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PREFACE.

The following elementary treatment of the Method of Least

Squares has grown out of my attempts to so present the sub-

ject to students of physics, astronomy, and engineering, that

a working knowledge based upon an appreciation of its prin-

ciples might be acquired with a moderate expenditure of time

and labor.

Conceiving that the ultimate warrant for the legitimacy of

the method itself is to be found in the agreement between the

observed distribution of residuals and the distribution repre-

sented by the error curve, I have not scrupled to abandon

altogether the analytical demonstrations of the equation of

this curve and to present it as an empirical formula, represent-

ing the generalized experience of observers. The evidence in

support of a formula of this kind is necessarily cumulative,

and the few curves which are presented in illustration of the

law of error are to be considered as samples of the kind of

evidence which exists in great abundance. By abandoning

the theoretical demonstrations, the student is freed from the

embarrassments which are usually encountered at the thresh-

old of the subject, and which in many cases cause it to appear

as a mathematical puzzle whose analytical difficulties absorb

the attention of the tyro to the complete exclusion of the pur-

poses for which the analysis is conducted.

I have sought to give prominence to the distinction between

accidental and systematic errors, and to insist upon the limi-
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tations which result from the difference between these two

classes of error. To illustrate the principles of the text, I

have made free use of numerical data and have arranged the

computations in forms which experience has shown to be

convenient for the purpose, with a view to their subsequent

use by the student as models for his own computations.

In the preparation of these pages, I have consulted many,

if not most, of the standard treatises upon the subject, but

my indebtedness for suggestions and methods of treatment

is principally to

Faye, Cours d'Astronomie de VEcole Polytechnique.

Oppolzer, Lehrbuch der Bahnbestimmung.

Wright, Treatise on the Adjustment of Observations.

G. C. C.
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>^c

§ 1. Problem. To determine the coefficient of linear expan-

sion of a certain bar of metal its length was, determined at

different temperatures by comparison with a standard of known

length. The data furnished by the measures are (Kohlrausch,

Leitfaden der Physik)

:

Temperature. Observed Length
mm.

20° C. 1000.22

40 1000.G5

50 1000.90

60 1001.05

It is required to determine from these observations the amount

of the expansion of the bar per degree Centigrade.

If c denote the required expansion, and l the length of the

bar when its temperature is 0° C, its length, I, at any other

temperature, t, may be represented by the equation

l + 1 • c = I

By means of this equation the four observations recorded

above are transformed into the following observation equations :

(1) Z + 20 c = 1000.22 ^

(2) Z + 40 c =1000.65

(3) Z + 50 c = 1000.90
'

(4) l + 60 c = 1001.05

Any two of these equations are sufficient to determine the

values of Z and c, but the values derived from different pairs

of equations will be different. Thus we may find from
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Equations. «0 c

nun. mm.

(1) and (2) 999.79 + 0.0215

(1) and (4) 999.80 .0208

(2) and (3) 999.65 .0250

(3) and (4) 1000.15 .0150

etc. etc. etc.

We are here presented with a problem of constant recur-

rence in the investigations and applications of physical science.

In order to determine the values of certain quantities with a

high degree of precision more measures or observations are

made than are absolutely necessary, and these observations

prove to be inconsistent among themselves, so that the result-

ing values of the unknown quantities depend upon the manner
in which the data are combined. It is evident that all of the

values above found for l and c cannot be correct, and it is

doubtful if any absolutely correct value can be derived from

the data ; but it is also apparent that the observations are not

worthless and that any of the values above derived may be

considered as approximations, more or less close, to the true

values of the required quantities.

If we assume that the relation between the length of a bar

and its temperature can be expressed by an equation of the

form employed above, we must suppose that the discordances

in the results are due to errors in the observations, and the

problem then becomes :

To find from the observed data a set of results which shall

be affected as little as possible by the errors Of the data, or in

more technical language, to find the most probable values of

the unknown quantities.

We may establish in advance of any formal investigation of

this problem certain principles to which its solution must con-

form. Thus,

(A) The adopted values of the quantities which are to be

determined must be based upon all the data available. Only

in exceptional cases, which will be considered hereafter, is it

proper to omit or reject any observation or any known rela-

tion among the quantities.
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(B) The adopted values must satisfy the observation equa-

tions as nearly as possible.

§ 2. Errors and Residuals. The expression error of an

observation has been freely used in the preceding section, but

it should be recognized that the amount of this error can

rarely, if ever, be known, since this would imply an exact

knowledge of the unknown quantities. We may, however,

obtain approximate values of these errors from the adopted

values of the quantities which were to be determined. Thus,

if the values l = 999.79, c = +- 0.0215 be substituted in equa-

tions (1), these become

(1) 1000.22 = 1000.22 (3) 1000.87 = 1000.90

(2) 1000.65 = 1000.65 (4) 1001.08 = 1001.05

The difference between the first and second members of any

one of these equations is called the residual of that equation,

and is approximately the error of the corresponding observa-

tion. The residuals which correspond to the several values of

l and c derived in § 1 are given below in tabular form.

l = 999.79 999.80 999.65 1000.15

c = + 0.0215 + 0.0208 + 0.0250 + 0.0150

v sb 0.00 0.00 + 0.07 -0.23

.00 + .02 .00 - .10

- .03 + .06 .00 .00

+ .03 .00 - .10 .00

We may thus, for any assumed values of the unknown quan-

tities, find a corresponding set of residuals, and the smaller

these residuals are the closer is the probable approximation of

the assumed, to the true* values. Principle (B).

This statement, however, requires an important qualification

to which we now proceed.

The errors with which any given series of observations is

affected may be divided into two classes :

Accidental Errors, or those whose law of recurrence is such

that in the long run they are as often positive as negative and



4 THE METHOD OF LEAST SQUARES.

whose effect upon the mean of a great number of observations

therefore differs but little from zero ; and

Systematic Errors, or those which in the given series of

observations do not thus tend to be eliminated from the mean.

In the observations considered in § 1, an error of judgment by

which the observer in a given case read the thermometer 0°.l

too high would probably be an accidental error, since it may
be presumed that in the long run he would read it as often too

low as too high, but if through a fixed habit of observing, the

thermometer were always read too high this would be a sys-

tematic error, and the number of observations might be indefi-

nitely increased without in the least diminishing its effect.

If the standard of length with which the bar was compared

were an erroneous standard (e.g. 0.01 mm. too long), all of the

observations would be affected with a systematic error due to

this source, and the residuals would furnish no trace of this

error, since they show only discordances among the observa-

tions, and not errors affecting all alike. The smallness of the

residuals in any case, therefore, furnishes no guaranty that the

observations and the results derived from them have not been

vitiated by systematic errors.

The presence of errors of this class constitutes the greatest

obstacle to the accurate determination of any set of quantities

whose values are sought, and the ingenuity and skill of the

observer or experimenter cannot be better employed than in

avoiding or overcoming the effect of such errors. It therefore

deserves especial notice that systematic errors can often be

transformed into accidental errors by varying the methods of

observation or the conditions under which the observations are

made. Thus the possible systematic error of judgment in

reading a thermometer, to which allusion was made above, may
be transformed into an accidental error if several different per-

sons take part in the observations, since it is hardly probable

that they will all have a common, persistent error of judgment.

The error due to using an erroneous standard of length may
be changed into accidental error by employing a number of

different standards, since it is not probable that these, con-
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structed at different times and by different makers, will all

have a common error of length. Considerations of this char-

acter serve to illustrate the great practical importance of vary-

ing the methods of determining any quantity whose value is

desired with great precision. Multiplying observations by the

same method and under similar circumstances serves only to

diminish the effect of accidental errors and is useless beyond a

certain limit, while varying the methods and the circumstances

under which observations are made tends to eliminate errors

of both kinds.

The principles here considered find their appropriate appli-

cation in the selection of the methods by which any given set

of unknown quantities is to be determined, but after the obser-

vations have been made, since they can, in general, furnish but

little, if any, information in regard to their own systematic

errors, these must be neglected and the reduction and discus-

sion of the observations directed toward eliminating the effect

of the accidental errors.

§ 3. The Distribution of Residuals. Gauss, a German mathe-

matician, has shown by a course of analysis based upon the

theory of probabilities that in any given series comprising a

very large number of observations affected with accidental

errors, the number of errors of a given magnitude, x
y
is a func-

tion of that magnitude. Thus, if x' and x" denote any two

errors, and y' and y" the number of observations having the

errors x' and x" respectively, then

y':y"::f(x'):f(x")

The analytical expression for f(x) obtained by Gauss is

f(x) = J!-e-™ (2)
Vtt

where e = base of the Naperian system of logarithms,

ir = ratio of the circumference to the diameter of a circle,

h= a number whose value must be derived for each series

of observations, but is constant for all the obser-

vations of that series.
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The same expression for f{x) has been derived by other

mathematicians through different courses of analysis, but

against all of these investigations objections of a theoretical

character have been urged. Experience, however, shows that

the actual distribution of residuals does follow this law, not

with absolute accuracy, but to a remarkable degree of approxi-

mation. An excellent illustration of this distribution in the

case of a comparatively small number of observations is

afforded by a series of 66 determinations of the velocity of

light made at Washington, in the year 1882.* By means of a

revolving mirror the time required for the passage of a ray of

sunlight from one terrestrial point to another was measured.

The mean of the 66 determinations of this time interval was
24827 millionths of a second. By subtracting this mean from

each single determination a series of residuals will be obtained,

and the number of residuals whose magnitude equals 1, 2, 3,

etc. units may then be counted. In this way a fair approxi-

mation to the distribution of residuals represented by Gauss's

law of error will be found; but as this law purports to repre-

sent the average distribution of a great number of errors, we
shall obtain a better comparison between it and the actual dis-

tribution by the following device, to which we resort in order

to increase the number of available residuals

:

Let it be assumed that in any given set of observations the

number of residuals of magnitude x is proportional to the num-
ber of residuals occurring between the limits x — a and x -f a,

where a is a quantity which in strictness ought to be an infini-

tesimal, but which may be made a small finite quantity without

appreciable error. In the present case we adopt as the unit in

which the residuals are to be expressed, the thousand-millionth

part of a second (0
9.000000001), and put a equal to two such

units. Thus, from a series of 66 observations are derived the

following numbers which represent the distribution of resid-

uals which might be expected to occur in a much longer series.

* Velocity of Light in Air and Refracting Media. Bureau of Navi-
gation, Navy Department, 1885, p. 187.
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Residual. No. /o Residual. No. 0/
/o

than - 13.5 2 0.8 Greater than + 13.5 0.0

lto -13.5 0.0 Equal to + 13.5 2 0.8

-12.5 2 0.8 + 12.5 2 0.8

-11.5 2 0.8 + 11.5 3 1.2

-10.5 2 0.8 + 10.5 6 2.3

- 9.5 3 1.2 + 9.5 5 1.9

- 8.5 2 0.8 + 8.5 6 2.3

- 7.5 4 1.6 + 7.5 7 2.7

- 6.5 6 2.3 + 6.5 8 3.1

— 5.5 8 3.1 + 5.5 10 3.9

- 4.5 12 4.7 + 4.5 12 4.7

- 3.5 15 5.8 + 3.5 15 5.8

- 2.5 18 7.0 + 2.5 17 6.6

- 1.5 21 8.2 + 1.5 21 8.2

- 0.5 23 8.9 + 0.5 23 8.9

The column headed % represents the number of residuals

differing not more than half a unit from the magnitude given

in the first column, expressed as a percentage of the whole

number of residuals. Fig. A furnishes a graphical representa-

tion of this distribution, each percentage in the above table

being represented by a point whose abscissa is the magnitude

of the residual and whose ordinate is the percentage itself.

The curve whose equation is

y
100 h

1

V7T

-h2x* h = 0.158

is shown in the same figure, and a simple inspection of the

curve shows that its ordinates represent very approximately

the percentage of residuals of each magnitude. The coeffi-

cient h appears multiplied by the factor 100 in order that the

ordinates may be represented as percentages.

Figs. B, C, D, represent the distribution of residuals in three

other series of observations of different kinds, made at differ-

ent places, by different observers, but all following the same

law. The unit in which the residuals are expressed, unit of x,

is stated with each figure, and the unit of y is in every case

one per cent of the whole number of residuals.

The equations of the several curves shown in the figures are
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almost identical, but the feature to which the student's atten-

tion is called is that the algebraic form of the equation is in

each case

V =— e-^2

and not that h has approximately the same value in each

curve. The numerical value of h depends upon the unit

adopted for x, and these units having been chosen with refer-

ence to a convenient graphical representation of the residuals,

the agreement in the several values of h must be regarded as

purely artificial.

The series of observations represented in Fig. D is known
to be affected with small systematic errors, and it will be

noted that the distribution of the residuals is more irregular

in this case than in any of the others. In each of the series

represented in Figs. A and C, there are two residuals whose

magnitudes are too great to be represented in the figures ; and

it is quite generally found that the actual number of very large

residuals is slightly greater than the number given by the

error curve. The illustrations here given are typical cases,

and may serve to exemplify the statement made at the begin-

ning of this section, that the actual distribution of residuals is

found to follow Gauss's law of error, and in the following sec-

tions this law will be assumed as experimentally demonstrated,

and from it will be derived the method of combining and dis-

cussing observations. The student will find it an instructive

exercise to treat in a manner similar to that pursued above

any series of observations to which he may have access, par-

ticularly his own observations, and thus lend additional weight

to the experimental evidence which is here presented for his

consideration.

§ 4. The Error Curve. From the manner in which the ordi-

nates of the points plotted in Figs. A, B, C, and D were derived,

it will be apparent that these ordinates represent the number

of residuals falling within certain chosen limits of error. Thus

in Fig. A, 8.9 per cent of all the residuals lie between the
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limits and +1, 8.2 per cent between +1 and +2, etc., the

interval within which the residnals are enumerated being in

every case one unit. It is also evident that the number of

residuals falling within any other interval, Ax, will depend

upon the magnitude of this interval as well as upon the ordi-

nate corresponding to it, and if A a; is taken sufficiently small

the number of residuals will be proportional to the product

y-Ax. Geometrically considered, this product is the area in-

cluded between the axis of x, the curve, and the two ordinates

drawn through the extremities of A x, and the number of resid-

uals falling within the limits of Ax is therefore proportional

to this area. We may, if we choose, make A # an infinitesimal,

and the area y - Ax and the corresponding number of residuals

will then become indefinitely small, but by taking the sum of

all the infinitesimal areas included between the limits x = a

and x = b, where a and b have any values whatever, we obtain

the area of that part of the curve included between ordinates

drawn at these limits. By a similar process of summation we
obtain the number of residuals lying between a and b, and the

number of residuals thus found must be proportional to the

area, since this proportionality is true in every infinitesimal

element included in the area.

In the following table, the function, A, represents the area

of that part of the error curve included between ordinates

whose abscissas are and x, the argument of the table being

the values of x for the particular error curve in whose equa-

tion 7i = 1 ; but the area included between and x in the curve

corresponding to any other value of h may be found from the

same table, by using as the argument hx instead of x.

The area of that part of the curve lying between the limits

a and b is represented by

A = Cydx = -~ f
b

e-v*2 dx (3)

Let the variable in this expression be changed by putting

hx = t, and the expression becomes

1 r hh

A =~ I e-t2 dt
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These expressions for A become identical if h == 1 ; hence, if

the value of A be computed from the second integral for h = 1

and tabulated, we may find from this table the value of A cor-

responding to any other value of h by changing the limits a,

b into ha and hb.

A remarkable property of the curve, which will be of use

hereafter, may be readily obtained from the expression here

found for A. If we make a = and b = go, the limits of the

integral become and oo for all values of h, hence the area of

that part of the curve included between x = and x = oo is

the same for all values of h, i.e., for every series of observations.

Table of Areas of the Error Curve between the

Limits and hx.

Ill- A Diff. hx A Diff. hx A. Diff.

0.0 0.000

56
1.0 0.421

19

2.0 0.49766

85
0.1 .056

55
1.1 .440

15

2.1 .49851

56
0.2 .111

53
1.2 .455

12

2.2 .49907

36
0.3 .164

50
1.3 .467

9

2.3 .49943

23
0.4 .214

46
1.4 .476

7

2.4 .49966

14

0.5 .260

42
1.5 .483

5

2.5 .49980
9

0.6 .302

37
1.6 .488

4

2.6 .49989

4

0.7 .339

32
1.7 .492

3

2.7 .49993

3

0.8 .371

27
1.8 .495

1

2.8 .49996

2

09 .398

23

1.9 .496

2

2.9 .49998

1

1.0 .421 2.0 .498 3.0

GO

.49999

.50000

If in any series of observations n] denote the number of

residuals whose magnitudes are included between the limits a

and b, n the whole number of residuals in the series, and Aa,
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Ah the values of A obtained from the table with the arguments

ha, hb, then

n-]
b

a
= 7i(A b T Aa )

since the ratio of n] to n is equal to the ratio of the area of

that part of the error curve which lies between the limits a

and b, to the area of the whole curve, and this latter area is

seen from the table to be always unity. The — sign in this

equation is to be used when a and b have like signs, and the +
when they have unlike signs. If the percentage of residuals

between the limits a and b is required, it may be found by

substituting 100 in place of n as the coefficient of (Ab ^fAa).

Thus from Fig. A we find for the series of observations there

represented, h2 = 0.025 and h = 0.158.

To find the distribution of residuals between the limits

_oo..._5, -5.- -2, -2-..+1, +1---+4, +4...+oo,

we proceed as follows :

X hue JL ^-b T Aa n] Per cent.

= 66 (Ab =F Aa )

Obi

— CO — CO 0.500
0.132 9 13.2 9— 5 -0.790 .368

.196 13 19.6 11-2 -0.316 .172

.260 17 26.0 17
+ 1 + 0.158 .088

.226 15 22.6 13
+ 4 + 0.632 .314

.186 12 18.6 16
+ GO + CO .500

66 100.0 66

The numbers in the column "Per cent" may be compared

with the percentages given on page 7. The column "Obs."

gives the actual number of residuals which occur in the given

series between the limits here considered, and these numbers

should be compared with the column "w]
a
."

By the use of this table, the distribution of residuals in any

series of observations for which the value of h is known may

be compared with the theoretical distribution much more

readily than by plotting a curve, and the student should in

this way examine several series of observations. The method

of determining h for any given series is contained in § 12.
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§ 5. The Principle of Least Squares. The quantity h which

appears in the equation of the error curve deserves especial

attention. If in the equation

y =~ e~h2x2

x be put equal to zero, the resulting value of y is — • This is

vV
the maximum ordinate of the curve, and the value of this

maximum ordinate varies directly as h. If those parts of the

curve remote from the axis of y be considered, it will be found

that the larger is h, the smaller are the values of y, since when
# is a large quantity e

-^2*2 diminishes much more rapidly for

increasing values of h than h itself increases. These relations

between y and h correspond exactly to the criteria by which

we estimate the precision of observations. If we compare two

series of observations, I. and II., and find that in series I. the

small errors are relatively more numerous (large values of y
for small aj's), and the large errors less numerous (small values

of y for large #'s), than in series II., we shall without hesita-

tion call the observations of series I. more precise or accurate

than those of series II. ; and if required to assign definite

meanings to the terms " more precise " and " less precise," we
shall find difficulty in defining them in any other manner than

by reference to the magnitude of the residuals. We therefore

adopt as the measure of precision of any series of observations

the value of h in the equation of its error curve ; and having

thus defined the term "precision," we are able to state two

principles which are of general application in the discussion

of observations.

Let the data furnished by each observation be expressed in

the form of an observation equation (Equations 1, § 1), then:

the best attainable values of the unknown quantities are those

which,

(1) Distribute the residuals in accordance with the law of

error, y = —l— e~h2x2, and which,
vV
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(2) Make the value of h in the equation of the resulting

error curve a maximum.

The first of these principles is indeed involved in the sec-

ond, since if the residuals are not distributed in accordance

with the law

A
Vtt

2/ = --e-fc2*2

there can be no value of h to be made a maximum. It is, how-

ever, advantageous to state (1) as a separate principle, since it

affords a test of the presence of systematic errors in the data,

which, though far from being a perfect criterion, is often con-

venient and is sometimes the only test available.

To justify the statement of (2), we resort to the following

considerations : In accordance with A, § 1, we suppose that all

of the data available is contained in the observation equations,

and, B, § 1, we seek to satisfy all of these equations as nearly

as possible. If the observations are free from systematic

error, a supposition which must here be made, since we have

no means of taking into account the effect of such errors, we
may obtain by substituting in the observation equations any

set of values which approximately satisfy them, a correspond-

ing set of residuals which will be the errors of the observations,

on the supposition that the substituted values were the true

values of the unknown quantities. If these residuals are plot-

ted in an error curve, they will furnish a numerical measure

of the precision h, assigned to the observations by this set of

values, and out of all possible sets of values of the unknown
quantities that set which assigns the maximum precision to

the observations will be entitled to the greatest degree of con-

fidence ; for if it were otherwise, we should have no reason for

preferring a set of values which exactly satisfied all of the

equations to a set which did not satisfy them.

It is, of course, true that subsequent observations may fur-

nish a better determination of the unknowns, and that the

values thus found will not assign to the earlier observations as

high a degree of precision as did the erroneous values obtained
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from these observations alone, but this subsequent determina-

tion is based upon additional evidence, and the problem with

which we are concerned is not to obtain the best possible val-

ues of the unknown quantities, but the best values which can

be derived from the data in our possession.

Assuming, then, the validity of (2), we proceed to transform

it into an expression more convenient for practical use, and for

this purpose we resort to the following property of the error

curve, which may be approximately verified by actual measure-

ment from any plotted curves, Figs. A, B, C, D.

If the error curve be divided into a great number of parts

by drawing equidistant ordinates throughout its whole extent,

and the areas of the several parts into which the curve is thus

divided be each multiplied by the square of the abscissa of its

middle point, the sum of all these products will equal —-.

A til

The analytical expression for the process above described is

CPydx or M. frfe-***dx
Vtt'

Put hx = t, and this integral becomes

2

av;Jo 2h2

For the method of obtaining the value of the last integral,

see NewcomUs Calculus, Articles 169, 176.

The area of each of the parts into which the curve was

divided is proportional to the number of residuals occurring

between the limiting ordinates of the part ; thus, let A denote

the area of the part, N the corresponding number of residuals,

and n and a the whole number of residuals and the whole area

of the curve respectively ; then

A : N : : a: n

but from the table in § 4, a = 1, whence

A =- and Aa? =—
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Since JW denotes the number of sc's falling within the given

infinitesimal part, A, of the curve, JSfx
2

is equal to the sum
of the squares of the #'s (residuals) whose magnitudes fall

between the limiting ordinates of A, and taking the sum of all

the Aa?'s we obtain
.,

^Ax2 = -^x2

n

i.e., is equal to the mean of the squares of all the residuals.

It is customary to represent the sum of the squares of the

residuals by the symbol [yv~\, v standing for any residual, and

the [ ] denoting the sum of all quantities of the kind written

within them.

Comparing this result with the one obtained above, we have

n 2h2 V '

from which it appears that the relation between h and the

sum of the squares of the residuals is such that when h is

a maximum, [yv~] is a minimum, and principle (2) may be

restated as follows

:

The most probable values of the unknown quantities are those

ivhich make the sum of the squares of the residuals a minimum.

From this principle has been derived the name Method of

Least Squares, which is commonly applied to that body of

principles which treats of the combination and discussion

of observed data.

We have arrived at this principle from a consideration of

that class of cases in which the quantity observed is a func-

tion of two or more unknown quantities whose values are to

be obtained from the observations. This obviously includes

the case of a single quantity, x, whose value is directly meas-

ured ; and it will be advantageous to apply the principle of

least squares to this case. The observation equations are here

of the simplest possible form.

x = mx

x = m2

x = mz

etc.

where m denotes an observed value of x.
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If Xq denote any assumed value of x, the residuals obtained

by substituting it in these equations will be

v,= m, *§

v2
= m.) %o

vs = m. — *^0

vn = mn-x

and [iw] = (m, - x )
2 + (m2 — ar

)
2 + («i3 -O 2

• • • + (m
rt
— # )

2
-

The value of x which will make [yv~\ a minimum is found

from

^^=0=-2(m
l
-x

i>
)-2(m2-x,)-2(m,-x()

).^-2(m
l
-xv )

ax
{)

but this equation is equivalent to

_ m l + m2 + m, H -f mn _ [m]

n ?i

and it thus appears that the universal practice of taking the

arithmetical mean of all the measures of a single quantity as

the best value of that quantity, is a particular case under the

more general method of least squares.

§ 6. Weights. It frequently happens that the circumstances

under which an observation was made lead the observer to dis-

trust its accuracy, while other causes give him increased confi-

dence in another observation. Observations which thus differ

in quality are said to have different weights, the weight being

a numerical measure of the quality, and these weights should

be taken into account in combining the observations.

Let us suppose two series of observations made upon the

same unknown quantity, in one of which the observations are

of different quality and entitled to different degrees of confi-

dence, while in the other the observations are all equally good,

but each of them entitled to less confidence than the poorest

observation of the first series. By taking the mean of a num-

ber of observations of this second series, a more reliable value

of the unknown quantity may be obtained than any single
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observation of the series can furnish, and by properly choosing

the number of observations to be included in the mean, a value

entitled to as much confidence as any observation of the first

series may be found. This number of observations of the sec-

ond series whose mean is entitled to as much confidence as a

single observation of the first series, is called the weight of the

equivalent observation in the first series ; and, obviously, the

better an observation, the greater is its weight. These weights

furnish no information about the absolute precision of the

observations, but express only their relative excellence as com-

pared with each other ; hence, if px, p2, p3, etc., be the weights

of any observations, kp
l}
kp2 , kp3 , etc., where k is any constant,

will express these weights equally well, since it is the ratios

of the weights, and not their absolute values, which are of

importance.

To exhibit the manner in which these weights are to be

employed, let us recur to the data of § 1, and suppose that

those observations were made under such conditions that the

first one has a weight 1, the second 2, the third 3, and the

fourth 4. In accordance with the definition of weights, this is

equivalent to supposing a second series of observations of uni-

form excellence, such that the first of the actual observations

can be replaced by one observation of this series, which must

of course be numerically the same as the observation which it

replaces ; the second real observation may be replaced by two

numerically equal observations of the second series ; the third

by three, etc. Each of these substituted observations will fur-

nish an equation precisely like those given in § 1, and when
the sum of the squares of the residuals is formed, we shall

obtain

The symbol [pvw], which is adopted as an abbreviation for

this expression, is equivalent, numerically, to the sum obtained

by multiplying the square of each actual residual by the weight

of the corresponding observation and adding the products, and

it is evident that this \_pvv~\ bears the same relation to the
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substituted observations that [vv] bore to the actual observa-

tions in the case of equal weights, which was considered in the

preceding section. The principle there obtained may there-

fore be generalized as follows :

The most probable values of the unknown quantities are those

which make the sum of the weighted squares of the residuals,

[pw"], a minimum.

Let the student show, as in the preceding section, that when
this principle is applied to the case of observations of unequal

weight made upon a single unknown quantity, it gives as the

most probable value of that quantity

*~Tff
As an example of the application of weights, we select the

following observations of the time of ending of the transit of

Mercury of May 6, 1878, which were observed by different

observers in the city of Washington. These observers were

provided with telescopes of different sizes and magnifying

powers, and differed among themselves in point of experience

and skill, so that their observed times of last contact are not

entitled to equal confidence. The weights assigned to the sev-

eral observations represent the judgment of the computer with

respect to their relative excellence. (Washington Observa-

tions, 1876, Appendix II., page 55.)

Observed Time. P jtrtx

5'' 38" 23 s
1 23* \_pm\ = 318

37 55

38 10 1 10 LP] = 16

38 2G 3 78

38

38

21

18

2

2

42

3G

^ = 19.9

LP]

38 19 3 57

38 21 2 42

38 15 2 30

Weighted mean of the observations = 5' 1 38m 19^.9.
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§ 7. Normal Equations. We have now to show how the

principle of least squares is to be applied in determining the

values of a set of unknown quantities, and in order to fix

the ideas as definitely as possible, let it be supposed that there

are three of these quantities, x, y, z, which are connected with

each one of a set of observed quantities, n, by the relation

ax + by -\- cz = n

where a, 6, and c are numerical coefficients whose values are

supposed known in each equation.

From a series of more than three observed values of n, the

most probable values of x, y, z are to be obtained by means of

the relation \_pvv~\ == a minimum.

It is not to be presumed that these values when found will

exactly satisfy all the equations, and make \_pvv~] = 0, but we
shall find from each equation a residual v, so that strictly the

observation equations should be written

axx -f b
xy + cxz — n

x
= vx pi

a2x -f- b2y + c2z — n2 — v2 p2

a3x + b$ -f- c3z — n8
= v9 ps

etc. etc. etc.

The symbols ph p2, p3 represent the weights assigned to the

observed values, n
1} n2, w3, etc.

By the ordinary rule for determining a minimum of a func-

tion of several variables, the condition [jiww] = a minimum,
furnishes the three equations

d[pov\ _ d[pvv~\ _ Q
d[pvv] = Q

dx dy dz

and in order to obtain these derivatives we form from the

observation equations

\_pvv] =
\ OiVp] x + b^ply + CiV& - Vplih \

'

+ [aWlh® + h^lhV 4- c2Vp2 z — V^Wg} 2
.

etc. etc. etc.
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The derivative of this expression with respect to x is

JJM = 2a
lVp~l

\a 1Vp l
x + &iVjPiy+ GiVpiz - V/v^j

]

+ 2 «2Vp2 { OgVjS x + &»Vfr 2/ + <*Vp2* — Vp2 fh.
\ \ ( (J

)

+ 2a3yp3Kv^ + &«v5iy + c3Vp3 * - vS«»j
etc. etc. etc. =

Let this expression be expanded, divided by 2 and simplified

by the introduction of
[ ] to denote the sum of all terms like

those placed within them (all terms standing in the same verti-

cal column), and it becomes the first of the following group of

Normal Equations.

\_paa] x + \_pab~] y -f \_pac\ z — [pan~\ =
\_pab~] x + [#&&] y -+- \_l>bc] z — \_pbn~] = ) (7)

\_pac~] x 4- \_pbc~] y 4- \_p)cc~\ z — [pen] =
J

The second and third of these equations are derived in pre-

cisely the same manner as the first from the conditions

d[pvv~\ = cllpvv} _
dy dx

These equations are equal in number to the unknown quanti-

ties, and their solution will in general furnish a determinate

set of values for these quantities which will be the most prob-

able values, since the normal equations include all of the data

furnished by the observations and have been so derived as to

satisfy the principle of least squares.

Equations (6) furnish a rule which is frequently given for

the formation of normal equations. To obtain the first normal

equation, multiply each observation equation by the product of

its weight into the coefficient of x which occurs in it, and take

the sum of all the resulting equations. The other normals are

similarly obtained from the weights and the coefficients of y,

z, etc., having due regard to the algebraic signs of the quanti-

ties in the several multiplications and divisions. This method
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is occasionally convenient, but in general the method of form-

ing normal equations given in § 9 will be found less laborious.

The symmetrical manner in which the coefficients of the

normal equations are disposed should be especially noted, since

this considerably diminishes the labor of their formation. The

first coefficient in the second equation is the same as the second

coefficient in the first equation, and generally the mth coefficient

in the nth equation is the same as the 7i
th coefficient in the mth

equation.

Let the student form normal equations from the observation

equations contained in § 1, assuming that those equations have

equal weights.

§ 8. Non-Linear Observation Equations. In all of the pre-

ceding investigation, it has been tacitly assumed that the

relation of the observed to the unknown quantities can be

expressed by an equation of the first degree; but cases in

which this relation is of a much more complicated character

are not uncommon, and a method of applying the principle of

least squares to these cases is required. For the sake of sim-

plicity, this method will be derived for the case of two un-

known quantities, but the process is perfectly general and can

readily be extended to any other number of unknowns.

Let x and y be any two quantities which have not been

directly measured but which are connected with an observed

quantity, m, by the relation

f(x, y) = m
which represents any equation whatever existing between x, y,

and m. Let x and y denote approximate values of x and y,

such that . A . Ax = x + Ax y = y + &y
A x and A y being the corrections which must be added to x and

y in order to obtain the most probable values of x and y. We
may, for the present, suppose that x and y are mere guesses

at the values of x and y, and we may test their correctness by
substituting their numerical values in the equation

f(x, y) = m
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which corresponds to each observed value of m. If every such

equation were exactly satisfied by these values, we should infer

that x and y were the most probable values of x and y. It

cannot be expected that this perfect agreement will ever be

found in practice, but from each observation equation a resid-

ual, v, will be found, due partly to the errors of the observa-

tions and partly to Ax and Ay.

If in the equation f(x, y) = m we substitute for x and y
x + A x, y + A y, and develop the expression by Taylor's

Formula, remembering that m —/(# , y ) is the residual n

found by substituting numerical values of x
, y in the several

observation equations, we have

-/ N dm A . dm A ,m -f(x , y )=— Ax + —Ay + •-
dx dy

If numerical values of — , — be introduced into this

equation, it becomes
x
° ^°

a> Ax + b- Ay — n =

Each observation equation may thus be made to furnish a lin-

ear equation involving Ax and Ay, and these equations may
be treated by the method of § 7. It must, however, be remem-

bered that in the above development by Taylor's Formula we

have retained only the first three terms of an infinite series,

and if the approximate values x
, y are not so nearly the most

probable values that the squares and higher powers of A # and

A y are inappreciable, the development and the solution based

upon it are inaccurate. On this account, it is seldom advanta-

geous to make a least square solution for the unknown quanti-

ties until very approximate values of them have been found.

These values will usually be obtained from the solution of a

small number of the observation equations.

The transformation of the observation equations by the

introduction of corrections to assumed values of the unknowns

is often advantageous even when the original equations are of

the first degree, especially if the original quantities were of

very different magnitudes. Thus, in the problem of § 1, the

observation equations are of the form
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W- =/(*<» c) = Z + tc

in which c is a very small quantity while l is approximately

1000. If we put

J„ = 1000 + A Z„ c = + Ac

we have ** = 1 SS-I n = m - 1000

and the equations are transformed into

AZ + 20Ac- 0.22 =
AZ + 40Ac~ 0.65 =
AZ + 50Ac- 0.90 =
AZ + 60Ac- 1.05 =

By this transformation the numerical operations involved in

forming and solving the normal equations are much simplified

through the substitution of small numbers in the place of

large ones.

§ 9. Formation and Solution of the Normal Equations. If

the number of unknown quantities is greater than two, and

especially if the number of observations is large, the numerical

computation of a set of normal equations is a laborious process,

and one in which errors are almost certain to occur unless

special precautions are taken to guard against them. The

method of forming these equations presented in this section

has been developed with special reference to facilitating the

numerical operations and obtaining the normals with the least

expenditure of labor consistent with the requisite accuracy,

and although some of the processes may seem at first sight

unnecessary and cumbrous, a little experience in their use, or

in their neglect, will convince the student that they are in

the long run labor-saving devices.

Let each observation equation be written out and arranged

in tabular form, as in the following example. In order that

these equations should furnish a good determination of the

unknowns, x, y, z, it is necessary that the coefficients of these

quantities should present a considerable range in their values
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in the several equations. Thus, if all the coefficients of x

were alike, all the coefficients of y equal each to each, etc., the

equations would be absolutely indeterminate since we should

have several unknown quantities involved in a single equation

many times repeated, and if the coefficients approximate to

this equality the equations will be approximately indeter-

minate, and will furnish unreliable values of the unknowns.

If, therefore, several observations have been made under similar

conditions, and furnish equations which are nearly identical,

these will be nearly equivalent to a repetition of the same

equation and it will be permissible to take their mean, having

regard to their respective weights, and treat it as a single

observation equation with a weight equal to the sum of the

weights of the observations.

Having thus reduced the number of equations as far as

possible, each equation should be multiplied by the square root

of its weight as was done, § 7, in obtaining the form of the

normal equations. By this multiplication the weights will be

completely taken into account and will require no further

attention. Let the weighted equations thus obtained be repre-

sented by
axx -|- b xy -f- cxz + n

x
=

a^c + b2y + c& -f- n2 =
o*» + hy + <** + n8 =

etc. etc. etc.

It will usually facilitate the formation of the normals to so

transform these equations that no number greater than 1 shall

occur in any of them. This can always be done by introducing

new unknown quantities and dividing each equation by some

constant number, usually some power of 10. Thus in the case

of the two equations

5z + 71j -63 =
0.9a -1932/ + 93 =

let each equation be divided by 100 and put
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the equations are thus transformed into

1.000 u + 0.368w - 0.630 =
0.180 u - 1.000w + 0.930 =

The solution of these equations will furnish values of u and w
from which x and y may be found by the relations

The purpose of this transformation is to simplify the subse-

quent numerical work by reducing the numbers involved to

an approximate equality.

Every coefficient which appears in the normal equations is

the sum of a series of products of two quantities, thus

[aa] = a±ax
-\- a2a2 -f- a3a3 + • • •

[a6] = aA + a262 + a363 -\

[6n] = 6^ + b2n2 -f b3n3 -\

These products may be formed by the aid of Crelle's multipli-

cation tables* supplemented by a table of squares of num-

bers for the [aa], [66], etc. In case Crelle's tables are not

available, the products may be formed by logarithms or much
more rapidly by the following method due to Bessel Form for

each equation the sums a -\- b, a + c, b -f c, etc., for every pair

of numbers contained in the equation ; then since

ab = b{(a + b)
2 -aa-bb\

we have [oft] = i {
[(a + 6)

2
] - [aa'] - [66]

M =H[(6 + c)
2]- [66] -[cc]}

etc. etc. etc.

The [aa], [66], [cc] are coefficients in the normal equations

and must be computed in any case, and the formation of [a6],

[6c], etc., therefore requires for each coefficient only the single

additional quantity [(a + 6)
2

], [(6-fc) 2
], and presents the

very great advantage that these quantities can be obtained

* Crelle, Rechentafeln, Berlin. These tables give the products of

all numbers up to 1000 X 1000, and are of very general utility.
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from a table of squares, and being all positive numbers no

attention need be paid to the signs after the sums a -+- 6, 6 + c,

etc., have been formed.

No method of computation can furnish a guaranty against

the commission of numerical errors, and it is therefore desir-

able to test the computation from time to time to ascertain if

such errors have occurred. To secure such a test or " check,"

as it is called, we introduce the following auxiliary quantities,

one for each observation equation :

«!= <n+ h -t- <h. H h%
s2 =a 2 + 62 + cH M 2 }

etc. etc. etc.

and form the quantities [as] [6s] ••• [sn]. It will appear from

the mode in which the coefficients of the normal equations

are formed that

Check
M + [a6] *" [aC] + "

'

+ [Cm] = [aS]
1

[a6] + [66] + [6c] + ... f [6/i] = [6s] V (9a)

etc. etc. etc.
J

The [as], [6s], etc., are formed in precisely the same manner

as [a6], \_ac], etc., and the check relations above given must

be satisfied by the computed values of these quantities.

Where only two unknown quantities are involved in the

normal equations the solution of the equations may be con-

veniently made by any of the methods of elementary algebra,

but if the number of unknowns is greater than two, the simple

and elegant method of successive substitutions proposed by

Gauss may be employed with advantage.

The normal equations in the case of three unknown quanti-

ties are

:

[aa\ x + [a6] y -j- \_ac~] z + \_an~] =
[a6>+[66]?/+[6c]z + [6rc] =0

)

[ae ~\x+ [be ] y + [ec ] z + [en ] =

and from the first of these

X= My [>]„ [XI
[aa] \_aa\ [aa~]
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This value of x substituted in the second and third equations

transforms them into

[66.1]y+[6c-l]2 + [6n.l] = )

[6c • l]y + [cc • l]z + [en • 1] = )
^ '

in which

[66 • 1] ee [66] -g [a6] [cc • 1] = [cc ] - j£J [«c ]

[6c.l] = [6c]-gJ[ac] [6c.l] = [6c]-g[a6]

[6n. 1] = [M -t^J[an] [en- 1] = [™]- J^[an]

^(12)

These equations constitute a new set of normals, from which

one unknown quantity has been eliminated. The correctness

of the numerical work of this elimination may be tested by a

continuation of the checks used in forming the original nor-

mals. We introduce an auxiliary quantity

[6s • 1] = [66 • 1] + [6c • 1] + [6?i • 1]

and inquire its relation to [as], [6s], etc. If we substitute in

the expression for [6s • 1] the values of [66 • 1], [6c • 1], [bn • 1]

in terms of the original coefficients, having regard- to the

relations

[aa] -f- [a6] + [ac] + [an'] = [as]

[ab ] + [66] + [6c ]+ [bn] = [bs ]

(13)

(14)

}

we find [6s . 1] = [6s] - [ab] -Kj
J
[as] - [aa] \ I

I aa I I

whence [6s • 1] = f6sl — ^

—

4r [as]

and similarly,

[cs.l] = [cs]-^l[as]

We may therefore obtain a complete check upon the accuracy

of the numerical work involved in the elimination of x, by
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forming the quantities [bs • 1], [cs«l], in the same manner as

[66-1], [be -1], [6>i»l], etc., and comparing the actual sums

of these latter quantities with the computed check quantities.

By a repetition of the process of elimination we obtain

where

[cc.2]2+[c»-2]=0

rrr . 9"l — !>/*. 11 *-

Check

1] r&c.rO

>.2]

\_cc ^|_|_cclj ^
Ten • 21— Ten -11 *-

(1]
L^ ij

J nm-n
ly"' *J— 1_

'* -
L J r^

Tcs • 21 — I~cs • 11 ^C

\_Ulb -LJ

J T6s - 11L° "J l °S 1J
[66

= [cc • 2] + [C7l

1]
L°S ±J

2]

(15)

and we are enabled to write the following equivalents for the

original normal equations.

Elimination Equations.

X+
\aa]

y + Joe]
[aa]

z +
[Ott]

,

[6c. 1] jfo-1]
J ^ [66-1] ^[66.1]

* +
[en 2]

[cw -2]

(16)

The last of these equations gives the value of z directly, the

second furnishes y as soon as z is known, and the first gives

the value of x. The whole solution is therefore reduced to

finding the values of the coefficients and absolute terms in

these elimination equations. A convenient arrangement of the

computation by which these quantities are obtained is given

in the following example, in which the actual computation is

exhibited upon one page, and the opposite page contains a

schedule correspondingly arranged showing the analytical

equivalent of each number contained in the computation.
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In making the multiplications of [a&], [ac], [an], [as], by

the constant factor L^LJ, the logarithm of this factor is written
[act]

on the edge of a slip of paper, and being held successively

adjacent to the logarithms of [a&], [ac], [an], [as], the sum of

the two logarithms is taken mentally, the corresponding num-

ber looked out from a logarithmic table and written in its

proper place under [bb~\, [be], [bn], [6s], a subtraction then

gives the value of [bb • 1], [be • 1], [bn • 1], [bs • 1], and a simi-

lar process is followed for each other derived coefficient.

§ 10. Example. To illustrate the principles contained in

the preceding sections, and to exhibit in detail the process of

deriving the most probable values of several unknown quanti-

ties which are connected with the observed quantity by a

rather complicated relation, we select from Vol. iii. Part 1 of

the Memoirs of the National Academy of Sciences, page 58, the

following series of experiments made with a 10-gauge Colt

gun, loaded with uniform charges of four drams of powder and

1£ ounces of shot, the shot ranging in fineness from No. 10

up to No. 1 Buck. The purpose of the experiments was to

determine the relation existing between the size (fineness)

of the shot and its average velocity over a range of 30 yards.

The following table contains the results of the experiments,

each velocity being the mean result of from three to six dis-

charges of the gun. The weight of a pellet of No. 10 shot is

taken as the unit of weight, and the velocities are expressed

in feet per second.

No.

Size. Weight.
, Observed Velocity.

No. 10 1 848

8 2 920

6 4 966

3 8 989

BB. 16 1000

FF. 32 1017

1 Buck 64 1067

By plotting these results in a curve with the weight of the

shot as abscissas, and the observed velocities as ordinates, the
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experimenter reached the conclusion that the relation between

the weight Wand the velocity V, is expressed by an equation

of the form

I m

in which Z, m, n, are constants whose values are to be deter-

mined from the observations. It will be found upon trial that

Z = 700, m = 0.28, ?i = 0.42, in connection with the observed

values of V and W will approximately satisfy this equation,

and we therefore adopt these approximate values and proceed

(§8) to determine the corrections A Z, Am, An, which when
added to Z , m , n , will furnish the most probable values of

Z, m, n.

The several differential coefficients of the observation equa-

tion, /(Z, m, w, V) = are

dV^V

^ = _A cotr
dmQ m Z

(lZ=kiogWcotI
clnQ M I

in which M denotes the modulus of the common system of

logarithms, M= 0.43429. In the factor, cot—, — is the ratio of

two numbers, and must be construed as representing a certain

arc expressed in parts of the radius: the corresponding arc

expressed in degrees is 57°.2958—

.

Jo

The form of the observation equation with which we are

here concerned is

Z. Al - -^-cot?. Am + i-logTFcot?An + (V-Z„sec- 1^=°
Z m Iq M Z \ m y

and introducing into this equation the numerical values of

Z , m , 7i , V, W, M, we find the following
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Observation Equations.

(1) 1.29M- 729 Am -f Aw + 53 = p = 1.0

(2) 1.36 - 535 +104 + 32 = 1.0

(3) 1.41 -396 +154 +24 = 0.8

(4) 1.45 - 294 +172 + 28 = 1.0

(5) 1.48 - 219 +170 + 38 = 1.2

(6) 1.50 - 164 +159 + 37 = 1.1

(7) 1.52 - 122 +142 -2 = 1.0

The absolute terms of these equations are residuals obtained

by substituting in the original equation

r_ sec-.z* = o
I m

the assumed values of l , m , and n , and the smallness of

these residuals compared with the values of V, shows that the

assumed quantities are approximately correct values of I, m, n.

The memoir from which our data are taken contains no indica-

tion of the weights to be assigned to the several determinations

of Vj and in the absence of such information they should all be

treated as equally precise and given the weight 1 ; but for the

sake of illustration a slightly different set of weights indicated

above by p has been assigned to them, and by multiplying each

equation by the square root of its weight we obtain the follow-

ing

Weighted Observation Equations.

1.29 AZ - 729 Am + An+ 53 =
1.36 -535 +104 +32 =
1.26 -352 +137 +21 =
1.45 -294 +172 +28 =
1.62 - 239 +185 + 42 =
1.58 - 172 + 167 + 38 =
1.52 - 122 +142 -2 =
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The coefficients and absolute terms in these equations are of

very different magnitudes, and to simplify the subsequent

numerical work we divide each equation through by 100 and

put

0.0162' 7.29' 1.85

and introduce x, y, z into the equations in place of A I, A m, A n.

This step, which is frequently called rendering the equations

homogeneous, furnishes the following

Homogeneous Weighted Observation Equations.

0.796 a - 1.000 %! + 0.0002 + 0.530 = s = + 0.326

0.839 - 0.733 + 0.563 + 0.320 = 0.989

0.777 - 0.482 + 0.741 + 0.210 = 1.246

0.895 - 0.403 + 0.931 + 0.280 = 1.703

1.000 - 0.327 + 1.000 + 0.420 = 2.093

0.975 - 0.236 + 0.903 + 0.380 = 2.022

0.938 - 0.167 + 0.768 - 0.020 = 1.519
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The values of s = a-h&-f-c + n, which are to be used as a

check in the formation of the normal equations, are derived

from these equations.

The formation of the coefficients of the normal equations by

the use of a table of squares, BesseVs method, is represented in

the following tables

:

Sums of the Coefficients.

Equat ion a + b a + c a + n a + s b + c b + n b + 8 c+n C + 8

I.. . 0.204 0.796 1.326 1.122 1.000 0.470 0.674 0.530 0.326

2. . . .106 1.402 1.159 1.828 .170 .413 0.256 0.883 1.552

3.. . .295 1.518 0.987 2.023 .259 .272 0.764 0.951 1.987

4.. . .492 1.826 1.175 2.598 .528 .123 1.300 1.211 2.634

5. . . .673 2.000 1.420 3.093 .673 .093 1.766 1.420 3.093

6.. . .739 1.878 1.355 2.997 .667 .144 1.786 1.283 2.925

7. . . .771 1.706 0.918 2.457 .601 .187 1.352 0.748 2.287
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From the sums of the squares contained in the several col-

umns of this table the coefficients [a&], [ac'], etc., are computed

at the foot of the columns by the relations

[oft] =*}[(« + 6)
2
] - ([<j + [6

2

]) I etc.

The check quantity [as] is compared with

[aa] + [a&] + [ac] + [an]

whose value is written immediately under [as~], and which

must agree with [as] within two or three units of the last

decimal place. Every coefficient of the normal equations

enters into one or more of these sums, which therefore furnish

a complete test of the accuracy of the work in passing from the

homogeneous observation equations to the normal equations.

We now write the

Normal Equations.

+ 5.576 a; - 2.861y + 4.4802 + 1.875 =
- 2.861a + 2.1220 - 1.8132 - 1.200 =
+ 4.480a - 1.813?/ + 4.1382 + 1.348 =

It may be seen from an inspection of these equations that

the data upon which they are based will not furnish a good

determination of the values of all the unknowns, for if the

first equation be divided by — 2 the quotient will be very like

the second equation, and if it be multiplied by -f £ the product

will be very like the third equation. We proceed, however,

with the solution by Gauss' method, which will furnish the

best results that the data can be made to vield.
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Solution of the Normal Equations.

log [aa] log [ab]

C«c]

log [ac] log [on]

logf^

iogf^3

log&lll

*£cc.2]

[W] M
M[a6] If^Cac]
[aa]

L J
[aa]

L J

[to]

[« 6lr -i

[66-1] [6c- 1] [6n-l]

log [66-1] log [6c. 1] log[6n-l]

M
[«a]

[«0

[an]

[ccl] [cn-1]

[as]

log [as]

[a6]

[«a]
[as]

[6s- 1]

Check sum.

log [6s. 1]

M
[a]

[as]

Check sum.

fci3[6e.l] I^I][6n.l] E^r*.!]
[66-l]

L J
[66-l]

L J
[66-l]

L J

[cc • 2]

log [cc • 2] log [en • 2]

[en • 2] [cs • 2]

Check sum.

Elimination Equations.

[a6]

+
[66-l]

+ m =0

+
[66-l]

+
[cc2]

The course of the computation after the formation of the elimina-

tion equations is sufficiently indicated upon the opposite page.
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9.7102 n

9.9049

9.8710

9.0049

Solution of the Normal Equations.

+ 5.576 -2.861 +4.480 +1.875 +9.070

0.7464 0.4566 n 0.6513 0.2730 0.9576

+ 2.122 -1.813 -1.200 -3.752

+ 1.468 -2.299 -0.962 -4.654

+ 0.654 +0.486 -0.238 +0.902

9.8156 9.6866 9.3766m 9.9552

+ 4.138 +1.348 +8.153

+ 3.599 +1.507 +7.286

+ 0.539 -0.159 +0.867

+ 0.361 -0.177 +0.670

+ 0.178 +0.018 +0.197

+ 0.902

+ 0.1

+ 0.196

9.2504 8.2553

Elimination Equations.

X — 0.513?/ + 0.8032 + ().336 = x = - 0.030

y + 0.743 z -0.364 = y = + 0.439

z + 0.101 = z = -0.101

log* 8.4771 n logy 9.6425 logs 9.0049 n
log 0.0162 8.2095 log 7.29 0.8627 log 1.85 0.2672

Al -1.8 Am + 0.0602 An - 0.0547

k 700.0 m + 0.2800 n
o + 0.4200

I 698.2 m + 0.3402 n + 0.3653
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If with the values of I, m, n thus obtained the corresponding

velocities be computed by means of the original equation

V iWn
— = sec

-1-5—
I m

the resulting residuals should be smaller than those derived

from the substitution of l , m , n , i.e., the absolute terms of

the observation equations. The following comparison of these

residuals shows a much better representation of the observed

values of V, especially if the sums of the squares, [yv], be

compared.

Observed— Computed V.

Weight of Shot 1 2 4 8 16 32 64

f(l m nQ) -53, -32, -24, -28, -38, -37, +2
f(l, m, n) - 6, + 10, + 13, + 4, - 10, - 13, + 22

Not only are the residuals diminished in magnitude, but

their distribution is much more nearly in agreement with the

law of error.

The values thus obtained for I, m, n ought not to be con-

sidered the best attainable, since the corrections Am, An are

relatively large fractions of m and n , and it is probable that

the neglected terms containing Am2

, Aw , etc., have an appreci-

able influence upon the solution. To secure the utmost accuracy

these values of I, m, n should be treated as new approximations

and another set of corrections A/, Am, An derived. This re-

solution is recommended to the student as a valuable exercise.

Let the student also derive from the data of § 1 the most

probable values of ? and c, assigning unequal weights to the

several equations.

§ 11. Conditioned Observations. There is a class of cases in

which the application of the principle of least squares seems

to produce absurd results. Thus if each angle of a plane tri-

angle be measured many times in order to obtain an accurate

set of values for the angles, the application of the principle

that the \_pvv~\ must be made a minimum will furnish as the

most probable value of each angle the weighted mean of the
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measures of that angle, but the sum of these weighted means

will usually differ slightly from 180°, and since the sum of the

angles of every plane triangle must equal 180° it appears that

the most probable values above derived are impossible values.

It must, however, be noted that the method of treatment above

outlined is itself a violation of Principle A, § 1, since the knowl-

edge that the sum of the angles must equal 180° furnishes a

relation among those angles which may be used and ought to

be used in determining their most probable values ; and the ap-

parent absurdity above found is produced by neglecting this

part of the data.

A relation such as the above which must be exactly satisfied

by a set of observed quantities is called a rigorous condition,

the equation by which the relation is expressed is called an

equation of condition, and observations of such quantities are

known as conditioned observations. The number of rigorous

conditions is, of course, always less than the number of un-

known quantities, since if it were equal to the number of such

quantities the values of the latter would be determined by the

conditions alone, independently of any observations.

In order to develop a convenient method of treating rigorous

conditions, let x, y, z be three unknown quantities which are to

be determined from observation, but whose values are required

to satisfy the equations of condition

<j>(x,y,z) = <p(x,y,z) =

Let the measurements or observations for the determination of

the unknown quantities be represented by observation equa-

tions of the form

f1(x,m) = f2 (y,n) = fs(z,q) =

m, n, and q being the quantities directly measured, and the

measures for the determination of x being quite independent

of those for y, z, etc. In accordance with the principles of

least squares the values of the unknown quantities are to be so

determined that [pvv'] shall be made a minimum in each series

of observations above represented, and therefore the sum of all
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the weighted squares of the residuals must also be a minimum.
Owing to the conditions <f>(x, y, z) = 0, ij/(x, y,z) = it will not

in general be possible to assign to the unknown quantities

values which will give to \_pvv~\ its least possible value, and the

problem becomes one of conditioned or relative minima, i.e.

out of all the sets of values of x, y, z which will exactly satisfy

the equations of condition it is required to find that set which

assigns to [pw] its least value consistent with those equations.

The method of determining relative minima is as follows

:

(Jordan, Cours oVAnalyse, Vol. i., § 205). Multiply each equa-

tion of condition by an undetermined constant factor, and add

the products to the function which is to be made a minimum.

The derivative of the new function with respect to each un-

known quantity must be placed equal to 0, and the equations

thus formed, together with the equations of condition, will be

just sufficient to determine the unknown quantities and the con-

stant multipliers. Thus, in the present case, representing the

multipliers by — 2kx and — 2k2, we have for the new function

w = [pvvJi — 2k1 <j>(x, y, z) -2k2 i}/(x, y, z) (17)

and ^=0 ^ =0 ^ = (18)
dx dy dz

<f>(x,y,z) = t(x,y, *) =

will determine kl9 k2, x, y, and z.

It was shown in § 7 that in general for three unknown

quantities,

d EjPw3 = 2[paa] x + 2[>a&] y + 2[>ac] z + 2[pan]
ax

but in the case here considered those observation equations

which contain x do not contain either y or z, and, therefore, the

b and c coefficients in those equations are to be considered

zero, all the products ab, ac, are also zero, and

^t|H = 2\_paa-]x + 2[pan-]
ax

with similar expressions for the y and z derivatives.



CONDITIONED OBSERVATIONS. 41

Denoting for the sake of brevity <$>(x, y, z) and ij/(x, y, z)

by </> and \j/ respectively, we obtain by differentiating w

I*™. = [paa]x + [panl - k^ - k2
^ =

" dx dx dx

i^ = [pbb]y+[pbn]-k1

(*±-k2^ =
dy dy dy

^ = [pcc]z +[pcn]-k^ -k2

c^ = ()

dz <lz dz

from which

x = — [pa/i] dcf> ki dij/ k,

+ -£ ++
\_paa~] dx [pact] dx [pace]

dip k2\pbn~\
, d<f> k

x +
\_pbb~\ dy [pbb] dy [pbb]

_ [pen] .d(f> kx d\f/ k2

[pec] dz [pec] dz [pec]

These equations determine the values of x, y, z, when kx
and

k2 are known, and it should be observed that the first terms of

the second members of the equations are the values of x, y, z,

which would be obtained by treating the observations as if

these quantities were entirely independent of each other, e.g.

in the case of direct observations of the quantities they are

the weighted meafis of the observations. If we represent the

values thus obtained by x
, y , z , and represent by vly v2, vs the

corrections which must be added to these quantities in order

to obtain the most probable values of x, y, z, i.e. put

#o + ^1 y = 2/0 + vt z = z + v3

we shall have

dcf> &! + ^L A'.)

dx [pact] dx [joaa]

dcf> k
x dif/

dy [pbb] dy [pbb]

d<f> k
x + d\f,

dz [pec] dz [pec]

(19)
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The quantities kx and k2 are called correlates, and from the

manner in which they were introduced it appears that the

number of correlates is equal to the number of rigorous con-

ditions to which the observed quantities are subject. To

determine the values of the correlates let Xq+ v^ y -\-v2, z -\-v3

be substituted for x, y, z in the equations of condition, and

the equations developed by Taylor's Formula, giving for

the <f>(x, y, z)

v dx dy dz

and a similar expression for ip(x, y, z). Let the values of

in terms of kx and k2 be substituted in these equations,

and put

d<f>

dx

chp

dx

•y/[pati]

ah

-A,

d4
dy

d4
dz

V[p&6]

dy = A

dip

dz

<*3>

A,

> (20)

and the equations become

[aa] fej + [a/?] k2 + <f>(x , y , Zq) =

[aflAa + [ft8]fc, + ip(x
, y , Z

{)) =
(21)

from which the values of kx and k2 may be obtained, and thus

the values of vlf v2, v3 from equations (19).

The method by which the above equations have been derived

for the case of three unknown quantities connected by two

equations of condition is perfectly general and may be ex-

tended to any other number of quantities whose values are

to be obtained from independent observations. In the cases

which actually arise in practice the observation equations and

equations of condition are usually of simple form, the differen-

tial coefficients and the quantities a, b, c, etc., being usually

equal to either 1 or 0.
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Problem. Let the student show by the method of corre-

lates that if the sum of the measured angles of a plane triangle

exceed 180° by a quantity e, the angles must be corrected by

distributing e among them in such a manner that the correction

to each angle is inversely proportional to the weight of the

angle.

To illustrate the application of the principles of the present

section to a numerical problem, we select from the IT. S. C. &
G. Survey Report for 1884, pages 409 *et seq., the following tele-

graphic determinations of longitude, and seek to adjust them

so that they shall be mutually consistent. Each difference of

longitude between two stations was directly observed, so that

the observation equations are all of the form x = m1} x = m2,

etc.," and the values given below are the weighted means of the

individual observations of each series. The probable error of

each determination (see § 12) is placed immediately after the

quantity itself, and the weights of the determinations are

assumed to be inversely proportional to the squares of the

probable errors.

Observed
Stations. Symbol. Difference of

l

Longitude. Vp p

Cambridge, Mass.,
|

Washington, D.C., )

x 23m 41*041 ±o?oi8 0.18 0.032

Cambridge, Mass., >

Cleveland, 0., )
Vo 42 14.875 ±o.038 0.38 .114

Cambridge, Mass.,
|

Columbus, 0., >
*o 47 27.713 ±0.035 0.35 .122

Washington, D.C., ")

Columbus, 0., )

u 23 4G.816±0.038 0.38 .144

Cleveland, 0., >

Columbus, 0., )

wQ 5 12.929 ±0.045 0.45 .202

The five observed differences of longitude give rise to two
rigorous conditions represented by the following equations of

condition

:
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<£(), u +-# — Z — if;(), ic + y — Zz=0

The coefficients in the observation equations being all equal to

unity,

[paa]=pa \_pbb~]=p
y, etc.,

and aj
_d<f>

etc.,
i a=^.JL Q = d ^ 1

<** Vp.'
2

rf2/ Vj>y

' ' dx y/pj

and from these expressions are derived the following values of

the coefficients, together with the sums crx — a x -\-(i^ a2 = a2 +-y82,

etc., which are to be employed as a check upon the formation

of the normal equations for determining the correlates.

Coefficients.

Subscripts. 1. 2. 3. 4. 5.

a

$

5

+ 0.18

0.00

+ 0.18

O

CO

00

o

co

co

odd+
+

-0.35

-0.35

-0.70

+ 0.38

0.00

+ 0.38

0.00

+ 0.45

+ 0.45

Formation of the Correlate Equations.

act ap as PP Ps

+ 0.0324 + 0.0000 + 0.0324 + 0.0000 0.0000

.0000 .0000 .0000 .1444 .1444

.1225 .1225 .2450 .1225 .2450

.1444 .0000 .1444 .0000 .0000

.0000 .0000 .0000 .2025 .2025

+ 0.2993 + 0.1225 + 0.4218 + 0.4694 + 0.5919

Check. 0.4218 0.5919

Correlate Normal Equations.

+ 0.2993 kx + 0.1225 k2 + 0M44 = k
x
= - 8.449

+ 0.1225h + 0.4694 k2 + .091 = fc*= - .078
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The absolute terms of the correlate equations are obtained

by substituting the observed values x
, y , z , u , w in the equa-

tions of condition, and the values of k
lf
k2 may be found from

the correlate equations, either by Gauss's method of substitu-

tion or by any of the ordinary algebraic processes of elimina-

tion. The corrections to x
, y , z , etc., and the adopted values

of the unknown quantities, are now found from

Vl = + 0.032 &, + 0.000 k2
= - S.014 x = 23m 41 s.027

v2 = + 0.000 ky + 0.144 &2 = - 0.011 y = 42 14 .864

v3
= - 0.122 fc, - 0.122 &2 = + 0.064 z = 47 27 .777

v4 = + 0.144\ + 0.000 k2
= - 0.065 u = 23 46 .751

v, = + 0.000\ -f- 0.202 k2
= - 0.016 w = 5 12 .913

The values thus obtained satisfy the rigorous conditions of

the problem, and are the most probable values which can be

obtained from the data given above.

§ 12. The Probable Error. Every intelligent observer

desires to know something of the quality of his observations,

how good or how bad they are ; the computer who has to com-

bine the results of different series of observations should have

some knowledge of their relative accuracy in order to assign

to each series its proper weight ; and the investigator engaged

in a complicated series of experiments desires some criterion

by which to estimate the relative errors of the several parts

of his work, in order to properly apportion his care among
them, giving the maximum attention where the greatest errors

are to be feared. It is evident from the nature of the case

that no absolute criterion of this kind can be furnished, since

any series of observations may be affected with systematic

errors which seriously impair the accuracy of its results but

furnish no indication of their presence. Both observer and

computer do, however, estimate the accuracy of observations

by their agreement among themselves, and that within certain

limits this procedure is correct follows from Gauss's law of

error. If we suppose a very long series of observations

affected only by accidental errors, the values of the unknown
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quantities obtained from the series will differ but little from

the true values (if the series is infinitely long they will be

the true values), the residuals which they furnish will be very

nearly the errors of observation, and the value of h in the

equation of the error curve will furnish a measure of the

precision of the observations as well as a measure of the

smallness of the residuals. On the other hand, if the student

attempts to construct the error curve corresponding to any

short series of residuals, e.g., those of § 10, he will find that

while they give him some information in regard to the curve

there will be much that is arbitrary in its actual construction,

and that many curves can be drawn which will appear to fit

the residuals equally well, i.e. the amount of data in this case

is insufficient to determine more than a rough approximation

to the measure of precision of the observations. If the obser-

vations are affected with systematic errors, the residuals may
be very different from the errors of the observations, and will

then furnish no indication of their accuracy.

It thus appears that any conclusions in regard to the ac-

curacy of a given set of observations must be treated with

caution if they are based solely on the residuals furnished by

the observations. Such conclusions are, in fact, valid only

within certain limits whose general nature is indicated above,

but within these limits the information thus furnished may be

of much value, and it is frequently employed for the purposes

indicated at the beginning of this section.

The measure of precision, h, seems to be indicated by its

name as the appropriate means of expressing the average

accuracy of a set of observations, but in practice it is not so

used, another function of the residuals being found more con-

venient. If in a very long series of observations the residuals

be arranged in the order of their numerical magnitude (with-

out regard to sign), that residual which occupies the middle

place in the series will have as many residuals greater than it

as there are less than it, and in any future series of observa-

tions of the same degree of precision as that here considered,

it will be an even chance that any given residual will be
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greater than, or less than, the middle one above selected. This

middle residual is usually denoted by r, and is rather inappro-

priately called the probable error of the series, the adjective

having reference to the equal probabilities of the occurrence of

residuals (errors) greater than, or less than, r.

It is apparent that the greater the precision of any set of

observation, the smaller will be the corresponding probable

error, but the exact relation which exists between h and r

must be derived from the equation of the error curve. The

symmetry of this curve with respect to the axis of y shows

that the same law of distribution holds for both positive and

negative errors, and that in a very long series of residuals the

probable error r will occupy the middle place among the

positive errors and among the negative errors considered sepa-

rately, as well as among all the errors taken without regard

to sign. Since we are concerned only with the numerical

magnitude of r we may confine our attention to the positive

residuals, and find the"relation between r and h from that half

of the error curve which lies to the right of the axis of y.

Since the probable error is a residual, it must be represented

by the abscissa of some point on the axis of x, and we may
determine this point from the condition that the ordinate

drawn through it bisects the area of that half of the curve

under consideration, since (from the relation between areas

and the number of residuals of a given magnitude developed

in § 4) this is the geometrical equivalent of the statement

that the number of residuals greater than r is equal to the

number less than r. By interpolation from the table in § 4,

the value of the argument corresponding to A = 0.25 is found

to be hx = hr = 0.477, whence the relation between the proba-

ble error and the measure of precision is

r= «fl (22)

The student will observe that in the definition of the proba-

ble error reference is made to a very long series of observations,

and in a series of infinite length the value of r might be found
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immediately from its definition, but in any ordinary set of

observations it is better to assume that the residuals are dis-

tributed in accordance with the law of error, and to determine

the value of r from the relation between h and the sum of the

squares of the residuals, § 5, which gives

= ± 0.477V2 X
|M

We here encounter a difficulty arising from the attempt to apply

to a short series of residuals principles which are rigorously true

only when the series is of infinite length. Suppose the above

expression for r applied to a series of three observations involv-

ing three unknown quantities whose values are derived from

the resulting observation equations. These values will exactly

satisfy the equations, no matter what the errors of the obser-

vations may be, and the residuals being all zero, there will be

found r = and h = 00 , which is absurd. The observations in

this case furnish no data from which to estimate their pre-

cision, and in every such case where the number of observa-

tions is equal to the number of unknown quantities, the

expression for the probable error ought to become indeter-

minate, -. It is therefore customary to put

± 0.674\|W (23)
*n — fx

in which ll denotes the number of quantities whose values have

been derived from the observations. This equation, which is

known as Bessel's expression for the probable error of a sin-

gle observation, being only an approximate one, we may usually

put J in place of the coefficient 0.674. Among German physi-

cists and astronomers, it is quite customary to suppress this

coefficient altogether, and to use the "mean error"

\n — fx

(24)

for the comparison of observations. Geometrically considered,

e denotes the abscissa of the point of inflexion of the error

curve.
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A simpler expression for the probable error may be obtained

by substituting in the equation

0.477

a value of h derived as follows : Let each member of the equa-

tion of the error curve be multiplied by xdx and integrated

between the limits — oo and +oo, giving

xydx ——- I xe~h2x2 dx
00 a/u-*/-00

The value of the first integral in this equation is obviously 0,

since as we pass along the error curve from — oo to + co every

value of y occurs once associated with a negative value of x,

and again with a numerically equal positive value, and for

every negative element xydx in the integral there occurs an

equal positive xydx so that the entire sum is 0. If, however,

we agree to neglect the sign of x and to condsider only its

numerical value, we shall find

X+oo
/»+<»

xydx = 2 | xydQ
oo

'

Jo

and by a course of reasoning precisely similar to that applied

in § 5 to the quantity I x*ydx, it may be shown that 2 I xydx

is equal to the mean of all the residuals taken without regard

to sign. We may therefore write

where the -f- inside the brackets denotes that all of the resid-

uals are to be treated as positive quantities. Putting hx = t

in the second member of this equation and remembering

that here also we are concerned only with numerical values

of x without regard to sign, we obtain

n h-^/^Jo ^VtA 2 J°

Introducing the limits into the integrated expression there

results r _^_ vi ±
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and r = 0.477VS t±J?3
n

(25)

This formula is rigorously correct only when the number of

observations is infinite, and it must be transformed so as to

become indeterminate when the number of observation equa-

tions is just sufficient to determine the unknown quantities,

i.e., when n = /a. This might be accomplished by writing

n — fi in place of n, as was done in equation (19), but it is

customary to substitute in this case Vn(w-/i), which also

renders r indeterminate when n = fx, and gives values of r more

nearly in agreement with equation (23). Making this substi-

tution, we have

rm ± 0.845 [+^L (26)
Vn(w — /a)

which is known as Peters' formula for probable errors. This

formula is very convenient for the numerical computation of

probable errors, but where the number of observations is small

the results furnished by equation (23) are considered more

reliable, but neither formula can furnish a good determination

of probable errors from a small number of observations.

The numerical application of these formulae may be illus-

trated by the following short series of sextant observations for

the determination of latitude.

Observations V vv

43° 4' 40" 19" 3G1

4 24 3 9

4 7 20 400

4 28 1 1

4 59 32 1024

4 39 12 144

4 52 25 G25

4 52 25 625

3 47

4 15

3 36

4 40

4()

L2

51

13

1600

144

2601

169

log [+ 1?]

a.c.,log Vn(n— 1)

log 0.845

logr

r

log [vv
-

]

log(rc-l)

n — 1

log

Mean = 43 4 27

n= 12

[+*']

P*

253

1

[w] = 7703

[w]

log 0.674

logr

r

2.403

8.940-10

9.926-10

1.269

±18".6

3.886

1.041

2.845

1.422

9.829-

1.251

± 17".8

10
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The difference between the values of r found from the first

and second powers of the residuals is small compared with the

uncertainty of each arising from the small number of obser-

vations.

In so far as these observations can be considered as furnish-

ing a value of r, they indicate that in a future series of similar

and equally precise observations, there should be as many
observations furnishing residuals (errors) greater than 18" as

there are observations giving residuals less than 18". The ±
which is commonly prefixed to the numerical value of r, denotes

that the observed quantity is as apt to err in excess as in

defect.

Let the student derive from the residuals given in § 10 a

determination of the probable error of an observed V, noting

that in this case /x = 3.

§ 13. Probable Error of a Function of Observed Quantities.

Let x\ x", x'" denote quantities which have been determined

from observation, and let r', r", r'" be their probable errors.

Let u be a quantity whose value has been computed from the

values of x', x", x"' by means of the relation

u=f(x',x",x">)

It is evident that the precision with which u is determined,

depends upon the precision of x', x", x'", and by a slight exten-

sion of the term "probable error" we may consider the pre-

cision of u to be represented by a probable error, r, and may
inquire the relation of r to r', r", r'".

Since a probable error is one of the residuals or errors of a

very long series, we may obtain the desired relation between

r, r', r", ritl from a consideration of the general relation of any

set of errors v', v", v'", in x', x", x'", to the corresponding

error, v, in u. This relation is

du , . du „ . du
( „ , ,

v =m v+
m<*'

+
a^<

v +etc -

(see § 8) . To avoid the necessity for considering the signs of

v 1

, v
n

, v'", let this equation be squared, giving
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2 [duY2
,2

| (
du \*

v"* I f
du

'

l

dx")
T
V^"

from which all terms involving the products v'v'
1

, v'v'", v"v" f

,

etc., have been dropped for the reason that the probahle error

of u depends upon the average magnitude of v
}
and in the long

run any pair of residuals v', v" will have opposite signs as

often as they have like signs, and will therefore produce an

equal number of positive and negative terms whose effect upon

the mean value of v2 will be very small compared with the

terms containing v'% v'
n

, v'"
2
, which are always positive. Ke-

placing these actual errors by the corresponding probable

errors, we obtain

dx'J \dx"J \dx

and an equation of similar form will express the relation of

the probable error of the function to the probable errors of the

quantities upon which it depends, whatever the number of

these quantities may be.

We proceed to apply this relation to a few simple cases of

frequent occurrence in practice.

(a) The probable error of the sum of n observed quantities.

In this case u = x' -f x" + x'" -\ -f- x
n

and each of the differential coefficients — ,
, etc., equals 1;

dx' dx"

whence r2 = r'
2 + r" 2 + r'"

2 + ••• + rn2 (28)

(b) The probable error of the mean of n observed quantities.

In this case u = - (x' + x" -f *'" H h af)
n

du = du = ctc==
l

dx' dx" n

r2 = — (r'
2 4-r"2 4- r'"

2 4- •••rw2)
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We have here to distinguish two cases. If the x's are all of

equal precision, the r's are equal, and may be represented by a

common symbol 1\ ; whence

If the observations are of unequal precision represented by

weights p', J>",
p'"..p"

we have
p'x' + p

u — V+p"V" + -
..pnxn

M
du _ p'

dx'~ [>] d7'~[p]
etc.

y2 _ LPJ r 2

r = + r
'

V[rf
(30)

where rY denotes the probable error of an observation whose

weight is 1.

The relations here derived between the probable error of a

single determination of a quantity, and the probable error of

the mean of n determinations, may be employed in connection

with equation (23), to determine the probable error of an

adopted value based upon several determinations of a quantity.

Thus, in the general case of observations of unequal weight, if

?*! represent the probable error of an observation of weight 1,

and r the probable error of the weighted mean, we have from

equation (23),

r, = 0.674JM
\ n — 1

> (31)

r =vw
Let the student show that when the observations are of

equal precision and
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u = a (x' - x" - x'") r = ± aV8r'
X 3*'

u = sin— r = ± cos—
a a

Parallax. Weight.

8".855 25

8.842 6

8.838 16

8.809 3

8.860 6

§ 14. Assignment of Weights. Rejection of Observations.

The term weight has been employed in the preceding sections

as a measure of the quality of an observation, but its use is by

no means limited to the case of single observations. Thus,

from an Investigation of the Distance of the Sun, etc., by S.

Newcomb, we select the following determinations of the solar

parallax.

Method by which determined.

Meridian observations of Mars, 1862.

Micrometric observations of Mars, 1862.

Parallactic inequality of the Moon.

Lunar equation of the Earth.

Transit of Venus, 1769.

Each value of the parallax here given is the final result of

an elaborate discussion of many observations, and the weights

indicate the relative excellence attributed to these results by

the author of the investigation. If ?r denote any one of these

values of the parallax, p its weight, and 7r the most probable

value of the parallax, we shall have

7r = fcl = 8".847 (§6)

It is to be noted that this value depends upon the weights

assigned to the individual determinations, and that by prop-

erly selecting the weights, ir may be made to assume any value

whatever between the least and the greatest single determina-

tion. Thus if the weight 100 be assigned to the value 8 ".860,

and to each of the other values the weight 1, we shall find

,r = 8".859, while a weight 100 for the value 8".809 with a

weight 1 for each of the others, makes ir = 8 ".811. Between

these limits the value of tt depends upon the judgment of the
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computer in assigning weights, and this determination of

weights is one of the most delicate questions that arise in the

application of the method of least squares.

A relation between weights and probable errors may easily

be established, which is frequently of service in that it enables

the problem of weights to be stated in a different form. Let x

denote an observation whose probable error is r and whose

weight is 1, and denote by x', x", x"\ etc., observations or com-

binations of observations of the same quantity, whose weights

and probable errors are represented by p', p", p'", r', r", r"',

etc. In accordance with the definition of weights, x' is the

equivalent of p' observations of the same quality as x, and

from the equations derived in the preceding section we have

j r

~v5?

with a similar expression for each of the other quantities-

whence

and gf„£ p" =^ p<» =^ (32)

and, in general, the weights are inversely proportional to the

squares of the probable errors.

It has been sufficiently shown that probable errors derived

from the residuals furnished by a series of observations repre-

sent only the effects of accidental errors of observation, but we
may extend the significance of the term so as to include an

estimate of the effect upon x', x", x,n of systematic errors in

the observations. Let rx and r2 represent those parts of the

probable error which come from these two sources respectively,

and from § 13 we find for their combined effect

and the expression for the weights becomes
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By this device the determination of weights is reduced to an
estimate of the combined effect of accidental and systematic

errors of observation upon the quantity whose weight is

desired, and it was from an estimate of this character that the

weights of the parallaxes given above were derived.

If r' denote the probable accidental error of a single obser-

vation, and the quantity whose weight is p is the mean of n
such observations, we shall have

P =Z^— (34)

— + r2
2

n

from which the constant multiplier r2 has been dropped, since

only relative values of p are ever required. It appears from

this equation that if the systematic errors, r2, are very small

compared with the accidental errors, r', the weight increases

rapidly as the number of observations is increased, but if the

systematic errors are large, the weight is but little affected by

the number of observations; a relation to be considered in

deciding how many observations shall be made to determine

an unknown quantity.

In some cases it may be impossible to form any reliable

estimate of the effect of systematic errors, and results which

have been derived by different methods, or under different cir-

cumstances, may then be given equal weights on the supposition

that they are affected by different systematic errors which it

is equally important to eliminate; but this is equivalent to

putting r2 = oo in the equation for the weights, and it will

rarely happen that this is the best estimate which can be made

for the amount of the systematic errors.

It frequently happens that in a series of otherwise accordant

observations, one or two will be found which differ widely from

the others, and which if included in the final result, will

furnish large residuals. What shall be done with observations

of this kind has long been a vexed question. To reject them

is equivalent to assigning to them the weight 0, and is the

expression of the computer's judgment that they can contribute
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nothing to the accuracy of the result which he seeks to obtain.

In an infinitely long series of observations, errors of any finite

magnitude may be permitted without impairing the accuracy

of the final result, and the existence of such errors seems con-

templated by the theory which we have adopted, since the

equation of the error curve gives finite values of y for all

values of x between the limits — co and + oo . But in the

actual case which arises in practice where a result must be

obtained from a comparatively small number of observations,

a single one of these, if affected with a large error, may make
the final result farther from the truth than any one of the

other observations. On the other hand, cases are by no means
unknown in which a single discordant observation in a series

proves to be nearest to the true value of the quantity sought,

the others having all been vitiated by some common cause

;

and between these extremes an infinite variety of cases may
be found. It must in general remain a matter of doubt

whether a given discordant observation should or should not

be rejected, and the decision made by the computer must be

his judgment based upon all the data available as to whether

more will be gained by rejecting than by retaining it. A knowl-

edge of the way in which observations are made, of the circum-

stances attending the particular observation in question, the

magnitude of the errors which may reasonably be expected

with the given observer and apparatus, or instrument, are

elements which should be included in this judgment ; and the

observer will greatly facilitate its formation by making copious

notes at the time of observation of all circumstances which in

his opinion may affect the quality of his work, and particularly

by noting any abnormal circumstances affecting a single obser-

vation or a part of the observations.

A doubtful observation should be rejected if it is the com-

puter's deliberate judgment that its retention will hurt more
than it will help his final result, but it is never legitimate for

the computer to suppress an observation. A rejected observa-

tion should be included in the statement of his data, and may
properly be accompanied by an explanation of the reasons for
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its rejection, in order that any person interested in the result

may form his own judgment of the data and the manner in

which they have been discussed, and may, if necessary, re-

discuss the observations in accordance with that judgment.

The conclusion of the whole matter of assigning weights to

numerical data may be summed up in the statement that no

mathematical expression will suffice for this purpose, but the

weights must be determined by an exercise of personal judg-

ment, and the wider the knowledge upon which this judgment

is based, the greater confidence will the weights and the result-

ing values of the unknown quantities command.

§ 15. Empirical or Interpolation Formulae. In the preceding

sections attention has been directed to that class of problems

in which the theoretical relation between the observed quanti-

ties and those whose values are to be determined is known

;

that is, an equation of known form exists between them, and

the problem has been to determine the values of the constants

which appear in the equation. But a very different class of

cases now demands a passing notice.

A series of observations is sometimes found to be affected

with errors too great to be explained as the result of unavoid-

able and fortuitous causes, and it becomes apparent that the

law of recurrence of these errors must be determined before

the observations caii be made to yield any valuable results.

The American parties which were sent out in 1874 to observe

the transit of Venus were provided with instruments for the

determination of their local time, of such a character that the

accidental error of a determination from a single star might

fairly be estimated at s
.05 or S

.06, but results obtained from

observations of different stars varied among themselves by

more than ten times this amount. An inspection of the dis-

crepancies having shown that they depended in some way upon
the distance of the observed star from the zenith, it was found

by trial that the error at any zenith distance, z, could be repre-

sented by the expression

E = ± \ a cos z — b sin 2 z
\
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where a and b are constants whose values were found from the

observations themselves. The physical cause of these errors

was subsequently found to be the bending of the instrument

under its own weight, but it is to be noted that the above law

of recurrence of the errors was determined first, the cause

afterwards.

Expressions of this kind are sometimes called interpolation

formulae and sometimes empirical equations; the one term hav-

ing reference to their use, the other to their derivation. They
are of very general use in all branches of physical science,

since they may be made to serve as a convenient summary of a

vast amount of numerical data, and one of the most important

applications of the method of least squares is in determining

the values of the constants which enter into such expressions.

The problems treated in §§ 1 and 10 both belong to this class,

and the following expression for the magnetic declination at

Washington, D.C., derived by Mr. C. A. Schott * from a series

of observations extending over ninety years may serve as a

further illustration

:

Mag. Dec. = 2°AT + 2°.50 sin [1°.40(T-1850) - 14°.6]

where T denotes the year for which the declination is required.

When the cause whose effects are to be represented by an

equation is known, the form of this equation can usually be

derived by mathematical analysis ; but where empirical formulae

are employed other methods must be resorted to. The simplest

of these is a graphical representation of the errors or other

data under consideration. For this purpose let the errors

represent ordinates, and the values of any variable upon which
they are supposed to depend, the corresponding abscissas. Let

points be plotted with these ordinates and abscissas as was
done in obtaining the form of the error curve, Figs. A, B, C, D,

and let a smooth curve be drawn through these points either

free-hand or by the aid of a draughtsman's " irregular curve."

The distance of each plotted point from the curve, measured
along an ordinate, is the residual corresponding to the point,

* U. S. C. & G. S. Report, 1882, p. 258.
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and in accordance with the principle of least squares the curve

should be so drawn as to make the sum of the squares of these

residuals as small as possible, without unduly complicating the

curve. If the variable has been properly chosen it will in

many cases be found possible to draw a simple curve which
shall represent the data within the limits of the accidental

errors of observation, and as this curve is the graphical rep-

resentation of the law required, its equation, y =/(ic), is the

analytical representation of that law. In this manner the

form of the equation treated in § 10 was obtained.

In other cases it will be possible to draw a smooth and sim-

ple curve which shall not represent the data within the limits

of accidental error of the observations, but about which the

points will be grouped, alternating from one side to the other

in a systematic manner. Let the excess of the ordinate of any

point over the corresponding ordinate of the curve be plotted

with the given abscissa in a new curve. The two curves thus

constructed will together form the graphical representation of

the law of the data, and the analytic expression of that law

will be */ v . j / \

if y =f(x) and y = 4>{x) are the equations of the two curves

respectively.

In some cases the curves themselves will be a sufficient

representation of the data, and it will be unnecessary to deter-

mine their equations since the value of y corresponding to any

given value of x may be obtained by direct measurement. In

other cases the curve will be chiefly serviceable in suggesting

the probable form of an equation between the observed quan-

tity and a variable upon which it is supposed to depend, or in

showing that no simple relation exists between them. Two
forms of equation are of such frequent use in this connection

that they deserve especial notice.

If the plotted curve does not differ very greatly from a

straight line, the relation of the variable x to its function y
may be represented by

y = a + bx + ex2 + dx3 + etc. (35)
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This equation contains the first few terms of an infinite

series by which a limited arc of any continuous curve can be

represented, and since the actual relation between y and x

could be represented by a curve, if its mathematical expression

were known, it follows that the above equation can be made to

represent this relation over a certain range of values of x, by

assigning proper values to the coefficients. The number of

terms of this series which should be taken into account, and

the limits of x beyond which the equation is not applicable,

depend upon the actual relation between y and x, and are

therefore unknown ; but, in general, it is not well to attempt to

use this equation for large values of x, or when more than

three or at most four terms are required. Its application in a

simple case is illustrated in the problem of § 1, where y and x

being replaced by the length of the bar and its temperature, it

is assumed that their relation can be expressed within the

range of temperature over which the observations extend, by

the first two terms of the series.

The second type of equation above referred to is

x 2 x 3 x
y = a + ax cos—h a2 cos f- a3 cos \- etc.

m m m

+ bx sin—(- b2 sin \-b3 sin f- etc.
m m m

(36)

in which m is an undetermined constant expressed in the same

unit as x ;
— is therefore a ratio, or absolute number, which
m

in the application of the equation to numerical data must

be transformed into circular measure by multiplying it by
1 ^o°^— = 57°.29578. This form of equation may be made to

IT

represent any relation whatever between finite values of y and

x, including those cases in which y is a discontinuous function,

but it is especially advantageous when y is a periodic function

of x, i.e., one in which the same values of y recur for values of

x, separated by a constant interval, t, called the period of x,

so that
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f(x)=f(x + T)=f(x + 2T) = ...=f(x + nr).

The simplest type of such a function is y = sin a;, the period

in this case being t = 360° ; e.g.,

sin 10° = sin (10° + 360°) = sin (10° + 720°) = etc.

When y is such a function the constant m should be put equal

to the period divided by 2ir, m — ^-\ in other cases the value
2/TT

of m should be so taken that the greatest value of — included
m

among the data shall not exceed ic. The application of this

formula may often be facilitated by noting that if the relation

between y and a; is such that /(+ x) = /(—#), the sine terms

all disappear, and the equation reduces to

y = a + ax cos— 4- a2 cos— + etc. (37)m m
while if f(x) = —/(—#)> tne cosine terms vanish, and the

equation becomes

y = b + &! sin- + b2 sin— + etc. (38)m m
The several forms above given to this type of equation are

those most convenient for use when the values of the coeffi-

cients a, b, etc., are to be determined, but after their numerical

values have been found it is advantageous to transform the

equation as follows : Introduce the auxiliary quantities

n
, %, n2 , N1} N2 , etc.

defined by the relations

n = a nx cos iVi = ax n2 cosN2 = a2

rix sinNx
= by n2 sinN2 = b2

and the equation becomes

y = n + nx cos f^- - N^j + n2 cos(^ - N2\ + etc. (39)

each pair of terms of the original equation being here replaced

by a single term. The expression for the magnetic declination
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at Washington given on p. 59 is of this type, as may be seen

by writing it in the equivalent form

Mag. Dec. = 2°.47 + 2°.50 cos [1°.40(T-1850) - 104°.6]

The mode of applying this form of equation may be illus-

trated by means of the following data selected from the series

of observations whose residuals are plotted in Fig. C. The
observed quantity, B, is the difference of stellar magnitude

(brightness) between the planet Saturn and his satellite Iape-

tus. The quantity I given with each observed B fixes the

position of the satellite in its orbit at the time of observation,

and is analogous to the variable angle 6 in a system of polar

coordinates.

1. B. Residual. I. B. Residual.
m m m

10° 10.82 -0.28 200° 10.66 + 0.28

70 11.81 + 0.22 230 9.87 -0.21

110 11.69 -0.02 270 10.43 + 0.21

140 11.42 -0.03 310 10.48 -0.15

B is here seen to run through a complete cycle of values

between the limits 9.87 and 11.81, while I varies from 0° to

360°. We shall therefore endeavor to represent B as a periodic

function of I whose period is 360°. In accordance with this

assumption we put

x I 180° ,

2tt

and taking into account the first five terms of the series, the

several observations furnish the following

Observation Equations.

10.82 = a + 0.98^ + 0.17 bY + 0.94a2 +- 0.34 b2

11.81 = a + 0.34 ax -f 0.94 bx
- 0.77 a2 +- 0.64 b2

11.69 = a - 0.34^ +- 0.94 b, - 0.77

a

2
- 0.64 b2

11.42 = a - 0.77 ax + 0.64^ + 0.17 a2
- 0.98 b2

10.66 = a - 0.94 ax
- 0.34\ + 0.77 a2 + 0.64 b2
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9.87 = Oo- 0.64 ax
- 0.77\ - 0.17 a2 + 0.98 b2

10.43 = Oo + 0.00 ax
- 1.00 6X

- 1.00 a2 + 0.00 &2

10.48 = a + 0.64

a

x
- 0.77 6X - 0.17 a2 - 0.98 62

The solution of these equations will be found in the follow-

ing section. The values obtained for the constants are

a = 10.92, ax = + 0.15, &1== + 0.74, a2 = -0.04, 62 = -0.18

Introducing the constants n, N, and determining their values

from the relations

n = 10.92 % cosNx
= + 0.15 n2 cosN2 = - 0.04

7ij sin iVi = + 0.74 n2 sin JST2 = — 0.18

the equation becomes

B = 10.92 + 0.76 cos(Z - 78°.5) - 0.18 cos (21 - 77°.5)

The residuals obtained by comparing the values of B computed

from this formula with the observed values are given above

with the data.

Abundant data for exercise in deriving empirical formulae of

this kind may be found in the United States Coast and Geodetic

Survey Report for 1882, pp. 218-257.

§ 16. Approximate Solutions. It is often desirable to obtain

from a series of observations, as rapidly and with as little labor

as possible, a set of values of the unknown quantities involved

which shall be fair approximations to their most probable val-

ues, but in which the highest degree of accuracy is not required.

In cases of this kind the least square treatment of the obser-

vation equations as illustrated in § 10 is too long and laborious,

and the following method may often be substituted for it with

advantage.

Let there be any number, e.g., three, unknown quantities in-

volved in a set of observation equations of the form

ax -f by + cz -f- n = Weight = p

and let each of these equations be multiplied by its weight,

giving the group of equations,
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axx + b$ + cxz + nx
= kx ^

a2# + b2y + c2z -f n2
= &2 > (40)

etc. etc. etc. etc. J

Multiply each of these equations by the undetermined con-

stant k placed opposite it, and let the sum of all the result-

ing equations be formed. By the use of the summation

symbol, [ ], this sum may be written

[ka]x + [kb]y + [kc]z -\-[kn] =

Since the several values of k which enter into this equation

are entirely arbitrary it would be permissible to assign to them
such values that \_kb~\ and [kc] should each equal 0, which

would give at once

—IS <4i >

This, however, is not practically advantageous on account of

the labor involved in determining the values of A;. We there-

fore put

x=-\M_my-mz (42)[ka] [kerf [kd]
v

and, limiting the values of k to + 1 and — 1, assign them in

such a manner that [ka] shall be made as great, and [kb'],

[kc'] as small as possible. In this manner the coefficients of

y and z may often be made so small that if approximate values

of y and z are substituted in equation (42), they will furnish

a sufficiently accurate value of x ; since the effect of the errors

of these approximations will be much diminished by the small

coefficients by which they are multiplied.

The value of y may be found in the same manner by select-

ing a set of k's which shall make [kb~] large and [ka], [kc]

small, and similarly for z. Two or three trials may be required

before sufficiently close approximations to the values of x, y, z

are obtained, but these trials are rapidly and easily made, and,

if necessary, in exceptional cases the summation equations

may be written in the form
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[k'a > + [&'& ]y + [fc'c > + [fc'w ] =
[k" a^x + [k"b]y +[k" c~]z + [k"n] = )

[k'" d]x + \kw b~]y + [ft'" c]« + [&"' n]=

and the equations solved by any of the methods of elementary

algebra, but in every case the values of k, +1 and —1, should

be so chosen that in the first equation the coefficient of x, in

the second equation the coefficient of y, and in the third equa-

tion the coefficient of z, shall be made as large, and all of the

other coefficients as small as possible.

By this mode of solution each observation with its proper

weight is included in the determination of the unknowns, but

since the principle of least squares has not been taken into

account, it cannot be expected that the resulting values will

be the best that the observations can be made to yield.

To illustrate the mode of solution we recur to the observa-

tion equations contained in the preceding section and putting

Oq = 10.00 -f- a write them as follows, placing the several val-

ues of k at the right of each equation.

cosZ sinZ cos2Z sin2Z

0.82=a+0.98o1+0.1761+0.94a2+0.34&2

1.81=a+0.34a1+0.9461-0.77a2+0.6462

1.69=a-0.34a1 +0.94&1-0.77a,-0.64&,

1.42=a-0.77a1+0.64&1+0.17o,-0.98&,

0.66=a-0.94a1
-0.346

1+0.77o2+0.64&2

-0.13=a-0.64a1
-0.77&

1
-0.17a2+0.98&2

0.43=a+0.00o1
-1.006

1
-1.00a2+0.00&2

0.48=a+0.64a1-0.7761-0.17a2-0.98&2

The summation equations obtained from this group are

:

+ 7.18 = 8 a - 0.73 ax
- 0.19 bx

- 1.00 a2 + 0.00 b2 )

- 0.10 = a + 4.65 a, - 1.13 b, - 1.00 a2 + 0.00 b2

+ 4.30 = a + 1.15 a, + 5.576! + 0.140, + 0.00 b2 > (44)

- 0.42 = a + 0.53 Oi - 0.41 bx + 4.42 o2 + 0.00 b2

- 0.86 = 0a + 0.21ai + 0.196, + 2.54 o2 + 5.20 b2

k' k" k'" fc** k*

+1+1+1+1+1
+1+1+1-1+1
+1-1+1-1-1
+1-1+1+1-1
+1-1-1+1+1
+1-1-1-1+1
+1+1-1-1-1
+1+1-1+1-1
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and these correspond to the normal equations of a least square

solution. To apply the method of approximations to the solu-

tion of this group of equations, we write them in the form

:

a = + 0.897 + 0.091% + 0.024 &x + 0.125 a2
^

a, = - 0.022 + 0.000% + 0.243 b, + 0.215 a2

&x = + 0.772 - 0.206% + 0.000 bx
- 0.025 a2 > (45)

a2 = - 0.095 - 0.120 a, + 0.093 bx + 0.000 a2

b2 = - 0.166 - 0.040 ax
- 0.036 &, - 0.488 a2 >

The divisions required in making this transformation were

made by the use of Crelle's Reclientafeln.

By operations which can be performed mentally, we obtain

the following sets of approximations to the values of

i. ii. in.

% 0.0 + 0.2 + 0.15

&1 + 0.8 + 0.7 + 0.74

a2 -0.1 -0.0 -0.04

and substituting in equations (45) the values given under in.

we find the adopted values

a = 10 + a = 10.92 % = + 0.15 a2
= - 0.04

bx
= + 0.74 b2

= - 0.18

which were employed in the preceding section.



INDEX TO FOKMULjE.

y = -A=«-*" § 3,4
Vtt

JL-W ... 55
2h2 ~ n

S

*o =^ §

Dp]

laa] x + [a&] y 4- [«c] 2 + [arc] =0 § 7

[aft]^i|C(a-+ft)*l-([«a3+ [»3)| §9

[as] =[aa] + [a&] + [ac]+ ... +[aw] § 9

[6c .l]==[&c]-g|[ac]. . . § 9

[m.2] = [cn.l]-g^[6n.l] § 9

[aa']Jc1 +[aP']k2 + <l>(x ,yi)
,Z ) = §11

r = ^=±0.674,|S:=±0.845_I±i= . . §12

r =^ =-^ §13
Vn V[p]

»' : »" :
»'" = i-

: J- :— § 14

2/ = a+ 6a?4-cic2 + etc §15

y = w -|- ri! cos f J7jj+?i2 cosf iV2 J+etc. . . §15

_..iM+i«L+igif * =± i .... no
[fca] [Ara] [fca]



Latin Text-Books.
INTROD. PRICE.
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Sallust's Catiline 60
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Elements of Physics 1.12
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