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PREFACE.

It is hoped that this little book will be found to

be a suitable text-book for students preparing for the

Cambridge Previous Examination, for Woolwich, for

the Oxford and Cambridge Certificate, for the London
Matriculation, for the Local, and for other Examina-
tions of a similar nature. At the same time I have
endeavoured not to lose sight of the importance of

the subject as an introditction to the study of Physics

and of Practical Mechanics.

A knowledge of the 'Trigonometry of one Angle'*
is assumed in some parts of the book—it will be
found, however, that considerable portions may be
read without any acquaintance with Trigonometry.

The truth of the Parallelogram of Forces is as-

sumed, and the student who has not already read

some elementary Dynamics is recommended to post-

pone the consideration of the proof until he reaches
that subject.

I have therefore based the whole subject on
Newton's Laws of Motion, a method which in my
opinion greatly simplifies the subject. The accus-

tomed proofs of the fundamental propositions based
upon the principle of the Transmissibility of Force
are given in a separate Chapter.

The use of the word Resolute, as the proper ab-
breviation for ' Resolved Part ', will I hope be found
useful in emphasizing the importance of the idea.

* This is required in the Additional Subjects of the Cambridge

Previous Examination. See Examination Papers at the end of this book.
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I have added a chapter on Graphic Statics and
have reserved for that Chapter the consideration of

the 'Triangle of Forces'; as I venture to think that

the method of solution based upon purely geometri-

cal principles is best kept distinct from that based
upon the Resolution of Forces.

The Examples have been made as simple as

possible ; the collection of lOO Miscellaneous Ex-
amples at the end of the book will be found some-
what more difficult.

For this SECOND Edition (which has been
stereotyped), the whole work has been very carefully

revised. Thanks to the assistance of many friends

and teachers many defects have been removed.
I have particularly to thank my friend Mr J. C.

Trautwine, C.E., of Philadelphia, U.S.A., for most
valuable criticisms of almost every page, and I am
much indebted also to Mr T. H. Kirby, M.A., of

Clifton, for many corrections and suggestions, par-

ticularly with regard to the examples and answers.

The general character of the work is unchanged;
but I have slightly enlarged its scope by the insertion

of some illustrative problems worked out in pages

231 to 238, together with a carefully graduated set

of interesting examples for exercise. I have also

increased the miscellaneous examples at the end
by the addition of problems selected and adapted
from those set in Cambridge in the last two or three

years.

Any corrections or suggestions will be gratefully

received by the Author or the Publishers.

J. B. LOCK.
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STATICS.

CHAPTER I.

Force.

1. We derive our first notion of 'Force' from our

muscular sense.

We press something with our hand ; the something resists the pres-

sure. We apply with our hand force to the something ; the something

applies an opposite force called resistance to our hand.

2. When an agent [D. 183] produces similar effects to

those which are produced by our own muscular exertions,

we conclude that the agent itself exerts force.

Example. When a Steam Engine presses against a carriage, it

produces an effect on the carriage similar to that which can be pro-

duced by the exertion of the muscles of men or of horses.

The explosion of giinpo-oder propels a cannon ball by force applied

continuously for a short interval to the cannon ball, just as a bowler

propels a cricket ball by the force applied continuously for a small

interval by his hand to the ball.

3. When our muscular exertion is resisted or impeded

by a thing we are said to exert force upon that thing.

This resistufice is a necessary accompaniment of the exist-

ence of force.

Example. A man cannot press with his hand unless he has some-

thing to which to apply pressure.

L. S. (E I



2 STA TICS.

4. DEFINITION. Any thing to which force can be

applied, or which can offer resistance to force, is called

matter.

DEF. The amount of matter in a thing is called its

mass.

We decide whether a certain thing is tiiaiter by an appeal, direct or

indirect, to our muscular sense. The eye may easily be deceived with

regard to the mass of an object; for the mass of a body is proportional

to its capacity for resisting force, and not to its shape, or colour, etc.

5, The true effect of force upon matter was first

clearly enunciated by Sir Isaac Newton in his great work

the ' Principia,' written when in residence as a Fellow of

Trinity College, Cambridge, and published in the year

1687.

Newton pointed out that force tends to produce in

matter an increase of velocity; the increase being in the

direction in which the force acts and proportional to it.

The tracing out of all the consequences of this law of

nature belongs to the great science of Dynamics [Ai'i^a/its,

force]. The science of Statics [Sto, / stand still] is that

part of Dynamics which treats of masses which are at rest

and which remain at rest when under the action of forces.

Thus, in Statics, our treatment of force is limited; and the know-

ledge of the nature of force to be obtained by the consideration of

statical problems only, is consequently limited.

For the purposes of Statics the definition of force takes

the following form,

Def Force when applied to a mass at rest produces

in that mass a tendency to move; this tendency is in the

direction of the force and is proportional to it.
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6. Now in order to treat of Force as a nieasureablc

([uantity we must first be able to test whether two given

forces are equal, and secondly we must have a unit force

with which to measure our forces.

PROP. Two forces are equal, which are such that they

can be applied to the same tnass in opposite directions without

causing the mass to begin to move.

For each force tends to produce motion in the mass in

its own direction, and the tendency is proportional to the

force. But if the mass does not begin to move then

tendencies which are exactly opposite to one another must

be equal to each other.

And therefore the forces which are proportional to them

must also be equal.

7. It is convenient to use the word body to denote

any separate portion of matter.

When a body is so small that its size is unappreciable

and its shape of no importance it is called a particle.

Bodies of definite size and shape are supposed to be

made up of a very large number of particles.

8. It is a fact, made evident by our muscular sense,

that every body with which we are actiuainted is acted on

by a force vertically downwards towards the earth ; which

force is called the weight of the body.

It is proved in Dynamics that the weight of a body is,

for all practical purposes, the same at any place in the

British Isles.

It is slightly different in different latitudes. The weights of the

same body at one of the poles and at the equator are in the ratio aflSJ.

Hence if we choose a lump of matter of some durable

substance which does not corrode or waste, we can use its

weight as our U7iit force.
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9. The unit force in Statics (and in practical en-

gineering) all over the English speaking world is the

weight of a certain lump of platinum which is

kept in London.

The amount of matter in this lump is called one pound,

or, I lb.

Thus the Static Unit force is the weight of 1 lb.

Since, in Statics, the number of lbs. in a mass is of

importance only because it decides the 7veight of the mass,

it will be sufficient in what follows to speak of a force as

a 7iumher of lbs. (omitting the word weight as unnecessary).

10. Let us consider some way in which we can apply

force to matter.

Take two coins, A and B, one in each hand, and press their edges

one against the other.

The coin A is pressed hy the hand holding it and liy the coin B.

The hand applies one force, and the coin B applies a second force, and

since the coin A remains at rest these two forces are equal and

opposite.

Similarly the coin B is acted on by two equal and opposite forces.

Now consider what takes place at the point at which the two

coins touch each other. At this point there are two forces acting one

on the coin A and the other on the coin B, and these two forces are

equal and opposite.

11. It will be found that when one body A applies a

force to a second body B at any point, then B applies at

the same point an equal and opposite force to A.

It can be shewn that this must be so by Art. 6.

For suppose that the two coins A and B considered above are jusl

kept apart by a particle of dust. This particle of dust is at rest and

remains at rest, and therefore if it is acted on by two forces only (the

pressures applied to it by A and B respectively) these two forces must

be equal and opposite.

This law of force is usually referred to as Ne'wton's

Third Law. Action and Reaction are equal and opposite.
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12. Since then a force cannot be applied to a mass

without that mass replying with an equal and opposite

force, it follows that, in nature, forces always occur in pairs

;

each pair consisting of two equal and opposite forces.

Such a pair of forces is called a stress.

13. When a body is acted on by other bodies so that

forces are applied to it, we consider in Statics that the

arrangement of the forces must be such that the body re-

mains at rest. So that we may say that the effect of the

forces upon the body is practically nothing.

14. But the actual effect of forces acting on a body

which remains at rest is to cause a slight change in the

arrangements of the particles of which the body is composed

and consequently to place the particles in a state of strain.

Consider a stick HKL placed on a smooth horizontal table. Let

it be pressed by three horizontal forces applied at three different points

of its length.

When the forces are first applied, the particles of the wood arc

strained, their relative positions being altered by the forces.

Let the forces be such that the stick remains at rest. As long as

the forces continue in action the particles of the wood remain in a state

of strain, and the stick is distorted. If the stick is naturally straight

and is to be considered straight in the problem, the distortion must be

slight.



o STATICS.

15. In considering a problem such as the above we
shall, in what follows, always assume that the shape of the

body is unaltered.

The consideration of the change of shape in body con-

sequent on the action of force is very difficult and compli-

cated. Hence in commencing the study of the effect of

force on mass we choose those bodies in which the change

of shape is imperceptible.

The only part of the above experiment which provides us with

a question in Elementary Statics is, the relation which must exist

between the three forces, in order that the stick considered as a whole

may remain at rest ; and we should in discussing this problem leave

out altogether any consideration of the slight change of shape which

the stick may undergo.

But it must not be forgotten that there is some change of shape how-

ever slight; and that the particles of the body are in a state of strain.

16. DEF. When we wish to call attention to the fact

that the change of shape in the body under consideration,

caused by the forces acting on it, is so small that we neglect

it, we say that the body is rigid.

17. Although in the present treatise we do not pro-

pose to consider the change of shape in a body due to

the action of force, yet it is necessary to point out that the

change of shape caused by force affords a very convenient

means of measuring forces.

It is found that a piece of coiled steel wire can be compressed to a

certain observed distance by the action of a certain force and that the

compression is repeatedly the same for the same force.

Hence we conclude that two forces which compress the same steel

spring equally, are equal forces.

Thus the action of a steel spring gives us a means of doubling,

trebling, etc. a force, and hence of measuring any force whose magni-

tude we wish to know.
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Geometrical Representation of Force.

1 8. Force lias magnitude.
We say that a force is so many times the weiglit t)f i 11 1.

Force has direction.

A given force produces tendency to motion in a certain direction.

We apply a pressure to a body in a certain direction.

Force when acting upon a body is applied at a certain

point.

Each of these, tnagnitude, direction and point of applica-

tion must be known before the effect which the force pro-

duces in the body on which it acts can be known.

They can all be indicated geometrically by a finite

straight line with some mark on it to indicate the point of

application.

For a finite straight line has magnitude^ namely its

length.

Its magnitude is measured by the ntunber of units of length which

it contains. Hence when a line represents a force each unit of length

represents a certain proportion of a unit force. For example; half an
inch may represent i lb.

Thus the lengths of the lines, in a diagram representing a system of

forces, represent the magnitudes of the corresponding forces on one

uniform scale.

A finite straight line has direction, provided it is under-

stood that it is drawn _//-(?/// some point; and this point can

serve to indicate \X\q point of application.

Thus when we speak of the force OA we shall mean that the force

is represented in length by the length of OA, and in direction by the

direction from \.o A; and that the point of application is 0.

It is convenient to indicate by an arrow that the force

acts in the direction OA and not in the direction AO.
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ig. It is important to notice that the word direction

means more than line of action. For any given line has

two directions, the one exactly opposite to the other.

Thus, the line terminated by the point and A has the two direc-

tions; namely, (i) from A to 0, (ii) from O to A.

Exa7nple i. Three lines of 3 in., 2^ in. and 4 in. dra-wn from a

point in given directions represent three forces ; the smallest force is

5 lbs.; what are the magnitudes of the others?

Here 2^ in. represents 5 lbs.

Therefore 1 in. represents i lbs.

Therefore 3 in. represents 6 lbs.

and 4 in. represents 8 lbs.

Therefore the other two forces are 6 lbs. and 8 lbs.

Example ii. Two forces of 4 lbs. and 5 lbs. respectively act at a

point. We draw a line at random parallel to the fif-st force and take it

to represent that force ; on vieastiring this line we find it measures

3*2 inches; what line 7uill 7-epresent the second force?

The line must be drawn parallel to the second force; and since

a force of 4 lbs. is represented by 3*2 inches, a force of 5 lbs. will be

represented by f of 3'2 inches, that is, by 4 inches.

The required line is a line parallel to the 5 lbs. 4 inches long.

EXAMPLES. I.

1. I wish to represent 3 forces of 2 lbs., 3 lbs., and 4 lbs. by
straight lines drawn parallel to the forces; if I represent the

force of 2 lbs. by a line \ in. long, with what lengths must I re-

present the other two forces ?

2. Three forces are proportional to the sides of a triangle

whose sides are 3 in., 4 in., and 5 inches ; the smaller force is

75 lbs. ; what are the others ?

3. Assuming that a line of 3 inches represents a force of

4 lbs. : find the lengths of the lines to represent 10 lbs., 12 lbs.

and 25 lbs.
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4. Assuminj^ that a force of 50 lbs. is represented by a Hne
of 6| inches : find the force represented by a line of 2 ft. and by

a line of 14 inches.

5. In a right-angled triangle the sides containing the right

angle are 3 in. and 4 in. ; taking the hypotenuse to represent a

force of 25 lbs., what force would be represented by the sides ?

6. Forces of 3 lbs. towards the North and 3 lbs. towards

the West are represented by lines OA, OB respectively; what
force is represented by the line ABt

7. ABC is an equilateral triangle, and^Z> is drawn per-

pendicular to BC ; DA represents a force 3 lbs. northwards
;

what forces do AB and DB represent ?



CHAPTER 11.

Forces acting at One Point.

20. DEF, A particle is a portion of matter which

is so small that it may be treated practically as a geo-

metrical point.

Hence, when forces act on a particle they are to be considered as

each acting at the point at which the particle is placed.

Practically, we may consider those masses to be particles in which

we do not take into account any tendency to rotation, or in which all

the points of the mass tend to move together in the same direction.

Note. In practice a force is applied to a body distributed over a

small area; a force cannot be actually applied at a geometrical point,

nor can a force act in a geometrical line.

. Even a force applied to a body by means of a fine thread is really

applied to a small area. But such a force approximates to a force

having a line of action and a. point of application.

As the student proceeds with the suljject he will see that a single

force acting in a geometrical line may in many cases be considered as

the statical 7-eprescntation of a great number of minute parallel forces

and that the point of application may be considered to be the centre of

the system of parallel forces which the single force represents.
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21. DEF. When the forces acting upon a particle at

rest are such that the particle continues at rest, the forces

are said to be in equilibrium.

2 2. DEF. The resultant of a number of forces

acting upon a particle is the single force which can produce

in the particle the same effect as the forces acting together!

Any number of forces acting on a Particle at rest, pro-

duce in that particle a tendency to motion. This tendency

can be only in one direction and must be of definite magni-

tude. Hence, any number of forces acting at a point must

have one and ojily ofie resultant.

Since the forces considered in Statics are always in

ecjuilibrium, we may with advantage express the above

definition as follows.

DEF. The resultant of any number of forces acting

at a point is the force equal and opposite to that force

which when acting at the same point will form with the

given forces a system in equilibrium.

The force which forms with any given system of forces

a system in equilibrium is called the anti-resultant of

that system of forces.

A Particle acted on by One Force.

23. When a single force acts upon a mass, it produces

motion in the mass.

But in Statics we only consider those arrangements

of forces which do not produce motion.

Therefore we do not consider the effect of a single

force acting alone on a mass.

The discussion of the effect of a single forcp will be found in

Dynamics.
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A Particle acted on by Two Forces.

24. When two forces act upon a mass, each force pro-

duces its own tendency to motion in the mass.

When two forces acting at one point upon the same

mass together produce rest, the tendencies to motion which

they produce must be equal and opposite.

Therefore the forces must also be equal in magnitude,

in the same line, and opposite in direction. Hence,

PROP. When hvo forces acting at the same poifit are

in equilibrium they must be of equal magnitude, they must act

in the same li?ie and they must act in opposite directions.

A Particle acted on by Several Forces having the

SAME Line of Action.

25. Consider a mass at rest when under the action of

several forces all of which have the same line of action.

Since the tendency to motion produced by all the forces

together is zero, therefore the sum of the tendencies in the

one direction must be equal to the sum of the tendencies

in the other direction.

Therefore the sum of all the forces acting in one

direction must be equal to the sum of the forces acting in

the opposite direction.

Example. Forces of 3 lbs. and 4 lbs. towards the North act on a

particle and forces of 1 lbs. and 5 lbs. towards the South act on the

same particle. The particle is in equilibrium because the sum of the

two forces 3 lbs. + 4 lbs. are equal to the sum of the opposite forces of

2 lbs. + 5 lbs.
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26. Also, in order to find the resultant [Art. 22] of any

number of forces acting on a particle having the same line of

action, we must add together all those forces which act in one

direction and subtract from them the sum of all the forces

which act in the contrary direction ; the difference will be

the resultant of the forces under consideration.

Example. Find the resultant offorces of 5 lbs., 6 lbs. and 7 lbs.

acting on a particle towards the East and 3 lbs. a7id 8 lbs. acting on the

same particle towards the West.

"We have 5 + 6 + 7= 18 lbs. in one direction opposed by 3 + 8=11 lbs.

in the opposite direction.

Hence their resultant is 18-11=7 lbs. towards the East.

27. Further, we shall obtain the desired result even if

we subtract the forces whose sum is the greater from the forces

whose sum is the less, provided we record the result as a

force opposed to the lesser force.

Example. In the above example we might have said that tlie

resultant toivards the West is 11 - 18= - 7 lbs. ; that is, 7 lbs. in a

direction exactly opposite to the direction considered.

28. This suggests that we should define the opposing

forces as negative forces, and agree tJiat the sign - ap-

plied to a force shall indicate that it is opposed to the force to

which the sign + is applied.

29. DEF. It is convenient to use the word sense

to indicate that forces in the same line are or are not

opposed to each other.

Thus the word se7ise in Geometry corresponds to the

word sign as commonly used in Algebra.

A A'

We shall always indicate the sense of a line in a figure

by the order of the letters thus, AA' =- - A'A.
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30. In future when we speak of the sum of a number
of forces or of lines representing them, it must be under-

stood that in forming the su7n due attention must be paid

to sign.

In the above example the sum of forces acting towards the East on

the particle is ( + 5 4 6 + 7 - 3 - 8) lbs., that is + 7 lbs.

With this understanding the condition for the equili-

brium of a single particle when acted on by forces in one

line may be stated thus.

31. PROP. Any ?iumber offorces acting in the same

line at the same point are in equilibrium 7uhe?i the sum of

thoseforces is zero.

Example i. Arrange theforces 2 lbs., 3 lbs., 4 lbs. antt 6 lbs. acting

in the same line, that their restiltant may be as small as possible.

When we oppose the forces of 2 lbs. and 6 lbs. to those of 3 lbs. and

4 lbs. the resultant is i lb.

It will be found on trial that the resultant of any other arrangement

is greater than i lb.

Hence, the arrangement required is + -2 lbs., - 3 lbs., - 4 lbs., +6 lbs.

Example ii. Can theforces i lb. 2 lbs. 3 lbs. and 6 lbs. acting on a

particle in the same line be so arranged as to be in equilibrium ?

The SM7n of the forces must be zero and the sum of the forces

-f I lb. -1-2 lbs. +3 lbs. -6 lbs. is zero.

Therefore when the forces i lb., 2 lbs., 3 lbs. act in the same sense

and the 6 lbs. in the opposite sense the forces are in equilibrium.

EXAMPLES. II.

1. Find the resultant of forces 2 lbs. and 5 lbs. acting

towards the north and 6 lbs. and 3 lbs. acting towards the

south.

2. Find the resultant of the forces 4 lbs., 5 lbs. and 2 lbs.

acting upwards, and 3 lbs., 7 lbs. and 8 lbs. acting downwards.

3. Find the resultant of the forces -f-3lbs., +5 lbs., -I- 7 lbs.

and -4 lbs., -6 lbs., —8 lbs. acting all towards the north.
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4. ABCD is a straight line, AB=z ft., BC= 3 ft., 67.> = 4 ft.;

find the resultant of the forces represented by AB^ BC, CD
and DB.

5. As in Question 4, find the resultant of the forces repre-
sented by AC, BD, DA and CB.

6. As in Question 4, find the resultant of the forces repre-
sented by ^Z>, ^'Z^, CD, -BC, -AB.

7. A weight of 36 lbs. is on a horizontal plane, a man
applies an upward pull of 30 lbs. to the weight. What is the
pressure of the weight on the plane }

8. 3 men endeavour to lift a stone of 2 cwt.; one man pulls

upwards with a force of 50 lbs., another with a force of 80 lbs.,

and there is a pressure upwards of the ground on the stone of
20 lbs.; what is the pull of the third man?

9. A cart is on the side of a hill, and it is known that a force

of 3 cwt. up the hill is necessary to make it move up the hill

;

three men push up the hill each with a force of 28 lbs. ; and
there are three horses, one pulls upwards with a force of 1 50 lbs.,

another with a force of 200 lbs. upwards. What is the pull of

the third horse if the cart remains at rest ?

10. A, B, C, D are points on a straight line; shew that, for

any arrangement whatever of the points, forces represcnicd by
AB, BD, DC, CA are in equilibrium.
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The Parallfxogram of Forces.

32. When two forces act in different directions

upon a particle, each force produces in the particle a ten-

dency to move. But the particle can only tend to move

in one direction ; so that the combined effect of the two

forces must be a tendency to move in some one direction.

Suppose for example we have two coiled springs made of steel wire

arranged each with an indicator, like a spring balance, and we connect

each of them by means of a string to a small ring O. And suppose we

have also a third spring, like the other two, also connected with the

ring by a third string.

Then we can apply to the ring two known forces P lbs. and Q lbs.

in directions indicated by the first two strings; and we can keep the

ring from moving by a force R lbs. applied by the third spring. We
shall thus have two forces, P and (), and their anti-resultant R.

^^-—^^m^
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Now llie maj^iiitudc and direction uf R must depend upon those of

/"and (7, and therefore there must be some rule by which the direction

and magnitude of R can l)e found by calculation from the known mag-

nitudes of P and Q.

The following rule for finding the direction of R will be found to be

true.

Along the direction of /' measure OL from containing as many

inches as there are lbs. in P; along the direction of Q measure OM
from O containing as many inches as there are lbs. in Q.

Draw MN' parallel to OL and LN' parallel to 0M\ join ON'.

Then N' produced is the direction of R.

The rule for finding the magnitude of R is as follows.

"With the same construction as before, draw the parallelogram

OMN'P, and find how many inches there are in ON'.

Then the niDnher of inches in 6'iV' = the number of lbs. in R.

This rule may be enunciated as follows.

2,1. PROF. The Parallelogram of Forces. When

two forces acfing at a point are represented in mag?iitude and

direction by two lines OA, OB, then their resultant is repre-

sented in magnitude and directiofi by the diagonal OC of

the parallelogram OACB

.

34. The truth of the Parallelogram of Forces is de-

duced from the dynamical definition of force. [See Dy-

namics, Art. no.]

35. A static proof (depending on certain assumptions

with regard to the nature of matter) is given below in Chap-

ter XIV. and this proof can if it be thought desirable be

read at this point.

The student however who has not yet read any Dy-

namics is advised to postpone the consideration of the

theoretical proof of the proposition for the present, and to

follow out in example and experiment the results which can

i)e deduced from the proposition.

L. s.
•

2
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^6. The student should notice that the parallelogram

of forces includes the case of two forces acting in the same

straight line.

For suppose OA and OB be two forces including a very small angle

[Fig. i.], then OC becomes very nearly equal to OA+AC, that is to

OA + OB.

'-.--=^==^0 B

Again, [Pig. ii.] sujjpose OA and OB to include nearly two right

angles, then OC becomes very nearly equal to OA - CA, that is to

OA - BO.

37. The truth of the parallelogram of forces may be

roughly tested by some such apparatus as the following

:

A board has three small smooth pulleys Z, 3/, JV fixed

to it.

Three strings knotted together at O have their other

extremities fastened to weights F^, P„, P^; these strings

are then arranged as in the figure, the plane of the board

being vertical.
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Now considering the equilibrium of the knot at O, we
have three forces applied to it by the strings in the direc-

tions OL, OM and ON respectively, the forces being equal

to the weights of P^, F„, P^ respectively.

Suppose for example ^, = 3 lbs. and P^ = A lbs. ; draw
on the board lines OA, OB parallel to OM, ON making

0A—2,'\x\., OB-^df'vcv., and complete the parallelogram

OAC'B.

Then if we measure 0C\ it will be found that the

number of inches in OC will be equal to the number of

pounds in P^.

3S. To find the resultant of two forces at right

angles to each other we have to find the length and

direction of the diagonal of a parallelogram, which in this

particular case is a rectangle, whose sides are given.

Example i. Find the resultant of two forces of 5 lbs. a)td 1 2 lbs. at

right angles to each other.

Let OA represent 12 lbs. and OB represent 5 lbs. the angle .r/C/)

being a right angle.

"'
12lbs

Complete the parallelogram OACB antl join OC.

Then OC represents the required resultant.

Now OC''=OA^^AC^-=dA'^\OH-=\^-+z;'-=l(i()=^\l:K

Therefore CC represents 13 lbs (i)^

AC K
and the angle AOC is such that tan AOC= —- ^ -^- = -41666 '> ... (ii).OA 12 ^ '

\Vhence [from the Tables or by actual measurement] AOC—'i^° 28'

nearly.
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Example ii. Fi7id ihc direction and magnitude of the resultant^

forees of% \hs. and 9 lbs. at right angles to each other.

Let OA represent 9 IIjs., and OB 8 lbs.

Complete the parallelogram OACB.

Join OC. Then OC represents the required resultant.

Now OC-^OA^-^ AC'^=OA''-^OB-= if^%'^

= I5S = (l2-04...)2. .

B

Bibs

mT^ A

Therefore OC represents i2"04...1bs (i),

and tan^CC=--= =-888888 (ii).

OA g

Whence [from the Tables] A0C=4i° ii nearly.

EXAMPLES. III.

Find the direction and magnitude of the resultant of the fol-

lowing pairs of forces ; each pair being at right angles (working
out the surds to 4 significant figures).

1. 3 lbs. and 4 lbs. 2, 15 lbs. and 10 lbs.

3. 25 lbs. and 60 lbs. 4. 6 lbs. and 7 lbs.

5. 10 lbs. and 11 lbs. 6. 10 lbs. and 20 lbs.

7. 4 lbs. and 4 lbs. 8. i lb. and a/3 lbs.

9. (i + 2V2) lbs. and- 2^/2 lbs.

10. (3 + V3)lbs. and I lb.

11. ( I + s/3 + s/2) lbs. and ( i + .J2) Uis.

12. (2 + s/2 4-3 + n''3) lbs. and (2 s/2 + 5) lbs.

13. 3<j lbs. and \a lbs. 14. a lbs. and b lbs.
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1

39. We may [Art. 2>2>] ^t any time replace two forces

which act upon a particle by a single force called their

resultant; and the effect of this single force on the particle

will be the same as the effect of the two forces together.

Conversely we may, if we please, at any time replace

the single force (the resultant) by the two forces which to-

gether have the same effect.

40. When we replace a single force acting on a particle

by two forces whose joint effect is the same, the two forces

are called components of the single force.

41. PROF. A force cati be resolved into two co?n-

f,orients in any assigned dircdio7is.

Let OR be the given force and OH^ OK the given

-.H

directions, from R draw RA parallel to KO and RB parallel

to^a
Then by the parallelogram of forces we may replace the

force OR by the two forces represented by OA and OB.
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42. It is however seldom required to resolve a force

into components, except in the case when the two com-

ponents are at right angles to each other. The following

examples may be omitted on first reading the subject.

*Example. Resolve the force of 1 2 lbs. into two others^ inaking^ the

anj^les 30° and 90° ivith it, one on each side.

.H

Let OK represent 12 lbs.

Draw the angles HOR= ^o°, ROJ^=qo°.

Through R draw RA parallel to A^O and RB parallel to //O.

Then OA and OB represent the two components required.

OA _ sin ORA _ 1 _ 2

OR ~ sinOA~R ~ sin 60° ~ ^3
*

3

Now

Hence

Again,

Hence,

' X 12 lbs.OA = ^xOR.
V3

= 8 X i"7320...Ibs.= i3"856o...lbs.

^v/3

3

OB _ sin ORB _ sin 30° _ j
OR ~

sin OBR ~ sin 60° ~ v'3

OB='^xOR=-s,/^x 12 lbs. =4 X 17320. ..lbs.

= 6-928...1bs.
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^EXAMPLES. IV.

1. Resolve the force of 36 lbs. into two others making the

angles 90° and 30° with it, one on each side.

2. Resolve the force of 10 lbs. into two others making the

angles 30° and 60" with it, one on each side.

3. Resolve the force of i lb. into two others each making
the angle 60° with it.

4. Resolve the force of 100 lbs. into two others each making
the angle 30° with it.

5. Resolve the force of 25 lbs. into two others each making
the angle 45° with it.

6. Resolve the force of 100 lbs. into two equal forces, one of
which makes an angle of 60° with it.

7. Resolve a force of 20 lbs. into two equal forces, one of
which makes an angle of 45° with it.

8. Resolve a force of 45 lbs. into two equal forces, one of
which makes an angle of 30° with it.

9. A force is resolved into two forces P and P', each making
45° with it, and also into two forces Q and Q each making an
angle 30° with it ; shew that Q= \ xJS of P.

10. When a force is resolved into two components, the
greater component is that which makes the smaller angle with it.

11. Shew that a force can be resolved into two components
one of which can have any assigned magnitude and any as-

signed direction.

Find the following components by means of a scale and
protractor.

12. Resolve the force 12 lbs. into two equal forces, one
making the angle 25° with it.

13. Resolve the force 16 lbs. into two forces at right angles,

one of them making 40° with it.

14. Resolve the force 10 lbs. into two forces making angles
35° and 50° respectively with it.

15. Resolve the force 15 lbs. into two forces, one of which
is 20 lbs. and makes the angle 42° with it.
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43. DEF. When a force is resolved into two com-

ponents at right angles to each other each component is

called the resolute of the force in its own direction.

The resolute of a force in a given direction

is an idea with which the student must make himself per-

fectly familiar.

44. To find the resolute of a force in a given direction

we proceed thus.

Let OA represent the given force, OHxkvo. given direction;

Ok: ^> -f^

from A draw ^J/perpendicular to OH; then C>J/represents

the required resolute in the direction OH.

45. When the given direction makes an angle a with

the given force so that A0H= a,

OM
then, snice -^y-r = cos a,

(JA.

we have 0M= OA cos a,

or, the resolute of a force Z' in a direction making the angle

a with it is /'cos a.

Also the resolute of OA perpendicular to OM is

OA sin a.

Note. That which we have here called the resolute

of a force is in most books on Statics called the resohrd

part of a force.

The idea is so important in the subject that a definite name will be

found useful.
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Example i. Find the resolute of a force of 10 lbs. i)i the dircctioii

making the angle 60° -with it.

Here OA represents 10 lbs. z.x\.fS. AOM—(io°

,

therefore 0M= 10 cos 60°= 5 lbs.

Example ii. Ei)id the resolute of a force of 3^21 lbs. in the directum

making the angle whose cosine is '647 li'ith it. 9

Here OA represents 321 lbs. and cos .4 0J/= -647,

therefore OM—^iix'S^j.

EXAMPLES, V.

Find the resolute of each of the following forces in the

direction making the given angle with it.

1. 30 lbs., at the angle 60° with it.

2. 50 lbs., at the angle 30'' with it.

3. 4sj2 lbs., at the angle 45° with it.

4. 125 lbs., at the angle whose cosine is f with it.

5. 300 lbs., at the angle whose cosine is 7 with it.

6. 437 lbs., at the angle whose cosine is '125 with it.

7. 237 lbs., at the angle whose cosine is 794 with it.

8. 347 lbs., at the angle 35° 48' 30" [cos 35° 48' 30" = -8
1

1
].

Find the following resolutes by means of a scale and pro-
tractor.

9. 25 lbs. at the angle 36°.

10. 3 lbs. at the angle 45° 30'.

11. 22 lbs. at the angle 40°.

12. 12 lbs. at the angle 52°.

13. 18 lbs. at the angle 20°.

14. 10 lbs. at the angle 25°.
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46. To find the resultant of any two given forces

we may proceed as follows.

Example. Find the resultant of two forces of 4 lbs. and 3 lbs.

acting on a particle incliticd to each other at an angle of 60°.

Let OA represent 4 lbs. wt., let OB represent 3 lbs. \vt., and let the

angle ^(9/? =60°.

Complete the parallelogram OACB, then OC represents the required

resultant.

We have to find the force represented by OC.

Let the unit length represent i lb.

Then the length of OB- 3, the length of OA = 4.

Also AiV=AC co%6o"= ix\,
iVC:=^ C sin 60°= 3 X I ^3,

oc"-={OA+ANT-+NC-^={^+i};)"-+{^j7,y^
— i2i 1 2X— 3 - .— 4 + i — il 1

.-. C>C=V37 = 6-o8...1bs.

EXAMPLES. VI.

Find the resultants of the following forces.

1. Forces of 5 lbs. and 5 lbs., inclined to each other at the
angle whose cosine is ^.

2. Forces of 6 lbs. and 3 lbs., inclined to each other at the
angle whose cosine is 4.

3. Forces of 7 lbs. and 12 lbs., inclined to each other at the

angle whose cosine is -{".y

4. Forces of 3 lbs. and 4 lbs., inclined at the angle 30°.

5. Forces of 3 lbs. and 8 lbs., inclined at 60^.
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6. Forces of 5 lbs. and 10 lbs., inclined at 45°.

7. Forces of i lb. and 3^2 lbs., inclined at 45°.

8. Forces of 10 lbs. and 10^/3 lbs., inclined at 30°.

9. A force of 20 lbs. towards the North, and a force of

30 lbs. towards the North-west.

10. A boat is pulled by a force of 30 lbs. towards the South
and by a force of 20 lbs. towards the North-west. What other
force is acting upon it if it remains at rest 1

11. Two horses pull at a block of stone, one with a hori-

zontal force of 100 lbs. the other with a horizontal force of 130 lbs.,

the forces being inclined to each other at the angle whose cosine
is }§ ; what is the force which keeps the stone at rest.-*

12. Two forces Plbs. and sJzPVas. act at a point; P acts
towards the East and ^zP towards the N.W. ; find their

resultant.

13. Two forces 2 lbs. and 4 lbs. inclined to each other at an
angle of 120° act at a point. What is their resultant?

14. Two forces of 2 lbs. each acting at an angle of 60° have
the same resultant as two equal forces acting at right angles

;

what is the magnitude of these two forces ?

47. It will be seen that the method employed above is

simply a method of finding the third side of a triangle of

which two sides and the included angle are given.

Thus 0C'= ON' -f NC- ^{0A+ ANf +NC
= OA' + AN' +NC + 2OA. AN
= OA' +AC + 2OA . ACcos NAC
= OA' +AC-2OA. AC. cos OAC.

[The method is thus identical with the use of the

Trigonometrical Formula a' = b' + c' — 2bc cos A.'\

This result may be written J^- = P- + Q' + 2PQ cos P(2.

48. The student must distinguish clearly between the

resolute of a force in a given directioft and a coniponoit of the

force in the same direction when the two components arc

not at right angles.
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49. As the student proceeds in the subject he will find

that tJic resolute of a given force in a given direction may
be said to be that which represents the effect of the given

force in that direction.

Example. A force may be said to have no effect in the direction

perpendicular to itself. The resohite of a force in the direction per-

pendicular to the force is zero. A force may have a component of any

given magnitude in the direction perpendicular to itself.

50. By Art. 45 the resolute of a force P lbs. in the

direction making the angle a with it, is /'cos a lbs..

We notice that cos a is a number; so that /'cos a lbs.

is a force.

We notice that cos a is never greater than i, so that the

resolute of a force is always less than the force itself,

Except when it is in the direction of the force, and then it is the

force itself.

In the figure on Page 24 if a circle be described on OA as diameter,

the chord of this circle drawn through O in any direction represents

the resolute in that direction.

51. The student must notice that two separate reso-

lutes of the same force are not a pair oi componejits of the

force unless these two resolutes are at right angles to each

other.

52. There is one direction and one direction only in

which the resolute of a force is zero ; namely, the direction

perpendicular to the force itself.

Hence no force can have its resolutes in two different directions

each separately zero. A fact which may be stated thus

;

When the resolutes of a force in tw^o different

directions are each separately zero that force

must be itself zero.

This fact is most important, and will often lie used in

subsequent parts of the book.
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53. The method of Art. 46 should l)e considered as an

example of the resolution of forces.

54. PROP. To find iJic resultant of iivo }:;ivcn forces.

Let OA, OB represent the forces. Resolve one of

ihem, OB., into its two rectangular components OM, ON,

along and perpendicular to the line of action of the other

OA.
Then compound the resulting forces.

In the figure CM' = 0M+ OA and the resultant

OC' = ON' +0M"
= ON'^{OM+ OA)'.

To find the square of the resultant of two forces, find

the sum of the resolutes of the forces in each of two

directions at right angles to each other and add their

squares.

Example. Let OA and OB represent two forces.

Draw OA' perpendicular to OA.

Draw BM, y57V perpendiculars on OA and OR'.

Then the force OB may be replaced by the two forces OA/ and OjV,

wliere 0M= OB cos MOB, 0N=MB= OB sin MOB.
Hence the two forces OA and OB may be replaced by the two

forces OA + OM sXowg OA and along OA' perpendicular to OA.
The resultant of these two is OC where

0C2 = (0^ + OB cos MOB)'+ OB' sin-MOB (i),

JVC OB sin MOB
(")•and tan A^OC=—r = -—.

OJV OA + OB cos MOB'
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Exantplc i. A force has its resolute towards the North equal to

6,^/3 lbs., the other component is 6 lbs. towards the East; find the

magnitude and direction of the force.

Let Oil/ represent' the force of 6 lbs. and ON \\\ii'i of 6;v,/3lbs.

Complete the rectangle NOMA,
Then OA represents the required force and

C»^=v/{6H62x 3} lbs. =: 1 2 lbs.

Also, since
OM 6 \ , , ,.^.-^— = — = - , the ansrle MOA
OA 12 2

^ = 60°.

Example ii. The resolute ofa force in the direction fnakitis^ the angle

whose sine is f luit/i the force is 20 lbs.
; fnd the force and the other

component of theforce.

Let OM represent the given resolute.

75/6S

Draw the angle MOP whose sine is |, draw MA perpendicular

to (9J/ cutting OF'vsx A.

Then OA represents the required force.

Complete the rectangle OMAN; then ON is the other component

of the force.

, ^jlf o OAF 4
Now, since sin MOA = ^ , ... __ ^ .? and ^^ =

^

;

.-. 0A=^ J of 0M= 4 of 20 lbs. = 25]bs.

,

also MA= I of 0M= g of 20 lbs. = i^lbs.
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EXAMPLES. VII.

1. Find the resultant of forces of 4 lbs, and 3 lbs. inclined

to each other at an angle of 45".

2. The rectangular components of a force in magnitude are

3 lbs. and 4 lbs. respectively ; what is the force ?

3. The rectangular components of a force are each 5 lbs.

;

what is the force ?

4. The resolute of a force which makes an angle of 60" with

the force is 10 lbs.; what is the force.?

5. The resolute of a force which makes an angle of 30" with

it is ^3 lbs. ; what is the force t and find the other component.

6. The resolute of a force making an angle of 45° with it is

20 lbs. ; what is the other component ?

7. The resolute of a force making an angle whose tangent

is I with the force is 12 lbs.; find the other component.

8. If two forces are represented in magnitude and direction

by the side (of length / ft.) and a diagonal of a square, prove

that their resultant will be represented either by a line of length

v/5/ or by a line of length /.

9. ABC is an equilateral triangle; forces /"lbs., /'lbs.,

O lbs. act at a point parallel to AC, CB, AB respectively; shew

tliat their resultant is {P+Q) lbs.

10. Forces of 25 lbs., 24 lbs. and 7 lbs. acting at a point are

in equilibrium ; shew that two of them are at right angles.

11. Forces of 40 lbs., 41 lbs. and 9 lbs. acting at a point are

in equilibrium ; shew that two of them are at right angles.

12. A force of 10 lbs. acts along the^side AB of an equilateral

triangle; what is the resolute of this force along the side AC?
find also its resolute in the direction parallel to CB.

13. Shew that the resultant of the two resolutes in 12 is

5 lbs.

14. D is the middle point of the side AB of the equilateral

triangle ABC; prove that the resultant of two forces re-

presented respectively by AD, AC is represented in magnitude

by ^/7 times AD.

15. Prove that if OA represent a force and a circle be

described on AB as diameter, the resolute of the force in any

direction is represented by the chord of the circle, drawn in

that direction through O.
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55. PROP. The sujii of the resoln/cs in any chosen

direction of two forces is equal to the resolute of their

resultant in that directio7i.

Let OA, OB., OC represent the component forces and

their resultant respectively.

N

Take any line OR ; draw AM, BN, OR perpendicular

from A, B, C on the line.

Then OM, OiV, OR represent the resolutes of OA, OB,
6>C respectively in the direction OR.

We have to prove that OR = 0M+ ON.

Through A draw AK parallel to OR to meet CR pro-

duced, when necessary, in K; then the triangles OBN,
ACK ha.ve their sides parallel and OB = AC;

.-. ON=AK=MR.
Therefore OR = OM+MR = OM + ON. q. e. d.

N.B. In the above proposition due attention must be paid to the

signs of the lines AIJ? and 02V.

Thus in the left-hand figure we may say that

OA'= OA/- RM= OM- NO ;

but this is the same thing as saying that

0R=^ OM+MR= 0M+ ON.

Example. Two forces not vertical support a weiglit of 10 lbs.

The resultant of these two forces is therefore a force of 10 ll)s. acting

vertically upwards.

The sum of the vertical resolutes of these two forces is therefore

equal to lolbs.

The sum of the horizontal resolutes of these two forces is zero.
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56. PROF. The sum of the resolutes in any chosen

direction of any tiumber offorces acting at a point is et/iial to

the resolute in the same direction of their resultant.

For the sum of the resolutes of any two of the forces

is equal to the resolute of their resultant.

The sum of the resolutes of this resultant and of a third

force is equal to the resolute of their resultant

;

and so on.

57. From this we deduce the following very important

proposition.

58. PROP. The SU7H of the resolutes in any chosen

direction of any number of forces acting at a point which arc

in equilibrium, is zero.

For the sum of their resolutes in any direction is equal

to the resolute of their resultant.

But since the forces are in equilibrium their resultant

is zero, and therefore its resolute in any direction is zero.

59. PROP. When the sums of the resolutes in each of

two different directions of afiy number offorces acting at a

point are each separately zero, theforces are i?i equilibrium.

For it follows by Art. 56 that the resolute of their resul-

tant in two different directions must be each separately zero.

This [Art. 52] can only be true when their resultant is itself

zero.

60. To find the resultant of any number of forces

acting at a point, we make use of the proposition of

Art. 56. We find the sums of the resolutes of all the forces

in each of two directions mutually at right angles and thus

obtain the resolutes of the resultant in each of those direc-

tions :

We observe that two resolutes of a force which are

mutually at right angles, are rectangular components of that

force.

L. s. 3
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'*^ 6i. PROP. To find the resultajit of any ?iuinber of

foxes advig at a poitit.

Let OA, OB, OC... represent the forces

P^ lbs., P^ lbs., P^ lbs.... respectively.

Take any line OM; draw ON <^/

perpendicular to OM. /

Draw AM^, AN^ perpendiculars N^

to OAf and (9irrespectively. M

Then we may replace the force OA by its two rectangular

components (9J/,, ON^, that is by

(Pj cos AOM) lbs. along OAf and (P, sin AOM) lbs.

along OJV.

Treating OP, OC in a similar manner, we replace the

forces OA, OP, OC,... by

(i',cos^(9J/)lbs.+(7'^cos^6'J/)lbs.+(P3CosC(9J/)lbs.+...

= 2 (i'cos a)

acting along OAf, and

{P^smAOAI)\hs. +{P^sinPOAf)lbs. + {P^sm COM) lbs. + ...

= 2 (/'sin a)

acting along OJV.

The resultant of these is a force OP,

where OP'' = (/', cos A OAf+ P^ cos POAf+ P^cos COM. ..)'

+
(
P^ sin AOM+ P^ sin POAf+ P.^ sin COM...)',

or, OP' = [2 (/* cos a)]'^ + [2 (/'sin a)Y
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and

POM- -^1 s^"

^

0-^+ Pq s^^BOM^ P^ sin COAI. .

.

tan J^OM-^ cos y^ (9J/+Xcos B0M+ F, cos COJ/. .

.

_2CPsina)
~2(Pcosa)'

Example. Four forces OA, OB, OC, OD of 3, 4^2, 2^3.

2,^3 lbs. respectively act at O, .f<? Ma/ /'/«^ angle BOA= 45°, the angle

COB = 1
5° and the angle DOC = 60°

; find their resultant.

Resolve each force along and perpendicular to OA

.

W .

^^4" " ^ Mi 'a' m''
' ~

The resolutes along OA are OA, OA/.,, OAf.^^, O/I/4 in the figure,

which =3lbs., 4 ^z cos 45° lbs., 2 ^3 cos 60° lbs., -2^3 cos 1 20° lbs.

respectively,

therefore their sum is (3 + 4\/2X-t- + 2^3X--2^3X-J lbs.,

that is (3 + 4 + N/3-\/3)lt)S.= 7lbs.

The resolutes perpendicular to OA are o, ON^, ON^, ON^ ;

that is o, j,s]i sin 45°, 1 s]z sin 60°, 1 ijz sin 120° respectively,

therefore their stim is (4 + 3 + 3) lbs. = 10 lbs.

The required resultant OR is such that

OR=J{f +io-\=J{i4()} = 12-^\hs (i),

and ia-nROA^^ (ii).

EXAMPLES. VIII.

Find the resultant of each of the following sets of forces.

1. OA, OB, 0C=3, 4, 5 lbs. respectively; the angle

AOB= 60°, the angle BOC=^o'.

2. OA=4sf2 \hs., (9^= 6 lbs., 6^=6^5.; the angle

A0B=4S% the angle BOC=-90°.
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3. 0^=4 lbs., 6'^'=3v/3 lbs. = CC; the angle

AOB= eo''=BOC.
4. OA=/i,\h%., C^=5lbs., CC=8 1bs.; the angle AOB

such that its cosine is \; the angle AOC=<^d'.

5. (9y^ = ioo lbs., (9i5= 20olbs., 0C=3oolbs. ; <9^ acts
towards the East, OC towards the N.-W. and OB at an angle 30°

to the East of North.

6. Cyi = 10 lbs. = 6>^=CC=6'/); the angle

A0B= (iO^ =B0C=COD.
7. Forces of 4 lbs., 5 lbs. and 6 lbs. acting on a particle

each inclined to the other at the angle of 120°.

8. Forces of 4 lbs., 5 lbs. and 6 lbs. acting at a point parallel

respectively to the sides of an equilateral triangle taken in order.

9. Three forces each of 10 lbs., acting at a point, parallel

respectively to the sides taken in order of a right-angled triangle

whose sides are 3 ft., 4 ft., 5 ft. respectively.

10. Forces of 6 lbs., 8 lbs. and 10 lbs. respectively acting at

a point parallel respectively to the sides taken in order of a tri-

angle whose sides are 3 ft., 4 ft. and 5 ft. respectively.

11. Forces of a lbs., b lbs., c lbs. respectively acting at a
point parallel respectively to the sides taken in order of a triangle

whose sides are a ft., b ft. and c ft. respectively.

12. Forces of i lb., 2 lbs., 3 lbs., 4 lbs. and 5 lbs. acting at a
point parallel to the sides AB, BC, CD, AD and the diagonal
AC oi 2L sqvi2ix& ABCD.

13. ABCD is a square, and forces represented in direction

by the lines AB, BD, DA and AC, and in magnitude by the

numbers i, 2sj2, 3, and v'2 act at a point; find their resultant.

14. Forces of i, 2, 4, 6, 8 lbs. respectively act from the

centre of a pentagon to the corners. Find the resultant.

15. Forces of 1,2, 3, 4, 5, 6 lbs. respectively act from the

centre of a regular hexagon to its corners ; find their resultant.

16. ABCDEF is a regular hexagon; find the resultant of

forces represented by AB, AC, AD, AE, AF.
17. P, Q and R act at a point parallel to the sides taken in

order of an equilateral triangle; shew that their resultant is

18. The arc of a quadrant is divided into four equal parts
;

forces of I, 2, 3, 4, 5 lbs. respectively act from the centre to the

extremities of those parts ; land their resultant.
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MISCELLANEOUS EXAMPLES. IX.

1. Forces of i, 3, 6, 15 lbs. act at a point and in directions

parallel to the sides of a square taken the same way round

;

find the magnitude of their resultant.

2. Forces of 2(2, 'hQ-, 4(2 ^ct at a point in directions parallel

to the sides of an equilateral triangle taken the same way round
;

find their resultant.

3. Three forces are represented in direction and magnitude
by the three sides of a triangle taken the same way round;
prove that the algebraical sum of their resolutes in any chosen

direction is zero.

4. The resultant of two forces P and Q acting at right

angles is A' ; if P and Q be each increased by 3 lbs. R is increased

by 4 lbs., and is now equal to the sum of the original values of

/^and (9; find P, g and A.

5. ABC is an equilateral triangle, and D is the middle
point of AB; prove that the line of action of the resultant of

forces represented by AD, AC cuts off one third part of BC.

6. Forces of 40, 41, and 9 lbs. acting at a point produce
equilibrium ; shew that two of them are at right angles.

7. If the angle between two given forces be increased, shew
that their resultant is consequently diminished.

8. Forces acting at a point are represented in magnitude
by lAB, 2BC, CA where ABC is a triangle, and in direction

by AB, BC, CA ; find the magnitude and direction of their

resultant.

9. Two forces P and Q of given magnitude act at a given
point A and the direction of P is fixed ; shew that if the direction

of Q change the extremity of a straight line drawn from A re-

presenting the resultant of P and Q will lie on the circumference
of a fixed circle.

10. If two forces be inclined to one another at an angle of

three halves of a right angle, find the ratio of their magnitudes
when their resultant equals the less.

11. ABCD is a quadrilateral figure whose angles DAB,
BCD are right angles; forces represented by AB, AD a.ct at A,
and forces represented by CB, CD act at C. Shew that the
direction of their resultant bisects the angle AEC where E is

the middle point of BD.
12. Two forces which are to each other as 2 to ^3 when

compounded produce a force equivalent to half the greater

;

find the angle at which they are inclined to each other.
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13. Forces of 8 lbs. and lo lbs. acting at a point have a
resultant of 14 lbs. ; find the cosine of the angle between the

forces.

14. Forces of 5 lbs. and 4 lbs. act at a point, the cosine of

the angle between their directions being \ ; find the magnitude
of their resultant.

15. A box is carried by a strap attached to handles at its

ends ; shew that the longer the strap the less will be its tension.

16. ABCD is a quadrilateral and forces acting at a point

are represented in direction and magnitude by BA^ BC, DA,
CD ; find their resultant.

17. Three forces keep a particle at rest ; one acts towards
the East, another towards the N.-W. and the third towards the

South ; if the magnitude of the first be 3 lbs., find the magni-
tudes of the other two.

18. Three forces 6 lbs., 7 lbs., 10 lbs. act at a point in

directions such that each if produced would bisect the angle

between the other two ; find the magnitude of their resultant.

19. Three forces /", Q, R act at a point ; the angle between
the directions of P and Q is 90°, and the direction of R bisects

the angle between the other two; if P=i lb., Q— sl3 lbs. and
7?= 3^/2 lbs., find the magnitude of the resultant of the three

forces.

20. The resultant of two forces inclined to each other at

45° makes an angle 30° with the smaller ; if the smaller force be
6 lbs. what is the greater?

21. Forces are represented by the sides A B, AC of a tri-

angle ABC ; if the resultant passes through the centre of the

circle described about ABC, prove that the triangle must be
either right-angled, or isosceles.

22. Two forces P and Q acting at an angle of 60° have a
resultant R

;
prove that 2Q + F= >J{4.R^-2B'^).

23. If two forces acting at a point be each multiplied by
the same number, shew that their resultant is multiplied by the

same number, and is unchanged in direction.

24. Shew that the resolute of a force OA in any direction

is represented by the chord drawn from O in that direction of

the circle whose diameter is OA.
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Moments.

62. DEF. The moment of a force about a point is

that which varies as the force and also as the perpendicular

distance of the point from the line of action of the force.

That is, if the force is doubled or trebled... the moment of the force

about a given point is doubled or trebled...; also if the perpendicular

distance of the point from the line of action of a given force is doubled

or trebled... the moment of the given force about the point is doubled

or trebled.

.•. Its moment = A'x the force x perpendicular.

63. We shall assume as our unit moitient that of unit

force about a point whose distance from the line of action is

the unit distance.

The unit force being i lb. weight, the unit distance being

a foot, the unit moment would be a foot-pound weight*.

Hence the moment of a force about a point is measured

by the product of the number of lbs. in the force by the

number of feet in the perpendicular distance of the line of

action of the force from the point ; or shortly,

The moment of a force about a point is Jiumcrically equal

to the product of the force into its perpendicular distance

from the point.

* Note.—The unit work in Dynamics is called 3.foot-potiud-weig/i(;

but the student should notice carefully that the foot-pound-weight of

work is the product of a force into a movement, viz. a foot passed oz'er in

the direction of the force by the point of appUcatioh. This product

involves motion ; no work is done unless movement has actually taken

place.

Thus the unit work is essentially different from the unit moment

which is the product o^ a force into a distance perpendicular to the force.
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Example. Three forces of }, lbs., 4 llis. and 5 lbs. act along the two

sides AB, AD and the diagonal AC of the square ABCD each of ivhose

sides is 2 ft.
; find the measures of the moments of each of these forces

about thepoint D.

The moment of the force 3 lbs. along AB is numerically equal to

3 X AD—-3,x 2 = 6.

The moment of the force jibs, along ^C is numerically equal to

5 X DN, where DN is perpendicular to A C.

DN^- + AN-= AD'^ = .^ and DN=AN ;

.-. DN- = ^, .: T>Ar==j2,

the required measure= 5 x ^2 = 'j'o-i...

0_

The moment of the force along AD about Z> is zero; for the per-

pendicular from D on AD is zero.

EXAMPLES. X.

1. ABCD is a square each of whose sides is 5 feet; forces

of 5 lbs., 6 lbs., and 7 lbs. act along AB, AC and AD, find the

moment of each of these forces about D.

2. Find the moment of each of the forces of Question 1

about the middle point of A C.

3. Find the moment of each of the forces of Question 1

about the middle point of DC.

4. ABCD is a square each of whose sides is 18 inches;

forces of 3 lbs., 4 lbs., 5 lbs. and 6 lbs. act along AB, BC, CD
and DA respectively; find the moment of each of the.se forces

about a point Q in AD produced so that DQ= 6 in.

5. Find the moment of each of the forces in Question 4

about a point Q on AC produced so that CQ,= 6s]2 inches.
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6. A and B are two points i foot apart ; a force of 5 lbs.

acts at A perpendicular to AB and a force of 7 lbs. acts at B
parallel to the first force ; find the point in AB about which the

moments of these forces are ecjual in magnitude.

7. Find the point in AB produced about which the moments
of the two forces in Question 6 are ecjual.

8. ABC is an equilateral triangle and forces of 4 lbs. and
5 lbs. act at A along AB and AC respectively, find the point in

BC about which the moments of these forces are equal.

64. The following experiment is important.

Take a thin piece of board having a small hole in it at O. Let the

board be placed on a smooth horizontal table, and let a small tack be

driven into the table at the point so that the board can turn freely

about 0.

Let two small tacks be fastened to the board at any two points A
and B, and let two horizontal forces represented by AA'

.,
BB' be

applied (by strings fastened to the tacks) to the board at A and A'

.

It will be found that when the board is in equilibrium under the

action of these forces,

(i) the moment of the force AA' about is equal to the moment

uf the force BE' about 0.

(ii) that if each of the forces in them be allowed to act alone for a

moment they will each exhibit a power of causing the board to turn

round 0, but in opposite senses.

These two conditions are expressed shortly thus. Jl7ien a board

one point O of which isfixed, is in equilibrium, the moments about O of

the forces which act upon the board must be equal in magnitude and of
opposite senses.
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65. The manner in which the force AA', as drawn

above, tends to produce rotation about O is said to be

clockAVise ; the manner in which the force BB\ as drawn

above, tends to produce rotation is said to be counter-

clockwise.

Being respectively like and unlike the rotation of the hands of a

clock when laid face upwards on a table.

66. It will be found convenient to indicate that two

moments are of the same or of contrary senses by the aid of

the signs + and —

.

And in what follows when use is made of the sum of

the moments about a point of any number of forces, the

sum will be understood to mean their algebraical sum, the

moment of each force having its proper sign according to

its sense.

The necessary condition that the board in the experiment of Art. 64

should be in equilibrium may now be stated thus. The sum of the

moments of the two forces acting upon it about the point O must be

zero.

It must be clearly understood that the experiment of Art. 64 does

noi prove this statement. Its truth will be deduced later on from the

laws of motion.

It is perhaps more usual to consider counter-clockwise rotation as

positive.
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67. Since the moment of a force abont a given point

is numerically equal to the product of the force into the

perpendicular distance from the ])oint to the line of action

of the force, it follows that

The moment of a force about a point is numerically equal

to twice the area of the triangle formed by joining the point

to the extremities of the line which represents the force.

[Provided the unit force is represented by the same unit of scale as

the unit distance.]

For let OA represent a given force in magnitude, direction and line

of action ; let Q be any chosen point.

\;
>^

M

Draw ()yJ/ perpendicular to the line of OA.

Then the moment of the force OA about Q is measured Ijy the

product of the niinibcr of lbs. in the force OA^ by the yiiiinher of linear

units in QM.

But the number of lbs. in the force is the number of linear units in OA.

Hence the moment of the force OA about tlie point Q is nume-

rically equal to QRIy. OA.

Through Q draw (2//^' parallel to OA, and draw OH, ^A' per-

pendicular to OA.

Then QM^ OA =HOxOA.

And HO X OA numerically equals the area of the rectangle HOAK,
which is double of the area of the triangle QOA,

:. QMy. 0^ = double of the area of the triangle QOA.



44 Sl'A 7'ICS.

ExaiJiplc. Tluce Jorces are represented tn direction, magnitude and

line of action by the three sides of a triangle taken the same -way round;

s/uii) that the sum ofthe moments of theseforces about any point ivhatevcr

in the plane of the triangle is numerically equal to twice the area of the

triande.

Or----

Let ABC he the triangle, and let the forces be taken in the directions

indicated by the arrows. Then the sense of each of the moments of

AB, BC, CA about any point O within the triangle is clockwise; there-

fore their sum is numerically equal to twice the sum of the areas of the

triangles A OB, BOC, COA, that is to twice the area of the triangle

ABC (clockwise).

When the point O is outside the triangle but within the angle ABC,
as in the figure, the sense of the moment of CA about is counter-

clockwise ; while the sense of the moments of AB and BC about is

clockwise.

Hence the sum of the moments of AB, BC, CA about is nume-

rically equal to twice (the area of .-i (9/? + area of ^CC-area of COA)
clockwise; that is, equal to twice the area ABC (clockwise).

Similarly the proposition may be proved to be true for any other

position of the point O in the plane oi ABC.

EXAMPLES. XI.

1. Prove that the sum of the moments of two equal parallel

and opposite forces, not in the same line of action about any
point in their plane, is the same for all positions of that point.

2. Forces are represented in position, magnitude and sense

by the sides of a closed polygon taken the same way round

;

prove that the sum of the moments of these forces about any
point in their plane is numerically equal to twice the area of the

polygon.
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3. Three forces act along the sides of an equilateral triangle

taken the same way round ; shew that the sum of their moments
about a point in their plane is different for different positions of
the point, except when the forces are equal.

4. Find the locus of a point in a plane such that the moment
of a given force about it may be constant.

5. Three forces are represented in position, magnitude and
direction by the three sides of a given triangle not taken the
same way round ; find the locus of a point which moves so that

the sum of the moments of the three forces about it may be
constant.

6. Prove that the moment of a given force about each of
three points cannot be zero unless the three points lie in the

same straight line.

7. ABC is an equilateral triangle ; the moments of a force

about the points A^ B, Care respectively 6, -6, o; find the line

of action of the force ; if a side of the triangle is i ft., what is

the magnitude of the force .''

8. ABC is an isosceles right-angled triangle whose equal
sides AB, AC are 4ft. each; the moments of a force about the
points A, B, C are respectively 8, 8 and 16, find the magnitude
and line of action of the force.
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68 . PROP. The inotnent of a force about a given point

is equal to the moment of one of atiy two compoJients into which

it can be resolved, provided the other componentpasses through

the given point.

Let OP represent the force. Let Q be the given point.

^

A

Join OQ, and draw a line OA, making any finite angle

with OQ.

From P draw PA parallel Xo QO and PB parallel to A O.

Then OA and OB represent any two components into

which OP can be resolved, of which one component passes

through Q,.

We have to prove that the moment of OP about Q is

equal to the moment of OA about Q.

The moments have the same sense, and their magnitudes

are represented by the triangles QOP, QOA which are upon

the same base OQ and between the same parallels OQ . AP

,

and are therefore equal.

This proves the proposition.

69. It is worthy of notice that the necessary condition

that the moment of OA about Q should be equal to the

moment of OP about Q is, that A should He on the line

through P parallel to OQ.

And that this is the necessary condition that OA should

be one of the components of OP, of which components one

passes through Q.
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70. PROF. The sum of the moments of two forces

acting at a point about any given poitit is equal to the moment

of their resultant about the same point.

Let OA, OB be the forces; (9C their resultant.

Let Q be the given point.

Then we have to prove that the area of

twice ( A QOA + A QOB) = twice a QOC.

Draw a line ONM at right angles to OQ.

Draw AM, BN, CR each parallel to QO.

Then, twice a QOA = the rectangle OM ^ OQ,

twice A QOB = the rectangle OJVx OQ, •

twice A QOC = the rectangle OR x OQ.

Now OAf, ON, OR are the resolutes of the forces

OA, OB, OC'm the direction OAf.

Therefore as in Art. 55,

0M+ OJV=OR,
.'. OMx OQ + ONx OQ^ORx OQ.

That is

twice A QOA + twice a QOB- twice a QOC. q. e. d.
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71. PROF. The sum of the moments of a number of

forces acting at a point in a plane about a given point in

their plane is equal to the moment of their jrsultant about the

same poitit.

For the sum of the moments of any two of the forces

about the point is equal to the moment of their resultant

about that point.

The sum of the moments of this resultant and a third

force about the point is equal to the moments of their

resultant about the same point;

and so on.

So that the sum of the moments of all the forces about

the point is equal to the moment of the last resultant about

the same point ; the last resultant being the resultant of all

the forces. Q. E. D.

72. PROP. When a munber of forces in one pla7ie

actifig at a poijit are in equilibrium., then the sum of their

moments about every single point in their plajie is zero.

For the sum of the moments of the forces about the

point is equal to the moment of their resultant about the

same point.

The resultant of the forces is zero : for the forces are in

equilibrium.

Therefore the moment of the resultant about any point

is zero.

73. There is always a series of points about any one

of which the sum of the moments of any given system of

forces acting at a point is zero ; namely, the series of points

which lie in the line of action of the resultant of the given

system of forces.
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For the sum of llic moments of a given system offerees al.oul ;iny

chosen point Q is eciual to the moment about Q of their resultant.

When Q is on the Hne of action of this resultant, the perpendicular

()i]/ drawn from Q to this line of action is zero; and therefore the

product QMx OA is, in this particular case, zercj.

74. PROP. The vioments of a force about each of three

points not oil the same straight line cannot be each separately

zero.

For the moment of a force about a point is only zero

when its Hne of action passes through the point ; and a

straight line cannot pass through each of three points not

in the same straight line.

75. PROP. When a system offorces acting at one point

in a plane are such that the sum of their moments about each

of three points not in the same straight line, is each separately

zero, the system offorces must be in equilibrium.

For the sum of the moments of the forces about any one

point Q is equal to the moment about (2 of their resultant.

Therefore the moments of the resultant about each of

three points not in the same straight line are each sepa-

rately zero.

This by Art. 74 is impossible unless the resultant is

itself zero. That is, the system of forces is in equilibrium.

Q. E. D.

Example. It is ol>served of a system offorces acting at a point that

the sums of tJicir moments about each of two given points are equal.

What does this prove of their resultant?

The resultant of the forces either (i) is parallel to the line joining

those two points or (ii) passes through the point of bisection of the line

joining the two given points. For its perpendicular distances from each

of these two points must be equal.

L. S. 4
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EXAMPLES. XII.

1. It is observed that the sums of the moments of two forces

acting at a point about each of two points in their plane are

in the ratio of 2 to i ; what do you infer with regard to the
resultant of the two forces ?

2. The sum of the moments of certain forces acting at a
point O is found to be zero about a certain point (2; what can
be inferred from that fact with regard to their resultant?

3. Shew that the sum of the moments of the forces in

Question 2 about any point in the line OQ is zero.

4. If the sum of the moments of the forces in Question 2 is

also zero about some point not in the line OQ, shew that the

forces must be in equilibrium.

5. Forces of 3 lbs. and 4 lbs. act along the sides AB, AD
of a square ABCD such that AB = ^ ft. ; shew that the distance
of their resultant from the point B is 4 ft., and from the point C
is I ft. and from the point Z? is 3 ft.

6. ABC is a triangle and D, E, F are points on the sides

T,r^ n , Aiy , .^,
.J^D CE AF

BC, CA, AB such that y—^ =-— ^ = „^ ;
prove that the sumsDC EA FB

of the moments of forces represented by AD, BE, CF about
A, B, C respectively are all equal.

7. A and B are fixed points on the circumference of a
circle; AP and A(2 are any two chords at right angles to each
other on opposite sides oi AB; shew that \iAP, AQ represent
forces, the difference of their moments about B is constant.

8. Forces act at P the intersection of perpendiculars
ABC of a triangle represented by the perpendiculars AD, BE,
CF from ABC on the opposite sides; shew that the sums of
their moments about each of the angular points cannot be zero
unless the triangle is equilateral. Can the forces be in equi-

librium?

9. The sum of the moments of forces acting at a point in a
plane cannot have the same value at each of three points unless
the three points lie in one straight line parallel to a certain

straight line.

10. The sum of the moments of forces represented by the

bisectors of the sides about an angular point of the triangle is

zero ; hence shew that these three forces are in equilibrium.
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11. The sum of the moments of forces represented by the

bisectors of the angles of a triangle cannot be zero about an

anguhir point of the triangle unless the triangle is isosceles

;

hence shew that these three forces cannot be in equilibrium

unless the triangle is equilateral.

12. The sum of the moments of forces acting along the

perpendiculars from the angles on the opposite sides of a tri-

angle, each force being proportional to the side to which it is

perpendicular about an angular point of the triangle, is zero

;

hence shew that these forces are in equilibrium.

13. A point O is taken within a triangle ABC ; and forces

are represented by OA, OB, OC ;
prove that the sum of the

moments of these forces about A is not zero unless AO pro-

duced bisects BC; hence prove that the forces cannot be in

equilibrium unless O is the point of intersection of the bisectors

of the sides of the triangle.

14. If the sides of a triangle be taken two and two to

represent forces acting in each case from the point of their

intersection
;
prove that there is one point about which the sum

of the moments of each pair of forces is zero. What is that

point?

4—2
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Couples.

76. DEF. A couple consists of two equal parallel

forces of opposite senses, not in the same line of action.

When a workman applies to the head of a screw a twist (without

pressing in the direction of the screw) he applies a couple.

When a man winds up his watch or a clock with a symmetrical key

he does it by means of « couple.

Note. Parallel forces are said to be like or unlike

according as they act in the same or in opposite senses.

yy. PROP. The sum of the moments of the two forces

forfning a couple, about any point in their plajie has a constant

value ; this value is numerically equal to the product of one

of the forces into the perpendicular distance between them.

Take any point Q in the i)lane containing the two equal

parallel and opposite forces AA\ BB'.

Draw (2J/-A^ perpendicular to the lines of action of the

forces cutting them in M and N.

Then, the sum of the moments of these two forces about

(2 is numerically equal to

QN^ BB' -QM>^AA'
= {QM- QN) X AA' [for AA' = BB']

= NMxAA',
which is independent of the position of Q.
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78. DEF. The moment of a couple is numerically

equal to the product of one of the forces into the perpen-

dicular distance between the forces.

79. The moment of two equal parallel unlike forces

is not zero except

:

(i) when the forces are each zero
\

(ii) when they are in the same line of action

;

that is to say, when the two forces do not form a couple.

Hence, the moment of a couple is never zero.

Example. T/wee forces, not parallel to each other, are such that if

they acted at one point they loould be in eqnilibritiin ; pro7'e that they are

eq'.civalent to a couple.

The resultant of two of the forces must he equal, parallel and of

opposite sense to the third force ; for if this resultant and the third

force acted at a point they would be in equilibrium.

This resultant and the third force therefore form a couple.

EXAMPLES. XIII.

1. Four forces in the same plane not all parallel are such
that if they acted at one point they would be in equilibrium

;

prove that they are equivalent to a couple.

2. Three forces are represented in direction, magnitude, and
line of action by the sides of a triangle taken the same way
round. Prove that they form a couple.

3. Prove that the moment of the couple of Question 2 is

numerically equal to twice the area of the triangle.

4. Forces are represented in direction, magnitude, and line

of action by the sides of a square taken in order; prove that the
sum of their moments about each point in the plane of the

square is constant.

5. Prove that the forces in Question 4 are equivalent to a
couple.

6. Prove that the moment of the couple in Question 5 is

numerically equal to twice the area of the square.
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The Equilibrium of Systems of Particles.

80. In the present treatise we propose to consider

only systems of forces acting in one plane.

81. DEF. A body is a limited portion of matter,

which we consider as composed of a very large number of

particles.

A rigid body is such that the external forces acting

upon it have so small an effect upon its shape that it may
be considered to retain its shape unchanged notwithstanding

the forces which act upon it. [See Arts. 15, 16.]

82. The bodies whose equilibrium we propose to dis-

cuss will generally be either rods, or laminae, or strings.

[See Art, 120.]

A rod is a rigid body whose length is so great compared

with its breadth and its thickness that the last two (breadth

and thickness) need not be considered.

A light rod is a rod whose weight is inconsiderable

compared with the other forces acting upon it.

A lamina is a rigid body whose surface is so great

compared with its thickness that the last (thickness) need

not be considered.

A string is a body whose breadth and thickness are

very small compared with its length; which is incapable of

exerting any stress except in the direction of its length;

this stress is of one kind only, namely, a '/////.'
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An inextensible string:; is such that its length is con-

sidered to be unchanged by the action of the external forces

acting upon it.

Strings will always be considered inextensible unless the

contrary is expressly stated.

83. Consider a body acted on by external forces.

To fix our ideas let us consider a rod HK placed on a smooth

horizontal plane acted on at points //, Z, K by forces /', (?, /v', as in

the figure.

The force P is applied to a particle at H.

This particle acts on the neighbouring particles of tlie stick, and

those on the next particles, and so on.

Thus, besides the external forces P, Q, A', there are a multitude of

internal forces forming the mutual actions of the particles of the stick :

these mutual actions consist in all cases of /'airs of equal and opposite

forces, actions and their reactions.

Each particle of the body acts upon the next particle in

tlie body and is acted upon by it. The force which one

particle composing the body under consideration applies to

a neighbouring particle of the body is called an internal

force.

Since action and reaction are equal and opposite, a//

inieryial forces may be grouped into pairs of eqiial and opposiL:

forces ifI the safne line of actiofi.

The force which an external particle applies to a particle

composing the body is called an external force.
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[Corresponding to each external force there is a reaction which is

appUed to the external body, but when we are not considering the

equilibrium of that external body we do not need to consider this

reaction.]

Now when the body is in equilibrium each particle of

the body must be in equilibrium.

Hence, considering the forces which act on any one

particle, they must be such that

(I) The sum of their resolutes in any chosen direction

whatever is zero. [By Art. 55.]

(II) The sum of their moments about a7iy chosen point

whatever is zero. [By Art. 72.]

These two statements are true of the forces acting upon

each particle.

Therefore they are true of all the forces acting upon all

the particles ; that is,

(I) The sum of the resolutes in ofiy chosen direction

whatever of all the forces internal and external which act

on the particles of the body is zero.

(If) The sum of the moments about any chosen point

whatever in their plane of all the forces internal and

external which act on the particles of the body is zero.

But the internal forces always occur in pairs, each pair

consisting of two equal atid oppositeforces (namely, an action

and its reaction).

The above two statements (I) and (II) are true for every

such pair of forces taken separately.

Therefore they are true for all the internal forces taken

by themselves.

And consequently they must be true for the external

forces taken by themselves. Hence
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When a body acted on by any external forces

in one plane is in equilibrium,

(I) the sum of the resolutes in any chosen di-

rection whatever of those external forces is zero,

(II) the sum of the moments about any chosen

point whatever in their plane of the external

forces is zero.

84. The above two statements are true of every body

or collection of bodies which is in equilibrium.

We shall presently prove that when they are true for

a 'rigid' body, that body must be in equilibrium.

Example: A rod AB 4 feet long is placed on a stuooth horizontal

table and is acted on by three parallel horizontal forces P, Q and R ;
of

which P and Q act one at each end, and R acts at the point C i foot

from A. Find conditions ofeijnilibrium.

fp iQ

Since the sum of the resolutes in the direction parallel to the forces

must be zero, we have
P+Q +R^o (i).

Since the sum of their moments about C must lie zero, we have

PxAC=Qy.BC,
Px. i — Qy-z (ii),

^=3(2.

A'= - (/'+ Q)=- (3(?+ (?) = - 4(? [from (i)]

:

R_Q_ R
3

"" I~ 4

Thus if /'=3lbs., then (7= i lb. and /v'= 4ll>s. in tlic opposite

direction.
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85. Consider a rigid body, sucli as a lamina, which can

only move on one plane; say the plane surface of a table.

For example, Let the rigid body be a thin piece of metal and suppose

it to be placed on the surface of tlie table and prevented from moving

except along the surface of the table.

Suppose now one point of the lamina to be fixed to the

table; the only subsequent movement possible for the

lamina is a turning about that fixed point as centre.

And if then some other point is fixed to the table the

lamina cannot move at all.

Moreover if a body is rigidly fastened to the lamina

this body is also incapable of motion ; hence,

When a rigid body is at liberty to move only in some

assigned plane, then the freedom which it has to move will

be entirely taken away from it, provided we fix any two

chosen points of the body which are in that plane.

86. PROP. To prove that whateverforces in fie plane

may be acting upoJi a single rigid body, that rigid body can be

keptfro?n moving, by two externalforces ; which forces may be

applied at any two chosen points in the body, provided the tzvo

forces ha7ie the proper jnagnitude and di?-ection ; also, that the

direction of one of theforces may be taken at right angles to the

linejoining the two chosen points.

Since the forces act in one plane, the tendency to motion

of the lamina will be only in that plane.

Consider a lamina in the plane of the forces.

A thin piece of metal or of card-board placed on a smooth horizontal

table acted on by any system of horizontal forces in the plane of the

table.

Any assigned particle A in the lamina being on the

point of motion, its tendency to motion can only be in
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one direction; and therefore by clioosing the right force

in the right direction, and applying it to the particle A,

we can cause the particle A of the lamina to have no

tendency to motion. Suppose the force to be P.

Imagine a small hole in the caid-boaid at ./ through which a pin's

point passes anil is fastened to the table. The card-board can press

upon the pin in one direction only with a definite amount of force in

that direction. I'his single force is sufficient to kfe[) the point A at

rest

.

The particles of the body arc r/gid/y ioiuicdcd with

the particle A and therefore the only motion possible for

any other particle B is along the circle whose centre is A
and radius AB.

Hence, the only tendency to motion which any otlier

particle B of the lamina can now ha\e is in the direction

l)erpendicular to AB.

Therefore by applying to the particle B the proper

force ((2 suppose) in the line perpendicular to AB we
can cause the particle B to have no tendency to move.

And since every particle of the body is rigidly con-

nected with /?, the body cannot turn about A. The body

is therefore incapable of any motion whatever, q. e. d.
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87. Consider a rigid body acted on by some assigned

system of forces R, S, T... in the same plane. Let the

force /'applied to the body at some chosen point ^, and the

force Q, applied to the body at some other chosen point B
and perpendicular to AB be the two forces necessary to

keep the body from moving.

Then two other forces P' and Q, equal and opposite

respectively to P and Q, when applied to the body at

A and B respectively are statically equivalent to the

system R, S, T, ... ; for the system R, S, T, ... and the

forces P', Q', can either of them be kept in equilibrium by

the forces P, Q.

88. It is important that the student should clearly

understand the meaning of the words statically equivaletit.

If we were taking account of the internal forces in the

body the effect of a system of external forces on a body,

and the effect of forces which are statically equivalent to

that system would be very different. They would set up

different internal stresses between the particles of the body

to which they are applied.
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89. DEF. Two systems of forces are statically c(iui-

valcnt, which, when applied in turn to the same single rigid

body, can be counteracted (or the rigid body can be kept

in equilibrium) by the same system of forces.

Since we do not take account of the internal changes in a body due

to the action of the forces, two systems of forces which are statically

equivalent are also practically equivalent.

When we have found the simplest system of forces

which is statically equivalent to an assigned system, the

simplest system is often called the resultant of the

assigned system.

It must be noticed that this resultant is not strictly a resultant in the

sense of the definition of Art. 1^. It does not produce in a body the

sariic effect as the system ; it sets up different internal forces.

90. Since the forces R, S, T, ... F, Q in Art. 87 form

a system of forces in equilibrium, therefore the sum of their

resolutes in any direction is zero.

Therefore the sum of the resolutes in any direction of

R, S, T,... are equal and opposite to the sum of the

resolutes of F and Q in the same direction.

But the sum of the resolutes of F", Q', J', Q in any

direction is also zero.

Therefore the sum of the resolutes of the system of

forces R, S, T, ... in any direction is equal to the sum of

the resolutes in the same direction of F, Q'.

Similarly we may shew that the sum of the moments

about any point of R, S, T, ... is equal to the sum of the

moments about the same point of F', Q.
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yi. PROP. A yi}:;id body acted on by any assigned

system offorces in oneplane is in eqnilibriiini provided

I. the sum of the resolutes of the forces in

any chosen direction is zero,

II. the sum of the resolutes of the forces
in a second chosen direction is zero,

III. the sum of the moments of the forces

about any chosen point is zero.

Let the forces A', S^ T, ... be the assigned system of

forces acting on a rigid body.

By Art. 85 the forces P, S, T, ... acting on a rigid

body if not in equiUbrium, are statically equivalent to two

forces P', Q acting at any two chosen points A, B in the

body, Q' being perpendicular to AP.

And by Art. 90 the sum of the resolutes in any direction,

and the sum of the moments about any point of R, S, T,...

and of P', Q' are equal respectively.

Therefore the conditions I, II, III, must be true of the

forces P', Q' acting on the body at A and P, Q' being

perpendicular to AP.

Conditions I. and II. require that P' and Q' (if each of

them is not zero) should be ecjual and parallel of opposite

senses.
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Condition 111. shews that P' and Q can have no mag-

nitude if equal parallel and of opposite senses. [Art. 79.]

Therefore P' and (X are each of them zero.

Therefore when the above conditions are satisfied, tlie

rigid body remains at rest without the application of any

additional external force.

92. We have now shewn (Art. 91) that any system of

forces which act on a single rigid body and which satisfy

conditions I, II, III, are in equilibrium. We have also

proved (Art. 83) that every system of forces which acting

on a rigid body is in equilibrium must satisfy conditions

I, II, III.

93. We proceed to apply these important results to

particular cases.
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Paraixel Forces.

94. PROP. To find the conditions necessary for the

equilibrium of a rigid body when acted on by parallelforces.

Let P^, P^, P^ ... be the parallel forces acting upon the

rigid body.

Take any point Q in the plane of the forces, and draw

Q_N^N„N.^... perpendicular to the forces/', j/'j, P^-.- cutting

their lines of action in iV, , iV„, iV^ ... respectively.

By Art. 91, I, II, the sums of the resolutes of the forces

P^, P^, P^ ... in any two chosen directions must be zero.

Choose the two directions parallel and perpendicular to

the forces, then Art. 91, II, is satisfied, since the resolute

of each force in the direction perpendicular to itself is zero.
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From Art. 9 J, I, wc have

7'.+P, + P3+...^-o (i),

since the resokite of a force in its own direction is the force

itself.

Due regard being paid to tlie sense of eacii force.

By Art. 91, III, the sum of the moments of the forces

/*,, P^, Pg, ... about any point must be zero.

Take Q, for the point, then

P, X <2vV; + P^ X QN^ + P^x QJV^ + ... = o ...(ii).

Due regard being paid to the sense of each moment.

These two conditions (i) and (ii) are the necessary and

sufficient conditions that any number of parallel forces

acting on a rigid body in one plane should be in equili-

brium.

95. From <2 draw a line in any direction cutting the

hnes of action of the forces in A, B, C ... .

Then m^Q^.^m^^
QA QB QC

Let the common value of these fractions be k, then

QJV^ =k.QA, QN,_ = k . QB, QN^ = k . QC, etc.,

whence substituting in (ii) above, and dividing by k

P, X QA + P,^x QB + B^x QC+...=o (ii).

Hence in using Art. 91, III, in the case of parallel

forces, we may write down ' the equation of moments ' thus,

B^ X QA + F„ X QB + B^x QC + ... -^ o,

whether the line QABC be perpendicular to the line of

action of the forces or not.

That is, when we iai-e the fiioiiients of a system of parallel forces

about a point, the distances of the forces may be measured in any

direction which may be convenient.

L. S. 5



66 STA rics.

Exat)iplc. When tJicrc are three parallel forees in cqiiilibriitni, viz.

P, Q, and - R, titen if a line cut these forces in A^ B, C respectively,

PxAC=QxBC.

'0^

Taking moments about any point X, we have

Px AX+ Q X BX- P X CX=o,
also P^P+Q,

Px AX+ Qx{BC+ CA +AX) - (P+ Q){CA + AX) = o.

.: QxBC=PxAC.

96. PROP. To find the resultant of two parallel

forces.

Let the forces be P lbs. and Q lbs. applied to a rigid

body at points A and B respectively. [Fig. Art. 97.]

Join AB. Let the force R be the resultant of P and Q
then the force -Rh the anti-resultant of the forces /'and Q;
so that the forces P, Q, -R are in equilibrium.

Since the resolutes of the forces P and Q in the direction

perpendicular to them are both zero, the resolute of —R
in that direction must also be zero.

That is, — R is parallel to P and Q (I).

Again, since the sum of the resolutes of these parallel

forces in their own direction is zero
;

.-. -R + P+Q^o,
or R = P+Q.

Therefore the resultant of two parallel forces is equal to

their sum (II).
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Tx't llic line of adion of - Vl cuiAB in C, then taking

moments about C, we have, as in Art. 95,

-/^xo + Fx CA+QxCI>'=^o,

or Fx CA+ Qx CB^o.
Hence the point C in AB, through which the line of

action of the resultant passes, is such that the moment ofF
about C is equal and opposite to the moment of Q about

C (III).

97. First, let F and Q be like parallel forces [Fig. I.].

Then, in order that the moment of F about C may be

(equal and) opposite to the moment of Q, about C, it follows

that C must be between A and B.

Also in this case, R (which equals the sum of the forces)

is the numerical sum ofP and Q.

IML'. I Fig. n

Next, let Pand Q be unlike parallel forces [Fig. II.].

Then in order that the moment of F about C may be

(eciual and) opposite to the moment of Q_ about C, it follows

that C must not be between A and B.

Also, in this case R (which equals the sum of the forces)

is numerically equal to the difference between Q and F.

Moreover, if Q is greater than F, then

(since Fx CA^-Qx CB),

CA must be greater than CB. That is, of the three parallel

forces F, Q, - R, the greatest is always between the

other tw^o.

5—2
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98. PROP. If three forees acting on a rigid body are

in equilibrinni., they must either be all parallel or must all

intersect in the same point. [N.B. In the present work we

confine our attention to forces in one plane.]

Consider two of the forces ; they must either be parallel

or they must meet in a point.

First, suppose that two of the forces are parallel.

The resolute of each of these forces in the direction

perpendicular to itself is zero. •

And by Art. 83 the sum of the resolutes of all three

forces in this direction is zero.

Therefore the resolute of the third force in this direction

is zero. That is, the third force is parallel to the other two.

Next, suppose that two of the forces intersect in the

point O.

The moment of each of these forces about O is zero.

And by Art. 83 the sum of the moments of all three forces

about O is zero.

Therefore the moment of the third force about O is zero.

That is, the third force passes through (9, the point of

intersection of the other two. Q. e. d.

The above proposition is of fret^uent use in the geome-

trical method of solving statical problems [see examples at

the end of the book].
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Exaiiiplc i. A light rod 10 ft. long has 'weights of 2 1 lb>. u//i/ 49 lbs.

fastened one at each end. A man wishes to earry them both , ivhcre

iiiiiit lu- take hold of the rod and vdiat loeigltt 'mil he lift ?

A C B

M21lhx ^)4&l'>s

Here, considering the equilibrium of the rod, we have two like parallel

forces acting upon it. Their resultant is therefore equal to their sum.

The man must therefore lift (21 + 49) lbs. = 70 lbs.

Also if AB be the rod and C be the point at which the resultant

acts (which is the ]ioint at which the man must take hold of the rod),

we have AC+CB= 10 ft.

and 21 X ^C= 49 X CB,

.". 49 ^C+ 49^C=49ofl.

.•. 49 ^C+ 21 .^(7= 490 ft.

AC='jh.
andBC=^{t.

Example ii. T'euo men carry a weight of \ cwt. slung on a light

pole 14 ft. long, each holding one end of the pole ; ifthe 'weight be placed

at a point 5 h.froin one end, 'what 'weight does each ma/i earry?

72 »« Uo?/«

Consider the forces acting on the rod.

In this case — B \s 112 lbs. downwards; P and Q are the forces

applied by the men's hands to the rod; the weight of the rod itself is

neglectetl.

^Cis 5 ft., BCk 9 ft.;

P-^Q=R= 112 lbs. upwards (i).

Also Px Si = Qxg (ii),

•• .=;/'+5^=ii2lbs. X5 = 56olbs.

••• 9(5 + 5(2=560 lbs.

and /^r-r(ii2lbs. -(0) = 72lbs.
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Example iii. Weights of /i,c\\'\.., 5 cwt., 6cwt., 7 cwt. are suspended

from points ABCD of a light horizontal rigid rod which are i foot

apart ; /ind where a single tifavard force must he applied to the rod that

it may he in eipiilihrium.

j\22c<xt.

4 cwt. 5 cvt 7ctrt.

The rod is light : therefore its weight is neglected. The only forces

acting on the rigid body, the rod, are the weights; these weights are

vertical forces acting downwards.

Since the sum of the resolved parts in any direction of a system

of forces in equilibrium is zero, we see, by considering the resolved

parts in the vertical direction, that the upward force must

== (4 + J + 6 + 7) cwt. =22 cwt.

By taking the sum of the moments al)out the point A of all tlie

forces, we have, if OA contain x feet,

4XO + 5X I+6X2 + 7X3-22X.r = 0,

or j;=S§= ii^rft- = OA.

Example iv. A light rigid rod 5 ft. long has a weight of 10 lbs.

suspended at one end and is supported at a point 3 ft. from that end by

the jiptuardpressure of a man^s shotdder; what force mtist he exe7-ted hy

the man^s hand on the other end ofthe rod to keep it in equilibrium ?

3 ft. /\ 2 ft.

C )Wlbs 15 lbs.

Let AC be the rod, /> the position of the man's slioulder.

Let .ribs, be the vertical jiressure upwards on the rod at /?.

Consider the equilibrium of the rod.
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Then since the forces of iolI)s. and albs, arc parallel, and the force

of X lbs. is the resultant of two like parallel vertical forces acting down-

wards, jc-lbs. = the sum of these forces. Therefore the other force is

(ro-.r) lbs. ; hence

By takint;; the sum of the moments about C of all the forces we have

lo X AC-xx BC+{x- I o) X = 0,

or
,

r o X 5 - .r X 2 = o

;

Hence the recjuired force, which is (x- 10) lbs., is (25 - 10) lbs.,

or 15 lbs. downwards.

EXAMPLES. XIV.

1. Find the resultant of two like parallel forces of 3lbs. and
2 lbs. acting at points 5 ft. apart.

2. Find where a force must be applied to a rigid bar to

keep it in equilibrium when acted on by two like parallel forces

of 3 lbs. and 5 lbs. acting at points on the bar 4 ft. apart.

3. Two men carry a weight of i cwt. by means of a light

rigid rod 14 ft. long, each having one end of the rod on his

shoulder : find what each man carries when the weight is sus-

pended from a point 6 ft. from one end.

4. Two men carry a barrel weighing 80 lbs. by means of a
rigid pole 10 ft. long, each supporting one end of the rod and
the barrel is slung at a point on the rod 4ft. from one end:
what weight does each man carry.?

5. A man carries two weights by means of a rod 12 ft. long
supported by his shoulder; if the rod presses on his shoulder
with a force of 36 lbs., and the point of the rod on his shoulder
is 4ft. from one end ; what are the two weights?

6. A man carries two buckets of water by means of a pole
which he holds in his hand at a point three-fifths of its length
from one end; if the total weight carried is 40 lbs., how much
do the buckets weigh respectively.?
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7. A rigid bar 4 ft. long is acted on by three like parallel
forces of 3 lbs., and 3 lbs. at each end and one of 4 lbs. at the
middle point ; what force is necessary to maintain equilibrium?

8. A rigid bar 4 ft. long is acted on by equal like parallel
forces of 4 lbs. at each end, and by an unlike parallel force of

5 lbs. at a point i foot from one end ; find the force necessary
to maintain equilibrium.

9. A man can just lift 112 lbs. ; a rod 3 ft. long which can
turn about one end has a weight fastened at a distance of i ft.

from that end ; what is the greatest magnitude of the weight if

the man is to lift it by applying a lifting force to the other end
of the rod?

10. A horizontal rod 15 ft. long can turn about one extremity
which is fixed; a force of 10 lbs. acts upwards at the other end
and one of 20 lbs. is applied downwards at a point between

;

find where the 20 lbs. is applied.

11. Three like parallel forces of 5 lbs., 7 lbs. and 9 lbs. act
in lines whose distances apart are 3 ft. and 4 ft.; find their

resultant.

12. Two like parallel forces of 5 lbs. and 9 lbs. and an unlike
parallel force of 7 lbs. are such that the line of action of the

7 lbs. is between the other and distant 3 ft. from the former and
4 ft. from the latter force ; find their resultant.

13. Two men, one stronger than the other, have to remove
a block of stone weighing 300 lbs. with a light pole whose
length is 6 ft. ; the weaker man cannot carry more than 100 lbs.

;

where must the stone be fastened to the pole so as just to allow
him his full share of the weight ?

14. Two men, one stronger than the other, have to remove
a block of stone weighing 270 lbs. with a light pole whose length
is 12 ft.; the stronger man is just able to carry iSolbs. ; how
must the stone be suspended from the pole so as to allow him
his maximum weight ?

15. A light rigid bar 30 ft. long has suspended from its

middle point a weight of 700 lbs., and rests on two walls 24ft.
apart, so that i foot of it projects over one of them ; a weight
of 192 lbs. is suspended from a point 2 ft. from the other end;
what is the pressure borne by each of the walls ?
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16. A light plank 20 ft. long rests on the top of a wall ; at

one end is a man weighing 12.^ stone, at the other a boy weigh-
ing 6.} stone, and 2 ft. from that end a basket of eggs weighing

7 lbs. ; how much of the plank is on each side of the wall?

17. The resultant of two unlike parallel forces is 2 pounds
and acts at distances 6 in. and 8 in. from them; find the forces.

18. A light rigid rod 10 ft. long can turn freely about a point

4 ft. from one end, at which end a weight of 2 10 lbs. is hung; if

there is also a weight of 140 lbs. suspended at the middle point

of the rod, what weight must be suspended at the other end to

maintain equilibrium "i

19. A light rigid rod 12 ft. long turns freely about a point

9 ft. from one end at which a weight of 100 lbs. is suspended

;

at the middle point is suspended a weight of 50 lbs.; what weight
must be suspended from the other end to maintain equilibrium?

20. A light rigid rod 20 ft. long is supported in a horizontal

position on two posts 9 ft. apart, one post is 4 ft. from the end
of the rod ; from the middle point of the rod a weight of 63 lbs.

is suspended : find the pressures on the posts.

21. Unlike parallel forces of 3 lbs. and 7 lbs. act at points of
a bar 10 ft. apart; find the least length of the bar that it may
be capable of being kept in equilibrium by a single force acting

upon it.

22. A rod 3 ft. long is suspended by two vertical strings one
attached to each end of the rod ; two equal weights are sus-

pended from the rod at points distant 9 in. and 21 in. respec-

tively from one end of the rod; find the greatest possible magni-
tude of the equal weights in order that neither of the forces

exerted by the strings may exceed i cwt.

23. If in Question 22 the rod is 2 ft. long and the distances
of the points of suspension of the weights 4 in. and 16 in. respec-

tively from one end of the rod ; find how great the equal weight
may be if the strings will break under any force exceeding i cwt.

24. Six like parallel forces of i lb., 2 lbs., 3 lbs., 4 lbs., 5 lbs.,

61bs. respectively are applied to a rigid rod at points one inch
apart ; find their resultant.

25. Six like parallel forces of 7 lbs., 6 lbs., 5 lbs., 4 lbs.,

3 lbs., 2 lbs. are applied to a rigid rod at points i foot apart

;

find their resultant.
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26. Weights of 3 lbs., 5 lbs. 7 lbs. and 9 lbs. are suspended
from a light rigid rod 8 ft. long at points equally distant from
each other; find where a force must be applied to the rod to

support it.

27. Weights of 2, 4, 6, and 8 lbs. are suspended from a light

rigid rod 12 ft. long at points equally distant from each other;

I
find where the rod must be supported that it may be in equi-

librium when horizontal.

28. A light horizontal rigid rod 3 ft. long has a weight of

I5cwt. suspended from a point on it, and it is supported by
four strings, which apply forces to it which are in the ratio of

I : 2 : 4 : 8, and which are fastened to the rod at points each
I foot apart ; where is the weight fastened, and what force does
each string apply to the rod?

29. If two unlike parallel forces of 70 lbs. and 30 lbs. be
altered to forces of 100 lbs. and 60 lbs. (the lines of action being
unaltered), shew that the distance of the new resultant from the

force 100 lbs. is double that of the old resultant from the same
line (i.e. the line of action of the 70 lbs.).

30. If two like parallel forces of 20 lbs. and 30 lbs. be
changed to 40 lbs. and 10 lbs. respectively (the lines of action

being unaltered), shew that the distance from the line of action

of the 30 lbs. of the new resultant is double that of the first

resultant.

31. A, 7?, C, D are points in a rigid rod i foot apart ; forces

of 7 lbs. and 9 lbs. act at A and C upwards, and forces of 3 lbs.

and 20 lbs. act at B and D downwards; find where a single

force applied to the rod can keep it in equilibrium.

32. A, B, C, D are points in a light rigid rod AB^i ft.,

BC= 1 ft, CD= 3 ft. ; forces of 8 lbs., 6 lbs. and 4 lbs. are applied

at A, B and D downwards, and an upward force of 20 lbs. is

applied at C\ find what force will keep the rod in equilibrium,

and where it must be applied.

33. A light rigid rod AE is divided in the points B, C, D
so that AB : BC : CD : DE=i : 3 : 5 : 7, and weights of i, 2,

3, 4 lbs. are placed at the points B, C, D, E. The rod is sup-

ported in a horizontal position fastened at G; prove that

AG:GE=s : 3.
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34. A light rigid rod AF is divided in the points />', C, D, 7t,

, AB BC CD DE EF , .

, , .

so that = - = - = = - , and weights of i, 2, 3, 4,13579
5 lbs. arc suspended from the jjoints />', C, D, E, F; shew that

- , AG GF
if the proper upward force be applied at u, where ^ =

,

3 2 ,

the rod will be in equilibrium.

35. A pair of nut-crackers is 5 inches long, and when a nut

is placed i of an inch from the hinge a pressure of 35 lbs. applied

at the end will crack it ; what weight if simply placed on the

top of the nut would crack it?



CHAPTER Vir.

The Centre of Parallel Forces.

99. In the preceding chapters we have learned how
to determine not only the magnitude of the resultant of a

given system of parallel forces and the sense in which it

acts, but also its position relatively to the forces of the

system. This position is determined when we know any

single point in the line of action of the resultant. The
resultant itself is parallel to the forces and its line of action

passes through every such point.

Now suppose the forces of such a system (still remain-

ing parallel to each other) to be turned each about its

point of application ; it is the purpose of this chapter to

prove that their resultant (still remaining parallel to the

system) will also turn about a certain fixed point in its

line of action.

This fixed point is called the Centre of the Parallel

Forces.

/?

Fig. i. Fig. ii.

For example, let ABC (Fig. i.) be three heavy iron balls fixed at

the corners of a light frame of rigid rods.

The weights of these balls are three parallel downward forces, and

their resultant A" is a vertical downward force equal to the sum of the

three weights, whose position relatively to ABC may be found by

Art. 95. If now the system of bodies be moved from the position
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shewn in Fig. i. to tlial slicwn in V'\g. ii., tlic diicclions of llic ihicc

original forces will be changed as regards the relative positions of the

balls, but it will be found that there is a point G, whose position relative

to A, B, C \sfixed, through which I\ must pass.

loo. PROP. To prove the existence of a Centre of

Parallel Forces.

Let P^P^ be the given magnitudes of two parallel forces

applied to a rigid body at given points A and J3.

/ ^>
^^y-'- >

D Pu
>"

Pi

Their resultant is parallel to P^ and P„ , and is ei^ual in

magnitude to P^ + P„, and its line of action cuts AP in a

point Cj, such that C^A x P^ + C^B xP^^o.

This point C^ will be the same for all directions of the

given parallel forces provided their points of application

are unchanged.

Hence, the parallel forces P^P^ may be replaced by a

single parallel force whose magnitude is P^ + P„ applied at

the Tfo-r^ point C^.

Let P.^ be a third parallel force and let it be applied to

the rigid body at the given fixed point D.

Then we have two forces, (P, + /*,) acting at C, , and P^

acting at D.

As before, their resultant is parallel and equal to

and its line of action cuts C^D in a fixed point C„, such

that C C, X (P, + /»„) + Cp X ^3 = o.

Hence the three parallel forces P^, P^, P^ may be re-

placed by a single parallel force whose magnitude is

(jP, +P^ + P.) applied at the ^.w^/ point C^; and so on.
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loi. PROP. To Juid the Centre of a given system of

Parallel Forces.

Let A^A„A^... be the given fixed j^oints at which the

given parallel forces P^, P^, P^ are applied to a rigid

body in one plane.

In the plane of the forces take any two lines OH, OK
mutually at right angles.

Draw A^M^., ^.,J/„... perpendicular to OK and draw

A^N^, A„_N^... perpendicular to OH.

The resultant of the system is a force of magnitude

(/'j + /*, + 7'^ + . .

. )
parallel to the system and it always

passes through the Centre of the system.

Let C be the centre of the system.

Draw CM, CN perpendicular to OK and OH re-

spectively.

Now by Art. loo the position of C depends on the

positions of A^, A,,, -^a-i--- ^^^d on the magnitudes of

P,, P^, Pai-- ai"'*^^ it does not de^^end on the direction

of the forces P, , /',, P.^... ; hence

\^it shall first suppose the forces be all parallel to the

line OH.
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'I'licii since the force —(/•*,+/ 2+7^.,+...) acting through

C is in eciuilibrium with the forces /',, /',, P.^ ... acting at

A^, A„, A^ ..., we have, by taking moments about O
(remembering that all the forces are parallel to Oil),

-{P, +P.^+P^ + ...)xOM+P, xOM^ +P.^OM.^+P^xOM^+...

P, X OJI, + P^ X 0M„ + y., X CiJ/., + . .

.

/> 4-/^4- 7^,+:..

_ y^, X OM^
~ 2 [A] •

Next let the system of forces be parallel to OJ'C, then

similarly,

C\Y=^'
X OJV^ + P, X OAr, + P, X OJV^+ ...

Pi+P^ + P^+ ...

Thus the position of C is found.

Note.—The student must notice carefully that the

position of the centre of a system of parallel forces depends

(i) on their points of application, (ii) on their relative mag-

nitudes; it does not depend on the direction in which they

act.

IMoreover since it depends on their relative magnitudes,

it follows that if each force were doubled or tripled... the

position of the Centre of Parallel Forces would not be

changed.

This also appears from the formula

S[P,xOJ/,]
S[/>,]

For if the forces /"p T',, /'.,... are each multiiilied by

the same number the value of OAl is unchanged

.
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Again, it appears from the syi/uneiry of the formula

that in whatever order we take the forces, the vakie of OM
is the same ; so that the formula can give only one position

for the Centre.

Example. Three parallel forces of j^Ya^i., 4 lbs., jibs, act at the

angular points A, B, C ofa square ABCO whose side is 4 in.; find the

Centre of these parallel forces.

Let X be the required centre; draw XM, XN perpendicular to

OC, OA respectively.

Then, by Art. loi,

n\T- 3 X 4 '"• + 4 X 4 in- + .^
X o i"-

= — \v\.. = ih in

3 + 4 + 5

3 xoin. + 4 X4 in. 4-5 X4in.

3 + 4 + 5

36.
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EXAMPLES. XV.

Find the centre of the ten following systems of parallel

forces :

1. Forces of 4 lbs., 5 lbs., 6 lbs. acting at A, />', C in the

square of p. 80.

2. Forces of 6, 7, 8, 9 lbs. acting at A, B, L\ O on p. 80.

3. Forces of 10, 10, 12 lbs. acting at B, C, O of a square

A/)CO, where AB=v6 inches.

4. Forces of 10, 10, 20 lbs. acting at A, />', C in an equi-

lateral triangle ABC, where AB= 10 inches.

5. Four equal like parallel forces acting at the angular
points of a given parallelogram.

6. Three equal like parallel forces acting at the angular

points of a given triangle.

7. Three like parallel forces acting at the three angular
points of a given triangle, proportional respectively to the

opposite sides.

8. Three equal parallel forces (not all like) acting at the

three angular points of a given triangle.

9. Three parallel forces (not all like) acting at the three

angular points of a given triangle, proportional respectively to

the opposite sides.

10. Four equal like parallel forces acting at the angular
points of a given ciuadrilateral.

11. Use the result of Question 10 to prove that the lines

joining the middle points of opposite sides of a quadrilateral

bisect each other.

12. ABCD is a parallelogram ; like parallel forces propor-

tional to 6, 10, 14, 10 act at A, />', C, D respectively; shew that

the centre and resultant of the parallel forces will remain un-

changed if, instead of these forces, the parallel forces 8, 12, 16,4
act at the points of bisection of the sides AL^, BC, CD, DA re-

spectively.

13. ABCD is a square whose side is 17 inches and E the

intersection of its diagonals ; like forces proportional to 3, 8, 7, 6

and 10 act at the points A, B, C, D, E respectively; prove that

the distances of their centre from AB and ^ID are 9 inches and
10 inches respectively.

i^ s, • 6



CHAPTER VIII.

Centre of Gravity.

1 02. We have said tha.t force is applied to mass. There

are three ways in which force may be applied to mass.

I. As a Pressure.

II. As a Tension.

III. As an Attraction or repulsion.

103. A force is called a pressure when it is so applied

that it causes the external particles of the mass to tend to

compress the neighbouring particles of the mass closer

together.

Suppose, for example, we take a piece of stick, such as a penholder,

and press with two of our fingers one on each end of the stick in

opposite directions. Then we are applying a force at each end of the

stick ; and these forces tend to compress the particles of the stick closer

together. The particles are pressed closer together in consequence of

the action of the two forces and the particles of the stick are in a state

of strain. The amount of compression is however too small to be

observed.

104. A force is called a tension when it is so applied

to a mass that it causes the external particles of the mass to

tend to €xte7id the neighbouring particles of the mass so as

to occupy a larger space.
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Suppose, for example, we take a piece of stick, or of thread, and

taking hokl of each end with a finger and thumb, pull on the stick (or

threatl) in opposite directions with each hand. Then we are applying

a force at each end of the stick; and these forces tend to pull the

particles of the stick further apart. The particles are extended more

widely in consequence of the action of the two forces; and the particles

of the stick are in a state of strain. The amount of extension is how-

ever too small to be observed.

105. A force is called an attraction when there is a

force acting upon each particle of the mass, which is quite

independent of the internal actions and reactions of the

neighbouring particles of the mass.

Such a force is said to Victfrom a distance because it is

not communicated to each particle by the action of neigh-

bouring particles.

Such a force is the force called weight. Every particle of matter

on the surface of the earth is attracted by the earth in such a way

that each of its particles is pulled towards the centre of the earth

by a force which is proportional to its mass and inversely proportional

to the square of its distance from the centre of the earth.

Thus if the distance of a particle from the earth's centre is changed,

its weight is changed. And since the shape of the earth is not exactly

a spliere it happens that the weight of the same particle is different at

different places on the earth's surface. See Dynamics., p. 38.

106. It can be shewn that the weight of a given mass

at the same point of the earth's surface is always the same.

Hence we are justified in taking the weight of a pound at

Greenwich as our unit Force in Statics.

A certain pressure (or a certain tension) is said to be equal to the

unit force [Art. 34] when it is such that if applied vertically to the

mass I lb. under the action of gravity (that is, the earth's attraction)

it will keep it at rest.

Note.—K pressure, a tension, a 'Meight are not each a different kind

offorce; each is a force [Dek. Art. 6], but the manner of their ap-

plication to mass is different.

6—2
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Weight.

107. The centre of the earth is at so great a distance

from its surface when compared with the greatest hnear

dimension of any mass upon which we can make any

experiment that we may consider the weights of the particles

of any mass to be parallel vertical forces, each force

being proportional to the mass of the particle.

The distance of the centre of the earth is about 4000 miles. A mass

whose greatest dimension is a few yards is perhaps as large a mass as it

is possible to consider or treat as a rigid body ; hence in considering

the weights of the particles of a body to be parallel forces we are

at most neglecting an angle A OB when AB= sa.y 10 yards and

OA—4000X 1760 yards, that is we are neglecting an angle of less

than f\f of a second. An angle of fV of a second is as small an angle

as can possibly be observed with accuracy, even under the most favour-

able conditions.

108. Consider now two particles A and B rigidly con-

nected by a light straight rod.

The weights of these particles are two parallel vertical

forces acting the one at A the other at B.

These two forces are statically equivalent to a single

force equal in magnitude to their sum, parallel and of

like sense, acting at a point C between A and J5 such

that ACy- the force at A=BCx the force at B. [Art. 96.]

Hence the two particles A and B when under the

action of gravity may be kept in equilibrium by an upward

vertical force acting at C whose magnitude is ecjual to

the sum of the weights of the particles A and B.

The point C is the centre of the parallel forces A and

B, namely, the weight of the two particles.
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109. Suppose then we fasten a light string to the rod

at C and apply this upward vertical force to the rod, then

the two particles' will be in equilibrium under the action of

this force and of their own weiglit, no matter what angle the

line AB makes with the string.

Hence the weights of the two particles A and B are

statically cciuivalcnt to the weight of a single particle at C
whose weight is equal to the sum of the weights of A and B.

The point C is called the Centre of Gravity of tlie

particles A and B.

DEF. The Centre of Gravity of a system of

particles is the centre of the system of parallel forces which

consists of the weights of the particles.

no. When the system of particles is in the form of

a rigid body the Centre of Gravity is a fixed point in or near

the body; and a downward force applied at that fixed point

is statically equivalent to the weights of all the particles for

all positions of the body, hence

III. The Centre of Gravity of a rigid body is a point

such that when that point is supi)orted, the body will be in

equilibrium under the action of gravity in wJiatcvcr position

the body may be placed.

The Centre of Gravity in many cases is not within the substance of

the rigid body. It must of course in any case be rigidly connected with

the body for the purpose of the above statement.

The student is recommended to take some rigid body whose centre

of gravity is not within its substance, say a Windsor chair, (or a box

without a lid,) and find G its centre of gravity, rigidly connecting it

with the chair by a system of fine wires, so that the chair can be

supported by another wire fastened to the wires meeting at G. It will

be found that in whatever position ihc chair is placed when suspended

from C, it will rest without any tendency to move.
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112. Consider a solid body; it occupies space. The
amount of space which it occupies is called its volume.

It consists of matter.

The amount of matter of which it consists is called its

mass ; the mass of a body is proportional to its weight.

113. DEF. The average density of a solid body

is that which varies directly as the mass of the body and

inversely as the volume.

Thus, suppose we have two bodies of equal volume, one of which

has double the mass (and therefore double the weight) of the other,

then the density of the first body is double the density of the other.

Or again, suppose we have two bodies of equal mass (and therefore

of equal weight) one of which has double the volume of the other,

then the density of the first body is half the density of the other.

114. In order to measure the densities of different

bodies we must select some substance whose density shall

be our standard or unit density.

The substance usually selected is pure water at a temperature of

4 degrees centigrade, at which temperature pure water has its greatest

density.

The average density of any given body is the ratio of its

weight to the weight of an equal volume of the standard

substance.

115. DEF. A body is said to be of uniform density

when the average density of any portion of it however small

is the same as the average density of the whole.

116. The weight of any portion of a body of uniform

density is proportional to its volume.

For, the mass of a body is proportional to its volume and its density;

therefore when the density is uniform the mass is proportional to the

volume, and its mass is proportional to its weight.
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117. A uniform rod is a straight rod made of material

of uniform density and whose breadth and thickness are the

same at every point of its length.

1 18. PROP. The Cetitre of Gravity of a uniform rod

is at its middlepoint.

Let AB be a uniform rod, let C be its middle point.

Since the rod is uniform the rod is symmetrical about

C; that is, corresponding to any particle E of the rod

between C and A there is an exactly equal particle F
between C and B such that CE ^ CF.

The centre of gravity of every pair of such particles

is at C.

Hence the centre of gravity of all the particles of the

rod is at C.

119. Hence the weight of an uniform rod is statically

equivalent to a single force acting vertically downwards at

its middle point C, whose magnitude is equal to the sum

of the weights of all the particles of the rod.

Example. A uniform rod KB 3 ft. long weighs 3 lbs.; at the point

A a force of 3 lbs. 2V applied to the rod in a vertical direction down-

wards ; shew ho7u to apply a force to the rod which will keep it in equi-

librium.

Let C be the middle point of the rod. The rod being uniform its

weight is equivalent to a force of 3 lbs. acting vertically downwards at C.

Hence we have to find a force and its point of application such

that it is in equilibrium with the two parallel forces of 3 lbs. each,

acting at A and C respectively.

The required force is the anti-resultant of the two like parallel

forces of 3 lbs. each. It is therefore a force of 6 lbs. acting vertically

upwards at the middle point of A C.
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1 20. The forces which occur in nature are apphed to

bodies either at a portion of their surface or at a part of

their volume (as in the case of weiglit).

Consider a pressure applied to a portion of the surface of

a body, such as the cube in the figure. We may look upon

it as a solid bundle of minute forces whose lines of action

form a cylinder. Suppose these forces all symmetrical

about a certain plane, say the plane EL CO. Then if we

select any minute force on one side of the plane, there is

an exactly symmetrical equal force on the other side of the

plane, and their resultant will act /// the plane.

Hence, the whole bundle of forces will be equivalent to

a series of forces acting in the plane about which they are

symmetrical. This system of forces will have a resultant

acting in this plane ; and it is this resultant of a bundle of

forces which is XhQ force of Statics and which has lt7ie of

action ^n^ point of application.
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Such a force as the theoretical Hncar force of statics docs

not exist in nature, but it is a convenient representation of

the cyUndrical or conical or soHd force of nature.

121. In practical problems the various forces (viz.

jjressures, tensions, weights) which act on a body are in very

many cases all symmetrical about t/ie same plane; in such

cases the corresponding theoretical linear forces arc all in

the same plane.

These symmetrical problems form the very numerous

class of problems which can be solved by the consideration

oiforces in otie plane.

/nustnjiiou.— SupiiOUti A/rQiV, RUTS to repieseiU a cubical block

of stone; suppose it to rest on a horizontal plane. The forces acting

on it are

:

First, its iveight; this force is applied to each particle of the stone;

we therefore consider the weight to be a multitude of very small forces

all parallel and symmetrical about the plane EOCL; for to each

particle on one side of this plane there is an equal particle similarly

placed on the other side of this plane. Therefore the weight considered

as the resultant of this multitude of parallel forces, acts in the plane

EOCL.

Next, the pressure of the plane on KUTS, the base of the stone.

This is applied to the surface of the stone, and is one part of the stress

set up between the stone and the plane. If the plane and the stone be

perfect planes the pressure will be uniformly distributed over the sicr-

face. Thus we have a multitude of vertical forces upwards, forming, if

we represent their magnitudes by finite straight lines, a portion of a

solid vertical cylinder. It is the theoretical resultant of this solid

cylinder of force which is the linear force of Statics called the pressure

on the plane.

Next, suppose we apply aforcef^ to the stone in any direction. This

force would practically be applied to part of the surface oi the cube, but

if applied symmetrically about the plane, may be represented by a

linear force m the plane OCLE.
And so on, for other forces applied to the cube, whether by means of

rods or strings or whether caused by the pressure of other solid bodies.
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EXAMPLES. XVI.

1. A uniform rod weighing lo lbs. has a weight of lolbs.
fastened to one extremity ; find the centre of gravity of the two.

2. A uniform rod weighing 5 lbs. has weights of 3 lbs. and
5 lbs. fastened to its extremities ; where must an upward force

be applied to the rod which will support it 1

3. A ladder 22 ft. long and weighing 44 lbs. has its centre of
gravity 10 ft. from one end; if it is carried by two men lifting

it at each end, what weight do they each lift?

4. A pole 40 ft. long weighing 20 lbs. has its centre of

gravity 16 ft. from one end; it is carried by two men, one of

whom lifts it at its heavier end; where must the other lift it

that he may support an equal weight with the first man?

5. A ladder 50 ft. long and weighing 100 lbs. is carried by
two men, one lifts it at one end and the other at a point 2 ft.

from one end ; the first carries two-thirds of the weight which
the second carries: where is the centre of gravity of the ladder?

6. A pole 8 ft. long weighing 10 lbs. has weights of 8 lbs.

and 4 lbs. fastened one to each of its ends; the centre of gravity

of the whole is at the middle of the rod : where is the centre of

gravity of the pole ?

7. A pole 10 ft. long weighing 20 lbs. has a weight of 12 lbs.

fastened to one end; the centre of gravity of the whole is 4ft.

from that end : where is the centre of gravity of the pole?

8. A pole weighing 20 lbs. is 12 ft. long, and its centre of

gravity is 4 ft. from one end ; if the pole is supported at its

middle point, find where a weight of 10 lbs. must be fastened to

it that it may be in equilibrium.

9. A pole 6 ft. long is found to balance about a point 2 ft.

from one end; when a weight of i lb. is fastened to that end,

and a weight of 3 lbs. is fastened to the other end, the pole is

found to balance about its middle point : find the weight of the

pole.

10. A ladder 20 ft. long has its centre of gravity at a point

8 ft. from one end; when a weight of 10 lbs. is fastened to that

end and a weight of 20 lbs. to the other end, it is found to

balance about a point 8 ft. from this other end: find the weight
of the ladder.
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11. Four weights of 7 lbs., i lb., 3 lbs. and 5 lbs. respectively

are placed a foot apart on a uniform rod 3 ft. long weighing
8 lbs. ; find the point on which the rod will balance.

12. Four weights i lb., 4 lbs., 5 lbs. and 3 lbs. respectively

are placed 2 ft. apart on a rod 6 ft. long weighing 3 lbs. whose
centre of gravity is 2 ft. from the end at which is the i lb. weight

:

find the centre of gravity of the whole.

13. Weights of 3 lbs., 5 lbs., 7 lbs., 9 lbs. arc fastened to a

rod 6 ft. long at intervals of 2 ft. ; the rod weighs 24 lbs. and
the centre of gravity of the whole system is at the middle point

of the rod ; where is the centre of gravity of the rod?

14. A uniform bar is 18 inches long, weighs 3 lbs. and can
turn about a fixed point 3 in. from one extremity; what weight
must be fastened to this extremity that the bar may be in equi-

librium, when a weight of 2 lbs. is fastened to the other
extremity?

15. A uniform rod OA 12 inches long is suspended by two
vertical strings attached to the rod at O and A ; weights of

2 lbs. and 7 lbs. are fastened to the rod at points distant i inch

from O and 2 inches from .1 respectively ; if the stiings break
when subjected to a strain of more than 7 lbs., find the greatest

weight the rod can have without breaking either of the strings.

16. A uniform rod 2 ft. long is suspended by two vertical

strings attached to the ends of the rod ; weights of 7 lbs. and
I lb. are attached to the rod at points distant 4 in. from the
ends. If the strings break if subjected to a strain of more
than 10 lbs. find the greatest weight the rod can have.

17. A uniform beam weighing 700 lbs. and 30 ft. long rests

on two walls 24 ft. apart so that i foot of it projects over one of
them; a man weighing 192 lbs. stands 2 ft. from the other end:
find the pressure on each of the walls.

18. A uniform plank 20 ft. long weighing 14 lbs. rests on the
top of a wall ; at one end is a man weighing 168 lbs., at the other

a boy weighing 98 lbs., and two feet from that end a weight of

7 lbs., the whole balances: how much of the plank is on each
side of the wall ?

19. Two weights of 12 lbs. and 2 lbs. hanging from the ex-

tremities of a uniform rod 3 ft. long which can turn about a fixed

point, keep it at rest ; if each weight is increased by i lb. the
fixed point must be moved three-eighths of an inch nearer the
less weight : find the weight of the rod.
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20. A uniform lever 15 ft. long has its fulcrum at one end;
a force of 30 lbs. acts upwards at the other end, and one of
20 lbs. is applied downwards at a point between ; the lever is

then in equilibrium; if the lever were without weight it would
be in equilibrium if the points of application of the two forces
were interchanged : what is its weight .-'

21. A uniform bar 7^- ft. long weighing 17 lb. rests on a
horizontal table with one end projecting i\ ft. over the edge

;

find the greatest weight that can be hung at this end without
making the beam topple over.

22. A uniform bar 8 ft. long rests with one end on a hori-

zontal table ; a weight of 10 lbs. is placed on that end ; it is found
that when the bar projects 6^ ft. over the edge it is on the point
of toppling over : what is the weight of the bar ?

23. A unifonn bar weighing 20 lbs. rests with one end on a
horizontal table; a weight of 6 lbs. is placed on that end and a
weight of 4 lbs. is placed on the end which projects over the
edge ; when the bar projects 8 ft. over the edge it is on the point
of toppling over : what is its length ?

24. If 5 cubic inches of silver weigh as much as 21 cubic
inches of glass, and silver is io'5 times as dense as pure water,

shew that the density of the glass is 2"5.

25. The radii of two spheres are 2 inches and 3 inches and
their weights 8 lbs. and 10 lbs. respectively : shew that the ratio

of their densities is 27 to 10.

26. A cubic foot of oak weighs 100 times as much as a
cubic inch of metal, shew that their densities are as i : I7'28.

27. A lump of matter whose density is "865 weighs 432"5
grains ; and an equal volume of different stuff weighs 9 grains
less ; shew that the density of the latter is •S47.
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Centre of Gravity of a Lamina.

12 2. A material lamina has thickness.

Consider, however, a geometrical plane; and suppose

that on each side of this plane, material of some kind (iron,

or wood, or cardboard ...) is symmetrically arranged.

(Forming a sheet of iron, or a board, or a card ....)

Then the centre of gravity of the body so formed must

lie in the geometrical plane about which it is symmetrical.

This follows as in Art. 120.

When the thickness of the substance on each side of

tlie geometrical plane is small, then we have a body which

we call a lamina.

When the substance is spread uniformly over the plane

then we have a uniform lamina.

When we speak of the centre of gravity of a trians^lc, a ciirle,

a quadrilateral, we mean the centre of gravity of a uniform lamina whose

boundary is a triangle, a circle, or a quadrilateral, etc.

When a uniform lamina is symmetrical about a pointy

that point must be its Centre of Gravity.

For example; the c.G. of a Circle is its centre. The c. c. of a rect-

angle is its middle point.

If the substance is not uniformly spread over the plane,

yet if it is spread symmetrically., the centre of gravity of the

body so formed must lie in the plane under consideration;

in such a case we have a lamina which is not uniform.
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123. PROF. To find the Centre of Gravity of a

uti(for/n triangular iamhia.

A

Consider the lamina ABC to be made up of a series

of very thin parallel rods such as FQ, each parallel to one of

the sides BC of the triangle, and formed by sections of the

triangle made parallel to the side BC.
Since the lamina is uniform, each rod will be uniform.

Therefore the c.g. of each rod will be at its middle

point. [Art. 118.]

Hence, the weight of each rod may be considered to be

condensed at its middle point.

Now bisect BC m D and join AD cutting FQ in F;

then AD bisects FQ in H.

For, by the similar triangles ADC, AHQ
DC : HQ=DA : BA,

and by the similar triangles ABD, APH
BD : PH=DA : HA;

therefore DC : HQ=BD PH.
But BD= DC, :. HQ=PH.

Therefore the c.g. of each rod making up the lamina

lies in the line AD.

But the Centre of a series of parallel forces- whose points

of application are in a straight line, lies also in that straight

line [Art. iiol.
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Therefore the C.o. of the whole lamina is at some point

on the line AD.
In a similar manner it can be shewn that the c.G. of the

lamina is at some point on the line joining the point C to

F, the middle point of the line AB.

Therefore the Centre of Gravity of the lamina must be

at 6", the point of intersection of the lines AD, CK

124. PROP. To prove that the c.G. of a uniform tri-

afigiilar lamina cuts the li?ie joining an a?igiilar point to the

middle point of the base, in the ratio 2 to \.

Let ABC be the triangle.

Bisect BC, AB in D and F;

join FD ;

join AD, CF intersecting in G.

Then, by Art. 123, G is the c.o. of

the lamina. Now, since

AF : FB = CD : DB,
.'. FD is parallel to AC,

and .-. ACB, FDB are similar triangles;

.-. AC : FD ^ AB \ FB =2 : i.

Also, since AGC, DGFzxe similar triangles,

AG : GD^ AC : FD
= 2:1;

,-. AG = twice GD, q. e.d.

and AD = thrice GD.
Note.—The c.G. of a triangular lamina coincides with that of

three equal particles placed one at each of its angular points.

For the c. G. of two equal particles of weight IV placed at B and C
respectively, is at Z?; we may therefore replace these two particles by

a particle of weight 2 IV at I).

The c.G. of 2JVa.t D and JVat A is at G where AG = iGD.

Note.—The c.c. of a parallelogram is at the point of intersection

of its diagonals. This may be deduced from Art. 1 18 or from Art. 123.
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125. PROP. Having given the weight and c. G. of a

body, and also the weight and c.g. of a portion of the same

body, to find the c. G. of t/ie remaining portion.

Let G be the c. g. of the given body and W its weight.

Let G^ be the c.g. of the given portion and W^ its

weight.

If G.^ be the required c. G. of the remainder and W,^ its

weight, then W^= W- W^.

Also G is the centre of the two parallel forces W^ , W„

applied at the points G^, G„;

.-. G^, G, G„ are points in a straight hne,

and GG,^ JV. = G,G x W,;

.-. GG„ = X G,G.W- JF,

Hence G„ is found by producing G^G ^ distance given

by the above equation.

126. A heavy body is sitspended from a fixed body by a

string ; prove that the direction of the string must be vertical

and mustpass through the Centre of Gravity of the body.

The weight of the body is equivalent to a single vertical

force acting vertically downwards and applied to the body

at its centre of gravity.

The only other force acting on the body is ihe tension

of the string.
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Therefore these two forces, the weight and the tension,

must be equal, opposite, and in the same Hue of action.

But the tension acts in the direction of the string.

Therefore the direction of the string must be in the same

Hne as that in which the weight acts. Q. e. d.

127. To find the Centre of Gravity of a number of

heavy bodies whose weight is known, and the position of

whose Centres of Gravity is given, we proceed as in Art. 100

or as in Art. loi.

For the weight of a heavy body is a force acting in a

fixed direction, viz. vertically downwards, and it is applied

at tlic Centre of Gravity of the body.

Thus the problem is the same as that of finding the

position of the centre of a given system of like Parallel

Forces having given points of application.

Example i. The angular points D, E, F of one triangular piece of

cardboard are so placed that each is at the middle point of one of the sides

of another triangular piece of cardboard ABC. Shezu that their C.G.s

are superposed.

The line EF joining the middle

points E and F of two sides of a

triangle is parallel to the third side

BC of the triangle and is bisected

by the line AD joining the middle

point D of the third side to the

opposite angular point A.

Hence if DEF be the middle

points of the sides BC, CA, AB
then the line AD contains the c. G.

of the triangle ABC and also of

the triangle DEF.

For AD bisects BC and EF.

Similarly BE contains both Centres of Gravity.

.•. the Centre of Gravity of each triangle is at the point of inter-

section of AD and BE.

L. S.
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Example ii, ABC is a triangle and E, F are the middle points of

the sides AC, AB
; find the C.G. of the quadrilateral CBFE.

The triangle AEF'\% one-fourth of the triangle ABC.
Let D' be the middle point of EF and G' the CO. of the triangle

AEF; then D, G, D' , G', A are in the same straight line.

Let G" be the C.G. required. It is in the line GG' [Art. 125].

Now DG=:\I)A;

D'A = i DA
;

D'G' = \D'A=IDA.

Let /rbe the weight of the triangle ABC.
Then J/Fis the weight of the triangle AFE; f /ris the weight of

CBFE;
hence a force of % IV acting upwards at G" and a force of JW

acting upwards at G' are in equilibrium with a force /Facting down-

"vards at G ; hence taking moments about D, we have

JWx DG" + ilVx DG' - JVx DG=o\
WxDG-\WxDG'

DG"=
'IV

{DG-\DG']

=^\IDA-\{\DA + IDA)\

= ^.{\-l-iT]DA

--tDA.

Thus DG" is tvvx)-thirds of DG.
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Example .ii. An isosceles truxttgtilar board ABC is suspended suc-

cessivelyfrom B and C the angularpoints of the base; shetv that the two

positions which the base successively occupies will be perpendicular to each

other, provided the base ofthe triangle is two-thirds of its altitude.

Let the figures represent the two positions of the board.

EF are the middle points oi AC and AB; G is the C.G.

Now BE must be vertical when the triangle is suspended at j9;

for the only forces acting on the triangle are (i) its weight which may
be considered to be concentrated at G and acts vertically downwards,

and (ii) the action of the constraint at B. This action must be equal,

opposite, and in the same line as the weight; .". BE in the left-hand

figure is vertical.

When the triangle is suspended at C, as in the figure on the right

hand, we may shew similarly that then CF\% vertical.

Suppose the triangle turned about G from its first position into its

second; then, considering one figure only, the line BE\% turned until it

comes into the position CF.

The line CB will be turned about the same angle. We have from

the mechanical data of the problem that this angle is a right angle.

Therefore the angle CGB is a right angle.

Join AGD. Then AGD bisects CB at right angles.

And since CGB is a right angle, a circle described about CGB will

have its centre at D.

:. DG=DB, but DG=UJA, :. DB=\DA. (.).k.1).

Therefore BC is two-thirds oi DA.

7—2
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EXAMPLES. XVII.

1. A cross is made up of six equal squares; find its centre

of gravity.

2. Weights of i lb. are placed at each of three corners of a
square and a weight of 2 lbs. at the fourth corner ; find the c. G.

of the four weights.

3. Weights of 2 lbs. are placed at each of three corners of
a square and a weight of i lb. at the fourth corner; find their c.G.

4. If the triangle formed by joining the middle points of

-$he sides of a triangular lamina be removed, prove that the c.G.

of the remainder coincides with that of the original triangle.

5. Two rectangular pieces of card-board of lengths 6 and
8 inches and breadths 2 and i\ in. respectively are placed
touching but not overlapping one another on a table to form a
T-shaped figure, the former piece forming the cross bar. Find
the position of the centre of gravity.

6. From the corner of a square piece of cardboard whose
side is 6 inches another square whose side is 2 inches is cut

away; find the c.G. of the remaining piece.

7. ABCD are the corners of a square piece of cardboard;
AC, IW meet in iT ; if the triangle AEB be cut away, find the

C.G. of the remainder.

8. A quarter of a triangle is cut off by a line drawn parallel

to one of its sides bisecting each of the other sides, find the c.G.

of the remainder.

9. A circular plate of wood has a circular hole cut in it

whose diameter is half that of the plate and whose centre

divides a diameter of the plate in the ratio 2:3; find the posi-

tion of its centre of gravity.

10. A circular board has two equal circular holes cut in it,

the centres of these holes being at the middle points of two
radii at right angles to each other; the radius of each hole is

one-third that of the board; find the centre of gravity of the

remainder.

11. Two equal rods AB., BC are fixed upon a circular board
so as to coincide with the chords of two adjacent quadrants

;

the weight of each rod is equal to that of the board; find the

centre of gravity of the whole body.
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12. The dia<ionals of a square plate ABCD intersect in O,

the triangle BOC is cut out and placed so as to fit upon the

triangle AOD and the two portions are firmly connected in this

position ; find the centre of gravity of the body thus formed.

13. ABCD is a square plate; E and F being the middle
points of ^/> and BC; the plate is bent along E^F so that the

triangle EBF lies flat on the other side of the plate; find the

centre of gravity in this position.

14. A square is described on the base of an isosceles tri-

angle. What is the ratio of the altitude of the triangle to its

base when the c.G. of the whole figure is at the middle point of

the base ?

15. If a triangle have a side upon which it will not stand
upon a horizontal plane with its plane vertical, that side is the

shortest and is not half the length of the longest side.

16. On a uniform triangular plate straight lines are drawn
joining the middle points of the sides. Two of the triangular

portions marked off between these lines and the angle of the

triangle are covered with triangular plates of the same material

and thickness as the given triangle ; find the centre of gravity

of the whole.

17. A square is described on the base of an equilateral

triangle; find the C.G. of the whole figure.

18. A system of three equal particles connected by rigid

wires without weight forms a triangle and when hung up by
the middle point of one side rests with that side horizontal

;

prove that the triangle is isosceles.

19. An isosceles right-angled triangle is described on the
side of a square as hypotenuse, and its vertex turned away
from the square ; find the C.G. of the whole figure.

20. ABCD is a rectangle; A is joined to E the middle
point of CD ; find the C. G. of ABCE.

21. A triangular lamina EDC of the same weight as a
square lamina ABCD {E being the middle point of AB) is

laid upon the square lamina in the position indicated by the

letters ; find the C. G. of the system.

22. If weights be placed at the angular points of a triangle,

respectively proportional to the sum of the sides which meet
at those points, prove that their C.G. will coincide with that of
the perimeter of the triangle.
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23. The C. G. of the two complements which arc about the

diagonal of any parallelogram is in that diagonal.

24. ABC is a triangle, Z> is a fixed point in EC ; a triangle

PBC is cut away whose vertex P is in AD; prove that what-
ever be the position of P the c.G. of the remainder lies on a

fixed straight line.

25. If there are two triangles on the same base and between
the same parallels, prove that the distance between their centres

of gravity is one-third the distance between their vertices.

26. Find the centre of gravity of four equal heavy particles

in one plane; thence shew that the lines bisecting pairs of

opposite sides of any quadrilateral bisect each other.

27. A triangular lamina is hung up by one of its angular

points and when in equilibrium the opposite side is horizontal

;

prove that the triangle is isosceles.

28. Find the angles of an isosceles triangle when the angle

between the two positions of the base, the triangle having been
suspended freely from each of the equal angles in turn, is a right

angle.

29. Find the tangent of the angle between the positions of

the base when a right-angled isosceles triangle is suspended
(i) from the right angle, (2) from one of the equal angles.

30. Two uniform rods OA, OB of equal weight whose
lengths are a and b are rigidly connected at O so that AOB
is a right angle; they are hung up by a string attached to (7,

prove that if 6 be the inclination of OA to the horizon, then

31. Two uniform rods OA and OB of equal length, whose
weights are in the ratio of ;// to «, are rigidly connected at O,

so that AOB is a right angle
;
prove that, if they are suspended

by a string attached at (9, and if ^ be the inclination of OA to

the horizon, then tan 6= -.

32. A piece of uniform wire is bent into the form of three

sides of the square ABCD of which the side AD is wanting;

prove that if it be hung up by the two points A and B success-

ively, the angle between the two positions oi BC is tan~^ 18.

33. Shew that the centre of gravity of a plane quadrilateral

does not coincide with that of four equal particles placed at its

angular point except the quadrilateral be a parallelogram.
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34. Shew by the method of Art. 122 that the centre of

gravit)' of a lamina in the form of a parallelogram is at the

point of intersection of the diagonals.

35. The C.G. of a lamina in the form of a trapezium ABCD
is in the line joining the middle points of the parallel sides AB,
CD of the figure, and divides in the ratio 2AB+CD : 2CD+AB.

36. A piece of uniform wire in the shape of three sides of a

rectangle is suspended by one of its angular points ; shew that

when the ratio of two adjacent sides is i to V3 - i (the missing
side being the longer) the sides will be all equally inclined

to the horizon.

37. A right-angled triangle suspended from either of the

points of bisection of the hypotenuse will rest with one side

horizontal.

38. A triangle suspended from a point of trisection of a side

rests with one side vertical.

39. Prove the following construction for finding the c.G. of

three equal weights at the points A, B, C; bisect BC in V and
divide ^iD in G so that AG= 2GD; G is the required c.G.

40. The C.G. of three particles placed one at each of the

angular points A, B, C of a. triangle such that the weight of

each is proportional to the opposite side, is at the centre of the

circle inscribed in the triangle.

41. Three particles placed at the angular points A, B, C of

a triangle are proportional to the areas of the triangles OBC,
OCA, OAB respectively, where O is the centre of the circum-

scribing triangle ; shew that their c.G. is O.

42. The c.G. of three uniform rods forming a triangle

A, B, C is at the centre of the inscribed circle of the triangle

formed by joining the middle points of the sides of the triangle

ABC.

43. Two uniform rods AB, AC are firmly joined at A and
are suspended from a fixed point by a string fastened to yi ;

prove that the tangent of the angle which AB makes with the

, . . A C^ + AB- cos BAC
horizon is . ., .

— „ . ., .

AB-smBAC



CHAPTER X.

Bodies on a Horizontal Plane.

128. When a body stands on a jDlane, its base is the

area enclosed on the plane by a string drawn tightly round

all the points in which the body touches the plane.

PROP. A rigid body under the action of gravity only,

standing on a horizontal platie is in equilibrium provided the

vertical lifie through its cetitre of gravity cuts the plane at

somepoint within its base.

The proof of the above general proposition involves the consideration

of parallel forces not all in the same plane and therefore cannot be fully

treated here. Its truth depends on the following.

I. When a rigid body rests on a horizontal plane the plane is sup-

posed rigid also, and therefore capable of applying to the body at aiiy

point of its contact the vertical force upwards that may be necessary to

maintain equilibrium.

II. The line of action of the resultant of any number of like vertical

forces applied to the rigid body cuts the horizontal plane at a point

within the base ; and by properly arranging the magnitudes of the

vertical forces, the line of action of the resultant may be made to cut

the plane at any chosen point within the base.

Assuming the above we can prove the proposition. For the weight

of any body is equivalent to a single force downwards.

If the line of action of this vertical force downwards cuts the plane

•within the base, the upward vertical actions of the plane on the body

will be so arranged that the line of action of their resultant coincides

with that of the weight of the body and the magnitude of this resultant

will just equal the weight of the body. Therefore the forces acting on

the body will be in equilibrium.

If the line of action of the weight cuts the plane outside the base,

then the upward actions of the plane on the body cannot be so arranged
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that the line of action of their resviltant shall coincide with that of the

weight of the body; in this case the forces acting on the hotly cannot

be in equilibrium and the body will 'topple over.'

When a rigid body and the forces acting upon it

are symmetrical about a vertical jjlane, the problem of its

stability may be treated as if its base were a straigJit line

;

viz. the straight line in which this vertical plane cuts the

base of the rigid body. Compare Art. 120.

129. When the base of the body is a line BC then

I. The actions of the rigid plane on the rigid base are

supposed to apply to the body, at points between B and C
inclusive, any force that may be necessary to maintain

equilibrium.

Hence we may, if necessary, consider any force whatever

P to be applied to the body vertically upwards at B and

any other force Q at C.

II. The resuhant of two like forces B and Q at B and

Cis a like force (--/•+ 0, acting upwards at some point

between B and C [Art. 97]; moreover by properly ar-

ranging the magnitudes of P and <2 this resultant may be

made to act at any point between B and C
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Thus if the weight of the body cuts BC in any point

between B and C, the actions of the plane on the body

(by II.) can be, and therefore (by I.) will be, in equilibrium

with the weight. But if the weight cuts the line BC pro-

duced, it cannot be in equilibrium with these forces whose

resultant is a vertical force which cuts BC between B and C
(by II.).

Stable and Unstable Equilibrium.

130. When a body, which is acted on by forces which

are in equilibrium, is slightly displaced from its position, one

of three things must happen to it.

I. Either, the forces acting on it in its new position

are such that they are Jiot in equilibrium, but have a result-

ant which tends to restore the body to its original position.

In this case the original position of the body is said to

be one of stable equilibrium for that displacement.

II. Or, the forces acting on the body in its new ])osi-

tion are such that they are not in equilibrium, but have a

resultant which tends to make the body move further from

its original position.

In this case the original position of the body is said to

be one of unstable equilibrium for that displacement.

III. Or, the forces acting on the body in its new posi-

tion are in equilibrium.

In this case the original position of the body is said to

be one of neutral equilibrium for that displacement.
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Illustration.—Take a s]ihcre of a hard suhstancc (a wooden ball

will do), place it in a large bowl; it will come to rest at the lowest

point; and if it be slightly displaced in any direction it will tend to re-

turn to its jiosition : such a position is one o{ stable equilibrium.

Now put the same sphere on the highest point of another sphere

(on tlie highest point of an inverted bowl); it is theoretically in a posi-

tion of equilibrium ; but if it be displaced ever so slightly it will tend to

go further from the position of equilibrium : such a position is one of

unstable equilibrium.

Now put the same sphere on a horizontal plane ; then wherever it

be placed it will be in a position of equilibrium; and if it be slightly

displaced, and then left at rest, it will still be in a position of equili-

brium, and will have no tendency to go further away from or to return

to its original position: such a position is one of neutral equilibrium.

Example i. An obtuse-angled triangle ABC is placed ivith its plane

vertical and kept so, 7uith its shortest side BC resting on a horizontal

plane ; find the condition that it shall 7tot tumble over.

Since the plane of the triangle is constrained to remain vertical the

only way in which the triangle can tumble over is in its own plane.

Let B be the obtuse angle, E the middle point of AC, G the centre

of gravity.

The vertical through the C. G. will cut BC bet-vecn B and C unless

the angle EBC is obtuse.

.*. the angle EBC must not exceed a right angle. This is the

required condition.
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Exaviple ii. A round board KEC weighing ten pou7tds is made into

a tabic by having three equal legs {of no zueight) fastened to it at right

angles, at points A, B, C on its circumference equidistantfrom each other;

the table is placed on a smooth horizontal plane ; find the least iveight

which placed on the top of the table can cause it to tumble over.

The legs of the table touch the plane in three points vertically

under ABC-, therefore the base on which the table stands is the triangle

vertically under ABC.

Draw COED through the centre O bisecting AB at right angles in E.

Then E is one of the nearest points in the boundary of the base to

the centre of the table.

Let a weight ^be placed on the table and let G be the Centre of

Gravity of the table and W together ; then the condition that the table

should tumble over is that G shall be outside the triangle ABC.

J
^

'E

W lbs

The further from O we place //'', llio further is 6" from O.

.: G is furthest from O when W\% on the edge of the table.

Hence the least magnitude of ^F"which will bring Con the boundary

of the triangle, is when W\% at D and G at E.

Now OE=hOC=hOD=DE.
.'. when G is at E, then W=io\hs.

Hence, when ?F exceeds lolbs. the table will tumble over if ^F" is

placed at /?.
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Example iii. A body is placed on a three-legged stool, which stands

on a horizontal plane ; shcio how to find the pressure ofeach leg on the

plane.

Let A, B, C be the points in wiiich the legs of the stool touch the

plane.

B TtV

Let G be the point in wliich the vertical line through the Centre of

Gravity of the stool and body together cuts the plane.

Then, three parallel vertical forces applied at the points A, B, C
upwards, and the weight IV (of the body and stool together) acting

vertically downwards through G, are the only external forces acting on

the stool.

These parallel forces are therefore in equilibrium.

Join AG and produce it to cut BC in D.

Let Pi, P.,, P-i be the pressures acting at A, B, C.

The resultant of P.^ and P-^ must be equal and opposite to, and must

therefore cut the plane ABC in the same point with, the resultant of

/", and JV.

The line of action of the first of these resultants cuts the plane

somewhere in the line BC, the line of action of the second resuUant

cuts the plane somewhere in the line AG;
and, since they must each cut the plane in the same point, that point

must be D.

Therefore we have ]V= P^-}- P.^ + P.^ (i),

P^ : IV=DG: DA (ii),

P» : P^-DC : DB (iii).

These equations give P^, P.,, P.^ when G, A, />', C and IV are

known.
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EXAMPLES. XVIII.

1. A flat ho2ix6.ABC in the shape of a triangle right-angled

at A stands with its plane vertical and its side AC m contact

with a horizontal plane; D is the middle point oi AC; if the
triangular portion ABD be cut away, shew that the remainder
will be just on the point of falling, it being supposed that the

board is constrained to remain in a vertical position.

2. A triangular lamina is placed upon a horizontal table

;

how far can its vertex be made to project over the side of the

table when the base is kept parallel to the side of the table?

3. A parallelogram whose height is equal to its base will

just stand on that base when placed vertically on a horizontal

plane, find the angles of the parallelogram.

4. A uniform triangular lamina ABC is placed upon a hori-

zontal table with the side BC on the table and parallel to the

edge, and one-ninth of the area of the triangle overhangs the
table. Shew that if a weight be placed at A greater than the
weight of the triangle itself, the triangle will be upset.

5. A five-sided figure consisting of a square ABCD with
an isosceles triangle upon the side BC as base is cut out of one
piece of board ; find the greatest height of the triangle that the
figure may stand with its side DC on a horizontal plane without
tumbling over.

6. If a table stand on three legs, shew that in whatever
way weights are placed upon it without upsetting it, the centre

of gravity of the table and weights together will be vertically

above a given triangle.

7. A circular board weighing lo lbs. is made into a table by
the addition of four legs without weight fixed perpendicular to

its plane at equidistant points on its circumference; find the

least weight with which it is possible to upset the table by
placing the weight on it.

8. An ecjuilateral triangular board is made into a table by
the addition of three legs without weight fixed at right angles to

the board at the middle points of the sides. Shew that it is

possible to upset the table by putting on it a weight which is just

heavier than one-third of the weight of the table.

9. A square board weighing 20 lbs. is made into a table by
inserting 4 equal legs into it one at the middle point of each
side. Three weights of 20 lbs. each are placed at three of the
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corners of this table as it stands on a horizontal floor. Find the

greatest weight that can be placed upon the fourth corner with-

out overturning the table, neglecting the weight of the legs.

10. A square board ABCD weighing i8 lbs. is made into a

table by inserting three equal legs in it, one at the corner C and
the others at the middle points of the sides AB, AD. Find

how great a weight may be placed upon the corner A as the

table stands on a horizontal floor without overturning it, the

weight of the legs not being taken into account.

11. A number of bricks, each 9 inches long, 4 inches wide,

and 3 inches thick, are placed one upon ^mother in such a way
that whilst their narrowest surfaces (or thicknesses) are in the

same vertical plane, each brick overlaps the other by half an

inch of its length, the lowest brick resting on a horizontal

plane ; how many bricks may be so piled without falling ?

12. A triangular lamina ABC obtuse-angled at C, stands

vertically with its side AC in contact with a table: shew that

the least weight which suspended from j5 will overturn it is

where lV=\.\\e. weight of the lamina. Interpret the above when

13. A table stands on three legs on a horizontal plane.

Shew that if the c.G. of the table be vertically above the centre

of gravity of the triangle formed by joining the three points in

which the legs touch the plane, the pressure of the legs on the

plane will be equal.

14. Find the pressure of each leg of the table in Question 10

on the plane on which it stands when no additional weight is

placed on the table.

15. A weight IV is placed at 6> on a triangular table ABC
supported on a horizontal plane by three vertical legs at A, B,C;
shew that the portions of W supported by the legs are propor-

tional to the areas of BOC, COA, A OB.

16. A hemisphere, and a circular cylinder of the same
material and having a common base of radius ?, are cemented
together; shew that when the height of the cylinder is equal to

^rx^2 the equilibrium is neutral if the hemisphere is placed with

its curved surface on a horizontal plane. [The area of a circle

= 7r;-^; the volume of a sphere - ^Trr* ; the CO. of a hemisphere
is distant p' from centre.]
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A Rigid Body with one point fixed.

131. When a rigid body is said to have one point fixed,

it is understood that there is some constraint, (a hinge, or

fastening of some kind) which can and does apply to the

rigid body at that point whatever force is necessary to

prevent the body from moving as a whole away from that

point.

132. PROP. Tofind the conditionsfor tJie equilibrium

of a given system offerees acting upon a rigid body having one

pointfixed.

If a body, which has one point C fixed, requires no ad-

ditional force to keep it from moving, the given system of

forces acting upon it must be in equilibrium with the force

applied to the rigid body by the constraint at C.

In other words, in order that the given system of forces

may be in equilibrium, their resultant must either be zero

or must be a single force passing through the fixed point C.

The condition that this is so, is that the sum of their

moments about the fixed point must be zero.

For in this case the resultant cannot be a couple, and it cannot be a

force not passing through C.

Hence, any system of forces acting on a rigid body

which has one point C fixed, must be in equilibrium with

the force applied by the constraint at C, provided the sum of

their moments about C is zero.



ONE POINT FIXED. i i 3

133. The above result will be found of very greiU im-

portance in the theory of many machines.

P'or an illustration see Art. 64.

134. PROP. A rigid body 7vJiich has one point C Jixcd

and is acted on by two forces, has no tendency to turn about C
provided that the moment of one of the forces about C is equal

and opposite to the moment of the otherforce about C.

For the sum of the moments about C of the forces

acting on the rigid body is zero.

The tendency of a given force to turn a rigid body

about a chosen point may be measured by the moment about

that point of the given force.

Exaiiipli: i. ACR is a rigid rod 'without 7veight having a fixed

point at C ; AC is horizontal and CB is inclined at an angle a to the

horizon, a weight Q is suspended at A and a weight P is suspended at B.

What is the necessary conditionfor equilibrium?

Draw CiV perpendicular to the vertical through B.

The forces acting on ACB will be in equilibrium with the force

applied by the hinge at C, provided the sum of the moments of the

forces about C is zero. [Art. 134.]

The required condition is

ACy- Q=CNxP=CBco%a.y.I\
T,. S. 8
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Example ii. /// Example i. if the forces are not in equilibrium,

what force must I apply in the direction making an angle j3 with CB /o

maintain equilibrium ?

Let Fhe the required force ; draw CJ/ perpendicular to F.

Q fill

Then by Art, 132,

QxAC=PxCN+FxCM\
QxAC-FxCN_QxAC-PxCBcosa

~ CM ~
CB sin p

'

Example iii. What force is applied to the rigid rod by the constraint

at Cm Examjde i., and Example ii., respectively?

In Example i., it is supposed that the rigid rod is in equilibrium

under the action of the constraint and of the weights Q and P respec-

tively. The force applied by the hinge at C is therefore the anti-

resultant of the two vertical forces downwards Q and P;
The required force is therefore {Q,-\-P) acting vertically uj)wards.

In Example ii., let the force of the constraint be R inclined to the

horizontal line CA at an angle 9.

Then the sum of the horizontal resolutes of all the forces acting on
the rigid body is zero;

.-. K Q.o%d - F%\n NBF-o.
Also the sum of the vertical resolutes of all ihc forces acting on the

rigid body is zero;
.-. R^mB-Q- P- FcosNBF=^o.

These two equations give

„ Q +P+F co^ NBF
F?.in NBF

R"= F" sin2NBF\
( C^ + /'+ Fco% NBFf.

[It will be seen that NBF= CBF- CBN=§- 90° + a.]
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E.xample iv. ./ heavy Iwdy of u<t'ight \V rests on a liorizoulal plane,

find theforce in a given direction necessary to turn it tn'cr.

Let the picluro represent a plane section of the body about wliicli it

is symmetrical.

V^

Let be the point about wliich the body is to turn.

Let /'be the required force, C the Centre of Gravity of the body.

Draw OA'' perpendicular to the force, let the vertical throutjh C cut

the horizontal plane in M.

In such a question it is understood that the point of the body is

practically fixed, either l)y the roughness of the ground or by some

obstacle.

When the body is on the point of turning about O, the only force

acting on the body besides P and IV is the reaction of the constraint at

O; hence the condition that the body should be on the point of turning

is that the moment about of /'=the moment about of IV; hence

/'x 0N= IV X OM:

.•. P= II X -—
-; , tlie required value.ON ^

Suppose the body to have turned about O through some finite angle ;

the perpendicular distance of IV from O will be diminished; con-

sequently the moment about O of OJV w'lW also be diminished.

Hence, the force necessary to keep the body tilted up through a

finite angle if it acts along the fixed line iVP is less than the al)ove

value of P.

Hence, if a force slightly greater than the /"found above be applied

to the body in a fixed direction the body will be tilted (piile over.

8—2
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EXAMPLES. XIX.

In the ten following Examples a piece of thin cardboard
is placed on a smooth table and on it is drawn a square ABCD
each of whose sides is 2 inches.

1. If the point A is fixed and a force of i lb. acts on the

cardboard along the side BC, what force must act along CD to

keep the cardboard at rest .-'

2. The point A being fixed, forces of 6 lbs. and 5 lbs. act

along EC and CD, find the least force which acting at D will

maintain equilibrium.

3. The point A being fixed, a force of 5 lbs. acts at B
parallel to AC, and a force of 4 lbs. acts at C parallel to DB;
what force acting along DB will maintain the cardboard at

rest ?

4. The point A is fixed ; forces of 3 lbs., 4 lbs., 5 lbs. and
6 lbs. each act along AB, BC, CD, DA respectively; where
must a force of i lb. parallel to DB be applied in A C (produced

if necessary) to keep the cardboard at rest?

5. If the point E, where AC and BD intersect, is fixed,

instead of A in 4, where must the force of i lb. be applied .''

6. The point A being fixed, and forces of 3 lbs., 4 lbs.,

5 lbs., 6 lbs., 7 lbs. acting along BC, CD, DB, through C parallel

to DB, through the middle points oi AB and DC respectively,

find the point in AD, produced if necessary, nearest to A at

which a force of 2 lbs. will keep the cardboard at rest.

7. Forces of i lb. and 2 lbs. act along AB and DC respec-

tively ; what point of the cardboard in AD must be fixed that

equilibrium maj- be maintained .''

8. Forces of 3 lbs., 4 lbs. and 5 lbs. act along AB, BC, CD;
find the points of the cardboard (i) in AD produced if neces-

sary, (ii) in DC produced if necessary, which must be fixed in

order to keep the cardboard from moving.

9. Forces of 4 lbs., 5 lbs. and 6 lbs. act along ^IB, BC, CA ;

find the points in which the line of action of their resultant cuts

AD and DC.

10. Forces of 2 lbs., 2 lbs. and 2 v'^ lbs. act along AB, BC
and CA respectively ; shew that it is impossible to keep the

cardboard at rest by fixing one point only.
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11. All equilateral triangle ABC is drawn on a piece of

cardboard placed on a smootli table, each side beinq- 3 inches
;

forces of 3 lbs., 4 lbs. and 5 lbs. act along Ali^ HC and CA
respectively ; if the centre of gravity of the triangle be fixed,

what is the least force which acting at A will keep the triangle

at rest ?

12. In Question 11 find a point in the perpendicular through
A to BC which if fixed will keep the cardboard on which the
three forces act at rest.

13. Forces of 3 lbs. each act along AC, CB, BA of the
triangle ABC in Question 11 ; shew that the cardboard cannot
bo kept at rest by fixing one point only.

14. If in Question 11 the points A and B are fixed, what
forces perpendicular to the line AB act on the constraints ?

15. A rod A OB, such that AOB is a right angle, is fixed at

O and is in a vertical plane ; it is in ec[uilibrium when weights
J' and Q are suspended from A and B, and OA is inclined at

an angle of 60° to the horizon ; find what change will require to

be made in the force at B so that the rod may rest with OA in-

clined to the horizon at an angle of 30°.

16. A straight uniform rodACB of weight IV has the point
C fixed, and weights P and Q are fastened at A and B respec-
tively; shew that if the rod be at rest

AC : CB= 2Q+ W : 2P+ IV.

17. A triangular board ABC weighing 3 lbs. with its plane
vertical is hinged at A ; what vertical force must act at the

middle point of BC to keep it at rest .?

18. The centre of gravity of an equilateral triangle is fixed

and its plane is vertical ; weights of 3 lbs., 4 lbs., 5 lbs. are fixed

to the angular points ; find the horizontal force which must act

along the side joining the 4 lbs. and 5 lbs., that the 3 lbs. may
rest vertically above the centre of gravity.

19. A ladder AB weighing 60 lbs. whose C. O. is 10 ft. from
A has the point A fixed to the ground ; what force must a man
6 ft. high be able to apply to the ladder to raise it to a vertical

position supposing he applies the force at the point in the ladder
which is 6 ft. from the ground ?

20. If the sides of a triangle be taken two and two, to

represent forces, acting in each case from the point of inter-

section of the sides, prove that there is one point about which
each of the three pairs will balance and find the point.
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Tensions of Strings and of Rods.

135. A string or a rod will bear a tension which is very

great when compared with its own weight ; hence the

weight of a string in a machine is usually neglected.

Such strings are said to be light. It will be always understood that

a string is light unless it is expressly stated to be otherwise.

136. The tension of a string exemplifies in a remarkable

way the truth of Newton's third Law.

Take a piece of light string and pull at one end with each hand.

Then the string applies a force, say for example of 2 lbs., to each hand.

Fix your attention upon any point in the string. The stiing is said to

be tight at that point; there is a stress at that point consisting of two

equal and opposite forces each equal to 2 lbs. weight. This is the case

at every point of the string. This stress is the tension of the string.

137. At the point at which a string is attached to a body

the stress acts between the body and the string ; one of the

two equal and opposite forces of this stress urges the body

towards the string ; the other urges the string towards the

body. We usually confine our attention to the first of these

two forces.

138. Similar remarks hold good with regard both to the

pull and the thrust of a light rod.
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139. When a string is heavy the stress at each point

is not the same for all points in its length.

Therefore when a string is heavy its tension is not

constant along its whole length.

J'.xaniplc. One end of a iini/o>-iii chain i-, ft. long which u<eighs

4ll)s. per linear foot, is attached to a hook; the chain hanging vertically

do'iun supports a iceight of 500 lbs. attached to its lower end; u>Jiat are

the tensions ofthe string at each end and at its middle point ?

Let ABC be the chain, A its highest, B its middle and

C its h)\vest point.

The tension at C must be the force necessary to keep

the weight JFsoollis. in equilibrium.

The weight is a rigid body acted on only by its own

weight vertically downwards and by the pull of the

string ; which must therefore be a force of 500 lbs. ver-

tically upwards.

To find the tension at the middle point of the string,

consider the lower half of the string and the weight IT as

forming one rigid body, (the equilibrium would not be

disturbed if they were actually to become rigid). Then as

before the pull of the string upon its lower half must be

500 lbs. + the weight of 12^ ft. of chain; that is 550 lbs.

This is the required tension.

To find the tension at the highest point, consider the whole string

and the weight as a single rigid body and we find the tension to be

50oll)s. + the weight of the string; that is, 600 lbs.

140. It should be noticed, that when a system of par-

ticles or bodies is in equilibrium, we may choose any portion

of the system for consideration ; then the external forces

acting on that portion must satisfy the conditions of Art. 91.

That this is so is perhaps made more evident by pointing

out, that the equilibrium when it exists, would not be dis-

turbed if the selected portion of the system were actually to

become rii^id.
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Example i. A iveight of 1 2 lbs. is suspendedfrom a fixed hook by a

siring; I tie a second string to the iveight and by pulling horizontally

cause the first string to be inclined to the vertical at an angle whose

cosine is |. Find the forces applied by the strings.

C Tibs:

N'r -y(B

ribn.''

P^ £ 'm""h

\12 lbs.

Let be the point of the weight to which the strings are attached

;

let Q be the hook, F the hand holding the second string. Then we

have three forces acting at : (i) the weight of 12 lbs. acting vertically

downwards ; represent this by OA

:

(ii) the tension of the string along OQ; represent this by OB, and

let it be T lbs.:

(iii) the tension of the string along OC which is horizontal ; re-

present this by OC, and let it be T' lbs.

Then these three forces are in equilibrium.

Therefore the sum of their resolutes in any direction is zero.

Draw OH and OF" horizontally and vertically.

Then cos BOV^h and .-. cos BOH=%.
Take the sum of the horizontal resolutes of the forces.

The resolute of OC along OH'is itself; viz. - 7" llis.

The resolute o{ OA is zero.

The resolute of C>^ is {T cosBOH) lbs. =* 7^ lbs.;

.-. by Art. 58, -T' + iT=o.

Take the sum of the vertical resolutes of the forces.

The resolute of OC along OV'is zero.

The resolute of 0.4 is - 12 lbs.

The resolute of 0.9 is(rcos^C>n lbs. = ?ribs.;

.-. -i2 + fr=o;
.*. T=io,

and ^'= 17=16;
.-. the tension of OQ is 20 lbs. : the tension of OF is 16 lbs.

[Note.—We here look upon a string as simply a mechanical means
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of applying force to the rolhs. weight. The force applied by a string

to a mass is always in the direction of the string; also the magnitude

of the force has nothing to do with the length of the string.]

Example ii. A weight O of V lbs. is supported by two strings 0(^

ami OR »ia/cing angles a ami a' witA t/ie vertical; find the tensions of the

strings.

whenc'

Let OA vertically downwards represent the weight of /'lbs.

let OB represent the tension (7"ll)s.) of OQ,

let OC (7" lbs.) of OR.

The three forces OA, OB, OC are in equilibrium

;

.'. the sum of their resolutes in any direction is zero.

Taking their vertical resolutes, we have

- /*+ /"cos a + 7" cos a' = o.

Taking their horizontal resolutes, we have

/"sin a- T' sin a' = o,

Tsm a
_

sin a'

Z'sin a cos aP+T co^ a +

T I cos a +

sm a

sin a cos a'

sni a

Z'sin a'

-o j

P;

and T' =

cos a sm a + cos a sm a

Z'sin a

cos a sm o + cos a sm a

and we have found /"and T'. Q. k. f.
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EXAMPLES. XX.
N.B.—The length of a string has of itself nothing whatever

to do w ith its tension.

1. A weight of 140 lbs. hangs at the end of a rope 12 ft.

long, whose other end is fixed ; if the whole rope weighs 3 lbs.,

find the tension of the rope at a point 4 ft. from the weight.

2. A weight 112 lbs. hangs at the end of a rope 10 ft. long,

whose other end is fixed; if the rope weighs i lb. per linear foot,

find the tension of the rope at the point 4 ft. from the weight.

3. A chain weighing 3 lbs. per linear foot passes over a

smooth small fixed pulley which is 20 feet from the ground ; one
end of the chain is coiled up on the ground vertically under the

pulley, the other hangs vertically and is 10 ft. from the ground;
what weight must be fastened to the chain to keep it at rest?

4. Shew that in Question 3 if the weight fastened to the

end of the chain be too small it will run up to the pulley, if it be
too large it will descend to the ground.

5. A chain weighing i lb. per foot passes over a smooth
small fixed pulley* 50 feet from the ground, and one end is coiled

up on the ground ; the other end is held by a man at a point 30 ft.

below the pulley ; if the man pulls the chain over the pulley,

what force must he exert .'' what is the pressure on the pulley?

6. Shew that in Question 5 when the end of the chain has
loft the ground the man's pull will gradually diminish ; when
will it cease altogether ?

7. If a heavy body hang supported by three strings, two of

which are vertical, prove that the third string must be vertical.

8. A heavy chain of length 12 ft. 8 in., and weighing 19 lbs.,

has a weight of 3 lbs. attached to one end, and hangs in equili-

brium over a smooth peg; what length of it hangs on each side?

9. An endless chain 20 feet long, weighing 20 lbs., passes

round a smooth fixed peg ; two weights of 4 lbs. and 2 lbs. are

fastened to points in the chain 5 ft. apart ; what positions will

the weights take up when hanging vertically under the peg in

equilibrium, and what will be the tensions of the chain at the

points 6 ft. from the peg ?

10. An endless chain 16 ft. long, weighing 32 lbs., passes

round a fixed smooth peg; three weights of 10 lbs., and 5 lbs.

and 2 lbs. are fastened to the chain at points 2 ft. apart ; where
will the weights be when the chain hangs vertically from the peg
in equilibrium? Find the tension of the chain at its lowest

point, and at points 4 ft. from the peg.
* Note.—A smooth pulley or peg is here to be considered a mechanical means of

altering the direction of the tension of a string without altering its magnitude.
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11. A weight of 12 lbs. is fastened by a string to a hook ; if

I pull horizontally with another string fastened to the weight

until the first string makes an angle whose cosine is | with the

vertical, with what force do I pull ?

12. With a similar arrangement to that in Question 11, if the

weight is 16 lbs. and my horizontal pull is 12 lbs., find the ten-

sion of the other string.

13. If in a similar arrangement to that in Question 11 the

inclination of the first string to the vertical is an angle whose

rosine is
f';.

; when I pull horizontally with a force of 12 lbs.,

w hat is the weight ?

14. A weight of 12 lbs. is supported by two strings each

making an angle whose cosine is -i with the vertical ; find the

tensions of the strings.

15. A weight of 84 lbs. is supported by two strings, one

making an angle whose cosine is ^, and the other an angle

whose cosine is 4 with the vertical ; find their tensions.

16. A weight of 204 lbs. is supported by two strings, making

a right angle with each other, one of which makes an angle

whose cosine is 3^3 with the vertical ; find their tensions.

17. A weight O of 84 lbs. is supported by two strings OA,
OB fastened to two fixed hooks A and B such that 0A=4h.,
C;/>' = 3 ft. and AB is horizontal and =5 ft. : find the tensions of

the strings.

18. A weight O of 204 lbs. is supported by two strings OA,
OB fastened to two fixed points A and B, so that OA^$h.,
(V> = i2ft. and .^i?=i3ft. and is horizontal; find the tensions

of the strings.

19. A weight O is suspended from a fixed hook g by a string

0(2; shew that if I apply a horizontal force to the weight O, I

increase the tension of the string OQ.

20. Two forces P lbs. and Q lbs. have a resultant which is

vertical and downwards ; the force P lbs. makes the angle a with

the line drawn vertically upwards, and tlie force <2 lt)S. makes
the angle /3 with the same line on the other side of it ;

prove

that /' sin a = (2 sin /S, and that the resultant is

(/' cos a + Q cos 0) lbs.

21. A heavy rod has one end of a light string twice as long

as itself fastened to it ; the loop of the string passes over a

smooth fixed peg ;
prove that if the rod is uniform it is in equi-

librium when it hangs from the peg when the rod is horizontal

and when it is vertical, and in no other position.



124 STATICS. XX.

22. If the rod is not uniform, what is the other position

besides the vertical in which the rod is in equihbrium?

23. A heavy uniform rod of weight W is fastened to a fixed

point by two strings of length a and b ; find the tension of the

strings when the rod hangs in equilibrium.

24. A heavy uniform rod is hinged to a fixed point, and is

supported at an angle 6 to the vertical by a horizontal string

;

find the tension of the string.

25. Two equal uniform rods each of weight W are hinged

together at one end, and have their middle points connected by

a string whose length is equal to half that of each rod ; the rods

and string stand on a smooth horizontal plane in the form of an

A ; find the tension of the string.

26. Two equal light rods replace the heavy ones of Ques-

tion 25 and a weight W is fastened to the hinge at the vertex

;

find in this case the tension of the string.

27. A uniform heavy rod is placed in a smooth hemi-

spherical bowl whose radius, is equal to the length of the rod;

what will be its position of equihbrium?

28. If the rod of Question 27 be not uniform, where will it

rest and what will be the forces acting upon it ?

29. A string each of whose ends is fastened to fixed points

has a heavy smooth bead sliding upon it; what will be the

position of the bead when in equilibrium ?

30. A heavy uniform rod is supported from two fixed points

by two strings fastened one to each of its extremities ;
shew

that if when in equilibrium the rod is horizontal the tensions of

the strings must be equal.

Shew how to find the tensions when the rod is not horizontal.

31. Prove that if a uniform rod be suspended from a

smooth peg by the loop of a string whose ends are fastened

to the ends of the rod, the rod can only rest in a vertical or in

a horizontal position.

32. A uniform rod of length a is supported in a horizontal

position by two equal strings of length / ; the ends of each

string are fastened to an end and to the middle point of the

rod, and the loops each pass over a smooth small peg ; shew

that the tension of the strings is \W—^^—

.

33. A heavy uniform rod has two strings fastened one to

each of its ends, the other ends of the strings being fastened

one to each of the ends of another uniform rod whose middle

point is fixed
;
prove that when the rods are at rest either the

strings or the rods are parallel.



CHAPTER XIII.

MaCHIiNKS.

141. We proceed to describe and as far as may be

explain the principles of the following machines :

The Lever, the Pulley, the Wheel and Axle, the Inclined

Plane, the Screw.

Lkvers.

142. DEF. A lever is a rigid rod moveable in one

plane, about a fixed })oint in the rod.

143. The fixed point is called the fulcrum.

144. It is understood that two forces act on the lever

besides the reaction of the fulcrum ; these two forces are

often called the power and the weight.

145. The arms of a lever are Xh^perpciuUcidar distances

of the lines of action of power and the weight from the

fulcrum. [See Art. 132.]

146. The weight of the lever itself is generally incon-

siderable compared with the forces acting upon it and

accordingly the weiglit of the lever is often neglected.

It is then said to be li^^ht.
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147. PROF. To prove the principle of the Lever;

namely, that when a lever is in equilibrium

the Power x its arm is equal to the Weight x its arm.

When the Power and the Weight are two parallel forces

and the lever is straight the arms may be measured along

the lever. Otherwise, the arm is \\\z perpendicular distance

of the line of action of the force from the fulcrum.

The point of the lever in contact with the fulcrum is

fixed; therefore the fulcrum will apply to the lever whatever

force is necessary to keep that point of the lever at rest.

The remaining forces will be in equilibrium with this

constraining force provided the sum of the moments about

that point is zero. [See Art. 134.]

That is, provided

the Power x its arm = the Weight x its arm.

148. It has been customary to divide levers into three classes.

In the first class, the fulcrum is between the Power and the Weight.

In the second class, the Weight is between the Power and the

fulcrum.

In the third class, the Power is between the Weight and the fulcrum.

But these classes have no importance beyond the historical interest.

Examples of the first class : a crowbar ; a poker raising the coals

using the bar of a grate as a fulcrum; the handle of a pump. Double

levers : scissors
;

pliers, nippers and pincers.

Examples of the second class: a wheelbarrow; an oar (in which the

blade is the fulcrum and is supposed to be practically at rest). Double

levers : nutcrackers.

Examples of the third class: the human arm, when put into a

horizontal position with the palm of the hand upwards and supporting

a weight, is a good example; the power is the biceps muscle which is

attached to the arm near the elbow, and the elbow joint is the fulcrum.

Double levers: a pair of fire tongs, as usually used ; sugar tongs.
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On Mechanical Advantage.

149. One of the most important i)roblems which an

Engineer has to solve, is how to raise heavy weights.

With a lever, the ratio of the two forces, the Power and

the Weight, may be made (by properly arranging the length

of the arms) as small or as great as we please.

Hence we may with a lever support as great a weight as

we please with as small a force as we please
;
provided the

fulcrum \% fixed ^v^A the lever is strong enough.

150. DEF. The capacity for counteracting a large force

with a smaller one is called mechanical advantage.

It is customary to say that a machine possesses me-

chanical advantage when the weigJit supported is greater

than \\\^ power by which it is supported.

The mechanical advantage of such a machine is said to

be measured by the ratio of the weight to the power.

For example, a lever of the first class has mechanical advantage

when the power-arm is longer than the weight-arm. A lever of the

second class has always mechanical advantage. A lever of the third

class is always at a disadvantage mechanically.

151. It must however be noticed that the advantage

possessed by a machine is only statical. When a lever

raises a weight it will be found that the Work done on the

Weight is exactly equal to the work done by the Power.

For example, if a weight of 100 lbs. is supported hy a force of 5 lbs.

with a lever of the first class, the arm of the power is 20 times as long

as the arm of the weight, and it therefore must move through 20 times

the distance through which the weight moves.

What is gained in force is lost in distance
moved.
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EXAMPLES. XXI.

1. A lever with the fulcrum between the Power and the

Weight has its arms 5 ft. and 10 ft. respectively; if a power of

20 lbs. acts at the extremity of the longer arm, what weight
can the lever support ?

2. A lever with the fulcrum at one end has arms such that

one is 3 ft. longer than the other; if the power is 10 times the

weight, what is the length of the lever?

3. A lever with the power in the middle (i.e. between the

fulcrum and the Weight) ; the power is 3^ times the weight and
the pressure on the fulcrum is i81bs. ; what is the weight?

4. A heavy uniform rod 10 ft. long is used as a lever, and
the fulcrum is 3 ft. from the end ; the power is i lb. and the

weight is 4 lbs. ; what is the weight of the rod?

5. A wheel-barrow is 5 ft. long and exclusive of the wheel
it weighs 10 lbs., the centre of gravity being 2 ft. from the axle

of the wheel ; how near the axle must a weight of 30 lbs. be
placed that a man may gain mechanical advantage by using the

wheel-barrow ?

6. A cube weighing i ton stands on a horizontal plane. A
man of 12 stone wishes with a crow-bar 5 ft. long to raise the

middle of one edge of the cube from the ground ; how near the

end of his crow-bar must he put his fulcrum ?

7. A pair of nutcrackers is 4^^ inches long, and a nut is

placed f of an inch from the hinge ; what pressure applied at

the ends will crack the nut if a weight of 204 lbs. when simply
placed on the top of the nut will crack it ?

8. A heavy uniform beam 7 ft. long rests on two supports,

one at one end and the other 5?, feet from that end ; the greatest

weight that can be hung on at the other end without disturbing

the equilibrium is 16 lbs. ; find the weight of the beam.

9. Explain two different ways of arranging a rod 1 5 ft. long
as a lever which will lift a weight of 24 lbs. with a force of

12 lbs.

10. A straight rod AF without weight is divided in points

B, C, D, E so that AB : BC : CD : BE : EE a.s i : 3 : S 7 -9,

and weights of i, 2, 3,4, 5 lbs. are placed at the points B, C,B>,E,E
respectively ; shew that if G be the point in the rod at which a
fulcrum would support \\.^ AG : GF—2) '• 2.
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11. Find the length of a lever of the second kind that a
power of 5 lbs. may support a weight of 12 lbs., and that their

points of application may be i ft. apart.

12. The shorter arm of a lever is 7 inches long ; the lever

is in equilibrium when weights of 5 lbs. and 8 lbs. are suspended
from its arms ; find the length of the other arm.

13. The arms of a light lever of the first kind are unequal,

and a body when suspended from one end is balanced by a
weight of 18 lbs. at the other; when suspended from the longer

end it is balanced by a weight of 20 lbs. ; what is the ratio of

the arms of the lever, and what is the weight of the body.''

14. A straight lever whose length is 5 ft. and weight 10 lbs.

has its fulcrum at one end ; weights of 3 lbs. and 6 lbs. are
fastened to it at distances i ft. and 3 ft. from the fulcrum, and it

is kept horizontal by a vertical force at the other end; find the
pressure on the fulcrum.

15. If in Question 14 the force keeping the lever horizontal
were inclined at an angle of 30° to the horizon, what would the

force be, and what would be the pressure on the fulcrum ?

16. AOB is a bent lever whose fulcrum is O, and whose
arms OA, OB are equal and straight; it is in equilibrium with

OA horizontal when weights P and Q are suspended from A
and B\ find the change which must be made in the weight sus-

pended at /)' that the lever may be in equilibrium when P is

suspended at A and OB is horizontal.

17. A lever has its fulcrum in the middle (i. e. between the

Power and the Weight), and a weight W fastened to one end
is supported by a force of P lbs. at the other ; if the ends are

interchanged the necessary force to balance IV is a force of

(2 lbs.; prove that W=sJ{PO).

18. The arms of a bent lever are 2 ft. and 3ft. respectively;

what force acting at an angle of 210° to the longer arm will

balance a force of 30 lbs. acting at right angles to the shorter

arm ?

19. A bent lever whose arms are inclined at right angles to

each other, and are 3 ft. and 4 ft. long respectively, is at rest

under the action of forces of 16 lbs. and 12 lbs. acting at the

extremities of the shorter and longer arms respectively ; if the

force of 16 lbs. acts at right angles to its arm, at what angle must
the other force act and what is the pressure on the fulcrum ?

L. S. 9
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20. A bent lever consists of two heavy uniform straight

arms, whose lengths are 3 ft. and 5 ft. respectively; if the beam
weighs 10 lbs. per foot, what weight must be suspended from the
extremity of the shorter arm that the lever may balance with its

arms equally inclined to the horizon ?

21. AB and DEC are two light horizontal levers arranged
so that B is vertically above C, and connected with it by a light

inextensible string. The fulcrum of DC is at Z>; the weight
W is placed at E so that DE is ^^ of EC; the 'weight' of

AB is the tension of the string ; the fulcrum oiAB is at //, so
that BH is j^g'^ ofAH ; what power acting vertically downwards
at A will support 100 lbs. placed 2X E}

Note.—The above compound lever illustrates the

principle of the weighing-machine.
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The Common Balance.

152. The common balance is a machine for testing

whether two bodies have equal weights.

It is practically a lever with the fulcrum exactly in the

middle of the beam.

153. The 'weights' of a balance are bodies whose

weights arc some multiple or submultiple of the standard

weight.

The weights are bodies weighing respectively 1 12 lbs., 561bs., 28 lbs.,

14 lbs., 7 lbs., 4 lbs., 2 lbs., i lb., \ lb., \ lb., i oz., ^oz., \ oz., etc.

The weight of a body is ascertained by testing with the

balance which of these weights will 'balance'' it.

154. The following is a description of the balance and

the method of using it.

The figure gives a simple form of the balance. The beam AB is

supported by a fulcrum at C. The fulcrum is a short bar of steel or

other hard substance whose section is wedge-shaped; this is fixed to

the beam with its sharp edge downwards and passes through round

holes in the support from which the beam is suspended ; thus the beam

is supported by the upward pressure of the support on its sharp edge

called the knife-edge. Knife-edges are fixed to the beam at A and B
and from them are suspended the scale-pans ; so that the upward

pressure of each of these knife-edges supports the weight of a scale-pan

and of anything placed on it. The short bars forming the knife-edges

are at right angles to the plane of the picture.

The body to be weighed is placed in one scale-pan, say A, which at

9—2



1,32 STATICS.

first rests on a table, and weights are placed in the other scale-pan B
also on the table ; the beam is then raised by the hook until it is just

horizontal, and both scale-pans just touch the table; it is then quickly

raised a little further, so as to lift both scale-pans off the table. Then,

if the scale-pan A falls, the weights are too small ; if the scale-pan B
falls, the weights are too great; the trials are continued until the beam

hesitates to turn one way or the other.

155. The requisites of a good balance are

(I) it must be true; the arms must be exactly equal,

and the scale-pans of equal weight;

(II) it must be sensitivef; that is, it must quickly shew

when the sum of the weights, which are placed in the scale-

pans opposite to that in which is placed the body to be

weighed, is not equal to the weight of the body;

The discussion of the means by which a balance may be made sensi-

tive is really a ^waw/Va/ question.

It will be found that in order that a balance may be

sensitive it is necessary

(i) The knife edges of the beam and of the pans

must be very hard and must rest on a hard surface,

(ii) The arms must be as long as possible,

(iii) The beam must be as light as possible,

(iv) The c. g. of the beam must be near the knife

edge on which it rests.

t I'he word sensible ! is often used in this sense.
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(III) it must be stable; that is, it must not move very

far from its mean position, when the weight of the body and

of the weights diflfer.

This is also a dynamical question; but we may point

out here that, when the knife-edge on which the beam

rests is above the straight line joining the knife-edges of

the scale-pans (as it usually is), then the nearer the knife-

edge of the fulcrum is to the straight line joining the knife-

edges of the scale-pans, the more sensitive and the less

stable will the balance be.

The further rt^w^ this line the fulcrum is, the more stable

it will be. Hence for purposes requiring great accuracy the

three knife-edges are made nearly or exactly in a straight line;

while for the rougher purposes of weighing heavy goods the

knife-edge of the fulcrum is placed a sensible distance above

the line joining the knife-edges supporting the scale-pans.

156. It is not sufficient for the truth of a balance that

the beam should remain horizontal when raised with the

scale-pans empty, for the scale-pans might in that case be

of unequal weight and the arms also unequal.

157. To test the truth of a balance, we first see that the

beam balances when the pans are empty ; then taking two

equal weights we put one in each of the scale-pans; if the

beam again balances, then the balance is true.

For, let a, /' be the lengths of the arms ; IV, W the weights of the

scale-pans ; w the weight of the equal weights ; then by the first experi-

ment IV y. a =W X b,

by the second (IV+w) x a—^W + u) x b;

.'. io X a = ci) xb;

.: a = b, and .-. also JV=JV'.

Or, we may (having first tested when the pans are empty)

find the weight of a body Q when placed in one scale-pan

to be lV^, and when placed in the other to be also JV'^, then

the balance is true.
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EXAMPLES. XXII.

1. In a balance which rests in a horizontal position when
unloaded, but whose arms are of different lengths, a body when
weighed in one scale appears to weigh W\h. and when weighed

in the other W lb.
;
prove that its true weight is sj{ WW).

2. A grocer has to weigh out to a customer a certain weight

of tea ; he knows that his balance is in the condition described

in Question 1, so he weighs one half of the quantity of tea re-

quired, and then puts his weights into the other scale and
weighs the other half in the other pan ; has he got the proper

weight of tea, or is he a gainer or loser ?

3. In a balance such as that described in Question 1, the

apparent weights of a body are 42^ lbs. and 49 lbs., and the

whole length of the beam is 2\ ft. ; find the length of each arm.

4. In a false balance, the arms being of unequal length, a

weight is measured in one scale by /'lbs. and in the other by

Q lbs. ; shew that the arms are to one another as JP : sj(2-

5. If the arms of a false balance are 2 ft. and 2 ft. i in.

respectively, what is the true weight of a body which appears to

weigh 10 lbs. when placed in the scale at the end of the shorter

arm.-*

6. When one of the scales of a common balance (which is

otherwise true) is loaded, a body appears to weigh /fibs, when
placed in one scale and W when placed in the other scale

:

prove that its true weight is the Arithmetic mean between //'

and IV.

7. If the apparent weights in Question 6 are 18 oz. ami
20 oz., find the weight with which one of the scales is loaded.

8. Shew that a balance is (other things being equal) more
sensitive as the arms are longer.

9. If the beam of a false balance is uniform and heavy,

shew that the arms are proportional to the differences between

the true weight and the apparent weights of a body.
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10. The arms of a false Ijalancc are without weight, and one

arm is longer than the other by one-ninth part of the shorter arm
;

and in using it the substance weighed is put as often into one

scale as in the other, shew that the seller loses five-ninths per

cent, on his transactions.

11. A tradesman's balance has arms whose lengths are

II in. and 12 in. respectively, and it rests horizontally when the

scales are empty; if he sells two separate pounds of tea each at

2s. c)d. per lb., putting his weights into different scales for each

transaction, find whether he gains or loses, and how much.

12. One pound is weighed at each end of a false balance

and the sum of the apparent weights is 2 lb. 2 oz. ; what is the

ratio of the lengths of the arms ?

13. A balance has its arms unequal in length and in weight.

A certain article appears to weigh (2x lbs. when placed in one
scale pan, and ^.j lbs. when placed in the other; a certain other

article appears to weigh A'j lbs., R.^ lbs. respectively ; shew that

the weight of the article which appears to weigh the same in

whichever scale it is put is

(2i- 22-^1 +-^2
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158. The common steelyard. The common steel-

yard is an instrument for weighing goods.

It consists of a straight steel lever AB having a fulcrum

at a fixed point C near one end A.

A weight of P lbs. is arranged as a ring D which can

slide along the arm CB. KX. A is a hook or scale-pan on

which can be placed the article whose weight is to be

ascertained. The arm CB has certain marks and numbers

engraved on it.

The weight of an article is obtained as follows :

The fulcrum is firmly supported and the steelyard is

held in a horizontal position while the article is placed

in the scale-pan. Then the ring D is shifted until by re-

peated trials the position is found for it at which, when

the whole is left to the support of the fulcrum alone, the

steelyard hesitates which way to turn. The mark at B>

engraved on the rod OB indicates the weight of the article.

The graduation of the steelyard is the process by

which the maker ascertains where to put the proper marks

on the rod CB.

159. PROP. To graduate the co)n»ion steelyard.

Let the weight of the rod and scale-pan together be

J/lbs. ; and let their joint centre of gravity be at G.

[The weight of the scale-pan acts upon the rod exactly as the

weight of an equal hoAyfixed to the rod s.\. A.]

We first obtain the zero point O by trial.

That is, the ring D, which weighs Plhs., is shifted until

a point is found, at which the steelyard balances when
no article at all is in the scale-pan.

Then Mx GC^Px OC (i).

Now suppose a weight of JV lbs. to be placed in the

scale-pan.
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Let the ring D be shifted to a point <2„ at which it is

found that the steelyard balances.

'I'hen we have a force of W lbs. acting vertically down-

wards on the steelyard at A, a force of J/ lbs. acting verti-

^/Wl,l>«

cally downwards at G and a force of P lbs. acting vertically

downwards at Q^-

These forces /*, M, W and a vertical force upwards

at C are in equilibrium.

Taking the moments about C of all these forces we have

W%AC^My.GC-Py^ CQ^ = o (ii).

But by our first experiment we have

J/x GC-FxOCr.o (iii);

.-. putting F X OC for J/x GC in (i), we have

W^'x^C+Px CO-P^ CQ^^o,

that is F ( (7(2,. -CO)^W^A C,

or FxOQ,= IVxAC,

From this, since ^C is known, and O has been found,

the different positions of Q^ for different values of JV can

be found.
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AC
160. Suppose now that IV= i lb.; then OQ-^^—j^

;

.-. to find (2„ for n lbs., we have OQ^^ = ii x OQ^.

That is, in order to graduate a steelyard to weigh lbs.,

we must find by trial the point O of zero graduation, and

also by a second trial the point (2, for i lb., and mark their

positions on the rod. Next we find by measurement points

.<2s» <23» <24> etc. such that OQ^ = QiQ^=' Q2Q3, and so on, and

engrave on the rod the numbers 2, 3, 4, etc. at those points.

Then, when an article weighing a number of lbs. say 4,

is placed in the scale-pan, the steelyard balances when the

ring is at the point on the rod which is marked 4.

Note.—The student should observe that if the lengths OQ^, (?i(?2> ••

be each subdivided into any number of equal parts, say 16, then the

steelyard is graduated for sixteenths of a lb.

Example. In a certain Common Steelyard the weight of the rod and

scale-pan is 4 lbs.; the length 0/AC is 2 inches; G lies between A and C,

and GC is \ in.; P—2 lbs.; graduate the steelyard.

We first find 0.

We have M^j,\hs.; GC=\m-; P=T.\hs.;

:. by (i) 4x^ = 2 x OC,

:. 0C= I inch.

The point O must be marked on the bar at a distance i inch from C.

Next we find OQ,^ when «= i lb.

^^ II X AC 1x2
Wehave 0(?„=: -— = =1.

F 2

Thus the distance between each graduation for lbs. is i inch.

Hence marks are engraved on the bar at equal distances of an inch

from the point O, and the numbers i, 2, 3, etc. placed near them.

These spaces are then subdivided into sixteenths and the machine is

then graduated to weigh lbs. and oz.

161. The Danish steelyard. The Danish steelyard

consists of a lever AB whose fulcrum C is moveable.
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At one end ^ is a lump of metal, and at the other />',

a hook or scale-pan.

The weight of an article placed in the scale-pan is

ascertained by observing the point at which the fulcrum

must be placed in order that the whole should balance when

supported by the fulcrum.

162. PROP. To graduate the Danish steelyard.

The position of 0, the zero point of graduation, is the

centre of gravity G of the rod and scale-pan. [For when the

ring is at G the steelyard balances when there is no weight

in the scale-pan.] This must be ascertained by trial and

carefully marked on the rod.

Let M lbs. be the weight of the rod and scale-pan.

Let JFlbs. be placed in the scale-pan, and let Q„ be the

corresponding position of the fulcrum.

Then the three forces M, W and a vertical force

upwards at C are in etjuilibrium.

Hence, taking the moments of all these forces about 6',

we have W x Q„B -MxGQ^^ o.

From this result, since M is known, the position of Q„

for different values of JV can be determined.

It will be seen that Q„ divides GB into parts which are

in the ratio of JV to M.
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Example. A Danish steelyard and its pan weighs 4 !bs., shew how

to graduate it so as to weigh lbs.

We have to find the points on the rod at which we must put the

marks i, 2, 3, etc. which shall indicate that when the steelyard balances

with the fulcrum say at i the weight in the scale-pan is 2 lbs.

We have lVxQ„B-A/x GQ^= o,

IV
or GQ^=j^xQ,,B.

Also M=^\hs.

First, let IV^ i lb.; then GQ^^- Cn^= - of GB ;

4 5

hence, if we divide GB mio five equal parts, GQ^ contains one of those

parts.

Next, let ^=2 lbs.; then GQ,,=~ Q^B=\oiGB;
4 "

hence, if we divide GB into six equal parts, GQ^ contains two of those

parts.

Next, let W=2, lbs.; then CCn=- Gn^=! of GB ;

4 7

hence, if we divide GB into seven equal parts, GQn contains three of

those parts. And so on

;

When fr=4lbs., GQ,,^^oi GB

;

when W^=5 lbs., CG»= - of GB; etc.

Note.—In the Balance and the Steelyards the scale-

pans are treated as forming part of the beam ; the student

should notice that it would make no difference to the argu-

ment if the scale-pan were replaced by an equal weight

Jixed to the beam at thepoint of suspension.

The student will notice that in the Balance and Steel-

yards it is important that the points of suspension of the

scale-pans should he fixed in the beam. Hence in the steel-

yards the scale-pan should be suspended from a knife-edge

fixed to the beam as in the balance.
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EXAMPLES. XXIII.

1. A common steelyard is formed of a uniform rod i foot

long, the fulcrum being i inch from one end ; the sliding weight

and the weight of the rod are each i lb. ; find the least weight

that can be weighed with it, and the distance between the

graduations for pounds.

2. If in the steelyard of Question 1 the sliding weight be
changed into one of 2 lbs., find what error will be made by
using the old graduations as 2 lb. graduations.

3. If the distance of the C. G. of the beam of a common
steelyard from the fulcrum is 2 inches, the moveable weight

4 oz., and the weight of the beam 2 lbs., find the distance of the

zero of graduations from the centre of gravity.

4. A uniform rod 2 feet long, weighing 3 lbs., is to be used

as a steelyard ; the fulcrum is 2 inches from one end of the rod

and the sliding weight is i lb. ; find the greatest and least

weight that can be determined by the machine, and the distance

between the i lb. graduations.

5. The errors of a certain false steelyard are these : the

distance of the zero point from the fulcrum is too great by a

distance «, and every one of the distances between consecutive

graduations is too long by a distance b; shew that the only

weight which is correctly indicated by the instrument is t-'^

where P is the moveable weight.

6. A common steelyard is 3 ft. long, the C.G. of the steel-

yard is 5 inches from one end, and the fulcrum is 6 inches from

the same end ; the weight of the steelyard is 8 lbs., and the

moveable weight is i^lbs. ; find the position of the zero of gra-

duation and the distance between the lb. graduations.

7. If the moveable weight for which a common steelyard is

constructed is i lb., and a tradesman substitutes a weight of 2 lbs.,

using the same points of graduation as before, but doubling the

value indicated by the marks, shew that he defrauds his cus-

tomers if the CO. of the steelyard is in the longer arm, and
himself if it is in the shorter arm.

8. Where must be the CO. of a common steelyard that any
moveable weight may be used with it, the marks of graduation

indicating multiples of the moveable weight.''
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9. In a Danish steelyard the zero of the graduations is

12 inches from the end at which the body to be weighed is

attached, and the weight of the beam is 8 oz. ; find the position

of the graduation corresponding to a weight of i6 oz.

10. If the bar of a Danish steelyard balance when the
fulcrum is halfway between the first and second graduations,
shew that the weight then in the scale is \ of the weight of

the bar.

11. A weight of 4 oz. is in equilibrium on a Danish steel-

yard when the fulcrum is 6 inches from the end to which the
weight is attached ; a weight of 8 oz. is in equihbrium when the
fulcrum is 4 inches from the end; find the C.G. and the weight
of the instrument.

12. The weight of a Danish steelyard is i lb. and the
nearest distance of the fulcrum from the end from which the
weight is to be suspended is i inch, and the distance between
the above position of the fulcrum and the C.G. is 3 ft. ; what is

the greatest weight that can be weighed with the machine ?

13. There are no graduations on a certain Danish steelyard

and its weight is not known, but by suspending from the end B
in succession weights of P lb. and Q lb. respectively it is found
that the corresponding distances of the fulcrum from B are

a inches and b inches respectively; shew that the C.G. of the

. (P-(2)ab . ^ r r. J u • T. •

mstrument is -~—^
- ^ inches from B, and that its weight is

Pa - (2''

0- a

14. If the common steelyard be correctly constructed for a
moveable weight P, shew that it may be made a correctly con-

structed instrument for a moveable weight nP by fixing at the

C.G. of the steelyard a weight equal to {n—i) times the weight

of the steelyard.

15. If the beam of a common steelyard be uniform, and its

weight be ni times the moveable weight, and the fulcrum be
one «t^ part of the length of the beam from the end, shew that

the greatest weight that can be weighed is i {2;/ - 2
-f- ;;/(«- 2)}

times the moveable weight.

16. If a common steelyard be 17 in. long and with the

scale-pan weigh 3 lbs., their common centre of gravity being

I in. from the end at which the scale-pan is suspended, the ful-

crum being 2 in. from the same end and the moveable weight

being i lb., find the distances between the graduations of half

pounds.
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17. When weights of P lbs. and Q, lbs. are successively
placed in the scale-pan of a common steelyard, the moveable
weight is at distances a and b from the fulcrum

;
prove that, if

the moveable weight be equal to that of the machine, the
distance of the c. G. of the machine from the fulcrum is

Pb-Qa
P-Q •

18. Prove that in the common steelyard the distances of
the marks of graduation from a certain point are in A. p., and
that in the Danish steelyard they are in H.P.

19. A common steelyard made of a uniform bar is 40 inches
long ; the weight of the beam is equal to the moveable weight,
and the greatest weight that can be weighed with it is four

times the moveable weight ; find the place of the fulcrum.

20. In a common steelyard the distance between two
successive marks of graduation for lbs. is i inch ; the distance
of the fulcrum from the scale-pan end is 2 inches ; shew that

the moveable weight is half-a-pound.

21. In a weighing machine constructed on the principle of
the common steelyard the pounds are read off by graduation
from o to 14, and the stones (of 14 lbs. each) by weights hung
at the end of the arm. The weight corresponding to one stone
is 7 oz. ; the moveable weight is \ oz. ; the length of the arm is

one foot. Prove that the distances between the graduation are

2 in. each.
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Pulleys.

163. A Pulley is a machine for changing the direction of

the pull of a string without sensibly changing its magnitude.

It consists of a small wheel of metal or

wood whose axle is held by a frame called a

block.

The word pulley is often used to indicate

the pulley and the block ; so that when we

speak of a fixed pulley, we shall mean a pulley in a fixed

block.

A moveable pulley generally indicates that the block of

the pulley is not fixed, but has a string fastened to it; the

pull of this string is in equilibrium with the pulls of the

string which passes through the pulley.

It is usual to consider that the weight of the string is so

small, compared with the other weights considered, that it

may be omitted in our calculations.

Example i. To find the conditions of eqtnlibrium of a single fixed

pulley, the strings beingparallel.

First, let the weight of the pulley be neglected.

Let the string passing round the pulley support a

weight W 2X each extremity. These weights must be

equal, because the pulley is smooth.

The block is fastened to a support by a string

;

let the tension of this string be T.

The pulley is now acted on by three parallel

forces W, fV, T which are in equilibrium.

Therefore T=IV+W=2W.

Next, consider the weight of the pulley to be w.

Then there are four parallel forces, three of which are like, viz.

W, W and w ; .-. T= 2 fV+ 70.
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Example ii. The block \\ of a pulley is fastened to a fixed beam 'V

by a string; the end of another stritig, zuhieh goes over the pulley, is

fastened to a -weight W; the other end I hold in my hand, as in the

figure; with what force do I pull? and what is the tension of the

strings?

The tension of the string wliich is ^,Z'~.7
~
^f,."r,...///;^k

fastened to the weight, is c(\wA to \V,

the weight itself.

This tension is unaltered after pass-

ing round the pulley; therefore the

force with which I pull is equal to IV.

First, suppose the weight of the

pulley to be neglected.

Then the only forces acting on the

pulley are the tensions of the strings.

These forces are in the direction of the strings.

Therefore if a parallelogram ACBO be drawn as in the figure, AC
represents W\ BC represents W, and CO represents the tension of the

string TC.

Then if the angle BCA = 2e, we have CO-iACco^, 0.

Therefore the tension of CT is 2 IV cos 6.

Next, suppose the weight of the pulley taken into consideration.

In this case there arefour forces acting on the pulley : (i) its weight,

(ii) nnd (iii) the two equal tensions of the strings PB, WA; (iv) the

tension of the string TC. If the first three forces are given we can by
Art. 9 1 find the magnitude and direction of the tension of the string TC.

164. In the simpler problems on pulleys, the blocks are

usually so arranged that the strings are all vertical; in

which case the problem is one on parallel forces only.

There are three arrangements of i)ullcys usually ex-

plained in elementary text-books on Statics. They consist

of separate blocks so arranged that the tension of one
string caused by a force called the Power, supports a larger

vertical force called the Weight.

We shall consider the strings to be all vertical.

L. s. 10
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165. l*ROF. To find the relation between t/ie Power

and the Weight in a system of pulleys, in which each pulley

hangs iji the loop of a separate string, ofie end of which is

fastetied to a fixed beam; all the strings beingparallel.

[This system is called the First System of Pulleys.]

The system is shewn in the figure.

First, neglect the weight of each pulley.

Let Fhe. the Power, and fFthe Weight.

Let A, B, C... be the pulleys.

Let T^, 7*2, 7;... be the tensions of the

strings which go round the pulleys A, B, C...

respectively.

Then, the forces on the pulley A are three

parallel forces, IV downwards and T^ and T^

upwards

;

.-. 2T^= JV.

The forces acting on the pulley B are

three parallel forces, ZJ downwards and T„

and T^ upwards
;

.-. 2T = T.

Similarly, 2 7; = T„,

and so on.

.-. /F=2r, = 4r,=87;,-....-2"r,.

And wlien there are n pulleys P= 7]_;

therefore W^ 2"r - 2"/";

2

Next, let the weights of the pulleys A, B, C... be

Then, if there are n pulleys, in order to support the

pulley A, the power must be increased by
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to support the [Jiillcy i>', the power must be increased by

and so on.

Hence, the power /-" necessary to support both JFand
tlie n pulleys is given by

„, ]V ui til w , w„^ =—r,+ —n + -i^x + . • + —V ' + —-.
2 2 2 2 2

J 66. FROr. To find the relation between the Power

and the Weight in the system of pulleys in which all the

pulleys are arranged in two blocks, one block fixed, the other

moveable ; the same string going round all the pulleys, and all

the strings beingparallel.

[This system is called the Second System of Pulleys.]

The figure gives two pulleys to each

block.

Since the same string goes round each

pulley, the tension of every portion of the

string is the same. Let / be the tension

of the string. Then t^P (the Power). Let

IV be the Weight, and let w be the weight

of the lower block. The equilibrium would
not be changed if the lower block, the

weight, and the strings touching it were all

to be considered as one rigid body. This

rigid body is acted on by four equal parallel

forces, each equal to / acting vertically up-

wards, and by its weight JF+ w acting

vertically downwards •
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Similarly, when there are a number of pulleys so ar-

ranged that 71 strings pass upwards from the lower block,

we have

W -v w = nP.

Note.—In practice the blocks are usually made so that the pulleys

are all side by side. In this case the strings cannot be all exactly

parallel. When the distance between the blocks is not very small, the

angle between any two strings will be very small, and the results ob-

tained from considering the strings parallel will be sensibly correct.

167. PROP. To find the relation betiveen the Power

and the ^Veight /;/ a system ofpulleys in which each pulley is

supported by a separate string, which, after passing over the

pulley above it, has its other etui fastened to the weight ; all

the strings beingparallel

[This system is called the Thikd System hk Pulleys.]

The figure gives a system of three

pulleys.

Let P be the Power and W the Weight.

First, neglect the weights of the pulleys.

Let Z*,, T„, 7!,,... be the tensions of the

strings passing round A, B,C... respectively.

Let T be the strain on the hook at D
from which the pulley A is suspended.

Then, considering the whole system as

a single rigid body, the forces acting upon

it are the pull T vertically upwards and

W and P vertically downwards
;

.-. T= IV+P

But T -zT^, r,

First System.

2T„, T„^ '2T , and so on, as in the
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.•. wlien there are 11 pulleys,

.-. 2"^= W-vP;
2"F-F= W,

or {2"-i)F= W;
W
2-1

Next, let the weights of the pulleys B, C... be

7f'„ 7^/3, ...

Then the Weight which can be supported by the weight

of 7t'„ is (2 — \)iu„\

the Weight which can be supported by the weight

of 7f'3 is (2^- 1)7^/3; and so on.

For W^ takes the position of Z' in a system of two pulleys.

Hence we have the relation between P and W (the

Weight which can be supported by weights of the pulleys

and P together)

rF'=-- (2 - l)7f'jj+ (2"- 1)7^/3+... +(2""'- l)7f'„+ (2"- \)P.

168. The student should notice that the First and

Third Systems of Pulleys are practically the same; the one

is simply the other inverted.

If the page be inverted in either case this statement will be evident.

169. This System (I. and III.) is not much used for

the raising of weights ; it is too complicated ; it is however

often used on board ships where it is necessary to maintain

a considerable tension on a certain rope.

The Second System of Pulleys is much used for the

raising of weights in conjunction with the wheel and axle.

The spare rope as it is pulled in from tlie ])ulleys is conveni-

ently coiled on the wheel.
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170. The mechanical advantage of a system of

pulleys is measured by the ratio of the Weight to the Power.

It must not be supposed that any more work is done on

the Weight than is done by the Power.

In the first system, in which (neglecting the weights of

the pulleys) W= zT, it will be found that for W \o ascend

I foot, P must descend 2" feet.

Therefore W x (distance ascended by W) ^ P y. (dis-

tance descended by P ).

This is an instance of the principle that no machine can

produce more work than is put into it from outside.

171. We have assumed that when a string passes round

a pulley, the tensions of the parts of the string on opposite

sides of the pulley are equal. This will be strictly true when

the pulley is at rest, provided there is no friction at the axle

of the pulley and the pulley is perfectly circular.

For, consider the forces acting on the pulley (not the

block) in the figure ; the forces all pass through the centre

of the wheel except the two tensions.

The tensions may be supposed to be applied to

the wheel at M and N, for equilibrium would not

be disturbed if the string were to become fastened

to the wheel at 71/ and N.

Taking moments about the centre of the wheel we have

by III. Art. 91, one tension x radius of wheels the other

tension x radius of the wheel ; therefore the tensions are

equal provided the radii of the wheel are all equal.
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EXAMPLES. XXIV.

1. In a system of 4 pulleys of Art. 165, a weight of 16 lbs. is

suspended from the lowest pulley, what is the power, the weight

of the pulleys being neglected?

2. In a system of pulleys in which each pulley hangs by a

separate string, the power is 10 lbs. ; what is the weight if there

are 3 pulleys whose weight may be neglected .-*

3. In the First Systemof Pulleys, /*= 28 lbs. and //'= i6cvvt.;

find ;--.

4. In a system of three pulleys in which the string which
passes round any pulley has one extremity fixed and the other

fastened to the pulley next above it, a weight of 12 lbs. is sus-

pended from the lowest pulley, which weighs 4 lbs. ; the next

pulley weighs 2 lbs., and highest i lb.; what weight will maintain
equilibrium 1

5. In a system of pulleys in which each pulley hangs from
a fixed point by a separate string there are two pulleys, the

upper weighing i lb., the lower 2 lbs. ; what power would sup-

port a weight of 3 cwt. .-^

6. In the system of pulleys in which each pulley hangs from
a fixed support by a separate string, the weights of three move-
able pulleys, beginning with the lowest, are 4 lbs., 5 lbs. and 6 lbs.

respectively ; what weight will a power of i cwt. support ?

7. How many pulleys each weighing i lb. must be used in a
system in which each pulley has a separate string, one end of
which is fastened to a fixed support, that a power of 2 lbs. may
support a weigdit of 65 lbs. If the weight be allowed to descend
I inch, how much will the power ascend ?

8. In the system of pulleys of Art. 165, if there are three

moveable pulleys, the lowest of which weighs 5 lbs., the middle
one 4 lbs. and the highest 3 lbs., and the weight is 7 lbs., find

the power.

9. If there be 3 pulleys in a system of Art. 165, and the
pulleys each weigh W, find the power necessary to support the
system when no weight is attached to the lowest pulley ; what
weight can be suspended from the lowest pulley when the power
just found is doubled?

10. Find the weight of each of 4 equal pulleys in the system
of Art. 165 that /' may be equal to fFwhen W— 10 lbs. : in this

system what additional power must be applied in order to sup-
port a weight of i cwt. instead of 10 lbs.?
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11. If the strings in a system of 3 weightless pulleys of Art.

165 are attached to a beam at points i foot apart, find the centre

of the parallel forces applied by the strings to the beam.

12. A man standing on the floor pulls at the power end of

a system of 3 pulleys of the First System ; if the weight be four

times the weight of the man, what is the pressure of his feet on
the floor (neglecting the weights of the pulleys) ?

13. If there are 3 pulleys (in the First System) of equal

weight, find the weight of each pulley in order that a weight of

56 lbs. attached to the lowest pulley may be supported by a
power of 7 lbs. 14 oz.?

14. If in the First System there be three pulleys each of

weight w and W='zP\ find w.

15. In the system of pulleys in which there is only one
string and there are 9 pulleys, the lower block containing five

pulleys and weighing 10 lbs., what force will support a weight of

I cwt. .''

16. The cable by which Great Paul, the bell weighing

18 tons, was lifted to its place in the Cathedral tower, passed

four times through each of two blocks of pulleys ; find the lowest

possible breaking strain of the cable.

17. In the system of pulleys in which one string only is

used, the string is fastened to the lower block, which weighs

6 lbs. and contains 3 pulleys, what weight will a power of 10 lbs.

support ?

18. If in the system of the last Question the weight is i ton

and the end of the string to which the power is usually applied

is fastened to the lower block, what will be the tension t

19. What weight can be supported by a force of 2 lbs. by
means of a system of 8 pulleys, 4 in one fixed block and 4 in a

moveable block, the string passing over all of them when the

lower block weighs i lb. ?

20. In the system of pulleys in which the same string passes

round all the pulleys the weight of the moveable block is 5 lbs.,

and the fixed and moveable block each contain two pulleys ; find

what weight a power of i cwt. will support.

21. Shew that in the system of pulleys in which there is

only one string the tension is least when all the strings are

parallel ; shew also that all the strings cannot be parallel except

one only.



PULLEYS. T53

22. How many times his own wcij;ht can a man raise with
two blocks, one containing 4 pulleys and the other 5, each block
weighing j'yth of the man's weight?

23. A man raises a weight of i ton by means of two blocks
each containing three pulleys each weighing 10 lbs. ; find the
pull on the beam from which the upper block is suspended, and
the least weight of the man.

24. Shew that in the Second System of Pulleys, unless the
ratio of the weight of the lower block to the suspended weight
be less than the number of strings in the lower block diminished
by unity, there is no mechanical advantage.

Third System.

25. In the system of pulleys in which each pulley has a
separate string, one end of which is attached to the weight, if

the power be 8 lbs. and the weight of the pulleys neglected,
what is the weight when there are three pulleys 1

26. If in the Third System there be three pulleys such that
the weight of each pulley is equal to the power, shew that the
power will support a weight 1 1 times as great as itself.

27. Shew that in a Third System of two pulleys, if each
pulley weighs i lb., a power of 3 lbs. supports a weight of 10 lbs.

28. In a Third System of pulleys, if the weights of the
pulleys are i lb., 2 lbs., 3 lbs. respectively, find the greatest weight
and the least weight which can be kept in equilibrium by
a power of 7 lbs., it being understood that the pulleys may be
arranged in any order.

29. In the Third System if the weight be 2 cwt. i lb., and
the power be 15 lbs. (neglecting the weight of the pulleys), what
is the number of the pulleys }

30. In the system of pulleys in which each string'is attached
lo the weight, there are three moveable pulleys of weights Ti'j,

^2, W3, beginning with the lowest, and the force P then
balances a weiglit W ; when the first and second pulleys are
interchanged then a force 7" balances W ; shew that P'-P=

hv, - IV.,).

IS

31. There is one system of pulleys in which the weight of
the pulleys increases the mechanical advantage ; which is the
system }
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The Smooth Inclined Plane.

172, An Inclined Plane is a rigid plane making a

finite angle with the horizon.

In what follows we consider the inclined plane to be

a machine in which all the forces acting are in one plane

;

this plane is a vertical plane perpendicular to the inter-

section of the inclined plane with the horizon, and therefore

cutting the inclined plane in a line ofgreatest slope.

173. The representation on paper of an inclined plane

is the section made with it by the vertical plane in which all

the forces are supposed to act.

Thus in the figure AB is a line of greatest slope of the

plane.

An inclined plane is often supposed to be of a finite

length AB, in which case the lines BC and AC being

drawn vertically and horizontally through B and A, BC is

called the height and AC\s called the base.

174. In the present Chapter we shall suppose the

inclined plane perfectly smooth; so that it can only apply

to a body a pressure in the direction perpendicular to its

surface. [See Art. 203.]
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175. To fiyid the relation between the Power and the

Weight, when the Power is parallel to the plane.

Let a be the incHnation of the plane to the horizon.

The Weight W is the weight of a body placed on the

plane acting at G its Centre of Gravity.

The Power i' is a force applied to the body by a string

or otherwise up the plane parallel to it.

V fX^
gJ^^

A-^J^ c
;::..L WMmmrn^,V

Let Ji be the pressure of the plane on the body.

7? is therefore a force perpendicular to the plane acting

on the body through its Centre of Gravity.

These three forces IV, F, R which act on the body

are in equilibrium.

Taking the sum of the resolutes along the plane, of all

the forces,

we have ]V?,m.a~ F^o (i).

Taking the sum of the resolutes perpendicular to the

plane, of all the forces,

we have Wcos, a-F - o (ii).

Example. The height of an inclined plane is to its base as 5:12;

find the Power P parallel to the plane which will support a Weight of

13 cwt.

Let the height CB of the plane = 5m.; then the base ^C= 12 m.

and the length AB is ,i^(i2^ + 5-)m., that is 13 m. [See fig. on p. 154-]

Now P is equal to the resolute of /F along the plane; that is,

:. P=^ of 13 cwt. = 5 cwt.
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1 7 6. PROP. Tofirid the relation betweeji the Power and

the Weight, when the Power makes anygivm angle ^7Vith the

inclined platie.

Let W be the weight of the body on the plane; let P
be the Power; and let R be the pressure of the plane on the

body.

Let a be the inclination of the plane to the horizon.

Then the forces W, P, R are in equilibrium, therefore

the sum of their resolutes parallel to the plane is zero.

JFsin a — Pco?, /8=o (i).

The sum of their resolutes perpendicular to the plane is

Hence

and

Wco^ a — R — Psin (3 = o (ii).

P=IV'^^,
cos/i

J^ = fFcos a — /' sin /8

sin a sin /5
= IVcosa — JV

= IV
cos (a + fi)

cos ^

COS/3

NOTE. For Instance ; Let /" act hoiizontnll)-, tlien ji= - a

and /"= IVlan a,

R= IVstca.
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EXAMPLES. XXV.

1. Prove that when a body is kept in equilibrium on a
smooth incHned ph\ne and the power acts along the plane, the
Power is to the Weight as the height of the plane is to the
length.

2. When a body is kept in equilibrium on an inclined

plane and the power is horizontal, then the Power is to the
VVeight as the height of the plane is to the base.

3. If the incHnation to the horizon of a plane be 60°, find

the force which acting horizontally would support a weight of
12 lbs.

4. A weight of 12 lbs. resting on a smooth plane at an
angle of 30° to the horizon is fastened to a cord which passes
up the plane and over the top; find what weight must be
attached to the cord to preserve equilibrium.

5. Find the inclination of a plane on which a horizontal
force will support a weight equal to itself.

6. Find the inclination of a plane on which a power parallel
to the plane will support double its own weight.

7. The angle of an inclined plane is 30°, and a force P
acting horizontally keeps a weight in equilibrium ; if /' acts in

a direction making the angle 30° with the plane and above it,

shew that it will still maintain equilibrium and that the pressure
on the plane will be reduced one half.

8. AB, AC are two smooth planes inclined to the horizon
at 60° and 30° respectively ; a weight P on AB and a weight Q
on AC are connected by a string which passes over a pulley at

A. If P and Q are in equilibrium, what is the ratio of their
weights ?

9. An inclined plane makes the angle 30° with the horizon,
and a weight JV is supported on it by a force P such that
2P'^= IV"^ ; in what direction does P act ?

10. An inclined plane makes the angle 45° with the horizon
and 2 W-=T,P-; in what direction does P act ?

11. The Powers, which when acting horizontally and parallel

to the plane respectively will support a given weight, are in the
ratio of 2 to I ; what is the angle of the plane .''

12. A body weighing 9 lbs. is in equilibrium upon an
inclined plane under the action of a horizontal force of 3v''3 lbs.;

what is the inclination of the plane and the pressure on it ?



158 STATICS. XXV.

13. A heavy weight is fastened by means of a string to a
fixed point, and rests on a smooth plane inclined to the horizon

at the angle yf^ the direction of the string making the angle
60° with the horizon ; shew that the tension of the string is equal

to the pressure on the plane.

14. W : P : R= ^'^: i : i ; find the inclination of the plane

and the direction of /-".

15. A weight iP is kept in equilibrium on an inclined plane

by a horizontal force P and a force P acting parallel to the

plane ; find the ratio of the base of the plane to the height and
the pressure on the plane.

16. Two planes AB, AC having a common height are

inclined to the horizon at angles a and /3 respectively. Two
weights, one on each plane, are kept in equilibrium by a string

attached to the weights and passing over A. Find the ratio of

the weights.

17. A power P acting parallel to the plane can support JF,

and acting horizontally can support W
;
prove that

18. A railway train of 160 tons is supported on an incline

of I in 80 by means of a rope parallel to the plane ; find the

tension of the rope.

19. If R be the pressure when P acts horizontally, and R
when it acts parallel to the plane, then RR = W^.

20. If a horizontal power P supports TF, and P' parallel to

the plane supports W, then 757^
- 7^ = 7772 •

21. A force P acting along a given plane can support a
weight ^1, and acting horizontally can support a weight W^;
prove that F'-^W^^-W.^.

22. IV can be supported on a given smooth inclined plane

by the force P along the plane, or by the horizontal force iP ; if

A'j, ^2 be the pressure on the plane in these two cases, prove

that R^R.^= ^,P\

23. For a given value of P and a given value of W shew
that there are generally two inclinations in which P may act so

as to support W on a given smooth inclined plane.

24. What weight can be supported on a smooth inclined

plane of angle 45° by a horizontal force of 3 lbs. and a force of

4 lbs. parallel to the plane acting together.!'
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25. Tlircc forces of 9 lbs., 8 lbs. and 10 lbs. respectively

support W on a smooth plane which rises i foot in 20 feet

measured along the plane ; the forces make with the plane

upwards angles whose cosines are \, J, \ ; shew that

W= 140 lbs.

26. From the foot of a smooth plane inclined at the angle

45° to the vertical rises a smooth vertical wall ; find in what

position a plank must be placed so that it may rest in equi-

librium against the two surfaces.

27. If the weight, power and pressure on a smooth inclined

plane are in the ratio ^''3 : i : !> prove that the inclination of

the plane is 30°.

28. Prove that when two weights, placed one on each of

two inclined planes having a common vertex and connected by
a string, are in equilibrium, then if they are moved in their

planes, the string being taut, their common c. G. moves in a

horizontal line.
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The Wheel and Axle.

177. In this machine the axle is a cylinder ^^xSh a fixed

axis, and the "wheel is fixed to the cylinder and turns

about the same axis.

Thus in the figure, a rope coiled round the cylinder B .supjiorts a

weight W\ and a cord coiled round the wheel in the opposite direction

supports a weight or force P.

178. The forces acting on the rigid body composing the

wheel and axle are not all in one plane, nor are they sym-

metrical about any one plane; therefore their theory is not

properly within the scope of this work.

We shall assume however that the force applied by the

rope to the axle at B acts just as if it were in the plane of

the wheel; as in the second figure.

With this assumption the theory is simply that of a rigid

body acted on by forces in one plane with one point (the

centre of the wheel), fixed.

179. PROP. To find the relation betweoi the Power

and the Weight in the Wheel and Axle.

Let the plane of the paper be the central plane of the

wheel and let C be the centre of the circle in which the

wheel cuts that plane.

Let the cord passing round the wheel touch this circle

at A, and let the rope passing round the axle touch the

axle in B.
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Let R be the radius of the wheel and r the radius of the

axle.

Then we have by Art. 91, III (the only necessary con-

dition of equilibrium, since the point C is fixed)

Wy^r---P-KR,

or W :< radius of axle ^/'x radius of wheel.

180. It will be seen that the practical effect of the

arrangement of the wheel and axle is, that it is a kind of

continuous lever of the first class— the axis is the fulcrum; the

radius of the wheel is the longer arm; the radius of the axle

is the shorter arm of the lever.

The mechanical advantage [Art. 170] of this machine is

radius of wheel

radius of axle

and this may theoretically be made as large as we please ; but practi-

cally its magnitude is limited (i) by the fact that a very large wheel is

costly and unwieldy, (ii) a very small axle cannot be made of sufficient

strength to sustain any very great strain. See Examples XXVI. 10, 11.

EXAMPLES. XXVI.

1. Shew that the power may be applied to the wheel in any
direction provided its magnitude is unchanged and provided it

is kept always perpendicular to the axis.

2. Shew that if the weight is ?i times the power in the wheel
and axle, then the cords round the wheel must be unwound
n feet in order to wind the rope i foot round the axle.

3. Four sailors each exerting a force capable of supporting
1 16 lbs., lift an anchor by means of a capstan, whose radius is
I ft. 2 in. and whose spokes arc 8 feet long (measured from the
axis) ; what is the weight of the anchor .?

i,.s. jr
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4. To raise a block of stone of i ton a single pulley is used at

the top and a windlass worked by two men at the bottom ; if the

crank of the windlass is 2 feet and the radius of the axle 4 inches

what force perpendicular to the cranks must each man exert at

the least? Does it make any difference if the direction of the

chain passing from the pulley to the windlass is not vertical ?

5. If the string from an axle of radius 3 inches passes round
a moveable pulley and has its end fixed to a beam above (that

part of the string which does not touch the axle or pulley being
vertical) and if a weight of 2 tons (fastened to the moveable
pulley) is supported by a power of i cwt. (applied to the wheel),

find the radius of the wheel.

6. The radius of the wheel is 6 feet, the radius of the axle

6 inches ; a weight of 8 lbs. is fastened to a rope coiled round
the axle and a weight of 4 lbs. is fastened to a rope nailed to the

rim of the wheel ; find the position of equilibrium.

7. In what direction must the power act in order that the

pressure on the axle may be (i) the least possible, (ii) the greatest

possible ?

8. If the axis of the axle do not coincide with the centre of

the wheel, shew that the sum of the weights which are the

greatest and least with which a given power can be in equili-

brium is double the weight which this power would support if the

axis of the same wheel did coincide with the axis of the axle.

9. A wheel is made square, the side of the square being
2 ft. ; the axle is round and its radius is 3 inches ; find the

position which the machine will assume when the weight is 5 lbs.

and the power i lb.

10. To the same axis are fixed a wheel of radius R, a smaller
wheel of radius r, and an axle of radius i\. A rope is coiled

round the axle and after passing over a single moveable pulley

is coiled the other way round the smaller wheel. The power
/' acts in the proper direction on a string coiled round the

larger wheel and the weight W is attached to the moveable

iR
pulley

;
prove that W=P x .

r-^ — r^

The above arrangement is called the Differential Wheel
and Axle.

11. Shew that the mechanical advantage of the Differential

Wheel and Axle can be made as large as we please without
unduly either enlarging the wheel or diminishing the axle.

1
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The Screw.

I St. The screw niay be descril)ed as an /;/i7/>/<Y///rt';/^

wound round a cylinder.

Take a piece of paper in the form of a liglit-angled triangle ABC
as in the figure and wind it round a cylindrical pencil; the slant side of

the triangle will give the trace of a screw on the surface of the pencil.

182. A screw is acted on by a couple

which tends to make it turn about its axis.

The thread of the screw is fitted into a counter

part so that as the screw turns, the cylinder

on which the screw is traced moves in the

direction of its axis.

If we suppose the screw perfectly smooth,

and assume the principle of Work {viz. that what

is lost in force is gained in distance moved),

we can find the relation between P and W.

183. Let a foice P be applied at the

end of a lever, whose arm is / inches long, so

as to cause the screw to tend to turn; and sup-

pose that this tendency to turn is counteracted by a pressure

W against the head of the screw in the line of its axis,

opposing its consequent tendency to move i)arallel to the

axis.

Now suppose the distance between the threads of the

II—

2
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screw to be n inches; then for each complete turn of the

screw the axis would move forward n inches

;

also, if the axis were vertical and the pressure against the

screw were caused by a weight [F resting on it, each com-

plete turn of the screw would raise W a height of n inches.

But in doing this, the force /*, applied at right angles to

the lever, would have to work through the whole circum-

ference of the circle of radius / inches; that is, it would have

to work through the distance 2-kI inches.

Therefore, by the Principle of Work, viz. that in a

machine in which the constraints are all smooth., the work

done on the machine is equal to the work done by the

machine, we have

P y- 27r/= Wx n.

In practice a great deal of this work Piirl, even under the most

favourable circumstances, is consumed in overcoming the friction of

the screw; so that in practice W71 is considerably less than iPvl.

-^\N

The figure here given shews a combination of wheel

and screw which will help the student to understand,

that while W works through the distance between two

threads of the screw, the distance which P works through

is the circumference of the wheel.

Suppose a cord coiled round the wheel, and a weight of /"lbs.

attached to it ; for each complete turn of the screw, this weight P would

descend a distance equal to the circumference of the wheel; that is,

it would descend about twice -^--"'' of the radius (27r/).
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In the figure CD= l, AB— n.

The work done by /'is thus 27r/x P.

The work done on W— IV x distance between two tlueads= « x IV.

By the principle of the indestructibility of work [see Dynamics^

page 165] (since the jiressures of the constraints do no work) we have

27r/x P=7l X W.

184. The pitch of a screw is the angle of inclination

of the inclined plane which when wound round a cylinder

forms the screw. Thus in the figure the angle BCD is the

D c

pitch. If DC be the circumference of the cylinder then

DE is the distance between two consecutive threads, and

DE = DC\.2ccii,

where / is the pitch of the screw.

Hence, the distance between the threads of a screw

= the circumference of the screw x tan /.

The following is a static proof of the proposition :

/// tJie screw the ratio of thepower to the weight is equal to

the ratio of the distance between two consecutive threads of the

scre7a to the circumference of the circle described by P.

A vertical screw may be regarded as a combination of

(i) an inclined plane whose incUnation to the

horizon is equal to i the pitch of the screw, and

(ii) a wheel and axle in which the radius of the

wheel is that of the circle described by P and the radius of

the axle is the radius of the screw. We shall denote by Q
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the force which acting at the extremity of the radius of the

screw balances the force F.

So that Q X circumference of the screw

= i* X circumference of circle described by F. . .(ii).

The pressure of the companion screw on the screw itself

may be divided up into small portions R^,

F.,, etc. corresponding to small parts of the

upper surface of the screw.

Each of these reactions F^, F^,... is

in equilibrium with a portion IV^, W^, etc.

of W and a portion Q^, Q.^ etc. of the

force Q.

Hence, (2, is a horizontal force support-

ing IVy on an inclined plane of angle /.

Therefore by Art. 176 note,

(2,= W^\.z.nt;

similarly Q._= lV^ta.ni,

and so on.

Hence

= JVta.nz (i).

But, F X circumference of its circle

= ^ X circumference of the screw (ii)

= Wtscnix (circumference of screw),

and the circumference of the screw x tan t

= the distance between the threads [from above]
;

.*. /"x circumference of its circle

= JF X distance between the threads.
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Example. What must be the length of the power arm of a serciv

having 6 threaiis to an inch that its meehaiiieal effieieiiey may he 216?

The mechanical efficiency of a machine is the ratio of the Weight to

the Power.

In the screw /"x 27r times the power arm = /^x distance between

the threads ;

.•. 2ir times the power arm = 2i6 x ^ of an inch.

Take x as = ^j- ; then

216 X 7 . , . , o . ,

the power arm= -7 mches — 5'73...niches=5j mches.

EXAMPLES. XXVII.

1. In a Screw the circumference of the circle described by
the extremity of the power arm is 2 feet and the distance

between the threads \ in. ; what weight will a power of 28 lbs.

support .''

2. If in a Screw the power arm is 2 ft. long and the distance

between the threads i inch, what power will support i ton?

3. If the mechanical advantage of a Screw is 1000 and the

length of the power arm is 25 inches, what is the distance

between the threads.''

4. If the extremity of the power arm describes a circle of

10 ft. and a force of i lb. supports i ton, what is the distance

between the threads of the Screw?
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The Transmissibility of Force.

185. The conditions of Art. 91 for the equilibrium of

forces acting on a single rigid body shew, that when ttvo

forces act on a rigid body, these two forces are in equi-

librium provided they are equal, opposite, and in the same

line of action. They may each of them be applied to the

rigid body at any point whatever, provided the points of

application are in their line of action.

Therefore, the statical effect of a force on a rigid body is

not altered when its point of application is transferred from

onepoint to any otherpoint in its line of action.

The force must be applied to the rigid body; but we may, if we

please, suppose the extent of the rigid body to be increased by a system

of light rigid rods, so as to include points outside it.

The above result is usually referred to as

the Principle of the Transmissibility of Force.

The student must notice that Force is transmitted through a rigid

body by the internal stresses which are set up by the force ; and, al-

though it makes no difference to the external effect of a force on a

* rigid' body, at what point in its line of action it is applied, it does

make a difference in the internal stresses which transmit the force.
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1 86. In order to avoid any reference to the Dynamical

Proof of the Parallelogram of Forces, many treatises on

Statics assume the truth of the above principle and deduce

the parallelogram of forces from it.

187. The usual proof is given here, as it is interest-

ing historically, and is a very ingenious piece of inductive

reasoning. The student of Statics is recommended, when

he has satisfied himself of its logical correctness, not to

bestow further thought upon it; it illustrates no mechanical

principle—its interest belongs to the domain of history

and of pure mathematics.

188. The proof depends (i) on the Principle of the

Transmissibility of force and (ii) on the assumption that

the resultant of two equal forces acting at a point bisects

the angle between them.

This assumption is justified by the remark that two equal forces are

syiiundrical about the line bisecting the angle between them—so that

if they had a resultant on one side of this bisecting line, they would

also have another resultant on the other side of this line; in which case

two forces would have two separate resultants; which is impossible.

Now, when a parallelogram has two equal adjacent sides,

its diagonal bisects the angle between them.

It follows therefore that the parallelogram of forces is

true as far as regards the direction of the resultant, when the

two forces are equal.

189. We proceed to shew that the parallelogram of

forces is true as far as regards the direction of the resultant

for any two forces

.

Proof. Assume that the proposition is true (as regards direction

only) for two chosen forces P and Q ;



lyo STATICS.

Assume also that the proposition is true (as regards direction only)

for the force /'and another chosen force T;

We proceed to shew from the principle of the transmissibility of

force that on these assumptions it is true for the forces /"and {Q-\-T).

Let the forces be applied to a rigid body.

Let O be the point of application of the forces.

Let the force /"act along OA and let Q and Z'act along OB.

Let OA, OB represent P and Q in magnitude; produce OB to Z),

so that BD represents T\x\ magnitude. The force T, which is applied

at 0, may be supposed (without altering its statical effect) to be applied

to the rigid body at any point in the line OBD; [Art. 185.]

we shall suppose that it is applied at B.

Complete the parallelogram AOBC.
The resultant of P and Q, by our assumption, ads in the line OC.

Also, by the principle of transmissibility, this resultant may be sup-

posed to be applied to the rigid body at any point in OC.

Let it be applied at C.

This force, which is the resultant of P and Q, is now applied at C;

but we should get the same effect if we replaced this resultant by two

forces equal and parallel to P and Q, acting on the rigid body at C.

Let this be done.

The forces now acting on the rigid body are P and Q at C, (their lines

of action being ^Cand AC), and 7" at B, (its line of action being BD).

But P a.t C may be applied to the rigid body at any point in its line

of action ; let it be applied at B. It is then represented in direction

and magnitude by BC. Complete the parallelogram CBDG.

1
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Then, by our assumption concerning F and 'F, BG is the line of

action of the rcsuUant of P and T\ and, as before, this resultant may be

supposed to be applied to the rigid body at any point in BG.

Suppose it applied at G; and then replaced by its l\\o components

/' and 7', which are thus now applied at G.

Q is applied at C and its line of action is CG\ it may therefore be

considered to be applied to the rigid body at G.

Thus, finally, our three forces /', Q and T, originally applied to the

rigid body at O, are shewn to have the same statical effect on the rigid

body when they are supposed to act at G instead of at 0.

But suppose we replaced P, Q, 7' when acting at O by their result-

ant ; and also when acting at G.

This resultant can be supposed to be applied at any point in its own

line

—

and at no point not on that line.

But we have shewn that the resultant may be a]3plied at G; .'. the

line OG must be the line of the resultant of/", Q, 7"acting at 0.

But OG is the diagonal of the parallelogram whose sides represent

/'and(?+r.

Hence we have this result; if the proposition be true as regards

direction for two chosen forces P and Q, and also for P and another

chosen force T, then it must be true as regards direction, for the forces

PzndiiQ+T).
From this result we proceed to deduce the truth of the parallelogram

of forces as far as the direction of the resultant is concerned.

First, choose Q = Pa.nd. T=P.
We know the proposition to be true for two eijual forces /' and F,

and for P and P', therefore by the above result it must be true for F
and (F+P); that is, it is true for P and iF.

Next (making use of the above result), choose Q = 2l\ and J'—F.

Therefore it is trae for P and {iF+P) ; and so on.

Therefore it is true for P and nP.

As before, we can now shew it to be true for iJ' and ///', and

hence for mP and nP.

Therefore it is true for any two commensurable forces.

It must also be true for two incommensurable forces; for we can

find two commensurable forces which approximate as closely as we

please to the two incommensurable forces and the proposition is true for

these last two forces.

Therefore the proposition is true generally.
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190. The above proof of the Parallelogram of Forces

as far as regards direction is known as Duchayla's Proof.

We proceed to shew that if the proposition be true for

direction it must be true for magnitude, and conversely.

These proofs depend only on the principle that when
three forces acting at a point are in equilibrium, any one of

them is the anti-resultant of the other two.

191. PROP. Assuming that the diagonal OC of the

parallelogram OACB indicates the direction (///z^ resultaftt of

any two forces OA, OB, prove that it must also represent

the magnitude of their resultant.

Draw OC to represent in magnitude and direction the

anti-resultant of OA, OB.

C E

Then, by hypothesis, COC is a straight line.

Also, OA, OB, 6> 6" represent three forces in equilibrium;

so that any one of tliem, OB, is the anti-resultant of the

other two, OA, OC.
Complete the parallelogram AOC'E;
Then, by hypothesis, OE represents the direction of

the resultant of OA, OC.
Therefore EOB is a straight line

;

But OB is parallel to A C, by construction.

Therefore EO is parallel to AC.
Also, EA was drawn parallel to CO, and therefore to OC.
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Thus, AEOC is a four-sided figure, whose opposite

sides are parallel ; therefore its opposite sides are equal.

Therefore OC=EA; and EA is equal to CO, the

opposite side in the parallelogram AOC'E.
Therefore (?C is equal to CO, the anti-resultant of

OA, OB. That is, OC represents the magnitude of the

resultant of OA, OB. q. e. d.

192. PROP. Assuming that the diagonal OC of the

parallelogram AOCB represents the magnitude of the re-

sultant of any two forces OA, OB, prove that it must also

indicate the direction of their resultant.

Draw OC to represent in direction and magnitude the

anti-resultant of OA, OB. [See Figure on p. 172.]

Then, by hypothesis, 0C= OC.

Also OA, OB, OC represent three forces in equilibrium,

so that any one of them, OB, is the anti-resultant of the

other two, OA, OC.
Complete the parallelogram AOC'E.
Then, by hypothesis, OE represents the magnitude of

the resultant of OA, OC.
Therefore ^(9= C^;
But OB = AC, by construction.

Therefore ^6> = ^C".

Also, AE= OC (the opposite side of the parallelogram

AOC'E) and OC = CO.

Therefore AE^ CO.

Thus, AEOC is a four-sided figure whose opposite sides

are equal ; therefore it is a parallelogram.

Therefore OC is parallel to EA, which was drawn

parallel to CO.
Therefore OC is in the same straight line with OC, the

anti-resultant of OA and OB. That is, OC represents the

direction of the resultant of OA, OB. q. e. d.
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193. We shall now prove by the principle of the

Transmissibility of Force the result of Art. 96.

1 94. To find the resultant of two like parallel forces

acting on a rigid body.

Let A, B be the points of application of the two parallel

forces F and Q; let AH., AK represent them in direction

and magnitude.

Let two equal and opposite forces each of magnitude ^
be applied to the rigid body along the line AB.

Let AL represent one force S and BM represent the

other force S.

Since the body is rigid these two forces will not alter the

external effect of the forces jPand Q. [Art. 185.]

Complete the parallelograms HALT, KBMN.
Then, since the angles HAB, KBA are together equal

to two right angles, the angles TAB, NBA are together

greater than two right angles. Therefore TA and N^B will

if produced meet on the other side of AB.

Let them meet at O.

Draw OC parallel to AH ox BK, to cut AB in C.
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Now the two forces AH, AL may be replaced by tlie

force A T; which may be supposed to act at O ; and may

there be replaced by two forces ec^ual and parallel to AH
and AL ; that is, to F and S.

Similarly, the two forces BK, BAI may be replaced by

llie force BN; which may be supposed to act at O; and

may there be replaced by two forces equal and parallel to

BK, BM; that is, to Q and S.

Thus finally, instead of the two forces P, Q applied to

the rigid body at A and B respectively, we now have the

four forces applied at O ; namely two equal and opposite

forces each equal to S, and two like forces F and Q acting

in the line OC; the two forces each equal to ^S are in equi-

librium and may be omitted.

Hence, the resultant of the two like parallel forces, is

a single force acting in the line OC parallel to the two

forces, and appUed at any point in OC; also its magnitude

is F+ Q.

Now the triangles HAT:m6. COA are similar,

AH q£ . p qc
•'• HT~^ CA' ^^' S~ CA'

Also the triangles KBN, COB are similar,

KNCB^ . SCB
•'• BK^ OC' '^ Q^ OC
P SOC CjB_

'•
S"" Q~ Ca"" OC

P CB
Hence,

J) c2''
^^^^^ '^^, P^CA=Qx CB.

<^. K. D.
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1 95. FROF. Tofind the resultant oftwo unlike parallel

forces acting on a rigid body.

With a similar construction, the proof is word for word

the same as that of the last proposition; except that AT
and BN do not in this case always intersect ; the exception

being when F= Q.

The resultant will be the ' sti?n ' of the two forces

;

which, as the forces are unlike, will mimcrically be equal to

their difference, and will act in the direction of the greater

force.

The figure given is for the case in which Q is greater

than F.

For when (2 is greater than F, since BM= AL, the

angle NBM is greater than LAT; that is, than OAB ; so

that OBA is correctly drawn as a triangle.

When the forces Pand Q, are equal and unlike the lines

AT^ NB in the above figure are always parallel, and the

construction fails. In fact, in this case F and Q together

form a couple and are not capable of a single resultant.

In Art. 197 below we shew that a couple can be counter-

acted by an equal and opposite couple.
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196. PROP. To prove that the sum of the moments of
any t7vo parallel forces about any chosen point in their plane

is equal to the moment of their resultant about the same point.

In the figure let P and Q be the forces and P their

resultant

;

let O be the chosen point.

Draw OACB cutting the lines of action of the forces

PQR in A, B and C.

Then PxAC^Qx CB
and P = P+Q. [Art. 194.]

Now
PxOA+ QxOB = Px{OC-AC)+Qx{OC+CB)

~-.{P+Q)x OC-PxAC+Qx CB
= R X OC. Q. E. D.

It follows that the sum of the moments about any

chosen point of any number of parallel forces is equal to

the moment of their resultant.

For as far as moments are concerned we may replace any two
forces by their resultant and so on.

It also follows that the sum of the moments about any

chosen point of any system of parallel forces which are in

equilibrium, is zero; for their resultant is itself zero.

L. s.
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197. PROP. To prove that hvo couples in the same plane

whose moments are equal and opposite are in equilibrium.

First, let the forces P, P' and Q, Q of the couples be

parallel and equal.

Then, if a line ABA'B' cuts the lines of action of the

forces respectively in ^, B and A' , B' at right angles, since

the forces of the couples are equal and their moments equal,

it follows that their arms must be equal; .*. AB^A'B';
the resultant of P, Q {P+ Q acting at C the middle point

of AB') is equal and opposite to the resultant {P' + Q) of

Q, P' which acts at the middle point of A'B, which middle

point coincides with that of AB'.

A.

P'

Thus, the couple P, P' acting at A, B is equivalent to

an exactly similar couple Q, Q acting at A', B'.

Hence a couple may be moved parallel to itself from

one position to another in its own plane, without altering

its effect upon a rigid body.

Next, let the forces P and Q be parallel but unequal.

p-
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By what we have just proved, one of the couples F, P'

may be transferred parallel to itself to a position in its own

plane so that /-* is in the line of action of Q. Let this be

done.

Then the forces at A are equivalent X.o P- Q;

and the forces will be in equilibrium provided

P' ^AB^ Q xAB';

that is, provided the moments of the couples are equal.

Hence, a couple may be replaced by any couple in its

own plane of equal moment, whose forces are parallel to its

own forces.

Lastly, let the couples not have their forces parallel.

By what we have just proved, one of the couples may
be replaced by another of equal moment having its forces

parallel, so that the forces P, P' of this new couple are

equal to the forces (2, Q_ of the second couple.

Let the forces P, Q intersect in^ and P', Q intersect in B.

Draw AN, AM perpendicular to P', Q^ respectively.

Then, since the moments of the couples are equaL,

:. P^AN=QxAiM-hMt P^Q; .-. AN^AM.

Therefore the right-angled triangles ABN, ABM are

equal in all respects
;



i8o STATICS.

Hence, AB bisects F'BQ, and also bisects the exterior

angle FAQ; and .-. also BA bisects the angle FAQ itself.

Therefore, since F' =^ Q and F^ Q, the resultant of F'

and Q' is equal and opposite to the resultant of F and Q.

For the resultants are equal and each of them acts in the line .IB

bisecting each of the angles FAQ, P'AQ'.

That is, the two couples are in equilibrium.

Hence any two couples in the same plane whose

moments are equal, have the same effect on a rigid body.

198. The results of this Chapter all follow at once

from Art. 91. But we have here given the proofs which

are usually given in books on Elementary Statics, since

they are often asked for in Examination Papers.
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Friction.

199. Wk propose in this Chapter to consider the nature

of the stress set up between the surfaces of two separate

rigid bodies which press the one on the other.

200. We shall confine our attention to the case of a

fixed plane and a body placed upon it.

201. When a rigid hody has one of its surfaces in con-

tact with a fixed rigid plane, then, so long as the surface

remains in contact with the plane, the only motion of which

the body is capable is in some direction parallel to the

plane.

For, whatever may be the forces acting upon the body,

the plane, being rigid, can and does exert upon it whatever

force is necessary to prevent motion in the direction per-

pendicular to the plane.

This force, applied by the plane to the body in the direction per-

pendicular to its surface, is equal and opposite to the perpendicular

presstire of the body on the plane.

202. If there were a rigid substance whose surface

could be made pe7-fectly smooth, then the pressure applied

by such a surface to any other surface pressing against it

would be exactly in the directiofi at right angles to the smooth

siirface.

Although no such substance is known, yet it is often convenient to

imagine such a substance for the purposes of theoretical statics. For

the surfaces of some substances can be rendered very much more smooth

than those of others, and hence we obtain results which are approxi-

mately true for surfaces which are comparatively smooth.
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Moreover, for the purposes of explanation, we at first make our

problems as simple as possible; advancing from the simple problems of

theory to the more complex problems of practical mechanics.

Accordingly we use the words smooth and rough in the following

technical sense.

203. DEF. A surface is said to be smooth which is

understood to be incapable of exerting pressure on any-

other body in contact with it except in the direction perpen-

dicular to itself.

204. DEF. A surface is said to be rough which is

capable of exerting pressure on a body in contact with it

in other directions besides that perpendicular to itself.

It will be seen that a smooth surface may be said to be

one which offers no resistance to the motion along it of a

body which is pressing against it.

A rough surface does offer some resistance to the motion

along it of a body pressing against it.

For all actual surfaces, even those that appear to be perfectly plane,

would if sufficiently magnified be seen to consist of minute projections

and depressions as in the Figure. These always interlock more or less

with another surface in contact with it, and oppose resistance to a force

such as the horizontal component of /"which tends to slide one surface

over the other.

Sometimes the projections interlock so that the sliding cannot take

place without scratching as at «, w in the figure.

205. DEF. A perfectly rough surface is one which

is capable of offering whatever resistance may be necessary

to prevent the motion along it of a body pressing against it.

Thus a perfectly rough surface is a theoretical surface along which

bodies pressing on it cannot move.
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206. It is as we have said impossible to get a surface

smooth as defined above. It must however be understood

that when we speak of a 'rough' plane surface we mean a

surface which has been made as nearly smooth as the nature

of the substance will permit.

For instance, if the material is of metal it is understood that the

surface has been carefully polished ; if oiwood, that it has been planed

;

if of stone, that it has been rubbed down, and brought to as smooth a

surface as the particular kind of stone will allow. Its surface will then

depend only on the material ; it will be smooth to the eye and touch,

but not statical!}' smooth.

207. Consider now the action exerted by a fixed

'rough' plane upon a body which presses against it.

Since the plane is rough, the force applied to the body is

not necessarily perpendicular to the plane.

We resolve this force into two rectangular components,

one at right angles to the plane, the other along the plane.

The component force at right angles to the plane is

called the pressure between the plane and the body.

The component force along the plane is called the

friction between the plane and the body.

The friction is the part of the action of the plane on the body which

prevents the movement of the body along the plane.

When a body is at rest on a fixed plane the action of the plane upon
it is equal and opposite to the resultant of all the external forces acting

on the body. The friction is therefore equal and opposite to the part of

the external forces which tends to cause motion of the body on the plane.

Hence we have the following definition.

208. DEF. When a body rests on a rough plane and

forces act on the body tending to cause it to slide along the

plane, a force is called into play which acts on the body

in the direction contrary to that in which it tends to move,

and tends to prevent motion.

This force is called Friction.
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209. The General La'ws of Friction are

I. When the surfaces of two bodies are in contact and

at rest relatively to each other friction always acts upon each

body in the direction exactly opposite to that in which the

body tends to move along the surface on which it presses.

II. When there is no relative motion, the amount of

friction which is called into action is just as much as is

necessary to prevent relative motion—and no more.

Example i. A viass of weight W rests on a rough horizontalplane

;

it is pulled in a certain direction by a horizontalforce ofY lbs. ; the mass

does not move. Why is this ?

The mass is under the action of the following forces

:

(i) its own weight downwards,

(ii) the pressure of the plane on it upwards,

(iii) the force P horizontally,

(iv) the force of friction, acting between the surface of the mass

and of the plane; this force is horizontal and must be equal to the only

other force acting, namely /' lbs., and must act in exactly the opposite

direction.

If the plane in the present case were perfectly smooth, in other

words, if we suppose friction not to exist, it is clear that the force

P would cause the mass to move in its own direction.

Example ii. A heavy mass resting on a horizontalplane is acted on

by a force of \ lbs. towards the North and a force of 3 lbs. towards the

West. The mass is kept at rest by the friction bettveen itself and the

plane. IVhat is theforce offriction called into play ?

The resultant of the two horizontal forces is a force of 5 lbs. acting

in a direction somewhere about N.W.N.

The force of friction must therefore be a force of 5 lbs. acting exactly

opposite to this resultant.
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210. A little thought will enable the student to under-

stand how great a part friction plays in practical mechanics.

It is friction wiiich keeps the furniture of a room in its place; which

enables us to walk and move at will. It is interesting to try and realize

for a moment how different the world would be if this force of friction

ceased to act. The student will find that very few problems would then

be statical problems. Almost every problem which could be proposed

in mechanics would necessarily involve motion.

EXAMPLES. XXVIII. a.

1. A body rests on a horizontal plane and is acted on by
the force of lolbs. in the direction making the angle 60° with

the plane. What amount of friction is called into play ?

2. A body rests on a horizontal plane and is acted on by
the force of 40 lbs. in the direction making the angle 45° with

the plane. What friction is acting on the body?

3. A body Aveighing 40 lbs. rests on an inclined plane

whose inclination to the horizon is 30°. What amount of fric-

tion is acting between the body and the plane 'i

4. What will the friction be if the plane in question 3 be
inclined at the angle 45° to the horizon ?

5. A body weighing 50 lbs. rests on an inclined plane
whose angle is 30° and a force of 10 lbs. is acting upon it up
the plane ; what friction is there 'i

6. If the body in question 5 weighs 112 lbs. and the force

up the plane is 1 12 lbs. ; what friction is called into play?

7. A body weighing i ton is placed on an inclined plane of

inclination 60° and is acted on by a force of i ton up the plane;

what friction is acting on it?

8. A body rests on a horizontal plane and is pulled hori-

zontally by two men who exert forces of 30 lbs. towards the

North and 40 lbs. towards the East respectively ; what friction

is acting on the body?

9. A mass of one cwt. lies on an inclined plane of angle 30"

and two men push against it, one up the plane with the force

56 lbs. and the other down the plane with the force 84 lbs.

What friction is called into play?
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Limiting Friction.

2 11. It is most important that the student should

realize that in any particular case in which there is no

motion, the amount of friction actually called into play is

only just so much as is necessary to prevent sUding motion.

In most cases however if the force tending to cause

sliding motion be increased, it will be found that there is a

limit to the amount of friction which can be called into

play. So that when the force necessary to prevent sliding

motion is greater than a certain amount, the surfaces slide

the one on the other.

212. Illustration. Suppose we take a plane such as the

surface of a piece of board. Let the board have a hinge so

that it can be tilted up at different inclinations to the horizon

and let its surface be made as smooth as the nature of the

substance of which it is made will permit.

Now take a rigid body such as a lump of iron ; let its

face be made as smooth as possible and let it be placed

without restraint on the plane.

First let the plane be horizontal.

The body will be at rest; as the only forces acting upon

it are its weight downwards and an equal pressure of the

plane on the mass upwards.

Next let the plane be tilted up so as to make a small

angle {Q) with the horizon; and suppose that the body still

remains at rest.

The forces now acting upon the body are its weight

vertically downwards and the action of the plane on it;

these two forces must be equal and opposite. Hence the

action of the plane on the body must still be vertical; that

is, the action is no longer ])erpendicular to the plane.
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We resolve this action into two rectangular components,

(i) perpendicular to the plane, which we call the pressure

{R\ (ii) along the plane which we call the friction {F).

These two (i) i)ressure (i^), and (ii) friction (i''), are the

c

rectangular components of a constant vertical force up-

wards, equal to
(
W) the weight of the body.

It will be seen from the figure that as the angle of inclina-

tion Q of the plane is increased R diminishes and i^increases.

F W sin Q
For /e=jrcos<9, F=W-i\\\d, and R

= tan

Wco% 9

F
Hence with a small inclination of the plane the ratio ^

is small, but this ratio increases with 6 and it can be made

as great as we please (for tan 90" = co ).

Now it will be found (if the experiment be performed

carefully) that with a plane made of any chosen kind of

material, say box wood, and a body of any other chosen

material, say soft iron, motion will always begin when {$)

the inclination of the plane reaches a certain magnitude (a).

F . . .

That is, when the ratio of — attains a certain maximum

value (tan a).

Experiments indicate that provided the surfaces in con-

tact have been made as smooth as possible, tliis angle a at
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which motion begins, is for most practical purposes, independ-

ent(i) oftheweight ofthe mass,and therefore of the magnitude

of the pressure R, (ii) of the size of the surface in contact.

Thus if masses of the same jnaterials but of different sizes and shapes

l)e used for repetitions of the experiment, the angle o will be found to be

approximately the same in every case.

213. It is from the results of a careful series of ex-

periments such as the one described above that we obtain

the following

Laws of Limiting Friction.

I. When two bodies whose surfaces are in contact have

a tendency to relative motion it is found that—when the

surfaces have been made as smooth as possible—the amount
of friction which can be called into play cannot exceed a
certain limiting value.

II. This limiting value is a certain fraction of the

normal pressure.

This fraction depends on the nature of the bodies in con-

tact, and is called the coefficient of friction of those

bodies.

Thus the coefficient of friction for soft iron and brass is about •17.

This fraction is independent of Xho. size and shape of the

surfaces in contact.

It is to be noticed however that the surface must be large enough to

prevent actual scratching of the surfaces.

III. When motion actually is taking place the above

laws are still approximately true as to the friction between
F

sliding bodies; but the fraction — is rather less in eachA
particular case when the bodies are sliding than when just

on the poi7it of motion.

It seems as if the bodies when at rest have time to interlock their

projections more completely than when in motion the one over the

other; so that it takes rather more force to start them than to keep
them moving uniformly.
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SOME COEFFICIENTS OF FRICTION.

From MoRiN.

Substances in Contact. Coef. Angle.

Oak on oak, all the fibres parallel to the motion •4.S ^-5°-38'

, , , , moving fibres on end, resting fibres

parallel to the motion 9 10°. 46'

9°-39'

1 1 °. 1

9'

6°. 17'

Steel on cast iron 20

'I ISteel on Dolished class

Polished marble on polished marble •16 9°. 6'

Polished marble on common birch 44 -3°-45'

Common birch on common birch •64 3^-°- 38'

Wrought iron on oak (fibres parallel to motion) •62 31°- 47'

,, ,, ehn ,, ,, ,,
'-5 4°- 3'

The above are quoted from a very full list given on page 373
of Trautwine's Engineer''s Pocket-book. Ed. 18S8.

NoTK—In the above table the coefficient of Limiting

Friction is the tangent of the angle at which the body will

begin to slide when on an inclined plane as in Art. 212.

This will be clear if the student will notice that in the ex-

periment the action of the plane on the body is always

vertical, and therefore this action makes the same angle

with the perpendicular to the plane which the plane makes

with the horizon. It is usual to use the letter \i. to denote

a coefficient of friction. Thus,

r)Ut, if a is the limiting angle,

F^ R tan a

;

.*. /x = tan a.

Example i. An iron girder weighing i ton lies on hori/.i^ital shel

rails ; ivliat horizontal force must a horse apply to the girder to make it
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tiiove forward along the rails and in the direction of its length, if the co-

efficient offrictionfor iron and steel is '175 ?

The whole pressure of the girder on the rails is 1 ton = 2240 lbs.;

this pressure is distributed over the surface of that part of the girder in

contact with the steel rails.

When a horizontal force has been applied to the girder so that it

is on the point of motion, then at every part of the surfaces at which

there is pressure there is a horizontal force of friction opposite to the

direction in which there is a tendency to motion. This friction is in

all cases '175 of the pressure.

For the direction in which the girder is to be pulled is in the direc-

tion of its length, so that if any of the points of contact be on the

point of motion, eveiy point must be on the point of motion.

[Thus if AB be the girder, resting on two horizontal

steel rails at C and D, the pressures on the rails at C
and D may be unequal ; suppose them to be R^ and R,,.

>"—>-

•175 X A^^ and the

So that the girder

Then R, + R,^i ton,

and the limiting friction due to R
limiting friction due to ^2= 'lys x-/?,

will be on the point of motion when a force 'i^JS^i + '^lS^-2

is applied to it in the direction AB, that is -175 times i ton.]

Therefore the whole amount of the friction is '175 of the whole

amount of the pressure.

.'. the limiting friction = 'i75 x 2240 lbs.

= 392 lbs.

Therefore if a horizontal force of any magnitude exceeding 392 lbs.

be applied to the girder in the direction of its length it will begin to

move in the direction of the force.
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Example ii. A uniform ladder rests ivith one end on a horizontal

stone pavement, the other leaning against a vei-tieal briek wall; find the

limiting position of equilibriinn ; the eoeffidents of friction being re-

spectively fi and fi'.

/t-IJ-'R'

With the notation of the figure, in which the ladder AB is supposed

to be on the point of sUpping down, we get by [Art. 91] considering the

conditions for the equihbrium of the ladder, and

I. resolving horizontally,

II. resolving vertically, and

III. taking moments about C we have

I.

II.

III.

A" - ixK— o.

Ii + lj:R'-W=o.

A' cos 6 - fiR sin 6 - R' &ind — fi'R' cos = o;

R _ sin + yti' cos d

R' cosd - ixsmd

= - [from 1.1,
At

/t sin + jn/u' cos ^= COS ^ - yu sin <^

;

^J.^l'

tan 6' =
2M

That is, the angle of inclination of the ladder to the horizon must not be

-mm'

2M
'_ 1

less than the angle whose tangent is

For instance if iJ.= fi'=^:

k
tane = ;
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Example iii. Let a mass W 7-csting on a rough inclined plane, be

acted on by a force P making an angle (p '•^ith the plane, as in the

figure. Find the relation between P, W, ^.

With the notation of the figure, first we shall find the relation

between P, W, <p when the mass is on the point of moving up the

plane.

In this case, the pressure on the plane being R the friction called

into play is iiR and acts doivn the plane as drawn.

We get by [Art. 91] considering that the mass is in equilibrium,

and resolving I. along, and II. perpendicular to the plane

I. W^sina + ^A'-/'cosi^=o.

II. j'? + /'sin<^- ?Fcosa=o.

Multiplying II. by ^ and subtracting this from I. we have

W'iva. a. - /"cos </> - /i/'sin + M JFcos a= o,

or ;^r(sina + Aicosa) = iP(cos<^ + Msin<^).

This is the equation which will give the magnitude of the force

necessary to cause the mass to be on the point of motion up the plane

when W, a, fi and <f>
are given.

Gi%^
^«^^~ \

^(<^^' \ f- aA'
\

\

W

Next supposing the mass on the point of moving down the plane,

the force /j-R must be reversed as in the figure ; the effect of this will be

to change the sign of /jl in the above equations.
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Example iv. An iron girder 8 ft. long loeighing i ton is placed sym-

metrically at right angles to tivo fixed steel rails which are 4 feet apart.

What horizontal force applied at right angles to the girder at one ex-

tremity will cause it to be on the point of motion ?

Let AB be the girder resting on the rails at C and D. The vertical

pressures at Cand D are each equal to 11 20 lbs.

The coefficient of friction between iron and steel is -i?:;.

M/5

•.,

^._

1

A
< ' D 1 L

k

Consider the horizontal forces acting on the girder. They are the

force P a.i B and the frictions Fc and Fj) at D and C. Fc and F^ may
either of them have any value between o and 196 lbs. ("175 x ^ ton) each;

and they act opposite to the tendency to relative motion at C and Z>

respectively.

Supposing motion to ensue, there are four possible hypotheses.

Either

(i) the girder slides at Z? and turns about C;

or, (ii) the girder slides at C and turns about D;
or, (iii) the girder slides at both C and D in directions parallel to F;
or, (iv) the girder slides at D and at C in some other directions.

We proceed to shew that (i) is the correct hypothesis.

If the girder begins to turn about C the direction of relative motion

at D is perpendicular to the girder so that Fg is perpendicular to CF>

and is 196 lbs. Therefore Fc is the anti-resultant of the two parallel

forces at D and B, and therefore is (i) parallel to them, (ii) less than

the force at Z>, i.e. less than 1961115.; thus hypothesis I. is possible.

We may note that P is also less than the force at Z>, i.e. is less than

196 lbs.

If (ii) the girder begins to turn aiiout /), then the direction of re-

lative motion at C is perpendicular to CD; so that Fc is parallel to P;
and F„ which is the anti-resultant of Fg and P must also be parallel

to P; when three parallel forces are in equilibrium the force which
lies between the other two is the sum of those two. Hence in this

L. S. 13
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case /^n must be greater than /'c. i-e. greater than 196 lbs., which it

cannot be.

If (iii) and (iv), the girder were to begin to slide at both points

at once, Fc and Ft, would each be 196 lbs. ; hence in the case of (iii)

P is the anti-resultant of two equal parallel forces ; in which case CB
ought to be equal to CD, which it is not.

i2?'c=65ilbs. AP=130§lbs.

4'jF'i,= 196lbs.

In the case of (iv) the directions of Fc and Ft, must meet on the

line of action of P; and since Fc and Fd are equal, P must bisect the

angle between Fa and F[, ; but this is impossible when P is perpen-

dicular to CD except when P bisects CD.

Hence, the only possible hypothesis is (i), that the girder is on the

point of turning about C.

The friction atZ> is 196 lbs. and is parallel to P.

Taking the sum of the moment about C of all the forces acting on

the girder, we have

Px6 -
1 96 lbs. X 4 = o,

or, P:= § of 1 96 lbs. = 130I lbs.

EXAMPLES. XXVm.
1. A weight placed on a rough inclined plane whose in-

clination is 30" is just on the point of sliding down ; what is the

coefficient of friction ?

2. A mass of iron weighing i ton placed on a horizontal

plane made of brass, what horizontal force is necessary to move
it.?

3. A body placed on a rough inclined plane whose angle is

a is just on the point of motion ; what horizontal force is neces-

sary to move a body of i cwt. of the same material placed on
the plane when horizontal.?
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4. A body placed on an inclined plane of angle 30° is just

on the point of moving upwards when acted on by a horizontal

force equal to its own weight ; find the coefficient of friction.

5. A body placed on a horizontal plane requires a horizon-

tal force equal to its weight multiplied by si}, to cause it to be
on the point of motion ; at what angle must the plane be tilted

that the body may then be on the point of motion ?

6. A body placed on a rough horizontal plane is on the

point of motion when acted on by a force equal to its own
weight inclined to the horizon at an angle of 60° ; find the co-

efficient of friction.

7. If the inclination to the horizon of the force in Question
6 were 45°, what would be the coefficient of friction ?

8. A mass of i lb. placed on an inclined plane is fastened

to the plane by a thread which is parallel to the plane ; the co-

efficient of friction being "2, what must be the least tension of

the string when the inclination of the plane is 45° ?

9. A heavy beam rests with one end on a horizontal pave-

ment and the other in contact with a vertical wall ; if the co-

efficient of friction of the ground and wall be equal to "3 and the

beam is uniform, find the inclination of the beam to the horizon

when it is on the point of slipping down.

10. A ladder 20 ft. long without weight rests with one end
on the ground which is rough (/m= '4) and the other against a
vertical wall which is smooth and is inclined to the horizon at

an angle of 45° ; a man commences to walk up the ladder ; how
far will he go before the ladder slips .?

11. Shew that if in Question 10 the ground is smooth and
the wall rough, the ladder will slip wherever it is placed, directly

the man attempts to ascend it.

12. A uniform ladder 20 ft. long weighing 56 lbs. rests with

one end on the ground which is rough (coefficient of friction = /i)

and the other against a smooth vertical wall ; find the least

angle to the horizon at which it can rest ; and find how far a
boy of I cwt. could walk up the ladder when at that angle, with-

out causing it to slip.

13. It is said that the force required to keep a train moving
uniformly on an incline of i in 80 is four times the force neces-

sary on horizontal rails ; assuming that the friction varies as the

normal pressure, find the coefficient of friction.

14. Taking the same coefficient of friction as in Question 13,

find how many times the force required on a horizontal rail is

required on an incline of i in 60.

13—2
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15. A particle of weight W placed on a rough horizontal

plane whose coefficient of friction is /x, is fastened to a fixed

point by a string which is extended to its full length ; a horizon-

tal force is applied to the particle in the direction which makes
the angle 135° with the string; what is the magnitude of the

force when the particle is on the point of motion ?

16. A cubical block of stone is placed on rollers. The force

necessary to make the stone move with the rollers is "oi of the

weight ; the force necessary to make the stone slide over the

rollers themselves is '4 of the weight. A force is applied to the

stone making an angle 6 with the rollers ; find the least magni-
tude 6 can have that the stone may move with the rollers (with-

out sHding).

17. A four-wheeled waggon with its wheels all parallel is

such that if it be pulled on a horizontal plane parallel to the

wheels it requires a force of '0125 of the weight to cause it to be

on the point of motion ; it requires a force of "5 of its weight in

the direction perpendicular to the wheels to cause it to slip

;

what is the greatest angle which a horizontal force may make
with the wheels so as to cause the waggon to move in the

direction of the wheels? Find the force in the limiting case^

when the waggon weighs r ton.

18. A force of 10 lbs. can just cause a weight on an inclined

plane of angle 30° to be on the point of moving up the plane

and a force of i lb. can just cause it to be on the point of moving
down the plane, both forces acting parallel to the plane ; what
force would just cause it to be on the point of motion on a

horizontal plane ?

19. A cube of wood stands on a rough horizontal plane ; a

horizontal force acts at the middle point of one of its upper

edges perpendicular to the edge. Find the coefficient of friction

that it may be just on the point of toppling and of sliding at the

same time.

20. A body is placed on a rough horizontal plane and a line

is drawn upward from the plane, making with it an angle equal

to the angle of friction. Shew that this is the direction of the

smallest force which will make the body slide.

21. Two given weights W^ VV of different material are laid

on a given inclined plane, and connected by a string in a state

of tension in the line of greatest slope of the plane; the coeffi-

cients of friction being /x, /x'. Shew that the angle of the plane 6

when both weights are on the point of motion is given by

^ aJV+,x'lV'

and that the tension of the string is {JVs'm 6- filVcos 6).
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22. A sphere is placed upon a rough inclined plane,
coefficient of friction \i ; find the position of the centre of
gravity of the sphere that it may be on the point of sliding and
of rolling down the plane simultaneously.

• 23. A uniform circular cylinder, 5 inches in diameter and
16 inches high, is on the point of sliding and of toppling over
simultaneously when the inclination of the plane on which it

stands is gradually increased ; find the coefficient of friction.

24. If the force which acting parallel to an inclined plane of
angle a is just sufficient to draw a weight up, be n times the
force which will just let it be on the point of sliding down, shew

, ;/ +

1

that tan a= ii.
—— .'^ n-\

25. A uniform cube of stone stands on a rough horizontal
plane and is acted on by a force at right angles to one of its

topmost edges inclined 45° to the horizon ; the stone is on the
point of slipping and also of toppling over; what is the coeffi-

cient of friction ?

26. A cubical block of stone rests with one of its edges on a
horizontal plane and another against a vertical wall ; find the
limiting position of equilibrium, the coefficients of friction being
/i and /a'.

27. Two equal uniform bars are hinged together at the
extremity and placed on a rough horizontal plane so as to make
an inverted V; find the greatest angle between them when the
coefficient of friction is /i.

28. The centre of gravity C of a bicycle and its rider
(exclusive of the front wheel) is distant 2 ft. from O the centre
of the front wheel and OG makes an angle whose sine is \ with
the vertical; the radius of the front wheel 28 inches ; the weight
of the rider and machine exclusive of the front wheel is 2 cwt.

;

what pressure can the rider apply to the front wheel with his
brake without being thrown forward, the coefficient of friction

between the wheel and the brake being ^?

29. A uniform girder 1 2 ft. long weighing 2 tons is placed
at right angles across two parallel horizontal iron bars ; if it be
placed so that the pressures on the bars are equal, shew that if

it be acted on by a horizontal force parallel to the bars it will

always begin to turn about the bar which is farthest from the
force.
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30. If the girder in Question 29 be so placed that the pres-

sure on one bar is double that on the other, find where to apply
a single force parallel to the bars that the girder may begin to

slide along both bars simultaneously.

31. A boy of weight JF stands on a sheet of ice, balancing
himself by means of a chair of weight W , but not leaning any
of his weight on it. Shew that if the chair be heavier than the
boy he may incline his body to the vertical at any angle less

than tan~i2/i; but that if the boy is heavier than the chair heW
can not inchne it at a greater angle than tan~^2/xyj^

; ^}. being

the coefficient of friction between the boy and the ice and also
between the chair and the ice.

32. A smooth mass of i cwt. lies on an inclined plane in the
form of a wedge whose angle is 30° and weight i ton and which
rests on a horizontal plane. The mass is kept from sliding

down the plane by a horizontal force. Prove that the coefficient

of friction between the wedge and the plane m.ust be greater
than ^ V3-



CHAPTER XVI.

The Graphic Method.

214. We propose to give in the present Chapter a

short account of the Graphic Method of treating Statical

Problems.

215. The Graphic Method is a method by which many

statical problems may be solved by the aid of diagrams in

which lines and angles drawn to scale replace the calcula-

tions of Arithmetic and Trigonometry.

216. A force may be said to be known, when its magni-

tude and direction are known. When it is applied to a

rigid body we must (in order to know what its effect will be)

also be told its line of action.

Also if it is one of a system of parallel forces having a centre, we

must also be told its point of application.

We shall in what follows often use diagrams formed

of lines representing forces : representing them, that is, in

direction and magnitude; but having 710 reference to their

line of action.

217. The student must distinguish between (i) a dia-

gra?n representing forces, whose positions in the diagram

have ?io reference to their poifit of application, and (ii) a figure

representing forces as they actually act on a body. Such

diagrams and figures form the basis of the application of

geometrical problems to Statics.

Example. We are about to prove that the force represented by one

of the sides of a triangle is the resultant of the two forces represented

by the other two.

That is to say, if these three forces act at a point in directions

parallel to the sides of the triangle in the proper senses they will be in

equilibrium.

The triangle is here used as a diagram.
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218. The following is the Graphic Form of the Paral-

lelogram of Forces.

The Triangle of Forces.

When three fo7res OA, OB, OC in one plane ad at a

point, a?id a triangle KLH has two of its sides, KL, LH,
taken the same 7vay round\, parallel and proportional to two

of the forces OA, OB, then the 7icc€ssary and sufficient condition

that the forces OA, OB, OC may he in equilibrimn is, thai

the third force OC is parallel and proportional to the third

side, taken the same way round, HK of the triangle KLH.

« C

\

Construction. Complete the parallelogram OAC'B;
join OC.

Since in the triangles OA C, KLH, by tliis construction,

t Note.—'Taken the same way round' means that the senses in

which the forces represented by tlie sides are to be taken, are such as

would be indicated by a continuous tour of the sides.

H

K '
L

Thus the forces may be those represented by A'L, LH and HK in

tlie figure; or by LK, A'H, HL; but not by A'L, LH and A'H The
same thing is sometimes expressed by the phrase Taken in order.
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two sides OA, AC are parallel and proportional to the

two sides KL, LH, it follows that the third side OC is
•

parallel and proportional to IIK the third side of the

triangle KLH.
Proof. The Parallelogram of Forces states that the

necessary and sufficient condition that the three forces OA,
OB, OC may be in equilibrium is that OC is equal and

opposite to OC

.

In other words, that OC is parallel and proportional to

HK.

219. The Triangle of Forces may also be stated thus :

Let OA, OB, OC be three forces acting at a point;

from any point K draw KL parallel to OA and equal to

X X OA (where A is any number) ; from L draw LH
parallel to OB and equal to A. x OB ; from H draw HM
parallel \.o OC and equal to X x OC; then OA, OB, OC
are, or are not, in equilibrium according as M does, or does

not, coincide with K.

Note. In Graphic Statics we often speak of a line

as representing a force when it does not represent it in

position, but only represent it in direction and magnitude.

For example, we shall often speak of three forces OA,
OB, (9C as represented by the three sides of the triangle

KLH.
220. PROP. /f7/m OA, OB, OC represent three forces

.,., . ,, OA OB OC
in equiliormm, then —.—^^^ = -^

—

jtt^-. — .

Complete the parallelogram OAC'B; join OC.
.p, „ OA AC CO
1 hen — = =

sin OCA sin COA sin OAC"
but, sin OCA = sinBOC = sin BOC

sin COA = sin COA
and sin OAC= sin A OB, and the result follows.

* See Elern. Trigonometry, p. 197.
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Example. ABC is a triangle; three forces parallel respectively to

, BC, CA and AB and inversely proportional to the perpendiculars

AD, BE, CF drawn from A, B, C on the opposite sides BC, CA, AB
act at a poifit. Prove that these threeforces are in equilibrium.

In order to be in equilibrium the forces must be proportional to the

sides of the triangle to which they are parallel.

That is, we must prove that the perpendiculars are inversely propor-

tional to the sides to which they are perpendicular. But AD x BC
= twice area of triangle ABC=BE x CA=CFx AB,

BC CA AB . ^ „^
or — ;= ^— =—.= 2 area oi ABC. q.e. n.

I I I

AD BE CF

EXAMPLES. XXIX.

1. If one of three forces in equilibrium is at right angles to

the second, prove that it is less than the third.

2. One of three forces in equilibrium is at right angles to

the second, and is half the third ; find their inclinations to each
other.

3. Three forces in equilibrium are proportional to i, i, ,J2:
find their inclinations to each other.

4. Prove that of three forces in equilibrium the sum of any
two must be greater than the third.

5. If two forces of given magnitude have a resultant of

given magnitude, then they must always act at the same in-

clination to each other.

6. Three forces represented in magnitude by the numbers

2, 3, 5 act at a point and are in equilibrium : what are their

mutual inclinations ?

7. Three forces of 3 lbs., 3 lbs. and 5 lbs. act at a point

parallel to the side of an equilateral triangle taken in order;

find their resultant.
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8. Two forces of given magnitude act at a point 1\ and

pass one through each of two given points A, B\ prove that if

their resultant" is of constant magnitude P lies on a fixed

circular arc.

9. The sides of a triangle taken in order are 3, 4, 5 inches

respectively; forces of 12, 16, and 19 pounds act along them
taken the same way round; what is the magnitude of their

resultant ?

10. Three forces 5 lbs., 13 lbs. and 20 lbs. act at a point in

directions such that if produced each would bisect the angle

between the other two ; find the resultant of the three forces.

11. Prove that if two forces acting at a point O be repre-

sented by lines OA, OB, of which OB is twice OA, and if ^^ be

joined to the middle point C of OB, and ^C be divided at D
in the ratio of 2 to i, the resultant of OA and OB will be 3CZ>.

12. Prove that if two forces OA, OB be such that

OB= 20A, and if OA be produced to C so that OC=OB, and
BC be divided in D in the ratio i to 2, the resultant will be

10D.
13. If three forces in equilibrium be in the ratio 5:12:13,

find the angles between their directions.

14. Two forces which act on a particle which are to one

another as 2:^/3 have a resultant equal to half the greater

force ; find the angle between the forces.

15. ABCDEF is a regular hexagon and three forces act at

the points in the directions AC, AF, DA; the force in the

direction AF is 2 pounds ; find the other forces if the system be

in equilibrium.

16. AD, BE, CF are the perpendiculars drawn from the

angular points of a triangle ABC to the opposite sides. Forces

act at D in the directions DE, DF ; find their relative magni-

tudes if they be kept in equilibrium by a force in the direction

AD.
17. Two forces of 5 and 6 pounds respectively act at a point

;

find the cosine of the angle between them supposing the re-

sultant to be 8 pounds.

18. Give a geometrical construction for resolving the force

represented by the diagonal of a square into three forces, each

ecjual to the side of the square, one of the forces being co-

incident with a side of the square.

19. Shew that a given force may in general be resolved into

three forces each equal to a given force, the direction of one of

the forces to which they are equal being given.
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20. If three forces keep a particle at rest, prove that the

angle between the two greatest is larger than that between any-

other two.

21. A and B are fixed points on the circumference of a
circle, P is any other point on the circumference ; shew that if

two forces of constant magnitude act along PA and PB, their

resultant will pass through a certain point for all positions of P.

22. C and B are fixed points ; CA and CB represent two
forces

;
prove that when A moves along a given straight line,

the extremity of the straight line which represents the resultant

moves along a parallel straight line.

23. Forces represented by the sides of a polygon taken the

same way round, one side being omitted, act at a point, shew
that their resultant is represented by the omitted side taken the

other way round.

24. A smooth circular ring is fixed in a horizontal position,

and a small ring sliding upon it is in equilibrium when acted
upon by two strings in the direction of the chords PA, PB

;

shew that if PC is a diameter of the circle the tensions of the

strings are in the ratio BC to A C.

221. From the Triangle of Forces we deduce

The Polygon of Forces.

When any yuunber offo7xes act at a point, they are, or are

not, in equilibriutn according as the polygon formed by dra^ving

lines, the same way round, parallel and proportional to the

forces, is, or is ?iot, a closedpolygon.

Construction. Let OP^, OF^, OP^... be the series of

forces acting at O. Take any point A and from A draw
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AB parallel and proportional to OP^; from B draw BC
parallel and proportional to 0I\\ from C draw CD parallel

and proportional to OP^ ; and so on.

Proof. By the Triangle of Forces AC represents the

anti-resultant of forces represented by AB., BC. Therefore

6>/',, OP^ may be replaced by a force acting at O repre-

sented by A C.

Similarly the force acting at O represented by AC and

OP.^, represented by CD, may be replaced by a force

acting at O represented by AD ; and so on.

Suppose that the last three forces left are OP^, OP,.

and a force acting at O represented by AE ;
then by the

triangle of forces, it follows that these three forces (which

replace the original series) are, or are not, in equilibrium

according as the extremity J/ of the final line PjU drawn

parallel and proportional to OP^ does, or does not coincide

with A
;

That is, the series of forces is, or is not, in equilibrium

according as the polygon ABCD... whose sides taken the

same way round, represent the forces respectively, is, or is

not, a dosed polygon.

Note.—If the polygon is not closed the line which closes the

polygon represents the resultant of the system of forces.

223. Any system of forces in one plane acting upon a

rigid body at rest must fulfil the conditions of equilibrium

which apply to forces acting at a point [see Art. 91, Con-

ditions I., II.]. Hence the /iiagnifiide and direction of the

resultant of any number of forces acting on a rigid body

may be found by the polygon of forces. Its Hid: of acfio/i

cannot be so found. The method of finding the line of

action of the resultant is given in Art. 227.

It may be noticed that when the system of forces is equivalent to a

couple the resultant is zero.
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EXAMPLES. XXX.

L The sides oi a quadrilateral taken the same w-av rour :

are I, 2, 9. 7 inches respectively; forces of 2, 4, S. 14 lb^

respectively act parallel to them in the same way; what is the :

resultant vi) if they act at a point, (ii; if they act along the sides

of the quadrilateral ?

2. ABCD is a square, and forces acting at a point ar

represented in direction and magnitude by AB^ zBC^ 3^^')

j^A ; shew that their resultant is represented by -iCA.

3. A straight line OA is at right angles to another straight

line COBy and forces each of 7 lbs. act one in OB another in

OA ; a third in the bisector of the angle COA ; find the magni-

tude of their resultant

4. Prove that if four forces be fully represented by the

sides of a quadrilateral figure taken in order, they cannot be in

equihbrium.

5. The side BC of a square OABC is bisected at E; find

the resultant of forces represented in direction and magnitude

by OA, OB, zOE.

6c ABCD is a square, and forces represented in magnitude

by the numbers 4, 2 s/i, 5 and ^'2, and in direction by the lines

AB, BD, DA and .rlC act at a point ; what is their resultant ?

7. The circumference of a circle is divided into any number
of equal parts, and forces are represented by lines drawn from

the centre to the point of division ; shew (by the polygon <rf

forces) that these forces are in equihbrium.

:: r 4. PROF. TJ^ resuliamtoftwofifrceSy one mprtsaded

b\ a One OA, tJu other rt^resemied by n timfs the line OB
represented ty (n+i) tinus the line joining O to the po-

which arts A6 in the ratio ofn to i.

o

Let G di\nde AB so that AG = n times GB.
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Join OG.

'I'hen two forces represented by OA, AG if acting at O
would have OG for their resultant [Art. 218] and two forces

represented by n times OB and // times BG^ if acting at O
would have for their resultant n times OG.

Therefore the four forces, OA, AG, n times OB,

n limes BG, if acting at O, would have for their resultant

(« + i) times OG.

But AG^n times GB ; therefore the two forces AG
and n times BG are in equilibrium.

Therefore the resultant of the two forces, OA and

// times OB is (// + i) times OG. q. k. d.

225. Consider a system of forces OA., OB, OC, ...

acting at a point O.

Join AB, bisect AB in the point C,

.

The resultant of OA, OB is twice OG^, by Art. 224.

Join G^C, and cut G^C in G^ so that CG.^ : Gfi^ in the

ratio of 2 : i.

Then the resultant of twice OG^ and OC is 3 times 0G^\

and so on.

If there are « forces and G be the last point thus deter-

mined G is called the centroid of the n points A, B, C ...
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Example. Prove that the cenlroid of three points A, B, C is the

centre ofgravity of the triangular area ABC.

To find the centroid of OA, OB, OC we bisect AB at F join CF
and divide CF in G so that CG : GF= -2:1.

But a similar construction gives the centre of gravity of the triangu-

lar area ABC.

226. When the point O coincides with the centroid of

the points A, B, C ... the forces OA, OB, OC ... are in

equihbrium.

For the resultant is n times the distance between O and

the centroid, which distance is in this case zero.

Exaviple. Prove that the forces OA, OB, OC are in equilibrium

ivhen O is the centre ofgravity of the triangular area ABC.

This follows at once ; for the c. G. of ABC is the centroid of the

forces OA, OB, OC.

EXAMPLES. XXXI.

1. Prove that the centroid of forces OA, OB, OC, OD
where ABCD is a parallelogram, is the intersection of the

diagonals of the parallelogram.

2. Prove that if A.^, A.2, A^, ... be points equidistant from

each other on the circumference of a circle their centroid is the

centre of the circle.

3. A, B, C, D,... are the angular points of a regular

polygon of n sides inscribed in a circle
;
prove that the re-

sultant of the forces OA, OB, OC, OD, ... is ;/ times OQ where

Q is the centre of the circle.

4. ABCD ... and A'B'C'D' are the angular points of two
regular polygons, each of n sides, one inscribed in, the other

described about the same circle; prove that the system of

forces OA, OB, OC, OD ... is equivalent to the system OA',

OB', OC, OD'.

5. ABC is a triangle, D, E, F are the middle points of its

sides; prove that the system of forces OA, OB, OC is equi-

valent to -the system OD, OE, OF.
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6. What is the locus of a point O which is such that the

resultant of the forces represented by OA, OB, OC, where
A, B, C are fixed points, is of given magnitude?

7. ABC, DEF are given triangles ; find the locus of a point

O such that the resultant of the forces OA, OB, OC is equal to

the resultant of the forces OD, OE, OF.

8. If two forces are represented by i)i times OA and 71

times OB, prove that their resultant is represented by («+ w)
times OG where G is the point which cuts AB so that

AG y. 7)1 =BG X n.

9. From the theorem of Question 8 find the line of action

of the resultant of two like parallel forces.

10. Prove that if two forces acting at O are represented by
OA and by « times OB reversed, the resultant will be («- i)

times OG where G cuts AB externally so that AG= n
times BG.

11. Prove that if two forces acting at O are represented by
tn times OA and ;/ times OB reversed, the resultant will be
{m — fi) times OG where G cuts AB externally so that

jn times AG= ft times BG.

12. From the theorem of Question 11 deduce the rule for

finding the resultant of two unlike parallel forces.

13. Prove that if lines be drawn from any point P in

a plane to four fixed points in the same plane and these lines

represent forces, the resultant of these forces will pass through
a certain fixed point G and will be proportional to PG.

14. DEF are the middle points of the sides of the triangle

ABC; the system of forces represented by OA, OB, OC is

equivalent to the system represented by OD, OE, OF where O
is any point in the plane ABC.

L. S. 14
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227. PROP. To give a construction for finding the

resultant of ajiy nui7iber offorces acting on a rigid body in one

plane.

Let /'j, /',,, P^ be three forces acting on a rigid body in

one plane.

:>0
,''/r ~--A//

ct'-' ''

Draw the polygon ABCD so that AB, BC, CD are

equal and parallel to the lines representing the forces

P P P

.

Then the line AD is equal and parallel to the required

resultant. [Art. 223.]

To find the line of action of the resultant we proceed

thus.

Take any convenient point O and join OA, OB, OC, OD.

The point is called the Pole.

Take any point H in the actual line of action of P^ and

drawHK parallel to OB to cut the line of action of P^ at K.

B is the point in the other diagram in which lines representing

/*!, Po intersect.

Through ^draw KL parallel to OC X.o cut P.^ at L.

C is the point of intersection of the lines representing P.,, P^.
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Through L and H draw Unes parallel to OD and OA
respectively; we proceed to prove that their point of in-

section, X, is a point in the required line of action of the

resultant.

For, a force represented by AB may (by the triangle of

forces) be replaced by forces represented \)y AO and OB,

provided the forces indicated hy AO and OB act at a

point in the line of action of the force indicated by AB.

Replace P^ by two forces equal to AO and OB acting

along XJI and HA'.

Replace B^ by two forces equal to CO, OD acting along

LX and KL.

Passing through the point K we have forces represented

by OB, BCand. CO; these forces are in equilibrium, and

may be omitted.

Hence the three forces P^, P^, P^ are now replaced by

two forces passing through X, equal and parallel to A O, OD
respectively.

These two forces may be replaced by a force equal and

parallel to AD.

The force through X etiual and parallel to AD is there-

fore the resultant required.

228. The student should exercise himself by drawing

the figure and extending the proof to the case of four forces,

and so satisfy himself that the method is true generally.

We proceed to apply the method to the particular case

of parallel forces.

We shall use the same lettering throughout.

14-
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229. PROP. 2^0find the lifie of action of the resultcv.t

ofa series ofparallelforces actijig on a rigid body.

The polygon of forces is in this case a straight line.

The construction is precisely the same as that of Art. 228.

The lines of action of the forces are of course all parallel.

The following is the figure for the case of three like

parallel forces, W^, JV^_, W^ = AB,BC, CD; their resultant

is R =AD acting through the point X.

s\—

-

X-
/T

5"/'
1

230. The following is the figure for a case of five

parallel forces, P^, P^, P^ in one sense and P^ and P^ in the

opposite sense ; the ' Polygon of Forces ' is AB = P^,

BC = P^, C£>=P^, B£ = P„ EF=P^. Hence the re-

sultant is AF acting through the point X.

A
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X is found by taking any convenient point O and join-

ing OA, OB, OC, on, OE, OF.

Then, in the line of action of /*,, take any convenient

point JI, and

from //, draw ^^ parallel to BO* to cut F^ in K

;

from K, draw KL parallel to CO to cut F^'m L;

from Z, draw ZJ/ parallel to DO to cut F^ in M;
from M, draw JZA^ parallel to Z'6> to cut F^ in N.

Lastly, from H and N draw lines parallel to OA and

(9/^ respectively, to intersect in X.

231. A Funicular Polygon. In the figure of

Art. 229 let XH and XL be produced to Saxxd T. Let SH,

HK, KL, LT he a. string, whose ends are fixed at S and

T, to which weights IV^, W^, W^ are fastened at LL, K, L
respectively.

Then these weights would be supported in the positions

indicated by the strings. The tensions of the strings will be

represented by AO, BO, CO and DO respectively.

Take HF=BO, HS=OA\ complete the parallelogram SEFH.

Then the triangle HFE is equal in all respects to BOA; :. EH=AB
and HE represents W-^^, which is the anti-resultant of HS and HF.

Such an arrangement of lines as SLLKLT is called a

fimicularpolygon.

If the point O were taken on the left of the line AD, it

would be found that if the lines SLL, LLK, KL, LT are re-

placed by rigid weightless rods, and as before, weights W^,

IV^, W.^ were fastened at HKL, the rods would form an arch

by which the weights could be supported in the positions of

the lines.

Such an arrangement of lines is called a linear arch.

* The lines drawn from the point in the line of action of each force must be
parallel to the lines drawn from the pole O to the ends of the line which in the poly-

gon offerees represents that particular force.
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Example. Find by the graphic method the resultant of two parallel

forces.

*!— r-

-t
:~~ro

/
/

With the construction and lettering of Art. 227, we have ^A' parallel

to BO, XA' parallel to CO, and HX parallel to AO.

Draw XN parallel to P, to cut HK'vc\. N, then by similar triangles,

XN : NK= CB : BO,
and HN : XJV=BO : BA

;

.-. ffJV : Ar/sr= CB : AB,
or HNy.P^= NK-x.P^.

This gives the position of the line of action of the resultant which

is equal to ^6" or /j + Z'j. Q. e. D.

232. To find by the Graphic Method the Centre 0/ a

system of Parallel Forces applied at given points.

For instance, to find the centre of gravity of bodies whose weights

and centres of gravity are given.

Let G^,, 6^2, 6^3 be the points of application of three

parallel forces W^, W^, IV^.

Draw the ' polygon of forces ' A, B, C, D, and join A,

By C, D to any convenient chosen point O.

Choose any point H'vcv the line of action of W^.

First, draw HK parallel to BO to cut the line of

action of W^ in K.

Draw ^JT parallel to AO.

Through K draw KL parallel to CO to cut the line of

action of W, in Z.
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/ ' ~v

/ ^^i i /

i
^p

Through L draw LX parallel to OD, cutting HX in A'.

Then AT is a point in the line of action of the resultant of

the forces W^, JF^, W.^.

Draw ATG^ parallel to W^.

Next, suppose the parallel forces to act in some other

direction; we can then by a similar process find another

point X' through which the Hne of action of the resultant of

the parallel forces in their new direction passes.

Draw through X' a line parallel to the forces; this line

must cut XG in the required centre G.

Note.— It is convenient to take the new direction at right angles

to the old. Then the same diagram of the polygon of forces will serve

;

we have only to draw H'K' perpcndiciihu- to B O ; and so on; as in

the figure.

In the second part of tlic construction, lines are drawn from G^ ,

G„, G.^ferpmdicular\.o ABCD; m t^^Zfapoint //' is chosen, and then

lines H'A", K'lJ, L'X', H'X' are drawn perpcmiiciilar to BO, CO,

DO, AO respectively; then through X' a line is drawn perpendicular

io AD to cut XG in G.
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Example i. A beam supported at each end has placed upon it a

weight W ; neglecting the weight of the beam, find by the graphic method

the pressure on each end.

With the usual construction draw AB to represent W; join AO,
BO; take any point H in the line vertically below W and draw HS,
HT lines parallel to OA and BO, cutting vertical lines through M
and A" (the points of support) in S, T respectively; join ST; draw OQ
parallel to ST; then AQ represents the pressure on M, one point of

support, and QB represents the pressure on N, the other point of support.

S-v.^

J N

The proof consists in shewing that W is the resultant of the forces

AQ, QB acting in the vertical lines through 6" and T.

The proof we leave to the student. It may be abbreviated from

that of the next Example.

Example ii. A beam supported at each end is loaded at different

points with three weights ; find the pressure on the supports at the ends.

Let W-^, W„, IVg, be the weights.

Draw AB, BC, CD to represent W-^, J-F^, IV.^, respectively, and

join OA, OB, OC, OD.

Take a convenient point //in the vertical line through W-^.

Draw HK, KL, L T, HS parallel to BO, CO, DO, A O respectively.

Let .^.S", Z 7" intersect the vertical lines through the supports M and

TV in 6" and T respectively.

Join ST; through draw OQ parallel to ST.

Then QA represents the pressure at M,

DQ represents the pressure at N.
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The proof consists in shewing that forces represented by ABi BC,

CD, DQ, QA acting vertically at points IV^, Wn, IV^, N, M are in

equilibrium.

" l\

The student is recommended to work out the proof for himself before

reading the following.

By the triangle of forces, the force QA at M may be replaced by

forces represented by OA, QO, acting along HS and ST.

DQ at JVmay be replaced by forces represented by DO, OQ acting

along LT and TS.

^Fj or AB may be replaced by forces represented by A 0, OB acting

along SH, KH.

W^ or BC may be replaced by forces represented by BO, OC acting

along HK, LK.

IVg or CD may be replaced by forces represented by CO, OD acting

along JiTL, TL.

It will be found that along each of the lines HK, KL, L T, 7"S, SH,

a pair of equal and opposite forces are acting which are therefore in

equilibrium.

Note.—SHKLT is afunictdar polygon.

Let vertical forces act at S and T, equal respectively to QA and

DQ respectively.

Let ST be a rod along which acts a stress represented by QO.

Then, if 6'//A'Z r be a string having weights W^, IK, W-^ fastened

at H, K, L respectively, the rod and the string will be in equilibrium

and the stresses along the parts of the string SH, HK, A'L, LT are

represented by OA, OB, OC, OD respectively.
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Example iii. A light flexible string XABCDY is acted on by given

forces Pj, Pj, Pj, P4 at the points A, B, C, D of the string; find the

conditions of equilibrium.

Draw the polygon of forces HKLMN, where HK= P^, KL = /'j,

LM^P.^, MN=P^\ from H and iV draw HO, NO parallel to the

direction of the string XA, DY.

Join KO, LO, MO.

Then HO, KO, LO, MO, NO represent the tensions T, t^, t^, t^,

T' of the strings XA, AB, BC, CD, DY.

For, first consider ABCD to be a rigid body acted on by the

external forces T, P^, P^, P^, P^, T'.

These forces form a system in equilibrium, and HA', KL, LM, J\fN

represent P^, P^, P^, P^ and HO is parallel to XA ; NO is parallel to

DY.

Therefore, by the polygon of forces, <9^ represents the force along

AX and NO the force along D Y.

Next. The point A of the string is in equilibrium under the action

of the forces T, P^, t^, and the triangle HOK has its sides parallel to

these forces. Also ^A' represents /j;

Therefore KO represents t^.

Similarly L represents t^, and MO represents t.^.
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Note.—It may be noliccd that there is a triangle of forces for each

point A, B, C, D; that there is a polygon IIKLMNO for the external

forces; and that the internal forces /j, i„, t.^ are represented by internal

lines. In fact the internal line OK represents a stress and belongs to

two triangles, the A triangle and the B triangle.

Corollary. In the above figure .suppose /"i, /"j, P.^, J\ to act

vertically downwards and to represent the weights of equal particles

fastened to the string ; then HKLMN would be a vertical line in

which HK=KL=LM=MN.
Suppose the weights to become more numerous, being still equal to

each other and applied at equal intervals along the string. We have

then a means of finding the tension in a Catenary (the curve described

by a heavy uniform chain suspended from two fi,\ed points).

H
X y

Let HN represent the polygon of forces for the weights of the

particles of the chain ; then NN represents the weight of the chain.

Draw HO parallel to the direction of the curve at X, and draw NO
parallel to the direction of the curve at Y.

Then HO represents the tension of the string at X, and NO that at Y.

Let X and Y be in the same horizontal line, then the curve will be

symmetrical and H0= ON.

Draw Oc perpendicular to HN; take /"any point in the chain and

let C be the middle point of the chain ; then Oc represents the tension

at C; let Hp represent the weight of XP\ then Op represents the

tension at P; and
Op-=Oc--^cp^;

:. sq. of tension at /'=sq. of tension at ^+sq. of weight of CP.

Also the direction of the tangent to the catenary at P is the same

as that of Op, the tension at P; therefore it makes an angle with the

horizon whose tangent is

pc _ Vfeight oiPC
CO tension at C

Again, the horizontal resolute of the tension Op at any point P is

Oc, which is the same for all points, and is the tension at C.
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CHAPTER XVII.

Couples.

233. In this chapter we call attention to a few points

concerning Couples, using the principles of Chapter V.

A couple consists of two forces which are equal parallel

and of opposite senses but not in the same line.

If the forces forming a couple were in the same line of

action they would be in equilibrium.

234. PROP. Let a system offerees acting in one plane

on a rigid body not in equilibrium be such that if an exactly

equal andparallel system offorces allpassed through the same

point, they would be i7i equilibrium ; then this system offorces

is equivalent to a couple.

For, by Art. 86, the system of forces is equivalent to

two forces applied at two chosen points A and B, one of

the forces (that at B) being perpendicular to AB.

Since the system of forces is such, that if the forces

acted at a point they would be in equilibrium, therefore the

sum of their rcsolutes in any direction is zero.

Therefore the sum of the resolutes in any direction, of

the equivalent forces at A and B, is zero.

Therefore the force at A must be equal parallel and of

opposite sense to the force at B.

In other words, the system of forces is statically equiva-

lent to a couple.

I
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235. PROP. When a system of forces in ofie plane

acting on a rigid body is not in equilibrium^ but is such that

an exactly equal and parallel system of forces, passing all

through one point, is iti equilibrium, then the sum of the

moments of these forces about any point in their plane is

constant.

This system of forces is statically equivalent to a

couple. [Art. 234.]

The moment of a couple is constant for any point in

its plane [Art. 77]; which proves the proposition.

236. PROP. Two couples are statically equivalent ivhich

are in the same plane and have equal like motnents.

For two couples which are in the same plane and have

equal and opposite moments are in equiUbrium.

For they satisfy the conditions of Art. 91.

237. A number of couples in the same plane are statically

equivalent to a single couple whose moment is tJie sum of the

moments of the couples.

For each couple can be replaced by a couple of equal

moment having an arm common to all.

Example. Forces represented hi direction, viagnitnde and line of

action by the sides of a triangle taken the same way roundform a couple.

Let ABC be the triangle, from A draw AD perpendicular to BC;

the sum of the resolutes along BC of the forces represented by AB,

BC, CA are BC, CD, DB whose sum is zero.

Similarly the sum of the resolutes along AB is zero.

Therefore the forces represented by AB, BC, CA if they acted at

one point would be in equilibrium.

Therefore they are equivalent to a couple. Q. e. d.

Therefore the sum of their moments about any point is constant.

The sum of their moments about A is represented by twice the area

of the triangle ABC.
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238. The student should endeavour to get a practical

idea of a couple by experiment.

The twist applied to a screw driver (without pressure on

the head of the screw) is a couple.

The two forces applied by the fingers to the handle of a

tap form a couple.

The full effect of a couple can hardly be understood without some
knowledge of rigid dynamics; just as the full effect of a single force

cannot be realized without the study of linear dynamics.

239. PROP. A force P acthig at afiy point Kof a rigid

body is equivalent to an equalparallelforce acting at any other

point B of the rigid body and a couple whose moment is equal

to F X the perpendicular distance betweeri the forces.

At the point B let two opposite forces

i^j, jPg each equal and parallel to P be

applied to the rigid body.

These two forces will not disturb the

equilibrium, and the three forces are

statically equivalent to P.

But P^ and P are a couple whose ^

moment is equal to Z' x the perpendicular distance between

T^andP,.

Thus P is statically equivalent to P^ and this couple.

N.B. This couple is statically equivalent to a couple of

equal moment in the same plane acting anywhere on the

rigid body.

Thus the point of application of a force may be moved

from any point of a rigid body to any other point whatever,

without changing its effect on the rigid body as a whole,

provided that at the same time the proper couple be applied

to the rigid body on which it acts.

^A
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240. In the following examples we consider the nature

of the strain at a point of a rigid rod.

Example i. A light horizontal rigid rod AB is supported at its ends

A atid B by rigid supports, and a ivcight W is fixed at a point C of

the rod; find the tendency to break at a chosen point D of the rod.

Since the rod is in equilibrium we have, if P and Q are the upward

pressures on the rod at A and B respectively,

P^Q=W :mCi Py-AC^Qy-BC.

/

^

W I
^

7,

f

•»«

£L
I

w

tW "Tt

\^

We may get some notion of the nature of the stress at any point Z>

of the rod by the following supposition.

We shall suppose that the parts AD, DB of the rod are two separate

rigid bodies.

We shall suppose that these two rigid bodies are connected by a

small hinge at D, the highest point, and by a very short wire at D' , the

lowest point, of the section of the rod at DD'

.

Now since each part is in equilibrium, it would make no difference,

so far as the rod DB is concerned, if the rod AD were replaced by a

fixed wall to which the rod DB is attached by the hinge D and the wire

D^ respectively.
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We shall suppose then that the rod DB is fastened to a vertical wall

in this way.

We proceed to consider what stresses in the hinge at D and in the

wire at D' are necessary to keep the part of the rod DB at rest.

Let the action of the hinge D on the rod DB be a vertical force

downwards Kand a thrust T.

Let the action of the wire D' on the rod DB be a pull T'.

Then (i) resolving horizontally, (ii) resolving vertically, and (iii)

taking moments about D, we have

T^T' (i),

y^Q. (ii).

TxDD'= Q^BD' (iii).

Hence the hinge and wire must apply to the beam BD a vertical

force downwards = ^, and a couple whose moment
= ^ X BD'.

Similarly by considering the beam BD to be replaced by a fixed

wall we shall find that the rods must apply to the beam AD a vertical

force upwards
= W- F^ Q,

and a couple T, T', such that

TxDD' =PxAD- WxCD= QxBD.
Hence, the stresses in the short connecting hinge and wire at D

consist

(i) of a tendency on the part AD to slide down DD' measured by

the force Q; this part of the stress is called a shearing stress,

(ii) of a tension 7" in the hinge D', and a compression 7* in the wire

D, such that

TxDD'= QxBD.
It should be noticed that when DD', the thickness of the rod at D

is diminished, the tension and compression T'and T' increase.

And that when DD' is small compared with BD, T is large when

compared with Q.

If the stresses are investigated for other points than D of the rod

the shearing stress will be found to be uniform throughout the portion

CB of the rod, while throughout AC the shearing stress

We have seen that T the tension at D' is to Q as BD : DD' and in

a thin rod when D is near the middle the ratio would be supposed
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to be largo. Iloncc in the case of a rod it is customary to consider

that its tendency to break is measured by the magnitude of T.

Now T is proportional to (? x BD, that is to the moment of the

force acting on one point of the rod about the point D.

In actual iron beams with heavy top and bottom flanges and light

connecting webs, as in the case of bridge girders, rolled iron beams etc.,

the slight resistance of the web is often neglected for convenience in

calculation and to leave a margin for safety. The flanges are then re-

garded as acting like the hinge and wire at D, D' in the figure, and

their stresses are found in the same way. [See Ex. 14, p. 229.]

But in solid rectangular beams (as of timber, etc.) this method is

not sufficiently approximate.

In such beams the resistance of the cross section is much more

complex, the fibres throughout offering resistances which vary with their

distance from the central axis of the beam.

But it is still approximately true that the tendency to break at

any point increases proportionally to the sum of the moments about

that point of all the forces acting at either of the parts of the beam into

which it is divided at that point. Hence

The tendency to break at a given point of a rigid

rod is measured by the sum of the moments of all the forces

acting on one of the parts into which the rod is divided at

that point.

Most materials used for beams, such as well-seasoned wood, iron,

stone, exert greater resistance to crushing than to tension. Hence when

a beam breaks the fracture most frequently occurs first in the part

under tension ; which, in a beam loaded between its supports as in the

above example, is the lower part of its section.

When a beam is loaded at its ends and supported between them,

or when it is fixed at one end and loaded at the other, the upper rod at

D would be in tension, and the lower one in compression.

Example ii. A heavy unifortn rod AB, of weight w, is supported

by fixed supports at each end and is loaded by a weight W at C; find at

7vhat point in its length the tendency to break is greatest.

Let G be the middle point of the rod and let C be between A
and G. We shall use the method and notation of Example i.

L. S. 15
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Since the rod AB is in equilibrium we have

and Qy.BA^u>y. \AB+ Wy. A C.

Also since the rod is uniform the weight, Wj, of any portion J>D of

BD
the rod = AB

\////fr:///i/jj///////n//ih>)i//i/i/n/P^ifi.w))//i^i/i///////////.o^

TT

A f

2/

A

I. Consider the tendency to break at a point in the part CB of the

rod.

Take a point JJ in CB ; then with the notation of Example i. we

have 7"= T'

,

F= Q - w-^ [where tCj is the Nveight of the rod BD\,

T X DD' = (2 X BD -
7<'i

X \BD, *

^QxBD-iaxh^.
Ar>

Now we have explained that the tendency of the rod to break is

supposed to be measured by the magnitude of T.

Therefore this tendency is greatest for different positions of D, when

Q X BD -wx\ ——^ is greatest

;

I

• The student should notice that this is the moment-SUm abOUt /' Of

all the external forces which act on the part BD of ilie luJ.
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that is, wlien -^j— AB . BD - BD-l is greatest

;

that is, when \^ AB" -
f
^ AB - Bn)\ is greatest

;

that is, when f^ AB - BD\ is least

;

that is, when {\AB^—. AC - BD
j

is least;

that is, when { — AC - GD \ is least,

supposing that D nu\v lies between C and G.

Therefore the tendency to break in the part CB is greatest at D
IV IV

len GD-~ AC; unless - AC 1

70 70

the tendency to bi-eak is greatest at C.

when GD—~ AC; unless - ^C is greater than GC, in which case

II. It will be found that the tendency to break in the part AC is,

in any case, greatest at C.

Thus the tendency to break in the rod is greatest at C unless

VV— AC is less than GC, in which case the tendency to break is greatest

W
at the point D between C and G such that GD=— AC.

' 7V

241. We may here sum up the results which have

been proved with regard to a system of forces acting on a

rigid body in one plane.

I. Any such system of forces not in equilibrium is

statically eciuivalent to a single force, or to a couple.

II. If it is equivalent to a couple, then

The sum of their moments about any point in the plane

is constant.

The sum of their resolutes in any direction is zero.

If forces equal and parallel to these acted at a point,

they would be in equilibrium.

^5—

2
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III. If it is equivalent to a shigle force, then

The sum of the resolutes of the given forces in any di-

rection is equal to the resolute of this single force in that

direction

;

Also the sum of their moments about any point is equal

to the moment of this resultant about that point.

IV. A system of forces acting on a rigid body is in

equilibrium when it is equivalent neither to a force, nor to a

couple.

For Example. If the sums of their moments about three given

points not in the same straight line are each zero, the system is in

equilibrium.

For this statement cannot be true of a single force nor of a couple.

Again. If the sums of the moments about any two points A and

B are each zero and the sum of the resolutes parallel to AB is zero the

system is in equilibrium.

EXAMPLES. XXXn.
1. Forces represented in magnitude and line of action by

the sides of two triangles taken opposite ways round are in

equilibrium provided the triangles are of equal area.

2. Forces represented in direction and line of action by the

sides of a polygon taken the same way round are equivalent to

a couple whose moment is represented by twice the area of the

polygon.

3. ABC is a triangle ; D, E, F are points in the sides such

^ BD CE AF . . . ^ . ,,
that ^.^^T^i

= -7^—y, = T^n^*; shew that the sum of the moinentsDC EA FB
about A of forces represented by AD, BE, CF is represented

\ ~ k
by r of twice the area of the triangle ABC; hence shew that

^ \+k
the forces cannot be in equilibrium unless k=\.

4. Prove that a system of forces in one plane acting on
a rigid body is in equilibrium if the sums of their moments about
two points A and B are each zero, and the sum of the resolutes

in any direction, not perpendicular to AB, is also zero.

5. What is the resultant of two couples, and how is it found.''

6. In the example of page 223 find at what point of the rod

there is the greatest tendency to break.
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7. A heavy rod is supported in a horizontal position by two
ri<;id supports one at each end ; shew that the point at which
there is the greatest tendency to break is the centre of gravity.

8. A man weighing 160 lbs. walks across a uniform heavy
plank weighing 100 lbs. Compare the tendency of the plank to

iDreak (i) when he is a quarter of the way across and (ii) when
he is halfway across with its tendency to break when the man
is not on the plank.

9. Find the tendency to break of the rod in Example iii,

p. 70, at the points 7?, (9, and C.

10. Find the tendency to break of the rod in Example iv,

p. 70, at the point B and at the middle point of the rod.

11. A uniform heavy rod of weight W and length ia is

supported in a horizontal position by a rigid support at each
extremity; shew that the shearing force and bending moment
at a point distant x from one end are

\W{\ — j
and \ IVx ( i — —

j
respectively.

12. Shew that other things being equal, a lever of the

second class is less likely to break than a lever of the first class

in supporting the same weight.

13. Three straight tobacco pipes with long tubes rest upon
a table with their bowls mouth downwards in the angles of an
equilateral triangle, the tubes being supported in the air in an
approximately horizontal position by crossing symmetrically
each under the second and over the third so as to form another
equilateral triangle ; shew that the mutual pressure of the tubes,

considered vertical, varies inversely as the side of the last

triangle.

14. A rolled iron joist 20 feet long, whose -^__£^_j'v

section is ABCDEF, such that AR and CI) are

each 6 inches by i inch and EF is i foot long, is

supported by its ends in a horizontal position ; find

what load can be safely placed at any point in its

length by the method of p. 225 ; assuming that the i

strength of the web EF is sufficient to support the
!

weight of the joist itself and that rolled iron can c F D
just sustain a tensile strain of 20 tons per square inch.

15. If in the last example AB and CD are each 8 inches by
I inch, EF—io inches, the length of the joist 16 feet, and the

material steel, capable of bearing a tensile stress of 45 tons per
square inch, what is then the load which the joist can safely bear?
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242. In Solving a Statical Problem, remember,

That conditions I and II of Art. 83 are true of the

extemaliorcQS acting on any body (or bodies), whether rigid

or not, when the body is in equihbrium
;

That when conditions I, II, III of Art. 91 are satisfied

by the external forces which act upon a rigid body, that

body must be in equihbrium.

Hence, in solving a Statical Problem we fix our attention

on a rigid body, then, drawing a figure,

I. We draw lines to represent the forces.

When we know the direction and magnitude of a force we can

represent it by a straight line of definite length.

When we know the direction and not the magnitude we draw an in-

definite line in the known direction and represent the unknown magni-

tude by some letter P, or Q ....

When we know neither the direction nor the magnitude, we choose

two convenient directions at right angles to each other and represent

the rectangular components of the force each by some letter .r, o\\y....

II. We consider carefully whether from the conditions

of the question the direction of any reaction on the rigid

body is known.

III. We then write down three etiuations derived from

the conditions I, II, III of Art. 91.

243. If in any question there is more than one rigid

body we consider each rigid body in turn.

It will be found by experience that a great deal depends

on the choice of the direction in wliich we resolve forces,

and also on the choice of the point about which we take

moments. A convenient choice will often simplify the sub-

sequent equations, and thus enable us to avoid awkward

algebraic transformations.
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244. Wc proceed to give a few examples of the apj")!!-

cation of the above methods and principles to statical

problems.

Example i. Four equal rods hinged together in theform ofa rhombus

ABCD, are placed on a horizontal table, their extremities A, C and B, 1)

b:ing connected by two strings each under tension. Compare these

tensions.

We may consider the extremities of the strings to be attached to the

rods AB and DC\ so that the rod BC is acted on only by the actions

of the rods at its extremities; hence the actions on the rod BC must be

equal and opposite, i.e. along the rod BC; similarly the actions on the

rod AD must be along the rod AD; hence,

Considering the forces acting on the rod AB, they are as drawn.

The resultant of the parallel forces, K, A" is a parallel force and

must pass through the intersections of the tensions at E. The rod AB
would therefore be at rest when under the action of the two tensions

T^, 7; and of a (ovce=(A' + B') applied at the right point in the direc-

tion CB; these forces, therefore, if they acted at one point would be

in equilibrium. Hence, the sides CB, BE, EC of the triangle BCE,

being parallel to this resultant and the two tensions, are proportional to

them respectively.

Therefore T^ : T.,= EC : EB.

Note. When a rod is acted on by forces which are applied only at

each of its ends, these forces must be equal, opposite and along the rod.
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Example ii. Two equal light rods AEB, CED are hinged together

at their middle points E and are placed in a verticalplane ivith their ends

CB on a smooth horizontal plane; a string carrying a weight W at its

middle point F, has its ends fastened to the ends A and D of the rod.

Prove that in the position of equilibrium F bisects the perpendicular

from E on AD.

Since the whole figure is symmetrical about the vertical through E
the forces must be symmetrical about that line. Therefore the stress at

E, the hinge, must be perpendicular to FE.

Consider the forces acting on the rod CD.

They are as drawn in the figure; and the three forces meet in

a point II. lie is parallel to FE and CE=ED;
.'. FE=\HC. Q.E. D,

Example iii. A light rod ACB, which is hinged at K to a vertical

wall AD, and which is supported in a horizontal position by a string

fastened to the rod at C and to the wall at D, supports a weight W
fastened to its extremity B; find the stress between the wall and the rod

at/f.

Method I. Geometrical.

Consider the forces actintr on the rod A CB.
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They are IV vertically downwards at />',

a tension Z" along the string CD,

the action K at the hinge.

The directions of these three forces meet in a point.

Let DC produced meet the vertical through H in E.

Then the direction of A' is along AE.

AED is a triangle whose sides are parallel to R, T, JV;

:. R : T: W=AE : ED : DA.

Method II. By resolution.

With the same notation as above let R be resolved into two rect-

angular components, ,Y horizontal, K vertical;

let ACD= a.

Then taking the sums of (i) the horizontal resolutes, (ii) tlie vertical

resolutes, (iii) the moments about A, we have

X- T'cosa^o (i)

Tsina- Y- lV=o (ii)

TxACsina- WAB^o (iii).

Whence

ABX— Tcos a= JV cot a
AC ^^ AC AD AD'

F= rsin ( iy^w(^^-.
\AC AC AD

[by similar triangles CBE, CAD],

R=^(X-+ y"-)=JF ^ /^^+ B£" ^ AE
AD"" ~ AD

This agrees with tlie first solution.
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Exatnple iv. A smooth iiniforiit rod ABC of Iciiglh 2a ami 7veight

W is placed in a smooth hemispherical bowl DAE of radius r which is

fixed so that its 7-iin is horizontal. Find the position of equilibrium.

i^^J^y^

Consider the forces acting on the rod ; they are, (i) its weight acting

at G its middle point; (ii) the action R' of the rim on the rod at B
perpendicular to the rod; (iii) the action R of the bowl on the rod

at A which is perpendicular to the bowl and passes through the centre

C of the hemisphere.

[The directions of these three forces must meet in a point and the

problem could be solved geometrically.]

Let the rod make the angle a. =BAX vi\\!a. the horizontal line AX;
then CAD^ CDA =BAX= a.

Taking the sum of the resolutes along the rod, we have

R cos a - ^Fsin a = o.

Taking the sum of the moments about B, we have

R X BA sin a - JVGB cos a— o\

:. j^x 2rsina= JF(2>'cosa-rt) cos a ;

.". IVx 2^ sin- a= IV^ircos a ~a) cos a;

.". 2;"— 4;' cos-a + (Z cos a — o ;
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Example v. T'vo equal uni/onn licains ADB, BCE each of weight

W hinged at B stand inclined to each other at an angle 20 in a vertical

plane, on a smooth horizontal plane. Their middle points D, E are

joined by a light string. Find the conditions of equilibrium.

I. Consider ihe forces acting on the beam ADB.

The beams act upon each other at B.

Let /" be the action of the beam CEB upon A DB.
The reaction o{ ADB upon CEB is equal and opposite to A". The

l)eams are symmetrical about the vertical line through B ; therefore the

action between the beams at B must be symmetrical with the vertical

line, hence the action at B must be horizontal.

The action R between the beam and the vertical plane at A must

be perpendicular to the plane because it is smooth. The tension T of

the string DE is along the string which is horizontal.

Thus, the forces acting on the beam AB are (i) R' horizontally at B;
(ii) 7" horizontally at D; (iii) /F vertically downwards at /); (iv) R
vertically upwards at A.

Hence taking the sum of the horizontal resolutcs, we have

A"- T=o.

Taking the sum of the vertical resolutes, we have

R- \V=o.

Taking the sum of the moments about Z*, we have

A' sin a — R' cos a.

Whence 7^= A"=^ tan a= ^Ftan a.
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Example vi. In the above example let the string be replaced by a

beam whose weight is iw. Find the conditions of equilibrium.

I. Consider the forces acting on the beam DE.
Let the action of the beam AB upon it be resolved into two forces,

one 7" along the beam, and the other X vertically.

Let the action of the beam BEC upon DE be similarly represented

by Z" and X'. The only other force acting on DE is its own weight.

Hence, from the horizontal resolute sum we have

T- T'^o\
from the vertical resolute sum we have

X-\-X' -iw^o',

and the sum of the moments about the middle point gives us that

X-X'^o.
Hence X^w.

fi_5

IL Consider the forces acting on the rod ADB.
With the notation of the last example we have the action R^ at B of

BEC on ADB is horizontal; R.^ is vertical; the action oiDE on ADB
consists oiiv vertically downwards, and 7" horizontal towards the right.
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Then, as before, we liavo

T-A\^o (i)

/v'o- JV-7u^o (ii)

J\., sin a - A'j cos a= o (iii).

Whence T= A'j = A'o tan a =; ( /F+ w) tan a.

Example vii. A framcii'ork in thefor7n ofa square ABDC made of

four locightless rods hinged at their extremities., is suspendedfrom A ; the

middle points ofAH, BD arejoined by a strmg, and equal weights w, w

are suspettded from F, H the t/iiddle points of BD, DC ; find the

direction of the stresses at the angular points of the square.

.2iJ

We may suppose the string at A to be fastened to the rod AB\ then

considering the forces acting on each rod separately, we have

(i) the rod ^C is acted on only by the two actions of the other

rods at its extremities. These actions A', , Hy must be equal and

opposite, and therefore must act along the rod as drawn;

(ii) the rod^C is acted on by the weight w at H\ by R^ at C as

drawn and by R.y the action at D. The two forces w and R^ meet at A'

the middle point oi AC; therefore R.^ acts along DA';

(iii) the rod BD, is acted on by R.^ as drawn passing through A';

by T- 0) vertically upwards at F; if these forces intersect in Z, the

direction of the stresses at B must be along BL.

The magnitudes of the stresses can now be found from the geometry.

The values are

Ri = iJ'^-^\ R.,^\s'^oi; A'.. = jV^w; T={\+J^i)u3.
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Example viii. An isosoceles triangular lamina ABC is placed in a

verticalposition with its base BC against a smooth vertical wall and is

supported in that position by a smooth horizontal rod O parallel to the

wall. Find the limits of the distance of the rod from the wall.

Suppose the triangle on the point of toppling over.

Then the pressure on the wall must be all concentrated at an

angular point of the base.

The two cases are indicated in the tigures and the forces acting on

the triangles are as drawn.

Let the angle ^yiC^ 2a.

Fig. I.

Then in Fig. I. the perpendicular from on the wall

= CO cos a— CA'cos- a = \DA cos- a.

Fig. II.

In Fig. II. the perpendicular from on the wall

= DG-^ OA'sin a. [and OK=BC cos a - BKim. a]

=\DA -^ DC%vcia.co%(L-\DA sin a= Z>^{^ -^ sin a + 2 sin'a}.
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EXAMPLES. XXXIII. PROBLEMS.

1. Two equal uniform rods AEB, BFC are hinged at B
and their middle points E., F are joined by a string whose
length is less than that of AB ; they are suspended from a

fixed ])oint by a second string attached to the point A ;
shew

that the tension of the first string is double that of the second.

2. Two equal uniform rods ABC, BDF each of weight W
are hinged at their middle points and placed in a vertical plane

with their extremities A, D oxva. smooth horizontal plane so that

the angle ABD = 2a, and are kept in that position by a string join-

ing A and D; prove that the stress at the hinge = JFtan a.

3. Two equal uniform rods AB, BC each of weight W a.re.

hinged at B and are placed in a vertical plane with their extremi-

ties ^, C on a rough horizontal plane so that they are inclined

to each other at the angle a; prove that the stress at the hinge =
the amount of friction called into play = ^ TFtan a.

4. A uniform rod ABC has a string attached to the point B,

where BC=2,AB, of length equal to AB, the other end of the

string is fastened to a point D in a smooth vertical wall ; the rod

is placed with the end A against the wall and is supported by
the string, the string and the rod being in a vertical plane.

Shew that the rod will be in neutral equilibrium.

5. A uniform rod of length 2/ rests with one end against a

smooth vertical wall and is placed across a smooth horizontal

l)ar fixed at the distance a from the wall
;
prove that if u be the

(I

inchnation of the rod to the horizon cos^ " ~7 •

6. A heavy sphere of weight IV rests between two planes

inclined at angles Oj, a., to the horizon; if the pressures on the

planes are A\, A\,, prove that

W _ R^ _ J^i
sm {ay+ a.^ sina.j sinoj'

7. A ladder (a + d) feet long whose C. G. is a feet from the

lower end, is placed with (me end om the top of a smooth wall,

the other end on the ground which is rough; shew that the

rr- 11 J • 1 • Wa %\Vi^ a-\- b CQ%^ a ,

amount of friction called into play is -
,

, where
'^ ' a + o

u is the inclination of the ladder to the horizon.
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8. Two equal heavy uniform beams AB, EC each of weightW hinged together at B rest in a vertical plane with their ends
A, C supported by the tops of two walls in the same horizontal
line

;
prove that the horizontal thrust on each wall is

^ ^{AB^-\Aay
9. If the beams of Question 8 are placed on a smooth

horizontal plane, prove that the bending moment of the strain

on the hinge \i\W y. AC.

10. Two equal heavy uniform beams AB, BC are hinged
together at B and their other ends rest on a smooth horizontal

plane, the plane ABC being vertical. The rods are kept from
slipping by a string joining A to the middle point of BC. Prove
that when ABC is an equilateral triangle, the tension of the
string is half the weight of one of the rods.

11. If the beams in Question 10 are kept from slipping by a
string joining any point to AB to any point in BC, prove that

the stress at the hinge is parallel and equal to the tension of the

string.

12. Two equal uniform beams AEB, BFC hinged at B,
stand in a vertical plane with their ends A,C orvz. smooth hori-

zontal plane ; their middle points E, F are joined by a beam of

like material so that BEF is an equilateral triangle, and a
weight equal to a quarter that of the beam AB is suspended
from B ;

prove that the horizontal stress along the horizontal

rod is ^/3 times its weight.

13. A pair of steps AB, BC consisting of two uniform heavy
ladders each of length a and weight JFj, freely hinged together

at their upper ends and inclined to each other at the angle 2a,

are placed in a vertical plane with their ends ^C on a rough
horizontal floor. A man of weight W ascends the ladder AB
to a distance c from A. Prove that the end C will slip before

B; and that if 6 be the inclination to the vertical of the stress

at the hinge

tan5= tan a ( ^77^+ i

14. A pair of steps in the form of two equal uniform ladders

ABC, CDE, each of length a and weight W, freely jointed at C,

stand in a vertical position with their feet A, E on a. smooth
horizontal plane, and the points B, D are connected by a string

when CB=CD— b; a man of weight W walks a distance c up
one of the ladders

;
prove that the tension of the string is

; tan hA CE.
2b
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15. Two equal uniform heavy beams each of length 2a are
freely hinged at one extremity and are placed astride on a
smooth circular cylinder of radius b whose axis is horizontal.
Shew that the inclination a of each beam to the vertical is

given by the equation

a€m^ a- b cos a= o.

16. A square lamina rests with its plane perpendicular to
a smooth wall, one corner resting against the wall and another
corner being attached to a point in the wall by a string whose
length is equal to a side of the square. Shew that the distances
of its angular points from the wall are as

o : 1:3:4.

17. A picture frame, rectangular in shape, is suspended
against a smooth vertical wall by two strings, each equal to
the height of the frame, attached to two points A^ B in the upper
edge of the back of the frame and to two points C, D in the wall
in the same horizontal line such iXx-aX. AB = CD ; shew that if the
CO. of the frame coincides with its centre of figure, it will rest

against the wall at the inclination tan~i - where <j= the height

and <^= the thickness of the frame.

18. An isosceles triangular lamina of height Ji and vertical
angle 2a is placed in a vertical plane with its base against a
smooth vertical wall and is supported by a string attached to its V
vertex and to a point in the wall

;
prove that the greatest

possible length of the string is

//v/(i + 2tan2a).

19. An equilateral triangular lamina is suspended against
a smooth vertical wall by means of a string fastened to the
middle point of one side of the triangle and to a point in

the wall, shew that when there is equilibrium the tension of the V
string is independent of its length; and that equilibrium is

impossible if the string be longer than the height of the triangle.

20. A uniform right circular cylinder of height zb, and
radius <?, with its base resting against a smooth vertical plane,
is supported by a string fastened to its curved surface whose
distance from the vertical plane is h. Shew that h must be
greater than b - ia tan 6 and less than b ; where 6 is the angle
which the string makes with the vertical.

L. S. 16
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21. A right circular cone of height h and semivertical angle

a is placed with its circular base resting against a smooth
vertical wall, and is supported by a string attached to its vertex

and to a point in the wall
;
prove that the greatest possible

length of the string is

/^^/(I + V-tan2a).

[N.B. The C.G. of a cone divides the height in the ratio i to 3.]

22. A uniform hemispherical bowl, whose c. c. is at the

middle point of its axis, is placed with its circular base against

a smooth vertical wall, and is supported by a string attached
externally to the extremity of its horizontal radius, or axis, and
to a point in the vertical plane; shew that the angle which the

string makes with the vertical lies between tan~i | and W.

23. A uniform rod of length '})2a rests partly within and
partly without a smooth circular cylindrical cup of radius a ;

prove that in the position of equihbrium the rod makes the

angle 60° with the horizon.

24. Shew that the cup in the last question will topple over

unless its weight is at least six times the rod.

25. Shew that if in the last question the length of the rod

is /, the angle which it makes with the horizon is the angle

whose cosine
3/26!:

26. A uniform upright circular cylindrical cup of diameter

d, height h and weight W, open at the top and bottom, is set

on a smooth horizontal plane; a smooth uniform rod of length

/ and weight W, rests partly within and partly without the

cylinder ; one end of the rod resting both against the plane and

against the cylinder. Prove that for equilibrium in (/i^+ d^)^

must be greater than W'lJi^.

27. Two equal cubes each of weight TFare placed near each

other on a rough horizontal plane whose coefficient of friction

is tanX so that the line joining their centres is at right angles

to the adjacent vertical faces. An isosceles prism of weight IV
and semivertical angle a is supported symmetrically between

them, resting on an edge of each cube. Prove that if the cubes

are about to slip

W
tan X tan (« + ^) = ^7^r^^-|/' •
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28. A uniform rod is placed inside a rough hollow fixed

circular cylinder whose axis is horizontal so that the rod is

perpendicular to the axis; prove that the greatest inclination to

the horizon at which the rod can rest is

IL

tan"
cos- a - [i. sin" a

where /x is the coefficient of friction and la the angle subtended

by the rod at the centre of the cylinder.

29. Two equal spheres of the same material each of weight

IV are suspended from a fixed point by two equal strings

attached to points on their surfaces each string inclined at the

angle ^ to the vertical. A sphere of weight w is placed sym-

metrically between them in the vertical plane containing the

strings, and the line joining the centre of the sphere to the

centre of each of the other spheres is inclined at the angle a to

the vertical. Prove that the two equal spheres will not separate

provided is greater than —j-y-— .^ tana ** 2/F+a)

30. An equilateral triangular lamina, suspended from a

smooth peg by the loop of a string whose ends are fastened to

two of its angular points, rests with one of its sides vertical;

shew that the length of the string is double of the altitude of the

triangle.

31. A uniform heavy rod AB has one end A fastened to a

fixed point C by a string and has the other resting on a rough

horizontal plane; prove that if the angle CAB is a right angle

and the inclination of the rod and the plane is a, then, the coeffi-

r r 1 tan a
cient of friction must exceed -k-.

1+2 tan'' a

32. AB^ BC are two uniform rods of equal weight but un-

equal length, hinged at B. A string, one end of which is

attached to A and the other to a smooth ring moveable along

BC, is hung over a small pulley. When the system is in equi-

librium shew (i) that one part of the string will be perpendicular

to the rod BC, (ii) that the portions of the string on either side

of the pulley will be equally inclined to the horizon, (iii) that the

actions at B will be horizontal.

33. Two uniform heavy beams AB., BC each of length a are

freely jointed at /> and rest in a vertical plane symmetrically
over two smooth small pegs CD in the same horizontal line;

prove that each rod is inclined to the horizon at the angle

16



244 STATICS. XXXIIL

34. Four equal rods AB, BC, CD, DA freely jointed at

y?, B, C, D are placed on a smooth horizontal table to which BC
is fixed. The middle points of AD, DC are joined by a string
which is tight when the rods form a square ; shew that the
moment of the couple, which acting upon AB produces on the
string a tension T, is \T. AB Jz.

35. Three equal uniform heavy beams AEB, BC, CFD are
freely jointed at B and C, and rest in a vertical plane on two
smooth small pegs E and F in the same horizontal line ; shew
that KB must be equal to \AB cos- 0, and that 3 tan a tan /3= i,

where a, /3 are the inclinations to the horizon of the stress at

either hinge, and of the rod AB.

36. Two equal heavy uniform beams AB, BC are freely

jointed at B and their extremities A, Ccan slide by means of

smooth small rings each on one of two fixed rods DA, DC each
equally inclined to the vertical

;
prove that the inclination of

each rod to the vertical is

tan-i (2 cot \ADC).

37. Four equal uniform rods AB, BC, CD, DA freely

jointed together to form a rhombus are hung over a smooth
small peg at A and the hinges BD are kept apart by a light

rod
;
prove that the stress on the rod is to the weight of the

frame as BD : 2A C.

.38. Four equal uniform rods each of length 2a are freely

jointed at their extremities so as to form the rhombus ABCD.
They hang symmetrically on two smooth pegs in the same
horizontal line, A being the highest point. Shew that when the

pegs are Us^h apart the rods form a square and that then the

actions at the joints are as 3 : ^/5 : i.

39. Seven equal uniform rods each of length 2a are freely

jointed to each other and the two free ends are fixed to two pegs
in the same horizontal line, about which they are free to turn,

and the whole system hangs in a vertical plane ; shew that if the

rods beginning with the highest make the angles a^, a.,, a^ with

the vertical 3 tanai= 2 tan 02= tan a.,.

40. Four uniform rods are jointed throughout so as to form
a quadrilateral, and placed horizontally on a smooth horizontal

table ; four forces act one at each angular point each bisecting

the angle at which it acts and proportional to the cosine of half

the angle at which it acts ; shew that the system is in equili-

brium for all shapes of the quadrilateral.



EXAMPLES. PROBLEMS. 245

41. Four uniform equal rods AB., BC, CD, L)E are jointed

together ; the ends A and A' are fixed at two points in the same
horizontal line, and the joints B and J) arc connected by a
string ; the system hangs in a vertical plane so that ABC and
CDE are each a straight line

;
prove that the tension of the

string is to the weight of a rod as half AE is to the vertical

distance of C below AE.

42. Three equal uniform rods AB, BC, CD are freely

jointed at B and C ; A and D are hinged to two points in the

same horizontal plane whose distance apart is twice the length

of the rods
;
prove that in the symmetrical position of equilibrium

the stresses at the hinges are as Vsi to V7.

43, A rhombus formed of four equal uniform rods of length

ri jointed together is hung over a smooth sphere of radius r so as

to rest symmetrically in a vertical plane ; shew that the angle

6 each rod makes with the vertical is given by

cot- ^ + cot ^=- :

r

shew also that the stresses at the joints which are not horizontal

make the angle tan~^ {h tan 0) with the vertical,

44, A weightless rod AB of length / is hinged at yi to a

vertical wall and to the other end B is attached a string which
passes over a pulley fixed at a height / vertically aljove A and
supports a weight w. Between the rod and the wall a smooth
circular cylinder of weight iv and radius a is placed; shew that

if 6 be the inclination of the rod to the vertical

/sin 6 sin \d= a.

45, The centre of a heavy circular disc of weight W and
radius a, and a heavy particle, of weight iv, are connected by a
string of length /. The particle rests against the smooth edge
of the disc ; the loop of the string passes over a smooth small

peg and the system hangs in a vertical plane. Prove (i) that

the two parts of the string are equally inclined to the vertical,

(ii) that the pressure between the particle and the disc is to the

tension of the string as a : I, (iii) that -w : ]V<l-\-a : I - a.

46. Six equal heavy uniform rods are jointed so as to form a
regular hexagon and one side is held in a horizontal position,

the hexagon being kept in shape by a weightless horizontal rod
forming the horizontal diagonal of the hexagon

;
prove that the

strain along the diagonal is — ^^3 times the weight of one of the

rods.
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47. A regular hexagon is formed of six equal uniform heavy
rods connected by hinges at their ends ; shew that when hung
up by a corner it will keep its shape unchanged provided a rod
of proper length be placed horizontally between the two vertical

rods so that it divides the vertical sides in the ratio of 5 to i.

48. Four rods are jointed at their extremities so as to

form a quadrilateral which can be inscribed in a circle; each
pair of opposite angles is joined by a string

;
prove that the

tension of each string is inversely proportional to its length.

49. A rectangular framework ABCD formed of four uni-

form rods jointed together, has its opposite corners joined by
strings

;
pro\e that if the framework be hung up from one

corner the difference between the tensions of these strings is

half the weight of the rods.

50. Four equal uniform rods are jointed together so as to

form a square frame, and the middle point of one side is joined

by strings to the middle points of two adjacent sides ; shew that

if the weights of the rods be neglected the tensions of these

strings must be equal ; also if the rods are heavy and the frame
be suspended from one corner the difference between the tensions

will be equal to the weight of the frame.

51. Four equal uniform rods are hinged at their extremities

so as to form the rhombus ABCD. The rhombus is suspended
from A and the shape is retained by the tension of a string

joining the middle point oi AB, BC\ prove that if 6 and ^ are

the inclinations to the vertical of the stresses at B and C
4 tan ^ = 2 tan ^ = cot ^ ^ i'?C

52. Three rods jointed at their extremities are laid on
a smooth horizontal table, and forces are applied at the middle
points of their sides of the triangle formed by the rods, and
perpendicular to them respectively. Shew that if these forces

produce equilibrium, the strains at the joints will be equal to

each other, and their directions will touch the circle circum-

scribing the triangle.
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MISCELLANEOUS EXAMPLES. XXXIV.

1. ABCD is a square ; forces of i lb., 6 lbs. and gibs, act in

directions AB, AC, AD respectively; find the magnitude of

their resultant correct to two places of decimals.

2. Find a point within a triangle from which if straight

lines be drawn to the angular points of the triangle, the forces

represented by these lines shall be in equilibrium.

3. A number of uniform tiles each 10 in. by 6 in. by \ in.

are placed one upon another in such a way that whilst their

narrowest surfaces (thicknesses) are in the same vertical plane,

each tile overlaps the next by an inch of its length ; the lowest

tile resting on a horizontal plane; how many tiles may be so

piled without falling.'

4. Two weights of 8 oz. and 4 oz. are in equilibrium at

opposite ends of a straight lever without weight ; if 2 oz. be
added to the greater weight, the fulcrum must be moved
through i of an inch for equilibrium ; find the length of the

lever.

5. If the resultant R of the two forces P and Q inclined

to each other at any given angle make the angle 6 with /*, prove

that the resultant of the forces {P -V R) and Q at the same angle

makes the angle \6 with (P+ R).

6. A wedge of angle 60° is placed upon a smooth table, and

a weight of 20 lbs. on the slant side is supported by the tension

of a string parallel to that face of the wedge ; what horizontal

force is necessary to keep the wedge from moving ?

7. A smooth circular hoop is supported in a horizontal plane

in a fixed position. Three weights of 3 lbs., 4 lbs. and 5 lbs. are

suspended over its rim by three strings meeting in the centre.

What must be the position of the strings that the weights may
be in equilibrium?

8. Two equal weights U\, W,^ are connected by a string

which passes over two small pegs A and /)', and supports a
weight f f 3 which hangs from a smooth small ring through which
the string passes; prove that when AB is horizontal the depth
pf the ring below AB is

W.AB
2^{4P''-JV^y
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9. If a quadrilateral be such that one of its diagonals divides
it into two equal triangles, the centre of gravity of the quadri-
lateral is in that diagonal.

10. The resultant of two forces P and Q is the same when
their directions are inclined at the angle Q as when they are in-
clined at the angle

(
jtt - &) ; shew that tan (9 = ^/2—1.

11. A weight is supported by two strings equally inclined to
the vertical ; shew that when instead of one of these strings we
substitute a string pulling horizontally so as not to disturb the
position of the weight, the tension of the other string will be
doubled.

12. Two uniform cylinders of equal diameter whose lengths
are as 2 : 5 and whose weights are in the ratio of 3 to 7 are
joined together so as to form one cylinder; find their centre of
gravity.

13. The resultant of/" and Q is equal to P ; shew that if P
be doubled, the new resultant is at right angles to Q.

14. If R be the resultant of two forces P and (9, and S be
the resultant of P and R, prove that the resultant of .S" and Q
is zR.

^

15. A heavy right-angled triangle is suspended by its right
angle and the inclination of its hypotenuse to the horizon is 40°;
find the angles of the triangle.

16. Two strings have each one end fastened to a fixed peg
and the other to the ends of a uniform rod ; shew that when the
rod hangs in equilibrium the tension of the strings are in the
ratio of their lengths.

17. Two uniform rods are hinged together and have each a
smooth ring at their other extremities which rings, are passed
through a rigid horizontal wire ; shew that in the position of equi-
librium the shorter rod must be vertical.

18. A uniform ladder rests with one end on a rough hori-
zontal plane and the other end leans at an angle of 45° against a
smooth vertical wall, prove that the friction required to prevent
slipping is one-half the weight of the pole.

19. A material particle P is attracted to three points A, B, C
by forces proportional to the distances PA, PB, PC; prove
that the resultant of these forces is in the direction of the
centre of gravity G of the triangle ABC, and is proportional
XoPG.
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20. A heavy uniform rod AB is supported in a position

inclined 60° to the vertical by a string OA fastened to a fixed

point O and by a horizontal force acting at the lower end B.
Find the inclination of the string to the vertical.

21. A smooth sphere is supported in contact with a smooth
vertical wall by a string fastened to a point on its surface, the

other end being fastened to a point on the wall ; the length of

the string is equal to the radius of the sphere ; find the position

of equilibrium, the tension of the string, and the pressure on the

wall.

22. Three forces act along the sides of a triangle
;
prove

that if the sum of two of the forces is equal to the third force, the

resultant of the three forces will pass through the centre of the

inscribed circle of the triangle.

23. A smooth solid sphere rests upon two par'allel bars in

the same horizontal plane, the distance between the bars

being equal to the radius of the sphere ; find the pressure on
each bar.

24. The horizontal roadway of a bridge is 30 ft. long and
weighs 6 tons, and its ends rest on similar supports ; what
pressure is borne by each support when a carriage weighing
2 tons is one- third of the way across the bridge?

25. ABC is a triangle ; AE, BF, CD are lines drawn from
the angles to the points of bisection of the opposite side

;
prove

that forces represented by AE, BE, CD are in equilibrium.

26. Three heavy particles are placed at the angles A, B, C
of a triangle, their weights being proportional to the opposite

sides a, b, c
;
prove that the distance of the centre of gravity of

the particles from A is

ibc A
cos—

.

a-\-b-\-c

27. A common steelyard supposed uniform is 40 inches

long, the weight of the beam is equal to the moveable weight,

and the greatest weight that can be weighed by it is four times

the moveable weight ; find the place of the fulcrum.

28. O is the centre of the circumscribing circle ; OD^ OE,
OF are perpendiculars from O upon the sides of the triangle

ABC\ prove that the six forces represented hy AO, BO, CO,
OD, OE, OF are in equilibrium.
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29. A body consists of two parts, A and /j, whose C. G.'s

are at P and Q respectively ; the part B is moved so that its

C. G. comes to Q, the part A remaining fixed; prove that the

C. G. of the whole body moves through a distance parallel and
proportional to QQ.

30. A steelyard is constructed so that for each complete
stone (14 lbs.) placed in the weighing pan an additional weight
of ;// oz. has to be suspended at the end of the arm one foot in

length ; the odd pounds are measured by a weight of n oz.

sliding along the arm; prove that the distance between the

graduations of the arm for successive pounds must be

6;« . ,— mches.
7«

31. The weights of two spherical balls are as 4 : 3 and
their densities as 9 : 2 ; compare their diameters.

32. Forces of 2, ^^3, 5, v/3, 2 lbs. respectively act at one of

the angular points of a hexagon towards the five others ; find

their resultant.

33. A hollow circular cylinder of weight W of thin metal
open at both ends of radius a and height \a stands with its axis

vertical on a smooth horizontal plane. Inside it are placed
two smooth spheres each of radius r and weight w one above
the other, ir being >a and <2a; shew that the cylinder will

just stand without toppling over when

a IV= 2Uf {a - r).

34. O is the point of intersection of two straight lines

bisecting the opposite sides of a quadrilateral ABCD\ shew
that forces represented by OA, OB, OC, OD are in equi-

librium.

35. A uniform lever is 18 inches long; each inch weighs
one ounce ; it balances about its fulcrum when there is a weight

of 27 ozs. at one end and 9 ozs. at the other; if the smaller

v.'eight be doubled how much must the position of the fulcrum

be shifted to preserve equilibrium.''

36. A uniform beam rests with one end against the junction

of the horizontal ground and a vertical wall; it is supported by
a string fastened to the other end of the beam and to a staple in

the vertical wall ; find the tension of the string ; and shew that

it is equal to half the weight of the beam when the length

of the string is equal to the height of the staple above the

sround.



MISCELLANEOUS EXAMPLES. 251

37. The wind makes an acute angle with the forward
direction of a ship's course, and is received on a sail spread
in a direction between that of the wind and that of the ship's

course ; explain generally why the ship advances.

38. An inclined plane of angle 30" is 3 ft. long ; weights of

7, 5, 4, 8 lbs. are placed on the plane in order one foot apart,

the weight 8 being at the top of the plane ; find the distance of

the c. G. of the weights from the base of the inclined plane.

39. In the Danish steelyard if <r„ represent the distance of

the fulcrum from the end of the steelyard at which the weight is

suspended, when the weight is n lbs., prove that

I I _ 2

40. In each of the three systems of pulleys if P and W
are displaced together their centre of gravity remains in the

same position. (The weights of the pulleys are neglected.)

41. Find the centre of gravity of a uniform wire 16 inches

long bent into a right angle of which one arm is 6 inches.

42. Explain how a man by walking slowly on the surface

of a large rough sphere can make it roll up an inclined plane.

43. A uniform wire is bent so as to form three sides AB,
BC, CD of a regular polygon ; the C. G. of the wire is at the
point of intersection of AC and BD; prove that the polygon
has six sides.

44. A right-angled triangle is suspended successively froni

its acute angles, and when at rest the side opposite the point of

suspension in each case makes angles ^, ^ with the vertical;

shew that tan 6 tan ^ = 4.

45. Three smooth pegs A, B, C stuck in a wall form an
equilateral triangle, A being the highest and BC horizontal;
a string of length 4 times BC passes round them and each end
is fastened to a weight IV which hangs in equilibrium below
J)C ; find the pressure on each peg.

46. A number of telegraph wires which are all practically

horizontal are supported by a pole A ; they all come from one
pole /)' to the pole A and some of them pass on to a pole
C and some to a pole D ; shew that the pole B must have a
stay to keep it vertical, if the tensions of the wires are all equal.
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:

47. A boat with a deep keel is fastened by a long rope

to a point in the middle of the bed of a rapid river ; explain how
by keeping the boat's keel in the proper direction the boat may
be made to cross from one side of the river to the other.

48. A horizontal telegraph wire carried by a vertical post

makes at that post a turn through 60°. The post is kept

vertical by a wire stay fastened to the ground and to the middle

point of the post, making the angle 30° with the post. Shew
that the tension of the stay is 4 times that of the telegraph

wire.

49. A square uniform lamina ABCD of weight IV has

heavy particles P and Q fixed to it at B and D; it is suspended

by a string fastened at A
;
prove that ^C is inclined to the

horizon at the angle whose tangent is

P-Q
F+Q+JV

50. A pack of cards is laid on a table and each projects

in the direction of the length of the pack as far as possible

beyond the one below it beginning at the top; prove that the

distances between the extremities of successive cards will form

a Harmonic Progression.

51. Shew that the least force which will move a weight JV
along a rough horizontal plane is Jl's'mcf) where is the limit-

ing angle of resistance.

52. Two equal heavy particles on two equally rough inclined

planes, of the same height, are connected by a string passing

over the top of the planes ; shew that when the particles are on

the point of moving the limiting angle of resistance will be half

the difference of the inclination of the planes.

53. A uniform right circular cylinder is placed with its base

on an inclined plane, the coefficient of friction being ^s/s; find

the ratio of the height of the cylinder to the radius of the base

that it may be just on the point of sliding and of toppling over

at the same time.

54. A uniform ladder rests between a vertical wall and the

horizontal ground, both being rough; the coefficient of friction

for the ladder and wall is J, and for the ladder and ground ^J
;

find the angle which the ladder makes with the ground when it

is just on the point of sliding.
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55. A square uniform lamina ABCD, of weight // '., rests

in a vertical plane with its side BC on a line of greatest §lope

of a perfectly rough plane inclined at the angle a to the horizon
;

a string AP is attached to A the highest point of the lamina,

and passing over a smooth pulley at- P the top of the plane

supports a weight w, AP is horizontal; shew that the lamina

will be on the point of turning about B when w^l li'{i +tan a).

56. AB is a smooth inclined plane of angle o ; at . / the lower

end is a smooth hinge, to which is fastened one end of a smooth

uniform heavy plank .IC of length 2rt and weight IV. Between

the plank and the plane is placed a cylinder of radius r and

weight 7C', which is prevented from sliding down the plane by the

pressure of the plank on it from above. Shew that the angle d

between the plane and the plank in equilibrium is given by the

equation
wr sin a = a IV cos {a + 6) {1 -cos 6).

57. A heavy rod rests with its extremities on a rough

circular hoop fixed in a vertical plane ; the rod subtends go" at

the centre of the hoop; find its inclination to the horizon when
in the limiting position of equilibrium.

58. Find the c. G. of three weights placed at the centres of

the escribed circles of a triangle and inversely proportional to

their radii.

59. Shew that if a man sitting in one scale of a common
balance presses with a stick against any point of the beam
between the point from which the scale is suspended and the

fulcrum, he will appear to weigh more than before.

60. A heavy insect of weight n' crawls on the lower circum-

ference of the wheel in a wheel and axle, and so just raises a

weight 5'Z£', the ratio of the radii of the wheel and axle being 10

to I ; shew that the radius of the wheel passing through the

insect makes 30° with the vertical ; and shew that the insect is

in a position of stable eciuilibrium, but that if it were on the

point of the circumference of the wheel vertically above its pre-

sent position its equilibrium would be unstable.

61. A uniform ladder 70 ft. long is equally inclined to a

vertical wall and the horizontal ground ; the weight of a man
with his burden ascending the ladder is 2 cwt., and the ladder

weighs 4 cwt. ; how far up the ladder can the man ascend before

it slips? the tangent of the angle of resistance for the wall is

I and for the ground h.
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62. A heavy particle P is placed on a rough inclined plane
of a^jgle a and is fastened by a string at its full length to a fixed

point A on the plane; AB is the line of greatest slope; prove
that when the particle is on the point of slipping

sin PAB= fi cot a,

and interpret the result when /i cot a> i.

63. Two equal smooth circular cylinders are placed with
their axes parallel and in the same horizontal plane in the loop
of a thread whose ends are then held so that the free parts of
the string are parallel

;
prove that the pressure between the

cylinders is equal to the weight of one of them.

64. A uniform rod rests with one extremity against a rough
vertical wall (coefficient of friction J\ the other extremity being
supported by a string three times the length of the rod, one end
of which is fastened to it and the other attached to a point in

the wall ; shew that the tangent of the angle which the string

makes with the wall in the limiting position of eciuilibrium is

A. or 1

65. A solid circular cylinder rests on a rough horizontal
plane with one of its flat ends on the plane, and is acted on
i)y a horizontal force through the centre of its upper end

;

if this force is just sufficient to move the solid, prove that it

will begin to slide or turn over, according as the coefficient

of friction is less or greater than the ratio of the radius to the
height.

66. A square figure ABCD is formed by four equal uniform
rods joined together, and the system is suspended from the joint

A, and kept in the form of a square by a string joining A and
C

;
prove that the tension of the string is half the weight of the

four rods, and shew that the action at the joint B is horizontal

and equal to the weight of a rod.

67. Two uniform beams of equal weight but (if unequal
length are placed with their lower ends in contact on a smooth
horizontal plane and their upper ends against two parallel

vertical planes ; shew that in the position of equilibrium the
beams are equally inclined to the horizon.

68. Three equal rods AB, BC, CD without weight are con-
nected by hinges at B and C and are moveable about hinges at

A and Z?, the distance AD being twice the length of each rod
;

a force P acts at the middle point of each rod and at right

angles to it ; shew that the pressure on each of the hinges A
and D will be ^Ps^3, and that its direction will make 60°

with AB.
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69. A uniform heavy cube balances on the highest point of

a fixed sphere of radius r; the surfaces are sufficiently rough

to prevent sliding; the side of the cube is ^tt;-; shew that the

cube may be made to rock through a right angle without falling.

70. Four heavy rods, equal in all respects, are freely jointed

at their extremities so as to form the rhombus AECP. If this

rhombus is suspended by two strings attached to the middle

points oi AB and AD, each string being inclined at the angle Q

to the vertical, prove that in the position of ccjuilibrium the

angles of the rhombus will be 16 and tt - 2^.

71. A plane of small slope rises one foot vertical for n feet

horizontal, and the coefficient of friction is /x ; shew that the

force which will just move a weight \V up the plane is nearly

Wa-)
72. A light rod rests wholly within a smooth hemispherical

bowl of radius r, and a weight W is clamped on to a rod at

a point whose distances from the ends are a, b. Shew that 6 the

inclination of the rod to the horizon in the position of equi-

librium is given by the equation 2 sj{r''--ab) sin d= (i - b.

73. The poles supporting a lawn-tennis net are kept in a

vertical position by guy-ropes, one to each pole, which pass

from the top of the poles, round pegs distant 2 ft. from the

poles ; the coefficient of limiting friction between the ropes and

pegs is ^ ; the poles are 4 ft. high ; shew that the inclination of

the pegs to the vertical must not be less than tan"!
j-i.

74. A uniform heavy rod is placed across a smooth hori-

zontal rail, and rests with one end of the rod against a smooth

vertical wall ; the distance of the rail from the wall being one-

sixteenth of the length of the rod, prove that the rod will rest at

the angle 60° with the horizon.

75. A heavy sphere hangs from a horizontal bar by a string

whose length is equal to the radius, and it rests against a

parallel smooth bar vertically below the former, the distance

between the bars being equal to the diameter of the sphere;

prove that the tension of the string is double the pressure on

the bar.

76. A cylindrical shell without a bottom stands on a hori-

zontal plane, and two smooth spheres are placed within it

whose diameters are each less while their sum is greater than

that of the surface of the shell: shew that the cylinder will not
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upset if the ratio of its weight to that of the upper sphere is

greater than zc-a-b : ^, where a, b, c are the radii of the

spheres and cyHnder.

77. A smooth circular ring of radius a and weight W rests

on two parallel horizontal bars which pass through the ring.

The shortest distance between the bars is ib, and it makes
the angle a with the vertical. Prove that the stresses between

the ring and the bars are

J[^sin(a-^)cosec ^ and JFsin (a + <9) cosec ^ where cos^=-.

Explain what is indicated by this result when b>a.

78. A square lamina is placed with its plane vertical resting

on two smooth parallel bars in the same horizontal plane, shew
that when it is in equilibrium the inclination of one of its edges

to the horizon is half the angle whose sine is „- , ia being

the length of a side of the square and c the distance between

the bar.

79. Two rods AB, EC of equal weight but unequal lengths

are hinged together at B, and their other extremities are at-

tached to two fixed hinges A and C in the same vertical line

;

prove that the line of action at the hinge B bisects the straight

line A C.

80. A three-legged stool stands on a horizontal plane, the

coefficient of friction being the same for each of the three feet.

A small horizontal force is applied to one of the feet in a given

direction, and is gradually increased until the stool begins to

move. Shew that this force will be greatest when its direction

intersects the vertical through the Centre of Gravity of the

stool.

81. An inextensible string binds tightly together two smooth
cylinders, radii f\, ;%; shew that the ratio of the pressure

between the cylinders" and the pressure by which it is produced

f\+ r.,

82. A roof of given sp{in is to be constructed with two equal

beams which are connected at the vertex by a single smooth

pin ; the weight of the roof is proportional to the length of the

beams ; shew that when the pressures on the walls are the least

possible their direction makes the same angle with the vertical

which the beams make with the horizon.

I
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83. One end of a string of length / is fastened to a point//
in a smooth vertical wall, and the other to the middle point of
one of the edges (of length //) of a cube ; shew that the distance
of the edge of the cube which rests against the wall from A is

/
84. A sphere of radius a and weight IV is suspended by a

string of length / from a given point A ; another body of weight
//" is also suspended from A by a string so long that IV hangs
below the sphere; shew that the angle which the first string

makes with the vertical is the angle whose sine is

IVa

{JV+lV'){a+ l)-

85. A uniform equilateral triangular lamina has the ends of

a string fastened to two corners ; the loop of the string passes
over a smooth horizontal bar ; shew that when the length of the
string is double the height of the triangle the stable position of
equilibrium of the triangle is with one side vertical.

86. Four equal rods are hinged together so as to form a
rhombus ^4^6"/?; the points A and C are joined by a string

whose tension is F; and the points B and D are joined by a

string whose tension is Q; prove that cos BAD= ^^ -^^ .

87. The ends of a string are fastened to two fixed points
and weights are suspended from different points in the string

;

shew that the horizontal resolute of the tension of the string is

constant throughout its length, and that when the weights are
all equal the tangents of the angles which the successive por-
tions of the string make with the horizon are in Arithmetic
Progression.

88. Two light small rings are capable of sliding along a

rough horizontal rod ; a smooth string of length 4/ passes
through each of the rings and has both ends attached to a
weight; shew that the greatest possible distance between the

rmgs IS /
"^

„ .

89. A uniform rod rests wholly within a rough circular tube,

is perpendicular to the axis of the tube, and subtends the angle /:<

at the centre ; shew that d the inclination of the rod to the
horizon in its limiting position is given by

2 tan ^=sin 2a sec(/3 + a) cosec ([i -a),

where tan a is the coefficient of friction.

L. S. 17
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90. Three equal spheres placed in contact witli each other

on a horizontal plane support a fourth eciual sphere
;
prove that

when the spheres and the plane are all of the same material

their coefficient of friction cannot be less than 4 (n/s
— ^2).

91. A rectangular table stands on a rough inclined plane
with two sides horizontal ; the distance between the legs is la,

and the height of the c. G. is h; the coefficient of friction of

the lower pair of legs with the plane is /a and of the higher \k ;

prove that the angle 6 of the plane when the table is on the

point of sliding is given by tan 6= -^^— <-T'

92. Shew that no smooth uniform rod can rest partly within
and partly without a smooth hemispherical bowl at an inclina-

tion to the horizon greater than the angle whose sine is ?jv/3-

93. Two equal uniform beams AB,AC of weight JV, con-
nected by a smooth hinge at A, are placed in a vertical plane
with their extremities B and C resting on a smooth horizontal

plane. Two strings connect B and C respectively with the

middle point of the opposite beam. Shew that the tension of

each string is J IV ^^{g tan-tt+ i), where 2a is the angle between
the beams.

94. A uniform rod rests symmetrically in a horizontal

position inside a rough right circular cone, whose axis is ver-

tical and vertex downwards. The semi-vertical angle of the
cone is 60°, and the coefficient of friction between the rod and
the cone unity. Prove that the cone may be tiked through an
angle tan^ 2 in a vertical plane passing througpthe rod without
causing the cone to slide.

95. If a uniform wire is bent into the form of a triangle and
at the middle points of the sides there are placed three beads
whose weights are proportional to the sides on which they are,

prove that when the beads are moved with equal velocities the
same way round along the sides there is no change in the
position of the Centre of Gravity of the whole system.

96. ABC is a triangle of jointed rods ; BC is held fixed
and AB, AC are acted on by forces at their middle points per-
pendicular and proportional to them. Prove that the reaction
at A is along the tangent at A to tlie circumscribing circle.
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97. Two uniform rods AB, AC ea.ch of length 2a, arc freely

jointed at A and have their other extremities connected by a
string. The rod AB is placed so as to be in contact with two
horizontal bars J) and E in the same horizontal plane; the rod

is perpendicular to the bars and passes over D (which is nearer

A) and under E. Prove that equilibrium will not be possible

unless AE>a cos^ ^BAC.

98. A uniform rod of weight Crests in a horizontal position

with its ends on the circumference of a rough fixed vertical

circle, and subtends an angle 2a at the centre. An insect of

weight 7<y starts from the middle point of the rod and crawls

gently towards one end. Prove that if e the angle of friction be
less than 45°, it will be able to reach the end of the rod without

disturbing the equilibrium, provided {lV+w)sin 2^>wsin 2a.

99. A regular pentagon ABCBE, formed of five equal
heavy rods each of weight JF, jointed together, is suspended
from the joint A, and the regular pentagonal form is maintained
by a rod without weight joining the middle points /CL ofBC and
DE. Prove that the stress at A' is 2 J-Fcot 18".

100. O is any point on the circle circumscribing the triangle

ABC ; OL, OM, ON are the perpendiculars on its sides. The
line LAIN meets the perpendiculars from ABC on the opposite
sides in P, Q, R respectively. Forces OL, OM, ON, OP, OQ,
OR act at O ;

prove that their resultant is ^OK, where K is the
ortho-centre.

101. In a triangular lamina ABC, AD, BE, CF are the
perpendiculars on the sides, and forces represented by the lines

BD, CD, CE, AE, AF, BF are applied to the lamina; prove
that their resultant will pass through the centre of the circle

described about the lamina.

102. A solid circular cylinder rests with the centre of its

base in contact with the highest point of a fixed sphere, and the
height of the cylinder is one quarter of the circumference of
a great circle of the sphere ; supposing the surfaces in contact
to be sufficiently rough to prevent sliding in all cases, shew that

the cylinder may be made to rock through go'', but not more,
without falling otT the sphere.

103. A uniform rod AB of weight W, rests with one end A
against a rough vertical plane, and the other end B supported

by a string which passes over a small smooth pulley vertically

above A and supports a weight P. Prove that equilibrium is

impossible unless P is greater than Wzo's.a, where tana is the

coefficient of friction.

17—

2
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104. A small weight is attached by a string to a point or

rough inclined plane, angle a; shew that the greatest angle the

direction of the string can make with the line of greatest slope

is given by sin 6— jj. coi a.

105. A body lies on a rough inclined plane of angle a

(whose inclination is such that the body cannot be sustained by
friction alone) sustained by a force P

;
prove that the greatest

angle which the resolute of P in the plane can make with the

line of greatest slope is sin"^ (/x cot a), ^ being the coefficient of

friction.

106. A heavy uniform rod of weight W rests in contact
with a rough fixed circular cylinder, whose axis is horizontal

and whose diameter is equal to the length of the rod. The rod
is maintained in its position by a smooth string which passes
round the cylinder and is attached to the ends of the rod.

Shew that the tension of the string must not be less than

]V -.—— , tan a being the coefficient of friction, and 6 the
2 sni a

" '

inclination of the rod to the vertical.

107. The C. G. of four equal particles in any position is the
same as that of four other equal particles each of which is the

C. G. of three of the former particles.

108. ABC is a triangle and DEF the feet of the per-

pendiculars from A^ B, C on the opposite sides
;
prove that

if we place masses at A, B, C proportional to EF, FD, DE
respectively their centre of mass is at the centre of the circum-
scribing circle.

109. Forces act at the angular points of a plane quadri-

lateral each being proportional and perpendicular to the

diagonal which does not pass through its point of application

;

prove that they are in equilibrium.

110. A particle of weight VV is attached by a string to

a fixed point on a rough inclined plane (coefficient /x, inclination

to horizon a); it is pulled away from the line of greatest slope

of the plane, keeping the string tight until it is on the point of

slipping back. Shew that if the particle is now left free the

tension of the string is W%vc\.asl{\ -/x'-cota).

The resultant of forces represented by X . PA and /x . PB
acting on a particle at /* is a force represented by (X + /x) PG,
where G is the Centre of Gravity of masses proportional to

X, /x placed at A and B.
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111. Six uniform rods each of weight W are jointed

together so as to form a hexagon ; they are hung up from

a corner. The two middle rods are connected by a hght

horizontal rod ; shew that if these rods rest vertically the

horizontal rod divides them in a ratio which is independent

of its length.

If the horizontal rod be heavy and uniform in length and
material with the others, shew that the ratio is 6 : i and that

the stress in the horizontal rod is '^IV Jt,.

112. Two equal rods AB, AC each of length / and weight

7C', smoothly jointed at A, are placed over a smooth horizontal

circular cylinder of radius a and the ends B and C are con-

nected by a tight string of length b; prove the tension if the

string is

^-^-k^i-'-W-^]

113. A tipping basin whose interior surface is spherical is

free to turn about an axis at the distance c below the centre of

the sphere, and at the distance a above the C. G. of the basin
;

a heavy ball is laid in the bottom of the basin. Prove that the

basin will tip over if the weight of the ball exceeds the fraction

ajc of the weight of the basin.

114. The triangle ABC is formed of three rods hinged
together and lies on a horizontal plane ; strings AD, BE
connect A and B with points on the opposite sides ; these

strings cross at F and tensions act along them proportional

to AF and BF respectively
;

prove that the stress at C is

parallel to AB.
115. The handles of a drawer are equidistant from the

sides of the drawer, and distant c from each other; prove that

it is impossible to pull the drawer out, by a straight pull on one
handle only, unless the depth of the drawer exceeds /^r, where /*

is the coefficient of friction.

116. A uniform frame ABCD in the shape of a parallelo-

gram, sides a and b and hinged at its angular points, is

suspended a.t A ; A and C are connected by a string so that the

angles of the frame are right angles : prove that the stress at

each of the hinges B and D is to the weight of the frame as

ab : 2 >^2 (a+ b) ^K^'^+ ^")-

117. The arms of a balance are of unequal lengths a and b.

Prove that when a body of weight Jl' is weighed, first in one
scale and then in the other, the difference of its apparent weight

IS — 7- II

.

ad
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118. A regular pentagon ABCDEy formed by five equal

strings with four particles each of weight W at the angular

points B, C, B, E, is suspended from A ; the regular pentagonal

form being maintained by a horizontal rod BE without weight

having its ends fastened to the particles B, E
;
prove that the

stress of the rod : J'F=V(io+ 2 v^S) ' VS-i-

119. Four rods are hinged at their extremities so as to form

a parallelogram ABCD whose sides are in the ratio 7:1. A
and C are joined by a string of such length that the frame forms

a rectangle, which is hung up by the angle A. Prove that the

tension of the string is a half and that the action at each of the

hinges B and Z> is yItj of the weight of the frame.

120. A uniform rod of weight T^ rests in a limiting position

of equilibrium with one end on a rough horizontal plane and the

other end on an equally rough inclined plane of angle a
;
prove

that if 6 be the angle of inclination of the rod to the horizon

sin (a - 2X)
tan 6=—

^

. . , \. ,

2 sm A sm(a — A)

where tan X is the coefficient of friction.

121. ABCD is a rectangular framework of weightless rods

hinged together, y^i? is fixed in a vertical position,/? uppermost,

and B, D are connected by a string; a weight W is fixed at

some point on BC; shew that the tension of the string is un-

altered if W be placed on the lower rod vertically under its

former position.

122. A sphere of radius a whose CO. is at the distance b

from its geometrical centre rests in limiting equilibrium on

a perfectly rough inclined plane of angle a. It can be turned

through the angle iQ and will then be again in limiting equili-

brium; prove that <^ cos ^= <^ sin a.

123. Two equal rods AB, BC, each of weight W, jointed at

B, have their middle points connected by a string of such

a length that when it is straightened ABC is a right angle. If

the rods are suspended from A, prove that the inclination of

AB to the vertical is coi^^ 2>, ^"d that the tension of the string

is 'i IV^fs, and that the action at the joint is IVs^p

124. Four rods are hinged at their ends so as to form

a parallelogram ABCD whose sides are as 7 : i. A and C are

joined by a string of such a length that the frame is rectangular ;

shew that when the frame, whose weight is JF, is suspended

from A the tension of the string is ^ IV, and the stress at the

hinges B, D is
j J5 IV.
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125. Of four forces in a plane in equilibrium, one is given

absolutely, a second and third have their lines of action given,

while the fourth has its magnitude given
;
prove that the line

of action of this fourth force must touch a fixed circle.

126. A uniform rod of length ia presses with its lower end

on a rough vertical wall and rests on a smooth horizontal peg at

a distance b from the wall. If the coefficient of friction is tanX,

prove that the equation giving the limiting values of 6 the

inclination of the rod to the wall is

b sin-(9sin((9±X)

a cosX

127. ABCDEF is a regular hexagon
;
prove that equal

forces acting along AB, CD, EF, AF, CB, ED are in equili-

brium.

128. A weightless string is suspended from two fixed points

and at given points on the string equal weights are attached
;

prove that the tangents of the inclinations to the horizon of the

different portions of the string are in A. P.

129. A uniform heavy rod of length 2a turns freely on a

pivot at a point in it, and suspended by a string of length /

fastened to the ends of the rod, hangs a bead of equal weight,

which slides on the string. Prove that the rod cannot rest in

an inclined position unless the distance of the pivot from the

middle point of the rod is less than -j

.

130. A symmetrical three-legged stool stands on a rough

horizontal plane; a string is attached to one foot and pulled in

the plane parallel to the vertical plane through the other two

feet ; shew that the smallest tension thai will move the stool is

2 JFsin y ; 3 PV being weight of the stool and tan y the coefficient

of friction.

131. A uniform rod rests horizontally on two pegs, one at

one end of the rod; find where the other peg must be placed

that the bending moment at a given point of the rod may be zero.

132. Seven equal thin straight rods without weight are

freely jointed together, so as to form three equilateral triangles.

The frame so constructed is placed in a vertical plane with the

straight lines AL'C and DE horizontal, the former being upper-

most. The points A and C are fixed and a given weight Wis
attached to B. Find the tension of the rod DE (i) by the

polygon of forces, (2) by resolution of forces, (3) by the principle

of virtual work.
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133. A rough circular cylinder of weight ]V lies with its

axis horizontal on a plane inclined to the horizon at the angle a,

and a man of weight ]l'" stands upon the cylinder and keeps
it a.t rest. The man's feet are at A and a vertical line through
A meets the plane at B

;
prove that the angle 6 subtended by

AB at the centre of the cylinder is given by

sin_(^a)_ W
^in~a "~ '^ W"

the friction being sufficient to prevent sliding.

134. The sum of the weights of a certain steelyard ABCD
and of its moveable weight is w, the fulcrum is at C and the
body to be weighed at A. The steelyard is graduated, and
after graduation the fulcrum is shifted towards A to C . A
body is then weighed the old graduation being used and the
apparent weight is W. Prove that the true weight is

135. Four uniform rods AB^ BC, CD, DE each of weight
w and length a are jointed together; to the joint C a weight W
is fastened ; B and D are connected by a string of length a,

and A and E are fixed in the same horizontal line so that
AE= {\ +\/3)^j; prove that the tension of the string is

136. Four uniform equal rods AB, BC, CD, DE each of
weight ]V are jointed together ; their ends A and E are lixed

at points in the same horizontal line and the joints B and D
are connected by a string and the system hangs in a vertical

plane so that ABC and CDE are straight lines, and ACE is

an equilateral triangle. Prove that the tension of the string is

137. Prove that if in the last example a weight is fastened
to the hinge at C it will not alter the tension of the string.

133. A uniform lamina in the shape of a right-angled tri-

angle ABC rests in a vertical plane upon two smooth -pegs in
the same horizontal line, with the right angle AB below the
pegs. Shew that if 6 be the angle which the bisector of the
right angle makes with the vertical in the position of equi-
librium then

3//sin2(9= (isin {6+ 1 {B ^ C j\

,

where a is the hypotenuse of the triangle, and h the distance
between the pegs.
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139. A rhombus constructed of four uniform rods freely

jointed together is hung symmetrically over two smooth pegs

in the same horizontal line. Shew that each peg must divide

the rod with which it is in contact in the ratio cos-a : sin^a,

where 2a is the angle between the two rods in contact with the

pegs.

140. Two equal straight rods AC, EC are connected by a

smooth joint at C ; the rod BC is free to turn about a smooth

fixed point at A and the end B free to move along a smooth

straight line AD\ forces iP and P in the plane of ABC act

at the middle point of and perpendicular to the rods AC, BC
respectively both being directed towards the inside of ACB ;

prove that in the position of equilibrium ACB is equilateral.

141. Two equal cylinders of radius a rest with their axes

parallel on a rough table ; a tliird equal rough cylinder is placed

so as to be in contact with them along generating lines
;
prove

that if /i>2 — x/3, equilibrium is possible so long as the distance

between the axes of the lower cylinder is less than 8/irt/(i +/i^)

where )x. is the coefficient of friction of all the surfaces.

142. A triangle formed of three rigid bars jointed together

at their ends is in equilibrium under the action of three forces

passing through the centre of the circumscribing circle, respec-

tively perpendicular to the side ; shew that the stresses at the

corners are equal.

143. A yacht has to sail due North in a wind which blows

steadily North-East; shew that, neglecting heeling, its speed

should be greatest when the sail bisects the angle between the

wind and the direction of motion.

144. A uniform hemisphere of radius <i: and weight forests

with its spherical surface on a horizontal plane and a rough

particle of weight W lies on the plane surface of the hemi-

sphere
;
prove that the distance of the particle from the centre

is not greater than 3J[>rt/8JF', where \i is the coefficient of

friction [the C.G. of a hemisphere is %a from the centre].

145. Four equal and similar heavy rods are freely jointed

so as to form a rhombus. The rhombus is suspended from one

of its angular points and a uniform smooth circular cylinder

whose radius is ^(-^Jz times the length of a rod and whose
weight is four times that of the rhombus is passed through the

rhombus and balanced. Shew that in tlie position of equilibrium

each rod will make 30° with the vertical.
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146. A cylinder whose height is h and radius a, is placed
in a vertical position on a rough horizontal table, the nearest
point of the base to the edge of the table being distant b from
it. To the top of the cylinder is tied a light string which after

passing over the edge of the table is attached to a weight which
hangs freely. If this weight be gradually increased shew that
the cylinder will slide before it turns provided the coefficient of

friction is less than , tt-t .

{a + b)h

147. Two equal uniform rods AB, BC each of weight ta are
smoothly jointed at B and freely moveable about the point A
which is fixed ; C is attached to a weight W by means of a
string, which passes over a small smooth fixed pulley D. If

there is equilibrium when AB is horizontal prove that iW
cannot be less than 30), and that the string CD and the rod BC
are inclined to the horizon at the angles

sm 1 j^^ and tan"i
, respectively,

148. A lamina whose Centre of Gravity is G is hung over a
smooth peg by a string of length / whose ends are fastened to

the lamina at points A and B ; the angles GAB, GBA each
= /3 a.x\dBC=c; prove that in equilibrium the line AB must be
either horizontal or inclined to the vertical at the angle

^sin,

149. Three equal heavy rods being connected by two hinges
a string is attached to the free ends and hung over a peg so
that the system rests with the middle rod horizontal

;
prove that

2 tan ^=3 tan 0, where 6 is the inclination of each of two of
the rods to the vertical and the inclination of each portion of
the string.

150. A uniform rod of length ^a hangs from a pivot at one
end, a sphere of equal weight is fastened to the same pivot by
means of a string of length a, the string being attached to a
point on the surface of the sphere ; shew that the string and
the rod are equally inclined to the vertical.

151. A uniform rod of length ^a is bent into two equal
arms at right angles and placed over a rough circular cylinder
of radius a (whose axis is horizontal) in a plane perpendicular
to the axis. .Shew that in the limiting position of equilibrium
the inclination to the horizon of the arm joining the point of

contact of the rod and the sphere is 2tan~i/x, where /x is the
coefficient of friction.
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152. Four uniform rods are jointed together to form the

parallelogram AL'CD. AH is fixed with ./ vertically above B
and the middle points of CD and AD arc connected by a string.

Shew that the ratio of the tension of the string to the weight of

the parallelogram \s AC : AB.

153. A rod of length 2a with its c. G. at the distance b from

its middle point is placed with its ends on a rough vertical

circular hoop, and it subtends the angle at the centre; shew
that if the rod can just rest in a horizontal position

\ = h sin~i- sin /3.

a

154. Shew that a window frame may be made to rest in a

raised position without weights, if the C.c. is distant r horizon-

tally from the centre of the window provided the coefficient of

friction is greater than , where a is the length of the window.

155. Three equal weights are connected by equal strings

of length /, and the two extreme weights are joined by strings

of length e to two fixed points in the same horizontal line,

distance 2a apart ; shew that the distance of the middle
weight below the line joining the two fixed points is given by
the equation

2lax If a-^+ rt^N

156. Draw nine equal straight lines, AB^ BC, CD, DE in

the same horizontal line, CH vertically downwards, FG., GH,
HJ, JK parallel to AE join AG, GC, CJ,JE, ED, BH, HD,
DK. Replace all these seventeen straight lines by rigid rods
without weight hinged together at their extremities. A struc-

ture so formed rests on supports at F and K, and weights W,
2\V, 3 JF are placed at A, C, E respectively; prove that the

tension of /// is equal to 2 IV and that the tension of GN is

zero.
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I, Cambridge Previous Examination. Part III.

Additional Subjects. October, 1886.

1. Explain the measurement of angles in degrees, minutes and

seconds.

How many minutes of angle does the hour hand of a watch pass over

in a minute of time?

2. Shew from the definitions of the trigonometrical functions that

sin" A + cot'' A + cos" ^ =cosec- A.

Prove also that

tan ^ + sec ^ + I _ sec ^ + 1

tan ^ + sec yif - I tan A

3. If three forces acting at a point be in equilibrium, and any tri-

angle be drawn having its sides parallel to the lines of action of the

forces, the forces will be proportional in magnitude to the sides of the

triangle.

A heavy particle is held at rest by means of two strings attached to

it, one of which is horizontal. If the tension of one string is double

that of the other find the inclination to the vertical of the string which

is not horizontal.

4. Find the resultant of two unlike parallel forces.

Prove that any given force can be resolved into two parallel forces,

one of which is double the given force ; and exhibit in a diagram the

relative positions of the force and its two components.

5. Find the line of action of the resultant of three forces which

are completely represented by the sides AD, CB, CD, of a parallelo-

gram ABCD.

6. Shew that the algebraical sum of the moments of two forces

acting at a point about any point in the line of action of their resultant

is zero.

If the moments of two given forces about a point in their plane be

equal and in the same direction prove that the point must lie on a cer-

tain straight line.



EXAI\fINATION PAPERS. 269

7. Having given the weights and the centres of gravity of the

whole of a body and of one part, shew how to find the centre of gravity

of the remaining part.

ABCD is a parallelogram and the intersection of its diagonals.

If the triangle AOB be removed, fmd the centre of gravity of the

remainder of the parallelogram.

8. A straight horizontal lever has for fiilcnun a hinge at one end

A, and at a point B is hung the weight ]V. If the strain on the hinge

must not exceed ?jJF either upwards or downwards, prove that the

j)ower must act somewhere within a space equal to \AB.

9. Find the ratio of the power to the weight in any one system of

moveable pulleys, the weights of the pulleys being neglected.

In that system in which each pulley hangs by a separate string there

are four moveable pulleys whose weights in order, beginning with the

lowest, are 4 lbs., 3 lbs-, i lbs., and i lb. Find the power required to

support a weight of 38 lbs.

II. Cambridge Previous Examination. Part III.

Additional Subjects. December, 1886.

1. From the definitions of the trigonometrical functions prove that

cos^^ + sin"^ = i, and cosec-y^ tan"^= i +tan^y^.

Prove that 4(cos''^ +sin^^) - 3 (cos^^ -sin''^)-= i.

2. Investigate the values of cot 45° and cos 30°.

Two adjacent sides of a parallelogram are of lengths 18 and -25 and

the angle between them is 120°; find the lengths of both diagonals.

3. Enunciate the Parallelogram of Forces, and assuming its truth

prove that the resultant of two forces /", Q acting at an inclination a to

one another is

>JP^-V(^^zPQzo%a..

A string, which passes over a smooth peg, has its ends attached to

the ends of a uniform bar, the bar resting in a horizontal position.

Shew that the tension of the string is diminished if its length be in-

creased.

4. Explain what is meant by resolving a force, and shew that a

force may be resolved into two components in an infinite nund)er of

ways.
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A force P acts along the bisector of a right angle BAG; resolve it

into components along AB, AC.

5. State the rule for finding the magnitude and line of action of

the resultant of two parallel forces.

Parallel forces of i, 3, 4, 8 lbs. act at points in a straight line

distant i foot from each other, the first three forces acting in the same

direction, and the last in the opposite direction; find the centre of the

system.

6. If a bpdy consist of two parts, whose weights and centres of

gravity are given, find the centre of gravity of the whole body.

G is the centre of gravity of a plane lamina in the form of an

isosceles triangle right-angled at A, and having the side BC of length a.

The portion GBC being cut away, find the distance of the centre of

gravity of the remaining piece from A.

7. If a heavy body be held up by three strings attached to one peg,

prove that the peg and the centre of gravity of the body must be in the

same vertical line.

8. Weights of 7^ and 1^ lbs. are suspended from the ends of a

straight uniform bar of length 5 ft. and weight 10 lbs. If the bar be

laid across a fulcrum distant 15 inches from the greater weight, where

must a weight of 15 lbs. be suspended so as to produce equilibrium?

9. Describe the system of pulleys in which each string is attached

to a bar to which the weight is attached ; and when the weights of the

pulleys are neglected, shew that IV=P (2^ - i), where « is the number

of pulleys.

Shew that by neglecting the weights of the pulleys in our calculation

we are making the mechanical advantage appear too small.

III. Cambridge Previous Examination. Part III.

Additional Subjects. Jtaie, 1887.

1. Define the sine and tangent of an angle; and shew how to find

the sine and tangent of an angle whose cosine {»i) is given.

If sin A — tan B, prove that

cos- A cos" B= (cos B + sinB) (cos B - sin B).

2. Trace the changes in the tangent of an angle as the angle

changes from 180° to 270°.

If sin0=-§, find tanfl; and explain, by means of a figure, the

reason why there are two answers to this question.
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3. If two forces /'and facial the same point, and if their directions

make with each other an angle Q, find the magnitude of their residtant.

A bullet weighing 4 oz., suspended from a fixed point by a string

•25 in. long, is kept by a horizontal force in equilibrium at a distance of

15 in. from the vertical line through the point of suspension. Find the

tension of the string.

4. Shew how to resolve a force into two forces, acting in the

directions of any two given lines passing through its point of appli-

cation.

The side BC of a square ABCD is bisected at E, and a force /'acts

along AE. Resolve this force into two forces, acting respectively along

ABsiuAAC.

5. Find the resultant of two like parallel forces /' and Q, acting

on a body at two points A and B.

A uniform iron rod 2 feet long, whose weight is 7 lbs., is placed

upon two nails, which are fixed at two points A and ^ in a vertical

wall. AB is horizontal and 5 inches long. Find the distances to

which the ends of the rod extend beyond the nails, if the difference of

the pressures on the nails be 5 lbs.

6. ABC, ABD are equilateral triangles on opposite sides of the

base AB. Forces of 2 lbs., 3 lbs., 5 lbs. act respectively along AC,
CB, BA. Prove that their resultant passes through D, and find its

magnitude.

7. Find the centre of gravity of a uniform triangular plate.

Find the position of the centre of gravity of a uniform heavy wire,

bent into the form of a quadrilateral figure, having two of its opposite

sides equal to one another and 4 inches long, and its other two sides

parallel to each other and respectively 3 inches and 7 inches long.

8. A uniform straight lever, 2 feet long, weighs 3 lbs. A weight

of 9 lbs. at one end of it balances a weight of 16 lbs. at the other end.

Find the position of the fulcrum.

9. Find the ratio of the power to the weight in the case of a

system of pulleys, round each of which a separate string passes and has

one of its ends fixed to a horizontal bar to which the weight is attached;

the strings being all parallel, and there being four pulleys, the weight of

each of which is one-half that of the power.
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IV. Cambridge Previous Examination. Part III.

Additional Subjects. October, 1887.

1. Define the cosine and cotangent of an angle and express each of

them in terms of the cosecant.

Prove thr^t

(sec- A + tan^ A) (cosec- A + cot- y/) = i + 2 sec- A cosec" A.

2. Trace the changes in sign and magnitude of the sine of an angle

as the angle increases from 0° to 180°.

If the sine of an angle be > -7- and the cosine of that angle be > -
,v^ -

between what limits does the angle lie?

3. Assuming the truth of the "parallelogram of forces" for the

direction of the resultant of two forces, prove its truth for the magnitude

of the resultant.

Prove that the resultant of two forces P and /"+ Q acting at an

angle of 120° is equal to the resultant of two forces Q and /*+ Q acting

at the same angle.

4. If three forces acting at a point be represented in magnitude

and direction by the three sides of a triangle taken in order, prove that

they are in equilibrium.

ABC is a triangle, Z?, E are points in AB and^C respectively, BE,

CZ> cut in O', indicate the direction of the resultant of forces represented

by CD, BE.

5. Prove that the algebraical sum of the moments of two forces

about any point, outside the angle formed by their directions, is equal

to the moment of their resultant about the same point.

6. Prove that the centre of gravity of a triangle coincides with

that of three equal heavy particles at its angular points.

If the triangle ABC weigh 6 oz., what weight must be placed at A
so that the centre of gravity of the whole may bisect the line joining A
to the middle point of BC ?

7. If a body be suspended by a string from a fixed point the centre

of gravity will be vertically below the point of suspension.
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8. (iivc examples of llie different kinds of levers, pointing out

those in which there is mechanical advantage or disadvantage.

A lever, 30 inches in length, has weights 3 lbs. and 15 lbs. fastened

to its ends and balances about a point 9 inches from one end : what is

the weight of the lever?

V. Cambridgk Previous Examination. Part III.

Additional Subjects. December, 18S7.

1. Trace the changes in sign and magnitude of the tangent of an
angle as the angle increases from 0° to 180"^.

If 3 sin A\-^ cos A — ^, find the value of tan A.

2. Find the value of sin 45°, sin 60°, and sin 90".

If sin (4^ + ^B) = 2 sin (3^ +B)-i, find A and 77.

3. Define the resolved part of a force in a given direction. Shew
that the component of a given force in a given direction may be of any
magnitude, and determine the direction and magnitude of the other

required component, enunciating the proposition you assume.

4. If three forces acting at a point are in equilibrium they can be
represented in magnitude and direction by tlie three sides of a triangle

taken in order.

Find the resultant of two forces of 10 lbs. and 9 lbs. acting at an
angle whose tangent is |.

5. Find the magnitude and line of action of the resultant of two
unlike parallel forces.

The resultant of two unlike parallel forces of 10 lbs. and 18 lbs.

acts in a line at a distance of 12 ft. from the line of action of the less

force; what is the distance between the lines of action of the two
forces ?

6. Shew that every system of heavy particles has one and only one
centre of gravity.

ABC is a triangle right-angled at A; AB and AC are 12 inches

and 15 inches respectively. Weights of 2 oz., 3 oz., 4 oz. are placed at

A, C, B respectively : find the distances of their centre of gravity from
B and C.

L. S. 18
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7. One corner of a square sheet of paper, whose side is i fool, is

folded down so as to coincide with the centre of the square. Find the

distance of the centre of gravity of the paper from the centre.

8. Define a lever, and find the condition of equilibrium on a straight

lever.

A uniform lever, i yard long, weighs 15 oz. The fulcrum is 3 in.

from one end. What force will Ije required at either end to cause it to

balance?

9. Find the condition of equilibrium on the system of pulleys in

which all the strings, being parallel, are attached to the weight.

If there be 3 pulleys, each weighing 8 oz., what weight will a power

of 3 lbs. support?

VI. Cambridge Previous Examination. Part III.

Additional Subjects, yune, 18.S8.

1. Define the tangent and cosecant of an angle, and express each

of them in terms of the cosine.

Prove that sec- A cosec- A — sec- A + cosec- ^.

2. Arrange in order of magnitude sin 1
7°, cos 1 7°, sec 1

7° and

cosec 1 7°, proving that the order you give is correct.

Shew that there is an angle less than a right angle whose cosine is

equal to its tangent. Find the value of the sine of this angle correct to

three places of decimals.

3. Define the resultant of any number of forces. If the greatest

resultant that two forces can have be P, and the least resultant they

can have be Q, find what their resultant is when they act on the same

particle in directions at right angles to each other.

4. If two forces, acting at a point O, be represented in direction

and magnitude by the sides AB, BC of the triangle ABC; prove that

the side AC will represent their resultant.

The side BC of an equilateral triangle ABC is bisected at D, and

forces are represented in direction and magnitude by BA, BD. Find

the magnitude of their resultant if the force along BD be equal to the

weight of one pound.
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5. Find the resultant of two unequal parallel forces acting towards

the same parts.

Prove that the moment of the resultant of these two forces about

any point, situated between their directions, is equal to the algebraic

sum of the moments of the component forces.

6. Define the centre of gravity of a body, and shew how to find

that of three unequal particles placed at the three angular points of a

triangle.

Find the centre of gravity of six heavy particles, situated along a

straight rod, the successive particles weighing i, 4, 9, 16, 25, 36 grains

respectively ; the distance between the first and second particles being

one inch, and the distances between the others being respectively 3, 5,

7 and 9 inches. The weight of tlie rod need not be taken into account.

7. If a body be placed upon a horizontal plane, what is the condition

that it may stand upon it without falling?

In the side CD of a uniform square plate ABCD a point E is taken

and the triangle ADE is cut off. Find the length of DE so that the

plate ABCE may just be able to stand with its side CE on a horizontal

plane, the side of the square being a inches long.

8. Find the condition of equilibrium in the system of pulleys, in

which each pulley hangs by a separate string, one end of each string

being attached to a beam above the pulleys. The strings may be

considered all to be parallel, and the weights of all the pulleys to be

the same.

VII. Cambridge General Examination fur the Ordinary
B.A. Degree. Statics, December, 1886.

1. Define Force; shew that forces may be represented by straight

lines; mention the principal classes of forces with which we are

concerned in Elementary Mechanics.

2. Enunciate the proposition known as "the parallelogram of

forces," and prove it so far as the direction of the resultant is concerned

for commensurable forces.

Two forces P and Q of given magnitude act at a point A and the

direction of P is fixed. .Shew that if the direction of Q change, the

extremity of a straight line drawn from A representing the resultant of

P and Q will lie on the circumference of a fixed circle.

18—2
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3. Prove that the moment of the resultant of two forces which act

at a point about any point O in the plane of the forces is equal to the

algebraical sum of the moments of the forces about the same point O in

the case when the point lies within the angle between the directions of

the forces.

4. Find the magnitude and line of action of the resultant of two

parallel forces which act at given points in the same direction.

5. Define the term Centre of Gravity, and shew how to determine

the centre of gravity of a system of heavy particles.

A straight rod AE without weight is divided in the points B, C, D,

so that AB : BC : CD : DE : : i : 3 : 5 : 7,

and weights of i, 1, ^, 4 lbs. are placed at the points B, C, D, E,

respectively : shew that if G be the centre of gravity of the system

AG : GE :: i -.7,.

6. Shew how to find the centre of gravity of a plane triangle of

uniform thickness and density.

Shew that the centre of gravity of a plane quadrilateral cannot

coincide with that of four equal particles placed at its angular points

unless the quadrilateral be a parallelogram.

7. Describe and explain the mode of graduating the Common
Steelyard.

8. Find the relation between the power and the weight when there

is equilibrium in that system of pulleys in which the strings are parallel

and the extremity of each string is attached to a fixed beam. If there

be four moveable pulleys the weight of each of which is i lb., find the

power when the weight supported is 33 lbs. Find the whole strain on

the fixed beam.

9. Find the condition of equilibrium when a weight is supported

on a smooth inclined plane by a force acting parallel to the plane.

Two weights are connected by a fine string and supported upon a

smooth double inclined plane whose base is horizontal, the string

passing over the intersection of the planes ; prove that the weights arc

proportional to the lengths of the planes on which they rest.

Find the parts of the whole weight supported at the points where the

weights rest, and at the intersection of the planes, in the case when the

inclinations of the planes to the horizon are respectively 60° and 30°.
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VIII. Cambridge General Examination for the Ordinary

B.A. Degree. Statics. Jtiney 1887.

1. Y)(S\nQ force, 7-esu/tant, component.

Find the resultant of seven different forces acting in the same
straight line on a point, three in one direction and four in the other;

and shew that if one of them be reversed in direction, the change in the

resultant will be twice the magnitude of this force.

2. Enunciate the proposition known as "the parallelogram of

forces," and assuming it to be true as regards the direction of the

resultant, complete the proof.

If two forces be inclined to one another at an angle of three halves

of a right angle, find the ratio of their magnitudes when the resultant

equals the less.

3. State and prove the polygon of forces.

ABC is a triangle; D, E are the middle points of AB, AC: shew

that forces acting at a point represented in magnitude and direction by
DB, BC, CE are equivalent to forces represented by DA, AE.

4. Find the resultant of t«o parallel forces that act in opposite

directions.

Two men, one stronger than the other, have to remove a block of

stone weighing 300 lbs. with a light plank whose length is 6 feet : the

Meaker man cannot carry more than 100 lbs., how must the stone be

placed on the plank so as just to allow him that share of the weight?

5. Define the moment of a force about a point, and shew that, if

the algebraical sum of the moments of two forces about a point is zero,

that point is on their resultant.

6. Find the centre of gravity of a uniform triangular plate.

What is the form of a triangle, if its centre of gravity coincides with

the centre of a circle circumscribing it?

7. How can the centre of gravity of a body be practically deter-

mined by suspending it by a string?

8. Find the ratio of the power to the weight in a system of «
weightless pulleys in which a separate string passes round each and is

attached to a moveable beam from which the weight is suspended, the

strings being parallel.

If there be four pulleys arranged as descrilied, and if tlie three
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moveable pulleys beginning with the lowest weigh /", 2/", 4/* respec-

tively, shew that if the system be acted upon by a power P it will

support a weight 32/".

9, If a weight W^ rests on an inclined plane when acted upon by a

horizontal force P, shew that P : W :: height of plane : base of plane.

If the pressure on the plane be double the weight, what is the angle

of the plane?

IX. Cambridge General Examination for the Ordinary
B.A. Degree. Statics. December, 1887.

1. Define the terms "force" and "weight," and enumerate the

chief forces with which we have to deal in Statics.

How may the weights of two bodies be compared ?

2. Enunciate the " Paiallelogram of Forces." Prove its trutli so

far as the direction of commensurable forces is concerned.

The resultant of two forces acting at an angle of f of a right angle

is perpendicular to the smaller component. The greater component

is equal to a weight of 50 lbs. Find the other component and the

resultant.

3. Shew that if two forces acting at a point be represented in

direction and magnitude by two sides of a triangle taken in order, the

third side of the triangle, not taken in the same order as the other two,

represents their resultant.

Three forces are completely represented by the lines joining the

angular points of a triangle with the middle points of the opposite sides.

Shew that they are in equilibrium.

4. If three forces in the same plane be in equilibrium, prove that

they are either all parallel to each other or all meet in a point.

A uniform rod has its lower end fixed to a hinge, and its other end

attached to a string which is tied to a point vertically above the hinge.

Shew that the direction of the action at the hinge bisects the string.

5. Define the centre of gjravity of a body, and find the position of

the centre of gravity of three equal weights placed at the corners of a

triangle.

Weights of I, 3, 5 and 7 lbs. are placed at the corners of a square

taken in order. Shew that their centre of gravity is midway between

one of the sides of the square and the intersection of the diagonals.
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6. Describe a method by which the centre of gravity of a flat

piece of metal of any shape may be practically found. Prove the

principle on which the method depends.

7. What are the different classes of levers? Give an example of

each.

A straight imiform lever, whose weight is 15 lbs. and length 3 yards,

rests in e(|uilibrium on a fulcrum when a weight of 3ll)S. is suspended

from one extremity; find the position of the fulcrum and tlie pre.-surt;

on it.

8. Find the condition of equilibrium in the system of pulleys in

which the same string goes round all the pulleys and the parts of the

string between the pulleys are parallel.

If a power of 3 lbs. will just support a weight of 1 1 lbs. suspended

from the lower lilock, the number of strings being four, find the weight

of the lower block.

9. A weight is supported on a smooth inclined plane by a power

acting parallel to the plane. Find the relation between the power and

the weight.

If the weight be 10 lbs., and the power 5 lbs., what is the pressure

on the plane?

X. Cambridce Genek.\l Examination kor the Ordinary

B.A. Degree. Statics. June, 1888.

1. Define a force. What three elements must be known in order

to determine a force completely, and how can forces be represented by

straight lines?

2. Enunciate the "Parallelogram of Forces," and prove it as to

the direction of two commensurable forces.

The sum of two forces is 36 lbs., and the resultant, which is at right

angles to the smaller of the two, is 24 lbs. Find the magnitude of the

forces.

3. State and prove the polygon of forces.

Forces represented in magnitude and direction by the diagonals of a

parallelogram act at one of the corners, what single force will counter-

act them?
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4. When two parallel forces act in opposite directions shew that

the moment of their resultant about any point in their plane is equal to

the algebraical sum of the moments of the two forces about the same

point.

A thin board in the form of an equilateral triangle, and weighing

I lb., has one quarter of its base resting on the end of a horizontal

table, and is kept from falling over by a string attached to its vertex

and to a point on the table in the same vertical plane as the triangle.

If the length of the string be double the height of the vertex of the

triangle above the base, find its tension.

5. Shew that every system of heavy particles must have a centre of

gravity, and find that of four equal weights placed at the corners of a

parallelogram.

A uniform bar 4 yards long weighing 1 2 lbs. has three rings each

weighing 6 lbs. upon it at distances t foot, 5 feet and 7 feet from one

end. At what point will it balance?

6. If the centres of gravity of a whole body, and of a part of this

body, be known, shew how to find tlie centre of gravity of the

remainder.

One corner of a square is cut off by a straight line passing through

the middle points of two adjacent sides. Find the position of the

centre of gravity of the remainder.

7. Describe and graduate the common steelyard.

8. Find the condition of equilibrium in the system of pulleys in

which each string is attached to the weight.

If there are five moveable pulleys each weighing half a jjound, and

the weight is 35 lbs., what is the power?

9. A force /* acting up an inclined plane supports a weight /Fon

it. \{ R be the reaction of the plane, prove that

F : ]F : R :: height of plane : length : base.
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XI. OXFORU AND Cambriik;k Schdoi.s Examination. Jtine, 1888.

Note.— (
i

) In order to pass in Ekmeiitivry and Additional Mathe-

matics, a Candidate must satisfy the Examiners in Part I.

(2) Distinction in Mathematics will depend upon the Candidate's

loork in the whole of the Paper.

Part 1.

1. Assuming the parallelogram of forces as regards the direction,

prove its truth for the magnitude of the resultant.

Two forces are represented in direction and magnitude by the

<liameters AC, BD of the parallelogram ABCD; find the resultant by

means of a geometrical construction.

2. Find the resultant of two given like parallel forces.

A beam ^i9, of length 15 feet and weight 200 lbs., whose centre

of gravity is at a distance 7 feet from A, is supported in a horizontal

position by props at A and B. Find the pressure on the prop at A.

3. From a body, the centre of gravity of which is known, a given

portion whose centre of gravity is also known is cut out: shew how the

centre of gravity of the remainder may be determined.

On a radius of a given sphere as diameter another sphere is described

and the latter sphere is cut out of the former. Find the centre of

gravity of the remainder, assuming that the volume of a sphere varies

as the cube of its radius.

4. A smooth uniform beam, of weight WVo?,. and length 6 feet,

rests with one point of it on the top of a fixed vertical post 3 feet high.

The lower end of the beam is on the horizontal plane through the foot

of the post and connected with the latter by a string 4 feet long. Find

the tension of the string.

5. Find the conditions of equilibrium of a body of given weight

supported on a smooth inclined plane by the action of a horizontal

force.

Two particles A and B are connected liy an inextensible string and

their weights are such that when they are placed one <m each of two

inclined planes having a common altitude, they are in equilibrium:

shew that the centre of gravity of the two masses is always in the same

horizontal line for all positions of equilibrium.
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Part II.

9. State the laws of limiting friction.

A body is placed upon a rough inclined plane of angle a, and is

kept in equilibrium by a force, whose line of action makes the angle
"

2

with the line of greatest slope of the plane. Find the limiting values

of the ratio of the weight of the body to the force, when the coefficient

of friction is tan -

.

2

The rest of the paper is on Dynamics.

XII. Open Competition for Royal Military Academy,
Woolwich. December-, 1886.

1. How are forces measured in Statics? Can three forces, propor-

tional to 9, 5, 3, respectively, acting in one plane on a particle, be so

arranged as to be in equilibrium? State and prove any proposition

that involves the answer to the question.

2. Two equal forces inclined to each other at a given angle act on
a fixed point ; find the pressure on the point.

Two equal weights
(
IV) are attached to the extremities of a thin

string which passes over three tacks in a wall arranged in the form of

an isosceles triangle with the base horizontal, the vertical angle at the

upper tack being 120°; find the pressure on each tack.

3. If a straight uniform rod is suspended by a thin string fastened

to its middle point, and be kept in equilibrium by two weights on the

opposite sides of the middle point, find the tension of the string by
which the rod is suspended, and shew how the weights are related to

each other.

A straight lever 2 feet long is moveable about a hinge at one end,

and is kept in a horizontal position by a thin vertical string attached to

the lever at a distance of 8 inches from the hinge, and fastened to a
fixed point above the lever; if the string can just support a weight of

9 ounces without breaking, find the greatest weight that may be sus-

pended from the other end of the lever.

4. Shew that any system of forces acting on a rigid body in one

plane may be reduced to a single force and a single couple. A rod is

placed in any given position with one end on a smooth floor and the

other end against a smooth wall. Find a single force and a single

couple which together will keep it at rest in that position.
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5. If a light cone be cut by a plane bisecting its axis, find tlie

distance of the vertex of the cone from the centre of gravity of the

frustum thus cut off.

6. In that system of liiree pulleys (usually called the third system)

where each string is attached to the weight, and the weights of the

jjulleys are all ecjual, find the relation of the power to the weight,

when equilibrium is established. If each pulley weighs 2 ounces, what

weight would be supi)orted by the pulleys alone?

If the weight supported be 25 lbs. and the power 3 lbs., find what

must be the weight of each pulley.

7. Find the force acting up and parallel to a given rough inclined

plane that is just able to move a weight up the plane.

Two equal weights are attached to a string that is laid over the top

of two inclined planes having the same altitude and placed back to

back, the angles of inclination of the planes being 30° and 60° respec-

tively, shew that the weights will be on the jioint of moving if the

coefficient of friction between each plane and weight be .- .

2 + \'3

8. State the principle of virtual velocities. Assuming the principle

true, deduce from it the condition of equilibrium on a bent lever of

unequal arms when acted on by weights suspended at the extremities of

the arms, and shew that for an infinitely small displacement the centre

of gravity of the weights will neither ascend nor descend.

9. A lamina in the form of an isosceles triangle, whose vertical

angle is a, is poised upon a sphere, radius r, so that its plane is vertical

and one of its equal sides {a) is upon the surface of the sphere ; shew

that the equilibrium will be stable in the plane of the triangle if sin a be

less than — .

a

10. Define the unit of work, and explain how it varies \\ith the

units of length, mass, and time.

A chain weighing 8 lbs. per foot is wound up from a shaft by the

expenditure of four million units of work ; find the length of the chain.

11. A cylindrical shaft has to be sunk to a depth of 100 fathoms

through chalk whose specific gravity is 2*3; the diameter of the shaft

being 10 ft. What horse-power is required to lift out the material in

12 working days of 8 hours each? [The weight of a cubic foot of

water is 62*5 pounds, and one horse-power is 33,000 footpounds a
minute.]



ANSWERS.

I.

1. finch; i inch. 2. lolbs.; 12^ lbs. 3. 7ai"-; 9 in-J i8| in.

4. 192 lbs.; 112 lbs. 5. I i lbs,; 2 lbs. 6. 3 /s/2 lbs. S. W.

7. Z>j5 represents a force of ^3 lbs. westwards; AB represents

a force of 2 ,.^3 lbs. inclined at an angle of 30° to AD.

II.

1. Resultant 2 lbs. towards the south. 2. Resultant 7 lbs. downwards.

3. Resultant 3 lbs. towards the south. 4. "z. 5. Zero.

6. 15- 7. 6 lbs. 8. 74 lbs.

9. The third horse must back with a force of 9S lbs.

III.

I. Resultant 5 lbs., angle 53° . 7' nearly. [These angles are found

from a table of tangents.] 2. i8'o2...1bs., 33° . 40'.

3. 65 lbs., 67°. 23'. 4. 9'2i9lbs., 49°. 24'. 5. i4"861bs., 47°.42'.

6. 22-36 lbs., 63°. 26'. 7. 5-657 lbs., 45°. 8. 2 lbs., 60°.

9. 4-76. ..lbs., 36". 29'. 10. 4-836. ..lbs., 11°. 55'-

II. 4*797 lbs., 30°- I
^'- 12. ii-3ilbs., 43°. 56'.

13. 5a lbs., 53°7'. 14. Ja- + d'\ tan~i .

[The angle in each of these cases is that which the resultant makes
with the direction of the first of the forces given.]

IV.

1. 20-784. ..lbs.; 41-568. ..lbs. 2. 8-66. ..lbs.; 5 lbs.

3. lib.; lib. 4. 57-7-. lbs.; 57-7. ..lbs.

5. I7'675...1bs.; 17-675. ..lbs. 6. loolbs.; loolbs.

7, i4-i4...1bs.; i4-i4lbs. 8. 25-98. ..lbs.; 25-98. ..lbs.

12. 6-6 lbs. 13. lo^lbs.; i2jlbs.

14. 7|lbs.; 5a lbs. 15. 13-4 lbs.

V.

1. 15 lbs. 2. 43'3lbs. 3. 4 lbs. 4. 75 lbs.

5. 2iolbs. 6. 54-625 lbs. 7. i88-i781bs. 8. 20-2995 lbs.

9. 20 lbs. 10. 2-1 lbs. 11. i6Slbs. 12. 7llb3.

13. 16-9 lbs. 14. 9 lbs.
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VI.

1. 894. ..lbs. 2. 8-47. ..lbs. 3. 1605. ..lbs. 4. 6-76. ..lbs.

5. 9-848. ..lbs. 6. 14 lbs. very nearly. 7. 5 lbs. 8. 26-45. ..lbs.

9. 46-35. ..lbs. 10. '2i-25...1bs. 11. 225-6. ..lbs.

12. /'lbs. 13. 2^/3 lbs. 14. v/61bs.

VII.

1. 6-48. ..lbs. 2. 5 lbs. 3. 7"07--ll>s. 4. 2olbs.

5. 2lb,s. :ilb. 6. 20 lbs. 7. gl^s. 12. 5 lbs.; -5 lbs.

VIII.

1. 9-83. ..lbs., [tan i^0^= 1-692...].

2. 10-19. ..lbs., [tan /?0^ = 1-5].

3. 9-85. ..lbs. nearly, [tan A'C^ = 2-25].

4. 13-6. ..lbs., [tan A'a-i =1-375].

5. 385-5... lbs., [tan/?C>^= -31-86].

6. 1 7-32... lbs. acting in direction perpendicular to O.l.

7. - 1-732. ..lbs., tan /'Oy^= ;— ; .'. Resultant lies in the third

quadrant. 8. - i 732. ..lbs., see Answer to 7.

9, 4-47. ..lbs., [tan /?<9^ = il. 10. Zero. 11. Zero.

12. 9-605... lbs., [tan A'a-/ = 6-25]. 13. Zero.

14. —7-96... lbs. : if the direction of force of i lb. be the initial line

the resultant force lies in the third quadrant, [tan KOA= 1-75].

15. 6 lbs. and the resultant makes an angle of 120° with the direction

of force of 3 lbs.

16. 6 times the force represented by AB acting along AD, [tan RAB
= 2-15].

18. 13-28 lbs., [tangent of angle which the resultant makes with the

direction of the force of i lb. =3-09...].

IX.

1. 13 lbs. 2. G V 3 making an angle of 150° with the direction

of2C. 4. /'=5 lbs., (2= 12 lbs., A^: 13 lbs.

8. CA represents the resultant. 10. As i : Ji, 12. 150°.

13. cos-i^. 14. 7 lbs. 16. 2AB. 17. 3 v/^lbs.; 3lbs.

18. v/Tllbs. 19. V{4' + (3+x/3)'} lbs., 6-19.. .lbs.

20. 1 1-6 lbs. nearly.
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X.
1. ^5' I5v/2 = 2r2... ; zero. 2. i'Z'5; zero; 17-5.

3. 25; V-v'2=io'6--; i7"5- 4. 72; 72; 30; zero.

5. 72; 24; 30; 144. 6. 7 inches from ,•/.

7. 42 inches from A. 8. The point is % of i)'C from 7).

XI.

4. A straight line parallel to the direction of the force.

5. A straight Ime drawn parallel to the force which does not act the

same round as the other two.

7. The force passes through C, bisects AB and =6 lbs.

8. 1 lbs. parallel to AB and distant 4 feet from A.

XII.

1. The resultant of the forces cuts the line joining these two points in

the ratio of 2 to i

.

2. The resultant, if not zero, must pass through Q.

8. No, unless the triangle is equilateral.

XIV.

1. 5 lbs. acting 3 ft. from smaller force.

2. 23 ft. from smaller force. 3. 64ll)s.; 48 lbs.

4. 48 lbs.
; 32 lbs. 5. 1 2 lbs. ; 24 lbs. 6. 24 lbs.; 16 lbs.

7. An unlike parallel force of 10 lbs. acting at the middle point.

8. An unlike parallel force of 3 lbs. acting at a point 25 ft. from the

other unlike force.

9. 3 cwt. 10. 75 ft- from fixed point.

11. An unlike parallel force of 21 lbs. acting at a point 4 ft. from

smallest weight.

12. An unlike parallel force of 7 lbs. acting at a point 6 ft. from the

smaller weight.

13. 2 ft. from the stronger man. 14. 4 ft. from him.

15. 267§lbs.; 624ilbs. 16. 7ttV ft. ; i2§a ft.

17. 8 lbs. and 6 lbs. 18. 1 165 lbs. 19. 350 lbs.

20. 42 lbs.; 21 lbs. 21. i7Ut- 22. 96 lbs. 23. 96 lbs.

24. 21 lbs. acting at a point 3^ in. from end.

25. 27 lbs Iff ft

26. 24lbs 5Ut

27. 8ft

28. 2/3 ft. from end; i cwt., 2 cwt., 4 cwt., 8 cwt. respectively.

31, A force of 7 lbs. acting at a point 67 ft. from A.

32. A force of 2 lbs. downwards at a distance 15 ft. from A.

35. 20 lbs.
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XV,

1. OM 'mWnc OC=i\i'm., 0.^=2^1"-

2. OM^ 1 in., 0A'= IH i"- 3. OJ/:^ i in., O/V^ ^ in.

4. CM= in., C^V= a- 1 6.v . . in.

5. The point of intersection of the diagonals.

6. The c. G. of the triant;le. See p. 95.

7. At the centre of the Inscribed Circle. CjM—s - c, CA''= - = ;-, sec
.f

TrifT. p. 13,2.

8. If the force at C he unlike that of the other two then

CM=a+ I) . cos c, CN= bsinc.

If the parallelogram ACBO be completed, O is the centre of the

forces.

9. At the centre of an Escribed Circle. If the force at C be the

unlike force, then CM=s, CN^r^^ see Trig. p. 233.

10. CJ/ in direction CZ>= i(2f -^/. cosZ> + (^cos C),

CN'\x\. direction perpendicular to CZ>= ^(/^ sin C+f/sinZ)),

AB= a, BC=l>, CD=c, DA=d.

XVI.

1. i of length of rod from point of suspension of 10 lbs.

2. A I of length of rod from point of suspension of 3 lbs.

3. 24 lbs., 20 lbs. 4. 8 ft. from the other end.

5. 28* ft. from the first man,

6. 55 ft- from point of suspension of 8 lbs.

7. 6f ft. from point of sus]iension of 12 lbs.

8. 10 ft. from that end. 9. 6 lbs. 10. 10 lbs.

11. lyvrft. from point of susj^ension of 7 lbs.

12. 3i ft. from point of suspension of i lb.

13. 25 ft. from point of suspension of 3 lbs.

14. 16 lbs. 15. 2 lbs. 16. 8 lbs.

17. 267^ lbs.; 624^ lbs. 18. 7fj:ft.; i2ilft. 19. i61bs.

20. 3.^f.lbs. 21, 8^ lbs. 22. 6 lbs. 23. 15 ft.

XVII.

1. c. G. is i\a from the foot of the cross [a= side of square].

2. c. G. is distant f of the diameter measured from the point of sus-

pension of 2 lbs.

3. C. G. is distant 4 of the diameter measured from the point of
suspension of i lb.

5. c. G. is 5I in. from the mitUlle point of the lowest side of the figure.
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6, c. G. is distant \\ of the diameter from that corner.

7, c. G. is distant f of the perpendicular from E on DC.

8. c. G. is distant § of the line drawn from the middle of base to vertex.

9. c. G. is distant i\ of the radius of the greater circle from its centre.

10. C.G. is distant i-^Ji of the radius bisecting the angle between

the two radii from the centre.

11. c. G. is distant J of the radius drawn from centre to B.

12. c. G. is distant ^ of the line drawn from centre to the middle of AD.

13. c. G. is distant 4% of OD.

14. As JI : I.

16. c. G. is distant W of ^^^ ^'"^ drawn from the middle of the

opposite side to the other angle.

17 C. G. is distant ^—7^ of the base from its middle point.

8 + 2 >y.^

19. C. G. is distant ^ of the side of the square from the middle point

of the base.

20. I-et the c. G. be at G; draw GAf, CA^ perpendiculars to DA, DC;
then GM=\\ oiDC; GN=l of AD.

21. C. G. is distant from £ /^ of the length of the line joining the

middle of DC with £.

28. The tangent of each base angle is 3. 29. 3-

XVIII.

2. Two thirds of the line joining the vertex with the middle point of

the opposite side. 3. 45 > ^35 •

5. « \/3- [a = side of square.] 7. 24-142... lbs.

9. 1 20 lbs. 10. 1 8 lbs.

11. 17 bricks; for the C.G. of 17 bricks is vertically over the edge of

the 1 8th brick.

12. If <:2> rt-+ 3<5* then a force= |^^.7^ n J,^^
"^"•'''- '^^ applied verti-

cally upwards at B to maintain equilibrium. 14. 6 lbs.

XIX.

1. A force of - i lb. 2. A force of - 1 1 lbs. 3. A force of - 3 lbs.

4. ^C must be produced to point Q, so that AQ=i8 inches.

5. 18 in. from /£ in the same direction.

6. 1-519... inches. 7. liin. from^.

8. (i) AD must be produced 7 in.

(ii) DC must be produced i^ in.



ANSIVEJ^S. XIX. 289

9. It cuts AD produced to M so that AM=^i'2 in., nnd DC pro-
duced to iVso that DN— 12-6 in.

11. A force of 6 lbs. acting in a direction parallel to BC.
12. The resultant of the three forces is i)arallel tu this perpendicular:
so that no such point can be found.

14. 2^/3 lbs. at />', IsJi lbs. at A.

15. A weight equal to z^ must be suspended from B.

17. libs. 18. sA^"«- 19. 100 lbs.

XX.

1. 141 lbs. 2. 1 16 lbs. 3. A weight of 30 lbs.

5. (i) A force of 20 lbs. (ii) 100 lbs.

6. When the end of the chain has reached a point 20 feet from the
ground. 8. 5 ft. 4 in,

; 7 ft. 4 in.

9. (i) the 4 lb. weight is at the lowest point ; (ii) 7 lbs., 5 lbs.

10. (i) the 10 lbs. weight is at the lowest point, (ii) The weight of
10 lbs. is at its lowest point and one part of the chain supports
7 lbs. more than the other ; therefore the tensions of the two
parts of the chain at the lowest point are 8i lbs. and lilbs,
(iii) i6ilbs. 11. 9 lbs. 12. 20 lbs." 13. 5 lbs.

14. 10 lbs. 15. 67ilbs.; ,of lbs. 16. 78Albs.; 188 j% lbs.

17. .:;of lbs.; 67ilb3. 18. 188,;% lbs.; 781'% lbs.

22. The vertical line from the peg downwards must pass through its c. (;.

Also since the peg is smooth the tension of the string is constant
throughout; therefore the vertical through the c.o. bisects the
.angle between the strings. Hence the string is divided at the peg
into two parts in the same ratio as the rod is divided at its c.G.
[Euclid VI. 3].

(I b
23. -X ^V; -X IV, where r= twice length of line joining the peg to

middle point of the rod.

24. .yrtan^. 25. sJl,lV. 26. IsJilV.

27. The vertical downwards from centre of sphere will bisect the rod

—

perpendicular dist. = ^^3 r \j-- radius].

28. 'l"he vertical downwards will j)ass through the c. (;. of rod. The
3 forces acting on the rod are the pressures at the two ends and the
force of gravity at the c. c. These 3 forces meet at the centre of
sphere.

29. The vertical through the 1)ead bisects tlie angle between the
strings.

30. If the strings supporting the extremities be produced they will
meet the vertical drawn from the c. c;. of the rod in one and the
same point. If the parallelogram whose sides are along the strings
and diagonal vertical be completed the tensions may be found,

L. S. jp
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XXI.

1. 40 lbs. 2. zhh. 3. 7^llJs- 4. 2ilbs.

5. Any distance less than 3§ ft.

6. 4A inches. 7. aiflbs. 8. 12 lbs.

9. (i) Place the weight at one end with an arm of 5 ft. and the power
at the other with an arm of 10 ft.

(ii) Place the weight 7^ ft. from the fulcrum which is at one ex-
tremity and the power acting vertically upwards at the other end.

11. i^ft. _ _ 12. I lift.

13. (i) J9 -J 10; (ii) 6 ^10 lbs.= 18-97... lbs.

14. 9*11js. 15. (i) i8|lbs. (ii) i^/{492 + 46-x3}lbs-

16. Q must be multiplied by —^

.

18. 40 lbs. 19, 90°; 20 lbs. 20. 267 lbs. 21. lib-

XXII.

2. The grocer loses - ^^ of the nominal weieht, where a, b are
2 al>

^

the lengths of the arms. 3. 131".; 14 in. 5. lo/.rlbs.

7. I oz. 11. He loses |(/. on every 2 lbs. 12. As ii '3:16.

XXIII.

1. 5 lbs.; I inch. 2. The nominal weight is always 5 lbs. too great.

3. 18 in. 4. 26 lbs.; 15 lbs.: 2 in. 6. 5^ in. from fulcrum
; 4 in.

8. At the fulcrum. 9. The fulcrum is Sin. from the C.G. of the beam.

11, C.G. is distant 12 inches from the end to which the weight is

attached : 4 oz. 12. 36 lbs. 16. i inch.

XXIV.
1. lib. 2. 80 lbs. 3. 6 (pulleys). 4. 3 lbs. 5. 85 lbs.

6. 7 c. 2 qr. 18 lbs. (putting the 6 lbs. pulley highest).

7. 6 pulleys ; 64 in. 8. 4 lbs. ^.lW;-jir. 10. 10 lbs.: 6| lbs.

11. The centre of the parallel forces is f of a foot from point of

suspension of third pulley. 12. Half his weight.

13. lib. 14. ^F. 15. i2ilbs.

16. 2 tons [neglecting the weight of cable]. 17. 64 lbs.

18. 28oilbs. 19. 15 lbs. 20. 443 lbs.

22. 8t*^ times his own weight. 23. 2635 lbs.; 375 lbs.

25. 56 lbs. 28. 60 lbs. greatest
; 54 lbs. least. 29. Four.

31. The system in which each pulley is supported by a separate string.
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XXV.
3. 12 v/3lbs^=2o7«ll^s- 4. 6 lbs. 5. 45°- 6. 30°-

8. As I : Jl 9. 45°- 10. 3°°- H- 60°.

12. 30°; 6^/3 lbs. 14. 30°; 30°. 15. As3:4;2/'.

16. As AC : AB. 18. i -998... tons=: 2 tons very nearly.

XXVI.
3. 28CWL iqr. i7flbs. 4. i86tlbs. No. 5. sft-

6. The radius of the wheel which is drawn to the nail makes an angle

with the vertical whose sine is \.

7. (i) when it acts vertically upwards; (ii) when it is vertically

downwards.

9. The diagonal to the point of application of the power makes an

angle with the vertical whose sine is f ,^^2.

XXVII.
1. i2cwt. 2. 14-85... lbs. 3. i^ of an inch.

4. -5^ ='054... of an inch.

xxvm. a.

1. 5 lbs. 2. About 28^ lbs. 3. 20 lbs.

4. About 28J lbs. 5. 15 lbs. 6. 56 lbs.

7. About 2 cwt. 76 lbs. 8. 50 lbs. 9. 84 lbs.

XXVIII.

1. W3- 2. 380-8 lbs. 3. 112 X tan a. 4. 'ill---

5. 60°. 6. -i^sli- 7. v/2±i. 8. W2lbs.

9. tan-i||. 10. 8 ft. 12. tan-i--; 10 ft.

13. TjTT!- very nearly. 14. Nearly 5 times. 15. ii-sjiW.

16. The resolute of the force along the roller must be less than '4 times

W. The resolute perpendicular to the roller is -oi times W,
therefore the limiting angle must be the angle whose tangent is -x^.

17. tan~^ :jV; ^'^ry little more than 1 1 20 lbs.

18. /rxM= 9lbs.x ^1^3 = 6-35... lbs. 19. M= i.

TiX

22 The distance of the C G. from the centre =-: , and the incli-

nation of the plane must be tan i/^.

23. A- 25. I.

26. The angle which the face between the wall and the plane makes
with the horizon must not be greater than 45° nor less than the

I — it.\j!

angle whose tangent is ,.
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27. tana^'Z/u, when 2a. is the angle between the bars. 28. 24 lbs.

29. If the gilder begins to slip at both points at once the forces

of friction are equal. Therefore it will only begin to slip at both
points at once if the force be applied at the middle point. If it

be nearer one bar than the other the greater of these parallel

forces is in the middle, and the friction at the point at which it

slips is greater than at the point where it does not.

30. The point of application must divide the part of the girder within

the bars in the ratio of 2 : i

.

XXIX.
2. 150°, 120°, 90°. 3. 135^ '35% 90 •

6. They are in the same straight line.

7. 2 lbs. acting in the direction of the 5 lbs.

9. I lb. acting in a contrary direction to the 19 lbs.

10. The forces are parallel to the sides of an equilateral triangle taken

the same way round ; hence their resultant is that of 8 lbs. and

15 lbs. inclined at 120°= 13 lbs.

13. 9o^> the angle whose sine is || and the angle whose sine is x"tt-

[In each of these two cases the angle lies between 90° and i8o^]

14. 150°. 15. The force along ./C= 2 >,/3 lbs. The force along

16. AD bisects the angle FDE, :. the resultant is

2/'cos .-^Z?^ = 2/" sin /7)^= ^/'sin ^

.

.•. the forces are as i : i : 2 sin ^. 17, ^^.

18. The two forces make an angle of 30° and 150° respectively with

the side of the square.

XXX.
1, (i) A force of 10 lbs. acting in the direction opposite that of the

8 lbs.; (ii) A force of 10 lbs. acting along the 9 inch side opposite

to the 8 lbs. and a couple whose moment is twice the area of the

quadrilateral. 3. 7 v 3 Ihs. 5. 3 s^t- x OA.

6. 4*6 and it lies in the fourth quadrant.

XXXI.
6. A circle. 7. A line drawn perpendicular to the line joining

the two "c.G.s" from the middle point.

XXXII.

5. A couple whose moment= the sum of the moments of the couples.

6. At C. 8. The tendency to break in each of the three cases

is 90 X /, 130 X / and 50 x / where / is half the length of the plank.

9. 4x112x1; 448 X ly^r + 560 X t\ ; 784 X I.

10. 10 X 3; 10 X i\. 14. 1 1 tons at the middle point.

15. 54 tons at the middle point.
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MISCELLANEOUS EXAMPLES. XXXIV.
1. 14-24... Ihs. 2. The c. G. of the triangle.

3. Nine ; for the c. G. of nine tiles is vertically above the outside edge
of the tenth. 4. One foot. 6. .=; ^3 lbs.

7. The two strings with weights 3 lbs. and 4 lbs. attached to them
must be at right angles to one another, and the string attached to

the weight t)f 5 lbs. must be in the direction of the diameter of the

parallelogram formed by the other two string.s.

12. The c. G. is in the axis of the longer cylinder, at a distance = j%*^

of its length from the point of junction of its axis.

15. 90°, 65°, 25°. 20. tan-Hx'3-

21. The direction of the string must pass through the centre of the
•spliere, it makes 30*^ with the vertical. Tension = | l^^yJi-
Pressure = FrV3- 23. ^^^Vs- 24. 4^ tons

; 3§ tons.

27. 10 in. from the scale-pan. 31. As 2 : 3. 32. 10 lbs.

35. if in. further from the 27 oz.

36. Tension : Weight = length of the string : twice the height of the

staple.

37. The keel of the ship prevents sensible motion in the direction

perpendicular to its length. In whatever direction the wind blows,

the pressure which it applies to the sail is nearly perpendicular to

the surface of the sail. The sail is so arranged that this pressure

has a resolute in the direction of the ship's course.

38. H of a foot,

41. Join the middle points of the two wires the C.G. will be distant
2' 186 in. from the middle point of longer wire. Its distances from
the wires are 3^ in. and i^in.

42. The friction permits him to arrange his body so that the c. o. of
(his body and the l)all) is outside the base, so that the joint body
topples over up the plane.

45. ^V:VVJi,:\lV^i. 53. s.l^:2. 54. 45°-

57. The radius at one extremity of the rod makes the angle
, i—iu.- u? . , , . ,

tan~i , with tne vertical.

58. Let /j, /j, /, be the centres of the escribed circles; then
r.y : r^= /„A : 1.^.4 ;

.-. the c. o. of the weights at /,, /, is at A ;

.•. the C.G. of all three lines on AT^\ :. their c.g. "is at the
centre of the inscribed circle.

61. 45 feet. 131. AB is the rod; A, C the pegs; D the point;

then AC= -^.,—=,—,. 132. Tlie tension is \IVJ^.
Ai3'+ JJH- ' "
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ARITHMETIC FOR BEGINNERS. A School Class

Book of Commercial Arithmetic. Second Edition. Glol)e 8vo. 2s.6cl.

KEY TO "ARITHMETIC FOR BEGINNERS."
By Rev. R. G. Watson. Crown 8vo. Sj. 6d.

The Journal of Education says :
—" This Arithmetic is founded on the

author's larger work, such alterations having been made as were necessary

to render it suitable for less advanced students, and in particular for those

who are candidates for commercial certificates. Tables of foreign money
.ire given with the approximate values at the present moment, and stocks,

exchange, etc. are very fully explained and illustrated from recent money
articles, so that the book is well adapted to the requirements of this new
class of examinations. A chapter on Recurring Decimals and a small col-

lection of recent Examination Papers are placed at the end of the volume."

The Practical Teacher says:—"Mr Lock's reputation as an author was

made by his text-book upon Trigonometry, and it has been increased by

his later work on Dynamics. He has now issued a school class-book

written mainly with a view to meet the requirements of the new examination

for commercial certificates. Hence, more prominence is given to exchange

and foreign money, and less to recurring decimals. But while, perhaps,

specially intended for a specific purpose, the book will be found useful in

almost all schools, as it contains enough of theory and abundance of practice.

Readers of Mr Lock's other books will not be surprised at the singular

precision and clearness of the statements. The author has three marked
qualifications for his work : he is thoroughly master of his subject, he is a

successful and experienced teacher, and he has the faculty of literary ex-

pression. Few writers of mathematical books combine these qualifications

in an equal degree. The printing of the book is most admirable—As a

concise collection of principles, rules, and examples, it is excellent. We
have no doubt it will be very largely used. It is an honest and trustworthy

book to be put in a boy's hand."

Nature says:—"A capital handbook."

ARITHMETIC FOR SCHOOLS. With Answers and
looo additional Examples for Exercise. 3rd Edition. Globe 8vo. ^s.6d.

Or in Two Parts :—Part I. Up to and including Practice,

with Answers. Globe Svo. is. Part II. With Answers and lOoo

additional Examples for Exercise. Globe Svo. ^s.

The Athenaeum says:
—"Mr Lock may certainly be congratulated on

realizing the hope expressed in his preface, for his text-book is 'at once

simple and scientific.'...Mr Lock shews that he is not only a proficient in

arithmetic, but a master of the art of teaching it, and his work may be

confidently recommended to both teachers and scholars."

The Cambridge Review says:—"The best arithmetic for its purpose

which we have seen."

A KEY to Mr Lock's "Arithmetic for Schools." By
the Rev. R. G. Watso.v, M.A., is now ready. Crown 8vo. los. 6d.

A SHILLING CLASS-BOOK OF ARITHMETIC.
Adapted for use in Elementary Schools. i8mo. [/« i/ie Press.

MACMILLAN AND CO., LONDON.



By the same Author.

TRIGONOMETRY FOR BEGINNERS, as far as the
Solution of Triangles. Fourth Edition. Globe 8vo. 2s. 6d.

The Schoolmaster says :
—" It is exactly the book to place in the hands

of beginners... Science teachers engaged in this particular branch of study
will find the book most serviceable, while it will be equally useful to the
private student."

KEY TO "TRIGONOMETRY FOR BEGINNERS."
Crown 8vo. bs. 6d.

ELEMENTARY TRIGONOMETRY. Seventh
Edition. Globe 8vo. 4^. 6d.

Mr E.J. RoUTH, Sc.D., F.R.S. writes:—"It is an able treatise. It

takes the difficulties of the subject one at a time, and so leads the young
student easily along."

The New Zealand Schoolmaster says :
—" It is a most teachable book.

Mr Lock is an experienced teacher, having been twelve years an assistant

master at Eton, and he certainly has made good use of his experience in

noting difficulties in the student's way and explaining them away. His
definitions are all that can be desired. The chapters on logarithms and the
use of mathematical tables are ably written. We anticipate this work will

become generally acceptable to teachers of mathematics.

"

KEY TO "ELEMENTARY TRIGONOMETRY."
By H. Carr, B.A. Crown Svo. 85. 6</.

HIGHER TRIGONOMETRY. Fourth Edition.
Globe Svo. 4^. 6d. Both Parts in One Volume. Globe Svo. 7^. 6d.

The Cambridge Review says :
—"This little book is obviously the work

of one who has had considerable experience in teaching ; it is written very
clearly, the statements are definite and the proofs concise, and yet a teacher
would not find it necessary to add much in the way of supplementary
explanation; there is a copious supply of examples— both throughout the
text and in the examination papers at the end—the solution is always so
much more instructive than any amount of explanation. Many things

generally taught here appear for the first time in a text-book, notably the
ambiguity of logarithms (p. •29), and we welcome the appearance of the
hyperbolic sine and cosine, whose introduction to common usage would
save much labour, and make several systems of formulae symmetrical and
complete."

ELEMENTARY DYNAMICS. Third Edition.
Globe Svo. 4^^. 6d.

The Saturday Review says :—" The parts that we have more carefully

read we have found to be put with much freshness, and altogether the
treatment is such as to make the subject interesting to an intelligent pupil."

Engineering says :—"This is beyond all doubt the most satisfactory

treatise on Elementary Dynamics that has yet appeared."

ELEMENTARY STATICS. A Companion Volume
to " Dynamics for Beginners." Second Edition. Globe Svo. ^s. 6d.

EUCLID FOR BEGINNERS. Globe Svo.
[/« Ihe Press.

MACMILLAN AND CO., LONDON.
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