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PEEFACE TO THE FIEST EDITION.

The work now offered to the University is strictly an

Elementary Treatise. No attempt has been made to go

into all the varied details, of methods and examples,

which present themselves in the wide field of Partial

Differential Equations, considered purely as an Algebraical

subject.

I have endeavoured, however, to omit no important

consideration affecting the Principles of those Equations.

And I trust that the methods of solution here explained,

and the instances exhibited, will be found sufficient for

application to nearly all those important problems of

Physical Science, which require for their complete in-

vestigation the aid of Partial Differential Equations.

G. B. AIRY.

Royal Observatory, Greenwich,

1866, August 15.



PEEFACE TO THE SECOND EDITION.

Several verbal alterations are made in this Edition ; two

small paragraphs are added ; and some sentences are

introduced, referring to works in which .examples of the

application of the Theory of Partial Differential Equations

may be found. But nothing is changed in the plan of

the work, and no alterations are made in the numbering

of the Ai'ticles.

G. B. AIRY.

Royal Observatory, Greenwich,

1873, July 15.
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ON PARhlL DIFFERENCIAL

EQUATIONS.

PRELIMINARY NOTICE ON INTEGRATION.

L In all that follows, we shall suppose that it is

always possible to effect simple integration ; inasmuch as

any difficulties of integration, connected with the solutions

of Partial Differential Equations, do not affect the principle

of those solutions. Thus, for instance, we shall not hesi-

tate to represent an unknown function of a; by x {x),

(the second differential-coefficient of %(a;)), on the assump-

tion that, whatever be the form of p^'' (ir), we can in some

way find the function ^ (x) of which it is the second differ-

ential-coefficient.

CHARACTERISTICS OF THE SOLUTIONS OF SIMPLE

DIFFERENTIAL EQUATIONS.

% Before entering on the subject of Partial Differ-

ential Equations, it may be convenient to consider some of

the characteristics of the solutions of Simple Differential;,
.

Equations.

8. To begin with Simple Differential Equations of

the first order. Suppose, for facility of geometrical illus-

tration, we consider the equation y -^ = ay or the equation

D. E. B ^^



2 ON PARTIAL DIFFERENTIAL EQUATIONS.

dx
y 7r~^' of which the former, translated geometrically, in-

dicates that the subnormal of a plane-curve (to be found)

is constant, and the latter indicates that the subtangent is

constant. The algebraical solutions are easily found : in

each, there is a constant, which does not occur in the

original differential equation, and is not defined by it ; a

constant of that class described (perhaps improperly) by

the term "arbitrary," but which really means "not yet

determined, but enabling us by proper determination of

its value so to fix the value of x corresponding to a given

value of y that we can adjust the solution to some specific

condition."

The reader is requested to observe that instead of the

term " arbitrary constant," we shall always use the term
" undetermined constant.''

4. If we treat the geometrical translation of the dif-

ferential equation by a geometrical process, always draw-

ing a normal or a tangent (as the case may be) so as

to make the subnormal or subtangent constant, then

drawing by means of it a small portion of the curve, then

repeating the process, &c., we may produce a polygon

which will approach to the strict solution, with smaller

errors (by taking the sides small enough) than any small

quantity that can be assigned. In each case, however, a

starting-point is necessary.

5. In both ways (the algebraical and the geometrical)

of treating the problems these conditions manifestly

hold :_
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The curve, in each case, is one definite curve.

The curve, in each case, is a continuous curve, ex-

pressed by the same equation through its whole

extent.

Even if there be isolated points or curves, still the

same one equation defines the whole*

It is necessary to introduce one undetermined quantity,

enabling us to adjust the curve to a specific con-

dition given by special considerations : that unde-

termined quantity is however a simple constant.

6* Let us now consider a Simple Differential Equation

of the second order : such, for instance, as is "given by this

problem, " To find the curve in which the radius of curva-

ture is a function, given in form, of the ordinate." Here

the algebraic solution gives a formula requiring two unde-

termined quantities, still simple constants : the equivalent

geometrical treatment shows that we require two elements^

(as, for instance, the value of x and the inclination of the

tangent, for some one value of y). But all the conditions

hold which are mentioned in Article 5 : the only difference

being that, instead of one undetermined quantity, a simple

constant, there must now be two undetermined quantities,

simple constants.

7. The conditions which will be found to hold in the

solutions of Partial Differential Equations differ very re-

markably from these.

B2



4 ON PARTIAL DIFFERENTIAL EQUATIONS,

INTRODUCTION OF TWO OR MORE INDEPENDENT

VARIABLES.

8. It is convenient, in Simple Differential Equations,

to contemplate one quantity z as expressed algebraically

in terms of another quantity x (whether it be actually so

expressed, or not) : and to consider its differential-coeffi-

cients

dz d [dz\ d^z ^

dx ' dx \dxj dx^ ^ ''

aa being formed by taking the limiting values of fractions,

in each of which the denominator is an increment in the

value of X) and the numerator is the corresponding incre-

dz
ment of z, or of -y- , &c. And this is expressed by saying

that X is the " independent variable." Geometrically it is

illustrated by supposing that we consider an ordinate z of

a plane curve, as also the inclination-tangent of the

curve's-tangent, the change of that inclination-tangent for

a small change in the value of x, &c., to be expressed, in

terms of the abscissa x.

9. There is no difficulty in conceiving z to depend on

two quantities x and y, combined in any way and with any

constants under any functional formula; and in considering

that we may at pleasure change the value of x without

changing that of y, or may change the value of i/- without

changing that of x, or may change both simultaneously.

If we do not vary y, y is pro tempore^ a constant : and by,

uZ CbZ
varying x alone, we may form —

, j-^, &c., just as in the
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functions which we have illustrated by reference to a plane

curve. If we do not vary x, then x is "pro Umpore a con-

stant, and by varying y alone, we may form -p, -j-^-, &c.

But if we vary both x and y, then we have the two series

of diflferential-coefficients which we have just set down,

and also -7 ^ or -^ 7- (which, as is known in the ex-
dx . ay ay . dx ^

pansions obtained by the Differential Calculus, have the

same value), with other coefficients of analogous form,

which do not appear in the succession of coefficients, such

as those of Article 8. Here we consider x and y as " two

independent variables," which are strictly independent

of each other : and ^ as a function of both.

10. Algebraical Geometry of three dimensions assists

greatly in illustrating these algebraical conceptions. If x,

y, z be three rectangular co-ordinates, then the expression

oi z by means of x and y determines the numerical value

of the height of an ordinate z that must be erected over

the point on the plane xy, which is defined by any nume-

rical values of x and y, in order that the elevation of the

summit of that ordinate z may represent the value of our

algebraical function. If we do this for an infinite number

of values of x and y, we determine an infinite number of

. ordinate-summits, all which lie in one curved-surface. If,

supposing this curved-surface formed, we then contem-

plate the values of z with x invariable and y variable, we

shall include all these values which are in a plane parallel
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to the plane yz^ and at the given distance x from the

origin of co-ordinates. This is the same as forming a sec-

tion of the curved-surface by a plane parallel to the plane

yz, and considering the curved-intersection as an ordinary

dz d^z
plane-curve. Thus we can obtain -7- , -^ , &c. as in Ar-

ticle 8 : but it must be remembered that, in general, x is

lurking in their expressions as a constant ; and therefore,

in the complete differentiation (with respect to x) of any

, formula in which they may occur, each must be considered

as a function both of x and of y. Similarly, the values of

z with y invariable and x variable will be formed by a sec-

tion of the curved-surface, made by a plane parallel to xz :

dz d^z
the differential-coefficients -^ , -^2 > &c- can be formed

;

cLx dx

and a similar caution with regard to their dependence both

on X and on y must be borne in mind.

11. The coefficients -^ , -y-^, &c. are, as in Article 8,

to be considered as defining the inclination-tangent of the

curve's-tangent, the change of that inclination-tangent for

a small change in the value of x, &c., &c., in the curve

formed by the intersection of the plane parallel to xz

with the curved-surface. In like manner, the coefficients

1- , -r-^ , &c. define similar elements in the curve formed
dy dy'

by the intersection of the plane parallel to yz with the

d^z
curved-surface. But the coefficient -, j- requires further

dx .dy ^



TIME IS OFTEN ONE VAKIABLE.

( -^ 1 . Now -4- de-explanation. Its real expression is -7-
( -r- J • Now -7-

fines the inclination-tangent of the curve's-tangent in the

sectional plane parallel to yz : and therefore its differential-

coefficient with respect to x defines the rate at which that

inclination-tangent, in the plane parallel to yz, is changed

by shifting the sectional-plane in the direction of x.

Analogous explanations apply to analogous succeeding

terms.

12. Algebraically, there is no difficulty in conceiving

^ as a function of any number of independent variables,

as u, V, w, X, y, and in treating the viarious differential co-

efficients, which may rise to any degree of complexity.

But we cannot extend any further the elucidation derived

from Solid Geometry.

13. Although, in strictness, no difference is really

made by any physical peculiarity in the nature of the

quantities represented by the independent variables, pro-

vided that their magnitudes can be defined by numbers

and can therefore be treated by algebraical process
;
yet it

may be well to mention that, in some of the most important

applications of Partial Differentials, one of the independent

variables is the expression for time. Thus, suppose that

we are considering the nature of the disturbance which

each particle of air is undergoing in a musical pipe : we

want to know the entire movements of the particle whose

original ordinate was X; and this implies that, in the

general formula for the disturbance, x (the general symbol of
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X) is to have the special value for that particle, and i^

therefore to be made constant for that particle, but that no

limit is to be put on the variations of L We also want to

know the state of disturbance of all the particles at a

certain time T, and this implies that t is then to be made

constant, but that x is to admit of all possible variation.

And these can only be comprehended in a general formula

which admits of variations both of x and of t Similarly

for the motion of the particles of waves of water, &c., &c.

14. In Simple Differential Equations, the data of

the problem, whether mechanical or geometrical, usually

dz (Pz
lead to an equation between x, z, -^ , -y-^ , &c., from

which we desire to obtain a general expression for z in

terms of x. Similarly, in Partial Differential Equations

the data of the problem usually lead to an equation be-

dz dz d^z d^z d^z ^ „ ...

we desire to obtain a general expression for z in terms of

X and y. It is the object of the present treatise to shew

how this may be done, and how the meaning of the solu-

tions may be explained, in some of the simpler cases : and

we now proceed with the Solution of Partial Differential

Equations of the First Order,
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' PARTIAL DIFETREATMENT OF THE SIMPLEST PARTIAL DIFFERENTIAL

EQUATION OF THE FIRST ORDER.

15. The simplest Partial Differential Equation of the

first order is

dz dz dz dz ^

ax ay ax ay

[Here, and in all subsequent operations, we shall put

u for ax + y.]

Evidently this equation is satisfied by making z=^u.

For -j-= ay ^- = 1, and therefore -, a -^ = 0. But
ax dy dx dy

it is also satisfied by making z = ^{u), where ^ expresses

a function whose form is totally unlimited. For then

dz ,. . du ,r, .

dz ., , . du, .f,. ^

^ = <^W.^- = .^(«)xl;

and therefore

16. We have thus found a solution of considerable

generality in form ; but there is no evidence that the

generality is complete. In order to obtain complete and

certain generality, we shall use a process of Change of

Independent Variable, guiding ourselves in the selection of

a new Independent Variable by the indications derived

from the last imperfect process.
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17. Instead of considering ^ as a function of x and y,

let US consider ;^ as a function of x and u. [Such a sup-

position is certainly competent to represent z, because, if

we had z expressed by x and y, we have merely to sub-

stitute for 7/ its value u — ax, and z then becomes expressed

by X and u.] Having z then a function of x and u, where

u is itself a function of x and y, we proceed to express the

original equation in terms of the new differential-coeffi-

cients. We shall put -y-^ for the entire differential-co-

efficient in regard to every way in which x could appear

dz
when 00 and y were used, and -j- for the differential-coeffi-

cient when x and u are nsed: the original equation is

therefore to be written

dx dy

18. ^ is a function of x and u^ where u depends on

X and y.

Therefore

d{z) _ dz dz du __ dz dz

dx dx du ' dx dx du '

and

dz __ dz du ^ dz ^

dy du ' dy du

Substituting these in the equation which is to be solved,

_ d(z) ^ dz _ dz

dx dy dx*
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That is to say, ivhen z is expressed in terms of x and u,

ax

The integration of this simple quantity involves the

most important considerations of the whole theory.

19. By the ordinary rules of integration, z = G, where

C is something which does not contain x. But what may
it contain ? It may contain every thing whatever except x.

It may contain any constants whatever. It may contain u :

for the differentiation with respect to x will not touch u,

which is another Independent Variable and is a constant

with respect to x. It may contain any function of u. It

may contain these included in the form

" any function of constants and u"

But, in ordinary algebraical language, this would be

sufficiently described as " any function of %' provided that

we bear in mind that ii may be combined with any con-

stants, and may even actually disappear, so as to leave

constants only. This being understood, the solution of the

equation is

z = </)(?0,

or ^ = ^{ax + y),

where expresses a function of any form whatever which

considerations not yet presented to us may induce us to

adopt.

The steps of this process leave no opening for further

generality in the solution : which is therefore complete.
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20. Instead of assuming z to be expressed by x and u,

with elimination of y, we might have assumed z to be

expressed by y and u, with elimination of x. Then the

process is

d{z) __ dz dz du __ dz dz

dy dy du ' dy dy du '

and

from which the same conclusion follows, namely

z — (j){u) = (f)[ax + y).

21. We may even change the Independent Variables

so as to eliminate both x and y ; and, as this process will

be important hereafter, we shall shew its application here.

Let u = ax + y, v = ex +fyf where e is not equal to a/;

and let z be supposed to be expressed in terms of u and v.

dz
__

dx

dz du

du ' dx
= dz

= dz d{z)

dx dy
= dz

dy

Then

dz ^ dz du dz dv
_^

dz dz

dx du ' dx dv ' dx du dv '

dz ^ dz du dz dv ^ dz -. ,
^^ /.,

dy du' dy dv ' dy
^

du dv ^ ^
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3

and the equation

becomes

dz ^^ _ f\

dx dy

whence, in the same manner as before,

GEOMETRICAL INTERPRETATION OF THE SOLUTION.

22. In order to shew the geometrical meaning of this, by

reference to such a curved-surface as has been considered in

Articles 10 and 11, we may observe that if Sx and Sy are

exceedingly small increments of ic and ^, then the increment

p dz ^ dz ^ , . , . dz dz ^

01 z=-j-ox+-j-oy: which, smce -r- = a -r- , becomes
dx dy ^ ' dx dy

dz
-^ {aSx H- By) ; and, if we always make By = — aBx, the

increment of z will be = ; that is, if we always pass from

one point on the plane xy to another point on that plane by

a short line making with the axis of x the angle whose

trigonometrical-tangent is a (which process continually

repeated will produce a finite straight line in the same

direction), the value of z will be invariable. Therefore, the

curve-surface will consist of a series of parallel lines, in

each of which the values of z are the same so long as

ax + y is the same, but which is subject to no other con-

dition. It will therefore be such as is represented in figure

1; a cylindrical surface (in the widest sense of the word),



14 ON PARTIAL DIFFERENTIAL EQUATIONS.

whose axis is parallel to xy and makes with x the angle

whose trigonometrical-tangent is a, but whose transversal

section, or section by either of the planes xz, yz, is abso-

lutely undefined by the equation. Those sections may be

adapted to specific physical data, and are therefore of the

nature of the quantities which we call undetermined. But,

as the only condition at present established is that the lines

(of which the surface consists) shall be parallel, the sections

need not to consist of curves defined each by a single

equation in its whole extent. A section may consist of a

bit of a circle with a bit of a cissoid and then a bit of

a logarithmic spiral; and these may be joined at any

angles ; or the section may be utterly undefinable by alge-

bra : and after it has gone on to some extent, there may be

an absolute interruption and then it may begin again, &c.

CHARACTERISTICS OF THE SOLUTIONS OF PARTIAL

DIFFERENTIAL EQUATIONS.

23. Thus it appears that these conditions hold in the

solution

;

It is not certain that one symbolic expression will

represent the solution, or that one curve defined by

one equation will represent the section of the curve-

surface.

It is not certain that the section is continuous, either as

to actual connexion of parts, or as to gradual change

of direction, or in any other circumstance.
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There may be isolated parts of the curve, of totally-

distinct character.

An undetermined quantity must be introduced : but this

undetermined quantity will not usually be a simple

constant, but will be a function of x and y, and (in

the most general case) a discontinuous function, such

as corresponds to the discontinuity of curve mentioned

in Article 22.

On comparing these conditions with those in Article 5,

the reader will see the characteristic differences between

the solutions of Simple and of Partial Di£ferential Equa-

tions.

INTERPRETATION OF THE SOLUTION WHEN ONE

INDEPENDENT VARIABLE IS TIME.

24. There is another instance of the solution in

Article 19, &c. or (more frequently) of a solution of the

same form in the treatment of Partial Differential Equa-

tions of the Second Order, which merits explanation. Let

one of the Independent Variables be time : put t for y,

and suppose the function of t-\-ax to be '^\b{t-\- ax)] or

-v/r (5^ + ex), G being = ha. Then z = \^ {ht + ex). Let any

one value of It + cx be B: then if t be increased by cC

(where G is really arbitrary), and if x be increased by

— hCy the value of ht + ex is still = B, and therefore z

remains the same. That is, at a time later by cC, we shall

have the same value of z, provided that we take an abscissa

smaller by hC. This is just the same as if the ordinate z

was slid backwards upon the abscissa x with a velocity
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represented by -y>, or - . The same applies to every other

ordinate z. And thus it appears that the whole curve

defined by the summits oi z maybe conceived as changing

its shape by sliding backwards with a definite velocity -.

This is the characteristic of a wave, in which (as in waves

of water, to take the most familiar instance) the form

travels while the particles do not travel with the form.

Whenever therefore we meet with such a term as ^ {ax-\-y)

we may at once take for granted that one of its applica-

tions may be to the motion of a wave.

If the value of z had been 'y^ibt— ex), we should have

found in like manner that the wave is travelling forwards.

These remarks do not in any degree interfere with

those of Article 23.

OTHER PARTIAL DIFFERENTIAL EQUATIONS OF THE

FIRST ORDER.

25. We proceed with the equation -^— ^-f = <^{^i y)^

where the form of the function a is given. We shall solve

it by the method of Change of Independent Variables.

Let u = ax-\-y, v^ex +fy, where e is not equal to of,

(which, by giving different values to e and /, includes the

three changes in Articles 19, 20, 21). The value of x in

terms of u and v is'^. , that of y is—^^ . Treat-
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ing the equation as in Article 21, we find

whence, integrating on the same principles as before,

, , . , 1 f (fu — v —eu+av\ /),/

where, in the integration with respect to v, u is to be con-

sidered constant ; and, after the integration, ax -{• 7/ and

ex -\-fy are to be substituted for n and v,

26. On trying this process upon any ordinary function

(as a function in integral powers of x and y, or a circular

or exponential function) of which the integrations are easy,

it will be found that e and/ disappear from the result. It

may be well to shew this in a simple instance.

Let one term of a {x, y) be x^ . y^, y >. % >

{ ^y ^^
The corresponding term of the integral ip /^ /- y

-1 r V^ %
Integrate by parts, beginning with the first factor; iiA,>

gives \

(p + 1) . {af- e)

D. E. C
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and, by repeating the process, we shall obtain the result in

q-\-l terms, in powers of x and y, and without e and /.

27. If we had begun the integration-by-parts with

integration of the second factor, we should have obtained a

different series of terms of powers of x and y ;
yet the

difference would have been such as to produce no difference

in the final result, as applicable to any physical investiga-

tion in which the undetermined function is to be adapted

to given physical circumstances. A simple instance will

shew this.

Let a(x,y) = x . y^. Then we obtain the two following

series for the integral

:

First,

kiecond,

z = ir{ax-\-y)'^j^,{-4,axf-y']:

The second value, it is easily seen, may be put under

the form

1 V
-^ {ax yy) + —-2 {6aV2/' + 4aVy 4- aV}

-
j-J^ {/

+ 4^ir2/' 4- 6aV/ + 4aV2/ + aV}
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= '>|r (a^ + y) - ^j-,^ {ax + ?/)*

+ j|^ [6a'xy + 4aVy + aV}.

Now — Y^r-o {ax + 2/)* is a function of {ax 4- y) ; and, when

we proceed to determine the form of the function -v/r {ax+y),

which must be adopted, in order, with the other terms of

the expression, to satisfy any condition prescribed by

physical considerations, we must at the same time taka

into account — —-^^ {ax + T/Y as a function of {ax + y). We
x^a

may therefore at once unite it with '\jr {ax+y). Call their

sum X (^-^ + y)' Then the second solution is

« = X («a^+ 3/) + 1^. (6aW + 4aVy + a^x')

;

precisely the same as the first, except that the symbol %
stands in the place of 0. But in both cases the form of

the function ({> or
;j^

will be determined by the consideration

of satisfying the same physical condition. And therefore,

whether we write (j> or ^, we shall afterwards arrive at the

same expressions; and therefore the two solutions, first

and second, are in use identical.

28. In many cases, when the form of solution has

been obtained by the process of Article 25, the details will

be obtained most readily by assuming the form of solution

with indeterminate coefficients.

c2
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29. It is not itttended here to go into any discussion

of the more complicated forms of Partial Differential Equa-

tions of the first order. The following however may be

mentioned as flowing immediately from the solutions which

we have found.

and the equation is immediately reduced to the form

already treated.

If the first side is e{x) x-^ ctx ^{y) x -j^
,

let^ = ,'(-) and ^^ = ^(y),

and the equation is reduced to the saijie form.

^^i"^^ ^ ""'^"^^^ ^^^^' ^ ^-/t(^); then

dz^ ^ dz f , . dz^ __ dz

dx '^ dx '' dy
'^

dy'

and the equation becomes

ax ay

In reference to physical investigations, the theory of

Partial Differential Equations of the first order is princi-

pally valuable as introductory to that of the second order.

In this view^ it is hoped that the instances here given are

suflS.cient.
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TREATMENT OF THE SIMPLEST PARTIAL DIFFERENTIAL

EQUATION OF THE SECOND ORDER.

SO. Tke simplest Partial Differential Equation of the

second order is

——— = 0.
dx . dy

Integrating with respect to x, and remarking that, by

virtue of the reasoning in Article 19, there must be added

to the integral an undetermined function of y.

Integrating this with respect to y, and remarking that,

for the same reasons, an undetermined function of x must

be added,

z = (j>{y)+y}r ix).

GEOMETRICAL INTERPRETATION OF THE SOLUTION.

81. This equation and its solution admit of easy

geometrical illustration. Referring to Article 11, it will be

dz .

seen that -j- is the trigonometrical-tangent of the angle

between y and the curve-tangent, in the curve formed by

the intersection of a curved-surfacewith a plane parallel to

zy. And the equation -7—-y- = ^j ^^ 3~
(
3" ) =" ^y denotes

dz
that, when x is changed, -j- undergoes no change ; or that
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the inclination in the plane zy will be the same for a

point more or less advanced in the direction of x as for

the point under consideration. The curve-tangent may be

absolutely higher or lower in the direction of 2, but it will

preserve the same inclination to y. As this applies to

every point of the intersection-curve, it follows that the

intersection-curve more or less advanced in the direction

of X will have the same form as that at the point under

consideration ; or that all sections by planes parallel to zy

give the same curve, though perhaps at different elevations.

And from this it follows (considering that, when two similar

curves are separated in the direction of x, the slope from

every point of one to the corresponding point of the other,

in the direction of x, must be the same) that all sections by

planes parallel to zx give the same curve, but not necessa-

rily the same as those given by planes parallel to zy. Then

the elevation of any point z may be considered as composed

of these two parts ; first, the elevation of the corresponding

point of that zy curve whose plane passes through the

origin, which elevation (since the form of the curve is the

same for all values of x) may be called ^ (?/); secondly, the

elevation of the point z above the point last considered'

which elevation (since the points are connected by a curve

whose form is independent of y) may be called a^ {x).

The whole elevation of the point z will therefore be

<l>(y) + ylr(x).

32. These functions may be discontinuous, for the

reasons stated in Article 22.
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33. In figure 2 is a representation of one of the solids

in which
(f) {y) and -v^ {x) are both continuous functions.

It is scarcely necessary to remark that the forms of such

solids may be infinitely varied ; thus (taking the verl. x as

2 2

origin of coordinates), if ^ = ^ / ' ^^ both sections be

parabolas with different parameters, the curve-surface is a

paraboloid with elliptic base; if ^ = : — = —
, the curve-

surface is the paraboloid of revolution (from which, figure

2 2

2 was drawn) ; if ^ = j- , the curve-surface is like aah
limited portion of the interior of an annulus, or like a

mountain-pass, &c. &c. &c.

In figure 3 is a representation of a curve-surface in

which one function is continuous (the sections being similar

parabolas), the other is discontinuous (each section being

two sides of a triangle, the triangle being the same

throughout).

. In figure 4 is a representation of a surface in which

both functions are discontinuous (each section being two

sides of a triangle, but the triangles in the plane xz being

different from those in the plane yz). It forms, in fact, a

pyramid with trapezoidal base ; two vertices of the trape-

zium having the same value oi x, and two having the

same value of y, and the vertex of the pyramid being above

the intersection of the diameters of the trapezium.
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84. The solution of the equation -^—-^ = a {x, y)

obviously is,

TREATMENT OF ANOTHER PARTIAL DIFFERENTIAL EQUA-

TION OF THE SECOND ORDER. FIRST, BY CHANGE OF

INDEPENDENT VARIABLES.

85. To solve the equation j-^ — a^—: = a {x, y).

[This equation is the most important of all, especially in

reference to those physical theories in which wave-

transmission, of sound, or of light, or of water, &c., is

explained by mechanical theory.]

The best method of solving this equation is by the

Change of Independent Variables.

Let n^ax + y, v = ax — y,

^which giveaj= -^^,2/ =-^ j .

Consider 2? as a function of x and y because it is a

function of u and v.

Then

dz dz du dz dv dz dz

ax du ax dv ax du dv

d^z
__ d fdz\ _ d fdz\ du d fdz\ dv

dix? dx \dxj du \dx) dx dv \dx) dx
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\ d (dz dz \

J dv \du dv J

d (dz dz \ d [dz dz

au \du dv

dw da . dv dv

dz _^ dz da dz dv __ dz dz ^

dy da dy dv dy da dv ^

d?z _ d fdz\ _ d fdz\ du d (dz\ dv

dy^ dy \dy) da \dyj dy dv \dyj dy

d (dz ^ dz \. ^ d (dz ^ dz ^\ ^

da \du dv J dv \du dv J

_ d'^z d^z d^z

d\j^ da . dv dv^

'

T-r d^z od^z , 9 d^z
Hence -^-7 —a -^-o = 4(2 -

or

da;^ dy^ da , dv'

And the original equation, divided by 4a^ becomes

d^z __ 1 /u +v u —v\

Whence, by Article 34,

,/N ./N ir [ (u +v u -v\

»/ N ./ \ Iff (u-^-V U-'V\
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where, after the integration, for u and v are to be put ax + y
and ax — y.

35* If the right-hand term of the given equation

were a simple function of x, multiplied only by constants

and the first power of y, as if

let 2Jj = ^ — (S 4- cy) x ^ (x)

:

and the equation becomes

(X> Z^ 2 ^ ^\ f\

of which the solution (by the formula above, when a = 0)

is Zj^' = (j) (ax — y) + '^ {ax +y)

;

or z — ^ [ax - y) +'^ {ax + y) + {h -{-cy) x ^ {x).

.85**. When a = 0, the solution z = ^{u) +'\Jr {v) may

be represented geometrically in the same manner as

z = (p {x) + yjr (y) in Article 33, with this difference only,

that u and v are ordinates on the plane xy, which are not

at right angles, except in the case when a = 1.

36. When one of the independent variables is time,

it will be seen by the same reasoning as in Article 24

that the two undetermined functions represent two waves

travelling in opposite directions.
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SECOND TREATMENT OF THE SAME EQUATION, BY SEPARA-

TION OF THE SYMBOLS OF OPERATION FROM THOSE

OF QUANTITY.

87. A second method of solving the equation

d^^z ^d'^z— a
dd(? dy^

a {x, y)

is founded upon the " separation of the symbols of opera-

tion from those of quantity." This theory is, in fact,

merely a convenient form for exhibiting the indubitable

results of legitimate algebra ; but it sometimes serves to

suggest new methods of treating equations, which, when

verified, are useful.

38. The equation

dz dz .^ ^^.

may be written, almost without departure from ordinary

notation,

the connexion of the left-hand bracket with z which follows

it being, however, not by multiplication but by differen-

tiation. And, if-
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we may, on the same principle, write it

and therefore

still on the understanding that the connexions on the left

hand are not by multiplication but by differentiation.

39. Now, if we treated all the left-hand symbols as

signs not of operation but of quantity, their product would

be

or, pursuing the fanciful idea still further,

d^'^'^'df'

and this suggests the idea that, if we follow up the true

differential operations instead of the fanciful algebraical

multiplications, we shall arrive at that result in its true

differential meaning. And so, in fact, it proves. For, by

actual differentiation,

d fdz dz\ ^ d^z d'^z

dx \dx dy)
""

dx^ dx . dy^dy) dx^ dx . dy^

d_z\ ^ _^ d'z

dy \dx ^ "* dyj
"~

dx . dy dy^
'

d fdz dz\ d^z ^d'z
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and, adding the two lines,

d d\. (dz dz\ d'^z „ d^z
\-a~r] = -n-a;

\dx ay) \dx '
"^ dy) dx^ ^ dy^

Here the analogy with the algebraical operation has led to

a real gain of convenience, by shewing that we can here

break up the operation for a Partial Differential Equation

of the second order into two operations for the first order.

40. Thus, to solve the equation

d^z ^d z . .

we have first to solve the equation

'-^-^ - «(-'.

from which (X, Y) will be found ; and then to solve the

equation

1+4; -<^-'')'

from which z will be found.

Both operations are effected by the process of Article 25;

the most convenient assumption however being

u ^ ax-k-y^ V = ax--y»

We shall return hereafter to the " separation of symbols.^*
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OTHER PARTIAL DIFFERENTIAL EQUATIONS OF THE

SECOND ORDER.

41. To solve the equation

or

d^z , I
—--.' d'^z ^

^,-(aV-ir.^. = 0.

It does not appear possible to solve this equation gene-

rally, except by the use of imaginary symbols. If we take

the second form of the equation (as written above), and

apply the solution of Articles 35, &c.

If, as is usual, we suppose <^ and i/r to represent real

functions, it will be impossible to destroy the imaginary

terms in this expression except by making -i/r the same as

</), and thus giving up part of the generality of the solution.

But the introductioii of two undetermined functions may be

thus obtained. Let

where
;j^
and co are real functions.

Then

H-^— l.ft) (2/ + a V— 1 . x) —J— 1 . w {y — aij— 1 ,x).
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Expanding the functions by Taylors Theorem, it will

be seen that the imaginary terms are destroyed, and there

are two undetermined functions.

It will be seen hereafter that, in some practical appli-

cations of this equation under limiting conditions, the

solution may be obtained more easily by specific process

than by using the general solution.

42. The following equation, which occurred to the

author in the investigation of the movement of spherical

weaves of air (gravity being neglected), deserves attention

for the nature of the substitutions made and the form of

the result.

The equation given by the physical considerations is,

di

'z' _ ^ d^/^z dz\

f ' dx\x dx)

'

The last term may be made simpler by assuming

d
dx \x)

'

or y =^ x\ z.

Differentiating this twice with respect to x,

d'^y
__ ^

dz
\

dot?

""*

dx^

1 1 d'^y __ 1z dz
^

X ' dx^
""

X dx^



32 ON PARTIAL DIFFERENTIAL EQUATIONS,

whence the second side of the equation

dx \x dxy

d'^z
For the first side, or -r^z » we have

dt'
^ ^ A (y) ^ A ^ (y\ .

dt' ' dx ' \x) dx ' df \xj
'

V d^
which, since - can be affected by -j-:^ only because y is a

function of t, becomes

d_fl dy\
dx\x' df)'

and the original equation is changed to

dx \x ' dfj ' dx\x' dx^J

Integrating with respect to Xy

X df x' dx' ^ ^ ^^'

d'^y 2 d^y „ ,..

Solving this by the method of Article 35*,

y = i».x(^)+^(a^ + rr)+'v|r(a^-cc);

whence
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ilr' (at — x),
X ^ ^ '

42*. In the Author's Treatise on Sound, Article 43

and several following articles, will be found a di^cussfoj/ o^

equations of the form

where m has different integral values.

43. We believe that scarcely any other equations than

these, occurring in physical investigations, have been solved

in a finite form. Several equations have been solved in

the unsatisfactory form of infinite series, of which the con-

vergence is not always assured ; but it is not the object of

the present Treatise to enter on them,

44. The following equations which have presented

themselves in the author's investigations, (probably among

many others occurring in physical inquiries), have not

been solved.

In investiofating: the vertical motion of a horizontal

wave of air, on the supposition that the elasticity is propor-

tional to the density, and that gravity is constaut, we

arrive at an equation of this form

:

d^X dX j.^_r.
Tx'^"" dx ^ at'

"
'

D. E. I>
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which we have not succeeded in integrating generally in a

finite form.

In investigating the radial motion of a spherical wave

of air whose center is the center of the earth, supposing the

elasticity to be as the rfi" power of the density (where n

must be greater than a certain quantity which is > 1 , in

order to make the whole mass of atmosphere finite), the

resulting equation takes this form :

I r )dr\dr rj r^\dr r)

,.d^R 4a^R ^

df r^

This equation may be much simplified, but in any

form we have not rendered it inteofrable.

FURTHER CONSIDERATION OF THE SEPARATION OF THE

SYMBOLS OF OPERATION FROM THOSE OF QUANTITY.

45. In Article 39 attention was called to the method

of solving the equation then under consideration by the

''Separation of the symbols of operation from those of

quantity." This principle may be applied to an extensive

system of equations, which are however, at present, matters

rather of curiosity than of physical value. It may be

sufficient here to indicate one class.
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If the equation

^-^+^^-^+^rf^-w^-*- +^^^==«(^'^)

can be expressed as

(-^i a-r] X f-T- — i-T-)x &c. to n terms x ir = a (a;, y),
\dx dy) \dx dy) ^

'^^*

then the process of Article 40 can be applied with so little

difficulty that it appears unnecessary for us to delay

further on it. In the successive changes of Independent

Variable, it will be found convenient to take the factors in

successive pairs ; thus, for the effect of the first pair of

factors, where

assume ax-\-y=^Uy hx-^-y^v,

and proceed as in Article 25.

46. There is one exceptional case^ however, well

brought to notice by this method of treatment, which

merits further attention ; namely, that in which two factors

a, 5, are equal. To take the simplest case, suppose

d?z . dh ^d^z

d2
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\dx dy) \dx dyl

Here we may assume ax^-y = w, ex-\'fy =^ v, e and/
being any constants whatever whose proportion is not a : 1

;

the value being admissible for either.

Then

dx du dv ^

d{X, Y) ^ d(X,Y)^^^
^

d(X,Y)
^

dy du dv '^
^

and, putting {X, Y) for (^-«x,) ^>

the equation ^^ - a^j (X, Y) = 0,

becomes (^""^/) ^— = ^j

whence (X, Y) =
(f>

{u).

And, putting for (X, Y) its value,

(^-"|)^ = '^(^)'

or, by the same substitution which was made in regard to

the differential coefficients of (X, Y),
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integrating this, and remarking that ^ {u) possesses the

properties of a constant as regards integration with respect

to V,

(e — af) z = V
,(f>

(u) +'\}r (u);

or

Observing that a constant factor may be supposed to be

included in the form of an undetermined function, we may-

express z in either of the forms,

^x^2 iy +«^) +^2 (y +«'^)

;

all which, as applicable to the satisfaction of any assigned

conditions, will be found to be identical, on employing the

reasoning of Article 27.

47. In pursuing this subject, the signs / and d may be

considered as reciprocal, or / = d"\ In some cases, equa-

tions may be varied by carrying symbols, such as

±_ d_

dx dy^

which hold the position of multiplier on one side of the

equation, to the position of divisor on the other side, or
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as multiplier in the form

\dx dy)

And in this shape they may be substituted in abstruse

and general theorems. For instance, to take a case which

(in this theory) is almost elementary, we know that

If 7^ = — 1, this becomes, reversing the sides of the equation,

or
[

-^^—h « J u = e"""^ I u e""".

But the equation

dz dz
__

dx dy~~ *

d
or

(d
.

d\
\dx ay]

may, in accordance with these principles, be put in the

form

\dx dy)
'
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and the second side agrees with the first side above,

provided that e-j- he put for a and treated as a constant.

Then we shall have

Z=:€ dy \

d

U e dy
J

a solution to which, in some cases, a real meaning may be

given.

48. This principle, as a purely algebraical and

symbolical process, possesses very great power, and leads to

very remarkable results. But the reader cannot fail to

observe that it carries with it no evidence whatever for

the validity of results (such as is conveyed by the opera-

tions of quantitative algebra, or by the steps, properly

pursued, of the differential calculus), for which it must

rely on subsequent veriti cations. As aiding the appli-

cation of Partial Differential Equations to physical

investigations it possesses little value. The further

examination of it would therefore be out of place in

this Treatise. The student who desires to follow it up

will find much information in Boole's Treatise on Differ-

ential Equations, Gregory's Examples, and similar works.
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TREATMENT OF PARTIAL DIFFERENTIAL EQUATIONS WHEN
THE SOLUTION IS LIMITED BY PREARRANGED CON-

DITIONS.

49. We have seen in Article 44 that there are some

Partial Differential Equations of which the solutions

cannot be obtained by known methods, so long as the

utmost generality is required in the solutions. But in

some cases, by attaching limiting conditions to the solu-

tions, the same equations may be integrated with ease; as

will be seen in the following instances.

50. In considering the tidal disturbance^of water in an

equatoreal canal round the earth, retarded by friction pro-

portional to the velocity (see the EmyclopcBdia Metropolis

tana, Article Tide& and Waves), we arrive at the following

equation {x the original ordinate of a particle measured

along the canal, X the horizontal disturbance of the par-

ticle)

:

d'X rr-r'. ^ A^ 2cJ:'X
—77^- = ±1 sm (it —mx) —f -^—ha —r-rr

;

where H, /, a\ are constants depending on the moon's

attraction, the coefficient of friction, and the depth of the

sea. This equation cannot be solved generally. But,

remarking that the only part of the solution which has any

interest for us is that which follows the same law of pe-

riodicity as the lunar motions, we may assume

X = A sin [it —mx) +^cos {it —mx)^
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wbere A and B are constants to be determined. On
substituting this, the values of^ and B and the expression

for X are found without difficulty.

51. Before adverting to a specific solution of the

equation -^—^ -\-a^ -r-^^ = 0, we will make the following

remark on the general solution. When an exponential

form is adopted for the functions in the general solution,

Article 41, the general form may be retained conveniently:

but in other cases it is usually necessary to expand the

functions. Performing this process according to the ordi-

nary algebraical rules, the general solution becomes

-&c.

ax

which, as will be found on trial, satisfies the equation.

A solution by series, however, can rarely be considered as

quite sufficient.

52. In considering the motion of ordinary small waves

in a sea of uniform depth {x horizontal in the direction in

which the wave is going, y vertical measured upwards from

the bottom), we find (see Tides and Waves)

cPX dlX_r.
df ^ dx^

"

The cumbrous form of the general solution of this

equation would make it almost useless to attempt to apply



42 ON PARTIAL DIFFERENTIAL EQUATIONS.

it to the special case. But the nature of the case permits

us to assume

X = iZcos {nt—mx) +>Ssin {nt —mcc),

where R and S are functions of y. Substituting, we have

whence

and, after some reductions peculiar to the problem,

X = A {€^^-{- €'""') cos {nt-mx-B).

FINAL DETERMINATION OF THE FUNCTIONS WHICH ARE
'

UNDETERMINED IN THE GENERAL SOLUTION.

53. In nearly the whole of these solutions, our re-

sulting expression for the quantity which it is our object

to find is accompanied with undetermined functions. It is

now an object of great importance to determine those func-

tions. Although in reality the process for doing this may

be stated in brief rules, yet it will be better understood

from an exhibition of its application in one or two actual

instances than in any other way.

54. Example 1. In the consideration of the tidal

motions of water without friction in an equatoreal channel

round the earth, X being the horizontal displacement at
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any time ^ of a particle whose ordinate measured round the

channel from a fixed origin was Xy the equation is

-jj^ = H sin [it —mx) +c -7-y
;

where it is double the moon's hour-angle from the origin,

and mx is double the longitude-angle of the point x from

the same origin; and where c^ is a constant depending

on the depth of the water. This equation can be com-

pletely solved : its result is

IT

llv — t

which we shall write

(7 sin (it-mx) +(f> {ct+x) +'\fr (ct—x).

Each of the three terms represents a wave, but they

are waves of different characters. The first wave corre-

sponds in its velocity with the lunar force ZTsin (it—mx)

which produces it : for this the author has introduced the

term /orced! wave; it depends entirely on the lunar force,

and would not exist if there were no lunar force. The

second wave is travelling in the direction opposite to

the moon s apparent diurnal motion, and the third wave in

the same direction as the moons apparent diurnal motion;

for these the author has introduced the term free waves;

their velocity is independent of the moon's motion; the

two waves, or either of them, may or may not exist ; they

are entirely independent of the moon's action, and the
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question of their existence is generally independent of

the moon s action and of the forced wave. This is the state

of thinofs when there is no material limit to the lens^th of

the canal.

55. But suppose that the canal is limited by the ob-

stacle of land at its two ends (as in the Mediterranean Sea,

all minor gulfs, &c., being put out of consideration). Then

the forced wave alone is not sufficient for a solution. For,

the existence of the terminal obstacles (whose ordinates we

will call a and b) requires that, at those obstacles, the hori-

zontal displacement of the water be nothing at all times

;

and therefore when x=^a or x = b, X must = whatever

be the value of t.

Now this cannot hold with the forced wave alone ; for,

the values which the first term assumes for a? =a and x = b,

namely, (7 sin {it —ma) and Csin {it -^mb), will not vanish

for all values of t. We must therefore have recourse to the

two undetermined functions; or, in other words, we must

now necessarily introduce the two free waves as an indis-

pensable part of the solution : and we must determine their

elements so that the two conditions, of X always = when

x = a and when x — b, shall be satisfied.

56. The term expressing the forced wave is a simple

periodical term having i;^ in its argument. Therefore, in

order to destroy this at all times for definite values of x^

the free waves must be expressed by simple periodical

terms having it m their arguments. Therefore the two
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undetermined terms ^ {ct +ic) and ^/r [ct — x) must have

the forms

A^ sin
1^

{ct ^x) \ +jB^ cos |- (c^ -\-x) I

,

and

^2 sin \- {ct^x) h ^jB^cos j- (ct—x) [

)

and the entire expression for X will have the form

Cmiiit-^mx)

- A^ sin (i^ -f- ^) +5, cos (zif -\--x)

+ ^jj sin {it— x) +-S2 cos {it— x)
\

or, expanding the trigonometrical terms, and putting e for

A,-yA^, /for A^ - ^,, ^ for B^ +^,, /i for ^, ^B,,

X = ^

sin it X ! (7 cos two; 4e cos— + A sin — ^

1 c cj

+ cos i^ X
I

— (7 sin mx +/sin yg cos — ^

.

Making this = when i» = a and when £c = 5, and

writing a for — and /3 for — , we have the four equations,
c c

= (7 cos ma 4-^ cos a +^ sin a,

= — (7sin7wa+/sina +^cosa,
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= (7 COS mb 4- ecos ^ -\-h sin 13,

= — Gs'mmh -h/sin ^ +g cos /3.

Solving these equations,

c sin (y8 — a) = C (— cos ma . sin /3 +cos m5 . sin a),

/sin(/3— a) = C (— sin??ia. cosy8+sin m&.cos a),

5rsin(/3— a) = C ( sin ma . sin /3 —sin mS . sin a),

A sin (/3 —a) = C(cosma. cosyS -cos7n6.cosa).

Substituting, and restoring the original notation,

^ H , .. . H^ — V"! ^ sin u^ —mx) -: r X

(cm — ^ ) sin j- (6 — a)h

I sin (iit—ma). sin \-(b —x) [ +sin(/i^ — m/.>),sin \- (x —a)[ .

Thus the terms, undetermined in the general solution,

are now completely determined so as to satisfy the special

conditions of the problem. The entire expression for X, it

will be seen, satisfies the original partial differential equa-

tion, and .also makes X = at all times when X = a and

X == b. '

57. Example 2. In the ordinary problem of vibrating

musical strings, wKere no force is supposed to act after the

string has been put in motion, x being measured longi-

tudinally along the string and z being the small transversal
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displacement of any point (see Sound, Article 73), the

equation for z is

where o? = gL, L being that length of the same string

whose weight will represent the tension of the string : and

its solution is

z = (j> {at -\-x) -i-ylr {at —x).

Here the solution is expressed entirely by the two

undetermined functions. If the initial circumstances of

disturbance (namely, the displacement and the velocity of

every point) were given, those functions could be deter-

mined, as will be shewn below. But even without an

absolute knowledge of the forms of the functions, some

very important properties of the solution may be ascer-

tained thus.

58. Let the ordinate of the near end of the string be

0, and that of the further end l. Then, whatever be the

value of ^, 5J is when a; = or when x = L That is,

^ {at) +f {at) ^ 0,

^ {at+l) ^yfr {at -I) = 0,

The first equation shews that t/t must always = — 0.

Thus one of the undetermined functions is already elimi-

nated (the other will be eliminated from consideration of

the initial circumstances).

Substituting in the second equation,

^ {at +1) -(j) {at -I) =: 0.

Now at may, with changes of time, receive any value
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"whatever. And if at—l = q (^liich makes at -\-l = q +2/);

q may have any value whatever. Aud thus, q having any

value whatever, we always have the equation

<l>{q+2l) =<^(?);

that is, the form of the function
(f>

must be such that, on

increasing or diminishing the quantity under the bracket

by 21, the same value of the function will be reproduced.

Now in either term of the expression for the displacement

of the particle at x, namely

</) (at +x) —(p {at -'x)i

the increa^ by 2/ of the quantity under the bracket may

21
be effected by increasing at by 21, or by increasing ^ by — .

21
Therefore, every time that we increase ^ by — , we find

a

the particle x with the same displacement as before. And

this applies to every particle of the string. Consequently

the string performs a complete vibration, returning again

, 2l
to the same position, in the time—

.

It is true that, as will shortly be seen, under certain

circumstances the string may perform two or more com-

plete vibrations in the same time, but it always returns to

21
the same state after the interval — ; and this is the only

a . ^

interval of which it can be asserted that a return to the

same state necessarily occurs in that time*
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The reader may exercise his ingenuity in proving that

the motion of the string consists in the simultaneous

movements of two waves in opposite directions, each of

which travels backwards and forwards from end to end

with velocity a, and is reflected at each end.

59. Putting, for the moment, 6 for the quantity

affected by the functional symbol <^, it appears that </> (6)

is a finite periodical function, going through its changes

and returning to the same value when 6 is changed by 2L

A trigonometric function of sines and cosines of aii angle

goes through all its changes and returns to the same value

when the angle is increased by 27r. Hence it appears that

(j) (6) is similar in its general character to a trigonometric

function of sines and cosines of —^— , or j 6, Any

finite periodical magnitude may be represented with any

assigned degree of approximation by a series of integral

powers and combinations of the sine and cosine of — ^ ; and

these powers may be converted into sines and cosines of

multiple arcs. Thus the function cj) {6) may be represented

by

A^ sin ^ $ -\-A^ sin -j 6 +&c. + ^„sin -^ + &c.

+B^cos-j e +B,co>i -^e + &c. +B,cos~e + &c.;Li C

which may be conveniently expressed by

2(^„sin^'^] +SfAcos^^

D, E.
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and thus the value of z will be

2
j
J„ sm—^ '-\ +2 \A cos —^—^ -^j

- 2
I
^„ sm ^^- ^1 -2

j
5„ cos ^-^ -^1

,

or

z ( z^^ COS —j— sm -^ a; 1

dz
and the value of ,, will be

at

— Z ( zB^ sm —J- sin -^- a?
) ;

-2 f^mra . . nmat . titt \

60. Suppose now that the initial circumstances of

displacement (Z) and velocity {Z') are given for every

point of the string, and that from these we desire to deter-

mine all the subsequent motions. We must now make

^ = 0, and we have
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And our immediate object is, knowing the values of

Z and Z' for every value of x, to determine the values of

A^^ A^, &c., B^, B^, &c. This will be done by means of

the following general formula. If we multiply sin -j- x

by sin —j- x, where m is any integer different from % and

integrate from a? = to a? = i, we have for product,

1 (m —n) TT 1 (m +n) ir

^ cos ^

—

~— a;—^cos-^^
' x\

for general integral,

I . (m —n) IT I . im -{-n) tt
sm- 7—^

—

X —;^, r— sm ^ ~— x\
2 (m —n) TT I 2 (m +7i) tt

and for definite integral, 0.

But ifm = 71, we have for product

1 1 2/27r

for general integral

X I . 2n7r
o - A
— sin - ,- X,

2 4/i7r I

and for definite integral, ^ •
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Hence, if we put S for the integral with respect to x

taken from x = to x = I,

S(z&m^ x] = A, l\

S (Zsin—j xj = A^l, &c.

S (Z' sin
-J-

xj = —Iran B^
;

SiZ' sin —J- X 1 = —Iran B^, &c.

61. In a given instance, in which the initial displace-

ments and velocities are given not by formula but by

numerical values, the following process will apply. Sup-

pose we limit the multiples of y 6, where sines and cosines

are to be used, to the first six, namely,

TT^ 27r^ Stt^ 47r^ Btt ^ Sir
^

which will suffice in almost any conceivable case. Divide

the length I into 120 equal parts, and suppose that Z and

Z' are known numerically for the middle of each of these
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niT
parts. For the first of these middles, -j x = 45' ; for the

second it is 3 x 45' ; for the third it is 5 x 45' ; and so on.

And for each of these parts, the integral is, in fact, taken

through the extent ^-^ . Hence, the formula above gives

the following numerical rule :

—

Multiply the successive values of Zhy sin 45', sin 3 x 45',

sin 5x45', &c. : the sum of products = 120 A^,

Multiply the successive values of Z by sin 2x45',

sin 6x45', sin 10x45', &c.: the sum of products = 120^2-

Multiply the successive values of Z by sin 3x45',

sin 9x45', sin 15x45', &c.: the sum of products = 120 J3.

And so to A^,

And a similar process (with proper changes) determines

B^, B^, &c., from the given values of Z\

Then substituting these in the formute at the end of

Article 59, the circumstances of all subsequent motion are

completely obtained.

62. If A^, or B^, or both, are found to have real

values, and ^.^, A^^ &c., B^, B^, &c., have no real values,

then the vibration is that of a simple line of sines, de-
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pending, for time, on the angle —r-
. If only A^ and B^,

one or both, have real values, then the vibration is that of

two lines of sines ; separated at the point where -j-x ^ tt,

or where x = ^ , thus forming a permanent node in the

middle of the length ; and depending for time on the angle

—
J
— , and thus vibrating in half the time of the former

V

vibration. Similarly if A^ and B^ only have real values, the

string is divided into three equal parts by two nodes, and

the vibrations are made in one-third of the time of the

fundamental vibrations.

The connexion, of these results, with the results of the

experience of the senses as to the musical tones produced, is

one of the most important points in the Acoustical Theory

of Music.

63. The two instances which we have given will

probably suffice, better than any rules, to shew the use

that is to be made of the undetermined functions in the

solution of a Partial Differential Equation. For important

applications, in the Theories of the simple Echo and of

Resonance, see Sound, Articles 41 and ^1.
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CONSIDERATIONS ON THE NECESSITY OF CONNEXION

BETWEEN THE NUMBER OF UNDETERMINED CONSTANTS

AND THE ORDER OF THE EQUATION (iN SIMPLE DIF-

FERENTIAL equations), and between the NUMBER

OF UNDETERMINED FUNCTIONS AND THE ORDER OF

THE EQUATION (iN PARTIAL DIFFERENTIAL EQUA-

TIONS).

64. In solving a simple differential equation of the

first order, we usually arrive at a solution containing one

undetermined constant. But it is not always so. There is

a remarkable class of solutions called " particular solutions,"

which not only have not, but which cannot have, an un-

determined constant. Thus, if we express in algebraical

language the problem " To find the equation to the curve

whose tangents possess this property, that a perpendicular

from a given point upon the tangent has a given value
;"

we have, for general solution, a straight line with one

undetermined constant; and for particular solution, a

certain circle, which from the nature of the case does not

admit an undetermined constant. The connexion, there-

fore, between the order of the equation and the number

of undetermined constants in its solution is not invariable.

65. But if we assume a formula as solution to a dif-

ferential equation which we propose to form, the said

formula containing symbolical constants, we can pre-

determine that any one of those constants (if the equation

be of the first order), or any two of those constants (if the
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equation be of the second order), shall be eliminated from

the differential equation to be formed, and shall therefore

be undetermined when that equation is solved. Thus, to

take a very simple instance, let y = ax-\-h be assumed to

be the solution of a differential equation, with the constant

a undetermined. Differentiating it, -,- = a ; substituting

this in the given equation, y ^x -^ —h = 0, the dif-

ferential equation required. This process evidently can be

extended to equations of any order.

66. It appears thus that the existence of a soluble

differential equation does not necessarily imply an unde-

termined constant in the solution ; but the existence or

assumption of an undetermined constant in a solution can

always be represented by proper form of a differential

equation : and that this theorem applies to equations of

every order.

67. If now we apply similar considerations to Partial

Differential Equations, we are led to the following con-

clusions.

68. First, on examining the solution in Article 18,

&c., it will be seen that, in the cases in which the solution

of a Partial Differential Equation is really effected, it has

been done by reducing it to an ordinary integration, just

as would be done for a Simple Differential Equation. This
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seems to indicate a probability that there may be cases in

which the solution of a Partial Differential Equation has

limitations analogous to those of a Simple Differential

Equation, and therefore has not, and cannot have, an

undetermined function in its solution. Upon this, how-

ever, there is not at present any distinct evidence, and

the matter is indicated as one which appears to merit

examination.

69. Second, if we assume a formula containing one

function (j>(w), where w is £i definite function of x and y
and where cj) is intended to be undetermined, we can always

produce a Partial Differential Equation of the first order,

of which the assumed formula will be the solution.

For we have

2?, which contains ^(-2^);

and we can form

dz . .

-^ , which will contain ^{w) and (l>\w) ;

-T- , which will contain ^(w) and <f>\w) ;

and from these three equations we can eliminate (l>{w) and

dz
(f>'{w)y leaving one equation between ^, x, y, -j- , and

-jT- , of the form required.

D. E. F



58 ON PARTIAL DIFFERENTIAL EQUATIONS.

70. But, third, if we assume a formula containing two

functions (l>{w) and '^{s), where w and s are definite func-

tions of X and y, and where
(fy

and >|r are intended to be

xxndetermined, we cannot always produce a Partial Dif-

ferential Equation of the second order, of which the as-

sumed formula will be the solution. For, we have

z, which contains <l>{w) and yjr{s)
;

and we can form

dz
-J-, which will contain <^(^^), ^'(^y), ir{s), ^fr\s) ;

dz

-J-
, which will contain ^{w)^ ^\w), '\Jr{s), y}r\s)

;

-v-2^ which will contain </)(ty), (l>\w), (f>''{w)yyjr{s),

dxdy

d^

, which will contain the same six functions

;

which will contain the same six functions.

Here we have six equations, and no more, with six

functions on the other side of the equations. We cannot

therefore eliminate these six functions, so as to leave an

tequation between

d2 db ^ d^z d^
""'^'^'dx' dy' dx^' dxdy' dy''
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And thus we cannot always produce the Partial Dif-

ferential Equation required. The same remark, it will be

found, applies more strongly to equations of a higher

order.

71. It seems not impossible that the failure of at-

tempts to solve the equations in Article 44 may have some

connexion with this inability to establish a perfect con-

nexion between the order of the equation and the number

of undetermined functions. The subject appears to be

worthy of greater attention than it has received.

cambbidob: printed by c. j. clay, m.a., at thb univbesity press.
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