying off the forces F_{1}, F_{2}, F_{3}, etc. The resultant is then the algebraic sum of the forces and parallel to them.

- Then choose a pole O and draw the rays $s_{0}, s_{1}, s_{2}, s_{3}$, etc.

Anywhere in the plane of the forces, Fig. 1, we draw a line parallel to s_{0} to intersection a with F_{1}; then $a b$ parallel to s_{1} to intersection b with F_{2}; then $b c$ parallel to s_{2} to intersection c with F_{3}; then s_{3} through c parallel to s_{3} in Fig. 2.

The intersection d of s_{0} and s_{3} is a point on the resultant which therefore has the direction and position $d C$.

Now suppose the forces F_{1}, F_{2}, F_{3}, etc., all turned in the same direction through a right angle.

Draw the new equilibrium polygon $s_{0}{ }^{\prime} a^{\prime} b^{\prime} c^{\prime} s_{s}{ }^{\prime}$, whose sides are respectively perpendicular to those of the first.

The intersection d^{\prime} of $s_{0}{ }^{\prime}$ and $s_{3}{ }^{\prime}$ is a point on the resultant which therefore has the direction and position $d^{\prime} C$.

The intersection C of the two resultants gives the centre of force for the system (page 73).

Cor. The same construction evidently determines the centre of mass (page 75), if we divide a body into a convenient number of portions, and take the weight of each portion, F_{1}, F_{2}, F_{3}, etc., acting at the centre of mass of that portion.

Properties of the Equilibrium Polygon.-The equilibrium polygon has many interesting properties. We shall call attention to only two.

1st. As we have seen, the intersection of any two segments is a point in the resultant of the forces included between those segments. Thus in the preceding Fig. 1, the intersection d of s_{0} and s_{3} is a point on the resultant of F_{1}, F_{2} and F_{3}

2d. Let $s_{0} \alpha b$, Fig. 1, be a portion of the equilibrium polygon, and Fig. 2 its corresponding force polygon.

Take any line fe in Fig. 1, parallel to F_{1} and draw the perpendicular $c d=x$.

Let $d e=y$ be the ordinate between s o and s_{1}.

In the force polygon Fig. 2, draw the perpendicular $O H=H$ from the pole to 01. This is called the pole distance of \boldsymbol{F}_{1}.

Then by similar triangles we have

$$
y: x:: F_{1}: H, \quad \text { or } \quad F_{1} x=H y .
$$

But $F_{1} x$ is the moment of F_{1} with reference to any point on the line $f e$.

Hence, the moment of any force as F, with reference to any point, is equal to the ordinate through this point parallel to F_{1}, included between the segments of the equilibrium polygon which meet at F_{1}, multiplied by the pole distance of F_{1} in the force polygon.

Application to Parcllel Forces. -The outer forces acting upon framed structures are generally weights and reactions of supports due to these weights. We have then in general to investigate a system of parallel forces,

Let F_{1}, F_{2}, F_{3}, Fig. 1, be vertical forces acting upon a rigid body or frame.

Lay off the force polygon 0123 , Fig. 2. Choose a pole O and draw the rays $s_{0}, s_{1}, s_{2}, s_{3}$.

Then in the plane of the forces Fig. 1, draw s_{0} to meet F_{1} at a; then s_{1} through a to meet F_{2} at b; then s_{2} through b to meet F_{3} at

c; and finally s_{3}. We thus have the equilibrium polygon $s_{0} a b c s_{3}$. We see that the horizontal component of the stress in any segment is constant and equal to OH (page 111).

Drop verticals through A and B which meet the end segments s_{0} and s_{3} in A^{\prime} and B^{\prime}. If we fix the points A^{\prime}, B^{\prime} by drawing the closing line $A^{\prime} B^{\prime}$, the reactions at A^{\prime}, B^{\prime} will be the reactions at A and B of the frame.

Therefore in Fig. 2, draw $O L$ parallel to $A^{\prime} B^{\prime}$ and we have $L 0=R_{1}$, and $3 L=R_{2}$.

Draw the pole distance $O H$. Through the apex K of the frame drop the vertical Kkmn . Then, as just proved, OH (to scale of force) $\times k n$ (to scale of distance) $=$ the moment of R_{1}. Again, $O H$ $\times m n=$ the moment of F_{1}. The resultant moment is then given by $\mathrm{OH} \times(\mathrm{kn}-\mathrm{nm})$ or $\mathrm{OH} \times \mathrm{km}$.

That is, for parallel forces, the pole distance multiplied by the ordinate of the equilibrium polygon at any point, parallel to the forces included between the closing line and the polygon, gives the resultant moment of all the forces on either side of the ordinate with reference to any point in that ordinate.

If then we make a section cutting $E K, C K$ and $C D$, and take the centre of moments at K, we have (page 102) stress in $C D \times$ lever-arm for $C D=$ algebraic sum of moments of R_{1} and F_{1} with reference to K. But this algebraic sum we have just seen is given by $H \times k m$. Hence stress in $C D$ is equal to $\frac{H \times k m}{\text { lever-arm for } C D}$.

We can therefore find the moment graphically at any point by multiplying the ordinate to the equilibrium polygon at that point by the pole distance.

A few examples will make the application of the preceding principles clear.

Ex. 1. Let $A B$, Fig. 1, be a beam or rigid body or framed structure subjected to two unequal weights F_{1} and F_{2} applied at any two given points. Required the reactions at the supports A and B, also the moment at any point of all the forces right or left of that
 point, when equilibrium exists.

Draw the force polygon Fig. 2, choose a pole O, and draw s_{0}, s_{1}, s_{2}, and the pole distance H.

Construct the equilibrium polygon Fig. 1 by drawing a parallel to s_{0} to intersection a
with F_{1}; through a a parallel to s_{1} to intersection b with F_{2}; through b a parallel to s_{2}. Drop verticals from A and B and draw the closing line $A^{\prime} B^{\prime}$. Parallel to $A^{\prime} B^{\prime}$ draw $O L$ in Fig 2.

Then $L 0$ and $2 L$ are the reactions at A and B; and since they act upwards, the supports must be below A and B.

The moment at any point K is equal to the ordinate $k n$ multiplied by the pole distance H.

Ex. 2. It is well to observe that the order in which the forces are taken makes no difference in the results, although the figure obtained may be very different.

Thus take the same example as before, but number the forces in inverse order, Fig. 1.

We form the force polygon as before, choose a pole and draw s_{0}, s_{1}, s_{2}. Now parallel to s_{0} we draw a line till it meets F_{1} at a [note that s_{0} must always be produced to meet F_{1}]; then from a a parallel to s_{1} till it meets F_{2} at b; then from b a parallel to s_{2}. Draw the closing line $A^{\prime} B^{\prime}$. A parallel to it in Fig. 2 gives the reactions $L 0$ and $2 L$ as before. At apex b of the equilibrium polygon we find s_{2} tension, since F_{2} acts downward. At apex a we find s_{0} tension, since F_{1} is downward. Hence at A^{\prime}, s_{0} acts away from A^{\prime}, and following round in the force polygon we obtain $L 0$ acting upwards. At B^{\prime}, s_{2} acts away, and hence $2 L$ acts upwards also. The supports at A and B must then be below.

As to the moments, the moment of the reaction at A with reference to any point K is $H \times k m$. The moment of F_{2} is $-H \times n p$. The resultant moment is $H \times(\mathrm{Km}-n p)$. The lower ordinates subtracted from the upper will give us the same figure as before.

Whenever, then, we obtain a double figure as in the presentcase, it shows that we have taken the forces in inconvenient order. We have only to change the order to obtain the moments directly from the equilibrium polygon.

Closing Line at Right Angles to the Forces-Choice of Pole Distance.-It makes no difference what inclination the closing line may have, because, as we have seen, the ordinate in the equilibrium polygon parallel to the resultant, multiplied by the pole distance, gives the resultant moment, with reference to any point on that ordinate, of all the forces right or left.

We can, however, if we wish always cause the closing line to be at right angles to the parallel forces. We have only to find first by preliminary construction the reactions or the point L. If then we take a new pole anywhere in a line through this point at right angles to the forces, the closing line will be at right angles to the forces.

As to choice of pole distance, we have only to so choose the position of the pole as to give good intersections for the polygon.

The multiplication may be directly performed by properly changing the scale in the equilibrium polygon. The ordinate to this new scale will then give the moment at once. Thus if our scale of length in Fig. 1, preceding, is five feet to an inch, and the pole distance in the force polygon Fig. 2, measured to the scale of force adopted, is ten pounds, we have only to take fifty moment units to an inch as the scale for the ordinates and they will give the moments directly.

Ex. 3. Let the single weight F_{1} act at any point of the rigid body $A B$. Then the equilibrium polygon is $A^{\prime} a B^{\prime}$. The vertical reactions at A and B are $L 0$ and $1 L$, both acting up, and hence the supports are below A and B.

We see at once that the moment is greatest at the weight and decreases to zero at each support.

Ex. 4. Let F_{1} act outside of the supports A and B. Observe in

Fig. 2.

constructing the equilibrium polygon that s_{0} is always produced till it meets F_{1}; also that the closing line $A^{\prime} B^{\prime}$ always unites the two points vertically under the supports, upon the two end segments.

The reactions require special notice. Thus the reaction R_{2} at B is the resultant of the stresses in $a B^{\prime}$ and $B^{\prime} A^{\prime}$, or $1 L$ in the force polygon. The reaction R_{1} at A is the resultant of the stresses in $A^{\prime} a$ and $A^{\prime} B^{\prime}$, or $L 0$ in the force polygon.

Since F_{1} acts downward at apex a, we have s_{1} compression and s_{0} tension. Therefore at apex A^{\prime} we take s_{0} acting away, and hence obtain $L 0$ acting down, or the support is above A.

At apex B^{\prime} we take s_{1} acting towards, and hence obtain $1 L$ acting up, or the support is below B.

Ex. 5. One Downward and One Upward Force between the. Supports.-Here we need only call special attention to the fact that as F_{2} acts up and is less than F_{1}, s_{2} in the force polygon Fig. 2 lies. between s_{0} and s_{1}.

The reaction at A is the resultant of s_{0} and L or $L 0$. The reaction at B is the resultant of s_{2} and L or $L 2$. Since F_{z} is down at a, we have s_{0} tension, and since F_{2} is up at b, we have s_{2} tension. At apex A^{\prime}, then, s_{0} acts away, and hence L is compression and $L 0$ acts upward and support at A is below. At apex B^{\prime}, s_{2} acts away, and L is compression as before and $2 L$ acts downward, or support at B is above.

We see also that if F_{2} were less, so that 2 falls below L in the force polygon, the reaction at B would be
 upward also, and the support would then have to be below. The student should sketch the case for F_{2} greater than F_{1}.

At the point K we see that the moment is zero. If $A B$ is a beam, the point K is the "point of inflection," or the point at which the curve of deflection of the beam changes from concave to convex. The beam would be concave upwards as far as K, and from there on convex upwards.

Ex. 6. In the preceding case, let the forces be equal. Laying off the force polygon Fig. 2, the first force extends from 0 to 1, and
 that s_{0} and s_{2} coincide.

Constructing the equilibrium polygon and drawing the closing line $A^{\prime} \boldsymbol{B}^{\prime}$ and its parallel L in the force polygon, we see that the reaction at A or the resultant of s_{0} and L is $L 0$, and the reaction at B or the resultant of s_{2} and L is also $L 0$. The reactions are therefore equal. Since s_{0} and s_{2} are both tension, we have reaction at A upward or support below A, and reaction at B down-
ward or support above B.
This is in accord with the principle (page 73) that a couple can only be held in equilibrium by another couple. Morever, the resultant of s_{0} and s_{2} in Fig. 2 is zero, and the point of application is at the intersection of s_{3} and s_{2} in Fig. 1, or at an infinite distance.

That is, the resultant of a couple is zero at an infinite distance (page 73.)

At K the moment is zero as before, and we have a point of inflection.

Ex. 7. Two Equal Weights beyond the Supports.-The figure needs no explanation, except to call attention to the reactions.

Thus the reaction at A is $L 0$ acting down. At B it is $2 L$ acting up.

The moment at any point, in all cases, is the ordinate multiplied by the pole distance H. The shaded areas then show how the moments vary.

We repeat here that the order in which the forces are taken, in all cases, as also the position of the pole, is indifferent. The student will do well to work out cases to scale and satisfy himself that this is true.

Ex. 8. Two Equal and Opposite Forces beyond the Supports.
 -Observe that s_{0} is produced till it intersects F_{1} at a in Fig. 1 ; then s_{1} from a to b; then s_{2} parallel to s_{2} or s_{0} in Fig. 2. The closing line $A^{\prime} B^{\prime}$ is then drawn. A parallel to it in Fig. 2 gives L.

The reaction at A is $L 0$ acting down, and at $B, 0 L$ acting up.

Between B and F_{2} the moment is constant. This is the graphic interpretation of the principle, page 72 , that the moment of a couple is constant for any point in its plane.

Ex. 9. A Uniformly-distributed Load. -Let the load be uniformly distributed. We might consider it as a system of equal and equidistant weights very close together.

Thus in Fig. 1 the load area, which is a rectangle of uniform density, whose height is the load per unit of length, and whose length is $A B$, may be divided into any number of equal parts. The weight on each of these parts acts at its centre of mass. We can then lay off the force polygon Fig. 2. Since the reactions at A and B are equal, we take the pole in a horizontal through the middle point of the force line. The closing line $A^{\prime} B^{\prime}$ will then be parallel to $\boldsymbol{A} \boldsymbol{B}(\mathbf{p} .149)$. We can then draw s_{0}, s_{1}, s_{2}, etc., and construct the equilibrium polygon. It is evident that the points a, b, c, d, etc., will enclose a curve tangent to $a b, b c, c d$, etc., at the points midway between, that is, where the lines of division of the load area meet the sides of the equilibrium polygon.

The ordinates to this curve, multiplied by the pole distance H, give the moment at any point on the ordinates.

It will be seen, however, that this method is deficient in accuracy, because the lines $a b, b c, c d$, etc., are so short and there are so many of them. If, however, we can find what the curve $A^{\prime} a b c d$, etc., is, we could draw the curve at once.

Suppose we divide the load area into only two portions of lengths x and $l-x$, where $l=A B$, Fig. 3. The entire weight over the por-
 tion x can be considered as acting at the centre e_{1} of the load area. The same holds good for the portion $l-x$. We thus have two forces F_{1} and F_{2}.

Taking the pole as before, so that the closing line $A^{\prime} B^{\prime}$ shall be parallel to $A B$, construct the equilibrium polygon $A^{\prime} a b B^{\prime}$. The curve of moments will be tangent at A^{\prime}, c and B^{\prime}, as shown by the dotted curve.

Now we see that, no matter where the load area is supposed to be divided, ve shall always have for the distance $c_{1} e_{2}$ between F_{2} and F_{2}

$$
e_{1} e_{2}=\frac{1}{2} x+\frac{1}{2}(l-x)=\frac{1}{2} l
$$

That is, no matter where the line of division is taken, the horizontal projection of the line $a b$ of the equilibrium polygon is constant and equal to $\frac{1}{2} l$. But $a b$ is a tangent to the curve required. But if from any point on the line $A^{\prime} d$ we draw a line $a b$ limited by the line $B^{\prime} d$, so that the horizontal projection is constant, the line $a b$ will envelop a parabola.

This may easily be proved as follows: Let the load per unit of length be p. Then the entire load is $p l$ and the reaction at each end is $\frac{p l}{2}$.

The moment at any point distant x from the left support is then

$$
y=\frac{p l}{2} x-F_{1} \frac{x}{2}
$$

But since F_{1}^{\prime} is equal to $p x$,

$$
y=\frac{p l}{2} x-\frac{p x^{2}}{2}
$$

This is the equation of a parabola. At the centre $x=\frac{l}{2}$, and we therefore have the centre ordinate $\frac{p l^{2}}{8}$.

Cor. 1. We see, therefore, that when a string is suspended from two points A^{\prime}, B^{\prime} and sustains a load uniformly distributed over the horizontal, the curve of equilibrium is a parabola (page 113).

Also the horizontal component of the stress at any point, as is evident from the force polygon, is constant and equal to H. Also the vertical component of the stress at any point as c, Fig. 3, is $R_{1}-F_{1}$, or equal to the total load between the lowest point and the point considered (page 111).

Cor. 2. We have the following construction for the equilibrium curve. Lay off a perpendicular $e K$ at the centre e and make it equal by scale to $\frac{p l^{2}}{8}$. Through A, K and B construct a parabola having its vertex at K. The ordinate to this parabola through any point will give the moment at that point.

The distance $K d$ is also equal to $\frac{p l^{2}}{8}$, be-
 cause the moment of the reaction with reference to e is

$$
e d=\frac{p l}{2} \times \frac{l}{2}=\frac{p l^{2}}{4}
$$

and $K d=e d-e K=\frac{p l^{2}}{4}-\frac{p l^{2}}{8}=\frac{p l^{2}}{8}$.
Cor. 3. How to Draw a Parabola.-Since we know, then, the distance $e d=\frac{p l^{2}}{4}$, we can always draw the lines $A d$ and $B d$. If

then we divide $A d$ and $B d$ into any number of equal parts and number these parts along one line away from d and along the other towards d, we have only to draw lines joining any two points having the same number and these lines will all have the same horizontal projection $\frac{l}{2}$.

They will therefore enclose the parabola required. Tangent to these lines we may sketch the curve.

A better method is to plot the ordinates to the curve from its equation,

$$
y=\frac{p l}{2} x-\frac{p x^{2}}{2}
$$

Methods of Solution of Framed Structures.-In Chap. IV we have given and illustrated two methods of computation for framed structures:

1st. By Resolution of Forces (page 101).
2d. By Moments or the "Method by Sections" (page 102).
In the present Chapter we have the corresponding graphic methods:

1st. By Resolution of Forces (page 135).
2d. By Moments (147).

EXAMPLES.

(1) A roof-truss has a span of 50 ft . and a centre height of 12.5 ft. Each rafter is divided into four equal panels, and the lower. horizontal tie is divided into six equal panets. The bracing is as shown in the figure. Find the stresses in the members, by the graphic method of moments, for a weight of 800 lbs. at each upper apex.

Ans. We have computed the stresses (page 105, Ex. (3)) by the two methods resolution of forces and moments. We have also found the stresses by the graphic method of resolution of forces (page 140, Ex. (1)).

We can construct the force polygon Fig. 2, and then the equilibrium polygon Fig. 1. This, however, is not advisable for reasons already given. It will be more accurate to assume the pole distance as unity, thus discarding the force polygon altogether, and construct points in a parabola from the equation

$$
y=\frac{p l}{2} x-\frac{p x^{2}}{2}
$$

In the present case the load per foot is, if we suppose half weights of 400 at the ends, $\frac{6400}{50}=128 \mathrm{lbs} .=p$. Taking $x=\frac{1}{8} l, \frac{2}{8} l$, etc., we have

$$
\begin{aligned}
& x=\frac{1}{8} l, \quad \frac{2}{8} l, \quad \frac{3}{8} l, \quad \frac{4}{8} l ; \\
& y=17500 \quad 30000 \quad 37500 \quad 40000 \mathrm{lb} . \mathrm{ft} .
\end{aligned}
$$

Laying these off to any convenient scale, we determine very accurately the points a, b, c, d of the equilibrium polygon. The other half of the polygon is precisely similar.

The ordinates to this polygon will give, to the scale adopted, the moment, for any point of the truss, of the outer forces left or right. Thus the moment with reference to k of all forces right or left is $k m$, Fig 1. We find by scale $k m=21666 \frac{\mathrm{z}}{\mathrm{z}} \mathrm{lb} . \mathrm{ft}$. In the same way for the next lower apex we find the moment $35000 \mathrm{lb} . \mathrm{ft}$. The moment at the next lower apex or centre of the span is $40000 \mathrm{lb} .-\mathrm{ft}$.

Now by the method of sections (page 102) we have for any member

$$
\text { Stress } \times \text { lever-arm }+\Sigma \text { moments of outer forces }=0
$$

The second term is given by the ordinates of the equilibrium polygon to scale.

As regards the centre of moments for any member, we must observe the rule (page 102), viz: Cut the truss entirely through by a section cutting only three members the strains in which are unknown. For any one of these take the point of moments at the intersection of the other two.

For the proper sign for the first member of the equation place an arrow on the cut member pointing away from the end belonging to the left-hand portion, and take the moment (+) or (-) according as the rotation indicated by this arrow is counter clockwise or clockwise.

If the stress comes out positive, it indicates tension; if negative, compression.

Take for instance the first lower panel, La. The centre of moments must be taken at the first upper apex. The moment for this point is given by the ordinate $n a$ of the equilibrium polygon, or -17500 lb .ft. We take the minus sign, because the rotation is clockwise. We have then

$$
L a \times 3.125-17500=0, \text { or } \quad L a=+5600 \mathrm{lbs} .
$$

where 3.125 ft . is the lever-arm of $L a$.
In similar manner we have

$$
L c \times 6.25-30000=0, \quad \text { or } \quad L c=+4800 \mathrm{lbs} .
$$

where 6.25 ft . is the lever-arm of $L c$.
For $L e$ we have

$$
L e \times 9.375-37500=0, \text { or } L e=+4000 \mathrm{lbs} .
$$

where 9.375 ft . is the lever-arm of $L c$.
For the first upper panel $A a$, take the centre of moments at k. The moment for this point is given by the ordinate from k to the first line of the polygon produced. It is therefore larger than $k m$, which gives the combined moment of the reaction and first weight. We find it by scale to be $-23333 \frac{1}{\delta}$ 1 b . ft .

We have then

$$
-A a \times 3.727-2333 \frac{1}{8}=0, \text { or } A a=+6260 \mathrm{lbs} .,
$$

where 3.727 ft . is the lever-arm for $A a$.
In like manner for $B b$ we have centre of moments at k, and moment $k m=$ - 21666 $\frac{2}{8}$. Hence

$$
-B b \times 3.727-21666 \frac{2}{3}=0, \quad \text { or } \quad B b=+5813 \text { Ibs. }
$$

For Cd we have

$$
-C d \times 7.454-35000=0, \quad \text { or } \quad C d=+4691 \mathrm{lbs} .
$$

where 7.454 ft . is the lever-arm for $C d$.
For Df we have

$$
-D f \times 11.151-40000=0, \text { or } D f=+3587 \mathrm{lbs}
$$

For all the braces the point of moments is at the left-hand end. Taking a section through $B b, a b$ and $L a$, we have acting on the left-hand portion only the weight $A B$ and the reaction. The moment of the weight relative to the left end is the ordinate $a^{\prime} b^{\prime}$, or by scale - 5000 lb . ft . The lever-arm for $a b$ is 6.934 ft . Hence

$$
-a b \times 6.934-5000=0, \quad \text { or } \quad a b=-721 \mathrm{lbs}
$$

For $b c$ we have

$$
+a b \times 6.934-5000=0, \quad \text { or } \quad a b=+721 \mathrm{lbs}
$$

For $c d$ the moment is $a^{\prime} b^{\prime}+b^{\prime} c^{\prime}$, or -15000 . We have then

$$
-c d \times 13.869-15000=0, \quad \text { or } \quad c d=-1081 \mathrm{lbs} .,
$$

and so on. All lever-arms can be scaled off the frame or must be computed.
The present method is not to be recommended for the braces. In prolonging the sides $a b, b c$, etc, of the equilibrium polygon, a slight variation in direction will make considerable error in the ordinate at the end. Also as the sides $a b, b c$, etc., are short they do not give direction accurately enough.

Of all our four methods, the graphic method by resolution of forces (page 135) is the easiest of application to such cases.

The more irregular the frame the more advantageous it is.
(2) A bridge-girder, as shown in the figure, 10 feet deep, 80 feet long, eight equal panels in the lower chord and seven equal panels in the upper chord, has a load of 5 tons at each lower apex. Find the stresses by diagram and by moments.

Ans. The panel length is 10 ft ., $\sec \theta=1.117$. By moments then
$A a \times 10-17.5 \times 10=0$,
$B c \times 10-17.5 \times 15+5 \times 5=0$,
or $A a=+17.5$ tons.
$B c=+23.75$ "

$$
\begin{array}{lcl}
C e \times 10-17.5 \times 25+5(5+15)=0, & C e=+33.75 & \text { tons. } \\
D g \times 10-17.5 \times 35+5(5+15+25)=0, & D g=+38.75 \\
-I b \times 10-17.5 \times 10=0, & I b=-17.5 \\
-I d \times 10-17.5 \times 20+5 \times 10=0, & I d=-30 & \prime \prime \\
-I f \times 10-17.5 \times 30+5(10+20)=0, & I f=-37.5 & \prime \prime \\
-I h \times 10-17.5 \times 40+5(10+20+30)=0, & I h=-40 & \prime \prime \\
I a=-17.5 \times 1.117=-19.55, & d e=-7.5 \times 1.117=-8.38, \\
a b=+19.55, & e f=+8.38, \\
b c=-12.5 \times 1.117=-13.96, & f g=-2.5 \times 1.117=-2.79 \\
c d=+13.96, & g h=+2.79 .
\end{array}
$$

CHAPTER VII.

WORK.

WORK INDEPENDENT OF PATH. UNIT OF WORK. VIRTUAL DISPLACEMENT. VIRTUAL WORK. PRINCIPLE OF VIRTUAL WORK.

Work.-The product of a uniform force by the projection of the displacement of its point of application along the line of action of the force is called work.

Thus let a uniform force, that is, a force constant in direction
 and magnitude, act at a point A_{1}, and let the displacement of the point of application be $A_{1} A_{2}=d$.

Let σ be the angle $F A_{1} A_{2}$ between the force and the displacement. Then the projection of the displacement $A_{1} A_{2}=d$ upon the line of the force F^{\prime} is $A_{1} n=$ $d \cos \theta$, and we have for the work W,

$$
\begin{equation*}
W=F d \cos \theta \tag{1}
\end{equation*}
$$

But $F \cos \theta$ is the projection of the force F upon the line of the displacement $A_{1} A_{2}$.

Hence, work is the product of a constant force by the projection of the displacement of its point of application along the line of the force, or the product of the displacement by the projection of the force along the line of the displacement.

If the projection of the displacement $A_{1} n$ along the force is in the direction of the force, the force is said to do work. In this case the angle σ is acute and W in equation (1) is positive.

If the projection of the displacement $A_{1} n$ along the force is opposite in direction to the force, work is said to be done against the force. In this case the angle θ is obtuse and W in equation (1) is negative.

Cor. 1. If the displacement is at right angles to the constant force, the work is zero.

Cor. 2. The weight of a body is a force acting at the centre of mass (page 76). Hence the work done against gravity in raising a body of mass m through a distance s is $W=-m g s$, where $m g$ is the weight in poundals and s the displacement of the centre of mass. In gravitation units (page 6), $W=-m s$.

Cor. 3. The work done by gravity upon a body of mass m which falls through a distance s is $W=+m g s$, where $m g$ is the weight in poundals and s the displacement of the centre of mass. In gravitation units. $W=+m s$.

Work Independent of the Path.-The definition for work given in the preceding Article evidently holds good no matter what the path, provided the force is unıform, that is, does not change in direction or magnitude.

Thus let the constant force F act on the particle A which is displaced from A to B either along the line $A B$, or from A to C and from C to B.

In the first case the work is $F \times A l$. In the second case the work is

$$
F \times A m+F \times C n=F \times A l .
$$

So in general for any broken line between A and B. Since a curve is the limit of a polygon, the same holds
 true for any curved path between A and B.

Work when Force is Variable.-If the force is variable, we must take the displacement indefinitely small, so that the force during such displacement may be considered as uniform. In such case we have

$$
\begin{equation*}
W=\int F d s \tag{2}
\end{equation*}
$$

Unit of Work.-If $[F]$ is the unit of force and F the number of units of force, $[L]$ the unit of distance and s the number of units of distance in the direction of the force, [W] the unit of work and W the number of units of work, we have

$$
W[W]=F[F] \times s[L] .
$$

We have then the numeric equation

$$
W=F s
$$

provided

$$
[W]=[F] \times[L]
$$

The unit of work, then, is the work done by one unit of force when the displacement in the direction of the force is one unit of distance.

The English absolute unit of work is then the foot-poundal, or a constant force of one poundal acting through one foot.

The C. G. S. absolute unit of work is a constant force of oneldyne acting through one centimeter. It is called an erg. A multiple of this, equal to 10000000 ergs or $10^{7} \mathrm{ergs}$, is used in electrical measurements and called a joule, after Dr. James Prescott Joule.

In English gravitation units (page 6) the unit of work is the foot-pound. This is the unit commonly adopted in Engineering calculations. It is the work done in raising a mass of one pound through the vertical distance of one foot against gravity. It is therefore a variable amount of work, since the weight of one pound varies with the locality (page 6).

Virtual Displacement-Virtual Work. - When the point of application of a force is actually displaced, the displacement is actual and the work done by or against the force is actual also.

If F is the force acting at any point and s is the actual displacement in the direction of the force of that point, then if F remains uniform, that is, constant in magnitude and direction during the displacement, then the actual work is F's.

But in general, when the point of application of a force is displaced, the force does not remain uniform unless the displacement is taken indefinitely small.

If F, then, is the force acting at any point and $d s$ is an indefinitely small displacement in the direction of the force, we have in general the work given by $F d s$.

Now an indefinitely small displacement of a point which does
not actually take place, but which is only imagined or supposed to take place, we may distinguish by calling a virtual displacenent, and we call the work done by or against a force by reason of the virtual displacement of its point of application the virtual work of the force.

Virtual displacement unless otherwise specified is always to be taken as indefinitely small. It is always linear displacement, since a point has no size.

Principle of Virtual Work.-Let F_{1}, F_{2}, F_{3}, etc., be any number of concurring forces, that is, forces acting upon a particle at P,

Fig: 2. and suppose this particle to receive a virtual displacement $P D$ in any direction.

Since virtual displacement is indefinitely small, the forces remain unchanged in direction and magnitude.
If we lay off the line representatives in Fig. 2, the resultant is given in magnitude and direction by the closing line $O F_{3}=R$ of the force polygon.

Draw $O D$ parallel and equal to $P D$, and let $\alpha_{1}, \alpha_{2}, \alpha_{3}$, etc., and θ be the angles made by F_{1}, F_{2}, F_{3}, etc., and R with $O D$.

Then we have by construction

$$
R \cos \theta=F_{1} \cos \alpha_{1}+F_{2} \cos \alpha_{2}+F_{3} \cos \alpha_{3}, \text { etc. }=\Sigma F \cos \alpha .
$$

That is, the component of the resultant R in the direction of the virtual displacement is equal to the algebraic sum of the components of the forces in that direction.

If we multiply by the displacement $P D=d$, we have
$R . d \cos \theta=F_{1} . d \cos \alpha_{1}+F_{2} . d \cos \alpha_{2}+F_{3} . d \cos \alpha_{3}$, etc. $=\Sigma F d \cos \alpha$.
But since d is indefinitely small, so that the forces remain unchanged in magnitude and direction, we have by definition $R . d$ $\cos 0$ equal to the virtual work of the resultant, and $F_{1} \cdot d \cos \alpha_{1}$, $F_{2} . d \cos \alpha_{2}$, etc., equal to the virtual works of F_{1}, F_{2}, etc.

Hence, if a particle acted upon by any system of forces receive a virtual displacement in any direction whatever, the algebraic sum of the virtual works of the forces is equal to the virtual work of the vesultant.

If the forces F_{1}, F_{2}, F_{3}, etc., acting on the particle are in equilibrium, their resultant R is zero, and we have

$$
F_{1} . d \cos \alpha_{1}+F_{2} . d \cos \alpha_{2}+F_{3} . d \cos \alpha_{3}, \text { etc. }=\Sigma F d \cos \alpha=0
$$

This is called the "principle of virtual work"; a principle which includes all of statics and kinetics. We may state it as follows:

If a particle in equilibrium under the action of any system of forces receive a virtual displacement in any direction whatever, the algebraic sum of the virtual works of the forces is equal to zero.

Conversely, if the algebraic sum of the virtual works of a system of forces acting on a particle is zero for every virtual displacement whatever, the particle is in equilibrium.

Cor. 1. If a system of particles is in equilibrium under the action of external and internal forces, and any number of particles of the system receive any virtual displacement whatever, then, since the algebraic sum of the virtual works of the forces acting on each particle is zero, it follows that the algebraic sum of the virtual works of all the forces, external and internal, is zero.

The principle of virtual work applies then to any material system if all forces external and internal are considered.

Cor. 2. If a system of particles in equilibrium under the action of external and internal forces receive any virtual displacement of translation whatever which does not alter the configuration of the system, then no work is done by or against the internal forces, and the algebraic sum of the virtual works of the external forces alone is zero.

The principle of virtual work applies then to the external forces acting upon any rigid body in equilibrium, if the body is regarded as a particle and the virtual displacement is one of translation.

Cor. 3. If a system of rigid bodies in equibrium under the action of external and internal forces receive any virtual displacement whatever which does not alter the configuration of the system, then no work is done by or against the internal forces, and the algebraic sum of the virtual works of the external forces alone is zero.

The principle of virtual work applies then to the external forces acting upon any system of rigid bodies whose configuration does not change, if the rigid bodies are regarded as particles and their virtual displacements are translations.

EXAMPLES.

(1) A lever $A C B$ with fulcrum at C is acted upon by the co-planar forces P and Q at the ends A and B. Find the conditions for equilibrium, neglecting friction. (For rough lever see Ex. (17), page 221.)

Ans. Let R be the resultant acting at the fulcrum C.
Take any point D in the plane of the forces. Let the lever be rotated counterclockwise about an axis through D at right angles to the plane of the forces, through an indefinitely small angle of θ radians. Then the virtual displacement of A is $\overline{A D} \cdot \theta=A s$, making the angle $s A P=\alpha_{2}$ with P. The virtual displacement of C is $\overline{C D} \cdot \theta=C s$, making the angle $s C R=\alpha$ with the resultant R. The virtual displacement of B is $\overline{B D .} \theta=B s$, making the
 angle $s B O=\alpha_{2}$ with the direction of Q.

Then by the principle of virtual work, having regard to the proper signs as given by the figure,

$$
+P \cdot A s \cos \alpha_{1}-R . C s \cos \alpha-Q . B s \cos \alpha_{2}=0
$$

or

$$
+P \cdot \theta \cdot \overline{A D} \cos \alpha_{1}-R \cdot \theta \cdot \overline{C D} \cos \alpha-Q \cdot \theta \cdot \overline{B D} \cos \alpha_{2}=0
$$

or

$$
+P \cdot \overline{A D} \cos \alpha_{1}-R \cdot \overline{C D} \cos \alpha-Q \cdot \overline{B D} \cos \alpha_{2}=0 .
$$

But if we drop from D the perpendiculars $D n_{1}=p$ on $P, D n=r$ on R, and $D n_{2}=q$ on Q, we have $\overline{A D} \cos \alpha_{1}=p, \overline{C D} \cos \alpha=r, \overline{B D} \cos \alpha_{2}=q$, and hence

$$
+P p-R r-Q q=0
$$

That is, the algebraic sum of the moments of the forces about any point in their plane is zero (page 99).

Again, suppose the lever to be translated in any direction through an indefinitely small distance, so that the virtual displacement of every point is d, and let the forces P, Q, R make the angles α_{1}, α_{2} and α with the direction of the displacement. Then by the principle of virtual work we have

$$
\begin{aligned}
& P d \cos \alpha_{1}+Q d \cos \alpha_{2}+R d \cos \alpha=0 \\
& \text { or } \quad P \cos \alpha_{1}+Q \cos \alpha_{2}+R \cos \alpha=0
\end{aligned}
$$

That is, the algebraic sum of the components of the forces in any direction is zero (page 99), and their line representatives make a closed polygon.

Again, since the algebraic sum of the moments about any point is zero, the three forces must intersect at a common point O (page 100).

If we suppose the fulcrum C to be fixed, we can have only rotation. We can then easily prove by the principle of virtual work that the necessary and sufficient condition of equilibrium for any body free to turn about a fixed axis under the action of any number of forces is that the algebraic sum of the moments of the external forces with reference to the fixed axis shall be zero.

If we take the fulcrum C as our point of moments we easily deduce, as on page 71, when the forces are parallel,

$$
R=P+Q, \quad \frac{P}{Q}=\frac{B C}{A C}
$$

If the forces are not parallel, let the force P make the angle α_{1}, the force Q the angle α_{2}, the force R the angle α, with the lever, the acute values being taken.

Then since the line representatives form a closed polygon, we have

$$
P: Q:: \sin \left(180-\alpha-\alpha_{2}\right): \sin \left(\alpha-\alpha_{1}\right),
$$

or

$$
\frac{P}{Q}=\frac{\sin \alpha \cos \alpha_{2}+\cos \alpha \sin \alpha_{2}}{\sin \alpha \cos \alpha_{1}-\cos \alpha \sin \alpha_{1}}
$$

We have also

$$
\begin{gathered}
R \sin \alpha=P \sin \alpha_{1}+Q \sin \alpha_{2} ; \\
P \cos \alpha=P \cos \alpha_{1}-Q \cos \alpha_{2} ; \\
\tan \alpha=\frac{P \sin \alpha_{1}+Q \sin \alpha_{2}}{P \cos \alpha_{1}-Q \cos \alpha_{2}} \\
R^{2}=P^{2}+Q^{2}-2 P Q \cdot \cos \left(\alpha_{1}+\alpha_{2}\right)
\end{gathered}
$$

(2) In a wheel and axle the radius of the wheel is a, and of the axle b. Find the conditions for equilibrium, neglecting friction and rigidity of the rope, when a mass P hung from the wheel just balances a mass Q hung from the axle. (For friction and rigidity see Ex. (18), page 222.)

Ans. The external forces are $P g$ and $Q g$. If we suppose P to receive a virtual displacement s downward, then Q will receive the virtual displacement $\frac{b}{a} 8$ upward, and by the principle of virtual work we have

$$
P g s-Q g \cdot \frac{b}{a} s=0, \quad \text { or } \quad P a=Q b
$$

or the algebraic sum of the moments of the external forces with reference to the fixed axis is zero. This is the sole condition for equilibrium for any body free to turn about a fixed
 axis acted upon by any number of forces.

In this example we see that it is not necessary to suppose the virtual displacement indefinitely small, since the forces do not vary with the displacement.
(3) Four sailors, each exerting a force of 112 lbs., can just raise an anchor by means of a capstan whose radius is 1 foot 2 in. and whose spokes are 8 ft . long, measured from the axis. Find the weight of the anchor.

Ans. 3072 lbs.
(4) If the length of each of a pair of sculls be 8 ft .6 in. , and the distance from the hand to the rowlock be 2 ft . 3 in., find the force on the boat when the rower applies a force of 25 lbs. on each scull, assuming that the blade does not move through the water.

Ans. 68 lbs .
(5) In the single movable pulley find the relation between the force P and the mass Q for equilibrium, disregarding friction and rigidity of the rope. (For friction and rigidity see Ex. (19), page 224.)

Ans. The external forces are P and the weight of the mass Q. If we suppose a virtual displacement of Q downward equal to s, the corresponding virtual displacement of P will be $2 s$ upward. .We have then by the principle of virtual work, in gravitation units,

$$
Q s-2 P_{s}=0, \quad \text { or } \quad P=\frac{Q}{2} .
$$

Again, if T is the tension of the rope, we have, in gravitation units, $T=P$ and $2 T=Q$. Hence $P=\frac{Q}{2}$.

In this example we see that it is not necessary to suppose the virtual displacement indefinitely small, because the forces do not vary with the displacement.
(6) In the system of pulleys shown, find the relation between the
 force P and the mass Q for equilibrium, disregarding friction and rigidity of the ropes. (For friction and rigidity see Ex. (20), page 225.)

Ans. The external forces are P and the weight of the mass Q. If we suppose a virtual displacement of Q downward equal to s, the displacement of the next pulley is $2 s$, of the next $4 s$, and so on. If there are n movable pulleys, then, each one of the mass m, we have by the principle of virtual work, in gravitation units,

$$
Q s+m . s+m .2 s+m .4 s+\ldots m .2^{n-1} s-P .2^{n_{s}}=0 .
$$

Hence

$$
P=\frac{Q+m\left(1+2+2^{2}+2^{3}+\ldots 2^{n-1}\right)}{2^{n}}
$$

or

$$
P=\frac{Q+\left(2^{n}-1\right) m}{2^{n}}
$$

If we disregard the mass m of the pulleys,

$$
P=\frac{Q}{2^{n}} .
$$

In this example we see it is not necessary to suppose the virtual displacement indefinitely small, because the forces do not vary with the displacement.

Again, let the tensions of the ropes be $T_{1}, T_{2}, \ldots T_{n}$. Then we have for equilibrium, in gravitation units,

$$
\begin{aligned}
2 T_{1} & =Q+m ; \\
2 T_{2} & =T_{2}+m ; \\
2 T_{3} & =T_{2}+m ; \\
2 T_{n} & =T_{n-1}+m ; \\
P & =T_{n} .
\end{aligned}
$$

Multiplying the second equation by 2 , the next by 2^{2}, the next by 2^{3}, etc., and the last by 2^{n-1} and adding, we have as before

$$
2^{n} P=Q+m+2 m+2^{2} m+2^{3} m+\ldots 2^{n-1} m
$$

(7) In the system of pulleys shown, find the relation between P and Q for equilibrium, disregarding friction. (For friction and rigidity see Ex. (21), page 225.)

Ans. The external forces are P and the weight of Q. If we suppose a virtual displacement of Q downward equal to s, each string coming from the lower block will be lengthened by 8 , and the virtual displacement of P upwards will be $n s$, where n is the number of strings coming from the lower block. We have then by the principle of virtual work, if m is the mass of the lower block,
or

$$
\begin{gathered}
(Q+m) s-n s P=0, \\
P=\frac{Q+m}{n} .
\end{gathered}
$$

In this example we see that it is not necessary to suppose the virtual displacement indefinitely small, because the forces do not vary with the displacement.

Again, the tension in each string is the same and equal
to P. Hence, if n is the number of strings coming from the lower block, $n P=Q+m$.
(8) In the system of pulleys shown, find the relation between P and Q for equilibrium, disregarding friction and rigidity of the ropes. (For friction and rigidity see Ex. (22), page 226.)

Ans. The external forces are P and the weight of Q. If we suppose a virtual displacement of Q downward equal to s, then the highest movable pulley will be raised a distance s, the next will be raised twice the height through which the highest is raised plus the distance through which Q descends, that is, through the distance $3 s$.

In the same way any movable pulley will rise through the height s plus twice the distance through which the pulley next above rises.

If the number of pulleys is n and the mass of each pulley is m, the distances through which each pulley is raised are respectively $s,\left(2^{2}-1\right) s,\left(2^{3}-1\right) s \ldots\left(2^{n-1}-1\right) s$. Also P will be moved vertically upwards a distance ($\left.2^{n}-1\right)$ s. We have then by the principle of virtual work in gravitation units,

$Q s-m(2-1) s-m\left(2^{2}-1\right) s-m\left(2^{3}-1\right) s \ldots-m\left(2^{n-1}-1\right) s-\left(2^{n}-1\right) P s=0$.

Hence

$$
P=\frac{Q-m\left[(2-1)+\left(2^{2}-1\right)+\left(2^{3}-1\right) \ldots+\left(2^{n-1}-1\right)\right]}{2^{n}-1}
$$

or

$$
P=\frac{Q+m n-\left(2^{n}-1\right) m}{2^{n}-1}
$$

If we neglect the mass of the pulleys,

$$
P=\frac{Q}{2^{n}-1}
$$

In this example we see that it is not necessary to suppose the virtual displacement indefinitely small, because the forces do not vary with the displacement.

Again, if n is the number of pulleys and T_{1}, T_{2}, T_{3}, etc., the tensions in the strings, then we have for equilibrium, in gravitation units,

$$
\begin{align*}
& T_{1}=P ; \text {. (1) } \\
& T_{2}=2 T_{1}+m ; \tag{2}\\
& T_{3}=2 T_{2}+m ; \tag{3}\\
& T_{n}=2 T_{n-1}+m ; \text {. }(n) \\
& T_{1}+T_{2}+T_{3}+\ldots T_{n}=Q . \text {. (4) }
\end{align*}
$$

Multiplying the second equation by 2^{n-1}, the third by 2^{n-2}, the nth by 2 , and adding, we have

$$
2 T_{n}=2^{n} P+2^{n-1} m+2^{n-2} m+\ldots 2 m
$$

Adding equations (2), (3), . . (n) and employing equation (4), we have

$$
Q-P=2\left(Q-T_{n}\right)+(n-1) m
$$

Eliminating T_{n}, we have, as before,

$$
2^{n-1} P=Q-(2-1) m-\left(2^{2}-1\right) m-\left(2^{3}-1\right) m \ldots-\left(2^{n-1}-1\right) m
$$

(9) If we have three movable pulleys arranged as in Example (6), their masses, beginning with the lowest, being 9,3 and 1 lb. respectively, find what force P will support a mass of 69 lbs.

Ans. 11 lbs.
(10) If in the system of Example (7) there are nine pulleys and each has a mass of one pound, find the force P to support a mass of 85 lbs.

Ans. 9 lbs.
(11) If in the system of Example (8) the mass supported is 56 lbs., and each movable pulley, of which there are three, has a mass of 1 lb ., find the horizontal distance of the centre of mass of Q from the centre of the fixed pulley when the diameters of all the pulleys are equal.

An. Nine twenty-eighths the radius of the pulley.
(12) In the differential pulley shown in the figure an endless chain passes over a fixed pulley A, then under a movable pulley to which the mass Q is attached, and then over another fixed pulley B, a little smaller but coaxial with A. The two pulleys A and B are in one piece and obliged to turn together through the same angle. The two ends of the chain are joined so as to form a loop. The force P is applied to the right-hand portion of the loop. To prevent the chain from slipping, there are cavities in the circumferences of the upper
pulleys into which the links of the chain fit. Find the relation of P to Q for equilibrium, neglecting friction. (For friction see Ex. (23), page 227.)

Ans. Let b be the radius of the pulley B, and a the radius of the pulley A.

Let Q receive a virtual displacement vertically downwards equal to δ. Then, since both A and B turn through the same angle θ, we have

$$
\frac{a 9-b 9}{2}=s, \quad \text { or } \quad G=\frac{2 s}{a-b}
$$

and P has the virtual displacement vertically upwards of $a 9=\frac{2 a s}{a-b}$.

We have then by the principle of virtual work, in gravitation units,

$$
Q s-P \cdot \frac{2 a s}{a-b}=0, \quad \text { or } \quad P=\frac{Q(a-b)}{2 a}
$$

In this example it is not necessary to suppose 8 indefinitely small, because the forces do not vary with the displacement. Again, let T be the tension of the chain. Then if the pulley is in equilibrium, we have in gravitation units

$$
2 T=Q
$$

Taking moments about the axis of C,

$$
T a-T b-P a=0
$$

Hence

$$
P=\frac{Q(a-b)}{2 a}
$$

By taking a and b nearly equal we can have P as small as we please.
(13) In the differential wheel and axle shown in the figure, we have two axles B and A of different radii, rigidly connected and turning about their common axis DE. The force P is applied at right angles to the axis at the extremity of the arm CD. The mass Q is attached to a pulley supported by a rope which is wrapped one way round B and the other way round C. Find the relation of P to Q for equilibrium, neglecting friction.

Ans. Let c be the $\operatorname{arm} C D$, and b and a be the radii of B and A. Then, as in the preceding example,

$$
P=\frac{Q(a-b)}{2 c}
$$

By taking b and a nearly equal we can have P as small as we please. In the simple wheel and axle the same result can only be obtained by making c inconveniently large or a inconveniently small.

(14) The requisites of a good balance are as follows: 1st. It should be "true," that is, when loaded with equal masses the beam should be horizontal. 2d. It should be "sensitive," that is, when the masses differ by a small quantity the direction of the beam from the horizontal should be easily perceptible. 3d. It should be "stable," that is, when moved from its position of equilibrium it should return to it quickly. Show how to secure these requirements.

Ans. Let the masses of the loads be P and Q, and of the scale-pans S_{1} and S_{2}. Let G be the centre of mass of the balance, not including the scale-pans, W its mass. Let C be the point of support, and let $C G$ be perpendicular to the beam $A B$ at D. Let 0 be any angle of the beam with the horizontal, and denote $C D$ by $h, C G$ by k, and let $A D=a$, and $B D=b$.

Suppose the balance rotated through an indefinitely small angle $d 0$ about D. Then the virtual displacement of A is $A s=a d \theta$; of
 $B, B s=b d \theta$; of $G, G s=(h-k) d \theta$.

We have then, by the principle of virtual work,

$$
\left(P+S_{1}\right) a d \theta \cos \theta-\left(Q+S_{2}\right) b d \theta \cos \theta+W(h-k) d \theta \sin \theta=0 .
$$

If we take moments about D, we have for equilibrium also,

$$
\left(P+S_{1}\right) a \cos \theta-\left(Q+S_{3}\right) b \cos \theta+W(h-k) \sin \theta=0
$$

Hence

$$
\tan \theta=\frac{\left(Q+S_{2}\right) b-\left(P+S_{1}\right) a}{W(h-k)}
$$

1st. When the loads are equal, $P=Q$ and $S_{1}=S_{2}$. In order, then, that the balance may be "true," that is, $\theta=0$ when the loads are equal, we must have $a=b$. The arms must therefore be equal. We have then for a true balance, when the masses of the scale-pans are equal,

$$
\begin{equation*}
\tan 0=\frac{(Q-P) a}{W(h-k)} \tag{1}
\end{equation*}
$$

We can easily test the truth of a balance by interchanging the loads which hold the beam horizontal. If the beam settles again into a horizontal position, since the loads are equal the balance is true.

It is almost impossible to make a balance perfectly true. When, therefore, great accuracy is required, the method of double weighing is adopted. This enables us to determine the exact mass, however untrue the balance. It consists in first making the beam horizontal with the body whose mass is required in one scale and sand or shot in the other. Then the body is replaced by known masses sufficient to keep the beam horizontal.

2d. From equation (1) we see that if a true balance is to be "sensitive," that is, if θ is to be large when $Q-P$ is small, we must have $h-k$ small with reference to a. That is, the distance $G D$ of the centre of mass G from the beam must be small compared to the length of arm. This requisite is then obtained by making a large and bringing the centre of mass near the beam.

3 d . But we see from the figure that when k is large the moment $W k$ of W about the point of support C is large and the balance will return more readily then when k is small. The condition of "stability" then requires that the distance $G D$ of the centre of mass G from the beam shall be large. The conditions of stability and sensitiveness are then at variance.

In scientific measurements, where great accuracy is required, the third requisite is sacrificed to obtain the second, and time is required. For ordinary commercial purposes, where it is desirable to save time, the reverse is the case.

(15) Show how to graduate the common steelyard.

Ans. Let P be the movable weight, W the weight of beam and scale-pan
 acting at the centre of mass G, Q the weight to be determined at A, all in gravitation units. Let C be the point of suspension. Let n be the number of the graduation at B, so that $Q=n P$. We have then for equilibrium

$$
n P \times \overline{A C}-W \times \overline{C G}-P \times \overline{C B}=0
$$

If we put $n=0$ in this equation, we obtain the position O of the zero of the scale,

$$
\overline{C O}=-\frac{W}{P} C G
$$

or O is on the other side of C to W at a distance $\frac{W}{P} \overline{C G}$ from it. Hence

$$
n P \times \overline{A C}=P \times \overline{O B}, \quad \text { or } \quad \overline{O B}=n \overline{A C}
$$

The graduations are obtained, then, by marking off distances from O equal to $\overline{A C}, 2 \overline{A C}, 3 \overline{A C}$, etc. Intermediate graduations correspond to fractional values of n.
(16) Show how to graduate the Danish steelyard.

Ans. This steelyard consists of a beam $A B$ terminating in a heavy ball B. From the end A hangs the scale-pan. The ful-
 From the end A hangs the scale-pan. The ful-
crum C is moved until the weight of the mass in the scale-pan is balanced by that of the steelyard.

Let Q be the mass at A, W the mass of steelyard and scale-pan acting at the centre of mass G.

Evidently the zero of graduation is at G, since the beam balances when the fulcrum is there, when there is no mass Q.

We have $Q=n W$, and for equilibrium

$$
n W \times A C=W \times C G=W(A G-A C)
$$

Hence

$$
A C=\frac{A G}{n+1}
$$

The graduations then are at distances from A equal to $\frac{A G}{2}, \frac{A G}{3}, \frac{A G}{4}$, etc.
(17) If the arms of a false balance are horizontal when there are no weights in the scale-pans and one arm is one ninth part longer than the other, and if in using it the substance to be weighed is put as often into one scale as into the other, show that the seller loses five ninths per cent on his transactions.
(18) If a common steelyard is 18 inches long, weighs 3 lbs. and is suspended at a point 3 inches from one extremity, what is the greatest mass which can be measured by a movable weight of 2 lbs.?

Ans. 16 lbs .
(19) If one arm of a common balance be longer than the other, show that the real weight of the body is the geometrical mean between its apparent weights as weighed first in one scale and then in the other.
(20) The arms of a false balance are unequal and one of the scales is loaded. A body whose true mass is P lbs. appears to weigh Q lbs. when placed in one scale and Q^{\prime} lbs. when placed in the other. Find the ratio of the arms and the weight with which the scale is loaded.

Ans. $\frac{Q^{\prime}-P}{P-Q}, \quad \frac{Q Q^{\prime}-P^{2}}{P-Q}$.

CHAPTER VIII.

CONSTRAINED EQUILIBRIUM-SMOOTH CURVE OR SURFACE.

```
REACTION OF A CURVE OR SURFACE. REACTION OF A SMOOTH CURVE OR SURFACE. EQUILIBRIUM OF A BODY ON A SMOOTH CURVE OR SURFACE. EQUILIBRIUM OF A BODY AT ANY POINT OF A SMOOTH CURVE OR SURFACE. GENERAL EQUATIONS.
```

Reaction of a Curve or Surface.-When a particle is in contact with a rigid material curve or surface, the force or pressure which the curve or surface exerts upon the particle is called the reaction of the curve or surface.

If then we introduce this reaction as an additional force in combination with all the other forces acting upon the particle, we can remove the curve or surface and consider the particle by itself as acted upon by this reaction and all the other forces.

Equilibrium of a Body on Any Curve or Surface. - Let a rigid body $A D E$ rest in equilibrium upon a rigid material curve of surface $D E$, smooth or rough, and touch it at many points P_{1}, P_{2}, P_{3}, etc.

Let the reactions at these points be R_{1}, R_{2}, R_{3}, etc., and let the resultant reaction be R acting at the point P of the curve or surface. If all the reactions are pressures exerted by the curve or surface upon the body, this point P must evidently
 always lie within the line or surface of contact DE.

Since all reactions are internal to the system composed of the body and curve or surface, they are internal forces or stresses (page 7) and the resultant reaction R is the resultant stress. All other forces acting upon the body are external to the system, and we call them, therefore, external forces.

Now if the body is in equilibrium on the curve or surface, the resultant R^{\prime} of all the external forces must be equal and opposite to the resultant reaction R and lie in the same straight line. Its line of direction must therefore pass through P.

This point P, if the curve or surface resists by pressure only, must always lie within the line or surface of contact DE.

If the base $D E$ is a point, or the body touches the curve or surface at a single point only, the body is in equilibrium at this point, the line of direction of R^{\prime} must pass through this point and R^{\prime} must be equal and opposite to R at this point.

If the line of direction of R^{\prime} falls outside the base $D E$ the body
will rotate. If it intersects the curve or surface in the perimeter of the base, as at E, the body is said to be in limiting stability.

If we consider all stresses but one as external forces, the body may be treated as a particle at the point of application of this one.

Whenever, then, we speak" of a body as "in equilibrium at any point of a curve or surface," the point referred to may be any one of the points of contact with the curve or surface. The body may be treated as a particle of equal mass placed at this point.

Reaction of a Smooth Curve or Surface.-When a particle is in equilibrium upon any curve or surface, the reaction must be equal and opposite to the resultant of all the external forces.

If the curve or surface is perfectly smooth, it can offer no resistance to a tangential force acting upon the particle.

The reaction and the resultant of all the external forces must then, for equilibrium, not only be equal and opposite, but must also be normal to the curve or surface. For if the resultant of all the external forces is not normal, it can be resolved into a normal and a tangential component. But the smooth curve or surface can offer no resistance to the tangential component. Hence for equilibrium the resultant of all the external forces must be normal and the equal and opposite reaction must also be normal.

A smooth curve or surface, then, is one whose reaction is normal. It is incapable of offering resistance to motion in any other than a normal direction.

Equilibrium of a Body on a Smooth Curve or Surface.-As we have just seen, whether the curve or surface be smooth or rough, we can treat the body as a particle of equal mass placed at any one of the points of contact with the curve or surface.

If the curve or surface is smooth, then, as we have just seen, the reactions R_{1}, R_{2}, R_{3}, etc., at each and every point of contact must each be normal at its own point of application, the resultant reaction R must be normal at P, and the resultant R^{\prime} of all the external forces must be normal and its line of direction must pass through P.

If the curve or surface resists by pressure only, this point P must lie within the line or surface of contact.

Thus, for example, let a body $A D E$ rest in equilibrium on a smooth plane surface $D E$.

Then the reactions R_{1}, R_{2}, R_{3}, etc., at every point of contact

P_{1}, P_{2}, P_{3}, etc., are normal to the plane. The resultant reaction R is normal to the plane also and acts at some point P of the base $D E$. If the surface resists by pressure only, this point P must lie within the base $D E$.

Let W be the weight of the body acting vertically at the centre of mass C, and let F be the resultant of all the other external forces. The resultant N of W and F is then the resultant of all the external forces. It must pass through the intersection A of W and F, and if there is equilibrium must be equal and opposite to the resultant reaction R and lie in the same straight line. It must therefore also be normal to the plane, and its line of direction must intersect the plane at the same point P of the base $D E$. If N falls outside of the base $D E$, there is no equilibrium if the plane resists by pressure only. If N passes through E, the body is in limiting stability.

We can consider the body as a particle placed at any one of the points of contact.
[Equilibrium of a Body at Any Point of a Smooth Curve or Sur-face.]-If a body acted upon by any number of forces F_{1}, F_{2}, etc., applied at different points, is at rest at any pount of a smooth curve or surface, we may then treat it as a particle placed at that point. The normal reaction N at the point must be equal and opposite to the resultant of all the other forces acting upon the body. The curve or surface can then be replaced by its normal reaction N at the point.

The normal to a surface at any point has a definite dircction. The normal to a curve at any point may have any direction in a plane tbrough that point perpendicular to the tangent at that point.

Let all the forces acting upon the body, not including the normal reaction N at the point P, be F_{1}, F_{2}, etc., making with the co-ordinate axis the angles ($\alpha_{1}, \beta_{1}, \gamma_{1}$), $\left(\alpha_{2}, \beta_{2}, \gamma_{2}\right)$, etc. Then the components parallel to the axes are

$$
\begin{aligned}
& F_{x}=F_{1} \cos \alpha_{1}+F_{2} \cos \alpha_{2}+\ldots=\Sigma F \cos \alpha ; \\
& F_{y}=F_{1} \cos \beta_{1}+F_{2} \cos \beta_{2}+\ldots=\Sigma F \cos \beta ; \\
& F_{z}=F_{1} \cos \gamma_{1}+F_{2} \cos \gamma_{2}+\ldots=\Sigma F \cos \gamma .
\end{aligned}
$$

1. Equilibrium of a Body at Any Point of a Smooth Curve.-Let $d s$ be an element of the curve. Then the direction-cosines of the tangent to the curve at any point P given by the co-ordinates (x, y, z) are $\frac{d x}{d s}$, $\frac{d y}{d s}, \frac{d z}{d s}$. The normal reaction N at the point P has no component tangent to the curve at this point. If all the other forces are resolved along the tangent to the curve at this point, the sum of their tangential components is $F_{x} \frac{d x}{d s}+F_{y} \frac{d y}{d s}+F_{z} \frac{d z}{d s}$. If there is equilibrium, this sum must be zero.

We have then for the condition of equilibrium

$$
\begin{equation*}
F_{x} \frac{d x}{d s}+F_{y} \frac{d y}{d s}+F_{z} \frac{d z}{d s}=0 . \tag{1}
\end{equation*}
$$

If we multiply by $d s$, we obtain

$$
F_{x} d x+F_{y} d y+F z d z=0,
$$

which is the principle of virtual work (page 159).
2. Equilibrium of a Body at Any Point of a Smooth Surface. Let the normal reaction N at the point P make with the co-ordinate axes the angles $\theta_{x}, \theta_{y}, \theta_{z}$. Then we have for equilibrium

$$
\left.\begin{array}{c}
F_{x}=N \cos \theta_{x}, \quad F_{y}=N \cos \theta_{y}, \quad F_{z}=N \cos \theta_{z} ; \tag{a}\\
F_{x}{ }^{2}+F_{y}^{2}+F_{z}^{2}=N^{2}
\end{array}\right\} .
$$

Let the equation of the surface be $u=0$, where u is a function of x, y, z.

For convenience of notation let

$$
\frac{d u}{d x}=U, \quad \frac{d u}{d y}=V, \quad \frac{d u}{d z}=W, \quad \text { and } \quad U^{2}+V^{2}+W^{2}=Q^{2}
$$

Then the direction-cosines of the normal to the surface at the point (x, y, z) are

$$
\begin{align*}
& \cos \theta_{x}=\frac{U}{Q}=\frac{\frac{d u}{d x}}{\sqrt{\left(\frac{d u}{d x}\right)^{2}+\left(\frac{d u}{d y}\right)^{2}+\left(\frac{d u}{d z}\right)^{2}}} \\
& \cos \theta_{y}=\frac{V}{Q}=\frac{\frac{d u}{d y}}{\sqrt{\left(\frac{d u}{d x}\right)^{2}+\left(\frac{d u}{d y}\right)^{2}+\left(\frac{d u}{d z}\right)^{2}}} \tag{2}\\
& \cos \theta_{z}=\frac{W}{Q}=\frac{\frac{d u}{d z}}{\sqrt{\left(\frac{d u}{d x}\right)^{2}+\left(\frac{d u}{d y}\right)^{2}+\left(\frac{d u}{d z}\right)^{2}}}
\end{align*}
$$

But for equilibrium

$$
N=\frac{F_{x}}{\cos \theta_{x}}=\frac{F_{y}}{\cos \theta_{y}}=\frac{F_{z}}{\cos \theta_{z}}
$$

We have then by inserting the values for $\theta_{x}, \theta_{y}, \theta_{z}$.

$$
\begin{equation*}
\frac{F_{x}}{\left(\frac{d u}{d x}\right)}=\frac{F_{y}}{\left(\frac{d u}{d y}\right)}=\frac{F_{z}}{\left(\frac{d u}{d z}\right)} \tag{3}
\end{equation*}
$$

If we substitute the values of $\cos \theta_{x}, \cos \theta_{y}, \cos \theta_{z}$ in equations (a), and multiply the first equation by $d x$, the second by $d y$, the third by $d z$, then add the results and reduce by the equation

$$
\left(\frac{d u}{d x}\right) d x+\left(\frac{d u}{d y}\right) d y+\left(\frac{d u}{d z}\right) d z=0
$$

which is the total differential of the equation of the surface $u=0$, we obtain

$$
\begin{equation*}
F_{x} d x+F_{y} d y+F_{z} d z=0 \tag{4}
\end{equation*}
$$

which is the principle of virtual work (page 159).
Equations (3) give two independent simultaneous equations which combined with the equation of the surface will determine the point of equilibrium, if there be one. Equation (4) is the condition of equilibrium.

If all the forces are in one plane, let this be the plane of $X Y$. Then from equations (3) and (4), since $F_{z}=0$ and $d z=0$,

$$
\begin{gather*}
\frac{F_{x}}{\left(\frac{d u}{d x}\right)}=\frac{F_{y}}{\left(\frac{d u}{d y}\right)} . \tag{5}\\
F_{x} d x+F_{y} d y=0 . \tag{6}
\end{gather*}
$$

EXAMPLES.

(1) A body of weight W is placed upon a smooth inclined plane AB which makes an angle a with the horizontal and is acted upon

by a force P which makes the angle β with the plane. Fina the con-

 ditions of equilibrium. (For rough plane see Ex. 7, page 215.)Ans. Consider the body as a particle placed at any point O on the plane (page 169). We have acting upon the particle the weight W, the force P and the normal reaction N of the plane, and these three forces must constitute a system of concurring forces in equilibrium.

Let the angle $B O P=\beta$ be positive when above the plane and negative when below the plane, as shown in the
 figure.

1st Solution : By Resolution of Forces.-If we lay the line representatives
 of the forces off in order the same way round, they form a triangle (page 62).

We have then directly

$$
N: W:: \sin [90-(\alpha+\beta)]: \sin (90+\beta)
$$

or

$$
\begin{equation*}
N=\frac{W \cos (\alpha+\beta)}{\cos \beta} \tag{1}
\end{equation*}
$$

$$
P: W:: \sin \alpha: \sin (90+\beta),
$$

or

$$
\begin{equation*}
P=\frac{W \sin \alpha}{\cos \beta} \tag{2}
\end{equation*}
$$

We see at once from the figure that when $\beta=+\left(90^{\circ}-\alpha\right), P$ and W are equal in magnitude and act opposite in direction and N is zero. For any greater value of positive β, N is negative and there is no equilibrium possible.

For negative β, we must evidently have β less than 90°.
Equations (1) and (2) hold good, then, for all values of β between $+\left(90^{\circ}-\alpha\right)$ and -90°. Outside of these limits there is no equilibrium.

The minimum value of P is for $\beta=0$ and equal to $P=W \sin \alpha$.
Again, we can put the algebraic sum of the components along the plane and perpendicular to the plane equal to zero (page 61). We have then

$$
\begin{array}{r}
N+P \sin \beta-W \cos \alpha=0 \\
P \cos \beta-W \sin \alpha=0
\end{array}
$$

From these two equations we obtain the same equations (1) and (2) for N and P.

Again, we can put the algebraic sum of the horizontal and vertical components equal to zero.

Hence

$$
\begin{aligned}
P \sin (\alpha+\beta)+N \cos \alpha-W & =0 \\
P \cos (\alpha+\beta)-N \sin \alpha & =0
\end{aligned}
$$

From these two equations we obtain the same equations (1) and (2) for N and P.

2d Solution : By Virtaal Work.-In order to find P, suppose a virtual displacement d along the plane from O towards B. This displacement is at right angles to N and hence the virtual work of N is zero.

For equilibrium the algebraic sum of the virtual works of P, N and W is equal to zero.

The component of P in the direction of the displacement is $P \cos \beta$. The virtual work of P is then $+P d \cos \beta$. The component of W on the line of the displacement is $W \sin \alpha$ opposite in direction to the displacement. The virtual work of W is then - $W d \sin \alpha$. The virtual work of N is zero. Hence

$$
P d \cos \beta-W d \sin \alpha=0, \quad \text { or } \quad P=\frac{W \sin \alpha}{\cos \beta}
$$

In order to find N, we might suppose a virtual displacement at right angles to P, thus making the virtual work of P zero. Since, however, P is now known, let us suppose a horizontal virtual displacement d away from 0 . Then the virtual work of W is zero, and we have

Hence

$$
P d \cos (\alpha+\beta)-N d \sin \alpha=0 .
$$

$$
N=\frac{P \cos (\alpha+\beta)}{\sin \alpha}=\frac{W \cos (\alpha+\beta)}{\cos \beta}
$$

In this example we see it is not necessary to suppose the virtual displace ments indefinitely small, because the forces do not vary with the displacement.
(2) A body of weight W is placed in contact with the under side of a smooth inclined plane uhich makes an angle a with the horizontal, and is acted upon by a force P which makes an angle β with the plane. Find the conditions of equilibrium. (For rough plane see Ex. (8), page 217.)

Ans. $N=-\frac{\cos (\beta+\alpha)}{\cos \beta} W, P=\frac{W \sin \alpha}{\cos \beta}$, where $\beta>+(90-\alpha)$ and $<+90$.
(3) Find the force P necessary to just move a cylinder of radius r and weight W up a plane inclined at an angle α, by a croubar of
 length linclined at an angle 乃. neglecting friction. (For friction see Ex. (9), page 218.)

Ans. The weight W acting at the centre O can be resolved into components N_{1}, N_{2} perpendicular to the bar and plane. If P acts at right angles to the bar, we have by virtual work, for a small displacement due to turning the bar about A through an indefinitely small angle 0 ,

$$
P l \theta-N_{1} \cdot \overline{A N_{1}} \theta=0, \quad \text { or } \quad P=\frac{N_{1} \cdot \overline{A N_{1}}}{l} .
$$

But

$$
\overline{A N_{1}}=r \tan \frac{1}{2}(\alpha+\beta)=\frac{r[1-\cos (\alpha+\beta)]}{\sin (\alpha+\beta)}, \quad \text { and } \quad N_{1}=\frac{W \sin \alpha}{\sin (\alpha+\beta)}
$$

Hence

$$
\dot{P}=\frac{W r \sin \alpha[1-\cos (\alpha+\beta)]}{l \sin ^{2}(\alpha+\beta)}=\frac{W r \sin \alpha}{l[1+\cos (\alpha+\beta)]}
$$

(4) A particle of mass m rests on a smooth cylinder and is kept in equilibrium by a string fastened to another particle of mass M, which passes over the cylinder and hangs freely. Determine the position of equilibrium. (For rough cylinder see Ex. (10), page 218.)

Let the position of equilibrimm be at D and suppose a virtual displacement $D D^{\prime}$ along the chord at D. Then M moves through a distance equal to the chord $D D^{\prime}$ and we have the algebraic sum of the virtual works zero, or, since the virtual work of N is zero,

$$
\begin{gathered}
M g \times \operatorname{chord} D D^{\prime}-m g \times n D^{\prime}=0, \\
\text { or } \quad \frac{M}{m}=\frac{n D^{\prime}}{\text { chord } D D^{\prime}} .
\end{gathered}
$$

If $D D^{\prime}$ is indefinitely small, it is tangent at D. Hence if the tangent at D makes an angle θ with the vertical, we have for the condition of equilibrium

$$
\frac{M}{m}=\cos \theta
$$

In this example we see that the condition of an indefinitely small virtual displacement is necessary, because the forces vary with the displacement.
(5) Find the conditions for equilibrium for a screw, neglecting friction. (For friction see Ex. (11), page 219.)

Ans. Let P be the force applied at the end of the arm a, and let the pitch of the screw or distance between the threads be p. Let M be the mass supported by P.

1st. By Virtual Work.-If the arm a moves through 2π radians, M is raised the distance p. If it moves through one radian, M is raised $\frac{p}{2 \pi}$.

If P, then, has a virtual displacement of θ radians, it moves through the distance $a 0$ and M is raised a distance $\frac{p \theta}{2 \pi}$, and we have by the principle of virtual work, in gravitation units,

$$
P a \theta-\frac{M p \theta}{2 \pi}=0, \text { or } \quad P=\frac{M p}{2 \pi a} .
$$

Hence

$$
\frac{M}{P}=\frac{2 \pi a}{p}=\frac{\text { circumference of circle in which } P \text { moves }}{\text { distance between threads }} .
$$

2d. By Resolution of Forces.-Let N be the normal pressure on each thread, and α the inclination of the thread to the horizontal. Then, in gravitation units, we have for equilibrium

$$
\Sigma N \cos \alpha-M=0 .
$$

If r is the radius of the screw, we have, taking moments about the axis, for equilibrium

$$
-P a+\Sigma N \sin \alpha \times r=0 .
$$

But if the screw be developed, we have an inclined plane whose base is $2 \pi r$ and height p and angle of inclination α.

Therefore
$2 \pi r \tan \alpha=p, \quad$ or $2 \pi r \sin \alpha=p \cos \alpha$.
Inserting this value of $r \sin \alpha$, we have, as before,

$$
-P a+\frac{M p}{2 \pi}=0, \quad \text { or } \quad P=\frac{M p}{2 \pi a}=\frac{M r \tan \alpha}{a}
$$

The differential screw consists of a screw AD which works in a fixed nut $C C^{\prime} . A D$ is hollow and has a thread cut inside, in which a solid screw $D E$ works. DE is prevented from turning by some means, for instance by a rod $F E F^{\prime}$ rigidly connected with it, whose ends work in grooves, so that DE can only move in a direction parallel to its axis. The mass M is raised by the force P applied at the end of the arm $A B=a$. Find the condition of equilibrium, neglecting friction. (For friction, see Ex. (12), page 220.)

Ans. Let a be the length of arm $A B, P$ the force applied, p and p^{\prime} the pitch of screws $A D$ and $D E$.

When $A B$ turns through 2π radians, $A D$ rises a distance p. $D E$ cannot turn and therefore moves downwards a distance p^{\prime} relatively to $A D$. The mass M is raised, then, a distance $p-p^{\prime} .{ }^{\prime}$, When $A B$ turns through one radian, M is raised $\frac{p-p^{\prime}}{2 \pi}$. If P then has a virtual displacement of θ radians, it moves through the distance $a 0$ and M is raised $\frac{\left(p-p^{\prime}\right) \theta}{2 \pi}$.

Hence by the principle of virtal work, in gravitation units,

$$
\operatorname{Pa} \theta-M \frac{\left(p-p^{\prime}\right) \theta}{2 \pi}=0, \quad \text { or } \quad P=M \frac{p-p^{\prime}}{2 \pi a} .
$$

Evidently, by making p and p^{\prime} nearly equal, we can make P as small as we please. In the simple screw the same result is attained only by making the lever-arm a inconveniently large, or by making the pitch so small that the thread is too weak to support the pressure on it.
(1) Let the force acting normally upon the middle of the back of an isosceles wedge be P. Find the conditions for equi-
 librium, neglecting friction. (For friction see Ex. (13), page 220.)

Ans. The pressure on each side must be normal. Let α be the angle of the wedge. Then for a virtual displacement of s we have by the principle of virtual work

$$
P_{s}-2 N s \sin \frac{\alpha}{2}=0, \text { or } P=2 N \sin \frac{\alpha}{2}
$$

(8) Let an isosceles wedge rest with its surface BC upon a horizontal plane. Let a force P be applied normally at the middle point of the back. Let the body, whose weight is W, acting at the centre of mass G, rest upon the wedge, and be constrained by guides $D E$, $D^{\prime} E^{\prime}$ to move in a direction normal to AC. Find the condition for equilibrium, neglecting friction.

Ans. Let α be the angle of the wedge. Then $N=W \cos \alpha$.

$$
P=2 W \cos \alpha \sin \frac{\alpha}{2}
$$

(9) A body weighing 10 lbs. rests on a smooth plane rising 2 feet vertically for every
 5 ft. along the plane. It is kept from sliding by a force in the direction of the plane. Find the force and the pressure on the plane.

Ans. $P=4 \mathrm{lbs}$. $N=9.16 \mathrm{lbs}$.
(10) A body is kept at rest on a smooth inclined plane by a force acting up the plane equal to half the weight of the body. Find the inclination of the plane.

Ans. 30°.
(11) A body is at rest on a smooth inclined plane, and the applied force and pressure on the plane are each equal to the weight of the body. Find the inclination of the plane and the direction of the applied force.

Ans. $60^{\circ} ; 30^{\circ}$ to inclined plane and horizontal plane.
(12) A body is supported on a smooth inclined plane by a force equal to its weight. Show that the reaction of the plane is double what it would be if the body were supported by the least possible force.
(13) Let P be the force which, acting up a smooth inclined plane, keeps a body in equilibrium. Let Q be the force which supports the body when its direction is such that it is equal to the reaction of the plane. Show that Pacting up the plane could just support a body of weight Q on a plane of twice the inclination.
(14) Two particles of equal mass, each attracting with a force varying directly as the distance, are situated at the opposite extremities of a diameter of a horizontal circular wire on which a small smooth ring is capable of sliding. Show that the ring will be kept at rest in any position under the attraction of the particles.
(15) A body whose weight is W is sustained on a smooth inclined plane by three forces applied to it, each equal to $\frac{W}{3}$. One acts vertically, another horizontally, and the third along the plane. Find the inclination of the plane.

Ans. Let α be the inclination of the plane. We have, placing the algebraic sum of the components along the plane equal to zero, the condition of equilibrium

$$
\frac{W}{3}+\frac{W}{3} \cos \alpha+\frac{W}{3} \sin \alpha-W \sin \alpha=0
$$

Hence,

$$
2 \sin \alpha=1+\cos \alpha
$$

Or, since $\sin \alpha=2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}$ and $1+\cos \alpha=2 \cos ^{2} \frac{1}{2} \alpha$,

$$
2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}=\cos ^{2} \frac{\alpha}{2} .
$$

Solving this equation, we have

$$
\cos \frac{\alpha}{2}=\sin \frac{\alpha}{2} \pm \sin \frac{\alpha}{2}
$$

or

$$
\cos \frac{\alpha}{2}=2 \sin \frac{\alpha}{2} \text { or } 0 .
$$

We have then two values for α, given by $\tan \frac{\alpha}{2}=\frac{1}{2}$, or $\alpha=53^{\circ} 77^{\prime} 48^{\prime \prime} .4$ and $\alpha=180^{\circ}$.

Placing the algebraic sum of the components perpendicular to the plane equal to zero, we have

$$
N+\frac{W}{3} \cos \alpha-\frac{W}{3} \sin \alpha-W \cos \alpha=0
$$

Hence

$$
N=\frac{W}{3}(\sin \alpha+2 \cos \alpha)
$$

The first value of $\alpha=53^{\circ} 7^{\prime} 48^{\prime \prime} .4$ gives $N=+\frac{2}{3} W$. The second value of

$\alpha=180^{\circ}$ gives $N=-\frac{2}{3} W$. The first value gives a rational solution. The second value corresponds to the case of the particle placed underneath the plane, the normal reaction of the plane being directed towards the plane. If the normal reaction could consist of a pull, this position would be possible.
(16) $A \operatorname{rod} A B$ rests on two smooth planes $A C$ and $B C$ which make the angles α_{1} and α_{3} with the horizontal. A load of Plbs. is applied at a point D of the rod at a distance $A D=a$ and $B D=b$
from the ends. Find the inclination of the rod to the horizontal
 when equilibrium exists, and the pressures N_{1} and N_{2} on the planes. Weight of the rod neglected. (For friction see Ex. (15), page 221.)

Ans. The forces acting upon the rod are the vertical weight P at D and the normal pressures N_{1} and N_{2} at A and B. These pressures make the same angles with the vertical that the planes $A C$ and $B C$ make with the horizontal.

We have then for equilibrium the algebraic sum of the vertical components equal to zero, or

$$
\begin{equation*}
N_{1} \cos \alpha_{1}+N_{2} \cos \alpha_{2}-P=0 ; \tag{1}
\end{equation*}
$$

the algebraic sum of the horizontal components equal to zero, or

$$
\begin{equation*}
N_{1} \sin c_{2}-N_{2} \sin \alpha_{2}=0 \tag{2}
\end{equation*}
$$

the algebraic sum of the moments about any point in the plane equal to zero. Take the point D and let the lever-arms be n_{1} and n_{2}. Then

$$
\begin{equation*}
N_{2} n_{2}-N_{1} n_{1}=0 \tag{3}
\end{equation*}
$$

We have from the figure, since n_{2} and n_{1} are parallel to $B C$ and $A C$, if θ is the angle of the rod with the horizontal,

$$
n_{2}=b \cos \left(\alpha_{2}-\theta\right), \quad n_{1}=a \cos \left(\alpha_{1}+\theta\right),
$$

and from (2) we have $N_{1}=\frac{\sin \alpha_{2}}{\sin \alpha_{1}} N_{2}$. Substituting in (3), we have

$$
b \cos \left(\alpha_{2}-\theta\right)=a \frac{\sin \alpha_{2}}{\sin \alpha_{1}} \cos \left(\alpha_{1}+\theta\right) ;
$$

expanding and reducing, we obtain

$$
\begin{equation*}
\tan \theta=\frac{a \operatorname{cotg} \alpha_{1}-b \operatorname{cotg} \cdot \alpha_{2}}{a+b} \tag{4}
\end{equation*}
$$

Also from (1) we obtain

$$
\begin{equation*}
N_{2}=\frac{P \sin \alpha_{2}}{\sin \left(\alpha_{1}+\alpha_{2}\right)}, \quad N_{2}=\frac{P \sin \alpha_{1}}{\sin \left(\alpha_{1}+\alpha_{2}\right)} \tag{5}
\end{equation*}
$$

If $\alpha=90^{\circ}$ and $\alpha_{1}=0$, or the plane $B C$ is vertical and $A C$ horizontal, we have from (4), $\theta=90^{\circ}$, and from (5), $N_{1}=P$ and $N_{2}=0$. That is, the position of equilibrium is when the rod is vertical and the end A is at C. If it has any other position, there is no equilibrium unless another force is introduced.
(17) A rod $A B$ of length l rests upon two smooth planes, one $A C$ horizontal and the other BC vertical, and its inclination with the horizontal is 9 . A load of P lbs. is applied at a distance $A D=a$ from the end A. The rod is prevented from sliding by a string attached to C and the rod. If the inclination of this string with the horizontal is α, find the stress in it for equilibrium. Weight of the rod neglected.

Ans. The forces acting upon the rod are the vertical weight P acting at D, the stress S in the string, and the normal pressures N_{1} and N_{2} at A and B.

We have then for equilibrium the algebraic sum of the vertical components equal to zero, or

$$
\begin{equation*}
N_{\mathrm{z}}-P-S \sin \alpha=0 \tag{1}
\end{equation*}
$$

the algebraic sum of the horizontal forces equal to zero, or

$$
\begin{equation*}
S \cos \phi-N_{2}=0 \tag{2}
\end{equation*}
$$

the algebraic sum of the moments about any point in the plane equal to zero.

Take the point C as the centre of moments. Then the lever-arm for N_{1} is $l \cos \theta$, for N_{2} it is $l \sin \theta$, and for $P,(l-a) \cos \theta$. Hence

$$
\begin{equation*}
N_{2} l \sin \theta+P(l-a) \cos \theta-N_{1} l \cos \theta=0 \tag{3}
\end{equation*}
$$

From these three equations we obtain

$$
\begin{gathered}
S=\frac{P a}{l \cos \alpha(\tan \theta-\tan \alpha)} ; \quad N_{1}=P+\frac{P a \tan \alpha}{l(\tan \theta-\tan \alpha)^{\circ}} ; \\
N_{2}=\frac{P a}{l(\tan \theta-\tan \alpha)^{\circ}}
\end{gathered}
$$

(18) A body is sustained on a smooth inclined plane of inclination a with the horizon by a force P acting along the plane and a horizontal force H. When the inclination is half α, the forces are $\frac{P}{2}$ and $\frac{H}{2}$, and the body is still at rest. Find the ratio of P to H.

Ans. $\frac{P}{H}=2 \cos ^{2} \frac{\alpha}{4}$.
(19) A weight of 10 kilograms is sustained on a smooth inclined plane of 25° inclination with the horizon, by a horizontal force of 5 kilograms and a force unknown in magnitude and direction. Find this force when the normal pressure on the plane is 2 kilograms.

Ans. 9.07 kilograms making an angle β below the plane of about $88^{\circ} 6^{\prime}$.
(20) Find the inclination of a smooth inclined plane if a weight of 24 kilograms resting upon it is sustained by a horizontal force of 7 kilograms and a force of 16 kilograms of unknown direction, while the normal pressure is a force of 15 kilograms. Find also the unknown direction.

Ans. $\alpha=53^{\circ} 53^{\prime} ; \beta=17^{\circ} 28^{\prime}$.
(21) Find the inclination of a smooth inclined plane if a weight of 20 kilograms resting on it is sustained by force up the plane of 5 kilograms and a force of 15 kilograms of unknown direction, while the normal pressure is 2 kilograms. Find also the unknown direction.

Ans. $\alpha=49^{\circ} 28^{\prime} ; \beta=47^{\circ} 9^{\prime}$.
(22) Find the inclination α of a smooth inclined plane if a given weight W resting on it is sustained by a horizontal force H and a force P of unknown direction, while the normal pressure is N. Find also the unknown direction.

Ans. For convenience of notation let $A=\frac{W^{2}+H^{2}+N^{2}-P^{2}}{2 N}$. Then
$\cos \alpha=\frac{A W}{W^{2}+H^{2}} \pm \frac{H}{W^{2}} \frac{H}{+H^{2}} \sqrt{W^{2}+H^{2}-A^{2}}, \quad \sin \beta=\frac{W^{2}+H^{2}-N^{2}-P^{2}}{2 F^{2} N}$.
(23) A rigid body rests at the point A upon a smooth inclined plane ACD which makes an angle α with the horizontal. The axis AB of the body makes an angle β with the horizontal. At the point B a force P is applied which makes an angle γ with the axis AB. At the point s of the body a vertical force W is applied. All the forces act in the plane of $A B$ and $A C$. Find the condi-
 tions of equilibrium.

Ans. Let $A B=a, A S=b$, and the normal pressure at A be N.

The forces acting upon the body are P, W and the normal pressure at A. If these forces are in equilibrium, we have for the algebraic sum of the moments about A

$$
\begin{equation*}
W b \cos \beta-P a \sin \gamma=0, \quad \text { or } \quad P=\frac{W b \cos \beta}{a \sin \gamma} . \tag{1}
\end{equation*}
$$

Placing the algebraic sum of the horizontal components zero, we have

$$
\begin{equation*}
P \cos (\gamma-\beta)-N \sin \alpha=0, \text { or } \quad N=\frac{P \cos (\gamma-\beta)}{\sin \alpha}=\frac{W b \cos \beta \cos (\gamma-\beta)}{a \sin \gamma \sin \alpha} . \tag{2}
\end{equation*}
$$

If we take moments about B, we have
$N a \sin (90-\alpha-\beta)-W(a-b) \cos \beta=0$, or $\quad \cos (\alpha+\beta)=\frac{(a-b) \sin \gamma \sin \alpha}{b \cos (\gamma-\beta)}$.
We thus determine P, N and the direction of the axis $A B$.
We also have the algebraic sum of the components along the plane equal to zero, or

$$
P \cos (\alpha+\beta-\gamma)-W \sin \alpha=0
$$

Reducing and inserting the values of P and $\cos (\alpha+\beta)$ from (1) and (3), we have

$$
\tan (\alpha+\beta)=\frac{a \sin \gamma \sin \beta+b \cos \gamma \cos \beta}{(a-b) \sin \gamma \cos \beta} .
$$

Also, since P, N and W must make a closed triangle,

$$
N=\frac{W}{a \sin \gamma} \sqrt{(b \cos \beta)^{2}+(a \sin \gamma)^{2}-2 a b \cos \beta \sin \gamma \sin (\gamma-\beta)} .
$$

If P is borizontal, we have $\gamma=\beta$, and

$$
\begin{gathered}
\cdot P=\frac{W b}{a} \cot \beta ; \\
N=\frac{W b}{a} \cdot \frac{\cot \beta}{\sin \alpha}, \quad \text { or } \quad N=\frac{W}{a \sin \alpha} \sqrt{(b \cos \beta)^{2}+(a \sin \beta)^{2} ;} \\
\cos (\alpha+\beta)=\frac{(a-b)}{b} \sin \beta \sin \alpha, \tan (\alpha+\beta)=\frac{a \sin ^{2} \beta+b \cos ^{2} \beta}{(a-b) \sin \beta \cos \beta} .
\end{gathered}
$$

The student should solve by the principle of virtual work.
(24) The upper end of a rod rests against a smooth vertical plane, and the lower end in a smooth spherical bowl. A weight W acts at any point M of the rod. Find the position of equilibrium. (For rough surfaces see Ex. (24), page 227.)

Ans. Let $A B$ be the rod, $D B$ the vertical plane and $F A E$ the spherical surface. The forces acting upon the rod are the
 weight W acting at the point M of the rod, the normal pressure N on the spherical surface which passes through the centre C of the sphere, and the normal pressure R on the vertical plane.

Let α be the angle of the rod with the horizontal and θ the angle of the radius $A C=r$ with the hori zontal.
Then we have for equilibrium

$$
\left.\begin{array}{l}
N \cos \theta-R=0, \tag{1}\\
N \sin \theta-W=0,
\end{array}\right\} \quad \text { or } \quad N=\frac{W}{\sin \theta}, \quad R=W \cot \theta .
$$

Take moments about M. Let the distance $A M=a$ and $M B=b$. Then the lever-arm of R is $b \sin \alpha$, and the lever-arm of N is $a \sin (\theta-\alpha)$, and we have

$$
R b \sin \alpha-N a \sin (\theta-\alpha)=0
$$

or, substituting the values from (1),

$$
a \sin (\theta-\alpha)=b \cos \theta \sin \alpha
$$

Developing and reducing, this becomes

$$
\begin{equation*}
(a+b) \tan \alpha=a \tan \theta \tag{2}
\end{equation*}
$$

Let the length of the rod be l. Then the distance $C D=d$ of the centre of the spherical surface from D is

$$
\begin{equation*}
d=l \cos \alpha-r \cos \theta \tag{3}
\end{equation*}
$$

From (2) and (3) we can determine α and θ. The position of equilibrium is independent of W, but depends upon the position of W and C.
(25) A body whose weight is W is at rest upon a smooth parabolic curve whose axis is vertical, and is acted upon at any point P by a horizontal force H whose magnitude is always proportional to the distance PM from the axis. Find the position for equilibrium. (For rough surface see Ex. (25), page 227.)

Ans. The equation of the parabola, taking the origin at the vertex 0 , is

$$
y^{2}=2 p x
$$

where the axis of X is vertical and the axis of Y horizontal and p is the ordinate to the curve through the focus.

We consider the body, whatever its size as a particle, acted upon by concurring forces (page 169). The applied forces are W, H and the normal reaction of the curve. These make a system of concurring forces in equilibrium.

Let the horizontal force which acts upon the particle when it is at the distance p from the axis be H_{1}. Then the force H when it is at any other distance $P M=y$ from the axis is

$$
H=\frac{y}{p} H_{1}
$$

Let $\theta=$ angle between the tangent at P and the vertical.
Then, taking the algebraic sum of all the components along the tangent, we have for equilibrium the condition

$$
W \cos \theta=H \sin \theta=0
$$

This condition holds whether the particle rests within the curve or uponit. Substitute the value of H, and we have for the condition of equilibrium

$$
W \cos \theta=\frac{y}{p} H_{1} \sin \theta
$$

This condition is evidently satisfied when $\theta=90^{\circ}$ and $y=0$, that is, when the particle is at the vertex.

If the particle is not at the vertex, we have

$$
\tan \theta=\frac{W p}{H_{1} y} .
$$

But if the curve is a parabola, we have for any point $\tan \theta=\frac{p}{y}$. Hence the condition for equilibrium for any point is $H_{1}=W$.

If then the magnitude of the horizontal force when the particle is at the distance p from the axis is W, the particle will be at rest at any point of the curve. If it is not, the vertex is the only position.
(26) A body of weight W, resting on a smooth inclined plane, is attached to a string which, passing over a smooth pulley, sustains a body of weight P. If β is the inclination of the string to the inclined plane and α the inclination of the plane to the horizon, find the conditions and position of equilibrium.

Ans. (Example (1).) The condition of equilibrium is $P \cos \beta=W \sin \alpha$, or $\cos \beta=\frac{W \sin \alpha}{P}$.

Since β must be less than $90^{\circ}, \cos \beta$ must be less than unity. Hence $W \sin \alpha$ must be less than P. If the condition of equilibrium is satisfied for one point of the plane, it will be satisfied for all others.
(27) A body whose weight is 10 kilograms is supported on a smooth inclined plane by a force of 2 kilograms acting along the plane and a horizontal force of 5 kilograms. Find the inclination of the plane and the normal reaction.

Ans. $\alpha=36^{\circ} 52^{\prime} 11^{\prime \prime}, \sin \alpha=\frac{3}{5}, \cos \alpha=\frac{4}{5} ; N=11$ kilograms.
(28) Two weights P and W are fastened to the ends of a cord which passes over a smooth pulley O. The weight W rests upon a smooth vertical plane curve and P hangs freely. Find the position of equilibrium (a) when the curve is a parabola and O is at the focus; (b) when the curve is a circle and O is at a distance a above the centre; (c) when the curve is an hyperbola and O is at the centre, the axis of the curve being vertical; (d) find the curve such that the weight W may be in equilibrium with P at all points of the curve.

Ans. The applied forces are the weight W acting vertically, the tension P
 of the string and the normal reaction N of the curve.

Take the origin at O and let $O W$ make the angle α with the horizontal. Then, since $A W=x, O A=y$, if we denote $O W$ by r, we have

$$
\sin \alpha=\frac{y}{r}, \quad \cos \alpha=\frac{x}{r}, \quad r^{2}=x^{2}+y^{2} .
$$

Let N make the angle θ with the vertical, then the tangent at W makes the same angle with the horizontal.

We have then for the algebraic sum of the vertical components

$$
\begin{equation*}
N \cos \theta-W-P \sin \alpha=0 \tag{1}
\end{equation*}
$$

and for the algebraic sum of the horizontal components

$$
\begin{equation*}
N \sin \theta-P \cos \alpha=0 \tag{2}
\end{equation*}
$$

From (1) and (2) we obtain

$$
\tan \theta=\frac{P \cos \alpha}{W+P \sin \alpha}
$$

The tangent of the angle which the tangent to the curve at W makes with the horizontal is then for equilibrium

$$
\begin{equation*}
\frac{d y}{d x}=-\tan \theta=-\frac{P \cos \alpha}{W+P \sin \alpha}=-\frac{P x}{W r+P y} \tag{3}
\end{equation*}
$$

Equation (3) is general whatever the curve. We may obtain it directly from equation (6), page 172. Thus $F_{x}=-P \cos \alpha=-\frac{P x}{r}, F_{y}=-W-$ $P \sin \alpha=-W-\frac{P y}{r}$. Hence, since $F_{x} d x+F_{y} d y=0$, we have at once equation (3).
(a) If the curve is a parabola with origin at the focus O and axis vertical, the equation of the curve, since y is negative downwards, is

$$
x^{2}=-2 p y+p^{2}, \text { or } u=x^{2}+2 p y-p^{2}=0
$$

where p is twice the distance from the focus to the vertex.
Differentiating, we have

$$
\frac{d y}{d x}=-\tan \theta=-\frac{x}{p} .
$$

Substituting in (3), we obtain for equilibrium

$$
\begin{aligned}
W & =P \frac{p-y}{r}=P \frac{p-y}{ \pm \sqrt{x^{2}+y^{2}}} \\
& =P \frac{p-y}{ \pm \sqrt{y^{2}-2 p y+p^{2}}}= \pm P .
\end{aligned}
$$

Hence equilibrium obtains when W and P are equal and holds good for any point on the curve. We may obtain the same result directly from equation (5), page 172. Thus

$$
\frac{d u}{d x}=2 x, \quad \frac{d u}{d y}=2 p, \quad F_{x}=-\frac{P x}{r}, \quad F_{y}=-W-\frac{P y}{r} .
$$

Substituting in $\frac{F_{x}}{\left(\frac{d u}{d x}\right)}=\frac{F_{y}}{\left(\frac{d u}{d y}\right)}$, we obtain at once $W=P \frac{p-y}{r}= \pm P$.
(b) If the curve is a circle with the origin and pulley at a distance a above the centre of the circle, the equation of the circle, since y is negative downwards, is

$$
(a+y)^{2}+x^{2}=R^{2}, \text { or } \quad u=R^{2}-x^{2}-(a+y)^{2}=0
$$

where R is the radius.
Differentiating, we have

$$
\frac{d y}{d x}=-\tan \theta=-\frac{x}{a+y}
$$

Substituting in (3), we obtain for equilibrium

$$
r=\frac{P}{W} a
$$

We may obtain the same result directly from equation (5), page 172, by inserting the values

$$
\frac{d u}{d x}=-2 x, \quad \frac{d u}{d y}=-2 a-2 y, \quad F_{x}^{\prime}=-\frac{P x}{r}, \quad F_{y}=-W-\frac{P y}{r} .
$$

(c) If the curve is an hyperbola with the origin and pulley at the centre of the hyperbola, the axis of the curve being vertical, the equation of the curve is

$$
b^{2} y^{2}-a^{2} x^{2}=a^{2} b^{2}, \quad \text { or } \quad h=b^{2} y^{2}-a^{9} x^{2}-a^{2} b^{2}=0 .
$$

Differentiating, we have

$$
\frac{d y}{d x}=-\tan \theta=\frac{a^{2} x}{b^{2} y} .
$$

Substituting in (3), we obtain for equilibrium

$$
y=\frac{b W}{e \sqrt{W^{2}-e^{2} P^{2}}}
$$

where e is the eccentricity or $e=\sqrt{\frac{a^{2}+b^{2}}{a^{2}}}$.
We may obtain the same result from equation (5), page 172, by substituting $\frac{d u}{d x}=-2 a^{2} x, \frac{d u}{d y}=2 b^{2} y, \quad F_{x}=-\frac{P x}{r}, \quad F_{y}=-W-\frac{P y}{r}, \quad r^{2}=x^{2}+y^{2}$.
(d) Required the curve such that the weight W may be in equilibrium with the weight P for all points of the curve.

We have from (3)

$$
\frac{d y}{d x}=-\frac{P x}{W r+P y}=-\frac{P x}{W \sqrt{x^{2}+y^{2}+P y}}
$$

or

$$
-W d y=P \frac{x d x+y d y}{\sqrt{x^{2}+y^{2}}}
$$

Integrating, we have

$$
-W y+C=P \sqrt{x^{2}+y^{2}}
$$

Squaring,

$$
W^{2} y^{2}-2 C W y+C^{2}=P^{2} x^{2}+P^{2} y^{2}
$$

Hence

$$
P^{2} x^{2}+\left(P^{2}-W^{2}\right) y^{2}+2 C W y-C^{2}=0
$$

This is an equation of the second degree and is therefore a conic section.
If $P=W$, it is a parabola;
$P>W$, it is an ellipse;
$P<W$, it is an hyperbola;
the origin and pulley being at the focus.
(29) A particle whose weight is W is placed on the concave surface of a smooth sphere and is acted upon by gravity and also by a repulsive force varying inversely as the square of the distance from the lowest point of the sphere. Find the position of equilibrium.*

Ans. Take the lowest point of the sphere as the origin, and let the axis of Y be vertical.

The equation of the surface is, if R is the radius,

$$
u=x^{2}+y^{2}+z^{2}-2 R y=0 .
$$

Let r be the distance of the particle from the lowest point of the sphere. Then

$$
\begin{equation*}
r^{2}=x^{2}+y^{2}+z^{2}=2 R y . \tag{a}
\end{equation*}
$$

Let the repulsive force at a known distance a from the lowest point be F_{1}. Then the repulsive force at any distance r will be $F_{1} \frac{a^{2}}{r^{2}}=F_{1} \frac{a^{2}}{2 R y}$.

Let the repulsive force make the angles α, β, γ with the co-ordinate axes. Then $\cos \alpha=\frac{x}{r}, \cos \beta=\frac{y}{r}, \cos \gamma=\frac{z}{r}$, and the component forces parallel to the co-ordinate axes are

$$
F_{x}=F_{1} \frac{a^{2}}{2 R y} \cdot \frac{x}{r}, \quad F_{y}=F_{1} \frac{a^{2}}{2 R y} \cdot \frac{y}{r}-W, \quad F_{z}=F_{1} \frac{a^{2}}{2 R y} \cdot \frac{z}{r} .
$$

* This is the problem of the electroscope.

Hence from equation (3), page 172, we have after reduction

$$
y=\frac{1}{2} \sqrt[3]{\frac{a^{4} F_{1}^{2}}{R W^{2}}} .
$$

Inserting this in (a), we obtain

$$
r^{3}=\frac{a^{2} F_{1} R}{W}
$$

If another force of the same kind makes the particle rest at a distance r^{\prime} from the lowest point, and if F_{1}^{\prime} is the force at a distance a^{\prime}, then

$$
r^{\prime 3}=\frac{a^{\prime 2} F_{1}^{\prime} R}{W}
$$

and hence

$$
\frac{r^{3}}{r^{\prime 3}}=\frac{a^{2} F_{1}}{a^{\prime 2} F_{1}^{\prime}}
$$

that is, the values of the repulsive forces at distance unity vary as the cubes of the distance from the lowest point.

Substituting the values of F_{x}, F_{y}, F_{z} in equation (4), page 172, and the values of y and r already found, we obtain

$$
x d x+y d y+z d z-R d y=0
$$

which is the differential equation of equation (a).

CHAPTER IX.

CONSTRAINED EQUILIBRIUM-ROUGH CURVE OR SURFACE.

FRICTION. ADHESION. KINDS OF FRICTION. REACTION OF A ROUGH CURVE OR SURFACE. EQUILIBRIUM OF A BODY ON A ROUGH CURVE OR SURFACE. ANGLE OF FRICTION OR REPOSE. SONE OF FRICTION. COEFFICIENT OF FRICTION. LIMITING EQUILIBRIUM, COEFFICIENT OF STATIC SLIDING FRICTION. LAWS OF STATIC SLIDING FRICTION. VALUES OF COEFFICIENT OF STATIC SLIDING FRICTION. STATIC FRICTION OF PIVOTS. STATIC FRICTION OF AXLES. STATIC FRICTION OF CORDS AND CHAINS. RIGIDITY OF ROPES. STATIC ROLLING FRICTION. EQUILIBRIUM OF A BODY AT ANY POINT OF A ROUGH CURVE OR SURFACE. GENERAL EQUATIONS. STABLE, UNSTABLE, INDIFFERENT AND NEUTRAL EQUILIBRIUM. CRITERION FOR STABLE, UNSTABLE, INDIFFERENT AND NEUTRAL EQUILIBRIUM. STABILITY IN ROLLING CONTACT.

Friction. - In the preceding Chapter we have considered the equilibrium of a body on a smooth curve or surface, that is, a curve or surface incapable of offering resistance to motion in any other than a normal direction.

But every natural surface offers a resistance to the motion of a body upon it. Part of this resistance is due to adhesion between the body and surface and part is due to friction.

Friction then is always a retarding force or resistance, and acts always in a direction opposite to that in which the body moves or would move if there were no resistance.

When one surface moves upon another, the surfaces in contact are compressed and projecting points and irregularities are bent over, broken off, rubbed down, etc.

The resistance due to friction, therefore, evidently depends upon the materials of which the surfaces are composed, and also upon the roughness or smoothness of the surfaces in contact.

It may also evidently vary for the same surfaces, according to their condition or state or material constitution.

Thus it may not be the same for surfaces of dry wood or iron as for the same surfaces under the same conditions when wet. It may not be the same for two surfaces of wood with their fibres parallel as for the same surfaces under the same conditions when their fibres are not parallel.

Unguents also have a great influence. Such fluid or semi-fluid unguents as oil, tallow, etc., fill up interstices and diminish the effect of irregularities of surfaces; or a film of unguent may be interposed between the surfaces and thus the resistance of friction greatly diminished.

Adhesion.-We must not confound the resistance due to friction with that due to adhesion. Adhesion is that resistance to motion which takes place when two different surfaces come in contact at many points without pressure. Adhesion increases with the area of surface of contact and is independent of the pressure, while, as we shall see (page 191), friction increases with the pressure and is in general independent of the area of surface of contact. When the pressure then is very small, adhesion may be great compared with friction.

If, however, the pressure is great, adhesion may be neglected compared to the friction, and the resistance to motion is practically that due to the friction only.

When the surfaces in contact are of the same kind, we call the resistance to motion cohesion; when of different kinds, adhesion.

Kinds of Friction.-Surfaces may slide or roll on one another. We distinguish accordingly sliding friction and rolling friction.

It is also found by experiment that the friction which just prevents motion is greater than that which exists after actual motion takes place. The friction which just prevents motion is called friction of repose or quiescence, or static friction. The friction which exists after actual motion takes places is called friction of motion, or kinetic friction.

We have then two kinds of static friction, viz., static sliding friction and static rolling friction.

We have also two kinds of kinetic friction, viz., kinetic sliding friction and kinetic rolling friction.

In any case, whether of sliding or rolling, the kinetic friction is always less than the static friction.

We have to do in this portion of our work with static friction only.

Reaction of a Rough Curve or Surface.-We have already defined (page 169) the reaction of a curve or surface as the pressure which the curve or surface exerts upon a particle in contact with it.

Suppose then a particle in equilibrium at any point P of a rough curve or surface. Let R be the reaction of the curve or surface, and R^{\prime} the resultant of all other forces acting upon the particle.

Then for equilibrium R and R^{\prime} must be equal and opposite and make the same angle α with the normal to the curve or surface at the point P.

Now R^{\prime} can be resolved into a normal component which must be resisted by the normal pressure N of the curve or surface at the point P, and into a tangential component T which tends to cause sliding and must be resisted by the friction F. The components of the reaction R are then N and F, and we have for equilibrium

$$
\begin{gathered}
R \cos \alpha=N, \quad R \sin \alpha=F \\
\tan \alpha=\frac{F}{N}
\end{gathered}
$$

Hence, when a particle is in equilibrıum at any point of a rough curve or surface, the reaction makes with the normal at this point an angle whose tangent is given by the ratio of the friction to the normal pressure at the point. If the reaction is normal, there is no friction.

Equilibrium of a Body on a Rough Curve or Surface. - We have seen, page 169, that a body in equilibrium upon any surface,
 rough or smooth, may be treated as a particle placed at any one of the points of contact with the curve or surface. Also, if the curve or surface exerts pressure only, the resultant R^{\prime} of all the external forces must intersect the curve or surface at some point P within the line or surface of contact.

We have also just proved that when a particle is in equilibrium at any point of a rough curve or surface, the reaction R makes with the normal at this point an angle α whose tangent is given by the ratio of the friction to the normal pressure.

If then the body $A D E$ rests in equilibrium upon a rough curve or surface and touches it at many points P_{1}, P_{2}, P_{3}, etc., each of the reactions R_{1}, R_{2}, R_{3}, etc., at each of these points makes with the normal at its point an angle $\alpha_{1}, \alpha_{2}, \alpha_{3}$, etc., whose tangent is given by the ratio $\frac{F_{1}}{N_{1}}, \frac{F_{2}}{N_{2}}, \frac{F_{3}}{N_{3}}$, etc., of the friction to the normal pressure at each point.

The entire body can then be treated as a particle at any one of the points of contact. The point P where the line of direction of the resultant R of all the external forces intersects the curve or surface, if the curve or surface exerts pressure only, must lie inside the line or surface of contact $D E$.

The resultant reaction R at any point of contact of all the forces acting upon the body except the reaction at this point, must make with the normal at this point an angle α whose tangent is given by the ratio of the total friction to the resultant normal pressure.

Angle of Friction or Repose.-Let a body be in equilibrium at any point P of a rough curve or surface.

Let R be the reaction of the curve or surface at the point P, and let R^{\prime} be the resultant of all the external forces acting upon the body.

Then for equilibrium, R is equal and opposite to R^{\prime} and makes the same angle $\alpha \cdot$ with the normal at P given by

$$
\tan \alpha=\frac{F}{N}
$$

where F is the friction at the point P, and N is the normal pressure at this point.

Now the force which tends to cause sliding is the tangential component of R^{\prime} or $T=R^{\prime} \sin \alpha$. The friction F at P acts opposite to T, and so long as there is equilibrium is equal to it.

As the angle α increases, the normal pressure $N=R \cos \alpha$ decreases and the tangential force $T=R^{\prime} \sin \alpha$ increases. There is evidently a certain value for α for which, R^{\prime} remaining unchanged in magnitude, sliding is just about to begin. For any value of α less than this, sliding cannot begin no matter what the magnitude of R^{\prime}. For any value of α greater than this, sliding takes place.

We denote this value of α by ϕ and call it the angle of friction or repose.

We have then

$$
\tan \phi=\frac{\max \cdot F}{\min . N}
$$

That is, the angle of friction or repose is the greatest angle which the reaction R at any point of contact can make with the normal at that point without sliding taking place. Since static friction is always greater than kinetic, it is also the greatest angle which the reaction R at any point of contact can ever make with the normal at that point. It is also the greatest angle which the resultant R^{\prime} of all the external forces acting upon the body can make with the normal at the point without sliding taking place. No resultant force R^{\prime}, however great, can cause sliding to begin, so long as its angle α with the normal is less than the angle of friction or repose.

Cone of Friction.-If then the reaction R at any point of contact P makes the angle of friction or repose ϕ with the normal at that point, sliding is about to begin.

If we revolve the line representative of R about the normal at P,
it describes the surface of a cone every element of which makes the angle of repose ϕ with the normal. This cone is called the cone of friction.

No force acting at the point P, however great in magnitude, can cause sliding to begin at that point if its line representative lies within the cone.
 The cone of friction encloses the direction of all forces which are completely counteracted by the surface at any point.

Coefficient of Friction.-When two surfaces are in contact and there is friction and normal pressure at every point of contact, the sum of the frictions at every point of contact is the total friction, and the sum of the normal pressures at every point of contact is the total normal pressure.

The ratio of the total friction to the total normal pressure when motion, either sliding or rolling, is just about to begin, is called the coefficient of static friction, either of sliding or rolling.

The same ratio after motion has taken place is called the coeffcient of kinetic friction, either of sliding or rolling.

We denote the coefficient of friction in general by μ. We have then, in general, for all cases

$$
\mu=\frac{F}{N}, \quad \text { or } \quad F=\mu N
$$

where F is the total friction and N the total normal pressure, when motion either sliding or rolling is just about to begin, or else when motion either sliding or rolling has taken place. In the first case μ is the coefficient of static friction of sliding or rolling. In the second case μ is the coefficient of kinetic friction of sliding or rolling. We have to do in this portion of the work with static friction only.

Limiting Equilibrium.-The student should carefully note that

$$
F=\mu N
$$

does not give the actual resistance of friction in all cases of equilibrium, but only the resistance which exists when the surfaces are on the point of motion.

Friction acts always in a direction opposite to the force which tends to cause motion, and so long as there is equilibrium it is always equal in magnitude to this force. But when this force has the magnitude μN motion is just about to begin, and the body is
said to be in limiting equilibrium. If this force is less than μN, there will still be equilibrium, whatever its magnitude, and the body is in non-limiting equilibrium.

Coefficient of Static Sliding Friction-Experimental Determina-tion.-Let a body of weight W, acting at the centre of mass C, rest in equilibrium upon a rough plane $A B$, the
 surfaces of contact being plane.

Then for equilibrium the line of direction of W must intersect the plane inside the base or surface of contact $D E$, and we can consider the body as a particle placed at the point where W intersects the base, and in
 equilibrium under the action of the reaction at that point and the weight W.

Then the $\operatorname{sum} N$ of all the normal pressures acting at every point of contact must be equal and opposite to the normal component of W, and the sum F of all the frictions at every point of contact must be equal and opposite to the component T of W parallel to the plane.

We have then when sliding is about to begin, for the coefficient of sliding friction,

$$
\mu=\frac{F}{\bar{N}}
$$

and we see from the figure that $\frac{F}{N}$ is the tangent of the angle which the total reaction R makes with the normal when sliding is about to begin. Now the reaction at every point of contact is parallel to R or W and sliding begins at all points of contact simultaneously. Hence the angle which R makes with the normal when sliding is about to begin is the angle of repose ϕ, and it is evidently the same as the angle which the plane makes with the horizontal. Therefore

$$
\mu=\frac{F}{N}=\tan \phi
$$

That is, the coefficient of static sliding friction is equal to the tangent of the angle of repose.

If, then, we place a body upon a rough plane and then gradually incline the plane until sliding just begins, the inclination of the plane at this instant gives the angle of friction or repose ϕ. The tangent of this angle gives the coefficient μ of static sliding friction for plane surfaces.

We obtain the same result by resolution of forces. Thus let ϕ be the inclination of the plane when sliding begins.

Then for equilibrium $W \cos \phi=N$, and $W \sin \phi=F$. Hence

$$
\mu=\frac{F}{\bar{N}}=\tan \phi
$$

We can thus make use of the inclined plane as an apparatus for determining μ by experiment.

Again, if we place a body of weight W on a horizontal plane and measure the horizontal force F just necessary to cause it to begin to slide, we have

$$
\mu=\frac{F}{W}=\tan \phi
$$

where ϕ is the angle of the reaction R with the normal when sliding begins, or the angle of repose.

Such an apparatus should be so constructed that the friction of the pulley and other resistances due to the string, etc., can be disregarded or else allowed for.

Laws of Static Sliding Friction.-The following laws of static sliding friction have been established by experiment as holding true within the limits indicated :

1. Other things being the same, within certain limits of the normal pressure, static sliding friction is proportional to the total normal pressure and independent of the area of the surfaces in contact.

In other words, within the limits of normal pressure referred to, the coefficient of static sliding friction μ is constant for the same two surfaces in the same condition, whatever the area of the surfaces of contact and whatever the total normal pressure.

Thus, if the normal pressure N over a given area is increased or decreased, the friction F increases or decreases in the same proportion and $\mu=\frac{F}{N}$ is unchanged.

It follows directly that if the area increases or decreases, N remaining the same, the number of points of contact is correspondingly increased or decreased, but the normal pressure at each point, and therefore the friction at each point, is correspondingly decreased or increased. The sum of all the frictions F remains then the same and $\mu=\frac{F}{N}$ is unchanged.

Limitations of the Law.-The limitations of normal pressure referred to are as follows:

If the normal pressure per unit of area approaches the crushing strength or becomes so great as to break up the film of interposing unguent, the friction F increases more rapidly than the normal pressure and the law fails.

In properly designed structures the normal pressure per unit of area is much less than this limit and the law applies.

Again, if the normal pressure per unit of area is very small, adhesion may constitute the larger portion of the resistance. This adhesion increases with the area of contact (page 187).

In all practical cases, however, the influence of adhesion may be neglected.

Hence in practical applications the friction is the only resistance which is considered, and it is assumed that

$$
F=\mu N
$$

gives the resistance, where μ is in practice a constant for the same two surfaces in the same condition, whatever the area of the surfaces in contact and whatever the total normal pressure N.
2. Other things being the same, within certain limits of the normal pressure, the stating sliding friction of greased surfaces is less than that of ungreased and depends less upon the surfaces than upon the unguent.

Here again, if the normal pressure per unit of area becomes so great as to break up the film of interposing unguent, surface comes in contact with surface and the friction may depend more on the surfaces than upon the unguent.

In properly designed structures the normal pressure per unit of area is much less than this, and the law applies.

Again, if the normal pressure per unit of area is very small, adhesion may constitute the larger portion of the resistance and this adhesion is increased by the unguent.

In all practical cases, however, the influence of adhesion may be neglected.

Hence in practical applications the friction is the only resistance which is considered and it is assumed that

$$
F=\mu N
$$

gives the resistance, where μ is in practice a constant for the same two surfaces in the same condition, whatever the area of the surfaces in contact and whatever the total normal pressure N.

Upon these two laws depend the value and use of the values for the coefficient of static sliding friction given in the next Article.

Values of Coefficient of Static Sliding Friction.-The following table gives a few values of the value of μ as determined by experiment for static sliding friction.

COEFFICIENTS OF STATIC SLIDING FRICTION $\mu=\operatorname{TAN} \phi$.

Substances in Contact.	Condition of Surfaces and Kind of Unguent.						
	Dry.	Wet.	Olive	Lard.	Tallow.	$\begin{aligned} & \text { Dry } \\ & \text { Soap. } \end{aligned}$	$\begin{aligned} & \text { Polished } \\ & \text { and } \\ & \text { Greasy. } \end{aligned}$
Wood on minimum....	0.30	0.65			0.14	0.22	0.30
Wood on mean........	0.50	0.68		0.21	0.19	0.36	0.35
wood maximum....	0.70	0.71		0.25	0.44	0.40
Metal on $\left\{\begin{array}{l}\text { minimum..... } \\ \text { mean....... }\end{array}\right.$	0.15 0.18	\cdots	0.11 0.12				
metal $\left\{\begin{array}{l}\text { mean......... } \\ \text { maximum... }\end{array}\right.$	0.18 0.24		0.12 0.16	0.10	0.11	\ldots	0.15
Wood on metal	0.60	0.65	0.10	0.12	0.12	\ldots	0.10
Hemp ropes (minimum...	0.50						
or plaits $\begin{aligned} & \text { on wood }\end{aligned}\left\{\begin{array}{l}\text { mean } \ldots . . . \\ \text { maximum }\end{array}\right.$	$\begin{aligned} & 0.63 \\ & 0.80 \end{aligned}$	0.87					
Leather belts /wood.....	0.47						
over drums made of metal.....	0.54	\ldots	\ldots	\cdots	\ldots	0.28
$\left.\begin{array}{l} \text { Stone or brick } \\ \text { on stone or } \end{array}\right\} \text { minimum }$	0.67						
brick, pol- $\begin{array}{l}\text { ished. }\end{array}$ maximum	0.75						
Dry masonry and brickwork	0.65						
Masonry and brickwork, damp mortar.	0.74						
Timber on stone.........	0.40						
Iron on stone.	0.7to 0.3						
Masonry on dry clay....	0.51 0.33						
Earth on earth...........	0.25 to 1						
Damp clay on damp clay .	1.0						

More extensive tables will be found in treatises on Engineering. It will be noted that the coefficient of static sliding friction is practically always less than unity. In only one case given in the table, viz., for damp clay on damp clay, is $\mu=1$, corresponding to
an angle of repose of $\phi=45^{\circ}$. Rankine gives for "shingle on gravel " a maximum $\mu=1.11$, corresponding to an angle of repose $\phi=48^{\circ}$.

Static Friction for Pivots. - In all cases of the sliding of two surfaces, we denote the coefficient of static sliding friction by μ and take the value of μ as given by the Table page 192. We have then in all cases of sliding friction, for the friction when sliding is about to begin,

$$
F=\mu N=N \tan \phi
$$

where N is the total normal pressure and ϕ is the angle of repose, and μ is given by the Table page 192. The direction of the friction is always opposite to the direction of motion if motion were to take place.

The application to pivots is then simple.

1. Solid Flat Pivot.-Let $A C B$ be the base of a solid flat pivot and N the total normal pressure upon the base.

We have then for the static friction

$$
\begin{equation*}
F=\mu N, \tag{1}
\end{equation*}
$$

where μ is given by the Table page 192.
If we divide the base into a very large number of very small equal triangles such as $A C D$, the friction on each can be considered as the resultant of equal parallel forces distributed over the surface. The point of application for each triangle is
 then at the centre of mass for that triangle. The point of application of the entire friction is then at a distance $C s=\frac{2}{3} r$ from the centre. The moment of the entire friction with reference to the axis is then

$$
\begin{equation*}
M=\frac{2}{3} \mu N r . \tag{2}
\end{equation*}
$$

Since for any point s of the base there is a corresponding point s^{\prime} for which the friction is equal and opposite, the moment of the friction is the moment of a couple, and is therefore the same for every point in the plane of the base (page 72).
2. Hollow Flat Pivot.-If the rubbing surface is a flat ring
 $A D E B$, we have as before

$$
\begin{equation*}
F=\mu N, \tag{1}
\end{equation*}
$$

where N is the total normal pressure on the base and μ is the coefficient of static sliding friction as given by the Table page 192.

Let the outer radius be r_{1} and the inner radius r_{2}. Then any small portion of the base is a circular ring for which the length of chord and are $A D$ may
be taken equal. The centre of mass (page 25) for each small portion is then at a distance $C s$ from the axis given by

$$
C s=\frac{2}{3} \frac{r_{1}^{3}-r_{2}^{3}}{r_{1}^{2}-r_{2}^{2}}
$$

Hence the moment of the friction with reference to the axis is

$$
\begin{equation*}
M=\frac{2}{3} \mu N\left(\frac{r_{1}^{3}-r_{2}^{3}}{r_{1}^{2}-r_{2}^{2}}\right) \tag{2}
\end{equation*}
$$

Since for any point s there is a corresponding point s^{\prime} for which the friction is equal and opposite, the moment of the friction is the moment of a couple and is therefore the same for any point in the plane of the base (page 72).
3. Conical Pivot.-In the case of a conical pivot let R be the
 pressure along the axis and let the half angle of convergence $A D C$ be α.

If we divide the conical surface into a large number n of very small triangles with their vertices at the point D, each will sustain the vertical load $\frac{R}{n}$, and the normal pressure on each will be $\frac{R}{n \sin \alpha}$. If we denote the radius $C_{1} A_{1}=C_{1} B_{1}$ of the pivot at the point of entrance by r_{1}, the resultant normal pressure upon each small elementary triangle acts at a distance $\frac{2}{3} r_{1}$ from the axis.

We have then for the total friction

$$
\begin{equation*}
F=\mu \frac{R}{\sin \alpha}, \tag{1}
\end{equation*}
$$

where μ is the coefficient of static sliding friction as given by the Table page 192, and the moment of the friction with reference to the axis is

$$
M=\frac{2}{3} \mu \frac{R r_{1}}{\sin \alpha}
$$

or, since $\frac{r_{2}}{\sin \alpha}=$ the side $D A_{1}$ of the cone of contact $=a$, we have

$$
\begin{equation*}
M=\frac{2}{3} \mu R \alpha \tag{2}
\end{equation*}
$$

This is also the moment of a couple and hence the same for any point in the plane perpendicular to the axis at a distance above the point D equal to two thirds the height of the cone of contact.
4. Pivot a Truncated Cone.--Let R be the pressure along the axis and let the half angle of convergence $A D C$ be α.

Let R_{2} be the pressure sustained by the flat base and R_{1} the pressure sustained by the conical surf,ace.

Then

$$
R_{1}+R_{2}=R
$$

Also, if r_{1} is the radius $C_{1} A_{1}$ at the point of
 entrance and r_{2} the radius of the base,

$$
R_{2}: R:: \pi r_{2}^{2}: \pi r_{1}^{2}, \quad \text { or } \quad R_{2}=\frac{r_{2}^{2}}{r_{1}^{2}} R
$$

and hence

$$
R_{1}=R-R_{2}=\frac{r_{1}^{2}-r_{2}^{2}}{r_{1}^{2}} R
$$

We have then as in Case 1, page 193, for the flat pivot, the friction F_{2} on the base

$$
F_{2}=\mu R_{2}=\mu \frac{r_{2}{ }^{2}}{r_{2}^{2}} R
$$

and its moment about the axis

$$
M_{2}=\frac{2}{3} \mu \frac{r_{2}{ }^{3}}{r_{1}{ }^{2}} R .
$$

For the friction on the conical surface we have, as in Case 3, page 194, for the conical pivot

$$
F_{1}=\mu \frac{R_{1}}{\sin \alpha}=\mu \cdot \frac{r_{1}{ }^{2}-r_{2}{ }^{2}}{r_{1}{ }^{2}} \cdot \frac{R}{\sin \alpha},
$$

and for its lever-arm, as in Case 2, page 193, for hollow pivot,

$$
\frac{2}{3} \cdot \frac{r_{1}{ }^{3}-r_{2}{ }^{3}}{r_{1}{ }^{2}-r_{2}{ }^{2}}
$$

Its moment then about the axis is

$$
M_{1}=\frac{2}{3} \mu \cdot \frac{r_{1}{ }^{3}-r_{2}{ }^{3}}{r_{1}{ }^{2}} \cdot \frac{R}{\sin \alpha} .
$$

The total friction for the truncated pivot is then

$$
\begin{equation*}
F=F_{1}+F_{2}=\frac{\mu R}{r_{1}^{2}}\left(r_{2}^{2}+\frac{r_{1}^{2}-r_{2}^{2}}{\sin \alpha}\right), . \tag{1}
\end{equation*}
$$

and its total moment about the axis is

$$
\begin{equation*}
M=M_{1}+M_{2}=\frac{2}{3} \mu \frac{R}{r_{r^{2}}}\left(r_{r^{3}}{ }^{3}+\frac{r_{1}{ }^{3}-r_{2}{ }^{3}}{\sin \alpha}\right), \tag{2}
\end{equation*}
$$

where μ is the coefficient static sliding friction as given by the Table page 192.
[Pivot with Spherical End.]-Let R be the pressure along the axis, denote the radius $A O$ of the spherical surface by r, and the radius $A C$ by r_{1}, and let the angle $A O C$ be α.

Then the load per unit of area of horizontal projection is $\frac{R}{\pi r_{1}{ }^{2}}$. Take any element of the surface at α, dis$\operatorname{tant} a b=x$ from the axis, and let $O b=y$. The hori-
 zontal projection of this element is $2 \pi x d x$ and the load sustained by it is then $2 \pi x d x \times \frac{R}{\pi r_{1}{ }^{2}}=\frac{2 R x d x}{r_{1}{ }^{2}}$.

The cosine of the angle $a O b$ is $\cos a O b=\frac{y}{r}=\frac{\sqrt{r^{2}-x^{2}}}{r}$. The normal pressure on the element at a is then

$$
\frac{2 R x d x}{r_{1}{ }^{2}} \cdot \frac{r}{\sqrt{r^{2}-x^{2}}}
$$

and the static friction is

$$
\frac{2 \mu R r}{r_{1}{ }^{2}} \cdot \frac{x d x}{\sqrt{r^{2}-x^{2}}}
$$

Integrating between the limits of $x=0$ and $x=r_{1}$, we have for the total friction

$$
F=\frac{2 \mu R r}{r_{1}^{2}}\left(r-\sqrt{r^{2}-r_{1}^{2}}\right),
$$

or, since $\sqrt{r^{2}-r_{1}{ }^{2}}=r \cos \alpha$ and $r_{1}=r \sin \alpha$,

$$
F=\frac{2 \mu R}{\sin ^{2} \alpha}(1-\cos \alpha)=\frac{2 \mu R}{1+\cos \alpha}
$$

where μ is the coefficient of static sliding friction as given by the Table page 192.

For hemispherical end $\alpha=90^{\circ}$ and $F=2 \mu R$. For flat end $\alpha=0$ and $F^{\prime}=\mu R$.

The moment about the axis of the friction on an element is

$$
\frac{2 \mu R r}{r_{i}{ }^{2}} \cdot \frac{x^{2} d x}{\sqrt{r^{2}-x^{2}}}
$$

Integrating between the limits $x=0$ and $x=r_{1}$, we have for the total moment of the friction about the axis

$$
M=\frac{2 \mu R r}{r_{3}^{2}}\left[\frac{r^{2}}{2} \sin ^{-1} \frac{r_{1}}{r}-\frac{r_{1}}{2} \sqrt{r^{3}-r_{1}^{2}}\right]
$$

or, inserting the values of $\sqrt{r^{2}-r_{2}{ }^{2}}=r \cos \alpha$ and $r_{1}=r \sin \alpha$ and reducing,

$$
\begin{equation*}
M=\mu R r\left(\frac{a}{\sin ^{2} \alpha}-\cot \alpha\right) \tag{2}
\end{equation*}
$$

For hemispherical end $\alpha=\frac{\pi}{2}, \sin \alpha=1, \cot \alpha=0$, and this becomes $M=\frac{\mu \pi R r}{2}$.

Static Friction of Axles. - In all cases of the sliding of two surfaces, we denote the coefficient of static sliding friction by μ and take the value of μ as given by the Table page 192. We have then in all cases of sliding friction for the friction, when sliding is about to begin,

$$
F=\mu N=N \tan \phi
$$

where N is the total normal pressure and ϕ is the angle of repose, and μ is given by the Table page 192.

The direction of the friction is always opposite to the direction of motion if motion were about to take place.

The application to axles is then simple.

1. Axle in Partially Worn Bearing.-Let the bearing be partially
 worn, then the axle at the moment when sliding begins touches the bearing at a point A, and the resultant pressure R at this point makes the angle of repose ϕ with the normal. We have then for the normal pressure $N=R \cos \phi$, and for the friction

$$
\begin{equation*}
F=N \tan \phi=R \sin \phi \tag{1}
\end{equation*}
$$

where ϕ is the angle of repose as given by the Table
page 192.
Let r be the radius $A C$ of the axle. Then the moment of the friction with reference to the axis is

$$
\begin{equation*}
M=R r \sin \phi \tag{2}
\end{equation*}
$$

If the axle is well greased, the angle of repose ϕ is vers small and we may take $\mu=\tan \phi=\sin \phi$. In the practical case of a wellgreased axle, then, we have

$$
\boldsymbol{F}=\mu \boldsymbol{R}, \quad \boldsymbol{M}=\mu \boldsymbol{R} \mathbf{r}
$$

Where μ is given by the Table page 192.
If the wheel $A B$ revolver, as shown, about a fixed axle $A C$, the friction is the same as befone, but the lever-arm of the friction if not the radius of the axle, but the inner radius of the wheel.
2. Arle-Triangular Bearing.-If the bearing is triangular, the axle is supported at two points A and B. The resultant pressure \boldsymbol{R} can be resolved into two components \boldsymbol{R}_{1} and \boldsymbol{R}_{2}, and when stiding begins, each of these makes
 the angle of repase ϕ with the normals at A and B. The normal pressure at A is then $\boldsymbol{N}_{1}=\boldsymbol{R}_{1} \cos \phi_{\text {, and }}$ the friction at A is

$$
\boldsymbol{F}_{1}=\boldsymbol{N}_{1} \tan \phi=\boldsymbol{R}_{0} \sin \phi .
$$

The friction at B is in like manner $F_{z}=\boldsymbol{R}_{\mathrm{y}} \sin \phi$. The total friction is then

$$
\boldsymbol{F}=\left(\boldsymbol{R}_{1}+\boldsymbol{R}_{2}\right) \sin \phi_{0}
$$

Let the angle $A C B=2 \alpha$. Then the angle $A O R=\alpha-\phi$, and the angle $\boldsymbol{B O R}=a+\phi$.

We have then

$$
\boldsymbol{E}_{2}: \boldsymbol{R}:=\sin (\alpha+\phi): \sin 2 \alpha, \text { or } \boldsymbol{R}_{1}=\frac{\sin (\alpha+\phi)}{\sin 2 \alpha} \boldsymbol{R},
$$

and

$$
\boldsymbol{R}_{2}: \boldsymbol{R}:=\sin (\alpha-\phi): \sin 2 \alpha, \text { or } \boldsymbol{R}_{2}=\frac{\sin (\alpha-\phi)}{\sin 2 \alpha} \boldsymbol{R} \text {. }
$$

Hence the total friction is

$$
F=[\sin (\alpha+\phi)+\sin (\alpha-\phi)] \frac{\boldsymbol{R} \sin \phi}{\sin 2 \alpha} .
$$

But $\sin (\alpha+\phi)+\sin (\alpha-\phi)=2 \sin \alpha \cos \phi$, and $\sin 2 \alpha=2 \sin \cos a$ Hence we have

$$
\begin{equation*}
F^{\prime}=\frac{R \sin \phi \cos \phi}{\cos \alpha}=\frac{R \sin 2 \phi}{2006}, . \tag{1}
\end{equation*}
$$

mhere o is the angle of repose as giren by the Table page 192.
The moment of friction with nefenence to the axis, if r is the radias of the axle, is

$$
M=F r=\frac{R r \sin 2 \phi}{20 \cos \alpha}
$$

If the axle is well gneased. the angle of repane ϕ is rery small and we may take $\sin 2 \phi=2 \sin \phi$, almo $\mu=\tan \phi=\sin \phi$. In the practical case of a well-greaned axle, then, we have

$$
F^{\prime}=\mu \frac{\boldsymbol{R}}{\cos \alpha^{\prime}}, \quad M=\mu \frac{\boldsymbol{R} r}{\cos \alpha}
$$

where μ is giren by the Table page 102. If the angle α is small,
$\cos \alpha$ may be taken as unity, and F and M are then the same as in the preceding case,

$$
F=\mu R, \quad M=\mu R r
$$

[3. Axle-New Bearing.]-When the bearing is new and unworn, the axle touches it at all points.

Let R be the resultant rertical pressure acting at the centre O of the axle. Denote the radius $A O$ of the axle by r, the distance $A C$ by r_{1}, and let the angle $A O C$ be α.

Then the load per unit of horizontal projection is $\frac{R}{2 r_{1}}$. Take any element of the surface of the axle at a, distant $a b=x$ from R, and let $O b=y$. The horizontal projection of this element is $d x$, and the load sustained by it is $\frac{R d x}{2 r_{1}}$. At a^{\prime} we have a similar element.

The friction on these two elements is, from the preceding Article,

$$
\frac{\sin 2 \phi}{2 r_{1} \cos } \cdot \frac{R d x}{a O b} .
$$

But $\cos a O b=\frac{y}{r}=\frac{\sqrt{r^{2}-x^{2}}}{r}$, hence the friction for the two elements is

$$
\frac{R r \sin 2 \phi}{2 r_{1}} \cdot \frac{d x}{\sqrt{r^{2}-x^{2}}} .
$$

Integrating between the limits $x=r_{1}$ and $x=0$, we have for the entire friction

$$
F=\frac{R r \sin 2 \phi}{2 r_{1}} \sin ^{-1} \frac{r_{1}}{r}
$$

Inserting the value of $r_{1}=r \sin \alpha$,

$$
\begin{equation*}
F=\frac{R \sin 2 \phi}{2} \cdot \frac{\alpha}{\sin \alpha} \tag{1}
\end{equation*}
$$

where ϕ is the angle of repose as given by the Table page 192.
The moment of the friction with reference to the axis is then

$$
\begin{equation*}
M=\frac{R r \sin 2 \phi}{2} \cdot \frac{\alpha}{\sin \alpha} . \tag{2}
\end{equation*}
$$

If the axle is well greased, the angle of repose ϕ is very small, and we may take $\sin 2 \phi=2 \sin \phi$, also $\mu=\tan \phi=\sin \phi$.

In the practical case of a well-greased axle, then, we have

$$
F=\mu R \cdot \frac{\alpha}{\sin \alpha}, \quad M=\mu R r \frac{\alpha}{\sin \alpha}
$$

where μ is given by the Table page 192.
If the angle α is small, we may take $\alpha=\sin \alpha$, and then F and M are the same as in the two preceding cases,

$$
F=\mu R, \quad M=\mu R r
$$

4. Friction Wheels.-By the use of friction wheels instead of bearing blocks, the friction of an axle can be greatly diminished.

Thus let the axle $A C$ rest upon the circumferences of the friction wheels $A C_{1}$ and $B C_{2}$, touching them at the points A and B. The vertical pressure R on the axle C causes the pressures N_{1}, N_{2} at A and B.

Let the angle $A C B=\alpha$. Then

$$
N_{1}=N_{2}=\frac{R}{2 \cos \alpha}
$$

If the axles of the friction wheels are well greased, then, as we have seen, the least friction may be written

$$
F=\mu\left(N_{1}+N_{2}\right)=\frac{\mu R}{\cos \alpha}
$$

where μ is given by the Table page 192.
If the radius of the axles of the friction wheels is r, the moment of the friction is

$$
F r=\frac{\mu R r}{\cos \alpha}
$$

The moment of the friction at the points A and B must be the same. If we call this F_{1}, we have, if the radius of the friction wheels is a,

$$
F_{1} a=F r, \quad \text { or } \quad F_{1}=\frac{r}{a} F=\frac{r}{a} \cdot \frac{\mu R}{\cos \alpha}
$$

By making α small, we can take $\cos \alpha=1$, and have

$$
F_{1}=\frac{r}{a} \cdot \mu R
$$

By taking a large with respect to r, we may thus make the friction F_{1} very small. If the axle C rests on bearings, its least friction is μR, as we have seen.

If we have a single friction wheel $C_{1} A$, then $\alpha=0$ and we have accurately

$$
F_{1}=\frac{r}{a} \mu R
$$

Static Friction of Cords and Chains.-Let a perfectly flexible cord stretched by a weight Q be laid over the edge C of a rigid body $A B O$, Fig. 1.

Let the force at the other end of the cord be P, and the angle of deviation $D C P=$ $A O B=\alpha$.

Draw $C T$ making the angle $T C P=\frac{\alpha}{2}$, and $C N$ perpendicular to $C T$. Then when motion is about to begin, the resultant R of P and Q makes the angle of repose ϕ with $C N$.

If the weight Q is about to sink, the friction F acts op-
 posed to the motion, and we have

$$
P+F=Q
$$

We have then, from Fig. 2,

$$
F: 2 Q \sin \frac{\alpha}{2}:: \sin \phi: \sin \left[90-\left(\phi-\frac{\alpha}{2}\right)\right]
$$

or

$$
F=\frac{2 Q \sin \frac{\alpha}{2} \sin \phi}{\cos \left(\phi-\frac{\alpha}{2}\right)}=\frac{2 Q \sin \frac{\alpha}{2} \sin \phi}{\cos \phi \cos \frac{\alpha}{2}+\sin \phi \sin \frac{\alpha}{2}}
$$

Dividing numerator and denominator by $\cos \phi$, we have, since $\tan \phi=\mu=$ coefficient of static sliding friction, for the friction $\boldsymbol{F}_{\mathbf{1}}$ when the weight Q is about to sink,

$$
\begin{equation*}
F_{1}=\frac{2 \mu Q \sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}+\mu \sin \frac{\alpha}{2}}=\frac{2 \mu Q \tan \frac{\alpha}{2}}{1+\mu \tan \frac{\alpha}{2}} \tag{1}
\end{equation*}
$$

When the weight Q is just about to rise, we have

$$
P=Q+F, \quad \text { or } \quad Q=P-F,
$$

and hence

$$
\begin{equation*}
F=\frac{2 \mu Q \tan \frac{\alpha}{2}}{1-\mu \tan \frac{\alpha}{2}} \tag{2}
\end{equation*}
$$

In the first case, then, when the weight Q is about to sink,

$$
\begin{equation*}
P_{1}=Q-F_{1}=\frac{Q\left(1-\mu \tan \frac{\alpha}{2}\right)}{1+\mu \tan \frac{\alpha}{2}} \tag{3}
\end{equation*}
$$

and in the second case, when the weight Q is about to rise,

$$
\begin{equation*}
P=Q+F=\frac{Q\left(1+\mu \tan \frac{\alpha}{2}\right)}{1-\mu \tan \frac{\alpha}{2}} \tag{4}
\end{equation*}
$$

If the cord passes over several edges, the force P_{1} can be calculated by repeated application of these formulas.

Thus let the number of edges be n and the deviation at each edge be the same and equal to α. When the weight Q is just about to sink, the tension of the first portion of the cord is, from (3),

$$
P_{1}=\frac{Q\left(1-\mu \tan \frac{\alpha}{2}\right)}{1+\mu \tan \frac{\alpha}{2}}
$$

That of the second is

$$
P_{2}=\frac{P_{1}\left(1-\mu \tan \frac{\alpha}{2}\right)}{1+\mu \tan \frac{\alpha}{2}}=\frac{Q\left(1-\mu \tan \frac{\alpha}{2}\right)^{2}}{\left(1+\mu \tan \frac{\alpha}{2}\right)^{2}}
$$

That of the last is

$$
\begin{equation*}
P_{n}=\frac{Q\left(1-\mu \tan \frac{\alpha}{2}\right)^{n}}{\left(1+\mu \tan \frac{\alpha}{2}\right)^{n}} \tag{5}
\end{equation*}
$$

If the weight Q, is just about to rise, we have simply to interchange P and Q and we have

$$
\begin{equation*}
P_{n}=\frac{Q\left(1+\mu \tan \frac{\alpha}{2}\right)^{n}}{\left(1-\mu \cdot \tan \frac{\alpha}{2}\right)^{n}} \tag{6}
\end{equation*}
$$

In the first case, when the weight is about to sink, we have for the friction

$$
\begin{equation*}
F_{1}=Q-P_{n}=Q\left(1-\frac{\left(1-\mu \tan \frac{\alpha}{2}\right)^{n}}{\left(1+\mu \tan \frac{\alpha}{2}\right)^{n}}\right) \tag{7}
\end{equation*}
$$

If the weight is about to rise,

$$
\begin{equation*}
F=P_{n}-Q=Q\left(\frac{\left(1+\mu \tan \frac{\alpha}{2}\right)^{n}}{\left(1-\mu \tan \frac{\alpha}{2}\right)^{n}}-1\right) \tag{8}
\end{equation*}
$$

Formulas (5), (6), (7) and (8) are also applicable to the case of a chain composed of links which is passed round a cylindrical surface, where n is the number of links in contact. If the length of each link is $A B=l$, and the distance $C A$ of the axis A of a link from the centre C is r, we have for the angle of deviation $D B L=A C B=\alpha$,

$$
\sin \frac{\alpha}{2}=\frac{l}{2 r}, \quad \text { or } \quad \tan \frac{\alpha}{2}=\frac{l}{\sqrt{4 r^{2}-l^{2}}} .
$$

[If a flexible cord lies in contact with a rough surface, let $A C B=\alpha$ be the arc of contact.

If T is 'the tension at any point of contact D for the indefinitely small portion of the cord $D d$, the friction at this point is $d T$. Let the indefinitely small angle $D C d$ be $d \alpha$. Then, from equation (1), page 200 ,

$$
d T=\frac{2 \mu \mu^{\prime} \tan \frac{d \alpha}{2}}{1+\mu \tan \frac{\alpha}{2}}
$$

But since $d \alpha$ is indefinitely small, we may take the arc equal to the tangent and disregard $\mu \tan \frac{\alpha}{2}$ with reference to 1 . We have then

$$
\frac{d T}{T^{\prime}}=\mu d \alpha
$$

Integrating between the limits $\alpha=0$ and α, we have, since for $\alpha=0$, $T=Q$, and for $\alpha=\alpha, T=P$,

$$
\operatorname{logn} P=\mu \alpha+\log Q, \quad \text { or } \quad \operatorname{logn} \frac{P}{Q}=\mu \alpha
$$

We have then, when motion in the direction of P just begins,

$$
\begin{equation*}
P=Q \epsilon^{\mu a} \tag{9}
\end{equation*}
$$

where $\epsilon=2.3026=$ base of Naperian system of logarithms.
When motion in the direction of Q just begins, we have, by interchanging P and Q,

$$
\begin{equation*}
Q=P \epsilon^{-\mu a} \tag{10}
\end{equation*}
$$

Also, inversely,

$$
\begin{equation*}
\alpha=\frac{2.3026(\log P-\log Q)}{\mu} \tag{11}
\end{equation*}
$$

where common logarithms are taken.
If the arc α of the cord is given in degrees instead of radians, we must substitute $\alpha=\frac{\alpha^{\circ}}{180^{\circ}} \pi$. If the surface is cylindrical and the number of coils n of the rope is given, we have $\alpha=2 \pi n$.

We see from (9) and (10) that the friction of a cord, $F=P-Q$ or $F=Q-P$, upon a surface does not depend at all upon the radius of curvature, but only upon the arc of contact α, or upon the number of coils, $2 \pi n$, if the surface is cylindrical.

If we take $\mu=\frac{1}{3}$, we have for a cylindrical surface :

$$
\begin{array}{rl}
\text { for } \frac{1}{4} \text { coils, } P=1.69 Q \\
\text { " } \frac{1}{2} & \text { " } \\
\text { " } 1 & P=2.85 Q \\
\text { " } 2 & \text { " } \\
\text { " } 4 & P=65.12 Q \\
\text { " } & P=4348.56 Q
\end{array}
$$

The friction can thus be increased to any amount by increasing the number of coils.]

Rigidity of Ropes.-When a rope is perfectly flexible it offers no resistance to bending. When a rope is not perfectly flexible it offers a resistance by reason of its rigidity when wound on to a drum, pulley or axle, though none is offered when it is wound off. Thus let a rope whose tension is T be on the point of being wound on to a pulley.

Let $a=\overline{A C}=\overline{B C}$ be the radius of the pulley, and t the thickness of the rope. Then the leverarm of the axis of the rope on the off side is $\overline{C b}=a+\frac{t}{2}$.

The distance $\overline{A c}$ from the pulley to the rope
on the on side will depend on the kind of rope and will be less as is greater. Thus for hemp ropes we can put

$$
\overline{A c}=\frac{c_{1}}{T},
$$

where c_{1} is a constant to be determined by experiment for the kind of rope; and for wire ropes

$$
\overline{A c}=\frac{c_{1}\left(a+\frac{t}{2}\right)}{T} ;
$$

that is, $\overline{A c}$ increases with the lever-arm $a+\frac{t}{2}$ and decreases as T increases.

It is also evident that those fibres farthest out on the on side are stretched more than those nearer the pulley. The resultant tension T will therefore act further from the pulley than the central axis of the rope. We denote the distance of T from the central axis by c_{2}.

Let the tension along the central axis on the off side be $T+T^{\prime}$. Then we have for equilibrium, for hemp ropes,

$$
\begin{gather*}
T\left(a+\frac{t}{2}+\frac{c_{1}}{T}+c_{2}\right)=\left(T+T^{\prime}\right)\left(a+\frac{t}{2}\right) \\
\text { or } \quad T^{\prime}=\frac{c_{1}+c_{2} T}{a+\frac{t}{2}} ; \cdots
\end{gather*}
$$

and for wire ropes,

$$
\begin{gather*}
T\left(a+\frac{t}{2}+\frac{c_{2}\left(r+\frac{t}{2}\right)}{T}+c_{2}\right)=\left(T+T^{\prime}\right)\left(a+\frac{t}{2}\right) \\
\text { or } \quad T^{\prime}=c_{1}+\frac{c_{2} T}{a+\frac{t}{2}} . \cdots \cdots \tag{2}
\end{gather*}
$$

We have then

$$
\begin{equation*}
T \times \overline{C c}=\left(T+T^{\prime}\right) \overline{C b}, \quad \text { or } \quad \overline{C c}=\left(1+\frac{T^{\prime}}{T}\right) \overline{C b} . \tag{3}
\end{equation*}
$$

The rope can be considered, then, as without rigidity if we increase the lever-arm of the tension on the on-side by the amount T^{\prime} \bar{T}.

Hemp Ropes.-For tarred hemp ropes experiment gives

$$
T^{\prime}=\frac{100+0.222 T}{a+\frac{t}{2}} \text { pounds, }
$$

where T is to be taken in pounds and a and t in inches.
For new hemp ropes, untarred,

$$
T^{\prime}=\frac{4+0.06457 T}{a+\frac{t}{2}} \text { pounds }
$$

where T is to be taken in pounds and a and t in inches.

Wire Ropes.-For wire ropes we have

$$
T^{\prime}=1.08+\frac{0.0937 T}{a+\frac{t}{2}} \text { pounds, }
$$

where T is to be taken in pounds and a and t in inches.
Static Rolling Friction.-Let $A C B$ be a roller resting on a plane surface. By reason of the pressure N of the roller on the plane,
 the roller is compressed, Let a force F be applied at the centre C parallel to the plane. When the resultant R of F : and N just passes through the edge D of the base, rolling begins and the force F is equal and opposite to the friction.

Let the distance $A D=d$. Then, when rolling is about to begin, the angle $A C D$ is the angle of repose ϕ. Let r be the radius. Since the compression is small compared to the radius, we have $\tan \phi=\frac{d}{r}=\mu=$ coefficient of static rolling friction. Hence for equilibrium $F r=N d$, or

$$
F=\mu N=\frac{d}{r} N .
$$

The distance d depends on the materials in contact.
The theory of rolling friction is not yet well established and but few experiments upon it have been made.

In all practical cases of rolling, we usually have to do with axle friction. which has already been discussed (page 196).
[Equilibrium of a Body at Any Point of a Rough Curve or Sur-face-General Equations.]-If a body acted upon by any number of forces F_{1}, F_{2}, etc., applied at different points, is at rest at any point of a rough curve or surface, we may treat it as a particle placed at that point (page 188).

The reaction R at that point must be equal and opposite to the resultant of all the other forces acting upon the body.

The curve or surface can then be replaced by its reaction R at the point P. For limiting equilibrinm the reaction R must make an angle with the normal to the curre or surface at the point P equal to the angle of repose ϕ, given by

$$
\begin{equation*}
\tan \phi=\mu \tag{1}
\end{equation*}
$$

where μ is the cocfficient of static sliding friction.
If R makes an angle with the normal less than ϕ, we have non-limiting equilibrium (page 189). If equal to ϕ, we have limiting equilibrium, and sliding is about to begin.

Let the algebraic sum of the components along the co-ordinate axes of all the forces F_{1}, F_{2}, etc., not including the friction and the reaction R at the point P, be F_{x}, F_{y}, F_{z}. Then if the direction-angles are $\left(\alpha_{1}, \beta_{1}\right.$, $\left.\boldsymbol{\gamma}_{1}\right),\left(\alpha_{2}, \beta_{2}, \boldsymbol{\gamma}_{2}\right)$, etc., we have

$$
\begin{aligned}
& F_{x}=F_{1} \cos \alpha_{1}+F_{2} \cos \alpha_{2}+\ldots=\Sigma F \cos \alpha \\
& F_{y}=F_{1} \cos \beta_{1}+F_{2} \cos \beta_{2}+\ldots=\Sigma F \cos \beta \\
& F_{z}=F_{1} \cos \gamma_{1}+F_{2} \cos \gamma_{2}+\ldots=\Sigma F \cos \gamma
\end{aligned}
$$

1. Equilibrium of a Body at Any Point of a Rough Curve.-Let the co-ordinates of the point P be x, y, z, and $d s$ be an element of the curve.

Then the direction-cosines of the tangent to the curve at the point P are $\frac{d x}{d s}, \frac{d y}{d s}, \frac{d z}{d s}$, and we have for the force T tangential to the curve

$$
T=F_{x} \frac{d x}{d s}+F_{y} \frac{d y}{d s}+F_{z} \frac{d z}{d s}
$$

The reaction R makes with the normal an angle whose sine is $\frac{T}{R}$. For equilibrium this angle must be less than the angle of repose ϕ, or $\frac{T}{R}$ is less than $\sin \phi$. Hence the condition for non-limiting equilibrium is

$$
\begin{equation*}
\frac{F_{x} d x+F_{y} d y+F_{z} d z}{R d s}<\sin \phi \tag{2}
\end{equation*}
$$

or, since $\sin ^{2} \phi=\frac{\mu^{2}}{1+\mu^{2}}$,

$$
\begin{equation*}
\left(\frac{F_{x} d x+F_{y} d y+F_{z} d z}{R d s}\right)^{2}<\frac{\mu^{2}}{1+\mu^{2}} . \tag{3}
\end{equation*}
$$

If then

$$
\begin{equation*}
\frac{F_{x} d x+F_{y} d y+F_{z} d z}{R} d s \quad \pm \sin \phi= \pm \sqrt{\frac{\mu^{2}}{1+\mu^{2}}}, \cdots \tag{4}
\end{equation*}
$$

we have limiting equilibrium, and the body is upon the point of sliding.
The force T for equilibrium is always equal and opposite to the friction F, or $T+F=0$. Hence

$$
F_{x} \frac{d x}{d s}+F_{y} \frac{d y}{d s}+F_{z} \frac{d z}{d s}+F=0
$$

If we multiply by $d s$, we have

$$
F_{x} d x+F_{y} d y+F_{z} d z+F d s=0
$$

which is the principle of virtual work (page 159).
2. Equilibrium of a Body at Any Point of a Rongh Surface.-Let the equation of the surface be $u=0$, where u is a function of x, y, z.

For convenience of notation let

$$
\frac{d u}{d x}=U, \quad \frac{d u}{d y}=V, \quad \frac{d u}{d z}=W, \quad \text { and } \quad U^{2}+V^{2}+W^{2}=Q^{2}
$$

Then the direction-cosines of the normal to the surface at the point (x, y, z) are

$$
\frac{\sigma}{Q}, \quad \frac{V}{Q}, \quad \frac{W}{Q}
$$

The resolved part of R along the normal is then

$$
N=F_{x} \frac{U}{Q}+F_{y} \frac{V}{Q}+F_{z} \frac{W}{Q}
$$

The reaction R makes with the normal an angle whose cosine is $\frac{N}{R}$. For equilibrium this angle must be less than the angle of repose ϕ, or $\frac{N}{R}$
is greater than $\cos \phi$. Hence the condition for non-limiting equilibrium is

$$
\begin{equation*}
\frac{F_{x} \frac{d u}{d x}+F_{y} \frac{d u}{d y}+F_{z} \frac{d u}{d z}}{R \sqrt{\left(\frac{d u}{d x}\right)^{2}+\left(\frac{d u}{d y}\right)^{2}+\left(\frac{d u}{d z}\right)^{2}}}>\cos \phi, . \tag{5}
\end{equation*}
$$

or, since $\cos ^{2} \phi=\frac{1}{1+\mu^{2}}$,

$$
\begin{equation*}
\frac{\left(F_{x} \frac{d u}{d x}+F_{y} \frac{d u}{d y}+F_{z} \frac{d u}{d z}\right)^{2}}{R^{2}\left[\left(\frac{d u}{d x}\right)^{2}+\left(\frac{d u}{d y}\right)^{2}+\left(\frac{d u}{d z}\right)^{2}\right]}>\frac{1}{1+\mu^{2}} \tag{6}
\end{equation*}
$$

If then

$$
\begin{equation*}
\frac{F_{x}^{\prime} \frac{d u}{d x}+F_{y} \frac{d u}{d y}+F_{z} \frac{d u}{d z}}{R \sqrt{\left(\frac{d u}{d x}\right)^{2}+\left(\frac{d u}{d y}\right)^{2}+\left(\frac{d}{d} \frac{u}{z}\right)^{2}}}= \pm \cos \phi= \pm \sqrt{\frac{1}{1+\mu^{2}}}, \tag{7}
\end{equation*}
$$

we have limiting equilibrium, and the body is upon the point of sliding.
Let the point P be moved in any direction along the surface through the indefinitely small distance $d s$, and $d x . d y, d z$ be the projections of this distance on the axes. Then the direction-cosines of the tangent at the point P are $\frac{d x}{d s}, \frac{d y}{d s}, \frac{d z}{d s}$. The tangential force T is equal and opposite to the friction F, or $T=-F$. We have then

$$
F_{x}=N \frac{\frac{d u}{d x}}{Q}-F \frac{d x}{d s}, \quad F_{y}=N \frac{\frac{d u}{d y}}{Q}-F \frac{d y}{d s}, \quad F_{z}=N \frac{\frac{d u}{d z}}{Q}-F \frac{d z}{d s} .
$$

If we multiply the first of these by $d x$, the second by $d y$, the third by $d z$, add the results and reduce by the equations $d x^{2}+d y^{2}+d z^{2}=d s^{2}$ and

$$
\left(\frac{d u}{d x}\right) d x+\left(\frac{d u}{d} \frac{u}{y}\right) d y+\left(\frac{d u}{d z}\right) d z=0
$$

which is the total differential of the equation $u=0$ of the surface, we obtain

$$
F_{x} d x+F_{y} d y+F_{z} d z+F d s=0
$$

which is the principle of virtual work (page 159).
Stable, Unstable, Neutral and Indifferent Equilibrium.-A body in equilibrium is said to be in stable equilibrium when for every possible indefinitely small displacement which it can receive it tends to return to its original position.

When for any one possible indefinitely small displacement it tends to move still farther away from its original position of equilibrium, it is in unstable equilibrium.

Cases occur in which the equilibrium of a body is stable for some displacements and unstable for others. It is then, by definition, in unstable equilibrium.

If the body remains in equilibrium for all possible indefinitely small displacements, it is in neutral equilibrium. Neutral equilibrium may be stable or unstable.

If the body remains in equilibrium for all possible displacements, large or small, it is in indifferent equilibrium.

Thus let a heavy body be supported at a fixed point P, so that it can only rotate about P. Let the reaction at P be R, and let the weight W act at the centre of mass C. Then for equilibrium, if R and W are the only forces acting upon the body, the reaction R must be equal and opposite to W and act in the same line.

We have then two possible positions of equilibrium: one when C is below P, and one when C is above P.

Now for every possible indefin-
 itely small displacement of rotation about P, the point C moves in the surface of a sphere $C^{\prime} C C^{\prime}$ of radius $P C$, and W remains unchanged in magnitude and direction.

Therefore in the first case, when C is below P, we have for every possible displacement a couple R and W which always tends to make the body return to its original position of equilibrium, and the body is in stable equilibrium.

In the second case, when C is above P, we have for every possible displacement a couple R and W which always tends to make the body move still farther from its original position of equilibrium, and the body is in unstable equilibrium.

If the points P and C coincide, then for every possible displacement, large or small, the body remains in equilibrium, and the body is therefore in indifferent equilibrium.

Again, let a heavy body bounded by a convex surface rest in equilibrium on a plane surface, and let the centre of mass C coincide
 with the centre of curvature. Then the reaction R acts at the point of contact P, is equal and opposite to the weight W and acts in the same straight line.

If the body can have rolling motion only, any indefinitely small arc $P P^{\prime}$ is circular. Hence for any possible indefinitely small displacement produced by rolling, the body remains still in equilibrium. Its original position is therefore one of neutral equilibrium.

If now the body be rolled still farther through an indefinitely small arc, so that $P^{\prime \prime}$ comes in contact with the plane, then, if the radius of curvature $C P^{\prime}$ is less than $C^{\prime \prime} P^{\prime \prime}$, the equilibrium is evidently stable; if greater, unstable. The original position of neutral equilibrium is therefore stable neutral when the radius of curvature $C P$ is a minimum, and unstable neutral when it is a maximum. When it is not a minimum or maximum, the neutral equilibrium is stable for displacement in one direction and unstable for displacement in the other direction-that is, unstable neutral, according to definition (page 206).

Criterion for Stable, Unstable, Neutral and Indifferent Equilibrium. - Every displacement of a body consists in general of two displacements, one of translation and one of rotation. Now for an indefinitely small displacement of translation, a body which under the action of certain forces is in equilibrium before the displacement is also in equilibrium after, if the forces act at the same points, because their magnitudes and directions are unchanged by the displacement.

Thus if a body can only slide on a plane surface and touches it in more than two points not in a straight line, it can only receive motion of translation and its equilibriumi is indifferent.

We have then only to determine the conditions for stable, unstable, neutral and indifferent equilibrium in the case of rotation.

Let P be the point about which the body can rotate, and R the reaction at that point. Let the weight W act at the centre of mass C, and let the resultant of all the other forces acting upon the body

be F. Then for equilibrium the lines of direction of W, F and R must intersect in a point A which lies in the vertical through the centre of mass C, and the resultant R^{\prime} of W and F must be equal and opposite to R and act in the same straight line.

For every possible indefinitely small displacement of rotation about P the point A moves in the surface of a sphere $A^{\prime} A A^{\prime}$ of radius $P A$, and R^{\prime} remains unchanged in magnitude and direction. If the body has a displacement of translation as well as of rotation about P, the locus $A^{\prime} A A^{\prime}$ of the point A is no longer a spherical, but is still a curved surface.

We see at once from the figures that for any displacement for which the projection of $A A^{\prime}$ along R^{\prime} is opposite in direction to R^{\prime}, or for which the work of R^{\prime} is negative (page 158), the body tends to return to its original position of equilibrium. For any displacement for which the work of R^{\prime} is positive, the body tends to move away from its original position of equilibrium.

Let us take the axis of Y parallel to R^{\prime}, and the direction of R^{\prime} as downwards.

Then if we draw a line $O X$ at right angles to R^{\prime} at any distance $A O=y$ below A, we see from the figures that when $A O=y$ is a minimum, the equilibrium is stable. When $A O=y$ is a maximum, the equilibrium is unstable for all possible displacements. When $A O=y$ is neither a maximum nor a minimum, the equilibrium is stable for some displacemements and unstable for others; that is, unstable according to definition (page 206).

In general, then:
A body is in stable equilibrium when for all possible indefinitely small displacements the work of the resultant of all the forces except the reaction is negative. If for any or all possible indefinitely small displacements this work is positive, the equilibrium is unstable. If it is zero for all possible indefinitely small displacements, the equilibrium is neutral. If it is zero for all possible displacements, large or small, the equilibrium is indifferent.

Or if we take the axis of Y parallel to R^{\prime} and the direction of R^{\prime} as downwards, and draw $O X$ at right angles to R^{\prime} at any distance $A O=y$ below A, we have the criterion:

A body is in stable equilibrium when for all possible indefinitely small displacements $A O=y$ is a minimum. If $A O=y$ is a maxi-
mum, the equilibrium is unstable for all possible indefinitely small displacements. If $A O=y$ is neither a maximum nor a minimum, the equilibrium is stable for some displacements and unstable for others, that is, unstable. If for all possible indefinitely small displacements $A O=y$ remains constant, the equilibrium is neutral. If for all possible displacements, large or small, $A O=y$ remains constant, the equilibrium is indifferent.

Stability in Rolling Contact.-As an application of the preceding, let us investigate the equilibrium of a heavy body $a P a$ bounded by a convex surface resting upon a rough body $\alpha^{\prime \prime} P^{\prime} \alpha^{\prime}$ also with a convex surface, and subject to displacement due to rolling only.

Let O be the centre of curvature of the fixed body, and o the centre of curvature of the rolling body, so that the radius of curvature of the fixed body at the point of contact P is $O P=\rho$, and the radius of curvature of the rolling body at the point of contact P is $o P=\rho_{1}$.

Through O draw a plane $O X$ at right angles to $O P$.
Let the reaction at P be R, the weight at the rolling body be W acting at its centre of mass C, and the resultant of all other forces acting upon the rolling body be F.

Then for equilibrium the lines of direction of W, F and R must intersect in a point A, which lies in a vertical through the centre of mass C, and the resultant R^{\prime} of W and F^{\prime} must be equal and opposite to the reaction R at the point of contact P and act in the same straight line.
'The point A may or may not be in the radius $o P$. If it is not in the radius $o P$, then, provided R^{\prime} passes through P and makes an angle with $o P$ less than the angle of repose, there will be equilibrium (page 188). But in such case it is evident that if for rolling in one direction in the plane of R^{\prime} and oP the distance $A O$ of A from $O X$ increases, for rolling in the opposite direction this distance will decrease. The rolling body is then, according to definition (page 206), always in unstable equilibrium if A is not in the radius $o P$, and there is no need of discussion.

If, however, A is in the radius $o P$, the equilibrium will be stable, unstable or neutral, according as the distance $A O$ of A from
$O X$ increases for all possible indefinitely small displacements, decreases for any or all possible indefinitely small displacements, or remains constant for all possible indefinitely small displacements (page 208).

Let the points a, P, a of the rolling body be consecutive. Then the $\operatorname{arc} \alpha P a$ is circular, its radius is ρ_{1}, the $\operatorname{arcs} \alpha P=a P$, and the angles $\alpha o P=\beta$ are indefinitely small.

Let the body roll in either direction, so that the points α, a become points of contact at a^{\prime} and $a^{\prime \prime}$. Then the arc $a^{\prime \prime} P a^{\prime}$ is circular, its radius is ρ, the arcs $\alpha^{\prime \prime} P=\alpha^{\prime} P$, and the angles $\alpha^{\prime \prime} O P=\alpha^{\prime} O P=0$ are indefinitely small.

Let the distance $A o=c$. Then $P A=\rho_{1}-c$. When the body rolls into its new position, the point A passes to A^{\prime} or $A^{\prime \prime}$, and we have $A^{\prime} o^{\prime}=A^{\prime \prime} o^{\prime \prime}=A o=c$, or $P A^{\prime}=P A^{\prime \prime}=P A=\rho_{1}-c$. Also, since the $\operatorname{arcs} P a$ and $P a^{\prime}$ or $P a^{\prime \prime}$ are equal,

$$
\begin{equation*}
\rho^{\theta}=\rho_{1} \beta, \quad \text { or } \quad \beta=\frac{\rho}{\rho_{1}} \theta, \quad \text { or } \quad \theta+\beta=\left(1+\frac{\rho}{\rho_{1}}\right) \theta . \tag{1}
\end{equation*}
$$

Now the distance $A O$ of A from $O X$ is $\rho+\rho_{1}-c$. The distance of A^{\prime} or $A^{\prime \prime}$, or the distance of A after indefinitely small displacement, from $O X$, is $\left(\rho+\rho_{1}\right) \cos \theta-c \cos (\theta+\beta)$, or, inserting the value of $(9+\beta)$ from (1),

$$
\begin{equation*}
\left(\rho+\rho_{1}\right) \cos \theta-c \cos \left(1+\frac{\rho}{\rho_{1}}\right) \theta \tag{2}
\end{equation*}
$$

If we replace the cosines in (2) by the first two terms of their equivalent series, (2) becomes

$$
\begin{equation*}
\rho+\rho_{1}-c-\left(\rho+\rho_{1}\right)\left[1-c \frac{\rho+\rho_{1}}{\rho_{1}^{2}}\right] \frac{\theta^{2}}{2} . \tag{3}
\end{equation*}
$$

Hence the equilibrium is stable, unstable or neutral according as (3) is greater, less or equal to $\rho+\rho_{1}-c$.

When (3) is greater than $\rho+\rho_{1}-c$, the coefficient of σ^{2} must be positive, or

$$
c \frac{\rho+\rho_{1}}{\rho_{1}^{2}}>1
$$

The condition for stable equilibrium is then, since $P A=\rho_{1}-c$,

$$
\begin{equation*}
c>\frac{\rho_{1}^{2}}{\rho+\rho_{1}}, \quad \text { or } \quad \frac{1}{P A}>\frac{1}{\rho}+\frac{1}{\rho_{1}} \tag{4}
\end{equation*}
$$

The condition for unstable equilibrium is

$$
\begin{equation*}
c<\frac{\rho_{1}{ }^{2}}{\rho+\rho_{1}}, \quad \text { or } \quad \frac{1}{P A}<\frac{1}{\rho}+\frac{1}{\rho_{1}} . \tag{5}
\end{equation*}
$$

The condition for neutral equilibrium is

$$
\begin{equation*}
c=\frac{\rho_{1}{ }^{2}}{\rho+\rho_{1}}, \quad \text { or } \quad \frac{1}{P A}=\frac{1}{\rho}+\frac{1}{\rho_{1}} . \tag{6}
\end{equation*}
$$

In order to find whether the neutral equilibrium is stable or unstable, let $O^{\prime \prime}$ and $o^{\prime \prime}$ be the centres of curvature for the indefinitely small ares $a^{\prime} b$ or $a^{\prime \prime} b^{\prime \prime}$ and $a^{\prime} b$ or $a^{\prime \prime} b$, and let the radii of curvature be ρ^{\prime} or $\rho^{\prime \prime}$ and ρ_{1}^{\prime} or $\rho_{1}{ }^{\prime \prime}$.

Then, proceeding just as before, we find for the conditions of stable neutral equilibrium

$$
\begin{equation*}
\frac{1}{\rho}+\frac{1}{\rho_{1}}>\frac{1}{\rho^{\prime}}+\frac{1}{\rho_{1}^{\prime}} \quad \text { and also }>\frac{1}{\rho^{\prime \prime}}+\frac{1}{\rho_{1}^{\prime \prime}} \tag{7}
\end{equation*}
$$

For unstable neutral equilibrium we have

$$
\begin{equation*}
\frac{1}{\rho}+\frac{1}{\rho_{1}}<\frac{1}{\rho^{\prime}}+\frac{1}{\rho_{1}^{\prime}} \quad \text { or } \quad<\frac{1}{\rho^{\prime \prime}}+\frac{1}{\rho_{1}^{\prime \prime}} . \tag{8}
\end{equation*}
$$

If the first of (7) and second of (8) are fulfilled, we have stable neutral equilibrium for displacement towards the right in the figure, and unstable neutral equilibrium for displacement towards the left, and vice versa if the second of (7) and first of (8) are fulfilled. In either case the neutral equilibrium is unstable according to definition (page 206).

We can also find conditions (4), (5) and (6) as follows :
The line of direction of R^{\prime} after displacement must fall between P and a^{\prime} or P and $a^{\prime \prime}$ for stable equilibrium, outside of $P a$ or $P a^{\prime \prime}$ for unstable, and pass through α^{\prime} or $\alpha^{\prime \prime}$ for neutral equilibrium.

Hence we have for stable equilibrium

$$
\rho \sin \theta>\left(\rho+\rho_{1}\right) \sin \theta-c \sin (\theta+\beta) .
$$

Since 0 and β are indefinitely small, we can put the arcs in place of their sines. Putting then $\theta+\beta=\left(1+\frac{\rho}{\rho_{1}}\right) 0$, as given by (1), we have

$$
\rho \theta>\left(\rho+\rho_{1}\right) \theta-c\left(1+\frac{\rho}{\rho_{1}}\right) 0, \quad \text { or } \quad c>\frac{\rho_{1}{ }^{2}}{\rho+\rho_{1}} .
$$

Hence we obtain, as before, conditions (4), (5) and (6).
Special Cases.-Conditions (4), (5), (6), (7) and (8) are general. Thus if the concavity of either surface be turned the other way, we shall obtain the same results, except that the sign of the corresponding radius of curvature will be changed.

Surfaces Spherical.-If one of the surfaces is spherical, we have $\rho=\rho^{\prime}=\rho^{\prime \prime}$, or $\rho_{1}=, \rho_{1}{ }^{\prime}=\rho_{1}{ }^{\prime \prime}$. If both surfaces are spherical, we have $\rho=\rho^{\prime}=\rho^{\prime \prime}$ and $\rho_{1}=\rho_{1}^{\prime}=\rho_{1}^{\prime \prime}$. If in the latter case the equilibrium is neutral, we have from (7)

$$
\frac{1}{\rho}+\frac{1}{\rho_{1}}=\frac{1}{\rho^{\prime}}+\frac{1}{\rho_{2}^{\prime}}=\frac{1}{\rho^{\prime \prime}}+\frac{1}{\rho_{1}^{\prime \prime}}
$$

that is, the neutral equilibrium is indifferent as long as R^{\prime} does not change in direction and the angle θ is less than the angle of repose ϕ, or β is less than ${ }^{\rho}-\phi$. For $0>\phi$ or $\beta>\frac{\rho}{\rho_{1}} \phi$ there is sliding.

Either Surface Plane.-If either surface is plane, its radius of curvature becomes indefinitely great and the corresponding $\frac{1}{\rho}$ or $\frac{1}{\rho_{1}}$ is zero.

Weight Only Considered.-If the only forces acting upon the rolling body are its weight W and the reaction R, we have $F=0$,
$R^{\prime}=W$ acting vertically. The centre of mass C then coincides with A, and we have $P C$ in place of $P A$ in (4), (5) and (6).

Heavy Body on Plane Surface.-In this case
 we have $\frac{1}{\rho}=0$, and $P C<\rho_{1}$ for stable, $P C>\rho_{1}$ for unstable, equilibrium.

If $P C=\rho_{1}$, or the centre of mass coincides with the centre of curvature, the equilibrium is neutral. In such case we have, from (7), stable equilibrium when ρ_{1} is less than ρ_{1}^{\prime} and $\rho_{1}^{\prime \prime}$, that is, when ρ_{1} or the radius of curvature is a minimum. When ρ_{1} is not a minimum nor a maximum, the neutral equilibrium is stable for some displacements and unstable for others, or unstable according to definition (page 206). If ρ_{1} is a maximum, the neutral equilibrium is unstable for all possible indefinitely small displacements. If the radius of curvature is constant, the neutral equilibrium holds for all possible displacements large or small, we have a homogeneous sphere rolling on a plane, and the equilibrium is indifferent.

EXAMPLES.

(1) A body made up of a cone and a hemisphere having a common base rests with the axis vertical on a rough horizontal plane. Find the greatest height of the cone for stable equilibrium.

Ans. Let h be the height of the cone, r the radius of the hemisphere, and C the centre of mass. The height required is that height for which $P C=r$.

The volume of the hemisphere is $\frac{2}{3} \pi r^{3}$. The volume of the cone is $\frac{1}{3} \pi r^{2} \pi$. The centre of mass of the hemisphere is
 at a distance above P equal to $\frac{5}{8} r$ (page 422). The centre of mass of the cone is at a distance above P equal to $r+\frac{\hbar}{4}$ (page 420). We have then

$$
P C=\frac{\frac{2}{3} \pi r^{3} \times \frac{5}{8} r+\frac{\pi r^{2} h}{3} \times\left(r+\frac{h}{4}\right)}{\frac{2}{3} \pi r^{3}+\frac{\pi r^{2} h}{3}}=r, \quad \text { or } \quad h=r \sqrt{3} .
$$

(2) A prolate spheroid rests with its axis horizontal on a rough horizontal plane. Show that for a rolling displacements in its equatorial plane the equilibrium is indifferent, and for rolling displacements in the vertical plane through the axis it is stable.
(3) A right circular cylinder of radius r rests with its axis horizontal on a fixed rough sphere of radius R greater than r. Show that for rolling displacements the equilibrium is stable or unstable, according as the plane of displacement makes an angle with the vertical plane through the axis of the cylinder whose sine is less or greater than $\sqrt{1-\frac{r}{R}}$.

Ans. Let ρ be the radius of curvature of the rolling curve at the point of contact. Then the condition for stable equilibrium is

$$
\frac{1}{r}>\frac{1}{R}+\frac{1}{\rho} .
$$

Let the plane of displacement make the angle θ with the vertical plane through the axis of the cylinder The rolling curve is then an ellipse whose semi-minor axis is r and whose semi-major axis is $\frac{r}{\sin \theta}$. The radius of curvature at the point of contact, that is, at the vertex of the minor axis, is

$$
\rho=\frac{\left(\frac{r}{\sin \theta}\right)}{r}=\frac{r}{\sin ^{2} \theta .}
$$

Hence for stable equilibrium

$$
\frac{1}{r}>\frac{1}{R}+\frac{\sin ^{2} \theta}{r}, \text { or } \sin \theta<\sqrt{1-\frac{r}{R}}
$$

(4) A prolate hemispheroid rests with its vertex on a rough horizontal plane. Show that for rolling displacement the equilibrium is stable or unstable according as the eccentricity of the generating ellipse is less or greater than $\sqrt{\frac{\overline{3}}{8}}$.

Ans. Let a be the semi-major and b the semi-minor axis. Then the distance $O C$ to the centre of mass (page 41) is

$$
O C=\frac{3}{4} \frac{(2 a-a)^{2}}{3 a-a}=\frac{3}{8} a .
$$

The distance $P C$ then is $\frac{5}{8} a$. The radius of curvature
 at P is $\rho=\frac{b^{2}}{a}$. We have then for stable equilibrium

$$
\frac{1}{P C}>\frac{1}{\rho}, \quad \text { or } \quad \frac{8}{5 a}>\frac{a}{b^{2}}, \quad \text { or } \quad \frac{b^{2}}{a^{2}}>\frac{5}{8} .
$$

But the eccentricity of the generating ellipse is

$$
e=\sqrt{1-\frac{b^{2}}{a^{2}}} .
$$

Hence for stable equilibrium $e<\sqrt{\frac{\overline{3}}{8}}$.
(5) A solid homogeneous hemisphere of radius r and weight W rests in neutral equilibrium on the top of a fixed sphere of radius R. Show that $R=\frac{5}{3} r$. If now a weight F is fastened to any point in the rim of the hemisphere, show that if $F=\frac{18}{55} W$, the hemisphere can still rest in neutral equilibrium at the highest point of the sphere, and that the neutral equilibrium is indifferent for all angular displacements of the hemisphere less than $\frac{5}{3} \phi$, where ϕ is the angle of repose. Also that the radius through the point of contact in the second case makes an angle with the radius in the first case whose tangent is $\frac{48}{\mathbf{5 5}}$.

Ans. In the first case we have $P C=\frac{5}{8} r$, and the radius of curvature is r,
 and $P C$ lies in the axis of symmetry. We have then for neutral equilibrium

$$
\frac{1}{P C}=\frac{1}{R}+\frac{1}{r}, \quad \text { or } \quad \frac{8}{5 r}=\frac{1}{R}+\frac{1}{r}
$$

hence $R=\frac{5}{3} r$. If now we attach the weight F to the rim,
the new centre of mass, C^{\prime}, will be at a horizontal distance x from o given by

$$
x=\frac{F r}{W+F^{2}}
$$

and at a vertical distance y below o given by

$$
y=\frac{\frac{3}{8} W r}{W+F^{\prime}}
$$

The distance $P^{\prime} C^{\prime}$ is then given by $P^{\prime} C^{\prime}=r-\sqrt{x^{2}+y^{2}}$, or

$$
P^{\prime} C^{\prime}=r-\sqrt{\frac{F^{2} r^{2}+\frac{9}{64} W^{2} r^{2}}{(W+F)^{2}}}
$$

If then we place the hemisphere so that P^{\prime} is in contact at P, there will be neutral equilibrium when

$$
\frac{1}{P^{\prime} C^{\prime}}=\frac{1}{R}+\frac{1}{r}=\frac{8}{5 r} .
$$

Inserting the value of $P^{\prime} C^{\prime}$ and reducing, we obtain $F^{\prime}=\frac{18}{55} W$.
The tangent of the angle $P O P^{\prime}$ is $\frac{x}{y}=\frac{8 F}{3 W}=\frac{48}{55}$.
Since both surfaces are spherical and equilibrium neutral, we have (page 210) indifferent equilibrium as long as $\beta<\frac{R}{r} \phi$, or $\beta<\frac{5}{3} \phi$.
(6) A cylinder rests in equilibrium with the centre of its base on the highest point of a fixed and rough sphere. The altitude and diameter of the base of the cylinder are each equal in length to a quadrant of a great circle of the sphere. Find the greatest angle through which the cylinder may be made to rock without falling off.

Ans. Let C be the centre of mass of the cylinder, and O the centre of the fixed sphere. Then $P C=\frac{h}{2}$ and $O P=R$. When the cylinder rocks let the points C^{\prime} come in contact. Then $P C^{\prime}=R 9$. If the cylinder is on the point of sliding, the angle $P C C^{\prime \prime}$ must be equal to the angle of repose ϕ. Hence $\tan \phi=\frac{R \theta}{\frac{h}{2}}$, or $\theta=\frac{h \tan \phi}{2 R}$. But we have $\frac{\pi R}{2}=h$.
 Therefore $\theta=\frac{\pi}{4} \tan \phi$.

Since $\frac{1}{P C}=\frac{2}{h}>\frac{1}{h}=\frac{\pi}{2 h}$, the equilibrium is stable.
(7) A body of weight W is placed upon a rough inclined plane which makes an angle a with the horizontal, and is acted upon by a force P which makes the angle β with the plane. Find the conditions of equilibrium. (For smooth plane see Ex. 1, page 172.)

Ans. Consider the body as a particle placed at any point O on the plane (page 169). We have act-
 ing upon the particle the weight W, the force P and the reaction of the plane R, which makes the angle of repose ϕ with the normal to the plane.

Let the angle $B O P=\beta$ be positive when above the plane, and negative when below the plane.

1. Body on the Point of Motion ap the Plane.-In this case the component of P along the plane must act up the plane, and the component of R along the plane or the friction must act down the plane,
 since friction always acts opposite to the direction in which motion tends to take place.

Since W, P and R are in equilibrium, their line representatives laid off in order the same way round make a triangle (page 62).

We have then directly from the figure $R: W:: \sin [90-(\beta+\alpha)]: \sin [90+(\beta-\phi)]$.

Hence

$$
R=\frac{\cos (\beta+\alpha)}{\cos (\beta-\phi)} W .
$$

Let the normal pressure of the plane be N and the friction be F.
Then we have

$$
F=R \sin \phi=\frac{\cos (\beta+\alpha)}{\cos (\beta-\phi)} W \sin \phi, \quad N=R \cos \phi=\frac{\cos (\beta+\alpha)}{\cos (\beta-\phi)} W \cos \phi .
$$

We also have directly from the figure

$$
P: W:: \sin (\alpha \dot{+} \phi): \sin [90+(\beta-\phi)] .
$$

Hence

$$
P=\frac{\sin (\alpha+\phi)}{\cos (\beta-\phi)} W=\frac{\sin \alpha+\mu}{\cos \beta+\mu} \frac{\cos \alpha}{\sin \beta} W,
$$

where $\mu=\tan \phi$ is the coefficient of static sliding friction.
We see at once from the figure and from the preceding equations that when $\beta=+(90-\alpha)$ we have R, N and F zero and P and W equal and opposite. For any greater value of positive β, R is negative and there is no equilibrium possible. For negative β we must evidently have β less than $90-\phi$. If β is greater than this, R is negative and there is no equilibrium. The preceding equations hold good, then, for all values of β between $-(90-\phi)$ and $+(90-\alpha)$.

The force P is a minimum when $\cos (\beta-\phi)$ is a maximum or when $\beta=+\phi$. This minimum value of P is then

$$
P=W \sin (\alpha+\phi)
$$

Again, we can resolve P into $P \cos \beta$ along the plane and $P \sin \beta$ normal to the plane. We can also resolve W into $W \sin \alpha$ along the plane and $W \cos \alpha$ normal to the plane. Let N be the normal pressure of the plane. Then for equilibrium

$$
N+P \sin \beta-W \cos \alpha=0, \text { or } \quad N=W \cos \alpha-P \sin \beta
$$

The friction is then

$$
F=\mu N=\mu W \cos \alpha-\mu P \sin \beta
$$

This friction always acts opposite to the direction in which motion tenus to take place. We have then in the present case, for equilibrium,

$$
P \cos \beta-F-W \sin \alpha=0 .
$$

Inserting the value for F and reducing, we obtain the same value for P as before. The student should also solve by virtual work.
2. Body on the Point of Motion Down the Plane- α greater than ϕ.-If α is
 greater than ϕ, the body will slide down the plane unless prevented.

In this case the component of P along the plane must act up the plane, and the component of R along the plane, or the friction, must also act up the plane, since friction always acts opposite to the direction in which motion tends to take place.

We have then directly from the figure

$$
R: W:: \sin [90-(\beta+\alpha)]: \sin [90+(\beta+\phi)] .
$$

Hence

$$
R=\frac{\cos (\beta+\alpha)}{\cos (\beta+\phi)} W
$$

$F=R \sin \phi=\frac{\cos (\beta+\alpha)}{\cos (\beta+\phi)} W \sin \phi, \quad N=R \cos \phi=\frac{\cos (\beta+\alpha)}{\cos (\beta+\phi)} \cos \phi$.
A]so

$$
P: W:: \sin (\alpha-\phi): \sin [90+(\beta+\phi)],
$$

or

$$
P=\frac{\sin (\alpha-\phi)}{\cos (\beta+\phi)} W=\frac{\sin \alpha-\mu \cos \alpha}{\cos \beta-\mu \sin \beta} W .
$$

We see again from the figure that when $+\beta$ is greater than $90-\alpha, R$ is negative. Also when $-\beta$ is greater than $90+\phi, R$ is negative. The values of R, F, N and P hold good, then, for values of β between $-(90+\phi)$ and $+(90-\alpha)$.

The force P is a minimum when $\cos (\beta+\phi)$ is a maximum or when $\beta=-\phi$. This minimum value of P is then

$$
P=W \sin (\alpha-\phi)
$$

As long as we have, for α greater than ϕ,

$$
P>\frac{\sin (\alpha-\phi)}{\cos (\beta+\phi)} W
$$

where $\beta<-(90+) \phi$ and $<+(90-\alpha)$, and at the same time have

$$
P<\frac{\sin (\alpha+\phi)}{\cos (\beta-\phi)} W,
$$

where $\beta<-(90-\phi)$ and $<+(90-\alpha)$, the body will neither be on the point of moving down or up, and we have non-limiting equilibrium.

Again, we have as before for the friction

$$
F=\mu W \cos \alpha-\mu P \sin \beta
$$

and for motion down the plane

$$
P \cos \beta+F-W \sin \alpha=0
$$

Substituting the value of F and reducing, we obtain the same value for P as before. The student should solve also by virtual work.
3. Body on the Point of Motion Down the Plane- α less than ϕ. - If α is less than ϕ, the body will not slide down unless acted upon by some force P.

In this case the component of P along the plane must act down the plane, and the component of R along the plane, or the friction, must act up the plane, since friction always acts opposite to the direction in which motion tends to take place.

We have then directly from the figure, if
 we take the angle $\beta=A O P$ positive above the plane and negative below,

$$
R: W:: \sin [90-(\beta-\alpha)]: \sin [90+(\beta-\phi)]
$$

Hence

$$
R=\frac{\cos (\beta-\alpha)}{\cos (\beta-\phi)} W
$$

$F=R \sin \phi=\frac{\cos (\beta-\alpha)}{\cos (\beta-\phi)} W \sin \phi, \quad N=R \cos \phi=\frac{\cos (\beta-\alpha)}{\cos (\beta-\phi)} W \cos \phi$.
Also

$$
P: W:: \sin (\phi-\alpha): \sin [90+(\beta-\phi)],
$$

or

$$
P=\frac{\sin (\phi-\alpha)}{\cos (\beta-\phi)} W=\frac{\mu \cos \alpha-\sin \alpha}{\cos \beta+\mu \sin \beta} W
$$

We see from the figure that if we take β from $O A$ positive above and negative below the plane, $+\beta$ cannot be greater than 90 . Also when $-\beta$ is greater than $90-\phi, R$ is negative. The values of R, F, N and P hold good, then, for values of β between $-(90-\phi)$ and $+90^{\circ}$.

The force P is a minimum when $\cos (\beta-\phi)$ is a maximum or when $\beta=$ $+\phi$. This minimum value of P is then

$$
P=W \sin (\phi-\alpha)
$$

As long as we have, for α less than ϕ,

$$
\left.P<\frac{\sin (\phi-\alpha)}{\cos (\beta}-\phi\right)
$$

where $\beta<+(90+\alpha)$ and $<-(90-\phi)$, and at the same time have

$$
P<\frac{\sin (\alpha+\phi)}{\cos (\beta-\phi)} W
$$

where $\beta<+(90-\alpha)$ and $<-(90-\phi)$, the body will neither be on the point of moving up or down and we have non-limiting equilibrium.

Again, we have, as before, for the friction

$$
F=\mu W \cos \alpha-\mu P \sin \beta
$$

and for motion down the plane

$$
-P \cos \beta+F-W \sin \alpha=0
$$

Substituting the value of F and reducing, we obtain the same value for P as before. The student should solve also by virtual work.
(8) A body of weight W is placed in contact with the under side of a rough inclined plane which makes an angle a with the horizontal, and is acted upon by a force P which makes an angle β with the plane. Find the conditions of equilibrium. (For smooth plane see Ex. (2), page 174.)

Ans. 1st. Body on the point of motion up the plane:

$$
\begin{aligned}
R & =-\frac{\cos (\beta+\alpha)}{\cos (\beta+\phi)} W, \quad N=-\frac{\cos (\beta+\alpha)}{\cos (\beta+\phi)} W \cos \phi ; \\
F & =-\frac{\cos (\beta+\alpha)}{\cos (\beta+\phi)} W \sin \phi ; \\
P & =-\frac{\sin (\phi-\alpha)}{\cos (\beta+\phi)} W=\frac{\sin \alpha-\mu \cos \alpha}{\cos \beta-\mu \sin \beta} W .
\end{aligned}
$$

Wheu $\alpha>\phi, \beta>+(90-\alpha)$ and $<+(90-\phi)$.
When $\langle\phi, \beta\rangle+(90-\phi)$ and $<+(90-\alpha)$.
2 d . Body on the point of motion down the plane :

$$
\begin{aligned}
& R=-\frac{\cos (\beta-\alpha)}{\cos (\beta+\phi)} W, \quad N=-\frac{\cos (\beta-\alpha)}{\cos (\beta+\phi)} W \cos \phi ; \\
& F=-\frac{\cos (\beta-\alpha)}{\cos (\beta+\phi)} W \sin \phi ; \\
& P=-\frac{\sin (\phi+\alpha)}{\cos (\beta+\phi)} W=\frac{\sin \alpha+\mu \cos \alpha}{\mu \sin \beta-\frac{\cos \beta}{\cos } W . \quad} \quad \begin{array}{l}
\beta<+90 \text { and } \\
>+(90-\phi) .
\end{array}
\end{aligned}
$$

(9) Find the force P necessary to just move a cylinder of radius R and weight W up a rough plane inclined at an angle α, by a crowbar of length l inclined at an angle β. (For smooth surface see Ex. (3), page 174.)

Ans. The weight W can be resolved into two components R_{1} and R_{2} making the angles of repose ϕ_{1} and ϕ_{2} with the normals at
 the points of contact D_{1} and D_{2}, where ϕ_{1} is the angle of repose for the bar and cylinder and $\dot{\phi}_{2}$ for the plane and cylinder.

We have then $R_{1}=\frac{\sin \left(\phi_{2}+\alpha\right)}{\sin \left[\left(\alpha+\beta^{\prime}\right)+\left(\phi_{2}-\phi_{1}\right)\right]} W$.
The normal pressure at D_{1} is then

$$
N_{1}=R_{1} \cos \phi_{1} .
$$

If P acts at right angles to the bar, we have by virtual work, for a small displacement due to turning of the bar about \boldsymbol{A} through an indefinitely small angle θ,

$$
P l \theta-N_{1} \cdot \overline{A D_{1}} \cdot \theta=0, \quad \text { or } \quad P=\frac{N_{1} \cdot A D_{1}}{l}
$$

But $A D_{1}=r \tan \frac{1}{2}(\alpha+\beta)=\frac{r[1-\cos (\alpha+\beta)]}{\sin (\alpha+\beta)}$. Hence

$$
P=\frac{W r \cos \phi_{1} \sin \left(\phi_{2}+\alpha\right)[1-\cos (\alpha+\beta)]}{l \sin (\alpha+\beta) \sin \left[(\alpha+\beta)+\left(\phi_{2}-\phi_{1}\right)\right]} .
$$

If $\phi_{1}=\phi_{2}$, we have after reduction

$$
P=\frac{W r \cot \phi \sin (\phi+\alpha)}{l[1+\cos (\alpha+\beta)]} .
$$

If there is no friction, $\phi=0$, and we have the same result as in Ex. (3), page 174.
(10) A particle of mass m rests on a rough cylinder and is held in equilibrium by a string fastened to another particle of mass M, which passes over the cylinder and hangs freely. Determine the position of equilibrium. (For smooth cylinder see Ex. (4), page 174.)

Ans. From page 202 , if the arc of contact $m C A=\alpha$, we have for the friction of the cord

$$
F_{1}=m g\left(\epsilon^{\mu \alpha}-1\right)
$$

where μ is the coefficient of static sliding friction between cord and cylinder and $\epsilon=2.3026=$ base of Naperian system of logarithms, and g is the acceleration of gravity (page 3.

The normal pressure of m is $m g \sin \alpha$, and the friction of the particle m is

$$
F_{2}=\mu_{2} m g \sin \alpha
$$

where μ_{2} is the coefficient of static sliding friction between the particle and cylinder.

The tangential component of $m g$ is $-m g \cos \alpha$. We have then, for equilibrium,

$$
\begin{gathered}
\quad-m g \cos \alpha+\mu_{2} m g \sin \alpha+m g\left(\epsilon^{\mu \alpha}-1\right)=M g \\
\text { or } \\
\quad-m\left(\cos \alpha-\mu_{2} \sin \alpha\right)+m\left(\epsilon^{\mu \alpha}-1\right)=M
\end{gathered}
$$

or, since $\mu_{2}=\frac{\sin \phi_{2}}{\cos \phi_{2}}{ }^{\prime}$

$$
-\cos \left(\alpha+\phi_{2}\right)+\left(\epsilon^{\mu \alpha}-1\right) \cos \phi_{2}=\frac{M}{m} \cos \phi_{2}
$$

from which α can be found. If there is no friction, $\mu=0, \phi_{2}=0$, and

$$
\cos \alpha=-\frac{M}{m}
$$

which is the same result as in Ex. (4), page 174. If we neglect the friction of the cord, $\mu=0$ and

$$
\cos \left(\alpha+\phi_{2}\right)=-\frac{M}{m}
$$

(11) Find the conditions for equilibrium for a rough screw. (For smooth screw see Ex. (5), page 175.)

Ans. Let P be the force applied at the end of the arm a, and let the radius
 of the screw be r, the pitch p, and the mass supported Q.

If N is the sum of the normal pressures and α the inclination of the thread to the horizontal, we have $N=\frac{Q}{\cos \alpha}$ and the friction $F=\mu N=\frac{\mu Q}{\cos \alpha}$, where μ is the coefficient of static sliding friction.

If P has a virtual displacement of θ radians, Q is raised a distance $\frac{p \theta}{2 \pi}$, the distance of the friction is $\frac{r \theta}{\cos \alpha}$, and we have by virtual work

$$
P a \theta-\frac{Q p \theta}{2 \pi}-\frac{\mu Q r \theta}{\cos ^{2} \alpha}=0
$$

We have then, since $\frac{p}{2 \pi r}=\tan \alpha, \mu=\tan \phi$,

$$
P=\frac{Q}{a}\left(\frac{p}{2 \pi}+\frac{\mu r}{\cos ^{2} \alpha}\right)=\frac{Q r}{a}\left(\tan \alpha+\frac{\tan \phi}{\cos ^{2} \alpha}\right) .
$$

If we neglect friction, we have $\mu=0$ and $P=\frac{Q p}{2 \pi a}=\frac{Q r \tan \alpha}{a}$, which is the same result as in Ex. (5), page 175.
(12). Find the conditions for equilibrium for the differential screw given in Ex. (6), page 175, taking friction into account.

Ans. $P=\frac{Q}{a}\left[\frac{p-p^{\prime}}{2 \pi}+\frac{\mu\left(r+r^{\prime}\right)}{\cos ^{2} \alpha}\right]$
(13) Let the force acting normally at the middle of the back $A B$ of a rough isosceles wedge $A B C$ be P, and let the normal pressure on each side be N. Find the conditions for equilibrium. (For smooth wedge see Ex. (7), page 176.)

Ans. Let the angle of the wedge at the point C be α. The forces which sustain the wedge in equilibrium are P, the pressures N and
 the friction F along each face, which acts opposite to the direction in which motion tends to take place.

If μ is the coefficient of static sliding friction, we have $F=\mu N$.

If we put the algebraic sum of the components along the axis $D C$ equal to zero, we have for equilibrium

$$
-P+2 N \sin \frac{\alpha}{2} \pm 2 \mu N \cos \frac{\alpha}{2}=0
$$

where the $(+)$ sign is taken for wedge on the point of entering and the $(-)$ sign for wedge on the point of sliding out.

Since $\mu=\frac{\sin \phi}{\cos \phi}$, where ϕ is the angle of repose, we have

$$
P=2 N\left(\sin \frac{\alpha}{2} \pm \mu \cos \frac{\alpha}{2}\right)=\frac{2 N}{\cos \phi} \sin \left(\frac{\alpha}{2} \pm \phi\right)
$$

If $P<\frac{2 N}{\cos \phi} \sin \left(\frac{\alpha}{2}=\phi\right)$ and $>\frac{2 N}{\cos \phi} \sin \left(\frac{\alpha}{2}-\phi\right)$, the wedge is neither on the point of going in or out and we have non-limiting equilibrium. If $\frac{\alpha}{2}=\phi$, there is no force required to prevent the wedge from sliding out. The angle α of the wedge should not then exceed 2ϕ.

If we neglect friction, $\phi=0$, and we have $P=2 N \sin \frac{\alpha}{2}$.
This is the same result as in Ex. (7), page $1 \pi 6$.
(14) Let a rough isosceles uedge rest with one face BC on a horizontal plane. Let a normal force Pact at the middle point of the back. Let the body GHK, whose weight is W, rest upon the face AC and be constrained by guides to move in a normal to AC. Find the conditions for equilibrium. (For smooth wedge see Ex. (8), page 176.)

Ans. Let N be the normal pressure between the surface $A C$ and the body. Then the friction between the body and wedge is μN, where μ is the coefficient of static sliding friction between the body and wedge. This friction acts opposite to the direction in which motion tends to take place. It is then a pressure upon the guide E or E^{\prime} according as the wedge is on the point of entering or sliding back. If W is
 the weight of the body acting at the centre of mass G, then $W \sin \alpha$ is the pressure upon the guide E by reason of the weight. The total pressure upon the guide E is then

$$
W \sin \alpha \pm \mu N
$$

according as the wedge enters or slides back. The friction between the body and guide is then

$$
\mu_{1}(W \sin \alpha \pm \mu N)
$$

where μ_{1} is the coefficient of static sliding friction for body and guide.
We have then for equilibrium of the body

$$
N-W \cos \alpha \mp \mu_{1}(W \sin \alpha \pm \mu N)=0
$$

where the upper signs are for wedge on point of entering, and the lower signs for wedge on point of sliding out. Hence

$$
N=\frac{W\left(\cos \alpha \pm \mu_{1} \sin \alpha\right)}{1-\mu \mu_{1}}
$$

If we put this value of N in the value for P found in the preceding example, we have

$$
P=\frac{2 W\left(\cos \alpha \pm \mu_{2} \sin \alpha\right)}{1-\mu_{1} \mu}\left(\sin \frac{\alpha}{2} \pm \mu \cos \frac{\alpha}{2}\right)
$$

or, since $\mu_{1}=\frac{\sin \phi_{1}}{\cos \phi_{1}}$ and $\mu=\frac{\sin \phi}{\cos \phi}$, where ϕ_{1} and ϕ are the angles of repose for body and guide, and body and wedge,

$$
P=\frac{2 W \cos \left(\alpha \mp \phi_{1}\right)}{\cos \left(\phi_{1}+\phi\right)} \cdot \sin \left(\frac{\alpha}{2} \pm \phi\right) .
$$

The upper signs are for wedge on the point of entering, the lower signs for wedge on the point of sliding out.

Here again, if $\frac{\alpha}{2}=\phi$, no force P is required to prevent the wedge from sliding out.

If

$$
P<\frac{2 W \cos \left(\alpha-\phi_{1}\right)}{\cos \left(\phi_{1}+\phi\right)} \sin \left(\frac{\alpha}{2}+\phi\right) \text { and }>\frac{2 W \cos \left(\alpha+\phi_{1}\right)}{\cos \left(\phi_{1}+\phi\right)} \sin \left(\frac{\alpha}{2}-\phi\right),
$$

we have non-limiting equilibrium and the wedge is not on the point of moving either way. If we neglect friction $\phi=0, \phi_{1}=0$, and $P=2 W \cos \alpha \sin \frac{\alpha}{2}$. This is the same result as in Ex. (8), page 176.
(15) Solve the case of Ex. (16), page 177, taking friction into account.

Ans. $\tan \theta=\frac{a \cot \left(\alpha_{1}+\phi\right)-b \cot \left(\alpha_{2}-\phi\right)}{a+b}$,

$$
N_{1}=\frac{P \sin \left(\alpha_{2}-\phi\right) \cos \phi}{\sin \left[\left(\alpha_{1}+\phi\right)+\left(\alpha_{2}-\phi\right)\right]}, \quad N_{2}=\frac{P \sin \left(\alpha_{1}+\phi\right) \cos \phi}{\sin \left[\left(\alpha_{1}+\phi\right)+\left(\alpha_{2}-\phi\right)\right]} .
$$

(16) A rod rests with its ends against a rough vertical and horizontal plane. The weight P of the rod acts at its middle point. Find the conditions of equilibrium.

Ans. Let 0 be the angle with the horizontal and N_{1}, N_{2} be the normal pressures on the horizontal and vertical planes respectively. Then

$$
\tan \theta=\cot 2 \phi, \quad N_{1}=P \cos ^{2} \phi, \quad N_{2}=P \sin \phi \cos \phi
$$

(17) A rough lever $A C B$ rests on an axle of radius r and is acted upon by the co-planar forces P and Q applied at the points A and
B. The forces make the angle 0 . Find the relations of P to Q for equilibrium. (For smooth lever see Ex. (1), page 161.)

Ans. The resultant of P and Q is

$$
R=\sqrt{P^{2}+Q^{2}+2 P Q \cos \theta},
$$

the acuțe value of θ being taken.
We have seen (page 196) that for wellgreased axle and small surface of contact we can take, in all cases of axle friction, the friction $F^{\prime}=\mu R$, where μ is the coefficient of static sliding friction.

Let the radius of the axle be r, the leverarm of P with reference to the centre C of the axle be p, and the lever-arm of Q be q.

We have then in general for equilibrium

$$
P p-Q q \mp \mu R r
$$

or

$$
P p=Q q \pm \mu r \sqrt{P^{2}+Q^{2}+2 P Q \cos \theta}
$$

where the upper sign is to be taken when rotation in the direction of P just begins, and the lower sign when rotation in the direction of Q just begins.

If the forces P and Q are parallel, $R=P+Q$, and we have

$$
P=\frac{q \pm \mu r}{p \mp \mu r}
$$

For all values of P less than the first of these values, or

$$
P<\frac{q+\mu r}{p-\mu r} Q
$$

and at the same time greater than the second, or

$$
P>\frac{q-\mu r}{p+\mu r} Q
$$

we have non-limiting equilibrium and the lever is not upon the point of rotating in either direction.

If we neglect friction, $\mu=0$ and $P=\frac{q}{p} Q$, as in Ex. (1), page 161.
For partially worn bearing (page 196) we can put more accurately

$$
\sin \phi \text { in place of } \phi,
$$

where ϕ is the angle of repose.
For triangular bearing (page 197) we can put more accurately

$$
\frac{\sin 2 \phi}{2 \cos \alpha} \text { in place of } \mu,
$$

where α is the half angle of bearing.
For new bearing (page 198) we can put more accurately

$$
\frac{\alpha \sin 2 \phi}{2 \sin \alpha} \text { in place of } \mu,
$$

where α is the half angle of contact.
(18) In a wheel and axle the radius of the wheel is a, and of the axle b. Find the conditions for equilibrium, taking into account friction and the rigidity of the rope, uhen a mass P hung from the
wheel just balances a mass Q hung from the axle. (Without friction and rigidity see Ex. (2), page 162.)

Ans. We have seen (page 196) that for well-greased axle and small surface of contact we can take in all cases of axle friction the friction $F=\mu R=\mu(P+Q)$, where μ is the coefficient of static sliding friction.

Let the radius of the axle be r, and let t be the thickness of the rope.

Then when P is just about to fall, we have (page 202) for the lever-arm of $Q,\left(1+\frac{T}{Q}\right)\left(b+\frac{t}{2}\right)$, and hence for equilibrium

$$
-P\left(a+\frac{t}{2}\right)+Q\left(1+\frac{T^{\prime}}{Q}\right)\left(b+\frac{t}{2}\right)+\mu r(P+Q)=0
$$

or

$$
P=\frac{\left(b+\frac{t}{2}+\mu r\right) Q+\left(b+\frac{t}{2}\right) T^{\prime \prime}}{a+\frac{t}{2}-\mu r}
$$

where (page 203)

$$
\begin{aligned}
& \text { for hemp ropes } T^{\prime \prime}=\frac{c_{1}+c_{2} Q}{b+\frac{t}{2}} \\
& \text { for wire ropes } T^{\prime \prime}=c_{1}+\frac{c_{2} Q}{b+\frac{t}{2}}
\end{aligned}
$$

the values of c_{1} and c_{2} being given on page 203.
When Q is just about to fall, we have (page 203), for the lever-arm of P, $\left(1+\frac{T^{\prime}}{P}\right)\left(a+\frac{t}{2}\right)$, and hence

$$
-P\left(1+\frac{T^{y}}{P}\right)\left(a+\frac{t}{2}\right)+Q\left(b+\frac{t}{2}\right)-\mu r(P+Q)=0
$$

or

$$
P=\frac{\left(b+\frac{t}{2}-\mu r\right) Q-\left(a+\frac{t}{2}\right) T^{\prime}}{a+\frac{t}{2}+\mu r}
$$

where (page 203)

$$
\begin{aligned}
& \text { for hemp ropes } T^{\prime}=\frac{c_{1}+c_{2} P}{a+\frac{t}{2}} \\
& \text { for wire ropes } T^{\prime}=c_{1}+\frac{c_{2} P}{a+\frac{t}{2}}
\end{aligned}
$$

the values of c_{1} and c_{2} being given on page 203.
For values of P less than the first and greater than the second, we have non-limiting equilibrium, and the wheel and axle is not upon the point of rotating in either direction.

If we neglect friction and rigidity, we have $P=\frac{b+\frac{t}{2}}{a+\frac{t}{2}} Q$, or, neglecting the
thickness of the rope, $P=\frac{b}{a} Q$, as in Ex. (2), page 162.
If $b=a$, we have the case of the single pulley.
For partially worn beariqg (page 196) we can put more accurately

$$
\sin \phi \text { in place of } \mu,
$$

where ϕ is the angle of repose.
For triangular bearing (page 197) we can put

$$
\frac{\sin 2 \phi}{2 \cos \alpha} \text { in place of } \mu
$$

where α is the half angle of the bearing.
For new bearing (page 198) we can put

$$
\frac{\alpha \sin 2 \phi}{2 \sin \alpha} \text { in place of } \mu,
$$

where α is the half angle of contact.
(19) In the single movable pulley find the relation between the force P and the mass Q for equilibrium, taking into account friction and the rigidity of the rope. (Without friction and rigidity see Ex. (5), page 163.)

Ans. Let r be the radius of the axle of each pulley, a the radius of each pulley, t the thickness of rope, μ the coefficient of static slid-
 ing friction, and c_{1}, c_{2} as given on page 203.

For convenience of notation let

$$
u=a+\frac{t}{2}+\mu r+c_{2}, \quad v=a+\frac{t}{2}-\mu r .
$$

Then from the preceding example, making $b=a$, we have, when P is just about to fall, for hemp ropes

$$
P=\frac{u T_{1}+c_{1}}{v}
$$

where T_{1} is the tension in the first rope as shown in the figure.
We have in the same way

We have also

$$
T_{1}=\frac{u T_{2}+c_{1}}{v}
$$

Eliminating T_{1} and T_{2}, we have

$$
P=\frac{u^{2} Q+(w+2 u) c_{1}}{v(u++u)} .
$$

In the same way we find when P is on the point of rising

$$
P=\frac{\left(u-2 \mu r-c_{2}\right)^{2} Q-c_{1}\left(u+2 u-2 \mu r-c_{2}\right)}{(w+u)(u-2 \mu r)} .
$$

For values of P less than the first and greater than the second, we have non-limiting equilibrium and P is not on the point of falling or rising.

For wire ropes we have only to substitute $c_{1}\left(a+\frac{t}{2}\right)$ in place of c_{1}.

For partially worn bearing or new bearing we can replace μ by the values given in the preceding example.

If we neglect friction and rigidity, we have $P=\frac{Q}{2}$ as in Ex. (5), page 163 .
(20) In the system of pulleys shown, find the relation between the force P and the mass Q for equilibrium, taking into account friction and rigidity of the rope. (Without friction and rigidity see Ex. (6), page 163.)

Ans. Let m be the mass of each movable pulley, and n the number of mor-
 able pulleys. Let r be the radius of the axle of each pulley, a the radius of each pulley, μ the coetficient of static sliding friction, t the thickness of the rope, and c_{1} and c_{2} as given on page 203.

For convenience of notation let

$$
\begin{aligned}
& u=a+\frac{t}{2}+\mu r+c_{2} ; \quad w=a+\frac{t}{2}-\mu r ; \\
& v=u+w=2 a+t+c_{2} .
\end{aligned}
$$

Then, from the preceding example, we have, when P is just about to fall, for hemp ropes

$$
\begin{aligned}
& T_{1}=\frac{u(Q+m)}{v}+\frac{c_{1}}{v} \\
& T_{2}=\frac{u\left(T_{1}+m\right)}{v}+\frac{c_{1}}{v} \\
& T_{3}=\frac{u\left(T_{2}+m\right)}{v}+\frac{c_{1}}{v}
\end{aligned}
$$

and so on. Inserting the values of T_{1} and T_{2}, we have in general

$$
T_{n}=\frac{u^{n} Q}{v^{n}}+\frac{\left(m u+c_{1}\right)\left(u^{n}-v^{n}\right)}{v^{n}(u-v)}
$$

But from the preceding example we have

$$
P \doteq \frac{u T_{n}}{w}+\frac{c_{1}}{w} .
$$

Hence, since $u-v=-w$,

$$
\boldsymbol{P}=\frac{u}{2 c v^{n}}\left[u^{n} Q+\frac{\left(m u+c_{1}\right)\left(v^{n}-u^{n}\right)}{v}\right]+\frac{c_{1}}{w} .
$$

For wire ropes we have only to substitute $c_{1}\left(a+\frac{t}{2}\right)$ in place of c_{1}.
For partially worn bearing or new bearing we replace μ by the values given in Ex. (18).

If we neglect friction and rigidity, we have $\frac{u}{w}=1, \frac{u}{v}=\frac{1}{2}, v=2\left(a+\frac{t}{2}\right)$, $u=a+\frac{t}{2}$ and $c_{1}=0$, and this reduces to $P=\frac{Q+\left(2^{n}-1\right) m}{2^{n}}$, which is the same result as given in Ex. (6), page 163.
(21) In the system of pulleys shown, find the relation between the force Pand the mass Q for equilibrium, taking into account friction and the rigidity of the ropes. (Without friction and rigidity see Ex. (7), page 164.)

Ans. Let m be the mass of the lower block, and n the number of ropes coming from the lower block. Let r be the radius of the axle of each pulley, μ the coefficient of static sliding friction, t the thickness of the rope, and c_{1} and c_{2} as given on page 203.

Let a be the mean radius of the pulleys.
For convenience of notation let

$$
u=a+\frac{t}{2}+\mu r+c_{2}, \quad w=a+\frac{t}{2}-\mu r
$$

Then we have for hemp ropes, when P is about to descend,

$$
P=\frac{u^{n}(u-v)}{w\left(u^{n}-w^{n}\right)}\left[(Q+m)+\frac{c_{1}}{u-v}\right]-\frac{c_{1}}{u-w^{n}} .
$$

For wire ropes we have only to substitute $c_{1}\left(a+\frac{t}{2}\right)$ in place of c_{1}.
For partially worn bearing or new bearing, we replace μ by the values given in Ex. (18).

If we neglect friction and rigidity, we have $u=v$ and $c_{1}=0$. The value of P reduces then to $P=\frac{0}{0}$; but if we divide numerator and denominator by $u-v$ and then make $u=v$, we have

$$
P=\frac{Q+m}{n}
$$

which is the same result as given in Ex. (7), page 164.
(22) In the system of pulleys shown, find the relation between the force P and the mass Q for equilibrium, taking into account friction and the rigidity of the ropes. (Without friction and rigidity, see Ex. (8), page 164.)

Ans. Let m be the mass of each pulley and n the number of pulleys. Let
 r be the radius of the axle of each pulley, μ the coefficient of static sliding friction, t the thickness of the rope and c_{1}, c_{2} as given on page 203.

Let a be the radius of each pulley, and for convenience of notation let

$$
u=a+\frac{t}{2}+\mu r+c_{2}, \quad v=a+\frac{t}{2}-\mu r
$$

Then we have, when P is about to descend, for hemp ropes

$$
P=\frac{Q+n m-\frac{m u}{w}\left[\left(\frac{w}{u}+1\right)^{n}-1\right]+\frac{c_{1}}{v}\left[\left(\frac{w}{u}+1\right)^{n}-1\right]}{\left(\frac{w}{u}+1\right)^{n}-1} .
$$

For wire ropes we have only to substitute $c_{1}\left(a+\begin{array}{l}t \\ 2\end{array}\right)$ in place of c_{1}.
For partially worn bearing or new bearing we replace μ by the values given in Ex. (18).

If we neglect friction and rigidity, we have $u=v$ and $c_{1}=0$, and

$$
P=\frac{Q+n m-\left(2^{n}-1\right) m}{2^{n}-1}
$$

which is the same result as given in Ex. (8), page 164.
(23) In the differential pulley of Ex. (12), page 165, find the relation of P to Q for equilibrium, taking into account friction.

Ans. Let m be the mass of each pulley, r the radius of each axle, and μ the coefficient of static sliding friction. Since the pulley is worked by a chain, we can disregard rigidity and have only friction to take into account. We have then for P about to descend

$$
P=\frac{(Q+m)\left(\frac{a-b}{2}\right)+2 \mu r(Q+2 m)}{a-2 \mu r}
$$

For partially worn bearing or for new bearing we can replace μ by the values given in Ex. (18). If we neglect friction and the mass of the pulleys, we have $P=\frac{Q(a-b)}{2 a}$, which is the same result as in Ex. (12), page 165.
(24) Solve Ex. (24), page 180, when the surfaces are rough.

Ans. Let μ be the coefficient of static sliding friction, and ϕ be the angle of friction. Then, taking the same rotation as in Ex. (24), page 180,

$$
\begin{aligned}
& a \tan \alpha+\frac{b \sin (\alpha+\phi)}{\cos \alpha \cos \phi}=a \tan (\theta-\phi) . \\
& d=l \cos \alpha-r \cos \theta .
\end{aligned}
$$

(25) Solve Ex. (25), page 180, when the surface is rough.

Ans. Let ϕ be the angle of friction. Then, taking the same notation as in Ex. (25), page 180, we obtain

$$
W \cos (\theta+\phi)=\frac{y}{p} H_{1} \sin (\theta-\phi) .
$$

APPLICATIONS OF STATICS.

CHAPTER I.

RETAINING WALLS, DAMS AND EARTH SLOPES.

DEFINITIONS OF PARTS OF A WALL, WEIGHT AND FRICTION OF MASONRY. STABILITY OF A MASONRY JOINT. STABILITY OF A WALL IN GENERAL. LOW GRAVITY DAM. HIGH GRAVITY DAM. ECONOMIC SECTION FOR A HIGH GRAVITY DAM. THE ARCH DAM. THE RETAINING WALL. GRAPHIC AND ANAIYTIC DETERMINATION OF THE EARTH PRESSURE ON A RETAINING WALL. COHESION OF EARTH. EQUILIBRIUM OF AN EARTH MASS. EARTH SLOPES AND TERRACES.

Definitions of Parts of a Wall.-The face of a wall is the front surface, or outside surface, or the surface farthest from the pressure. The back is the rear surface, or inside surface, or the surface which sustains pressure.

The stone which forms the face is called the facing; that which forms the back, the backing; that which forms the interior, the filling.

A horizontal layer of stone in a wall is called a course. If the stones in each layer are of the same thickness, we have regular courses; if they are not of the same thickness, we have irregular or random courses.

The mortar layer between the stones is the joint. The horizontal joints are bed-joints.

Cut stone or squared masonry is called ashlar. Unsquared masonry is called rubble.

The inclination of the face or back of a wall, measured by the
 ratio of its horizontal to its vertical projection, is called the batter of the face or back. The batter is then the tangent of the angle which the face or back makes with the vertical. Thus in the figure the batter of the side $A D$ is $\frac{A O}{D O}=\tan \beta$, where β is the batter angle or angle of $A D$ with the vertical.
Weight and Friction of Masonry. - We give here a short Table of average values of the coefficient of static sliding friction μ, the corresponding angle of friction or repose ϕ, and the density or mass of a cubic foot δ for different kinds of masonry.

In discussing the stability of walls, the influence of the mortar is neglected, both because of its uncertain character and because the error is on the side of safety. The values given for μ and ϕ are therefore for dry masonry.

We also give in the Table average values of the allowable compressive unit stress C in tons per square foot, taking 2000 lbs. to a ton.

We also give the specific mass (page 10), $\frac{\delta}{\gamma}$, of the materials, where γ is the mass of a cubic foot of water $=62.5 \mathrm{lbs}$.

Kind of Masonry.	Coefficient of Friction. μ	Angle of Friction. ϕ	Density Pounds per Cubic δ	Specific Mass. ¢ $\frac{\delta}{\gamma}$	Allowable Compressive Unit Stress C. Tons per square foot.
Limestone and granite:					
Ashlar masonry...	0.6	31°	165	2.64	25 to 30
Large mortar rubble. .	0.6	31°	150	2.40	10 to 15
Small dry rubble......	0.6	31°	125	2.00	6 to 10
Concrete..................	0.6	31°	150	2.40	12 to 17
Ashlar masonry.	0.6	31°	150	2.40	20 to 25
Large mortar rubble...	0.6	31°	130	2.08	10 to 15
Small dry rubble......	0.6	31°	110	1.76	6 to 10
Brickwork.................	0.6	31°	100	1.60	6 to 10

Stability of a Masonry Joint.-Let $A^{\prime} B^{\prime} B^{\prime \prime} A^{\prime \prime}$ be the area of a joint between two rectangular plane surfaces, as, for instance, between two layers of stone in a masonry structure. Let $A B$ be the line passing through the centre of mass C of the area and the middle points A and B of the opposite sides $A^{\prime} A^{\prime \prime}$ and $B^{\prime} B^{\prime \prime}$. Let $A B=b$ be the breadth of joint, $A^{\prime} A^{\prime \prime}=l$ the length, ϕ the angle of friction of the dry joint, disregarding the effect of the mortar, $\mu=\tan \phi$ the corresponding co-
 efficient of static sliding friction, C the allowable compressive unit stress, R^{\prime} the resultant of all the external forces acting at the point G in the line $A B$.

The values of ϕ, μ and C are given in the Table.
Then we have the following conditions for stability :
1st. The resultant R of all the external forces must intersect the joint at some point G within the surface of contact (page 169); otherwise we have rotation.

2 d. The resultant reaction R of the joint at this point G must be equal and opposite to R^{\prime} and, if we disregard the effect of the mortar, must make an angle $R G N$ with the normal to the surface $A B$, less than the angle of friction or repose ϕ (page 189); otherwise we have sliding.

It is customary in the discussion of the stability of masonry structures to disregard the effect of the mortar because of its uncertain character and because the error is on the side of safety.

3 d . The greatest unit pressure at any point of the joint must not
exceed the allowable compressive unit stress C for the materials in contact ; otherwise the joint is overloaded.

Determination of this Greatest Unit Pressure.-Let N be the normal component of the resultant reaction R acting at the point G.

Then the least unit pressure p_{1} will
 act along the farthest edge at A, and the greatest unit pressure p will act along the nearest edge at B. If we lay off $A a=p_{1}$ and $B b=p$, the unit pressure at any other point will be given by the ordinate to the straight line $a b$, and the total load will be represented by the area $A B b a$ multiplied by the area of the joint $b l$.

We have then the mean unit pressure $\frac{p_{1}+p}{2}$, and hence the total pressure

$$
\begin{equation*}
N=\frac{p_{1}+p}{2} . b l, \quad \text { or } \quad p_{1}=\frac{2 N}{b l}-p \tag{1}
\end{equation*}
$$

Let $e=B G$ be the "edge distance" or distance of N from the nearest edge B.

The entire load area is made up of the rectangular area $A B c a$ and the triangular area $a c b$. The load represented by the rectangular area is $p_{1} b l$, and its centre of action is at C at a distance $B C=\frac{b}{2}$ from the edge B. The load represented by the triangular area is $\frac{p-p_{1}}{2} . b l$, and its centre of action is at E at a distance of $\frac{1}{3} b$ from the edge B.

We have then, taking moments about the edge B, for equilibrium,

$$
\begin{equation*}
p_{1} b l \times \frac{b}{2}+\frac{\left(p-p_{1}\right) b l}{2} \times \frac{b}{3}-N e=0 \tag{2}
\end{equation*}
$$

From (1) and (2) we obtain for the greatest unit pressure

$$
\begin{equation*}
p=\frac{2 N}{b l}\left(2-\frac{3 e}{b}\right), \tag{3}
\end{equation*}
$$

and for the least únit pressure

$$
\begin{equation*}
p_{1}=\frac{2 N}{b l}\left(\frac{3 c}{b}-1\right) \tag{4}
\end{equation*}
$$

where N is the total normal pressure on the joint acting at a distance e from the nearest edge, l is the length of joint, b the breadth.

In any case, then, we can find the value of p from (3), and this value must not exceed the allowable compressive unit stress C for the materials in contact, otherwise the joint is overloaded.

We see from (3) and (4) that when $e=\frac{b}{2}$ we have $p_{1}=p=\frac{N}{b l}$. That is, when the resultant R^{\prime} of all the external forces acts at the centre of mass C of the joint, the load N is uniformly distributed over the
 entire joint, and the unit pressure at every point is $p=\frac{N}{b l}$.

As e diminishes, p increases and p_{1} decreases; and when $e=\frac{b}{3}$, we have $p_{1}=0$ and $p=\frac{2 N}{b l}$. That is, when the resultant R^{\prime} of all the external forces acts at $\frac{b}{3}$ from the nearest edge, the unit pressure at the farthest edge is zero, and the greatest unit pressure at the
 nearest edge is twice as great as if the load were uniformly distributed over the area of the entire joint bl.

If then e is less than $\frac{b}{3}$, the whole joint is not brought into action. The effective area of joint is $3 e l$, or the distance $B D=3 e$. The portion $A D$ affords no resistance, if we disregard the effect of the mortar, and the greatest unit pressure is $p=\frac{2 N}{3 e l}$, or twice as great as if the load were uniformly distributed over the effective area $3 e b$.

We see then-
4th. That, in order to just bring the entire joint $A B$ into action, the resultant R^{\prime} of all the external forces must intersect the joint at the middle third.

This is called the "middle third rule," and in an economically proportioned masonry structure it should be complied with.

Stability of a Wall.-Let $A B D E$ be the section of a wall. We can investigate its stability as follows:

1. By Graphic Construction.-Find the centre of mass C of the section (page 22) by drawing the diagonals $A E, B D$ intersecting at I. Lay off along these diagonals $A e=$ $I E$, and $B d=I D$, and let m, m be the middle points of $A E$ and $B D$. Join $m d$ and $m e$. The intersection C is the centre of mass.

At the centre of mass thus found let the weight W of the section of wall act. Let b_{2} be the bottom base $A B$, and b_{1} the upper base $D E$, and l the length and h the height $D O$. Then the volume of the section is $\frac{\left(b_{1}+b_{2}\right) h l}{2}$. If δ is the density or mass of a unit of volume of the masonry, we have the weight W in gravi-
 tation units,

$$
W=\frac{\left(b_{1}+b_{2}\right) h l \delta}{2}
$$

(For values of δ see page 229.)
Let P be the resultant pressure upon the wall in gravitation units, acting at the point K and known in magnitude and direction. Since we can consider P as acting at any point in its line of direction, produce it till it meets the line of direction of W at the point c. Let W and P both act at this point c, and find their resultant R^{\prime}.

Then, as we have just seen in the preceding Article :
1 st. The resultant R^{\prime} must intersect the joint $A B$ at some point G within the base; otherwise we have rotation.
$2 d$. If the joint $A B$ extends through the wall, the reaction R of the surface $A B$ at G must be equal and opposite to R^{\prime} and make an angle $R G N$ with the normal N less than the angle of friction or repose ϕ; otherwise we have sliding. (For values of ϕ see page 229.) For security we should have

$$
n \times \text { angle } R G N=\phi
$$

where n is called the factor of safety for sliding. In practice n should be at least 2 or even more if shocks are to be apprehended.

The student should note that if the joint $A B$ does not extend through the wall, no investigation for sliding is necessary.

3d. The greatest unit pressure must not be greater than the allowable compressive unit stress C for the materials in contact; otherwise the base $A B$ is overloaded. (For values of C see page 229.)

4th. For economic proportions $e=G B$ must be just equal to $\frac{1}{3} b_{2}$, in which case the entire base $A B$ is just brought into action.

If e is greater or less than $\frac{1}{3} b_{2}$, the proportions are not economic, but stability exists in any case if condition $3 d$ is fulfilled.

We make then the construction as directed on page 231. If the joint $A B$ extends through the wall, we must have
$n \times$ angle $R G N=\phi$,
where n should be 3 or more if shocks are to be apprehended.
If the joint $A B$ does not extend through the wall, there is no danger of sliding.

If the construction gives $e=\frac{1}{3} b_{2}$, the proportions are economic, and there is also stability provided that (page 230)

$$
\text { for } e=\frac{1}{3} b_{2} \quad p=\frac{2 N}{l b_{2}} \overline{<} C .
$$

If the construction gives e greater or less than $\frac{1}{3} b_{2}$, the proportions are not economic, but we still have stability provided that

$$
\text { for } e>\frac{1}{3} b_{2} \quad p=\frac{2 N}{l b_{2}}\left(2-\frac{3 e}{b_{2}}\right) \overline{<} C
$$

and provided that

$$
\text { for } e<\frac{1}{3} b_{2} \quad p=\frac{2 N}{3 e l} \overline{<} C .
$$

2. By Calculation.-Let the back of the wall $A D$ make the batter-angle β with the vertical, and the pressure P make the angle
 0 with the normal to the wall and therefore the angle $(\beta+\theta)$ with the horizontal.

Then the vertical component of P is

$$
\begin{equation*}
V=P \sin (\beta+\theta) \tag{1}
\end{equation*}
$$

and the horizontal component of P is

$$
\begin{equation*}
H=P \cos (\beta+6) . \tag{2}
\end{equation*}
$$

If δ is the density or mass of a unit of volume of the masonry, we have for the weight W of the section

$$
\begin{equation*}
W=\frac{\left(b_{1}+b_{2}\right) l h \delta}{2} \tag{3}
\end{equation*}
$$

(For values of δ see page 229.)

Hence the normal component N of R is

$$
\begin{equation*}
N=W+V \tag{4}
\end{equation*}
$$

If μ is the coefficient of static sliding friction for the base $A B$, we have for limiting equilibrium, if the joint $A B$ extends through the wall, the friction

$$
F=\mu N
$$

(For values of μ see page 229.)
In order that the angle $R G N$ shall be less than the angle of friction ϕ, we must have

$$
H<F .
$$

For security let us put $n H=F$, or

$$
n H=\mu(W+V)
$$

Then we have

$$
\begin{equation*}
n=\frac{\mu(W+V)}{H} \tag{I}
\end{equation*}
$$

where V, H and W are given in any case by (1), (2) and (3).
We call n the factor of safety for sliding. If n is less than unity, the wall slides. If $n=1$, we have $H=F$ or limiting equilibrium, and the wall is on the point of sliding. For safety, then, n must be greater than unity, and the greater it is the greater the security. If $n=2$ or 3 , it will take two or three times the given pressure P to make the wall just begin to slide. In practice n should be at least two or even more, if shocks are to be apprehended. If the joint $A B$ does not extend through the wall, there is no danger of sliding and equation (I) need not be applied.

Let the distance $A K$ of the point of application of P from A be d. Let $e=G B$ be the distance of the intersection of the resultant R^{\prime} and the base $A B$ from the edge B of the wall.

Take the point G as the point of moments. Then the lever-arm of the horizontal component H of P is $d \cos \beta$, the lever-arm of the vertical component V of P is $\left(b_{2}-d \sin \beta-e\right)$, and the lever-arm of the weight W is ($b_{2}-\overline{A H}-e$), where the horizontal distance $\overline{A H}$ of W from A is given (page 22) by

$$
\begin{equation*}
s_{2}=\overline{A H}=\frac{b_{2}}{2}-\frac{b_{2}+2 b_{1}}{3\left(b_{1}+b_{2}\right)}\left[\frac{b_{2}-b_{1}}{2}-h \tan \beta\right] . \tag{5}
\end{equation*}
$$

We have then for equilibrium, taking moments about the point G,

$$
\begin{align*}
& -H d \cos \beta+V\left(b_{2}-d \sin \beta-e\right)+W\left(b_{2}-s_{2}-e\right)=0, \\
& \text { or } \quad e=\frac{W\left(b_{2}-s_{2}\right)+V\left(b_{2}-d \sin \beta\right)-H d \cos \beta}{W+V}, \tag{II}
\end{align*}
$$

where V, H and W are given by (1), (2) and (3), and $A H=s_{2}$ is given by (5).

For economic proportions we should have $e=\frac{1}{3} b_{2}$. If then we put $e=\frac{1}{3} b_{2}$ in (II) and solve for b_{2}, we have

$$
b_{2}=-B+\sqrt{\overline{B^{2}+E}},
$$

where for convenience of notation

$$
\left.\begin{array}{l}
B=\frac{1}{2}\left[b_{1}+\frac{4 V}{\delta h l}-h \tan \beta\right] ; \tag{III}\\
E=b_{1}\left(b_{1}+2 h \tan \beta\right)+\frac{6 d}{\delta h l}(V \sin \beta+H \cos \beta) .
\end{array}\right\}
$$

Equations (III) give us the length of the lower base $A B=b_{2}$ for economic proportions, when the entire base $A B$ just comes into action.

If b_{2} has this value, we must have for security against overloading (page 230)

$$
\begin{equation*}
\text { for } e=\frac{1}{3} b_{2} \quad p=\frac{2(W+V)}{l b_{2}} \overline{<} C, \tag{6}
\end{equation*}
$$

where C is the allowable compressive unit stress as given on page 229.

If b_{2} is greater or less than the value given by (III), or if e as given by (2) is greater or less than $\frac{1}{3} b_{2}$, the proportions are not economic, but we still have stability if the base $A B$ is not overloaded, that is, provided that in the first case (page 230)

$$
\begin{equation*}
\text { for } e>\frac{1}{3} b_{2} \quad p=\frac{2(W+V)}{l b_{2}}\left(2-\frac{3 e}{b_{2}}\right)<C \text {, } \tag{7}
\end{equation*}
$$

and provided that in the second case

$$
\begin{equation*}
\text { for } e<\frac{1}{3} b_{2} \quad p=\frac{2(W+V)}{3 e l} \overline{ } \bar{l} C . \tag{8}
\end{equation*}
$$

It is the custom of some engineers, for the sake of additional security, to neglect the vertical component V of the pressure in equations (I), (II) and (III). In such case we have only to make $V=0$ in these equations.

Low and High Wall.-If e, as given by equation (II), is less than or equal to $\frac{1}{3} b_{2}$ and at the same time conditions (8) or (6) are found to be satisfied, so that the base $A B$ is not overloaded, the wall is called a "low" wall. In such case b_{2} may be made equal to or less than its value as given by (III).

When, however, the wall is so high that, when e is equal to $\frac{1}{3} b_{2}$, condition (6) cannot be satisfied, it is called a "high" wall. In such case b_{2} must be greater than its value as given by (III), and e must be greater than $\frac{1}{3} b_{2}$.

To find the limiting value of b_{2} in this case: from condition (7) let

$$
\frac{2(W+V)}{l b_{2}}\left(2-\frac{3 e}{b_{2}}\right)=C, \quad \text { or } \quad e=\frac{2}{3} b_{2}-\frac{C l b_{2}^{2}}{6(W+V)} .
$$

Let e in equation (II) have this value, and solve for b_{2}, and we have

$$
b_{2}=-K+\sqrt{K^{2}+L}
$$

where, for convenience of notation,

$$
\begin{align*}
& K=\frac{1}{C}\left[\frac{V}{l}-\frac{\delta h^{2} \tan \beta}{2}\right] \tag{IV}\\
& L=\frac{\delta h b_{1}}{C}\left(b_{1}+2 h \tan \beta\right)+\frac{6 d}{l C}(V \sin \beta+H \cos \beta)
\end{align*}
$$

where V and H are given by (1) and (2) If the vertical component V of the pressure is neglected, as is the custom of some engineers for the sake of additional security, we have only to make $V=0$ in (IV).

Equations (IV) give the least value of b_{2} for a "high" wall, that is, for a wall so high that when $e=\frac{1}{3} b_{2}$ the base $A B$ is overloaded.

Low Gravity Dam.-A wall which resists the pressure of water by reason of its weight alone is called a "gravity dam." It is a "low" dam if e can be equal to or less than $\frac{1}{3} b_{2}$, without overloading the base.

The general investigation of the stability of a wall given in the preceding Article applies to any case where the pressure P is known in direction, point of application and magnitude.

Direction of Water Pressure.-It is a well-known principle of Physics that the direction of water pressure upon a submerged surface is always normal to the surface.

We have then in the formulas of the preceding Article

$$
\theta=0,
$$

and the angle of the pressure P with the horizontal is equal to the batter-angle of the
 back $A D O=\beta$.

Point of Application of Water Pressure.-Moreover, since the pressure at the water level D^{\prime} is zero and the pressure at any point
 increases directly as the depth of that point below the water level, the pressure at any point is proportional to the ordinate to a straight line $D^{\prime} F$, and the resultant pressure P acts at the centre of mass of a triangle $A D^{\prime} F$, that is, at a distance $A K=d$ equal to $\frac{h_{1}}{3 \cos \beta}$, where h_{1} is the depth of water back of the wall.
In the formulas of the preceding Article we have then

$$
d=\frac{h_{1}}{3 \cos \beta}
$$

Magnitude of Water Pressure.-It is also a well-known principle of Physics that the pressure is equal to the weight of a prism of water whose base is the submerged surface and whose height is the distance from the water level to the centre of mass of the submerged surface.

The submerged surface is $\frac{l h_{1}}{\cos \beta}$, where l is the length and $\frac{h_{1}}{2}$ is the distance of the centre of mass of the submerged surface from the water level. Let γ be the density or mass of a unit of volume of water (62.5 lbs . per cubic foot). Then we have for the pressure

$$
P=\frac{\gamma l h_{1}{ }^{2}}{2 \cos \beta}
$$

We have then for the vertical component of P

$$
\begin{equation*}
V=\frac{\gamma l h_{1}^{2}}{2} \tan \beta, \tag{1}
\end{equation*}
$$

and for the horizontal component of P

$$
\begin{equation*}
H=\frac{\gamma l h_{1}{ }^{2}}{2} \cdot \cdot . \tag{2}
\end{equation*}
$$

The weight W of the dam is

$$
\begin{equation*}
W=\frac{\left(b_{1}+b_{2}\right) \ln \delta}{2}=A l \delta, \tag{3}
\end{equation*}
$$

where A is the area of the cross-section $A B E D$.
(For values of δ see page 229.)
If then we substitute $\theta=0^{\circ}$, $d=\frac{h_{1}}{3 \cos \beta}$, and the values of V, H and W as given by (1), (2) and (3) in the general formulas of the preceding Article, we obtain the corresponding formulas for a dam sustaining water pressure only. The graphic construction is the same as on page 231.

Ice and Wave Pressure.-A dam, however, has to sustain, in addition to the water pressure on the back, a horizontal pressure at the top surface due to waves or the thrust of ice. We denote this horizontal thrust per linear foot of dam, due to waves or ice, by T. For waves we may take $T=24000$ pounds per linear foot, and for ice $T=40000$ pounds per linear font. Since both these do not act together, we have only to consider T for ice in cold climates and T for waves in warm.

Factor of Safety for Sliding.-The normal component N of R is

$$
\begin{equation*}
N=W+V \tag{4}
\end{equation*}
$$

and the friction is

$$
F=\mu N=\mu(W+V)
$$

where μ is the coefficient of static sliding friction for the base $A B$. For values of μ see page 229.

If n is the factor of safety for sliding, we have
or

$$
n(H+T)=F
$$

or, if V is neglected,

$$
\left.\begin{array}{l}
n=\frac{\mu(W+V)}{H+T} \tag{I}\\
n=\frac{\mu W}{H+T}
\end{array}\right\}
$$

where V, W and H are given by (1), (2) and (3). If there are no through joints in the dam, there can be no sliding and equation (I)
need not be applied. If there are through joints, n should be at least 2 or more if shocks are to be apprehended.

Stability and Proportions.-We have for the horizontal distance $\overline{A H}=s_{2}$ of the centre of mass of the section from A (page 22)

$$
\begin{equation*}
\overline{A \bar{H}}=s_{2}=\frac{b_{2}}{2}-\frac{b_{2}+2 b_{1}}{3\left(b_{1}+b_{2}\right)}\left[\frac{b_{2}-b_{1}}{2}-h \tan \beta\right] . \tag{5}
\end{equation*}
$$

If we take moments about the point G (figure, page 236), we have as on page 233, taking the ice-thrust T into account,
$-H d \cos \beta-T h_{1}+V\left(b_{2}-d \sin \beta-e\right)+W\left(b_{2}-s_{2}-e\right)=0$, or, substituting $d=\frac{h_{1}}{3 \cos \beta}$ and the values of V and W,

$$
\begin{equation*}
e=\frac{A\left(b_{2}-s_{2}\right)+\frac{\gamma h_{1}^{2}}{2 \delta} \tan \beta\left(b_{2}-\frac{h_{1}}{3} \tan \beta\right)-\frac{\gamma h_{1}^{3}}{6 \delta}-\frac{T h_{1}}{\delta}}{A+\frac{\gamma h_{1}^{2}}{2 \delta} \tan \beta} \tag{II}
\end{equation*}
$$

or, if we neglect V,

$$
e=\frac{A\left(b_{2}-s_{2}\right)-\frac{\gamma h_{1}^{2}}{6 \delta}-\frac{T h_{1}}{\delta}}{A}
$$

where A is given by (3), and s_{2} by (5). Equation (II) gives the point at which the resultant cuts the base when the ice-thrust acts.

For economic proportions we should have $e=\frac{1}{3} b_{2}$ when the ice-or wave-thrust T does not act. Putting, then, $e=\frac{1}{3} b_{2}$ in (II) and neglecting T and solving for b_{2}, we have

$$
b_{2}=-B+\sqrt{B^{2}+E}
$$

where

$$
\begin{align*}
& B=\frac{1}{2}\left[b_{1}+\frac{2 \gamma h_{1}{ }^{2} \tan \beta}{\delta h}-h \tan \beta\right] \\
& E=b_{1}\left(b_{1}+2 h \tan \beta\right)+\frac{\gamma h_{1}^{3}}{\delta h}\left(1+\tan ^{2} \beta\right) \tag{III}
\end{align*}
$$

or, if V is neglected,

$$
B=\frac{1}{2}\left(b_{1}-h \tan \beta\right) ; E=b_{1}\left(b_{1}+2 h \tan \beta\right)+\frac{\gamma h_{1}{ }^{3}}{\delta h} .
$$

Equations (III) give the lower base $b_{2}=A B$ for economic proportions, that is, when $e=\frac{1}{3} b_{2}$, or the whole base $A B$ just comes into action when there is no ice- or wave-thrust T. If b_{2} has this value, we must have for security against overloading (page 230)

$$
\begin{equation*}
\text { when } e=\frac{1}{3} b_{2} \quad p=\frac{2 A \delta+y h_{1}{ }^{2} \tan \beta}{b_{2}} ₹ C, \tag{6}
\end{equation*}
$$

where C is the allowable compressive unit stress as given page 229.
If b_{2} is taken greater or less than the value given by (III), the value of e given by (II) when T is neglected will be greater or less
than $\frac{1}{3} b_{2}$ and the proportions are not economic. But we still have stability if the base is not overloaded, that is, if
and if

$$
\begin{equation*}
\text { when } e>\frac{1}{3} b_{2} \quad p=\frac{2 A \delta^{\circ}+\gamma h_{1}^{2} \tan \beta}{b_{2}}\left(2-\frac{3 e}{b_{2}}\right) \overline{<} C, . \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\text { when } e<\frac{1}{3} b_{2} \quad p=\frac{2 A \delta+\gamma h_{1}{ }^{2} \tan \beta}{3 e} \overline{<} C \tag{8}
\end{equation*}
$$

But now, when the ice-thrust T acts, e is given by (II); and in order that the base may not be overloaded, this value of e must satisfy condition (8). If it does not, the ice-or wave-thrust T causes the base to be overloaded. Substituting then the value of e from (II) in (8), and the value of s_{2} from (5), and neglecting V, and making $\beta=0$, we have, since $A=\frac{\left(b_{1}+b_{2}\right) h}{2}$,
$b_{2}=-\frac{(C-\delta h) b_{1}}{(2 C-\delta h)}+\sqrt{\frac{b_{1}{ }^{2}(C-\delta h)^{2}}{(2 C-\delta h)^{2}}+\frac{h b_{1}{ }^{2}(C+\delta h)+C h_{1}\left(\boldsymbol{\gamma} h_{1}{ }^{2}+6 T^{\prime}\right)}{\delta h(2 C-\delta h)}}$. (III,
Equation (III') gives the least value of b_{2} consistent with safety when the ice- or wave-thrust T acts, for vertical back. For the sake of security and simplicity we take the same limiting value when the back is not vertical. If then condition (8) is not satisfied when we take for e its value from (II), we cannot have economic proportions, but must take b_{2} equal to or greater than the value given by (III').

It is the custom of some engineers, for the sake of additional security, to neglect the vertical component V of the pressure in equations (I), (II) and (III). We have therefore given these equations for both cases.

When the dam is empty, equation (5) gives the intersection of the weight with the base. In this case

$$
\begin{aligned}
& \text { when } s_{2}=\frac{1}{3} b_{2} \quad \text { we must have } p=\frac{2 A \delta}{b_{2}} \overline{<} C \text {; } \\
& \text { " } s_{2}>\frac{1}{3}-b_{2} \quad \text { " " " } p=\frac{2 A \delta}{b_{2}}\left(2-\frac{3 s_{2}}{b_{2}}\right) \overline{<} C \text {; } \\
& \text { " } s_{2}<\frac{1}{3} b_{2} \quad \text { " } \quad \text { " } p=\frac{2 A \delta}{3 s_{2}} \overline{<} C \text {. }
\end{aligned}
$$

When the back is vertical, $\beta=0$ and (5) becomes

$$
s_{2}=\frac{1}{3} b_{2}+\frac{b_{1}{ }^{2}}{3\left(b_{1}+b_{2}\right)}
$$

That is, s_{2} is always greater than $\frac{1}{3} b_{2}$ for vertical back.
We can put B in equation (III) in the form

$$
B={ }_{2}^{1} b_{1}+\frac{\gamma h \tan \beta}{2 \delta}\left(\frac{2 h_{1}{ }^{2}}{h^{2}}-\frac{\delta b}{\gamma}\right)
$$

We see from the Table page 229 that the specific mass $\frac{\delta}{\gamma}$ is greater than 2 for all materials except brickwork and small dry rubble. We can never have h_{1} or the depth of water greater than
h or the height of wall. Hence for all materials except brick and small dry rubble the term in the parenthesis is minus, and even for the last two materials it is minus if h_{1} is not more than ${ }_{10}^{9} h$. In general, then, B increases and E decreases as the angle β decreases.

In the value for b_{2}, then, the magnitude of B increases more rapidly than $\sqrt{B^{2}+E}$, and b_{2} has its least value when $\beta=0$.

Hence the most economical section of dam is that which has the back vertical.

High Gravity Dam.-If e as given by equation (II), page 237, is less than or equal to $\frac{1}{3} b_{2}$, and at the same time conditions (8) or (6), are satisfied, so that the base $A B$ is not overloaded, the dam is "low." In such case b_{2} may be made equal to or less than its value as given by (III), provided it is greater than the least value given by (III').

When, however, the dam is so high that when $e=\frac{1}{3} b_{2}$ condition (6) cannot be satisfied, it is called "high." In such case b_{2} must be greater than its value as given by (III), and e must be greater than $\frac{1}{3} b_{2}$.

To find the limiting value of b_{2} in this case: From condition (7), page 238, let

$$
\frac{2 A \delta+\gamma h_{1}{ }^{2} \tan \beta}{b_{2}}\left(2-\frac{3 e}{\overline{b_{2}}}\right)=C, \quad \text { or } \quad e=\frac{2}{3} b_{2}-\frac{C b_{2}{ }^{2}}{6 A \delta+3 \gamma h_{1}{ }^{2} \tan \beta} .
$$

Let e in equation (II), page 237, have this value and solve for b_{2}, and we have (page 235)

$$
b_{2}=-K+\sqrt{K^{2}+L}
$$

where

$$
K=\frac{\tan \beta}{2 C}\left(\gamma h_{1}{ }^{2}-\delta h^{2}\right),
$$

or, if V is neglected,

$$
K=-\frac{\delta h^{2} \tan \beta}{2 C}
$$

and

$$
L=\frac{\delta h b_{1}}{C}\left(b_{1}+2 h \tan \beta\right)+\frac{\gamma h_{1}^{3}}{C \cos ^{2} \beta}+\frac{6 h_{1}}{C} T
$$

or, if V is neglected,

$$
L=\frac{\delta h b_{1}}{C}\left(b_{1}+2 h \tan \beta\right)+\frac{\gamma h_{1}^{3}}{C}+\frac{6 h_{1}}{C} T ;
$$

where C is the allowable compressive unit stress as given page 229, h_{1} is the depth of water, h the height of section, γ the density or mass of a unit of volume of water, δ the density or mass of a unit of volume of masonry, β the batter-angle of back, b_{1} the breadth at top of section and ∂_{2} at bottom.

Equations (IV) give the least value of b_{2} for a "high" dam, that is, so high that when $e=\frac{1}{3} b_{2}$ the base $A B$ is overloaded.

Since it is the custom of some engineers, for the sake of additional security, to neglect the vertical component V of the pressure, we have given these equations for both cases.

Economic Section for High Gravity Dam.-We have seen, page 239 , that the economic section for alow dam has the back vertical.

First Sub-section. -Let $D E=b_{1}$ be the top base. The economic section of the first sub-section $A_{1} B_{2} E D$ should then be a rectangle
 for a distance h_{2} such that $e=$ $B_{1} G$ shall be just equal to $\frac{1}{3} b_{1}$, so that the entire joint $A_{1} B_{1}$ may act, provided this joint is not overloaded.

We find the height h_{2} of this rectangular portion as follows:

If h_{1} is the depth of water above $A_{1} B_{1}$, the horizontal pressure is $P=\frac{\gamma l h_{1}{ }^{2}}{2}$, where γ is the density or mass of a unit of volume of water, and l is the length of dam considered. This pressure P acts at $\frac{1}{3} h_{1}$ above $A_{3} B_{1}$. The weight of the subsection is $W_{1}=\delta l h_{2} b_{1}=A_{1} l \delta$, where A_{1} is the area and δ is the density or mass of a unit of volume of masonry. It acts at $\frac{1}{2} b_{1}$ from B_{1}.

Taking moments about G and neglecting the ice-thrust T, we have

$$
W_{1}\left(\frac{b_{1}}{2}-e\right)-\frac{P h_{1}}{3}=0
$$

or, when $e=\frac{1}{3} b_{1}$, inserting the values of W_{1} and P_{1},

$$
\delta h_{2} b_{1}^{2}=\gamma h_{1}^{3}
$$

Let a be the distance of the water level below the top of the dam, then $h_{1}=h_{2}-a$. Substituting this, we have

$$
\begin{equation*}
\delta b_{1}{ }^{2} h_{2}=\gamma\left(h_{2}-a\right)^{3} \tag{I}
\end{equation*}
$$

or for the extreme case of water level with top of dam,
where $\frac{\delta}{\gamma}$ is the specific mass (page 10) of the masonry as given page 229.

The same result is obtained from equation (III), page 237, by making $\beta=0, b_{2}=b_{1}$, and $h_{1}=h_{2}$.

Equation (I) gives the height of the first rectangular sub-section $A B_{1} E D$, provided the joint $A_{1} B_{1}$ is not overloaded.

If there are no through joints, there is no danger of sliding.

Top Thickness.-If now we consider the ice-thrust T as acting and take moments about G, we have

$$
W_{1}\left(\frac{b_{1}}{2}-e\right)-\frac{P h_{1}}{3}-T l h_{1}=0
$$

or, substituting the values of W_{1} and P,

$$
\begin{equation*}
e=\frac{b_{1}}{2}-\frac{\gamma h_{1}{ }^{3}}{6 \bar{\delta} b_{1} h_{2}}-\frac{T h_{1}}{\delta b_{1} h_{2}} \tag{1}
\end{equation*}
$$

We obtain the same result from equation (II), page 237, by making $\beta=0, b_{2}=b_{1}, s_{2}=\frac{b_{1}}{2}$.

For the extreme case of water level with top of dam, $h_{1}=h_{2}$; and if we substitute the value of h_{2} from (I), we have

$$
e=\frac{b_{1}}{3}-\frac{T}{\delta b_{1}} .
$$

But in order that $A_{1} B_{1}$ may not be overloaded, we must have

$$
\frac{2 A_{1} \delta}{3 e}=C, \quad \text { or } \quad e=\frac{2 \delta h_{2} b_{1}}{3 C}
$$

where C is the allowable unit stress of compression. We have then

$$
\frac{2 \delta h_{2} b_{1}}{3 C}=\frac{b_{1}}{3}-\frac{T}{\delta b_{1}},
$$

or, substituting the value of h_{2} from (I),

$$
\frac{2 \delta \sqrt{\frac{\delta}{\gamma}}}{C} \cdot b_{1}{ }^{3}-b_{1}{ }^{2}=-\frac{3 T}{\delta}
$$

A high dam would be built of ashlar masonry, and we have from page 229 the average values $\delta=150, \frac{\delta}{\gamma}=2.5, C=50000$. Taking $T=40000$, we have for the average value of b_{1} which allows (I) to be fulfilled without overloading, when water is level with top of dam,

$$
0.0096 b_{1}^{3}-b_{1}^{2}=-800, \quad \text { or } \quad b_{1}=\text { about } 35 \mathrm{ft}
$$

When the top base b_{1}, then, is about 35 ft . or over, we can run the first rectangular sub-section $A_{1} B_{1} E D$ down for the distance given by (I) without danger of overloading when the ice-thrust acts.

Local and practical considerations must control the choice of top base b_{1}. But if it is taken less than about 35 ft ., e is given by (1) and we must have

$$
\frac{2 A_{1} \delta}{3 e}=C, \quad \text { or } \quad 2 \delta b_{1} h_{2}=3 e C
$$

or, substituting the value of e from (1) and putting $h_{1}=h_{2}-a$, where a is the depth of water below the top,

$$
2 \delta b_{1} h_{2}{ }^{2}=\frac{3}{2} b_{1} C h_{2}-\frac{\gamma C\left(h_{2}-a\right)^{3}}{2 \delta b_{1}}-\frac{3 C T\left(h_{2}-a\right)}{\delta b_{1}} .
$$

From (I^{\prime}) we can find the height h_{2} of the rectangular sub-section $A_{1} B_{1} E D$ when b_{1} is less than 35 ft . and the ice-thrust T acts.

We find then the first rectangular sub-section $A_{1} B_{1} E D$ from (I) if b_{1} is greater than 35 ft ., and from (I^{\prime}) if l_{1} is less than 35 ft ., and the joint $A_{1} B_{1}$ will not be overloaded when the ice-thrust acts.

Second Sub-section.-Below $A_{1} B_{1}$ we still continue the back vertical, but b_{1} must now increase so that for any joint $b_{2}=A_{2}{ }^{\prime} B_{2}{ }^{\prime}, e$
 shall be equal to $\frac{1}{3} b_{2}$, and the joint shall not be overloaded when the ice-thrust T acts.

Let $A_{1} B_{1} B_{2}{ }^{\prime} A_{2}{ }^{\prime}$ be any section in general below $A_{1} B_{1}$ the height of which h_{2} is so small that it may be regarded as a trapezoid. Let β be the batter-angle of the back, W_{1} the resultant weight of all the masonry above $A_{2} B_{1}$ acting at the distance s_{1} from A, W_{2} the weight of the section acting at the distance s_{2} from $A_{2^{\prime}}, W$ the resultant $W_{1}+W_{2}$ of these two acting at the distance s from $A_{2}{ }^{\prime}$. Then, taking moments about $A_{2}{ }^{\prime}$, we have

$$
\begin{equation*}
s=\frac{W_{1}\left(s_{1}+h_{2} \tan \beta\right)+W_{2} s_{2}}{W_{1}+W_{2}}=\frac{A_{1}\left(s_{1}+h_{2} \tan \beta\right)+A_{2} s_{2}}{A_{1}+A_{2}} \frac{}{1} \tag{II}
\end{equation*}
$$

where A_{1}, A_{2} are the areas of the sections above $A_{1} B_{1}$ and the section $A_{1} B_{1} B_{2} A_{2}$, so that $A_{1} l \delta=W_{1}, A_{2} l \delta=W_{2}$.

We have then

$$
A_{2}=\frac{\left(b_{1}+b_{2}\right) h_{2}}{2}, \quad W_{2}=\frac{\left(b_{1}+b_{2}\right) h_{2} l \delta}{2}
$$

and, from page 22,

$$
\begin{equation*}
s_{2}=\frac{b_{3}}{2}-\frac{b_{2}+2 b_{1}}{3\left(b_{2}+b_{1}\right)}\left[\frac{b_{2}-b_{1}}{2}-h_{2} \tan \beta\right] \tag{2}
\end{equation*}
$$

Let P be the horizontal component of the water pressure on the entire back above $A_{2}^{\prime} B_{2}^{\prime}$, and h_{1} the height of water level above $A_{2}{ }^{\prime} B_{2}{ }^{\prime}$. Then $P=\frac{\gamma l h_{1}{ }^{2}}{2}$, acting at a distance $\frac{h_{1}}{3}$ above $A_{2}{ }^{\prime} B_{2}{ }^{\prime}$. We have also the ice-thrust T acting at the distance h_{1} above $A_{2}{ }^{\prime} B_{2}{ }^{\prime}$.

Let the resultant of P, T and W cut the base at the distance $G B_{2}{ }^{\prime}=e$ from $B_{2}{ }^{\prime}$, Fig. 2. Then, neglecting, for the sake of security and simplicity, the vertical component of the water pressure, we have

$$
\left(W_{1}+W_{2}\right)\left(l_{2}-s-e\right)-\frac{\gamma l h_{1}^{3}}{6}-T h_{2} l=0
$$

hence

$$
\begin{equation*}
e=b_{2}-s-\frac{\gamma h_{1}+6 T h}{6 \delta\left(\overline{A_{1}}+\frac{A_{2}}{A_{2}}\right.} \tag{3}
\end{equation*}
$$

[If in (3) we make $A_{1}=0$, the whole section above $A_{2}{ }^{\prime} B_{2}{ }^{\prime}$ is a trapezoid and we have the same value for e as from equation (II), page 237 , when $\beta=0, s_{2}=s$, and $A=A_{2}$.]

For economic proportions we should have $e=\frac{1}{3} b_{2}$ when the ice-or wave-thrust T does not act. Making, then, $\beta=0$ in (2) and (II),
substituting the corresponding values of s_{2} and s in (II) and (3), and making $e=\frac{1}{3} b_{2}$ and $T=0$, we obtain

$$
\left.\begin{array}{c}
b_{2}=-B+\sqrt{B^{2}+E} \\
\text { where } \\
B=\frac{2 A_{1}}{h_{2}}+\frac{b_{1}}{2}, \quad E=\frac{6 A_{1} s_{1}}{h_{2}}+\frac{\gamma h_{1}^{3}}{\delta h_{2}}+b_{1}{ }^{2} . \tag{III}
\end{array}\right\}
$$

[Here again, if we make $A_{1}=0$, the whole section above $A_{2}{ }^{\prime} B_{2}$ is a trapezoid and we have the same value for b_{2} as from equation (III), page 237, when $\beta=0, h=h_{2}$.]

Equations (III) give the lower base $b_{2}=A_{2}{ }^{\prime} B_{2}{ }^{\prime}$ for economic proportions when there is no ice- or wave-thrust T. If then we assume any section $A_{1} B_{1} B_{2}{ }^{\prime} A_{2}{ }^{\prime}$, Fig. 1, page 240 , of small depth h_{2}, we can find by (III) its base $b_{2}=A_{2}{ }^{\prime} B_{2}{ }^{\prime}$, since for this section $s_{1}=\frac{1}{2} b_{1}$. We can then find A_{2} and then e, from (3), when the ice- or wave-thrust T acts.

This value of e must satisfy the condition

$$
\begin{equation*}
\frac{2\left(A_{1}+A_{2}\right) \delta}{3 e}=C \tag{4}
\end{equation*}
$$

If it does not, the ice- or wave-thrust T causes $A_{2}{ }^{\prime} B_{2}{ }^{\prime}$ to be overloaded. We have then, taking for the extreme case

$$
\frac{2\left(A_{1}+A_{2}\right) \delta}{3 e}=C, \quad \text { or } \quad 3 e C=2\left(A_{1}+A_{2}\right) \delta,
$$

and putting for s_{\imath} its value from (2) when $\beta=0$, and for s its value from (II) when $\beta=0$, and then from (3) the corresponding value for e, by solving for b_{2},

$$
b_{2}=-B_{1}+\sqrt{B_{1}^{2}+E_{1}},
$$

where

$$
\left.\begin{array}{rl}
B_{1}= & \frac{A_{1}\left(3 C-2 \delta h_{2}\right)}{h_{2}\left(2 C-\delta h_{2}\right)}+\frac{\left(C-\delta h_{2}\right) b_{1}}{\left(2 C-\delta h_{2}\right)} \tag{III'}\\
E_{1}= & \frac{2 A_{1}\left(2 A_{1} \delta+2 \delta b_{1} h_{2}+3 C s_{1}\right)}{h_{2}\left(2 C-\delta h_{2}\right)} \\
& \quad+\frac{\delta h_{2} b_{1}{ }^{2}\left(C+\delta h_{2}\right)+C h_{1}\left(\gamma h_{1}{ }^{2}+6 T\right)}{\delta h_{2}\left(2 C-\delta h_{2}\right)}
\end{array}\right\}
$$

[This reduces to equation (III'), page 238, when $A_{1}=0$ and $\left.h_{2}=h.\right]$

Equation (III') gives the least value of b_{2} consistent with safety when the ice- or wave-thrust T acts. If then condition (4) is not satisfied when we take for e its value from (3), we must take for b_{2} its value as given by (III').

In either case, whether b_{2} is given by (III) or by (III'), we can find s from (II).

This value of s is the new s_{1} for the next section $A_{2}{ }^{\prime} B_{2}{ }^{\prime} B_{3}{ }^{\prime} A_{3}{ }^{\prime}$, Fig. 1, page 240, of small depth h_{2}. The value of b_{2} just found is the new b_{1} for this section. From (III) or (III') we then find b_{2} for this section, then s from (II), which is the new $\cdot s_{1}$ for the next section.

Thus by successive applications of (III) or (III') and (II) we find successive thicknesses $A_{2} B_{2}{ }^{\prime}, A_{3}{ }^{\prime} B_{3}{ }^{\prime}$, etc., Fig. 1, page 240.

We thus determine the economic section until we arrive at a section $A_{2} B_{2}$, Fig. 1, page 240, for which equation (II) gives us $s=\frac{1}{3} b_{2}$. When this section is reached equations (III) or (III') no longer apply, because if the vertical back were continued farther, the resultant pressure for reservoir empty would fall outside the middle third, making s less than $\frac{1}{3} b_{2}$.

We thus determine the lower limit $A_{2} B_{2}$, Fig. 1, page 240, of the second sub-section.

Third Sub-section.-Below this limit we must batter both front and back, so that both e and s shall always be $\frac{1}{3} b_{2}$ and the joint shall not be overloaded when the ice- or wave-thrust T acts.

If then in (3) we make $s=\frac{1}{3} b_{2}$ and $e=\frac{1}{3} b_{2}$ and neglect T, we obtain

$$
\begin{equation*}
b_{2}=-\left(\frac{A_{1}}{h_{2}}+\frac{b_{1}}{2}\right)+\sqrt{\left(\frac{A_{1}}{h_{2}}+\frac{b_{1}}{2}\right)^{2}+\frac{\gamma h_{1}^{3}}{\delta h_{2}}}, \tag{IV}
\end{equation*}
$$

where b_{1} is the top and b_{2} the bottom base of any trapezoid of small height h_{2}, and A_{1} the area of all the section above the top base of that trapezoid and h_{1} the depth of water above the bottom base of that trapezoid. We can then find the area A_{2} of this trapezoid, and then from (3) we can find e when the ice-thrust acts. This value of e must satisfy the condition

$$
\frac{2\left(A_{1}+A_{2}\right) \delta}{3 e} \overline{<} C
$$

If it does not, the ice-thrust T causes the base b_{2} as given by (IV) to be overloaded. We have then for the least value of b_{2} consistent with safety to use (III') instead of (IV). In either case we can find s_{2} from (2), and then from (II), putting $s=\frac{1}{3} b_{2}$ and solving for $\tan \beta$, we have for the back batter

$$
\begin{equation*}
\tan \beta=\frac{A_{1}\left(\frac{b_{2}}{3}-s_{1}\right)-\frac{h_{2} b_{1}^{2}}{6}}{h_{2}\left(A_{1}+\frac{1}{3} A_{2}+\frac{1}{6} h_{2} b_{1}\right)} \tag{V}
\end{equation*}
$$

We can thus determine by successive applications of (IV) or (III') and (V) the economic section, until we arrive at a section $b_{2}=A_{3} B_{3}$, Fig. 1, page 240, for which

$$
\begin{equation*}
\frac{2\left(A_{1}+A_{2}\right) \delta}{b_{2}}=C . \tag{5}
\end{equation*}
$$

We thus determine the limit $A_{3} B_{3}$, Fig. 1, page 240, of the third sub-section.

Fourth Sab-section.-Below this limit we must have both s and e greater than $\frac{1}{3} b_{2}$ and such that (page 230)

$$
\frac{2\left(A_{1}+A_{2}\right) \delta}{b_{2}}\left(2-\frac{3 e}{b_{2}}\right)=C \quad \text { and } \quad \frac{2\left(A_{1}+A_{2}\right) \delta}{b_{2}}\left(2-\frac{3 s}{b_{2}}\right)=C .
$$

Hence

$$
e=s=\frac{2}{3} b_{2}-\frac{C b_{2}{ }^{2}}{6 \delta\left(A_{1}+A_{2}\right)}
$$

Substituting these values of e and s in (3) and neglecting T, we obtain

$$
\begin{equation*}
b_{2}=\frac{\delta\left(2 A_{1}+h_{2} b_{1}\right)}{2\left(2 C-\delta h_{2}\right)}+\sqrt{\frac{\delta^{2}\left(2 A_{1}+h_{2} b_{1}\right)^{2}}{4\left(2 C-\delta h_{2}\right)^{2}}+\frac{\gamma}{2 C-\delta h_{2}^{3}}} . \tag{VI}
\end{equation*}
$$

Equation (VI) gives the base b_{2} for each successive trapezoid below $A_{3} B_{3}$, Fig. 1, page 240. From (3) we find e when the icethrust T acts. This value of e must satisfy the condition

$$
\frac{2\left(A_{1}+A_{2}\right) \delta}{3 e} \overline{ } \overline{ } C
$$

If it does not, the ice-thrust T causes the base b_{2} as given by (VI) to be overloaded. We have then for the least value of b_{2} consistent with safety to use (III') instead of (VI). In either case we find the back batter from (V).

Arch Dam.-When the dam is made in the form of an arch so that it supports the water pressure back of it wholly by virtue of its action as an arch, it is called an arch dam.

The water pressure upon the back of the dam is always normal to the surface, and the pressure upon a given area is always the same at the same depth.

Let a a a , Fig. 1, be the centre line of a horizontal cross-section of the dam, one foot in height. Let P_{1} and P_{2} be the equal normal pressures upon the equal portions $a^{\prime} a^{\prime}, a^{\prime} \alpha^{\prime}$, and H the horizontal pressure at the crown.

In Fig. 2, lay off H from O to 0 horizontally, and let $O 0$ represent the magnitude of H. Then lay off 01 and 12 parallel and equal in magnitude to P_{1} and P_{2}, and draw the rays $O 1, O 2$.

In Fig. 1, let H act at α, and prolong its direction till it meets P_{1} at b. From b draw $b c$ parallel to $O 1$ till it meets P_{2} at c. From c draw $c a$ parallel
 to $O 2$.

Then (page 146) abca, Fig. 1, is the equilibrium polygon. We have by similar triangles

$$
P_{1}: H:: c b: b C \text { or } c C ; \quad \therefore \frac{P_{1}}{c b}=\frac{H}{c \bar{C}}
$$

The same holds true no matter how many equal portions $\alpha^{\prime} a^{\prime}$ we take. But as we increase the number of portions, the polygon approaches a curve. For an indefinitely great number of portions we have for the curve of equilibrium $\frac{P_{1}}{c b}=p=$ unit pressure and $c C=r=$ radius of curvature. Hence

$$
p=\frac{H}{r}, \quad \text { or } \quad r=\frac{H}{p}
$$

But H and p are constant and therefore r is constant. Hence the curve of equilibrium is a circle.

If then we make the dam circular in cross-section, the curve of equilibrium will coincide with the centre line and the horizontal pressure H at the crown acts at the centre line and is equal to

$$
\begin{equation*}
H=r p . \tag{1}
\end{equation*}
$$

Also, since in Fig. 2 the force polygon 012 becomes a circle of radius H when the segments of the arch are indefinitely great in number, and since any ray, as 01 in Fig. 2, gives the stress in the corresponding segment $c b$, Fig. 1, of the equilibrium polygon (page 146), it is evident that the pressure at every point of the centre line is tangent to the centre line at that point and equal to H.

If then C is the allowable compressive stress per square foot, we have for the area A of the cross-section

$$
A=\frac{H}{C}=\frac{r p}{C} .
$$

If h_{1} is the depth of any point below the water level, we have the water pressure per square foot at that point equal to γh_{1}, where γ is the mass of a cubic foot of water, or 62.5 lbs . If T is the icethrust per foot of length, and h is the height of dam, we have the ice-thrust pressure per square foot of surface of the dam equal to $\frac{T}{h}$.

For an area of one square foot at a depth h_{1}, then, the total pressure per foot p is numerically equal to $\gamma h_{1}+\frac{T}{\hbar}$, and the thickness is given by

$$
\begin{equation*}
t=\frac{\gamma r h_{1}+\frac{r T}{h}}{C} . \tag{2}
\end{equation*}
$$

From (2) we can find the thickness of the dam at any point at a depth h_{1} below the water level.

If $h_{1}=0$ in (2), we have for the thickness at the water level, or the top thickness b_{1}, for ice pressure

$$
\begin{equation*}
b_{1}=\frac{r T}{C h} \tag{3}
\end{equation*}
$$

The choice of top thickness b_{1} must in general be determined by local and practical considerations.

If we make $t=b_{1}=$ the top thickness in (2), we have for the distance h_{2} below the water level for which the cross-section of the dam is a rectangle

$$
\begin{equation*}
h_{2}=\frac{C v_{1}}{\gamma r}-\frac{T}{\gamma h} . \tag{4}
\end{equation*}
$$

Below this limit the thickness must increase with the depth h_{1} according to (2); above it, the thickness is constant and equal to b_{1}. We should not take h_{1} in (2), then, less than h_{2} as given by (4).

The arch dam requires far less masonry than the gravity dam. But the pressure on the arch stones increases with the span and with the depth, and so does the thickness. When the thickness becomes great we cannot be sure that each arch stone will take its own share of the pressure. The distribution of the pressure over the cross-section is then uncertain. For such reasons the arch dam is most suitable for short and low dams. It is also manifestly unwise to make the stability of a dam depend wholly upon its action as an arch, except under the most favorable conditions as to rigid
side hills for abutments and the most unfavorable conditions as to cost of masonry.

Although it is not, then, generally wise to make the stability of dam depend wholly upon its action as an arch, it is well to make a a gravity dam curved so that the arch action may give additional security.

There are but two dams of the pure arch type in existence: the Zola Dam in the city of Aix in France, and the Bear Valley Dam in the San Bernardino Mts., Southern California. The first is of rubble masonry, height 120 ft ., radius 158 ft ., thickness at top 19 feet, at base 42 feet. The Bear Valley Dam is of granite, height 64 feet, radius 300 ft ., thickness at top 3.16 ft ., at base 20 ft .

Retaining Wall.-A wall designed to resist the pressure of earth back of it is called a retaining wall.

The general investigation of the stability of a wall given on page 231 applies to any case where the pressure P is known in direction, point of application and magnitude.

Point of Application of P.-In treating retaining walls, it is customary to neglect the cohesion of the earth. We therefore consider the pressure as zero at the earth level and increasing for any point of the back of the wall, directly as the depth of that point below the earth level. The pressure at any point is then proportional to the ordinate to a straight line $D^{\prime} F$, and the resultant pressure P acts, just as in the case of water pressure, at the centre of mass of the triangle $A D^{\prime} F$, so that the distance $A K=d$ is one third of $A D^{\prime}$, or $d=\frac{h_{1}}{3 \cos \beta}$,
 where h_{1} is the distance $D^{\prime} O$ of the earth surface above A, and β is the batter-angle of the back.

But unlike water pressure, the earth pressure is not normal to the wall, but makes an angle θ with the normal.

Also the magnitude of P is not the same as for water.
We have therefore to determine the magnitude and direction of the earth pressure P. We can then investigate the stability precisely as on page 231.

Magnitude and Direction of P-Graphic Determination.-Let $a b c$, Fig. 1, be any small prism, and let $+p_{1}$ be the normal pressure per

Fig. 3.
from H to N so that $H N=$ V, the resultant for equilibrium is $N A$. The line NA in Fig. 3 then gives the magnitude and direcand $b c$ at right angles, the (+) sign indicating direction up and to the right.

Then if there is equilibrium, the pressure per unit of area upon the third face $a b$ is also normal and equal to p_{1}.

For if we multiply the area of the face $a c$, Fig. 1, by $+p_{1}$, we have the total horizontal force $+H$, and if we multiply the area of the face bc, Fig. 1 , by $+p_{1}$, wo have the total vertical force $+V$. If we lay these forces off in Fig. 3, from A to H, so that $A H=+H$, and
tion of the total pressure on the third face αb, Fig. 1, which balances $+p_{1} . \overline{a c}=+H$ on the face $a c$ and $+p_{1} . \overline{b c}=+V$ on the face $b c$.

We have then H and V, Fig. 3, perpendicular to the faces $a c$ and bc, Fig. 1, and also

$$
\overline{a c}: b c:: H: V
$$

Hence the triangles $a b c$, Fig. 1, and NAH, Fig. 3, are similar and $N A$ is perpendicular to the face αb.

Also, we have

$$
N A=\sqrt{\overline{p_{1}{ }^{2} \cdot \overline{a c^{2}}+p_{1}{ }^{2} \cdot \overline{b c^{2}}}=p_{1} \sqrt{\overline{\overline{a c^{2}}+\overline{b c^{2}}}}=p_{1} \cdot \overline{a b}, ~}
$$

or the normal unit pressure p_{1} on the face $\overline{a b}$ is the same for equilibrium as that on the other two faces.

Suppose now the normal unit pressure p_{1} on the face ac, Fig. 2, to be reversed in direction, so that it is $-p_{1}$. We have then the total pressure on the face $b c$ equal to $+p_{1} \cdot \overline{b c}=+V$ the same as before, and the total pressure on the face $a c$ equal to $-p_{1} \cdot \overline{a c}=-H$, or the same as before in magnitude but opposite in direction. If we lay these forces off in Fig. 3, from A to H and H to N^{\prime}, the resultant for equilibrium is $N^{\prime} A$. It is evident that the magnitude of $N^{\prime} A$ is the same as before, but its direction makes the angle $N^{\prime} A V$ on the other side of $A V$ equal to the angle $N A V$ in the first case.

If then in Fig. 3 we lay off $A N$ equal to p_{1} and with N as a centre and $N A$ as radius describe an arc of a circle intersecting the vertical $A V$ at the point S, then the line $S N$ will give the magni-

tude and direction of the unit pressure p_{1} on the face $a b$ in the second case of Fig. 2. The angle $A S N$ is then equal to the angle $S A N$.

Now suppose that the normal pressures per unit of area on the two faces $a c$ and $b c$, Fig. 4, are unequal and are $+p_{2}$ and $+p_{1}$ respectively.

We can divide the normal unit pressure $+p_{1}$ on the face $b c$ into two parts, one equal to $+\frac{1}{2}\left(p_{1}+p_{2}\right)$ and the other equal to $+\frac{1}{2}\left(p_{1}-p_{2}\right)$, as indicated in Fig. 4. Similarly, we can divide the
normal unit pressure $+p_{2}$ on the face ac into two parts, one equal to $+\frac{1}{2}\left(p_{1}+p_{2}\right)$ and the other equal to $-\frac{1}{2}\left(p_{1}-p_{2}\right)$.

Then, as we have just proved, the unit pressure normal to the face $a b$ which balances $+\frac{1}{2}\left(p_{1}+p_{2}\right)$ on the face $b c$ and $+\frac{1}{2}\left(p_{1}+p_{2}\right)$ on the face αc is the same, or NA, Fig. 5, laid off normal to αb, where $N A=\frac{1}{2}\left(p_{1}+p_{2}\right)$.

Also, as we have proved, the unit pressure on the face $a b$ which balances $+\frac{1}{2}\left(p_{1}-p_{2}\right)$ on the face $b c$ and $-\frac{1}{2}\left(p_{1}-p_{2}\right)$ on the face $a c$ is the same, but it makes an angle $A S N$ with the vertical $A V$ equal to $S A N$. If, then, we lay off, in Fig. 5, $A N$ equal to $\frac{1}{2}\left(p_{1}+p_{2}\right)$ normal to $a b$, and with N as a centre and $N A$ as a radius describe an arc of a circle intersecting the vertical $A V$ at the point S, then $S N$ will give the direction of $\frac{1}{2}\left(p_{1}-p_{2}\right)$ acting on the face ab. Hence if we lay off along this line $N R=\frac{1}{2}\left(p_{1}-p_{2}\right)$ and join $R A$, the line $R A$ will give the magnitude and direction of the resultant unit pressure p on the face $a b$ when the normal unit pressures p_{1} and p_{2} on the faces bc and ac are unequal.

Suppose now the faces $a c$ and $b c$, Fig. 4, to remain invariable in direction, and the normal unit pressures p_{2} and p_{1} on these faces to remain constant, but let the third face $a b$ vary its inclination with the horizontal. Then the magnitudes of $A N=\frac{1}{2}\left(p_{1}+p_{2}\right)$ and of $N R$ $=\frac{1}{2}\left(p_{1}-p_{2}\right)$ in Fig. 5 remain unchanged, but their directions will change as the face $a b$ changes its inclination. It is evident that the greatest possible value of the angle $N A R$ which the resultant unit pressure $p=R A$ on the face $a b$ makes with the normal to that face will be when $N R$ is perpendicular to $A R$, or when the angle ARN. is 90°. In the case of earth this greatest possible angle is the angie of friction or repose ϕ_{1} for earth on earth.

Also when the angle $A R N$ is 90° and the angle $R A N$ is ϕ_{1}, the angle $S N F$ of p_{1} with the normal $A N$ is equal to $45^{\circ}+\frac{\phi_{1}}{2}$.

Let then, in Fig. 6, $a b$ be the surface of a prism of earth, and $A R$ $=p$ be the magnitude and direction of the unit pressure. Draw $A N$ normal to the surface $a b$, and $A R^{\prime}$ making the angle of friction ϕ_{1} with the normal $A N$. We can then find by trial a point N in the normal $A F$, such that if we take N as a centre and $N R$ as a radius, the arc $R R^{\prime}$ will be just tangent to $A R^{\prime}$. When this point N is thus found by trial, the distance $A N$ will be $\frac{1}{2}\left(p_{1}+p_{2}\right)$, and $N R=N R^{\prime}$ will be $\frac{1}{2}\left(p_{1}-p_{2}\right)$. Also, as seen from Fig. 5. if we bisect the angle $R N F$ by the line $N S$, we obtain the direction $N S$ of p_{1}, since the angle $R N F$, Fig. 5 , is twice
 the angle of $N A$ with p_{1} or $A V$.

Application to the Retaining Wall.-The application of these principles to the retaining wall is obvious.

Let $A D$ be the back of the wall, and $D_{1} F I$ the earth surface making the angle α with the horizontal. Pass a plane through the

foot of the wall A parallel to the earth surface. The pressure upon every square foot of this plane, as $\overline{a b}$, is vertical and equal to the weight of a column of earth of vertical height $\overline{A_{1} I}$ and cross-section $a b \cdot \cos \alpha$.

If γ_{1} is the mass of a cubic foot of earth, then we have

$$
\gamma_{1} \cdot \overline{A_{1} I} \cdot \overline{a b} \cdot \cos \alpha
$$

for the mass of this column. But $\overline{A_{1}} I \cos \alpha=\overline{A_{1} F}$, hence the mass of this column is $\gamma_{1} \cdot \overline{A_{1} F} \cdot \bar{a} b$.

If then we draw $A F$ perpendicular to the earth surface and revolve $A_{1} F_{\text {about }} A_{1}$ as centre to the vertical $A_{1} R_{1}$, and take the area of $a b$ as one square foot, the distance $A_{1} R_{1}$ in feet will be numerically the same as the number of cubic feet of earth resting upon a square foot $a b$, and we have for the vertical pressure p per square foot in pounds

$$
p=\gamma_{1} \cdot{\overline{A_{1} R_{1}}}_{1}
$$

where γ_{1} is the mass in pounds of a cubic foot of earth, and $A_{1} R_{1}$ is measured in feet.

Then, as in Fig. 6, draw $A_{1} R^{\prime}$ making with the normal $A_{1} F$ to $a b$ the angle $R^{\prime} A_{1} F^{\prime}$ equal to the angle of friction or repose ϕ_{1} for earth on earth. Find by trial a point N_{1} on the normal $A_{1} F$, such that the arc of a circle with N_{1} as a centre passes through R_{1} and is tangent to $A_{1} R^{\prime}$. Then

$$
\begin{aligned}
& 1 \\
& 2 \\
& 2 \\
& 1 \\
& \left.2^{-}\left(p_{1}-p_{2}\right)=p_{2}\right)=\gamma_{1} \cdot \overline{N_{1} A_{1}} \\
& N_{1} R_{1}
\end{aligned}
$$

where γ_{1} is the mass in pounds of a cubic foot of earth, and $N_{1} A_{1}$, $N_{1} R_{1}$ are measured in feet. Bisect the angle $R_{1} N_{1} F$ by the line $N_{1} S_{1}$. Then the line $N_{1} S_{1}$ gives the direction of p_{1} (Fig. 5).

Now lay off at the foot of the wall A (which may be considered as identical with A_{1} in the figure) the distance $N A=N_{1} A_{1}$ in a direction normal to the back of the wall $A D$ at A. Draw the line
$A_{N} S$ parallel to $N_{1} S_{1}$ or the direction of p_{1} already found. Then with N as a centre and $N A$ as radius describe an arc of a circle intersecting $A S$ at S, and lay off along $N S$ the distance $N R=N_{1} R_{1}$. Then, as in Fig. 5, RA represents the magnitude and direction of the pressure on a square foot at the foot of the wall. Thus, if y_{1} is the mass in pounds of a cubic foot of earth and we measure $R A$ in feet, the pressure per square foot at the foot A of the wall is given in magnitude by

$$
\gamma_{1} \cdot \overline{R A}
$$

and its direction is the direction of $R A$.
Since the pressure is zero at the top D_{1} and greatest at the foot A, and varies for any point directly as the distance of that point from D_{1}, the average pressure is $\frac{1}{2} \gamma_{1} \cdot \overline{R A}$. The total pressure P in pounds is then for a wall one foot in length numerically equal to $\frac{1}{2} \gamma_{1} \cdot \overline{R A} \cdot \overline{D^{\prime} A}$, or if the length of the wall is l,

$$
P=\frac{1}{2} \gamma_{1} \cdot \overline{R A} \cdot \overline{D^{\prime} A} \cdot l
$$

where y_{1} is the mass of a cubic foot of earth, and $\overline{R A}, \overline{D_{1} A}$ and l are taken in feet.

This pressure P acts at a point K at a distance d from the foot of the wall A equal to $d=A K=\frac{1}{3} A D_{1}$, and is parallel in direction to $R A$ already found.

We thus find by a simple graphic construction, in any given case, the magnitude, direction and point of application of the earth pressure P on the back of the wall. The stability of the wall can then be investigated as directed on page 231.

Analytic Determination of Earth Pressure on a Retaining Wall.-From the graphic construction just given, we can easily derive the corresponding formulas for the magnitude and direction of the earth pressure P.

Notation.-Let $h_{1}=D_{1} O_{1}$ be the height of the earth surface at D_{1} above the base $A B$ of the wall; the angle of the earth surface with the horizontal is α; the batter-angle of the back of the wall

with the vertical is β; the earth pressure P makes the angle 0 with the normal to the back of the wall; the angle $R^{\prime} A_{1} N_{1}=\phi_{1}$ is the
angle of friction or repose for earth on earth; the angle $R_{1} N_{1} F=\eta$, and the angles $R_{\mathrm{t}} N_{1} S_{1}=F N_{1} S_{1}=\frac{\eta}{2}$; the angle $R A S=\epsilon$; the angle $R S A=\omega-$ all as indicated in the figure. Finally, γ_{1} is the mass of a cubic foot of earth.

Then by the graphic construction we have

$$
\begin{equation*}
\frac{1}{2}\left(p_{1}+p_{2}\right) \sin \phi_{1}=\frac{1}{2}\left(p_{1}-p_{2}\right) \tag{1}
\end{equation*}
$$

We have also by our notation

$$
A D_{1}=\frac{h_{1}}{\cos \beta}, \quad A_{1} F=A D_{1} \cos (\alpha-\beta)=\frac{h_{1}}{\cos \beta} \cos (\alpha-\beta)
$$

and since by construction $A_{1} R_{1}=A_{1} F$, we have from the figure

$$
\begin{equation*}
\frac{1}{2}\left(p_{1}-p_{2}\right) \sin \eta=\frac{\gamma_{1} h_{1}}{\cos \beta} \cdot \cos (\alpha-\beta) \sin \alpha . . \tag{2}
\end{equation*}
$$

We have also from the figure

$$
\left.\begin{array}{c}
{\left[\frac{1}{2}\left(p_{1}+p_{2}\right)+\frac{1}{2}\left(p_{1}-p_{2}\right) \cos \eta\right]^{2}+\left[\frac{1}{2}\left(p_{1}-p_{2}\right) \sin \eta\right]^{2}} \tag{3}\\
=\left[\frac{\gamma_{1} h_{1}}{\cos \beta} \cos (\alpha-\beta)\right]^{2}
\end{array}\right\}
$$

and also

$$
\begin{equation*}
\frac{1}{2}\left(p_{1}+p_{2}\right)+\frac{1}{2}\left(p_{1}-p_{2}\right) \cos \eta=\frac{\gamma_{1} h_{1}}{\cos \beta} \cos (\alpha-\beta) \cos \alpha \tag{4}
\end{equation*}
$$

From (1), (2) and (3). eliminating $\frac{1}{2}\left(p_{1}+p_{2}\right)$ and $\frac{1}{2}\left(p_{1}-p_{2}\right)$, we obtain

$$
\begin{equation*}
\cos \eta=-\frac{\sin ^{2} \alpha}{\sin \phi_{1}}+\sqrt{\left(1-\sin ^{2} \alpha\right)\left(1-\frac{\sin ^{2} \alpha}{\sin ^{2} \phi_{1}}\right)} \tag{I}
\end{equation*}
$$

We have also directly from the figure $\omega=$ angle $N A S$, or

$$
\begin{equation*}
\omega=90-\beta-\frac{\eta}{2}+\alpha . \tag{II}
\end{equation*}
$$

From (2) and (1) we have

$$
\begin{align*}
& p_{1}=\frac{\gamma_{1} h_{1} \cos (\alpha-\beta) \sin \alpha\left(1+\sin \phi_{1}\right)}{\cos \beta \sin \phi_{1}} \frac{\sin \eta}{\cos \beta \sin \phi_{1}} \frac{\alpha\left(1-\sin \phi_{1}\right)}{\sin \eta} \tag{5}\\
& p_{2}=\frac{\gamma_{1} h_{1} \cos (\alpha-\beta) \sin }{\cos } \tag{6}
\end{align*}
$$

We have also from the figure

$$
\tan \epsilon=\frac{\overline{R S} \sin \omega}{\overline{A S}-\overline{R S} \cdot \cos \omega}
$$

But $\gamma_{1} \cdot \overline{R S}=p_{2}$, and $\gamma_{1} \cdot \overline{A S}=\left(p_{1}+p_{2}\right) \cos \omega$. Therefore

$$
\tan \epsilon=\frac{p_{2} \sin \omega}{p_{1} \cos \omega}
$$

Substituting the values of p_{1} and p_{2} from (5) and (6), we have

$$
\begin{equation*}
\tan \epsilon=\frac{1-\sin \phi_{1}}{1+\sin \phi_{1}} \tan \omega=\tan ^{2}\left(45^{\circ}-\frac{\phi_{1}}{2}\right) \tan \omega . . \tag{III}
\end{equation*}
$$

We have also directly from the figure
Also

$$
\begin{equation*}
\theta=\omega-\epsilon \tag{IV}
\end{equation*}
$$

$$
\begin{aligned}
\gamma_{1} \cdot \overline{R A} & =\sqrt{p_{2}^{2} \sin ^{2} \omega+-\left(\gamma_{1} \cdot A S-p_{2} \cos \omega\right)^{2}} \\
& =\sqrt{p_{2}^{2} \sin ^{2} \omega+p_{1}^{2} \cos ^{2} \omega}
\end{aligned}
$$

or, substituting the values of p_{1} and p_{2} from (5) and (6), we have for the earth pressure P,

$$
P=\frac{1}{2} \gamma_{1} \cdot \overline{R A} \cdot \overline{A D}_{1} \cdot l=\frac{l h_{1}}{\cos \beta} \cdot \frac{1}{2} \gamma_{1} \cdot \overline{R A}
$$

or

$$
\begin{equation*}
P=\frac{\gamma_{1} l \mu_{1}{ }^{2} \cos (\alpha-\beta) \sin \alpha}{2 \cos ^{2}} \frac{\beta \sin \phi_{1} \sin \eta}{} \sqrt{\left(1+\sin \phi_{1}\right)^{2}-4 \sin \phi_{1} \sin ^{2} \omega} . \tag{V}
\end{equation*}
$$

From (1) and (4) we obtain

$$
p_{1}=\frac{\gamma_{1} h_{1} \cos (\alpha-\beta) \cos \alpha\left(1+\sin \phi_{1}\right)}{\cos \beta\left(1+\sin \phi_{1} \cos \eta\right)}
$$

Comparing this with (5), we have

$$
\begin{equation*}
\frac{\sin \alpha}{\sin \phi_{1} \sin \eta}=\frac{\cos \alpha}{1+\sin \phi_{1} \cos \eta} . \tag{7}
\end{equation*}
$$

We can make this substitution in equation (V) and thus obtain an equivalent expression for P which can be used when α is zero, viz.,
$P=\frac{\gamma_{1} l h_{1}{ }^{2} \cos (\alpha-\beta) \cos \alpha}{2 \cos ^{2} \beta\left(1+\sin \phi_{1} \cos \eta\right)} \sqrt{\left(1+\sin \phi_{1}\right)^{2}-4 \sin \phi_{1} \sin ^{2} \omega}$.
Surface of Rupture.-If there were no wall and the earth had no cohesion, a prism of earth $A D_{1} G$ would tend to slide off along a plane $A G$ which would make with the horizontal the angle of repose ϕ_{1}. But on account of the wall this plane $A G$ makes with the horizontal an angle ψ greater than ϕ_{1}.

This angle ψ we call the angle of rupture, the plane $A G$ is the plane of rupture, and the prism $A D_{1} G$ which thus tends to separate along $A G$ and force the wall is the prism of rupture.

If in the figure, page 251, p_{1} remains unchanged in direction and magnitude while $a b$ is revolved about A_{1} until the pressure upon $a b$ makes with the normal
 to $a b$ the angle ϕ_{1}, then this new position of $a b$ gives the inclination of the plane of rupture. But for this new position p_{1} makes (page 249) the angle $45+\frac{\phi_{1}}{2}$ with the normal. The normal $A_{1} N_{1}$, and hence the plane $a b$, has then been revolved through the angle $45+\frac{\phi_{1}}{2}-\frac{\eta}{2}$.

The angle which the plane of rupture $A G$ makes with the horizontal, or the angle of rupture, is then

$$
\begin{equation*}
\psi=4 \tilde{s}+\frac{\phi_{1}}{2}-\frac{\eta}{2}+\alpha . \tag{VII}
\end{equation*}
$$

General Method.-We have then in any case the following method:

1st. Find η from (I).
2d. Find ω from (II).
3d. Find ϵ from (III).
tth. Find 6 from (IV).
The angle θ gives the inclination of the pressure with the normal to the back of the wall.

5 th. Find P from (V) or (VI).
Then if desired we can find the angle of rupture from (VII).
The magnitude of P and its inclination 's with the normal to the wall are thus determined. The point of application K of P is at a distance $d=A K$ from the foot of the wall equal to one third the back $A D_{1}$, or $d=\frac{h_{1}}{3 \cos \beta}$.

Special Cases.-The formulas just deduced are general and admit of simplification for special cases. If the earth surface is horizontal, $\alpha=0$ and, from (I) $\eta=0$. If ϕ_{1} is zero, there is no friction. Making $\alpha=0$ and $\phi_{1}=0$, we have, from (VI),

$$
P=\frac{\gamma_{1} l h_{1}^{2}}{2 \cos \beta},
$$

which is the same as for water pressure (page 236). In this case, from (III), $\epsilon=\omega$ and hence, from (IV), $G=0$, or the water pressure is perpendicular to the back. We have then $\psi=45^{\circ}$ for water.

Case 1. Earth Surface Horizontal.-In this case $\alpha=0$ and hence $\eta=0$, and $\omega=90-\beta$. We have then, from (III),

Then from (IV)

$$
\begin{equation*}
\xi=90-\beta-\epsilon, . \tag{9}
\end{equation*}
$$

and from (VI)

$$
\begin{equation*}
P=\frac{\gamma_{1} l h_{1}{ }^{2}}{2} \sqrt{\frac{1}{\cos }{ }^{2} \beta}-\frac{4 \sin \phi_{1}}{\left(1+\sin \phi_{1}\right)^{2}} \tag{10}
\end{equation*}
$$

From (VII) the surface of rupture $A G$ makes with the horizontal the angle

$$
\begin{equation*}
\psi=45^{\circ}+\frac{\phi_{1}}{2} \tag{11}
\end{equation*}
$$

Case 2. Earth Surface Horizontal-Back Vertical. -In this case $\alpha=0$ and $\beta=0$. Hence $\eta=0, \omega=90^{\circ}$ and, from (8), $\epsilon=90$ and, from (9), $9=0$. The pressure is then perpendicular to the back or horizontal. From (10), making $\beta=0$ and reducing,

$$
\begin{equation*}
P=\frac{\gamma_{1} l h_{1}{ }^{2}}{2} \tan ^{2}\left(45-\frac{\phi_{1}}{2}\right) . \tag{12}
\end{equation*}
$$

The surface of rupture makes as before the angle ψ with the horizontal given by

$$
\psi=45^{\circ}+\frac{\phi_{1}}{2}
$$

Case 3. Earth Surface Horizontal. $-\beta=90-\psi$. In this case $\alpha=0$, hence $\eta=0$ and $\psi=45^{\circ}+\frac{\phi_{1}}{2}$. If we make $\beta^{\circ}=90-\psi=45^{\circ}-\frac{\phi_{1}}{2}$, we have $\omega=45^{\circ}+\frac{\phi_{1}}{2}, \epsilon=45-\frac{\phi_{1}}{2}$ and

$$
0=\phi,
$$

or the pressure makes the angle of friction with the normal.
In this case,

$$
\begin{equation*}
P=\frac{\gamma_{1} l h_{1}^{2} \cos ^{2}\left(45+\frac{\phi_{1}}{2}\right)}{\cos \dot{\phi}_{1} \cos \left(45-\frac{\phi_{1}}{2}\right)} . \tag{13}
\end{equation*}
$$

Case 4. Earth Surface Inclined at the Angle of Repose.-In this case $\alpha=\phi_{1}$. Hence

$$
\eta=90+\phi_{1}, \omega=45^{\circ}-\beta+\frac{\phi_{1}}{2}, \psi=\phi_{1},
$$

$\tan \epsilon=$

$$
\begin{equation*}
\tan ^{2}\left(45^{\circ}-\frac{\phi_{1}}{2}\right) \tan \left(45^{\circ}-\beta+\frac{\phi_{1}}{2}\right) . \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\theta=45^{\circ}-\beta+\frac{\phi_{1}}{2}-\epsilon . \tag{15}
\end{equation*}
$$

$P=\frac{\gamma_{1} l h_{2}^{2} \cos \left(\phi_{i}-\beta\right)}{2 \cos ^{2} \beta \cos \phi_{1}} \sqrt{\left(1+\sin \phi_{1}\right)^{2}-4 \sin \phi_{1} \sin ^{2}\left(45-\beta+\frac{\phi_{1}}{2}\right)}$.
Case 5. Earth Surface Inclined at the Angle of Repose-Back Ver-tical.-In this case, $\alpha=\phi_{1}, \beta=0, \eta=90+\phi_{1}, \omega=45^{\circ}+\frac{\phi_{1}}{2}, \psi=\phi_{1}$, $\epsilon=45-\frac{\phi}{2}$, and hence

$$
\theta=\phi_{1},
$$

or the pressure makes the angle of friction with the normal.
From (16),

$$
\begin{equation*}
P=\frac{\gamma_{l} l h_{1}^{2}}{2} \sqrt{\left(1+\sin \phi_{1}\right)^{2}-4 \sin \phi_{1} \sin ^{2}\left(45^{\circ}+\frac{\phi_{1}}{2}\right)} . . \tag{17}
\end{equation*}
$$

Cohesion of Earth.-Adhesion is that resistance to motion which takes place when two different surfaces are in contact. If the surfaces are of the same kind, it is called cohesion. It is found by experiment that adhesion or cohesion is directly proportional to the area of contact, varies with the nature of the surfaces in contact, and is independent of the pressure.

It is given then by

$$
c A
$$

where A is the area of contact and c is the coefficient of cohesion or
adhesion, depending upon the nature of the material. The unit of c is then 1 pound per square foot.

in along some plane as $A G$.

If a trench with vertical sides, of considerable length as compared to its width, is dug in the earth. as shown in the figure, with a transverse trench at each end, so that lateral cohesion may not prevent rupture, after a few days it will be observed to have caved Let the depth $A D$ be h_{0}.
Then, as we shall see in the next Article, the coefficient of cohesion of the earth is given by

$$
c=\frac{\gamma_{1} h_{0}\left(1-\sin \phi_{1}\right)}{4 \cos \phi_{1}}
$$

where ϕ_{1} is the angle of friction or repose, and y_{1} is the mass of a cubic foot of the earth.

Equilibrium of a Mass of Earth. - Let $A D G H$ be a mass of earth, the batter-angle of the face $A D$ being β.

If there were no cohesion, a prism of earth $A D G$ would tend to slide off along a plane $A G$ which would make with the horizontal the angle of repose ϕ_{1}. But if there is cohesion, this plane, which we have called the plane of rupture, will make an angle with the horizontal greater than ϕ_{1}, which we call the angle of rupture.

Let the angle of rupture or the
 angle of the plane of rupture $A G$ with the horizontal be ψ, the angle of the earth surface $D G$ with the horizontal be α, the length of the mass be l, and the weight of the prism $A D G$ be W.

The weight W acting at the centre of mass C can be resolved into a force N normal to the surface of rupture $A G$ and a force P parallel to the surface.

We have then

$$
\begin{equation*}
P=W \sin \psi, \quad N=W \cos \psi \tag{1}
\end{equation*}
$$

The force P tends to cause sliding. This force is resisted by the friction and the cohesion. The friction is $\mu_{1} N$, where $\mu_{1}=\tan \phi_{1}$ is the coefficient of static sliding friction of the earth, and the cohesion is $c l . \overline{A G}$, where c is the coefficient of cohesion and $l, \overline{A G}$ is the area of contact.

We have then for equilibrium

$$
P-\mu_{1} N-c l \cdot \overline{A G}=0, \quad \text { or } \quad P-\mu_{1} N=c l \cdot \overline{A G}
$$

or

$$
\begin{equation*}
\frac{P-\mu_{1} N}{l \cdot \overline{A G}}=c \tag{2}
\end{equation*}
$$

Now for any plane which makes an angle with the horizontal greater or less than ψ there will be no sliding, and for that plane
$P-\mu_{1} N$ will be less than $c l \cdot \overline{A G}$, or $\frac{P-\mu_{1} N}{l . \overline{A G}}$ will be less than c. For the plane of rupture, then, we must have

$$
\begin{equation*}
\frac{P-\mu_{1} N}{l \cdot \overline{A G}}=\text { a maximum } \tag{3}
\end{equation*}
$$

Let the vertical height of the mass be h_{1}. Then $\overline{A D}=\frac{h_{1}}{\cos \beta}$, and the weight W of the prism $A D G$ in gravitation units is

$$
\begin{equation*}
W=\gamma_{1} l \cdot \frac{\overline{A D}}{2} \cdot \overline{A G} \cdot \sin [90-(\psi+\beta)]=\frac{\gamma_{l} l h_{1} \cdot \overline{A G} \cos (\psi+\beta)}{2 \cos \beta} . \tag{4}
\end{equation*}
$$

Insert this value of W in (1) and the corresponding values of P and N in (3), and we have, since $\mu_{1}=\tan \phi_{1}$,

$$
\begin{equation*}
\frac{\gamma_{1} h_{1} \cos (\psi+\beta) \sin \left(\psi-\phi_{1}\right)}{2 \cos \beta \cos \phi_{1}}=c=\text { a maximum } . \tag{5}
\end{equation*}
$$

Angle of Rupture.-Equation (5) is a maximum when

$$
\cos (\psi+\beta)=\sin \left(\psi-\phi_{1}\right)=\cos \left[90-\left(\psi-\phi_{1}\right)\right],
$$

or when

$$
\psi+\beta=90-\psi+\phi_{1},
$$

$$
\begin{equation*}
\psi=45-\frac{\beta}{2}+\frac{\phi_{1}}{2} . \tag{6}
\end{equation*}
$$

Equation (6) gives then the angle of rupture or the angle which the plane of rupture $A G$ makes with the horizontal.

Coefficient of Cohesion.-If we insert this value of ψ in (5), we obtain
$\gamma_{1} h_{1} \sin \left[45-\frac{1}{2}\left(\phi_{1}+\beta\right)\right] \cos \left[45+\frac{1}{2}\left(\phi_{1}+\beta\right)\right]=2 c \cos \phi_{1} \cos \beta$, or

$$
\begin{equation*}
\gamma_{2} h_{1}\left[1-\sin \left(\phi_{1}+\beta\right)\right]=4 c \cos \phi_{1} \cos \beta \tag{7}
\end{equation*}
$$

Now when $A D$ is vertical; $\beta=0$, and if we denote h_{1} in this case by h_{o}, we have, from (7),

$$
\begin{equation*}
c=\frac{\gamma_{1} h_{0}\left(1-\sin \phi_{1}\right)}{4 \cos \phi_{\mathrm{t}}} \tag{8}
\end{equation*}
$$

This is the value of the coefficient of cohesion given in the preceding Article, where h_{0} is found by experiment.

Stability of Slope.-If we substitute the value of c from (8) in (7), we have

$$
\begin{aligned}
& h_{1}\left[1-\sin \left(\phi_{1}+\beta\right)\right]=h_{0}(1-\sin \phi) \cos \beta, \\
& \quad \text { or }
\end{aligned}
$$

$$
\begin{equation*}
h_{1}=\frac{h_{0}\left(1-\sin \phi_{1}\right) \cos \beta}{1-\sin \left(\phi_{1}+\beta\right)}, \tag{9}
\end{equation*}
$$

which is the equation of condition between h_{1} and β.
From (6) and (9) wé see that the angle of rupture and the relation between h_{1} and β are independent of the inclination α of the earth surface with the horizontal.

Equation (9) gives the limiting height h_{1} when sliding is about to begin. Let n be the factor of safety, so that if n is 2 or 3 the safe height taken can be two or three times as great before sliding begins. Then we have for the safe height

$$
\begin{equation*}
h_{1}=\frac{h_{0}\left(1-\sin \phi_{1}\right) \cos \beta}{n\left[1-\sin \left(\phi_{1}+\beta\right)\right]} . \tag{10}
\end{equation*}
$$

Equation (10) is then the equation of stability of slope for a factor of safety n, and gives the safe height of slope for any given batter-angle β.

Angle of Stability.-If h_{1} is given and the corresponding batterangle β is required, we can write (10) in the form

$$
\frac{1-\sin \left(\phi_{1}+\beta\right)}{\cos \beta}=\frac{h_{0}\left(1-\sin \beta_{1}\right)}{n h_{1}}=a,
$$

where the sccond member, being a known quantity, is denoted by a. If we develop the numerator in the first member and substitute for $\sin \beta$ and $\cos \beta$ their values in terms of $\tan \frac{1}{2} \beta$, viz.,

$$
\sin \beta=\frac{2 \tan \frac{1}{2} \beta}{1+\tan ^{2} \frac{1}{2} \beta}, \quad \cos \beta=\frac{1-\tan ^{2} \frac{1}{2} \beta}{1+\tan ^{2} \frac{1}{2} \beta}
$$

we obtain a quadratic whose solution gives

$$
\begin{equation*}
\left.\tan \frac{1}{2} \beta=\frac{1}{1+a+\sin \phi_{1}}[\cos \phi-\sqrt{a(a+2} \sin \phi)\right] . \tag{11}
\end{equation*}
$$

Equation (11) gives the safe batter-angle β for a factor of safety n when the height h_{1} is given.

Curve of Slope.-Let a be any point of the slope $D a A$, whose vertical distance below D is $d a=y$, and let $\overline{a G}$ be the plane of
 rupture at the point α, making the angle ψ with the horizontal.

Then the prism $D G a$ of weight W tends to slide down along $a G$ and is prevented by friction and cohesion. Let N and P be the components of W normal and parallel to $a G$. Then if n is the factor of safety and μ is the coefficient of static sliding friction, we have

$$
\begin{equation*}
n\left(P-\mu_{1} N\right)-c l \cdot \overline{a G}=0 \tag{12}
\end{equation*}
$$

Let A be the area $d a D$. Then $\gamma_{1} l A$ is the weight in gravitation units of a prism daD, where γ_{1} is the mass of a unit of volume of the earth. The area $d a G$ is $\frac{y^{2} \cot \psi}{2}$, and the weight in gravitation units of the prism $d a G$ is $\frac{\gamma_{l} l y^{2} \cot \psi}{2}$. Hence the weight in gravitation units of the prism $D a G$ is

$$
W=\gamma_{1} l\left(\frac{y^{2} \cot \psi}{2}-A\right)
$$

If we insert this value of W in the expressions for P and N, equations (1), and then substitute in (12), we obtain, since $a G=\frac{y}{\sin \psi}$,

$$
n \gamma_{1} l\left(\frac{y^{2} \cot \psi}{2}-A\right)\left(\sin \psi-\mu_{1} \cos \psi\right)-c l \cdot \frac{y}{\sin \psi}=0 ;
$$

or, dividing by $l \sin \psi$,

$$
\begin{equation*}
n \gamma_{1}\left(\frac{y^{2} \cot \psi}{2}-A\right)\left(1-\mu_{1} \cot \psi\right)-c y\left(1+\cot ^{2} \psi\right)=0 \tag{13}
\end{equation*}
$$

If αG makes an angle with the horizontal greater or less than ψ, we have, from (12), $n(P-\mu N)$ less than $c l . \bar{a} \bar{G}$, or the left side of equation (13) less than zero. The value of ψ must then make equation (13) a maximum.

If then we differentiate (13) with reference to $\cot \psi$ and put the first derivative equal to zero, we obtain

$$
\begin{equation*}
\frac{n \gamma_{1} y^{2}}{2}\left(1-\mu_{1} \cot \psi\right)-n \gamma_{1} \mu_{1}\left(\frac{y^{2} \cot \psi}{2}-A\right)-2 c y \cot \psi=0 . \tag{14}
\end{equation*}
$$

Eliminating cot ψ from (13) and (14), we obtain

$$
\begin{equation*}
A=\frac{y}{2 n \mu_{1}^{2} \gamma_{1}}\left[n \mu_{1} \gamma_{1} y+4 c-2 \sqrt{2 c\left(n \mu_{1} \gamma_{1} y+2 c\right)\left(1+\mu_{1}^{2}\right)}\right] \tag{15}
\end{equation*}
$$

Equation (15) gives the area A between the curve of the slope and any ordinate $d a=y$. It evidently holds good whether the area A is bounded by a curve or a broken line of any form.

Values of ϕ_{1}, μ_{1} and γ_{1}-We give in the following Table the values of $\phi_{1}, \mu_{1}, \gamma_{1}$ for earth, sand and gravel.

Kind of Earth.	$\begin{gathered} \text { Angle } \\ \text { of } \\ \text { Repose, } \\ \phi_{1} . \end{gathered}$	$\begin{gathered} \text { Coefficient } \\ \text { of } \\ \text { Friction, } \\ \mu_{1} \cdot \end{gathered}$	Mass of one cubic foot in pounds, in pounds, γ_{1}.
Gravel, round. .	30°	0.58	100
sharp.	40	0.84	110
Sand, dry...	35	0.70	100
" moist.	40	0.84	110
" wet.	30	0.58	125
Earth, dry.	40	0.84	90
" moist	45	1.00	95
" wet.	32	0.62	115

EXAMPLES.

(1) A bank of loose earth without cohesion stands 30 ft. hïgh with a slope of 50 ft . Find the coefficient of friction and the angle of repose.

Ans. The horizontal projection of the slope is 40 ft . Hence $\mu_{1}=\tan \phi_{1}=$ $\frac{30}{40}=0.75$, and ϕ_{1} is about 35°.
(2) A bank of earth with vertical face is found to cave for a distance of 3 ft. below the surface. The same earth loose and without cohesion takes a slope of 1.25 to 1 horizontal. Find the slope after rupture. Also if the mass of a cubic foot is 100 lbs ., find the coefficient of cohesion.

Ans. From equation (6), page 257 , since $\beta=0$, the angle of rupture is $\psi=45^{\circ}+\frac{\phi_{1}}{2}$. The tangent of the angle of repose is $\mu_{1}=\tan \phi_{1}=0.75$. Hence ϕ_{1} is about 35° and ψ is about 62°.

From equation (8), page 257, since $h_{0}=3 \mathrm{ft}$., $\gamma_{1}=100 \mathrm{lbs}$. per cubic foot, $\phi_{1}=35^{\circ}$,

$$
c=\frac{100 \times 3\left(1-\sin 35^{\circ}\right)}{4 \cos 35^{\circ}}=\frac{128}{3.28}=39 \mathrm{lbs} . \text { per square foot. }
$$

(3) A bank of earth the same as in the preceding example has a height of 30 feet and a batter of 45°. Find the limiting height for the same slope and the factor of safety.

Ans. From equation (9), page 257, since $h_{0}=3 \mathrm{ft}$., $\beta=45^{\circ}, \phi_{1}=35^{\circ}$, the limiting height is

$$
h_{1}=\frac{3\left(1-\sin 35^{\circ}\right) \cos 45^{\circ}}{1-\sin 80^{\circ}}=\text { about } 60 \mathrm{ft} .
$$

or the factor of safety is 2 .
(4) A bank of earth the same as in Example (2) is required to have a height of 30 ft . and a factor of safety of 2. Find the batter of the face.

Ans. $\beta=45^{\circ}$.
(5) A bank of earth with vertical face caves for a distance of 5 feet below the surface. The same earth loose and without cohesion takes a slope of 1.25 to 1 horizontal. The mass of a cubic foot is 100 lbs. Find the angle of rupture, the coefficient of cohesion. If the batter of the face is made 45° and the height 30 ft., find the factor of safety.

Ans. The angle of repose is $\phi_{1}=$ about 35°. The angle of rupture is $\psi=$ about 62°. The coefficient of cohesion is $c=65 \mathrm{lbs}$. per square foot. From equation (10), page 258 ,

$$
n=\frac{5(1-\sin 35) \cos 45}{30\left(1-\sin 80^{\circ}\right)}=3 \frac{1}{8} .
$$

(6) Find the uniform batter-angle of the slope in the preceding example for a height of 30 ft . and a factor of safety of $3 \frac{1}{3}$.

Ans. From equation (11), page 258, we find $\beta=45^{\circ}$.
(7) Find the natural curve of the slope in Example (5) for a factor of safety of 3 and a height of 40 feet.

Ans. Since $\mu_{1}=0.75, c=65 \mathrm{lbs}$. per square foot, $n=3, \gamma_{1}=100$, equation (15), page 259, becomes

$$
A=\frac{y}{337.5}\left[225 y+260-2 \sqrt{203 \frac{1}{3}(225 y+130)}\right]
$$

If we take $y=$ to $10,20,30,40 \mathrm{ft}$., we have :

$$
\begin{aligned}
\text { For } y=10, & A=33 \mathrm{sq} \mathrm{ft} . ; \\
y=20, & A=167 \quad " \quad \\
y=30, & A=413 \\
y=40, & A=777 \\
& \text {; " }
\end{aligned}
$$

We have then, considering the area between the slope and any ordinate as made up of trapezoids, as shown in the figure:

$$
\frac{1}{2} \cdot 10 \cdot D a^{\prime}=33, \text { or } D a^{\prime}=6.6 \mathrm{ft} .
$$

$33+\frac{10+20}{2} \cdot a^{\prime} b^{\prime}=167$, or $a^{\prime} b^{\prime}=9 \quad$ "
$167+\frac{20+30}{2} . b^{\prime} c^{\prime}=413$, or $b^{\prime} c^{\prime}=9.8$ "
$413+\frac{30+40}{2} . c^{\prime} d^{\prime}=777$, or $c^{\prime} d^{\prime}=10.4$ "
We see from equation (15), page 259, that
 for small values of $y A$ is negative, or, theoretically, the curve overhangs the slope. The equation should not be used for y less than h_{0}, and the upper part of the slope should be rounded off, as shown in the figure.
(8) It is desired to cut a bank 30 feet high into three terraces as shown in the figure with a factor of safety of 1.5. The height of each terrace is to be 10 feet and there
 are to be two steps, $a b$ and $c d$, each 4 feet wide. The mass per cubic foot is $\gamma_{1}=100 \mathrm{lbs} .$, and ϕ_{1} and h_{0} as found by experiment are $\phi_{1}=31^{\circ}, h_{0}=5$ feet. Find the batter for each terrace.

Ans. We have $\mu_{1}=\tan \phi_{1}=0.6$, and from equation (8), page 257,c=71, and equation (15), page 259 , becomes

$$
A=\frac{y}{108}(284+90 y-2 \sqrt{189(90 y+142)})
$$

From this, when $y=10, A=27$; when $y=20, A=159$; and when $y=30, A=421$.

We have then

$$
\begin{array}{r}
\frac{1}{2} \cdot 10 \cdot D a^{\prime}=27, \text { or } D a^{\prime}=5.4 \mathrm{ft} . \\
27+40+\frac{10+20}{2} \cdot b^{\prime} c^{\prime}=159, \quad \text { or } \quad b^{\prime} c^{\prime}=6.1 \\
159+40+\frac{20+30}{2} \cdot d^{\prime} e^{\prime}=421, \quad \text { or } \quad d^{\prime} e^{\prime}=8.9
\end{array}
$$

Hence we have for the batter-angles :
For $D a, \tan \beta=\frac{5.4}{10}$, or $\beta=28 \frac{1}{2}^{\circ}$;
For $b c, \tan \beta=\frac{6.1}{10}$, or $\beta=31 \frac{1}{2}$;
For $d A, \tan \beta=\frac{8.9}{10}$, or $\beta=41 \frac{1}{2}^{\circ}$.
(9) Design a terrace of four planes, the upper one being 6 feet n height, the lowest 10 ft ., and the others 8 ft . The steps to be 5 feet
in width, and the earth such that $h_{0}=3 \mathrm{ft} ., \gamma_{1}=100$, and $\mu_{1}=0.66$, Take the factor of safety at 2.

Ans. $c=40, A=\frac{y}{178}[133 y+160-2 \sqrt{115(133 y+80)}]$.
When $y=6, \quad A=10.9 ; \quad y=14, \quad A=84.3$;
$y=22, \quad A=236.4 ; \quad y=32, \quad A=569.2$.

$\frac{1}{2} \cdot 6 . D a^{\prime}=10.9$, or $D a^{\prime}=3.63 \mathrm{ft} . ;$

$$
\begin{aligned}
10.9+30+\frac{6+14}{2} \cdot b^{\prime} c^{\prime} & =84.3 \\
\text { or } b^{\prime} c^{\prime} & =4.34 \mathrm{ft.}
\end{aligned}
$$

$$
84.3+70+\frac{14+22}{2} \cdot d^{\prime} e^{\prime}=236.4
$$

$$
\text { or } d^{\prime} e^{\prime}=4.5 \mathrm{it} . ;
$$

$$
236.4+110+\frac{22+32}{2} \cdot f^{\prime} g^{\prime}=569.2
$$

$$
\text { or } f^{\prime} g^{\prime}=8.2 \mathrm{ft}
$$

We have then for the batter-angles:

$$
\begin{aligned}
& \text { For } D a, \tan \beta=\frac{3.63}{6}, \text { or } \beta=31^{\circ} ; \\
& \text { For } b c, \tan \beta=\frac{4.34}{8}, \text { or } \beta=28 \frac{1}{2}^{\circ} \text {; } \\
& \text { For } d e, \tan \beta=\frac{4.5}{8}, \quad \text { or } \beta=29 \frac{1}{2}^{\circ} \text {; } \\
& \text { For } f A, \tan \beta=\frac{8.2}{10}, \quad \text { or } \beta=39 \frac{1}{2}^{\circ} .
\end{aligned}
$$

(10) Find the batter-angle β for a railway embankment 30 ft . high, 12 ft top base. Let $\gamma_{1}=100 \mathrm{lbs}$. per cubic foot, $\phi_{1}=34^{\circ}, h_{0}=$ 4 ft., and factor of safety 2. Let the locomotive weight be about 6000 pounds per linear foot of track.

Ans. If the top base is 12 feet, the weight of locomotive causes a pressure of 6000 lbs . on 12 square feet, or 500 lbs . per square foot. This is equivalent to a mass of earth 5 feet high. We take then $h_{1}=35$ feet in equation (11), page 258, and have

$$
\tan \frac{1}{2} \beta=\frac{1}{1.584}[0.829+\sqrt{0.0286}]=0.416
$$

Therefore $\frac{1}{2} \beta$ is about $22 \frac{1}{2}^{\circ}$, or $\beta=45^{\circ}$.
The embankment with this batter contains 47 cubic yards per linear foot, while with the natural slope of 34° it would contain 62 cubic yards per linear foot. There will then be a saving in cost of construction if the expense of protecting the slope to preserve the cohesion is not greater than the saving in embankment.
(11) A railway cut is made in material for which $\gamma_{1}=100$ pounds per cubic foot, $\phi_{1}=34^{\circ}, h_{0}=5 \mathrm{ft}$. The depth of cut is $h_{1}=40 \mathrm{ft}$. and the roadbed is 16 ft . Find the batter-angle for a factor of safety of 3 .

Ans. We have $\beta=47^{\circ}$. The cut with this batter contains 87 cubic yards per linear foot. If it had the natural slope, it would contain 111 cubic yards. There will then be a saving in cost if the expense of protecting the slope is less than the saving in excavation.
(12) At Northfield, Vt., on the line of the Central Vermont R. R. is a retaining wall 15 ft . high, top base 2 ft ., bottom base 6 ft . The wall is composed of large blocks of limestone without cement, the density of the masonry about 170 lbs . per cubic foot. The earth surface is horizontal and level with the top of the wall; angle of repose 38°, and density of earth 90 lbs . per cubic foot. The front face of the wall has a batter of 1 inch horizontal for every foot of height. This wall is over 30 years old and in as good condition as when laid. Investigate its stability and check results of computation by graphic construction.

Ans. We have $h=h_{1}=15 \mathrm{ft}$., $\alpha=0^{\circ}, \delta=170 \mathrm{lbs}$. per cubic foot, $\gamma_{1}=90$ lbs. per cubic foot, $\phi_{1}=38^{\circ}, b_{1}=2 \mathrm{ft}$., $b_{2}=6 \mathrm{ft}$., $\tan \beta=\frac{2.75}{15}$ or $\beta=10^{\circ} 23^{\prime}$.

Take a section of the wall one foot in length, so that $l=1$. Then from page 254, Case 1, we have

$$
P=\frac{90 \times 15^{2}}{2} \sqrt{\frac{1}{0.967}-\frac{2463}{2.6}}=2983 \mathrm{lbs} .
$$

We have also from equation (8), page 254,

$$
\tan \epsilon=\tan ^{2} 26^{\circ} \cot 10^{\circ} 23^{\prime}, \text { or } \epsilon=52^{\circ} 26^{\prime}
$$

Then from equation (9), page $254, \theta=27^{\circ} 11^{\prime}$. The angle of P with the horizontal is then $(\theta+\beta)=37^{\circ} 34^{\prime}$, and the horizontal and vertical components of P are

$$
\begin{aligned}
& H=P \cos (\theta+\beta)=2364 \mathrm{lbs} \\
& V=P \sin (\theta+\beta)=1814 \mathrm{lbs}
\end{aligned}
$$

The weight of a section one foot in length is

$$
W=11200 \mathrm{lbs}
$$

If we take the coefficient of static sliding friction $\mu=0.66$ (page 229), we have from equation (I), page 233, for the factor of safety for sliding

$$
n=\frac{0.66(11200+1814)}{2364}=3.6
$$

or, if we neglect $V, n=3.1$. There is therefore ample security against sliding. If there are no through joints, there is in any case no possibility of sliding.

From equation (5), page 233, we have $\varepsilon_{2}=3.3 \mathrm{ft}$., and from equation (II), page $233, e=2.1 \mathrm{ft}$. The resultant of P and W, therefore, cuts the base within the middle third and just within the middle third. The proportions are then nearly economic. Thus from equation (III), page 234, we have $b_{2}=$ 5.86 ft ., while the bottom base as built is 6 ft .

From equation (7), page 234, we have for the greatest unit compression two tons per square foot, which, as we see from page 229 , is abundantly safe.
(13) In the preceding example, let the back be vertical. Find the bottom base. Check the computation by graphic construction.

Ans. In this case, $\beta=0$. From page 254. Case 2, we find the earth pressure horizontal or $\theta=0, \beta=0$, and if we take a section of wall one foot in length, so that $l=1$,

$$
P=\frac{90 \times 15^{2}}{2} \tan ^{2}\left(45^{\circ}-\frac{38^{\circ}}{2}\right)=2410 \mathrm{lbs} .
$$

From equation (III), page 234, we have for the bottom base when $e=\frac{1}{3} b_{2}$, or for economic proportions,

$$
b_{2}=4.8 \mathrm{ft}
$$

From (I), page 233, we have the factor of safety for sliding, $n=2.4$.
From equation (6) we have for the greatest unit compression 1.8 tons per square foot, which is much less than the allowable safe stress (page 229).
(14) Find the bottom base of a trapezoidal wall of granite ashlar uith vertical back, 20 feet high, to retain an embankment, the earth surface being horizontal and level with the top of the uall; $\phi_{1}=$ $33^{\circ} 0^{\prime}, \gamma_{1}=100$ lbs. per cubic foot. Check the computation by graphic construction.

Ans. In this case, $\beta=0$. From page 254, Case 2, we find the earth pressure horizontal, and taking a section of wall one foot in length, or $l=1$,

$$
P=\frac{100 \times 20^{2}}{2} \tan ^{2} 28^{\circ} 15^{\prime}=5774 \mathrm{lbs}
$$

From equation (III), page 234, we have for the bottom base for economic proportions, or for $e=\frac{1}{3} b_{2}$,

$$
b_{2}=-\frac{1}{2} b_{1}+\sqrt{\frac{5 b_{1}^{2}}{4}+\frac{6 P \cdot \frac{1}{3} h}{\delta h}}
$$

If we take the top base $b_{1}=2 \mathrm{ft}$. and $\delta=165$ lbs. per cubic foot (page 229), we have $b_{2}=7.66 \mathrm{ft}$.

From equation (6), page 234, the greatest unit compression is about 2 tons per square foot, which is much less than the allowable safe stress (page 234).
(15) Same as Example (14), with back batter $\beta=8^{\circ}$. Check the computation by graphic construction.

Ans. $P=6420 \mathrm{lbs} ., \theta=18^{\circ} 9^{\prime}, H=5758 \mathrm{lbs} ., V=2825 \mathrm{lbs}, b_{2}=7.9 \mathrm{ft}$. Greatest unit compression 2.4 tons per square foot, which is much less than the allowable safe stress (page 229).
(16) A rubble wall of limestone, 15 ft . high, retains an earth-filling which supports a double-track railuay. The top base is $b_{1}=3.5$ ft. Find the bottom base when $\gamma_{1}=100, \phi_{1}=33^{\circ} 40^{\prime}, \beta=8^{\circ}, \delta=170$ lbs. per cubic foot.

Ans. If we take the train load at 6000 lbs . per linear foot, and top base of the fill 15 ft ., the pressure per square foot on the top is 400 lbs ., which is equivalent to a column of earth 4 ft . high. We have then $h=15 \mathrm{ft}$., $h_{1}=$ $15+4=19 \mathrm{ft}$. , and

$$
P=5795 \text { llbs., } \quad \theta=18^{\circ}, \quad H=5200 \mathrm{lbs} ., \quad V=2540 \mathrm{lbs} .
$$

$b_{2}=7 \mathrm{ft}$. Greatest unit compression 2.3 tons per square foot, which is much less than the allowable safe stress (page 229).
(17) Find the bottom base for a retaining wall 20 ft . high, bach batter $\beta=8^{\circ}, \delta=170$ lbs. per cubic foot. Earth surface inclined to horizontal at angle of repose $b_{1}=33^{\circ} 40^{\prime}, h_{1}=20 \mathrm{ft}, \gamma_{1}=100 \mathrm{lbs}$. per cubic foot.

Ans. In this case we have, from page 255 , Case $4, \epsilon=21^{\circ} 22^{\prime}, \theta=32^{\circ} 28^{\prime}$, $P=21740$ lbs., $H=16522$ lbs., $V=13230$ lbs.

If we take the top base $b_{1}=2 \mathrm{ft}$., we have, from equation (III), page 234 , $b_{2}=9.6 \mathrm{ft}$. The greatest unit stress of compression is 1.7 tons per square foot.
(18) The San Mateo dam, California, is built of concrete weighing about 150 pounds per cubic foot. The height is $h=170$ ft., top base $b_{1}=20 \mathrm{ft}$., bottom base $b_{2}=176 \mathrm{ft}$., back batter 1 to 4 or $\tan \beta=0.25$. Investigate the stability for depth of water $h_{1}=165 \mathrm{ft}$.
ans. We have for a section one foot in length

$$
V=212700 \mathrm{lbs} ., \quad H=850780 \mathrm{lbs} ., \quad W=2499000 \mathrm{lbs} .
$$

There are no through joints in this dam, and therefore no investigation for sliding is needed. If, however, we take the coefficient of static sliding friction $\mu=0.66$ (page 229), we have from equation (I), page 236, $n=2$.

If the dam is empty, we have from equation (5), page $237, s_{2}=75 \mathrm{ft}$. The weight then cuts the base near the middle and well within the middle third.

From equation (II), page 237, we have, even when we take ice-thrust into account, $e=86 \mathrm{ft}$. The resultant of the weight, pressure and ice-thrust then cuts the base within the middle third.

Hence from equation (7), page 238, we have for dam empty the greatest unit stress of compression 11 tons per square foot, and for dam full and icethrust 8 tons per square foot.

The dam as built is then stable and safe even for a cold climate, and even for through joints.
(19) Design a dam of sandstone ashlar, 60 ft . high, top base 9 ft ., depth of water 57 feet.

Ans. We have $h=60 \mathrm{ft} ., h_{1}=57 \mathrm{ft} ., b_{1}=9 \mathrm{ft} ., \gamma=62.5 \mathrm{lbs}$. per cubic foot, and, from page $239, \delta=150 \mathrm{lbs}$. per cubic foot, $C=20$ tons per square foot, $\mu=0.6$.

From page 229 we take the back vertical for economic section. Hence $\beta=0$.

From equation (III), page 237, we have for economic proportions for the bottom base $b_{2}=32.7 \mathrm{ft}$. and hence $A=1250$ square feet.

Then from equation (6), page 237, the greatest compressive stress for reservoir full is $p=5.7$ tons per square foot. For reservoir empty s_{2} is always greater than $\frac{1}{3} b_{2}$ when back is vertical (page 238), and the unit stress is still less.

We have then for a foot of length of the dam, $W=187500 \mathrm{lbs}$, $H=101530$ lbs., and from equation (I), page 236, if there is no ice-thrust, we have for the factor of safety for sliding $x=1.1$. This is small, but if there are no through joints the dam cannot slide.

But now, if we suppose the ice-thrust of $T=40000 \mathrm{lbs}$. per foot to act, we must test and see if the dam with bottom base $b_{2}=32.7 \mathrm{ft}$. is still safe.

From (5), page 237, we have $s_{2}=11.6$ ft., and from (II), page 237, using this value of s_{2}, we obtain $e=-1.35 \mathrm{ft}$. The minus sigu shows that the resultant passes outside of the base. The dam would therefore rotate under the ice-thrust. We must find b_{2} therefore from (III'), page 238. This gives us $b_{2}=36 \mathrm{ft}$. and $A=1350 \mathrm{sq}$. ft., $W=202500 \mathrm{lbs}$.

We have now for the factor of safety for sliding $n=0.9$. This is less than unity, and hence when the ice-thrust acts, the wall must depend for its safety entirely upon the fact that there are no through joints. It would be better, then, to give the dam a back batter of, say, $\tan \beta=0.25$.

If we do this, we have from (III), page $237, b_{2}=43.6 \mathrm{ft}$. and $A=1578$ sq. ft . From (5) and (II), page 237, we then obtain $s_{2}=21 \mathrm{ft}$. and $e=8 \mathrm{ft}$. Then from (8), page 238, we have $p=10.9$ tons per square foot, so that so far as rotation and compression are concerned the dam is safe even with icethrust acting.

We have now from (I), page 236, for the factor of safety for sliding, when the ice-thrust acts, $n=1.1$. We should then have no through joints in the dam.
(20) The height of the proposed Quaker Dam, New York, is 170 feet, top thickness 20 feet, specific mass of the masonry 2.5, depth of
water 163 feet. Find the economic section for allowable compression of 10 tons per square foot.

Ans. We have $b_{1}=20 \mathrm{ft} ., h_{1}=163 \mathrm{ft} ., h=170 \mathrm{ft} ., \frac{\delta}{\gamma}=2.5, \gamma=62.5$ lbs. per cubic foot, $\delta=156.25 \mathrm{lbs}$. per cubic foot, $T=40000 \mathrm{lbs}$. per foot, $C=20000 \mathrm{lbs}$. per square foot, $\mu=0.6$.

1st. Ice-thrust Neglected.-Let us first neglect the ice-thrust.
From equation (I), page 240, we have for the height h_{2} of the first rectangular sub-section if the water is level with the top, $h_{2}=32 \mathrm{ft}$. As the water is not level with the top, h must be greater than this. In equation (I), page $240, \delta b_{1}{ }^{2} h_{2}=\boldsymbol{\gamma}\left(h_{2}-a\right)^{3}$, if we put $a=7 \mathrm{ft}$., $h_{2}=h_{1}-7$, and insert the values of δ, b_{1} and γ, we have

$$
625000 h_{2}+4375000=62.5 h_{1}{ }^{3} .
$$

Solving this equation, we have for $e=\frac{1}{3} b_{1}=6.66 \mathrm{ft}$., $h_{1}=34.7 \mathrm{ft}$. Hence $h_{2}=41.7 \mathrm{ft}$. and $A_{1}=834 \mathrm{sq} . \mathrm{ft}$. When the dam is empty $s=\frac{b_{1}}{2}=10 \mathrm{ft}$. We have then from (7), page 238, when the dam is empty, the unit compression $p=3.26$ tons per square foot on back edge, and from (6), page 237 , when the dam is full, $p=6.52$ tons per square foot on front edge.

Below $h_{1}=34.7 \mathrm{ft}$, we have the back vertical and the face battered and the second sub-section begins.

Let us take for the height of the next trial section $h_{2}=15.3 \mathrm{ft}$. Then $h_{1}=34.7+15.3=50 \mathrm{ft} ., A_{1}=834 \mathrm{sq} . \mathrm{ft} ., b_{1}=20 \mathrm{ft}$., $s_{1}=10 \mathrm{ft} ., \beta=0$, $\frac{\delta}{\gamma}=2.5$. From (III), page 243, when $e=\frac{1}{3} b_{2}$, we have $b_{2}=26.2 \mathrm{ft}$., and hence $e=8.7 \mathrm{ft}$. The area of this trial section is then $A_{2}=353 \mathrm{sq}$. ft . We have now from (2) and (II), page 242, $s_{2}=11.6 \mathrm{ft}$. and $s=10.5 \mathrm{ft}$. Then from (7) and (6), page 238, the unit compression $p=5.66$ tons per square foot on back edge for dam empty and $p=7.08$ tons per square foot on front edge for dam full.

Take for the height of the next trial section $h_{2}=20 \mathrm{ft}$. Then $h_{1}=70 \mathrm{ft}$., $A_{1}=11.87$ sq. ft., $b_{1}=26.2 \mathrm{ft}$., $s_{1}=10.5 \mathrm{ft} ., \beta=0, \frac{\delta}{\gamma}=2.5$.

Just as before, from (1II), page 243, when $e=\frac{1}{3} b_{2}$, we now have $b_{2}=37.4$ ft ., and hence $e=12.5 \mathrm{ft}$., and $A_{2}=636 \mathrm{sq}$. ft . Then from (2) and (II), page $242, s=12.4 \mathrm{ft}$. Then from (6), page 238 , the unit compression is $p=$ 7.62 tons per square foot on back edge for dam empty and $p=7.62$ tons per square foot on front edge for dam full. Since for $h_{1}=70$ we have $s=12.4=$ $\frac{1}{3} b_{2}$, this is the limit of the second sub-section.

Below $h_{1}=70 \mathrm{ft}$. we must batter both front and back. If then we take $h_{2}=20 \mathrm{ft}$. for the next trial section, we have $h_{1}=90 \mathrm{ft}$., $A_{1}=18.23 \mathrm{sq}$. $\mathrm{ft} . b_{1}=37.4 \mathrm{ft} ., s_{1}=12.4 \mathrm{ft} ., \frac{\delta}{\gamma}=2.5$.

From (IV), page 244, we have then, when $e=\frac{1}{3} b_{2}=s, b_{2}=53.4$ Hence $s=e=17.8$ and $A_{2}=908$ sq. ft., and from (V), page 244, we obtain tan $\beta=0.114$. Then from (4), page 244, the compression on front edge for dam full or on back edge for dam empty is $p=7.99$ tons per square foot.

Take $h_{3}=20 \mathrm{ft}$. for the next trial section. Then $h_{1}=110 \mathrm{ft}$., $A_{1}=2731$ sq. ft., $b_{1}=53.4 \mathrm{ft}$., $s_{1}=17.8 \mathrm{ft}$., $\frac{\delta}{\gamma}=2.5$, and we have from (IV), page 244 (a). $b_{2}=67.5 \mathrm{ft}$, hence $A_{2}=1218 \mathrm{sq} . \mathrm{ft}$. . $e=s=22.5 \mathrm{ft}$., and from (V), page $244, \tan \beta=0.05$. From (4), page 243 (a), the compression on front and back edge for dam full and empty is $p=9.14$ tons per square foot.

Take $h_{2}=20 \mathrm{ft}$. for the next trial section. Then $h_{1}=130 \mathrm{ft}$., $A_{1}=3949$ sq. ft., $b_{1}=67.5 \mathrm{ft}$., $s_{1}=22.5 \mathrm{ft}$., $\frac{\delta}{\gamma}=2.5$. We find then for this section $b_{2}=$ $81.6 \mathrm{ft} ., A_{2}=1490 \mathrm{sq} . \mathrm{ft}$., $e=s=27.2 \mathrm{ft}$., $\tan \beta=0.036, p=10.4$ tons per square foot.

Below $h_{1}=130 \mathrm{ft}$., then, the fourth sub-section begins and we must use equation (VI), page 245.

Take $h_{2}=20 \mathrm{ft}$. for the next trial section. Then $h_{1}=150 \mathrm{ft}$., $A_{1}=5439$ sq. ft., $b_{1}=81.6 \mathrm{ft} ., s_{1}=27.2 \mathrm{ft}$., $\gamma=62.5 \mathrm{lbs}$. per cubic foot, $\delta=156.25 \mathrm{lbs}$. per cubic foot. Then, from (VI), page 245, $b_{2}=106.7 \mathrm{ft}$. and hence $A_{2}=$ 1883 sq. ft., and from (5), page $244(a), e=s=38 \mathrm{ft}$. From (V) we have $\tan \beta=0.18$.

For the remaining depth $h_{2}=13 \mathrm{ft}$., $h_{1}=163 \mathrm{ft}$., $A_{1}=7322 \mathrm{sq}$. ft., $b_{1}=$ $106.7 \mathrm{ft} ., s_{1}=38 \mathrm{ft}$., and we find $b_{2}=123.6 \mathrm{ft} ., A_{2}=1497 \mathrm{sq}$. ft., $e=s=45.4$ ft., $\tan \beta=0.00$.

We have then the following Table :

h	h_{1}	b	A	$\tan \beta$	e	s	$\underset{\text { back }}{p}$	$\underset{\text { front }}{p}$
41.7	34.7	20	834	0	6.6	10.0	3.26	6.52
57	50	26.2	1187	0	8.7	10.5	5.66	7.08
77	70	37.4	1823	0	12.5	12.4	7.62	7.62
97	90	53.4	2731	0.114	17.8	17.8	7.99	7.99
117	110	67.5	3949	0.05	22.5	22.5	9.14	9.14
137	130	81.6	5439	0.036	27.2	27.2	10.4	10.4
157	150	106.7	7322	0.18	38.0	38.0	10.0	10.0
170	163	123.6	8819	0.00	45.4	45.4	10.0	10.0

In this Table the first column contains the height h of the dam in feet above the base of each sub-trapezoid, the second the depth of water h_{1} in feet above the base of each sub-trapezoid, the third the base b in feet of each substrapezoid, the fourth the total area A in square feet above that base, the fifth the tangent of the back batter-angle tan β, the sixth and seventh the distances e and s in feet from front and back edges to where the resultant cuts the base of each sub-trapezoid for dam full and empty, the eighth and ninth the unit stress p of compression at those edges in tons per square foot.

Comparing with Ex. (18), we see that the San Mateo dam, 170 ft . high, has about 88 per cent more material than this economic section of the same height.

2d. Ice-thrust taken into Account.-Let us now consider the same dam, taking the ice-thrust into account.

From equation (I'), page 241, putting $h_{2}=h_{1}+7$ and $a=7$, we have, after substituting $\gamma=62.5, \delta=156.25, b_{1}=20, C=20000, T=40000$,

$$
\frac{h_{1}^{3}}{300}+\frac{6250 h_{1}{ }^{2}}{60000}=4.258 h_{1}=64.896, \text { or } h_{1}=11 \mathrm{ft}
$$

Hence $h_{2}=18 \mathrm{ft}$. and $A_{1}=360 \mathrm{sq}$. ft., $e=1.9 \mathrm{ft}$., $p=10$ tons per square foot.

Below $h_{1}=11 \mathrm{ft}$. we have the back vertical and face battered, and the second sub-section begins.

Let us take for the height of the next trial section $h_{2}=23.7 \mathrm{ft}$. Then $h_{1}=34.7 \mathrm{ft} ., A_{1}=360 \mathrm{sq}$. ft., $b_{1}=20 \mathrm{ft} ., s_{1}=10 \mathrm{ft} ., \beta=0, \gamma=62.5, \delta=$ 156.25, $C=20000, T^{\prime}=40000$. From (III') we have $b_{2}=28.76 \mathrm{ft}$; ; hence $A_{2}=$ 577.8 sq . ft., and from (3), page 242, $e=4.8 \mathrm{ft}$. From (2) and (II), page 242, we then have $s=11.4 \mathrm{ft}$.

Take $h_{2}=15.3 \mathrm{ft}$. for the height of the next trial section. Then $h_{1}=50$ ft , $A_{1}=938 \mathrm{sq} . \mathrm{ft} ., b_{1}=28.76 \mathrm{ft}$., $s_{1}=11.4 \mathrm{ft}$., $\beta=0$, and we can find b_{2}, \boldsymbol{A}_{2} and s_{2} for this section.

We can then take $h_{2}=20 \mathrm{ft}$., and so on, until we arrive at a section for which $s=\frac{1}{3} b_{2}$.

Below this section we must batter face and back, still using (III'), page 243, for b_{2} and finding $\tan \beta$ from (V), page 244.

The student should complete the example.
(21) The Bear Valley dam in the San Bernardino Mountains, California, is an arch dam about 450 ft . long, constructed of granite ashlar, height $h=64 \mathrm{ft}$., radius $r=300 \mathrm{ft}$., top base $b_{1}=3.17 \mathrm{ft}$., bottom base $b_{2}=20 \mathrm{ft}$., depth of water $h_{1}=60 \mathrm{ft}$., face vertical. Other dimensions as shown in the
 figure. Examine its stability.

Ans. We have from the given dimensions and from equation (2), page 246 (d), neglecting the ice-thrust T,
for distance from top

	$=12$	24	36	48	64	ft.
h_{1}	$=8$	20	32	44	60	$"$
t	$=4.48$	5.79	7.1	8.42	20	$"$
C	$=16.74$	32.38	42.25	43.05	28.12	

tons per square foot.
From page 229, the allowable unit compression C ought not to exceed 30 tons per square foot. The dam as built has then a higher unit stress than good practice would consider allowable.
(22) Design an arch dam of the same height and radius as the Bear.Valley dam, Ex. (21), and same depth of water, for an allowable compressive stress of 25 tons per square foot.

Ans. We have $h=64 \mathrm{ft}$., $h_{1}=60 \mathrm{ft} ., r=300 \mathrm{ft}$., $C=50000 \mathrm{lbs}$. per square foot, $\gamma=62.5 \mathrm{lbs}$. per cubic foot.

In default of local or practical considerations to guide us in choice of the top base b_{1}, let us suppose an ice-thrust of $T=40000 \mathrm{lbs}$. per foot.

Then from (3), page 246, we have for the top base

$$
b_{1}=\frac{300 \times 40000}{50000 \times 64}=3.75 \mathrm{ft} .
$$

1st. Without Ice-thrust.-Let us take then $b_{1}=3 . \% 5 \mathrm{ft}$., and suppose first that there is no ice-thrust.

Then from (4), page 246, neglecting T, we have for the distance h_{2} below the water level for which the cross-section may be made rectangular,

$$
h_{2}=\frac{50000 \times 3.75}{62.5 \times \frac{3.75}{300}}=10 \mathrm{ft} .
$$

The dam then is rectangular for 14 ft . below the top. Below this point we must increase the thickness as the depth of water increases. We have then from (2), page 246, neglecting T,
for distance from top

$$
\begin{array}{rlrllll}
& =14 & 24 & 36 & 48 & 64 & \mathrm{ft} . \\
h_{1} & =10 & 20 & 32 & 44 & 60 & " \\
t & =3.75 & 7.5 & 12 & 16.5 & 22.5 & " ،
\end{array}
$$

If we make the face vertical and batter the back, we have then a cross-section as shown

in the figure 3.75 ft . thick for the first 14 feet, and then with a back batter of $\frac{18.75}{50}$, or $\tan \beta=0.375$.

2d. With Ice-thrust.-If we consider the ice-thrust T as acting, then we have b_{1} at least 3.75 ft . as already found.

From (4), page 246, taking $T=40000$, we have for the distance h_{2} below the water level for which the cross-section may be made rectangular

$$
h_{2}=\frac{50000 \times 3.75}{62.5 \times 300}-\frac{40000}{62.5 \times 64}=0 .
$$

The dam then is rectangular for 4 feet below the top. Below this point we must increase the thickness as the depth of water increases. We have then from (2), page 246 (d), for dist. from top

	$=4$	24	36	48	64	ft
h_{1}	$=0$	20	32	44	60	$"$
t	$=3.75$	11.25	15.75	20.25	26.25	$"$

If we make the face vertical and batter the back, we have then a cross-section as shown in the figure 3.75 ft . thick for the first 4 feet, and then with a back batter of $\frac{22.5}{60}$, or $\tan \beta=0.375$.

CHAPTER II.

APPLICATIONS OF STATICS-STRENGTH AND ELASTICITY of Materials.

MOMENT OF INERTIA OF AN AREA. RADIUS OF GYRATION. DETERMINATION OF MOMENT OF INERTIA OF AREAS. STIRESS AND STRAIN. EXPERIMENTAL LAWS. COEFFICIENT OF ELASTICITY. WORK AND COEFFICIENT OF RESILIENCE. EQCILIBPIUM OF A DEFLECTED BEAM. SHEARING FORCE AND SHEARLNG STRESS. BENDING MOMENT. NEUTRAL AXIS. RESISTING MOMENT. COEFFICIENT OF IUPTCRE FOR FLEXURE. TABLE OF PROPERTIES OF MATERIALS, FACTOR OF SAFETY AND WORKING STRESS. VARIABLE WORKING STRESS. STRENGTH OF PIPES AND CYLINDERS. RIVETED JOINTS. THEORY AND PRACTICE OF RIVETING. DESIGNING OF BEAMS. BREAKING WEIGHT. SIIAPE FOR CNIFORM STRENGTH. THEORY OF PINS AND EYEBARS. TORSION. COMBINED STRESSES. STRESS DUE TO TEMPERATURE.

Moment of Inertia of an Area.--The term "moment of inertia of an area" is used to designate a quantity which occurs so frequently in the application of statics to the strength and elasticity of materials that a special name and symbol for it is essential. Before taking up such application, then, it is necessary to define what is meant by the term and to show how the quantity it stands for may be computed. The use made of it will appear later.

Definition of Moment of Inertia of an Area.-Any indefinitely small area we call an elementary area. Thus the rectangular areas $a b c d$ are elementary areas if in the one case the height and breadth $a b$ and $c b$ are indefinitely small, and if in the other case, whatever the breadth $b c$, the height $a b$ is indefinitely small. An elementary area, then, has one or both of its dimensions indefinitely small.

Take O as origin and draw the co-ordinate axes $O X$ and $O Y$ in the plane of the areas, parallel to the base and height. Then in the
 first case, since both dimensions are indefinitely small, they can be neglected with reference to any finite distance. The perpendicular x from $a b$ on $O Y$ is then the distance of the area abcd from the axis of Y, or the same as the distance of the centre of mass C of the area from the axis of Y, and the perpendicular y from ad on $O X$ is the same as the distance of the centre of mass C of the area from the axis of X.
In the second case the height $a b$ can be neglected with reference
to any finite distance, and the perpendicular y from ad on $O X$ is the same as the distance of the centre of mass C of the area from the axis of X. The perpendicular x from C on $O Y$ is the distance from the axis of Y.

In either case, the product of the elementary area by the square of its distance from any axis in the plane of the area is called the moment of inertia of the elementary area with reference to that axis.

Thus if a is the elementary area, $a x^{2}$ is its moment of inertia with reference to $O Y$ in its plane, and $a y^{2}$ is its moment of inertia with reference to $O X$ in its plane.

In the same way if r is the distance $O C$ of the elementary area from the axis of $Z, a r^{2}$ is its moment of inertia with reference to the axis OZ perpendicular to the plane of the area. This is called the polar moment of inertia of the area with reference to $O Z$. But evidently $a r^{2}=a x^{2}+a y^{2}$. Hence, the polar moment of inertia is equal to the sum of the moments of inertia with reference to any two co-ordinate axes in the plane of the area.

Now any area may be considered as made up of an indefinitely great number of elementary areas. The moment of inertia of an area with reference to any axis is then the sum of the moments of inertia of all its elementary areas.

Thus the moment of inertia of any area with reference to the axes of X and Y in the plane of the area is given by

$$
\Sigma \alpha y^{2} \text { and } \Sigma \alpha x^{2},
$$

and the polar moment of inertia, or the moment of inertia with reference to the axis of Z at right angles to the plane of the area, is given by

$$
\Sigma a r^{2}=\Sigma a\left(x^{2}+y^{2}\right)=\Sigma a x^{2}+\Sigma a y^{2}
$$

or the sum of the moments of inertia with reference to the two co-ordinate axes in the plane of the area.

If the axis is taken through the centre of mass C of the area, we denote the corresponding moment of inertia by I. If it is not taken through the centre of mass, we call it an eccentric axis, and we denote the corresponding moment of inertia by I^{\prime}.

Let $O X$ be an axis which passes through the centre of mass C of a given area in its plane, and $O^{\prime} X^{\prime}$ a parallel eccentric axis, at a distance d from the first axis, also in
 the plane of the area.

Then the moment of inertia of the area with reference to $O X$ is

$$
I=\Sigma \alpha y^{2}
$$

and the moment of inertia of the area with reference to $O^{\prime} X^{\prime}$ is

$$
I^{\prime}=\Sigma \alpha(y+d)^{2}=\Sigma \alpha y^{2}+2 d \Sigma a y+d^{2} \Sigma \alpha
$$

But since $O X$ passes through the centre of mass of the area, $\Sigma m y=0$ (page 17), where m is the mass of an elementary area. But $m=\delta \alpha$, where a is the area and δ the surface density. Hence $\Sigma \delta a y=\delta \Sigma a y=0$, or $\Sigma a y=0$. Therefore, since $\Sigma \alpha=A=$ the entire area, we have

$$
I^{\prime}=\Sigma a y^{2}+A d^{2}=I+A d^{2}
$$

That is, the moment of inertia of an area with reference to an eccentric axis is equal to the moment of inertia with reference to a parallel axis through the centre of mass plus the area into the square of the distance between the two axes.

Radius of Gyration of an Area.-The square root of the quotient obtained by dividing the moment of inertia of an area with reference to any axis by the area is called the radius of gyration of the area with reference to that axis. We denote the radius of gyration by k. Then by definition

$$
\kappa^{\prime}=\sqrt{\frac{\bar{I}^{\prime}}{A}} \quad \text { and } \quad \kappa=\sqrt{\frac{\bar{I}}{A}}
$$

where κ^{\prime} and I^{\prime} indicate an eccentric axis, and κ and I an axis through the centre of mass.

We have then

$$
A \kappa^{2}=I, \quad \text { or } \quad A \kappa^{\prime 2}=I^{\prime}
$$

That is, the radius of gyration of an area is that distance at which, if we suppose the entire area to be concentrated into a point, the moment of inertia is the same as for the given area.

Determination of Moment of Inertia of an Area.-To determine the moment of inertia of an area with reference to any axis, we have simply to perform the summation indicated by $\sum a x^{2}$, or $\Sigma a y^{2}$, or $\sum a r^{2}$.
(1) Moment of Inertia of the Area of a Rectangle.-Let $A B D E$ be a rectangle of base $A B=b$ and height $B D=h$. Take the axis $C X$
 through the centre of mass C in the plane of the rectangle and parallel to the base b. Let $a b d e$ be an elementary area or strip parallel to the base at a distance y from the axis. Then the height of this strip is $d y$ and its area is $a=b d y$ and its moment of inertia is $a y^{2}=b y^{2} d y$. The moment of inertia of the rectangle with reference to the axis $C X$ is then, since the area of the rectangle is $A=b h$,

$$
I_{x}=\int_{-\frac{h}{2}}^{+\frac{h}{2}} \underset{\frac{h}{2}}{b y^{2}} d y=\frac{b h^{3}}{12}=A \cdot \frac{h^{2}}{12} .
$$

The radius of gyration is $\kappa_{x}=\sqrt{\frac{I}{A}}=\frac{h}{2 \sqrt{3}}$.
If we take the axis in the plane of the rectangle through the centre of mass C and parallel to the height h, we have in the same way

$$
I_{y}=\int_{-\frac{b}{2}}^{+\frac{b}{2} x^{2}} d x=\frac{n b^{3}}{12}=A \cdot \frac{b^{2}}{12}, \quad \kappa y=\sqrt{\frac{I}{A}}=\frac{b}{2 \sqrt{3}} .
$$

For the polar axis through the centre of mass C at right angles to the plane we have

$$
I_{z}=A \cdot \frac{h^{2}+b^{2}}{12}=A \cdot \frac{d^{2}}{12}, \quad \kappa z=\sqrt{\frac{T}{A}}=\frac{d}{2 \sqrt{3}}
$$

where $d=\sqrt{h^{2}+b^{2}}$ is the diagonal of the rectangle.
(2) Moment of Inertia of the Area of a Triangle-Let $A B D$ be a triangle of base $A B=b$ and height h. Take the axis $X^{\prime} X^{\prime \prime}$ through the apex parallel to the base and in the plane of the area.

Take an elementary strip at a distance y from $X X^{7}$ parallel to the base. We have for the length x of this strip

$$
x: y:: b: h, \quad \text { or } \quad x=\frac{b y}{h}
$$

The area of the strip is then $a=x d y=\frac{b y d y}{h}$, and the moment of inertia of the triangle with reference to $X X^{\prime}$ is then, since the area of the triangle is $A=\frac{b h}{2}$,

$$
I_{x}^{\prime}=\int_{0}^{h} \frac{b}{h} y^{3} d y=\frac{b h^{3}}{4}=A \cdot \frac{h^{2}}{2}, \quad \text { and } \quad \kappa_{x^{\prime}}=\sqrt{\frac{I^{\prime}}{A}}=\frac{h}{\sqrt{2}}
$$

We have then for the moment of inertia with reference to the axis $X X$ through the centre of mass C, parallel to the base and in the plane of the area,

$$
I_{x}=I_{x}^{\prime}-A\left(\frac{2}{3} h\right)^{2}=A \frac{h^{2}}{18}, \text { and } \kappa_{x}=\sqrt{\frac{I}{A}}=\frac{h}{3 \sqrt{2}}
$$

Again, we have for the moment of inertia with reference to the axis coinciding with the base $A B$,

$$
I_{b}^{\prime}=I+A\left(\frac{1}{3} h\right)^{2}=A \frac{h^{2}}{6}, \quad \text { and } \quad \kappa_{b}=\sqrt{\frac{T^{\prime}}{A}}=\frac{\hbar}{\sqrt{6}}
$$

Take the axis $A Y$ through the vertex A in the plane of the triangular area $A B D$. Drop the perpendiculars d_{1} and
 d_{2} from D and B upon $A Y$. Produce the side $D B$ to intersection E with $A Y$, and let the distance $A E=l$.

Let A_{1} be the area of the triangle $A E D$ so that $A_{1}=\frac{l d_{1}}{2}$. The moment of inertia of this triangle with reference to the axis $A Y$ conciding with the base $A E$ is, as we have just seen, $I_{1}=A_{1} \frac{d_{1}{ }^{2}}{6}=\frac{l d_{1}{ }^{3}}{12}$.

Let A_{2} be the area of the triangle $A E B$, so that $A_{2}=\frac{l d_{2}}{2}$. The moment of inertia of this triangle with reference to the axis $A Y$ coinciding with the base $A E$ is $I_{2}{ }^{\prime}=A_{2} \frac{d_{2}{ }^{2}}{6}=\frac{l d_{2}{ }^{3}}{12}$.

Hence the moment of inertia of the triangle $A B D$ with reference to the axis $A Y$ is

$$
I_{y^{\prime}}=I_{1}^{\prime}-I_{2}^{\prime}=\frac{l}{12}\left(d_{1}^{2}-d_{2}^{3}\right)=\frac{l}{2}\left(d_{1}-d_{2}\right) \cdot \frac{1}{6}\left(d_{1}^{2}+d_{1} d_{2}+d_{2}^{2}\right)
$$

But $\frac{l}{2}\left(d_{1}-d_{2}\right)$ is the area A of the triangle $A B D$. Hence we have

$$
I_{y}^{\prime}=\frac{A}{6}\left(d_{1}^{2}+d_{1} d_{2}+d_{2}^{2}\right)
$$

If the axis $A Y$ is at right angles to the side $A B=b$, and α is the angle
 $D A B$ at A, then we have $d_{1}=\frac{h}{\tan \alpha}, d_{2}=b$, and

$$
I_{y^{\prime}}^{\prime}=\frac{A}{6}\left(b^{2}+\frac{b h}{\tan \alpha}+\frac{h^{2}}{\tan ^{2} \alpha}\right)
$$

The distance from A to the centre of mass C is

$$
\frac{b}{2}+\frac{1}{3}\left(\frac{h}{\tan \alpha}-\frac{b}{2}\right)=\frac{1}{3}\left(b+\frac{h}{\tan \alpha}\right) .
$$

The moment of inertia with reference to an axis in the plane through the centre of mass C parallel to $A Y$ is then

$$
I_{y}=I^{\prime}-A \cdot \frac{1}{9}\left(b+\frac{h}{\tan \alpha}\right)^{2}=\frac{A}{18}\left(b^{2}-\frac{b \hbar}{\tan \alpha}+\frac{\hbar^{2}}{\tan ^{2} \alpha}\right) .
$$

For the polar axis through the centre of mass C at right angles to the plane we have then

$$
I_{z}=\frac{A}{18}\left(h^{2}+b^{2}-\frac{b h}{\tan \alpha}+\frac{h^{2}}{\tan ^{2} \alpha}\right)
$$

(3) Moment of Inertia of the Area of a Parallelogram. -We can divide the parallelogram $A B D E$ into two triangles by the diagonal $E B$.

The moment of inertia of the triangle $A B E$ with reference to the axis $E D$ is, as we have already found, $I_{b^{\prime}}=\frac{b h^{3}}{4}$. The moment of inertia of the triangle $E D B$ with reference to the axis $E D$ is, as already found, $I_{b}{ }^{\prime}=\frac{b h^{3}}{12}$. The moment
 of inertia of the parallelogram with reference to the axis $E D$ or $A B$ is then

$$
I b^{\prime}=\frac{b h^{3}}{3}=A \cdot \frac{h^{2}}{3}, \quad \text { and } \quad \kappa b^{\prime}=\sqrt{\overline{I^{\prime}}}=\frac{h}{\sqrt{3}} .
$$

The moment of inertia of the parallelogram with reference to the axis $X X$ in the plane through the centre of mass C parallel to the base $A B$ is then

$$
I_{x}=I^{\prime}-A\left(\frac{h}{2}\right)^{2}=A \frac{h^{2}}{12}, \quad \text { and } \quad \kappa_{x}=\sqrt{\frac{\bar{I}}{A}}=\frac{h}{2 \sqrt{3}}
$$

or the same as for a rectangle.
In the same way if α is the acute angle at A, we have for the moment of inertia with reference to the axis $A E$ or $B D$,

$$
I l^{\prime}=A \cdot \frac{b^{2} \sin ^{2} \alpha}{3}, \quad \text { and } \quad \kappa_{l^{\prime}}=\sqrt{\frac{\bar{I}^{\prime}}{A}}=\frac{b \sin \alpha}{\sqrt{3}}
$$

and with reference to the axis parallel to $A E$ in the plane through the centre of mass C,

$$
I_{l}=A \cdot \frac{b^{2} \sin ^{2} \alpha}{12}, \quad \text { and } \quad \kappa_{l}=\sqrt{\frac{I}{A}}=\frac{b \sin \alpha}{2 \sqrt{3}}
$$

We have also for the polar axis through the centre of mass C at right angles to the plane

$$
I_{z}=\frac{A}{12}\left(h^{2}+b^{2}+\frac{h^{2}}{\tan ^{2} \alpha}\right)
$$

(4) Moment of Inertia of the Area of a Hexagon.-We can divide the hexagon into six equilateral triangles of side b and area $A_{1}=\frac{b^{2} \sqrt{3}}{4}$.

Take an axis $Y Y$ in the plane of the area through the centre of mass perpendicular to the sides.

For the triangle $A B D$ we have from page 273 , since $d_{1}=-\frac{b}{2}$, $d_{2}=+\frac{b}{2}$, the moment of inertia $\frac{A_{1} b^{2}}{24}$. For the triangle $A B E$ we have, since $d_{1}=\frac{b}{2}, d_{2}=b$, the mo-
 ment of the inertia is $\frac{7 A_{1} b^{2}}{24}$. For the total moment of inertia with reference to $\boldsymbol{Y} \boldsymbol{Y}$ we have then

$$
I_{y}=\frac{7 A_{1} b^{2}}{6}+\frac{A_{1} b^{2}}{12}=\frac{15 A_{1} b^{2}}{12}
$$

or, since $A=6 A_{1}$,

$$
I_{y}=\frac{5 A b^{2}}{24}, \quad \text { and } \quad \kappa_{y}=\sqrt{\frac{\bar{I}}{A}}=\frac{b \sqrt[4]{5}}{2 \sqrt{6}} .
$$

If we take the axis $X X$ through the centre of mass, we have, from page 273 , for the moment of inertia of the triangle $A B E, \frac{A_{1} b^{2}}{8}$, and for the moment of inertia of the triangle $A B D, \frac{3 A_{1} b^{2}}{8}$. The total moment of inertia with reference to $X X$ is then

$$
I_{x}=\frac{A_{1} b^{2}}{2}+\frac{3 A_{1} b^{2}}{4}=\frac{5 A_{1} b^{2}}{4}
$$

or, since $A=6 A_{1}$,

$$
I_{x}=\frac{5 A b^{2}}{24}, \quad \text { and } \quad \kappa_{x}=\sqrt{\frac{I}{A}}=b \cdot \frac{\sqrt{5}}{2 \sqrt{6}}
$$

For the polar axis through the centre of mass, perpendicular to the plane,

$$
I_{z}=\frac{5 A b^{2}}{12}, \quad \text { and } \quad \kappa_{z}=\sqrt{\frac{I}{A}}=\frac{b \sqrt{5}}{2 \sqrt{3}} .
$$

(5) Moment of Inertia of the Area of an Octagon.-We can divide
 the octagon into eight isosceles triangles.

We find the moment of inertia with reference to an axis $Y Y$ in the plane of the area, through the centre of mass perpendicular to the sides,

$$
I_{y}=\frac{A b^{2}}{24}(\sqrt{2+4})
$$

and

$$
\kappa_{y}=\sqrt{\frac{I}{A}}=b \frac{\sqrt{5.414}}{2 \sqrt{6}} .
$$

For the polar axis through the centre of mass, perpendicular to the plane, we have then

$$
I_{z}=\frac{A b^{2}}{12}(\sqrt{2}+4), \quad \text { and } \quad \kappa_{p}=\sqrt{\frac{\bar{I}}{A}}=b \cdot \frac{\sqrt{5.414}}{2 \sqrt{3}}
$$

For the axis $X X$ in the plane of the area, through the centre of mass, coinciding with the sides, we obtain

$$
I_{x}=\frac{A b^{2}}{24}(\sqrt{2}+4), \quad \text { and } \quad \kappa_{x}=\sqrt{\frac{I}{A}}=b \frac{\sqrt{5.414}}{2 \sqrt{6}}
$$

(6) Moment of Inertia of the Area of a Circle.-The area of any circular strip of radius x and thickness $d x$ is $2 \pi x d x$. Its moment of inertia with reference to the polar axis through the centre of mass is then $2 \pi x^{3} d x$. The polar moment of inertia is then, since $\pi r^{2}=A$ $=$ the area,

$$
I_{z}=\int_{0}^{r} 2 \pi x^{3} d x=\frac{\pi r^{4}}{2}=A \cdot \frac{r^{2}}{2}
$$

and

$$
\kappa_{z}=\sqrt{\frac{\bar{I}}{A}}=\frac{r}{\sqrt{2}} .
$$

The moment of inertia with reference to any axis in the plane through the centre of mass, as $X X$ or $Y Y$, is evidently the same, and, since $I_{x}+I_{y}=2 I=I_{z}$, we have for any axis in the plane through the centre of mass

$$
I=\frac{\pi r^{4}}{4}=A \cdot \frac{r^{2}}{4}, \quad \text { and } \quad k=\sqrt{\frac{I}{A}}=\frac{r}{2}
$$

(7) Moment of Inertia of the Area of a Circular Ring.-Let $r_{1}=$ the internal radius and r_{2} the external radius, so that the area is $\pi\left(r_{2}{ }^{2}-r_{1}{ }^{2}\right)$ $=A$. Then in the preceding case we have simply to integrate between r_{2} and r_{1}, and we have for the polar axis through the centre of mass
$I_{z}=\int_{r_{1}}^{r_{2}} 2 \pi x^{3} d x=\frac{\pi\left(r_{2}{ }^{4}-r_{1}{ }^{4}\right)}{2}=\frac{\pi\left(r_{2}{ }^{2}-r_{1}{ }^{2}\right)\left(r_{2}{ }^{2}+r_{2}{ }^{2}\right)}{2}=A \cdot \frac{r_{2}{ }^{2}+r_{1}{ }^{2}}{2}$,
and for any axis through the centre of mass in the plane of the area

$$
I=A \cdot \frac{r_{2}^{2}+r_{1}^{2}}{4}
$$

(8) Moment of Inertia of the Area of an Ellipse.-Let $a=$ the semi-major and b the semi-minor axes, and take the origin at the centre of mass. Then

$$
y=\frac{b}{a} \sqrt{a^{2}-x^{2}}
$$

and the area $A=\pi a b$. The area of a strip, as $P Q$, is $2 y d x$, and its moment of inertia with reference to the axis $Y Y$ in the plane through the centre of mass is $2 y x^{2} d x$.

Hence the moment of inertia of the area with reference to $Y Y$ is

$I_{y}=\frac{2 b}{a} \int_{-a}^{+a} x^{2} \sqrt{a^{2}-x^{2}} \cdot d x=\frac{\pi a^{3} b}{4}=A \cdot \frac{A^{2}}{4}, \quad$ or $\quad \kappa_{y}=\sqrt{\frac{\bar{I}}{A}}=\frac{a}{2}$.
In the same way we have for the moment of inertia with reference to the axis $X X$ in the plane through the centre of mass

$$
I_{x}=\frac{\pi b^{3} a}{4}=A \cdot \frac{b^{2}}{4}, \quad \text { or } \quad \kappa_{x}=\sqrt{\frac{I}{A}}=\frac{b}{2} .
$$

The moment of inertia with reference to the polar axis through the centre of mass at right angles to the plane is then

$$
1_{z}=A \cdot \frac{a^{2}+b^{2}}{4}, \quad \text { or } \quad \kappa_{z}=\frac{\sqrt{a^{2}+b^{2}}}{2} .
$$

Rule for Moment of Inertia of the Area of a Rectangle, Parallelogram, Circle or Ellipse with Reference to an Axis of Symmetry through the Centre of Mass.-The preceding is sufficient to illustrate how the moment of inertia of any area may be found. The use made of the moment of inertia will appear later. The various rolling mills furnish their customers with extensive Tables giving the moment of inertia of the cross-section of the different sizes and shapes of iron and steel beams rolled by them.* It is therefore unnecessary to multiply illustrations here.

We give here a simple rule which will enable the student to find at once the moment of inertia with reference to an axis of symmetry through the centre of mass, for the area of the rectangle, parallelogram, circle or ellipse. This rule is as follows :
Axis of symmetry in square of the other perpendic$\left.\begin{array}{l}\text { plane of area through } \\ \text { centre of mass: }\end{array}\right\} I=$ area $\times \frac{\text { ular semi-axis }}{3 \text { or } 4}$;
sum of squares of two perpen-
$\left.\begin{array}{c}\text { Polar axis through cen- } \\ \text { tre of mass: }\end{array}\right\} I=$ area $\times \frac{\begin{array}{l}\text { sum of squares of two perpen- } \\ \text { dicular semi-axesof symmetry }\end{array}}{3 \text { or } 4}$.
The denominator 3 or 4 is taken according as the area is a parallelogram or an ellipse. The rectangle and circle are special cases of parallelogram and ellipse.

[^14](1) Parallelogram and Rectangle.-Thus for the parallelogram
 $A B D E$ of base b and height h, we have for the axis of symmetry $X X$ through the centre of mass C
$$
I_{x}=\frac{A}{3}\left(\frac{h}{2}\right)^{2}=A \cdot \frac{\hbar^{2}}{12}
$$
and
$$
\kappa_{x}=\sqrt{\frac{I}{A}}=\frac{h}{2 \sqrt{3}}
$$

For the axis of symmetry $Y Y$ we have

$$
I_{y}=\frac{A}{3}\left(\frac{b \sin \alpha}{2}\right)^{2}=A \frac{b^{2} \sin ^{2} \alpha}{12}, \quad \text { and } \quad \kappa_{y}=\sqrt{\frac{I}{A}}=\frac{b \sin \alpha}{2 \sqrt{3}}
$$

For the rectangle we have

$$
I_{x}=\frac{A}{3}\left(\frac{h}{2}\right)^{2}=A \frac{h^{2}}{12}
$$

and

$$
\begin{aligned}
& \kappa_{x}=\sqrt{\frac{I}{A}}=\frac{h}{2 \sqrt{3}} \\
& \boldsymbol{I}_{y}=\frac{A}{3}\left(\frac{b}{2}\right)^{2}=A \frac{b^{2}}{12}
\end{aligned}
$$

and

$$
\kappa_{y}=\sqrt{\frac{\bar{I}}{A}}=\frac{b}{2 \sqrt{3}}
$$

and for the polar axis through C,

$$
I_{z}=\frac{A}{3}\left(\frac{h^{2}}{4}+\frac{b^{2}}{4}\right)=A \cdot \frac{h^{2}+b^{2}}{12}=A \frac{d^{2}}{12}, \quad \kappa_{z}=\sqrt{\frac{I}{A}}=\frac{d}{2 \sqrt{3}}
$$

where d is the diagonal of the rectangle. These are the same results as already obtained pages 272 and 274 .
(2) Ellipse and Circle.-For the ellipse let $a=$ the semi-major and b the semi-minor axis.

Then for the axis of symmetry $X X$ through the centre of mass C we have

$$
I_{x}=A \frac{b^{2}}{4}, \quad \text { and } \quad \kappa x=\sqrt{\frac{I}{A}}=\frac{b}{2}
$$

For the axis of symmetry $Y Y$ we have

$$
I_{y}=A \frac{a^{2}}{4}, \quad \text { and } \quad \kappa_{y}=\sqrt{\frac{\bar{I}}{A}}=\frac{a}{2}
$$

For the polar axis through C

$$
I_{z}=A \cdot \frac{a^{2}+b^{2}}{4}, \quad \text { and } \quad \kappa_{z}=\sqrt{\frac{I}{A}}=\frac{\sqrt{a^{2}+b^{2}}}{2}
$$

For the circle $a=b=r=$ radius, and we have

$$
I_{x}=I_{y}=A \frac{r^{2}}{4}, \quad \text { and } \quad I_{z}=A \frac{r^{2}}{2}
$$

These are the same results as already obtained pages 277 and 277.

Stress and Strain.-When a force is distributed over some definite portion of the surface of a body, we call it external stress, or stress on a body. A force between two particles or portions of a body is called internal stress, or stress in a body. External stress causes change of shape or volume of a body. Internal stress opposes such change of shape or volume.

We distinguish three kinds of simple stress :
Tensile stress, tending to pull the particles of a body apart in parallel straight lines, or resisting such separation.

Compressive stress, tending to push the particles of a body together in parallel straight lines, or resisting such approach.

Shearing stress, tending to cut a body across or to make the particles move past one another in parallel lines at right angles to the line joining the particles, or resisting such action; as in cutting with a pair of shears or in punching a plate.

We measure stress, then, whether external or internal, in pounds per square inch or per square foot.

The change of distance between two particles of a body in a direction opposite to coexisting internal stress between those particles is called strain. We distinguish strain according to the character of the internal stress to which it is opposite in direction, as tensile, compressive or shearing stress. We measure strain, then, in feet or inches.

It will be observed that when there is no coexisting internal stress, or if the internal stress is not opposite in direction to the change of distance, there is no strain. Internal stress and strain must coexist and be opposite in direction.

Thus when a spring is compressed the external and internal stresses balance, and the strain is the distance through which the end of the spring has been moved, counting from the unstrained position or the neutral point, where there is no external or internal stress. Now let the external stress be removed or the spring released. Then during the first portion of the expansion the internal stress acts in the same direction as the expansion, and this expansion cannot then be considered as a strain. The spring is not strained by such expansion; on the contrary the original strain is diminished.

But after the end of the spring passes the neutral point, if the spring still continues to expand, the internal stress is opposite in direction to the expansion, and any expansion beyond this point is a strain. The spring is strained by such expausion. In this case, then, we have strain without any external stress.

Experimental Laws.-Experiments made upon materials have established the following laws :

1. When a small stress, either tensile or compressive or shearing, is applied to a body, a small corresponding tensile, compressive or shearing strain is produced, and on the removal of the stress the body returns to its original dimensions.

When the stress, either tensile or compressive or shearing, exceeds a certain amount, which varies according to the character of the stress and the material, the body on removal of the stress does not return to its original dimensions. The portion of the strain which remains permanent is called the set. The unit stress for which set is first observed is called the elastic limit for tension, compression or shear.
3. So long as no set is observed, or so long as the unit stress is
less than the elastic limit, the strain is proportional to the stress which produces it. After set is observed, or when the unit stress is greater than the elastic limit, the strain increases more rapidly than the stress which produces it, until finally rupture occurs.
4. A suddenly applied stress or shock is more injurious than a steady stress or a stress gradually applied.

Determination of the Elastic Limit.-Let a bar $A B$ of uniform
 cross-section A have an external stress or force F applied to it which elongates, compresses or shears the bar. In the figure we suppose elongation. As the bar then elongates, internal stress acts in a direction opposite to the elongation. The elongation is then a strain. Denote this strain by λ and let the original length of the bar be l. Let s be the strain per unit of length. Then we have

$$
\begin{equation*}
s=\frac{\lambda}{l} . \tag{1}
\end{equation*}
$$

If the external stress or force F is applied in the axis of the bar, the internal unit stress or stress per square unit of cross-section is

$$
\begin{equation*}
S=\frac{F}{A} \tag{2}
\end{equation*}
$$

Now according to the laws just stated, so long as the unit stress is less than the elastic limit S_{e}, the strain is proportional to the applied stress which produces it, and no set will be observed upon removal of the stress.

If then we double the external stress F, we shall observe a double strain 2λ, and so on.

It is evident that if we lay off the unit stresses $S=\frac{F}{A}, 2 S=\frac{2 F}{A}$, $3 S=\frac{3 F}{A}$, etc. . to scale along a horizontal line, and lay off the corresponding observed strains $\lambda, 2 \lambda, 3 \lambda$, etc., as ordinates, we shall obtain, so long as the unit stress S does not exceed the elastic limit S_{e}, a straight line OP.

By thus carefully plotting the results of experiment, whether of compression, tension or shear, we can detect the point P at which deviation from the straight line occurs. The corresponding unit stress S_{e} is the elastic limit for
 tension, compression or shear.

The elastic limit is then the unit stress within which the law of proportionality of strain to stress holds good.

When the unit stress exceeds this limit, we no longer have a straight line, but the strain increases more rapidly than the stress until rupture occurs, and we have from P a curve convex to the horizontal. Also if we observe the set, we have a similar curve $S_{e} Q$, the ordinates to which give the set for any unit stress greater than S_{e}.

Coefficient of Elasticity.-If we suppose the law of proportionality of strain to stress to hold good without limit, it is evident that the results of experiment represented by the preceding figure
will enable us to calculate the unit stress which would cause a strain equal to the original length l. This unit stress is called the coefficient of elasticity. We denote it by E.

The coefficient of elasticity, then, is that unit stress which would cause a strain equal to the original length provided the law of proportionality of strain to stress were to hold good without limit.

We can easily compute it from the preceding figure. Thus let the straight line $O P$ be produced indefinitely and let the strain $E B=l=$ the original length. Then $O E$ gives the coefficient of elasticity E, and we have by similar triangles

$$
\begin{equation*}
S: \lambda:: E: l, \quad \text { or } \quad E=\frac{l S}{\lambda}=\frac{l F}{\lambda A}, \tag{1}
\end{equation*}
$$

since the unit stress $S=\frac{F}{A}$, where F is the applied stress and A is the area over which it is distributed.

Since the strain per unit of length $s=\frac{\lambda}{l}$, we also have

$$
\begin{equation*}
E=\frac{S}{s} ; \tag{2}
\end{equation*}
$$

or, the coefficient of elasticity is the ratio of the unit stress to the unit strain.

From (1) we can determine E by experiment for any given material. When E is thus known we can find in any case the strain caused by any unit stress within the elastic limit, by the equation

$$
\begin{equation*}
\lambda=\frac{l S}{E}=\frac{l F}{E A} . \tag{3}
\end{equation*}
$$

Inversely, the stress F corresponding to the strain λ is given within the elastic limit by

$$
\begin{equation*}
F=\frac{\lambda}{l} A E=s A E \tag{4}
\end{equation*}
$$

These formulas apply either to extension, compression or shear.
Work and Coefficient of Resilience.-If the unit stress S does not exceed the elastic limit S_{e}, we see from the figure page 280 that since $O P$ is a straight line, the work done per unit of area is equal to the unit stress multiplied by the mean strain which is $\frac{\lambda}{2}$. We have then for the work per unit of area done by the unit stress S in causing the strain λ

$$
\frac{W}{A}=\frac{1}{2} S \lambda
$$

or, since the total stress $F=S A$,

$$
\begin{equation*}
W=\frac{1}{2} F \lambda, \tag{1}
\end{equation*}
$$

or the work of the stress F in causing the strain λ is one half the product of the stress and strain within the elastic limit.

At the elastic limit we have from equation (3),

$$
\lambda=\frac{l S_{e}}{E}, \quad \text { and } \quad F=S_{c} A
$$

Hence the work done in straining the body to the elastic limit is

$$
\begin{equation*}
W=\frac{S_{e}{ }^{2}}{2 E} \cdot A l=\frac{S_{e}{ }^{2}}{2 E} \cdot V, \tag{2}
\end{equation*}
$$

where V is the volume of the body, or $V=A l$. Since at the elastic limit there is no set, this is the work which the body can do in returning to its original dimensions. It is therefore called the work of resilience. The coefficient $\frac{S_{2}{ }^{2}}{2 E}$, or the work per unit of volume, is called the coefficient of resilience.

The work of resilience is then the work which a body can do in returning to its original dimensions when it has been strained up to the elastic limit.

The coefficient of resilience is the work per unit of volume done by the body under such circumstances.

The work of resilience measures the ability of the material to withstand shock or the suddenly applied stress produced by a moving body. To bring such a body to rest requires work. If this work is not greater than the work of resilience, the elastic limit is not exceeded.

From the Table of Average Properties of Materials given on page 290 we can compute the following average values of the coefficient of resilience:

	Coefficient of Resilience.					
Timber	$\cdot 3$ inch-pounds per cubic inch					
Cast iron	1.2	"	'6	"	"	"
Wrought iron	12.5	،	"			،
Steel.	26.6	،	"			"

We see from the figure page 280 that we cannot express the work done in straining a body to the breaking point by a formula, because the law of the relation of stress to strain beyond the elastic limit is unknown. Moreover, such work could not be properly termed work of resilience, since it can not be performed by the body when the stress is removed. The body if strained beyond the elastic limit does not return to its original length. Work of resilienc ethen is a measure of capacity to resist shock within the elastic limit only.

Conditions of Equilibrium of a Deflected Beam.-A bar of any cross-section, constant or variable, whose length is great compared to its other dimensions and which is acted upon by forces at right angles to its length is called a beam. A cantilever beam is fixed at one end and free at the other. A beam in general rests upon supports at both ends. When a beam rests on more than two supports it is said to be continnous.

Reactions of the Supports. - The supports of a beam exert pressures called reactions. When a beam resting upon supports and acted upon by external loads or forces either concentrated or distributed, is at rest, we must have for equilibrium, since the loads and reactions may be considered as co-planar (page 99):

1st. The algebraic sum of all the vertical forces $=0$;
2d. The algebraic sum of all the horizontal forces $=0$;
$3 d$. The algebraic sum of the moments of all forces with reference to any point in the plane of the forces $=0$.

If the 1st condition is complied with, there is no motion up or down. If the 2 d is complied with, there is no motion right or left. If the 3 d is complied with, there is no rotation.

In taking the algebraic sums, forces upwards or to the right are positive, downwards or to the left are negative. Moments which tend to cause counter-clockwise rotation are positive, clockwise rotation negative.

Thus suppose we have a horizontal beam $A B$ of length l, resting on the supports A and B in a horizontal line, and loaded with a weight W at a distance z_{2} from the left end. Then there are no horizontal forces and condition (2) is satisfied.

In order that condition (1) may be satisfied, let R_{1} and R_{2} be the reactions.
 Then

$$
R_{1}+R_{2}-W=0
$$

Take B as a point of moments. Then in order that condition (3) may be satisfied, we must have

$$
-R_{1} l+W\left(l-z_{1}\right)=0
$$

From these two equations, if we put $l-z_{1}=z_{2}$, we obtain

$$
R_{1}=\frac{W\left(l-z_{1}\right)}{l}=\frac{W z_{2}}{l}, \quad R_{2}=\frac{W z_{1}}{l}
$$

or the reactions are positive and therefore act upwards and are inversely as the segments z_{1}, z_{2} into which the span l is divided by the load W.

If the load is w per unit of length, uniformly distributed, then

the entire load is $w l$, and we can consider this entire load as a single force acting at the centre of mass of the loading, or at the distance $\frac{l}{2}$ from each end.

Since there are no horizontal forces, condition (2) is satisfied. In order to satisfy condition (1), we must have

$$
+R_{1}+R_{2}-w l=0
$$

Taking B as a point of moments, in order to satisfy condition (3) we have

$$
-R_{1} l+w l \times{ }_{2}^{l}=0
$$

From these two equations we obtain $R_{1}=R_{2}=\frac{w l}{2}$, or the reaction at each support is positive and therefore upwards and equal to one half the total distributed load.

We can find in similar manner the reactions at the supports in any case. (For determination of reactions in general, see page 100.)

Shearing Force and Shearing Stress.-The algebraic sum of the components parallel to a section at any point, of all the external forces on the left of that section, we call the shearing force of that section.

It is the force which tends to make the section slide upon the next consecutive section on the right.

It is resisted by the shearing stress or resistance of the section to sliding. In the case of a beam acted upon by vertical forces, the algebraic sum of all the vertical forces on the left of any vertical
cross-section is the vertical shearing force at that cross-section. If x is the distance of the cross-section from the left origin, we denote it by V_{x}. If then $S_{w s}$ is the allowable or working unit shearing stress of the material and A is the area of vertical cross-section of the beam at any point, the safe resistance to shear or the shearing stress of the beam at that point is $S_{u s} A$. This must be equal and opposite to the vertical shearing force V_{x}. We must have then for safety as regards shearing at any point

$$
\begin{equation*}
S_{w s} A \overline{>}-V_{x} . \tag{1}
\end{equation*}
$$

If V_{x} is positive or upwards for horizontal beam, $S_{w s} A$ is negative or downwards, and inversely.

Thus for a horizontal beam of length l, resting on the supports
 A and B and loaded with the weight W at a distance z_{1} from the left end, the left reaction is, as we have just seen, $R_{1}=\frac{W\left(l-z_{1}\right)}{l}$.

This then, according to definition, is the shearing force V_{x} for any point P between the load W and the left end A.

For any point between the load W and the right end B the shearing force is

$$
V_{x}=+R_{1}-W=-\frac{W z_{1}}{l}=-R_{2}
$$

The shaded area in the figure gives the shear at any point.
If we have several loads W_{1}, W_{2}, W_{3}, etc., then for any point a between the left support and W_{1} we have $V_{x}=R_{1}$. For any point b between W_{1} and W_{2} we have $V_{x}=R_{1}-W_{1}$. For any point c between W_{2} and W_{3} we have $V_{x}=$ $R_{1}-W_{1}-W_{2}$. For any point d between W_{3} and the right end
$V_{x}=R_{1}-W_{1}-W_{2}-W_{3}=-R_{2}$.
The shaded area gives the vertical shear at any point.

If we have a load w per unit of
 length uniformly distributed. we have at any point distant x from the left end

$$
V_{x}=\frac{w l}{2}-w x
$$

which is the equation to a straight line $A^{\prime \prime} B^{\prime \prime}$. The ordinate at any point a to this line is the shear at that point. The shear at the centre is evidently zero. At the left end A it is $+\frac{u \cdot l}{2}$, and at the
right end B it is $-\frac{w l}{2}$.

Bending Moment.-In the case of the horizontal beam with a concentrated load W at the distance z_{1} from the left end, let M_{x} be the algebraic sum of the moments with reference to any point P distant x from the left end, of all the external forces between that point and either end.

This moment tends to turn that portion of the beam on the left or right of any point about that point, or to cause bending. It is therefore called the bending moment.

We have evidently two cases : when x is less than z_{1} or when the point P is on the left of W, and when x is greater than z_{1} or when the point P is on the right of W.

Let us take the algebraic sum of the moments of all the forces on the left of the point P. Then we have for the bending moment at the point P for the case represented by the figure,
when $x<z_{1}, \quad M_{x}=-R_{1} x=-\frac{W z_{2} x}{l}=-\frac{W\left(l-z_{1}\right) x}{l} ;$
when $x>z_{1}$,

$$
M_{x}=-R_{1} x+W\left(x-z_{1}\right)=-\frac{W z_{1}(l-x)}{l}=-R_{2}(l-x)
$$

The minus sign shows that the forces on the left of any point P in the case represented by the figure tend to cause clockwise rotation of the left-hand portion $A P$ of the beam about that point.

If we take the algebraic sum of the moments of all the forces on the right of the point P, we evidently have for the bending moment at the point P,
when $x<z_{1}, \quad M_{x}=+R_{1} x ; \quad$ when $x>z_{1}, \quad M_{x}=+R_{2}(l-x)$.
The plus sign shows that the forces on the right of any point P in the case represented by the figure tend to cause counter-clockwise rotation of the right-hand portion $B P$ of the beam about that point.

In general, since the beam is in equilibrium, the bending moment due to all the forces on one side of any point is always equal in magnitude and opposite in direction to the bending moment due to all the forces on the other side of that point.

In the case, again, of the horizontal beam with the load w per unit of length uniformly distributed, the load over any distance x
 from the left end is $w x$, and we can take this load as acting at its centre of mass, or at a distance $\frac{x}{2}$ from the left end and from P.

If we take the algebraic sum of the moments of all the forces on the left of the point P, we have for the bending moment at the
point P

$$
M_{x}=-R_{1} x+w x \times \frac{x}{2}=-\frac{w x}{2}(l-x) .
$$

Here again the minus sign shows that the forces on the left of
any point F tend to cause clockwise rotation of the left-hand portion $A \mathscr{P}$ of the beam about that point.

If we take the algebraic sum of the moments of all the forces on the right of P, we obtain $M_{x}=+\frac{w x}{2}(l-x)$, or counter-clockwise rotation.

We see from the preceding illustrations how to find the bending moment M_{x} in any given case at any point P.

Although the beam bends under the action of the external forces, the deflection in all practical cases is always very small in comparison to the length.

We therefore always consider the beam as straight in finding the reactions and bending moment; that is, we assume the deflection as very small in comparison with the length.

Graphic Representation of the Bending Moment.-The graphic method of page 148 can be used to determine the bending moment at any point of a beam.

For a beam with a single concentrated load we see at once from the preceding Article that the mo-
 ment at the load is greatest and equal to $-\frac{W z_{1} z_{2}}{l}$. The moment at each end is zero, and the ordinate at any point to the lines $A C, B C$ gives the bending moment at that point.
For a load w per unit of length uniformly distributed, the bending moment $M_{x}=-\frac{w x}{2}(l-x)$ is the equation of a parabola whose maximum ordinate at the centre of the span is $\frac{w l^{2}}{8}$. The ordinate at any point to this parabola gives the bending moment at that point.

Neutral Axis.-We consider a
 beam to be made up of an indefinitely great number of horizontal or parallel fibres of indefinitely small area of cross-section, placed side by side.

When a beam bends, the fibres on the convex side are elongated and those on the concave side are shortened. Near the centre, then, we must have a plane of fibres which are neither extended nor compressed, but remain of the same length before and after bending. This plane is called the neutral plane, and the line in which the neutral plane cuts the plane of any cross-section of the beam is the neutral axis for that cross-section.

Thus in the figure $A C$ represents the neutral plane and $X X$ the
 neutral axis.

Position of tho Neutral Axis.-We assume that any cross-section, as $D D$, which is plane before flexure, remains plane after flexure. Thus let the plane $D D$ before flexure be represented by the plane $B B$ after flexure. Then the strain of any fibre is proportional to its distance from the neutral axis.

We also assume that the elastic limit is not exceeded. Hence the stress in any fibre is proportional to the strain and therefore proportional to the distance of the fibre from the neutral axis.

Let S_{f} be the unit stress within the elastic limit in the extreme outer fibre of the cross section, or the fibre most remote from the neutral $a x i s$, and v its distance from the neutral axis. Let a be the crosssection of a fibre. Then the stress in the extreme outer fibre at the distance v is $S_{f} a$, and the stress in any other fibre at a distance y from the neutral axis is $\frac{y}{v} S_{f} a$. The sum of all the fibre stresses above and below the neutral axis is then

$$
\Sigma \frac{y}{v} S_{f} a=\frac{S_{f}}{v} \Sigma a y
$$

But since the beam is in equilibrium and all the external forces are vertical, the sum of all the horizontal fibre stresses in any cross-section must be zero. We must have then $\Sigma \mathrm{z}^{2} a=0$, or the neutral axis must pass through the centre of mass of the crosssection (page 17).

The line $A C$ passing through the centre of mass of every crosssection is the neutral axis of the beam.

Resisting Moment.-We have seen, page 285, how to find the bending moment M_{x} at any point of a beam distant x from the left end. The bending moment bends the beam or tends to cause the portion of the beam between the point and the left end to turn about that point.

In the figure take the point C on the neutral axis, distant x from the left end. Then, as we
 have seen (page 285), we have for the case represented, for the bending moment at any point of the cross-section at C,

$$
M_{x}=-\frac{W z_{1}(l-x)}{l}
$$

if $x>z_{1}$. This moment is negative and hence the effect of the external forces R_{1} and W on the left of C is to cause clockwise rotation of the portion $A C$ of the beam about C.

But if the beam is in equilibrium, the bending moment M_{x} must be balanced by the sum of the moments of the fibre stresses of the cross-section above and below C, with reference to C.

Now any fibre stress of the cross-section, at a distance y from the neutral axis, is, as we have just seen, ${\underset{v}{v}}^{y} S_{f} a$, where a is the crosssection of the fibre and S_{f} the unit stress within the elastic limit in the most remote fibre of the cross-section at the distance v from the neutral axis. The moment of any fibre stress at the distance y from the neutral axis is then $\frac{S f}{v} a y^{2}$, and the sum of all the fibrestress moments of the cross section with reference to the neutral axis is $\frac{S_{f}}{v} \Sigma \alpha y^{2}$.

But (page 271) $\Sigma a y^{2}$ is the moment of inertia I of the cross-sec-
tion with reference to the neutral axis. Hence the sum of the moments of all the fibre stresses of the cross-section with reference to the neutral axis at C is

$$
\frac{S_{f} I}{v}
$$

We call this the resisting moment, because it resists the action of the bending moment M_{x} and thus prevents the portion of the beam $A C$ from turning about the neutral axis at C under the action of the external forces on the portion $A C$. The bending moment M_{x} is therefore always equal in magnitude and opposite in direction to the resisting moment. If we consider always the fibres belonging to that portion of the beam on the left of the cross-section, then the resisting moment of these fibres is always opposite in direction to the bending moment of all external forces on the left and in the same direction as the bending moment of all external forces on the right. We have then

$$
\begin{equation*}
\frac{S_{f} I}{v}=\mp M_{x}, . \tag{II}
\end{equation*}
$$

where we take the minus sign if we take M_{x} for all external forces on the left, and the plus sign if we take M_{x} for all external forces on the right, the resisting moment being always that due to the fibre stresses of the left-hand portion. If this latter moment comes out minus, it indicates then compression in the bottom fibres; if plus, tension in the bottom fibres.

By the use of (II) we can find, in any given case, the load which a beam will carry for any given value of S_{f} within the elastic limit. We can also determine the shape of the beam for uniform strength, that is, for S_{f} the same at every cross-section.

Equation (II) takes into account the fibre stresses of the entire
 cross-section whatever its shape. If a beam consists of two flanges and a web, it is sometimes customary to disregard the web. In such case, if h is the effective height or distance from centre to centre of flanges, and A is the area of one flange at any point, and S the unit stress, we have, taking moments about the centre of the other flange,

$$
S A h=\mp M_{x}
$$

Coefficient of Rupture.-In all the preceding discussion of the equilibrium of a beam we have assumed-

1st. That the deflection is very small compared to the length.
2d. That any cross-section plane before flexure remains plane after.
3d. That the elastic limit is not exceeded.
When a bean is loaded to the point of rupture, the third assumption is violated. The strain is then no longer directly as the distance from the neutral axis, and the second assumption no longer holds. Also, the first is often not allowable.

We can therefore properly apply equation (II) only when the elastic limit is not exceeded.

Now when a beam is loaded to the point of rupture, we assume an equation of the same form as (II), and write

$$
\begin{equation*}
\frac{S_{r} I}{v}=\mp M_{r} \tag{III}
\end{equation*}
$$

where M_{r} is the bending moment at the cross-section where rupture occurs, or the dangerous cross-section, I is the moment of inertia with reference to the neutral axis of that cross-section, and S. is the unit stress in the most remote fibre of that cross-section at the distance v from the neutral axis where rupture occurs.

When the cross-section of the beam is constant, I and v are constant, and we see from (II) that the outer fibre stress S_{f} is greatest at the point where the bending moment M_{x} is greatest. The dangerous cross-section for a beam of constant cross-section is then the one for which the bending moment is a maximum.

The value of S_{r}. determined from equation (III) by experiments made at the breaking point is called the coefficient of rupture.

Let S_{t} be the unit stress of direct tension and S_{c} the unit stress of direct compression which ruptures a bar. We call S_{t} the ultimate tensile strength, and S_{c} the ultimate compressive strength. The ultimate compressive strengths of tension and compression are not in general equal. Thus for timber (Table page 290) the tensile strength is the greater, while for cast iron the compressive strength is the greater.

If equation (II) held good beyond the elastic limit, we should expect to find S_{r}. in (III) equal to the least ultimate strength of the material, either tension or compression as the case may be. But as a matter of fact S_{r} is always found by experiment to lie nearly midway between S_{t} and S_{c} when they are different.

Experiments upon the value of S_{r} are not numerous; and when in any case the value of S_{r} is not known, but S_{t} and S_{c} are known, we can find an approximate value for S_{r} by taking the mean value of S_{t} and S_{c}, or putting $S_{r}=\frac{S_{t}+S_{c}}{2}$.

By the use of (III), then, we can estimate more or less accurately the breaking weight of a beam.

Table of Properties of Materials. - We give in the following Table average values of the ultimate compressive strength S_{c}, the ultimate tensile strength S_{t}, the coefficient of rupture S_{r}, the elastic limit S_{e} and the ultimate strength S_{u}-all in pounds per square inch. We also give the coefficient of elasticity E in pounds per square inch as determined by experiments in direct compression, tension and shear. Also the density \dot{r} or mass of a cubic foot of material in pounds.

All these values are averages and liable to great variations for different grades and qualities of materials. Thus, for instance, timber varies in its qualities according to kind, and each kind varies according to soil, climate, scason when eut, method and duration of seasoning, direction of fibres with reference to stress, form and size of test specimen, etc. So, also, iron and steel vary aecording to quality, process of manufacture, whether in bars, plates or wire, etc. Such average values as we give, then, can only be used in preliminary computations. In actual cases of investigation and design, special experiments must be made with the materials actually used.

As to density or mass per cubic foot, a rule which should be noted by the student is that a bar of wrought-iron one square inch in cross-section and one yard long (or 36 cubic inches) weighs ten pounds. Thus the weight per foot in pounds of a bar of uniform cross-section is at once given by multiplying the area of cross-section in square inches by 10 and dividing by 3 . Inversely, if the weight per foot in pounds is given, multiply by 3 and divide by 10 for the area of cross-section in square inches.

Steel is about two per cent heavier and cast iron six per cent lighter than wrought iron.

Stone is about one third, brick one fourth, timber one twelfth the weight of wrought iron.

When a test specimen is ruptured by direct tension, it elongates rapidly after the elastic limit is reached, and the area of cross-section is in general greatly reduced. The ultimate elongation, taken in connection with the reduction of area, indicates the ductility of the material.

Thus a material which has a high ultimate strength but shows little elongation and reduction of area is brittle. We have therefore given in the Table the average value of the ultimate elongation per unit of original length $s=\frac{\lambda}{l}$.

TABLE OF AVERAGE PROPERTIES OF MATERIALS.

Factor of Safety and Working Stress. -The ratio in any case of the ultimate strength to the actual working unit stress is called the factor of safety. Thus if the ultimate stength or unit stress at the point of rupture in any case is denoted in general by S_{u}, and if S_{v} is the working unit stress, we have for the factor of safety in that case

$$
n=\frac{S_{u}}{S_{w}}, \quad \text { or } \quad n S_{w}=S_{u}
$$

The factor of safety, then, is a number which tells how many times the actual unit stress are necessary to produce rupture.

The safe or working unit stress is then found by dividing the ultimate strength by the proper factor of safety. It should always be well within the elastic limit. If then the elastic limit is known, the working stress can be chosen with reference to it. This is the best and most rational method of determining the working unit stress. But it is in many cases difficult to determine the elastic limit, while the ultimate strength is more readily and definitely determined and in general better known. Hence the employment of a factor of safety in connection with the ultimate strength.

The following Table gives the average values of the factors of safety usually adopted. These values are not to be used arbitrarily, but in the light of judgment and experience. In any important engineering structure special experiments upon the materials actually used should be made in order to determine their properties as to coefficient of elasticity, elastic limit, ultimate strength, etc., and materials not coming up to a specified standard rejected. From such experiments the working stress can be decided in view of the actual qualities of the material. The average values in the Table can, however, be used for preliminary estimates.

TABLE OF AVERAGE FACTORS OF SAFETY.

Material.	For Steady Stress (Buildings).	For Varying Stress (Bridges, etc.).	For Shocks (Machines).
Timber.	8	10	15
Brick and stone.	15	25	30
Cast iron.	6	10	15
Wrought iron.	4	6	10
Steel (structural).	5	7	10

In order, then, to find the working unit stress S_{w} in any case, we divide the ultimate unit stress S_{u} by the factor of safety n, as given by the preceding Table. This gives us in any case a constant working unit stress $S_{w}=\frac{S_{u}}{n}$. For average values we have then the following Table for working unit stress, which may be used for preliminary estimates.

TABLE OF WORKING UNIT STRESS s_{w} IN POUNDS PER SQUARE INCH.

Material.	$\begin{gathered} \text { Steady Stress } \\ \begin{array}{c} \text { (Buildings). } \\ S w \end{array} \end{gathered}$			$\begin{gathered} \text { Varying Stress } \\ \text { (Bridges, Rooos, etc.). } \end{gathered}$			$\begin{gathered} \text { Shocks } \\ \text { (Machines, etc.). } \\ \text { Sw } \end{gathered}$		
	Tens.	Comp.	Shear.	Tens.	Comp.	Shear.	Tens.	Comp	Shear.
Timber	1300	1000	$\left\{\begin{array}{c}80 \text { long. } \\ 400 \text { trans. }\end{array}\right.$	\} 1000	800	$\left\{\begin{array}{c} 60 \text { long. } \\ 300 \text { trans. } \end{array}\right.$	\} 700	600	$\left\{\begin{array}{l} 40 \text { long. } \\ 200 \text { trans. } \end{array}\right.$
Brick.		170			100			80	
Ston		400			240			200	
Cast iron ..	3300	15000	3300	2000	9000	2000	1300	6000	1300
Wrought			1250		9000	9000	5500	5500	5000
Steel(struc-	20000	30000	14000	14000	21000	10000	10000	15000	7000

In order to determine the area of cross-section A for simple tension or compression or shear, we have then simply to divide the total stress by the working unit stress $S_{w c}$. We have then, when flexure is not to be apprehended, for steady or varying stress or shocks,

$$
A=\frac{\text { total stress }}{S_{w}^{-}}
$$

Sometimes we have alternating stress, i.e., sometimes tension and sometimes compression, as in the connecting rod of a steamengine. In such case it is a common practice, for the sake of security, to find the area of cross-section for each stress and take the sum. Thus, if flexure is not to be apprehended,

$$
A=\frac{\text { total tensile stress }}{S_{w}}+\frac{\text { total compressive stress }}{S_{w}}
$$

When flexure is to be provided against, we must proceed as on page 361.

Variable Working Stress.-The fact that the working unit stress S_{w}, as determined in the preceding Article, is constant in any case is by many engineers considered objectionable.

The total unit stress can in general be divided into two portions. The one portion is a steady unit stress always existing, such as that due to weight or dead load. The other portion is a repeated unit stress such as that due to loads recurring at intervals.

Evidently, when the ratio of the steady stress to the total stress is great, we should be able to take a greater working unit stress than when it is small. Thus when the steady stress is equal to the total stress, there is no repeated stress at all and the working unit stress should have its greatest value. On the other hand, when the steady stress is zero, we have repeated stress only and the working stress should have its least value.

It is therefore customary to take for the working unit stress, when flexure is not to be apprehended, for repeated stress,

$$
\begin{equation*}
S_{w}=\frac{S_{p}}{n}\left(1+\frac{S_{u}-S_{p}}{S_{p}} \cdot \frac{\text { steady stress }}{\text { total stress }}\right) \tag{I}
\end{equation*}
$$

From equation (I) we see that when the steady stress is equal to the total stress, that is, when there is no repeated stress, we have $S_{w}=\frac{S_{u}}{n}$, where S_{u} is the ultimate strength and n the factor of safety, just as in the preceding Article.

But when the steady stress is zero, we have only repeated stress, and equation (I) gives us $S_{w}=\frac{S_{p}}{n}$. Hence S_{p} must be the ultimate strength for repeated stress. We call this the "repetition strength."

In like manner, when flexure is not to be apprehended, we have for the working unit stress, for alternating stress,
$S_{w}=\frac{S_{p}}{n}\left(1-\frac{S_{p}-S_{v}}{S_{p}} \cdot \frac{\text { least of the two opposite stresses }}{\text { greatest of the two opposite stresses }}\right)$.
From equation (II) we see that when one of the two opposite stresses is zero we have $S_{w}=\frac{S_{p}}{n}$, as in the previous case for steady stress zero.

But when the two opposite stresses are equal we have $S_{w}=\frac{S_{v}}{n}$.
Hence S_{v} must be the ultimate strength for equal alternating stresses. We call this the "vibration strength."

The difficulty and uncertainty of determining S_{p} and S_{v} by experiment, and the few experiments available, make the method of the preceding Article the most generally accepted.

The method of equations (I) and (II) of the present Article is, however, the most rational, and it is quite extensively used with certain assumed average values for S_{u}, S_{p} and S_{v}, as given in the following tabulation:

	Sp n	$\frac{S_{u}-S_{p}}{S p}$	$\frac{S p-S v}{S p}$
Wood	400	2	$\frac{1}{2}$
Wrought iron......	7500	1	$\frac{1}{2}$
Cast iron.................	10000	$\frac{4}{3}$	$\frac{2}{\overline{5}}$
Steel (structural)	17870	1	$\frac{7}{15}$

These values are for direct stress of tension or compression. For shear we take four fifths of S_{w} as determined above.

In order to determine the area of cross-section A, we have in all cases

$$
A=\frac{\text { total maximum stress }}{S_{w}}
$$

When flexure is to be provided against we must proceed as on page 361.

Strength of Pipes and Cylinders. - Let p be the pressure per square inch on the interior surface of a pipe or cylinder due to the pressure of water or steam. It is a well-known principle of physics that the pressure of a fluid in any direction is equal to the pressure on a plane perpendicular to that direction.

Hence in the figure the pressure P, say in a vertical direction, is equal to the pressure on a horizontal plane $l d$, where l is the length and d is the interior diameter. We have then $P=p l d$. If $S_{t v}$ is the safe working unit stress for the material for tension, and t is the thickness, we must have then

$$
\begin{equation*}
p l d=2 t l S_{w}, \quad \text { or } \quad t=\frac{p d}{2 S_{w}} \tag{1}
\end{equation*}
$$

Pipes come in commercial sizes, and the preceding formula enables us to select the nearest commercial size for given pressure, diameter and safe working unit stress.

If we consider the preceding figure as a closed cylinder, then the
pressure on the head is $p \times \frac{\pi d^{2}}{4}$, and the area of cross-section is $\pi d t$. We have then

$$
\begin{equation*}
p \times \frac{\pi d d^{2}}{4}=\pi d t S_{w}, \quad \text { or } \quad t=\frac{p d}{4 S_{w}} \tag{2}
\end{equation*}
$$

Hence the thickness to resist longitudinal rupture is twice that necessary to resist end rupture. For water pressure, if the head h is taken in feet, the pressure in pounds per square inch is $p=0.434 h$.

Riveted Joints.-In a riveted joint the resistance of the rivets due to shear should equal the tensile strength of the plates joined.

Kinds of Riveted Soints. - We may distinguish the following joints:

1st. Simple "Lap".Joint, Single-riveted.-Fig. 1 shows this

Fig. 1. joint front and side. The two plates overlie each other by an amount equal to the "lap" and are united by a single row of rivets. The distance p from centre to centre of a rivet is called the pitch. We denote the diameter of rivet by d and the thickness of plate by t.

2d. " Lap" Joint, Double-riveted. - This joint is similar to the preceding, except two rows of rivets are used. In both cases the rivets are in single shear.

In all cases where more than one row of rivets is used the rivets are "staggered," or so spaced that those in one row come midway between those in the next, as shown in Fig. 2.

Lap joints are used in tension only.

Fig. 2.

Fig. 3.

3d. "Butt" Joint, Single-riveted, Two Cover-plates.-Here the two plates are set end to end, making a "butt" joint, and a pair of "cover-plates" are placed on the back and front and riveted through by a single row of rivets on each side of the joint (Fig. 3). The plates in such a joint are in general not allowed to actually touch, and the entire stress, whether tensile or compressive, is therefore transmitted by the rivets. The thickness of the cover-plates should not be less than half the thickness of the plates joined, except when this rule would give a thickness less than \ddagger inch. Owing to deterioration of the metal by the action of the weather, no plate is used in construction less than $\frac{1}{4}$ inch in thickness. Hence if the plates joined are less than $\frac{1}{2}$ inch, the cover-plates should be $\frac{1}{4}$ inch.

4th. "Butt" Joint, One Cover-plate, Single-riveted.-This is the same as the preceding except that one cover-plate only is used, of the same thickness as the plates themselves.

5th. Double-riveted "Butt" Joint, Two Cover-plates.-This joint is the same as case 3 , except that we have two rows of rivets on each side of the joint.

The thickness of the cover-plates is determined by the same considerations as in case 3.

6th. "Butt" Joint, One Coverplate, Double - riveted. - This is the same as the preceding case, except that there is only one cover-plate of the same thickness as the plates themselves.

7th. Chain Riveting.-When we have more than two rows of rivets on each side of a butt joint, the system is called chain riveting. Such a disposition becomes necessary when the

Fig. 4. requisite number of rivets is so great that they cannot be disposed in two rows without unduly weakening the plates.

Theory and Practice of Riveting.-A rivet may fail by shearing across or by being crushed. The plate may fail by rupture between the rivets or by tearing through of the rivets at the edge of plate. The rivets should be so proportioned and spaced that the strength for any method of failure may be equal and the plates weakened as little as possible.

Notation.-Let S_{w} be the working unit stress of the plates, either compression or tension, $S_{w c}$ the working unit stress for compression, $S_{w s}$ the working unit stress for shear, t the thickness of the plates, d the diameter of rivet, p the pitch of rivets in a row, or the distance from centre to centre in a row, and n the number of rivets.

Diameter of Rivets.-Then the area of a rivet is $\frac{\pi d^{2}}{4}=0.7854 d^{2}$. The shearing resistance of a rivet is $0.7854 d^{2} S_{v e s}$, and the total shearing resistance of n rivets is $0.7854 n d^{\prime \prime} S_{w s}$. The bearing surface of a rivet is $d t$, of n rivets $n d t$, and the resistance to crushing $n d t S_{u r c}$. For equal strength of crushing and shearing we have for single shear, or lap joint,

$$
\begin{equation*}
0.7854 n d^{2} S_{w s}=n d t S_{w c}, \quad \text { or } \quad d=\frac{t S_{w c}}{0.7854 S_{w s}} . \tag{1}
\end{equation*}
$$

For double shear, or butt joint with two cover-plates, we have

$$
\begin{equation*}
1.5708 n d^{2} S_{w s}=n d t S_{w c}, \quad \text { or } \quad d=\frac{t S_{w c}}{1.5708 S_{w s}} \tag{2}
\end{equation*}
$$

For threefold shear we have 3×0.7854 in place of 0.7854 in (1), and so on.

It is customary to take $S_{w c}=12500 \mathrm{lbs}$ per square inch and $S_{w s}=7500$ lbs. per square inch for wrought-iron rivets in single shear.

We have then

$$
\left.\begin{array}{l}
d=2.12 t \text { for single shear } ; \tag{3}\\
d=1.06 t \text { for double shear. }
\end{array}\right\}
$$

Practical Value of d.-Owing to risk of injury to the material in punching, the diameter of rivet must always be at least as large as
the thickness of the thickest plate through which it passes, and the diameter as given by (1), (2) or (3) must be chosen with reference to this restriction. The least allowable thickness of a plate is $\frac{1}{4}$ inch. We should have then as a lower limit for double shear, $d=\frac{1}{4}$ inch. But rivets as small as this are rarely used. Usually $\frac{1}{2}$ inch is the least diameter allowable. A common practical rule is

$$
\begin{equation*}
d=1 \frac{1}{4} t+\frac{3}{16}, \tag{4}
\end{equation*}
$$

where d is the diameter of rivet, and t the thickness of the plate in inches. When this rule gives d greater than (1), (2) or (3), we use it; otherwise we use (1), (2) or (3), unless considerations of pitch, as given in what follows, prevent.

Pitch of Rivets.-The area of plate between two rivets is $(p-d) t$; and if S_{w} is the working unit stress of tension or compression for the plates, and $S_{w s}$ the working unit stress for shear, we have for equal strength:
for single shear or lap joint

$$
(p-d) t S_{w}=\frac{\pi d^{2}}{4} S_{w s}, \quad \text { or } \quad p=d\left(1+0.7854 \frac{d S_{w s}}{t S_{w}}\right)
$$

for double shear or butt joint

$$
(p-d) t S_{w}=\frac{\pi d^{2}}{2} S_{w s}, \quad \text { or } \quad p=d\left(1+1.5708 \frac{d S_{w s}}{t S_{w}}\right)
$$

Since $S_{w s}$ and S_{v} are nearly equal, we have practically, if A is the area of cross-section of a rivet,
for single shear

$$
\begin{equation*}
p=d\left(1+0.7854 \frac{d}{t}\right)=d+\frac{A}{t} \tag{5}
\end{equation*}
$$

for double shear

The plate section is reduced by punching from $p t$ between two rivets to $(p-d) t$, so that in the case of a tension joint the strength is reduced in the ratio

$$
\frac{p-d}{p}=\frac{1}{1+\frac{4 t}{\pi d}} \text { or } \frac{1}{1+\frac{2 t}{\pi d}}
$$

We see at once that for a given thickness t a large rivet gives a large pitch and less reduction in strength than a small rivet. Small rivets allow a less pitch at a sacrifice of strength. But the less the pitch the tighter the joint. When strength rather than tightness is desired, as in bridges and parts of buildings and machines, we should then use a large rivet. When tightness is essential, as in steamboilers, we should use a small rivet with a sacrifice of strength.

Practical Restrictions.-Owing to risk of injury to the material in punching and liability to tear out, rivets are not allowed a pitch of less than 3 diameters, or, if this distance is less then 3 inches, as it usually is, less than 3 inches. Rivets should not be spaced farther apart than 6 inches in any case, or, when the plate is in compression, 16 times the thickness of the thinnest outside plate. This last is to guard against buckling of the outside plate between rivets. With these restrictions we may apply (5).

Number of Rivets.-Guided by the preceding restrictions and
rules, we can select in any case a suitable size of rivet. This done, we can easily determine the number required.

A rivet is considered as failing either by shearing across or by crushing. In any case, then, the diameter being chosen, we must take such a number as shall give security against these two methods of failure, choosing the greater number. In general the number to resist crushing will be more than enough to resist shear. Still we should try for both. The bearing area of a rivet is the projection of the hole upon the diameter, or $d t$.

The allowable compressive stress is about 12500 lbs . per square inch. The allowable shear is taken at 7500 lbs. per square inch for single shear.

In the followingTable we have given the safe shearing and bearing resistance for rivets of different sizes and for different thicknesses of plate. Having chosen, then, the size of rivet, an inspection of the Table will give its resistance. The stress to be resisted being known, the number to resist this stress either by bearing or shearing is easily determined. The greatest of these two numbers is taken, with enough over in any case to complete the row or rows. As most practical cases are double shear, the greatest number will usually be determined by the bearing resistance.

Distance from End to Edge.-The distance between the end and edge of any plate and the centre of rivet-hole, or between rows, is fixed by practice at never less than $1 \ddagger$ inches, and when practicable it should be at least 2 diameters for rivets over $\frac{5}{8}$ inch diameter.

Joints in Compression.-The size and number of rivets are determined for joints in compression precisely as for joints in tension, because the joints are not considered as in contact and hence the rivets must transmit the stress in either case.

Rivet Table.

SHEARING AND BEARING RESISTANCE OF RIVETS.

Diameter of Riret in inches.		Area of Rivet in square inches.	Single Shear at 7500 ibs . per square inch.	Bearing Resistance in pounds for Different Thicknesses of Plate at 12500 lbs. per square inch $=12500 \times d t$.										
Fraction.	Declmal.			$\frac{1}{4}^{\prime \prime}$	$7^{5}{ }^{\prime \prime}$	$\frac{3}{8}{ }^{\prime \prime}$	$1^{7}{ }^{\prime \prime}$	$\frac{1}{2}^{\prime \prime}$	$3^{9} 6{ }^{\prime \prime}$	$\frac{5}{8 \prime}{ }^{\prime \prime}$	$\frac{1}{1} \frac{1}{6 \prime}$	$\frac{3}{4}{ }^{\prime \prime}$	$\frac{13}{16}$	$\frac{717}{8}$
3	0.375	0.1104	828	11\%	1465	1\%60								
7	$0.43 \% 5$	0.1503	1130	13\%0	1710	2050	2390							
$\frac{1}{2}$	0.5	0.1963	1470	1560	1950	2340	2730	3125						
${ }_{1}^{9} 6$	0.5635	0.2485	1860	1760	2200	2640	3080	3520	3955					
8	0.625	0.3068	2300	1950	2440	2930	3420	3900	4390	4880				
$\frac{11}{16}$	0.6875	0.3712	2780	2150	2680	320	3760	4290	4830	53\%0	5908			
$\frac{3}{4}$	0.75	0.4418	3310	2340	2930	3520	4100	4690	52\%0	5860	6440	7030		
13	0.8145	0.5185	3890	2540	3170	3800	4440	5080	5710	6350	6980	7620	8950	
7	0.875	0.6013	4510	2730	3420	4100	4780	5470	6150	6840	7520	8200	8890	95\%0
15	0.9375	0.6903	5180	2930	3660	4390	5130	5860	6590	7320	8050	8790	9520	10250
1	1	0.7854	5890	3125	3900	4690	5470	6250	7030	7810	8590	9370	10160	10940
$1{ }^{1 / 8}$	1.0625	0.8866	6650	3320	4150	4980	5810	6640	r4\% 0	8300	9130	9960	10790	11620
1\%	1.125	0.9940	7460	3520	4390	52\%0	6150	7030	7910	$8 \% 90$	966\%	10550	11420	12300
$11^{3} 6$	$1.18 \% 5$	1.1075	8310	3710	4640	55\%0	6490	7420	8350	9280	10200	11130	12060	12990

Investigation and Designing of Beams. - From page 284 we must have for safety, as regards shearing, at every point of a beam

$$
\begin{equation*}
S_{w s} A \overline{>}-V_{x}, \tag{I}
\end{equation*}
$$

where A is the area of vertical cross-section at any point, $S_{w s}$ is the working unit stress for shear and V_{x} is the vertical shearing force at any point, or the algebraic sum of all the vertical external forces between any point and the left end.

From page 288 we have

$$
\begin{equation*}
\frac{S_{f} I}{v}=\mp M_{x}, \tag{II}
\end{equation*}
$$

where S_{f} is the unit stress within the elastic limit in the most remote fibre of any cross-section at a distance v from the neutral axis, I is the moment of inertia of that cross-section with reference to the neutral axis, M_{x} is the bending moment at that crosssection of all the external forces on either side between the crosssection and either end, the minus sign being taken for forces on the left and the plus sign for forces on the right, and $\frac{S_{f} I}{v}$ is the resisting moment at the cross-section of the fibres belonging to the left-hand portion of the beam. If then this comes out minus we have compression in the bottom fibres, and if it comes out plus we have tension in the bottom fibres.

We have also, from page 288,

$$
\begin{equation*}
\frac{S_{r} I}{v}=\mp M_{r} \tag{III}
\end{equation*}
$$

where S_{r} is the coefficient of rupture, or the breaking unit stress in the most remote fibre at the dangerous section, and M_{r} is the bending moment at that section.

From (III), if S_{r} is known, we can find in any case the breaking weight. Average values of S_{r} are given in the Table page 290.

When experiments upon S_{r}. are lacking we may use a mean value between the ultimate tensile and compressive strength for approximate calculations. If we divide the breaking weight by the factor of safety (page 291), we obtain the allowable or working load.

From (II) we can find the load for any value of S_{f} within the elastic limit S_{e} (page 290). If we put for S_{f} the working unit stress S_{w} (page 292), we also obtain the working load.

We can also find from (II) the shape for uniform strength. The following cases will make plain the application of these equations.

Case 1. Cantilever Beam-Load W at the Free End. - Let l be the length of the beam and x the distance from the free end of any cross-section through the point C of the neutral plane (page 286).

Then the bending moment at that point is

$$
M_{x}=+W x, \quad \text { or } \quad M_{x}=-W x
$$

according as the weight W is on the left or right of the point P.
In both, cases, then we have from (II), for the resisting moment of the fibres belonging to the left-hand portion of the beam AC,

$$
\frac{S_{f} I}{v}=-W x
$$

where I is the moment of inertia of the cross-section at C, and S_{f} is the stress in the most remote fibre of that cross-section at the distance v from the neutral axis. The minus sign denotes that we have compression in the lower fibre in both cases, as shown in the figure.

We have then, without reference to direction of rotation,

$$
\begin{equation*}
S_{f}=\frac{W v x}{I} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
W=\frac{S_{f} I}{v x} . \tag{2}
\end{equation*}
$$

From (2) we can find in any case the load W which will cause a given stress S_{f} in the most remote fibre of any cross-section at any distance x from the free end.

From (1) we can find the stress S_{f} for any given load W.
In any case we have only to substitute the value of v, x and I.

1. Breaking Weight - Constant Cross-section. - Rupture will occur at that section for which S_{f} is the greatest.

If I is constant, v is constant and we see from (1) that S_{f} will be greatest when $x=l$. The dangerous section is then at the fixed end. We have then from (III), page 298,

$$
\frac{S_{r} I}{v}=-W l
$$

where the minus sign denotes, as before, compression in the lower fibres and S. is the coefficient of rupture. We have then, without reference to direction of rotation, for the breaking weight

$$
\begin{equation*}
W=\frac{S r I}{v l} \tag{3}
\end{equation*}
$$

If, for instance, the beam is rectangular in cross-section of breadth b and height h, then (page 278) $I=\frac{1}{12} b h^{\mathrm{s}}, v=\frac{h}{2}$, and the breaking weight is

$$
W=\frac{S_{r} b h^{2}}{6 l}
$$

If the beam is triangular in cross-section of horizontal base b and height h, then (page 271) $I=\frac{b h^{3}}{36}, v=\frac{2}{3} h$, and the breaking weight is

$$
W=\frac{S_{r} b h^{2}}{24 l}
$$

In the same way we can find the breaking weight for any form of cross-section by substituting in (3) the value of I and v. The value of S_{r} can be taken from our Table page 290 for approximate determinations. We see that the strength of a beam is directly as the breadth and as the square of the height, and inversely as the length.
2. Shape for Uniform Strength.-Let the cross-section vary so that I is the moment of inertia of any cross-section at the distance x from the free end, and I_{1} the moment of inertia of the crosssection at the fixed end.

Then from (1) the unit stress in the most remote fibre of any cross-section is

$$
S_{f}=\frac{W v x}{I}
$$

where, v is the distance of that fibre from the neutral axis.
For the most remote fibre of the end cross-section we have then $S_{f}=\frac{W v_{1} l}{I_{1}}$, where v_{1} is the distance of that fibre from the neutral axis.

Now for uniform strength the outer fibre stress must be the same at every cross-section. We have then for the condition of uniform strength

$$
\begin{equation*}
\frac{W v x}{I}=\frac{W v_{1} l}{I_{1}}, \quad \text { or } \quad \frac{v x}{I}=\frac{v_{1} l}{I_{1}} . \tag{4}
\end{equation*}
$$

If, for instance, the beam is rectangular in cross-section at every point, the breadth and height at the fixed end b_{1} and h_{1}, and at any point b and h, we have (page 278)

$$
I={ }_{12}^{1} b h^{3}, \quad v=\frac{h}{2} ; \quad I_{1}=\frac{1}{12} b_{1} h_{1}{ }^{3}, \quad v_{1}=\frac{h_{1}}{2}
$$

and hence, from (4), we have for the condition of uniform strength

$$
\begin{equation*}
\frac{x}{b \overline{h^{2}}}=\frac{l}{b_{1} h_{1}^{2}} \tag{5}
\end{equation*}
$$

Now if the height is constant, $h=h_{1}$, and we have for the breadth at any point distant x from the free end

$$
\begin{equation*}
b=\frac{b_{1}}{l} x \tag{6}
\end{equation*}
$$

The breadth then varies as the ordinate to a straight line from b_{1} at the fixed end to zero, theoretically, at the free end. Practically the breadth cannot be zero at the free end, but must have a value b_{0} such that the area $A=b_{0} h_{1}$ at the free end may resist the shear.

We have then from (I), page $284, b_{0} h_{1}$ at least equal to $\frac{W}{S_{w s}}$, or we

free end at least equal to

$$
x_{0}=\frac{W l}{h_{1} b_{1} S_{w s}} .
$$

For any value of x greater than x_{0} the breadth is given by equation (6).

If the breadth is constant, $b=b_{1}$, and we have from (5), for the height at any point distant x from the free end,

$$
\begin{equation*}
h^{2}=\frac{h_{1}^{2}}{l} x \tag{7}
\end{equation*}
$$

The height then varies as the ordinate to a parabola from b_{1} at the fixed end to zero, theoretically, at the free end. Here, again, we must have the height at the free end practically at least equal to

$$
h_{0}=\frac{W}{b_{1} \boldsymbol{S}_{w s}} .
$$

Substituting this for h in (7), we find that the cross-section must be constant for a distance x_{0} from the
 free end at least equal to

$$
x_{0}=\frac{W^{2} l}{h_{1}^{2} b_{1}^{2} S^{2} w s} .
$$

For any value of x greater than x_{0} the height is given by equation (7).

If both b and h vary, but the cross-section at every point is rectangular, we have

$$
b_{1}: h_{1}:: b: h, \quad \text { or } \quad b=\frac{b_{1} h}{h_{1}}, \quad h=\frac{h_{1} b}{b_{1}} .
$$

Substituting these in (5), we have

$$
\begin{equation*}
h^{8}=\frac{h_{1}^{3}}{l} x, \quad b^{3}=\frac{b_{1}^{3}}{l} x . \tag{8}
\end{equation*}
$$

The height and breadth vary then as the ordinates to a cubic parabola from h_{1} and b_{1} at the fixed end to zero, theoretically, at the free end. The area at any point
 is then, from (8),

$$
b h=h_{1} b_{1} \sqrt[3]{\frac{x^{2}}{l^{2}}}
$$

The area A at the free end should be at least, from (I), page 284,

$$
A=b_{0} h_{0}=\frac{W}{S_{w s}} .
$$

The cross-section should therefore be constant and equal to $b_{0} h_{0}=\frac{W}{S_{u s}}$ at least, for a distance x_{0} from the free end given by

$$
x_{0}=\frac{W l}{h_{1} b_{1} S_{w s}} \sqrt{\frac{W^{-}}{h_{1} b_{1} S_{w}}}
$$

For any value of x greater than x_{0} the height and breadth are given by (8). Inserting the value of x_{0} in (8), we obtain h_{0} and b_{0} at the free end.

In a similar way we can find the shape for uniform strength for any other form of cross-section, by substituting in (4) the values of I, I_{1}, v and v_{1}.

Case 2. Cantilever Beam-Load per Unit of Length w Uniformly Distributed.-The total load on the whole beam is $W=w l$. The load over any distance x from the free end is $w x$, and we can take it acting at its centre of mass or at $\frac{1}{2} x$ from the free end.

We have then for the bending moment at any point distant x from the free end

$$
M_{x}=+\frac{w x^{2}}{2}, \quad \text { or } \quad M_{x}=-\frac{w x^{2}}{2}
$$

according as the load $w x$ is on the left or right of the point.
In both cases, then, we have from (II), for the resisting moment of the fibres belonging to the left-hand portion of the beam $A C$,

$$
\frac{S_{f} I}{v}=-\frac{w x^{2}}{2}
$$

The minus sign denotes that we have compression in the lower fibres.

We have then, without reference to direction of rotation,

$$
\begin{equation*}
S_{f}=\frac{v v x^{2}}{2 I}, \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
w x=\frac{2 S_{f} I}{v x} \tag{2}
\end{equation*}
$$

From (2) we can find the load which will cause a given stress S_{f} in the most remote fibre of any cross-section at a distance x from the free end. From (1) we can find the stress S_{f} for any given load $w x$. In any case we have only to substitute the value of I, x and d.

1. BreakingWeight-Constant Cross-section.-Rupture will occur at that section for which S_{f} is greatest. If I is constant, d is constant, and we see from (1) that \mathcal{S}_{f} will be greatest when $x=l$. The dangerous section is then at the fixed end. We have then from (III), page 298,

$$
\frac{S_{r} I}{v}=-\frac{w l^{2}}{2}
$$

where the minus sign denotes, as before, compression in the lower fibres, and S_{r} is the coefficient of rupture. We have then, without reference to direction of rotation, for the breaking weight

$$
\begin{equation*}
W=w l=\frac{2 S_{r} I}{v l}, \tag{3}
\end{equation*}
$$

or twice as much as for the same beam with the same load W at the free end (page 299).

If, for instance, the beam is rectangular in cross-section, of breadth b and height h, then (page 278) $I=\frac{1}{12} b h^{3}, v=\frac{h}{2}$, and the breaking weight is

$$
W=w l=\frac{S_{r} b h^{2}}{3 l}
$$

If the beam is triangular in cross-section, of horizontal base b and height h, then (page 273) $I=\frac{b h^{3}}{36}, v=\frac{2}{3} h$, and the breaking weight is

$$
W=w l=\frac{S_{r} b h^{2}}{12 l}
$$

In the same way we can find the breaking weight for any form of cross-section by substituting in (3) the values of I and v.
2. Shape for Uniform Strength.-Let I be the moment of inertia at any cross-section and I, the moment of inertia at the fixed end, the distance of the outer fibre being v and v_{1}. Then for uniform strength we must have S_{f} at the end equal to S_{f} at any cross-section, or, from (1),

$$
\begin{equation*}
\frac{w v x^{2}}{2 I}=\frac{w v_{1} l^{2}}{2 I_{1}}, \quad \text { or } \quad \frac{v x^{2}}{I}=\frac{v_{1} l^{2}}{I_{1}} \tag{4}
\end{equation*}
$$

For rectangular cross-section

$$
I=\frac{1}{12} b h^{3}, \quad v=\frac{h}{2} ; \quad I_{1}=\frac{1}{12} b_{1} h_{1}{ }^{3}, \quad v_{1}=\frac{h_{1}}{2}
$$

and hence

$$
\begin{equation*}
\frac{x^{2}}{b h^{2}}=\frac{l^{2}}{b_{1} h_{1}^{2}} \tag{5}
\end{equation*}
$$

For constant height $h=h_{1}$ and

$$
\begin{equation*}
b=\frac{b_{1}}{l^{2}} x^{2} \tag{6}
\end{equation*}
$$

The breadth then varies as the ordinate to a parabola. From equation (I), page 284, we must have for the breadth b_{0} at the distance x_{0} from the free end

$$
b_{0}=\frac{w x_{0}}{h_{1} S_{w s}}
$$

Substituting this in (6), we find that the cross-section must be constant for the distance x_{0} from the free end at least equal to

$$
x_{0}=\frac{w l^{2}}{b_{1} h_{1} S_{w s}}
$$

and the breadth at the free end is then

$$
b_{0}=\frac{w^{2} l^{2}}{b_{1} h_{1}^{2} S^{2}{ }_{w s}^{2}}
$$

For any value of x greater than x_{0} the breadth is given by (6). For constant breadth $b=b_{1}$ in (5) and

$$
\begin{equation*}
h=\frac{h_{1}}{l} x . \tag{7}
\end{equation*}
$$

From equation (I), page 284, we
 have for the height h_{0} at the distance x_{0} from the free end

$$
h_{0}=\frac{w x_{\mathrm{v}}}{b_{1} S_{w s}}
$$

Substituting this in (7), we find
that in order to resist shear we must have the end cross-section $A_{1}=b_{1} h_{1}$ at least equal to

$$
A_{1}=b_{1} h_{1}=\frac{w l}{S_{w s}}
$$

If then the end cross-section is safe for shear, every cross-section is safe, and for any value of x the height is given by (7).

The height varies then as the ordinate to a straight line, from h_{1} at the fixed end to zero at the free end.

If both b and h vary, we have for rectangular cross-section at every point

$$
b_{1}: h_{1}:: b: h, \quad \text { or } \quad b=\frac{b_{1} h}{h_{1}}, \quad h=\frac{h_{1} b}{b_{1}}
$$

Substituting in (5), we have for the height and breadth at any point

$$
\begin{equation*}
h^{3}=\frac{h_{1}^{3}}{l^{2}} x^{2}, \quad b^{3}=\frac{b_{1}^{3}}{l^{2}} x^{2} \tag{8}
\end{equation*}
$$

From equation (I), page 284, we must have at least

$$
b_{0}{ }^{3} h_{0}{ }^{3}=\frac{w^{3} x_{0}{ }^{2}}{S^{3} w s}
$$

Hence, from (8), the cross-section must be constant and equal to $b_{0} h_{0}=\frac{w x_{0}}{S_{w s}}$ at least, for a distance x_{0} from the free end given by

$$
x_{0}=\frac{w^{3} l^{4}}{b_{1}^{3} h_{1}^{3} S^{3} w s} .
$$

For any value of x greater than x_{0} the height and breadth are given by (8). Inserting the value of x_{0} in (8), we obtain h_{0} and b_{0} at the free end.

In a similar way we can find the shape for uniform strength for any other form of cross-section by substituting in (4) the values of I, I_{1}, v and v_{1}.

Case 3. Beam Loaded with W Between the Supports.-Let l be the length of the beam, z_{1} the distance of W from the left end and z_{2} from the right end.

Then the left reaction $R_{1}=\frac{W z_{2}}{l}$. For any point distant x from the left end we have for the bending moment (page 285),

$$
\begin{array}{ll}
\text { when } x<z_{1}, & M_{x}=-\frac{W z_{2}}{l} x=-\frac{W\left(l-z_{1}\right) x}{l} \\
\text { when } x>z_{1}, & M_{x}=-\frac{W z_{2}}{l} x+W\left(x-z_{1}\right)=-\frac{W z_{1}(l-x)}{l}
\end{array}
$$

In each case, then, we have for the resisting moment, from (II), page 288,

$$
\begin{align*}
& \text { when } x<z_{1}, \quad \frac{S_{f} I}{v}=+\frac{W\left(l-z_{1}\right) x}{l}, \quad \text { or } \quad W=\frac{S_{f} I l}{v x\left(l-z_{1}\right)} \tag{1}\\
& \text { when } x>z_{1}, \quad \frac{S_{f} I}{v}=+\frac{W z_{1}(l-x)}{l}, \quad \text { or } \quad W=\frac{S_{f} I l}{v z_{1}(l-x)} \tag{2}
\end{align*}
$$

The plus sign denotes tension in the lower fibres.
From (1) and (2) we can find in any case the load W which placed at any given point will cause a given stress S_{f} in the most remote fibre of any cross-section at a distance x from the left end, or we can find the stress S_{f} for any given W. In any case we have only to substitute the value of I, v and x.

1. Breaking Weight-Constant Cross-section.-We see from (1) and (2) that for constant I and v, S_{f} is greatest when $x<z_{1}$ for the greatest value of x or $x=z_{1}$, and when $x>z_{1}$ for the least value of x or $x=z_{1}$. The dangerous section is then at the weight. We have then from (III), page 288,

$$
\begin{equation*}
\frac{S_{r} I}{v}=\frac{W z_{1} z_{2}}{l}, \quad \text { or } \quad W=\frac{S_{r} \Pi}{v z_{1} z_{2}} \tag{3}
\end{equation*}
$$

or the same as for a cantilever beam of length z_{1} with a load $\frac{W z_{2}}{l}$ at the free end (page 299).

All the results of page 299 hold, then, in this case if we put $l=z_{1}$ and $W=\frac{W z_{2}}{l}$. For the load at the middle of the beam $W=\frac{4 S r I}{v l}$, or four times as great as for a cantilever beam of the same length similarly loaded.
2. Shape for Uniform Strength-The shape for uniform strength, in any case, is for each portion of the beam z_{1} and z_{2}, precisely the same as for a cantilever beam of length z_{1} or z_{2} with the weight $\frac{W z_{2}}{l}$ or $\frac{W z_{1}}{l}$ at the free end, instead of W (page 300).

Case 4. Beam Loaded with w Uniformly Distributed.-The reaction at each end is $\frac{w l}{2}$.

For any point distant x from the left end the bending moment is $M_{x}=-\frac{w l}{2} x+\frac{w x^{2}}{2}=-\frac{w x}{2}(l-x)$.

The resisting moment is from (II), page 288, for the fibres belonging to the left-hand portion of the beam,

$$
\frac{S f I}{v}=+\frac{w x}{2}(l-x)
$$

The plus sign denotes tension in the lower fibres.
We have then

$$
\begin{align*}
S_{f} & =\frac{w v x(l-x)}{2 I} \tag{1}\\
w x & =\frac{2 S f I}{v(l-x)} \tag{2}
\end{align*}
$$

1. Breaking Weight-Constant Cross-section.-We see from (1) that for constant I and d, S_{f} is greatest when $x=(l-x)$ or $x=\frac{l}{2}$. The dangerous section is then at the middle of the span. We have then from (III), page 288,

$$
\begin{equation*}
\frac{S_{r} I}{v}=\frac{w l^{2}}{8}, \quad \text { or } \quad W=w l=\frac{8 S_{r} I}{v l}, . \tag{3}
\end{equation*}
$$

or eight times as much as for a cantilever beam with the same load W at the free end (page 299).
2. Shape for Uniform Strength. -Let I be the moment of inertia at any cross-section distant x from the left end, and I_{1} at the middle of span, the distances of the outer fibre being v and v_{1}. Then, from (1), for uniform strength

$$
\begin{equation*}
\frac{w v x(l-x)}{2 I}=\frac{w v_{1} l^{2}}{8 I_{1}}, \quad \text { or } \quad \frac{v x(l-x)}{I}=\frac{v_{l} l^{2}}{4 I_{1}} \tag{4}
\end{equation*}
$$

For rectangular cross-section

$$
I=\frac{1}{12} b h^{3}, \quad v=\frac{h}{2} ; \quad I_{1}=\frac{1}{12} b_{1} h_{2}^{3}, \quad v_{1}=\frac{h_{1}}{2}
$$

and hence

$$
\begin{equation*}
\frac{x(l-x)}{b h^{2}}=\frac{l^{2}}{4 b_{1} h_{2}^{2}} \tag{5}
\end{equation*}
$$

For constant height $h=h_{1}$ and

$$
\begin{equation*}
b=\frac{4 b_{1}}{l^{2}} x(l-x) \tag{6}
\end{equation*}
$$

The breadth then varies as the ordinate to a parabola, as on page 303 , and the end cross-section must have a constant breadth

$$
b_{0}=\frac{w l}{h_{1} S_{u s}}\left(1-\frac{w l}{4 b_{1} h_{1} S_{w s}}\right)
$$

for a distance from the left end

$$
x_{0}=l\left(1-\frac{w l}{4 b_{1} h_{1} S_{w s}}\right)
$$

For any value of x greater than x_{0} the breadth is given by (6).
In the same way we can find the shape for uniform strength when the breadth is constant, or when both b and h vary and the cross-section is rectangular, as on page 304 . Or, by substituting in (4) the values of I, I_{1}, v and v_{1}, we can find the shape for uniform strength for any form of cross-section.

Theory of Pins and Eyebars.--The bearing resistance of a pin should equal the greatest pressure upon it due to any plate through which it passes.

Bearing.-If d is the diameter of pin, t the thickness of any plate through which it passes, then $d t$ is the bearing area. Let $S_{u c}$ be the working unit stress for compression, then $d t S_{w c}$ is the bearing resistance of the pin. This should equal the stress transmitted by the plate, or

$$
d t S_{w c}=\text { stress. }
$$

We may take $S_{u c}$ at 6.25 tons. The stress transmitted is always known. For a transmitted stress of one ton the required bearing area is then

$$
d t=\frac{1}{6.25}
$$

and hence we have

$$
\begin{equation*}
\text { lineal bearing on pin per ton of stress }=\frac{1}{6.25 d} \tag{1}
\end{equation*}
$$

From (1), having given the diameter d, we can find the corresponding lineal bearing or thickness of plate for every ton of transmitted stress. We have only to multiply this by the number of tons transmitted stress in any case to find the requisite thickness of the plate.

Diameter of Pin.-Let t be the thickness of plate or eyebar, and h its depth, then $t h$ is the area of cross-section of plate or eyebar. If $S_{w t}$ is the working unit stress for tension, then $t h S_{w t}$ is the transmitted stress. Now if d is the diameter of the pin, and the thickness of the eyebar head is equal to the thickness of the bar, we have td for the bearing area of pin, and $t d S_{w c}$ for its bearing resistance. We must have, then, for equal strength

$$
t d S_{w c}=t h S_{w t}, \quad \text { or } \quad d=\frac{S_{w t}}{S_{w c}} h
$$

We can take the ratio $\frac{S_{w t}}{S_{w c}}=\frac{3}{4}$. Hence the least diameter of pin is

$$
\begin{equation*}
d={ }_{4}^{3} h \tag{2}
\end{equation*}
$$

The diameter of pin may need to be greater than this, but it cannot be less, unless the thickness of eyebar head is made greater than the thickness of the bar itself.

When this is the case, if t_{1} is the thickness of the bar and t the thickness of the head, we have for the least diameter of pin

$$
\begin{equation*}
t d S_{w c}=t_{1} h S_{w t}, \quad \text { or } \quad d=\frac{3}{4} \frac{t_{1}}{t} h \tag{3}
\end{equation*}
$$

and for the thickness of head

$$
\begin{equation*}
t=\frac{3 h t_{\mathrm{t}}}{4 d} \tag{4}
\end{equation*}
$$

The pin is a round beam subjected to flexure. The size of pin as thus determined is greater than the diameter required for safe bearing or shearing. For a beam we have (page 288)

$$
\frac{S_{f} I}{r}=M_{\max },
$$

where r is the radius of the pin and S_{f} is the unit stress in the outer fibre, and $I=\frac{\pi r^{4}}{4}$. Hence

$$
\begin{equation*}
M_{\max }=\frac{\pi S_{f} d^{3}}{32} \tag{5}
\end{equation*}
$$

where $M_{\max }$ is the maximum bending moment. The usual value for S_{f} is 15000 lbs . per square inch for iron and 20000 lbs per square inch for steel.

We have then, in any case, to find the maximum bending moment M_{x}, and then, from (5), we can find d.

Maximum Bending Moment.-In general for any pin, we must resolve the stress in every bar through which the pin passes into its vertical and horizontal components. The stress in each bar is considered as acting along the centre line or axis, and hence the point of application of each vertical and horizontal component is at the centre of the bearing of the corresponding bar.

Let M_{h} be the maximum bending moment of all the horizontal and M_{v} of all the vertical forces. Then the resultant maximum bending moment is

$$
M_{\max }=\sqrt{\lambda_{h}^{2}+M_{v}^{2}}
$$

From (5) we then find the diameter d of the pin.

Let the parallel horizontal or vertical components on one side of the centre of pin be $F_{1}, F_{2}, F_{3}, F_{4}$, etc., the odd indices F_{1}, F_{3}, etc., acting in one direction, and the even indices F_{2}, F_{4}, etc., acting in the other. Let l_{1} be the distance between centres of bearing F_{1} and F_{2}, l_{2} the distance between F_{2} and F_{3}, etc. We can now easily find the maximum moment by trial.
Thus the moment at F_{2} is $F_{1} l_{1}$. Add to this $\left(F_{1}-F_{2}\right) l_{2}$ and we have the moment at F_{3}. Add again $\left(F_{1}-F_{2}+F_{3}\right) l_{3}$ and we have the moment at F_{4}, and so on. The greatest of all these is the moment required.

Since all the forces F_{1}, F_{3}, F_{5}, etc., on one side are equal to all on the other, F_{2}, F_{4}, F_{6}, etc., they reduce to a couple on each side of centre of the pin, and hence the moment at any point P beyond the last force, as F_{6}, is constant. We have then only to find the greatest moment M_{h} or M_{v} by trial as directed.

Practical Sizes for Pins.-Pins are furnished in sizes differing by $\frac{1}{8}$ inch, and all sizes are an even number of sixteenths. A pin must always be ordered at least one sixteenth larger than the hole it is to fit. in order that it may be turned down to fit. We must then add $\frac{1}{16}$ inch to the calculated size, and if this gives an even number of sixteenths it can be ordered; if not, add $\frac{1}{16}$ more.

Thus if the size of a pin is $4 \frac{8}{8}$ inches by calculation, it should be ordered at least $4_{\frac{1}{6}}^{7}$; but since only even sixteenths are furnished, we should order $4 \frac{1}{2}$ and turn down to fit the hole.

Torsion.-Torsion occurs when the external forces acting upon a body tend to twist it, so that each section turns on the next adjacent section about a common axis at right angles to the plane of section.

Let a horizontal shaft of length l be fixed at one end, and let a force couple $+F,-F$ act at the free end whose moment about the axis $A C$ is $F p$.

The shaft will be twisted about the axis $A C$ so that any radial line as $a C$ moves to $b C$ through the angle $a C b=\theta$.

If the elastic limit is not exceeded, any longitudinal plane $a B A C$ before twisting remains plane after, as $b B A C$, and when the couple $+F,-F$ is removed the line $b C$ returns to its original position $a C$. Also the angle $a C b$ is proportional to F and to the distance $A C=l$ of the cross-section from the fixed end. Thus if g is the angle $a C b$ at the distance l from the fixed end, the angle $\alpha_{1} C_{1} b_{1}$ at the distance x from the fixed end is $\frac{x}{l} 9$. If the elastic limit is exceeded, this proportionality does not hold, the line $b C$ does not return to its original position when the couple $+F,-F$ is removed, and if the twist is great enough we have rupture.

These facts are but a restatement of the general experimental laws of page 279 .

Neutral Axis.-Consider the shaft to be made up of an indefinitely great number of parallel fibres. Since within the elastic limit stress is proportional to strain, as one cross-section of the shaft turns about the axis and slides upon the adjacent cross-section, the strain and therefore the shearing stress on each fibre of a cross-section is proportional to its distance from the axis $A C$. For the fibre at the axis $A C$ there is then no shearing stress. The axis $A C$ is then the neutral axis. (Compare page 286.)

Position of the Neutral Axis.-Let a be the cross-section of any fibre, and S_{s} the unit shearing stress within the elastic limit for that fibre in any cross-section most remote from the neutral axis at the distance v. Then the shearing stress for the most remote fibre in any cross-section at the distance v is $S s a$, and for any other fibre in that cross-section, at the distance r, it is $\frac{r}{v} S_{s} a$. The sum of all the fibre stresses of any section in any straight line perpendicular to the axis is then $\frac{S_{s}}{v} \Sigma r a$.

But the sum of the external forces $+F,-F$ is zero, hence for equilibrium we must have $\Sigma a r=0$.

Therefore the neutral axis $A C$ must pass through the
 centre of mass of the cross-sections. (Compare page 287.)

Twisting Moment and Resisting Moment.-All the external forces acting upon the shaft reduce to a couple $+F,-F$, as shown in the figure, whose moment $F p$ with reference to the neutral axis is the twisting moment M_{t}. This moment is the same at every point of the neutral axis $A C$, and therefore tends to make each cross-section turn on its adjacent cross-section nearest the fixed end, about the axis $A C$, so that there must be for equilibrium between every two cross-sections an equal and opposite resisting moment due to the shearing stress between these two cross-sections.

Since for any cross-section the shearing stress for any fibre at a distance r from the neutral axis is $\frac{r}{v} S_{s} a$, the moment of that stress about the neutral axis is $\frac{S_{s}}{v} a r^{2}$, and the sum of the moments of all the stresses for any cross-section about the axis, or the resisting moment, is then $\frac{S_{s}}{v} \Sigma \alpha r^{2}$.

For equilibrium this is balanced by the twisting moment M_{t}.
But $\Sigma a r^{2}$ is the polar moment of inertia I_{z} of the cross-section with reference to the axis through the centre of mass (page 271).

We have then for equilibrium, without reference to direction of rotation,

$$
\begin{equation*}
\frac{S_{s} I_{z}}{v}=M_{t} \tag{I}
\end{equation*}
$$

where S_{s} is the unit shearing stress within the limit of elasticity in the most remote fibre of any cross-section at the distance v from the neutral axis, I_{z} is the polar moment of inertia of the cross-section with reference to that axis, which always passes through its centre of mass, and M_{t} is the twisting moment.

The student should note the analogy of this equation with that for flexure of beams, page 288.

From (I) we can find M_{t} for any given S_{s} when I_{z} and v are known and the elastic limit is not exceeded.

Coefficient of Rupture.-Equation (I) holds within the elastic limit. The value of S_{s} computed by means of (I) from experiments carried to the point of rupture we call the

Coepicient of Rupture for Torsion.-It is found by experiment to agree closely with the ultimate shearing strength as given in our Table page 290.

We have then for rupture

$$
\begin{equation*}
\frac{S_{r} I_{z}}{v}=M_{t} \tag{II}
\end{equation*}
$$

where S_{r} is the shearing unit stress in the most remote fibre of that cross-section where rupture occurs, or the dangerous cross-section. This is evidently the cross-section for which $\frac{I_{z}}{v}$ is a minimum, since M_{t} is the same for every cross-section.

From (II) we can find M_{t} for S_{r}, I_{z} and v given, at the point of rupture.

Coefficient of Elasticity for Shearing Determined by Torsion.-Let the length of shaft be l and let the angle of torsion or the angle of twist of the end cross-section be δ and the twisting moment M_{t}. Then within the limit of elasticity the strain of the outer fibre for the end cross-section is $d g$ and the strain per unit of length is $s=\frac{d \sigma}{l} . \quad$ The unit shearing stress of the outer fibre of the end crosssection is $S_{s .}$. Then from page 281, since the coefficient of elasticity is the ratio of the unit stress to the unit strain,

$$
E=\frac{S_{s}}{s}=\frac{l S_{s}}{v \theta}
$$

where v is the distance of the outer fibre of the end cross-section from the neutral axis.

If we substitute for S_{s} its value from (I), we have

$$
\begin{equation*}
E=\frac{l M_{t}}{9 I_{z}} \tag{III}
\end{equation*}
$$

from which E can be computed if the other quantities are known and the elastic limit is not exceeded.

Inversely we have

$$
\begin{equation*}
\frac{E \theta I_{z}}{l}=M_{t .} . \tag{IV}
\end{equation*}
$$

From (IV) we can find M_{t} for any given θ, when E, I_{z} and l are given and the elastic limit is not exceeded.

Work of Torsion. -If θ is the angle of torsion for any cross-section, the strain of any fibre in that cross-section at a distance r from the neutral axis is $r \theta$, and the stress for that fibre is $\frac{r}{v} S_{s} a$. The work of the fibre is then one half the product of the stress and strain (page 281), or $\frac{S_{s}{ }^{f}}{2 v} a r^{2}$. The work of all the fibres is then $\frac{6 S_{s}}{2 v} \Sigma a r^{2}$; or, since $\Sigma a r^{2}=I_{z}$. we have from (IV) and (I), for the work,

$$
\begin{equation*}
W=\frac{\theta S_{s} I_{z}}{2 v}=\frac{M_{t} \theta}{2}=\frac{E I_{z} G^{2}}{2 l}=\frac{M I_{t}^{2} l}{2 E I_{z}} \tag{V}
\end{equation*}
$$

Transmission of Power by Shafts. - Work is the product of a force by the distance through which it acts. Power is rate of work. A horse-power is 33000 ft .-lbs. of work per minute. If a shaft makes n revolutions per minute and the twisting force is F with a lever-arm p, then $2 \pi p \times n$ is the distance and $2 \pi n p F$ is the work per minute, and the horse-power is, if p is in inches,

$$
H=\frac{2 \pi n F p}{33000 \times 12} .
$$

But $F p=M_{t}=\frac{S_{s} I_{z}}{v}$. Hence

$$
\begin{equation*}
H=\frac{\pi n S_{s} I_{z}}{198000 v} \tag{VI}
\end{equation*}
$$

where n is the number of revolutions per minute, H the horsepower transmitted, I_{z} and v must be taken in inches and S_{s} in pounds per square inch.

Combined Stresses.-We have thus far considered stresses of pure tension, compression and shear, also flexure and torsion. But we may have tension or compression combined with flexure, as when a beam is in direct longitudinal tension or compression and at the same time supports a load. We may also have tension or compression combined with shear, as when a shaft is in direct longitudinal compression or tension and at the same time in torsion. We may also have torsion and flexure combined.

Combined Tension and Flexure.-For flexure alone we have, page 288,

$$
S_{f}=\frac{M_{x} v}{I}
$$

where S_{f} is the unit stress in the extreme outer fibre in any crosssection at the distance v from the neutral axis. If this cross-section is also in direct tension, then the tensile fibre stresses due to flexure will be increased and the compressive fibre stresses due to flexure will be diminished. The neutral axis is then no longer at the centre of mass of the cross-section; and if we consider the deflection, a strict discussion leads to results of great complexity.

If, however, we neglect the deflection, and let T be the direct tension over the area A, then $\frac{T}{A}$ is the unit stress of direct tension. In the extreme outer tensile fibre, then, the total unit stress is $S_{f}+\frac{T}{A}$.

If $S_{\text {max }}$ is the maximum unit stress, we have then at the crosssection where $S_{f}+\frac{T}{A}$ is a maximum

$$
\begin{equation*}
S_{\max }=S_{f}+\frac{T}{A}=\frac{M_{x} v}{I}+\frac{T}{A} \tag{1}
\end{equation*}
$$

where M_{x} is the bending moment at that cross-section of area A for which $S_{f}+\frac{T}{A}$ is a maximum, T is the direct tension, S_{f} is the unit stress due to flexure in the extreme outer tensile fibre of that crosssection at the distance v from the neutral axis.

From (1) we have

$$
M_{x}=\frac{\left(S_{\max }-\frac{T}{A}\right) I}{v}
$$

If we put for I its value $\boldsymbol{A} \kappa^{2}$, where κ is the radius of gyration of the cross-section of area A, for which $S_{f}+\frac{T}{A}$ is a maximum, we have, putting $S_{\max }=$ the working unit stress S_{w},

$$
\begin{equation*}
A=\frac{M_{x} v}{S_{v} \kappa^{2}}+\frac{T}{S_{w}} \tag{2}
\end{equation*}
$$

From (1) we can find in any case the maximum unit stress in the extreme outer fibre on the tensile side. From (2) we can find the area of cross-section by taking for S_{w} its value as found on page 291, by dividing the ultimate strength by the factor of safety, or as found by the method of page 292.

Combined Compression and Flexure. - This case is the same as the preceding, except that we must put the direct compression C in place of T and take for S_{w} the working stress for compression. If flexure is to be apprehended, we must take S_{w} as given on page 291.

Combined Tension and Shear.-If a body whose cross-section at any point is A is subjected to a direct tension T, the direct unit tensile stress is $t=\frac{T}{A}$. Suppose at the same time a direct vertical shear S, then the unit shearing stress is $s=\frac{S}{A}$.

Take any element of breadth b, height h and unit thickness. Then we have acting on this element the tensile stresses $+t h,-t h$, and the shearing stresses $+s h,-s h$. The two equal and opposite stresses $+t h$, $-t h$ hold each other in equilibrium. The couple $+s h$, -sh can only be held in equilibrium by the opposite couple $+s b,-s b$. Let d be the diagonal, and α the angle of the diagonal with the side b. Then we have the components parallel to the diagonal forming the combined shearing stresses $+s_{r} d,-s_{s} d$, and the components perpendicular to the diagonal forming the combined tensile stresses $+s_{t} d,-s_{t} d$.

For equilibrium we have then

$$
\begin{aligned}
& +s_{s} d-t h \cos \alpha-s b \cos \alpha+s h \sin \alpha=0 ; \\
& +s_{t} d-t h \sin \alpha-s b \sin \alpha-s h \cos \alpha=0 .
\end{aligned}
$$

Since we have $\sin \alpha=\frac{h}{d}, \cos \alpha=\frac{b}{d}$, dividing these equations by d, we obtain

$$
\begin{aligned}
& s_{s}=t \sin \alpha \cos \alpha+s \cos ^{2} \alpha-s \sin ^{2} \alpha=\frac{t}{2} \sin 2 \alpha+s \cos 2 \alpha \\
& s_{t}=t \sin ^{2} \alpha+2 s \sin \alpha \cos \alpha=\frac{t}{2}-\frac{t}{2} \cos 2 \alpha+s \sin 2 \alpha
\end{aligned}
$$

From these equations, by placing the first differential coefficient equal to zero, we have, when s_{s} is a maximum,

$$
\tan 2 \alpha=\frac{t}{2 s}, \quad \sin 2 \alpha=\frac{t}{\sqrt{4 s^{2}+t^{2}}}, \quad \cos 2 \alpha=\frac{2 s}{\sqrt{4 s^{2}+t^{2}}}
$$

when s_{t} is a maximum,

$$
\tan 2 \alpha=-\frac{2 s}{t}, \quad \sin 2 \alpha=-\frac{2 s}{\sqrt{4 s^{2}+t^{2}}}, \quad \cos 2 \alpha=\frac{t}{\sqrt{4 s^{2}+t^{2}}}
$$

Therefore we have

$$
\begin{align*}
& \max s_{s}=\sqrt{s^{2}+\frac{t^{2}}{4}} \tag{1}\\
& \max s_{t}=\frac{t}{2}+\sqrt{s^{2}+\frac{t^{2}}{4}} \tag{2}
\end{align*}
$$

Equation (1) gives the unit shearing stress when we have the direct unit tensile stress t and unit shearing stress v combined. Equation (2) gives the unit tensile stress when we have the direct tensile stress t and unit shearing stress v combined.

Combined Compression and Shear.-Let the direct unit compressive stress be c, and the direct unit shearing stress be s. Then, just as before, we have for the combined unit shearing stress

$$
\begin{equation*}
s_{s}=\sqrt{s^{2}+\frac{c^{2}}{4}}, \tag{1}
\end{equation*}
$$

and for the combined unit compressive stress

$$
\begin{equation*}
s_{c}=\frac{c}{2}+\sqrt{s^{2}+\frac{c^{2}}{4}} . \tag{2}
\end{equation*}
$$

Combined Flexure and Torsion.-Let S_{f} be the greatest unit stress for flexure as given by equation (II), page 288, viz.,

$$
S_{f}=\frac{M_{x} v}{I}
$$

and S_{s} the unit shearing stress for torsion as given by equation (I), page 309 , viz.,

$$
S_{s}=\frac{M_{t} v}{I_{z}}
$$

Then, as we have just seen, we have for the combined unit stresses of shear and compreśsion or tension

$$
\begin{aligned}
s_{s} & =\sqrt{S_{\mathrm{s}}^{2}+\frac{S_{f}^{2}}{4}} \\
s_{t} \text { or } s_{c} & =\frac{S_{f}}{2}+\sqrt{S s^{2}+\frac{S_{f}^{2}}{4}}
\end{aligned}
$$

Stress Due to Temperature.-We have from equation (3), page 281,

$$
\lambda=\frac{l S}{E}
$$

where λ is the strain produced by the unit stress S in a bar of length l, the coefficient of elasticity being E.

If a bar is constrained so that it cannot change in length and then exposed to change of temperature, a unit stress will be produced equal to that which would cause a strain equal to the change of length of the unconstrained bar under the same change of temperature.

Thus if ϵ is the coefficient of linear expansion for one degree of temperature, t the number of degrees of change of temperature and l the original length, the change of length of an unconstrained bar is $\lambda=\epsilon t l$. The strain per unit of length is then $\frac{\lambda}{l}=\epsilon t$. The coefficient of linear expansion $\epsilon=\frac{\lambda}{l t}$ is then the strain per unit of length. per degree.

If the bar is constrained so that it cannot change its length, we then have a unit stress

$$
S=\frac{E \lambda}{l}=E \epsilon t
$$

which is indepenaent of the length l. The total stress, if the area is A, is then

$$
A S=A E \epsilon t
$$

We give the following average values of the coefficient of linear expansion ϵ for one degree Fahrenheit :

Brick and stone	$\epsilon=0.0000050$
Cast iron	$\epsilon=0.0000062$
Wrought iron.	$\epsilon=0.0000067$
Steel	$\epsilon=0.0000065$

EXAMPLES.

(1) A wrought-iron tie-rod, 30 ft . long and 4 sq. in. in area of cross-section, is subjected to 40000 lbs. tension. Find the unit stress. If the coefficient of elasticity is 30000000 lbs. per square inch, find the elongation.

Ans. Unit stress $=10000 \mathrm{lbs}$. per square inch. Elongation $=0.01 \mathrm{ft}$.
(2) An iron bar 10 ft . long has a strain of 0.012 ft . under a unit stress of 25000 lbs . per square inch. Find the coefficient of elasticity.

Ans. $E=20833333 \mathrm{lbs}$. per square inch.
(3) A rectangular timber tie is 12 inches deep and 40 ft . long. If $E=1200000$ lbs. per square inch, find the thickness so that the elongation under a pull of 270000 lbs . may not exceed 1.2 inches.

Ans. Thickness $=7.5$ in.
(4) A wrought-iron tie-rod 142 ft . long and 4 sq. in. area is subjected to a stress of 80000 lbs . If $E=30000000 \mathrm{lbs}$. per square inch, find the elongation.

Ans. Elongation $=1.136 \mathrm{in}$.
(5) The length of a cast-iron pillar is diminished from 20 ft . to 19.97 ft . under a given load. Find the unit stress of compression, E being 17000000 lbs. per square inch.

Ans. Unit stress $=25500$ lbs. per square inch.
(6) A wrought-iron bar 2 sq. in. area of cross-section has its ends confined between two immovable blocks at a temperature of 60° Fahr. Taking the coefficient of expansion at 0.000006944 , find the pressure upon the blocks when the temperature is 100° F'ahr., supposing there is no flexure.

Ans. Pressure $=0.00055552$ E. If $E=30000000 \mathrm{lbs}$. per square inch, pressure $=16665.6 \mathrm{lbs}$.
(7) The dead load of a bridge is 5 tons and the live load 10 tons per panel, the corresponding factors of safety being 3 and 6 . Find ithe combined factor of safety.

Ans. Factor $=5$.
(8) The dead load upon a short hollow cast-iron pillar, with a rectangular area of 20 sq . in., is 50 tons. If the compression is not to exceed 0.0015 of the length, find the greatest live load, E being 17000000 lbs. per square inch.

Ans. Live load $=410000 \mathrm{lbs} .=205$ tons.
(9) A steel suspension rod in a suspension bridge carries 3500 lbs. of roadway and 3000 lbs. of live load. Its length is 30 ft . and sectional area one half square inch. Find the gross load and the extension of the rod, E being 35000000 lbs. per square inch.

Ans. Gross load $=6500 \mathrm{lbs}$. Extension 0.133 inch.
(10) A beam 40 ft . long carries a load of 20000 lbs. Find the shearing force at 15 ft . from one end, and also the maximum bending moment: (a) when the beam is supported at the ends and loaded in the middle; (b) when it is supported at the ends and loaded uniformly; (c) when it is fixed at one end and loaded at the other; (d) when it is fixed at one end and loaded uniformly.

Ans. (a) Shear $=10000 \mathrm{lbs} ., \max$. moment $=200000 \mathrm{ft} . \mathrm{lbs}$. at middle;
(b) Shear $=2500 \mathrm{lbs} .$, max. moment $=100000 \mathrm{ft} .-1 \mathrm{lbs}$. at middle;
(c) Shear $=20000 \mathrm{lbs} .$, max. moment $=800000 \mathrm{ft} .-\mathrm{lbs}$. at end;
(d) Shear $=7500$ lbs., max. moment $=400000 \mathrm{ft} .-\mathrm{lbs}$. at end.

Draw the diagrams for shear and bending moment in each case.
(11) A beam 20 ft . long rests on two supports and carries a load of 10 tons at 5 ft. from one end. Find the maximum bending moment.

Ans. Maximum moment 37.5 ft.-tons at the weight. Draw the diagrams for shear and bending moment.
(12) Find the breadth and depth of the strongest rectangular beam which can be cut from a cylindrical log of diameter D

Ans. Breadth $=D \sqrt{\frac{1}{3}}$, depth $=D \sqrt{\frac{\overline{2}}{3}}$.
(13) A round and a square beam are equal in length and equally loaded. Find the ratio of the diameter to the side of the square, so that the two beams may be of equal strength.

Ans. $\frac{\text { Diameter }}{\text { Side }}=2 \sqrt[3]{\frac{\overline{2}}{3 \pi}}$.
(14) Compare the relative strengths of a cylindrical beam and the strongest rectangular and square beams that can be cut from it.

Ans. $\begin{aligned} \frac{\text { Strength of cylindrical }}{\text { Strongest rectangular }} & =\frac{9 \pi \sqrt{3}}{32}=1.53 ; \\ \frac{\text { Strength of cylindrical }}{\text { Strongest square }} & =\frac{3 \pi \sqrt{2}}{8}=1.66 .\end{aligned}$
(15) Compare the relative strengt7s of a solid square beam to that of the solid inscribed cylinder.

Ans. $\frac{\text { Strength of square }}{\text { Strength of cylinder }}=\frac{16}{3} \frac{1}{\pi}=1.7$.
(16) Compare the strength of a square beam with its sides vertical to that of the same beam with a diagonal vertical.

Ans. $\frac{\text { Side vertical }}{\text { Diagonal vertical }}=\sqrt{2}=1.414$.
(17) A beam of yellow pine, 14 inches wide, 15 inches deep, resting upon supports 10 ft. 9 in. apart, was just able to bear a weight of 34 tons at the centre. What weight at the centre will a beam of the same material, 3 ft . 9 in . between the supports and 5 inches square bear?

Ans. 3.86 tons.
(18) Compare the strengths of two rectangular beams of equal length, the breadth and depth of one being respectively equal to the depth and breadth of the other.

Ans. The strengths are directly as the breadths and inversely as the depths.
(19) A cast-iron beam 4 inches square rests upon supports 6 ft . apart. Find the breaking weight at the centre, taking $S_{r}=30000$ lbs. per square inch.

Ans. Breaking weight $=17777 \frac{7}{9} \mathrm{lbs}$.
(20) A yellow-pine beam, 14 inches wide, 15 inches deep, resting upon supports 10 ft . 6 in . apart, broke down under a uniformlydistributed load of 60.97 tons. Find the coefficient of rupture S_{r}.

Ans. $S_{r}=3658.2 \mathrm{lbs}$. per square inch.
(21) A cast-iron rectangular beam rests upon supports 12 ft . apart and carries a weight of 2000 lbs . at the centre. If the breadth is one half the depth, find the sectional area so that the unit stress may nowhere exceed 4000 lbs . per square inch.

Ans. Area $=18$ sq. in., depth $=6$ inches, breadth $=3$ inches.
(22) A wrought-iron beam, 4 inches deep, $\frac{3}{4}$ inch wide, fixed horizontally at one end, gave way when loaded with 1568 lbs. at the free end, at a point 2 ft .8 in . from the load. Find the coefficient of rupture S_{r}.

Ans. $S_{r}=25088$ lbs. per square inch.
(23) A wrought-iron beam 2 inches wide and 4 inches deep rests upon supports 12 ft . apart. Find the uniformly distributed load it will carry in addition to its own weight if $S_{r}=50000 \mathrm{lbs}$. per square inch and the factor of safety is.4. A bar of iron 3 ft . long and one square inch in cross-section weighs 10 lbs.

Ans. Load $=3384 \mathrm{lbs}$.
(24) Find the length of a beam of ash 6 inches square which would break of its oun weight when supported at the ends, the weight of the timber being 30 lbs. per cubic foot and $S_{r}=7000 \mathrm{lbs}$. per square inch.

Ans. Length $=149 \frac{2}{\mathrm{ft}} \mathrm{ft}$.
(25) A cast-iron cantilever beam 8 ft . long and 12 inches deep, centre to centre of the flanges, carries a uniformly-distributed load

CH. II.] STRENGTH AND ELASTICITY OF MATERIALS-EXAMPLES. 31%
of 16000 lbs. Find the area of the top flange at the fixed end, neglecting the web, so that the unit stress shall not exceed 3000 lbs. per square inch.

Ans. Area $=21.3$ square inches.
(26) A cast-iron beam $27 \frac{1}{2}$ inches deep, centre to centre of the flanges, rests upon supports 26 ft. apart. Its bottom flange is 16 inches wide and 3 inches deep. Neglecting the web, find the breaking weight at the centre, the coefficient of rupture S. being 15000 lbs. per square inch.

Ans. Weight $=253846 \mathrm{lbs}$.
(27) A cantilever plate girder 44.7 ft. long and 22.25 ft . deep, centre to centre of the flanges, supports a uniform load of 1.82 tons per foot and a weight of 161.6 tons at the free end. Find the unit stress on the net section of the tension flange at the point of support, neglecting the web, the gross area being 132.6 inches but reduced by rivet-holes two ninths.

Ans. Unit stress $=3.94$ tons per square inch.
(28) A girder 50 ft . long and 4 ft . deep, centre to centre of flanges, supports a uniform load of 32 tons. Find the stress in either flange at 9 feet from one end, neglecting the web.

Ans. Stress $=29.5$ tons.
(29) Required the depth of a rectangular beam supported at the ends and carrying a load W at the middle, in order that the elongation of the lowest fibre shall equal ${ }_{\frac{1}{4} \frac{1}{\sigma 0}}$ of its original length.

Ans. Depth $=\sqrt{\frac{\overline{2100 W}}{E b}}$.
(30) A beam of depth 8 inches, length 8 ft., supported at ends, sustains 500 lbs . per foot. Find its breadth for a factor of safety of 10, S. being 14000 lbs. per square inch.

Ans. Breadth $=3_{14}^{\frac{3}{14}}$ inches.
(31) A beam of length 12 ft ., breadth 2 in ., depth 5 in., is supported at the ends. Find the uniform load it will safely sustain for a factor of safety of $4, S$. being 80000 lbs. per square inch.

Ans. Weight $=9259 \mathrm{lbs}$.
(32) A wooden beam of length 12 ft . is supported at the ends. Find its breadth and depth so that it may safely sustain one ton uniformly distributed over its whole length, for the factor of safety 10, S_{r} being 15000 lbs. per square inch and the depth 4 times the breadth.

Ans. Breadth $=2.08$ in.; depth $=8.32 \mathrm{in}$.
(33) A wrought-iron beam 12 ft . long, 2 in . wide, 4 in. deep is supported at the ends. The material weighs $\frac{1}{4}$ lb. per cubic inch. Taking Sr at 54000 lbs ., find the uniform load it will sustain.

Ans. Withont the weight of beam, 16000 lbs . Over the weight of beam. 15712 lbs.
(34) A beam is fixed horizontally at one end. Length 20 ft., breadth $1 \frac{1}{8}$ in., $S_{r}=40000 \mathrm{lbs}$. per square inch. If the weight of the material is $亠$ lb. per cubic inch, find the depth so that it may just sustain its own weight and 500 lbs. at the free end.

Ans. Depth $=4.05$ inches.
(35) Find the sectional area of a square beam of 12 ft. span which sustains a load of 300 lbs. at the centre and has at the same time a direct longitudinal tension of 2000 lbs .; the working unit stress being taken at 1000 lbs. per square inch.

Ans. 4.18 inches square.
(36) Find the sectional area of a square beam of 12 ft . span which sustains a load of 50 lbs. per foot uniformly distributed and has at the same time a direct longitudinal tension of 2000 lbs .; the working unit stress being taken at 1000 lbs . per square inch.

Ans. 4.18 inches square.
(37) A beam of uniform cross-section A is inclined at the angle α to the horizontal and rests without slipping on two supports. The load is w per linear unit, uniformly distributed. Find the maximum unit stress.

Ans. This is the case of a roof-truss rafter at the bottom or at an inter-
 mediate panel, loaded by its own weight only.

The vertical reaction at the top end is given by

$$
\begin{aligned}
& R_{1} \cos \alpha \times l=w l \times \frac{1}{2} l \cos \alpha \\
& \text { or } \\
& R_{1}=\frac{w l}{2}
\end{aligned}
$$

The bending moment at any point distant x from the upper end is then

$$
M f_{x}=\frac{v l}{2} \cos \alpha \times x-u x \times \frac{x \cos \alpha}{2}
$$

The unit stress in the outer fibre at the distance v from the neutral axis is then for any cross-section at a distance x from the upper end

$$
S_{f}=\frac{M M_{x} v}{I}=\frac{d w \cos \alpha}{2 I}\left(l x-x^{2}\right) .
$$

The direct compression at the distance x from the upper end is

$$
C=v x \sin \alpha-\frac{v l}{2} \sin \alpha=\frac{w \sin \alpha}{2}(2 x-l) .
$$

The combined unit stress is then

$$
S_{f}+\frac{C}{A}=\frac{w w \cos \alpha}{2 I}\left(l x-x^{2}\right)+\frac{w \sin \alpha}{2 A}(2 x-l) .
$$

This is a maximum when $x=\frac{l}{2}+\frac{I \tan \alpha}{A v}$.
Hence the maximum unit stress is

$$
S_{\max }=\frac{v w t^{2} \cos \alpha}{8 I}+\frac{I w \tan \alpha \sin \alpha}{2 A^{2} v}
$$

If there is an additional compression applied at the ends of C, the maximnm unit stress is $\frac{C}{A}+S_{\max }$.
(38) The top rafter of a roof-truss of uniform cross-section A is inclined at the angle a to the horizontal. The load is w per linear unit uniformly distributed. Find the maximum unit stress.

Ans. The reaction at the top end H is horizontal. We have then

$$
H l \sin ^{-} \alpha=2 o l \times \frac{l \cos \alpha}{2}
$$

or

$$
H=\frac{w l}{2} \cot \alpha .
$$

At any point x from the upper end the unit stress for flexure is then

$$
S_{f}=\frac{\left(H x \sin \alpha-\frac{w x^{2}}{2} \cos \alpha\right) v .}{I}
$$

The direct compression is $C=H \cos \alpha+v x \sin \alpha$.
The combined unit stress is then

$$
S f+\frac{U}{A}=\frac{v w \cos \alpha}{2 I}\left(l x-x^{2}\right)+\frac{w l \cot \alpha \cos \alpha}{2 A}+\frac{w x \sin \alpha}{A} .
$$

This is a maximum when $x=\frac{l}{2}+\frac{I \tan \alpha}{A v}$.
Hence the maximum unit stress is

$$
S_{\max }=\frac{v w l^{2} \cos \alpha}{8 I}+\frac{w l \operatorname{cosec} \alpha}{2 A}+\frac{I w \tan \alpha \sin \alpha}{2 A^{2} v} .
$$

If there is an additional compression applied at the ends of C, the maximum unit stress is $\frac{C}{A}+S_{\max }$.
(39) A wooden beam 10 inches wide, 9 inches deep and 8 ft.long carries a uniform load of 500 lbs . per linear foot and is subjected to a longitudinal compression of 40000 lbs . Find the maximum unit stress.

Ans. 800 lbs . per square inch.
(40) If the beam in Example (39) forms one of the panels of the rafter of a roof-truss of 40 ft . span and 15 ft . high, find the maximum unit stress.

Ans. Let $b=$ breadth, $h=$ height of cross-section.
Then $v=\frac{h}{2}, A=b h, I=\frac{1}{12} b h^{3}$, and we have, from Example (37),

$$
\text { maximum unit stress }=\frac{40000}{b h}+\frac{3 w l^{2} \cos \alpha}{4 b \hbar^{2}}+\frac{w \tan \alpha \sin \alpha}{12 b}
$$

In the present case $w=\frac{500}{12}, l=96, b=10, h=9, \sin \alpha=0.6, \cos \alpha=0.8$, $\tan \alpha=0.75$. Hence
maximum unit stress $=729$ lbs. per square inch.
(41) A rivet $\frac{9}{4}$ inch in diameter is subjected to a tension of 2000 lbs. and at the same time to a shear of 3000 lbs. Find the combined maximum tensile and shearing unit stresses and the angles they make with the axis of the rivet.

Ans. Maximum shearing unit stress $=7155$ pounds per square inch, making an angle of $9^{\circ} 13^{\prime}$ with the axis of the rivet.

Maximum tensile unit stress $=9420$ pounds per square inch, making an angle of $54^{\circ} 23^{\prime}$ with the axis of the rivet.
(42) A circular shaft 2 ft . long is twisted through an angle of 7 degrees by a couple of ± 200 lbs. with a lever-arm of 6 inches. Find the angle for a shaft of the same size and material 4 ft . long when twisted by a couple of 500 lbs. with a lever-arm of 18 inches.

Ans. 105 degrees.
(43) A circular shaft when twisted by a couple of ± 90 lbs. with a lever-arm of 27 inches has a unit shearing stress of 2000 lbs. per square inch. If the same shaft is twisted by a couple of ± 40 los. with a lever-arm of 57 inches, what is the unit shearing stress?

Ans. 1877 pounds per square inch.
(44) An iron shaft 5 ft. long and 2 inches diameter is twisted through an angle of 7 degrees by a couple of $\pm 5000 \mathrm{lbs}$. with a leverarm of 6 inches, and on the removal of the couple springs back to its original position. Find the value of E for shearing.

Ans. 9390000 pounds per square inch.
(45) What is the couple which acting with a lever-armiof 12 inches will twist asunder a steel shaft 1.4 inches diameter, the coefficient of rupture by torsion being 75000 lbs. per square inch.

Ans. ± 1683 pounds.
(46) Compare the strength of a square shaft with that of a circular shaft of equal area.

Ans. $\frac{\sqrt{2 \pi}}{3}$.
(47) Find the combined unit stresses for a wrought-iron shaft 3 inches diameter and 12 feet long, resting on bearings at each end, which transmits 40 horse-power while making 120 revolutions per minute, upon which a load of 800 pounds is brought by a belt and pulley at the middle.

Ans. The unit stress for flexure is

$$
S_{f}=\frac{M_{x} d}{I}=\frac{W l}{\pi r^{3}}=10800 \mathrm{lbs} . \text { per square inch. }
$$

The unit stress for torsion is

$$
S_{s}=\frac{198000 d H}{n \pi I_{z}}=4000 \mathrm{lbs} . \text { per square inch. }
$$

The maximum combined unit stresses are then :
for tension or compression, $5400+\sqrt{4000^{2}+5400^{2}}=12100 \mathrm{lbs}$. per square inch; for shear 6700 lbs . per square inch.
(48) A vertical shaft weighing with its loads 6000 lbs. is subjected to a twisting moment by a force of 300 pounds acting with a leverarm of 4 feet. If the shaft is of wrought iron 4 feet long and 2 inches in diameter, find its maximum unit stress, provided the shaft is so supported that it cannot bend sideways.

Ans. Compressive unit stress $=10170 \mathrm{lbs}$. per square inch.

$$
\text { Shearing " " }=9215 \text { " " " " }
$$

(49) Find the diameter of a short vertical steel shaft to carry a load of 6000 lbs . when twisted by a force of 300 lbs . with a leverage of 4 ft., taking unit stress for shear at 7000 lbs. and for compression at 10000 lbs. per square inch.

Ans. About 2.5 inches.

GH. II.] STRENGTH AND ELASTICITY OF MATERIALS-EXAMPLES. 321
(50) A cast-iron water-pipe 12 inches diameter and $\frac{5}{8}$ in. thick is under a head of 300 ft . Taking the ultimate strength at 20000 lbs . per square inch, find the factor of safety.

Ans. The unit pressure is $0.434 \times 300=130.2$ lbs. per square inch. Hence the unit stress is $S=\frac{130.2 \times 12}{2 \times \frac{5}{8}}=1230 \mathrm{lbs}$. per square inch. The factor of safety is then $\frac{20000}{1230}=$ about 16 .
(51) Find the thickness of a cast-iron pipe 18 inches diameter for a factor of safety of 10, taking the ultimate strength at 20000 lbs. per square inch and the head of water 300 feet.

Ans. 0.586 inch.
(52) A wrought-iron pipe, 4.5 inches internal diameter, weighs 12.5 pounds per linear foot. What pressure can it carry with a factor of safety of 8, taking the ultimate strength 55000 lbs. per square inch?

Ans. A bar of wrought iron one square inch in cross-section and 3 ft . long weighs 10 lbs . Hence the area of the pipe metal is $12.5 \times \frac{3}{10}=3.75$ square inches. The thickness is then $t=\frac{3.75}{2 \pi r}=\frac{1}{4} \mathrm{inch}$.

Hence $p=\frac{2 \times 55000 t}{8}=763 \mathrm{lbs}$. per square inch.
(53) A boiler is to be made of wrought-iron plates $\frac{8}{8}$ inch thick, united by single lap-joints. Find the size and pitch of rivets. If the boiler is 30 inches in diameter and carries a pressure of 100 lbs. per square inch above the atmosphere, find the factor of safety, taking the ultimate strength at 55000 lbs. per square inch.

Ans. From (4), page 296, we have $\frac{5}{8}-\mathrm{in}$. rivets. But from (3), page 295, we have $\frac{8}{4}-\mathrm{in}$. This size would be chosen for ordinary construction work. In this case we wish a tight joint, and therefore use a small rivet at sacrifice of strength. Let us take then $\frac{8}{8}-\mathrm{in}$. rivets. Then from (5), page 296, we find the pitch $\frac{8}{4} \mathrm{in}$. But this violates the practical restriction that rivets should not have a less pitch than three diameters. We take the pitch then 2 inches. The pressure on a length equal to the pitch is $30 \times 2 \times 100=6000 \mathrm{lbs}$. If S is the unit stress, the resisting stress is $S\left(2-\frac{5}{8}\right) t=\frac{33}{64} S$. Hence $S=\frac{64 \times 6000}{33}=11640 \mathrm{lbs}$. per square inch. The factor of safety is then about 5 . If this is considered too small, we should use a less pitch or a larger rivet. A larger rivet would not be tight enough. For a less pitch the holes must be drilled and not punched.
(54) Required to unite two $\frac{1}{2}$-inch plates by a butt joint with two cover-plates; the stress to be transmitted being 40000 lbs. and the unit working stress 10000 lbs. per square inch.

Ans. The area of the plates must then be 4 square inches net if the joint is
 Our rule (4), page 296, gives for diameter of rivet $d=\frac{18}{18}$ inch. This is greater than given by (3), page 295, therefore we take it. From our Table page 297 we have for the resistance to shear of a $\frac{13}{18}$-inch rivet 3890 lbs . The rivets are in double shear in a butt joint, hence we require $\frac{20000}{3890}=$ about 5 rivets. The bearing resistance from our Table is 5080 lbs . We require then for bearing $\frac{40000}{5080}=$ about 8 rivets. This, then, is the number we should use.

For the pitch we have from (5), page 296, 2.887 inches. This is less than 3 inches. We therefore take the pitch 3 inches. We must have at least $1 \frac{1}{4}$ inches for distance from end and edge (page 297).

If the plates are $8 \frac{1}{2}$ inches wide, we must then have three rows of rivets, three in the first and last and two in the middle on each side of the joint. The coverplates must then be 10 inches long. The student can now sketch the coverplates with the rivet-holes properly spaced.
(55) A plate girder is 17 feet long and 27 inches deep. The uni-formly-distributed load is $55,000 \mathrm{lbs}$. The thickness of the web is inch and of the flange angles $\frac{9}{18}$ inch. Find the size, number and spacing of the rivets to unite the web and flanges.

Ans. From (4), page 296, we have $d=\frac{7}{8}$ inch. This is less than the size given by (3), page 295. . We take the rivets then $\frac{7}{8}$ inch diameter.

If we neglect the web, the stress of compression in the upper flange or of tension in the lower, at any point distant x feet from the end, is given by

$$
\frac{55000 x}{4.5}\left(1-\frac{x}{17}\right) .
$$

If we take $x=0,2.5 \mathrm{ft} ., \quad 5 \mathrm{ft} ., \quad 8.5 \mathrm{ft}$., we have the stress at these points $=0,26062 \mathrm{lbs}, 43137 \mathrm{lbs}, 51944 \mathrm{lbs}$.
We have then for the first division of 2.5 ft . the horizontal stress 26062 lbs , or 13 tons, to be taken by the rivets.

In the second division of 2.5 ft . we have $43137-26062=17075 \mathrm{lbs}$., or 8.5 tons; and in the third division of 8.5 ft . we have $51944-43137=8807$ lbs., or 4.4 tons, to be taken by the rivets.

For the shear at any point distant x feet from the end we have

$$
\frac{55000}{2}\left(1-\frac{2 x}{17}\right)
$$

$$
\text { If we take } x=0, \quad 2.5 \mathrm{ft} ., \quad 5 \mathrm{ft} ., \quad 8.5 \mathrm{ft} ., \text { we have the shear }
$$ at these points, $=27500 \mathrm{lbs}$., $19400 \mathrm{lbs} ., 11300 \mathrm{lbs} ., 0$.

We have then for the first division of 2.5 ft . the shear $27500-19400=$ 8100 lbs., or 4 tons, to be taken by the rivets.

In the second division of 2.5 ft . we have $19400-11300=8100 \mathrm{lbs}$., or 4 tons; and in the third division of 8.5 ft . we have 11300 lbs ., or 5.65 tons, to be taken by the rivets.

Hence the combined shear (page 313) in the first division of 2.5 feet is

$$
\sqrt{4^{2}+\frac{13^{2}}{4}}=7.63 \mathrm{tons}=15260 \mathrm{lbs}
$$

In the second division of 2.5 ft .,

$$
\sqrt{4^{2}+\frac{8.5^{2}}{4}}=5.9 \mathrm{tons}=11800 \mathrm{lbs}
$$

In the third division of 8.5 ft .,

$$
\sqrt{5.65^{2}+\frac{4.4^{2}}{4}}=6 \text { tons }=12000 \mathrm{lbs}
$$

The bearing resistance of a seven-eighths inch rivet is, from our Table page 297, 2730 lbs . We require then for bearing, in the first 2.5 feet, $\frac{15260}{2730}=6$ rivets, in the next 2.5 ft ., $\frac{11800}{2730}=5$ rivets, in the third division of 8.5 ft ., $\frac{12000}{2730}=5$ rivets.

We must not pitch the rivets less than 3 inches or more than 6 inches (page

CH. II.] STRENGTH AND ELASTICITY OF MATERIALS-EXAMPLES. 323
296). A pitch of 4 inches for the first 2.5 ft ., then 5 inches for the next 2.5 ft. and then 6 inches to the middle will therefore give more rivets than are necessary.
(56) A pin 3 inches diameter passes through the web of a channel bar three fifths of an inch thich. The transmitted stress is 55500 lbs. Find the thickness of re-enforcing plate necessary to give sufficient bearing ou the pin.

Ans. The thickness for each ton (page 306 (b)) is

$$
\frac{1}{6.25 d}=\frac{1}{6.25 \times 3}=0.0533 \mathrm{inch} .
$$

For 55500 lbs. $=27.75$ tons we should have a thickness of 0.0533×27.75 $=1.48$ inches.

The channel web is only $\frac{3}{5}=0.6$ inch thick. In order to have the proper thickness for safe bearing on the pin, we must then increase the thickness by $1.48-0.6=0.88$ inch. Two re-enforcing plates on each side of the web, each 0.44 inch thick or about $\frac{7}{16}$ inch each, will then give the required thickness.
(57) If the depth of an eyebar is 10 inches, find the least diameter of pin which can be used without having the thickness of the head greater than that of the bar.

Ans. (Page 307 (c).) $d=7 \frac{1}{2}$ inches.
(58) A bar 8 in. by $\frac{7}{8}$ in. has a pin $4 \frac{5}{8}$ inches diameter passing through it. Find the thickness of bar head.

Ans. The least diameter without having the head thicker than bar is 6 inches. As the pin is less than this, the head must be thicker than the bar and equal to

$$
t=\frac{3 h t_{1}}{4 d}=\frac{3 \times 8 \times \frac{7}{8}}{4 \times 48 \frac{5}{8}}=1 \frac{5}{37} \text { inches. }
$$

(59) In a panel of a bridge truss we have at each end of the pin two eyebars on one side, 4 in. by $1 \frac{3}{7}$ in., and on the other side one eyebar 4 in . by $1_{\frac{1}{7}}^{\frac{7}{6}} \mathrm{in}$. Also one tie on each side of centre of pin 1_{19}^{9} in. thick. The tie is packed close to the vertical post, which consists of two channels of $\frac{7}{8}$-in. thickness. The bars are packed snug. The vertical compression in the half post is 40000 lbs. The working unit stress of the bars is 10000 lbs. per square inch. Find the size of pin required.

Ans. We have here on one side acting horizontally

$$
F_{1}^{\prime}=F_{3}=4 \times 1 \frac{3}{16} \times 10000=47500 \mathrm{lbs} .
$$

and on the other side

$$
F_{2}^{\prime}=4 \times 1_{18}^{3} \times 10000=57500 \mathrm{lbs} .
$$

The horizontal component of the tie-stress is

$$
F_{4}=2 \times 47500-57500=57500 \mathrm{lbs} .
$$

The distances are

$$
\begin{aligned}
& l_{1}=l_{2}=\frac{1}{2}\left(1_{16}^{\frac{3}{16}}+1_{1 \frac{7}{6}}\right)=1_{16}^{\frac{5}{16}} \text { inches; } \\
& l_{2}=\frac{1}{2}\left(1_{\frac{3}{16}}+1_{\frac{9}{16}}\right)+\frac{7}{8}=2 \frac{1}{2} \text { inches }
\end{aligned}
$$

We have then at F_{2} the moment $F_{1} l_{1}=47500 \times 1 \frac{5}{16}=62344$ inch-lbs.;
at F_{3} we have $62344+\left(F_{1}-F_{2}\right) l_{2}=49219$ inch-lbs.;
at F_{4} we have $49219+\left(F_{1}-F_{2}+F_{3}\right) l_{3}=133594$ inch-lbs.
The maximum horizontal bending moment is then

$$
M_{h}=133594 \text { inch-lbs. }=66.797 \text { inch-tons. }
$$

The vertical compression in post is 40000 lbs . Its lever-arm is

$$
\frac{1}{2}\left(1_{16}^{9}+\frac{7}{8}\right)=1 \frac{7}{32} .
$$

Hence

$$
M_{v}=40000 \times 1_{32} \frac{7}{2}=48750 \text { inch-lbs. }=24.375 \text { inch-tons. }
$$

The resultant maximum bending moment is then
$M_{\text {max }}=\sqrt{M_{h^{2}}+M v^{2}}=\sqrt{66.8^{2}+24.4^{2}}=71.11$ inch-tons $=142220$ inch-lbs.
We have then for size of pin about $4 \frac{5}{8}$ inches diameter, or $\frac{8}{4}$ commercial size. The least allowable diameter is $\frac{3}{4} h=3$ inches. Hence the bearing is abundant.

CHAPTER III.

APPLICATIONS OF STATICS-THEORY OF FLEXURE.

CHANGE OF SHAPE OF NEUTRAL AXIS OF A BEAM. ASSUMPTIONS OF THE THEORY. APPLICATION OF EQUATION I. DEFLECTION AND BREAKING WEIGHT OF BEAMS. DEFLECTION OF A FRAMED STRUCTURE. DEFLECTION OF BEAMS FOUND BY THE PRINCIPLE OF WORK. FORMULAS FOR LONG STRUTS.

Change of Shape of Neutral Axis of a Beam.-Let a beam be deflected from its original straight line by external forces, as shown in the figure.

Let the two sections $A C$ and $B D$ be consecutive plane sections parallel before flexure and remaining plane after.

Let the length of the neutral axis of the beam $n a=s$, then the indefinitely small distance $b a=d s$. Let ϕ be the angle $A O n$. Then $d \phi$ is the angle BOA.

If the deflection is small, we can take $n a=s$ equal to x, and $a b=d s$ equal to $d x$.

Let the bending moment at the point a of the neutral axis of the beam of the external forces be M_{x}, let S_{f} be the stress in the most remote fibre of any cross-section $A C$ at the distanee ν from the neutral axis of the cross-section at a, and I be the moment of inertia of the cross-section $A C$ with reference to the neutral axis of the cross-section at a.

Then, as proved page 288 (a), the resisting moment of the fibre stresses at the
 cross-section $A C$ is $\frac{S_{f} I}{\nu}$, and we have

$$
\begin{equation*}
\frac{\delta_{f} I}{v}=\mp M_{x}, \tag{1}
\end{equation*}
$$

where we take the minus sign if we take M_{x} for all external forces on the left of $A C$, and the plus sign if we take M_{x} for all external forces on the right of $A C$. If then M_{x} comes out minus, it indicates compression in the bottom fibres as in the figure; if plus, tension in the bottom fibres.

Now the strain in the most remote fibre at the distance v from the neutral axis, we see from the figure, is $\nu d \phi$, and the unit strain is then $\frac{v d \phi}{d s}$, or, since we can take $d x$ for $d s, \frac{v d \phi}{d x}$. The unit stress in this fibre is
S_{f}. Since the coefficient of elasticity E is equal to the unit stress divided by the unit strain (page 281), we have

$$
E=\frac{S_{f}}{\frac{v d \phi}{d x}}, \quad \text { or } \quad S_{f}=\frac{E v d \phi}{d x}
$$

Hence we have

$$
\begin{equation*}
\frac{E I d \phi}{d x}=\mp M_{x} \tag{2}
\end{equation*}
$$

But we see from the figure that $\frac{d y}{d x}$ equals the tangent of the angle ϕ. Since the deflection is very small, we can take the tangent as equal to the arc, and hence $\phi=\frac{d y}{d x}$. Therefore $d \phi=\frac{d^{2} y}{d x}$, and hence, from (2),

$$
\begin{equation*}
E I \frac{d^{2} y}{d x^{2}}=\mp M_{x} \tag{3}
\end{equation*}
$$

From similar triangles we also have $\nu d \phi: \nu:: d s: \rho$, where ρ is the radius of curvature at a. Since we can take $d x$ for $d s$, we have $\frac{d \phi}{d x}=\frac{1}{\rho}$. Hence, from (2),

$$
\begin{equation*}
\frac{E I}{\rho}=\mp M_{x} \tag{4}
\end{equation*}
$$

We have then

$$
\begin{equation*}
\frac{S_{f} I}{\nu}=\frac{E I}{\rho}=E I \frac{d^{2} y}{d x^{2}}=\mp M_{x} \tag{I}
\end{equation*}
$$

These are the fundamental equations of the theory of flexure.
The first of these equations, (1), we have already deduced in the preceding chapter, page 288, and have used it to find breaking weight and shape for uniform strength for ordinary cases of beams (page 299). From (4) we can find in any case the radius of curvature of the beam at any point. From (3) we can find the deflection at any point of a beam. Equation (3) is then the differential equation of the curve of deflection.

Thus by the application of one or the other of equations (I) all questions of flexure can be solved.

Assumptions of the Theory.-The assumptions upon which the theory of flexure as expressed by equations (I) rests should be clearly recognized. Thus we have assumed:

1st. That the deflection is very small, so that we can put x for $s, d x$ for $d s, \frac{d y}{d x}$ for ϕ.

2d. That a section plane before fiexure remains plane after flexure.
3d. That the elastic limit is not exceeded.
4 th. That the coefficient of elasticity E is constant.
Upon these assumptions the theory rests. Comparison of its results with the results of experiment shows that within the elastic limit the theory is reliable.

Application of Equations (I).-The first of equations (I),

$$
\frac{\mathbb{S}_{f} I}{v}=\mp M_{x}
$$

we have already seen how to apply in the preceding chapter.

The second of equations (I),

$$
\frac{E I}{\rho}=\mp M_{x}
$$

needs no special explanation.
The third of equations (I),

$$
\begin{equation*}
E I \frac{d^{2} y}{d x^{2}}=\mp M_{x} \tag{1}
\end{equation*}
$$

requires a little general explanation before we proceed to its special applications.

In equation (1), $E I \frac{d^{2} y}{d x^{2}}$ is the resisting moment at any cross-section, that is, the algebraic sum of the moments of the fibre forces in the crosssection at any point with reference to the neutral axis of that cross-section. These fibre forces are always considered as belonging to that portion of the beam on the left of the cross-section. The bending moment, or the algebraic sum of the moments of all the external forces either on the right or left of the cross-section at any point, is denoted by M_{x}. We always consider a moment positive when it tends to cause counter clockwise rotation, and negative when it tends to cause clockwise rotation. In any case, then, we can write the algebraic sum denoted by M_{x} with the proper sign for each term, whether we take M_{x} for all forces on the left or on the right. We then use in (1) the minus sign when M_{x} is taken for all forces on the left, and the plus sign when M_{x} is taken for all forces on the right, of the cross-section at any point.

Thus, for example, take a beam $A B$ of length $2 l$, resting on the support C at its centre, with a load W at each end. The upward reaction is then $2 W$. Let $A C B$ represent the slightly deflected neutral axis of the beam.

For any point P^{\prime} of the neutral axis of the beam distant x from the left end A we have, taking the algebraic sum of the moments of all external forces on the left of P^{\prime},

$$
M_{x}=+W x
$$

where the plus sign indicates counter-clockwise rotation. If, however, we take the algebraic sum of the moments of all external forces on the right of P^{\prime}, we have $M_{x}=-W(l+l-x)+2 W(l-x)=-W x$, where the minus sign denotes clockwise rotation. In the first case we use in (1) the minus sign, in the second case we use in (1) the plus sign. We therefore write for both cases, as we evidently ought to,

$$
E I \frac{d^{2} y}{d x^{2}}=-W x
$$

Again, take any point P distant x from the right end B. Here we have for the algebraic sum of the moments of all external forces on the left of P

$$
M_{x}=W(l+l-x)-2 W(l-x)=+W x
$$

and for the algebraic sum of the moments of all external forces on the right of P we have $M_{x}=-W x$. In the first case we use in (1) the minus sign, in the second case we use in (1) the plus sign. We therefore again write for both cases

$$
E I \frac{d^{2} y}{d x^{2}}=-W x
$$

We obtain then in any given case the same expression from (1) for $E I \frac{d^{2} y}{d x^{2}}$, or the resisting moment of the fibre forces of the beam on the left of P, no matter where we take P, and no matter whether we take M_{x} for all forces on the left or right of P.

The minus sign for $W x$ in the present case denotes compression in the lower fibre. If the sign had come out plus, it would denote tension in the lower fibre, because in each case the sign gives the direction of rotation of the fibre moments of the beam on left of the section. This is in accord with the principle of the Differential Calculus that $\frac{d^{2} y}{d x^{2}}$ is minus or plus according as a curve is concave downwards or upwards. In the present case the curve of deflection is concave downwards.

The vertical shearing force at any section (page 283) is the algebraic sum of all the vertical forces on the left of that section. At any crosssection whose abscissa is x the bending moment is M_{x} and the vertical shear is V_{x}. At the next consecutive section the moment is

$$
M_{x}+d M_{x}=M_{x} \mp V_{x} d x, \quad \text { or } \quad \frac{d M_{x}}{d x}=\mp V_{x}
$$

Hence from (1) we have

$$
\begin{equation*}
E I \frac{d^{3} y}{d x^{3}}=\frac{d M_{x}}{d x}=\mp V_{x, \cdot} \cdot \ldots \cdot . \tag{2}
\end{equation*}
$$

where the minus sign is taken when $d x$ is negative and the plus sign when $d x$ is positive.

If we put $\frac{d M_{x}}{d x}=0$, we obtain the value of x for which M_{x} is a maximum or a minimum. Hence the bending moment is either a maximum or a minimum at the point where the shear is zero.

If we integrate (1), we obtain

$$
\frac{d y}{d x}=\mp \int_{0}^{x} \frac{M_{x} d x}{E I}+\text { Const. }
$$

When $x=0, \frac{d y}{d x}$ is the tangent t of the angle which the tangent to the curve at the origin makes with the axis of X. Hence Const. $=t$ and

$$
\begin{equation*}
\frac{d y}{d x}=t \mp \int_{0}^{x} \frac{M_{x} d x}{E I} \tag{3}
\end{equation*}
$$

If we put $\frac{}{d x^{2}}=0$ or, from (1), $M_{x}=0$, we obtain the value of x for which $\frac{d y}{d x}$ is a maximum or a minimum. Hence the tangent to the curve has either its maximum or a minimum inclination at the point where the bending moment M_{x} is zero.

If we integrate (3), we obtain

$$
y=t x \mp \int_{0}^{x} d x \int_{0}^{x} \frac{M_{x} d x}{E I}+\text { Const. }
$$

For $x=0, y$ is the deflection y_{0} at the origin. Hence Const. $=y_{0}$ and

$$
\begin{equation*}
y=t x+y_{0} \mp \int_{0}^{x} d x \int_{0}^{x} \frac{M_{x} d x}{E I} \tag{4}
\end{equation*}
$$

If we put $\frac{d y}{d x}=0$, we obtain the value of x for which y is a maximum or a minimum. Hence the deflection is either a maximum or a minimum at the point where the tangent to the curve is horizontal.

Let us now apply these principles to special cases.
Case 1. Cantilever Beam-Fixed Horizontally at One End-Load W at the Other End.-We have already seen how to find the breaking weight and shape for uniform strength in this case (page 299). It remains to find the deflection.
(a) Deflection-Uniform Cross-section.-Let the beam of length $A B$ $=l$ be fixed horizontally at one end B and carry the load W at the other end A. Take the origin at the end D before deflection, and let x be the distance to any cross-section at P.

We have then for the bending moment at any point P of the neutral axis, taking moments on the left of p as in the figure, $M_{x}=+W x$. Hence, from (I), page 326,

$$
\begin{equation*}
-M_{x}=E I \frac{d^{2} y}{d x^{2}}=-W x \tag{1}
\end{equation*}
$$

If the cross-section is constant, I is constant. We have then, by integrating (1),

$$
\begin{equation*}
E I \frac{d y}{d x}=-\frac{W x^{2}}{2}+C_{1} \tag{2}
\end{equation*}
$$

Integrating (2), we have

$$
\begin{equation*}
E I y=-\frac{W x^{3}}{6}+C_{1} x+C_{2} \tag{3}
\end{equation*}
$$

The curve $A P B$ must pass through B, and the tangent at B must be horizontal. Hence we must have $y=0$ for $x=l$ in (3) and $\frac{d y}{d x}=0$ for x $=l$ in (2). If then we make $\frac{d y}{d x}=0$ and $x=l$ in (2), we have $C_{1}=+\frac{W l^{2}}{2}$. If we make $y=0$ and $x=l$ in (3), we have $C_{2}=-\frac{W l^{3}}{3}$. Substituting these values of the constants of integration in (2) and (3), we have

$$
\begin{align*}
E I \frac{d y}{d x} & =\frac{W}{2}(l+x)(l-x) ; \tag{4}\\
E I y & =-\frac{W}{6}(2 l+x)(l-x)^{2} . \tag{5}
\end{align*}
$$

Equation (4) gives the tangent of the angle which the tangent to the curve at any point makes with the horizontal. Equation (5) gives the deflection y for any point P of the neutral axis distant x from the free end. The maximum deflection Δ is evidently at the free end. Making, then, $x=0$ in (5), we have for the maximum deflection

$$
\begin{equation*}
\Delta=-\frac{W l^{3}}{3 E I} \tag{6}
\end{equation*}
$$

The minus sign shows that the deflection $\Delta=A D$ is downwards or below the horizontal through the origin D. From (6) we can find the deflection for any form of cross-section, according to the value of I. Thus for rectangular cross-section of breadth b and height $h, I=\frac{1}{12} b h^{3}$ (page 277) and

$$
\Delta=-\frac{4 W l^{s}}{E b h^{s}}
$$

[The student should solve this case taking the origin at B, C and A. He should also draw the figure with the load W at the right end and take the origin at A, B, C and D.]
(b) Deflection-Beam of Uniform Strength.-If the beam is of uniform strength, I is no longer constant. Suppose, for instance, a rectangular cross-section, the breadth and depth at the fixed end being b_{1} and h_{1}. Then for constant height we have (page 300) for the breadth b at any point distant x from the free end $b=b_{1} \frac{x}{l}$. Hence $I=\frac{1}{12} b_{1} h_{1} \frac{x}{l}$, and from (1) we have

$$
\begin{equation*}
-M_{x}=\frac{d^{3} y}{d x^{2}}=-\frac{12 W l}{E b_{2} h_{1}^{3}} . \tag{1}
\end{equation*}
$$

Integrating this we have

$$
\begin{align*}
\frac{d y}{d x} & =-\frac{12 W l x}{E b_{1} h_{1}^{3}}+C_{1} ; \tag{2}\\
y & =-\frac{6 W l x^{3}}{E b_{1} h_{1}^{3}}+C_{1} x+C_{3} \tag{3}
\end{align*}
$$

Making $\frac{d y}{d x}=0$ for $x=l$ in (2), we have $C_{1}=\frac{12 W l^{2}}{E b_{1} h_{1}{ }^{3}}$; and making $y=0$ for $x=l$ in (3), we have $C_{3}=-\frac{6 W l^{3}}{E b_{1} h_{1}{ }^{3}}$. Hence

$$
\begin{align*}
\frac{d y}{d x} & =\frac{12 W l}{E b_{1} h_{1}^{3}}(l-x) \tag{4}\\
y & =-\frac{6 W l}{E b_{1} h_{1}{ }^{3}}(l-x)^{3} \tag{5}
\end{align*}
$$

The greatest deflection is at the free end and equal to

$$
\begin{equation*}
\Delta=-\frac{6 \mathrm{~W} l^{3}}{E b_{1} h_{1}^{2}} \tag{6}
\end{equation*}
$$

or $\frac{3}{2}$ times as much as for beam of constant cross-section.
If we take the cross-section rectangular and the breadth constant, we have (page 301) for the height h at any point distant x from the free end $h=h_{1} \sqrt{\frac{x}{l}}$. Hence $I=\frac{1}{12} b_{1} h_{1} \sqrt{\frac{x^{3}}{l^{3}}}$, and

$$
-M_{x}=\frac{d^{2} y}{d x^{2}}=-\frac{12 W l \sqrt{l}}{E b_{1} h_{1}{ }^{3} \sqrt{x}}
$$

Integrating twice and determining the constants of integration as before, we obtain

$$
\frac{d y}{d x}=\frac{24 W l}{E b_{1} h_{1}{ }^{3}}(\sqrt{l}-\sqrt{l x})
$$

$$
y=-\frac{8 W l}{E b_{1} h_{1}^{3}}\left(l^{2}-3 l x+2 x \sqrt{l x}\right) .
$$

For the greatest deflection at the free end we have

$$
\Delta=-\frac{8 W l^{3}}{E b_{1} h_{1}^{3}}
$$

or twice as much as for beam of constant cross-section.
For similar rectangular cross-sections we have (page 301) $b=\sqrt[3]{\frac{b^{3} x}{l}}$, $h=\sqrt[3]{\frac{h_{1}{ }^{3} x}{l}} . \quad$ Hence $I=\frac{1}{12} b_{1} h_{1} \frac{x}{l} \frac{\sqrt[3]{x}}{\frac{x}{l}}$, and

$$
-M_{x}=\frac{d^{2} y}{d x^{2}}=-\frac{12 W l}{E b_{1} h_{1} h_{1}^{3}} \sqrt[{\sqrt[8]{l}}]{\sqrt[3]{x}}
$$

Integrating twice and determining the constants of integration as before, we have

$$
\begin{gathered}
\frac{d y}{d x}=\frac{18 W l}{E b_{1} h_{1}^{3}}\left(l-\sqrt[3]{l x^{2}}\right) \\
y=-\frac{18 W l}{5 E b_{1} h_{1}^{3}}\left(2 l^{2}-5 l x+3 \sqrt[3]{l x^{5}}\right)
\end{gathered}
$$

For the greatest deflection at the free end we have

$$
\Delta=-\frac{36 \mathrm{Wl}^{3}}{5 E b_{1} h_{1}{ }^{\mathrm{s}}}
$$

or nine fifths as much as for beam of constant cross-section.
The volume of the beam in the first case is $\frac{2}{3}$, in the second case $\frac{1}{2}$ and in the third case $\frac{5}{9}$ of the volume of a rectangular beam of uniform cross-section. Hence the deflection at the end for a rectangular beam of uniform strength is proportional to the volume of the beam.

Case 2. Cantilever Beam-Fixed Horizontally at one End-Load Uniformly Distributed.-Here again we have already found the breaking weight and shape for uniform strength (page 302). It remains to find the deflection.
(a) Deflection-Uniform Cross-section.-Let w be the load per unit of length uniformly distributed, l the length $A B$ of the beam, and take the origin at the end D before deflection.

Since we can take the load $w x$ as acting at its centre of mass or at a distance $\frac{x}{2}$ from P, we have for the moment at P

$$
M_{x}=w x \times \frac{x}{2}=\frac{w x^{2}}{2},
$$

and from (I), page 326,

$$
\begin{equation*}
-M_{x}=E I \frac{d^{2} y}{d x^{2}}=-\frac{w x^{2}}{2} . \tag{1}
\end{equation*}
$$

If the cross-section is constant, I is constant. We have then by integrating (1)

$$
\begin{align*}
E I \frac{d y}{d x} & =-\frac{w x^{3}}{6}+C_{1} ; \cdot \tag{2}\\
E I y & =-\frac{w x^{4}}{24}+C_{1} x+C_{2} \tag{3}
\end{align*}
$$

The curve $A P B$ must pass through B, and the tangent at B must be horizontal. Hence we have $y=0$ for $x=l$ in (2) and $\frac{d y}{d x}=0$ for $x=l$ in (3). The constants are then $C_{1}=+\frac{w l^{8}}{6} C_{2}=-\frac{w l^{4}}{8}$ and

$$
\begin{align*}
E I \frac{d y}{d x} & =\frac{w}{6}\left(l^{3}-x^{3}\right) ; \cdot . . \tag{4}\\
E I y & =-\frac{w}{24}\left(x^{4}-4 l^{3} x+3 l^{4}\right) \tag{5}
\end{align*}
$$

The maximum deflection is at the free end and equal to

$$
\Delta=\cdots \frac{w l^{4}}{8 E I}=-\frac{W l^{2}}{8 E I}
$$

if we put the load $w l=W$, or only $\frac{3}{8}$ as great as for an equal load at the end.
[The student should note this case, taking the origin at B, C, and A. He should also draw the figure with the fixed end on left and take the origin at A, B, C and D.]
(b) Deflection-Beam of Uniform Strength.-For uniform strength I is not constant. If we take the cross-section rectangular, the breadth and depth at the fixed end being b_{1} and h_{1}, we have (page 303) for constant height for the breadth b at any point distant x from the free end $b=b_{1} \frac{x^{2}}{l^{2}}$. Hence $I=\frac{b_{1} h_{1}{ }^{3} x^{2}}{12 l^{2}}$ and

$$
-M_{x}=\frac{d^{2} y}{d x^{2}}=\quad \frac{6 w l^{2}}{E b_{1} h_{1}^{2}}
$$

Integrating this twice and determining the constants of integration as before, we have

$$
\left.\begin{array}{rl}
\frac{d y}{d x} & =\frac{6 w l^{2}}{E b_{1} h_{1}^{3}}(l-x) \\
y & =-\frac{3 w l^{2}}{E b_{1} h_{2}^{3}}(l
\end{array} \quad x\right)^{2} .
$$

The deflection at the end is then

$$
\Delta=-\frac{3 w l^{4}}{E b_{1} h_{1}^{9}}
$$

or 24 times as much as for the same beam of constant cross-section. In the same way we can find the deflection for breadth constant and for similar cross-sections.

Case 3. Horizontal Beam Loaded with W between the Supports-

 Constant Cross-section. - Let l be the length of the beam, z_{1} the distance of W from the left end, and take the origin at the left end. (For breaking weight see page 305.)The reaction at the left end is $\frac{W\left(l-z_{1}\right)}{l}$, and we have from (I), page 326, for any point P of the neutral axis distant x from the left end,

when $x<z_{1} \quad M_{x}=E I \frac{d^{2} y}{d x^{2}}=+\frac{W\left(l-z_{1}\right)}{l} x=W x-\frac{W z_{1} x}{l} ;$.
when $x>z_{1}$

$$
-M_{x}=E I \frac{d^{2} y}{d x^{2}}=+\frac{W\left(l-z_{1}\right)}{l} x-W\left(x-z_{1}\right)=W z_{1}-\frac{W z_{1} x}{l} .
$$

If the cross-section is constant, I is constant.
Integrating (1), we obtain

$$
\begin{equation*}
\text { for } x<z_{1} \quad E I \frac{d y}{d x}=\frac{W x^{2}}{2}-\frac{W z_{1} x^{2}}{2 l}+C_{1} \tag{3}
\end{equation*}
$$

Integrating (2), we obtain

$$
\begin{equation*}
\text { for } x>z_{1} \quad E I \frac{d y}{d x}=W z_{1} x-\frac{W z_{1} x^{2}}{2 l}+C_{2} \tag{4}
\end{equation*}
$$

Integrating again, we obtain from (3)

$$
\begin{equation*}
\text { for } x<z_{1} \quad E I y=\frac{W x^{3}}{6}-\frac{W z_{1} x^{3}}{6 l}+C_{1} x+C_{3}, \ldots . \tag{5}
\end{equation*}
$$

and from (4)

$$
\begin{equation*}
\text { for } x>z_{1} \quad E I y=\frac{W z_{1} x^{2}}{2}-\frac{W z_{1} x^{3}}{6 l}+C_{2} x+C_{4} . . \tag{6}
\end{equation*}
$$

The curve $A P B$ must pass through A and B, and each portion $A P$ and $P B$ must have a common tangent and deflection at P. Hence we must have $y=0$ for $x=0$ in (5) and $x=l$ in (6). Also when $x=z_{1}, \frac{d y}{d x}$ in (3) must equal $\frac{d y}{d x}$ in (4), and y in (5) must equal y in (6).

If then we make $x=0$ and $y=0$ in (5), we find $C_{3}=0$.
If we make $x=l$ and $y=0$ in (6), we obtain

$$
C_{4}+C_{2} l=-\frac{W z_{1} l^{2}}{3} .
$$

If we make $x=z_{1}$ in (3) and (4) and place the two values of $\frac{d y}{d x}$ equal, we have

$$
C_{1}-C_{2}=\frac{W z_{1}{ }^{2}}{2}
$$

If we make $x=z_{1}$ in (5) and (6) and place the two values of y equal, we have

$$
\left(C_{1}-C_{2}\right) z_{1}-C_{4}=\frac{W z_{1}^{3}}{3} .
$$

Hence we find, for the constants of integration,
$C_{1}=\frac{W z_{1}^{2}}{2}-\frac{W z_{1} l}{3}-\frac{W z_{1}{ }^{2}}{6 l}, \quad C_{2}=-\frac{W z_{1} l}{3}-\frac{W z_{1}{ }^{2}}{6 l}, \quad C_{3}=0, \quad C 4=\frac{W z_{1}{ }^{2}}{6}$.
Substituting these, we obtain

$$
\begin{array}{ll}
\text { for } x<z_{1} & E I \frac{d y}{d x}=\frac{W\left(l-z_{1}\right)}{6 l}\left(3 x^{2}-2 l z_{1}+z_{1}^{2}\right) ; . \\
\text { for } x>z_{1} & E I \frac{d y}{d x}=\frac{W z_{1}}{6 l}\left(6 l x-3 x^{2}-2 l^{2}-z_{1}^{2}\right) ; . \\
\text { for } x<z_{1} & E I y=\frac{W\left(l-z_{1}\right) x}{6 l}\left(x^{2}-2 l z_{1}+z_{1}^{2}\right) ; . \\
\text { for } x>z_{1} & E I y=\frac{W z_{1}(l-x)}{6 l}\left(x^{2}-2 l x+z_{1}^{2}\right) . \tag{10}
\end{array}
$$

If we make $x=z_{1}$ in (9) or (10), we have for the deflection Δ_{w} at the load

$$
\Delta_{w}=-\frac{W z_{1}^{2} z_{2}^{2}}{3 E \Pi},
$$

where z_{1} and z_{2} are the distances of the load from the right and left ends. The deflection at the load is evidently a maximum when $z_{1}=z_{2}=\frac{l}{2}$, that is, when the load is at the middle of the span. In this case the tangent at the middle is horizontal. When the load is not at the centre of the span, the maximum deflection will evidently be at the same point C in the figure between the load and the farthest end.

Let the distance of this point from the left end be m. If then z_{1} is less than $\frac{l}{2}, m$ is greater than z_{1}. If z_{1} is greater than $\frac{l}{2}, m$ is less than z_{1}. If then we put $\frac{d y}{d x}$ in (8) equal to zero, we have for the distance m from the left end to the point C at which the deflection is a maximum,

$$
\begin{equation*}
\text { when } z_{1}<\frac{l}{2} \quad m=l-\sqrt{\frac{1}{3}\left(2 l-z_{2}\right) z_{2}} \tag{11}
\end{equation*}
$$

If we put $\frac{d y}{d x}$ in (7) equal to zero, we find for the value of x which makes the deflection a maximum,

$$
\begin{equation*}
\text { when } z_{1}>\frac{l}{2} \quad m=\sqrt{\frac{1}{3}\left(2 l-z_{1}\right) z_{1}} . \tag{12}
\end{equation*}
$$

The distance $l-m$ from the right end in this case is the same as the distance from the left end in the first case, if z_{1} in (12) is taken equal to z_{2} in (11).

If we substitute the value of m in (12) in the place of x in (9), or the value of m in (11) in the place of x in (10), we have for the maximum deflection,

$$
\begin{array}{ll}
\text { when } z_{1}>\frac{l}{2} & \Delta=-\frac{W z_{1} z_{2}\left(2 l-z_{1}\right)}{27 E I l} \sqrt{3 z_{1}\left(2 l-z_{1}\right)} ; ~ . \\
\text { when } z_{1}<\frac{l}{2} & \Delta=-\frac{W z_{1} z_{2}\left(2 l-z_{2}\right)}{27 E I l} \sqrt{3 z_{2}\left(2 l-z_{3}\right)} . \tag{14}
\end{array}
$$

If the load W is at the middle of the span, $z_{1}=z_{2}=\frac{l}{2}$, and from (7) and (9) we have for any point between the left end and the centre

$$
\begin{align*}
E I \frac{d y}{d x} & =\frac{W}{4}\left(x^{2}-\frac{l^{2}}{4}\right) ; . \tag{15}\\
E I y & =\frac{W x}{12}\left(x^{2}-\frac{3 l^{2}}{4}\right) . \tag{16}
\end{align*}
$$

The maximum deflection is at the centre and equal to

$$
\begin{equation*}
\Delta=-\frac{w l^{3}}{48 E I} \tag{17}
\end{equation*}
$$

or only $\frac{1}{16}$ as much as for a beam of the same length fixed at one end and loaded at the other.

Case 4. Horizontal Beam—Uniformly Distributed Load-Constant Cross-section. - Let w be the load per unit of length uniformly distributed. Take the origin at the left end A.

Then the reaction at each end is $\frac{w l}{2}$; and since we can take the load $w x$ as acting at its centre of mass or at a distance of $\frac{x}{2}$ from any point P of the neutral axis, we have for the bending moment at that point

$$
M_{x}=-\frac{w l}{2} x+w x \times \frac{x}{2}
$$

Hence, from (I), page 326,

$$
\begin{equation*}
-M_{x}=E I \frac{d^{2} y}{d x^{2}}=\frac{w l x}{2}-\frac{w x^{2}}{2} . \tag{1}
\end{equation*}
$$

If the cross-section is constant, I is constant. For $x=0$ we must have $y=0$, and for $x=\frac{l}{2}$ we must have $\frac{d y}{d x}=0$, since the curve passes through A and B and the tangent is horizontal at the centre C. Determining the constants of integration by these conditions, we have, by integrating (1),

$$
\begin{equation*}
E I \frac{d y}{d x}=\frac{w l x^{2}}{4}-\frac{w x^{3}}{6}-\frac{w l^{3}}{24} . \tag{2}
\end{equation*}
$$

Integrating (2), we have

$$
\begin{equation*}
E I y=\frac{w l x^{3}}{12}-\frac{w x^{4}}{24}-\frac{w l^{3} x}{24} \tag{3}
\end{equation*}
$$

The maximum deflection Δ occurs at the centre for $x=\frac{l}{2}$; hence

$$
\Delta=-\frac{5 w l^{4}}{384 E I},
$$

or only $\frac{5}{128}$ of a beam of the same length fixed at one end and uniformly loaded. (For breaking weight see page 305.)

Case 5. Horizontal Beam Supported at Ends-Constant Cross-section-With Two Equal Symmetrically Placed Loads.-Let the beam $A B$ of length l support two loads
 W, W placed at equal distances z, z from the ends.

The reaction at each support is then W, and the maximum moment is at the centre and equal to Wz.

For the breaking weight, then, we have

$$
W z=\frac{S_{r} I}{v}, \quad \text { or } \quad W=\frac{S_{r} I}{v z}
$$

where S_{r} is the coefficient of rupture (page 288).
We have from (I), page 326,

$$
\begin{align*}
& \text { for } x<z \quad-M_{x}=E I \frac{d^{2} y}{d x^{2}}=W x \tag{1}\\
& \text { for } x>z \quad-M_{x}=E I \frac{d^{2} y}{d x^{2}}=W z \tag{2}
\end{align*}
$$

If the cross-section is constant, I is constant. Since the curve passes through A and B and is horizontal at the centre, we have $y=0$ for $x=0$ and $\frac{d y}{d x}=0$ for $x=\frac{l}{2}$. Hence, integrating (1), we have

$$
\begin{equation*}
\text { for } x<z \quad E I \frac{d y}{d x}=\frac{W x^{2}}{2}+C_{1} \tag{3}
\end{equation*}
$$

Integrating (2), we have

$$
\begin{equation*}
\text { for } x>z \quad E I \frac{d y}{d x}=W z x-\frac{W z l}{2} . \tag{4}
\end{equation*}
$$

Integrating again, we obtain from (3),

$$
\begin{equation*}
\text { for } x<z \quad E I y=\frac{W x^{3}}{6}+C_{1} x \tag{5}
\end{equation*}
$$

and from (4),

$$
\begin{equation*}
\text { for } x>z \quad E I y=\frac{W z x^{2}}{2}-\frac{W z l x}{2}+C_{2} \tag{6}
\end{equation*}
$$

When $x=z, \frac{d y}{d x}$ in (3) and (4) must be equal. Hence we have

$$
C_{1}=\frac{W z^{2}}{2}-\frac{W z l}{2}
$$

Also, when $x=z, y$ in (5) and (6) must be equal. Hence we have

$$
C_{2}=\frac{W z^{3}}{6}
$$

Substituting these values of the constants of integration, we have

$$
\text { for } \begin{align*}
x<z \quad E I \frac{d y}{d x} & =\frac{W}{2}\left(x^{2}-l z+z^{2}\right) ; \tag{7}\\
E I y & =\frac{W x}{6}\left(x^{2}-3 l z+3 z^{2}\right) ; \tag{8}
\end{align*}
$$

$$
\text { for } \begin{align*}
x>z \quad E I \frac{d y}{d x} & =\frac{W z}{2}(2 x-l), . . \tag{9}\\
E I y & =\frac{W z}{6}\left(3 x^{2}-3 l x+z^{2}\right) . \tag{10}
\end{align*}
$$

The maximum deflection is at the centre and equal to

$$
\begin{equation*}
\Delta=-\frac{W z}{24 E I}\left(3 l^{2}-4 z^{2}\right) \tag{11}
\end{equation*}
$$

If the loads are uniformly distributed over the distance $z_{2}-z_{1}$, instead of being concentrated, we can put wodz in place of W. Equation (11) then becomes

$$
\Delta=-\int \frac{w z d z}{24 E I}\left(3 l^{2}-4 z^{2}\right)
$$

If we integrate this between the limits z_{2} and z_{1}, we have for the deflection at the centre

$$
\begin{equation*}
\Delta=-\frac{w}{48 E I}\left[3 l^{2}\left(z_{2}^{2}-z_{1}^{2}\right)-2\left(z_{2}^{4}-z_{1}^{4}\right)\right] \ldots . \tag{12}
\end{equation*}
$$

If the load covers the whole beam, $z_{2}=\frac{l}{2}, z_{1}=0$, and we have

$$
\Delta=-\frac{5 w l^{4}}{384 E I}
$$

as already found.
Case 6. Horizontal Beam Fixed at one End and Supported at the Other-Constant Cross-section-
 Concentrated Load.-Let l be the length of the beam, z_{1} the distance of the load W from the supported end, z_{2} from the fixcd end. Take the origin at the fixed end and let R_{1} be the reaction at the supported end A.

Then from (I), page 326, we have

$$
\begin{array}{ll}
\text { for } x>z_{2} & -M_{x}=E I \frac{d^{2} y}{d x^{2}}=R_{1}(l-x) ; \\
\text { for } x<z_{2} & -M_{x}=E I \frac{d^{2} y}{d x^{2}}=R_{1}(l-x)-W\left(z_{2}-x\right) . . \tag{2}
\end{array}
$$

For constant cross-section I is constant. Integrating (1), we have

$$
\begin{equation*}
\text { for } x>z_{2} \quad E I \frac{d y}{d x}=R_{1} l x-\frac{R_{1} x^{2}}{2}+C_{1} . \tag{3}
\end{equation*}
$$

Integrating (2), we have

$$
\begin{equation*}
\text { for } x<z_{2} \quad E I \frac{d y}{d x}=R_{1} l x-\frac{R_{1} x^{2}}{2}-W z_{2} x+\frac{W x^{2}}{2}+C_{2} \tag{4}
\end{equation*}
$$

Integrating again, we obtain from (3),

$$
\begin{equation*}
\text { for } x>z_{2} \quad E I y=\frac{R_{1} l x^{2}}{2}-\frac{R_{1} x^{3}}{6}+C_{1} x+C_{2} \tag{5}
\end{equation*}
$$

and from (4)

$$
\begin{align*}
& \text { for } x<z_{2} \\
& \qquad E I y=\frac{R_{1} l x^{2}}{2}-\frac{R_{1} x^{3}}{6}-\frac{W z_{2} x^{2}}{2}+\frac{W x^{2}}{6}+C_{2} x+C_{4} . \quad . \quad . \tag{6}
\end{align*}
$$

The curve $A P B$ must pass through A and B, have a horizontal tangent at B, and each portion from A to W and W to B must have a common tangent and deflection at the load W.

Hence we must have $y=0$ for $x=0$ in (6) and $x=l$ in (5). Also $\frac{d y}{d x}$ $=0$ for $x=0$ in (4); and when $x=z_{3}, \frac{d y}{d x}$ in (3) must equal $\frac{d y}{d x}$ in (4), and y in (5) must equal y in (6).

If then we make $x=0$ and $\frac{d y}{d x}=0$ in (4), we have $C_{2}=0$; and if we make $x=0$ and $y=0$ in (6), we have $C_{4}=0$. If we make $x=l$ and $y=$ 0 in (5), we have

$$
C_{3}+C_{1} l=-\frac{R_{1} l^{3}}{3}
$$

If we make $x=x_{2}$ in (3) and (4) and place the two values of $\frac{d y}{d x}$ equal, we have

$$
C_{1}=-\frac{W z_{2}{ }^{2}}{2}
$$

If we make $x=z_{2}$ in (5) and (6) and place the two values of y equal, we have

$$
C_{1} z_{2}+C_{\mathrm{s}}=-\frac{W z_{3}^{3}}{3}
$$

We have then

$$
C_{3}=+\frac{W z_{2}{ }^{2}}{6} \text { and } R_{1}=\frac{W z_{2}{ }^{2}}{2 l^{2}}\left(3 l-z_{2}\right)
$$

Substituting these values, we have

$$
\begin{array}{ll}
\text { for } x>z_{2} & E I \frac{d y}{d x}=\frac{W z_{2}{ }^{2}}{4 l^{2}}\left[\left(2 l x-x^{2}\right)\left(3 l-z_{2}\right)-2 l^{2}\right] ; \\
\text { for } x<z_{2} & \left.E I \frac{d y}{d x}=\frac{W x}{4 l^{2}}{ }^{[} z_{2}{ }^{2}(2 l-x)\left(3 l-z_{3}\right)-2 l^{3}\left(2 z_{2}-x\right)\right] ; \\
\text { for } x>z_{2} & E I y=\frac{W z_{2}{ }^{2}}{12 l^{3}}\left[\left(3 l x^{2}-x^{2}\right)\left(3 l-z_{2}\right)-2 l^{3}\left(3 x-z_{2}\right)\right] \\
\text { for } x<z_{2} & E I y=\frac{W x^{2}}{12 l^{l}}\left[z_{2}{ }^{2}(3 l-x)\left(3 l-z_{2}\right)-2 l^{2}\left(3 z_{2}-x\right)\right] \tag{10}
\end{array}
$$

If we make $x=z_{2}$ in (9) or (10), we have for the deflection Δ_{w} at the load

$$
\Delta_{w}=\frac{W z_{2}^{3}}{12 E \Pi^{3}}\left[\left(3 l-z_{2}\right)^{2} z_{3}-4 l^{3}\right],
$$

where z_{2} is the distance of the load from the fixed end. This deflection at the load is a maximum when $z_{2}=l(2-\sqrt{2})$.

If z_{3} is greater than this, the maximum deflection will be at some point C in the figure between the load and the fixed end. If z_{2} is less than this,
the point C will be between the load and the supported end. Let the distance of this point from the fixed end be m. If then we put $\frac{d y}{d x}$ in (7) and (8) equal to zero, we have for the distance m from the fixed end to the point C at which the deflection is a maximum,

$$
\begin{array}{ll}
\text { when } z_{2}<l(2-\sqrt{2}) & m=l-l \sqrt{\frac{l-z_{2}}{3 l-z_{2}} ;} \\
\text { when } z_{2}>l(2-\sqrt{2}) & m=\frac{2 l z_{2}\left(2 l-z_{2}\right)}{2 l^{2}+z_{2}\left(2 l-z_{2}\right)} . \tag{12}
\end{array}
$$

If we substitute these values of m in the place of x in (9) and (10), we have for the maximum deflection

$$
\begin{array}{ll}
\text { when } z_{2}<l(2-\sqrt{2}) & \Delta=-\frac{W z_{2}{ }^{2}}{6 E I}\left(l-z_{2}\right) \sqrt{\frac{\overline{l-z_{2}}}{3 l-z_{2}}} ; \quad . \\
\text { when } z_{2}>l(2-\sqrt{2}) & \Delta=-\frac{W z_{2}{ }^{\mathrm{s}}\left(l-z_{2}\right)\left(2 l-z_{2}\right)^{3}}{3 E I\left[2 l^{2}+z_{2}\left(2 l-z_{2}\right)\right]^{2}} . \quad . \tag{14}
\end{array}
$$

These values of Δ are themselves a maximum and equal when

$$
z_{2}=l(2-\sqrt{2})=0.585752
$$

The greatest possible deflection is then at the load when the load is at a distance of about 0.5867 from the fixed end.

This greatest possible deflection is

$$
\Delta=-\frac{47094 W l^{3}}{4800000 E I}
$$

or only about $\frac{47}{100}$ as much as for a beam supported at both ends.
If the load is at the middle of the span, we have $R_{1}=\frac{5}{16} W$, instead of $\frac{1}{2} W$ as it would be for a beam supported at the ends; and since in this case $z_{2}=\frac{1}{2} l<l(2-\sqrt{2})$, we have, from (11) and (13), the maximum deflection at a distance from the fixed end $x=\frac{6}{11} l$, and equal to

$$
\Delta=-\frac{W l^{2}}{48 \sqrt{\overline{5} E I}}
$$

or only $\frac{1}{\sqrt{5}}$ as much as for beam supported at the ends.
There is evidently a point between the load and the fixed end for which the moment is zero.

This is the point of inflection. At this point the curve changes from concave to convex. If we put equation (2) equal to zero, and insert the value of R_{1}, we obtain for the distance of the point of inflection from the fixed end

$$
\begin{equation*}
x=\frac{l z_{2}\left(2 l-z_{2}\right)}{2 l^{2}+2 l z_{2}-z_{2}^{2}} . \quad . \quad . \quad . \quad . \quad . \tag{15}
\end{equation*}
$$

If the load is at the centre of the span, this becomes $\frac{3}{11} l$.

Breaking Weight.-Rupture will occur where the moment is greatest, that is, either at the load or at the fixed end.

The moment at the load is, from the figure page 397,

$$
-R_{1} z_{1}=R_{1} z_{2}-R_{1} l
$$

The moment at the fixed end is

$$
W z_{2}-R_{1} l .
$$

Now W is always greater than R_{1}, and hence $W z_{2}$ is greater than $R z_{2}$. The moment is therefore greatest at the fixed end.

Inserting the value of R_{1}, we have for the moment at the fixed end

$$
W z_{2}=-\frac{W z_{2}{ }^{2}}{2 l^{2}\left(3 l-z_{2}\right)=\frac{S_{r} I}{v}, ~ ; ~}
$$

where S_{r} is the coefficient of rupture and v the distance of the most remote fibre from the neutral axis. Hence the breaking weight in general is

$$
\begin{equation*}
W=\frac{2 S_{r} I l^{2}}{v z_{2}\left(2 l-z_{2}\right)\left(l-z_{2}\right)} \cdot \cdots \cdot \cdot . . \tag{16}
\end{equation*}
$$

The moment at the fixed end is a maximum for

$$
z_{2}=l\left(1-\sqrt{\frac{1}{3}}\right)=0.4226 l
$$

This maximum moment at the fixed end is then

$$
\frac{W l}{3 \sqrt{3}}=\frac{S_{r} I}{v}
$$

and the least breaking weight is then

$$
W=\frac{3 \sqrt{3} S_{r} I}{v l}
$$

or $\frac{3 \sqrt{3}}{4}=1.3$ times as great as for beam supported at the ends.
If the load is at the centre of the span, $z_{2}=\frac{1}{2} l$ and the breaking weight is

$$
W=\frac{16 S_{r} I}{3 v l}
$$

or $\frac{8}{4}$ as much as for beam supported at the ends.
Case 7. Horizontal Beam-Fixed at One End and Supported at the Other-Constant Cross-section-Load Uniformly Distributed.-Let l be the length of the beam, take the origin at the fixed end, and let R_{1} be the reaction at the supported end and w the load per unit of length.

Then from (I), page 326, we have, since we can take the load $w(l-x$

as acting at its centre of mass, or at a distance $\frac{l-x}{2}$ from P,
$-M_{x}=E I \frac{d^{2} y}{d x^{2}}=R_{1}(l-x)-\frac{w(l-x)^{2}}{2}$.
For constant cross-section I is constant.

Since the curse passes through A and B and the tangent is horizontal at B,
we must have $y=0$ when $x=0$ and $x=l$, and $\frac{d y}{d x}=0$ when $x=0$.

The constants of integration are therefore zero, and we have by inte grating (1)

$$
\begin{equation*}
E I \frac{d y}{d x}=R_{1} l x-\frac{R_{1} x^{2}}{2}-\frac{w l^{2} x}{2}+\frac{w l x^{2}}{2}-\frac{w x^{3}}{6} . \tag{2}
\end{equation*}
$$

Integrating (2), we obtain

$$
\begin{equation*}
E l y=\frac{R_{1} l x^{2}}{2}-\frac{R_{1} x^{3}}{6}-\frac{w l^{2} x^{2}}{4}+\frac{w l x^{3}}{6}-\frac{w x^{4}}{24} . . . \tag{3}
\end{equation*}
$$

Since for $x=l, y=0$, we have from (3)

$$
R_{1}=\frac{3}{8} w l,
$$

instead of $\frac{1}{2} w l$ as it would be for a beam supported at the ends.
Inserting this value of R_{1} in (2) and (3), we have

$$
\begin{align*}
E I \frac{d y}{d x} & =-\frac{w x}{48}\left(6 l^{2}-15 l x+8 x^{2}\right) ; \tag{4}\\
E I y & =-\frac{w x^{2}}{48}(l-x)(3 l-2 x) . \tag{5}
\end{align*}
$$

Putting (4) equal to zero, we have for the distance of the point C from the fixed end at which the deflection is a maximum

$$
m=\frac{15-\sqrt{33}}{16} l, \quad \text { or } \quad m=0.5785 l .
$$

The maximum deflection itself is then

$$
\Delta=-\frac{39+55 \sqrt{33}}{16^{4}} \frac{w l^{4}}{E I} .
$$

If we put (1) equal to zero, and insert the value of R_{1}, we have for the distance of the point of inflection from the fixed end

$$
x=\frac{1}{4} l
$$

Breaking Weight.-If we insert the value of R_{1} in (1), we have for the moment at any point

$$
-M M_{x}=-\frac{w l^{2}}{8}+\frac{w x}{8}(5 l-4 x) .
$$

This is a maximum when $x=0$. The maximum moment is then $\frac{w o l^{2}}{8}$ at the fixed end. We have then

$$
\frac{w l^{2}}{8}=\frac{S_{r} I}{v}
$$

or the breaking weight

$$
w l=\frac{8 S_{r} I}{v l}
$$

or $\frac{3}{8}$ as great as for the same load in the centre, and just the same as for beam of same length and load supported at the ends.

Case 8. Horizontal Beam Fixed at Both Ends-Constant Cross-section-Concentrated Load.-Let l be the length of beam, \boldsymbol{z}_{1} the distance of the load W from the left end, z_{2} from the right end. Take the origin at the left end aud let R_{1} be the reaction at the left end.

The left end must be fixed by a couple $+F,-F$ whose moment M_{1} is the same at every point of the beam.

Then from (I) page 326, we have

$$
\begin{array}{ll}
\text { for } x<z_{1} & -M_{x}=E I \frac{d^{2} y}{d x^{2}}=R_{1} x-M_{1} ; . . \\
\text { for } x>z_{1} & -M_{x}=E I \frac{d^{2} y}{d x^{2}}=R_{1} x-W\left(x-z_{1}\right)-M_{1} \tag{2}
\end{array}
$$

For constant cross-section I is constant.
Integrating (1), we have

$$
\begin{equation*}
\text { for } x<z_{1} \quad E I \frac{d y}{d x}=\frac{R_{1} x^{2}}{2}-M_{1} x+C_{1} \tag{3}
\end{equation*}
$$

Integrating (2), we have

$$
\begin{equation*}
\text { for } x>z_{1} \quad E I \frac{d y}{d x}=\frac{R_{1} x^{2}}{2}-\frac{W x^{2}}{2}+W z_{1} x-M_{1} x+C_{2} . . \tag{4}
\end{equation*}
$$

Integrating again, we obtain from (3)

$$
\begin{equation*}
\text { for } x<z_{1} \quad E I y=\frac{R_{1} x^{3}}{6}-\frac{M_{1} x^{2}}{2}+C_{1} x+C_{3} \tag{5}
\end{equation*}
$$

and from (4)

$$
\begin{equation*}
\text { for } x>z_{1} \quad E I y=\frac{R_{1} x^{3}}{6}-\frac{W x^{3}}{6}+\frac{W z_{1} x^{2}}{2}-\frac{M_{1} x^{2}}{2}+C_{2} x+C_{4} . \tag{6}
\end{equation*}
$$

The curve $A P B$ must pass through A and B, the tangent must be horizontal at A and B, and each portion from A to the load and from B to the load must have a common tangent and deflection at the load. Hence we must have $y=0$ for $x=0$ in (5) and $x=l$ in (6). Also we must have $\frac{d y}{d x}=0$ for $x=0$ in (3) and $x=l$ in (4); and when $x=z_{1}, \frac{d y}{d x}$ in (3) must equal $\frac{d y}{d x}$ in (4), and y in (5) must equal y in (6).

We have then, making $x=0$ in (3) and (5), $C_{1}=0$ and $C_{3}=0$. Making $x=z_{1}$ in (3) and (4) and equating them, we have $C_{2}=-\frac{W z_{1}{ }^{2}}{2}$. Making $x=z_{1}$ in (5) and (6) and equating, we have $C_{4}=\frac{W z_{1}{ }^{3}}{6}$. Making $x=l$ and $y=0$ in (6) and inserting the values of C_{2} and C_{4}, we obtain

$$
3 M_{1} l^{2}=3 W l^{2} z_{1}-3 W l z_{1}{ }^{2}+R_{1} l^{3}-W l^{3}+W z_{1}{ }^{2}
$$

Making $x=l$ and $\frac{d y}{d x}=0$ in (4) and inserting the value of C_{2} we have

$$
2 M_{1} l=2 W l z_{1}-W z_{1}^{2}+R_{1} l^{2}-W l^{2} .
$$

Eliminating M_{1} and R_{1} from these equations, we obtain

$$
\begin{array}{ll}
\boldsymbol{R}_{1}=\frac{W z_{2}{ }^{2}\left(3 z_{1}+z_{2}\right)}{l^{2}}, & R_{2}=\frac{W z_{1}^{2}\left(3 z^{2}+z_{1}\right)}{l^{3}} ; \\
M_{1}=\frac{W z_{1} z_{2}^{2}}{l^{2}}, & M_{2}=-\frac{W z_{2} z_{1}^{2}}{l^{2}} .
\end{array}
$$

Substituting these values of R_{1} and M_{1} and also the values of the constants of integration in equations (3) to (6), we have

$$
\left.\begin{array}{ll}
\text { for } x<z_{1} & E I \frac{d y}{d x}=\frac{W z_{2}{ }^{2} x}{2 l^{3}}\left[\left(3 z_{1}+z_{2}\right) x-2 z_{1} l\right] ; \quad . \quad . \quad . \\
\text { for } x>z_{1} & E I \frac{d y}{d x}=\frac{W}{2 l^{3}}\left[\left(3 z_{1}+z_{2}\right) z_{2}{ }^{2} x^{2}-l^{3}\left(x-z_{1}\right)^{2}-2 z_{1} z_{2}{ }^{2} l x\right] \\
\text { for } x<z_{1} & E I y=\frac{W z_{2}{ }^{2} x^{2}}{6 l^{2}}\left[\left(3 z_{1}+z_{2}\right) x-3 z_{1} l\right] ; \quad . \quad .
\end{array}\right] . . .
$$

If we make $x=z_{1}$ in (9) or (10), we have for the deflection Δ_{w} at the load

$$
\Delta_{v}=-\frac{W z_{2}{ }^{3} z_{1}^{2}}{3 l^{3} E I}
$$

where z_{1} and z_{2} are the distances of the load from the right and left ends.
The deflection at the load is evidently a maximum when $z_{1}=z_{2}=\frac{l}{2}$, or when the load is at the middle of the span. If the load is not at the centre of the span, the maximum deflection will be at some point C in the figure between the load and the farthest end. Let the distance of this point from the left end be m. If then z_{1} is greater than $\frac{l}{2}, m$ is less than z_{1}; and if z_{1} is less than $\frac{l}{2}, m$ is greater than z_{1}. If then we put $\frac{d y}{d x}$ in (7) and (8) equal to zero, we have for the distance m from the left end to the point C at which the deflection is a maximum,

$$
\begin{array}{ll}
\text { when } z_{1}>\frac{l}{2} & m=\frac{2 z_{1} l}{3 z_{1}+z_{2}} ; \\
\text { when } z_{1}<\frac{l}{2} & m=\frac{z_{2} l}{3 z_{2}+z_{1}} . \tag{12}
\end{array}
$$

If we substitute these values of m in the place of x in (9) and (10), we have for the maximum deflection

$$
\begin{array}{ll}
\text { when } z_{1}>\frac{l}{2} & \Delta=-\frac{2 W z_{1}{ }^{2} z_{2}{ }^{2}}{3\left(3 z_{1}+z_{2}\right)^{2} E I} \\
\text { when } z_{1}<\frac{l}{2} & \Delta=-\frac{2 W z_{2}{ }^{2} z_{1}{ }^{2}}{3\left(3 z_{2}+z_{1}\right)^{2} E I} \tag{14}
\end{array}
$$

These values of Δ are themselves a maximum and equal when $z_{1}=z_{2}=\frac{l}{2}$. The greatest possible deflection is then at the load when the load is in the centre and equal to

$$
\Delta=-\frac{W l^{3}}{192 E} r^{\prime}
$$

or only one fourth as much as for a beam supported at both ends.
If we put (1) and (2) equal to zero, we have for the distances of the oints of inflection

$$
\begin{equation*}
x=\frac{z_{1} l}{3 z_{1}+z_{2}} \quad \text { and } \quad x=\frac{2 z_{2} l}{3 z_{2}+z_{1}} \tag{15}
\end{equation*}
$$

If the load is at the centre, we have

$$
x=\frac{1}{4} l \quad \text { and } \quad x=\frac{3}{4} l .
$$

Breaking Weight.-We easily find the greatest moment to be at the end nearest the load and equal to

$$
\frac{W z_{1} z_{2}^{2}}{l^{2}}=\frac{S_{r} I}{v}
$$

where z_{1} is the distance from the load to the nearest end.
Hence the breaking weight in general is

$$
\begin{equation*}
W=\frac{S_{r} I l^{2}}{v z_{1} z_{2}^{2}} \tag{16}
\end{equation*}
$$

The moment at the nearest end is a maximum for $z_{1}=\frac{1}{3} l$, and the least breaking weight is then

$$
W=\frac{27 S_{r} I}{4 v l}
$$

or $\frac{27}{16}$ times as great as for a beam supported at the ends.
If the load is at the centre, we have

$$
W=\frac{8 S_{r} I}{v l}
$$

or twice as much as for a beam supported at the end.
Case 9. Horizontal Beam Fixed at Both Ends-Constant Cross-section-Load Uniformly Distributed.-Let l be the length of beam, w

the load per unit of length, and take the origin at the left end. The reaction at each end is evidently $\frac{w l}{2}$. The ends must be fixed by the moments M_{1}, M_{2}. We have then from (1), page 326,

$$
\begin{equation*}
-M_{x}=E I \frac{d^{2} y}{d x^{2}}=\frac{w l}{2} x-\frac{w x^{2}}{2}-M_{1} \tag{1}
\end{equation*}
$$

For constant cross-section I is constant. Since for $x=0, y$ and $\frac{d y}{d x}$ are zero, we have, integrating (1),

$$
\begin{equation*}
E I \frac{d y}{d x}=\frac{w l x^{2}}{4}-\frac{w x^{2}}{6}-M_{1} x ; \tag{2}
\end{equation*}
$$

and integrating (2),

$$
\begin{equation*}
E I y=\frac{w l x^{3}}{12}-\frac{w x^{4}}{24}-\frac{M_{1} x^{2}}{2} . \tag{3}
\end{equation*}
$$

For $x=l, \frac{d y}{d x}=0$, and we have from (2) and (1)

$$
M_{1}=+\frac{w l^{2}}{12}, \quad M_{2}=-\frac{w l^{2}}{12}
$$

Substituting the value of M_{1} in (2) and (3), we have

$$
\begin{align*}
E I \frac{d y}{d x} & =-\frac{w x}{12}(l-x)(l-2 x) \tag{4}\\
E I y & =-\frac{w x^{2}}{24}(l-x)^{2} \tag{5}
\end{align*}
$$

Putting (4) equal to zero, we have for the point C at which the deflection is a maximum, $m=\frac{l}{2}$. The maximum deflection is then

$$
\Delta=-\frac{w l^{4}}{384 E I}
$$

or only one fifth as much as for the same beam supported at the ends.
If we put (1) equal to zero, we find for the distances of the points of inflection from the origin

$$
x=\frac{l}{2}-\frac{l}{2 \sqrt{3}}, \quad x=\frac{l}{2}+\frac{l}{2 \sqrt{3}}
$$

or $x=0.2113 l$ and $x=0.7887 l$.
Breaking Weight.-The greatest moment is at the fixed ends. Hence

$$
\frac{w l^{2}}{12}=\frac{S_{r} 1}{v}
$$

and the breaking weight is

$$
w l=\frac{12 S_{r} I}{v l}
$$

or $\frac{3}{2}$ as much as for beam supported at the ends.
Deflection of a Framed Structure.-Let a framed structure as shown in the figure be acted upon by the loads W_{1}, W_{2}, W_{3}, applied at the apices b, d, f, and by the reactions R_{1} and R_{2} at A and B.

Let the deflection Δ at any apex c, loaded or unloaded, be required.

Suppose a load w of any convenient amount placed at that apex. Let the cross-section of any member, as $a b$, be a, its length l, and its stress duc to the
 total loading, including w, be S. Then its unit stress is $\frac{\mathcal{S}}{a}$; and since E is
equal to unit stress divided by unit strain (page 281), its unit strain is $\frac{S}{a E}$ and its entire strain due to the total loading, including w, is $\frac{S l}{a E}$.

- Now let s be the stress in the same member $a b$, due to w considered as acting alone. Then, since work $=\frac{1}{2}$ stress \times strain, we have for the work on that member due to w alone, $\frac{s S l}{2 a E}$.

The work on all the members due to w is then $\geq \frac{s S l}{2 a E}$. But if Δ is the deflection at c, this work must be equal to $\frac{w \Delta}{2}$. We have then

$$
\frac{w \Delta}{2}=\sum \frac{s s l}{2 a E}, \quad \text { or } \quad \Delta=\frac{1}{E} \sum \frac{s S l}{w a E} .
$$

We can thus find the deflection at any apex c, loaded or unloaded. Whatever value we assume for w, the ratio $\frac{s}{w}$ for any member will be the same, since the stress increases with the load. It is therefore convenient to take w unity.

Example.-Suppose a girder consisting of two inclined rafters Ab and $B c, 5 \mathrm{ft}$. long, and two vertical ties bf and ce, 4 ft . long; an upper chord $b c, 5 \mathrm{ft}$. long, aud a lower tie consisting of $A f, f e$ and eB, 3 ft ., 5 ft . and 3 ft . long respectively: Let there be a diagonal brace fc whose length is 6.4 ft . The loads at f and ϵ are $W_{1}=5$ tons, $W_{2}=10$ tons. Find the deflection at e, taking $E=12500$ tons per square inch and the area of crosssection of each member as given in the following Table.

Ans. We easily find (page 106, Example (4)) the stress S in tons in each
 member due to the total loading, also the stress s in tons in each member due to one ton at e, as given in the Table, (-) signifying compression and $(+)$ tension.

The columns for $\frac{l}{v E}$ and $\frac{s S}{a}$ are then easily filled out. Multiplying these for each member and adding, we find the deflection at $e, \Delta=$ 0.1627 inches.

In the same way we could find the deflection at f by supposing $x=1$ ton at f and placing the corresponding stresses in the fifth column, and the corresponding values of $\frac{S 8}{a}$ in the eighth.

Observe that in such case 8 for the member $c f$ would be $(+)$ or tension, and $\frac{S 8}{a}$ would be (-), while all other values of $\frac{S s}{a}$ would be (+). Care should therefore be taken in any case to observe the signs in columns 4,5 and 8

The stresses S due to total loading are, strictly speaking, slightly changed by the change of shape. This can, however, be disregarded without perceptible error, as the deflection in all practical cases is very small. When it is not, a second approximation can be made by finding s and \dot{S} for the new shape. The strain due to bending of compressed members is also neglected. The coefficient of elasticity E is assumed constant. All pins, if any, at the apices are presumed to fit tight, and all adjustable members, if any, to be properly adjusted.

A girder after erection may then be tested by calculating the deflection at
the centre for a given loading and comparing with the actual deflection for this loading.

A good agreement is thus a test of the close fit of all pins, of the proper adjustment of all adjustable members, of the agreement of the lengths and the areas of members with those called for by the design, of the constant value

of E and its proper assumption as to magnitude, and finally of the fact that the limit of elasticity is not exceeded by the loading.

It is evident that when so many conditions must concur, a discrepancy between the observed and the calculated deflection has little practical significance. The last-mentioned fact, that the limit of elasticity is not exceeded, is the most important, and this is proved, not by close agreement between the actual and the calculated deflections, but by the fact that the deflection is found to remain constant under repeated applications of the loading after the structure has attained its permanent set from the first application. Calculations of deflection are then of little value as a means of testing framed structures.

Deflection of Beams found by the Same Principle. - We can make use of the same principle of work in finding the deflection of beams.

Thus let $A P C B$ be the curve of the neutral axis of a deflected beam and let the tangent to the curve at the point C be horizontal. Take the origin at any point D^{\prime} in the horizontal through C. Let z_{1}, y_{1} be the ordinates of the point A at which curvature begins, the portion $A^{\prime} A$, if any, being straight and tangent to the curve $A C B$ at A. Let m be the distance of the point C from the origin, and let x, y be the ordinates of any point P of the curve. Let the moment at P of all the outer forces left or right of \boldsymbol{P} be M_{x}. We cau replace the moment M_{x} by the couple whose forces $-\frac{M_{x}}{x-z_{1}}$ and $+\frac{M_{x}}{x-z_{1}}$ act at A and P respectively. The force $+\frac{M_{x}}{x-z_{1}}$ at P is the stress which resists deflection at P. Since work is equal to $\frac{1}{2}$ stress \times strain (page 281), the work of overcoming this resistance is $\frac{M_{x} y}{2\left(x-z_{1}\right)} \cdot$ Since y is positive above and negative below the horizontal $D^{\prime} C$ and M_{x} is positive when counter-clockwise, if we take M_{x} with a minus sign on the left of P and a plus sign on the right of P we shall always
have $\frac{M_{x} y}{2\left(x-z_{1}\right)}$ positive. Now the couple whose forces $+\frac{M_{x}}{x-z_{1}},-\frac{M_{x}}{x-z_{1}}$ act at P and A strains the fibres above and below P in the cross-section at P. We have then

$$
\mp \frac{M_{x} y}{2\left(x-z_{1}\right)}+\left\{\begin{array}{c}
\text { work of straining all } \tag{A}\\
\text { the fibres in the } \\
\text { cross-section at } P
\end{array}\right\}=\left\{\begin{array}{l}
\text { total work on all } \\
\text { the fibres between } \\
P \text { and } C
\end{array}\right\} .
$$

For any fibre of the cross-section at P at any distance v above or below the neutral axis the unit stress (page 326) is $\frac{M_{x} v}{I}$. Since E is equal to unit stress divided by unit strain (page 281), the unit strain of the

fibre is $\frac{M_{x} v}{E I}$. If a is the cross-section of the fibre and $d x$ the distance to the next consecutive cross-section, then $\frac{M_{x v a}}{I}$ is the stress, and $\frac{M_{x} v d x}{E I}$ is the strain of the fibre between two consecutive cross-sections.

The strain of the fibre limited by the cross-sections at P and C is then

$$
\int_{x}^{m} \frac{M M_{x} v d x}{E I}
$$

and its work is

$$
\frac{M_{x} v a}{2 I} \int_{x}^{m} \frac{M_{x} v d x}{E I}=\frac{M_{x} a v^{2}}{2 E I^{2}} \int_{x}^{m} M_{x} d x
$$

Since $\Sigma a v^{2}=I$, the work of straining all the fibres in the cross-section at P is

$$
\frac{M_{x}}{2 E I} \int_{x}^{m} M_{x} d x
$$

Again, the work of straining the fibre between two consecutive crosssections is

$$
\frac{M_{x} v a}{2 I} \times \frac{M_{x} v d x}{E I}=\frac{a v^{2} M_{x}^{2} d x}{2 E \Gamma^{2}}
$$

Since $\Sigma a v^{2}=I$, the total work on all the fibres between P and C is then

$$
\frac{1}{2 E 1} \int_{x}^{m} M_{x^{2}}^{2} d x
$$

We have then, from statement (A), for any point P between A and C

$$
\mp \frac{M_{x} y}{2\left(x-z_{1}\right)}=\frac{1}{2 E I} \int_{x}^{m} M_{x^{2}}^{2} d x-\frac{M_{x}}{2 E I} \int_{x}^{m} M_{x} d x
$$

Hence

$$
\begin{equation*}
\text { for } x>z_{1} \quad E I y_{1}=\int_{x}^{m} \mp M_{x}\left(x-z_{1}\right) d x-\left(x-z_{1}\right) \int_{x}^{m} \mp M_{x} d x \tag{I}
\end{equation*}
$$

Differentiating (I), we have

$$
\begin{equation*}
E I \frac{d y}{d x}=\mp \int_{x}^{m} M_{x} d x . \tag{1}
\end{equation*}
$$

Differentating again,

$$
E I \frac{d^{2} y}{d x^{2}}=\mp M x
$$

which is the same as equation (I), page 326.
If in (I) we make $x=z_{1}$, we have for the deflection at A

$$
y_{1}=\frac{1}{E I} \int_{z_{1}}^{m} \mp M_{x}\left(x-z_{1}\right) d x,
$$

and from (1) for the tangent t_{1} of the angle $A^{\prime} A D^{\prime \prime}$ which the tangent at A makes with the horizontal

$$
t_{1}=\mp \int_{z_{1}}^{m} M_{x} d x
$$

We have then for the deflection for any point of the straight portion $A^{\prime} A$

$$
y=y_{1}+\left(x-z_{1}\right) t_{1}=\frac{1}{E I} \int_{z_{1}}^{m} \mp M_{x}\left(x-z_{1}\right) d x-\frac{x-z_{1}}{E I} \int_{z_{1}}^{m} \mp M_{x} d x
$$

or

$$
\text { for } x<z_{1} \quad E I y=\int_{z_{1}}^{m} \mp M_{x}\left(x-z_{1}\right) d x-\left(x-z_{1}\right) \int_{z_{1}}^{m} \mp \mathbb{M}_{x} d x .
$$

In (I) and (II) M_{x} is always the moment at any point P of the curve between A, where curvature begins, and C, where the tangent is horizontal. The (-) sign is taken when M_{x} is taken for all forces on the left, and the $(+)$ sign for all forces on the right.

The application of these equations will give us the same value for the deflection as already obtained.

Take the case of the cantilever beam of uniform cross-section fixed horizontally at one end, with load W at the other end. Here $m=l$, $z_{1}=0$, and for W on left of $P, M_{x}=+W x$. From (I), then,

$$
E I y=\int_{x}^{l}-W x^{2} d x+x \int_{x}^{l} W x d x
$$

Integrating, we have at once

$$
E I y=-\frac{W l^{3}}{3}+\frac{W x^{3}}{3}+\frac{W l^{2} x}{2}-\frac{x W^{3}}{2}=-\frac{W}{6}\left(2 l^{3}-3 l^{2} x+x^{2}\right)
$$

which is the same as already found, page 329. If $x=0$, we obtain for the deflection $\Delta=D A$ at the end

$$
E I \Delta=-\frac{W l^{2}}{3}
$$

Hence if we take the origin at A, we have

$$
\begin{equation*}
E I y=\frac{W}{6}\left(3 l^{2} x-x^{2}\right) \tag{2}
\end{equation*}
$$

Let the beam project beyond the load W so that the portion $A^{\prime} A$ is straight, and let the distance of W from A^{\prime} be z_{1}. Here $m=l$, and

$$
\text { for } W \text { on left of } P \quad M_{x}=W\left(x-z_{1}\right) \text {. }
$$

Hence, from (II),
for $x<z_{1}\left\{\begin{array}{l}E I y=\int_{z_{1}}^{l}-W\left(x-z_{1}\right)^{2} d x+\left(x-z_{1}\right) \int_{z_{1}}^{l} W\left(x-z_{1}\right) d x ; \\ E I y=-\frac{W}{6}\left[2\left(l-z_{1}\right)^{3}-3\left(l-z_{1}\right)^{2}\left(x-z_{1}\right)\right] .\end{array}\right.$
If $x=0$, we obtain for the deflection $\Delta=D^{\prime} A^{\prime}$ at the end

$$
E I \Delta=-\frac{W}{6}\left[2\left(l-z_{1}\right)^{3}+3\left(l-z_{1}\right)^{2} z_{1}\right]
$$

Hence if we take the origin at A^{\prime}, we have

$$
\begin{equation*}
\text { for } x<z_{1} E I y=\frac{W\left(l-z_{1}\right)^{2} x}{2} \tag{3}
\end{equation*}
$$

From (I) we have
for $x>z_{1}\left\{\begin{array}{l}E I y=\int_{x}^{l}-W\left(x-z_{1}\right)^{2} d x+\left(x-z_{1}\right) \int_{x}^{l} W\left(x-z_{1}\right) d x ; \\ E I y=-\frac{W}{6}\left[2\left(l-z_{1}\right)^{3}-3\left(l-z_{1}\right)^{2}\left(x-z_{1}\right)+\left(x-z_{1}\right)^{3}\right] .\end{array}\right.$
Hence if we take the origin at A^{\prime}, we have

$$
\begin{equation*}
\text { for } x>z_{1} \quad E I y=\frac{W}{6}\left[3\left(l-z_{1}\right)^{2} x-\left(x-z_{1}\right)^{3}\right] \tag{4}
\end{equation*}
$$

Let the beam be acted upon by a couple whose forces $+\bar{F},-F$ act at A^{\prime} and A respectively. Take the origin at D.

The moment of a couple is the same at every point in its plane, and equal to $F z=M_{1}$. We have then in this case for any point P on the right of $D, M_{x}=M_{1}$, and from (I), making $z_{1}=0, m=l$,

$$
\begin{aligned}
& E I y=\int_{x}^{l}-M_{1} x d x+x \int_{x}^{l} M_{1} d x \\
& E I y=-\frac{M_{1} l^{2}}{2}+M_{1} l x-\frac{M_{1} x^{2}}{2}
\end{aligned}
$$

If $x=0$, we obtain for the deflection $\Delta=D A$

$$
E I \Delta=-\frac{M_{1} l^{2}}{2}
$$

Hence if we take the origin at A, we have

$$
\begin{equation*}
E I y=M_{1} l x-\frac{M_{1} x^{2}}{2}-\frac{M_{1} x}{2}(2 l-x) \tag{5}
\end{equation*}
$$

Let the beam be nniformly loaded with w per unit of length, and take the origin at D. In this case we have for any point P on the right of $A, M=\frac{w x^{2}}{2}$. Hence from (I) taking $m=l$ and $z_{1}=0$,

$$
\begin{aligned}
& E I y=\int_{x}^{l}-\frac{w x^{3} d x}{2}+x \int_{x}^{l} \frac{w x^{2} d x}{2} \\
& E I y=-\frac{w}{24}\left(3 l^{4}-4 l^{3} x+x^{4}\right)
\end{aligned}
$$

which is the same as already found, page 332.
If $x=0$, we obtain for the deflection $\Delta=D A$,

$$
E I \Delta=-\frac{w l^{4}}{8}
$$

Hence if we take the origin at A, we have

$$
\begin{equation*}
E I y=\frac{w}{29}\left(4 l^{3} x-x^{4}\right) \tag{6}
\end{equation*}
$$

By using these equations we can find the deflection for all other cases.
Thus let a horizontal beam of uniform cross-section have the load W between the supports and take the origin The deflection

The deflection due to W at any point between A and W when $z_{1}<m$ we find from (3) by putting $l=m$:

$$
\frac{W\left(m-z_{1}^{2}\right) x}{2 E I}
$$

The deflection due to W at any point between W and C when $z_{1}<m$ we find from (4) by putting $l=m$:

$$
\frac{W}{6 E I}\left[3\left(m-z_{1}\right)^{2} x-\left(x-z_{1}\right)^{3}\right] .
$$

The deflection due to the reaction $\frac{W z_{1}}{l}$ at \boldsymbol{B} at any point between \boldsymbol{O}
and the right end when $z_{1}<m$ we find from (2) by patting $l=l-m$, $x=l-x$, and $W=-\frac{W z_{1}}{l}$:

$$
-\frac{W z_{1}}{6 E I[}\left[3(l-m)^{2}(l-x)-(l-x)^{2}\right] .
$$

We have then, when $z_{1}<m$, for $x<z_{\imath}$

$$
\begin{equation*}
E I y=-\frac{W\left(l-z_{1}\right)}{6 l}\left(3 m^{2} x-x^{5}\right)+\frac{W\left(m-z_{1}\right)^{2} x}{2} \tag{7}
\end{equation*}
$$

or $x>z_{1}$ and $<m$

$$
\begin{equation*}
E I y=-\frac{W\left(l-z_{1}\right)}{6 l}\left(3 m^{2} x-x^{2}\right)+\frac{W\left(m-z_{1}\right)^{2} x}{2}-\frac{W}{6}\left(x-z_{1}\right)^{3} ; \tag{8}
\end{equation*}
$$

for $x>m$

$$
\begin{equation*}
E I y=-\frac{W z_{l}}{6 l}\left[3(l-m)^{2}(l-x)-(l-x)^{3}\right] \tag{9}
\end{equation*}
$$

If we make $x=m$ in (8) and (9) and equate, we obtain

$$
\text { when } z_{1}<m \quad m=l-\sqrt{\frac{1}{3}\left(l^{2}-z_{1}^{2}\right)}=l-\sqrt{\frac{1}{3}\left(2 l-z_{2}\right) z_{2}},
$$

which is the same as already found, page 334.
If we substitute this value of m in

(7) and (8), we obtain equations (9) and (10), page 334.

Let the beam sustain a uniformlydistribnted load of w per unit of length.

In this case $\mathcal{M} x=-\frac{v d}{2} x+\frac{v c x^{2}}{2}$.
From (I), if we make $z_{1}=0, m=\frac{l}{2}$, we have

$$
\begin{aligned}
& E I y=\int_{x}^{\frac{l}{5}} \frac{v c l x^{2} d x}{2}-\frac{v x^{3} d x}{2}-x \int_{x}^{\frac{l}{2}} \frac{v l x d x}{2}-\frac{v x^{3} d x}{2} \\
& E I y=\frac{5 v l^{4}}{128}+\frac{v l x^{3}}{12}-\frac{v l^{3} x}{24}-\frac{v x^{4}}{24}
\end{aligned}
$$

If $x=0$, we obtain for the deflection $\Delta=D A$

$$
E 1 \Delta=\frac{5 u c l^{4}}{28}
$$

Hence, if we take the origin at A, we have

$$
E I y=\frac{v c l x^{3}}{12}-\frac{v x^{4}}{24}-\frac{v l^{3} x}{24}
$$

which is the same as already found, page 335.

Let the beam be fixed horizontally at one end and supported at the other and sustain the load W at the distance z_{1} from the supported end A.

Let R_{1} be the reaction at A, and take the origin at the fixed end B.

The deflection due to R_{1} at any point between A and B we find from (2), by making $x=l-x$ and $W=-R_{1}$,

$$
-\frac{R_{1}}{6 E I}\left[3 l^{2}(l-x)-(l-x)^{3}\right] .
$$

The deflection due to W at any point between A and W we find from (3) by putting $x=l-x$:

$$
\frac{W\left(l-z_{1}\right)^{2}(l-x)}{2 E I}
$$

The deflection due to W at any point between W and B we find from (4) by putting $x=l-x$:

$$
\frac{W}{6 E I}\left[3\left(l-z_{1}\right)^{2}(l-x)-\left(l-x-z_{1}\right)^{3}\right]
$$

We have then
for $x>z_{2}$
$E I y=-\frac{R_{1}}{6}\left[3 l^{2}(l-x)-(l-x)^{3}\right]+\frac{W\left(l-z_{1}\right)^{2}(l-x)}{2} ;$
for $x<z_{2}$
$E I y=-\frac{R_{1}}{6}\left[3 l^{2}(l-x)-\left(l-x^{3}\right)\right]+\frac{W\left(l-z_{1}\right)^{2}(l-x)}{2}-\frac{W}{6}\left(l-x-z_{1}\right)^{3}$.
If we make $x=0$ in (11), $y=0$, and we obtain

$$
R_{1}=\frac{W z_{2}^{2}}{2 l^{3}}\left(3 l-z_{2}\right),
$$

which is the same as already found, page 338 .
If we substitute this value of R_{1} in (10) and (11), we obtain equations (9) and (10), page 338.

Let the beam be fixed horizontally at one end and supported at the
 other and uniformly loaded with the load w per unit of length. Take the origin at the fixed end B.

The deflection due to R_{1} at any point P we find from (2) by making $x=l-x$ and $W=-R_{1}$:

$$
-\frac{R_{1}}{6 E I}\left[3 l^{2}(l-x)-(l-x)^{3}\right]
$$

The deflection due to the distrib-
uted load we find from (6) by making $x=l-x$:

$$
\frac{w}{24 E T}\left[4 l^{3}(l-x)-(l-x)^{4}\right] .
$$

Hence

$$
\begin{equation*}
E I y=-\frac{R_{1}}{6}\left[3 l^{2}(l-x)-(l-x)^{8}\right]+\frac{w}{24}\left[4 l^{3}(l-x)-(l-x)^{4}\right] . \tag{12}
\end{equation*}
$$

For $x=0$ in (12), $y=0$, and we find $R_{1}=\frac{3}{8} w l$.
Substitute this value of R_{1} in (12) and we obtain equation. (5), page 341.

Let the beam be fixed horizontally at both ends and have the load W at the distance z_{1} from the left end A. Then we have at A the reaction R_{1} and the moment M_{1}.

Take the origin at A.
Then we have for the deflection due to M_{1}, from (5)

$$
\frac{M M_{1} x}{2 E I}(2 l-x) .
$$

For the deflection due to R_{1} we find from (2) by putting $W=-R_{1}$:

$$
-\frac{R_{1}}{6 E I}\left[3 l^{2} x-x^{3}\right]
$$

For the deflection due to W at any point between A and W we find from (3)

$$
\frac{W\left(l-z_{8}\right)^{2} x}{2 E I}
$$

For the deflection due to W at any point between W and B we find from (4)

$$
\frac{W}{6 E I}\left[3\left(l-z_{1}\right)^{2} x-\left(x-z_{1}\right)^{3}\right]
$$

Hence, for $x<z_{1}$

$$
\begin{align*}
& E I y=-\frac{R_{1}}{6}\left(3 l^{2} x-x^{3}\right)+\frac{M_{1} x}{2}(2 l-x)+\frac{W\left(l-z_{1}\right)^{2} x}{2} ; . . \tag{13}\\
& \quad \text { for } x>z_{1} \\
& E I y=-\frac{R_{1}}{6}\left(3 z^{2} x-x^{3}\right)+\frac{M_{1} x}{2}(2 l-x)+\frac{W}{6}\left[3\left(l-z_{1}\right)^{2} x-\left(x-z_{1}\right)^{3}\right] \tag{14}
\end{align*}
$$

Differentiating (13), we have

$$
\begin{equation*}
\text { for } x<z_{1} \tag{15}
\end{equation*}
$$

$E I \frac{d y}{d x}=-\frac{R_{1}}{6}\left(3 l^{2}-3 x^{2}\right)+\frac{M_{1}}{2}(2 l-2 x)+\frac{W\left(l-z_{1}\right)^{2}}{2} . . .$.
For $x=l, y=0$ in (14) and we obtain

$$
-\frac{R_{1} l^{3}}{3}+\frac{M_{1} l^{2}}{2}+\frac{W}{6}\left(l-z_{1}\right)^{2}\left(2 l+z_{1}\right)=0
$$

For $x=0, \frac{d y}{d x}=0$ in (15) and we obtain

$$
-\frac{R_{1} l^{2}}{2}+M_{l} l+\frac{W\left(l-z_{1}\right)^{2}}{2}=0
$$

From these two equations we find

$$
M_{1}=\frac{W z_{1} z_{2}^{2}}{l^{2}}, \quad R_{1}=\frac{W z_{2}^{2}\left(3 z_{1}+z_{2}\right)}{l^{2}}
$$

which are the same as already found, page 343.
If we substitute these values of M_{1} and R_{1} in (13) and (14), we obtain equations (9) and (10), page 343.

Let the beam be fixed horizontally at both ends and be loaded uniformly

with the load w per unit of length. Take the origin at A. Then for the deflection due to M_{1} we have from (5)

$$
\frac{M_{\mathrm{L}} x}{2 E I}(2 l-x)
$$

For the deflection due to the reaction $\frac{w l}{2}$ at A we have from (2), put$\operatorname{ting} W=-\frac{w l}{2}$,

$$
-\frac{w l}{12 E I}\left[3 l^{2} x-x^{8}\right]
$$

For the deflection due to the distributed load from (6),

$$
\frac{w}{24 E I}\left(4 l^{3} x-x^{4}\right)
$$

Hence

$$
E I y=-\frac{w l}{12}\left(3 l^{2} x-x^{3}\right)+\frac{M_{1} x}{2}(2 l-x)+\frac{w}{24}\left(4 l^{9} x-x^{4}\right)
$$

which is the same as equation (3), page 345.
Formulas for Long Struts.- Let a long strut or vertical column of constant cross-section A sustain the load W, and let the deflected column be free to turn at both ends, as in the figure. Take the origin at the upper end A, and let x be the vertical and y the horizontal co-ordinate of any point P of the elastic curve.

Equation (I), page 326, holds for flexure, provided (page 326) that the deflection is small, that a plane section before flexure remains plane after, that the elastic limit is not exceeded and that the coefficient of elasticity E is constant.

The bending moment at the point P is $M_{x}=W y$. Hence from equation (I), page 326,

$$
E I \frac{d^{2} y}{d x^{2}}=-W y
$$

Multiply both sides of this equation by $2 d y$
 and we have

$$
E I \frac{2 d y d^{2} y}{d x^{2}}=-2 W y d y
$$

Integrating, we have

$$
E I \frac{d y^{2}}{d x^{2}}=-W y^{2}+C_{1}
$$

Let $D C=\Delta$ be the maximum deflection. Then when $y=\Delta, \frac{d y}{d x}$ is zero, and $C_{1}=W \Delta^{2}$. Hence, substituting this value of C_{1}, we have by inversion

$$
d x=\sqrt{\frac{E 1}{W}} \cdot \frac{d y}{\sqrt{\Delta^{2}-y^{2}}}
$$

Integrating again, we have

$$
x=\sqrt{\frac{\overline{E I}}{W}} \arcsin \frac{y}{\Delta}+C_{2}
$$

When $y=0, x$ is zero and therefore C_{2} is zero. We have then for the equation of the elastic curve

$$
y=\Delta \sin x \sqrt{\frac{W}{E I}}
$$

which is the equation of a sinuroid. If the length $A B$ of the column is l, then when $x=l, y$ is zero. Hence if n is $1,2,3$, etc., we have

$$
l \sqrt{\frac{W}{E I}}=n \pi, \quad \text { or } \quad W=E r \frac{n^{2} \pi^{2}}{l^{2}}
$$

Since $I=A \kappa^{2}$, where A is the area and κ the radius of gyration of the cross-section for the axis through its centre of mass at right angles to the plane of bending of the axis, we have

$$
\begin{equation*}
\frac{W}{A}=\frac{n^{2} \pi^{2} E \kappa^{2}}{l^{2}} \tag{E}
\end{equation*}
$$

This equation (E) is known as "Euler's formula" for long struts.
For $n=1, n=2, n=3$, we have the curves shown in the following figure. In the first case the curve is entirely on one side of the axis of x,

in the second case it crosses that axis at the centre, in the third case it crosses at $\frac{1}{3} l$ and $\frac{2}{3} l$. The greatest deflection evidently occurs for the case where $n=1$. Hence for a column with round ends we have theoretically $n=1$ in Euler's formula.

A column with one end round and the other fixed is represented by the portion $A b$ in the second case, b being the fixed end. Here $n=2$ and the length $A b$ is three fourths of the entire length. Hence for a column
with one end fixed and the other round we have theoretically $n=\frac{3}{2}$ in Euler's formula and

$$
\frac{W}{A}=\frac{9 \pi^{2} E \kappa^{2}}{4 l^{2}}
$$

A column with fixed ends is represented by the portion $c c$ in the third case. Here $n=3$ and the length $c c$ is three fourths of the entire length. Hence for a column with fixed ends we have theoretically $n=\frac{4}{2}=2$ in Euler's formula and

$$
\frac{W}{A}=\frac{4 \pi^{2} E \kappa^{2}}{l^{2}} .
$$

These ideal end conditions do not, however, exist in practice. The nearest approach to round ends is for pins at each end. In such case there is always friction. The nearest approach to a fixed end is a square end abutting upon a rigid base. But since the fibres on the convex side are in tension, the end in this case is only imperfectly fixed.

Practical Values for n. - Brittle materials, such as stone, brick, cement, or hard cast steel, when they fail by crushing, crack and separate into pieces. Tough materials, such as wrought iron, rolled steel, timber, etc., when compressed fail by slow flowing of the material. The crushing load, then, for such materials is the load which produces permanent set. We therefore consider the elastic limit S_{e} as the "ultimate strength" in such cases. From many experiments carried to the point of failure n in Euler's formula has been found to have the following values:

If then we use these values of n in Euler's formula (E), we obtain for any value of l and κ the so-called "crippling unit load," that is, the unit load $\frac{W}{A}$ which makes the unit stress in the outer fibre of greatest stress equal to the elastic limit S_{e} when failure occurs.

Limiting Length for Euler's Formula.-Let $a b$ represent the crosssection of area A at the centre of the column where the deflection is greatest, C the centre of mass of this cross-section. The plane of bending will always be parallel to the least radius of gyration of the cross-section. Let v and v_{1} be the distances parallel to the plane of bending of the axis, of the most remote fibres $a a^{\prime}, b b^{\prime}$ from the centre C on the convex and concave sides respectively. For symmetrical cross-sections $v=v_{1}$.

Let S_{e} be the elastic limit and S_{f} the unit stress due to bending in the most remote fibre $a a^{\prime}$ on the convex side. We also have a uniform unit stress of direct compression $\frac{W}{A}$ over the entire cross-section due to the load W. On the convex side this unit stress for the most remote fibre $a a^{\prime}$ is diminished by the unit stress \mathbb{S}_{f} due to bending. On the concave side
this unit stress for the most remote fibre $b b^{\prime}$ is increased by the unit stress $\frac{v_{1}}{v} S_{f}$ due to bending.

As long as the length l of the column is less than a certain length L, we see from the first figure that when $\frac{W}{A}+\frac{v_{1}}{v} S_{f}$ on the concave side equals S_{e}, the elastic limit, S_{f} on the convex side will be less than $\frac{W}{A}$ and we shall have compression at every point of the cross-section $a b$. So long as this is the case Euler's formula (E) does not apply.

But now as the length l increases, we can evidently have a certain

length L for which, "when the unit stress on $b b^{\prime}$ equals the elastic limit S_{e}, S_{f}, as shown in the second figure, shall be just equal to $\frac{W}{A}$. When this is the case there is no compression at a. For any length greater than L, then, we shall have tension at a when the unit stress at b is equal to S_{e}.

At or above the length L, then, Euler's formula applies.
We have for this length the condition

$$
\frac{W}{A}+\frac{v_{1} W}{v A}=S_{e}, \quad \text { or } \quad \frac{W}{A}=\frac{S_{e}}{1+\frac{v_{1}}{v}}
$$

But since Euler's formula applies, we have also

$$
\frac{W}{A}=\frac{n^{2} \pi^{2} E \kappa^{2}}{L^{2}}
$$

Equating these two values of $\frac{W}{A}$, we have for the length L

$$
\begin{equation*}
L=\frac{n \kappa \pi \sqrt{\left(1+\frac{v_{1}}{v}\right) E}}{\sqrt{S_{e}}} \tag{L}
\end{equation*}
$$

Equation (L) gives then the limiting length above which we can use Euler's formula (E). If the length l is less than L, we cannot use Euler's formula, but must deduce some other formula for the "crippling unit load." The value of κ is always the least radius of gyration of the crosssection.

The Straight-line and Parabola Formulas. - We have seen that for values of $l>L$ we can find the crippling unit load $\frac{W}{A}$ from Euler's formula (E) if we use the values of n given on page 357.

Let us take any origin O and take $x=\frac{l}{\kappa}$ as abscissa and $y=\frac{W}{A}$ as.
ordinate. Then Euler's formula is represented by the curve $E P F$ whose equation is

$$
\begin{equation*}
y=\frac{n^{2} \pi^{2} E}{x^{2}} \tag{1}
\end{equation*}
$$

Only the portion $P F$ of this curve can be used, the point P being given by $x=\frac{L}{\kappa}$ and $y=\frac{S_{e}}{1+\frac{v_{1}}{v}}$.
For $l<L$ let the curve for the ideal column be $A P$. The ideal column is perfectly straight, perfectly homogeneous in all its parts, the load W accurately at the centre of crosssection, etc. No column is thus
 ideally perfect, and hence the actual values of $\frac{W}{A}$ as given by experiment are found distributed above and below $A P$ over a considerable range. Evidently, then, a strictly rational formula for $A P$ would have no advantage over any convenient curve which passes through A and P so that $O A=S_{e}$ for $l=0$, and $y=\frac{S_{e}}{1+\frac{v_{1}}{v}}=$ $\frac{W}{A}$ for $l=L$, and has at P a common tangent with Euler's curve $P E$.

Let us assume, then, for the curve $A P$

$$
\begin{equation*}
y=S_{e}+b x+c x^{2} \tag{2}
\end{equation*}
$$

This curve passes through A so that $O A=S_{e}$ for $l=0$. It remains to determine b and c, so that the curve shall pass through P and have a common tangent at P with Euler's curve.

If we make $x=\frac{L}{\kappa}$ in (1) and (2) and equate, we have for the condition that the curve passes through P

$$
\begin{equation*}
S_{e}+\frac{b L}{\kappa}+\frac{c L^{2}}{\kappa^{2}}=\frac{n^{2} \pi^{2} E \kappa^{2}}{L^{2}} \tag{3}
\end{equation*}
$$

If we differentiate (1) and (2) and equate $\frac{d y}{d x}$ in both cases for $x=\frac{L}{\kappa}$, we have for the condition of a common tangent at P

$$
\begin{equation*}
b+2 c \frac{L}{\kappa}=-\frac{2 n^{2} \pi^{2} E \kappa^{2}}{L^{3}} \tag{4}
\end{equation*}
$$

From (3) and (4) we obtain

$$
\begin{aligned}
& b=-\frac{2 S_{e} \kappa}{L}+\frac{4 n^{2} \pi^{2} E K^{3}}{L^{3}} \\
& c=\frac{S_{e} K^{2}}{L^{2}}-\frac{3 n^{2} \pi^{2} E \kappa^{4}}{L^{4}}
\end{aligned}
$$

Substituting these values of b and c in (2), and putting $x=\frac{l}{k}$ and
$y=\frac{W}{A}$, we obtain for the crippling unit load
for $l<L \quad \frac{W}{A}=S e\left[1+\frac{2\left(v-v_{1}\right) l}{\left(v+v_{1}\right) L}-\frac{\left(2 v-v_{1}\right) l^{2}}{\left(v+v_{1}\right) L^{2}}\right]$.
We call equation (SP) the "straight-line parabola" formula for long struts, because if $v_{1}=2 v$, the third term iu the parenthesis disappears and the curve $A P$ becomes a straight line, while if $v=v_{1}$, as is the case for symmetrical cross-sections, the second term disappears and the curve $A P$ becomes a parabola.

We have thus for $v_{1}=2 v$ the straight-line formula for crippling load,

$$
\text { for } l<L \text { and } v_{1}=2 v \quad \begin{align*}
\frac{W}{A} & =S e\left(1-\frac{2}{3} \frac{l}{L}\right), \tag{S}\\
\text { where } L & =\frac{n \kappa \pi \sqrt{3 E}}{\sqrt{S_{e}}} .
\end{align*}
$$

For $v=v_{1}$ or for symmetrical cross-sections we have the parabola formula for crippling load,

$$
\begin{align*}
\text { for } l<L \text { and } v=v_{1} \quad \begin{aligned}
\frac{W}{A} & =S_{e}\left(1-\frac{1}{2} \frac{l^{2}}{L^{2}}\right), . \\
\text { where } L & =\frac{n \kappa \pi \sqrt{2 E}}{\sqrt{S_{e}}} .
\end{aligned} . \tag{P}
\end{align*}
$$

The ralue of κ is always the least radius of gyration of the crosssection.

Both equations (S) and (P) are well known, and (S) especially has come into very general use. We see that both are special cases of the general formula (SP) here given for the first time.

Rankine-Gordon Formula.-From the figure page 358 we see that when $l<L$ we have

$$
\frac{v_{1}}{v} S_{f}+\frac{W}{A}=S_{e} .
$$

If we assume that for lengths less than L, S_{f} increases approximately as the square of the length, we have

$$
S_{f}: \frac{W}{A}:: l^{2}: L^{2}, \quad \text { or } \quad S_{f}=\frac{W l^{2}}{A L^{2}} .
$$

Inserting this value of S_{f} in the preceding equation, we obtain for the crippling unit load

$$
\begin{equation*}
\text { for } l<L \quad \frac{W}{A}=\frac{S_{e}}{1+\frac{v_{l} l^{2}}{v L^{2}}}=\frac{S_{e}}{1+\frac{v_{1} S_{e} l^{2}}{n^{2} \pi^{2}\left(v+v_{1}\right) E \kappa^{2}}} . \tag{H}
\end{equation*}
$$

We call equation (H) the "hyperbola formula," because it is the equation of an hyperbola.

Equation (H) is usually given in the form

$$
\begin{equation*}
\frac{W}{A}=\frac{S_{e}}{1+a \frac{l^{2^{2}}}{\kappa^{2}}}, \tag{RG}
\end{equation*}
$$

where a is an experimental constant, and in this form it is known as the "Rankine-Gordon formula for long struts." We see that the experimental
constant a really depends upon the end conditions as given by n, upon the values of v and v_{1}, and upon the ratio of the elastic limit S_{e} to the coefficient of elasticity E. We see also that (H) must not be used for $l>L$. The curve of (RG) or (H) passes through A (figure page 359), so that $O A=S_{e}$ for $l=0$, and also passes through P for $l=L$, but it has not a common tangent at P. Still it gives good results, aud in the form (RG) is widely used. Equation (H) is a more general form of the Rankine-Gordon formula here given for the first time.

The value of κ is always the least radius of gyration.
Recapitulation of Formulas for Long Struts.-The straight-line formula (S) and the parabola formula (P) are well known and widely used. As we have seen, they are special cases of the general (SP) formula here given for the first time. The Rankine-Gordon formula (RG) is also a special experimental form of the more general and rational hyperbola formula (H) here given for the first time.

We recapitulate here for convenience of reference all these formulas for long struts.

Let A be the constant area of cross-section, W the crippling load and therefore $\frac{W}{A}$ the crippling unit load which makes the unit stress in the most compressed fibre just equal to the elastic limit S_{e}.

Let k be the least radius of gyration of the cross-section for the axis through its centre of mass of right angles to the plane of bending of the axis.

Let v and v_{1} be the distances parallel to the plane of bending of the most remote fibres, on the convex and concave sides respectively, from the centre of the cross-section. For symmetrical cross-sections $v=v_{1}$.

Let n be a number depending on the end conditions, as follows:

	Two Pin Ends.	One Pin, One Flat End.	Two Flat Ends.
n	$\sqrt{\frac{5}{3}}$	$\frac{5}{2 \sqrt{3}}$	$\sqrt{\frac{5}{2}}$
$n \pi$	4	4.5	5
$n^{2} \pi^{2}$	16	20	25

Then we have for the limiting length L above which Euler's formula holds

$$
\begin{equation*}
L=\frac{n \kappa \pi \sqrt{\left(1+\frac{v_{1}}{v}\right) E}}{\sqrt{\overline{S_{e}}}} \tag{L}
\end{equation*}
$$

Let l be the length of strut. Then we have for the crippling unit load $\frac{W}{A}$ Euler's formula,

$$
\begin{equation*}
\text { when } l>L \quad \frac{W}{A}=\frac{n^{2} \pi^{2} E \kappa^{2}}{l^{2}} \tag{E}
\end{equation*}
$$

If $l<L$, we may use either the generalized Rankine-Gordon formula, when $l<L \quad \frac{W}{A}=\frac{S_{e}}{1+\frac{v_{1} l^{2}}{v L^{2}}}=\frac{S_{e}}{1+\frac{v_{1} S_{e} l^{2}}{n^{2} \pi^{2}\left(v+v_{1}\right) E \kappa^{2}}},$.
or the formula (SP),

$$
\begin{equation*}
\text { when } l<L \quad \frac{W}{A}=S_{e}\left[1+\frac{2\left(v-v_{1}\right) l}{\left(v+v_{1}\right) L}-\frac{\left(2 v-v_{1}\right) l^{2}}{\left(v+v_{1}\right) L^{2}}\right] \tag{SP}
\end{equation*}
$$

For $v_{1}=2 v$ formula (SP) becomes the "straight-line" formula,
when $l<L \quad \frac{W}{A}=S e\left[1-\frac{2}{3} \frac{l}{L}\right]$,

$$
\text { where } L=\frac{n \kappa \pi \sqrt{3 E}}{\sqrt{S_{e}}} .
$$

For $v=v_{1}$ or for symmetrical cross-sections formula (SP) becomes the "parabola" formula,

$$
\begin{align*}
\text { when } l<L \quad \frac{W}{A} & =S_{e}\left[1-\frac{1}{2} \frac{l^{2}}{L^{2}}\right], \tag{P}\\
\text { where } L & =\frac{n \kappa \pi \sqrt{2 E}}{\sqrt{S_{e}}} .
\end{align*}
$$

In all cases we must divide the crippling load by the factor of safety assumed (page 291), in order to obtain the safe load; or we can replace \mathcal{S}_{e} in formulas (P), (S) and (SP), and in the numerator of G, by the value of S_{w} as determined page 292.

For the average values of S_{e} and E given in our Table page 823, we obtain from (L) the following values of $\frac{L}{\kappa}$.

*	Se Lbs. per square in.	F Lbs. per square in.	$\frac{E}{S e}$	Value of $\frac{L}{\kappa}$ when $v=v_{1}$.		
				Two Pin Ends.	One Pin, One Flat End.	Tro Flat Ends.
Wrought iron... Steel. \qquad Cast iron \qquad Timber. \qquad	25000	25000000	1000	180	200	220
	40000	30000000	750	150	170	190
	60000	15000000	250	90	100	110
	3000	15000000	500			160
	Value of $\frac{L}{\kappa}$ in general.					
	Two Pin Ends.		One Piu, One Flat End.		Two Flat Ends.	
Wrought iron.....	$\begin{aligned} & 120 \sqrt{1+\frac{v_{1}}{v}} \\ & 109 \sqrt{1+\frac{v_{1}}{v}} \end{aligned}$		$141 \sqrt{1+\frac{v_{1}}{v}}$		$158 \sqrt{1+\frac{v_{1}}{v}}$	
Steel. .				$1+\frac{v_{1}}{v}$	1361	$+\frac{v_{1}}{v}$
Cast iron.	$63 \sqrt{1+\frac{v_{1}}{v}}$		$71 \sqrt{1+\frac{v_{1}}{v}}$		79	$1+\frac{v_{1}}{v}$
Timber...... ...			$112 \sqrt{1+\frac{v_{1}}{v}}$			

In practice $\frac{l}{k}$ is usually less than 100 , so that formula (H) or (SP) covers the range of ordinary practice, and we seldom have to use formula (E).

EXAMPLES.

(1) A cylindrical beam 2 inches in diameter, 60 inches long and weighing ${ }^{\frac{1}{4}}$ lb. per cubic inch deflects $\frac{3}{5}$ inch under a weight of 3000 lbs. at the centre. Find E.

Ans. $E=28929144$ lbs. per square inch.
(2) A rectangular beam 5 ft. long, 3 inches wide and 3 inches deep is deflectcd $\frac{1}{10}$ inch by a weight of 3000 lbs. applied at the centre. Find E.

Ans. $E=20000000 \mathrm{lbs}$. per square inch.
(3) A beam whose length is 16 ft., width 2 inches, depth 12 inches, and coefficient of elasticity 16000000 lbs. is deflected half an inch by a weight at the centre. Find the weight, neglecting the weight of the beam.

Ans. Weight $=1562 \mathrm{lbs}$.
(4) An iron rectangular beam whose length is 12 ft., breadth $1 \frac{1}{8} \mathrm{in}$., coefficient of elasticity 24000000 lbs . has a weight of 10000 lbs . suspended at the middle. Find the depth in order that the deflection may be $\frac{1}{480}$ of the length.

Ans. Depth $=8.8 \mathrm{in}$.
(5) A rectangular wooden beam 6 in . wide and 30 ft . long is supported at the ends. The coefficient of elasticity is $E=1800000$ lbs. per square inch. The weight of a cubic foot of the beam is 50 lbs . Find the depth that it may deflect one inch from its own weight. How deep must it be to deflect $\frac{1}{400}$ of its length?

Ans. Depth $=6.5$ inches; depth $=6.8$ inches.
(6) Required the depth of a rectangular beam which is supported at the ends and so loaded at the middle that the elongation of the lowest fibre shall equal $\frac{1}{1400}$ of its original length.

$$
\text { Ans. Depth }=\sqrt{\frac{2100 W l}{E b}}
$$

(7) Required the radius of curvature at the middle point of a wooden beam when the load is 3000 lbs ., the length $10 \mathrm{ft} .$, breadth 4 inches, depth 8 inches and $E=1000000$ lbs.

Ans. Radius $=1896$ inches.
(8) Let the beam be of iron supported at the ends. Let the breadth be 1 in., depth 2 in., length 8 ft . and $\boldsymbol{E}=25000000$ lbs. Required the radius of curvature at the middle when the deflection is $\frac{1}{5} \mathrm{inch}$.

Ans. Radius $=3840$ inches.
(9) If a beam 6 ft. long, $1_{\frac{1}{2}}$ inches wide and 4 inches deep is supported at the ends and loaded at the centre so as to produce a deflection of $\frac{8}{4}$ inch, find the greatest inch stress on the fibres, taking $E=25000000$ lbs. per square inch. Also find the load.

Ans. Stress $=86805 \mathrm{lbs}$. per square inch;
Load $=19290 \mathrm{lbs}$.
(10) For the same beam, if the greatest fibre stress is 12000 per square inch, find the greatest deflection.

Ans. Deflection $=0.103$ inches.
(11) A rectangular oak beam 1 foot deep and $\frac{1}{2}$ foot wide and 15 ft. long is fixed horizontally at one end and is free at the other end. Let the weight of the beam be 54 pounds per cubic foot. Suppose it sustains a uniform load of 100 pounds per foot extending over 4 feet of the beam, beginning at 5 feet from the fixed end. Also a weight of 100 pounds placed at 11 feet from the fixed end. Let $E=2000000$ lbs. per square inch. Find the deflection at the free end.

Ans. Deflection due to weight of beam $=0.17086$ inch;

$$
\begin{aligned}
& \text { "" " uniform load }=0.12627 \\
& \text { " " " the weight } \\
& =0.0684 \\
& \text { Total deflection }=0.36553 \text { inch. }
\end{aligned}
$$

(12) If the same beam is loaded with five equal weights of 100 lbs . each at intervals of 3 feet, what is the deflection at the free end and at the third loaded point from the fixed end?

Ans. Total deflection at free end $=0.27$ inch.

$$
\text { "، "، third point }=0.12555 \text { inch. }
$$

(13) Same beam supported at the ends. Find the central deflection due to its own weight.

Ans. Deflection $=0.001483 \mathrm{ft}$.
(14) A beam of pine weighing 40 lbs. per cubic foot, $18 \frac{1}{3}$ inches deep, 15 inches wide, $12 \frac{1}{3}$ ft. long, is supported at the ends and has a weight of 17935 lbs . placed at 48 inches from one end. Find the deflection at centre and point of application of the weight when $E=1680000 \mathrm{lbs}$. per square inch.

Ans. Deflection at centre due to weight of beam $=0.0032$ inch.

$$
\begin{aligned}
& \text { " "، "، " weight added }=0.078617 \text { " } \\
& \text { " " } 48 \mathrm{in} . \text { " " weight of beam }=0.0027 \text { " } \\
& \text { " " } 48 \text { " " " weight added }=0.07185 \text { " }
\end{aligned}
$$

(15) A wrought-iron 15 -inch I beam, whose moment of inertia is 691 in inches, has a length of 30 feet. $E=24000000 \mathrm{lbs}$. per square inch. If supported at the ends and a uniform load of 75 lbs . per inch of length covers the first 10 feet, find the deflection at the end of the load.

Ans. Deflection $=0.23444$ inch.
Find the deflection at the centre of the beam.
Ans. Deflection $=0.24421$ inch.
Find the deflection 10 feet from the unloaded end.
Ans. Deflection $=0.19537$ inch.
Where is the point of greatest deflection and what is the greatest deflection?

Ans. At 13.1676 feet. Greatest deflection $=0.24847$ inch.
If the weight of the beam itself is 5.573 lbs. per inch of length, find the deflection at the centre.

Ans. Deflection $=0.07349$ inch.
If the same 10-foot load is moved along to the centre, find the deflection at the centre.

Ans. Deflection $=0.50063$ inch.
If the uniform load of 75 lbs . per inch covers the whole span, what is the central deflection?

Ans. Deflection $=0.98905$ inch.

If the same beam is half loaded with 75 pounds per inch, what is the deflection at the centre? What is the maximum deflection? and at what point is it?

Ans. Deflection $=0.494525$ inch. Max. deflection $=0.49855$ inch. Within the loaded portion at 14.48 inches from centre.
If the same beam has three weights of 4500 lbs. each, placed at intervals of 60 inches beginning at one end, what is the deflection at the centre?

Ans. Deflection $=0.6154$ inch.
If there are eight weights each equal to 3000 lbs. at intervals of 40 inches, what is the central deflection?

Ans. Deflection $=0.97926$ inch.
(16) Suppose the same beam as in (15) to be fixed horizontally at both ends and loaded uniformly with 75 lbs. per inch. What is the deflection at 10 feet from either end? At the centre?

Ans. Deflection $=0.1563$ inch; at centre $=0.19781$ inch.
(17) If only one end is fixed, the other supported, what is the deflection at 10 feet? at centre? at 20 feet? What is the maximum deflection? Where is it?

Ans. Deflection at 10 feet $=0.39074$ inch; at centre $=0.39563$ inch; at 20 feet $=0.27352$ inch.
Maximum deflection $=0.41018$ "
At 151.7524 inches from supported end.
(18) Same beam as (15) fixed horizontally at both ends, with a concentrated load of 27000 lbs. If the load is at the centre, what is the deftection at half way between the centre and either end? What is central deflection? Where are the points of inflection?

Ans. Deflection $=0.19781$ inch; central deflection $=03.9562$ inch. At 90 inches from each end.
If the load is 7.5 feet from the left end, where and what is the maximum deflection?

Ans. Maximum deflection $=0.2136$ inch; at 12 feet from left end.
If only the right end is fixed and the other supported, and the load of 27000 lbs. is at the centre, what are the deflections at the quarter points? The centre? What is the maximum deflection?

Ans. At the quarter points deflection $=0.5316,0.3091$ inch.
Central deflection $=0.69234$ inch; maximum deflection $=0.70732 \mathrm{inch}$.
At $l \sqrt{\frac{1}{5}}$ from supported ends.
(19) Same beam as (15) fixed horizontally at both ends has three weights of 4500 lbs . each placed at intervals of 60 inches, beginning at the . left end. Find the central deflection.

Ans. Deflection $=0.13187$ inch.
If two other equal weights of 4500 lbs. are added at the same interval of 60 inches, find the central deflection due to these last two weights.

Ans. Deflection $=0.06594$ inch.
Suppose the fifth weight removed, what is the deflection at the fourth weight? at the third and second weights?

Ans. Fourth-weight deflection $=0.13748$ inch ;
Third. " " $=0.18072$ "
Second. " \quad =01458 "

What are the end moments due to these four weights? and where are the points of contrary flexure?

Ans. $M_{1}=+750000$ inch-pounds; $M_{2}=-600000$ inch-pounds; 74.806 and 275.294 inches.
(20) Let the ratio $\frac{l}{\kappa}$ of the length l of a strut to the least radius of gyration κ of its cross-section A be $\frac{l}{\kappa}=100$. Let the cross-section be symmetrical. If the elastic limit is $S_{e}=30000$ lbs. per square inch and the coefficient of elasticity is $E=27000000$ lbs. per square inch, find the crippling unit load $\frac{W}{A}$ for two pin ends, for one pin and one flat end and for twoo flat ends.

Ans. The limiting ratio $\frac{L}{K}$ is $170,190,212$ for two pin ends, one pin and one flat end, and two flat ends respectively. We therefore use either Gordon's formula or the formula (SP).

By Gordon's formula we have, since $v=v_{1}$,

$$
\frac{W}{A}=\frac{30000}{1+\frac{10000}{1800 n^{2} \pi^{2}}}
$$

and substituting the value of $n^{2} \pi^{2}$, we have

$$
\frac{W}{A}=22270,23490,24550 \mathrm{lbs} . \text { per square inch }
$$

for two pin ends, one pin and one flat end, and two flat ends respectively.
By the formula (SP) we have

$$
\frac{W}{A}=30000\left[1-\frac{100000}{3600 n^{2} \pi^{2}}\right]
$$

Hence

$$
\frac{W}{A}=24810,25860,26670 \mathrm{lbs} . \text { per square inch }
$$

for two pin ends, one pin and one flat end, and two flat ends respectively.
We must divide the crippling load by the assumed factor of safety (page 291) for the working load. Thus if the factor of safety is taken at 4 , we have from Gordon's formula 5567, 5870, 6137 lbs. per square inch, or from formula (SP) $6200,6465,6667$ lbs. per square inch.

Again, from page 292, we obtain for repeated stress, if there is no steady stress, $S_{w}=7500$, and putting this for S_{e} in formula (SP) and in the numerator of Gordon's formula, we obtain the same results as before for a factor of safety of 4 .

If the steady stress is not zero but equal to the total stress, we have $S_{20}=$ 15000 , and using this for S_{e} we get the same results as if we had taken a factor of safety of 2 .

For other ratios of steady to total stress we get the same results as if we had taken a factor of safety between 2 and 4.

CHAPTER IV.

APPLICATIONS OF STATICS-THEORY OF FLEXURECONTINUOUS GIRDER.

CONTINUOUS GIRDER - CONDITIONS OF EQUILIBRIUM. EQUATION OF THE CURVE OF DEFLECTION. THEOREM OF THREE MOMENTS. DETERMINATION OF THE MOMENT AT ANY SUPPORT. RECAPITULATION-GENERAL FORMULAS.

Continuous Girder.-A beam or girder which rest upon more than two supports is called a continuous beam or girder. When a beam rests upon two supports ouly, a weight placed anywhere upon it causcs pressures or reactions at the two supports which may be at once determined by the law of the lever. That is, the reactions are inversely as the segments of the span or either side of the weight. But when the beam is continuous over more than two supports this law no longer holds.

Conditions of Equilibrium.-Let l_{n} be the length of the nth span of a continuous beam, counting from the left-end support, so that n is the number of the support on the left and $n+1$ is the number of the support on the right. Take a point o vertically above the nth support as origin, and the horizontal through o as the axis of abscissas. Let there be a load W_{n} in this span l_{n} at a distance z_{n} from the left end. Let the reaction at the left end or nth support due to this load be R_{n}^{\prime}, and at the right end or $n+1$ th support $R_{n+1}{ }_{n}$.

Let P be any point of the neutral axis of the beam at a distance x from the left end, x being always greater than z_{n}, so that the point P is always on the right of W_{n}.

Now if the girder is continuous over any number of supports, we have on the left of the support n a moment M_{n}, and on the right of the support $n+1$ a moment M_{n+1}. These moments, just as in Case 8, page 342, are due to a couple at each end replacing the action of the other spans. The moment of a couple is the same at every point of its planc.

The necessary conditions of equilibrium for the span l_{n} are then :
1st. The algebraic sum of all the horizontal forces must be zero. There are in this case no horizontal forces and therefore this condition is fulfilled.

2d. The algebraic sum of all the vertical forces must be zero. We have therefore

$$
\begin{equation*}
R_{n}^{\prime}+R_{n+1}^{\prime \prime}=W_{n} . \tag{1}
\end{equation*}
$$

3d. The algebraic sum of the moments of all the forces aboat any point P must be zero. Denoting by $M M_{n}$ the moment on the left of the support n, and by M_{x} the moment on the left of any point P, we have
or

$$
\begin{align*}
& M_{n}-R_{n}^{\prime} x+W_{n}\left(x-z_{n}\right)-M_{x}=0 \\
& M_{x}=+M_{n}-R_{n}^{\prime} x+W_{n}\left(x-z_{n}\right) \tag{2}
\end{align*}
$$

If in this equation we make $x=l_{n}, M_{x}$ becomes the moment M_{n+1} on the left of the support $n+1$, and we have

$$
\begin{equation*}
M_{n+1}=+M_{n}-R_{n}^{\prime} l_{n}+W_{n}\left(l_{n}-z_{n}\right) \tag{3}
\end{equation*}
$$

If we put the ratio $\frac{z_{n}}{l_{n}}=\alpha_{n}$, we obtain from (3) for the reaction R_{n}^{\prime} at the left support due to W_{n}, in terms of the moments M_{n} and M_{n+1} on the left of supports n and $n+1$,

$$
\begin{equation*}
R_{n}^{\prime}=\frac{M_{n}-M_{n}+1}{l_{n}}+W_{n}\left(1-a_{n}\right) \tag{4}
\end{equation*}
$$

From this equation and (1) we have for the reaction $R^{\prime \prime}{ }_{n+1}$ at the support $n+1$ due to W_{n}

$$
\begin{equation*}
R^{\prime \prime}{ }_{n+1}=\frac{M_{n+1}-M_{n}}{l_{n}}+W_{n} a_{n} \tag{5}
\end{equation*}
$$

The total reaction R_{n} at any support n is evidently equal to the sum of the reactions R_{n}^{\prime} and $R^{\prime \prime}{ }_{n}$ just on the right and left.

We hare from (5), for a load W_{n-1} in the preceding span l_{n-1},

$$
\begin{equation*}
R_{n}^{\prime \prime}=\frac{M_{n}-M_{n-1}}{l_{n-1}}+W_{n-1} a_{n-1} \tag{6}
\end{equation*}
$$

where M_{n} and M_{n-1} are the moments on the left of the supports $n-1$ and n.

The total reaction at the nth support is then

$$
\begin{equation*}
R_{n}=R_{n}^{\prime \prime}+R_{n}^{\prime} \tag{7}
\end{equation*}
$$

If there are any number of concentrated loads, we have only to put

$$
\sum_{n}^{n+1} W_{n}\left(1-a_{n}\right) \quad \text { and } \quad \sum_{n-1}^{n} W_{n-1} a_{n-1}
$$

in place of $W_{n}\left(1-a_{n}\right)$ and $W_{n-1} a_{n-1}$ in (4) and (6).
If, instead of concentrated loads, we have a uniform load w_{n-1} per unit of length over the span l_{n-1} and w_{n} per unit of length over the span l_{n}, we have $w_{n-1} d z_{n-1}$, or $w_{n-1} l_{n-1} d a$ in place of W_{n-1} and $w_{n} d z_{n}$, or $w_{n} \ln d a$ in place of W_{n}. If we make this substitution, we have

$$
\int_{0}^{1} w_{n-1} l_{n-1} a d a=\frac{1}{2} w_{n-1} l_{n-1} \text { and } \int_{0}^{1} w_{n} l_{n}(1-a) d a=\frac{1}{2} w_{n} l_{n}
$$

in place of $W_{n-1} a_{n-1}$ and $W_{n}\left(1-a_{n}\right)$.

We have then in all cases, in general, for the reactions R_{n}^{\prime} and $R^{\prime \prime} n$, right and left of any support n,

$$
\left.\begin{array}{l}
R_{n}^{\prime}=\frac{M_{n}-M_{n}+1}{l_{n}}+q_{n}^{\prime} ; \tag{I}\\
R_{n}^{\prime \prime}=\frac{M_{n}-M_{n}-1}{l_{n-1}}+q^{\prime \prime}{ }_{n-1}
\end{array}\right\}
$$

where M_{n-1}, M_{n} and M_{n+1} are the moments on the left of supports $n-1, n$ and $n+1$.

For concentrated loads

$$
q^{\prime} n=\sum_{n}^{n+1} W_{n}\left(1-a^{n}\right), \quad q^{\prime \prime}{ }_{n-1}=\sum_{n-1}^{n} W_{n-1} a_{n-1}
$$

and for uniform loading

$$
q^{\prime} n=\frac{1}{2} w_{n} l_{n}, \quad q^{\prime \prime}{ }_{n-1}=\frac{1}{2} w_{n-1} l_{n-1}
$$

From equations (I) we can then find in any case the reactions $R^{\prime \prime} n$, $R^{\prime} n$ just to left and right of any support n, provided we know the moments on the left of supports $n-1, n$ and $n+1$. Counter-clockwise moments are positive and upward reactions are positive. If there is no load in the span l_{n}, q_{n} is zero. If there is no load in the span l_{n-1}, q_{n-1} is zero.

Equation of the Curve of Deflection. - We can now easily deduce the equation of the curve of deflection for a continuous beam for constant moment of inertia of cross-section I.

The differential equation of the curve of deflection is (page 326), taking moments on the left of any point,

$$
E I \frac{d^{2} y}{d x^{2}}=-M_{x}
$$

where E is the coefficient of elasticity, I is the constant moment of inertia of the cross-section, and we take the minus sign for moments on the left of the point P.

Inserting the value of M_{x} from (2), we have

$$
\frac{d^{2} y}{d x^{2}}=-\frac{M_{n}-R_{n} x+W_{n}\left(x-z_{n}\right)}{E I}
$$

We can integrate this expression between the limits $x=0$ and x, upon the condition that x is always greater than z_{n}, that is, the point considered always on the right of the weight. When, therefore, $x=0,\left(x-z_{n}\right)$ must be zero. We must therefore take the integral of $W_{n}\left(x-z_{n}\right)$ simultaneously between the limits $x=z_{n}$ and x, or treat $(x-z n)$ as a variable which becomes zero when $x=0$.

We have then, integrating once,

$$
\frac{d y}{d x}=-\frac{2 M_{n} x-R_{n} x^{2}+W_{n}\left(x-z_{n}\right)^{2}}{2 E I}+C
$$

where for $x=0$ the constant of integration $C=\frac{d y}{d x}$ for $x=0$, or equals the tangent t_{n} of the angle which the tangent at the support n to the curve makes with the horizontal. Hence

$$
\begin{equation*}
\frac{d y}{d x}=t_{n}-\frac{2 M_{n} x-R_{n}^{\prime} x^{2}+W_{n}\left(x-z_{n}\right)^{2}}{2 E I} \tag{8}
\end{equation*}
$$

If we take the origin at a distance h_{n} above the support n (see figure page 367) and integrate again, the constant of integration for $x=0$ will be $-h_{n}$, and we have

$$
\begin{equation*}
y=-h_{n}+t_{n} x-\frac{3 M_{n} x^{2}-R_{n}^{\prime} x^{3}+W_{n}\left(x-z_{n}\right)^{3}}{6 E I} \tag{9}
\end{equation*}
$$

which is the general equation of the curve of deflection.
If in this we make $x=l_{n}, y$ becomes $-h_{n}+1$. If we also put the ratio $\frac{z_{n}}{l_{n}}$ of the distance of the weight from the left end of span to the length of span, equal to a_{n}, so that $\frac{z_{n}}{l_{n}}=a_{n}$, and insert for R_{n}^{\prime} its value as given by (4), we have from (9)
$t_{n}=-\frac{h_{n+1}-h_{n}}{l_{n}}+\frac{1}{6 E I}\left[2 M_{n} l_{n}+M_{n}+1_{n}-W_{n} l_{n}{ }^{2}\left(2 a_{n}-3 a_{n}^{2}+a_{n}{ }^{2}\right)\right] .[10]$
We see, therefore, that the equation of the curve of deflection (9) is completely determined when we know M_{n} and M_{n+1}, the moments at the left of the two supports of the loaded span.

Theorem of Three Moments.-These moments are readily found by the application of the "theorem of three moments" which we shall now deduce.

Consider tro consecutive spans l_{n-1} and l_{n} over the consecutive supports $n-1, n$ and $n+1$. The equation of the curve of deflection between W_{n}

and the $n+1$ th support is given by (9), and the tangent of the angle which the curve makes with the horizontal is given by (8).

If in (8) we substitute for $R^{\prime}{ }_{n}$ its value as given by (4), and for t_{n} its value from (10), and make at the same time $x=l_{n}$, then $\frac{d y}{d x}$ in (8) becomes t_{n+1} or the tangent at the $n+1$ th support, and we have
$t_{n+1}=-\frac{h_{n+1}-h_{n}}{l_{n}}-\frac{1}{6 E I}\left[M_{n} l_{n}+2 M_{n}+1 l_{n}-W_{n} l_{n}{ }^{2}\left(a_{n}-a_{n}{ }^{2}\right)\right]$.
Equation (11) gives the tangent of the angle which the tangent to the curve of deflection at the $n+1$ th support makes with the horizontal.

If we suppose a load W_{n-1} in the span l_{n-1} at a distance $a_{n-1} l_{n-1}$ from the left end, the origin being taken at m instead of at o, we can find from (11) the tangent t_{n} at the right end by diminishing each of the subscripts by unity. Hence we can write at once, from (11),
$\left.t_{n}=-\frac{h_{n}-h_{n-1}}{l_{n-1}}-\frac{1}{6 E I} M_{n-1} l_{n-1}+2 M_{n} l_{n-1}-W_{n-1} l^{2}{ }_{n-1}\left(a_{n-1}-a_{n-1}{ }^{5}\right)\right]$.

But equation (10) gives us t_{n} for a load W_{n} in the span l_{n}. Let both W_{n-1} and W_{n} act, then, and since there is a common tangent at n for the curve on each side of support n, we have, by equating (10) and (12),

$$
\begin{align*}
& M_{n-1} l_{n-1}+2 M_{n}\left(l_{n-1}+l_{n}\right)+M_{n+1} l_{n}=6 E I\left[\frac{h_{n-1}-h_{n}}{l_{n-1}}+\frac{h_{n+1}-h_{n}}{l_{n}}\right] \\
& \quad+W_{n} l_{n}^{3}\left(2 a_{n}-3 a_{n}^{2}+a_{n}^{3}\right)+W_{n-1} l_{n-1}^{2}\left(a_{n-1}-a^{3}{ }_{n-1}\right) . \tag{13}
\end{align*}
$$

If there are any number of concentrated loads in each span l_{n-1} and l_{n}, we have only to put

$$
\sum_{n}^{n+1} n_{n}^{2}\left(2 a_{n}-3 a_{n}^{2}+a_{n}^{3}\right) \quad \text { and } \quad \sum_{n-1}^{n} W_{n-1} l^{2} n-1\left(a_{n-1}-a_{n-1}^{3}\right)
$$

in place of the two last terms.
If, instead of concentrated loads, we have a uniform load w_{n-1} per unit of length over the span l_{n-1} and w_{n} per unit of length over the span l_{n}, we have $w_{n-1} d z_{n-1}$ in place of W_{n-1}, and $w_{n} d z_{n}$ in place of $W n$. Since the ratio $\frac{z_{n}}{l_{n}}$ or $\frac{z_{n-1}}{l_{n-1}}$ is denoted by a, we have $a l_{n-1}=z_{n-1}$, and $a l_{n}=z^{n}$. We can then put $w_{n-1} l_{n-1} d a$ in place of W_{n-1}, and $w_{n} l_{n} d a$ in place of W_{n}. If we make this substitution, we have

$$
\begin{aligned}
& \int_{a=0^{\circ}}^{a=1} w_{n-1} l^{3} n-1\left(a-a^{3}\right) d a=\frac{1}{4} w_{n-1} l^{3} n-1 \\
& \int_{a=0}^{a=1} w_{n} l_{n}^{3}\left(2 a-3 a^{2}+a^{3}\right) d a=\frac{1}{4} w_{n} l_{n}^{2}
\end{aligned}
$$

We have then in general

$$
\begin{equation*}
M_{n-1} l_{n-1}+2 M_{n}\left(l_{n-1}+l_{n}\right)+M_{n+1} l_{n}=Y_{n}+A_{n}+B_{n-1} \tag{II}
\end{equation*}
$$

where we have for the sake of convenience of notation

$$
Y_{n}=6 E I\left[\frac{h_{n-1}-h_{n}}{l_{n-1}}+\frac{h_{n+1}-h_{n}}{l_{n}}\right]
$$

for concentrated loads,
for uniform loading,

$$
A_{n}=\frac{1}{4} w_{n} l_{n}^{3}, \quad B_{n-1}=\frac{1}{4} w_{n-1} l_{n-1}^{3}
$$

Equation (II) is the general form of the " theorem of three moments" for constant moment of inertia of cross-section. It gives the relation between the moments at the left of any three consecutive supports, $n-1, n$ and $n+1$ of a continuous girder in terms of the consecutive spans l_{n-1} and l_{n}, the loading in those spans and the relative heights of the supports, provided the moment of inertia of the cross-section is constant.

If the supports are all on the same level, the term Y_{n} is zero and disappears. If there is no loading in the span l_{n}, the term A_{n} is zero and disappears. If there is no loading in the span l_{n-1}, the term B_{n-1} is zero and disappears.

Determination of the Moment M_{n} at Any Support. - Let us number the supports $1,2,3$, etc., beginning at the left. The corresponding spans are l_{1}, l_{2}, l_{3}, etc. Let the entire number of spans be s. Then
the last span is l_{s}, and the last support is $s+1$. If the extreme ends are not fixed, but simply rest upon the end supports, the moments M_{1} and M_{s+1} at the first and last support are zero.

Case 1. Let us take any number of spans s, and let all the spans on the left of the nth support be loaded in any manner, and all the left supports

be at different levels, while all spans on the right of the nth support are on level. Let the ends rest on the supports, so that $M_{1}=0$ and $M_{s}+1=0$. Let in general

$$
\begin{gathered}
Y_{n}^{\prime \prime}=6 E I\left[\frac{h_{n-1}-h_{n}}{l_{n-1}}\right], \quad Y^{\prime}{ }_{n}=6 E I\left[\frac{h_{n}+1-h_{n}}{l_{n}}\right], \\
\text { so that } \\
Y_{n}=Y^{\prime \prime}{ }_{n}+Y_{n}^{\prime}{ }_{n} .
\end{gathered}
$$

In the present case $Y^{\prime}{ }_{n}=0$, since supports n and $n+1$ are on the same level. We have then by the successive application of the theorem of three moments the following equations, since M_{i} and M_{s+1} are zero:

$$
\begin{align*}
& \text { (} c_{2} \text {) } \quad 2 M_{2}\left(l_{1}+l_{2}\right)+M_{3} l_{2}=Y_{2}+A_{2}+B_{1} ; \\
& \text { (c) } \quad M_{2} l_{3}+2 M_{3}\left(l_{2}+l_{3}\right)+M_{6} l_{3}=Y_{3}+A_{3}+B_{2} ; \\
& \text { (ct) } \quad M_{3} l_{3}+2 M_{4}\left(l_{3}+l_{4}\right)+M_{5} l_{4}=Y_{4}+A_{4}+B_{3} ; \\
& \text { etc.; } \\
& \left(c_{n-1}\right) \quad M_{n-2} l_{n-2}+2 M_{n-1}\left(l_{n-2}+l_{n-1}\right)+M_{n} l_{n-1} \\
& =Y_{n-1}+A_{n-1}+B_{n-2} ; \\
& \text { (} c_{n} \text {) } \quad M_{n-1} l_{n-1}+2 M_{n}\left(l_{n-1}+l_{n}\right)+M M_{n}+1 l_{n}=Y^{\prime \prime}{ }_{n}+B_{n-1} ; \tag{15}\\
& \left(c_{n+1}\right) \quad M_{n} l_{n}+2 M_{n+1}\left(l_{n}+l_{n+1}\right)+M_{n+2} l_{n+1}=0 ; \\
& \text { etc.; } \\
& \left(c_{s-2}\right) \quad M_{s-3} l_{s-3}+2 M_{s-2}\left(l_{s-3}+l_{s-2}\right)+M_{s-1} l_{s-2}=0 ; \\
& \text { (} \left.c_{s-1}\right) \quad M_{s-2} l_{s-2}+2 M_{s-1}\left(l_{s-2}+l_{s-1}\right)+M_{s} l_{s-1} \quad=0 ; \\
& \left(c_{s}\right) \quad M_{s-1} l_{s-1}+2 M_{s}\left(l_{s-1}+l_{s}\right) \\
& =0 \text {. }
\end{align*}
$$

The solution of these equations (15) can be best effected by the method of indeterminate coefficients. Thus we multiply the first equation by a number c_{2}, the second by a number c_{3}, etc., the subscript corresponding always to that of M in the middle term. Having performed these multiplications, add the resulting equations and arrange the terms according to the coefficients of M_{2}, M_{3}, etc. We thus obtain the equation

$$
\begin{align*}
{\left[2 c_{2}\left(l_{1}+l_{2}\right)+c_{3} l_{2}\right] M_{2} } & +\left[c_{2} l_{2}+2 c_{3}\left(l_{2}+l_{3}\right)+c_{4} l_{3}\right] M_{3}+\text { etc.; } \\
& +\left[c_{n-1} l_{n .-1}+c_{n}\left(l_{n-1}+l_{n}\right)+c_{n+1} l_{n}\right] M_{n}+\text { etc.; } \\
& +\left[c_{s-1} l_{s-1}+2 c_{s}\left(l_{s-1}+l_{s}\right)\right] M_{s} \\
=\left(Y^{\prime \prime} n+\right. & \left.B_{n-1}\right) c_{n}+{\left.\underset{n-1}{\prime}{ }_{\left(Y_{n}\right.}+A_{n}+B_{n-1}\right) c_{n} .} \quad \text {. . (16) } \tag{16}
\end{align*}
$$

In order, then, to determine M_{s} we have only to impose such conditions upon the multipliers c that all terms on the left except the last in equation (16) shall be zero. We have then, assuming $c_{1}=0$ and $c_{2}=1$,

$$
c_{3}=-2 \frac{l_{1}+l_{2}}{l_{2}}, \quad c_{4}=-2 c_{3} \frac{l_{2}+l_{3}}{l_{3}}-c_{2} \frac{l_{2}}{l_{2}}, \quad c_{5}=-2 c_{4} \frac{l_{3}+l_{4}}{l_{4}}-c_{3} \frac{l_{3}}{l_{4}},
$$

and generally for any multiplier c

$$
\begin{equation*}
c_{n}=-2 c_{n-1} \frac{l_{n-2}+l_{n-1}}{l_{n-1}}-c_{n-2} \frac{l_{n-2}}{l_{n-1}} . \tag{17}
\end{equation*}
$$

These values of c make all terms zero on the left of equation (16) except the last, and give us for the value of M_{s}

$$
\begin{equation*}
M_{s}=\frac{\left(Y^{\prime \prime}{ }_{n}+B_{n-1}\right) c_{n}+\sum_{n-1}^{\prime}\left(Y_{n}+A_{n}+B_{n-1}\right) c_{n}}{c_{s-1} l_{s-1}+2 c_{s}\left(l_{s-1}+l_{s}\right)} \tag{18}
\end{equation*}
$$

From the law of the multipliers we have

$$
c_{s-1} l_{s-1}+2 c_{s}\left(l_{s-1}+l_{s}\right)+c_{s}+1 l_{s}=0
$$

Hence we may put in the denominator of (18) the equivalent expression $-c_{s}+1 l_{s}$.

Case 2. Let all the spans on the right of the nth support be loaded in any manner and all the right supports be at different levels, while all the spans on the left of the nth support are unloaded and all the left supports are on level. As before $M_{1}=0$ and $M_{s+1}=0$.

In the present case $Y^{\prime \prime}{ }^{\prime \prime}=0$, since supports n and $n-1$ are on level. We have then by successive applications of the theorem of three moments the following equations:

$$
\begin{equation*}
2 M_{2}\left(l_{1}+l_{2}\right)+M_{3} l_{2}=0 ; \tag{s}
\end{equation*}
$$

$\left(d_{s-1}\right)$
$M_{2} l_{2}+2 M_{3}\left(l_{2}+l_{3}\right)+M_{4} l_{2}=0 ;$
(d_{s-2})

$\left(d_{s-n}+3\right) \quad M_{n-2} l_{n-2}+2 M_{n-1}\left(l_{n-2}+l_{n-1}\right)+M_{n} l_{n-1}=0 ;$	
$\left(d_{s-n}+2\right)$	$M_{n-1} l_{n-1}+2 M_{n}\left(l_{n-1}+l_{n}\right)+M_{n+1} l_{n}=Y_{n}^{\prime}+A_{n} ;$
$\left(d_{s-n}+1\right)$	$M_{n} l_{n}+2 M_{n+1}\left(l_{n}+l_{n+1}\right)+M_{n}+2 l_{n+1}$
	$\begin{align*} & \quad=Y_{n+1}+A_{n+1}+B_{n} ; \tag{19}\\ & \text { etc.; } \end{align*}$
$\left(d_{4}\right)$	$M_{s-3} l_{s-3}+2 M_{s-2}\left(l_{s-3}+l_{s-2}\right)+M_{s-1} l_{s-2}$
	$=Y_{s-2}+A_{s-2}+B_{s-3} ;$
(d_{3})	$M_{s-2} l_{s-2}+2 M_{s-1}\left(l_{s-2}+l_{s-1}\right)+M_{s} l_{s-1}$
	$=Y_{8-1}+A_{s-1}+B_{s-2} ;$
$\left.d_{2}\right)$	$M_{s-1} l_{s-1}+2 M_{s}\left(l_{s-1}+l_{s}\right)=Y_{s}+A_{s}+B_{s-1}$.

If we multiply the last of equations (19) by a number d_{2}, the last but one by d_{3}, the nth by d_{s-n+2}, etc., add the resulting equations and arrange the terms according to the coefficients of M_{2}, M_{3}, etc., we obtain

$$
\begin{align*}
& {\left[2 d_{2}\left(l_{s-1}+l_{s}\right)+d_{3} l_{s-1}\right] M_{s}+\left[d_{2} l_{s-1}+2 d_{s}\left(l_{s-2}+l_{s-1}\right)+d_{s} l_{s-2}\right] M_{s-1}+\text { etc. }} \\
& \quad+\left[d_{s-n}+1 l_{n}+2\left(l_{n-1}+l_{n}\right) d_{s-n}+2+d_{s-n}+3 l_{n-1}\right] M_{n}+\text { etc.; } \\
& \quad+\left[d_{s-2} l_{3}+2 d_{s-1}\left(l_{2}+l_{s}\right)+d_{s} l_{2}\right] M_{3}+\left[d_{s-1} l_{2}+2 d_{s}\left(l_{1}+l_{2}\right)\right] M_{2} \\
& \left.\quad=\left(Y_{n}^{\prime}+A_{n}\right) d_{s-n}+2+\sum_{n+1}^{n+1}+A_{n}+B_{n-1}\right) d_{s-n+2} \tag{20}
\end{align*}
$$

In order to determine M_{2} we have only to impose such conditions upon the multipliers d that all terms on the left except the last in equation (20) shall be zero. We have then, assuming $d_{1}=0, d_{2}=1$,

$$
d_{3}=-2 \frac{l_{s}+l_{s-1}}{l_{s-1}}, \quad d_{4}=-2 d_{3} \frac{l_{s-1}+l_{s-2}}{l_{s-2}}-d_{2} \frac{l_{s-1}}{l_{s-2}}
$$

and generally for any multiplier d,

$$
\begin{equation*}
d_{n}=-2 d_{n-1} \frac{l_{s-n}+3+l_{s-n+2}}{l_{s-n+2}}-d_{n-2} \frac{l_{s-n+3}}{l_{s-n+2}} \tag{21}
\end{equation*}
$$

These values of d make all terms zero on the left of equation (20) except the last, and give us for the value of M_{2}

$$
\begin{equation*}
M_{2}=\frac{\left.\left(Y^{\prime} n+A_{n}\right) d_{s-n+2}+\underset{s+1}{n+1}{\underset{s}{\prime+1}}_{n+A_{n}}+B_{n-1}\right) d_{s-n+2}}{d_{s-1} l_{2}+2 d_{s}\left(l_{2}+l_{1}\right)} \tag{22}
\end{equation*}
$$

From the law of the multipliers we hare

$$
d_{s-1} l_{2}+2 d_{s}\left(l_{2}+l_{1}\right)+d_{s+1} l_{1}=0
$$

Hence we may put in the denominator of (22) the equivalent expression $-d_{s+1} l_{1}$.

Now from equations (19) and from the values of c given by (17) we see at once by inspection that

$$
M_{3}=c_{2} M_{2}, M_{4}=c_{4} M_{2}, \text { etc., and generally } M_{m}=c_{m} M_{2}
$$

and this holds good so long as m is less than n.
We have then for the moment M_{m} at any support m on the left of the nth in the second case,
for $m<n$

$$
\begin{equation*}
M_{m}=\frac{\left.c_{m} d_{s-n}+2\left(\bar{Y}_{n}^{\prime}+A_{n}\right)+c_{m} \sum_{s+1}^{n+Y_{n}}+A_{n}+B_{n-1}\right) d_{s-n+2}}{d_{s-1} l_{s}+2 d_{s}\left(l_{1}+l_{2}\right) \text { or }-\overline{d_{s+1} l_{1}}} \tag{23}
\end{equation*}
$$

Again, from equations (15) and from the values of d given by (21) we see at once by inspection that
$M_{s-1}=d_{s} M_{s}, \quad M_{s-2}=d_{4} M_{s}$, etc., and generally $\quad M_{m}=d_{s-m+2} M_{s}$, and this holds good so long as m is greater than n.

We have then for the moment M_{m} at any support m on the right of the nth in the first case,
for $m>n$

$$
\begin{equation*}
M_{m}=\frac{c_{n} d_{s-m+2}\left(Y_{n}^{\prime \prime}+B_{n-1}\right)+d_{s-m}+2 \sum_{n-1}^{\prime}\left(Y_{n}+A_{n}+B_{n-1}\right) c_{n}}{c_{s-1} l_{s-1}+2 c_{s}\left(l_{s-1}+l_{s}\right), \quad \text { or }-c_{s+1} l_{s}} \tag{24}
\end{equation*}
$$

If we make in (21) and (17) $n=s+1$ and then give different values to s and compare the results, we see that in general $c_{s}+1 l_{s}=d_{s+1} l_{1}$. The denominators in (22) and (23) are then the same.

If we suppose Case 1 and Case 2 to exist simultaneously, we have the case of all spans loaded and all supports on different level. If then we make $m=n$ in (23) and (24) and add these two equations, we have, since $Y^{\prime}{ }_{n}+Y^{\prime \prime}{ }_{n}=Y_{n}$, for the moment M_{n} on the left of any support n
$M_{n}=\frac{\left.d_{s-n}+2 \sum_{n}^{\prime}\left(Y_{n}+A_{n}+B_{n-1}\right) c_{n}+c_{n} \sum_{s+1}^{n+1} \bar{Y}_{n}+A_{n}+B_{n-1}\right) d_{s-n+2}}{D}$,
where we can put for the denominator D any one of the equivalent values $D=c_{s-1} l_{s-1}+2 c_{s}\left(l_{s-1}+l_{s}\right)=-c_{s}+{ }_{1} l_{s}=-d_{s+1} l_{1}=d_{s-1} l_{2}+2 d_{s}\left(l_{1}+l_{2}\right)$.

Equation (III) gives the moment with its proper sign on the left of any support n. If we wish the moment on the right of any support n, we must change the sign for M_{n} as given by (III).

Recapitulation-General Formulas.-We have then for the moment on the left of any support n of a continuous girder of constant moment of inertia of cross-section, for any loading and any levels of supports,
$M_{n}=\frac{d_{s-n+2} \sum_{n}^{\prime}\left(Y_{n}+A_{n}+B_{n-1}\right) c_{n}+c_{n} \sum_{s+1}^{n+1}\left(Y_{n}+A_{n}+B_{n-1}\right) d_{s-n+2}}{D}$,
where we can put for D any one of the equivalent values
$D=c_{s-1} l_{s-1}+2 c_{s}\left(l_{s-1}+l_{s}\right)=-c_{s+1} l_{s}=-d_{s+1 l_{1}}=d_{s-1} l_{2}+2 d_{s}\left(l_{1}+l_{2}\right)$.
In this equation s is the number of spans,

$$
\begin{equation*}
Y_{n}=6 E I\left[\frac{h_{n-1}-h_{n}}{l_{n-1}}+\frac{h_{n+1}-h_{n}}{l_{n}}\right] \tag{2}
\end{equation*}
$$

where h_{n-1}, h_{n} and h_{n+1} are the distances below any assumed level line of the three consecutive supports $n-1, n$ and $n+1$.

For concentrated loads
$A_{n}=\sum \sum_{n}^{n+W_{n} l_{n}^{2}\left(2 a_{n}-3 a_{n}^{2}+a_{n}^{3}\right), \quad B_{n-1}=\sum_{n-1}^{n} W_{n-1} l^{2} n-1\left(a_{n-1}-a^{3}{ }_{n-1}\right), ~, ~, ~, ~}$
where W_{n} is a load in span l_{n}, and W_{n-1} a load in span l_{n-1}, and a is the ratio of the distance of any load from the left end of its span to the length of the span, or $a=\frac{z_{n}}{l_{n}}$.

For uniform loading

$$
A_{n}=\frac{1}{4} w_{n} l_{n}^{3}, \quad B_{n-1}=\frac{1}{4} w_{n-1} l_{n-1}^{2}
$$

where w_{n} and w_{n-1} are the loads per unit of length over spans l_{n} and l_{n-1}.
The numbers c are given by
$c_{1}=0, c_{2}=1$, and for any other $c_{n}=-2 c_{n-1} \frac{l_{n-2}+l_{n-1}}{l_{n-1}}-c_{n-2} \frac{l_{n-2}}{l_{n-1}}$.
The numbers d are given by

$$
\left.\begin{array}{l}
d_{1}=0, \quad d_{2}=1, \quad \text { and for any other } \tag{4}\\
d_{n}=-2 d_{n-1} \frac{l_{s-n+3}+l_{s-n}+2}{l_{s-n}+2}-d_{n-2} \frac{l_{s-n+3}}{l_{s-n}+2}
\end{array}\right\}
$$

For the reaction just to the right of any support n we have

$$
R_{n}^{\prime}=\frac{M_{n}-M_{n+1}}{l_{n}}+q^{\prime} n
$$

and just to the left of any support n

$$
\begin{equation*}
R_{n}^{\prime \prime}=\frac{M_{n}-M_{n-1}}{l_{n-1}}+q^{\prime \prime} n-1 \tag{I}
\end{equation*}
$$

where M_{n-1}, M_{n} and M_{n+1} are the moments on the left of supports $n-1$, n and $n+1$.

For concentrated loads

$$
\begin{equation*}
q^{\prime} n=\sum_{n}^{n+1} W_{n}\left(1-a_{n}\right), \quad q^{\prime \prime}{ }_{n-1}=\sum_{n-1}^{n} W_{n-1} a_{n-1}, \ldots . \tag{5}
\end{equation*}
$$

and for uniform loading

$$
\begin{equation*}
q^{\prime}{ }_{n}=\frac{1}{2} w_{n} l_{n}, \quad q^{\prime \prime}{ }_{n-1}=\frac{1}{2} w_{n-1} l_{n-1} \tag{6}
\end{equation*}
$$

For the total reaction at any support

$$
\begin{equation*}
R_{n}=R_{n}^{\prime}+R_{n}^{\prime \prime} . \tag{7}
\end{equation*}
$$

Moments counter-clockwise are positive and reactious upwards are positive. Equation (III) gives the moment with its proper sign on the left of any support n. If we wish the moment on the right, we must change the sign for M_{2} as given by (III).

Special Cases.-If the supports are all on level, equation (3) is zero and the Y 's disappear in equation (1).

If the spans are all equal, we have

$$
\left.\begin{array}{rrr}
c_{1}=0, & c_{2}=1, & c_{3}=-4, \tag{8}\\
d_{1}=0, & c_{4}=+15, \text { etc. } \\
d_{2}=1, & d_{3}=-4, & d_{4}=+15, \text { etc. } ;
\end{array}\right\}
$$

or the values of the c's and d's are the same. They are alternately + and - , and each one is numericallg equal to four times the preceding minus the one next preceding.

If we make l_{1} or $l_{s}=0$, the beam is fixed horizontally at either the left or the right end. We must remember, however, that when we thus make l_{1} or l_{s} equal to zero, the value of s must still remain unchanged and the supports must be numbered as they were before the end spans were made zero.

EXAMPLES.

(1) A beam of one span of length l is fixed horizontally at the ends. Find the end moments and reactions for a load W at a distance $z=a l$ from the left end. Also for a uniform load of w per unit of length over the span.

Ans. Let there be three spans, l_{1}, l_{2}, l_{3}, and let l_{1} and l_{2} be zero. Then $8=3$, and we have

$$
c_{1}=d_{1}=0, \quad c_{2}=d_{2}=1, \quad c_{3}=d_{3}=-2
$$

We have also $Y_{1}=Y_{4}=0, A_{1}=A_{3}=B_{1}=B_{3}=0$. Hence for $n=2$ we have in general from equation (III), page , for the moment M_{2} on the left of the left end of the span

$$
\begin{equation*}
M_{2}=\frac{d_{2}\left(Y_{2}+A_{2}\right) c_{2}+c_{2}\left(Y_{3}+B_{2}\right) d_{2}}{l d_{2}+2 l d_{3}}=\frac{2\left(Y_{2}+A_{2}\right)-Y_{3}-B_{2}}{3 l} \tag{1}
\end{equation*}
$$

For $n=3$ we have for the moment M_{3} on the left of the right end, from (III),

$$
\begin{equation*}
M_{3}=\frac{d_{2}\left(Y_{2}+A_{2}\right) c_{2}+d_{2}\left(Y_{3}+B_{2}\right) c_{3}}{l d_{2}+2 l d_{3}}=-\frac{Y_{2}+A_{3}-2\left(Y_{2}+B_{2}\right)}{3 l} \tag{2}
\end{equation*}
$$

If the ends are on level, $Y_{2}=Y_{3}=0$, and

$$
\begin{equation*}
M_{2}=\frac{2 A_{2}-B_{2}}{3 l}, \quad M_{3}=-\frac{A_{2}-2 B_{2}}{3 l} \tag{3}
\end{equation*}
$$

Inserting in (3) the values of A_{2} and B_{2} for concentrated load, we have for concentrated load and ends level

$$
M_{2}=+W l\left(a-2 a^{2}+a^{3}\right), \quad M_{2}=W l\left(a^{2}-a^{3}\right)
$$

These are precisely the same values, in different form, already found for the end moments in this case on page 343, except that M_{3} is on the left instead - of on the right.

For the reaction at the left end we have from (I), page 369,

$$
R_{2}^{\prime}=\frac{M_{2}-M_{3}}{l}+W(1-a)=+W\left(1-3 a^{2}+2 a^{3}\right)
$$

and for the reaction at the right end

$$
R_{3}^{\prime \prime}=\frac{M_{3}-M_{2}}{l}+W a=+W\left(3 a^{2}-2 a^{3}\right)
$$

These are precisely the same values, in different form, already found for the end reactions in this case, page 343.

For uniform load and ends level we have, inserting the values of A_{2} and B_{2} in (3),

$$
\begin{array}{ll}
M Y_{2}=+\frac{1}{12} w l^{2}, & M_{3}=+\frac{1}{12} w l^{3} \\
R_{2}^{\prime}=+\frac{1}{2} w l, & R_{3}^{\prime \prime}=+\frac{1}{2} w l .
\end{array}
$$

These are the same values as obtained on page 345 for the case, except that M_{3} is on the left instead of on the right.

For uniform load and ends out of level,

$$
M_{2}=\frac{2 Y_{2}-Y_{3}}{3 l}+\frac{2 l^{2}}{12}, \quad M_{3}=-\frac{Y_{2}-2 Y_{3}}{3 l}+\frac{w l^{2}}{12}, \quad R_{2}^{\prime}=\frac{Y_{2}-Y_{3}}{l^{2}}+\frac{w l}{2}
$$

How much must the left end be lowered in order to make the left reaction $R_{2}{ }^{\prime}$ equal to zero?

Here we have

$$
\frac{Y_{2}-Y_{3}}{l^{2}}+\frac{w l}{2}=0, \quad \text { or } \quad Y_{2}-Y_{3}=-\frac{w l^{3}}{2}
$$

Since $Y_{3}=-Y_{2}$, we have

$$
Y_{2}=6 E I\left[\frac{h_{s}-h_{2}}{l}\right]=-\frac{w l^{3}}{4}
$$

Hence

$$
h_{s}-h_{2}=-\frac{v o l^{4}}{24 E I}
$$

Since E is always very large, we see that a very small lowering of the left support will make the left reaction zero. We have in this case

$$
M_{2}=-\frac{v l^{2}}{6}, \quad M_{2}=+\frac{v l^{2}}{3}, \quad R_{3}^{\prime \prime}=+v v l
$$

How much must the left end be lowered in order to make $M_{2}=0$?
Here we have

$$
\frac{2 Y_{2}-Y_{3}}{3 l}+\frac{26 t^{2}}{12}=0, \quad \text { and } \quad Y_{3}=-Y_{2}
$$

Hence

$$
\begin{gathered}
Y_{2}=6 E I\left[\frac{h_{3}-h_{2}}{l}\right]=-\frac{w l^{3}}{12} \quad \text { and } \quad h_{3}-h_{2}=-\frac{u l^{4}}{72 E I}, \\
M_{3}=+\frac{w l^{2}}{6}, \quad R_{2}^{\prime}=+\frac{v l}{3}, \quad R_{3}^{\prime \prime}=+\frac{2 v l}{3} .
\end{gathered}
$$

(2) A beam of one span of length l is fixed horizontally at the right end. Find the reactions and moment at the right end for a load W at a distance $z=$ al from the left end. Also for a uniform load of w per unit of length over the span.

Ans. Let there be two spans l_{1} and l_{2}, and let $l_{2}=0$. Then $s=2$, and we have

$$
\begin{gathered}
c_{1}=d_{1}=0, \quad c_{2}=d_{2}=1, \quad d_{3}=-2, \quad h_{3}-h_{2}=0, \quad Y_{3}=0, \\
A_{2}=B_{2}=0, \quad Y_{2}=6 E I\left[\frac{h_{3}-h_{2}}{l}\right] .
\end{gathered}
$$

Hence for $n=2$ we have in general from equation (III), page 375, for the moment M_{2} on the left of the right end,

$$
M_{2}=\frac{\bar{Y}_{2}+B_{1}}{2 l}
$$

We also have $M_{1}=0, M_{3}=0$. Hence

$$
R_{1}^{\prime}=-\frac{Y_{2}+B_{1}}{2 l^{2}}+q_{2}^{\prime}, \quad R_{2}^{\prime \prime}=\frac{Y_{2}+B_{1}}{2 l^{2}}+q_{2}
$$

If the ends are level, $Y_{2}=0$ and

$$
M_{2}=\frac{B_{1}}{2 l}, \quad R_{1}^{\prime}=-\frac{B_{1}}{2 l^{2}}+q_{2}^{\prime}, \quad R_{2}^{\prime \prime}=\frac{B_{1}}{2 l^{2}}+q_{1}{ }^{\prime \prime} .
$$

For concentrated load, ends level, we have then

$$
M_{2}=\frac{W l}{2}\left(a-a^{3}\right), \quad R_{1}^{\prime}=\frac{W}{2}\left(2-3 a+a^{3}\right), \quad R_{2}^{\prime \prime}=\frac{W}{2}\left(3 a-a^{3}\right)
$$

For uniform load, ends level, we have

$$
M_{2}=+\frac{w l^{2}}{8}, \quad R_{1}{ }^{\prime}=+\frac{3}{8} w l, \quad R_{2}^{\prime \prime}=+\frac{5}{8} \varkappa l
$$

How much must the left end be lowered in order to make the left reaction R_{1}^{\prime} zero?

Here we have

$$
-\frac{Y_{2}+B_{1}}{2 l^{2}}+q_{1}^{\prime}=0, \quad \text { or } \quad Y_{2}=6 E I\left[\frac{h_{1}-h_{2}}{l}\right]=-B_{1}+2 q_{1}^{\prime} l^{2}
$$

Hence

$$
h_{2}-h_{1}=\frac{B_{1} l-2 q_{1}^{\prime} l^{3}}{6 \overline{E I}}, \quad M_{2}=q_{1}^{\prime} l, \quad R_{2}^{\prime \prime}=+q_{1}^{\prime}+q_{1}^{\prime \prime} .
$$

If the load is uniform,

$$
q_{2}^{\prime}=q_{1}^{\prime \prime}=\frac{v l}{2}, \quad B_{1}=\frac{v l^{3}}{4}, \quad h_{2}-h_{1}=-\frac{v l^{4}}{8 E 1}, \quad M_{2}=+\frac{v l^{2}}{2}, \quad R_{2}^{\prime \prime}=v o l .
$$

If the load is concentrated,

$$
\begin{gathered}
q_{1}^{\prime}=W(1-a), \quad q_{2}^{\prime \prime}=W a, \quad B_{1}=W l^{2}\left(a-a^{3}\right) \\
h_{2}-h_{1}=-\frac{W l^{3}\left(2-3 a+a^{3}\right)}{6 E l}, \quad M_{2}=W l(1-a), \quad R_{2}^{\prime \prime}=W
\end{gathered}
$$

How much must the right end be lowered in order that the moment M_{2} may be zero?

Here we have

$$
\frac{Y_{2}+B_{1}}{2 l}=0, \quad \text { or } \quad Y_{2}=6 E I\left[\frac{h_{1}-h_{2}}{l}\right]=-B_{1} .
$$

Hence

$$
{ }_{1}-h_{2}=-\frac{B_{1} l}{6 E I}, \quad R_{1}^{\prime}=q_{1}^{\prime}, \quad R_{2}^{\prime \prime}=q_{2}^{\prime \prime}
$$

If the load is uniform,

$$
h_{1}-h_{2}=-\frac{w l^{4}}{24 E l}, \quad R_{2}^{\prime}=R_{2}^{\prime \prime}=\frac{w l}{2}
$$

If the load is concentrated,

$$
h_{1}-h_{2}=-\frac{W l^{3}\left(a-a^{3}\right)}{6 E I}, \quad R_{1}^{\prime}=W(1-a), \quad R_{2}^{\prime \prime}=W a
$$

(3) Find the general formulas for a continuous beam of two spans.

Ans. Here $s=2$, and we have from (III), page 375,

$$
\begin{gathered}
M_{1}=0, \quad M_{3}=0, \quad M_{2}=\frac{Y_{2}+A_{2}+B_{1}}{2\left(l_{1}+\frac{\left.l_{2}\right)}{l_{2}}, \quad R_{1}^{\prime}=-\frac{M_{2}}{l_{1}}+q_{1}^{\prime}\right.} \\
{R_{2}^{\prime \prime}=}^{M_{2}}+q_{1}^{\prime \prime}, \quad R_{2}^{\prime}=\frac{M_{2}}{l_{2}}+q_{2}^{\prime}, \quad R_{3}^{\prime \prime}=-\frac{M_{2}}{l_{2}}+q_{2}^{\prime \prime} \\
Y_{2}=6 E I\left[\frac{h_{1}-h_{2}}{l_{1}}+\frac{h_{3}-h_{2}}{l_{2}}\right]
\end{gathered}
$$

For concentrated loading,

$$
\begin{gathered}
q_{2}^{\prime}=\Sigma W_{1}\left(1-a_{1}\right), \quad q_{1}^{\prime \prime}=\Sigma W_{1} a_{1}, \quad q_{2}^{\prime}=\Sigma W_{2}\left(1-a_{2}\right), \quad q_{2}^{\prime \prime}=\Sigma W_{2} a_{2}, \\
A_{2}=\Sigma W_{2} l_{2}{ }^{2}\left(2 a_{2}-3 a_{2}{ }^{2}+a_{2}{ }^{3}\right), \quad B_{1}=\Sigma W_{1} l_{1}{ }^{2}\left(a_{1}-a_{1}{ }^{3}\right)
\end{gathered}
$$

For nniform loading,

$$
q_{1}^{\prime}=q_{1}^{\prime \prime}=\frac{1}{2} 2 o_{1} l_{1}, \quad q_{2}^{\prime \prime}=q_{2}^{\prime}=\frac{1}{2} w_{2} l_{2}, \quad A_{2}=\frac{1}{4} 2 w_{2} l_{2}^{3}, \quad B_{1}=\frac{1}{4} w_{1} l_{1}^{3} .
$$

These formulas will solve any case of two spans.
(4) A plate girder is continuous over three supports, $l_{1}=30 \mathrm{ft} ., l_{2}=$ 50 ft., the supports being all on level. The uniform load per coot in the first span is $w_{1}=3000$ lbs., in the second $w_{3}=350 \mathrm{lbs}$. Find the moments and reactions.

Ans. From the general formulas of Example (3), since all supports are on level, $Y_{2}=0$, and we have

$$
M_{1}=0, \quad M_{3}=0, \quad M_{2}=\frac{A_{2}+B_{2}}{2\left(l_{1}+l_{2}\right)}
$$

In the present case $A_{2}=\frac{2 o_{2} l_{2}{ }^{3}}{4}, B_{1}=\frac{2 o_{1} l_{1}{ }^{3}}{4}$. Hence

$$
M_{2}=\frac{w_{1} l_{1}^{3}+w_{3} l_{3}^{2}}{8\left(l_{1}+l_{2}\right)}=\frac{3000 \times 30^{3}+350 \times 50^{2}}{8(30+50)}=+194921.875 \mathrm{ft} .-\mathrm{lbs}
$$

We have therefore

$$
\begin{gathered}
R_{1}^{\prime}=-\frac{M_{2}}{l_{1}}+\frac{w_{1} l_{1}}{2}=-\frac{194921.875}{30}+\frac{3000 \times 30}{2}=+38502.6 \mathrm{lbs} ; \\
R_{\mathrm{a}^{\prime \prime}}=-\frac{M_{2}}{l_{2}}+\frac{w_{2} l_{2}}{2}=-\frac{194921.875}{50}+\frac{350 \times 50}{2}=+4851.5625 \mathrm{lbs} . \\
R_{2}^{\prime \prime}=\frac{M_{2}}{l_{1}}+\frac{w_{1} l_{2}}{2}=+51497.39 \mathrm{lbs} ; \quad R_{2}^{\prime}=\frac{M_{2}}{l_{2}}+\frac{w_{2} l_{2}}{2}=+12648.44 \mathrm{lbs} . \\
R_{2}=R_{2}^{\prime \prime}+R_{2}^{\prime}=+64145.8 \mathrm{lbs} .
\end{gathered}
$$

How far must the second support be lowered in order that the moment M_{2} may be zero?

Since supports 1 and 3 remain on level, $h_{1}-h_{2}=h_{3}-h_{2}$. We have then

$$
Y_{2}=6 E I\left[\frac{h_{1}-h_{2}}{l_{1}}+\frac{h_{1}-h_{2}}{l_{2}}\right]
$$

and
$\overline{6 E} I\left[\frac{h_{1}-h_{2}}{l_{1}}+\frac{h_{3}-h_{2}}{l_{2}}\right]+\frac{w_{2} l_{2}^{3}}{4}+\frac{w_{1} l_{1}^{3}}{4}=0$, or $h_{1}-h_{2}=-\frac{v_{1} l_{1}^{4} l_{2}+v_{2} l_{2} l_{1}}{24 E I\left(l_{1}+l_{2}\right)}$.
If we take $E=24000000 \mathrm{lbs}$. per square inch, and if $I=53400$ for dimensions in inches, we have

$$
h_{1}-h_{2}=-0.054 \mathrm{inch} .
$$

Therefore a sinking of the second support of only about $\frac{5}{100}$ of an inch is sufficient to make M_{2} zero.

How far must the second support be lowered in order that the reaction on the second support may be zero?

Here we have

$$
R_{2}^{\prime \prime}+R_{2}^{\prime}=R_{2}=0, \quad \text { or } \quad \frac{M_{2}}{l_{1}}+\frac{w_{1} l_{1}}{2}+\frac{M_{2}}{l_{2}}+\frac{w_{2} l_{2}}{2}=0
$$

or

$$
M_{2}=-\frac{v l_{1} l_{2}+v_{2} l_{1} l_{2}^{2}}{2\left(l_{1}+l_{2}\right)}=-1007812.5 \mathrm{ft} .-\mathrm{lbs}
$$

From the general value of \boldsymbol{M}_{2} in Example (3),

$$
-w_{1} l_{1}{ }^{2} l_{2}-w_{1} l_{1} l_{2}{ }^{2}=\frac{w_{1} l_{1}^{3}}{4}+\frac{w_{2} l_{2}{ }^{3}}{4}+6 E I\left[\frac{h_{1}-h_{3}}{l_{1}}+\frac{h_{3}-h_{2}}{l_{2}}\right]
$$

Hence, since $h_{1}-h_{2}=h_{3}-h_{2}, E=24000000, I=53400$,

$$
h_{1}-h_{2}=-\frac{w_{1} l_{1}{ }^{4} l_{2}+w_{2} l_{1} l_{2}{ }^{4}+4 w_{1} l_{1}{ }^{3} l_{2}{ }^{2}+4 w_{2} l_{1}{ }^{2} l_{2}{ }^{3}}{24 E I\left(l_{1}+l_{2}\right)}=-0.73 \text { inch. }
$$

Therefore a sinking of the second support of only about seven tenths of an inch is sufficient to convert the two spans into one long span.

We see then that a continuous girder requires the supports to be invariable.
We find in the present case

$$
\begin{gathered}
R_{1}^{\prime}=+78593.75 \mathrm{lbs} ., \quad R_{3}{ }^{\prime \prime}=+28906.25 \mathrm{lbs} . \\
R_{2}{ }^{\prime \prime}=+11406.25 \mathrm{lbs}, \quad R_{2}{ }^{\prime}=-1140625 \mathrm{lbs} . \\
R_{2}=R_{2}^{\prime \prime}+R_{2}{ }^{\prime}=0 .
\end{gathered}
$$

If the spans l_{1} and l_{2} are equal and v_{1} and v_{2} are equal, we have at once
$h_{1}-h_{2}=-\frac{5 v o l^{4}}{24 E I}$, or the deflection at the centre of a span whose length is $2 l$, and $M_{2}=-\frac{w l^{2}}{2}$ as should be.
(5) If in the case of Example (4) we have a concentrated load $W_{1}=$ 90000 lbs. in the first span at a distance $\frac{1}{4} l_{1}$ from the left end, and a concentrated load $W_{2}=18000 \mathrm{lbs}$. at a distance $\frac{1}{2} l_{2}$, find the moments and reactions.

Ans. We have

$$
\begin{array}{cc}
a_{1}=\frac{1}{4}, \quad a_{2}=\frac{1}{2}, \quad A_{2}=W_{2} l_{2}^{2}\left(2 a_{2}-3 a_{2}^{2}+a_{2}^{8}\right)=\frac{3}{8} W_{2} l_{2}^{2}, \\
& B_{1}=W_{1} l_{1}^{2}\left(a_{1}-a_{1}^{3}\right)=\frac{15}{64} W_{1} l_{1}^{2} .
\end{array}
$$

Then, from the general formulas of Example (3), we have
$M_{2}=+224121.094 \mathrm{ft} .-\mathrm{lbs} ., \quad R_{1}{ }^{\prime}=+60029.3 \mathrm{lbs} ., \quad R_{\mathrm{s}}{ }^{\prime \prime}=+4517.58 \mathrm{lbs}$, $\boldsymbol{R}_{2}{ }^{\prime \prime}=+29970.7 \mathrm{lbs}$., $\quad R_{2}{ }^{\prime}=+13482.42 \mathrm{lbs} ., \quad R_{2}=R_{2}{ }^{\prime \prime}+R_{2}{ }^{\prime}=+43453.12 \mathrm{lbs}$.

For the distance the second support must be lowered in order that \boldsymbol{M}_{2} may be zero we find

$$
h_{1}-h_{2}=-0.1511 \text { inch. }
$$

For the distance the second support must be lowered in order that \boldsymbol{R}_{2} may be zero we find

$$
h_{1}-h_{2}=-0.55 \text { inch. }
$$

(6) Let a beam of two equal spans have a load W_{1} in the first span and W_{2} in the second span, each load being at the middle of its span. "Let the second support be lowered by an amount $h_{1}-h_{2}=-\frac{\left(W_{1}+W_{2}\right) l^{3}}{48 E I}$. What are the moments, shears and reactions?

Ans. $\quad M_{2}=\left(W_{1}+W_{2}\right) \frac{l}{32}, \quad R_{1}{ }^{\prime}=\frac{15 W_{1}-W_{2}}{32}, \quad R_{3}{ }^{\prime \prime}=\frac{15 W_{2}-W_{1}}{32}$,

$$
R_{2}^{\prime \prime}=\frac{17 W_{1}+W_{2}}{32}, \quad R_{2}^{\prime}=\frac{W_{1}+17 W_{2}}{32}, \quad R_{2}=\frac{18\left(W_{1}+W_{2}\right)}{32} .
$$

(7) Let a beam of two spans l_{1} and l_{2} level supports have a load W_{1} at a distance al, from the left end of the first span. Find the reactions when $l=l$, and $l_{2}=n l$.

$$
\begin{array}{ll}
\text { Ans. } & R_{1}{ }^{\prime}=\frac{W_{1}}{2(1+n)}\left[2(1+n)-a(3+2 n)+a^{3}\right], \\
& R_{2}{ }^{\prime \prime}=\frac{W_{1}}{2(1+n)}\left[a(3+2 n)-a^{3}\right], \quad R_{2}{ }^{\prime}=\frac{W_{1}}{2 n(1+n)}\left(a-a^{3}\right) \\
& R_{3}{ }^{\prime \prime}=-\frac{W_{1}}{2 n(1+n)}\left(a-a^{3}\right), \quad R_{2}=R_{2}{ }^{\prime \prime}+R_{2}{ }^{\prime}=\frac{W_{1}}{2 n}\left[a(1+2 n)-a^{3}\right] .
\end{array}
$$

If the spans are equal, $n=1$ and

$$
\begin{aligned}
& R_{1}{ }^{\prime}=\frac{W_{1}}{4}\left[4-5 a+a^{3}\right], \quad R_{2}{ }^{\prime \prime}=\frac{W_{1}}{4}\left[5 a-a^{3}\right], \quad R_{2}{ }^{\prime}=\frac{W_{1}}{4}\left(a-a^{3}\right) \\
& R_{3}{ }^{\prime \prime}=-\frac{W_{1}}{4}\left(a-a^{3}\right), \quad R_{2}=R_{2}{ }^{\prime \prime}+R_{2}{ }^{\prime}=\frac{W_{1}}{2}\left(3 a-a^{3}\right)
\end{aligned}
$$

(8) Find the general formulas for a continuous beam of three spans. Ans. Here $s=3$, and we have from (III), page 375,

$$
\begin{gathered}
M_{1}=0, \quad M_{4}=0, \quad M_{2}=-\frac{d_{3}\left(Y_{2}+A_{2}+B_{1}\right)+Y_{3}+A_{3}+B_{2}}{d_{4} l_{1}}, \\
M_{2}=-\frac{Y_{2}+A_{2}+B_{1}+c_{3}\left(Y_{3}+A_{3}+B_{2}\right)}{d_{4} l_{1}} ; \\
R_{1}^{\prime}=-\frac{M_{2}}{l_{1}}+q_{1^{\prime}}, \quad R_{2}^{\prime \prime}=\frac{M_{2}}{l_{1}}+q_{1}^{\prime \prime}, \quad R_{2}^{\prime}=\frac{M_{2}-M_{2}}{l_{2}}+q_{2}^{\prime}, \\
R_{3}^{\prime \prime}=\frac{M_{3}-M_{2}}{l_{2}}+q_{2}^{\prime \prime}, \quad R_{a^{\prime}}=\frac{M_{3}}{l_{3}}+q_{3}{ }^{\prime}, \quad R_{4}^{\prime \prime}=-\frac{M_{3}}{l_{3}}+q_{3}^{\prime \prime} ; \\
c_{3}=-2 \frac{l_{1}+l_{2}}{l_{2}}, \quad d_{3}=-2 \frac{l_{2}+l_{3}}{l_{2}}, \quad d_{4}=+4 \frac{\left(l_{1}+l_{2}\right)\left(l_{2}+l_{3}\right)}{l_{1} l_{2}} ; \\
Y_{2}=6 E I\left[\frac{h_{1}-h_{2}}{l_{1}}+\frac{h_{3}-h_{2}}{l_{2}}\right], \quad Y_{3}=6 E I\left[\frac{h_{2}-h_{3}}{l_{2}}+\frac{h_{4}-h_{3}}{l_{3}}\right] .
\end{gathered}
$$

For concentrated loads,

$$
\begin{gathered}
q_{1}^{\prime}=\Sigma W_{1}\left(1-a_{1}\right), \quad q_{1}^{\prime \prime}=\Sigma W_{1} a_{1}, \quad q_{2}^{\prime}=\Sigma W_{2}\left(1-a_{2}\right), \quad q_{2}^{\prime \prime}=\Sigma W_{2} a_{2}, \\
q_{3}^{\prime}=\Sigma W_{3}\left(1-a_{3}\right), \quad q_{3}^{\prime \prime}=\Sigma W_{3} a_{3} .
\end{gathered}
$$

For uniform loading

$$
q_{1}^{\prime}=q_{1}^{\prime \prime}=\frac{1}{2} v_{1} l_{1}, \quad q_{2}^{\prime}=q_{2}^{\prime \prime}=\frac{1}{2} w_{2} l_{2}, \quad q_{3}^{\prime}=q_{3}^{\prime \prime}=\frac{1}{2} w_{3} l_{3} .
$$

These formulas will solve any case of three spans.
(9) Let a beam of three spans, level supports, have a load W_{1} at a distance al from the left end of the first span. Find the reactions when $l_{1}=l_{3}=l$ and $l_{2}=n l$.

Ans. For convenience of notation let

$$
H=4+8 n+3 n^{2} .
$$

Then

$$
\begin{aligned}
& R_{1}^{\prime}=\frac{W_{1}}{H}\left[(1-a) H-\left(a-a^{3}\right)(2+2 n)\right], \quad R_{2}^{\prime \prime}=\frac{W_{1}}{H}\left[H a+\left(a-a^{3}\right)(2+2 n)\right] \\
& R_{2}^{\prime}=\frac{W_{1}}{H}\left[\left(a-a^{3}\right)\left(3+\frac{2}{n}\right), \quad R_{2}{ }^{\prime \prime}=-\frac{W_{1}}{H}\left[\left(a-a^{3}\right)\left(3+\frac{2}{n}\right)\right]\right. \\
& R_{3}^{\prime}=-\frac{W_{1}}{H}\left(a-a^{3}\right) n, \quad R_{4}^{\prime \prime}=\frac{W_{1}}{H}\left(a-a^{3}\right) n, \\
& \qquad R_{3}=R_{2}^{\prime \prime}+R_{2}^{\prime}=\frac{W_{1}}{H}\left[H a+\left(a-a^{3}\right)\left(5+2 n+\frac{2}{n}\right)\right] \\
& \quad R_{5}=R_{3}^{\prime \prime}+R_{3}^{\prime}=-\frac{W_{1}}{H}\left[\left(a-a^{3}\right)\left(3+n+\frac{2}{n}\right)\right] .
\end{aligned}
$$

(10) A continuous beam of four equal spans, level supports, has the second span from the left covered with a uniform load of w per unit of length. Find the moments and reactions.

Ans. $M_{1}=0, \quad M_{2}=+\frac{11}{224} \imath l^{2}, \quad M_{3}=+\frac{12}{224} 20 l^{2}, \quad M_{4}=-\frac{3}{224} 2 l^{2}, M_{6}=0 ;$

$$
\begin{aligned}
& R_{1}^{\prime}=-\frac{11}{224} \imath l, \quad R_{2}^{\prime \prime}=+\frac{11}{224} \imath l, \quad R_{2}^{\prime}=+\frac{111}{224} \imath l, \quad R_{3}^{\prime \prime}=+\frac{113}{224} \approx l, \\
& R_{3}{ }^{\prime}=+\frac{15}{224} v o l, \quad R_{4}^{\prime \prime}=-\frac{15}{224} v l, \quad R_{4}^{\prime}=-\frac{3}{224} v l, \quad R_{b^{\prime \prime}}=+\frac{3}{224} v o .
\end{aligned}
$$

(11) Find the moment and reaction at the second support for a load W at a distance al from the left end of the second span.

Ans. $M_{2}=\frac{1}{56}\left(26 a-45 a^{2}+19 a^{3}\right) W l ; R_{2}{ }^{\prime}=\frac{W}{56}\left(56-38 a-57 a^{9}+39 a^{3}\right)$.
(12) Deduce a formula for the moment at the left of any support of a continuous beam, level supports, when the entire beam is covered with the uniform load w per unit of length.

$$
\text { Ans. } M_{n}=-\frac{w}{4}\left[b_{n}-\frac{c_{n}\left[\left(l^{3} s_{s-1}+l^{3} s\right) d_{2}+\left(l_{s-2}^{3}+l^{3}{ }_{s-1}\right) d_{3}+\ldots\left(l_{1}^{3}+l_{2}{ }^{3}\right) d_{s}\right]}{D}\right]
$$ where the numbers b are given as follows:

$$
\begin{aligned}
& b_{1}=0, \quad b_{2}=0, \quad b_{3}=-\frac{l_{1}{ }^{3}+l_{2}{ }^{3}}{l_{2}}, \quad b_{4}=-\frac{l_{2}{ }^{3}+l_{3}{ }^{3}}{l_{3}}-2 b_{3} \frac{l_{3}+l_{3}}{l_{3}} \\
& b_{5}=-\frac{l_{3}^{3}+l_{4}^{3}}{l_{4}}-2 b_{4} \frac{l_{3}+l_{4}}{l_{4}}-b_{3} \frac{l_{3}}{l_{4}}, \text { etc., and in general } \\
& b_{n}=-\frac{l_{n-2}^{n-2}+l_{n-1}^{n-2}}{l_{n-1}}-2 b_{n-1} \frac{l_{n-2}+l_{n-1}}{l_{n-1}}-b_{n-2} \frac{l_{-n 2}}{l_{n-1}} .
\end{aligned}
$$

(13) In the preceding example let the spans be all equal.

Ans. $M_{n}=-\frac{v l^{2}}{12 c_{s}+1}\left[c_{n}\left(1-c_{s}+2\right)-c_{s}+1\left(1-c_{n}+1\right)\right]$.
The following Table gives the coefficients of $+w l^{2}$ for any number of spans. The Roman numerals at the sides indicate the number of spans, and the numbers in the spaces of each horizontal line give the moments on the left of each support.

MOMENTS ON LEFT OF SUPPORTS - TOTAL UNIFORM LOAD - LEVEL SUPPORTS-ALL SPANS EQUAL. COEFFICIENTS OF $+w l^{3}$ GIVEN IN TABLE.

This Table may easily be continued to any number of spans. Thus for any even number of spans, as VIII for example, the coefficients are obtained by multiplying the fraction preceding in the same diagonal row, both numerator and denominator, by 2 and adding the numerator and denominator of the fraction preceding that. Thus,

$$
\begin{array}{ll}
\frac{15}{142} \times 2+\frac{11}{104}=\frac{41}{388}, & \frac{11}{142} \times 2+\frac{8}{104}=\frac{30}{388}, \\
\frac{12}{142} \times 2+2+\frac{9}{104}=\frac{33}{388}, & \text { or }
\end{array} \quad \frac{11}{142} \times 2+\frac{11}{104}=\frac{33}{388} .
$$

For any odd number of spans, as VII for example, we have simply to add, numerator to numerator and denominator to denominator, the two preceding fractions in the same diagonal row. Thus,

$$
\frac{11}{104}+\frac{4}{38}=\frac{15}{142}, \quad \frac{8}{104}+\frac{3}{38}=\frac{11}{142}, \quad \frac{9}{104}+\frac{3}{38}=\frac{12}{142}, \quad \text { or } \quad \frac{8}{104}+\frac{4}{38}=\frac{12}{142} .
$$

The moments are all positive, showing that the upper fibre is in tension over every support.

The moments being known, the reactions can be found by (I), page 953. We then obtain the following Table.

REACTIONS AT SUPPORTS-TOTAL UNIFORM LOAD-LEVEL SUPPORTSALL SPANS EQUAL. COEFFICIENTS OF + wl GIVEN IN TABLE.

The law of this Table is the same as for the preceding Table, and it can therefore be continued to any number of spans.
(14) Give the formula for the moment at the left of any support of a continuous beam, level supports, for load in any given span only.

Ans. From (III), page 375 , let r be the left support of the loaded span. Then

$$
M_{n}=\frac{d_{s-n}+2 A_{r} c_{r}+c_{n} d_{s-r}+1 B_{r}}{D}
$$

If the spans are all equal,

$$
M_{n}=\frac{c_{s-n}+2 A_{r} c_{r}+c_{s-r}+1 B_{r} c_{n}}{D}
$$

If the spans are all equal and the span l_{r} is uniformly loaded with the load wo per unit of length,

$$
M_{n}=\frac{1}{4} 2 l^{3}\left[\frac{c_{s-n}+2 c_{r}+c_{s-r}+1 c_{n}}{D}\right]
$$

(15) A continuous beam of four equal spans, level supports, has the second span from the left covered with a uniform load of w per unit of length. Find the moments on the left of the supports and the reactions.

Ans. $M_{1}=0, M_{2}=+\frac{11}{224} w o l^{2}, M_{3}=+\frac{12}{224} w l^{2}, M_{4}=-\frac{3}{224} w l^{2}, M_{5}=0$;

$$
\begin{aligned}
& R_{1}^{\prime}=-\frac{11}{224} v l, \quad R_{2}^{\prime \prime}=+\frac{11}{224} v l, \quad R_{2}^{\prime}=+\frac{111}{224} v l, \quad R_{3}^{\prime \prime}=+\frac{113}{224} v l, \\
& R_{3}^{\prime}=+\frac{15}{224} w l, \quad R_{4}^{\prime \prime}=-\frac{15}{224} w l, \quad R_{4}^{\prime}=-\frac{3}{224} v l, \quad R_{5}^{\prime \prime}=+\frac{3}{224} w l .
\end{aligned}
$$

(16) In the preceding case, what is the moment on left and reaction on right of the second support for a concentrated load W placed at a distance al from the left end of the second span?

Ans. $M_{2}=\frac{1}{56}\left(26 a-45 a^{2}+19 a^{3}\right) W l ;$

$$
R_{2}^{\prime}=\frac{W}{56}\left(56-38 a-57 a^{2}+39 a^{3}\right)
$$

(17) A continuous beam of five spans, the centre and adjacent spans being 100 feet and the end spans each 75 feet long, has a uniform load over the second span. Find the moments on the left of the supports, and the reaction on the right of the fourth support.

Ans. $M_{1}=0, \quad M_{2}=+\frac{35.5}{627} w l_{2}{ }^{2}, \quad M_{3}=+\frac{65}{1254}$ vll $_{2}{ }^{2}, \quad M_{4}=-\frac{35}{2508} \operatorname{cl}_{2}{ }^{2}$,

$$
M_{5}=+\frac{5}{1254} v l_{2}^{2}, M_{6}=0 ; \quad R_{4}^{\prime}=-\frac{45}{2508} v o l_{2} .
$$

(18) A continuous beam of four spans, $l_{1}=80, l_{2}=100, l_{3}=50, l_{4}=$ 40 feet, supports level, has a load of 10 tons in the second span, at a distance of 40 feet from the left end. Find the moments on left of the supports, and the reaction on the right of the second support.

Ans. $M_{1}=0, \quad M_{2}=\frac{W l_{2}^{2}}{3348}\left(17 a-30.9 a^{2}+13.9 a^{3}\right)=+82.01 \mathrm{ft}$.-tons,

$$
\begin{aligned}
& M_{3}=\frac{3.6 W l_{2}^{2}}{3348}\left(1.6 a+3 a^{2}-4.6 a^{3}\right)=+88.77 \mathrm{ft} . \text {-tens }, \\
& M_{4}=-\frac{W l_{2}^{2}}{3348}\left(1.6 a+3 a^{2}-4.6 a^{3}\right)=-24.65 \mathrm{ft} . \text {-tons, } \quad M_{\mathrm{b}}=0, \\
& \quad R_{2}^{\prime}=+5.9324 \text { tons. }
\end{aligned}
$$

(16) A beam continuous over seven spans has a load in every span. Find the moment on the left and reaction on right of the fourth support.

Ans.

$$
\begin{gathered}
M_{4}=-\frac{d_{5}}{d_{8} b_{2}}\left[\left(Y_{2}+A_{2}+B_{1}\right) c_{2}+\left(Y_{3}+A_{3}+B_{2}\right) c_{3}+\left(Y_{4}+A_{4}+B_{3}\right) c_{4}\right] \\
-\frac{c_{4}}{d_{8} l_{2}}\left[\left(Y_{5}+A_{5}+B_{4}\right) d_{4}+\left(Y_{6}+A_{6}+B_{5}\right) d_{3}+\left(Y_{7}+A_{7}+B_{6}\right) d_{2}\right] \\
M_{5}=-\frac{d_{4}}{d_{8} l_{1}}\left[\left(Y_{2}+A_{2}+B_{1}\right) c_{2}+\left(Y_{3}+A_{3}+B_{2}\right) c_{3}+\left(Y_{4}+A_{4}+B_{3}\right) c_{4}+\left(Y_{6}+A_{5}+B_{4}\right) c_{5}\right] ; \\
-\frac{c_{5}}{d_{8} l_{1}}\left[\left(Y_{5}+A_{6}+B_{5}\right) d_{3}+\left(Y_{7}+A_{7}+B_{6}\right) d_{2}\right] ; \\
R_{4}^{\prime}=\frac{M_{4}-M_{5}}{l_{4}}+q_{4}^{\prime} .
\end{gathered}
$$

(17) Let the supports in (16) be on level, all spans equal, $l=80$ feet, and only the first, third and sixth spans loaded with a uniform toad $w=2$ tons per unit of length.

Ans. $M_{4}=+788.18 \mathrm{ft}$.-tons, $M_{5}=-382.55 \mathrm{ft}$.-tons;
$R_{4}{ }^{\prime}=+14.63$ tons.
(18) Let the supports in (16) be on level, all spans equal, $l=80$ feet, and only the second, fifth and seventh spans loaded with a uniform load $w=2$ tons per unit of length.

Ans. $M_{4}=-382.55 \mathrm{ft}$.-tons, $M_{5}=+788.18 \mathrm{ft}$.-tons;
$R_{4}{ }^{\prime}=-14.63$ tons.
(19) Let the supports in (16) be on level, all spans equal, $l=80$ feet, and a load W in the fourth span only at a distance al from the left end.

$$
\begin{gathered}
\text { Ans. } M_{4}=\frac{15 W l}{2911}\left(97 a-168 a^{2}+71 a^{3}\right), \quad M_{5}=\frac{15 W l}{2911}\left(26 a+45 a^{2}-71 a^{3}\right) ; \\
R_{4}^{\prime}=\frac{15 W}{2911}\left(71 a-213 a^{2}+142 a^{3}\right)+W(1-a) .
\end{gathered}
$$

(20) In (19) let a uniform load w per unit of length extend over the whole beam.

$$
\text { Ans. } M_{4}=+\frac{12}{142} v l^{2}, \quad M_{5}=+\frac{12}{142} v l^{2} ; \quad R_{4}^{\prime}=+\frac{w l}{2}
$$

(21) Let the lJad in (20) be 4000 lbs . per ft. over the whole girder. How far must the fourth support be lowered in order that the moment at the fourth support may be zero?

Ans. $h_{3}-h_{4}=-\frac{41 w l^{4}}{1395 E I}$
If $E=24000000 \mathrm{lbs}$. per square inch and $I=53400$ for dimensions in inches, $h_{3}-h_{4}=-6.5$ inches.

MECHANICS.

INDEX.

Vol. II.

STATICS.

Acceleration-proportional to force, 2; mass and force, relation between, 4 ; of gravity above sea-level, 53.
Action and reaction, 7.
Adhesion, 187.
Angle-of friction or repose, 188; of rupture, 253, 257 ; of stability of earth slope, 258.
Apparent indetermination of stresses in framed structures, 137.
Applications of statics, 228.
Arch dam, 245, 295.
Area-material, 19 ; moment of, 19 ; centre of mass of, 21 ; moment of inertia of, 270 ; radius of gyration of, 272.
Assumptions of theory of flexure, 326.
Astronomical unit of mass, 48.
Attraction-of a homogeneous shell or sphere, 45 ; of a circular arc, 50 ; of a straight line, 50 ; of a circular ring, 51 ; of a circular disk, 51 ; of a cone, 52 ; of a cylinder, 52.
Axis-and plane of symmetry, 19 ; neutral, 286, 309 ; neutral of beam, change of shape of, 325 .
Axles-static friction for, 196.
Batter-of wall, 228.
Beams-conditions of equilibrium of, 282 ; designing of, 298; breaking weight of, 299 ; strength of, 299 ; change of shape of neutral axis of, 325 ; uniform strength of, 330 ; deflection of, 329, 347 ; continuous, 367 ; reactions at supports of continuous, 368 ; moments at supports of continuous, 372 ; general formulas for continuous, 375.
Bending moment, 285.
Body-material, 1; homogeneous, 10 ; equilibrium of, 77 ; equilibrium of, under parallel forces, 77 ; conditions of equilibrium of, 84 ; equilibrium of, on a curve or surface, 169 ; on a smooth curve or surface, 170 ; on a rough curve or surface, 188, 204.
Breaking weight of beams 290 .
Centre of gravity, 17, 46.
Centre of mass, 16 ; property of, 18, 75; determination of, 18 ; of material lines, 20 ; of areas, 21 ; of volumes, 26 ; determination of, by Calculus, 30 .

Centre of parallel co-planar forces, 73, 146.
Chains, static friction for, 199.
Change of shape of neutral axis of beams, 325 .
Choice of scales, 139.
Closing line of equilibrium polygon, 145.
Coefficient-of friction, 189 ; of static sliding friction, 190, 192 ; of elasticity, 280,310 ; of cohesion of earth, 257 ; of resilience, 281 ; of rupture, 288 ; of rupture for torsion, 310.
Cohesion, 187 ; of earth, coefficient of, 257.
Columns, formulas for, 361.
Combined-stresses, 311 ; compression and flexure, 312 ; compression and shear, 313 ; flexure and torsion, 313 ; tension and flexure, 311 ; tension and shear, 312.
Composition and resolution-of forces, 58 ; of co-planar forces, 59 ; of moments, 68 ; of couples, 73 ; of forces and couples, 82 ; of wrenches, 91.
Compression, 7; and flexure combined, 312; and shear combined, 313.
Compressive-strength, ultimate, 289 ; stress, 7, 279.
Concurring forces, 58 ; co-planar, resultant of, 59 ; conditions of equilibrium of, 61.
Condition for single resultant force, 88.
Conditions-of equilibrium in general, 84,87 ; of equilibrium for concurring forces, 61 ; of equilibrium of a body under parallel forces, 77; of equilibrium for co-planar non-concurring forces, 99 ; of equilibrium for a beam, 282.

Cone of friction, 189.
Conspiring forces, 58.
Constant of gravitation, 47.
Constrained equilibrium, smooth curve or surface, 169 ; rough curve or surface, 186.
Construction, graphic, for centre of parallel forces, 146.
Contact, rolling, stability in, 209.
Continuous girder, 367 ; moments at supports of, 362 ; reactions at supports of, 368 ; general formulas for, 375.
Co-planar forces, 58; concurring, resultant of, 59 ; non-concurring, 99 ; conditions of equilibrium of, 99 ; graphic construction for centre of, 146 ; application of equilibrium polygon to, 147.
Cords and chains, static friction for, 199.
Couples-moment of, 72 ; line represeutative of, 73 ; resolution and composition of, 73,82 ; resultant couple and force for forces in space, 86.
Crippling load for columns, 361.
Criterion-for superfluous members in a framed structure, 103; for stable, unstable, neutral and indifferent equilibrium, 207.
Curve of earth slope, 258.
Curve or surface-reaction of, 169 ; smooth, constrained equilibrium on, 169 ; equilibrium of body on, 169 ; smooth, reaction of, 170 ; rough, constrained equilibrium on, 186 ; rough, reaction of, 187 ; rough, equilibrium of body on, 188, 204.
Cylinders-strength of, 293.
Dam, 228 ; gravity, 235, 240 ; arch, 245, 295.
Deflection-of beams, 329, 347; of framed structures, 345.
Density, 10 ; unit of, 10 ; mean, linear, surface, uniform, 10 ; mean, of earth, 53.

Designing of beams, 298.
Diameter-of rivets, 295 ; of pins, 307.
Displacement, virtual, 159.
Dynamics, 2 ; dynamic equilibrium, 59.
Dyne, 5.
Earth, mean density of, 53 ; mass, equilibrium of, 256 ; mass, angle of rupture for, 257 ; cohesion, coefficient of, 257 ; slope, 228 ; slope, curve of, 258 ; slope, angle of stability of, 258 .
Economic section of high gravity dam, 240.

Elasticity-of materials, 270 ; laws of, 279 ; limit of, 280 ; coefficient of, 280 , 310.

Equilibrium, 57 ; dynamic or kinetic, 59 ; molar, molecular static, 58 ; conditions of, for concurring forces, 61 ; of rigid body, 77 ; of body acted upon by parallel forces, 77 ; of a rigid body, $77,84,87$; conditions of, for coplanar non-concurring forces, 94 ; polygon, 145 ; polygon, properties of, 147 ; of strings, 110 ; constrained, of body on a curve or surface, 169 ; on a rough curve or surface, 186, 188, 204; limiting, 189 ; stable, unstable, neutral, indifferent, criterion for, 207 ; of earth mass, 256 ; of a beam, conditions of, 282.
Equivalent wrench, 89.
Euler's formula for long struts, 356.
External stress, 7, 279.
Eyebars and pins, theory of, 306.
Factor of safety, 290 ; for sliding, 236.
Flexure-and tension combined, 311 ; and compression combined, 312 ; and torsion combined, 313 ; theory of, 325 ; assumptions of theory of, 326 .
Force, 2 ; criterion of action of, 3 ; proportional to acceleration, 2 ; mechanical illustration of, 3 ; uniform and variable, 3 ; mass and acceleration, relation between, 4 ; unit of, 5 ; dimensions of unit of, 5 ; gravitation unit of, 6 ; compression, tensile and shearing, 7, 283 ; line representative of, 44, 57 ; of gravitation, 44 ; moment of, 67 ; line representative of moment of, 67 ; resultant, condition for siugle, 88 ; polygon, $133,145$.
Forces-concurring, conditions of equilibrium of, 61 ; non-concurring, parallel, 67,89 ; resolution and composition of moments of, 68 ; resultant of two non-concurring co-planar, 68 ; centre of parallel, 73 ; parallel, equilibrium of body acted upon by, 77 ; in space, resultant force and couple for, 86 ; co-planar, non-concurring, conditions of equilibrium for, 99 ; centre of parallel, graphic construction for, 146.
Formulas-for long struts, 355, 361 ; for continuous girder, 375.
Framed structures, 100 ; reactions of, 100 ; stresses in, 101 ; methods of solution of, 154 ; deflection of, 345.
Friction, 186, 187 ; angle of, 188 ; coefficient of, 189, 190, 192; cone of, 189 ; static sliding, laws of, 191 ; static, for pivots, 193 ; static, for axles, 196 ; static, for cords and chains, 199 ; static, rolling, 204 ; of masonry, 228.

Girder, continuous, 367 ; moments at supports of, 362 ; reactions at supports of, 368 ; general formulas for, 375.
Gordon's formula for long struts, 360.
Guldinus, theorem of, 29.
Graphical construction for centre of parallel co-planar forces, 146.
Graphical statics, 133.
Gravitation unit of force, 6 ; constant of, 47 ; force of, 44.
Gravity, centre of, 17, 46 ; acceleration of, 53 ; dam, 235 ; high gravity dam, 240.

Gyration, radius of, 272.
High wall, 234 ; gravity dam, 240.
Homogeneous body, 10 .
Ice pressure, 236.
Indeterminate stresses in framed structures, 137.
Indifferent equilibrium, 206 ; criterion for, 207.
Inertia, 1 ; moment of, for areas, 270.
Internal stress, 279.
Invariant, the, 91.
Joints, masonry, stability of, 229 ; riveted, 294.
Kinds of friction, 187.
Kinetic equilibrium, 59.

Laws of elasticity, 279 ; of static sliding friction, 191.
Limit of elasticity, 280.
Limiting equilibrium, 189.
Line, closing, of equilibrium polygon, 145.
Line, material, 19 ; centre of mass of, 20.
Line representative-of a force, 44, 51 ; of moment of a force, 67 ; of moment of a couple, 73.
Linear density, 10.
Load, crippling, for columns, 361.
Long struts, formulas for, 355, 361.
Low gravity dam, 235.
Low wall, 234.

Masonry-joint, stability of, 229 ; weight and friction of, 228.
Mass, 3; astronomical unit of, 48; force and acceleration, relation between, 4; measurement of, 4 ; specific, 10 ; table of specific, 12 ; determination of specific, 11; moment of, 19.
Mass, centre of, 16 ; determination of, 18; properties of, 18, 75; of lines, 20 ; of areas, 21 ; of volumes, 26 ; determination of, by Calculus, 30.
Mass, earth-angle of rupture for, 257 ; equilibrium of, 256.
Material point, 1 ; line, area, volume, 19.
Materials, strength of, 270 ; elasticity of, 270 ; properties of, table for, 289.
Measurement of mass, 4.
Members, supertluous, in framed structures, 103
Method of sections, 102.
Methods of solution of framed structures, 154.
Molar equilibrium, 58.
Molecular equilibrium, 58.
Moment-of mass, volume, area, 19 ; of a force, 67 ; composition and resolution of moments, 68 ; of couple, 72 ; line representative of, 73 ; at supports of a continuous beam, 372 ; of inertia of an area, 270 ; bending, 285 ; resisting, 287 ; twisting, 309 ; theorem of three moments, 370.

Neutral axis, 286, 309 ; of beam, change of shape of, 325.
Neutral equilibrium, 206 ; criterion for, 207.
Non-concurring forces, 67; co-planar, 99 ; conditions of equilibrium of, 99.
Opposite forces, 58.
Pappus and Guldinus, theorem of, 29.
Parabola formula for long struts, 358.
Parabola, how to draw, 153.
Parallel forces, 67,89 ; centre of, 73 ; equilibrium of body acted upon by, 77 ; co-planar, graphic construction for centre of, 146 ; application of equilibrium polygon to, 147.
Particle, 1.
Pins-size of, 308; and eyebars, theory of, 306 ; diameter of, 307.
Pipes and cylinders, strength of, 293.
Pitch of rivets, 296.
Pivots, static friction for, 193.
Plane and axis of symmetry, 19.
Point, material, 1.
Pole, in force polygon, 145.
Polygon, force, 133 ; pole of, 145 ; equilibrium, 145 ; application of equilibrium, to parallel co-planar forces, 147 ; equilibrium, properties of, 147.
Poundal, 5.
Pressure-earth, 247 ; ice, 236 ; water, 235 ; wave, 236.
Principle of virtual work, 160.
Properties-of centre of mass 75 - of equilibrium polygon, 147; of materials, table of, 289.

Radius of gyration, 272.
Rankine-Gordon formula for long struts, 360.
Reaction-and action, 7; of framed structures, 100 ; of curve or surface, 169 ; of smooth curve or surface, 170 ; of rough curve or surface, 187 ; at supports of continuous girder, 368.
Repose, angle of, 188.
Representative, line-of force, 57 ; of moment of a force, 67 ; of moment of a couple, 73.
Resisting moment, 287.
Resilience, work and coefficient of, 281.
Resolution and composition of forces, 58 ; of co-planar forces, 59 ; of moments, 68 ; of forces and couples, 73,82 ; of wrenches, 91.
Resultant-of concurring co-planar forces, 59 ; non-concarring co-planar forces, 68,70 ; force and couple for forces in space, 86 ; force, condition for single, 88°
Retaining walls, 228, 247 ; low, 234 ; high, 234 ; formulas for, 251.
Rigid body, equilibrium of, 77.
Rigidity of ropes, 202.
Riveted joints, 294.
Riveting, theory and practice of, 295.
Rivets, diameter of, 295 ; number of, 296 ; pitch of, 296.
Rolling-contact, stability in, 209 ; friction, 204.
Ropes, rigidity of, 202.
Rough curve or surface, constrained equilibrium on, 186, 188, 204 ; reaction of, 187.

Rupture, angle and surface of, 253 ; angle of, for earth mass, 257 ; coefficient of, 288 ; coefficient of, for torsion, 310.

Safety, factor of, 290 ; factor of, for sliding, 236.
Scales, choice of, 139.
Section, economic, of high gravity gram, 240.
Sections, method of, 102.
Shape, of beams for uniform strength, 299.
Shear, 7; and tension combined, 312 ; and compression combined, 313.
Shearing force, 283 ; stress, 7, 279, 283.
Single resultant force, condition for, 88.
Size of pins, 308.
Sliding-coefficient of static friction for, 190, 192 ; friction, laws of, 191 ; factor of safety for, 236.
Slope, earth, 228 ; angle of stability of, 258 ; curve of, 258 ; stability of, 257.
Smooth curve or surface, constrained equilibrium on, 169 ; reaction of, 170.
Solution of framed structures, methods of, 154.
Space, resultant force and couple for forces in, 86.
Specific mass, 10 ; determination of, 11 ; table of, 12.
Stability-in rolling contact, 209 ; of masonry joint, 229 ; of walls, 231 ; of earth slope, 257.
Stable equilibriuin, 206 ; criterion for, 207.
Static equilibrium, 58.
Static rolling friction, 204.
Static sliding friction, 190 ; coefficient of, 192; laws of, 196 ; for axles, 196 ; for chords and chains, 199 ; for pivots, 193.
Statics, 57 ; applications of, 228 ; graphical, 133.
Straight-line formula for long struts, 358.
Strain, 7 ; and stress, 279.
Strength-of beams, 299; of materials, 270 ; of pipes and cylinders, 293; ultimate, 289.
Stress, 7 ; crippling, for columns, 361 ; compressive, tensile and shearing, 279; shearing, 283 ; temperature, 313 ; unit of, 291 ; variable working, 292 ; working, 290.
Stress and strain, 279.
Stress, combined, 311 ; in framed structures, 101 ; indeterminate, 137.
Strings, equilibrium of, 110.

Structure, framed, 100 ; deflection of, 345 ; methods of solution of, 154 ; reactions of 100 ; stresses in, 101.
Struts, fermulas for long, 355, 361.
Superfluous members, criterion for, 103.
Surface-density, 10 ; of rupture, 253, reaction of, 169.
Surface or curve, equilibrium on rough, 186, 188, 204 ; equilibrium on smooth, 169,170 ; reaction of rough, 187 ; reaction of smooth, 170.
Symmetry, plane and axis of, 19.
Temperature, stress due to, 313.
Tensile-stress, 7, 279 ; strength, 289.
Tension, 7; and flexure combined, 311 ; and shear combined, 312.
Theorem-of three moments, 370 ; of Pappus and Guldinus, 29.
Theory of flexure, 325 ; assumptions of, 326.
Torsion, 308 ; coefficient of rupture for, 310 ; and flexure combined, 313 ; work of, 310 .
Twisting moment, 309.
Uniform-density, 10 ; force, 3 ; strength of beams, 299, 330.
Unit-of density, 10 ; of force, 5 ; of mass, 3 ; of mass, astronomical, 48; stress, 291 ; of work, 159.
Unstable equilibrium, 206 ; criterion for, 207.
Variable-force, 3; working stress, 292.
Virtual-displacement, 159 ; work, 159.
Volume-material, 19 ; moment of, 19 ; centre of mass of, 26.
Wall-batter of, 228 ; high, 234 ; low, 234 ; parts of, 228.
Wall, retaining, 228,247 ; formulas for, 251 ; stability of, 231.
Water pressure, 235.
Wave pressure, 236.
Weight-of a body, 4, 5 ; breaking, of beams, 299 ; of masonry, 228.
Work, 158 ; of resilience, 281 ; of torsion, 310 ; unit of, 159 ; virtual, 159 ; of variable force, 159 .
Working stress, 290 ; variable, 292.
Wrench, equivalent, 89.
Wrenches, composition and resolution of, 91.

SHORT-TITLE CATALOGUE OF THE PUBLICATIONS

OF
JOHN WILEY \& SONS, New York.
London: CHAPMAN \& HALL, Limited.
ARRANGED UNDER SUBJECTS.
Descriptive circulars sent on application.Books marked with an asterisk are sold at net prices only.All books are bound in cloth unless otherwise stated.
AGRICULTURE.
Cattle Feeding-Dairy Practice-Diseases of Animals- Gardening, Etc.
Armsby's Manual of Cattle Feeding. 12 mo , $\$ 175$
Downing's Fruit and Fruit Trees. 500
Grotenfelt's The Principles of Modern Dairy Practice. (Woll.) 12mo, 200
Kemp's Landscape Gardeuing. 12mo, 250
Lloyd's Science of Agriculture 400
Loudon's Gardening for Ladies. (Downing.). 150
Steel's Treatise on the Diseases of the Dog. 350
" Treatise on the Diseases of the Ox. 600
Stoekbridge's Rocks aud Soils 250
Woll's Handbook for Farmers and Dairymen 150
ARCHITECTURE.
Building-Carpentry-Stairs-Ventilation, Etc.
Berg's Buildings and Structures of American Railroads.....4to, 750
Birkmire's American Theatres-Planning and Construction.8vo, 300
" Architectural Irou and Steel 350
Birkmire's Compound Riveted Girders. 200
" Skeleton Construction in Buildings 300
Carpenter's Heating and Ventilating of Buildings.... 300
Downing, Cottages 8го, $\$ 250$
". Hints to Architects. 200
Freitag's Architectural Engineering 250
Gerhard's Sanitary House Inspection 100
" Theatre Fires and Panics 150
Hatfield's American House Carpenter 500
Holly's Carpenter and Joiner. 75
Kidder's Architect and Builder's Pocket-book. Morocco flap, 400
Merrill's Stoues for Building and Decoration 500
Monckton's Stair Building-Wood, Iron, and Stone. 400.
Stevens' House Painting. 75
Wait's Engiveering and Architectural Jurisprudence.(In the press.)Worcester's Small Hospitals-Establishment and Maintenauce,including Atkinsou's Suggestions for Hospital Archi-tecture.$12 \mathrm{mo}, \quad 125$
World's Columbiau Exposition of 1893. 250
ARMY, NAVY, Etc.
Military Engineering-Ordnance-Port Charges, Etc.
Bourne's Screw Propellers. 500
Bruff's Orduance and Gunnery. 600
Bucknill's Submarine Mines and Torpedoes. 400
Chase's Screw Propellers 300
Cooke's Naval Ordnance 1250
Cronkhite's Gunnery for Non-com. Officers.18mo, morocco, 200
De Brack's Cavalry Outpost Duties. (Carr.). ... 18mo, morocco, 200
Dietz's Soldier's First Aid. 12mo, morocco, 125

* Dredge's Modern French Artillery........ . . 4to, half morocco, 2000
" Record of the Transportation Exhibits Building,World's Columbiau Exposition of 1893..4to, half morocco, 1500
Dyer's Light Artillery. 300
Hoff's Naval Tactics 150
Hunter's Port Charges 1300
Ingalls's Ballistic Tables. 150
" Handbook of Problems in Direct Fire. 400
Mahan's Advanced Guard. 150
" Permanent Fortifications. (Mercur.).8vo, half morocco, 750
Mercur's Attack of Fortified Places .12 mo , 200
Mercur's Elements of the Art of War 8vo, $\$ 400$
Metcalfe's Ordnance and Gunnery 500
Phelps's Practical Marine Surveying 250
Powell's Army Officer's Examiner. 400
Reed's Signal Service 50
Sharpe's Subsisting Armies .18 mo , morocco, 150
Strauss and Alger's Naval Orlnance and Gunnery Todd and Whall's Practical Seamanship 750
Very's Navies of the World. 8vo, half morocco, 350
Wheeler's Siege Operations 200
Winthrop's Abridgment of Military Law 250
Woodhull's Notes on Military Hygiene 250
Young's Simple Elements of Navigation..12mo, morocco flaps, 250
ASSAYING.
Smelting-Ore Dieessing-Alloys, Etc.
Fletcher's Quant. Assaying with the Blowpipe..12mo, morocco, 150
Furman's Practical Assaying. 300
Kunhardt's Ore Dressing 150
* Mitchell's Practical Assaying. (Crookes.) 1000
O'Driscoll's Treatment of Gold Ores 2 CO
Ricketts and Miller's Notes on Assaying 300
Thurston's Alloys. Brasses, aud Bronzes $\therefore 50$
Wilson's Cyanide Processes. 150
"، The Chlorination Process 150
ASTRONOMY.
Practical, Theoretical, and Descriptive.
Craig's Azimuth 350
Doolittle's Practical Astrouony 400
Gore's Elements of Geodesy 250
Michie and Harlow's Praetical Astronomy 300
White's Theoretical and Descriptive Astronomy 200
BOTANY.
Gardening for Ladies, Etc.
Baldwin's Orchids of New England 8vo, 150
Loudon's Gardening for Ladies. (Downing.) 12mo, 150
Thomé's Structurnl Botany 18 mo , 225
Westermaier's Geveral Botany. (Schneider.) 200
BRIDGES, ROOFS, Etc.
Cantilever-Draw-Highway-Suspension.
(See also Engineeling, p. 6.)
Boller's Higliway Bridges 8 8o, $\$ 200$
* " The Thames River Bridge 4to, paper, 500
Burr's Stresses in Bridges $8 \mathrm{vo}, \quad 350$
Crehore's Mechanies of the Girder 500
Dredge's Thames Bridges. 7 parts,
Du Bois's Stresses in Framed Structures 4to, 1000
Foster's Wooden Trestle Bridges 500
Greene's Arches in Wood, etc 250
" Bridge Trusses 250
" Roof Trusses 125
Howe's Treatise on Arches 400
Johnson's Modern Framed Structures 1000
Merriman \& Jacoby's Text-book of Roofs and Bridges. Part I., Stresses 250
Merriman \& Jacoby's Text-book of Roofs and Bridges. Part II.: Graphic Statics 250
Merriman \& Jacoby's Text-book of Roofs and Bridges. Part III., Bridge Design 500
Merriman \& Jacoby's Text-book of Roofs and Bridges. Part IV., Continnous, Draw, Cantilever, Suspension, and Arched Bridges .(In preparation).
* Morison's The Memphis Bridge. 1000
Waddell's Iron Highway Bridges 400
Wood's Construction of Bridges and Roofs. 200
Wright's Designing of Draw Spans 8vo,
CHEMISTRY.
Qualitative-Quantitative-Organic-Inorganic, Etc.
Adriance's Laboratory Calculations. $12 \mathrm{mo} \quad 125$
Allen's Tables for Iron Analysis 300
Austen's Notes for Chemical Students. 150
Bolton's Student's Guide in Quantitative Analysis. 150
Classen's Analysis by Electrolysis. (Herrick.) 300
Crafts's Qualitative Analysis. (Schaeffer.) 150
Drechsel's Chemical Reactions. (Merrill.) 125
Fresenius's Quantitative Chemical Analysis. (Allen.) 600
Fresenius's Qualitative Chemical Analysis. (Johnson.).....8vo, $\$ 400$
Fuerte's Water and Public Health 150
Gill's Gas and Fuel Analysis 125
Hammarsten's Physiological Chemistry. (Mandel.). 400
Helm's Principles of Mathematical Chemistry. (Morgan).12mo, 150
Kolbe's Inorganic Chemistry 150
Landauer's Spectral Analysis. (Tingle.).......... (In the press).
Mandel's Bio-chemical Laboratory 150
Mason's Water-supply 500
Miller's Chemical Physics. 200
Mixter's Elementary Text-book of Chemistry 150
Morgan's The Theory of Solutions and its Results. 100
Nichols's Water Supply (Chemical and Sanitary). 250
O'Brine's Laboratory Guide to Chemical Analysis. 200
Perkins's Qualitative Analysis 100
Pinuer's Organic Chemistry. (Austeu.). 150
Ricketts and Russell's Notes on Inorganic Chemistry (Non- metallic) 75
Schimpf's Volumetric Analysis. 250
Spencer's Sugar Manufacturer's Handbook. 12mo, morocco flaps, 200
" Handbook for Chemists of Beet Sugar House.(In the press).
Stockbridge's Rocks and Soils 250
Troilins's Chemistry of Iron 200
Wiechmann's Chemical Lecture Notes 300
" Sugar Analysis. 250
Wulling's Inorganic Phar. and Med. Chemistry 200
DRAWING.
Elementairy-Geometrical-Topographical.
Hill's Shades and Shadows and Perspective 200
MacCord's Descriptive Geometry. 300
" Kinematics 500
". Mechanical Drawing. 400
Mahan's Industrial Drawing. (Thompson.)......... 2 vols., 8 vo, 350
Reed's Topographical Drawing. (II. A.). 500
Snith's Topographical Drawing. (Macmillan.) 250
Warren's Descriptive Geometry 350
Drafting Instruments. 125
Warreu's Free-hand Drawing $12 \mathrm{mo}, \$ 100$
" Higher Linear Perspective 350
" Linear Perspective 100
"، Machine Construction 750
". Plane Problems 125
"، Primary Geometry 75
"، Problems and Theorems 250
" Projection Drawing 150
" Shades and Shadows. 300
" Stereotomy-Stone Cutting. 250
Whelpley's Letter Engraving 200
ELECTRICITY AND MAGNETISM.
Illumination-Batteries-Physics.
Anthony and Brackett's Text-book of Physics (Magie). .. 8vo, 400
Barker's Deep-sea Soundings. 200
Benjamin's Voltaic Cell 300
Cosmic Law of Thermal Repulsion 75
Crehore and Squier's Experiments with a New Polarizing Photo- Chronograpb. 300
* Dredge's Electric Illuminations. . . . 2 vols., 4to, half morocco, 2500
; Vol. II 750
Gilbert's De magnete. (Mottelay.) 250
Holman's Precision of Measurements 200
Michie's Wave Motion Relating to Sound and Light, 400
Morgan's, The Theory of Solutions and its Results. 100
Niaudet's Electric Batteries. (Fishback.) 250
Reagan's Steam and Electrical Locomotives. 200
Thurstou's Stationary Steam Engines for Electric Lighting Pur- poses 150
Tillman's Heat 8vo, 150
ENGINEERING.
Civil-Mechanical-Sanitary, Etc.
(See also Bridges, p. 4 ; Hydradlics, p. 8; Materials of En-gineering, p. 9 ; Mechanics and Machinery, p. 11 ; Steam Enginesand Boilers, p. 14.)
Baker's Masonry Construction $8 \mathrm{vo}, \quad 500$
Baker's Surveying Instruments $.12 \mathrm{mo}, 300$
Black's U. S. Public Works 4to, 500
Butts's Engineer's Field-book 12mo, morocco, $\$ 250$
Byrne's Highway Construction. 8 vo , 750
Carpenter's Experimental Engineering 600
8 vo
Church's Mechanics of Engineering-Solids and Fluids 600
" Notes and Eximples in Mechanics. 200
Crandall's Earthwork Tables 150
Crandall's The Transition Curve. 150
* Dredge's Penn. Railroad Construction, etc. . . Folio, half mor., 2000
* Drinker's Tunnelling 4to, half morocco, 2500
Eissler's Explosives-Nitroglycerine and Dynamite 8vo, 400
Gerhard's Sanitary House Inspection 16 mo , 100
Godwin's Railroad Engineer's Field-book.12mo, pocket-bk. form, 250
Gores Elements of Goodesy 250
Howard's Transition Curve Field-book... . .12mo, morocco flap, 150
Howe's Retaining Walls (New Edition.) 125
Hudson's Excavation Tables. Vol. II. 100
Hutton's Mechauical Engineering of Power Plants 500
Johnson's Materials of Construction 600
Johnson's Stadia Reduction Diagram..Sheet, $22 \frac{1}{2} \times 28 \frac{1}{2}$ inches, 50
" Theory and Practice of Surveying. 400
Kent's Mechanical Engineer's Pocket-book.12mo, morocco, 500
Kiersted's Sewage Disposal 125
Kirkwood's Lead Pipe for Service Pipe. 150
Mahan's Civil Engineering. (Wood.). 500
Merriman and Brook's Handbook for Surveyors. . . .12mo, mor., 200
Merriman's Geodetic Surveying. 200
" Retaiuing Walls and Masonry Dams. 200
Mosely's Mechanical Engineering. (Mahan.). 500
Nagle's Manual for Railroad Engineers....... . . 12mo, morocco,
Patton's Civil Engiueering. 750
" Foundations 500
Rockwell's Roads and Pavements in France. 125
Ruffner's Non-tidal Rivers 125
Searles's Field Engineering. .12mo, morocco flaps, 300
Searles's Railroad Spiral 12 mo , morocco flaps, 150
Siebert and Biggin's Modern Stone Cutting and Masonry...8vo, 150
Smith's Cable Tramways 250
" Wire Manufacture and Uses. 300
Spalding's Roads and Pavements $12 \mathrm{mo}, \$ 200$
" Hydraulic Cement 200
Thurstou's Materials of Coustruction 500
* Trautwine's Civil Engineer's Pocket-book...12mo, mor. flaps, 500
* " Cross-section. Sheet, 25
* ". Excavatious and Embankments 200
* ". Laying Out Curves. 250
Wait's Eugineering and Architectural Jurisprudence.
(In the press.)
Warren's Stereotomy-Stone Cutting 250
Webb's Eugineeriug Instruments 100
Wegmanu's Coustruction of Masoury Dams. 500
Wellington's Location of Railways 500
Wheeler's Civil Eugineering. 400
Wolff's Windmill as a Prime Mover 300
HYDRAULICS.
Water-wheels-Windmills-Seivice Pipe-Drainage, Etc. (See also Evgineering, p. 6.)
Bazin's Experiments upon the Contraction of the Liquid Vein (Trautwine). 200
Bovey's 'Treatise on Hydraulics 400
Coffin's Graphical Solution of Hydraulic Problems. 250
Ferrel's Treatise on the Winds, Cyclones, and Toruadoes...8vo, 400
Fuerte's Water and Public Health. 150
Ganguillet \& Kutter's Flow of Water. (Hering \& Trautwine.).8vo, 400
Hazeu's Filtration of Public Water Supply 200
Herschel's 115 Experiments 200
Kiersted's Sewage Disposal 125
Kirkwood's Lead Pipe for Service Pipe 150
Mason's Water Supply 500
Merriman's Treatise on Hydraulics. 400
Nichols's Water Supply (Chemical and Sanitary) 250
Ruffner's Improvement for Nou-tidal Rivers 125
Wegmann's Water Supply of the City of New York 1000
Weisbach's Hydraulics. (Du Bois.) 500
Wilson's Irrigation Engineering 400
Wolff's Windmill as a Prime Mover. 300
Wood's Theory of Turbines. 250
MANUFACTURES.
Axiline-Boilers-Explosives-Iron-Sugar-Watches- Woollens, Etc.
Allen's Tables for Iron Analysis $.8 \mathrm{vo}, \$ 300$
Beaumont's Woollen and Worsted Manufacture $12 \mathrm{mo}, 150$
Bolland's Encyclopædia of Founding Terms $12 \mathrm{mo}, 300$
". The Iron Founder $.12 \mathrm{mo}, \quad 250$
" " " " Supplement 12mo, 250
Booth's Clock and Watch Maker's Manual 12mo, 200
Bouvier's Hand̉book on Oil Painting 200
Eissler's Explosives, Nitroglycerine and Dynamite 400
Ford's Boiler Making for Boiler Makers. 100
Metcalfe's Cost of Manufactures. 500
Metcalf's Steel—A Manual for Steel Users. 200
Reimann's Aniline Colors. (Crookes.) 250
* Reisig's Guide to Piece Dyeing 2500
Spencer's Sugar Manufacturer's Handbook....12mo, mor. flap, 200
" Handbook for Chemists of Beet Houses. (In the press.)
Svedelius's Handbook for Charcoal Burners $.12 \mathrm{mo}, \quad 150$
The Lathe and Its Uses. 600
Thurston's Manual of Steam Boilers. 500
Walke's Lectures on Explosives. 400
West's American Foundry Practice 250
" Moulder's Text-book 250
Wiechmanu's Sugar Analysis 250
Woodbury's Fire Protection of Mills 250
MATERIALS OF ENGINEERING.
Strength-Elasticity-Resistance, Etc.
(See also Engineering, p. 6.)
Baker's Masonry Construction 500
Beardslee and Kent's Strength of Wrought Irou 150
Bovey's Strength of Materials. 750
Burr's Elasticity and Resistance of Materials. 500
Byrne's Highway Constrnction 500
Carpenter's Testing Machines and Methods of Testing Materials Church's Mechanic's of Engineering-Solids and Fluids.....8vo, 600
Du Bois's Stresses in Framed Structures 4to, 1000
Halfield's 'Transverse Strains $\$ 500$
Jolunson's Materials of Coustruction 600
Lanza's Applied Mechanics 750
". Strength of Wooden Columns 50
Merrill's Stones for Building and Decoration 500
Merriman's Mechanics of Materials 400
Patton's Treatise on Foundations 500
Rockwell's Roads and Pavements in France. 125
Spalding's Roads and Pavements 200
Thurston's Materials of Construction 500
Thurston's Materials of Engiveering 80
Vol. I., Nou-metallic 200
Vol. II., Iron and Stee] 350
Vol. III., Alloys, Brasses, and Bronzes 250
Weyrauch's Strength of Iron and Steel. (Du Bois.) 150
Wood's Resistance of Materials 200
MATHEMATICS.
Calculds-Geometry-Trigonometry, Etc.
Baker's Elliptic Functions 150
Ballard's Pyramid Problem 150
Barnard's Pyramid Problem 150
Bass's Differential Calculus. 400
Brigg's Plane Analytical Geometry 100
Chapman's Theory of Equations 150
Chessin's Elements of the Theory of Functious
Compton's Logarithmic Computations $.12 \mathrm{mo}, 150$
Craig's Linear Differential Equations 8vo, 500
Davis's Introduction to the Logic of Algcbrn 8vo, 150
Halsted's Elements of Geometry 8vo, 175
" Syuthetic Geometry 8vo, 150
Johnson's Curve Tracing $12 \mathrm{mo}, 100$
" Differential Equations-Ordinary and Partial 8vo, 350
" Integral Calculus $12 \mathrm{mo}, 150$
" Least Squares. $12 \mathrm{mo}, \quad 150$
Ludlow's Logarithmic and Other Tables. (Bass.) 8vo, $\quad 200$
" Trigonometry with Tables. (Bass.) 300
Mahan's Descriptive Geometry (Stone Cutting). 150
Merriman and Woodward's Higher Mathematics 8vo, $\$ 500$
Merriman's Method of Least Squares 8vo, 200
Parkers Quadrature of the Circle 8vo, 250
Rice and Johnson's Differential and Integral Calculus,
2 vols. in 1, 12 mo , 250
". Differential Culculus 350
Abridgment of Differential Calculus....8vo, 150
Searles's Elements of Geometry. 150
Totten's Metrology 250
Warren's Descriptive Geometry 2 vols., 8vo, 350
" Drafting Instruments. $12 \mathrm{mo}, 125$
" Free-hand Drawing 12mo, 100
" Higher Linear Perspective $.8 \mathrm{vo}, \quad 350$
" Linear Perspective $12 \mathrm{mo}, 100$
". Primary Geometry 12 mo, 75
* Plane Problems 125
" Plane Problems 125
". Problems and Theorems 250
" Projection Drawing 150
Wood's Co-ordinate Geometry 200
" Trigonometry 100
Woolf's Descriptive Geometry 300
MECHANICS-MACHINERY.
Text-books and Practical Works.
(See also Engineering, p. 6.)
Baldwin's Steam Heating for Buildings. 250
Benjamin's Wrinkles and Recipes. 200
Carpenter's Testing Machiues and Methods of TestingMaterials.8vo,
Chordal's Letters to Mechanics 200
Church's Mechanics of Engineering 600
" Notes and Examples in Mechanics 200
Crehore's Mechanics of the Girder. 500
Cromwell's Belts and Pulleys 150
" Toothed Gearing. 150
Comptou's First Lessons in Metal Working. 150
Dana's Elementary Mechauics .12mo, 150
Dingey's Machinery Pattern Making 12 mo, $\$ 200$
Dredge's Trans. Exhibits Building, World Exposition, 4to, half morocco, 1500
Du Bois's Mechanics. Vol. I., Kinematics 8vo, 350
" " Vol. II., Statics 8 vo, 400
© Vol. III., Kinetics 8vo, 350
Fitzgerald's Boston Machinist $18 \mathrm{mo}, 100$
Flather's Dynamometers $12 \mathrm{mo}, \quad 200$
" Rope Driving. $12 \mathrm{mo}, 200$
Hall's Car Lubrication 100
Holly's Saw Filing 75
Lanza's Applied Mechanics 750
MacCord's Kinematics 500
Merriman's Mechanics of Materials 400
Metcalfe's Cost of Manufactures 500
Michie's Analytical Mechanics 400
Mosely's Mechanical Engineering. (Mahan.) 500
Richards's Compressed Air 150
Robinson's Principles of Mechanism. 300
Smith's Press-working of Metals $: 00$
The Lathe and Its Uses 600
Thurston's Friction and Lost Work 300
" The Animal as a Machine 100
Warren's Machine Construction 750
Weisbach's Hydranlics and Hydraulic Motors. (Du Bois.)..8vo, 500
Mechanics of Engiveering. Vol. III., Part I.,
Sec. I. (Klein.) 500
Weisbach's Mechanics of Engineering. Vol. III., Part I., Sec. II. (Klein.). 8vo, 500
Weisbach's Steam Engines. (Du Bois.) 500
Wood's Analytical Mechanics. 300
" Elementary Mechanics 125
" ، 6 Supplement and Key 125
METALLURGY.
Iron-Gold-Silver-Alloys, Etc.
Allen's Tables for Iron Analysis. 300
Egleston's Gold and Mercury. 8vo, $\% 50$
Egleston's Metallurgy of Silver 8 vo $\$ 750$
* Kerl's Metallurgy-Copper and Iron. 8vo, 1500
* " ، Steel, Fuel, etc. $8 \mathrm{vo}, 1500$
Kunhardt's Ore Dressing in Europe. 150
Metcalf Stecl-A Manual for Steel Users 200
O'Driscoll's Treatment of Gold Ores 200
Thurston's Irou and Steel. 350
" . Alloys 250
Wilson's Cyanide Processes. 150
MINERALOGY AND MINING.
Mine Accidents-Ventilation-Ore Dressing, Etc.
Barringer's Minernls of Commercial Value........ (In the precs.)
Beard's Ventilation of Mines 250
Boyd's Resources of South Western Virginia 300
"، Mip of South Western Virginia. Pocket-book form, 200
Brush and Penfield's Determinative Mineralogy 350
Chester's Catalogue of Minerals 125
" Dictionary of the Names of Minerals 300
Dana's American Localities of Minerals 100
" Descriptive Mineralogy. (E. S.). . . . 8vo, half morocco, 1250
" Mineralogy and Petrography. (J. D.) 200
" Minerals and How to Study Them. (E. S.). 150
" Text-book of Mineralogy. (E. S.). 350
*Drinker's Tunuelling, Explosives, Compounts, and Rock Drills. 4to, half morocco, 2500
Egleston's Catulogue of Minerals and Syuonyms 8vo, 250
Eissler's Explosives-Nitroglycerine and Dynamite. 400
Goorlyear's Coal Mines of the Western Coast 250
Hussak's Rock forming Minerals. (Smith.) 200
Ihlseng's Manual of Miuing 400
Kuuhardt's Ore Dressing in Europe 150
O'Driscoll's Treatment of Gold Ores 200
Rosenbusch's Microscopical Physiography of Mincrals and Rocks. (Iddings.) 500
Sawyer's Accidents in Mines. 700
Stockbridge's Rocks and Soils 250
Williams's Lithology $8 \mathrm{vo}, \$ 300$
Wilson's Mine Ventilation 16mo, 125
STEAM AND ELECTRICAL ENGINES, BOILERS, Etc.
Stationary-Marine-Locomotive-Gas Engines, Etc.
(See also Engineering, p. 6.)
Baldwin's Steam Heating for Buildings. 250
Clerk's Gas Engine 400
Ford's Boiler Making for Boiler Makers 100
Hemenway's Indicator Practice 200
Hoadley's Warm-blast Furwace. 150
Knenss's Practice and Theory of the Injector 150
MacCord's Slide Valve. 8vo,
* Maw's Marine Engines Folio, half morocco, 1800
Meyer's Moderu Locomotive Construction 1000
Peabody and Miller's Steam Boilers. 400
Peabody's Tables of Saturated Steam $1 \oplus 0$
" Thermodynamics of the Steam Engine. 500
". Valve Gears for the Steam-Engine. 250
Pray's Twenty Years with the Indicator. 250
Pupin and Osterberg's Thermodynamics 125
Reagan's Steam and Electrical Locomotives 200
Röntgen's Thermodyuamics. (Du Bois.) 500
Sinclair's Locomotive Runniug. 200
Thurston's Boiler Explosion. 150
" Engine and Boiler Trials 500
" Manual of the Steam Engine. Part I., Structure and 'Pheory 750
" Manual of the Steam Engine. Part II., Design, Construction, and Operation. 750
2 parts, 1200
" Pbilosoply of the Steam Eungine. .12mo, 75
" Reflection on the Motive Power of Heat. (Carnot.)
12 mo , 200
" Stationary Steam Engines. 150
" Steam-boiler Construction and Operation 500
Spangler's Valve Gears. 250
Trowbridge's Statiouary Steam Engines 4to, boards, $\$ 250$
Weisbach's Steam Engine. (Du Bois.) 8vo, 500
Whitham's Constructive Steam Engineering. $.8 \mathrm{vo}, 1000$
Steam-engine Design $8 \mathrm{vo}, 600$
Wilson's Stean Boilers. (Flather.) 250
Wood's Thermodynamics, Heat Motors, etc. 400
TABLES, WEIGHTS, AND MEASURES.
For Actuaries, Chemists, Engineers, Mechanics-Merric Tables, Etc.
Adriance's Laboratory Calculations 125
Allen's Tables for Iron Analysis. 300
Bixby's Graphical Computing Tables 25
Compton's Logarithms. 150
Crandall's Railway and Earthwork Tables. 150
Egleston's Weights and Measures, 75
Fisher's Table of Cubic Yards 25
Hudson's Excavatión Tables. Vol. II. 100
Johnson's Stadia and Earthwork Tables 125
Ludlow's Logarithmic and Other Tables. (Bass.) 200
Thurston's Conversion Tables 100
Totten's Metrology .8vo, 250
VENTILATION.
Steam Heating-House Inspection-Mine Ventilation.
Baldwin's Steam Heating 250
Beard's Ventilation of Mines 2 50
Carpenter's Heating and Ventilating of Buildings. 300
Gerhard's Sanitary House Inspection 100
Mott's The Air We Breathe, and Ventilation 100
Reid's Ventilation of American Dwellings 150
Wilson's Mine Ventilation 125
MISCELLANEOUS PUBLICATIONS.
Alcott's Gems, Sentiment, Language. 500
Bailey's The New Tale of a Tub 75
Ballard's Solutiou of the Pyramid Problem 150
Barnard's The Metrological System of the Great Pyramid. .8vo, 150
Davis' Elements of Law 8го, $\$ 200$
Emmon's Geological Guide-book of the Rocky Mountains. .8vo, 150
Ferret's Treatise on the Winds 8vo, 400
Haines' Addresses Delivered before the Am. Ry. Assn.12mo. (In the press.)
Mott's The Fallacy of the Present Theory of Sound. .Sq. 16mo, 100
Perkins's Cornell University Oblong to, 150
Rickets's History of Rensselaer Polytechnic Institute... . Avo, 300
Rotherham's The New Testament Critically Emphasized. 12 mo , 150
Totten's An Important Question in Metrology . 8vo, 250
Whitehorse's Lake Mœris. Paper, 25
* Wiley's Yosemite, Alaska, and Yellowstone 4to, 300
HEBREW AND CHALDEE TEXT=BOOKS.
For Schools and Theological Seminaries.
Gesenius's Hebrew and Chaldee Lexicon to Old Testament.(Tregelles.).... Small to, half morocco,
Green's Elementary Hebrew Grammar. 12 mo
. 1250
" Grammar of the Hebrew Language (New Edition).8vo, 300
". Hebrew Chrestomathy vo, 200
Letteris's Hebrew Bible (Massoretic Notes in English). 8vo, arabesque, 225
Luzzato's Grammar of the Biblical Chaldaic Language and the Talmud Babi Idioms 12 mo , 150
MEDICAL.
Bull's Maternal Management in Health and Disease. 100
Hammarsten's Physiological Chemistry. (Handel.) 400
Mott's Composition, Digestibility, and Nutritive Value of Food. Large mounted chart, 125
Ruddiman's Incompatibilities in Prescriptious....(In the press.)
Steel's Treatise on the Diseases of the Ox. 8vo, 600
" Treatise on the Diseases of the Dog. 350
Worcester's Small Hospitals-Establishment and Maintenance, including Atkinson's Suggestions for Hospital Archi- lecture. .1 2mo, 125

$33!A \operatorname{rod} A B \cdot f$ ler gtt l sar tur fuuly about, und A ir a vitical plave. A weight it is susperded from ipt.C 6 the vo.d $A C=C$. A isthirq $13 D$ attached to ind 13 if the 100 holds it mo equelib, wi a Koysintal postim. the aryle ABD being 10°. Terid the thuseri of piting powsoims of the horqe at A.
 or ust wetp 1 erd A or a smalt Thryantal plare $A C$ wobt the Thic ust 13 a t ansta swome vintical wale" be, the mitical plane thrug Ar b barg at wight is To inturestion c^{\prime}. 7 ke wale with the foms plane The rod in fleapt flom shdirg $\&$ ihinq Ec! Yiric and ϕ ford tinsin m- burq ard mach; of A.

This book the propenty of
8 Wada k
Sotm
133 Creleg I

UNIVERSITY OF CALIFORNIA LIBRARY
Los Angeles
This book is DUE on the last date stamped below.

[^15]
[^0]: ** Mailed and Prepaid on the receipt of the Price.

[^1]: * That is, we divide the number of units of mass of the body by the number of units of mass of an equal volume of roater.

[^2]: * The student should constantly refer in this portion of the work to the references in the text to Kinematics of a Rigid System (page 169, Vol, I), and if he has omitted that portion of the work should now take it in connection with Statics.

[^3]: * Compare page 179, for concurring angular accelerations, Kinematics of a Rigid System.

[^4]: * Compare page 186, Kinematics of a Rigid System.

[^5]: * Compare page 199, Vol. I, Kinematics of a Rigid System.

[^6]: * Compare page 200, Vol. I, Kinematics of a Rigid System.

[^7]: * If the perpendicular from the origin to the central axis is p, then $x^{\prime \prime}, y^{\prime \prime}$. $z^{\prime \prime}$ are the projections of p upon the axes of X, Y, Z.

[^8]: * For corresponding graphic method see page 135.

[^9]: * For corresponding graphic method see page 148.

[^10]: * Compare with page 85 , Vol. I, Kinematics, where we see that for a particle moving with central acceleration the moment of the velocity is constant.

[^11]: * Notice the analogy with the velocity as given on page 145, Vol. I, Kinematics, of a particle acted upon by an attractive force varying inversely as the square of the distance, viz.,

 $$
 v^{2}=v_{1}^{2}+2 a^{\prime} r^{\prime 2}\left(\frac{1}{r}-\frac{1}{r_{1}}\right)
 $$

[^12]: * Disregard for the present the dotted member in Fig. 1.

[^13]: * The student should sketch the stress diagrams for himself in each case, putting down as he goes along the sign (-) and (+) for compression and tension upon each member of the frame as soon as he finds it.

[^14]: * A most extensive collection is the "Pocket Companion" of Carnegie, Plipps \& Co., Pittsburgh, Pa.

[^15]: $=, 0.8, i, \ldots, 1$

