: "“*‘1-—-—-; :l_‘;‘! :
|
9
r—‘..

N :
N \ N \ \\

NHE |
e

N

N
A \
N


















‘A"‘yi

AL

TRANSLATOR'S PREFACE.

—.O——

TaE first edition of Professor Ritter’s work, of which the
following is a literal translation, was published in 1862 * to
advocate the use of the “ Method of Moments” in calculating
the stresses in bridges and roofs. This “ Method of Moments ”
is in reality but an application of Rankine’s « Method of Sec-
tions.” The adaptation of the method to various cases is
explained and illustrated by means of numerical examples
comprising several of the forms of bridges and roofs in general
use as well as others not often met with.

Some interesting problems are discussed in the Eleventh
Chapter, and are possibly not generally known in this country.
It is required to determine the form a structure should have to
fulfil given conditions as regards the stresses. These problems
give a considerable insight into the manner in which the
stresses are distributed amongst the various bars of a structure,
and show also that comparatively small changes in the form
may produce great changes in the stresses. The effect of
changes of temperature on the deflection and on the stresses in
a “composite structure ” is treated at some length in the Four-
teenth and Sixteenth Chapters. The theory of loaded beams is
only touched upon—in fact, only those cases are considered which
are required in the various examples.

The Sixteenth Chapter contains a very instructive example
of a composite structure consisting of a pair of braced girders
combined with suspension chains. It should be observed,
however, that Herr Hugo B. Buschmann, in a pamphlet ‘On

The substance of the first two chapters was published previously in the
¢ Zeitschrift des Architecten- und Ingenieur-Vereins fiir das Konigreich Hannover,’

vol. vii., No. 4.



v TRANSLATOR’S PREFACE.

the Theory of Combined Girder and Suspension Bridges,’
takes exception to the manner in which the equations (§§ 56
to 61) giving the stresses in the girders produced by the
moving load are arrived at. In the preface to the third edition
Professor Ritter says: « Herr Buschmann maintains that these
equations depend on arbitrary assumptions, and thinks to prove
their unsoundness by remarking that under certain conditions
of loading, namely, when both ends of the girders are loaded,
they give a negative bending moment at the centre of the
girders, or, in other words, the girders would be bent upwards.
Thus the radii of curvature for the central part of the suspension
chains would be increased, and this requires a déminution of the
length of these chains, which is evidently absurd. This con-
clusion is, however, incorrect. Herr Buschmann overlooks the
fact that exceedingly small changes in the form of the suspen-
sion chains are under consideration, and that therefore not only
the vertical but also the horizontal displacement of each
element of the chain must be taken into account. Without
doubt if the chord of the arc whose radii of curvature are
increased did not alter, the length of this arc would be
diminished. But if at the same time the length of the
chord increases, not only may the length of the arc.remain
unaltered, but it may even be lengthened ; and this is what in
reality occurs, owing to the horizontal displacement of each
point of the chains, not only in the case under consideration,
but also for all positions of the loads.”

In some few instances Professor Ritter does not agree with
the more recent English practice, notably so in his estimate of
the wind-pressure on roofs. These instances have been pointed
out in notes added to the text and in an Appendix.

H. R. 8.
Gibraltar, 1879.
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This can be fulfilled in the case of bars which are under
direct tension or compression, for then the stress is uniformly
distributed over the whole sectional area ; but in the case of a
beam under bending stress, it cannot be complied with, because
the stresses are not uniformly distributed over the cross-section.

Therefore, in a good construction, the various parts should
be, if possible, either in direct tension or compression, and
bending stress should be avoided.

These views are more or less carried out in practice, and
the larger the structure, the nearer is the approximation. The
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CALCULATION OF THE STRESSES
IN BRIDGES AND ROOFS.

FIRST CHAPTER.

§ 1.—PRELIMINARY REMARKS.

Ix large bridges and roofs the design should be such that the
quantity of material employed is the smallest possible, not only
because in such cases the cost of materials is great in com-
parison to that of labour, but more especially because the dead
load is thereby unnecessarily increased, and the very success of
the undertaking may possibly depend on the smallness of this
Toad.

In a well designed structure, the maximum safe resistance
of the material should be called forth in every part, and no-
where should there be any unnecessary excess of material.
This can also be stated thus: When the structure is placed in
the worst conditions as to loading, the intensity of stress in
every part should be equal to what is considered the safe re-
sistance to the stress fto which it is subject when under these
conditions. :

This can be fulfilled in the case of bars which are under
direct tension or compression, for then the stress is uniformly
distributed over the whole sectional area ; but in the case of a
beam under bending stress, it cannot be complied with, because
the stresses are not uniformly distributed over the cross-section.

Therefore, in a good construction, the various parts should
be, if possible, either in direct tension or compression, and
bending stress should be avoided.

These views are more or less carried out in practice, and
the larger the structure, the nearer is the approximation. The

B



2 BRIDGES AND ROOFS.

endeavour to save material has led from the massive beams of
rectangular section to those of I and II section, and when
further the solid web was replaced by braces, those combinations
of bars were arrived at in which only direct tension or com-
pression exist. The iron roofs and the braced girders of
modern times are examples of such structures.

To comply rigidly with the above conditions, the joints
should be made with single bolts (pin joints). If a bar be con-
nected to another by a single bolt, it can turn freely about its
end, but if the joint be made with rivets, the end of the bar is
fixed, and will therefore be subject to a slight amount of bending
stress. Thus, with rivetted joints, the material is not employed
to the best account; and, especially in the case of large, im-
portant structures, there is the disadvantage that the maximum
stresses are not accurately known, whilst if the structure were
theoretically correct, these stresses could be ascertained to the
greatest degree of accuracy. It is worth noticing that the
theoretical structures are also the easiest to calculate.

In all the following examples it will be assumed that the
joints are hinged, the connections being made by single bolts.
It will also be supposed that these joints are the only points of
loading. This distribution of the load can always be obtained
in practice by using bearers to bridge over the space between
the joints. Whether it is advisable to construct these bearers
as separate parts or to fuse them into the main structure, is a
question that will be considered further on.

As regards the weight of the structure itself, it will be con-
sidered as evenly distributed over the span, and in accordance
with the above, concentrated at the joints; the degree of
accuracy of this assumption will be tested in the sequel.

[Note.—There is no doubt but that hinged connections made by means of
single pins would be theoretically more perfect than rivetted joints, if a per-
fectly uniform distribution of the stress were the only consideration. But it
is found that in structures subject to vibrations, the pins in many cases shake
loose, and the holes in the bars become elliptical, owing to the hammering
action that takes place between the pins and the faces of the holes, and this
action will always occur unless the pins are made a drawing fit in the holes.
This is the case, for instance, in the central joints of a railway bridge, where
(as will be seen) the stresses are eonstantly changing from tension to com-
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pression, and vice versi. It may be mentioned that this action occurred in the
Crumlin Viaduct, and that in consequence gusset plates had to be added. Pin
joints may however often be used with advantage, both with regard to economy,
simplicity of erection, and appearance in structures subject to a purely dead
load, or even to a live load, if unaccompanied by vibrations and rapid changes
in the nature of the stresses, as, for instance, in the case of roofs.

The objections raised to rivetted joints by Professor Ritter apply in
reality only to those as usually designed, for the arrangement of the rivets in
a joint can be such that little or no bending stress-occurs in the bars connected,
This was pointed out by Professor Callcott Reilly in two papers read before the
Institution of Civil Engineers.* Premising the following definition—* The
mean fibre of a bar is the line passing through the centres of gravity of all
cross-sections, and is consequently one of the axes of gravity of the bar,”
the rules according to which rivetted joints should be designed are thus stated
by Professor Reilly :—

" 1st. The mean fibres of any two or more members of a truss connected by
a group of rivets must intersect at one point.

2nd. The group of rivets connecting the bars must be arranged symmetri-
cally round this point of intersection of the mean fibres of the bars; or in
other words, the resultant resisting force of the group of rivets must occur at
the intersection of the mean fibres of the bars connected by the said group.

3rd. The first row of rivets in each bar, that is, the row on the side
towards which the stress is transmitted, must be symmetrical with the mean
fibre of that bar.

If the stress is uniformly distributed over the eross-section of any bar, the
resultant stress must lie in the mean fibre; it is therefore evident that unless
the mean fibres of the bars connected intersect in ‘a point, the stress, in some
of them at least, will not be uniformly distributed.

The resultant pull or thrust of a bar must evidently lie in the same straight
line as the resultant resistance of the rivets connecting the bar. If, therefore,
rule 2 be not complied with, the resultant pull or thrust will not pass through
the mean fibre, and evidently the stresses will not be uniformly distributed but
will be uniformly varying, and therefore more intense on one edge (the edge
nearest the resultant) than upon the other. In a similar manner the stress will
not be uniformly distributed if the first row of rivets be not symmetrical with
the mean fibre.

To obtain a theoretically perfect joint, every row of rivets should be sym-
metrical with the mean fibre. Such an arrangement can, however, only be
obtained when two bars cross at right angles. But the first row of rivets, for
instance, relieves the part of the bar beyond of a certain amount of stress;
therefore-unless the second row of rivets be very much displaced, the greatest
intensity of stress at the section through this row will not reach the intensity
or stress in the bar before the leading rivets. This is evidently, a fortiors,
true of the 3rd, 4th, &c., rows of rivets. The rules given above are therefore
sufficient for practical purposes.

* ¢ Minutes of Proceedings,” vols. xxiv. and xxix.

B 2



4 BRIDGES AND ROOFS.

Rivetted joints have also this advantage over pin joints, that the ends of
the bars connected can be considered “fixed,” and this materially increases
the resistance of those bars subject to compression. Pin joints are also as a
rule more expensive than rivetted joints, but easier to put together by unskilled
labour,

1t will be observed that the mean fibre need not necessarily be a straight
line; but if it is curved no arrangement of the joints will make the stress
uniformly distributed at every cross-section. This is, for instance, the case if
the bow of a bowstring girder is curved between the joints. Fig. 1 represents

a portion of the top boom of such a girder, and the mean fibres of the various
bars are indicated by dotted lines. The thrust in the booms must evidently
act in the straight line joining A and B, and must therefore give rise to
bending stress, or, in other words, the stress will not be uniformly distributed.]

§ 2—MzETHOD OF MOMENTS.

The method adopted to calculate the stresses in the various
structures given in the following examples is known as the

F1e. 1 (a).
o [*
lQ I ls
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“method of moments,” and it will be explained by means of
the roof represented by Fig. 1 ().
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The total load on this roof consists of the five single loads,
P,Q, R,8, T, which are to be considered as weights hung to the
top joints. These five loads produce the reactions D and K at
the points of support ; the sum of these reactions must be equal
to the whole load, and they can easily be determined by the
ordinary rules of statics. If, for instance, the span AB is
divided by the verticals through the weights into six equal
parts,

D=3T+3S+3R+4Q+ 3P
K=§T+4S+2R+3Q+3:P

Imagine the combination of bars divided into two parts
by the line L L, then each part (Fig. 2, for instance) can
only be retained in equilibrium by applying to each bar
at the point of section a force Fic. 2.
which represents the action of
the other part. This force must
lie in the direction of the bar, for
otherwise the bar would rotate
round its end ; this force is, in
fact, what is called the stress in
the bar, Thus the stresses X,Y,Z 4 c E
in the three bars, which have
been cut through, together with the remaining loads D, P, Q,
are in equilibrium. All these forces lie in the same vertical
plane, and they therefore must satisfy the three following
conditions of equilibrium :—

1. The sum of the vertical forces acting upwards must be
equal to the sum of the vertical forces acting downwards.

2. The sum of the horizontal forces acting towards the right
must be equal to the sum of the horizontal forces acting towards
the left.

3. The sum of the statical moments of all the forces
tending to turn the part of the roof represented by Fig. 2
round any point from right to left, must be equal to the sum
of the statical moments of those forces tending to turn it from
left to right round the same point; for the part of the roof
under consideration can be regarded as a lever, and any point
can be taken as the fulerum.
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These three conditions can be expressed more concisely by
the equations '

=0, 2(V)=0, (=0,

where H and V are the resolved parts of any force horizontally
and vertically respectively, M the moment of a force round
any point, and 3 denotes that the forces or moments have been
added together algebraically, that is, the sign of each force or
moment is taken as plus or minus according to the direction in
which it acts. The three stresses X, Y,and Z will be contained
in each of these equations, and by solving them the values of
X, Y, and Z can be obtained. The stresses in all the members
of the roof can be similarly ascertained by taking other
sections. )

This method can always be applied, but it has two serious
defects. The first is, that H and V contain the cosine and sine
of the angles the bars make with the horizontal, and these
angles must therefore be determined. The second is, and it is -
more serious than the other, that in order to ascertain any one
stress all three equations have, as a rule, to be solved.

There is, however, a very simple method, which can be
applied to all cases, and which is free from the above defects.
Apart from this, the method has the advantage of requiring
only the application of the principle of the lever (in its more
general form the law of statical moments), and can there-
fore be easily understood by those who are acquainted but
with the very elements of mechanics. In fact only the last
equation, that of statical moments, need be used, for if to
obtain the stress in one bar moments are taken round the
point of intersection of the other two bars, an equation will be
arrived at containing only one unknown, the stress required,
for evidently the moments of the stresses in the other two bars
vanish.

The lever arms of the various forces will have to be de-
termined, and this can be done with sufficient accuracy from a
drawing to scale.

A general rule, framed from the above, can be thus stated :—

Consider the structure divided into two parts by a section,
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In the same manner the stress U in the bar D G can be ascer-
tained by taking a section a &y and forming the equation of
moments round the point H for the part cut out, thus:
Uu—Rr=0,

vl =%

u

or,

Similarly the stresses in K J and LJ can be found. The re-
maining bars can all be reached either by sections which only
cut through three bars, or else by sections which cut through
four bars but the stress in one of which is already known. In
both cases the method of moments can be applied.

Thus, when the stress U is known the stresses X, Y, Z in
the bars DF, DE, CE, can be found from the equations
X.DE4+Ur-Q.NO-P.MO+W.AO0 =0,

Y.AD + U!+Q.AN +P.AM =0,
—-Zz4W.AN-P.MN =0,
obtained by taking moments round the points, E, A, and D
respectively.

This more complicated ex- Fe. 7.
ample shows the advantages of
the proposed method. They be- ¢ V e
come even more apparent when
it is considered that only the
beginner will require to make
separate figures for each calcula-
tion. The adept will easily form
the equations from the principal
drawing.

The general method having now been explained, its applica-
tion to various cases will be best seen by means of numerical
examples. It will be sufficient to give the complete calculations
for a few bars only, those which can be considered as the repre-
sentatives of others similarly situated. For the remaining bars
only the equation of moments and the results will be given.

It is of no consequence which direction of rotation is taken
as the positive one, but to avoid errors some direction should be
chosen; it will be considered in the sequel that rotation from

\om AN
“\




10 BRIDGES AND ROOFS.

left to right is positive,* and that rotation from right to left is
negative.

Further, all stresses will be considered as pulling stresses
(this has already been done in the former examples), therefore
positive stresses will represent tension and megative stresses com-
pression.

This, it will be observed, is the reverse to the usual English practice.

[NoTe.—A great deal of clerical labour can be spared by rightly choosing
the scale by which the lever arms are to be measured. This remark refers
principally to structures divided into bays of equal length. It will probably
be best in this case to make the length of each bay unity, when it will be found
that the lever arms of the various loads are generally whole numbers. This
plan it will be seen has been adopted in several of the examples given. If the
loads on the structure are placed at equal intervals, the horizontal distance
between them should be taken as unity.]

§ 3.—CALCULATION OF THE STRESSES IN A RooF oF
100 FEET § SPAN.

Drill-shed of the Welfenplatz Barracks, Hanover.

The weight of the roof covering and framing (Fig. 8) is
11-3 Ibs.t per square foot of horizontal surface covered, and

Fig. 8.

sg[oo
eojmo ¢
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20 1bs. more per square foot must be added for snow and wind
pressure.t The total load is therefore 31-3 lbs. per square foot
of horizontal surface.

The distance apart of the prineipals is 153 feet, and since
the span is 100 feet, 153 x 100 square feet of horizontal
surface is supported by each principal, and the load on each is
154 x 100 x 31-3 lbs., or in round numbers 48,000 lbs. The

* In the same direction as the hands of a wateh.

+ German feet and 1bs.

1 This estimate of the snow and wind pressure does not agree with the latest
English practice. See Appendix,

30100
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load on each of the eight divisions of the roof is therefore
6000 1bs. It may be considered that one-half of the 6000 lbs. on
each division is applied at each of the two adjacent joints, and
this can be effected by means of bearers or common rafters.*
The load on the seven central joints will therefore be 6000 1bs.,
and on each of the end joints 3000 1bs. Evidently the load on
the end joints will be taken up directly by the abutments. The
reaction at each abutment is altogether 24,000 Ibs., and sub-
tracting the 3000 lbs. on the end joint, the pressure against
the combination of bars is 21,000 1bs.

The structure is therefore subject to the action of nine
exterior forces; seven of 6000 lbs. each acting downwards on
the central joints, and two of 21,000 lbs. each acting upwards
on the end joints.

To find the stresses X, Y, Z, in the bars of the central bay

(Fig. 9) let the roof be divided into two parts by a section a 8

* This distribution of the load requires the common rafters to be articulated
at each joint. They are, however, generally continuous, and this slightly alters
the distribution of the load, for then part of the load is transmitted directly to the
abutments by the common rafters. It is, however, usual in practice to adopt
the above distribution, the error being on the side of safety. See ¢Lectures on
the Elements of Applied Mechanics,” by Morgan W. Crofton, F.R.S., and
¢ Instruction in Construction,’ by Col. Wray, R.E.—TraNs,
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and the forces X, Y, Z applied to maintain equilibrium. To
obtain X, consider the part shown in Fig. 10 as a lever with its
fulerum at D, the point of intersection of Y and Z; then for
equilibrium the following equation of moments must hold : *

0 = X x 186 +4- 21,000 x 50 — 6000 x 125 — 6000 X 25 — 6000 x 37*5,

whence
X = — 32,300 1bs.

Similarly to find Y take moments round A, the point of inter-
section of X and Z, thus:

0= x 384 + 6000 x 12°5 4 6000 X 25 + 6000 X 37°5
= —32,300 Ibs.

And to obtain Z take moments round the point E:

0= -7 %15+ 21,000 x 37:5 — 6000 x 125 — 6000 x 25
Z = + 37,500 Ibs.

To find the stress in the vertical rod E F take an oblique
Fre. 11.

67(’)'0(1\ tr
6000 | -

21T000

A ‘\\6

section & (Fig. 11), and the equation of moments round A,
the point of intersection of the other two bars intersected by

v 8 will be
0=~V x 387546000 x 125 + 6000 x 25,

whence
V = + 6000 1bs.

The equations for the similarly situated bars can be formed in like manner,
thus :(— &l
0=1X, x 189 4 ¥2,000 x 37-5 — 6000 x 12:5 — 6000 x 25.
X, = — 40,400 Ibs. ({Turning point F).
0=7Y, x 23'5 4+ 6000 x 12°5 4 6000 x 25.
Y, = ~ 9570 1bs. (Turning point A).
0=—12Z, x 10 4 21,000 x 25 — 6000 x 12-5.
Z, = 4 45,000 1bs. (Turning point C).

* The method of finding the lever arms by calculation is given in the eleventh

section of this book.
+ The ‘“turning point” (Drehungspunkt) is the point with reference to
which the equation of moments is formed.
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SECOND CHAPTER.

§ 5.—APPLICATION OF THE METHOD OF MOMENTS TO THE
CALCULATION OF BRIDGES.

One great advantage of the method described in the previous
pages is that the stress in any particular bar can be found at
once by means of a single equation. But there is yet another
advantage which adapts this method more particularly to the
calculation of Bridges. It is this: that from the inspection of
one equation of moments it is possible to ascertain what loads
on the bridge increase the stress in any particular bar and
what loads decrease it. Therefore to find the maximum stress
in a bar it is only necessary to leave out of the equation those
loads which diminish the stress. And to find the minimum
stress (which in some cases will be compression) those loads
which increase the stress must be omitted. It is unnecessary
to add that the above has reference to temporary loads only.

This does not apply to the previous examples, for—as can
be easily ascertained—the removal of any of the loads does not
increase the stress (either tension or compression) in any of the
bars. In the case, however, of the structures that are usually
adopted for bridges and also in some roof trusses (as will appear
further on), it is of great importance to ascertain the effect of
the variation of the loading,* for the greatest stress (either of
tension or compression) may not occur when the structure is
fully loaded.

[Throughout, the term greatest stress is used irrespective of
the sign of the stress, but the terms maximum and minimum
depend on the sign, thus the minimum stress may be the
greatest compression.]

* For example, the temporary load produced on a bridge by a train, or in
the case of roofs, by the snow or wind-pressure, applied to one side only.
c
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The above is expressed by the following rule :—

Consider that the structure is fully loaded and form the
equation of moments accordingly for the bar: the greatest stresses in
which are to be found. Arrange this equation so that the effect of
each load can be easily ascertained. Then to find the greatest
tension leave out all the temporary loads that diminish the stress
and to find the least tension, or the greatest compression, leave out
all the temporary loads that increase the stress.

Or shorter thus: In the equation giving the greatest stress in
a bar (either tension or compression) the members containing the
moving loads must have the same sign.

The equation of moments for the fully loaded bridge gives
the greatest stress only in one case; when the members con-
taining the moving loads have all the same sign.

The following numerical example will illustrate the above
rule.

§ 6.—PARABOLIC GIRDER* OF 16 METRES SPAN WITH A
SINGLE SYSTEM OF DIAGONALS.

The dimensions are given in Fig. 21.—The dead load on
the bridge, designed for a single line of railway, can be taken at
1000 kilos. per metre and the live -load at 5000 kilos. per

Fie. 21.
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metre. One half of this is carried by each girder, and the
length of each bay being 2 metres, 1000 kilos. dead load and
5000 kilos. live load act on each joint (Fig. 22).

To find the stress X, take a section a B3 through the first
bay and form the equation of moments for the part shown in
Fig. 23 round the point C.

0=X,x++Dx2

* Thus called because the bow is in the form of a polygon inscribed in a
parabola.—TRANS,
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and substituting for D its value

Here again it is evident that V,
is greatest when the bridge is fully
D 5000 loaded. Hence

V, (min.) = — 6000 kilos.

The stresses X,, Y,, Z, can be found
by cutting off the part of the girder
shown in Fig. 25. For X, take
moments round E

0=X,x1:5+D x4 ~1000 % 2 - 5000 x 2,

Fic, 25.

0=X,x1'54+1000%+24+.+2 x4
+5000 G+ 3 4.+ ) x 4
— 1000 x 2 — 5000 x 2

The live load of 5000 kilos. acting at B is contained in two
members of this equation. One, + 5000 X Z X 4, is the effect
produced by the part of the load transmitted to the abutment
A, and the other, ~ 5000 x 2 is the direct effect of the load.
According to the rule these two members must be united into
one, viz. 5000 (¥ x 4 — 2), the equation then takes the form :—

0=X,x1:5+1000{G4...+Dd+Ex4—2)}
+5000{G+...+D4+(Ex4~-2)1}.

It is easily seen that all the members multiplied by 5000
are positive, hence the greatest stress occurs where the bridge
is fully loaded, and

X, (min.) = — 48000 kilos.

To find Y, take moments round R and by substituting for D
its value
0=Y,x168=1000(+...+%)08—=5000(+...+2) x08
+ 1000 x 2°8 4 5000 x 2°8;
or arranging the equation according to the rule,

0=Y,X168~1000 {(3+...+808—(28=7208)}
— 5000 (3 + .. T4 £) 0°8 4 5000 (2- 8—10°8).
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0=—-2,%18341000{CG+...4+D6+(E.6-D+(Z.6=-9}
+5000 {@G4+...+5)6+@.6—-D+F.6-9}
Z, (max.) = <4 48100 kilos.

(The following equations of moments are formed with reference to the part of
the girder lying to the right of the section line):

0=—V,x32+1000{(G +...+2) 2 — (32 — £.24) — (30 — § . 24)
—(28—8.28) (=26 —3.20)}
45000 (3 + ... + ) 24
— 5000 { (32 — 4. 24) + (30 — 5 . 24)
£ (28— 5.24) + (26 —1.28)}

v {(max.) = + 1800 kilos.
“\ (min.) = ~ 8800 kilos.

0=—X,x1'875—-1000 {3 +...+ 56
— 5000 { G+ ...+ )6
X, (min.) = — 48000.

0=, 2188 + 1000 { (3 + ... +2) 24 — (30 — 5. 24) — (28 — §.24)

+@.6-2D+3F.6-4}
+(@.6-D+G.6-9}

—(26-1.24)}
+ 5000 (3 + .. +§)24—5000{(30— .24) + (28 — ¢.24)
—(26—1.29)}

{(max) = 4 6850 kilos.
(min.) = — 6850 kilos,

0=2Z,x1'996-1000 {(3+...+ 8+ (G.8-2)+(.8-D+(;.8-6)}
—5000 { (3 + +*)8+(5 8—2)+(¢.8—-9)+(2.8-6)}
Z, (max.) = + 48100 kﬂos

0=-V,x104+1000{ G +...+ 4 -(10—§.4)
-B-¢.H—-6~-F.9}
+ 5000 (3 + ...+ 4) 4 — 5000 { (10 — 5. 4)
+B-2.H+6~2.9}
v {(max.) = + 1500 kilos.
* \ (min.) = — 8500 kilos.

0=—XeX1°5—-1000f(+... +)4+(G.4—2)}
—5000 {(+...+D4+(EZ.4—-2)}
X, (min.) = — 48000 kilos.

0=V, x6+1000{G+...+ D4~ —8.)—6-1.9}
45000 (2 +...+5)4—5000 {8 —2.4)+(6—F.9}
Y {(max.): + 6250 kilos,
¢ \ (min.) = — 6250 kilos.

0=7,x18—1000{G+...+56+(C.6=-2+G.6-4}
—5000 f(A+...+5)6+E.6-2D+(F.6—9}
Z¢ (max.) = 4 48900 kilos.

==Vegx4'84+1000{(t+...+508—~(48—5.08)—(28—-2.0'8)}
+ 5000 (3 4+ ...+ £)0'8 —5000 { (48 — $.0°8)
+(@2'8—1.08)}
v {(max.) = + 560 kilos.
(min.) = — 7560 kilos.
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0=—X, X 0875 —1000 (3 +... + 1) 2
—-5000 (3 +...+D2
X, (min.) = — 48000 kilos.

0=Y,x192+1000{(%+...4+ )08
—(28~-12.08)}
+ 5000 +...+28)0°8
— 5000 (28 — 1.0°8)
Y {(max.): + 5470 kilos.
" \ (min.) = — 5470 kilos.

0=2,x143+4+1000{ G+ ...+ D¢+ (.4 -2)
—5000 {2 +...+94+E.4—2)}
Z, (max.) = + 50300 kilos.

0= =V, x2-1000 x 2 — 5000 x 2
V, (min.) = — 6000 kilos.

0=—X, X 0875 — 1000 (3 + ... + 1) 2
~ 5000 3+ ...+ D2
X, (min) = — 48000 kilos.

0="2,x08=1000%+...4+ 22
- 5000 (3 +...+ 12
Z4 (max.) = — 52500 kilos.

These results are shown in Fig 27.

§ 7.—DERIvVED FoRrMS,

From the above calculations it is appa-
rent that the greatest stresses in the vertical
and diagonal braces occur when the bridge
is partially loaded. It will be interesting to
ascertain according to what law the girder is
loaded when the greatest stresses obtainin the
braces. By noticing in each case what tem-
porary loads are left out of the general equa-
tion of moments it will be observed that any
diagonal brace, Y, for instance, will be subject
to the greatest tension when all the joints
lying to the right of it are loaded, and will be
under the greatest compression when all the
joints lying to the left are loaded. This is
represented in Fig. 28 by the words “ Ten-
sion ” and ¢ Compression.”

Evidently if this diagonal were inclined
upward to the right instead of to the left the
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words in Fig. 28 would simply have to change places, and also
if the girder be looked at from behind (or else its image in a
looking-glass) the diagonal Y, will appear in the same bay as
Y; in Fig.28; thus the arrangement of the moving load to pro-
duce the greatest stresses in Y; will be as shown in Fig. 29.

If both diagonals are present in the same girder, as shown
in Fig. 30, and are so constructed as to be incapable of resisting

Fie. 28.

Compression. \ Tensgion.

7 -

compression, they will come into play only when the loading is
such as to produce tension in them ; at other times they will be
subject to no stress just as if they were threads. In such a

Fie. 29.
Tension. Compression.

>

Yb' W

girder therefore only the greatest tension given for the diagonal
bars in the above example need be considered. Thus in Fig. 30
the greatest tension in the diagonals of the third bay from the

Fia. 30.

left will be for the brace inclined upwards to the left the same
as that in Y, (as found in the previous numerical example), and
for the brace inclined upward to the right the same as that
in Y, Similarly the greatest tension in the other diagonal
braces of Fig. 30 can be written down from Fig. 27.

The vertical braces are always in compression in this case,
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as will appear at once from Fig. 31, for
since the diagonals are incapable of resisting
compression there would be nothing to op-
pose the vertical downward force produced

Fre. 3. by the vertical brace if
it were in tension. The
. greatest compression in
S 7 the verticals will be the
same as given in Fig. 27,
v for only one of the dia-
gonals in each bay is in
tension at a time, and the other being there-
fore slack can be considered as absent.

Thus without any further calculations
the greatest stresses in a girder with crossed
diagonals can be written down from those
obtained in the previous example, and this
is done in Fig. 32.

1f the diagonals are so constructed that
they can only take up compression (this is
sometimes the case in wooden girders),
it will appear by similar reasoning that
for the diagonals, only the greatest com-
pression, and for the verticals only the
greatest tension, found in the previous ex-
ample, will apply. As regards the minimum
stress or compression in the verticals, the
load each vertical supports at the top joint
can alone produce compression in it, for
the diagonals cannot do so, as they never
can be in temsion. This load is either
1000 kil. or 1000 + 5000 kil.,, and there-
fore the greatest compression in the verti-
cals is

c—

V (min.) = — 6000 kilos.

The greatest stresses in a girder of the above construction
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are given in Fig. 33, and the diagonals are shown in double
lines to express their incapability to resist tension.

In girders with a single system of diagonals, varying, how-
ever, from Fig. 27 in that the arrangement is symmetrical on
each side of the centre, the greatest stresses can be written

Fies. 33, 34, aND 35,
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down at once from the above, with the single exception of that
in the central vertical brace.

The stress in the central vertical of Fig. 34 evidently depends
on the tension in the adjacent parts of the lower boom at. its
foot, and it must therefore always be in compression. This
compression will reach its greatest value when the tension in
the boom is a maximum, that is, when the bridge is fully
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loaded ; and in this case each vertical brace has a compression
of 6000 kilos. to bear. Therefore, for the central vertical also,

V (min.) = — 6000 kilos.

In Fig. 85 it is obvious that the central vertical can only be
in a state of stress when there is a direct load on the top joint;
this stress must therefore be compression, and its greatest
value is evidently

V (min.) = — 6000 kilos.

Lastly, if in the girder shown in Fig. 27 the signs of all
the stresses be changed, the greatest stresses for a parabolic
girder having the bow above, as shown in Fig. 36, will be
obtained. In fact, the whole of the reasoning and the equations
are precisely the same, except that all the signs must be
changed, and that maximum must be put for minimum, and
minimum for maximum. The derived forms shown in Figs. 37,
38, 39, 40, can be obtained from Fig. 36, as before.

§ 8 —THEORY OF PARABOLIC GIRDERS.

It appears from the above example that the stresses in a
parabolic girder can be found by the method of moments, even
when the theory of such girders is not known. Two properties
of these girders were discovered : the first is that the stress in
the horizontal boom is greatest when the bridge is fully loaded,
and is then equal throughout; and the second, that when the
bridge is fully loaded the stress in
the diagonal braces is everywhere nil.
The last property is in reality con- L

P

Fia. 41.
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tained in the first, for when X = X, X g’ Vo Xy
(Fig. 41), Y = O, or else the hori- &
zontal forces at P would not be in \‘\_Ix
equilibrium. |y

It will be useful to investigate the
conditions upon which these properties depend. This knowledge
isnot necessary to enable the calculations for any given parabolic
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girder to be made, but is required when the form of a girder
is to be found which will have these properties.

Consider a chain attached to the two fixed points A and B
(Fig. 42), and hanging in its curve of equilibrium. Let the
load be uniformly distributed over the span AB, and equal to
g per unit of length. Suppose that the chain is cut at its

Fia. 42.
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1
A
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lowest point S (where it is horizontal), and a horizontal
force H applied at the point of section to maintain equili-
brium. This force must be horizontal, since the part of the
chain at S is horizontal. Let the chain be also cut at any
other point P, applying a force T to maintain equilibrium. Tt

is evident that this force

Fio. 43. must lie in the direction of

T ' the tangent at the point P.

Cp = . The piece S P of the chain
— '”

o

brium by three forces: viz.,
H, T and the resultant of
the load on the part SP.
This last force is equal to ¢, where 2 denotes the hori-
zontal distance of P from S; and its point of application is
@
2
distributed over .

Taking moments round P:—

—_ 1 (Fig. 43) is held in equili-
15

at a distance 5 from either P or 8, since the load is uniformly

x
Hy:qx.i. [¢))

But since P is any point on the curve, this equation is true for
the point A, thus substituting  for o, and f for 4.

Hf—ql.é. 2)
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Dividing eg. (1) by eg. (2).

y _a°

7 2" ®

This is the equation to a parabola, and it is evidently also
applicable to the part S B of the chain: Thus the position of
all points of the chain can be determined by this equation, by
giving values to 2 and solving for .

It is evident from Fig. 43 that the horizontal component
of T is everywhere equal to H, it is so therefore at the points
of attachment A and B; it is also evident that the vertical
component V of T is g, and therefore equal to ¢l at A and B;
and, lastly, that

T = J/H F V2.

If the manner of loading is altered, some points of the chain

Fra. 44.

P!

may still remain on the parabola, and for these points equation
(3) will hold good. This is the case, for instance, when the loads
on each side of S are concen-
trated at points, so long as the ,
load at each point is equal to J I
the sum of half the distributed ™
load on the two adjacent bays
(Fig. 44); for the part SP of ﬂ ------ +

the chain (Fig. 45) will still be 3\

g TT—{ T,
subject to the vertical load gz ; 3 S
(the resultant of the four con- .

centrated loads shown in the figure), and the point of applica-

Fia, 45.

le-z

tion of this resultant will still be at the distance g from S.

D
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THIRD CHAPTER.

§ 9.—ArrricATION OF THE METHOD OF MOMENTS TO THE
CALCULATION OF THE STRESSES IN BRACED GIRDERS
HAVING PARALLEL Boowms.

The method of moments can also be employed in calculating
ordinary braced girders divided into rectangular bays. It is
hardly necessary to observe that the equation of moments
remains true although two of the three bars cut through are
parallel, their point of intersection being therefore at an infinite
distance, and consequently the lever arm of the stress in the third
bar being also infinite. All the lever arms in the equation of
moments are, however, infinite, and thus divide out of the
equation, enabling the required stress to be determined.* For
example, in the girder shown in Fig. 50, the stress Y in the
diagonal F G is to be found by taking a section a 3, applying
the forces X,Y,Z to maintain equilibrium, and forming the

Fi1a. 50.
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equation of moments for one of the parts of the girder
(Fig. 51) with reference to the point of intersection of X and

-* Tn this case these infinities are all equal; they can therefore be considered
as a common factor, but generally it is a mathematical fallacy to treat infinite
factors in this manner.—TgaNs.




§ 9.—GIRDERS WITH PARALLEL BOOMS. 37

Z. This point, which is at infinity, can be considered as lying
on the central horizontal line of the girder, and since X and Z
pass through it their lever arms are ndl, but the lever arms of
all the vertical forces are evidently infinite. Now, if O were
the point of intersection of X and Z, at a distance # from the
point where a B cuts Y, the lever arm of Y would be @ . sin ¢,
and if O be considered to move off to infinity,  becomes
infinite, and the lever arm of Y is oo . stn ¢.

F1e. 51.
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Therefore, the equation of moments is
- ; P,
0=Y.0.sing-D.o+(E+ Lot G+t @+

or dividing out by <.

0=Y.sino-D+(3+ L)+ +D+ 0 +0

Here Y .sin ¢ is the vertical component of Y, hence the
above equation is merely the expression of the law that for
equilibrium the sum of the vertical forces must be zero.
Thus the principal object of the method of moments (to
obtain an equation containing only one unknown) is, in this
special case, arrived at by resolving the forces vertically. This
shows the general applicability of the method of moments ;
for even in special cases like the present, in which a shorter
way of obtaining the required result exists, it can be used, and
even points to the shorter method.
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The only difference between this equation and the one pre-
viously obtained for Y.sin ¢ is that —V is written instead of
Y.sin ¢. Hence it is obvious that

0=—V-p{}+3+3+t+§-A-D=~A -}
—gG+EHIFEHD+I{A-D - =D].

The values Y.sin ¢ and —V are therefore identical ; hence
by first finding V, Y can be ascertained by dividing by
(—sin ¢). This is expressed in the following rule: the re-
solved, parts vertically of the stresses in a diagonal and vertical
meeting at an unloaded joint are of equal magnitude, but of
unlike sign.

§ 10.—BRACED GIRDER, oF 16 METRES SPAN, COMPOSED OF
SiNeLE RigHT-ANGLE TRIANGLES.

Apart from the difference of form, the dimensions of this
girder- are the same as those of the parabolic girder, already
calculated (p. 20), that is, the span (16m.) and the depth (2m.)
are the same. The loads are also the same, viz,, 1000 kilos.
dead load and 5000 kilos. live load, on each bay. It is also
assumed that the line of railway is on a level with the upper
boom ; these loads, therefore, act at the upper apices (Fig. 53).

Fie. 53.
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Caleulation of Vo and Zy.

Since V, and D are the only vertical forces acting at A
(Fig. 54) : :
Vo+D=0, or. Vo= =D.
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The following equations are formed with reference to the part of the girder
situated to the right of the section line:

0=—X5§<2—(1000+5000){(§+...+—g)6+(g-.6—2)+(§.6-—4)}

X, (min.) = — 45000 kilos.
0‘:Zsx2—(1000+5000){(§;+...+%)6+(%.6—2)+(%.6—4)}

Zg (max.) = 4 45000 kilos.
0==Vi+12000{3+...+¢-A=-HD=A=-H-A-D}

+ 5000 (3 . + ) = 5000 {1 = D+ A=+ 1 — D}

v {(max.) = ¥ 6750 kilos.

* \(min.) = — 3250 kilos.

Y {(max.) = + 4600 kilos.

*\(min.) = — 9550 kilos.
0=—X;x 2= (1000 +5000) { (3 +... + D4+ (Z.4 -2}

X, (min.) = — 36000 kilos.
0=27,x2~ (00045000 {(+...+ D4+ E.4-2)}

Z, (max.) = 4 36000 kilos.
0==V+1000 {1 +...4+2 -1 -9 -1 -D}

+ 5000 (5 + ...+ ) — 5000 {1 -9+ A-D}

v {(max.): + 10875 kilos. .

*\(min) = — 375 kilos.

v {(max.): + 530 kilos.

¢ {(min) = — 15400 kilos.

0=—X, x 2~ (1000 4 5000) (2 +... +2) .2
X, (min.) = — 21000 kilos.

0 =27, x2— (1000 + 5000) (3 +...+1).2
Zg (max.) = + 21000 kilos.

0==V,+1000 {3 +...+ = A~} +5000G+... + H—5000(1 - D
v { (max.) = + 15625 kilos.
"\ (min.) = 4 1875 kilos.
Y {(max.) = — 2650 kilos.
"\ (min.) = — 22100 kilos.

The diagonal Y; does not meet any vertical at an unloaded
joint, for the joint R (Fig. 53) cannot be considered unloaded on
account of the reaction of the abutment. The rule for finding
Y is therefore not applicable in this case. The vertical forces

: Y/ .
acting at R are the resolved part of Y, or —2, the reaction

V2
W of the abutment and the stress in the last vertical, which
has already been found = 3000 kilos. Hence for equilibrium :

Y,
a8 W — 3000 = 0.
K
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Y; therefore obtains its greatest negative
value when W is a maximum, that is, when
the bridge is fully loaded, in which case

48000
W= 2

kilos. ; and, therefore,

Y, (min.) = — 21000 X /2 = — 29700 kilos.

The results obtained are shown in Fig. 57.

§ 11.—DxriveEp FogRwms.

If the above equations be examined, to
ascertain what positions of the live load
produce the greatest stress in the diagonal
braces, it will be found that the law already
found for parabolic girders (p. 26) holds
good, or the stress in any diagonal is a
maximum or a minimum when the joints on
one side only are loaded.

The stresses in a girder in which the dia-
gonals slope upwards from left to right
(instead of from right to left) can evidently
be obtained by looking at the girder of
Fig. 57 from behind.*

If the diagonals are to be tension-braces,
and unable to resist compression, the follow-
ing alterations will have to be made in the
arrangement of the original girder; in the
bays where the diagonals are always in
compression, they must be changed for
diagonals sloping in the opposite direc-
tion, and in the bays where the diagonal
braces are subject alternately to tension and
to compression, two diagonals must be in-
troduced.

Figs. 58 and 59 represent two girders having opposite
diagonal systems, and the kind of stress in each brace is denoted

* Holding the page up to the light.—TrAxs,
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by the sign +, signifying fension, and — eompression. Carrying
out the above alterations, Fig. 60 is obtained, in which the dia-
gonals are never in compression, and the greatest numerical
value of the tension in them can at once be written down by
means of Figs. 58 and 59, taking the values from Fig. 57.

Fia. 58.
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A vertical brace can only be in tension when the diagonals
meeting it at an unloaded joint are in compression. This can
never occur in Fig. 60 ; and the verticals can, therefore, only
be in compression; consequently, only the values of V (min.)

Fre. 59.

need be considered, and for the left-hand side of the girder
these values must be taken from Fig. 58, and for the right-

hand side from Fig. 59.
The stresses in the horizontal bars X and Z are greatest when

Fia. 60.

¢ F + + & &

4 4 4

M

the girder is fully loaded, and when this is the case it is easily
seen that, in the left half of the girder, the diagonals sloping
upwards from right to left will be in tension, and in the right
half those sloping from left to right. Evidently, therefére, the
stresses in the booms can be obtained from F'ig. 58 for the left
half, and from Fig. 59 for_the right half of the new girder.
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Thus, without further calculation, the
stresses in a girder of the form shown in
Fig. 60 can be obtained. These stresses
have been given in Fig. 61.

If the diagonals can only resist com-
pression (as is often the case in wooden
structures), the stresses can be obtained

by an exactly similar process from Fig. 57.,

These stresses are shown in Fig. 62.

If the line of railway is carried on the
lower apices, instead of on the upper, it can
be considered that both the live and the
dead loads are applied to the lower joints.
The stresses in the horizontal and diagonal
bars will not thereby be altered, and the
stress in the verticals can be found by
the rule of Section- 9, namely, that the
diagonal and vertical braces meeting at an
unloaded joint have equal vertical stresses,
but of contrary sign. In this case the un-
loaded joints are the upper ones, and in
Fig. 63 the stress in any vertical can be
found by dividing the stress in the dia-
gonal meeting it at the top joint by /2,
and changing the sign. From Fig. 63 the
derived forms shown in Figs. 64 and 65 can
be deduced as before.

If the line is carried on the verticals
between the booms, the points of attach-
ment can also be considered as the points
of application of the live and dead loads.
All the upper as well as the lower joints
are therefore unloaded, consequently the
resolved part vertically of the stress in any
diagonal will be the numerical value of the
stress in the parts of both the verticals it

meets. For instance, in Fig. 66 the diagonal in the third bay
is subject to the maximum and minimum stresses

+ 15400 and — 530 kilos.

.

I
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These values divided by v/2 and with
changed signs give

— 10875 and + 375 kilos,

and these will be the stresses in the
upper part of the vertical to the left
and in the lower part of the vertical to
the right. The stresses in the verticals
in this figure as well as in the girders
shown in Figs. 67 and 68 can therefore
be obtained without difficulty, using the
rule givenin § 9. As to the stresses in
the horizontal and diagonal bars it is
evidently immaterial whether the loads
be carried on the top or bottom joints or
between them. Lastly in girders with
symmetrically arranged diagonals all the
stresses can be written down from Figs.
57, 63, and 66, with the exception of the
stress in the central vertical. Ior this
reason only the central part of the girder
is shown in Figs. 69, 70, 71, 72, 73, and
74, and it is easy to see that the stress in
the central vertical will be either + 6000
kilos. or 0 according as the end which
does not meet a diagonal is loaded or not.

§ 12—REMARKS ON THE DEGREE OF
ACCURACY OF THE ASSUMPTIONS
MADE WITH REGARD TO THE Dis-
TRIBUTION OF THE LOADS.

Some objections may be raised to the
above calculations, for the distribution of
the loads on which they are based is not
strictly true, and the results to be accurate
require a slight correction.
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In the first place, the weight of the girder itself acts on
the upper as well as on the lower joints, and not, as assumed,
at the points through-which the line of rails passes only. The
correction in this case, however, will only apply to the vertical
braces ; for, as already seen, the stress in the remaining bars is
independent of the position of the rails. Taking any of the
verticals in Fig. 53 or Fig. 54 and distributing the load on it
in due proportion between the top and bottom, it is easily seen
that the method of moments could be applied to find the stress

"in that vertical. But it is better to make the calculation as in
§ 9 and § 10 (i.e. taking the point of application of the dead
load the same as that of the live load), and then, if considered
necessary, apply a correction in the following manner: Imagine

Fia. 74.
+ - 45000 =45000 '
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a secondary vertical placed alongside of the main one, the object
of this vertical being to realize the assumption made by trans-
mitting the load on what has been considered the unloaded joint
to the loaded joint. This secondary vertical will be a strut when
the load has to be transmitted downwards, and a tie when it has
to be transmitted upwards. The stress in it will therefore be
negative when it is above the line of rails, and positive when it
is below. Now if the secondary vertical be considered amal-
gamated with the principal vertical, it is evident that the actual
stress in the latter can be found by adding to the stress already
determined the stress in the former.

To make this clearer by an example, let the true distribu-
tion of the dead load in Fig. 57 be 2rds of the 1000 kilos. on the
top joints and 3rd on the bottom joints, whereas it was con-
sidered that the whole of the dead load was applied to the top
joints. The secondary vertical has therefore to transmit
333 kilos. from the lower to the upper joints, and is consequently
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a tie with a stress of + 333 kilos. This must now be added
to the stress in all the verticals. For instance, in vertical V,

V; (max.) = + 375 + 333 = 708 kilos.
V; (min.) = — 10875 4 333 = — 10542 kilos.

In the girder shown in Fig. 63 the line of rails is attached
to the bottom joints. Supposing that the true distribution of
the dead load is ird on the upper joints and 2rds on the lower
joints, it is evident that the secondary verticals will be struts
transmitting 333 kilos. from the upper to the lower joints,
and therefore to obtain the correct stress in the verticals
— 333 kilos. must be added to the stresses already found. For
instance in vertical V,

V, (max.) = + 3250 — 333 = 4 2917 kilos.
V; (min.) = — 6750 — 333 = — 7083 kilos.

In this case the correction is so small that it might be
neglected. But in larger bridges, where the dead load is large
in comparison to the live load, and is more equally distributed
on the joints, the correction becomes important.

There is a second correction to be made, in connection with
the distribution of the moving load. It will be remembered that
it was assumed that each bay was bridged over by secondary
girders,* so as to convey the dead and live loads on the line of
rails to the adjacent joints. It is evident-that it is only when a
bay is fully loaded that the reaction at each end of the
secondary girder can be equal to half the load on one bay.
Now the stresses in the diagonal and vertical braces were
calculated on the supposition that all the joints on one side
of the brace were fully loaded, and all those on the other side
free of the moving load. With a uniformly distributed moving
load this 0bv10usly cannot occur.

Yet, when it is considered that in reality the moving load
is not uniform and continuous, but that, on the contrary, the
load is concentrated at the points of contact of the wheels with

* These secondary girders are supposed to be discontinuous.—TrAws.

E 2
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the rails, and that in the case when the distance between the
wheels is equal to the distance between the joints, the above
assumption is strictly true, it would appear that the error is
insignificant, unless indeed the number of bays is small. At
any rate the error affects only the diagonals and verticals, and
is on the safe side.

Both these sources of error disappear, the latter when the
number of bays is very great, and the first when there are no
verticals, in which case the calculations differ slightly from the
preceding ones. To illustrate this latter point, the following
example has been chosen.

§ 13.—BRrACED GIRDER WITH EQUILATERAL TRIANGLES.
(WARREN GIRDER.)

(Railway Bridge over the Trent near Newark.)

Each girder (Fig. 75) is composed of 27 bays of equilateral
triangles having their apices alternately above and below.
The line of rails is on a level with the bottom boom, one half
of the load is carried directly on the lower joints, and the other
half is transmitted by means of vertical ties to the upper joints.
Thus one half of the dead as well as of the live load acts on the
lower joints, and the remaining half on the upper joints. The

Fie, 75.
& 259 !
Al1 2 3 4aNs e v iv 6 5 a4 3 2 1
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whole girder is supported at A and B by bolts carried on cast-
iron frames which rest on the piers. The distance apart of these
points of support is 259 feet, and therefore the length of the

side of one of the triangles is 21—4 = 185 feet. The depth of

the girder is !-82—-5- x tan. 60°=9-25 x 173 feet. Taking 9-25
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feet ds the unit of length, the side of the triangles will be
represented- by 2, the height of the girder by 1:78, and its
length by 28.

The weight of the whole bridge is 589 tons, and since there
are four girders, the dead load on each girder is g%) = 147} tons.
Taking the moving load on each line at 1 ton per foot run,
2 x 259

4
total load on one girder is therefore

it will amount to

= 1295 tons on each girder. The

147-25 + 129-5 = 27675 tons.

Thus the load on each joint is A tons, or in round

28
numbers 10 tons. In the following calculations the live as well
as the dead load has been taken for simplicity at 5 tons on each
joint, although the proportion of the dead to the live load is as
147-25 : 1295 ; this will; make no difference in the stresses in
the booms, and the greatest stresses in the diagonals will be
slightly increased. Besides, the live load cannot be considered
as accurately equal to 1 ton per foot run; often it is taken
higher.

Fic. 76.
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The only object of the vertical bars is to transmit part of
the load to the upper apices; they do not form an integral
part of the truss, and can therefore be omitted in the calcula-
tions, the upper joints being considered loaded instead. The
distribution of the load is therefore as shown in Fig. 76.
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Caleulation of the Stresses X and Z in the Upper and
Lower Booms.

Cutting off the part shown in Fig. 77 by the section line
apfB, and taking moments first about the point M and then
about the point N, the following equations are obtained, denot-

ing by D the reaction at the abutment A :

0=X,x1'78+Dx7=50+2+8+4+54+6)
~5Q1+2+3+4+5+6)

0=-2Z,x1'13+Dx8-5(1+2+3+4+54+6+17)
-5(Q4+24+3+44+54+6+17).

Substituting for D its value

D=8Gs+a%+.. - +#)+5Gs+ &+ ... + 1D,
Fa. 77.
ID j.': 15 15\ /
S
Al X : ls x, lsx, s \\ v/ x,
S \

and arranging the equations so that the effect of each load may

be seen (according to the previous rule).

0=X,x1'73

+5{(@E+F. T ER - T-D+E-7T-D+...+@F.7T-60}
+5{@KH+. - +ETHET-D+EE.T-D+... +GE.T-6)}.

.

0=—-2%,x173

+5{Gs+. . +3D8+(GE.8-D+@E.8-D+...+ (3.8~
+5{(F+.. . +D8+GF.8-D+E;.8-D+...+ (3.8~

In these equations all the members containing the live load
have positive signs, and the omission of any of them would con-

sequently diminish the numerical value of the stress.

Having thus shown that the booms obtain their greatest
stress when the bridge is fully loaded (and this, it may be
added, is true in the case of all lattice girders), the calculations
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0=Y,%x0866—5(H+..-+3t—Ff—F&~...— %)
+5(H+HE+-. +)
X, (min.) = + 39 tons.

=—-U,%x086—-5C%+...+22—-F—F&—...—3)
+5Gs+ S+ )
U, (max.) = — 32 tons.

0=—-TU,x086—-5(F%+...+30—5—o%— - —39
=5t t.. 1D

U, (min.) = — 81 tons.

It appears that only Y, (max.) and U, (min.) need be .
taken into consideration, and therefore the ecalculations for Y,
(min.) and U, (max.) could have been spared. But it is ad-

Fie. 79.
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visable always to calculate both values, for sometimes the
stresses are of different signs, in which case both must be
retained.

The equations and the stresses in the remaining diagonals are found similarly
as shown below : .

0=Y, %0865+ ... +20)=5@+...+3D
e {(max.)=+156 tons
'  (min.) = 4 78 tons

0=—TU, x0866—5G%4+...+28—2)—5G+ ..+ 2D

45 x
U { (max.) = — 72 tons
'\ (min.) = - 144 tons

0=Y,x086—5(%+...+28—%5—3% -
=5+ .+ D+ &+

Y {(max.)=+133 tons

? \(min.) = 4+ 66 tons
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0= =Ty x 0808 5G4 =~ = )
_5(?154-. W EO5Gs T8+ )
7 {(max.): - 59 tons
(min.) = — 122 tons
0=Y,x0866—5(H+...+28—4—."—1)

~ Bt D Gt )
Y {(max.)=+112 tons
(min.) = + 53 tons

0==TU,X086—-5Fs+ .F+22=F—...— &)
=55+ +%s) St o+
U {(max.)_ - 46 tons
3\ (min.) = — 101 tons
0=Y,x086—-5(%+...+38=F—...—2)

G e £ DR D
v {(max.) = + 71 tons
(min.) = + 24 tons

0=— U, x 0866 —5 (% ﬁ—ég -s)

-—5(”+ + +5(2'§+ <+ )
U {(max.) = — 17 tons

(min.) = — 61 tons
0=Y,x%x 086 —5 (% +.. +_%_1_o_,“._ﬁ)
= 5(&+- W+H5GE+ .+ )

{(ma.x.) =452 tous
(min.) = 4 9 tons
0==TUysx086~5(K+...4+318—
=5+ +iD+

U, { (max.) = — 0°8 tons

(min.) = — 42 tons
0=X,X086—-5(%+..4+%~ %g-—...—g—lg)
A AR R ¢ L)
X {(maX)—+ 34 tons
"\ (min.) = — 7-4 tons
0=-T, x 0866 -5 (X% +. +,s—;—5—...—§1§
_5(§§+ I +5GEE .+ )
U {(m3x~)=+16tons
" | (min.) = ~ 25 tons.

Since the girder is symmetrical with respect to the central
line, the stresses in the corresponding braces in the other half
will be exactly the same, and need not therefore be calculated.

The verticals have to sustain a part of the dead load as
well as the 5 tons moving load. Half the weight of the line
of railway, which forms part of the dead load, is supported by
the lower joints, and the other half is transmitted by the
verticals to the upper joints. This weight is 2475 tons,
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and since there are fourteen
bays, each vertical will have
24-75
2 x 14
Each vertical is there-
fore subject to a tension of
+ 5°+88 tons.

The results of the above
calculations are collected
together in Fig. 80.

If all the signs of the
stresses be changed, those in
asimilargirderturned upside
down (Fig. 81) are obtained.

= 0-88 ton to carry.

[{Nore.—Since the loads are
equally distributed on the top
and bottom joints, it is immaterial,
so far as regards the boomps and
diagonals, whether the line be
placed on a level with the bottom
or the top boom. In the first case
the verticals will be ties, and in
the second they will be struts.]

§ 14.

In order that the rela-
tion between braced girders
with a single triangulation,
and those having two or
more (or Trellis and Lattice
girders as they are some-
times called), may be clearly
shown, the girders in the
following examples will have
a span of 16 metres and a
total load of 48,000 kilos.,
so that they may be com-
pared with the girder of §10.
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If the load on the girder shown in Fig. 57 were only half
what it was assumed to be, the stresses would be exactly a half
of those given in the figure. Taking two such girders with
halved stresses, one in which the diagonals are inclined upwards
from right to left as in Fig. 57, and the other from left to right
as in Fig. 63, and placing them exactly one behind the other,
so that all the corresponding bars, with the exception of the
diagonals, cover each other, a girder is obtained the crossed
diagonals of which are capable of taking up either tension or
compression. Wherever two bars coincide the stresses in them

-are to be added, and the stresses thus obtained are those pro-

duced in the derived girder by the total original load, one-half
of which acts on the upper apices, and the other half on the
lower apices. In each of the verticals, except those over the
abutments, the stress vanishes, for the maximum stress in one
girder is added to the minimum stress in the other. To pro-
duce the above loading it is necessary, when the whole load is
applied at the level of the upper boom, to introduce verticals to
transmit half of it to the lower joints, in which case these
verticals will be in compression; or if the line of railway is
attached to the lower boom, vertical ties must be used to convey
half the load to the top joints; and lastly, if the line is placed
between the two booms a vertical will be required, the lower
half of which will be in compression, and the upper half in
tension. The verticals in compression will have a stress of
— 3000 Kkilos., and those in tension of + 3000 kilos. In this
manner the stresses given in Figs. 82, 83, 84 have been ob-
tained. (So as not to overload the diagrams with figures, the
stresses in the booms and diagonals have been omitted from
Figs. 83 and 84. They are the same as those in Fig. 82.)

Again, if two girders of the design shown in Fig. 57, with
halved stresses, be placed so that one overlaps the other by half
a bay, and if the stresses in the parts of the booms where they
overlap be added, the stresses in a braced girder of the form
shown in Fig. 85 will be obtained, but they will only be true if
the girder be supported as indicated in the figure. If the line
of railway is placed on the lower boom or between the two
booms, Figs. 63 and 66 can be employed in a similar manner
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to form the girders given in Figs. 86 and 87. (The stresses in
the booms and diagonals have been omitted, being the same as
those in Fig. 85.) If the diagonals in such a girder be so con-
structed that they can only resist tension, the form of the
girder and the stresses in it will be as shown in Figs. 88, 89, 90.
(The stresses in the horizontal and diagonal bars in Figs. 89 and
90 are the same as those in Fig. 88.)
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The girders in the last six figures have a length of 17 metres
(instead of 16 metres), and the stresses given are only true
if there are two points supports at each abutment.*

If, however, the original span and method of supporting the
girders is to be retained, the design shown in Fig. 91, made up
of the two simple systems of Figs. 92 and 93, can be employed.
The stresses given have been calculated on the supposition that
the live as well as the dead load is applied to the upper

* The girders shown in Figs. 85 to 90 are not of much practical use, for
although their length is 17 metres, the clear span is only 16 mefres,—TRaNs.
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extremity of the verticals. The stresses in Fig. 92 are therefore
obtained by dividing those in Fig. 57 by two. The stresses in -
Fig. 93 must, however, be calculated anew, taking the dead
load at 4000 kilos. and the moving load at 20,000 kilos.

These calculations are exactly similar to those given in
§ 10. It is to be observed that in this case, contrary to all

Fies. 88, 89, axp 90.
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the previous examples, the first and last verticals jare’ subject
to bending stress (for this reason they have been shown in
double lines in the figure). From Fig. 94 the three following
equations are obtained for the three bars in the first bay :—

0 =X x 2+ 12000 x 1 (turning point P)
X = — 6000 kilos.

0=Y x L_ — 12000, Y = 16971 kilos.
N2

0= — 7 x 2 — 12000 (turning point 0)
7 = — 6000 kilos.
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Both X and Z are negative, these bars are therefore in com-
pression. The first vertical is therefore held in equilibrium by
the four forces shown in Fig. 95; thus irrespective of the
12,000 kilos. direct compression in its lower half, it is in the
same condition as a beam supported at both ends and loaded in

Fre. 94. Fia. 95.
|

>X €000

S

g 6000 168971
N P —
A__%; Z
12000 ¢ Y 12000

the centre with 12,000 kilos. The same figure evidently also
represents the stresses in the last vertical.

To avoid these bending stresses the first and last diagonal
can be placed as represented in Fig. 96, in which case the
equations for the three bars of the first bay will become (Figs.
97 and 98)

0 =X x 24 12000 x 1 (turning point P)
= — 6000 kilos.

0=Y x — 12000

2
Jorpd
Y = 4 13416 kilos.
= — Z x 2 (turning point J)
Z =0.

The stresses in the bars of the last bay will be similarly
altered. This alteration will, however, not affect the stresses in
the other bars, and they remain the same as in Fig. 93. Com-
bining the design of Fig. 96 with that of Fig. 92, a girder of
the form shown in Fig. 99 is obtained. (Only a few of the
stresses are given, for the others coincide with those of Fig. 91.)

Starting with the girders of Figs. 91 and 99,a series of derived
forms can be obtained by altering the position of the loads and
the nature of the diagonals. Following, for instance, the

F






' § 14—MULTIPLE LATTICE GIRDERS. 67

reasoning of § 11 and assuming that the diagonals can only
take up tension, Figs..100 and 101 are obtained, in which only
a half of the girder is shown, for it is symmetrical about the
centre, and the stresses in the corresponding bars are equal.

. Fig. 102 is obtained by replacing the verticals in Fig. 91
by diagonals inclined to the right at an angle of 45°. This is
a trellis girder with four triangulations, and can also be con-
sidered as made up of the four girders shown in Figs. 103,
104, 105, and 106.

Fre. 97. Fic. 98.

6000

13416

1 000

The stresses given have been calculated on the supposition

that the span of the girders is 16 metres, their height 2 metres ;

tho total dead load %00 Kilos. and the total live load 40200

Fre. 100.

—16500 —25500 —33000 39000  —43500 —46500 ~—48000 —A8000 : —A48000
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=3 =] > Z 1% 33 < =3
S < =4

—6000  -6000 16500 125500 +83000 -+39000 43500 46500 446500

kilos., so that the girder of Fig. 102 may correspond with the

former cases.
The dead load, however, according to the more accurate

assumption, has been equally distributed betw




68 BRIDGES AND ROOFS.

Fie. 101.
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Fre. 104.
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and top joints, but the live load, as in previous cases, is

exclusively applied to the upper joints.*

Therefore at each lower joint there is a dead load of
250 kilos. and at each upper joint a dead load of 250 kilos.,
together with a live load of 2500 kilos. (with the exception of
the end joints, which of course have only one-half the load to
carry). Fig. 107 is obtained by calculating the stresses in the
four single lattice girders with these assumptions and then

fuzing them together.

The end verticals in Figs. 102, 103,

104, and 107 are represented by double lines to indicate that

they are under bending stress.

A comparison of this trellis girder of four triangulations
with the one of eight triangulations, shown in Fig. 108, will

F1e. 107.
—4000 —14500 —23500 —31000 —37000 —41500 —44500 —46000 i —46000
) ) 7}? ) . 3 ) ) Q
55 3 R &~ Ry < 3 NS
2 X P D P X /ggo‘b@ X ,"%@
X X X
N
X % X X X x X x N o
% %, %, & . X%, N % XX
& & 2 % By X
& > 2 ) 5,‘%‘%’ 9% %) & X4
+6500 417000 +26000 4-33500 4-30500 44000 47000  -+48500 : -+48500

convince that when the stresses in a trellis girder of a still
greater number of triangulations have to be determined it is not
necessary to go through all the calculations of all the single

systems of which it is composed.

The stresses in the booms increase gradually from the abut-
ments to the centre, and the stresses in the diagonals decrease
gradually in the same direction, and these increments and
decrements vary according to a law which becomes all the
more evident the greater the number of triangulations and the

greater the number of stresses actually calculated.

* This assumption is not strictly accurate, for the weight of the line of way,
the longitudinal, and the cross-girders is applied to the same joints as the live load,
and it is only the weight of the truss itself that can be considered as equally dis-

tributed between the bottom and top joints.—TRANs.



70 BRIDGES AND ROOFS.

Thus, as soon as the calculations have been carried to a
cértain . point, the shorter method of interpolation may be
adopted.

The stresses in the diagonals of the girder of Fig. 108 are
on an average half those of the corresponding ones of Fig. 107,
which agrees with the number of diagonals being double, and the
stress in each of the new diagonals is very nearly the arith-
metical mean between the two adjacent diagonals. Further,
the number representing the stress in any part of the booms of
Fig. 107 is almost exactly the arithmetical mean of the two
numbers that take itsplace in Fig. 108. It therefore is not

Fre. 108.
—187,6 —6812,5 —12082,5 -16837,5 —21437,58 —25562,5 -—29312,6
)
3
1=} X X X X X
) L) % =2 32 2
: Fa o T T8 YA
0, Q N
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© /, % 7/
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(=3
o
g %
o
s Xe? Xw?~ Xﬁ?a /
S % & N
4 3 v /
2 > B & RN N
SN o W52\ S & &
b N -~ £ /o/ 5/ ¥
: X %
°} % / /

+3687,% +9812,3  +114562,5 +19437,5 289375 280625 +318123

actually necessary to calculate the stresses in each of the eight
single lattice girders, forming the girder of Fig. 108, but the
stresses already found for lattice girders with two or four
triangulations can be used, according to the degree of
accuracy required, to determine the required stresses by
interpolation.

The points of application and the values of the bending
forces acting on the end verticals are given in Figs. 109 and 110.
In the first figure the resolved parts vertically and horizontally
of the stresses are given instead of the stresses themselves, and
in the second figure only the bending forces on the vertical are
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shown. The direct compression which also exists in these
verticals can be found from Fig. 108,

In Fig. 108 it was assumed that a dead load of 125 kilos.
was placed on each lower joint and a dead load of 125 kilos,,
together with a live load of 1250 kilos. on every upper joint.
If instead of this, the dead load on the lower and upper joints
had been taken as 1, and the live load as 0, the stresses given
in Fig. 111 would have been obtained.

These numbers are what may be called the stressrnumbers
when the bridge has no moving

load upon it. Kig Lo

These numbers also apply to " -
any similar trellis girder with 3 . T
eight triangulations if the span . HE
is eight times the height. If the 188
dead load is p kilos. (or any 2 oo
other unit of weight) on each - IR
joint, the stress in kilos. can evi- PR
dently be obtained by multi- 8 o5
plying the stress-numbers by p. =

Fig. 112 gives the stress- 8
numbers obtained supposing the L 20
dead load to be O and the live o
load on the upper as well ason - 5311?
the lower joints to be 1. To s R
obtain the stress in kilos. of &
a geometrically similar girder

having a live load of m kilos. on
the top and bottom joints, the stress-numbers are to be multi-
plied by m.

The stress-numbers in Fig. 111 are simultaneous, whereas
those in Fig. 112 do not occur at the same time, but give the
greatest stresses due to partial loading. The functions of the
- diagonals can therefore be best investigated from Fig. 111,
and it will be observed that by multiplying the stress-numbers
of this figure by p + m, the stresses in the fully-loaded girder
are obtamed

Taking two vertical sections through this figure, one at the
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Fie. 112,
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first top joint from the left and the other at the second top
joint and applying the requisite horizontal and vertical foreces
to maintain equilibrium, Fig. 113 is obtained. It will be
seen that in each section the vertical forces distribute them-
selves equally between the points of crossing of the diagonals,
and that the total difference of the vertical forces is equal to
the total load on the bay. It will further be observed that the

horizontal forces increase from the Fie. 113,
centre towards the booms, and are
proportional to their distance from 1
the centre. These laws would have 1% " 17,75
been even more clearly expressed 7,25
with a trellis girder of sixteen tri- %%, L
angulations.

The greater the number of tri- 7,25 i
angulations, the greater will be the
analogy between the functions of the 22 i

diagonals and those of the solid web
of a plate girder. K o

The stress-numbers in Figs. 111 g
0,9 0,95
-

and 112 can be employed as follows

to determine the stress in any other

trellis girder with eight triangu- e &5

lations, geometrically similar, and ois !

having a dead load of p kilos. and < =

a live load of m kilos. on the 6/75

upper as well as the lower joints : “1075 17,7
Multiply the stress-numbers in L

Fig. 111 by p, and those in Fig. 112
by m. The sum of the nwmbers obtained will give the stress
required.

Or representing by 7, the stress produced by the dead
load, by Z,, the stress produced by the live load, and by Z the
total stress: oy

Z=pZy+mZn

As an example take a trellis girder of 64 metres span and 8
metres depth, the dead load being p = 1500 kilos., and the
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live load m = 2000 kilos. on each top and bottom joint; then
for the sixteenth brace inclined upwards from right to left,
the above equation becomes

Z = 1500 x 0-707 4 2000 x 1-768 = 4 4596 kilos.
as the maximum stress or greatest tension, and
Z = 1500 x 0°707 — 2000 x 1-061 = — 1061 kilos,

as the minimum stress or greatest compression.

In the same manner the following stresses are obtained for
the remaining diagonals inclined upwards from rlght to left,
beginning at the left end of the girder:

+ 21036, + 19799, + 18562, + 17324,

+ 16175, 4 15027, - 13877, + 12727,
+ 11667, + 10606, -+ 9546, + 8485,

5
L Tis, 4 650, {+ 5569, {+ 4596,

- 265, {— 1061,

{+ 3718, {+ 2828,
— 1944, \— 2828,

and these stresses multiplied by — 1 will give the stresses in

the diagonals inclined upwards from left to right.

Similarly it is found that the different parts of the booms
are subject to the following stresses, commencing at the left
end of the girder:

11375, 87625, 62125, 84875, 105875,
135125, 142625, 158375, 172375,

184625, 195125, 203875, 210875,
216125, 219625, 221375.

These numbers taken with the positive sign give the stresses
in kilos. in the lower boom and with the negative sign those in
the upper boom.

Again if p = 125 kilos. and m = 625 kilos. in the girder of
16" span, the stresses in the diagonals inclined upwards from
right to left, beginning at the left end of the girder, are

+ 4508, + 4243, + 3977, + 3712,
+ 3475, + 3237, + 3000, + 2762,
4 9552, + 2342, + 2132, {i 19@3’
{+ 1740, {+ 1558, {+ 1376, {+ 1193,
— 193, \— 320, \— 447, \— 574,

{+ 1039, {+ 884,
— 729, t— 884,
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and the corresponding load
. 4992 x 40 = 199680 lbs.

The load on each of the
thirteen bays is therefore
1——-951)280 = 15360 1lbs., or
75 tons nearly (2000 Ibs.
to the ton).

The weight of the prin-
cipal itself deduced from
the dimensions of its parts
is very nearly 1-5 ton for
each bay.

Half the load on each
end bay is taken up di-
rectly by the abutments,
and each of the twelve
central joints has 1-5 tons
permanent and 7°5 tons
variable * load to carry.

Oaleulation of the Stresses
X and Z in the Upper
and Lower Bows.
Cutting off the part of

the roof shown in Fig. 115

by the section line a 8 and

taking moments first about

M and then about N, the

following equations are ob-

tained :
0=X,x1205+Dx4
150 +2+43)
—-T50+2+3)
0=-2%,x10554+Dx3
~1'51+2)
~75(1 + 2).

* As will be seen in the sequel, Prof. Ritter under-

Fie, 114.

.._.x. ..“_.F_'h _.j.l_s___ N

. SF Ve

1,0
0,994

-
LNy~ - -~ 3K

77

1)
Vs

stands by the load being variable that any joint or
joints may be loaded and the rest unloaded. This, it
will be observed, is not the usual English practice in the case of roofs.—TRANs.
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Substituting for D its value:
D=15(k+ &+ .+ +T5G+ %+ ..+ 19,

and arranging the equations according to the previous rule so
that the effect of the variable load may be traced :

0 =X, x1-205
F15 {5+ A+ 4= D+ 4 - D+ 3.4 —3)]
FTE (gt )4
+75{(g. 4-D+H .4~ +G}3.4-3)

0= —Z, x 1055
+15{(&+...-+P3+H.83-1D+@3.3-2)}
+T5(5+...+193
+76{C:.3—-D+(@3.3-2)}

The members’ containing the variable load, 75 tons, are all
positive and therefore of the same sign as the members due to
the permanent load 1°5 ton. Hence the stresses X, and Z, are

Fra. 115.

greatest when the structure is fully loaded. Solving these
equations :

X, (min.) = — 134-4 tons.

7, (max.) = 4 128-0 tons.

It having thus been shown that the greatest stresses in the
bows occur when the roof is fully loaded, it is better to
substitute for D its corresponding value,

1'5475
D= .

X 12 = 54 tons,



§ 15.—SICKLE-SHAPED ROOF. 79

in the original equations, which then become

0=X,x1205+54x4—9(1+2+3)
= =7, x 1°055 + 54 x 8 — 9 (1 + 2).

In a similar manner the equations for the remaining parts of the bows are ob-
tained as given below :

0=X,x 0347 - 54 x 1

X, (min.) = — 155°6 tons
0=-2,x041454x1

Z, (max.) = + 131-7 tons
0=X,x0672+54%x2—-9x%x1

X, (min,) = — 147°3 tons
0=—2Z,%x04154+54 x 1

Z, (max.) = + 130-2 fons
0=X,%0963+54x3-9(1+2

X, (min.) = — 140°2 tons
0=—2Z,x0767+54x2~9x%x1

Z, (max.) = + 1291 tons
0=X,x1'3824+54x5-9(1+2+3+4

X, (min.) = — 1302 tons
0==Z,%x12724+54%x4—-91A+2+3)

Z5 (max.) = 4 1273 tons
0=X,x14814+54x6-9(1+2+83F4+5)

X (min.) = — 1276 tons
0==2Z¢x14194+854%x5-9(14+2+344)

Z¢ (max.) = + 1269 tons
0=X,%x14914+54%x7—-9A+24+3+4+546)

X, (min.) = — 1267 fons )
0=—2,%x1491 +54 X6 -9(14+2+3+4+5)

Z, (max.) = + 1267
0=X; %3141 4+54xX8~90+2+...47

X, (min.) = — 127°6 tons
0=—2Z;,x1'4894+ 54 x7-=9(1+24...4+6)

Z, (max.) = 4 126-9
0=X,x12444+54%x9~-910+2+...+8

X, (min.) = — 130°2 tons
0=—2Z,%x14144+54%X8—-9Q+24...4+47)

Z, (max.) = + 127°3 tons
0=X,,x1°004+54x10-9(A+24+...+9)

X, (min.) = —184+4 tons -
0=—2Z,%x12054+54%x9-9(1+2+...+8)

Z,, (max.) = + 128-0 tons
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0=X,;, X07064+54x11 =91 +2+4 ...+ 10)
X;; (min.) = — 140°2 tons

0=—-2Z,,x1'0464+54 x10—-9(1+2+...4+9)
Z,, (max.) = 4 129-1 tons

0=X,,x0367+54x12-9A+2+ ...+ 11)
X,; (min.) = — 1473 tons

0=-2,%076+54x11-91+2+...4+10)
Z,, (max.) = + 130-2 tons

0=X,; X0°347T+54x12-9(1A +2+...411)
X5 (min.) = — 1556 tons

= =2, X041 +54 x 12 -9 (1 +2+ ... 4 11)
Z,; (max.) = + 1317 tons.

It appears from these results that the greatest stresses in
the symmetrically placed parts of the bow are equal. Now as
the only difference between the corresponding bays on each
side of the centre is in the direction of the diagonal, it follows
that the greatest stresses in the bows are independent of the
position of the diagonals. It therefore makes no difference in
the results if the point round which moments are taken is at
the right or left angle of the bay ; that is, whether the point lies
in the diagonal or not. But this cannot be the case unless the
stress in the diagonal is nothing. From this it follows that
the diagonals have no stress in them when the roof is fully
loaded.

This property of bowstring roofs will be further discussed
in the “ Theory of bowstring trusses.”

Calculation of the Stress Y in the Diagonals.

To determine the stress Y, take moments about O for the
part of the roof given in Fig. 116. O is the point of inter-
section of X, and Z,, and it is found by construction that, its
distance to the left of A is 2, and that the lever arm of Y, is
4-68. Hence the equation,

0=Y,x468-Dx2+4+15{B+2)+C+)+U+2)}
+75{B+D+Q@+D+A+2)}.
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intersection of X, and Zj, is at a horizontal distance of 0°06 to
the right of A and the equation of moments is

0=—V,x194+D x 006415 x 094475 x 0-94,
substituting for D and arranging the equation,
0=—-V,x 1-94+1-5[(11;-+ e 310006 + (1 — 2]
+ 758+ + 13006+ 75 (1 =),
Here again the co-efficient of 75 is positive, and the equation
can therefore be solved as it stands, whence,
V,(max.) = + 6 tons.

For the next vertical, V,, the point about which to take
moments falls to the left of A, and the equation consequently
alters its form to a slight extent.

The equation of moments round O in Fig. 119 is

= —V, x 3214 — D x 0°214 + 1-5(1-214 + 2-214)
+ 7°5(1-214 + 2-214),
and substituting for D and arranging the equation

0=_V x 3214 —1° 5[(—5+ A1 )0 214 — (2+1)(1+02u)]
~T5(FK+.-..+1 )0214+75(2+1)(1+0214)

Fie. 119.

X,

A7)
/
><"Z“

In this case one of the members containing 75 is positive
and the other negative. To determine V; (max.) the negative
member, and to find V,; (min.), the positive member must be
left out.” The value of V,, keeping both these members in the
equation, will also be calculated ; this gives the value of V,
when the roof is fully loaded: the reason for doing this will
appear further on.
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The values obtained are

{(max.) = + 8-1tons, V; = + 6 tons.

? W(min.) = — 11 tons.
Similarly the following equations are obtained :

0=-Y, x491—-15[(1—-§+ P )091_.(3+2+1)(1+091)]
—-T8(&+...+091 47 5(3+2+1)(1+01:l)]‘

. (max.) = + 10°8 tons. _
{(mm)— — 38 tons. V= 6 tons.

0= —Vix 75~ 15[(d+. -+ )25 — (4 +.. +1)(1+2{§)]
— T 5yt 2EHTEE .+ D (14 2)].

(max.) = + 12°9 tons. —
{(mm) = — 59 tons. pS A

0==Vex126-15{(&+... + %66 -G +...+ D1+ )]
=75+ +H66+T5G+...+ DI +D)]
(max.) = 4 145 tons. =
"{(min.) = — 75 tons. = Gone.
0==V, x31'5~15[(&+...+ )25 - (6 +.. +1)(1+ )]
—T5@s+ kWU E+TE5E+... + DA+ 2]

{(max) = + 15°4 tons.

(min.) = — 84 tons. Vr = + 6 tone.

In the remaining bays the point about which moments are taken is to
the right of the section line, and the mgns of the equations are consequently
" changed.
0=V x60+15[(FH+.-..+-8-T+...+1)(2-1)]

+ 75t )68 =T 5T + ...+ 1§ — 1)

(max.) = + 15-8tons. _
s{(min)= — 8-8 tons. V, = + 6 tons.
0=V, x 185+ 1'5|(d + -+ + 9225 = B+ ...+ D (2 = 1)]
+75@G+...+ 2257358 +.. +1)(2%§_1)'
(max.) = + 156 tons, " 4 Sonm
e {(min.) = — 8-6 tons. Rl iiG s

0= Vig X 648+ 15 [ +#5 + ) 1648 = O+ ..+ 1)(‘%"—1)]
+75(&+5+3%5)1643-T50+.. R DY 1843 1)]'

(max.) = 4 14°8tons. V.. = - 6 tons.
V"{(min.) = — 7-8tons. 10 = + G tons

0=V, x83+15[(&+ %143 10+...+ (5 -1)]
+ 75 (& + %) 148 = 7510 + .. ADE -1
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(max.) = + 13°5 tons. —
Vu {(m_m)_ — 65 tons. Vu = - Gtons.
0="V, x 1385 4 1'5 [ x 13-885 = (11 + .. +1)(‘3'3"5_1)]

+ 75X 45 x 13385 = 7511 + ... + D (EX —1).

It was recommended in § 12 to assume that both the per-
manent and variable loads were applied to the same joints, and
this assumption was made possible by the introduction of
secondary verticals, whose object was to eonvey to the supposed
loaded joints the part of the permanent load belonging to the
other joints. In the present case it was supposed that the whole
of the weight of the principal was applied to the top joints.
Now in reality, this load is distributed between the upper
and lower joints, but the upper joints have the greater propor-
tion to bear, and only about one-third or 0'5 ton of the
permanent load on each bay falls directly on each lower joint.
The secondary vertical introduced to transmit this load to the
upper joints is therefore a tie, and the tension in it is 05 ton,
and this stress must te added to the stresses in the verticals
previously found.

The more accurate values of the stresses in the verticals are therefore
V, (max.) = + 6°5 tons.
V, (max.) = + 6°5 tons.

{(max.) = - 8-6 tons.
# \(min.) = — 0-6 tons.

v {(max.) = - 11-3 tons.
* \(min,) = — 3-3 tons.

V; = + 6-51{ons.

V, = + 65 tons.

Vs {Eﬁ;)): F BLons v, = 465 tons.
LRI v sotm
Vi {E:f:)): f7159 20';):& V; = + 65 tons.
Vs {Eﬁ?:)) ; j 8163 2;3:8' Vg =+ 65 tons,
Vv (max.) = 4 16°1 tous. Va= + 6-5tons,

? \(min.) = ~ 8-1 tons.

{
v {(max.) = 4 15°3 tons,

1Y (min.) = — 7-3 tons. Vie=++ 9'51;0115.
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(max.) = + 140 tons. i
Vu {(min.) — — 6-0 tons. V5, = + 6°5tons.

(max.) = 4 121 tons. L S
Vi {(min.) =—4limg Viz==6Dtons

The whole of the results are given
in Fig. 120

§ 16.—DEr1ivED FoRMS.

The above calculations show that
the diagonals of a double bowstring
roof possessing only one single system
of diagonalsare subject both to tension
and compression. On examining the
equation of moments for the stressin a
diagonal it will be seen that the maxi-
mum stress in it is reached when all the
joints to the right, and the minimum
when all the joints to the left of it, are
loaded.

If the diagonals were inclined up-
wards from left to right, the reverse
would obviously be the case, and the
stresses that then obtain can easily be
found by looking at Fig. 120 as it
were from behind ; or, what amounts to
the same thing, the stress in a diagonal
inclined upwards from left to right can
be found from that in the diagonal situ-
ated in the symmetrically placed bay
and inclined upwards from right to left.

If in any bay the diagonal inclined
to the left can only take up tension, a
second diagonal of like properties in-
clined to the right must be introduced,
and it ‘will come into play only when
the first one is slack, and wvice versd.
The stresses in these diagonals can be
obtained from Fig.120; the maximum

®
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stress in the diagonal inclined to the left can be found directly,
and the maximum stress in the diagonal inclined to the right
will be the same as that in the diagonal of the symmetrically
placed bay. ‘

Before the stresses in the verticals of a roof with crossed
diagonals can be determined, it is necessary to ascertain which
of the diagonals is in tension under the partial loading, for the
section line must be parallel to the diagonal which is in tension
in order to cut through only three bars, When the roof is fully
loaded, the stress in all the diagonals is zero, and at the same
time the stress in the lower boom is greatest. The tension in
the verticals will then also be greatest.

R LA For besides the permanent load p

v (Fig. 121) the stresses Z and Z' are the

, only forces that can produce tension

,X(: \X in the vertical. The stresses Y and
gt 7z Y' in the diagonals, when they exist,
' ‘p / produce on the contrary compression,

for the resolved parts vertically of
the stresses in them act upwards. But with a full load Z
and Z' are greatest, and Y and Y’ are nothing, and therefore
the tension in the verticals is greatest under these circum-
stances.

The above appears even more clearly by observing the
effect produced by unloading one of the joints when the full
load is applied. Unloading a joint can be considered as the
application of a vertical force acting upwards; and since the
diagonals are under no stress when the structure is not loaded
at all, as well as when it is fully loaded, it follows that it is
only necessary to investigate the effect of a vertical force acting
upwards on the unloaded and weightless structure as represented
in Fig. 122. The vertical force’K produces the reactions D and
W at the abutments A and B, and for simplicity only those
diagonals have been shown which are brought into tension by
this force. To find which of the diagonals in any bay is in
tension, take a section through this bay, and form the equation
of moments for the part (Fig. 123) which does not contain K,
round O, the point of intersection of the directions of the
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vertical, acted-on directly by the force K, because the section
line would cut through four bars. Now it is easy to see that K
produces compression in every part of the lower bow, the
equation of moments to find Z (Fig. 125) being

=—Dl-Zz or D=—%z-

Thus the parts of the bow acting on the foot of the vertical in
question (Fig. 122) being in compression will produce com-
Ppression in it.

Fie. 124, Fig. 125,

It is thus seen that unloading any joint diminishes the stress
in all the verticals, from which it follows that the tension in the
verticals will be greatest when all the joints are loaded. _

It now remains to be decided what joints should be un-
loaded in order that the stress in any vertical may be a
minimum. Take, for instance, the ninth vertical ; it is evident
that unloading the eighth joint will diminish the stress in it,

Fia. 126.

and the same effect will likewise be produced by unloading the
seventh, sixth, &e., to first joint; and, what is an important
point, the unloading of each of these joints will bring the same
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system of diagonals into tension in the two bays adjacent to
the ninth vertical (Fig. 126). But if the umloading were
still further continued the compression in the ninth vertical
would be diminished. For since in the two adjacent bays
to this vertical the same set of diagonals is in tension (the
gystem inclined to the left), the equation already found for
V, (min.) holds good, and this equation shows that the com-
pression is diminished by unloading the ninth, tenth, eléventh,
and twelfth joints. Hence the value of V, (min.) found above
is also true if the diagonals are crossed. There is, however, a
second minimum value of V,; for it can be shown in a similar
manner to the above that the stress in V, is a minimum when
the joints 10, 11, and 12 are unloaded and the remainder loaded
(Fig. 127). Evidently in this case the ninth vertical is in the
same condition as the fourth vertical in Fig. 120, and therefore
the value of V, (min.) obtains. Hence to find the greatest

Fi1e. 127.

compression in any vertical the values of the two minima must
be compared and the one whose absolute value is greatest
taken.

As regards the stresses in the bows, they are greatest when
the roof is fully loaded, and consequently when the stress
in the diagonals is nothing; the arrangement of the diagonals
can therefore produce no alteration in the stresses in the
bows.

Thus without any new calculations the stresses already
found can be inscribed in Fig. 128, showing a bowstring roof
with crossed diagonal ties.

By similar reasoning it is easy to prove that in the case of
crossed diagonal struts which are not capable of taking up
tension (this is the case in wooden structures) only the maxima
values of the stress in the verticals apply, and that in fact
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compression cannot occur in the verticals owing to the com-
pression in the diagonals. The stresses given in Fig. 129
require, therefore, no further comment.

It must however be observed, and this does not only apply
to this case but also to wherever crossed diagonals exist, that
the stresses found above are only true if no artificial stresses
exist in the bars. Such artificial stresses cannot occur in single
diagonal systems, for in this case every bar can be reached by a

Fre. 128.
1302 :‘27’6 ’12?'7 1276
fX‘i”A"& X a*f‘c,, ‘fm: ?é‘g
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section line cutting through only three bars. Thus if no
exterior forces are acting on the system, the equation of
moments for any bar, whose stress is Y, about the point of
intersection of the other two bars included in the section is

0=Yy.

But if two diagonals cross each other in a quadrilateral the
section line must cut through four bars, and the stresses in the
two diagonals tend to turn the part cut off in opposite direc-
tions round the point of intersection of the other two bars.
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From Fig. 130 the equation of moments is

0=Yy-Yy,
which implies the condition
JX_¥
Yoy

but the absolute values of Y and Y’ are indeterminate.
Therefore, if by means of set screws or otherwise an
artificial stress Y is set up in one diagonal, the stress in the
other will immediately change, in the above proportion, to
Y. This will alter the stresses in the verticals and parts of

Fra. 130.

the bow in the same bay, and they can easily be found by the
method of moments as soon as Y is known and Y’ determined.

The stresses given above are therefore only true if, when
the structure is unloaded, all the bars are without stress,
Then only one of the diagonals (either a tie or a strut) will be
acting at any time, but if artificial stresses are introduced it
might happen that both diagonals would be acting at the same
time.

§ 17.—APPARENT FAILURES OoF THE METHOD OF
MoMENTS.

There are cases in the employment of this method, and some
have occurred in the last example, in which it would appear
that although a result is obtained it can only be approximate.



94 BRIDGES AND ROOFS.

In every case the point about which moments are taken is
the intersection of two of the bars cut through by the section
line. When these bars are nearly parallel the accurate deter-
mination of this point and the measurement of the lever arms
is connected with difficulties. In all probability two distinct
computors would arrive at different results.

This would seem to be a great disadvantage of the method.
But on further consideration it will appear that it is possible on
the contrary to derive some use from the circumstance.

1t is clear that limits to the error can be obtained by first
intentionally giving the lines too great and secondly too small a
convergence (Fig. 181), and calculating in each case the stress.
Thus two values are obtained, and evidently the true value

Fie. 181.

lies between them. By comparing these values with the
intentionally committed errors it is possible to ascertain to what
degree the stresses will be altered by small errors in the
carrying out of the work.

For the uncertainty apparent on the drawing is in
reality a representation of what actually occurs by errors in
the construction. As the workman deviates in one direction
or the other from the working drawings, so the stresses
will approach one or the other limit. Therefore it is possible
to ascertain the alterations produced in the stresses owing to
inaccuracies in the carrying out of the design.

A second objection, even less founded than the former, is
that the method does not depend entirely on calculation, but
must obtain some of its data by graphic means. But calcula-
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tions should only be made when they arrive quicker at the
result than other methods. 1If, therefore, the graphic method
is shorter than calculation it should be adopted, especially
as there is less liability to error in measuring than in calcu-
lating.

§ 18.—THEORY OF SICKLE-SHAPED TRUSSES.

It will be noticed that in the preceding numerical example
the stresses were obtained without knowing anything of the laws
respecting the distribution of the stresses in the structure. If,
however, it were required to determine the form of the structure,
it would be necessary to be acquainted with these laws. For
this reason it is proposed to extend the “ Theory of Parabolic
Trusses,” commenced in § 8.

In that paragraph the equilibrium of a loaded chain was
considered (Fig.42). If this chain be imagined to rotate through
two right angles about the horizontal axis A B, the vertical

Fre. 132.

7
otz
A

v

)

forces will be reversed in direction and Fig. 132 obtained. The
chain can be considered as negatively loaded, and evidently the
equation obtained for Fig. 42 remains true, namely :

12
Hy=%

Similarly for another parabolic chain (Fig. 183) loaded with a
positive load P per unit of length of the span, the equation

P
LS D

holds good, and evidently the load P can be so chosen that the
horizontal thrust H will be the same as the horizontal pull H
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pulling upwards, the tension in them being equal to p per unit
of length of span.

In the same manner part of the positive load on the upper
chain can be produced by means of ties pulling downwards. If
this part of theload be equal to the negative load on the lower
chain, namely p per unit of length of the span, there will still be
a load P—p on the upper chain, which will be designated by
k and which can be applied by external loads (Fig. 185); if the

F1e. 135.

ties of the upper and lower chains be considered joined together,
the load p can be omitted, for its effect is exactly reproduced
by these vertical ties. A double bowstring truss without
diagonals has thus been built up, carrying a load on the top
equal to % per unit of length of the span.

The stresses in both bows as well as in the verticals can be

calculated from the magnitudes 7, f, F,%. For simplicity there

is a vertical to every unit of length of the span (Fig. 136), and

this is quite legitimate, for it was shown in § 8 that the load

could be concentrated at points, and so long as the load at
H
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each point was equal to half the uniform load on the adjoining
intervals those points remained on the parabola.
P and p can be found from the equations;

i,:%’,andP—p‘:K.

Las

Putting Fe %and reducing,

k
n—1

k
p=—pP=t+

The load % produces therefore a tension in the verticals.

k
n—1
In the preceding numerical example
1 2. 5

n=_-

=I= = —
F 25 5°° 2

S~

Hence the tension in the verticals (or the negative load on the
lower bow) is in this case

k

g—1

p= =34

and the load on the upper bow is
P=(ktp=3.%

Thus, if the external load on each top joint is 7°5 tons, the
tension in each vertical willbe 2 x 7°5 = 5 tons, and the upper
bow is in the same condition as if loaded with § x 7:5 = 12:5
tons at each joint.

The load of 1-5 tons on each top joint due to the weight of
the truss itself produces a tension in the verticals =2 x 1.5 =
1 ton, and the positive load on the upper bow is § X 1'5 =
25 tons.

Lastly, if 7*5 4+ 1-5 = 9 tons is the total load on each top
joint, the negative load per unit of length of span on the lower
bow is 6 tons, the positive load on the upper bow is 15 tons, and
the tension in each vertical is 6 tons.

If, however, part of the load is applied at the lower joints it
must be conveyed by secondary verticals to the top joints, and
the tension in these secondary verticals is to be added to that
in the main verticals. - For instance, in the preceding example

'
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0-5 ton of the weight of the truss was considered as acting on
the lower joints; 05 ton must therefore be added to the 6 tons
tension found above, and this coincides exactly with the value
obtained by the method of moments. The negative load
on the lower bow remains the same as before, namely 6 tons,
for the tension in the secondary verticals evidently does not
affect it.
The constant horizontal stress in the bows is:

Pl _6x(65)

B+ =—ox1

= 1267 tons,

which is tension in the lower bow and compression in the upper
bow. This is the same value that was obtained by the method
of moments (Z; = + 126°7 tons, and X; = — 1267 tons).

: If % = 0, it follows that p = 0 and P = k; that is, if the lower

bow becomes a horizontal straight line the loading of the upper
bow produces no tension in the verticals.

o1 - .
Further, if 7 becomes negative p also becomes negative ; that

is, the loading of the upper bow produces compression in the
verticals. For instance, if

= =1,

~ S

k
p=—§andP._+-§-

In this case, therefore, one half of the load placed on the
top is transferred to the bottom bow (Fig. 137).

Fre. 137.

Generally, the above equations, &c., are true for a negative
as well as for a positive value of f.
In all cases, therefore, when the load is uniformly distributed
H 2
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over the span the verticals alone are.capable of maintaining
equilibrium. It is only when the load is unevenly distributed
that there is any tendency to deformation, and this is met by
the introduction of diagonals.

The law upon which the stresses in the diagonals of a double bowstring truss
depend can also be found, and is appended here for those readers who are
acquainted with the Calculus.

The diagonals together with the verticals make the truss perfectly rigid, and it
therefore behaves towards external forces in the same manner as a simple beam

F1e. 138.

supported at both ends. Thus, if a load Q be placed on it at a horizontal dis-
tance z, from the right abutment (Fig. 138) a reaction

z
D=Q. 57
will be produced at the other abutment A.
Fre. 139 Take a vertical section M N through the truss

to the left of the weight Q, dividing the struc-
M I ture into two parts, one of which is shown in

— TFig. 189. To maintain equilibrium forces must
D N b be applied to this section. In order that the
algebraic sum of the vertical forces may be zero,
a vertical force V must be applied equal to D,
therefore
0.&3 _l[‘ V= z
v =Q-37-

The force 'V alone would, however, with D produce a couple, and it is therefore
necessary for equilibrium to apply at the section a couple of equal moment. The
horizontal forces % & form such a couple. If the section line M N is indefinitely
near to one of the vertical braces, M and N are the only points at which a bar
can be intersected, and the horizontal forces must therefore be applied at these
points. The value of  can be found by taking moments about A, thus: )

0=V(@—2)—h.ML+4.NL.

If, as before, the heights of the are of the parabolas are ' and f respectively,
the equations to these curves are,

Y 2 _y
f
From which the following values for M L and N L are obtained :
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By measuring the lengths dy, d; ... d,, of the diagonals and multiplying by
8:125 the following table is obtalned
d,=1-018, Y,=8'125x1-018 = 83
d, = 1163, Y,=8125x 1163 =95
d, =1-361, Y, =8-125 x 1361 = 11°1
ds = 155, Y=8125x155—126
dy =17, Y,=8125x 17 =13°8
d, =18, Y, =8'125x1'8=146
d, = 1835, Y, = 8125 x 1°835 = 149
d, = 1-815, Y, = 8125 x 1815 = 14°7
dyy = 1735, Y,, = 8125 x 1-735 = 14°1
dy, = 1+605, Y,, = 8125 x 1-605 = 13+0
d,, = 1426, Y,, =8°125 x 1:426 = 11°6.

Comparing these values with those given in Fig. 120 it will be seen that the
differences are very small,

The above law can be applied to the case of fish-bellied girders, by writing
— fforf;
dH _ 12

tEFE+H
It is also true in the special cases when the lower or the upper bow become

straight ; in the first case f = 0 and in the second F = 0, or —— a8 kl

97 " 1IF when the
lower bow is straight, and ..E = _f_ ! When the upper bow is straight.
For instance in the parabohc girder calculated in § 6,
dH _ kRl _ 2500 x 8
dz if 4x2 45005
and measuring the lengths d,, d; ... d, of the diagonals:
d, =25 Y, = 2500 x 2-5 = 6250
d, = 2°741 Y, = 2500 x 2741 = 6850
d, = 2828 Y, = 2500 x 2-828 = 7070
dy = 2741 Y, = 2500 x 2-741 = 6850
dg =25 Y, = 2500 x 2°5 = 6250
d, = 2°183 Y, = 2500 x 2°183 = 5460

These stresses agree almost exactly with those given in Fig, 27.

1t is possible to investigate a similar law for the stresses in the verticals, but
on account of their double function, first as braces and secondly as struts or ties
to convey the load from one joint to another, this law is very complicated and
consequently unsuited to practical purposes. Nor would the results agree with
those obtained by the method of moments as well as in the case of the diagonals
For these general laws are based upon the supposition that the moving load
progresses gradually, whereas when using the method of moments it is considered
that the moving load advances by jumps from one joint to the next. It is there-

fore better in all cases to employ the method of moments to calculate the stresses
in the verticals.
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FIFTH CHAPTER.

§ 19.—CANTILEVER RooF wiTH STAY, SPAN 6 METRES.

The load, including snow and wind, is assumed to be 200
kilos. per square metre of horizontal area, covered. The dis-

tance apart of the principals is 4 metres. The load on each
principal is therefore

6 X 4 x 200 = 4800 kilos.

and the load on each of the 6 bays is 800 kilos.; of the 7
joints, the first and the last have 400 kilos. to support, and

Fre. 144.

the remaining five 800 kilos. (Fig. 144). The weight of the
truss itself being small, the whole of this load may be taken
as a variable load.*

Calculation of the Stress H in the Hordizontal Bars.

The reactions W and P produced at the two points of
support A and C by a load Q are shown in Fig. 145. To
find the stress H in the bar M N, due to this load, the
equation of moments about the point O, for the part of

* Ag will be seen in the sequel, Prof. Ritter understands by the load being

variable that any joint or joints may be loaded and the rest unloaded. This, it
will be observed, is not the usual English practice in the case of roofs.—TrAns.
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the roof given in Fig. 146, would have to be formed. But the
position of Q has been so chosen that the resultant of Q and P
passes through O, and consequently H = o. It will also easily
be seen that all loads to the left of Q produce negative stresses,
and all loads to the right of Q positive stresses, in the bar
M N. Hence, when H is a minimum, the part of the roof over

Fia, 145,

Compression. Tension.

L4

Q

which “Compression” is written in Fig. 145 will be loaded,
and the remainder unloaded ; and when H is a maximum, the
loads will extend over the part marked “ Tension.”

Fic. 146. F1a. 147.

The same result can be arrived at, however, by forming the
equation of moments, when all the joints are loaded, and arrang-
ing this equation so that the effect of every load can be seen.

When Q (distant 4 metres from the wall) is the only
load on the roof, a stress P is produced in the rod B C,
whose vertical component is § Q (Fig. 147); for the equation



p
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§ 19.—CANTILEVER ROOF WITH STAY. B

of moments about A shows that the vertical component of P
acts in the same manner as the reaction of the point of sup-
port B would if A B were a girder resting on two supports,
A and B. Since A B is to A Cas 6 to 3, it follows that the
horizontal component of P is always twice as great as the
vertical component, and is in this case therefore equal to § Q.
Thus, the equation of moments to find H; is (Fig. 148)—

0=-H;x2-Q%x2+2Q%x4-4Qx3,
or
Hix2=-Qf2~-32.4+4.21.

The increment to the stress H, produced by Q is there-
fore composed of three parts. The first is the direct influence
of the load, and the other

two the indirect effect pro- Fro. 148.
duced by the reactions.

If Q, however, were situ- Ql %
ated to the right of the sec- £0 B/m i

Hy

2

tion line, the increment to TT;Q
the stress would be com- l

posed of two .terms only,

both the indirect effect of the reactions. For instance, the
increment to the stress Hj, produced by a load Q, 2 metres
from the wall, is to be found from the equation

0=-H,x3+3Qx4-3Qx3,
or R
H3x.§=Q {—%.4—-%.%—}.

Thus the equation to find Hj, when all the joints are loaded, is

H,x2=800(3.4~-%.2)+80(G.4~-3%.9
+800(3.4-1.2~1)—800@2~2.444.2)
+800(3—5.4+45.5)—400(4—1.4+2.3),

Omitting the negative members from the right-hand side of
the equation,

H, (max.) = + 2000 kilos. ;
and leaving out the positive members,

H, (min.) = — 2000 kilos.
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The following equations for the remaining horizontal bars are obtained in a
similar manner :

Hx1=-800(0-%.64+3.1)-80@-%.64+3.1)
—800(3—1.6+4+1.1)—800(4—2.6+4.1)
—800(5—35.64+5.1)—400(6—1.6+2.1)

H, (max.) = 0, H, (min.) = — 4800 kilos.

H,x§=80@G.5—3.5)+80G.5—-%.5-1
—800(2—13.54+1.)—-800@B—2.5+4%.3)
—800(4 —&.54+5.8)—400(-1.5+2.3)

H, (max.) = + 640 kilos., H, (min.) = — 3040 kilos.

~

H,x:=80(G.83—3.)+80E.3-2.3)
+800(:.3—1.)+800(2.83—-4.3-1)
—~800(2—5.345.1)—400(8~1.342.1)

H, (max.) = 4 3733 kilos.,, H, (min.) = — 1333 kilos.

+800(3.2—1.3)+800(3.2—4%.3)
+800(.2—5.2—1)—4002—1.2+2.3)
H; (max.) = 4 5600 kilos.,, H, (min.) = — 800 kilos.

H,;xi=8003.2—3+.0)+80G.2-3.9
5

Hyx1=80(@G.1-3.1)+80G.1-3.9
+800(3.1—1.)+800(3.1—4%.3)
+800(3.1—5.3)=—400(1~1.14+2.

H, (max.) = + 8000 kilos., - H; (min.) = — 800 kilos.

For all the remaining bars the turning point lies in the line
A B; and since the resultant W, of any load Q and the ten-
sion P produced by it in B C, always passes through A, it
follows that the greatest stress in all the remaining bars
occurs when every joint is loaded.

This total load of 4800 kilos. can be considered to act at the
centre of A B, and the vertical component of P will then be
1 . 4800 = 2400 kilos. The horizontal component of P is twice
as great, or 4800 kilos. Consequently,

P = A/2400° + 4800° = 5367 kilos,,

and this is the greatest tension in B C. From Figs. 149 and
150 the lever-arm of the stress X, with respect to the point
M, is

= 0'4932 metre, -

LM.cosa=1%.
“=3 N/62+12
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SIXTH CHAPTER.

§ 21.—BrAcED Arcu or 24 METRES SPAN.

The bridge is designed to carry a single line of railway, and
is supported by two braced arches. The moving load on the
bridge is taken at 4000 kilos. per metre run, of which, therefore,
one-half comes on each braced arch, and the length of a bay
being 3 metres, the moving load on each joint is 6000 kilos.,
or 6 tons (1000 kilos. to the ton). The dead load is estimated
at 1400 kilos. per metre run, or 700 kilos. for each arch; that
is, 2100 kilos. on each joint, or approximately 2 tons.

The two halves of the arch are in contact at the point S
only (Fig. 155), and the connection is made by means of a
single bolt, thus forming a hinge.* Hinged joints are also
placed at the abutments A and A,.

Preparatory to finding the greatest stresses, the effect of a
single load placed on the weightless structure will be investi-
gated.

A load Q placed anywhere on the right half of the arch
produces a reaction R at the hinge S (Fig. 156), between the
two halves of the arch. For the left half, the direction of this
force must pass through the point A, for otherwise rotation
round this point would take place. This force produces at A
a reaction R, acting in the direction A S; this must be its
direction, or else rotation would ensue round S, besides which
action and reaction are equal and opposite. Let P be the
intersection of: the two forces R and Q, then it is easy to see,

* Tt would be a more rational form of construction if the hinge were situated
in the horizontal B B,. But the above construction is more general, and in the
case of wooden structures the rational form would be difficult of execution. For
these reasons it has not been adopted here, but can easily be deduced by making
8 C = 0 instead of 0-5. .
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by taking moments about this point, that the reaction D pro-
duced at the hinge A; must pass through P, in order that
equilibrium may obtain. This reaction is also evidently equal
in magnitude and opposite in direction to the resultant of
R and Q.

Thus, to find the direction of the reactions at the abut-
ments due to a load Q placed on one half of the arch, the
line joining the hinge at the abutment of the other half with

Fia. 155.

31 61 61 Gl ?ﬂi’o

1
ILB X1 2], Xa 21 X3 2l X4 Cy

A A
R D

the central hinge is produced to intersect the vertical through
the load, and from this point a line is drawn to the hinge
at the other abutment. The pressure at the central hinge
on the unloaded half is always directed to the hinge at its
abutment. (In the sequel the central hinge will be called
“the hinge,” and the other two hinges the “abutments.”)

The magnitude of the hinge-reaction R can be found by
resolving it into its horizontal and vertical components, and

then forming two equations of moments, one for each half
12
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of the arch. Thus, if H and V are these components, the
following equations are obtained from Fig. 156 :

0=Vx12+Hx4—Qx3,
0=Vx12—Hx 4,
whence

V= % and H = 3—8—(—2

Thus having found the action of a single load Q on the
whole arch, it remains to determine the stresses this load pro-
duces on the various bars composing the structure. This is
best done by taking a section through any three bars, as before,
and writing the equation of moments for the part of the arch
comprised between this section and the hinge. As in former
cases, the moments are taken about the point of intersection of
two of the bars cut through. Whether any particular load
produces tension or compression in the bar under consideration,
can easily be determined by noticing in which direction the
load tends to make the part of the arch rotate. In this manner
the joints that must be loaded to produce tension in a bar, and
those which must be loaded to produce compression, can easily
be ascertained. The maximum stress is found by loading
all the former, and the minimum stress by loading the latter
only.

[Note.—It is necessary to know the direction in which the vertical com-
ponent V of the central hinge-reaction acts on each half of the arch. By ex-
amining the various figures given, it will be evident that this can always be
decided on by inspection, but it would, perhaps, be safer to assume some
direction as the positive one; for instance, let V be positive when it acts up-
wards against the left half of the arch (as in Fig. 160), then a negative value
of V would indicate the state of things in Fig. 157 or Fig. 167.]

Caleulation of the Stresses X in the Horizontal Bars.

The equation of moments to find X will evidently, in every
case, be taken about the foot of the diagonal (Fig. 158). A
load on the left half of the arch produces a hinge-reaction in
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the direction A, S, and the resultant of this reaction and the
load tends to turn the part of the arch between the section
line and the hinge from right to left—that is, in the same
direction as X tends to make it rotate. For equilibrium,
therefore, X must be negative.

A load on the right half of the arch produces a hinge-
reaction, which passes through the point round which moments

Fia. 157.
3 6 6 "6 3 3 6 6 6
1 2 2 | 1 1 2 2 9
H H <’ -

are taken; such a load will, therefore, have no effect on the
stress in X. Obviously, therefore, X is always in compression.
Hence, to find the greatest compression or minimum stress in
X, the whole of the left half of the arch must be considered
loaded, and the other half can be loaded or not, the result in
either case being the same. For simplicity, both halves will be
considered loaded (Fig. 157). The equations to obtain the
hinge-reaction are then

0=VxI2+Hx4—4x12—8(9+ 6+ 3),
0=VxI12—HxX4+4x12+8( + 6 +3),
whence

Consequently, the equation of moments to determine X,
(Fig. 158), with respect to the point E, is
0=—X,x35—-48x3+8(3+6)+4x9,

or
X, (min.) = — 10°29 tons.
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group, for the resultants of these loads and the hinge-reactions
produced by them tend to turn the part of the arch between
the section line @ 8 and the hinge, from right to left. The
stress Y, has the opposite tendency (Fig. 161), and is there-
fore made positive by these loads.

The load on the second joint is the only one belonging to
the second group. This load does not act directly on the part
of the arch under consideration, but by means of the hinge-
reaction produced by it, which acts in the direction A, S, thus
tending to produce rotation from left to right, or, in other
words, making the stress Y, negative.

The third group contains the loads on all the remaining
joints ; for either they produce no hinge-reaction (1st and 9th),
and have therefore no influence, or else they act indirectly
through a hinge-reaction in the direction A S, passing through
the point F, round which moments are taken, and consequently
producing no stress in Y,.

To determine Y, (max.), therefore, the 3rd and 4th joints
are to be loaded, and the 2nd is to remain unloaded. (The

Fia. 160.
6 l6
la la 2

W“ E’%
other joints may be loaded or not; they will, however, be con-

sidered as unloaded.) The hinge-reaction for this loading must
now be found from the equations. (F'ig. 160.)

0=—VxI124+Hx4—1x12—=2(9 + 6+ 3),
0=—VX12—Hx4+1x12+2©O+6+3)+6(+6),

whence
V =375, H=2325;
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Y, (min.) need not be considered, as no distribution of the load produces
compression in this diagonal.

Y, (max.).
The 4th joint only is to be loaded, then
V =225, H = 1875,
and
0=Y,x3385+225x154+1875%x05—1x15—8x4-5.
Y, (max.) = -+ 7°38 tons,
YS (mm) Fie, 163.
The 2nd and third joints only
are to be loaded, then
V=225 H=18175,
and

0=Y,%x 3354225 x1'5
+ 1875 x05—1x%x15
—2x 45,
Y, (min.) = — 0°67 tons,

Y, (max.).

Y, (max.) need not be considered, as no distribution of the load produces
tension in this diagonal.

Y, (min.).
To obtain Y, (min.) joints 2, 3, and 4 are to be loaded, then
V =45, H =255,

and
0=Y,x0738+45x1'54+255x05—1x15.
Y, (min.) = ~ 24°4 tons.

Caleulation of the Stresses Z in the Lower Bars.

The stress in the bar Z, will be calculated, to illustrate the
method. In this case moments will be taken about the point
J (Fig. 164). A vertical through G, the point of intersection
of AJ and A, S, gives the position of the load which produces
no stress in Z;, for the resultant R, of a load Q in this position
and its hinge-reaction D, passes through the point J. Any
* load to the right of G- will produce compression in Zs, for the
resultant R then passes to the right of J, and the tendency
is to turn the part of the arch under consideration (Fig. 166)
from left to right; Z, has the same tendency, and must there-
fore be negative to maintain equilibrium. Any load to the left
of G, on the contrary, produces tension in Z, for the resultant
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U,.

The 5th vertical is divided in two at the hinge, and since the head of this
vertical is only connected with a horizontal bar, it follows that the only vertical
force that can come upon it is the load on the joint, which can never be more than
4 tons for each half. Hence

U, (min,) = — 4 tons.

The results obtained are collected together in Fig. 172.

F1e. 172.
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§ 22.—BRrRACED ARrcH oF 40 METRES SpAN.
(Bridge over the Theiss at Szegedin.*)

This bridge, supported by two braced arches, is designed
for a single line of railway. The permanent load can be taken
at 2400 kilos. and the moving load at 4000 kilos. per metre
run, and one-half of this is supported by each arch.

The length of a bay being 2 metres, each joint has
2400 kilos. permanent load and 4000 kilos. moving load to bear,
or (taking 1000 kilos. = 1 ton) 2-4 tons permanent and 4 tons
moving load. The two halves of the arch are connected
together at the centre by a hinge, and hinges are also provided
at the abutments. The form and dimensions of the structure
are given in Fig. 173,

* With the exception of some slight alterations in the dimensions and the
addition of a central hinge, the figure represents the bridge over the Theiss. The
object of the central hinge will appear in the “ Theory of Braced Arches.” That
the diagonals in the central bays of the existing bridge have been expanded into

a plate-web can hardly be considered a difference in the principle of the construc-
tion.
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Caleulation of the Stresses X in
the Horizontal Bays.

The bar X will be taken to
illustrate the calculations. The
first step is to determine which
loads create tension in X; and
which compression, and to do
this the point must be found
where a load can be placed so as
to produce no stress in X5 The
vertical through the intersection
of AL and A, S produced (Fig.
174) gives this required loading
boundary, for a load Q placed
in this position produces a hinge-
reaction D acting in the direction
A; S (this reaction must pass
through A, to prevent rotation
round that point), and these to-
gether give a resultant R which
must be directed to A, so that
the left half of the arch may not
rotate round this point, but by
construction the line C A passes
through I, and as this is the
point about which to take mo-
ments to determine X;, it follows
that the load Q can produce no
stress in X; The reaction R,
due to a load to the right of Q
passes below L and tends there-
fore to turn the part LS of the
arch from left to right, and X;
will be positive since it acts in
the opposite direction.

On the contrary, every load
situated to the left of Q will

Fie. 178.
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produce a negative stress in X, for the resultant R in this case
passes above L, and therefore tends to produce rotation in the
same direction as X; does.

The vertical through C is therefore the required loading
boundary, and the maximum stress obtains when all the joints
to the right of it are loaded.

Fia. 174.

Compression. Tension.

a Xs Df‘\/
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For X this loading boundary is situated at a distance of
16 metres from the left abutment, coinciding therefore with the
vertical bar U,. To find X; (max.) thereforef the joints 10,
11, 12—21 must be loaded, and the remainder unloaded

Fie. 175.
1) 2 244‘44444‘4142
12 2,l4 2,l4 2,{42,14 2442,l4 2,l42,l42,{4, 1, 2‘H ﬁ;ﬂ,uuﬂi& 2, 2,&2,42&4 2142,4 1
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20 20

(Fig. 175), and the components of the hinge-reaction for this
loading are obtained from the two following equations of
moments :

0=Vx2+Hx5-2422+18+16+...+4+2)
4(224184+16+...+4+2)

0=Vx20~Hx5+24(2+18+16+... +4+2)

+ 4 (224 18)
whence
V=72 and H=99"2; .

~






130 BRIDGES AND ROOFS.

From this it appears that the numerical values of X; (max.)
and Xy (min.) are identical, whence it follows that X; = 0,
when the loads producing the maximum stress are on the
bridge together with those producing the minimum stress, that
is when the bridge is fully loaded (for the load on the 9th
joint has no effect). This property is easily explained by the
“Theory of parabolic girders,” given in § 8, for in the pre-
sent example the arch has the form of a parabola, and it has
been shown that this is the curve of equilibrium (or linear
arch) for a load uniformly distributed over the span. Directly
therefore the bridge is fully loaded, neither the horizontal bars
nor the diagonals are necessary to maintain equilibrium, the
verticals, however, are required to transmit the loads to the
linear arch (Fig. 179).

Now the permanent load is uniformly distributed over the
span, and produces therefore no stress in the horizontal bars or
the diagonals. Thus in calculating the stresses in them, the

permanent load can be left out of consideration, and further it
is only necessary to obtain either the maximum or minimum
stress when the other can be found by changing the sign.

The calculation for X; could therefore have been given in

the following form.
0==Vx204+HX5S
0=—-Vx20—Hx544044+12+...4+2)
V=56 H =224
0= —-X,x175~56x10-224x125+4(4+2)
X, = £ 3429 tons.
And the following calculations are made in a similar manner :
X,.

(Loading boundary in 7th bay.)
0=-—-Vx20+HX5
0=—-Vx20-—Hx5+402+10+...+2)

V=42 H =168
0= —X, x455—42x18—168x405+4(10+8+4...+2)
X = 4 5:20 tons.






132 BRIDGES AND ROOFS.

X1oe

There never can be any stress in this bar, for no horizontal force can act
on its right extremity. Hence

X, =0.

Calculation of the Stresses Y in the Diagonals.

The diagonal marked Y; will serve to illustrate the calcula-
tions.

The point about which moments will be taken is M
(Fig. 180), and the vertical through the intersection of A M
and A; S produced will give the loading boundary. For a
load Q placed in this position gives with the hinge-reaction D
a resultant R whose direction is E M A. If the load lies to

Fie. 180.
Tension, Compression.

the right of E the resultant R, or if it is placed on the right
half of the arch the hinge-reaction passes below M, and con-
sequently tends to turn the part S a 8 from left to right,
but Y; has the same tendency, and must therefore be nega-
tive.

If on the contrary the load is to the left of X, the resultant
R, or if the load is to the left of a B, the hinge-reaction D
passes above M, and in either case Yj is evidently positive.

Thus if the part of the bridge lying to the right of the
vertical through E be loaded, Y; will be a minimum ; and if
the part to the left be loaded, Y; will be a maximum.

It has already been remarked when dealing with the
stresses in the horizontal bars, that the permanent load produces
no stress in the diagonals; it seems therefore unnecessary to
carry the proof any further. Hence in the following calculations
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1Y, .
(Loading boundary in 8th bay.)
V=56 H =224 (see calc. for X,)
0=Y,%x942 —56x 7294 4224 x 0°544 x 1294
— 4 (0706 + 2°706 + 4°706 4 6°706 - 8:706)
Y, = £ 12°59 tons.

Y,.
(Loading boundary in 8th bay.)
V=56 H =224
0=Y,%816—56x613+224 x 0544 x 0-13
—4 (1874 3874 5874787
Y, = 4123 tons.

Y,.
(Loading boundary in 9th bay.)
V=72 H=28'8 (seecalc. forX;)
0=7Y,% 6834 —7°2x 4923 428'8% 0-5+44 %0923
— 41077 4 3077 4 5-077 4 7°077)
Y, = &+ 12-07 tons.
Yip
(Loading boundary in 9th bay.)
V=72 H =288
0=Y,%x 424 -72x 22284 28'8x 05
-4 777 4 3777 4 5°717)
Y, = & 11-07 tons.

In the case of Y, it is found that the point about which
to take moments is situated in the central bay, and this, as
will appear, makes the arrangement of the loading giving the
greatest stresses differ from that of the previous cases (Fig. 183).
There are, in fact, three groups of loads, two of these produce
compression and the third tension. For as will be seen from
the figure the line A, S in this case passes below the point
N, and consequently the hinge-reaction produced by a load on
the left half of the arch also passes below N. Now a load
situated to the left of the section line A yx acts on the part
of the arch S A w by its hinge-reaction D, and tends therefore
to turn this part round N from left to right, thus making Y,
negative.

Thus the section line A 4 is a second loading boundary;
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For Y, however, the position of the turning point is such
that only two groups are formed (Fig. 187). Here the section
line o 7 is itself the loading boundary, for every load to the left
of o 7 acts on the part S ¢ 7 through its hinge-reaction D, which

Fie. 186.

Cumpression. Tension, Compression.

A,

evidently makes Y, negative. But every load to the right of
o7 on the part So7, produces with its hinge-reaction a
resultant which tends to induce rotation from right to left,
and all loads on the right half of the arch acting by means of

Fia. 187.
Compression. Tension.
oo -
<] K

e

A
their hinge-reaction W have the same effect. Consequently all
loads to the right of o = make Y, positive.
The loading boundary is therefore situated in the 9th bay,
and (see calculation for Xy)
V=12 H =288
Whence the equation of moments is

0=Y, % 247472 x 533+ 28'8x 05
Y, = 4 214 tons.

Similarly it is found that the section line is the loading
boundary for Y,,, therefore,

0=—-Vx20+HX5
0=-VXx20-Hx5+4184+16+...4+2)
V=9 H=36
0=Y,,%5324+9%x204+36x05
Y,, = & 37:20 tons.
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Caleulation of the Stresses U in the Verticals.

The effect of the permanent load on the vertical bars can
be deduced from Fig. 179. If half the permanent load is
applied to the top of the verticals and the other half to the
foot, the compression produced in each vertical will be 1-2
tons (with the exception, however, of the first and last verticals
which have only half the amount to sustain). To these stresses
must now be added those produced by the moving load.

The maximum and minimum stresses produced by the
moving load must therefore be found.

The vertical U will be taken to illustrate the method.
The loading boundary can be found by the construction
employed in Fig. 180, for in both cases M is the turning point.

Compression. Fia. 188, Tension.

A load Q placed on the vertical through B, gives with its
hinge-reaction D a resultant R which passes through M, and
hence Q can produce no stress in Us. The vertical through E
is therefore the loading boundary, and all loads to the right
produce tension, and all loads to the left compression. When
U; (min.) obtains the bridge will be loaded with the com-
pression group, and then (see calculations for Y;)

V=172 H =288

Whence the equation of moments for the part of the arch
shown in Fig. 189 is (denoting by u; the stress due to the
moving load alone),

= —u; X 8'86 — 7°2 X 3°64 4+ 28:8 X 05
—4(0°36 4 236 + 4°36 + 6°36 + 8-36)
u; (min,) = — 1184 fons.

us (max.) can be deduced from this without further calcula-
tion in the following manner:
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TUs.
The loading boundary is in the 9th bay, and

V=72 H = 28-8
0=—u,x22472x 204288 % 05
%y (min) = — 112 %y, (max.) = 4 7°2
U,, (min.) = — 124 tons

U,, (max.) = 4 6°0 tons.

Uy
The vertical in the centre is divided in two by the hinge,
and as at the top it is only connected to a horizontal bar, the
only stress that can exist in it is the compression produced by a
load placed on the top. The greatest load for each half is
06 ton permanent, and 2 tons moving load. Hence

U,, (min.) = — 2°6 tons.

Caleulation of the Stresses Z in the Bow.

To find the stress in the bar Z; a section line is drawn
through the 5th bay, and the equation of moments formed for
the part of the arch lying between the section line and the
hinge with reference to the point of intersection O of the
diagonal and horizontal bars (Fig. 192).

Tension. Fic. 192. Compression.

A A,

The vertical through the point of intersection ¥ of A O
and A, 8 is the loading boundary, for the resultant R of a load
Q in this position and its hinge-reaction D passes through O.
" This loading boundary lies in the 6th bay.

In this case the permanent load will have to be taken into
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From the above calculations it appears that the compression
in the bars forming the bow can be considerably greater with
an uneven than with a uniformly distributed load. In this a
parabolic arch-bridge differs from a parabolic girder-bridge, for
it was shown that in the latter the greatest compression in the
bow occurred when the bridge was fully loaded.

It also appears that it is not absolutely necessary to calculate
the maximum stress in the bow. For if the maximum and
minimum stresses produced by the moving load be added
together the result is the stress due to the moving load when it
covers the bridge. And it is evident that this stress is always
negative (for altering 6-4 to 4 in the last equation will not
change the sign of Z;). Consequently the absolute value of
the minimum stress produced by the moving load must be
greater than that of the maximum stress, and the compression

Fia. 194.
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produced by the dead load still further increases the balance in
favour of the minimum stress. And since a greater section of
material is generally required to resist compression than the same
amount of tension, the maxima stresses might be neglected.

They will, however, be calculated, and for the following
reason. If the arch be imagined turned wupside down it
becomes a suspension bridge, and the same calculations with
reversed signs would apply, the minima stresses becoming
the maxima stresses and wvice versd. Now it is just possible, if
the dead load were small in comparison to the moving load,
that the minima stresses in the suspension bridge might
become negative, and would then probably determine the
section (the bars being long columns). For such cases there-
fore it is necessary to know what are the maxima -stresses
in Z.
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If the signs of all the stresses in Fig. 196 be changed, the
stresses in the suspension bridge formed by turning the arch
upside down will be obtained, if the abutment hinges become

the points of attachment. This suspension bridge is shown in
Fig. 197.

§ 23.—STABILITY OF THE ABUTMENTS OF THE DRACED ARCH.

The stability of the abutments can be tested by the method
of moments, and it also can be ascertained which distribution of
the moving load acts the most injuriously in this respect. The
force tending to overturn the abutments or piers is the hori-
zontal component of the thrust of the arch. The vertical com-
ponent of the same force, on the contrary, adds to the stability.
Both components are greatest when the bridge is fully loaded,
yet the excess of the moment of the horizontal component over
that of the vertical component may reach its maximum with
a partial load.

To decide this point the first step is to find the position
which a load must occupy on the bridge, so that it may have
no overturning effect on the pier. The axis about which the
pier tends to rotate is represented in Fig. 198 by the point F,*
and for the load Q to have no overturning effect the reac-
tion produced by it at the abutment A, must pass through F.
Evidently the vertical drawn through the intersection of F' A,
and A S produced gives the required position of the load Q,
and it is also easily seen that the reaction for all loads to
the right of Q will pass inside I, and for all loads to the left of
Q outside F. The worst case for the pier is therefore when the
bridge is loaded from the left abutment up to the vertical
through I. The position of this vertical evidently depends on

the ratio 2—7' of the height of the pier (up to the hinge A,) to its

breadth.
As an example suppose that

h
5= 2,

* To allow for the compressibility of the material of which the pier is built,
moments should not be taken round F but round an axis nearer the centre of the
pier. See Appendix,—TRANs,

i %
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§ 24 —TurorY oF. HINGED-BRIDGES.

It is now proposed to consider from a more general point of
view the principles of construction of these bridges.

The stresses in any system of bars can be calculated by the
method of moments as soon as the direction and magnitude of
the reactions at the abutments are known. In girder-bridges
the abutments are so arranged that they can only produce
vertical reactions, and there can therefore be no uncertainty
as to their magnitude. But in the case of arched or sus-
pension bridges a horizontal reaction is added to the vertical
reaction, and it is only when this former can be determined
that the stresses can be calculated.

This horizontal reaction is indeterminate unless the con-

tinuity of the structure is interrupted at some point and a hinge
introduced, as will be proved by the following.
. In the “Theory of parabolic girders” (§ 8) it was shown
that the parabola is the curve of equilibrium of an inverted
chain in the form of an arch, when the load is uniformly distri-
buted over the span; and in this case both the horizontal and
vertical reactions are determinable. But the slightest alteration
either in the distribution of the load or in the form of the curve,
would make the chain collapse unless it is stiffened by some
means. This stiffening can be obtained in two different ways:
either by transforming the flexible chain into a stiff bow which
prevents deformation by its resistance to flexure, or else by
means of a system of braces composed of horizontal, vertical,
and diagonal bars, forming triangles with each other. In both
cases the flexible arch will be transformed into a stiff structure,
and the abutments will have to supply horizontal as well as
vertical reactions.

The magnitude of the vertical reactions can always be
determined ; this will appear by taking moments about the
abutment B (Fig. 201 or Fig. 202), thus:

0=V-21-Qu
or

|e

V=Q 7

134
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abutment of the other half, which must of necessity pass through
the central hinge. Consequently by producing B S the position
of P can be fixed, and with it the horizontal reactions at the
abutments. If the abutments give way slightly, the hinge will
be slightly lowered, and it will rise a little when the arch
lengthens with an increase of temperature, but in no case will
the difference produced in the stresses be appreciable.

It has already been pointed out in § 8, and again at the
end of § 20, that there is no difference between the calculations
for an arch, that is when the convexity of the bow is turned
upwards, and those for a suspension bridge in which the
convexity is turned downwards. Thus Fig. 208 is obtained
from Fig. 207 by turning the arch upside down, and then

Fic. 208.
D
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Fia. 209. Fic. 210.
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changing the direction of all the forces. It is also evident that
all the remarks made relatively to the arch also apply to the
suspension bridge.

It is hardly necessary to observe that hinge-bridges can be
constructed of a variety of forms. Two of these are represented
in Figs. 209 and 210. Fig. 209 can be regarded as the para-
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SEVENTH CHAPTER.

§ 25.— VARIATION IN THE STRESSES DUE TO ALTERATIONS
IN THE SPAN.

In the preceding chapters the equations of moments, &c., have
been given ¢n extenso for each part of the structure, for it is
possible to employ these equations and the stresses obtained in
many ways for structures that are geometrically similar to
those that have been calculated, or as it may be expressed, for
structures that differ only in ¢heir unit of length.

Were it not that the loads alter according to the span, and
especially that the proportion between the permanent and
moving load changes, the equations and stresses found would
be directly applicable whatever the span. For it makes no
difference in the results whether the unit of length is a foot,
or a metre, or a yard, since the equations of moments depend
only on the proportion between the lever arms and not on their
absolute length.

If then, when the span increased, the permanent and the
moving load increased in the same ratio, it would only be
necessary to multiply the stresses already found by this ratio
to obtain the new stresses. But in general this cannot be
done, for the permanent load as a rule aungments much more
rapidly as the span increases than the moving load, and con-
sequently an increase of span will affect the stresses in dif-
ferent parts of a structure differently. The problem is therefore
to find these new stresses from those already calculated, and to
do so by as short a way as possible.

The following notation will be used: p and m will represent
the permanent and moving loads on the structure that has
already been calculated, and p, and m, the permanent and
moving loads on the new structure.
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Now every stress can be divided into two parts, one pro-
duced by the permanent and the other by the moving load. If
the stress already found be thus divided, and the first part be

multiplied by % the second by Z—zl and the resultsadded the re-

quired stress will evidently be obtained.

The various bars of a structure divide themselves into three
groups, with respect to the effect of the permanent and moving
loads upon them as follows :—

The first group contains all those bars the stress in which
depends entirely on the moving load. In this case the new
stress is obtained by multiplying the old stress by the

. my
ratio —-
m

The second group comprises those bars in which the stress
is greatest when the structure is fully loaded. For them the
P+ my .

P+ m

And the third group consists of all the remaining bars, that
is those who obtain their greatest stress with a partial load. In
this case the stress produced by the permanent load must be

P
p

new stress is equal to the old stress multiplied by

multiplied by £' and that by the moving load by :7’;1 and the re-

sults added together to obtain the new stress.

The last group is the only one which ever requires new
calculations, and as a rule these calculations are very simple.
The stresses in the bars of the first and second groups can be
obtained without difficulty from the stresses already found. As
an illustration a few examples are appended—

a. Parabolic Girder,

Here the diagonals belong to the first, the horizontal bars to
the second, and the verticals to the third group.

Thus to find, from Fig. 27, the stresses in the diagonals of a
similar girder, 48 metres span, with a permanent load of 8000
kilos. and a moving load of 12,000 kilos. on each joint, the
stress in each of the six diagonals must be multiplied by

12000 _

000 — 2
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Since the stresses in the remaining three verticals are
repetitions of the above, it is unnecessary to calculate
them.

b. Braced Girder with Parallel Booms.

Here the first group does not occur ; all the horizontal bars
belong to the second group, and the diagonals and verticals to
the third group.

As an example, let it be required to deduce from Fig. 57 the
stresses in a similar girder of 48 metres, and (as in the last
example) with a permanent load of 8000 kilos. and a moving
load of 12000 kilos. on each joint.

The stresses in the horizontal bars are to be multiplied by

8000 - 12000 _ 10
1000 + 5000 ~ 3

to obtain the new stresses—thus,
70000, 120000, 150000, 160000,

which for the lower boom must be taken with a positive sign
and for the upper boom with a negative sign.
The stresses in the diagonals and verticals could be as
quickly calculated by introducing into the equations of moments
- given at p. 39-43, the new values of the loads as by the present
method of dividing the stresses into two parts. This latter
course will, however, be adopted, for in so doing the stress pro-
duced by the permanent load alone and by the moving load
alone will be found, and thereby a better view of the functions
of these braces will be obtained. As an example, take the
diagonal and the vertical of the third bay. In §10 it was found
that
Y, =V,. M2,
and that
0=Y, %0707 —1000 (G + 2+ ... + D = (1 — &) — (1 = 2)]
— 5000 (3 + 2 + -+« + §) + 5000 [(1 — £) + (1 — ]
"To find the stress produced in this diagonal by the per-
manent load alone, leave out the two members multiplied by
5000 and solve thé equation, thus obtaining 4 2,120 kilos.
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Then leave out the permanent load, and the stresses due to the
moving load alone are found to be

413260 and — 2650.

The last two stresses are to be multiplied by

12000
. 5000~ 2 %
and the first by
8000
1000 = &

and the results added together, thus:

(FHR) o (210 <o

The stresses in the vertical V; can be found by multiplying

the above stresses by — L_, thus :
V2 ‘

— 12000\ _ —12000) _
{Z 3300 | = — 33500 {35500} = — 00,

c. Braced Arch and Suspension Bridge.

The diagonal and horizontal bars in this case belong to the
first group, the verticals and the bars in the bow to the third
group, the second group has no representatives.

As an example let it be required to find the stresses in a
suspension bridge geometrically similar to that given in Flg
197, and having a span of 120 metres.

The permanent load on each joint will be taken at 20 tons,
and the moving load at 12 tons. The stresses in the horizontal
bars (Fig. 197) are therefore to be multiplied by -2 = 3 to
obtain the new stresses, thus:

4+ 15°6, 3348, + 5418, +77°64, & 10287, & 130°7,
+ 1521, =+ 150°87, + 1080, O.

Likewise the stresses in the diagonals are to be multiplied

by 3, thus A
4+ 8876, + 3777, 369, 3621, 357 & 33:21,

4+ 32:19, +29-4, X642 4 111-87.
M



162 BRIDGES AND ROOFS.

For the verticals the values of u,, u, already found (p. 124),
and representing the effect of the moving load alone (taken with
contrary signs for a suspension bridge) can be used. -

These values multiplied by the ratio 12 = 3 give for the
maxima stresses,

"4 47-46, 4 45°24, + 42'6, +39°3, 4 3552, + 5009,
+ 9514, +19°71, + 252, + 336, + 6;

and for the minima stresses

— 3546, — 33°24, —30°6, —27°3, — 2352, — 1809, — 13-14,
— 771, —13'2, — 216, 0.

The stress in the verticals produced by the permanent load

~ is (with the exception of that in the eleventh vertical, which

has only one-half to bear) 4+ 1°2 ton, and to obtain the

stress in the larger bridge due to the permanent load alone,

this must be multiplied by 25 = 8-83, and the new stress is

12 x 8:33 = 10 tons, which must be added to the stresses
due to the moving load, thus:

+57°46 | 4-55-24 | +52°6 | +49°3 | +45-52 | +-40-09 | +35°14
— 2546 | —23-2¢4 | —20'6 | —17°'3 | —~13'52 | — 809 | — 3-14

e Bk R
— — = + 5

The stresses in the chains can also be determined by split-
ting up the stresses as above, for the stress produced by the
permanent load alone, which is uniformly distributed over the
horizontal span, can be easily found from the formula given
in § 8, the chains being in the form of a parabola; the stress
due to the moving load alone can then be found by subtraction
from the total stress. The result of thus splitting up the
stresses given in Fig. 197 is the following, where the upper
figures are due to the permanent, and the lower to the moving
load.
oo | | 81 | s0s | 020 | 066 | 01d | 1087 | 1008 | o
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EIGHTH CHAPTER. °

§ 26.—SuspENsiON BRIDGE IN THREE SpANs. SPAN OF
CeNTRAL OPENING, 120 METRES. SPAN OF EACH SIDE
OPENING, 60 METRES.

Suspension bridges do not, unless special arrangements are
made, compare favourably with braced arches, as regards the
amount of materials employed ; for in the latter the points of
connection with the abutments are placed low down, and the
horizontal thrust acts against the abutments in the direction in
which they are strongest; whereas in the former, on the
contrary, the points of attachment are placed high up, and
the horizontal pull tends to turn the piers over in the direction
in which they are weakest; consequently, the quantity of
material in the piers will be much greater in one case than
in the other. Whereas, therefore, with a braced arch a com-
paratively small expenditure of material is required for the
abutments, especially if natural ones of rock can be obtained,
the quantity would be enormous with a suspension bridge, if
it were wished to attach the chains to the piers, as shown at E
and I (Fig. 211).

| s || [ ] |

The comparison would, however, be less unfavourable to the
suspension bridge if there were scveral spans, as shown in
Fig. 211. The horizontal tensions neutralize each other at the
central piers A and B, at least when the spans are equally
loaded ; but there would be the same disadvantage at the land-
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piers El and F.* Insuch a structure the horizontal and diagonal
bars would be under no stress when the bridge is uniformly
loaded, assuming the curves to be parabolas.

There would be no alteration, as regards this last point, if
the ends E C and DF were cut off and the chains attached at
the points C and D to abutments. This arrangement has the
advantage of lowering the points of attachment of the chains
atjthe shore end, thereby increasing the stability of the abut-
ments. If, besides this, the points A and B are hung to A,
and B, by means of vertical rods, the central piers will be
entirely relieved of all horizontal thrust, even when the load is
not uniformly distributed, for the reactions at A; and B; must
of necessity be entirely vertical (Fig. 212). The chains in the

Fre. 212,
B
60 Nl 60 60 \ 7 60

15

S D

Kz ' N\
i I R
parts CA and B D act as land-ties to' the central opening, and
at the same time the material in them is employed to brldge»
over the side spans.

(The connections at the points A, B, C, and D, shown in
Fig. 212, are only given by way of illustration, other and
better means of arriving at the same result will be discussed
farther on.)

Such a bridge can, on the whole, be represented by the com-
_bination of four rods shown in Fig. 213. These rods are con-
nected together by smooth hinges; they are supported directly
by the fixed points C and D, and by means of vertical rods at
A and B. It is also supposed that the rods are weightless.

Now it is evident that the direction of a force acting at each
end of an unloaded rod must be that of the rod itself; for
otherwise rotation would ensue. Therefore a load Q placed
at P can only produce a reaction R at C acting in the direc-
tion A C; and, similarly, a load Q; at P, can only give rise to

* Tt will be observed that it is usual to place land-ties at E and F. This
would greatly diminish the quantity of material in the end piers.—TRrANs.
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a reaction in the same direction. But if a load Q be placed
anywhere on the rod A C (Fig. 214), the reaction at C will be
vertical. For if in this case there were a horizontal thrust at
C, an equal horizontal thrust would be required at A and S.
But there can be no force acting at S; for since both rods A S
and B S are unloaded, this force would be required to have

Fre. 213.

Fie. 214.

simultaneously the directions A S and B S. Thus, a load
.placed on the rod C A has no effect on the remaining three
rods ASBD.

When the rod C A, therefore, is alone loaded, it behaves like
an ordinary beam supported at both ends, and when the rods
A S, S B are loaded they are in the same condition as if their
points of suspension A and B were fixed points.

The stresses in the bridge shown in Fig. 212 can now be
found.

a. Caleulation of the Stresses in the Central Span A B.

The stresses in the bars of each half of the central span A B
can, in accordance with the above, since A and B may be
regarded as fixed points, be found by the method employed to
calculate those given in Fig. 197. The span is 120 metres, and,
assuming that the form is geometrically similar and the loads
the same, the stresses found for the suspension bridge in § 25 ¢,
will be those required.
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b. Caleulation of the Stresses in the Side Span A C, Fig. 215.

It will be assumed that the parts A C and B D of the bridge
are, as regards their form and construction, geometrically
similar to each. half of the suspension bridge of § 22, and

Fia. 215.

the same letters have been used to denote the corresponding
parts. The loads will also be taken the same as those given
in § 25 ¢, namely, 20 tons permanent,* and 12 tons moving
load on each joint. The method adopted for the calculations
of the braced arch of § 22 will be followed, and for each bar it
will be found which loads produce tension and compression
respectively. To do this, recourse must be had to the two
laws given above, which are:

1. A load on the central span requires a reaction R at the
points A and C, whose direction is A C.

2. A load on the side span A C produces vertical reactions
at the points A and B.

Calculation of the Stresses X in the Horizontal Bars.

The stress in Xj is to be found by taking a section a3, and
then forming the equation of moments, either for the part in
Fig. 216 or the part in Fig. 217, with reference to the point J.
Any load on Fig. 216 produces a vertical reaction W at A,
which tends to turn Fig. 217 from right to left round J.

* This assumes that the weight of the bridge is uniformly distributed, and

this is not far from the truth, as will appear by examining Figs. 238 and 239,
p. 181.—TRaANs.
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X; acts in the contrary direction, and is therefore positive.
The loads on the part Ca B belong, therefore, to the tension
group.

A load placed on Fig. 217 produces a vertical reaction D at
€, making X, positive, as before; consequently the loads on
A a B also belong to the tension group.

Fie. 216. Fre. 217.

=a

A load on the principal span produces a reaction R at C,
which tends to turn the part in Fig. 216 from right to left,
thus making X; negative ; therefore the loads on the principal
span belong to the compression group.

A load placed in any position on B D has no effect on A C,
and the part B D is marked accordingly in Fig. 218.

Fia. 218.

LTENSION . DOVERESEIOY o NO EFFECT
A B
M

Since when the load is uniformly distributed over the
whole bridge the stress in the horizontal bars is nothing, the
permanent load can be omitted from the calculations; and,
further, the maxima and minima values of the stress produced
in the horizontal bars by the moving load are numerically
equal ; therefore it is only necessary to find one of them. The
central span must alone be loaded when X; (min.) obtains, and
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the consequent horizontal tension at S (Fig. 219) is given by
the equation :

0=—Hx15+12(%2 + 54 + 48 + ... + 12 + 6)

H = 240.
Fra. 219.
' 60 TA 60
o FTTTTS

The horizontal component of R must evidently be equal to
H, and since the ratio of the vertical to the horizontal com-
ponent of R isas 15: 60,0oras 1 :4;

V = 60.
Hence the equation of moments from Fig. 220 is

0=—X,; %525+ 240 X 375 — 60 x 30
X; (min.) = — 1714 tons.

Fie. 220,
1o

5 |
H=24(LC ,‘q ‘
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As a check, X (max.) can be computed by taking the side
span A C alone loaded, and considering it as a girder, thus:
0=—X;x52 +12[(& + ...+ %) 80 + (& .30 — 6)
+ (3% - 80 — 12) + (5% . 30 — 18) + (% . 80 — 24)]
X; (max.) = 4 171-4 tons,

which agrees exactly.

In a similar manner the following equations are obtained for the remaining
horizontal bars :

0=—2X, x 13°65 4 240 x 12-15 — 60 x 54
X, = £ 237 tons
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evidently makes Y; positive. A load placed anywhere on the
part A a8 produces a vertical reaction D at the point G,
which makes Y; negative. A load on C a 3 requires a vertical
reaction W at A, which also makes Y, negative. Hence
Fig. 223, showing the manner in which the stress in Y, is
affected by the various loads.

Fic. 223,
COMPRESSION y TENSION NOEFFECT

Thus to find Y; (max.) the central span alone must be
loaded, and, as before (p. 169),

H=240 and V =60;
and from Fig. 224 the equation of moments is
0=7Y; %1653 — 240 x 15 — 60 x 10'92

Y, = = 614 tons.

Fia. 224.
~
4 ~
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Similarly, for the remaining diagonals:

«

0=Y, x31'8—240 x 1'5 — 60 x 25:26
Y, = £ 590 tons

0=7Y, x 2826 —240 x 15 — 60 x 2188

. Y, =4+ 592 tons

0=Y, %2448 — 240 x 1*5 — 60 x 18-39
Y, = L 598 tons ‘

0=Y,x 205 —240 x 15 — 60 x 14-77
Y, = 4 60°8 tons
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Lastly, for Y,, all the loads on A C produce tension, and Y,,
can therefore be obtained by considering the central span
loaded, and as before (p. 171):

0=7Y,, X 15-97 — 240 x 15 + 60 x 60
Y, = & 202°9 tons.

Fia. 227, Fia. 229,

F1a, 228.
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Caleulation of the Stresses U in the Verticals.

The stress in each vertical can be divided into two parts;
one part due to the permanent load, and the other to the
moving load. The first is the same for all the verticals, and is
equal to + 10 tons, if it is assumed that one-half of the total
permanent load (20 tons) is applied to the upper joints, and
the other half to the lower joints. Denoting the part of the
stress due to the moving load by w, it is evident that

% (max.) + » (min.) = -+ 12 tons,

because when the moving load covers the bridge, it produces a
tension of 12 tons in each vertical (being applied to the lower
joints only). Thus, if % (min.) be calculated, % (max.) can be
found from the equation

% (max.) = 4 12 — » (min.).
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Caleulation of the stresses Z in the chains.

The sign of Z, (Figs. 232 and 233) depends on the sign of
the moments of the three forces, R, D, and W. From Fig.
* 232 it appears that the moments of R (the reaction due to a
load on the central span) and Z; abeut O have different signs;
therefore a load on the central span makes Z; positive.

When the part AapB (Fig. 233) is loaded, the reaction
D is produced at C, the sign of whose moment about O (Fig.
232) is the same as that of Z;, or Z; is negative.

F1c. 232. F1e. 233.
VVA_\

Again, if C a B is loaded, the reaction W at A has (Fig.
233) a moment about O, whose sign is the same as that of Z;;
therefore Z; is again negative.

The greatest compression occurs, therefore, when the side

Fia. 234.
ety weeey L BREEET
A
c 5 D

span is fully loaded, and the greatest tension when the central
span is loaded, as shown in Fig. 234.

The stress in Z; can be calculated in two different ways.
The first is as follows:—When Z; (max.) obtains, the central
span is fully loaded, and the side span has only the perma-
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manent load alone on the central span, and D is the vertical
reaction produced by the total load on the side span. Hence
H = 29.640 = 400
V =29.160 = 100
and
=Z; X 6:654 — 400 x 1°5 — 100 X 36 4 32 (35 + ».. + %) 36
—32(64+ 12 + ...+ 30)
Z, (min.) = 4 285 tons.

The second method is to split up the stress in Z; in two
parts, one p; due to the permanent load alone, and the other
25 due to the moving load alone. The value of p; has already
been obtained in § 25 (for when the bridge is covered with a
uniform load, the side spans are precisely in the same con-
dition as either of the halves of the main span). It was found

that
Ps = + 415 tons.

It is only necessary to calculate either 2 (max.) or z; (min.),
for both together must be equal to the stress produced by the
moving load when it covers the whole bridge; and this stress
can easily be found by comparison with p;,—in fact, by multi-
plying ps by the ratio 12 = £; therefore

25 (Max.) + z; (min.) = $ x 415 = + 249,
or
zg (min.) = 4 249 — z; (max.).

It is easiest to obtain z; (max.), and it can be found from

the equation of moments for the part of the side span shown

Fia. 237.
U

-

in Fig. 237 (the values of H and V will be those already found
when the moving load covers the central span). Hence

0 =12 %X 6654 — 240 x 15 — 60 x 36
© z; (max.) = 379 tons,
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0= 2, X283 =240 x 1'5 —60 x 18
zg (max.) = 509
zg (min.) = 242 — 509 = — 267
7 (max.) = 403 + 509 = + 912 tons
Zg (min,) = 403 — 267 = - 136 tons
0= 2, x 2094 —240 X 15 — 60 x 12
7, (max.) = 516
7o (min.) = 241 — 516 = — 275
Z, (max.) = 401 4 516 = + 917 tons
Z, (min.) = 401 — 275 = - 126 tons
0= 2,%x1649—240x1'5—60 X6
7o (max.) = 437
2 (min) = 240 — 437 = — 203
Z,, (max.) = 400 + 437 = + 837 tons
Z,, (min.) = 400 — 203 = + 197 tons

The results of the above calculations are collected together
in Fig. 238. And the stresses in the central span are given in
Tig. 239, having been deduced from Fig. 197 and § 21.

§ 27.—STABILITY OF THE CENTRAL PIERS.

It was assumed, in the preceding calculations, that the con-
nections at the points of support were made as indicated in
Fig. 212. For these calculations to be true, it is necessary that
at the points A and B vertical forces only should act on the
bridge, and it therefore follows that these points should be
perfectly free to move in a horizontal direction. If such a
mode of attachment be adopted, the stability of the central
piers is a question that need not be considered (in so far as the
vertical forces on the bridge are concerned). The manner of
forming these connections shown in Fig. 212 is not, however,
the only one by which this advantage may be gained, and it
was only chosen as an illustration, and there are better ways of
arriving at the same result. For instance, the points A; and B,
can be placed below A and B, as shown in Fig. 240.

Nor is it necessary that the chains of the adjacent spans
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should be attached to the same point A; in fact, it is better
to place them apart the full width of the pier, and attach
them to the points a,, as, Fig. 241. The span is thus slightly
diminished. The freedom of these points to move horizontally
can be obtained in a variety of ways. Thus, in Fig. 241 an
unbraced parallelogram is formed by the three bars a. as, a, b,

Fre. 240. Fra. 241.
A da 4,
640
S o
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and a, b, the fourth side being the head of the pier b, b,
(The stresses in these three bars are found immediately from
the former calculations, and are inscribed in the figure.)

Or the chains can be attached to the axis of two friction
rollers. (Fig. 242), and the piers being carried up form the

Fia. 242, Fra., 243.
e, 6402, 4,640,
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roller path. Or again, the chains may be fastened to a plate
placed upon rollers, the pier being carried up as in the former
case (Fig. 243).

But if the arrangement shown in Fig. 244 were adopted, the
stresses obtained in § 26 would no longer be true, and the
advantage of having no lateral thrust on the central piers would
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also have to be given up. It is true that when the bridge is
fully loaded the reaction at the central piers would be vertical,
but this would not be the case with a partial load.

Fie. 244,

Kv
This will become apparent by finding the reaction at the
fixed point O, due to a single load @ (considering the structure

to have no weight). By
proceeding as in §§ 22 and
26, it will be found that the
force K, (Figs. 244 and 245)
acts in the direction a, P,
and the force K, in the
direction a, C. These two
forces, together with the
reaction at O, maintain the
bent lever a, Oa,, in equili-
brium, and their resultant K
must therefore pass through
0. The horizontal compo-
nent % of K is the force that
tends to overturn the pier,
and will be greatest when
all the loads producing the
same effect as Q are on

i
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the bridge. These loads extend from 4, to S, for a load situated
to the right of S has no overturning effect on the pier in
question, since it acts through its hinge-reaction @ S, the hori-
zontal component of which is equal to Hy.

In the previous example the moving load from a, to S
was = 120 tons, and when this load is on the bridge it will be

found that

H, =120 and V,=90.

’






§ 28.—STABILITY OF THE SHORE ABUTMENTS. 185

duced at C by A S when fully loaded, is 160 tons. When A C is fully loaded,
the vertical reaction at C is also 160 tons. The two vertical forces acting at C
are therefore equal and opposite, and hence neutralize each other. Thus the
whole load on A C and A 8 is supported at A.]

§ 28.—STABILITY OF THE SHORE ABUTMENTS.

The reaction R at C, due to a load on the central span
(Fig. 246), tends to overturn the abutment about its lower
edge E, and also to make it slip along its bed F E. Every

Fia. 246.
NO EFFECT vy LOADS TENDING TO OVERTURN P/ER

load on the side span C A produces but a vertical pressure D
at C, which is neutral as regards overturning, and helps the
abutment to resist sliding.

The moment of the overturning force will thus be greatest
when the central span is fully loaded, in which case the hori-
zontal component of R is

H (max.) = + 640 tons.

The vertical component of R ‘passes through E, and therefore
(similarly to D) is neutral as regards overturning. Thus the
condition of stability is that the moment of G (the weight of
the abutment) about E is not less than the moment of the
horizontal pull, 2 H, of the whole bridge about the same point.
This is expressed by

G%>2x640xh, m

from which the least dimensions of the pier to resist over-
turning can be found.
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But it must also be ascertained that the pier will not slide.

Both the components of R act injuriously in this respect,
H directly, and R indirectly in that it diminishes the pressure
on the base, and thereby also the resistance to sliding.

The reaction D, however, increases the resistance to sliding.
The danger of sliding will therefore be greatest when the
central span is fully loaded and the side span unloaded
(moving load), in which case D is equal to half the weight of
the part A C (Fig. 247). For these conditions of loading

H = 640, V = 160, D = 100;
and these values must be doubled to represent the effect of

the bridge.
Hence, if f is the coefficient of friction,

f(G+2D -2V)>2H,

or
F(G +2x 100 - 2 x 160) > 2 x 640, (2]

in order that the abutments may not slide.

G D=100

To prevent failure, the value of G must be taken at least
as great as the greater of the values obtained from the two
conditions expressed in [1] and [2].

The chain C A must be secnrely attached to the abutment
pier, and this can be done by means of a chain built in the
masonry (Fig. 247) and anchored at F. The direction of this
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NINTH CHAPTER.

§ 29.—ON THE CALCULATION OF THE STRESSES IN DoOMES.

In all the preceding examples it could be assumed that
every joint was equally loaded aswell as regards the permanent
as the moving load. If the weight of the structure itself were
not quite uniformly distributed over the span, the difference
in each case was small and did not affect to any appreciable
extent the values of the stresses found.

But in the case of domes, the error entailed by such an
assumption would be too great ; for theribs or principals radiate
from the centre like the spokes of a wheel, and consequently the
loads on them increase considerably from the centre towards the
abutments.

The surface of a dome can be considered as generated by the
revolution of a properly shaped curve round the vertical axis,
and if the ribs are equally spaced the portion of this surface
contained between the vertical planes through two adjacent
principals will represent the load on each principal. Further,
if the bays formed by the bracing are equal, the loads on each
joint will vary as the length of the arc of the circle (seen on
plan) passing through the joint and contained between two
adjacent ribs. But the length of these arcs is proportional to
their distance from the vertical axis of the dome, Thus if
p is the load on the joint situated at the unit of distance from
the axis, pp will be the load on a joint placed at a distance p
from the axis. If, therefore, the load on any joint be known,
the load on any other joint can at once be found by simply
measuring its horizontal distance from the vertical axis.

Once the loads on the various joints are known, the stresses
can be found, and conveniently so, by the method of moments, as
will appear in the following example :—

§ 30.—DoME oF 100 METRES Spaw.

The exterior surface of the dome is a hemisphere of 51
metres radius, and contains 16,338 square metres. There are



§ 30.—pOME OF 100 METRES SPAN. 189

eight ribs, each in the form of a quadrant of a cirele, and each
rib supports 2042 square metres of the surface of the dome.

The load per square metre of the surface of the dome is
assumed to be 235 kilos. (consisting of the weight of the covering,
together with that of the snow and wind pressure). Each rib
has therefore 2042 x 235 = 480,000 kilos. nearly, or 480 tons
(1000 kilos. to the ton) to carry. The whole of this load will
be considered variable, not only on account of the snow and
wind pressure, but also because it is possible that part of the
covering might be removed for a time. The only permanent
load is the weight of the rib itself, which is estimated at 60 tons.
This load can be considered as equally distributed on the
exterior joints. Each rib consists of two concentric booms,
2 metres apart and connected together by triangular bracing,
dividing the rib into fifteen bays of equal length (Figs. 248,
249). The permanent load is therefore 4 tons on each exterior
joint.

To find the distribution the variable load on the joints, the
distance of these joints from the vertical axis must be measured.
These distances are as follows :—

DisTANCE—NO. OF JOINT.
15°8 | 20°7 | 255 30
5
499

341 | 37°9

8

0
S

53 | 106 41-3

6
507

7
51

3
46-6

11

4
485

9

1 2

442

10 12 13 14 15

These numbers, as already seen, are proportional to the
variable load on each joint. Therefore if the whole of the
variable load on the rib, 480 tons, be divided by the sum
of all these numbers, 512, the quotient multiplied by each
number in succession will give the variable load acting on the
corresponding joint, thus : '

Loap—No. oF JoIxT.
19'4 | 239 | 28°1 | 82

7
476

35'5 | 387

9

414

10

5

1

99 | 148

8

4
43°7.

5
455

6
46°8

2 3

11 12 13 14
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ring, it will be assumed that the tops of the ribs are connected
together by a hinge.* Hinges are also placed at A ard B.

The arrangement adopted is thus similar to that of the
braced arch of § 22, and the reasoning will consequently also be
similar,

The process to find the hinge-reaction at S will, for instance,
be the same. It will thus be found that when the dome is fully
loaded, or when it is quite unloaded, the vertical component of
this hinge-reaction is zero, and the reaction is therefore hori-
zontal. The magnitude of this horizontal force H can be found
by equating its moment about A to the moment of all the loads
about the same point. The lever arms of the loads can be
obtained by subtracting their distances from the centre given
above from 50, the half radius, thus:

LEvER ARMS—NO. OF JOINT.
34:2 | 29°3 | 24°5 20

6
-0-7

50
]

447 | 394 87

9

15-9 l 12°1

7

1 2

58

3
3-4

4
15

5
01

8

10 11 12 13 14

Thus when the ribs are unloaded, H is found from the
equation
Hx50=4(2+447+394+...415+01—07) = 105,

or .
H = 21-12 tons.

If, however, the full variable load is applied, the equation
becomes

H x 50=4(§§9+44'7+39'4+...+ 1:54+01-07)
+5Xx447T+99%x394+...+455x%x15
+46:8 X 0°1 — 47°6 x 0°7.

The last products in the equation are the moments of the
* To meet the objection that might be raised, that the number of hinges

crossing each other at S would render the construction impossible, the ribs are
supposed to abut against a ball, which will act as a hinge for each rib.
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vertical is at a distance of 13 metres from the axis, and falls
between the second and third joints, the effect of the various
loads is therefore as shown in Fig. 250. ‘

The stress in X will be a maximum when the joints 3, 4,
5, ... 14* are ubloaded and the remainder loaded.

But the same result is obtained by considering every joint
loaded, and applying to joints 3, 4, 5, ... 14 vertical upward
forces equal to their respective variable loads.

To find the components of the hinge-reaction under these
conditions, the equations of moments of each rib about its point
of support for a full load are to be used, deducting, however,
from the equation for the left rib the moments of the twelve
unloading forces, thus:

For the right rib,

0=H x 504V x 50 —~ 5595
For the left rib,
0=—-H X 50+ V x 50 4 5595 — 506 — 568 — 586
< — 474333
H="1727 V =2389-2.
Then from Fig. 251 the equation of moments to obtain
X (max.) is:
=~—-XX2-72'7T%89+892 x 267
+4(i2'7+‘21'4+ 16°1 4 10°9 4 6 + 12)
+5.% 21°4 499 x 16°1
X (max.) = + 4709 tons.

Fia. 251. l

|

l <}T= '72,'1 o

. V=392

*Since the vertical through the 14th joint passes to the left of the turning paint
A the load upon it produces tension in X, and the same remark applies to the
joint near B, consequently there are in reality four groups of loads, but the error
entailed by taking only two groups as above is so small that it may be neglected.

o
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X (min.) obtains when the joints 3, 4, 5, ... 14 alone are
loaded, and in this case the components of the hinge-reaction
can be found from the following equations of moments:

0=TH x50 —V x 50 — 1056
0=—Hx & -V x 50 4 1056 4- 506 4 568
+ 586+ ...+ 47 —33'3
H =603 V =23892;

and from Fig. 252 the equation of moments to find X (min.) is:
0=-XxX2-603x89—2392x 267
+4 (26_2_7 4214 4 161 + 10°9 + 6 + 12)

4148 X 10°9 + 194 x 6 +23°9 x 1-2
X (min.) = — 5006 tons.

Fre. 252.

=603

V392

Caleulation of the Stresses Z in the Lower Boom.

As an example, the stress in the part of the lower boom cut
through by the section line Ca (Fig. 250) will be found. The
point 6 is the turning point, and the vertical through F, the
intersection of A 6 and BS (Fig. 253), is therefore the loading
boundary. This vertical is at a distance of 17°3 metres from
the axis, and is situated between the third and fourth joints.
When, therefore, the stress in Z is a maximum, the joints
4,5 .., 14 are alone loaded, and the equations tofind the hinge-
reaction are :

0=H x50 —V x 50— 1056
0=—H x50~V x 50+ 1056 + 568 + 586 + ...+ 4°7 — 333
H =558 V =234'2;
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therefore the equation of moments to find Z (min.) obtained
from Fig. 255 is:
0=ZxX2~-T1"Tx 874+ 342 x 30
+4(30+ 247+ 194 4 142 + 9°3+ 4°5)
+9X24749°9%x19°4414-8 x 14°2
% (min.) = — 6105 tons.

Fia. 255.

H.77,7

Ve 342

Caleulation of the Stresses Y in the Diagonals.

Of the two diagonals placed between the joints 9 and 10,
the one connected to joint 10 will be chosen to illustrate the
method of calculation.

It will be seen that the case that occurred in § 9 is repeated
here, namely, that the point about which moments are taken
is infinitely distant. The direction of the straight line con-
taining this point is that of the tangent to the circle (centre C)
at the point where the diagonal is cut (Fig. 256). The radius
at this point makes an angle of 581° with the vertical axis, and
the tangent therefore also makes an angle of 58%° with the hori-
zontal. The only difference between this case and that of § 9
is, that in the latter case, the turning point was in the hori-
zontal, and in the present it is in the direction of the tangent.

The simplest way is to resolve every force acting on S 8
into two components, one parallel to the tangent, and the
other to the normal at the point where the diagonal is cut;
evidently the moments of all the former components is zero.

Let the normal component of Y be denoted by N, then all
the loads that make N positive will also make Y positive.
Therefore the forces that are acting in the same direction as N
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make Y negative, and those that are acting in the opposite
direction make Y positive.

The loading boundary will thus be seen to be the vertical
through the intersection of B S, with a line through A drawn
parallel to the tangent. For the direction of the resultant of a
load placed in the vertical through J and its hinge-reaction, is
J A, and the resultant has therefore no component parallel to the

w, Fia, 256.

normal. Allthe loads to the right of the boundary make N
negative, and those to the left as far as the section line make N
positive. The loads on the other side of the section line, how-
ever, again make N negative, for they act indirectly on the
portion S B by means of their hinge-reactions. The loads there-
fore divide themselves into three groups, as shown in Fig. 256.

By construction, it is found that the distance of the vertical
through J from the axis is 12 metres, and that the loading
boundary falls between the second and third joint. Thus the
force N, and therefore also Y, is a maximum when the joints
3,4,5,6,7,8, 9 are loaded. With this loading the equations
to find the components of the hinge-reaction are:

0=H x 50 — V x 50 ~ 1056

=~ H x 50 = V % 50 4 1056 4 506 + 568 + 586 + 562 + 500 + 430 + 337
H=156"1 V =35,
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§ 31.~GENERATING CURVE, FOR A DOME, REQUIRING THE
LEAST QUANTITY OF MATERIAL.

In the preceding example it was required to calculate the
stresses in a given dome. To simplify the calculations the form
was taken as that of a hemisphere, or the generating curve was
the quadrant ofa circle. If, however, the form of the generating
curve necessitating the least quantity of material in the ribs
were required, the form of the lihear arch (or curve of equi-
librium) to carry the unequally distributed loads would have to
be found. The principal boom would be made to this curve,
a hinge connecting each half would be placed at its vertex. To
meet the effect of partial loading a secondary boom, connected
to the principal boom by means of diagonals, should be provided.
Evidently the secondary boom and the diagonals would have
no stress in them when the whole load was on the structure,
and also the arithmetical values of the maxima and minima
stresses in them would be equal (precisely as in the horizontal
and diagonal bars of the braced arch of § 22).

There is no difficilty in finding the required curve if the
dome be sufficiently flat, and the number of ribs sufficiently
great, for the portions of the surface contained between two
adjacent ribs to be considered, without too great an error, as
plane triangles, and if the load can be assumed as uniformly
distributed over the area of this triangle. In this case the centre
of gravity of the triangle S P can be taken as the point of appli-
cation of the resultant load on the part covered by this triangle
(Figs. 261, 262, 263).

Let « therefore be the load per unit of horizontal surface

and n the number of ribs (consequently 2—7—13 the very small

angle contained by the horizontal projection of two adjacent
: 27 2
ribs), then z . ) =5

-moments about P (Fig. 263),

kwal z

Hy'—"- 3 -:,__E- [1]

is the area of the triangle S P, and, taking
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whence :
x = 43643 kilos.

Thus the loads on the various rings are :

zr, = 43643 x 17365 = 75786 kilos.*
rr, =4364'3 X 50 =21821'5 ,,
zry = 4364'3 X 7-6604 = 33432'3 ,
rr, = 43643 x 93969 = 41010°9 ,,
xr, 4364°3 x 1

—Es—=——2 - =21821'5 ,,

and as each ring contains eight joints, these loads must be
divided by 8 to obtain the load on one joint;t thus:

75786 _

QN S 947 kilos.
= 21821'5 —om8
* Q= 33422-3 —am
Q. = 410;0-9 — 5196
Q = 21821‘5 —oms

where Q;, Q. ... Q5 denote the loads on the five joints of a rib.

Calculation of the Stresses produced by the Full Load.

Imagine that two sections are taken through the dome by
means of vertical planes, as shown in Figs. 266 and 267, and that
equilibrium is maintained by forces applied to the end of, and in
the direction of, each bar that has been cut through.

The upper ring exerts a horizontal pull R, on the rib,

* Tt is evident that if a lantern or any other load were placed on the top, the
load on the top ring would have to be increased accordingly.

t If the number of ribs had been 16 instead of 8, these loads would have to
be divided by 16, and so on; otherwise the calculations are the same. A small
number of ribs has been chosen to obtain distinct figures.
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V., the resolved part vertically of the stress in the ;bar EF,
is produced by the vertical reaction of the point of support;
and H,, the resolved part horizontally, is due to the tension in

the bottom ring. Hence

R, = H, = + 2289 kilos.

2289

5= 9gin 22°5°

= + 2991 kilos.

Minima Stresses in the Rings.

The whole load on the dome will be considered variable ;
at the same time, however, the loads must always be sym-
metrical with the vertical axis, or the structure would collapse.
If the load on the top ring be removed, it is easy to see
that the stress in that ring becomes zero; and likewise that

when the load on the second
ring is removed, the stress in
that ring also becomes zero;
and so on for the remaining
rings. From this it is evident
that the load on any one ring
has no influence whatever on
the stresses in the rings above
it, or, in other words, produces
no stress in them ; but the load
on any ring produces tension
in all the rings below it. Con-
sequently, the minimum stress
or greatest compression will
occur in any ring when it alone
is loaded. In Fig. 272 the

Fic. 272.

third ring is represented as loaded, and R, is the resultant of
the stresses in that ring. For equilibrium, the resultant of R,
and Q; must lie in the direction of the part of rib just below

the joint C. Hence

R, (min) oo ast _

tan a;

4179 :
e = 2413 kilos.
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TENTH CHAPTER.

§ 83.—ContNvoUs GIRDER BRIDGES.

It was seen, in treating of braced arches, that by intro-
ducing hinges the stresses in the various bars could be kept
between easily controllable limits, and also that the dangers
arising from a slight giving way of the abutments, or by
changes of temperature, could be totally avoided. But hinges
can also be employed with advantage in girder bridges (those
that require only vertical reactions at the abutments or piers)
when the span is great, and there are two or more openings in
succession to be bridged over.

It is found that in such cases a great saving of material is
effected by using a continuous girder, instead of several span-
ning each opening separately. But in these structures, as in
braced arches without hinges, there is the danger of a very
slight alteration in the position of the supports producing very
great differences in the stresses; in braced arches the danger
lies in the horizontal displacement of the abutments, but in the
present case a vertical displacement becomes critical. There-
fore the same reasons that were given with reference to braced
arches in § 24 would point to the advisability of breaking
the continuity of the girder by means of hinges, and thus
making the stresses in the structure independent of small
vertical displacements of the points of support. In the case of
braced arches, the crown and the abutments were found to be
the best places for the hinges; but with girder bridges the
best positions are on each side of the central piers, so that the
portions of the girder over the piers may act as supports to
the other parts (Fig. 275).

The part of the girder resting on either of the piers is to be
regarded as supported at two points; and in order that there
may be mo chance of overturning with a partial load, the dis-
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tance of these two points, or the breadth of the pier, must not
be less than a certain dimension which will now be found. The
worst distribution of the load, as regards the left pier portion,
is that shown in Fig. 276, in which only the parts B C and
C E are loaded, and the remainder of the bridge unloaded
(moving load).

Fia. 275.
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The equation of moments about the point B is then
0=+ Des+ Gt Dsf=paG 4D -pG 40 (E),

where p is the permanent, and ¢ the moving, load per unit
of length. Solving this equation, and putting = for the

ratiog,
p S S
bz—(x+z)+\/(x+z)’+2nz(x+g).

Now, since the ratio n generally increases as the span
diminishes, it follows that very small spans would require pro-
portionately very wide piers. To obviate this, the part of the
girder over the pier can be anchored down to the masonry
by tension rods. With a partial load, a tension, K, is pro-
duced in these rods, the moment of which about B (= Kb)
helps to maintain equilibrium. The equation of moments
then becomes

G+ by

0=(p+q)xz+(p+q)%—pw(z+b)—p 3
If this arrangement be adopted, however, the weight Q of the

- Kb

N
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pier must be such as to prevvent overturning. This condition is
expressed by (Fig. 277) ‘

b E (z + by z
Q§+1w(2+b)+10—5—2(10+9)Z(w+§)-

If, however, Q becomes greater than is thought advisable,
the distance b of the two points A B can be increased by
using double piers.

The central and abutment portlons being SImply supported
at the ends can be constructed either as para-
bolic girders (described in the second chapter),
or as braced girders with parallel booms (de- i
scribed in the third chapter). The portions
over the piers could also be given this latter
form; but a variety of the parabolic form may Sif
also be adopted. This variety can be deduced as ¢
follows :— ¢

When two or more equal and symmetrical chains (either
hanging or arch-shaped), having the same load per unit of
length of the span, are so placed next each other that the
second abutment of the first chain is the first abutment of the
second chain, and the second abutment of the second chain is

Fic. 277.

Fia. 278.
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Fre. 279.
K@L ) MZ;TN
L M

i

4B 7
the first abutment of the third chain, and so on, the horizontal
tensions or thrusts balance each other at the common abutments,
and the reactions are entirely vertical, so that these abutments
might be replaced by tension rods. Instead of a single rod,

two separated by a horizontal bar, A B, might be used, as
already seen in § 27 (Figs. 278 and 279).
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If the part LA B M be separated from the two parts K L
and M N, the horizontal forces required for equilibrium can
be obtained by joining K L, M N, and L M by means of horizontal
tie-rods. The vertical forces required for the part L A BM are
equal, and opposite to those required for the parts K L and
M N, and equilibrium will therefore be maintained if the latter
parts be placed on the former in their original position.

The stresses in the chain have not been altered by the
introduction of the horizontal tie-rods, and consequently a bridge
constructed as shown in Fig. 280 will, when the load is uni-

Fie. 280

—k Uﬂ ST

formly distributed, require no diagonals. Further, since the
reasoning for an arch chain applies also to a hanging chain,
what has been said above will apply to the structure shown in
Fig. 281, the tie-rod becoming a compression bar.

Fie. 281.
~ F A A

™~

LL AE%;}B ] \L

The stresses in the chains can be found from the formula
given in § 8. The laws given at page 33 are also applicable
namely, that the resolved part vertically of the stress at any
point is equal to the load on the bridge between that point
and the centre, and that the resolved part horizontally of the
stress is constant. It is only an alteration in the height of the
arc that changes this horizontal stress.

Evidently the height of arc of the three ordinary parabolic
girders in Figs. 280 and 281 can be altered without affecting
the portions of the bridge over the piers, for only the vertical
reactions are transmitted to these latter; the horizontal stress
in the parabolic girders will, however, be altered. The hori-
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zontal stress in the pier portions depends solely on the height
of are of the parabolas of which they are formed.

The parabolic girders of Figs. 280 and 281 can be trans-
posed without making any difference in the other parts. Thus
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