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DYNAMICS.

INTRODUCTION.

CHAPTER I.

MATTER, BODY, PARTICLE. INERTIA. FORCE. DYNAMICS.

FORCE PROPORTIONAL TO ACCELERATION. UNIFORM AND VARIABLE FORCE.
MASS. UNIT OF MASS. MEASUREMENT OF MASS. RELATION BETWEEN
FORCE, MASS AND ACCELERATION. ABSOLUTE UNIT OF FORCE. GRAVITA-
TION UNIT OF FORCE.

Matter—Body—Particle.—What matter is in itself we do not
know. We recognize it as existing in space and possessing certain
observed properties, such as extension and impenetrability.

Any limited' portion of matter we call a body. A body so small
that, so far as its motion is concerned, we can disregard its size
we call a material point or particle. Just as a mathematical point,
having no dimensions, cannot rotate, but can have motion of trans-
lation only, so a material point or particle is considered as having
motion of translation only.

Every body may be considered as a system composed of such
material points or particles.

The diagram representation of a particle is then a mathematical
point, having position only.
When a body has motion of translation only, the motion of

every one of its points at any instant is the same (page 13, Vol. I),

and in such case we may then consider the entire body, whatever
its size, as a particle and represent it by a mathematical point.

Hence, whatever the size of a body, when toe consider its motion
of translation only, we may treat the body as a particle and repre-
sent it by a point.

Inertia—Force.—It is a fact of universal experience that no ma-
terial particle is able of itself to change its own motion. If it is at
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rest, it must always remain at rest, unless acted upon by some
other particle. If it is moving at any instant in a given direction
with a given speed, it must always preserve that direction and
speed unchanged, unless acted upon by some other particle.

We express this fact by saying that matter is inert, that is, has
no power of itself to change its own state of rest or motion. This
property of matter we call inertia. We recognize, then, not only
extension, and impenetrability, but also inertia, as properties of
matter.

Whenever, then, the motion of a particle is observed to change
either in speed or direction, we can always refer such change to
the influence of some other particle upon it.

This external influence which we thus recognize as the cause of the
change of motion we call force. We can define force, then, as the
cause of change of motion of matter. We measure force, therefore,
by its observed effect, that is, by the change of motion it causes.

It should be noted that inertia, as already defined, is a property of matter.
To speak then, as is sometimes done, of the "force of inertia," as though
inertness could cause change of motion or change of anything, is as unmeaning
as though we should speak of '

' force of hardness "or " force of softness. " In-

capacity of self-change of motion, or inertia, cannot be spoken of as the cause
of observed change. By reason of such incapacity force is necessary for change
of motion.

Dynamics.—We have treated in the first portion of this work of
the science of Kinematics (Kivrma, motion), or the measurable rela-

tions of space and time, that is, of pure motion. We have therefore
considered the motion of a point, or of a system of points, without
reference to matter or force. But we have to deal in nature with
force and material points or bodies. The science which treats of
those measurable relations of matter, space and time involved in
the study of the change of motion of bodies due to force is called
Dynamics (dvva/11 1

;, force).

Force Proportional to Acceleration.—Let Vx be the initial ve-
locity of a material point or particle Pi

"v moving in any path PiP, and v its final ve-
locity at the end of any time t.

If we draw OQi parallel and equal to Vi

and OQ parallel and equal to v. then, as we
have seen, page 48, Vol. I, $1$ gives the inte-

gral acceleration both in direction and mag-

nitude. Also ^j^- gives the mean accelera-

tion or mean time-rate of change of veloc-
ity in the time t.

The limiting magnitude and direction of
'^ when the time t is

indefinitely small is the acceleration, or instantaneous time-rate of
change of velocity.

Now this change of velocity is due to the force at that instant.
If there were no force, Vi would remain unchanged both in magni-
tude and direction.

Since we can only measure force by its effects, and since here
the effect is shown by change of velocity, the force must be propor-
tional to this change of velocity.
We conclude, therefore, that the direction of the force is the same

as the direction of the acceleration it causes, and the magnitude of
the force is proportional to the magnitude of the acceleration it

causes.
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Mechanical Illustration of Force.—The student may figure to
himself such a force as the pressure or pull of an imponderable
spiral spring acting upon the body, the axis of the spring having
always the direction of the acceleration, and the spring moving
with the body so that its pressure or pull is exerted during the
entire time of action and is alway proportional to the acceleration.

If the acceleration cnanges in direction, the axis of the spring
changes, so that it always has the same direction as the accelera-
tion.

If the acceleration changes in magnitude, the pull or push of the
spring changes accordingly.

If the acceleration is uniform, that is, does not change either in
direction or magnitude, the axis of the spring does not change in
direction and its pull or push is constant.

The force of gravity upon bodies near the surface of the earth is

like the action of such a spring. Its action is practically constant
in intensity and direction.

The student should note that the direction of the force or ac-
celeration is not necessarily that of the motion, except in the case
of rectilinear motion.

Thus in the case of a point moving with uniform speed in a
circle, the direction of motion at any instant is tangent to the
circle, but the acceleration is always directed towards the centre
(page 53, Vol. I).

In the case of a projectile, the motion at any instant is tangent
to the path, but the acceleration is always vertical and downwards.

Uniform and Variable Force.—A force, then, like acceleration,
page 49, Vol. I, is uniform or constant when it has the same magni-
tude and the same direction whatever the time of action. When
either the magnitude or direction changes it is variable.

Criterion of the Action of a Force.—The action of a force on a
particle, then, is made evident by the change of motion it causes.

If the particle is at rest or moves with uniform speed in a straight

line, there is no force acting upon it. If either the speed changes
or the direction of motion changes, a force must act upon it to

cause such change. The magnitude of the acceleration is propor-
tional to the magnitude of the force, and the direction of the ac-

celeration is the direction of the force. The force is uniform when
the acceleration is uniform, and variable when the acceleration is

variable.
Mass.—Let such a spring, F, as described, act with constant

pressure in a constant direction upon a given
bodyA for a given time.

Then the acceleration or change of velocity

per second is constant and in the direction of the
force or axis of the spring.

Let the same spring act upon another body, JB,

with the same constant pressure in the same
constant direction for the same time. Then the acceleration or

change of velocity per second in this case is also constant and in

the direction of the axis of the spring.
If the magnitude of the acceleration in the second case is equal

to the magnitude in the first case, the body B is said to have the

same mass as the body A. In general,
Equal masses are those to which the same uniform force gives

the same acceleration in the direction of the force in the same time.

Unit of Mass.—We take as the unit of mass the standard pound
avoirdupois, or the standard gram, or the standard kilogram.

WD WD
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These are definite bodies (page 5, Vol. I). Any other body which
when acted upon by any given constant force would receive in the
same time the same acceleration in the direction of the force as the
standard mass under the same circumstances is an equal mass.

When, then, the mass of a body is unity, or one unit of mass, the
same constant force acting upon it gives it the same acceleration in
the same time in the direction of the force that the standard mass
would receive under like circumstances.

Measurement of Mass.—We know by experiment that the force
of gravity, or the earth's attraction at any place, gives to all bodies
falling in vacuum, whatever their nature, the same acceleration in
the same time.

This acceleration is vertical or in the direction of the force of
gravity which causes it.

When two bodies exactly balance in an equal-armed balance, we
also know that the force of gravity on each must be the same.

Since then, under the action of this equal force, each body would
acquire the same acceleration in the same time in the direction of
the force, their masses are equal.

By means of the balance, then, we can readily duplicate standard
masses. By finding how many such standard masses balance any
given body, that is, by " weighing" the body, we can determine its

mass relatively to the standard.
Thus if any body exactly balances 2, 3 or 4 standard pounds or

kilograms or grams, its mass is 2, 3 or 4 times the mass of the
standard used.

Mass Independent of Gravity.—It must be carefully noted that
the mass of a body has nothing to do with the actual intensity of
the force of gravity. This varies with the locality and the height
above sea-level in the same locality. But two bodies of equal mass
which therefore exactly balance in one locality would balance in
any locality, because the force of gravity, whatever it may be, is

always the same on each wherever they are weighed.
When we speak of a mass of one pound, one gram, or one kilo-

gram, we refer then to a definite quantity of matter, not to the force
of gravity acting at any place upon that matter.

But when a body balances two standard pounds, we know that the
force of gravity upon that body at any locality is twice as great as
for one pound. The force of gravity upon any body at any locality,

or the weight of the body, is thus proportional to its mass, but the
mass is independent of this weight.

The term "weighing" as applied to a balance should not be
allowed to mislead. "Weighing" a body in a balance always de-
termines its mass and not its weight, or the force of gravity upon it.

Relation between Force, Mass and Acceleration. — Since the
weight of a body is proportional to its mass, and since all bodies
fall in vacuum with the same acceleration under the action of
gravity at any locality or of their weights, it follows that to give
different bodies the same acceleration in the direction of the force,

the force must be proportional to the mass.
But we also know by experiment that when we give the same

body different accelerations in the direction of the force, the force
is proportional to the acceleration.

In general, then, any force which produces in a given body, free

to move, an acceleration in its direction, must be proportional both
to the mass of the body and the acceleration.

If then [F] is the unit of force adopted and Fthe number of

. units of force, [M ] the unit of mass and m the number of units of
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mass, [/] the unit of acceleration and / the number of units of
acceleration in the direction of the force, we must have the
relation

F[F] = c.m[M]xf[f], (1)

where c is a constant number.
Equation (1) expresses the fact that force must be proportional

both to the mass and the acceleration given to the mass in the direc-
tion of the force.

Unit of Force.—We see from (1) that we shall always have the
numeric equation

F=mf (2)

if we make c unity, and

[F] = [M] x [/].

That is, equation (2) holds provided we take as our unit of force
that constant force ivhich will give one unit of mass one unit of ac-
celeration in the direction of the force.

This is called "Gauss's absolute unit," or the absolute unit of
force, because it furnishes a standard force in any system, inde-
pendent of the force of gravity at different localities.

In the foot-pound-second or "F. P. S. system," then, the abso-
lute unit of force is that constant force which will give one pound

,
a change of velocity in the direction of the force of one foot per
second in a second. This has been called by Prof. James Thomp-
son the poundal. It is then the English absolute unit of force.

The French absolute unit of force is that constant force which
will give one kilogram a change of velocity in the direction of the
force of one meter per second in a second.

In the centimeter-gram-second or " C. Gr. S. system" the absolute
unit of force is the constant force which will give one gram a change
of velocity in the direction of the force of one centimeter per second
in a second. This is called the dyne.

Dimensions of Unit of Force.—Let [F] represent the unit of
force, [/] the unit of acceleration, [M] the unit of mass, [V] the
unit of velocity, [L] the unit of distance, and [T] the unit of time.
Then we have

IF] = [M]x [/] = [M] x E = [Jf] x Jj^.

Weight of a Body.—The student should again be cautioned to
keep clearly distinguished in his mind the difference between the
mass of a body and its weight. The weight of any mass is the
force with which the earth attracts it, and it therefore varies with
the locality. The mass is invariable at all places.

If the weight of a body is W, and its mass m units, then, since

the weight produces the acceleration g, we have from (2),

W= mg units of force.

If m is one unit of mass, W is numerically equal to g units of

force, or

one pound weighs g poundals,

one gram weighs g dynes,

according to the system in use.

Since g is about 32 ft.-per-sec. per sec, the weight of one pound
is about 32 poundals, or

one poundal is the weight of about half an ounce.
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Strictly speaking, it is the weight of - part of a pound, where g

must be taken for the locality in ft.-per-sec per sec.

In the same way, the weight of one gram is about 981 dynes, or

one dyne is the weight of about one milligram.

Strictly speaking, it is the weight of — part of a gram, where g

must be taken for the locality in centimeters-per-sec. per sec.

An athlete throwing a hammer of 16 pounds in New Haven and the same
hammer in Edinburgh has a heavier hammer to throw in the latter place, by
the weight of about three tenths of an ounce more. (See page 93, Vol. I.) The
mass of the hammer is of course the same in both places.

I--:

v

Gravitation Unit of Force.—It is often convenient to express a
force by comparing it with the weight of the unit of mass at the
locality. The weight of the unit of mass at the place is then the
gravitation unit offorce. It is evidently not constant. Or we can
express a force by comparing it with the weight of the unit of mass
at some given place. The weight of the unit of mass at this place
is then the gravitation unit of force. In this case it is constant.

When, then, we speak of a " force of ten pounds" ora" force of
ten kilograms " we mean the force of gravity at a given place upon
a mass of ten pounds or ten kilograms. The expression is of
course incorrect, because pound and kilogram denote mass only.
The expression is thus a brief and allowable locution for the phrase—"attraction of the earth for a mass of ten pounds at the place
considered."
A "force of ten pounds" means, then, a force of lOg poundals,

where g is the acceleration of gravity in ft.-per-sec. per sec. at the
place considered. A "force of ten grams" means a force of lOg
dynes, where g is the acceleration of gravity in centimeters-per-sec.
per sec. at the place considered. In all cases,

Mass (in lbs.) x acceleration (in ft.-per-sec. per sec.) == Force in
•direction of acceleration (in poundals).
\ If we divide the force thus found by g in ft.-per-sec. per sec, we
obtain the force in gravitation units.

Mass (in grams) x acceleration (in centimeters-per-sec. per sec.)

= Force in direction of acceleration (in dynes).
If we divide the force thus found by g in centimeters-per-sec.

per sec, we obtain the force in gravitation units.

Thus if a mass of 25 pounds has an acceleration in any direction of 6.4 ft.-

per-sec. per sec, the force in that direction which causes this acceleration is

25 X 6.4 = 160 poundals, or 160 times the force necessary to give a mass of

one pound an acceleration of 1 ft.-per-sec. in one second. If g for the locality

6.4
is 32 ft. -per-sec per sec. , we can speak of this as a force of— X 25 pounds, or

o&
a " force of 5 pounds." meaning thereby the force of gravity upon a mass of

5 pounds at the locality in question.

Again, if a mass of 25 grams has an acceleration in any direction of 200
centimeters-per-sec. per sec. , the force in that direction which causes this ac-

celeration is 25 X 200 = 5000 dynes, or 5000 times the force necessary to give
a mass of one gram an acceleration of 1 centimeter-per-sec. in one second. If

g for the locality is 981 centimeters-per-sec. per sec, we can speak of this as a

force of --— X 25 grams, or a " force of about 5 grams," meaning thereby the

force of gravity upon a mass of 5 grams at the locality in question.
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Tension—Compression—Shear.—When a force acts to separate
two particles of a body in the direction of the line joining them, it

is called a force of tension, or tensile force. When it acts to bring
the particles together in the direction of the line joining them, it is

a force of compression, or compressive force. When it acts to dis-
place the particles in a direction at right angles to the line joining
them, it is called shear, or shearing force.

Action and Reaction.—When one body or particle presses or pulls
another, it is itself pressed or pulled by this other with an equal
force in an opposite direction. If we speak of the force exerted by
one body or particle as action, we can call the force exerted on it

by the other reaction. To every action, then, there is always an
equal and opposite reaction, or the mutual actions of any two bodies
are always equal and oppositely directed.

Stress.—The exertion of force upon a body or particle is thus
only one side of the entire phenomenon, which really consists of
the simultaneous exertion of equal and opposite forces between two
bodies or particles.

When we fix our attention upon one only of the bodies or par-
ticles and, disregarding the other, consider only its action upon the
first, we have called this action force. It is that external action
due to some other particle which causes change of motion of the
particle considered (page 2). But when we have both bodies or
particles in mind and wish to be understood as viewing this force
as one of the two mutual, equal and opposite actions between two
bodies or between two particles of the same body, we call it a
stress.

When the stress is such as to make the two bodies or particles
move towards one another, or to resist tensile force, it is called at-
traction or tensile stress. When it is such as to increase their dis-
tance, or to resist compressive force, it is called repulsion or com-
pressive stress. When it resists shearing force it is called shearing
stress.

In this sense, then, we always speak of the stress in a body or
between two bodies or particles; the prepositions "in" or "be-
tween" indicating at once that we have to do with one of the
mutual actions between two bodies or particles. Force then is

always external to the body or system considered. Stress is in-

ternal to that body or system, and resists change of configuration
due to force.

External Stress.—There is, however, a sense in which we speak
of stress on a body, and thus consider it as external, which need
never be confounded with that just given.

Force is often exerted upon some definite portion of the bound-
ing surface of a body and acts then over an area. In such case
the number of units in its magnitude divided by the number of
units in the area gives the number of units of force per unit of
area. When a force thus acts we may speak of it as the stress on
the body, and the force per unit of area we call unit stress.

This use of stress is convenient and leads to no confusion.
Where necessary to discriminate we may speak of, internal stress
and external stress, but in general the use of the preposition "on "

and "in" or "between" sufficiently indicates the sense in which
the term is used.

Strain.—The change of distance between two particles of a body
in a direction opposite to internal stress is called strain.

If no internal stress exists, there is no strain, but simply displace-

ment.
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Illustration.—Thus let a spring whose original " unstrained " length is AB
be compressed so that its length is AB\ . When we consider the external
action which compresses it, we speak of the farce of compression F. When

we consider one of the mutual actions between any two
points A and Bi which resist compression, we speak
of the compressive stress S in the spring at Bi or at A.

s - The strain is the distance BBt , or the displacement

WVlAft
F
i ? i i

°PP0Site to the stress.

^$j C! c s Bj If the compressive force F is removed and the
spring allowed to expand to &, the distance Bid is

not strain because it is not opposite in direction to

the stress, but simply displacement. When the spring
reaches B there is no stress in it. As it passes B tensile stress is developed,
and any distance B& is strain. The point B is the position of zero strain,

and any displacement on either side of this point is strain because opposite in

direction to the-stresg,in the spring.

r *~ EXAMPLES.

(1) With 1 ft. and 1 sec. as units of distance and time, find the
unit of mass, in order that the derived unit offorce may be equal to

the weight of 1 lb.

Ans. g lbs.

(2) Find the unit offorce in order that the unit of mass may be

g lbs.

Ans. g poundals.

(3) The unit of acceleration being 6 ft.-per-sec. per sec, find
(a) the unit of mass when the derived unit of force is equal to the

weight of 20 lbs., and (b) the unit of force when the derived unit of
mass is a mass of 20 lbs.

Ans. (a) 107$ lbs.; (b) 3.7 pounds weight.

(4) The unit of mass being a mass of 10 lbs., the unit of time 1

min., and the unit of- length 1 yd., compare the derived unit offorce
with the poundal.

Ans. 1 to 20.

(5) With 20 lbs. and 40 sec. as units ofmass and time respectively,

find the unit of length that the derived unit of force may be equal to

the weight of 1 lb. at a place where g = 32.2 ft.-per-sec. per sec.

Ans. 2576 ft.

(6) The unit of velocity being 20 cm. per sec., the unit of mass 15
grams, and the derived unit of force the weight of a kilogram, find
the unit of time.

Ans. sec.
3270

(7) The value of a force expressed in dynes is to be expressed in
absolute units of the meter-kilogram-minute system. By what num-
ber must it be multiplied f

Ans. 0.036.

(8) Show that the weight of one pound is equal to 4.45 x 10 6 dynes
approximately.

(9) Show that 1 poundal is equivalent to 13825 dynes.
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(10) With 1 ft. and 1 sec. as units of distance and time, find the
unit of mass, in order that the derived unit offorce may be equal to
the weight of 1 lb. at a place where g = 32.16 ft.-per-sec. per sec.

Ans. 32.16 lbs.

(11) The unit of mass being 20 lbs., the unit of time 1 ram., and
the unit of length 1 yard, compare the derived unit of force with the
poundal.

Ans. 1 to 60.

(12) Compare the values of the mass of a body as expressed in
gravitation units of the ft. -lb. -sec. and yard-ton-min. systems (ton =
2240 lbs.).

Ans. 2688000 to 1.

(13) Show that the value of one dyne expressed in terms of the
weight of one ton (2240 lbs.) is 1003 x 10

- n approximately.

(14) Reduce 20 poundals to absolute units of the yd.-cwt.-min.
system (1 cwt. = 112 lbs.).

Ans. 214f units.

(15) Determine the unit of time in order that, the foot being the
unit of length, the value of the intensity of gravity may be expressed
by 1 instead of g.

Ans. —= sec.

Vff

(16) The unit of acceleration being 6 ft.-per-sec. per sec, find
a) the unit of mass when the derived unit of force is equal to the
weight of 20 lbs., and (6) the unit of force when the derived unit of
mass is a mass of 20 lbs. (g — 32).

Ans. (a) 107.2 lbs.; (6) 120 poundals or the weight of 3.73 lbs.



CHAPTEK II.

DENSITY. SPECIFIC MASS. DETEKMINATION OF
SPECIFIC MASS.

Density.—The number of units of mass of a body divided by its

number of units of volume, or the mass per unit of volume, is the
mean density of the body.

The mean density gives then the number of pounds in a cubic
foot, or the number of grams in a cubic centimeter.

The density at a given point of a body is the ratio of mass to
volume of an indefinitely small portion of the body at that point.

If this is the same at all points, the body is homogeneous, or the
density is uniform. If it varies, the density is variable and the
body is non-homogeneous.

The density of a body in a given state is the mass per unit of
volume of any portion of the body in that state.

When the length of a body is great relatively to its other dimen-
sions, the mass per unit of length is called its mean linear density.

For a thin body the mass per unit of area is called its mean
surface density.

If m is the mass of a homogeneous body and V its volume and 8
its density, we have

-. m
y

or density equals mass per unit of volume.
Unit of Density.—If [M] is the unit of mass and m the number

of units of mass, [V] the unit of volume and Fthe number of units
of volume, [D] the unit of density and 8 the number of units of
density, we have

S[D]
_ m[M]

"We shall have

provided we take

V[V]

m

ID] = 00.
1

' [V]

The unit of density, then, is one unit of mass per unit of volume,
as one pound per cubic foot, or one gram per cubic centimeter.

Specific Mass.—The density-ratio of a body relatively to that of
some standard substance is properly called its specific mass. It is

often called "specific gravity," as a consequence of not distinguish-
ing between weight and mass. The ideas are different, but the

10
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numerical values the same, since the weight of a body is propor-
tional to its mass.

The standard substance taken is water. If y is the density or
mass of a unit of volume of water, and 5 the density or mass of a
unit of volume of any other body, then the specific mass e is

given by

e = - (1)
Y

Since 6 =—, where m is the mass and V the volume of the

body, we have
m

*=Jv- *
Since y is the mass of a unit of volume of water, yV is the mass

of a volume of water equal in volume to the body. Hence the
specific mass of any body is equal to the ratio of its mass to the mass
of an equal volume of water.

In the English system the mass of one cubic foot of pure water
at 4° C, or the point of maximum density, is nearly 1000 ounces, or
62.5 lbs. (more exactly 998.6 ounces). The density of water is then
about 62.5 lbs. per cubic foot, or

__ 62.5 lbs.

^"lcub.ft.'

If then V is one cubic foot, we have, from (2),

m lbs.

62.5 lbs.'

where m is the mass in pounds of one cubic foot of any body.
In the C. G. S. system, the mass of one cubic centimeter of pure

water at 4° C. is very nearly one gram, and was intended to be so
exactly. The density of water by this system is then

\ gram
1 cub. c.

'

If then Vis one cubic centimeter, we have, from (2),

_ m grams
1 gram '

where m is the mass in grams of one cubic centimeter. That is, the
mass in grams of one cubic centimeter gives at once the specific

mass, while in the English system the mass in pounds of one cubic
foot must be divided by 62.5. Or inversely the specific mass of any
body gives at once the mass in grams of one cubic centimeter of the
body, while it must be multiplied by 62.5 to obtain the mass in pounds
of one cubic foot.

Determination of Specific Mass.—A body totally immersed in

water displaces its own volume of water. It is a well-known
physical fact that a body so immersed is buoyed up by a force

equal to the weight of the volume of water displaced.
If then a body is "weighed," i.e., its mass determined, and

then weighed again while wholly immersed in water, the loss of
weight in gravitation units gives the mass of the displaced water,
or gives the mass of a volume of water equal to the volume of the
body.
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To determine the specific mass, then, we have only to divide the
weight of the body in gravitation units by its loss of weight in water
in gravitation units.*
When very great accuracy is required the body should be

weighed in a vacuum, or allowance must be made for the buoyant
force of the air. But in all practical cases in mechanics this is an
unnecessary refinement, and the weight in air may be taken as the
measure of the true mass of the body.

Table of Specific Mass.—In the following table the density-ratios
or specific masses, or so-called " specific gravity " with reference to
water, of a few substances are given.

The exact value in any case will depend on the temperature and
the mechanical process, such as hammering, etc., to which the
bodies may have been subjected.

Air at 0° C 0.0012759

Alcohol at 0°C 0.791

Turpentine at 0° C ...

.

0.870

Ice 0.92

Sea-water at 0° C 1.026

Crown glass 2.5

Flint glass 3.0

Aluminum 2.6

Zinc 7.0

Tin 7.4
Iron 7.7
Copper 8.8
Silver 10.5
Lead 11.4
Mercury at 0° C 13.596
Gold 19.3

Platinum 21.5

EXAMPLES.

(1) The mass of a piece of limestone is 310 grams. When im-
mersed in water it is balanced by a mass of 188.5 grams. What is

the specific mass t

Ans. Weight in air is 310*7 dynes. Weight in water is 188.5^ dynes. Loss

of weight is 310^—188.0^ as 121.5^ dynes. Hence specific mass = j!
- = 2.55.

(2) In order to find the specific mass of a piece of oak, a piece of
lead wire, which lost 10.5 grams when weighed in water, was
wrapped around the wood, which weighed 426.5 grams. The com-
pound mass was 484.5 grams lighter in the water than in the air.

Find the specific mass.

Ans. The loss of the wood alone was 484.5 — 10.5 = 474. Hence specific

426.5
mass = -^ = 0.9.

(3) An iron vessel completely filled with mercury weighed 500
pounds, and lost when weighed in water 40 pounds. If the specific
mass of the iron is 7.2 and of the mercury 13.6, find the mass of
the vessel and of the mercury.

Ans. Since specific mass e = — , where 8 is density and y is density of

water, and since S = — , where m is mass and v is volume, we have e =—

.

v vy

ey
Let mi be the mass of the iron and w a the mass of the mercury, and m the

combined mass.

* That is, we divide the number of units of mass of the body by the num-
ber of units of mass of an equal volume of water.
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Then for the volume of the iron we have Vi = —-, for the volume of the
•»r

mercury ©2 = —— . and for the combined volume v = . Hence we have
€iy ey

Mi » mi to m x mi to=—, or 1 = —

.

eiy eay ey e, ea e

Also mx -j- tos = to. Combining we have

L_. JL L_ JL

TOi = to . r r- , «s = m • -: =- •

e x e a e 3 e x

In the present case we have e = ^—, e, = 7.2, ea = 13.6 and to = 500.

Hence m x = 49.54 pounds, to 2 = 450.46 pounds.
Note.—This is called the problem of Archimedes, because first solved by

him with reference to any alloy of gold and silver. Its application to alloys or
chemical compositions is, however, limited, as in general in such cases there is

a change of volume so that the combined volume is not equal to the sum of the
volumes of the components.

(4) In order to obtain the specific mass of rye in bulk, a bottle

tvas filled with grains of rye well shaken together, and weighed. The
weight of tlie bottle was found to be 115 grams when empty and
235.75 grams when filled with rye. When filled with water it

weighed 270.65 grams. Find the specific mass of the grain.

Ans. The weight of the grain is 120 75 grams, and the weight of an equal
120 75

volume of water is 155.65 grams. Therefore specific mass = ' = 0.776.
loo.oo

A cubic foot of the grain weighs then 0.776 X 62.5 =48.5 pounds.

(5) To find the specific mass of a mixture, given the volume or
mass, and specific mass, of each constituent.

Ans. We must assume that the volume of a mixture is equal to the sum of
the volumes of the constituents. This is not invariably the case, especially

where there is chemical union.

Let TOi , TOa , m3 , etc., be the masses of the constituents;

€i, eit e 3 , " " " specific masses of the constituents;

Vi, Vt, v 3 , " " " volumes " " "

Let to, t> and e be the mass, volume and specific mass of the mixture. Let
y be the density or mass of a unit of volume of water.

Then to : -f- w3 -f m% -f- etc. = to. But m x = eiyvi , m a = e^yvi , etc.

Hence

. . . .
e,«, + etVi + es«s -f etc.

€iViy -f- erfiy -f- e3 ti3y -\- etc. = evy, or e = ! !

v

But v = v t -\- Vt -\- Vi -\- etc. Therefore

_ e^i + e,Vj 4- e3 fl3 + etc. ..

V\ -}- v2 -f v% -\- etc.

. All TOa __
Again, we have Vi = , v% = , etc. Hence6 e ty e ty

TO TOi , TOa . m t .= + etc.
ey e %y ety e sy
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Therefore

TOi 4- m, -f m* + etc - zo\e = n zi • ••••••• \&)

T + 7" + T + etc-

ei e a e,

(6) Tiro eo/ttaZ vessels A and B are full and halffull, respectively,

of liquids of densities 6\ and 8^. If B is filled upfront A and then
A filled up from B, find the density of the mixture in A, the liquids
being supposed to mix completely.

35, + 8,
Ans. ; .

4

(7) Three equal vessels A, B, C are halffull of liquids of densi-
ties Sx , 8, , 8s respectively. If noiv B is filled up from A, and then
Cfrom B,find the density of the mixture in C, the liquids being
supposed to mix completely.

5, _|_ 6\, _|_ 2d,
Ans. j—

!

.

4

(8) To a salt solution whose specific mass is 1.08 and mass 27
ounces, 4 ounces of water are added. Find the specific mass of the
mixture.

A
31

(9) Find how much water must be added to 27 ounces of a salt
solution whose specific mass is 1.08, in order that the specific mass
of the mixture may be 1.05.

Ans. 15 ounces.

(10) When equal volumes of two substances are mixed, the
specific mass of the mixture is 3. When equal weights are mixed
the specific mass of the mixture is 2\. Find the specific masses of
the two substances.

Ans. 2 and 4.

(11) The masses and diameters of two spheres are as 1 to 2. Shoiv
that their densities are as 4 to 1.

(12) The diameter of the earth being 1.275 x 109 cm. and its den-
sity 5.67 times as great as that of water, find its mass.

Ans. 6.15 X 1021 grams.

(13) The linear density of a round bar of cast iron one inch in
diameter is 2.45 lbs. per foot. Find the weight of a pipe 2 yards
long, having a bore of 16 inches and a thickness of £ inch.

Ans. 739 lbs.

(14) A flat bar of iron 4f inches wide and | inch thick has a linear
density o/9.91 lbs. per ft. Find the weight of a bar of iron 1 inch
square and 1 yard long.

Ans. 10 lbs.

(15) From the preceding example state a rule for finding the
weight per foot of a bar of iron of any given constant area ; also
forfinding the area if the weight per foot is given.

Ans. To find the weight per foot in pounds, multiply the area in square
inches by 10 and divide by 3.

To find the area in square inches, multiply the weight per foot by 3 and
divide by 10.
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(16) The density of granite is 160 lbs. per cubic foot. A paving-
block is 4 inches wide, 9 inches deep and 12 inches long. Find the
number of tons (2240 lbs.) required to pave a street one mile long
and 20 yards broad, allowing an interval of 10 per cent between the

blocks.

Ans. 15274 tons.

(17) If the population of a country is 35262762 souls, and the area
is 120830 square miles, what is the average " density " of the popula-
tion f

Ans. 292 inhabitants per square mile.

(18) Find the specific mass of a piece of cork from the following
data : Weight in air 2 grams, weight of cork ana sinker in water 4
grams, weight of sinker in water 12 grams.

Ans. 0.2.

(19) A raft whose weight and specific mass are known floats in
water. Show how to determine the greatest weight it can support
without sinking.

Ans. Let m be tbe mass and e the specific mass of the raft. Then load =
mil - e)

e

(20) An empty balloon with its car and appendages weighs in air
1200 lbs. If a cubic foot of air weighs 1£ oz.

, find how many cubic
feet of gas must be used before the balloon will begin to ascend.
Specific mass of the gas 0.52, compared to air.

(21) An iceberg has the form of a cube and floats flat with a
height of 30 ft. above the ocean. Find the depth under water.
Specific mass of ice 0.92, of sea-water 1.026.

Ans. 260 feet.

(22) Find the mass of the earth in tons (2240 lbs.), having given
mean specific mass 5.6, mean radius 4000 miles.

Ans. 6.16 X 1021 tons.

(23) The unit of density being that of water, and the units oftime
and mass 1 minute and 112 lbs., find the magnitude of the derived
unit offorce.

Ans. 0.0378 poundals.

(24) The number of seconds in the unit of time being equal to the
number of feet in the unit of length, the unit of force being the
weight of 750 lbs. (g = 32), and a cubic footof the standard substance
having a mass of 13500 oz.,find the unit of time.

Ans. 5i sec.
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CHAPTEE IIL

CENTRE OF MASS.

CENTRE OF MASS. CENTRE OF GRAVITY. PROPERTY OF THE CENTRE OF
MASS. DETERMINATION OF CENTRE OF MASS. THEOREM OF PAPPUS
AND GUXDINUS. DETERMINATION OF CENTRE OF MASS BY CALCULU8.

Centre of Mass.—We may consider a material body as composed
of an indefinitely large number of indefinitely small particles of
equal mass.

The centre of mass of such a body is that point whose distance
from any plane is equal to the average distance of all the equal
particles from, that plane.

If then we take three co-ordinate planes XY, YZ, ZX, at right
angles, the distance of the centre of mass from each plane is equal

Y to the average distance of all the equal
particles from each plane.

Thus suppose a body composed of a
number N of particles of equal mass. Let

*'

—

to Xi, Xt, x3 , etc., be the distance of each
at particle from the co-ordinate plane YZ.
~

x Then we have for the average distance of

all the particles, or for the distance x
of the centre of mass from the plane YZ,

— _ Xi + Xi + x% 4- etc. _ 2xx-~
~^r~ ~~w

In taking the summation Xi + X* + x3 + etc. = Sx, each distance
Xi, Xi, x3 , etc., must be taken with its appropriate sign (+) or (—

)

according as it is on the right or left of the plane YZ. If then the

plane YZ passes through the centre of mass, x = and ^x = 0.

Now if the mass of each equal particle is m, the total mass or
mass of the body is M = Nm. If then we multiply numerator and
denominator by m, we have

— m^x
x = M

If a material body is composed of particles of unequal mass, we
may consider each of these particles as itself composed of particles

of equal mass.
Thus suppose a body composed of particles whose masses are

16
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ra,, ra2 , m 3 , etc. Let the first consist of a number Wi of particles of
equal mass ra, the second of a num- v
ber Hi of particles of equal mass ra,

and so on. Then nil = nim, mi =
nim, m 3 = n3m, etc. Let the entire
number of equal particles be N, so j

—

~-—m
that the total mass, or mass of the ml 1 *as
body, is M = Nm.

Then if Xi, xt , x 3 , etc., are the
distances of the particles of unequal
mass from the co-ordinate plane YZ,
we have for the average distance of
all the particles, or for the distance a

x of the centre of mass from the plane YZ,

niXi + riiXi + n 3Xs + etc.

^Dlj

X = N
If we multiply numerator and denominator by ra, we have

— rriiXi + mix* + m 3x3 + etc. 2mx—m -r • •
(1)

In the same way we have for the distance y of the centre of
mass from the co-ordinate plane ZX

* =^. •
and for the distance z of the centre of mass from the co-ordinate
plane XY

«-¥ <3>

We see then that the centre of mass of a body is such a point
that if the number of units in the whole mass be multiplied by the
number of units in the distance of this point from any plane, the
result will be equal to the algebraic sum of the products obtained
by multiplying the number of units in the mass of each elementary
particle by the number of units in its distance from the same plane.

Cor. In taking tne sums of the products 2mx, 2my, 2mz, for
each elementary mass or particle, we must take x, y, z with their
proper signs.

If then we take the origin of co-ordinates at the centre of mass,

we have x = 0, y = 0, z = 0; hence

2mx = 0, 2my = 0, 2mz = 0.

If we take polar co-ordinates and take the pole at the centre of
mass, we have

2mr = 0,

where r is the distance of any particle from the pole.

That is, the algebraic sum of the moments of the masses (page
19) of all the particles with reference to the centre of mass is zero.

Centre of Gravity.—We shall see hereafter (page 75) that the
centre of mass of a body conincides with the point of application of
the resultant of that system of parallel forces which acts upon all
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the particles of a translating body ; that is, when each parallel par-
ticle force causes in the particle on which it acts the same accelera-
tion in the same direction.

The earth's attraction for a body is the resultant of a system of
forces acting upon the particles of the body, each particle force
being directed towards the centre of the earth, and causing in the
particle on which it acts an acceleration of the same magnitude.
We have thus a system of forces not strictly parallel, but causing
in each particle an acceleration of the same magnitude.

But practically the deviation from parallelism is insignificant,
since the longest dimension of any body on the earth with which
we have to deal is insignificant in comparison with the radius of
the earth. Hence the accelerations are practically parallel as well
as equal and the resultant force of gravity upon a body passes
practically through the centre of mass. This resultant is the weight
of the body. The weight of a body acts practically, therefore, at
the centre of mass.

The centre of mass is therefore often called the "centre of
gravity.'" The term is, however, strictly speaking, incorrect. The
term "centre of gravity" can only be properly applied to that
point at which, if the entire mass of the body were concentrated,
this point would attract and be attracted in all positions of the
body, just the same as the body itself. In this sense, as we shall
see (page 47), only a few bodies possess a centre of gravity, while
all bodies have a centre of mass.

Centre of mass then has nothing to do with gravity. Gravity
furnishes only a convenient practical method of locating it. The
two ideas are entirely distinct.

Property of the Centre of Mass.—The importance of the centre
of mass of a body, in Dynamics, depends on a property of it which
we shall prove hereafter (page 83).

This property is as follows :

Whatever the motion of a rigid body may be, the centre of mass
of the body moves precisely the same as if the body were replaced by
a particle of equal mass at the centre of mass, and all the forces
acting upon the body were transferred to this particle, without
change in direction or magnitude. (For other properties of the
centre of mass see page 75).

Determination of Centre of Mass.—We have just seen that the
centre of mass of a body is such a point that if the number of

Y units in the whole mass be multiplied by the
number of units in the distance of this point
from any plane, the result will be equal to the

algebraic sum of the products obtained by mul-
tiplying the number of units in the mass of

each elementary particle by the number of
*units in its distance from the same plane.

If we denote the volumes of the indefi-

nitely small elements of a body by Vi , v* , v%,

etc., and their densities by Si, Si, S3 , etc.,
2 then the masses of these elements will be
given by mi = SiVx , m-x = 8*Vi , m 3 = SsV* , etc. (page 10).

If then Xi, x,, x3 , etc., are the distances, from the co-ordinate

plane YZ, y,, y-i, y 3 , etc., from the co-ordinate plane ZX, Zi, Zi, z3 ,

etc., from the co-ordinate plane XF, we have for the co-ordinates

x, y, z of the centre of mass in general
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—_ SiViXi + 8*v%Xi + etc.

SiVi + 6 tvi + etc.

—_ SiUig/i + SiViyn + etc.
* _ SWi + <5 2ua + etc.

—_ 81V1Z1 + 8-,ViZi + etc.

S1V1 + 8,v* + etc.

(1)

If the body is homogeneous, we have <5i = #a = 83 , etc. Hence
if V is the volume of the body, we have for a homogeneous body,

2vx— V1X1 + ViXi + etc.

Vx + Vi + etc.

—_ viyi + Viy* + etc. _ 2vy
y ~ Vi + v* + etc. V '

— V1Z1 + VtZt + etc. 2vz
z = —

Vi + Vi + etc.

(2)

O h

Equations (1) and (2) give the position of the centre of mass for
volumes, non-homogeneous or homogeneous.

For surfaces or areas we can put a for v and A for V, where a
is the area of an element and A the entire area, and 8 the surface
density (page 10).

For lines we can put I for v and L for V, where I is the length of
an element and L the entire length, and 8 is the linear density
(page 10).

Material Line, Area and Volume.—There is of course a certain
inconsistency in speaking of the centre of mass of geometrical
lines, areas and volumes, since they have no mass. The expression
is, however, allowable, since we are understood to mean a physical
or material line whose cross-section is constant and therefore
cancels out of equations (1) and (2), 8 being then the linear den-
sity ; or a material area whose thickness is constant and therefore
cancels out, 8 being the surface density ; or a volume filled with
matter of uniform density, in which case 8 cancels out and we
have equations (2).

Moment of Mass, Volume, Area.—We may call the product of
the magnitude of a mass, volume or area by the magnitude of the
distance of its centre of mass from any plane or axis, the magni-
tude of the moment of the mass, volume or area, relatively to that
plane or axis.

We can then express equations (1) and (2) by saying that the
moment of the total mass, volume or area of a body with reference
to any plane or axis is equal to the sum of the moments of the
elementary masses, volumes or areas.

Elane and Axis of Symmetry.—A bodyis^eymmetrical with re-

spect to a plane when the lines joining itsXpSrticles, two and two,
are parallel and bisected by the plane. Insuch case the centre of

mass is in the plane and the equations for x and y are sufficient.

A body is symmetrical with respect to an axis when it is sym-
metrical with respect to two planes passing through that axis. _In

such case the centre of mass is in the axis and the equation for x is

sufficient.

If a body is symmetrical with respect to two axes, the centre of
mass is at their intersection. This point is then the centre offigure.

m
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1

Many cases are simplified by the application of this principle of
symmetry.

Thus the centre of mass of a homogeneous straight line is at
the middle of the line ; of a homogeneous circle or circular area

or sphere, at the centre. For a paral-
lelogram ABCD the line ab through the
middle points of the sides AB, CD, bi-
sects all lines parallel to those sides and is
therefore an axis of symmetry. So is cd
through the middle points of AC, BD. The
diagonal AD bisects all lines parallel to the

other diagonal and is an axis of symmetry. So is the diagonal BC.
The surface would balance on a knife-edge along either of these
lines. The centre of mass is then at S, their point of intersection.

,
We shall make constant use of this principle of symmetry.
Centre of Mass of Homogeneous Material Lines.

(1) Centre of Mass of Homogeneous Straight Line.—The centre
of mass of a homogeneous straight line is, by the principle of sym-
metry, at its middle point. For the line itself is one axis of sym-
metry, and a line at right angles to it at its middle point is another.

(2) Homogeneous Circular Arc.—The centre of mass for a homo-
geneous circular arc, if the arc is a full circle, is, by the principle of
symmetry, at its centre of figure, or at the centre of the circle, be-
cause any diameter is an axis of symmetry. For any homogeneous
arc in general, we may find the position of the centre of mass as
follows:

Let ABC be a homogeneous circular arc with centre at O. Take
the origin at O and let the axis of X pass through
O and the centre B of the arc.

Then OB is an axis of symmetry, and the
centre of mass S is on this axis. Let the chord
AC = c, and the length of the arc ABC be L, and
r = radius. Take an indefinitely small element
PQ whose length is I and whose centre of mass is

at a, and let PR be the vertical projection of PQ.
Then we have by similar triangles

I : PR :: r : ON,

or, since ON— x, the moment of the mass of
the element PQ with reference to an axis through
O parallel to AC is proportional to Ix = rPR.
The sum of the projections PR of all the elements is AC = c.

Hence the sum of the moments of all the elements is proportional to
2lx = r2PR = re. Since the entire length is L, we have from equa-
tion (2), page 19,

- 2lx re
X = -L=L-

Therefore the centre of mass S of a circular arc ABC is on the

axis of symmetry OB at a distance x — OS from the centre of the
arc, which is a fourth proportional to the arc, the radius and the
chord, or

L : r :: c : x.

— 2r
For a semicircle, c = 2r and L = nr, hence x = — . For an en-

n

tire circle, c = and x = 0, or the centre of mass is at the centre of
figure.
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Centre of Mass of Homogeneous Areas.

(3) Homogeneous Parallelogram.—Every line of thehomogeneous
Earallelogram ABCD parallel to AB or CD is

isected by the line ab drawn through the
centres of the sides ABCD. Hence ab is an
axis of symmetry. So is the line cd, or AD or
BC. The centre of mass is then, by the prin-
ciple of symmetry, at the centre of figure, or at c & d

the intersection S of the diagonals, or of the
lines drawn between the middle points of opposite sides.

(4) Homogeneous Triangle.— Every line of the homogeneous
triangle ABC parallel to BC is bisected by the line AD drawn

from the vertex A to the centre D of the
opposite side.

Hence AD is an axis of symmetry. So
also is the line CE drawn from the vertex C
to the centre E of the opposite side. The
centre of mass is then at S. Since E and D
are the middle points of AB, BC, and there-

fore DE is parallel to CA and equal to - CA, the triangles A^C and

D0E are similar, and
5 DS: SA-.-.DE. AC or :: 1.2.

Hence the centre of mass is on the line DA at a distance from D
equal to - DA. In general the centre of mass is on the line from

any vertex to the middle of the opposite side, at a distance from
2

the vertex of — the length of this line.
o •

(5) Homogeneous Trapezoid.—We can determine the centre of
mass of a homogeneous trapezoid as follows

:

The line MN which joins the centres of the two bases AB and
CD is an axis of symmetry, and the centre of mass S is on this
line.

Denote the base AB by 62 and CD by hi, and the altitude DO by
h. If we draw DE parallel to the side BC, we have a parallelogram
BCDE whose area is bih and the distance of whose centre of mass

Si from AB is %, and a triangle ADE whose area is and

the distance of whose centre of mass & from AB is -

.

The area of the trapezoid is (6i + 6.)^. If y is the distance HS

of the centre of mass of the trapezoid from AB, we have

(6. + *)| •

- . h
,

(b, — bi)h h ,. —, .h?

A
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Hence

y =HS = 63 + 26, h
6, + 6a

' 3

"

We have also

-=— = -T-, or HM=f-IM.
y fl tl

Let the angle ADO = fi, then

AO = htim/3, and I3f = ^- - h tan /S - ^.

Therefore

™= ^±^i (5lzA« - fctan A
3(6, + &2 ) \ 2 y

If x is the distance AH of the centre of mass from A, we have,
if AO = a = h tan /3,

x = AH=^-- &
!
+2

?i-f
6a - &1

-fttan ^
2 3(6, + 6S) \ 2 *7

6,
a + 6161, + 6,' + a(bi + 26,)

3(6. + 6,)

We have also

MS NM , NS NM
-=r = -T— >

and
//

7l-
Z/

Hence

6, + 6» 3 6, + 6„ 3

Therefore

JfS _ 6, + 26, _ jbi + 6, = AM+ DC = AM+ AF
NS 2b, + 6, 6, + i6, AS + NC GC + NC

1st Construction.—If then we lay off AF= DC, and CG = AB
y

d c and join FG, the intersection S of FG with
.ATilf gives the centre of mass.

'2d Construction.—Another convenient con-
struction is as follows : Draw the diagonals
AC, BD, intersecting at T. Layoff along AC
the distance ATi = CT and along BD the dis-

tance BTi = DT. Bisect the diagonals at R
B and P and join RT> and P7V The intersec-

jon S is the centre of mass. Student will prove.
(6) Homogeneous Trapezium.—In order to

find the centre of mass of any homogeneous
four-sided area ABCD, we can divide it by
means of a diagonal AC into two triangles and
determine their centres of mass Si and S% by
(4). We thus obtain a line S1S1. If we again
divide the area by the diagonal BD into two
other triangles and determine their centres of
mass, we obtain a second line whose intersection with SiSi
the centre of mass S of the whole area.

gives
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We can, however, proceed more simply by bisecting the di-

agonal AC at Mand laying off the longer segment BE of the other

diagonal from D to F so that DF = BE.

Then draw FM and take MS = ^FM. Then S is the centre of

mass.

For we have MSi = ^MD and MS* = ~MB, hence SiS* is paral-

lel to BD. But SSi x area ACD = SS* x area ACB, or SSi x DE
= SS* x BE, whence SSi : SS*::BE:DE. But we have by con-

struction BE = DF, and DE = BF; hence SSi : £& :: -Di*
7

: J3F.

Hence MF cuts SiS* at the centre of mass S.

1st Construction.—We have then the following construction:

Bisect one diagonal AC at M. Lay off the longer segment BE
of the other diagonal from D to F, so that DF = BE. Then join

MF and take ilfS = -MF. Then # is the centre of mass.

2d Construction.—We have also the fol-

lowing construction

:

Let E be the intersection of the diagonals,

and Mi , M* their middle points. Join 3ft, M*,

and let M be its middle point. Draw the
line EM and produce it to S, so that MS
equals one third of EM. Then S is the centre b
of mass. Student will prove.

3d Construction.—Draw the diagonal DB, dividing the figure

into the two triangles DAB and BDC. The
centres of mass a* and cti of each of these

triangles are in the lines DM* and BMx
drawn from the vertices D and B to the

middle points M* and Mi of the opposite
2 2

sides, so thatDaa = ^DM* and Ba t = o BMu

The centre of mass is then in the line a*a,i.

Now draw the diagonal CA, dividing the figure into the two
triangles CAB and ADC. The centres of mass b* and 6i of each of

these triangles are in the lines CM* and AMi , so that Cb* = g
CM*

and Abi = ^AM.

4a/4

The centre of mass is then in the line bib*. The

centre of mass S is then at the intersection of a*a,i and b*bi.

t (7) Homogeneous Plane Polygon.—To find the centre of mass of

any homogeneous plane polygon, we can divide it into triangles,

consider the area of each triangle concentrated at its centre of

mass, and find the moments of each with reference to two rectan-

gular axes.
A convenient and sufficiently accurate method which is often

employed is to draw the polygon to scale upon stiff manilla paper.

Then cut the area out and balance it in two positions upon a knife-

edge. Two axes of symmetry are thus determined, and the centre

of mass of the area is at their intersection.

A similar method may be employed for finding the area of an

irregular figure. Draw the area upon paper. Measure carefully

the area of the sheet and weigh it in a delicate laboratory balance.

Then cut the area out and weigh it. The areas are as their

weights.
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^/
(8) Homogeneous Circular Sector. — The centre of mass of a

homogeneous circular sector ACO coincides
with the centre of mass S of the arc A1B1C1
which has the same central angle and whose
radius OAi is two thirds that of the sector
OA. For the sector can be divided into an
indefinite number of small triangles, the
centre of mass of each of which is at a dis-

tance from O of two thirds of the radius.
These centres give the arc AiBiCi.

The centre of mass S of the sector lies,

therefore, upon the radius of symmetry OB
which bisects this arc AiBiCi , and at a distance OS from the centre
(page 20) given by

OS = chord AiCi
arc AiBiCi §-=!

sin

r,

where r denotes the radius of the sector and 6 the central angle
AOC in radians.

a

For the semicircle = n, sin — = 1 and

4 14OS = —

-

r = — r, approximately.
6it 66

For a quadrant

For a sextant

OS *V2
6n

r = 0.6002r.

OS=-r
n

0.6366r.

(9) Homogeneous Segment of a Circle.—The centre of mass of the
homogeneous segment of a circle ABC is in the radius of symmetry
OB and may be found by placing the
moment of its area relative to an axis
through O parallel to AC equal to the dif-
ference of the moments of the areas of
the sector ABCO and of the triangle ACO.

Let r be the radius OA, c the chord AC
and A the area of the segment ABC, and
I the length of arc ABC. Then the area

vL
of the sector is — . The distance OSi for

3
c 2

the centre of mass of the sector is y • — r, and the moment of its area

is
cr'

The height of the triangle is j/r2 — — . Its area is -|-4/ r3 — —

The distance OSi for the centre of mass is

cr2 c
s

ment of the area of the triangle is then —
i/r* - --

. The mo-
4

Hence we have

OS=lcr*-(ĉ - c-\= C
-,

3 I 3 12/ 12'
or OS =

12A
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For a semicircular segment, c =2r and A

That is, the centre of mass of a segment of a circle is on the
radius of symmetry OB, at a distance OS from the centre of the
circle equal to the cube of the chord AC divided by 12 times the
area of the segment.

as we have already found it (8).

(10) Homogeneous Circular Ring. —The centre of mass of a
homogeneous circular ring can now be found. It is in the radius of
symmetry OBu The area of the ring is the
difference of area of two sectors OAiBiCi and b^
OAvBzCi. If OAi = ri and OAi = r2 and the
chords AiCi = Ci, A2Ca = c2 , we have the
moments of the areas of the sectors relative
to an axis through O parallel to AiCi equal

to
Cin"

and
Cir*

The area of the ring is
o o

rV9 rv'd _ Jrl~rl\~2~~~2~~ \~2 r
where 6 is the central angle AiO& in radians

If l is the length of the arc A1B1C1 , this becomes

os ~ &W=rf)'

Hence, since— = —

,

or OS =
— IV
— »v

2ci

3n0'

or, since I = rid and Ci = 2n sin 2'

OS =
4 sin —

2
36

ri — r*
sin

| e

ri' — r^' b+km*
where 6 = n — r2 and JJ = r! + r,

/\^\^ Surface of a Cylinder.—The centre of mass of the homo-

\
geneous surface of a cylinder lies at the centre of its axis. For all

the equal-circle elements of the surface obtained by taking slices

parallel to the base have their centres and centres of mass upon
this axis. At these centres of mass the mass of each element may
be concentrated. The centre of mass of the cylindrical surface is

then the centre of mass of the axis.
For the same reason the centre of mass of the surface of a prism

lies in the middle of the line which unites the centres of mass of its

bases.
y\}^{A%\ Surface of a Right Cone.—The centre of mass of the homo-

^\ v geneous surface of a right cone lies in the axis of the cone at two
thirds of its length from the apex. For the curved surface can be
divided into an indefinite number of small triangles. The centres

of mass of all these triangles form a circle which is situated at a
distance of two thirds of the axis from the apex, and whose centre

of mass lies in the axis.
The same holds true for a right pyramid.
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(13) Surface of a Spherical Segment, Zone or Hemisphere.—The
1

centre of mass of the homogeneous surface of a spherical segment
or zone £>r hemisphere is at the middle of its axis or height.

For, according to Geometry, the spherical zone ABDE has the
same area as the surfaceFGHK of a cylinder
whose height is equal to the height MN of
the zone and whose radius is the radius CO
of the sphere. This holds for all ring-shaped
elements obtained by passing planes parallel
to the base through the zone. Hence the
centre of mass for the surface of the spherical
zone, segment or hemisphere is at the middle
coincides with that of the cylinder.\fjj^ S of itsheight MN and coincii

yS^ \\^0*fjpeRts of Mass of Volumes.
1^^^^^^^^4) Volume of a HomogenHomogeneous Prism.—The centre of mass for a

solid homogeneous prism is at the middle of its axis, or the line

joining the centres of mass of its two bases. For by passing planes
parallel tp the bases we divide it into equal slices whose centres of
masslie'm the axis.

[^tb) Homogeneous Pyramid and Cone.—Let A BCD be a homo-
geneous triangular pyramid. Take E at
the middle point of BC and draw AE and

DE. Let ME = ^ AE, audiEN= ^DE.

Draw DM and AN. Then DMand AN
are axes of symmetry, and the centre of
mass is at their intersection S. But MN
must be parallel to AD and equal to -AD,

and the triangle MNS is similar to DAS.

Hence MS = ± DS, or DS = 3MS; and MD = 4 MS, or MS = -MD.
3 4

The centre of mass for the pyramid is then on the line joining a
vertex with the centre of mass of the opposite base, at a distance
from the vertex of three fourths the length of this line.

Since every pyramid and cone is composed of triangular pyra-
mids with a common vertex, the centre of mass of any pyramid or
cone is in the line joining the apex with the centre of mass of the
base, at a distance from the vertex of three fourths the length of
this line, or at a vertical distance of three fourths the altitude.
We can therefore determine the centre of mass of a pyramid or

cone by passing a plane through the body parallel to the base at a
distance of three fourths the altitude from the vertex, and finding
the ^centre of mass of this section.

16) Frustum of a Cone or Pyramid.—The centre of mass of a
homogeneous frustum of a cone or pyramid lies in
the line GM joining the centres of mass of the two
parallel bases. If we denote by Ai the area of the
base AB, and by A, the area of the base DC, and by
h the altitude between them, the height x of the
point F above DC is given by

G E B

Ai_ _ (h + xy
A* x*

or x = h VA-,

and
VAr-VA,

+ h= ± VA1_ .

VAi- Va,
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The moment of the entire pyramid with reference to its face is

Aijx + h) x + h _ 1 WAS
3 ' 4 ~i2'(

i/A 1 -VA^u

and that of the part of the pyramid which is wanting is

AiX hWA,
+ A WAS

VAx- VA> 12 ( \/Ax - VA>)

Hence the moment of the truncated pyramid is found by sub-
tracting the second from the first, after reduction, to be

— lAi + 2 \/AiA a + 3A,J.

The volume of the frustum is (Ax + VAlA, + AA-—. Therefore

the distance of the centre of mass S from the base is

flg _ Ai + 2 j/AiA* + SA* h
Ax + \ZAiA* + Ai ' 4

*

The distance SoS of this point from the plane KL passing through
the middle of the body parallel to the base and dividing the altitude
into two equal parts is

SoS = h SE = Ai — At h

(Ax + VAxA* + A,) 4

If the radii of the bases of a frustum of a cone are n and r3 , we
have

Ax = itr*, At = xrS,

and
rx

a + 2rxTi + 3rS h
.

F? + rxTi + rS 4
'

ri
2 - ra

9 h
rx* + rxVi + rS 4

'

SE =

SoS =

(17) Spherical Sector.—If the homogeneous circular sector AOB
is revolved about its radius OB, a homogeneous spherical sector
AOC is generated.
We can consider this body as composed of an indefinite number

of pyramids, whose common apex is at O and
whose bases form the spherical zone ABC. The
centres of mass of each of these pyramids are at a
distance of three fourths of the radius OB of the
sphere from O, and they form a second spherical

zone AxBxCx, whose radius OBx = —OB.
4

The centre of mass of this zone is then the
centre of mass of the spherical sector. If we
Eut OA = OC = r, and the altitude BM of the exterior zone = h, we
ave

OBx = ^r
4

and BxMx = -h.
4
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Hence, by (13),

SB, = \m,Bi = |fc,
Z 8

and the distance of the centre of mass of the spherical sector from
the centre O is

OS = oa- sb. =!*-!* = !(••-£).

For a hemisphere, r = h, and OS = -r, or the centre of mass of
8

3a hemisphere is on its radius of symmetry at a distance of — this
8

radius from the centre.
(18) Spherical Segment or Spheroid.—We may obtain the centre

of mass for a homogeneous spherical seg-
ment by putting the moment of the seg-
ment equal to that of the spherical sector
ABCO less that of the cone ACO.

L Denoting again the radius OB of the
\ sphere by r, and the altitude BM by h, we

i—^ have the moment of the sector

=
J
«% . |(r -|) m \nr*h{2r - ft),

and that of the cone

= -ith(2r - h){r - h) . -(r - h) = -«h(2r - h)(r - h)\
3 4 4

Hence the moment of the segment is

V x OS = \nhl2r - h)[t* - (r - h)*] = \nh\2r - h)\
4 4

The volume of the segment is V = -nh\Br — h), hence

os =
- ith\2r - hy

\nh\Zr - h)

3 (2r - K?

4 Br— h

If we put h = r, the segment becomes a hemisphere, and, as be-

fore, OS = |r.
8

The result holds good for the segment AiBCi of a spheroid gen-
erated by the resolution of the arc BAi of an ellipse about its major
axis OB = r. For if we make BM = x and MAi = y, the equation
of the ellipse is

y* = h
l(2rx - x*),

where b = OEx. The equation of the circle is y
1 = 2rx — a?. Hence

MAS b*= — . We must then multiply not only the volume but also
MA3 r
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the moment of the spherical segment by — to obtain the volume

and moment of the segment of the spheroid. Therefore the quo-

tient OS =—, is not changed.
volume

In general, then, we have

nq _3 (2r-hy

ere r denotes that semi-axis about which the ellipse is revolved
he>argenerating the spheroid.

heorem of Pappus and Guldinus.—If a plane surface ABC is

•'/.

revolved about an axis OX, every element of
it, as ai , a2 , etc., describes a volume. If the
distances of these elements from OX are yi ,

yi , etc., and the angle of rotation is radians,
we have for the entire volume V generated

V= aiyS + cbiy-3 + . . . = Q2ay.

If y is the distance of the centre of mass of the surface ABC
from OX, and A is its area, we have

Ay = aiyi + aiyi + . . . = 2ay.

Hence

Ajfl = 62ay = V.

That is, the volume generated by the revolution of a plane area
which lies wholly on one side of the axis equals the area multiplied
by the distance described by its centre of mass.

In the same way, if a plane curve ABC is

revolved about an axis OX, every element of
it, as Si, s 3 , etc., describes a surface. The en-
tire surface generated is

A = SiyS + s-tyS + . . . = Q2sy.

If y is the distance of the centre of mass of
the curve from OX, and L is the length of

the curve, we have

Ly = siyi + Siy* + . . . = 2sy.

Hence
Ly6 = QSsy = A.

That is, the area generated by the revolution of a line about a
fixed axis equals the length of the line multiplied by the distance de-
scribed by its centre of mass.

These properties are known as the theorems of Pappus and Gul-
dinus. By means of them, the volume, or the centre of mass, in
many cases, may be very simply determined.

EXAMPLES.

(1) The surface of a sphere is Anr*, and the length of a semi-cir-

cumference is itr. Find the centre of mass for a semi-circle.

2r
Ans. On the radius of symmetry at a distance from the centre of — . [See

(2), page 20.]

HI
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4
(2) The volume of a sphere is ^xr 3

, and the area of a semi-circle

is pitr2. Find the centre of mass of the surface of a semi-circle.

4r
Ans. On the radius of symmetry at a distance from the centre of— . [See

(8), page 24.]

(3) An ellipse revolves about a line in its plane, the perpendicular
distance of whichfrom the centre is equal to c. Find the volume of
the ring generated by a complete revolution.

Ans. Let a and b be the semi-axes of the generating ellipse. Then the
generating area is A = itab. The path described by the centre of mass is 2izc.

Hence the volume is 27t'2abc. This volume is the same whatever the position

or direction of the axis of revolution with respect to the axes of the ellipse,

provided that the perpendicular distance c from the centre to the axis is the
same.

[Determination of Centre of Mass by Calculus. — When a body is

of such form that we know the relations between its co-ordinates for any
point, and its density is a function of the co-ordinates, we may write (1)

and (2;. page 19, in Calculus notation:

PsxdV fSydV CdzdV
'*=—?>

» y = -?i ' * = —^—'• ' (3)

/ SdV / SdV / SdV

where 6 is the density for any elementary volume dV. If the body is

homogeneous, 8 is constant and / dV = V= the entire volume, and

CxdV JydV JzdV

V V = ,T > * = Tr • • • • (4)

From these equations the co-ordinates of the centre of mass are found
by integrating between the limits which determine the volume.

From these general formulas we can readily deduce special formulas
for special cases.
^ [Centre of Mass of Lines.—Thus if s is the length of a line and a its

transverse section at any point, then ds is an element of length, and dV
= ads, and (3) becomes

/ aSxds I aSyds I aSzds

x= — , y = — , F= -—
. . . (5)

/ adds I adds I adds

If the line is homogeneous and the transverse section constant we have

/ xds I yds I zds

x = , y = . z = . • • (6)
s ' * .9 s

If the line is a plane curve, we can take its plane that of xy. Then z =
0, and the first two of (5) and (6) are insufficient. If the line is_a straight

line, we may take it coinciding with the axis of x. Then y and z are zero,

ds = dx, and the first of (5) and (6) are sufficient.
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• EXAMPLES.

(1) Find the center of mass of a homogeneous straight line.

r
Ans. In this case we have x = ?—

-

xdx
= — , which is also evident from

8 2
the principle of symmetry.

(2) Find the center of mass of a straight fine wire of uniform
section, in which the density varies directly as the distance from one
end.

Ans. If 6\ is the density at a distance unity, and the axis of x coincides
with the line, and the origin is taken at the end of the line, the density d at

any distance x is proportional to Six, and ds = dx ; hence from equation (5)

if*x*dx

s:
Sixdx

Cor. If the density is constant but the section varies directly as the dis-

tance, we have the same result. The wire in this case would become a homo-
geneous triangular plate of uniform thickness. Hence the centre of mass of a
triangle is on the axis of symmetry at a distance from the vertex of two thirds

the length of that axis. [See (4), page 2.]

(3) Find the center of mass of a straight fine wire of uniform sec-

tion, in which the density varies as the square of the distance from one
end.

In this case we have

o
as =

s:
diX^dx

Cor. If the density is constant but the section varies as the square of the
distance, we have the same result. The wire then becomes a homogeneous
cone or pyramid, whether right or oblique, or whether *Y

the base be regular or irregular. [See (15), page 26.]

(4) Find the center of mass of a homogeneous
cycloid.

Take the origin at and let the axis OX be the
axis of symmetry. Then if s is the length of the curve
and r the radius of the generating circle, we have for

the equation of the cycloid

*2 = 8rx (1)
Hence

d» = {2r)ix ~*dx.

From equation (6), therefore,

- s: (2rf*

(8rxy

x
3"*
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When x = 2r, we have the curve corresponding to one complete revolution

— 2
of the generating circle, and x = -^r. That is, the centre of mass for the

o

curve is on the axis of symmetry at a distance OS from the vertex equal to one
third of the diameter of the generating circle.

(5) Find the centre of mass of a homogeneous circular arc.

Let ABC be a circular arc, with centre at 0. Take the origin at and let

the axis of x coincide with the axis of symmetry
OB. Let AG= chord = c, and the length of arc

ABC= 8, and r = radius. Take an indefinitely

small element PQ — ds, whose centre of mass is

at a, so that aN = y and the horizontal projection

QB = dx.

Then

j j j rdx
ds : dx :: r : y, or ds = .

y

Hence xds =
circle is

rxdx
But the equation of the

a? -f y* = r», .\ xdx = — ydy,

and, therefore, xds = — rdy. From equation (6)

L — rdy

I

re

Hence the distance 08 of the centre of mass from the centre of the circle is

a fourth proportional to the arc, the radius, and the chord, or [see (2), page
20]

8 : r : : c : x.

[Centre of Mass of Plane Surfaces.—Let the plane of xy coincide with

the surface. Then z = 0. If we consider the surface as a thin material
plate of density S at any point and thickness r, we have the elementary
area dxdy and the elementary volume zdxdy = dV, and equation (3), page
30, becomes

/ / rSxdxdy j I rSydxdy

y =

K r is constant and the material homogeneous, or S constant, we have
the entire area

and

j frddxdy
J

I r8dxdy

and the material homogeneous, or 8

A= I I dxdy = I xdy = J ydx,

j yxdx
<2
)j y

*dx

(7)

x =

(8)

(9>
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If the axis of x is an axis of symmetry, y = 0, and the value of x is

sufficient.

The student will note that ydx is any elementary area abdc. Hence

/ydx is the entire area A. Also ydx x x

is the moment of the elementary area with
reference to the axis of Y"; and since the

centre of mass of this area is at a distance —
2

above the axis of x, ydx x - y is its moment

with reference to the axis of x. Hence we
have equations (9).

If we take polar co-ordinates, we can replace dVin equations (3), page
30, by rpdpdO; and since x = p cos 0, y = p sin 0, where is the angle of

the radius vector p with the horizontal, we obtain

f fr8p
2dp cos Qd8 f frSp^dp sin 6dB

x = y =

J JrSpdpdQ I I zSpdpdB
(10)

If the thickness is constant and the material homogeneous, r and S
disappear and

i fp^dp cos BdQ
J Jp^dp sin 0d0

x = y = (ii)

EXAMPLES.

(1) Find the centre of mass of a homogeneous semi-parabolic area
whose length is a and height b.

The equation of the parabola referred to the vertex is y^ = 2px. When
6s

B x = a, we have y = b; hence 2p = —, and the equa-

tion becomes

y* = -x.
a

From equation (8)

A I ydx = I —y^x*dx =
Jo Jo ^a

2
*

Therefore, from equation (9), we have for the distance of the centre of mass 8i
from 0, upon OX,

Jn Va
x*dx

3«6

= -a,
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and for the distance above OX

— " o 3.
y==

2 h
=S b-

For the entire parabola we have two equal elementary areas ydx, one above
and one below OX. The centre of mass S* is then in the axis of symmetry OX
at a distance from the vertex

2 / -^-Jdx
- Jo *> 3= -rff.

2 5
2x|a6

For the parabolic area OBO we have for origin at G the equation

y = b — b\f - , and A = -^ab.
r a 6

Hence, from equation (9), we have for the centre of mass S*

' bxdx -zj^dx
o va = tttO from OG;

t: / Wdx —xdx+ —xdx

y = j = j b from BG,

or? of OC from OA.

These last two values can be readily determined from the first two by the
application of the principle of moments.

2 1
Thus the area OBA = —ab, and area OBG= 5 ab, and the sum of the mo-

o o
ments of these areas with reference to the axes of x and y must equal the mo-
ment of the rectangle OABG. Hence

2 3 1 — 1 3
-ab X g«+ g«6 X x = abx -^a, or x = —a;

2 3 1 — 1 — 3
3«&X g&4- 3C* X y = abX

2
&, or y = -b.

(2) Find the centre of mass for the area of a quadrant of a circle in
which the density increases directly as the distance from the centre.

If 6\ is the surface density at a units distance, the density at any distance p
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is proportional to 6\/o. Putting this in the place of S in equation (10) we have,

if r is constant,

5,

x = y =
Jo t/O

pzdp cos 6d8 —r*

ixr*
d 1 C% rfPdpM 6

If the density is constant, we have from equation (11)

r

p*dp cos BdB

3r,

2rt

x = y =

4

4>

Sit'

(3) Find the centre of mass of the area of a homogeneous circular

segment.

Let the origin be at the centre of the circle, and the A
axis of x the axis of symmetry. Let the chord AG = c

and the radius r. Then the equation of the circle is

xiJ{-yi = r2
. Hence xdx = — ydy. From equation (9)

J, — y^dy

x ~ A ~ iaZ"

The centre of mass of a homogeneous circular segment is on the radius
drawn to the middle of the arc, at a distance 08 from the centre of the circle

equal to the cube of the chord divided by twelve times the area of the seg-
ment. [See (9), page 24.]

(4) Find the centre of mass of the area of a
'homogeneous quadrant of an ellipse.

The equation of the ellipse referred to its centre and
axes is ay -f 6V ss a*b*.

a2 62

Hence xdx = — jj-ydy, and y
2 = 62 $x*. —

»

Jr

J,
X =

From equation (9) we have

-b
~ ^V'dy

^itab

Wdx-

4a
#

3tf
;

L Wdx-
-_Vo
y ~ inab

-x*dx

1*.

If a = b, the ellipse becomes a circle, and the co-ordinates of the centre of

4r

3Jr'

— — 4t*
mass of a circular quadrant referred to its centre are x = y = g—, as in ex-

ample (2).
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[Centre of Mass of Curved Surfaces.—If the surface is one of revolu-

tion, let the axis of x coincide with the axis of

ds . revolution, which is also an axis of symmetry.
The surface can be divided by planes perpen-
dicular to the axis into a series of circular

rings. Let ds be the length element of the

-x generating curve. The elementary surface
generated by its revolution will be 2ityds. If

the thickness of the surface is r, the element-

ary volume is dV= 2niyds, and equation (3)

becomes

/ 2m8xyds I rSxyds

I ZrrtSyds I rdyds
(12)

/
If r is constant and the surface homogeneous, d is constant, and

2nyds = A= the entire area of the surface, and

2it I xyds

(13)

For curved surfaces in general we have dV= rda and equation (3) be-
comes

/ rSxda I rdyda I rdzda

y —
I rSda I rSda I rSda

If r is constant and the surface homogeneous, we have

/ xda I yda I zda

(14)

x =

The elementary area

y =

dxdy
da = £,

cos S

(15)

(16)

where 6 is the angle which the tangent plane to the surface makes with
the plane xy, and is given by

dL

cos 6 m ±
dZ

__
——

, (17)

iell? dl? dU
dx* dy* dz2

where L = f(x, y, z) = is the functional equation of the surface.

EXAMPLES.

(1) Mnd the centre of mass of one eighth of the surface of a spheri-

cal shell of uniform thickness and density.

The equation of the sphere, if r is the radius, is
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dL dL dL
Hence —— = 2x, -j— = 2y, — = 2e, and equations (17) and (16) become

Qm/ ay dz

. 2z z rdxdy rdxdy
cos 9 =

,
= — , da = — = — " — .

f/^* 4. 4y* -|_W T Z j^j£ _ Xi _ yl

Therefore from equation (15), if we put r* — a? = «*, since A = = itr*,
it

-Jo Jo g=g Jo ^_l
Also

*«•* inr* ~2 T'

j

r r3
rdx.ydy

Jo Jo *+=* J *<&=***
,— t/0 t/0

y = $jrr8
—

\itr* ~ 2T

'

I I rdxdy I r 4/r8 — x*dx
- _ Jo Jo _ t/0 1—

iffr*
~~

i«r*
—

2 '

If the thickness of the shell varies as the ordinate z, then r = cz, and from
equation (14)

- ££rXdXdy
_4r_.

«/o t/0

- ££TVdXdy _*.
V

f*r pv Sir
'

I I rdxdy
t/0 t/0

r r«? ~+- y*)\dxdy ^
7v 7»» ~ 3
/ / rdrdy

t/0 t/0

(2) .F&Mf tfie centre of mass of a thin shell of uniform density and
thickness, generated by the revolution of a quadrant of a circle about

one radius.

xdx
The equation of the generating curve is x* -f y* = r», hence dy = —

,

as = Vdx* + dy* =— and yds = rdx. Since .4 = 2xr*, we have from equa-

tion (13)

x =
I rxdx

t/o _r
•:-r-
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(3) Find the centre of mass of a right conical surface of uniform
thickness and density.

B Let the altitude be h and the radius of the base r. Then

the equation of the generating line is y = -r-x. Hence

dy a ^dx, and ds = <\/dx2 + dy* = ~ 4/F+r5
.

I rl
If I is the slant height OB, then ds a j-dx, yds = j-2

xdx,

rl
and yxds = j-^dx. The area A = itrl. Hence from equation (13)

2/T/
rl
T-^dxW 9— = -h.

itrl 3

Or the centre of mass of a right conical surface is on the axis at a distance
from the vertex of two thirds the altitude (page 25).

(4) Find the centre of mass of the surface of a spherical segment,
zone or hemisphere, of uniform thickness and density.

The equation of the generating curve is x* -f- y* = »"2
» —.a,

hence dy = — and ds = ^^x2 _|_ dy* = —•

The area of the surface is then

2nrdx = 2itr(Xi — Xi) = 2itra,

where a is the altitude AB of the segment or zone, and x9 = OB, Xi = OA.
From (13) we have

rxdx
x-, -\-x x

2nra 2

Hence the centre of mass is at the middle of its altitude (page 26).

(5) Find the centre of mass of the surface of a paraboloid of revo-

lution, of uniform density and thickness.

We have for the equation of the generating

curve y* = 2px, hence dy = -— and

=A'+^=fyWi>'.

Therefore

yds = dx Y2px-\-pi
.

A = 2njyd8 = ~y(2px+ p>)>

and

2it
J

yxds 2n I xdx \i
f2px+p'1

_ 2n{%px - j?
9
) V (2px+ p*)1

15p*4

- Sx — pX= B-A
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(6) Find the centre of mass of a thin shell of uniform thickness and
densityformed by the revolution of a semi-cycloid about its base.

The equation of the generating curve is

I y -X

z = r versin -— (2ry — y1
) .

Hence
dx dy ds

y Vry-yrf (2*y)*

/•2r

/ xydy

- Jo (2r - y)* 26r
~ f»r , ~ 15'

/ yfy

Jo <3r - yf
[Centre of Mass of Bodies.—Let us consider first a solid of revolution,

and take the axis of revolution as the axis of x. Take a slice at right

angles to x, whose thickness is dx. Take a particle of this slice at a dis-

tance r from the axis, and let the plane which passes through x and the
particle make the angle with the plane of xy. Then the volume of an
element is dV= rdBdrdx. If 8 is the density, the mass is Srdddrdx.

If the density is symmetrical with respect to the axis of revolution, the
centre of mass is on this axis, and we have

///SrxdQdrdx

IffSrdQdrdx

If we perform the integration between = and = 2?r, since the

symmetry of the body renders S independent of 0, we have

- -//Srxdrdz

througl
= and
ve

it

J 8y

(18)

drdrdx

If the density is uniform throughout a complete slice, we may perform
the r integration between r = and r = y, where y is the ordinate of the

generating curve, and we have

(19)

it I dy^dx

If 8 is uniform, the total volume is

V=itjy*dx, (20)

and we have for homogeneous solids of revolution

it I xy*dx

x = — (21)

We see at once from the figure that -rty^dx is the volume of a slice, and
the moment of this slice with reference to the axis of y is ity'dx x *.

Hence (20) and (21).
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y = (22)

For a body in general we have dV= dxdydz, and hence equations (3)

become

III Sxdxdydz

/I/ Sdxdydz

III sydzdyd2

III Sdxdydz

III Szdxdydz

J I I Sdxdydz

If the axis of * is an axis of symmetry, x is sufficient.

For polar co-ordinates let <P = AOX, B = dOA, p = Oh. Then hd —
dp, hg = pdB, he = p cos 6d<p, dV=hdxhgxhe = p^dp cos QdSd<p.

Also, x = p cos cos 0, y = p sin 6, z = pcosQ sin 0.

;
Hence, from equations (3),

Iff Sp'dp cosa BdQ cos 0d0

III SpHp cos 6dBd<p

III Sp'dp cos S sin 6d6d<p

III SpHp cos 6dQd0

III Spadp cos* BdV sin <pdcp

Iff SpHp cos ededcp

For a homogeneous body S disappears in (23) and the denominator
becomes the total volume V.

EXAMPLES.

(1) Find the centre of moss of a right cone of uniform density.

T
The equation of the generating line is y = — x, where h

is the altitude and r the radius of the base. The volume is

7TT2AV = —— . Hence from equation (21)
o

y = (23)

•f
f
—x3dx
h?

Ttr^h

- 3
A
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That is, the centre of mass is at a distance from the vertex equal to three

fourths of the axis. [See (15), page 26.]

(2) Find the centre of mass of a paraboloid of revolution of uniform
density the length of whose axis measured from the vertex is h.

The equation of the generating curve is y
i = j x, where r is the radius of

the base. The volume is V = —5—. Hence from equation (21)

•& x^dx

=?*.
1 » 3
-itr*h
«

That is, the centre of mass is at a distance from the vertex equal to two thirds

of the axis.

(3) Find the centre of mass of a semi-circular spherical wedge, of
uniform density, and radius r.

From equation (23), integrating between the limits p=Q, p = r, and

6 =-\- ~ ,6 = — o- we have, since V = ~— . 5 aT »

-_ T ' 2
Sm

_ 3jrr sin
X~

<p 4 ".
~~

16 '
<j>

'

2ff 3

o«.m

If the angle <p is small, sin <p = <p and x = —-.

— q
If = — , we have for the hemisphere x = 5 r (page 28).

(4) Find the centre of mass of a portion of a spheroid of uniform
density, the length of whose axis measured from the vertex is h.

Let the equation of the generating curve be the ellipse referred to its vertex,

t = %f(2rx - d),

where r is the semi-major axis and b is the semi-minor axis.

Then from equation (19)

>h

j
l

(2rx —

'
(2rX - X°)xd* _h 8r-3h

" 4 dr - h
'

x*)dx

— 5
For a hemispheroid h = r and x = -~r from the vertex.

o

As b does not enter into these values, they are the same for a spherical seg-
ment and for a hemisphere.

For the distance from the centre we have

as already found in (18), page 28.

(5) Find the centre of mass of an octant of a sphere of uniform
density.
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From equation (23) we have, since 8 disappears and V= jricr

it it

2~ / 2

o iyo

y =

psdp cos2 6d6 cos <pd<p

3

itr3
8

2

p3dp cos sin Bd8d<p

Jo t/o 3— =
s
r;

-Trr3

/9
3dp cos2 OdO sin 0d0

6
zr3

z= —r.
8

(6) Ze£ the density in the preceding example vary as the nth power of
the distance from the centre.

Let 8 — cpn . Then from equations (23) we have

p
n+ 9 dp cos2 Bd9 cos <pd(p

» + 3r - i—— - = v = z.

n + 42 y

pn + fidp cos GdBdip

(7) Find the centre of mass of one eighth of the volume of an ellipsoid

of uniform density contained within the three principal planes.

Let the semi-axes of the ellipsoid be a, b, e.

4
The volume of the ellipsoid is -nabc. The volume of one eighth is there-

to

fore V= —itabc.
o

The equations of the curve on the three principal planes are

aV + Px* = aW, a?z* + c2»2 = a2c2, 6V -f <sy = 6V.

Therefore we have

y = ^(a2 - xrf, « = £<<*- xrf, z = |-(6
2 - yrf.

X = J(6* _ yrf, X = -(C2 - zrf, y =-(c2 - 22)*.
c c

The volume of a slice parallel to TZ, of thickness dx, is -^-dx.
4

, . 7T2!Z,
dy, is -r-dy.

dz, is —r^Cfo.
4

<< << « <« <«

ii (« « •« xr, ••
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Hence
'

x -

fn
-^-xdx

-z itabc
b

x*)xdx
r^itbca1

lb

-^ itabc
o

3
- —a:

-£ itabc
b

8 '

y-

I -±-ydy as / »w
"V.

y*)ydy ^ itacb2

lb
Ui

^-itabc
b

—itabc
b

-x itabc
b

- 8 '

Z-

f^zdz

~itabc
D

z*)zdz — itabc*
16

5 itabc
o

3

^itabc
b

-8 '

43



CHAPTEK IV.

LINE EEPRESENTATIVE OF A FORCE. COMPOSITION AND
RESOLUTION OF FORCES.

FOKCE OF GRAVITATION. ATTRACTION OF A HOMOGENEOUS SHELL OR SPHERE.
CENTRE OF GRAVITY. VALUE OF CONSTANT OF GRAVITATION. ASTRO-
NOMICAL UNIT OF MASS. VALUE OF a' FOR PLANETARY MOTION. ATTRAC-
TION OF A CIRCULAR ARC. ATTRACTION OF A STRAIGHT LINE. ATTRACTION
OF A CIRCULAR RING. ATTRACTION OF A CIRCULAR DISK. ATTRACTION
OP A CYLINDER. ATTRACTION OF A CONE. VALUE OF g ABOVE SEA-LEVEL.

Line Representative of a Force.—We have seen (page 2) that
the force on a particle acts in the direction of the acceleration it

causes, and that the magnitude of the force is proportional to the
acceleration.

Force then has magnitude and direction, and is therefore a

_ vector quantity, and can be represented, like

A l
= mf ^ B linear acceleration, by a straight line.

Thus the length of the line AB represents the
magnitude of the force F — mf (page 5). Its point of application
is A, and its direction of action is indicated by the arrow and is

always the same as that of the acceleration/.
Composition and Resolution of Forces.—The principles, therefore,

of pages 35, 43, 49 (Vol. I, Kinematics) hold good for forces as well as
for displacements, velocities and accelerations, and we can resolve
and combine forces and have the "triangle and polygon of forces"
as well as the triangle and polygon of displacements, velocities or
accelerations.

An important case of the composition of forces is the determina-
tion of the attractive force exerted on a particle by an extended
body. The attraction on the particle in such case is the resultant
of all the attractions exerted upon it by the particles of the body.

Force of Gravitation.—The "law of gravitation" as formulated
by Newton asserts that every particle of matter attracts every other
particle with a force which acts in the straight line joining the par-
ticles and whose magnitude is directly proportional to the product
of the masses of the particles and inversely proportional to the

square of the distance between them.
If then M and m are the masses of two particles and r the dis-

tance between them, the mutual force of attraction F is given by

7-r Mm ,., ,F = K ^r, W
where k is a constant to be determined by experiment.

For absolute accuracy and universal generality, as well as for

far-reaching consequences, this statement is without parallel in the

44
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history of science. The facts that by means of it the motions of all

the bodies of the solar system are explained completely ; that their
past and future positions can be told ; that the existence of Nep-
tune was deduced from the assumption that certain disturbances
in the motion of Uranus were due to the attraction of an unknown
planet according to this law, all go to prove that the law holds with
absolute accuracy, so far as the action upon each other of large
masses separated by distances which are great compared with their
linear dimensions is concerned.

The terms of the enunciation of the law expressly confine it to
such cases, since only when the linear dimensions of the attracting
bodies are insignificant compared to the distance between them can
we consider them as particles and speak of the distance between
them.
We shall, however, show in the next Article that if bodies are

homogeneous and spherical, this limitation may be removed and
the "distance between them " is the distance between their centres.

Attraction of a Homogeneous Shell or Sphere.—Let the circle

ADA', with centre at C, represent a uniform thin homogeneous
spherical shell whose surface density (page 10) is «5. Suppose a
particle at P whose mass is m. Join
C and P. Take any point A of the /^ ^^
shell and draw CA and AP. Let / r

>^\^^-^_AP make the angle 9 with CP, and / /J j
\

"^^flr-Jdraw a line AB through A, making D [
c\( '; A "'

J&^ i
the same angle 9 with CA. I ^\

I /
^^-~—**

Then in the two triangles CAB \ "sl/^""^
and CAP we have the side CA and \. ^/*
the angle at C common to both, and
the angles at A and P equal by construction. These triangles are

therefore similar and we have

AB _CA
AP CP

Now let As represent any small elementary area of the spherical

surface, and An its projection normal to AB.
Let oo square radians (Vol. I, page 7) denote the conical angle

subtended at B by An. Then the area denoted by An is equal to

A R* oo

AJB
2

. oo, and the area denoted by As is equal to '—, since the* * cos 9

angle nAs = BAC = 9, and the angle snA is a right angle.

The mass of the elementary area denoted by As is then '—

,

cos 9

and the attraction of this mass for the particle of mass m at P is,

by Newton's law,

m . 8AB\ oo
K— .o >

AP cos

and acts in the line AP.
If we draw AA' perpendicular to CP, we have evidently the

same attraction between the equal elementary mass at A and the
particle of mass m at P acting in the line AP.
We can resolve each of these equal forces into a component

along the line CP and at right angles to CP at P. Since the angles

APC and APC are each equal to 9, the two components at right

angles to CP at P are equal and opposite and therefore produce no
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effect upon P. The resultant attraction of the two elements at A
and A' upon the particle of mass m at P acts then in the line CP
and is equal to

m . SAB2

, oo m m . SAB*, oo

2k -===3 cos 9 = 2k ==g— ,AP cos h AP
AB CA

or since ~rp = ~p, the resultant attraction is

_ m.SCA*. ao
2k == •

CP
But CA1

. at is the area of the elementary area at A or A\ and

2k=r is constant for all pairs of elements A and A'. The total
CP

attraction of the shell for the particle of mass m at P acts then in
the line CP and is equal to

2K
?-t^2CA\oo,

where the summation is to be taken for an entire hemisphere. But
2CA 1

. oo for a hemisphere is 2xCAi

, and hence the attraction is

equal to

. 4x*CJl. m ™*
F = K

CP> c**

where M = 4x8 CA* is the total mass of the spherical shell.

We see, then, that the spherical shell attracts a mass m at any
outside point P, just as if its entire mass were condensed at the
centre of the shell.

If instead of a homogeneous spherical shell we have a solid
homogeneous sphere, we may consider it as composed of an indefi-

nite number of concentric homogeneous spherical shells, each of
which attracts the mass at P as if its entire mass were condensed
at its centre.

Hence, the attraction of a homogeneous spherical shell or of a
homogeneous sphere upon a particle at any outside point is the
same as if the entire mass of the shell or sphere were condensed in. a
point at the centre.

We can therefore consider a homogeneous shell or sphere as a
particle of equal mass at the centre, so far as its attraction upon an
outside particle is concerned.

Cor. If the sphere is not homogeneous, but the density of every
point at the same distance from the centre is the same, we may still

consider the sphere as composed of homogeneous spherical con-
centric shells, each one of which attracts an outside mass as if its

entire mass were condensed at the centre. Hence the same holds
true for the sphere.

Centre of Gravity.—When a body attracts and is attracted by
all external bodies, whatever their distance and position, as though
its mass were condensed in a single point fixed relatively to the
body, that point is properly called the centre of gravity (see page
18).

A body which has a centre of gravity is said to be centrobaric or
barycentric. In general, bodies are not centrobaric if the law of at-
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traction follows Newton's law—that is, if the force is inversely pro-
portional to the square of the distance.

As we have just seen, a homogeneous spherical shell or a homo-
geneous sphere is centrobaric, and the centre of gravity is at the
centre. So also for a non-homogeneous sphere whose density at
every point equally distant from the centre is the same. The
centre of gravity in each of these cases coincides with the centre of
mass (page 16). In general, if a body has a centre of gravity at
all, it must always coincide with the centre of mass, because the at-

traction upon it of an infinitely distant body constitutes a system of
parallel particle forces (page 18), and the point of application of the
resultant of such a system coincides with the centre of mass.

But while all bodies have a centre of mass, only homogeneous
spherical shells and spheres, or spheres whose density at any point
equally distant from the centre is the same, possess a centre of
gravity.

If, then, the term "centre of gravity" is used to denote centre
of mass, as is often done, we should denote the centre of gravity
proper by some other term, such as barycentric point or centrobaric
point.

It is, however, much preferable to restrict the term centre of
gravity to the definition here given, and use centre of mass as
defined (page 16).

Cor. If we consider the earth as a sphere whose density is

either constant or the same at all points at the same distance from
the centre of mass, then, as we have seen, we may consider it as a
particle of equal mass at the centre of mass so far as its attraction
upon any outside particle is concerned, and the centre of mass is

the centre of figure.

The earth is not strictly spherical, but its deviation from sphe-
ricity is insignificant. Also, the density is not strictly constant nor
strictly the same at all points at the same distance from the centre
of mass. But the small distance between the centre of mass of the
earth and that point at which in any case of attraction we may con-
sider its mass condensed is insignificant compared to its radius. So
far as its attraction for any outside particle is concerned, then, we
may consider it as a particle of equal mass at its centre of mass,
and the centre of mass as the centre of figure.

Also, since the dimensions of any body with which we experi-
ment at the earth's surface are insignificant compared to the earth's
radius, we may consider any such body as a particle.

Value of Constant of Gravitation.—We have seen (page 44) that
if M and m are the masses of two particles and r the distance be-

tween them, the mutual force of gravitation is given by

_i mM fi .

F=«^r> (D

where k is a constant to be determined by experiment. This con-
stant k is called the constant of gravitation. We are now able to

determine it.

Since force is always equal to mass multiplied by the accelera-

tion in the direction of the force (page 5), we have the acceleration

of the particle whose mass is m equal to — = —*-, and the accel-
m r

eration of the particle whose mass isM equal to — = —— . Hence

accel. of m _ M
accel. of M~ ra'
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that is, the accelerations are inversely as the masses. The accele-
ration, then, of one particle relative to the other considered as fixed
is equal to the sum of the accelerations of each, or

relative acceleration = —-—-

—

'
(2)

We have just seen (page 47, Cor.) that we may treat the earth
and any body with which we experiment on its surface as particles,

and can take the mass of the earth as condensed at its centre of
mass, and the centre of mass as the centre of figure. Equation (1)

therefore applies to any body on the earth's surface.
Now when we experiment with a body at the earth's surface, we

know that the observed acceleration g due to gravity is the accel-
eration of the body relative to the earth. We have then from (2), if

ml is the mass of the earth and b the mass of the body, and if r' is

the radius of the earth at the locality for which g is observed,

k {m + b)9= ^~•

But the mass of the body is insignificant compared to the mass
of the earth; or what is the same thing, since the accelerations are
inversely as the masses, the acceleration of the earth is insignificant
relatively to that of the body. We accordingly find by experiment
that g is constant at the same locality for all bodies, and neglect-
ing b, this value of g is given by

Km' qr1
"
1

,n .

g = —si or k = ^-r (3)" r m
If we substitute this value of k in equation (1), we have

F=K.^ (4)
ml r"

Equation (4) gives the force of attraction between two particles

of mass m and M at a distance r, the mass of the earth being m', its

radius r at the locality where the acceleration of gravity is g. We
see that equation (4) is homogeneous, and we have force equal to mass
multiplied by acceleration.

If we take mass in pounds and distance in feet and acceleration

in ft.-per-sec. per sec, we have F in poundals. If we take mass in

grams and distance in centimeters and acceleration in cm.-per-sec.

Eer sec, we have F in dynes (page 5). If we divide out the g, we
ave F in gravitation units (page 6).

Astronomical Unit of Mass.

—

The astronomical unit of mass is

that mass which at units distance attracts an equal mass with unit

force.
From equation (4) of the preceding Article, if we take m and M

each equal to mo, and take r equal to one unit of distance [L], and
F equal to one unit of force [F], we have

rl_ gr^m** A /m[Lf[F] n .

L J m[Lf f gr*

Equation (1) gives by definition the astronomical unit of mass. We
see that it is homogeneous.

If we insert the mean radius of the earth r1

in feet, the corre-
sponding value of g in ft.-per-sec per sec. and the mass of the earth
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m' in pounds, we have very nearly, for the astronomical unit of
mass,

mo = 29063 lbs.

If we insert r' in centimeters, g in cm.-per-sec. per sec. and m'
in grams, we have very nearly, for the astronomical unit of mass,

ra = 3928 grams.

If we take m and M in equation (4) of the preceding Article in
units of astronomical mass, we have

m r" r*

This equation we see is homogeneous. If, then, we adopt the astro-
nomical unit of mass instead of the ordinary unit of mass, we have
simply the numeric equation

*=-=£ (2)

where m andM are the number of astronomical units of mass in the
two attracting particles, r the number of units of length in the dis-
tance between them, and F the number of units of force in the at-
traction,

Value of a! for Planetary Motion.—The sun and planets may be
considered like the earth, so far as mutual attraction is concerned,
as particles of equal mass condensed at the centre of mass. From

ar"1
equation (2), page 48, if we insert the value of *=—, alreadym
found, we have then for the relative acceleration of a planet of
mass m with reference to the sun of mass M, considered as a fixed
point, when the distance is r,

relative azcel. = M + m
. K,r m

where m' is the mass of the earth, r' the mean radius of the earth,
and g the corresponding acceleration due to gravity at the earth's
surface.

At the distance r = r' = radius of the earth the relative accelera-
tion of the planet with reference to the sun regarded as fixed would
be then

relative accel. =
( ,

—\g.

Now in all our equations for planetary motion (Vol. I, Kine-
matics, page 139) we denoted by a' the known acceleration of a point
at a known distance r' from a fixed point. If, then, we take this
distance r' equal to the earth's radius, we have

a> = ™±^9 (1)
ml

This is the value for a' given on page 144,Vol. I, Kinematics, which
must be inserted in all our equations for planetary motion (page
139), where M and m are the mass of sun and planet, m' the mass of
the earth, and g the acceleration of gravity at the earth's surface.
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Cor. If M= m' = the mass of the earth and m is the mass of a
body at the earth's surface, we have

, m' + m

or if m is insignificant compared to m',

a' = g.

Attraction of a Circular Arc.—The attraction of a circular arc
ADB of uniform density 8 upon a particle at the centre C is the
same as the attraction of a mass equal to the chord with the arc's
density concentrated at the middle of the arc at D.

Take any element of the arc ab, and let it

subtend the angle aCb = go radians. Then if

r is the radius of the circle, roo is the length
of ab ; and if 8 is the linear density of the arc,
Sroo is the mass of ab. If M is the mass of the

particle at C, then kM —y is the attraction

ar1*

of ab for the particle at C, where k = *-y

(page 48). The attraction of the element a'b' at the same distance
on the other side of D will be the same. Each of these can be
resolved into components along CD and at right angles to CD sit C.
The latter components will balance. The sum of the two former is

kM 2Sroo cos

in the direction CD, where 6 is the angle aCD.
But roo cos 6 is the projection of ab upon the chord, and if the

linear density of the chord is also 8, the mass of the chord projec-

tion of ab is Sroo cos 9. The sum of the attractions of all the pairs of

elements will then be

A = kM .
'

^ ,

or the attraction due to the mass of the chord AB concentrated at

D.
Since AB = 2r sin ACD, we have for the attraction

._ 25 sin ACDA = KM. .

r

Using the astronomical unit of mass (page 48), we have for the

attraction upon a unit mass at C
28 sin ACDA =

Attraction of a Straight Line
uniform density 8 attracts any external

particle at C with the same force and in the

same direction as the corresponding arc of a
circle AB, of the same density, which has the

point C for centre and is tangent to the
cf i»/y ififyf 7.1,11(1

Let A'B' be the straight line of uniform
linear density 8. Draw the arc AB with the

centre at C, tangent to the line A'B'.

A limited straight line A'B' of

c
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If CpP be drawn cutting the circle at p and the line at P, and we
take any element at p and P, subtending the angle go, then if the
angle PCD = 0, we have for the length of the element at p, Cp . go,

CP GO
and for the length of the element at P, '—

. The masses of these
cos

elements, if the linear density of arc and line is S, are 6 . Cp. go and
d.Cp.

cos
Their attractions for a mass M at C are

-r8.Cp.oo ,r Soo -,8.CP.G0 „ dcokM—j^r-j— = kM-^r and kM-^^,
fl = kM-

Cp* Cp CP2 cos 6 - •* CP cos »'

where k = ^-7- (page 48). But CP cos = CD = Cp = r. Hence

the attractions of an element at p and P are equal. The arc AB
then attracts C as the line A'B' does ; and by the preceding Article,
using the astronomical unit of mass (page 48), we have for the
attraction upon a unit mass at C

A = 2d8mlA CB'
r

in the direction CF which bisects the angle A'CB.
Attraction of a Circular Ring.—Let r be the radius of the ring,

and d the distance of a particle at C of mass M
in the perpendicular CO to the plane of the ring
through its centre. Take an element of the c-

ring at b which subtends the angle 00. The
length of this element is roo\ and if S is the
linear density, the mass in the element is 6rco.

Svoo ov'^
The attraction on C is then kM— =. where k = ^—

7 (page 48).
ra + d* m ^ °

The attraction of the element at b' at the same distance at the
other end of the diameter is the same. Each of these can be re-

solved into components at right angles to CO at C, which balance,
and along CO. The sum of the latter is

,, 2Srco cos 9

r3 + d*

where is the angle bCO. But cos = _ = — .

. Hence we

2dvood
have for each pair of elements the attraction kM -•

(r
a + cP)3

For the entire ring 00 = ie, and we have, using the astronomical
unit of mass (page 48), for the attraction upon a unit mass at C

2rrrdS

~
(r

8 + d'fi

Attraction of a Circular Disk.—If the line A'D revolves about
CD it will generate a circular disk. The arc AD
with centre at C and tangent at D to A'D will gen-
erate a spherical surface. Then, as we have seen,
the attraction of an element atp and P will be equal.
If the element at p subtends go square radians (Vol.

I, page 7), its area will be r'oo, its mass <5r
a
a>,

where S is the surface density, and its attraction



52 DYNAMICS—INTRODUCTION. [CHAP. IV.

upon a mass M at Cwill be kM—^- = kM8g>, where k «^- (page

48).

The attraction of the disk whose radius is AD = R is then the
same as the attraction of the spherical surface generated by AD.
The number of square radians subtended by the disk of radius R at

a distance r from C is 2n [ 1 | . The attraction of the
\ Y^ + R?/

disk is then

A = kM . 2ndh Yr3 + R?

Using the astronomical unit of mass (page 48), we have for the
attraction upon a unit mass at C

A = 2itd(l- .— ).

\ Yr» + R>J

kM.2%8 [~1
: Ida;.

[Attraction of a Cylinder.]—For the attraction of a cylinder of
length I and radius a upon a particle of mass M in the axis at a dis-

tance d from its nearest end, let 5 be the volume density. Then for

the attraction of one of its circular slices of a thickness dx, at a dis-

tance x, we have, from the preceding Article,

JL-T.
Yx* + a2J

If we integrate this between the limits d + I and d, we have

A = kM.2tcS[1- Y(d + If + a? + Y& + a2
].

If we suppose d = 0, so that the particle is on the end surface of
the cylinder, we have

A — kM . 2n8\l - Y^~+a^ + a]*

where k = ^- (page 48).m
Using the astronomical unit of mass (page 48) we have for the

attraction upon a unit mass on the end surface of the cylinder

A = 2x8 [I - YPTa* + a]-

[Attraction of a Right Circular Cone.]—For any circular slice

r x ~~\

we have as before kM. 2it8\ 1 == \dx. If 6 is the semi-
L |/af+a9J

vertical angle of the cone, we have cos 6 = — . Hence the

attraction for a particle of mass M at the vertex is

kM . 2it8 [1 - cos 6] / dx = KM. 2n8 (1 - cos B)h,

where h is the height of the cone.

Using the astronomical unit of mass (page 48), we have for the

attraction for a particle of unit mass at the vertex

A = 2x8 (1 — cos Q)h.
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Value of g above Sea-level.—Let r' be the mean radius of the
earth, x the height on a mountain above sea-level, and g the accel-

eration of gravity at sea-level. Then since the acceleration is in-

versely as the square of the distance, the acceleration at a distance

x above sea-level, if we disregard the attraction of the mountain,

would be --; -„ a. To this we must add the acceleration due to
(r' + xf

the mountain.
Suppose the mountain of uniform density 8 and cylindrical in

shape, and the particle at the centre of its upper surface. Then the
resultant attraction of the mountain for a particle of mass m is,

frOm page 52, if we use the astronomical unit of mass (page 48),

A = m . 27tS[x — yV + a" + a],

where a is the radius of the cylinder. If we divide the force by m,
we obtain the acceleration due to the mountain

2Ttd\_x — tfx
2 + a*+ a] = 2its\ x-a \/l + -

a + a •

x*
If a is so large compared to x that —

2
can be neglected, this reduces

to 2itSx. If we use the ordinary unit of mass, we have, multiplying

by k — =-7- (page 48), for the acceleration due to the mountain

2n8x.^r.
ml

Let 8' denote the mean density of the earth, so that the mass of
4

the earth is m' = - itSV3
, then the acceleration due to the mountain

is, if we substitute this value of m',

*.*?Lg.
2 8'r'

y

We have then for the acceleration g' at the height x above sea-level

9' = 9
38x~\

_(f +xf 28VJ
The mean density of the earth 8' is about 5£ times that of water,

ft

and -^7, from what we know of the density of matter at the earth's

surface, may be taken equal to 5. Also we may write
a

*•" 2x= 1 7- approximately.
(f + xf 7*

Hence we have approximately

/, 2xZx\ L 5x\

where x is the height above sea-level, r' is the mean radius of the
earth, and g the corresponding acceleration due to gravity.

The assumptions made in this investigation are more applicable
to elevated table-land than to a mountain. The equation obtained
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is the accepted formula for estimating the difference in the value
of g at two places so far as dependent on the heights above sea-
level.

EXAMPLES.

(1) If the mass of the earth is 6.14 x 1027 grams, the mean radius
of the earth 6.37 x 108 cm., and g = 981 cm.-per-sec. per sec., find the
astronomical unit of mass.

Aus. 3928 grams.

(2) If the mass of the earth is 11920 x 1021
lbs., the mean radius of

the earth 21 x 10 6
ft., and g = 32 ft.-per-sec. per sec, find the astro-

nomical unit of mass.

Ans. 29063 lbs.

(3) Show that the attraction of a thin spherical shell of uniform
thickness and density upon a particle inside is zero.

Ans. Let P be the particle of mass M. Take any point A on the spherical
surface. Join AP and produce to A'. If from all points of a small element

of the surface at A lines be drawn through P, they will mark
off a corresponding element at A'. Both these elements sub-
tend the same conical angle (Vol. I, page 7), go square radians.

The area of the element atA is thenAP . go (Vol. I, page 7), and

the area of the element at A' is A'P1

.go. If S is the uniform

surface density, the mass of the element at A ism = SAP . go

and the mass of the element at A' is m' = SAP" . go. The attraction of the
element at A for a particle of mass M at P is then (page 44)

kM8A^P*.go = kMSgo
AP*

and acts in the line PA. The attraction of the element at A' for the particle

of massM at Pis
kMSA'P* . go __

., = kMSgoAP
and acts in the line PA'. The resultant attraction upon the particle at P of

the pair of elements at A and A' is then zero. The whole shell consists of

such pairs of elements. Hence the resultant attraction of the shell on a par-

ticle at P is zero.

(4) Show that the attraction of a homogeneous sphere on aparticle
within it is directly proportional to its distance from the centre.

Ans. Let P be a particle of mass M situated within a homogeneous sphere
at any distance PC from the centre C. Then from the preceding example we
know that the attraction upon the particle at P due to the shell

outside of the sphere whose radius is PC is zero. The attrac-

tion upon the particle of mass M at P is then due to the attrac-

tion of the sphere whose radius is PC. The volume of the

4 ,

sphere is -^itPC . If S is the uniform density, the mass of
8

this sphere is — SitPC?. Its attraction for a particle of mass M at P is (page
o

46) the same as if the entire mass of the sphere were condensed at the centre,

4 3

B
S*PC

4 _
or (page 44) kM ,

— = kM . - Sn . PG.
PC 6
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The attraction is therefore directly proportional to the distance PC of the
particle from the centre.

(5) Assuming the earth to be a homogeneous sphere, compare its
attraction on a given mass at a distance from its centre equal to one
half its radius, with the attraction when the given mass is at a dis-
tance equal to twice the radius.

Ans. 2 to 1.

(6) Find in dynes the attraction of two homogeneous spheres, each
of 100 kilograms mass, with their centres 1 metre apart.

Ans. 0.0648 dynes nearly.

(7) How far ivould a body fall toward the earth in one second
from a point at a distance from the earth's surface equal to the
radius of tlie earth f

Ans. The acceleration is inversely as the square of the distance. We have

then g
1
:g :: r2

: 4r2
, or g' = -rg. That is, the acceleration is one fourth of the

acceleration at the surface.

The distance is then * = —g'f
2
, or, taking g = 32 ft.-per-sec. per sec. and

t = 1, s = 4 ft.

(8) The moon's mass is 136 x 1021
lbs. ; the moon's radius, 5.70 x

108/t; the mass of the earth, 11920 x 10" lbs.; the radius of the earth,
21 x 106

/£. Find how far a stone at the moon's surface would fall
in a second, the attraction of the earth being neglected.

Ans. If M is the mass of the moon and m that of the stone, the force of
attraction, if r is the radius of the moon, is, from equation (4), page 48,

_ gr"1 mM
m' r2

The acceleration of the stone is then

. F gr"1 M 32 x 212 x 1012 X 136 X 1021 _ „
* =

m
=WV =

11920 X 102 ' X (5.7)
2 X 10' 2

= 5 ft-"POT-sec
- Per «*•

The distance then is -^g'P, or, taking t = 1 sec, * = 2.5 ft.
a

(9) Suppose the earth to contract until its diameter is 6000 miles,
what would be the effect on the weight of an inhabitant f The di-
ameter of the earth to be taken at 8000 miles.

Ans. Increased in the ratio of 16 to 9.

(10) If the mass of the sun is 300,000 times the mass of the earth,
and its radius is 100 times the radius of the earth, find the attraction
at the surface of the sun of a mass which at the surface of the earth
is attracted by the force of one pound weight.

Ans. 30(7 poundals, or the attraction of the earth for 30 lbs.

(11) The diameter of Jupiter is 10 times that of the earth, and its

mass 300 times. By how much per cent of his former weight would
the weight of a man be increased by being removed to the surface of
Jupiter t

Ans. By 200 per cent. He would weigh by a spring-balance three times as
much as before. The same number of standard pounds would, however, bal-

ance him in a lever-balance. The standard pound at Jupiter would be attracted

by a force three times as great as the earth's attraction here. The lever-bal-

ance weight which gives his mass is unchanged.
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(12) If the intensity of gravity at the surface of Jupiter is about
2.6 times as great as at the surface of the earth, find approximately
the time which a body would take in fallingfrom a height of 167 ft.

to the surface of Jupiter.

Ans. 2 sec.

(13) Find the intensity of the earth's attraction at the distance of
the moon, taking 32 ft.-per-sec. per sec. as its value at the surface of
the earth. The diameter of the moon's orbit is 480,000 miles, the di-

ameter of the earth 8000 miles.

Ans. 0.0089 ft.-per-sec. per sec.

[(14)J Two particles of mass M and m are placed a distance s

apart. Find the time it would take them to come together by reason
of their mutual attraction, if uninfluenced by any external force.

Ans. The acceleration of one particle with reference to the other is (page

48)
d?x _ {M+ m)

dl?
_ K

i?

Integrating (Vol. I, page 102), we have

«»[fian^]^[«--^+'«-i-:)
i

}
When x = s, t = 0; when x = 0, we have

t =_ l r « it_
2

1t8
\_2K{M+ m)]

If the particles are spheres of density 6" and radii i? and r, and the density
of the earth is 8', we have (page 48)

K = 9-£ = 4T
J—

'
M = U&8, m = %*r*6t

and

If the spheres are of the same density as the earth, 8 = 6' and

- 1 f Sr
'S'

l-~2 Jr

*|_2^(^ + r^)J
ensity as the ear

r * ii
[_2g(E3 + r»)J

t = —its '

The last e-juation, then, gives the time of coming together of two spheres
of radii R and r, of same density as the earth, if considered as concentrated
at their centres. If the spheres are equal,

— 1 /—

V

~ 4 W3
)

'

If, for instance, s = 1 ft., g = 32| ft.-per-sec. per sec, r = i ft., r' = 20,850,-
000 ft.,

t = 1788 sec, or 29.8 minutes nearly.



DYNAMICS.

PART I. STATICS.

CHAPTER I.

STATICS—CONCURRING FORCES.

FORCES IN EQUILIBRIUM. STATICS. LINE REPRESENTATIVE OP A FORCE. COM-
POSITION AND RESOLUTION OF FORCES. SIGN OF COMPONENTS OF A FORCE.
CONCURRING FORCES. STATIC, MOLAR AND DYNAMIC EQUILIBRIUM. COM-
POSITION AND RESOLUTION OF CO-PLANAR FORCES. CONCURRING FORCES
NOT IN THE SAME PLANE. CONDITIONS OF EQUILIBRIUM FOR CONCURRING
FORCES.

Forces in Equilibrium.—When all the forces acting upon a par-
ticle mutually balance, so that the particle moves as if no force acted
upon it, the forces are said to be in equilibrium. In such case the
particle is either at rest or moves with uniform speed in a straight
line (page 2).

Statics.—That portion of Dynamics which treats of those prin-
ciples which are necessary for the discussion of forces and bodies
in equilibrium, and generally of forces without reference to the
change of motion caused by them, is called Statics. That portion
which treats of forces with reference to the change of motion
caused by them is called Kinetics.

[Many writers employ the term Dynamics in the sense in which
we have used Kinetics, and use the term Mechanics for what we
have called Dynamics. They thus have Mechanics divided into
Statics and Dynamics, instead of Dynamics divided into Statics and
Kinetics.]

Line Representative of a Force.—We have seen (page 2) that
the force on a particle acts in the direction of the acceleration it

causes, and that the magnitude of the force is proportional to the
magnitude of the acceleration.

Force, then, has magnitude and direction, and is therefore a vec-
tor quantity, and can be represented, like linear acceleration, by a
straight line.

57
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Thus the length of the line AB represents the magnitude of the
force F = mf (page 5). Its point of application is

A
r = mf

3 A, and its direction of action is indicated by the
arrow and is always the same as that of the linear

acceleration /.
Composition and Resolution of Forces.—The principles, therefore,

of pages 35, 43, 49, (Vol. I, Kinematics) hold good for forces also, and
we can resolve and combine forces and have the "triangle and poly-
gon of forces " as well as the triangle and polygon of displacements,
velocities or accelerations.
We have also the same rule for the signs of the horizontal and

vertical components Fx, Fy , Fz of a force as for the corresponding
components fx, fy, fz of its acceleration. Thus ( + ) signifies in the
directions Ox , Oy, Oz, and (— ) in the opposite
directions.

If polar co-ordinates are used, the compo-
nent force along the radius vector is (+ ) when
it acts away from the pole, (— ) when it acts
towards the pole.

Evidently, then, we must measure angles in
the plane AT, from OX around towards OY;
in the plane YZ, from OY around towards
OZ; in the plane ZX, from OZ around towards
OX.

Concurring .Forces, etc.—Forces which act at the same point are
called concurring forces. Forces acting at different points are non-
concurring. Forces acting in the same direction in the same line
may be called conspiring forces ; when they act in opposite direc-
tions in the same line or in parallel lines they are opposite forces

;

when in the same or opposite direction in parallel lines they are
parallel forces. Forces whose line representatives lie in the same
plane are co-planar. Two equal and opposite forces applied at the
same point mutually balance, so that the point moves as if no force
were applied. (Compare Vol. I, Kinematics, page 178.)

Static Equilibrium.—When all the forces acting upon every par-
ticle of a rigid body mutually balance, so that every particle of the
body moves as if no force acted upon it, the body is said to be in
static or molecular equilibrium. All points of the body in such case
are either at rest or they all move with the same uniform speed in

I)arallel straight lines, and the body has a uniform motion of trans-
ation (Vol. I, Kinematics, page 91).

The motion of a body is then the same as that of any one of its

points, and the body, whatever its size, may be treated as a particle
so far as its motion is concerned, and represented by a point.

All the forces acting upon the body itself may then be consid-
ered and treated as a system of concurring forces in equilibrium,
and all the forces acting upon any one particle of the body also
constitute a system of concurring forces in equilibrium.

Molar Equilibrium.—-When the centre of mass only of a rigid
body moves as if no force acted upon it, that is, is either at rest or
moves with uniform speed in a straight line, we have equilibrium
of the body as a whole, or molar equilibrium, as distinguished from
molecular or static equilibrium as just defined.

Now the centre of mass of a rigid body always moves as if the
mass of the body were condensed into a particle of equal mass at
the centre of mass, and all the forces acting upon the entire body
were transferred to this particle without change in magnitude and
direction (page 18).
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When there is molar equilibrium, then, all the forces acting upon
the body if appliedat a point would constitute a system of concur-
ring forces in equilibrium. Also all the forces acting upon any
particle at the centre of mass of the body constitute a system of
concurring forces in equilibrium. But all the forces acting upon
any particle not at the centre of mass are not in equilibrium, and
we have rotation of the body about the centre of mass.

So far as translation of the body alone is concerned, however, we
may consider it as a particle of equal mass at the centre of mass,
acted upon by a system of concurring forces in equilibrium.

Dynamic or Kinetic Equilibrium.—When one point only of a
rigid body not at the centre of mass moves as though no force acted
upon it, the body is said to be in dynamic or kinetic equilibrium
about that point.

In such case all the forces acting at this one point constitute a
systemof concurring forces in equilibrium. But the forces acting
at any other point do not constitute a system of forces in equilibri-
um, and we have instantaneous rotation about this point.

Composition and Resolution of Co-planar Forces.—Let the forces
Wi, F3 , F3 , etc., be all in the same plane and act either at a common
point, P (Fig. 1), or at different points, A, B, C (Fig. 2), of a rigid
body.

In either case, lay off the forces so as to obtain the force poly-
gon A F, Ft Fa (Fig. 3). Then the line AF3 necessary to close
this force polygon, taken as act-
ing the other way round, gives /*£ / f ?

FlQ
the direction and magnitude of ' '// ^ / / \
the resultant Fr in the plane of f \ Fa / / ps
the forces (pages 35, 36, Vol. I, h F*

Kinematics).
If the forces are concurring, A

or all act at the same point P, a
Fig. 1, the resultant Fr must /\\
act at this point also, in the Fu* /{

plane of the forces. / fJ
j

fio. a.

If the forces are non-concur-
F
/ /

j

ring, or act at different points '*
x^./

A, B, C, D, Fig. 2, the magni- 7£—J,

tude and direction of the result-

ant Fr will still be given by AF3 in the force polygon, Fig. 3, but
its position in the plane of the forces is as yet unknown.

Cor. 1. If the forces are all parallel, the force polygon Fig. 3
becomes a straight line, and the resultant Fr is equal to the alge-

braic sum of the forces, or Fr = 2F.
Cor. 2. The component AN or NF3 of the resultant Fr, Fig. 3, in

any direction is equal to the algebraic sum of the components of
the forces in that direction.

Cor. 3. Any number of forces acting upon the same point,

whether in the same plane or not, can be reduced to a single result-

ant force. For the resultant of any two is a force in their plane.
This resultant can then be combined with another force, and so on.

Cor. 4. If the algebraic sums of the components of the forces in

any two directions, as AN and NF3 , are zero, the points A and F3

in the force polygon Fig. 3 conicide, and the resultant Fr is zero.

The forces are then in equilibrium.

Analytical Determination of the Resultant for Concurring Co-

planar Forces.—We have evidently the same expressions for the

magnitude and direction of the resultant for concurring forces
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as for concurring accelerations (page 50, Vol. I, Kinemat-
ics).

Thus let any number of co planar forces, Fi
F*, etc., all act at the same point O. Take this
point as the origin and draw the rectangular axes
OX, OY in the plane of the forces. Let Fi make
the angle «i with OX, and fix with OY; let Fa

make the angle aa with OX, and fi, with OY;
and so on.

Denote the algebraic sum of the horizontal components of all

the forces by Fx , and the algebraic sum of the vertical components
of all the forces by Fy . Then

!

i

Fx = 2Fcos a = Fi cos «i + F3 cos <*2 + F3 cos a 3 + etc.

Fy = 2Fcos fi = Fi cos fix + F* cos fit + Ft cos fi, + etc

If Fr is the resultant and a, 6 the angles which it makes with
the axes of x and y respectively, we have for the horizontal and
vertical components of Fr (Corollary 2, page 59).

Fr cos a = Fx \ )

Fr cos 6 = Fy .

)'

(1)

(2)

Hence

cosa = Fr

cos b = -=¥-.Fr

(3)

Squaring and adding, since cos b = sin a, and cos" a + cos" 6 = 1,

Fr = VFx* + Fy
*

(4)

The equation of the line of direction of the resultant, when all

the forces act at the origin, is

V = ^-x (5)
Jo X

If the co-ordinates of the point at which the forces act are x' and
]/, the equation of the line of direction of the resultant is in general

V y' = =?(x- x').

fx
(6)

Equations (1) give the values of Fx and Fy , by which we obtain
a, 6 and Fr from (3) and (4).

The algebraic sums in (1) are found by taking components act-
ing towards the right or upwards as
positive, towards the left or downwards
as negative (page 58).

Analytical Expression for the Magni-
tude and Direction of the Resultant of

Any Number of Concurring Forces not in

the Same Plane.—Let Fi, F?, F3 , etc.,

be any number of forces all acting at the
same point O. Take this point as the
origin for three rectangular axes OX,
OY, OZ. Let Fi make the angles a,

,

fii, Y\ with these axes respectively, and
Ft make the angles at , fii , y* , and so on.
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Denote the algebraic sum of the components of all the forces
along OX by Fx ; along OF by Fy ; along OZ by Fz. Then

Fx = 2.Fcos a = Fi cos ai + Ft cos a* + F3 cos a 3 + etc. ; "]

Fy = 2Fcos fi = Fi cos /?i + Fi cos #i + F3 cos /53 + etc. ; I • 0)

Fz = 2F cos y = Fx cos r i + Fi cos ra + Fi cos ^s 4- etc. J

If FY is the resultant and a, 6, c the angles which it makes with
the axes of x, y and z respectively, we have

Fr cos a = Fx ; 1

FY cos 6 = 1?V ; I (2)

Fr cos c = Fz .

Hence
Fx

cos a = =-:

C0S6=-^-;

Fz
COS c = ,=-.

(3)

Squaring and adding, since cos2 a + cos2 b + cos2 c = 1, we have

Fr = VFx* + Fy i + FY2
(4)

The equations of the projection of the resultant upon the planes
of ZX, YXand FZare

Fx Fy Fz
Jlz J? x -t y

Hence from (3) we have for the equation of the line of direction
of the resultant, when all the forces act at the origin,

x y z x y z

cos a cos b cos c Fx Fy Fz

'

If the coordinates of the point at which the forces act are x1

,

y', z', we have for the equation of the line of direction of the result-

ant in general

x — x' __ y — yf _ z— Z1

or
x — xf _ y — jf _ z — z'

cos a cos b cos c

'

Fx Fy Fz '

When z and Fz equal zero, these equations reduce to the equa-
tions of the preceding Article for co-planar forces.

The algebraic sums in (1) are found by taking components acting
towards the right along OX, or upwards along OF, or in the direc-

tion OZ as positive. The opposite directions are negative.
Conditions of Equilibrium for Concurring Forces.—A point is in

equilibrium when its acceleration is zero. In order that the accel-

eration may be zero, the resultant force acting upon the point must
be zero. Hence, the vanishing of the resultant is the necessary and
sufficient -condition for equilibrium of any number of concurring
forces.
We have then, in general, the algebraic conditions

Fx = 2F cos a = 0, Fy = 2F cos = 0, Fz = 2F cos y = 0.
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That is, the algebraic sum of the components of the forces in each
of any three rectangular directions must be zero. This is equiva-
lent to saying that all the forces acting upon the point reduce to
two forces equal in magnitude and opposite in direction.

It is also evident that if any number of forces acting upon a
point are in equilibrium, any one of the forces must be equal and
opposite to the resultant of all the others.

Conditions for Equilibrium for Concurring Forces in Special
Cases.—We obtain then the following obvious results from the
condition for equilibrium of concurring forces, which will be found
useful in special cases :

(1) If two concurring forces are in equilibrium, they must be
equal in magnitude and opposite in direction.

(2) If three concurring forces are in equilibrium, they must all

act in the same plane. For the resultant of any two must act in
their plane and be equal and opposite to the third.

(3) If three concurring forces are represented in magnitude and
direction by the sides of a triangle taken the same way round, the
resultant is zero and the forces are in equilibrium.

(4) Hence, if three concurring forces are in equilibrium, each one
is proportional to the sine of the angle between the other two.

(5) If three concurring forces are in equilibrium and their direc-
tions are represented by the sides of a triangle taken the same way
round, their magnitudes will also be represented by the sides of
that triangle, and vice versa.

(6) If any number of concurring co-planar forces are represented
in magnitude and direction by the sides of a plane closed polygon
taken the same way round, they are in equilibrium. If their mag-
nitudes are given by the sides of the polygon, their directions are
also given by the directions of the sides.

But if the directions only of the forces are given by the sides of
the plane polygon, it does not follow that the sides of this polygon
represent the magnitudes, because any number of plane polygons
witlf. parallel sides-may be drawn, the magnitudes of the sides
varying.

(7) If three concurring forces in different planes are represented
by the three edges of a parallelopipedon, the diagonal taken the
opposite way round will represent the resultant in direction and
magnitude. This is called the parallelopipedon offorces.

EXAMPLES.

(1) Find the resultant offorces of 7, 1, 1, 3 units, represented by
lines drawnfrom one angle of a regular pentagon towards the other
angles taken in order.

4/74 units.A 11s.

"X2) P and Q are two component forces at right angles, whose re-

sultant is R. S is the resultant of R and P. If Q = 2P ivhat is

Sf
Ans. S = 2P|/2i

(3) Component forces P, Q, R are represented in direction by
the sides of an equilateral triangle taken the same way round. Find
the magnitude of the resultant.

Ans. yi*~+ Q2 + B? - QR - PR - PQ.

ft/
7 ?2
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(4) Three component forces are represented by lines drawn from
the vertices of a triangle to the middle points of the opposite sides.
Shoiv that the resultant is zero.

(5) Three component forces are represented by lines drawn from
the vertices A, B, C of a triangle to the middle points of the opposite
sides, and have magnitudes equal to the cosines of the angles at A,
B and Crespectively. Find the resultant.

Ans. 4/1 — 8 cos A cos B cos G units of force.

(6) The centre of the circumscribed circle of a triangle ABC is

O, and the intersection of the perpendiculars from angular points
on opposite sides is P. Prove that the resultant of forces repre-
sented in magnitude and direction by OA, OB, OC ivill be repre-
sented by OP.

\jjtf Three forces are represented by the sides AB, AC, BC of a
^triangle. Show that the resultant has the direction AC and is

represented in magnitude by 2AC.

(8) ABCD is a parallelogram. From AB, AE is cut off equal to
one third AB. Prove that the resultant offorces represented byAC
and 2AD is equal to three times the resultant of forces represented
by ADpud AE. /

^) Four forces of 24, 10, 16, 16 dynes act'on a particle, the angle
between the first and second, being 30°, between the second and third A
90°, and between the third and fourth 120°. Calculate the resultant.

Ans. 17.4 dynes.

^Y^IO) A weight of 10 tons is hanging by a chain 20 feet long.

Find how much the tension in the chain is increased by the weight
being pulled out by a horizontal force to a distance of 12 feet from
the vertical.

Ans. By 2.5 tons.

Ng.1) A weight of 4 pounds is suspended by a string, and is acted
upon by a horizontal force. If in the position of equilibrium the
tension of the string is 5 pounds, what is the horizontal force f

Ans. 3 lbs.

(12) A mass of 10 lbs. is supported by strings of lengths 3 and 4

feet attached to two points in the ceiling 5 feet apart. What is the
tension of each string f

Ans. 8 lbs. and 6 lbs.

^t^) A particle is acted on by a force whose magnitude is un-
known, but whose direction makes an angle of 60° with the horizon.
The horizontal component of the force is 1.35 dynes. Determine the
total force and its vertical component.

Ans. 2.7 dynes and 2 34 dynes.

Wl4) Three forces proportional to 1, 2, 3, act on a point. The
angle between the first and second is 60°, between the second and
third 30°. Find the angle which the resultant makes with the first.

Ans. About 67°.

\jy>) Three cords are tied together at a point. One is pulled in a
northerly direction with a force of 6 pounds, and another in an
Easterly direction with a force of 8 pounds. With what force must
the third be pulled in order to keep the whole at restf

Ans. 10 pounds, at an angle with the horizon whose tang = -r-.

0?
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(16) If P and Q are two concurring forces and the angle made
by their directions is 6, find the magnitude of tJie resultant R when
6 = and & = it.

Ans. (P+ Q) and (P - Q).

(17) Find R when P=Q and = 60°, 135°, and 120°.

Ajis. B = P ift; B = P\/% - V%\ B = P.

r*r- W

(19) IfP = 6, Q = 11, units, and the angle between P and Q is 30°, ttrp'/r*^
find the resultant R, and the angle between P and R and that be-^^l//,
tween Q and R. z^,

Ans. B = 16.47 units; 19° 30'; 10° 30'. 70^
(20) A cord is tied round a pin at the fixed point A, and its two / i

ends are drawn in different directions by the forces P and Q. If
P + O

the pressure on the pin is——

—

, find the angle between the forces.

Am, CI = "«
-£jj%

+ <?)
-

-

S*121) A cord whose length is 21 is tied to the points A and B in
the same horizontal line, whose distance is 2a. A smooth ring upon
the cord sustains a weight W. Find the tension in the cord.

W
Ans. T =

34A - £
Given the four concurring forces Fi =1, Ft = 2, Fa = 3y= 4, and the angles FtF3 = 90°, F*F* = 90°, and FiF* = 60°.

Find the magnitude of the resultant and its inclination to Fi./ Ans. B = 6.889; 102° 16'.

(

o

23) Two rafters making an angle of 120° support 112 lbs. at the —V
apex. Find the compressive force on each rafter. ^%o \

C?, Ans^tt2 lbs. compression. ^ /VO*^
Uf24) Resolve a force of 120 lbs. into two rectangular components^ $q *

' (a) of which one is 75 lbs.; {b) one ofwhich makes an angle o/A^ ff'
8** *m

with the resultant. Ok ^
Ans. (a) 93.65 lbs. making an angle of 38° 40' 56".25 with resultant.

' "

^SV>) 99.343 lbs. adjacent to the given angle and 67.306 lbs.

(±\ °^25) The mutually rectangular forces of 35, 67 and 98 lbs. act on
^a point. Determine the magnitude and direction of the resultant.

S* Ans. 123.766 lbs. making angles of 73° 34' 24", 57° 13' 30", 37° 38' 42" with
the forees respectively.

M26) A force of 550 lbs. acts on a point. Resolve it in three rect-
angular directions, (a) wlien two of the components are 100 and 230
lbs.; (b) one of the components is 120 lbs. and the given force makes
with one of the other two components the angle 15° 6' 14"; (c) the
given force makes with two of the components the angles 87° 13' 12"
and 54° 17' 8".

Ans. (a) 489.49 lbs., angles 79° 31' 27", 65° 16' 49" and 27° 7' 43". (b) 120
lbs., angle 77° 23' 51"; 531.02 lbs., angle 15° 6' 14"; 78.2 lbs., angle 81° 49' 32",
with resultant, (c) 445.7 lbs., 321.06 lbs., 26.676 lbs.
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(27) A force in space makes with the three co-ordinate axes the/ 7
angles a, fi, y. SJww that (page 12, Vol. I, Kinematics) ^^ /U 1 <?^ ^

cos2 a+ cos2
fi + cos2 y = 1

;

"7"d #flnr
cos 2a + cos 2/3+ cos 2y = — 1

;

cos (a -f fi) cos (a — /?) + cos2 ^ = 0. iO * } V '

(28) Two forces acting on a point make the angle e, and make
with the co-ordinate axes the angles ai, fii, yi, and a a , /?,,, ^s.
Show that .»

cos e = cos cii cos crs + cos (5X cos /3a + cos y x cos ^ a .

(29) Three forces P, Q, B, acting on a point O, are inclined at
angles a, fi, y to a given tine passing through O. Find the magni-
tude and direction of the resultant.

Ans. If 6 is the inclination of the resultant to the given line,

P sin a -\- Q sin fi+ JR sin y
tan o =

Pcos a -\- Q cos fi -{- R cos y*

and the resultant is the square root of

P2 + Q2 + R? + 2QR cos (fi
- y)+ 2iJPcos (^ - a) + 2PQ cos (a - /3).

(30) Three forces, each equal to P, act at a point O in directions
OA, OB, OC ; the angle AOC being a right angle, and the line OB
bisecting the angle AOC. Find the magnitude of the resultant.

Ans. PI -f- 4/2) making an angle of 45° with OA.

(31) A force P is applied at the hinge A of the knee-joint BAC,
b making the angle a with AB and AC Show that

the pressure at C and B is —P tan a, and that if

P= 50 lbs. and a = 15°, 35°, 65°, 85°, 90% the press-
ure is "6.7, 17.5, 536, 285.75 lbs. and 00,

(32) A force P is applied to the compound
knee-joint shown in the accompanying figure.
Show that the pressure exerted at B, C and

Bi , Ci is —P tan a tan fi.
4

(33) Find the resultant for a system of c cT
eight forces acting upon a point, given as follows

:

B Bi

• \

a
a

p

yA,y

a —
[ a

Fi = 75 lbs.

/-j,0 ? - ^^^P, = 80 lbs.

Ft = 95 lbs.

F< = 135 lbs.

F6 = 670 lbs.

a, = 63° 27',
fi, = 48° 36', y, acute;

a, = 153° 44', fi, = 67° 13', y, obtuse;

a, = 76° 14', fi, ss 147° 12', y, obtuse;

a4 = 115° 7', fi. = 137° 9', y t obtuse;

a s = 76° 3', fi„ = 35° 3', y t acute;

Ft = 37 lbs.; a t = 145° 7', ft, = 78° 3', y, acute;

F-, = 95 lbs.; a7 = 62° 10', fi, = 149° 8', y, acute;

Fe = 140 lbs.; a 6 = 123° 58', fi, = 127° 56', ^ 8 obtuse.

Ans. The angles y can be found (page 12, Vol. I, Kinematics) from

cos (a -f fi) cos (cr - /J) + cos2 ^ = 0.
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Hence

y x = 52° 57' 32", y t = 102° 22' 10". 35, y t = 119° 7' 13",

y4 = 122° 5' 48", y t = 58° 25', y t = 57° 21' 54",

^7 = 77°43'22".7, ;k 8 = 123°49'44".2.

Fx = +24.393 lbs., Fy = + 290.29 lbs., i^ = +221.295 lbs., Fr = 365.84 lbs.

cosa = -§^. or a = 86° 10' 36"; cos 6 = |^, or ft = 37° 29' 14";
OOO.o4 OD0.O4

7"o k>A/r-*-

r~

^ *
fy, f Vv

w~

*a -1$. * 7* 7$>*
fa *\7i *«/g^

^ &sfwr~

I

l/



STATICS—PARALLEL FORCES.

NON-CONCURRING FORCES. MOMENT OF A FORCE. LINE REPRESENTATIVE
OF MOMENT OF A FORCE. RESOLUTION AND COMPOSITION OF MOMENTS
TWO NON-CONCURRING CO-PLANAR FORCES. TWO PARALLEL FORCES*
MOMENT OF A COUPLE. LINE REPRESENTATIVE OF A COUPLE COM-
POSITION AND RESOLUTION OF COUPLES. CENTRE OF PARALLEL FORCES
PROPERTIES OF CENTRE OF MASS. CONDITIONS OF EQUILIBRIUM FOR
PARALLEL FORCES.

Non-concurring Forces.*—In the preceding Chapter we have
considered concurring forces, that is, forces which act at a common
point. We shall now consider non-concurring parallel forces that
is, parallel forces which act at different points of a rigid body!

Moment of a Force.—Since force is proportional to the acceler-
ation it causes, the moment of a force relative to any point or axis
is denned precisely like moment of acceleration (page 60, Vol. I
Kinematics).

Hence the product of the magnitude of a force by the magni-
tude of the perpendicular let fall from any given point upon the
direction of the force gives the magnitude of the moment of the
force relative to that point.

The point is called the centre of moments. The perpendicular
is called the lever-arm of the force.

The unit of moment of a force is then one poundal-foot, or one
poundal with a lever-arm of one foot, or in gravitation units one
pound-foot, or the weight of one pound with a lever-arm of one
foot.

The same conventions as to sign are adopted as for moment of
acceleration (page 60, Vol. I, Kinematics). Thus rotation counter-
clockwise is positive (+) and clockwise negative (— ).

The same principles must evidently hold for the moment of a
force as for the moment of its acceleration. Hence
A force may be considered as acting at any point in its line of

direction.
The algebraic sum of tlie moments of any number of forces is

equal to the moment of their resultant (page 62, Vol. I, Kinematics).
Line Representative of Moment of a Force.—Since the moment

'of a force has thus magnitude and direction, it is a vector quantity
and can be represented by a straight line like moment of acceler-
ation.

* The student should constantly refer in this portion of the work to the
references in the text to Kinematics of a Rigid System (page 169, Vol. I), and if
he has omitted that portion of the work should now take it in connection with
Statics.
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K

Thus the line AB represents by its length the magnitude of the
moment. The plane of rotation is at right angles to
this line. The direction of rotation is clockwise in
this plane when we look in the direction of the arrow.^ When we speak of direction of a moment we mean

the direction of its line representative.
Resolution and Composition of Moments.—The principles of pages

35, 36, Vol. I, Kinematics, hold good then for force moments as well
as for acceleration moments (page 62, Vol. I, Kinematics), and we
have the triangle and polygon of moments.

The signs of the line representatives of
the components along the axes of X, Y, Z
of a force moment follow the same rule as
for components of acceleration (page 62,

Vol. I, Kinematics). Hence components in
the direction OX, OY, OZ are positive (+),
in the opposite directions negative (—). If
then we look along the line representatives
of the components towards the origin O,
the rotation is always counter-clockwise.
Therefore rotation fromX towards Y, Yto-
wards Z, ZtowardsX is positive

2

in the opposite directions negative.
For polar co-ordinates directions away from the pole are positive,

towards the pole negative.
Evidently, then, we measure angles in the plane XY, around

from OX towards OF; in the plane YZ, around from OY towards
OZ; in the plane ZX, around from OZ towards OX, as shown by
the arrows in the figure.

\ Resultant of Two Non-concurring Co-planar Forces. *—Let the
two forces Fi , F* act in the same plane at the points A, B of a
rigid body, Fig. 1, in different directions, and let OFr be the direc-

tion of the resultant Fr .

Fig. 2.

Take a point P anywhere in the plane of the forces and draw
the lever-arms Pni = pi , Pn* = p* , Pn = r.

Then, since the moment of the resultant with reference to any
point is equal to the algebraic sum of the moments of the compo^
nents, we have in general

Frr = Fxpi + Fip* (1)

[Regard must be paid to the signs. Thus if the forces are as repre-

sented in the figure, we have + Fip* — F*p*.]

* Compare page 179, for concurring angular accelerations, Kinematics of a

Rigid System.
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Since this holds good wherever we take the point P in the plane,
let us suppose the point P at the intersection O of the given forces.
For this point, the lever-arms p t and pa will be zero, the moments
P.pi and Pap a will be zero, and hence F,r must be zero, or the
lever-arm r is zero. We can therefore take the point O as the com-
mon point of application of Pi and Pa and the system reduces to
two forces acting at the point O or to a system of concurring forces.
Hence

—

(1) A force acting at any point of a rigid body can be considered
as acting at any point in its Line of direction.

(2) The resultant of two non-concurring co-planar forces lies in
the plane of the forces and passes through the point of intersection
of the forces.

Position of the Resultant. — Draw the line AB intersecting the
resultant Fr at the point C.

Let a 1 be the angle of Pi with AB, and «-
a the angle of Pa with

AB. If we take moments about the point C, we have for the lever-
arm of Pi , AC sin at| and for the lever-arm of Pa , BC sin a,.

From equation (lj,

Pi . AC sin 01 = Pa . BC sin «».

But AC+ BC = AB. Hence

AC — Pa • AB sin «a - y r>p _ _ Pi . AB sin on—
Pi sin a\ + Pa sin a»'

~~
Pi sin ai + Pa sin a*

'

(2)

We thus know the position of the resultant in the plane of the
forces. (Compare page 179, Kinematics of a Rigid System.)

Magnitude and Direction of the Resultant.—The magnitude and
direction of the resultant can now be found, precisely as for con-
curring forces.

Thus if we lay off Pi and Pa in the force polygon Fig. 2, AFi
gives the magnitude and direction of the resultant Fr.

Take the rectangular axes OX and OF in the plane of the forces
and let OX be parallel to AB. Let Pi make the angle «i with OX,
and (5\ with OY, and Pa make the angle a-, with OX, and /Ja with
OY. Denote the algebraic sum of the components parallel to OX
by Px and parallel to OY by Fy . Then the equations of page 61

hold, and we have

Px = Fi cos an + Fi cos aa ; I

Fy = Pi cos (ix + Pa cos 1%. \

'

[Regard must be paid to the signs. Thus in the figure Pa cos «a

is positive, all the other terms are negative.]

If the resultant Fr makes the angles a and b with the axes of x
and y, we have

Pr t ru ,..
cos a = — , cos b = -f (4)

Squaring and adding,

Fr=VFxi + Fyi
(5)

In taking the summation indicated by (3), components in the
direction OX or OF are positive, in the directions XO or YO nega-
tive.

If Oi is the angle of Pi with the resultant, and a the angle of Pa
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with the resultant, and the angle between Pi and Fa , we have di-

rectly from the force polygon, Fig. 2,

F F
sin Si = -^- sin 9, sin 9» = -=^- sin 6, . . . . (6>

and
Fr = */F? + FS ± 2F>Fa cos 9, (7)

where the (+) sign is used when 9 is less then 90°, and the (— ) sign
when 9 is greater than 90°.

The tangent of the angle a which the resultant makes with AB
or OX is

tan a = 5 (8)

From (6) and (7) we can find the magnitude and direction of the
resultant directly if 9 is known. If ai and a% are given, (3) and (5)

give Fr , and (4) or (8) the direction.
From (1) we have also

r = F,p. + F,p,
(9)

fr

where regard must be had for the signs of F&i and P2pa in any
case.

From (9) for any given point P, for which pi and j?» are known,
we can locate the resultant by describing a circle with centre P
and radius r, and drawing Fr tangent to this circle in the direction
given by (6). (Compare page 180, Kinematics of a Rigid System.)

Example.—Two forces Fi = 20 lbs. and Fa = 30 lbs. act at points A,
B of a rigid body, in the directions shown in the

figure. The distance AB = 2 ft. and the angle£L
FiAB = 120°, FtBA = 150°. Find the point of ap-
plication C of the resultant, and its magnitude and
direction.

Fi Ans. Cos a, = sin fii = 0.5, cos a 3 = sin (it = 0.866,

6 = 90°. Hence

AC _ 30X2X0.5 _ 0029ftAt ~ 20 X 0.866 + 30 X 0.5 ~ °^ "'

Fx=- 20x0.5 +30 X 0.866 = + 15.98; ) 32.32 mmmm
' tan a — — .... na = — 2.022.

l\Fv = - 20 X 0.866 - 30 X 0.5 = - 32.32. )
15 - 98

Or BCFr = 63° 41'.

Fr = V(15.98)
2 + (32.32)2 = 36.05 lbs.

We obtain the same result from equation (7) directly. Thus

Fr = ^208 + 30* = 36.05.

We also obtain from equation (6)

sin 8i = srrb = 0.832, or 0, = 56° 19'.

Therefore OCA = 180 - (60° + 56° 19) = 63° 41', as before.

Resultant of Two Parallel Forces.—This is but a special case of
the preceding Article. Thus if two non-concurring forces are
parallel, their intersection is at an infinite distance and a> and a«
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become equal, and 6 = 0. We have from equations (5) or (7), page
70,

Fr = Fi + Ft

,

where the forces Fi and Ft are to be taken with proper signs (+)
in one direction and (— ) in the opposite. From equation (2), page
69, we have

AC = ^-.AB, BC=~.AB.Fr
(1)

Multiplying the first by Fx and the second by Ft , we have

F..AC = F,.BC, or £-f£- • •

To prove this independently, take C as centre of moments

(2)

Fia. 2.

Then, whether the forces act in the same or in opposite direc-

tions, we have

Fipi — F*p* = 0, or JF\2>i = Ftpt,

where pi and p2 are the lever-arms. But from similar triangles

& = ^p,. Hence
p-, BC

F,_BC
Ft AC

We see from (1) that the distances AC and BC depend only upon
the magnitudes of Fi and Ft and the distance AB between their
points of application, and not at all upon the common direction of
Fi and Ft. Therefore if the forces F, , Ft are turned about A and
B preserving their parallelism, or if the body is turned, the forces
Fi and Ft having always the same direction and the same points of
application, the resultant Fr will always pass through C. The point
C is then the point of application of the resultant.

Hence, the resultant of two parallel forces acting at the ex-
tremities of a rigid straight line is in their plane and equal in
magnitude to their algebraic sum. It acts parallel to the forces
in the direction of the greater force, and its point of application is

on the straight line or the straight line produced, and divides it into
segments inversely as the forces. Or the products of the forces into
the adjacent segments are equal. (Compare page 181, Kinematics
of a Rigid System.)

This principle is known as the " law of the lever."
If we take the centre of moments at B and at A, we obtain di-

rectly equations (1).

Cor. 1. When the forces act in the same direction, the result-
ant lies within the components. When the forces act in opposite
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directions, the resultant lies without the components and on the
side of the larger.

Cor. 2. When the forces are equal and opposite, F,- = 0. Also,
from (1), AC = co , BC = oo , or the resultant is zero and acts at an
infinite distance. That is, two equal and opposite parallel forces
cannot have a single force as a resultant.

Such a system is called a force couple. (Compare page 182, Kine-
matics of a Rigid System.)

Since the resultant is zero, there is no force of translation, and
the effect on AB is to cause rotation only. All tendency to rotation
can be referred to forces forming such couples.

Moment of a Couple.*—From the last corollary, we see that a
couple consists of two equal and parallel forces acting in opposite
directions at different points of a rigid body.

The perpendicular distance between the directions of the forces
is called the arm of the couple.

The product of the arm by one of the forces is the moment of the
couple. This moment represents tendency to rotation of the rigid
body.

Let the two equal, parallel and opposite forces, + F, —F, act at
the pointsA and B of a rigid body.
Draw any line CMbC? at right
angles to the direction of the
forces.

Take any point Ci on the left as
a centre of moments. Then we
have for the resultant moment
about C. , F . Cm - F(Cia + ab) =

-* F . ab.

For any point Ci on the right, we have

F . C*b- F{CJ> + ab= -F . ab.

For any point C between the forces,

-F . Ca-F .Cb= —F . ab.

The minus sign denotes clockwise rotation.
In general, the moment of a couple about any point in its plane

is constant and equal to the product of the arm by one of the forces.
(Compare page 186, Kinematics of a Rigid System.)

Cor. 1. A couple may be turned round in any manner in its

own piano without altering its effect, the arm ab being unchanged.
f Cor. 2. A couple may be removed to any position in its own
plane without altering its effect, the arm ab being unchanged.

Cor. 3. A couple may be transferred to any other plane parallel

to its own plane without altering its effect.

Cor. 4. All couples whose planes are parallel and moments
equal, are equivalent.

Cor. 5. Any couple may be replaced by another which shall be
equivalent and have an arm of any given length.
\ Cor. 6. We have for any point d the resultant moment

\ F .Cm- F(Cm + ab).

If Cm = oo , then, since ab is insignificant with respect to Cm, we
have Fee — Fee = 0. The algebraic sum of the forces or the result-

ant force is also zero. The moment of a force is the algebraic sum
of the moments of its components (page 67). The resultant there-

* Compare page 186, Kinematics of a Rigid System.

,
&*

A *~*-**^^

B

b
1 cI c i

( Ci
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fore acts through any point where the moment sum of the compo-
nents is zero. The resultant of a couple is therefore zero at an in-
finite distance in any direction in the plane of the couple. This is

Cor. 2, page 72.

Cor. 7. A couple cannot be replaced by a single force, but only
by another equivalent couple.

Cor. 8. A couple cannot be held in equilibrium by a single
" rce, but only by another equivalent couple.

Line Representative of a Couple.—A line perpendicular to the
'plane of a couple is called the axis of the couple.

A couple can then be completely represented by a straight line.

The length of the line represents the moment of the couple. The
plane of the couple is at right angles to its line representative. The
direction of rotation may be indicated by an arrow, so that looking
along the line representative in the direction of the arrow, rota-
tion is seen to be clockwise. Thus the line AB represents the mag-
nitude of a couple causing rotation as indicated in r ~

a plane at right angles to the axis AB. The line A La—*- b
representative coincides with the axis of rotation. v->

A couple is thus a vector quantity, like displacement, velocity,
acceleration, moment, force, and the same principles apply as to
composition and resolution of forces.

When we speak of the "direction of a couple" we mean the
direction of its line representative.

Composition and Resolution of Couples.—We have then the
"parallelogram and polygon of couples."
When couples are in the same plane, or parallel planes, their

line representatives are all parallel. Hence the resultant of any
number of couples in the same or in parallel planes equals the al-

gebraic sum of the component couples.
The resultant of two couples in different planes is given by the

diagonal of the parallelogram constructed on the line representa-
tives of the components, taken the other way round.

The resultant of any number of couples in different planes, the
axes being all in the same plane, is given by the line which closes

the polygon formed by the line representatives taken the other
way round.

The line representatives can then be combined and resolved just

like forces in general.
The action of a couple acting upon a rigid body is to cause an-

gular acceleration of the body about an axis perpendicular to its

)lane.

Centre of Parallel Forces.*—Let Fi , F* , F» , etc., be any num-
ber of parallel forces acting at the

Eoints Ax , A, , At , etc., of a rigid

ody.
Then the resultant Fr must be

parallel to the forces and equal in
magnitude to their algebraic sum,
or

F,- = Fi + F* + F* + = 2F.

In taking the summation, all

forces in one direction are (+), in
the opposite direction (— ).

Take any two of the parallel

forces, as Fi , Fi , and draw a line

* Ownpare page 192, Kinematics of a Rigid System.

^ ^4
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A1A2 through their points of application and produce it to intersec-

tion K with the plane of ZX. Drop perpendiculars AxBx , AiB% to
this plane and draw the line KB1B1 in this plane.

Now, from page 71, the resultant of Fi and Fi is Ri = Fi + Fz
and its point of application is at A on the line AxAt , such that

Fx _ A,A
F, ~ AxA'

Drop the perpendicular AB to the plane ZX. Then we have by
similar triangles

A,A_B*B
AxA ~ BBx'

Denote the distances AxBi , i 85s by yx , y% respectively, and the
distance AB, or the ordinate of the point of application of the re-

sultant Rx of Fx and Fa , by yu Then we have by similar triangles

BtB _ yi — yx

fi-lf.
Hence

- Fxyx + Fly*
or »- %IW-

In the same way for three forces Fx, F* , F3 we can combine
the resultant Rx of Fx and Fi acting at the point A, with F3 . We
thus obtain for the ordinate of the point of application of the
resultant of three forces

—- _ Fxyx + F3y* + F3y3

Vi
Fx + F.+F* '

In general, then, for any number of parallel forces we have for

the ordinate y of the point of application of the resultant

In precisely similar manner, if we denote the distances AC and
AD of the point^of application of the resultant from the planes of

YZ and XY by x and z, we have

X =~2F> (2>

- 2Fz
Z = ZF (S)

Equations (1), (2) and (3) give the co-ordinates of the point of
application of the resultant for any number of parallel forces.
This point is called the centre ofparallel forces.
We see that its position depends only upon the magnitude of

the forces and the position of their points of application, and is

independent of the common direction of the forces.

Cor. 1. If z is zero, then Zx , z« , etc., must be zero, and the paral-
el forces are co-planar and all lie in the plane XY. The centre is

then given by (1) and (2). If z and y are zero, the points of applica-
tion are all in the axis of X, and the centre is given by (2). (Com-
pare page 192, Kinematics of a Rigid System.) If x, y and z are
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zero, the centre is at the origin. If x and z are zero, the centre is

in the axis of Y and the points of application are all in the axis of
Y, etc.

Cor. 2. If a force equal and opposite to the resultant is applied
at the centre of parallel forces, we have a system of parallel forces
in equilibrium.

Cor. 3. If a body has a motion of translation only, all the points
of the body move in parallel paths with the same acceleration, if

any, in the same direction at any instant. Let / be this common
acceleration. Then if we consider the body to be composed of an
indefinitely large number of indefinitely small particles of mass
mi , m2 , m3 , etc., the parallel forces on each of them are Fi — mi/,
F* = m2/, F3 = m3f, etc. The total resultant force in the common
direction is then

_R = m,/+ m-tf + m3f + etc. =/(mi + m* + m3 + etc.);

or if the total mass M= mi + m» + m3 + etc.,

< B=fM.
Also, if the co-ordinates of the particles mi, mi,m3 , etc., are

(Xi, 2/1, Zi), (Xi, y*, Zi), etc., and the co-ordinatesof the point of

application of the resultant are denoted by x, y, z, we have, since
the moment of the resultant is equal to the algebraic sum of the
moments of the components,

Rx =fMx = mifxi + m-tfXi + etc. = f2mx,

or

— 2mx ....

x =~w (1)

In the same way we have

y =^F <2>

z -~w (3)

The point given by equations (1), (2) and (3) coincides with the
centre of mass of the body (page 17).

Hence, the centre of mass of a body coincides with the point of
application of the resultant of that system of parallel forces which
acts upon all the particles of a translating body ; that is, when each
parallel particle force causes in the particle on which it acts the
same acceleration in the same direction (page 18).

Properties of the Centre of Mass.—We have then the following
properties of the centre of mass :

1. The centre of mass coincides with the point of application of
the resultant of that system of parallel forces which acts upon all

the particles of a translating body.
2. Hence, inversely, if all the forces acting upon a rigid body

reduce to a single resultant force acting at the centre of mass, the
motion of the body is one of translation only.

3. The algebraic sum of the moments of the masses (page 19)

of all the particles with reference to the centre of mass is zero (page

17).

/O '/O '^J
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If, then, the origin of co-ordinates is taken at the centre of mass,
we have

2mx = 0, 2my — 0, 2mz = 0.

If polar co-ordinates are taken, and the pole is taken at the
centre of mass, we have

~2mr — 0,

where r is the distance of any particle from the centre of mass.
4. Since the attraction of the earth for a body at or above its

surface, whose longest dimension is insignificant compared to the
earth's radius, is practically an equal and parallel force on every
equal particle of the body, the weight of the body in such case acts
at its centre of mass, and a body acted upon only by its weight has
a motion of translation only.

Hence the centre of mass is often erroneously called the "centre
of gravity " (pages 18, 46).

5. In all positions of a rigid body about the centre of mass, the
weight then passes practically through the centre of mass, because
changing the direction of a system of parallel forces does not, as
we have seen (page 74), change the point of application of the re-

sultant, provided the points of application of the forces and their
magnitudes are unchanged.

Hence if a rigid body free to move is supported at its centre of
mass, it will be at rest in all positions about this centre, because in
all positions we have two equal and opposite forces acting at the
same point.

We can therefore locate the centre of mass of a rigid body by
suspending it successively in two different positions. The two di-

rections of the suspending string relative to the body must inter-
sect practically at the centre of mass, since in each case, if the
body is at rest, the centre of mass must be vertically under the

- point of suspension

.

v/ 6. If a rigid body free to move is supported at a point vertically
\f v J below the centre of mass, it will then be in equilibrium. But if the
XVJ

|

body be moved in any direction, however slightly, around the point
S* I of support, we shall have the weight of the body and the upward

pressure on the support forming a couple causing the body to rotate
; away from its former position of equilibrium.

A body in such a position is said to be in unstable equilib-
' -rium.

If a rigid body is supported at any point vertically above the
centre of mass, it will be in equilibrium also. If the body is moved
in any direction however slightly around the point of support, we
shall have a couple causing rotation towards the former position of
equilibrium.
A body in such a position is said to be in stable equilibrium.
If the body is supported at the centre of mass, it will remain in

equilibrium in any position about the point of support. It is then
said to be in indifferent equilibrium.

7. The centre of mass may lie outside the limits of the body, as
for example in the case of a circular ring or a spherical shell.

8. The motion of the centre of mass of a rigid body is the same
as if the body were replaced by a particle of equal mass at the
centre of mass, and all the forces acting upon the body were trans-
ferred to this particle without change in magnitude or direction
(pages 18, 83).
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.,F,.

Resultant Force and Couple for any Number of Parallel Forces.

—Take the axis of Y parallel to the com- y

mon direction of the parallel forces Fi ,

Fi , F3 , etc., and let these forces be ap-
plied at the points of a rigid body whose
co-ordinates are (Xi, t/i, Zi), (Xi, y*, z3),

etc.

Then the resultant will be the alge-

braic sum of all the forces, or

Ft = Ft + Ft + F* + . . . =* 2F, . (1)

all forces acting in the direction OY
being positive, and all in the opposite z

direction being negative in the algebraic sum.
The point of application (x, y, z) of this resultant, or the centre

of force, is given by

f

A

2Fx
2F'

- _2Fy -_2Fz
y~ 2F' Z

~~2F' (2)

Taking positive rotation in each co-ordinate plane as indicated
in the figure from X to Y, Y to Z, Z to X, we have for the moment
about the axis of X in the plane YZ

Mx = z2F = 2Fz,

and for the moment about the axis of Z in the plane XY
Mz = x2F= 2Fx

(3)

(4)

There is no moment about the axis of Y, or My = 0. The line

representatives of these moments are positive in the direction OX
and OZ, negative in the opposite directions.

The resultant moment is then

Mr = VMx * + Mi (5)

The line representative of the resultant moment makes angles
d, e and / with the axes of X, Fand Z whose cosines are given by

C08 / = irr- • • • (6)
, Mx

cos a — ^—,
Mr

cose ^ =
Mr ' Mr

Looking along this line representative towards the origin, the
direction of rotation is always seen counter-clockwise.

Equilibrium of a Rigid Body.—If a rigid body acted upon by
any number of forces applied at different points is in static equilib-

rium (page 58), all the forces must evidently reduce to two equal
and opposite resultant forces acting in the same straight line.

That is, the algebraic sum, of the moments of all the forces about
every point in space must be zero. Or, any one of the forces must
be equal and opposite to the resmltant of all the others and act in ^
the same straight line with it. (if any one of the forces is equal Jbr
and opposite to the resultant of all the others, but does not act in ^jr-
the «ame straight line with it, we have molar equilibrium (page (\

*

58). I
^Conditions of Equilibrium of a Rigid Body acted upon by Paral-

lel Forces.—If all the forces acting at different points of a rigid

body are parallel, we have then for the necessary and sufficient

conditions of static equilibrium

:
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• 1st. The algebraic sum of the forces must be zero, or

2F=0 (1)

When this condition only is complied with, there is no resultant
force, or any one of the forces is equal and opposite to the resultant
of all the others, hut does not necessarily act in the same straight
line with it. We have then molar equilibrium.

2d. The algebraic sum of the moments of the forces with refer-
ence to any tivo co-ordinate planes, paral-
lel to the forces, must be zero.

That is, if we take the common direc-
tion of the forces parallel to the axis of Y,
and take the origin O as the centre of
moments, we have the resultant momentMr = 0, or

2Fx = 0, 2Fz = 0. ... (2)

When this condition only is complied
with, there is no rotation about the origin

O, or about any point in the axis OY.
The resultant then coincides with the axis OY. If this resultant

is not also zero, there can be no static equilibrium. If it is zero,
then the 1st condition is also fulfilled, and we have the algebraic
sum of the moments of all the forces about every point in space,
equal to zero.

In order, then, that there may be static equilibrium, both con-
ditions (1) and (2) must be satisfied.

Cor. 1. If equilibrium, molar or static, exists for any one direc-
tion of the parallel forces, it will exist whatever the common direc-
tion, provided the magnitudes and points of application of the
parallel forces are unchanged.

Cor. 2. If the parallel forces are co-planar, let their common
5)lane be the plane of XY, and let their common direction be paral-
el to the axis of Y.
Then we have for the conditions of equilibrium

2F=0; (1)

2Fx = (2)

If the first condition alone is satisfied, we have molar equilib-
rium.

If the second alone is fulfilled, the resultant coincides with the
axis of Y.

If both are fulfilled, we have the moment about every point in
the plane zero, and hence static equilibrium.

EXAMPLES.

(1) Show that the centre of mass of the perimeter of a triangle
cannot coincide with the centre of mass of the triangular area, ex-
cept in the case of an equilateral triangle.

(2) A mass P at rest on an inclined plane is attached to one end
of a string which passes over a pulley at the top of the plane and
supports at the other end a mass Q. The pressure of the plane upon
P is normal to the plane. Shoiv that when Q is moved vertically,
the centre of mass of P and Q will neither rise nor fall.
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Ans. Let a be the angle of the plane with the horizontal. Let the string

make the angle (3 with the plane.
The weight of P is the attraction of the earth for P.

The tension of the string is the same as the weight of

Q. Since P is at rest, the tension of the string Q, the
weight P and the normal pressure iVare in equilibrium
and concur at the centre of mass G. Let I be the length
of the string, and x the length of that portion of it, Gc,

between the body and the pulley, and y that portion of it, cQ, between the
pulley and the body Q. Then x 4- y = I, no matter where the body P is on
the plane. The distance of the centre of mass of P and Q below the pulley is

then
Px sin (a ± ff) + Qy

P+Q
where the (-f-) sign for /3 is taken when /? is above and the (— ) sign when /?,

as in the figure, is below the parallel to the plane through G.
But since P is at rest, the component of its weight parallel to Ge must be

equal and opposite to the tension of the string Q. Hence P sin (a ± fi) = Q,
and the distance of the centre of mass of P and Q below the pulley is

Oix 4- v) 01
Ttj_X = p"TT7v wn5cu 1S independent of the position of Q.

U^fThree masses of 2, 3, 4 ounces respectively lie in a straight
line. The distance between the first and second is 10 inches^ between
the second and third 5 inches. Find the centre of mass.

Ans. At the centre of mass of the middle mass.

L^^fFour masses of 1, 2, 3, 4 pounds are placed in order at equal
distances one inch apart on a rod. Neglecting the rod, find the
point at which they will balance.

Ans. At the centre of mass of the third mass.

*^(5) At the corners of a square, taken in order, are placed masses
1, 3, 5, 7. Find the centre of mass.

Ans. If 8 is the length of a side of the square, the distance of the centre of

mass from the side (1, 7) is - , and from the side (5, 7) j.

(6) From a fixed horizontal rod are suspended a given number
of equal masses by strings, the sum of the lengths of ivhich is given.
Find the distance of the centre of massfrom the rod.

Ans. If n is the number of masses and I the whole length of string used,

the required distance is —

.

n

(7) Two masses support each other on two smooth inclined planes
by means of a fine string passing over the common vertex of the
planes. If the masses are moved, show that the centre of mass
moves in a horizontal line.

(8) A solid right cone stands on a plane inclined at an angle
of 30° to the horizon and is prevented from sliding. Find the
height of the cone in terms of the radius of the base, in order that
it may be on the point of overturning. j

Ans. 4r 4/3T [^

(9) A circular table weighing tv lbs. has three equal legs at equi-

distant points on its circumference. The table is placed on a level

floor. Neglecting the legs, find the smallest weight which, placed
anywhere on the table, willjust bring it to the point of overturning.

Ans. w lbs.
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4s on

(10) If the table has four legs at equidistant points, find the least
weight that will upset it.

Ans. %Aw.

Jil) The centre of mass of a ladder weighing 50 lbs. is 12 ft. from
one end, which is fixed. What force must a man apply at a dis-
tance of 6 ft. from this end to raise tlie ladder t

Ans. 100 lbs.

1(12) Two parallel forces, acting in the same direction, are 17 and
33 lbs. respectively, and their points of application A, B are 8 ft.
apart. Find the resultant and its intersection C with the line AB.

Ans. FT = 50 lbs. parallel to the forces

.40 =5.28 ft., 5(7=2.72 ft.

<i3) Find the resultant and the point C when the forces in the
preceding example act in opposite directions.

Ans. Fr = 16 lbs. in the direction of the larger force

AC = 16.5 ft., BG = 8.5 ft.

^<l4) Two parallel forces Fi , Ft of 12.5 and 25 lbs. act in the same
direction upon two points. The resultant acts at a distance of 4 ft.
from Fi. What is the distance between the forces f

Ans. 6 ft.

(15) Resolve a force Fr = 52 lbs. into two parallel forces acting
in the same direction, Fi and Fi : (a) when the distances from Fr are
2 and 3 ft.; (6) when Fi = 20 lbs. at a distance of 2 ft.

Ans. (a) Fi = 31.2 lbs., Fi = 20.8 lbs.

(6) Ft = 32 lbs. at a distance from Fr of 1.25 ft.

—(16) Resolve a force Fr = 20 lbs. into two parallel forces Fi, Fi,
one of which, Fi , acts opposite to Ft : (a) when the forces are distant
from Fr 8 and 3 ft; (6) when Fi is 30 lbs. and distantfrom Fr 6 ft.

Ans. (a) Ft = 12 lbs., Ft = 32 lbs.

*<^^^ (b) Ft = 50 lbs. at a distance of 3.6 ft.

(17) A beam of length I is supported at its ends. Parallel forces
Fi, Fi, F3 act upon it at right angles to its length, dividing thebeam
into the segments b, c, d and, e. Find the pressures Ri and Ri at the
supports at the left and right ends, neglecting the weight of the beam.

„ Fl (l-b)+ F4d + e) + F* „ F,(l - e) + F&+ c)+ FJ
Ans. Hi = , itj = .

(18) A table is supported by three legs at the points A, B, C.

A load F is placed upon the table at the point F. Find the press-
ures on the tegs.

Ans. Let the upward pressures on the legs be Fi , Fi , F3 . Then

Ft +Ft + Ft -F=0 (1)

Let n2 be the distance of F from the line A G, and Jii the

distance of B. Then, taking moments about A G,

Fni - Fihi = (2)

Let n3 be the distance of F from the line AB, and h 3 the

distance of C. Then, taking moments about AB,
Fn3

- F,7i, = (3)

From these three equations we have

F3 =
Frii F3 =

Fn 3 F = Fn x

hi
'

h 3 hi

where rii is the distance of F from BG, and hi the distance of A.
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If the sides of the triangle ABC are a, b, c, and the angles BFC, CFA,
AFB are a, G, y, and the distances of -Ffrom A, B and G&rep, g and r, we have

1

F _Fni _ F 2 _ gr sin a
1

hi 1 gr sin a -\-pr sin fi-\-pq sin y'

2
hl<l

In the same way we can find Fi and F3 . If there are four legs, we have
four unknown quantities and only three equations of condition. The problem
is then indeterminate.

\jj^^$) Find the resultant for a system of parallel co-planar forces

\ \y given by
Ft =+ 33 lbs., xi = + 25 ft., Vl = + 13 ft.;

F* = + 20 " x, = - 10 "
y, = - 15 "

F» = - 35 " xs = +15 "
ys = - 27 "

2P« = - 72 " a?4 = - 31 "
y* = -f- 17

"

2^ = + 120 " xt = 4- 23 *'

y% = - 19 "

Ans. Fr = -f 66 lbs., x = -f- 77.15 ft., y = - 36.82 ft.

If the forces are parallel to the axis of T, Mz = 4 5091.9 lb.-ft.

If the forces are parallel to the axis of X, Mz = -j- 2430.12 lb.-ft.

If we look along the line representative of the moment towards the origin,

the rotation is seen counter-clockwise.

l**tS0) Find the resultant for the parallel-force system given by

Fx = -{- 60 lbs., x x =0, yx = 0, Zx = 0;

F, = + 70 " x-x = + 1 ft., y, = + 2 ft., za = + 3 ft
;

F3 = - 90 " x3 = + 2 " ys = +3 " «3 = +4 "

^ = -150" a;4 = +3" y4 =+4" z4 =+5"
.ft = 4 200 " «6 = +4" ys = 4-5 ,

« g6 = +6"
Ans. Fr- 490 lbs.. aT= 4 2f ft., y=4-3ft., 7= 4-3* ft.

If the forces are parallel to the axis of T, we have

Mx =+ 315 lb.-ft., Me = 4 240 lb.-ft., Jl/,- = 396 lb.-ft.

The line representative making the angles with the axes of X, T, Z given by

,7 ,

315
j

-. 240
«fitf =+

flW °- COs/=: + 396
;

or ——

—

~*

d = 322° 41' 41", = 90°, /= 52° 41' 41".

If we look along the line representative towards the origin, the rotation is

seen counteruUoclfwi—i

\

\

ir!'~>i o

f
<>

1

a5
.



CHAPTEE m.

STATICS—NON-CONCURRING FORCES IN GENERAL.

COMPOSITION AND RESOLUTION OP FORCES AND COUPLES. CENTRAL AXIS OP
A PORCE SYSTEM. CONDITIONS OP EQUILIBRIUM OP A RIGID BODY.
ANALYTICAL DETERMINATION OP RESULTANT FORCE AND COUPLE FOR
ANY NUMBER OP NON-CONCURRING FORCES IN SPACE. EQUIVALENT
WRENCH. THE INVARIANT. COMPOSITION AND RESOLUTION OP
WRENCHES.

In the preceding Chapter we have considered non-concurring
forces when they are parallel. We shall now consider non-concur-
ring forces in general, whatever their direction.

Composition and Resolution of Forces and Couples.— Let a
force AB = + F act at any point A of a rigid body.

If at any other point O of the body we introduce two equal and
opposite forces, Ob = + F and Oa =
— F, each equal in magnitude to AB
and parallel to it, the motion of the
body is obviously unaffected by such
introduction. We have then the
force AB = + F acting upon the

body at A, reduced to an equal and parallel force Ob — + F, acting
at any point O we please, and a couple consisting of AB and Oa.
The moment of this couple is the same for every point in its plane
and equal to Fp, where p is the perpendicular distance between the
forces AB and Ob (page 72). The action of this couple is to cause
angular acceleration of the body about an axis perpendicular to its

plane (page 72).

Since the motion of the point O is not affected by the introduc-
tion of the equal and opposite forces Ob and Oa, the axis of rotation
passes through O. The motion of the body is therefore that of the
point O at any instant, combined with rotation about the axis
through O, perpendicular to the plane of the couple.

Hence (compare page 189, Vol. I, Kinematics), A force F acting
at any point of a rigid body can be resolved into an equal and
parallel force at any point O of the body at a distance p from the
line of direction of F, and a couple whose moment is Fp, tvhose
plane is that of the forces, and whose axis of rotation passes through
thepoint O perpendicular to this plane.

Conversely, The resultant of a force F acting at any point O of
a rigid body and a couple whose moment is Fp and whose axis of
rotation passes through the point O at right angles to the plane of
the couple, is an equal and parallel force acting at a distance p in
the plane of the couple.

Cor. 1. Any number of forces acting at different points of a
rigid body in different directions can then be reduced to a system

82
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of concurring forces acting at any given point of the body, and a
number of couples whose line representatives pass through that
point. The forces can be reduced to a single resultant (page 58),
and the couples can be reduced to a single resultant (page 73).

Hence any number of forces acting at different points of a rigid
body in different directions can be reduced in general to a single
force R acting at that point and a couple whose line representative
passes through that point. The couple will vary with the point
chosen. The force is the same no matter what point is chosen.

Cor. 2. This resultant force R and couple whose moment is Rp
can again be reduced to a single resultant equal and parallel force
R at the distancep in the plane of the couple.

If this single resultant forceR passes through the centre of mass,
every point of the body has the same acceleration / in the same
direction and the motion of the body is one of translation (page

j>
75). The single resultant force is then R=f2m, or/=—

.

where 2m is the mass of the body.
If this resultant force R does not pass through the centre of

mass, it can be reduced to an equal and parallel force R—f2m
which does, and a couple whose plane is that of the forces and
whose axis of rotation passes through the centre of mass. This
couple then does not affect the acceleration of the centre of mass,
which is therefore in both cases in the same direction and equal

J 2m
Therefore, when a rigid body is acted upon by any number of

forces applied at different points and acting in different directions,
that is, whatever the motion of the body may be, the motion of the
centre of mass is precisely the same as xf the body were replaced by
a particle of equal mass at the centre of mass, and all the forces
were transferred to this particle without change in direction or
magnitude.

Central Axis of a Force System.—Any number of forces acting
at different points of a rigid body in different directions may be
reduced to a single force and a couple whose axis is in the line of
action of the force.

Let OR be the line representative of the force R, and OM the
line representative of the couple M, passing
through O, to which, as we have seen, any
number of forces acting upon a rigid body
may be reduced. Resolve OM into the com-
ponents ON at right angles to OR, and 00
along OR. The couple represented by ON can
be replaced by the equal parallel and opposite *

forces — R at O and + R at a point Oi , the
distance 00\ being perpendicular to the plane of ON and OR and

ON
equal to -=-. Then — R and + R at O balance, and the system is

reduced to R at Oi and the couple represented by OC, whose axis
is parallel to R (compare page 191, Vol. I, Kinematics of a Rigid
System). The couple represented by OC causes rotation of the
body about the axis OC with a certain angular acceleration a, and
therefore Oi has the acceleration of translation OOi . a.

But (page 190, Vol. I, Kinematics of a Rigid System) an angular
acceleration a of a rigid system about any axis can be resolved into
an equal angular acceleration about a parallel axis at any distance
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00\ and an acceleration of translation 00\ . a in a direction at
right angles to the plane of the axis. The axis through O can
then be shifted to Ou The entire system of forces reduces then
to the resultant force R at Oi and a couple whose axis is in the line
O.R.
When this reduction is made, the line of action of the force is

called the central axis of the force system, or Pointsot's central axis.

(Compare page 191, Vol. I, Kinematics of a Rigid System.)
Sir R S. Ball has given the name wrench to the resultant force

and couple to which a given system of forces may be reduced when
the line of action of the resultant force is the central axis.

Cor. 1. Since OM is always greater than OC, it is evident that
the magnitude of the resultant couple is less when its direction is

that of the central axis than when it has any other direction.
Cor. 2. If <p is the angle between R and M, then denoting ON

by N, and OC by C,

^^ N Main <p~ ,,
OOi — jt=—ir^C — ^cos <p,

and this value of C gives the least value of the resultant moment.
This is called PointsoVs moment.

Conditions of Equilibrium of a Rigid Body.—We have proved
in the preceding Article that any forces acting on a rigid body can
be reduced to a single resultant force R and a couple whose axis is

parallel to that force or whose plane is at right angles to it.

In order, then, that static equilibrium may exist, R must be zero
and the moment of the couple must be zero. Or, as we have stated

^r (page 77), all the forces must evidently reduce

7 b to two equal and opposite forces acting in the
same straight line. Hence, the algebraic sum
of the moments of all the forces about every
point in space must be zero. Any one of the
forces, then, must be equal and opposite to the

resultant of all the others and act in the same straight line with it.

If any one of the forces is equal and opposite to the resultant of all

the others, but does not act in the same line with it, we have molar
equilibrium (page 58).

We have then two necessary and sufficient conditions for static

equilibrium:*
1st. The algebraic sum of the components of all the forces in each

of any three rectangular directions must be zero.

If the forces Fi, Fi, F3 , etc., make the angles (an, fii, yi),

(a2 ,
(Si , y%), etc., with the co-ordinate axes, then we must have

Fx = Fi cos an + Fi cos aa + etc. = 2F cos a = 0; 1

Fy = Fi cos /3x + Fi cos ft + etc. = 2F cos ft = ; I . . (1)

Fz = Fi cos yi + ft cos y* + etc. = 2F cos y = 0. J

When these equations only are complied with, there is no re-

sultant force and any one of the forces is equal and opposite to the
resultant of all the others, but does not necessarily act in the same
line with it. We have then molar equilibrium.

2d. The algebraic sum of the component moments in each of any
three given planes at right angles must be zero.

* Compare page 199, Vol. I, Kinematics of a Rigid System.
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If (xi , 2/1 , Zi), (id
, y? , Zi), etc., are the co-ordinates of the points

of application of the forces Fi, Ft, etc.,

then

Mx = 2Fy cos y — SFz cos fi = 0;

Jlfj, = 2Fz COS a — Si^iC COS y = ;

ilfz = 2i^c cos /3 — 2Fy cos a = 0.

(2)

The figure shows the direction of posi-
tive rotation in each plane and of positive
components F cos a, F cos fi, F cos y.
When these equations only are satis-

fied, there is no rotation about the origin O. The resultant then
passes through O.

If this resultant is not also zero, there can be no static equilib-
rium. If it is zero, then the 1st condition is also satisfied and we
have the algebraic sum of the moments of all the forces about every
point in space equal to zero.

In order, then, that there may be static equilibrium, both condi-
tions (1) and (2) must be fulfilled.

Cor. 1. If the forces are all co-planar, let XY be their plane.
Then z = 0, cos y = 0, and the general conditions of static equilib-
rium become

FX=2F cos a = 0;
\

Fy = 2F cos fi = 0; j

Mz = 2Fx cos fi
— 2Fy cos a = (2)

That is,

1st. The algebraic sum of the components of the forces in each of
any two rectangular directions in the plane of the forces must be
zero.

2d. The algebraic sum of the moments of the forces about any
point in this plane must be zero.

If the first condition only is satisfied, we have molar equilib-

rium.
If the second only is satisfied, there is no rotation about the axis

OZ. The resultant then coincides with this axis.

When this resultant is also zero, we have the algebraic sum of
the moments of the forces about every point in the plane zero ; both
conditions are satisfied and there is static equilibrium.

Cor. 2. If three non-concurring forces acting at different points
of a rigid body are in equilibrium, their lines of direction produced
must intersect in a common point and the forces must be co-planar.

For the resultant of any two must pass through their point of
intersection and lie in their plane. The third force must be equal
and opposite to this resultant and act in the same straight line.

Cor. 3. If the forces are parallel, take their common direction
parallel to the axis of Y. Then cos a = 0, cos y = 0, cos /8 = 1,

Fx = 0, Fz = 0, Fy = 2F, and we have

2F = 0; (1)

2Fx = 0, 2Fz = (2)

That is,

1st. The algebraic sum of the forces must be zero.

2d. The algebraic sum of the moments of theforces with reference

to any two co-ordinate planes parallel to the forces must be zero.

These are the same conditions given on page 78.
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If the first condition only is satisfied, we have molar equilib-
rium. If the second condition only is satisfied, the resultant
passes through the origin and coincides with the axis of Y.

Cor. 4. If the forces are parallel and co-planar, let their common
plane be the plane of XY, and let them all be parallel to the axis of
x. Then we have

2F = 0; (1)

(2)SFx =
That is,

1st . The algebraic sum of the forces must be zero.

2d. The algebraic sum of the moments of the forces about any
point in their plane must be zero.

Analytical Determination of Resultant Force and Couple for Any
Number of Non-concurring Forces in Space.—(Compare page 197,

Vol. I, Kinematics of a Rigid System.) Let any number of forces
Fi, F*, Fs, etc., acting at different points of a rigid body be given
hy (X\ , ?/i , Zi), (x*

, 2/a , jza), etc., the origin being taken at some point
of the rigid body. Let Fx make with the co-ordinate axes of X, Y, Z
the angles («i , /?i , yx) respectively; Ft , the angles (a 2 , fi% , yi), etc.

Then we have for the algebraic sum of the components parallel to
the axes

Fx = Fi cos cti + Fi cos oci + . . . = 2Fcos a
; ]

Fy = Fx cos /Si + Fi cos /3i + . . . = 2Fcos /3

Fz = Fi COS yi + F3 cos yi + . . . = 2FC08 y

(1)

Resultant Force.—If the resultant Fr makes the angles a, b, c
with the axes, we have

Fr cos a = Fx , Fr cos b = FVi Fr cos c = FZ ,

and hence the direction cosines are given by

FzFx a. Fy
cos a = -=-, cos b = -=f

,

If r Jf

r

COSC =
Ft

Squaring and adding, since cos" a + cosJ b + cos" c = 1,

Fr = yFx* + Fy* + Fz

(2)

(3)

The magnitude and direction of the resultant force are thus
determined.

There are precisely the same equations as for concurring forces,
page 60.

Resultant Couple.—We can resolve each force, Fi , Ft , etc. (page
82), into an equal and parallel force
acting at the origin O, and a couple
causing a moment about O. Each
couple can be resolved into component
couples in the planes XY, YZ, ZX.

Taking, then, positive rotation as
indicated by the figure in each plane,
we have for the component moments
in each plane about each axis (compare
page 198, Vol. I, Kinematics of a Rigid
System):
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about axis of X) ** vn , ,_-_ ^et„^^„ a
in plane YZ, \

Mx = Si^ cos ' " 2Fzcoe #
about axis of Y } ** ^jp„ „„„ « w~ „n„
in plane ZX, \

M* = 2Fz cos a " ^Fx cos r \

about axis of Z \ -.* ^jp„ „„„ a ^ etl, nn„
in plane XY, \

Mz = 2Fx cos ** ~ 2Fy cos a.

The moment of the resultant couple is then given by

Mr = VMJ + My
* + Mz\

and its direction cosines are given by

Mx
cosd =

Mr
My . MZ0086=-^, C0S/= ~
Mr J Mr

(4)

(5)

(6)

The axis passing through the origin is thus known in direction.
The line representative coincides with this axis and is given in
magnitude by (5). Looking along the line representative towards
the origin, the direction of rotation is seen counter-clockwise.

The magnitude and direction of the resultant couple are thus
known.
We have thus reduced the forces acting upon the body to a re-

sultant force Fr acting at any point of the body taken as the origin
O and a couple whose moment is Mr . The resultant force Fr is the
same in magnitude and direction whatever point be taken. The
moment Mr depends upon the point.

If r is the lever-arm of the resultant with reference to the origin
O, we have

et Tir MrFrr =Mr , or r = -=r .

Fr

Conditions of Equilibrium,
we must have

-If the body is in static equilibrium,

Fx = 0, Fy = 0, F2 = 0, and also Mx = 0, My = 0, Mz = 0.

We see from (3) that the first condition is fulfilled when Fr = 0,

or the resultant force is zero. Therefore all the forces must reduce
to two equal and opposite forces, or any one of the forces must be
equal and opposite in direction to the resultant of all the others.
We see from (5) that the second condition is fulfilled when

Mr = 0, that is, the two equal and opposite forces must act in the
same line.

We have then for the equations of condition for equilibrium,
from (1),

2Fcosa = 0;

SFcos /3 =
2Fcob y =

and from (4),

SFycosy
SFz COS a

2Fx cos

2Fz cos = 0;

2Fxcosy = 0;

2Fy cos a = 0.

(7)

(8)

If equations (8) only are fulfilled, the two opposite resultant

forces pass through the origin O, but unless (7) is also fulfilled they
are not equal. (Compare page 199, Vol. I, Kinematics of a Rigid
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System.) If (7) only is fulfilled, we have molar equilibrium (page
58). These are the same equations as on page 85.

Condition that there shall be a Single Resultant Force only.—If
.all the forces intersect at a single point, the moment at that point
is zero, and all the forces acting upon the rigid body reduce then
to a single resultant force at this point.

There is, however, one case in which the forces may not all

intersect at a single point, and yet we may have a single resultant
force. In this case all the forces must reduce to three, any two of
which intersect, while the other, although it does not pass through
their point of intersection, yet intersects their resultant.

Thus let the resultant forces parallel to the plane XY, Fx and Fy ,

intersect in a point A. We can then take them as acting at any
point in the line of their resultant AC Now suppose that the

resultant force Fz parallel to the axis
OZ intersects this resultant AC at B.
Then we can take all three as acting
at B, and thus have a single resultant
force passing through B.

Let x, y, z be the co-ordinates of
the point B. Then considering Fx , Fy ,

Fz acting at tbis point, we have

Mx = Fzy - Fyz;

My = Fxz — Fzix;

Mz = Fyx — Fxy.

If we multiply the first of these by Fx , the second by Fy , and
the third by Fz and add, we have (compare page 200, Vol. I, Kine-
matics of a Rigid System)

FXMX + FyMy + FZMZ = (9)

Equation (9) gives the condition which must be satisfied in order
that all the forces may reduce to a single resultant.
We have evidently for the projection of the line of this resultant

on the co-ordinate planes

^Fy_ _ Mz_

Fx Fx

_ Fx My _ Fz Mx
f z -F

z

J?v -c vy ± v

Co-planar Forces.—If the forces are all co-planar, take their plane
as the plane of XY. Then z = 0, cos y = 0, and, from equations (1),

Fx = Fi cos «i + Ft cos art + . . . s= 2F cos a

;

Fy = Fi cos /?i + F* cos fit + . . . = 2Fcos fi\

Fz =0;
and from equations (4),

Mx = 0, My = 0, Mz = 2Fx cos fi
— SFy cos a.

We see, then, that equation (9) is satisfied. When the forces
are co-planar, therefore, they reduce to a single resultant.

The equation of this resultant, if the plane of the forces is the
plane of XY, is

Fy Mz
J? X J? X

The magnitude of the resultant is

Fr = VFJ + Fy\
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The resultant moment is Mz ; and if r is the lever-arm of the
resultant with reference to the origin,

_Mz_
T ~ Fr

'

Parallel Forces.*—If the forces are all parallel, we have a, /3, y
constant for all the forces. Hence from (1) and (2)

Fx = COS a2F = Fr COS a;
j

Fy = cos /32F = Fr cos 6
;
> (10)

Ft = cos y2F = Fr COS c. )

The resultant Fr must have the common direction of the par-
allel forces, or

a = a, b = /S, c = y, and i<V = S.F.

That is, the resultant Fr is equal to the algebraic sum of the forces
and is parallel to them.

If we transfer the origin to any other point of the body whose
co-ordinates are x, y', z\ we have from (4), by putting y — y\
x — x, z — z

1

in place of y, x, z, and taking a, /5, y constant,

Mx = cos yXFiy-y') - cos ?XF(z - z')= cos y[2Fy-y'2.F]- cos p[2,Fz - z'~ZF]; \

My
= cos a2F(z -z')- cos yiFix -x') = cos a[2Fz -z'XF]— cos y[2,Fz— *'2F] ; V

, (H)
Mz - cos flZFix-x')- cos aZFiy -y') = cos p[ZFx-x,2F] - cos a[XFy- y'tF\.

)

If we substitute (11) and (10) in equation (9), we see that equa-
tion (9) is satisfied. All the forces reduce then to a single resultant
force. The point of application of this force is given by the values
of xf, y', z' which make Mx , My , Mz zero. Hence the co-ordinates
of the point of application of the resultant force are

- 2Fx - 2Fy - 2Fz „„,x= ^f> y = -2F>
z = ^f (12)

This point is the centre of parallel forces (page 73).

Equivalent Wrench. —(Compare page 201, Vol. I, Kinematics of a
Rigid System.) We have seen (pages 83, 86) that all the forces act-

ing upon a rigid body may be reduced to a resultant force Fr acting
at any point of the bodytaken as the origin and a coupleMr causing
rotation about an axis through that point. The resultant force
Fr is the same in magnitude and direction no matter what point is

taken. The couple Mr varies with the point. We have also seen
(page 83) that this force and couple can be reduced to the resultant
force Fr at a certain point and a resultant couple cr whose axis is

in the line of direction of Fr . The name wrench is given to this

resultant force and couple ; the axis is the central axis ; the mag-
nitude of the resultant force F>- is called the intensity of the

wrench; the ratio of the moment cr to the force Fr , or -=^-, is
tr

evidently a linear magnitude and is called the pitch. It is the
lever-arm of the couple which gives the moment cr when the forces
of the couple are equal to Fr .

A single force may thus be regarded as a wrench of zero pitch,

a couple alone as a wrench of infinite pitch.

* Compare page 200, Vol. I, Kinematics of a Rigid System.
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(1) The resultant force along the central axis is given by (3)

Fr = VFx* + Fy* + Fz\

(2) The direction-cosines of the central axis are given by (2)

Fx t Fy Fz
cos a = —-, cos o = —f-, cos c = —

.

t r £r Jbr

(3) The moment at every point resolved in a direction parallel
to the central axis must be the same and equal to that in the direc-
tion of the central axis. Let cr be the resultant moment along the
central axis and let its components along the co-ordinate axes be
cx , cy , cz .

Take any point for which Fx , Fy , Fz and Mx , My, Mz are given
as the origin, and let the co-ordinates of any point of the central
axis be (x", y", z"). Then the components mx, my , mz of the
moment at the origin due to the couple in the plane at right angles
to the central axis are from equations (4), page 87,

mx = Fzy" - Fyz!' ; \

my = Fx*' - Fzx" ; l (13)

mz = Fyx" — Fxy". J

"We have then

Mx = cx + nix , My = cy + mv , Mz — cz + mz ,

or

cx = Mx— mx , cv = My — my, cz — Mz — mz . . . (14)

Hence

cr = (Mx —mx) cos a + (My — my) cos b + (Mz — mz) cos c.

Inserting the values of the direction-cosines of the central axis,

we obtain

crFr = (Mx — mx)Fx + (My — my)Fy + (Mz — mz)Fz.

But since mxFx + myFy + mzFz = 0, this becomes

CrFr = FxMx + FyMy + FzMz (15)

We also have from (14)

cr cos a = cx =Mx — mx , cr cos b = My — my , Cr cos c—Mz—

m

z . (16)

Hence from (13), inserting the values of the direction-cosines,

Cr Mx+Fyz"—Fzy" My + Fzx"—Fxz" Mz+Fxy" -Fyx"

Fr Fx Fy F;

?ive the equation of the cen
ave

Cr FxMx + FyMy + FZMZ

Equations (17) give the equation of the central axis.

From (15) we have

Fr Fx* + Fy* + Fz

(17)

(18)

This we have called the pitch (compare page 202, Vol. I, Kine-
matics of a Rigid System). It is the lever-arm of the couple which
gives the moment cr when the forces of the couple are equal to Fr .
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If we insert (17) in (16) and reduce, we have for the equation of

the central axis

1 / FyMz - FzMy\ _ 1 / FZMX - FXMZ\ )

FX [

X ~FJ J
~ Fy \

V FS )
I

FXMy — FyMx'W Ft

(19)

Therefore the central axis passes through a point whose co-
ordinates are*

., _ FyMz - FzMy „ _ FzMx - FxMz ., _ FxMy - FyMxx -" BV '
V ™

FV ' ~ W "
K

'

If we substitute these values of x", y", z" in (13) and (16), we
have

Mx = cr cos a — Fr(z" cos b — y" cos c), Fx = Fr cos a;
]

My = cr cos b — i*Y(a?" cos c — z" cos a), i^ = &r cos 6; >• . (21)

Me = cr cos c — Fr(y" cos a — a?" cos 6), Fz = Fr cos a. )

When, therefore, MXy My, Mz, Fx , Fy , Fz are given for any point
of the body, we can find the equivalent wrench, that is, the result-
ant force Fr , the direction of the central axis, and from (20) its

position with reference to that point as an origin. We have also
the couple cr in the direction of the axis from (18)

.

On the other hand, if the position (x", y", z") of the central axis
is given, together with c- and Fr , we can find Mx , My , Mz and Fx ,

Fy , FZ for the origin. The quantities Fx , Fy , Fz and Mx , My , Mz
are called the components of the wrench. The wrench is known
when these six quantities are known.

The Invariant.—(Compare page 203, Vol. I, Kinematics ofa Rigid
System.) From (15) we see that the quantity

FxMx + FyMy + FzMz

is always equal to Frcr , and is therefore invariable no matter what
point is taken and whatever the values of Fx , Fy ,Fz , that is,

whatever the direction of the axes. This quantity is therefore
called the Invariant of the components. Since Fr is also invariable
whatever the direction of the axes, it may also be called the inva-
riant of the couple.

If the invariant is zero, it follows that either Fr is zero or cr is

zero. The condition

FxMx + FyMy + FzMz =
is therefore the condition that there is no resultant force, or rota-
tion only, or that there is no rotation and therefore a single result-
ant force only (see equation (9)).

Composition and Resolution of Wrenches.—(Compare page 203, Vol.
I, Kinematics ofa Rigid System.) If two wrenches are given, then by
(21) we can find the six components of each wrench. Adding these
two and two, we have the six components of the resultant wrench.
Then by equations (2), (3), (15) and (20) the resultant wrench may
be found.

* If the perpendicular from the origin to the central axis is p, then z", y".
z'' are the projections of p upon the axes of X, Y, Z.
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Conversely, we may resolve any given -wrench into two
wrenches in an infinite number of ways. Since a wrench is given
by six components at any point, we have in the two wrenches
twelve quantities at our disposal. Six of these are required to
make the two wrenches equivalent to the given wrench. We may
therefore in general satisfy six other conditions at pleasure.

Thus we may choose the axis of one wrench to be any given
straight line we please.

Special Cases.—All cases are included by the general formulas
(1) to (21) of the preceding Article.

(a) For concurring forces in space, take the origin as the point
of concurrence. Then Mx = 0, My = 0, Mz = 0. If the concurring
forces are in equilibrium, we have also Fx = 0, Fy — 0, Fz — 0.

(b) For concurring co-planar forces, take the origin as the point
of concurrence. Then Mx = 0, My = 0, Mz = 0, and Fz = 0, z = 0.

(c) For non-concurring co-planar forces, take XY as the plane.
Then z = 0, Fz = 0, Mx = 0, My = 0.

(d) If one point of the body is fixed, take that point as origin.
Then since there can be no translation, Fx — 0, Fy = 0,F z = 0.

(e) Ifan axis parallel to X is fixed, there can only be translation
along this axis and rotation about it. Hence Fy = 0, Fz = 0, My = 0,Mz = 0.

(/) If two points are fixed, there can be no translation, but only
rotation. If we take the axis of X through the points, we have
Fx = 0, Fy = 0, Fz = 0,My = 0, Mz = 0.

(g) If one point is always in the plane XY, the body can have
no translation parallel to z. Hence Fz — 0.

(h) If three points not in the same straight line are confined to
the plane XY, we have rotation about Z only and no translation
along Z. Hence Fz = 0, Mx = 0, My = 0.

(z) If two axes parallel to X are fixed, we can only have transla-
tion parallel to X. Hence Fy = 0, Fz = 0, and Mx =0, My = 0,Mz = 0.

(j) If the forces are all parallel to Y, there is translation paral-
lel to Y only, and rotation only about Z and X. Hence Fx = 0,

Fz = 0, Fy = 0.

EXAMPLES.

(1) Let a rigid body be acted upon by the co-planar forces

F, = 50 lbs., Ft = 30 lbs., F, = 70 lbs., F< = 90 lbs., F& = 120 lbs.

acting at the points given by

a^rz-fSft., yx = -f 10 ft.; x-t = -f 9 ft., y2 = + 12 ft.;

x3 = + 17 ft., 3/3 = + 14 ft.; x< = + 20 ft., y4 = + 13 ft.;

x„ = + 15 ft., yt = + 8 ft.

Let the forces make angles with the axes ofX and Y, given by

or, = 70°, fix = 20°; aa = 60°, fa = 150°; a, = 120°, fa = 30°;

a« = 150°, /34 = 120°; a„ = 90°, /3, = 0°.

Find the resultant, etc. (Compare Ex. (13), Vol. I, page 207.)

Ans. We have (page 86) for the components parallel to the axes of X and
Y:

Fx = 50 cos 70° + 30 cos 60° — 70 cos 60° - 90 cos 30° = - 80.842 lbs.

;

Fy = 50 cos 20° - 30 cos 30° + 120+ 70 cos 30° - 90 cos 60° = + 156.626 lbs.

;

Fz = 0.
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The resultant is given in magnitude by

Fr = VFJ+ Fy* = 176.259 lbs.,

and its direction-cosines by

Fx -80.842 4Wttl(lCOSa = IV= -17^259' °
r a = m 181;

. Fy +150.626 . nno , ol ,„

We have from equation (4), page 87,

2Fx cos ft = + 50 cos 20° X 5 - 30 cos 30° X 9 + 70 cos 30°

X 17 - 90 cos 60° X 20 + 120 X 15 = + 1931.670 lb.-ft.;

2Fy cos a = + 50 cos 70° X 10 + 30 cos 60° X 12 - 70 cos 60°

X 14 - 90 cos 30° X 13 = - 1152.245 lb.-ft.

Mx = 0, My = 0, Mz = 2Fx cos ft
- 2Fy cos a = -f 3083.915 lb.-ft.

Since, then, equation (9), page 88,

FxMx+ FyMy+ FzMz = 0,

is satisfied, the forces reduce to a single resultant force.

The moment of this resultant force relative to the origin is

Mr = VMx* + My* + M? = Mz = + 3083.915 lb.-ft.

Its lever-arm is

Mr 3083.915 ,„ K £.r =F7= im259
=17 -5a

The equation of the line of direction of the resultant (page 88) is

y = £• - f^ = - 1.9fa 4 38.14.
PX -fx

The co-ordinates of the point of application of the resultant are given from
equations (12), page 89 :

- Sifecos/J ,_ + 1931.67
* ~ Fy - + 156.626-+ 12* *•

- 2Fy cos a — 1152.245 , „. „ ^
y=-^Fx— = -80.842 " + 1425ft-

(2) Find the resultant, etc., for the force system acting on a rigid
body given by

Ft = 50 lbs.

;

or, = 60°, /5, = 40°, y t acute;

F9 = 70 " aa = 65°, /3a = 45°, y% obtuse;

Ft = 90 " a, = 70°, fit = 50°, y3 acute;

Ft = 120 " cct = 75°, /?« = 55°, yt obtuse.

a>i =0, y, = 0, «i = 0;

a;a = + lft., y, = + 4ft., Za = + 7 ft.;

a;s = + 2" y, = +5" 8, = 4-8"

a;4 = 4-3" ^ = 4-6" 24 = 4-9"

(Compare Ex. (15), Vol. I, page 208.)
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Ans. We find the angles y by the formula, Vol. I, page 12,

cos2 y = — cos (a. -\- fi) cos (a — /3).

Then from page 86 we have

Fx = + 116.423 lbs. , Fy =+ 214.480 lbs., Fz = - 51.057 lbs.

Therefore the resultant is

Fr = ^Fx* + Fy
* + Fz

i = + 249.325 lbs.,

and its direction-cosines are given by

Fx , Fy Fz
cos a = =-, coso = •=— , cose = -=-,

Jfr Jfr Jfr

or

a = 62° 9' 48", b = 30° 39' 20", c = 101° 49'.

We also have for the moments from equation (4), page 87,

Mx = - 1838.604, My = + 928.947, Mz = - 86.903 lb. -ft.

The resultant moment about the origin is

Mr = VMx1 + My* + Mz'1 = + 2061.789 lb.-ft.,

and the direction-cosines of its line representative are given by

Mx My „ Ms
cos a = =jt-j cos e = =y% cosf = -^ ,Mr Mr Mr

or

d = 153° 5' 40", e = 63° 14' 15", / = 92° 24' 56".

Looking along this line representative towards the origin, the direction of
rotation is seen counter-clockwise.

The equations of the projection of the resultant on the co-ordinate planes
are

y = 1.885a? + 0.746, x = - 2.28a + 18.19, s = - 0.238y - 8.57.

We see that
FxMx + FyMy -f FzMZ

does not in this case equal zero. Hence, page 88, the forces do not reduce to

a single resultant force, but to a resultant force along the central axis and a
couple whose axis is the central axis.

The resultant force along the central axis is, as already found, Fr = 249.325
lbs., and its angles with the co-ordinate axes are as already found.

The co-ordinates of the central axis are given by equation (20), page 91

,

*" = 'y^-^y „ + o.468 ft., f = F°M
*-f*

M' m + L67S a ,

*-**;
t

J|*-+M»fcP r

The resultant couple Cr is given by equation (15), page 90,

» =Mfc+W+M. . _ 41 .634 „,.«.
Jfr

The direction cosines of its line representative are the same as for the re-

sultant Fr , and looking along this line representative towards the origin the
rotation is seen counter-clockwise.

The components of <v are given by equation (16), page 90,

Cx = Cr cos a = — 19.481 lb.-ft., cv = Cr cos b= — 35.806 lb.-ft.,

Cz = Crcosc = -f-8.5238 lb.-ft.
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(3) In the preceding example find what the co-ordinates x*
, y4 ,

Z\ of the force F* = 120 lbs. must be in order that all the forces may
reduce to a single resultant. (Compare Ex. 16, page 362.)

Ans. We evidently have Fx , Fy, Fz , Fr and the angles a, b, c unchanged,
since changing the point of application of Ft without changing its direction or
magnitude has no effect on the magnitude of the resultant or its direction.

We have then

Mx- - 659.571 - 93.262y4 - 68.829a4 ; \

My = + 369.629 + 31.059z4 + 93.262*4 ; [ (!)

Mz = - 107.036+ 68.829*4 - 31.059^. )

We have as the equation of condition for a single resultant, equation (9),

page 88,

FxMX+ FyMy+ FzMz = 0,

or
116.423^+ 2UASMy - 51.057Jlfz = 0,

or

Mx+ 1.842My - 0AS8QMZ = (2)

From (1) we obtain

(Mx+ 659.571)31.059 + (My - 369.629)68.829 = (Mz+ 107.036)93.262,

or

Mx+ 2.21QMy - 3.003Jfz = + 481.034 (3)

From (2) and (3) we obtain

0.374.¥"j, - 2.564J/i m +481.034.

If we retain for My its value in the preceding example, + 928.947 lb. -ft.,

we shall have
Mz = - 52.108 lb. -ft.,

Mx = - 1733.95

If we substitute these values in (1), we obtain

93.262^ + 68.829*4 = + 1074.4;

31.05924+93.262*4=+ 559.308;

68.829«4 - 31.0592/4 = + 54.934.

Hence
*« = - 0.333a4 + 5.997;

Vi = - 0.73824 + 11.520.

If then we assume «4 = 0, we have

*4= + 5.997, y4 = + 11.520.

(4) Using the values of the preceding example, find the point of
application of the resultant. (Compare Ex. 17, Vol. I, page 210.)

Ans. We have

Fx — + H6.423 lbs., Fy = + 214.480 lbs., Fz = - 51.057 lbs.,

Fr = + 249.325 lbs.;

a = 62° 9' 48", b = 30° 39' 20", c = 101° 49';

Mx=- 1733.975 lb. -ft., My = + 928.947 lb.-ft., Mz = - 52.108 lb. -ft.,

Mr = + 1967.823 lb.-ft.;

d = 151° 47', « = 61° 49' 53", f=91°31'3".
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The co-ordinates x, y, z of the point of application of the resultant are
given (page 89) by

- 1733.975 = Fzy - Fy~z = - 51.057# - 214.480s;

+ 928.947 = Fxz-FzX =+116.423?+ 51.057*;

- 52.108 = Fyx- Fxy = 214.480* - 116.423y.

Hence we obtain

z = -2.28022+18.194,

y = -4.20082 + 33.961.

If we assume z = 0, we have then

x = + 18.194 ft., y = + 33.961 ft.

If we introduce, then, a fifth force, Fb = + 249 325 lbs., whose direction
makes with the axes the angles

a* = 117° 50' 12", /J6 = 149° 20' 40", y, = 78° 11',

acting at a point whose co-ordinates are z = +18.194 ft. and y = 33.961 ft.,

z = 0, we have a system of forces in equilibrium.

(5) Find the resultant, etc., for the parallel-force system given by

Ft = + 60 lbs.; Zx = 0, y» = 0, «, = 0;

F, = + 70 " Zt = + 1 ft., y2 = + 2 ft., «, = + 3 ft.;

F9 = - 90 " ss = +2 "
y3 = +3 "

2, =+4 "

i^ = -150 " s4 = +3" y4 = +4 "
24 = + 5 "

*V = +200 " z t = +4" y> = +5" 2, = +6"
Ans. Fr = 2F= + 90 lbs.;

•as -p- = + 2$ ft., F =^= + 3«„ .«».+,»*
(6) A rigid body is acted upon by two forces Fi = 40 lbs. and

Fi = 30 lbs. applied at points whose co-ordinates are Xi = 2 ft. ,

yi = 3ft., Zi = 0, and x% = 0, y* = 0, z-x = 0, and making angles with
the axes given by a^= 0°, fix = 90°, yi = 90°, and at = 90°, /?» = 90°,

y% = 0. Find the equivalent wrench.
Ans. (page 89). We have the components

of the wrench

2T'x = +401bs., Fy =0, 2^ = + 301bs.;

Mx =0, My = 0, Mz = - 120 lb.-ft.

The resultant force is Fr = 50 lbs. , and its

direction-cosines are

+ 40

50 '

cos b = 0, cos c = + 30

50 '

a = 36° 52', b = 90°, c = 53° 8'.

The central axis coincides with Fr and makes the same angles with the
axes. It passes through the point whose co-ordinates are

z" = 0, y" = + 1.92 ft. = OOu z" = 0.
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The moment of the couple whose axis coincides with the central axis is

cr = - 72 lb. -ft.

The minus sign indicates that the line representative acts opposite to Fr

,

that is, its components in the direction of the axes are

cx = — 57.6 lb. -ft., cy = 0, cz = - 120 lb. -ft.

Its line representative acts then in the opposite direction from Fr and
makes angles with the axes given by

a = 143° 8', b = 90°, c = 126° 2'.

Looking along this line representative towards the origin, rotation is seen
counter-clockwise.

The moment cr can be replaced by the two equal and opposite forces P, P
Cr 72

acting at Oi and as shown in the figure, each equal to —. = —- =s 37.5 lbs.b y 1-92

If is the centre of mass, then since the motion of the centre of mass is

the same as if the entire mass of the body were concentrated at the centre of

mass and all the forces acted at that point (page 83), the motion of is the
same as if F,- acted upon the entire mass M concentrated at 0. The accelera-

te
tion of is then / = -^ . The motion of the body is then a motion of trans-

lation due to Fr acting at the centre of mass and an angular acceleration a,

due to the moment er , or the two equal opposite forces P. P acting at 0, and
about an axis through coinciding with the direction of Fr.

cr 72
If we divide Cr by Fr , we obtain -=— = — = 1.44 ft. That is, we can re-

Jfr Ov
place the moment cr by two equal and opposite forces Fr , Fr acting at Oi
and Oa. . The distance OiOt is then the pitch.

(7) All the forces acting upon a rigid body reduce to a resultant

force Fr = 10 lbs. acting at a given point and a couple whose moment
is Mr — 8 lb. -ft. causing rotation about an axis through the point,

which makes an angle of 45° with the direction of Fr . Find the

equivalent wrench.

Ans. Take the direction of Fr as the axis of X, and the plane of Fr and
the axis as the plane of XZ, and the point as

origin. Then the components of the equi-

valent wrench are

.^ = + 10 lbs., Fy = 0, Fz = 0;

Jtf* = + -4lb.-ft.,
4/2

My=0,

MZ = -
V2

lb. -ft.

We have then for the intensity of the
wrench

Fr = 10 lbs.,

making the angles with the co-ordinate axes

a = 0, b = 90°, c = 90°.

The central axis passes through the point O t whose co-ordinates are

8
x> = 0, y" =

,

10 4/2

and coincides with the direction of Fr .

ft. = OOi, z" = 0,



98 STATICS—NON-CONCURRING FORCES. [CHAP. III.

The moment of the couple whose axis coincides with the central axis is

Cr = + -4rlb.-ft. = Mx.

The (+) sign indicates that the line representative acts in the same direc-

tion as Fr , that is, its components in the direction of the axes are

o

cx= H — lb.-ft. , cy = 0, Cz = 0.

^2

Its line representative acts then in the same direction as Fr and makes
the same angles with the axes as Fr. Looking along this line representative
towards the origin, rotation is seen counter-clockwise.

The moment cr can be replaced by two equal and opposite forces each equal
to Fr acting at a distance given by

» - «
ft

Fr io Va '

Since this distance is equal to y" = OOi , the pitch is in this case 00\.



CHAPTER IV.

STATICS-NON-CONCURRING CO-PLANAR FORCES.

CONDITIONS OF EQUILIBRIUM OP A RIGID BODY ACTED UPON BY NON-CON-
CURRING CO-PLANAR FORCES. DETERMINATION OP THE REACTIONS OF
A FRAMED STRUCTURE. DETERMINATION OF THE STRESSES IN A
FRAMED STRUCTURE. SUPERFLUOUS MEMBERS. CRITERION FOR SUPER-
FLUOUS MEMBERS.

Conditions of Equilibrium of a Rigid Body Acted Upon by Non-
concurring Co-planar Forces.—We have seen (page 84) that when
a rigid body is acted upon by any number of non-concurring co-
planar forces, the conditions of static equilibrium are two, viz.:

1st. The algebraic sum of the components of the forces in each of
any two rectangular directions in the plane of the forces must be
zero.

Hence if the forces Fi , _F2 , etc., make the angles (en, /Si), (aa ,

fa), etc., with the co-ordinate axes, we must have

Fi COS ai + Ft COS a„ + F3 COS a3 + . . . = 2F COS a = 0; . (1)

Fi cos /S. + Fi cos fa + F3 cos fa + . . . = 2F cos /J = 0. . (2)

When these equations are complied with there is no resultant
force, and any one of the forces is equal and opposite to the result-
ant of all the others, but does not necessarily act in the same
straight line with it. We have then molar y
equilibrium (page 58), but not necessarily static
equilibrium. >-

In taking the algebraic sum, 2F cos a, or /
2F cos /?, components acting in the directions
OX and OY are positive (+ ), in the opposite
directions negative (— ). Also angles with OX
and OY are measured from OX and OY around towards the left.

2d. The algebraic sum of the moments of the forces about any
point in their plane must be zero.

Hence if pi , p* , p% , etc., are the perpendiculars from any given
point in the plane upon the directions of the forces Fi, Fi,F3 , etc.,

then
Fipi + F*p* + F3p3 + ... = 2Fp = (3)

When this condition is complied with, there is no rotation about
the point selected. But there may be rotation about some other
point. In order, then, that there may be static equilibrium, both of

these conditions must be complied with. We have therefore three
equations of condition.

99
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In taking the algebraic sum 2Fp of the moments of the forces,
rotation counter-clockwise is taken as positive (+), and clockwise
as negative (— ).

Cor. If three co-planar forces act on a rigid body at different
points, and the body is in equilibrium, the line representatives of
these three forces, if produced, intersect in a common point. For
the resultant of any two of them must pass through their point of
intersection and be equal and opposite to the third and in the same
straight line with it.

Framed Structure—Stress, etc.—A framed or jointed structure
or "truss" is a collection of straight members pinned or jointed
together at the ends so as to make a rigid frame.

The simplest rigid frame is obviously a triangle, because that is

the only figure whose shape cannot be altered without changing
the length of the sides. All rigid frames must consist, therefore,
of a combination of triangles.

Any point where two or more members meet is called an apex
of the frame.

The force in any member which resists change of its length is

called the stress in that member (page 7). If the stress resists
elongation, it is called tensile stress. If it resists shortening, it is

called compressive stress. Any member in tensile stress is called a
tie; in compressive stress, a strut. A vertical strut is called a
post. An inclined member generally is called a brace.

Determination of the Reactions of a Framed Structure.—In
general a framed structure rests upon supports. The pressures
exerted by these supports are called the reactions of the supports.

These reactions usually have to be
determined.

Thus if the co-planar forces Fi , Fa ,

F3 act at the apices a, c, d of a rigid
framed structure, and if jRi , Ra , R3

are the unknown reactions or press-
ures in the same plane exerted by the
supports at the apices A, B, and e,

then if there is equilibrium of the
frame, the algebraic sum of all the ver-
tical components must be zero ; the al-

gebraic sum of all the horizontal components must be zero ; the alge-
braic sum of all the moments about any point in the plane of the
frame must be zero.

If a, , a a , as are the angles made by the forces Ft, F2 , F3 with
the horizontal, and cii, a 2 , a 3 the angles made by the reactions Hi

,

Ri , R3 with the horizontal, we have then

Ft cos «, +Fa cos a2+F3 cos oc s +Ri cos cii + Ra cos a2+R3 cos a3 =0. (1)

In this equation components towards the right are positive (+),
and towards the left negative (— ).

If /Si , fSa , /S3 are the angles made by the forces Fi, Fa, F3 with
the vertical, and b t , ba , b3 the angles made by the reactions Ri

,

Ra , R3 with the vertical, we have

F, COS /Si +Fa COS fia+F3 COS /33 +Ri COS bi+Ra COS 64+R3 cos 63=0. (2)

In this equation components upwards are positive (+), and
downwards negative (— ).

Again, if we take any point, as for instance the point B, as a
centre of moments, and let pi

,
pa , p 3 be the lever-arms of the forces
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Fi , Fa , F3 , and Li, Li, La be the lever-arms of the reactions, we
have, since in this case Li = 0,

RiLi + RaLa + Fipi + Fap* + F3p3 = (3)

Each moment in equation (3) must be taken with its proper sign
( + ) for counter-clockwise rotation, and (— ) for clockwise rotation.

If the directions of all the forces and reactions are known as
well as their points of application, and if the forces Fi , F* , F3 are
also known, we have then three equations between three unknown
quantities, Ri , R? , and R3 , and can therefore determine them. If
there are more than three reactions unknown, we cannot deter-
mine them. There are then more unknown quantities than equa-
tions of condition.

If there are but two reactions, Ri and Ri , that is, if R3 then is

zero, we can determine Ri and R? from the equations (1) and (2).

We can also in such case determine Ri directly from equation
(3), and thus have, since R3 = 0,

RiLi+Fipi+Fipi + F3p3 = 0.

By taking moments about A, we can in the same way determine
Ri directly, when R3 = 0.

Determination of the Stresses in a Framed Structure.—As soon
as all the external forces acting upon a framed structure, including
the reactions, are known we can proceed to find the stresses in the
various members. We can make use of two methods. The first

method is based upon the fact that the algebraic sum of vertical
and horizontal components is zero. We call it the "method by
resolution of forces." The second method is based upon the fact
that the algebraic sum of moments is zero. We call it the "method
by moments," or the "method by sections."

1. Method by Resolution of Forces.*—Since the frame is in equi-
librium there must be equilibrium at every apex of the frame.
Hence all the forces acting at any apex must form a system of con-
curring forces in equilibrium.

But the necessary and sufficient condition for equilibrium for a
system of concurring forces is that the resultant shall be zero.

That is, the algebraic sum of the horizontal components of all forces
acting at an apex must be zero, and the alge-

braic sum of all the vertical components
must be zero.

Take for instance the apex a of the pre-

ceding figure (page 100). At this point we
have acting the force Fi and the stresses in
the members Aa, ab, and ac These four
forces form a system of concurring forces in

equilibrium.
Hence if an, an, a 3 are the angles made

by the members Aa, ab and ac with the
horizontal, and a t the angle made by F\
with the horizontal, and we denote the
stresses in the corresponding members by aA, ab, ac, we have

Fi cos a t + aA cos «i + ab cos on + ac cos a3 = 0. . . (1)

If /? , fi*, /?:« are the angles made be the members Aa, ab, and ac
with the vertical, and 6i the angle made by Fi with the vertical,

* For corresponding graphic method see page 135.
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and we denote the stresses in the corresponding members by aA,
ab, ac, we have

Fi cos &i + aA cos /Si + ab cos fa + ac cos fa = 0. . . (2)

Components towards the right or upwards are positive, towards
the left or downwards negative. Angles are measured from the
horizontal a.rand vertical aY around towards the left.

Since we have thus two equations of condition, this method can
be applied at any apex when all the forces except two are known.

If more than two are unknown at any apex, it cannot be applied
at that apex.

If the value of a stress as found by (1) and (2) comes out positive

(+), it shows that the stress in the member is away from the apex
or tensile. If it comes out negative, the stress is towards the apex
or compressive. (See Example 2, page 104, for illustration.)

2. Method by Moments, or the " Method of Sections. " *—Suppose the
frame completely divided into two parts by a section cutting any
member the stress in which is desired. Then the stresses which
existed in the members before they were cut must evidently hold
in equilibrium the external forces acting upon each of the two parts
into which the frame is divided.

Thus if we wish to find the stress in any member ac (see figure,

page 100), take a section cutting ac, be and be, thus completely divid-
ing the frame into two portions, and consider the left-

hand portion only. Then the stresses in ac, be and
be must hold in equilibrium the external forces Ri
and Ft .

Place arrows on each of the cut pieces as in the
figure, always pointing towards the section. Now
if we take moments about the apex b, that is, if we

take the point of moments at the point of intersection of the other
members cut by the section, whose stresses are unknown, their
moments relative to this point will be zero. We have then the
algebraic sum of the moments of the external forces Fi and ii!i and
the moment of the stress in ac, all with reference to b, equal to zero.
Hence, denoting the stress in ac by ac and its lever-arm by p, we
have

ac x p + 2 moments of external forces = 0.

If then the external forces and their lever-arms are known and
the lever-arm p of ac is known, we can find the stress ac.

The moments in the algebraic sum must be taken with their
proper signs, (+) for rotation counter-clockwise, and (— ) for rota-
tion clockwise, and the moment of ac with the sign indicated by
the rotation due to its arrow. Thus in our figure the moment of i?i

is negative, of Fi negative, and of ac negative. If the stress comes
out positive, it indicates, as before, that it acts away from the apex
of the cut member or is tensile. If negative, towards the apex or
compression. (See Example 2, page 104, for illustration.)

This method is general and can always be applied when all the
cut members whose stresses are unknown, except the one whose
stress is desired, meet in a point.

Thus if two of the cut pieces are parallel, their intersection is at
an infinite distance.

Then if we wish to find the stress in cb, we take a section cutting
ab, be and cd. The intersection of ab and cd is at an infinite dis-

* For corresponding graphic method see page 148.
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tance. We therefore have the lever-arm for cb, oo cos /?, where /S is

the angle of cb with the vertical. Hence

or
JBi oo — Fi oo — Ft oo + cb x oo cos /? = 0,

cb = - OR, — JP'i— F,) sec /J.

The algebraic sum of the external forces (Ri — Fi — i^) is called
in this case the shearing force. For horizontal chords and vertical
forces we have, then, the stress in any brace equal to the shear
multiplied by the secant of the angle which the brace makes with the

vertical. This shear should always be taken as acting at the end c
of the brace belonging to the left-hand portion. If, then, it is posi-
tive, or if Ri is greater than Fi + F,, it acts upward at c and hence
gives compression in cb. Therefore we have the minus sign in the
equation above for the value of the stress in cb. (See Example 4,

page 106.)

Superfluous Members.—In general the external forces acting upon
a rigid frame are always known or must first be found. The stresses
in the members are required. Since every apex of the frame is in
equilibrium, we have at every apex a system of concurring forces
in equilibrium.

We have then two equations of condition in order that the re-

sultant shall be zero, viz.,

2Fco8a a 0,

2 FcOH/3 a 0,

or the algebraic sums of the horizontal and vertical components
must be zero.

If, then, all the forces acting at any apex except two are known,
these two can be found. But if at every apex there are more than
two forces which are necessarily unknown, the problem is indeter-
minate, and the frame has superfluous members.

Criterion for Superfluous Members.—The simplest rigid frame is

a triangle, because that is the only figure whose shape cannot
change without changing the length of its sides. All rigid frames
must consist therefore of a combination of triangles.

Any one member of the frame fixes the position of two apices,

one at each end. Every other apex after the first two requires two
members to fix its position. If then, w, is the number of apices,

2(n — 2) will be the number of members lacking one. Let m be the
number of members. Then, if there are no superfluous members,
we must have

m = 2(n — 2) + 1 = 2n — 3.

If m is less than 2n - 3, there are not members enough.
If m is greater than 2n — 3, there are superfluous members.
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EXAMPLES.

(1) In the cases of the three frames represented by Figs. 1, 2, 3,
each supporting a weight F at the apex, shoiv that in the first case
there are not enough members and the frame is not rigid: in the
second case the frame is rigid ; in the third case there is a superflu-
ous member.

Ans. From our criterion, m = 2n — 3, page 103, we have the number of
apices in the first case n = 6. Hence

f

F
|

F the number of members should be
t m = 9. But the number of mem-

bers is only 8, or less than the num-
ber necessary.

In the second case n = 6 and m
should be 9, and the number of
members is 9.

In the third case n = 6 and m should be 9, but the number of members is

10, or greater than the number necessary.

(2) A rigid frame ABC, consisting of two rafters AB and AC
and a horizontal tie BC, supports a load F at the apex A. If the
angles made by the rafters icith the horizontal are a, and a 2 at B
ana C,find the stresses Si, Si, Si in the rafters AB, AC and the
tie BC, for equilibrium ; also the pressures Ri and Rt of the sup-
ports. The iveight of rafters and tie neglected.

Ans. Let the pressures or reactions of the

support be Bi and i?4 at B and G, Fig. 1, and
the stresses be 8, , S-, and St in the rafters AB
and A C and the tie BC.

1st Method : By Resolution of Forces.

—

(Page 101.) The forces acting at each apex
must constitute a system of forces in equilib-

rium.
Let us take first the apex A as origin, Fig. 2.

We have here the force F and the two stresses

Si and 8^, constituting a system of concurring forces
in equilibrium. Therefore the algebraic sum of the
horizontal forces must be zero and the algebraic sum
of the vertical forces must lie zero. Hence giving
the proper signs to F and the sines and cosines of
the angles oci and a, (page 102), we have

— Si cos a, -j- Si cos a* = 0; . .

— Si sin c*i — Si sin at — F = 0.

From (1) and (2) we obtain

Si = - F cos o-j

sin (a, -\- cXi)'
8, = - Fcos a t

sin (a, -|- a-j)'

(1)

(2)

(3)

In equations (3) the (— ) sign denotes direction towards the origin A as

indicated in Fig. (1). A negative result then denotes compres.no/>.

At the apex B we have the stresses $i and S3 and the reaction Hi in equi-

librium. At the apex C we have Si, S3 and Bi in equilibrium. Hence for

the algebraic sum of the horizontal components at B we have, taking the
origin at B,

St -f- Si cos a, = 0,

and for the algebraic sum of the horizontal components at C we have, taking

the origin at C,
— S3 — Si cos a t = 0.
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From both equations we have, from (3),

83 = — Si cos ari = — Sa cos a, = -\-
F cos a, cos a %

sin («i -f «i)
" (4)

The positive result denotes direction away from the origin in each case, or
tension, as shown in Fig. 1.

At the apex B we have for the algebraic sum of the vertical components

o • id a d . i^ cos a a sin a 1

Si sin «! -f- Ri = 0, or ifj = -\-

At the apex C we have

St sin a 3 + -Ka = 0, or R, =

sin (a,
-f- <*,)

F*cos a 1 sin « s

sin (a:, -j- a 2)

(5)

(0)

The positive result denotes upward direction for Ri and Rt .

In all formulas the acute values of the angles are to be used.

2d Method : By Moments.—Let the horizontal

distances of F from B and C be c and d.

Let the length of the rafters be a and b.

Then we have

a cos «i = c, & cos a a = d, 6 sin or a = a sin a1#

Since all the forces acting on the frame are in B
-p

equilibrium we have the algebraic sum of the '

horizontal and vertical external forces zero. 1

Hence
Ri + R3 - F=0.

Also taking moments about C, we have

- Rx(c + d) + Fd = 0, or Ri

and taking moments about B, we have

i?4(c + d) - Fc = 0, or i?a =

.F<# _ i^cos a, sin «i

e-\-d~ sin («i -(- aa)
'

F cos <*i sin ara

sin (a, -j- aa )

'

Fc

c + d

If we conceive a section through AB and BC, we have as on page 102,

taking moments about G,

~ , . ,x r, -Bi i^cos ora- S,(c + d) sin a, - i?,(c + d) = 0, or & = - -^—- = - -r—. —

*

v r ' \
1 / sin «! sin (a, 4- a 8 )

The minus sign denotes compression. If in the same way we cut AC and
CB and take moments about B, we have

„ - n Fc Fcosai— 8-Ac 4- d) sin a, — Fc = 0, or S-, = — -.—
,

,. .
= r~. : 7.y

' ' (c -\- d) sin a t sin (od -J- a2)

Again, cut AB and 5(7 and take moments about A, and we have

Ri Fcos «i cos a 9

S3 X a sin a, — i? tc = 0, or & =
tan a, sin (a, -(- a a)

(3) A roof-truss has a span of 50 ft. and a centre height of 125
1 ft. Each rafter is divided into

J /oitr equal panels, and the lower

\ horizontal tie is divided into six
equal panels. The bracing is as
shown in the figure. Find the

* stresses in the members b>/ tiro

| B _ methods, for a weight of 800 lbs.'*
at each upper apex.
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Ans. 22, = Ri = + 2800 lbs.

Stress in Aa = - 6260 lbs., ab = - 5813 lbs., be = - 4696 lbs.,

cd = - 3577 lbs., Ae = + 5600 lbs., e/= + 4802 lbs.,

fg = + 4003 lbs., ae = - 720 lbs., eb = + 720 lbs.,

6/= - 1081 lbs., /c = + 920 lbs., co = - 1443 lbs.,

gd - + 2401 lbs. (See Example (1), page 104.)

(4) A bridge-truss I ft. long is divided into five equal panels in
,F if if if if the lower chord and four equal panels in

\e 1^, \ | the upper chord. Tlie depth is constant
and equal to d; the panel length is p.
The bracing is isosceles as shoiun in the

Bfigure. Find the stressesfor a load F lbs.

at each upper apex.

Ans. R, = Ri = -f 2.52?";

Aa = + RiP
2d

'
ab = l.SR.p - Fp

d
bc = 2.5R>p - SFp

d

de = —
Kip - £FP

d
'

f_ 2RlP - 2Fp.ef-- _
,

Ad = - Ri sec /S, ae = - (Ri - F) sec fi, bf= - (R t - 2F) sec 0,

da = + Ri sec /S, eb = + (ij, - F ) sec /3,

where ft is the angle made by the braces with the vertical.

(5) A weight of 6 lbs. hangs on the arm, of a safety-valve at a
distance of 18 inches from the fulcrum. The valve-spindle is at-

tached at 1 inchfrom the fulcrum. Disregarding friction and the
weight of the arm, find the steam pressure for equilibrium.

Ans. 108 lbs.

(6) In a wheel and axle the radius of the axle is r, and of the
wheel R. A weight Q hangs by a rope ivound about the axle. Find
the force P acting tangent to the wheel in order to hold Q suspended,
disregarding friction.

R'
Ans. P

(7) A shopkeeper has correct weights bid an untrue balance, one
arm of which is a and the other b. He serves out to each of tivo

customers, as indicated by his balance, W lbs. of a commodity, using
first one scale-pan and then the other for the commodity. Does he
gain or lose f

Ans. Loses W±-—\-- lbs.
ab

(8) The arms of a balance are unequal, and one of the scales is

loaded. A body, the true weight of which is Plbs., appears, when
placed in the loaded scale, to weigh W lbs., and when placed in the
other scale to weigh W lbs. Find the ratio of the arms and the
weight with which the scale is loaded.

W— P P8 — WW
Ans. Ratio of arms = rp; ^7; weight required =P- W" W- P
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(9) A square and a rectangle of uniform thickness and density
are joined in one plane at a common side. Find the length of the
rectangle in order that the two may balance about that side, the
density of the rectangle being one half of that of the square.

Ans. The length of the rectangle = a diagonal of the square.

(10) The inscribed circle being cut out of a right-angled triangle,

the sides of which are 3, 4, 5, find the centre ofmass of the remainder.
Ans. Take side 3 as axis of X, and side 4 as axis of T. Then

- . - 8-7Tx=1
> v=n—z--

(11) A cubical box half filled with water is placed upon a rect-

angular board, so that the edges of its base are parallel to those of
the board. If the board is slowly inclined to the horizon about an
edge, and the box is prevented from sliding, at what angle will the
box just tend to overturn f

Ans. 45°.

(12) Let the forces +4, — 7,. + 8, — 3 lbs. act perpendicularly to a
straight line at points A, B, C and D, so that AB — 5ft., BC = 4ft.,
CD = 2 ft. Find the resultant and its point of application E.

Ans. R = 2 lbs., AE = 2 ft.

(13) Let three forces which, ifconcurring, would be in equilibrium
act each in the side of a triangle which represents them in magnitude
and direction. If not concurring, show that they are equivalent to

a couple whose moment is proportional to the area of the triangle.

(14) Three forces act at the middle points of the sides of a rigid
triangular plate in its plane, each force being perpendicular and
proportional to the side on which it acts. If the forces are all in-

ward or outward, show that the resultant is zero.

(15) A system of any number of co-planarforces being represented
in magnitude and direction by the sides of a closed polygon taken
the same way round, shoiv that the sum of their moments about any
point in their plane is constant and independent of the position of
thepoipy T"/^ -Pffcf;

IS^S) Forces of 10, 20, 30 and 40 pounds act on a rigid body at A,
B, C, D, the four corners of a square whose side is 2 ft. and in its

plane. Their inclinations to AB, BC, CD, DA are 45°, 90°, 30°, 60°

respectively. Show that the resultant is a force of 35.65 lbs., and
that its line of action is distant 3.03 ft. from C.

S&

A-

7) Parallel forces in the same direction, and of the magnitudes
Id, 15, 20, 25 lbs., act at points A, B, C, D respectively of a straight
rod, the distances AB, BC, CD being 2, 3, 4 ft. respectively. Find
the distance of the point of application from A,

Ans. 5.07 feet.

(18) Two parallel forces in opposite directions of 20 and 5 lbs. act
at points A and B of a rigid body 4 ft. apart. Find the distances
from A and B of the point in which their resultant line of action
cuts AB.

Ans. 1 i and 5$ ft.

(19) The numerical measures of the magnitude of a force which
acts upon a point in a given direction, and of the co-ordinates of the
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point in the plane of the force, are denoted by a. b, c ; but it is not
Known which is which. Find the centre of all the forces ichich may
be represented.

— — ab 4- be -4- ca
Ans. gar y = -r^r, .

s a -\- b+ c

'is40) Forces 1, — 3, — 5, 7 act on a rigid rod at points A, B, C, D,
tvhose distances are such that AB = 3, BC = 2, CD = 2. Find the
resultant.

Ans. A couple whose moment is 15 units.

21) Three equal and co-directional forces (F) act at three corners

of a square (side = a) perpendicularly to the square. Find the
magnitude of the force ichich, applied at the other corner of the

square, would with the given forces constitute a couple, and the
moment of the couple.

Ans. SF; 2aF \/2.

(22) ABC is a triangle right-angled at B. At A a force Fis
applied in the plane of the triangle perpendicular to AC; at C a
force 2F in the same direction ; at B a force SF in the opposite di-

rection. Find the moment of the resulting couple.

F{AB* - 2J3C")
Ans. AC
(23) Two forces P and Q act at the ends A and B of a straight

lever AB icithout mass. To find the position of the fulcrum in order
that equilibrium may beproduced, the inclination of P and Q with
AB being a and fi.

Ans. Let AB = c, and x, y the distances of the fulcrum from A and B re-

spectively. Then

Qc Bin 6 Pc sin.ay-
Psin a + Q sin yS' * Psma-j-Psiu ft'

(24) A rod CD, without mass, moving about a smooth hinge at C,
sses at D against a wall inclined at an angle a with the horizon,

and has a weight W suspended at its centre. Find the inclination

of the rod to the horizon in order that the pressure at D may be

i
Ans. = —a.

9

(25) Two weights P and Q are suspended from the extremities of
a lever ivithout mass, in the form of a circular arc, ichich rests with
its convexity downwards upon a horizontal plane. If 2« is the
central angle of the arc and the central angle from the point of
attachment of P to the point of tangency with the horizontal plane,
find h for equilibrium.

P—Q
Ans. tan 6 = ~r • tan a.

(26) The arms of a balance are unequal, and a substance placed
successively in each scale appears to weigh P and Q lbs. Show
that the lengths of the arms, disregarding the mass of the balance,

are as \/P to \/Q.

(27) If weights P and Q, P being the greater, balance on a lever

ACB without mass, about a fulcwim at C, and the weights are inter-
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changed, show tliat the additional weight required at A for equilib-

rium will be

Q '

(28) It is found that a body weighs P when suspended at the end
A of a balance without mass, and Q when suspended at B. Show
that thefulcrum ought to be shifted towards A a distance equal to

4/P- tfQ AB
VP+VQ 2

'

(29) The length of a false balance-beam is 3 ft. A body in one
scale weighs 4 lbs.; in the other, 6 lbs. 4 oz. Find the true weight of
the body and the lengths of the lever-arms.

Ans. True weight = 5 lbs. ; lengths of arms, 1 ft. 4 in. and 1 ft. 8 in.

(30) Three uniform rods AB, BC, CD, rigidly connected so as to

form three sides of a square, rest upon a fulcrum at A. Suppose
the weight of each rod to act at its centre. Find the inclination of
AB with the horizon.

4
Ans. tan 8 = —

.

o

(31) AB, CD, DE are three equal uniform rods, rigidly connected
at right angles, B being the middle point of CD. Suppose the weight
of each rod to act at its centre, and the system to hang from a ful-
crum at A. Find the inclination 6 of AB to the horizon for equi-
librium. -."$*

. Ans. ta»e =s 6. N—

.
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CHAPTEE V.

EQUILIBRIUM OF A PERFECTLY FLEXIBLE
INEXTENSIBLE STRING.

GENERAL EQUATIONS OF EQUILIBRIUM. EXTERNAL FORCES VERTICAL. CON-
TINUOUS CURVE. LOAD UNIFORMLY DISTRIBUTED OVER THE HORIZONTAL.
CATENARY. CATENARY OF UNIFORM STRENGTH. ' LOAD PROPORTIONAL TO
THE AREA BETWEEN THE STRLNG AND HORIZONTAL. STRING ACTED
UPON BY A CENTRAL FORCE.

Equilibrium of a Perfectly Flexible Iuextensible String.—if a
perfectly flexible inextensible string is fixed at two points and
acted upon by forces applied at any given points in any directions,
we may consider the string, when in its position of equilibrium, as
a rigid body.

The resultant force at any point must then act in a direction
tangent to the string at that point ; for otherwise there would be a
normal component, which, as the string is perfectly flexible, would
act to change the position of equilibrium of that point.
We shall consider only co-planar forces.

v^&eneral Equations of Equilibrium.—Let a perfectly flexible in-

extensible string be fixed at the two points A and B and be acted
upon by external forces in its

plane. It is required to de-
termine the tension T of the
string at any point P, and the
position of any point P for
equilibrium, disregarding the
weight of the string.

The string when in equi-
librium will evidently take
the form of a polygon, if the
forces are applied at points
or are "discontinuous"; the
tension in any segment, as
6c, being the resultant of the

tension in the preceding segment ab and the force Fi at b.

Take the origin of co ordinates at the lowest point O of the string,
and let the co-ordinates of any point P of the string be x and y.
Let the external forces acting upon the portion OP of the string be
Ft , Fi , etc. ; the co-ordinates of their points of application a, b, etc.,

be given by (xi
, y t ), (xs

, y2 ); etc. ; and their angles with the axes of
X and Ybe given by (an, /3i), («», /32 ), etc.

110
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Then the algebraic sum of the horizontal and vertical components
of the external forces between O and P is

Fx=FiCO&ai + FiCOsa> + ...=2Vcosa; . . . (1)

Fy = Fi coaft1 + Pa cos/?3 + ...=^° Fcosft. ... (2)

Also the algebraic sum of the moments of all the external forces
between O and P with reference to O, or the moment about the
axis of Z, is

Mz = 2° Fx cos ft
- 2° Fy cos a (3)

p p

In taking the algebraic sums, components to the right or upward
are positive, to the left or downwards negative. Also rotation
counter-clockwise is positive, and clockwise negative.

Let the tension at the point P be T, making the angles a and ft

with the axes of X and Y, and let the horizontal tension at the
lowest point O be H.

If the portion of the string from O to P is in equilibrium, we can
treat it as rigid, and we have then the algebraic sum of the hori-
zontal and vertical components of all the forces acting upon it equal
to zero ; also the algebraic sum of the moments of all the forces
acting upon it, with reference to any point as O, equal to zero.

Hence the conditions for equilibrium are

" W

—H+Fx + Tcosa = 0;

\f+ Fy + Tcosft = 0; I (4)

•jtK <S #&+ Txcosft - Ty cos a = 0. J

fh £avSals$'^^ *'.+1** » * •

cos" a + COS2

ft = 1.

We have then four equations between the four qnantities H, T,

a and ft, and can therefore find them for any given x and y. Equa-
tions (4) are general and apply whether the forces are discontinuous
or applied continuously along the string.

u^External Forces Vertical.—If all the external forces acting upon
the string are vertical, we have Fx — and Fv = 2PF. Hence
from equations (4) of the preceding Article,

/
T cos a = H;

T cos ft = -2°PF.

That is, for a perfectly flexible inextensible string in equilibrium
under the action of vertical external forces, whether the forces are
applied continuously along the string or discontinuously :

1st. The horizontal component of the tension at any point is con-
stant and equal to the horizontal tension at the lowest point.

2d. The vertical component of the tension at any point is equal
to the algebraic sum of all the forces between that point and the
lowest point.

Continuous Curve—Tangential and Normal Components.—If the
forces are applied continuously along the string, then the shape of
the string when in equilibrium will be a continuous curve instead
of a polygon.



112 EQUILIBRIUM OF FLEXIBLE INEXTENSIBLE STRING. [CHAP. W
Let ab = ds be the length of an indefinitely small portion

of the curve. Let the resultant force in any direction continu-
ously applied over as be F, so that the

ds
force per unit of length is -p. Let the

tension of the string at a be Ti , tangent
to the curve at a, and the tension at 6 be
Ti, tangent to the curve at b. Let the
very small angle between these tangents
be db, and let the force F make the angle
<p with the tangent at a.

Then since for equilibrium we may
consider ab as rigid, the three co-planar

forces Ti , Ti and F are in equilibrium and must intersect at a,

common point c (page 85).

We can consider them, then, as three forces concurring at c and
in equilibrium. If then we resolve these forces along the tangent
at a, we have

T2 cos d6 + F cos <p - Tx = 0.

When ab = ds is indefinitely small, the points a and b come
together, do becomes zero, and cos do = 1. Hence

F T,-Ti dT
-=- cos <p =
ds ds ds

(1)

That is, the tangential component of the external force per unit
of length at any point is equal to the variation of tension per unit

of length at that point.
Again, resolving the forces along the normal at a, we have

T^ sin de — F sin = 0.

If p is the radius of curvature, we have bd = p sin do. When ds
ds

is indefinitely small, we can take bd =ds = ab. Hence sin do = —

.

Substituting this, we have, when the points a and b come together,

F ^ T-

-Y- sin =
ds p

(2)

That is, the normal component of the external force per unit of
length at any point is equal to the tension at that point divided by
the radius of curvature at that point.

Cor. If the external force per unit of length at every point of
the string is normal to the string, <p = 90°, and, from equation (1),

Ti — Ti = or Ti — T-i at every point. That is, the tension is con-
stant throughout the string. This is the case when the string is

stretched over any smooth surface whose pressure on the string at
every point is normal, and acted upon by no forces except the nor-
mal pressure of the surface and two equal terminal tensions. In

T
such case u = —, or the normal pressure of the surface per unit of

length at any point is inversely proportional to the radius of
curvature at that point. That is, up = T = the constant tension in
the string.
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• LoaiLoad Uniformly Distributed over the Horizontal Projection of

the String.—This is approximately the case of the ordinary suspen-
sion bridge.

Let the mass of the unit load or load per unit of horizontal pro-
jection be constant and equal to

w in gravitation units (page 6)

or wg in absolute units. Let H
be the horizontal tension at the
lowest point O, and T be the
tension at any point P of the
string, both in gravitation units.

Equation of the Curve.—Let x
and y be the co-ordinates of any
point P of the string, the origin
being taken at the lowest point O. Then we can consider any por-
tion of the string OP when in equilibrium as rigid and acted upon
by the forces H, T, and the entire load ivx between O and P. The
resultant force vox of the load between O and P acts at the centre
of mass of the load, or, since the load is uniformly distributed, half
way between O and P. If then we take moments about P, we
have for the moment of the load with reference to P,

x WX*

We have then for equilibrium

tux* rj -— Hy = 0, or x* =—y.w (1)

The curve of the string is then a parabola whose axis is vertical
2/7"

and whose parameter is— . If w is constant and the parameter is

constant, H is constant. Hence, the tension at the lowest point is

constant for all parabolas having the same parameter, when the
load per unit of horizontal projection is constant, whatever may be
the length of the curve.

Tension at the Lowest Point.—To find the tension H at the lowest
point, we have only to substitute in equation (1) the co-ordinates of
some known point. Thus let Xb and yb be the co-ordinates of the
end B. Then equation (1) gives

H = WXb
2yV (2)

Or we may find this value of H directly by taking moments
about B. Thus the resultant of the load between the lowest point
O and B is wxb and it acts at the centre of mass of the load, or,
since the load is uniformly distributed, half way between the
lowest point O and B. If then we take moments about B, the

moment of the load is wxb x "o
= ~o~ ^e have then for equilib-

rium
WXb TT n TT wxb

^-r -Hyb = 0, or H=—

.

Slope of the Curve.—For the slope or inclination a of the curve
at any point with the horizontal, we have seen already, page 111,
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that for vertical forces the horizontal component of the tension at
any point is constant and equal to H, and the vertical component
is wx. We have then for the slope at any point P

tan a = -=j (3)

For the slope at the end B we have then

tana6 = g-
6

(4)

Tension at Any Point.—For the tension T at any point P we have
then

T = H\/\ + l^y = Hsec a .... (5)

For the tension at the end B we have

Tb = ?P- VxS + 4yb\ (6)

H^jsolution of Preceding Case by Calculus.]—Let the unit load or
load per unit of horizontal projection be constant and equal to w in gravi-

tation units (page 6).

Then referring to our general equations (4), page 111, we have in
dor flu

gravitation units Fv = — wx, Fx = 0, cos a = —, cos fi = — , where
ds ds

ds is the length of an element of the curve and dx, dy its horizontal and
vertical projections. Therefore from equations (4), page 111,

- H + T^ = 0,
ds

-wx+ T^- = 0,
ds

where H and T are to be taken in gravitation units if w is taken in gravi-
tation units.

Eliminating T, we obtain

Hdy = wxdx.

Integrating, and taking the origin at the lowest point 0, so that when
x = 0, y is also zero, we have

XT WX*
S

2ffHy = v or x = T^y (1)
a W

This is the equation of the curve as already found, page 113.

If we substitute the co-ordinates of the end B, xb and yb , in place of
x and y, we have from (1), for the tension JET at the lowest point,

B=^f <*>

For the slope or inclination a of the curve at any point we have, by
differentiating (1),

••-a-Tr (3)
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The slope at the end B is then

tan <Xb = 2yt

Xb
(4)

For the tension T at any pointp we have

dx dx
"

dx* * \H'
(5)

For the tension at the end B,

Tb
2y6

+ ±Vb (6)

[Load Uniformly Distributed over the String.]—The curve of equi-

librium assumed under the action of gravity, by a perfectly flexible string

of uniform normal section and density, when suspended from two points

not in the same vertical, is called the catenary. In such case the load is

the weight of the string and is uniformly distributed over the curve. If

the unit load or weight of a
unit length of the string is

not constant, but varies con-

tinuously according to any
law, the curve of equilibrium

is called a catenarian curve.

Let w be the mass of the

unit load, or the load per unit

of length of the string, in

gravitation units (page 6).

Then if 8 is the uniform den-

sity of the string, or the mass per unit of volume, A the constant area of

normal section, and s the length of any portion of the string, the mass of

that portion is 8As, and the mass per unit of length, or the load per unit

of length in gravitation units, is

w = 8A. (1)

In absolute units we have w = 8Ag.
Referring to our general equations (4), page 111, we have in gravita-

tion units Fy = — ws, where s is the length of the string from the lowest

point C to any point P. We also have Fx = 0, cos a = j-, cos ft = -~,

where ds is the length of an element of the string and dx, dy its horizontal

and vertical projections.

Hence from equations (4), page 111,

-H + 2^=0;
da

- ws+ T^=0;
dx

where H and T are to be taken in gravitation units if w is taken in gravi-

tation units.

Eliminating T, we have for the slope <x at any point P

dy w
tan a = ~ = —8.

dx H (2)
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JT
Let H=wc, or c = —, where c is then the length of that portion of the

string whose weight is equal to the tension H at the lowest point C. Then

(3>
dy

dx

), substituting

4
d
?\-

ds -
\dxj c

s

c

ds = V

dy\

dx)

Differentiating (E dx* + dy*, and reducing,

or

+
dx"

Integrating this, we have

lognat[| +

,dy>

dx*

X

c
j/l +

d
£] + const.

If we take the axis of Y passing through the lowest point (7, we have

-^ = 0, where x = 0. Therefore const. = and
dx

Or, if e = 2.718282 is the base of the Naperian system of logarithms,

Solving this equation, we have for the slope a at any point (see (3))

Integrating (6), we obtain

= c
-(ec + e

c

J
+ const.

Now, taking the origin (see figure) at a distance equal to CO = e

below the lowest point C, we have y = c when a?= 0. This gives const. = 0.
JT

The horizontal line OX at the distance c = — below the lowest point C is
w

JT
called the directrix. The distance OG = c = — is called the parameter.
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We have then for the equation of the curve, taking the origin at the
fr

distance CO = c = — below the lowest point C,
w

y = l\e
c +e c

)
(7)

The point at the distance CO = c= — below the lowest point C is
w

called the origin of the catenary, and equation (7) is the equation of the

catenary referred to this origin.

We have from (6),
x

=!('"-")S = 2Y
C ~ e

J
(8)

Equation (8) gives the length of the curve from the lowest point C to

any point P.
From (7) and (8) we. have

^ = s* + ca ; (9)

and differentiating (9),

s = y% = y™*(i (10)

Let PM and PT be the ordinate and tangent at P, and let fall the

perpendicular IfiVon PT. Then

PN=y cos /3 = s; (11)

and since y
a — «* = c

a
, we have

MN=c (12)

Hence, given the catenary, we can construct its origin and direction as

follows

:

On the tangent at any point P measure offPN equal to the arc CP.
At N erect a perpendicular NMto the tangent meeting the ordinate of P
in M. Then the horizontal line through M is the directrix.

We have seen (page 111) that for vertical external forces the horizontal

projection of the tension at any point is constant and equal to H, and the

vertical component is ws. Therefore the tension T at any point is

T = i/H* + wV = f/l + -
t

(13)

TT

But, from (9), <? + s
3 = y

1
; therefore, since w =—

,

rr

T= — y = wy (14)

That is, the tension at any point of the catenary is equal to the weight

of a portion of the string whose length is equal to the ordinate of that

point.
T

From page 112 we have w sin <p = — , where p is the radius of curva-

ture. In the present case <p = /? = angle made by vertical with the tan-

gent at P. Substituting T = wy, we have

a sin /S = p cos a = y.
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We see then from the figure (page 115) that the length of the radius of
curvature at any point is equal to the length of the normal between that

point and the directrix.

We also see from the figure that y cos a = c, or y = .

cos a
Theiefore

P = = c sin" a. . (15)

We also have
, 8 cos/3

c = s tan 6, or - = -^-^.*
c sin

Hence from equation (3), after reduction,

x = 8 tan /Slog nat cot -/?. (16)

The catenary possesses other interesting properties, among which are
the following

:

The centre of mass of the catenary is lower than for any other curve of
the same length joining the same two points.

If a common parabola is rolled on a straight line, its focus describes a
catenary whose parameter c is equal to the focal distance of the parabola.

If an indefinite number of strings (without weight) are hung from the
catenary, so that their lower ends are in a horizontal line and then the
catenary is drawn out into a straight line, the lower ends of the strings

will be in the arc of a parabola.
[Catenary of Uniform Strength.]—If the area of the normal section

of the string at every point is proportional to the tension at that point, the
unit tension, or tension per unit of area,

will be the same at all points, and the

curve assumed under the action of grav-

ity by such a string of uniform density

and perfectly flexible is called the cat-

enary of uniform strength.
Let A be the area of normal section

of the string at its lowest point C, where
the horizontal tension is H, and let t be

the constant unit tension, or tension per unit of area. Then

H= tA (1)

The tension at any other point P, where the area of normal section is

A, is

T=tA (2)

Hence, from (1) and (2),

A :Ao :: T: H, or A = A,
If

(3)

Let 8 be the uniform density of the string. Then the mass of an ele-

ment of the string of length ds, or the weight in gravitation units (page

6), is 8Ad8. The weight in absolute units is 8Ads x g.

Referring to our general equations (4), page 111, we have for the
weight in gravitation units of the string from the lowest point C to any
point P

Fy= -£8Ad*,
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We have also Fx = 0, cos a — — , cos fi = -f- , where ds is the length
J* ds

of an element of the string, and dx, dy its horizontal and vertical compo-
nents. Hence, from equations (4), page 111,

-H + T~ = 0;
ds

f>8Ads + T% = 0;
ds

SAdf
Tdz

where H and T are to be taken in gravitation units.

Eliminating T, we have

/ 8Ads _

,

_ . ,
dy Jo ,(dy\ 8Ads

Inserting the value of A = —^—, we have
xz

yfas/ 27tf#
'

Let ds9 = <Za? + <fy
a

, and let

<Mo 1 H t

-w=? or c = £L7=s <4>

That is, c is the length of a string of constant cross-section Ao equal to

the cross-section at the lowest point 0, and the same uniform density 8 as

the curve, whose weight is equal to the horizontal tension H at the lowest

point. Then
Jdy\ _ d^_ _ dx* + dy"1

\dx) cdx cdx

or

or

dx* c\ dx9 )'

dx* 1

1
d£ c

^ dx*

Integrating this, we obtain

\dx J c
tan

_1
( -r-\ = - + Const.

Let the axis of Y pass through the lowest point C of the curve. Then,

when x = 0, we have

$ = and Const. = 0.
dx

Hence

tan « = -r- = tan (5)
dx c
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Integrating again, we have

y = — c log nat cos - + Const.
c

If we take the origin at the lowest point C, then, when x = 0, we have

y = and Const. = 0. Hence

y = — c log nat cos - = c log nat sec (6)

Equation (6) is the equation of the catenary of uniform strength.

From equation (5) we have

x , , dx
a = - and da = —

.

c c

If p is the radius of curvature, we have pda = ds, and hence

ds da x ,„
p = — = c— = c sec- (7)

da dx c

If we integrate the equation —- = cos a = cos -, or ds = sec -dx,
ds c e

we have, since, when x = 0, * = and the Const, of integration is zero,

8 = clogntan(45° + ~\ (8)

Equation (8) gives the length of the curve from the lowest point C to

any point P.
From (8) we have

. x
1 + sin —

e"
x

cos —
c

*-*(" + 5)
-

where e = 2.718282 is the base of the Naperian system of logarithms.

If we substitute sin - = i/ 1 — cos4 — and reduce, we obtain
r. f p.c ' e

-S—?*r(' +,~) (9)

cos— x '

c

Substituting (9) in (7), we have

s >

p = j(* + e

~~
c

)
(10)

We have seen (page 111) that for vertical external forces the horizontal

projection of the tension at any point is constant and equal to H, and the
x

vertical component is therefore ZTtan a = Ht&n — . We have then for the

tension at any point P

T=hJ\ +^ = 5-4/1 + tan2 -=5" sec-. . . .(11)
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Let the two points of support A and B lie in a horizontal line AB.
Then the curve will be symmetrical with respect

to the lowest point C. Let the entire length of

span AB be 21, then the weight of the entire

string W will be given by

17= 25" tan-,
c

or, since, by equation (4), c =

W=2iftan^, or H= W . Si— cot —

.

2 t

The area of normal section at any point P is then, from (2) and (11),

. T H x W , Si xA = — = —- sec —= — cot — sec —

.

t t c 2t t c

x t
Substituting the value of sec — from (9) and putting c = — , we have

for the area of cross-section A at any point P at a distance measured along
the curve from the lowest point C equal to s = CP,

- e < + 6 McOt TA = (12)

From equation (12), if the points of support are on a horizontal, and
the span AB, the weight of the entire string, its density and the unit ten-
sion are given, we can find the area of normal section at any point P at a
distance s along the curve from the lowest point C.

[Load Proportional to the Area between the String and a Horizon-
tal.]—Let the load on any portion of
the string CP be proportional to the
area OCPx between the curve and a
horizontal line OX. Take the origin

at O in the vertical through the lowest
point C, and let the distance OC = y .

Let w be the mass, or weight in

gravitation units (page 6), of one unit
of area of the load area between the curve and OX.

Let H = wc1
, or

w (1)

that is, & is the area of that portion of the load area whose weight is

equal to the tension H at the lowest point C.

Let the area OCPx be denoted by u. We have then for the load from
C to any point P,

(2)Fy = — wu = — w I ydx.

Referring to our general equations (4), page 111, we have also Fx = 0,

cos a = dx

ds
cos 8 = ~, and

ds

ds

— wfX
ydx + T-^ = 0.

t/o dz
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Eliminating T, we have

<ty _<Pu_FL _u
dx da? H & W

Multiplying by 2du,

2dud?u _ 2udu
dx2 ~~cT

~'

Integrating,

di? if _.— = h Const.
dx* &

/*x dti
Now u = I ydx. and du = ydx

y
or —- = y. Therefore, when u = 0,

e/o dx
du
-j- will be equal to y = OC, and Const. = y . Hence

du* u1
, du

Integrating,

x = c logn - +y%- + y<? + Const.

When w = 0, we have a; = 0, and Const. = — c logn y . Hence

^ognfji-V-STn (4)

Or, if e = 2.718282 is the base of the Naperian system of logarithms,

Solving this for w, we obtain

area = u = ^(e c — e
c

) (6)

», ^w A /u*
"

Also, since y =—=y~ +y„
a
, (7)

y = ¥l[e<+e c

)
(8>

We have from (3) also

tana=^- = ^ = |if^"-rn (9>
dx c* 2c \ J

For the tension T at any point P, since Fy = H— = H-^-,
tr dx

T = /jp + JP = ff/l +£ = S^ec a. . . . (10)
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The length c is the parameter of the curve. From (6) we have

12a

l =i/-^_ + l, and *-|/^_i
Therefore, from (4),

and hence

= c logn(^ + iA;-l).
\y°

r y
2

/

lognftL + ^-i)

(11)

(12)

String Acted on by Central Force.—When the lines of action of the
forces applied to the elements of the string all pass through the same point,

the force acting on the string is said to be
central, and this point is the centre of
force.

Let P be any point of the curve, and
take the centre of force as the origin, and
let the radius vector OP= r make the angle
9 with the axis of X. Then we have

cos 9 = sin 9 = y-.
r

(1)

Let the force F upon the element ds at

any point P make the angle with the tan-

gent at P, and let the tangent make the angle a with the axis of x. Then

cos a = dx

ds
sin a = dy

t

ds
'

. . . . x dx y dy
cos = cos (a — 6) = cos a cos 9 + sin a sin 9 = —3- H— 3—;^ v J r as r ds

sin = sin (a — 9) = sin a cos 9 — cos a sin 9 = — -f — ?-—

.

v r ds r ds

(2)

(3)

If p is the perpendicular ON let fall from on the tangent at P, and p
is the radius of curvature of the curve at P, we have, page 88, Vol. I, Kine-
matics,

rdr

dp
(4)

Now from equation (1), page 112, if F is the force upon the element
ds, we have

Ti— Tx=dT— —F cos 0,

or, substituting the value of cos <p from (3),

dT = - -^(xd* + ydy).

But 3? + y
% = r1

, hence xdx + ydy = rdr, and therefore

FdT = - —dr.
ds

(5>



124 EQUILIBRIUM OF FLEXIBLE INEXTENSIBLE STRING. [CHAP. V.

From equation (2), page 112, we have

T F .— = -=- sin 0,
p ds

or, substituting the value of sin <p from (3),

T F I dy dx\— =—[x— — y— .

P rds\ ds ds J

(Ju dor
But:c-r

—

y— = xsina — ycosa = p. Therefore
ds ds

Tr=^- <6>

F
Substituting the value of — from (5), we obtain

ds

dT=-™L.
PP

Substituting the value of p from (4), we obtain

dT _ _dp
T ~ p'

If we integrate this and let T = Ti when p = p% , we have

Tp = 2>, = a Constant (7)

Hence we see that the moment of the tension with respect to the centre

offorce is constant, or the tension varies inversely as the perpendicularp
on the tangent from the centre offorce*

Eliminating T between (7) and (6) and putting for p its value from (4),

we have
dp _ dr F
~%? ~ l\p~i "ds

;

or integrating,

1 p dr F
p J l\Pl ds'

w
the limits of the integral being given by the conditions of the problem. If

the force is away from the centre, or repulsive, F is positive ; if towards
the centre, or attractive, F is negative.

From (8), when F is given, the equation to the curve is to be found, or,

if the curve is given, F may be found.
Also from (7) and (5) the tension at any point of the curve may be

found.
From equation (46), page 88, Vol. I, Kinematics, we have

r'dP 1 1 dr9

Tr =r or — 4- "

^ dr1 + r'dQ^ p* r2 rW'

or if we denote — by u,
r

p2 d&

Equation (9) will be found useful in reductions.

* Compare with page 85, Vol. I, Kinematics, where we see that for a particle

moving with central acceleration the moment of the velocity is constant.
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[Central Force Inversely as the Square of the Distance.]—As an
application of the preceding Article, let us suppose the force F upon an
element ds of the string to be repulsive and to

vary inversely as the square of the distance from
the centre of force.

Let 8 be the density of the string or the mass
of a unit of volume. Then the mass of an ele-

ment of length ds whose area of normal section

is A is 6Ads. Let the central acceleration of

one unit of mass at a known distance of r1 from
the centre be a'. Then the acceleration a at any distance r is given by

a r'* a'/8

— = — , or a = ——.
a' r2 r

The force F upon an element ds at the distance r is

a'r™F= ±^-.SAds,
i
a

where the (+) sign is to be taken for repulsive force and the (—) sign for

attractive force. Let the density d and area A of normal section be

constant, and let

M =a'r,tSA, (1)

where the constant /n is evidently numerically equal to the force on the

mass of one unit of length of the string at a distance unity.

Then if the force is repulsive, we have

| =+5 ,. w
ds r

From equation (5), page 123,

Integrating,

dT = - ttdr.

T = £ + Const.
f

. When the initial value of r is r, , let the corresponding value of T be

rXVptfafo^ Then Const. = Ti - -, and we have*

T=T1 + m(~-^\ (3)

From equation (8), page 124,

1
_

/* m dr _ Pjt_ dr
~p~ ~J Tsp/ t*

" ./ffli'i"

where we denote the moment Tipi by m*.

Integrating,

1 M 1 . r* i,=— . —h Const.
p nil r

* Notice the analogy with the velocity as given on page 145, Vol. I, Kine-

matics, of a particle acted upon by an attractive force varying inversely as the

square of the distance, viz.,

*» = Vl * + 2a*"(>-*>
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Let p=pi when r = *•». Then Const. = — and
Pi miTi

p pi mi\r 1\)

If we put for the sake of simplicity

(4)

— = c and 0- = —ck, . . . . (5)mi pi Win ' v '

equation (4) becomes

1 c— = - — CK\
p r

or if we denote - by u,

1— = cu
P (6)

We have then from equation (9), page 124,

p* dG1 K '

Hence
du*— = {<?- l)u* - fetal + cV (7)

The integral of this equation will give the equation of the curve of
equilibrium.

We have evidently three cases : when & > 1 ; when (fas 1; when <? < 1.

Case I : When c
2
is Greater than Unity.—Let c" be greater than unity.

Then let

& - 1 = n\

and we have from equation (6), after reduction,

de=
,

**
(8)

i\/ \u -

From equation (3) we have dT'= ndfi. But we have seen, page 112,

that when dT = 0, the force is normal to the curve of the string. That
value of u in equation (8) which makes du =

r^^\ will then give an apse A, that is, a point where
^a the string is perpendicular to the force. Let this

value of u be u = —

.

From equation (8), putting — = 0, we obtain

uo = - = ™(1 + c) (9)

For any value of u less than this, equation (8) becomes imaginary. All
values of u must therefore be greater than u , that is, u increases or r
diminishes each way from the apse. We have then du positive in equa-
tion (8).
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Integrating equation (8), we obtain

l.ik» [.-£ +/(._5)"_«fJ + Const.

Le = when w = w = -£(1 + c). Then Const. = 0—1- logn
CK

, .n n w
If e = 2.718282 is the base of the Naperian system of logarithms, we

have

CiC
e
n(fl-*)

Squaring and reducing, we have

u= -Ac
nffi-f) -n(»-«).

+ V <10>

Equation (10) is the polar equation of the curve of equilibrium.

The values of c and tc are given by equations (5) and (1).

If we measure 6 from the initial radius vector n through the apse, we
have = 0, and Wi = w<>. Therefore, from (9),

CK n*ii}

Ux — -,(1 + C), Or K =
waV T " c(l + c)

'

Substituting this value of k in (10), we obtain

A + i L«*.
+

2 J'
Um
"jsT
mi

Equation (11) is the polar equation of the curve of equilibrium when
the angle 6 is measured from the initial radius vector r\ through the apse.

We have u = -, Wi = — , and the value of m is given by equation (1).
r ri

Case 2 : When c
2

is Equal to Unity. — When & = 1, we have
c= + 1 or c = — 1. When c = + 1, we have w" = c* — 1 = 0, and from
equation (11), u = Ui, or r = ri. The centre of equilibrium when c =
+ 1 is therefore a circle.

When c = — 1, we have also na = c* — 1 = 0, and, from equation (11),

m = - or indeterminate. In this case we have, from equation (7),

dB = Z_gg__ (12)

yTTf
Putting -=- = 0, we have for the value of u at the apse

K
u

° = 2-

For any value of u greater than this equation (12) is imaginary. All

values of u must then be less than w , or u diminishes each way from the
apse. Hence du is negative.
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Integrating (12), we have

/ 9,»/

Const.6=4/ 1 +

K
Let = <p when u = Mo = s". Then Const. = 0, and

-0 = 4/l-^, or w = £[1 - (0 - 0)*].

Hence

2_

1 - (6 - 0)
3

(13)

Equation (13) is the polar equation of the curve of equilibrium when
c = — 1. The value of k is given by (5).

If we measure 6 from the initial radius vector r x through the apse, we
k 1 2

have = 0, and Mi=r = T , or k = -. Substituting this value of tc,

we .have

1
(14)

'/£-(«

Equation (14) is the polar equation of the curve of equilibrium when
c= — 1, when the angle is measured from the initial value of r through
the apse.

Case 3: When & is Less than Unity.

—

Let c" < 1 and put 1 — e" = w2
.

Then from equation (7), after reduction, we have

-*»
(15)

Putting — = 0, we have for the value of u at the apse

Wo = -^(1 — c).

7T

Any value of u greater than m gives equation (15) imaginary. All

values of u must then be less than m , or m diminishes each way from the
apse. Hence we take du negative in equation (15). Integrating, we have

cV
1

m + —

-

= — cos
~ l

f- Const.
n ck

M1

Let 9 = when u = Mo. Then Const. = 0, and

(0 — 0)= -cos Mc +
J,M \ CK" /

or

Hence

cos n(Q — <p) = c H .

M = r [C — COS M(0 - 0)] (16)
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Equation (16) is the polar equation of the curve of equilibrium.
The value of k is given by (5).

If we measure & from the initial radius vector n through the apse, we

have = 0, and Ui = w = --, (1 — c), or k =n" " ~ dl-c)
Substituting this value of k in equation (16), we have, if we put

c = , where n is given by equation (1),

= —- + cos n6 .

1 + JL_\mi i

+ cos wfl) (17)
\7/tl

Equation (17) differs from the focal polar equation of a conic only in

having the angle multiplied by a number n less than unity.

EXAMPLES.

(1) An endless flexible string of uniform linear density but with-
out weight is moving so that the velocity of each element has a con-
stant magnitude v and a direction always tangential to the string.

Show that the tension is the same at every point of the string, and
find it.

Ans. Since the tangential velocity is constant, there is no tangential accel-

eration and hence no tangential force.

Therefore from equation (1), page 112, !Ta — Tx = 0, or there is no variation

in tension.

If p is the radius of curvature at any point, then the normal acceleration of

hat point is/» = — (page 53, Vol. I, Kinematics).

If S is the linear density, or the mass per unit of length, then the normal
6V

force per unit of length is 8fn = — . From equation (2), page 112, we have

then

— = — , or T = 6V,
P 9

where T is given in poundals. In gravitation units (page 6),

9'

where g is the acceleration of gravity.

(2) An endless flexible circular string of radius r and of uniform
linear density S, but without weight, rotates in its own plane about
its centre with the angular velocity <». Find its tension.

Ans. The tangential velocity roo is constant, and hence there is no tangential
force. Therefore, just as in the preceding example, there is no variation in
tension.

The normal acceleration is/n = roa2 (page 76, Vol. I, Kinematics).
If 8 is the mass per unit of length, then the normal force per unit of length

is 5ra»'. From equation (2), page 112, we have then

T
Srat = -, or T = 8r*a>*,

T
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where T is given in poundals. In gravitation units (page 6),

6V<a*

9 '

where g is the acceleration of gravity.

(3) A body weighing 7 lbs. is suspended from a fixed point by a
uniform string, 12 inches long, weighing 18 oz. Find the stress in
the string at its middle point and at its upper and lower ends.

Ans. 7/j lbs., 8^ lbs., 7 lbs., in gravitation units; or, taking g = 32, 242
poundals, 260 poundals, 224 poundals.

(4) Show that the horizontal component of the tension at any
point of a uniform flexible string hanging in equilibriumfrom tivo

fixed points is equal to the tension at the lowest point, and that the
vertical component is equal to the weight of the portion of the string
between the given point and the lowest point.

Ans. See page 111.

(5) Show that at any point of a uniform flexible string which is

hanging in equilibrium with two points fixed, its inclination to the
horizon is the angle whose tangent is the ratio of the weight of the
portion of the string between the given point and the lowest point to
the tension at the lowest point.

Ans. See page 116.

(6) In the preceding example, shoiv that the square of the tension
at any point is equal to the sum of the squares of the weight of the
portion, of the string between the given point and the loivest point,
and of the tension at the lowest point.

Ans. See page 117.

(7) A telegraph wire, weighing 400 lbs. per mile, is stretched be-
tween two points in the same horizontal line at a distance of 100 yds.
with a horizontal tension of 400 lbs. Find the deflection of the lowest
point of the ivire below the fixed points, neglecting stretch and sup-
posing the wire perfectly flexible.

Ans. From equation (6), page 116, x = 150 ft., e = 5280 ft., deflection =
2.1 ft.

(8) A uniform wire weighs w lbs. per foot and is just able to stand
a stress of P pounds. It is hung between two points in the same
horizontal line, distant d ft., so as to be on the point of breaking.
Obtain an equation to determine the half length s, the wire being
supposed to be perfectly flexible and inextensible.

Ans. From page 117 we have P* = H* -\- vPs*. Hence H= ^P - w¥,
H i/P1 w'2s2 d

Also e = — = — , and x = - . Therefore, from equation (8),w w 2
'

dw dw

4/jW-toV / 8 Vf* - »¥ VHP* - to*** v

•=—s— (•
- e )

(9) A string 202 ft. long, which weighs 1 lb. for every 10 ft., is

hung between two points in the same horizontal line distant 200 ft.
Obtain an equation to determine the tension H at the lowest point in
gravitation units.

Ans. We have §= 101 ft,, w ssA Dfc, 9 s= 100 ft., c = — = 10#.
10 w
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From equation (8), page 117,

'/ 10 _10\

101 = 5H[eH -e H
).

Solving this equation by a series of approximations, we find 27 to be about
40 lbs. , provided the string is perfectly flexible and inextensible.

(10) Find the law of variation of the mass per unit of length at
each point of a string acted on by gravity in order that it may hang
in the form of a semi-circle whose diameter is horizontal.

Ans. Let AB = 2r be the horizontal diameter and the centre of the semi-
circle. Let P be any point of the curve, and the
angle FOG= a. Let the co-ordinates of P be x o x
and v. \. ISs^ 1

—

Then cos «= -, sin a = —

.

^^^_^ p

We have from equations (4), page 111,

ds

where 8 is the linear density or mass per unit of length, and If and Tare in
gravitation units.

Dividing the second by the first, we have

dx =£8d*'

or

ncPy _8ds
~ dx'

But the equation of the curve is xi
-f- y* = rs

. Hei

dy _
dx

X
~y' and §

dx*

dy
y - X

dx~

y*

Therefore

Sds

dx
~ - H r

-, or 8=-E-
ty* y*

dx

~d7'

^ dx
But —

ds
= cos a, and

dx
r-r-
ds
= -y-

8 =

Hence

Hr
+ 7-

That is, the mass per unit of length varies inversely as the square of the
distance of the point below the horizontal diameter.

(11) A telegraph line is constructed of wire which weighs 7.3 lbs.

per 100 feet. The distance between the posts is 150 feet and the wire
sags 1 foot in the middle. Show that it is screwed up to a tension of
about 820 lbs.

(12) Find the law of variation of the mass per unit of length in
order that a string may hang under the action of gravity in a
parabola.
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Ans. From page 113, the load per unit of horizontal projection is constant
and equal to w. The load per unit of length is then proportional to the tangent

F
of the slope, or — = w tan a.

ds

But tan a is proportional to the horizontal projection of the length. Hence
the mass per unit of length is proportional to the horizontal projection of the
unit of length.

(13) Show that the area of normal section at any point in the
catenary of uniform strength is proportional to the radius of cur-
vature.

x
Ans. From page 121, we see that A is proportional to sec - . From page

c

120, equation (7), we see that sec - is proportional to the radius of curvature.
c

(14) A uniform inextensible string assumes the form of a circle

under the action of a repulsive force emanating from a point on its

circumference. Find the law of force.

Ans. From page 124, Tp = Const. = e, or T = — . But if r is the radius

vector of any point P, p = r cos 9. Hence T= r

.

r cos 9

T F
From page 112, =; = —- cos 9, where B is the radius^ E ds

pi
c

of the circle. Hence -~-
. B cos 6 = r. ButB cos 9

ds r cos 9

1 j c 1 r „ F AeB . .= 5 r and cos 9 = — . Hence — = — , or the force
a a B as r*

varies inversely as the cube of the distance.
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Graphical Statics.—While the solution of statical problems by
computation and analytical methods is sometimes tedious and
involved, they may often be solved with comparative ease and
sufficient accuracy by graphic construction.

The solution of statical problems by graphic methods gives rise

to graphical statics. We shall consider only co-planar forces.

Concurring Go-planar Forces. — Let any number of co-planar
forces Fx, Ft, F3 , F*, etc.,

given in magnitude and direc-
tion, act at a point A, Fig. 1.

In Fig. 2, from any point 0,

layoff to scale the line repre* " /r\ j"u**-
Fi«2.

sentative of Fi from to 1,

then the line representative of
Ft from 1 to 2, then the line
representative of F3 from 2 to 3, then the line representative of Ft

from 3 to 4, and so on. The polygon 012 3 4 thus obtained we call
the force polygon.

If all these forces are in equilibrium, the algebraic sum of their
horizontal and vertical components must be zero. But when this
is the case, evidently 4 and 0, in Fig. 2, must coincide, or the force
polygon must close. We have then the following principle :

//' any number of concurring forces are in equilibrium, the force
polygon is closed. If the force polygon is not closed, the line 4
necessary to make it close gives the magnitude and direction of the
resultant R. If we consider this resultant acting at the point of
application A vn the direction from 4 to 0, obtained by following
round the polygon in the direction of the forces, it will hold the
forces at A in equilibrium. If taken as acting in the opposite direc-
tion at A, it will replace the forces.

Cor. 1. The order in which the forces are laid off in the force
polygon is immaterial. Thus in Fig. 2, if we had laid off 1, then
the line representative of F3 from 1 to 3', and then the line repre-
sentative of Ft , we should arrive at 3 just as before. By a similar
change of two and two we can have any order we please.

133
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Cor. 2. Any line in the force polygon, as 2, 3, or 1 3, is the re-
sultant of the forces on either side. Thus 2 is the resultant of Fi
and F? , and, acting in the direction from 2 to 0, holds Fi and Ft in
equilibrium and replaces F3 , Ft and R.

Cor. 3. If the forces are all parallel, the force polygon becomes

F«

Fig. i. •R

a straight line. Thus in Fig. 1, if the parallel
forces Fi, F*, F3 , Ft, etc., act at the point A,
we have the force polygon Fig. 2, 012 3 4, and
the closing line 4 is as before, the resultant R
and equal to the algebraic sum of the forces.

If taken as acting from 4 to 0, it will hold
fio. 2. the forces at A in equilibrium. In the opposite

direction it will replace the forces.

Notation for Framed Structures. — Let the
figure represent a roof-truss composed of two
rafters, a horizontal tie-rod and intermediate

braces consisting of struts and ties.

The notation which we adopt in order to designate any number
of a framed structure, or any force acting upon the structure, is as
follows

:

We place a letter in each of the triangular spaces into which
the frame is divided by the members, and also a letter between any
two forces. Any number or force is then denoted by the letter on
each side of it. Thus in the figure AB de-
notes the force Fi , BC denotes the force
Ft , CD denotes the force F3 , DE denotes
the upward pressure of the right-hand
support Ri , EA denotes the upward pres-
sure of the left-hand support Ru Also Aa,
Bb, Cd, De denote the portions of the
rafters which have these letters on each
side. The portions into which the lower
tie is divided are in the same way Ea, Ec, Ee. The braces are
ab, be, cd, de.

The student should carefully adhere to this notation for the
frame whenever using the graphic method.

Character of the Stresses.—The determination of the kind of
stress in a member of a frame, whether tension or compression, is

as important as the determination of the magnitude of the stress.

In the preceding figure, suppose we know the upward pressure
at the left support Ri or EA, and we wish to find the stresses in

the members Ea and Aa, Fig. 1, which meet at the lower left-hand

Fig. 2.

apex. If these stresses and R> are in equilibrium, they will make a
closed polygon. If then we lay off EA in Fig. 2, upwards, equal
to jRi , and then from A and E draw lines parallel to Aa and Ea
in Fig. 1, and produce them till they intersect at a, Fig. 2, evi-

dently the lines Aa and Ea in Fig. 2, taken to the same scale as
EA, will give the magnitude of the stresses in Ea and Aa in Fig. 1.
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Thus, lines in the force polygon which have letters at each end
give the stresses in those members of theframe denoted by the same
letters at the sides.

Now as to the character of these stresses, the directions Aa and
aE in Fig. 2, obtained by following round in the known direction
of .Ri, are the directions for equilibrium (page 133).

Since we are considering the concurring forces acting at the left-

hand apex, transfer these directions to Fig. 1, and we see that Aa
acts towards the apex we are considering and thus resists compres-
sion, and aE acts away from it and therefore resists tension. The
stress in Aa is therefore compressive (— ) and in aE tensile (+). -

In general, then, if we take any apex of the frame in Fig. 1, and
consider the concurring forces acting at that apex as a system of
concurring forces in equilibrium, we have the following rule

:

Folloiv round the force polygon in Fig. 2 in the direction in-
dicated by any one of these forces already known, and transfer the
directions thus obtained for the stresses to the apex in Fig. 1 under
consideration. If the stress in any member is thus found acting
away from the apex, it is tension (+); if toivards the apex, it is
compression (— ).

Application of Preceding Principles to a Frame. — Let Fig. 1
be a frame consisting of two rafters, a horizontal tie-rod and brac-
ing as shown, carefully drawn to a scale of a certain number of
feet to an inch. This we call the frame diagram.

6

Lbs..to an Inch.

Fig. 2.

Let the forces F\ , Ft , F3 act at the upper apices, and let the
reactions or upward pressures of the supports be Ri and Ri.
Notate the frame and these forces as directed, so that Fi = AB,
Fi = BC, F3 = CD, Ri = DE, Ri = EA, while the members are Aa,
Bb, Cd, De, Ee, Ec, Ea, ab, be, cd, de.

The outer forces acting upon the frame cause stresses in the
members. These outer forces must first be all known, or if any are
unknown, they must first be found.

Lay off these outer forces AB, BC, CD, DE, EA in Fig. 2 to a
scale of a certain number of pounds to an inch. Each force in Fig.

2, having letters at its ends, is equal and parallel to those forces in
Fig. 1 which have the same letters at the sides.

The polygon formed by AB, BC, CD, DE, EA (in this case a
straight line, Cor. 3, page 134) we have called the force polygon.

If the frame is in equilibrium, this polygon must ahvays close,

that is, the outer forces acting upon the frame must be in equilib-

rium. If it does not close, these outer forces are not in equilibrium
and the frame will move. That is, the frame itself, so far as its

motion as a whole is considered, may be treated as a point (page
83).

Having thus drawn and notated the frame Fig. 1 and con-
structed the force polygon Fig. 2, we can find the stresses in the
members. The forces and stresses at each apex must be in equilib-

rium, and therefore form a closed polygon.
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Thus consider first the left-hand apex, Fig. 1. At this point we
have the reaction EA and the stresses in Aa and Ea, constituting
a system of concurring forces in equilibrium. But we already
have EA laid off in Fig. 2. If then we draw Aa and Ea in Fig. 2
parallel to Aa and Ea in Fig. 1, and produce to intersection a, the
polygon is closed and we have in Fig. 2 the stresses in Aa and Ea,
to the same scale employed in laying off EA. Since EA acts up-
wards, if we follow round from E to A and A to a, and a to E, in
Fig. 2, and transfer the directions thus obtained for Aa and aE to
the left-hand apex in Fig. 1, we have the stress in Aa towards this
apex or compression (— ), and the stress in aE away from the apex
and therefore tension ( + ).

[The student should follow with his own sketch and mark each
stress with its proper sign as he finds it.]

Let us now pass to the next upper apex, at Fi , Fig. 1. Here we
have Fi or AB and the stresses in Aa, ab and Bb in equilibrium.
But we already have the stresses in Aa and AB laid off in Fig. 2.

If then we draw from a and B in Fig. 2 lines parallel to ab and
Bb in Fig. 1, and produce to intersection 6, the polygon is closed
and we have in Fig. 2 the stresses in ab and Bb. Since AB is

known to act downward, we follow round in Fig. 2, from A to B,
B to d, d to a, and a to A, and transfer the directions thus obtained
to the apex at Fi , Fig. 1, under consideration. We thus obtain the
stress in Bb towards the apex or compression, the stress in ba to-

wards the apex or compression, and the stress in aA towards the
apex or compression, just as already found.

Note that in the first case, when we were considering the apex
at .Ri , we found the stress in aA acting towards that apex. Now
when we consider the apex at Fi we find the stress in aA acting
towards that apex—in both cases, then, compression.

Let us now consider the second lower apex, Fig. 1. We have
here no outer force, but the stresses in Ea, ab, be and cE must be
in equilibrium and therefore form a closed polygon. But in Fig.

2 we have already found the stresses in Ea and ab. If then we draw
from b a line parallel to be in Fig. 1, and produce it to intersection
c with Ea, the polygon closes, and we have in Fig. 2 the stresses
in be and cE. We have already found aE to be tension. It must
therefore act away from the apex we are considering. We there-
fore follow round in Fig. 2, from E to a, a to b, b to c, and c to E,
and transfer the directions thus found to the corresponding mem-
bers in Fig. 1. We thus obtain the stress in Ea tension and the
stress in ab compression as already found, and the stress in be
tension and in cE tension.

Let us now consider the top apex. We have here the force
Fi = BC, and the stresses in Bb, be, cd and dC, in equilibrium.
But in Fig. 2 we have already laid off BC, and we have found the
stresses in Bb and be. If then we draw from c and C lines parallel
to cd and Cd in Fig. 1, and produce to intersection d, the polygon
closes and we have in Fig. 2 the stresses in cd and Cd. Since BC
acts downwards, we follow round from B to C, C to d, d toe, c to b,

and b to B. Transferring these directions to the corresponding
members in Fig. 1, we obtain the stress in Cd compression and in
dc tension, while the stress in cb is tension and in bB compression
as already found.
We can thus go to each apex and find the stresses in every

member.
The lines in Fig. 2 which thus give the stresses in the members

constitute the stress diagram. Each stress having letters at its
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ends in Fig. 2 is parallel to that member in Fig. 1 which has the
same letters at its sides.

Apparent Indetermination of Stresses.—It sometimes happens
that a frame has no superfluous members and yet in applying the
graphic method we are unable to find any apex at which all the
forces but two are known. In such case the difficulty may be
overcome by taking out one or more of the members and replacing
them by another member, and then applying the method until we
find the stress in some member which is not affected by the change.
Or we may find the stress in this member by the method of sec-

tions (page 102). Having found this stress, we can replace the
members taken out and find the actual stresses.

Thus let Fig. 1 be a frame * acted upon by the forces Fi , F% ,

F3 , Ft, etc., and the reactions or upward pressures of the supports

Notate the frame and the forces by letters on each side as di-

rected (page 134).

Then lay off to scale the outer forces in Fig. 2, thus forming the
force polygon ABCD . . . HIA. This polygon is a straight line in
this case, because all the forces are parallel, and it must close, that
is, the outer forces are in equilibrium.
We can now proceed to find the stresses as follows

:

Consider first the left hand apex, Fig. 1. At this point we have
the reaction IA and the stresses in Aa and la constituting a sys-
tem of concurring forces in equilibrium. But we already have IA
laid off in Fig. 2. If then we draw Aa and la in Fig. 2 parallel to
la and Aa in Fig. 1, and produce to intersection a, the polygon is

closed and we have in Fig. 2 the stresses in Aa and la to the same
scale employed in laying off the forces. Since IA acts upwards,
we follow round from I to A, A to a, and a to J, in Fig. 2, and
transfer the directions thus obtained for Aa and al to the corre-
sponding members in Fig. 1.

We have then the stress in Aa towards the apex we are con-
sidering or compression (— ), and the stress in al away from that
apex or tension (+).

Considering now the next upper apex, we have here the force
AB known, the stress in Aa already found, and the stresses in ab
and Bb unknown. If then in Fig. 2 we draw ab and Bb, thus clos-

ing the polygon, we obtain the stresses in ab and Bb.

* Disregard for the present the dotted member in Fig. 1.
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Since AB acts down, we follow round in Fig. 2 from A to B, B
to b, b to a, and a back to A, and transfer the directions thus ob-
tained to the corresponding members in Fig. 1. We have then the
stress in Bb towards the apex we are considering or compression
(— ), the stress in ba towards that apex or compression (— ), and the
stress in aA also towards that apex or compression (— ), just as we
have already found it.

Note that when we were considering the apex at R\ , we found
the stress in aA acting towards that apex. Now when we consider
the apex at Fi we find the stress in aA acting towards that apex.
In both cases, then, compression.
We can now consider the next lower apex, where we have the

stresses in la, ab, be and cl in equilibrium. We already know la
and ab, and if we draw in Fig. 2 be and cl, we obtain the stresses,

in be tension (+), and in cl tension.
Thus far there has been no difficulty in the application of the

graphic method. But now we cannot consider the next upper or
lower apex, because at each we have more than two unknown
forces. If we should start at the right end, we should soon come to
the same difficulty on the right side. Apparently we can go no
farther.

The number of members is 27 (we disregard the dotted member
in Fig. 1). The number of apices is 15. We have then, applying
the criterion for superfluous members (page 103), m = 2n — 3. There
are then no superfluous members.

If now we remove the two members de and ef and replace them
by the dotted member e'f, where e' takes the place in the new nota-
tion of the two letters e and d, we have still a rigid frame with no
superfluous members. For the number of members is now m = 25
and the number of apices is n = 14. We have then m = 2n — 3.

But this change has evidently not affected the stress in the member
Ig. We can therefore now carry on the diagram until we find the
stress in Ig, or we may compute the stress in Ig directly by the
method of sections (page 102).

Thus if we now consider the apex at Ft , Fig. 1, we have at this
point the stresses in the members Bb, be, ce' and e'C, and the force
BC, all in equilibrium. We know BC, Bb and be, and if we draw
in Fig. 2 ce and eC, we obtain the stresses in eC compression and
in ce' compression.
We can then pass to the apex at F3 , Fig. 1, where we know all

the forces except the stresses in Df and fe. We draw then Df and
fe' in Fig. 2, and obtain the stresses in Df compression and in fe'
tension.
We can now pass to the next lower apex, where we have the

stresses in Ic, ce' and e'f, and can therefore find fg and Ig. We
draw then fg and Ig in Fig. 2, and obtain the stresses in fg and Ig
tension.
We have thus found the stress in the member Ig, and since this

is unchanged by the removal of the members de and ef, we can now
replace those members and remove e'f.

We can now consider the second lower apex and find the
stresses in cd and dg, and can then pass to the apex at F3 and find
the stresses in ef and Df, and so on. We can thus find the stress in
every member of the frame, and there is no real indeterminateness.

Remarks upon the Method.—The method just illustrated we
may call the "graphic method by resolution of forces." The stu-

dent will note that he must always know all but two of the forces
concurring at any apex before he can consider that apex.
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It is evident that if the frame is completely divided into two
portions by cutting the members, the stresses which existed in
the cut members before the section was made must hold in
equilibrium the outer forces acting upon each portion of the frame
(page 102).

This is at once made evident by Fig. 2, page 137.

Thus suppose a section cutting the members Bb, be and cE, Fig.
1, and thus dividing the frame into two portions. We see from
Fig. 2 that the stresses in the cut pieces make a closed polygon
with EA and AB, the outer forces on the left-hand portion, or
with BC, CD and DE, the outer forces on the right-hand portion.

If we solve the triangles in Fig. 2, page 137, we obtain algebraic
expressions for the stresses identical with those obtained by the
" algebraic method by resolution of forces " (page 101).

Thus since the algebraic sum of the horizontal and vertical
components of the forces acting at each apex must be zero, we

have + Ri + Aa cos a = 0, or Aa =——— , where « is the angle
cos a

of the rafter with the vertical. We get the same result at once
from Fig. 2 by solving the triangle AaE In the same way we
have at once, from Fig. 2, ab = — Fi cos ft, where /S is the angle of
ab with the vertical.

We see also from Fig. 2, page 137, other relations. Thus we see
that the stress in ab will be the least possible when it is perpendicu-
lar to the rafter. We also see at a glance how the stress in any
member is affected by a change of inclination of the member.

Finally, the application of the method is equally simple no
matter how irregular the frame may be.

If the frame is symmetrical with respect to the centre, and the
forces Ei , F% in Fig. 2 (page 137) are equal, it is evident that the
stresses in each half will be the same. We have then Cd = Bb,
cd = cb, and so on.

Choice of Scales, etc.—In general the larger the frame is drawn
in Fig. 1, the better, as it then gives more accurately the direction
of the members composing it.

The force polygon Fig. 2, on the other hand, should be taken to
no larger scale than consistent with scaling off the forces to the de-
gree of accuracy required, so as to avoid the intersection of very
long lines, where a slight deviation from true direction multiplies
the error. If an error of one twenty-fifth of an inch is considered
the allowable limit, the scale should be so chosen that one twenty-
fifth of an inch shall represent a small number of pounds, withm
the degree of accuracy required.

The stress polygon Fig. 2 should be completely finished and the
signs for tension ( + ) and compression (—) placed on the frame for
each member as its stress is found, to avoid confusion, before the
stresses are taken off to scale. A good scale, dividers, straight-edge,
triangle, and hard fine-pointed pencil are all the tools required. The
work should be done with care, all lines drawn light, points of
intersection accurately located and the frame properly notated to
correspond with the force polygon. Care should be exercised to
secure perfect parallelism in the lines of the frame and stress

polygon. Some practice is necessary in order to obtain close results.

It should be remembered that careful habits of manipulation,
while they tend to give constantly-increased skill and more ac-

curate results, affect very slightly the rapidity and ease with
which these results are obtained.
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EXAMPLES.

(1) A roof-truss has a span of 50 feet and rise of 12.5 feet. Each
rafter is divided intofour equalpanels, and the lower horizontal tie

into six equal panels. The bracing is as shown in the figure. A
weight of 800 lbs. is sustained at each upper apex. Find the

stresses.

Ans. Draw the frame in Fig. 1 to a scale of, say, 12 feet to an inch, and
notate it. Then constrnct the force polygon ABCDEFGH1A, Fig. 2.

Note that R t or HI and R, or IA are

equal and each 2800 lbs. The force poly-

gon then closes as it should. We can take
the scale of Fig. 2 as 3200 lbs. to an inch.

Then an error of ^ of an inch will be
about 128 lbs.

We can then find the stresses as shown
in Fig. 2.

Aa Bb Cd Df la
- 6280 - 5816 - 4700 - 3580 + 5624

Ie Ie ab be cd

-f 4832 + 4024 - 720 + 720 - 1060

de ef fg
-f 928 - 1452 + 2400 lbs

The accurate results (Ex. (3), page 542)
as found by computation are

- 6260 - 5813 - 4696 - 3577 -f 5600

+ 4802 + 4003 - 720 + 720 - 1081

+ 920 - 1443 + 2401 lbs.

It will be seen that the greatest error is only 30 lbs. The above results

were actually obtained from the diagram, using the scales given.

(2) Sketch the stress diagram for a roof-truss as shown in the
following Fig. 1, equal forces acting at every upper and lower apex.

Ans. The student should note that the reactions DE and GA are each equal
to half the sum of the downward forces or 2£ forces.

We lay off then in Fig. 2 AB, BC, CD downwards. Then DE upwards
equal to 2£ forces. Then EF, FG downwards. Then GA upwards equal to

2£ forces, and closing the force polygon.

The stresses can now be found as always.

(3) We give in the folloiving figures a number of frames with
their stress diagrams* For the sake of generality, the outer forces
and reactions are often taken inclined as well as vertical.

* The student should sketch the stress diagrams for himself in each case, put-
ting down as be goes along the sign (— ) and (-}-) for compression and tension
upon each member of the frame as soon as he finds it.
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Fig. 2. Fig. 3.

Fig. 4.
Fig. 6.

Fig. 7. Fig. 8. Fig. 9.
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Fig. 17. Fig. 18.
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Fig. 22. Fig. 23. Fig. 24.

Fig. 25. Fig. 26.
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1

Fig. 87.

Fig. 28.

Non-concurring Forces.—Let the co-planar forces Fi, F% , F, »
F* , etc., act at the points Ai , A* , A 3 , A* of any rigid body, Fig. 1.

If we lay off the forces to scale
in Fig. 2, we have as before the
force polygon 012 3 4, and the clos-
ing line 4 gives as before the re-
sultant. If this resultant acts in
the direction 4 upon the rigid
body, it will hold the given forces
in equilibrium. If it acts in the di-
rection 4, it will replace the given
forces.
We thus know the magnitude

and direction of the resultant. But
its position in the plane of the forces
in Fig. 1 is as yet unknown.

In order to determine this,

choose any point O in Fig. 2, and
draw the lines O0 and 04. This
point O we call the pole of the force
polygon. Now since every line in
the force polygon represents a

force, by thus choosing a pole O and drawing lines OO, 04 to the
extremities of the resultant 4, we have resolved the resultant into
the two forces represented by OO and 04. This is evident from the
fact that these two lines make a closed polygon with 04, and hence
taken as acting from 4 to O and O to 0, as shown by the arrows,
hold the forces Fi , Fa , F3 , F* in equilibrium, or replace the result-
ant 4 (page 133). As the pole O is taken anywhere we please, we
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can thus resolve the resultant 4 for equilibrium into forces in any
two directions we wish.

Let us then consider the resultant 4 for equilibrium, replaced
by the two forces 40 and 00. Anywhere in the plane of the forces
in Fig. 1 draw a line su parallel to 00 and produce it till it meets
Fi ,

produced if necessary, at a.

If then we take s and Fs , Fig. 1, as acting at a, their resultant
will pass through a and be parallel to Sx in the force polygon Fig.
2, because Si in the force polygon is the resultant of Fi and s , since
it closes the polygon for those forces. Through a in Fig. 1, then,
draw a line parallel to Si and produce it to intersection b with Ft

,

produced if necessary. The line s 2 in the force polygon is the re-
sultant of Si and Ft. Parallel to this line then draw sa through b,

Fig. 1, and produce to intersection c with F3 ,
produced if neces-

sary. The line s3 in the force polygon is the resutlant of s2 and F3 .

Parallel to this line then draw s3 through c, Fig. 1, and produce to
intersection d with Fi

,
produced if necessary. Finally through d in

Fig. 1 draw a line s4 parallel to s* in the force polygon.
We thus find for any assumed position of So in the plane of the

forces in Fig. 1 the proper corresponding position of s*. Since now
So and s4 are components of the resultant in proper position and
each may be considered as acting at any point in its line of direc-
tion, we have only to prolong them, and their intersection gives a
point e on the line of direction of the resultant.
We prolong So and s* then in Fig. 1 to intersection e. The line

of direction of the resultant passes through e. Acting in the direc-
tion from 4 to 0, it will hold the forces in equilibrium. We thus
know the magnitude, direction and position of the resultant for
equilibrium.

Position of Pole and of s Indifferent.—The method is evidently
general no matter where in the plane of the forces in Fig. 1 we
take So as acting, and no matter where we take the pole in Fig. 2.

Pole, Equilibrium Polygon, Rays, Closing Line.—The point O we
call the pole in the force polygon. It may be taken where we
please. The polygon abed in Fig. 1 we call the equilibrium polygon,
and ab, be, cd, etc., are its segments. In the present case it is evi-
dently the shape a string would take if suspended at any two points
as A and B, in Fig. 1, on s and s4 . The stresses in the segments
would be tensile. These stresses are given by the lines OO, 01, 02,
in the force polygon, and we call these lines rays. In general
forces may act up as well as down, in which case some of the seg-
ments would sustain compressive stresses and our equilibrium
polygon would contain struts as well as ties.

Let us take any two points, as A and B, upon the end segments
So and St , Fig. 1, and suppose them fixed. The force So acting at
A we shall then have to replace by two forces, one parallel to the
resultant and one in the direction AB. So also for s* at B. The
sum of the two components parallel to the resultant must be equal
and opposite to the resultant, and the component in the direction
AB must be resisted by a strut or compression member AB. This
resolution we make at once by drawing through O in the force
polygon a line OL parallel to AB. The line AB we call the closing
line. Thus we see from Fig. 2 that the sum of the components 4L
and L0 equals the resultant.

In any case, then, we can fix any two points of the equilibrium
polygon as A, B, by drawing the closing line AB. A line OL
through O parallel to AB, in the force polygon, gives the com-
ponents into which So and s* are resolved.
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Eio^

Fig. 2.

We can then consider the entire polygon AabcdB, with its clos-
ing line AB, as a frame in equilibrium with the given forces, and
can apply to it the principles of page 135.

Thus take the apex A. Here we have the reaction JRi = LO in
equilibrium with the stresses in AB and Aa. Following round in

R the force polygon from L to 0,

\ . to O, and O to L, and trans-
ferring these directions to the
apex A, we find So away from
A or tension, and OL towards
A or compression, just as on
page 136.

So also at the other apex B
we have _R2= 4L in equilibrium
with the stresses in AB and
Bd. Following round in the
force polygon from 4 to L, L
to O, and O to 4, we find S*
away from B or tension, and
LO towards B or compression,
as before. The components Ri
and Ri act opposite to the re-

sultant 04 which replaces the
forces, and equal to it in mag-
nitude. The forces at A and
B parallel to OL are equal and
opposite. Hence the frame is

in equilibrium.
Recapitulation.—Our method, then, is as follows :

1st. Draw the force polygon by laying off the forces to scale one
after the other, in any order. The line which closes this polygon
gives the resultant in magnitude and direction. When it is taken
as acting in the direction obtained by following round the force
polygon in the direction of the forces, it will cause equilibrium. In
the opposite direction it replaces the forces.

2d. Choose a pole O, and draw the rays So , Si , s2 , etc.

3d. Draw the equilibrium polygon.
4th. Fix any two points in the end segments of the equilibrium

polygon by drawing the closing line of the equilibrium polygon
between those two points.

5th. A fine drawn in the force polygon parallel to the closing
line of the equilibrium polygon will divide the resultant into the
two reactions at the ends. We thus have a frame the stresses in
which can be found as on page 136.

Graphic Construction for Centre of Parallel Co-planar Forces.

—

Let Ft , Fi , F3 , etc., be parallel co-planar forces acting at the points
Ai, A?, A 3 , etc. , of a rigid body.
We construct the force polygon Fig. 2 by laying off the forces

Fi , Fi , F3 , etc. The resultant is then the algebraic sum of the
forces and parallel to them.

' Then choose a pole O and draw the rays sB , Si , s 2 , s3 , etc.

Anywhere in the plane of the forces, Fig. 1, we draw a line
parallel to So to intersection a with Fr, then ab parallel to Si to
intersection b with F-2 \ then be parallel to s2 to intersection c
with F3 ; then s3 through c parallel to s3 in Fig. 2.

The intersection d of ft and s 3 is a point on the resultant which
therefore has the direction and position dC.
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etc., all turned in the same
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Now suppose the forces Fi , i^ , i 3̂

direction through a right
angle.

Draw the new equilibrium
polygon So a' b' c' s s ', whose
sides are respectively per-
pendicular to those of the ^ !

first. X
The intersection d' of sa

'

and s3
' is a point on the re-

sultant which therefore has
the direction and position
d'C.

The intersection C of the
two resultants gives the
centre of force for the system
(page 73).

Cor. The same construc-
tion evidently determines the
centre of mass (page 75), if

we divide a body into a con-
venient number of portions,
and take the weight of each
portion, Fi, Ft, F3 , etc.,

acting at the centre of mass
of that portion.

Properties of the Equilibrium Polygon.—The equilibrium polygon
has many interesting properties. We shall call attention to only
two.

1st. As we have seen, the intersection of any two segments is a
point in the resultant of the forces included between those segments.
Thus in the preceding Fig. 1, the intersection d of s» and s3 is a
point on the resultant of Fi , Fa and F3

2d. Let Soab, Fig. 1, be a portion of the equilibrium polygon, and
Fig. 2 its corresponding force polygon.

Take any line fe in Fig. 1, parallel to
Fx and draw the perpendicular cd = x.

Let de = y be the ordinate between So

and S).

In the force polygon Fig. 2, draw the
perpendicular OH =H from the pole to
01. This is called the pole distance of Fi.

Then by similar triangles we have

y:x::Fi-.H, or Fix = Hy.

But Fix is the moment of Fi with ref-
erence to any point on the line fe.

h 1— —-^o Hence, the moment of any force as F,
with reference to anypoint, is equal to the

ordinate through this point parallel to Fi , included between the
segments of the equilibrium polygon which meet at Ft , multiplied
by the pole distance of Fi in the force polygon.

Application to Parr^lel Forces.—The outer forces acting upon
framed structures are generally weights and reactions of supports
due to these weights. We have then in general to investigate a
system of parallel forces,

Let Fi, Fa, F3 , Fig. 1, be vertical forces acting upon a rigid body
or frame.

Vo 1/

i X. i

Fio. U

KI \so , Fm. 2.



148 GRAPHICAL STATICS—CO-PLANAR FORCES. [CHAP. VI.

Lay off the force polygon 012 3, Fig. 2. Choose a pole O and
draw the rays So , Si , s3 , s3 .

Then in the plane of the forces Fig. 1, draw So to meet Fi at a ;

then Si through a to meet Ft at b ; then s2 through 6 to meet F3 at
e k

FlQ. 1.

Fig. 2.

c; and finally s3 . We thus have the equilibrium polygon s abcs3 .

We see that the horizontal component of the stress in any segment
is constant and equal to OH (page 111).

Drop verticals through A and B which meet the end segments
So and s3 in A' and B. If we fix the points A', B by drawing the
closing line AB', the reactions at A ', B will be the reactions at A
and B of the frame.

Therefore in Fig. 2, draw OL parallel to A'B and we have
D0 = R i , and BL = R,.

Draw the pole distance OH. Through the apex K of the frame
drop the vertical Kkmn. Then, as just proved, OH (to scale of
force) x kn (to scale of distance) = the moment of Ri. Again, OH
x mn = the moment of Ft. The resultant moment is then given
by OH x (kn — nm) or OH x km.

That is, for parallel forces, the pole distance multiplied by the
ordinate of the equilibrium polygon at any point, parallel to the
forces included between the closing line and the polygon, gives the
resultant moment of all the forces on either side of the ordinate with
reference to any point in that ordinate.

If then we make a section cutting EK, CK and CD, and take
the centre of moments at K, we have (page 102) stress in CD x
lever-arm for CD = algebraic sum of moments of Ri and Fi with
reference to K. But this algebraic sum we have just seen is given

H X JciYb

by H x km. Hence stress in CD is equal to = ^

—

—=.J lever-arm for CD
We can therefore find the moment graphically at any point by

multiplying the ordinate to the equilibrium polygon at that point
by the pole distance.
A few examples will make the application of the preceding prin-

ciples clear.

Ex. 1. Let AB, Fig. 1, be a beam or rigid body or framed struc-

ture subjected to two unequal weights .Fi and F* applied at any
two given points. Required the reactions at the supports A and B,
also the moment at any point of all the forces right or left of that

point, when equilibrium ex-
ists.

Draw the force polygon
Fig. 2, choose a pole O, and
draw So, Si, sa , and the pole
distance H

Construct the equilibrium
polygon Fig. 1 by drawing a
parallel to So to intersection a

Fid. 1.
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with Fi; through a a parallel to Si to intersection b with Fi;
through b a parallel to s». Drop verticals from A and B and draw
the closing line AB . Parallel to A B draw OL in Fig 2.

Then LO and 2L are the reactions at A and B ; and since they act
upwards, the supports must be below A and B.

The moment at any point K is equal to the ordinate kn multi-
plied by the pole distance H.

Ex. 2. It is well to observe that the order in which the forces
are taken makes no difference in the results, although the figure

obtained may be very different.

Fig. 1.

Thus take the same example as before, but number the forces in
inverse order, Fig. 1.

We form the force polygon as before, choose a pole and draw s
,

Si, Si. Now parallel to s we draw a line till it meets Fi at a
[note that So must always be produced to meet Fi] ; then from a
a parallel to Si till it meets Fi at b ; then from b a parallel to Si.

Draw the closing line A'B . A parallel to it in Fig. 2 gives the
reactions LO and 2L as before. At apex b of the equilibrium poly-
gon we find Si tension, since Fi acts downward. At apex a we find
So tension, since F\ is downward. Hence at A', So acts away from
A, and following round in the force polygon we obtain £0 acting
upwards. At B', Si acts away, and hence 2L acts upwards also.
The supports at A and B must then be below.

As to the moments, the moment of the reaction at A with refer-
ence to any point K is H x km. The moment of Fi is — H x np.
The resultant moment is H x (Km — np). The lower ordinates
subtracted from the upper will give us the same figure as before.

Whenever, then, we obtain a double figure as in the present case,
it shows that we have taken the forces in inconvenient order. We
have only to change the order to obtain the moments directly from
the equilibrium polygon.

Closing Line at Right Angles to the Forces—Choice of Pole
Distance.—It makes no difference what inclination the closing line

may have, because, as we have seen, the ordinate in the equilibrium
polygon parallel to the resultant, multiplied by the pole distance,
gives the resultant moment, with reference to any point on that
ordinate, of all the forces right or left.

We can, however, if we wish always cause the closing line to be
at right angles to the parallel forces. We have only to find first

by preliminary construction the reactions or the point L. If then
we take a new pole anywhere in a line through this point at right
angles to the forces, the closing line will be at right angles to the
forces.

As to choice of ,pole distance, we have only to so choose the
position of the pole as to give good intersections for the polygon.
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The multiplication may be directly performed by properly chang-
ing the scale in the equilibrium polygon. The ordinate to this new
scale will then give the moment at once. Thus if our scale of
length in Fig. 1, preceding, is five feet to an inch, and the pole dis-
tance in the force polygon Fig. 2, measured to the scale of force
adopted, is ten pounds, we have only to take fifty moment units to
an inch as the scale for the ordinates and they will give the
moments directly.

Ex. 3. Let the single weight Fi act at any point of the rigid
body AB. Then the equilibrium polygon is AaB'. The vertical
reactions at A and B are L0 and 1L, both acting up, and hence the
supports are below A and B.

Pig. 1

We see at once that the moment is greatest at the weight and
decreases to zero at each support.

Ex. 4. Let Fi act outside of the supports A and B. Observe in

constructing the equilibrium polygon that So is always produced
till it meets Fx\ also that the closing line A B always unites the
two points vertically under the supports, upon the two end seg-
ments.

The reactions require special notice. Thus the reaction jR3 at B
is the resultant of the stresses in aB' and B'A', or IX in the force
polygon. The reaction Ri at A is the resultant of the stresses in

A'a and A'B', or L0 in the force polygon.
Since Fi acts downward at apex a, we have Si compression and

So tension. Therefore at apex A' we take So acting away, and hence
obtain L0 acting down, or the support is above A.

At apex B' we take Si acting towards, and hence obtain 1L act-

ing up, or the support is below B.
Ex. 5. One Downward and One Upward Force between the

Supports.—Here we need only call special attention to the fact that
as Fi acts up and is less than Fi , s2 in the force polygon Fig. 2 lies

between So and $i.
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The

The reaction at A is the resultant of s„ and L or LO. The reaction
at B is the resultant of s3 and L or L2.
Since Fi is down at a, we have So ten-
sion, and since F3 is up at b, we have
Si tension. At apex A', then, So acts
away, and hence L is compression and
LO acts upward and support at A is

below. At apex B', s2 acts away, and
L is compression as before and 2L
acts downward, or support at B is

above.
We see also that if F* were less,

so that 2 falls below L in the force
polygon, the reaction at B would be
upward also, and the support would then have to be below,
student should sketch the case for Ft greater than Fi.

At the point K we see that the moment is zero. If AB is a
beam, the point K is the "point of inflection," or the point at which
the curve of deflection of the beam changes from concave to con-
vex. The beam would be concave upwards as far as K, and from
there on convex upwards.

Ex. 6. In the preceding case, let the forces be equal. Laying off

the force polygon Fig. 2, the first force extends from to 1, and
the second from 1 back to 0. Choosing
a pole O and drawing s , Si , sa , we find
that s and s2 coincide.

Constructing the equilibrium poly-
gon and drawing the closing line A'B'
and its parallel L in the force polygon,
we see that the reaction at A. or the
resultant of s and L is LO, and the re-

action at B or the resultant of s2 and L
is also LO. The reactions are therefore
equal. Since s and s2 are both tension,
we have reaction at A upward or sup-
port below A, and reaction at B down-

ward or support above B.
This is in accord with the principle (page 73) that a couple can

only be held in equilibrium by another couple. Morever, the re-

sultant of s and s2 in Fig. 2 is zero, and the point of application is

at the intersection of s„ and Si in Fig. 1, or at an infinite distance.

That is, the resultant of a couple is zero at an infinite distance
(page 73.)

At K the moment is zero as before, and we have a point of in-

flection.

Ex. 7. Two Equal Weights beyond the Supports.—The figure

needs no explanation, except to call attention

to the reactions.
Thus the reaction at A is LO acting down.

At B it is 2L acting up.
The moment at any point, in all cases, is

the ordinate multiplied by the pole distance
H. The shaded areas then show how the
moments vary.
We repeat here that the order in which

the forces are taken, in all cases, as also the

Sosition of the pole, is indifferent. The stu-

ent will do well to work out cases to scale

and satisfy himself that this is true.

• y Fia. 2.

Tio. 1.
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Fig. 1.

Ex. 8. Two Equal and Opposite Forces beyond the Supports.
—Observe that So is produced till it inter-
sects Fi at a in Fig. 1 ; then Si from a to
b ; then s 2 parallel to s2 or s„ in Fig. 2. The
closing line A'B is then drawn. A parallel
to it in Fig. 2 gives L.

The reaction at A is LO acting down,
and at B, OL acting up.

Between B and F* the moment is con-
stant. This is the graphic interpretation
of the principle, page 72, that the moment
of a couple is constant for any point in its

plane.
Ex. 9. A Uniformly-distributed Load.

—Let the load be uniformly distributed.
We might consider it as a system of equal

and equidistant weights very close together.
Thus in Fig. 1 the load area, which is a rectangle of uniform

density, whose height is the load per unit of length, and whose
length is AB, may be divided into any
number of equal parts. The weight on
each of these parts acts at its centre of
mass. We can then lay off the force
polygon Fig. 2. Since the reactions at
A and B are equal, we take the pole in
a horizontal through the middle point of
the force line. The closing line A'B' will

then be parallel to AB (p. 149). We can
then draw s , Si , sa , etc., and construct
the equilibrium polygon. It is evident
that the points a, b, c, d, etc., will enclose
a curve tangent to ab, be, cd, etc. , at the
points midway between, that is, where
the lines of division of the load areameet
the sides of the equilibrium polygon.

The ordinates to this curve, multiplied by the pole distance H,
give the moment at any point on the ordinates.

It will be seen, however, that this method is deficient in accuracy,
because the lines ab, be, cd, etc.. are so short and there are so many
of them. If, however, we can find what the curve A abed, etc., is,

we could draw the curve at once.
Suppose we divide the load area into only two portions of lengths

x and I — x, where I = AB, Fig. 3. The entire weight over the por-
tion x can be considered as acting at

the centre Ci of the load area. The
same holds good for the portion I — x.

We thus have two forces Fi and Fi.

Taking the pole as before, so that
the closing line A'B' shall be parallel

to AB, construct the equilibrium poly-

gon A'abB'. The curve of moments
will be tangent at A', c and B', as
shown by the dotted curve.

Now we see that, no matter where
the load area is supposed to be divided,

we shall always have for the distance
Cx e» between Ft and Ft

Jfc

Fig. 2.

o

Fig. 3.

,

1 1 n
eie* = -x + -ll =¥
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That is, no matter where the line of division is taken, the hori-

zontal projection of the line ab of the equilibrium polygon is

constant and equal to = I. But ab is a tangent to the curve required.
m

But if from any point on the line A'd we draw a line ab limited by
the line Bd, so that the horizontal projection is constant, the line

ab will envelop a parabola.
This may easily be proved as follows : Let the load per unit of length be p.

pi
Then the entire load is pi and the reaction at each end is -5-

.

The moment at any point distant x from the left support is then

But since Fi is equal to px,

pi pz*
y= o-*-^r-

This is the equation of a parabola. At the centre * = ~-, and we therefore

have the centre ordinate
pP

Cor. 1. We see, therefore, that when a string is suspended from
two points A', B' and sustains a load uniformly distributed over
the horizontal, the curve of equilibrium is a parabola (page 113).

Also the horizontal component of the stress at any point, as is

evident from the force polygon, is constant and equal to H. Also
the vertical component of the stress at any point as c, Fig. 3, is

Bi — Fi, or equal to the total load between the lowest point and the
point considered (page 111).

Cor. 2. We have the following construction for the equilibrium
curve. Lay off a perpendicular eK at the

centre e and make it equal by scale to ^—

.

8
Through A, K and B construct a parabola
having its vertex at K. The ordinate to this
.parabola through any point will give the
moment at that point.

»Z2

The distance Kd is also equal to *-—, be-
8

cause the moment of the reaction with reference to e is

pP
4

'

pP _pP _ pP
4

Cor. 3. How to Draw a Parabola.—Since we know, then, the
pP

distance ed = ^-, we can always draw the lines Ad and Bd. If

B then we divide Ad and Bd into any number of
equal parts and number these parts along one

1 line away from d and along the other towards
2

d, we have only to draw lines joining any two
points having the same number and these lines

/
will all have the same horizontal projection —

.

d 2

ed = pi I

2
X
2

and Kd = ed - eK = ^ -£l
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Tangent toThey will therefore enclose the parabola required,
these lines we may sketch the curve.
A better method is to plot the ordinates to the curve from its

equation,

px?
~2~'

pi

Methods of Solution of Framed Structures.—In Chap. IV we
have given and illustrated two methods of computation for framed
structures

:

1st. By Resolution of Forces (page 101).

2d. By Moments or the "Method by Sections " (page 102).

In the present Chapter we have the corresponding graphic
methods

:

1st. By Resolution of Forces (page 135).

2d. By Moments (147).

EXAMPLES.

(1) A roof-truss has a span of 50 ft. and a centre height of 12.

5

ft. Each rafter is divided into four equal panels, and the lower
horizontal tie is divided into six equal panels. The bracing is as
shown in the figure. Find the stresses in the members, by the
graphic method of moments, for a weight of 800 lbs. at each upper
apex.

Ans. We have computed the stresses (page 105, Ex. (3)) by the two
methods resolution of forces and moments. We have also found the stresses

by the graphic method of resolution of forces (page 140, Ex. (1)).

/*" Flo. 2.

We can construct the force polygon Fig. 2, and then the equilibrium poly-
gon Fig. 1. This, however, is not advisable for reasons already given. It

will be more accurate to assume the pole distance as unity, thus discarding the
force polygon altogether, and construct points in a parabola from the equa-
tion

pi px>
y = v-
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In the present case the load per foot is, if we suppose half weights of 400

at the ends, -^r- = 128 lbs. = p. Taking x = -^l, sh etc., we have

1, 2, 3, 4
7-5* 8*- 8* 8*

:

y = 17500 30000 37500 40000 lb. -ft.

Laying these off to any convenient scale, we determine very accurately the
points a, b, c, d of the equilibrium polygon. The other half of the polygon is

precisely similar.

The ordinates to this polygon will give, to the scale adopted, the moment,
for any point of the truss, of the outer forces left or right. Thus the moment
with reference to k of all forces right or left is km, Fig 1. We find by scale
km = 21666$ lb. -ft. In the same way for the next lower apex we find the
moment 35000 lb. -ft. The moment at the next lower apex or centre of the span
is 40000 lb. -ft.

Now by the method of sections (page 102) we have for any member

Stress X lever-arm -f- 2 moments of outer forces = 0.

The second term is given by the ordinates of the equilibrium polygon to

scale.

As regards the centre of moments for any member, we must observe the
rule (page 102), viz: Cut the truss entirely through by a section cutting only
three members the strains in which are unknown. For any one of these take
the point of moments at the intersection of the other two.

For the proper sign for the first member of the equation place an arrow on
the cut member pointing away from the end belonging to the left-hand por-

tion, and take the moment (-4-) or (— ) according as the rotation indicated by
this arrow is counter clockwise or clockwise.

If the stress comes out positive, it indicates tension ; if negative, compres-
sion.

Take for instance the first lower panel, La. The centre of moments must
be taken at the first upper apex. The moment for this point is given by the
ordinate na of the equilibrium polygon, or — 17500 lb. -ft. We take the minus
sign, because the rotation is clockwise. We have then

La X 3.125 - 17500 = 0, or La = + 5600 lbs.,

where 3. 125 ft. is the lever-arm of La.
In similar manner we have

Lc X 6.25 - 30000 = 0, or Lc = + 4800 lbs.,

where 6.25 ft. is the lever-arm of Lc.
For Le we have

Le X 9.375 - 37500 = 0, or Le = + 4000 lbs.,

where 9.375 ft. is the lever-arm of Lc.
For the first upper panel Aa, take the centre of moments at k. The mo-

ment for this point is given by the ordinate from k to the first line of the poly-

gon produced. It is therefore larger than km, which gives the combined
moment of the reaction and first weight. We find it by scale to be — 23333$
lb. -ft.

We have then

- AaX 3.727 - 2333$ = 0, or Aa = -f 6260 lbs.,

where 3.727 ft. is the lever-arm for Aa.
In like manner for Bb we have centre of moments at k, and moment km =

- 21666$. Hence

- Bb X 3.727 - 21666$ = 0, or Bb = + 5813 lbs.
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For Cd we have

- Cd X 7.454 - 35000 = 0, or Cd = + 4691 lbs.,

where 7.454 ft. is the lever-arm for Cd.

For Df we have

-DfX 11.151 40000 = 0, or Df = + 3587 lbs.

For all the braces the point of moments is at the left-hand end. Taking a
section through Bb, ah and La, we have acting on the left-hand portion only
the weight AB and the reaction. The moment of the weight relative to the
left end is the ordinate a'b', or by scale — 5000 lb. -ft. The lever-arm for ah is

6.934 ft. Hence

- ah X 6.934 - 5000 = 0, or ah - - 721 lbs.

For be we have

+ ah X 6.934 - 5000 =0, or ah = + 721 lbs.

For cd the moment is a'b' -\- b'c', or — 15000. We have then

- cd X 13.869 - 15000 = 0, or cd = - 1081 lbs.,

and so on. All lever-arms can be scaled off the frame or must be computed.

The present method is not to be recommended for the braces. In prolong-
ing the sides ah, be, etc , of the equilibrium polygon, a slight variation in

direction will make considerable error in the ordinate at the end. Also as the

sides ah, be, etc. , are short they do not give direction accurately enough.
Of all our four methods, the graphic method by resolution of forces (page

135) is the easiest of application to such cases.

The more irregular the frame the more advantageous it is.

(2) A bridge-girder, as shown in thefigure, 10feet deep, 80 feet long,
eight equal panels in the lower chord and seven equal panels in the
upper chord, has a load of 5 tons at each lower apex. Find the
stresses by diagram and by moments.

/ a \/ c v e \/ g

| A I B
5

I C I D
5 5

I E I
5 5

Fig. 1.

F
5

G ( H
5

Ans. The panel length is 10 ft., sec = 1.117. By moments then

4a X 10 - 17.5 x 10 = 0, or Aa = + 17.5 tons.

Be X 10 - 17.5 X 15 -f 5 X 5 = 0, Be = + 23.75 "
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Ce X 10 - 17.5 X 25 -f 5 (5 + 15) = 0,

Dg X 10 - 17.5 X 35 + 5(5 -4- 15 + 25) = 0,

- lb X 10 - 17.5 X 10 = 0,

- Id X 10 - 17.5 X 20 + 5 X 10 = 0,

- If X 10 - 17.5 X 30 + 5(10 + 20) = 0,

- Ik x 10 - 17.5 X 40 + 5(10 + 20 + 30) = 0,

Ce = + 33.75 tons.

Dg = + 38.75

lb = - 17.5

Id = - 30

If=- 37.5

Ih = - 40

la - - 17.5 X 1.117 = - 19.55, de = - 7.5 X 1.117 = - 8.38,

ah = + 19.55, ef = + 8.38,

be = - 12.5 X 1.117 = - 13.96, fg = - 2.5 X 1.117 = - 2.79,

cd = + 13.96, gh = + 2.79.



CHAPTEK VII.

WORK.

"WOKK INDEPENDENT OP PATH. UNIT OF WORK. VIRTUAL DISPLACEMENT.

VIRTUAL WORK. PRINCIPLE OP VIRTUAL WORK.

Work.—The product of a uniform force by the projection of the
displacement of its point of application along the line of action of
the force is called work.

Thus let a uniform force, that is, a force constant in direction

F
and magnitude, act at a point Ai , and let the

S* >*" displacement of the point of application be
s\ ^r A\Ai = d.

s& \£ Let 6 be the angle FAiA* between the force
1 d 2 and the displacement. Then the projection of

the displacement A\Ai = d upon the line of the force F is Ain =
d cos 6, and we have for the work W,

W=FdcosQ (1)

But i^cos 9 is the projection of the force F upon the line of the
displacement AiAi.

Hence, work is the product of a constant force by the projection

of the displacement of its point of application along the line of tJie

force, or the product of the displacement by the projection of the
force along the line of the displacement.

If the projection of the displacement Am along the force is in
the direction of the force, the force is said to do work. In this case
the angle & is acute and W in equation (1) is positive.

If the projection of the displacement Am along the force is op-
posite in direction to the force, work is said to be done against the

force. In this case the angle is obtuse and W in equation (1) is

negative.
Cor. 1. If the displacement is at right angles to the constant

force, the work is zero.
Cor. 2. The weight of a body is a force acting at the centre of

mass (page 76). Hence the work done against gravity in raising a
body of mass m through a distance s is W= — nigs, where mg is

the weight in poundals and s the displacement of the centre of
mass. In gravitation units (page 6), W = — ms.

Cor. 3. The work done by gravity upon a body of mass m which
falls through a distance s is W= + nigs, where mg is the weight in
poundals and s the displacement of the centre of mass. In gravita-
tion units. W = + ms.

Work Independent of the Path.—The definition for work given
in the preceding Article evidently holds good no matter what the
path, provided the force is uniform, that is, does not change in
direction or magnitude.

158



CHAP. VII.] WORK. 159

Thus let the constant force F act on the particle A which is dis-
placed from A to B either along the line AB, or from
A to C and from C to B.

F
In the first case the work is F x Al. In the second F

.

case the work is

F x Am + F x Cn = F x Al. I

^MSo in general for any broken line between A and B.
Since a curve is the limit of a polygon, the same holds
true for any curved path between A and B.

Work when Force is Variable.—If the force is variable, we must
take the displacement indefinitely small, so that the force during
such displacement may be considered as uniform. In such case we
have

W= pFds (2)

Unit of Work.—If [F] is the unit of force and F the number of
units of force, [L] the unit of distance and s the number of units of
distance in the direction of the force, [W] the unit of work and W
the number of units of work, we have

W[W] = F[F] x s[L].

We have then the numeric equation

W=Fs,
provided

[W]=[F]x[L].

The unit of work, then, is the work done by one unit of force
when the displacement in the direction of the force is one unit of
distance.

The English absolute unit of work is then the foot-poundal, or a
constant force of one poundal acting through one foot.

The C. G. S. absolute unit of work is a constant force of onejdyne
acting through one centimeter. It is called an erg. A multiple of
this, equal to 10000000 ergs or 107 ergs, is used in electrical measure-
ments and called a joule, after Dr. James Prescott Joule.

In English gravitation units (page 6) the unit of work is the
foot-pound. This is the unit commonly adopted in Engineering
calculations. It is the work done in raising a mass of one pound
through the vertical distance of one foot against gravity. It is

therefore a variable amount of work, since the weight of one pound
varies with the locality (page 6).

Virtual Displacement—Virtual Work.—When the point of appli-
cation of a force is actually displaced, the displacement is actual
and the work done by or against the force is actual also.

If F is the force acting at any point and s is the actual displace-
ment in the direction of the force of that point, then if F remains
uniform, that is, constant in magnitude and direction during the
displacement, then the actual work is Fs.

But in general, when the point of application of a force is dis-

placed, the force does not remain uniform unless the displacement
is taken indefinitely small.

If F, then, is the force acting at any point and ds is an in-

definitely small displacement in the direction of the force, we have
in general the work given by Fds.

Now an indefinitely small displacement of a point which does
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not actually take place, but which is only imagined or supposed to
take place, we may distinguish by calling a virtual displacement,
and we call the work done by or against a force by reason of the
virtual displacement of its point of application the virtual work of
the force.

Virtual displacement unless otherwise specified is always to be
taken as indefinitely small. It is always linear displacement, since

a point has no size.

Principle of Virtual Work.—Let Pi, P, , Ps , etc., be any num-
ber of concurring forces, that is, forces acting upon a particle at P,

and suppose this particle to re-

ceive a virtual displacement PD
in any direction.

Since virtual displacement is

indefinitely small, the forces re-

main unchanged in direction and
magnitude.

If we lay off the line representatives in Fig. 2, the resultant is

given in magnitude and direction by the closing line OF3 = R of
the force polygon.

Draw OD parallel and equal to PD, and let «i , « a , a 3 , etc., and
6 be the angles made by P, , P2 , F3 , etc., and R with OD.

Then we have by construction

Rcos 9 = Pi COS «i + P„ COS at + F3 cos a 3 , etc. = 2Fcos a.

That is, the component of the resultant R in the direction of the
virtual displacement is equal to the algebraic sum of the compo-
nents of the forces in that direction.

If we multiply by the displacement PD = d, we have

P.dcos0=Pi . d cob ai+Fa . d cos a^+F3 .dcosa3 , etc. = 2Fd cos a.

But since d is indefinitely small, so that the forces remain un-
changed in magnitude and direction, we have by definition R . d
cos equal to the virtual work of the resultant, and Pi . d cos ai

,

Pa . d cos a
? , etc. , equal to the virtual works of Pi , Pa , etc.

Hence, if a particle acted upon by any system offorces receive a
virtual displacement in any direction whatever, the algebraic sum
of the virtual works of the forces is equal to the virtual work of the
resultant.

If the forces Pi , P2 , F3 , etc., acting on the particle are in equi-
librium, their resultant R is zero, and we have

Pi . d cos ai + Pa . d cos «a + F3 . d cos a3 , etc. = 2Fd cos a = 0.

This is called the "principle of virtual work " ; a principle which
includes all of statics and kinetics. We may state it as follows

:

If a particle in equilibrium under the action of any system of
forces receive a virtual displacement in any direction whatever, the
algebraic sum of the virtual works of the forces is equal to zero.

Conversely, if the algebraic sum of the virtual ivorks of a system
offorces acting on a particle is zero for every virtual displacement
whatever, the particle is in equilibrium.

Cor. 1. If a system of particles is in equilibrium under the action
of external and internal forces, and any number of particles of the
system receive any virtual displacement whatever, then, since the
algebraic sum of the virtual works of the forces acting on each par-
ticle is zero, it follows that the algebraic sum of the virtual works
of all the forces, external and internal, is zero.
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The principle of virtual work applies then to any material system
if all forces external and internal are considered.

Cor. 2. If a system of particles in equilibrium under the action
of external and internal forces receive any virtual displacement
of translation whatever which does not alter the configuration of
the system, then no work is done by or against the internal forces,
and the algebraic sum of the virtual works of the external forces
alone is zero.

The principle of virtuahwork applies then to the external forces
acting upon any rigid body in equilibrium, if the body is regarded
as a particle and the virtual displacement is one of translation.

Cor. 3. If a system of rigid bodies in equibriumunder the action
of external and internal forces receive any virtual displacement
whatever which does not alter the configuration of the system, then
no work is done by or against the internal forces, and the algebraic
sum of the virtual works of the external forces alone is zero.

The principle of virtual ivork applies then to the external forces
acting upon any system of rigid bodies whose configuration does not
change, if the rigid bodies are regarded asparticles and their virtual
displacements are translations.

EXAMPLES.

(1) A lever ACB with fulcrum at C is acted upon by the co-planar
forces P and Q at the ends A and B. Find the conditions for equi-

librium, neglecting friction. (For rough lever see Ex. (17), page
221.)

Ans. Let R be the resultant acting at the fulcrum G.

Take any point D in the plane of the

forces. Let the lever be rotated counter-

clockwise about an axis through D at right

angles to the plane of the forces, through

an indefinitely small angle of 8 radians.

Then the virtual displacement of A is

AD . 6 = As, making the angle sAP = «i

with P. The virtual displacement of G is

CD .Q=Cs, making the angle sGR = a n£ N\\ //
with the resultant R. The virtual dis- / "*\^ \> j/

placement of B is BD . = Bs, making the ""-V
angle sBO = aa with the direction of Q.

D

Then by the principle of virtual work, having regard to the proper signs as

given by the figure,

-f P. A8cos «i — R. Cs cos a — Q.Bs cos a„ = 0,

or

+ P. 6 . AD cos «i - R. 6 . CD cos a - Q . Q . BD cos a* = 0,

or

4- P. AD cos «, — R . CD cos a — Q . BD cos aa = 0.

But if we drop from D the perpendicularsZ)^ = p on P, Dn = r on R, and

Dn* = q on Q, we have AD cos a, = p, CD cos a = r, BD cos a% = g, and

hence
4- Pp - Rr - Qg = 0.

That is, the algebraic sum of the moments of the forces about any point in their

plane is zero (page 99).
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<?

Again, suppose the lever to be translated in any direction through an indef-

initely small distance, so that the virtual displacement of every point is d, and
let the forces P, Q, R make the angles a x , a3 and a with the direction cf the
displacement. Then by the principle of virtual work we have

*
Pd cos or l -f- Qd cos <xa -(- Rd cos a = 0,

P cos ax -f- Q cos ffj + R cos or = 0.

That is, the algebraic sum of the components of the forces in any direction is

zero (page 99), and their line representatives make a closed polygon.
Again, since the algebraic sum of the moments about any point is zero, the

three forces must intersect at a common point (page 100).

If we suppose the fulcrum G to be fixed, we can have only rotation. We
can then easily prove by the principle of virtual work tbat the necessary and
sufficient condition of equilibrium for any body free to turn about a fixed axis

under the action of any number of forces is that the algebraic sum of the mo-
ments of the external forces with reference to the fixed axis shall be zero.

If we take the fulcrum G as our point of moments we easily deduce, as on
page 71, when the forces are parallel.

* = -P+G. 7^ = -Jn
BG
AG'

-.<x-ax

If the forces are not parallel, let the force P make the
angle a x , the force Q the angle « s , the force R the angle a,
with the lever, the acute values being taken.

Then since the line representatives form a closed polygon,
we have

P
Q

P : Q :: sin (180 — a — o-3) : sin (a — a x ),

sin a cos aa -\- cos a sin at

sin a cos a x
— cos a sin ax

'

We have also

R sin a ^ P sin <xx + Q sin a7 ;

P ^os a = P cos «! — Q cos a,
;

P sin ai -J- Q sin a a
tan a = -g '-—

;P cos a x
— Q cos aa

R* = P* + Q« - 2PQ . cos (a, + a,).

(2) In a wheel and axle the radius of the wheel is a, and of the
axle b. Find the conditions for equilibrium, neglecting friction
and rigidity of the rope, when a mass P hung from the ivheel just
balances a mass Q hung from the axle. (For friction and rigidity
see Ex. (18), page 222.)

Ans. The external forces are Pg and Qg. If we suppose P to receive a vir-

tual displacement s downward, then Q will receive the virtual

displacement —a upward, and by the principle of virtual

work we have

Pas - On. -s = 0, or Pa = Qb,
a

or the algebraic sum of the moments of the external forces
with reference to the fixed axis is zero. This is the sole con-
dition for equilibrium for any body free to turn about a fixed Q.P
axis acted upon by any number of forces.
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In this example we see that it is not necessary to suppose the virtual dis-

placement indefinitely small, since the forces do not vary with the displace-
ment.

(3) Four sailors, each exerting a force of 112 lbs., can just raise
an anchor by means of a capstan whose radius is 1 foot 2 in. and
whose spokes are 8 ft. long, measured from the axis. Find the
weight of the anchor.

3072 lbs.
m ^Ans
-\ (4)

» distan
If the length of each of a pair of sculls be 8 ft. 6 in., and the

* distancefrom the hand to the rowlock be 2 ft. 3 in., find the force on
the boat when the rower applies a force of 25 lbs. on each scull, as-
suming that the blade does not move through the water.

Ans. 68 lbs.

(5) In the single movable pulley find the relation between the
force P and the mass Q for equilibrium, disregarding friction and
rigidity of the rope. (For friction and rigidity see Ex. (19), page
224.)

Ans. The external forces are P and the weight of the mass Q. If we sup-
pose a virtual displacement of Q downward equal to s, the
corresponding virtual displacement of P will be 2s upward.
We have then by the principle of virtual work, in gravita-

tion units,

}s - 2Ps - 0, '=£•

Again, if T is the tension of the rope, we have, in gravi-

tation units, T = P and 2T = Q. Hence P = ~.

In this example we see that it is not necessary to sup-
pose the virtual displacement indefinitely small, because the forces do not

vary with the displacement.

(6) In the system of pulleys shown, find the relation between the
~ force P and the mass Q for equilibrium, dis-

regarding friction and rigidity of the ropes.

(For friction and rigidity see Ex. (20), page 225.)

Ans. The external forces are P and the weight of the

mass Q. If we suppose a virtual displacement of Q down-
ward equal to s, the displacement of the next pulley is 2s,

of the next 4s, and so on. If there are n movable pulleys,

then, each one of the mass to, we have by the principle of

virtual work, in gravitation units,

Q8-j-m.s4-m.2s4-m.4s4-. . . m. 2"- 1s-P. 2»s = 0.

T.

i

t4

q
Hence

P = q 4- to (i 4- 2 4- a* 4- 28 4- . . .
2»-»)

2»

P = Q -f (2W - 1)to

a»

If we disregard the mass to of the pulleys,

2"

In this example we see it is not necessary to suppose the virtual displace-

ment indefinitely small, because the forces do not vary with the displacement.
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Again, let the tensions of the ropes be Tu Ti, .

equilibrium, in gravitation units,

27\ = Q + to;

2Ta = Tx + to;

2T, = T* + m;

2Tn = Tn- t + to;

. Tn . Then we have for

= r*

Multiplying the second equation by 2, the next by 2s
, the next by 2*, etc.,

and the last by 2n_1 and adding, we have as before

2»P=g-r-m+ 2OT-r-2
2TO + 23TO+ . . .

2»~ 1 to.

(7) In the system ofpulleys shown, find the relation between P and
Qfor equilibrium, disregarding friction. (For friction and rigidity
see Ex. (21), page 225.)

Ans. The external forces are P and the weight of Q. If we suppose a vir-

tual displacement of Q downward equal to s, each string
coming from the lower block will be lengthened by «, and
the virtual displacement of P upwards will be ns, where n
is the number of strings coming from the lower block. We
have then by the principle of virtual work, if to is the
mass of the lower block,

*v,

p
-%' (Q+ m)8 — mP = 0,

P = Q+m

In this example we see that it is not necessary to sup-
pose the virtual displacement indefinitely small, because
the forces do not vary with the displacement.

Again, the tension in each string is the same and equal
to P. Hence, if n is the number of strings coming from^ibe lower block, nP = Q -\- m.

"
(8) In the system of pulleys shoivn, find the rela-

tion between P and Q for equilibrium, disregarding friction and
rigidity of the ropes. (For friction and rigidity see Ex. (22), page
226.)

Ans. The external forces are P and the weight of Q. If we suppose a vir-

tual displacement of Q downward equal to 8, then the
highest movable pulley will be raised a distance s, the

next will be raised twice the height through which the
highest is raised plus the distance through which Q de-

scends, that is, through the distance 3s.

In the same way any movable pulley will rise through
the height s plus twice the distance through which the
pulley next above rises.

If the number of pulleys is n and the mass of each
pulley is to, the distances through which each pulley is

raised are respectively «, (2
2 — l)s, (2

3 — l)s . . . (2
n_1 — 1)«.

Also P will be moved vertically upwards a distance

(2
n — l)s. We have then by the principle of virtual work

in gravitation units,

Qg - TO(2 - 1)3 - TO(22 - 1)8 ~ TO(23 -1)8...- TO(2"-1 - 1)* - (2»» - l)Ps = 0.



CHAP. VII.] EXAMPLES. 165

Hence

p = Q - m[(2 - l) + (2» - l)-|.(2» - 1) . . . -K2»-i - 1)]

2" - 1

or

p _ Q-\-mn — (2n — \)m

2»-l

If we neglect the mass of the pulleys,

a» -

1

In this example we see that it is not necessary to suppose the virtual dis-

placement indefinitely small, because the forces do not vary with the dis-
placement.

Again, if n is the number of pulleys and T , T3 , Tit etc., the tensions in
the strings, then we have for equilibrium, in gravitation units,

T1 =P; (1)

T, = 2Ti +m; (2)

Tt = 2T,+ «i; (3)

Tn = 2Tn -i+m; (n)

Ty + T* + T3 + . . . Tn = Q (4)

Multiplying the second equation by 2n_1 , the third by 2n_2, the nth. by 2,

and adding, we have

2Tn = 2nP+ 2n-1m+ 2»- 2w -f . . . 2m.

Adding equations (2), (3), . . . (n) and employing equation (4), we have

Q - P= 2(Q- Tn) + (ti - l)m.

Eliminating Tn , we have, as before,

2n-ip _ q _ (2 _ i)m - (2
2 - l)w - (2

3— \)m . . . - (2"- 1 - l)m.

(9) If we have three movable pulleys arranged as in Example (6),

their masses, beginning with the lowest, being 9, 3 and 1 lb. respec-
tively, find what force P will support a mass of 69 lbs.

Ans. 11 lbs.

(10) If in the system of Example (7) there are nine pulleys and
each has a mass of one pound, find the force P to support a mass of
85 lbs.

Ans. 9 lbs.

(11) If in the system of Example (8) the mass supported is 56 lbs.,

and each movable pulley, of which there are three, has a mass of 1 lb.,

find the horizontal distance of the centre of mass of Q from the centre

of the fixed pulley when the diameters of all the pulleys are equal.

Anjfc^Iine twenty-eighths the radius of the pulley.

v^(l2) In the differential pulley shown in the figure an endless chain
passes over a fixed pulley A, then under a movable pulley to which
the mass Q is attached, and then over another fixed pulley B, a little

smaller but coaxial with A. The two pulleys A and B are in one
piece and obliged to turn together through the same angle. The two
ends of the chain are joined so as to form a loop. The force Pis
applied to the right-hand portion of the loop. To prevent the chain
from slipping, tliere are cavities in the circumferences of the upper



166 STATICS—VIRTUAL WORK. [CHAP. VII.

pulleys into which the links of the chain fit. Find the relation of P
to Q for equilibrium, neglecting friction. (For friction see Ex. (23;,

page 227.)

Ans. Let b be the radius of the pulley B, and a the radius of
the pulley A.

Let Q receive a virtual displacement vertically downwards
equal to s. Then, since both A and B turn through the same
angle 6, we have

aQ-bS . 2s—- =s, or 6 = -,
2 a — b

and P has the virtual displacement vertically upwards of

2as
a9= r.

a — o

We have then by the principle of virtual work, in gravita-

tion units,

Qs-P 2as

a — b
0, or P = Qja-b)

2a '

In this example it is not necessary to suppose s indefinitely small, because
the forces do not vary with the displacement. Again, let T be the tension of
the chain. Then if the pulley is in equilibrium, we have in gravitation units

2T= Q.

Taking moments about the axis of C,

Ta-Tb- Pa = 0.

Hence
Q(a-b)

2a '

ing a and b nearly equal we can have P as small as we please.

jT3) In the differential wheel and axle shown in the figure, we
have two axles B and A of different radii, rigidly connected and
turning about their common axis DE. The force P is applied at
right angles to the axis at the extremity of the arm CD. The mass
Q is attached to a pulley supported by a rope which is wrapped
one way round B and the other way round C. Find the relation

of Pto Q for equilibrium, neglecting friction.

Ans. Let c be the arm CD, and b and a be the radii of B and A. Then, as
in the preceding example,

Q(a-b)P =
2c —A

ft.

By taking 6 and a nearly equal we can
have P as small as we please. In the simple
wheel and axle the same result can only be
obtained by making c inconveniently large or

a inconveniently small.

(14) The requisites of a good balance are as folloics : 1st. It
should, be " true," that is, when loaded with equal masses the beam
should be horizontal. 2d. It should be " sensitive," that is, when the
masses differ by a small quantity the direction of the beam from the
horizontal should be easily perceptible. 3d. It should be "stable,"
that is, when moved from its position of equilibrium it should return
to it quickly. Show how to secure these requirements.
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Ans. Let the masses of the loads be P and Q, and of the scale-pans & and
St. Let O be the centre of mass of the bal-
ance, not including the scale-pans, W its

mass. Let C be the point of support, and let

CO be perpendicular to the beam AB at D.
Let 6 be any angle of the beam with the
horizontal, and denote CD by h, CO by k, ^^ \. Q+S»
and let AD = a, and BD = b.

Suppose the balance rotated through an
indefinitely small angle dd about D. Then
the virtual displacement of A is As = ad6; of p "*" s.i

B, Bs = bdS; of O, Gs = {h- k)dO.

We have then, by the principle of virtual work,

(P+ Si)adQ cos 6 - (Q+ S,)bd6 cos B+W{h- k)dQ sin 6=0.

If we take moments about D, we have for equilibrium also,

(P-f Si)a cos - (Q-\- St)b cos 6 -f W(h - k) sin 6 = 0.

Hghcg

tan8 = (Q+^-(P+^
W(h - k)

1st. When the loads are equal, P = Q and & = S?. In order, then, that
the balance may be " true," that is, 6 = when the loads are equal, we must
have a = 6. The arms must therefore be equal. We have then for a true
balance, when the masses of the scale-pans are equal,

—-%£> «
We can easily test the truth of a balance by interchanging the loads which

hold the beam horizontal. If the beam settles again into a horizontal position,

since the loads are equal the balance is true.

It is almost impossible to make a balance perfectly true. When, therefore,

great accuracy is required, the method of double weighing is adopted. This
enables us to determine the exact mass, however untrue the balance. It con-

sists in first making the beam horizontal with the body whose mass is required
in one scale and sand or shot in the other. Then the body is replaced by
known masses sufficient to keep the beam horizontal.

2d. From equation (1) we see that if a true balance is to be " sensitive,

"

that is, if Q is to be large when Q — P is small, we must have h — k small
with reference to a. That is, the distance GD of the centre of mass O from
the beam must be small compared to the length of arm. This requisite is

then obtained by making a large and bringing the centre of mass near the
beam.

3d. But we see from the figure that when k is large the moment Wk of W
about the point of support C is large and the balance will return more readily

then when k is small. The condition of " stability " then requires that the
distance OD of the centre of mass O from the beam shall be large. The con-

ditions of stability and sensitiveness are then at variance.

In scientific measurements, where great accuracy is required, the third req-

uisite is sacrificed to obtain the second, and time is required. For ordinary
commercial purposes, where it is desirable to save time, the reverse is the case.

(15) Show how to graduate the common steelyard.

Ans. Let P be the movable weight, W the weight of beam and scale-pan

acting at the centre of mass O, Q the weight to be
A o

J

g B determined at A, all in gravitation units. Let C be
the point of suspension. Let n be the number of the
graduation at B, so that Q = nP. We have then
for equilibrium

nP X AC~- WX CG-PXCB = 0.

xrx
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If we put 7i = in this equation, we obtain the position of the zero of
the scale,

— W
C0 = - j^CG,

W
or is on the other side of G to W at a distance— CG from it. Hence

nPxAG=PxOB, or OB = nAG
The graduations are obtained, then, by marking off distances from equal to

AG, 2AG, SAG, etc. Intermediate graduations correspond to fractional values
of n.

(16) Show hoiv to graduate the Danish steelyard.

Ans. This steelyard consists of a beam AB terminating in a heavy ball B.

I

From the end A hangs the scale-pan. The ful-
- ^. crum G is moved until the weight of the mass in
t^ B the scale-pan is balanced by that of the steelyard.

Let Q be the mass at A, W the mass of steel-

yard and scale-pan acting at the centre of mass G.
"* Evidently the zero of graduation is at G, since

the beam balances when the fulcrum is there, when there is no mass Q.
We have Q = 11 W, and for equilibrium

nW X AG = W X CG = W(AG - AG)

Hence
AG

I

AG =
n-\-l'

AG AG AG
The graduations then are at distances from A equal to -j-, ——-, —— , etc.

(17) If the arms of a false balance are horizontal when there are
no weights in the scale-pans and one arm is one ninth part longer
than the other, and if in using it the substance to be iveighed is put
as often into one scale as into the other, show that the seller loses five
ninths per cent on his transactions.

(18) If a common steelyard is 18 inches long, iceighs 3 lbs. and is

suspended at a point 3 inches from one extremity, ichat is the
greatest mass which can be measured by a movable weight of 2 lbs. f

Ans. 16 lbs.

(19) If one arm of a common balance be longer than the other,

show that the real weight of the body is the geometrical mean be-

tween its apparent iveights as weighed first in one scale and then in
the other.

(20) The arms of a false balance are unequal and one of the scales
is loaded. A body whose true mass is P lbs. appears to weigh Q lbs.

when placed in one scale and Q' lbs. when placed in the oilier.

Find the ratio of the arms and the weight with which tlie scale is

loaded.

Q'-P QQ'-P*
Ans. P-Q* P-Q



CHAPTER VIII.

CONSTEAINED EQUILIBRIUM—SMOOTH CURVE
OR SURFACE.

REACTION OF A CURVE OR SURFACE. REACTION OF A SMOOTH CURVE OR
SURFACE. EQUILIBRIUM OF A BODY ON A SMOOTH CURVE OR SURFACE.
EQUILIBRIUM OF A BODY AT ANY POINT OF A SMOOTH CURVE OR
SURFACE. GENERAL EQUATIONS.

Reaction of a Curve or Surface.—When a particle is in contact
with a rigid material curve or surface, the force or pressure which
the curve or surface exerts upon the particle is called the reaction
of the curve or surface.

If then we introduce this reaction as an additional force in com-
bination with all the other forces acting upon the particle, we can
remove the curve or surface and consider the particle by itself as
acted upon by this reaction and all the other forces.

Equilibrium of a Body on Any Curve or Surface. — Let a
rigid body ADE rest in equilibrium upon a rigid material curve of
surface DE, smooth or rough, and touch it at
many points Pi , P2 , Ps , etc.

Let the reactions at these points be Pi , P* , P3
,

etc. , and let the resultant reaction be P acting at
the point P of the curve or surface. If all the
reactions are pressures exerted by the curve or
surface upon the body, this point P must evidently
always lie within the line or surface of contact DE.

Since all reactions are internal to the system composed of the
body and curve or surface, they are internal forces or stresses (page
7) and the resultant reaction P is the resultant stress. All other
forces acting upon the body are external to the system, and we call

them, therefore, external forces.
Now if the body is in equilibrium on the curve or surface, the

resultant R of all the external forces must be equal and opposite
to the resultant reaction P and lie in the same straight line. Its

line of direction must therefore pass through P.
This point P, if the curve or surface resists by pressure only,

must always lie within the line or surface of contact DE.
If the base DE is a point, or the body touches the curve or sur-

face at a single point only, the body is in equilibrium at this point,

the line of direction of R must pass through this point and R must
be equal and opposite to P at this point.

If the line of direction of R falls outside the base DE the body
169
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will rotate. If it intersects the curve or surface in the perimeter of
the base, as at E, the body is said to be in limiting stability.

If we consider all stresses but one as external forces, the body
may be treated as a particle at the point of application of this one.

Whenever, then, we speak of a body as " in equilibrium, at any
point of a curve or surface,'''' tlie point referred to may be any one of
the points of contact icith the curve or surface. The body may be
treated as a particle of equal mass placed at this point.

Reaction of a Smooth Curve or Surface.—When a particle is in
equilibrium upon any curve or surface, the reaction must be equal
and opposite to the resultant of all the external forces.

If the curve or surface is perfectly smooth, it can offer no resist-

ance to a tangential force acting upon the particle.

The reaction and the resultant of all the external forces must
then, for equilibrium, not only be equal and opposite, but must also
be normal to the curve or surface. For if the resultant of all the
external forces is not normal, it can be resolved into a normal and
a tangential component. But the smooth curve or surface can
offer no resistance to the tangential component. Hence for equi-
librium the resultant of all the external forces must be normal and
the equal and opposite reaction must also be normal.
A smooth curve or surface, then, is one whose reaction is normal.

It is incapable of offering resistance to motion in any other than a
normal direction.

Equilibrium of a Body on a Smooth Curve or Surface.—As we
have just seen, whether the curve or surface be smooth or rough,
we can treat the body as a particle of equal mass placed at any one
of the points of contact with the curve or surface.

If the curve or surface is smooth, then, as we have just seen, the
reactions Pi , Rt , R3 , etc. , at each and every point of contact must
each be normal at its own point of application, the resultant reac-
tion R must be normal at P, and the resultant R of all the external
forces must be normal and its line of direction must pass through P.

If the curve or surface resists by pressure only, this point P
must lie within the line or surface of contact.

Thus, for example, let a body ADE rest in equilibrium on a
smooth plane surface DE.

Then the reactions Pi, P2 , Ps, etc., at every point of contact
Pi , Pa , P> , etc., are normal to
the plane. The resultant re-

action R is normal to the
plane also and acts at some
point P of the base DE. If

the surface resists by pressure
only, this point P must he within the base DE.

Let W be the weight of the body acting vertically at the centre
of mass C, and let F be the resultant of all the other external forces.

The resultant iVof Wand F is then the resultant of all the external
forces. It must pass through the intersection A of W and F, and
if there is equilibrium must be equal and opposite to the resultant
reaction R and lie in the same straight lme. It must therefore
also be normal to the plane, and its line of direction must intersect
the plane at the same point P of the base DE. IfN falls outside of
the base DE, there is no equilibrium if the plane resists by pressure
only. If N passes through E, the body is in limiting stability.

We can consider the body as a particle placed at any one of the
points of contact.
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[Equilibrium of a Body at Any Point of a Smooth Curve or Sur-

face.]— If a body acted upon by auy number of forces Fi , F%, etc., applied

at different points, is at rest at any point of a smooth curve or surface, we
may then treat it as a particle placed at that point. The normal reaction

2V at the point must be equal and opposite to the resultant of all the other

forces acting upon the body. The curve or surface can then be replaced

by its normal reaction N at the point.

The normal to a surface at any point has a definite direction. The
normal to a curve at any point may have any direction in a plane through
that point perpendicular to the tangent at that point.

Let all the forces acting upon the body, not including the normal reac-

tion Nat the point P, be Fi, F?, etc., making with the co-ordinate axis the
angles («i , fix ,

yi), (a a , fia , y*), etc. Then the components parallel to
the axes are

Fx = Fi cos ai + F» cos a-t + . . . = 2F cos a;

Fy = Fi cos fit + Ft cos fi* + . . . = 2Fcos fi;

Fz = Fi cos yi + Ft cos yt + . . . = 2F cos y.

1. Equilibrium of a Body at Any Point of a Smooth Curve.—Let
ds be an element of the curve. Then the direction-cosines of the tangent

to the curve at any point P given by the co-ordinates (x, y, z) are =—

,

dy dz
-t— , -=-. The normal reaction iVat the point Phas no component tangent

to the curve at this point. If all the other forces are resolved along the
tangent to the curve at this point, the sum of their tangential components

is Fx -5 1- Fy— + Fz— . If there is equilibrium, this sum must be zero.

We have then for the condition of equilibrium

*£**&+-«*.* (i)
ds ds ds

If we multiply by ds, we obtain

Fx dx + Fydy + Fzdz = 0,

which is the principle of virtual work (page 159).
2. Equilibrium of a Body at Any Point of a Smooth Surface.—

Let the normal reaction N at the point P make with the co-ordinate axes
the angles Bx , Qyy 6Z . Then we have for equilibrium

Fx = iVcos X , Fv = iVcos By , Fz = JVcos 6« ; )

>. . . (a)Fx> + Fy3 + Fz* = N\
\

Let the equation of the surface be u = 0, where u is a function of x, y,
z.

For convenience of notation let

*±=U, ^=V, ~=W
t

and JP + V> + W* = Q>.
dz dy dz
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Then the direction-cosines of the normal to the surface at the point

(x, y, z) are
du

U dx

./fduV IduV duV
dz)

cos 6V = — =
du
dy

Jlduy fduy /,(III

dz

cos 0* = W
Q

du
dz

JlduY IduV AduV
dz)

(2)

But for equilibrium

N = Fx F,y _ Fz

cos cos By cos 0z

"

We have then by inserting the values for X , 6y , Z ,

2?x -P'i/ i'z

^J [diPii

fduY
\dz~)

(3)

If we substitute the values of cos X , cos By, cos Bz in equations (a),

and multiply the first equation by dx, the second by dy, the third by dz,

then add the results and reduce by the equation

fdu\

[dx)* + (£)*+&>=••
which is the total differential of the equation of the surface u = 0, we
obtain

Fxdx + Fydy + Fzdz = 0, (4)

which is the principle of virtual work (page 159).

Equations (3) give two independent simultaneous equations which com-
bined with the equation of the surface will determine the point of equilib-

rium, if there be one. Equation (4) is the condition of equilibrium.

If all the forces are in one plane, let this be the plane of XY. Then
from equations (3) and (4), since Fz = and dz = 0,

Fx Ft,
(5)

_ J y

fdu\ fdu\'

\dx) \dy J

Fxdx + Fydy = 0. (6)

EXAMPLES.

(1) A body of weight W is placed upon a smooth inclined plane
AB which makes an angle a with the horizontal and is acted upon
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by a force P ivhich makes the angle ft with the plane. Find the con-
ditions of equilibrium. (For rough plane see Ex. 7, page 215.)

Ans. Consider the body as a particle placed at any point on the plane
(page 169). We have acting upon the
particle the weight W, the force P and
the normal reaction 2f of the plane, and
these three forces must constitute a sys-
tem of concurring forces in equilibrium

.

Let the angle BOP = ft be positive
when above the plane and negative
when below the plane, as shown in the
figure.

1st Solution : By Resolution of Forces.—If we lay the line representatives
of the forces off in order the same way round,
they form a triangle (page 62).
We have then directly

Jf\ W : : sin [90 - (or + ft)] : sin (90 + ft),

N Wcos(or + ft)

P =

cos ft

P : W : : sin a : sin (90 -j-
ft),

TPsin a
cos ft

(1)

(2)

We see at once from the figure that when ft = -f-
(90° — a), P and W are

equal in magnitude and act opposite in direction and iV" is zero. For any
greater value of positive ft, N is negative and there is no equilibrium possible.

For negative
ft, we must evidently have ft less than 90°.

Equations (1) and (2) hold good, then, for all values of ft between -f-
(90° — a)

and — 90°. Outside of these limits there is no equilibrium.
The minimum value of P is for ft = and equal to P = IT sin a.
Again, we can put the algebraic sum of the components along the plane and

perpendicular to the plane equal to zero (page 61). We have then

iV+Psin/J- Wcosa = 0;

Pcosft - TTsina = 0.

From these two equations we obtain the same equations (1) and (2) for iV
and P.

Again, we can put the algebraic sum of the horizontal and vertical compo-
nents equal to zero.

Psin(a+ /?) + iVcostt- W=0;
P cos (a -\- ft)

— iVsin a = 0.

From these two equations we obtain the same equations (1) and (2) for If
and P.

2d Solution : By Virtual Work.—In order to find P, suppose a virtual dis-

placement d along the planefrom towards B. This displacement is at right

angles to N and hence the virtual work' of N is zero.

For equilibrium the algebraic sum of the virtual works of P, N and W is

equal to zero.

The component of P in the direction of the displacement is P cos ft. The
virtual work of P is then -j- Pd cos ft. The component of W on the line of the

displacement is TFsin a opposite in direction to the displacement. The virtual

work of W is then — Wd sin a. The virtual work of N is zero. Hence

Pd cos ft
- Wd sin a = 0, or P = Wsin a

cos/tf
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In order to find N, we might suppose a virtual displacement at right angles
to P, thus making the virtual work of P zero. Since, however, P is now
known, let us suppose a horizontal virtual displacement d away from 0. Then
the virtual work of \\ is zero, and we have

Hence
Pd cos (a + ft)

— Nd sin a = 0.

Pcos(a-{- ft) _ ITcos (a -f- ft)

sin a cos ft

In this example we see it is not necessary to suppose the virtual displace
ments indefinitely small, because the forces do not vary with the displacement.

(2) A body of weight W is placed in contact with the under side

of a smooth inclined plane which makes an angle a with the horizon-
tal, and is acted upon by a force P which makes an angle ft icith the
plane. Find the conditions of equilibrium. (For rough plane see
Ex. (8), page 217.)

^= _cos_(/3±a)

cosp

IF sin a
cos ft

where ft > 4- (90 — a) andAns.

< + 90.

(3) Find the force P necessary to just move a cylinder of radius r
and weight W up a plane inclined at an angle a, by a croicbar of

length I inclined at an angle ft. neglecting
friction. (For friction see Ex. (9), page 218.)

Ans. The weight IF acting at the centre can
be resolved into components iFi , iFs perpendicular
to the bar and plane. If P acts at right angles to
the bar, we have by virtual work, for a small dis-

placement due to turning the bar about A through
an indefinitely small angle 0,

PIB - Nx . AZF.0 = 0, or P =
But

AZVi = r tan

Hence

P =

K«+')-
r[l - cos (a + ft)]

sin (a -f- ft)

Wr sin a[l — cos (a + ft)]

I sin* (a -f ft)

M . ANx
I

and N\ =

Wr sin a

IF sin a

J[l+ cos (a + /*>]•

(4) A particle of mass m rests on a smooth cylinder and is kept in
equilibrium by a string fastened to another particle of mass M, which
passes over the cylinder and hangs freely. Determine the position
of equilibrium. (For rough cylinder see Ex. (10), page 218.)

Let the position of equilibrium be at D and suppose a virtual displacement
DD' along the chord at D. Then M moves through
a distance equal to the chord DD' and we have the
algebraic sum of the virtual works zero, or, since the
virtual work of N is zero,

m. nis

m ~ chord DD'

'

If DD' is indefinitely small, it is tangent at D.
Hence if the tangent at D makes an angle 9 with the
vertical, we have for the condition of equilibrium

Mg X chord DD' — mg X nD' = 0,

M nD"

M = cos S.
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In this example we see that the condition of an indefinitely small virtual
displacement is necessary, because the forces vary with the displacement.

\^^o) Find the conditions for equilibrium for a screw, neglecting
friction. (For friction see Ex. (11), page 219.)

Ans. Let P be the force applied at the end of the arm a, and let the pitch
of the screw or distance between the threads be p. Let M be
the mass supported by P. r a

1st. By Virtual Work.—If the arm a moves through 2tc

radians, Mis raised the distance p. If it moves through one N

i

"?

PaQ -

P
radian, M is raised -—

.

2it

If P, then, has a virtual displacement of radians, it

moves through the distance aQ and M is raised a distance
pO—— , and we have by the principle of virtual work, in gravi-

tation units,

f*=0, or P=#^.
2ic 2ita

Hence

M 2ita circumference of circle in which P moves

P ~~ p distance between threads

2d. By Resolution of Forces.—Let iVbe the normal pressure on each thread,
and a the inclination of the thread to the horizontal. Then, in gravitation
units, we have for equilibrium

-SiVcosa - M = 0.

If r is the radius of the screw, we have, taking moments about the axis, for

equilibrium
- Pa -f- 2Nsin a X r — 0.

But if the screw be developed, we have an inclined plane whose base is

2itr and height p and angle of inclination a.
Therefore

27cr 2itr tan a = p, or 2itr sin a = p cos a.

Inserting this value of r sin a, we have, as before,

Mp _ A „_ r» _ Mp Mr tan a
2ita

-Pa +^ = 0, or P=^ =
^r 2tc

• JftThe differential screw consists of a screw AD ivhich works in
affixed nut CC. AD is hollow and has a thread cut inside, in which
a solid screw DE works. DE is prevented from turning by some
means, for instance by a rod FEF' rigidly connected with it, whose
ends work in grooves, so that DE can only move in a direction par-
allel to its axis. The mass M is raised by the force P applied at the

end of the arm AB = a. Find the condition of equilibrium, neglect-

ing friction. (For friction, see Ex. (12), page 220.)

Ans. Let a be the length of arm AB, P the force applied, p and p' the

B

C'

pitch of screws AD and DE.
When AB turns through 2n radians, AD rises a

distance p. DE cannot turn and therefore moves down-
wards a distance p' relatively to AD. The mass M is

raised, then, a distance p — p'. When AB turns through

P — P'
one radian, M is raised

2n
If P then has a virtual

displacement of radians, it moves through the distance

(p _ p')Q
«0 and M is raised , —

.

Hi
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Hence by the principle of virtual work, in gravitation units,

jw __*<£=£>! = 0, or r=M?- p
'

2ic
'

2rca '

Evidently, by making p and p' nearly equal, we can make P as small as we
please. In the simple screw the same result is attained only by making the
lever-arm a inconveniently large, or by making the pitch so small that the
thread is tpo weak to support the pressure on it.

Let the force acting normally upon the middle of the back of
an isosceles wedge be P. Find the conditions for equi-
librium, neglecting friction. (For friction see Ex. (13),

page 220.)

Ans. The pressure on each side must be normal. Let a be
the angle of the wedge. Then for a virtual displacement of s
we have by the principle of virtual work

Ps - 2Ns sin | = 0, or P = 2iVsin |.

1&) Let an isosceles wedge rest with its surface BC upon a hori-
zontal plane. Let a force P be applied normally at the middle point
of the back. Let the body, whose weight is W, acting at the centre of
mass G, rest upon the wedge, and be constrained by guides DE,
D'E to move in a direction normal to AC Find the condition for
equilibrium, neglecting friction.

Ans. Let a be the angle of the wedge. Then
N= Wcos a.

P= 2 Wcos a sin .

8

(9) A body weighing 10 lbs. rests on a
smooth plane rising 2 feet vertically for every
5 ft. along the plane. It is keptfrom sliding by a force in the direc-
tion of the plane. Find the force and the pressure on theplane.

Ans. P=41bs.; N= 9.16 lbs.

(10) A body is kept at rest on a smooth inclined plane by a force
acting up the plane equal to half the weight of the body. Find the
inclination of the plane.

Ans. 30°.

(11) A body is at rest on a smooth inclined plane, and the applied
force and pressure on the plane are each equal to the weight of the
body. Find the inclination of the plane and the direction of the
applied force.

Ans. 60°; 30° to inclined plane and horizontal plane.

(12) A body is supported on a smooth inclined plane by a force
equal to its weight. Show that the reaction of the plane is double
what it would be if the body were supported by the least possible
force.

(13) Let P be the force which, acting up a smooth inclined plane,
keeps a body in equilibrium. Let Q be the force which supports the
body ivhen its direction is such that it is equal to the reaction of tlie

plane. Show that P acting up the plane could just support a body
of weight Q on a plane of twice the inclination.
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(14) Tivo particles of equal mass, each attracting with a force
varying directly as the distance, are situated at the opposite extrem-
ities of a diameter of a horizontal circular wire on which a small
smooth ring is capable of sliding. Show that the ring will be kept
at rest in any position under the attraction of the particles.

(15) A body whose weight is W is sustained on a smooth inclined
W

plane by three forces applied to it, each equal to — . One acts ver-

tically, another horizontally, and the third along the plane. Find
the inclination of the plane.

Ans. Let a be the inclination of the plane. We have, placing the algebraic

sum of the components along the plane equal to zero, the
condition of equilibriumWW W— -\- — cos a-\- -5- sin a — TPsin a = 0.

3 Q o

Hence,
2 sin «= 1 -(- cos a.

andOr, since sin a = 2 sin - cos — 1 + cos a = 2 cos8 •= a,

2 sin t; cos — = cos2

2 2

Solving this equation, we have

a .a
cos— = sin — ± sin

2 A
2''

cos — = 2 sin — or 0.
a a

We have then two values for a, given by tan — = — , or a = 53° 7' 48".4
o a

and a = 180°.

Placing the algebraic sum of the components perpendicular to the plane

equal to zero, we have

W
2V+ -K- cos a-

o

W
sin a — Wcos a=0.

Hence
W

I

\N=— I sin a -f- 2 cos a 1

W

The first value of a :

1

W 180°

£^

w

53° 7' 48".4 gives &= + ^ W. The second value of

a- 180° gives N- - -W.
3

The first value

gives a rational solution. The second value
' corresponds to the case of the particle placed

underneath the plane, the normal reaction of the

plane being directed towards the plane. If the

normal reaction could consist of a pull, this po-

sition would be possible.

(16) A rod AB rests on two smooth planes AC and BC which
make the angles «i and a* with the horizontal. A load of P lbs. is

applied at a point D of the rod at a distance AD = a and BD = b
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from the ends. Find the inclination of the rod to the horizontal
n, when equilibrium exists, and the pressures

,
\J Ni and N* on the planes. Weight of the

'•

/ N " n>-
x

\i ro^ neglected. (For friction see Ex. (15), page

v^&fo^y* 22i°
^^I^jTd^/^ Ans. The forces acting upon the rod are the ver-

_oJk ^jcT2 ^ tical weight P at D and the normal pressures Ni and
,

C iV2 at A and B. These pressures make the same
P angles with the vertical that the planes J.Oand BG

make with the horizontal.
We have then for equilibrium the algebraic sum of the vertical components

equal to zero, or

Ni cos «i + -3fa cos cra — P = 0; (1)

the algebraic sum of the horizontal components equal to zero, or

iVi sin ax — i\T4 sin ara = 0; (2)

the algebraic sum of the moments about any point in the plane equal to zero.
Take the point D and let the lever-arms be rii and n?. Then

JV.w. - jy,n, = (3)

We have from the figure, since n 2 and ni are parallel to BG and AG, if 8 is

the angle of the rod with the horizontal,

wa = b cos (aa — 8), ni = a cos (<Zi -f- 6),

and from (2) we have J\Ti = m g2
iya . Substituting in (3), we have

Sin £Ti

b cos (aa — 0) = a-: cos («i 4- 8);
sin «j

expanding and reducing, we obtain

tan 6= gcotggt-ftcotg.g,
(4)

Also from (1) we obtain

_. P sin or, P sin a,
JTi = 3—;

; r, -ZVa = ~.—

7

:

; (5)sm (aj + aa )
sin (at + a2 )

v 7

If a= 90° and «i = 0, or the plane BG is vertical and AG horizontal, we
have from (4), 8 =a 90°, and from (5), i\Ti = P and JT3 = 0. That is, the posi-

tion of equilibrium is when the rod is vertical and the end A is at C. If it has
any other position, there is no equilibrium unless another force is introduced.

(17) A rod AB of length I rests upon two smooth planes, one AC
horizontal and the other BC vertical, and its inclination with the
horizontal is 8. A load of P lbs. is applied at a distance AD = a
from the end A. The rod is prevented from sliding by a string at-

tached to C and the rod. If the inclination of this string with the
horizontal is cc, find the stress in it for equilibrium. Weight of the
rod neglected.

Ans. The forces acting upon the rod are the vertical weight P acting at D,
the stress S in the string, and the normal pressures Ni and
Ni at A and B.
We have then for equilibrium the algebraic sum of the N?~

vertical components equal to zero, or 1

.ZVi - P- Ssina=0; (1)

the algebraic sum of the horizontal forces equal to zero, or BS&

S cos — If, = 0; (2)
jP

the algebraic sum of the moments about any point in the plane equal to zero.
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Take the point C as the centre of moments. Then the lever-arm for Ifi is

I cos 0, for 2\T9 it is I sin 0, and for P, (I — a) cos 0. Hence

N*l sin + P(l - a) cos - Nx l cos = (3)

From these three equations we obtain

a Pa
T.7- t, .

-P« tan <*

w = 5 7i
—

a—:
; ; iv i = P +/ fi/w /viTon H Ton /v\ *

£ cos a(tan — tan a)

'

* J(tan — tan a)'

Pa&,=
i(tan — tan a)'

(18) A body is sustained on a smooth inclined plane of inclina-
tion a with the horizon by a force P acting along the plane and a
horizontal force H. When the inclination is half a, the forces are
P H
*zr and — , and the body is still at rest. Find the ratio ofP to H.

P a
Ans. — =2 cosV-H 4

(19) A weight of 10 kilograms is sustained on a smooth inclined
plane of 25° inclination with the horizon, by a horizontal force of 5
kilograms and a force unknown in magnitude and direction. Find
this force when the normal pressure on the plane is 2 kilograms.

Ans. 9.07 kilograms making an angle fi below the plane of about 88° 6'.

(20) Find the inclination of a smooth inclined plane if a weight
of 24 kilograms resting upon it is sustained by a horizontal force
of 7 kilograms and a force of 16 kilograms of unknoivn direction,
while the normal pressure is a force of 15 kilograms. Find also the
unknown direction.

Ans. a = 53° 53'; /? = 17° 28'.

(21) Find the inclination of a smooth inclined plane if a weight
of 20 kilograms resting on it is sustained by force up the plane of 5
kilograms and a force of 15 kilograms of unknown direction, while
the normal pressure is 2 kilograms. Find also the unknown direc-
tion.

Ans. a = 49° 28'; /? = 47° 9'.

(22) Find the inclination a of a smooth inclined plane if a given
weight W resting on it is sustained by a horizontal force H and a
force P of unknown direction, while the normal pressure is N. Find
also the unknown direction.

Wi 4- H'2 4- iV9 — P3

Ans. For convenience of notation let A = ~f . Then2N

AW
•

H
.JW*+H*-A\ sin/^

2-^*-^-^
~ W*+H* ^ W2 + H* r '

' ' 2FN
(23) A rigid body rests at the point A upon a smooth inclined

plane ACD which makes an angle a with the

horizontal. The axis AB of the body makes
an angle fi with the horizontal. At the pointB
a force P is applied which makes an angle y
with the axis AB. At the point s of the body a
vertical force W is applied. All tlie forces act
in the plane ofAB and AC Find the condi-
tions of equilibrium.

Ans. Let AB = a, AS = b, and the normal pressure at A be N.
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The forces acting upon the body are P, W and the normal pressure at A.
If these forces are in equilibrium, we have for the algebraic sum of the mo-
ments about A

Wb cos fi - Pa sin y = 0, or P = TF&COS/?
. ... (1)

a sm y
Placing the algebraic sum of the horizontal components zero, we have

n t a wj a at P cos (y-/3) Wb cos /3 cos (y- ft) /cnP cos (y—/?)—iVsin a=0, or iV= r^—« = r^ r*—— • (2)' sin a a sin y sin a

If we take moments about B, we have

Fa sin {90-a-ft)- W(a-b) cos ft = 0, or cos(a+/S)= ^^f"/^ • (3)

We thus determine P, JV and the direction of the axis AB.
We also have the algebraic sum of the components along the plane equal

to zero, or

Pcos (a-\- ft — y)— TTsin a= 0.

Reducing and inserting the values of P and cos (a-f-yS) from (1) and (3), we
have

,
_ a sin y sin 8 -\-b cos y cos /S

tan (a-\- ft)
= f rr-^ *-# —

.

v
'

r* (a — b) sin y cos ft

Also, since P, 2V and TF must make a closed triangle,

W
iV = —r— V(6 cos ftf 4- (a sin yf — 2ab cos ft sin y sin (y — ft),asmy

If P is borizontal, we have y = ft, and

•P = cot ft;a '

W& cot^
or jy _ _JL_ |/(6 cos ftf _|_ (a sin py.

a sin a a sm a rt ' r' '

« (a-*).*. . / . «v a sin2
/5 -f & cos2

/S
cos (a+ /S) = - sm ft sin a, tan («+/?) = - ' .

'

£.
v

'
^ 7

6 (a — o) sin /8 cos ft

The student should solve by the principle of virtual work.

(24) The upper end of a rod rests against a smooth vertical plane,
and the lower end in a smooth spherical bowl. A weight W acts at
any point M of the rod. Find the position of equilibrium. (For
rough surfaces see Ex. (24), page 227.)

Ans. Let AB be the rod, DB the vertical plane and FAE the spherical

surface. The forces acting upon the rod are the

N R J_ weight W acting at the pointM of the rod, the nor-
* \/\ m&l pressure JV on the spherical surface which passes

rw .. ^'^—' through the centre C of the sphere, and the normal
D pressure R on the vertical plane.

Let a be the angle of the rod with the horizontal

and the angle of the radius AC = r with the hori

zontal.

Then we have for equilibrium

JVcos 9 — R = 0, ) ,r W D _.
J.

or 2v — -

—

-
r , R=Wcot8. . . . (1)

JVsin6-TP=0, )
smf>

Take moments about M. Let the distance AM = a and MB = 6. Then
the lever-arm of R is b sin a, and the lever-arm of N is a sin (6 — a), and we
have

Rb sin a — Na sin (0 — a) = 0,
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or, substituting the values from (1),

a sin (9 — a) = b cos sin a.

Developing and reducing, this becomes

(a -\- b) tan a = a tan (2)

Let the length of the rod be I. Then the distance CD = d of the centre of

the spherical surface from D is

d = I cos a—r cos (3)

From (2) and (3) we can determine a and 0. The position of equilibrium is

independent of W, but depends upon the position of TFand G.

(25) A body whose weight is W is at rest upon a smoothparabolic
curve whose axis is vertical, and is acted upon at any point Pby a
horizontal force H whose magnitude is always proportional to the
distance PM from the axis. Find the position for equilibrium.
(For rough surface see Ex. (25), page 227.)

Ans. The equation of the parabola, taking the origin at the vertex 0, is

3/
2 = 2px,

where the axis of Xis vertical and the axis of J"horizontal andp is the ordi-

nate to the curve through the focus.

We consider the body, whatever its size as a particle, acted upon by con-

curring forces (page 169). The applied forces are IF, H and the normal re-

action of the curve. These make a system of concurring forces in equilibrium.

Let the horizontal force which acts upon the particle when it is at the dis-

tance p from the axis be Hi. Then the force .ff when it is at any other dis-

tance PM — y from the axis is

Mm**.
p

Let s angle between the tangent at P and the vertical.

Then, taking the algebraic sum of all the components along the tangent,

we have for equilibrium the condition

TTcos - .ffsin = 0.

This condition holds whether the particle rests within the curve or upon it.

Substitute the value of H, and we have for the condition of equilibrium

Wcos Q = ^Ht sin 0.

V

This condition is evidently satisfied when = 90° and y = 0, that is, when
the particle is at the vertex.

If the particle is not at the vertex, we have

tan = Wp
H,y
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But if the curve is a parabola, we have for auy point tan Q = -. Hence the

condition for equilibrium for any point is Hi = W.
If then the magnitude of the horizontal force when the particle is at the

distance p from the axis is W, the particle will be at rest at any point of the
curve. If it is not, the vertex is the only position.

(26) A body of weight W, resting on a smooth inclined plane, is
attached to a string which, passing over a smooth pulley, sustains a
body of weight P. If ft is the inclination of the string to the inclined
plane and « the inclination of the plane to the horizon, find the con-
ditions and position of equilibrium.

Ans. (Example (1).) The condition of equilibrium is Pcos ft = Wsin a, or
- Wsina

cos/3 = —p—

•

Since ft must be less than 90°, cos ft must be less than unity. Hence Wsin a
must be less than P. If the condition of equilibrium is satisfied for one point
of the plane, it will be satisfied for all others.

(27) A body whose weight is 10 kilograms is supported on a
smooth inclined plane by a force of 2 kilograms acting along the
plane and a horizontal force of 5 kilograms. Find the inclination

of theplane and the normal reaction.

3 4
Ans. a = 36° 52' 11", sin a = -=

, cos a = —
; N = 11 kilograms.

5 5

(28) Tivo weights P and W are fastened to the ends of a cord
which passes over a smooth pulley O. The weight W rests upon a
smooth vertical plane curve and P hangs freely. Find the position
of equilibrium (a) when the curve is a parabola and O is at the

focus ; (b) when the curve is a. circle and O is at a distance a above
the centre ; (c) when the curve is an hyperbola and O is at the centre,

the axis of the curve being vertical ; (d) find the curve such that the
weight W may be in equilibrium with P at all points of the curve.

Ans. The applied forces are the weight W acting vertically, the tension P
of the string and the normal reaction iVof the curve.

Take the origin at and let Wmake the angle a with
the horizontal. Then, since AW = x, OA = y, if we de-

note W by r, we have
™

v x
sin a = —, cos a = - , r2 = a:

2
-J- y*.

r t

-X Let iVmake the angle 9 with the vertical, then the tan-

gent at W makes the same angle with the horizontal.

We have then for the algebraic sum of the vertical com-
ponents

JTcos 6 — W - P sin a = 0, (1)

and for the algebraic sum of the horizontal components

JVsinQ - Pcosa = (2>

From (1) and (2) we obtain

, P cos a
tan G =

1J7.

, p .
•

W-\- P sin a

The tangent of the angle which the tangent to the curve at W makes with
the horizontal is then for equilibrium

dy _ fl _ Pcos a _ Px___tano_ - w-p-psina
- Wr+ py

- . • . W
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Equation (3) is general whatever the curve. We may obtain it directly

Px
from equation (6), page 172. Thus Fx = — Pcos a = , Fy = — W—

T

P sin a = — W — Py
Hence, since Fxdx + Fydy = 0, we have at once

equation (3).

(a) If the curve is a parabola with origin at the focus and axis vertical,

the equation of the curve, since y is negative downwards, is

x* = — 2py + p*, or u = a:
2
-f 2py — p2 = 0,

where p is twice the distance from the focus to the vertex.

Differentiating, we have

dy
4. a x

_£ = — tan S = .

ax p
Substituting in (3), we obtain for equilibrium

p-yw rP-P =p-
r ± V& +#2

p-y= p
± VV-Stoy+jJ8

±P.

Hence equilibrium obtains when Wand P are equal and holds good for any
point on the curve. We may obtain the same result directly from equation (5),

page 172. Thus

p = 2x, p = 2p, FX =-*L, Fy=-W-^.dx dy * r * r

Fx Fy v — v
Substituting in jj-r = -rpr. w© obtain at once W = P- = ± P.

\dx) \dy)

(b) If the curve is a circle with the origin and pulley at a distance a above
the centre of the circle, the equation of the circle, since y is negative down-
wards, is

(a-\-y)i -\-xi = Bi
, or u = IP - a2 - (a+ yf = 0,

where M is the radius.

Differentiating, we have

dx a-\-y

Substituting in (3), we obtain for equilibrium

Pr= w a.

We may obtain the same result directly from equation (5), page 172, by
inserting the values

du
dx
= -2x, p=-2a-2y, Fx=-^, Fy = -W-%,

dy r r

(c) If the curve is an hyperbola with the origin and pulley at the centre of

the hyperbola, the axis of the curve being vertical, the equation of the curve

is

&V - aV = a262 , or h = b*y* - a9*2 - aW = 0.

Differentiating, we have

dy „ « 2*
-f = -tan0 = -JJ-.dx b*y
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Substituting in (8), we obtain for equilibrium

bW
y =

|/TP8 -«*P«'

where e is the eccentricity or e = JU —jj—

.

We may obtain the same result from equation (5), page 172, by substituting

£=-** fy=m, ft— £. «—*-$ -=*+*•.

(d) Required the curve such that the weight W may be in equilibrium with
the weight P for all points of the curve.
We have from (3)

dy___ Px Px
dx ~Wr + Py~ wVx^+y^-tPy'

or

„. , -xdx -f- ydy— Wdy = P ^ y
-
.

V'J + y\
Integrating, we have

- Wy+C = PVx'1 + y\
Squaring,

TFy - %CWy+ C 2 = PV+ py.
EEflBMSfi

P3*2 + (P2 - TT%2 + 2CTTy - tf
2 = 0.

This is an equation of the second degree and is therefore a conic section.

If P = W, it is a parabola
;

P > W, it is an ellipse;

P < W, it is an hyperbola;

the origin and pulley being at the focus.

(29) A particle whose weight is W is placed on the concave sur-
face of a smooth sphere and is acted upon by gravity and also by a
repulsive force varying inversely as the square of the distance from
the lowest point of the sphere. Find the position of equilibrium*

Ans. Take the lowest point of the sphere as the origin, and let the axis of

T be vertical.

The equation of the surface is, if R is the radius,

u = xi -\-yi -\-zi - 2Ry = 0.

Let r be the distance of the particle from the lowest point of the sphere.
Then

ri = x3
-i-y

i -]~zi = 2Ry («)

Let the repulsive force at a known distance a from the lowest point be P».
op. ai

Then the repulsive force at any distance r will be Pi — = F,~-—.
r'

2 2Ry
Let the repulsive force make the angles a, /3, y with the coordinate axes.

Then cos a = ~ , cos 6 = — , cos y = -
, and the component forces parallel

r r r
to the co-ordinate axes are

2Ry r y 2Ry r 2Ry r

* This is the problem of the electroscope.
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Hence from equation (3), page 172, we have after reduction

- 1 i/a
*Fli

y ~2r RWr

Inserting this in (a), we obtain

_ cPFtR

W '

If another force of the same kind makes the particle rest at a distance r'

from the lowest point, and if Fi' is the force at a distance a', then

,. a'WR
W '

and hence

r13 o' 8^,"

that is, the values of the repulsive forces at distance unity vary as the cubes
of the distance from the lowest point.

Substituting the values of Fx , Fy , Fz in equation (4), page 172, and the
values of y and r already found, we obtain

xdx -f ydy -\- zdz — Bdy = 0,

which is the differential equation of equation (a).
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CONSTRAINED EQUILIBRIUM—ROUGH CURVE OR
SURFACE.

FRICTION. ADHESION. KINDS OP FRICTION. REACTION OP A ROUGH CURVE
OR SURFACE. EQUILIBRIUM OF A BODY ON A ROUGH CURVE OR SUR-
FACE. ANGLE OF FRICTION OR REPOSE. OONE OF FRICTION. CO-
EFFICIENT OF FRICTION. LIMITING EQUILIBRIUM. COEFFICIENT OP
STATIC SLIDING FRICTION. LAWS OF STATIC SLIDING FRICTION. VALUES
OF COEFFICIENT OF STATIC SLIDING FRICTION. STATIC FRICTION OP
PIVOTS. STATIC FRICTION OF AXLES. STATIC FRICTION OF CORDS AND
CHAINS. RIGIDITY OF ROPES. STATIC ROLLING FRICTION. EQUILIB-
RIUM OF A BODY AT ANY POINT OP A ROUGH CURVE OR SURFACE.
GENERAL EQUATIONS. STABLE, UNSTABLE, INDIFFERENT AND NEUTRAL
EQUILIBRIUM. CRITERION FOR STABLE, UNSTABLE, INDIFFERENT AND
NEUTRAL EQUILIBRIUM. STABILITY IN ROLLING CONTACT.

Friction. — In the preceding Chapter we have considered the
equilibrium of a body on a smooth curve or surface, that is, a curve
or surface incapable of offering resistance to motion in any other
than a normal direction.

But every natural surface offers a resistance to the motion of
a body upon it. Part of this resistance is due to adhesion between
the body and surface and part is due to friction.

Friction then is always a retarding force or resistance, and acts
always in a direction opposite to that in which the body moves or
would move if there were no resistance.

When one surface moves upon another, the surfaces in contact
are compressed and projecting points and irregularities are bent
over, broken off, rubbed down, etc.

The resistance due to friction, therefore, evidently depends upon
the materials of which the surfaces are composed, and also upon
the roughness or smoothness of the surfaces in contact.

It may also evidently vary for the same surfaces, according to
their condition or state or material constitution.

Thus it may not be the same for surfaces of dry wood or iron as
for the same surfaces under the same conditions when wet. It
may not be the same for two surfaces of wood with their fibres

parallel as for the same surfaces under the same conditions when
their fibres are not parallel.

Unguents also have a great influence. Such fluid or semi-fluid
unguents as oil, tallow, etc., fill up interstices and diminish the
effect of irregularities of surfaces : or a film of unguent may be
interposed between the surfaces and thus the resistance of friction
greatly diminished.

186
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Adhesion.—We must not confound the resistance due to friction
with that due to adhesion. Adhesion is that resistance to motion
which takes place when two different surfaces come in contact at
many points without pressure. Adhesion increases with the area of
surface of contact and is independent of the pressure, while, as we
shall see (page 191), friction increases with the pressure and is in
general independent of the area of surface of contact. When the
pressure then is very small, adhesion may be great compared with
friction.

If, however, the pressure is great, adhesion may be neglected
compared to the friction, and the resistance to motion is practically
that due to the friction only.
When the surfaces in contact are of the same kind, we call the

resistance to motion cohesion ; when of different kinds, adhesion.

Kinds of Friction.—Surfaces may slide or roll on one another.
We distinguish accordingly sliding friction and rolling friction.

It is also found by experiment that the friction which just pre-
vents motion is greater than that which exists after actual motion
takes place. The friction which just prevents motion is called
friction of repose or quiescence, or static friction. The friction

which exists after actual motion takes places is called friction of
motion, or kinetic friction.

We have then two kinds of static friction, viz., static sliding

friction and static rolling friction.

We have also two kinds of kinetic friction, viz., kinetic sliding

friction and kinetic rolling friction.

In any case, whether of sliding or rolling, the kinetic friction is

always less than the static friction.

We have to do in this portion of our work with static friction

only.
Reaction of a Rough Curve or Surface.—We have already defined

(page 169) the reaction of a curve or surface as the pressure which
the curve or surface exerts upon a particle in con-

tact with it.

Suppose then a particle in equilibrium at any
point P of a rough curve or surface. Let R be
the reaction of the curve or surface, and R' the

resultant of all other forces acting upon the par-

ticle.

Then for equilibrium R and R must be equal

and opposite and make the same angle a with the normal to the

curve or surface at the point P.
Now R' can be resolved into a normal component which must be

resisted by the normal pressure N of the curve or surface at the

point P, and into a tangential component T which tends to cause

sliding and must be resisted by the friction P. The components of

the reaction R are then iVand P, and we have for equilibrium

R cos a = N, R sin a = P,

F
tan a = ~.N

Hence, when a particle is in equilibrium at any point of a rough

curve or surface, the reaction makes tvith the normal at this point

an angle whose tangent is given by the ratio of the friction to the

normal pressure at the point. If the reaction is normal, there is no

friction.
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Equilibrium of a Body on a Rough Curve or Surface. — We
have seen, page 169, that a body in equilibrium upon any surface,

rough or smooth, may be treated as a particle
placed at any one of the points of contact with the
curve or surface. Also, if the curve or surface

^r» exerts pressure only, the resultant R' of all the ex-
ternal forces must intersect the curve or surface at
some pointP within the line or surface of contact.
We have also just proved that when a particle

is in equilibrium at any point of a rough curve or surface, the reac-
tion R makes with the normal at this point an angle a whose tan-
gent is given by the ratio of the friction to the normal pressure.

If then the body ADE rests in equilibrium upon a rough curve
or surface and touches it at many points Pi , P2 , Ps , etc., each of
the reactions R s , R» , R3 , etc., at each of these points makes with
the normal at its point an angle «i , a 2 ,

« 3 , etc., whose tangent is

given by the ratio W-, vr, »£-! etc -> °f the friction to the normal

pressure at each point.
The entire body can then be treated as a particle at any one of

the points of contact. The point P where the line of direction of
the resultant R of all the external forces intersects the curve or
surface, if the curve or surface exerts pressure only, must lie in-

side the line or surface of contact DE.
The resultant reaction R at any point of contact of all the forces

acting upon the body except the reaction at this point, must make
with the normal at this point an angle « whose tangent is given by
the ratio of the total friction to the resultant normal pressure.

Angle of Friction or Repose.—Let a body be in equilibrium at
any point P of a rough curve or surface.

Let R be the reaction of the curve or surface at the point P, and
let R' be the resultant of all the external forces acting upon the
body.

Then for equilibrium, R is equal and opposite to

P'and makes the same angle a. with the normal at P
given by R<^^r->R'

Ftana= -jrfN

where F is the friction at the point P, and iVis the normal pressure

at this point.

Now the force which tends to cause sliding is the tangential

component of R' or T = R' sin a. The friction F at P acts opposite

to T, and so long as there is equilibrium is equal to it.

As the angle a increases, the normal pressure N= R cos a de-

creases and the tangential force T — R' sin a increases. There is

evidently a certain value for a for which, R' remaining unchanged
in magnitude, sliding is just about to begin. For any value of a less

than this, sliding cannot begin no matter what the magnitude of

R'. For any value of a greater than this, sliding takes place.

We denote this value of a. by <p and call it the angle of friction

or repose.

We have then

max. F
tan <p = —-.—=r=.

mm. N
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That is, the angle of friction or repose is the greatest angle
which the reaction R at any point of contact can make with the
normal at that point without sliding taking place. Since static
friction is always greater than kinetic, it is also the greatest angle
which the reaction R at any point of contact can ever make with
the normal at that point. It is also the greatest angle which the
resultant R' of all the external forces acting upon the body can
make with the normal at the point without sliding taking place.
No resultant force R, however great, can cause sliding to begin, so
long as its angle <* with the normal is less than the angle of friction
or repose.

Cone of Friction.—If then the reaction R at any point of contact
P makes the angle of friction or repose <P with the normal at that
point, sliding is about to begin.

If we revolve the line representative of R about the normal at P,
it describes the surface of a cone every element of
which makes the angle of repose <p with the nor-
mal. This cone is called the cone of friction.

No force acting at the point P, however great
in magnitude, can cause sliding to begin at that
point if its line representative lies within the cone.
The cone of friction encloses the direction of all

forces which are completely counteracted by the surface at any
point.

Coefficient of Friction.—When two surfaces are in contact and
there is friction and normal pressure at every point of contact, the
sum of the frictions at every point of contact is the total friction,

and the sum of the normal pressures at every point of contact is

the total normal pressure.
The ratio of the total friction to the total normal pressure when

motion, either sliding or rolling, is just about to begin, is called the
coefficient of static friction, either of sliding or rolling.

The same ratio after motion has taken place is called the coeffi-

cient of kinetic friction, either of sliding or rolling.

We denote the coefficient of friction in general by m. We have
then, in general, for all cases

F
p m «, or F = mN,

where F is the total friction and iVthe total normal pressure, when
motion either sliding or rolling is just about to begin, or else when
motion either sliding or rolling has taken place. In the first case /*

is the coefficient of static friction of sliding or rolling. In the
second case u is the coefficient of kinetic friction of sliding or roll-

ing. We have to do in this portion of the work with static friction

only.
Limiting Equilibrium.—The student should carefully note that

F = mN

does not give the actual resistance of friction in all cases of equilib-

rium, but only the resistance which exists when the surfaces are

on the point of motion.
Friction acts always in a direction opposite to the force which

tends to cause motion, and so long as there is equilibrium it is

always equal in magnitude to this force. But when this force has

the magnitude mN motion is just about to begin, and the body is
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said to be in limiting equilibrium. If this force is less than fiN,

there will still be equilibrium, whatever its magnitude, and the
body is in non-limiting equilibrium.

Coefficient of Static Sliding Friction—Experimental Determina-

tion.—Let a body of weight W, acting at the centre of mass C, rest

in equilibrium upon a rough plane AB, the
surfaces of contact being plane.

Then for equilibrium the line of direction
of W must intersect the plane inside the base
or surface of contact DE, and we can con-
sider the body as a particle placed at the
point where W intersects the base, and in
equilibrium under the action of the reaction
at that point and the weight W.

Then the sum N of all the normal press-
ures acting at every point of contact must
be equal and opposite to the normal compon-
ent of W, and the sum F of all the frictions

at every point of contact must be equal and opposite to the com-
ponent Tof W parallel to the plane.
We have then when sliding is about to begin, for the coefficient

of sliding friction,

F
M = N'
F

and we see from the figure that — is the tangent of the angle which

the total reaction R makes with the normal when sliding is about
to begin. Now the reaction at every point of contact is parallel to
R or Wand sliding begins at all points of contact simultaneously.
Hence the angle which R makes with the normal when sliding is

about to begin is the angle of repose <p y and it is evidently the same
as the angle which the plane makes with the horizontal. There-
fore

F
ft = — = tan (p.

That is, the coefficient of static sliding friction is equal to the
tangent of the angle of repose.

If, then, we place a body upon a rough plane and then gradually
incline the plane until sliding just begins, the inclination of the
plane at this instant gives the angle of friction or repose 4>. The
tangent of this angle gives the coefficient m of static sliding friction

for plane surfaces

.

We obtain the same result by resolution of forces. Thus let cf>

be the inclination of the plane when sliding begins.
Then for equilibrium Wcos <p = N, and TPsin <p = F. Hence

F
H = =— = tan <p.

We can thus make use of the inclined plane as an apparatus for
determining n by experiment.

Again, if we place a body of weight W on
a horizontal plane and measure the horizon-
tal force F just necessary to cause it to be-
gin to slide, we have

M = w = tan
'
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where is the angle of the reaction R with the normal when slid-
ing begins, or the angle of repose.

Such an apparatus should be so constructed that the friction of
the pulley and other resistances due to the string, etc., can be dis-
regarded or else allowed for.

Laws of Static Sliding Friction.—The following laws of static
sliding friction have been established by experiment as holding
true within the limits indicated :

1. Other things being the same, within certain limits of the nor-
mal pressure, static sliding friction is proportional to the total
normal pressure and independent of the area of the surfaces in
contact.

In other words, within the limits of normal pressure referred to,
the coefficient of static sliding friction n is constant for the same
two surfaces in the same condition, whatever the area of the sur-
faces or contact and whatever the total normal pressure.

Thus, if the normal pressure iVover a given area is increased or
decreased, the friction F increases or decreases in the same propor-

tion and ft = —
- is unchanged.

It follows directly that if the area increases or decreases, N re-
maining the same, the number of points of contact is correspond-
ingly increased or decreased, but the normal pressure at each
Soint, and therefore the friction at each point, is correspondingly
ecreased or increased. The sum of all the frictions F remains then

the same and m = — is unchanged.

Limitations of the Law.—The limitations of normal pressure re-

ferred to are as follows

:

If the normal pressure per unit of area approaches the crushing
strength or becomes so great as to break up the film of interposing
unguent, the friction F increases more rapidly than the normal
pressure and the law fails.

In properly designed structures the normal pressure per unit of
area is much less than this limit and the law applies.

Again, if the normal pressure per unit of area is very small, ad-
hesion may constitute the larger portion of the resistance. This
adhesion increases with the area of contact (page 187).

In all practical cases, however, the influence of adhesion may be
neglected.

Hence in practical applications the friction is the only resistance
which is considered, and it is assumed that

F= mN
gives the resistance, where m is in practice a constant for the same
two surfaces in the same condition, whatever the area of the sur-

faces in contact and whatever the total normal pressure N.
2. Other things being the same, within certain limits of the nor-

mal pressure, the stating sliding friction of greased surfaces is less

than that of ungreased and depends less upon the surfaces than
upon the unguent.

Here again, if the normal pressure per unit of area becomes so

great as to break up the film of interposing unguent, surface comes
in contact with surface and the friction may depend more on the

surfaces than upon the unguent.
In properly designed structures the normal pressure per unit of

area is much less than this, and the law applies.
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Again, if the normal pressure per unit of area is very small, ad-
hesion may constitute the larger portion of the resistance and this
adhesion is increased by the unguent.

In all practical cases, however, the influence of adhesion may be
neglected.

Hence in practical applications the friction is the only resistance
which is considered and it is assumed that

F = mN
gives the resistance, where ju is in practice a constant for the same
two surfaces in the same condition, whatever the area of the sur-
faces in contact and whatever the total normal pressure N.

Upon these two laws depend the value and use of the values for
the coefficient of static sliding friction given in the next Article.

Values of Coefficient of Static Sliding Friction.—The following
table gives a few values of the value of n as determined by experi-
ment for static sliding friction.

COEFFICIENTS OF STATIC SLIDING FRICTION M = TAN 0.

Condition of Surfaces and Kind of Unguent.

Substances in Contact.

Dry. Wet. Olive
Oil.

Lard. Tallow. Dry
Soap.

Polished
and

Greasy.

Wood on
) „,„„„

wood
mean

( maximum ....

Metal on 1
. , •< mean

0.30
0.50

0.70
0.15

0.18
0.24
0.60

0.50

0.63
0.80

0.47

0.54

0.67

0.75

0.65

0.74
0.40

0.7to0.3
0.51

0.33
0.25 to 1

1.0

0.65
0.68

0.71

6.65

6.87

6.11
0.12

0.16

0.10

6.21

O.'lO

6.12

0.14
0.19

0.25

6.11

6.12

0.22
0.36
0.44

0.30
0.35

0.40

6.15
metal )

( maximum ....

6.10
Hemp ropes ( minimum...

or plaits -< mean
on wood ( maximum .

Leather belts ( woo(j
over drums -J , ,

, , 1 metal ....made of (

Stone or brick
f

on stone or] minimum
brick, pol- j maximum
ished. [

Dry masonry and brick-

Masonry and brickwork,

" " moist clay. .

.

Damp clay on damp clay .

0.28

More extensive tables will be found in treatises on Engineer-
ing. It will be noted that the coefficient of static sliding friction is

practically always less than unity. In only one case given in the

table, viz., for damp clay on damp clay, is jj. = 1, corresponding to
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an angle of repose of = 45°. Eankine gives for "shingle on
gravel " a maximum jn = l.ll, corresponding to an angle of repose
4> = 48°.

Static Friction for Pivots.—In all cases of the sliding of two
surfaces, we denote the coefficient of static sliding friction by m
and take the value of m as given by the Table page 192. We have
then in all cases of sliding friction, for the friction when sliding is

about to begin,

F = »N=N tan <t>,

where N is the total normal pressure and is the angle of repose,
and u is given by the Table page 192. The direction of the friction

is always opposite to the direction of motion if motion were to take
place.

The application to pivots is then simple.
1. Solid Flat Pivot.—Let ACB be the base of a solid flat pivot

and N the total normal pressure upon the base.

We have then for the static friction

F = uN, (1)

where n is given by the Table page 192.

If we divide the base into a very large number
of very small equal triangles such as ACD, the
friction on each can be considered as the resultant

of equal parallel forces distributed over the sur-

face. The point of application for each triangle is

then at the centre of mass for that triangle. The point of application
o

of the entire friction is then at a distance Cs = —r from the centre.
o

The moment of the entire friction with reference to the axis is then

M= —juNr.
O

(2)

Since for any point s of the base there is a corresponding point
s' for which the friction is equal and opposite, the moment of the
friction is the moment of a couple, and is therefore the same for

every point in the plane of the base (page 72).

2. Hollow Flat Pivot.—If the rubbing surface is a flat ring
ADEB, we have as before

F= uN, (1)

where N is the total normal pressure on the base
and n is the coefficient of static sliding friction as
given by the Table page 192.

Let the outer radius be r t and the inner radius
TV Then any small portion of the base is a circular
ring for which the length of chord and arc ADmay

be taken equal. The centre of mass (page 25) for each small por-

tion is then at a distance Cs from the axis given by

Cs
2 n' — ra

»

3 rS-rf

Hence the moment of the friction with reference to the axis is

2

3 Vri
2 — ra7

(2)
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Since for any point s there is a corresponding point s' for which
the friction is equal and opposite, the moment of the friction is the
moment of a couple and is therefore the same for any point in the
plane of the base (page 72).

3. Conical Pivot.—In the case of a conical pivot let R be the
pressure along the axis and let the half angle of
convergence ADC be a.

If we divide the conical surface into a large
number n of very small triangles with their ver-
tices at the point D, each will sustain the vertical

R
load — , and the normal pressure on each will be

n
R—i

. If we denote the radius CiAi = CiBi of
n sm a

the pivot at the point of entrance by n , the resultant normal press-
2

ure upon each small elementary triangle acts at a distance ^-n

from the axis.

We have then for the total friction

F = v
R

sin a' (1)

where m is the coefficient of static sliding friction as given by the
Table page 192, and the moment of the friction with reference to
the axis is

3 sm a 1

or, smce
?'i

sm oc
= the side DAi of the cone of contact = a, we have

M=-nRa. (2)

This is also the moment of a couple and hence the same for any
point in the plane perpendicular to the axis at a distance above the
point D equal to two thirds the height of the cone of contact.

4. Pivot a Truncated Cone.—Let R be the pressure along the axis
and let the half angle of convergence ADC be «.

Let Ri be the pressure sustained by the flat

base and Ri the pressure sustained by the conical
surf, ace.

Then
R\ + Ri = R.

Also, if ri is the radius C\A, at the point of
entrance and ra the radius of the base,

At "/Bo

D

Ri

and hence

R : : nr? : nri or R* = —J--B,

Ri = R — Ri = n' - ri
R.

We have then as in Case 1, page 193, for the flat pivot, the fric-

tion Fi on the base

F* = uRi = m~R,
ri1
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and its moment about the axis

3 rv

ITor the friction on the conical surface we have, as in Case 3,

page 194, for the conical pivot

sm oc tv sin a

and for its lever-arm, as in Case 2, page 193, for hollow pivot,

2 tV - r*'

3 ' tV - tV'

Its moment then about the axis is

,, 2 n'-r, 3 BMi = --tt .

3 ri
s sin a.

The total friction for the truncated pivot is then

F=Fl+ F, = ^JrS +
1±^) 1 (1)tV \ sin a /' v '

and its total moment about the axis is

M=M1 + Mi = l^(r1>+
7±^.Y .... (2)

3 rS\ sin ay v '

where u is the coefficient static sliding friction as given by the
Table page 192.

[Pivot with Spherical End.]—Let R be the pressure along the axis,

denote the radius .A Oof the spherical surface by r, and
the radius AC by ri, and let the angle AOC be ex.

Then the load per unit of area of horizontal projec-
ts

tion is — „. Take any element of the surface at a. dis-
7TTV *

tant ab = x from the axis, and let Ob = y. The hori-

zontal projection of this element is 2nxdx and the load sustained by it is

.. «< - R 2Rxdx
then litxdx x —- = —

.

7TTV TV

The cosine of the angle aOb is cos aOb = — = .—
. The nor-

r r

mal pressure on the element at a is then

2Rxdx r

R
{

A C B
\ACh/

ft*
"

4/^ _ g*
'

and the static friction is

2/uRr xdx
t"i ^r' - xq

Integrating between the limits of x = and x = ri , we have for the

total friction

F =
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or, since Vr* — rS = r cos a and t% = r sin <*>

2mR2fiR L \ 2/F= -+-z— (1 — cos a =
sin* a \ / 1 +

where m is the coefficient of static sliding friction as given by the Table

page 192.

Foi hemispherical end a = 90° and F= 2/jR. For flat end a =
&ndF=MR.

The moment about the axis of the friction on an element is

2/iRr x*dx

Integrating between the limits x = and x = n , we have for the

total moment of the friction about the axis

2MRrl~r'M= -—-I -sin
n" L

1 r > r > ,/-3 r~l___*-- r,«

J,

or, inserting the values of Vr* — n* = r cos a and r t = r sin or and reduc-

ing,

M=MRrl-T^ cota^ (2)
\smf a J

For hemispherical end a = -, sin a = 1, cot a = 0, and this becomes

2

Static Friction of Axles.—In all cases of the sliding of two sur-
faces, we denote the coefficient of static sliding friction by // and
take the value of m as given by the Table page 192. We have then
in all cases of sliding friction for the friction, when sliding is about
to begin,

F=MN= NUm(p,

where N is the total normal pressure and <p is the angle of repose,
and fi is given by the Table page 192.

The direction of the friction is always opposite to the direction
of motion if motion were about to take place.

The application to axles is then simple.
1. Axle in Partially Worn Bearing.—Let the bearing be partially

worn, then the axle at the moment when Sliding begins
touches the bearing at a point .A, and the resultant
pressure R at this point makes the angle of rap
with the normal. We have then for the normal
pressure N= R cos <P, and for the friction

F = iVtan <P = R sin 4> tt)

where <p is the angle of repose as given by the Table
page 192.

Let r be the radius AC of the axle. Then the moment of t In-

fliction with reference to the axis is

M= Rr sin <t> (2)
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If the axle is well gurnard, the angle of repose * is very small
and we may take « = tan = sin <s>. In due practical esse ofa well-
greased sue, then, we hare

F = mB, M=mBt,
where * is given by the Table page 192.

If the wheel AB revolves, as shown, about a fixed axle AC, the
friction is the same as before, but the lever-arm of
the fraction is not the radiusoftbt& axle, but the inner
radius of the wbeet

2. AxJa—Triangslar lynriag—If the bearing is

triangular, the axle is supported at two points A and
B. The resultant pressure B
can be resolved into two compo-
nents B> and B* , and when slid-

ing begins, each of theae makes R

the angle of repose with the normals at A
and B. The normal pressure at A is then
N$—Bi cos 0, and the friction at A is

Fi = Xi tan <? = B< sin <?.

The friction at B is in like manner Ft — B* sin <?. The total friction

is then
F — iBi + Bt)sin&.

Let the angle ACf? = 2a- Then the angle AOB = «—<>, and
the angle BOB=a. + *.
We have than

B,:J2:: sin («+#): sin 2a; or B>= mn^t^) Bl

sin 2*

ami
cjn (a — d

I

£»: J2::sin(a-0>:sin2ff, or & = **":
m *'R.

Hence the total friction is

K sinF = fain (*+ *> + sin (<* - <*)"! •

sin 2*

Butsm(*+0H-sm(«—^=2sm«eos#, andsm2a=2sin cosa
Banes we basw

„ _ gsJnOeos<» _ Bmnl4> .

cos«t 2oos«
'

where ^ is the angle of repose as given by the Table page 1*2.

The moment of friction with reference to the axis, if r is the
radius of the axle, is

U=Fr = *£*^«.
leas*

If the axle is well greased, the angle of repose is very small
and we may take sinz^ = t sin<J>, also * = tan = sin O. In the
practical ease of a weO-graascd axle, then, we have
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cos oc may be taken as unity, and F and M are then the same as in
the preceding case,

F = mB, M=uRr.

[3. Axle—New Bearing. ]—When the bearing is new and unworn, the
axle touches it at all points.

Let R be the resultant vertical pressure acting at the

centre of the axle. Denote the radius AO of the axle

by r, the distance AC by n , and let the angle AOC be a.

Then the load per unit of horizontal projection is

_R— . Take any element of the surface of the axle at a,

distant ab = x from R, and let Ob = y. The horizontal

projection of this element is dx, and the load sustained by it is —— . At

a' we have a similar element.

The friction on these two elements is, from the preceding Article,

sin 20 . Rdx
2n cos aOb

'

1/ \/l**— OH?

But cos aOb = - = — , hence the friction for the two elements is
r r

Rr sin 20 dx

2ri |/ra— x1

Integrating between the limits x = r\ and x = 0, we have for the
entire friction

„ Rr sin 20 . -i r xF—— ^- sin —

.

2n r

Inserting the value of r x = r sin a,

.R sin 20 a
2 ' sin a ' ()

where is the angle of repose as given by the Table page 192.
The moment of the friction with reference to the axis is then

jj,_i2rsin20 a
~

~~t "ini^ (2)

If the axle is well greased, the angle of repose is very small, and we
may take sin 20 = 2 sin 0, also n = tan = sin 0.

In the practical case of a well-greased axle, then, we have

F= MR-~-, M=MRr^-a
sin a sin a

where ju is given by the Table page 192.
If the angle a is small, we may take a = sin a, and then F and M are

the same as in the two preceding cases,

F= MR, M=fiRr.
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4. Friction Wheels.—By the use of friction wheels instead of
bearing blocks, the friction of an axle can be greatly
diminished.

Thus let the axle AC rest upon the circumfer-
ences of the friction wheels ACi and Bd , touching
them at the points A and B. The vertical pressure
R on the axle C causes the pressures Ni , N» at A
and B.

Let the angle ACB == a. Then

jtfi = N* = s-^—

•

2 cos a

If the axles of the friction wheels are well greased, then, as we
have seen, the least friction may be written

juRF = m(Ni + N*) =
COS oc

where n is given by the Table page 192.

If the radius of the axles of the friction wheels is r, the moment
of the friction is

COS a
The moment of the friction at the points A and B must be the

same. If we call this F\ , we have, if the radius of the friction

wheels is a,

Fm = Fr, or Fi = -F = nR
a a cos «

By making a small, we can take cos a = 1, and have

F= r-
a

juR.

By taking a large with respect to r, we may thus
make the friction Fi very small. If the axle C rests on
bearings, its least friction is mR, as we have seen.

If we have a single friction wheel CiA, then a =
and we have accurately

Fi = -nR.
a

Static Friction of Cords and Chains.—Let a perfectly
flexible cord stretched by a weight Q be laid over the

edge C of a rigid body ABO, Fig. 1.

Let the force at the other
end of the cord be P, and the
angle of deviation DCP =
AOB = a.

Draw CT making the angle
oc.

TCP = — , and CN perpendicu-

lar to CT. Then when motion
is about to begin, the resultant
R of P and Q makes the angle
of repose <p with CN.

If the weight Q is about to
sink, the friction F acts op-

Eosed to the motion, and we
ave

P + F=Q.

N\

90-«
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We have then, from Fig. 2,

F : 2Q sin - : : sin : sin

or

F =
2Q sin g sin <p

COS —

*~i

2Q sin H- sin

cos cos g- + sin <p sin g-

Dividing numerator and denominator by cos 0, we have, since
tan (p = u = coefficient of static sliding friction, for the friction Fi
when the weight Q is about to sink,

F> =
2uQ sin

[

cos g- + u sin g-

2mQ tan
g

a'
1 + /* tan

g

(1)

When the weight Q is /ms£ about to rise, we have

P=Q + F, or Q=P-F,
and hence

2//£ tan

1^ = (2)

1 — m tan _-

In the first case, then, when the weight Q is about to sink,

P1 = Q-Fl

M tan o")

(3)

1 + m tan

and in the second case, when the weight Q is about to rise,

Q(l + m tan
|

\

P=Q+F= (4)

I Xa v —

1 — // tan =r

If the cord passes over several edges, the
force P\ can be calculated by repeated applica-
tion of these formulas.

Thus let the number of edges be n and the
deviation at each edge be the same and equal
to a. When the weight Q is just about to sink,

the tension of the first portion of the cord is,

from (3),

P,=
q(i - ft ten

£ j

1 + m ten
g



€HAP. IX.] KOUGH CUEVE OR SURFACE.

That of the second is

P,(l-,utan|) gfl-Mtmi^X

201

P> =
1 + M tan

That of the last is

fl + m *an|)

Pn=
Q\l - ft tan

-J

1 1 + // tan g I

(5)

If the weight Q, is ,/t*sf a6ow< to rise, we have simply to inter-
change P and Q and we have

Pn =
q(i + m tan

|)

H

(1 — /* tan^-l
(6)

In the first case, when the weight is about to sink, we have for
the friction

Fl =Q-Pn=Q[
• H tan

|

f1 + « tan ^Y )
If the weight is about to rise,

F = Pn -Q=Q\
tan|)"

(7)

(8)

Formulas (5), (6), (7) and (8) are also applicable to the case of a
chain composed of links which is passed round a l
cylindrical surface, where n is the number of
links in contact. If the length of each link is

AB = I, and the distance CA of the axis A of a
link from the centre C is r, we have for the angle
of deviation DBL = ACB = a,

. a I a I

sin -sr-i or tan - = ——

-

2 2r 2 yV _ p

[If a flexible cord lies in contact with a rough surface, let ACB = a be
the arc of contact.

If T is '.the tension at any point of contact D
for the indefinitely small portion of the cord Dd,
the friction at this point is dT. Let the indefinitely

small angle DCd be doc. Then, from equation (1),

page 200,

dT.
2MTtnn —

1 + m tan -
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But since da is indefinitely small, we may take the arc equal to the

tangent and disregard /i tan — with reference to 1.
2

We have then

dT = juda.

Integrating between the limits a = and or, we have, since for a = 0,

T = Q, and for a = a, T = P,

logn P= /ia + log Q, or
. P
logn - = m«.

(9)

We have then, when motion in the direction of P just begins,

P=Qelia
,

where e = 2.3026 = base of Naperian system of logarithms.
When motion in the direction of Q just begins, we have, by interchang-

ing P and Q,

Q = Pe~'La- (10)
Also, inversely,

2.3026(logP— logQ)

M
(11)

where common logarithms are taken.

If the arc a of the cord is given in degrees instead of radians, we must

substitute a = ——-.Tt. If the surface is cylindrical and the number of
180° J

coils n of the rope is given, we have a = 27m.
We see from (9) and (10) that the friction of a cord, F= P— Q or

F= Q — P, upon a surface does not depend at all upon the radius of
curvature, but only upon the arc of contact a, or upon the number of
coils, %itn, if the surface is cylindrical.

If we take u = — , we have for a cylindrical surface

:

for J coils, P= 1.69Q;

"£ " P= 2.85(2;

" 1 •' P= 8.12#;

" 2 " P= 65.94$;

"4 " P= 4348.560.

The friction can thus be increased to any amount by increasing the
number of coils.]

Eigidity of Ropes.—When a rope is perfectly flexible it offers

no resistance to bending. When a rope is not perfectly flexible it

offers a resistance by reason of its rigidity when
wound on to a drum, pulley or axle, though none
is offered when it is wound off. Thus let a rope
whose tension is T be on the point of being
wound on to a pulley.

Let a = AC = BC be the radius of the pulley,
and t the thickness of the rope. Then the lever-
arm of the axis of the rope on the off side is

The distance Ac from the pulley to the rope
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on the on side will depend on the kind of rope and will be less as
is greater. Thus for hemp ropes we can put

where Ci is a constant to be determined by experiment for the kind
of rope ; and for wire ropes

Ci

Ac = -("fl

that is, Ac increases with the lever-arm a + - and decreases as T
ft

increases.
It is also evident that those fibres farthest out on the on side are

stretched more than those nearer the pulley. The resultant tension
T will therefore act further from the pulley than the central axis
of the rope. We denote the distance of T from the central axis
by c».

Let the tension along the central axis on the off side be T + T'.

Then we have for equilibrium, for hemp ropes,

r(. +l +|+«.)-(r + r)(« +
|),

or T= c,+c,T
.

(1)

« + {
and for wire ropes,.

r(a + | +-±
r
li) + e,) = (r+r

)(
a+

|),

or T' = c, +—^r (2)

We have then

TxCc = (T+ T'jCb, or Cc = (l + ?f\cb. . . (3)

The rope can be considered, then, as without rigidity if we in-

crease the lever-arm of the tension on the on-side by the amount
T
T'
Hemp Ropes.—For tarred hemp ropes experiment gives

r= 100+Of2r
pounds,

a + 1
2

where T is to be taken in pounds and a and t in inches.

For new hemp ropes, untarred,

r - = 4 + 006^ pounds,

a+
2

where T is to be taken in pounds and a and t in inches.
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Wire Ropes.—For wire ropes we have

m, , no 0.0937T ,T = 1.08 + .- pounds,

a+
2

where T is to be taken in pounds and a and t in inches.

Static Rolling Friction.—Let ACB be a roller resting on a plane
surface. By reason of the pressure N of the roller on the plane,

the roller is compressed, Let a force F be applied
at the centre C parallel to the plane. When the
resultant R of F and N just passes through the
edge D of the base, rolling begins and the force F
is equal and opposite to the friction.

Let the distance AD = d. Then, when rolling
is about to begin, the angle ACD is the angle of
repose <p. Let r be the radius. Since the com-
pression is small compared to the radius, we have

: coefficient of static rolling friction. Hence for

equilibrium Fr — Nd, or

F = mN=-N.
r

The distance d depends on the materials in contact.
The theory of rolling friction is not yet well established and but

few experiments upon it have been made.
In all practical cases of rolling, we usually have to do with axle

friction. Avhich has already been discussed (page 196;.

[Equilibrium of a Body at Any Point of a Rough Curve or Sur-

face—General Equations.]—If a body acted upon by any number of

forces Fi, Ft , etc., applied at different points, is at rest at any point of a
rough curve or surface, we may treat it as a particle placed at that point

(page 188).

The reaction R at that point must be equal and opposite to the result-

ant of all the other forces acting upon the body. n
The curve or surface can then be replaced by its reac-

R<
"

tion R at the point P. For limiting equilibrium the reac-

tion R must make an angle with the normal to the curve
or surface at the point P equal to the angle of repose 0,
given by

tan (p = M,

where // is the coefficient of static sliding friction.

If R makes an angle with the normal less than 0, we have non-limiting
equilibrium (page 189). If equal to <p, we have limiting equilibrium, and
sliding is about to begin.

Let the algebraic sum of the components along the co-ordinate axes of

all the forces Fi , Fi , etc., not including the friction and the reaction R
at the point P, be Fx , Fy , Fz . Then if the direction-angles are («i , fix ,

yt ), («2 , fi% , yi), etc., we have

Fx = Fi cos «i + Fi cos at + . . . = 2F cos «;

Fy = Fi cos fi 1 + Fi cos fa + ... = 2F cos /?;

Fz = Fi cos yi + Fi cos yi + . . . = 2F COS y.

1. Equilibrium of a Body at Any Point of a Rough Curve.—Let the

co-ordinates of the point P be x, y, z, and ds be an element of the curve.
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Then the direction-cosines of the tangent to the curve at the point P are

dP 7T' ds>
an<* we ^ave *or tlie *orce T taDSential t0 tne curve

T - W dX
J. W ^ J_ 7?

dz

T
The reaction R makes with the normal an angle whose sine is — . ForR

T
equilibrium this angle must be less than the angle of repose <p, or jt is less

than sin <p. Hence the condition for non-limiting equilibrium is

Fxdx + Fydy + Fzdz
<si . .... 01)

Rds '

or, since sin* <p = -
„,

(Fxdx + Fydy + Fzdz\* fi* ,„.

[ Ms——J K r+7? °°

If then

Fxdx + Fydy + Fzdz

Rds =±v^...= ± sin <p = ± 1/——5, ... (4)

we have limiting equilibrium, and the body is upon the point of sliding.

The force T for equilibrium is always equal and opposite to the friction

F, or T + F= 0. Hence

-n, dx dy dz w_Fx
d7

+ Fv
ds-

+ Fz
ds-
+F- '

If we multiply by ds, we have

Fxdx + Fydy + Fzdz + Fds = 0,

which is the principle of virtual work (page 159).

2. Equilibrium of a Body at Any Point of a Rough Surface.—Let

the equation of the surface be u = 0, where u is a function of x, y, z.

For convenience of notation let

*i = n ** a V.
d
^- = W, and U* + V* + W> = #».

dx ' dy dz

Then the direction-cosines of the normal to the surface at the point

(x, y, z) are

E. Z. —
Q' Q' Q'

The resolved part of R along the normal is then

TT V WN = Ft— + Fv~- + Fz~.X
Q "Q Q

iV
The reaction R makes with the normal an angle whose cosine is —-

.

ri

If
For equilibrium this angle must be less than the angle of repose <p, or -
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is greater than cos <p. Hence the condition for non-limiting equilibrium is

w du
_i_ v du ^w du

dx dy dz IK.y > cos 0, (5)

„ /iduV (du\* fduV

1

or, since cos* <p = ^ » >

(6)

If then

du
,
jpdu du

*x-j 1- Fy-i- + -Pz-t~
dx dy dz

= ± cos = ± s/xh^ (7)

we have limiting equilibrium, and the body is upon the point of sliding.

Let the point P be moved in any direction along the surface through
the indefinitely small distance ds, and dx. dy, dz be the projections of this

distance on the axes. Then the direction-cosines of the tangent at the
(Iv cIaj dz

point Pslvq^-, —-, —. The tangential force T is equal and opposite to
LLS (JLS as

the friction F, or T = — F. We have then

du du du

Jb-Jr£.-Jj£, Fy =^-F% Fz =N^-FC

?f.Q ds' y
Q ds' Q du

If we multiply the first of these by dx, the second by dy, the third by
dz, add the results and reduce by the equations dx1 + dy1 + dz3 = ds*
and

«H£M£)*=*
which is the total differential of the equation u = of the surface, we ob-
tain

Fxdx + Fydy + Fzdz + Fds = 0,

which is the principle of virtual work (page 159).

Stable, Unstable, Neutral and Indifferent Equilibrium.—A body
in equilibrium is said to be in stable equilibrium when for every
possible indefinitely small displacement which it can receive it

tends to return to its original position.
When for any one possible indefinitely small displacement it

tends to move still farther away from its original position of equi-
librium, it is in unstable equilibrium.

Cases occur in which the equilibrium of a body is stable for
some displacements and unstable for others. It is then, by defini-
tion, in unstable equilibrium.

If the body remains in equilibrium for all possible indefinitely
small displacements, it is in neutral equilibrium. Neutral equi-
librium may be stable or unstable.



CHAP. IX.] ROUGH CURVE OR SURFACE. 207

If the body remains in equilibrium for all possible displacements,
large or small, it is in indifferent equilibrium.

Thus let a heavy body be supported at a fixed point P, so that it
can only rotate about P. Let the reaction at P be P, and let the
weight W act at the centre of mass
C. Then for equilibrium, if P andW are the only forces acting upon
the body, the reaction P must be
equal and opposite to W and act in
the same line.

We have then two possible posi-
tions of equilibrium: one when C is

below P, and one when C is above P.
Now for every possible indefin-

itely small displacement of rotation
about P, the point C moves in the surface of a sphere C'CC of
radius PC, and W remains unchanged in magnitude and direction.

Therefore in the first case, when C is below P, we have for
every possible displacement a couple P and W which always tends
to make the body return to its original position of equilibrium, and
the body is in stable equilibrium.

In the second case, when C is above P, we have for every pos-
sible displacement a couple P and W which always tends to make
the body move still farther from its original position of equilibrium,
and the body is in unstable equilibrium.

If the points P and C coincide, then for every possible displace-
ment, large or small, the body remains in equilibrium, and the
body is therefore in indifferent equilibrium.

Again, let a heavy body bounded by a convex surface rest in
equilibrium on a plane surface, and let the centre of mass C coincide

ivith the centre of curvature.
Then the reaction P acts at the
point of contact P, is equal and
opposite to the weight W and
acts in the same straight line.

If the body can have rolling
motion only, any indefinitely

small arc PP is circular. Hence for any possible indefinitely small
displacement produced by rolling, the body remains still in equi-
librium. Its original position is therefore one of neutral equi-
librium.

If now the body be rolled still farther through an indefinitely
small arc, so that P' comes in contact with the plane, then, if the
radius of curvature CP is less than C"P', the equilibrium is evi-

dently stable ; if greater, unstable. The original position of neutral
equilibrium is therefore stable neutral when the radius of curva-
ture CP is a minimum, and unstable neutral when it is a maxi-
mum. When it is not a minimum or maximum, the neutral equi-
librium is stable for displacement in one direction and unstable for
displacement in the other direction—that is, unstable neutral, ac-
cording to definition (page 206).

Criterion for Stable, Unstable, Neutral and Indifferent Equi-
librium.—Every displacement of a body consists in general of two
displacements, one of translation and one of rotation. Now for an
indefinitely small displacement of translation, a body which under
the action of certain forces is in equilibrium before the displace-

ment is also in equilibrium after, it the forces act at the same
points, because their magnitudes and directions are unchanged by
the displacement.
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Thus if a body can only slide on a plane surface and touches it

in more than two points not in a straight line, it can only receive
motion of translation and its equilibrium is indifferent.
We have then only to determine the conditions for stable, un-

stable, neutral and indifferent equilibrium in the case of rotation.
Let P be the point about which the body can rotate, and R the

reaction at that point. Let the weight W act at the centre of mass
C, and let the resultant of all the other forces acting upon the body

be F. Then for equilibrium the lines of direction of W, F and R
must intersect in a point A which lies in the vertical through the
centre of mass C, and the resultant R' of W and F must be equal
and opposite to R and act in the same straight line.

For every possible indefinitely small displacement of rotation
about P the point A moves in the surface of a sphere A'AA' of ra-
dius PA, and R' remains unchanged in magnitude and direction.
If the body has a displacement of translation as well as of rotation
about P, the locus AAA of the point A is no longer a spherical,
but is still a curved surface.
We see at once from the figures that for any displacement for

which the projection of AA' along R' is opposite in direction to R',
or for which the ivork of R' is negative (page 158), the body tends to
return to its original position of equilibrium. For any displace-
ment for which the work of R' is positive, the body tends to move
away from its original position of equilibrium.

Let us take the axis of Y parallel to R', and the direction of R'
as downwards.

Then if we draw a line OX at right angles to R' at any distance
AO = y below A, we see from the figures that when AO — y is a
minimum, the equilibrium is stable. When AO = y is a maximum,
the equilibrium is unstable for all possible displacements. When
AO — y is neither a maximum nor a minimum, the equilibrium is

stable for some displacemements and unstable for others ; that is,

unstable according to definition (page 206).

In general, then

:

A body is in stable equilibrium when for all possible indefinitely
small displacements the work of the resultant of all the forces except
the reaction is negative. Iffor any or all possible indefinitely small
displacements this work is positive, the equilibrium is iinstable. If
it is zero for all possible indefinitely small displacements, the equi-
librium is neutral. If it is zero for all possible displacements, large
or small, the equilibrium is indifferent.

Or if we take the axis of Y parallel to R' and the direction of
R' as downwards, and draw OX at right angles to R' at any dis-

tance AO = y below A, we have the criterion:

A body is in stable equilibrium when for all possible indefinitely

small displacements AO = y is a minimum. If AO = y is a maxi-
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mum, the equilibrium is unstable for all possible indefinitely small
displacements. IfAO = y is neither a maximum nor a minimum, the
equilibrium is stable for some displacements and unstable for others,
that is, unstable. Iffor all possible indefinitely small displacements
AO = y remains constant, the equilibrium is neutral. If for all
possible displacements, large or small, AO = y remains constant,
the equilibrium is indifferent.

Stability in Rolling Contact.—As an application of the preced-
ing, let us investigate the equilibrium of a heavy body aPa
bounded by a convex surface resting upon a rough body a"Pa! also
with a convex surface, and subject to displacement due to rolling
only.

Let O be the centre of curvature of the fixed body, and o the
centre of curvature of the rolling body, so that the radius of curva-
ture of the fixed body at the point of contact P is OP = p, and the
radius of curvature of the rolling body at the point of contact P is

OP — Pi.

Through O draw a plane OX at right angles to OP.
Let the reaction at P be R, the weight at the rolling body be W

acting at its centre of mass C, and the resultant of all other forces
acting upon the rolling body be F.

Then for equilibrium the lines of direction of W, F and R must
intersect in a point A, which lies in a vertical through the centre
of mass C, and the resultant R of W and F must be equal and op-
posite to the reaction R at the point of contact P and act in the
same straight line.

The point A may or may not be in the radius oP. If it is not in
the radius oP, then, provided R passes through P and makes an
angle with oP less than the angle of repose, there will be equilib-

rium (page 188). But in such case it is evident that if for rolling

in one direction in the plane of R and oP the distance AO oi A
from OX increases, for rolling in the opposite direction this dis-

tance will decrease. The rolling body is then, according to defini-

tion (page 206), always in unstable equilibrium if A is not in the
radius oP, and there is no need of discussion.

If, however, A is in the radius oP, the equilibrium will be
stable, unstable or neutral, according as the distance AOoi A from
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OX increases for all possible indefinitely small displacements, de-
creases for any or all possible indefinitely small displacements, or
remains constant for all possible indefinitely small displacements
(page 208).

Let the points a, P, a of the rolling body be consecutive. Then the
arc aPa is circular, its radius is Pi , the arcs aP = aP, and the angles
aoP = fi are indefinitely small.

Let the body roll in either direction, so that the points a, a be-
come points of contact at a' and a". Then the arc a"Pa' is circular,

its radius is p, the arcs a"P = aP, and the angles a' OP = a OP= B

are indefinitely small.
Let the distance Ao = c. Then PA = p, — c. When the body

rolls into its new position, the point A passes to A' or A", and we
have A'o' = A"o" = Ao = c, or PA' — PA' = PA = pi — c. Also,
since the arcs Pa and Pa or Pa' are equal,

pfi = P i/3, or fi = ^-6, or 6 + /? = ! 1 + ^V • • CO
P> \ Pi/

Now the distance AO of A from OX is p + pi — c. The distance
of A' or A", or the distance of A after indefinitely small displace-
ment, from OX, is (p + Pi) cos — c cos (& + /3), or, inserting the
value of (fl + p

1

) from (1),

(p + pi) cosS — c cosf 1 + — Jfl (2)

If we replace the cosines in (2) by the first two terms of their
equivalent series, (2) becomes

2
(3)p + pi — C — (P + pi) 1 — c- ^pS

Hence the equilibrium is stable, unstable or neutral according as
(3) is greater, less or equal to p + pi — c.

When (3) is greater than p + pi — c, the coefficient of 52 must be
positive, or

Pi"

The condition for stable equilibrium is then, since PA = pi — c,

Pi" 11,1
c > —

t

— , or —— > - + — (4)
P + pi PA p Pi

The condition for unstable equilibrium is

P 1

' 11.1
c < —— , or -^-r- < - + — (5)

P + Pi PA p pi
'

The condition for neutral equilibrium is

pi
2 111e=?+W or PJ=^ +

?7 <«>

In order to find whether the neutral equilibrium is stable or un-
stable, let O" and o" be the centres of curvature for the indefinitely
small arcs a'b or a'b" and a b or a"b, and let the radii of curvature
be p' or p" and Pi' or p/'.
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Then, proceeding just as before, we find for the conditions of

stable neutral equilibrium

1.11.1 J 1 1,1 AM- + — >- + — and also >— +— (7)
P Pi p Px P Pi

For unstable neutral equilibrium we have

L +i<i + -l, or <-U± ,8)
P P\ P p\ P Pi

If the first of (7) and second of (8) are fulfilled, we have stable
neutral equilibrium for displacement towards the right in the
figure, and unstable neutral equilibrium for displacement towards
the left, and vice versa if the second of (7) and first of (8) are ful-

filled. In either case the neutral equilibrium is unstable according
to definition (page 206).

We can also find conditions (4), (5) and (6) as follows :

The line of direction of R after displacement must fall between
P and a' or P and a " for stable equilibrium, outside of Pa or Pa"
for unstable, and pass through a' or a" for neutral equilibrium.

Hence we have for stable equilibrium

P sin > (p + p^ sin — c sin (0 + /?).

Since and ft are indefinitely small, we can put the arcs in place

of their sines. Putting then 6 + /J = f 1 h— )0, as given by (1), we

have

p9 > (/o + p,)0 — c( 1 + —V or c>
\ P* J P+pi

Hence we obtain, as before, conditions (4), (5) and (6).

Special Cases.—Conditions (4), (5), (6), (7) and (8) are general.
Thus if the concavity of either surface be turned the other way, we
shall obtain the same results, except that the sign of the corre-
sponding radius of curvature will be changed.

Surfaces Spherical.—If one of the surfaces is spherical, we have
p = p'=p", or Pi =,Pi' = Pi". If both surfaces are spherical, we
have p = p' = p" and pi = p/ = pi". If in the latter case the equilib-
rium is neutral, we have from (7)

1 Jl_ 1^ J_ _ 1 J_
P
+

Pl
~ p'

+
Pl '

~ p" + Pl"
;

that is, the neutral equilibrium is indifferent as long as R does not
change in direction and the angle 9 is less than the angle of repose

0, or /? is less than <t>. For Q> <p or ft > —<P there is sliding,
pi pi

Either Surface Plane.—If either surface is plane, its radius of

curvature becomes indefinitely great and the corresponding - or

1 .— is zero,
pi

Weight Only Considered.—If the only forces acting upon the
rolling body are its weight W and the reaction J2, we have F = 0,
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R' = W acting vertically. The centre of mass C then coincides
with A, and we have PC in place of PA in (4), (5) and (6).

o Heavy Body on Plane Surface.—In this casec
l

c .^ we have- =0, and PC<Pi for stable, PC> PiWy P
p p for unstable, equilibrium.

If PC = pi, or the centre of mass coincides
with the centre of curvature, the equilibrium is neutral. In such
case we have, from (7), stable equilibrium when p, is less than pi
and Pi", that is, when Pi or the radius of curvature is a minimum.
When Pi is not a minimum nor a maximum, the neutral equilibrium
is stable for some displacements and unstable for others, or unstable
according to definition (page 206). If Pi is a maximum, the neutral
equilibrium is unstable for all possible indefinitely small displace-
ments. If the radius of curvature is constant, the neutral equilib-
rium holds for all possible displacements large or small, we have a
homogeneous sphere rolling on a plane, and the equilibrium is in-

different.

EXAMPLES.

(1) A body made up of a cone and a hemisphere having a com-
mon base rests with the axis vertical on a rough horizontal plane.
Find the greatest height of the cone for stable equilibrium.

Ans. Let h be the height of the cone, r the radius of the hemisphere, and
C the centre of mass. The height required is that height for

which PG= r.
o

The volume of the hemisphere is -5- izr*. The volume of
8

the cone is —icr^h. The centre of mass of the hemisphere is
O r-

at a distance above P equal to ^-r (page 422). The centre of mass of the cone
8

is at a distance above P equal to r 4- j- (page 420). We have then

2,5 xr'h _.s^x^H—^—

x

-
(
ff+l)PC = V L =r , or ft.,*

(2) A prolate spheroid rests with its axis horizontal on a rough
horizontal plane. Shoiv that for a rolling displacements in its

equatorial plane the equilibrium is indifferent, and for rolling dis-
placements in the vertical plane through the axis it is stable.

(3) A right circular cylinder of radius r rests with its axis hori-
zontal on a fixed rough sphere of radius R greater than r. Show
that for rolling displacements the equilibrium is stable or unstable,
according as the plane of displacement makes an angle with the
vertical plane through the axis of the cylinder whose sine is less or

greater than y 1 — ^
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Ans. Let p be the radius of curvature of the rolling curve at the point of
contact. Then the condition for stable equilibrium is

r
> B + p'

Let the plane of displacement make the angle with the vertical plane
through the axis of the cylinder The rolling curve is then an ellipse whose

T
semi-minor axis is r and whose semi-major axis is -;—x. The radius of curva-

sin

ture at the point of contact, that is, at the vertex of the minor axis, is

f—

1

\sin 0/

sin* 0'

Hence for stable equilibrium

L 1 sm2 Q
or sin 6 < />-

(4) A prolate hemispheroid rests with its vertex on a rough hori-
zontal plane. Show that for rolling displacement the equilibrium
is stable or unstable according as tlie eccentricity of the generating

ellipse is less or greater than y -

.

8

Ans. Let a be the semi-major and b the semi-minor axis.

OC to the centre of mass (page 41) is

4 3a

a)' 3— = -a.
a 8

Then the distance

6 o

The distance PC then is s a- The radius of curvature

c-

at P is fj
= —. We have then for stable equilibrium

PC >
p'

or *-> rv5a ¥
¥ 5

a2 8

But the eccentricity of the generating ellipse is

1-*-.
a*

e = \/

Hence for stable equilibrium e < l/V.

(5) A solid homogeneous hemisphere of radius r and weight W
rests in neutral equilibrium on the top of a fixed sphere of radius

5
R. Show that R — r-r. If noiv a weight F is fastened to any point

18
in the rim of the hemisphere, show that if F = ---W, the hemisphere

55

can still rest in neutral equilibrium at the highest point of the
sphere, and that the neutral equilibrium is indifferent for all

g
angular displacements of the hemisphere less than ^(p, where <p is

the angle of repose. Also that tlie radius through the point of con-

tact in the second case makes an angle with the radius in the first

. . 48
case whose tangent zs v^.
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Ans. In the first case we have PC = - r, and the radius of curvature is r,
o

and PC lies in the axis of symmetry. We have then for neu-
tral equilibrium

-1 = 1+ 1
PC B^r' 5r~ B +r ;

hence B = ttT. If now we attach the weight F to the rim,
o

the new centre of mass, C", will be at a horizontal distance x
from o given by

Fr
W+F'

and at a vertical distance y below o given by

3

V =
8
Wr

W+F'
The distance PC is then given by P'C = r — fV+ p, or

P'C = rV- r2 + 64
FVJ

(W+F)''

If then we place the hemisphere so that P' is in contact at P, there will be
neutral equilibrium when

1 _J_ 1__ 8

P,C'~B'^r ~5r"

18.
Inserting the value of P'C and reducing, we obtain F = ^ W.

oo

The tangent of the angle POP' is— = 3W
48
55'

Since both surfaces are spherical and equilibrium neutral, we have (page
B 5

210) indifferent equilibrium as long as /J < —0, or /3 <^-0.
T 6

(6) A cylinder rests in equilibrium with the centre of its base on
the highest point of a fixed and rough sphere. The altitude and
diameter of the base of the cylinder are each equal in length to a
quadrant of a great circle of the sphere. Find the greatest angle
through which the cylinder may be made to rock without falling off.

Ans. Let C be the centre of mass of the cylinder, and

the centre of the fixed sphere. Then PC = - and OP = B.

When the cylinder rocks let the points C" come in contact.

Then PC = BO. If the cylinder is on the point of sliding,

the angle PCC must be equal to the angle of repose (p.

BQ ^ tan itB
Hence tan <p = -j— , or 9 = ——=— . But we have— = h.

Therefore S = -- tan <p.
4
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Since -^ = — > — = ——, the equilibrium is stable.
JrLf ft sx aft

(7) A body of weight W is placed upon a rough inclined plane
which makes an angle ex with the horizontal,
and is acted upon by a force P which makes
the angle p" with the plane. Find the condi-
tions of equilibrium. (For smooth plane see
Ex. 1, page 172.)

Ans. Consider the body as a particle placed at

any point on the plane (page 169). We have act-

ing upon the particle the weight W, the force P and
the reaction of the plane B, which makes the angle of repose with the nor-

mal to the plane.
Let the angle BOP = p" be positive when above the plane, and negative

when below the plane.

1. Body on the Point of Motion up the Plane.—In this case the component of

P along the plane must act up the plane, and the component of B along the
plane or the friction must act down the plane,

since friction always acts opposite to the direc-

tion in which motion tends to take place.

Since W, P and B are in equilibrium, their

line representatives laid off in order the same
way round make a triangle (page 62).

We have then directly from the figure

B : W :: sin [90 - (p"+ a)] : sin [90+ (p" - 0)].

Hence

cos (p — 0)

Let the normal pressure of the plane be N and the friction be F.
Then we have

P=i2sin0 = ^+^>sin0, i^i2cos0=^±^IFcos0.
cos (p — 0) cos (ft — 0)

We also have directly from the figure

Hence

P : W: : sin (a+ <p) : sin [90 + (/? - 0)].

_ sin (a-\- <p) tp- __ sin a -f // cos a^_—
cos (/J — <f>)

~~ cos 15 -j- n sin /3 '

where u = tan <p is the coefficient of static sliding friction.

We see at once from the figure and from the preceding equations that when
p" = -|- (90 — a) we have B, N and F zero and P and W equal and opposite.

For any greater value of positive fi, B is negative and there is no equilibrium
possible. For negative /3 we must evidently have ft less than 90—0. If /S

is greater than this, B is negative and there is no equilibrium. 2 he preceding
equations hold good, then, for all values of fi between — (90 — q>) and -\- (90 — a).

The force P is a minimujn when cos (/S — <f>) is a maximum or when
p" = -\- (p. This minimum value of P is then

P = Wsiu (a+ 0).

Again, we can resolve P into Pcos fi along the plane and Psin (J normal to

the plane. We can also resolve W into Wsin a along the plane and Wcos a
normal to the plane. Let N be the normal pressure of the plane. Then for

equilibrium

iV-f-Psinp"— Wcosa=0, or N= Wcos a — Psin ft.
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The friction is then

F = nN= fiW cos a — juPsm ft.

This friction always acts opposite to the direction in which motion tends to

take place. We have then in the present case, for equilibrium,

Pcoaft-F- TTsina=0.

Inserting the value for F and reducing, we obtain the same value for P as

before. The student should also solve by virtual work.
2. Body on the Point of Motion Down the Plane

—

a greater than 0.—If a is

greater than 0, the body will slide down the plane
unless prevented.

In this case the component of P along the plane
must act up the plane, and the component of R
along the plane, or the friction, must also act up
the plane, since friction always acts opposite to the

direction in which motion tends to take place.

We have then directly from the figure

R: W:: sin [90 - (/5 -f a)] : sin [90+ (/?-{- 0)].
Hence

R cos(/3-(- a)

cos (ft -j- <P)

W\

F=Rsin0 = C

™\i+
a
i Wsin4>, N= Rcos = ^-±4cos 0.

Also

cos(/S+0)" """*' cos(/S+0)

P: W:: sin(a- 0) : sin [90+ (/S+ 0)],

p_ sin (a— 0)

COS (ft -f- 0)
w= sin a— jj. cos a

cos ft
— n sin /?

w.

We see again from the figure that when -f- /3 is greater than 90 — a, P is

negative. Also when — /? is greater than 90 -+- 0. R is negative. The values

of R, F, N and P hold good, then, for values of ($ between — (90-4- 0) and
+ (90 -a).

The force P is a minimum when cos (fi -\- 0) is a maximum or when
/3 = —

. This minimum value of P is then

P= TTsin(a- 0)

As long as we have, for a greater than <p,

where ft <

sin(«-0)
^ cos(/J+ 0)

w*

(90 -\- )0 and < -(- (90 — a), and at the same time have

sin (a -|- 0),P <
COS {ft

— 0)
w;

where ft < — (90 — 0) and < -}- (90 — a), the body will neither be on the
point of moving down or up, and we have non-limiting equilibrium.

Again, we have as before for the friction

F= fi Wcos a — jiPsmft,

and for motion down the plane

Pcosft-irF- TFsina = 0.

Substituting the value of F and reducing, we obtain the same value for P
as before. The student should solve also by virtual work.
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3. Body on the Point of Motion Down the Plane

—

a less than 0.—If a is less

than 0, the body will not slide down unless
acted upon by some force P.

In this case the component of P along the
plane must act down the plane, and the compo-
nent of R along the plane, or the friction, must
act up the plane, since friction always acts op-
posite to the direction in which motion tends
to take place.

We have then directly from the figure, if

we take the angle fi = AOP positive above the plane and negative below,

R :W :: sin [90 - (fi
- a)] : sin [90+ (fi- 0)].

Hence
OQg(fl- a) —*" COS(^-0) '

_ cos (/? — a) . cos (fi
— a) „, ,

cos (fi
— cp) ~ cos (fi

— 0)

Also
P: W: : sin (0 - a) : sin [90 + (fi

- 0)],

_ sin (0 — a)w_ fi cos a — sin ar_—
cos (fi

— 0)
—

cos fi-\-ju sin /S

We see from the figure that if we take fi from OA positive above and neg-
ative below the plane, -\- fi cannot be greater than 90. Also when — fi is

greater than 90 — 0, R is negative. TJie values of R, F, N and P hold good,
then, for values of fi between — (90 - 0; and -}- 90°.

The force P is a minimum when cos (fi
— 0) is a maximum or when fi =

-\- 0. This minimum value of P is then

P= IT sin (0 - a).

As long as we have, for a less than 0,

p<1inj0-a>
cos (fi

— (p)

where fi < -f- (90 + a) and < — (90 — 0), and at the same time have

p< sin(a+|)
COS (fi — 0)

where fi < -f (90 — a) and < — (90 — 0), the body will neither be on the
point of moving up or down and we have non-limiting equilibrium.

Again, we have, as before, for the friction

F= vWcosa— yuPsin fi,

and for motion down the plane

- Pcos fi + F - Wsin a = 0.

Substituting the value of F and reducing, we obtain the same value for P
as before. The student should solve also by virtual work.

(8) A body of weight W is placed in contact with the under side

of a rough inclined plane which makes an angle ex with the horizon-
tal, and is acted upon by a force P which makes an angle fi with the

plane. Find the conditions of equilibrium. (For smooth plane see
Ex. (2), page 174.)
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Ans. 1st. Body on the point of motion up the plane:

cos (p -J- 0) cos (p 4- 0)

_, cos (/S+ a) TTT .F= y. Z—JWsm 0;
cos (/S 4- 0)

p_ _ sin (0 — «) _ sin a — n cos a ^
cos (p* 4- 0)

~ cos p" — m sm yS

When a > 0, /S > + (90 - a) and < 4- (90 - 0).
When < 0, /3 > 4- (90 - 0) and < 4- (90 - a).

2d. Body on the point of motion down the plane :

cos(/J-a)^
jr
__™*lfiI1 «)_w" ~ cos (/3 4-0) ' cos (/* 4- 0;

*K COS *'

cos (/g-a)
i' = „

,

lv sin 0;
cos (p -f- 0)

_ sin (04- a) sin «4-/zcosa /3<4-90and
cos (/3 4- 0)

—
// sin p" — cos /S ' > 4- (90 — 0).

(9) .Find the force P necessary to just move a cylinder of radius
JR and weight W up a rough plane inclined at an angle a, by a crow-
bar of length I inclined at an angle p". (For smooth surface see
Ex. (3), page 174.)

Ans. The weight Wean be resolved into two components .Ki suadRi making
the angles of repose 0j and a with the normals at

the points of contact D t and Z>3 , where 0, is the
angle of repose for the bar and cylinder and 3 for
the plane and cylinder.

We have then ft = .

**«*+ a)
^-. W.sin[(a4-/i)4-(02 - 0,)],

The normal pressure at Di is then

Ifi = Ri cos 0i.

If P acts at right angles to the bar, we have by virtual work, for a small

displacement due to turning of the bar about A through an indefinitely small

angle G,

TV AT)
P19-N1 .ADi.(j = 0, or P= •"' • -*"71

.

But AD> = r tan Ua + fi) = ^1 ~ cos (a + /?)] Hence
2 V

T
/ sin (a 4- /S)

_ Wr cos 0i sin (03 + a)[l — cos (a 4- ft)]
~

I sin (a+ p) sin [(a + p)+ (03— 0i)]
*

If 0i = 0j , we have after reduction

Wr cot sin (0 4- «)P =
i[l 4- cos (a 4-/3)] '

If there is no friction, = 0, and we have the same result as in Ex. (3),

page 174.

(10) A particle of mass m rests on a rough cylinder and is held
in equilibrium by a string fastened to another particle of mass M,
which passes over the cylinder and hangs freely. Determine the
position of equilibrium. (For smooth cylinder see Ex. (4), page
174.)
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Ans. From page 202, if the arc of contact mOA = a, we have for the fric-

tion of the cord

Ft = mg(e>™ - 1),

where /x is the coefficient of static sliding friction between
cord and cylinder and e = 2.3026 ss base of Naperian sys- \mg
tem of logarithms, and g is the acceleration of gravity (page
3.

The normal pressure of m is mg sin a, and the friction of

the particle m is

jFj, ss fii mg sin a,

where >«a is the coefficient of static sliding friction between the particle and
cylinder.

The tangential component of mg is — mg cos a. We have then, for equi-
librium,

— mg cos a -f- Mi mg sin a -f mg{^°- — 1) = Mg,

or, since// a =

— m(cos a— Hi sin a) + m(e'xa — 1) = M;
sin a

cos (pi

M— cos (a -\- (pi) -f- (e^*— 1) cos </>2 = — cos 2 ,

from which a can be found. If there is no friction, fi = 0, <pa = 0, and

M
cos a = —

which is the same result as in Ex. (4), page 174. If we neglect the friction of

the cord, m = and

cos (a -f- 0i) = .

(11) Find the conditions for equilibrium for a rough screw. (For
smooth screw see Ex. (5), page 175.)

Ans. Let P be the force applied at the end of the arm a, and let the radius
of the screw be r, the pitch p, and the mass supported Q.

If N is the sum of the normal pressures and a the incli-

Q

rL

7
P nation of the thread to the horizontal, we have iV:

and the friction F = uN= —*- , where u is the coefficient
cos a

of static sliding friction.

If P has a virtual displacement of radians, Q is raised

pO , r6
a distance £— , the distance of the friction is , and we

2ft cos a
have by virtual work

PaB-
Qptj juQrB

2ft
= 0.

We have then, since ~- = tan a, ju = tan <p,

p»4/fc+-5-V &(*»«+ aft.
a \27T cos8 ay a \ cos^ ay

If we neglect friction, we have u = and P= -^- = — , which is

the same result as in Ex. (5), page 175.



220 STATICS—CONSTRAINED EQUILIBRIUM. [CHAP. IX.

(12) Find the conditions for equilibriumfor the differential screw
given in Ex. (6), page 175, taking friction into account.

Ans. P = -sQfp-P' _l M(r + r")

a\_ 2it
+ G

(13) Let the force acting normally at the middle of the back AB
of a rough isosceles wedge ABC be P, and let the normalpressure on
each side be N. Find the conditions for equilibrium, (lor smooth
wedge see Ex. (7), page 176.)

Ans. Let the angle of the wedge at the point C he a. The forces which
sustain the wedge in equilibrium are P, the pressures 2V and
the friction F along each face, which acts opposite to the
direction in which motion tends to take place.

If n is the coefficient of static sliding friction, we have
F=uN.

If we put the algebraic sum of the components along the
axis DC equal to zero, we have for equilibrium

- P-\- 22V sin |L ± 2/z.ZVcos £ 0,

where the (-f ) sign is taken for wedge on the point of entering and the (— ) sign
for wedge on the point of sliding out.

Since n =
sin

cos 0'
where is the angle of repose, we have

P = 22V (sin j
a\ 22V .

± M cos jr- = sin
2 I cos

If P< 22V
Mjt = <t> and >

22V
the wedge is

cos \2
T

j
' cos

neither on the point of going in or out and we have non-limiting equilibrium.
CL

If — = 0, there is no force required to prevent the wedge from sliding out.
m

The angle a of the wedge should not then exceed 20.

If we neglect friction, = 0, and we have P = 22V sin

This is the same result as in Ex. (7), page 176.

2

(14) Let a rough isosceles icedge rest with one face BC on a hori-
zontal plane. Let a normal force P act at the middle point of the
back. Let the body GHK, ichose weight is W, rest upon the face AC
and be constrained by guides to move in a normal to AC. Find the
conditions for equilibrium. (For smooth wedge see Ex. (8), page
176.)

Ans. Let 2Vbe the normal pressure between the surface AC and the body.
Then the friction between the body and
wedge is )xN, where /z is the coefficient of
static sliding friction between the body and
wedge. This friction acts opposite to the
direction in which motion tends to take
place. It is then a pressure upon the guide
E ox E' according as the wedge is on the
point of entering or sliding back. If W is

the weight of the body acting at the centre of mass G, then W sin a is the
pressure upon the guide E by reason of the weight. The total pressure upon
the guide E is then

Wsin a ± fiN,
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according as the wedge enters or slides back. The friction between the body
and guide is then

j*i{W sin a ± jxlV),

where /x x is the coefficient of static sliding friction for body and guide.
We have then for equilibrium of the body

N— Wcos a t Mi (TTsin a ± jxN) = 0,

where the upper signs are for wedge on point of entering, and the lower signs
for wedge on point of sliding out. Hence

,_ W(cos a ± /x i sin a)N = —•—; -.

1 - MMi

If we put this value of N in the value for P found in the preceding
example, we have

2J7(cos a ± «i sin a)f . a a\
-TT^ (^sin- ±/.cos-j,

sin (pi . sin
or, since /Xi = ~- and jx = —

, wnere 0j and are the angles of
cos (p\ cos °

repose for body and guide, and body and wedge,

P =

_ 2Tfcos(aT0i) .P = 7^—i
^~ • sm

COS (0i -f- 0) {i * 4
The upper signs are for wedge on the point of entering, the lower signs for

wedge on the point of sliding out.

Here again, if s- = 0, no force P is required to prevent the wedge from
«

sliding out.

If

2Trcos(a-0,)
sin

la \ 2^cos_(a+_0L) /a _ n
r<

Cos(0,+ 0) \s ; COSC0. + 0) \2
v
y

we have non-limiting equilibrium and the wedge is not on the point of moving
oc

either way. If we neglect friction = 0, 0i= 0, and P = 2Wcos a sin =>.
B

This is the same result as in Ex. (8), page 176.

(15) Solve the case of Ex. (16), page 177, taking friction into
account.

Ans. tan 9 = ««*(«,+ 0) --
6
cot («,-

0),
a-}- 6

„ _ P sin (a 2 — 0) cos „ P sin (a t -f- 0) cos
" 1 — _:

FT i ~X~\—i

—

", TvTi -"2
sin [(a, + ) + (a, — 0)]

'

sin [(a, -f- 0) -|- («„ — 0)]
*

(16) A rod rests with its ends against a rough vertical and hori-

zontal plane. The weight P of the rod acts at its middle point.
Find the conditions of equilibrium.

Ans. Let 6 be the angle with the horizontal and Ni, N3 be the normal
pressures on the horizontal and vertical planes respectively. Then

tan = cot 20, Nt = P cos8 0, JV2 = P sin cos 0.

(17) A rough lever ACB rests on an axle of radius r and is acted
upon by the co-planar forces P and Q applied at the points A and
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B. The forces make the angle G. Find the relations of P to Q for
equilibrium. (For smooth lever see Ex. (1), page 161.)

Aiis. The resultant of P and Q is

A R = \/p> + <£ + 2PQ cos 6,

/' 8 \ the acute value of being taken.

A We have seen (page 196) that for well-

f%yS—"vfC N? greased axle and small surface of contact we
\ can take, in all cases of axle friction, the fric-

\^ tion F = f.iR, where ju is the coefficient of
Q static sliding friction.

? Let the radius of the axle be r, the lever-

arm of P with reference to the centre C of

the axle be p, and the lever-arm of Q be q.

We have then in general for equilibrium

Pp - Qq T juPr,

Pp= Qq ± Mr VP -f Q2 + 2PQ cos 6,

where the upper sign is to be taken when rotation in the direction of P just
begins, and the lower sign when rotation in the direction of Q just begins.

If the forces P and Q are parallel, E = P -f- Q, and we have

P = q ± l*r

p T Mr

For all values of P less than the first of these values, or

P< 9-±J^Q,
p —jxr

and at the same time greater than the second, or

P+Mr™

we have non-limiting equilibrium and the lever is not upon the point of
rotating in either direction.

If we neglect friction, n = and P = —Q, as in Ex. (1), page 161.

For partially worn bearing (page 196) we can put more accurately

sin (p in place of <p,

where is the angle of repose.

For triangular bearing (page 197) we can put more accurately

sin 2 <p . . .

%n place of ft,
2 cos a ^ J

where a is the half angle of bearing.
For new bearing (page 198) we can put more accurately

a sin 20 .-=—

:

iii place of n

,

2 sin a ^ J

where a is the half angle of contact.

(18) In a wheel and axle the radius of the wheel is a, and of the
axle b. Find the conditions for equilibrium, taking into account
friction and the rigidity of the rope, when a mass P hung from the
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wheel just balances a mass Q hungfrom the axle. (Without friction
and rigidity see Ex. (2), page 162.)

Ans. We have seen (page 196) that for well-greased
axle and small surface of contact we can take in all cases
of axle friction the friction F = nR = ju(P -\- Q), where
ju is the coefficient of static sliding friction.

Let the radius of the axle be r, and let t be the thick-

ness of the rope.

Then when P is just about to fall, we have (page 202)

for the lever-arm of Q, ( 1 + 77
)

( &+ o ) > an(i hence for

equilibrium

2y-rn i "r «')(6+ 2-) +MP+0=0'

p

-?(«+sWq6

a + 2 - UT

where (page 203)

for licmp ropes T' = Ci -f- c*Q

for wire ropes T' = Ci -{

the values of c x and c2 being given on page 203.

When Q is just about to fall, we have (page 203), for the lever-arm of P,

I

1 + pi r + 2
)

'

anc* hence

- p(l+pj(a+^ +Q(b+ £j
- Mr(P+Q) = 0,

or

P =
a + 8+ /ir

where (page 203)

for hemp ropes T'
Ci -f CjP

CtP
for wire ropes T' = Ci H

•+r
the values of c, and c» being given on page 203.

For values of P less than the first and greater than the second, we have

non-limiting equilibrium, and the wheel and axle is not upon the point of

rotating in either direction.
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»+J
If we neglect friction and rigidity, we have P = Q, or, neglecting the

thickness of the rope, P = -Q, as in Ex. (2), page 162.

If b = a, we have the case of the single pulley.

For partially worn bearing (page 196) we can put more accurately

sin in place of n,

where is the angle of repose.

For triangular bearing (page 197) we can put

sin 20 .

r in place of u,
2 cos a

where a is the half angle of the bearing.

For new bearing (page 198) we can put

a sin 20 . .
-j7—-—— in place of m,
2 sin a *

where a is the half angle of contact.

(19) In the single movable pulley find the relation between the

force P and the mass Q for equilibrium, taking into account friction
and the rigidity of the rope. (Without friction and rigidity see Ex.

(5), page 163.)

Ans. Let r be the radius of the axle of each pulley, a the radius of each
pulley, t the thickness of rope, jn the coefficient of static slid-

/TN ing friction, and d, c2 as given on page 203.

. j! For convenience of notation let

p u = a + - + jur + cs , w = a + ^ — nr.
a *

Then from the preceding example, making b — a, we have,
when P is just about to fall, for hemp ropes

where T\ is the tension in the first rope as shown in the figure.

We have in the same way

T _ uTt -f- c.

w

We have also Tx -f T, = Q.

Eliminating Tx and 7j, we have

uiQ-{-(w+ 2u)CiP =
w(w -\- u)

In the same way we find when P is on the point of rising

„ _ (u — 2jur — Ci)*Q — Ci(w -f 2u — 2//r — c)

(w -\- u)(u — 2/xr)

For values of P less than the first and greater than the second, we have
non-limiting equilibrium and P is not on the point of falling or rising.

For wire ropes we have only to substitute c a [ a -f-
-

]
in place of c t .
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For partially worn bearing or new bearing we can replace u by tbe values
given in tbe preceding example.

If we neglect friction and rigidity, we bave P = ~- as in Ex. (5), page 163.
m

(20) In the system ofpulleys shown, find the relation between the
force P and the mass Qfor equilibrium, taking into account friction
and rigidity of the rope. (Without friction and rigidity see Ex. (6),

page 163.)

Ans. Let m be tbe mass of eacb movable pulley, and n tbe number of mov-
able pulleys. Let r be tbe radius of tbe axle of eacb
pulley, a tbe radius of eacb pulley, ju tbe coefficient of

static sliding friction, t tbe thickness of tbe rope, and c x

and Ci as given on page 203.

For convenience of notation let

u = a+ ~g + jur+ c 3 ; w = a+ ^ - fir;

v = u -\- w = 2a -f- 1+ c t .

Tben, from tbe preceding example, we have, when
Pis just about to fall, for hemp ropes

u(Q-\-m) d
i

' v'
r,=

Ts =
u(T, + m)

and so on. Inserting the values of Ti and Tt , we have in general

_ u«Q (mu-\-Ci)(un - «")

"
—

vn » v"(u — v)

But from the preceding example we have

Hence, since u — v = — w,

P
(mu -\- Ci)(vn — w)

1 wwvn \_

For wire ropes we have only to substitute c x \ a -\- =
J

in place of eu

For partially worn bearing or new bearing we replace n by the values

given in Ex. (18).
u . u 1 / A

If we neglect friction and rigidity, we have — = 1, - — g, « — a\a-\- -l,

t Q+ (2" - l)w . . . . xl

u = a + - and c, = 0, and this reduces to P=
g.

» whlch 1S the

same result as given in Ex. (6), page 163.

(21) In the system of pulleys shown, find the relation between the

force Pand the mass 6 for equilibrium, talcing into account friction

and the rigidity of the ropes. (Without friction and rigidity see

Ex. (7), page 164.)
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Ans. Let m be the mass of the lower block, and n the number of ropes com-
ing from the lower block. Let r be the radius of the axle of
each pulley, ju the coefficient of static sliding friction, t the thick-

ness of the rope, and Ci and c 2 as given on page 203.

Let a be the mean radius of the pulleys.

For convenience of notation let

u = a+ -^ -{- nr+ d, a+--nr.

Then we have for hemp ropes, when P is about to descend,

P =
u^u — w)

{Q + ™) +
w(un — W")

For wire ropes we have only to substitute

of d.

ci (*+!) in place

For partially worn bearing or new bearing, we replace ju. by the values
given in Ex. (18).

If we neglect friction and rigidity, we have u = to and c t = 0. The value

of P reduces then to P = r- ; but if we divide numerator and denominator by

u — w and then make u = w, we have

p= Q + ™

which is the same result as given in Ex. (7), page 164.

(22) In the system of pulleys shoivn, find the relation betiveen the
force P and the mass Qfor equilibrium, taking into account friction
and the rigidity of the ropes. (Without friction and rigidity, see
Ex. (8), page 164.)

"

Ans. Let m be the mass of each pulley and n the number of pulleys. Let
r be the radius of the axle of each pulley, ju the coefficient of
static sliding friction, t the thickness of the rope and Ci , ca as
given on page 203.

Let a be the radius of each pulley, and for convenience of
notation let

u = a + --\- fir -\- c*

,

i
*

Then we have, when P is about to descend, for hemp ropes

CZlQ Q -\-nm

P =

mu r (w

w [_\u + 1 -1 w fc
+tM

C-+
1)'

For wire ropes we have only to substitute d (a -f- j in place of Ci.

For partially worn bearing or new bearing we replace /* by the values given
in Ex. (18).

If we neglect friction and rigidity, we have « = w and Ci = 0, and

P = Q + nm — (2
M — l)m

2-1

which is the same result as given in Ex. (8), page 164.
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(23) In the differential pulley of Ex. (12), page 165, find the rela-

tion of Pto Q for equilibrium^ taking into account friction.

Ans. Let m be the mass of each pulley, r the radius of each axle, and ju the
coefficient of static sliding friction. Since the pulley is worked by a chain, we
can disregard rigidity and have only friction to take into account. We have
then for P about to descend

(q + ™)(V
-6

)
+ 2uHQ + 2m)

a — 2/nr

For partially worn bearing or for new bearing we can replace fi by the
values given in Ex. (18). If we neglect friction and the mass of the pulleys,

we have P = ^— -, which is the same result as in Ex. (12), page 165.

(24) Solve Ex. (24), page 180, when the surfaces are rough.

Ans. Let ju be the coefficient of static sliding friction, and be the angle of

friction. Then, taking the same rotation as in Ex. (24), page 180,

b sin (a-\- (p) aa tan a-\ ——^ = a tan (0 — (f>).
cos a cos (p

d = I cos a — r cos 6.

(25) Solve Ex. (25), page 180, when the surface is rough.

Ans. Let <p be the angle of friction. Then, taking the same notation as in

Ex. (25), page 180, we obtain

W cos (6 + <p) = -Hi sin (6 - 0).



APPLICATIONS OF STATICS.

CHAPTER I.

RETAINING WALLS, DAMS AND EARTH SLOPES.

DEFINITIONS OP PARTS OF A WALL. WEIGHT AND FRICTION OF MASONRY.
STABILITY OF A MASONRY JOINT. STABILITY OF A WALL IN GENERAL.
LOW GRAVITY DAM. HIGH GRAVITY DAM. ECONOMIC SECTION FOR A
HIGH GRAVITY DAM. THE ARCH DAM. THE RETAINING WALL. GRAPHIC
AND ANALYTIC DETERMINATION OF THE EARTH PRESSURE ON A RE-
TAINING WALL. COHESION OF EARTH. EQUILIBRIUM OF AN EARTH
MASS. EARTH SLOPES AND TERRACES.

Definitions of Parts of a Wall.—The face of a wall is the front
surface, or outside surface, or the surface farthest from the pres-
sure. The back is the rear surface, or inside surface, or the surface
which sustains pressure.

The stone which forms the face is called the facing : that which
forms the back, the backing; that which forms the interior, the
filling.

A horizontal layer of stone in a wall is called a course. If the
stones in each layer are of the same thickness, we have regular
courses ; if they are not of the same thickness, we have irregular
or random courses.

The mortar layer between the stones is the joint. The horizontal
joints are bed-joints.

Cut stone or squared masonry is called ashlar. Unsquared ma-
sonry is called rubble.

Tne inclination of the face or back of a wall, measured by the
ratio of its horizontal to its vertical projection, is called
the batter of the face or back. The batter is then the
tangent of the angle which the face or back makes with
the vertical. Thus in the figure the batter of the side

AOAD is Yjri = *an Pi where P is the batter angle or

angle of AD with the vertical.

Weight and Friction of Masonry.—We give here a short Table
of average values of the coefficient of static sliding friction //, the
corresponding angle of friction or repose <p, and the density or mass
of a cubic foot 8 for different kinds of masonry.

228
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In discussing the stability of walls, the influence of the mortar
is neglected, both because of its uncertain character and because
the error is on the side of safety. The values given for n and <p are
therefore for dry masonry.
We also give in the Table average values of the allowable com-

pressive unit stress C in tons per square foot, taking 2000 lbs. to a
ton.

We also give the specific mass (page 10), — , of the materials,
Y

where y is the mass of a cubic foot of water = 62. 5 lbs.

Kind of Masonry.

Coef-
ficient of
Friction.

Angle of
Friction.

Density
Pounds
per
Cubic
Foot.
6

Specific
Mass.

a

y

Allowable
Compressive
Unit Stress

C.
Tons per

square foot.

Limestone and granite:

Large mortar rubble. .

.

0.6
0.6
0.6
0.6

0.6
0.6
0.6
0.6

31°

31°
31°

31°

31°
31°

31°

31°

165
150
125
150

150
130
110
100

2.64
2.40
2.00
2.40

2.40
2.08
1.76
1.60

25 to 30
10 to 15
6 to 10

12 to 17
Sandstone:

Large mortar rubble . .

.

Brickwork

20 to 25
10 to 15
6 to 10
6 to 10

Stability of a Masonry Joint.—Let A'B'B"A" be the area of a
joint between two rectangular plane surfaces, as, for instance, be-

tween two layers of stone in a masonry
structure. Let AB be the line passing
through the centre of mass C of the area
and the middle points A and B of the
opposite sides A'A" and B'B". Let
AB = b be the breadth of joint, AA" = I

the length, <p the angle of friction of the
dry joint, disregarding the effect of the
mortar, ju = tan <p the corresponding co-
efficient of static sliding friction, C the allowable compressive unit
stress, R the resultant of all the external forces acting at the point
G in the line AB.

The values of <p, n and C are given in the Table.
Then we have the following conditions for stability

:

1st. The resultant R of all the external forces must intersect the
joint at some point G within the surface of contact (page 169);
otherwise we have rotation.

2d. The resultant reaction R of the joint at this point G must be
equal and opposite to R and, if we disregard the effect of the mor-
tar, must make an angle I?6rA'

r

with the normal to the surface AB,
less tlxan the angle offriction or repose <p (page 189) ; otherwise we
have sliding.

It is customary in the discussion of the stability of masonry
structures to disregard the effect of the mortar because of its

uncertain character and because the'error is on the side of safety.
3d. The greatest unit pressure at any point of the joint must not
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exceed the allowable compressive unit stress Cfor the materials in

contact; otherwise the joint is overloaded.
Determination of this Greatest Unit Pressure.—Let N be the nor-

mal component of the resultant reaction R acting at the point 67.

Then the least unit pressure pi -will

act along the farthest edge at A, and
the greatest unit pressure p will act
along the nearest edge at B. If we
lay off Aa = p\ and Bb = p, the unit
pressure at any other point will be
given by the ordinate to the straight
line ab, and the total load will be rep-

resented by the area ABba multiplied by the area of the joint bl.

We have then the mean unit pressure ^ 1

, and hence the total
9

pressure

T h- e-—

3

_ Pi +pN=^ bl, or pi = -rr—p- (1)

Let e = BG be the "edge distance" or distance of N from the
nearest edge B.

The entire load area is made up of the rectangular area ABca
and the triangular area acb. The load represented by the rect-
angular area is pM, and its centre of action is at C at a distance

BC — - from the edge B. The load represented by the triangular

area is ^ J^
x

. bl, and its centre of action is at E at a distance of -6

from the edge B.
We have then, taking moments about the edge B, for equi-

librium,

I,? & . (P — Pi)bl b , r _pM x + v^ ^ x - — Ne = 0.
a £ 9

From (1) and (2) we obtain for the greatest unit pressure

2N( Se
v = -br[

2 -b
and for the least unit pressure

(2)

(3)

v—uKb- 1
}

(4)

where N is the total normal pressure on the joint acting at a dis-

tance e from the nearest edge, I is the length of joint, b the breadth.
In any case, then, we can find the value of p from (3), and this

value must not exceed the allowable compressive unit stress Cfor
the materials in contact, otherwise the joint is overloaded.
We see from (3) and (4) that when
b N

e = - we have »i = p = -^-. That is, when
2 " " bl

the resultant R' of all the external forces
acts at the centre of mass C of the joint, the
load N is uniformly distributed over the

R N

s
entire joint, and the unit pressure at every point is p

bl
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As e diminishes, p increases and p t decreases; and when
e=-,we have »i = and p = ^-=-. That is,

3 bl

when the resultant R of all the external

forces acts at - from the nearest edge,
o

the unit pressure at the farthest edge is

zero, and the greatest unit pressure at the
nearest edge is twice as great as if the load
were uniformly distributed over the area of the entire joint bl.

If then e is less than -, the whole joint is not brought into action.

The effective area of joint is Sel, or the distance BD = 3e. The por-
tion AD affords no resistance, if we
disregard the effect of the mortar,
and the greatest unit pressure is

p = r-v, or twice as great as if the

load were uniformly distributed over
the effective area 3eb.

We see then

—

4th. That, in order to just bring
the entire joint AB into action, the resultant R' of all the external
forces must intersect the joint at the middle third.

This is called the " middle third rule," and in an economically
proportioned masonry structure it should be complied with.

Stability of a Wall.—Let ABDE be the section of a wall. We
can investigate its stability as follows

:

1. By Graphic Construction.—Find the centre of mass C of the
section (page 22) by drawing the diagonals AE, BD intersecting at
J. Lay off along these diagonals Ae =
IE, and Bd = ID, and let m, m be the
middle points of AE and BD. Join md
and me. The intersection C is the centre
of mass.

At the centre of mass thus found let

the weight W of the section of wall act.

Let bi be the bottom base AB, and 6i the
upper base DE, and I the length and h
the height DO. Then the volume of the

section is ——-—— . If 8 is the density
2

or mass of a unit of volume of the ma-
sonry, we have the weight W in gravi-

tation units,

w _ (6, + b,)hl8

r *•« *i

(For values of $ see page 229.)

Let P be the resultant pressure upon the wall in gravitation
units, acting at the point K and known in magnitude and direction.

Since we can consider P as acting at any point in its line of direc-

tion, produce it till it meets the line of direction of Wat the point

c. Let Wand P both act at this point c, and find their resultant R.
Then, as we have just seen in the preceding Article :

1st. The resultant W must intersect the joint AB at some point

G within the base ; otherwise we have rotation.
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2d. If the joint AB extends through the wall, the reaction R of
the surface AB at G must be equal and opposite to R' and make an
angle RGN with the normal iVless than the angle of friction or re-

pose 0; otherwise we have sliding. (For values of cp see page 229.)

For security we should have
n x angle RGN= <P,

where n is called the factor of safety for sliding. In practice n
should be at least 2 or even more if shocks are to be apprehended.

The student should note that if the joint AB does not extend
through the wall, no investigation for sliding is necessary.

3d. The greatest unit pressure must not be greater than the
allowable compressive unit stress C for the materials in contact

;

otherwise the base AB is overloaded. (For values of C see page 229.)

4th. For economic proportions e = GB must be just equal to

-gr&2 , in which case the entire base AB is just brought into action.

If e is greater or less than a &2 , the proportions are not economic,
o

but stability exists in any case if condition 3d is fulfilled.

"We make then the construction as directed on page 231. If the
joint AB extends through the wall, we must have

n x angle RGN = cp,

where n should be 3 or more if shocks are to be apprehended.
If the joint AB does not extend through the wall, there is no

danger of sliding.

If the construction gives e = -bi , the proportions are economic,

and there is also stability provided that (page 230)

, 1

.

2N - nfor e= 3-6, P = Tb;<
a

If the construction gives e greater or less than -~bi , the propor-

tions are not economic, but we still have stability provided that

for

and provided that

- 1, 2N I _ 3e\-~fore>-&3 P =^- FJ<C,

1

.

2N - „for e < -&2 p = —= < C.
3 Set

2. By Calculation.—Let the back of the wall AD make the
batter-angle ft with the vertical, and the pressure P make the angle

/\D 6!~\ with the normal to the wall and therefore

/ f \
^e anSle (P + e) with the horizontal.

/ y /] \ Then the vertical component of P is

-

P

^K r \
V=Psm(p + 0), . . . (1)

H
jfr-j 'k I i

c
\ and the horizontal component of P is

/ /\l \ iT = Pcos(/3 + 0). ... (2)

C / wI^'n \
If 5 is the density or mass of a unit of

rv ' '
R̂ e \g volume of the masonry, we have for the

Ar_o_
&
H_2__j weight IF of the section

w _ {b>+ bi)lh8
(3)

2
(For values of S see page 229.)



CHAP. I.] RETAINING WALLS, DAMS AND SLOPES. 233

Hence the normal component Not R is

N=W+V. (4)

If ix is the coefficient of static sliding friction for the base AB,
we have for limiting equilibrium, if the joint AB extends through
the wall, the friction

F = juN.

(For values of // see page 229.)

In order that the angle RGN shall be less than the angle of fric-
tion cp, we must have

H < F.

For security let us put nH= F, or

nH= n{W+ V).

Then we have

M(W+V)n ~ H ' (D

where V, Hand W are given in any case by (1), (2) and (3).

We call n the factor of safety for sliding. If n is less than unity,
the wall slides. If n — 1, we have H = F or limiting equilibrium,
and the wall is on the point of sliding. For safety, then, n must be
greater than unity, and the greater it is the greater the security.
If n = 2 or 3, it will take two or three times the given pressure P
to make the wall just begin to slide. In practice n should be at
least two or even more, if shocks are to be apprehended. If the
joint AB does not extend through the wall, there is no danger of slid-

ing and equation (I) need not be applied.
Let the distance AK of the point of application of P fromA be d.

Let e — GB be the distance of the intersection of the resultant B!
and the base AB from the edge B of the wall.

Take the point G as the point of moments. Then the lever-arm
of the horizontal component H of P is d cos ft, the lever-arm of the
vertical component V of P is (5 3 — d sin ft

— e), and the lever-arm

of the weight W is (b* — AH — e), where the horizontal distance

AH of W from A is given (page 22) by

v. — h.
. . (5)s3 = AH = — — — — h tan ft

2 3(bi + 6«) _

We have then for equilibrium, taking moments about the point
O

- Hdcos ft + V(b* - d sin ft - e) + W(b, - «s - e) = 0,

or _ W(bi — 3») + V(b<, — d sin ft)
— Hd cos ft aJ ,

W+V ' ' '
{ '

where V, H and W are given by (1), (2) and (3), and AH= sa is given

by (5).

For economic proportions we should have e = -b%. If then we

put e= - 6a in (II) and solve for bi , we have
8
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fa = - B + VB? + E,

where for convenience of notation

1

Shi
B = 2

IV 1

E = 6.(6i + 2h tan fi) + ^(Fsin + Hcos (i).

(HI)

Equations (III) give us the length of the lower base AB = b,

for economic proportions, when the entire base AB just comes into
action.

If 62 has this value, we must have for security against overload-
ing (page 230)

tor.-lfc ?
'=*]r+z> =

0> (6)

where C is the allowable compressive unit stress as given on page
229.

If 62 is greater or less than the value given by (III), or if e as

given by (2) is greater or less than -62 , the proportions are not eco-

nomic, but we still have stability if the base AB is not overloaded,
that is, provided that in the first case (page 230)

a 1, 2(W+V)f 3e\ _
fore>-&, p=-__J^_-^a ... (7)

and provided that in the second case

fore<-6a p = ^-d
—'-<C. (8)

It is the custom of some engineers, for the sake of additional
security, to neglect the vertical component V of the pressure in
equations (I), (II) and (III). In such case we have only to make
V= in these equations.

Low and High "Wall.—If e, as given by equation (II), is less than

or equal to - bi and at the same time conditions (8) or (6) are found

to be satisfied, so that the base AB is not overloaded, the wall is

called a " loiv" wall. In such case 62 may be made equal to or less

than its value as given by (III).

When, however, the wall is so high that, when e is equal to - bi,
O

condition (6) cannot be satisfied, it is called a "high" wall. In
such case 62 must be greater than its value as given by (III), and e

must be greater than - 62.

To find the limiting value of b* in this case: from condition (7)

let

2(K+Y}l2 ^«) = C, or e=lb,- Clb a

lb, \ b,)
'

3 6(TF+ V)
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Let e in equation (II) have this value, and solve for &2 , and we
have

&2 = - K + VK* + L,

where, for convenience of notation,

W tan fi~_1[7 Wtan/T l

~C[_l 2 J'

(IV)

o,

*
1

1 ^^p A
hi £>sy

L = ^-(bx + 2ft tan /5) + ^(Vsin/3 + Hcos/3),

where V and H are given by (1) and (2) If the vertical component
Vof the pressure is neglected, as is the custom of some engineers
for the sake of additional security, we have only to make V = in
(IV).

Equations (IV) give the least value of 6a for a " high " wall, that

is, for a wall so high that when e = -&a the baseAB is overloaded.

Low Gravity Dam.—A wall which resists the pressure of water
by reason of its weight alone is called a "gravity dam" It is a

" loiv" dam if e can be equal to or less than —62 , without overload-
O

ing the base.
The general investigation of the stability of a wall given in the

preceding Article applies to any case where the pressure P is

known in direction, point of application and magnitude.
Direction of Water Pressure.—It is a well-known principle of

Physics that the direction of water pressure
upon a submerged surface is alivays normal
to the surface.
We have then in the formulas of the pre-

ceding Article

6 = 0,

and the angle of the pressure Pwith the
horizontal is equal to the batter-angle of the
back ADO = fi.

Point of Application of Water Pressure.—Moreover, since the
pressure at the water level D' is zero and the pressure at any point

increases directly as the depth of that point
below the water level, the pressure at any
point is proportional to the ordinate to a
straight line D F, and the resultant pressure
P acts at the centre of mass of a triangle
AD'F, that is, at a distance AK = d equal to

l—

-

, where hi is the depth of water back
3 cos (i

*

of the wall.

In the formulas of the preceding Article we have then

j _ hi

3cos/3*

Magnitude of Water Pressure.—It is also a well-known principle

of Physics that the pressure is equal to the weight of a prism of
water whose base is the submerged surface and whose height is the

distance from the water level to the centre of mass of the submerged
surface.
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The submerged surface is
1

—, where I is the length and — is
cos/S 2

the distance of the centre of mass of the submerged surface from
the water level. Let y be the density or mass of a unit of volume
of water (62.5 lbs. per cubic foot). Then we have for the pressure

2 cos /3

'

We have then for the vertical component of P
ylhxV= tan/S, (1)

d

(2)

and for the horizontal component ofP

IT-— . . . .

The weight W of the dam is

(6i + b*)lh8W- A18, (3)

where A is the area of the cross-section
ABED.

(For values of 8 see page 229.)

If then we substitute 6 = 0°,

and the values of V, Hand Was given by (1), (2) and
3 cos ft

(3) in the general formulas of the preceding Article, we obtain the
corresponding formulas for a dam sustaining water pressure only.
The graphic construction is the same as on page 231.

Ice and Wave Pressure.—A dam, however, has to sustain, in ad-
dition to the water pressure on the back, a horizontal pressure at
the top surface due to waves or the thrust of ice. We denote this
horizontal thrust per linear foot of dam, due to waves or ice, by T.

For waves Ave may take T — 24000 pounds per linear foot, and for
ice T = 40000 pounds per linear foot. Since both these do not act
together, we have only to consider T for ice in cold climates and T
for waves in warm.

Factor of Safety for Sliding.—The normal component N of R is

N= W+V, (4)

and the friction is

F = vN= u(W+ V),

where // is the coefficient of static sliding friction for the base AB.
For values of ft see page 229.

If n is the factor of safety for sliding, we have

or
n(H + T) =F,

or, if V is neglected,

H+ T

nW
(D

where V, IT and H are given by (1), (2) and (3). If there are no
through joints in the dam, there can be no sliding and equation (I)
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need not be applied. If there are through joints, n should be at
least 2 or more if shocks are to be apprehended.

Stability and Proportions.—We have for the horizontal distance

AH = St of the centre of mass of the section from A (page 22)

b, bt + 2biAH= St = —— „,
2 3(6, + 63 ) _

(h — h tan (i (5)

If we take moments about the point G (figure, page 236), we
have as on page 233, taking the ice-thrust T into account,

- Hd cos /3-Thi + V(b* — d sin /3 - e) + W(ba - sa - e) = 0,

or, substituting d = Q
' H and the values of V and W,

o COS fi

A&.—* +2£ *»*(*,- I tan A.&L_a
*+*&**'

or, if we neglect V,

A(bt — St) —
65

Th1

d

(II)

A
where A is given by (3), and sa by (5). Equation (II) gives the point
at which the resultant cuts the base when the ice-thrust acts.

For economic proportions we should have e = - b? when the ice- or
o

wave-thrust T does not act. Putting, then, e = x b» in (II) and neg-

lecting T and solving for 62 , we have

b, = - B + VB1 + E,

where
„ 1 |~,

, 2yh? tan fi . . _"1B
=2i

bl+ -M ^an/jj;

(HI)E = 6.(6. + 2h tan (S) + ^-(1 + tan5
fi);

or, if V is neglected,

B = i(6, — htaafl)-, E= 6.(6. + 2h tan p) + t*L
2 oh

Equations (III) give the lower base 6a = AB for economic pro-

portions, that is, when e = - 6a , or the whole base AB just comes

into action when there is no ice- or wave-thrust T. If 6a has this
value, we must have for security against overloading (page 230)

when e = -6a
_ 2AS + yW tan fi _ „

(6)

where C is the allowable compressive unit stress as given page 229.

If 6a is taken greater or less than the value given by (III), the
value of e given by (II) when T is neglected will be greater or less
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than -bi and the proportions are not economic. But we still have

stability if the base is not overloaded, that is, if

1 . 2Ad'+ yhS tan ft I _ 3e\ - „ „_whene>3&a *~ \ '

[

2 ~ %)<G>' '
( ' }

. 1 . 2A8 + yW tan ft - n .„
when e < -6a p = --— '- < C. . „ . . . (8)

and if

But now, when the ice-thrust T acts, e is given by (II); and in
order that the base may not be overloaded, this value of e must
satisfy condition (8). If it does not, the ice- or wave-thrust T causes
the base to be overloaded. Substituting then the value of e from
(II) in (8), and the value of Sa from (5), and neglecting V, and mak-

ing ft = 0, we have, smce A = -* „
,

(C - Sh)^ , Jb x\0 - 8Kf hb\*~(C+ 6h) + ChxiyW + 6T)
0i - (20 - 8h) V (2(7 - Shf + 8h(2C - 8h) '

(
'

Equation (III') gives the least value of 6a consistent with safety
when the ice- or tvave-thrust T acts, for vertical back. For the sake
of security and simplicity we take the same limiting value when
the back is not vertical. If then condition (8) is not satisfied when
we take for e its value from (II), we cannot have economic propor-
tions, but must take bi equal to or greater than the value given by

It is the custom of some engineers, for the sake of additional
security, to neglect the vertical component Vof the pressure in
equations (I), (II) and (III). We have therefore given these equa-
tions for both cases.

When the dam is empty, equation (5) gives the intersection of
the weight with the base. In this case

when Si = —

&

3 we must have p = -=— ^ C;

1, „ 44 u 2AS ( _ SsA-
3

6a P = sr[ 2 -Ti

s, <-6, p- ^ <C.

When the back is vertical, ft = and (5) becomes

1, , 6i
2

Si = -Oa +
3 3(6, + 6„)*

That is, Sq is always greater than — 6 3 for vertical back.

We can put B in equation (III) in the form

_ 1,
,
yh tan /3/2hii 8b\B=

2
h ' + —28—{-W-yy

8 .

We see from the Table page 229 that the specific mass - is

greater than 2 for all materials except brickwork and small dry
rubble. We can never have hi or the depth of water greater than



CHAP. I.] RETAINING WALLS, DAMS AND SLOPES. 239

h or the height of wall. Hence for all materials except brick and
small dry rubble the term in the parenthesis is minus, and even for

9
the last two materials it is minus if hi is not more than Ji. In

general, then, B increases and E decreases as the angle ft decreases.
In the value for 62 , then, the magnitude of B increases more

rapidly than V-B* + E, and b, has its least value when ft = 0.

Hence the most economical section of dam is that which has the

back vertical.

High Gravity Dam.—If e as given by equation (II), page 237, is

less than or equal to —

6

a , and at the same time conditions (8) or (6),

are satisfied, so that the base AB is not overloaded, the dam is
" low." In such case 62 may be made equal to or less than its value
as given by (III), provided it is greater than the least value given
by (III').

When, however, the dam is so high that when e = —fa condition

(6) cannot be satisfied, it is called " high." In such case fa must be
greater than its value as given by (III), and e must be greater than

To find the limiting value of fa in this case: From condition (7),

page 238, let

2AS + yhi* tan ft 2 -t'i
_2

,
CW

0r e ~3 6AS + ZyhS tan ft'

Let e in equation (II), page 237, have this value and solve for fa ,

and we have (page 235)

where

K =

bi = -K+ \/K* + L,

taYl P
{yh? _ W),

2C

or, if V is neglected,

dh* tan /3K= -
2C

and

L = 6hb t

C
(6i + 2h tan /?) +

Ccos2 /?"1" C '

or, if V is neglected,

ShfaL =
C

(6i + 2h tan p) +
yh?
C

(IV)

where C is the allowable compressive unit stress as given page 229,

hi is the depth of water, h the height of section, y the density or
mass of a unit of volume of water, S the density or mass of a unit
of volume of masonry, ft the batter-angle of back, b

t the breadth at

top of section and b 2 at bottom.
Equations (IV) give the least value of 6» for a " high " dam, that

is, so high that when e = =-b* the base AB is overloaded.
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Since it is the custom of some engineers, for the sake of addi-
tional security, to neglect the vertical component V of the pressure,
we have given these equations for both cases.

Economic Section for High Gravity Dam.—We have seen, page
239, that the economic section for alow dam has the back vertical.

First Sub-section.—Let DE = bi be the top base. The economic
section of the first sub-section A1B1ED should then be a rectangle

for a distance hi such that e =
BiG shall be just equal to —61,

so that the entire joint A1B1
may act, provided this joint is

not overloaded.
We find the height hi of

this rectangular portion as fol-

lows :

If hi is the depth of water
above A1B1 , the horizontal

pressure is P = -—-
, where y

is the density or mass of a unit
of volume of water, and I is the
length of dam considered. This

pressure P acts at — hi
o

above
a b

A1B1. The weight of the sub-
section is Wi = Slhibi = AilS, where Ai is the area and 8 is the

density or mass of a unit of volume of masonry. It acts at -61

from Bi.
Taking moments about G and neglecting the ice-thrust T, we

have

"(H-f1-*

or, when e = —bi , inserting the values of TFi and Pi

,

6hJ>i
9 = yhi\

Let a be the distance of the water level below the top of the dam,
then hi = h\ — a. Substituting this, we have

SbShi = y(hi - a)\

or for the extreme case of water level with top of dam,

a = and hi — bi\/^ ,

(I)

8 .

where - is the specific mass (page 10) of the masonry as given

page 229.

The same result is obtained from equation (III), page 237, by
making ft = 0, bi = b, , and hi — hi.

Equation (I) gives the height of the first rectangular sub-section
ABiED, provided the joint A,Bi is not overloaded.

If there are no through joints, there is no danger of sliding.
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Top Thickness.—If now we consider the ice-thrust T as acting
and take moments about G, we have

w (b. _\ PA,
,(|_ e)_^_m , =0,

or, substituting the values of Wi and P,

2 6S6ifc2 SbJt, w
"We obtain the same result from equation (II), page 237, by mak-

ing ft = 0, &a = bx , s a = -\

For the extreme case of water level with top of dam, hi — hi-,

and if we substitute the value of hi from (I), we have

=A_ T
6 ~

3 "«&,'

But in order that AiBi may not be overloaded, we must have

2AiS _ 25/i 26!— = C, or --ggr,

where C is the allowable unit stress of compression. We have then

2Sft36i _ 6i r
3C ~ 3 56,

'

or, substituting the value of h-, from (I),

f8vH.V-Va.-.*1

C 5

A high dam would be built of ashlar masonry, and we have from

page 229 the average values 8 = 150, — = 2.5, C m 50000. Taking

T = 40000, we have for the average value of 6i which allows (I) to
be fulfilled without overloading, when water is level with top of
dam,

0.00966i s - 6i
a = - 800, or 6i = about 35 ft.

When the top base 6i , then, is about 35 ft. or over, we can run
the first rectangular sub-section A1B1ED down for the distance
given by (I) without danger of overloading when the ice-thrust
acts.

Local and practical considerations must control the choice of
top base bt . But if it is taken less than about 35 ft., e is given by
(1) and we must have

?^ = C, or 2Sbxh* = 3eC,

or, substituting the value of e from (1) and putting hi = hi — a,

where a is the depth of water below the top,

tttM -IfcCfc- **»l- tt)1 - *°Tt ~ a)
- • <n

2 2<56i obi

From (10 we can find the height hi of the rectangular sub-section
AxBiED when b, is less than 35 ft. and the ice-thrust T acts.
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We find then the first rectangular sub-section A1B1ED from (I)

if 61 is greater than 35 ft., and from (I ) if bi is less than 35 ft., and
the joint A1P1 will not be overloaded when the ice-thrust acts.

Second Sub-section.—Below A,P, we still continue the back ver-
tical, but 61 must now increase so that for any joint b 3 = As'Ps', e

shall be equal to —62, and the joint shall
O

not be overloaded when the ice-thrust
T acts.

Let AiBiBiAi' be any section in
general below A1B1 the height of
which hi is so small that it may be
regarded as a trapezoid. Let ft be the
batter-angle of the back, Wi the result-
ant weight of all the masonry above

AiB\ acting at the distance Si from A, Wi the weight of the section
acting at the distance s2 from As', W the resultant Wi + W, of
these two acting at the distance s from As'. Then, taking moments
about As', we have

_ Wi(si + h3 tan ft) + W^Si _ Ai(Si + ft? tan (1) + A-Ss
fTn

Wi + Wt A, + As
_

'
( }

where Ax , As are the areas of the sections above A1B1 and the sec-
tion AiBiSaA, , so that AJS = Wi , AJS = TTa .

We have then

.,
(&i + b?)hi rT7 (61 + bi)hJS

Ji. 3 = , rVs = =
,

and, from page 22,

6s 6s_+ 2bi [~&» - bi

"2 ~3(o"

L^r&s-6i__ /i2tan/?-j _ i

+ 6,; |_ 2 J

Let P be the horizontal component of the water pressure on the
entire back above As'P/, and hi the height of water level above

vlh 2 h
Ai'Bi. Then P = —-^-

, acting at a distance — above As'Ps'. We
u O

have also the ice-thrust T acting at the distance hi above As'Ps'.
Let the resultant of P T and W cut the base at the distance

GB2
' — e from B2 ', Fig. 2. Then, neglecting, for the sake of security

and simplicity, the vertical component of the water pressure, we
have

(TTi + m)(fc - 8 - e) - ^^- - Thd = 0;
6

hence

. yh, + %Th ,me = 63 — s—^= (3)
65(Ai + As)

[If in (3) we make Ai = 0, the whole section above As'Ps is a
trapezoid and we have the same value for e as from equation (II),

page 237, when ft = 0, sa = s, and A = A«.]

For economic proportions we should have e = - 62 when the ice- or
o

wave-thrust T does not act. Making, then, ft = in (2) and (II),
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substituting the corresponding values of Si and s in (II) and (3), and

making e = - b3 and T = 0, we obtain
3

bi = - B + \fB> + E,
where

R - 2Al
j.

bl w- QAlSl
j.

yhn%
j. h » Io — —

H —, .& = — h -tv—I- Oi .

hi 2 hi dhi )

r (HI)

[Here again, if we make Ax = 0, the whole section above Ai'Bi
is a trapezoid and we have the same value for 62 as from equation
(III), page 237, when ft = 0,h = hi.]

Equations (ill) give the lower base bi = A1B1 for economic pro-
portions when there is no ice- or wave-thrust T. If then we assume
any section AiBiBi'Ai', Fig. 1, page 240, of small depth hi , we can

find by (III) its base bi = A1B1, since for this section Si = —61. We
a

can then find A* and then e, from (3), when the ice- or wave-thrust T
acts.

This value of e must satisfy the condition

2{Ax + Ai)8 _
Be < v

If it does not, the ice- or wave-thrust T causes A1B1 to be over-
loaded. We have then, taking for the extreme case

2(A> + Ai)S = fi or SeC=2{Ai+Ai)$i

and putting for «s its value from (2) when ft = 0, and for s its value
from (II) when ft = 0, and then from (3) the corresponding value for
e, by solving for bi ,

62 = - Bt + 4/^ + .E,

,

where

„ _ Ai(3C - 2Shi) (C - 8h,)bx

hi(2C - Shi)
+

(2C - Shi)
;

2A.(2Ai5 + 28bJi* + 3Cs.)
£1 =

+

hi{2C - <*&,)

8h>bAC + Shi) + Chx{yW + 6T)

8hi(2C - Shi)

(III')

[This reduces to equation (III'), page 238, when Ai = and
hi = h.]

Equation (III) gives the least value of bi consistent with safety
when the ice- or wave-thrust T acts. If then condition (4) is not
satisfied when we take for e its value from (3), we must take for 62

its value as given by (III).

In either case, whether b, is given by (III) or by (III), we can
find s from (II).

This value of s is the new s, for the next section Ai Bi'Ba'As',

Fig. 1, page 240, of small depth hi. The value of bi just found is

the new bi for this section. From (III) or (III) we then find b, for

this section, then s from (II), which is the new .Si for the next
section.
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Thus by successive applications of (III) or (III') and (II) we find
successive thicknesses An jB2 , A 3 B3 ', etc., Fig. 1, page 240.

We thus determine the economic section until we arrive at a
section AiB* , Fig. 1, page 240, for which equation (II) gives us

8 = -b*. When this section is reached equations (III) or (III ) no

longer apply, because if the vertical back were continued farther,

the resultant pressure for reservoir empty would fall outside the

middle third, making s less than -62 .

We thus determine the lower limit A*Bi , Fig. 1, page 240, of the
second sub-section.

Third Sub-section.—Below this limit we must batter both front

and back, so that both e and s shall always be -63 and the joint

shall not be overloaded when the ice- or wave-thrust T acts.

If then in (3) we make s = - b* and e = - ba and neglect T, we
o o

obtain

. fA, 6,\ J IAx
,
6iV

,

ylU* /TT7,

where 6i is the top and b3 the bottom base of any trapezoid of small
height hi , and Ai the area of all the section above the top base of
that trapezoid and hi the depth of water above the bottom base of
that trapezoid. We can then find the area A? of this trapezoid, and
then from (3) we can find e when the ice-thrust acts. This value of
e must satisfy the condition

2(Ai + A,)8 = _

Se~
<a

If it does not, the ice-thrust T causes the base 62 as given by (IV)
to be overloaded. We have then for the least value of 62 consistent
with safety to use (III') instead of (IV). In either case we can

find Si from (2). and then from (II), putting s = - 62 and solving for

tan /S, we have for the back batter

A (— - s \ - ^^-

tan^= Z^'i" '>\\ W
h»\Ai + -Ai + -^hibA

We can thus determine by successive applications of (IV) or
(III) and (V) the economic section, until we arrive at a section
52 = A»BS , Fig. 1, page 240, for which

2(A , + A,)8

b,
=a

' ' *

(5)

We thus determine the limit A3B3 , Fig. 1, page 240, of the third
sub-section.

Fourth Sub-section.—Below this limit we must have both s and e

greater than - b3 and such that (page 230)

2(A,+A)*/
2 _8g\ c and

2(A i +A±SU_Bs\ a
bi \ b3 J b t \ bj
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Hence
2, CV

e = s = - b 2

3
a

65(A, + A,)'

Substituting these values of e and s in (3) and neglecting T, we
obtain

2(2C - dh?)
+ r 4{2C-8h*y

+
2C - dh, '

{ ]

Equation (VI) gives the base b 2 for each successive trapezoid
below A3B9, Fig. 1, page 240. From (3) we find e when the ice-

thrust T acts. This value of e must satisfy the condition

2(Ai + Aa)S - „
ste

< c"

If it does not, the ice-thrust T causes the base b2 as given by
(VI) to be overloaded. We have then for the least value of 6a con-
sistent with safety to use (III') instead of (VI). In either case we
find the back batter from (V).

Arch Dam.—When the dam is made in the form of an arch so
that it supports the water pressure back of it wholly by virtue of
its action as an arch, it is called an arch dam.

The water pressure upon the back of the dam is always normal
to the surface, and the pressure upon a
given area is always the same at the
same depth.

Let aaa, Fig. 1, be the centre line of
a horizontal cross-section of the dam,
one foot in height. Let Pi and P3 be
the equal normal pressures upon the
equal portions a'a', a' a', and H the hori-
zontal pressure at the crown.

In Fig. 2, lay off iTfrom O to hori-

zontally, and let O represent the mag-
nitude of H. Then lay off 01 and 12
parallel and equal in magnitude to Pi
and Pa , and draw the rays 01, 2.

In Fig. 1, let H act at a, and prolong
its direction till it meets P. at b. From Fia- 2-

b draw be parallel to 01 till it meets
P3 at c. From c draw ca parallel

to 2.

Then (page 146) abca, Fig. 1, is the equilibrium polygon. We
have by similar triangles

Pi : H::cb:bC or cC; .'. ^- = S-.
cb cC

The same holds true no matter how many equal portions a'a'

we take. But as we increase the number of portions, the polygon
approaches a curve. For an indefinitely great number of portions

we have for the curve of equilibrium ~ = p = unit pressure and

cC — r = radius of curvature. Hence
H H

p = — , or r = —

.

r p
But H and p are constant and therefore r is constant. Hence

the curve of equilibrium is a circle.
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If then we make the dam circular in cross-section, the curve of
equilibrium u-ill coincide icith the centre line and the horizontal
pressure Hat the crown acts at tJie centre line and is equal to

H=rp (1)

Also, since in Fig. 2 the force polygon 012 becomes a circle of
radius H when the segments of the arch are indefinitely great in
number, and since any ray, as 1 in Fig. 2, gives the stress in the
corresponding segment cb, Fig. 1, of the equilibrium polygon (page
146), it is evident that the pressure at every point of the centre line

is tangent to the centre line at that point and equal to H.
If then C is the allowable compressive stress per square foot, we

have for the area A of the cross section

_H rp

If hi is the depth of any point below the water level, we have
the water pressure per square foot at that point equal toyhi , where
y is the mass of a cubic foot of water, or 62.5 lbs. If Tis the ice-

thrust per foot of length, and h is the height of dam, we have the
ice-thrust pressure per square foot of surface of the dam equal to
T
h

"

For an area of one square foot at a depth hi , then, the total
T

pressure per footp is numerically equal to yhi + ^, and the thick-

ness is given by

yrhi + -j-

' = '-c^- »
From (2) we can find the thickness of the dam at any point at a

depth hi below the water level.

If hi — in (2), we have for the thickness at the water level, or
the top thickness bi , for ice pressure

rT
k=as •

The choice of top thickness bi must in general be determined by
local and practical considerations.

If we make t = bi = the top thickness in (2), we have for the
distance hi below the water level for which the cross-section of the
dam is a rectangle

hi = r (4)yr yh

Below this limit the thickness must increase with the depth hi

according to (2); above it, the thickness is constant and equal to b t .

We should not take hi in (2), then, less than hi as given by (4).

The arch dam requires far less masonry than the gravity dam.
But the pressure on the arch stones increases with the span and
with the depth, and so does the thickness. When the thickness
becomes great we cannot be sure that each arch stone will take its

own share of the pressure. The distribution of the pressure over
the cross-section is then uncertain. For such reasons the arch dam
is most suitable for short and low dams. It is also manifestly un-
wise to make the stability of a dam depend wholly upon its action
as an arch, except under the most favorable conditions as to rigid
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side hills for abutments and the most unfavorable conditions as to
cost of masonry.

Although it is not, then, generally wise to make the stability of
dam depend wholly upon its action as an arch, it is well to make a
a gravity dam curved so that the arch action may give additional
security.

There are but two dams of the pure arch type in existence : the
Zola Dam in the city of Aix in France, and the Bear Valley Dam in
the San Bernardino Mts., Southern California. The first is of
rubble masonry, height 120 ft., radius 158 ft., thickness at top 19
feet, at base 42 feet. The Bear Valley Dam is of granite, height 64
feet, radius 300 ft., thickness at top 3.16 ft., at base 20 ft.

Retaining Wall.—A wall designed to resist the pressure of earth
back of it is called a retaining wall.

The general investigation of the stability of a wall given on page
231 applies to any case where the pressure P is known in direction,
point of application and magnitude.

Point of Application of P.—In treating retaining walls, it is cus-
tomary to neglect the cohesion of the earth. We therefore consider
the pressure as zero at the earth level and increasing for any point
of the back of the wall, directly as the depth
of that point below the earth level. The
pressure at any point is then proportional to
the ordinate to a straight line D'F, and the
resultant pressure P acts, just as in the case
of water pressure, at the centre of mass of

the triangle ADF, so that the distance

AK = d is one third of AD', or d = = —y,' 3 cos /?

'

where hi is the distance DO of the earth surface above A, and ft is

the batter-angle of the back.
But unlike water pressure, the earth pressure is not normal to

the wall, but makes an angle 6 with the normal.
Also the magnitude of P is not the same as for water.
We have therefore to determine the magnitude and direction of

the earth pressure P. We can then investigate the stability pre-
cisely as on page 231.

Magnitude and Direction of P—Graphic Determination.—Let abc,

Fig. 1, be any small prism, and let + pi be the normal pressure per
unit of area upon the faces ac
and be at right angles, the (+)
sign indicating direction up
and to the right.

Then if there is equilib-

rium, the pressure per unit of
area upon the third face ab is

also normal and equal to pi.

For if we multiply the area
of the face ac, Fig. 1, by + pi

,

we have the total horizontal
force + H, and if we multiply
the area of the face be, Fig. 1,

by + P> > wo have the total

vertical force + V. If we lay
these forces off in Fig. 3, from
A to H, so thatAH = + H, and

from H to N, so that HN = + V, the resultant for equilibrium is

NA. The line NA in Fig. 3 then gives the magnitude and direc-
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tion of the total pressure on the third face ab, Fig. 1, which bal-

ances + p* . ac = + H on the face etc and + p\ . be = + V on the
face be.

We have thenH and V, Fig. 3, perpendicular to the faces ac and
be, Fig. 1, and also

ac: be: :H: V.

Hence the triangles abc, Fig. 1, and NAH, Fig. 3, are similar
and NA is perpendicular to the face ab.

Also, we have

NA = y p? . ac* + p* . be1 = pi \ ac* + be* = pi . ab,

or the normal unit pressure pi on the face ab is the same for equilib-
rium as that on the other two faces.

Suppose now the normal unit pressure p\ on the face ac, Fig. 2, to
be reversed in direction, so that it is — fh. We have then the total

pressure on the face be equal to + pi . be = + I7
' the same as before,

and the total pressure on the face ac equal to — »i . ac = — H, or
the same as before in magnitude but opposite in direction. If we
lay these forces off in Fig. 3, from A to H and H to N', the result-
ant for equilibrium is NA. It is evident that the magnitude of
N'A is the same as before, but its direction makes the angle N'AV
on the other side of AV equal to the angle NAV in the first case.

If then in Fig. 3 we lay off AN equal to pi and with N&s a cen-
tre and NA as radius describe an arc of a circle intersecting the
vertical AV at the point S, then the line SNwRl give the magni-

-X(i>r i>2 )

+p2

z

c

ElQ. 4.

/
+P,

+XU
i

\-p
2
)

+ ^U'j+JPj)

Fig. 5.

tude and direction of the unit pressure pi on the face ab in the
second case of Fig. 2. The angle ASN is then equal to the angle
SAN.

Now suppose that the normal pressures per unit of area on the
two faces ac and be, Fig. 4, are unequal and are +p 2 and + pi re-

spectively.
We can divide the normal unit pressure + pi on the face be into

two parts, one equal to + - (pi + p?) and the other equal to

-1— (pi — p^, as indicated in Fig. 4. Similarly, we can divide the
39
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Hormal unit pressure +pa on the face ac into two parts, one equal

to + - (pi + p-i) and the other equal to — -Api — p*).
2 2

Then, as we have just proved, the unit pressure normal to the

face ab which balances + ~(pi + _p„) on the face be and + -(pi + p2 )
2 2

on the face ac is the same, or NA, Fig. 5, laid off normal to ab,

where NA = -(j?i + p*).

Also, as we have proved, the unit pressure on the face ab which

balances + ~ (pi —p2) on the face be and — - (pi - p2) on the face
2 2

ac is the same, but it makes an angle JL&ZVwith the vertical AV
equal to SAN. If, then, we lay off, in Fig. 5, AN equal to

= (Pi + Pi) normal to ab, and with N as a centre and NA as a radius
2
describe an arc of a circle intersecting the vertical ATat the point

S, then /SWwill give the direction of -z(pi — p«) acting on the face
2

ab. Hence if we lay off along this line NR = (p l — pa) and join

RA, the line RA ivill give the magnitude and direction of the result-
ant unit pressure p on the face ab when the normal unit pressures
pi and p-2 on the faces be and ac are unequal.

Suppose now the faces ac and be, Fig. 4, to remain invariable in
direction, and the normal unit pressures p a and pi on these faces to
remain constant, but let the third face ab vary its inclination with the

horizontal. Then the magnitudes of AN = -(pi + pa) and of NR

= —(p l
—pa) in Fig. 5 remain unchanged, but their directions will

m
change as the face ab changes its inclination. It is evident that
the greatest possible value of the angle NAR which the resultant
unit pressure p = RA on the face ab makes with the normal to that
face will be when NR is perpendicular to AR, or when the angle
ARN is 90°. In the case of earth this greatest possible angle is the
angle offriction or repose (pi for earth on earth.

Also when the angle ARN is 90° and the angle RAN is <pi , the

angle SNF of pi with the normal AZVis equal to 45° + -^-.

Let then, in Fig. 6, ab be the surface of a prism of earth, and AR
= p be the magnitude and direction of the unit
pressure. Draw AN normal to the surface ab,

and AR' making the angle of friction <£, with
the normal AN. We can then find by trial a
point N in the normal AF, such that if we take
N as a centre and NR as a radius, the arc RR'
will be just tangent to AR'. When this pointN
is thus found by trial, the distance AN will be

- (pi + pi), and NR = NR will be -(pi —pa)-

2 2

Also, as seen from Fig. 5, if we bisect the angle
RNF by the line NS, we obtain the direction
NS of pi , since the angle RNF, Fig. 5, is twice
the angle of NA with pi or AV.
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Application to the Retaining Wall.—The application of these
principles to the retaining wall is obvious.

Let AD be the back of the wall, and DiFI the earth surface
making the angle a. with the horizontal. Pass a plane through the

A OjO b

foot of the wall A parallel to the earth surface. The pressure upon
every square foot of this plane, as ab, is vertical and equal to the

weight of a column of earth of vertical height AiJand cross-section
ab . cos a.

If y-i is the mass of a cubic foot of earth, then we have

y t .Ail. ab. cos a:

for the mass of this column,
of this column is y x

But Ai/cos oc = AiF, hence the mass
A>F.ab.

If then we draw AF perpendicular to the earth surface and
revolve A,F about Ai as centre to the vertical AiR x , and take
the area of ab as one square foot, the distance A1R1 in feet will be
numerically the same as the number of cubic feet of earth resting
upon a square foot ab, and we have for the vertical pressure p per
square foot in pounds

r*p A1R1

where yi is the mass in pounds of a cubic foot of earth, and A\R\ is

measured in feet.

Then, as in Fig. 6, draw AiR' making with the normal AiF to
ab the angle It!AiF equal to the angle of friction or repose <pi for
earth on earth. Find by trial a point Ni on the normal AiF, such
that the arc of a circle with Ni as a centre passes through Ri and is

tangent to AiR . Then

(pi + p3) = yx . N1A1 ;

(pi — p*) = yi . N1R1,

where yi is the mass in pounds of a cubic foot of earth, and Nt Ai

,

N1R1 are measured in feet. Bisect the angle R1N1F by the line
N1S1. Then the line N1S1 gives the direction of joi (Fig. 5).

Now lay off at the foot of the wall A (which may be considered
as identical with 1, in the figure) the distance NA = NiAi in a
direction normal to the back of the wall AD at A. Draw the line
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AS parallel to N1S1 or the direction of pi already found. Then with
N as a centre and NA as radius describe an arc of a circle inter-

secting AS at S, and layoff along NS the distance NR = NiR t .

Then, as in Fig. 5, RA represents the magnitude and direction of
the pressure on a square toot at the foot of the wall. Thus, if y\ is

the mass in pounds of a cubic foot of earth and we measure RA in
feet, the pressure per square foot at the foot A of the wall is given
in magnitude by

yi.RA,

and its direction is the direction of RA.
Since the pressure is zero at the top Pi and greatest at the foot

A, and varies for any point directly as the distance of that point

from Di , the average pressure is „yi RA. The total pressure P
in pounds is then for a wall one foot in length numerically equal

to -yx . RA . DA, or if the length of the wall is I,

2?

P = \yi.RA.DA.l,

where yi is the mass of a cubic foot of earth, and RA, DiA and I

are taken in feet.

This pressure P acts at a point K at a distance d from the foot

of the wall A equal to d = AK = —ADi , and is parallel in direction
o

to RA already found.
We thus find by a simple graphic construction, in any given

case, the magnitude, direction and point of application of the earth
pressure P on the back of the wall. The stability of the wall can
then be investigated as directed on page 231.

Analytic Determination of Earth Pressure on a Retaining

Wall.—From the graphic construction just given, we can easily

derive the corresponding formulas for the magnitude and direction

of the earth pressure P.
Notation.—Let hi = DiOi be the height of the earth surface at

Pi above the base AB of the wall; the angle of the earth surface
with the horizontal is a • the batter-angle of the back of the wall

OiO

with the vertical is /?; the earth pressure P makes the angle with

the normal to the back of the wall; the angle RAiNi = <p, is the
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angle of friction or repose for earth on earth ; the angle R1N1F = y,

and the angles R1N1S1 = FN1S1 = \ ; the angle RAS = e ; the angle
m

RSA = oo—all as indicated in the figure. Finally, yi is the mass
of a cubic foot of earth.

Then by the graphic construction we have

|-(lh +p»)sin0, =-(_pi-p«) (1)

We have also by our notation

ADi = -A-5-, A 1F = AD l cos (a-fi) = -$t- cos (a- ft);
cos /S cos (i

and since by construction AiRi = A XF, we have from the figure

—(»i — Pi) sin w = r *
'

. cos (a — fi) sin a. . . . (2)
2 cos p

We have also from the figure

g(Pi + P.) + g (Pi -P») cos ? + -(pi -pa) sin t|

=r£^cos (a-^)i
a

,

|_cos £>

(3)

and also

-(pi + p.) + o (P» - P 2) cos ? =
Vl

\ cos (
a _ & cos a -

<& <ti COS P
(4)

From (1), (2) and (3). eliminating - (pi + p a) and -<pi —pa), we

obtain

sm9
or ,//, . , \/. sin' a \cos v= ;— +f l-an'fl 1 ^TsrY • W

sin 0i r
\ / \ sm9

0i/

We have also directly from the figure go — angle NAS, or

<» = 90 -/*-£ + « (II)

From (2) and (1) we have

_ ;Kifti cos (<* — /?) sin a(l + sin 0i)
,

,_,
""

cos fi sin 0i sin v

yihi cos (a - (3) sin a(l — sin 00 .„.

p a = £ jT—.—-7—-. (b)
cos p sm 0i sm 7

We have also from the figure

RS sin go
tan e = —

—

AS — RS . cos 00

But Y\ . RS=p* , and y t . AS = (pi + pa) cos <». Therefore

, p„ sin (B
tan e = *- .

pi cos CO



CHAP. I.] RETAINING WALLS, DAMS AND SLOPES. 253

Substituting the values of p. andp, from (5) and (6), we have

tan e = sin <pi
tan oo = tan"

1 + sin <p

We have also directly from the figure

(«•-*) tan oo.

= oo — e.

Also

(III)

(IV)

yx . RA = VpS sin3
oo + — (y x . AS — p, cos oof

= \ZpS sina
oo + p[* cos'

J
oo,

or, substituting the values of p, andp2 from (5) and (6), we have for
the earth pressure P,

*-i»
4 7"» ? W 1 .=r-rPA . AD, . I =

cos /S
' 2

r> • -B^,

or

D ^iZ/«,i
5 cos (a — 6) sin a A ,s=—,

—
-.—-ra -—. ,P — —^ nr1—r^ V0- + sin 0i)

a — 4 sin 4h sinq
oo

2 cos" /J sin 0i sin 7
•

From (1) and (4) we obtain

_ yJix cos (« — /?) cos <*(! + sin 0i)

cos /5(1 + sin 0i cos 7)

Comparing this with (5), we have

sin a cos a

(V)

sin 0i sin 77 1 + sin 0i cos tf
(7)

We can make this substitution in equation (V) and thus obtain
an equivalent expression for P which can be used when a is zero
viz.,

r, Villi* COS (a— fJ) COS a ,/7=—; : —rs ; : f—P = „-

—

, aM ,

' „—; V (1 + sm 0i)
2 - 4 sm 0i sin' go. (VI)

2 cos* (5(1 + sin 0i cos v)
J

Surface of Rupture.—If there were no wall and the earth had no
cohesion, a prism of earth ADiG would tend to slide off along a
plane AG which would make with the horizontal the angle of
repose 0i. But on account of the wall
this planeAG makes with the horizontal
an angle ip greater than 0i.

This angle if> we call the angle of rup-
ture, the planeAG is the plane of rupture,
and the prism ADiG which thus tends
to separate alongAG and force the wall
is the prism of rupture.

If in the figure, page 251, pi remains
unchanged in direction and magnitude
while ab is revolved about Ai until the
pressure upon ab makes with the normal A B

to ab the angle 0i , then this new position of ab gives the inclination
of the plane of rupture. But for this new position pi makes (page

249) the angle 45 + ~~ with the normal. The normal A,Ni , and

hence the plane ab, has then been revolved through the angle
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The angle which the plane of rupture AG makes with the hori-
zontal, or the angle of rupture, is then

*-*+$-!+* (YII,

General Method.—We have then in any case the following
method

:

1st. Find tf from (I).

2d. Find oo from (II).

3d. Find e from (III).

4th. Find 6 from (IV).

The angle 6 gives the inclination of the pressure with the normal
to the back of the wall.

5th. Find P from (V) or (VI).

Then if desired we can find the angle of rupture from (VII).
The magnitude of P and its inclination with the normal to the

wall are thus determined. The point of application K of P is at a
distance d = AK from the foot of the wall equal to one third the

back ADi ,ord = -

—

1—-.
3 cos ft

Special Cases.—The formulas just deduced are general and
admit of simplification for special cases. If the earth surface is

horizontal, a = and, from (I), v — 0. If <pn is zero, there is no
friction. Making a = and 4>i = 0, we have, from (VI),

2 cos ft'

which is the same as for water pressure (page 236). In this case,
from (III), e = a) and hence, from (IV), S = 0, or the water pressure
is perpendicular to the back. We have then ib = 45' for water.

Case 1. Earth Surface Horizontal.—In this case a — and hence
7 = 0, and go = 90 — ft. We have then, from (III),

tan e = tan2 45 cotan fi. . (8)

Then from (IV)

6 = 90— ft

and from (\
T
I)

P = ydh
w,

1

cos a
/S

4 sin <pi

(1 + sin 0i;
a

(9)

(10)

From (VII) the surface of rupture AG makes with the horizontal
the angle

^ = 45° + ^- (11)

Case 2. Earth Surface Horizontal—Back Vertical.—In this case
a = and ft

= 0. Hence v = 0, a> = 90° and, from (8), e = 90 and,
from (9), 8 = 0. The pressure is then perpendicular to the back or
horizontal. From (10), making ft = and reducing,

P = (12)
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The surface of rupture makes as before the angle if> with the hori-

zontal given by

Case 3. Earth Surface Horizontal.

—

/3 = 90 — 0. In this case a = 0,

01 01
hence y = and tf> = 45° + ^ . If we make /S = 90 — ^ = 45 — -5- ,we

have oo = 4:5 + ~, e = 45 — ~ and

= 0,

or the pressure makes the angle offriction with the normal.
In this case,

ydhS cos' (45 + *^\

P= . \ ±L. . . . (13)

cos 0j cos [45 — g^j

Case 4. Earth Surface Inclined at the Angle of Repose.—In this

case a = 0i. Hence

v = 90 + 0i, 00 = 45° - (i + ~\ ip = 0,, J&

tan e = G^ ^ /i^

0A -^ ^"v^flF^kj*!
tan< (45°-^) tan(45°- /> + !'). (14) ^

A
0!= 45°-/J + £

, -e (15)

y ,tt ,' COS (0: - /?)^ 8in _ 4 8
.

n /^ _ 0i\

2 cos 2
y5 cos 0i r

\ 2 J

Case 5. Earth Surface Inclined at the Angle of Repose—Back Ver-

tical.—In this case, a = 0i, /3 = 0, 77 = 90 + 0i, 00 = 45°+ „-, ^> =0i,

<? = 45 — ?, and hence

6 = 0i,

or the pressure makes the angle of friction with the normal.
From (16), .

P = ?:i^4/(1 + sm01)«_4sin0isins f45
o

+|-
,

l . . (17)

Cohesion of Earth.—Adhesion is that resistance to motion which
takes place when two different surfaces are in contact. If the sur-

faces are of the same kind, it is called cohesion. It is found by ex-

periment that adhesion or cohesion is directly proportional to the

area of contact, varies with the nature of the surfaces in contact,

and is independent of the pressure.

It is given then by
cA,

where A is the area of contact and c is the coefficient of cohesion or
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adhesion, depending upon the nature of the material. The unit of
c is then 1 pound per square foot.

If a trench with vertical sides, of
considerable length as compared to its

width, is dug in the earth, as shown
in the figure, with a transverse trench
at each end, so that lateral cohesion
may not prevent rupture, after a few
days it will be observed to have caved

in along some plane as AG. Let the depth AD be /?<>.

Then, as we shall see in the next Article, the coefficient of cohe-
sion of the earth is given by

c = yihv(l — sin (pi)

4 cos <p\
'

Let ADGH be a mass of

where (pi is the angle of friction or repose, and yi is the mass of a
cubic foot of the earth.

Equilibrium of a Mass of Earth.
earth, the batter-angle of the face
AD being fi.

If there were no cohesion, a prism
of earth ADG would tend to slide

off along a plane AG which would
make with the horizontal the angle
of repose (pi. But if there is cohe-
sion, this plane, which we have
called the plane of rupture, will
make an angle with the horizontal
greater than (pi , which we call the
angle of rupture.

Let the angle of rupture or the
angle of the plane of rupture AG
with the horizontal be ?/>, the angle of the earth surface DG with
the horizontal be «, the length of the mass be I, and the weight of
the prism ADG be W.

The weight W acting at the centre of mass C can be resolved
into a force N normal to the surface of rupture AG and a force P
parallel to the surface.
We have then

P=TFsin^, N=Wco&ip (1)

The force P tends to cause sliding. This force is resisted by the
friction and the cohesion. The friction is jiiN, where «i = tan (pi is

the coefficient of static sliding friction of the earth, and the cohe-
sion is cl . AG, where c is the coefficient of cohesion and I . AG is

the area of contact.
We have then for equilibrium

P-MiN-cl.AG = 0, or P-mN=cl7AG,
or

LAG (2)

Now for any plane which makes an angle with the horizontal
greater or less than rp there will be no sliding, and for that plane
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P- mNP — /iiN will be less than cl . AG, or will be less than c.
I. AG

For the plane of rupture, then, we must have

. - = a maximum (3)LAG
h,

Let the vertical height of the mass be hi. ThenAD =
cos fi

'

and the weight W of the prism ADG in gravitation units is

W = yd . *%- . AG . sin [90 ~<* + ft)]
mr&.A0«M& + n

(4)2 l -r
/ j g cos P

Insert this value of W in (1) and the corresponding values of P
and iVin (3), and we have, since Ui = tan <t>i

,

yihi cos O + ft) sin ty — (pi) . ,_.£ _ii—£i -iz. 2-i- = c = a maximum. . . (5)
2 cos /? cos 4>i

Angle of Rupture.—Equation (5) is a maximum when

cos (ip 4-
ft)
= sin (i>

— (pi) = cos [90 — (i> — (pi)],

or when
^ + /5 = 9O-^ + 0i,

or when

2
+

2 " *
(6)

Equation (6) gives then the angle of rupture or the angle which
the plane of rupture AG makes with the horizontal.

Coefficient of Cohesion.—If we insert this value of ip in (5), we
obtain

yihi sin

or

45 - jL(*, 4- P) cos 45 4- \{<pi + ft) = 2c cos <pi cos ft,

y xhi [1 — sin {cpi 4- A)] = 4c cos <£i cos /3 (7)

Now when AD is vertical ; ft
— 0, and if we denote 7&i in this case

by ha, we have, from (7),

rihoil — sin (pi) /Q .

C = ; -T (o)
4 COS (pi

This is the value of the coefficient of cohesion given in the

preceding Article, where ho is found by experiment.

Stability of Slope.—If we substitute the value of c from (8) in

(7), we have
hi[l - sin (0i 4-

ft)]
= ho(l — sin (p ) cos ft,

or
_ h (l — sin (pi) cos /? ,gv

^ ~ l-sin(0, 4-/3)
'

which is the equation of condition between hi and ft.

From (6) and (9) we see that the angle of rupture and the rela-

tion between hi and ft are independent of the inclination a of the

earth surface with the horizontal.
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Equation (9) gives the limiting height hi when sliding is about
to begin. Let n be the factor of safety, so that if it is 2 or 3 the
safe height taken can be two or three times as great before sliding
begins. Then we have for the safe height

, hod — sin cpi) cos fthi = —p-
;

—

f-T— '

(10)
w[l — sin (0i + 0)]

Equation (10) is then the equation of stability of slope for a fac-

tor or safety n, and gives the safe height of slope for any given
batter-angle fi.

Angle of Stability.—If hi is given and the corresponding batter-
angle yS is required, we can write (10) in the form

1 — sin ((pi + fi) _ feo(l — sin fii) _
cos fS nhi ~ '

where the second member, being a known quantity, is denoted by a.

If we develop the numerator in the first member and substitute for

sin /S and cos fi their values in terms of tan g/S, viz.,

2 tan \fi 1 - tan2

\ fi
a a a

sin/J = a-i cos^ =
l + tan8 ±/5J l + tan2 i-/S

we obtain a quadratic whose solution gives

1 - 1
ten 2^

=
IT¥T"sln^ Cc0S ~ ^a{a + 2 8in ^ '

(11)

Equation (11) gives the safe batter-angle /3 for a factor of safety
n when the height hi is given.

Curve of Slope.—Let a be any point of the slope DaA, whose
vertical distance below D is da = y, and let aG be the plane of

rupture at the point a, making the
angle if> with the horizontal.

Then the prism DGa of weightW tends to slide down along aG
and is prevented by friction and
cohesion. Let AT and P be the
components of TF normal and par-
allel to aG. Then if n is the factor
of safety and u is the coefficient of
static sliding friction, we have

n(P-MiN)-cl.'aG = 0. (12)

Let A be the area daD. Then ydA is the weight in gravitation
units of a prism daD, where y\ is the mass of a unit of volume of

'ii oof* ib

the earth. The area daG is =— , and the weight in gravitation

units of the prism daG is ' » . Hence the weight in gravi-

tation units of the prism DaG is

Tjy yfy* cot rl> A \
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If we insert this value of W in the expressions for P and 2V,
equations (1), and then substitute in (12), we obtain, since

Bin iff

nyd(y
C° — AjUmift — MiCOBlA — cl. .

y = 0;

or, dividing by I sin ^,

nrifV^± -AU-Mi cotA - cy(l + cot1
if!)= 0. . (13)

If aG makes an angle with the horizontal greater or less than
ip, we have, from (12), n(P — mN) less than cl . aG, or the left side of
equation (13) less than zero. The value of i> must then make equa-
tion (13 j a maximum.

If then we differentiate (13) with reference to cot ip and put the
first derivative equal to zero, we obtain

1 — jui cot rf>

ifcotqft _ A > -2cycotiJ> = 0. (14)
ny\y

2 \~ '
r
) ~r—\ 2

Eliminating cot f from (13) and (14), we obtain

yA =
2njui3yi

nuiyiy + 4c — 2 V2c{n/x 1y 1y + 2c) (1 + m*) . (15)

Equation (15) gives the area A between the curve of the slope
and any ordinate da = y. It evidently holds good whether the area
A is bounded by a curve or a broken line of any form.

Values of (f> l , /<, and y x
.—We give in the following Table the

values ol (pi, Mi, yi for earth, sand and gravel.

Kind of Earth.

Angle
of

Repose,

Coefficient
of

Friction,

Mass of
one cubic foot

in pounds,

30°

40
35
40
30
40
45
82

0.58
0.84

0.70
0.84
0.58

0.84
1.00

0.62

100
110
100
110
125
90
95

115

EXAMPLES.

(1) A bank of loose earth without cohesion stands 30 ft. high with
a slope of 50 ft. Find the coefficient of friction and the angle of
repose.

Ans. The horizontal projection of the slope is 40 ft. Hence Mi = tan 0, =
30— = 0.75, and <pi is about 35°.
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(2) A bank of earth with vertical face is found to cave for a dis-

tance of 3 ft. below the surface. The same earth loose and without
cohesion takes a slope of 1.25 to 1 horizontal. Find the slope after
rupture. Also if the mass of a cubic foot is 100 lbs., find the coeffi-

cient of cohesion.

Ans. From equation (6), page 257, since ft = 0, the angle of rupture is

$ = 45° + -*k~' The tangent of the angle of repose is n x = tan (pi = 0.75.
9

Hence (pi is about 35° and rp is about 62°.

From equation (8), page 257, since h = 3 ft., y x = 100 lbs. per cubic foot,

0i = 35°,

100 X 3(1 - sin 35°) 128
c = -r^—k^z = o na = 39 lbs. per square foot.

4cos3o 3.28 *

(3) A bank of earth the same as in the preceding example has a
height of 30 feet and a batter o/45°. Find the limiting height for
the same slope and the factor of safety.

Ans. From equation (9), page 257, since h = 3 ft., (5 = 45°, (p x = 35°, the

limiting height is

3(1 — sin 35°) cos 45° , . _- -.
hi = ——; t^jt^ == about 60 ft.,

1 — sin 80

or the factor of safety is 2.

(4) A bank of earth the same as in Example (2) is required to

have a height of 30 ft. and a factor of safety of 2. Find the batter

of the face.

Ans. ft = 45°.

(5) A bank of earth with vertical face caves for a distance of 5

feet below the surface. The same earth loose and without cohesion
takes a slope of 1.25 to 1 horizontal. The mass of a cubic foot is 100
lbs. Find the angle of rupture, the coefficient of cohesion. If the
batter of the face is made 45

s and the height 30 ft., find the factor of
safety.

Ans. The angle of repose is 0, = about 35°. The angle of rupture is rb =
about 62°. The coefficient of cohesion is e = 65 lbs. per square foot. From
equation (10), page 258,

_ 5(1 — sin 35) cos 45 _U ~ 30(1 - sin 80°) ~ *
(6) Find the uniform batter-angle of the slope in the preceding

example for a height of 30 ft. and a factor of safety of 3£.

Ans. From equation (11), page 258, we find /3 = 45°.

(7) Find the natural curve of the slope in Example (5) for a
factor of safety of 3 and a height of 40 feet.

Ans. Since //, as 0.75, c = 65 lbs. per square foot, n = 3, yi = 100, equa-
tion (15), page 259, becomes

A = ^SfOSif + 260-2 4/208i(225y + 180)1.

If we take y = to 10, 20, 30, 40 ft., we have :

For y = 10, A = 33 sq ft. ;

y = 20, ^ = 167 " "

y = 30, A = 413 " "

y = 40, A = 777 " "
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We have then, considering the area between the slope and any ordinate

as made up of trapezoids, as shown in the
figure :

\ . 10 . Da' = 33, or Da' = 6.6 ft.;

33 _|_ !P_±J^ . a'V = 167, or a'V = 9 "

167 +—i^-
. b'c' = 413, or be' = 9.8"

30 + 40
413+ c'd' = 777, or e'd! = 10.4 "

We see from equation (15), page 259, that
for small values of y A is negative, or, theoret-

ically, the curve overhangs the slope. The equation should not be used for y
less than /t , and the upper part of the slope should be rounded off, as shown
in the figure.

(8) It is desired to cut a bank 30 feet high into three terraces as
shown in the figure with a factor of safety of 1.5. The height of

each terrace is to be 10 feet and there

are to be two steps, ab and cd, each 4

feet wide. The mass per cubic foot is

v, = 100 lbs., and <p\ and ho as found
by experiment are <p\ =31°, ho = 5 feet.

Find the batter for each terrace.

Ans. We have //i = tan <pi = 0.6, and
from equation (8), page 257, c = 71, and
equation (15), page 259, becomes

y = 20, A = 159 ; and when y = 30, A = 421.

We have then

A - ^(284+ 90y - 2\/189(90y+ 142)\.

From this, when y = 10, A = 27 ; when

27

159-

- .10. Da' = 27, or Da' = 5.4 ft.

;

2

+ 4o+ 10+ 2
? .W = 159, or b'c' = 6.1

"

+ 40 + 20+ 3
-

. d'e' = 421, or d'e' = 8.9 "

Hence we have for the batter-angles

For Da, tan fi
= 5A

10'

„ 6.1
For be, tan (5 = -r^,

8 9
For dA, tan (1 = -^, or /3 = 41*°

or /3 = 28*°;

or /J = 3H°;

(9) Design a terrace of four planes, the upper one being 6 feet

height, the lowest 10 ft. , and the others 8 ft. The steps to be 5 feet
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in width, and the earth such that ho = 3 ft., y\
Take the factor of safety at 2.

100, and Mi = 0.6G>

Ans. c = 40, A = j?g[l33y + 160 - 2|/ll5(133y+ 80)].
178

When y = 6, A = 10.9 ;

y = 22, A = 236.4

;

D a b' c' d' e'
i

—

r~r
!6 16

y = U, A= 84.3;

y = 32, ^4 = 569.2.

6 . Da' = 10.9, or Da' = 3.63 ft.

;

10.9+30+ 6-i^
. inr = 84.3,

or Vc' = 4.34 ft.

;

14+ 22
84.3+ 70- d'ef = 236.4,

or d'e' = 4.5 ft.;

236.4+ 110-
22+ 32

.f'g' = 569.2,

or /y = 8.2 ft.

We have then for the batter-angles:

3.63

6

4.34

For Da, tan /? = ^, or /? = 31°;

For 6c, tan /J = -jp or = 28*°

;

For tfo, tan fi = -£, or fi = 29|°

8 2
For/4, tan /? =» or /5 = 39*°.

(10) .Fmd <^e batter-angle fi for a railway embankment 30 /f.
high, 12 ft top base. Let y i = 100 lbs. per cubic foot, (pi = 34°, ho =
4 ft. , and factor of safety 2. Let the locomotive weight be about
6000 pounds per linear foot of track.

Ans. If the top base is 12 feet, the weight of locomotive causes a pressure
of 6000 lbs. on 12 square feet, or 500 lbs. per square foot. This is equivalent
to a mass of earth 5 feet high. We take then hi = 35 feet in equation (11),

page 258, and have

tan
\'
3 = imL0.829 + i/0.0286 = 0.416.

Therefore -rfi is about 22£°, or /3
9

45°

The embankment with this batter contains 47 cubic yards per linear foot,
while with the natural slope of 34° it would contain 62 cubic yards per linear
foot. There will then be a saving in cost of construction if the expense of
protecting the slope to preserve the cohesion is not greater than the saving in
embankment.

(11) A railway cut is made in material for ichich y x
= 100 pounds

per cubic foot, <px = 34°, ho = 5 ft. The depth of cut is h, = 40 ft.
and the roadbed is 16 ft. Find the batter-angle for a factor of
safety of 3.
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Ans. We have ft
— 47°. The cut with this batter contains 87 cubic yards

per linear foot. If it had the natural slope, it would contain 111 cubic yards.
There will then be a saving in cost if the expense of protecting the slope is

less than the saving in excavation.

(12) At Northfield, Vt., on the line of the Central Vermont R. R.
is a retaining wall 15 ft. high, top base 2 ft., bottom base 6 ft. The
wall is composed of targe blocks of limestone without cement, the
density of the masonry about 170 lbs. per cubic foot. The earth sur-
face is horizontal and level with the top of the wall ; angle of repose
38°, and density of earth 90 lbs. per cubic foot. The front face of
the wall has a batter of 1 inch horizontal for every foot of height.
This wall is over 30 years old and in as good condition as when laid.

Investigate its stability and check results of computation by graphic
construction. *

Ans. We have h = h l = 15 ft., a = 0°, S = 170 lbs. per cubic foot, y^ = 90

2 75
lbs. per cubic foot, 0, = 38°, &, = 2 ft., 6„ = 6 ft., tan ft = -'— or fi = 10° 23'.

10
Take a section of the wall one foot in length, so that 1 = 1. Then from

page 254, Case 1, we have

p= 90 X 15*

/o^-
3^—

We have also from equation (8), page 254,

tan e = tan2 26° cot 10° 23', or e = 52° 26'.

Then from equation (9), page 254, = 27° 11'. The angle of P with the
horizontal is then (9 -f" ft) — 37° 34', and the horizontal and vertical com-
ponents of P are

H = P cos (0 + 0) = 2364 lbs.

;

V = P sin (a + /S) = 1814 lbs.

The weight of a section one foot in length is

W = 11200 lbs.

If we take the coefficient of static sliding friction n = 0.66 (page 229), we
have from equation (I), page 233, for the factor of safety for sliding

0.66(11200 + 1814)
11 =

2364
=36

'

or, if we neglect V, n = 3.1. There is therefore ample security against sliding.

If there are no through joints, there is in any case no possibility of sliding.

From equation (5), page 233, we have «a = 3.3 ft., and from equation (II),

page 233, e = 2.1 ft. The resultant of P and W. therefore, cuts the base
within the middle third and just within the middle third. The proportions

are then nearly economic. Thus from equation (III), page 234, we have 6a =
5.86 ft., while the bottom base as built is 6 ft.

From equation (7), page 234, we have for the greatest unit compression two
tons per square foot, which, as we see from page 229, is abundantly safe.

(13) In the preceding example, let the back be vertical. Find the

bottom base. Check the computation by graphic construction.

Ans. In this case, /? = 0. From page 254. Case 2, we find the earth press-

ure horizontal or = 0, ft = 0, and if we take a section of wall one foot in

length, so that I ss 1,

P = 90 ><
15a

tan»f45°-
3A%2410 1bs.(«-f)=:
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From equation (III), page 234, we have for the bottom base when e = ^b 9 ,

o

or for economic proportions,

6, = 4.8 ft.

From (I), page 233, we have the factor of safety for sliding, n = 2.4.

From equation (6) we have for the greatest unit compression 1.8 tons per
square foot, which is much less than the allowable safe stress (page 229).

(14) Find the bottom base of a trapezoidal icall of granite ashlar
with vertical back, 20 feet high, to retain an embankment, the earth
surface being horizontal and level with the top of the wall ; (pi =
33 40', y\ = 100 lbs. per cubic foot. Check the computation by
graphic construction.

Ans. In this case, (i = 0. From page 254, Case 2, we find the earth press-

ure horizontal, and taking a section of wall one foot in length, or I = 1,

P = 10Q X 20_ tan2 28° 15' = 5774 lbs.

From equation (III), page 234, we have for the bottom base for economic

proportions, or for e = —bt ,

o

V A Ah-5». + V T+-M
If we take the top base bi = 2 ft. and 8 = 165 lbs. per cubic foot (page 229),

we have bt — 7.66 ft.

From equation (6), page 234, the greatest unit compression is about 2 tons

per square foot, which is much less than the allowable safe stress (page 234).

(15) Same as Example (14), icith back batter fi = 8°. Check the
computation by graphic construction.

Ans. P = 6420 lbs., 6 = 18° 9', H= 5758 lbs., V= 2825 lbs., b3 - 7.9 ft.

Greatest unit compression 2.4 tons per square foot, which is much less than the
allowable safe stress (page 229).

(16) A rubble icall of limestone, 15 ft. high, retains an earth-fill-

ing ichich supports a double-track railway. The top base is bi = 3.5

ft. Find the bottom base when y> = 100, 0, = 33° 40', fi = 8"
1
s = 170

lbs. per cubic foot.

Ans. If we take the train load at 6000 lbs. per linear foot, and top base of

the fill 15 ft., the pressure per square foot on the top is 400 lbs. , which is

equivalent to a column of earth 4 ft. high. We have then h — 15 ft. , hi =
15+ 4 = 19 ft., and

P = 5795 lbs., 9 = 18% H= 5200 lbs., V- 2540 lbs.,

bj = 7 ft. Greatest unit compression 2.3 tons per square foot, which is much
less than the allowable safe stress (page 229).

(17) Find the bottom base for a retaining wall 20 ft. high, back
batter = 8°, S = 170 lbs. per cubic foot. Earth surface inclined to

horizontal at angle of repose b> = 33° 40', hi — 20 ft , y, = 100 /6s.

per cubic foot.

Ans. In this case we have, from pagre 255, Case 4. e = 21° 22', fJ = 32° 28',

P= 21740 lbs., H= 16522 lbs., V= 13230 lbs.

If we take the top base b, = 2 ft., we have, from equation (III), page 234,

bi = 9.6 ft. The greatest unit stress of compression is 1.7 tons per square

foot.
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(18) The San Mateo dam, California, is built of concrete weighing
about 150 pounds per cubic foot. The height is h = 170 ft., top base
bi = 20 ft., bottom base b* = 17Qft., back batter 1 to 4 or tan /3 = 0.25.

Investigate the stability for depth of water hi = 165 ft.

Ans. We have for a section one foot in length

V= 212700 lbs. , H= 850780 lbs. , W= 2499000 lbs.

There are no through joints in this dam, and therefore no investigation for
sliding is needed. If, however, we take the coefficient of static sliding friction

jii = 0.66 (page 229), we have from equation (I), page 236, n = 2.

If the dam is empty, we have from equation (5), page 237, «a = 75 ft. The
weight then cuts the base near the middle and well within the middle third.

From equation (II), page 237, we have, even when we take ice-thrust into

account, e = 86 ft. The resultant of the weight, pressure and ice-thrust then
cuts the base within the middle third.

Hence from equation (7), page 238, we have for dam empty the greatest
unit stress of compression 11 tons per square foot, and for dam full and ice-

thrust 8 tons per square foot.

The dam as built is then stable and safe even for a cold climate, and even
for through joints.

(19) Design a dam of sandstone ashlar, QOft. high, top base 9ft.,
depth of water 57 feet.

Ans. We have h = 60 ft., A, = 57 ft., h = 9 ft., y s 62.5 lbs. per cubic
foot, and, from page 239, 8 = 150 lbs. per cubic foot, C= 20 tons per square
foot, n = 0.6.

From page 229 we take the back vertical for economic section. Hence
/J = 0.

From equation (III), page 237, we have for economic proportions for the
bottom base 5a = 32.7 ft. and hence A = 1250 square feet.

Then from equation (6), page 237, the greatest compressive stress for reser-

voir full is p = 5.7 tons per square foot. For reservoir empty sa is always

greater than —b? when back is vertical (page 238), and the unit stress is still
o

We have then for a foot of length of the dam,W= 187500 lbs. , H= 101530
lbs., and from equation (I), page 236, if there is no ice-thrust, we have for the
factor of safety for sliding n = 1.1. This is small, but if there are no through
joints the dam cannot slide.

But now, if we suppose the ice-tbrust of T= 40000 lbs. per foot to act, we
must test and see if the dam with bottom base J2 = 32.7 ft. is still safe.

From (5), page 237, we have *2 = 11.6 ft., and from (II), page 237, using
this value of s 2 , we obtain e = — 1.35 ft. The minus sign shows that the
resultant passes outside of the base. The dam would therefore rotate under
the ice-thrust. We must find b? therefore from (III'), page 288. This gives

us hi = 36 ft. and A = 1350 sq. ft., W = 202500 lbs.

We have now for the factor of safety for sliding n = 0.9. This is less than
unity, and hence when the ice-thrust acts, the wall must depend for its safety

entirely upon the fact that there are no through joints. It would be better,

then, to give the dam a back batter of, say, tan (i = 0.25.

If we do this, we have from (III), page 237, b t = 43.6 ft. and A — 1578

sq. ft. From (5) and (II), page 237, we then obtain s„ = 21 ft. and e = 8 ft.

Then from (8), page 238, we have p = 10.9 tons per square foot, so that so far

as rotation and compression are concerned the dam is safe even with ice-

thrust acting.

We have now from (I), page 236, for the factor of safety for sliding, when
the ice-thrust acts, n = 1.1. We should then have no through joints in the

dam.

(20) The height of the proposed Quaker Dam, New York, is 170

feet, top thickness 20 feet, specific mass of the masonry 2.5, depth of
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water 163 feet. Find the economic section for allowable compression
of 10 tons per square foot.

Ans. We have b t = 20 ft., hi = 163 ft., A = 170 ft., - a 2.5, y = 62.5
V

lbs. per cubic foot, o = 156.25 lbs. per cubic foot, y = 40000 lbs. per foot,

G - 20000 lbs. per square foot, U = 0.6.

1st. Ice-thrust Neglected.—Let us first neglect the ice-thrust.

From equation (I), page 240, we have for the height 7h of the first rectan-

gular sub-section if the water is level with the top, h t = 32 ft. As the water
is not level with the top, 7i must be greater than this. In equation (I), page
240, bb^ht = y(Ai — a)6 , if we put a = 7 ft., 7i 3 a hi — 7, and insert the values
of <5, bi and y, we have

625000 A 2 + 4375000 = 62.5/tj 3
.

Solving this equation, we have for e = - bi =6.66 ft. , A t a 34.7 ft. Hence
o

At = 41.7 ft. and A\ = 834 sq. ft. When the dam is empty s = =- = 10 ft.

a
We have then from (7), page 238, when the dam is empty, the unit compression

p = 3.26 tons per square foot on back edge, and from (6), page 237, when the
dam is full, p = 6.52 tons per square foot on front edge.

Below hi = 34.7 ft. we have the back vertical and the face battered and
the second sub-section begins.

Let us take for the height of the next trial section A? a 15.3 ft. Then
ht
a 34.7 -f 15.3 a 50 ft., Ai = 834 sq. ft., h = 20 ft., «, =10 ft.,/S = 0,

i$ 1— = 2.5. From (III), page 243, when e = -b-,, we have 6a = 26.2 ft., and

hence e = 8.7 ft. The area of this trial section is then At a 353 sq. ft. We
have now from (2) and (II), page 242, *2 = 11.6 ft. and * = 10.5 ft. Then from
(7) and (6), page 238, the unit compression p = 5.66 tons per square foot on
back edge for dam empty and p = 7.08 tons per square foot on front edge for

dam full.

Take for the height of the next trial section 7ia = 20 ft. Then hi = 70 ft.

,

A x = 11.87 sq. ft., bi = 26.2 ft., *, a 10.5 ft., a 0, - a 2.5.

V

Just as before, from (III), page 243, when e = ^b3 , we now have &2 = 37.4
o

ft., and hence e= 12.5 ft., and A^ =636 sq. ft. Then from (2) and (II),

page 242, s = 12.4 ft. Then from (6), page 238, the unit compression is p =
7.62 tons per square foot on back edge for dam empty and p — 7.62 tons per
square foot on front edge for dam full. Since for h x = 70 we have s — 12.4 =
—&a, this is the limit of the second sub-section.
o

Below hi = 70 ft. we must batter both front and back. If then we take
ht = 20 ft. for the next trial section, we have hi = 90 ft., Ai = 18.23 sq.

ft. bi = 37.4 ft., si = 12.4 ft., - = 2.5.

r
From (IV), page 244, we have then, when e = —b2 =s,bt = 53.4 Hence

o

s = e = 17.8 and Ai a 908 sq. ft., and from (V), page 244, we obtain tan

/? = 0.114. Then from (4), page 244, the compression on front edge for dam
full or on back edge for dam emptv is p = 7.99 tons per square foot.

Take h t =20 ft. for the next trial section. Then A, = 110 ft., Ai = 2731

sq. ft., bi — 53.4 ft., «, = 17.8 ft., — = 2.5, and we have from (IV), page 244

(a), bi = 67.5 ft , hence A, = 1218 sq. ft., e = s = 22.5 ft., and from (V), page
244, tan/S= 0.05. From (4), page 243 (a), the compression on front and back
edge for dam full and empty is p = 9.14 tons per square foot.
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Take Jit a 20 ft. for the next trial section. Then hi = 130 ft., A t = 3949
St

sq. ft., bi = 67.5 ft., »! = 22.5 ft., - = 2.5. We find then for this section b2 =
7

81.6 ft., A% = 1490 sq. ft., e = a = 27.2 ft., tan (i = 0.036, p = 10.4 tons per
square foot.

Below hi = 130 ft., then, the fourth sub-section begins and we must use
equation (VI), page 245.

Take h 2 — 20 ft. for the next trial section. Then A, = 150 ft., A = 5439
sq. ft., 6, = 81.6 ft., s, a 27.2 ft., y = 62.5 lbs. per cubic foot, 8 = 156.25 lbs.

per cubic foot. Then, from (VI), page 245, 62 = 106.7 ft. and hence At =
1883 sq. ft., and from (5), page 244 (a), e = a = 38 ft. From (V) we have
toad= 0.18.

For the remaining depth Jit = 13 ft., hi = 163 ft., Ai = 7322 sq. ft., b x
=

106.7 ft., ai a 38 ft., and we find bu = 123.6 ft., At = 1497 sq. ft, e = a = 45.4
ft., tan /? = 0.00.

We have then the following Table :

h fc, b A tan/3 e s P
back

P
front

41.7 34.7 20 834 6.6 10.0 3.26 6.52
57 50 26.2 1187 8.7 10.5 5.66 7.08
77 70 37.4 1823 12.5 12.4 7.62 7.62
97 90 53.4 2731 0.114 17.8 17.8 7.99 7.99
117 110 67.5 3949 0.05 22.5 22.5 9.14 9.14

137 130 81.6 5439 0.036 27.2 27.2 10.4 10.4
157 150 106.7 7322 0.18 38.0 38.0 10.0 10.0

170 163 123.6 8819 0.00 45.4 45.4 10.0 10.0

In this Table the first column contains the height h of the dam in feet

above the base of each sub-trapezoid, the second the depth of water hi in

feet above the base of each sub-trapezoid, the third the base b in feet of each
sub4rapezoid, the fourth the total area A in square feet above that base, the

fifth the tangent of the back batter-angle tan (i, the sixth and seventh the dis-

tances e and a in feet from front and back edges to where the resultant cuts

the base of each sub-trapezoid for dam full and empty, the eighth and ninth the

unit stress p of compression at those edges in tons per square foot.

Comparing with Ex. (18), we see that the San Mateo dam, 170 ft. high, has
about 88 per cent more material than this economic section of the same height.

2d. Ice thrust taken into Account.—Let us now consider the same dam,
taking the ice-thrust into account.

From equation (I), page 241, putting ht = hi-\~7 and a = 7, we have, after

substituting y = 62.5, d = 156.25, bi = 20, C= 20000, T = 40000,

Si5+S'= 4- 258,"= 64 -896
' " '" = ""•

Hence ht = 18 ft. and Ai = 360 sq. ft., e = 1.9 ft., p = 10 tons per square

foot.

Below hi = 11 ft. we have the back vertical and face battered, and the

second sub-section begins.

Let us take for the height of the next trial section Jit = 23.7 ft. Then
hi = 34.7 ft., Ai =a 360 sq. ft., 6, = 20 ft., «, = 10 ft., /3=--0,y = 62.5, 5 =
156.25, C = 20000, 2' = 40000. From (III) we have bt = 28.76 ft. ; hence At =
577.8 sq. ft., and from (3), page 242, e = 4.8 ft. From (2) and (II), page 242,

we then have a = 11.4 ft.

Take Jit = 15.3 ft. for the height of the next trial section. Then //., = 50

ft., Ai = 938 sq. ft., 6, = 28.76 ft., «, = 11.4 ft., (i = 0, and we can find bt ,

At and 8t for this section.

We can then take h3 = 20 ft., and so on, until we arrive at a section for

which a = ^bt.
o
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Below this section we must batter face and back, still using (III'), page 243,

for 6 a and finding tan (i from (V), page 244.

The student should complete the example.

(21) The Bear Valley dam in the San Bernardino Mountains,
California, is an arch dam about 450 ft. long, constructed of granite
ashlar, height ft= 64 ft., radius r = 300 ft., top base bi = 3.17 ft.,

bottom base b„ = 20 ft., depth of water )u = 60 ft., face vertical.

Other dimensions as shown in the
figure. Examine its stability.

Ans. We have from the given dimen-
sions and from equation (2), page 246 (d),

neglecting the ice-thrust T,

for distance from top

= 12 24 36 48 64 f

hi = 8 20 32 44 60

t= 4.48 5.79 7.1 8.42 20 '

G = 16.74 32.38 42.25 43.05 28.12

ons per square foot.

From page 229, the allowable unit com-
pression C ought not to exceed 30 tons per
square foot. The dam as built has then a
higher unit stress than good practice would
consider allowable.

(22) Design an arch dam of the same height and radius as the
Bear .Valley dam, Ex. (21), and same depth of water, for an allow-
able compressive stress of 25 tons per square foot.

Ans. We have h = 64 ft., h, = 60 ft., r - 300 ft., C = 50000 lbs. per
square foot, y — 62.5 lbs. per cubic foot.

In default of local or practical considerations to guide us in choice of the
top base bu let us suppose an ice-thrust of 7= 40000 lbs. per foot.

Then from (3), page 246, we have for the top base

. 300 X 40000 „_ ,
6i = "5000W64-

= 3 - 7° ft -

1st. Without Ice-thrust.—Let us take then ftj = 3.75 ft., and suppose first

that there is no ice-thrust.

Then from (4), page 246, neglecting T, we have for the distance h3 below
the water level for which the cross-section may
be made rectangular,

50000 X 3.75
h*

62.5 X 300
= 10 ft.

The dam then is rectangular for 14 ft. be-
low the top. Below this point we must in-

crease the thickness as the depth of water
increases. We have then from (2), page 246,

neglecting T,

ft.

If we make the face vertical and batter the
back, we have then a cross-section as shown

for distance from top

= 14 24 36 48 64

h\ = 10 20 32 44 60

t = 3.75 7.5 12 16.5 22.5
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in the figure 3.75 ft. thick for the first 14 feet, and then with a back batter of

1^, or tan /S = 0.375.
50
2d. With Ice-thrust.—If we consider the ice-thrust T as acting, then we

have bi at least 3.75 ft. as already found.
From (4), page 246, taking T= 40000, we have for the distance h 9 below

the water level for which the cross-section may
be made rectangular

hi =
50000 X 3.75 40000

62.5 X 300 62.5 X 64
= 0.

The dam then is rectangular for 4 feet below
the top. Below this point we must increase

the thickness as the depth of water increases.

We have then from (2), page 246 (d), for

dist. from top

= 4 24 36 48 64 ft.

h t
=0 20 32 44 60

t = 3.75 11.25 15.75 20.25 26.25

If we make the face vertical and batter the back, we have then a cross-sec-

tion as shown in the figure 3.75 ft. thick for the first 4 feet, and then with a
22 5

back batter of -~, or tan 6 = 0.375.W



CHAPTER II.

APPLICATIONS OF STATICS—STRENGTH AND ELASTICITY
OF MATERIALS.

MOMENT OF INERTIA OP AN AREA. RADIUS OF GYRATION. DETERMINATION
OF MOMENT OF INERTIA OF AREAS. STRESS AND STRAIN. EXPERI-
MENTAL LAWS. COEFFICIENT OF ELASTICITY. WORK AND COEFFICIENT
OF RESILIENCE. EQUILIBRIUM OF A DEFLECTED BEAM. SHEARING
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OF PROPERTIES OF MATERIALS. FACTOR OF SAFETY AND WORKING
STRESS. VARIABLE WORKLNG STRESS. STRENGTH OF PIPES AND CYLIN-
DERS. RIVETED JOINTS. THEORY AND PRACTICE OF RIVETING. DESIGN-
ING OF BEAMS. BREAKING WEIGHT. SHAPE FOR UNIFORM 6TRENGTH.
THEORY OF PINS AND EYEBARS. TORSION. COMBINED STRESSES.
STRESS DUE TO TEMPERATURE.

Moment of Inertia of an Area.—The term "moment of inertia

of an area" is used to designate a quantity which occurs so fre-

quently in the application of statics to the strength and elasticity

of materials that a special name and symbol for it is essential.

Before taking up such application, then, it is necessary to define
what is meant by the term and to show how the quantity it stands
for may be computed. The use made of it will appear later.

Definition of Moment of Inertia of an Area.—Any indefinitely

small area we call an elementary area. Thus the rectangular areas

abed are elementary areas if in the one case the height and breadth
ab and cb are indefinitely small, and if in the other case, whatever
the breadth be, the height ab is indefinitely small. An elementary
area, then, has one or both of its dimensions indefinitely small.

Take O as origin and draw the co-ordinate axes OX and OF in

the plane of the areas, parallel to the base and height. Then in the
first case, since both dimen-
sions are indefinitely small,

they can be neglected with
reference to any finite dis-

tance. The perpendicular
x from ab on OY is then
the distance of the area abed
from the axis of Y, or the
same as the distance of the
centre of mass C of the area
from the axis of Y, and the
perpendicular y from ad on
OX is the same as the dis-

tance of the centre of mass
C of the area from the axis
of X

In the second case the height ab can be neglected with reference

270
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to any finite distance, and the perpendicular y from ad on OX is

the same as the distance of the centre of mass C of the area from
the axis of X. The perpendicular x from C on OY is the distance
from the axis of Y.

In either case, the product of the elementary area by the square
of its distance from any axis in the plane of the area is called the
moment of inertia of the elementary area with reference to that
axis.

Thus if a is the elementary area, ax? is its moment of inertia
with reference to OY in its plane, and ay7

is its moment of inertia
with reference to OX in "its plane.

In the same way if r is the distance OC of the elementary area
from the axis of Z, ar* is its moment of inertia with reference to
the axis OZperpendicular to the plane of the area. This is called
the polar moment of inertia of the area with reference to OZ. But
evidently ar* = ax 1 + ay1

. Hence, the polar moment of inertia is

equal to the sum of the moments of inertia with reference to any two
co-ordinate axes in the plane of the area.

Now any area may be considered as made up of an indefinitely
great number of elementary areas. The moment of inertia of an
area with reference to any axis is then the sum of the moments of
inertia of all its elementary areas.

Thus the moment of inertia of any area with reference to the
axes of X and Y in the plane of the area is given by

Eay1 and 2ax*,

and the polar moment of inertia, or the moment of inertia with
reference to the axis of Z at right angles to the plane of the area, is

given by
'Ear'

1 = Saix* + y
1

) = Sax* + 2ay*,

or the sum of the moments of inertia with reference to the two
co-ordinate axes in the plane of the area.

If the axis is taken through the centre of mass C of the area, we
denote the corresponding moment of in-

ertia by /. If it is not taken through the
centre of mass, we call it an eccentric axis,

and we denote the corresponding moment
of inertia by /'.

Let OX be an axis which passes through
the centre of mass C of a given area in its

plane, and O'X' a parallel eccentric axis,

at a distance d from the first axis, also in

the plane of the area.

Then the moment of inertia of the area with reference to OX is

1= 2ay\

and the moment of inertia of the area with reference to O'X' is

I' = 2a(y + df = Say* + 2dSay + d*2a.

But since OX passes through the centre of mass of the area,

2my — (page 17), where m is the mass of an elementary area.

But m — 8a, where a is the area and 8 the surface density. Hence
28ay = 82ay = 0, or 2ay = 0. Therefore, since 2a = A = the

entire area, we have

I' = 2aif + Ad 9 = 1+ Ad\
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That is, the moment of inertia of an area with reference to an eccen-
tric axis is equal to the moment of inertia with reference to a par-
allel axis through the centre of mass plus the area into the square
of the distance between the two axes.

Radius of Gyration of an Area.—The square root of the quotient
obtained by dividing the moment of inertia of an area with refer-
ence to any axis by the area is called the radius of gyration of the
area with reference to that axis. We denote the radius of gyration
by K. Then by definition

k ' = V-a and K = V T'A
where k' and I' indicate an eccentric axis, and k and I an axis
through the centre of mass.
We have then

Ak~ = I, or Ak"1 = I'.

That is, the radius of gyration of an area is that distance at which,

if we suppose the entire area to be concentrated into a point, tJie

moment of inertia is the same as for the given area.

Determination of Moment of Inertia of an Area.—To determine

the moment of inertia of an area with reference to any axis, we have
simply to perform the summation indicated by 'Sax'

1
, or Say'1

, or Sar2
.

(1) Moment of Inertia of the Area of a Rectangle.—Let ABBE be

a rectangle of base AB = b and height BB = h. Take the axis CX
E D through the centre of mass C in the

\d \ plane of the rectangle and parallel to

j/t
the base 6. Let abde be an elementary
area or strip parallel to the base at a
distance y from the axis. Then the

dy \y c

--* height of this strip is dy and its area is

a = My and its moment of inertia is

ay* = by'dy. The moment of inertia of the rectangle with reference to
the axis CJT is then, since the area of the rectangle is A = bh,

+h

The radius of gyration is kx= {/ — =
* A

If we take the axis in the plane of the rectangle through the centre of
mass C and parallel to the height 7i, we have in the same way

+-

Iy = I ha?dx = ^ = A .
-

rt , kv = \/~L

24/3'

12 12'
b

ia ^ y A 2 V3v
2

For the polar axis through the centre of mass C at right angles to the
plane we have

a
h*+ b*

a
d* a/T d

Iz = A .
-—— = A . —

,

Kz = \ -r = ~,
12 12' y A 2 |/3

where d — ^Ti1 + V is the diagonal of the rectangle.
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(2) Moment of Inertia of the Area of a Triangle.—Let ABB be a
triangle of base AB — b and height h. Take the axis X'X' through the
apex parallel to the base and in the
plane of the area.

Take an elementary strip at a dis-

tance y from XX parallel to the base.
We have for the length x of this strip

x : y : : 6 : h, or x = -£

The area of the strip is then a = xdy = bydy
and the moment of

inertia of the triangle with reference to XX' is then, since the area of
hh

the triangle is A = —
-,
2

"
--r =A and Kx

* A 4/2

We have then for the moment of inertia with reference to the axis

XX through the centre of mass C, parallel to the base and in the plane of

the area,

Ix = Ix' A<? 18'
and Kx

* A Si/2

Again, we have for the moment of inertia with reference to the axis

coinciding with the base AB,

Ib'=I+A(W A- and Kb V A 4/5-

Take the axis AY through the vertex A in the plane of the triangular

area ABB. Drop the perpendiculars di and
di from B and B upon A Y. Produce the side

BB to intersection E with A Y, and let the dis-

tance AE = I.

Let Ax be the area of the triangle AEB so

that Ai = — . The moment of inertia of this
2

triangle with reference to the axis AY conciding

with the base AE is, as we have just seen,

, , A dS ld1
*

LmJ
*T

mW
Let A, be the area of the triangle AEB, so

that A3 = —?. The moment of inertia of this
2

triangle with reference to the axis J.Fcoincid-

. dS Id*
3

A
*J=l-2-

Hence the moment of inertia of the triangle ABB with reference to the

axis AY is

ing with the base AE is L'

IJ = I' - V = hdi' - dj) = l(d t - d^ . --(dS + ddi + dS).
y 12 2 o
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A

But —(di — di) is the area A of the triangle ABB. Hence we have
8

If the axis AT is at right angles to the side AB = b, and a is the angle

DAB at A, then we have dx = , d* = I, and
tan a '

,c
*=f(<

v +
bh

-;)

/B

tan a tan"

The distance from A to the centre of mass C is

I 1 / h

2
+

3 Vtan a
j 3 V tan <*)

The moment of inertia with reference to an
axis in the plane through the centre of mass G

E parallel to AT is then

For the polar axis through the centre of mass C at right angles to the

plane we have then

bh

18\
A2 + &

5

+tan a tah—

V

in
2 a J

(3) Moment of Inertia of the Area of a Parallelogram.—We can
divide the parallelogram ABBE into two triangles by the diagonal EB.

The moment of inertia of the

triangle ABE with reference to the

axis EB is, as we have already

bh3

found, lb' = -r-. The moment of
4

inertia of the triangle EDB with

reference to the axis ED is, as al-

b7i
3 * o a

ready found, h' = -y The moment

of inertia of the parallelogram with reference to the axis ED or AB is

then

A • a/ 1 ' h
and Kb = V .- =—=•«r A |/3

E I D

• n \c y

/.r \.r

76 ___4
g

,

The moment of inertia of the parallelogram with reference to the axis

XX in the plane through the centre of mass C parallel to the base AB is

then

«HB-4 - -?-&.
or the same as for a rectangle.

In the same way if a is the acute angle at A, we have for the moment
of inertia with reference to the axis AE or BD,

, , . //' 6 sin a
and ki = 1/ —-

= :r-jV A
i/B

Ii = A-
b* sin2
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and with reference to the axis parallel to AE in the plane through the
centre of mass C,

Ii = A b* sin' a
12~~

, „ . / / 6 sin a
ana ki = 4/ — = . —

.

r A 24/3~

We have also for the polar axis through the centre of mass G at right

angles to the plane

Iz = - [W + V +
12V tan—

V

n" aJ
(4) Moment of Inertia of the Area of a Hexagon.—We can divide

6* 4/3"
the hexagon into six equilateral triangles of side 6 and area Ai =

.

Take an axis YY in the plane
of the area through the centre of

mass perpendicular to the sides.

For the triangle ABD we have

from page 273, since di = — —

,

2

di= H— , the moment of inertia

Ad*
For the triangle ABE we

24

have, since dx = — , da= b, the mo-
A

e~—*x

ment of the inertia is
7A&
24

For the total moment of inertia with ref-

erence to YY we have then

_ 7^16" Aib* _15A 1b*

or, since A = 6A1

,

Iv =
SAV of/5"

and Ky = 4/ — ss—
24 * A 24/6

If we take the axis XX through the centre of mass, we have, from
A 1b'

1

page 273, for the moment of inertia of the triangle ABE, —3-, and for
8

the moment of inertia of the triangle ABD, —^— . The total moment of
8

inertia with reference to XX is then

Ix

or, since A = 6A1,

Aib1 SAiV _ 54,&9

-2~ + ~T~-~7~'

r 5Ab*

A
Ix = -£j~< and kx

24 -Si 24/6

For the polar axis through the centre of mass, perpendicular to the

plane,

5AV . ,/T 64/5"
lz = -TT-. and kz = y -j-

—
12 24/3
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(5) Moment of Inertia of the Area of an Octagon.—We can divide
the octagon into eight isosceles triangles.

"We find the moment of inertia with
reference to an axis YY in the plane of the
area, through the centre of mass perpendic-
ular to the sides,

D B

/ V b \
AV4= 24(^2+4),

and

*v -VI
j/5.414

2 i/6

For the polar axis through the centre of mass, perpendicular to the
plane, we have then

4«-^*(«fi + 4X and J I . I
75.414

r A 2 4/3

For the axis XX in the plane of the area, through the centre of mass,
coinciding with the sides, we obtain

£(*-+*). and kx -VI- V5.414

2|/6

(6) Moment of Inertia of the Area of a Circle.—The area of any
circular strip of radius x and thickness dx
is 2nxdx. Its moment of inertia with
reference to the polar axis through the

centre of mass is then 2nx*dx. The polar

moment of inertia is then, since xr* = A
= the area,

It

and

' 2itxzdx = —- = A . -,
2 2'

Km -y a 4/2

The moment of inertia with reference to any axis in the plane through
the centre of mass, as XX or YY, is evidently the same, and, since

Ix + Iy = 21= Iz , we have for any axis in the plane through the centre
of mass

T A and = y
/i=

r

r
(7) Moment of Inertia of the Area of a Circular Ring.—Let r t = the

internal radius and r2 the external radius, so that the area is n(ra
* — rS)

= A. Then in the preceding case we have simply to integrate between r2
and ri , and we have for the polar axis through the centre of mass

TMr2nx*dx =
2 2

A.
n* + rS

r, « * 2

and for any axis through the centre of mass in the plane of the area
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(8) Moment of Inertia of the Area of an Ellipse.—Let a = the
semi - major and b the semi - minor
axes, and take the origin at the Y
centre of mass. Then

V V~a?

and the area A = itab. The area of a
strip, as PQ, is 2ydx, and its moment
of inertia with reference to the axis
YY in the plane through the centre
of mass is 2yx*dx.

Hence- the moment of inertia of
the area with reference to YY is

- ?l r +a

a J

-

a

nasb . A-x1
. dx = —— = A .

-—
4 4

x' \Za? -x\dx =~ , Or Ky
V A 9.

In the same way we have for the moment of inertia with reference to
the axis XX in the plane through the centre of mass

it&a . ¥
lx— —t— = A.-, or

4 4

./I b

r A 2

The moment of inertia with reference to the polar axis through the
centre of mass at right angles to the plane is then

h = A.
a? + V

or kz
|/a2 + V

Rule for Moment of Inertia of the Area of a Rectangle, Paral-
lelogram, Circle or Ellipse with Reference to an Axis of Symmetry
through the Centre of Mass.—The preceding is sufficient to illustrate

how the moment of inertia of any area may be found. The use
made of the moment of inertia will appear later. The various roll-

ing mills furnish their customers with extensive Tables giving the
moment of inertia of the cross-section of the different sizes and
shapes of iron and steel beams rolled by them.* It is therefore un-
necessary to multiply illustrations here.
We give here a simple rule which will enable the student to find

at once the moment of inertia with reference to an axis of symmetry
through the centre of mass, for the area of the rectangle, parallelo-

gram, circle or ellipse. This rule is as follows :

Axis of symmetry in )

plane of area through > j _ area x
centre of mass

:

)

Polar axis through cen-
tre of mass: I= area x

square of the other perpendic-
ular semi-axis

.~~
3 or 4

sum of squares of two perpen-
dicular semi-axesof symmetry

3 or 4

The denominator 3 or 4 is taken according as the area is a paral-

lelogram or an ellipse. The rectangle and circle are special cases
of parallelogram and ellipse.

* A most extensive collection is the "Pocket Companion" of Carnegie,

Phipps & Co., Pittsburgh, Pa.
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(1) Parallelogram and Rectangle.—Thus for the parallelogram
ABDE of base 6 and height h, we have
for the axis of symmetry XX through
the centre of mass CE / D

V / ' ! / Y

"
/. / 1/

Ix = Afh
3 V2 12'

and

/ b
./I h

Kx = 4/ — = -

A/bsinaV .b2 sin2 a ,= -s- 7i = -4. , and Ky
3 V 2 ) 1212

For the rectangle we have

For the axis of symmetry YYwe have

?
2 sin2

o- _.» . _ J~I_ _ 6 sin a

2^3

3 \2 12'

and

and

T A (by .b*

b-TW = A
TV

Ky=JL= J^.
* A 2 4/3~'

and for the polar axis through C,

E D

C
h

X

b

1

<\ B

Iz =
3 V 4

^1 + -^ =
4/

A.
fo' + fr'

12 12' 2V3
where d is the diagonal of the rectangle. These are the same
results as already obtained pages 272 and 274.

(2) Ellipse and Circle.—For the ellipse let a = the semi-major and
6 the semi-minor axis.

Then for the axis of symmetry XX
through the centre of mass C we have

T A& /. ATI b
Ix = A-, and kx =\/-^ = ~.

For the axis of symmetry YY we have

Iy = A— , and xy

Iz = A a* + V

a/ 1 a

For the polar axis through C

and kz r A
+ 6a

For the circle a = b = r = radius, and we have

Ix = Iy = A 4' and IZ = A
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^These are the same results as already obtained pages 277 and
£1 (

•

Stress and Strain.—When a force is distributed over some defi-
nite portion of the surface of a body, we call it external stress, or
stress on a body. A force between two particles or portions of a
body is called internal stress, or stress in a body. External stress
causes change of shape or volume of a body. Internal stress
opposes such change of shape or volume.
We distinguish three kinds of simple stress

:

Tensile stress, tending to pull the particles of a body apart in
parallel straight lines, or resisting such separation.

Compressive stress, tending to push the particles of a body
together in parallel straight lines, or resisting such approach.

Shearing stress, tending to cut a body across or to make the par-
ticles move past one another in parallel lines at right angles to the
line joining the particles, or resisting such action; as in cutting
with a pair of shears or in punching a plate.
We measure stress, then, whether external or internal, in

pounds per square inch or per square foot.

The change of distance between two particles of a body in a
direction opposite to coexisting internal stress between those par-
ticles is called strain. We distinguish strain according to the
character of the internal stress to which it is opposite in direction,
as tensile, compressive or shearing stress. We measure strain,

then, in feet or inches.
It will be observed that when there is no coexisting internal

stress, or if the internal stress is not opposite in direction to the
change of distance, there is no strain. Internal stress and strain
must coexist and be opposite in direction.

Thus when a spring is compressed the external and internal
stresses balance, and the strain is the distance through which the
end of the spring has been moved, counting from the unstrained
position or the neutral point, where there is no external or internal
stress. Now let the external stress be removed or the spring re-

leased. Then during the first portion of the expansion the internal
stress acts in the same direction as the expansion, and this expan-
sion cannot then be considered as a strain. The spring is not
strained by such expansion ; on the contrary the original strain is

diminished.
But after the end of the spring passes the neutral point, if the

spring still continues to expand, the internal stress is opposite in

direction to the expansion, and any expansion beyond this point is

a strain. The spring is strained by such expansion. In this case,

then, we have strain without any external stress.

Experimental Laws.—Experiments made upon materials have
established the following laws

:

1. When a small stress, either tensile or compressive or shearing,

is applied to a body, a small corresponding tensile, compressive or

shearing strain is produced, and on the removal of the stress the

body returns to its original dimensions.
When the stress, either tensile or compressive or shearing, ex-

ceeds a certain amount, which varies according to the character of

the stress and the material, the body on removal of the stress does

not return to its original dimensions. The portion of the strain

which remains permanent is called the set. The unit stress for

which set is first observed is called the elastic limit for tension,

compression or shear.

3. So long as no set is observed, or so long as the unit stress is
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less than the elastic limit, the strain is proportional to the stress
which produces it. After set is observed, or when the unit stress is

greater than the elastic limit, the strain increases more rapidly
than the stress which produces it, until finally rupture occurs.

4. A suddenly applied stress or shock is more injurious than a
steady stress or a stress gradually applied.

Determination of the Elastic Limit.—Let a bar AB of uniform
b cross-section A have an external stress or force F

applied to it which elongates, compresses or shears
the bar. In the figure we suppose elongation. As
the bar then elongates, internal stress acts in a
direction opposite to the elongation. The elonga-
tion is then a strain. Denote this strain by A and
let the original length of the bar be I. Let s be the
strain per unit of length. Then we have

T

12

U

T s — (1)

If the external stress or force F is applied in the axis of the bar,
the internal unit stress or stress per square unit of cross-section is

S = F (2)

Now according to the laws just stated, so long as the unit stress
is less than the elastic limit Se , the strain is proportional to the
applied stress which produces it, and no set will be observed upon
removal of the stress.

If then we double the external stress F, we shall observe a double
strain 2K and so on.

A'
2S ~ ~A'

It is evident that if we lay off the unit stresses S
3F3S= — , etc., to scale along a horizontal line, and lay off the cor-

responding observed strains A, 2A, 3A, etc., as ordinates, we shall

obtain, so long as the unit stress S
does not exceed the elastic limit

Se , a straight line OP.
By thus carefully plotting the

results of experiment, whether of
compression, tension or shear, we
can detect the point P at which
deviation from the straight line

occurs. The corresponding unit
stress Se is the elastic limit for
tension, compression or shear.

The elastic limit is then the unit stress within which the law of
proportionality of strain to stress holds good.

"When the unit stress exceeds this limit, we no longer have a
straight line, but the strain increases more rapidly than the stress
until rupture occurs, and we have from P a curve convex to the
horizontal. Also if we observe the set, we have a similar curve
Se Q, the ordinates to which give the set for any unit stress greater
than Se.

Coefficient of Elasticity. —If we suppose the law of proportion-
ality of strain to stress to hold good without limit, it is evident
that the results of experiment represented by the preceding figure
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will enable us to calculate the unit stress which would cause a
strain equal to the original length I. This unit stress is called the
coefficient of elasticity. We denote it by E.

The coefficient of elasticity, then, is that unit stress which would
cause a strain equal to the original length provided the law of pro-
portionality of strain to stress were to hold good without limit.

We can easily compute it from the preceding figure. Thus let

the straight line OP be produced indefinitely and let the strain
EB = I = the original length. Then OE gives the coefficient of
elasticity E, and we have by similar triangles

S.l.,4.4 or £='f=£, . • • • (1)

since the unit stress S = -.-, where JPis the applied stress and A is

the area over which it is distributed.

Since the strain per unit of length s = y, we also have

-E=f; (2)

or, the coefficient of elasticity is the ratio of the unit stress to the

unit strain.
From (1) we can determine E by experiment for any given ma-

terial. When E is thus known we can find in any case the strain

caused by any unit stress within the elastic limit, by the equation

X -^~EA W
Inversely, the stress F corresponding to the strain A is given

within the elastic limit by

F=jAE = sAE. (4)

These formulas apply either to extension, compression or shear.

Work and Coefficient of Eesilience.—If the unit stress S does not

exceed the elastic limit Se , we see from the figure page 280 that

since OP is a straight line, the work done per unit of area is equal to

the unit stress multiplied by the mean strain which is ^ .
We have

then for the work per unit of area done by the unit stress S in

causing the strain A .

A 2 '

or, since the total stress F = SA,

w=\fx, (1)

or the work of the stress F in causing the strain A is one half the

product of the stress and strain within the elastic limit.

At the elastic limit we have from equation (3),

X= l4l, and F=StA.E
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Hence the work done in straining the body to the elastic limit is

W = SA- Al =% v
> <8>

where V is the volume of the body, or 7= Al. Since at the elastic
limit there is no set, this is the work which the body can do in re-
turning to its original dimensions. It is therefore called the work

of resilience. The coefficient -^, or the work per unit of volume,
2E

is called the coefficient of resilience.

The work of resilience is then the ivork ichich a body can do in
returning to its original dimensions when it has been strained up
to the elastic limit.

The coefficient of resilience is the ivork per unit of volume done
by the body under such circumstances.

The work of resilience measures the ability of the material to
withstand shock or the suddenly applied stress produced by a
moving body. To bring such a body to rest requires work. If this
work is not .greater than the work of resilience, the elastic limit is

not exceeded.
From the Table of Average Properties of Materials given on

page 290 we can compute the following average values of the coef-
ficient of resilience:

Coefficient of Resilience.

Timber -3 inch-pounds per cubic inch.

Cast iron 1.2 "

Wrought iron .. . 12.5 " "

Steel 26.6 "

We see from the figure page 280 that we cannot express the
work done in straining a body to the breaking point by a formula,
because the law of the relation of stress to strain beyond the elastic
limit is unknown. Moreover, such work could not be properly
termed work of resilience, since it can not be performed by the body
when the stress is removed. The body if strained beyond the
elastic limit does not return to its original length. Work of
resilienc ethen is a measure of capacity to resist shock within the
elastic limit only.

Conditions of Equilibrium of a Deflected Beam.—A bar of any
cross-section, constant or variable, whose length is great compared
to its other dimensions and which is acted upon by forces at right
angles to its length is called a beam. A cantilever beam is fixed at
one end and free at the other. A beam in general rests upon sup-
ports at both ends. When a beam rests on more than two supports
it is said to be continuous.

Reactions of the Supports. — The supports of a beam exert
pressures called reactions. When a beam resting upon supports
and acted upon by external loads or forces either concentrated or
distributed, is at rest, we must have for equilibrium, since the
loads and reactions may be considered as co-planar (page 99)

:

1st. The algebraic sum of all the vertical forces = ;

2d. The algebraic sum of all the horizontal forces =0;
3d. The algebraic sum of the moments of all forces with refer-

ence to any point in the plane of the forces = 0.

If the 1st condition is complied with, there is no motion up or
down. If the 2d is complied with, there is no motion right or left.

If the 3d is complied with, there is no rotation.
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In taking the algebraic sums, forces upwards or to the right are
positive, downwards or to the left are negative. Moments which
tend to cause counter-clockwise rotation are positive, clockwise
rotation negative.

Thus suppose we have a horizontal beam AB of length I, resting
on the supports A and B in a horizontal
line, and loaded with a weight Wat a ?» R s

distance Zi from the left end. Then there V 1

are no horizontal forces and condition (2) 1 p
is satisfied. A«£

]

In order that condition (1) may be H—*x—* «l-f^#i

satisfied, let Ri and Ri be the reactions. w
Then

Ri + R*- W=0.
Take 5asa point of moments. Then in order that condition (3)

may be satisfied, we must have

- Rd + W{1 - zi) = 0.

From these two equations, if we put I — Zi=Za, we obtain

„ W(l- Zi) Wz, _ WZiR>- r
_ = -

7
_, B..S-J-,

or the reactions are positive and therefore act upwards and are
inversely as the segments Zx , Zi into which the span I is divided by
the load W.

If the load is w per unit of length, uniformly distributed, then

R]=w/ B ^wi the entire load is wl, and we can
consider this entire load as a single
force acting at the centre of mass

I
of the loading, or at the distance „

j* __£ >fi u J from each end.
t

' Since there are no horizontal
forces, condition (2) is satisfied. In

order to satisfy condition (1), we must have

+ Ri + R, - wl = 0.

Taking B as a point of moments, in order to satisfy condition (3)
we have

— Rd + wl x =0.
m

wl
From these two equations we obtain Ri = R, = -^ , or the reac-

tion at each support is positive and therefore upwards and equal to
one half the total distributed load.
We can find in similar manner the reactions at the supports in

any case. (For determination of reactions in general, see page 100.)

Shearing Force and Shearing Stress.—The algebraic sum of the
components parallel to a section at any point, of all the external
forces on the left of that section, we call the shearing force of that
section.

It is the force which tends to make the section slide upon the
next consecutive section on the right.

It is resisted by the shearing stress or resistance of the section to

sliding. In the case of a beam acted upon by vertical forces, the
algebraic sum of all the vertical forces on the left of any vertical

—i.

liniiiiiiimiiiiiii iniiiii
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cross-section is the vertical shearing force at that cross-section. If x
is the distance of the cross-section from the left origin, we denote it

by Vx . If then Sws is the allowable or working unit shearing stress
of the material and A is the area of vertical cross-section of the
beam at any point, the safe resistance to shear or the shearing
stress of the beam at that point is Su-sA. This must be equal and
opposite to the vertical shearing force Vx - We must have then for
safety as regards shearing at any point

SwsA > — Vx (1)

* -Zy*--

+R:

P
-R

• 4

If Vx is positive or upwards for horizontal beam, StvsA is nega-
tive or downwards, and inversely.

Thus for a horizontal beam of length Z, resting on the supports

R] R A and B and loaded with the weight
W at a distance Zi from the left end,
the left reaction is, as we have just

„ W(l - zi)
seen, Ri = z—-.

This then, according to definition,

is the shearing force Vx for any
f>oint P between the load W and the
eft end A.
For any point between the load

W and the right end B the shearing
force is

w

-R»

Vx = +Ri- W = WZx

I
= — xva

The shaded area in the figure gives the shear at any point.

W,If we have several loads W\ , Wi
between the left support and W\
we have Vx — Ri. For any point
b between Wi and W2 we have
Vx = Ri — Wi. For any point c
between Wi and W3 we have Vx —
Ri — Wi — Wi. For any point d
between W3 and the right end

Vx = Ri - Wi - Wt - Ws = - RK

The shaded area gives the ver-

tical shear at any point.

If we have a load w per unit of

length uniformly distributed, we
have at any point distant x from the left end

etc., then for any point a

+Ri

fc

wl
2

iiiiiiiiiiiiiiiiiiijiiiiiiiiirr

R 2
= v!

• 9

/ »
zzzz:

nr~r

B
_wl

B"
2

Vx = —— wx,

which is the equation to a straight
line A'B'. The ordinate at any
point a to this line is the shear
at that point. The shear at the
centre is evidently zero. At the

left end A it island at the

right end B it is — wl



CHAP. II.] STRENGTH AND ELASTICITY OF MATERIALS. 285

Bending Moment.—In the case of the horizontal beam with a con-
centrated load W at the distance Zi from the left end, let Mx be the
algebraic sum of the moments
with reference to any point P
distant x from the left end, of
all the external forces between
that point and either end.

This moment tends to turn
that portion of the beam on the
left or right of any point about
that point, or to cause bending,
moment.
We have evidently two cases

W£2
"«*

~n;* tfyJSfi

-*r
p_. za =l-zr

~
*l

4w

It is therefore called the bending

when x is less than Z\ or when
the point P is on the left of W, and when x is greater than Zi or
when the point P is on the right of W.

Let us take the algebraic sum of the moments of all the forces
on the left of the point P. Then we have for the bending moment
at the point P for the case represented by the figure,

Mx = — R\X = — WziX W(l - zi)x

I
when x <Zi,

when x> Zi,

Mx =- Rm + W(x - *i) = - Wz^l ~ x>> = _ R,(i- X).

The minus sign shows that the forces on the left of any point P
in the case represented by the figure tend to cause clockwise rota-
tion of the left-hand portion AP of the beam about that point.

If we take the algebraic sum of the moments of all the forces on
the right of the point P, we evidently have for the bending moment
at the point P.

when x < zi, Mx = + R\X ; when x > z i, Mx = + Ri(l - x).

The plus sign shows that the forces on the right of any point P
in the case represented by the figure tend to cause counter-clock-
wise rotation of the right-hand portion BP of the beam about that
point.

In general, since the beam is in equilibrium, the bending moment
due to all the forces on one side of any point is alivays equal in
magnitude and opposite in direction to the bending moment due to

all the forces on the other side of that point.
In the case, again, of the horizontal beam with the load w per

unit of length uniformly distributed, the load over any distance x
from the left end is wx, and we

M. can take this load as acting at its

cc
centre of mass, or at a distance —

a
from the left end and from P.

If we take the algebraic sum
of the moments of all the forces
on the left of the point P, we have
for the bending moment at the

point P
iW* = _, X wx.,

RiX + wx x - = — (I X).

Here again the minus sign shows that the forces on the left of
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any point P tend to cause clockwise rotation of the left-hand portion
AP of the beam about that point.

If we take the algebraic sum of the moments of all the forces on
WX

the right of P, we obtain Mx — + — (Z — x), or counter-clockwise

rotation.
We see from the preceding illustrations how to find the bending

moment Mx in any given case at any point P.
Although the beam bends under the action of the external forces,

the deflection in all practical cases is always very small in compari-
son to the length.
We therefore always consider the beam as straight in finding

the reactions and bending moment; that is, we assume tlie deflection
as very small in comparison with the length.

Graphic Representation of the Bending Moment.—The graphic
method of page 148 can be used to determine the bending moment
at any point of a beam.

For a beam with a single concentrated load we see at once from
the preceding Article that the mo-
ment at the load is greatest and

equal to =— , The moment at

each end is zero, and the ordinate
at any point to the lines AC, BC
gives the bending moment at that
point.

For a load w per unit of length uniformly distributed, the bend-
wx

ing moment Mx = — (l—x) is the equation of a parabola whose
z

maximum ordinate at the centre of
wP

the span is —-. The ordinate at any
o

point to this parabola gives the
bending moment at that point.

Neutral Axis.—We consider a
beam to be made up of an in-

definitely great number of horizontal or parallel fibres of indefinitely
small area of cross-section, placed side by side.

When a beam bends, the fibres on the convex side are elongated
and those on the concave side are shortened. Near the centre, then,
we must have a plane of fibres which are neither extended nor com-
pressed, but remain of the same length before and after bending.
This plane is called the neutral plane, and the line in which the
neutral plane cuts the plane of any cross-section of the beam is the
neutral axis for that cross-section.

Thus in the figure AC represents the neutral plane and XX the

D s
neutral axis.

Position of tho Neutral
Axis.—We assume that any
cross-section, as DD, which
is plane before flexure, re-

mains plane after flexure.
Thus let the plane DD before
flexure be represented by the
plane BB after flexure. Then
the strain of any fibre is pro-

portional to its distance from the neutral axis.
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We also assume that the elastic limit is not exceeded. Hence
the stress in any fibre is proportional to the strain and therefore
proportional to the distance of the fibre from the neutral axis.

Let S/ be the unit stress within the elastic limit in the extreme

outerfibre of the cross section.or the fibre most remotefrom the neutral
axis, and v its distance from the neutral axis. Let a be the cross-
section of a fibre. Then the stress in the extreme outer fibre at the
distance v is S/a, and the stress in any other fibre at a distance y

from the neutral axis is
y S/a. The sum of all the fibre stresses
v

above and below the neutral axis is then

^Sfa = ^^ay.
v v

But since the beam is in equilibrium and all the external forces

are vertical, the sum of all the horizontal fibre stresses in any
cross-section must be zero. We must have then 2ay — 0, or the

neutral axis must pass through the centre of mass of the cross-

section (-page 17).

The line AC passing through the centre of mass of every cross-

section is the neutral axis of the beam.
Resisting Moment.—We have seen, page 285, how to find the

bending moment Mx at any point Rt

of a beam distant x from the left

end. The bending moment bends
the beam or tends to cause the
portion of the beam between the
point and the left end to turn
about that point.

In the figure take the point C
on the neutral axis, distant x p *r—

i

from the left end. Then, as we '
*

have seen (page 285), we have for

the case represented, for the bending moment at any point of the

cross-section at C,

Wzi(l -x)Mx =
1

if x > Zx. This moment is negative and hence the effect of the ex-

ternal forces Rx and Won the left of C is to cause clockwise rota-

tion of the portion AC of the beam about C.

But if the beam is in equilibrium, the bending moment Mx must

be balanced by the sum of the moments of the fibre stresses of the

cross-section above and below C, with reference to C.

Now any fibre stress of the cross-section, at a distance y from

the neutral axis, is, as we have just seen, ~S/a, where a is the cross-

section of the fibre and Sr the unit stress within the elastic limit in

the most remote fibre of the cross-section at the distance v from the

neutral axis. The moment of any fibre stress at the distance y

from the neutral axis is then —ay\ and the sum of all the fibre-

v

stress moments of the cross section with reference to the neutral

axis is -t~2ay7
.

But (page 271) 2ay* is the moment of inertia I of the cross-sec-
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tion with reference to the neutral axis. Hence the sum of the
moments of all the fibre stresses of the cross-section with reference
to the neutral axis at C is

Sfl
v

We call this the resisting moment, because it resists the action
of the bending moment Mx and thus prevents the portion of the
beam AC from turning about the neutral axis at C under the action
of the external forces on the portion AC. The bending moment Mx
is therefore always equal in magnitude and opposite in direction to
the resisting moment. If we consider always the fibres belonging
to that portion of the beam on the left of the cross-section, then the
resisting moment of these fibres is always opposite in direction to
the bending moment of all external forces on the left and in the
same direction as the bending moment of all external forces on the
right. We have then

^ = * Mx (II)
v

where we take the minus sign if we take M* for all external forces
on the left, and the plus sign if we take Mx for all external forces
on the right, the resisting moment being always that due to the
fibre stresses of the left-hand portion. If this latter moment comes
out minus, it indicates then compression in the bottom fibres ; if

plus, tension in the bottom fibres.

By the use of (II) we can find, in any given case, the load which
a beam will carry for any given value of S/ within the elastic limit.

We can also determine the shape of the beam for uniform strength,
that is, for Sf the same at every cross-section.

Equation (II) takes into account the fibre stresses of the entire

-sa I AT| cross-section whatever its shape. If
T a beam consists of two flanges and a

^ web, it is sometimes customary to
disregard the web. In such case, if

j h is the effective height or distance
from centre to centre of flanges, and

A is the area of one flange at any point, and S the unit stress, we
have, taking moments about the centre of the other flange,

SAh= tIx.

Coefficient of Rupture.—In all the preceding discussion of the
equilibrium of a beam we have assumed

—

1st. That the deflection is very small compared to the length.

2d. That any cross-section plane before flexure remains plane
after.

3d. That the elastic limit is not exceeded.
When a beam is loaded to the point of rupture, the third as-

sumption is violated. The strain is then no longer directly as the
distance from the neutral axis, and the second assumption no longer
holds. Also, the first is often not allowable.

We can therefore properly apply equation (II) only when the

elastic limit is not exceeded.
Now when a beam is loaded to the point of rupture, we assume

an equation of the same form as (II), and write

^L=TMr ,
(Ill)

V
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where Mr is the bending moment at the cross-section where rupture
occurs, or the dangerous cross-section, I is the moment of inertia
with reference to the neutral axis of that cross-section, and Sr is the
unit stress in the most remote fibre of that cross-section at the dis-
tance v from the neutral axis where rupture occurs.
When the cross-section of the beam is constant, I and v are con-

stant, and we see from (II) that the outer fibre stress St is greatest
at the point where the bending moment Mx is greatest. The dan-
gerous cross-section for a beam of constant cross-section is then the
one for which the bending moment is a maximum.

The value of Sr determined from equation (III) by experiments
made at the breaking point is called the coefficient of rupture.

Let St be the unit stress of direct tension and Sc the unit stress
of direct compression which ruptures a bar. We call St the ulti-

mate tensile strength, and Sc the ultimate compressive strength. The
ultimate compressive strengths of tension and compression are not
in general equal. Thus for timber (Table page 290) the tensile
strength is the greater, while for cast iron the compressive strength
is the greater.

If equation (II) held good beyond the elastic limit, we should
expect to find Sr in (III) equal to the least ultimate strength of the
material, either tension or compression as the case may be. But as
a matter of fact Sr is always found by experiment to lie nearly
midway between St and Sc when they are different.

Experiments upon the value of Sr are not numerous ; and when in

any case the value of Sr is not known, but St and Sc are known, we
can find an approximate value for Sr by taking the mean value of

St and Sc , or putting Sr =—»—-•

By the use of (III), then, we can estimate more or less accurately

the breaking weight of a beam.
Table of Properties of Materials. — We give in the following

Table average values of the ultimate compressive strength Sc ,
the

ultimate tensile strength St , the coefficient of rupture Sr , the elas-

tic limit Se and the ultimate strength Su— all in pounds per square

inch. We also give the coefficient of elasticity E in pounds per

square inch as determined by experiments in direct compression,

tension and shear. Also the density * or mass of a cubic foot of

material in pounds. . .

All these values are averages and liable to great variations for

different grades and qualities of materials. Thus, for instance,

timber varies in its qualities according to kind, and each kind

varies according to soil, climate, season when cut, method and

duration of seasoning, direction of fibres with reference to stress,

form and size of test specimen, etc. So, also, iron and steel vary

according to quality, process of manufacture, whether m bars,

plates or wire, etc. Such average values as we give, then, can only

be used in preliminary computations. In actual cases of investiga-

tion and design, special experiments must be made with the

materials actually used. , ,. .

As to density or mass per cubic foot, a rule which should be

noted by the student is that a bar of wrought-iron one square inch

in cross-section and one yard long (or 36 cubic inches) weighs ten

pounds. Thus the weight per foot in pounds of a bar of uniform

cross-section is at once given by multiplying the area of cross-sec-

tion in square inches by 10 and dividing by 3. Inversely, if the

weight per foot in pounds is given, multiply by 3 and divide by 10

for the area of cross-section in square inches.
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Steel is about two per cent heavier and cast iron six per cent
lighter than wrought iron.

Stone is about one third, brick one fourth, timber one twelfth
the weight of wrought iron.

When a test specimen is ruptured by direct tension, it elongates
rapidly after the elastic limit is reached, and the area of cross-sec-

tion is in general greatly reduced. The ultimate elongation, taken
in connection with the reduction of area, indicates the ductility of
the material.

Thus a material which has a high ultimate strength but shows
little elongation and reduction of area is brittle. We have there-
fore given in the Table the average value of the ultimate elonga-

A
tion per unit of original length s = T-

TABLE OF AVERAGE PROPERTIES OF MATERIALS.

Ultimate
Compres-

sive
Strength.

Sc

Ultimate
Tensile

Strength.

St

Ultimate
Elongation

* = i

Coefficient
of

Rupture.

Sr

Elastic Limit.

Se

Timber
Brick

lbs. per sq. in.

8000
2500
6000

90000

55000
150000

lbs. per sq. in.

10000

in. perlin.'in.

0.015

lbs.per sq.in.

9000

lbs. per sq. in.

3000

20000

55000
100000

0.005

0.15

0.10

2000

35000

55000
120000

Wrought iron .

.

Steel (structural)

( 6000 tension

(
60000compression

25000
40000

Ultimate
Shearing Strength.

Su

Coefficient of
Elasticity

E
Density-

lbs. per sq. in.

j 600 longitudinal

\ 3000 transverse

lbs. per sq. in.

j 1500000 tens, or compress. )

( 400000 shear f

lb. p. CU.ft.

40

125
160

Wrought iron .

Steel (structural)

20000

50000

70000

J 1500000

( 600000

] 2500000

\ 1500000
3000000

tens, or <

shear
tens, or <

shear
tens, or

compress. )

compress. )

compress.

450

480

490

Factor of Safety and Working Stress.—The ratio in any case of
the ultimate strength to the actual working unit stress is called the
factor of safety. Thus if the ultimate stength or unit stress at the
point of rupture in any case is denoted in general by Su , and if Sw
is the working unit stress, we have for the factor of safety in that
case

Oil r, r«n = -~- , or nSw = Su .

The factor of safety, then, is a number which tells how many
times the actual unit stress are necessary to produce rupture.
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The safe or working unit stress is then found by dividing the
ultimate strength by the proper factor of safety. It should always
be well within the elastic limit. If then the elastic limit is known,
the working stress can be chosen with reference to it. This is the
best and most rational method of determining the working unit
stress. But it is in many cases difficult to determine the elastic limit,
while the ultimate strength is more readily and definitely deter-
mined and in general better known. Hence the employment of a
factor of safety in connection with the ultimate strength.

The following Table gives the average values of the factors of
safety usually adopted. These values are not to be used arbitrarily,

but in the light of judgment and experience. In any important
engineering structure special experiments upon the materials actu-
ally used should be made in order to determine their properties as
to coefficient of elasticity, elastic limit, ultimate strength, etc., and
materials not coming up to a specified standard rejected. From
such experiments the working stress can be decided in view of the
actual qualities of the material. The average values in the Table
can, however, be used for preliminary estimates.

TABLE OP AVERAGE FACTORS OF SAFETY.

Material.

Timber
Brick and stone.

.

Cast iron

Wrought iron . .

.

Steel (structural).

In order, then, to find the working unit stress Sio in any case, we
divide the ultimate unit stress Su by the factor of safety w, as given

by the preceding Table. This gives us in any case a constant work-

ing unit stress Sw =— . For average values we have then the

following Table for working unit stress, which may be used for

preliminary estimates.

TABLE OF WORKING UNIT STRESS 8W IN POUNDS PER SQUARE INCH

Material.

Steady Stress
(.Buildings).

Sw

Varying Stress
(Bridges, Roofs, etc.).

Sio

Shocks
(Machines, etc.).

Sw

Tens. Com p.

1000

170
400

15000

14000

30000

Shear. Tens. Comp. Shear. Tens.

[700

Comp Shear.

Timber.. .. 1300 j 80 long.

1 400 trans.
(1000 800

100
240

9000

9000

21000

j 60 long.

1 300 trans.
600

80
200

6000

5500

15000

j 40 long.

l200trans.

Q+

Cast iron .

.

Wrought
iron

Steel (struc-

tural).. ..

3300

14000

20000

3300

12500

14000

2000

9000

14000

2000

9000

10000

1300

5500

10000

1300

5000

7000
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In order to determine the area of cross-section A for simple
tension or compression or shear, we have then simply to divide the
total stress by the working unit stress Sw . We have then, when
flexure is not to be apprehended, for steady or varying stress or
shocks,

- _ total stress

Sw

Sometimes we have alternating stress, i.e., sometimes tension
and sometimes compression, as in the connecting rod of a steam-
engine. In such case it is a common practice, for the sake of
security, to find the area of cross-section for each stress and take
the sum. Thus, ifflexure is not to be apprehended,

. _ total tensile stress total compressive stress

Sto Sio

When flexure is to be provided against, we must proceed as on
page 361.

Variable Working Stress.—The fact that the working unit stress

Sw, as determined in the preceding Article, is constant in any case
is by many engineers considered objectionable.

The total unit stress can in general be divided into two portions.
The one portion is a steady unit stress always existing, such as that
due to weight or dead load. The other portion is a repeated unit
stress such as that due to loads recurring at intervals.

Evidently, when the ratio of the steady stress to the total stress
is great, we should be able to take a greater working unit stress
than when it is small. Thus when the steady stress is equal to the
total stress, there is no repeated stress at all and the working unit
stress should have its greatest value. On the other hand, when the
steady stress is zero, we have repeated stress only and the work-
ing stress should have its least value.

It is therefore customary to take for the working unit stress,

when flexure is not to be apprehended, for repeated stress,

* _ Spf-. ,
Su — Sp steady stress \ ,

w ~ n \
+ SP ' total stress /' " " *

W
From equation (I) we see that when the steady stress is equal to

the total stress, that is, when there is no repeated stress, we have

Sto = —, where Su is the ultimate strength and n the factor of

safety, just as in the preceding Article.
But when the steady stress is zero, we have only repeated stress,

o
and equation (I) gives us Sw = — • Hence SP must be the ultimate

strength for repeated stress. We call this the " repetition strength."

In like manner, when flexure is not to be apprehended, we have
for the working unit stress, for alternating stress,

„ _ Sp l
n _ SP — Sv least of the two opposite stresses \ --.

w ~ n \ Sp greatest of the two opposite stresses/

From equation (II) we see that when one of the two opposite

stresses is zero we have Sw — — , as in the previous case for

steady stress zero.
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S

'

But when the two opposite stresses are equal we have Sw = —-.
n

Hence Sv must be the ultimate strength for equal alternating
stresses. We call this the " vibration strength."

The difficulty and uncertainty of determining SP and Sv by
experiment, and the few experiments available, make the method
of the preceding Article the most generally accepted.

The method of equations (I) and (II) of the present Article is,

however, the most rational, and it is quite extensively used with
certain assumed average values for Su , Sp and Sv , as given in the
following tabulation

:

n

Su-Sp
Sp

Sp-Sv
Sp

Wood 400

7500

10000

17870

2

1

4

3

1

1

2

1

2

2

5

7

15

These values are for direct stress of tension or compression. For
shear we take four fifths of Sw as determined above.

In order to determine the area of cross-section A, we have in all

cases

total maximum stressA =
Su

When flexure is to be provided against we must proceed as on
page 361.

Strength of Pipes and Cylinders. — Let p be the pressure per
square inch on the interior surface of a pipe or cylinder due to the
pressure of water or steam. It is a well-known principle of physics
that the pressure of a fluid in any direction is equal to the pressure

on a plane perpendicular to that direction.

Hence in the figure the pressure P, say in a vertical direction, is

equal to the pressure on a horizontal
plane Id, where I is the length and d is

the interior diameter. We have then
P = pld. If Sw is the safe working
unit stress for the material for tension,

and t is the thickness, we must have
then

pld = 2tlSw , or t = Mr- (1)

Pipes come in commercial sizes, and the preceding formula en-

ables us to select the nearest commercial size for given pressure,

diameter and safe working unit stress.

If we consider the preceding figure as a closed cylinder, then the
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nd1

pressure on the head is p x — , and the area of cross-section is

ndt. We have then

p x ~ = TtdtSw , or t = -^-,
4 4SW

(2)

Hence the thickness to resist longitudinal rupture is twice that
necessary to resist end rupture. For water pressure, if the head h
is taken in feet, the pressure in pounds per square inch is p — 0.434/i.

Riveted Joints.—In a riveted joint the resistance of the rivets

due to shear should equal the tensile strength of the plates joined.
Kinds of Riveted Joints. — We may distinguish the following

joints

:

1st. Simple "Lap" Joint, Single-riveted.—Fig. 1 shows this
joint front and side. The two plates overlie
each other by an amount equal to the "Zap"
and are united by a single row of rivets. The
distance p from centre to centre of a rivet is

called the pitch. We denote the diameter of
rivet by d and the thickness of plate by t .

2d. "Lap" Joint, Double - riveted. — This
joint is similar to the preceding, except two
rows of rivets are used. In both cases the
rivets are in single shear.

In all cases where more than one row of
rivets is used the rivets are " staggered ," or
so spaced that those in one row come midway

between those in the next, as shown in Fig. 2.

Lap joints are used in tension only.

Q.-P-P

Fig. 1.

O O O

Qlxg o

vA

(--)

1

o o o (:-)

o o o (:- .)

^_^_^_^
t

Fig. 2. Fig. 3.

3d. " Butt" Joint, Single-riveted, Two Cover-plates.—Here the
two plates are set end to end, making a "butt" joint, and a pair of
"cover-plates" are placed on the back and front and riveted
through by a single row of rivets on each side of the joint (Fig. 3)

.

The plates in such a joint are in general not allowed to actually
touch, and the entire stress, whether tensile or compressive, is there-
fore transmitted by the rivets. The thickness of the cover-plates
should not be less than half the thickness of the plates joined, ex-
cept when this rule would give a thickness less than I inch. Owing
to deterioration of the metal by the action of the weather, no plate
is used in construction less than \ inch in thickness. Hence if the
plates joined are less than i inch, the cover-plates should be i inch.
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4th. "Butt" Joint, One Cover-plate, Single-riveted.—This is the
same as the preceding except that one cover-plate only is used, of
the same thickness as the plates themselves.

5th. Double-riveted "Butt" Joint, Two Cover-plates—This joint
is the same as case 3, except that we
have two rows of rivets on each side
of the joint.

The thickness of the cover-plates
is determined by the same considera-
tions as in case 3.

6th. "Butt" Joint, One Cover-
plate, Double - riveted. — This is the
same as the preceding case, except
that there is only one cover-plate of
the same thickness as the plates them-
selves.

7th. Chain Riveting.—When we
have more than two rows of rivets on
each side of a butt joint, the system
is called chain riveting. Such a dis-

position becomes necessary when the ^°- '*•

requisite number of rivets is so great that they cannot be disposed
in two rows without unduly weakening the plates.

Theory and Practice of Kiveting.—A rivet may fail by shearing
across or by being crushed. The plate may fail by rupture between
the rivets or by tearing through of the rivets at the edge of plate.
The rivets should be so proportioned and spaced that the strength
for any method of failure may be equal and the plates weakened as
little as possible.

Notation.—Let Sw be the working unit stress of the plates, either
compression or tension, Swc the working unit stress for compression,
Sws the working unit stress for shear, t the thickness of the plates,

d the diameter of rivet, p the pitch of rivets in a row, or the distance
from centre to centre in a row, and n the number of rivets.

nd1

Diameter of Rivets.—Then the area of a rivet is —- = 0.7854eTl

.J 4

The shearing resistance of a rivet is 0.7854d?Sw*, and the total shear-

ing resistance of n rivets is 0.7854nd'2Sws . The bearing surface of a
rivet is dt, of n rivets ndt, and the resistance to crushing ndtSu-c-

For equal strength of crushing and shearing we have for single

shear, or lap joint,

0.7854ndiSws = ndtSwc, or d =
Q

™
. . . . (1)

For double shear, or butt joint with two cover-plates, we have

tlowc
1.5708nd*Sto8 = ndtSwc, or d m (2)

1.07O8&M

For threefold shear we have 3 x 0.7854 in place of 0.7854 in (1),

and so on.
It is customary to take S,m = 12500 lbs. per square inch and

8m = 7500 lbs. per square inch for wrought-iron rivets in single

shear.
We have then

d = 2.12t for single shear; > ,^
d = 1.06* for double shear. \

Practical Value of d—Owing to risk of injury to the material in

punching, the diameter of rivet must always be at least as large as
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the thickness of the thickest plate through which it passes, and the
diameter as given by (1), (2) or (3) must be chosen with reference to
this restriction. The least allowable thickness of a plate is £ inch.
We should have then as a lower limit for double shear, d = i inch.

But rivets as small as this are rarely used. Usually | inch is the
least diameter allowable. A common practical rule is

& « H# + h> (4)
lb

where d is the diameter of rivet, and t the thickness of the plate in

inches. When this rule gives d greater than (1), (2) or (3), we use
it; otherwise we use (1), (2) or (3k unless considerations of pitch, as
given in what follows, prevent.

Pitch of Rivets —The area of plate between two rivets is (p—d)t;
and if Sw is the working unit stress of tension or compression for

the plates, and Sws the working unit stress for shear, we have for
equal strength:

for single shear or lap joint

\p-d)tSw = ~Sws , or p = d(l + 0.7854^j t

-

for double shear or butt joint

(p-d)tSw = ~Sus, or p = d(l + 1.5708^\.

Since Sws and Sic are nearly equal, we have practically, if A is

the area of cross-section of a rivet,

for single shear

p = d(l + 0.7854^) =d + j.

for double shear

p = d!l + 1.5708 j\ = d +
2

f

.

(5)

The plate section is reduced by punching from pt between two
rivets to (p — d)t, so that in the case of a tension joint the strength
is reduced in the ratio

p—d _ 1 1

nd nd

We see. at once that for a given thickness t a large rivet gives a
large pitch and less reduction in strength than a small rivet. Small
rivets allow a less pitch at a sacrifice of strength. But the less the
pitch the tighter the joint. When strength rather than tightness is

desired, as in bridges and parts of buildings and machines, we should
then use a large rivet. When tightness is essential, as in steam-
boilers, we should use a small rivet with a sacrifice of strength.

Practical Restrictions.—Owing to risk of injury to the material
in punching and liability to tear out, rivets are not allowed a pitch
of less than 3 diameters, or, if this distance is less then 3 inches, as
it usually is, less than 3 inches. Rivets should not be spaced farther
apart than 6 inches in any case, or, when the plate is in compres-
sion, 16 times the thickness of the thinnest outside plate. This last is

to guard against buckling of the outside plate between rivets. With
these restrictions we may apply (5).

Number of Rivets.—Guided by the preceding restrictions and
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rules, we can select in any case a suitable size of rivet. This done,
we can easily determine the number required.
A rivet is considered as failing either by shearing across or by

crushing. In any case, then, the diameter being chosen, we must
take such a number as shall give security against these two methods
of failure, choosing the greater number. In general the number to
resist crushing will be more than enough to resist shear. Still we
should try for both. The bearing area of a rivet is the projection
of the hole upon the diameter, or dt.

The allowable compressive stress is about 12500 lbs. per square
inch. The allowable shear is taken at 7500 lbs. per square inch for
single shear.

In the foliowingTable we have given the safe shearingand bearing
resistance for rivets of different sizes and for different thicknesses
of plate. Having chosen, then, the size of rivet, an inspection of
the Table will give its resistance. The stress to be resisted being
known, the number to resist this stress either by bearing or shear-
ing is easily determined. The greatest of these two numbers is

taken, with enough over in any case to complete the row or rows.
As most practical cases are double shear, the greatest number will
usually be determined by the bearing resistance.

Distance from End to Edge.—The distance between the end and
edge of any plate and the centre of rivet-hole, or between rows, is

fixed by practice at never less than 1| inches, and when practicable
it should be at least 2 diameters for rivets over | inch diameter.

Joints in Compression.—The size and number of rivets are deter-
mined for joints in compression precisely as for joints in tension,
because the joints are not considered as in contact and hence the
rivets must transmit the stress in either case.

Rivet Table,

shearing and bearing resistance of rivets.

Diameter of
Rivet in inches.

Area
of

Rivet
In

square
inches.

Single
Shear at
7500 lbs.
per

square
Inch.

Bearing Resistance in pounds for Different Thicknesses of
Plate at 12500 lbs. per square inch = 12500 x dt.

Frac-
tion.

De-
cimal.

1" A" 3"
iV l" A" 4" 11"

T*
8"

H" f

1 0.375 0.1104 828 1170 1465 1760

tV 0.4375 0.1503 1130 1370 1710 2050 2390

* 0.5 0.1963 1470 1560 1950 2340 2730 3125

tV 0.5625 0.2485 1860 1760 2200 2640 3080 3520 3955

1 0.625 0.3068 2300 1950 2440 2930 3420 3900 4390 4880

u 0.6875 0.3712 2780 2150 2680 3220 3760 4290 4830 5370 5908

3
4~ 0.75 0.4418 3310 2340 2930 3520 4100 4690 5270 5860 6440 7030

rl 0.8125 0.5185 3890 2540 3170 3800 4440 5080 5710 6350 6980 7620 8250

f 0.875 0.6013 4510 2730 3420 4100 4780 5470 6150 6840 7520 8200 8890 9570

-ri
0.9375 0.6903 5180 2930 3600 4390 5130 5860 6590 7320 8050 8790 9520 10250

i 1 0.7854 5890 3125 3900 4690 5470 6250 7030 7810 8590 9370 10160 10940

1A 1.0625 0.8866 6650 3320 4150 4980 581066407470 8300 9130 9960 10790 11620

n 1.125 0.9940 7460 3520 4390 5270 6150 7030 7910 8790 9667 10550 11420 12300

1A 1.1875 1.1075 8310 3710 4640 5570 6490 7420i 8350 9280 10200 11130 12060 12990
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Investigation and Designing of Beams. — From page 284 we
must have for safety, as regards shearing, at every point of a beam

SmA$- Vx , . . . (I)

where A is the area of vertical cross-section at any point, SWs is the
working unit stress for shear and Vx is the vertical shearing force
at any point, or the algebraic sum of all the vertical external forces
between any point and the left end.

From page 288 we have

M. = *MX (II)
v

where Sf is the unit stress within the elastic limit in the most
remote fibre of any cross-section at a distance v from the neutral
axis, i" is the moment of inertia of that cross-section with refer-
ence to the neutral axis, Mx is the bending moment at that cross-
section of all the external forces on either side between the cross-
section and either end, the minus sign being taken for forces on

the left and the plus sign for forces on the right, and 3tL js
v

the resisting moment at the cross-section of the fibres belonging to
the left-hand portion of the beam. If then this comes out minus
we have compression in the bottom fibres, and if it comes out plus
we have tension in the bottom fibres.

We have also, from page 288,

&^ = T Mr, (Ill)
V

where Sr is the coefficient of rupture, or the breaking unit stress in
the most remote fibre at the dangerous section, and Mr is the bend-
ing moment at that section.

From (III), if Sr is known, we can find in any case the breaking
weight. Average values of Sr are given in the Table page 290.

When experiments upon S,- are lacking we may use a mean
value between the ultimate tensile and compressive strength for
approximate calculations. If we divide the breaking weight by
the factor of safety (page 291), we obtain the allowable or working
load.

From (II) we can find the load for any value of Sf within the
elastic limit Se (page 290). If we put for Sf the working unit stress

Siv (page 292), we also obtain the working load.

We can also find from (II) the shape for uniform strength. The
following cases will make plain tbe application of these equations.

Case 1. Cantilever Beam—Load W at the Free End.— Let I be
the length of the beam and x the distance from the free end of any
cross-section through the point C of the neutral plane (page 286).

Then the bending moment at that point is

Mx = + Wx, or Mx = — Wx,

according as the weight W is on the left or right of the point P.
In both, cases, then we have from (II), for the resisting moment

of the fibres belonging to the left-hand portion of the beam AC,

v



CHAP. II.] STRENGTH AND ELASTICITY OF MATERIALS. 299

where I is the moment of inertia of the cross-section at C, and Sf is

the stress in the most remote fibre of that cross-section at the dis-

tance v from the neutral axis. The minus sign denotes that we
have compression in the lower fibre in both cases, as shown in the
figure.

•«—X-*>,

W

--X—

>

!
'

w

We have then, without reference to direction of rotation,

Sf =
Wvx

or

W--
S/J
vx

'

(1)

(2)

From (2) we can find in any case the load Wwhich will cause a
given stress Sf in the most remote fibre of any cross-section at any
distance x from the free end.

From (1) we can find the stress Sf for any given load W.
In any case we have only to substitute the value of v, x and I.

1. Breaking Weight— Constant Cross-section. — Rupture will
occur at that section for which Sf is the greatest.

If I is constant, v is constant and we see from (1) that Sf will be
greatest when x—l. The dangerous section is then at the fixed
end. We have then from (III), page 298,

Sri = - Wl,

where the minus sign denotes, as before, compression in the lower
fibres and S>- is the coefficient of rupture. We have then, without
reference to direction of rotation, for the breaking weight

W: Sri

~vl
' (3)

If, for instance, the beam is rectangular in cross-section of

breadth b and height h, then (page 278)I=^fih*, v = 4, and the2'

breaking weight is

W= S,bh*

61

If the beam is triangular in cross-section of horizontal base b
bh 3 2

and height h, then (page 271) I = -— , v = -h, and the breaking

weight is

W= Srbh*

2ti
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In the same way we can find the breaking weight for any form
of cross-section by substituting in (3) the value of I and v. The
value of Sr can be taken from our Table page 290 for approximate
determinations. We see that the strength of a beam is directly as
the breadth and as the square of the height, and inversely as the
length.

2. Shape for Uniform Strength.—Let the cross-section vary so

that I" is the moment of inertia of any cross-section at the distance
x from the free end, and L the moment of inertia of the cross-

section at the fixed end.
Then from (1) the unit stress in the most remote fibre of any

cross-section is

~ Wvx

where, v is the distance of that fibre from the neutral axis.

For the most remote fibre of the end cross-section we have then
Wvd

Sf = —

f

—, where Vi is the distance of that fibre from the neutral

axis.
Now for uniform strength the outer fibre stress must be the same

at every cross-section. We have then for the condition of uniform
strength

Wvx Wvd vx vd ...— =--IT'
or T = 7T

W
If, for instance, the beam is rectangular in cross-section at every

point, the breadth and height at the fixed end 6i and hi , and at

any point b and h, we have (page 278)

/=>', .-$ *-£**. *-fct
and hence, from (4), we have for the condition of uniform strength

x I

bti b>hS

Now if the height is constant, h = hi , and we have for the
breadth at any point distant x from the free end

(5)

b = -yX' (6)

The breadth then varies as the ordinate to a straight line from
6i at the fixed end to zero, theoretically, at the free end. Practi-
cally the breadth cannot be zero at the free end, but must have a
value bo such that the area A = bohi at the free end may resist the
shear.

WWe have then from (I), page 284, bJii at least equal to— , or we
Sws

must have b at least equal to

6u=
W

hiStos

Substituting this value of bo for b in
(6), we find that the cross-section must
be constant for a distance Xo from the

free end at least equal to

Xo = Wl
hibiSu
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For any value of x greater than x the breadth is given by equa-
tion (6).

If the breadth is constant, b = bi , and we have from (5), for the
height at any point distant x from the free end,

h? = — x. (7)

The height then varies as the ordinate to a parabola from bi at
the fixed end to zero, theoretically, at the free end. Here, again,
we must have the height at the free
end practically at least equal to

biSws

Substituting this for h in (7), we
find that the cross-section must be
constant for a distance x from the
free end at least equal to

WH
Xa =

All bl O W8

For any value of x greater than x the height is given by equa-
tion (7).

If both 6 and h vary, but the cross-section at every point is rect-

angular, we have

hrb

bi'
bi : hi : : b : h, or

. bih
ft

Substituting these in (5), we have

*-T* b =Tx- (8)

The height and breadth vary then as the ordinates to a cubic
parabola from hi and 6i at the fixed end to zero, theoretically, at

the free end. The area at any point
is then, from (8),

bh = hibi |/^.

The area A at the free end should
be at least, from (I), page 284,

WA = boho = -=- .

The cross-section should therefore be constant and equal to

boho = ^ at least, for a distance x from the free end given by

Xo = Wl
hibiS,, /k,

W
biSws

For any value of x greater than Xo the height and breadth are

given by (8). Inserting the value of Xo in (8), we obtain h and 6 at

the free end.
In a similar way we can find the shape for uniform strength for

any other form of cross-section, by substituting in (4) the values of

J, L , v and Vi.
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Case 2. Cantilever Beam—Load per Unit of Length u Uniformly
Distributed.—The total load on the whole beam is W = icl. The

load over any distance x froni
the free end is wx, and we can
take it acting at its centre of

mass or at x from the free
31

end.
We have then for the bend-

ing moment at any point dis-
tant x from the free end

Mx = +
wx* ,, wx*—, or MX =-—,

according as the load wx is on the left or right of the point.
In both cases, then, we have from (II), for the resisting moment

of the fibres belonging to the left-hand portion of the beam AC,

S/I _ _ wx*
~V ~ ~W°

The minus sign denotes that we have compression in the lower
fibres.

We have then, without reference to direction of rotation,

wvx*
S
f
=

21

or

wx = 2S/I
vx (2)

From (2) we can find the load which will cause a given stress Sf
in the most remote fibre of any cross-section at a distance x from
the free end. From (1) we can find the stress Sf for any given load
wx. In any case we have only to substitute the value of 7, x
and d.

1. Breaking Weight—Constant Cross-section.—Rupture will occur
at that section for which Sf is greatest. If lis constant, d is con-
stant, and we see from (1) that Sf will be greatest when x = I. The
dangerous section is then at the fixed end. We have then from
(III), page 298,

Sri _ _wP
v ~ ~2

'

where the minus sign denotes, as before, compression in the lower
fibres, and Sr is the coefficient of rupture. We have then, without
reference to direction of rotation, for the breaking weight

2SrI
(3)W=icl =

rl

or twice as much as for the same beam with the same load W at the

free end (page 299).

If, for instance, the beam is rectangular in cross-section, of

breadth b and height h, then (page 278) I = ^bh*> v = « > an(i tne

breaking weight is

12

W=icl = S,bh*

SI
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If the beam is triangular in cross-section, of horizontal base b
bh3 2

and height h, then (page 273) / = —-, v = -h, and the breaking

weight is

W=u,l =^.
121

In the same way we can find the breaking weight for any form
of cross-section by substituting in (3) the values of /and v.

2. Shape for Uniform Strength.—Let J be the moment of inertia
at any cross-section and L the moment of inertia at the fixed end,
the distance of the outer fibre being v and Vi. Then for uniform
strength we must have Sf at the end equal to Sf at any cross-sec-
tion, or, from (1),

wvx1 wvd 2 vx1 ViP ...

-2T = -2T'
or

-T = -J7
(4)

For rectangular cross-section

and hence
« _P__

bh?~bJi?

For constant height h = hi and

(5)

h = j^ (6)

The breadth then varies as the ordinate to a parabola. From
equation (I), page 284, we must have for
the breadth bo at the distance x from ^/\ "^v^.
the free end

. wx
hiSws

Substituting this in (6), we find that
the cross-section must be constant for the distance xa from the free
end at least equal to

wP
bihiSws

and the breadth at the free end is then

w*P
bo =

bihSS'r,

For any value of x greater than x the breadth is given by (6).

For constant breadth b — bi in (5) and

h = h
-~x (7)

From equation (I), page 284, we
have for the height ho at the dis-
tance Xo from the free end

. WXo
ho =

biSws

Substituting this in (7), we find
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that in order to resist shear we must have the end cross-section
Ai = bihi at least equal to

Ai = bihi = -^—

.

If then the end cross-section is safe for shear, every cross-sec-
tion is safe, and for any value of x the height is given by (7).

The height varies then as the ordinate to a straight line, from hi
at the fixed end to zero at the free end.

If both b and h vary, we have for rectangular cross-section at
every point

l *. x. •& ft
bih

z.
hd

bi : hi : : b : h, or o = —— , h = — -.

hi 61

Substituting in (5), we have for the height and breadth at any
point

h 3 = ^x\ V = ^a? (8)

From equation (I), page 284, we must
have at least

w*x* %

Who 3 =
8*

Hence, from (8), the cross-section
WXo

must be constant and equal to b h = -„— at least, for a distance x a

&WS
from the free end given by

Xo = ivH*

bi
3hi 3S\

For any value of x greater than Xo the height and breadth are
given by (8). Inserting the value of x in (8), we obtain /io and 60 at
the free end.

In a similar way we can find the shape for uniform strength for
any other form of cross-section by substituting in (4) the values of
I,li,v and Vi.

Case 3. Beam Loaded with W Between the Supports.—Let I be
the length of the beam, Zi the dis- ^Zi W/2l
tance of W from the left end and
Zi from the right end.

Wz*
Then the left reaction .Ri = —j— •

For any point distant x from the
left end we have for the bending
moment (page 285),

\ l

•*--»

A+
—.

—

as *)

U 2r_: Zsr .
-4B

W
W(l - Zi)x

I

when x < Zi, Mx = j^-x =

•u s. •# Wz,
, Tir, Wzi(l-x)when x> Zi, Mx = j^x + W(x — Zi) = j

-.

In each case, then, we have for the resisting moment, from (IT),

page 288,

, 8/1 ,
W(l-zi)x ^ S/Ilwhen x < Zi ,

—- = + —

—

T—— . or W= —-^ r; (1)
V I VX(l — Zi)

, S/i , wzidwhen x > Zi, -J— = + V ^) or W= S/Tl -
VZi(l — x)

(2)
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The plus sign denotes tension in the lower fibres.

Front (1) and (2) we can find in any case the load W which
placed at any given point will cause a given stress Sf in the most
remote fibre of any cross-section at a distance x from the left end,
or we can find the stress Sf for any given W. In any case we have
only to substitute the value of 1, v and x.

1. Breaking Weight—Constant Cross-section.—We see from (1)

and (2) that for constant / and v, Sf is greatest when x < Zi for
the greatest value of x or x as %% , and when x > Zi for the least
value of x or x = Z\. The dangerous section is then at the weight.
We have then from (III), page 288,

&£=*£* or W=M. (3)
t' I VZ1Z2

Wzi
or the same as for a cantilever beam of length Z\ with a load —-—
at the free end (page 299).

All the results of page 299 hold, then, in this case if we put I = Z\

and W = —tA For the load at the middle of the beam W= —'—,
l vl

or four times as great as for a cantilever beam of the same length
similarly loaded.

2. Shape for Uniform Strength—.The shape for uniform strength,
in any case, is for each portion of the beam Z\ and Zi , precisely the
same as for a cantilever beam of length Z\ or z-, with the weight

—s-2 or —— at the free end, instead of W (page 300).

Case 4. Beam Loaded with w Uniformly Distributed.—The reac-

tion at each end is y

.

Rj.^ R_^
For any point distant x from the

left end the bending moment is

,, wl wx* wxn .Mx=-—x + -£- = - -^-(J - x).

The resisting moment is from (II), page 288, for the fibres belong-
ing to the left-hand portion of the beam,

The plus sign denotes tension in the lower fibres.

We have then
twx(l — x) ~\Sf=

21 ; (1)

WX = - 2®JL (2)
v(l — x)

1. Breaking Weight—Constant Cross-section.—We see from (1)

that for constant J and d, Sf is greatest when x = (I — x) or x = ^-.

The dangerous section is then at the middle of the span. We have
then from (III), page 288,

*U«* or W= Wl = *^ (3)
v 8 vl

ii'iiiiiMiiinii nnnmmnmnnJB
< X *t



306 APPLICATIONS OF STATICS. [CHAP. II.

or eight times as much as for a cantilever beam with the same load
W at the free end (page 299).

2. Shape for Uniform Strength.—Let J be the moment of inertia
at any cross-section distant x from the left end, and L at the middle
of span, the distances of the outer fibre being v and Vi. Then, from
(1), for uniform strength

IVVXJl — X) _ WViP VX(l — X) _ ViP .

For rectangular cross-section

and hence
x(l —x) P

oh? AbJix*

For constant height h = hi and

(5)

b=~x(l-x) (6)

The breadth then varies as the ordinate to a parabola, as on page
303, and the end cross-section must have a constant breadth

. wl
bo =

hiSics

for a distance from the left end

(l- wl
)

x* -id wl
\

\ IbJlrSu-s)'

For any value of x greater than x the breadth is given by (6).

In the same way we can find the shape for uniform strength
when the breadth is constant, or when both b and h vary and the
cross-section is rectangular, as on page 304. Or, by substituting in

(4) the values of I, It. v and Vi , we can find the shape for uniform
strength for any form of cross-section.

Theory of Pins and Eyebars.—The bearing resistance of a pin
should equal the greatest pressure upon it due to any plate through
which it passes.

Bearing.—If d is the diameter of pin, t the thickness of any plate
through which it passes, then dt is the bearing area. Let S,r, be
the working unit stress for compression, then dtSu-c is the bearing
resistance of the pin. This should equal the stress transmitted by
the plate, or

dtSwc = stress.

We may take Su-c at 6 25 tons. The stress transmitted is always
known. For a transmitted stress of one ton the required bearing
area is then

dt =
64f •

and hence we have

lineal bearing on pin per ton of stress = . . . (1)
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From (1), having given the diameter d, we can find the corre-
sponding lineal bearing or thickness of plate for every ton of trans-
mitted stress. We have only to multiply this by the number of
tons transmitted stress in any case to find the requisite thickness of
the plate.

Diameter of Pin.—Let t be the thickness of plate or eyebar, and
h its depth, then th is the area of cross-section of plate or eyebar.
If Swt is the working unit stress for tension, then thSwt is the trans-

mitted stress. Now if d is the diameter of the pin, and the thickness
of the eyebar head is equal to the thickness of the bar, we have td
for the bearing area of pin, and tdSwc for its bearing resistance.

We must have, then, for equal strength

tdSu,c = thSwt, or d = ^h.
one

St 3We can take the ratio -^ = - . Hence the least diameter of
£>wc 4

pin is

d = S
h (2)

4

The diameter of pin may need to be greater than this, but it

cannot be less, unless the thickness of eyebar head is made greater
than the thickness of the bar itself.

When this is the case, if ti is the thickness of the bar and t the
thickness of the head, we have for the least diameter of pin

tdSivc = tihSwt , or d = - jh, (3)

and for the thickness of head
4t

'=£ <«

The pin is a round beam subjected to flexure. The size of pin as
thus determined is greater than the diameter required for safe
bearing or shearing. For a beam we have (page 288)

~ = Afmax,
r

where r is the radius of the pin and S/ is the unit stress in the

outer fibre, and I= ——. Hence
4

A/max = -gjjj-i <5)

where Mma.x is the maximum bending moment. The usual value
for S/ is 15000 lbs. per square inch for iron and 20000 lbs. per square
inch for steel.

We have then, in any case, to find the maximum bending mo-
ment Mx , and then, from (5), we can find d.

Maximum Bending Moment.—In general for any pin, we must
resolve the stress in every bar through which the pin passes into its

vertical and horizontal components. The stress in each bar is

considered as acting along the centre line or axis, and hence the
point of application of each vertical and horizontal component is at
the centre of the bearing of the corresponding bar.
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Let Mh be the maximum bending moment of all the horizontal
and Mv of all the vertical forces. Then the resultant maximum

bending moment isF
i & h

lit Mu \>Th* + iff.

TT
F2 F4 F

From (5) we then find the diameter d of the
pin.

Let the parallel horizontal or vertical
components on one side of the centre of pin
be F,, Ft, F3 , Ft , etc., the odd indices
Fi, F3 , etc., acting in one direction, and the
even indices F, , FA , etc.. acting in the other.
Let Zi be the distance between centres of
bearing Fi and Ft , U the distance between
Ft and F3 , etc. We can now easily find the
maximum moment by trial.

Thus the moment at Ft is FiL. Add to this (Fi — Ft)h and we
have the moment at F3 . Add again {F, —Ft + F3 )l3 and we have
the moment at Ft , and so on. The greatest of all these is the mo-
ment required.

Since all the forces Fi , F3 , Fi , etc., on one side are equal to all

on the other, Ft , Ft , Fe , etc., they reduce to a couple on each side
of centre of the pin, and hence the moment at any point P beyond
the last force, as Ft , is constant. We have then only to find the
greatest moment Mh or Mv by trial as directed.

Practical Sizes for Pins.—Pins are furnished in sizes differing by
% inch, and all sizes are an even number of sixteenths. A pin must
always be ordered at least one sixteenth larger than the hole it is to
fit. in order that it may be turned down to fit. We must then add
tV inch to the calculated size, and if this gives an even number of
sixteenths it can be ordered ; if not, add T\ more.

Thus if the size of a pin is 4f inches by calculation, it should be
ordered at least 4y\ ; but since only even sixteenths are furnished,
we should order 4i and turn down to fit the hole.

Torsion.—Torsion occurs when the external forces acting upon
a body tend to twist it, so that each section turns on the next ad-
jacent section about a common
axis at right angles to the plane of
section.

Let a horizontal shaft of length
I be fixed at one end, and let a
force couple + F, — F act at the
free end whose moment about the
axis AC is Fp.

The shaft will be twisted about
the axis AC so that any radial line as aC moves to bC through the
angle aCb = 8.

If the elastic limit is not exceeded, any longitudinal plane aBAC
before twisting remains plane after, as bBAC, and when the couple
+ F, — F is removed the line bC returns to its original position aC.
Also the angle aCb is proportional to F and to the distance AC= I

of the cross-section from the fixed end. Thus if h is the angle aCb
at the distance I from the fixed end, the angle ctiCi&i at the distance

If the elastic limit is exceeded, this

+f

-f

x from the fixed end is r-9.

proportionality does not hold, the line bC does not return to its

original position when the couple + F, — F is removed, and if the
twist is great enough we have rupture.
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These facts are but a restatement of the general experimental
laws of page 279.

Neutral Axis.—Consider the shaft to be made up of an indefinitely

great number of parallel fibres. Since within the elastic limit stress

is proportional to strain, as one cross-section of the shaft turns
about the axis and slides upon the adjacent cross-section, the strain

and therefore the shearing stress on each fibre of a cross-section is

proportional to its distance from the axis AC. For the fibre at the
axis AC there is then no shearing stress. The axis AC is then the
neutral axis. (Compare page 286.)

Position of the Neutral Axis.—Let a be the cross-section of any
fibre, and Ss the unit shearing stress within the elastic limit for

that fibre in any cross-section most remote from the neutral axis at
the distance v. Then the shearing stress for the most remote fibre

in any cross-section at the distance v is Ssa, and for any other fibre

in that cross-section, at the distance r, it is —Ssa. The sum of all
v

the fibre stresses of any section in any straight line per-
Ss

pendicular to the axis is then —2ra.

But the sum of the external forces + F, — F is zero, *}
v

hence for equilibrium we must have 2ar = 0.

Therefore the neutral axis AC must pass through the *

centre of mass of the cross-sections. (Compare page 287.)
Twisting Moment and Resisting Moment.—All the external forces

acting upon the shaft reduce to a couple + F, — F, as shown in the
figure, whose moment Fp with reference to the neutral axis is the
twisting moment Mt. This moment is the same at every point of
the neutral axis AC, and therefore tends to make each cross-section
turn on its adjacent cross-section nearest the fixed end, about the
axis AC, so that there must be for equilibrium between every two
cross-sections an equal and opposite resisting moment due to the
shearing stress between these two cross-sections.

Since for any cross-section the shearing stress for any fibre at a
T

distance r from the neutral axis is -Ssa, the moment of that stress
v

S
about the neutral axis is —ar2

, and the sum of the moments of all
v

the stresses for any cross-section about the axis, or the resisting

moment, is then —-^Zai*.
v

For equilibrium this is balanced by the twisting moment Mt.
But 2ar* is the polar moment of inertia Iz of the cross-section

with reference to the axis through the centre of mass (page 271).
We have then for equilibrium, without reference to direction of

rotation,

2^ = Mt (I)
v

where Ss is the unit shearing stress within the limit of elasticity in
the most remote fibre of any cross-section at the distance v from the
neutral axis, I3 is the polar moment of inertia of the cross-section
with reference to that axis, which always passes through its centre
of mass, and Mt is the twisting moment.

The student should note the analogy of this equation with that
for flexure of beams, page 288.
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From (I) we can find Mt for any given Ss when lz and v are
known and the elastic limit is not exceeded.

Coefficient of Rupture.—Equation (I) holds within the elastic limit.

The value of Ss computed by means of (I) from experiments carried
to the point of rupture we call the

Coefficient of Rupture for Torsion.—It is found by experiment to
agree closely with the ultimate shearing strength as given in our
Table page 290.

We have then for rupture

^~=Mt, (II;

where Sr is the shearing unit stress in the most remote fibre of that
cross-section where rupture occurs, or the dangerous cross-section.

This is evidently the cross-section for which — is a minimum,
v

since Mt is the same for every cross-section.
From (II) we can find Mt for Sr , Iz and v given, at the point of

rupture.
Coefficient of Elasticity for Shearing Determined by Torsion.—Let

the length of shaft be I and let the angle of torsion or the angle of
twist of the end cross-section be 5 and the twisting moment Mt.

Then within the limit of elasticity the strain of the outer fibre for
the end cross-section is do and the strain per unit of length is

8 = — . The unit shearing stress of the outer fibre of the end cross-

section is Ss . Then from page 281, since the coefficient of elasticity
is the ratio of the unit stress to the unit strain,

p Ss IS*

where v is the distance of the outer fibre of the end cross-section
from the neutral axis.

If we substitute for Ss its value from (I), we have

E=™ (Ill)
viz

from which E can be computed if the other quantities are known
and the elastic limit is not exceeded.

Inversely we have

^5r»jfe (iv)

From (IV ) we can find Mt for any given 6, when E, Iz and I are
given and the elastic limit is not exceeded.

Work of Torsion. —If is the angle of torsion for any cross-section,
the strain of any fibre in that cross-section at a distance r from the

neutral axis is r0, and the stress for that fibre is — Ssa. The work
v

of the fibre is then one half the product of the stress and strain

(page 281), or -^-ar*. The work of all the fibres is then ~^2ar>
:F &

' 2v 2v
or, since "Sar1 — Iz . we have from (IV) and (I), for the work,

w -._
OSJz MtB Eh* MH v
2v 2 21 2EIZ

K y
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Transmission of Power by Shafts.—Work is the product of a force
by the distance through which it acts. Power is rate of work. A
horse-power is 33000 ft. -lbs. of work per minute. If a shaft makes n
revolutions per minute and the twisting force is F with a lever-arm
p, then 2np x n is the distance and 2nnpF is the work per minute,
and the horse-power is, if p is in inches,

jj_ 2nnFp
"33000 x 12'

But Fp = Mt =— . Hence
v

^-1980001? (VI)

where n is the number of revolutions per minute, H the horse-
power transmitted, Iz and v must be taken in inches and Ss in
pounds per square inch.

Combined Stresses.—We have thus far considered stresses of
pure tension, compression and shear, also flexure and torsion. But
we may have tension or compression combined with flexure, as when
a beam is in direct longitudinal tension or compression and at the
same time supports a load. We may also have tension or compres-
sion combined with shear, as when a shaft is in direct longitudinal
compression or tension and at the same time in torsion. We may
also have torsion and flexure combined.

Combined Tension and Flexnre.—For flexure alone we have, page
288,

~ Mxv
Sf=—j-,

where Sf is the unit stress in the extreme outer fibre in any cross-

section at the distance v from the neutral axis. If this cross-section
is also in direct tension, then the tensile fibre stresses due to flexure
will be increased and the compressive fibre stresses due to flexure
will be diminished. The neutral axis is then no longer at the centre
of mass of the cross-section; and if we consider the deflection, a
strict discussion leads to results of great complexity.

If, however, we neglect the deflection, and let T be the direct

T
tension over the area A, then — is the unit stress of direct tension.

A
In the extreme outer tensile fibre, then, the total unit stress is

T

If Smax is the maximum unit stress, we have then at the cross-

T
section where Sf + — is a maximum

Sm„ = S/ +£=^ + £, ..'...
(1)

whereMx is the bending moment at that cross-section of area A for
T

which Sf + -j is a maximum, T is the direct tension, Sf is the unit

stress due to flexure in the extreme outer tensile fibre of that cross-

section at the distance v from the neutral axis.

From (1) we have

(*U«-Z)l

«** = •
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If we put for Jits value Ak-2
, where k is the radius of gyration

T
of the cross-section of area A, for which S/ + -r is a maximum, we

have, putting Sm&x = the working unit stress Sw,

. _ MxV
S lvK Sw

(2)

From (1) we can find in any case the maximum unit stress in
the extreme outer fibre on the tensile side. From (2) we can find
the area of cross-section by taking for Sw its value as found on
page 291, by dividing the ultimate strength by the factor of safety,
or as found by the method of page 292.

Combined Compression and Flexure. — This case is the same as
the preceding, except that we must put the direct compression C in
place of T and take for Sw the working stress for compression. If
flexure is to be apprehended, we must take Sw as given on page 291.

Combined Tension and Shear.—If a body whose cross-section at
any point is A is subjected to a direct tension T, the direct unit

T
tensile stress is t = —. Suppose at the same time a direct vertical

shear S, then the unit shearing stress is s = S
A'

-FS/i +s,d ,+s8d

+ th

*+Sb

-sh

Take any element of breadth b, height h and unit thickness.
Then we have acting on this element the tensile stresses + th, — th,

and the shearing stresses + sh, — sh. The two equal and opposite
stresses + th, — th hold each other in equilibrium. The couple
+ sh, — sh can only be held in equilibrium by the opposite couple
+ sb, — sb. Let d be the diagonal, and a the angle of the diagonal
with the side b. Then we have the components parallel to the
diagonal forming the combined shearing stresses + fed, — s.id, and
the components perpendicular to the diagonal forming the com-
bined tensile stresses + s td, — Std.

For equilibrium we have then

+ Ssd — th cos a — sb cos a + sh sin a = o

;

-f std — th sin a — sb sin a — sh cos a = 0.

Since we have sin a = -y, cos a —-3 , dividing these equations
a a

by d, we obtain

ss = t sin a cos a + s cos2 a — s sin2 a = - sin 2a + s cos 2a
;

s t —t sin2 a + 2s sin a COS a — — — — cos 2a + s sin 2a.
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From these equations, by placing the first differential coefficient
equal to zero, we have, when ss is a maximum,

tan 2a = -— , sin 2a = — —
, cos 2a =

2s
'

'

Vis* + ?' V4sa + *•'

when St is a maximum,

tan 2a = — , sin 2a = —
, COS 2a. =

t
'

V±s* + f ' V4ss + F*

Therefore we have

/ Vmax ss = y s
J + j ; (1)

^1+^ + 1max st = - + y sa + j- (2)

Equation (1) gives the unit shearing stress when we have the
direct unit tensile stress t and unit shearing stress v combined.
Equation (2) gives the unit tensile stress when we have the direct
tensile stress t and unit shearing stress v combined.

Combined Compression and Shear.—Let the direct unit compres-
sive stress be c, and the direct unit shearing stress be s. Then, just
as before, we have for the combined unit shearing stress

*8 = f/ + ? W
and for the combined unit compressive stress

So = 2 + |A' + T (2)

Combined Flexure and Torsion.—Let Sf be the greatest unit stress

for flexure as given by equation (II), page 288, viz.,

c MxV
Sf= -j-i

and Ss the unit shearing stress for torsion as given by equation (I),

page 309, viz.,

c _ Mtv
&S — —

fr~-

Then, as we have just seen, we have for the combined unit

stresses of shear and compression or tension

Ss= f/&»+
S;

st orsc =|+ \/s* + §£.

Stress Due to Temperature.—We have from equation (3), page
281,

, IS

where * is the strain produced by the unit stress £ in a bar of

length I, the coefficient of elasticity being E.



314 APPLICATIONS OF STATICS. [CHAP. II.

If a bar is constrained so that it cannot change in length and
then exposed to change of temperature, a unit stress will be pro-
duced equal to that which would cause a strain equal to the change
of length of the unconstrained bar under the same change of tem-
perature.

Thus if e is the coefficient of linear expansion for one degree of
temperature, t the number of degrees of change of temperature and
I the original length, the change of length of an unconstrained bar

is A = etl. The strain per unit of length is then = = et. The coef-

ficient of linear expansion e = j. is then the strain per unit of length

per degree.
If the bar is constrained so that it cannot change its length, we

then have a unit stress

S = ^- = Eet,

which is independent of the length I. The total stress, if the area is

A, is then
AS = AEet.

We give the following average values of the coefficient of linear
expansion e for one degree Fahrenheit

:

Brick and stone e = 0.0000050

Cast iron e = 0.0000062

Wrought iron e = 0.0000067

Steel e = 0.0000065

EXAMPLES.

(1) A wrought-iron tie-rod, 30 ft. long and 4 sq. in. in area of
cross-section, is subjected to 40000 lbs. tension. Find the unit stress.

If the coefficient of elasticity is 30000000 lbs. per square inch, find the
elongation.

Ans. Unit stress = 10000 lbs. per square inch. Elongation = 0.01 ft.

(2) An iron bar 10 ft. long has a strain of 0.012 ft. under a unit
stress of 25000 lbs. per square inch. Find the coefficient of elasticity,

Ans. E = 20833333 lbs. per square inch.

(3) A rectangular timber tie is 12 inches deep and 40 ft. long. If
E = 1200000 lbs. per square inch, find the thickness so that the
elongation under a pull of 270000 lbs. may not exceed 1.2 inches.

Ans. Thickness = 7.5 in.

(4) A wrought-iron tie-rod 142 ft. long and 4 sq. in. area is stib-

jected to a stress of 80000 lbs. If E = 30000000 lbs. per square inch,

find the elongation.

Ans. Elongation = 1.136 in.

(5) The length of a cast-iron pillar is diminished from 20 ft. to
19.97 ft. under a given load. Find the unit stress of compression,
E being 17000000 lbs. per square inch.

Ans. Unit stress = 25500 lbs. per square inch.
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(6) A wrought-iron bar 2 sq. in. area of cross-section has its
ends confined between tivo immovable blocks at a temperature of 60°

Fahr. Taking the coefficient of expansion at 0.000006944, find the
pressure upon the blocks when the temperature is 100° Fahr., sup-
posing there is no flexure.

Ans. Pressure = 0.00055552 E. If E = 30000000 lbs. per square inch,
pressure = 16665.6 lbs.

(7) The dead load of a bridge is 5 tons and the live load 10 tons

\
per panel, the corresponding factors of safety being 3 and 6. Find

i the combined factor of safety.

Ans. Factor = 5.

(8) The dead load upon a short hollow cast-iron pillar, with a
rectangidar area of 20 sq. in., is 50 tons. If the compression is

not to exceed 0.0015 of the length, find the greatest live load, E being
17000000 lbs. per square inch.

Ans. Live load = 410000 lbs. = 205 tons.

(9) A steel suspension rod in a suspension bridge carries 3500
lbs. of roadway and 3000 lbs. of live load. Its length is 30 ft. and
sectional area one half square inch. Find the gross load and the
extension of the rod, E being 35000000 lbs. per square inch.

Ans. Gross load = 6500 lbs. Extension 0.133 inch.

(10) A beam 40 ft. long carries a load of 20000 lbs. Find the
shearing force at 15 ft. from one end, and also the maximum bend-
ing moment : (a) when the beam is supported at the ends and loaded
in the middle ; (b) when it is supported at the ends and loaded
uniformly ; (c) when it is fixed at one end and loaded at the other ;

(d) when it is fixed at one end and loaded uniformly.

Ans. (a) Shear = 10000 lbs., max. moment = 200000 ft.-lbs. at middle;
(b) Shear = 2500 lbs., max. moment = 100000 ft.-lbs. at middle;

(c) Shear = 20000 lbs., max. moment = 800000 ft.-lbs. at end;

(d) Shear = 7500 lbs., max. moment = 400000 ft.-lbs. at end.

Draw the diagrams for shear and bending moment in each case.

(11) A beam 20 ft. long rests on two supports and carries a
load of 10 tons at 5 ft. from one end. Find the maximum bending
moment.

Ans. Maximum moment 37.5 ft. -tons at the weight. Draw the diagrams
for shear and bending moment.

(12) Find the breadth and depth of the strongest rectangular
beam which can be cut from a cylindrical log of diameter D

Ans. Breadth = D |/i-, depth = D y'-

(13) A round and a square beam are equal in length and equally
loaded. Find the ratio of the diameter to the side of the square, so
that the two beams may be of equal strength.

Diameter _ / 2
Ans. = 3

i/ 8Side V Zit

(14) Compare the relative strengths of a cylindrical beam and the
strongest rectangular and square beams that can be cut from it.

Strength of cylindrical 9nr |/3
Ans. —

—

;— — — — l.oo;
Strongest rectangular 32

Strength of cylindrical _ 8tt |/2 _ .«

Strongest square 8
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(15) Compare the relative strengths of a solid square beam to

that of the solid inscribed cylinder.

Strength of square 16 „ _,

Ans. sj
=;—j

—

,. , = w- = 1.7.
{strength of cylinder ait

(16) Compare the strength of a square beam with its sides vertical
to that of the same beam with a diagonal vertical.

Side vertical .— _
Diagonal vertical

— —

(17) A beam of yellow pine, 14 inches icide, 15 inches deep, resting
upon supports 10 ft. 9 in. apart, was just able to bear a weight of
34 tons at the centre. What weight at the centre will a beam of
the same material, 3 ft. 9 in. between the supports and 5 inches
square bear $

Ans. 3.86 tons.

(18) Compare the strengths of two rectangular beams of equal
length, the breadth and depth of one being respectively equal to the
depth and breadth of the other.

Ans. The strengths are directly as the breadths and inversely as the
depths.

(19) A cast-iron beam 4 inches square rests upon supports 6 ft.

apart. Find the breaking weight at the centre, taking Sr = 30000
lbs. per square inch.

Ans. Breaking weight = 17777£ lbs.

(20) A yellow-pine beam, 14 inches icide, 15 inches deep, resting
upon supports 10 ft. 6 in. apart, broke down under a uniformly-
distributed load of 60.97 tons. Find the coefficient of rupture Sr .

Ans. Sr = 3658.2 lbs. per square inch.

(21) A cast-iron rectangular beam rests upon supports 12 ft.

apart and carries a iveight of 2000 lbs. at the centre. If the breadth
is one Jmlf the depth, find the sectional area so that the unit stress
may nowhere exceed 4000 lbs. per square inch.

Ans. Area = 18 sq. in., depth = 6 inches, breadth = 3 inches.

(22) A wrought-iron beam, 4 inches deep, f inch wide, fixed hori-
zontally at one end, gave way when loaded with 1568 lbs. at the free
end, at a point 2 ft. 8 in. from the load. Find the coefficient of
rupture Sr .

Ans. Sr = 25088 lbs. per square inch.

(23) A wrought-iron beam 2 incJies icide and 4 inches deep rests

upon supports 12 ft. apart. Find the uniformly distributed load it

ivill carry in addition to its own weight if S>- — 50000 lbs. per square
inch and the factor of safety is 4. A bar of iron 3 ft. long and one
square inch in cross-section weighs 10 lbs.

Ans. Load = 3384 lbs.

(24) Find the length of a beam of ash 6 inches square which
would break of its own weight when supported at the ends, the
weight of the timber being 30 lbs. per cubic foot and Sr = 7000 lbs. per
square inch.

Ans. Length = 149J ft.

(25) A cast-iron cantilever beam 8 ft. long and 12 inches deep,
centre to centre of the flanges, carries a uniformly-distributed load
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of 16000 lbs. Find the area of the top flange at the fixed end, neg-
lecting ttie web, so that the unit stress shall not exceed 3000 lbs. per
square inch.

Ans. Area = 21.3 square inches.

(26) A cast-iron beam 27i inches deep, centre to centre of the
flanges, rests upon supports 26 ft. apart. Its bottom flange is 16
inches wide and 3 inches deep. Neglecting the web, find the break-
ing weight at the centre, the coefficient of rupture Sr being 15000 /6s.
per square inch.

Ans. Weight = 253846 lbs.

(27) A cantilever plate girder 44.7 ft. long and 22.25 ft. deep,
centre to centre of the flanges, supports a uniform load of 1.82 tons
per foot and a weight of 161.6 tons at the free end. Find the unit
stress on the net section of the tension flange at the point of support,
neglecting the web, the gross area being 132.6 inches but reduced by
rivet-holes two ninths.

Ans. Unit stress = 3.94 tons per square inch.

(28) A girder 50 ft. long and 4 ft. deep, centre to centre offlanges,
supports a uniform load of 32 tons. Find the stress in either flange
at 9 feet from one end, neglecting the web.

Ans. Stress = 29.5 tons.

(29) Required the depth of a rectangular beam supported at the
ends and carrying a load W at the middle, in order that the elonga-
tion of the lowest fibre shall equal -^7 of its original length.

/
Ans. Depth = A/ '

2100m
Eb

(30) A beam of depth 8 inches, length 8 ft., supported at ends,
sustains 500 lbs. per foot. Find its breadth for a factor of safety
of 10, Sr being 14000 lbs. per square inch.

Ans. Breadth = 3T\ inches.

(31) A beam of length 12 ft., breadth 2 in., depth 5 in., is supported
at the ends. Find the uniform load it wiltsafely sustain for a
factor of safety of 4, Sr being 80000 lbs. per square inch.

Ans. Weight = 9259 lbs.

(32) A wooden beam of length 12 ft. is supported at the ends.
Find its breadth and depth so that it may safely sustain one ton
uniformly distributed over its whole length, for the factor of safety
10, Sr being 15000 lbs. per square inch ana the depth 4 times the
breadth.

Ans. Breadth = 2.08 in.; depth = 8.32 in.

(33) A wrought-iron beam 12 ft. long, 2 in. wide, 4 in. deep is

sn}>ported at the ends. The material weighs i lb. per cubic inch.

Taking Sr at 54000 lbs., find the uniform load it ivill sustain.

Ans. Without the weight of beam, 16000 lbs.

Over the weight of beam, 15712 lbs.

(34) A beam is fixed horizontally at one end. Length 20 ft.,

breadth li in., Sr = 40000 lbs. per square inch. If the weight of the

material is i lb. per cubic inch, find the depth so that it may just
sustain its own weight and 500 lbs. at the free end.

Ans. Depth = 4.05 inches.
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(35) Find the sectional area of a square beam of 12 ft. span which
sustains a load of 300 lbs. at the centre and has at the same time a
direct longitudinal tension of 2000 lbs.; the icorking unit stress being
taken at 1000 lbs. per square inch.

Ans. 4.18 inches square.

(36) Find the sectional area of a square beam of 12 ft. span which
sustains a load of 50 lbs. per foot uniformly distributed and has at
the same time a direct longitudinal tension o/2000 lbs.; the working
unit stress being taken at 1000 lbs. per square inch.

Ans. 4.18 inches square.

(37) A beam of uniform cross-section A is inclined at the angle a
to the horizontal and rests without slipping on ttco supports. The
load is iv per linear unit, uniformly distributed. Find the maximum
unit stress.

Ans. This is the case of a roof-truss rafter at the bottom or at an inter-

mediate panel, loaded by its own weight
only.

The vertical reaction at the top end
is given by

Hi cos a X I = wl X o^ cos a>

or

The bending moment at any point
distant x from the upper end is then

wlMx = ~2 COS a X x wx X

The unit stress in the outer fibre at the distance v from the neutral axis is

then for any cross-section at a distance x from the upper end

dw cos a,,
-(lx — x-).

_ Mxv _
21

The direct compression at the distance x from the upper end is

wl

T
The combined unit stress is then

C = icx sin a — sin a=
2

-(2x — I).

„ ,
C Twcosa., m ,

wsina,n .

8f+ A
=

21
(lX ~ X

>+~2A~{2X ~ l) '

This is a maximum when x = Item a

Hence the maximum unit stress is

„ Tirp cos a

Av

Iwt&n asm a
81 2AH

If there is an additional compression applied at the ends of C, the maximum

unit stress is — + '?max.

(38) The top rafter of a roof-truss of uniform cross-section A is
inclined at the angle a to the horizontal. The load is w per linear
unit uniformly distributed. Find the maximum unit stress.
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Ans. The reaction at the top end H is horizontal. We have then

™ . - I cos a
HI sin a = wl X —^—

,

TJ wl
*H= -jr- cot a.

m

At any point x from the upper
end the unit stress for flexure is then

NO

Sf =
(Hz sin a — cos a)v. i

The direct compression is C = lZ"cos a -\- wx sin a.

The combined unit stress is then

~ . Mcosa, _, , wl cot a cos a , wo; sin a
#+ T = 77T—(&-««) +2/

m, . . • i. £ ,
^tan a

This is a maximum when x = -A s
.

2 J/b

Hence the maximum unit stress is

omax

24

cos a wl cosec a Iw tan a sin a:

8/ 24 2A*v

If there is an additional compression applied at the ends of C, the maximum

unit stress is -r + Sm&x.

(39) A wooden beam 10 inches wide, 9 inches deep and 8 ft. long

carries a uniform load of 500 lbs. per linear foot ana is subjected to

a longitudinal compression of 40000 lbs. Find the maximum unit

stress.

Ans. 800 lbs. per square inch.

(40) If the beam in Example (39) forms one of the panels of the

rafter of a roof-truss of 40 ft. span and 15 ft. high,find the maximum
unit stress.

Ans. Let b = breadth, h

Then v = L A = bh, I:

height of cross-section.

•—

_

bhz
, and we have, from Example (37),

40000
maximum unit stress = ,,

bh

500

dwP cos a , w tan a sin a
4M2 126

In the present case w = —r , I = 96, 6 = 10, h = 9, sin a = 0.6, cos a— 0.8,

tan a = 0.75. Hence

maximum unit stress = 729 lbs. per square inch.

(41) A rivet f inch in diameter is subjected to a tension of 2000

lbs. and at the same time to a shear of 3000 lbs. Find the combined
maximum tensile and shearing unit stresses and the angles they

make with the axis of the rivet.

Ans. Maximum shearing unit stress = 7155 pounds per square inch, making

an angle of 9° 13' with the axis of the rivet.

Maximum tensile unit stress =9420 pounds per square inch, making an

angle of 54° 23' with the axis of the rivet.
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(42) A circular shaft 2 ft. long is Uvisted through an angle of 7
degrees by a couple of ± 200 lbs. ivith a lever-arm of 6 inches. Find
the angle for a shaft of the same size and material 4 ft. long when
twisted by a couple of 500 lbs. with a lever-arm of 18 inches.

Ans. 105 degrees.

(43) A circular shaft when twisted by a couple of ± 90 lbs. tvith a
lever-arm of 27 inches has a unit shearing stress of 2000 lbs. per
square inch. If the same shaft is twisted by a couple of ± 40 /6s.

with a lever-arm of 57 inches, what is the unit shearing stress f

Ans. 1877 pounds per square inch.

(44) An iron shaft 5 ft. long and 2 inches diameter is twisted
through an angle of 7 degrees by a couple of ± 5000 lbs. with a lever-

arm of 6 inches, and on the removal of the couple springs back to its

Original position. Find the value of Efor shearing.

Ans. 9390000 pounds per square inch.

(45) What is the couple which acting with a lever-arm of 12 inches
will twist asunder a steel shaft 1.4 inches diameter, the coefficient of
rupture by torsion being 75000 lbs. per square inch.

Ans. ± 1683 pounds.

(46) Compare the strength ofa square shaft tvith that of a circular
shaft of equal area.

\/2k
Ans.

3

(47) Find the combined unit stresses for a wrought-iron shaft 3
inches diameter and 12 feet long, resting on bearings at each end,
which transmits 40 horse-power while making 120 revolutions per
minute, upon which a load of 800 pounds is brought by a belt and
pulley at the middle.

Ans. The unit stress for flexure is

Sj = —^- = —j = 10800 lbs. per square inch.

The unit stress for torsion is

_ 198O0OdJ5T .„_., .

Ss =
j

= 4000 lbs. per square inch.

The maximum combined unit stresses are then :

for tension or compression, 5400 -f- |/4000* -f- 5400
s = 12100 lbs. per square inch;

for shear 6700 lbs. per square inch.

(48) A vertical shaft weighing with its loads 6000 lbs. is subjected
to a twisting moment by a force of 300 pounds acting with a lever-

arm of 4 feet. If the shaft is of wrought iron 4 feet long and 2 inches
in diameter, find its maximum unit stress, provided the shaft is so
supported that it cannot bend sideways.

Ans. Compressive unit stress = 10170 lbs. per square inch.

Shearing " " = 9215 " "

(49) Find the diameter of a short vertical steel shaft to carry a
load of 6000 lbs. when twisted by a force of 300 lbs. with a leverage

of 4 ft., taking unit stress for shear at 7000 lbs. and for compression
at 10000 lbs. per square inch.

Ans. About 2.5 inches.
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(50) A cast-iron water-pipe 12 inches diameter and £ in. thick is

under a head of 300 ft. Taking the ultimate strength at 20000 lbs.

per square inch, find the factor of safety.

Ans. The unit pressure is 0.434 X 300 = 130.2 lbs. per square inch. Hence
130 2 X 12

the unit stress is 8 = '—=— = 1230 lbs. per square inch. The factor of

safety is then = about 16.

(51) Find the thickness of a cast-iron pipe 18 inches diameter for
a factor of safety of 10, taking the ultimate strength at 20000 lbs. per
square inch and the head of water 300 feet.

Ans. 0.586 inch.

(52) A wrought-iron pipe, 4.5 inches internal diameter, weighs
12.5 pounds per linear foot. What pressure can it carry with a
factor of safety of 8, taking the ultimate strength 55000 lbs. per
square inch f

Ans. A bar of wrought iron one square inch in cross-section and 3 ft. long
Q

weighs 10 lbs. Hence the area of the pipe metal is 12.5 X r^- = 3.75 square

3 75 1
inches. The thickness is then t = ~— = T inch.

2-rtr 4
2 X 55000* „on _

. ,

Hence p = 3-

=

= 763 lbs. per square inch.

(53) A boiler is to be made of wrought-iron plates f inch thick,
united by single lap-joints. Find the size and pitch of rivets. If
the boiler is 30 inches in diameter and carries a pressure of 100 lbs.

per square inch above the atmosphere, find the factor of safety, tak-
ing the ultimate strength at 55000 lbs. per square inch.

Ans. From (4), page 296, we have |-in. rivets. But from (3), page 295, we
have f-in. This size would be chosen for ordinary construction work. In this
case we wish a tight joint, and therefore use a small rivet at sacrifice of strength.
Let us take then £-in. rivets. Then from (5), page 296, we find the pitch £ in.

But this violates the practical restriction that rivets should not have a less pitch
than three diameters. We take the pitch then 2 inches. The pressure on a
length equal to the pitch is 30 X 2 X 100 = 6000 lbs. If 8 is the unit stress,

the resisting stress is S( 2 — •_- \t = ^S. Hence S= — = 11640 lbs. per

square inch. The factor of safety is then about 5. If this is considered too
small, we should use a less pitch or a larger rivet. A larger rivet would not be
tight enough. For a less pitch the holes must be drilled and not punched.

(54) Required to unite two %-inch plates by a butt joint with two
cover-plates; the stress to be transmitted being 40000 lbs. and the
unit working stress 10000 lbs. per square inch.

Ans. The area of the plates must then be 4 square inches net if the joint is

in tension, gross if in compression. The cover-plates can be each J inch thick.

Our rule (4), page 296, gives for diameter of rivet d = || inch. This is

greater than given by (3), page 295, therefore we take it. From our Table
page 297 we have for the resistance to shear of a ||-inch rivet 3890 lbs. The

rivets are in double shear in a butt joint, hence we require -nK^r = about 5

rivets. The bearing resistance from our Table is 5080 lbs. We require then
40000

for bearing = about 8 rivets. This, then, is the number we should use.
0U0O
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For the pitch we have from (5), page 296, 2.887 inches. This is less than
3 inches. We therefore take the pitch 3 inches. We must have at least l£
inches for distance from end and edge (page 297).

If the plates are 8^ inches wide,we must then have three rows of rivets, three
in the first and last and two in the middle on each side of the joint. The cover-

plates must then be 10 inches long. The student can now sketch the cover-
plates with the rivet-holes properly spaced.

(55) A plate girder is 17 feet long and 27 inches deep. The uni-
formly-distributed load is 55,000 /6s. The thickness of the tveb is I
inch and of the flange angles T\ inch. Find the size, number and
spacing of the rivets to unite the web and flanges.

Ans. From (4), page 296, we have d = i inch. This is less than the size

given by (3), page 295. We take the rivets then •£ inch diameter.

If we neglect the web, the stress of compression in the upper flange or of

tension in the lower, at any point distant x feet from the end, is given by

55000a; / m\

4.5 [ 17
J"

If we take x = 0, 2.5 ft., 5 ft., 8.5 ft., we have the stress at these

points = 0, 26062 lbs., 43137 lbs, 51944 lbs.

We have then for the first division of 2.5 ft. the horizontal stress 26062 lbs.,

or 13 tons, to be taken by the rivets.

In the second division of 2.5 ft. we have 43137 — 26062 = 17075 lbs., or

8.5 tons ; and in tbe third division of 8.5 ft. we have 51944 — 43137 = 8807
lbs. , or 4.4 tons, to be taken by the rivets.

For the shear at any point distant x feet from the end we have

55000/

(^}2

If we take x = 0, 2.5ft., 5 ft., 8.5 ft., we have the shear

at these points, = 27500 lbs., 19400 lbs., 11300 lbs., 0.

We have then for the first division of 2.5 ft. the shear 27500 — 19400 =
8100 lbs. , or 4 tons, to be taken by the rivets.

In the second division of 2.5 ft. we have 19400 - 11300 = 8100 lbs., or 4
tons; and in the third division of 8.5 ft. we have 11300 lbs., or 5.65 tons, to be
taken by the rivets.

Hence the combined shear (page 313) in the first division of 2.5 feet is

/4* -f^ = 7.63 tons = 15260 lbs.

In the second division of 2.5 ft.

V-4?+^~ = 5.9 tons = 11800 lbs.

In the third division of 8.5 ft.

/ 59 +^ = 6 tons = 12000 lbs.

The bearing resistance of a seven-eighths inch rivet is, from our Table
page 297, 2730 lbs. We require then for bearing, in the first 2.5 feet,

d = 6 rivets, in the next 2.5 ft., = 5 rivets, in the third division of
2«30 liiov

Ql.,. 12000 _ . .

8>5ft
-' 273T

= 5nVetS-

We must not pitch the rivets less than 3 inches or more than 6 inches (page
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296). A pitch of 4 inches for the first 2.5 ft., then 5 inches for the next 2.5

ft. and then 6 inches to the middle will therefore give more rivets than are

necessary.

(56) A pin 3 inches diameter passes through the web of a channel
bar three fifths of an inch thick. The transmitted stress is 55500
lbs. Find the thickness of re-enforcing plate necessary to give
sufficient bearing ou the pin.

Ans. The thickness for each ton (page 306 (b)) is

6iw=6^ = -0588i,1Ob-

For 55500 lbs. = 27.75 tons we should have a thickness of 0.0533 X 27.75
= 1.48 inches.

g
The channel web is only — = 0.6 inch thick. In order to have the proper

Q
thickness for safe bearing on the pin, we must then increase the thickness by
1.48 — 0.6 = 0.88 inch. Two re-enforcing plates on each side of the web,
each 0.44 inch thick or about ^ inch each, will then give the required thick-

ness.

(57) If the depth of an eyebar is 10 inches, find the least diameter
of pin which can be used without having the thickness of the head
greater than that of the bar.

Ans. (Page 307 (c).) d — 7£ inches.

(58) A bar 8 in. by I in. has a pin 4| inches diameter passing
through it. Find the thickness of bar head.

Ans. The least diameter without having the head thicker than bar is 6
inches. As the pin is less than this, the head must be thicker than the bar
and equal to

7

ZhU
3 X 8 X

8
t = ~rr = a ., ack = *A inches.

4d 4 x 48f
87

(59) In a panel of a bridge truss we have at each end of the pin
two eyebars on one side, 4 in. by 1A in., and on the other side one
eyebar 4 in. by 1A in. Also one tie on each side of centre of pin
1A in. thick. The tie is packed close to the vertical post, which con-
sists of two channels of \-in. thickness. The bars are packed snug.
The vertical compression in the halfpost is 40000 lbs. The working
unit stress of the bars is 10000 lbs. per square inch. Find the size of
pin required.

Ans. We have here on one side acting horizontally

F1 = F, = 4 X tft X 10000 = 47500 lbs.,

and on the other side

Ft = 4 X 1A X 10000 = 57500 lbs.

The horizontal component of the tie-stress is

Ft = 2X 47500 - 57500 = 57500 lbs.

The distances are

li = h = g-(US + ItV = ^ff in<*es;

*. = |(1A + 1A) + 1 = 3i inches.
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We have then at F% the moment FJi = 47500 Xl^ = 62344 inch-lbs.;

at F3 we have 62344 + (Fi — F^U = 49219 inch-lbs.;

at Ft we have 49219 + (Fx - Fa + F3)h = 133594 inch-lbs.

The maximum horizontal bending moment is then

Mh = 133594 inch-lbs. = 66.797 inch-tons.

The vertical compression in post is 40000 lbs. Its lever-arm is

\ = 48750 inch-lbs. s

The resultant maximum bending moment is then

Hence
Mv = 40000 Xl^ = 48750 inch-lbs. = 24.375 inch-tons.

il/max = tfMh* + My* = ^66.82 + 24.4s = 71.11 inch-tons = 142220 inch-lbs.

We have then for size of pin about 4$ inches diameter, or 4f commercial
g

size. The least allowable diameter is jh = 3 inches. Hence the bearing is

abundant.



CHAPTEK in.

APPLICATIONS OF STATICS-THEORY OF FLEXURE.

CHANGE OP SHAPE OP NEUTRAL AXIS OP A BEAM. ASSUMPTIONS OP THE
THEORY. APPLICATION OP EQUATION I. DEFLECTION AND BREAKING
WEIGHT OF BEAMS. DEFLECTION OF A FRAMED STRUCTURE. DEFLEC-
TION OP BEAMS FOUND BY THE PRINCIPLE OP WORK. FORMULAS FOR
LONG STRUTS.

Change of Shape of Neutral Axis of a Beam.—Let a beam be
deflected from its original straight line by external forces, as shown in the
figure.

Let the two sections AC and BD be consecutive plane sections parallel

before flexure and remaining plane after.

Let the length of the neutral axis of the
beam na = s, then the indefinitely small
distance ba — ds. Let (f> be the angle AOn.
Then d<p is the angle BOA.

If the deflection is small, we can take

na = s equal to x, and ab = ds equal to dx.

Let the bending moment at the point a
of the neutral axis of the beam of the ex-

ternal forces be Mx , let Sf be the stress in

the most remote fibre of any cross-section

AC at the distanee v from the neutral

axis of the cross-section at a, and / be the

moment of inertia of the cross-section AC
with reference to the neutral axis of the

cross-section at a.

Then, as proved page 288 (a), the resist-

ing moment of the fibre stresses at the

cross-section AC is — , and we have
v

8fl_ *M3x, (1)

where we take the minus sign if we take Mx for all external forces on the

left of AC, and the plus sign if we take Mx for all external forces on the

right of AC. If then Mx comes out minus, it indicates compression in the

bottom fibres as in the figure; if plus, tension in the bottom fibres.

Now the strain in the most remote fibre at the distance v from the

neutral axis, we see from the figure, is vdfi, and the unit strain is then

vd(̂
or 8ince we can take dx for ds,

v—^. The unit stress in this fibre is

ds ' ' dx
325
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Sf. Since the coefficient of elasticity E is equal to the unit stress divided

by the unit strain (page 281), we have

E = -±-, or Sf = —

-

—

.

vd<t> dx

dx

Hence we have
EId<p

dx
= *Mx (2)

But we see from the figure that -^ equals the tangent of the angle (p.

Since the deflection is very small, we can take the tangent as equal to the

arc, and hence <p =—. Therefore d<p == -X, and hence, from (2),
» dx dx

EIp-=TMx (3)
cmr

From similar triangles we also have vd<p : v :-. ds : p, where p is the

radius of curvature at a. Since we can take dx for ds, we have —se-
nd p

Hence, from (2),

- = TMX (4)
P

We have then

M= ?I= lSIpL=*M, (I)
v p dx*

These are the fundamental equations of the theory of flexure.

The first of these equations, (1), we have already deduced in the pre-

ceding chapter, page 288, and have used it to find breaking weight and
shape for uniform strength for ordinary cases of beams (page 299). From
(4) we can find in any case the radius of curvature of the beam at any
point. From (3) we can find the deflection at any point of a beam. Equa-
tion (3) is then the differential equation of the curve of deflection.

Thus by the application of one or the other of equations (I) all ques-

tions of flexure can be solved.

Assumptions of the Theory.—The assumptions upon which the
theory of flexure as expressed by equations (I) rests should be clearly

recognized. Thus we have assumed

:

1st. That the deflection is very small, so that we can put x for s, dx

for ds, ^ for 0.
dx

2d. That a section plane before flexure remains plane after flexure.

3d. That the elastic limit is not exceeded.
4th. That the coefficient of elasticity E is constant.

Upon these assumptions the theory rests. Comparison of its results

with the results of experiment shows that within the elastic limit the
theory is reliable.

Application of Equations (I).—The first of equations (I),

V

we have already seen how to apply in the preceding chapter.
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The second of equations (I),

EI i m— = =F Mx ,

P

needs no special explanation.

The third of equations (I),

"3?=** w
requires a little general explanation before we proceed to its special ap-
plications.

In equation (1), El-r^ is the resisting moment at any cross-section,
tJUm

that is, the algebraic sum of the moments of the fibre forces in the cross-

section at any point with reference to the neutral axis of that cross-section.

These fibre forces are always considered as belonging to that portion of the
beam on the left of the cross-section. The bending moment, or the alge-

braic sum of the moments of all the external forces either on the right or
left of the cross-section at any point, is denoted byMx . We always con-
sider a moment positive when it tends to cause counter clockwise rotation,

and negative when it tends to cause clockwise rotation. In any case, then,

we can write the algebraic sum denoted by Mx with the proper sign for

each term, whether we take Mx for all forces on the left or on the right.

We then use in (1) the minus sign when Mx is taken for all forces on the

left, and the plus sign when Mx is taken for all forces on the right, of the

cross-section at any point.

Thus, for example, take a beam AB of length 21, resting on the support

C at its centre, with a load W at each end. The upward reaction is then
2W. Let ACB represent the slightly

deflected neutral axis of the beam

.

For any point P' of the neutral

axis of the beam distant x from the

left end A we have, taking the alge-

braic sum of the moments of all ex-

ternal forces on the left of P',

Mx = + Wx,

where the plus sign indicates counter-clockwise rotation. If, however, we
take the algebraic sum of the moments of all external forces on the right

of P', we have Mx = — W(l + I — x) + 2W(l — x) = — Wx, where the

minus sign denotes clockwise rotation. In the first case we use in (1) the

minus sign, in the second case we use in (1) the plus sign. We therefore

write for both cases, as we evidently ought to,

EI^- = - Wx.
dx 1

Again, take any point P distant x from the right end B. Here we
have for the algebraic sum of the moments of all external forces on the

left of P
Mx = W(l + I - x) - 2 W(l — x) = + Wx,

and for the algebraic sum of the moments of all external forces on the

right of P we have Mx = — Wx. In the first case we use in (1) the minus

sign, in the second case we use in (1) the plus sign. We therefore again

write for both cases

EI^l = _ Wx.
dx1
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We obtain then in any given case the same expression from (1) for

EI—^,, or the resisting moment of the fibre forces of the beam on the left
e£c

2

of P, no matter where we take P, and no matter whether we take Mx for
all forces on the left or right of P.

The minus sign for Wx in the present case denotes compression in the
lower fibre. If the sign had come out plus, it would denote tension in the
lower fibre, because in each case the sign gives the direction of rotation of
the fibre moments of the beam on left of the section. This is in accord

(Pv
with the principle of the Differential Calculus that —- is minus or plus

dx*
according as a curve is concave downwards or upwards. In the present
case the curve of deflection is concave downwards.

The vertical shearing force at any section (page 283) is the algebraic

sum of all the vertical forces on the left of that section. At any cross-

section whose abscissa is x the bending moment is Mx and the vertical

shear is Vx . At the next consecutive section the moment is

Mx + dMx = MX ? Vxdx, or ^L = x Vx.
dx

Hence from (1) we have

-S-^-i". <*>

where the minus sign is taken when dx is negative and the plus sign when
dx is positive.

If we put -—— = 0, we obtain the value of x for which Mx is a maxi-
ma;

mum or a minimum. Hence the bending moment is either a maximum or

a minimum at the point where the shear is zero.

If we integrate (1), we obtain

n
*y o

2-*y«* + o-*

When x = 0, -^ is the tangent t of the angle which the tangent to the
dx

curve at the origin makes with the axis of X. Hence Const. = t and

dV - / x /
Mxdx m

*-*V. "^

If we put— = or, from (1), Mx = 0, we obtain the value of x for
dx7

which ^ is a maximum or a minimum. Hence the tangent to the curve has
dx

either its maximum or a minimum inclination at the point where the bend-

ing moment Mx is zero.

If we integrate (3), we obtain

<X pX

y = tx* I dx I —^ + Const.

o »y o
EI
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For x = 0, y is the deflection y at the origin. Hence Const. = y« and

Mxdx
y = tx + y T

t/0 t/o
EI (4)

dy
If we put ~ = 0, we obtain the value of x for which y is a maximum

dx
or a minimum. Hence the deflection is either a maximum or a minimum at
the point where the tangent to the curve is horizontal.

Let us now apply these principles to special cases.

Case 1. Cantilever Beam—Fixed Horizontally at One End—Load
W at the Other End.—We have already seen how to find the breaking
weight and shape for uniform strength in this case (page 299). It remains
to find the deflection.

(a) Deflection—Uniform Cross-section.—Let the beam of length AB
= I be fixed horizontally at one end B and carry the load W at the other

end A. Take the origin at the end D before

deflection, and let x be the distance to any
cross-section at P.

We have then for the bending moment at

any point Pof the neutral axis, taking moments
on the left of P as in the figure, Mx = + Wx.
Hence, from (I), page 326,

= EI
dx'

= — Wx.

If the cross-section is constant, I is constant,

grating (1),

dx

Integrating (2), we have

2

Wx3

, (1)

We have then, by inte-

(2)

Ely = — + dx + 0*.
o

(3)

The curve APB must pass through B, and the tangent at B must be

horizontal.

= I in (2).

Hence we must have y = for x = I'm (3) and — = for x
dx

WP
If then we make -f. = and a;

dx
I'm. (2), we have fr = + —-.

Wl*
If we make y = and x = I in (3), we have Ca = ^-. Substituting

8
these values of the constants of integration in (2) and (3), we have

EI
d^W
dx 2

V vv "

Ely = - ™(2l + x)(l xy

(4)

(5)

Equation (4) gives the tangent of the angle which the tangent to the

curve at any point makes with the horizontal. Equation (5) gives the

deflection y for any point P of the neutral axis distant x from the free end.

The maximum deflection A is evidently at the free end. Making, then,

x = in (5), we have for the maximum deflection

J = -™L (6)
BEI

W
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The minus sign shows that the deflection A = AD is downwards or
below the horizontal through the origin D. From (6) we can find the
deflection for any form of cross-section, according to the value of I. Thus

for rectangular cross-section of breadth b and height h, 1 = —bhs (page

277) and
4WZ3

~~ Mh*'

[The student should solve this case taking the origin at B, C and A.
He should also draw the figure with the load W at the right end and take
the origin at A, B, C and D.]

(6) Deflection—Beam of Uniform Strength.—If the beam is of uni-
form strength, I is no longer constant. Suppose, for instance, a rectangular
cross-section, the breadth and depth at the fixed end being b x and hu
Then for constant height we have (page 300) for the breadth b at any point

x x
distant x from the free end b = bir. Hence /= — bihi

3-, and from (1)
I 12 I

K *

we have

-mx =^=-^l a)x
dx* EbM w

Integrating this we have

dx-^Eb^ + U (2>

y=- Q

Ij? + c>* + c> <3>

Making — =0 for x = I in (2), we have C =
%

; and making y =

6 Wl3

fovx = l in (3), we have C, = — . Hence
-fc/Oilli

dy 12WI n

•—a©*-* <5)

The greatest deflection is at the free end and equal to

* = -EW' <6>

or — times as much as for beam of constant cross-section.
2
If we take the cross-section rectangular and the breadth constant, we

have (page 301) for the height h at any point distant x from the free end

h = hii/-. Hence /=

—

hhSy — , and

_d*y_ \2WWl
'

x ~ dx*~ Sbihi'Vx'

Integrating twice and determining the constants of integration as
before, we obtain

dx JEbihA '
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For the greatest deflection at the free end we have

j 8Wl>

Ebthx*

or twice as much as for beam of constant cross-section.

For similar rectangular cross-sections we have (page 301) b = a/

h = ^/
h
-^. Hence I=~ bji^ty* , and

bi'x

dx*

\2WlVl
3 —

EbihS yx

Integrating twice and determining the constants of integration as before,
we have

y = -

dx Ebihi

18 Wl
(2? - 5te + 3 tylx").

5Ebih! 9

For the greatest deflection at the free end we have

A _ 36TFZ»

SEbihf
'

or nine fifths as much as for beam of constant cross-section.

2 1
The volume of the beam in the first case is - , in the second case —

3' 2
g

and in the third case — of the volume of a rectangular beam of uniform

cross-section. Hence the deflection at the end for a rectangular beam of

uniform strength is proportional to the volume of the beam.

Case 2. Cantilever Beam—Fixed Horizontally at one End—Load
Uniformly Distributed.—Here again we have already found the breaking

weight and shape for uniform strength (page 302). It remains to find the

deflection.

(a) Deflection—Uniform Cross-section.—Let w be the load per unit of

length uniformly distributed, I the length AB
of the beam, and take the origin at the end D
before deflection.

Since we can take the load wx as acting

x
at its centre of mass or at a distance — from

P, we have for the moment at P
X wx*Mx = wx x - = -£-,

and from (I), page 326,

x
da? 2

(1)
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If the cross-section is constant, i" is constant. "We have then by inte-

grating (1)

Tr,r.dy wx3 _

E'y = - Tnr* + c'x + ft <8>

The curve APB must pass through B, and the tangent at B must be

horizontal. Hence we have y = for x = I in (2) and — = for x = I in
ax

(3). The constants are then & = -| & =—— and

"3HJ*-*! »

^=-^(a;«-4Z8
a; + 3Z4

) (5)

The maximum deflection is at the free end and equal to

A _ jwP__ WP
~ SEI ~ 8EI

if we put the load wl = W, or only - as great as for an equal load at the
8

end.
[The student should note this case, taking the origin at B, C, and A.

He should also draw the figure with the fixed end on left and take the
origin at A, B, C and B.]

(o) Deflection—Beam of Uniform Strength.—For uniform strength
I is not constant. If we take the cross-section rectangular, the breadth
and depth at the fixed end being bi and &i , we have (page 303) for con-
stant height for tbe breadth o at any point distant x from the free end

j. i ^ tt t bihi*x* ,

b = bi—. Hence 7=-^^- and

dx* Ebihi*

Integrating this twice and determining the constants of integration as

before, we have

dy _ 6wF
dx~Eb,h/ "''

The deflection at the end is then

Swl*
A = -

Ebihi"

or 24 times as much as for the same beam of constant cross-section. In
the same way we can find the deflection for breadth constant and for

similar cross-sections.
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Case 3. Horizontal Beam Loaded with W between the Supports-
Constant Cross-section. — Let I

be the length of the beam, z x the Wff-gfl
distance of W from the left end,
and take the origin at the left end.
(For breaking weight see page 305.)

The reaction at the left end is

W(l — 8i)
, and we have from (I),

page 326, for any point P of the D
fr
—

—

<aa-

neutral axis distant x from the left

end,
,

when x <Zi

when x> Zi

dx2
I I

Wzix

-M^BI^ + ^Illx-Wix-z^Wz,-^.
If the cross-section is constant, / is constant.

Integrating (1), we obtain

. -n-rdy Wx* WZlX* _,

Integrating (2), we obtain

for x > Zi El-r
da

Integrating again, we obtain from (3)

for x > ft EIp- = Wz.x - ^1 4
dx

for x < Zi Ely =

and from (4)

for x > ft Ely =

Wx'

Wzix*

21

Wzxx3

6Z

Wz tx*

61

+ CiX + ft

,

+ dx + ft.

(1)

(2)

(3)

(4)

(5)

(6)

The curve APB must pass through A and S. and each portion AP and
PB must have a common tangent and deflection at P. Hence we must

have y = for x = in (5) and x = I in (6). Also when x = Zi, — in
aa;

(3) must equal y- in (4), and y in (5) must equal y in (6).

If then we make x = and y = in (5), we find Cs = 0.

If we make x = I and y = in (6), we obtain

ft + ft* = - -^p.

If we make a; = z x in (3) and (4) and place the two values of ~
equal, we have

ft — ft — Wzi2

If we make a; = Zi in (5) and (6) and place the two values of y equal,

we have

(ft - ft)* - ft = -^.
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Hence we find, for the constants of integration,

* WzS Wzd Wzx* n Wzd WzS „ WzS
Cl = ~2 3

6T'
°i = 3 6T'

C8 -°' U -"6~-

Substituting these, we obtain

for x < 0, Elijt = Z£p£L>
(3a? - 2lz> + ^ 1

3
); ... (7)

for a > *i J?Z^=^i(6Za;-3a;a -2r'-^); ... (8)

for x < 0i £Ty = J^-Z-^ar1 - 2Z*, + Zx
8
); ... (9)

6i

for a; > 0, Ely = WZl{l ~ ^
(x* - 2lx + zS). . . . (10)

If we make x = Zi in (9) or (10), we have for the deflection dw at the
load

A WzSzS
4»m " ~zeTT^

where Z\ and z* are the distances of the load from the right and left ends.

The deflection at the load is evidently a maximum when z x =,?., = -
, that

is, when the load is at the middle of the span. In this case the tangent
at the middle is horizontal. When the load is not at the centre of the

span, the maximum deflection will evidently be at the same point C in the
figure between the load and the farthest end.

Let the distance of this point from the left end be m. If then Zi is less

than -, m is greater than §u If Zi is greater than -, m is less than zu If

then we put — in (8) equal to zero, we have for the distance m from the
dx

left end to the point C at which the deflection is a maximum,

when Zx < - m = I - 4/-(21 — Zi)Zt (11)

If we put -^ in (7) equal to zero, we find for the value of x which

makes the deflection a maximum,

when Zx > - m = {/ - (21 — Zi)zi (12)
2 ' o

The distance I — m from the right end in this case is the same as the
distance from the left end in the first case, if Z\ in (12) is taken equal to z*

in (11).

If we substitute the value of m in (12) in the place of x in (9), or the
value of m in (11) in the place of x in (10), we have for the maximum
deflection,

when0 1
>i J=- Wz^- Z^ V^W^O; . . (13)

when 0^1 A=- We"£*- *Va0.(M-0.). . . (14)
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If the load Wis at the middle of the span, z1= za =z -, and from (7)
2

and (9) we have for any point between the left end and the centre

My = Wx
IS (-?)•

The maximum deflection is at the centre and equal to

Wl3

A = -
48EI'

(16)

(17)

or only - as much as for a beam of the same length fixed at one end and

loaded at the other.

Case 4. Horizontal Beam—Uniformly Distributed Load—Constant
Cross-section.—Let w be the load per unit of length uniformly distributed.
Take the origin at the left end A.

Then the reaction at each end is

— ; and since we can take the load wx

as acting at its centre of mass or at a

distance of - from any point P of the

neutral axis, we have for the bending
moment at that point

nr wl xMx =——x + wx x —.
2 2

Hence, from (I), page 326,

-Mx =Mp{ =
da?

wlx
~2~

WX*
~~2~ (1)

If the cross-section is constant, I is constant. For x = we must have

0, since the curve passes throughy = 0, and for x = — we must have ^*
2 dx

A and B and the tangent is horizontal at the centre C. Determining the

constants of integration by these conditions, we have, by integrating (1),

jpr
dy _ wlx* _ wx* _wP
dx~ ~4~

($ 24*

Integrating (2), we have

y
12

wx*
~24~

wl*x

~2T'

(2)

(3)

The maximum deflection A occurs at the centre for x = —
; hence

A = - 5wl*

384#i"'

or only — of a beam of the same length fixed at one end and uniformly
128

loaded. (For breaking weight see page 305.)
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Case 5. Horizontal Beam Supported at Ends—Constant Cross-

section—With Two Equal Symmetrically Placed Loads.—Let the

beam AB of length I support two loads

W, W placed at equal distances z, z from
the ends.

The reaction at each support is then
•B W, and the maximum moment is at the

centre and equal to Wz.
For the breaking weight, then, we

have

Wz =

where 8r is the coefficient of rupture (page 288).

We have from (I), page 326,

or W=—

,

vz

iorx<z -Mx = EI^X = Wx\
dar

for x > z -Mx = EI^ = Wz.

(1)

(2)

If the cross-section is constant, I is constant. Since the curve passes
through A and B and is horizontal at the centre, we have y = for x =
and— = for x = -. Hence, integrating (1), we have

(tX id

* ^ -n,rdy Wx* n
dx 2

EI*0- = Wzx
dx

Integrating (2), we have

for x > z

Integrating again, we obtain from (3),

for x <: z

and from (4),

Wzl

2

Ely = 2^ + Cix,
D

for x > a

dy

„r Wzx1 Wzlx
, nEIy =~2 2- + °>

(3)

(4)

(5)

(6)

When x = z,
-f.

in (3) and (4) must be equal. Hence we have

„ Wz1 Wzla—t~tp
Also, when x = e, y in (5) and (6) must be equal. Hence we have

Substituting these values of the constants of integration, we have

for x < g
dx 2

W<r
Ely = -^(a!J - Zh + 32s);

6

(7)

(8)
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tovx>z *Tdy

Wz
Ely = r

-L.(Za* - 3lx + s
J
). .

The maximum deflection is at the centre and equal to

Wz

337

(«)

(10)

A =
21EI(8P-4f) (11)

If the loads are uniformly distributed over the distance z* — zlt instead
of being concentrated, we can put
wdz in place of W. Equation (11)

A/K " * 7*8
then becomes

/wzdz ,-_ . _

Mei^~^
If we integrate this between the limits s„ and Hi, we have for the

deflection at the centre

A = -
4HEI

8P(* ! -8 l
a)-2(V-s 1

4)~|. (12)

If the load covers the whole beam, aa = -r, z\ = 0, and we have
2

A = - 5wl*

384^/'
as already found.

Case 6. Horizontal Beam Fixed at one End and Supported at the
Other—Constant Cross-section

—

Concentrated Load.—Let I be the
length of the beam, z x the distance

-" Ifi
°f ^QG l°ad W from tne supported
end, z, from the fixed end. Take

| the origin at the fixed end and let

Hi be the reaction at the supported
end A.

Then from (I), page 326, we
have

fora;>ga -Mx = EI^ = B1(l-xy, (1)
UUJJ

for x < z* -Mx = EI-^ = Btil — x)— W(z* - x). . . (2)

For constant cross-section 7 is constant. Integrating (1), we have

forz>s2 mdf=Kilx-— + C1 (3)
dx 2

Integrating (2), we have

iorx<z, EJ^ = H1lx^— -Wztx + ^- + Ca . ... (4)
dx 2 2

Integrating again, we obtain from (3),

for x > z, Ely = Rdx* _ Btx'

2 ~ 6
+ dx + G, (5)
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and from (4)

for x < zt

VT R.lx1 Six' Wztx* Wx>
, n -

Ely = — — +— + C*x + &. . . . (6)

The curve APB must pass through A and B, have a horizontal tangent
at B, and each portion from A to W and W to B must have a common
tangent and deflection at the load W.

Hence we must have y = for x = in (6) and x = I in (5). Also~
= for x = in (4); and when x = zt ,

-^ in (3) must equal -^ in (4),
dx dx

and y in (5) must equal y in (6).

If then we make x = and— = in (4), we have & = 0; and if we
dx

make a; = and y = in (6), we have C* = 0. If we make x = I and y =
in (5), we have

o

dy
If we make x = x% in (3) and (4) and place the two values of -r- equal,

we have

If we make x = z% in (5) and (6) and place the two values of y equal,

we have
Wz**

Ciz, + a = - —-.

We have then

C3 = + —— and iJ, = ^r-(3Z - z»)-

Substituting these values, we have

f0TX>z* BI^- = ^-[(2lx-xt)(Zl-z,)-2P]; ... (7)
dx 4r

for a; < s, EI^ = ^[zt\2l - x)(Zl -gt ) - 2l\2z,- x)]; . (8)

for x > s, ^/y = -^L[(3Ja? - s*)(3Z - «,) - 2l\3x - «,)]; (9)

Wx*
for a; < s, #iy = _[V(3Z - z)(3Z - 2,) - 2Z,

(32, - x)]. (10)

If we make x = 2, in (9) or (10), we have for the deflection Aw at the
load

Wzo 3

where z* is the distance of the load from the fixed end. This deflection at

the load is a maximum when 22 = 1(2 — \/2).

If 22 is greater than this, the maximum deflection will be at some point
C in the figure between the load and the fixed end. If 2a is less than this,
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the point C will be between the load and the supported end. Let the dis-

tance of this point from the fixed end be m. If then we put ~- in (7) and (8)

equal to zero, we have for the distance m from the fixed end to the point
C at which the deflection is a maximum,

when ^ < Z(2 - V2 ) m = l-l V \~ **
; (11)

' ol — z%

***>*-«* ™=
Jtlvl-\) (12)

If we substitute these values of m in the place of x in (9) and (10), we
have for the maximum deflection

when 2,<Z(2- <*) A = -^(l - z,^

^

when*2 > U2-V2) A = - ^ 8
(? - *0(^ - *,)'

..

(13)

(14)

These values of A are themselves a maximum and equal when

z% = 1(2- 4/2) = 0.58575Z.

The greatest possible deflection is then at the load when the load is at

a distance of about 0.5862 from the fixed end.

This greatest possible deflection is

47094Wl3

~ 4800000.EZ"

'

47
or only about—— as much as for a beam supported at both ends.

g
If the load is at the middle of the span, we have Ri = — W, instead of

lo

r-Was it would be for a beam supported at the ends; and since in this case
a

s» = jj-7 < 1(2 — V2), we have, from (11) and (13), the maximum deflection
S3

at a distance from the fixed end x = tA and equal to

Wl9

A = ~ 48 |/5J£/'

or only —— as much as for beam supported at the ends.

4/5

There is evidently a point between the load and the fixed end for which

the moment is zero.

This is the point of inflection. At this point the curve changes from

concave to convex. If we put equation (2) equal to zero, and insert the

value of Rx , we obtain for the distance of the point of inflection from the

fixed end
lzi(2l — z,)

21* + 2lZt - zf

3
If the load is at the centro of the span, this becomes — I.

(15)
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Breaking Weight.—Rupture will occur where the moment is greatest,

that is, either at the load or at the fixed end.
The moment at the load is, from the figure page 397,

— .RiSi = Hit* — Ril.

The moment at the fixed end is

Wz, - Ril.

Now W is always greater than R t , and hence Wz, is greater than RiZt.

The moment is therefore greatest at the fixed end.
Inserting the value of R, , we have for the moment at the fixed end

w WzS, QJ S,I

where 8r is the coefficient of rupture and v the distance of the most remote
fibre from the neutral axis. Hence the breaking weight in general is

W= 2SrI7t
(16)

The moment at the fixed end is a maximum for

.4226Z.*=<i-*4H-
This maximum moment at the fixed end is then

and the least breaking weight is then

3 VHSrlW=
vl

3 i/3 . „ .

or —-— = 1.3 times as great as for beam supported at the ends.

If the load is at the centre of the span, «» = — I and the breaking

weight is

Svl
'

or f as much as for beam supported at the ends.

Case 7. Horizontal Beam—Fixed at One End and Supported at the
Other—Constant Cross-section—Load Uniformly Distributed.—Let I

be the length of the beam, take the origin at the fixed end, and let Ri be
the reaction at the supported end and w the load per unit of length.

Then from (I), page 326, we have, since we can take the load w(l — x
•* as acting at its centre of mass, or at a

distance from P,

.l * k
_iû J&=m_^_«tjr m

For constant cross-section / is con-
stant.

Since the curve passes through A and
B and the tangent is horizontal at B,

we must have y = when x = and x = I, and -^ = when x = 0.
ax
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The constants of integration are therefore zero, and we have by inte

grating (1)

EI^ = BJx-^- t^ +
1£^-™*

(2)
dx 2 2^26 J

Integrating (2), we obtain

_ Ril® 1 Ri%* wPa? wlx* wx* ,„.

V ~
~

2 6
4~~ + ~6 24~* '

l '

Since for x = I, y = 0, we have from (3)

.Ri = —wl,
8

instead of —wl as it would be for a beam supported at the ends.

Inserting this value of JKi in (2) and (3), we have

EIdJt=- — (QP- 15lx + 8x*); (4)
dx 48

EIy=-~(l-x)(M-2x) (5)

Putting (4) equal to zero, we have for the distance of the point C from
the fixed end at which the deflection is a maximum

15--4ffii or m = 05785l
16

The maximum deflection itself is then

39 + 55*/33 wl*
J = -

16 4 EI

'

If we put (1) equal to zero, and insert the value of J2i, we have for the

distance of the point of inflection from the fixed end

x — -I.
4

Breaking Weight.—If we insert the value of Ri in (1), we have for

the moment at any point

wP wx is1 . x- Mx = - -g- + -j (SI— 4a).

wP
This is a maximum when x = 0. The maximum moment is then —

b

at the fixed end. We have then

wP _SrI
8 " v '

or the breaking weight

8SrI
wl =

Yl
'

or — as great as for the same load in the centre, and just the same as for

beam of same length and load supported at the ends.
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Case 8. Horizontal Beam Fixed at Both Ends—Constant Cross-

section—Concentrated Load.—Let I be the length of beam, Zx the dis-

tance of the load W from the left end, z-i from the right end. Take the
origin at the left end and let Rx be the reaction at the left end.

-p

The left end must be fixed by a couple + F, - F whose moment Mx is

the same at every point of the beam.
Then from (I) page 326, we have

for x < «i — Mx = EI--^ = RxX — Mx
;dx3

d3v
for x > zx — Mx = EI—?- = RxX

dar

For constant cross-section i" is constant.
Integrating (1), we have

W{x - zx) - Mx.

for x < zx
nrdV RxX1

,, _
EI ~ = Mxx + Gx.

dx 2

Integrating (2), we have

for x > zx mdy = Rrf Wx3

dx 2 2

Integrating again, we obtain from (3)

+ WZxX — MxX + (7a.

for x < zx

and from (4)

for x > Zx

Ely =

EIy =

RxX* Mxx1

6

RxX3

6

2

Wx3

6

+ Gxx + C3 ,

(1)

(2)

(3)

(4>

(5)

WZxX* MxX*
+ Cux + C*. (6)

The curve APR must pass through A and R, the tangent must be hori-

zontal at A and R, and each portion from A to the load and from R to the
load must have a common tangent and deflection at the load. Hence we
must have y = for x = in (5) and x = I in (6). Also we must have

— = for x = in (3) and x = I in (4) ; and when x = Zx , -^- in (3) must
ax dx

equal / in (4), and y in (5) must equal y in (6).
dx

We have then, making x = in (3) and (5), Gx = and G3 = 0. Making
Wzi2

x = Zx in (3) and (4) and equating them, we have G-i = . Making

WzS
6

y = in (6) and inserting the values of C2 and (74 , we obtain

x = Zx in (5) and (6) and equating, we have C4 Making x = I and

dMxP = ZWTzx - 3TFZ2i 2 + RJ3 - WP + Wzx\
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Making x = I and J£ = in (4) and inserting the value of Ct we have

2MJ a 2 TF&, - IPs,* + i?,P - TFZ2 .

Eliminating Mx and .ft, from these equations, we obtain

„ _ Wz9
9
(9b 1 + z>) Ffc,W + *)m p

« * =
ji

!

Mi - —p-, Jf, = _ _F
_.

Substituting these values of i?i and if, and also the values of the con-
stants of integration in equations (3) to (6), we have

for*< 2l mfx =™^[{dZl + gi)x _ 2Slq ; (7)

dv W riovx>z1 EI^ = ^\{te l + z>Wxt -l\x-z ly-2z,zSlx~\\ . (8)

for a < a, EIy = -Z_l±[(8i, + e,)x — 3siZl; (9)

for x > 3, Ely = -^-[(S* +^V — ?(* — «0* — 8«i*i*fo?]. . (10)

If we make x = zx in (9) or (10), we have for the deflection Aw at the
load

. WziW
^-"Wei'

where z x and 2a are the distances of the load from the right and left ends.

The deflection at the load is evidently a maximum when zx = zt = — , or
2

when the load is at the middle of the span. If the load is not at the centre
of the span, the maximum deflection will be at some point C in the
figure between the load and the farthest end. Let the distance of this

point from the left end be m. If then *i is greater than — , m is less than
2

zi ; and if Z\ is less than — , m is greater than zx . If then we put -?- in
2 ax

(7) and (8) equal to zero, we have for the distance m from the left end to

the point C at which the deflection is a maximum,

. I 2zd „«.whenz,>- m= ; (11)
2 oZi + Zi

whens, <- m = \ (12)
2 oZi + Z\

If we substitute these values of m in the place of x in (9) and (10), we
have for the maximum deflection

1. ^ l A 2WZnW /1Q .

when ft >- ^•-__
nff1

(13)

when*,<I *~<- i™%>at <14>
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These values of A are themselves a maximum and equal when

2-^ — 2^ = -. The greatest possible deflection is then at the load when the

load is in the centre and equal to

A m*

192^/

or only one fourth as much as for a beam supported at both ends.

If we put (1) and (2) equal to zero, we have for the distances of the

oints of inflection

. . . (15)x = and X
"jcti/

32 1 + z* Sz3 + Zi

If the load is at the centre, we have

x = * and X
4

Breaking Weight.—We easily find the greatest moment to be at the

end nearest the load and equal to

Wzxzf _ SrI
P ~ v

'

where Zi is the distance from the load to the nearest end.

Hence the breaking weight in general is

SrlPW=
VZiZ,

(16)

The moment at the nearest end is a maximum for z t = - Z, and the least
3

'

breaking weight is then

17= 278rI

27
or — times as great as for a beam supported at the ends.

If the load is at the centre, we have

88rlW=
vl

'

or twice as much as for a beam supported at the end.

Case 9. Horizontal Beam Fixed at Both Ends—Constant Cross-

section—Load Uniformly Distributed.—Let I be the length of beam, to

the load per unit of length, and take the origin at the left end. The reac-
/U)h

tion at each end is evidently — . The ends must be fixed by the moments

Mi , M,. We have then from (I), page 326,

-M^EIp-^x-^-M,
dx* 2 2

(1)
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For constant cross-section i" is constant. Since for x = 0, y and — are
dx

zero, we have, integrating (1),

and integrating (2),

dx 4 6
(3)

y
12 24 2

,

w
For a; = I, -2 = 0, and we have from (2) and (1)

dx

Substituting the value of Mi in (2) and (3), we have

«2—t£-*-«* «

-B/y = -^«-*)' (S)

Putting (4) equal to zero, we have for the point C at which the deflec-

tion is a maximum, m = -. The maximum deflection is then
2

A _ wl4

~ 384^/'

or only one fifth as much as for the same beam supported at the ends.

If we put (1) equal to zero, we find for the distances of the points of
inflection from the origin11 11

x = -, x —— =
3 2^3 2 2|/3'

or x = 0.2113? and x = 0.7887Z.

Breaking Weight.—The greatest moment is at the fixed ends. Hence

12
~~

v
'

and the breaking weight is

wl =
vl

or — as much as for beam supported at the ends.

Deflection of a Framed Structure.—Let a framed structure as shown
in the figure be acted upon by the loads Wi, Wa , W3 ,

applied at the

apices b, d, /, and by the reactions Ri
(
w

and R-x at A and B.
Let the deflection A at any apex c,

loaded or unloaded, be required.
Suppose a load w of any convenient

amount placed at that apex. Let the
cross-section of any member, as ab, be a,

its length Z, and its stress due to the

total loading, including w, be S. Then its unit stress is - ; and sinceE is

?' a *c e o 5
. A
vVnA
f r ¥
w, w, w,



346 APPLICATIONS OF STATICS. [CHAP. III.

equal to unit stress divided by unit strain (page 281), its unit strain is—
aE

and its entire strain due to the total loading, including w, is —-

.

aE
• Now let s be tbe stress in the same member ab, due to w considered as

acting alone. Then, since work = - stress x strain, we have for the work
9

on that member due to w alone, —=,.
' 2aE

The work on all the members due to w is then "^—— . But if A is the

deflection at c, this work must be equal to -^. We have then

wA _^
~2~ ~<

We can thus find the deflection at any apex c, loaded or unloaded.

Whatever value we assume for w, the ratio -— for any member will be the
w

same, since the stress increases with the load. It is therefore convenient
to take w unity.

Example.—Suppose a girder consisting of two inclined rafters Ab and
Be, 5 ft. long, and two vertical ties bf and ce, 4 ft. long ; an upper chord
be, 5 ft. long, aud a lower tie consisting ofAf fe and eB, 3 ft., 5 ft. and
3 ft. long respectively. Let there be a diagonal brace fc whose length is

6.4 ft. The loads at f and e are Wi = 5 tons, Wt = 10 tons. Find the

deflection at e, takingE = 12500 tons per square inch and the area of cross-

section of each member as given in the following Table.

Ans. We easily find (page 106, Example (4)) the stress 8 in tons in each
6 5 c member due to the total loading,

also the stress s in tons in each
member due to one ton at e, as given
in the Table, (— ) signifying com-
pression and (-(-) tension.

The columns for —- and — are
>ch a

then easily filled out. Multiplying
these for each member and adding,

wi=5Tons Wj=lOTons we find the deflection at e, A =
0.1627 inches.

In the same way we could find the deflection at / by supposing w = 1 ton

at /and placing the corresponding stresses in tbe fifth column, and the corre-

Ss
sponding values of — in the eighth.

Observe that in such case s for tbe member cf would be (-f) or tension, and
8s Ss— would be (— ), while all other values of — would be (-}-). Care should
a a
therefore be taken in any case to observe the signs in columns 4, 5 and 8

The stresses S due to total loading are, strictly speaking, slightly changed
by the change of shape. This can, however, be disregarded without percepti-

ble error, as the deflection in all practical cases is very small. When it is not,

a second approximation can be made by finding s and S for the new shape. The
strain due to bending of compressed members is also neglected. The coefficient

of elasticity E is assumed constant. All pins, if any, at the apices are presumed
to fit tight, and all adjustable members, if any, to be properly adjusted.

A girder after erection may then be tested by calculating the deflection at

5/
4

5

4
\m

«* 3

]

3 *"
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the centre for a given loading and comparing with the actual deflection for this
loading.

A good agreement is thus a test of the close fit of all pins, of the proper
adjustment of all adjustable members, of the agreement of the lengths and
the areas of members with those called for by the design, of the constant value

Mem-
ber.

Length

in
inches.

E
in tons
per

square
inch.

8
in tons. in

s

tons.

Area
of

Cross-
section

a
insqin.

2

wE
Ss

a

A
in inches.

Ab 60 12500 - 7.954 — .341 1.85 ¥§T 4-1-46616 1

be 60 12500 - 4.777 - .2045 1.00
3 + .97689 > 0.0371

cB 60 12500 -10.795 - .9091 1.85
3

T2T 4-5.30472

Be 36 12500 + 6.477+ .5454 1.5
9

¥l2T 4-2.355037 1

ef 60 12500 + 6.481 + .5454 1.5
3

4-2.356491 }-0.0979

u 36 12500 + 4.777 + .2045 1.5
9

3125 4- .651264
1

¥ 48 12500 + 6.363+ .2727 2.0 60
T"5T"B" 4- .867595 1

ce 48 12500 + 8.636 + 1 .00 2.0 60
15 65 4-4.318

Y 0.0277

cf 76.84 12500 - 2.182 — .4366 0.75
76-84
12500 4-1.270215

1

A = 0.1627 inch.

of E and its proper assumption as to magnitude, and finally of the fact that the
limit of elasticity is not exceeded by the loading.

It is evident that when so many conditions must concur, a discrepancy be-
tween the observed and the calculated deflection has little practical significance.

The last-mentioned fact, that the limit of elasticity is not exceeded, is the most
important, and this is proved, not by close agreement between the actual and
the calculated deflections, but by the fact that the deflection is found to remain
constant under repeated applications of the loading after the structure has at-

tained its permanent set from the first application. Calculations of deflection

are then of little value as a means of testing framed structures.

Deflection of Beams found by the Same Principle. — We can
make use of the same principle of work in finding the deflection of beams.

Thus let APCB be the curve of the neutral axis of a deflected beam
and let the tangent to the curve at the point C be horizontal. Take the
origin at any point D1 in the horizontal through C. Let Z\

, y x be the or-

dinates of the point A at which curvature begins, the portion A'A, if any,

being straight and tangent to the curve ACB at A. Let m be the distance

of the point C from the origin, and let x, y be the ordinates of any point P
of the curve. Let the moment at P of all the outer forces left or right of

P be Mx . We can replace the moment Mx by the couple whose forces

— and + — act at A and P respectively. The force -\ —
X — Zi X— Zi X — Z\

at P is the stress which resists deflection at P. Since work is equal to

£ stress x strain (page 281), the work of overcoming this resistance is

——. Since y is positive above and negative below the horizontal jyc
4>\X — Z\

)

and Mx is positive when counter-clockwise, if we take Mx with a minus
sign on the left of P and a plus sign on the right of P we shall always
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have
Mxy
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positive. Now the couple whose forces +

[chap. III.

Mx Mx

2(x — Z\)~ ' x — Zi x — Zi

act at P and A strains the fibres above and below P in the cross-section

at P. We have then

work of straining all) i total work on all

T rj

—

~* + { the fibres in the > = < the fibres between } . (A)
t(x — Zx)

l cross.section at P S f P and C

Mxy

For any fibre of the cross-section at P at any distance v above or

below the neutral axis the unit stress (page 326) is —j—. Since E is

equal to unit stress divided by unit strain (page 281), the unit strain of the

d 1-*-

.Mx
X-Zi

-B\

fibre is ——. If a is the cross-section of the fibre and dx the distance to
EI

the next consecutive cross-section, then —— is the stress, and
/ ' EI

is the strain of the fibre between two consecutive cross-sections.

The strain of the fibre limited by the cross-sections at P and C is then

£Mxvdx

ElT'

and its work is

Mxva

~2I
*J x

Mxvdx Mxai? Pm

/: Mxdx.

Since 2a«* = 2, the work of straining all the fibres in the cross-section

at Pis

2ElJx
M* dx.

Again, the work of straining the fibre between two consecutive cross-

sections is

Ma&a Mxvdx av^M^dx
x

21 EI 2EP

Since 'Satf = I, the total work on all the fibres between P and C
is then

1 pm

ml md*-
2E1
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We have then, from statement (A), for any point P between A and C

Mxy 1 /*»» Mx Pm
*$&=;;) = miJ,

M* dx--mJx M*dx-

Hence

T Mx{x — Zi)dx — {x — Zi) I t Ma
tlx

have

dy p™

dx. (I)

Differentiating (I), we have

dy
(1)

Differentating again,

which is the same as equation (I), page 326.

If in (I) we make x — Zi, we have for the deflection at A

yi = YiJ T M*(x ~ z^dx'

and from (1) for the tangent U of the angle A'AD" which the tangent at A
makes with the horizontal

' Mxdx.
z,

We have then for the deflection for any point of the straight portion A'

A

1 Pm X — Zi S*™
y = yi + (x — z x)U = -gj / * *K<" - z^x — EI J T Mxdx,

or

T !/"*(# - ^i)<fa? — (x — Zi)l qp J/"*^. II)
t/2!

In (I) and (II) Mx is always the moment at any point P of the curve

between A, where curvature begins, and 0, where the tangent is horizontal.

The (— ) sign is taken when Mx is taken for all forces on the left, and the

(+ ) sign for all forces on the right.

The application of these equations will give us

the same value for the deflection as already ob-

tained.

Take the case of the cantilever beam of uni-

form cross-section fixed horizontally at one end,

with load W at the other end. Here m = I,

zx = 0, and for W on left of P, Mx = + Wx.
From (I), then,

Ely = J
— Wx*dx + x I Wxdx.

Integrating, we have at once

WT Wx* WPx xW
~3~ +

3
+

2 ~~ 2
EIy =

W
(2Z» - SFx + x>),
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which is the same as already found, page 329. If x = 0, we obtain for
the deflection A = DA at the end

EIA =- Wll

% Hence if we take the origin at A, we
*j have

W
ffly = ~(3Fx-x*). (2)

Let the beam project beyond the load
W so that the portion A'A is straight,

and let the distance of IT from A' be z x . Here m = I, and

for Won left of P Mx = W(x - Zi).

Hence, from (II),

Ely = / — W(x - ztfdx + (x — z x) I W(x — z x)dx :

Ely = - ~y[2 (1 ~ z0> - B(l - Zi)\x - *)T

If x = 0, we obtain for the deflection A = DA' at the end

WF ~lEIA = -—\ 2(1 - Zif + 3(1 - Zifzi .

Hence if we take the origin at A', we have

for x < zx <

From (I) we have

for x > Zi

lovx<ZiEIy= W«-^X
. (3)

Ely = - ~^(J - ZiY - 3(1 - Zi)\x - z x ) + (x- $$•!,

Hence if we take the origin at A', we have

W
for x > Z\ Ely = 3(1 — Zxfx - (x

Let the beam be acted upon by a couple whose forces + F, — F act at
A' and A respectively. Take the origin at D.

The moment of a couple is the same at every point in its plane, and
equal to Fz = Mi. We have then in +F
this case for any point Pon the right

of D, Mx = Mi, and from (I), making £l

Zi = 0, m = I,

Ely = I — Mixdx + x I Mi

MiP „_ Mix*
Ely = £- + Milx g—

<lx.

If x = 0, we obtain for the deflection A = DA
MiP
2

"EIA = -
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Hence if we take the origin at A, we have

Ely ,, 7 Mix1 Mix /nl .

Mdx —
- (21 — x).

a a

351

(5)

Let the beam be uniformly loaded with w per unit of length, and take
the origin at JD. In this case we have for

any point P on the right of J., M =——

.

Hence from (I) taking m = 1 and Zi = 0,

wx'dx*__ / wx'dx I i

*s x «y x
2

Ely = -
24

(W - Wx + &h

which is the same as already found, page 332.
If x = 0, we obtain for the deflection A = DA,

EIA m - !£.
8

Hence if we take the origin at A, we have

w
29" (6)

By using these equations we can find the deflection for all other cases.

Thus let a horizontal beam of uniform cross-section have the load W
between the supports and take the origin

at A. The reaction at A is
W(l - zi)

I

The deflection due to this reaction at

any point between A and the point G at

which the tangent is horizontal we find

from (2), by making l = m and W— —

j
W(l - zi)

I

W(l-zi)

QEIl
(3m*x — x9

).

The deflection due to Wat any point between A and TTwhen Zi <m
we find from (3) by putting 1 = m:

W(m — z')x

2EI
'

The deflection due to IT at any point between Wand Cwhen Zx <m
we find from (4) by putting I = m :

W
6EI

r3(m — Zi)'x —(x — 2i)*l.

Wzi
The deflection due to the reaction ^Zl at B at any point between O

l
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and the right end when Zi <mwe find from (2) by putting 1 = 1 — m,
x = l-x, and W= -~:

-3b[*-*»-«-*-*]-
"We hare then, when Zx < m,

for x < zx

W(l — Zx)EIy=-
6?

(Sm*x — x*) +
W(tn — zx)*x

(7)

'or x > zx and < m

Ely = -5^* _„ + BllZL^ _^ _ ,,>, . {8)

for * > w»

-^=-^[3(* -*»)'(* -*)-<*-*)*] (9)

If we make x = w» in (8) and (9) and equate, we obtain

when zx < m m = l- j/^(P -Zx*)=l- \/^{2l - z>)z„

which is the same as already found, page 334.

If we substitute this value of m in

^ (7) and (8), we obtain equations (9) and
TA (10). page 334.

Let the beam sustain a uniformly-
distributed load of w per unit of
length.

In this case M* = - —x +~
2 2

'

From (I), if we make Zx = 0, m = -

,

2
we have

Ely-ftclx*dx v?x*dx ftrJxdx wx*dx

y
128

+
12 24 ~ 24~'

If x = 0, we obtain for the deflection A = Z>4

5*r/4E1A =
88

Hence, if we take the origin at 4, we have

wlx* trx* wPx
"24"EIy =

12 24 " 24 *

which is the same as already found, page 335.
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Let the beam be fixed horizontally at one end and supported at the
other and sustain the load W at the dis-

tance Z\ from the supported end A.
Let Ri be the reaction at A, and

take the origin at the fixed end B.
The deflection due to R x at any point

between A and B we find from (2), by
making x = I — x and W= — JBi

,

_Rj_

GEI
\SP(l — x) — {l- xf\

The deflection due to W at any point between A and W we find from
(3) by putting x = 1 — x:

W(l - gl)\l - x)

2EI

The deflection due to Wat any point between Wand B we find from
(4) by putting x = l — x:

-^j[m - zW -x)-(l-x- *,)»].

We have then

for x > Zi

my = -^[mi-x)-(i-xf]+
w^- z

^
l- x

\ (io)

for x < Zi

B,
EIy = -~\zni-x)-{l-x^)\ +

W(l-zW-x)_W
l_x_^ (n)

6L~ ,- -, .- _,j .

2

If we make x = in (11), y = 0, and we obtain

i? 1 = J?£l(3Z-z3),
21*

which is the same as already found, page 338.

If we substitute this value of Ri in (10) and (11), we obtain equations

(9) and (10), page 338.

Let the beam be fixed horizontally at one end and supported at the
other and uniformly loaded with
the load w per unit of length. Take
the origin at the fixed end B.

b The deflection due to Ri at any
point P we find from (2) by making
a — I — x and W= — Ri :

Ri

W 11—X) The deflection due to the distrib-

uted load we find from (6) by making x = l — x:

24EI
[4Z8(Z- x) -(l-x) 4~j.

Hence

Ely = - ^\m -x)-(l- xf\ + j£[4J»(l - x) - (I- xy]. (12)
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For x = in (12), y = 0, and we find i2, = -wl.
8

Substitute this value of Ri in (12) and we obtain equation (5), page
341.

Let the beam be fixed horizontally at both ends and have the load W
at the distance Zi from the left end A. Then we have at A the reaction

Rx and the moment Mu

Take the origin at A.
Then we have for the deflection due to Mi , from (5)

Mix
2EI

(21 — x).

For the deflection due to Ri we find from (2) by putting W= — Ri

:

For the deflection due to W at any point between A and W we find

from (3)

W(l - ZiYx

2EI
For the deflection due to W at any point between W and B we find

from (4)

JL[t(i -„*,-(* -,,)•].

Hence, for a; <Zi

my=-^(3rx-x>}+^(2l-x} +
Wd-Zifx

(13)

for x > Zi

Ely = - Q-(wx-A +^(2l-x\+^^fl-ZiYx-ix-zX\ (14)

Differentiating (13), we have

for x < Zi

*^-?(*:M,
)
+f(*-*j+

For x = I, y = in (14) and we obtain

W(l - ZiY
(15)

_^! +^ +^ (Z_^(2Z + ,l) = 0.

For x = 0, -^- = in (15) and we obtain

2 2
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From these two equations we find

Jf,=
WzizS „ Wz*\Zzi + zt)

z
1>

'

which are the same as already found, page 343.

If we substitute these values of ifi and Ri in (13) and (14), we obtain
equations (9) and (10), page 343.

Let the beam be fixed horizontally at both ends and be loaded uniformly

with the load w per unit of length. Take the origin at A. Then for the

deflection due to Mi we have from (5)

Mix /07 .—— (2Z-r- x).

For the deflection due to the reaction — at A we have from (2), put-

tmgTT=-f,
wl

12EI
[SPx - Xs

].

For the deflection due to the distributed load from (6),

i£?<«— ">•

Hence

EIy = -f^x-xs)^2l to
H^(4Z8a;-a:«),

which is the same as equation (3), page 345.

Formulas for Long Struts.—Let a long strut or vertical column of

constant cross-section A sustain the load W, and let the deflected column

be free to turn at both ends, as in the figure. Take

the origin at the upper end A, and let x be the

vertical and y the horizontal co-ordinate of any

point P of the elastic curve.

Equation (I), page 326, holds for flexure, pro-

vided (page 326) that the deflection is small, that a

plane section before flexure remains plane after,

that the elastic limit is not exceeded and that the

coefficient of elasticity E is constant.

The bending moment at the point PisMx = Wy.

Hence from equation (I), page 326,

EIp{=-Wy.
dx*

Multiply both sides of this equation by 2dy

and we have

JSr^ = -2Wydy.
dx*
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Integrating, we have

»£—*+*
Let DC = A be the maximum deflection

Hence, substituting this value of &, we have byzero, and & = WA
inversion

Then when y = A, — is
ax

dx =

Integrating again, we have

m
w'

dy

VA* - y*
'

f H7„ arc sin —W A
+ C

When y = 0, x is zero and therefore C» is zero. We have then for the
equation of the elastic curve

y = A sin x i/—,

which is the equation of a sinuroid. If the length AB of the column is l
y

then when x = I, y is zero. Hence if n is 1, 2, 3, etc., we have

' EI
nx, or W=EI—~.

Since 1= Ak*, where A is the area and k the radius of gyration of the
cross-section for the axis through its centre of mass at right angles to the
plane of bending of the axis, we have

W_

A
nWEK*

(E)

This equation (E) is known as " Euler's formula" for long struts.
For n = 1, n = 2, n = 3, we have the curves shown in the following

figure. In the first case the curve is entirely on one side of the axis of x,

in the second case it crosses that axis at the centre, in the third case it

1 2
crosses at —Z and —I. The greatest deflection evidently occurs for the

O O

case where n = 1. Hence for a column with round ends we have theoreti-
cally n — 1 in Euler's formula.
A column with one end round and the other fixed is represented by

the portion Ab in the second case, b being the fixed end. Here n = 2 and
the length Ab is three fourths of the entire length. Hence for a column
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3
with one end fixed and the other round we have theoretically n = — in

Euler's formula and

W
A

''

WE**
4? '

A column with fixed ends is represented by the portion ce in the third
case. Here n = 3 and the length ec is three fourths of the entire length.

4
Hence for a column with fixed ends we have theoretically n = - = 2 in

Euler's formula and

2L
A

±lt*EK*

These ideal end conditions do not, however, exist in practice. The
nearest approach to round ends is for pins at each end. In such case
there is always friction. The nearest approach to a fixed end is a square
end abutting upon a rigid base. But since the fibres on the convex side

are in tension, the end in this case is only imperfectly fixed.

Practical Values for n. — Brittle materials, such as stone, brick,

cement, or hard cast steel, when they fail by crushing, crack and separate

into pieces. Tough materials, such as wrought iron, rolled steel, timber,

etc., when compressed fail by slow flowing of the material. The crushing
load, then, for such materials is the load which produces permanent set.

We therefore consider the elastic limit 8e as the "ultimate strength" in

such cases. From many experiments carried to the point of failure n in

Euler's formula has been found to have the following values

:

Two Pin
Ends.

One Pin,
One Flat

End.

Two Flat
Ends.

n A 5

2V3~ 'A

If then we use these values of n in Euler's formula (E), we obtain for

any value of I and k the so-called " crippling unit load," that is, the unit

load —- which makes the unit stress in the outer fibre of greatest stress
A

equal to the elastic limit 8e when failure occurs.

Limiting Length for Euler's Formula.—Let ab represent the cross-

section of area A at the centre of the column where the deflection is greatest,

G the centre of mass of this cross-section. The plane of bending will

always be parallel to the least radius of gyration of the cross-section.

Let v and Vi be the distances parallel to the plane of bending of the axis,

of the most remote fibres ad, bb' from the centre C on the convex and

concave sides respectively. For symmetrical cross-sections v = v x .

Let 8e be the elastic limit and 8/ the unit stress due to bending in the

most remote fibre aa' on the convex side. We also have a uniform unit

W
stress of direct compression -j- over the entire cross-section due to the

load W. On the convex side this unit stress for the most remote fibre aa!

is diminished by the unit stress 8/ due to bending. On the concave side
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this unit stress for the most remote fibre 66' is increased by the unit stress

—S/ due to bending.
v

As long as the length I of the column is less than a certain length L,
W vi

we see from the first figure that when —— -I

—

Sf on the concave sideA v
W

equals Se , the elastic limit, Sf on the convex side will be less than — and
A

we shall have compression at every point of the cross-section db. 60 long
as this is the case Euler's formula (E) does not apply.

But now as the length I increases, we can evidently have a certain

s*=

length L for which, when the unit stress on 66' equals the elastic limit 8e ,

W
S/ , as shown in the second figure, shall be just equal to —- When this

is the case there is no compression at a. For any length greater than L,
then, we shall have tension at a when the unit stress at 6 is equal to Se .

At or above the length L, then, Euler's formula applies.
We have for this length the condition

W VxW
A vA

or
A

&
1 +

But since Euler's formula applies, we have also

W _ n*n*Ei?

~A~ r~~'

W
Equating these two values of— , we have for the length LA

TIK7C

L = w+fi E

VSe

(L)

Equation (L) gives then the limiting length above which we can use
Euler's formula (E). If the length I is less than L, we cannot use Euler's

formula, but must deduce some other formula for the "crippling unit

load." The value of k is always the least radius of gyration of the cross-

section.

The Straight-line and Parabola Formulas. — We have seen that

W
for values of I > L we can find the crippling unit load— from Euler's

formula (E) if we use the values of n given on page 357.

I W
Let us take any origin and take x— as abscissa and y = — as
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ordinate. Then Euler's formula is represented by the curve EPF whose
equation is

V =
tfit^E

a?
(1)

Only the portion PF of this curve
can be used, the point P being

given by x = — and y = -

1 +
(h ^sp

w
A

j Se
\\+Vl

1

1

1

i V
1

..1

For I < L let the curve for the ideal

column be AP. The ideal column
is perfectly straight, perfectly ho-
mogeneous in all its parts, the load
W accurately at the centre of cross- ° —
section, etc. No column is thus

K K

ideally perfect, and hence the actual
W

values of — as given by experiment are found distributed above and

below AP over a considerable range. Evidently, then, a strictly rational

formula for AP would have no advantage over any convenient curve which

passes through A and P so that OA = Se for 1 = 0, and y =
1 + 2

v

W
for I = L, and has at P a common tangent with Euler's curve PB.

Let us assume, then, for the curve AP

y = 8e + bx + ex7
(2)

This curve passes through A so that OA = 8e for 1 = 0. It remains to

determine 6 and c, so that the curve shall pass through P and have a com-

mon tangent at P with Euler's curve.

If we make x = - in (1) and (2) and equate, we have for the condition

that the curve passes through P

c bL
,
el?& +— + -;

riifE*7

(3)

If we differentiate (1) and (2) and equate -~ in both cases for x — -,

we have for the condition of a common tangent at P

(4)

From (3) and (4) we obtain

2BeK , ±rtn*EK\

Setc* SnWEtc*

Substituting these values of 6 and c in (2), and putting x = - and
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W
y = —J-, we obtain for the crippling unit load

toTKL £=&[!+ £^_ffl!rJ>£l
. . . (SP)A (v + Vi)L (v + Vi)L

"J

We call equation (SP) the "straight-line parabola" formula for long
struts, because if Vi = 2v, the third term in the parenthesis disappears
and the curve AP becomes a straight line, while if v = Vi , as is the case
for symmetrical cross-sections, the second term disappears and the curve
AP becomes a parabola.

We have thus for Vi = 2v the straight-line formula for crippling load,

for I < L and Vt = 2v
^Z

=Se
[
1 ~\j\ (S)

riKit V%E
where L =

V'Se

For v = Vi or for symmetrical cross-sections we have the parabola for-

mula for crippling load,

forZ<2, and P = th "T
= &

(

1- ^)' (P)

T riKit ^%E
where L = ——

.

The value of tc is always the least radius of gyration of the cross-

section.

Both equations (S) and (P) are well known, and (S) especially has come
into very general use. We see that both are special cases of the general

formula (SP) here given for the first time.

Rankine-Gordon Formula.—From the figure page 358 we see that

when I < L we have

v A

If we assume that for lengths less than L, Sf increases approximately

as the square of the length, we have

Inserting this value of 8/ in the preceding equation, we obtain for the

crippling unit load

for I < L — = s = =-= . . . (H)
A

1
ViP_

1
ViSe?

vi? n*n*(v + v,)Ek*

We call equation (H) the "hyperbola formula," because it is the equa-

tion of an hyperbola.

Equation (H) is usually given in the form

A=-rr (RG)

where a is an experimental constant, and in this form it is known as the
" Rankine-Gordon formula for long struts." We see that the experimental
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constant a really depends upon the end conditions as given by n, upon
the values of v and Vi , and upon the ratio of the elastic limit Se to the
coefficient of elasticity E. We see also that (H) must not be used for I > L.
The curve of (RG) or (H) passes through A (figure page 359), so that
OA = 8e for I = 0, and also passes through P for l = L, but it has not a
common tangent at P. Still it gives good results, and in the form (RG) is

widely used. Equation (H) is a more general form of the Rankine-Gordon
formula here given for the first time.

The value of k is always the least radius of gyration.

Recapitulation of Formulas for Long Struts.—The straight-line

formula (S) and the parabola formula (P) are well known and widely used.

As we have seen, they are special cases of the general (SP) formula here
given for the first time. The Rankine-Gordon formula (RG) is also a
special experimental form of the more general and rational hyperbola
formula (H) here given for the first time.

We recapitulate here for convenience of reference all these formulas
for long struts.

Let A be the constant area of cross-section, W the crippling load and
W

therefore —j- the crippling unit load which makes the unit stress in the

most compressed fibre just equal to the elastic limit Se .

Let k be the least radius of gyration of the cross-section for the axis

through its centre of mass of right angles to the plane of bending of the

axis.

Let v and Vi be the distances parallel to the plane of bending of the

most remote fibres, on the convex and concave sides respectively, from the

centre of the cross-section. For symmetrical cross-sections v = Vi.

Let n be a number depending on the end conditions, as follows:

Two Pin
Ends.

One Pin,
One Flat
End.

Two Flat
Ends.

n

n?7t'

4

16

5

2 4/3"

4.5

20

A
5

25

Then we have for the limiting length L above which Euler's formula

holds

L =
VR) K

VSe
(L)

W
Let I be the length of strut. Then we have for the crippling unit load

Euler's formula,

when l> L
W nWEK*
~A~ F

(E)

If I < L, we may use either the generalized Rankine-Gordon formula,

. • (H)when I < L —r- =A
&

1 + s*
1 +

v,8eP

n'n*(v + Vi)Ek*
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or the formula (SP),

when I < L
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=&r 2(v — Vi)l (2v— Vi)P~]

A - £>e^ 1 + -
+ Vi)L

-———J.

For vi = 2v formula (SP) becomes the " straight-line " formula,

whanKJ 5-.*£l
-J,'],

(SP)

(S>

where Lss «**V™
V&

*

For v = Vior for symmetrical cross-sections formula (SP) becomes the
" parabola " formula,

when*<£ J*- = «£i_l.iL] ff)

, ,. 71K7C \/2E
where L = =—

.

In all cases we must divide the crippling load by the factor of safety
assumed (page 291), in order to obtain the safe load; or we can replace Se
in formulas (P), (S) and (SP), and in the numerator of G, by the value of
Su) as determined page 292.

For the average values of 8e and E given in our Table page 823, we

obtain from (L) the following values of —

.

•

Se
Lbs. per
square in.

E
Lbs. per
square in.

E
Se

Value of — when v = v,

.

K

Two Pin
Ends.

One Pin,
One Flat
End.

Two Flat
Ends.

Wrought iron. .

.

Steel

Timber

25000

40000

60000

3000

25000000

30000000

15000000

15000000

1000

750

250

500

180

150

90

200

170

100

220

190

110

160

Value of — in general.

Two Pin Ends.
One Pin, One

Flat End. Two Flat Ends.

i2oj/i+:-

109|/l+ ^

141 /l + ? i»*A+?

Steel 122|/l + ^ 136 |/l+ ^

**A+J »/»+?

ii» jA+5
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In practice - is usually less than 100, so that formula (H) or (SP)

covers the range of ordinary practice, and we seldom have to use formula
(E).

EXAMPLES.

(1) A cylindrical beam 2 inches in diameter, 60 inches long and weigh-
ing t lb. per cubic inch deflects £ inch under a weight of 3000 lbs. at the

centre. Find E.

Ans. E = 28929144 lbs. per square inch.

(2) A rectangular beam 5 ft. long, 3 inches wide and 3 inches deep is

deflected T
'

7 inch by a weight of 3000 lbs. applied at the centre. Find E.

Ans. E = 20000000 lbs. per square inch.

(3) A beam whose length is 16 ft., width 2 indies, depth 12 inches, and
coefficient of elasticity 16000000 lbs. is deflected half an inch by a weight
at the centre. Find the weight, neglecting the weight of the beam.

Ans. Weight = 1562 lbs.

(4) An iron rectangular beam whose length is 12 ft., breadth 1\ in.,

coefficient of elasticity 24000000 lbs. has a weight of 10000 lbs. suspended
at the middle. Find the depth in order that the deflection may be -^ of
the length.

Ans. Depth = 8.8 in.

(5) A rectangular wooden beam 6 in. wide and 30 ft. long is supported
at the ends. The coefficient of elasticity is E = 1800000 lbs. per square
inch. T7ie weight of a cubic foot of the beam is 50 lbs. Find the depth
that it may deflect one inch from its own weight. How deep must it be

to deflect -^ of its length ?

Ans. Depth = 6.5 inches; depth = 6.8 inches.

(6) Required the depth of a rectangular beam which is supported at
the ends and so loaded at the middle t7iat the elongation of the lowest fibre

shall equal TTV? °f Us original length.

/
Ans. Depth = a/

2100 Wl
Eb '

(7) Required the radius of curvature at the middle point of a wooden
beam when the load is 3000 lbs., the length 10 ft., breadth 4 inches, depth
8 inches and E = 1000000 lbs.

Ans. Radius = 1896 inches.

(8) Let the beam be of iron supported at the ends. Let the breadth be

1 in., depth 2 in., length 8 ft. and .#=25000000 lbs. Required the

radius of curvature at the middle when the deflection is \ inch.

Ans. Radius = 3840 inches.

(9) If a beam 6 ft. long, 1J inches wide and 4 inches deep is sup-

ported at the ends and loaded at the centre so as to produce a deflection

of £ inch, find the greatest inch stress on the fibres, taking E = 25000000
lbs. per square inch. Also find the load.

Ans. Stress = 86805 lbs. per square inch;

Load = 19290 lbs.

(10) For the same beam, if the greatest fibre stress is 12000 per square
inch, find the greatest deflection.

Ans. Deflection = 0.103 inches.



364 APPLICATIONS OF STATICS. [CHAP. III.

(11) A rectangular oak beam 1 foot deep and i foot wide and 15 ft.
long is fixed horizontally at one end and is free at the other end. Let
the weight of the beam be 54 pounds per cubic foot. Suppose it sustains
a uniform load of 100 pounds per foot extending over 4 feet of the beam,
beginning at 5 feet from the fixed end. Also a weight of 100 pounds
placed at 11 feet from the fixed end. Let E = 2000000 lbs. per square
inch. Find the deflection at the free end.

Ans. Deflection due to weight of beam = 0.17086 inch;
*' " uniform load =0.12627 "

" " " the weight = 0.0684 "

Total deflection =s 0.36553 inch.

(12) If the same beam is loaded with five equal weights of 100 lbs. each
at intervals of 3 feet, what is the deflection at the free end and at the third
loaded point from thefixed end f

Ans. Total deflection at free end s= 0.27 inch.
'*. " " third point = 0.12555 inch.

(13) Same beam supported at the ends. Find the central deflection due
to its own weight.

Ans. Deflection = 0.001483 ft.

(14) A beam of pine weighing 40 lbs. per cubic foot, 18£ inches deep,
15 incites wide, 12$ ft. long, is supported at the ends and has a weight of
17935 lbs. placed at 48 inches from one end. Find the deflection at centre
and point of application of the weight when E = 1680000 lbs. per square
inch.

Ans. Deflection at centre due to weight of beam = 0.0032 inch.

" " " "weight added =0.078617"
" " 48 in. " " weight of beam = 0.0027 "

"48" " "weight added =0.07185 "

(15) A wrought-iron 15-inch I beam, whose moment of inertia is 691
in inches, has a length of 30 feet. E = 24000000 lbs. per square inch.

If supported at tlie ends and a uniform load of 75 lbs. per inch of length
covers the first 10 feet, find the deflection at the end of the load.

Ans. Deflection = 0.23444 inch.

Find the deflection at the centre of the beam.
Ans. Deflection = 0.24421 inch.

Find the deflection 10 feet from the unloaded end.

Ans. Deflection = 0.19537 inch.

Where is the point of greatest deflection and what is the greatest deflec-
tion t

Ans. At 13.1676 feet. Greatest deflection = 0.24847 inch.

If the weight of the beam itself is 5.573 lbs. per inch of length, find the
deflection at the centre.

Ans. Deflection = 0.07349 inch.

If the same 10-foot load is moved along to the centre, find the deflection
at the centre.

Ans. Deflection = 0.50063 inch.

If the uniform load of 75 lbs. per inch covers the whole span, what is

the central deflection f

Ans. Deflection = 0.98905 inch.
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If the same learn is half loaded with 75 pounds per inch, what is the
deflection at the centre f WJiat is the maximum deflection f and at what
point is it f

Ans. Deflection s 0.494525 inch. Max. deflection = 0.49855 inch.
Within the loaded portion at 14.48 inches from centre.

If the same beam has three weights o/4500 lbs. each, placed at inter-
vals of 60 inches beginning at one end, what is the deflection at the
centre f

Ans. Deflection = 0.6154 inch.

If there are eight weights each equal to 3000 lbs. at intervals of 40
inches, what is the central deflection f

Ans. Deflection = 0.97926 inch.

(16) Suppose the same beam as in (15) to be fixed horizontally at both
ends and loaded uniformly with 75 lbs. per inch. What is the deflection
at 10 feet from either end f At the centre f

Ans. Deflection = 0.1563 inch; at centre s= 0.19781 inch.

(17) If only one end is fixed, the other supported, what is the deflection
at 10 feet t at centre t at 20 feet f What is the maximum deflection f
Where is it ?

Ans. Deflection at 10 feet = 0.39074 inch; at centre = 0.39563 inch; at 20
feet = 0.27352 inch.

Maximum deflection = 0.41018 "
At 151.7524 inches from supported end.

(18) Same beam as (15) fixed horizontally at both ends, with a con-
centrated load of 27000 lbs. If the load is at the centre, what is the deflec-
tion at half way between the centre and either end ? WJiat is central
deflection f Where are the points of inflection ?

Ans. Deflection = 0.19781 inch; central deflection = 03.9562 inch.
At 90 inches from each end.

If the load is 7.5 feet from the left end, where and what is the maxi-
mum deflection ?

Ans. Maximum deflection = 0.2136 inch; at 12 feet from left end.

If only the right end is fixed and the other supported, and the load of
27000 lbs. is at the centre, what are the deflections at the quarter points f

The centre ? Wliat is the maximum deflection ?

Ans. At the quarter points deflection = 0.5316, 0.3091 inch.

Central deflection = 0.69234 inch; maximum deflection = 0.70732 inch.

At I if - from supported ends.

(19) Same beam as (15) fixed horizontally at both ends has three

weights of 4500 lbs. each placed at intervals of 60 inches, beginning at the
,

left end. Find the central deflection.

Ans. Deflection = 0.13187 inch.

Jf two other equal weights of 4500 lbs. are added at the same interval

of 60 inches, find the central deflection due to these last two weights.

Ans. Deflection — 0.06594 inch.

Suppose the fifth weight removed, what is the deflection at the fourth
weight ? at the third and second weights ?

Ans. Fourth-weight deflection = 0.13748 inch ;

Third- " " =0.18072 "
Second- " " =0 1458 "
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What are the end moments due to these four weights f and where are
the points of contrary flexure f

Ans. Mi — -f 750000 inch-pounds; M2 = — 600000 inch-pounds;
74.806 and 275.294 inches.

(20) Let the ratio _ of the length I of a strut to the least radius of
K

gyration k of its cross-section A be - = 100. Let the cross-section be

symmetrical. If the elastic limit is Se = 30000 lbs. per square inch and
the coefficient of elasticity is E — 27000000 lbs. per square inch, find the

W
crippling unit load —r- for two pin ends, for one pin and one flat end

andfor two flat ends.

Ans. The limiting ratio — is 170, 190, 212 for two pin ends, one pin and

one flat end, and two flat ends respectively. We therefore use either Gordon's
formula or the formula (SP).

By Gordon's formula we have, since v = Vi ,

W 30000

A ~
10000 '

1800ft5
ff

2

and substituting the value of r<.
!
7r

2
, we have

W— = 22270. 23490, 24550 lbs. per square inch

for two pin ends, one pin and one flat end, and two flat ends respectively.

By the formula (SP) we have

Hence

-^ = 24810, 25860, 26670 lbs. per square inch

for two pin ends, one pin and one flat end, and two flat ends respectively.
We must divide the crippling load by the assumed factor of safety (page

291) for the working load. Thus if the factor of safety is taken at 4, we have
from Gordon's formula 5567, 5870, 6137 lbs. per square inch, or from formula
(SP) 6200, 6465, 6667 lbs. per square inch.

Again, from page 292, we obtain for repeated stress, if there is no steady
stress, Sio — 7500, and putting this for Se in formula (SP) and in tbe numerator
of Gordon's formula, we obtain the same results as before for a factor of safety
of 4.

If the steady stress is not zero but equal to the total stress, we have Sw =
15000, and using this for Se we get tbe same results as if we had taken a factor
of safety of 2.

For other ratios of steady to total stress we get the same results as if we
had taken a factor of safety between 2 and 4.



CHAPTEE IV.

APPLICATIONS OF STATICS—THEORY OF FLEXURE-
CONTINUOUS GIRDER.

CONTINUOUS GIRDER— CONDITIONS OP EQUILIBRIUM. EQUATION OP THE
CURVE OF DEFLECTION. THEOBEM OF THBEE MOMENTS. DETERMINA-
TION OF THE MOMENT AT ANY SUPPOBT. RECAPITULATION—GENERAL
FORMULAS.

Continuous Girder.—A beam or girder which rest upon more than
two supports is called a continuous beam or girder. When a beam rests

upon two supports only, a weight placed anywhere upon it causes press-
ures or reactions at the two supports which may be at once determined by
the law of the lever. That is, the reactions are inversely as the segments
of the span or either side of the weight. But when the beam is continuous
over more than two supports this law no longer holds.

Conditions of Equilibrium.—Let ln be the length of the nth span of

a continuous beam, counting from the left-end support, so that n is the
number of the support on the left and n + 1 is the number of the support
on the right. Take a point o vertically above the nth support as origin,

and the horizontal through o as the axis of abscissas. Let there be a load

Wn in this span ln at a distance zn from the left end. Let the reaction at

the left end or wth support due to this load be R'n , and at the right end or

n + 1th support B"n + 1.

Let P be any point of the neutral axis of the beam at a distance x from
the left end, x being always greater than zn , so that the point Pis always

on the right of Wn .

Now if the girder is continuous over any number of supports, we have

on the left of the support n a momentMn , and on the right of the support

n+la moment Mn +\. These moments, just as in Case 8, page 342, are

due to a couple at each end replacing the action of the other spans. The
moment of a couple is the same at every point of its plane.

367
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The necessary conditions of equilibrium for the span l n are then :

1st. The algebraic sum of all the horizontal forces must be zero. There
are in this case no horizontal forces and therefore this condition is ful-

filled.

2d. The algebraic sum of all the vertical forces must be zero. We have
therefore

R'n + R'n+1 = Wn (1)

3d. The algebraic sum of the moments of all the forces about any point

P must be zero. Denoting by Mn the moment on the left of the support
n, and by Mx the moment on the left of any point P, we have

Mn— R'nX + Wn(x — Zn ) — Mx = 0,

or
Mx = + Mn -PJnx+ Wn{x-zn) (2)

If in this equation we make x = ln , Mx becomes the moment Mn+\ on
the left of the support n + 1, and we have

Mn+1= +Mn - PJnln + Wn (ln - Zn) (3)

If we put the ratio ~ = an, we obtain from (3) for the reaction Rn at
In

the left support due to Wn , in terms of the moments Mn and Mn+ 1 on
the left of supports n and n + 1,

Bn= Mn-Mn±1+Wn{1 _ an) (4)
In

From this equation and (1) we have for the reaction R"n + \ at the sup-
port n + 1 due to Wn

Pf'n+l=
Mn+]~ Mn +WnOn (5)

In

The total reaction Rn at any support n is evidently equal to the sum
of the reactions Rn and R"n just on the right and left.

We have from (5), for a load Wn - i in the preceding span In - l,

TV, 2fn — -Mil - 1 . TT7- .R n =
7

+ Wn - \On - 1, (6)

where Mn and Mn - i are the moments on the left of the supports n — 1

and n.

The total reaction at the wth support is then

Rn = R'n + R'n (7)

If there are any number of concentrated loads, we have only to put

n-f-l n
^ Wn (l — an) and ^ Wn -\an -\,

n n — 1

in place of Wn (l — an) and Wn - \On - 1 in (4) and (6).

If, instead of concentrated loads, we have a uniform load wn - i per
unit of length over the span ln _ i and wn per unit of length over the span
In, we have wn ~\dzn~\ , or wn-\ln-\da in place of Wn-\ and wndzn, or
Wnlnda in place of Wn. If we make this substitution, we have

Pi 1 Pi 1

/ wn-\ln-iada= -Wn-iln-i and / wnln{\ — a)da = ^wnhi

,

in place of Wn-iOn-i and Wn(l — <hi)-
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We have then in all cases, in general, for the reactions R'n and R"n

,

right and left of any support n,

p , Mn — Mn _|_ i ,tin—
j

r Qn ?

ifn — Mn _ i

L ^ n -

1

'

(I)

where Mn-i, Mn and Mn + \ are the moments on the left of supports
n — 1, n and w + 1.

For concentrated loads

n +

1

n
q'n = ^ Wn(l — a"), g"„-l =-2 Wn-lOn-i ,

» n —

1

and for uniform loading

q'n =-Wn ln, g"«_l = -Wn -lln-U

From equations (I) we can then find in any case the reactions R"n,
R'n just to left and right of any support n, provided we know the moments
on the left of supports n — 1, n and n + 1. Counter-clockwise moments
are positive and upward reactions are positive. If there is no load in the
span ln , qn is zero. If there is no load in the span ln-i , qn -i is zero.

Equation of the Curve of Deflection.—We can now easily deduce
the equation of the curve of deflection for a continuous beam for constant
moment of inertia of cross-section /.

The differential equation of the curve of deflection is (page 326), taking
moments on the left of any point,

EI^ = -MX,

dx*

where E is the coefficient of elasticity, / is the constant moment of inertia

of the cross-section, and we take the minus sign for moments on the left

of the point P.
Inserting the value of Mx from (2), we have

d?y _ Mn — R'nX + Wn(X — Zn)

dx% ~ EI

We can integrate this expression between the limits x = and x, upon
the condition that x is always greater than^n , that is, the point considered
always on the right of the weight. When, therefore, x = 0, (x — Zn) must
be zero. We must therefore take the integral of Wn(x — Zn) simultaneously

between the limits x = zn and x, or treat (* — zn) as a variable which
becomes zero when x = 0.

We have then, integrating once,

dy_
= 2Mnx - Una? + Wn(x - znY „

dx %EI '

where for x = the constant of integration C = ~- for x = 0, or equals
dx

the tangent tn of the angle which the tangent at the support n to the curve

makes with the horizontal. Hence

dy_
t _ %MnX — R'nX9 + Wn{X — ZnY

(g]
dx

n
2EI

K)
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If we take the origin at a distance hn above the support n (see figure

page 367) and integrate again, the constant of integration for x = will

be — hn , and we have

y = — Tin + tnx — ZMnX* — R'nX* + Wn(X — Zn)*
(9)

which is the general equation of the curve of deflection.

If in this we make x = ln , y becomes — hn+i. If we also put the ratio

?n— of the distance of the weight from the left end of span to the length of
In

Zn
span, equal to an , so that — = an , and insert for R'n its value as given

in

by (4), we have from (9)

tn = - hn + \ — hn

In QEI
[2Mnln+ Mn+lln - Wnln^On-SOn7+ On8

)]. [10]

"We see, therefore, that the equation of the curve of deflection (9) is

completely determined when we know Mn and Mn + 1 , the moments at the

left of the two supports of the loaded span.

Theorem of Three Moments.—These moments are readily found by
the application of the "theorem of three moments " which we shall now
deduce.

Consider two consecutive spans ln-\ and ln over the consecutive supports
n — 1, n and n + 1. The equation of the curve of deflection between Wn

and the n + lth support is given by (9), and the tangent of the angle which
the curve makes with the horizontal is given by (8).

If in (8) we substitute for R'n its value as given by (4), and for tn its

dy
value from (10), and make at the same time x = In , then -/- in (8) becomes

ax
tn +i or the tangent at the n + lth support, and we have

tn-\-\ = — fln+l — hn

In
-^[Mnln + 2Mn + 1?« - Wnln\an - On1

)]. [11]

Equation (11) gives the tangent of the angle which the tangent to the
curve of deflection at the n + lth support makes with the horizontal.

If we suppose a load Wn _ 1 in the span ln -\ at a distance an - \ln - 1

from the left end, the origin being taken at m instead of at o, we can find

from (11) the tangent tn at the right end by diminishing each of the sub-

scripts by unity. Hence we can write at once, from (11),

tn =- K
~ 7^- 1 --^Mn-ih-i+2Mnln . 1-Wn-il\-i(an-i-an-i i

)l(12)
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But equation (10) gives us tn for a load Wn in the span ln Let bothWn-x and Wn act, then, and since there is a common tangent at n forZcurve on each side of support n, we have, by equating (lofand (18),

Mn-lln-l+2Mn(ln . 1 + ln) + Mn+ \ln = ^El[hn~ 1
~ hn + **»! ~K~\

+ Wnln\2an - 3an
a + On*) + Wn-lT'n-lidn-l - a'„_i) (1 3)

In, lta;ronly
a
t

D

o
y
p

n
u
U
t

mber °f COnCentrated ** - each span fcl, and

^JFn^"(2^ - 3an
2 + On8

) and SWn-lPn-liOn-l - d'n-x)
n— 1

in place of the two last terms.
If, instead of concentrated loads, we have a uniform load wn-x per unitof length over the span^ and wn per unit of length over the span

T

we havewn-idp^ in place of Wn -h and wndzn in place of TTn!
?
SinSe

the ratio £ or £z! is denoted by a, we have aln^ = *.j, and aln = zn.

We can then put wn-iln-ida in place of TT„_i, and «;nZncfo in place ofWn . If we make this substitution, we have
F

/*
a=1

1

/ Wn-iJVi(a — a 8)da = jwn-il*n-i,

/*
a=1

1

J wnln3(2a - 3a" + a*)da = -rWr<ln
%
.

a=0

We have then in general

Mn-lln-l + 2Mn(ln-l+ln)+Mn+lln=Yn +An + Bn-l, . (II)

where we have for the sake of convenience of notation

Tn = QEIPn-1 ~ hn + fl»+i-ft"~|

.

L ^n-l Z» J'
for concentrated loads,

An = 2Wnln\2an - 3o«2 + «„*), ^n _! = ^TPn-iZn.^On-i _ aVl) ?n n-l

for uniform loading,

An = TWnln, Bn-1 = -Wn ~\l\-\.
4 4

Equation (II) is the general form of the " theorem of three moments "

for constant moment of inertia of cross-section. It gives the relation be-
tween the moments at the left o/any three consecutive supports, n — 1, n
and n + 1 of a continuous girder in terms of the consecutive spans ln-\
and ln , the loading in those spans and the relative heights of the supports,
provided the moment of inertia of the cross-section is constant.

If the supports are all on the same level, the term Yn is zero and disap-

pears. If there is no loading in the span ln , the term A n is zero and dis-

appears. If there is no loading in the span ln-i, the term jBn-i is zero and
disappears.

Determination of the Moment Mn at Any Support. — Let us
number the supports 1, 2, 3, etc., beginning at the left. The correspond-
ing spans are Zi , U , U , etc. Let the entire number of spans be s. Then
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the last span is h , and the last support is s + 1. If the extreme ends are

not fixed, but simply rest upon the end supports, the moments Mi and

M8+ i at the first and last support are zero.

Case 1. Let us take any number of spans s, and let all the spans on the

left of the nth support be loaded in any manner, and all the left supports

Case 1

s-i s-l s 8 s+i,

be at different levels, -while all spans on the right of the nth support are
on level. Let the ends rest on the supports, so that Mi = and Ms+ 1 = 0.

Let in general

so that

Yn = Y' n + Y n.

(15)

In the present case Fn = 0, since supports n and n + 1 are on the
same level. We have then by the successive application of the theorem of
three moments the following equations, since M and Mt + 1 are zero :

(c3) 2Mt(h + U) + M3U = F, + A, + A;
(c,) M,U + 2M3(h + h) + MiU = Y3 + A 3 +B,;

(c«) M,l3 + 22f«(Z» + h) + MJ< = F« + Ai + B3 ;

etc.;

(Cn-l) Mn-2ln-2 + 2Mn-l(ln-2 + In-i) + Mnln-\

= Yn-i + An-1 + Bn-2]
(C„) Mn- Xln-\ + 2Mn(ln-l + ln)+Mn + \ln = F"„ + Bn-\\

(Cn+ l) Mnln + 2Mn+ \(ln + U,+ \) + i/n+ 2Zn+ l = 0;

etc.

;

(Cs-2) M8 -sis-3 + 2Ms-2(ls-S + h- 2) + Ms- iZs_2 = 0;

(cs_i) M„-2ls-2 + 2Ms-l(ls-2 + U-i) + Msls-x = 0;

(cs) Ms-\ls-i + 2Ms(ls-\ + Is) = 0.

The solution of these equations (15) can be best effected by the method
of indeterminate coefficients. Thus we multiply the first equation by a
number c2 , the second by a number c3 , etc., the subscript corresponding
always to that of If in the middle term. Having performed these multi-
plications, add the resulting equations and arrange the terms according to
the coefficients of M, , M3 , etc. We thus obtain the equation

[2c9(Z, + h) + c3l,~]M, + [c,U + 2c,(Z, + Z3 ) + Ctl3]M3 + etc.;

+ [Cn-lh -1 + Cn(Z„_i + In) + Cn-\- lln]Mn + etc.;

+ [cs-\l8-\ + 2cs (ls-i + ls)]Ms

= (Y'n + Bn-l)Cn + ^'(Yn + An + Bn~\)Cn.
n-1

(16)
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In order, then, to determine Ms we have only to impose such conditions
upon the multipliers c that all terms on the left except the last in equa-
tion (16) shall be zero. We have then, assuming Ci = and c» = 1,

c3 = — 2
h + U
U '

_ li + l3 It _ l3 + It It
c4 = — 2e»— Ctj-, Ci = — 2e4—= c»r ,

(3 it I* l*

and generally for any multiplier c

o„ ln-2 + ln-1 m ln-2
Cn = — 2cn-l r Cn-27

ln~\ U-l
(17)

These values of c make all terms zero on the left of equation (16) except
the last, and give us for the value of Ms

{Y"n + Bn-\)Cn + 2?(Yn + An + Bn-\)Cn
Ms = (18)

C8-lla-\ + 2c8(la-l + la)

From the law of the multipliers we have

Ca-lla-l + 2Cs(ls-l + I,) + Ca + lla = 0.

Hence we may put in the denominator of (18) the equivalent expression
— cs + lis.

Case 2. Let all the spans on the right of the nth support be loaded in

any manner and all the right supports be at different levels, while all the

spans on the left of the nth support are unloaded and all the left supports

are on level. As before M} = and Ms + 1 = 0.

Case 2.

1 hf. »_ »*• 3

In the present case Y"n = 0, since supports n and n — 1 are on level.

We have then by successive applications of the theorem of three moments

the following equations:

(d8) 2Jf.(Zi + It) + Mtlt = 0;

(da-l) M,h + 2M3(h + It) + M<U = 0;

(da-z) M3l3 + 2Mt (l3 + U) + M„U = 0;

etc.

;

(ds-n + 3) Mn-zln-2 + 2Mn-l(ln-2 + ln-l) + Mnln-\ = 0;

(ds-n + 2) Mn-lln-1 + 2Mn(ln-l + h.) + Mn +\ln = Yn + An \

(ds-n + 1) Mnln + 2Mn+ \(ln + In+ 1) + Mn + 2^n +

1

L (19)

= In+l + An+ 1 + Bn \

etc.;

(dt) Ms -Zla- 3 + 2Ma- 2(Z« - 3 + la-2) + Mg -\la-2

= Ys-2 + Aa-2 + Bs-$\

(d3) Ma-2ls-2 + 2M8 -l{ls-2 + h-i) + Msl8-\

= Ya-1 + Aa-1 + B8-2\

(dt) Ma-lla-l + 2Ms(ls-\ + la) = Y8 + A a + Ba-\.
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If we multiply the last of equations (19) by a number c?2) the last but
one by d3 , the nth by d8- n+ 2, etc., add the resulting equations and
arrange the terms according to the coefficients of M*, M3 , etc., we obtain

[2ek(Zs_i+Zs) + da ls-iWs + [d»ls-i+ 2d3 (l8-2 + ls-i)+ dd8-2\Ms-\ + etc.;

+ [ds-n + lln + 2(ln-\ + ln)ds-n + 2 + d8-n+ zln-\\Mn + etc.;

+ [d»-zU + 2ds -i(h + h) + dsh]M3 + [da-\U + 2ds(h + h)]Mt
n + l

= (Y'n + An)ds-n+ 2 + ^(Yn + An + Bn -i)ds-n+2. . (20)
n-t-l

In order to determine M% we have only to impose such conditions upon
the multipliers d that all terms on the left except the last in equation (20)
shall be zero. We have then, assuming di = 0, d* = 1,

j _ Js+ h-l , l8-l+ h-2 jls-l
cia 2—

, di = — 2d3
— di-—

,

is-l l8 -2 ls-2

and generally for any multiplier d,

rt _ oj h-n + 3 + ls-n + 2 , ls-n + 3
/-«,1xOn= — 2dn-l

j
dn-2

7
• • (21)

l>a-n + 2 h-n + 2

These values of d make all terms zero on the left of equation (20)
except the last, and give us for the value of M%

u+1
(Y'n +An)d8-n + 2 + 2(Yn + An + Bn-\)d8-n + 2

M, = !±1 . . (22>
d8-\U + 2d8(h + h)

From the law of the multipliers we have

d8-\U + 2d8(l, + h) + d8 + ih = 0.

Hence we may put in the denominator of (22) the equivalent expres-
sion — d8 + ill.

Now from equations (19) and from the values of c given by (17) we see
at once by inspection that

M3 = c3Mi , M* = CtMt , etc., and generally Mm = cmM2 ,

and this holds good so long as m is less than n.

We have then for the moment Mm at any support m on the left of the
wth in the second case,

for m <n
n + l

Cmd8 -n + 2(F

'

n + An) + Cm£(Yn + An + Bn-\)d8 -» + 2

Mm = Ltl .
. (23)

d8-ih + 2ds(li + I,) or — d8 + ih

Again, from equations (15) and from the values of d given by (21) we
see at once by inspection that

Ms- 1 = d3M8 , M8 _ 2 = daMs , etc. , and generally Mm = d8 _m + 2MS ,

and this holds good so long as m is greater than n.

We have then for the moment Mm at any support m on the right of

the nth in the first case,

for m > n
Cnd8 -m + 2(Y"n + Bn -\) + d8-m + 2^(Yn + An + Bn-l)Cn

jg
w ~l

(24>
c8-\l8-\ + 2e8(l8-i + ls), or — c8 + il8
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If we make in (21) and (17) n = s + 1 and then give different values to

s and compare the results, we see that in general cs + \ls = da + ih. The
denominators in (22) and (23) are then the same.

If we suppose Case 1 and Case 2 to exist simultaneously, we have the
case of all spans loaded and all supports on different level. If then we
make m — n in (23) and (24) and add these two equations, we have, since

Y'n + T"n = Ynt for the moment Mn on the left of any support n

n+l
d8-n + 22'(Yn+ An + Bn-\)Cn + Cn^(Yn+An+Bn-l)ds-n+2

Mn = -*—
3

^
,
(HI)

where we can put for the denominator D any one of the equivalent values

D — cs-\ls-\ + 2cs(la-i + Is) = — cs + il8 = — da + \l\ = da—\U + 2d8(li + h).

Equation (III) gives the moment with its proper sign on the left of any
support n. If we wish the moment on the right of any support n, we
must change the sign for Mn as given by (III).

Recapitulation—General Formulas.—We have then for the moment
on the left of any support n of a continuous girder of constant moment of

inertia of cross-section, for any loading and any levels of supports,

n + l

d8-n+a2'(Yn+ An + Bn-\)Cn + Cn2(Yn+An+Bn-l)ds-n+2

Mn = 5
p

8
-±1

, (HI)

where we can put for D any one of the equivalent values

2) = cs-ih- 1

+

2cs(ls -i+l8)=—Cs+ils = —ds+ih=d8-ih+2d8(li+ It). (1)

In this equation s is the number of spans,

Yn = SEI P"- 1
~ hn + b^lfJhtl

(2)

|_ In— 1 f>n _J

where hn-\ , hn and hn + 1 are the distances below any assumed level line

of the three consecutive supports n — 1, n and n + l.

For concentrated loads

n+l » _
An = 2Wnln\2an — 3an

s + On3
), Bn-\ = 2Wn-^n-\{On-l — a*n-l),

n n~l

where Wn is a load in span In , and Wn -\ a load in span ln-\ , aud a is the

ratio of the distance of any load from the left end of its span to the length

Zn
of the span, ora=r.

*n

For uniform loading

An = 7 Wnln, Bn-\ = jWn-l^n-1,
4 4

where wn and wn-\ are the loads per unit of length over spans In and Z»_i.

The numbers c are given by

c, = 0, ca = 1, and for any other Cn = — ^Cn- 1~~r—"

—

°*m*Lli
* ^

The numbers d are given by

di = 0, d* = 1, and for any other

o^ ls-n+9 + h-n+2 , Js-n+i } • • • • (4)
dn = — 2dn-\ -, r On-2j —

h-n+2 ts-n+2)
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For the reaction just to the right of any support n we have

„, Mn — Mn + 1U n — 1- q n ,

hi

and just to the left of any support n

7?// _ Mn — Mn-i , .,K n = j + q n-l,
bi-\

(I)

where Mn~i ,
Mn and Mn + 1 are the moments on the left of supports n — 1,

n and n + 1.

JFor concentrated loads

n + \ n
g'n = 2Wn(l-an), q"n-l = ^Wn-lOn-1, .... (5)

» n-l

and/or uniform loading

q.'n = -U>nln, q"n-l = -Wn-\ln-l (6)

For the total reaction at any support

Rn=B'n + R"n (7)

Moments counter-clockwise are positive and reactious upwards are posi-
tive. Equation (III) gives the moment with its proper sign on the left of
any support n. If we wish the moment on the right, we must change the
sign for Mn as given by (III).

Special Cases.—If the supports are all on level, equation (3) is zero
and the F's disappear in equation (1).

If the spans are all equal, we have

Ci = 0, c9 = 1, c3 = — 4, c4 = + 15, etc. ; )

di =0, di as 1, d3 = — 4, di = + 15, etc.
; \

'
' ' '

'

or the values of the &s and d's are the same. They are alternately + and
—, and each one is numericallg equal to four times the preceding minus
the one next preceding.

If we make Z» or ls — 0, the beam is fixed horizontally at either the
left or the right end. We must remember, however, that when we thus
make h or ls equal to zero, the value of s must still remain unchanged and
the supports must be numbered as they were before the end spans were
made zero.

EXAMPLES.

(1) A beam of one span of length I is fixed horizontally at the ends.
Find the end moments and reactions for a load W at a distance z = al
from the left end. Also for a uniform load of w per unit of length over
the span.

Ans. Let there be three spans, li , U , h, and let l t and h be zero. Then
8 = 3, and we have

Ci = d\ = 0, ca = dt = 1, c3 = d3 = — 2.

We have also Y1 = Y< = 0, Ai = A 3 — Z?, = B3 = 0. Hence for n = 2 we
have in general from equation (III), page , for the moment M2 on the left

of the left end of the span

M = d3 { F, 4- A,)c, + e,( Y3 + B,)d, __ 2(7, + A,)- T, - B,
2

W.-4-2W. SI • •
U
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For » = 3we have for the moment M3 on tlie left of the right end, from
(HI),

M - **( T* + Ai)c
* + di{

Y

> + B*)e* - _ Yi + Ai-^Yi + B*)
3

ldi -\-2ld3

~
31 ' '

( '

If the ends are on level, Fa = F3 = 0, and

2A, - B, A, - 2B, m

Inserting in (3) the values of A t and Z?a for concentrated load, we have
for concentrated load and ends level

Jf„ = + Wl(a - 2a2 + a3
), M, m T7Z(as - a8

).

These are precisely the same values, in different form, already found for

the end moments in this case on page 343, except that Mt is on the left instead

of on the right.

For the reaction at the left end we have from (I), page 369,

Xf TLf

#„' _ J '

t

m
* _|_ w(1 - a) = + TT(1 - 3a5+ 2a»),

and for the reaction at the right end

Xf \f
Rs

" = Si -
m * + Wa = + W{Za> - 2a3

).

These are precisely the same values, in different form, already found for

the end reactions in this case, page 343.

For uniform load and ends level we have, inserting the values of A 3 and i?a

in (3),

M* = + T2
wp

> *> = + &»*•>

B3 ' = + 2
wl

>
s»" ~ + 2

wl'

These are the same values as obtained on page 345 for the case, except that

M3 is on the left instead of on the right.

For uniform load and ends out of level,

,, 2Fa -Fs ,
wP ,. Fa -2F, . wP Yt - Y*

,
wl

M, = 3T— + 13'
M

>
=

3T
- + "12» *=—? + ¥'

How much must the left end be lowered in order to make the left reac-

tion Ri equal to zero ?

Here we have

Y,-Y3 ,
wl

ft
« yr _ wP——+T =»0, or Fa -F,--g-.

Since F8 = — Fa , we have

r. = «„[*-*] = _!*

Hence

7, 7, - Wl*

A. - At = - 24A7
-

Since E is always very large, we see that a very small lowering of the left

support will make the left reaction zero. We have in this case
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How much must the left end be lowered in order to make Mi = ?

Here we have

2F, - T3 , wP A
• _

Hence

t

^» — ^2~| _ _-f and fc-fc—A-
ar-4.!*? 72'-j_ m* p"-_u 2^

(2) A beam of one span of length I is fixed horizontally at the right
end. Find the reactions and moment at the right end for a load Wat a
distance z = alfrom the left end. Also for a uniform load of w per unit
of length over the span.

Ans. Let there be two spans U and li , and let l3 = 0. Then 8 = 2, and we
have

c1 =d1 = 0, c, = dt = 1, d, = — 2, h 3 — h, = 0, Fs = 0,

A, = B, = 0, F, = 6EI
rh3 — h t

~\

L » J'
Hence for n = 2we have in general from equation (III), page 375, for the

moment Mi on the left of the right end,

Yt + Bi

We also have Mi = 0, M3 *= 0. Hence

„ , _ Ja-f Z?i , p „ ya + -R ,

•«i ^«
•" Jl

'
a —27* f" ?1 *

ijf<fo ends are level, F» = and

.Fiw concentrated load, ends level, we have then

Mt = -^(a - a?), Bi' =
-J-

(2 - da+ a3
), i?„" = —(3a - a3

),

ifar uniform load, ends level, we have

Mi = +~, Bi' = + ±wl, Bi"= + ^wl

How much must the left end be lowered in order to make the left reac-

tion Bi zero f

Here we have

Y* + B
2P

Hence

-+ o/ = 0, or ra = 6#/|^-yM = -.B1 + 2gI 'P.

. , B il-2q l 'P _,_ , ,.
«» — *i = g-^?

—

t m3 = qil, Bi" = + qi + ffi .

If the load is uniform,

wl _ iel3 wl* tcP
ql

' = q1
"=- 2fc =—, k<-A.«~gp if, = +—, Bi" =
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If the load is concentrated,

qx
' = F(l - a), q," = Wa, B, = WP(a - a3

),

- . Wls(2-Sa+ a3
) ,

h* — h, =
^-j~i

, M, = Wl(\ — a), Hi = W.

How much must the right end be lowered in order that the moment Mt

may be zero f

Here we have

ZL±^i = 0, or r.-tfffe^1---A.
Hence

If the load is uniform,

If the load is concentrated,

hl - ha= -W^jl-\ R^Wil-a), Ba"=Wa.

(3) Find the general formulas for a continuous beam of two spans.

Ans. Here * = 2, and we have from (III), page 375,

jr.=o, *=«. «=Ii^±£. a-^-f+v.

r.-«Pfi+4*}
For concentrated loading,

gi
' =2Wi{l-a 1 ), q l"=2W,au ?a

' = 2 F„(l - «»), ga
" = .2Faaa ,

.4 a = 2

F

a Za
2(2aa - 3aa

2+ aa»), 5, = 2 F^i'(o, - a 1
s
).

For nniform loading,

gr,' = g," = —Wii, , q3
" = Ja

' = gWjfa , A, = ^Wa
s
, 5, = jWiJi8

.

These formulas will solve any case of two spans.

(4) A plate girder is continuous over three supports, h = 30/5., I, =
50 ft., the supports being all on level. The uniform load per coot in the

first span is w x = 3000 lbs., in the second w* = 350 lbs. Find the moments

and reactions.

Ans. From the general formulas of Example (3), since all supports are on

level, Fa = 0, and we have

W-ih3 „ Will 3 „ mmm
In the present case A* = . , tii = —j— • nence

_ «, !,' + «.!.' _ 3000X30'+ 350X50*
194flMiOTB ft..lbs.*»-

8(J, + Ja) 8(30+ 50)
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We have therefore

^/ = _^+^ =_i^|^+3^0x30 =+ 3850261b8;

^, =_^ +^ = _l^^ + 350>^ = +48515625ibs;

Bt»=¥l +^ = + 51497.39 lbs.; 22,' =^ +^ = +12648.44 lbs.

Bi = Bi" + Bi' = + 64145.8 lbs.

How far must the second support be lowered in order that the moment
Mi may be zero ?

Since supports 1 and 3 remain on level, hi — ht = As — hi. We have then

Fa
=6^/[^-=AJ +^=^],

6EI l-ir+-ir_\ + -4~+-ir= '
«*-•* = -

mei(i1+ ii)

'

If we take E= 24000000 lbs. per square inch, and if 7= 53400 for dimen-
sions in inches, we have

hi — ht = — 0.054 inch.

Therefore a sinking of the second support of only about
1 ^

f an inch is

sufficient to make Mi zero.

How far must the second support be lowered in order that the reaction
on the second support may be zero ?

Here we have

Mi + Mi = Mi = 0, or -j 1-
— h— + — =0,

or

Mt = - m^ +^W = _ 1007812.5 ft.-lbs.
a(li + li)

From the general value of Mi in Example (3),

-«M - «U> = »£+ «£-* + 6JBr[*^it + $-=£].

Hence, since A, - *, = A, - h t , E = 24000000, I = 53400,

* ~ h
>
= 84^ + 1.)

= - 0> ' 3 1DCh -

Therefore a sinking of the second support of only about seven tenths of an
inch is sufficient to convert the, two spans into one long span.

We see then that a continuous girder requires the supports to be invariable.

We find in the present case

Bi' = + 78593.75 lbs., B3
" = + 28906.25 lbs.,

Bi" = + 11406.25 lbs., Bi' = - 11406 25 lbs.,

Bi = Bi" + Bi = 0.

If the spans h and U are equal and v>i and id are equal, we have at once
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hi — ht = — , or the deflection at the centre of a span whose length is

wP
21, and M2 = 5- as should be.

A

(5) If in the case of Example (4) we have a concentrated load TFi =
90000 lbs. in the first span at a distance -li from the left end, and a con-

centrated load W* = 18000 lbs. at a distance -U, find the moments and
9

reactions.

Ans. We have

a, = J , a„ = ^-, At = TJW(2a, - 3a„ !+ aa
J
) = |-"RW,

Bi = TF,*i»(a, - o,») = |f Fi*,».
04

Then, from the general formulas of Example (3), we have

M, = + 224121.094 ft.-lbs., 2J,' = + 60029.3 lbs., B3
" = + 4517.58 lbs.,

i?a"= 4. 29970.7 lbs., i?2'= +13482.42 lbs., B3= .R,"+ &'= + 43453.12 lbs.

For the distance the second support must be lowered in order that M% may
be zero we find

hi — hi = — 0.1511 inch.

For the distance the second support must be lowered in order that i?a may
be zero we find

hi — 7iq = — 0.55 inch.

(6) Let a beam of two equal spans have a load Wx in the first span and
Wi in the second span, each load being at the middle of its span. ' Let the

(Wi + W*)l3

second support be lowered by an amount hi —hi = ^ What
48EI

are the moments, shears and reactions f

Ans. Mi =, (Wi + W^, -Bi =
32

> «» =
33

»

„„ nWi+Wn TF, + 17Wi „ 18(Tr,+ FQ
^ " 31 ' ^2 ~

32
' * ~

32
•

(7) Let a beam of two spans h and U level supports have a load Wi at a
distance all from the left end of the first span. Find the reactions when
L = I, and h = nl.

AnS
-

Bl '
=

2(1

1

+ n)
[2(1 + n) ~ a&+ 2n) + a3] '

^' =-^~
)

^ + 2n) -a3l R,=^-){a -a%

R>"

=

- a^bo(a - a3)
'
* = *" + *' - lrwl + 3n) - a8J-

If the spans are equal, to = 1 and

W W, W
Bi ' = -^[4- 5a+ a*], J?," = -^[5a- a3

], i?,' = -!p(a - a*),

W W
i?s" = - ~^-{a - a% R9 = Ri"+ i?2 ' = -^(3a - a»).
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(8) Find the general formulas for a continuous beam of three spans.

Ans. Here s = 3, and we have from (III), page 375,

d,(F, + ^, + g,) + F, + A, -f- B,
Mi =0, Jf4 = 0, Mi =

F, + A + .5, + c3(Fs + 4, + £,)

t(i =
j h ?i » -"a — "7 T ?i > x»a — 1- J2 ,

tl III o?

Mi -Mi , Mz
, » „ _ -3£> , „.

t"2 &S 63

_Ji -f- h , h -\- h , . All -\- h)(ii -^- h)
C* = — A -

, "3 — — *

—

-. , 04 = -f-
4 —

;

Ti =UB^^+hjQ F3 = 6^/[^=^+T&]'
For concentrated loads,

5/ =2Wi{l — a,), ft" = 2 TT,a, , ft' = 2 Fi(l - a,), ja
" = 2F2a„

5,' = 2TF3 (1 - a.). ?3
" = 2TT3a3 .

For uniform loading

Qi' = Qi" = g W1I1, qi = qi" = _-Wa , 53
' = q3

" = ^w3 l3 .

These formulas will solve any case of three spans.

(9) Let a beam of three spans, level supports, have a load Wi at a dis-

tance ah from the left end of the first span. Find the reactions when
li =l3 = Z and li = nl.

Ans. For convenience of notation let

£T=4+ 8ri+ 3»s.

Then

Ei ' = ^-[(1 - a)H-{a- a*)(2+ 2n)] , Ri" = ^[5a+ (a - a*)(2+ 8»)],

Ri> = ™[<« - a3)( 3 + |), &« = - £[<« - a*)( 3 + |)],

i?3
' = — -^(a — a8

)7i, St" = -^{a — a3
)»,

ft = J?," + 2?,' = -J|~27a+ (a - a»/s+ a» +|)T

2?s = if," + 2?,' = - ^-j~(a - a*)U+ n + |V|

.

(10) -4 continuous beam of four equal spans, level supports, has the

second span from the left covered with a uniform load of w per unit of
length. Find the moments and reactions.

11 12 3
Ans. Mi = 0, Mi = + ^rP, &> = + sst"**, *« = " o^> *i = 0;
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A'—jg* *>"=+^l, ft'=+^ A"-HgJ*
15 15 3 1

A' = +55^, A* =;-<£«*. A' = -5^1* A" = +^i*

383

224 224

(11) Find tJie moment and reaction at the second support for a load
W at a distance al from the left end of the second span.

Ans. Jf, = 4(26« - 45a8 -+- 19a3
) Wl; B,' = S56 - 38a - 57a9

-f 39a»).
56v

56

(12) Deduce a formula for the moment at the left of any support of a
continuous beam, level supports, when the entire beam is covered with the

uniform load w per unit of length.

*r "I",, Cn[(l3,-l+ lh)di+ (Ps-2+P8-l)di+...(l 1*+lS)dsT]
Ans. Mn = — r\ on

j^
,

where the numbers b are given as follows:

li
3 + hz

bx = 0, b3 = 0, 6s =
I,

bt = _ll±V__ 2bi
il+h

b6 = _ *«' + l** _ 2&/-L±-^ - &* r. etc» and in general

n-2 n-2

. n-2 n-1 OA ^Jn-2+Jn-l . J-n2
6W = ; 26n-l -, &n-2 ; •

ln-\ hi-l *»-l

(13) In the preceding example let the spans be all equal.

Ans. Mn = —
12cs + i

-[cn(l — CS + 2) — Cs + l(l — Cn + l)].

The following Table gives the coefficients of+ wl"1 for any number of spans.

The Roman numerals at the sides indicate the number of spans, and the num-
bers in the spaces of each horizontal line give the moments on the left of each

support.

MOMENTS ON LEFT OF SUPPORTS— TOTAL UNIFORM LOAD — LEVEL
SUPPORTS—ALL SPANS EQUAL. COEFFICIENTS OF + wl" GIVEN IN

TABLE.
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This Table may easily be continued to any number of spans. Thus for any
even number of spans, as VIII for example, the coefficients are obtained by
multiplying the fraction preceding in the same diagonal row, both numerator
and denominator, by 2 and adding the numerator and denominator of the frac-

tion preceding that. Thus,

15 X 2+11
142 X 2 + 104

~~

12 X 2+ 9

142 X 2 + 104

388'

33

388'
or

11 X 2+ 8 _ 30

142 X 2 + 104 ~ 388'

11 x 2 + 11 _ 33

142 x 2 + 104
~~ 388'

For any odd number of spans, as VII for example, we have simply to add,
numerator to numerator and denominator to denominator, the two preceding
fractions in the same diagonal row. Thus,

104+38
15

142'

8+3
104+ 38

11

142'
_9_ + JL
104 + 38

_12

142'

_8_+ 4_

104+38
12

142'

The moments are all positive, showing that the upper fibre is in tension
over every support.

The moments being known, the reactions can be found by (I), page 953.

We then obtain the following Table.

REACTIONS AT SUPPORTS—TOTAL UNIFORM LOAD—LEVEL SUPPORTS-
ALL SPANS EQUAL. COEFFICIENTS OF + wl GrVEN IN TABLE.

" \

The law of this Table is the same as for the preceding Table, and it can
therefore be continued to any number of spans.

(14) Give the formula for the moment at the left of any support of a
continuous beam, level supports, for load in any given span only.

Ans. From (III), page 375, let r be the left support of the loaded span.
Then

Mn -

ds-n + lArCr + &nds-r -f 1-Br

D
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If the spans are all equal,

„, Cs-n + zArCr + C8-r + lBrCnMn = ^ .

If the spans are all equal and the span lr is uniformly loaded with the load
w per unit of length,

Mn = lWl*

^
-

J

.

(15) A continuous beam of four equal spans, level supports, Jias the
second span from the left covered with a uniform load of w per unit of
length. Find the moments on the left of the supports and the reactions.

11 12 1
Am. J6 = 0, it, = + 22j»F, H, = + ^>P, M. = - ^V, M.= 0;

K = -^, A" = + §pt, *' = +^ol, S.- = +gg*
15 15 3 3

A' = + 2M
Wl

'
*" " - 224^ * = - 22?"' *" = + 224^

(16) In the preceding case, what is the moment on left and reaction on
right of the second support for a concentrated load Wplaced at a distance

alfrom the left end of the second span f

Ans. M* = 4(26a - 45«2 + 1&*»)1W;
oo

-&>' = S(56 - 38a - 57a2 4- 39a3
).

oo

(17) A continuous team of five spans, the centre and adjacent spans
being 100 feet and the end spans each 75 feet long, has a uniform load

over the second span. Find the moments on the left of the supports, and
the reaction on the right of the fourth support.

Ans. ifx = 0, Mt = +
^f«>'»'»

M* = + li^'
8
' *•> - J^^''

5 45
Mt = + 1254^

2

'
8̂ = ° ; *' - " 2508

1*-

(18) J. continuous beam offour spans, h = 80, Z2 = 100, Is = 50, U =
4:0 feet, supports level, lias a load of 10 tons in the second span, at a dis-

tance of 40 feet from the left end. Find the moments on left of the sup-

ports, and the reaction on the right of the second support.

Ans. Mt =0, M, = ££afflo - 30.9a» 4- 13.9a3) = 4- 82.01 ft. -tons,

3o4o

Mt =
8
«J??''(1.6a + 3a8 - 4.6a3

) = + 88.77 ft. -tens,
3348

M< = - J^£(1.6a 4- 3a2 - 4.6a3
) = - 24.65 ft. -tons, Ms = 0,

R2
' = 4- 5.9324 tons.

(16) A beam continuous over seven spans has a load in every span.

Find the moment on the left and reaction on right of the fourth support.
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Ans.

M
*
=
~djMY* + Ai + Bl)Ci + ( Ya + Aa + 5a)C3 + (F* + A

* + 53 )c«]

~ ik[{Y
* + A > + Bi)d* + (Zs + A * + -W3 + (F7 + ^ 7 + £,)*,],

- ^[( Tt + A, + B6)d3 + (

r

T + 4 T + S«)dJ;

„, Jf4 - Jf.
,* =

£ h <?4'.

(17) £e£ toe supports in (16) 6e on /et?e/, «2Z spans eguaZ, I = 80 /ee£,
and only the first, third and sixth spans loaded with a uniform load
w = 2 tons per unit oj length.

Ans. Mt = + 788.18 ft.-tons, i[f6 = - 382.55 ft. -tons;

Et
' = + 14.63 tons.

(18) Let the supports in (16) be on level, all spans equal, I = 80 feet,
and only the second, fifth and seventh spans loaded with a uniform load
w = 2 tons per unit of length.

Ans. MA = — 382.55 ft.-tons, M6 = -4- 788.18 ft.-tons;

EJ = - 14.63 tons.

(19) Let the supports in (16) be on level, all spans equal, I = 80/ee£,
and a load W in the fourth span only at a distance alfrom the left end.

Ans. Mt = ^(97a - 168a* + 71a*), Jf, = ^*(26a+ 45a* - 71a*);

**' =
2llT

(71a ~ 213«2+ 142a3
)+ W(l - a).

(20) In (19) let a uniform load w per unit of length extend over ths
whole beam.

Ans. Mt = + ~wP, M> = + ^wP; 2?4 ' r= + *L.

(21) Ze£ toe had in (20) 6e 4000 lbs. perft. over the whole girder. How
far must the fourth support be lowered in order that the moment at the
fourth support may be zero f

a > r
41m *

4

Ans. n3 — hi = — q—

-

1395AT

If E = 24000000 lbs. per square inch and / = 53400 for dimensions in
inches, h3 — ht = — 6.5 inches.

END OF VOL. II.
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of, 299 ; strength of, 299 ; change of shape of neutral axis of, 325 ;
uni-

form strength of, 330 ; deflection of, 329, 347 ; continuous, 867 ;
reactions

at supports of continuous, 368 ; moments at supports of continuous, 872 ;

general formulas for continuous, 375.

Bending moment, 285.

Body—material, 1 ; homogeneous, 10 ; equilibrium of, 77 ;
equilibrium of,

under parallel forces, 77 ; conditions of equilibrium of, 84 ;
equilibrium of,

on a curve or surface, 169 ; on a smooth curve or surface, 170 ;
on a rough

curve or surface, 188, 204.

Breaking weight of beams 299.

Centre of gravity, 17, 46.

Centre of mass, 16
;
property of, 18, 75 ; determination of, 18 ; of material

lines, 20 ; of areas, 21 ; of volumes, 26 ; determination of, by Calculus, 30.

::s:
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Centre of parallel co-planar forces, 73, 146.

Chains, static friction for, 199.

Change of shape of neutral axis of beams, 325.

Choice of scales, 139.

Closing line of equilibrium polygon, 145.

Coefficient—of friction, 189 ; of static sliding friction, 190, 192 ; of elasticity,

280, 310 ; of cohesion of earth, 257 ; of resilience, 281 ; of rupture, 288

;

of rupture for torsion, 310.

Cohesion, 187 ; of earth, coefficient of, 257.

Columns, formulas for, 361.

Combined—stresses, 311 ; compression and flexure, 312 ; compression and
shear, 313 ; flexure and torsion, 313 ; tension and flexure, 311 ; tension
and shear, 312.

Composition and resolution—of forces, 58 ; of co-planar forces, 59 ; of moments,
68 ; of couples, 73 ; of forces and couples, 82 ; of wrenches, 91.

Compression, 7 ; and flexure combined, 312 ; and shear combined, 313.

Compressive—strength, ultimate, 289 ; stress, 7, 279.

Concurring forces, 58 ; co-planar, resultant of, 59 ; conditions of equilibrium
of, 61.

Condition for single resultant force, 88.

Conditions—of equilibrium in general, 84, 87 ; of equilibrium for concurring
forces, 61 ; of equilibrium of a body under parallel forces, 77 ; of equi-
librium for co-planar non-concurring forces, 99 ; of equilibrium for a beam,
282.

Cone of friction, 189.

Conspiring forces, 58.

Constant of gravitation, 47.

Constrained equilibrium, smooth curve or surface, 169 ; rough curve or sur-

face, 186.

Construction, graphic, for centre of parallel forces, 146.

Contact, rolling, stability in, 209.

Continuous girder, 367 ; moments at supports of, 362 ; reactions at supports of,

368
;
general formulas for, 375.

Co-planar forces, 58 ; concurring, resultant of, 59 ; non-concurring, 99 ; con-
ditions of equilibrium of, 99 ; graphic construction for centre of, 146

;

application of equilibrium polygon to, 147.
Cords and chains, static friction for, 199.

Couples—moment of, 72 ; line representative of, 73 ; resolution and composition
of, 73, 82 ; resultant couple and force for forces in space, 86.

Crippling load for columns, 361.

Criterion—for superfluous members in a framed structure, 103 ; for stable,

unstable, neutral and indifferent equilibrium, 207.

Curve of earth slope, 258.

Curve or surface—reaction of, 169 ; smooth, constrained equilibrium on, 169
;

equilibrium of body on, 169 ; smooth, reaction of, 170 ; rough, constrained
equilibrium on, 186 ; rough, reaction of, 187 ; rough, equilibrium of body
on, 188, 204.

Cyb'nders—strength of, 293.

Dam, 228
;
gravity, 235. 240 ; arch, 245, 295.

Deflection—of beams, 329, 347 ; of framed structures, 345.
Density, 10 ; unit of, 10 ; mean, linear, surface, uniform, 10 ; mean, of earth,

53.

Designing of beams, 298.

Diameter—of rivets, 295 ; of pins, 307.
Displacement, virtual, 159.

Dynamics, 2 ; dynamic equilibrium, 59.

Dyne, 5.

Earth, mean density of, 53 ; mass, equilibrium of, 256 ; mass, angle of rupture
for, 257 ; cohesion, coefficient of, 257 ; slope, 228 ; slope, curve of, 258

;

slope, angle of stability of, 258.

Economic section of high gravity dam, 240.
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Elasticity —of materials, 270 ; laws of, 279 ; limit of, 280 ; coefficient of, 280,
310.

Equilibrium, 57 ; dynamic or kinetic, 59 ; molar, molecular static, 58 ; condi-
tions of, for concurring forces, 61 ; of rigid body, 77 ; of body acted upon
by parallel forces, 77 ; of a rigid body, 77, 84, 87 ; conditions of, for co-
planar non-concurring forces, 94 ;

polygon, 145 ; polygon, properties of,

147 ; of strings, 110 ; constrained, of body on a curve or surface, 169 ; on
a rough curve or surface, 186, 188, 204 ; limiting, 189 ; stable, unstable,
neutral, indifferent, criterion for, 207 ; of earth mass, 256 ; of a beam,
conditions of, 282.

Equivalent wrench, 89.

Euler's formula for long struts, 356.
External stress, 7, 279.

Eyebars and pins, theory of, 306.

Factor of safety, 290 ; for sliding, 236.

Flexure—and tension combined, 311 ; and compression combined, 312 ; and
torsion combined, 313 ; theory of, 325 ; assumptions of theory of, 326.

Force, 2 ; criterion of action of, 3 ;
proportional to acceleration, 2 ; mechanical

illustration of, 3 ; uniform and variable, 3 ; mass and acceleration, relation

between, 4 ; unit of, 5 ; dimensions of unit of, 5 ;
gravitation unit of, 6 ;

compression, tensile and shearing, 7, 283 ; line representative of, 44, 57
;

of gravitation, 44 ; moment of, 67 ; line representative of moment of, 67 ;

resultant, condition for single, 88 ;
polygon, 133, 145.

Forces—concurring, conditions of equilibrium of, 61 ; non-concurring, parallel,

67, 89 ; resolution and composition of moments of, 68 ; resultant of two
non-concurring co-planar, 68 ; centre of parallel, 73 ;

parallel, equilibrium
of body acted upon by, 77 ; in space, resultant force and couple for, 86 ;

co-planar, non-concurring, conditions of equilibrium for, 99 ; centre of

parallel, graphic construction for, 146.

Formulas—for long struts, 355, 361 ; for continuous girder, 375.

Framed structures, 100 ; reactions of, 100 ; stresses in, 101 ; methods of solu-

tion of, 154 ; deflection of, 345.

Friction, 186, 187 ; angle of, 188 ; coefficient of, 189, 190, 192 ; cone of, 189

;

static sliding, laws of, 191 ; static, for pivots, 193 ; static, for axles, 196

;

static, for cords and chains, 199 ; static, rolling, 204 ; of masonry, 228.

Girder, continuous, 367 ; moments at supports of, 362 ; reactions at supports

of, 368 ;
general formulas for, 375.

Gordon's formula for long struts, 360.

Guldinus, theorem of, 29.

Graphical construction for centre of parallel co-planar forces, 146.

Graphical statics, 133.

Gravitation unit of force, 6 ; constant of, 47 ; force of, 44.

Gravity, centre of, 17, 46 ; acceleration of, 53 ; dam, 235 ; high gravity dam,
240.

Gyration, radius of, 272.

High wall, 234 ;
gravity dam, 240.

Homogeneous body, 10.

Ice pressure, 236.

Indeterminate stresses in framed structures, 137.

Indifferent equilibrium, 206 ; criterion for, 207.

Inertia, 1 ; moment of, for areas, 270.

Internal stress, 279.

Invariant, the, 91.

Joints, masonry, stability of, 229 ; riveted, 294.

Kinds of friction, 187.

Kinetic equilibrium, 59.
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Laws of elasticity, 279 ; of static sliding friction, 191.

Limit of elasticity, 280.

Limiting equilibrium, 189.

Line, closing, of equilibrium polygon, 145.

Line, material, 19 ; centre of mass of, 20.

Line representative—of a force, 44, 51 ; of moment of a force, 67 ; of moment
of a couple, 73.

Linear density, 10.

Load, crippling, for columns, 361.

Long struts, formulas for, 355, 361.

Low gravity dam, 235.

Low wall, 234.

Masonry—joint, stability of, 229 ; weigbt and friction of, 228.

Mass, 3 ; astronomical unit of, 48 ; force and acceleration, relation between, 4;

measurement of, 4 ; specific, 10 ; table of specific, 12 ; determination of
specific, 11; moment of, 19.

Mass, centre of, 16 ; determination of, 18 ;
properties of, 18, 75 ; of lines, 20

;

of areas, 21 ; of volumes, 26 ; determination of, by Calculus, 30.

Mass, eartb—angle of rupture for, 257 ; equilibrium of, 256.

Material point, 1 ; line, area, volume, 19.

Materials, strength of, 270 ; elasticity of, 270 ;
properties of, table for, 289.

Measurement of mass, 4.

Members, superfluous, in framed structures, 103
Method of sections, 102.

Methods of solution of framed structures, 154.

Molar equilibrium, 58.

Molecular equilibrium, 58.

Moment—of mass, volume, area, 19 ; of a force, 67 ; composition and resolu-

tion of moments, 68 ; of couple, 72 ; line representative of, 73 ; at supports
of a continuous beam, 372 ; of inertia of an area, 270 ; bending, 285

;

resisting, 287 ; twisting, 309 ; theorem of three moments, 370.

Neutral axis, 286, 309 ; of beam, change of shape of, 325.

Neutral equilibrium, 206 ; criterion for, 207.

Non-concurring forces, 67 ; co-planar, 99 ; conditions of equilibrium of, 99.

Opposite forces, 58.

Pappus and Guldinus, theorem of, 29.

Parabola formula for long struts, 358.

Parabola, how to draw, 153.

Parallel forces, 67, 89 ; centre of, 73 ; equilibrium of body acted upon by, 77 ;

co-planar, graphic construction for centre of, 146 ; application of equilib-

rium polygon to, 147.

Particle, 1.

Pins—size of, 308 ; and eyebars, theory of, 306 ; diameter of, 307.

Pipes and cvlinders, strength of, 293.

Pitch of rivets, 296.

Pivots, static friction for, 193.

Plane and axis of symmetry, 19.

Point, material, 1.

Pole, in force polygon, 145.

Polygon, force, 133 ;
pole of, 145 ; equilibrium, 145 ; application of equilib-

rium, to parallel co-planar forces, 147 ; equilibrium, properties of, 147.

Poundal, 5.

Pressure—earth, 247 ; ice, 236 ; water, 235 ;
wave, 236.

Principle of virtual work, 160.

Properties—of centre of mass 75 of equilibrium polygon, 147 ; of materials,

table of, 289.
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Radius of gyration, 272.

Rankine-Gordon formula for long struts, 360.
Reaction—aud action, 7 ; of framed structures, 100 ; of curve or surface, 169

;

of smooth curve or surface, 170 ; of rough curve or surface, 187 ; at sup-
ports of continuous girder, 368.

Repose, angle of, 188.

Representative, line—of force, 57 ; of moment of a force, 67 ; of moment of a
couple, 73.

Resisting moment, 287.

Resilience, work and coefficient of, 281.

Resolution and composition of forces, 58 ; of co-planar forces, 59 ; of moments,
68 ; of forces and couples, 73, 82 ; of wrenches, 91.

Resultant—of concurring co-planar forces, 59 ; non-concurring co-planar forces,

68, 70 ; force and couple for forces in space, 86 ; force, condition for single,
88*

Retaining walls. 228, 247 ; low, 234 ; high, 234 ; formulas for, 251.
Rigid body, equilibrium of, 77.

Rigidity of ropes, 202.

Riveted joints, 294.

Riveting, theory and practice of, 295.

Rivets, diameter of, 295 ; number of, 296 ;
pitch of, 296.

Rolling—contact, stability in, 209 ; friction, 204.

Ropes, rigidity of, 202.

Rough curve or surface, constrained equilibrium on, 186, 188, 204 ; reaction of,

187.

Rupture, angle and surface of, 253 ; angle of, for earth mass, 257 ; coefficient

of, 288 ; coefficient of, for torsion, 310.

Safety, factor of, 290 ; factor of, for sliding, 236.

Scales, choice of, 139.

Section, economic, of high gravity gram, 240.

Sections, method of, 102.

Shape, of beams for uniform strength, 299.

Shear, 7 ; and tension combined, 312 ; and compression combined, 313.

Shearing force, 283 ; stress, 7, 279, 283.

Single resultant force, condition for, 88.

Size of pins, 308.

Sliding—coefficient of static friction for, 190, 192; friction, laws of, 191 ; factor

of safety for, 236.

Slope, earth, 228 ; angle of stability of, 258 ; curve of, 258 ; stability of, 257.

Smooth curve or surface, constrained equilibrium on, 169 ; reaction of, 170.

Solution of framed structures, methods of, 154.

Space, resultant force and couple for forces in, 86.

Specific mass, 10 ; determination of, 11 ; table of, 12.

Stability—in rolling contact, 209 ; of masonry joint, 229 ; of walls, 231 ; of

earth slope, 257.

Stable equilibrium, 206 ; criterion for, 207.

Static equilibrium, 58.

Static rolling friction, 204.

Static sliding friction, 190 ; coefficient of, 192 ; laws of, 196 ; for axles, 196

;

for chords and chains, 199 ; for pivots, 193.

Statics, 57 ; applications of, 228 ;
graphical, 133.

Straight-line formula for long struts, 358.

Strain, 7 ; and stress, 279.

Strength—of beams, 299 ; of materials, 270 ; of pipes and cylinders, 293

;

ultimate, 289.

Stress, 7 ; crippling, for columns, 361 ; compressive, tensile and shearing, 279;

shearing, 283 ; temperature, 313 ; unit of, 291 ; variable working, 292 ;

working, 290.

Stress and strain, 279.

Stress, combined, 311 ; in framed structures, 101 ;
indeterminate, 137.

Strings, equilibrium of, 110.
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Structure, framed, 100 ; deflection of, 345; methods of solution of, 154 ; reac-
tions of, 100 ; stresses in, 181.

Struts, formulas for long, 355, 361.

Superfluous members, criterion for, 103.

Surface—density, 10 ; of rupture, 253, reaction of, 169.
Surface or curve, equilibrium on rough, 186, 188, 204 ; equilibrium on smooth,

169, 170 ; reaction of rough, 187 ; reaction of smooth, 170.
Symmetry, plane and axis of, 19.

Temperature, stress due to, 313.

Tensile—stress, 7, 279 ; strength, 289.
Tension, 7 ; and flexure combined, 311 ; and shear combined, 312.
Theorem—of three moments, 370 ; of Pappus and Guldinus, 29.
Theory of flexure, 325 ; assumptions of, 326.
Torsion, 308 ; coefficient of rupture for, 310 ; and flexure combined, 313 : work

of, 310.

Twisting moment, 309.

Uniform—density, 10 ; force, 3 ; strength of beams, 299, 330.

Unit—of density, 10 ; of force, 5; of mass, 3; of mass, astronomical, 48 ; stress,

291 ; of work, 159.

Unstable equilibrium, 206 ; criterion for, 207.

Variable—force, 3 ; working stress, 292.

Virtual—displacement, 159 ; work, 159.

Volume—material, 19 ; moment of, 19 ; centre of mass of, 26.

Wall—batter of, 228 ; high, 234 ; low, 234 ;
parts of, 228.

Wall, retaining, 228, 247 ; formulas for, 251 ; stability of, 231.

Water pressure, 235.

Wave pressure, 236.

Weight—of a body, 4, 5 ; breaking, of beams, 299 ; of masonry, 228.

Work, 158 ; of resilience, 281 ; of torsion, 310 ; unit of, 159 ; virtual, 159 ;

of variable force, 159.

Working stress, 290 ; variable, 292.

Wrench, equivalent, 89.

Wrenches, composition and resolution of, 91.
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Eissler's Explosives—Nitroglycerine and Dynamite 8vo,

Gerhard's Sanitary House Inspection 16mo,

Godwin's Railroad Engineer'sField-book.l2mo, pocket-bk. form,

Gore's Elements of Goodesy 8vo,

Howard's Transition Curve Field-book 12mo, morocco flap,

Howe's Retaining Walls (New Edition.) 12mo,

Hudson's Excavation Tables. Vol. II 8vo,

Hutton's Mechanical Engineering of Power Plants 8vo,

Johnson's Materials of Construction 8vo,

Johnson's Stadia Reductiou Diagram. .Sheet, 22£ X 28J inches,

" Theory and Practice of Surveying 8vo,

Kent's Mechanical Engineer's Pocket-book 12mo, morocco,

Kiersted's Sewage Disposal 12mo,

Kirkwood's Lead Pipe for Service Pipe 8vo,

Mahan's Civil Engineering. (Wood.) 8vo,

Merriman and Brook's Handbook for Surveyors. . . .12mo, mor.,

Merriman's Geodetic Surveying 8vo,

" Retaining Walls and Masonry Dams 8vo,

Mosely's Mechanical Engineering. (Mahan.) •. .8vo,

Nagle's Manual for Railroad Engineers 12mo, morocco,

Patton's Civil Engineering 8vo,

" Foundations 8vo,

Rockwell's Roads and Pavements in France 12mo,

Ruffner's Non-tidal Rivers 8vo,

Searles's Field Engineering 12mo, morocco flaps,

Searles's Railroad Spiral 12mo, morocco flaps,

Siebert and Biggin's Modern Stone Cutting and Masonry. . .8vo,

Smith's Cable Tramways 4to,

" Wire Manufacture and Uses 4to,
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Spalding's Roads and Pavements 12mo, $2 00

" Hydraulic Cement 12mo, 2 00

Thurston's Materials of Construction 8vo, 5 00

* Trautwine's Civil Engineer's Pocket-book. ..12mo, mor. flaps, 5 00

* " Cross-section Sheet, 25

* " Excavations and Embankments 8vo, 2 00

* " Laying Out Curves 12mo, morocco, 2 50

Wait's Engineering and Architectural Jurisprudence.

(In the press.)

Warren's Stereotomy—Stone Cutting 8vo, 2 50

Webb's Engineering Instruments 12mo, morocco, 1 00

Wegmanu's Construction of Masonry Dams 4to, 5 00

Wellington's Location of Railways. . . 8vo, 5 00

Wheeler's Civil Engineering 8vo, 4 00

Wolff's Windmill as a Prime Mover 8vo, 3 00

HYDRAULICS.
Water-wheels—Windmills—Service Pipe—Drainage, Etc.

(See also Engineering, p. 6.)

Bazin's Experiments upon the Contraction of the Liquid Vein

(Trautwine) 8vo, 2 00

Bovey's Treatise on Hydraulics 8vo, 4 00

Coffin's Graphical Solution of Hydraulic Problems 12mo, 2 50

Ferrel's Treatise on the Winds, Cyclones, and Tornadoes. . .8vo, 4 00

Fuerte's Water and Public Health 12mo, 1 50

Ganguillet&Kutter's Flow of Water. (Heriug&Trautwiue.).8vo, 4 00

Hazeu's Filtration of Public Water Supply 8vo, 2 00

Herschel's 115 Experiments 8vo, 2 00

Kiersted's Sewage Disposal 12mo, 1 25

Kirkwood's Lead Pipe for Service Pipe 8vo, 1 50

Mason's Water Supply 8vo, 5 00

Merriman's Treatise on Hydraulics 8vo, 4 00

Nichols's Water Supply (Chemical aud Sanitary) 8vo, 2 50

Ruffner's Improvement for Non-tidal Rivers 8vo> 1 25

Wegmaun's Water Supply of the City of New York 4to, 10 00

Weisbach's Hydraulics. (Du Bois.) 8vo, 5 00

Wilson's Irrigation Engineering 8vo, 4 00

Wolff's Windmill as a Prime Mover 8vo, 3 00

Wood's Theory of Turbines 8vo, 2 50

8



MANUFACTURES.

Aniline—Boilers—Explosives—Iron—Sugar—Watches
Woollens, Etc.

Allen's Tables for Iron Analysis 8vo,

Beaumont's Woollen and Worsted Manufacture 12ino,

Bollaud's Encyclopaedia of Founding Terms 12mo,

" The Iron Founder 12mo,

" " " " Supplement 12mo,

Booth's Clock and Watch Maker's Manual 12mo,

Bouvier's Handbook on Oil Painting 12mo,

Eissler's Explosives, Nitroglycerine and Dynamite. 8vo,

Ford's Boiler Making for Boiler Makers 18mo,

Metcalfe's Cost of Manufactures 8vo,

Metcalf 's Steel—A Manual for Steel Users 12mo,

Reimann's Aniline Colors. (Crookes.) 8vo,

* Reisig's Guide to Piece Dyeing 8vo,

Spencer's Sugar Manufacturer's Handbook 12mo, inor. flap,

" Handbook for Cbemists of Beet Houses. (In thepress.)

Svedelius's Handbook for Charcoal Burners 12mo,

The Lathe and Its Uses 8vo,

Thurston's Manual of Steam Boilers 8vo,

Walke's Lectures on Explosives 8vo,

West's American Foundry Practice 12mo,

Moulder's Text-book 12mo,

Wiechmaun's Sugar Analysis. 8vo,

Woodbury's Fire Protection of Mills 8vo,

MATERIALS OF ENGINEERING.

Strength—Elasticity—Resistance, Etc.

[See also Engineering, p. 6.)

Baker's Masonry Construction 8vo,

Beardslee and Kent's Strength of Wrought Iron 8vo,

Bovey's Strength of Materials , . .8vo,

Burr's Elasticity and Resistance of Materials 8vo,

Byrue's Highway Construction 8vo,

Carpenter's Testing Machines and Methods of Testing Materials

Church's Mechanic's of Engineering—Solids and Fluids 8vo,

Du Bois's Stresses in Framed Structures 4to,
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Hatfield's Transverse Siraius 8vo, $5 00

Jobnsou's Materials of Construction 8vo, 6 00

Lanza's Applied Mechanics 8vo, 7 50

" Strength of Wooden Columns 8vo, paper, 50

Merrill's Stones for Building and Decoration 8vo, 5 00

Merriman's Mechanics of Materials 8vo, 4 00

Pattou's Treatise on Foundations 8vo, 5 00

Rockwell's Roads and Pavements in Fiance 12mo, 1 25

Spalding's Roads and Pavements 12mo, 2 00

Thurston's Materials of Construction 8vo, 5 00

Thurston's Materials of Engineering 3 vols., 8vo, 8 00

Vol. I., Non-metallic 8vo, 2 00

Vol. II., Iron and Steel 8vo, 3 50

Vol. III., Alloys, Brasses, and Bronzes 8vo, 2 50

Weyrauch's Strength of Iron and Steel. (Du Bois.) 8vo, 150

Wood's Resistance of Materials 8vo, 2 00

MATHEMATICS.

Calculus—Geometry—Trigonometry, Etc.

Baker's Elliptic Functions 8vo, 1 50

Ballard's Pyramid Problem 8vo, 1 50

Barnard's Pyramid Problem 8vo, 1 50

Bass's Differential Calculus 12mo, 4 00

Brigg's Plane Analytical Geometrj' 12mo, 1 00

Cbapman's Theory of Equations 12mo, 1 50

Chessin's Elements of the Theory of Functions

Comptou's Logarithmic Computations 12mo, 1 50

Craig's Linear Differential Equations 8vo, 5 00

Davis's Introduction to the Logic of Algebra 8vo, 1 50

Halsted's Elements of Geometry ...8vo, 175
" Synthetic Geometry 8vo, 150

Johnson's Curve Tracing 12mo, 1 00

*' Differential Equations—Ordinary and Partial 8vo, 3 50

" Integral Calculus 12mo, 1 50

" Least Squares 12mo, 150

Ludlow's Logarithmic and Other Tables. (Bass.) 8vo, 2 00

Trigonometry with Tables. (Bass.) 8vo, 3 00

Mahan's Descriptive Geometry (Stone Cutting) 8vo, 1 50
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Merriman and Woodward's Higher Mathematics 8vo, $5 00

Merriuian's Method of Least Squares 8vo,

Parker's Quadrature of the Circle 8vo,

Rice and Johnson's Differential and Integral Calculus,

2 vols, in 1, 12mo,

" Differential Calculus 8vo,

" Abridgment of Differential Calculus— 8vo,

Searles's Elements of Geometry 8vo,

Totten's Metrology 8vo,

Warren's Descriptive Geometry 2 vols., 8vo,

*' Drafting Instruments » 12mo,

" Free-hand Drawing 12mo,

" Higher Linear Perspective 8vo,

" Linear Perspective 12mo,

" Primary Geometry 12mo,

" Plane Problems 12mo,

" Plane Problems 12mo,

" Problems and Theorems 8vo,

" Projection Drawing 12mo,

Wood's Co-ordinate Geometry 8vo,

" Trigonometry 12mo,

Woolf's Descriptive Geometry Royal 8vo,

MECHANICS-MACHINERY.

Text-books ahd Practical Works.

(See also Engineering, p. 6.)

Baldwin's Steam Heating for Buildings 12mo, 2 50

Benjamin's Wrinkles and Recipes 12mo, 2 00

Carpenter's Testing Machines and Methods of Testing

Materials 8vo,

Chordal's Letters to Mechanics 12mo, 2 00

Church's Mechanics of Engineering 8vo, 6 00

" Notes and Examples in Mechanics 8vo, 2 00

Crehore's Mechanics of the Girder 8vo, 5 00

Cromwell's Belts and Pulleys 12mo, 1 50

Toothed Gearing 12mo, 150
Compton's First Lessons in Metal Working 12mo, 1 50

Dana's Elementary Mechanics 12mo, 1 50
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Dingey's Machinery Pattern Making 12mo, $2 00

Dredge's Trans. Exhibits Building, World Exposition,

4to, half morocco, 15 00

Du Bois's Mechanics. Vol. I., Kinematics 8vo, 3 50

Vol. II.. Statics 8vo, 4 00

Vol. III., Kinetics 8vo, 3 50

Fitzgerald's Boston Machinist 18mo, 1 00

Flather's Dynamometers 1 2mo, 2 00

" Rope Driving 12mo, 2 00

Hall's Car Lubrication 12mo, 1 00

Holly's Saw Filing 18mo, 75

Lanza's Applied Mechauics 8vo, 7 50

MacCord's Kinematics 8vo, 5 00

Merriman's Mechauics of Materials 8vo, 4 00

Metcalfe's Cost of Manufactures 8vo, 5 00

Michie's Analytical Mechanics 8vo, 4 00

Mosely's Mechanical Engineering. (Mahan.) 8vo, 5 00

Richards's Compressed Air 12mo, 1 50

Robinson's Principles of Mechanism 8vo, 3 00

Smith's Press-working of Metals 8vo, 3 00

The Lathe and Its Uses » 8vo, 6 00

Thurston's Friction and Lost Work 8vo, 3 00

" The Animal as a Machine 12mo, 1 00

Warren's Machine Construction 2 vols., 8vo, 7 50

Weisbach's Hydraulics and Hydraulic Motors. (Du Bois.)..8vo, 5 00

" Mechanics of Engineering. Vol. III., Part I.,

Sec. I. (Klein.) 8vo, 5 00

Weisbach's Mechanics of Engineering. Vol. III., Part I.,

Sec.II. (Klein.) 8vo, 5 00

Weisbach's Steam Engines. (Du Bois.) 8vo, 5 00

Wood's Analytical Mechauics 8vo, 3 00

" Elementary Mechanics 12mo, 1 25

** " " Supplement and Key 1 25

METALLURGY.

Iron—Gold—Silver—Alloys, Etc.

Allen's Tables for Iron Analysis 8vo, 3 00

Egleston's Gold and Mercury 8vo, 7 50

12



Egleston's Metallurgy of Silver 8vo, $7 50

* Kerl's Metallurgy—Copper and Iron 8vo, 15 00

* " " Steel, Fuel, etc 8vo, 15 00

Kunhardt's Ore Dressing in Europe 8vo, 1 50

Metcalf Steel—A Manual for Steel Users 12mo, 2 00

O'Driscoll's Treatment of Gold Ores 8vo, 2 00

Thurston's Iron and Steel 8vo, 3 50

"
. Alloys 8vo, 2 50

Wilson's Cyanide Processes. . . , , 12mo, 1 50

MINERALOGY AND MINING.

Mine Accidents—Ventilation—Ore Dressing, Etc.

Barriuger's Minerals of Commercial Value (In the pre'8.)

Beard's Ventilation of Mines 12mo,

Boyd's Resources of South Western Virginia 8vo,

" Map of South Western Virginia. . . . .Pocket-book form,

Brush and Pen field's Determinative Mineralogy 8vo,

Chester's Catalogue of Minerals 8vo,

" Dictionary of the Names of Minerals.. 8vo,

Dana's American Localities of Minerals 8vo,

Descriptive Mineralogy. (E. S.). . . .8vo, half morocco,

" Mineralogy and Petrography. (J. D.) 12mo,

" Minerals and How to Study Them. (E. S.) 12mo,

" Text-book of Mineralogy. (E. S.) 8vo,

^Drinker's Tunnelling, Explosives, Compounds, and Rock Drills.

4to, half morocco,

Egleston's Catalogue of Minerals and Synonyms 8vo,

Eissler's Explosives—Nitroglycerine and Dynamite 8vo,

Goodyear's Coal Mines of the Western Coast 12mo,

Hussak's Rock forming Minerals. (Smith.) 8vo,

Ihlseng's Manual of Mining . . . . 8vo,

Kunhardt's Ore Dressing in Europe , 8vo,

O'Driscoll's Treatment of Gold Ores 8vo,

Rosenbusch's Microscopical Physiography of Minerals and

Rocks. (Iddings.) 8vo,

Sawyer's Accidents in Mines . 8vo,

StDckbridge's Rocks and Soils 8vo,
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Williams's Lithology 8vo, $3 00

Wilson's Mine Ventilation 16mo, 1 25

STEAM AND ELECTRICAL ENGINES, BOILERS, Etc.

Stationary—Marine—Locomotive—Gas Engines, Etc.

(See also Engineering, p. 6.)

Baldwin's Steam Heating for Buildings 12mo,

Clerk's Gas Engine 12mo,

Ford's Boiler Making for Boiler Makers 18mo,

Hemeuway's Indicator Practice 12mo,

Hoadley's Warm-blast Furuace 8vo,

Kneass's Practice and Theory of the Injector 8vo,

MacCord's Slide Valve 8vo,

* Maw's Marine Engines Folio, half morocco,

Meyer's Modern Locomotive Construction 4to,

Peabody and Miller's Sieam Boilers U.. 8vo,

Peabody's Tables of Saturated Steam 8vo,

" Thermodynamics of the Steam Engine 8vo,

" Valve Gears for the Steam-Eugiue 8vo,

Pray's Twenty Years with the Indicator Royal 8vo,

Pupin and Osterberg's Thermodynamics 12mo,

Reagan's Steam and Electrical Locomotives 12mo,

Rontgeu's Thermodynamics. (Du Bois.) 8vo,

Sinclair's Locomotive Running 12mo,

Thurston's Boiler Explosion 12mo,

" Engine and Boiler Trials 8vo,

" Manual of the Steam Engine. Part I., Structure

and Theory 8vo, 7 50

Manual of the Steam Engine. Part II., Design,

Construction, and Operation 8vo,

2 parts,

" Philosophy of the Steam Engine 12mo,

" Reflection ou the Motive Power of Heat. (Carnot.)

12mo,
" Stationary Steam Engines 12mo,
" Steam-boiler Construction and Operation 8vo,

Spangler's Valve Gears 8vo,
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Trowbridge's Stationary Steam Engines 4to, boards, $2 50

Weisbaeh's Steam Engine. (Du Bois.) 8vo, 5 00

Whitham's Constructive Steam Engineering 8vo, 10 00

Steam-engine Design 8vo, GOO

"Wilson's Steam Boilers. (Flather.) 12mo, 2 50

Wood's Thermodynamics, Heat Motors, etc 8vo, 4 00

TABLES, WEIGHTS, AND MEASURES.

For Actuaries, Chemists, Engineers, Mechanics—Metric
Tables, Etc

Adriauce's Laboratory Calculations 12mo, 1 25

Allen's Tables for Iron Analysis 8vo, 3 00

Bixby's Graphical Computing Tables Sheet, 25

Compton's Logarithms 12mo, 1 50

Crandall's Railway and Earthwork Tables 8vo, 1 50

Egleston's "Weights and Measures, 18mo, 75

Fisher's Table of Cubic Yards Cardboard, 25

Hudson's Excavation Tables. Vol.11 8vo, 100

Johnson's Stadia and Earthwork Tables 8vo, 1 25

Ludlow's Logarithmic and Other Tables. (Bass.) 12mo, 2 00

Thurston's Conversion Tables ... 8vo, 1 00

Totteu's Metrology 8vo, 2 50

VENTILATION.

Steam Heating—House Inspection—Mine Ventilation.

Baldwin's Steam Heating 12mo, 2 50

Beard's Ventilation of Mines 12mo, 2 50

Carpenter's Heating and Ventilating of Buildings 8vo, 3 00

Gerhard's Sanitary House Inspection Square 16mo, 1 00

Mott's The Air We Breathe, and Ventilation 16mo, 1 00

Reid's Ventilation of American Dwellings 12mo, 1 50

Wilson's Mine Ventilation 16mo, 1 25

niSCELLANEOUS PUBLICATIONS.

Alcott's Gems, Sentiment, Language Gilt edges, 5 00

Bailey's The New Tale of a Tub .8vo, 75

Ballard's Solution of the Pyramid Problem 8vo, 1 50

Barnard's The Metrological System of the Great Pyramid. .8vo, 1 50

15



Davis' Elements of Law. ... 8vo,

Emmoil's Geological Guide-book of the Rocky Mountains. .8vo,

Ferret's Treatise on the Winds 8vo,

Haines' Addresses Delivered before tbe Am. Ry. Assn.

12mo. (hi the press.)

Mott's The Fallacy of the Present Theory of Sound. .Sq. 16mo,

Perkins's Cornell University Oblong 4to,

Ricketts's History of Rensselaer Polytechnic Institute. .. . 8vo,

Rotherham's The New Testament Critically Emphasized.

12mo,

Totteu's An Important Question in Metrology 8vo,

Whitehouse's Lake Mceris Paper,

* Wiley's Yosemite, Alaska, and Yellowstone 4to,

HEBREW AND CHALDEE TEXT-BOOKS.

For Schools and Theological Seminakies.

Gesenius's Hebrew and Chaldee Lexicon to Old Testament.

(Tregelles.) Small 4to, half morocco,

Green's Elementary Hebrew Grammar 12mo,

" Grammar of the Hebrew Language (New Edition). 8vo,

" Hebrew Chrestomathy 8vo,

Letteris's Hebrew Bible (Massoretic Notes in English).

8vo, arabesque, 2 25

Luzzato's Grammar of the Biblical Chaldaic Language and the

Talmud Babli Idioms 12mo, 1 50

MEDICAL.

Bull's Maternal Management in Health and Disease 12mo, 1 00

Hammarsten's Physiological Chemistry. (Maudel.) 8vo, 4 00

Mott's Composition, Digestibility, and Nutritive Value of Food.

Large mounted chart, 1 25

Ruddiman's Incompatibilities in Prescriptions (In the press.)

Steel's Treatise on the Diseases of the Ox 8vo, 6 00

" Treatise on the Diseases of the Dog 8vo, 3 50

Worcester's Small Hospitals—Establishment and Maintenance,

including Atkinson's Suggestions for Hospital Archi-

tecture 12mo, 1 25
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