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PREFACE.

ryiHE present work on Hydromechanics is designed as a

-*- text-book for Scientific Schools and Colleges, and is

prepared on the same general plan as the author's Analytic

Mechanics, which it is intended to follow. Like the Ana-

lytic Mechanics, it involves the use of Analytic Geometry

and the Calculus, though a geometric proof has been intro-

duced wherever it seemed preferable.

The book is divided into two parts, namely. Hydrostatics

and Hydrokinetics. The former is subdivided into three,

and the latter into four chapters ; and at the ends of the

chapters a large number of examples is given, with a view

to illustrate every part of the siibject. Many of these ex-

amples were prepared specially for this work, and are prac-

tical questions in hydrauUcs, etc., taken from every-day life.

In writing this treatise, the aim has been to enunciate

clearly the fundamental principles of the theory of Hydro-

mechanics, to explain some of the most important applica-

tions of these principles, and to render more general the

study of this interesting science, by presenting as simple a

view of its principles as is consistent with scientific accu-

racy. Throughout the work a careful distinction has been

made between those propositions which are necessarily true,

being deduced from the definitions and axioms of the sub-

ject, and those results which are empirical.

8G6095



IV PREFACE.

In an elementary work of this kind there is not room for

much that is new. I have drawn freely upon the writings

of many of the best authors. The works to which I am

principally indebted, and which are here named for con-

venience of reference by the student, are those of Besant,

Lamb, Eankine, Boucharlat, Weisbach, Cotterill, Bland,

Jamieson, Fanning, Pratt, Kenwick, Stanley, Tate, Descha-

nel, Bossut, d'Aubuisson, Poncelet, Eytelwein, Prony,

Starrow, Goodeve, Galbraith, Gregory, Twisden, Bartlett,

Wood, Smith, Olmsted, Morin, Humphreys and Abbot,

Fairbairn, Colyer, Barrow, and the Encyclopaedia Britan-

nica.

My thanks are again due to my friend and former pupil,

Mr. E. W. Prentiss, of the Nautical Almanac Office, and

formerly Fellow in Mathematics at the Johns Hopkins

University, for reading the MS. and for valuable sugges-

tions.

E. A. B.

Rutgers CoLiiEOE,

New Brunswick, N. J„ April, 1885.
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HYDROMECHANICS.

PART I.

HYDRQSTATICS,

CHAPTER I.

EQUILIBRIUM AND PRESSURE OF FLUIDS.

1. Definitions.—Hydromechanics is the science wTiich

treats of the equilibrium and motion of fluids. It is accord-

ingly divided into two parts, Hydrostatics and Hydrokinetics.

Hydrostatics treats of the equilibrium of fluids.

Hydrokinetics treats of the motion of fluids.

The object of the science of Hydrostatics is to determine

the equilibrium and pressure of fluids, the nature of the

action which fluids exert upon one another and upon bodies

with which they are in contact, and the weight and pressure

of solids immersed in them, and to explain and classify,

under general laws, the different phenomena to which they

give rise.

2. Three States of Matter Bodies exist in three

different states, depending upon the manner in which their

particles are held together. They are either solid ovfluid ;

and the latter are either liquid or gaseous.

Solid bodies are those whose particles are held together so

firmly that a certain force is necessary to change their forms



2 A PERFECT FLUID.

or to produce a separation of their particles. K a solid be

reduced to the finest powder, still each grain of the powder

is a solid body, and it-s particles are held together in a de-

terminate shape.

Fluids are bodies, the position of whose particles in ref-

erence to one another is changed by the smallest force.

The distinguishing property of a fluid is the perfect facil-

ity with which its particles move among one another, and

as a consequence its readiness to change its form under the

influence of the slightest effort.

Fluids are of two kinds, liquids and gases. In a liquid

there is a perceptible cohesion among its particles ; but in

a gas the particles mutually rej^el one another. Every solid

body possesses a peculiar form of its own, and a definite

volume; liquids have only a definite volume, but no pecu-

liar form ; and gases have neither one nor the other. If a

liquid, such as water, be poured into a tumbler, it will lie

at the bottom, and will be separated by a distinct surface

from the air above it; but if ever so small a quantity oi gas

be introduced into an empty and closed vessel, it will im-

mediately expand so as to fill the whole vessel, and will

exert some amount of pressure upon the interior surface.

3. A Perfect Fluid.—Fluids differ from each other in

the degree of cohesion of their particles, and the facility

with which they will yield to the action of a force. Many
bodies which are met with in nature, such as water, mer-

cury, air, etc., possess the properties of fluids in an eminent

degree, while others, such as oil, tallow, the sirups, etc.,

possess a less degree of fluidity. The former are called

perfect fluids, and the latter viscous or imperfect fluids.

In this work, only perfect fluids will be considered.

A perfect fluid is an aggregation of paHicles which
yield at once to the slightest effort made to separate

them from, one another.
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Fluids are divided into two classes, incompressible and

compressible. The former are sometimes called inelastic

and the latter elastic fluids.

Incompressible fluids are those which retain the same

volume under a variable pressure. Compressible fluids are

those in which the volume is diminished as the pressure

upon it is increased, and increased as the pressure upon it

is diminished.

The term incompressible cannot strictly be applied to

any body in nature, all being more or less compressible.

But on account of the enormous power required to change,

in any sensible degree, the volumes of liquids, they are

treated in most of the researches in hydrostatics as incom-

pressible or inelastic fluids. It was shown by Canton, in

1761, that water under a pressure of one atmosphere, i. e.,

of about one ton on each square foot of surface, undergoes

a diminution of forty-four milUonths of its total volume.*

All ?1(7m/(/s are therefore regarded as incompressible. Water,

mercury, wine, etc., are generally ranged under this class.

The (/ases are highly compressible, such as air and the dif-

ferent vapors.

4. The Direction of the Pressure of a Fluid on
a Surface.—If an indefinitely thin plate be made to di-

vide a fluid in any direction, no resistance will be oflfered

to the motion of the plate in the direction of its plane, i. e.,

there will be no tangential resistance of the nature of fric-

tion, such, for instance, as would be exert,ed if the plate were

pushed between two flat boards held close to each other.

Hence the following fundamental property of a fluid is

obtained from its definition :

TJie pressuT-e of a fluid is always^tormal to any sur-

face ivith which it is in contact.

* Galbraith's Hydrostatics; Gregory's Hydrostatics.

The compressibility of water per atmosphere at 8° C, as given in Everett's

Units and Physical Constants, is 48.1 millionths. Ency. Brit., Vol. XIL, p. 439.
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5. Solidifying a Fluid.—// a mass of fluid be at

rest^ any purtion of it may he supposed to become

solid without affecting its equilibrium or the pressure

of the surroundind fluid.

For there will be no alteration in the forces acting on the

fluid, and the action between the solidified portion and the

rest of the fluid, or between the solidified portion and any

surface with which it may be in contact, will still be nor-

mal to its surface (Art. 4) ; therefore the equilibrium of the

solid can be considered as maintained by the external forces

which act upon it, and the pressure of the remaining fluid.

This proposition enables us to employ the principles of

statics in the discussion of the equilibrium of fluids.

6. Measure of the Pressure of Fluids.—The press-

ure of a fluid on a plane is measured, when uniform over

the plane, by the force exerted on a unit of area. Consider

a mass of fluid at rest under the action of any forces,

and let A be the area of a plane surface in contact with the

fluid, and P the force which is required to counterbalance

the action of the fluid upon A. Then if the action of the

p
fluid upon A be uniform, -j is the pressure on each unit of

the area A, and this is usually represented by p.

If the pressure be variable, as, for instance, on the verti-

cal side of a vessel, it must be considered as varying con-

tinuously from point to point of the area A, and the pressure

at any point is measured by that which would be exerted on

a unit of area, supposing the pressure over the whole unit

to be exerted at the same rate as at the point considered.

If we suppose the area A, and the pressure P, to diminish

indefinitely, the pressure may be regarded as uniform on the

dP
infinitesimal area dA, and we shall have -^^ =i? to express

the rate of pressure at the point considered.
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By the rate of pressure at a point is meant the force

which would be exerted on a unit of area, if the rate of

pressure over the unit were uniform and tlie same as at the

point considered.

7. The Pressure at any Point of a Fluid at Rest

is the same in every Direction—By this statement is

meant that, if at any point of a fluid, there be })laced a small

plane area containing the point, the pressure of the fluid

upon the plane at that point will bo independent of the posi-

tion of the plane.

This is the most important of the characteristic properties

of a fluid. It is often established by experiments; it may,

however, be deduced, independently of experiments, in the

following manner

:

Let a small tetrahedron of fluid be supposed solidified

(Art. 5) ; then it is kept at rest by the pressures on its faces,

which are always normal (Art. 4), and by the impressed *

forces on its mass. The pressures on the faces depend on

the areas of the faces, and the impressed forces depend on

the volume and density. When the fluid is considered

homogeneous, the former forces vary as the square, and the

latter vary as the cube of one of the edges of the solid ; sup-

posing therefore the solid to be indefinitely diminished,

while it always retains a similar form, the latter forces,

being small quantities of the third order, vanish in com-

parison with the pressures on the faces,

which are small quantities of the second

order; and hence these pressures form

a system of forces in equilibrium.

Let p, Pi be the rates of pressure

(Art. 6) on the faces, ABD, BCD, and

resolve these forces parallel and perpen-

dicular to the edge AC ; let (i and y be

« See Anal. Mechs., Art. 234.
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the augles which a plane perpendicular to AC makes with

the planes, ABD and BCD, respectively ; then we have

jo.ABD.cos/3 =j»i. BCD-cosy. (1)

But ABD • cos /3 = BCD -cosy = the projections of the

areas ABD and BCD on a plane perpendicular to AC

;

therefore (1) becomes

P = Pi-

And similarly it may be shown that the pressures on the

other two faces are each equal to p or p^. As the tetrahe-

dron may be taken with its faces in any direction, it follows

that the pressure at any point is the same in every direc-

tion.*

Cor.—Hence the lateral pressure of a fluid at any point

is equal to its perpendicular pressure.

ScH.—This property constitutes a remarkable distinction

between fluids and solids, the latter pressing with their

whole weight in the direction of gravity alone. This prop-

erty of fluids can be conceived to arise only from the ex-

treme facility with which the particles move among one

another. It is not easy to imagine how this can take place,

if the particles be supposed to be in immediate contact;

they are therefore probably kept at a distance from one

another by some repulsive force.

8. Equal Transmission of Fluid Pressure (1) Let

AB be a tube of uniform bore, and of any shape whatever,

filled with a liquid, and closed at its

extremities by two pistons A and B,

which fit the bore exactly, but yet

can move along it with perfect free-
pj ^

dom ; and let the interior of the tube

be perfectly smooth, so as not to offer the least resistance to

* See Besant'g Hydromechanics, p. 4.
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the motion of the liquid along it. Then it may be assumed

as self-evident, that if any force be applied to the piston A,

perpendicular to its surface, and directed inwards, it will

push the liquid forward, and thus produce a pressure on the

piston B, which will drive it out of the tube, unless there

be an equal force at B, pushing in the opposite direction, to

countei"act the force at A and keep the liquid at rest. This

property of liquids is a direct result of experiment.

(2) Let ABCD represent a closed vessel of any shape,

filled with a liquid ; let A and B be any two points in the

surface of the vessel, and let two circular holes be made at

these points, having the same area

;

into these let two short tubes be in-

serted, each tube entering a little way f<w^~-^=-=-^^-=J-^a

into the liquid, and provided with a

piston that fits it accurately, and

which may move within it with the

utmost freedom. Now suppose that D'^^^^^^^^^C

the two orifices, A and B, are connect-
'^'

ed by a tube of liquid AEB, in the interior of the vessel, of

uniform bore, and of any form, and imagine all the liquid

in the vessel, except that contained in the tube, to be solidi-

fied. This will not affect the equilibrium (Art, 5). But,

under these circumstances, if a pressure be applied to the

piston A, and directed inwards, it will, as shown in (1)

above, be transmitted to B, and will require an equal force

at B to counteract it and keep the fluid at rest.

If we suppose the piston B, to be taken anywhere on the

surface, it is evident from what has been said that any press-

ure applied to the piston A will be transmitted to B, and

will require an equal pressure at B to counteract it. It is

also evident that if we have several openings, each equal to

B, closed by pistons, any pressure applied to one piston will

be transmitted undivided to every other piston, and will

require an equal pressure at each of those pistons to coun-

teract it. The above reasoning remains true, no matter
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where we suppose the point B to be taken. Hence an^
pressure, applied to the surface of an incompressible

fluid at rest, is transmitted equally to all parts of the

fluid and to its ivhole surface.

Cor.—If a point E, be within a liquid, the pressure

transmitted from the piston A, to a plane surface of given

area, and having its centre at E, is constant for every pos-

sible position of the plane, and is always perpendicular

to it.

9. The Pressures on Two Pistons are in Equi-

librium when Proportional to their Areas. — Let

Fig. 4 represent a vessel with two apertures, in which pis-

tuns are fitted ; and let the vessel be

filled with any liquid. Now, any

pressure applied to the small piston p,
will be transmitted by the liquid to

the large piston P, so that every por-

tion of surface in the large piston

will be pressed upwards with the same

force that an equal portion of surface

in the small piston is pressed down-

wards (Art. 8). Let a = the area of the piston p, A = the

area of the piston P, p-— the whole pressure apphed to the

small piston JO, and P = the whole pressure produced upon
the large piston P ; then, since the whole pressure on the

large piston is equal to that on the small one taken as many
times as the area of the small one is contained in that of

the large, we have for equilibrium,

P = px-;
a

P A
or, — = —

p a
(1)

That is, two forces applied to pistons which are con-

nected with each other through the intervention of
some confined liquid, wiU he in equilibrium when
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they are directly proportional to the areas of the

pistons upon which they act.

This result is wholly independent of the relative dimen-

sions and positions of the pistons. Let a be the unit of

area, say a square inch or square foot, then will p be the

pressure applied to the unit of area, and (1) becomes

P=pA. (2)

That is, the pressure transmitted to any poHion of the

surface of the vessel is equal to that applied to the

unit of surface multiplied by the area, of the surface

to which the pressure is transmitted.

If the area of the piston P be one square foot, and a

pressure of 10 lbs. is applied at the piston p, it follows from

(2) that a pressure of 1440 lbs. will be transmitted to the

piston P, and this must be counteracted by a pressure of

1440 lbs. on that piston. Also, the interior of the yessel

will sustain an outward pressure of 10 lbs. on every square

inch of its surface. And if the pressure on the piston p, is

increased till the vessel bursts, the fracture is as likely to

occur in some other part as in that towards which the force

is directed.

Cor.—If in the vessel (Fig. 4) the piston A, be made

sufficiently large, the pressure transmitted from « to A may

be increased indefinitely; a very great weight upon A may

be raised by a small pressure at a, the weight lifted being

greater in proportion to the size of A, or inversely to the

size of a. To increase the upward force at A, we must

enlarge the surface of A or diminish the surface of a, and

the only limitation to the increase of the force at A will be

the want of sufficient strength in the vessel to resist the

increased pressure.

On this principle, machines of immense mechanical

power are constructed, which will be described in a future

chapter.
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EXAMPLES.

1. If the area of the piston a be a square inch, and if it

be pressed by a force of 'Zb lbs., find the pressure which will

be transmitted to a surface of 35 square inches.

Ans. 875 lbs.

2. If the area of the piston be 3 square inches, and if tiie

pressure on it be 96 lbs., find the pressure wliich will be

transmitted to a surface of 17.5 square inches.

Ans. 560 lbs.

3. If the area of the piston be 2.5 sq. in., and if the press-

ure on it be 50 lbs., what pressure will this transmit to a

portion of the surface of the vessel whose shape is circular

and whose diameter is one foot ? Ans. 2261.95 lbs.

10. Pressure of a Liquid at any Depth.—Thus far

only the transmission of external pressures has been con-

sidered ; we shall now determine the effects of the internal

pressure due to the weight of the particles of the liquid

itself.

Let DAE be the surface of the

liquid at rest, and take any point B,

in the liquid ; draw BA vertically to

the surface, and describe a small cyl-

inder about BA with its base horizon-

tal. Imagine this cylinder to become

solid (Art. 5). Then this solid body

is at rest under its own weight, the

pressure of the fluid on the end B, and
'*'

the fluid pressures on the curved surface.

The fluid pressures on the curved surface are all horizon-

tal (Art. 4), and the fluid pressure on the end B, and the

weight of the solid are vertical forces, and each group is

separately in equilibrium. Hence the fluid pressure on B
must be equal to the weight of the solid AB; if a be the

E ^A^ D
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area of the base AB z= z, w the weight of a unit of volume,

and p the pressure ut B, we have

pa = waz; or, p =^ wz; (1)

that is, the pressure at any depth varies as the depth
below the surface.

Simihirly, let B and C be any two points in the same ver-

tical line; and let the cylinder BC, be solidified; then,

from what has just been shown, the pressures at B and

must differ by the weight of the cylinder BC, i. e., the press-

ure at C is greater than that at B by the weight of a column

of licjuid whose base is equal to the area 0, and whose

height is BC.

Hence, if p and p' be the pressures at B and C, and

BO = z, we have

p'a —pa = waz; or, p' —p = toz
; (2)

that is, the difference of the pressures at any two points

varies as the vertical distance between the points.

Coil. 1.—If W be the weight of a mass M, of fluid, then

(Anal. Mechs., Art. 24), wo have

\y = Mg. (3)

If V be the volume of the mass M, of fluid, and p be its

density, then (Anal. Mechs., Art. 11), we have

M= Vp. (4)

.'. W = gpV. . (5)

For a unit of volume we have F = 1, therefore (5) be-

comes
W = gp.

From (1) we have,

pa = waz = W = gp V [from (5)],
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or, pa = gpaz (since V=az); (6)

••• P = gpz- (7)

Cor. 2.—If A be the area of the base of a vessel, h its

height, and P the whole pressure on the base, we have,

from (6),

P = gphA. (8)

That is, the pressure of a liquid on any horizontal

area is equal to the weigh t of a column of the liquid

whose base is equal to the area, and ivhose height is

equal to the height of the surface of the liquid above

the area.

It is evidently immaterial whether the surface pressed is

that of the base of the vessel or a horizontal surface of an

immersed solid.

Cor. 3.—Since the weight of a cubic foot of water i= 1000

ozs. = 62.5 lbs., we have, for the pressure on the bottom

of any vessel containing water,

P = 62.ohA lbs., (9)

where h is the height in feet of the surface of the water

above the base, and A the area of the base in square feet.

Cor. 4.

—

The pressure on the base of any vessel is

independent of the form of the vessel.

Thus, if a hollow cone, vertex upwards, be filled with

water, and if r be the radius of the base and h the height

of the cone, we have for the pressure on the base,

P = gpTxrVi [from (8)],

or, P = 62.5Trr2/A [from (9)] ;

that is, the pressure on the base is the same as if the cone

were a cylinder of liquid of the same base ar.d height as the
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coDc; the pressure is three times the weight of the enclosed

water.

This increased pressure on the base is caused by the re-

action of the curved surface of the cone. The pressure on

the curved surface consists of an assemblage of forces whose

vertical components all point downwards and react upon the

base.

EXAMPLES.
1. If a surface of one square inch be placed in a vessel

completely filled with water, and if the pressure upon it be

2 lbs., what will be the pressure on one square inch placed

at a level 75 inches lower ?

Here A =: one square inch, A = 75 inches, and P and

P' are the pressures at the upper and lower points; there-

fore we have, from (2) and (8),

P' — P = 252.5* X 75

= 18937.5 grains

= 2.705 lbs.

.-. P' = 2.705 + 2 = 4.705 lbs.

2. If the pressure on the upper surface, whose area is a

circle of half an inch radius, is 1.5 lbs., find the pressure on

another circular area whose radius is one inch, placed at a

depth 10 feet lower in the water. Ans. 19.5986 lbs.

11. The Free Surface of a Liquid at Rest is a

Horizontal Plaue.—Let ABCD represent the section of a

vessel containing a liquid subject to the

action of gravity; then will its free

surface be horizontal. For, if the free

surface is not horizontal, suppose it to

be the curved line, APB. Take any

point P, of the surface where the tan-

gent to the curve is not horizontal; let
'^'

The weight of one cubic inch of water at the standard temperature is 252.5 grains.
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the vertical line PO, be drawn to represent the weight ot

the particle of liquid at P, and resolve this weight into two

components PR and PQ, the former perpendicular, and the

latter parallel to the surface. The first of these is op})osed

by the reaction of the surface ; the second, being unopposed,

causes the particle to move downwards to a lower level. It

is evident, therefore, that if the free surface be one of equi-

librium, it must at each point be perpendicular to the direc-

tion of gravity, i. e., it must be horizontal.

Cor. 1.—Since the directions of gravity, acting on parti-

cles remote from each other, are convergent to the earth's

centre, nearly, large surfaces of liquids are not plane, but

curved, and conform to the general figure of the earth.

But, for small areas of surface the curvature cannot be de-

tected, because the deviation from a plane is infinitesimal.

Cor. 2.—The pressure of the atmosphere is found to be

about 14.73 lbs. to a square inch, or very nearly 15 lbs.

The pressure, therefore, on any given area can be calculated,

and if rr be the atmospheric pressure on the unit of area,

the pressure at a depth 2; of a liquid, the surface of which

is exposed to the pressure of the atmosphere, will be, from

(7) of Art. 10,

P = ffP^- + -• (1)

Cor. 3.—Since the pressures are equal when the depths

are equal (Art. 10), it follows that the areas of equal press-

ure are also areas of equal depth ; therefore, since the

surface of a liquid is a horizontal plane, an area of equal

pressure is everywhere at the same depth below a horizontal

plane, i. e., an area of equal pressure is a. horizontal
plane ; and, conversely, the pressure of a liquid at

rest at all points of a horizontal plane is the sanme.

Hence it appears that when the pressure on the surface

of a hquid is either zero or is equal to the constant atmos-

pheric pressure, all points on its surface must be in the
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same horizontal plane, even though the continuity of the

surface be interrupted by the immersion of solid bodies.

// (tinj number of vessels, containing the same
liquid, are in communication, the liquid stands at

the same height in each vessel.

This sometimes appears under the form of the assertion

that liquids maintain their level.

Eem.—The construction by which towns are supplied

with water furnishes a practical illustration of this princi-

ple. Pipes, leaduig from a reservoir placed on a height,

carry the water, underground or over roads, to the tops of

houses or to any point provided that no portion of a pipe is

hisfher than the surface of the water in the reservoir.

A a S D

12. The Common Surface of Two Fluids.—Let AD
be the upper surface of the lighter fluid, and BC the com-

mon surface of the two fluids; AD is hori-

zontal (Art. 11). Let P and Q be two points

in the heavier liquid, both equally distant

from the surface AD, and therefore in the

same horizontal plane. Draw the vertical

lines P« and QZ*, meeting the common sur-

face of the fluids in c and d. Let w be the

weight of a unit of volume of the upper fluid,

and lo' that of the lower.

Then we have

B ^Q. ~=r^ fe

^e?d3^

Fig. 7

and

pressure at P = ?«'-cP + w-ac;

pressure at Q = w'-dQ, + to -id.

Since the pressures at P and Q are eqnal (Art. 11, Cor. 3),

they being in the same horizontal plane, we have

w'-cF + w-ac = w'-dQ + w-bd. (1)

But cF -\- ac = f?Q + bd (^)
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multiplying (3) by w, and subtracting the result from (1),

we have
{w' — to) cP = (w' — w) dQ,

.-. cP = dQ,

and hence BC is horizontal.

That is, the common surface of two fluids that do

not mix is a horizontal plane.

Cor.—This proposition is true, whatever be the number

of fluids ; the' common surfaces are all horizontal. If,

therefore, the number be infinite, or the density of the fluid

vary according to any law, the surface of eaoh will still be

horizontal.*

13. Two Fluids in a Bent Tube Let A and C be

the two surfaces, B the common surface.

^and p, p' the densities of AB and BC.

Let z and z' represent the heights of

the surfaces A and C, above the com-

mon surface B, and take B' in the

denser fluid in the same horizontal B

plane as B.

Then we have, Fig. 8

the pressure at B = gpz [(7) of Art. 10] ;

the pressure at B' = gp'z\

and these are equal (Art. 11, Cor. 3).

.-. gpz = gp'z',

.: z: z' :: p' : p.

Hence, when two fluids that do not mix together

meet in a bent tube, the heights of their upper sur-

* See Besant's Hydrostatics, p. 31 ; also Bland's Hydrostatics, p. 20.
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faces above their common surface are inversely pro-

portional to their densities*

14. Pressure on Planes.

—

To find the pressure on
a plane area in the form of a rectangle when it is

Just immersed in a liquid, with one edge in the

surface, and its plane inclined at an angle 6 to the

vertical.

Let ABCD be a vertical section perpendicalar to the plane

of the rectangle ; then AB is the section of the surface of

the liquid, and AC {= a) is the

section of the rectangle, the up-

per edge b, of the rectangle being

in the surface of the liquid per-

pendicular to AC at A.

Pass a vertical plane BC,

through the lower edge of the

rectangle, and suppose the fluid

in ABC to become solid. The weight of this solid is sup-

ported by the plane AC, since the pressure on BC is

horizontal (Art. 4). Let E be the normal pressure on the

plane AC ; resolving R horizontally and vertically, we have,

for vertical forces,

Raind = weight of ABC '

= gp- ^AB'BC-b [(5) of Art. 10]

= l^pa^j gin Q cos d.

Fig. 9

E = gpah-\a cos 6; (1)

that is, the pressure on the rectangle is equal to the

iveight of a column of fluid whose base is the rec-

* The common barometer may be considered as an example of this principle.

The air and mercury are the two fluids. If the atmosphere had the same density

throughout as at the surface of the earth, its height could be determined. For
height of mercury in barometpr : height of air :: density of air : density of mer-

cury. As mercury is 10784 times ;i8 dense as air, the height of the atmosphere

would be 10784 x 30 inches, or nearly 5 miles.
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tangle, and whose height is equal to the depth of

the iniddle point of the rectangle below the sur-

face.

Cor.—When 6 = 0, (1) becomes

R = gpah'\a (2)

= gp (area BC) (depth of middle of BC),

which is the pressure on the vertical plane l&G ; hence the

law is the same as for the inclined plane AC.

15. The Whole Pressure.—The whole pressure of
a fluid, on any surface with which it is in contact

is the sum of the normal pressures on each of its

elem^ents.

If the surface is a plane, the pressure at every point is

in the same direction, and the whole pressure is the same

as the resultant pressure. If it is a curved surface, the

whole pressure is the arithmetic sum of all the pressures

acting in various directions over the surface. The follow-

ing proposition is general, and applies to curved or plane

surfaces, for unit area.

Let 8 be the surface, and p the pressure at a point of an

element dS, of the surface. Then

pdS = the pressure on the element

;

(1)

and since the pressure is the same in every direction (Art. 7),

p will be the normal pressure on this element, whatever be

its position or inclination. Hence,

/ / pdS = the whole normal pressure, (3)

the integration extending over the whole of the surface

considered.
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If gravity be the only force acting on the fluid,* we have,

from (7) of Art. 10,

p = gpz, (3)

z being measured vertically and positive downwards from

the surface of the liquid. From (3) and (3) we have,

ffpdS=ffgpzd8. (4)

Calling z the depth of the centre of gravity of the surface

S, below the surface of the liquid, we have [Anal. Mechs.,

Art. 84, (1), p and k being constant],

7-8 = ffzdS,
which in (4) gives,

ffpdS = gp'zS, (5)

for the wliole pressure on the surface S. That is, the

whole pressure of a liquid on any surface is equal
to the weight of a cylindrical column of the liquid

whose base is a plane area equal to the area of the

surface and whose height is equal to the depth of
the centre of gravity of the surface below the sur-

face of the liquid.

Eem.—The student will now be able to appreciate more
clearly the nature of fluid pressures, and to see that the

action of a fluid does not depend upon its quantity, but

upon the position and arrangement of its continuous por-

tions. It must be borne in mind that the surface of an

incompressible fluid or liquid is always the horizontal plane

drawn through the highest point or points of the fluid, and

that the pressure on any area depends only on its depth

below that horizontal plane (Art. 10). For instance, in the

construction of dock-gates, or canal-locks, it is not the

* The fluid being a homogeneons liquid.
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expanse of sea outside which will affect the pressure, but the

height of the surface of the sea.

EXAMPLES.

1. If a cubical vessel be filled with a liquid, fiud the ratio

of the pressures against the bottom and one of its sides.

The area of the surface pressed, in each case, is the same,

but the depth of the centre of gravity of the bottom is twice

that of the centre of gravity of the side ; therefore the ratio

is 2 : 1.

2. Find the pressure on the internal surface of a sphere

when filled with water.

Let a= the radius of the sphere; then the area of the

surface = 4iTra^, and the depta of the centre of gravity of

the surface below the surface of the water = a ; therefore,

calling the pressure P, we have, from (5),

P = gpa-Ana^ = 4^gpna%

which is three times the weight of the water,

3. A rectangle is immersed with two opposite sides hori-

zontal, the upper one at a depth c, and its plane inclined at

an angle 6 to the horizontal. Find the whole pi'essure on

the plane.

[Let a be the horizontal side, and b the other side.]

Ans. Pressure = gpab Ic + - sin ^j.

4. If a cubical vessel is filled with water, and each edge

of the vessel is 10 ft., find the pressure on the bottom and

on a side, a cubic foot of water weighing 62^ lbs.

. j Pressure on bottom = 62500 lbs.

( Pressure on side = 31250 lbs.

5. A rectangular surface, 10 ft. by 5 ft., is immersed in

water with its short sides horizontal, the upper side being
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20 ft. and the lower 26 ft. below the surface of the water.

Find the pressure it sustains. Ans. 32 tons.*

6. A cylinder, closed at both ends, is immersed in a

liquid so that its axis is inclined at an angle 6, to the hori-

zon, and the highest point of the cylinder just touches the

surface of the liquid. Find the whole pressure on the cyl-

inder, including its plane ends.

[Let r = the radius of the base and h = the length of

the cylinder.] Ans. gp-^r {h -}- r) (A sin d -\- 2r cos 6).

7. A hemispherical cup is filled with water, and placed

witli its base vertical. Find the pressures on the curved

and plane surfaces.

. \
Pressure on the curved surface = 2gpnaK

\ Pressure on the plane surface =: gp-naK

This example shows the distinction between the total

pressure of a fluid on a curved surface, and on that portion

of it which is perpendicular to any given plane. The press-

ure on the vertical plane side of the hemispherical cup

might be obtained by finding the sum of the horizontal

components of the actual pressures on all the elements of

the curved surface. This latter pressure, called the result-

atit horizontal pressure of the liquid on the surface, is

equal to the pressure of the liquid on the plane base, other-

wise the cup would have a tendency to move in a horizontal

direction.

16. Centre of Pressure.—The centre of pressure

of a 'plane area, immersed in a fluid is the point

of action of the resultant fluid pressure upon the

plane area. It is therefore that point in an immersed

plane surface or side of a vessel containing a fluid, to which,

if a force equal and opposite to the resultant of all the press-

* One ton = 2340 lbs.
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uros upon it be applied, this force would keep the surface

at rest.

In the case of a liquid, it is clear that the centre of press-

ure of a horizontal area, the pressure on every point of

which is the same, is its centre of gravity ; and since the

pressure varies as the depth (Art. 10), the centre of pressure

of any plane area, not horizontal,

is below its centre of gravity.

Let ABCD be any immersed

plane area ; take the rectangular

axes OX and OY, in the plane

of the area. Let (.r, y) be any

point P, of the area referred to

these axes, and p the pressure at

this point, and let EH be the line

of intersection of the plane with

the surface of the fluid. Fig. lo

Then the pressure on the element of area

= p dx dy
;

.*. the resultant pressure = J J p dx dy.

Let (^, y) be the centre of pressure ; then the moment of

the resultant pressure about OY

=1x1 I pdxdy\

and the sum of the moments of the pressures on all the ele-

ments of area about OY

= / I pxdx dy.

Therefore, since the moment of the resultant pressure is

equal to the sum of the moments of the component press-

ures (Anal. Mechs., Art. 59), we have
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x I I p dxdy =. I I px dx dy
;

/ I pxdxdy

I I p dxdy
(1)

JJpy dx dy

and, similarly, y = -jrj- ' (^)

/ I p dx dy

the integration extending over the whole of the area con-

sidered.

If polar co-ordinates be used, a similar process will give

the equations,

/ / jyr^ cos 6 dr dd

^ = ^VV > (^)

/ pr dr dd

I I pr^ sin Q dr dd

/ / pr dr dd

If the fluid be homogeneous and incompressible, and if

gravity be the only force acting on it, we have [Art. 10,

(7)].

jj = gpK

where /i (= PK) is the depth of the point P below the sur-

face of the fluid, K being the projection of P on this sur-

face, and KM being perpendicular to EH. Substituting

this value oip in (1) and (2), we get

I hxdxdy

/ j lidx dy
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I fhy dx dy

y = "^ , (6)

/ I Ji dxdy

If we take for the axis of y the line of intersection EH,
of the plane with the surface of the fluid, and denote the

inclination of the plane to the horizon by 6, we have

PK = PM sin PMK,

or, h =. X sin 0;

which in (5) and. (6) give us,

/ I a^ dx dy

I I X dxdy

I I xy dx dy

y = '^ (8)

/ I X dxdy

Cor. 1.—If the axis of x be taken so that it will be sym-

metrical with respect to the immersed plane, the pressures

on opposite sides of this axis will obviously be equal, and
the centre of pressure will be on this axis, or ^ = 0.

Cor. 2.—Since (7) and (8) are independent of 6 it ap-

pears that the centre of pressure is independent of the incli-

nation of the plane to the horizon, so that if a plane area be

immersed in a fluid, and then turned about its line of inter-

section with the surface of the fluid as a fixed axis, the

centre of pressure will remain unchanged.

Rem.—The position of the centre of pressure is of great

importance in practical problems. It is often necessary to

know the exact effect of the pressure exerted by fluids

against the sides of vessels and obstacles exposed to their
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action, in order to adjust the dimensions of the latter, so

that they may be strong enough to resist this pressure.

Examples are furnished us in the construction of reservoirs,

in which large quantities of water are collected and retained

for purposes of irrigation, the supply of cities and towns, or

to drive machinery, and of dykes to protect low districts

from being inundated by seas and lakes and rivers in times

of freshets.

EXAMPLES.

1. Find the centre of pressure of a rectangle vertically

immersed, and having one side parallel to the surface of the

fluid, and at a given distance below it.

Let a and h be the distances of the bottom and top of the

rectangle from the surface of the fluid, and d the width;

take the intersection of the plane of the rectangle with the

surface of the fluid for the axis of y, and the middle point

of this side for the origin, the axis of x bisecting the rectan-

gle. Then from (7) we have.

pa p\d pa
j I T^dxdy I x^dx

pa p\d pa
I I xdxdy 'j xdx

,n\d

J.J
X =

_ 2 g« — b^

— Za^ — h^'

Cor.—If the upper side of the rectangle is in the surface

of the fluid, J = 0, and therefore we have

X = |«,

or the centre of pressure of a vertical rectangle, one side

being in the surface of the fluid, is two-thirds the height Of

the rectangle below the surface of the fluid. The value of

y is evidently zero.
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2. Find the centre of pressure of an isosceles triangle

whose base is horizontal and opposite vertex in the surface

of the fluid.

Let a be the altitude of the triangle and h its base. Take
the intersection of the plane of the triangle with the surface

of the fluid for the axis of y and the vertex for the origin,

the axis of x bisecting the triangle. Then from (7) we
have,

*-„
pa ffia pa
I I x^ dxdy I a? dx

*^o ^0 t^
b pa

niia^ I X^dx
X dx dy *^o

3. A quadrant of a circle is just immersed vertically in a

fluid, with one edge in the surface. Find its centre ot

pressure.

Take the edge in the surface for the axis of y, and the

vertical edge for the axis of x, and let a be the radius.

Then, from (7) and (8), we have

pa p f'a'—a;" pa
j

I I x^ dx dy I ix? {a? — x^)^ dx

and y =

pa p Va^—a;'

1 1 x dx dy f^x (a^ — x^)i dx

a^n a3 3 .

16 -^3 =16"^'''

pa p Va^—x'
1 r^ (a2 - a^) dx

pa p Va^—x'

Jo Jo
^'^^^^ 1 X {a^ — a?)^ dx

8 • 3 ~ 8^'

(See Besant'g5 Hydromechanics, p. 41.)
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4. Find the centre of pressure of the triangle in Ex, 2,

when it is inverted so that the base is in the surface of the

fluid.

Ans. At a distance of ^a below the surface of the fluid.

5. An immersed rectangle has two sides horizontal, the

inclination of the plane of the rectangle to the horizon is

d, the depth of its upper side below the surface of the fluid

is Cf the sides of the rectangle are a and b, the latter hori-

zontal. Find its centre of pressure.

[Take the upper side for the axis of y, and its middle

point for the origin.]

. _ a 3c + 2a sin , _
Ans. X = ^'— ^-— and « = 0.

3 2c + a sin 6 ^

17. Embankments.—An embankment generally con-

sists of a large mass of earth and other material. When
used for the side of a reservoir or canal, to bank up a river,*

to keep out the sea,f or in general to dam back water, they

are constructed on certain principles, and are opposed to the

effort made by the water to spread itself. The effort to

overthrow the embankment arises from the force which the

water exerts horizontally ; and the stability is caused by the

weight of the embankment. When therefore there is an

equilibrium, the former of these forces must be equivalent

to the latter.

An embankment is generally made wider than is abso-

lutely necessary, to give strength and stability sufficient to

insure it against all risks. Frequently they slant only on

the side that is away from the water. In every case the

embankment should be built much stronger at the bottom

than at the top, for the pressure of water increases as the

depth.

18. Embankment when the Face on the Water
Side is Vertical.—Find the stability of an embankment

* Called dykes. t Called eeawalls.
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^mp

whose section has the form of a trapezoid when the water

stands at its brim.

Let ABCD be the cross-section of the embankment

;

draw DE parallel to the vertical side BC ; let G and g be

the centres of gravity of the rectangle

and triangle respectively; draw the

vertical lines GH and ^K ; let A.B

= a, DC = b, BC = h, iv = the

weight of each cubic foot of the ma-

terial, and Wj ^ the weight of a

cubic foot of water.

The forces acting are the weight

of the wall, and the fluid pressure on

BC. As the embankment is uniform

throughout its length, and also the pressure on it, we may
determine the stability by taking only one foot in length.

Take BM = |BC, and M will be the centre of pressure

(Art. 16, Ex. 1, Cor.), The resultant P, of the pressure of

the water against the wall acts at M, and tends to turn the

embankment over its outer edge A. Hence, we have

the moment of P ^ pressure of water on BC x AO
(Art. 15)

= yi^w^ X^h = ^h^Wi ; (1)

the moment of AED = weight of AED x AK
= ^{a—b)hwx^{a—b)

= ^{a— b)''^7iw;

the moment of EBCD = weight of EBCD x AH

= bhw X (a—^b)
;

.-. the moment of ABCD = [^(a—iy+ b{a—^b)]Jiw. (4)

If the embankment be upon the point of overturning on

A, the moments in (1) and (4) are equal to each other, and

we have

(3)

(3)



EMBANKMENT WHEN ONE FACE IS SLANTING. 29

yi^tc^ = [i(«-5)2 + b{a—^b)]hw,

or, P = [2 {a-bf -H 35 (2«-6)] —

,

(5)

and the embankment will be overturned or not, according as

h > or <
Y/[2(«-5)2

+ 3*(2a-&)]|^.

Coil.—If the embankment is rectangular, h ^= a, and (5)

becomes

h^ = ^a^^- (6)

If the embankment is triangular, J = 0, and (5) becomes

7.2 = 2«^^.

19. Einbaukment when the Face on the Water
Side is Slaiitiiig.—Find the stability of an embankment
whose section is a trapezoid which

slants on both sides, viz., towards the

water and away from it.

(1) Suppose the embankment to

yield to the pressure of the fluid by

turning round the outer edge A.

Let ABCD be the cross-section of

the embankment. Since the pressure

of a fluid is always normal to the sur-

face with which it is in contact (Art.

4), the pressure on the slanting face BC, of this embank-

ment is inclined to the horizon, and hence the stability of

the embankment is caused by its weight and the vertical

pressure of the fluid on the face BC, while the effort to

overthrow it is caused by the horizontal pressure of the

fluid.

Let P ^ and P^ be the horizontal and vertical components
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of the normal pressure P, and « the angle which the direc-

tion of the normal pressure makes with the horizon ; then

we have, for the horizontal component,

Pj = P cos a

= area of BC x |CE x lo^^ cos « (Art. 15)

= area of CE x Ihw^

,

where h — OE, and w^ is the weight of a cubic foot of the

fluid.

Similarly, P^ = area of BE x \luo^
;

but area of CE is the projection of BC on CE, and area of

BE is the projection of CB on EB ; i. e., the pressure
exerted by a fluid in any direction upon a surface
is equal to the weight of a column of the fluid,

whose base is the projection of the surface at right

angles to the given direction, and whose height is

the depth of the centre of gravity of the surface
below the surface of the fluid.

Hence, since the projection at right angles to the vertical

direction is the horizontal projection, and that at right

angles to a horizontal direction is a vertical one, we find

the vertical pressure of the fluid against a surface by treat-

ing its Jiorizonlal projection as the surface pressed upon, and,

on the contrary, the horizontal pressure of the fluid in any

direction by treating the vertical projection of the surface at

right angles to the given direction as the surface pressed

upon, and in both cases we must regard the depth of the

centre of gravity of the surface below tlie surface of the

fluid as the " height of the column."

Let g, G, and g^ be the centres of gravity of AFD,
FECD, and EBC ; let AB = », DC = h, AF = c, EB = d,

and 10 = the weight of each cubic foot of the embankment.

The horizontal pressure of the water acting at M tends to
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turn the embankment over its outer edge A. Ilence, we

have

the moment of P^ = yi^w^ x^h = ^hhv^

;

(1)

the moment of Pg = <^ X ^hic\ x AH
= \hdw^ {a — ^d)

;

the moment of AFD = wt. of ADF x |AF
= ^htv X fc = \cViw

;

tho.moment of FECD = wt. of FECD x (AF+ JFE)
= hlno X (c+ \h) ;

the moment of EBC = wt. of EBC x (AB — |BE)
= \dliw X (a — |rf)

= \dJiw (3a — 2(/).

.-. the moment of ABCD = ^ + lj(2c+*)

+ - (3a — M) \hw-\-- (3a — d) hw^. (ii)

If the embankment be upon tlie point of overturning on

A, the moments in (1) and (2) are equal to each other, and

we have

^h^w^= ^+ |(2c+ Z,)+^(3a-2^) hw+ ~ {3a— d) hwi

w
or, 7*2= [2(^-{-3b{2c+ b)-\-d{3a-2d)]—-\-diSa—d).{3)

and the embankment will be overturned or not, according as

h > or <A/[2c2+ 3*(2c+ *) + f/(3a— 2(Z)] — +^(3a-f?).

Cor. 1.—If the embankment is of the form of Fig. 11,

(Z = 0, and (3) becomes
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h^= [2c^^3b{2c + b)]^, (4)

which agrees with (5) of Art. 18.

CoK. 2.—If the embankment is rectangular, c = 0, and

(4) becomes
w

h^ = 362—
,

which agrees with (6) of Art. 18.

(2) Suppose the embankment to yield to the pressure of

the fluid by sliding along the horizontal base AB.

The horizontal pressure of the fluid, from (1), is

p, = W^^i ;

the vertical pressure of the fluid is

Pg = l-dhw^.

The weight of the embankment is

a + b

2
hw

;

and the entire vertical pressure of the embankment and the

water on its face is

a -\-b—-— hio + ^amoi

= {aw -{- bw + dwi) ^?i.

Let ju = the coefficient of friction ; then the friction

between the embankment and the surface of the ground on

which it rests is (Anal. Meclis., Art. 92),

{mv + ho 4- dw^) yifi.

When the horizontal pressure of the water pushes the

embankment forward, we must have

\]i:ho^ = {aw + iw + dtu^) ^hfj. ;
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or, more simply, h = {a + *)
i^ + d"' (8)

and the dam will move or not according as

A > or <
tv

(a + b)— -}-d
to.

Cor.—If the embankment is rectangular, d = and
h = a, and (5) becomes

h = 2a I- /x.

20. Pressure upon Both Sides of a Surface.—If
a plane surface is subjected on both sides to the pressure of

a fluid, the two resultants of the pressures on the two sides

have a new resultant, which, as they act in opposite direc-

tions, is obtained by subtracting one from the other.

Let AB be a flood-gate with the

water pressing on both sides of it, to

determine the resultant pressure, and

the centre of pressure. Let AB = «,

the depth of the water on one side

;

DB = b, the depth of the water on

the other side ; P = the resulting

pressure on the gate ; and Wj = the

weight of a cubic foot of water. Then

F = pressure on AB — pressure on DB
;

.-. P = ^ («2 _ J2) to^. (1)

Now let C and Cj be the centres of pressure of the sur-

faces AB and DB, and Cg the point to which the resultant

pressure P, is applied. Then, taking moments with respect

to A, and putting ACg = "z, we have

P xi = pressure on AB x AC — pressure on DB x AC,
= ^cfiw^ X f« — ^li^iVi {a — -JJ).
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' = -^J^2^r^~ l^'om (1)]

2a2 + 2aJ — *«

3 {a + A)
(2)

EXAMPLES,

1. The total breadth of a flood-gate is 2b feet, and the

depth is a feet ; the hinges are placed at d feet from the

respective extremities of the gate ; required the pressure

upon the lower hinge.

Let AB represent the height of the gate, j^?^^^'
D and E the hinges, and the centre of ^J^^jq
pressure of the water. The pressure of the

water upon each half of the gate = ^a^w
;

and since the pressure of the water at is

supported by the hinges D and E, we have, ^^^^-^
by the equality of moments with respect ^^'"^^"=^

toD, ^
'^'«-"

Pressure on E x DE = Pressure on C x DC

;

but DE = a — 2d, and DC = fa — <f
;

.*. Pressure on E {a — 2d) = ^a^biv {\a — d)
;

„ „ ci^bw (2a — Zd)
.'. Pressure on E = ——-r ttt—-'

6 (a — 2d)

2. A brick wall, with rectangular cross-section, 12 ft

high and 3 ft. thick, sustains the pressure of water against

one of its faces. Find the height to which the water may
rise without overthrowing the wall, each cubic foot of the

wall weighing 112 lbs.

Ans. 8.34 ft., or within 3.66 ft. of the top of the wall.

3. A brick wall, whose cross-section is a right-angled tri-

angle, weighs 120 lbs. per cubic foot, and sustains the

pressure of water against its vertical face; its height is
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14 ft., and its base is 6 feet. Show that the wall will be

overthrown by the pressure of water against it, when it rises

to the top of the wall.

21. Rotating Liquid.—It has been shown (Art. 11)

that, if a liquid at rest be subject to the force of gravity

only, its free surface must be horizontal, i. e., everywhere

perpendicular to the direction of gravity. In the same way

it may be shown that, if a liquid be subject to any forces

whatever, its surface, if free, must at every point be per-

pendicular to the resultant of the forces which act upon

that point. For, if the resultant had any other direction,

it could be resolved into two components, one in the direc-

tion of the normal and the other in the direction of the

tangent; the first of these would be opposed by the reac-

tion of the surface ; the second, being unopposed, would

cause the particle to move, which is contrary to the hypoth-

esis that the surface is at rest: hence the surface is at every

point perpendicular to the resultant of the forces which act

upon that point.

If a quantity of liquid in a vessel he made to rotate

uniformly about a vertical axis, the surface of the

liquid will taJce the form, of a paraboloid of revolu-

tion.

Let ABCD represent a vertical section

made by a plane passing through ZZ', the

axis of rotation of the vessel containing

the liquid, and let the curved line AVD,
represent the section of the surface of

liquid made by this plane, and let P be

any point taken on this section.

Now every particle of the liquid moves

uniformly in a horizontal circle whose

centre is in the axis ZZ', and there-

fore is urged horizontally by a centrifugal force directed
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from the axis. Let m be the mass of the particle at P, u

the angular velocity of the liquid, and y the distance MP,
and denote the centrifugal force by P; then (Anal. Mechs.,

Art. 198) we have, for the centrifugal force on the parti-

cle m,
P = W?u)2y. (1)

The particle is also urged vertically downwards by its

own weight mg, due to the force of gravity ; hence the par-

ticle is in equilibrium under the action of gravity mg, of

the centrifugal force moj^y, and of the reaction of tiie sur-

face of the liquid which is normal, and therefore the result-

ant of mg and 7no)^y must be normal to the surface.

Let PF and PG represent the centrifugal force and force

of gravity, respectively ; then, completing the parallelogram

offerees, the resultant of these PR, must be normal to the

surface at P. Let this normal meet the axis in N; since

the triangles, GPR and MNP, are similar, we have

NM : MP :: PG : GR (= PF);

or NM : y :: mg : mto^y

;

.-. NM=5. (2)

But NM is the subnormal of the curve, AVD ; therefore

the subnormal NM =z ^ = a constant,

which is a property of the parabola. Hence the curve

AVD, is a parabola whose latus rectum is -^, and therefore

the surface is a paraboloid of revolution.

ScH.—It will be seen that this result is independent of

the form of the containing vessel. The axis of rotation, in

fact, may be within or without the fluid, but in any case it

will be the axis of the surface of the pai'aboloid.
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EXAMPLES.

. 1. If the vessel (Fig. 15) contain a liquid, and make 30

revolutions per minute, find the value of NM.

Here w = 2:: x 30-^-60 = tt, and ^ =- 33 ; therefore we
have, from (2),

NM = ~ = 3.242 ft. = 38.9 in.

2. If the vessel make one turn in a second, find the value

of NM. Ans. 9.72 in.

3. If the vessel make 95 turns per minute, find the value

ofNM. Ans. 3.88 in.

22. The Pressure at any Point of a Rotating
Liquid.—Let ABCD be a vertical section through the axis

of a vessel containing a rotating

liquid ; let Q be any point {x, y) in

the liquid referred to the rectangu-

lar axes OX, OY, and describe a

small vertical prism having Q in its

base, which is to be taken hori-

zontal.

The prism PQ of liquid rotates

uniformly under the action of the

pressure around it, but its weight is

entirely supported by the vertical pressure on its base.

Hence, if^ be the pressure, and p the density, we have

Fig. 1.6

Bat [Art. 21, (2)],

PQ =

which in (1) gives.

P = ffP^Q-

PQ = OM - ON = "^^^ - ON,

(1)

p — p (i'^^^ — 9y)> (2)
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which gives the pressure at any point in terms of tiie an^ni-

lar velocity and of the co-ordinates of the jjoint referred to

the axis and vertex of tlie paraboloid. (See Besant's Hy-^

drostatics, p, 152.)

Cor.—If Q be lower than 0, y is negative, and (3)

becomes

P = p{^<^^^^ + <Jh)' (3)

EXAMPLES.

1. A tube ABCD, the equal branches of which are verti-

cal, and BC horizontal, is filled Avith liquid and made to

rotate uniformly about the axis of AB

;

find how much liquid will flow out of the

endD.
The liquid will flow out until the sur-

face in AB is the vertex of a parabola

passing through D, and having its axis

vertical and latus rectum = ~ (Art. 21).

If then be the vertex of the parabola,

we shall have

AD^ = ^,AO;

.', AO = ^AD^

which gives AO, and thus determines the quantity which

flows out.

If, however, AO be greater than AB, i. e., if G be ht^ow

B, at 0', for instance, the surface of tbe liquid will be in

BC, at P. We shall then have,

AD' = %KO'i



STRENGTH OF PIRES AND BOILERS. 39

and gp2^ ?^B0';

AD'

which determines the position of P. (Besant's Hydrostatics,

p. 154.)

2. A straight tube AB, filled with liquid, is made to

rotate about a vertical axis through A ; find i,,n

how much flows out at B.

Ans. All above P, where P is tangent to

2^
the parabola whose latus rectum is ~ and

whose axis is coincident with the vertical 0-'

line through A, and AP = — cot « cosec «,

where « is the angle OAB.
Fig. 18

23. Strength of Pipes and Boilers.—An important

application of the theory of the pressure of fluids is the

determination of the thicliness of pipes, boilers, etc. In

order tiiat these vessels shall be strong enough to resist the

pressure of the liquid, their rvalls must be made of a certain

thickness, which depends upon the pressure of the liquid

and the internal diameter of the vessel.

Let it he required to find the thickness of a pipe of
any material necessary to resist a given pressure.

A cylindrical vessel may burst either transversely or lon-

gitudinally ; but the former is less likely to occur than the

latter, as appears from the following investigation.

(1) JV7iefi the rupture is transverse.

Let ABCD (Fig. 19) be a section of pipe perpendicular

to its axis, the interior surface of which is siibjected to a
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pressure oip on each unit of surface. Let 2r be the diam-

eter MD of the interior, then will the surface pressed be

measured by -nr^, which is the area of the

cross-section of the interior, and the

whole pressure upon the surface of the

end of the pipe and which produces rup-

ture will be measured by

Trr^p. (1)

Let e = AE = the thickness of the

pipe ; then the cross-section of the mate-

rial of the pi})e

= TT (r + ey — Trr2 = ne {e + 2r).

Let T denote the strength of the material of which the

pipe is composed, for each unit of cross-section ; then the

strength of the entire pipe in the direction of the axis

= -e{e + 2r) T, (2)

and since the whole pressure in (1) when rupture is about

to take place must be held in equilibrium by the strength

in (3), we have

ne {e + 2r) T = nr^p,

rp rp

2l"

K^ + l)^
since e is usually very small in comparison with 2r.

(3)

(2) When the rapture is longitudinal.

Let EMH be any portion of the wall whose length is I,

and let 2« = the angle ECH. Then, since the projection

of EMH at right angles to the line MD passing through

the centre is a rectangle whose area =i 2rl sin «, the mean
pressure of the fluid on the wall, EMH

— 2r?sin «j5 (Art. 19). (4)
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Now this pressure must be held in equilibrium by the

forces of cohesion, E, R, acting tangentially on the cross-

sections, AE and BH, of the wall of the pipe. Denoting

the components of R, R, parallel to MD, by Q, Q, we have

2^ = 2R sin « = 2elT sm a, (5)

e being the thickness of the pipe and T the strength of eacli

unit of section.

Therefore, from (4) and (5) we have,

2elTsm a = 2rlp sin «;

••• . = f

,

(6)

which shows that the thickness of the pipe is independent

of its length.

Otherwise thus, hy the principle of ivorh.

The whole surface of the interior of the pipe = 2-nrl ; and

the whole pressure upon the surface = %-nrlp. Suppose the

pipe to rupture longitudinally,* under this pressure, its

radius becoming r-\-dr', then the path described by the

pressure will be dr, and the work done by the pressure

= 2TTrlp dr. (7)

The force R, which resists rupture and acts tangentially,

= eTl. While the radius of the interior changes from r to

r+ dr, the circumference changes from 27rr io ^ir {r -{ dr)
',

then the path described by the resistance = 2,tc dr, and the

work done by the resistance

= )lTTeTl dr. -
(8)

* Longitudinal tension produces transverse rupture, and transverse tension pro-

duces longitudinal rupture. The stretching tendency to rupture longitudinally is a

transverse stretching, i. e., the pipe tends to bulge out all along its length ; hence,

transversely, r becomes r+dr.
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Therefore, from (7j and (8), by the principle of work, we
have

2-neTl (Ir = %-nrl]) dr.

" — rp f

which is the same as (6).

From (3) and (6) it follows that, to prevent a longi-

tudinal rupture, the wall must he made twice as

thick as would be necessary to prevent a transverse

one.

COK.—Since p = zw [from (1) of Art. 10], (3) and (6)

become, respectively,

rp rziv , rp rzw
^ — 22' ~ W' ^ — -f — "T'

that is, the thickness of similar pipes must vary di-

rectly as their diameter and as the pressure upon the

unit of surface, or in the case of a liquid, as the

depth of the pipe below the upper surface of the

liquid, and inversehj as the strength of eacJb unit of
section.

A pipe which has twice the diameter, and has to sustain

four times the pressure of another, must be eight times as

thick. (See Weisbach's Mechs., Vol. L, p. 739; Bartlett's

Mechs., p. 294; Tate's Mechs., p. 268.)

EXAMPLES.

1. It is found that the pressure is uniform over a square

yard of a plane area in contact with fluid, and that the

pressure on the area is 13608 lbs.; find the measure of the

pressure at any point (Art. 6), (1) when the unit of length

is an inch, (2) when it is two inches.

Ans. (1) 10| lbs.
; (2) 42 lbs.
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3. If the area of a (Fig. 4) be a square inch, and if it be

pressed by a force of 15 lbs., what pressure * will this trans-

mit to the piston A if its diameter be 10 in. ?

Ans. Pressure on A = 1178 lbs.

3. If the diameter of a be 4 in., and if the pressure on it

be 185 lbs., what pressure will be exerted on A if its area is

one square foot? Ans. Pressure on A = 2120 lbs.

4. If the area of a be 20 square inches, and if it be

pressed by a force of 3G0 lbs., find the diameter of A so

that it shall be pressed upwards by a force of 10 tons (one

ton = 2240 lbs.) Ans. Diameter of A = 39.8 in.

5. If the diameter of A (Fig. 3) be one inch, and if the

surface at E be a square whose side is one-quarter of an

inch, find the pressure transmitted to E if that on A be

10 lbs. Ans. Pressure on E = 0.795 lbs.

6. If the area of A be 2^ sq. in., and the pressure on it

5G lbs., find the pressure transmitted to a surface at E, the

area of which is a triangle whose base is | of an inch, and

whose height is -^ of an inch.

Ans. Pressure on E==0.42 lbs.

7. A cylindrical pipe which is filled with water opens

into another pipe the diameter of which is three times its

own diameter ; if a force of 20 lbs. be applied to the water

in the smaller pipe, find the force on the open end of the

larger pipe which is necessary to keep the water at rest.

Ans. 180 lbs.

8. Kequired (1) the pressure on the sides of a cubical

vessel filled with water, and (2) the pressure on the bottom,

the side of the vessel being a ft. (Art. 10).

Ans. (1) 125a3 1bs.; (2) 62.5rtMbs.

9. A cylindrical vessel is filled with water ; the height of

the vessel is a ft., and tlie diameter of the base d feet.

Find (1) the pressure upon the side and (2) the pressure on

the bottom. Aiis. (1) ^\\-r:aH
; (2) 15|Tra^.

lu tho first seven examples, the weight of the liquid itself is not considered.
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10. Find the height of the vessel in Ex. 9 so that the

pressure on the side may be equal to the pressure on the

bottom.

Ans. The height must equal the radius of the base.

11. The pressure on a square inch of surface in a vessel

of mercury is 1000 grains. Find the pressure on a circular

surface of one-quarter inch radius, placed 9 in. lower down,

mercury being 13.5 times as heavy as water.

Ans. Pressure = 0.8886 lbs.

12. The water in a canal lock rises to a height of 18 ft,

against a gate whose breadth is 11 ft. Find the total press-

ure against the gate. Ans. Pressure = 49|- tons.*

13. The upper side of a sluice-gate is 1Q\ ft. beneath the

surface ; its dimensions are 3 ft. vertical by 18 in. horizon-

tal. Find the pressure upon it.

A71S. Pressure = 1\ tons.*

14. A dyke to shut out the sea is 200 yards long, and is

built in courses of masonry one foot high ; the water rises

against it to a height of 6 fathoms. Find the pressure

against the Ist, 18th, and 36th courses.

(
1st pressure = 610. •! tons.*

Ans. I 2d jiressure == 318.1 tons.

( 3d pressure = 8.(5 tons.

15. Find the pressure, in pounds, of a cylinder of water

4 inches in diameter and 45 ft. in height.

Ans. Pressure = 244.8 lbs.

16. A cubical vessel, each side of which is 10 ft., is filled

with water, and a tube 32 ft. long is fitted to an aperture in

it, whose area is one square inch. If the tube be vertical,

and of the same size as the aperture, and filled with water,

find the pressure on the interior surface of the vessel, (1)

neglecting the weight of the water it contains, (2) when the

weight of the water is taken into account.

Ans. (1) 1,200,000 lbs.
; (2) 1,387,500 lbs.

• One ton = 2240 lbs.
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17. Find the pressure on a square inch at a depth of

100 ft. in a lake, (1) neglecting, (2) taking account of the

atmospheric* pressure. Ans. (1) 43f| lbs.
; (2) 58 lbs.

18. A reservoir of water is 200 ft. above the level of the

ground floor of a house ; find the pressure of the water, per

square inch, in a pipe at a height of 30 ft. above the ground
floor, neglecting atmospheric pressure. Ans. 1^\W lbs.

19. An equilateral triangular area is immersed vertically

in water with a side, one foot in length, in the surface.

Find the pressure upon it in ounces. Ans. 125 oz.

20. A hollow cone, vertex upwards, is just filled with

liquid. Find {\) the pressure on its base, (2) the normal

pressure on its curved surface, (3) the vertical pressure on

the curved surface. [Let r = the rndius of the base and

]i = the altitude.]

Ans. {l)(/pnrVi; (2) IgpnrhVr^h^; (S) ^gpTrr^h.

21. A vertical rectangle has one side in the surface of a

liquid. Divide it by a horizontal line into two parts on

which the pressures are equal.

Atis. If h be the vertical side, the depth of the horizontal

T ^
line = --=•

V2
22. A vertical triangle, altitude h, has its base horizontal

and its vertex in the surface. Divide it by a horizontal line

into two parts on which the pressures are equal.

A)is. The depth = ^-7='

V2
23. A smooth vertical cylinder one foot in height and one

foot in diameter is filled with water, and closed by a heavy

piston weighing 4 lbs. Find the whole pressure on its

curved surface. . ^ . 1257r „
Ans. 16

-I ^ lbs.

* See Art. !1, Cor. 8.
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24. A hollow cylinder, closed at both ends, is just filled

with water and held with its axis horizontal ; if the whole

pressure on its surface, inchiding the plane ends, be three

times the weight of the fluid, compare the height and

diameter of the cylinder. Ans. As 1:1.

25. The side AB of a triangle ABC is in the surface of a

fluid, and a point D is taken in AC, such that the pressures

on the triangles BAD, BDC, are equal. Find the ratio

AD : DC. Am. As 1 : V2 - 1.

26. The diameters of the two pistons, p and P (Fig. 4),

are 2^ in. and 9 in., respectively, and the smaller is 60 in.

above the larger. What force must be applied to the

smaller piston that the larger may exert a pressure of

1600 lbs. ? Ans. 112.8 lbs.

27. Compare the pressure on the area of a parabola with

that on its circumscribing rectangle, both being immersed

perpendicularly to the vertex. Ans. As 4:5.

28. A cubical vessel is filled with two liquids, of given

densities, the volume of each being the same. Find the

pressure on the base and on any side of the vessel.

Let rt be a side of the vessel, p and p' the densities of the

upper and lower liquids, p' being greater than p.

The pressure on the base = the weight of the whole

fluid

The pressure on the upper half of any side

a^ a 1 „

= ^^2'4 = 8^^^'-

To find the pressure on the lower half, replace the upper

liquid by an equal weight of the lower liquid, which will

not affect the pressure at any point of the lower half. If a

be the height of this equal weight, we have
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and the depth of the centre of gravity of the lower half

below the upper surface of the equal weight

= «' +
4 ~ 4 \ ^ p'f'

therefore, the pressure on the lower half

= (JP (^ - 1)

= ya^ ip' + 2p).

(Besant's Hydrostatics, p. 37.)

29. A circle is just immersed vertically in a fluid. Find

on which chord, drawn from the lowest

point, the pressure is the greatest.

[Let ADBC be the circle with radius a

and BC the required chord, which bisect in

H, and draw HK perpendicular to AB;
.*. etc.] Ans. AK = ^a.

30. A semicircle is immersed vertically

in a fluid, with its diameter in the upper

surface; find on which chord, parallel to the surface, the

pressure is the greatest, supposing the density of the fluid

to increase as the depth.

[Let LBM (Fig. 20) be the semicircle, and DE the chord

on which the pressure is the gi-eatest, and a the radius of

the circle. Then if the density were uniform, the pressure

would vary as DG x GrF (Art. 15) ; but, since the density

varies as the depth, the pressure varies as DG x GF^

;

••• etc.] A71S. FG = aVl
31. If LBM (Fig. 20) be a parabola, FB = b. the latus

rectum = 4ft, and the other conditions the same as in

Ex. 30, find FG, the depth of the chord of greatest pressure

below the upper surface. Ans. FG = |i.
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32. The lighter of two fluids, whose densities are as 2 : 3,

rests on the heavier, to a depth of 4 in. A square is im-

mersed in a vertical position, with one side in the upper

surface. Determine the side of the square in order that the

pressures on the portions in the two fluids may be equal.

A71K f (l + V'i0)in.

33. Find the centre of pressure of a semi-parabola, the

extreme ordinate coinciding with the surface of the fluid.

[Tjet LBF (Fig. 20) be the semi-parabola; let BF = ^r,

and LF = b, and suppose to be the centre of pressure,

OG being parallel to LF.] Am. FG = ia ; GO = ^^b.

34. A quadrant of a circle is just immersed vertically in

a liquid, with one edge in the surface, as in Ex. 3, Art. 16.

Find the -centre of pressure when the density varies as the

iiepth.

Taking the edge in the surface for the axis of y and the

vertical edge for the axis of x, we find

- _ 32 fl - _ 1^ «

35. The total breadth of a water passage closed by a pair

of flood-gates is 10 ft. and its depth is 6 ft. : the hinges are

placed at one foot from the top and bottom. Find the

pressure upon the lower hinge when the water rises to the

top of the gates. J/^s. 4218| lb3.

36. If we suppose everything to be the same as in Ex. 2,

Art. 20, except that the height of the wall is determined by

the condition that the wall just sustain the pressure when

the water rises to the top, what is the height of the wall ?

Ans. 6.96 ft.

37. A wall of masonry, a section of which is a rectangle,

is 10 ft. high, 3 ft. thick, and each cubic foot weighs 100

lbs. Find the greatest height of water it will sustain with-

out being overturned. Ana. O-v/2
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38." If the height of the wall be 8 ft., its thickness 6 ft.,

and each cubic foot weighs 180 lbs., find whether it will

stand or fall when the water is on a level with the top.

Ans.

39. The depth AB of the water in the head bay (Fig. 13)

is 7 ft., the depth DB of the water in the chamber of the

lock is 4 ft., and the Avidtli of the lock-chamber is 7.5 ft.
;

find (1) the resnltant pressure upon the gate AB, and (2)

the depth of the point of application of the resultant press-

ure below the surface of the water in the head bay.

Ans. (I) 7734.4 lbs.; (2) 4.18 ft.

40. If the vessel (Fig. 15) make 140 turns per minute,

find the value of NM. Ans. 1.78 in.

41. A liollow paraboloid of revolution, with its axis ver-

tical and vertex downwards, is half filled with liquid. With

what angular velocity must it be made to rotate about its

axis, in order that the liquid may just rise to the rim of the

Ans. If 2jo = latus rectum, (J^ = ^•

42. If the vessel in the last example be filled with liquid,

find the angular velocity and the time of rotation that it

may just be emptied.

Ans. If 2» = latus rectum, (,^ = ^\ time = 2;r\ /?.
P \ 9

43. A hemispherical bowl is filled with liquid, which is

made to rotate uniformly about the vertical radius of the

bowl. Find how much runs over. , 1 na^iJ^
Ans. -r

.

^
44. A closed cylindrical vessel, height h and radius a, is

just filled with liquid, and rotates uniformly about its ver-

tical axis. Find the pressures on its tTpper and lower ends,

and the whole pressure on its curved surface.

Ans. gpna^^, gp-na^^^^hj, and gpTTah\1i-ir^y



CHAPTER II.

EQUILIBRIUM OF FLOATING BODIES. — SPECIFIC
GRAVITY.

24. Upward Pressure, Buoyant Effort.—To find

the resultant pressicre of a liquid on the surface of a

solid either wholly or partially immersed.

Let ABCD be a solid floating in a liquid whose upper

surface is EF. Imagine this solid removed, and the space

it occupied filled wath the liquid, and suppose this liquid to

be solidified. It is clear that the result-

ant pressure upon this solidified liquid E_ F

will be the same as uj)on the original &^^^^^fj
solid. But this solidified mass is at rest ^^^^^Isf^
under the action of its own weight and Wf~^^^^^
the pressure of the surrounding liquid

; ^^^^^^^
and, as its own weight acts vertically

p^ jj

downward through its centre of gravity,

the resultant pressure of the surrounding liquid must be

equal to the weight of the solidified mass, and must act ver-

tically upwards in a line passing through its centre of

gravity.

The above reasoning is equally applicable to the case of a

body immersed in elastic fluid.

Therefore, if a solid be either wholly or partially im-
mersed in a fluid, it loses as much of its weight as is

equal to the weight of the fluid it displaces.*

* The discovery of this principle is due to Archimedes. (Goodeve, p. 190 ; Gal-

braitb, p. 49.)
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Cor. 1.—If ii body be supported entirely by a fluid, the

weiglit of the body must be equal to the weight of the fluid

displaced, and the centres of gravit}" of the body and of the

fluid displaced must lie in the same vertical line.

ScH.—These conditions hold good, whatever be the nature

of the fluid in which the body is floating. If it be hetero-

geneous, the displaced fluid mus| consist of horizontal strata

of the same kind as, and continuous with, the horizontal

strata of uniform density, in which the particles of the sur-

rounding fluid are necessarily arranged. If, for instance, a

solid body float in water, partially immersed, its weight will

be equal to the weight of the water displaced, together with

the weight of the air displaced.

The upward pressure of a fluid against a solid, and which

is equal to the weight of the displaced fluid, is called the

buoyant effort of a fluid. The centre of gravity of the dis-

placed fluid is called tlie centre of buoyancy. The buoyant

effort exerted by a fluid acts vertically upwards through the

centre of buoyancy.

The enunciation and proof of this proposition are due to Archi-

medes, and it is a remarkable fact in tiie liistory of science, that no

furtlier progress was made in Hydrostatics for 1800 years, and until

the time of Stevinus, Galileo, and Torriceili, the clear idea of fluid

action thus expounded by Archimedes remained barren of results.

An anecdote is told of Archimedes, which practically illustrates the

accuracy of his conceptions. Hiero, king of Syracuse, had a certain

quantity of gold made into a crown, and suspecting that the goldsmith

had abstracted some of the goid and used a portion of alloy of the same

weight in its i)lace, he applied to Archimedes to investigate whether

such was the case, and to ascertain the nature of the alloy. It is re-

lated that while Archimedes was in his bath, reflecting over the diffi-

cult problem which the king had given him. he observed the water

running over the sides of the bath, and it occurred to him that he was

dis[)lacing a quantity of water equal in volume to that of his own body,

and therefore that a quantity of pure gold equal in weight to the

crown would displace less water than the crown, the volume of any

weight of alloy being greater than that of an equal weight of gold.
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He concluded at once that he could completely solve the king's prob-

lem, by weighmg the crown in water. Overjoyed with his discovery,

he ran directly into the street, crying out, " Eureka ! Eureka !

"

The two books of Archimedes which have come down to us were first

found in old Latin MS. by Nicholas Tartaglia, and edited by him in

1537. These books contain the solutions of a number of problems on

the equilibrium of paraboloids, and various problems relating to the

equilibrium of portions of spherical bodies.

The authenticity of these books is confirmed by the fact that they

are referred to by Strabo, who not only mentions their title, but also

quotes from the first book.

25. Conditions of Equilibrium of an Immersed
Solid.—Let V denote the volume and p the density of the

sohd; v' the volume and p' the density of the displaced fluid:

the weights of the solid and of the displaced fluid will be

respectively gpv and gp'v' ; then, if the solid rest in equilib-

rium in the fluid, we shall have

If we suppose the solid to be entirely immersed, the vol-

umes V and v' will be equal, and the densities p and p' must

also be equal if the solid remains in equilibrium, having no

tendency either to ascend or descend.

But if the weight of the immersed solid be greater than

that of the fluid displaced, we shall have

f/pv > ffp'v;

and the solid will be urged doionwards by a force equal to

gpv — gp'v.

If, on the contrary, the weight of the solid be less than

that of the fluid, we shall have

gpv < gp'v
;

and the solid will be urged upwards by a force equal to

gp'v — gpv.
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That is, the luhoUy inimersed solid will descend, re-

main at rest, or ascend, according as its density is

greater than, equal to, or less than the density of the

fluid.

In the first case the solid will descend to the bottom, and

press it with a force equal to the excess of its weight above

that of an equal bulk of fluid.

In the third case the solid will rise to the surface, and be

but partially immersed, the volume v' of the fluid displaced

by the solid having the same weight as the entire solid.

[An egg, placed in a vessel of fresh water, sinks to the

bottom of the vessel, its mean density being a little greater

than that of the water. If, instead of fresh water, salt

water is employed, the egg floats at the surface of the liquid,

which is a little denser than the egg. If fresh watf.r is

carefully poured on the salt water, a mixture of the two

liquids takes place where they are in contact ; and if the

egg is put in the upper part, it will descend, and, after a

few oscillations, remain at rest in a layer of liquid of which

it displaces a volume whose weight is equal to its own.]

Cor.—From (1) we have

V : v' '.'. p' '. p;

therefore, if a homogeneous solid float in a fluid, its

whole volume is to the volume of the displaced fluid as

the density of the fluid is to the density of the solid.

ScH.—When the floating solid and fluid are both homo-

geneous, the centre of gravity of the part immersed will

coincide with the centre of buoyancy.

The section of a floating body formed by the plane of the

surface of the fluid in which the body floats is called the

plane offlotation. The line passing through the centre of
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gravity of the floating body and the centre of buoyancy is

called the axis offlotation.

The weight gpv of the body acting downwards, and the

Duoyant effort gp'v' acting upwards (Art. 24, Sch.), form a

couple, by which the body rotates till the directions of these

forces coincide, i.e., till the centre of gravity of the body

and the centre of buoyancy come into the same vertical line.

EXAMPLE.

1. A piece of oak containing 33 cubic inches, floats in

water ; how much water will it displace, the density of

the oak being 0.743 times that of water ?

Ans. 23.776 cu. in.

26. Depth of Flotation.*—Tlie depth to which a
body siiihs helow its plans of flotation is called its

Depth of Flotation. When the form and weight of a

floating body are known, its depth of flotation can be calcu-

lated.

Denoting the volume and density of the body by v and p,

and of the displaced fluid by v' and p, respectively, we have

[Art. 25, (1)].

gpv = gp'v'
;

.-. v'=:P-,v, (1)

by which the depth of flotation can be determined, when-

ever v' can be determined in terms of that depth.

EXAMPLES.

1. Let the solid be a right cylinder, whose axis a is verti-

cal, and the radius of whose b^se is r; let x denote the

depth of flotation. Then we have

Called also depth of immersion.
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V = TTT^a,

v' = nr^x; 1

X = v'
- a
V

55

and

= ^,a[froin(l)].

2. Let the body be a right cone, floating with its apex

belo'.v the surface of the fluid and the axis a vertical. Re-

\juired the depth of flotation.

Since the vohmies of similar cones are proportional to the

cubes of their heights, we have, x being the required depth,

t — t

which in (1) gives,

sfi p

3/P
X ^ a\

3. Let the body be a sphere of radius a, floating in a fluid.

Required the depth of flotation.

Here the displaced fluid has the form of a segment of a

sphere ; hence, calling x the depth, we have, from mensura-

tion,

v' = -x^ {a — ^x),

and V = |-«^;

r' _ 3x^ (a — ^x)

= ^, [from(l)];

9

we have, therefore, to solve a cubic equation in order to find

the depth of flotation of the sphere.
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4. Let the body be a cylindrical pontoon,* with plane

ends, and having its axis horizontal. Required to find the

load requisite to sink the pontoon

to a given depth.

Let AD be the intersection of tiie

plane of flotation with the end

which is a right section. Put A =
the area ADK, the plane surface of

immersion, and / = AB, the length

of the cylinder; and let Tr= the

required load that will sink it to the depth HK. Then,

calling p' the density of the fluid, we have

volume of displaced fluid = Al, (1)

and weight of displaced fluid = gp'Al

.-. W = gp'AL (2)

A may be found as follows : let r = CK, and 6 = angle

ACK ; then we have, from mensuration,

which in (2) gives,

W = gp'r^ln.-^ + ^sin2d)h (4)

(rhich is the required load.

Cor. 1.—If d = 165°, we have, from (4),

W=igp'rHi^rr + l)l (5)

* Pontoons are portable boats, covered with balks, planks, etc., for forming

floating bridges over rivers. They are now usually made of tin, in the shape of a

cylinder, with heiD?«nherical ends. <^T»te'8 Mechanical Philosophy.)
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Cor. 2.—If the fluid be water, (5) becomes

W = ir2 (-V-^ + 1) I 62.5 (Art. 10, Cor. 1). (6)

5. Let the body be a cone floating with its base under

the fluid, and the axis a vertical. Find the depth of flota-

tion. 3/- ^
Ans. a — a\ / 1 — - •

V P

6. A man whose weight is 150 lbs. and density 1.1, just

floats in water by the help of a quantity of cork. Find the

volume of the cork in cubic feet, its density being .24, call-

ing the density of water 1. A71S. ^^^ of a cubic foot.

27. Stability of Equilibrium If a floating body is

in equilibrium, the centres of gravity and of buoyancy are

in the same vertical line (Art. 24, Cor. 1). Imagine the

body to be shghtly displaced from its position of equilibrium

by turning it round through a small angle, so that the axis

of flotation shall be inclined to the vertical. If the body on

being released return to its original position, its equilibrium

is stable ; if, on the other hand, it fall away from that posi-

tion, its original position is said to be one of unstable equi-

librium ; when the body neither tends to return to its

original position, nor to deviate farther from it, the equilib-

rium is said to be one of indifference.

The investigation of this problem in its utmost extent

would lead to very tedious and complex operations, which

would clearly be beyond the limits of this treatise ; we shall

therefore premise the three following hypotheses, in order

that we may obtain comparatively simple results

:

1. The floating body will be regarded as symmetrical

with respect to a vertical plane through its centre of gravity

when the whole is at rest, so that we need consider only the

problem for the area of a plane section of the body.
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2. The displacement will be regarded as very small.

3. The vertical motion of the centre of gravity of the

body will be disregarded, as indefinitely small.

Let EDF represent a body which has changed from its

upright to its present inclined position, by turning tiirough

a small angle ; let ABD repre-

sent the immersed part of the

body before displacement, and

HKD that immersed after dis-

placement, and G and the

centres of gravity and of

buoyancy before displacement.

While the body moves from its

upright to its inclined position,

its centre of buoyancy moves ="^-=^ ^^^^"^^3=^^^--"?

from to 0', which latter is '"'a"

in the half of the body most

immersed, and the wedge-shaped part ACH passes up out

of the water,, drawing tlie wedge-shaped part BCK down

into it. Let the vertical line through 0' meet GO in M.

Now since the buoyant effort is equal to the weight of the

whole solid (Art. 24, Sch.), the magnitude of the part im-

mersed will be unaltered ; therefore ABD = HKD, and

ACH z= BCK ; also, the buoyant effort P, acting at 0'

vertically upwards, and the weight P of the solid, acting

at G vertically downwards, form a couple which tends to

restore the body to its original position when M is above G;
and, on the contrary, it tends to incline the body farther

from its original position when M is heloio G. Hence, the

stability of a floating body, a ship, for instance, depends

upon the position of the point M, where the vertical line

through the centre of buoyancy, in the inclined position of

the body, cuts the line connecting the centre of gravity and

centre of buoyancy in the upright position of the body.

The position of the point M will in general depend on the

extent of displacement. K the displacement be very small.
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i. e., if the angle between GO and the vertical be very small,

the point M is called the metacentrc, and the question of

stability is now reduced to the determination of this point.

A ship, or any other body, floats with stability when its

metacentre lies above its centre of gravity, and without sta-

bility when it lies below it; it is in indifferent equilibrium

when these two points coincide. Hence the danger of

taking the whole cargo out of a ship without putting in

ballast at the same time, or of putting the heaviest part of

a ship's cargo in the top of the vessel and the lightest in

the bottom, or the risk of upsetting when several peoj)le

stand up at once in a small boat.

One of the most important problems in naval architecture

is to secure the ascendancy, under all circumstances, of the

metacentre above the centre of gravity. This is done by a

proper form of the midship sections, so as to raise the meta-

centre as much as possible, and by ballasting, so as to lower

the centre of gravity.*

The horizontal distance MN, of the metacentre M, from

the centre of gravity G of the body, is the arm of the couple

whose forces are P and P, the weight of the body and the

buoyant effort; and the moment of this couple, which

measures the stability of the body, isP-MN. Let GM = c,

and the angle OMO', through which the body rolls, = Q,

and denote the measure of the stability by 8\ then we have

8=. P-MN = Pcsin 0; (1)

therefore, the stahility of a hody, in general, varies as

its iceight, as the distance of its metacentre from its

centre of gravity, and as the angle of inclination

;

and hence, in the same hody, for a given inclination,

it depends only upon the distance of its metacentre

from its centre ofgravity.

* Besant's Hydrostatioe, p- 58.
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28. The Position of the Metaceiitre; the Measure
of the Stability.— Since the stability of a body depends

principally upon the distance of the metacentre from the

centre of gravity of the body, it becomes important to de-

termine the position of tlie metacentre.

Let A = the cross-section ABD = HKD (Fig. 23) of
the immersed part of the body (Art. 27). and A^ = the

cross-section ACH = BCK ; let (/ and (/' be the centres of

gravity of ACH and BCK ; let a = the horizontal distance

RL, between these centres of gravity, and s = the horizon-

tal distance between and 0', the centres of buoyancy.

Then, taking moments round G, we have,

HKD X MX - ACH x EN = ABD x NT + BCK x NL

;

or, A (MN - NT) = A
^ (RN + NL)

;

.*. As = A^a'y

or, s = -r" a;A

and OM = 00' A^a
sin A sin 0'

which is the height of the metacenti'e above the centre

of buoyancy

.

Let GO = e; then

. = GM = . + -A5_, (1)

ivhich gives the height of the vnetacentre above the cen-

tre ofgravity.

Substituting this value of c in (1) of Art. 27, we get

8=P(^ + e sin 0), (2)

which is the measure of the stability.
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If the point were below G.. e would be negatire and (2)

would be

S= P {^^ - e sin 0). (3)

Hence, in general, we have

S=p{^±e^\ne), <4)

the upper or lower sign being used according as the centre

of buoyancy is above or below the centre of gravity.

Cor. 1.—If the displacement be small, the cross-sections

ACH and BCK can be treated as isosceles triangles, and

sin d := 6. Denoting the width AB = HK of the body at

che plane of flotation by h, we have

A 1 = \b'^e, and EL = a = ^b,

which in (4) gives

^ = ^(i£±^)''- <»)

Cor. 2.—When the centi-e of buoyancy is above the cen-

tre of gravity of the body, tbe stability is positive, as also

in the case when the centre of buoyancy is below the centre

of gravity while e is less than ;-^^; in this case tbe equi-

librium is that of stability.

It e is greater than ——j , and the centre of buoyancy is

below the centre of gravity of the hody, the stability is neg-

ative, or the equilibrium is tbat of indability.

If e is negative and equal to fT-r? the stability is zero,

and the equilibrium is that of indifference.

That is, the centre of buoyancy may be heloiv the centre

of gravity and yet the stability be positive, so long as e does
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not exceed ^-r-i, which term is always the distance be-

tween the metacentre and the centre of buoyancy.

If the centre of gravity of the body coincides with the

centre of buoyancy, we have e = 0, and (5) becomes

s=P~e. (6)

Hence, generally, the stctbility is positive, negative, or

zero, according as the metacentre is above, helow, or

coincident with t?ie centre of gravity of the floating

body.

A vertical line O'M through the centre of buoyancy is

called a line of snpport.

Cor, 3.—From the above results we see that the stability

of a body is greater the broader it is and the lower its centre

of gravity is. (See Weisbach's Mechs., Vol. I., p. 760; also

Bland's Hydrostatics, p. 120.)

EXAMPLES.

1. Determine the stability of a homogeneous rectangular

parallelopiped floating in a fluid.

Let HK be the line of flotation of ^"""^^^^^

a vertical section passing through the / / /'^

centre of gravity G ; let J = the
HJ~-~^ L

bi-eadth EF of the section of the par- fC-^ J^^^h^^^i
allelopiped, h = the height EC, and ^S/ / /^^^g
y = the depth of immersion AC. ^&j^>,J^^^^^
Then we have ^S^^^^^^^^

A = by, and e = —iih—y), '"'a-^*

~

e being negative since the centre of buoyancy is below the

centre of gravity. Substituting in (5), we have
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Let the density of the material of the parallelopiped be p
times that of the fluid ; then (Art. 25, Cor.),

which in (1) gives

8 =

p : 1 :: y : h
;

•' y = hp,

Li2Fp-2^^-P\ Pe, (2)

which is the measure of the stability required.

Cor. 1.—To determine the limits of stability depending

upon the dimensions and density of the solid, let /S = 0,

and (2) becomes

b^- 6¥p{i -p) = 0;
'

(31

or, ^ = ^^(TZT^,

It p = ^, we have

I
= iVe = 1.225,

and hence in this case the parallelopiped floats in stable

indifferent, or unstable equilibrium, according as the breadth

is >, =, or < 1.225 times the height.

CoE. 2.—Solving (3) for p, we get

1 1 A 2J2

^ = 2±2\/ 3^.

h
which is real when ^ is = or < ^\/^ ', i- &-, when the

ratio of the breadth of the solid to the height is equal to, or
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less than |a/6, two values may be assigned to the density

of the solid which will cause it to float in indifferent equi-

librium.

K, for instance, h = //, we have

P = i It: iVr^^l = 0.78868 or 0.21132.

Cor. 3.—When j > ^V6, the value of p is imaginary,

L e., if the ratio of the breadth of the solid to the height is

greater than ^V6, no value can be given to the density

which will cause the stability to vanish. In this case the

solid, placed with EF horizontal, must in all cases continue

to float permanently in that position, whatever may be the

density, providing it is always less than that of the fluid.

Cor. 4.^^-The term --— in (1), or ,^, in (2), is the dis-
12y ^ ' VZIip ^

'

tance between the centre of buoyancy and the metacentre.

2. Determine the a,ngle of incliiiaticn d. In order ihac tne

parallelopiped EFDC may
be in a position of indiffer-

ent equilibrium.

Let h = the breadth EF
of the section of the paral-

lelopiped;, y = the depth

of immersion AC = BD,

and d = angle AOH. Then 1^ ^ __^_

A = ABDC = HKDC ^Th:'^'^'^^=^-^^-=^
= hy, (1)

^''•^'

A, = AOH = BOK.

But AO = OB = \h, and AH = BK = ^b tan 0;

therefore

A^ = |J2tan 6. (2)
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Let g and g' be the centres of gravity of the triangles

A.OH and BOK ; draw Mr/ parallel to AH, and gU and MQ
perpendicular to HO. Then

Mg = ^b tan d, and OM = ^b.

Therefore, the liorizontal distance of the centre of gravity

g from the centre

= OR = OM cos 6 + Kg sin 6

= ^b cos 6 -\- jrb tan 6 sin 9
;

and therefore, for a =: RL = 2OR, we have

a = ^b cos -]- ^b tan sin 9. (3)

Substituting (1), (2), and (3), in (3) of Art. 28, and put-

ting ^S' = for indifferent equilibrium, we get

|52 tan 9 (f5 cos + ^5 tan 9 sin 9)

by
- " J

L(2 -t- tan2 9)^ — 2Uy] sin = 0.

.-. sin = 0,

1

(4)

tan = W2Uy — 2b\ (5)and

The angle 9 = 0, in (4), is applicable to the body when

in an upright position, and that given in (5) is applicable

to the body when floating in an inclined position, and is

possible only when b is = or < 2VSey.

Cor.—Let h = the height EC, and p = the density of

the body, the density of the fluid being unity, then we have

y = Jip, and e = - (1 — p),

which in (5) gives

tan 9 = ^Vl2h^ (1 — p) P ^^^^- (6)
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Hence, when j < -v/6p (1 — p), the parallelopiped will

float in an inclined position in indifferent equilibrium, the

inclination being given by (6).

When y > VSp (1 — p), the value of tan is imaginary,

i. e., if the ratio of the breadth to the height is greater than

'^%p (1 — p), no value can be found for the inclination

which will cause the stability to vanish. (Compare with

last example.)

3. If the breadth of the parallelopiped is equal to its

height, and if p = ^, find the inclination 0, that the paral-

lelopiped may float in indifferent equilibrium.

Ans. 6 = 45°

29. Specific Gravity.— Tfie specific gravity of a
body is the ratio of its weight to the weight of an equal

volume of some other body taken as the standard of
comparison.

The density of a body has been defined (Anal. Mechs.,

Art. 11), to be the ratio of the mass of the body to the mass

of an equal volume of some other body taken as the stand-

ard ; and since the weights of bodies are proportional to

their masses, it follows that the ratio of the weights of two

bodies is equal to the ratio of their masses. Hence, the

measure of the specific gravity of a body is the same as that

of its density, provided that both be referred to the same

standard substance.

Thus, let S, W, V, and p be the specific gravity, weight,

volume, and density, respectively, of one body, and S^, PTj,

Fj, and pj the same of another body ; then we have

J' _ irZ^ _ _pI_ n)
w; - gp^v, - p,V,' ^^
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and making the volumes equal, we have

that is, the ratio of the specific gravities of two bodies

is equal to that of their densities.

Now suppose the body whose weight is W^ to be assumed

as the standard for specific gravity; then will S^ be unity,

and (2) will become

'?=-J- = - (3)

Also, if the same body be assumed as the standard of

density, p^ will be unity, and (3) will become

W

Hence, the measure of the specific gravity of a hd&y
is the same as that of its density, i. e., the numbers S
and p are identical, when both specific gravity and
density are referred to the same substance as a
standard.

30. The Standard Temperature.—The standard sub-

stance to which specific gravity and density are referred is

not necessarily the same, and therefore 8 and p will in gen-

eral be different numbers. In practice, it is usual to adopt

water as the standard in determining the specific gravities

of solids and incompressible fluids ; and for the purpose of

rendering the comparison more exact, the water must first

be deprived by distillation of any impurities which it may
contain.

The dimensions of all bodies being more or less changed

by changes of temperature, it becomes necessary to adopt a

standard temperature at which experiments for determining
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specific gravities must be performed. The Euglisli * usually

take for this purpose the temperature of 60° Fahrenheit, it

being easily obtained at all times, and the tables of specific

gravities are usually given with reference to distilled water

at this temperature as the standard. When the experiment

cannot be performed at the standard tempei-ature, the result

obtained must be reduced to what it would be at this tem-

perature, *. e., the apparent specific gravity, as obtained by

means of water when not at the standard temperature, must

be reduced to what it would have been if the water had

been at the standard temperature.

Thus, let p be the density of any solid, S^ its apparent

specific gravity as obtained by water when not at the stand-

ard temperature, and pj the corresponding density of the

water ; and let She the true specific gravity- of the body as

determined by water at a standard temperature, the corre-

sponding density of the water being pg. Then, from (3) of

Art. 29, we have

S.=-^, and S==-;
* Pi Pi

'^i Pz

Calling the density of the standard temperature unity,

(1) becomes
S=S,p,. (2)

That is, the specific gravity of a body as determined

at the standard temperature of the water is equal to

its specific gravity determined at any other tempeirt-

ture, multiplied hy the density of the water at this

temperature, the density of the water at the standard

temperature being regarded as unity.

ScH.—In the cases that occur most frequently in prac-

tice, such nicety is unnecessary, and the experiment may be

* The French nsnally take the temperature at which water has its maximum ol

density, which is 39''.4 P.
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performed with water at any temperature; but tlie temper-

ature must be noted and a correction applied for it which

depends upon the density of water at the experimental

temperature.*

The weight of a cubic foot of distilled water at the stand-

ard temperature is 1000 ozs. ^ 62|^ lbs. ; hence we tind the

weight of a cubic foot of any substance in ounces or pounds

by multiplying its specific gravity by 1000 or 62^.

It appears, therefore, that by means of the specific gravi-

ties of homogeneous bodies, their weights may be deter-

mined without actually weighing them, provided their

volumes are known ; and conversely, however irregular the

shape of bodies may be, if their weights and specific gravi-

ties are known, their volumes may be determined, viz., by

dividing the weight by the specific gravity.

The specific gravities of gases and vapors are usually

determined by referring them to atmospheric air at the same

temperature and under the same pressure as the gases them-

selves.

31. Methods of Finding Specific Gravity.—The

law of the buoyant effort, or upward pressure, of water can

be made use of•to determine the specific gravities of bodies;

for, if a body be immersed in a fluid, it loses as much of its

weight as is equal to the weight of the fluid it displaces

(Art. 24) ; i. e., if it be wholly immersed, its loss of weight

is equal to the weight of its volume of the fluid.

Thus, if a sphere of lead, whose weight is 11 lbs., were

found to weigh but 10 lbs. when immersed in water, we

should conclude that the weight of an equal volume of

water would be one pound, and therefore that the lead

weighed 11 times as much as its volume of water, and hence

that the specific gravity of lead was 11 ; and so for any other

substance.

• Eenwick's Mechs., p. 334.
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(1) To find the specific gravity of a solid heavier

than water.

Let w = the weight of the solid in air, w' = its weight

in water, and *S' = the specific gravity of the solid, that of

water being 1 ; then w — w' is the weight lost by the solid,

which is also the Aveight of the water displaced by the solid

(Art. 24) ; therefore w and w — to' are the weights of equal

volumes of the solid and water. Hence we have

S = ^^,. (1)

Hence, to find the specific gravity of a solid heavier than

water, we have the following rule: Divide its weight hy

its loss of weight in ivater.

(2) To find the specific gravity of a solid lighter

than water.

Since the solid is lighter than water, it will not descend

in the water by its own weight ; it must therefore be at-

tached to a heavy body of sufficient size and weight to make
the two together sink in the water.

Let w = the weight of the solid in air,

X = the weight in air of the heavy body

attached to it,

x' = the weight in the water of the heavy

body,

w' = the weight in the water of the two

together.

Then w+ x—io' = the weight of water displaced by the

two together.

x—x' = the weight of water displaced by the

heavy body.

Hence, tc-^x'—w' = the weight of water displaced by the

solid, and therefore
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8 =—?

—

; m
to -\- X — w '

Hence, add the difference between the weights of the

heavy body and the two together in the water to the

weight of the solid in air, and divide the weight of the

solid in air by this sum.

(3) To find the specific gravity of a liquid.

Take a solid which is specifically heavier than either the

liquid or water, and let it be weighed in both ; then the loss

of weight in the two cases will be the respective weights of

equal volumes of the liquid and of water ; therefore, tlie

loss of weight in the liquid, divided by the loss of
weight in the water, will give the specific gravity of
the liquid.

Let w = the weight of the solid in air, w' = its weight

in the liquid whose specific gravity is to be determined, and

n\ = its weight in water; then w — w' and w — w^ are

the respective weights of equal volumes of the liquid and of

water; therefore

S=''^^^- '

(3)
to — Wi ^

Otherwise thus : Let to = the weight of an empty flask,

w' = its weight when filled with the liquid, and tv^ = its

weight when filled with water ; then to' — tv and tv^ — w
are the respective weights of equal volumes of the liquid and

of water ; therefore

S = ^^^-
(4)Wj— tv ^ '

BXAMPLES.

1. A cubical iceberg is 100 ft. above the level of the sea,

its sides being vertical. Given the specific gravity of sea-

water = 1.0263, and of ice = 0.9214 at the temperature of

32°, to find its dimensions.
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Let X = the length of one side,

X — 100 = the length of the piece under water;

then we have (Art. 25, Cor.),

a-3 : a-3 — lOOa-2 :: 1.0263 : 0.9214;

.. a; : 100 :: 1.0263 : 0.1049;

.-. X = 978.3 ft.,

and x^ = 936,302,451.687 cu. ft.

2. A piece of limestone, whose weight is 256.34 lbs.,

weighs in water 159.13 lbs. Find its specific gravity.

Ans. 2.637.

3. Find the specific gravity of a piece of cork whose

weight is 20 grains. To sink it, we attach a brass weight

which, when immersed in the water, weighs 87.22 grains;

the weight of the compound body when immersed is 23.89

grains. Ans. 0.24.

4. A solid weighing 25 lbs., weighs 16 lbs. in a liquid A,

and 18 lbs. in a liquid B. Compare the specific gravities of

A and B. Ans. 9 : 7.

32. Specific Gravity of a Solid broken into Frag-

ments.—Put the broken pieces into a flask, fill the flask

with water, and let its weight be then w" ; let w be the

weight of the solid in air, and tv' the weight of the flask

when filled with water. Then

w"—zv'=we\ght of solid pieces— wt. of water they displace

^=20 — weight of water displaced
;

therefore w + w' — w" = weight of water displaced

;

A S=---^' .• (1)
w -f- w — w
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33. Specific Grravity of Air.— Take a large flask

which can be completely closed by a stop-cock, and weigh it

when filled with air ; withdraw the air by means of an aii'-

pump and weigh the flask again ; finally, fill the flask with

water and weigh again. This last weight minus the second

will give the weight of the water that filled the flask, and

the first weight minus the second will give the weight of an

equal volume of air; divide the weight of the air by that of

the water ; the result will be the specific gravity of air as

compared with that of water.

Let lu = the weight of the exhausted flask; w', w" its

weights when filled with air and water ; then

zv' — w = weight of the air contained by the flask,

w" — w = weight of the water contained by the flask

;

therefore, S = —n (1)w — w '

ScH.

—

In the same manner the specific gravity of any gas

can be obtained. The specific gravity of water at 20°.5 is

about 768 times that of air at 0° under the pressure of 29.9

inches of mercury at 0°.

The atmosphere in which these operations must be per-

formed varies at different times, even during the same day,

in respect to temperature, the weight of its column which

presses upon the earth, and the quantity of moisture it con-

tains. On these accounts, corrections must be made before

the specific gravity of air, or that of any gas exposed to its

pressure, can be accurately determined. The discussion of

the principles according to which these corrections are

made, is given in Chap. III.

34. Specific Gravity of a Mixture.—(1) TV7ien the

volumes and specific gravities of the coinpotients are

given.

Let V, v', v", etc., be the volumes of the bodies of which
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the specific gravities are s, s', s", etc. Then, since the

weight of the volume v is 62.6sv (Art. 30, Sch.), and so for

the others, the weight of the mixture is

62.5 (sv + s'v' + s"v" + etc.) = 62.5 2 (sv)

;

and the volume of the mixture is

V -}- v' + v" 4- etc. = S (y)

;

and therefore, if S be the specific gravity of the mixture,

we have
62.5iS' 2 (/•) = 62.5 X (sv)

;

^ {v) ^ '

If by any chemical action the volume becomes F instead

of 2 (v), the specific gravity will be

(2) WTieii the weights and specific gravities of the

components are given.

Let w, w', w", etc., be the weights of the bodies, and s,

s', s", etc., their specific gravities. Then, as before, since

to = 62.5sv, and so for the others, the volumes are respect-

w w'
ively ^-^, m'fT'^ ^^^'> ^^^ ^^^ whole volume is

bii.oS \}/i.DS

IV w'
, i. _ 1 V ('U^\

62.5s
'^

'62.5s' + ^^^' " 63.5
"^ \7/ '

and the whole weight is

tv -}- w' + etc. ^= S (w)
;

and therefore, if S be the specific gravity of the mixture,

we have
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''^•»^6^5^(7) = ^W^

«=^1- (3)

(?)

Rem.—Instead of taking 1 lb. as the unit of weight, as we
have heretofore done, it is sometimes more convenient to

take the weight of a unit of volume of the standard sub-

stance as the unit of weight ; thus, in the present Article,

we might have made ^i\ lbs. the unit of weight, and found

the weights of the substances in terms of that unit.

35. The Weights of the Components of a Mechan-
ical Mixture. — MVieu the specific gravities of the mix-
ture and its components, and also the weight of the

mixture are given, to find the weights of the compo-

nents.

Let 20, ic', w" be the weights of the mixture and its com-

])onents respectively, s, s', s" their respective specific gravi-

ties ; and v, v', v" their volumes. Then we have

w = w' -\- w", (1)

and also v =z v' + v"

;

w w w"
and, therefore, — = -^ + -jr (Art. 34, Rem.). (2)

s s s

Combining (1) and (2), we obtain,

^' = ^C--7')^{7-7')

{S"-S)S' fo^

W
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= h rjT- w. (4)
(s — s ) s

EXAMPLES.

1. If with 78 gallons of spirit, specific gravity 0.92,

22 gallons of water be mixed, what is the specific gravity of

the mixture? ^ns. 0.9376.

2. British standard gold contains 11 parts by weight of

pure gold, and 1 part of copper. Required its specific

gravity. Ans. 17.647.

8. An iron vessel completely filled with mercury weighed

500 lbs., and lost, when weighed in water, 40 lbs. If the

specific gravity of the cast iron is 7.2 and that of the mer-

cury is 13.6, find (1) the weight of the empty vessel, and

(2) that of the mercury contained in it.

Ans. (1) 49.5 lbs.
; (2) 450.5 lbs.

36. The Hydrostatic Balance.—In order to deter-

mine the specific gravities of bodies practically and with

accuracy, it is necessary to employ

certain instruments for weighing.

These are the Hi/drostaiic Balance

and Hydrometers.*

The hydrostatic balance is an ordi-

nary balance, having one of the scale-

pans smaller than the other, and at a

less distance from the beam ; attached fig. 26

to the under side of the small scale-

pan is a hook, from which may be suspended any body bv

means of a thin platinum wire, horse-hair, or any delicate

thread. The body whose specific gravity is to be found is

Sometimes called Areometers.
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suspended from the hook, and then its weight is determined.

It is then weighed in water, and thus its loss of weight is

ascertained, wliich is the weight of a portion of water equal

in volume to the body.

37. The Common Hydrometer.—The name hydrom-

eter is given to a class of instruments used for determining

the specific gravities of liquids by observing either the

depths to which they sink in the liquids or the weights re-

quired to make them sink to a given depth. These

instruments depend upon the principle that the

weight of a floating body is equal to the weight of

the fluid which it displaces.

The common hydrometer is usually made of

glass, and consists of a straight stem ending in two

hollow spheres, B and C, the lower one being

loaded so as to keep the instrument in a vertical

position Avhen floating in the liquid. There are no

weights used with the instrument; but the stem Fig. 27

is graduated, so as to enable the operator to ascer-

tain the specific gravity of a liquid by the depth to which

the instrument sinks in it.

Let Jc = the area of a section of the stem, r := the vol-

ume, and w = the weight of the hydrometer. When the

hydrometer floats in a liquid whose specific gravity is s, let

the level D of the stem be in the surface ; and when it

floats in a liquid whose specific gravity is s', let the level E
be in the surface. Then (Art. 34, Eem.) we have for the

weights of the liquid displaced in the first and second cases,

respectively,

w = s{v — ^'AD),

w = s' {v — k-AE}',

but the weight of the liquid displaced in each case is the

same, since each is equal to the weight of the instrument.
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i' — ^ — ^'-AE
(1)

which gives the ratio of the specific gravities of the two

liquids.

Cor.—If the second liquid be the standard, s = 1, and
s, the specific gravity of the first liquid, is given in (1).

38. Sikes's Hydrometer.*—This instrument differs

from the common hydrometer in the shape of the stem,

which is a flat bar and very thin, so that it is

exceedingly sensitive. It is generally construct- A

'

ed of brass, and is accompanied by a series of E-

small weights F, which can be slipped over the

stem above C, so as to rest on C.

The weights are used to compensate for the

great sensitiveness of the instrument, which,

without the weights, would render it applicable

only to liquids of very nearly the same density.

Let ^- =r the area of a section of the stem,

V = the volume, and iv = the weight of the

hydrometer. When the instrument floats in a liquid whose

specific gravity is s, let w' = the weight on C so that the

level D of the stem shall be in the surface ; and when it

floats in a liquid whose specific gravity is s', let w" = the

weight on C so that the level E shall be in the surface ; and

let v' and v" be the volumes of id' and w". Then (Art. 34,

Rem.) we have for the weights of the liquid displaced in the

first and second cases, respectively,

w + w' = s {v + v' — ^--AD),

w + w" = s' {v + v" — k-AE)
;

(1)

• Besant's Hydrostatics, p. 127.

w + tv' V + v" - /t-AE

to -»- to" V -r v' - k-KY)
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Cou.—If the second liquid be the standard, s = 1, and

s, the specific gravity of the first liquid, is given in (1).

39. Nicholson's Hydrometer.—The two hydrometers

just described are used for obtaining the specific gravities of

liquids. Nicholson's hydrometer is so contrived as

to determine the specific gravity of solids as well vA.

as liquids.

It consists of a hollow metallic vessel C, gener-

ally of brass, terminated above by a very thin

stem, which is often a steel wire, bearing a small

dish A, and carrying at its lower end a heavy cup

D ; on the stem connecting A and 0, a well-

defined mark B is made.

^ C

B

(1) Ih determine the specific gravity of a
liquid.

Let to be the weiglit of the hydrometer, w' the weight

which must be placed in the dish A, in order to sink the

stem to the point B in a liquid whose specific gravity is s,

and w" the weight which must be placed in the dish A, to

sink the stem to the same point B in a liquid whose specific

gravity is s'. Then we have for the weights of the liquid

displaced in the fii-st and second cases, respectively,

IV + w' and tv + w"
;

and since the volumes displaced are the same in both cases,

the specific gravities are as the weights (Art. 29),

s w + w'

W + 20
(1)

Calling the second liquid the standard, s' = 1, and (1)

becomes

lU + w ' ^ '

which is the specific gravity required.
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(2) To determine the specific gravity of a solid.

Let w be the weight which must be placed in the dish A,

to sink the stem to the point B in a liquid whose specific

gravity is s.

Put the solid in the dish A, and let w' be the weight

which must be added to the solid to sink the stem to the

point B in the same liquid.

Then put the solid in the lower dish D, and let w" be the

weight required in the upper dish A to siuk the stem to the

point B in the same liquid.

Hence, the weight of the solid = tv — ic', and its weight

in the liquid = tv — lu".

Therefore the weight lost, which is tlie weight of the

liquid displaced by the solid = w" — w'. Hence, denoting

by S the specific gravity of the solid, we have

8 w — w
s w — w

If the liquid is the standard, s = 1, and (3) becomes

(3)

S = ^t^"-,,
(4)

10 — w '

which is the specific gravity required.

KXAMPLES,

1. If an iceberg whose density is 0.918 float in a liquid

whose density is 1.028, what is the ratio of the part sub-

merged to that which is above water ? Ans. 8.3 : 1.

2. How much of its weight will 112 lbs. of iron lose, if

immersed in water, the density of Jon being 7.25 times

that of water ? Ans. 15.448 lbs.

3. If 20 lbs. of cork be immersed in water, with what

force will it rise towards the surface, its density being 0.24

times that of water ? Atis. 63^ lbs.
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4. If a piece of wood whose vertical height is 2 ft. be

placed in the Dead Sea, how many inches will it become
submerged, the densities of the wood and Dead Sea water

being .53 and 1.24 respectively ? A7is. 10.26 ins.

5. Find the depth to which a rectangular block will sink

in water, the depth of the block being a feet, and the weight

of each cubic foot of it being lo lbs. . aw
^'''' WE'

6. A barge of a rectangular shape is Z ft. long, b ft. broad,

and a ft. deep, outside measure. The thickness of the

planking is e ft., and the weight of a cubic foot of the tim-

ber is w lbs. To what depth will the barge sink when
loaded with W lbs. ?

w [abl —(a — e) {h — 2e) {I — 2e)] + W
Ans.

62.bbl

7. A cylindrical piece of wood, weight W, floats in water

with its axis vertical and immersed to a depth h. Find

how much it will be depressed by placing a weight zo on the

top of it. i w ,

Ans. -TT^h.W

8. An isosceles triangle floats in water with its base hori-

zontal. Find the position of equilibrium when the base is

above the surface, its height being li and its density being

I that of water. , h ,-
' Ans. ^v6.

o

9. A rectangular barge, I ft. long, b ft. broad, and a ft.

deep, outside measure, sinks to \ its whole depth when un-

loaded. Required its weight in lbs. Ans. 12.5abl.

10. If a rectangular barge sinks to ^ of its whole depth

when unloaded, and to f of its whole depth when loaded,

find the load, the weight of the barge being w. Ans. |w.

11. The diameter of the base of a right cone is 2r, its

altitude is h, and its density is f that of water. To what
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depth will the cone sink when it floats with its vertex down-

wards ? . /* 8/TS
A71S. ;jvl8.

o

V2. A liemispherical vessel, whose weight is 10, floats upon

a fluid with ^ of its radius below the surface. What weight

must be put into the vessel so that it may float with f of its

radius below the surface

?

Ans. |z/,'.

13. Let the pontoon in Ex. 4, Art. 26, be a cylinder,

lengtii I, Avith hemispherical ends, radius r ; to find the

load requisite to sink the pontoon to a given depth u.

Ans. [Al + 7ra2 (r — -^«)] 62.5,

where A = the area ADK (Fig. 22).

14. Required the thickness of a hollow globe of copper

whose density is 9 times that of water, so that it may just

float when wholly immersed in water, r being the exterior

radius. Ans. r(l — -fv^s).

15. A cubical box, the volume of which is one cubic foot,

is three-fourths tilled with water, and a leaden ball, the

volume of which is 72 cubic inches, is lowered into the

water by a string. It is required to find the increase of

pressure (1) on the base and (2) on a side of the box.

Ans. (1) 41| oz.
; (2) 32+ oz.

16. If the height of the parallelopiped in Ex. 2, Art. 28,

is 0.9 of the breadth, and if p = |, find the inclination d

that the parallelopiped may float in indifferent equilibrium.

Ans. e = 33° 15'.

17. What is the weight of a cube of gold whose side is

3 ins., its specific gravity being 19.35 ? Ans. 18.896 lbs.

18. What is the volume of a piece of platinum whose

weight is 10 lbs., its specific gravity being 22.06?

Ans. 12.533 en. ins.

19. A piece of lead, whose weight is 511.65 grs., weighs

in water 466.57 grs. Required its specific gravity.

Ans. 11.35.
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20. A sovereign, whose weight is 123.02 'grs., weighs in

water 116.02 grs. Required its specific gravity.

Ans. 17.574.

21. Find the specific gravity of a piece of wood, whose

weight is 50 grs. To sink it we attach a brass weight

wliich, when immersed in the water, weighs 87.22 gjs. ; the

weight of tlie compound body when immersed is 42.88.

Ans. 0.53.

22. A piece of wood weighs 4 lbs. in air and a piece of

lead weighs 4 lbs. in water ; the lead and wood together

weigh 3 lbs. in water. Find the specific gravity of the

wood. Ans. 0.8.

23. A body immersed in water is balanced by a weight

P, to which it is attached by a string passing over a fixed

pulley ; when half immersed, it is balanced in the same way

by a Aveiglit 2F. Find the specific gravity of the body.

Ans. f.

24. Find the weight of a cubical block of stone whose

side is 4 ft., and specific gravity 1-^. Ans. 80000 oz.

25. A body weighing 20 grs. has a specific gravity of 2^.

Required its weight in water. Ans. 12 grs.

26. An island of ice I'ises 30 ft. out of the water, and its

upper surface contains | of an acre. Supposing the mass to

be cylindrical, required (1) its weight, and (2) depth below

the water, the sj)ecific gi-avity of sea-water being 1.0263, and

that of ice .92. Ans. (1) 242900 tons; (2) 259.64 ft.

27. A i)iece of wood weighs 12 lbs., and when attached

to 22 lbs. of lead and immersed in water, tlie whole weighs

8 lbs. The specific gravity of lead being 11, required that

of the wood. Ans. \.

'28. A solid which is lighter than water weighs 5 lbs.,

and when it is attached to a piece of metal, the whole

"weighs 7 lbs. in water. The weight of the metal in water
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being 9 lbs., compare the specific gravities of the solid and

of water. Ans. 5 : 7.

29. A piece of wood which weighs 57 lbs. in vacuo, is at-

tached to a bar of silver weighing 42 lbs., and the two

together weigh 38 lbs. in water. Find the specific gravity

of the wood, that of water being 1, and that of silver 10.5.

Ans. 1.

30. Equal weiglits of two fluids, whose specific gravities

are s and 2s, are mixed togetiier, and one-third of the whole

volume is lost. Find the specific gravity of the resulting

fluid. Ans. 2s.

31. Two fluids of equal volume, and of specific gravities

s and 2s, lose I of their whole volume when mixed together.

Find the specific gravity of the mixture. Ans. 2s.

32. A cylinder floats vertically in a fluid with 8 ft. of its

length above the fluid ; find the whole length of the cylin-

der, the specific gravity of the fluid being three times that

of the cvlinder. Ans. 12 ft.

33. A body floats intone fluid with | of its volume im-

mersed, and in another with | immersed. Compare the

specific gravities of the two fluids. Ans. 15 : 16.

34. A block of wood, the volume of which is 4 cubic feet,

floats half immersed in water. Find the volume of a piece

of metal, the specific gravity of which is 7 times that of the

wood, which, when attached to the lower portion of the

wood, will just cause it to sink. Aiis. f of a cubic foot.

35. A cone, whose specific gravity is |, floats on the water

with its axis vertical, (1) with its vertex downwards and (2)

with its vertex upwards. What part of the axis is immersed

in each case? Ans. (1) ^ ; (2) 0.0436.

36. A cone, whose specific gravity is |, floats with its

axis vertical. Compare the portions of the axis immersed,

(1) when the vertex is u|)wards, (2) when it is downwards.

Ans. 'V^2-l:n.,
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37. A block of ice,, the volume of which is a cubic yard,

is observed to float with -^^ of its volume above the surface,

and a small piece of granite is seen embedded in the ice.

Find the size of the stone, the specific gravities of ice and

granite being respectively .918 and 2.65.

Ans. -g^ of a yard.

38. A cylindrical glass cup weighs 8 ozs., its external

radius is 1^ ins., and its height 4^ ins. If it be allowed to

float in water with its axis vertical, find what additional

weight must be placed in it, in order that it may sink.

^^*- (-^64" - 8j oz.

39. Find the position of equilibrium of a cone, floating

with its axis vertical and vertex upwards, in a fluid of which

the density bears to the density of the cone the ratio 27 : 19.

ns. ^ of the axis is immersed.

40. The whole volume of a hydrometer is 5 cu. ins., and

its stem is ^ of an inch in diameter; the hydrometer floats

in a liquid A, with one inch of the stem above the surface,

and in a liquid B with two ins, above the surface. Compare

the specific gravities of A and B.

Ans. 1280 — TT : 1280 — 27r.

41. What volume of cork, specific gravity .24, must be

attached to 6 lbs. of iron, specific gravity 7.6, in order that

the whole may just float in water ?

Ans. x^^Vs" *^f ^ cubic foot.

42. If a piece of metal weigh in vacuum 200 grs. more

than in water, and 160 grs. more than in spirit, what is the

specific gravity of spirit ? Ans. f.

43. A piece of metal whose weight in water is 15 ozs,, is

attached to a piece of wood, which weighs 20 ozs, in vacuum,

and the weight of the two in water is 10 ozs. Find the spe-

cific gravity of the wood. Ans.
-f.
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44. A crystal of salt weighs 6.3 grs. in air; when covered

with wax, the specific gravity of which is .96, the whole

weighs 8.:^3 grs. in air and 3.03 in water. Find the specific

gravity of salt. Ans. 1.9 nearly.

45. A Nicholson's Hydrometer Aveighs 6 ozs., and it is

requisite to place weights of 1 oz. and 1^ ozs. in the upper

cup to sink the instrument to the same point in two differ-

ent liquids. Compare the specific gravities of the liquids.

Ans. 4 : 5.

46. A diamond ring weighs 69|^ grs., and 64|^ grs. in

water. The specific gravity of gold being 16^, and that of

diamond 'd\, what is the weight of the diamond ?

Ans. 3|^ grs.

47. A body A weighs 10 grs. in water, and a body B
weighs 14 grs. in air, and A and B together weigh 7 grs. in

water. The specific gravity of air being .0013, required (1)

the specific gravity of B, and (3) the number of grs. of

water equal to it in volume.

Ans. (1) .8337; (3) 17.033 grs.

48. A compound of gold and silver, weighing 10 lbs., has

a specific gravity of 14, that of gold being 19.3, and that of

silver being 10.5. Eequired the Aveights of the gold and

the silver in the compound.

Ans. Gold = 5.483 lbs.; silver = 4.517 lbs.

49. A diamond ring weighs 65 grs. in air and 60 in water.

Find the weight of the diamond, if the specific gravity of

gold is 17.5, and that of the diamond 3|^. Ans. 6.875 grs.

50. The crown made for Hiero, King of Syracuse (Art.

34, note), with equal weights of gold and silver, were all

weighed in water ; the crown lost ^ of its weight, the gold

lost -^ of its weight, and the silver lost -^ of its Aveight.

Prove that the gold and silver were mixed in the proportion

of 11 : 9.
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51. A ring consists of gold, a diamond, and two equal

rubies ; it weighs 44J grs., and in water 38|- grs. ; when one

ruby is taken out, it weighs 2 grs. less in water. Find the

weight of the diamond, the specific gravity of gold being

lOJ, of diamond 3J, of ruby 3. Ans. b^ grs.

52. If the jsrice of pure whiskey be $4 per gallon, and its

specific gravity be .75, what should be the price of a mixture

of whiskey and water which on gauging is found to be of

specific gravity . 8 ? Ans. $.3.20.

53. How deep will a paraboloid sink in a fluid whose spe-

cific gravity is n times that of the solid, the axis being

vertical and equal to a, and the vertex upwards ?

. ^/n — a/w — 1
Ans. a := •

y/n

54. A cubic inch of metal, whose specific gravity is m, is

formed into a hollow cone, and immersed with its vertex

downwards. Determine the ratio of the altitude to the

exterior radius of its base, when the surface immersed is a

minimum.
, j_ns. V3.



CHAPTER III.

EQUILIBRIUM AND PRESSURE OF GASES. — ELASTIC
FLUIDS.

40. Elasticity of Gases.—The pressure of an elastic

fluid is measured exactly in the same way as the pressure of

a liquid (Art. 6), and the equality of pressure in every direc-

tion, and of transmission of pressure, are equally true of

liquids and gases (Arts. 7 and 8). There is, however, this

difference between a liquid and a gas: when a liquid is con-

fined in a vessel, no pressure is exerted against the sides

except that which is due to the weight of the liquid itself,

or that which is transmitted by the liquid from some point

on the surface at which an external force is applied;

whereas, if a gas be contained in a closed vessel, there is,

although modified by the action of gravity, an outward

pressure exerted against the sides, which is due to the elas-

ticity of the gas, and which depends upon its volume and

temperature.* It is therefore evident that generally a gas

cannot have a free surface like a liquid (Art. 11), for such

a surface implies that at each point the pressure is nothing,

i. e., if it be covered by an envelope everywhere in close con-

tact with it, no pressure is exerted against the envelope. It

is also evident that, if a portion of the gas be withdrawn

from the vessel, that which remains will not fill the same

part of the vessel that it occupied before, as in the case of a

liquid, but will expand so as to fill the whole vessel, press-

ing, but with diminished force, against its sides at every

point (Art. 2). From this property of gases, they are called

elastic fluids ; the outward pressure which a gas exerts

If the gas is not confined within a limited space, the effect of its elasticity

might be the nnlimited expansion and ultimate dispersion of the gas.
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against the walls of the vessel enclosing it is called its elas-

tic force.

The action of a common syringe will serve to illustrate

the elasticity of atmospheric air. If the piston be drawn

out, and the open end of the syringe then closed, a consid-

erable effort will be required to force in the piston to more

than a small part of the length of its range, and if the

syringe be air-tight and strong enough, it will require the

application of great power to force the piston down through

nearly the whole of its range. This experiment also shows

that the pressure increases with the compression, the air

within the syringe acting as an elastic cushion. If the

piston be let go, after being forced in, it will be driven

back, the air within expanding to its original volume.

An inverted glass cylinder, carefully immersed in water,

furnishes another simple illustration of the elasticity of air.

Holding the cylinder vertical, it may be

pressed down in the water without much
loss of air, and it will be seen that the sur-

face of the water within the vessel CD is

below the surface of the water outside AB.
It is evident that the downward pressure of

the air within at CD is equal to the upward

pressure of tiie water at the same place,
F'g-so

which (Art. 11, Cor. 2) is equal to the pressure on the np-

j)er surface AB, increased by the pressure due to the depth

of the surface CD below the upper surface ; hence the air

within, which has a diminished volame, has an increased

pressure.

41. Pressure of the Atmosphere.—If a glass tube*

about three feet in length, closed at one end, be filled with

mercury, and then, with the finger pressed to the open end

A
C D

B
g^—

~

sii^^

S^^^"^S

* This experiment was first made by Torricelli, and hence is called TorricellVs

Experiment, and the vacant space above the mercury in the tube is called the Torri-

cellian Vacuum.
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SO as to close it, inverted in a vessel of mercury so as to im-

merse its open end, it will be found on removing the finger

that the mercury in the tube will descend through a certain

space, leaving a vacuum at the top of the tube, but resting

with its upper surface at a height of about 29 or 30 inches

above the surface of the mercury in the vessel. It thus

appears that the atmospheric pressure, acting on the sur-

face of the mercury in the vessel, and transmitted (Art. 8),

supports the column of mercury in the tube, and hence that

the weight of the mercurial column is exactly equal to the

weight of the atmospheric column standing on an area

equal to that of the internal section of the tube. The
Weight of this column of mercury then is an exact measure

of the atmospheric pressure, or of the elastic force of the

atmosphere at any instant.

42. Weight of the Air.—This may be directly proved

by weighing a flask filled with air, and afterwards weighing

it when the air has been withdrawn by means of an air-

pump ; the difference of the weights is the weight of the

air contained by the flask.

The opinion was long held that air was without weight,

or rather, it never occurred to any of the philosophers who

preceded Galileo to attribute any influence in natural phe-

nomena to the weight of the air. The fact that air has

weight escapes common observation in consequence of its

extreme levity compared with solids and liquids, and espe-

cially in consequence of its being the medium by which we

are continually surrounded. The experiment of weighing

air was performed successfully for the first time in 1650, by

Otto Guericke, the inventor of the air-pump.*

By means of the weight of air we may account for the

fact of atmospheric pressure. The earth is surrounded by

a quantity of air, the height of which is limited (see Art.

* Deschanel's Natural Philosophy, Part I., p. 141.
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72) ; and if we suppose a cylindrical column extending

above any horizontal area to the surface of the atmosphere,

the weight of the column of air must be entirely supported

by the horizontal area upon which it rests, and ths pressure

upon the area is therefore equal to the weight of the column

of air. The pressure of the air must then diminish as the

height above the earth's surface increases ; and from exper-

iments in balloons and in mountain ascents, this is found to

be the case.

The action of gravity is equivalent to the effect of a compression of

the gas, and it i8 thus seen that the pressure of a gas is in fact caused

by its weight, as in the case of a liquid.

Taking tt for the pressure of the air at any given place

(Art. 11, Cor. 2), and assuming that the density of the air

throughout the height z is constant and equal to p, the

pressure at the height z will be

TT — gpz. (1)

Cor.—It may be shown, in the same manner as for air,

that any other gas has weight, and that the intrinsic weight

is in general different for different gases. Carbonic acid

gas, for instance, is heavier than air, and this is illustrated

by the fact that it can be poured, as if it were

liquid, from one jar to another.

43. The Barometer.— This instrument,

which is employed for measuring the pressure

of the atmosphere, is, in its simplest form, a

straight glass tube AB, about 32 or 33 inches

long, containing mercury, and having its lower

end immersed in a small cistern of mercury ; the ^.
~-~

end A is hermetically sealed, and there is no air

in the branch AB. Since the pressure of a fluid at rest is

the same at all points of the same horizontal plane (Art. 10),

the pressure at B, in the interior of the tube, is equal to
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the atmospheric pressure on the mercury at C, which is

transmitted from the surface of the mercury in tiie cistern

to the interior of the tube; and as there is no pressure on

the surface at P, it is clear that the pressure of the air on C
is the force which sustains the column of mercury PB.

Let a be the density of mercury, and rr the atmospheric

pressure at C ; then we have

TT = ^aPB, (1)

and, since g and a are constant, the height PB may be used

as a measure of the atmosplieric pressure.

44. The Mean Barometric Height.— The mean
height of the barometric column at the level of the sea is

found to vary with the latitude, but it is generally between

29^ and 30 inches. The atmosphere is subject to continual

changes, some irregular, others periodical. If the density

and consequent elastic force of the air be increased, the col-

umn of mercury will rise till it reaches a corresponding

increase of weight ; if, on the contrary, the density of the

air diminish, the column will fall till its diminished weight

is sufficient to restore the equilibrium. The barometric

height is therefore subject to continuous variations; during

any one day there is an oscillation in the column, and the

mean height for one day is itself subject to an annual oscil-

lation, independently of irregular and rapid oscillations due

to high winds and stormy weather. Usually the height of

the column is a maximum about 9 A. m. ; it then descends

until 3 P. M., and again attains a maximum at 9 p. m.*

45. The Water-Barometer.—Mercury possesses two

great advantages over other liquids, which has led to its

being selected above all others for use in barometric instru-

ments. The first advantage of mercury is that it does not

give off vapor at ordinary temperatures. If it did, the space

* Besant's Hydrostatics, p. 75.
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AP above the mercury would be filled with an elastic vapor,

which would press down upon the column, so that its weight
would no longer be a measure of the atmospheric pressure,

but of the ditference between this pressure and the elastic

force of the vapor given off. The second advantage is that,

on account of the great density of mercury, the height of

the column which measures the atmospheric pressure is so

small that barometers constructed with it are of a very con-

venient size. The pressure of the air may be measured by
using any kind of liquid. The density of mercury is about

13.595 times that of Avater,* and therefore, if water were

used, it would be necessary to have a tube of great length,

since the column of water in the water-barometer would be

about 33f feet.

In order to measure easily and correctly the barometric

height, an accurately graduated scale is added, which can

be moved along the tube.

Rem.—The instrument above described involves the essen-

tial parts of a barometer ; it is the province of Physics to

give a full description of different kinds of barometers,

to explain their use, etc.

46. Manometers.—Barometers are used not only to

measure the pressure of the external air, but also to deter-

mine the elastic force of gases or vapors which are enclosed

in vessels. When thus used, they are called manometers.

These instruments are filled with mercury, and are either

open or closed ; in the latter case, there may be air above the

column of mercury or there may be a vacuum. The manom-
eter witli a vacuum above the column of mercury is like the

common barometer. In order to measure with it the elastic

force of the gas or vapor, it will be necessary to establish a

free connection between the cistern of the barometer and

the vessel containing the fluid. This is done by means of a

* Enc. Brit., Vol. XVI., p. 33,
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tube DE, one end of which E opens into the vessel contain-

ing the fluid, and the otlier end D enters above the level of

the mercury B in the- cistern. By this means

the gas from the vessel flows through the tube

ED into the cistern, and presses a column of

mercury into the tube AB, the height of which

measures the elastic force of the gas or vapor in

the vessel.

When the elastic force of the fluid is consid-

erable, it is usual to estimate it as so many
atmospheres : for instance, steam, in the boiler

of an engine, having a pressure of two atmos-

pheres, signifies that its elastic force would sus-

tain a column of about 60 inches of mercury.

If it is said to have a pressure of 6 atmospheres, it means

that its elastic force would sustain a column of about 180

inches of mercury ; and so on.

47. The Atmospheric Pressure on a Square Inch.

—This may be found at once by observing that it is the

weight of a cyUndrical column of mercury whose base is a

square inch, and whose height is equal to that of the

barometric column.

Since the specific gravity of mercury is 13.595, that of

water being 1, it follows that the pressure of the air on a

square inch, taking 30 inches as the height of the barometer

at the sea level,

= (30 X 13.595 X 62.5 -f- 1728) lbs.

= 14.7 lbs.,

and this is called the pressure of one atmosphere.

ScH.—This pressure varies from time to time, but is gen-

erally between 14|^ and 15 lbs. The standard usually

adopted where the English system of measure is used is

14.7 lbs. upon the square inch, which corresponds to a col-
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amn of mercury about 30 (exactly 29.922) inches, and to a

column of water about 34 (exactly 33.9) feet high. A }3ress-

ure of two atmospheres, therefore, would mean a pressure

of 29.4 lbs. on each square inch, and a pressure of six atmos-

pheres would mean a pressure of 88.2 lbs. on each square

inch. (See Weisbach's Mechs., p. 777.)

EXAMPLES.
1. If the elastic force of a gas is 2|^ atmospheres, find its

pressure in lbs. on each square inch. • Ans. 36.75 lbs.

2. If the elastic force of steam in a boiler be b\ atmos-

pheres, find the pressure on a safety-valve whose area is

5.4 sq. ins. Ans. 436.59 lbs.

48. Boyle and Mariotte's Law.*—Gases readily con-

tract into smaller volumes when compressed. "When a gas

is compressed, its elastic force is increased ; and when it is

allowed to expand, its elastic force is diminished. The
statement of the law which expresses the relation between

the pressure and the volume, or the pressure and the density,

of gases is the following :

The pressure of a given quantity of air,

at a given temperature, varies inversely

as its volume, and directly as its density.

Let ABCD be a bent glass tube, the shorter

branch of which can have its end D closed,

and both branches being vertical. Let a little

mercury be poured in at A, and let it stand at

the same level EF in both branches. Now
close the end D; a definite volume of air is Fig. 33

thus enclosed in DE under a pressure equal to

that of the external air, i. e., the elastic force of the enclosed

air DE is equal to the atmospheric pressure exerted on F in

A
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The experimental proof of this law was discovered about the same time in

England by the Hon. Robert Boyle, and in France by Mariotte.
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the open branch, and is therefore equal to one atmosphere

(Art. 47).

Take DH = |DE, and pour mercury slowly into tiie

tube AB till it stands at H in the shorter branch ; in the

longer branch it will be found to stand at the height LK =
30 inches above IIK, i.e., the me/cury, rising in the shorter

branch, compresses the air which it drives before it, and

when the air in the shorter branch is reduced to half its

volume, its elastic force or pressure is two atmospheres,

since it now sustains not only the atmospheric pressure

wiiich is exerted on the surface of the mercury in the open

branch, but also the weight of a column of mercury 30

inches high. When mercury is poured into the tube till it

rises in the shorter branch to M, where DM =: -^DE, it w-ill

be found to stand in the longer branch at the height AN =
60 inches above MN, i. e., when the air in the shorter

branch is reduced to one-third of its volume, its elastic

force or pressure is three atmospheres, since it now sustains

the atmospheric pressure and the weight of a column of

mercury 60 inches in height. In the same way, it may be

shown that if the air occupy one-fourth of its original vol-

ume DE, it will sustain a pressure of four atmospheres, and

so on for any number. Hence, generally, the 2)resswe of a

quantity of air varies inversely as its volume.

When the volume is reduced to one-half, the density is

doubled ; when reduced to one-third, the density is trebled,

and so on ; that is, the volume varies im^ersely as the density.

Hence, the pressure varies directly as the density.

Let V and v' be the volumes of a given mass of air, p and

p' the corresponding pressures, and p and p' the correspond-

ing densities. Then we have

p' V ~ p" ^ ^

p = hp, (2)

where h is a constant to be determined by experiment.
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Rem. 1.—It has been shown by a series of experiments

that this law connecting the elastic force and volume of a

gas under a constant temperature is sensibly true for air and

most gases as far as a pressure of 100 atmospheres.* It is

only when the pressures are very great that variations from

the law are observed, and even then the departure from the

law is but small, especially with those gases which we are

not able to condense into liquids. With gases which undergo

liquefaction at moderate pressures, the departure from the

law is greater, and increases as the state of liquefaction is

approached, f

Rem. 3.—In conducting this experiment, care must be

taken to have the temperatures the same at the beginning

and at the conclusion, as the elastic force of a gas under a

given volume is influenced by changes of temperature. For

this reason, it is necessary to pour in the mercury gradually,

and to allow some time to elapse before the difference of

levels is observed, si" ''3, whenever a gas is compressed, an

elevation of temperature is produced. Therefore, whatever

heat is developed by increase of pressure must be allowed to

pass off before the volume of gas is observed.

EXAMPLES.

1. Let DE (Fig. 33), be 10 inches ; if mercury be poured

in until the level in the closed branch stands 3 inches above

EF, and in the open branch 15.G4 inches, find the elastic

force of the air in the closed branch, the barometer standing

at 29.5 inches.

Since the levels of the mercury in the two branches stand

at 15.64 and 3 inches, the level in the longer branch is

12.64 inches above that in tiie closed branch; the elastic

force of the compressed air, therefore, sustains a column of

* Galbraith's Hydrostatics, p. .35.

t Weisbach's Mechs., p. 782 ; also Twisden's Mechs., p. 229.
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mercury 12.64 inches high, together with the atmospheric

pressure, which by the barometer is shown to be equal to a

column of 29.5 inches; hence the elastic force

= (12.64 + 29.5) inches = 42.14 inches.

2. If the level in the closed branch rise 6.4 inches, find

the height to which the level in the open branch should

rise, the barometer standing at 30.42 inches, and DE being

10 inches. Ans. 60.48 inches.

49. Effect of Heat on Gases.—When a given quan-

tity of air or gas is increased in temperature, it is found

that, if the air or gas cannot change its volume, its elastic

force is increased ; but if the air can expand freely, while

its elastic force remains the same, its volume will be in-

creased.

To illustrate this, take an air-tight piston in a vertical

cylinder containing air, and let it be in equilibrium, the

weight of the piston being supported by the cushion of air

beneath it. Eaise the temperature of the air in the cylinder

by immersing it in hot water; (1) the piston will rise in the

cylinder as the volume of the heated air expands ; and when

the air has reached the temperature of the surrounding

water, the piston will cease to ascend, and will remain sta-

tionary. But (2) if we suppose that when the heat is

applied, the piston is held down so as to keep the air under

a constant Yolume, an effort will be required to prevent the

piston from ascending in the tube, which becomes greater

in proportion as the air is heated. Hence

(1) The effect of heat on a given quantity of air, the

elastic force remaining constant, is to expand its

volume.

(2) TJie effect of heat on a given quantity of air, the

volume remaining constant, is to increase its elastic

force.
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50. Thermometers.—As a general rule, bodies expand

under the action of heat, and contract under the action of

cold, and the only method of measuring temperatures is by
observing the extent of the expansion or contraction of

some known substance. Anybody which indicates changes

of temperature may be called a thermometer.

As the expansions of different substances are not exactly

proportional to one another, it is necessary to select some

one substance or combination of substances to furnish a

standard, and the standard usually adopted for all ordinary

temperatures is the apparent expansion of mercury in a

graduated glass vessel ; for very high temperatures, a metal

of some kind is the more useful, and for very low tempera-

tures, at which mercury freezes, alcohol must be employed.

TJte memirial thermometer is formed of a thin glass tube

of uniform bore, terminating in a bulb, and having its upper

end hermetically sealed. The bulb contains mercury, which

also extends partly up the tube, and the space between the

mercury and the top of the tube is a vacuum. Since the

glass, as well as the mercury, expands with an increase of

temperature, the apparent expansion is the difference be-

tween the actual expansion and the expansion of the glass.

The construction of an accurate mercurial thermometer is

an operation of great delicacy.

In Fahrenheit's Tliermometer, which is chiefly used in

J^ngland and in this country, the freezing point is marked

32°, and the boiling point 212°. The space, therefore, be-

tween these two points is 180°.

In the Centigrade Thermometer the freezing point is

marked 0°, and the boiling point 100°, the space between,

being divided into 100°.

In Reaumur's Thermometer the freezing point is also

marked 0°, but the boiling point is marked 80°*.

• The tetnperatnre Indicated by the boiling point is the same in all.
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Rej'.—Mercury freezes at a temperature of —40° C. or F., and boils

at a temperature of about 350" C. or 663" F. ; it is therefore necessary,

for very high or very low temperatures, to employ other substances.

For very low temperatures, spirit of wine is used ; this liquid has

never congealed, although a temj>erature of —140' C. has been ob-

served, which is the lowest temperature yet attained.*

High temperatures are compared by observing the expansion of bars

of metal or other solid substances, and instruments called pyrometers

have been constructed for this purpose.

51. Comparison of the Scales of these Thermom-
eters.—Any degrees of temperature by either thermometer

may be converted into the corresponding degrees of the

other thermometers ; for the space between the fixed points

in Fahrenheit's being 180°, in the Centigrade 100°, and in

Reaumur's 80°, we have 180° Fahrenheit = 100° Centi-

grade = 80° Reaumur ; and therefore each of Fahrenheit's

degrees = -f
of one of Centigrade = ^ of one of Reaumur.

Let F, C, and R be the numbers of degrees marking the

same temperature on the respective thermometers ; then

since the space between the boihng and freezing points

must in each case be divided in the same proportion by the

mark of any given temperature, we must have

F--ji2 _ _C _ B^,

180 ~" 100
"" 80

'

F—32 C R—9- = 5 = T- (^)

Rem.—The various scales were fonued in the early part of the 18th

century—Fahrenlieit's in 1714, at Dantzic ; Reaumur's in 1731 ; and

the Centigrade somewhat later.f

EXAMPLES.

1. What temperatures on the other two scales are equiva-

lent to the temperature 50° F. ? | Ans. 10° C, or 8° R.

* Maxwell on Heat. + Besani's Hydrostatics, p. 88.

X It is usual, in stating temperatures, to indicate the scale referred to by the in>

tials F., C, K.
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2. Find (1) what temperature C. is the same as 60" R.,

and (2) what temperature R. is the same as 45° C.

Ans. (1) 75° C; (2)36° R.

52. Expansion of Mercury.—The expansion of mer-

cury is very nearly uniform between 0° and 300°. Experi-

ments show that, for an increase of 1° Centigrade, the

expansion of mercury is -^j-^, or .0001815 of its volume ;*

hence, if Of be the density at a temperature t, and o^ the

density at a temperature 0°, we have

<T„ = <T^(1 + .0001815/);

or, if we put .0001815^ 6, we have

a, = a, (1 -f dt), (1)

which, in (1) of Art. 43, gives

Tr = </a,PB = (/a„(l_0/)PB, (2)

by means of which the atmospheric pressure at any place

can be calculated.

53. Dalton's and Gay-Lussac's Law of the Ex-
pansion of Gases by Heat.—The following experimental

law was discovered by Gay-Lussac f and Dalton, and more

recently corrected by Regnault.

// tlie pressure remains constant, an increase of
temperature of 1° C. produces in a given mass of air

an expansion of .003665 of its volume.

By means of this experimental law, combined w4th Boyle's

(Art. 48), the relation between the pressure, density, and

temperature of a given mass of air or gas mav be expressed.

Conceive that a mass of air at the temperature of 0° C. is

inclosed in a cylinder by a piston to which a given force is

• Enc. Brit., Vol. XVI., p. 33. t See Deschanel's Nat. Phil., p. 807.
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applied; let the temperature be iiicrearicd to/; the piston

will then be forced out until the original volume t\ is in-

creased by .003665/'?'o, where v^ is the volume of air at 0°.

Let V be the volume of the same mass of air at the tem-

perature / ; then we have

V = v^{l + .0036650 ;

or, denoting .003665 by «, we have

V = V, (1 + at). (1)

Cor. 1.—If Fahrenheit's scale is used, the number of de-

grees above the freezing point is t— 32 ; and, since 180° F.

correspond to 100° C, the expansion for 1° F. is '-^^^r =
loO

;f^2^of the volume at 32° F. The more accurate value of

the denominator is 491.13.

Hence, the increase of volume = ** ,._— ;
492

and, for the whole volume, we have

V = v„ +
492

460 + / ....
or, V = v^ —492~ ' <^)

where t is the temperature on Fahrenheit's scale, and z'^ is

the volume at 32° F.

Cor. 2.—If v' be the volume which the same mass of air

assumes at the temperature t', we have

460 + t'

Dividing (3) by (2), we have

(3)

460 + f ,,.

^=^460TT- ^'^
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By means of (4) we may determine the volume which a

gas will assume at a given temperature; or, conversely, the

temperature it will have under a given volume, if the volume

it has at any given temperature is known, the pressure re-

maining constant.

EXAMPLES.
1. If 100 cubic inches of gas at 68° F. be heated to

130° F., find the volume, the pressure being constant.

Ans. 109.85 cu. ins.

2. A mass of air at 50° F. is raised to 51° F. What is

the increase of its volume under a constant pressure ?

Ans. 1^0^ its volume.

54. Law of the Pressure, Temperature, and
Density of a Mass of Gas.—Let p, p, and v be the

pressure, density, and volume of a mass of gas at the tem-

perature /, vo and po the volume and density at 0°.

Then, when p remains constant, we have, from (1) of

Art. 53,

V = r, (1 + a/). (1)

Now, if t remains constant while the gas is compressed

from V to v^, the volume varies inversely as the density

(Boyle's Law) ; that is,

V : v^ :: p^ : p,

which in (1) gives,

p^ =p(l + at). (2)

Substituting in (2) of Art. 48, we have

p = kpf, = kp (1 + at). (3)

Cor. 1.—If //, p' be the pressure and density of the same
gas at a temperature t', we have

p' = kp'{l + at')', '
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p _p 1 + ctt

(4)

Cor. 2.—If the volume, aud therefore the density, re-

mains constant, while the temperature rises, the pressure

will also rise.

Let jB„ be the pressure when / = 0, v and p remaining

constant. Then (3) becomes,

Po = ^P' (5)

Substituting in (3), Ave have

p=p^{l + at), (6)

where p and jo^ are the pressui-es at the temperatures t and

0, the volume being constant.

Let t = 1, then (6) becomes

p —j)o = p^fi — .003665^0 (^rt- 53)

;

that is, if the volmne of a mass of gas remains con-

stant, an increase of temperature of 1° C. produces an
increase of pressure equal to .003665 of its original

pressure.

Cor. 3.—If Fahrenheit's scale is used, (3), (4), and (6)

become respectively

p__P_ 460 + ^

y-p'460-4-r' ^'

460 + t ...

Cor. 4.—If jo' be the pressure of the same gas at a temper-

ature /', the volume remaining constant, we have, from (9),

, _ 460 + t'

P -P^ 493 '
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... Z = l^+A no)
p' 460 + t"

^^"^

in which p and p are the pressures corresponding to the

temperatures t and /' of a given mass of gas, the vohime
being constant.

Cor. 5.—Since the volume of a given mass of air varies

inversely as its density, we have, from (4) and (8),

,' = ,\±^JL,
(11)

1 + at p ^ '

460 + t'p

where v' and v denote the volumes of a given mass of air at

the temperatures t' and t.

EXAMPLES.

1. If the pressure of a given mass of gas be 29.25 inches,

at the temperature 56° F., what will it become if heated to

300° F., the volume being constant? Ans. 43.081 inches.

2. If 200 cubic inches of gas at 60° F., under a pressure

of 30 inches of mercury, be raised in temperature to 280° F.,

while the pressure is reduced to 20 inches, find the volume.

Ans. 426.9 cubic inches.

55. Absolute Temperature.—If we can imagine the

temperature of a gas lowered until its pressure vanishes,

without any change of volume, we arrive at what is called

the absolute zero of temperature, and absolute temperature

is measured from this point.* "

Let t^ represent this temperature on the Centigrade

scale; then (3) of Art. 54 becomes

* Besant^s Hydromechanics, p. 113.
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= kp (1 + at,), (1)

or, t. = -- = - 273°.

In Fahrenheit's scale, the reading for absolute zero is

— 459°.

Combining (1) of this Art. with (3) of Art. 54, we have

p = kpa [t — t,)

= Tcpa {t + 273) = hpaT, (2)

where T \q the absolute temperature.

If V and p be the volume and density of a mass of gas, pv

is constant, and therefore, from (2), ^ is constant ; from

which it appears that the product of the pressure and
volume of a given mass of gas is proportional to the

absolute temperature.

ScH.— If the difference of temperature between tlie freez-

ing and boiling points be divided into a hundred degrees,

as in the Centigrade thermometer, the freezing point will

then be 273° and the boiling point 373° absolute tempera-

ture, and the zero of the scale will be that temperature at

which the pressure vanishes. Denoting the absolute tem-

perature by T, and the ordinary Centigrade temperature by

t, we have
T = 273°

-I- t. (3)

56. The Pressure of a Mixture of Gases If two

liquids, which do not act chemically on each other, are

mixed together in a vessel which remains at rest, they will

gradually separate, and finally attain equilibrium with the

lighter liquid above the heavier. But if two gases are

placed in communication with each other, even if the

heavier be below the lighter, they will rapidly intermingle
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until the proportion of the two gases is the same throughout,

and the greater the difference of density the more ,rapidly

will the mixture take place.

Take two different gases, of the same temperature and

pressure, contained in separate vessels ; let a communica-

tion be established between the vessels, and it will be found

that, unless a chemical action take place, tlie two gases will

permeate each other till they are completely mixed, and

that, when equilibrium is attained, the pressure of the mix-

ture will be the same as before, provided the temperature is

the same. Hence, from this experimental fact, the follow-

ing proposition can be deduced.

57. Mixture of Equal Volumes of Oases having
Unequal Pressures.—// tivo gases having the same
temperature he mixed together in a vessel of volume v,

and if the pressures of the gases luhen respectively con-

tained in V, at the same temperature, he p and p' , the

pressure of the mixture will he p +p'.

Suppose the gases are separate. Take the gas whose

pressure is jo, and change its volume until its pressure is p',

its temperature remaining the same. Its volume will then

be, by Mariotte's law (Art. 48), —7 v.
^

Now let the two gases be mixed without change of vol-

ume, so that the volume of the mixture is

. P P +P'
p p

then the pressure of the mixture will be p', according to the

preceding experimental fact (Art. 56). Now if the mixture

be compressed till its volume is v, its temperature remain-

ing constant, the pressure will become, by Mariotte's law,

P +/•
This result is equally true for a mixture of any number

of gases.
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58. Mixture of Unequal Volumes of Gases hav-
ing Unequal Pressures.—Tm;o volumes v, v', of dif-

ferent gases, at the respective pressures p, p', are mixed
together so that the volume of the mixture is V; to

find the pressure of the rnixture.

Change the volume of each gas to V; their pressures will

be, respectively (Art. 48),

V v' ,

and therefore (Art. 57) the pressure of the mixture is

V , v' ,yP+yP I

and if P be this pressure, we have

PV = pv + p'v'.

(See Besant's Hydromechanics, p. 114.)

59. Vapors, Gases.—The term vapor is applied to

those gaseous bodies, such as steam, which can be liquefied

at ordinary pressures and temperatures ; while the word gas

generally denotes a body which, under ordinary conditions,

is never found in any state but the gaseous. The laws

already stated of gases are equally true of vapors within

certain ranges of temperature, the only difference between

the mechanical qualities of vapors and gases, as distinguished

from their chemical qualities, being that the former are

easily condensed into liquids by lowering the temperature,

while the latter can be condensed only by the application

either of great pressure or extreme cold, or a combination of

both.

Prof. Faraday succeeded in condensing a number of different gases
;

he found that carbonic acid, at the temperature of —11", was liquefied

by a pressure of 20 atmospheres, but when it was at the temperature
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of 0", a pressure of 36 atmospheres* was required to produce conden-

sation.

In 1877, M. Pictet succeeded in liquefying oxygen by subjecting it

to a pressure of 300 atmospheres ; at the close of the same year, M.

Cailletet effected the liquefaction of nitrogen, hydrogen, and atmos-

pheric air. Such experimental results point to the general conclusion

that all gases are the vapors of liquids of different kinds, f

60. Formation of Vapor, Saturation.—The major-

ity of liquids, when left to themselves in contact with the

atmosphere, gradually pass into the state of vapor and dis-

appear. Tliis phenomenon occurs much more rapidly with

some liquids than with others. Thus, a drop of ether dis-

appears almost instantaneously ; alcohol also evaporates very

quickly; but water evaporates much more slowly. If water

be introduced into a space containing dry air, vapor is im-

mediately formed ; if the temperature be increased, or the

space enlarged, the quantity of vapor will be increased ; but

if the temperature be lowered, or the space diminished, some

portion of the vapor will be condensed; in all cases the

pressure of the air will be increased by the pressure due to

the vapor thus formed. The formation of vapor is inde-

pendent of the presence of air or of its density, the only

effect which the air produces being a retardation of the

time in which the vapor is formed. If water be introduced

into a vacuum, it is iustantaneously filled with vapor, but

the quantity of vapor is the same as if the space had been

originally filled with air.

While the supply of water remains, as a source from

which vapor can be produced, any given space will be

always saturated with vapor, *. e., there will be as much
Yapor as the temperature admits of. If the temperature be

lowered, a portion of the vapor will be immediately con-

densed, and become visible in the form of a liquid ; but if

* An atmosphere denotes the pressure due to a column of mercury 29.9 inches in

height.

t Besant's Hydrostatics, p. 136.
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tlie temperature be increased so that all the water is turned

into vapor, then for this and all higher temperatures the

pressure of the vapor will change in accordance with the

same law which regulates the connection between the press-

ure and temperature of gases (Art. 53).

The atmosphere always contains more or less aqueous

vapor, and if p be th6 pressure of dry air, and tt of the

vapor in the atmosphere at any time, the actual pressure of

the atmosphere is p-{-'rT.

61. Volume of Atmospheric Air without its Ta-

por.—Having given the pressures of a volume v of

atmospherie air, and of the vapor it contains, to find
the volume of the air ivithout its vapor at the same
pressure and temperature.

Let P be the pressure of the atmosphere and p that of

the vapor; and let v' be the required volume of the air

without its vapor, at the pressure P. Then P — ^ is the

pressure of the air alone when its volume is v. Hence we
have (Art. 48),

P : P—p :: v : v' -,

P — p

62. Pressure of Gas when Volume and Temper-
ature are Clianged.—J. gas contained in a closed

vessel of volume v is in contact with water, and its

pressure at the temperature t is P ; it is required to

determine its pressure when v is changed to v' and t

to t'.

Let p and p' be the pressures of the vapor at the temper-

atures t and t', respectively, and P' the required pressure.

Then P — p and P' — p' are the pressures of the gas

alone, under the two sets of conditions stated. Hence,
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calling p and p the densities of the gas, we have, from (3)

of Art. 54,

P-p = kp{l + at),

P' - p' = kp' (1 + at')

;

also, from (1) of Art. 48, we have vp = v'p'.

P' —p' V 1 + at'

" P-p v'l + af

which gives the value of P'.

(1)

Cor.—If a and a' be the densities of vapor under the two

conditions, we have

p ~ o{l + at)' ^^

Dividing (1) by (2), we get

p P — p' va
_

~p'T'^ ~ rV

'

- = §^^!- (3)
va Pp — pp

If Pp' > P'p, v'o' will exceed va ; i. e., more vapor will

have been absorbed by the gas. But if Pp' < P'p, then

v'a' will be less than va, and the gas must therefore, in

changing its volume and temperature, have lost a portion

of its vapor. (See Besant's Hydrostatics, p. 138.)

EXAMPLE.

Having given the pressures P and p of a volume v of

atmospheric air, and of the vapor it contains, to find the

volume of the air, without its vapor, at the same pressnre

P, the temperature remaining constant.

P — p
Ans. Volume of an- = —75— y.
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63. Formatiou of Dew, the Dew Point.—Dew is

the name given to those drops of water which are seen in

the morning on the leaves of plants, and are especially

noticeable in the spring and antumn. If any portion of the

space occupied by the atmosphere be saturated with vapor,

i. e., if the density of the vapor be as great as it can be for

the temperature, then the slightest fall of temperature will

produce condensation of some portion of the vapor ; but if

the density of the vapor be not at its maximum for that

temperature, no condensation will take place until the tem-

perature is lowered below the point corresponding to the

saturation of the space.

If any body in contact with the atmosphere be cooled

down until its temperature is below that w^hich corresponds

to the saturation of the air around it, condensation of the

vapor will take place, and the condensed vapor will be

deposited in the form of deto upon the surface of the body.

Heat radiates from the ground, and from the bodies upon

it, and unless there are clouds from which the heat would

be radiated back, the surfaces are cooled, and the vapor in

the adjacent stratum of the atmosphere condenses and falls

in small drops of water on the surface. The formation of dew

on the ground depends therefore on the cooling of its surface,

and this is in general greater and more quickly effected when
the sky is free from clouds. This accounts for the dew
with which the ground is covered after a clear night. A
covering of any kind will diminish the formation of dew
beneath ; for instance, but very little dew will be formed

under the shade of large trees.

The dew-point is the temperature at which vapor begins

to be deposited in the form of dew, and it must be deter-

mined by actual observation.

64. Pressure of Yapor in the Air.—Tables* have

* Besant's Hydrostatics, p. 143.
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been formed and empirical formulas constructed for deter-

mining the relation between the temperature and the elastic

force of vapor, at the saturating density, for certain ranges

of temperature. If, therefore, the dew-point be ascertained,

we can at once determine the pi'essure of the vapor in the

air by means of these tables. For, if t' be the dew-point,

and p' the corresponding pressure, then at any other tem-

perature t of the air above t', we have, for the required

pressure,

65. Eflfect of Compression or Dilatation on the
Temperature of a Gas.—It is an experimental fact that,

if a quantity of air be suddenly compressed, its temperature

is raised ; and that, if the compression be of small amount,

the relative increase of temperature is proportional to the

condensation. Thus, if the density be changed from p to

p', the increase of temperature is proportional to

P' - P

If the air be allowed to dilate, its temperature is dimin-

ished according to the same law. A stream of compressed

air when issuing from a closed vessel is sensibly chilled. The
reason that the compression or dilatation must be sudden,

is that no heat should be allowed to escape, or to be admit-

ted. If the experiment be performed in a non-conducting

vessel, there is no necessity for rapidity of action.

66. Expansion of Bodies— Maximum Density of

Water.—In general, all solid and liquid bodies expand

under the action of heat, and contract when heat is with-

drawn. The expansion of mercury is proportional to the

increase of temperature, within certain limits; this is also

the case with solid bodies, such as glass and steel. For
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water and aqueous bodies generally, the law of expansion is

unknown.

It is a remarkable property of water that, at a tempera-

ture of about 4° C. or 40° F., its volume is a minimum and
therefore its density is a maximum ;

* and whether its tem-

perature increases or decreases from this point, the water

expands in volume. When the temperature descends to the

freezing point, there is a still further expansion at the

moment of congelation; for this reason, ice floats in

water.

We can now see what takes place in a pond of fresh

water during winter. The fall of temperature at the sur-

face of the pond does not extend to the bottom, where the

water seldom falls below 4° C, whatever may be the exter-

nal temperature. As the temperature at the surftice de-

scends, the water at the surface cools, and being conti-acted,

it becomes heavier than the water beneath, and sinks to the

bottom. The water from beneath rises and becomes cooled

in its turn; and this process goes on till all the water has

attained its maximum density, i.e., till its temperature is

4° C. But when all the water has attained this tempera-

ture, it will remain stationary ; and any further cooling of

the water at the surface will expand it, until it finally con-

geals. It is clear that the deeper the water is, the longer

will be the time before the whole of the water has attained

its maximum density, and therefore that ice will form much
less rapidly on the surface of deep than on the surface of

shallow ponds.

It is from the fact that water expands in freezing, taken

in connection with the low conducting power of liquids

generally, that the temperature at the bottom of deep ponds

remains moderate even during very severe cold, and that the

lives of aquatic animals are preserved.

* The results of Playfair and Joule givo 3°.945C. as the temperature at which the

density is a maximum. Phil. Transactions, 1856.
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67. Thermal Capacity — Uuit of Heat — Specilic

Heat.—The thermal capacity of a body is the quantity of

heat required to raise the temperature of the body one

degree.

The unit of heat wliich is generally employed is the quan-

tity of heat required to raise a unit mass of water through

one degree C, the temperature of the water being between
0° C. and 40° C. It is called tlie thermal unit Centigrade.

The specific heat of a body is the thermal capacity of a

unit of its mass ; and it is always to be understood that the

same unit of mass is employed for the body as for the water

mentioned in the definition of the unit of heat. Therefore,

specific heat is independent of the unit, and is merely the

ratio of the quantity of heat required to increase by 1^ the

temperature of the body to the quantity of heat required to

increase by 1° the temperature of an equal mass of water.

The quantity of heat expended in changing the tempera-

ture from t to t'

varies as t' — t when the mass is given,

and varies as the mass when t' — t is given
;

and therefore generally it varies as m {f — t), if m be the

mass. Hence, the quantity of heat expended in changing

the temperature of the mass m from t to t' is

sm {f — t), (1)

where s is the specific heat of the substance, since it is the

quantity of heat required to raise by 1" the temperature of

the unit of mass, which may be shown by putting m = 1

and f — t = 1.

Let dH denote the quantity of heat which produces in

the unit of mass a change of temperature dt, then the meas-

ure of the specific heat is -jT-
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68. Comparison of Specific Heat at a Constant
Pressure with that at a Constant Yolume.—In the

specific heat of gases there are two cases to be considered :

(1) when the pressure remains constant, the gas being

allowed to expand
; (2) when the volume is constant.

Let the pressure p remain constant while the application

of a small quantity of heat H increases the temperature T
by T, and changes the density from p to p'. From (3) of

Art. 55, by putting ha = K^ Ave have

p = KpT=Kp'{T+T). (1)

Now if the air be rapidly compressed into its original

volume, its temperature will be increased (Art. 65), and we
shall have

the increase of temperature p — p'

^ = /^ J [by (1)],

where ju is a constant.

.'. the increase of temperature = jur, (3)

and hence the whole change of temperature produced by

the heat H, when the volume is constant,

= r + /i- = At. (3)

In order, therefore, to produce a change of temperature

T when the volume is constant, the quantity of heat required
TT

is -r-, and consequently,

specific heat at constant pressure H . .

specific heat at constant volume H
1

Cor.—Therefore the specific heat at a constant pressure

exceeds the specific heat at a constant volume; and this
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excess from (3) is equal to the quantity of heat ut that is

disengaged when the gas is suddenly compressed into its

original volume.

ScH.—The value of a is found experimentally to be con-

stant for all simple gases, its value being approximately

1.408. (See Besant's Hydromechanics, p. 118.)

EXAMPLES.

1. A mass m^ of a substance of specific heat s^ and tem-

perature t^, is mixed with a mass Wg of a substance of spe-

cific heat Sg and temperature t^, the mixture being merely

mechanical, so that no heat is generated or absorbed by any

action between the substances, and all gain or loss of heat

from external sources is prevented. Find the resulting

temperature / of the mixture.

Suppose the former body to be the warmer ; then it cools

down from t^ to t, while the colder rises from i^g to t.

Therefore we shall have

m^s^ (/j — = t'i6 units of heat lost by the

former body,

and /Wg^g {t — /g) = the units of heat gained by the

latter body,

and since the quantity of heat lost by the warmer body is

equal to that gained by the cooler, these two expressions

are equal ; therefore

*Wi«i (^1 — = '"^z^i (^ — h) 5

One of the methods of finding the specific heat of a sub-

stance is by immersing it in a given weight of water, and

observing the temperature attained by the two substances.
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2. A mass Jf of a substance of specific heat S and tem-

perature T, is immersed in a vessel of water, m' and m
being the masses of the vessel and of the water in it, and

t' their common temperature and s' the specific heat of the

vessel. Find the temperature t of the whole after immer-

sion. . _ MST -{- lilt' + m's't'

MS + w + m's'

3. A glass vessel weighing 1 lb. contains 5 oz. of water,

both at 20°, and 2 oz. of iron at 100° is immersed. What
is the temperature of the whole, taking .2 as the specific

heat of glass and .12 of iron ? Ans. 22°^^.

The following are approximate values of the specific heats

of a few substances

:

Water, 1

Thermometer-glass, .... 0.198

Iron, 0.114

Zinc, 0.1

Mercury, 0.03

Silver, 0.06

Brass, 0.09

(Besant's Hydrostatics, p. 147.)

69. Sudden Compression of a Mass of k\v,—A
mass of air being suddenly * compressed or dilated, it

is required to find the new pressure and temperature.

Let p, p, T be the pressure, density, and absolute tem-

perature at any stage of the process
; p, p', T' the new

pressure, density, and temperature ; and let dThe the change

of temperature due to the change dp in p. Then we have

dT dp ,^-

* If the compression takes place in a non-conducting vessel, so tbat no heat is

lost or gained, the compression need not be rapid.
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From (1) of Art. 68, we have

p = KpT', (2)

= KT + KuT [from (1)]. (3)

Dividing (3) by (2), we have

^^ = ^+^ = ^ [from (3) of Art. 68],
p dp p p p ^ ^ ' -

dp Xdp ...
or, -^ = —^.

(4)
P P

Integrating between the limits p' and p, p' and p, we have

p[ _ IP\\
p ~ \pr

which determines the pressure.

Also, p' = Kp'T',

which, divided by (2), gives *

p pT (6)

From (5) and (6), we have

^PT ~\pl

r = Tipj] (7)

which determines the temperature. (See Besant's hydro-

mechanics, p. 118.)
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70. Mass of the Earth's Atmosphere.—By means

of the barometer, some idea may be formed of the mass of

air and vapor surrounding the earth, since the weight of the

whole atmosphere is equal to that of a stratum of mercury

about 29.9 inches thick covering the globe. Suppose the

earth to be a sphere of radius r, and that h is the height of

the barometric column at all points of its surface. Then
the mass of the atmosphere is approximately equivalent to

the mass 4Trcrr% of mercury, where a is the density of the

mercury.

Let p be the mean density of the earth ; then,

the mass of the atmosphere : the mass of the earth

=: 4iTrar% : f^p?"^

= 3a/i : pr.

Taking a = 13.568 (Art. 47), and p = 5.5,* and sup-

posing the height of the barometric column h to be 30

inches, which is probably near the average height at sea-

level,! it will be found that the above ratio of the mass of

the atmosphere to that of the earth is about xi^ i eoir-

71. The Height of the Homogeneous Atmosphere.
—If the atmosphere were of the same density throughout

as at the surface of the earth, its height I would be approx-

imately obtained from the following equation,

ah = pi, (1)

where a and p are the densities of mercury and air respect-

ively, and h is the height of the barometric column. From
Art. 70, and Art. 33, Sch., we have

a = 13.568 x768p — 10420.224p,

* There is gome doubt about the accuracy of this value ; the value deduced by

the Astronomer Royal at the Harton Colliery in 1854 is 6.6. Phil. Trans., 1856.

t See Bncy . Brit. , Vol III. , p. 28.
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aud taking h = 30 inches, we have, by solving (1) for I,

I = h- = 26050 feet,

9

which is a little less than 5 miles.

TZ. Necessary Limit to the Height of the At-

mospliere.—Since the attraction of the earth diminishes

at a distance from its surface (Anal. Mechs., Art. 133«f), it

is clear that the atmosphere is very far from being of uni-

form density throughout, and tlierefore the result in Art. 71

is very far from the truth. A limit can be found, however,

to the height of the atmosphere from the consideration that,

beyond a certain distance from the earth's centre, its attrac-

tion will be unable to retain the particles of air in the cir-

cular paths which they describe about the earth, since the

centrifugal force must exceed the force of gravity.

Let cj be the earth's angular velocity, and r its radius.

Then the centrifugal force of a particle tn of air on the

earth's surface is wiwV, and this is equal to -r^^ [Anal.
2o9

Mechs., Art. 199, (3)] ; therefore, at a height z above the

surface, the centrifugal force mw^ (^ -[. £)

_ mg r -\- z
"^

289 ~1'

The earth's attraction at the same height (Anal. Mechs.,

Art. 133«)

_ mgr^
- (TT^p'

and, in order that the particle may be retained in its path,

these two forces must equal each other.

mg r + z mgr^
•'

289 ~7~ " (T+'^a'



122 DECREASE OF DENSITr OF THE ATMOSPHERE.

r -\- z '/'^

®^'
"2897 ~ {Th^f

.: z = r(V289 — l);

= 5.6r+
= 22000 miles (approximately).

Rem.—The actual height of the atmosphere, however, is

possibly much lower than this, for its temperature has been

found, by experiments made in balloons, to diminish with

great rapidity during an ascent; it is therefore very likely

that, at a height less than 5r, the air may be liquefied by

extreme cold, and in that case its external surface would be

of the same kind as the surfaces of known inelastic fluids.

(Besant's Hydromechanics, p. 120.)

73. Decrease of Density of the Atmosphere.—
(1) ~[Vlien the force ofgravity is constant.

Take a vertical column of the atmosphere, and let it be

divided into an indefinite number of horizontal strata of

equal thickness, so that the density of the air may be uni-

form throughout the same stratum. Let the weight of the

whole column from the top of the atmosphere to the earth

= a, that of the whole column above the lowest stratum =
h, that of the column above the second =: c, and so on.

Then h, c, d, etc., are the forces respectively which compress

the first, second, third, etc. strata, which, as they are of

equal thickness, are as their weights, a — l, h— c, c — d,

etc. Hence we have

a — h '. h — c :'. h : c,

.'. a '. h :: h : c.

In the same way, it may be shown that

h : c :: c '. d,

and so on. Hence, h, c, d, etc., and therefore the densities
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of the successive strata, form a series of terms in geometric

progression, which is decreasing since a is greater than h,

and therefore h greater than c, and so on ; and as the strata

all have the same thickness, the heights of the several strata

ahove the earth's surface increase in arithmetic progression.

Hence,

// a seHes of heights be taken in arithmetic pro-

gression, when the force of gravity is constant, the

densities of the air decrease in geometric progression.

ScH.—By barometric observations at different altitudes,

it is found that at the height of 3|- miles above the earth's

surface, the air is about one-half as dense as it is at the

surface. Forming therefore an arithmetic series, with Z^

for the common difference, to denote the heights, and a

geometric series with \ for the common ratio, to denote

densities, we have

Heights, 3|, 7, 10^, 14, 17|, 21, U\, 28, 31|, 35, etc.

Densities, \, \, \, -^, -^, -^^, y^, ^-g-, -^, -r^^,etc.

That is, according to this law, at the height of 35 miles

the air is less than a thousandth part as dense as it is at the

surface of the earth.

(2) When the force ofgravity varies inversely as the

square of the distance from the earth's centre.

Let r be the radius of the earth, p' the density at the sur-

face of the earth, p the density at a height z, and h the

height of a homogeneous atmosphere. Then, since the

density varies as the compressing force, and this varies as

the weight, we have

p' : dp :: hp'g : g -^—^-{— p dz),

where a and -—-—-. are the measures of the earth's attrac-
• {r -\- z)^
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tion at the surface and at a height z, the negative sign being

taken because the density is- a decreasing function of the

height z.

dp _ r^ dz

p h {r -{- z)^

Integrating, observing that when z = 0, p = p', we

have

, p r^( 1 1\

p' h \r +

P'
P =

A \r "" r+ej

which shows that, ii r -{- z increases in liarnionic progres-

sion, will decrease in arithmetic progression, and

therefore p will decrease in geometric progression. Hence,

// a series of heights be taken in harmonic progres-

sion, when the force ofgravity is regarded as variable,

the densities of the air decrease in geometHc progres-

sion. (See Bland's Hydrostatics, p. 258.)

74. Heights Determined l)y the Barometer.—

A

very important use of the barometer is to find the difference

of level of two places situated at unequal distances above

the surface of the earth. Since the height of the column of

mercury in the barometer depends on the pressure of the

atmosphere (Art. 43),' and as the pressure of the atmosphere

at any point depends upon the height of the column of air

extending from that point to the top of the atmosphere, it

follows that this pressure will decrease as we ascend above

the earth's surface, and therefore that the height of the

column of mercury will diminish. Tliat is, the mercury in

the barometer will fall when the instrument is carried from
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the foot to the top of a mountain, and will rise again when

it is returned to its former position.

(1) When the force of gravity is regarded as con-

stant.

Consider a vertical column of the atmosphere at rest

under the action of gravity. Let z be taken vertical and

positive upwards ; and at a height z, let p be the pressure

and p the density. The pressure^, at any height z. is meas-

ured by the weight of the column of air extending from

that height to the top of the atmosphere; and the element-

ary pressure dp will be measured by the weight of the col-

umn having the same base and the elementary height dz.

Therefore, if A be the area of the section of the column, we

have
Adp = — Agp dz,

or, dp = —gp dz, (1)

the negative sign being taken because the pressure /? is a

decreasing function of the height z.

If t be the temperature, we have from (3) of Art. 54,

p = Icp (1 + at). (2)

Dividing (1) by (2), we have

dp _ gdz

p -~ T^at ^^^

If the heights above the earth's surface are small, the

force of gravity g may be regarded as constant ; and sup-

posing t constant, we have, by inj;cgrating (3),

>^logA=^#=4>, (-1)^ p 1 -{- at ' ^ '

where J9'
is the pressure at the height z\
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Let h, h' be -the observed barometric heights at the two

stations, whose altitudes are z and z' ; let a be the density of

mercury at a temperature zero, and r, r', the temperatures

at the two stations. Then we have, from (2) of Art. 52,

p = gah (1 — Bt),

and p' = gah' (1 — dr'),

which in (4) gives

where t may be taken approximately equal to ^{t -\- r')
;

from this equation the difference of the heights of the two

stations can be calculated.

(2) When the force of gravity is regarded as va-

riable.

If the heights above the earth's surface be considerable,

it is necessary to take account of the variation of gravity at

lifferent distances from the earth's centre.

Calling g the measure of the earth's attraction at the level

of the sea, and r the radius of the earth, then we have, for

the measure of the attraction at a height z,

which, being substituted in (1) for_«7, gives

dp = — g -—;

—

-p dz. (7)^ ^ {r -{ zY^ ^ '

Dividing (7) by (2), we have

" p - lJ^ai{r + zf
^^'
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It must be observed that p is the sum of the pressures

due to the air itself, and to the aqueous vapor Avhich is

mixed with it ; i. e., the quantity kp in (2) is the sum of

the two, kp, k'p', where p and p are the densities of the air

and the aqueous vapor, respectively.

Considering t constant as before, and equal to the mean
of the temperatures at the two stations, and integrating (8),

we have

P (1 + «0 {r + z){r + z') ^ '

As before, let h, h', and r, t', be the observed barometric

heights and temperatures, and a the density of mercury at

a temperature zero ; then from (2) of Art. 52, by substitut-

ing for g its value from (6), we have

^ (r -f zf ^
'*

, ^ -J^- ah' (1 - Ot'),

" p -\r ^z'l l-dr k
^^"^

Substituting (10) in (9), and solving for z — z', we have

z — z' =

gr^ \ ^h ^r+ z ^i—drj
(11)

Since 6 is very small (Art. 52), we have .

logl^' = log[l-e(T'-r)]

= -d{T'-r).

(Calculus, Art. 61.)
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Substituting this in (11), and reducing N"aperian to com-

mon logarithms by multiplying by m, the modulus of the

common svstem, we have

, k{\ + at){r+ z){r+ z')
z — z = A

mgr'
log,o|+21og,o^,

-md{T'-T)
, (12)

from which the value of z can be determined when z' is

known.

Cor. 1.—If the lower station be nearly at the level of the

sea, z' =. 0, and (12) becomes

(13)

Cor. 2.—In the above investigation no account has been

taken of the variation of gravity at different parts of the

earth's surface. From a comparison of the results ol)taiiied

by causing pendulums to oscillate in different latitudes, if ^
be the measure of gravity at a place of latitude a, and g' at

a place of latitude A', it has been found (Poisson, Art. 628)

that

g_ _ 1 — .002588 cos %X
^

/ ~ 1 — .002588 cos 2/.'

'

Tc Ic \ — .002588 cos 2A'
therefore, — =

—

,-^ t., .^-oo n^' \\^)mg mg 1 — .002o88 cos 2A ^
'

If X' be the latitude of Paris, the value of the quantity

_^ (1 _ .002588 cos 2A') (15)mg ^ '

is nearly 18336 French metres,* or about 60158.56 English

* A French metre is 89.37079 inches.
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feet; representing this numerical quantity by c and substi-

tuting it in (14), we get

h c

z =

my 1 — .002588 cos 2A'

which in (13) gives

.(l + «0(l + '.)r
j^,

. ^v

= 1-002588 col2lL^"g'VT +^ ^"^4^+ ?)

_^0(r'_T)^, (16)

from which the yalue of z may be determined by a series of

approximations; i. e., an approximate value must be first

obtained by neglecting -
; then this approximate value

must be substituted for z in --, and a more accurate value

will be obtained, and the same process may be repeated, if

necessary.*

ScH. 1.—When - is very small, it may be neglected in

(16). It has been found in practice, however, that in this

case the results are more accurate by employing 18,393

metres as the value of c. (Duhamel, p. 259.)

In order that the heights as determined by the barometer

may be very exact in practice, certain corrections are neces-

sary. For instance, the value of k is modified by the fact

that the density of aqueous vapor at a given temperature

and pressure is less than the density of dry air under the

same circumstances ; and the proportion of aqueous vap.oi

to dry air will generally be different at the two stations.

A formula for this is given in Ency. Brit., Vol. m., p. 386, involving a conpid-

eration of densities of vapor.
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ScH. )l.—Formula (16) has been obtained on the supposi-

tion that the temperature of the air remains constant in

passing from the lower to the higher station ; if, however,

the difference between the heights be very great, a consid-

erable error may be thus introduced, and formulse have

therefore been constructed in which account is taken, on

various hypotheses, of the variation of atmospheric temper-

ature. A formula of this kind is given in Lindeman's

Barometric Tables, constructed on the supposition that the

temperature diminishes in harmonic progression through a

series of heights increasing in arithmetic progression.

Also, we have assumed that the temperature of the

mercury in the barometer is the same as that of the air

surrounding it ; but in some cases, as for instance when ob-

servations are made in a balloon, the barometer may not

remain long enough in the same place to acquire the tem-

perature of the surrounding air. The temperature of the

mercury may be observed, however, by placing the bulb of a

thermometer in the cistern of the barometer, and the tem-

peratures thus obtained must be used in (10). (See Be-

gant's Hydromechanics, p. 121.)

SPECIFIC GRAVITIES.

Ratios of the Specific Gravities of different sub-

stances to that of water at 60°.

Tin, 7.29

Lead, 11.45

Zinc, 6.86

Nickel, .... 8.38

Iron, 7.844

Flint-glass, . . . 2.5

Marble, . . . . 2.716

Rock-salt, . . . 1.92

Ivory, . . . . 1.917

Diamond, . . . 3.52

Sulphur, . . 2

Iodine, . . . . 4.94

Arsenic, . . . . 5.96

Gold, . - . . . 19.4

Platina, . . . . 21.53

Silver, . . 10.5

Mercury, . . 1.3.568

Copper, . . . . 8.85



EXAMPLES. 131

Ice (at 0°),

Sea-water,

Olive-oil,

0.926

1.027

0.915

Alcohol,. . . . 0.794

Ether, . . . . 0.724

Ratios of the densities of gases and vapors of differ-

ent substances to that of atmospheric air at the same
temperature and under the same pressure.

Oxygen, .

Hydrogen,

Nitrogen,

Chlorine,

Bromine,

Iodine, .

Arsenic, .

Mercury,

1.103

0.069

0.976

2.44

5.395

8.701

10.365

6.978

Water, .... 0.62

Alcohol, . . . . 1.613

Carbonic Acid, . 1.524

Ammonia, . . . 0.591

Sulphurous Acid, 2.212

Sulphuric Acid, . 2.763

Ether, . . . . 2.586

EXAMPLES.

L If the barometer stand at 28.372 inches, find the

pressure on a square inch. Ans. 13.902 lbs.

2. If the elastic force of a vapor sustain a column of

mercury 3.34 inches high, find its pressure on a square

inch. Ans. 1.64 lbs.

3. A cubic inch of mercury at 16° weighs 3429^ grs.

nearly, and the barometer stands at 30 inches. Find (1)

the atmospheric pressure on the square inch of surface, and

(2) the height of a barometer filled with water instead of

mercury, the specific gravity of mercury being 13.6.

Ans. (1) 14.698 lbs.
; (2) 34 feet.

4. A hollow cylinder, open at the top, is inverted, and

partly immersed in water. It is required to find the depth

of the surface of the water within the cylinder below the

surface of the water without.

Let a = the length of the cylinder, h = the length of

the part not immersed, x = the required depth of the sur-
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face within below the surfuco without, and tt, -', the press-

ures of the atmospheric air and of the compressed air.

Then (Art. 48) we have

•rr' : t: :: a '. h + x; (1)

also, tt' = pressure on the water within = rr + gpx =i

gph + gpx, if h be the height of the water barometer.

Substituting these values of n- and rr' in (1), we have

h -\- X _ a

h ~ b + x'

ViaA + {h — 'bf — {h + b)
X =

2

5. A cylinder, 20 ft. long, is half filled with water, and

inverted with the open end just dipping into a vessel of

water. Find the altitude of the water in the cylinder, the

height of the water barometer being 33 feet.

A71S. 7.21 feet.

6. When the mercurial barometer stands at 30 inches,

what is the height of the barometer formed of a liquid

whose specific gravity is 5.6 ? Ans. 72.7 inches nearly.

7. The air contained in a cubical vessel, the edge of

which is one foot, is compressed into a cubical yessel of

which the edge is one inch. Compare the pressures on a

side of each vessel. Ans. 1 : 12.

8. If the elastic force of a mass of gas whose volume is

100 cubic inches be 30.275 inches of mercury, find its elastic

force if it be allowed to expand to a volume of 387 cubic

inches. Ans. 7.823 inches.

9. If Fahrenheit's Thermometer mark 40°, what are the

corresponding marks of Reaumur's and the Centigrade ?

Ans. 3|; 4f,.
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10. If the sum of the readings on Fahrenheit's and the

Centigrade thermometer be zero for the same temperature,

find the reading of each thermometer.

Ans. llf ;
— llf

11. If 327 cubic inches of gas at 280° be allowed to cool

down to 56°, find the volume.* Ans. 223 cubic inches.

12. If, by the application of heat, 120 cubic inches at

60° F. expand into 180 cubic inches, find the temperature.

Ans. 320°.

13. If the pressure be 14.7 lbs. on the square inch at the

temperature 62°, what will^t become if raised to 420° ?

Ans. 24.78 lbs.

14. If the pressure at 50° be 15 lbs., and if the tempera-

ture be so far increased as to make the pressure 21 lbs., find

the temperature. Ans. 254°.

15. The air in a spherical globe, one foot in diameter, is

compressed into another globe, 6 inches in diameter, and

the temperature is raised t°. Compare (1) the pressures of

the air under the two conditions, and (2) tlie pressures on

the surfaces of the globes.
j (1) 1 : 8 (1 + a^)

;

^'^'•1(2) l:2(l + «0.

16. The temperature of the air in an extensible spherical

envelope is gradually raised t°, and the envelope is allowed

to expand till its radius is n times its original length. Com-
pare the pressure of the air in the two cases.

Ans. 1 + at : 11^.

17. A mass of air at a temperature t is contained in a

cylinder which has an air-tight piston fitting into it, and it

is found that the air exerts a pressure P on the piston ; the

air being suddenly compressed into - of its former .vol-

* Fahrenheit's Thermometer is understood, uiiless otherwise expressed.
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ume, and the temperature changed to ^^ find the presBore

/" on the piston. . p- _ p 1 + a^'
***' ~ ** 1 + at'

18. If a cubic foot of gag, whose temperatnre is 100** and

elastic force 29^ inches, be cooled down to 40", and com-

pressed by a force equivalent to 10^ inches, find its Tolnme.

Ans. 4334J7 cubic inches.

19. If 20 cubic inches of air, whose temperature is 56°

and elastic force 28.8 inches, be expanded to 25 inches by

the application of heat, and if the elastic force become 31

inches, find the temperature. Antt. 234.27°.

20. Let 100 cubic inches of air have a temperatnre 32°

and a pressure 29.922 inches; if the temperature become

60°, and the pressure 30 inches, find the volume.

An*. 105.42 cubic inches.

21. A cubic foot of air at a temperature of 100°, and

under a pressure of 29|^ inches of mercury, is cooled down
to 40° and compressed by an additional lOi inches of mer-

cury. Find the volume. Ans. 1137.86 cubic inches.

22. If h and // be the heights of the surface of the mer-

cury in the tube of a barometer above the surface of mercury

in the cistern at two different times, compare the densities

of the air at those times, the temperature being supposed

unaltered, Ans. h : h'.

23. A conical wine-glass is immersed, mouth downwards,

in water. How far must it be depressed in order that the

water within the glass may rise half-way up it ?

Ans. th, where h is the height of the water barometer.

24. A cubic foot of air having a pressure of 15 lbs. on a

square inch is mixed with a cubic inch of compressed air,

ha\ing a pressure of 60 lbs. on a square inch. Find the

pressure of the mixture when it* volume is 1729 cubic

inches. Am. 15^41-^ lbs.
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39. Twt> TolomoSk Fmd JT, of different gases^ a^ pr«>s&-

jues Pf p\ and temperatnie 4 sro mixed togetlia*; the

Tohime of the mixlnro k U^ and its (empeanlme I*. Betep-

mine the pressure^ J^F+ yF^l + ^f

26. Three gallons of water at 45** are mixed with dx gal-

lons at 9(f. What is the temperature of the mixture ?

An*. 79*

27. An ounce of iron at 120% and 2 os. of line at 90%
are thrown into 6 oo. of water at 10% contained in a glass

vessel weighing 10 oo. What is the final temperature,

taking .1 and J2 as the specific heats of xinc and iron ?

Ams. 13®^.



PART II.

HYDROKINETICS.

CHAPTER I.

MOTION OF LIQUIDS.— EFFLUX.— RESISTANCE AND
WORK OF LIQUIDS.

75. Telocity of a Liquid in Pipes.—// a liquid

run through any pipe of vaHahle diameter, which is

kept continualhj full, and the velocity is the same in

every part of a transverse section, the velocities in the

different transverse sections vary inversely as the

areas of the sections.

For as the tube is kept full, and the liquid is incom-

pressible (Art. 3), the same quantity of liquid which runs

through one section will, in the same time, run through

the next section, and so on through any other. Hence if

k, Tc' be the areas of any two sections, and v, v' the veloc-

ities of the particles at those sections, we have, since the

quantity of liquid which flows through any section in a

unit of time is the product of the area of the section by the

velocity,

lev = h'v'
'j

.'. V : v' : : k' : h (1)

Cor.—Hence, as the section of a mass of liquid decreases,

its velocity increases in the same proportion. For instance,

the velocity of a stream or river is greater at places where

its width is diminished. This demonstration is also

applicable to different sections of a liquid issuing through

the orifice of a vessel, whether the section be taken within
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or without the vessel, provided there be no vficuity in the

stream between the sections.

ScH.—It is supposed in this proposition that the changes

in the diameters of the sections are gradual, and nowhere

abrupt ; if there are any angles in the pipe, they will

produce eddies in the motion of the liquid, and the propo-

sition will not hold true.

76. Telocity of Efflux.

—

If a small aperture he

made in a vessel containing liquid, the velocity with

which the liquid issues from the vessel is the same as

if it had fallen froin the level of the surface to the

level of the aperture^

Let EF represent a very small orifice in the bottom of

the vessel ABCD, which is filled with a liquid to the level

AB; and suppose the vessel to be

kept full by supplying it from above,

while the liquid is running out

through the orifice EF. Let v be

the velocity of efflux, ^o the weight

of the liquid which issues with that

velocity per second, and h the height

of the surface above the orifice,

called the head\ of the liquid. Then the work which ic

can perform while descending through the distance li,

from the surface to the orifice = w7/, and the kinetic

energy stored up in w as it issues through the orifice

w= — t'2 (Anal. Mechs., Art. 217). If we suppose there is

no loss of energy during the passage through the orifice,

* This is known as Torricelli's Tlieorem.

t Tlie term head in Hydromechanics is measured, relatively to any point, by the

depth of that point below the surface of the liquid. Since the liquid in Fig. 34

descends through a height h to the orifice, we may say there are h feet of head

above the orifice.
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we may equate these two quantities of work, and shall

have

from which we find

v^ = 2gh', (1)

/. V = -v/p"; (2)

that is, the velocity of efflux is the same as that of a
body which has fallen, freely through the height h.

From (3) we have A = — , in which the height h,

corresponding to the velocity v, is called the head due to the

velocity, or simply the head. The corresponding velocity is

called the velocity due to the head.

Cor. 1.—If the orifice be made in the vertical face of

the vessel, and a tube be inserted so as to direct the current

obliquely, horizontally, or vertically upicard, the velocity of

efflux will be the same, since the pressure of fluids at the

same depth is the same in every direction (Art. 7), and

each particle of liquid having the same velocity will follow

the same path ; a parabola whose directrix, whatever be the

angle of elevation, is fixed, and lies in the surface of the

liquid (Anal. Mechs., Arts. 151 and 153). If the liquid

issue obliquely, its equation is given in (3) of Art. 151,

Anal. Mechs. If it issue horizontally, « = 0, and this

equation becomes

sr = — y = 4:hy.

Cor. 2.—If Aj be the depth of a second orifice below the

Burface, and v^ the velocity, we have

v^ == V2gh^; (3)

therefore, from (2) and (3), we have

v : Vj :: Vh : Vh^;
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that is, the velocities of efflux are as the square roots

of the depths.

Cor. 3.—The quantity of liquid run out in any time is

equal to a cylinder, or prism, whose base is the area of the

orifice, and whose altitude is the space described in that

time by the velocity acquired in falling through the height

of the liquid.

Cor. 4.—If any pressure be exerted on the surface of the

liquid, the velocity of efflux will be increased.

Let h be the depth of the orifice below the surface of the

liquid, li^ the height of the column of liquid which would

exert the same pressure as that which is applied at the

surface; then the velocity of efflux will be due to the

vertical height Ji + Ti-^; hence we have from (2)

v=y/^g{h + li^). (4)

If h^ be taken equal to the height of a column of water

equal to the pressure of the atmosphere (^ 34 feet), (4)

becomes

V = ^/%g {h + 34). (5)

ivhich is the velocity of efflux ivhen a liquid is pro-

jected into a vacuum, the oi^fice bein^ at a depth A,

below the surface of the liquid.

If k be the area of the orifice, then the quantity of liquid

Q which flows through the orifice in the unit of time is

Q = hv = k V2gh. (6)

Cor. 5.—If a parabola, with a parameter = 2g, be

described with its axis vertical, and vertex in the upper

surface of the liquid, the velocity of efflux through any

small orifices in the side, would be represented by the cor-

r<isponding ordinates.
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ScH.—The correctness of this theorem can also be shown

by the following experiment. If in the vessel (Fig. 34) an

orifice K or R be made, directed vertically upwards, the

velocity of the jet K or R is such as to carry the particles

of liquid up ^nearly to the same level as the surface of the

liquid in the vessel. Practically the resistance of the air

and friction in the conducting tube destroy u portion of

this velocity.

EXAMPLES.

1. With what velocity Avill water issue from a small

orifice 16^j ft. below the surface of the liquid ?

Ans. 32|ft.

2. A vessel has in it a hole an inch square; water is kept

in the basin at a constant level of 9 ft. above the hole;

what is the outflow in one hour? Ans. QOO cu. ft.

3. What is the discharge per second through an orifice

of 10 square inches, 5 ft. below the surface of the liquid ?

Ans. 2152 cu. ins.

77. The Horizontal Range of a Liquid Issuing

through a very Small Orifice in the Vertical Side

of a Tessel.—Let ABOD be a vessel filled with a liquid,

having its side BC vertical, M a small

orifice in the side of the vessel, MH ^ jL

the parabola described by the liquid,

and CH the horizontal range. On
BC describe the semicircle BFC, and

through M draw MN perpendicular

to BC. If the liquid issue horizon-

tally from the orifice M, the equation

of its path is (Art. 76, Cor. 1),

Fig. 35

x^ = 4%, (1)

in which h = BM, the height of the surface above the
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orifice ; then the range CH will be determined by making

y = MC. Hence we have from (1)

X = 2 ^/hy = 2 a/BM X MC
= 2MN; (2)

that is, tJie horizontal range of a liquid issuing horv-

zontally through a very small orifice in the side of a
vessel is equal to twice the ordinate at the orifice, in
a semicircle whose diameter is the vertical distance

from the surface of the liquid to the horizontal

plane.

Cor.—When the orifice is made at the centre of the side

BC, the horizontal range is a maximum, and equal to the

height of the liquid above CH; at equal distances above

and below the centre, the range will be the same.

78. Time of Discharge from a Cylindrical Vessel

when the Height is Constant When a cylindrical

vessel is kept constanthj full, it is required to deter-

mine the time in ivhich a quantity of liquid equal in

volume to the cylinder will flow through a small

orifice in its base.

Let h be the height of the surface, K the area of the base

of the vessel, and k of the orifice, V the velocity of descent

of the surface of the liquid, and v the velocity of efflux at

the orifice, and t the time necessary to discharge a volume

of liquid equal to that of the cylinder, which remains con-

stantly full.

Then the quantity of liquid wiiich flows through the

orifice in the unit of time is h V^yh ; and since the velocity

of the surface is V, the quantity of liquid which passes

through the orifice in the unit of time must equal VK.

Hence we have
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and as the vessel is kept constantly full, we have

,_ h__ hK Q

{a)

(1)

where Q denotes the whole quantity of liquid in the vessel.

• Cor.—If the liquid be kept at a height // in a second

vessel, containing a quantity Q', which flows through an

orifice h', in the time t, we have from (1)

/ = --£ (2)
kW^h'

and from (1) and (2) we have

Q :Q' :: k Vh : k' VW.

Hence, the quantities discharged in the same time,

from orifices of different sizes, and at different

depths, are as the areas of those orifices and the

square roots of their depths jointly.

79. The Time of Emptying any Vessel through
a Small Orifice in the Bottom.—Let EH be the upper

surface of the liquid at the time /, x and

y the distances OD and DH, Ti the depth

OC of the liquid when the vessel is full,

k the area of the orifice, and K the area

of the upper surface of the liquid at the

time t, which, when the figure of the

vessel is known, will be given in terms

of a; and y.

Then the quantity of liquid which flows through the

orifice in an element of time is k V^gx dt ; and since in the

same time the surface EH descends a distance dx, the quan-
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tity of liquid which flows thrcdgli the orifice in this time

must equal Kdx. Hence we have

k "s/^x dt = — Kdx,

the negative sign being taken, because x decreases as t

increases,

... t = -f^^. (1)^ k V2gx

Cor. 1.—If the vessel be a surface of revolution round a

vertical axis. A" = ny^, which in (1) gives

t = -.r-t%. (2)^ k V^gx

Cor, 2.—To determine the time of emptying a right

cylinder or prism. Here K \& constant, and (1) becomes

r dx 2K X , ^
/ —- = — = x^ + O

k V2g Vx k '^"Ig

2A' , „

remembering tliat wlien ^ = 0, x z=z h.

When a; = 0, we have for the time of emptying the

whole cylinder,

t = -^=Vh = -^=.> (4)
k V^g k V2gh

where Q denotes the quantity of liquid in the vessel.

By comparing this result with that in (1) of Art. 78, it

appears that the time necessary for the entire discharge

of the liquid luhen the vessel empties itself is twice as

great as that luhich is required to discharge the same
quantity when the vessel is kept constantly full^

Cor. 3.—If a cylinder of given altitude empty itself in
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n seconds, through a given orifice, the radius r of the

cylinder from (4) is

. /nk Vg .^.

and if the radius is given, its height h is

^ - 2^' (^)

80. The Time of Emptying a Cylinder into a

Vacuum.—To determine the time in which a cylin-

drical vessel ivill empty itself, through an orifice in

the bottom, into a vacuum, when its upper surface is

exposed to the pressure of the atmosphere.

Let h be the height of the vessel, h' the height of a

column of liquid which is equal to the weight of the

atmosphere ; and x the depth of the orifice below the

upper surface of the liquid. Then from (4) of Art. 76, the

velocity of discharge is 's/^g {x + It'), which in (1) of

Art. 79 gives

K r dx
t =

k '\/"2g

2K
[{h + A')^ - (^ + h'y^l (1)

k V'ig

since when x = h, f =: 0.

And making x = 0, (1) becomes

t = ^^[ih + h')i-h'il (2)

which is the time ofemptying the vessel.
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81. The Time of Emptyiug a Paraboloid

—

Let

the vessel he a paraboloid of revolution round the

vertical axis, h its height, and 2p its parameter. Then
if X is the depth of the orifice in the bottom below the

upper surface of the liquid, we have

y^ = 2pxy

which, in (2) of Art. 79, gives

t = - JP1= /'?^ = - -J^^a^t + C

since when x =: h, t =z 0.

Making a; = 0, and putting r = the radiuas of the base,

(1) becomes

which is the time of emptying the vessel.

82. Cylindrical Tessel with Two Small Orifices.

—

A cylindrical vessel ofgiven dimensions, is filled with

a liquid ; there are two given and equal small orifices,

one at the bottom, the other bisecting the altitude

;

to find the time of emptying the upper half, suppos-

ing both orifices to be opened at the same instant.

Let 2a = the altitude of the vessel, x = the altitude ol

the surface of the liquid from the upper orifice at the time

t, and r = the radius of the base. Then the quantities of

liquid which flow through the upper and lower orifices in

one second are, respectively, k V^gx and k V^g {x + a),

which in (1) of Art. 79, gives
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•nr'

nr'

27rr2

/ dx

k 's/'^g ^/x + 's/x + a

^ ^ Va + X — ^/x
dx

[(2 Va _ 1) at _ (a + x)^ + a;t], (1)
Zka \/2^

oetween the limits, x = a and x =: x.

And making x = 0, (1) becomes

=^;?\/|(^^-^)' (3)

which is the time of emptying the upper half of the

vessel. (See Bland's Hydrostatics, p. 165.)

83. Orifice in the Side of a Conical Tessel.—.i

hollow cone, base downward, whose vertical angle is

60°, is filled ivith a liquid; to determine the place

where a small orifice must he made in its side, so that

the issuing liquid may strike the horizontal plane in

a point ivhose distance from the bottom of the vessel

is to the distance of the orifice from the top : : 5 : 4-

Let AN = X, and AM

then NM = a—x, and AP =

Also by hypothesis we have

BO : AP : : 5 : 4

;

... B0=-^
2Vd

BR = PR tan 30° = a — a?

a/3 2 V3

V3
'

2a + Sx

3 a/3



VELOCITY OF EFFLUX. 147

Substituting tliis value of RO for x in (3) of Art. 151,

Anal. Mechs., and for i^ its value 2^a:, we have

o _ /2a + Sa^Y

4.x cos2 30°

2a + Sx
, ^^X — a = -— tan 30

2\/3

_ 2a + Sx _ (2a + 3x)\
~ 6 36x '

.: x= la{l ±Vl);

ivhich is the depth of the orifice from the vextex. (See

Bland's Hydrostatics, p. 142.)

84. Telocity of Efflux through au Orifice of any
Size in the Bottom of a Cylindrical Vessel.—Let
AB be the upper surface of the liquid at a

height h above the orifice EF; consider any

lamina GH, at a height x above the orifice;

and as before, let k, K be tlie areas of the

orifice and the section GH. respectively.

At the height x above the orifice, let p be

the pressure and p the density, and at a height

X 4- dx, let p -\- dp he the pressure. Then
the volume Kdx of liquid may be considered

as acted upon by the pressures pK, {p + dp) Ky and its

weight, — gpKdx. Hence the moving force will be

pK— {p \- dp) K — (jpKdx = — Kdp — gpKdx ;*

and since the moving force is measured by the mass into

the acceleration (Anal. Mechs., (3) of Art. 20), we have

d^x— Kdp — fjpKdx = pKdx -Tj^ ,

(Px

df

dp + gpdx

pdx (1)

* The moving force is here negative because x is positive upwards.
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Let V be the velocity of efflux ; then the quantity ol

liquid which flows through tlie orifice in an element of

time is kvdt, and since in the same time the surface K
descends a distance equal to dx, we have

Kdx = — kvdf, or ^ = t?, (2)
dt Ji.

the negative sign being taken because x decreases as t

increases

;

d^ k dv
''•

d^ ~ ~Kdi'
which in (1) gives

k dv dp + gpdx

K dt pdx
or,

, ,
pkdv dx pk^ , rn /«\T

dp + gpdx = -^—= -—vdv [from (2)].

Integrating, we have

pv^ /, P \

remembering that when x =i 0, Ji = k.

Hence, 2gx = v^(l — -j-j;

... . = ^-^i
*^

1 —
2gx

^2

(3.

which is the velocity of efftux at a depth x.

When X = li, or the vessel is full, we have for the velocity
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Cob. 1.—As the ratio -^ of the sections decreases the
A

velocity decreases, becoming a minimum and = "^"Zgli,

when the cross-section k of the orifice is very small com-

pared with that of K, which agrees with (2) of Art. 76, as

it clearly should.

Tc

Cor. 2.—As the ratio -77 increases the velocity increases,

and it approaches nearer and nearer to infinity, the smaller

the difference between the two cross-sections becomes. If

h =^ K, (4) becomes

from which we infer that, if a cylindrical vessel is without

a bottom, a liquid must flow in and out with an infinitely

great velocity, or else a section of the liquid flowing out of

the vessel can never be equal to a section of the vessel. If

a cylindrical tube be vertical, and filled with a liquid, the

portion of the liquid at the lower extremity, being urged by

the pressure of all above it, will necessarily have a greater

velocity than those portions which are higher, and therefore

(Art. ?5) a section of the liquid issuing from the vessel

must be less than a section of the tube, *. e., the stream of

liquid will not fill the orifice of exit.*

EXAMPLE.

If water flows from a vessel, whose cross-section is 60

square inches, through a circular orifice in the bottom

5 inches in diameter, under a head of water of 6 feet, find

its velocity. Ans. 20.79 ft.

85. Rectangular Orifice in the Side of a Vessel.—

To determine the quantity of liquid which will

* Formula (4) was first given by Beruoullli, and was afterwards much disputed

(Weisbach^s Mechanics, p. 804).
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flow fvuin a rectangular orifice in the side of a vessel

which is hept constantly full.

(1) Wlien one side of the orifice coincides with the

surface of the liquid.

Let h be the height and b the

breadth of the rectangular ori-

fice ALMD, through which the

efflux takes place ; let HK be

a horizontal strip at the dis

tance x below AD, and of infin-

itesimal thickness d.r, so that

the velocity of the liquid in

every part of the strip is the

same.

Then the velocity of efflux through this strip is V^5'^
[Art. 76, (2)], and the quantity discharged in a unit of

time is hdx 's/^gx', hence, caUing Q the whole quantity

discharged in a unit of time, we have

Q =^
I hdx V^gx

; (1)

and integrating between a; = and x = h, we have

Q = ^b V2^^ (2)

If we denote by v the mean velocity, i. e., the velocity

which would have to exist at every point of the orifice, i7i

order that the same quantity of liquid would fldw thronuli

the orifice with a uniform velocity as now flows through

with the variable velocity, we have

which in (2) gives

V = (3)

Hence thC' mean velocity of a liquid flowing out

through a rectangular orifice in the side of a vessel
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is I the velocity at the lower edge of the orifice ; and
the quantity of liquid flowing out through this orifice

in any given time is f the quantity that tvould flow

through an orifice of equal area placed horizontally

at the whole depth, in the same time, the vessel being

kept constantly full.

(2) WJien tlie upper surface of the rectangular ori-

fice is beloiv the surface of the liquid.

Let SR be the upper edge of the orifice at the depth' /ii

below the surface AD. Then, integrating (1). between the

limits X =z h^ and x = h, we have

Q = ^bV2^{hi-hfy (4)

If the mean velocity of efflux is v, we have

Q = b{h-h,)v,

which in (4) gives

-^^^feir*- <^>

86. Triangular Orifice in the Side of a Tessel.—

(1) When the vertex of the triangle is in the surface

of the liquid.

A_K EJ)
Let h be the height EF, and h the breadth

HF of the triangular orifice EHF, through

which the efflux takes place; let LM be a

horizontal strip at the distance x below AD,
and of infinitesimal thickness dx, so that the

velocity of the liquid in every part of the strip

is the same.

Then LM = t a:, and calling Q the quantity of liquid

discharged in a unit of time, we have
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Q =i I J
x'^lgx dx

If the mean velocity is v, we have

Q = \bhVy

which in (1) gives v = ^^/'ii,gh.

(1)

(2)

(2) When the base of the triangle is in the surface

of the liquid.

Let KEH be the triangular orifice, KE = 5, and KH
= h. Then the quantity discharged through KEH will

equal the discharge through the rectangle KHFE, minus

that through the triangle EHF ; therefore subtracting (1)

of this Art. from (2) of Art. 85, we have

and

(3)

(4)

AFKE BCoE. 1.—If the orifice be a trapezoid ABCD,
whose upper base AB = b^ lies in the sur-

face of the liquid, whose lower base CD = b^,

and whose altitude is DF = h, the discharge

may be found by combining the discharge

through the rectangle ECDF with those Fig- 4i

through the two triangles ADF and BCE.
Hence, combining (3) with (2) of Art. 85, we have

Q = ^b^hV^h-\-h (*i - *2) ^'V25rA

= A(2*i +^h^)hV^h. (5)
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Cob. 2.—If the orifice be a triangle DCH (Fig. 41),

whose base DC = b^ is situated at a depth KL = /(j be-

low the surface of the liquid, and whose vertex H is at a

depth h below the surface, the discharge is equal to that

through the triangle AHB, minus that through the trap-

ezoid ABCD. Hence, from (3) and (5), we have

Q = ^^bhV2ffh - ^K{2b + Sb,) h,V2gh^

= ^W2g{2b{hi - h,^) - 3b,h,il

Since AB : DC :: HK : HL, we have

b '. by :: h '. h — A^ ;

(6)

which in (6) gives

Q =_
2\/2gb^ ( -ilfi — S/J/^t + 37fJ

15 h - h^
(7)

Cor. 3.—If the orifice be a triangle ABC, I

whose vertex A is above its base, and at a .

depth /ii below the surface of the liquid,

whose base CB = Ji is at a depth h below

the surface, the discharge is equal to that

through the rectangle ACBK, minus that H

through the triangle ABK. Hence, from

(7) and (4) of Art. 85, we have

Fig. 42

Q =

2V¥g b^ /Sh^ — 5h^ hi + 2h^h ' ,gx

15
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Otherwise thus : Let ODC be a vertical orifice, formed by

a plane curve, whose vertex is 0, at the

depth AO below the surface of the liquid.

Let AB = h, AO = h^, OE = a;, EQ =
y ; then the area of the horizontal strip PQ,

of infinitesimal thickness dx, =z2y dz ; and

therefore the quantity dischai'ged in a unit

of time through this elemental strip is

H

f
2y dx V2g {h^ + x)

;

and hence we have

B
Fig. 43

Q = J 2yV2g (7^1 + x) dx. (9)

(1) When the orifice is a rectangle.

Here y is constant, which put = ^h, and integrating (9)

between the limits x = and a; = // — h^, we have for

the discharge through the whole orifice ODC,

which is the same as (4) of Art. 85.

(10)

Cor. 4.—If the upper side coincides with the surface of

the liquid, h^ == 0, and (10) becomes

Q = ^bhV2^h,

which agrees with (2) of Art. 85.

(2) When the orifice is a triangle whose vertex is

downwards and the hase horizontal.

Let a : 5 be the ratio of the altitude to the base; then

2y = - (^i - ^h — «)»

which in (9), and integrating between the limits a; = and

X =^ h — h^, gives
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Q =^ J -a/2^ {h — 7^1 — x) VA J + xdx

which agrees with (7).

CoK. 5.—If the base coincides with the surface of the

liquid, h^ = 0, and (11) becomes

which agrees with (3).

(3) WTieri the orifice is a triangle whose vertex is

upwards and base horizontal.

Here 2v = - a:,

which in (9), between the same limits, a; = and x =
Ti — h^, gives

Q = ^W^,i^A^f^±lb^, (1,)

which agrees with (8),

Cor. 6.—If the vertex coincides with the surface of the

liquid, Aj =0, and (12) becomes

Q = \hhV^h,

which agrees with (1).

Cor. 7.—From Cors. 5 and 6 we see that the quantities

discharged in the same time through two equal triangular

orifices in the side of a vessel kept constantly full, the one

having its base and the other its vertex upwards in the sur-

face of the liquid, are in th? ratio of 2 : 3.
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87. The Time of Emptying any Tessel through
a Vertical Orifice.—Let A be the surface

^

of the liquid in the vessel when the orifice

OCD is opened, and H the surface at the end

of the time t ; let AH = z, k.0 = h', OE
= r, AB = h, and PQ, = 2y.

Then the quantity discharged through the

orifice in an element of time, from (9) of

Art. 86, is

H

p/"

/ ^ \

Q = 2a/3W yVx+h'—z dx

D B C
Fig. 44

dt, (1)

the ar-integration being taken between h — h' and 0, z

being constant during this integration; and since, in the

same time, the surface of the liquid at H descends a dis-

tance dz, the quantity discharged through the orifice in

this time must equal Kdz, where K is the area of the sec-

tion of the vessel at H. Hence, we have

2V2gJ yVx + h'

' = 4=/-

z dx

Kdz

dt = Kdz\

2^/'Zg*J fy^/x -\- h' — z dx

the ^-integration being taken between and h.

(2)

(3)

EXAMPLE.
Find the time of emptying a cone

by an orifice ACB in its side.

Let AH = A be the axis of the cone,

CB = h, CA = I, angle HAC = a,

AK = X, PK being perpendicular to

AH. When the orifice is opened, let

the surface of the liquid in the vessel

be at H, and at the end of the time t

let it be at M, and let AM = z.
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Then we have

AP = X sec «, Pp = sec a dx,

nn> ^ sec a
and y = ^? = —^— x;

/. the area of PP;j j9 = ^— .^• aa;.

The velocity of discharge through this area

= y/^g {z -^) ;

therefore the quantity discharged in an element of time

b sec^ a — /* ' \

I

b sec^

'\/2(j I xy/z — xdx dt

I

the a;-limits being and z; and this must equal Kd&,

from (2).

Hence we have, from (3), taking the negative sign, be-

cause z decreases as t increases,

= /

— Kdz

b sec^a

T~ y/^^z^

— 15?7r tan'-* « ^ dz

^by/^g sec^ a ^

15?7r tan^tt Pdz

4&V^sec8«'^ z^

15Tr? tan2

«

Uy/^g sec2

«

between the limits h and z.

W'h - V4
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Therefore the whole time of emptying the vessel

15t? tan^ « \/7i

'2^hy/%g sec^ a

(See Bland's Hydrostatics, p. 185.)

88. Efflux from a Yessel in Motion.—If the vessel

ABCD be filled with liquid to AB, and raised vertically,

with an accelerated motion, by a

weight P attached to an inextensible

string, without weight, passing over

two smooth pulleys F, E, the veloc-

ity of efflux is augmented ; and if it

descends with an accelerated motion,

the velocity is diminished.

Let Q be the weight of the vessel

and liquid contained in it. Since

the pulleys are perfectly smooth, the

tension of the string is the same

ti)roughout ; hence the force which causes the motion is

the difference between the weights P and Q. The moving

force, therefore, is P — Q\ but the weight of the mass

moved is P -\- Q. Hence, from (1) of Art. 25, Anal.

Mechs., we have

9

J - P ^ Qy> (1)

which is the vertical force of acceleration. Since this force

acts vertically upwards on the vessel, and the force of grav-

ity ^ acts vertically downwards, every particle of the liquid

presses against the bottom of the vessel, not only with its

own weight Mg, but also with its inertia M/. Hence the
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entire accelerating force pressing against every point in the

base is

9+f=9-^T~^Q9 [from(l)]

^9- (2)

Let HO = h, and v = the velocity of efflux ; then we
have

V = VHf+7)h (3)

Cor. 1.—If the vessel is allowed to empty itself through

the orifice 0, without receiving any liquid, let x = the

variable altitude OH, K the horizontal section of the vessel,

which is a function of x, and k the section of the orifice.

Then we have

Q = fxdx ;

which in (4) gives for the quantity discharged in an element

of time.

k\/'Zg\/ -p-T-TT^FTT;. dt = — Kdx\fKdx

r— KdxVP + fKdx ,^.
.*. t = / ;=

, (5)
"^ kV2g'V2Px

Cor. 2.—If f = g, (3) becomes

V = V2-2gh = 2Vgh;

and the velocity of efflux is 1.414 times as great as it would

be if the vessel stood still.
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Cor. 3.—If in (1), P = Q, then / = 0, and the vessel

is at rest. If P <C Q, then Q will descend and P ascend,

/ is negative and (3) becomes

and the vessel descends with an accelerated motion, the

velocity being diminished.

Cor. 4.—If P = 0, then, from (2), g+f= 0, and

therefore, from (3), v =z 0, and there is no pressure on the

bottom of the vessel, and no liquid will flow out; which is

also evident from this, that every particle in the vessel will

descend by its own gravity, Avith the same velocity.

89. Efflux from a Rotating Yessel.—If a vessel

ABCD, containing a liquid, is made to rotate about its ver-

tical axis XX', the surface of the liquid

will take the form of a paraboloid of revo-

lution (Art. 21), and at the centre H of the

bottom the depth of liquid KH is less than

it is near the edge, and the liquid will flow

more slowly through an orifice at the centre

than through any other orifice of the same

size in the bottom.

Let h denote the height KH ; then the

velocity of efflux through an orifice at H =
'^'Igh. Let y denote the distance HO =
MP of an orifice from the axis XX', and « the angular

velocity ; then, since the subtangent MT is bisected at K,
we have, for the height of the liquid at P above the centre K,

KM = ^TM =

MP= \y MN

=^ [from (2) of Art. 21].
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Hence, the velocity of efflux through the orifice at is

v = ^^g{^u + y^\
%g1

= ^/'Igh + fd^. (1)

ScH.—This formula is true for a vessel of any shape, even

when it is closed at the top so that the paraboloid AKB
cannot he completely formed. In this case also, 7i is the

depth of the orifice below the vertex K, and ^/w is the veloc-

ity of rotation of the orifice. (See "Weisbach's Mechs.,

p. 819.)

90. The Clepsydra^ or Water-Clock.—This is ar.

instrument consisting merely of a vessel from which the

water is allowed to escape through an orifice in the bottom,

and the intervals of time are measured by the depressions of

the upper surface. Thus, if we wish the clock to run 12

hours, we let ^ = 13 hours = 12 x 60 x 60 seconds; then

solving (4) of Art. 79 for h, we have

and substituting in it this value of t, we have

A = 1^(12x60x60)8,

which gives the depth of liquid in the cylindrical vessel that

will empty itself in 12 hours.

(1) To discover the manner in which the height h of the

vessel must be divided in order that the upper surface of

the liquid may descend through the several divisions of the

scale in equal intervals of time, we make tva (1) successively

equal to 12, 11, 10, 4, 3, 2, 1 hours, and get for h a

series of values which are as 144, 121, 100, . . . 16, 9, 4, 1

;

hence, if the height h be divided into 144 equa/ spaces, and
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marked upwards from the bottom of the vessel, then the

marks 121, 100, 16, 9, 4, 1, 0, will give the water level

at 1, 2, 8, 9, 10, 11, 12 hours after the water begins to

flow.

(2) Any vessel may serve for a clepsydra, but that form is

most convenient in which the upper surface of the liquid

descends uniformly.

Let X = the height of the liquid in the vessel, K the

area of the descending surface, v its velocity, and k the area

of the orifice. Then from (a) of Art. 78, we have

V = -^V^gx. (2)

And since the surface is to descend uniformly, this value

of V must be equal to some constant a, which will depend

upon the whole height and the time in which the clepsydra

will be emptied ; hence (2) becomes

K^ = ~^^-; (3)

and supposing the area of the descending surface of the

liquid to be a circle = rryS^ (3) becomes

which is a parabola of the fourth order.

Hence, the heights of the sections must vary as the

fourth power of their radii.

91. The Vena Contracta.—The laws of efflux that

have been deduced are founded on the hypothesis that the

liquid particles descend in straight lines to the orifice, and

»11 issue in parallel lines with a velocity due to the height
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of the liquid surface. Experiment shows, however, that

this is not the case. The liquid does not issue in the form

of a prism, and hence the quantity discharged in a unit of

time is not measured by the contents of a prism whose base

is the orifice and whose altitude is the velocity; this would

give the theoretical discharge (Art. 76, Cor. 3), but the prac-

tical discharge is generally much less. When a vessel

empties itself through an orifice, it is observed that the

particles of liquid near the top descend in vertical lines

;

but when they approach the bottom they take a curvilinear

course, being turned in towards the orifice, or spirally

around it, and this deviation from a vertical rectilinear path

is the greater the further the horizontal distance of the

particles is from the orifice. The oblique direction of the

exterior particles within the vessel continues through the

orifice, and gives the stream of liquid, in issuing' from the

orifice, nearly the form of a truncated cone or })yramid,

whose larger base is the area of the orifice. This diminu-

tion in the size of the issuing stream is called the contrac-

tion of the vein, and the section of the stream at the point

of greatest contraction is called the Vena Contracta,* or

contracted vein.

From the results of most experiments, the vena contracta,

when the orifice is a circle, is at a distance from the orifice

equal to the radius of the orifice.

92. CoeiBcient of Contraction.—When water flows

through orifices in thin plates, it has been found, by meas-

urements of the stream, made by different experimenters,

that its diameter at the vena contracta is about 0.8 of the

diameter of the orifice. The ratio, therefore, of the cross-

section of the vena contracia to that of the orifice in a thin

This name was first given by Newton, who also showed that, by taking the

area of the vena contracta as the area of the orifice, and rejrarding the height of the

surface above the vena contracta as the height of the vessel, the theoretic discharge

agreed far more closely with the practical.
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plate is 0.64. This ratio is called the Coefficient of Contrac-

tion.* Denoting it by «, we have ak for the section of the

vena contractu, h being the section of the orifice (Art. 76).

Substituting ah for k in (6) of Art. 76, we have, for the

quantity Q^ discharged,

Q^ = ahv z= t(kV2gk = MkV2gh, (1)

which is the quantity discharged in a unit of time.

93. Coefficient of Velocity.—The actual velocity of

discharge is found by experiments to be a little less than the

theoretical velocity, v = '\/2gh. Experiments f made with

polished orifices have shown that the actual velocity is from

96 to 99 per cent, of the theoretical one. This loss of ve-

locity arises from the friction of the water upon the inner

surface of the orifice, and from the viscosity of the water.

The ratio of the actual velocity to the theoretical velocity is

called the Coefficient of Velocity. This coefficient is found

to be tolerably constant for different heads with well-formed

simple orifices, and it very often has the value 0.97. De-

noting the coefficient of velocity by
(f>,

and the actual

velocity by v^, we have

v^ r= <f>v = (pV2gh = .97'v/2p', (1)

which is the actual velocity of efflux.

94. Coefficient of Efflux.—If the yalue_of v, in (1)

of Art. 93 be substituted for the velocity V'^gh in (1) of

Art. 92, we have, for the actual discharge Q^,

Qg = tc]c(pv = ah(f>V2glt

= .64 X .9'7kV2gfi = .62kV2gh. (1)

• This ratio is not constant, but undergoes variations by varying the form of the

orifice, the thickness of the surface in which the orifice is made, or the form of th«

vessel.

t Experiments made by Michelotti, Eytelwein, and others.
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The ratio of the actual discharge Q^ to the theoretical

discharge Q is called the Coefficient of Efflux.

Denoting the coefficient of efflux by /-i, we have, from (1)

and (6) of Art. 76,

i^ = ^ = ««/> = .62; (2)

i. e., the coefficient of efflux is the product of the coef-

ficient of velocity and the coefficient of contraction.

ScH.—The value of fi can also be determined by direct

measurement of the discharge in a given time, an observa-

tion which can be made with much greater accuracy than

those of contraction and velocity, on which it depends. In

the present case it is found by direct measurement to be .62,

agreeing well with the product .64 x.97, of the values above

given.*

Rem.—Repeated observations and experiments have led to the con-

clusion that the coefficient of efflux is not constant for all orifices in

thin plates ; that it is greater for small orifices and small velocities of

efflux than for large orifices and great velocities, and that it is much
greater for long narrow orifices than for those whose forms are regu-

lar or circular. For square orifices, whose areas are from 1 to 9 square

inches, under a head of from 7 to 21 feet, according to the experiments

of Bossut and Michelotti, the mean coefficient of efflux m fi — .610
;

for circular orifices from -| to 6 inches in diameter, with from 4 to 20

feet head of water, it is // = .615, or about ^.f

95. Efflux through Short Tubes, or Ajutages.—
If the water, instead of flowing through an orifice in a thin

plate, be allowed to discharge through short tubes, called

also ajutages and mouth-pieces, the quantity discharged from

a given orifice is considerably increased. More seems to be

gained by the adhesion of the liquid particles to the sides of

the tube, in preventing the contraction of the stream, than

is lost by the friction. Ajutages of different forms have

• Cotterill'8 Applied Mechs., p. 449.

+ Weisbach's Mechs., p. 824 ; also, Tate's Mech. Phil., p. 388.
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different degrees of advantage in this respect, which cm be

determined only by experiment. The discharge is found to

be greater when the ajutage is conical and the larger end

is the discharging orifice.

(1) The results of many experiments* made with cylin-

drical tubes 1\ to 3 inches in diameter, the length of which

does not exceed 4 times the diameter, as in ~^
Fig. 48, and under a head of water varying %\|a c

from 3 to 20 feet, give as a mean value of ^ ^
the coetficient of efflux, /< = .815, or about ^/fL^^^^^^
^. Since the coefficient of efflux for a sim- ^1=^ ^

pie orifice in a thin plate (Art. 94) is \i =
f-^-j

.615, it follows that, when the other circum- i^tt

stances are the same, the discharge through ^'9- ^8

815
a short cylindrical tube = '-—z = 1.325 times the discharge

through a simple orifice in a tliin plate. These coefficients

increase a little when the diameter of the tube becomes

greater, and decrease a little when the head of water or the

velocity of efflux increases.

In this tube, the contraction of the stream takes place at

the inlet db, and not at the outlet. If a small hole were

bored in the tube at a or Z», no water would run out, but air

would be sucked in ; and when the hole is enlarged, or when
several of them are made, the discharge with a filled tube

ceases. Also, if a tube be placed in a vessel of water A, and

inserted in the hole at h, the water will rise in the tube Kb,

and run out of the tube abed.

(2) With a compound mouth-piece, having ^
an enlargement at its exterior orifice or out- vn^'^ <• ^-^

let, as well as at its interior orifice, as in Fig. f ^
49, the results of careful experiments f give %|6^'^^"^
the coefficient of efflux [i = 1.5526, when the ^
narrow part cd is treated as the orifice, thus f'g- 49

Experiments made by Michelotti. t Made by Eytelwein.
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giving a discharge greater than that which is due to the sec-

tion cd of the pipe. Since /fi = .615 for a simple orifice, it

follows that the discharge through the compound mouth-

piece

1.5536= -'-^Tv- = 2.5 times the discharge through a

simple orifice in a thin plate,

and = '

.— = 1.9 times the discharge through a

short cylindrical tube.

In the experiments made by Eytelwein, the interior diam-

eter ah was about 1.2 times the diameter cd, and the sides

ch and dk made with each other an angle of 5° 9'.

96. Coefficient of Resistance.— When water flows

from a cistern through a tube kept constantly full, it fol-

lows that the coefficient of contraction of this mouth-piece

a = unity, and that its coeflflcient of velocity
<f)
= its coef-

ficient of efl&ux /u.

Let W be the weight of water discharged with the actual

velocity v, and v^ the theoretical velocity of discharge due

to the head of water h. Then the actual kinetic energy, or

stored work, of the weight TF of water, which issues with a

velocity v,

= ^ W (Anal. Mechs., Art. 217). (1)

But since the theoretical velocity of efl&ux = v^, the

theoretical kinetic energy or stored work of the weight W
of water discharged

= ^W. (2)

Hence, the loss of kinetic energy or stored work of the

weight TF of water discharged, during the efflux

= (V-^^)|^- (3)
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But, from (1) of Art. 93,

V = <pvt', .-. v^ =
^,

which ill (3) gives

/I \ v^
stored work lost = (r^ — 1) 9- ^« (4)

This loss of stored work corresponds to the head of water

which we can therefore consider as the loss of head due to

the resistance of efflux, and we can assume that, when this

loss has been subtracted, the remaining portion of the head

is employed in producing the velocity.

The loss of head in (5), which varies as the square of the

velocity, is known as the height of resistance.

1 1^
The coefficient —, — 1, by which the head of water —

•^
.

.^
must be multiplied in order to obtain the height of resist-

ance, i. e., the ratio of the height of resistance to the head

of water, is called the Coefficient of Eesistance.

Cor. 1.—Denote the coefficient of resistance by (3; then

we have

3 = i-l, (6)

which in (5), and denoting the loss of head or the height of

resistance by z, we have

•2

' =% (^)

CoE. 2.—For efflux through well-formed smooth orifices

in a thin plate, the mean value ot (p = the mean of .96 and

.99 (Art. 93), = 0.975, and therefore we have, from (6),
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^ =m- \
= 0.052,

which in (4) gives for the loss of energy, or stored work

lost,

0.052 ^ W, or 5.2 per cent.
2(/

(8)

Cor. 3.—For efflux through a short cylindrical tube [Art.

95, (1)], we have (p = .815, since = n, and therefore we

have, from (6),

P
\.815/

= 0.505,

which in (4) gives, for the loss of energy,

0.505 ^ W,
2g

(9)

or nearly 10 times as much as for efflux through an orifice

in a thin plate.

ScH.—Hence, if the kinetic energy of the water is to be

made use of, it is better to allow it to flow through an ori-

fice in a thin plate than through a short cylindrical tube.

But if the edge of the tube be rounded off where it is united

to the ii\terior surface of the vessel, and shaped like the

contracted vein, we have /z = = .975, and the loss of

energy is the same as it is for an orifice in a thin plate, i. e.,

5.2 per cent.

Cob. 4.—From (6) we have

Vi +^
(10)

which gives the coefficient of velocity in terms of the coef-

ficient of resistance.
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EXAMPLE.

What is the discharge under a head of water of 3 feet

througli a tube 2 inches in diameter, whose coefficient of

resistance is jQ = 0.4 ? Here from (lOj we have

= —L: = 0.845

;

\/l.4

hence, from (1) of Art. 93, we have, for the actual veloc-

ity Vi,

= 0.845\/64.4x3

= 0.845x8. 025 a/3 = 11.745 feet;

h = (tV)'^^ = 0.02183 square feet;

hence, the required discharge, from (1) of Art. 94 (since

« = 1) is

Q = kW^h
= 0.02182 X 11.745 = 0.256 cubic feet,

97. Resistance and Pressure of Fluids. — (1) By

the resistance of fluids is meant that force by which the

motions of bodies therein are impeded. The resistance of a

fluid to the motion of a body is occasioned by the force

necessary to displace that fluid. Since the motion commu-

nicated to a body at rest by another body impinging on it

with a certain velocity is equal to the motion lost by the

impinging body, therefore the motion communicated to the

displaced fluid must be the same as that of the moving
body ; hence the work which the fluid destroys in the mov-
ing body will be equal to the work stored in the fluid.

Let a = the area of the front of the body presented to

the fluid, V = the velocity of the body, iv = the weight of
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a cubic foot of the fluid, R = the resistance of the fluid to

the motion of the body. Then,

weight of the displaced fluid per second = avw.

JJut tliis mass has a velocity of v feet given to it;

.-. work generated per second in displacing this fluid

awv^
(1)

But this work is performed by means of a force which

drags the body through the water at the rate of v feet per

second, against an equal and opposite resistance R
;

.'. Rxv = ——
;

2g

" ^- 2g '
^^^

that is, the resistance varies as the square of the ve-

locity.

On account of eddies which are formed round the corners

of the body and in the rear, the value of R in (2) should be

multiplied by a constant h, giving

R = kaio^- (3)

Rem.—The constant k is to be determined by experiment

for each form of solid. For a body whose transverse section

is circular, h does not differ much from unity ; for a flat

plate moving flat-wise, it is about 1.25, Resistances of this

kind, however, are very irregular, and may vary considera-

bly in the course of the same experiment. Different results

are therefore obtained by different experimentalists*

* See Rankine'e Applied Mechs., p. 598 ; also Cotterill's Applied Mechs., p. 4'i8.
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(2) The pressure of a current upon a plane is equal to

the resistance suffered by the same plane when moving in

the same direction and with the same velocity through the

fluid; therefore (3) will also represent the pressure which

the current, moving with the velocity v, would exert against

the plane at rest. Calling F the pressure, we have

F = kaw ^ • (4)

98. Work and Pressure of a Stream of Water.—
To find the ivorh of a stream of water which impinges
perpendicularly upon the surface of a heavy hody
which is itself in motion, and whose weight is very

great as compared ivith that of the impinging water.

Let AB represent a plane sur- «,

face moving horizontally with HI

velocity v^, while a horizontal jet ^—^_

"^

moving with greater velocity v, m
strikes it centrally. Let W be ^''^- ^° ' 1
the weight of water acting on the

surface per second. Then the stored work 9r kinetic energy

of the water

and if the body were at rest, this would be the loss of

energy.

From Anal. Mechs., Art. 208, (4), if m' be very great as

compared with m, the loss of kinetic energy by impact

becomes
im{v-v,Y. (2)

Hence, if we first suppose that the water after impact

moves on with the velocity of the body, we have by (2),

W
work lost by impact = {v — v^)^ —-

(3)
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From (1) and (3) we have

v^ W
work done on tlie body = — W — (v — ^1)^^^-

Now if the water leaves the body, there will be more work

lost, i.e., the work reraaming in the water will be lost;

therefore we have

W V ^

work done on the body = [v^ — {v — v-^Y] r -^W

W= (v-v.Jv^j- (5)

Cor. 1.—If P denote the pressure of the water against

the body, then the work done on tlie body = Pv^, which

in (5) gives

WP={v-v,)j- (6)

If the body is at rest, or" v^^ = 0, (6) becomes

WP = — V. (7)

Cor. 2.—Let a = the section of the pipe, and v =: the

velocity due to the head of water h ; then W = 62.5av,

which in (7) gives

P = C>2.5a X 2h. (8)

EXAMPLE.

To find the work of a stream of water issuing from a

nozzle with a given velocity.

Let V be the given velocity, a the area of the nozzle, and

W the weight of a cubic foot of water. Then the weight of
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the water projected per second = aiuv, and therefore the

work per second

that is, the work varies as the cube of the velocity of the

water.

Cor.—Let ^ ^ the coefficient of velocity; then, from (1)

of Art. 93, we have

which in (1) gives

work per second = (p^awhV^gh. (2)

99. Impact of a Stream of Water against any
Surface of Revolution.—Let BA.C be a surface of revo-

lution, against which a stream of

water FA, moving in the direction

of the axis AP of the surface, im-

pinges. Let W be tlie weight of

water discharged on the surface per

second, v its velocity, i\ the veloc-

ity of the surface, and « the angle

BTP which the tangent HT to the

surface at B makes with the axis

AP, or which each filament HB of the stream of water, on

leaving the surface, makes with the direction of the axis BD.
Then the water irripinges upon the surface with the velocity

V.— Vj : and, if friction be neglected, the water passes over

the surfafce with that velocity, and leaves it in a tangential

direction, TH, TK, etc., with the same velocity. From
the tangential velocity BH = v — v^, and the velocity BD
^ Vj of the surface parallel to the axis, we have the result-

ant velocity BE = F of the water, after it has impinged

on the surface, by the formula for the parallelogram of

velocities.
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V = 's/(v — t^i)^ + v^^ + 2 (y — Vi) v^ COS a. (1)

Now the kinetic energy of the water before impact

= .f w^,

and the kinetic energy remaining in the water after impact

= ^ w; (2)

hence, the kinetic energy transmitted to the surface

If P be put for the force or impulse against the surface,

then the energy transmitted to the surface = Pwj, which in

(3) gives

W

w= [^^ —{V — v^y — v^^ — 2 {v — v^) v^ cos «] —

,

from (1),

W= {\-co%a){o — v^)v^—; (4)

W
... p = (1 _ cos «) {v - v^) —, (5)

which is the force of the water against the surface in tlie

direction of the axis.

That is, the iinpulse varies as the relative velocity of
the water.

Cor. 1.—If the surface moves with a velocity v^ in the

opposite direction to that of the water, we have, from (5),

WP = {l — GO&a){v + v^)—- (6)
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If the surface is at rest, v-^ = 0, and (6) becomes

WP = (1 — cos a)v — - (7)

Cor. 2.—If a = the area of the cross-section of the

stream, and w = the weight of a cubic foot of the water,

the weight of the impinging water per second is

W = {v ^ Vj) aw,

which in (5) and (6) gives

P = (1 — cos «) {v T v^y

and in (7) gives P = (1 — cos «) v^—

aw

(8)

(9)

(10)

That is, the impulse varies as the square of the rela-

tive velocity of the water, and also as the area of the

cross-section of the stream.

Cor. 3.—The impulse of the same stream of water de-

pends principally upon the angle « at which the water

moves off from the axis after the impact.

If the surface BAC is holloAv, as in Fig.

52, the water after impact leaves the sur-

face in a direction opposite to that in

which it strikes it, and thus much more

work is done on the body with a surface

concave to the stream than on one convex

to the stream, since the work remaining in

the water on leaving the former surface

will be less than it is in the water on leaving the latter.

« = 180°, we have cos « = — 1, which in (5) and (6)

gives

Fig. 52

If

P = 2 (t) T v^)
W

(11)
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and in (7) gives P = 2v—

•

(13)

Cor. 4.—When the surface is plane, as in Fig. 50, a z=

90° and cos « = 0. Substituting this value in (5), (6),

and (7), they become

P = (. T V,) ^, (13)

which agrees with (6) of Art. 98 ; and

W v^F = V— = — aic, from (8),
9 ff

= 2x^ xaw = 2hx aw

;

(14)

that is, the normal impulse of water against a plane

surface is equal to the iveight of a column of water

ivhose base is equal to the cross-section of the stream,

and whose height is twice the head of water to which
the velocity is due.

Cor. 5.—If the plane surface (Fig. 50) against which the

stream impinges moves away with a velocity u in a direction

which makes an angle 6 with the original direction of the

stream, the velocity of the surface in the direction of the

impact is

rj = M cos 6,

which in (13) gives for the impulse,

p = (i, _ 10 cos d) --, (15)

and the work done by it per second is

W
Pv^ = {/' — u cos 6) u cos d— (16)
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Fig. 53

100. Oblique Impact.— When a stream injpinges

obliquely on a plane, there are several cases, viz., when the

water after impact flows off in one,

two, or in more directions.

(1) Let the plane AB, upon

which the stream AC impinges,

have a border upon three sides so

that the water can flow off in one

direction only. Then the impulse of the water against the

surface in the direction of the stream is, from (5) of Art. 99,

P = (1 — cos «) {V — Vy)

(2) Let the plane AB, upon

which the stream DC impinges,

have a border upon two sides only,

so that the water can flow off in

only two directions. The stream

will divide itself into two unequal

parts, the greater part flowing off

in the direction CB, and the other in the direction CA.

Let W^ be the weight of the former, W^ the weight of the

latter, and W the whole weight. Then the total impulse

in the direction of the stream, from (5) of Art. 99, is

W W/•=(! — cos a) (y — I't)
—- + (1 + cos «) {v — v{) —

^

Fig. 54

^
{^^

!!l) [(1 _ cos a) If, + (1 + cos «) TFg]. (2)

But the conditions of equilibrium of the two portions of

the stream require that the pressures on CB and CA shall

be equal to each other ; hence

(1 — cos a) IFj = (1 + cos a) W^,

or, (1 — cos «) TTj = (1 + cos a) {W— W^),
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from which we find PTj = |^ (1 + cos a) W,

and
' W^ = i (1 — cos «) W.

Substituting these values of W^ and TTg in (2), we have

which is the total impulse in the direction of the

stream.

Dividing (3) by sin a, we obtain

y y
CR = P cosec a = TTsin «, (4)

which is the normal impulse.

Multiplying (3) by cot «, we obtain

CS = P cot a = W sin a cos a
g

V — V
i Trsin2a, (5)

^g

which is the lateral impulse.

Hence, the total impulse in the direction of the

stream is propoHional to the square of the sine of the

angle of incidence, the normal impulse to the sine of
this angle, and the lateral impulse to the sine of
double this angle.

ScH.—If the oblique plane has no border, the water can

flow off in all directions ; in this case the impulse is in-

creased, for « is the smallest angle which the filaments of

water can make with the axis, and hence every filament

which does noit flow off in the normal plane will make with

the axis an angle larger than «, and therefore from (3) will

exert a greater pressure than those which do.
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101. Maximum Work done by the Impulse.

—

The work done by the impulse P, from (4) of Art. 99, is

W
Pv^ — {1 — cosa){v — v^)v^—' (1)

The work is zero when the velocity of the surface v^ = 0,

and also when it = v.

To find the value of Vi which makes this work a maxi-

mum, we must equate to zero its derivative with respect to

v^, which gives

V — 2t'i =: 0, or Vj = ^v;

hence, the work done by the impulse is a maximum
when the surface moves in the direction of the stream,

with half the velocity of the stream.

Substituting in (1) for i\ its value, we have

Pv, =(1-cos«)||tF, (2)

which is the maximum work done hy the impulse.

Cor.—If the surface is a plane, as in Fig. 50, a = 90°,

and we have, from (2),

1 v^

P^.^ll^V- (3)

That is, the water transmits to the surface, in this

case, one-half of its kinetic energy.

If the surface is hollow, as in Fig. 52, so that the water is

reversed, « = 180°, and we have, from (2),

Pv. =
I

JT. (4)

In this case, the water transmits to the surface all of

its kinetic energy. (See Weisbach's Mechs., p. 1010.)
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EXAMPLES.

1. With what velocity will water issue from a small ori-

fice 64^ feet below the surface of the liquid ?

Ans. 64^ feet.

2. If 252 cubic inclies of water flow in one second through

an opening of 6 square inches, find the head of water.

Ans. 2.28 inches.

3. If water flows from a vessel whose cross-section is 60

square inches, through a circular orifice in the bottom

5 inclies in diameter under a head of water of 24 feet, find

its velocity. Ans. 41.58.

4. A vessel, formed by the revolution of a semi-cubical

parabola about its axis, which is vertical, is filled with water

till the radius of its surface is equal to its height above the

vertex. Find the time of emptying the vessel through a

small orifice at the vertex.

[Let aif =: 3^ he the equation of the generating curve,

and k the area of the orifice.]
Tra'-* /2^

Ans. ;rj-\/—
5. A conical vessel, the radius of whose base is r and alti-

tude h, is filled with water; the axis is vertical and the

water issues through an orifice in the vertex, of area k.

Find (1) the time in which the surface of the water mil

descend through one-half its altitude, and (2) the time in

which the cone will empty itself.

6. Find the time in which the cone in Ex. 5 would

empty itself through an orifice in its base.

167rr_2 /_A

15^V ^ff

7. A sphere is filled with water. Find the time of empty-

ing it through an orifice in its bottom. IQnr^ Ir

Ans. -_,-y.
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8. A hemisphere is filled with water. Find the time of

emptying it (1) through an orifice in its vertex, and (2)

through an orifice in its base.

Ans. (1) -^; (2) ^^.
9. A rectangular orifice is 3 feet wide and 1^ feet high,

and the lower edge is 2^ feet below the level of the water.

Find the quantity discharged in 1 second.

A71S. 43.7 cubic feet.

10. An orifice in the form of an isosceles triangle, with

its vertex in the surface of the water has a base of 1 foot

which is horizontal, and an altitude of 6 inches. Find the

quantity discharged in 1 second. Ans. 1.135 cubic feet.

11. If the orifice in Ex. 10 has its vertex downwards and

its base 6 inches below the surface of the water, and hori-

zontal, find the quantity discharged in 1 second.

A71S. 1.632 cubic feet.

12. If a vessel, when filled with water to the depth of 4

feet, weighs 350 lbs., and if it be drawn upwards by a weight

F of 450 lbs., as in Fig. 46, find the velocity of efflux

through an orifice in the bottom. Ans. 17.02 feet.

13. If the vessel (Fig. 47), Avhich is filled with water,

makes 100 revolutions per minute, and if the orifice is

2 feet below the surface of the water at the centre, and at a

distance of 3 feet from the axis XX', find the velocity of

efflux. Ans. 33.4 feet.

14. Find the times in which the surface of water con-

tained in a vessel, formed by the revolution of the curve

y =: a^x about the axis of x, will descend through equal

distances h, the water issuing through a small orifice in the

vertex, and the axis vertical. na^7i
Ans. —-='

kV2g

15. Water issues through a small orifice 16^^ feet below

the surface of the liquid. If the area of the orifice is 0.1 of
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a square foot and the coefficient of efflux is 0.615, how
many cubic feet of water will be discharged per minute ?

Ans. 118.695.

16. A basin has in it a hole an inch square ; water in the

basin is kept at a constant level of 9 feet above the hole.

How many cubic feet of water will flosv out in 1 hour, the

coefficient of efflux being 0.6 ? Ans. 360.

17. A cylindrical vessel filled with water is 4 feet high

and 1 square foot in cross-section, and a hole of 1 square

inch is made in the bottom. If the coefficient of efflux is

0.6, in what time will f of the water be discharged ?

Ans. 60 seconds, nearly.

18. A cylinder, the area of whose cross-section is 60 sq.

ft, is filled with water to a depth of 12 feet ; a small hole is

made in its bottom, whose area is 0.5 square inches. In how
long a time will the depth of the water be (1) 8 feet and (2)

4 feet? Ans. (1) 45.8 minutes; (2) 105.4 minutes.

19. The horizontal section of a cylindrical vessel is 100

square inches, its altitude is 36 inches, and the area of its

orifice is 0.1 of a square inch. If filled with water, in what

time will it empty itself, the coefficient of efflux being

0.62 ? Ans. 11 m. 36.5 s.

20. What is the discharge per second through a rectangu-

lar orifice 2 feet wide and 1 foot high, when the surface of

the water is 15 feet above the upper edge, the coefficient of

efflux being 0.611 ? Ans. 38.6 cubic feet.

21. What is the discharge per second through a rectan-

gular orifice whose height is 8 inches and whose width is

2 inches, under a head of Avater of 15 inches above the upper

edge, the coefficient of efflux being 0.628 ?

Ans. 0.705 cubic feet.

22. If the height of the rectangular orifice is 15 inches,

its width 25 inches, and the head of water is 4^ inches

above the upper edge, what is the discharge per second, the

coefficient of efflux being 0.594 ? Anf^. 12.19 cubic feet.
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23. A plane area moves perpendicularly through water

in which it is deeply imbedded. Find the resistance per

square foot at a speed of 10 miles an hour. Ans. 269 lbs.

24. A stream of water delivering 100 cubic feet per min-

ute, at a velocity of 15 feet per second, strikes an indefinite

plane normally. Find the pressure on the plane.

Ans. 48.6 lbs.

25. If a stream of water, the area of whose cross-section

is 64 square inches, impinges with a velocity of 40 feet per

second against the convex surface of an immovable cone, in

the direction of its axis, the vertical angle of the cone

being 100°, find the impulse. Ans. 492.16 lbs.

26. A stream of water, the area of whose cross-section is

40 square inches, delivers 5 cubic feet per second, and strikes

normally against a plane surface, which moves away with a

velocity of 12 feet per second. Find (1) the impulse, (2)

the maximum work, and (3) the maximum impulse.

Ans. (1) 58.125 lbs.j (2) 784.688 ft. -lbs.; (3) 87.19 lbs.



CHAPTER II.

MOTION OF WATER IN PIPES AND OPEN CHANNELS.

102. Resistance of Friction.— When a thin plate

with sharp edges, completely immersed in water, is moving

edgeways through the water, a certain resistance is expe-

rienced, which must be overcome by an external force.

This resistance acts along taugentially between the plate

and the water, and so far is analogous to the friction be-

tween solid surfaces, but it follows quite different laws,

which have been obtained from many observations and ex-

periments, and which may be stated as follows:*

(1) The resistance of friction is entirely independent of

the pressure on the surface.

(2) It varies as the area of the surface in contact with

the water.

(3) It varies nearly as the square of the velocity, f

Hence, if R be the resistance of friction, 8 the area of the

surface, and v the velocity, these laws may be expressed by

the formula,

R=f8^, (1)

where /is called the ^^coefficient of friction," as in the fric-

tion of solid surfaces. The value of / depends on the

smoothness of the surface; thus, for thin boards, with a

clean, varnished surface, moving through water, it is found

* Cotterill'8 App. Mechs., p. 458.

+ At low velocities, of not more than 1 inch per second for water, the resistance

varies nearly as the first power of the velocity. At velocities of \ foot per second,

and greater velocities, the resistance varies more nearly as the square of the ve-

locity.
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to be .004, while for a surface resembling medium sand-

paper, it is .009, the units being pounds, feet, and seconds.*

103. Motion of Water in Pipes.— When water is

conveyed to any considerable distance in pipes, the friction

of the internal surface causes a great resistance to the flow.

By the theoretical rule, the velocity of discharge v would be

due to the vertical depth h through which the water falls

(Art. 76) ; but owing to friction, theoretical results are of

very little practical value. Besides, the friction is often

quite uncertain, the central parts of the stream move moi-e

quickly than the parts in immediate contact with the pipe,

and, though the circumstances are different, the velocity

over the internal surface is liable to changes, as in the case

of solid surfaces. The value of f therefore has to be ob-

tained by special experiments, and the results of such

experiments do not always agree with each other. It is

found, however, that/ lies between the limits .005 and .01,

depending partly on the condition of the internal surface,

and partly on the diameter and velocity; its value being

greater in small pipes than in large ones, and greater at

low velocities than at high ones. The mean of these limits,

or .0075, is sometimes taken for/, when there is no special

cause for increased resistance.

Let V = the velocity of discharge in feet per second,

d = the diameter of the pipe in feet, I = the length of the

pipe in feet, h = the head or fall of water in feet, and W
= the weight of water in pounds discharged per second.

Let /' be the resistance of friction due to a unit of diam-

eter, length, and velocity ; then the resistance in a pipe I

feet long and d feet diameter with a unit of velocity will be,

from (1) of Art. 102, fid; but the quantity of water deliv-

• For large surfaces, especially of considerable length, the friction is very much

diminished. For instance, these values off were obtained by experimenting on a

surface 4 feet long, moving 10 feet per second : but when the lentrth was 20 feet and

upwards, these values of/ were diminished to .0025 and .005 respectively.
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ered by this pipe will be (P times that delivered by the for-

mer, therefore for the same quantity of water delivered as

by the former, the resistance of friction in the latter pipe

will be

fid ., I

that is, the resistance of friction in pipes, when the ve-

locity is constant, varies directly as their lengths and
inversely as their diameters.

If we measure this resistance by a column of water, and

denote the height of this column by A^, we have

"> =4w (1)

where/ is a constant to be determined by experiment, and

is called the coefficient offriction.

This height h^ is called the heigJit of resistance offriction^

which has to be subtracted from the total head li, in order

to obtain the height necessary to produce the velocity v.

Hence, the loss of head or of pressure, in consequence of

the friction of the water in the pipe, is found by multiply-

ing the head due to the velocity by the coefficient f-, and

is greater, the greater the ratio of the length to the diam-

eter and the greater the height due to the velocity.

Multiplying (1) by W, we obtain for the work due to the

resistance of friction

that is, tlie loss of ivorh hy friction is the same as that

of raising tJie water through a height Aj.

Cor.—From (4) of Art. 96, we have
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loss of work due to the resistance at ingress = i3
— W; (3)

work stored m the water at discharge ^ — W. (4)

104. Uniform Pipe connecting Two Reservoirs,

when all the Resistances are Considered.—Let h be

the difference of level of the reservoirs, and v the velocity,

in a pipe of length I and diameter d. Then we have

work due to the head of water =: h W, (1)

which is the whole work done per second in moving W
pounds of water from the surface of one reservoir to the

surface of the other. This work is equal to the work in

overcoming all the resistances, together with the work re-

maining in the water at discharge. That is, the work is

expended in three ways: (1) The head — ,* corresponding

1^
to an expenditure of ^ TF foot-pounds of work, is employed

in giving energy of motion to the water, and is ultimately

wasted in eddying motions in the lower reservoir. (2) A
1^

portion of head P — , corresponding to an expenditure of

iP
j3 — TT foot-pounds of work, is employed in overcoming the

.^

resistance at the entrance to the pipe. (3) the head f

/-—, corresponding to an expenditure of f -jk-W foot-

pounds of work, is employed in overcoming the surface

friction of the pipe. Hence, from (1), and (2), (3), (4) of

Art. 103, we have

-^ d2g 2g 2g

• CaUed velocity head. t Called/ric<ion head.
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... A = (l+^+4)|, (2)

and V = \
'^-^-

^, .(3)

or ^-^^VoWTT^' W
where the constants j3 and/ are to be determined by experi-

ment.

When V and d are given, (2) is used to determine h\ when
li and d are given, (4) is used to determine v.

Cor. 1.—If the pipe is bell-mouthed, ^ is about .08. If

the entrance to the pipe is cylindrical, ^ = 0.505. Hence,

1 + /3 = 1.08 to 1.505. In general, this is so small com-

pared with f-j that for practical calculations it may be

neglected ; i. e., the losses of head, except the loss in sur-

face friction, are neglected. It is only in short pipes and

at high velocities that it is necessary to take account of the

term (1 + 13). For instance, in pipes for the supply of tur-

bines, V is usually limited to 2 feet per second, and the pipe

is bell-mouthed. In this case, we have

(1 + )3) -^ = 1.08 X 4 X .0155 = 0.067 foot.*

In pipes for the supply of towns, v may range from 2 to

^\ feet per second, and then we have

(1 + /3) 1^ = 0.1 to 0.5 foot.

In either case, this amount of head is small compared
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with the whole fall in the cases which most commonly

occur.

CoE. 2.—For very long pipes, 1 +/J is so small compared

with f-^, that it may be neglected altogether, and (2), (3),

and (4) become

" =41' (^)

^ = V7r' (6)

V = 8.025^^. (7)

Using the value of/, as determined by Poncelet, viz.,/=
.02 J, with the value of jS = .5, we have, from (3),

Eytelwein gave a formula which nearly coincides with

this. (See Storrow on Water Works, p, 56.)

When the pipe is very long, d is very small compared

with I, and (8) becomes

. =
47.9^^f

.

(9)

Rem.—It is immaterial as regards the velocity, and the quantity

discharged, whether the pipe is horizontal or inclined upwards or

downwards, so long as the length of the pipe and the total head, or

deptli of the end of discliarge below the level of the surface of the

water in the reservoir, remain unchanged. If the inclined pipe is

longer than the liorizontal, of couree its surface will present more fric-

tion against the motion of the water than the horizontal one, and thus

diminish the velocity of discharge ; but if the inclined pipe be the

same length as the horizontal, and have the same head, then each of

them will discharge the same quantity in the same time.

It is evidently necessary, in every case, that the entrance to the
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pipe from the reservoir be placed suflBciently far below the water sur-

face of the reservoir to allow the water to flow from the reservoir into

the pipe, as fast as it afterwards flows along or through the length ol

the pipe to the end of discharge. For there must be at least suflBcient

head to overcome the resistance at the entrance to the pipe, and to

allow the water in the reservoir to flow out of an opening freely into

the air with that velocity which previous calculation shows it will

have in the pipe. The remainder of the head, which is employed in

overcoming the resistance of friction, and perhaps other resistances

which will be considered hereafter, may be obtained by having the

pipe incline downwards.

Since the friction in pipes of the same diameter increases as their

lengths, when the water first enters the pipe it is opposed by but little

friction, and has great velocity ; but this velocity gradually diminishes

as the advancing water meets the friction along increased lengths of

the pipe, and finally becomes least when the water fills the whole

length and begins to flow from the end of discharge. The velocity

then becomes uniform along the pipe, and will continue to be so, if the

velocity head and head due to the resistance at the entrance to the

pipe are together sufficient to allow the water of the reservoir to enter

the pipe with this same velocity.

105. Coefficient of Friction for Pipes Discharg-

ing Water.—From the average of a great many experi-

ments, the value of/for ordinary pipes is

/ = 0.030268. (1)

But practical experience shows that no single value can

be taken applicable to very different cases. The coeflBcient

of friction, like the coefficient of efflux, is not perfectly con-

stant. It is greater for low velocities than for high ones,

t. e., the resistance of friction of the water in pipes does not

increase exactly as the square of the velocity. Prony and

Eytelwein assumed that the loss of head by the resistance

of friction increases with the first power of the velocity and

with its square ; and hence they established for this loss of

head the formula
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in which «j and a^ denote constants to be determined by

experiment.

In order to determine these constants, these authors

availed themselves of 51 experiments made at different times

by Couplet, Bossut, and du Buat upon the flow of water

through long pipes. From these 51 experiments, the fol-

lowing numerical values were obtained

:

Prony obtained, «i = 0.0000693, a^ = 0.0013932.

Eytelwein, a^ z= 0.0000894, a^ = 0.0011213.

D'Aubuisson,* «i = 0.0000753, a^ = 0.0013700.

Taking the value of hi, and substituting it in (2) of Art.

104, instead of the value of h^ as given in (1) of Art. 103,

we have

^ = (l+^)| + («i^' + «2^)^- (3)

1+3
Putting —^— = 5, and reducing, (3) becomes

hd = Mv^ + cc^h^ -h (tjv, (4)

from which the value of v may be found. But the follow-

ing method of approximating to the value of v is more

convenient. From (4) we have

^'^ + mt^i^^'= y
hd

hd + ad

Expanding the first member by the binomial theorem,

and neglecting all the terms of the expansion after the sec-

ond, since a^ is considerably greater than a^, we have

.fi . -A 11-./ lid _^
hd + a^V

• Weisbach's Mechs., p. 866.
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/ hd €Cy^l > .

•'•
^ ~ V MTVt^l ~ 2{bd-{- a^l)

^'

Now if the pipe is cylindrical, (i = 0.505, from Cor, 3

of Art. 96, and therefore we have

_ 1 +i3 _ L505

= .0234,

and taking «i = .00007 and a^ = .00042,* and substi-

tuting these values in (5) and reducing, we have

_ / 2380M I .

^ ~ y I + 5^d 12(1 + 5^)' ^'

CoK.—When h is not very small, the last term of (6) may
be neglected, and we have

/2d80hd ,„.

- = VrT-5T^' (^^

which is very nearly the same as (8) of Art. 104.

Wlien the pipe is very long, d is very small compared

with I, and (6) becomes

v^sj2S80hd 1 ,^,

1 la*
(^>

When d is expressed in inches and all the other dimen-

sions in feet, (8) of Art. 104 becomes

V = . /I9l5l. (9)

ScH.—The following short table gives Weisbach's values

of the coeflBcient of friction for diiferent velocities in feet

-^r second : f

Tate's Mech. Phil., p. 293.

t Ency. Brit., Art. Hydromechanics.
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V = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

f —
J — .0686 .0527 .0457 .0415 .0387 .0365 .0349 .0336 .0325

V = 1 li H 2 3 4 6 8 12

/= .0315 .0297 .0284 .0265 .0243 .0230 .0214 .0205 .0193

EXAMPLE

The length of a water-pipe is 5780 feet, the head of water

is 170 feet, and the diameter of the pipe is 6 inches. Re-

quired the velocity of discharge.

2380 X 170 X .5 5780

By (6), we have

/
^ ~ V 5780 +54X.5 12(5780 + 54 X.5)

By (8), we have

By (8) of Art. 104, we have

V:

= 5.81.

2380 X 170 X.

5

_ J:_ _ ^ j^o

5780 12
""

47.9^1
170 X.

5

5780 + 54X.5

By (9) of Ai-t. 104, we have

^170"xT5

5780

= 5.8 feet, nearly.

V = 47.9y

-

= 5.8.

It will be observed that these results are very nearly the

same.

106. The Quantity Discharged from Pipes.—Let

Q be the number of cubic feet discharged per second; then

Q is given by the formula
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^ = ^^y = 0.7854d?2v; (1)

and on substituting the value of v obtained from (1) of Art.

103, this becomes

Q

which gives the value of Q in cubic feet per second, since

all the dimensions are in feet.

If we require the number of gallons discharged per min-

ute for a diameter of d inches, (1) becomes

Q = cJ^-d\ (3)

wrhere C is a constant whose value for / = .03 is 30, but

which is often taken somewhat less (say 27), to allow for

contingencies.*

Assuming that 1 cubic foot = 6.2322 gallons, we have,

from (1), for the number of gallons discharged in 24 hours,

O = -^- d?v X 86400 X 6.2322
570

= 2936.86^2^. (4)

From (1), we have

. = if, = 1.2733 1, (5)

which, in (1) of Art. 103, gives

that is, the height of resistance of friction in pipes

varies inversely as the fifth power of the diameters,

and directly as the length of the pipes.

* See Cotterill's App. Mecbe., p. 468.
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Hence, if we wish to conduct a given quantity of water

through a pipe with as little loss of head as possible, we

must make the pipe as short and its diameter as large as

we can. If the diameter of one pipe is double that of

another, the friction in the former is -5V of that in the

latter.

Cor.—Putting !-{& = 1.505, and — = 0.0155, we

have, from (2) and (4) of Art. 104,
^

7i = /l.505 +/.-) 0.0155^2, (7)

and V = 8.025^

1.505 +/.^

EXAMPLES.

1. How many gallons of water would the pipe in the ex-

ample of Art. 105 deliver in 24 hours ?

Here i; = 5.8 and (Z = 6 inches ; we have, from (4),

Q = 2930.86x62x5.8

= 613216 gallons in 24 hours.

2. What must the head of water be, when a set of pipes

150 feet long and 5 inches in diameter is required to deliver

85 cubic feet of water per minute ?

Here we have, from (5),

25 122
V = 1.2732 X J^ X -4- = 3.056 feet,

60 a*

and therefore (Art. 105, Sch.), / = .0243, which in (7)

gives

h = (1.505 + .0243 X ^^^^~^\ .0155 X 3.056'

= (1.505 + 8.748) .0155 X 9.339 = 1.484 feet.
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3. Solve Ex. 1 by using the value of v as obtained

from (8).

From (8), we have

V z= S.OSOA /

^ 1.505 + /505 +/5^
•^ .5

Since v is somewhere between 3 and 10, Ave assume / =
,03, and obtain

V = 8.025a/-
170

.505 -1- 231.20

= 6.859.

But V = 6.9 gives more correctly (Art. 105, Sch.) / =
.021, and therefore we have

V = 8.025a/—
170

.505 + 244.265

= 6.695,

which gives the true value to the first decimal place.

The discharge, from (4), is

Q = 2936.86 x 62 x 6.7

= 708370.632 gallons in 24 hours.

This result is somewhat larger than that obtained from

the value of v in (8) of Art. 104.

107. The Diameter of Pipes.—Substituting in (1)

of Art. 106 the value of v given in (9) of Art. 105, we have

« = 5?6V
191.2M

^
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Or, by logarithms,

\ogd = -^ [2. 2450532+ 3 log ^ -f log (Z 4- 4.5^)— log ^], (2)

where d is in inches, and all the other terms are in feet.

When the pipes are very long, or when d is small as com-

pared with /, (2) becomes

\ogd = \ (2.2450532 + 2 log (? + log ? — log h). (3)

Eem.—The value of d can be obtained from (1) only by

successive approximations. When considerable accuracy is

required, find the value of d from (3), and substitute it in

(2), which will give a first approximate value of d ; and

this again substituted in (2) will give a closer approximate

value ; and so on to any required degree of accuracy. Gen-

erally the first approximate value will be found sufficiently

accurate for all practical purposes.

EXAMPLE.

What is the diameter of a pipe which shall deliver 25000

gallons of water per hour, when the length of the pipe is

2500 feet, and the head of water 225 feet ?

Here h = 225 and I = 2500, and the number of cubic

feet delivered per second is

„ 25000
, ,, .- ,

^ = 60^^ir6:2322 = ^-^^^^ "^"^^y-

Substituting in (3), we have

\ogd = ^ (2.2450532 + 2 log 1.1143 + log 2500 — log 225)

= -^(1.9870309 + 3.3979400) = .67696;

;. d = 4.7530 inches.
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Substituting this value of d in (2), we have

log d = -\ [1.9870309 + log (2500 + 4.5 x 4.7533)]

= .6777337;

.*. d =z 4.761 inches,

which approximation is suflBciently accurate for all practi-

cal purposes.

108. Sudden Enlargement of Section.—Whenever
there is a change in tliC cross-section of a pipe or any other

conduit, there is a change of velocity, the velocity being

inversely proportional to the cross-section of the stream

(Art. 75). If the cross-section of a

pipe is suddenly changed, there is a

sudden change in the velocity of the

current of water, and therefore there is

a loss of kinetic energy. Thus, sup-

pose the pipe AECF is suddenly en-

larged in section at BD ; then, as the f'9- 55

water in the smaller pipe has a greater

velocity than the water in the larger one, there will be an
abrupt change of velocity at BD, and this change of veloc-

ity will be accompanied by a loss of kinetic energy, in the

same way as when two inelastic bodies impinge upon each

other.

Let V and v' be the velocities of the water in the smaller

and larger pipes, respectively, a and a' the areas of the sec-

tions of these pipes, W the weight of water discharged from

ABCD per second, and W the whole weight in BEFD.
Now as the water moves out of the smaller pipe into the

larger one, it impinges against the more slowly moving cur-

rent in that pipe, and after the impact the two bodies of

water, IF and W, move on together with the common ve-

locity v'. And since in this case W is very small compared

with W, we have, from (3) of Art. 98,
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work lost by the water at the abrupt change of velocity

= ("-"71- (1)

If 7i^ is the head of water corresponding to this loss of

work, we have, for the work lost,

A,Tf=(^-t.7^; (2)

and therefore the head lost is

K = '^- (3)

Hence, the head lost at the abrupt change of velocity

is measured hy the height due to this change of ve-

locity.

Since we have v '. v' i: a' '. a,

a ,

a

substituting this in (3), we have, for the loss of head,

/a' \2
where we put ^ ~

\
^)

'

(^)

which is the corresponding coefficient of resistance.*

ScH.—When the edges are rounded off so as to cause a

gradual passage from one pipe into the other, and the dif-

ference in the pipes is small, the loss of work as shown by

experiment is very small.

* First found by Borda. (See Weisbacb's Hechs., p. 884.)
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109. Sudden Coutraction of Section.—When water

passes from a larger to a smaller section, as in Figs. 56, 57,

where it passes from the pipe AB into

the narrower pipe CEDF, a contraction

is formed, and the contracted stream

abruptly expands to fill the section of

the pipe, thereby causing a loss of head

by this sudden enlargement, precisely as

in Art. 108.

(1) Ijet a be the area of the section

and V the velocity of the stream at EF. Then, if c is the

coefficient of contraction, the section of the stream at CD
will be ca, and the velocity v' at this section will be found

by means of the formula

V ca vax

V = -'
c

Hence, the loss of head in passing from CD to EF is

_ (t;' — vY _ /I _ .V]^
'^9

if j3 is put for ( 1j
•

If c is taken = 0.64 (Art. 92), we have

which in (1) gives h^ = 0.316 —•

(1)

(2)

ScH. 1.—The value of the coefficient of contraction in

this case is, however, not well ascertained, and the result is
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somewhat modified by friction. For water entering a cylin-

drical pipe from a reservoir of indefinitely large size, experi-

ment shows that j3 is increased by the resistance at the

entrance into the pipe, and by the friction of the water in

the pipe, to 0.505, so that (1) becomes

Ji^ = 0.505^. (3)

(2) If there is a diaphragm at the

mouth of the pipe, as at AB, Fig. 57,

with an opening ab, whose cross-section

is smaller than the cross-section of the

pipe CEDF, let a' be the area of this ori- ''•g- 57

fice. Then if c is the coeflBcient of con-

traction as before, the area of the contracted stream is ca',

and the velocity v' at the contracted section will be

a
V = —,v;

ca

hence, the head lost in passing from the contracted section

to the pipe at EF is

^^-
2a ~ \ca' V2g \ca 1 2g

where the corresponding coefficient of resistance is

ScH. 2.—Weisbach has found experimentally the follow-

ing values of the coefficients c and i3, when the stream ap-

proaching the orifice, as in Fig. 57, was considerably larger

than the orifice.*

* Ency. Brit., Vol. Xni., Art. Hydromechaniat.



EXAMPLE. 203

a' _
a

0.1 0.2 0.3 0.4 0.5

.616 .614 .612 .610 .607

(3 = 231.7 50.99 19.78 9.612 5.256

a' _
a

0.6 0.7 0.8 0.9 1.0

c = .605 .603 .601 .598 .596

(i = 3.077 1.876 1.169 0.734 0.480

ScH. 3.—When the edges are rounded off so the contrac-

tion is very gradual, the loss of work is very much dimin-

ished.

EXAMPLE,

What is the discharge through the orifice in Fig. 57,

when the head is 1^ feet, the diameter of the contracted

circular ori^ce = 1\ inches, and that of the pipe CEDF =
2 inches ?

Here we have

i
=m = ^ = -'

and therefore from the table c = 0.606, and from (5),*

" = (9^ - 'J= '

Hence, the whole head is

74.

i = ^ + ;„ = (i + (3)|:

* Since c comes between two numbers in the table, is fonnd more accurately

from (5).
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therefore, the velocity of efflux is

VWi 8.025VTs
V = - .--1— = T=^=— = 4.51,

^/l+ a a/4.74

and consequently the discharge, from (1) of Art. 106, is

Q = ~cPv = "^x 4x4.51x12
4 4

= 170 cubic inches.

110. Elbows.— When pipes are bent so as to form

elbows, they present resistances to the motion of water in

them ; and these resistances, like many other phenomena of

efflux, can be determined only

by experiment. If a pipe ACB
forms an elbow, the stream sep-

arates itself from the inner sur-

face of the second branch of the

pipe, in consequence of the cen-

trifugal force, if the second

branch is very short, termi-

nating, for instance, at ab, the efflux will be smaller than

the full cross-section of the pipe. But if the second branch

is longer, terminating at B, an eddy is formed at D, and

beyond this the pipe is again filled, so that the velocity of

efflux V is less than the velocity at D. This diminution of

the velocity of efflux must be treated in the same way as

the resistance produced by a contraction in the pipe

(Art. 109).

Hence, if a is the cross-section of the pipe, and c is the

coefficient of contraction, the section of the stream at D is

ca, and the velocity v' of the contracted stream is

Fig. 58
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and hence the loss of head in passing from D to B is

_ {v' — vY _ {I \2«;2

The coefficient of contraction c, and therefore the cor-

responding coefficient of resistance P, depends upon the

angle of deviation BCE. From experiments with a pipe 1;|-

inches in diameter, Weisbach found the coefficient of re-

sistance to be

13 = 0.9457 sin2 1 + 2.047 sin^f

,

(2)

by which he computed a series of coefficients of resistance

for different angles of deviation.* From (2) it follows that

the kinetic energy of water in pipes is considerably dimin-

ished by elbows. If the elbow is right-angled, we have,

from (2), |3 = 0.9846, which in (1) gives

h. = 0.9846 -;2g'

lieiice, at a right-angled elbow, the loss of head is nearly

equal to the head due to the velocity.

ScH.—If to one elbow ACB another elbow is joined, the

second one turning the stream to the same side as the first

one, there is no further contraction of the stream, and

therefore, for efflux with full cross-section, (3 is no larger

than for a single elbow. But if the second elbow turns the

stream to the opposite side, the contraction is a double one,

and the coefficient of resistance is consequently twice as

great as for a single elbow.

* Bncy. Brit., Vol. XIL, p. 487.
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111. Bends.—When the pipes have curved bends, the

resistance is much less than in elbows. If a pipe ACB is

curved, it also, in consequence of the

centrifugal force, causes the stream to

separate itself from the concave surface,

and to form a partial contraction. If

the bend terminates at BD, the cross-

section of the stream at its outlet is

smaller than that of the pipe. But if

the bend is terminated by a long straight

pipe BF, an eddy is formed at D, and beyond this the pipe

is again filled, so that the velocity of efflux v is less than the

velocity at D.

If c is the coefficient of contraction, the velocity v' of the

contracted stream is

" ='c'

and hence the loss of head in passing from D to F is

(v' — vY (I \2y2

'^g ^9

'% (1)

This is Weisbach's method, but the coefficient of contrac-

tion for bends is not very satisfactorily ascertained

If r = the radius of the pipe = MH = HC, and p =
the radius of curvature = HO, then Weisbach's formula

for the coefficient of resistance at a bend in a pipe of circu-

lar section is

j3 = 0.131 -f 1.847 (~)^;

and for bends with rectangular cross-sections,

|3 = 0.124 + 3.104 (|-)",

(3)

(3)
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where s is the length of the side of the section parallel to

the radius of curvature p. (See Weisbach's Mechs., p. 897.)

11 Ir/. Pipe of Uniform Diameter Equivalent to

one of Yarying Diameter.— Pipes for the supply of

towns * often consist of a series of lengths, the diameter for

each length being the same, but differing from those of the

other lengths. In approximate calculations of the head

lost in such pipes, it is generally accurate enough to neglect

the smaller losses of head and to regard only the friction of

the pipe, and then the calculations may be facilitated by

reducing the pipe to one of uniform diameter, having the

same loss of head. Such a uniform pipe is called an equiv-

alent pipe.

Let A be the pipe of varia- ^

ble diameter, and B the i ,
^^ ~

equivalent pipe of uniform —
diameter. In A let Zj, Zg, =
etc., be the lengths, d^, d^, Fig. 59a

etc., the diameters, v^^, v^,

the velocities for the successive portions, and let /, d, v, be

the corresponding quantities for the equivalent uniform

pipe. Then the total loss of head in A due to friction is

and in the uniform pipe B,

h /-^^
'' d'Zg

If these pipes are equivalent, we have

/•li^'^/A^V/ii^' + etc. (1)

* Snch pipes are called water mains.
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But since the discharge is the same for all portions,

4 4 ^ 4 ^

•• ^^"^^'^"2' ^'^'^^rf-a^
etc. (2)

Then supposing that / is constant for all the pipes, we
have, from (1) and (2),

which gives the length of the equivalent uniform pipe

which would have the same total loss of head, for any given

discharge, as the pipe of varying diameter.

Cor.—If the lengths of the successive portions are all

equal, we have Z^ = Zg = /g = etc., and (3) becomes

111&. Pipe of Uniform Diameter with Discharge
Diminishing Uniformly along its Length.— In the

case of a branch main, the

water is delivered at nearly A^
,

•
, P

^ ,c B

equal distances to service
,

,

,
p=

pipes along the route. Let Pig 59^

AB be a main of diameter d
and length L; let Q^ cubic feet per second enter at A, and

let q cubic feet per foot of its length be delivered to service

pipes. Then at any point C, I feet from A, the discharge is

Q = Qo — ql' Consider a short length dl at P. The loss

of head in that length is
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--^{Q,-qlfdl

Hence, the whole head lost in the length AB is

or, putting P = qL, the total discharge through the ser-

vice pipes between A and B, (1) becomes

The discharge at tlie end B of the pipe is Q^ — P. If

the pipe is so long that Q^ — P = 0, all the water passes

into the service pipes, and (2) becomes

" = 11^,^- (^)

(See Ency. Brit., Vol. XII., p. 486.)

112. General Formula when all the Resistances

to the Flow of Water are Considered.—Let (i^ be

the coefficient of resistance for enlargements and contrac-

tions (Arts. 108 and 109), and /Jg the coefficient of resist-

ance for elbows and bends (Arts. 110 and 111). Then

adding together (3) of Art. 105, (4) of Arts. 108 and 109,

(1) of Arts. 110 and 111, we have for the entire head Ti,

A=(l+/3)|+K. + «,.^)^ + 3.| + (3,|

= («,t>+a,t>2)j+(l+|3 + /3, +(3,)^, (1)
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where the values of a^ and a^ are given in Art. 105, /S^ in

Art. 109, iSg in Art. 110, and d = .505 to .08.

Neglecting a^, since it is very small compared with a^

(Art. 105), and putting / = '^ga^ = .03, from (1) of Art.

105, we have, from (1),

^ = (4 + l+/5 + /3, +^3)|- (2)

ScH.—An enlargement should be made in the pipe at any

considerable bondings ; and when any change takes place in

the diameter of the pipe, the parts at the junction should

be rounded off. At all considerable bends, where the pipe

changes from ascending to descending, a provision should

be made for clearing the pipe of the air which is disengaged

from the water. Unless some provision is made for the

escape of this air, it will accumulate in the highest bends

and obstruct the flow of the current.

EXAMPLE.

In the example of Art. 105 there are 40 bends in the

pipe, each having the radius of curvature exceeding ten

times the radius of the pipe. Find the velocity of eflSux.

Here / = .03, /3 = .505, (3^=0,

/Jg = .131 + lM7{^y^ = .1316;

.-. 40/32 = 5.263, I = 5780, d = .5, h = 170.

Hence, from (2), we have

170 = (.03x^ + 1.505 + 5.263)
64^

= 353.568
64i'

V = 5.562 feet per second
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For practical calculations on the flow of water in pipes,

see Ency. Brit, Vol. XII., p. 488.

113. Flow of Water ill Rivers and Canals.—
When water flows in a pipe, the section at any point is de-

termined by the form of the boundary. When it flows in

an open channel with free upper surface, the section de-

pends on the velocity due to the kinetic conditions. The
bottom of the channel and the two banks are called the bed

of the stream. A section of the stream at right angles to

the direction in which it is flowing is called a transverse

section, and of the line bounding this section, the part that

is beneath the water surface is called the wetted perimeter.

A vertical section in the direction of the stream is called the

loiif/itudinal section oxj)rofile.

Let ABCD represent a longitudinal

section of a limited portion of a stream,

AD, BC, two transverse sections, AB
the surface of the stream, DC the bot

tom of the channel, and AE a horizon- ^'S' *°

tal line. Let I = the length of AB in

feet ; h = BE, the difference of level of the water surface

in feet at the two extremities of the distance I; 6 = the

angle BAE, the slope of the stream ; sin ^ - =r the sine

of the slope, or the fall of the water surface in one foot

;

a = the area of the transverse section at BC in square feet

;

p = the length of the wetted perimeter of the transverse

section at BC ; r = - , the hydraulic mean depth, or the

mean radius of the section
; Q = the discharge through

the section at BC in cubic feet per second ; v =2 - = the
a

mean velocity of the stream in feet per second, which is

taken as the common velocity of all the particles.
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114. Different Yelocities in a Cross-Section.—The
velocity of the water is not uniform in all points of the

same transverse section. In all actual streams the different

fluid filaments have different velocities. The adhesion of

the water to the bed of the channel, and the cohesion of the

molecules of water cause the particles of water nearest to

the sides and bed of the channel to be most hindered in

their motion. For this reason, the velocity is much less at

the bottom and sides than it is at the surface and centre.

According to some authors, the maximum velocity in a

straight river is generally found in the middle of its sur-

face, or in that part of the surface where the water is the

deepest.* Theoretically we should expe.ct thi3, but practi-

cally it is often very different.

The theory adopted by most modern writers is the fol-

lowing: The motion of the water being caused solely by the

slope of the surface, the velocity in all parts of any trans-

verse section of the river would be equal, were it not for the

retarding influence of the bed. The layer of elementary

particles next to the bed adheres firmly to it by virtue of

the force of adhesion. The next layer is retarded partly by

the cohesion existing between it and the first, partly by the

friction, and partly by the loss of kinetic energy arising from

constant collision with the irregularities which correspond

to those of the bed. The next layer is retarded in the same

manner, but in a less degree. Thus, according to this

theory, the effect of the resistances is diminished as the

distance from the bed is increased ; and assuming, as is

usually done, that no sensible resistance is experienced from

the air, the maximum velocity should be found in the sur-

face filament situated at the greatest distance from the bed.

The many experiments, however, which have been made to

determine the actual variation in velocity at different

depths, and upon the surface, at different distances from the

banks, give very different results.

* Welsbach's Mechs., p. 956 ; also Tate's Mech. Phil., p. 808.
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Focacci found that in a canal 5 feet deep, the maximum velocity

was from 2 to 3.5 feet below the surface.

Defontaine states that in calm weather the velocity of the Rhine is

greatest at the surface.

Raucourt made experiments upon the Neva where it is 900 feet wide
and of regular section, the maximum depth being 63 feet. When the

river was frozen over, the maximum velocity (2 feet 7 inches per sec-

ond) was found a little below the middle of the deepest vertical, where

it was nearly double the velocity at the surface and bottom, which
were nearly equal to each other. In summer, he found the maximum
velocity was near the surface in calm weather ; but when a strong

wind was blowing up stream, the surface velocity was greatly dimin-

ished, so that it hardly exceeded that at the bottom. He considers the

law of diminution of velocity to be given by the ordinates of an ellipse

whose vertex is a little below the bottom, and whose minor axis is a

little below the surface.

Hennocque found the maximum velocity in the Rhine to be, in calm

weather, or with a light wind, \ of the depth below the surface ; in a

strong wind up stream, it was a little below mid-depth ; in a strong

wind down stream, it was at the surface.

Baumgarten found in the Garonne that the maximum velocity was

generally at the surface, but that in one section (about 325 feet wide)

it was always below the surface.

D'Aubuisson considers that the velocity diminishes slowly at first,

as the depth increases, but that near the bottom it is more rapid. The
bottom velocity, however, is always more than half that of the surface.

Boileau found, by experiment in a small canal, that the maximum
velocity was ] to 1 of the depth below the surface. Below this point,

the velocity diminished rapidly, and nearly in the ratio of the ordinates

of the parabola whose axis was at the surface. He decided, from a

discussion of the experiments of Defontaine, Hennocque, and Baum-
garten, that in large rivers the maximum velocity is by no means al-

ways at the surface.*

It will be seen from this synopsis that there is a great

diversity among the results obtained by different experi-

menters, and that no mathematical relation, of sufficiently

general application to constitute a practical law, has been

yet discovered.

See Beport on the Hydraulics of the MissisBippi Biver, by Humphreys and

Abbott, pp. 200, etc.
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The velocities observed on any given longitudinal section, at any

given moment, do not form, when plotted, any regular curve. But if

a series of observations are taken at each depth, and the results aver-

aged, the mean velocities at each depth, when plotted, give a regular

curve agreeing very fairly with a parabola whose axis is horizontal, cor-

responding to the position of the filament of maximum velocity. All

the best observations show that the maximum velocity is to be found

at some distance below the free surface.

In the experiments on the Mississippi River, the velocities on any

longitudinal section, in calm weather, were found to be represented

very fairly by a ])arabola, the greatest velocity being at
-f'^

of the depth

of the stream from the surface. With a vrind blowing down stream,

the surface velocity is increased and the axis of tlie parabola approaches

the surface. With a wind blowing up stream, the surface velocity is

diminished and the axis of the parabola is lowered, sometimes to half

the depth of the stream. The observers on the Mississippi drew from

their observations the conclusion that there was an energetic retarding

action at the surface of a stream, like that at the bottom and sides. If

there were such a retarding action, the position of the filament of max-

imum velocity below the surface would be explained. If there were

no such resistance, the maximum velocity should be at the sur-

face.

It is not difficult to understand that a wind, acting on surface rip-

ples, should accelerate or retard the surface motion of the stream, and

the Mississippi results may be accepted so far as showing that the sur-

face velocity of a stream is variable when the mean velocity of the

stream is constant. Hence observations of surface velocity, by floats

or othermse, should only be made in very calm weather. But it is

verj' difficult to suppose that, in still air, there is a resistance at the

free surface of the stream at all analogous to that at the sides and

bottom. In very careful experiments, Boileau found the maximum
velocity, though raised a little above its position for calm weather,

still at a considerable distance below tbe surface, even when the vnnd

was blowing down stream with a velocity greater than that of the

stream, and when the action of the air must have been an accelerating

and not a retarding action. Prof. James Thomson has given a much
more probable explanation of the diminution of the velocity at and

near the free surface. He points out that portions of water, with a

diminished velocity from retardation by the sides or bottom, are thrown

off in eddying masses and mingle with the rest of the stream. These

eddying masses modify the velocity in all parts of the stream, but

have their greatest influence at the free surface. Reaching the free
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surface, they spread out and remain there, mingling with the water at

that level, and diminishing the velocity which would otherwise be

found there.*

115. Transverse Section of the Stream.— The
form of tlie transverse section and the direction of the cur-

rent have such an effect upon the velocity at the surface, at

different distances from the banks, that there can be no

definite law of change. There is generally an increase of

velocity, as the distance from the banks is increased, until

the maximum point is reached. That portion of the river

where the water has its maximum velocity is called the line

of current or axis of the stream, and the deepest portion of

the stream is called the mid-channel. When the stream

bends, its axis is generally near the concave shore.

It is observed that the surface of a stream, in any cross-

section, is highest where the velocity is greatest, which is

accounted for by the fact that, when the water is in motion,

it exerts less pressure at right angles to the direction of its

motion than when it is at rest, and therefore, where the

velocity is greatest the water must be highest, to balance

the pressure at the sides, where the velocity is less.

It frequently happens that, while the mass of the water

in a river is flowing on down the river, the water next the

shore is running up the river. It is no unusual thing to

find a swift current and a corresponding fall on one shore

doivn stream, and on the opposite shore a visible current

and an appreciable fall up stream; i. e., on one side of the

river the water is often running rapidly up stream, while on

the other side it is running with equal or greater rapidity

down stream. The apparent slope at every point is affected

by the bends of the river, and by the centrifugal force

acquired by the water in sweeping round the curves, and by

the eddies which form on the opposite side. The surface of

the river is not therefore a plane, but a complicated warped

* Ency. Brit., Vol, XII., p. 497.
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surface, varying from point to point, and inclining alter-

nately from side to side.*

116. Mean Velocity.—The mean velocity of the water

in a cross-section is equal to the quotient arising from

dividing the discharge per second by the area of the trans-

verse section.

When the discharge per second is not known, the mean
velocity may be determined by measuring the velocities in

all parts of the transverse section, and taking a mean of the

results. If the transvei-se section is irregular in form, the

only accurate manner of determining the mean velocity is

to divide this section into partial areas so small that the

velocity tluoughout each may be considered invariable. The
discharge is tiien equal to the sum of the products of these

partial areas by their velocities.

Let a^, «2, «3, etc., be the small partial areas into which

the transverse section is divided, and v^, v^, v^, etc., the

velocities in these small areas. Then the whole area is

tf = «j 4- «3 4- flg + etc., (1)

and the whole discharge is

av = a^v^ + a^v^ -}- a^v^ + etc.; (2)

therefore the mean velocity is

^ _ a^Vi + ggt'g + a^v^ -t- etc.

«1 + «2 + ^3 + 6tC. ^ ^

117. Ratio of Mean to Greatest Surface Velocity.

—It is often very important to be able to deduce the mean

velocity from observation of the greatest surface velocity.

The greatest surface velocity may be determined by floats.

Unfortunately, however, the ratio of the maximum surface

velocity to the mean velocity is extremely variable ; and it

See Report on the MissJssippi,
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has formed the subject of much careful investigation. Put-

ting Vq for the greatest surface velocity, and Vm for the

mean velocity of the whole cross-section, the following

values have been found for *"

V

De Prony, experiments on small wooden channels, 0.8164

Experiments on the Seine, 0.62

Destrem and De Prony, experiments on the Neva, 0. 78

Boileau, experiments on canals, 0.82

Baumgarten, experiments on the Garonne, . . . 0.80

Brunings (mean), 0.85

Cunningham, Solani aqueduct, 0.823

Dubuat, experiments on small canals (mean), . . 0.83

Dupuit, from theoretical considerations, believes

the ratio to varv between 0.67 and 1.00.

Various formuhe have been proposed for determining the

tio — • Bazin four

empirical expression.

ratio — Bazin found from his experiments the following
^0

Vm = Vo - 25A\/rd, (1)

where r is the hydraulic mean depth, and 6 the slope of the

stream (Art. 113).

Prony found the following formula,

*''" - V, + 10.33" ^^^

The ratio of the mean velocity to the surface velocity in

one longitudinal section is better ascertained than the ratio

of the greatest surface velocity to the mean velocity of the

whole cross-section. Let the river be divided into a num-

ber of compartments by equidistant longitudinal planes, and

the surface velocity be observed in each compartment ; then

from this the mean velocity in each compartment and the
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discharge can be computed. The sum of the partial dis-

charges will be the total discharge of the stream. The fol-

lowing formula* is convenient for determining the ratio of

the surface velocity to the mean velocity in the same verti-

cal. Let V be the mean and V the surface velocity in any

given vertical longitudinal section, the depth of which is h.

v_ _ 1 + 0.1 478 a/^

^ ~ 1 + 0.2216\/a'

ScH.—In the gaugings of the Mississippi, it was found

that the mid-depth velocity differed by only a very small

quantity from the mean velocity in the vertical section, and

it was uninfluenced by wind. If therefore a series of mid-

depth velocities are determined, they may be taken to be

the mean velocities of the compartments in which they

occur, and no formula of reduction is necessary.

118. Processes for Gauging Streams.—The dis-

charge of large creeks, canals, and rivers, can be measured

only by means of hydrometers, which are instruments for

indicating the velocity. The simplest of these instruments

are surface floats ; these are convenient for determining the

surface velocities of a stream, though their use is difficult

near the banks. Any floating body can be used for this

purpose ; but it is safer to employ bodies of medium size,

and of but little less specific gravity than the water itself.

Very large bodies do not easily assume the velocity of the

water, and very small bodies, especially when they project

much above the surface of thfe water, are easily disturbed in

their motion by accidental circumstances, such as wind, etc.

The floats may be small balls of wood, of wax, or of hol-

low metal, so loaded as to float nearly flush with the water

surface. To make them visible, they may have a vertical

painted stem. In experiments on the Seine, cork balls 1|

Given by Eyner in Erbkam's Zeitschrift for 1875.
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inches diameter were used, loaded to float flush with the

water surface, and provided with a stem. Bits of solid

wood, and bottles filled with water until nearly submerged,

have often been used for surface floats. Boileau proposes

balls of soft wax, on account of their adhesive properties.

In Captain Cunningham's observations, the floats were thin

circular disks of English deal, 3 inches diameter and \ inch

thick. For observations near the banks, floats 1 inch diam-

eter and \ inch thick were used. To render them visible, a

tuft of cotton wool was used, loosely fixed in a hole at the

centre.

The velocity is obtained by allowing the float to be car-

ried down, and noting the time of passage over a measured

length of the stream. If t is the time in which the float

passes over a lengtli /, which has been previously measured,

and staked off on the shore, then the velocity v is v = —.

To mark out distinctly the length of stream over which the

floats pass, two ropes may be stretched across the stream at

a distance apart, which varies usually from 50 to 250 feet,

according to the size and rapidity of the river. To mark
the precise position at which the floats cross the ropes, Capt.

Cunningham, in his experiments, used short white rope

pendants, hanging so as nearly to touch the water. In this

case the streams were 80 to 180 feet wide.

In wider streams the use of ropes to C p
mark the length of run is impossible ; in p|^ i'Z~_
such cases, recourse must be had to some M ^

such method as the following: Let AB
/^ B

be the measured length := I, on one side p. g,

of the river. Put two rods C and D, by

means of a suitable instrument, in such a position upon the

other side of the river that the lines CA and DB shall be

perpendicular to AB. Then the observer, placed behind A,

notes by his watch tlie instant the float E, which has been

placed in the water some distance above, arrives at the line
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AC, aud then, passing down to B, lie observes the instant

that the float arrives at the line BD. By subtracting the

time of the first observation from that of the second, he

obtains the time t in which the space I is described.

For measuring the velocity below the surface, double

floats * are used. They are of various kinds, usually con-

sisting of small surface floats, supporting by cords larger

submerged bodies. Suppose two equal and similar floats,

connected by a string, wire, or thin wire chain. Let one

float be a little heavier, and the other a little lighter than

water, so that only a small portion of the latter will project

above the surface of the water. We first determine by a

single float the surface velocity Vg; we then determine the

Telocity of the connected floats, which will be the mean of

the surface velocity and the velocity at the depth at which

the heavier float swims. If I'd is the velocity at the depth

to which the lower float sinks, we have, calling v the mean

velocity,

' = -!-'

.'. I'a = 2v — Vg. (1)

By connecting the floats successively by longer and longer

pieces of wire, we obtain in this way the velocities at greater

and greater depths.

To obtain the mean velocity in a perpendicular, a floating

staff or rod is often employed. This consists of a cylindrical

rod, loaded at the lower end so as to float nearly vertical in

water. A wooden rod, with a metal cap at the bottom in

which shot can be placed, so as to prevent more than the

head from projecting above the water surface, answers well,

and sometimes the wooden rod is made of short pieces which

can be screwed together so as to suit streams of different

depths. A tuft of cotton wool at the top serves to make

First used by da VincL
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the float more easily visible. Such a rod, so adjusted in

length that it sinks nearly to the bed of the stream, gives

directly the mean velocity of the whole vertical section in

which it floats. (For a complete description of gauging

streams, see '' Report on the Mississippi.*')

119. Most Economical Form of Transverse Sec-

tion.—The best form of the transverse section must be that

which presents the least resistance to a given quantity of

water flowing through the channel. From Art. 103, the

resistance of the bed of the stream, in consequence of the

adhesion and friction, varies directly as the surface of con-

tact, and consequently as the wetted perimeter j!> (Art. 113),

and inversely as the area of tlie transverse section, {. e., the

P
resistance of the bed of the stream varies as -• In order,

a

therefore, to have the least resistance from friction, the

form of the section must be that which has the least perim-

eter for a given area, i. e., the wetted perimeter^; must be a

minimum for a given area a, or the area must be a maximum
for a given wetted perimeter. Now, among all figures of

the same number of sides, the regular one, and among all

the regular ones, the one with the greatest number of sides

has the smallest perimeter for a given area. Hence, for

closed pipes, the resistance of friction is the smallest when
the transverse section is a circle ; but in open chaunels, the

upper surface, being free,

CA

or in contact with the air

alone, must not be in-

cluded in the perimeter.

A horizontal line DC, a (^) b

passing through the centre

of the square AF, divides

the area and perimeter into two equal parts, and what has

been said of the square is true of these halves ; hence, of all

rectangular forms of transverse sections, the half sqnare
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ABCD is the one which causes the least resistance of fric-

tion, and therefore is the best for open cliannels. Also, of

all trapezoidal sections, the semi-hexagon ABCD is the one

which causes the least resistance of friction ; and so on to

the other cases. But the semicircle will present less resist-

ance of friction than the semi-hexagon, and this latter less

than the semi-square. The half decagon offers still less

resistance than the half hexagon or the half square. The
circular and square sections are used only for troughs

made of iron, stone, or wood. The trapezoid is employed in

«ianals, which are dug out or walled up. It is very rare that

other forms are used, owing to the diflBculty of constructing

them.

120. Trapezoidal Section of a Canal of Least

Resistance, when the Slope of the Sides is Given.
—Let ABCD be the section. Put

X = AB, the width of the bottom,

y = BE, the depth, and 6 = BCE,
the angle of the slope, which is to

be considered as a given quantity,

dependent upon the nature of the

ground in which the canal is excavated, and a = the given

area of the section ABCD.
Tlien the wetted perimeter of the section is

p = AB -{- 2BC
= X + 2y cosec 0. (1)

' I'he area of the section is

a =: xy -\- y^ cot 6 ;

a — «/2 cot B f^.
••• ^ = -^ » (^)

which in (1) gives

a — y^ cot 6 ,„v

p = -^ \- 2y cosec 6. (d)
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To find the value of y which makes this a minimum, we

must equate to zero its derivative with respect to y, which

gives

«sin 6>_^

^ 2 - cos ' ^*'

r~a sin ,.
••• y = y^^r^oJe- <^>

Hence, for a given angle of slope 6, and for a given area

fl, the trapezoidal seciion of least resistance is detennined by

(2) and (5).

Consequently, the width CD of the top is

Qjy = X -\-2y cot e

a= - + ycote; (6)

P
and the value of — , from (3), is *

a ^

p 1 2 — cos 6— = - -i ^—7^ V
a y a sin 9 "^

=
^

[from (4)]. (7)

EXAMPLE.

What dimensions should be given to the transverse sec-

tion of a canal, when the angle of slope of its banks is to be

40°, and when it is to carry 75 cubic feet of water with a

mean velocity of 3 feet ?

Here we have
a =^ ^ = 25 square feet;

and hence, from (5), we have the depth

/ 25 sin 40° ^ /0.64279 , ^aq ^ x= V 2-=:-^4()^ =V 1:2339-6 = ^-^^^ ^^^^-
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From (2), we have the width at the bottom,

25
X = —-- — 3.609 cotan 40°

o.d09

= 6.927 — 4.301 = 2.626 feet.

The width of the top, from (6), is

CD =r 2.626 + 7.218 cot 40° = 11.228 feet

The wetted perimeter is

^
sin 6

7 21

8

— 2.626 + ,^o = 13.855 feet

;

sm 40

and the ratio which determines the resistance of friction is

^ = - = 0.5542.
a y

Rem.—In a transverse section in the shape of the half of

a regular hexagon, where d = 60°, a: = 4.39, y = 3.80,

width CD = 8.78, and p = 13.17 feet, we have, for the

resistance of friction,

f = %" = «-.

which is less than that found for the above trapezoid.

121. Uniform Motion.—When water flows in an open

channel, the velocity continues to increase so long as the

accelerating force exceeds the resisting force of friction

;

but when these forces are equal to each other, the velocity

of the stream becomes uniform. When the velocity is uni-

form, the entire head h is employed in overcoming the fric-

tion upon the bed. Therefore, the height of the column of
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water due to the resistance of friction must be equal to the

fall The height due to the resistance of friction increases

with — , with the length I, and with the square of the ve-

locity V (Art. 102). Hence, from (1) of Art. 103, we have

''=A$, (I)

in which / is an empirical number, which is called the coef-

ficient offriction.

Solving (1) for v, we have

hlqha
(3)

According to Eytelwein's reduction of the ninety-one ob-

servations and experiments made by du Buat, Briinings,

Funk, and Woltmann, / = 0.007565, which in (1) gives

/* = 0.007565^.^. (3)
a ^g ^ '

Kwe put g = 32.2 feet, (2) and (3) become

" = ''Wji' (*>

h = 0.00011747 ^ v^, (5)

For the number of cubic feet of water flowing through

the channel per second, we have

Q = av = 92.26a^^J^' (6)

Cor,—For pipes, we have

Ip Ind _ 4:1

"a
~ f^~ d'
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which in (3) ffives

A = 0.030261^, (7)

which agrees with (5) of Art. 104 and (1) of Art 105.

EXAMPLE.

How much fall must a canal, whose length is 2600 ieet,

whose lower width is 3 feet, whose upper width is 7 feet,

and whose depth is 3 feet, have in order to carry 40 cubic

feet of water per second ? Here we have

^ = 3 4- 2V2M- 32 = 10.211,

and
40

15

Substituting in (5), we have

h = 0.00011747
2600 X 10.211 /8\2

15

0.305422 X 10.211 x 64

15x9

(ir

= 1.48 feet.

122. Coefficients of Friction.—The coeflficient of

friction /varies greatly with the degree of roughness of the

channel sides, and somewhat also with the velocity, as in

the case of pipes, increasing slightly when the velocity

diminishes, and decreasing when the velocity increases. A
common mean value assumed for / is 0.007565, which we

used in the last Art., though it has quite a range of values.

Weisbach, from 255 experiments, obtained for / the follow-

ing values at different velocities

:
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V = 0.3

0.01215

0.4

0.01097

0.5

0.01035

0.6

0.00978

0.7

0.00944

V =

f =
0.8

0.00918

0.9

0.00899

1.0

0.00883 0.00836

2

0.00812

V = 3

0.00788

5

0.00769

7

0.00761

10

0.00755

15

0.00750

In using this table for the value of/ when v is not known,

we must proceed by approximation. Determine v approxi-

mately from (4) of Art. 121. Then from this value of v

find /by means of the table, and substitute the value of /
so found in (2), and determine a new value of v.

EXAMPLE.

What must be the fall of a canal 1500 feet long, whose

lower width is 2 feet, upper width 8 feet, and depth 4 feet,

when it is required to convey 70 cubic feet of water per

second ?

Here we have

p = 2 + 2VI6 + 9 = 13,

« = 5 X 4 = 20,

v = ^ = 3.5;

hence, from the table,

/ = 0.00784.

Substituting in (1) of Art. 121, we have

A = 0.00784 i£20^><S?
20 2g

86.436

^6474"
= 1.34 feet.
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123. Tariable Motion.—In every stream in which the

discharge is constant for a given time, the velocity at differ-

ent places depends on the slope of the bed. In general, the

velocity will he greater as the slope of the bed is greater;

and, as the velocity varies inversely as the transverse section

of the stream, the section will be least where the velocity

and slope are greatest. In a stream in which the velocity

is yariable, the work due to the fall of the stream for a given

distance is equal to the work destroyed by friction together

with the kinetic energy corresponding to the change of

velocity, i. c, the whole fall is the sum of that expended in

overcoming friction, and of that expended in increasing the

velocity, when the velocity increases, or if the velocity de-

creases, the head is the difference of these quantities.*

The resistance of friction upon a small portion of the

length of the stream may be regarded as constant and meas-

ured by a head of water

~^ a2g' (1)

Fig. 64

Let ABCD represent a longitudi-

nal section of a short portion of a

stream, AB the surface of the stream,

and AE and HG two horizontal

lines. Let I = the length of AB in

feet; h = BE, the fall from A to

B ; i^o = the velocity of the stream at the upper section

AD ; and v^ = the velocity at the lower section BC.

Now the velocity of any particle B, at the surface of the

stream, is due to the height ?i, together with the velocity at

A ; hence we have, for its velocity v^,

^ — A 4- ^. (2)

* In long rivers, with elopes not greater than 3 feet per mile, the velocity head

is usually insignificant compared with the friction head. (See Fanning's Water-

Supply Engineering, p. 303.;
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Any particle G, beneath the surface ol the water, is

pressed forward by the head AH = EG, and pressed back-

ward by the head BG; hence the head which produces mo-
tion is EG — BG = EB, or h, as before ; and therefore (2)

is true for any particle. Solving (2) for h, and adding the

resistance of friction, as given in (1), we have

n = ^-l^ + fk^, (3)

in which p, a, and v denote the mean values of the wetted

perimeter, the transverse section, and the velocity, respect-

ively.

If Uq and «i denote the areas of the upper and lower

transverse sections, respectively, and Q the quantity of

water which flows through any section in a unit of time, we
have

a — , (4)

and Q = af,v^ = a^v^. (6)

From (5), we have

v,^ — V,

'^g

o'

Vai2 a^V 2g' ^"'

Now if the water flowed with the velocity v„, we would

have the head due to the resistance of friction, from (1),

and if it flowed with the velocity v^, we would have the

head due to the resistance of friction

But the former expression is less, and the latter is greater

than the true head due to the resistance of friction ; henqe,
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the mean of these results will give the friction head approx-

imately. Therefore, taking the mean of (7) and (8)5 and

substituting for a its value from (4), we have, for the re-

sistance of friction,

[from (5)].

Substituting (6) and (9) in (3), we have, for the whole

head,

7i = "---+/--^(- + -)1^'. (10)

Solving (10) for Q, we have

Q V2p
/irrXTTZSTTrTTTV ^^^^

In a prismoidal channel it will be a sufficiently close ap-

proximation to the truth to assume that the surface line of

the water is straight, and then from this assumption to com-

pute the transverse sections and their perimeters. When
we have these, with the quantity of water carried and the

length of a portion of the river or canal, we may determine

the corresponding fall li by (10) ; and when we have the

length, fall, and cross-section, we may determine the quan-

tity Q by means of (11). Where greater accuracy is re-

quired, we should calculate li or Q for several small portions

of the stream, and then take the anthmetic mean of the

results. If only the total fall is known, this value should

be substituted for h in (11), and instead of —^
g we
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should use —^
5, where an denotes the area of the low-

est transverse section, and instead of

the sum of all the similar values for the different portions

of the stream should be used. (See "Weisbach's Mechs.,

p. 969 ; also Tate's Mech. Phil, p. 305.)

BX AM PLE.

A stream falls 9.6 inches in 300 feet, the mean value of

its wetted perimeter is 40 feet, the area of its upper trans-

verse section is 70 square feet, and that of its lower is 60

square feet. Find the discharge of this stream.

From (11), we have

^ _ 8.025\/a8
V —

/ 1 1 ^...^^^..r 300x40/ 1 1 \

= 354| cubic feet.

a/0.0000737 + 0.0003365

The mean velocity is

= :r^^ = 5.45 feet;
a^ + a^ 130

hence (Art. 122), a more accurate value of /is 0.00768, and

therefore we have

Q =r ^'-^^ = 352.5.
VO. 0000731 + 0.0003416

If the same stream has a-t another place a fall of 11 inches

in 450 feet, and if the area of its upper transverse section is
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50, and that of its lower 60 square feet, the mean value of

its wetted perimeter being 36 feet, we have

„ 8.025 \/a9r67 -

= 8 02- / Q'91^'^

' ^V — 0.0001222 + 0.0007549

= 305^ cubic feet.

The mean of these values is

ScH.—The following is Chezy's formula, with three dif-

ferent coefficients, varying from 69 "for small streams

under 2000 cubic feet per minute," to 96 "for large rivers

such as the Clyde or the Tay."

y = 69 (r sin d)k For small streams.

V = 93 (r sin 6)^. Eytelwein's coefficient.

V =z 96 (r sin 6)'^. For large streams.

124. Bottom Telocity at which Scour Com-
mences.—A river channel is said to have a fixed regimen,

when it changes little in draft or form in a series of years.

In some rivers, the deepest part of the channel changes its

position perpetually, and is seldom found in the same place

two successive years. The sinuousness of the river also

changes by the erosion of the banks, so that in time the

position of the river is completely altered. In other rivers,

the change from year to year is very small, but probably the

regimen is never perfectly fixed except where the rivers flow

over a rocky bed. If a river had a constant discharge, it
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would gradually modify its bed till a permanent regimen

was established. But as the volume discharged is constant-

ly changing, and therefore the velocity, silt is deposited

when the velocity decreases, and scour goes on when the

velocity increases in the same place.

It has been found by experiment * that a stream moving

with a velocity of 3 inches per second will carry alongj^we

clay and soft earth ; moving 6 inches per second, will carry

loam ; 1 foot per second, will carry sand; 2 feet per second,

gravel j 3^ feet, pebbles an inch in diameter ; 4 feet, broken

stone, flint ; 5 feet, chalk, soft shale; 6 feet, rock in beds;

10 feet, hard rock.

125. Transporting Power of Water.— The specific

gravity of rocks varies from 2.25 to 2.64; when immersed

in water, therefore, they lose nearly half their weight. This

fact greatly increases the transporting power of water. The

pressure of a current of water against any surface varies as

the square of the velocity and as the area of the surface f

(Art. 97), But in similar figures, surfaces vary as the

squares of the diameters ; hence, the pressure of the current

varies as the square of the velocity and as the square of the

diameter, i. e., the pressure of the current against a surface

varies as the square of its velocity multiplied by the square

of the diameter of the surface. Calling P the pressure

which the current exerts against a rock, v its velocity, and

d the diameter of the surface of the rock, we have

P a t^xcP: (1)

Now the resistance to be overcome, or the loeight of the

rock, varies as the cube of the diameter; i. e., calling W
the weight of the rock, we have

TT' OL fZ3. (2)

* Experiments byDnbnat. Sec Ency. Brit, Vol. XII., p. 503.

+ Supposing that the area of the cross-section of the stream is at least large

enough to cover the surface.
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But when the current is just able to move the rock, we

have
P o: W. (3)

Therefore, from (1), (2), and (3),

d^ <x v^xcP

;

.: d Qc v^,

which in (1) gives P cc v^ x v^,

or P oc v\ (4)

That is, the transporting power of a current varies

as the sixth power of the velocity.

This may also be shown geometrically as follows : Let a

represent a cubic inch of stone, which a current of given

velocity will just move, and let J be a cube

of stone 64 times as large. Now if the

velocity of the current be doubled, the

force against each square inch of h will be

four times as great as that against a ; but

the surface of h opposed to the current is

sixteen times as great as that of a, and the

pressure would be increased sixteen times

from this cause ; therefore the whole press-

ure against h from these two causes would

be 4 X 16 = 64 times as great as against a.

But the weight also of h is (54 times as great as that of a;

therefore the current would be just able to move it.

We have seen (Art. 124) that a current 3|- feet per second,

or about two miles an hour, will move pebbles an inch in

diameter, or about three ounces in weight. It follows from

the above law that a current of ten miles an hour will bear

fragments of 1\ tons, and a torrent of 20 miles an hour will

carry fragments of 100 tons in weight.*

\\

^s^

Fig. 65

* Le Conte's Geology, p. 18.
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126. Back Water.—When a dam is built across a stream

80 as to raise the water and form a pond, the surface of the

water in the pond will not be horizontal. Let AB represent

a dam, and C the surface of the water directly over the dam.

If the horizontal line CD be drawn from the surface at C
to the point D, where it intersects the natural surface of

the stream, the surface of the water in the pond will be

everywhere above this line, except at 0, its height increasing

as the distance from the dam increases, and this elevation

may extend for quite a distance up the stream above the

point D.

The elevation CDFE above the horizontal CD is called

back water. As the stream approaches the horizontal sur-

face DC, its velocity is diminished, because the slope on

which the velocity depends is very small, and as the velocity

is diminished the water is heaped up above DC, even ex-

tending up the stream, until the slope is sufficient for the

water to flow off. When this slope is established, the stream

FEC flows smoothly along its liquid channel.

Fig. QQ shows a longitudinal section of the river Weser,

in Germany, where a dam was built. The mean depth of

the stream was about 2.5 feet, the surface was raised 7.5

feet, the slope of the stream was quite uniform for a distance
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. of ten miles. At the point D, three miles from the dam, it

was found by measurement that the surface E was elevated

over 15 inches above D. At a distance of 4 miles above the

dam, the surface was elevated by the dam 9 inches.*

127. River Bends.—When rivers flow in narrow val-

leys, where the banks do not readily yield to the action of

the current, the effect of any variation of velocity is only

temporarily to deepen the bed. In wide valleys and allu-

vial plains, where the soil of the banks is more easily Avom

by the current than the bottom, any increase in the volume

of the water will widen the bed ; and if one bank yields

more than the other, icmdings or hends will be formed, and

these windings which are thus formed tend to increase in

curvature by the scouring away of material from the outer

bank and the deposition of detritus along the inner bank.

The windings sometimes increase till a loop is formed, with

only a narrow strip of land between the two encroaching

branches of the river. Finally, a " cut-off" may occur, a

waterway being opened through the strip of land, and the

loop left separated from the stream, forming a lagoon of

marsh shaped like a horse-shoe.

It is usually supposed that the water, tending to go for-

wards in a straight line, rushes against the outer bank and

scours it, at the same time creating deposits at the inner

bank. This view is considered by many engineers as very

incomplete. Prof. James Thomson has given an explana-

tion of the action at a bend, which he has completely con-

firmed by experiment, f He thinks that the scouring at the

outer side and the deposit at the inner side of the bend are

due to the centrifugal force, in virtue of which the water

passing round the bend presses outwards, and the free sur-

face in a radial cross-section has a slope from the inner side

upwards to the outer side.

D'Aubuisson'g Hydraulics, Art. 166.

t Proc Inst, of Mech. Engineers, 1879, p. 456.
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EXAMPLES.

1. A thin plane area moves edgeways through the water,

in which it is completely immersed. Find the resistance

per square foot at a speed of 20 miles per hour.

Alls. 3.442 lbs.

2. The length of a pipe is 400 feet, the head of water is

6 feet, and the diameter of the pipe is 6 inches, the entrance

to it being cyHndrical. Find (1) the head due to friction,

(2) the velocity of discharge, and (3) the quantity discharged

per second.

Take / = 0.03, g = 32, and use (3) of Art, 104 for v.

Ans. (1) 5.646 ft.
; (2) 3.88 ft.

; (3) 0.7619 cu. ft.

3. When the pipe is 800 feet long, the head of water 12

feet, and the diameter 6 inches, find (1) the friction head,

(2) the velocity of discharge, and (3) the quantity dis-

charged per second.

Ans. (1) 11.635 ft.
; (2) 3.039 ft.; (3) 0.7734 cu. ft.

4. When the pipe is 1600 feet long, the head 24 feet, and

the diameter 6 inches, find the same quantities as in the last

two examples.

Ans. (1) 23.63 ft.; (2) 3.969 ft. ; (3) 0.7793 cu. ft.

5. When the pipe is 3200 feet long, the head 48 feet, and

the diameter 6 inches, find the same quantities.

Ans. (1) 47.627 ft.
; (2) 3.984 ft.

; (3) 0.7823 cu. ft.*

6. When the pipe is 800 feet long, the head 12 feet, and

the diameter 5 inches, find the same three quantities as

before.

Ans. (1) 11.694 ft.; (2) 3.605 ft; (3) 0.4915 cu. ft.

* An inspection of Exs. 2. 3, 4, and 5, shows that if a 6-inch pipe be laid with a

uniform slope of 6 feet in 400 feet, nearly all the head is consumed by friction, so

tliat only a very small fraction of the entire head remains to generate the final veloc-

ity and to overcome the resistance at the entrance to the pipe, i.e., in each case

there is only about 0.35 of a foot of head left ; one-third of this is expended in over-

coming the resistance at the entrance to the pipe, and the other two-thirds in pro-

ducing velocity.
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7. When the leugth is 1600 feet, the head 24 feet, and

the diameter 5 inches, find the same quantities.

Ans. (1) 23.69 ft.; (2) 3.628 ft.
; (3) 0.4947 cu. ft.

8. When the length is 800 feet, the head 5 feet, and the

diameter 6 inches, find the same quantities.

Ans<. (1) 4.848
; (2) 2.542; (3) 0.499.

9. When the length is 800 feet, the head 16 feet, and the

diameter 6 inches, find the same quantities.

Ans. (1)15.514; (2)4.548; (3)0.893.

10. Two pipes of the same length are 3 inches and

4 inches in diameter, respectively. Compare the losses of

head by friction, (1) when the velocity is the same, and (2)

when they deliver the same quantities of water.

Ans. (1) 1.33
; (2) 4.21.

11. Water is to be raised to a height of 20 feet by a pipe

30 feet long and 6 inches in diameter. What is the greatest

admissible velocity of the water, if not more than 10 per

cent, additional power is to be required in consequence of

the friction of the pipe ? Ans. ^^ feet per second.

12. Two reservoirs are connected by a pipe 6 inches in

diameter and f of a mile long. For the first quarter mile

the pipe slopes at 1 in 50, for the second at 1 in 100, while

in the third it is level. The head of water over the inlet is

20 feet, and that over the outlet 9 feet. Neglecting all loss

except that due to surface friction, find (1) the velocity per

second, and (2) the discharge in gallons per minute, assum-

ing / = 0.0348. Ans. (1) 3.43 ft; (2) 253 gallons.

13. A tank of 250 gallons is 50 feet above the street. It

is connected with the street main, the head of which is 52

feet, by a pipe 100 feet long. (1) Find the diameter of the

pipe that the tank may be filled in 20 minutes
; (2) what

must the head in the main be to fill the tank in 5 minutes

with the jiipe ? Ans. (1) 1.6 inches; (2) 82 feet.
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14. What is the discharge per second through a pipe 48

feet long and 2 inches in diameter, under a head of 5 feet ?

Sue.—Assume / = .02, and obtain from (8) of Art. 106, v = 6.6

feet, and therefore (Sch. of Art. 105), /= .0311, which in (8) of Art.

106 gives V = 6.53 feet. . •. etc.

Ans. 245.8 cubic inches.

15. What must be the diameter of a pipe 100 feet long,

which is to discharge one-half of one cubic foot of water per

second under a head of 5 feet? Aiis. 3.82 inches.

See remark in Art. 107.

16. If the diameter of one portion of the compound pipe

(Fig. 55) is twice that of the other, and if the velocity of

the water in the larger is 10 feet, find (1) the coefficient of

resistance, and (2) the loss of head at the sudden enlarge-

ment, the water flowing from the small pipe into the large

one. Ans. (1) 9 ; (2) 13.95 feet.

17. A pipe 2 inches in diameter is suddenly enlarged to

3 inches. If it discharge 100 gallons per minute, the water

flowing from the small pipe into the large one, find (1) the

coefficient of resistance, and (2) the loss of head at the sud-

den enlargement. Ans. (1) 1.59; (2) 8|^ inches.

18. In the last example, if the water moves in the reverse

direction, find the loss of head caused by the sudden con-

traction, assuming the coefficient of contraction to be 0.66.

Ans. 7^ inches.

19. A pipe contains a diaphragm with an orifice in it, the

area of which is one-fifth the sectional area of the pipe.

Find the coefficient of resistance of the diaphragm, assum-

ing the contraction on passing through the orifice the same

as that at efflux from a vessel through a small orifice in a

thin plate. Ans. 46.4.

20. A horizontal pipe 30 feet long is suddenly enlarged

from 2 inches to 3 inches, and then suddenly returns to its

original diameter ; the length of each section is 10 feet. If
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it discharge 100 gallons per minute into the atmosphere,

find the total loss of head, assuming the coeflBcient of fric-

tion / = .03. Ans. 10 ft. 2| ins.

21. Find the loss of head in inches due to a bend in a

pipe 2 inches in diameter, the radius of curvature being G

inches, and the velocity of the water being 12 feet per

second. Ans. 0.2 of an inch.

22. If the pipes in Ex. 2, Art. 106, which are to discharge

25 cubic feet of water per minute, contain two elbows, each

of 90°, find the total loss of head.

Here we have, h = (1.505 + 8.748 + 2x0. 984)^ = etc.

Ans. 1.76 feet.

23. If the pipe in Ex. 14 contains 5 bends, the radius of

curvature of each being 2 inches, find (1) the velocity of the

Avater issuing from the pipe, and (2) the quantity discharged

per second.

Here /3 is found [from (2) of Art. Ill] to be 0.294. .
•

, etc,

Ans. (1) 5.964 ieet; (2) 224.81 cubic inches.

24. What quantity of water will be delivered by a canal

5800 feet long, when the fall is 3 feet, its depth 5 feet, its

lower breadth 4 feet, and its upper hreadth 12 feet ?

Here^ = 0.42015. .'. etc.
a

Atis. 129.48 cubic feet.

25. Find the quantity of water that is carried by a stream

40 feet wide, whose mean depth is 4^ feet, and whose

wetted perimeter is 46 feet, when it falls 1 inch in 75 feet.

Here v approximately, from (4) of Art. 121, = 6.1 feet. .-. f =
0.00765, and v more correctly = 6.05 feet. . *. etc.

Ans. 1089 cubic feet.

26. A main 3100 feet long is to discharge water from a

reservoir having a head of 75 feet. It is proposed to put in

a 6-inch pipe for 800 feet, beginning at the reservoir, then a
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5-inch pipe for 800 feet more, and a 4:-inch pipe for the

remaining 1500 feet. The coefficient of friction / being

0.034, find (1) the diameter of a uniform pipe 3100 feet

long having the same friction, and (2) the velocity of dis-

charge.

Use (7) of Art. 104 for v.

Ans. (1) 4.427 inches
; (2) 4874 feet.

27. If in the last example the first pipe of the main is

2000 feet long and 6 inches in diameter, the second 800

feet long and 5 inches in diameter, and the third 300 feet

long and 4 inches in diameter, the head being 75 feet, find

(1) the diameter of the equivalent main, and (2) the velocity

of discharge. Ans. (1) 5.2 inches
; (2) 5.289 feet.

28. If in Ex. 26 the pipe is 6 inches in diameter for the

whole length of 3100 feet, the head being 75 feet, find the

velocity of discharge. Ans. 5.675 feet.

29. Into a branch main 2000 feet long, 6 inches in diam-

eter, water enters with a velocity of 15.27 feet a second; 1

cubic foot of water is delivered into service-pipes for every

1000 feet of length,/ = .0303, what is the loss of head in

the 2000 feet ? Ans. 211.53 feet.



CHAPTER III.

MOTION OF ELASTIC FLUIDS.

128. Work of the Expansion of Air If air expands

without doing any work its temperature remains constant.*

It follows from this that as air changes its state, the inter-

nal work done is proportional to the change of temperature.

When, in expanding, air does work against an external

resistance, either heat must be supplied or the temperature

falls.

Suppose a given mass of air to be confined in a cylinder

having a piston of one square foot area. Let v^ be the

initial volume and jo^ the initial pressure of the air, and

suppose the piston to move so as to expand the air to any

other volume v with pressure p. Then if heat is supplied

to the air during the expansion so that the temperature

remains constant, we have (Art. 48),

Vv^p^v^. (1)

Now if we represent the pressures

by the ordinates, and the correspond-

ing volumes by the abscissas of a curve

AB referred to the axes OX, OY, the

curve represents the relative changes

of volume and pressure. Then OM =
Vj and MPj = jSj is a point Pj corre-

sponding to a volume v^ and pressure

j9j. Similarly {v,p) is any other point P of the curve cor-

responding to a volume v and pressure jo; and since each

member of (1) is constant, the curve is a rectangular

hyperbola.

* This reeolt was first demonstrated ezperimentally by Joule.
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The work of expansion between the pressures jh ''^^^ Pz
is represented by the area of the space MPjPgN (Anal.

Mechs., Art. 232). To find an algebraic expression for this

work, let p and v be the corresponding pressure and volume

at any intermediate point P in the expansion. Then the

work done on the piston during the expansion from v to

v-\-dv ispdv, and the whole work done during the expan-

sion from Vj to V2, represented by the area MP^PgN,

= /pdv =PiV, I '-J^[fi-om (1)]

= Pi'^i log ~ = Pi'^i log* ~r, (2)
V-i Pz

which is the work of expanding a given mass of air

from a higher pressure p ^ to a lower pressure p^^.

Cor.—In order to compress . a given mass of air whose

volume is v^ and whose pressure is jOg, into a volume ^;^ of

the pressure jjj, the work to be done

= ^^2^8%^^. (3)
Pi

which is the work of compressing a given mass of
air from a lower pressure p„ to a higher pressure p^.

ScH.—The expressions in (2) and (3) for the work done

during the expansion and compression of air, are correct

only when the temperature of the air remains constant

while the change of volume or density is taking place ; but

the temperature of the air remains constant only when the

change of volume takes place so slowly that the heat in the

confined air has sufficient time to communicate any excess

to the walls of the vessel and to the exterior air. If the

change of density occurs so quickly that it is accompanied

by a change of temperature, when the air is expanded the

• Hyp. log.
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temperature is lowered, and when the air is compressed the

temperature is increased. Under these circumstances the

pressure cannot change according to Art. 48, and other

formulae have to be produced. (See Weisbach's Mechs., p.

936; also Encj. Brit., Vol. XII., p. 480.)

129. Velocity of Efflux of Air According to

Mariotte's Law.—Let the air be discharged from an

orifice with the velocity v feet per second ; let ?^ = the

weight of a cubic foot of air, and v^ ^ the volume of air

discharged per second; then the work performed by the

volume of air v^ in passing from the pressure p^ to the

pressure j'jg, is, by (2) of Art. 128,

i>i^i log ^,

and this must be equal to the work stored in the air during

the efflux, which is

Therefore, we have

v/
.p^ l.„ Pi

A cubic foot of air, at the temperature 0° of the centi-

grade thermometer, and at a pressure corresponding to the

height of 29.92 inches of the barometer, weighs about

0.08076 lbs.* Therefore for any temperature t, we have

for the weight of a cubic foot of air, from (2) of Art. 54,

since for the same volume and temperature the weight

varies as the density,

0.08076
,^,

Determined by Regnault. See Weisbach's Meclis., p. 795.
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If the pressure differs from the mean pressure, or if the

height of the barometer is not 29.93 inches, but h, (2) be-

comes
0.08076 b

w =
1 + at 29.92

0.002699 h

If we express the elastic force or pressure of the air by the

pressure ji; upon each square inch, then we have

which in (3) gives

29.92 ~ 14.7'
(3a)

0.005494 »
w = -— ~, (4)

1 + at ' ^ ^

p _ (1 + «0 144
' w~ 0.005494 '

where p is the pressure on each square foot.

Substittjting this value in (1), we have

(5)

V = 161.9 a/2^ (1 + at) log^. (6)

If b is the height of the barometer and h that of the

manometer (Art. 46), we have

^ - ^-±^ (6a)

which in (6) gives

V = 1299 y^(l + at) log (^), (7)

where v is the velocity in feet, b the hcigiit of the barometer

in the exterior air, h the height of the manometer for the

air inside the vessel, f the temperature of the latter in

degrees centigrade, and « = 0.003665, the coeflBcient of

expansion of air (Art. 53).
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CoE. 1.—If the pressures p^ and p^ are nearly equal to

each other, we can put

-^m--(^-^i)- b ^^2'

which in (7) gives

i; = 1299^(l+«0(l-4)t- (8)

When T is very small (8) becomes

V = 1299 a/(1 + at) -'
(9)

CoE. 2.—Taking g = 32, we have from (1)

V =:8\/^\0g^' (10)

When the pressures differ but little from each other, we

may obtain approximate formulae as follows : From (10),

we have

, = 8^=lflog^. (11)

By development we have

logf^ = log(l+^^^)

= ^.^^i!i_W/^^z:^i) + etc.

Pi ^ Pi >

Pi

Neglecting all powers of ——— above the first, and sub-
Pi

stituting in (11), we have

>i -Pi- = H/^-^^. (12)
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Neglecting all powers of ——^-^ above the second, we have

If h be the height of a homogeneous fluid, of the same

density as the an-, which is necessary to produce the pressure

P\ — jOgj then^i — jOg = wh, which in (12) gives

V = SVh. (14)

It will be observed that (8), (9), (12), (13), (14) are true

only when the pressures j9i and jSg ^^'^ nearly equal to each

other.

130. Efflux of Moving Air.—To find the velocity of

efflux ivheii the pressure of the air is given in the

pipe through which it flows.

The formulfB for efflux found in Art. 129, are based upon

the supposition that tlie pressure jo, or the height h, of the

manometer is measured at a place where the air is at rest,

or moving very slowly. If the pressure be measured at a

point where the air is in motion, in determining the

velocity of efflux, we must take into account the kinetic

energy of the moving air.

Let jOj be the pressure of the air in the pipe A, as indi-

cated by the manometer M, and

t\ the velocity of the air passing _____^^
the orifice of the manometer; 2^^

the pressure of the air at efflux, - . ^

and ^2 its velocity; a^ the area

of the section of the pipe A, and p. gg

^2 the area of the orifice ; w the

weight of a cubic foot of the air, and Q the volume dis-

charged per second.

Then the work stored in the air while passing from the

pipe A to the orifice
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and this must equal the work doue by the expansion of the

air from p^ io p^. Therefore, from (2) of Art. 128, we

have

^(V-V)=^i^log^- (1)

The volume of air passing through the pipe per second is

a-^v^, and that which passes the orifice is a^v^ ; hence we

have (Art 48)

which in (1) and reducing, gives

/ '^gpx log^

V '"t-(^f-:)1

which is the velocity of efflux.

Cor.—Substituting for the numerator its value as given

in (8) of Art 129, we have

or approximately, when jOj is not much greater than jOgj

V, = 1399 / tA- (4)

i^J
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131. Coefflcieiit of Efflux.—When air issues from an

orifice, the section of the current undergoes a contraction

similar to that observed in the efflux of water (Art. 91). If

the orifice of efflux is in a thin plate, the stream of air has

a smaller cross-section than the orifice, and the practical

discharge is less than the theoretical.

Denoting the coefficient of contraction by «, we have, as

in the case of water (Art. 92), « = the ratio of the cross-

section of the stream of air to that of the orifice.

Denoting the coefficient of velocity by 0, Ave have, as in

v
Art. 93, 1=—, where v. is the actual and v the theoret-

V *

ical velocity of discharge.

Denoting the coefficient of efflux by jw, we have^ as in Art.

94, /i = ^ ^ «0, where Q^ is the actual and Q^ the

theoretical discharge.

The older experiments upon the efflux of air through ori-

fices vary considerably from each other. According to the

experiments of Koch,* /it = 0.58 when the air issues from an

orifice in a thin plate
;

/* = 0.74 when the air issues from a

pipe about six times as long as it is wide; and \i = 0.85

when the air issues from the conical nozzle of a bellows

about five times as long as it is wide and having a lateral

convergence of 6°. D'Aubuisson, Poncelet, and Pecqueur

found values somewhat difEerent.f

Weisbach has found the following values of the coefficient

of efflux /* : I

Conoidal mouth-pieces of the form of the

contracted vein, with effective fi =
pressures of 0.33 to 1.1 atmosphere, 0.97 to 0.99

* Tate's Mech. Phil., p. 329. t Weisbach's Mechs., p. 945.

t Ency. Brit., Vol. XII., p. 481.
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Circular, sharp-edged orifices, .... 0.563 to 0.788

Short, cylindrical mouth-pieces, ... 0.75

Conical pipes, whose angle of convergence

is about 6°, 0.92 ^

Conical converging mouth-pieces, well

rounded off, ........ 0.98

132. The Quantity Discharged.—Let h be the area

of the orifice in square feet, and Q^ the discharge per sec-

ond in cubic feet at the pressure of the external air. Then

we have, from (1) of Art. 129,

e,=,^y^2,|i-iog|i

= 1299^/5:^/0"+ at) log (^-^) (1)

[from (7) of Art. 129] ;

or, from (8) and (9) of Art, 129, we have

_
Q, = 1299iuA;y^(l + at) (l -

^) |
(2)

= 1299//X;y/(i + «^) I (3)

When Q^ is reduced to the pressure of the air inside the

vessel, we have, from Art. 48,

.-. Q, = 1299,./fe^y'(l + at) log (*-ti).
(4)

From (4) of Art. 130, we have

Q = 1299/.^ / ^. (5)
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133. Coefficient of Friction of Air.—When air flows

through a long pipe, it has, like water, a resistance of fric-

tion to overcome, due to the surface of the pipe ; and this

resistance, which is found to consume by far the greater

part of the work expended, can be measured by the height

of a column of air, which is determined by the expression,

7 «2

in which, as in the case of water (Art. 103), I denotes the

length, d the diameter of the pipe, v the velocity of the air,

and / the coefficient of resistance of friction, to be deter-

mined by experiment. The work expended in friction gen-

erates heat, the most of which must be developed in the air

and given back to it. Some heat may be transmitted

through the sides of the pipe to surrounding materials, but,

in all the experiments that have thus far been made, the

amount so conducted away appears to be very small ; and if

no heat is transmitted, the air in the pipe must remain sen-

sibly at the same temperature during expansion ; that is,

the heat generated by friction exactly neutralizes the cool-

ing due to the work done.

A discussion by Prof. Unwin *' of the experiments by Messrs. Culley

and Sabine on the rate of transmission of light carriers through pneu-

matic tubes, in which there is a steady flow of air not sensibly affected

by any resistances other than the surface friction, furnished the value

/ = 0.028. The pipes were of lead, slightly moist, 2\ inches (0.187

ft.) in diameter, and in lengths of 2000 to nearly 6000 feet.

Girard's experiments upon the motion of air in pipes gave a mean
coefficient of resistance, / = 0.0256 ; those of D'Aubuisson gave as a

mean, / = 0.0238 ; while those of BufF gave the mean value of / =
0.0375.

According to the experiments of "Weisbach, it is only when veloci-

ties are about 80 feet that the coefficient of resistance can be put —
0.034, and it diminishes as the velocity of the air in the pipe increases.

See Enqy. Brit., Vol. XJI., p. 49J.
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He found that the coeflBcient of friction, when the velocity was given

in feet, could be expressed approximately by the following formula.

The resistance caused by elbows and bends is to be treated in the

same way as in the case of water (Arts. 110, 111).

134. Motion of Air in Long Pipes.—By the aid of

tlie coefficient of friction of a pipe, we can calculate the

velocity of efflux and the discharge for a given length and

diameter of the pipe.

Let V = the velocity of discharge = x'

Vj = the velocity of the air in the pipe.

d = the diameter of the orifice, whose area there-

fore is ^ = ^T^d^.

d^ = the diameter of the pipe.

|3q = the coefficient of resistance at the entrance to

the pipe.

/ = the coefficient of resistance due to the friction

of the pipe.

jSi = the coefficient of resistance at the orifice,

jt?! = the pressure of the air when it is discharged.

w = the weight of a cubic foot of air.

h = the height of the manometer in the reservoir.

b = the height of the barometer.

I = the length of the pipe.

Then the height due to the resistance at the entrance to

the pipe,

- R ^- R ^^-Po 2^ - ^0 ^^4 2g'

The height due to the resistance of friction in the pipe

~'cli 2g ~-' d^ di*2g'
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The height due to the resistance at the orifice

The height due to the velocity

Therefore, the total height

Also, the total lieight, from (1) and (6a) of Art. 139,

= ^ ^^s{^ + I)
= ^-y approximately. (3)

Therefore, equating (1) and (3), and solving for Q, we

have

Q = k

which, from (9) of Art. 139,

= 1299— /^ rVT^TTT— ^ (3)

where /3„ = —„ - 1, and /3, == —̂ - 1 (Art. 96).

ScH.—In Paris, Berlin, London, and other cities, it has

been found cheaper to transmit messages in pneumatic
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tubes than to telegraph by electricity. The tubes are laid

under ground, with easy curves ; the messages are made
into a roll and placed in a liglit felt carrier, the resistance of

which in the tubes in London is only | oz. A current of

air, forced into the tube or drawn through it, propels the

carrier. In most systems the current of air is steady and

continuous, and the carriers are introduced or removed

without materially altering the flow of air.

135. The Law of the Expansion of Steam.—When
steam is produced in a close vessel, as in the boiler of a

steam engine, the density of the steam increases with the

temperature ; but so long as the temperature remains the

same, the quantity of steam that can be raised from the

water is limited, and the steam is generated at its maximum
density and pressure for the temperature, whatever this

may be; if the temperature falls, a portion of the steam

resumes the liquid form, and the density of the steam is

diminished. When the steam is in its condition of maxi-

mum density, it is said to be saturated, being incapable of

vaporizing or absorbing more water into its substance, or

increasing its pressure, so long as the temperature re-

mains the same. Also, on the contrary, steam will not

be generated with less than the maximum quantity of

water which it is capable of appropriating from the liquid

out of which it ascends. Any change in either one of the

three elements of pressure, density, or temperature of steam

is necessarily accompanied by a change of the other two.

The same density is invariably accompanied by the same

pressure and temperature.

If the volume of steam over water be increased, while the

temperature remains constant, then, as long as there is liquid

in excess to supply fresh vapor to occupy the increased

space, the density will not be diminished, but will remain

constant with the pressure. If the source of heat be re-

moved, when all the liquid is evaporated, the pressure and
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density will diminish, when the volume is increased, as in

permanent gases; and if the volume be again diminished,

the pressure and density will increase, until they return to

the maximum due to the temperature ; and the efiPect of any

further diminution of volume, or attempt to further in-

crease the density at the same temperature, is simply

accompanied by the precipitation of a portion of the vapor

to the liquid state, the density remaining the same.

On the contrary, if the application of heat be continued

when all the liquid is evaporated, the state of saturation

ceases, and the temperature and pressure are increased,

while the density remains the same ; the steam is said to be

superheated, or surcharged with heat, and it becomes more

perfectly gaseous. While in this condition, if it were to be

replaced in contact with water of the original temperature,

it would evaporate a part of the water, transferring to it

the surcharge of heat, and would resume its normal state of

saturation.

If the space for steam over the water remain unaltered,

then, if the temperature is raised by the addition of heat,

the density of the vapor is increased by fresh vaporization,

and the elastic force is consequently increased in a much
more rapid ratio than it would be in a permanent gas by the

same change of temperature. Conversely, if the tempem-

ture be lowered, a part of the vapor is condensed, the den-

sity is diminished, and the elastic force reduced more

rapidly than in a permanent gas. The density of saturated

steam is about | of that of atmospheric air, when they are

both under the same pressure and at the same temperature.

It has been determined experimentally that whatever may
be the pressure at which steam is formed, the quantity of

fuel necessary to evaporate a given volume of water is

always the same ; also the relation between the temperature

and pressure of saturated steam has been determined experi-

mentally, and from this tables have been formed giving the

relation between the pressure and volume of steam raised
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from a cubic foot of water.* Since the volume is always a

function of the pressure, we may write

V=f{F). (1)

136. Work of Expansion of Steam.—Let V be the

volume of steam from a cubic foot of water at the pressure

P, where P is the pressure on a square foot, and Uq the

work performed by Q cubic feet of water, in the form of

steam, between the pressures P and P^
;

let ABCD be a vertical section of the

space in which the steam expands,

ABPQ the volume V of the steam at the

pressure P, ABP^Qj the volume Fj of

the steam at pressure Pj, A the area of F;g_ gg

the section at PQ in feet, and dv the dis-

tance between the two consecutive sections PQ and MN.
Then, for the element of work performed by one cubic foot

of water in the form of steam at the pressure P, we have

dU^ = KVdv = PdV,

since Adv = dV. Integrating between the limits P and

Pj^, we have

u^= rpdv= rpdf{P) (1)

[from (1) of Art. 135].

Therefore, for the work done by Q cubic feet of water in

expanding from P to P ^, we have

^q = Qf^Pdf{P), (2)

which can be integrated when the function f{P) is known.

ScH.—Since from (2) the quantity of work done is en-

tirely independent of the form of the vessel ABCD, it

* See Ency. Brit., Art. Steam.
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follows that the work of steam between any given pressures

P and Pj is always the same, whatever may be the nature

of the space through which the steam expands, and that it

increases with the pressure P at which the steam is gener-

ated ; since tlierefore the quantity of fuel necessary to

evaporate a given volume of water is always independent of

the pressure at which, the steam is formed (Art. 135), it fol-

lows that it is most economical to employ steam of as high

a temperature as possible.

137. Work of Steam at Efflux.—Let w be the

weight of Q cubic feet of water evaporated per second, V
the volume of steam from a cubic foot of water at the press-

ure P, which is the pressure of the steam at the point of

efflux, k the section of the orifice in feet from which the

steam is discharged, and v the velocity per second. Then
calling Uq the work stored in the steam at efflux, we have

Since V=.f{P), and QV ^ kv, we have

kv^Qf(P) = ^^nP);

which in (1) gives

Hence, the work of steam discharging itselffrom an
orifice varies as the cube of the water evaporated.

Cor. 1.—The work stored in the steam at efflux is due to

the work of expansion between the pressures P and P^
;
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therefore, from (2) of Art. 136 and (1) of the present Art,

we have

?/ = "if'pviP) = ir^prnp) : (4)

which gives the velocity of efflux, fi being the coefficient

of efflux (Art. 131).

Cor. 2.—From (1) of Art. 130, we have

trg = 5M« („^. _ ,,»). (6)

Let Fi and Fg be the volumes of steam per second from

a cubic foot of water at P^ and Pg pressures respectively

;

then (Art. 130),

F F
a^ fltj

which in (6) gives

(7)

and we see again, as in (3), that the worh of steam varies

as the cube of the water evaporated.

Y
Solving (7) for Q —^ = v^, we have

2^^e+nJ^iV/ F \2 2

_62.5(? '
'^ Vof/ J

'

which gives the theoretical velocity of efflux.

(8)
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138. Work of Steam in the Expansive Engine.

—

Let ^be the area of the piston in square feet, hy the length

of the stroke, including the clearance,* A the point of the

cylinder at which the steam is cut off, Q the number of

cubic feet of water evaporated per minute, P and P^ the

pressures of the steam at the beginning and end of tlie

stroke respectively, N the number of strokes performed by

the piston per minute, V the volume of steam from a cubic*

foot of water at P pressure, and V = f {P), as before.

Then, for the volume of steam discharged per minute at P
pressure, we have

Qf{P) = NKh. (1)

Similarly, Qf{Pi) = NEh^y

and f{P,) = ^f{P). (2)

The work performed upon the piston before the steam is

cut off is NKP {h — c); adding this to (2) of Art. 136, we

have

Uq= Q rPdf{P) + NKP{h - c)
*^ Px

^'prf/(P)+^-^P/(P)] (3)

[from (1)],

which is the total work performed hy the steam per

minute.

Cor.—Let L be the useful load in lbs. upon each square

foot of the piston, F the friction in lbs. per square foot of

the piston, arising from the motion of the unloaded piston,

/the coefficient of friction arising from the useful load, and

* The clearance is the space in the cylinder lying beneath the piston, at the low>

est point of its stroke.

=<x:
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p the pressure of the steam in the condenser. Then the

total resistance upon the piston is K \^F ^ L {1 + f) 4- p],

and therefore the work expended per minute in overcoming

this resistance

= NK[^F+L{1 +/) +p] (h, - c). (4)

When the mean motion of the piston of the engine is uni-

form, the work of the resistance will be equal to the work

of the steam ; therefore, by equating (3) and (4), and re-

ducing by (1), we have

h
-f^Pdf{P) + {h-c)P

f{Pyp.
= [F+L{l+f)+p-\{h,-c), (5)

from which the value of the useful load L is readily de-

termined.

EXAM PLES.

1. If a blowing machine changes per second 10 cubic feet

of air, at a pressure of 28 inches, into a blast at a pressure

of 30 inches, find the work to be done in each second.

Here^g, from (3a) of Art. 129, = 0.49136 ;
.-. etc.

Ans. 1366.7 foot-lbs.

2. If under the piston of a steam engine, whose area is

201 square inches, there is a quantity of steam 15 inches

high and at a pressure of 3 atmospheres, and if this steam

in expanding moves the piston forward 25 inches, find the

work of the expansion per second. Ans. 10866 foot-lbs.

3. The air in a reservoir is at a temperature of 120° C,

and at a pressure corresponding to a height of the manom-
eter of 5 inches, while the barometer marks 29.2 inches.

Find (1) the theoretical velocity of efflux, and (2) the theo-

retical discharge through an orifice \^ inches in diameter.

Use (9) of Art. 129.

Ans. (1) 645.12 feet
; (2) 7.917 cubic feet.
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4. The height of a manometer, which is placed upon a

pipe 3 1 inches in diameter through which the air is passing,

is 2^ inches, while the air is discharged th*^ough an orifice

2 inches in diameter at the end of the pipe. Find (1) the

theoretical velocity of efiiux, and (2) the theoretical dis-

charge, if the barometer in the external air stands at 27|

inches, and the air in the pipe is at a temperature of 10° C.

Use (5) of Art. 132.

Ans. (1) 421.8 feet
; (2) 9.2 cubic feet.

5. If in the last example the height of the manometer is

3 inches, the diameter of the pipe is 4 inches, and the ori-

fice at the end of the pipe is 1 inch in diameter, find (1) the

velocity, and (2) the discharge when the barometer stands

at 29 inches and the temperature of the air in the pipe is

20° C. Ans. (1) 447.06 feet; (2) 2.438 cubic feet.

6. If the sum of the areas of two conical tuyeres of a

blowing machine is 3 square inches, the temperature in the

reservoir is 15°, the height of the manometer in the regu-

lator is 3 inches, and the height of the barometer in the

exterior air is 20 inches, find the discharge.

See (3) of Art. 132 ; take /^ = .92, and a = .004.*

Ans. 8.242 cubic feet.

7. The height of a quicksilver manometer, which is placed

upon a regulator at the head of an air pipe 320 feet long

and 4 inches in diameter is 3.1 inches, the heiglit of the

barometer in the free air is 29 inches, the diameter of the

orifice in the conically convergent end of the pipe is 2

inches, and the temperature of the compressed air in the

regulator is 20° C. Find the quantity of air that is deliv-

ered through this pipe.

SXJG, a = 0.004, //o = .75, //j = .92; .-. etc.

Ans. 5.735 cubic feet.

* On account of the ordinary humidity of the atmosphere, it is advisable in prac-

tice to take a = 0.004.
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8. If the height of the manometer in the last example is

4 inches, the pipe 500 feet long and 6 inches in diameter,

the height of the barometer 30 inches, the diameter of the

orifice in the conically convergent end of the pipe 2 inches,

and the temperature of the compressed air in the regulator

30° C, find the quantity discharged.

Ans. 9.051 cubic feet.

9. If the height of the manometer in Ex. 7 is 2.5 inches,

the pipe 600 feet long and 5 inches in diameter, the height

of the barometer 29.5 inches, the diameter of the orifice in

the conically convergent end of the pipe one inch, and the

temperature of the compressed air in the regulator is 10° C,
find the quantity discharged. Ans. 1.883 cubic feet.



CHAPTER IV.

HYDROSTATIC AND HYDRAULIC MACHINES.

139, Definitions.—There are several simple machines

whose action depends on the properties of air and water ; a

brief description of some of these machines will now be

given, sufficient to exhibit the principles involved in their

construction and use.

Hitherto the energy exerted by means of a head of water

has been wholly employed in overcoming frictional resist-

ances, and in generating the velocity with which the water

is delivered at some given point. In the cases which we
have now to consider, only a fraction of the head is required

for these purposes; the remainder, therefore, becomes a

source of energy at the point of delivery by means of which
useful work may be done.

Hydraulic energy may exist in three forms, according as

it is due to motion, elevation, ov pressure. In the first two

cases the energy is inherent in the water itself, being a con-

sequence of its motion or position, as in the case of any

other heavy body. In the third it is due to the action of

gravity or some other force, sometimes on the water itself,

but oftener on other bodies ; the water then only transmits

the energy, and is not directly the source of it.*

140. The Hydrostatic Bellows.—This machine pre-

sents an illustration of the principle of the transmission of

fluid pressure (Art. 8). It consists of a cylinder CDEF
(Fig. 70), with its sides made of leather or other flexible

material, and a pipe ABF leading into it If water is

* Cotterill's App. Meche., p. 488.
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poured into the pipe till the vessel and pipe are filled, a

very small pressure applied at A will raise a very great

weight upon DE, the weight lifted being

greater as DE is greater.

Let h be the area of a horizontal section of

the pipe, ^that of a section of the cylinder,

or that of DE, and p the pressure applied at

A. Then, from (1) of Art. 9, we have

P ^ /ix \

ScH.—Suppose the pipe AB to be extend-

ed vertically upwards, and the pressure at A '^"

to be produced by means of a column of water above it,

formed by pouring in water to a considerable height, and

suppose the pipe to be very small, so that the pressure upon

the section A may be very small ; then, as this pressure is

transmitted to every portion of the surface DE that is equal

to the section A, the upward force produced on DE can be

as large as we please. To increase the upward force, we

must enlarge the surface DE or increase the height of the

column of water in the pipe, and the only limitation to the

increase of the force will be the want of suflBcient strength

in the pipe and cylinder to resist the increased pressure.

By making the pipe AB of very small bore, and the height

DC of the cylinder very small, the quantity of water can be

made as small as we please. That is, any quantity of
fluid, however small, may he made to support any
weight, however great. This is known as the hydrostatic

paradox.

141. The Siphon.—The action of a siphon is an im-

portant practical illustration of atmospheric pressure. It is

dimply a bent tube of unequal branches, open at both ends,

and is used to convey a liquid from a higher to a lower

level, over an intermediate point higher than either.
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Fig. 71

Let A and B be two vessels containing

water, B being on the lower level, and

ACB a bent tube. Suppose this tube to

be filled with water from the vessel A,

and to have its extremities immersed in

the water in the two vessels. The water

will then flow from the vessel A to B, as

long as the level B is below A, and the

end of the shorter branch of the siphon is

below the surface of the water in the

vessel A.

The atmospheric pressures upon the surfaces A and B
tend to force the water up the two branches of the tube.

When the siphon is filled with water, each of these pressures

is counteracted in part by the pressure of the water in the

branch of the siphon that is immersed in the water upon
which the pressure is exerted. The atmospheric pressures

are very nearly the same for a difference of level of several

feet, owing to the slight density of air. The pressures of

the suspended columns of water, however, will for the same

difference of level differ considerably, in consequence of the

greater density of water. The atmospheric pressure opposed

to the weight of the longer column will therefore be more

resisted than that opposed to the weight of ydie shorter,

thereby leaving an excess of pressure at the end of the

shorter branch, which will produce the motion. Thus,

draw the vertical line DEC, let h denote the height of the

water barometer, k the area of a section of the tube, and w
the weight of a unit of volume ; then the water at the point

C is urged from left to right by a force

wTch — wk X EC

and it is urged from right to left by a force

=^ wkh — v'k X DC.
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Subtracting the second from the first, we have

luk (DC — EC) = wk X DE,

for the resultant force which urges the water at C from left

to right, and hence there will be a continuous flow of water

from the upper to the lower vessel.

It will be observed that the direction of the flow is wholly

due to the fact that the level of the water in B is below that

of the water in A. It is not necessary therefore that the

longer branch should be immersed in the water; so long

as the end B of the tube is below the water surface in A,

the water will continue to flow through the tube ACB,
until either the surface in A has fallen below the end of the

tube, or, if the siphon be long enough, until the surface in

.

A has descended so far that its depth below C is greater

than h.

ScH.—The siphon is often used to drain ponds, marshes,

and canals, and when used for this purpose it is made of

leather, or stout canvas, like the common hose.

142. The Diving Bell.—This is a large bell-shaped

vessel made of iron, open at the bottom, and containing

seats for several persons. Its weight is greater than that of

the water it would contain, and when lowered by a chain

into the water, the air which it contains becomes more and

more compressed as it sinks, in consequence of the increas-

ing pressure to which it is subject. As the volume of air

diminishes the water rises in the bell ; but the air will

prevent the water from rising high in the bell, and the

persons seated within are thus enabled to descend to con-

siderable depths and to carry on their operations in safety.

When the surface of the water within the bell is at a depth

of 33 feet below the outer surface the bell will be half filled

with water. The bell is supplied with fresh air from above

by a flexible tube connected with an air pump, and may be
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entirely emptied of water by the air forced in by the purap.

There are also contrivances for the expulsion of the air when
it becomes impure.

The force tending to lift the bell is the weight of the

water displaced by the bell and the enclosed air. Hence

the tension on the suspending chain, being equal to the

weight of the bell diminished by the weight of water dis-

placed by the bell and the air within, will increase as the

bell descends, in virtue of the diminution of air space due

to the increased pressure, unless fresh air is forced in from

above.

Let ABCD be the bell, let EF =
a, the depth of its top below the

surface of the water, FK = h, the

height of the cylinder, FH = x, the

length occupied by air, tt and n' the

pressures of the atmospheric air and

of the compressed air within the bell,

and A the height of the water ba-

rometer. Then we have (Art. 48)
Fig. 72

Tt' = TT-Z= TT ^ (jp.{a + X).

But, 77 = gph,

which in (1) gives

x^ -{- [a + h) X =^ hh,

(1)

_ - (g + A) + a/ (<? + hf -h 4M
. . X — q , \<<i)

the positive value only being the one which belongs to the

problem.

Cor.—If A be the area of the top of the bell, and its

thickness be neglected, the volume of displaced water is A.x,

and the tension of the chain

:z= weight of bell — gpAjx, (3)
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ScH.—The principle of the diving bell is applied in div-

ing dresses. The diver is clothed in a water-tight dress

fitted with a helmet, and is suppUed with air by means of a

pump. There is an escape valve bv which the circulation

of fresh air is maintained. The diver may be weighted up
to 200 lbs., but on closing the escape valve, lie can rise at

once to the surface in virtue of the buoyancy due to the

increased displacement of water by the enclosed air.

143. The Common Pump (Suction Pump).—Any
machine* used for raising water from one level to a higher,

in which the agency of atmospheric pressure is employed, is

called a pump. Pumps are either suction, forcing, or lift-

ing pumps.

The pump most commonly in use is a

suction pump, of which Fig. 73 is a ver-

tical section. AB and BC are two cylin-

ders connected together having a common
axis ; the former is called the barrel of the

pump and the latter the suction pipe ; M
is a piston accurately fitting the barrel,

and movable up and down through the

space AB by means of a vertical rod EV,
connected with a handle or lever EF,

which turns on a fulcrum ; in the piston

is a valve V which opens uj)wards, and at

the top of the suction pipe BC is another

valve V, which likewise opens upwards.

S is a spout a little above A, and C is

the surface of the water in which the loAver part of the

pump is immersed.

To explain the action of the suction pump, suppose the

piston M to be at B, the pump filled with ordinary atmos-

Machines for raising water have been known from very early ages, and the

invention of the common pump is generally ascribed to Ctesibius, teacher of the

celebrated Hero of Alexandria ; but the true theory of its action was not under-

Btood till the time of Galileo and Torricelli. (See Dcsclianel's Nat. Phil., p. 215.)

Fig. 73
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pheric air, and the valves Y and V closed by their own
weight; the water will stand at the same level C both

within and without the suction pipe. Now raise the piston,

the air in BC will tend by its elastic force to occupy the

space which the piston leaves void; it will therefore open

the valve V, and will pass from the pipe to the barrel, its

elasticity diminishing in proportion as it fills a larger space.

It will, therefore, exert less pressure on the water at C
than the atmosphere does at C outside the pump ; hence

the atmospheric pressure on the surface of the water outside

will force water up the pipe BC, until the pressure at C is

equal to the atmospheric pressure. As the piston rises the

water will rise in BC, the pressure of the air above M keep-

ing the valve V closed. When the piston descends, the

valve V closes, and the air in MB, becoming compressed as

the piston descends, will at length have its elastic force

greater than that of the exterior air above the piston, and

will open the valve V, and will escape through it.

This process being repeated a few times, the water at

length ascends through the valve V into the barrel, and at

the next descent of the piston, will be forced through the

valve V and be then lifted to the spout S, through which

it will flow. While this water is being lifted, the atmos-

pheric pressure on the surface of the water outside the pipe

forces more water into the pump, so that, on the next

descent, the piston gets more water to lift ; and thus the

process continues, the suction pipe and barrel remaining

full, so that a cylinder of water equal to that through which

the piston is raised will be poured out at each upward mo-

tion, provided the spout S is large enough.

Sen. 1.—The height BC must be less than the height of

the water barometer, or else the water will never rise to the

valve v. Although the height of the water barometer is

about 33 feet, yet in consequence of unavoidable imperfec-

tions in construction, the height of the Aalve V above the

surface of the water in the well should be considerably less
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than 33 feet; otherwise the quantity of watep lifted by the

piston at each stroke will be small.

ScH. 2.—It is not essential to the construction that there

should be two cylinders ; a single cylinder, with a valve

somewhere below the lowest point of the piston-range will

be sufficient, provided tlie lowest point of the range be less

than 33 feet above the surface in the reservoir.

It is not necessary to the working of a pump that the

suction pipe should be straight; it may be of any shape,

and may enter the reservoir at any horizontal distance be-

low the barrel of the pump.

144. Tension of the Piston Rod.—(1) If the water in

BC (Fig. 73) has risen to P when the piston is at M, let -n'

be the pressure of the air in MP ; then we have -n' =
pressure of water at P = pressure of water at C — ^'pPC

;

hence
:r' = Tr-^pPC. (1)

But the tension on the rod is the difference between the

atmospheric pressure above the piston and the pressure of

the air in MP ; hence calling A the area of the piston and

T the tension of the rod, we have from (1)

T = (tt _ tt') A = ^pPC. A. (2)

If one inch be taken as the unit of length, and h be the

height in inches of the water barometer, we have gph = 15

lbs., nearly, which in (2) gives

T = 16^^. (3)

(2) When the j)ump is in full action.—Let AH be

the range of the piston, and let CD = h, then at each

stroke, the volume DH of water is lifted, and therefore the

tension of the rod when the piston is ascending will be

gpA. {h + HD) until the water begins to flow through the

spout.
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Therefore in the suction pump the tension of the

rod is equaZ to the weight of the colv/mn of water

wJiose base is the area of the piston and whose height

is the height of the water in the pump above the level

of the well.

If A be on a level with the spout, all the water lifted

will be discharged, and as the piston descends, the tension

of the rod will be gpAli.

145. Height Through which the Water Rises in

One Piston Stroke—Let P and Q (Fig. 73) be the sur-

faces of the water at the beginning and end of an upward

stroke of the piston from B to A, and let h as usual be the

height of the water barometer. The air Avhich occupied the

space BP at the beginning of the stroke occupies at the end

of it the space AQ ; and the pressures are respectively

gp{h~VQ), gpih-qC).

Hence (Art. 48)

h — FC:h — qC : : vol. AQ : vol. BP.

If B and r are the radii of the cylinders AB and BC, we
have

vol. AQ = -B^AB + 7rr2 (BC — QC),

vol. BP = 7rr2 (BC - PC),

^_PC _ B^AB + yz (BC — QC)
"*• ^_QC- r2(BC-PC)

which determines QC for any given value of PC.

Cor.—If the stroke of the piston be less than AB, as for

instance AH, then HC must be less than h. Also, a limit

exists with regard to H, which may be shown as follows :

If P be the surface of the Avater when the piston M is at

A, then, as the piston descends, the valve V will close, but

the valve V will not be opened until the pressure of the air



272 HEIGHT WHICH WATER RISES IJST ONE STROKE.

in MB is greater than the atmospheric pressure. When
M is at A the pressure of the air = gp{h — PC), and un-

less the valve V is opened before M arrives at H, the pressure

of the air in HB will

AT?

which must be greater than gpit, if the valve is to open, and

therefore A"AH must be greater than AB-PC. Hence, to

insure the opening of the valve while the surface is below

B, we must have
A-AH > AB-BO, (1)

AH ^ BC
AB > X '

i. e., the ratio of AH to HB must be at least as great as the

ratio of BC to 7i. This condition, although necessary in

every case, may not be sufficient.

For, suppose that the surface of the water is at Q' when

the piston M is at A, in which case the pressure of the air

in AQ' = gp {7i - Q'C).

When the piston descends to H, the pressure in HQ'

= 5rp(A_Q'C)|^|,

which must be greater than gp7i, if the valve is to open, and

therefore

7«.AH > AQ'.QC

But the greatest value of AQ'-Q'C is JAC'^; therefore

we must have

A-AH > iACl (2)

Since ^A& > AB-BC, unless B is the middle point of

AC, it follows that the condition in (2) includes the condi-

tion in (1), which is therefore in general insufficient. (See

Besant's Hydrostatics, p. 97.)
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Fig. 74

146. The Lifting Pump.— AVhen water has to be
raised to a height exceeding about 30 feet, the suction pump
will not work (Art. 143, Sch. 1), and

the lifting pump is commonly used.

By means of this instrument, Avater

can be lifted to any heiglit. It con-

sists of two cylinders, in the upper

of which a piston M is movable, the

piston-rod working through an air-

tight collar. A pipe DF is carried

from the barrel to any required

height; at D there is a valve which

opens into the pipe. The suction

pipe BC is closed by a valve V, as

in the suction pump, and the piston

M usually * has a valve V.

The action of this pump is precisely the same as that of

the suction pump in raising Avater from the well into the

barrel. Suppose the piston at its highest point, and the

surface of the water in the barrel at K ; then, as the piston

is depressed, its valve V will open, and the water will flow

through it till the piston reaches its lowest point. When
the piston ascends, lifting the water, the valve D opens, and

water ascends in the pipe DF. On the descent of the piston,

the valve D closes, and every successive stroke increases the

quantity of water in the pipe, until at last it is filled, after

which every elevation of the piston will deliver a volume of

water equal to that of a cylinder whose base is the area of

the piston and whose height is equal to its stroke. The

only limit to the height to which water can be lifted is that

which depends on the strength of the instrument and the

power by which the piston is raised.

Cor.—If CK = h, the piston lifts the volume BK at

* Sometimes the piston has no valve in it, bat is replaced by a solid cylinder,

called a plunger, which is operated by a handle as before.
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each stroke, and if ^ = the area of the piston, the tension

on the piston-rod = gpA' BK, until the water is lifted to

the valve D, since the air is expelled before the machine is

in full action. After this, the power applied to the piston-

rod must be increased until the pressure of the water opens

the valve D, i. e., until the pressure =5'p {h + DF), where

F is the surface of the water in the tube. The water will

then be forced up the tube, the tension of the rod increas-

ing as the surface F ascends.
'

147. The Forcing Pump.—This pump is a further

modification of the simple suction pump; it has no valve in

its piston, which is perfectly solid,

and works water-tight in the barrel,

ranging over the space AE. At the

top of the suction pipe BC is a valve,

and at the entrance to the pipe DF is

a second valve D.

When this pump is first set in ac-

tion, water is raised from the well as

in the common pump, by means of

the valve B and piston M, the air at

each descent of the piston being

driven through the valve D into the

pipe DF. When the water has risen

through B, the piston, descending,

forces it through D ; and when the piston ascends, the valve

D closes, and more water enters through B. The next de-

scent of the piston forces more water through D, and so on

until the pipe is filled, as in the lifting pump.

The stream which flows from the top of the pipe will be

intermittent, as it is only on the descent of the piston that

water is forced into the pipe ; but a continuous stream can

be obtained by means of a strong air vessel N (Fig. 76),

which consists of a strong brass or copper vessel, at the bot-

tom of which is a valve V. Through the top of the air

Fig. 75
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Fig. 76

vessel is a discharge pipe KF, which passes air-tight nearly

to the bottom. When water is forced into the air vessel

through the valve V by the de-

scent of the piston, it rises

above the lower end of this

pipe. The mass of air which

the vessel contains is compressed

into a smaller volume ; its elas-

tic force, pressing on the sur-

face of the water at K, with a

varying but continuous press-

ure, forces it up the pipe ; and

if the size of the vessel be suit-

able to that of the pump, and to

the rate of working it, the com-

pressed air will continue to ex-

pand, forcing water up the pipe during the ascent of the

piston, and will not have lost its force before a new com-

pression is applied to it, carrying with it a new supply of

water, and thus a continuous, although varying, flow will

be maintained. A few stroke? of the piston will generally

be sufficient to raise water in the pipe KF, to any height

consistent with the strength of the instrument and the

power at command.

CoK.—Let h = the height of the water barometer ; dur-

ing the ascent of the piston the valve B is open and V is

closed ; the pressure upon the upper surface of the piston =
gph ; the pressure upon the lower surface = gp {h — MC),

the water surface in the pump being at M ; therefore, call-

ing A the area of the piston, the tension of the rod when

the piston is ascending = gpA • MC.

That is, the tension of the rod is equal to the weight

of a column of ivater ivhose base is the area of the

piston, and ivhose height is the height of the water in

the barrel above the level of the well.
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U8. The Fire Engine.—This is only a modification

of the forcing pump with an air

vessel, as fust described.

Two cylinders M and M' are

connected with the air vessel V
by means of the valves D and

D', and the pistons are worked

by means of a lever GEG', the

ends of which are raised and de-

pressed alternately, so that one

piston is ascending while the

other is descending. Water is thus continually being

forced out of the air vessel through the vertical pipe EH,
which has a flexible tube of leather attached to it, by means

of which the stream can be thrown in anv direction.

149. Braniah's Press.*—This press is a practical ap-

plication of the principle of the equal transmission of fluid

pressures (Art. 8). In the vertical

section of this instrument (Fig.

78), A and C are two solid pistons

or cylinders fitting in air-tight col-

lars, and working in the strong

hollow cyhnders L and K, which

are connected by a pipe BD. At

D is a valve opening upwards, arid

at B is a valve opening inwards, a

pipe from D communicating with

a reservoir of water. M is a mova-

ble platform, supporting the substance to be pressed, and N
is the top of a strong frame. HOF is the lever working

the cylinder C, F being the fulcrum, and H the handle.

Action of the Press.—Let C be raised ; the atmospheric

The principle of this press was sugsfested by Stevinus. It remained unfruitful

in practice until 1796, when Bramnh. an Gnorlisb engineer, by an ingenious con-

trivance, overcame the only diflSculty which prevented its practical application.

Fig. 78
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pressure forces water from the reservoir through the valve

D into the hollow cyhnder K, as in the comujon pump.

The cyliuder C being pressed down, the valve D closes, and

the water is forced through the valve B into L, and, acting

on the cylinder A, makes it ascend, thus producing pressure

upon any substance included between M and N. A con-

tinued repetition of this process will produce any required

compression of the substance.

Let R and r be the radii of the cylinders A and C, p the

power applied at the handle H, and P the pressure of the

water on A ; then we have, for the downward force j?' on C,

P =P
HF
OF*

But (Art. 9) P-.p' = R^'.r^',

HF^

(1)

(2)

By increasing the ratio of R to r, any amount of pressure

may be produced. Presses of this kind were employed in

lifting into its place the Britannia Bridge over the Menai

Straits, and for launching the Great Eastern.

150. Hawksbee's Air-Pump.*—Band B' are two cylin-

ders, in which pistons P and P', with valvesV and V opening

upward, are worked by means of

a toothed wheel, the one ascend-

ing as the other descends. At the

lower extremity of the cylinders

there are valves v and v' opening

upwards, and communicating by

means of the pipe AC with the

receiver R, from which the air is

to be exhausted. Fig. 79

* The air-pump was invented in 1650 by Otto von Guericke, Burgomaster of

Magdeburg.



278 HAWKSBEE^S AIR-PUMP.

Suppose P at its lowest and P' at its highest position,

and turn the wheel so that P ascends and P' descends.

When P' descends, the valve v' closes and the air in B' flows

through V", while the valve V is closed by the pressure of

the external air, and air from R, by its elastic force, opens

the valve v and fills the cylinder B. When P descends, the

valve V closes, and the air in B being compressed flows

through the valve V, while the valve V closes, and air from

the receiver flows through v' into B'. At every stroke of

the piston, a portion of the air in the receiver is withdrawn
;

and after a considerable number of strokes a degree of rare-

faction is attained, which is limited only by the weight of

the valves which must be lifted by the pressure of the air

beneath.

Let A denote the volume of the receiver, and B that of

either cylinder
; p the density of atmospheric air, and pj,

Pg, pn the densities in tlie receiver after 1, 2, n

descents of the pistons. Then after the first stroke the air

which occupied the space A will occupy the space A + B,

and therefore we have

Pi {A + B) = pA.

Similarly, p^ {A -}- B) = p^A ;

.-. p^{A-{-Bf = pA%

and after n strokes we have

Pn (A + B)^ = pA^,

the volume of the connecting pipe AC being neglected.

Hence, calling 7r„ and tt the pressures of the air in the

receiver after n strokes and of the atmospheric air respect-

ively, we have

^ _Pn _ /_4_\" n\
n - p

- \A + b)' ^ '

Thus, suppose that A is foar times B, and we were re-
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quired to find the density of the air in the receiver at the

end of the 15th stroke, \ve have from (1)

Pi 5 =p(i)^ = 0.03552 p.

If the ail- originally had an elastic force equal to the

pressure of 30 in. of mercury, this would give the elastic

force of the air remaining in the receivjer as equal to a

pressure of 1.056 in. of mercury. In this case, it is custom-

ary to say that the vacuum pressure is one of 1.056 in. of

mercury.

ScH.—It is evident from (1) that pn can never become

zero as long as n is finite, and therefore, even if the machine

were mechanically perfect, we could not by any number of

strokes completely remove the air; for, after every stroke

there would be a certain fraction left of that which occupied

it before.

In working the instrument, the force required is that

which will overcome the friction, together with the differ-

ence of the pressures on the under surfaces of the pistons,

the pressures on their upper surfaces being the same.

151. Smeaton's Air-Pump.—This instrument con-

sists of a cylinder AB in which a piston is worked by a rod

passing through an air-tight collar at the

top ; a pipe BD passes from B to the

glass receiver C, and three valves, open-

ing upwards, are placed at B, A, and in

the piston.

Suppose the receiver and cylinder to

be filled with atmospheric air, and the

piston at B. Raising the piston, the

valve A is opened by the compressed air

in AM which flows out through it, while at the same time

a portion of the air in C flows through the pipe DB to fill

the partial vacuum formed in MB, so that when the piston

arrives at A, the air which at first occupied C now fills both

f=i

&J
Fig. 80
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the receiver and the cylinder. When the piston descends,

the valves A and B close, and the air in the cylinder below

the piston is compressed until it opens the valve M, and

passes above the piston. As the piston is raised a second

time the valve A is opened by the compressed air in AM,
which flows out through it as before; and thus at each

stroke of the piston a portion of the air in the receiver is

forced out through A.

Let A and B denote the volumes of the receiver and

cylinder respectively, and p and pn the densities of atmos-

pheric air and of air in the receiver after n strokes. Then,

as in Art. 150, we have

Pn {A + i?)« = pA^,

from which it appears as in the previous article that,

although the density of the air will become less and less

at every stroke, yet it can never be reduced to nothing,

however great n may be.

ScH.—An advantage of this instrument is that, the upper

end of the cylinder being closed, when the piston descends

the valve A is closed by the external pressure, and therefore

the valve M is then opened easily by the air beneath. Also

the labor of working the piston is diminished by the

removal, during the greater part of the stroke, of the

atmospheric pressure on M, which is exerted only during

the latter part of the ascent of the piston, when the valve

A is open.

152. The Hydraulic
Ram.*—The hydraulic ram

is a machine by which a fall

of water from a small height

produces a momentum which

is made to force a portion of

the water to a much greater

height. Fifl. 81

* Invented by Montgolfier.
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111 the vertical section (Fig. 81), AB is the descending

and FG the ascending column of water, which is sup-

plied from a reservoir at A. V is a valve opening down-

wards, and V is a valve opening upwards into the air-

vessel C ; H is a small auxiliary air-vessel with a valve K
opening inwards.

Ttie Action of the Machine.—As the valve V at first

lies open by its own weight, a portion of the water, descend-

ing from A, flows through it ; but the upward flow of the

water towards the valve V increases the pressure tending to

lift the valve, and at last, if the valve is not too heavy, lifts

and closes it. The forward momentum of the column of

water ABD being destroyed by the stoppage of the flow,

the water exerts a pressure sufficient to open the valve V
and to flow through it into the air-vessel C, condensing the

air within ; the reaction of the condensed air forces water

up the pipe FG. As the column of water ABD comes to

rest, the pressure of the water diminishes, and the valves

V and V both fall. The fall of tiie former produces a

rush of the water through the opening V, followed by an

increased flow down tlie supply pipe AB, the result of which

is again the closing of V, and a repetition of the process

just described, the water ascending higher in FG, and

finally flowing through G.

The action of the machine is assisted by the air-vessel H
in two ways—first, by the reaction of the air in H, which is

compressed by the descending water, and, secondly, by the

valve K, which affords supplies of fresh air. When the

water rises through V, the air in H suddenly expands, and

its pressure becoming less than that of the outer air, the

valve K opens, and a supply flows in, which compensates

for the loss of the air absorbed by the water and taken up

the column FG, or wasted through V. About a third of

the water employed is wasted, but the machine once set in

motion will continue in action for a long time, provided the
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supply in the reservoir be maintained. (See Besant's

Hydrostatics, p. 112.)

153. Work of Water Wheels.—To utilize ahead of

water, consisting of an actual elevation above a datum level

at which the water can be delivered and disposed of, a

machine may be employed in which the direct action of

the weight of the water, while falhng through the given

height is the principal moving force.

When a stream of water strikes the paddles of a wheel

which has a certain velocity, the energy imparted to the

wheel by the water, from (4) of Art. 98,

= [v'-(v-VY]^^, (1)

where F is the velocity of the periphery of the wheel, v the

original velocity of the water, and W the weight of water

acting on the wheel per second ; but if the water descends

with the paddle there is an additional amount of work done

on the wheel due to the mean height h through which the

water falls. Hence we have, for the whole work done on

the wheel per second,

= [^,2 _ (i, _ vy] ^ + WJi. (2)

Now if the water leaves the paddles the work remaining

in the water will be lost ; hence, calling v^ the velocity of

the water after it has left the paddles, we have for the use-

ful work U done on the wheel

ir= [i;2 _ (y _ F)2 - f ,2] ^ + ^A

W= l2vV-V^-v,^]^ + Wh, (3)

which is the general expression for the work done by a

water wheel when the water impinges upon the paddles

perpendicularly.



WORK OF OVERSHOT ffHEELS. 283

f^i^'/'82

154. Work of Overshot Wheels.—When a waterfall

ranges between 10 and 70 feet, and the water supply is from

3 to 25 cubic feet per second, it is

possible to construct a bucket

wheel on which the water acts

chiefly by its weight. If the varia-

tion of the head-water level does

not exceed 2 feet, an overshot

wheel may be used. The water is

then projected over the summit of

the wheel, and falls in a parabolic

path into the bucket. If v be the

velocity of delivery to the wheel,

the part x- is converted into energy of motion before reach-

ing the buckets and operates by impulse ; hence in a wheel

of this class the water does not operate entirely by weight.

The height h through which the water falls is the vertical

height of the point at which the water meets the buckets

above the point where it leaves them, which in this wheel

is nearly equal to the diameter of the wheel ; and as the

velocity of the water on leaving the bucket is the same as

the velocity of the bucket itself, we have v^ =V; hence

(3) of Art. 153 becomes

U= {v-V)V~ + Wh. (1)

Callingm the efficiency* of these wheels, we have from (1)

U= m ± (y _ F) F 4- h W. (2)

Cor.—To find the relation of v and V so that the useful

work U of the wheel may be a maximum, we must equate

to zero the derivative of ZJwith respect to F, which gives

See Anal. Mechs,, Art. 316.
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V =: ^v, i. e., the ivheel works to the best advantage

when the velocity of its periphery is one-half that of

the stream.

ScH.—If the velocity of the periphery of this wheel is

too great, water is thrown out of the buckets before reach-

ing the bottom of the fall. In practice, the circumferential

velocity of Avater wheels of this kind is from 4^ to 10 feet

per second, about 6 feet being the usual velocity of good

iron wheels not of very small size. The velocity of the

water therefore is limited to about 13 feet per second, and

the part of the fall operating by impulse is therefore about

2J feet. The rest of the fall operates by gravitation, but a

certain fraction is wasted by spilling from the buekets, and

emptying them before reaching the bottom of the fall. The
great diameter of .wheel required for very high falls is in-

convenient, but there are examples of wheels 60 feet in

diameter and more.

The efficiency of these wheels under favorable circum-

stances is 0.75, and is generally about 0.65..

155. Work of Breast Wheels.—When the variation

of the head-water level exceeds 2 feet, a breast wheel is

better than an overshot. In

breast wheels the buckets are

replaced by vanes which move in

a channel of masonry partially

surrounding the wheel. The

water falls over the top of a slid-

ing sluice in the upper part of

the channel. The channel is

thus filled with water, the weight -.^.^,^,^^^^

of which rests on the vanes and

furnishes the motive force on the wheel. There is a certain

amount of leakage between the vanes and the sides of the

channel, but this loss is not so great as that by spilling from

the buckets of the overshot wheel,
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In this wheel, as in the case of the overshot wheel, v^ =
V, therefore (1) and {2) of Art. 154 also apply to breast

wheels, h being the height of the point at which the water

meets the vanes above the point wiiere it leaves them. The
efficiency is found by experience to be as much as 0.75.

ScH. 1.— Theoretically this wheel also works to the best

advantage when the speed of its periphery is one-half that

of the stream (Art. 154, Cor.). But Morin found, by ex-

periments, that the etficiency of the wheel is not much
affected by changes in its velocity. This is owing to the

circumstance that the useful work is dependent principally

upon the term W/i, and not upon the other term in the

formula which alone is affected by the velocity of the wheel.

Hence the great advantage of this wheel is, that it may be

worked, without materially impairing its efficiency, with

velocities varying from ^v to fv.

ScH. 2.—As the diameter of this wheel is greater than

the fall, a breast wheel can be employed only for moderate

falls.

Overshot and breast wheels work badly in back-water,

and hence if the tail-water level varies, it is better to reduce

the diameter of the wheel so that its greatest immersion in

flood is not more than one foot.

156. Work ofUndershot
Wheels.—The common un-

dershot wheel consists of a

wheel provided with vanes,

against which the water im-

pinges directly. In this case

the water is allowed to attain

a velocity due to a considera-

ble part of the head immediately before entering the ma-

chine, so that its energy is nearly all converted into energy

of motion ; and as the water has no fall on the wheel, and
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its velocity on leaving the vanes is the same as the velocity

of the vane itself, we have h = 0, Vi = F; therefore (3)

of Art. 153 becomes

U={v-V)V^, (1)

w
or

.
U= m(v— V) F—

,

(2)

where m, as before, is the efficiency of the machine.

ScH.—The wheel works to the best advantage when the

speed of the periphery is one-half that of the stream (Art.

154, Cor.), but the efficiency is low, never exceeding 0.5.

Wheels of this kind are cumbrous. In the early days of

hydraulic machines, they were often used for the sake of

simplicity. In mountain countries, where unlimited power

is available, they are still found. The water is then con-

ducted by an artificial channel to the wheel, which some-

times revolves in a horizontal plane. When of smaU

diameter, their efficiency is still further diminished.*

167. Work of the Poncelet Water Wheel.—When
the fall does not exceed G feet, the best water motor to adopt

in many cases is the Poncelet undershot water wheel. In

the common undershot water wheel, the paddles are flat,

whereas in the Poncelet wheel they are curved, so that the

direction of the curve at the lower edge, where the water

first meets the paddle, is the same as the direction of the

stream. By this arrangement, the water, which is allowed

to flow to the wheel with a velocity nearly equal to the

velocity due to the whole fall, glides up the curved floats

without meeting with any sudden obstruction, comes to

relative rest, then descends along the float, and acquires at

the point of discharge from the float a backward velocity

relative to the wheel nearly equal to the forward velocity of

• See Cotterill's App. Mechs. ; also, Fairbaim's Millwork and Machinery.



WORK OF THE PONCELET WATER WHEEL. 287

the wheel. The water will therefore drop off the floats de-

prived of nearly all its kinetic energy. Nearly the whole of

the work of the stream must therefore have been expended

in driving the float ; and the water will have been received

without shock, and discharged without velocity.

Let V and V be the velocities of the stream and float re-

spectively ; then the initial velocity of the stream relative

to the float is v — V, and the water will continue to run up

the curved float until it comes to relative rest ; it will then

descend along the float, acquiring in its descent, under the

influence of gravity, the same relative velocity which it had

at the beginning of its ascent, but in a contrary direction.

Therefore the absolute velocity of the water leaving the

float is V—{v — V) = 2 F — v.

Now the useful work U done on the wheel must equal

the work stored in the water at first, diminished by the

work stored in the water on leaving the wheel; hence

W W
2g 2g^

= iZ (y _ F) F. (1)
9

Comparing this expression with (1) of Art. 156, we see

that the work performed by the Poncelet wheel is double

that of the common undershot wheel.

ScH.—This wheel works to the best advantage when the

speed of the periphery is one-half that of the stream (Art.

154, Cor.). This conclusion also follows from the form of

the floats, as above described ; since if all the work is taken

out of the water when it leaves the floats, its velocity must

then be zero, and therefore 2 F— y =: 0, or V =i |^t'.*

The efficiency of a Poncelet wheel has been found in ex-

The inventor, Poncelet, states that, in practice, the velocity of the water, in

order to produce its maximum eflTect, ought to he about 2^ times that of the wheel,

and that the efficiency of the wheel is about 0.7 (Tate's Mech. Phil., p. 813).
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periraeiits to reach 0.68. It is better to take it at 0.6 in

estimating the power of the wheel, so as to allow some

margin.

158. The Reaction Wheel; Barker's Mill.—
Pig. 85 shows a simple reaction wheel. ACB is a tube?

capable of revolving about its axis, which

is vertical, and having a horizontal tube '

k\\ '

DBE connected with it. Water is sup- €:&^
plied at C, which descends through the O^
vertical tube, and issues through the ori-

fices D and E at the extremities of the

horizontal tube, so placed that the direc-

tion of motion of the water is tangential

to the circle described by the orifices. ^ig.^
The efflux is in opposite directions from

the two orifices ; as the water flows through BD, the press-

ures on the sides balance each other except at D, where

there is an uncompensated pressure on the side opposite the

orifice ; the effect of this pressure or reaction is to cause

motion in a direction opposite to that of the jet. The same

effect is produced by the water issuing at E, and a continued

rotation of the machine is thus produced by the reaction of

the jet in each arm.

Let h be the available fall, measured from the level of the

water in the vertical pipe to the centres of the orifices, v

the velocity of discharge through the jets, and Fthe veloc-

ity of the orifices in their circular path. When the machine

is at rest, the water issues from the orifices with the velocity

V^gh (neglecting friction). But when the machine ro-

tates, we have for the velocity of discharge through the

orifices, from (1) of Art. 89,

V = V F2 + 2gh. (1)

While the water passes through the orifices with the ve-

locity V, the orifices themselves are moving in the opposite
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direction with the velocity V. The absolute velocity of the

water is therefore

V— V= VV^+2gh— V. (2)

Now the useful work done per second by each pound of

water must equal the work due to the height h, diminished

by the work remaining in the water after leaving the

machine. Hence,

useful work = h — ^^

—

-—

—

^(V^TfcZ)Z,£,om(2),
(3)

9 ^
*

The whole work expended by the water fall is h foot-

pounds per second ; consequently, to find the efficiency of

the machine, we divide (3) by h (Anal. Mechs., Art. 216),

and get

efficiency = (^il+^^ili: (5)

= 1 - 1^, + etc. (6)

(by the Binomial Theorem),

which increases towards the limit 1 as F increases towards

infinity. Neglecting friction, therefore, the maximum
efficiency is reached when the wheel has an infinitely great

velocity of rotation. But this condition is impracticable to

realize ; and even at practicable but high velocities of rota-

tion, the prejudicial resistances, arising from the friction of

the water and the friction upon the axis, would considera-

bly reduce the efficiency. Experiment seems to show that

the best efficiency of these machines is reached when the

velocity is that due to the head, so that F^ = 'igh.
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When F^ = "Zgh, we have, from (5), neglecting friction,

efficiency = ^^ ' = 0.828, (7)

about 17 per cent, of the energy of the fall being carried

away by the water discliarged. The actual efficiency real-

ized of these machines appears to be about 60 per cent, so

that about 23 per cent, of the whole head is spent in over-

coming frictional resistances, in addition to the energy

carried away by the water.

ScH.—The reaction wheel in its crudest form is a very

old machine known as " Barker's Mill.'' It has been em-

ployed to some extent in practice as an hydraulic motor, the

water being admitted below and the arms curved. In this

case the water is transmitted by a pipe which descends be-

neath the wheel and then turns vertically upwards. The
vertical axle is hollow, and fits on to the extremity of the

supply pipe with a stuffing box. In this construction the

upward pressure of the water may be made equal to the

weight of the wheel, so that the pressure upon the axis may
be nothing. These modifications do not in any way afEect

the principle of the machine, but the frictional resistances

may probably be diminished.

159. The Centrifugal Pump.—When large quanti-

ties of water are to be raised on a low lift, no pump is so

suitable as a centrifugal pump. In this pump, water is

raised by means of the centrifugal force given to the water

in a curved vane or arm, proceeding from the vertical axis.

The dynamic principles of this machine are the same as

those of the reaction wheel (Art. 158) ; but they differ in

their objects. In the latter machine, a fall of water gives a

rotatory motion to a vertical axis, while in the former a

rotatory motion is given to a vertical axis in order to ele-

vate a column of water.
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Let h be the height to which the water is raised, meas-
ured from the level of the water in the well to the centre

of the orifice of discharge, v the velocity of discharge through
the orifice, and V the velocity of the orifice in its circular

path, as in Art. 158. Then the work due to the centrifugal

force must equal the work of raising the water through the

height h, increased by the work stored in the water at

efflux ; therefore

.-. V = VV^ — 2gh, (1)

and v — V= VV^ — 2gh — V
[as in (2) of Art. 158].

Now the work applied per second to raise each lb. of

water must equal the work in raising the water through the

height Ji, increased by the work remaining in the water

after leaving the machine. Hence

(i) _ YY
applied work = h -{- -—-—-

2g

9
'

\ f

The useful work is h foot-pounds per second ; therefore

efficiency = 7 —— — (3)
{V-'\/V^-2gh)V '

= ^-W-2-^^-' (4)

which increases towards the limit 1 as F increases towards

infinity. Neglecting friction, therefore, the maximum
efficiency is reached when the pump has an infinitely great

velocity of rotation, as in the case of the reaction wheel.
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Cor.—When V^ = 2gh, we liave, from (3),

efficiency = 0.5.

When V^ = ^gJi, we have, from (3),

efficiency = —. —. = .85.

2(2 — 'V2)

When V^ = 6gh, we have, from (3),

efficiency := 0.9.

Hence, theoretically, the centrifugal pump has a con-

siderable efficiency when the velocity of rotation

exceeds the velocity due to twice the height of the col-

umn of water raised.

ScH.—Centrifugal pumps work to the best advantage

only at the particular lift for which they are designed.

When employed for variable lifts, as is constantly the' case

in practice, their efficiency is much reduced, and does not

exceed .5, and is often much less.

The earliest idea of a centrifugal pump was to employ an

inverted Barker's Mill, consisting of a central pipe dipping

into water, connected with rotating arms placed at the level

at which water is to be delivered. The first pump of this

kind which attracted notice was one exhibited by Mr. Ap-

pold in 1851, and the special features of this pump have

been retained in the best pumps since constructed. The

experiments conducted at the Great Exhibition on Appold's

Centrifugal Pump with curved arms, gave the maximum
efficiency 0.68. But when the arms were straight and ra-

dial, tlie efficiency was as low as .24, showing the great

advantage of having the curved form of the arms, which

causes the water to be projected in a tangential direction.

160. Turbines.—A reaction wheel is defective in prin-

ciple, because the water after delivery has a rotatory veloc-

ity, in consequence of which a large part of the head is
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wasted (Art. 158). To avoid this, it is necessary to employ

a machine in which some rotatory velocity is given to the

water before entrance, in order that it may be possible to

discharge it with no velocity except that which is absolutely

required to pass it through the machine. Such a machine

is called a Turbine, and it is described as ''outward flow,"

"inward flow," or ''parallel flow," according as the water

during its passage through the machine diverges from, con-

verges to, or moves parallel to the axis of rotation.*

Turbines are wheels, generally of small size compared

with water wheels, driven chiefly by the impulse of the

water. The water is allowed, before entering tbe moving

part of the turbine, to acquire a considerable velocity ; dur-

ing its action on the turbine this velocity is diminished,

and the impulse due to the change of momentum drives the

turbine.

Eoughly speaking, the fluid acts in a water-pressure

engine directly by its pressure ; in a water wheel chiefly by

its weight causing a pressure, but in part by its kinetic

energy, and in a turbine chiefly by its kinetic energy, which

again causes a pressure, f

In the outward and inward flow turbines, the water en-

ters and leaves the turbine in directions normal to the axis

of rotation, and the paths of the molecules lie exactly or

nearly in planes normal to the axis of rotation. In outward-

flow turbines the general direction of flow is away from

the axis, and in inward-flow turbines towards the axis. In

parallel-flow turbines, the water enters and leaves the tur-

bine in a direction parallel to the axis of rotation, and the

paths of the molecules lie on cylindrical surfaces concentric

with that axis.

There are many forms of outward-flow turbines, of which

the best known was invented by J^'ourneyron, and is com-

monly known by his name. The inward-flow was invented

by Prof. Jas. Thomson.

• Cotterill'e App. Mechs., p. 506. t Ency. Brit,, Vol. XII., p. 530.
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The theory of turbines is too intricate a subject to be

considered in this treatise. For a general classification of

turbines, with descriptions, illustrations, and discussions of

these machines, as well as for a further development of

hydraulic machines in detail, the student is referred, among
other treatises, to the following : Fairbairn's Millwork and

Machinery, Colyer's Water-Pressure Machinery, Barrow's

Hydraulic Manual, Glynn's Power of Water, Prof. Unwin's

Hydraulics.

EXAM PLE S.

1. In a hydrostatic bellows (Fig. 70), the tube A is
-J

of

an inch in diameter, and the area DE is a circle, the diam-

eter of which is a yard. Find the weight which can be

supported by a pressure of 1 lb. on the Avater in A.

Ans. 82,944 lbs.

2. Describe the siphon and its action. What would be

the effect of making a small aperture at the highest point

of a siphon ?

3. A prismatic bell is lowered until the surface of the

water within is 6G feet below the outer surface; state

approximately how much the air is compressed.

Ans. To \ of its original volume.

4. If a prismatic bell 10 feet high be sunk in sea water

until the water rises half way up the bell, find how far the

top of the bell must sink below the surface, the tempera-

ture remaining the same.

Assiuue the water barometer — 33 feet for sea water.

Ans. 28 feet.

5. In the position of the bell in Ex. 4, find how much
air must be forced into it in order to keep the water down

to a level of 2 feet from its bottom.

Ans. 0.72 W, where W is the weight of the air in the

bell when at the surface.
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6. If a small hole be made in the top of a diving bell,

will the water flow in or the air flow out ?

7. If a cylindrical diving bell, height 5 feet, be let down
till the depth of its top is 55 feet, find (1) the space

occupied by the air, and (2) the volume of air that must be

forced in to expel the water completely, the water barometer

standing at 33 feet.

Ans. (1) 1.8 nearly; (2) ffths of the volume of the bell.

8. The weight of a diving bell is 1120 lbs., and the

weight of the water it would contain is 672 lbs. Find the

tension of the rope when the level of the water inside the

bell is 17 feet below the surface (A = 33 feet).

Ans. 676.48 lbs.

9. A cylindrical diving bell of height a is sunk in water

till it becomes half full. Show that the depth from the

surface of the water to the top of the bell is A — -•

10. A cylindrical diving bell, of which the height inside

is 8 ft., is sunk till its top is 70 feet below the surface of the

water. Find the depth of the air space inside the bell

{h = 33 .feet). Ans. 2^ feet.

11. (1) Describe the action of a common pump
; (2)

distinguish between a lifting pump and a forcing pump

;

'(3) to what height could mercury be raised by a pump?

12. The length of the lower pipe of a common pump
above the surface of the water is 10 feet, and the area of

the upper pipe is 4 times that of the lower ; prove that if

at the end of the first stroke the water just rises into the

upper pipe, the length of the stroke must be 3 feet 7 inches

very nearly {h = 33 feet).

13. If the diameter of the piston be 3 inches, and if the

height of the water in the pump be 20 feet above the well,

what is the pressure on the piston ? Ans. 61.2 lbs.
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14. If the diameter be ^\ inches, the height of the water

in the pump 27 feet 5 inches, the lever handle 4 feet, and

the distance from the fulcrum to the end of the piston rod

4 inches, find the force necessary to work the pump-handle.

Ans. ^\ lbs.

15. The height of the column of water is 60 feet above

the well, the piston has a diameter of 3 inches, the pump-
handle is 3|^ feet from the fulcrum, and the distance of the

fulcrum from the piston rod is 3^ inches ; find the force

necessary to work the pump. Ans. 15.3 lbs.

16. If the height of the cistern above the well be 25 feet,

the diameter of the piston 2 inches, and the leverage of the

handle 12 : 1, find the force necessary to use in pumping.

Ans. 2.83 lbs.

17. If the height of the cistern be 42 feet, the diameter

of the piston 4^ inches, the length of the handle 49 inches,

and the distance of the fulcrum from the piston rod 3^

inches, find the force. Ans. 20.65 lbs.

18. The diameter of the piston of a lifting pump is 1 foot,

the piston range is 2\ feet, and it makes 8 strokes per

minute; find the weight of water discharged per minute,

supposing that the highest level of the piston range is less

than 33 feet above the surface in the reservoir (A = 33

feet). Ans. 312.5t lbs., or about 983 lbs.

19. If in working the pump of Ex. 18, the lower level of

the piston range be 314- feet above the surface in the reser-

voir, find the weight of water discharged per minute.

Ans. 187.5ff lbs.

20. In a Bramah's press FO = 1 inch, FH = 4 inches,

the diameter of ^1 = 4 inches, and diameter of C = ^ an

inch ; find the force on A produced by a force of 2 lbs,

applied at ff, Ans. 512 lbs.
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21. In one of the Bramah presses used in raising the

Britannia tube over the Menai Straits, the diameter of the

piston C was 1 inch, that of A 20 inches ; the force applied

to C at each stroke was 2\ tons ; find the lifting force pro-

duced by the upward motion of A. Ans. 1000 tons.

22. If the receiver be 4 times as large as the barrel of an

air-pump, find after how many strokes the density of the

air is diminished one-half.

Ans. Early in the 4th stroke.

23. After a very great number of strokes of the piston of

an air-pump the mercury stands at 30 inches in the

barometer-gauge, the capacity of the barrel being one-third

that of the receiver, prove that after 3 strokes the height of

the mercury is very nearly 12f inches.

24. A fine tube of glass, closed at the upper end, is

inverted, and its open end is immersed in a basin of mer-

cury, within the receiver of a condenser; the length of the

tube is 15 inches, and it is observed that after 3 descents of

the piston the mercury has risen 5 inches; how far will it

have risen after 4 descents ?

Ans. The ascent x is given by the equation — ;- + t

20= I 4- oT- If A = 30, a; =6.1 nearly.

25. If ^ = 35 (Art. 151), find the elastic force of the

air in the receiver after the 5th, 10th, 15th, and 20th

strokes, the height of the barometer being 30 inches.

Ans. 7.119 ins.; 1.689 ins.; 0.401 ins.; 0.095 ins.

26. In the same pump, the barometer standing at 30,

find the number of strokes, (1) when the mercury in the

gauge rises to 25 inches, and (2) when the rarefaction is

1 -j- 100. Ans. (1) 6.2; (2) 16.

27. If a hemispherical diving bell be sunk in water until

the surface of the water inside the bell bisects its vertical
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radius, find the depth of the bell, supposing the atmos-

pheric pressure to be 14/<i8 lbs. to the square inch {h = 34).

Ans. From surface to surface 73.3 feet.

28. There is a pump lifting water 29 feet high, the

diameter of its piston is 1 foot, the play of the piston is 3

feet, and the pump makes 10 strokes per minute
; (1) how

many gallons of water will be discharged per minute, and

(2) what is the pressure on the piston ?

Ans. (1) 147 gals.
; (2) 1420 lbs.

29. Water flowing through a trough, 2 feet wide and 1

foot deep, with a velocity of 10 feet per second falls upon

an overshot wheel 50 feet in diameter. Find (1) the part

of the fall operating by impulse
; (2) the maximum useful

work of the wheel, the eflBciency being 0.70 ; and (3) the

number of revolutions the wheel makes per hour when
doing maximum work.

Ans. (1) 1.55 feet
; (2) 43076.25 ft.-lbs. per sec.

; (3)

114.59.

30. Water is furnished to a breast-wheel at the rate of

20 cubic feet per second with a velocity of 8 feet. The fall

is 20 feet and the efiiciency 0.75. What is the useful work

done by the wheel when the periphery has a velocity of 3,

4, and 5 feet per second respectively ? (See Sch. 1, Art.

155).

Ans. 19185.94; 19215.94; and 19185.9 ft.-lbs. per sec.

respectively.

31. What is the useful work done by an undershot

wheel, 40 feet in diameter, making 120 revolutions per

hour, the velocity of the water being 20 feet per second and

the area of the vanes being 1^ square feet ?

Ans. 1910 ft.-lbs. per second.

32. What is the eflBciency of a reaction wheel when the

water having a head of 16 feet, issues from the orifices with

a velocity of 45 feet per second ? Ans. 0.8254.
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