
m













AN ELEMENTARY TREATISE ON
CURVE TRACING



:0^M
MACMILLAN AND CO., Limited

LONDON • BOMBAY • CALCUTTA • MADRAS
MELBOURNE

THE MACMILLAN COMPANY
NEW YORK • BOSTON • CHICAGO

DALLAS • SAN FRANCISCO

THE MACMILLAN CO. OF CANADA, Ltd.

TORONTO



AN ELEMENTARY TREATISE

ON

CURVE TRACING

BY

PERCIVAL FROST, Sc.D., F.R.S.

FELLOW OF king's COLLEGE
FORMERLY FELLOW OF ST. JOHN'S COLLEGE, CAMBRIDGE

FOURTH EDITION

REVISED BY

R. J. T. BELL, M.A., D.Sc.

LECTURER IN MATHEMATICS, UNIVERSITY OF GLASGOW

MACMILLAN AND CO., LIMITED

ST. MARTIN'S STREET, LONDON

1918



COPYRIGHT.

First Edition printed 1872.

Second Edition 1892.

Third Edition 1911.

Fourth Edition 1918.

GLASGOW : PRINTED AT THE UNIVERSITY PRESS

BY ROBERT MACLKHOSE AND CO. LTD.



Engineering &

Mathematical

Sciences

Library

QA

PREFACE
«

I DO not much like the idea of writing a preface, but I

feel myself obliged to say a few words on the publication

of what I have called a treatise, the term being very likely

a misnomer.

Although my subject is Curve-tracing and not Curves, I

am aware that some complete branches of this art are not

alluded to at all.

The student might expect, in a treatise upon this subject,

to find methods of drawing Polar Curves, Rolling Curves,

Loci of Equations in Trilinear Coordinates, and Intrinsic

Equations ; he might also expect to find interesting Geo-

metrical Loci discussed ; these, and many other things

immediately connected with the tracing of curves, have

been deliberately omitted, for reasons which I consider

good.

A treatise, if I had ventured upon it, at all comparable

in exhaustive qualities with the excellent one of Salmon on

Curves of Higher Orders, would have demanded, on the

part of the student, far more extensive reading than I sup-

pose him to possess ; such a treatise would have required an

advanced knowledge of Differential and Integral Calculus,

of Higher Algebraical processes which do not appear in

elementary treatises on Algebra, and of the science of pro-

jections, to understand which involves a familiarity with

Solid Geometry, beyond the standard to which I have

supposed the student to have attained.

My readers must not be disappointed if they do not meet

with an historical survey of the researches which have
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been made in old times on modes of generation and pro-

perties of particular curves; and in modern times on th

singularities of curves; such a survey would have beer

irrelevant to the object which I have proposed to myself,

I acknowledge myself, nevertheless, indebted to many
|

of those old mathematicians for ideas, and especially to
|

Cramer, for many curves which I have employed in illus-
|

trating points on which I have been engaged.

In cutting off so many vital parts of a complete treatise,
i

I have to shew that I do not fall to the ground by sawing

on the wrong side the branch on which I am sitting; I

shall therefore explain, in as few words as I can, the objects

which I have had in view in my work as it stands.

In order to make any rapid progress, in after years, in

all the difficult subjects to which mathematical analysis is

applied, it is absolutely necessary that, by some means or

other, a student should, as early as possible, make himself

familiar with all the ordinary instruments of his trade,

such as he handles when he studies Algebra, Trigonometry,

and Algebraical Geometry ; his tastes may carry him with

greater impetus in one direction than another, but he should

remember that it is necessary to be strong all round, and

even against the grain he should use efforts to avoid having

weak points.

He must practise himself, while he is young and his mind

flexible, in all sorts of analytical processes and geometrical

artifices. The solution of a great number of equations

may be looked upon as one of the best exercises of one sort

of faculties, and familiarity with the Binomial Theorem and

cognate subjects as essential, such as approximation to roots,

expansion of a variety of functions in Algebra and Tri-

gonometry, reversion of series, etc., accurate numerical

calculations not being avoided.

I have reason to think that this kind of preliminary pre-

paration for the study of the higher branches of mathematics

has been much neglected in later years, and I am fortified

in this opinion by observations made by Examiners of the
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greatest experience, who complain both of a want of power

of work and of a want of individuality in the manner in

which particular problems are attacked ; this they attribute

to defective early training and the omission of that practice

which I have described as necessary.

Whether this practice has been neglected principally in

consequence of the temptation to push forward to certain

physical subjects, which have been recommended for the use

of schools, I cannot say ; but I -have no doubt that the

feeling of dignity acquired by entering upon the field of

the Physical Sciences has enticed many a student from a

course which, if pursued, would have enabled him to do

in a few weeks what it has taken him many months to

puzzle over.

If there is time for a student not only to attend to the

dry work of polishing, but also to make himself acquainted

with a little Mechanics and Hydrostatics, he should by all

means do so ; but everyone who has examined in public

schools knows how little time there is for the study of

Mathematics, and how sensible the mathematical masters

are of the insufficiency of this time. Looking, therefore,

upon the total amount of energy as nearly constant, I should

have no hesitation in reserving for some future time the

study of the Physical Sciences, which will not eventually

suffer ; whereas, to attempt after a certain age to acquire

ease in mathematical operations is like a grown man trying

to learn the violin.

Having, then, a distinct feeling of the absolute necessity

of developing skill and power—I will not add cunning

—

and, at the same time, being perfectly sensible in what dry

places the poor spirit of a student has been condemned to

wander in the performance of his duty, I have selected the

subject of this work in order to relieve him in the dull

work involved in his preparation for climbing heights, by

taking him along a very pleasant path, on which he may
exercise in an agreeable way all his mathematical limbs,

and, if he keeps his eyes open, may see a variety of things
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which it will be useful to have observed when his real work

begins.

For the subject, which I have chosen with this object in

view, presents so many faces, pointing in directions towards

which the mind of the intended mathematician has to

radiate, that it would be difficult to find another which,

with a very limited extent of reading, combines, to the same

extent, so many valuable hints of methods of calculations

to be employed hereafter, with so much pleasure in its

present use.

For example, the subject of Graphical Calculations is

coming more into use every day, and is applied with success

to many difficult problems in Statics, Engineering, and

Crystallography ; hints of this the student will find in the

practical solution of divers equations and in the determina-

tion of the number of their real roots, which are obtained

by graphical methods with great facility.

Again, the methods of successive approximations which

are employed in Optics and Astronomy are illustrated in

the process of finding asymptotes and approximations to

the forms of curves at a finite distance.

The comparison of large and small quantities of difierent

orders of magnitude contains the staple of many of the

most important applications of Mathematical Analysis ; the

Lunar and Planetary Theories depending almost entirely

upon such considerations of relative magnitude.

The habit of looking towards an infinite distance, and
discussing what takes place there, will render less startling

a multitude of conceptions having in them a tendency to

produce a feeling of vagueness, such, for instance, as the

treatment of the mechanical efiect of a couple as synony-

mous with that of an infinitely small force acting at an

infinitely great distance.

As an important point, I would mention the tentative

character of the inverse problem in which the form of a

curve being given, its equation is investigated ; the kind of

uncertainty which will remain on the mind on account of
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defective estimation of magnitudes ; and the necessity of a

selection of what may appear the best of many possible

solutions ; all this will prepare the student for the dis-

appointment which, having perhaps a wrong notion of what

is meant by calling mathematics an exact science, he will

feel in the ccmflict of theories by which it is attempted to

reconcile t^e results of experiment in such subjects as

Heat, Lights, Electricity, and Molecular action generally ;

for an instance of this I may refer to the battle of philo-

sophers about the direction of vibration of the ether in

Plane Polarization.

The very uncertainty which exists in these subjects, the

necessary balancing of evidence, and the difficulty of making

up the mind as to what is to be believed, place such subjects,

in the opinion of one at least of our greatest philosophers,

among the best for the training of the intellect.

Looked upon as a special preparation for a special subject,.

I hope that my treatise may be considered useful in having

given clear ideas, when the student enters upon the syste-

matic treatment of the properties of curves ; especially

since the classification of curves according to degrees, and

the subdivision of curves of the same degree into species is

now being taken in hand by some eminent mathematicians.

With regard to the rejection of methods supplied by the

Differential Calculus, I may observe that since the equations

whose loci are investigated are rational equations, and never

rise to a high degree, little would have been gained by the

employment of such methods, since the Binomial Theorem

is sufficient for all my purposes, and as ready in its applica-

tion ; independently of the consideration that I suppose

myself to be instructing a student whose reading has been

confined to very narrow limits.

As to the last chapter on Inverse Methods I trust that it

will be looked upon as only a sketch. I have no doubt that

the subject of it is capable of considerable perfection, and I

shall be glad to have commenced, however defectively, so

instructive a study.
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To save the student trouble I may observe that I have

used, as sufficiently near approximations in estimating their

values, J^ =h J^ =h x/7 = f. J^ = h J^^^h^', and,

with a view to the graphical solution of equations, I should

advise him to practise himself in drawing a good parabola

and in tracing readily the hyperbola from the equation

xy = cix-\- by + c for a variety of values of a, b, c.

I may mention here that I have used the symbol (a, /3)

for 'a point whose coordinates are a. and /3'; and instead of

speaking of a curve as ' the locus of the equation, /(c», y)= 0,'

or as ' represented by the equation,' I have called it simply

the curve f{x, y) — 0.

For obvious reasons I have represented the fraction -

by ajb, also s is used for ' is equivalent to.'

In concluding this preface, or apology, I desire to say

that I have read, with much advantage, some notes on

Newton's enunciation of Lines of the Third Order by

C. R. M. Talbot; and that I am indebted for some valuable

hints to the late Professor Clifford ; but, especially, I must
acknowledge myself in the highest degree indebted to two
gentlemen, Mr. H. G. 8eth Smith and Mr. G. L. Rives, of

Trinity College, for their extreme kindness in guarding me
against errors, when I was preparing my first edition. The
nature of the subject rendered it extremely difficult to avoid

mistakes ; and, although very great pains have been taken to

give correct drawings of the large number of curves which

have been discussed, I am aware that in this edition there

is still much that is open to censure.

Cambridge, January^ 1892.



PREFACE TO REVISED EDITION

The present edition of Frost's Curve Tracing does not differ

from previous editions except in places where alterations

were necessary to remove ambiguities or to correct mistakes.

No effort has been spared to detect errors in the; analysis as

well as in the diagrams, and it is hoped that this edition

will be found to be comparatively free from inaccuracies.

In the forty-five years that have elapsed since the book

was first published, graphical work has taken an increasingly

prominent place in mathematical instruction ; so that to the

modern student a few parts of the work may appear to be

very elementary. The reader of moderate mathematical

attainments will, however, always find in its perusal much
that is interesting and instructive, while there is no other

book that contains in such compact form the detailed

discussion and the diagrams of so many beautiful curves.

To facilitate the use of the volume as a work of reference,

a classified list of the curves and an index have been added.

R. J. T. B.

Glasgow, November, 1917.
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AN ELEMENTARY TREATISE ON
CURVE TRACING.

CHAPTER I.

INTRODUCTOKY THEOREMS. DEFINITIONS.
TRACING BY POINTS. SYMMETRY.

PLATE
1. In order to understand this work on the tracing of i.

curves whose equations are given in Cartesian coordinates,

all that is required of the student is that he shall know the

ordinary rules of Algebra as far as the Binomial theorem,

the fundamental theorems of the Theory of Equations, and

the general methods employed in Algebraical Geometry.

Since my object is neither to arrange the curves into

classes, nor to shew systematically by what transitions

one curve can be transformed into another by gradual

changes of constants, nor to investigate properties of the

curves, except incidentally, it will not be necessary to have

much knowledge of what is called Higher Algebra, nor

of Algebraical Geometry of a higher kind than that which

simply relates to the Conic Sections.

It would be some advantage to have read the first

section of Newton's Principia, but I hope that questions

concerning limits and curvature will be made clear inde-

pendently of such reading.

2. There are many reasons why at this point of his

mathematical studies a student should have his attention

directed to this subject, in a general way, without any
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I. . attempt to do for curves of higher degrees what has been

done so completely for curves of the second degree.

He will, for example, find himself better able to appreciate

the illustrations which are used to make clear many theorems

of the Differential Calculus, Theory of Equations, etc.; he

will have definite ideas of the relative magnitudes of small

quantities, and of infinitely great quantities : and especially

he will become skilled in making correct approximations

to the values of quantities which cannot be found exactly,

to any degree of accuracy which may be required.

And, at the same time, I hope that he will have much

to interest him in the great variety which this application of

Algebra to Geometry will open out to him.

INTRODUCTORY THEOREMS.

3. In order to prevent interruption in the course of the

work as much as possible, I shall call attention to a few

propositions with which some of my readers may not be

familiar.

(1) If a, (8, ... be the n values, real or imaginary, called

roots, which make f{x), any rational or integral function

of X, vanish, then f{x) will be indentically equal to

a {o:— cl){x — ^) ... to n factors,

supposing a to be the coefficient of the highest power of x

infix); consequently, the coefficient of a;""* in fix)ja is the

sum of the n roots with their signs changed, that of xJ'~- is

the sum of the products taken two together, and so on..

(2) If F{x, y) denote a homogeneous function of n
dimensions of the form aif^+ hxy'"~'^ -\- ...-{- gx'''y''~'' -{ . . . + 'px''\

and m^, m.,... be the n roots of ai"-f 6f'"^+ ...-|-ji> = 0,

F{x, y) will be identical with a(y — m^x)(y — m^o:) ... , and

the equation F(x, y) = will represent n straight lines, real

or imaginary, passing through the origin.

If we write y^ for y, F {x, y-) will be a homogeneous

function of x and ?/-, and will represent a series of parabolas,

corresponding to the n values of i/"" : x.
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PLATE
(3) If f{x, y) and ^{x, y) be homogeneous functions of i.

X and y, each of n dimensions, and x/l = y/vi = r, then

f(x, y) _ ax'^+ hx'" -'?/+...+ hy"" _ f(l, m)
(f(x7y)

^
oca;"+ ^x" -

'2/ + • • . + Ky''
~

<I>{1,
m)

"

(4) In order to shew what is the form of a curve, whose

equation is given, in the neighbourhood of any point (a, ^),

it is convenient to obtain an equation for which the origin is

(a, ^) and the direction of the axes the same as before ; this

transformation is effected by substituting a+ ^ and /3+ >?

for x and y. Since the equations with which we have to deal

are never of a very high degree, this can be done, in particular

cases, as easily by common algebraical methods as by any

other ; but, for the sake of general statements, it is well to

notice the law of formation of the coefficients in the ex-

pansion of /(a;+ ^), where /(«) is a rational integral function

of X. This law is given by the differential calculus, but

for the student who is not acquainted with that calculus,

the law," in the case we are considering, may be established

as follows

:

Suppose gx^ to be one of the terms of f{x), then the co-

efficients of ^, 1^^ }^^ ... in gix+ ^y, given by the binomial

theorem, are grx^~^, gr{r— l)x^~'^, gr{r— l)(r— 2)x^~^...

and similarly for each term of f{x) ; hence, if f'{x) be the

coefficient of ^, f\x) is obtained from f{x) by multiplying

each term by the index of the power of x in it, and then

diminishing the index by unity. The coefficient of i^^ is

obtained from /'(a?) in the same way as/'(«) from /(a;), and

is written f"{x), and so on, whence

f{^+i)=f{^)+fX^) i-^hf"('^)i'+-

(5) If u = ^,1+ ^^„-i -f . . . + it^.+ . . . -f 2(i+ Uq, where iiXs<in)

is a rational homogeneous function of the s*'' degree, the curve

u = (i) and the straight line lx+ 'my = l (ii) intersect

in n points, real or imaginary. For, the values of x and y
being the same at every point of intersection, we may
eliminate x ov y between (i) and (ii), and the resulting

equation, being of the ii*'* degree, will have n roots ; or
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I. . we may make the equation (i) homogeneous, by means
~~

of (ii), obtaining

u^-\-u^.^(lx+ my)-\- . . . +UQ{lx+ my)''= i),

which, by the theorem (2), represents n straight lines through

the origin. Any other combination of the two equations gives

rise to a curve which passes through the n points of intersec-

tion. An application of this theorem shews that, when we
have tried to trace a curve, if we see that some straight lines

could be drawn which would cut the curve in more points

than the degree of the curve, there must have been some-

thing wrong in the work.

4. The following examples serve to illustrate the

theorems given above.

Ex, 1. Suppose we wish to find the form of the curve

2y+x^-6x+ o = 2y+ (x-l){x-+x-5) =

in the neighbourhood of (1, 0), for x we write 1 -f ^, ^ being

the abscissa with a new origin (1,0); then 2y = 3^— 3^-— ^^.

Considering points which correspond to numerically small

values of ^, as, for instance, ^=tV' ^^^ three terms in the

value of y being then in the ratio 1 :
jL

:
^i^^-,

2/ = ^(^— ^-)

very nearly. The curve is therefore below the line y = #^,

whether ^ be + or — , and more and more nearly coincides

with it as ^ diminishes and ultimately vanishes. The

Fig. 1. shape near (1, 0) is given by fig. 1.

Ex. 2. Consider the curve x^-i-y^— 3axy = 0, and let the

three points in which it is intersected by a straight line

lx-\-my = l be P, Q, R By the theorem (5) the three radii

OP, OQ, OR are given by x^ -\-
y^ -Saxy{lx-\- my) =0{i), so

that if 6, (p, \//- be the inclinations of these lines to Ox,

tan tan ^ tan x/r = — 1

.

If l = m, the inclination of one of the radii, suppose OP,
will be 135°, and since tan <p = cot\fr, OQ and OR will be
equally inclined to Ox and Oy. For the shape of the

curve, see fig. 2, Plate v.
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DEFINITIONS.
PLATE

5. The following definitions are required

:

i-

A point of inflexion is a point at which the tangent to

the curve cuts the curve, so that the curve bends as in the

figure. Fig. 2.

A midtiple point is a point in a curve through which

more than one distinct branch passes ; a multiple point may
be double, triple, etc., as in the figures. Figs. 3, 4.

A point of osculation is a multiple point through which

two branches pass which have a common tangent at that

point. Fig. .5.

A cusp is a point at which two branches of a curve touch,

but through which they do not pass.

A cusp of the first species, called a ceratoid cusp, is one

in which the branches lie on opposite sides of the common
tangent. Fig- 6.

A cusp of the second species, called a raniplioid cusp, is

one in which the branches lie on the same side. Fig. 7.

A conjugate point is an isolated point, whose coordinates

satisfy the equation, but through which no branches pass,

such as a circle or ellipse would become if the diameter or

axes were made indefinitely small.

All these points are called Singular Points.

An asymptote of a curve is a line towards which the

curve finally approaches, as we recede from the origin to an

infinite distance, and from which the distance of points on

the curve becomes less than any assignable quantity.

An asymiptote may be either curvilinear or rectilinear.

When a rectilinear asymptote is meant, this condition of

indefinite approach is supposed to hold in every case.

A proper curvilinear asymptote satisfies the same condi-

tion, but it is usual, for want of a better term, to call any

curve, which serves as a guide to the direction of the flexure

in an infinite branch, an asymptotic curve.
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I. 6. The most rudimentary way of tracing curves is to map
clown a number of points whose coordinates satisfy the

equation of a curve, the points being taken in some order,

and the number so large that no branch may escape ; if

there be a doubt how to fill up any of the intervening

spaces, more points must be interpolated.

Ex. 1. Take the curve y = x(x^—l).

64?/ = 0, -15, -24, -21, 0, 45, 120, 231, 384.

If the sign of x be changed, that of y will be changed, the

magnitudes being unaltered.

Fig. 8. If these points be mapped down as in the figure, a rough

picture of the curve can be drawn without investigating the

exact angles at which the curve cuts the axes, or the exact

points at which the tangent to the curve is parallel to

the axis of x, which we shall see is somewhere between

X = ^ and f , say about f

.

Ex. 2. Again, take the curve x^— Saxy^-]-2ay^ = 0. Al-

though we cannot solve the equation with regard to x or y,

we can obtain a number of points by assuming y = zx,

whence x = (S— 2z) z^a.

When
2 = X X A I A3 7_ 2

32x = 0, 5a, 16a, 27a, 32a, 25a, 0, -49a, -128a,

322/ = 0, |a, 8a, ^a, 32a, ^^a, 0, -^^a, -256a,

Z= 5^ 3_JL —I _1 _9-^ 2) -') 4) 2' -*•) ^>

S2x= -400rt, -864a, 7a, 32a, 160a, 896a,

32i/= -1000a, -2592a, -fa, -16a, -160a, -1792a.

Fig. 9. The points are mapped in the figure as far as space will

allow.

To obtain a dubious part of the curve near the origin,

it would be suflacient to interpolate two more values in the

neiofhbourhood of s = #

,
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thus, if ^=|— B = V-' ^= lxF«> 2/ = -V-^' I-

if ^ — T -1. 1 — 13 T'— 1 6 !V/ ly — 1-3.7'

and to notice that z, which is tan POa;, diminishes as x

changes from —\^a to ^|^a.

In this manner it would be possible to give a very exact

representation of the locus of many equations, within the

limits of the paper, if we did not care for the trouble of

interpolating values when the direction of the curve wa,s at

all doubtful.

The main object of a work on tracing curves must be

to point out a variety of considerations which will relieve

the student from a great deal of this labour, and enable him

to indicate generally the peculiarities of a curve, its changes

of direction and curvature, the interlacing of its branches,

etc., while he can always for any particular purpose have

recourse to more exact determination of special parts of

the curve.

SYMMETRY OF A CURVE.

7. One of the first considerations is the symmetry of a

curve with respect to certain lines or points, by means of

which the labour is reduced one-half at once.

• The principal kinds of symmetry arising from the form

of the equation are as follows

:

(1) If the rationalised equation of the curve involve only

even powers of y, as y^— V^y"^+ ay^x— cx^= 0, the curve will

be symmetrical with respect to the axis of x, for, if (x, y) be

a point in the curve, {x, — y) will also be in the curve. The

figure will be the same as if a plane mirror were placed

perpendicular to the paper on the axis of x.

If the equation involve only even powers of x, there will

be symmetry with respect to Oy.

(2) If the equation be not altered when —x and —y are

written for x and y, as when x^— a'^xy+ b'^y'^= 0, this shews

that, when P is a point on the curve, and FO is joined, and Fig. 10.

produced to P', making P'0 = PO, P' is also a point on

the curve. In other words, is a centre of the curve, and
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I. the curve is symmetrical in opposite quadrants ; so that, if

yOx contained any part of the curve, and the figure were

turned in its own plane through two right angles, it would

overlie another portion of itself as it was in the original

position.

(3) If the equation be unaltered when x and y are inter-

changed, as when x^ — 2a'''x"+ 5a'ic ?/
— 2ahj^ -\-y^ = 0, for every

Fig. 11. point P (x, y) on the curve there will be a point Q(y, x) also

on the curve, so that the curve will be symmetrical with

respect to a line bisecting the angle yOx, as in the figure.

Similarly, if { — y,—x)mgiy be substituted for {x,y) with-

out altering the equation, as in x^ — Saxy — y^= 0, this would

shew symmetry with respect to a line bisecting the angle

of x'Oy.

(4) There are other kinds of symmetry, but it is scarcely

worth the trouble of looking out for them except as tests

of the tracing. Thus, the substitution oi —x for y and y
for X, may not alter the equation, as in x^+ a^xy — y*= 0.

Such a curve would evidently shew no change of form if it

Fig. 12. were turned through a right angle in its plane.

Examples I.

1. Employ the method given in (5), Art. 3, to prove the following :

(1) If a tangent to a circle whose equation is

meet an ellipse, whose equation is ,v'^la-+;>/^/lr= l, in Pand Q, prove
that PQ will subtend a right angle at the centre of the ellipse.

(2) The equation of a hyperbola is

.i7/-2.r-3y-|-5 = 0.

Shew that the two chords which pass through (0, 2), and subtend
a right angle at the origin, are inclined to O.r at angles 135° and
cot-15.

2. Construct the loci of the following equations :

( 1 ) y4 - 3a.vf+ 2a^x^= 0. (2) x-^- a%2+ 2a^xy -aY= 0.

3. Trace the curves whose equations are given below, by means of
particular points :

(1 ) ?/- .r - 2.r- -t- .t-3. (2) .r^+f- 3a.v>/ = 0. (3) jf= x- (x - a).
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8. If the student has taken the trouble to trace one or i.

two curves by points, he will at once appreciate the advan-

tage which it would be to him to have at every point

the direction of the curve and that of its bend, as well as

the point itself ; for he would obtain a much more accurate

representation of the curve with far fewer points.

The first thing I shall endeavour to make clear is the

way to determine the shape of a curve in the neighbourhood

of a point through which it passes ; and since, by trans-

formation, every point at a finite distance can be made a

new origin of coordinates, it will be sufficient to discuss the

form of any curve in the neighbourhood of the origin in

cases in which it passes through it.

The form of the curve at points at an infinite distance

will be discussed hereafter.

ORDERS OF SMALL QUANTITIES.

9. In handling this subject we are obliged to distinguish

accurately such expressions as small, very small, infinitely

small, vanishing, ultimately vanishing, large, infinitely large

quantities, and to speak of things being equal, nearly equal,

and so on ; a few words may be useful to those who have

not been in the way of dealing with variable quantities,

which, although they vanish simultaneously, do not tend

necessarily to equality though they both be zero.
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I- 10. Finite quantities are said to be exactly e([ual when

their difference is nothing.

Finite variable quantities become equal when their differ-

ence vanishes.

But it is evident that this is not a proper definition of

equality of magnitudes which are themselves vanishing

quantities. For, 2x is as truly double of x, when x is

indefinitely small, as two inches are double of one, and yet

the difference x vanishes. Hence the necessity of another

definition.

Variable quantities are said to become equal, when their

difference vanishes compared with either of them.

We may add that quantities are nearly equal, when the

ratio of their difference to either of them is small.

11. Now, with regard to great and small things, it must

be remembered that no quantity is absolutely small or great,

but only so with reference to some unit either expressed or

implied in the nature of the subject.

In measuring a degree, four yards would be a very large

error, while in sweeping for the lost end of the Atlantic

cable a couple of hundred yards was thought a small error

in the supposed position.

In ancient times eight minutes was a small error in an

astronomical observation ; in modern times eight seconds is

enormous.

Thus, when a unit has been determined in any subject

in which a calculation is to be made, we must ask what is

considered small—is it to be a tenth or a hundredth of the

unit, or what other fraction ?

Just as the unit of measurement was arbitrary, so the

standard of smallness must be selected before the idea of

what is small can be made definite for purposes of calculation.

Again, something more definite must be determined upon

than the degrees of smallness or largeness expressed by
the vague terms, very small or very large, extremely small

or minute.
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For this purpose, having fixed upon what we determine i.

to consider small, we introduce the terms small quantities

of the second, third, etc. orders ; the small quantities of

the second order having the same ratio to those of the

first order as those standard small quantities have to the

unit employed.

Thus, in the Lunar Theory, fractions varying between

yV and oV are called small compared with unity, (yV)^ ^ small

fraction of the second order, and so on, and complete calcula-

tions of the motion of the moon have been made to the

sixth or seventh orders of small quantities.

If oc be the fraction of the unit which is taken as the

standard of smallness, and the exact value of u in terms

of a be «+ fe(X+ ca-+ ... to any number of terms, then

oa+ CO.-+ • • • <C -^
—^

)

1 — rx

where h is the greatest of the magnitudes h, c, . . . . Thus a

differs from u by a quantity of the first order, and a is called

the first approximation ; similarly a+ ha. is called the second

approximation, etc. ; these approximations imply that ka. : a

is of the same order as oc, which circumstance must guide us

in the selection of the standard.

It follows that whatever be the coefliicients, still supposed

finite, a can always be taken so small that a, a -{-hex, ... are

first, second, etc. approximations to the value of u, to any
degree of accuracy.

12. When a variable quantity is supposed capable of

being diminished until it becomes less than any assignable

quantity, it is called a vanishing quantity, and if it be taken

as the standard, finite multiples of its square, cube, etc. are

called vanishing quantities of the second, third, etc. orders

;

so that, if u-^, u.,, Ug, ... be vanishing quantities of the first,

second, third, etc. orders, the ratio %„+i : u^^ is of the

first order, Wg : u-^ of the second, and so on ; and if v lu
be a vanishing quantity, u is said to be of a higher order

than u.
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I. 13. A graphic notion of the closeness of the approxima-

tions mentioned above will be obtained by tracing the

curves y = x", y = .r^ y = x*, ... , called parabolic curves, from

x = to x = l, using the same coordinate axes for all the

curves, so that the relative magnitudes of the ordinates of

the different curves, corresponding to any small value of x

which we choose, may be seen, if x be not chosen too

small, and conceived from the general run of the curves, if

X be chosen extremely small. The ordinates of these will

be magnitudes of the second, third, . . . orders, the standard

Fig. 13. being the chosen value of x. In the figure, OA=AB is

taken as the unit, and Oa = l, Ob = ^, Oc=l.
The ordinates for the lines y = x, x^, x^, ...

corresponding to a, are aa.^ , aoL.2 , (icl.^ , aa,^ .

.

.

6, are h^^, h^.^, h/S.,...

c, are cy^, cyg,...

.

Each of the ordinates aa is -?r of the preceding, each of

6/3 is ^ of the preceding, each of cy is ^ of the preceding,

and the ordinates, corresponding to Od = f , have been

constructed in order to guide to the general forms of the

curves, five of which are placed in the figure.

We observe that, with a value of x= ^, the ordinate of

y — x^ is very small, while, for x = \, we can distinguish

neither the curve y = x^ nor y = x^, and for x= \, ?/ = «*

is not distinguishable from the corresponding point in the

line of abscissae. If we take an abscissa Og = \Oc or -jV

,

a length which is sufficiently visible, all the curves are

coincident as far as we can see by our diagram.

Some idea can thus be formed of the nature of the

approximations to a-{-hx-\-cx"-\- ... when x is excessively

small.

14. I have traced these curves by setting off particular

points within the limits proposed, because in cases of this

simplicity, the method shews sufficiently that there are no
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sinuosities, and it is easy to follow the form in the mind's i.

eye up to any value of x however small. It should be

observed that the reason why all the curves touch the

axis of X at the origin is because 1/ is of a higher order

than X.

If we trace the curves for negative values of x, it will

be seen that those with odd powers will occupy the oppo-

site quadrant x'Oy', as O/S^', Ooi^', and those with even Fig. 13.

powers will be symmetrical with respect to the axis of y,

as 0^2' ^"•4'-

If we trace beyond x = l, the ordinate of y = x'^ becomes

greater than that of y = x^, and all the curves diverge very

rapidly from one another as x increases, and very soon

spread beyond the range of the paper.

It may also be seen what the form of such a curve as

y^ = x'' would be, for, in the quadrant xOy, it is intermediate

between y = X" and y = x^, and is symmetrical in opposite

quadrants, since for every point (x, y) there is a point

(-X, -y).

It is not sufficient to consider the curve y^ = x^ as lying

between y = x and y = x^, we must also observe that it touches

the axis of x, and is symmetrical with respect to that axis,

also that no part lies on the negative side of Oy, since a

negative x gives impossible values of y. The curve has a

cusp of the first species, or ceratoid cusp, at the origin, and

the shape is as in fig. 6, turned through a right angle.

15. The importance of knowing the shapes of curves

whose equations are of the form 2/"*= cx" in the neighbour-

hood of the origin, will be seen hereafter; the student should

exercise himself in drawing the forms for different values of

m and n, as part of the machinery for tracing curves with

facility ; and also, in order to realise directly what is the

relation among quantities of different orders of magnitude,

two curves should be drawn with the same coordinate axes,

and placed in their proper positions with reference to their

degrees of closeness to the axis which they touch.
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I. All curves, whose equations are of the form y"^ = cx'\ in

which ')n and n are unequal, are called parabolic curves.

When m and 7i are both even, the locus of the equation is

two distinct parabolic curves.

The arguments by which the forms in the neighbourhood

of the origin are determined will pass through the mind very

rapidly in the following form, with very little practice :

(1) Take the case in which m is odd, and n is even, and

less than ')n, and c is positive.

— X written for x does not alter the equation ; therefore

the curve is symmetrical with respect to Oy.

X is small compared with y, therefore the curve touches

the axis of y at 0, hence the shape is the ceratoid cusp as in

the figure

When 71 is greater than m, the curve touches the axis of

X at 0, and the shape is ^
•

(2) Take the case in which in and 7* are both odd integers.

If we wrote — x and — y for x and y, the equation would

not be altered, hence the curve is symmetrical in opposite

quadrants, or the origin is a centre, bisecting all chords

through it.

When n is greater than in, the curve touches the axis

of X, since y is smaller compared with x, and the shape is

—--^ when c is positive, ^=H-- when c is negative.

16. If we now consider the fact that ax" -\-hx''+ cx^+ ...,

in which 9i<^r<;.s ..., differs from ax"', ax"-{-bx^', ..., by a

difference which ultimately vanishes compared with itself,

when X is indefinitely diminished, or that the ratio of the

difference to itself may be made as small as we please by
diminishing x, we shall be able to assign the direction taken

by a curve in the neighbourhood of any particular point, by

transferring the origin to that point.

Thus, if the equation of the curve be y'^ = x*, to find the

tangent at the point (1,1), let x = l + ^, i/ = ! + >/, then
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(l+;y)3 = (1 + ^)4, or 3,; = 4|-3r + 4^2_|...., and the part i.

of the curve which is very near the new origin is sufficiently

represented by 3?; = 4^, which is therefore the equation of

the tangent.

In the different curves, discussed in Art. 13, it can in this

Avay be shewn that the tangents to the curves at B will,

if produced, meet the axis of x at distances from A equal

to i, +, 1, i, i respectively.

17. The equation of the tangent at any point is thus

easily found, and the next approximation gives the direc-

tion in Mdiich the curve bends from the tangent.

Thus, for the curve 'y = x+ x^, y = x is the tangent at the

origin ; let the ordinates MQ and M'Q', at small distances Fig. 14.

from the origin 0, meet the tangent at in P, P' ; if

OM=x, PQ = {x+ x^) — x = x^ will be the distance of Q from

the tangent, measured in the direction Oy, and will change

sign with x, so that P'Q' must be measured downwards.

Hence, the curve lies above on the positive and below on

the negative side of the origin, which is a point of inflexion.

CUSPS.

18. The following examples will shew how certain peculiar

forms of curves, such as cusps and points of inflexion, arise

from fractional indices occurring in the equations of the

curves, when ;(/ is expressed explicitly in terms of x, or

vice versa.

(1) y = l + x-^-2(x-l)" + 3(x-l)^

near the point (1, 2) let ;?/ = 2 + >/, a; = 1 + ^,

then r] = ^+ 2^^+ Si\
The first approximation gives r]= ^, so that, if 0M=1, Fig. 15,

MP = 2, the curv^e coincides with the line Q'PQ nearly, which

is therefore the tangent at P, and l QP^= 45^.

The second approximation is >? = ^+ 2^-, therefore 2^-

being added to the ordinates of Q'PQ, the curve more nearly

coincides with the dotted line R'PE, where EQ = R'Q'= 2^'\

which is a parabola, whose diameter through P is MP);.
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I. The term added in the next approximation 3^- is im-

possible when ^ is negative, and has two values e(jual and

of opposite signs when ^ is positive, thus the form is SFS',

where RS = RS' = 3^^ is small compared with RQ, if ^ be

taken very small. Hence, at P there is a rmnphoid cusp.

(2) If the fractional index had been I, the form would

Fig. IG. have been SPS', in the next figure, since 3^^ only changes

sign when ^ becomes negative.

(3) If the fractional index be 4, the terms must be re-

arranged in the order »;= ^+ 3p -\- 2^-. The second approxi-

Fig. 17. mation would give the form RPR', and the third would not

be perceptibly different, since RS, R'S' are small compared

with QR or Qli', and the only difference is, that the branch

PS is further from PQ than PR, and PS' nearer than PR'
;

there is therefore at P a ceratoid cusp.

(4) If I be the fractional index, »/ = 3|*+f+2f-, the

curve is nearly the form of >7= 3^-, or 9^=r)".

(5) If t be the fractional index, )]= Sf+ ^+2^'-, then

>; = 3^^ nearly, ^ is small compared with >/, and ?/ remains

the same if ^ changes its sign, hence the shape of the curve

is that of the first figure given in Art. 15 (1).

TANGENTS.

19. At this point I think that the student, who has not

read Newton's Lemmas, should be introduced to the notion

of limits, as applied to the theory of tangents and the

curvature of curves.

Two variable magnitudes whose variations depend upon

that of a quantity which is supposed to diminish until it

vanishes, are said to be ultimately equal, when the ratio of

their difference to either of them vanishes, as the quantity

upon which they depend vanishes.

The limit of a variable magnitude is that fixed quantity

to which it is ultimately equal, when the variable on which
it depends vanishes.
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This includes the case of a variable, upon which the i.

variation of the magnitude depends, increasing until it
'

becomes infinite, because the reciprocal of such a variable

diminishes until it vanishes, and the magnitude may equally

be considered to depend on the reciprocal as a variable.

20. If OP be any curve passing through the origin of

coordinates, OT the tangent at 0, and x, y the coordinates

of any point P, tan POM= y/x. As OP diminishes, and

ultimately vanishes, the angle POT ultimately vanishes,

and isinTOM=iaxvPOM ultimately, = limit of yjx, when
X and y vanish simultaneously.

The gradual diminution and ultimate evanescence of the

angle POT may be seen by comparison with the curve Fig. 18.

OcL^B in Art. 13, in which, if Oa.^, 0^82, Oy.^, be joined, the

angles clJOA, ^.fiA, y.fiA exhibit the continual diminution

of the angle between the chord and tangent.

For the curve of sines, y = sin x, since the limit of

sin xjx = 1 when x vanishes, the unit being the unit of cir-

cular measure, the tangent at the origin is inclined at 45"

to the axis of x.

Similarly, the tangent of the angle which the tangent

at any point (a, h) of a curve makes with Ox, is the limit

of (y— b)/{x— a), when x— a and y — b vanish, which they

do simultaneously.

CURVATURE.

21. The only curve whose curvature is the same at every u
point is the circle, and the smaller the circle the greater is

its curvature. Hence, the reciprocal of the diameter is

taken as the measure of the curvature of a circle.

Suppose two circles have a common tangent AQ at A, Fig. 1.

and diameters AB, Ah through A. QPp, perpendicular to

the tangent A Q, meets the circles in P, p, and PM, pm are

perpendicular to A B. Then

AM . MB= PM^=pm- = Am . mb
;

therefore

PQ . MB=pQ . mb ; or PQ-.pQ:: mh : MB.



18 CURVATURE
PLATK

II. U AQ he made to diminish indefinitely, PQ and 2)Q will

measure the deflection from the tangent, and the limit of

the ratio PQ.pQ will be Ah : AB, or equal to the ratio

of the curvatures of the circles.

22. Any two curves AP, Ap, which have a common tan-

gent at A , have the same curvature if PQ =pQ ultimately.

If, therefore, a circle be drawn touching a curve at any

Fig. 2. point A, and its magnitude be such that PQ =pQ ultimately,

the circle has the same curvature as the curve at that point,

and the curvature of that circle is the measure of the curva-

ture of the curve at that point ; the circle is called the circle

of curvature, and its diameter the dimneter of curvature.

23. No arc of any other circle can be drawn which lies,

near the point of contact, between the curve and the circle

determined above ; for, if possible, let an arc lie between

Fig. 2. them, cutting pPQ in p\ then Qp' is intermediate in magni-

tude to QP and Qp which are ultimately equal, hence Qp'

is ultimately equal to Qp, and the diameters of the two

circles, being the limits of AQ^/p'Q and AQ^/pQ, are equal.

24. Since, for a circle, AQ'^jpQ is finite when the circle

is of finite radius, it follows that when, at any point of a

curve, AQ-/PQ ultimately vanishes, or becomes indefinitely

great, there is no finite circle which has the same curvature.

A curve has finite curvature at A, whenever AQ-jPQ is

ultimately finite, when AQ vanishes.

25. The diameter of curvature of a curve at A is the limit

of either AQ^jPQ or AP'^jPQ, since AP-^ = A(^+ PQ^= AQ''

ultimately.

Examples II.

Find the forms, near the origin, of the curves whose equations are

(1) aY= .7-\ (2) 3/«= a.t^.

(3) f = ahA (4) o.V=/.

(5) _y = .r+ x\ (6) f= ,^2+ .1^.

(7) Find the tangent to the curve (2) at the point («, a).
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Find the form of the cusps at the given points on the following II.

curves :

(8) {y — xY=x^ at the origin.

(9) y-2=^x''- + xi at the point (0, 2).

(10) {'2,ij-\-x+\f= 4:{l-xf at the point (1, - 1).

(11) ,T*+3/*=c* at the points where it meets the axes.

(12) ay= (.r2-a;2)3 at the points (±a, 0).

Find the diameters of curvature at the origin for the curves

(13) y'^= 4:ax. (14) y'^= 'imx-\-nx'.

(15) ay{x-a)= {x — '2a)x'^.
*
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FORMS OF PARABOLIC CURVES AT AN INFINITE DISTANCE.
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II. 26. In the last chapter the form or the parabolic curves,

which are the loci of the equations of the form y'^ = x"; was

examined only between the limits x = and x= l ; in this

chapter I shall consider the relative positions of the curves,

and the way in which the curves bend, when x'^1.

Fig. 3. For this purpose draw lines parallel to Oy, intersecting

Ox at A^, A^, A^, ..., where 0A^ = 1, 0A^ = 2, 0^3 = 3, etc.

All the curves y = x^, x^, ... pass through B, where A^B= 1,

and the tangents of the angles, which they make at B with

the axis of x, are 2, 3, 4,

On the line passing through A^, measure distances

^2^2 = 4, ^2^3 = 8, A,P^=1Q>,....

On that through A^, measure -43^2 = 9, -^3^3= 27,

A^, A^R^=H5, AJl^= Q^,....

OBP^QoRo ... is the curve y = x^,

OBpIq,.:. y = x\

OBP.Q, y = x\

27. The forms of these curves shew that their curvatures

rapidly diminish after the point (1, 1) although the

curves remain convex to the axis of x, and it is only by
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a strong effort of the imagination that it is possible to con- ii.

ceive what becomes of the curves, when x is made of any

considerable magnitude.

We shall, in the investigation of the forms of curves,

have to consider their general shapes at a great distance

from the origin, and it will be readily seen from the results

obtained here, that it would be impossible to represent on

paper the proper proportions of the different parts of such

curves; we are therefore obliged to content ourselves by
indicating the direction of the bending of the curves at a

great distance, leaving to the imagination what would be-

come of the branches if extended in the proper proportion,

on the same principle as in a raised map of a mountainous

district, like that of Flintoft in Keswick, it is found to give

a better idea of the form of the country to take a scale

for the vertical heights differing very materially from the

scale of horizontal distances.

28. The form of curves such as y^ = x^, in which the

order of 1/ is a fraction between 1 and 2, may be conceived

by measuring, as ordinates, the approximate distances

^2'?r=2i, A^K = 5l, A^p = 8, A^cr = llh Aqt=1^, and

A^v = 18^, and drawing a curve touching the axis of x at

the origin, passing through B and the points tt, k, p, a; r, v,

and making at B an angle tan"^f with the axis of x.

It will be seen that such a curve opens out more rapidly

than the former curves as x increases, and near the origin

leaves the axis of x more rapidly than those curves do.

The figure which represents this curve in the more dis-

tant points is necessarily constructed with an unit too small

to give an idea of the form near the origin.

The shape of this curve, called the semicubical parabola, Fig. 4.

within the limits x= and x = l, is BOB', touching the lines

BC, B'G at B and F, where OG=^OA.

29. To illustrate the use which it is intended to make of

the forms of these curves near the origin and at a great

distance from it, I shall trace the curve y = x'^+x^.
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11. Near the origin the approximate form of the curve is

that of y = x^; and, when x is very great, of y = x^, whose

Fig. 5. general form is that of tlie dotted curve ; again when

x= -1, 2/= 0, and if x= -1 + ^, then y = i(l — i)-; there-

fore, neglecting powers of ^ above the first near this point,

y = ^=x+l is the tangent.

30. Although the Differential Calculus gives some advan-

tages towards obtaining the particular points which appear

in the form of the curve, yet it is not difficult to obtain

them by the ordinary processes of Algebra.

For example, we observe in the figure a maximum or-

dinate near a, where the curve is parallel to the axis of x
;

if (a, (3) be any point on the curve, let x = (j.-\-^, y=z^-\-r],

then /3+ r] = ioi-{-if-\-(oi-\-if and j3 = ol~+ ol^: therefore

y, = (2oi+Scx}}i+(l-\-Sa.)i-'+ i' (1)

is the equation referred to axes through a, and

^ = (2a-|-3a2)^

is the tangent, which is parallel to the axis of «, if a= — f
and/3= ^V

31. Again, there is a point of inflexion near b. If (a, ,8)

be this point of inflexion, since the curve must lie on oppo-

side sides of the tangent at h, the term in (1) which

involves ^^ must disappear; therefore 3a. -1-1=0, hence, the

point of inflexion is ( — J , o^-). The equation, referred to b

as origin, will be rj= —l^-\- ^^, where >; is > or < — ^^,

according as | is positive or negative, and the inclination

of the tangent to Ox' is cot "^3.

EXAMPLES OF TRACING.

32. At this stage it will be useful to trace some curves

in which the abscissa and ordinates are not involved with

one another in any complicated manner, so that the methods

already given are sufficient.

In such cases it will be seen, that there is rarely any

necessity to enter minutely into the question of the direc-
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tion of flexure from the tangent at any particular point, ii.

but the general run of the curve can be obtained by a small
~

number of points and directions of tangents, combined with

the consideration that a straight line cannot intersect the

curve in more points than the greatest sum of the indices

of X and y in any term.

Thus, it is impossible that there should be a point of

inflexion or a cusp in a curve of the second degree ; two

cusps, or a multiple point of three branches, in a curve of

the third degree.

• Again, considering that a rectilinear asymptote to a

curve is a straight line which joins two points at least at

an infinite distance, it follows that a curve of the third

degree may meet the asymptote at a finite distance in one

point, and no more, one of n^^ degree mn— 2 points, and no

more.

Ex. 1. y= x(x2-l).

11 —X and —y he written for x and y, the equation is

not altered ; therefore the curve is symmetrical in opposite

<|uadrants, or the origin is a centre, Art. 7 (2).

The principal points to examine are (0, 0) and (1, 0); Fig- 6.

near the origin, since y=—x+ x^, the curve is above the

tangent when x is positive, and below when negative ; to

find the shape near (1, 0)let a; = l + ^, then y = 2^-{-3^^+ ...
;

near (oo , oo ), y = x^, represented by the dotted line in the

figure. ''

Ex. 2. cy-= x(x2+ ax+ b).

This curve is symmetrical with respect to Ox, it meets

the axis of x at the origin, and where x'^+ ax+ b = 0, and

passes off to infinity in the form of cy^ = x^ ; the shape near

the origin is cy^= hx.

i. When a;-+ aa;+ 6 = (a;— a)(x— /3), a<|8,

near (a, 0), cy^='oi{a.— ^)^,

(AO), c2/2 = ^(/3-a)e
In the figure the dotted oval is the position of the oval Fig. 7.

when a is negative.
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II. ii. When x-+ ax+ b = (x — Oif, near (oc, 0), 67/-= a^-.

Fig. 8. iii. When x^+ax+ h = (x - a.f+ /3^.

Figs. 9, 10. One figure is drawn when a^/S^S, and one when

(X<C.^JS, these limits being found from the values of x

where the tangents are parallel to Ox, which are given by

dx'— 4:OLX+ (xr+ ^' = 0. When a and h vanish, all these

curves degenerate into the asymptotic curve, viz. the semi-

cubical parabola, cy- = x^.

It is useful to consider this degeneration, because it ex-

plains how it may have happened that, when y = 0, there

were three values of x equal to 0, in the curve cy"= x^, as,

for instance, this curve may be considered as the limit of

fig. 9 when the portion baaO becomes condensed into the

origin, and a line between ab and b'a' contains three coin-

cident points. It is interesting to see how the curve

gradually changes from any of the forms figs. 7, 8, 10 until

it assumes the final form of the asymptotic curve.

We may also see how the theory of equations assists us

in drawing the curve in proper proportions. Thus, for any

value of y the three values of x have their algebraical sum

Fig. 7. the same, so that if nab be a tangent at a, parallel to Ox,

and the curve cuts the axis of x in a, /3, 2na-\-nb = 0oL+0^;
hence if am, br be ordinates at a, b, Om-\-^r = moL, and

when a, /3 coincide, bn = 2oLm.

If nab, n'a'b' be two tangents parallel to Ox, the distance

Fig. 9. between b and b' measured parallel to Ox is double the

distance between a and a.

Ex. 3.
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x = Sa, y = ^, II-

«;>3«, y is positive,

x=cc

,

y = a,

(x-a){ — 2a)
near (a, 0), y=a~ -/^—r— = z(x — a),

^ ^ -^ a(—a) ^ '

(3«, 0), y = a —^i—- = t(«- 3a),

when X is negative, y is positive ; for the form, see the figure. Fig. ii.

^^•^- ^ -^ x(x-2a) •

The curve is symmetrical with respect to Ox, and writing

in the tabulation given above, y impossible, for y negative,

y real, for y positive, and « = ac
, y= zha,

near {a, 0), y^= 2a{x — a),

(3a, 0), y^ = fa{x— Sa),

we have the form given in the figure. Fig. 12.

Ex.5. (y--l)y = (x2-4)x.

Since —x, —y for x, y do not alter the equation, the

curve is symmetrical in opposite quadrants; hence, it is

only necessary to examine the form for positive values of x.

When x = 0, y = 0, 1, -1,

x<2, y<-l, or 0<i/<l,

x = 2, 2/ = 0, 1, -1,

x>2, -l<i/<(), or 2/>l,

cc = 00
, y = oo;

near (0, 0), y = 4ix,

(0,1), 2{y-l)=-4>x,

(0, -1), 2(2/+ l)=-4x,

(2,0), -y = S{x-2\
(2,1), 2(y-l) = 8(x-2),

(2,-1), 2(2/+ l) = 8(^-2);

near (oo
,

oo
), y = x, which meets the curve only at the

origin, and at two points at an infinite distance. Fig. Is.
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II. Ex.6. y(y-l)(y-2) = x(x-^-l)(x-2).

The equation becomes more symmetrical by transferring

the origin to the point (-}, 1), viz. y(y^— l) = (x^ — ^){x^— ^);

the curve is then symmetrical with respect to Oy.

When x = 0, y(y^-l) = ^,
x<h, -l<y<0, or y>l,

x = h,
'i/
= 0, or ±1,

^<.c<f, y<-h or 0<^<],
x = %, y = ^, or ±1,

x>%, -l<y<0, ov y>l,

x=x
, y = ^;

y near 0, or ±1, gives y{y- — l)= —y, or 2(2/ hFI),

x near J, or #, gives {x"— -i){x"— \)= — 2(a;— |), or 6(a;— f);

from which the tangents can be found at (|, 0), {h, ±1),

(f> 0)j (t> ±1); also near (go , x ), y^= x\

The tangents are parallel to Oy, where y=±^JS, and

to Ox, where x= ±hJo and 0.

Fig. 14. This curve affords another illustration of the manner in

which we may suppose a curve, whose equation is y^= x*,

to be drawn in order that, when x= 0, there may be three

zero values of y, and, when y= 0, four zero values of x,

since, by conceiving the unit of measurement to become

very small compared with the size of the paper, the un-

dulating part may be made as small as we please.

33. The following curve is given as an example by almost

all the writers on the differential calculus, and deserves to

be considered carefully as to the points which we have at

present discussed

:

y*- 96a'-y2+ lOOa^x^- x*= 0,

or y'^= 4!8a^±J{(x-Sa)(x-6a)(x+ 6a){x+ 8a)}.

Since the curve is symmetrical with respect to both axes,

it need only be traced in the angle xOy.

When x = 0, y = or aJ(96)= alOJ{l--ij)= (10-l)a
nearly ; when y = 0, a; = or 10a,
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x<^6a, y is real, n.

X = Ga, y = «^(49 — 1 ) = a{l — tV) nearly,

Set >>:»> 6a, 2/ is impossible,

x = Sa, y = a(7 — -^\) nearly,

x= cc
, y = cc;

near (0, 0), x^ = fiy'', .'. x= ±(1—-J^)y nearly;

near {0, ^^(96)}, let y = aJ{9G)-\-t], then, retaining

only the principal terms,

x^= -4aV(24)|4,y= _20a(l-^V)^;;= -(19-i)a^;

near (10a, 0), let x= 10a-\-^,

then 2/2= -(l-^V)'^20a^= -(21 -i)a^ nearly;

taking {6a, ^(48)a}, and {8a, ^(48)a}, as new origins

the approximate equations are ;?-= — fa^and rf= ^a^;

near {<x) ,oo),y= ±x. Of the four points in which each

of these lines meets the curve, two only are at a finite

distance, therefore two must be at an infinite distance, or

each of the lines is an asymptote.

At A and D in the figure the latera recta of the approxi- Fig. 15.

mate parabolas are a little less than 19a and 21a respec-

tively
; at B and C they are fa and la, the vertices being

at equal distances from Ox. The tangents at the origin are

very nearly coincident with the asymptotes.

GRAPHIC REPRESENTATION OF VARIATIONS IN THE
MAGNITUDE OF FUNCTIONS.

34. One of the most useful applications of curves is to

represent to the eye the changes which take place in any

quantity in consequence of changes in a variable upon

which the quantity depends ; everybody is familiar with

the curves representing the changes in the barometer and

thermometer during the course of a day or month, in

which the height of the barometer and degree of the ther-

mometer, taken as ordinates, are functions of the time,

taken as abscissa ; also with isothermal lines ; and, in ter-

restrial magnetism, with isoclinal and isodynamic lines.
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II. It is in fact niucli easier to follow the variations of the

mag^nitude of ordinates to a curve, than to gather the same

information from a table of numbers.

35. The changes of magnitude of the trigonometrical

functions may be represented by taking each function for

an ordinate of a curve, of which the angle is the abscissa,

represented in any measure. Suppose x to be the circular

measure of an angle, and we wish to trace y = sin x.

Since sin(7r — a;) = sina;, the curve is the same backwards

from TT, as forwards from 0; sin(7r+ a;)= —sin a:, therefore,

if the curve be traced for any portion extending over a

distance tt, measured on Ox, the curve is of the same form,

but on the opposite side of Ox, for the distance x on either

side.

When » = 0, 2/ = ; x = ^7r, 2/ = i; x = \-K,y = \\

near the origin y = x for a first approximation,

near x = \tt, if «= |^7r+ ^, 2/ = cos^=l — i^^^

or the curve is ultimately a parabola, with axis perpendi-

cular to Ox, and latus rectum 2.

Fig. 16. The figure is called the curve of sines.

36. Here it is seen from the symmetry described above,

that there is a point of inflexion at the origin, and

therefore at the points where x^-k, 2x, . . . , so that it

is unnecessary to find in this case the deflexion from

the tangent, which would have been shewn by making

the next approximation to the value of y, for which

y= x— ^x^.

37. Again, if y = tanx, then, since

tan(7r+ a3) = tan«, and tan(7r— «)= — tana;,

the curve repeats itself after every interval of tt ; and the

curve is the same in form forwards from x = 0, and back-

wards from a; = TT, but on the opposite side of Ox.

When x = (), y = 0; x = ^ir, y = l; x = ^tt, y = oo;

Fig. 17. and near the origin y = x.
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38. The figures for the otlier common trigonometrical ii-

functions can easily be drawn. The figures are given sepa-

rately for y = sec x and y = cot x. Figs. 18, 19.

The curves for y = cosx and y= versx are the same as

for y = sin x, the origin being different. For the former,

O'y' is the axis of y, for the latter, 0"x", 0"y" are the axes. Fig. 16.

39. Many of the properties of the Theory of Equations,

which will be useful in the theory of curves, may be shewn

simply by means of curves.

Let f{x) = be the equation, the properties of whose

roots are required, f(x) being a rational integral function of

X of the n^^ degree.

Consider the curve y =f(x), for every value of x, there is

only one value of y ; for every value of x, which is a real

root of the equation, the curve crosses the axis of x.

If f(x) be divisible by (x — ay, there will be r coincident

points where x = a.

When X is very large, y — x'^ is a curve whose form

determines the direction of the given curve at a distance

from the origin great compared with unity, being that of

the dotted lines in the figures, drawn with n even or odd; Figs. 20,21.

the curve meets the asymptotic curve generally in n— 1

points at a finite distance, real or imaginary, given by an

equation of the form ^a;""^ + gx"~"+... = 0.

40. The auxiliary equation, f'{x) = 0, is found by writing

x-\-^ for X in f{x), and equating the coefficient of ^ to 0.

By Art. 3 (4), f{x+ i)=f{x)+f{x)i-^y'\x)i-'+...,
hence, for the form of the curve at any point {a, /(a)},

.•. y=f{'OL)+f'{<*-)$ is the equation of the tangent.

The tangent is therefore parallel to the axis of x at every

point for which /'(«,) = 0, i.e. for every value of x, which

is a root of the auxiliary equation f{x)= 0.

Now, it is obvious from the manner in which the curve

must be drawn, that between every two distinct points in
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^^' which the curve meets the axis of x, there must be an odd

number of bends, from or towards Ox, and therefore an

odd number of points in which the curve must run parallel

to the axis of x, where two bends must be supposed to

coincide in the case of an ordinary point of inflexion, so

that between every two roots of the equation f{x) = there

is an odd number of roots of f'{x) = 0.

Whence it may be deduced that, if f{x) = have two
roots each equal to a, a will also be a root of /'(x) = ;

which is also obvious, either from the fact that the axis of

x joins two points which are ultimately coincident, or from

the analysis, because y=f{x) = {x— aY^{x); therefore near

(a, 0), if x = a+ ^, y — ^-. (j>{a) will be the first approxima-

tion, and this curve obviously touches the axis of x.

41. Other properties can be deduced immediately from

the curve.

(1) If two values of x give values of f{x) affected with

opposite signs, an odd number of real roots of f{x)= must

lie between these values.

(2) Every equation of an even degree must have an even

number of real roots, or none, since the curve terminates in

both directions on the same side of the axis Ox.

(3) Every equation of an odd degree must have at least

one real root of the sign contrary to that of the last term.

For the curve cuts the axis of y on the positive or

negative side, as the last term is positive or negative ; if

positive, it must cut the axis of x in the negative direction,

since the curve goes off to infinity in the angle x'Oy', and

vice versa.

(4) Every equation of an even degree w'itli the last term

negative must have two real roots of opposite signs. For
the curve cuts Oy in the negative side and must cross Ox
twice, on opposite sides of 0.

(5) Every function of x, which equated to zero forms an

equation with no real root, must be invariable in sign.
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42. To find a point of inflexion in the curve y =f{x). i^-

Let (oc, /3) be a point of inflexion, transfer the origin to

this point, by writing a.+ ^, (3-\-ti, for x, y, and expand,

and ^=f{a.), (a, /3) being a point on the curve. Hence

t}=f'(oL)^ is the tangent, and, in the curve, the value of

;; —/'{cl}^, being the difference of the ordinates for the curve

and tangent, must change sign when ^ changes sign ; there-

fore f"{oL) = when a. is the abscissa of a point of inflexion.

43. If /"(«) be not =0, the curve has a parabolic form.

/"(a)= is a necessary, though not a sufficient condition

for a point of inflexion, the sufiicient condition is, that the

first term in >?— /'(«.)^ shall be of an odd degree in ^.

44. Since in Art. 3 (4), it is shewn that f'{x) is derived

from f{x) in the same manner as f'{x) from f{x), if the

curve y=f'{x) be traced, and the values of x found, cor-

responding to which the curve runs parallel to Ox, the

corresponding ordinates, produced if necessary, will pass

through the points of inflexion of y=f(x).

By this consideration, and from the fact that the curve

y=f{x) cuts the axis of x at points corresponding to the

values of x for which the original curve is parallel to Ox, it

is easy to give its general form.

Part of the curve is traced by a fainter line in the figure, Fig. 21.

in which it may be observed, that when f{x) is increasing

with X, f{x) positive, and vice versa.

45. The necessary condition for a point of inflexion may
also be obtained thus.

If be the inclination to Ox of the tangent at a point

where x = a., tan =/'(«.); now, in passing through a point

of inflexion, first increases and afterwards diminishes, or

vice versa, hence, if ^ be diminished sufficiently

/('^-^)^.f(«-)^/'(^+ ^).

so that /'(oc+ ^)—/'(oc) has the same sign, whether ^ is

positive or negative ; hence the first term in the expansion
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ni. must involve an even power of ^, which is impossible unless

46. As an example, take the curve

y= x(x-l)(x2-l) = x*-x3-x-+ x.

The tangents are parallel to the axis of x, where

4x3— Slc^— 2a;+ l=0, or a; = l, x = %, or— fnearly;

there may be points of inflexion, where 12a;-— 6a;— 2 = 0,

which gives a; = yV{ ±v/(33)+ o} =ft, or - -U. very nearly.

The fainter line is the curve y=f'{x) of Art. 44, whose

maximum and minimum ordinates pass through the points

Fig. 1. of inflexion of the given curve.

47. The nature of the roots of an equation can be fre-

quently discovered by the use of the intersection of simple

curves ; an example or two will be sufficient to shew the

method.

Consider the cubic x^— qx-\-r = (),i\\e roots of the equa-

tion are the abscissae of the points of intersection of

y = x''-...{\) and x{q — y)=^r...{1).

Fig. 2. The figures, denoted by 1, 2, 3, shew how the hyperbola

(2), which remains of constant magnitude if r be constant,

changes its position, as q increases from some negative

value, moving along the axis of y as an asymptote, its

lower branch at first not cutting the parabola at all, then

touching it, and afterwards cutting it in two points, its

higher branch in every position cutting the parabola

once. When the two curves touch at (oc, /3), since the

point of contact bisects the part of the common tangent

cut off" by the asymptotes, 2/3 = q — ^, .'. ^= ^q = a.^, and

r = a.{q— ^) = ^qoL, /. ^r^ = (riqy is the condition for equal

roots.

48. Another way of solving would be to consider the

roots as the abscissae of the points of intersection of the

curve, y = x^ with the straight line y — qx+ r= 0.

The straight line always meets the curve in one real

point, and, as q increases, it turns round until it touches it,
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in which case two roots are equal, and afterwards it inter- ill.

sects in two more real points.

The equation of the tangent at (a, /3) is 2/
— |S = Sot}(x — a.),

or y = Sa?x— 2oLp, /. if y— qx-\-r = be a tangent, ^OL" = q,

2a^ = r, and (^r)-= {^qY.

49. The roots of x^-\-qx^-\-rx-\-s = are given by the

points of intersection of two parabolas

y = X", and y^+ qy-^rx+ 8 = 0.

The figure shews how the cases of real or impossible or Fig. 3.

equal roots may arise, from the relative positions of the

parabolas, 1, 2, 3 and 4, drawn for negative values oi r and

4>8— q-, q being positive for 1 and 2, negative for 3 and 4.

50. In the course of this work, many examples will

occur of the practical advantage of this method of deter-

mining the number of real roots of an equation, as well as

of roughly fixing their values.

RULES FOR APPROXIMATION.

51. When we wish to approximate to the value of a

quantity, of which the exact relation to another quantity,

which may be considered very small, is expressed by a

given equation, the following method is very simple in

application.

Let y be given in terms of oc, by means of the equation

y = a-\- a.f^(y)+ aJ'My)+ 0L%(y)+ ,

where a may be considered very small, and the functions

do not involve oc explicitly.

The first approximation, when oc is neglected, is y = a;

suppose the next approximate values of y, when a^, oc^,

a^ ... , are neglected, to be y^, 2/2- Vs' ••••respectively; we
observe that any one of the functions f(y) may be written

/{a+ a/,(7/)+a2/,(2/)+...}

=/(«)+/'(«){«-/i(2/)+.-}+i/"(«)W;(2/)+ ...}H.-,

hence, since in y-^ a? is neglected, y^ = a+ cLf\{a);
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III. when a^ is neglected, y^ is obtained from

«+ a/i(2/i)+ a.2/2(a);

neglecting a.*, 1/3 is obtained from

y =a+ OLfiiy^)+ c(.%(yi)+olVM ;

this will be found quite sufficient to shew the general

method to be adopted in approximating.

52. In the following examples I have proceeded to many-

terms in order to shew that there is no great difficulty iit

working on the plan of the last article.

Ex. 1. To expand tanx in ascending powers of x.

By Gregory's series,

X = tan a;— ^- tan^a;+ i tan^a? — \ tan"a;+ . .
.

;

.*. tana; = aj+^tan^a^ — itan^aj+T^^Q^^" ••• •

First and second approximations,

tan x = x, and tan a: = a;+ ^x^.

Third, tan « = a;+ i (a;

+

^x^f -\x^=x+ \x^+ (i- \)x^.

Fourth, ta,nx = x-\-}j{x-\-^^x'^+ ^3^f— \{x+ \x^f+\x'
= a;+ia^{l+a;2+ fa;*+i(a:2+|aj*)2}_ 1x5(1 +|a;2)+ ia;7

Ex. 2. To expand r= a(l — ecosu) in ascending powers

of e, as far as e^, where u = m+ e sin u, and e is a small

proper fraction.

For the first and second approximations,

u= ni and w = 77i+ esin wi, .". sin?t = sinm+ cosm. esinm;
for the third,

u — ni-\-e sinm+ e- sin ni cos ni = ni+ a., suppose

;

.*. cos u = cos 9>i(l — hor)— a. sin ni

= cosm— (e sinm+ e- sin ni cos 77i) sin 7n — |e^ sin- >n cos ni

= cos 771— e sin-7n — f e^ sin-7?i cos ni
;

.•. 7^= a(l — e cos 7/1+ e- sin-7?i+ fe^ sin-7>i cos m).

Ex. 3. To find y in ascending powers of x, when

6x" — 2x^y-— a^x^y^+ ^a^x^y+ 2a5a;^— Sa^ajT/+ a^y- = 0,

or a^{y-x){y - 2x)+ a3x2(4a;7/ - y^) - 2.^5(7/2- 3,^-) = 0,

y being of the same order as x.
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The first approximation gives ill.

{y-x){y-2x) = (d;

.'. y = x, or 2x.

(i) Commencing with y= x for the second approximation,

4'a'^x^y — a?x^y^
y =x- a%y— 2x)

= 03+ -^.

^ ,, ,, . , 1 4a?% — aj^-V^ Qx'^— 2x^y^
For the third, y = x--~^ ^ 5? iTx^ a^ y — 2x a\y — zx)

a' Sx'^ a^

, 3x^ ,15a)^
,
4x0

a^ a* a-"

(ii) Commencing with i/ = 2ic for the second approximation,

« 1 x^y(^x — y)
y = 2x—5

—^-^ ^^-

2/-a^

= 2^-^'.

For the third,

_^ 1 x^4,x''-{y-2xf} 2x%Sx^-y^)
^ d^ y — x a\y — x)

1 ofiAx'
,
2a;«

a'^ /, 4£c-\ a^
«;( 1 5-

_ 4cc^ 16a;^ 2a;0

Ex. 4. To approximate to the sohUions of the equation

tanx = x, the unit being the unit of circular measure.

Draw the curve y = tan x, and let the tangent at 0, y = x,

meet the curve in ...P', O, P, Q, ... , fig. 17, plate II.
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III. The figure shews that, since the branches of the curve

are all similar, the abscissae of the points P, Q, R, etc. are

nearer and nearer to the values ftt, ^tt, Itt, etc.

Let x= l{2n-\-\)'jr — z, where n is any positive integer,

and s is a small quantity, then, by substituting in the given

equation, tan {nir+ ^tt— s) = nir -^-hir— z.

For mr+ l-TT write a'\ then a is small, since its greatest

value, when n = l, is (f7r)"^=aV nearly; .-. c.otz = a.-'^ — z.

By Gregory's series, since tan 2 = «.(! — 0.2)"^,

= a(l-as)-i-Aa3(l-ocs)-3+iaHl-ocs)-5-...;

the first approximation gives s= a ; the second gives

z= CL{l+ajz)— \ct?,ovz — <x-\-%a};

the third gives z = a.{\+(i.z+CL^z^)-lo.^{l +^a^)+W
= a.+ a2(a+ fa^)+ a^_ 1 o.^- a^+ la^= rx+ -ja^

+

\icL\

The solutions are 0, and ±(a-^ —a— fa^— H«-^— •••)' ^^

which a-^= f7r, Itt, ^TT, ... successively; the first of these

values gives a; = 257° 27' 17", the error introduced by

omitting the fourth term being little more than 1' 17".

Examples III.

1. Shew that the tangent to the curve tj=x{x'^—y) is parallel to

Ox at the point (-#, VX ^^^ ^^^^ ^^^ curve again where .r= 3.

2. Shew that the distance between the two tangents to the curve

y= x{x^— 1), drawn parallel to the axis of x, is f\/3-

3. Find the shape of the curve i/--2j/= x'* — x' at the points of

intersection with Ox, and at an infinite distance.

4. Shew that, if the form of the oval part of the curve

y^=x{x — l){x - 2)

be represented near the two vertices by two pai^abolas, having their

axes coincident with Ox, the latus rectum of one is double that of

the other.

5. Shew that, in the case of Art. 32, Ex. 2, iii., when a.= j3\/S, the

form of the curve is like fig. 10, plate II., with the tangents at the

points of inflexion parallel to Ox.

Trace the curves

:

6. y^^x^-x'^. 7. i/^=(x^-l)^.

8. f=(x-lfx. 9. f= {x-l)x-*. 10. f--i/= .t^-x^.

11. Shew that there are points of inflexion at (2, - 16), (4, 0) in

the curve 1/= x-* - 1 2.^^+ 48,r- - 64.r.
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12. Find the point of inflexion in the curve HI.

f=:v{(x-iy+ ^}.

13. Trace the curve xy'^—{x - a){x - b)^, for b^a.

14. Shew by a curve the changes of sign and magnitude of

sin X — sin 2x.

15. Trace the curve y= sin.r+ sin2.r — sin3,r.

16. Trace the curve i/ =mx+ csin-^, when ma is greater than,

equal to, or less than ttc, and shew that the sum of the cotangents
of the angles, at which the curve cuts any two ordinates whose dis-

tance apart is a, is constant.

17. Trace the curve xi/^ — 2yx+y -1=0, and employ it to shew that
there is only one real root of the equation

.r'-2,r*-|-.>.^-l=0.

18. Prove that there cannot be more than three real roots of the
equation .r" - a'^.r'^ + c" = 0, if c be positive, nor more than one if c be
negative.

19. Find, by means of two curves, properties of the roots of the
equations

x^-\ba?x+\^a*= 0, and A^-'ia^v^+ Za/'-^O.

20. Expand y in ascending powers of .?•, for three terms, when x is

small, in the case of the two curves

fl^+y"^ — 'iaxy= 0, and x^ - Zxy"^+ 2j/^= 0.

21. Solve the equation cos^=^ approximately, having given that

cos ex.= a.+ /?, when /? is a small quantity.

22. Approximate to the solutions of the equation 4r tan jf= tt, in

which the unit is the unit of circular measure.



CHAPTER IV.

FORMS OF CURVES IN THE NEIGHBOURHOOD OF
THE ORIGIN. SIMPLE TANGENTS. DIRECTION
AND AMOUNT OF CURVATURE. MULTIPLE
POINTS OF TWO BRANCHES. CURVATURE OF
BRANCHES AT MULTIPLE POINTS. MULTIPLE

PLATE POINTS OF HIGHER ORDERS.
III.

53. In this and the following chapter I intend to discuss

the forms of curves at particular points at a finite distance,

when their equations are of a more complicated form.

For this purpose, it will be sufficient, as has already been

mentioned, to consider the forms in the neighbourhood of

the origin, since by transformation of coordinates, any point

may be made the origin.

In order to trace a curve, we must know, at all points

which have any peculiarity, the tangent, the side of the

tangent on which the curve lies, and, in some cases,

the rapidity with which the curve deflects itself from the

tangent, i.e. the degree of curvature.

Although, in a great many cases the direction in which

the curve bends from the tangent at any particular point

may appear from consideration of other known portions of

the curve, we must be in possession of methods of determin-

ing this when required, however troublesome the operation

may be.

In illustrating these methods, I have given the forms of

many of the curves throughout, although it has at present

been shewn only very generally how the infinite branches

can be determined. The student should, at all events,
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obtain the directions of the curves at particular points, ill.

deferring the complete tracing until the chapter on asymp-
totes has been read. I have, however, avoided, as much as

possible, any complicated forms of infinite branches.

FORMS OF CURVES NEAR THE ORIGIN.

54. Consider then, when a curve passes through the

origin, and a point P, {x, y), is taken near the origin, on

the branch which passes through it, that, as P is supposed

to move towards 0, x and y at some stage must diminish

together, and that they ultimately vanish simultaneously.

One of the three following cases must therefore occur,

as P describes the last small arc of the curve.

(1) X and y may be of the same order of small quantities.

(2) X may be small compared with y, in other words,

X : // may be a small ratio which ultimately vanishes.

(3) y may be small compared with x.

I think it best to consider these cases separately, and I

shall in this chapter examine the cases in which x and y
are of the same order of small magnitudes, so that an ex-

pression like ax^+ bxy+ cy" has every term of the second

order, and is itself of the second order; we may observe

that ax^+ hxy+cy^-{-dx^y^ is also of the second order, if

a, h, c, d be finite quantities.

SIMPLE TANGENT.

55. Let the equation of a curve, supposed rationalized,

be arranged in a series of homogeneous functions of x and y,

in the form
u.+ i^.+ Ug ... =0,

where n^ denotes a homogeneous function of s dimensions

in X and y ; so that there being no term independent of

X and y, the curve considered passes through the origin.

56. Consider first the case in which u^, the function of

the first degree, exists, and let u-^^ = ax+ by, and at present
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III, consider a and b to be finite quantities. Then n^ = is the

first approximation to the relation which must exist be-

tween X and y for the part of the curve near the origin, for

the whole equation may be written

a{l-{-a.)x+b{l+ ^)y = 0,

where, by diminishing x and y, fx and /3 may be made as

small as we please. Thus, for ax-\-by-\-cx^+ dxy + fy'-^ =
we may write

a
l + -^^^^^)x + b{l + f]y =b

Hence it^ = is the tangent to the curve at the origin.

57. It can be shewn as follows that no straight line can

be drawn, which, near the origin, lies so close to the curve

as Ui = 0. For, if (x, y) be any point in the curve, the

distance of this point from u^ = is

ax+ by _ U2+ U3-I-...

which is of the second order of small quantities, whereas

the distance from any other line lx-\-my = is , ^

'

»

which is of the first order.
^

DIRECTION AND AMOUNT OF CURVATURE.

58. The next step is to discover in what direction the

curve bends after leaving the point of contact ; for this

purpose we proceed to the next approximation, by taking

into account the terms of the next order ; the form of the

curve is generally given more nearly by u^-\-u.^ = 0, the

equation of a conic, if the coefficients in Ug are not all zero.

At present we shall not consider the case in which this

conic is two straight lines, in which case it will be seen that

Uj+ 1^2= is not the next approximation.

Such a conic may be called a conic of curvature, since

it has the same curvature as the given curve in the neigh-

bourhood of the origin.
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59. The proof that the two curves have the same curva- III.

ture may be given thus. -

'

Let OT be the tangent m^ = 0, OP' the conic \i^-\-\i.^ = ^. Fig- 4.

and OF the curve u^-\-%i.^-\-u.^-\- ...=^.

Draw TFP' perpendicular to OT, and let (x*, y), {x
,
y') be

the points F, F' ; it may be shewn, as in Art. 57, that

PT:PT= 'U2+ U3+... lu/,

and since xly= hl{ — a) = x'ly' ultimately, u.^:u.^' is a ratio of

equality ultimately ; therefore FT and F'T are ultimately

equal, which is the test of the curvature being the same.

60. That there is an infinite number of conies which

have the property of coinciding with the curve to within

quantities of the third order, may be seen as follows.

u^ = — it.2— Ug . . . is a quantity of the second order for all

points on the curve near the origin; therefore u^(\x+ fiy)

is of the third order, \, /x being any constants arbitrarily

chosen, .-. u^j^u.,-^{\x+ fxy)u^=() (1)

is a conic which differs from the curve by a quantity of the

third order. The particular conic which is the circle of

curvature can be found by giving proper values to X, //

in (1). If u.^ = cx^-\-dxy-\-ey^, then for a circle we have

\h+ ij.a+d = and Xa+ c = /x6+ (? = yo, s-Ay.

Hence

,p — c, p — <',i r. 1
Irc — ahd+ w'-e

0'- f-(X^—

7

\-d = and n — rTTo •

a ' tr+ 6^

The equation of the circle is therefore

P

and the radius = ^ —=—--^—^ /—-—

.

2p 2{b'^c-abd-\-a^e)

61. The diameter of curvature may also be found directly

by the method of Art. 25 without previously finding the

equation of the circle.
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For . PT= "^"^^ --^''''^^•

v/^M^62 sJa^+ h''

'

Fig. 4. and the diameter of curvature

-Lt^^-J.t -

¥c — aba+ a^e

since y = -^^ ultimately.

62. If t«2 does not appear in the equation, u-^, instead of

being of the second, is of the third order. Thus there is no

conic of curvature, since the deflection from the tangent for

the curve is infinitely less than that for any conic which

can be drawn with the same tangent, the deflection for a

conic being of the second order.

Compare the curves OoLoB, and Ocu^B in fig. 13, Plate I.

The approximate curve u^+ itg = has a point of inflexion

at 0, since the perpendicular from (x, y) on ttj = 0, which

varies as Ug, changes sign as {x, y) passes through the

origin.

63. The following examples will shew how to apply

the methods given above.

Ex. 1. To find the tangent to the curve y^ = -:t at the

point (1, 1).

For X and y write 1 + ^ and l+rj, and arrange in homo-

geneous functions ; the first term is r>] — s^, which gives the

equation of the tangent r{y — l) = s{x — l). The radius of

curvature at (1, 1) is (r--{-s^yirs(r~ s).

(x— l)(x— 3)
Ex. 2. To find the tangents to the curve y= ~^^

at the points (1, 0), (3, 0).

For X write 1 + ^ ; the first approximation gives
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or y = 2{x— l) is the equation of the first tangent

;

iii.

similarly y = 2{x— S) represents the second tangent.

Ex. 3. To find the tangent and circle of curvature at a

point (a, |8) of the curve ax'-H-by- = l.

For X, y write a+ ^, ^-\-r},

then a{a.+if+ h{^+rif = l, and aa}+h^^ = \,

whence aa^+ 6/3>? = gives the tangent referred to the new
axes.

Since, near the origin, a<JL^-\-b^r] is of the second order,

2(aa^+ bl3f])+ ai'^-\-hf-(aoii+ 6/3,;)(X^+yt>t'?) =

is a curve which differs from the given curve by a quantity

of the third order, and this is a circle if A, /ul satisfy

tt(l— aX)= 6(l— ,8//) = /), and aoijUL-{-b/3X = 0,

whence {a^0L~+ W'^")p — ah (eta-+ 6/3-)= ah,

and the equation of the circle of curvature becomes

<i&(^'+ '?')+ (a'o^'+&W(2a<+26/3;y) = 0, (1)

the square of whose radius is (a-a^+ 6-/3"-)Yrt-6-.

For the centre of the circle of curvature (1),

{a'a}+ h'^^^)a.

^~
h

'

therefore, if {x, y) be the centre referred to the original axes,

x = a+ ^=(aa3+ 5/3^)a-l^^'^''+^W^

a{h — a)a?

Similarly y-

b

h(a-h)l3^

Hence, substituting in rta-+ 6/3-=l,

fx\\ fy\^^_fa-hy
\Ja/ '^\JbJ ~\ ab J

'

\Ja/ \Jh/

which is the locus of the centre of curvature.
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III. Ex. 4. To find the diameter of the circle of curvature at

the point (a, h) of the curve y(b^ — y^) = x-(a— x).

Let x = a+ ^, y = h+ »;, then

{b-\-rj){2hrj+ ri^) = {a+ i)%
or 2/A - a?^+ V.hri'- 2af'+ >?'-f = ;

whence, as in Art. 61, the diameter of curvature

2af-~:ibr]^

(a'+4>¥y . i 262
= ),^i.>

—
if-T., since ^ = —^ ultimately.

Cor. If Sa^= 86^ the diameter is infinite.

In _ this case 2b'^r] — a^^= is true to quantities of the

third order ; therefore the approximation up to ^^ is

262^ = a2^+ (l-|^,)p =a\^+ie

shewing that (a, b) is a point of inflexion.

64. The preceding is the general case of a simple

tangent ; we can proceed by a similar method of approxi-

mation, when singularities occur in the forms of the

functions succeeding u-^.

It will be sufficient to take, as an instance, the case men-
tioned above, Art. 58, in which the conic u-^-\-Uo = becomes

two straight lines, which happens when u.^ = u-^^^v^.

In this case, the equation of the curve being

u^-{-u^v^+ u^+ ... =0,

the tangent to the curve is u^ = 0, and the next approxima-

tion to the form of the curve near the origin is given by

u^+ uJ(l-{-Vi) = or it^-f- 1^3 = 0,

shewing that the distance of a point in the curve from the

tangent, which varies as u^, is ultimately of the third order,

and, consequently, that u^v^^ is of the fourth order; thus,

for points in the branch through the origin, u^ ranks

before U2, shewing, as was stated in Art. 58, that u^ + u.2 =
is not the next approximation.
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Since u^ changes sign, as {x, y) passes through the origin, iil

the curve has generally a point of inflexion at the origin.

65. Take, as an example of such a form of it.,, the curve

a='(y+ x)-2a-x(y+ x)+ x* = 0. >

The approximate form of the branch through the origin is

given by a\y+ x)^x^ = Q,

which shews that the curve bends towards the negative

ends of Ox and Oy, and that its distance from the tangent

is of the fourth order.

It may be shewn that it cuts the axis of x at four points,

by the discussion of the equation in the form

a^{2x — a)y =x{x— a){x" -\-ax— d"),

and that the angles of inclination to Ox at the points of

section are ±45° and ± tan'V^.

The asymptotes are 2x = a and 2ary = x^. Thcvse con-

siderations are sufficient for the general shape given in the

figure.
,

Fig. 5.

MULTIPLE POINT OF TWO BRANCHES.

66. I proceed next to the case of two branches through

the origin. Such points occur when the rationalized equa-

tion commences Avith a function of th^ second degree, thus

in which k, may be of the form 1. i\\i\, II. v-^, III. v-^+ %v^.

I. U^ = V{LV^.

67. The tangents to the curve at the origin are given by

v^ = and %Vy = ^. If v^ = ax+ hy,\h% next approximation

for the branch touching v^ = 0, is obtained from v^+ u^jw^ = 0,

in the form v-^^-\-Ax'^ = 0, by writing —ax/b for y in the

fraction ujw^, which is generally the simplest method; or,

since v,-\—- = v,-] 'Kx^, and so A is the limit of—^;,, the
^ tfj ' tl\X^ ^v^x~

numerator and denominator of which are each homogeneous

functions of the third degree, the value is given by writing

b for X and —a for y, Art. 3 (3).
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III. 68. We may observe that the curve i\-{-Ax'^= is a

parabola whose axis is parallel to Oy ; it is easy to shew

how an approximate parabolic form may be found having

its axis parallel to any given line ')nx-{-ny = 0, for —^ may

be written —-, r:-,(mx-\-ny)-, which gives for the
iu^{mx+ nyy^ '^

'

*

approximation B{mx-{-nyf, where B is to be found by

Art. 3 (3) as A was in the last article.

If ')n= —b, n = a, the approximate parabola will have its

vertex at the origin.

69. Take for examples the investigation of the forms of

the following curves near the origin.

Ex. L x-(y— b) = y2(x— a), a>b.

The first approximation gives ay'^ — bx"= 0, and hence

the tangents at the origin are yJa = ±x^b.

The second approximation foi* the branch whose tangent

is yja = xjb, comes from

giving by either of the methods of Art. 67, neglecting

powers of x above the square,

yJa-xJb+ '^^~^^
a;- = 0;

changing the sign of ^//>, for the other branch we have

yja+ xjb+ ^^^^^^x^^ = 0.

Fig. 6. The figure shews how each brancli bends.

Ex. 2. a'-(x-- y2)+ 2axy-+ ay'^ - x*- x-y- = 0.

The tangents at the origin are y=±x. For the next

approximation, retaining only the parts of the given equa-

tion which give rise to terms of the second order, the forms

of the two branches are given by

2xy'-+ y^_ S^ j.
a(y-\-x)

2xy-+ y^
^ a{y — x) 2a l\
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Both branches bend towards the negative end of the iii.

axis of X.

Ex. 3. X*- y^ - a-x-+ b-y ^ = 0.

For the direction of flexure from by = ax,

y*-x' xHa^-¥)
by — ax = f—^ = \, ,.

—

•

^ by+ ax 2ab*

For the flexure from by= — ax,

y^-X* —xW-¥)
by+ ax = i^

= ^ J.^ by — ax 2ab*

Writing lOOa^ for a^ and 96a.- for 6', we obtain the

equation discussed in Art. 33, and Plate II., fig. 15, shews

the form of the curve for the above values of a and b.

Ex. 4. y*- 2a'y-+ 2a-x2- 3ax=5+ x* = ,

or y%2a^— y"-) = x^x — a){x — 2a ).

The curve is symmetrical with respect to Ox.

Near (0,0), y^ = x'"-~.

2^=*Kl-2a)" = ^Kl-l)
near {a, 0), 2ahj-= —a?^, or y'= —ha^\

near (2a, 0), 2aHf =^a^^, or y- = 2a$\

near (0, a72), -M\2J2atj= 2a-x-, or x-=-2j2a>];

near(a, ay2), -2a'^.2j2ar]= -a% or 17 = 1^/2^;

near (2a, aV2), -2a'-.2y2a>/= ^a% or >]=-hJ2^.

To find where the curve is parallel to the axis of x, let

(a, /3) be such a point, and consider that if x = a.+ ^ and

y = ^+ rj, the resulting equation in ^, »; represents a curve

passing through the origin and touching the axis of ^, so

that >; vanishes compared with ^ near the point of contact.

The substitution in the proposed equation gives, near

i^, iS),

(4a'^a.- 9aa.2+ ^ol^)^+ P;, + Q^s _^ . . . = 0,

since /3*- 2a-/3-^+ 2a-a2 - Saou'+ a-^ = ;
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III. therefore, making ^ very small,

4a-a— 9«oc-+ 4a'^ = 0,

whence a=:0 and ^^{9±v^(l7)}a, or ^^ and fa nearly;

these values give the position of the points required, viz.

a, c, h and h', symmetrically placed on opposite sides of Ox.

Similarly, the curve is parallel to Oy, where

4?/^— 4a-i/ = 0, or y = ^^ and y=±a,
Fig. 7. when y = <^,

''^''*— 3«x^+ 2a"X^— a* = 0.

The values of x are the abscissae of the points of inter-

section of x- = ay (1)

and y{y— Zx+ 1a)= c(? (2)

If the parabola (1) and the hyperbola (2) be constructed,

it will be seen that, since the parabola cuts the asymptote

1/ — 3,^+ 2a = at the points where x= a and 2a, the points

Fig. 8. of intersection, p and q, have for their abscissae a small

negative value and a positive value a little greater than 2a,

and that these are the only points of intersection. The
Fig. 7. points so determined are the points e, e, and /, /', in the

curve.

The student may also find the solutions of the biquadratic

by the intersections of ay = X" and y{x— a){x— 2a)= a^.

70. If there be no functions of the third order, the equa-

tion of the curve being v^^L\-\-^i^-\- ...=0, the next approxi-

mation to v^^ = may be obtained from v^+ iij%v^ = () in the

form i\-\-Bg(?= (), which expresses that the distance of a

point of that branch from the tangent changes sign as we
pass through the point of contact, or that there is a point

of inflexion.

71. Take, as an example, the curve a-(x-— y-)+ x*-|-y* = 0.

The curve is symmetrical w^ith respect to both axes, and

meets the axis of y where y= ±a.

The branch, whose tangent is y = x, has the approximate

iorm oi y =x-\-x^/a-.

Near (0, a), since the equation can be written

(<r-+ x')x'+ yHy-^-a'~) = (),
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if we write a+ rj for y, we have the parabolic form, m.

X^+ 2ayi = 0, yA^.

A nearer approximation is x^+ ti--\-2arj = 0, which shews

that the radius of curvature is a. The dotted line in the Fig. 9.

figure is the circle of curvature at the points (0, ± a).

72. When v^ is a factor of u^ and iv^, the equation being

the form of the branch, whose tangent is v^ = 0, is given by

and therefore by

v, + -^= or y,+^«3= 0;
^ w-^

^

whence, as in Art. 70, this branch has a point of inflexion.

In this case, y^ being of the third order, v^v^ is of the fifth

and therefore ranks after u^.

73. The following curves will serve as examples

:

Ex. L a-(x+ 2y)(y-2x)-a(y-2x)x2+ y* = 0.

The direction of flexure from the tangent y — 1x = 0,

obtained from -j/4

y-2x+ -or'^o-\ = ^>^ a\x+ 2y)

by making y = 2x in the smaller term, is given by

- 1 6x^ „

For the other branch, whose tangent is x+ 2y'=0, the

flexure is given by that of the parabola a(x+ 2y) = x^.

The curve cuts the axis of x where x = a; ii x = a+ ^,

since, when y'^ is rejected, the equation becomes

— Sa^xy— ax^y+ 2ax^(x— a)= 0,

the tangent at this point is 2y = ^.

To obtain some idea of the size of the loop, which joins

the ends of the branches in xOy, put x = y. Then

a; = 2/
= i(±7(13)-l)ft = l-3a, or -2-3a nearly.
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III. The guiding asymptote is 2ax^-\-y'^='0, and, since the

next most important term is —ayx^, the numerical value of

y, for large values of x, is greater in the curve than in the

asymptote when 2/ is + , and less when y m — , so that both

branches lie above the asymptote ; the curve cuts the lower

branch in two points, only one of which is given in tlie

Fig. 10. figure.

The calculation of the direction of flexure of the branches

at the multiple point might have been avoided, as remarked

in Art. 53, by observing that y — 2« = does not meet the

curve except at the origin, consequently there are three

consecutive points in the tangent, and therefore a point of

inflexion; and that x-{-2y = ^ meets it again at the point

( — 40(/ , 20a), too far to be represented in the figure.

Ex. 2. a^(y2 - x^)- 2a2(y3+ x^)+ ay*+ x-^ = 0.

The tangents to the branches through the origin are

y=±x, and the next approximations are

a{y—x)— 2x'^= 0, a^(y+x)— hx^ = 0.

The equation may be written in the form

ay"{y— ay= X'(x-\- a)(a^ -^ax — x'^),

or a{ (2/ - haf - ^a^}^ = x^(x+ a)(x+ 2a sin 18")(2asin 54°

-

x),

the curve is therefore symmetrical with respect to the line

y = \a, and y is impossible, if a; >• 2a sin 54°, or between

— 2a sin 18° and — a. The forms, where x= —a, —2a sin 18°,

and 2a sin 54°, are common parabolas.

Fig. 11. The infinite branch is of the form x^ -\- a{y — ha)^ ==0.

We may illustrate the method of Art. 47 in approxi-

mating to the position of the points of intersection of the

curve with the line y = |a, given by the equation

x^— 2a?-x^— a^x'^+ ^^^ = 0.

The values of x are the abscissae of the points of intersection

of the curves

u"y = x^, and x~(y — a) — 2a-y-\-^a^ = 0,

the asymptotes of the latter are y = a, and x= ±aJ2.
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The first curve is the dotted curve, the asymptotes of the iii.

second are omitted. The letters in, n, r determine the pig. 12.

position of M, N, R in the figure of the given curve.

II. U.2 = Vf

.

74. The second case, when u^mv^^, in which there are

two coincident tangents, gives, generally, as the approxi-

mate form, v^2+ U3 = ; hence, if A be the value of ujx^

when b, —a are written for x and y, v^^-{-Ax^ = ; therefore

if A be finite, i.e. unless v^ be a factor of u^,

ax+ hy= ±{ — Ax^Y ;

so that, generally, vv^hen m^ exists, this curve has a ceratoid

cusp at the origin [see Art. I8 (3)].

75. An example of this form occurs in the curve

(ax— by)'— ax^y— y* = 0.

Near the origin, (ax— ^2/)2 T~—^' ^^ hy = ax±—^-;

near the points, (0, ± h), =F '2ah\-c+ Ir. 2br} = 0, or br}+ ax = .

where y = a, x = 00
, or — (a^— b^)l2b.

If X and y be both very large, ax^-\-y^= 0, which meets

the curve where x — — Wjar. The figure is drawn for Fig. 13.

76. When v-^ is a factor of itg, we have to obtain the

approximate form from v^+ v^Vo+ u^ = 0; in which case

(^1+ 1^-2)'=W- ^4 .
or ^1 = - i^2 ±Bx'-= {C± B)xA

If B be impossible, the origin is a conjugate point.

If B be real and difierent from zero, each of the branches

is parabolic, the curvatures being different.

If 5 = 0, or 4^4 = v.^, the form must be found from the

next approximation, viz.

{v^+ ^v.^-+ Ur^= 0, or Vy+ lv., = Dx^,

which shews, as in Art. 18 (1), that there is a ramphoid

cusp at the origin.
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III. 77. The following examples will illustrate these forms :

Ex. 1. (X- y )2- (X- y)x2- -^x*- ly*= 0.

Near the origin x — y = ^x^, or — ^x^
;

where y = ^, x^—x^— ^iX* = 0, (i)

.•. x= ^ and —3f nearly;

near the points (0, ±S), ii y = ±S+ r], it can then be shewn

that ^=_^_j_i.^2 Q^^^ ^= ^x+ ^x%

so that the curve bends upwards at both the points where

the curve meets Oy, which, for the upper point, is contrary

to what one would have expected without calculation.

The tangent y+x= S,it will be found, meets the curve

at points where x = \^ and — 2-^-^ nearly.

To obtain a good idea of the size of the curve, observe

that X— —y meets it where a;=— i/ = f or — 6. We can

shew that the tangents at these points are 3>7+ 13^=0, and

Fig. 14. 3>/= 7^.

The directions of the curve, at the points where the curve

intersects the axis of x, are deduced from a curious property

of the curve, which may be shewn as follows

:

Let the curve be cut by a line x-{-y = a., then the lines

joining the origin with the four points of intersection are

given by the homogeneous equation

(cc^— 2/2)2_ (x.x'^{x^ — y^)—^a}x* — ^(xry^ = 0,

or (1 -a - ia})x*~ (2 - a.)x'Y+ (1 - i«--)2/^= (ii)

When all four points are real, these lines form two pairs,

equally inclined to the axes ; if two only are real, the two

lines are equally inclined to the axes.

Hence, a pair are coincident at each of the points of

intersection with the axis of x ; this appears directly from

equation (ii), since y" = when l—OL— ^ar= Q, which makes

y+ x= a. satisfied by the points given in (i).

The same property shews that there is a double tangent

parallel to x+ y = 0, touching at a, b, so that Oa, Oh, are

equally inclined to Oy.



MULTIPLE POINT OF TWO BRANCHES 53

PLATE
Ex. 2. 2 (x- y- -jx2)2+ (x+ y)y*- y«- x« = 0. III.

Near (0, 0),

{x—y — ?i,x^)^+ x^= 0, or y = x— %xrzt{— xy-,

so that there is a ramphoid cusp at the origin.

Where 2/ = 0, x- = and 2(l-f£c)2-ic*= 0,

.-. a;2±f72a;+f=t±V2 = i(2± 13) nearly,

.'. 03+1^2= ±^^(15), or « = -8 and - 1*8 nearly.

Where x = Q, 2y^-\-y^-y^= 0,

.-. 2/^ = and y'^— y^— 2 = 0, or y=—l or f nearly;

where x = y, ^x*+ 2x^— 2x^= 0; r. x — ^ or — i;

where a; =—2/, each = l"l or — ]'8 nearly. Fig. 15.

III. U^ = V.^'+ W^^.

78. The third ease, when u^ is of the form v^^+ w^^ gives

a conjugate point, since the first approximation has Vi = 0,

Wy = 0, as the only solutions.

79. Take the following curve as an example

:

a2(x2+ y')-2a(x-y)3+ x*+ y* = 0.

There is a conjugate point at the origin.

To trace the curve, observe that —x for y and —y for x

do not alter the equation, hence the curve is symmetrical

with respect to the line x+ y = 0, which cuts the curve

where cc-— Saa;+ «^= 0, or x= {^— \)a or \a, nearly
;

near (a, 0), a^^^+ Qa^y = 0\ ?>-L;

near (0, — a), a\^— Qa^x = ; -+-

where y = mx meets the curve

a\m^+l)+ 2a{m-lfx-{-(m'^+l)x^= 0;

therefore if x be real, (m'^-\-l){m^-\-l)— ('}n — l)^<^0,

.'. 6m^-1477i*+ 207/i2-14m2+ 67?i<0,

or 2m{3(7n2+ l)-4m}(7/i2+ i_m)<0,
hence m must be negative, and therefore x positive, so that

the whole curve lies in the angle xOy', and consists of an

oval and the conjugate point. Fig. 16.
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54 MULTIPLE POINTS OF HIGHER ORDERS

CURVATURE OF BRANCHES AT MULTIPLE POINTS.

80. To find the diameter of curvature of the branch of

the curve whose tangent is u-^ = 0, the equation of the curve

being u{Vi-\-u^-{-u^+ ... = 0.

Let u^ = ax-\- by, t\ = a'x+h'y, u^ ^f(x, y).

The second approximation gives ii^i\-\-xi^ = (), hence the

diameter of curvature

= Lt
v^5?^(«^^)= Lt

v^^^M^(a^'+i/^)^i

_ _{cv^+ h'^)\a'h-h'a)
-^

fib, -a) '

since r = -^ ultimately.

81. Example. To compare the diameters of curvature

of the two branches through the origin of the curve

(a-x)y^ = (4a-y)x2.

The equation may be written

a{y-1x){y+ 2x)-xy{y-x)= 0.

The diameters of curvature of the two branches are the

limits, when y= ±2x, of

y^zx^ xy{y— x)

they are 5^5 . 4a and 5,y5 . ^a, and in the ratio 3 : 1.

MULTIPLE POINTS OF HIGHER ORDERS.

82. These discussions of particular forms of the homo-

geneous functions are sufficient to shew how they can be

dealt with in all ordinary cases.

The different forms which u^ could assume if the first of

the existing functions were of the third degree, will suggest

themselves readily, as when there is only one real branch,

when there are three branches, when two of the three or

all three osculate; also whenever variations arise in con-



MULTIPLE POINTS OF HIGHER ORDERS 55

PLATE
sequence of peculiar forms of the succeeding functions ill.

similar to those mentioned in Arts. 72 and 76.

Thus, there would be three osculating branches, if the

equation reduced to the form

83. A few of the varieties occur in the following curves.

Ex. L a(y--x'-)(y-2x)-y* = 0.

This curve has three branches through the origin, the

deflexions from the tangents to which are given by

a(y-x)+Uf = 0, a(y+ x)-ly'- = 0, a(y-2x)-i,y'' = 0;

near (0, a), 2x-}-y — a = 0,

near ( 00 , co ), 2ax^— y*. Fig. 17.

Ex. 2 a(y- x) (x'-+ y-)+ x* = 0.

Through the origin there is a branch of the form of

2a(y — x)-^x^ = 0, and there is also a conjugate point called

a point-circle, x^+ 2/'" = 0.

Near (a, 0), y+x— a = 0,

near ( 00 , 00 ), ay'^+ x^ = 0. Fig. 18.

Ex. 3. a(y- x)2(y+ x)- y* - x* = 0.

Since the interchange of x and y does not alter the

equation, there is symmetry with respect to the line x = y ;

near the origin,

a{y — xf= x^ and 2a{y + x)= x^\

near (a, 0), y+ x — a = Q.
.

Fig, 19.

Ex. 4. a''(y- -af - 2ax''+ ay''- x^ = 0.

Near the origin,

a\y — xy— ax'^ = 0, or y— x = x'^/a^;

near (0, — a), if y=—a+ r], i]+ iix= 0;

near( — a,0), iix=—a-\-^, 3ay+ ^^= 0;

near ( 00 , 00 ), ay*— x^ = 0. Fig. 20.

Ex. 5. 2a2(y- x)2(y+ x)- 4ax3(y- x)+ 2x5_ x*y= 0.

For the branches whose common tangent is y = x,

4>a\y — xy — 4<ax\y — x)+x'^=
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III. is the next approximate ecjuation, and it gives two coincident

parabolas. To separate the branches we must conduct the

approximation a step further ; in the smaller terms put

y = x+ x^/2a, then

4>a\y - xy(x+^) - 4'ax\y -x)+ x^- 1^^
= 0,

x^
or x{4>a\y — xy— 4iax\y — x)-\-x*} = —ax\y— xf+^ ;

whence 2a{y—x) = x^±.—i= is the approximation, which

gives a ramphoid cusp.

For the branch touching y-\-x = 0, a{y+ x)-{-x'^= {i,

where y = 0, 2a'^x^-{-4<ax^-\-2x^ = Q, or x^(x-{-af= 0;

near ( — a, 0), — 2a^x^y — 4iax^y — x*y + 2x\x + af = ;

.•. {x-\-ay = ^ay.

The rectilinear asymptote is y= 2x— 4!a, the guiding

Fig. 21. parabolic asymptotes are x^= ±: ^2ay.

Examples IV.

1. (j/-2y^{.r-iyx.

Find the branches which pass through (1, 2), and shew that the

radius of curvature of each branch is 2^/2.

2. {2a-.v)f= w(ia-xf.
Shew that the branches at (:]a, 0) cut Ox at angles 60" and 120°

;

the radius of curvature of each branch is a^/3.

3. .v^+^"=c^.

Prove that the radius of curvature at the point where .r= 7/ is §c.

4. (a - .i:)7/^— {a + .v)x'^.

Shew that the centres of the circles of curvature of the branches
through the origin are at the points ( — a, ±a); and that the greatest

breadth of the loop measured parallel to 0^ is f^a nearly.

5. In the curve of Art. 81, shew that the diameter of curvature at

(a, 4a) is very little less than 43a.

6. Discuss the case of Art. 82, when

(i) ^2 = ^2— ^2 ^^d (ii) t2= v.^i=w.j.
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7. .r< +3/* - 2o!.?"''+a%v+yf= 0. Hi.

Shew that there is a ceratoid cusp at the origin, and find the form
of the curve near (a, 0). Prove that there is only one tangent, besides

the axis of .r, which passes through the origin, and that m, the tangent

of the inclination to the axis of .r, is given by the equation

m^ + 2?JC* + iii^+ m + 2 = 0,

approximate to its value by the method of Arts. 47 and 49.

8. .rC+/-a2(.f2-y2)2= 0.

Shew that the curve consists of four loops, and that the radius of

curvature of each branch through the origin is 2a.

9. Find the forms of the branches at the origin, for the two curves

x^ — ax^y+ ja2y2 _ ay"^—

and x^ — ax^y — %ahi'-ay'^— Q.

Prove that the breadths of the two loops measured parallel to Ox
are about fa and y^o^-

10. The curve, fig. 20, Art. 88 (4), is parallel to O.r, where it meets

the curve
3^2(y _ ^y.^ ^^^z+ 5.^.4 = q,

or ^ahj {y - 2,r) + x-{x+ a) (5.^-+ 3a)= 0.

Trace the last curve, and shew roughly where the three points of

intersection are situated.
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III. 84. I have now to call attention to the cases in which

X and y are of different orders of magnitude, for points

taken very near the origin along any branch of a curve

whose equation is given.

Such cases arise when the equation of the curve can be

shewn to be correctly replaced by a simpler equation of the

form ax'^= hy^\ when 7Ji and n are unequal. For example,

if the equation of a curve were
«*+ ax-y+ bxy-+ ey^ = 0,

the simpler equation x'^+ ay = would make hxy- of the

order x^, and cy^ of the order a;^, and the equation would be

X"+ ay{l-\-e) = 0, where by diminishing x, e might be made
as small as we please ; so that one series of small values of

X and y will satisfy the equation .x- -\-ay = 0, which, there-

fore, gives the form of one branch of the curve.

85. The variety of cases which arise is so great, that I

shall attempt no subdivision of the two cases in which x is

small compared with y, and y small compared with x,

reserving for a future chapter the application of Newton's

parallelogram and De Gua's analytical triangle to the dis-

crimination of the branches of a curve which pass through

the origin ; it will there be seen that these artifices save the

trouble of thinking in a great measure, but my object is

rather to give the student distinct ideas of the work which

he is doing in making approximations, than merely to obtain

results.
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86. I shall therefore in this chapter discuss such a number iii.

of particular cases as will be sufficient to show how any

case, which is not very complicated, may be handled, taking

as examples curves which are given by equations which

either contain only a small number of terms, or are

reducible, by simple considerations, to a small number of

terms.

87. A simple case to begin with is the curve whose

equation is x* — axy^ H- y* = 0.

Here x and y cannot be of the same order of magnitude,

since in that case axy^ would be of the order o?, so that the

equation would become axy'^ = 0, which is contrary to the

supposition.

We try first whether x can be small compared with y,

in which case ./;* would be small compared with y^, and the

equation would become — axy^+ y* = 0, or ax= y^
; there-

fore, since for a short distance along this curve, whose form

is -[-, the value of a;^ which we neglected, is of the order

y^, this is an approximate form of one part of the curve.

We then try whether y can be small compared with x, in

which case y^ could be neglected compared with a^*, and the

equation would be reduced to x^— ay" = ; along this curve,

whose form is —[^ ,
y^ is of the order x^^ and the result is

consistent with the assumption that y'^ might be rejected.

This is therefore the form of another branch at the origin.

The curve is then easily drawn, since it is symmetrical

with respect to Ox, and x cannot be negative. Fig. 22.

88. The next which I shall consider is a more difficult

case, and will serve as an illustration of the circumstance

that, if the rationalized equation of a curve be arranged in

homogeneous functions of x and y ascending in degree,

such as '?t;.+ '?^.-|-... =0, Uy does not necessarily belong to

the terms which can give the first approximation to every

branch of the curve passing through the origin ; that is, the
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III. functions are not arranged in order of magnitude for all

branches of the curve.

The equation of the curve is

x^y-+ X3r^— y^ — x^ = 0.

Here x and y cannot be of the same order of magni-

tude ; we must try, therefore, whether x -.y or y -.x can be

small.

First, suppose y : x small, i.e. as small as we please by

diminishing x ; if so, y" is small compared with x"^ and the

equation reduces, so far, to

x^y^ -{-y^— x^ = 0.

Again, since y^ is small compared with x^, y^ may be

neglected, and y'^= x^ gives an approximate form, VW,
where we observ^e that the terms neglected, namely xy^ and

y", are of the orders x^^ and x^*, while those retained are of

the order x''.

Next, suppose x : y small, in which case x"^ vanishes com-

pared with y", and the equation is reduced to

x^-\-xy^— y^ = 0.

If in an}'' branch x^ can be neglected, x = y^, and x^ = y^,

hence the term neglected is small compared with y^ retained,

—i— is therefore the form of a branch.

If xy^ could be neglected, x^ = y^, then one condition

would be satisfied, viz. that x : y should be small, but

xy^ccy'^'^^ or y*^^
, which is greater than the term y^ re-

tained ; there is therefore no such branch through the

origin.
1

If y^ be neglected, x-= —y^, and y^, which x x'^', is small

compared with the term x^ retained —4-- is therefore the

form of a branch.

The four branches have thus been shewn to be given by

the equations

y = x^, y=—x^, x = i/-, and x^ = —y^.
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The terms of the original eciuation, which give rise to m.

the branch x = y-, are xy^— y''; therefore the term x^y"^,

which is the first term in the arrangement by homogeneous

functions, is of the order y^ in this branch, and does not

form an element in the equation giving the approximation,

as was mentioned in Art. 88.

It will hereafter be seen how, by placing the terms of

this equation in De Gua's triangle, the trouble of this dis-

cussion is removed, but I have thought it better to shew by

this method how to select the combinations which give the

forms of the branches, although when the number of terms

is large, the examination becomes too complicated for prac-

tice, and recourse must be had to the triangle.

89. When there are only three terms in the equation, as

in x^-l-y^— 3axy= 0, it is easy to obtain the form at the

origin by trying whether, on neglecting any term, the re-

sulting relation makes that term small compared with those

retained.

Thus neglecting x^, y^= Zax, with which relation x^ is of

the order y^, therefore properly neglected.

Similarly, neglecting y"^, x' = day, and y^ is of the order x^.

But if xy be neglected y+ x= 0; therefore xy is of the

order x-, and could only be neglected upon supposition of

X and y being very great. See fig. 2, plate V.

90. If these tentative methods should be attempted in

cases of equations which contain a large number of terms,

the number is capable of being greatly reduced by the

following considerations

:

(1) The coefficient of any power of y being a function of

X, we can reject, as small by comparison, all but the term

involving the lowest power of x in that coefficient.

(2) Similarly for the coefficient of any power of x.

(3) If we are going to try for a branch in which y is

small compared with x, from any homogeneous function of

more than one term, which may form part of the equation,
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III. we may reject all the terms except that which contains the

highest power of x.

(4) If, after the above simplifications, a term x^ remain

not having y in its coefficient, no term involving y need be

retained, in which the sum of the indices of x and y is n or

any greater (juantity.

91. The student should obtain the branches near the

origin in the following curves, and after this practice he

will probably be able to perform the requisite operations

with ease, the arguments passing through his mind almost

involuntarily.

Ex. 1. ax(y-xy' — y^ = 0.

Near the origin, x and y of the same order gives

y = Xztx^/a^; x:y small, gives ax = y'^; y.x small, gives

ax^= y^, which contradicts the assumption if x and y are

small, but agrees with it if x and y be very large ; hence

Fig. 23. ax^ = y* gives the direction of bending at an infinite distance.

Ex. 2. x4-a2xy-bV = 0.

The curve is symmetrical in opposite quadrants.

Near the origin, cv^x+ hhj = — b^x^/a^, and x^— a?-y = ;

near (oo , oo ), x*= b'^y^, observe that the branch x^ = a^y lies

Fig. 24. closer to the axis of x than these parabolas.

Ex. 3. x5-a2(x=*+ y3)+ a=^y = 0.

Near the origin, x^ may be rejected, and the branches are

of the two parabolic forms, x^ = ay, and y-= ax
; ( ± a, 0) and

(a, ±a) are points in the curve, near which ?/==F2^and

2>;= (2 ± 1 )^ ; the asymptotic guiding curve is x^ = o}y^, lying

Fig. 25. above the branch x?— ay and crossing the curve at (a, a).

Ex. 4. x'^-3bx3y-bxy'^-f-4b'V = 0.

Near the origin, xy^ may be neglected compared with y'^
;

.-. x^ = iiby and 3a''' = 46_y'^

give two branches at the origin.

Near (oc , oo
)

y'-^ may be rejected, and x^= hy^ gives a

guiding asymptote, cutting the curve where x = f46.
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Where x = 4>h, y = cc or -\f~h ; m.

where ^ = y> ;c- — 46:c+ 46^= 0,

where x= 2b, y = 2b, 2b, or —46,

where y= 2b, x= 2b, 2b, or —(3— 1)6 nearly;

near (26, 26), if «; = 26+ ^, y = 2b-\-,j,

y = x(l+a.), where c(. = {r] — ^)/2b-\- ...

,

and .-. (a;-26)2-36(Xic+ 6(46-a;)(3a+3a2+...) = 0,

or (a;_26)2-66a.(a;-26)+ 66-oc'-+...=0,

whence ll^^- 12^/;+ 3;y'- = 0, giving the directions of the

branches at the multiple point (26, 26) and showing that

they are inclined to one another at the angle cot"H nearly. Fig. 26.

Ex. 5. x'^ — ax'^y— axy^+ a-y^ = 0.

Near the origin, x^ = ay and x}= ay^;

near (co , oo ), r»* = cnf,

also, when x = a, y = oo or a.

Note that x= y is the tangent at (a, a).

The curve is parallel to the axis of y where 2ay = Sx'^ or

27(a; — a)«+ 4a- = (), or x = ia and fa nearly. Fig. 27.

Ex. 6. (y-+ x'-)--6axy2-2ax3+ a-x- = 0,

or (y-+ x- — Sax)-= 'i:ax\2a — x).

The curve is symmetrical with respect to Ox ; x cannot be

negative nor greater than 2a ; there are two osculating

branches through the origin, given by y- = (3 ±: y8)aa; = ^-ax
or ^ax nearly.

Near (2a, «V2)> Fig. 28.

if x = 2a + ^, y = aJ2-}-r], r,-+ 2a^=0,

near (a, 0), - 4«2y-2 _^ (^2^-2 ^ q

Ex. 7. y^-2axy--3a2x2+ x* = 0,

or ( ?/- — d.xf = A--(4(^-— a'-).

The curve is symmetrical with respect to Ox, and x = 2a

is a tangent where y=±aJ2; y^ = Sax and —ax give

branches through the origin. Near (±aj3, 0),

'd x=±aJS-\-i, 1/2 = Sa^. Fig. 29.
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IV. Shew that the curve is parallel to Ox at the points

whose coordinates are (I'Gla, TSTa) and ( — 108a, 'SGa).

Ex. 8. x^-axV-2a2xy2+aV= 0.

Near the origin, \i y \xhe small,

x^-ax-y-^a"y^= 0,

:. x^= —ay or lay,

and y'^, oc x^, is small compared with x'^ ; x and y of the

same order gives y = 1x-\-x^j1a, and the tangent y = 2x

meets the curve again at (2a, 4a), where a;y+ 7^- = gives

the parabolic form.

Near (oo , co ), x^-\-a-y^= ^; the curve really crosses the

Fig. 1. asymptote at (8a, —32a), too far to be shewn in the figure.

Ex. 9. x*5+ axV— cx^- 4- dxy=^± ey* = 0,

If x and y be of the same order, —cx^+ dxy-±€y''=
gives two branches through the origin when the factors

are real.

If y be small compared with x, x^+ ax-y— cy^= gives

two osculating parabolic branches.

Fig. 2. The figure is drawn with d and e small compared with c,

and with the upper sign in the equation.

If the lower sign be taken, x^— €y^ = Q gives two semi-

cubical parabolic asymptotes, since with this relation the

remaining terms are of orders lower than x*^.

Figs. 3, 4. The two figures correspond to 4ec < and >• dr.

Ex. 10. x'^+aV+ a-xV+ a^y-= 0.

Near the origin, \i x:y small, y-+ ax = (),

if V'-^ small, a:^+ a?X"y+ aHi~ = 0,

:. x^+ a-y = 0, and a:'- -f a,y = ;

Fig. 5. the origin is therefore a triple point.

92. The following examples will serve for practice of

the method spoken of in Art. 89, in which the equations of

the curves either contain only three terms, or are reducible

immediately to three terms by the considerations given in

Art. 90.
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The curves which I have selected can be traced com- iv.

pletely by the methods ah-eady described, and will be useful

as an introduction to the chapters on asymptotes which

succeed.

Ex. L X*— axy2— a^y = 0.

Rejecting xif- compared with y, x^-=^a?y is a form near the

origin; rejecting cc^ 2/*+ ft^ = is an approximation if x be

very small and y very large, therefore the axis of y is an

asymptote, and the curve lies to the left above, to the right

below ; lastly, rejecting y, x? = ay^ holds if x and y be both

infinite, giving a semi-cubical parabolic asymptote. Fig. 6.

Ex. 2. X*— axy-— ay2 = 0.

Neglecting a;*, x+ y = 0, near the origin ; neglecting i/^,

x^= ay^ makes y^ of the order flj*""^-, and gives a semi-cubical

parabola at the origin ; neglecting xy^, re* = ay^ makes xy^ of

the order x'^^, correctly neglected at an infinite distance. Fig. 7.

Ex. 3. X* — a^xy— ay^= 0.

Near (0, 0),

ax+ 2/^ = and x^— a^y = ;

near (oo , oo ), x*= ay^. Fig. 8.

Ex. 4. x*-fax2y-ay3 = 0.

Near (0, 0), x^ = y'^ and x^-\-ay = ^\

near (oo , 00 ), x^ = ay^. Fig. 9.

Ex. 5. x4-axy'--aV+V = 0.

Near the origin, axy^ and by^ may be rejected compared

with a-y^, so that re*— a^y^ = gives two branches through

the origin.

Near (oo , oo), y^ vanishes compared with y^,

.•. x'^— axy'^-[-by^ = 0,

if a;* be neglected, ax — by ; therefore re* was improperly

neglected compared with the terms kept ; if xy^ be neglected,

re*+ by^= 0, and xy-, being of the order rc^+*, was properly

neglected ; if y^ were neglected, rc^ — ay- = 0, y^ would be of

the order r«*+^, or greater than the terms retained; therefore
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IV. x*+ by^ = is the only asymptote. The figure is drawn for

Fig. 10. a= 2b nearly.

Ex. 6. x^ — a'xy— a2y3= 0.

Near (0,0), ax+ y^= and x^— a^y = 0;

Fig. 11. near (oo , x ), x^ — a^y^ = 0.

Ex. 7. x^ — a^xy— ay*= 0.

Near (0, 0), a^x+ y^ = and x* — a^y = ;

Fig. 12. iiear ( oo , oo ), x^— ay^ = 0.

Ex. 8. x3y2-ax*+ a2y3 = 0.

Near (0, 0), x^= ay^;

Fig. 13. near(x,oo), x^+ d^y = and y^— ax= 0.

Ex. 9. x3y2-a3x2+ ay* = 0.

Near (0,0), a^x^= y*;

near(x,oo), x^-\-ciy^= 0;

Fig. 14. near ( oo , 0), xy^— a^= 0.

Ex. 10. x^— ax*— a^xy+ay*= 0.

Near the origin, x^+ a^xy — y*= 0,

rejecting x*, d^x— y^ = 0,

y*, x^-{-a^y = 0;

near(oo,oo), x^-{-ay*= 0;

when x= a, y = or a,

near (a, 0), y = x— a,

Fig. 15 (a, a), 4^2 _^ 3^^ = q.

Examples V.

1. Trace the curve

{x^+ 1/-)^ — Qaocy^ — 2ax^+ 2a\v^— 0.

Find the position of a line pai-allel to 0>/, on which the three

portions intercepted by the curve are all equal. Shew that the

distance from Oy is £a nearly.

2. Shew that the asymptote of the curve ax{y — xf - y* = cuts

the curve at a finite distance at a point at which the curve runs
parallel to the axis of y. Find at what point the curve is parallel to

the axis of x.

3. Find the points in the loop at which the cyxvvQX*-axy^ — ay^=Q
is parallel to the axes.
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4. Find the three points where the tangent at (a, a) in the curve iv.

of Art. 91 (3) meets the curve again.

5. Draw the curve x* - a?xy+ hy^= 0.

Shew the effect of varying the middle term in the following five

curves

:

6. ofi-ax'^y'^-^hy^^^. 7. ^-a^y+6y*=0.

8. oc'-axf-\-hy^= (d. 9. ^-a2.r2y+ 6/=0.

10. ^-a2.ry2+6y*=0.

Trace the following curves :

11. y^+ ax*= h^xy\ 12. {x'^+y'^f^'ia'^a^y^

13. x^-'iax'^y-\-4.a'^y'^-a.ifi=0. 14. a?xy-'iax'^y+ x/^+y^ = Q.

15. ar'-ay*-ir'2ha^y-\-h^xy^=0. 16. a^y^-a?hy^+ a?x^y-\-x^=^0.



CHAPTER VI.

ASYMPTOTES. POINTS OF INTERSECTION AT AN
INFINITE DISTANCE. ASYMPTOTES PARALLEL
TO THE AXES.
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IV. 93. In the preceding chapters I have shewn how to find

by approximation the forms of curves in the neighbour-

hood of the origin.

I have shewn in fact how it is that the equation of the

curve may be replaced by simpler equations, representing

near the origin with sufficient accuracy tbe different

branches of the curve.

In the present chapter I propose to apply the same

principles of approximation to discover the forms of the

branches of curves, which extend to a distance from the

origin very great compared with the unit distance employed

in the equation, simple cases of which have occurred in

many of the curves already traced.

ASYMPTOTES.

94. Since in tracing curves we profess to include every

point whose coordinates satisfy the equations, whether the

points are at a finite or infinite distance, it becomes neces-

sary to examine every case in which it is possible that

either one coordinate or both may be infinite, and to indicate

the course of the curve corresponding to all such cases.

For this purpose simpler relations than that represented

by the equation are discovered, to which the equation very

nearly reduces, when one or both of the coordinates are very

large.
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The lines which are the loci of these simpler equations iv.

are called generally asymptotes, or asymptotic curves, and,

since it is easy to recognise the forms and positions of these

lines, they become guides for determining the general form

of the proposed curve, which runs along them on one side

or the other.

95. Asymptotes which are rectilinear have already been

defined, Art. 5 ; they might also be defined as tangents at a

point which is infinitely distant, this definition implying

the same property as the former, since no straight line can

lie closer to the curve than the tangent, in the neighbour-

hood of the point of contact.

The lines which are called curvilinear asymptotes, as

being suflacient to guide us as to the final direction in

which the curve bends, ought to be called by such a name
as a quasi-asymptote, since the distance between the curve

and asymptote does not ultimately vanish, although it

vanishes compared with the distance from the origin.

Although it would be always possible by successive ap-

proximations to obtain a simpler curve than the original,

which would satisfy the conditions of indefinite approach,

the advantage gained would not counterbalance the trouble

of working the approximation ; I shall therefore use the

expression asymptote for the simplest curve which deter-

mines the direction of the flexure at a great distance.

In some of the examples I shall find the proper asymp-

tote, to shew that there is no advantage gained towards

obtaining the general shape of the curve, considering that

no figure professes to do more than indicate very roughly

what would take place at a very great distance.

POINTS OF INTERSECTION AT AN INFINITE DISTANCE.

96. Before proceeding to the discussion of particular

forms of equations, and the corresponding branches of their

loci, at an infinite or very great distance from the origin,

it will be useful to make some general observations relating
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IV, to the intersection of curves with straight hnes, especially

with regard to those points of intersection which may be

at an infinite distance.

I must first remind the student that, if

be an equation which has one infinite root, then a= ;

if it have two infinite roots, both a= and b = 0, and

so on.

This is easily seen if for x we write s"^, which makes

the equation a+ bz-\- ...+kz^= 0; and this equation must

be satisfied by s^ = 0, if there be two roots equal to zero.

97. Some elementary treatises on Algebraical Geometry

speak of a straight line, drawn parallel to the axis of the

parabola as meeting the curve in one point ; this, although

justifiable from one point of view, is not a satisfactory

way of disposing of the question concerning the intersection

of a parabola with a straight line, and is liable to mislead

the student in his examination of curves in general, and

especially with respect to the branches which are at an

infinite distance.

The separation of curves into classes of different degrees

is effected by arranging them analytically into curves in

which the greatest sum of the indices of the current coor-

dinates in any one term of the equations is 1 , 2, . . . 7i ; or,

geometrically, into curves which are met by a straight line

in 1, 2, ... w points.

There are obvious advantages, in choosing an interpreta-

tion of the analytical and geometrical classification, which

makes the classes coextensive, and it is unfortunate when
expressions are used which are inconsistent with such an

interpretation.

To take the case of a parabola, alluded to above, as an

example, y^ = 4iax may be considered as a particular case of

the general equation of the second degree, from which some

of the terms are excluded, which ought to have appeared in

the form . a;^ . xy, etc. In this point of view the straight
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line y= c, parallel to the axis, intersects the curve at points IV.

whose abscissas are given by the equation

one root of which is infinitely great and the other finite.

Thus the geometrical and analytical classifications of

curves are made to agree.

And this does not interfere with the geometrical defini-

tion of a parabola as a curve which is the locus of a point

whose distances from a fixed point and a fixed straight line

are equal ; for a point which is at an infinite distance

satisfies this condition, and is therefore a point in the curve.

On this principle, if h = 0, where k is a constant, be con-

sidered as a particular case of an equation of the first

degree, it is the equation of a straight line at an infinite

distance ; if it be considered as a particular case of the

equation of the second degree, it is the equation of a conic

section or two straight lines at an infinite distance.

98. In considering the intersection of a curve of the
v^th degree by any straight line, we ought to be able to

account for all the n points of intersection, and, if the

equations of the curve and straight line give a resulting

equation of the {n — rj^ degree, we must conclude that

r points of intersection, real or imaginary, are at an

infinite distance.

Now, as no straight line can be drawn, which is so near

a curve in the neighbourhood of any point, as the particular

line which passes through the next consecutive point as

well (Art. 57), the same being true, however distant these

consecutive points are, it follows that a line which meets

the curve in two points at an infinite distance is generally

the nearest line that can be drawn to the curve at an

infinite distance, and is a rectilinear asymptote.

99. In order to find what sort of exceptions may occur

to this general statement we ought to consider the varia-

tions which occur in finding the tangent to a curve at a
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IV. point at a finite distance, and so deduce the corresponding

variations in cases of rectilinear asymptotes.

100. In the first place, at a point of inflexion where the

straight line is constructed which passes through the point

of inflexion and a consecutive point, it, at the same time,

passes through a second consecutive point on the opposite

side; so tjiat, although we cannot generally construct a

straight line so as to pass through more than two consecu-

tive points, it happens in this particular case that the con-

structed line passes also through a third. The corresponding

case for an asymptote is that of three points at an infinite

distance.

101. In the next place, if we try to find a tangent to a

branch of a multiple point, say of r branches, we observe

that any straight line which passes through the r-ple point,

passes through r points in the curve, one for each branch,

in whatever direction it be drawn ; and that, when a straight

line not only passes through the r-ple point but also is a

tangent to one of the branches, it will contain two coin-

cident points on that branch. It follows that there are

r directions in which a straight line can be drawn through

an r-ple point, for which it contains r-|-l coincident points.

If one of the branches have a point of inflexion at the

r-ple point, it is plain from the last article that the tangent

to that branch will contain r-\-2 coincident points instead

of r-|-l.

Suppose now this r-ple point to be at an infinite distance,

all straight lines which contain 7'-f-l points coincident

with the r-ple point are parallel, and, being tangents, are

asymptotes, to the curve ; any other parallel straight line

contains r points on the curve at an infinite distance.

102. If y — mx = pass through an 7'-ple point at an

infinite distance, any line y =mx -\- a. will also pass through

it; hence, if y = ')nx+ OL be combined with the equation of

the curve there will be r infinite roots of the resulting
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equation in x or y, whatever be the value of a. The recti- iv.

linear asymptote which corresponds to the tangent to a

branch, must then be found by the condition that one more

root has an infinite value ; and this condition will determine

the r parallel asymptotes.

103. Take as an example the curve of the third degree,

whose equation is

x(y-x)2-b2y= 0.

Any straight line parallel to y = x has an equation

y = x-{-OL and meets the curve where

. X^-^0 . X^+ (OL^-¥-)x-h'OL= 0,

so that there are two infinite values of x for all lines parallel

to y = x. In order to obtain the nearest possible sti'aight

line to the curve at an infinite distance, we must make
oc^ = b^, so that either of the straight lines, y= x±h, meets

the curve at three points at an infinite distance.

If x = 0, the values of y are given by

0.2/3+ 0. 2/2-62i/ = 0,

which shews the axis of y as an asymptote.

Near the origin, x^— bhj = 0, ^ V^ ; also the curve is

symmetrical in opposite quadrants. Fig. 16.

104. In this curve we observe that there are two

branches at an infinite distance from both axes, and that

these two branches both pass through the point in which

all lines parallel to y = x intersect, so that this point is a

true multiple point at an infinite distance ; and each of

these parallel lines intersects the curve at two points at an

infinite distance, for that reason. Also y = x-\-h represents a

straight line which passes through two consecutive points

on the same branch, and the third point at an infinite

distance is that in which it meets the branch whose tangent

is, y = x — h.

105. These considerations of infinitely distant points of

intersection supply a complete method of determining recti-
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IV. linear asymptotes to a curve, as will be seen by a few

examples. It is well to know this method, although that

of approximation has a decided advantage, both because it

supplies a knowledge of the side of the asymptote on which

the curve lies, and also because it gives the curvilinear as

well as the rectilinear asymptotes.

106. The general method spoken of may be explained by
the following process.

Consider the intersection of a curve of the n*^'' degree

with a straight line whose equation is y = olx+ /3.

If we eliminate y we obtain an equation of the 71*^*^ degree

in X, giving the 7i values of x at the points of intersection

;

this equation is of the form

Px''+Qx''-^+ Rx''-'^-\-... = 0,

where P is a function of a., and Q, R, etc. are functions of

a. and of the first, second, etc. degrees in /5. Since for an

asymptote two values of x must be infinite, we have the

equations P=0 and Q = 0, which generally determine a.

and /3.

Thus, if the terms of the 71^'' degree in the equation of

the curve be
ay'^+ hxy^ " ^ + • • • + ^-^"j

P = aoC'+ hoL"-'^ + . . . + 1,

and P = determines n values of a, real or imaginary.

If a^ be one of these values, we have learned that the

straight line y= 0L^x+ l3 meets the curve at one point at

an infinite distance ; if now we su,bstitute this value of a,

in the equation Q = 0, /3 can be determined, and since Q is

of the first degree in /3, there is only one such value of /3

for each value of a.

Thus, generally, there are n asymptotes completely deter-

mined by these equations.

107. The exceptions to this general statement are of

great variety ; it will be sufficient to take one case, viz.
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that in which P = has two equal roots, each equal to 04, IV.

in which case, when rx= aj,

that is, the coefficient of ^8 in Q vanishes for this value of a.

When Q vanishes for a= ai, independently of the value

of /5, all straight lines parallel to y = cl^x meet the curve at

two points at an infinite distance, which means that there

is a double point there, and the equation i2= 0, of the

second degree in ^, determines the two values of ^ for

which y = a.^x-\-^ meets the curve in three points at an

infinite distance, thus giving the two asymptotes.

When Q is finite for a.= 0Cp there is no asymptote parallel

to y = cL^x, since there is then only one point of intersection

at an infinite distance.

108. This exceptional case may be further illustrated by

the curve y(y-x)2(y-2x)+ 3a(y-x)x2-2a2x2 = 0.

The equation may also be written in the form

{y — xy — (y — x — 2a){y — x — a)x^= 0.

Each of the lines y — x = 2a and y — x = a meets the

curve at four points at an infinite distance, three of which

are consecutive points on the infinite branch to which each

is a tangent, and the fourth on the branch to which the

other is a tangent. This is the case of a multiple point of

two branches at an infinite distance, each having a point of

inflexion at the common point..

It is easily seen that no point of the curve lies between

these two asymptotes.

Again y — 2x = ^ meets the curve where

. aj*+ (2«+ ^)(:«+ j8)2^+ 3rt(«+ /3K"- 2a2a;2 = 0,

so that one point of intersection is at an infinite distance

for all values of ^. A second point is at an infinite distance,

if 2|8+ 3(x = 0; therefore 1/ — 2a;+ fa= is an asymptote.

This asymptote also meets the curve at two points at a

finite distance where ^y^= V7x^,

or ^x^- "^ax+ fia2= 0,

whence fa= {'^±lJ{V7)]x, and x — -^a or fa nearly.
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IV. A fourth asymptote 2?/+ 3a = meets the curve at two

points infinitely distant, and two at a finite distance.

The shape at the origin is given by y^= 2a^x'^, —+—

.

Fig. 17. At ( — fa, 0), the tangent is y = y*^(a;+|a).

109. As an example of the use of the intersections of a

curve and a line to obtain information about the shape of

the curve, note that y — x= OL meets the curve at points

given by (oc— 2a)(a— a)«- — a*= 0, two points at an infinite

distance being the intersections with the two asymptotes.

The points at a finite distance are equidistant from the axis

of y, which, therefore, bisects all chords parallel to y = x.

li y -x= a. passes through a point where the curve is

parallel to Oy, 4a^ = (2a— 3a)a;^, which, with the equation

above, gives 2a.^— daoL+ 8a^ = 0. The two values of a. are

^a and |-(X nearly, and the latter being between a and 2a

is impossible ; hence the chord joining the two points where

the curve is parallel to Oy is bisected by Oy.

110. The following general examples will serve as

illustrations

:

Ex. 1. x(y-x)'--a3 = 0, (a>0).

The straight line y = x gives for the points of intersection,

0.2/3+0. 2/2+ 0. 2/-a3 = 0,

and, since x cannot be negative, the curve lies on both sides

of one end of the asymptote, and the three infinite roots

correspond to a cusp at an infinite distance. Similarly for

the asymptote x = 0, the curve lies on the same side at both

ends, and the point at infinity on a; = corresponds to a

Fig. 18. point of inflexion.

Ex. 2. x^+ y^— 5axV = 0.

Any straight line parallel to x+ y = meets the curve at

one infinitely distant point.

The straight line y-\-x = a. meets it at points given by

x^— {x— OLy+ 5ax^{x— a)= 0,

or 0.x^+ 5(oL+ a)x^-(10a.^+ 5aoi)x^+...=0.



INTERSECTION AT AN INFINITE DISTANCE 77

PLATE
Hence, there are two points of intersection at an infinite rv.

distance if oc= — a, and y+ x+ a = is therefore the

asymptote ; the three other points of intersection are

given by 5x^+ 10ax^-\-5a^x+ a^= 0.

By the method given in Arts. 47, 48 it is easily shewn

that this equation gives only one real value of x, which is

negative, and not far from ~ia or —^a. It may be

obtained by drawing the two curves

(x+ of= ay and oyx+ a^= 0.

The branches near the origin are

x^— 5ay = ^-^, y*— 5ax^= -f-

;

also x = y meets the curve where x = y = ^a, which guides

as to the size of the loop. Fig. 19.

Ex. 3. y2(x2-y2)-2ay3+ 2a^= 0.

x^^y = gives one infinite root, and x+ y = a. meets the

curve where

0.y^-\-y-<x{a.±2y)- 2ay^+ 2a\a.±y) = 0.

Two roots are infinite, if ±a.= a, and the finite roots are

given by a'^y^±2a^y±2a'^= 0,

or (2/±a)- = (l + 2)a2.

The roots are impossible for the upper sign, hence the

curve does not cross the asymptote x — y = a at a finite

distance, but it does cross the asymptote x+ y+ a= at

the points {-{2±JS)a, (l±JS)a} or (-^a, -fa) and

( — y-a, V^a) nearly. Fig. 21.

y = gives three infinite values of x, and, neglecting y*

and y^ compared with x, y^= —2a^lx nearly, therefore the

curve lies on both sides of the negative end of xOx.

Near the origin, 2/^ = «^a^ ; near (0, — 2a), 4>;+ .r = 0.

Ex. 4. (x— a)y^ = (y— b)x^

or xy{y^— x^)— ay^-}-bx^ = 0.

x = a gives for y,

0.y^+ 0.y^+ 0.y^-a^y-{-ba^ = 0,
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IV. and is therefore an asymptote ; so is y = b; y — x = a. meets

the curve where

x{x+CL)[{x-{-oCf— x^}—a{x+aJf+hx^ = Q,

and if the coefficient of x^ be 0, as well as that of aj*,

2a-a+ 6 = 0;

.•.
2/ — a; = i^(a— &) is an asymptote.

Similarly y-{-x= — ^(a+ &) is an asymptote.

3 ;r

Near(0, 0), 2/ = a/;7^'

near (a, h), y — b = —^{x— a).

Fig. 20. It will be found that, with the proportions of a and b

given in the figure, the second asymptote cuts the curve

where x= — ^{7±^(13)}6, while the first cuts it in no real

point ; also that Oy is parallel to the curve where x = #6.

To assist in finding the manner in which the curve runs,

it may be observed that a straight line drawn through the

origin can only meet the curve in one point besides the

origin.

From the way in which the curve has been drawn in the

quadrant yOx', it appears as if a tangent could be drawn

from the origin, in which case there would be two points of

intersection. How the curve really runs may be shewn as

follows

:

Let the radius y-^7nx= meet the curve and the

asymptote y-\-x-\-^{a-\-b) = 0, in points P and Q respec-

tively, and let PM, QN be perpendicular to Oy.

Then Qj^_pjfj
ji^n+ l)raa-(v^+ 2)b

Hence, P is further from or nearer to the origin than Q,

according as

am(27rt+l)-< or >-6(2-f??i)

and the curve and asymptote intersect, if ra = b, where

7)1^+1(1—r)m— r = 0.
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The roots of this equation are real when r is positive, and iv.

since in the figure, r= -^- nearly, m = i( — l±^13) = -^-f and
— 1^ nearly. When m is nearly 1, the difference of the

distances of P and Q from the origin approaches f(a — b)J2;
this ultimate constant distance does not prevent the inde-

finite approach of the curve to the asymptote, since the

perpendicular distance is ultimately f(a — 6)^2 x sin 0,

where is indefinitely small.

DETERMINATION OF ASYMPTOTES BY APPROXIMATION.

111. I shall now shew in this and following chapters

how the asymptotes of a curve may be found by successive

approximations, and also how the side of the asymptote on

which the curve comes into sight from an infinite distance

may be discovered.

112. In order to arrive at all the infinite branches of

a curve, we must examine the following cases which

include all possible ways in which a curve can pass off

to infinity.

(1) X may be infinite, while y is finite or 0.

(2) y may be infinite, while x is finite or 0.

Both X and y may be infinite, dividing into three cases.

(3) X and y may be of the same order of magnitude, or

X : y finite.

(4) X may be large compared with y, or y :x vanish

ultimately, when x and y are increased indefinitely.

(5) y may be large compared with x, or x :y vanish

ultimately, when x and y are increased indefinitely.

Classes (1) and (2) include the cases in which curves run

off to infinity parallel to the axes of coordinates.

Class (3) includes rectilinear asymptotes which are

inclined at finite angles to the axes, and as special cases

parabolic asymptotes.

Classes (4) and (5) include general curvilinear asym-

ptotes. These will be discussed separately.
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CASE OF X ALONE INFINITE.

113. To try whether x can be infinite while y remains

finite, we must suppose the equation arranged in descending

powers of x in the form

/(2/)a;'-+s6(2/)a;^+...=0, (1)

or /(2/)+0(2/)^+.-.=O,

hence making x infinite, we have f{y) = 0.

In order, therefore, that this case should occur, it is

necessary that the term containing the highest power of x

in the equation should involve y. If 6 be a root of /(2/) = 0,

y= h will be an asymptote, since, even if there be not two

roots equal to 6, the condition of having two points at an

infinite distance would be satisfied, because, if the curve be

of the ii*'' degree, r cannot be greater than u— 1, nor s greater

than n — 2, and in the equation resulting from the substitu-

tion of b for y the first finite term can involve no higher

power than x'^~'-^. If f{y) = have t roots, real or imaginary,

r cannot be greater than n — t, nor s greater than n — t— 1
;

therefore, when b is put for y, in the resulting equation

the first finite term cannot involve a higher power of x

than rc''"'"^ and hence there must be ^+ 1 infinite roots.

The ^+ 1 infinite roots are accounted for as follows : the

equation f{y) = gives t parallel lines, which therefore all

meet at an infinite distance in the same point ; any straight

line parallel to these lines meets the curve in t points at an

infinite distance, but is not an asymptote, since it does not

contain on itself two such points ; each of the parallel lines

corresponding to solutions of f(y)= contains two such

points besides the ^ — 1 in which it intersects the other lines.

This is the case of a multiple point of t branches at an

infinite distance, spoken of in Art. 101.

114. It is important, in tracing a curve, to know on

which side of an asymptote the curve makes its appearance

from an infinite distance. This may be obvious from our
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knowledge of other parts of the curve ; but it is necessary iv.

to have some general method of determining this feature of
~

an asymptote directly from the equation of the curve. If

y= h be an asymptote, it must be possible to put the

equation of the curve in the form

ABC
*Aj xKf du

where r, s, t, are positive, either integers or fractions, and
r <^ s <^t. When x is taken sufficiently large, the sign of

the series will be determined from that of the first term.

This is generally sufficient to determine the side of the

asymptote on which the curve lies ; but it may be necessary

to consider other terms. To shew this it is sufficient to

consider such a form as

^~^ =^ +T^ x^

If we took into account the first term only, the curve

would be above the asymptote at the positive and below at

the negative end, but the second term has two values when
X is +, both less than ci^lx, and is impossible when a; is —

,

so that the curve has two branches above the positive end

of the asymptote, and none at the negative end.

115. It is obvious from what has been said in the last

article that there must be a very great variety of forms,

and I shall not attempt to give an account of all those, but

trust to an examination of several curves, by which the pro-

cesses to be adopted will be illustrated. The most simple

case can however be stated, and peculiarities indicated.

Take the form (1) in Art. 113.

If 2/ = 6 be a single root of /(i/) = 0, so that

fiy) = (y-W\iy\ where /i(6) is not zero,

we have 2/-6-|-$7^ ^7-:+... ==0
;

.-.if 0(6) be not zero, y = 6- ^^j ^^ ' • • •
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IV. Hence, when r— s is even, the curve is on the same side

of the asymptote y = h oJi both ends, above or below accord-

ing as f-jA is negative or positive.

When r— s is odd, the curve lies above the asymptote at

one end and below at the other.

116. Peculiarities occur in particular cases, such as when

y(2/) = has repeated roots, or when (p{y) vanishes when

y = b, or when any of the succeeding coefficients vanish

at the same time as ^(y). In such cases it may happen

that the term involving the highest power of x i^ not one

of the principal terms for all the infinite branches running

parallel to Ox.

Thus, for the curve

(y — byx^+ ay\y — b)x^+ a^x+ a^ = 0,

the second and third terms will give a correct approximation

to the value of y, viz. h — a^/h^x-, because with this value

(y — byx^ is of the order x~^, and the terms retained are of

the order x.

The first term, however, is one of the principal terms

for another branch. Thus, taking the first and second terms

together, (y— bY-\-ab^/x= 0, which relation makes the terms

retained of the order x^, and therefore larger than those

rejected.

117. The following examples of varieties which may
occur will suffice to explain how to determine the position

of a curve with respect to its asymptotes which aie parallel

to either axis. The asymptotes which are not parallel to the

axes may, for the present, be taken as additional illustrations

of the method by infinite roots given above.

Ex. 1. (x-a)y2-a2x=0.

x= a and y^ — a^ are asymptotes.

JNear (a, 00 ), x — a=—5- = -^,
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x{y+ a) 2x'

near ( 00 , —a), y-\-a= ,
^—-=_-—.

^ ' "^ x{y — a) 2x

These approximations determine the sides on which the

curve lies, when it comes into sight from infinity in the

direction of the asymptotes.

To trace the curve, we observe that it is symmetrical with

respect to the axis of x, and that, near the origin, y'^+ ax= 0. Fig. 22.

Ex. 2. (x- a)(x- b)y"-- a^x^= 0, a > b.

x = a and x = b, y'^ = a" are four asymptotes

;

near (a, 00 ), x — a= -: r^^= 7 tv-9>^ {x— b)y^ {a— b)y^

near (6, GO ), x — b = z
—-=—- ——

,

^ {x— a)y- {a — b)y^

near (go , a), {x'^— {a-\-b)x]y'^ — a^x^+ . . . = 0,

or ?/^ — a^ = (a+ 6)^ , therefore

and y^a= —(a+ b)

or y^ — a'^ = {a+ b)^, therefore y — a = (a+ b)-^,

a
2x'

There is symmetry with respect to Ox, and near the

origin, by" = ax^.

The asymptotes y- = a^ meet the curve where {a+ b)x = ab,

and no part of the curve lies between the other asymptotes. Fig. 23.

Note 1. When a = b, the curve degenerates into two

hyperbolas {x — a){y±a)= +a^, whose form is obvious from

the figure when the asymptotes move up to one another.

Note 2. When b = 0, the curve degenerates into the axis

of y, combined with the locus in the last example.

Ex. 3. y2x(y- x) - ay^- byx^+ a(a+ b)x2= 0, •

or y^(x — a)— x^{y— a)(y+ a+ b) = 0.

The asymptotes parallel to the axes are

x = a, y = ci, and y= —(a-{-b);
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IV. O?"
'-— near (a, 00

), x— a=—,

a?
near ( 00 , a), y — a=

near { 00, —(a+ 6)}, y+a+ b-

(2a-\-b)x'

(a+ bf
'(2a+ b)x

li y— x= CL, the points of intersection are given by

0.x'^+ {oL-a-b)x^+... = Q,

and y —x = a+ b is therefore an asymptote.

Near the origin, y^ = (a+ b)x^,

near (a, a), a^=(2a+ b)t],.

near {a, ~{a-\-b)}, (a-\-bf^=a^(2a+ b)r].

Fig. 24. The figure is drawn for b = a nearly.

Note 1. The curve is parallel to Oy, where

y=-b- V(3a2+ 3a6+ ¥) ;

the other root gives impossible values of x: in the figure

y= — V-a Dearly.

Note 2. The curve is parallel to Ox where x = 2a, which

gives two positive values and one negative value of y. I

Ex.4. (x-a)y3= (y-b)2x2.

The asymptotes parallel to the axes are

x = a and (y — 6)- = 0.

Near (a, oo
), x— a = a-/y,

near (oo , b), (y— bf = ¥/x.

Rearranging the equation by homogeneous functions

xy^ (y — x)— ay^+ 2bx^y — b^x-= 0,

we find that y — x = /3 meets the curve at points given by

the equation,

0.x^+{^-a+ 2b)x^+... = 0.

If ^= a— 2b, there will be two points at infinity, or

y— x = a— 2b will be an asymptote. It meets the curve in

the points given by

(Sb^-a^)x^-2{a+b)(2b-afx+ a{2b-af= 0,

the roots of which are real, when 26> a.
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Near (0, 0), ay^+ ¥x^= 0, near (a, h), h^^- aS^ = 0. iv.

The curves are drawn for a < 6^3, which gives two

imaginary, and for a >> 26 which gives two real points of

intersection with the asymptote parallel to y = x. Figs. 25, 26.

Note. The curve is parallel to Ox, where x= 2a, and to

Oy where y = 36, unless these two take place simultaneously,

which will occur when the point (2a, 36) is a point on the

curve, in which case 16a= 276 and (2a, 36) is a multiple

point.

With regard to this multiple point, we may observe that,

if (cL+ i, /3+ >/) be a point near (a, /3), the tangent at such a
,

point is parallel to Ox if }j = A^^, and to Oy if ^=Bif, but

there is a multiple point if A^'^+ 1B^ri+ Crr= 0.

In the first case the coefficient of ^ in the expansion

vanishes, in the second that of >;, and in the third the

coefficients of both ^ and >/ vanish.

In the case considered, the substitution of 2a+ ^, 36+ ?;

in the equation gives

27V = 3.16^^2^ or »;= ±V(Mf)^= ± if^nearly. Fig. 27.

It is worth examining how the form of the curve for this

case separates the two forms drawn for a<^J'M> and > 26.

Ex. 5. (x2- a2) (x- 2a) y^- a^x^+ 4aV= 0.

The three asymptotes parallel to Oy are x= ±a and 2a,

cutting the curve where y=±\a and 2a ; also two parallel

to Ox are y= ±a, the first of which intersects the curve

where x= fa and — 2a.

Near (a, 00
), x = a-\-2a'^/y,

near ( — a, 00), x= —a— 20^/Sy,

near (2a, 00
), x = 2a — 4!a^lSy,

near (00, a), y = a-\- a^/x,

near (00,— a), y=—a— a'^/x,

near (0, 0), V = 'i:a^y,

near (0, —2a), x-{-t] = 0,

near (2a, 2a), 2a>;+ 5|- = 0.

Also (fa, ^a) is a point in the curve. t'ig- 2S.
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IV. Ex.6. (xy-ab)- = b2d(c-y).

Both axes are asymptotes
;

near (0, oo
), x= ± hj( — d/y),

near (oo,0), y = h[a± J(cd)]lx.

When x= 0, y = c— a?ld.

The first figure is drawn for a} > cd, the second for

Figs. 29, .30. a2<C<i.

Note. The curve is parallel to Oy, where

1x{xy — ah) = — hhl
;

whence {2cx — aby = h^{a^— cd),

the roots of which are ouly possible when a^ >- cd.

The distance between the tangents parallel to Oy in the

first figure is J(a^— cd)b/c.

y = c gives equal values of x, where the curve runs

parallel to Ox, in both figures.

Ex. 7. x3y2- 2a2x2y+ a^x- b^= 0, b > 0.

Since x{xy — a^y= h^, x is positive.

Both axes are asymptotes ; for Oy, x^ = 6^2/^ j ^or Ox,

y = a^/x±J{¥/x^) ; hence the curve comes into sight from an

infinite distance along Ox like the branches of a ramphoid

cusp.

Fig. 31. The curve is parallel to Ox, where Sxy = a"^, or 4a*a3 = 96^

Ex. 8. x2y2- 2a2xy - b^y^+ 2a2b2- b* = 0.

The curve is symmetrical in opposite quadrants.

Ox is an asymptote, and near (oo , 0), (xy — a^)^ = (a^— h'^y,

.-, y = b^/x, and (2a'^— b^)/x.

Asymptotes parallel to Oy are x= ±b, which intersect

the curve where 2a^y=±{2a^— b^)b, and near (±6,00),

x±b = a^/y.

Figs. 32, 33. The figures are drawn for the cases in which 2a2>- and

<;62; in the critical case in which 2a^ = b- the curve is

compounded of the axis of x and another curve whose

equation is (x^— W)y=z b^x.
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Examples VI.

1. y{x — cif==x{y — 4a)2:

Find on which sides of the asymptotes Ox and Oy the curve lies.

Shew that the radii of curvature of the branches through (a, 4a)
are bs^lba.

2. {x'^-ayy=y\V^-x'').

Shew how the curve lies with respect to the asymptote parallel to
Oy, when h> a; when a> b, shew that the branches at the origin are
of the form x^ = (a + b)y. In both cases shew that the curve is parallel
to Oy, where x= ±b.

3. (x - a)(x+ aYy^ — a'^x^+ 4a'^y= 0.

Find the sides of the asymptotes on which the curve lies, at an
infinite distance.

4. a^(y — x)'^= x^(9/'^+ x'^).

Trace the curve, and shew that any straight line, drawn perpendi-
cular to the tangent at the origin, intersects the curve in points from
which the radii to the origin are, in pairs, equally inclined to the axes.

5. {x-a)y* + xh/^+ a^= 0.

Find the three asymptotes, and shew that the curve intersects one
of the asymptotes in Oy, and that the tangents at the two points where
the curve crosses Oy are equally inclined to Ox.

6. xy= d\a - x)\%T. - af.

Prove that at one point where the curve cuts Ox there is a ceratoid
•cusp, and that the tangent at the other cuts the curve in two more
points, the lines to which from the origin are equally inclined to Ox.

7. x\x'^-y''-f==a%v'^+y^).

Find the form of the curve at the ends of the three asymptotes,
and prove that the line y= asJ3 cuts the curve in six real points.

8. xy — d?xy+ «•''= 0.

Prove that three branches come into sight at the positive, one at the
negative end of Ox, and two at the negative end of Oy. Shew that

the curve is parallel to Ox, where .r= 8a, and to Oy, where x= ^^a.

9. ^ {x-a){x-1a)y''" = x{y-'^cif.

Find the sides of the asymptotes Ox and Oy on which the curve lies
;

and shew that the third asymptote intersects the curve at points
{-i(16±x/13)«, i(J±Vl3)a}.
Shew that {a, \a) and (2a, |^a) are points of inflexion, and that there

are three points, at which the curve runs parallel to Ox, in .r-|-a^2= 0,

and one in a- — a>y2 = 0.

10. 4rj/3= 3V3a-(.r2

+

f-
- oF).

Trace the curve, and shew that there is a multiple point

{\asj% \asj^).

PLATE
IV.



CHAPTER VII.

ASYMPTOTES NOT PARALLEL TO THE AXES.
ASYMPTOTES TO HOMOGENEOUS CURVES.

PLATE
^- 118. In this chapter I shall shew how to approximate to

the forms of the infinite branches which are not ultimately

parallel to either axis.

In the first place, I shall consider the cases in which

X and y, being both infinite, can be of the same order of

magnitude. This is the general case of rectilinear asymp-

totes, although by including rectilinear asymptotes which

are at an infinite distance, certain parabolic asymptotes,

appear in the course of the examination.

In the second part of the chapter I shall add some more
illustrations, to those which have already been incident9,lly

given, of the cases in which x and y are of different orders,

of magnitude.

119. In order to make the general statement more easy

to understand, it will be well to take a few particular cases,

and to shew how the method of approximation is to be

employed to determine the asymptotes, and the side on

which the curve lies, when it first comes into sight from an

infinite distance, in the case in which x and y &r& both

infinitely great, and of the same order of magnitude.

Ex. 1. x2(y+ b) = y-(x+ a).

Arranging the equation in homogeneous functions de-

scending in degree, xy(y — x)— bx'^+ ay''= 0.

For the first approximation, neglecting quantities of the-

second order, compared with those of the third, y = x.
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bince y — x 1--^ = 0,

II X

the second approximation, obtained by writing y=x in

the smaller terms, is y — x = b — a, the equation of the

asymptote.

For the third approximation, we must, according to

Art. 51, write in the smaller terms y = x-{-b — a.

Whence y = x+ b{l+^-^y'-a(l + ^^);

therefore, neglecting terms of higher order than -,

7 b^— a^
y = x-\-b — a •

^ X

Hence, if &>« the curve lies below the asymptote at the

positive and above it at the negative end. Fig- 1-

Ex. 2. x=^+ y3— 3axy==0.

The first approximation gives y-{-x = (), and, since

_ ^axy

x^ — xy+ y''^

the second approximation gives, by writing —x for y in

the smaller term, y + x+ a = 0, which is the equation of the

asymptote.

For the next approximation, writing in the smaller term

y= —x~a, since «-— xy + y^= — Sxy+ a^,

y +x= —a{l— c(r/3xy)- ^ = — a+ cp^jZx^,

hence the curve lies above the asymptote at both ends. Fig. 2.

Another method of determining the side on which the

curve lies is by assuming as the next approximation

y-\-x+ a = CL, where a. is small compared with a.

Substituting in the original equation,

x^— {x-{- a— aCf+ '^ax{x+ a— a) = ;

therefore, neglecting &}, 3(j.{;x'^-\-ax-\-a^) = a^, which gives

the same result as before.

2/'^^~^2 ^o,_l_-j/2



90 ASYMPTOTES NOT PARALLEL TO THE AXES
PLATE

V. Ex. 3. (x-a)y3 = (y-2a)-x2.

A first approximation is
ii
= x, and since

xy"^ — i/'^x-— ay'^+ ^axhj — ^a^x^= 0,

y-x ^ + ^ =0;
X y 2/2

.•. y — x — a+ 4<a = is the asymptote, crossing the curve

where x = \\a and ^^a nearly.

For the next approximation to the form of the curve

y — x— a{\ — ^ajx)+ 4(^( 1 + 'Mfx) — 4>a-/x = ;

.. y = x — Sa— lla"/x.

See a more general case, page 84, (4), Plate IV., fig. 25.

120. In all these cases it must be observed that the first

approximation gives, of all straight lines which can be drawn
through the origin, that particular line which lies nearest

to the infinite branch considered. The second approximation

is represented by moving the line first found parallel to

itself, until it becomes nearer to the curve than any other

straight line which can be drawn.

The corresponding process with regard to points on a

curve at a finite distance would be the following

:

Take P a point on the curve, TP the tangent at P,

meeting Ox in T, and let PO revolve about P until it

assumes the position PT, nearer to the curve than any line

which can be drawn through P.

If P move oft" to an infinite distance, we have at once

the case of PO twisting round P until it coincides with PT,

replaced by PO moving parallel to itself until it coincides

with the asymptote ; at first passing through only one point

at infinity and afterwards through two consecutive points,

the condition for an asymptote being thus satisfied.

121. The general statement of the process for treating

asymptotes not parallel to the axes may be now made
thus:

Let the rationalised equation of the curve be arranged
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in homogeneous functions or x and y in descending order of v.

dimensions, viz.

or ^''n+ ^„-l+ ^<'n-2+---=0.

When X and y are both capable of indefinite increase,

remaining of the same order of magnitude, along the

infinite branches these functions are in descending order of

magnitude.

The first approximation is u^^ = Fn(x, y) = 0, which repre-

sents, generally, n straight lines through the origin which

are parallel to the asymptotes.

Consider one solution of the equation, ax= by, and suppose

first that the factor ax — by only appears once, so that

K(^> y) = i.^^-h)fn-i(^> y\ or u^, = (ax-by)i\^_^, where

v^_i is not zero when ax is written for by.

The second approximation gives ax— by-\-c = 0, where

€= .'^"y'
. , Art. 3 (3) and Art. 51 ; this is the asymptote

parallel to ax = by, being the straight line which more

nearly coincides with the curve at an infinite distance than

any other straight line drawn in that direction.

122. Where there is no function of the (n — lf^^ degree,

ax= by is an asymptote.

In this case the next approximation is easily made, sup-

posing Un-r to be the first function which follows Un-

Since ax-by -{-
'"'"'^y^^'^^ ^ +...=0,

the next approximation gives

ax -by-\——r = 0, where A =— . "".p \ '
,

and this determines the side on which the curve lies.

ax

123. Thus, for the hyperbola a'^x^ — b^t/^ — 1 , the asymptote

— by = passes through the centre ; and for the next

approximation ax— 6?/= J.iC"^, where A is the value of

x/(ax-\-by), when by = ax, that is A = l/(2a).
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V. 124. Recurriiifif to the case considered in Art. 121, in

which u,j_^ exists, the approximation for the sides of the

asymptote ax— by + c = 0, on which the curve lies at an

infinite distance, is conducted as follows

:

Instead of x:y = h:a, as in the first approximation, we
must write in the smaller terms x:y = h :a-{-cx~^; hence,

if we neglect terms of the order x~^ and lower orders,

-^n-i_- n̂-i(^. o^+ ca;-i)_ dc

i xu„_^ bF„_Jb, a)
and —2^= , ^ "/. / = e, say.

Hence the curve is more nearly represented by

ax-\-hy-\-c-] t^ = 0, (i)

e.g. Art. 119, Ex. 1.

If cZc4-e = 0, —^^^ must be expanded as far as -s, —^'-^

as far as -, and ^^^ becomes ,.

'"•"
^

'
. —k, say. So

that the approximation is

ax-hy+ c+(^-'^+^yo (ii)

The equations (i) and (ii) determine the sides on which

the curve lies in the two cases.

125. Consider now the case in which the factor ax — by
appears twice, so that u^i = {ax— byyv^_^.

If there be a function of the (ii — 1)"' degree, the second

approximation will give

{ax — byf— c'x = 0, (i)

where - c = ,
" ^)'—(

.

¥n-2{^> «)

or more generally, {ax — byy— c"(\x+ fxy) = 0,

where -c"

-

,^, I"-\f "I V
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In this case the infinite branch has a parabolic form, in v.

which ax = by gives the direction of the axis ; or, if we write

bx+ ay for Xx+ jmy, it is the axis itself of the parabola and

the origin is the vertex,

126. The parabola (i) is not generally a proper asymptote,

to obtain which we must make a further approximation, as

follows

:

Fiom (ax — byy = c'x we obtain y = jla-\-^J-Y which
/It

must be substituted in —^^^
'n-2.

This gives

u.̂n-l _

Hence the approximation is

{ax — hyY' = cx\\-\-d^J~\

or hy = ax+ {c'x)'^+ he'd',

the next term vanishing when x is infinite.

Thus {hy-ax-\c'd'f= c'x (ii)

is a proper parabolic asymptote, since the diflference of the

values of y for the curve and this parabola vanishes when

X is infinite.

127. The parabola (ii) found at the end of the last

article is the simplest parabola which has the property of

all proper asymptotes, but the following example will shew

how the same parabola placed in a different position may

be a proper asymptote, lying much closer to the curve at

an infinite distance.

Ex. 1. x(y-x)- = ay2,

or x'^{y — x) = a-y.

}ieYey = x{l-a'x~^)-'^ = x+ a^x^+ a+ a^x~^ + ....
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V. By taking the first two, three, and tour terms as successive

approximations, we obtain three parabolas, viz.:

{y — xy = ax, (i)

{y — x — a)"= ax, (ii)

{y — x — ay = ax+ 2a^ (iii)

The differences between the ordinates of these three para-

bolas and those of the curve at an infinite distance are
s _1

a, a?x '^ and a^x"^, hence (i) is what I have called a quasi-

asymptote, serving very well as a guide to the direction of

flexure of the infinite branches of the curve
;

(ii) and (iii)

are proper asymptotes, the latter being ultimately more

nearly coincident with the curve.

Further, x= a \» an asymptote, and the form near the

Fig. 3. origin is x^ = ay^ |\ • ^^^^ ^^° dotted lines marked 1

and 2 in the figure represent the two parabolas (i) and (ii),

and shew that, for the general form of the curve, there is

no necessity to obtain a proper asymptote.

Note. Considering the parabola {y — x — oCf = a(x+ ^)y

fl3-f /3 = touches the parabola at the extremity of the latus

rectum SL, where S is the focus,

... {y-x+ oif= 4^SL(x+^)J2,

therefore the latus rectum 2SL = laJ2.

Hence, the latera recta of the three parabolas are all

equal, and the axes are in the same direction.

Ex. 2. y(y-x)-(y+ 2x) = 9cx3.

For the asymptote corresponding to (y — x)-, writing x

9cx^
for y in -— p-— , we obtain

^ y{y + 2xy
{y — xy = 'Scx (i)

For the next approximation, write x+ Jlicx for y in the

second term.

Then (v - xf = ^^ ^^^
^^

' {x+sJ'dcx){Zx+J^cx)

_ Sea?

~ 4 1^ c'
1 + oA/— + -

3 V .» X
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Hence y-x = JScx(l-7^yJ'-+ -...),

or y — x-\-2c = \/'Scx-^ievn'iS which, vanish when x is infinite.

Thus we have the approximation

(y — x+ 2cf = Sex (ii)

The first parabola (i) is sufficient for the direction of the

branches ; the second (ii) is a proper asymptote.

The asymptote parallel to y-\-2x = is y+ 2x= —^g;

2y = 9c is another asymptote, which meets the curve where

2/2= 3,7j2, The form near the origin is y^ = 9cx^ —t-

.

Fig. 4.

128. If, in Art. 125, u.,^ have a factor {ax — hyY, and u^-i

a simple factor ax — by, the equation may be written

(ax - hy)\, _ 2+ (ax - hy)u\^ . ,+ u^^ _ 2+ . . . = 0,

and if u be the value of u when x = h, and y= a, the next

approximation will give

or {ax — by + CL){ax— by+ ^) = 0,

which is the equation of two parallel rectihnear asymptotes,

real, coincident, or imaginary.

129. To find the side of the asymptote ax — by -{-a. — on

which the curve lies, Avrite, in the functions w,j_2/y„_2 and

'^n-J^\i-i' ^ ^^^' ^' ^^'^ a+ouc'''- for ?/, whence

_iir:i = a+ /3+ -, and ^^ = a/3+-,
Vn-2 '^ '^n-2 ^

and the approximate form of the equation of the curve is

/ ; x/ 7 , /-.^ .
(ax— by)c

,
d ..

{ax-by + 0L){ax-by + ^)+^ _^^+-= 0,

therefore ax — 6?/+ oc H 7^
• -+ — = 0,^

OL— ^ X X

with variations such as when the coefficient of 1/x vanishes,

in which case the approximation must be carried to

higher powers of 1/x; or when /3 = a, in which case

{Un-lf = ^''^'n-2^'n-2 ' ^^^ aX — by + CL= {OLC — dyx'^.
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V. 130. The following curves afford examples of these

peculiarities :

Ex. L y(y-x)2(y+ 2x) = 3c-x2.

The second approximation to y = ic gives (y — xy= c^,

two parallel asymptotes, which meet the curve where

y=— Sx, each asymptote having only one real point of

intersection.

The other asymptotes are 1/ = 0, y-\- 2x = 0.

The curve is symmetrical in opposite quadrants ; and

Fig. 5. near the origin 2/* = Sc-a;-, ""T"-

Ex 2. (x+ 2y)(x-y)2-6a2(x+ y) = 0.

Here (« — 1/)- = 4«'" gives two asymptotes, also x-\-2y =
is an asymptote ; the equation may therefore be written

(x+ 2y)(x— y — 2a){x— y+ 2a)— 2a\x— y) = 0.

To trace the curve, observe that it is symmetrical in

opposite quadrants.

Near the origin, x-\-y = -fiy^/cir ;

near (0, aJS), 4>;= 5«

;

near {aJ6, 0), y = 2^.

Fig. 6. In the figure, the asymptote is not meant to be a tangent

at the point of inflexion.

Ex. 3. (x+ 2y)-(x-y)2-a=^(x+ y) = 0.

The asymptotes are (x— yy= 0, and (x-]-2yf= 0. .

For the position of the curve relative to the asymptotes

{x— yy = f,a^lx, and (x-}-2yf = fa^lx.

Fig. 7. x+ y = d is the tangent at the origin.

Ex. 4. 2x(x-y)2-3a(x--y-)+ 4a-y = 0.

For the asymptotes parallel to x — y = 0,

{x — yY — ^a{x — y)-\-2a~ = *d, .'. x — y = a, or 2«.

For the asymptote parallel to Oy, 2.x'+ 3a= 0, and the

equation may therefore be written

{2x+ Sa)(x— y— a){x— y — 2a)+ 5a-(a;— y)— 6a^= 0.
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The cross asymptotes do not meet the curve except at an v.

infinite distance ; that parallel to Oy cuts the curve where

10?/= -27a.

Also (0, — ^a) and (fa, 0) are points in the curve, and near

the origin 3x^ = 4<ay.

These considerations are sufficient to give the form of the

curve. Fig. 8.

131. These methods of obtaining the cross asymptotes

are, I think, the best to use in almost any case, when the

practical application is well understood ; but it is obvious

that a more direct method of approximation must some-

times have the advantage.

Thus, when y can be expressed explicitly in terms of x,

it can be expanded in descending powers of x, as was done

in Art. 127 (Ex. 1). Take, for instance, the following curve :

x(x+ l)y = (x2+ x+l)(x-2),

or x{x-{-l){y — x+ 2) = x — 2;

.-. y-x+ 2 = x-\x-2)/(x-\-l) = x-'^,

when x and y are both infinite ; the asymptotes parallel to

Oy are x = and — 1 ; near (0, co),x= —2y-'^; near ( — 1 , oo
),

x+ l = Sy-'^\ near (2, 0), 6?/ = 7 (a; -2). Fig. 9.

132. In tracing curves, it should be noticed by the

student that, if an asymptote be looked upon as a tangent

to a curve at a point infinitely distant, when this point is

not a singular point of any kind, the curve lies on opposite

sides at the two ends of the asymptote.

Thus, the axis of x is an asymptote of the common
hyperbola, whose equation is xy = c^, meeting the curve at

two points at an infinite distance ; and the side of the

asymptote on which the curve lies is determined hy y = c^/x,

shewing that, since y is of the same sign as x, the curve is

on opposite sides of the asymptote at the two ends.

If there be three points at an infinite distance, i.e. when the

asymptote is a tangent at a point of inflexion at an infinite

distance, the curve lies on the same side at both ends ; as in
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V. Art. 119, Ex. 2; thus, if {x— a)y^ = c^ be the equation of

the curve, x — a = is an asymptote meeting the curve at

three points at an infinite distance, and since x— a = c^/y^,

Fig. 10. the curve lies on the same side at both ends.

But, when the asymptote is a tangent to a branch of a

double point at an infinite distance, two of the three points

belong to the branch which is touched by the asymptote,

and one to the other branch, and in this case the curve lies

on opposite sides of each of the two asymptotes.

Thus {x— a)(x — h)y=c^ is a curve which has two

asymptotes x = a and b.

x = a meets the curve in three points at an infinite dis-

tance, one of these points is the point in which it meets the

branch which touches x = h, and the other two are the

consecutive points, the passage through which makes it a

tangent to another branch.

x — a = c^j{a — h)y being the next approximation, shews

Fig. 11. that the curve lies on opposite sides at the two ends.

If the origin be transferred to a point half-way between

the asymptotes parallel to Oy, the equation becomes

{x^— ^{b — af)y = c^, so that, when h = a, the branch on the

negative side of xOx' passes off to an infinite distance.

These considerations are useful, because, prior to proof,

we ought to draw the curve in such a way that it shall

leave the asymptote on opposite sides, and we are thus led

to examine the points at a finite distance at which the curve

crosses the asymptotes.

133. Take, as an example, the curve

x^ — ax^— bx^- -f y^ = 0.

Near (oo
, oo ), the first approximation is x-\-y = 0, the

second gives x+ y = \{h — a).

Near (0, 0), x, y of the same order of magnitude gives

ax+ hy= —{¥~a^)x^/b% (i)

X small compared with y gives y^ = bx-, (ii)

y small compared with x gives x^ = ay (iii)
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Now, without further examination, we might be disposed v.

to connect the forms ah-eady obtained, so that the curve
~

would lie on the same side of the asymptote. But the

consideration given above would lead us to draw the curve

so as to cross the asymptote and proceed to the opposite

side. If we tried to draw the curve without further

calculation we should have to judge irom its direction which

of the branches would be more likely to cross. Thus if

6<a the branch (iii) would be more likely to cross than (i),

since it has so close a contact with Ox. If b'^a, the same

reason would make us select the branch (ii).

We might then test by proceeding to the next approxi-

mation to the asymptote, or by absolutely finding the points

of intersection with the asymptote ; the first process is

always possible and easy, the second involves the solution

of an equation of a degree generally less by two than that

of the curve ; in this case the equation is a cubic.

If we write x-\-y = a. in the equation, we get

x^ — {x — a)^+ ax^(x — a) — bx^(x— (xf = 0,

or {5oi-b + a)x'^ -a.{10a.+ a - 2b)x^. . . = 0.

If 5rx= /) — «, we have the asymptote, and for the next

approximation

y= —x-\-\ib — a) — -^^{b — a)alx,

which proves that the branches (ii) and (iii) cross the asymp-

tote according as b is greater or less than a.

The direction of flexure of the branch (i) would be alone

sufficient to shew which branches form the loop in x'Oy.

The cubic, which gives all the points of intersection, at

a finite distance, of the curve and asymptote, is

ax^ -f a(6— 2a)x^— ba?x -|- a* = 0.

The figures are drawn for 6 = 2(X, and a= 26. The three Figs. 12,13.

roots are real in the first case, and two are impossible in

the second.

In the case a = b, the curve is composed of the straight

line X -f 1/ = 0, and the curve whose equation is

x'^— x^y + xhj'^— xy^+ 2/*— axhj = 0,
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V. the forms at the origin being y^ = ax^, and x~ = ay, and

near (a, a), 3^'^+ ct*? = 0,

Observe that no straight line through the origin can

meet the curve in more than one point, so that y cannot

Fig. 14. be negative.

ASYMPTOTES TO HOMOGENEOUS CURVES.

134. A class of curves, sometimes called homogeneous

curves, the equations of which are of the form u„= constant,

where u„ is a homogeneous function of x and y, of the
,j2,th

(Jegree, illustrates the manner in which the continuity

of a curve is preserved in passing through the infinitely

distant points indicated by the asymptotes.

The equation of the asymptotes in this case is tin= 0.

It is easy to trace these curves, because they intersect

none of the asymptotes at any point at a finite distance,

and cut no straight line through the origin in more than

one point if n be odd, or two points if n be even ; so that,

knowing where the curve cuts the axes, we can tell, without

calculation, on which side of the asymptotes to draw it.

Ex. 1. (y-x)(y-4x)(y+ 2x) = a3.

Here the three asymptotes are real, and (0, a), (i«, 0),

Fig. 15. are the points on the axes of x and y.

Note. The asymptotes are tangents at points of inflexion,

since three points at an infinite distance lie on each.

If we test, by proceeding to the next approximation,

for y = x, we have ?/ — a;= —a^/9x'^, shewing that the curve

is below the asymptote at both ends.

Ex. 2. (y- x) (y- 4x) (y+ 2x ) = 2a-x.

This and following curves are given to illustrate the

superior simplicity derived from having the right-hand

member constant.

The three asymptotes all pass through the origin, and,

since they cut the curve at only two points at an infinite

distance, they are ordinary tangents, and the curve therefore
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lies on opposite sides of each ; this is also shewn by the v.

nearer approximations y —x—— 2a'^/9x, etc.

At the origin, y^ = 2a^x, and the form is -4-

.

Fig. 16.

Ex. 3. (y- x) (y- 4x) (y+ 2x) = Saxl

The asymptotes do not pass through the origin, they are

y-x= -fa, (i)

y-4>x = ^a, (ii)

y+ 2x= ia; (iii)

for the radii drawn from the origin to the points where

these asymptotes intersect the curve,

(i) {y-4.x){y+ 2x)=-9x\ or (y-xf = ();

(ii) {y-x)(y+ 2x) = lSx^-, .-. y-\-5x = 0;

(iii) (y-x)(y-4^x) = 18x^-, .-. y-7x = 0;

the first asymptote meets the curve at three infinitely distant

points.

The form at the origin is the cusp y^ = Saa;^. Fig. 17.

Ex. 4. (y - x)2 (y+ x) (y+ 2x) = 16a^

The curve comes into sight from an infinite distance on

both sides of each end of the asymptote y = x; it cuts Ox
where x = + rt^8, and Oy where y=±2a; also it is sym-

metrical in opposite quadrants. Fig. 18.

Ex. 5. (y - x)-(y+ x)(y+ 2x) = 6ax''.

With this variation there is for two of the infinite branches

a parabola (y — xy = ax, which shews how these branches

bend, but which is not a proper parabolic asymptote.

The other asymptotes are y+ x = %a, y+ 2x= —fa.
y-{-x = ^a meets the curve where (y — x)^(y-\-2x) = 4'X^,

.'. (y^ — 4!X^)y+ xhj — 2x^ = {y — 2ic)(2/ + ^Y = 0,

or y — 2x = gives the only point at a finite distance.

y-{-2x= —%a meets the curve where (y — x)"(y-\-x)=^—9x^,

whence (y+ 2x) (y- — Sxy+ 5x^) = 0,

which gives no real points at a finite distance.

Near the origin, y^ = 6ax^ ; near (3a, 0), y = 2(^— 3a). Fig. 19.



102 ILLUSTRATIONS
PLATE

V. 135. I shall conclude this chapter by giving materials

for tracing curves which have infinite branches of the

various kinds which have been discussed, by which the

student may practise himself in completing curves from

the known forms of particular parts, only using my figures

as a check.

Ex. 1. x^-2a3xy+ y^ = 0.

Note the symmetry with respect to x = y, and that x= y
meets the curve where x = y = a.

Near the origin, o:^ = 2a^y and y*= 2a^x;

Fig. 20. and x+ y = is an asymptote.

Ex. 2. x5-5axV+ y^ = 0. .

Observe the symmetry, and that x= y meets the curve

where x = y = %a.

Near the origin, a^ = 5ay^ and y^ = oax^,

Fig. 21. near (oo,oo), x+ y = lim 5ax^y^l(x* — xhj+ ... + y*) = a.

Ex. 3. x^- a^x^y-bV-+ y^ = 0.

The curve is symmetrical in opposite quadrants.

Near the origin, ii x:y can be small, y^ = b'^x; ii y.x

can be small, x^= a^y ; and if x and y can be of the same

order of magnitude, a^x+ h'^y = 0.

Also ?/+ a' = is an asymptote.

Fig. 22. The figure is drawn for a'^b, but looks too much as if

a/b were infinite.

Ex. 4. y2(3x-4y)3-a*x = 0.

This is symmetrical in opposite quadrants.

Near the origin, G-i^y^+ a*x = ;

near the ends of the asymptote x'Ox,

?/2 = aV27x2;

near those of the cross asymptote.

Fig. 23. (Sx-^f= ^a'ISy.

Ex.5. {x(y-x)-a2}V= a', (a>0).

Observe that y cannot be negative.
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Near (0, a), >/ = a+ -^x, v.

near (a, «), >/+ 2^=0,

near (0, oo
), x = a^y~^+ ci^y~'^,

near (go , 0), y= x^x ^,

near (oo,oo), y — x = a'-x ~
^ + «-

a "
-. Fig. 24.

Ex. 6. 4a2(y-x)2(y+ x)-8ax3(y-x)+ x5+ y5 = 0.

The asymptote is «+ 1/ 4- V« ==
;

near the origin, where x and y are of the same order,

y-x = 0, (i)

and y-\-x = Q (ii)

For the next approximation to (i),

4ea^{y — xf— ^ax^{y — x)-\-x^={ 2a{y — x) — x^}'^ = 0.

P'or a further approximation,

x-^^2a'

therefore -^- = (2+ ^)'' = h(l-~\

5x
2 + -—

and ;

—

, \ .
= = !+-•

(x+ y)x* X a

^^2ci

Substituting, we obtain

^a\y-xf-^ax'^{\-^{y-x)+ x'{\+~j = (),

or i^2a{y-x)-x^^~+^+'^ = 0,

shewing that there is a ramphoid cusp touching (i).

For the branch (ii) through the origin,

4a^(2/ + a;)+ 4«a;^ = 0, or y=—x— x^la.

To find the side of the asymptote on which the curve lies,

let y= —x—'^^-a+ oi, and expand a. in descending powers

of X as far as x^
;

.-. 5oLX^-lO{^afxi^+ 8.ij^-a^x^ = 0, and a.= 3^a'x-\

whence y = x+^+ ^(^—^^\.
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Uy = 0, -ia^x"^+ Sax*+ a;-^ = ;

.-. x^+ 8ax+ lQa^ = 12a''';

Fig. 25. .'. x= — 2a(2 =b ^3) = — 2a tan ^VTr or — 2a tan yV7r.

Ex. 7. (x-- y'-)- - 4y'-+ y = 0.

Observe the symmetry of the curve with respect to Oy,

which it cuts at the origin and where y'^— 4>y+l = 0. The

roots of this equation are two positive and one negative, say

OL, /3, and — y, so that the equation of the curve may be

written, x^{2y-— x^^) = y(y~(x.)(y — l3){y-\-y); whence near

the three points (0, oc), (0, /S), and (0, — y),

2(jLX- = («.— |8)(a+ y)rj,

2^x'^=-(oi-(3)(^+ y)>j,

and 2yx2= -(o(.+ y)(^+ y)>y;

near the origin, x*+y = Q; near (J, -|-), £- = 4^7.

By expanding in descending powers of y,

x^^ = y'^±2y{l-ly-'+...),

whence x =y±l — {^±^)y~'^,

and —x = y±l—(^±l)y-'^,

from which we obtain four asymptotes, and the side on

which the curve lies at each end ; these asymptotes inter-

Fig. 26. sect the curve where y — j^ and — ^.

Ex. 8. y(y-x)-(y-2x)+ 3a(y-x)x--2a2x- = 0.

The asymptote parallel to Ox is 2y-{-Sa= : the three

cross asymptotes are y — x = a or 2a, and y — 2x= — fa ; and

the equation may be written

(y — x.y— x\y — X — a)(y — X — 2a) = 0,

which form shews that the parallel asymptotes do not inter-

sect the curve except at infinity, and that no part of the

curve lies between them.

Near the origin, y*= 2a-X",

giving two parabolic forms;

near { — %a, 0), where the curve crosses the axis x'Ox,

Fig.27. y(-2x+ Sa)-Sa{x-\-%a) = 0; .-. lSy = 9^.
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Ex. 9. y-x(y — x) — ay"^ — byx- + c'x'- = 0, v.

or (x — a)y'^— x%y — «.)(//+ /3) = 0.

Near the asymptotes parallel to the axes,

X — a + ah/ " \ y = fx.-\- a?x - ^/((/.+ /3),

The cross asymptote y—x = a-\-h intersects the curve

where ay'^— hxy = c-x^l{a-\-h), the roots of which are of

opposite signs.

For the next approximation

y-x = a+ h^ (a2 -If-- c'')x " \

The curve is drawn for a'^h and c->a" — 6-. Fig* 28.

Note. When cr = a- — h", the curve is above the cross

asymptote at both ends, and when c-<^a" — lf it crosses the

asymptote at a point below x'Ox.

Ex. 10. X' —xV+aV — axV = 0.

Near (0, oo ), a;- = d^y ~ ^ and x+ (* = ary ~ ^

The other asymptotes can be found, as well as the side on

which the curve lies, from a;^ — (.x+ a)i/* = ; so that

y=±x{\-\- ax ''^y^= ±{x — \a + -i^a^x - ^).

Near the origin, x"' + a'^y'^ — ;

near ( — a, a), 2^+ ;;
= ;

and near (a, a), 2^— 5;; = 0. Fig. 29.

Ex. IL x2y-y2x = a(x-b)'-b(y-a)2.

If ab = c^, we may write the equation in the forms

(x-b)y^-+ (2c^--x^)y+ a{(x-hf-c^}=0,

or (y-a)x'-+ ()lc^--y^)x-\-b{(y-af-c-}=0.

If 33 = 0, y = a±c; iiy — 0, x — h±c.

\i x = h, y -- 00 or a'/{'2a — h)
;

iiy — a, a; =00 or b^/(2b — a);

near (c, c), (3c - 2a)^= (3c - 26),;

;

and near (-C, -c), (3c + 2a)^=(3e+ 2/>),/.

The cross asymptote is x — y = a — b, which meets the

curve where ax+ by = Sab. Fig- 30.
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Examples VII.

1. Trace the curve .i^-<tj-* + //'= (), and prove that the coordinates
of the point at which it is parallel to O.c are ia and 'hi nearly.

2. Find the tangents to tlie curve .v(i/ - x)-= c^ wliich pass through
(c, 0), and shew that the point of contact of one is Qr, Jc), and that the
other is inclined to Ox at an angle tan~'^.

3. Trace the curve i/(j/ — x)\r/+ 2.r)= c^x.

Prove that the lines joining the origin and the points at which the
curve is parallel to Oy are inclined to Ox at angles whose tangents are

,J2 sin 15" and - ^2 cos 1.5°.

4. Shew that the curve w^ + 2(^/;y'-'-.f^ = intersects its asymptotes
at points whose distances from Oi/ are \a^lll.

5. At the points where the curve, Plate V., fig. 23, is parallel to
Ox, .r=±^rt^2; and y = -(\,x passes througli the points where it is

parallel to Oy.

6. Trace the curve {x- ~ yf{x + ii){2x+y) = a'^i/, and shew that the
radii from the origin to the points where the curve is parallel to Ox
aie inclined to Ox at angles tan^i-^s and tan~^f nearly.

7. Shew that there is a cusp at the origin in the curve

{x-yf{x+y){x^+y^)= a^v\

and another at an inlinite distance.

8. x^-aoi^y-'iax'^y-+y'''= () crosses the asymptote at the three
points at which x= ^}^a and ±la nearly.

9. Describe the .s^'mmetry of the curve

x(7/-- i a-) - y (.r- - h(-) = a^.

Shew that tlie radius of curvatui-e at (a, -(f) is ^a ^/2 ; and that the
curve cuts the asymptotes Ox and Oy at an angle cot~' 7.

10. (/ - .1-2)2 _ (/J^2 + J2y2 =, 0.

Discuss the cases of a > and < h, and in the latter examine the
variations when i>, = or <«v^2.

11. Trace the curve x^~y* - ^ax-y + (ry'^ + a'^= 0.

Shew that the curvatures at the points of intersection with Oy, and
at («, a) are in the ratio of 1 : ,^/5.

Prove that when a line parallel to Ox is trisected by the curve, its

distance from Ox is .§ §a nearly.

12. Prove that {v- y-f.2aY = lay is a proper parabolic asymptote
to the curve {x-y)-{x+y){£v+y)= ay'^.

13. Shew that the jjaraboHc asymptote of the closest contact to the
curve, Art. 127, Ex. 2, is {y -x+ icf= Zcx+\lc'.
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136. The only cases of infinite branches which remain to vi.

be discussed are those in wliich, wlien x and y are both

infinite, they are not of the same order of magnitude, so

that x:y or y :x vanishes ultimately.

The equation of a curve being given, it may, generally,

if it contain many terms, be simplified considerably by

considerations similar to those given in Art. 95 for the

investigation of branches through the origin.

Suppose that we intend to examine whether x : y can

ultimately vanish in any infinite branch of the curve.

(1) All homogeneous functions of x and y may be replaced

by the term which involves the highest power of y.

(2) The coefficient of any power of x being a function of

y, the term involving the highest power of y is the only

term which need be retained.

(3) A similar observation holds with respect to the co-

efficient of any power of y.

(4) If two terms ax^y'"^^, hx'y'' remain, since their ratio

is ay:hx^~\ t — s must be >•!, therefore the indices of x

must ascend by steps of 2 or more, if the equation be

rational.

These considerations reduce the equation to a compara-

tively small number of terms, and it must then be tried

whether, on neglecting one or more terms, a relation such

as y = x'', r>-l, is obtained, and whether with this relation

the terms rejected are smaller than those retained
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VI. 137. In tracing curves, the case of x being great with

respect to y, or vice versa, in any infinite branch is always

to be examined carefully, for with a cursory glance, which

is generally sufficient, such a branch often escapes notice,

and is only eventually detected by the impossibility of

uniting the parts which have been discovered.

138. The examples which I have given in this chapter

should be especially followed out as far as the asymptotes

are concerned, which I have for this reason placed at the

commencement in each case.

In the previous chapters, in order to draw the curves, I

have been obliged to consider curvilinear asymptotes, which

are not generally jDroper asymptotes, and in the particular

case of parabolic asymptotes I have anticipated an important

part of the subject of this chapter by giving the complete

process to be followed in finding parabolas which are proper

asymptotes.

With regard to the more general curvilinear asymptotes

such as semicubical parabolas, it is obvious that so many

terms would have to be taken in order to make them proper

asymptotes that they would be harder to draw than the

curve itself; they will, therefore, in the examples of this

chapter, remain only quasi-asymptotes, guiding roughly but

sufficiently to the direction of flexure at a great distance,

too great in fact to give any idea of the form of the curve

on a piece of paper of a moderate size.

Ex. 1. x*^+ 2a-xV — b"y-^ = 0.

There are no asymptotes parallel to the axes; the only

infinite branches occur where y : a) is large, the form being

a;2 — i)y^ where x^y oc x^, and may be neglected compared with

the term x^ retained in the first approximation.

The parabola, x^= by, is not a proper asymptote, but is

sufficient as a guide to the general direction of the infinite

branches. The proper asymptotes may be thus obtained :
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for the second approximation, vi.

for the third,

7 - 2/1, /'2«' ia^\ 4a^ \

IcC-x= x'^-
Sb

and, since the values of y in this parabola and the curve

differ by a quantity which vanishes when x is infinite, it is

a proper asymptote.

Near the origin, x^-{-2a"y = (), and 2a^x-^—b'^y" = 0.

The curve is parallel to Oy, where 2a'^x^ = Sb^y'^, whence

the point of contact of the only tangent parallel to Oy is

where db^y -\-8a^ = 0, for although Oy meets the curve in

three coincident points at the origin it is not a tangent

there.

The curve is parallel to Ox, where x^+ a^y = 0, giving the

origin, at which Ox is a tangent, and the point {a"/b, — a'^/b^).

In the figure the proper asymptote is drawn as well as the Fig. 1.

guiding asymptote, which is the first approximation to it.

Ex. 2. x2(y-x)2— ay^ = 0.

There are no asymptotes parallel to the axes. When
X and y are of the same order of magnitude, (y — xf — 0,

and y —x = a^x^ for a second approximation; the proper

asymptote, obtained by proceeding with the approximation,

until we come to negative indices of x is

y = x+ a^x^ + 4^a^x^ + 2a (1)

When y is large compared with x,

x- = ay (ii)

To obtain the proper parabolic asymptote in this case,

write the equation in the form

J, Sx
,
Sx^ x^\

ay = x~[ 1 h —,- rJ,
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VI. whence for the second approximation,

and for the third,

.,f 3aA 3rA 3a^\

or ay — x^— ^ax — 6«'^,

which may be written

We may observe that x is large compared with y, near

the origin only, where x^+ ay^ = 0.

The curve meets the guiding asymptote, x^ = ay, in no

real point except the origin, and that it runs along the

proper parabolic asymptote (ii) is accounted for by the

parabolas (ii) and (iii) intersecting at ( — 2a, 4a), so that

Fig. 2. the latter is inside the former after this point.

The effect of taking the proper asymptote instead of the

approximate one is to throw the branch in the angle xOy
further from the origin, but it is to be observed that the

general form indicated by the guiding parabola is sufficiently

accurate.

The asymptote (i) is drawn in the figure taking into

account only the first two terms in the value of y.

Neither branch could be represented on a moderately sized

piece of paper, since the point where the curve runs parallel

19tt
to Ou has for its coordinates —^ and 38a nearly.

Ex. 3. a(x5+y^)-xV= 0.

If x^ can be rejected, ay^= x^, which, near (oo , oo ), makes

X small compared with y ; similarly y^ can be rejected near

(oo , 00 ), giving ax'^ = y^. Again «^^^ can be rejected near

(0, 0), and the form is given by the next approximation

Fig. 3. y^x=— \x^la.
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Ex.4. axy^— (x— a)V+ a^ = 0. . vi.

Near (0, oo
), x = a^/y'",

near (oo , 0), y = a^jx^,

near (x , cc ), v? = ay^,

near (0, a), >/ = 5a;,

near {a, — a), 3»7 = ^. pjg 4

Note. The curve is parallel to Oy at two points, in the

intersection of the curves y<yX — a)^—'^a^ and xy^ = ^a^, and

it is parallel to Ox at one point, in the intersection of

'i;(x — ay = ay- and (Sx+ a)y^+ 4<a* = 0.

Ex. 5. axy=^ -\-(^x- a.fy-+ a^ = 0.

Near (0, 00 ), x = a^/y,

near (00 , 0), y^= —a^/x^,

near ( x ,
co

), 'ay+ a;- = 0,

near (0, a), r] = 2x,

near (0, —a), r]= —x,

near {a, — a), -h] = ^.

The curve is parallel to Ox at the intersection of

ay + S{x-af= and {'>x + a)y'^-\-:kt*= 0,

which gives three negative values of y, and two positive,

one negative value of x. Fig. 5.

Ex.6. a3(y+ x)-2a-x(y+ x)+x* = 0,

or a^(a —2x)y-{-x{x— a) (x-+ ax — ar)= 0.

, Near (|a, 00
),

x— ha = a^/S'Zy
;

near (co , 00 ), —2a^y+ x^ = 0;

near (0,0), y+ x-\- x^jd^ = 0.

Where 2/
= 0, x = a, and h{±Jb-\)a, =fx.a and ^a suppose.

Near (a, 0), 2/ = ^;

near(aa, 0), (l-2a.)^j + a(a-l)(a-/3)^=0,

and ar—0L=l — 2a., .'.y+J5i=0;
near (/3a, 0), y -Joi= 0. Fig. 6.
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VI. Ex. 7. y*-2(3x-4a)ay-+ a2x2 = 0,

or (2/2_ 3rt«+ 4a2)2 = HaHx- 2a)(£c - a).

Near (oo , oo ), y- = (Szt2j2)ax, for a first approximation
;

the proper asymptotes are y^ = (^zt2j2)a(x^aJ2).

The origin is a conjugate point, and x cannot give real

values of y when it is between a and 2a.

Fig. 7. Further, x= 2a is a tangent where y=± aJ 2.

Ex. 8. x*- 3ax2y+ 2a2y'-- ay^' = 0.

Near (oo , oo
),

«"*— ai/ = ;

near the origin, ay'^ may be rejected, therefore x^ = ay, or 2ay
;

near (0, 2a), x'^ = — %ari ;

near {JQa, 2a),
'

11,/ = 6JG^.

Observe that y cannot be negative, and that, near the origin,

the two parabolas lie nearer to x'Ox than the guiding

Fig. 8. asymptote.

Ex. 9. x^ — x^'^+ a=^y^— axy^ =z 0.

Near (0, co
), x = a^ly ;

near (go , oo ), if x and y are of the same order, we have

x — y — j^a — 0,

Fig. 9. and for the next approximation x= y-]-^a— -;r—.

Again, if x : y be small, x'' and y* may be rejected, there-

fore x^+ ay'^ = 0, and for the next approximation to this

asymptote, taking the term x'^ into account,

x^= — ay-+ x^y - ^ = — ay'^+ a-y,

shewing that the curve lies nearer to Oy in the upper

branch of the asymptote and farther from Oy in the lower

;

and, since it is easily seen that the curve and as3nnptote

intersect only at the points ( — a, ±a), there is a branch of

the curve which lies between the rectilinear and curvilinear

asymptotes at the lower end without intersecting them.

To find the way in which the other part of the curve in the

quadrant x'Oy runs, it must be observed that x'^-\-a^y* =
gives the shape at the origin, and that the line x+ a.= cuts
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the curve where y-^a"^ and a(y^+ a^)+ y'^ = 0. The only vi.

real solution of the latter equation is, by the method of
~

Art. 47, a little less than — #a, and if we put y = ( — %+ (x.)a,

neglecting a'^, we obtain a= ^^.

Let /3 be any one of the three roots, then, writing

a;= — a+ ^and 2/ = /3+ »7, we obtain, near ( — a, ^),

and the forms corresponding to /3 = a, —a, and ( — %+ jyij)a

are given by ;; = - 1^, >; = 2£, and >; = -
oV^, nearly.

Between the last two values of /3 the curve runs parallel

to yOy' very near the point ( — l^a, — |-a).

Ex. 10. a(x5+ y5)-a2x3y+xV = 0.

Near (oo , oo ), « : i/ large gives ax^+ y^ — 0; y:x large

gives ay-{-x^ = 0.

Near the origin, if x:y be small, a?/*— (t-ic^+ a;-2/^= ;

therefore y*— ax^ = 0, which makes x^y^ of the order cc^+i.

If 2/ : .r be small, rejecting y^ and a;^^/*' x^ = <^y-

Where x = y, x= {±J2 — l)a= —fa or — 3^a nearly. ^ig. 10.

Ex.11. x^-a3x-y(x-y)+ a5(x-y)2=:0.

Near(ao,x), x^-\-a^y'^ = 0;

near the origin, by the first approximation, y= x; by the

second, a^(y — xj^ + a^x^{y — x)-\-x'^ = 0, .\ neglecting x"^

y — x= —x^jcv^, hence (y — xy<xx^, which is greater than

the rejected term; and neglecting (y — xY, y — x=—x*ja^,

where (y—x)~ x x^, properly rejected.

Near ( — a, 0),

a^.oa^i+a^y+ 2a^y = 0, or 82/ + 5^=0. rig. n.

Ex. 12. ay2(y- a)- x2(y2- a^)+ 2axy2 - x^= 0,

or ay^— {x— a)hj-— x~(x- — a^) = 0.

Near (00 , x ), y large compared with x gives ay = x^;

near the origin, y^-= x?\ and near (0, a), #;7+ 2a^a; = 0, or

by the next approximation, ri-\-1x= —^x^jo?.

Near (a, 0), y^= 'liv^^ ; and near {—a, 0), 2y" = a^.
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VI. The tangent at (0, a), drawn in the figure, meets the

Fig. 12. curve again at the point (^a, —fa) only.

Note. The proper asymptote is aiy — a) = {x — cif, which

meets the curve in only one point at a finite distance.

Ex. 13. c^y2- (a+ b) c^x^y+ abx«- c^^x^y^ = 0.

The equation may be written

{c^y — ax^){c^y — hx^)— c^x^y" = 0,

or c^{c^— x^)y'^—{{a-\-h) c^y — ahx^}x^ = 0.

Near (c, 00 ), x= c{l—(a+ b)/3y},

near (oo , oo
), abx^— c^y'^ = 0,

Fig. 13. near (0, 0), c^y = ax^, or hx^.

Note. The two asymptotes are cut by the curve at points

equidistant from Ox.

Ex. 14. yx-(y — x) — ay^ — byx-+ c-x- = 0,

or yx^ — {y"— by+ c")x-+ (iy^ = 0.

Near (oo , 0), y = c-/x.

Near (oo , od ), if a; and y are of the same order, y —x = a-\-b
;

this asymptote meets the curve at a finite distance, where

a(a+ b){x+ a+ b)(2x+ a-\-b)-C"X^ = 0, (i)

one of whose roots is positive, the other negative if

c'^>2a(a+ 6), but both are negative if c^<^2a(a+ b).

When y and x are both infinite and of diflferent orders,

x^— yx" -{- ay'^= ; .'. x^= ay is a guiding asymptote, the

proper asymptote being ay = x^— ax— a{a-\-b).

Near the origin, ay^ = d^x^.

Fig. 14. The figure includes the case c-= 2a(a+ 6), in which case

the equation (i) becomes {y — x){y+ 2x) = ; therefore the

curve meets the asymptote in only one point at a finite

distance ; the branches marked b and d belong to this value

of c'^ also, when c->- 2a{a+ b), a and d are the branches, and

when c^<C2a{a-{-b), b and c are the branches.

Ex. 15. (y — X— a)y^— byx'-+ mabx'- = 0.

Near (oo , ')na),y = ma— 77i^a^/bx; the asymptote y = ina

meets the curve where a;= (m — l)a, the same point at which"

the tangent at (0, a) meets it.
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Near (oo , oo ), if a; and y be of the same order of magnitude, vi.

y = x-\-a-\-h-[{m+T}ab-\-W"]lx;

this cross asymptote meets the curve where

y^— yx^+ niax^ = 0,

or {a-{-h){x+ a-\-h){1x+ a-\-h)-\- max- = 0,

the roots of which are real and both negative, if ^'ina<^a-\-h,

in which case the curve cuts the asymptote in the com-

partment x'Oy below the line x-\-y = ^.

If, near (cc , x ), a: : i/ be large, y'^-{-hx = 0.

Near (0, 0), mhx^ = y^
;

{in-l)hx^
near (0, a), y — x— a= —- 2 '

so that the curve bends upwards or downwards, according

as m-< or > 1, and whenm= 1, there is a point of inflexion.

The curve is parallel to Ox where x = 2(y — a); in figure 10.

the points a, h, c are points in 2i/ — x— 2a = 0, where the

curve is parallel to Ox.

To illustrate the different forms which the curve can

assume, it is drawn for three cases,

h = a, i<7>i<l, Fig. 15.

h = a, l<7?t<2, Fig. 16.

and 26 = 3v/3a, in = '2;

the last being an intermediate case in which there is a

multiple point, viz. where x = {J'^
— \)~a, y = (S — Ju)a.

Examples VIII.

1. f{A^+l)= X^ + l.

Prove that the curve is parallel to Ox where .^=^2-1 ; also that

the tangent at the point (0, 1) intersects the curve at (7, —
f).

2. axi/^ — (x — afip'+ a^= 0.

Prove that the proper parabolic asymptote is

{x-\ay'= aiy-\a\
and that the curve lies below on the positive, and above on the

negative side of Oij. (Note that the equation can be written in the form

x''- — ?>ax+ 3a- - aii =—

I

o •
)

Fig. 17.
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VI. 3. {y-h){y'^+ lfi):t^+ bxy^-b^y'^= Q.

Prove that the propei^ parabolic asymptote is

x^+ b{i/ + b)= Q;

and shew that the curve cuts one of the rectilinear asymptotes at an
angle cot~^ 3.

4. c^i/"^= {x — 2c)%^.

Shew that c^= (a*- \cf gives the direction of the curve near (x , x ).

Trace the curve near the points where it crosses Ox,

5. f-y'^-Ux^-2Qxr>- 2X^= 0.

Shew that the proper parabolic asymptote is

51

Prove that the loop intei'cepts a length ^^^ on Ox, and that the

curvatures at the points of section are in the ratio 1 : 4096.

6. xhj+ a{y-xf = 0.

Shew that the curve cuts the rectilinear and proper parabolic

asymptote at the same distance \a from y'Oy, and that the tangents

to the curve at the points of section are inclined to Ox at angles tan"^ §
and tan~' J. Prove that the carve runs parallel to Oy at (4a, —4a).

7. a {x^ + y^) — xy^= 0.

Prove that, if the tangent be drawn from (a, 0) to the curve, the

point of contact is at a distance 5a from the axis of y, and that its

inclination to Ox is not very different from tan~^|. Shew that the

curve runs parallel to Ox where x—^a, and y= -jx)a nearly.

8. If in Ex. 14, page 114, 6= 3a, c^= 4a^, prove that the guiding

parabola touches the curve and intersects the proper parabolic

asymptote at the point ( — 4a, 16a).

9. x*-3a\vy + ay^ + ax^= 0.

Prove that ay^+ (.r+ Ja)*= is a guiding asymptote, the curve lying

below the asymptote on the positive side of Oy and above on the

negative side.

Shew that x= a is a tangent to the curve, cutting it again at an
angle tan~^ -j% ; also that the curve cuts x'Ox at an angle tan~^ J.

10. The curve in Art. 73, Ex. 1, intersects its guiding asymptote
2ax^+y*= where it meets the curve 2y^ — 3xy — 2x^=yx^/a. Shew that

this latter curve has a proper parabolic asymptote {x + 3a)- — 2a{y- |a)

which it intersects in ( — |a, fa), and a rectilinear asymptote y+ 2a= 0.

11. Prove that (y — .r+ y\a)^= a.r is a proper parabolic asymptote to

the curve, Ex. 5, page 101, but that {y-x+^oaf= ax-\-\^\a'^ has
a closer contact.
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139. I HAVE how shewn how, in all cases of curves vi.

represented by equations containing a moderate number of

terms, simpler curves can be found, which very nearly

coincide with the curves near particular points, when they

are at a finite distance, and nearly enough for practical

purposes when they are at an infinite distance.

In this chapter I shall give some account of the Analytical

Triangle, and its use as a machine for saving the trouble of

the comparison of the relative magnitude of the different

terras of the equation of a curve, at an infinite distance, and
in the neighbourhood of the origin, when the curve passes

through it,

140. The triangle is a modification of Newton's parallelo-

gram, which was an arrangement of squares, like those on

a chess-board, each square being appropriated to one of

the terms of the general equation of any degree, as in the

figure. Fig. 18.

141. It is easily seen, by observing the squares which

contain the terms of four and lower dimensions, that all

the terms of a complete equation of any degree are contained

in squares which occupy half of Newton's parallelogram

;

this circumstance led De Qua to replace the parallelogram

by a triangle containing one more square on each side than

the degree of the equation considered, which is represented

in the figure for an equation of the fourth degree. Fig. 19.
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VI. 142. An equation is said to be placed upon the triangle,

by making a cross, or some definite mark, in the centre of

each square which corresponds to a term of the equation.

Thus, the equation

ay^+ hx^y^+ cx^y'^+ dx'^y+ ex'^y^ -\-fx"+gxy =

Fig. 20. is placed on the triangle as in the figure, the letters CL^r^y^Se

corresponding to the terms in order.

143. The property which makes the triangle so valuable

as an analyzer, is that, if crosses be joined, so as to form

a convex polygon cn^ySe, exterior to which no cross lies,

when the terms of the equation, which correspond to any

side, are equated to zero, the locus of the equation so

formed is one or more simple parabolic curves, or straight

lines, each of which, as will be proved immediately, is a

first approximation to the form of the curve, either at an

infinite distance, if all the rejected crosses lie on the same

side of the line as the right angle, or, near the origin, if they

lie on the opposite side, when the equation has no constant

term.

Thus, corresponding to a^ the equation is ay*-\-bx^y^= 0,

or ay+ bx^ = 0, and with this relation between x and y, every

other term vanishes compared with the terms in a and ^,

when X and y are indefinitely great.

Again, corresponding to /Stjy, we have the equation

bx"y^+ cx^y^-\-dx^y = 0, or by'^-^cxy-{-dx" = 0, which repre-

sents two straight lines, and, with this relation, when x and

y are large, every other term vanishes compared with any

one of the three terms retained.

Again, taking the side yS, the equation is dx'^y-\-fx"= 0,

or dx'^y+f=i), with which relation, -cc being infinite, and

y indefinitely small, every other term will vanish compared

with the terms retained, thus xy and x-y^ will be of the

order x~'^ and x~^ respectively.

Corresponding to Se, fx+gy = 0, and, with this relation,

every other term vanishes when x and y are indefinitely

small.



Fig. II

\ni

X



c



PROPERTIES OF THE ANALYTICAL TRIANGLE 119

PLATE
Lastly, eoL gives ay'^-{-gx=:0, which relation makes every vi.

other term vanish for points taken near the origin, relative

to the terms retained,

144. I think the following method of considering this

triangle is much more convenient, both for placing the terms

in any particular case, and for exhibiting the properties of

the polygon, also, when necessary, in fixing more accurately

the position of whatever marks are employed which may
correspond to fractional indices of x and y.

Instead of making squares, which act as cells in which
the terms are placed, take a right-angled isosceles triangle,

whose sides are in the direction Ox and Oy, measure equal

distances along both sides, numbered, or supposed to be so,

from 1 to n, and, through each such division, draw lines

parallel to the sides, and terminated by the hypotenuse.

Each point of intersection of such lines corresponds to a

term of the complete general equation of the 71*^'* degree.

The simplest way of drawing the figure is to divide the

liypotenuse into as many equal parts as the degree of the

equation, and to draw parallel lines from the points of

division.

The equation given in the last article would be placed

upon the triangle as in the figure. Fig. 21.

If a fractional term occurred in the equation, such as
n 7

x^y'^, we should register its position by the intersection of

two lines parallel to Oy and Ox, bisecting 12 in Ox and

passing through the first point of trisection of 23 in Oy.

I shall adopt this form of the Analytical Triangle, using

a small circle instead of a cross as being the most convenient

mark to place in the intersection of two lines.

PROPERTIES OF THE ANALYTICAL TRIANGLE.

145. When all the terms of an equation of a curve are

placed by circles upon the triangle, the following properties

hold, with respect to any straight line which contains two
or more of the circles.
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VI. i. If every term of the equation be rejected, except the

terms which correspond to the circles which lie in a given

line L, the resulting equation gives one or more constant

values of the ratio y' : x^, the values of r and s depending

only on the direction of the line, and being therefore the

same for all parallel lines.

ii. If the straight line L meet both sides of the triangle,

or these produced beyond the hypotenuse, the terms of the

original equation will vanish compared with those whose
circles are in L, in the two cases, (1) when x and y are

infinitely great and the circles corresponding to these terms

lie on the same side as the right angle 0, (2) when x and y
are infinitely small, there being no constant term in the

equation, and these circles and lie on opposite sides

of Z.

iii. When the line L intersects one of the sides, say Ox,

produced backwards through 0, and all terms are rejected,

except those which correspond to. circles lying on L, the

resulting equation gives constant values to x^y\ and when

y is infinitely great, and therefore x indefinitely small, all

terms, whose circles lie on the same side of L as 0, vanish

compared with those which form the equation which deter-

mines x''y' ; when x is infinitely great, y indefinitely small,

the terms which vanish relatively are those whose circles

lie on the sides of L opposite to that on which lies.

Similarly, if L intersect Oy produced backwards through 0.

iv. When the line is parallel to one of the sides, say to Ox,

the resulting equation gives one or more straight lines which

are parallel to Oy ; the terms whose circles are on L will

be greater than any other term of the equation, if the

corresponding circle is on the same side of Z as when y
is infinitely great, or on opposite sides if y be indefinitely

small.

v. When the line coincides with a side of the triangle,

the solution of the resulting equation gives the points of

intersection with tlie corresponding axis.
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146. The truth of these propositions is easily seen by vi.

taking particular cases, but they may be proved generally

as follows

:

Suppose the equation of a curve to be what is called

placed upon the triangle, and let x°-y^ be one of any number
of terms, whose representatives on the triangle all lie on the

same straight' line L; a., ^ must, therefore, satisfy the equa-

tion ^+ incL = c, where in is constant for all parallel lines, and

c for any one of these lines ; and so

x^y^ — x°-y
- '""+'' = {xy "

'"Yy".

Hence, if all the terms in the equation be rejected except

those whose circles lie on the line L, since y'^ is the same for

every term, the result will be an equation f(xy~'^) = ;

which, if ?7i = s/r, proves i. If tii and c be positive, which is

the case of ii, and x'^'y^' be a rejected term whose circle is

not in the line L, let a line L' parallel to L be drawn through

the circle corresponding to x'^'y^', c being written for c, the

roots of the equation determining .ti/"'"" are not the same in

the case of the two lines L and L' , but being independent

of X and y, the orders of the two terms are given by 2/" and y'^\

The rejected term vanishes compared with those retained

when y'^'
: y'^ vanishes ; this happens when x and y are

infinitely large and c'<^ c, also, when x and y are infinitely

small and c'> c. It should be observed that when m is

positive x and 2/ are both infinitely large or both infinitely

small together. Thus ii is proved.

If the line L meet one of the sides, suppose Ox, produced

through backwards, we must write —iin for in, and the

term x°-y^ becomes {xy''^Yy'^, and as before a rejected term

x°-'y^' vanishes compared with x°-y^ when 2/"' : y" is indefinitely

small. Hence, when y is infinitely great, c must be less than

c; when y is indefinitely small, or x, which varies as y''^,

infinitely great, c is greater than c. This proves iii, and

iv and v are evident.

147. From the proof given above we may remark, that

if any line give the first approximation to an asymptote.
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VI. the terms to be taken into account for the second approxi-

mation are found by moving the line parallel to itself until

it passes through another circle or set of circles, all of

which correspond to the terms required to be taken into

account.

148. I shall now shew the use of the triangle by applying

it to assist in tracing the following curves

:

Ex. 1. x*5+ 2a-x3y_bV = 0.

Place the equation on the triangle, and draw the polygon,

two sides of which correspond to branches through the

Fig. 22. origin and one to the infinite branch, viz.

Fig. 23. x^+2ahj = 0^^, 2a~x^-hh/= 0-\^, and x^-- by = 0.

Ex. 2. The next example is one which has already been

considered in Art. 88, viz. xV"+ xy^ — y '' — x'^ = 0.

Placing the equation on the triangle we obtain the

Fig. 24. quadrilateral cx-fByS.

oc/S gives y'^ — x'^ = 0,

/3y x^^+ y^^O,

yS X —y- — 0,

OCX. y''-\-x''=0.

The first approximation to the asymptote given by Sol

is y-{-x = 0; the next approximation is found by taking

into account the circle y (Art. 147), the first which Sol meets

when it moves parallel to itself towards ; the resulting

equation gives the rectilinear asymptote, viz. y-{-x + i-= 0.

The next approximation gives y + x+ i-= -:^-^x~'^, taking

into account the circle /3.

To trace the curve, observe that x = y meets the curve

where x= y = l, or —h.

Near (1, 1), if x = l-\-^, y = l+i], the coefficient of >; = 0;

therefore, proceeding to »/-, 3^+10>;" = 0.

Near(-i -H ii x= -h+ i,
y= -1+ ,], ^=3,?.

Again, x= —y meets the curve where x= —y = l, and

near (1, -1), 5^+4,, = 0.
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To find the size of the smallest of the three loops, note vi.

that the line y — —mx meets the curve where j,. 25

771^— m^x+ {ill' — 1 ) a;-= 0,

; and the values of x are real, equal, or impossible, according

as 7)1^^— \m"{in''— 1), or as m^ — 4m'^+ 4 is +, 0, or — . The
two values of x are equal if m be a little less than 4

;

let m = 4t — a., then (7?i — 4)?)i'^ + 4 = 4 — a(4 — a/, whence
(x = 4"*', nearly.

For this value x^— xin-"-{-iii-^ = very nearly; and
oiy^ — in-^x+ \in-'^ = {) since ')>i = 4, giving two equal values

of X, viz. -gV, for which y = i.

For values of vi between and 4, the line y = 'nix does

not cut the curve except at the origin, the loop is thus seen

to be extremely small ; when m = 5 it can be shewn that the

values of y are — yV and — 4 nearly.

A magnified figure of the shape near the origin is given

on account of the difficulty of shewing the form of the small

loop. Fig. 26.

The continuity of the curve may be seen by commencing

at the asymptote in x'Oy, passing through the origin along

y = X', tracing the loop in xOy, passing through the origin

along y" = x, tracing the small loop in xOy', through the

origin along x'^+ y^ = 0, then along the loop in x'Oy', through

the origin along —y = x^, and so to the other end of the

asymptote.

Ex. 3. x(x2-ay)2-y5 = 0.

Placing on the triangle, we obtain the two forms at the

origin {ay — a;-)^= 0, and a-x = y^. Fig. 27.

The next approximation to ay = x^ is ay=x^-{-x^a'^.

The asymptote corresponding to x^ = y^ is y = x— -fa, the

next approximation being y = x— ^a+ i^^a'^x~^.

To find where the curve cuts the asymptote, let y = mx at

the point of intersection. Hence, from the equations of the

curve and asymptote, x{vi^— 1) = — ina, and {7n— l)x=—^a;
whence, if m = jjr, 2iul^

— 5 iul'^-{- 5/m^— 2 = 0. But the curve

meets the asymptote in at least two points at infinity, so ^'S* ^^'
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VII. that (juL — l)' must be a factor of the left side of this equa-

tion, which reduces the equation to

the only real root of which is 1"862 nearly. Therefore

m = 3-467 and a; = -•162a.

The curve is parallel to Ox at a point near (^, fa).

Ex. 4. (y2~x2)2+ 2axy2-5ax3= 0.

Fig. 1. Place the equation on the triangle, as in the figure.

/3y gives for the points of intersection with Ox,

a?{x — oa) — 0,

and for the next approximation, by moving ^y parallel to

.

J
itself until it passes through S, we obtain

x\x— 5a)+ 2axy~ — 2x^y'^ = 0,

whence 8y'^= 25a{x— 5a).

yS gives 2y'^ = ox'^ near the origin.

Sol gives y^+ 2aa; = also near the origin.-

a/3 gives (y'^— x")" = at an infinite distance, the next

approximation being (y^— x^Y = Sax^.

To obtain the proper asymptotes, we write the equation

in the form (y^— x^-\-axy= Sax^+ a"X^, whence

y^ = x'^— ax±J{Sax^) or y = x{l±J{'3ax-'^) — ax-'^y.

.'. y = x±hJ(Sax) — la, or {y— x-\-^af = ^ax.

The other parabolic asymptote is given by the symmetry.

Fig. 2. For the size of the loops we can shew that the curve runs

parallel to Oy at the points ( — ^a, ±|a), and parallel to

Ox, where y'^ = 5x^ from which x= —^ci.

Ex 5. x« - 2bx3y2 - 2abx^+ b^y*- 2ab2xy2+ a-b-x^ = 0.

Fig. 3, Place the equation on the triangle as in the figure.

The side a.^ contains three circles, giving

a;6-26r»V+6V= ^. or (x^-by''f^O,

as a first approximation at an infinite distance; moving

the line parallel to itself it passes through two circles which
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belong to the next approximation, viz. —2ahx*—2ah^xy", vii.

whence by^= x^zt2J(ah)x'^.
~

The side ay contains three circles, giving as the form

near the origin (y'— axY = 0, and moving the line parallel

to itself, two terms — 2bx^y^ — 2ahx* are introduced, giving,

as the next approximation, ax= y^±2y^/J(a%).

The third side ^y gives the points of intersection with

Ox, x'^— 2abx^-\-a%^X" = 0, and again, moving the line parallel

to Ox, the next approximation is, making h = nki,

x\x^— n^a^f— 2nhixy\x^+ nhi^) = ;

writing n'^a for x in the term involving y^, we obtain Fig. 4.

(x^-n''a^f= 4>n'^aY,

or x'^= n*a^±2n^ay,

Whence x = n^a± 7iy,

as X cannot be negative. These are the tangents at the

double point {nht, 0).

Without using the triangle, observe that the equation

may be written n*ay^ = x{x±n^ay, and we shall have the

forms, near (n^a, 0), ny= ±^, and, near (x , oo ), n*ay^= x^.

The curve is either parallel to Ox, or has a multiple point

where (x — n^ay+ 2x(x — n~a) = 0, by which x — }inhi, or

nh(, the latter solution belonging to the double point,

Ex. 6. xV +axV+ by-+ cxV+ dx = 0.

Placing the equation upon the triangle, the bounding Fig. 5.

polygon is a quadrilateral, three of whose sides correspond

^to asymptotic branches of the curve, and one to the shape

at the origin. If we denote the circles which correspond

to the terms of the equation, taken in order, by 1, 2, 3, 4, 5,

we are directed to the first approximations to the three

asymptotes, as follows

:

1-3 gives the form near (0, go ), x^= —hy-^, (i)

1-4 gives near (oo , oo
), y^+ cx = (ii)

4-5 gives near (oo , 0), cy= —dx-^, (iii)

the remaining side 3-5 gives near (0, 0), by^-\-dx= 0. (iv)
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VII. The circle corresponding to 2 lies within the quadrilateral,

and does not affect the general characteristics of the curve,

but points out the next most important term to be taken

into account for a further approximation in cases (i), (ii),

(iv). In the case of (ii), the next approximation is

cx= —'if-\-acy~'^, so that the first approximation gives a

proper asymptote. The terms following 4 and 5, in

descending order of magnitude, are 3, 2, and 1, varying as

x~^, x'"^ , and x~^. Their circles are passed through in

order, as 4-5 moves parallel to itself.

The asymptote (ii) cuts the curve where

ax^y^+ hy-^+ dx = 0,

or ay^+ c^hy'^ — cdy^ = 0.

The solutions of oy"— cdy-{-c^h =

are the ordinates of the points of intersection of

y'' = vi^x^ and am^x— cdy + c~b — 0.

Whence it appears that there must be one or three real

roots. The following cases are illustrated in the figures :

two + and one — root,

^or one — root

;

one + root;

_ [two — and one + root,~
\or one + root

;

— — — — one — root.

Figs. 6, 7. l^^lie figures are drawn for the two cases of h, c, d being

all + or all — , and the double branches marked + and —

correspond to a-\- and a— .

Ex. 7. aV+x-y^-xV+ ax^y-a'^x- = 0.

Fig. 8. Placing in the triangle, the four sides a/3, /3y, yS, 6e, give

a^-^x-y = 0, Oy being an asymptote,

y'^— x^ =0,

y'^ — ax =0,

x*y — cv" = 0, Ox being an asymptote.

The side ea gives y^ — a^x-= for the shape at the origin.

a
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Moving /3y parallel to itself, it passes first through S, and vii.

the second approximation gives y — x+ la = 0: the next

may be obtained from y'^— x^-\-ax^y-'^ = 0.

Thus y = x(l-axy--f
= x(l—laxy--— ^a~x^y~*)

= x{l— lax- '^(l-{-%ax -'') — ^a^x'-}

= x — la — ^a-x~'^.

Moving y^ parallel to itself, it passes next through /?,

and the next approximation to the parabolic asymptote is

o y^ ""^

y- — ax = ^, = ^,
"^

x'^ y

shewing that the parabola is a proper asjmiptote ; this

parabola cuts the curve where y''+ a^y — a'^ = 0, the only

real roots of which are the positive and negative ordinates

of the two points of intersection of a^x — y^ and x-\-y = a. Fig. 9.

Ex. 8. (y-a)V-2a\y-a)x-+ a*(x-a)y2 = 0.

Placing on the triangle, one side of the polygon gives Fig. 10.

2/^x*— a^y- = 0, or yx* = a^, the axis of y being an asymptote
;

another side gives (y — afx'^= 0; if this side be moved

parallel to itself, the next terms are —2a'^(y— a)x^. This

approximation would make (y — a)x finite, so that {y — a)x^

is of the order x when x is infinite. To obtain the values

of y — a we must therefore include the next term a'^xy^,

the resulting equation being (y — afx;'^ — 2a%y — a)x+ a'^ = 0,

from which {y — a)x has three values, a- and i(=t^/5 — l)rt'^.

The shape at the origin is given by the lower side of the

polygon, viz. 2x^— y'^ = 0.

The curve cuts the axis of x, where £c-= 2a.-, and the

asymptote y = a, where x = a; and near (a, a), 2rj = ^.

Near (+ aJ2, 0), iix=± aJ '2+ ^, ±J2y = ^.

To assist in tracing the curve we observe that x = y also Fig. li.

cuts the curve where

x = y = l{±Jo + l)a.

Note. The triangle may be more easily employed for the

purpose of approximating to the asymptote parallei to Ox,
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VII. by writing?/ for y — a, and placing the resulting equation

j-jg 12. y^x*—2a'^yx"+ a\x— a){y-\-a)'^ = on the triangle.

The corresponding side of the polygon gives

y^x*— 2a*yx^+ a^x = 0,

or yx = a^ and ^(±^5 — l)tt2.

Ex. 9. x(x2-ay)- = y^(y-c).

Fig. 13. Placing on the triangle, we see that, at an infinite distance,

x^— y^ = ; and, moving the side parallel to itself, we intro-

duce two more terms, giving for the asymptote

y-x = l{c- 2a).

In the next approximation the term -—^^^-^ is added.

One form near the origin is a^x+ cy- = ; another is

ex'
(x^— ay)" = ; more nearly (x-— ay)~ = ——^

.

When2/ = c, a; = (), or ±J{ac).

N ear (0, c), a'^x = c-j;+ 2c rj-
;

near (±:Jac, c), 4^'^= ±a/^h.

In attempting to trace the curve with" the above data, a

difficulty arises in choosing whether we shall join the

branch through (0, c) to the branch a'^x+ cy^= 0, or to that

through ( — Jac, c).

It will illustrate the artifices which may be used in such

cases, if we examine the number of points where the curve

is parallel to the axis of x, and afterwards the points where

the tangent a'^x = c\y — c) meets the curve.

The curve is parallel to Ox, where

{x"^ — ayf-\- 4>x\x'^ - ay) = 0,

or where x~= ay, and 5x'^= ay
;

the first case has been considered ; in the second

1 Qa-x = 25y\y — c), or y\y — c)- = 4*5 " Vt^ = -f^a^ nearly.

The values of y are the common ordinates of the curves

yiy — c)= }ax, and yx^= 2a^
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These two curves are drawn for the eases of c= 2a and vii.

c = a, and they shew that there are three values of y in the Fig^j^4j^

first case, and only one in the second. Thus, when c= 2a,

the loop is found by joining the ends of the ramphoid cusp,

and, when c = a, by joining one branch of the cusp with the

parabolic branch through the origin.

The other plan, of examining the point where the tangent

a^x = c\y — c) meets the curve, leads to some elegant results.

At the points of intersection of the curve and tangent,

c(x^ -ay)= ±ay^, or —=±—+ 2/.

The loci of these equations are a hyperbola, and an ellipse

whose transverse axis is c, and the ratio of whose axes

is a^ : c^. The positions are given in the figures for c = 2a Figs. 16, 17.

and c = a, in the latter case the loci being a circle and

rectangular hyperbola ; the points of intersection are

B, A, P, Q, for the first, R being at an infinite distance in

the second.

The figure of the curve is drawn for the same relations Figs. 18, 19.

between c and a. The letters A, F, Q, R correspond to the

same letters in figures 16 and 17.

The points of intersection with the tangent a^x= c\y — c)

can be found directly, for c\x^— ayY= a^y^

;

.'. cx'^= ay{±y+ c) and c%y— cf= a^y(±y+ c).

With the upper sign {c^ — a^)y^— (2c^-{-a^)cy-\-c'' = 0;

.-. 2(c^-a^)y = {2c^+ a^)c±cJ(8a^c^+ a^^).

Uc = 2a,

y — ^c or ^c, and cc = fc or — fc roughly

;

\i c = a, y=cc or ^c, and x= — fc,

and, near ( — |c, |-c), 1 9>/+ 17^= 0.

With the lower sign y = c ov (c^+ a^)y = c^, and the cor-

responding values of x are

x = or {c^-{-a^)x= —a?(?.

Thus the coordinates of the point of intersection can be

written x= —ra?, y = rc'^, where (c^+ a^)7"= c^,

' f.C.T. I
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VII To find the form of the curve near this point, let

x= —ra\l-{-OL) and y = rc\l + y); then —rci?CL = ^ and

rc^y = r]. Substituting in the equation of the curve and

rejecting powers of a. and y higher than the first, we obtain

- ra\l+OL){r^a\\ + 2a)- ar\d>+ w>){\ + y)Y
= r5ci5(l + 5y) - rV=^(l + 4y)

= r5cio{c5(l + 5y)-(c5 4-a5)(l + 4y)};

hence —a\l-\-a.){-c^+ 2a^oL— (c^+ a})y ]
-

= cio{-a5+(c5-4ct5)y}

and {c^-^a^)a^a.+ {{c^ -w'f-\-a^^]y = 0,

or c3aV- 4a5)^= {{c^- a^f+ a'^}*/-

When c= a,

x=—^c, y = \c, and jy+ 3^=0;
when = 20,

a'=— -3*yC, i/=|-fc, and 30;/ = 7^.

iV^oie. In the case c = a, the condition that a straight

line through the origin, x-\-m,y = 0, may be a tangent to the

curve is ^'m{in^-{-\) = {1in^-\-Vf, or 477i-^—4m+ l = ; and

the method of Art. 47 leads to the approximate solutions

\, I",
and — yf, the corresponding values of y being obtained

from {2111^+\)y = 2'Wic ; the points of contact are on the loop

for m = |-, on the branch near Oy for 7)i = i and on the

branch near the asymptote when m= — ^f.

Ex. 10. 6x7 _ 2x5y2 _ a^x'-y'+ 4a3x^y+ 2a5x2 - 3a^xy+ a^y^ = 0.

Fig. 20. Place on the triangle, and call the circles corresponding

to the terms of the equation in order 1, 2, 3, 4, 5, 6, 7.

(1) The side 1-2 of the polygon, moved parallel to itself,

passes through 3-4, and gives

2a3^(3.x-— y^) - a^x^y{y — 4a;)= ;

This equation determines two asymptotes, the curve lying

on the y side at the upper end of both, and intersecting them
where ±V3(4+ V3)ic- = (=i= 3^3-5)6*2.
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Writing ^ for JS, we have {±7 — S)x^= {±^^—o)a^, vii.

-whence x= ±la, and x= ±(l+^)a. '

(2) The side 2-3-7 gives 2x^+ a^x^-- a^ = the only real

root of which is fa nearly, being the common abscissa of

x^ = a^y and (2y+ a)x^= a^, or of y = x^, and a^x^= a^— 2y.

This asymptote, parallel to Oy, intersects the curve where

x{5a'^— Sx^) = (oa^— 4fX^)y, and writing |<x for x, y = 2a.

(3) The side 5-6-7 gives near the origin 2x'^— Sxy-\-y^ =
or y = x and 2x.

(4) The side 1-5 gives, with 4-6, its next position when
moved parallel to itself,

2x%Sx^+ a^) -f a^xy {^x^- Sa^) = 0,

and since S~°=f very nearly, it is easily shewn that near

(-S-kt,0),y=-'2Si. Fig. 21.

149. It will have been seen by the illustrations which

have been given, that with equations of high degrees, the

use of the Analytical Triangle is almost indispensable. But

at the end of this work, in which I propose to shew how
the inverse process, of finding the equation of a curve when
the curve is given, can be performed, it will, I think, be

seen, that the value of the triangle is indefinitely increased
;

at all events, the new use which I have made of the triangle

in this inverse process will, perhaps, excuse me for having

laid so much stress upon its properties in the present

chapter.

Examples IX.

In the following examples of the use of the triangle, it should be
noticed what an advantage the method of Art. 147 gives in forming
successive approximations.

1. a")/'^ — lax^y+ .«^= 0.

Shew by the triangle that the curve lies below the guiding asymptote
a-j/^+ A'^= at both ends ; and find by it the form of the curve at the

origin. Prove that there is a thin loop, to which y= x is a tangent.

2. o?y^ — 2ax^y +ocr'—a^.

Prove that there is a point of inflexion on Oy, which bisects the

chord drawn through it parallel to Ox.



132 EXAMPLES
PLATE
VII. 3. .iV-2clr^j/+ c''.r"-2c«.i7+6V= 0.

Prove that Ox is an asymptote, the two branches of the curve being
on the same side of Ox.

Shew that the curve is parallel to Ox where y= -^-x and y= \x
approximately.

4. x^y - ax'^y^+ na^y'^ + a^xy - n'^a'^x'^= 0.

Shew that there is only one point at which the curve runs parallel

to Oy, by tracing the curves

Zx^y — axy^ — Aii^a^x+ Za^y= 0,

and %niry^ — n'^a^x'^ — Znay*= 0., n<A.
Shew how the curve lies with respect to the guiding asymptotes.

5. n'^xfi — 2n^cx^y+ n'^c'^x'^y" — 2ncxy^ +y^— 0.

Shew that there are two loops, and two ramphoid cusps,

6. ofi+ i^ — ay^+ a{ay — cx)x^= 0.

Find the points at which the two tangents to the curve at the origin

intersect the curve, and when c= a, shew that the diameter of curvature
at one of these points is \a.

At the points where the curve is parallel to Oy

trace this curve and shew that it accounts for the points in question

when c— a and 2a.

7. x^-\-y^ — ay^-\-a^ya^= 0.

Shew that the tangent from the origin to the curve is inclined to

Ox at an angle tan~^
-^jf

nearly. Examine the points at which the
curve runs parallel to Oy.
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150. In the preceding chapters I have been endeavouring ^^^-

to make clear to the student processes which will enable him
to determine, as exactly as he pleases, the form of a curve

in the neighbourhood of any point, whether at a finite or

infinite distance, which he may have occasion to consider.

I have also shewn how a certain polygon on the Analytical

Triangle supplies a test whether all the branches have been

considered, which may exist at an infinite distance, or pass

through the origin.

151. In order to trace a curve we must generally find

such a finite number of points whose coordinates satisfy the

equation, that, having the tangents to the curve at those

points, and the direction of the deflection of the curve from

the tangents at the most important points, there shall be

only one way of joining the corresponding small elements,

which will not be inconsistent with the degree of the equa-

tion and the laws of continuity, and other properties

obvious from the equation, such as symmetry, etc.

152. I have said generally, because it may be possible

to obtain from the equation some geometrical construction

which will amount practically to giving an infinite number

of points; as, for example, {x— af-\-{y — hy- = c^ represents

that the curve is the locus of a point whose distance from

(a, h) is always c ; and ^/^ = 4aic, is the same as

y''-+{x-af = {x+ af,
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VII. which expresses that the curve is the locus of a point whose

distance from {a, 0) is equal to its distance from the line

153. In the case of equations which can be solved with

respect to either of the coordinates, so as to express

it explicitly in terms of the other, there is no limit

to the number of points which may be found, but the

form of the result will, in most cases, suggest the peculiar

points which will most easily lead to the form of the

curve, so as to limit the number of points necessary to be

examined.

But in the case of equations which cannot be so dealt

with, it will be found that, when we have constructed all

the forms of the curve in the neighbourhood of points

which readily present themselves to be examined, there will

be many ways in which these elements can be connected by

curved lines, none of which, on the face of it, contradict the

properties of the equation, as in Ex. 9, p. 128.

Moreover, supposing that the elements so determined

could be joined in only one way, some outlying portion of

the curve, such as an oval, by the existence of which no

law of continuity would be broken, may have been omitted

entirely, if it so happened that none of the elements already

found were part of it.

154. I shall now endeavour to supply some means of

meeting these difficulties, not professing that they will all

admit of practical application in every case, but suggesting

them as methods to be tried, before the curve is given up in

despair.

155. The most important points next to the infinite

branches which give character to a curve are multiple

points of all sorts, cusps, and conjugate points ; it is there-

fore necessary to call special attention to the method of

determining their position when they exist, although it has

already been incidentally mentioned in a note, page 85.
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156. The property, from which the conditions for the vii.

existence of such points are determined, is that every

straight line which passes through these points, whatever he

its direction, must meet the curve in at least two coin-

cident points. This is easily seen to be the case for multiple

points and cusps, by shifting the straight line a small

distance parallel to itself ; the points which are coincident

in the first position separate, and become distinct, as the

line moves to the other position.

A conjugate point may be considered as the limit of a

decreasing small oval or closed curve, by which supposition

the property holds also in this case.

But before giving the analysis for these points I must

direct attention to peculiar points Vifhich occur in some

curves, for which the property spoken of holds as well as

for multiple points and cusps, although nothing in the form

of the curve accounts directly for it.

157. If we take a curve for which a branch through the

origin is y^ = ax^, -X-, a straight line y = mx, drawn in any

direction defined by m, meets the curve in three points at

least at the origin.

The existence of these points which do not appear in the

form of the curve, but only as an algebraical result, may be

accounted for by considering the curve as degenerated from

a more complete curve ; this degeneration has been dis-

cussed by E. Walker and Walton in the Quarterly Journal.

158. As an example of this degeneration, we may consider

the curve whose equation is y* = ax^, as the limit of one

whose equation is

2/(2/-o^)(2/-^)(2/-y) = «a;(a;-,5)(«-e),

where the constants denoted by Greek letters are made

indefinitely small.

In order to trace this curve, where a, /3, ... are real,

twelve points are seen through which the curve passes for

all combinations of values of the constants.



136 SINGULAR POINTS
PLATE
VII. These points where the curve is parallel to Ox would be

given generally by two real values of x, to each of which

may correspond four, two, or no values of y ; in particular

cases these points, or some of them, might be replaced V)y

multiple points.

The curve is parallel to Oy at points given by a cubic

equation, whose solution may give one or three real values,

to each of which may correspond one or three values of x.

The guiding asymptote is y^= ax^. The forms of the

curve which satisfy these conditions necessarily involve

many points of inflexion, and care must be taken that

no tangent at any point of inflexion cuts the curve

again in two points, which would require five points of

intersection.

Fig. 22. The figures given represent various forms which might

be assumed by the curve, all of which may, by gradual

changes of the constants, be made to pass from one to

another ; while at every change of general form, the parts

of the curve which bend towards each other, produce

multiple points.

As the constants diminish and ultimatelj^ vanish, the four

values of y, when x= 0, and the three values of x, when

2/ = 0, are accounted for ; also the three points in which the

curve is met by any line drawn through the origin are

explained, the fourth remaining point being at an infinite

distance in the case of Ox.

159. If two values of x corresponding to y = are im-

possible, as when the equation of the curve is of the form

it is easily seen that the equation for determining the values

of x where the curve is parallel to Ox, has real, equal, or

impossible roots, as (5- is >>, =, or <!3e-; and as y may
have four corresponding real values, two, or none, the curve

Fig. 23. may assume any of the forms in the figures, the upper

belonging to S'"^ 3e-; the lower on the left side to ^- = 3e^

in which case there are four points of inflexion, the tangents
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at which are parallel to Ox ; and the lower on the right vii.

side to S''< Se-.
~ ~

160. As another example of the fact that a curve of the

form y'^= ax^ is cut by a line drawn through the origin in

three points, take the curve in the last set of examples

y*'+ x*^— ay^+ a(ay — cx)x^ = 0.

There is no intinite branch, and the forms near the origin

are given by ai/ — cx = 0, and y^= €ix^.

The next approximation to (ly — cx is ay — cx=—^, and

ay— cx = meets the curve where {a^-\-c^)x — a'^c^. The

figures are drawn for c = 2a and a. Figs. 24, 25.

Three of the six points of intersection of the curve and

any straight line through the origin are accounted for by

the three points in which the line meets y^ = ax^.

SINGULAR POINTS.

161. Tlie singular points, which are now to be con-

sidered, are those points, through any of which, if a

straight line be drawn in any direction, it will have at

least two of the points of intersection with the curve

coincident with that point.

Hence, if (oc, (3) be a singular point of the curve, whose

rationalized equation is f{x, y) = 0, and the origin be trans-

ferred to (a, /3) by writing for x and y, OL+ i and /3-t->/,

f(oL-\-^, /S+ >/) can contain no term of the order ^or >/. If

therefore 0(a, /3) and \^(a, ^) are the coefficients of ^ and »;

respectively in the expansion of /(oc-j-^, /3-|-»;), «-, ^ must

satisfy simultaneously the three equations

/(a,/3)= 0...(i), 0(a,/3) = O...(ii), V.((x, /3) = 0...(iii).

When the solutions are found, the origin of coordinates

being transferred to the corresponding points, the form of

curve is known by the methods of the preceding chapters.

The solutions of (i) and (ii), which do not at the same time

satisfy (iii), give points where the curve is parallel to Ox,.
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VII. the approximate equations being of the form >; = ^f'".

Similarly, the solutions of (i) and (iii), which do not satisfy

(ii), give points where the curve is parallel to Oy.

162. If a.'/?' be any term of (i), ra'~^/i^' and sa'/?""^ will

be the corresponding terms of (ii) and (iii), and hence

multiplying (ii) and (iii) by a and j8, and adding, the cor-

responding term in rx0(a, ,8)+ /3\//-(«., /3) will be (r+ s)oc''y8*.

Therefore, arranging the equation (i) in the form of

homogeneous functions of a, /3, viz.

/(a, ^) = 'U„+ w„_i+ .. . + w,, = 0,

we have

')ut„+ (n— l)it„_i+ (n-2)u,,_,,+ ...+iti

= oL(p{oL, (3)+ /3\l^(oL, (3) = by (ii) and (iii).

Therefore

u„_i + 29i,j_2+...+(7i- l)ui+ nit(,=

is an equation which may be used instead of, or with the

three equations given above.

163. The following examples will shew how the above

equations are to be applied :

Ex. 1. (y^-a^)3+ x*(2x+ 3a)2 = 0.

If (x, y) be a multiple point, writing y + j] for y,

{y'-a^~+ 2y,] + rjy+x\2x+ tiaf = 0;

therefore, equating the coeflScient of /; to zero,

6y{y'-a''f = (i)

Again, writing x-{-^ for x and equating the coeflScient of

^ to zero,

4>x\2x-\-Saf-\-4>x\2x-\-Sa) = (ii)

The solutions of these equations are

2/ = 0, =b«, and x = {), —fa, —a;

of these solutions (0, ±a), ( — fct, ±a), and { — a, 0) satisfy

the given equation.
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The directions of the branches at these points are given, vii.

near (0, ±a),

by (±2a7jf+ 9a-x^ = 0, or ±8ar]^+ dx* = 0;

near ( — |a, ±a),

by (±2a,/)=^+ (fa)*.4^- = 0, or ±32,;3+ 81a.f- = 0;

near (— a, 0),

by 3ay-aH(a-m«+ 2£y^ = 0,

or . SaY--a^+{a{a''-^-')+ ai^y^ = 0,

i.e. by SaH/-6a^i- = 0, or y"= 2i^.

Hence the three latter points are two ceratoid cusps,

and a double point respectively.

The other points of the curve which satisfy the equation

(i) are points at which the curve is parallel to 0}/.

Thus if 2/ = 0, x\2x-\-'Sa)= ±a^.

Taking the upper sign

(x+ a)%2x-a)= 0.

Taking the lower sign

2x^+ 3ax-+ a^ = 0,

whose solution is the common abscissa of the curves

ay = x^, and {2x+ Sa)y+ a^= 0,

giving only one value of x, viz. — f<x, nearly.

x= —a, which satisfies (ii), gives y*—Sa^+ 3a*= 0, and

therefore this value of x gives no point at which the curve is

parallel to Ox. Fig. 26.

Ex. 2. (y2-x'-)(x-l)(x-|) = 2(y2+ x2-2x)2.

1^ x+ ^, y+ rjhe written for x and y, at a singular point

the coefficients of ^ and i] vanish
;

.-. y\2x-i)-4iX^-{--\^-X"-Sx= H{x-l)(y^+ x--2x), ...(i)

and y(x — l){x— %) = 4<y(y'^+ x^ — 2x) (ii)

The solutions of (ii) and the equation of the curve,

which give the points where the curve is parallel to Oy as

well as the singular points, are

(a) y = 0, x = 0, or 3x'^—"J^x-\-^J- = 0, the roots of which

are impossible. Therefore, since x = 0, y = satisfy (i), the

origin is a singular point

:
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VII. (b) x=l, y"=], which satisfy (i) and therefore give two

more singular points

:

(c) x = %, y'^ = f, which do not satisfy (i), but give points

where the curve is parallel to Oy :

(d) 4>{y^-x^) = 2(y^+ x'--2x); or y^ = Sx'^-2x;

whence (a;— l)(a; — f) = 4(4ic2 — 4a;),

or x-4 = 16x, or a?= - J^^,
2/- = tVV.

which gives two other points where the curve is parallel

to Oy.

The points where the curve is parallel to Oy could be

most easily found by solving the equation

{y''+x^"-2xf-Uy^-\rX^-2x)(x-l){x-%)
'

= -x(x-lf-{x-^),

which gives {y"-\-x^— 2x — l{x— l){x— ^)}"

= y\{x-lf{x-f){x-%-l6x);
whence x= % and x= — xV each give equal values of y^.

Also, where a; = 0, §y^ = 2y^; .•. y^= fandO.
Near (0, 0,) f (i/'-a^'^j^Sx^;

or y^ — ^x^, y=±^x nearly.

Near (1,1), _(;^_^)^=8;;-^;

Fig. 27. i.e. f— 'jf+!>/' = ^r, or ^=i(l±V33)^;.

Ex. 3. xy2+ 2a-y-ax"-3a2x-3a3 = q.

Writing x-\-^, y+ ij, for x and y, and equating the

coefficients of ^ and t] to zero we have

2/2_2ax-3a2= 0, (i)

and 2xy+ 2a- = (ii)

These and the equations of the curve give x= —a, y = a.

The shape near ( — a, a) is given by

- ari^+ 2a^f^ - a^2+ ^;,2^ ;

or a{^-i)- = ^^-

' Near (0, oo
),

x= — 2a^/y
;

near (oo , go
),

y^= ax,

near (0, -%a), (ia^-da^)x+2a^7j = 0,

Fig. 28. or 8;/= Sx.
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Ex. 4. VII.

(y2- x^f+ 6axy-- 7ax^- 4a'-y2+ ISa^x-- 20a3x+ 8a* = 0.

The equations for determining singular points are

-4<x(y'--x^)+eay^-2lax'^+ S6a^x-20a^= 0, (i)

and 4!y{y^— x'^)+ 12axy — 8a^y = 0, (ii)

or y = ^, and y^— x^+ Sax— 2a^= 0;

where y = 0, x^- 7ax^+

1

8a^x^-- 20a^x + Sa* = 0,

which reduces to (x — a)(x — 2af = 0.

The equation might have been written

2/*- 2y"(x -a){x- 2a)+ {x- a){x- 2af = 0,

or {y''-— {x— a){x— 2a)}^ =-{x— a)(x— 2afa.

Near (a, 0), y^-d-^^^O,

near (2a, 0), y"" = 2^^ and 2if-ai=0,

near (go , oo
), (y^xy = lax.

The proper parabolic asymptotes, as well as the side on

which the curve lies, may be found by expanding y as far

as terms in x~ -, as follows :

(y^— x^+ oax — 2a^y = a(x^— 5ax^+ 8a^x— 4a^).
1

Therefore y'-= x^- Sax+ 2a?+ {ax^fi\ _ 5^+^-
. .
V

= «;2-3aa)+2aH(a«^^r(l-g+^'...)

Hence ±2/ =4' +(i7-^-|©'-}'

-^^-^-^-
\^\x) J

/. {±y — x-\--f-af=\ax is a proper asymptote, the curve

lying on the concave side of both branches. Fig. 29.

Ex. 5. 27y*-9y2<xHl4ax+ a2)+ 32a(a+ x)3= 0.

The conditions for a singular point are

22/{54i/2-9(x2+14aa;+ a'-)}=0, (i)

-92/2(2a;+14a)+96a(a+ a;)2= (ii)
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VII. All three equations are satisfied by x=—a, ?y

= 0, and»

from (i) and (ii),

(a;2+ 14ax+ cv^){x+ 7a) = 32a(a;

+

of,

or {x— a)(x— 5ay= 0.

The solutions of (i) and (ii) give the points (a, ±sj%(^) and

(5a, ±4a), but only the latter are on the curve. The equa-

tion may therefore be written

S(6y'^-x^--Uax-a^f-{x-oa)%Sx-\-a) = 0,

hence, if x = oa+^, y= ±^a-\-ij,
_l v,

we obtain ± >; = ^^+ y 2 (^a) "^^

;

near ( - a, 0), 21a^f+8^ = 0.

For the rectilinear asymptotes the first approximation is

Sy'^ = x^, the second is obtained from

9(3?/2-«2)2/2_9.i4a«2/-+ 32aa;3 = 0;

PLATE and the rectilinear asymptotes are ±JSy — x— ^a = 0.

vin. The guiding asymptote is —9y^-\-S2ax = 0, the proper

Fig. 1. asymptote being y" = ^\f-(x— ^.a).

Observe that two of the cusps lie within the loops formed

by the asymptotes.

Note. This tricusped curve is the locus of a point through

which if the three maximum or minimum chords be drawn

in a parabola y'^ = 4a.T, two of the three chords coincide ; it

was given to me by J. Wolstenholme, who observed that

the equation may be written

(a3-5a)"* + (4a3-62/+ 4a)"*+ (4a^+ 62/+ 4a)"^ = 0.

If (a, /3) be any point through which chords are drawn^

writing a.+ lr, ^+mr, where l^+ m^ = l, for x and y in the

equation of the parabola, the values of r for the direction

(I, m) are given by (/3+ m7-)- = 4a(a+ ^r), and, if 7\, ?% be

the roots of this equation,

(r^ ^ r.)^ = 16am- Xal' - (3lm+ a.m-) = 16af(l, m),

and the chord is a maximum or minimum when f{l, vi) is

greater or less than /(i+ A, vi+ fx) for all small values of

X and fx, such that ZX+ m/x = (i>
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Let /(t+ A, in-{-ij.)—f{l, 771) = ZX + 7l//x+ terms in \-, etc. viii.

This must be of the same sign for all small values of A, fx,

which can only be the case when L\+ Mfx = 0.

Hence, by (i), Lm — Ml = 0; where L = in-\2al—^m)
and M=m-\-^l-\-2(xm)-4<m-%al^— ^lm-\-am?),

.: (2alm-^m-)m-{2a.m^-^lm-^(ar--l3lm+ a.m^)}l= 0,

and the directions of the three chords are given by

4«^3_ 2^i2y^+ 2 (a+ a)Im-- /BrnP = 0.

If two of these directions coincide

6aP- 3/3lm+ (a+ a.)m^ = 0,

and Sj3l^-4'{a+ OL)lm+ S^7n^= 0,

whence by eliminating I : m the locus of (a, f^) is found.

DIVISION INTO COMPARTMENTS.

164. A great assistance in selecting the proper mode of

making the junction of isolated parts of a curve, which may
have been already determined, is acquired by observing

that, a f(x, y)= be an equation which does not represent

separate curves, an even number of which coincide, when a

variable point moves so as to cross the curve, every time

that it so crosses, the value of the function f(x, y), obtained

by substituting the coordinates of the point for x and y>

will change sign. This does not require any proof.

165, Suppose the equation of a curve to be put in the

form tu+ vw = 0, where t = 0, u = 0, v = 0, iu= 0, represent

four curves ; and take two points P and Q on opposite sides

of ^ = 0, so that a line joining FQ crosses ^ = 0, but does not

cross any of the other three lines ; it follows that the values

of t for the coordinates of P and Q are of opposite signs,

while u, V, and w retain the same sign, therefore P and Q
cannot both be points on the curve. The only path by which

the curve can cross ^ = is through the point of intersection

of t, V, or t, w, unless ^ = represents an even number of

coincident curves.



144 DIVISION INTO COMPARTMENTS
PLATE
VIII. 166. We are thus enabled to name certain compartments

within which the curve cannot lie, when one point has been

determined, and the general form of the curves, with equa-

tions of high degree, can be frequently obtained with very

little calculation.

Any of the examples which have been given of homo-

geneous curves will serve to illustrate this in a simple way.

The following curves will shew how to choose the com-

partments, and how to obtain the direction of the curve in

passing from one to another compartment ; in these it will

be seen that by rearranging the equation of the curve in

different forms, different sets of compartments may be

mapped down, and so assistance given in determining

doubtful cases.

Ex. 1. xy(x2-y2)-l-ra2(x2-Hy^-a-) = 0.

Fig. 2. The four asymptotes are represented in the figure, viz.

yOy, xOx, AOA', BOB', and the circle a:- -|- 1/-— a- = by

ah ... d'.

The intersections of the asymptotes with the circle, a, h,

etc., are all points in the curve.

The tangent at (0, a) is x—2rr] = 0; if, therefore, r be

positive, this shews two compartments dOc and ychA in

which the curve must lie, and since none of the five lines

mentioned above can be crossed separately without a change

of sign, the compartments hOc, dOa, h'Oc, d'Oa, and xabA,

ycdB, x'a'h'A', y'c'd'B' must be empty ; whence the curve

may be readily drawn.

The figure represents the three principal forms which the

curve can assume according as r <C,, =, or>- 1, denoted by

the letters /3, a, y respectively.

To find the value of r, in order that there may be a

multiple point, the following three equations must be

satisfied simultaneously

:

'^yx^— y^+ 'lo?rx = 0, (i)

— Sfl32/2 \-x^+ 2drry = 0, (ii

)

and 2(«H2/-)-4a-= (Art. 162) (iii)
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From (i) and (ii), Qx"y'^ = x*-\-y\ viii.

.'. (x^— y^)^ = 4<x^y^ and (x^-\-y^y= Hx^y\

Hence x'^— y^= ±2xy, (iv)

and, using (iii), 2x^y'^= a'^ (v)

Again, by (i) and (ii),

3xy(x^-y^)+xy(x^-y^)+ 2ra\x^+ y^-)= 0,

from which, by (iii),

xy (x^— 2/^)+ ct^r= 0,

and, by (iv) and (v), r= ±1.

Also, since (iv) may be written

y = {±j2^1)x,
two of the radii from to the four multiple points are

inclined to Ox, and two to Oy at angles ^tt.

Ex. 2. xy(x2- y2)+ a(x- c) (x^+ y2- a^)= 0.

All the points of intersection oi x= 0,y = 0,x±y=^0 with

x = c and x^-\-y'^= a^, are points in this curve.

The asymptotes are y-\-a = 0, which meets the curve

where cx= a^; x= 0, the next approximation to which is

x= — ac/y ; also x— y+ a= 0, and x-\-y— a= 0.

The only difficulty which arises with these data in tracing

the curve is settled by fixing on which side of the asymptote

x-}-y — a= the curve lies, and the next approximation

giving X+ y = a— ^(a— 2c)a/y ,th.e curve is below the asymp-

tote in x'Oy, when c<Cha; and above, when c'^^a.

When c = ^a, since the three points {a, 0), (^a, ^a), (0, a)

all lie in the line x+ y = a, taking into account the two

points at an infinite distance, this straight line would

meet the curve in one more point than the degree, which

shews that the curve, for this value of c, contains the com-

plete line x-^y — a = 0. That this is the case is made obvious

by writing the equation in the form

xy {{x— ay— y^} +a(x— ^a) {{x-\-yY— a^} =0,

the other part of the curve having for its equation

xy {x— y)-\- ax^+ ^a\x — y)— ha^ = 0,

or {y+ a){x"-ha^)— x{y'^-la^)= 0.

F.C.T.
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VIII. The figure represents three forms of the curve, a denoting

Fj<, 3 the case in which the curve divides into two, is drawn with

stronger lines, and ^, y are cases in which c<Cha, and

Fig. 4. The next figure is for c'^a.

Ex. 3. x^-.y^+ a^(x3+ y3-3axy) = 0.

The curve re^+ 2/^— Seta;?/ = (PL V, fig. 2), and the asymp-

totes x±?/ = 0, make separate compartments, which are

alternately occupied by the curve.

Near ( — a, 0), y = ^] near (0, a), cc+ >/ = 0.

The dividing lines are dotted.

PLATE Note. The equation might be arranged

IX. {x^-\-y^){x^-y^-\-a^)-^a^xy = Q,

Fig. 1. and the form would be obtained perhaps more easily if the

point x = y= ^a were noticed to be on the curve.

Ex. 4. x^ - y6+ a2(x- a)(x3+ y^ - Saxy) = 0.

Here x— a— Q is a line in addition to those of Ex. 3, for

obtaining empty compartments, and since x^+ a^x— a^=
has only one root which is positive, and, near (0, — a), St]= 4<x>

the curve is easily drawn.

Fig. 2.

Ex. 5.
'

(y- 2x+ 2a) (x- 2y+ 2a) (x2+ y'2)xy +V(x3+ y^- a^)= 0.

Near (0, a), x^a^+h^j = 0;

this, with the symmetry with respect to x = y, is sufficient

to determine the compartments within which the curve must

lie, and therefore the sides of the asymptotes at which the

curve comes into sight from an infinite distance.

Fig. 3. The lines determining the compartments are dotted, except

the axes.

Ex. 6. (y2- ax)2(x - a)^- a-xy(x^+ y-- a-) = 0.

The circle and the axes determine the compartments, and
two points coincide where any one of the three meet the

curve.
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\ The asymptotes are (x — ay= 0, and {y^— axf= 0. ix.

Near (a, oo
), (x— ay = a^/y

;

near (x , oo
), (ax— y'^y = a'^xy = ay^,

near (0, 0), x+ y — Q, and a^x+ y^= Q,

near {a, 0), a^f2_ (2a^+ i/2)a32/ = ;

or i-2y = 0, and 2a|+ 2/^= 0-

It may be seen by the compartments necessarily empty Fig- 4.

that when x is positive the curve is without the circle

when y is positive, and within when y is negative.

Ex. 7. (x2-y2)(x-a)y3-aV+ y'-a')(x-+ y'-4a2) = 0.

Three of the dividing lines x^— y^ = 0, and x— a= are

asymptotes. It is easily seen by the triangle, that y^— a^x =
is a parabolic asymptote, or, still nearer, taking in the next

term — ax-y^, y^ = a\x+ a).

lix = 0, y^- a(2/2- a^){y'-- 4a2) = 0,

the only root of which is a little less than a, being the

ordinate common to

y'^= ax and {y — a)x'^+ 5a^x— ^a^ = 0.

It requires great care to determine in what direction Fig. 5.

certain elements of the curve should be joined ; for instance,

whether P, P' should be joined with Q, Q', and R, R' with

S, S', or P, P' with R, R, and Q, Q' with S, 8'.

For this purpose it will be sufficient to examine where

the curve is intersected by the two lines a?+ 2(X= 0, and

2/+ 2a= 0.

It is easily shewn that the first meets the curve where

2/2(32/3_ ^2/2- 1 2^2^/ - 3a3) = 0,

2/2 = giving the two coincident points in the circle, radius 2a.

The other factor gives one positive root near fct, and two

negative, one small, the other near — |-a, the small root

arising from the curve bending from ( — 2a,, 0) in the same

direction as the circle. These are found from the intersec-

tion of y^ = ax with the hyperbola (Si/ — a)(a;— 4a)= 7a^.

The other line 2/ + 2a= meets the curve where

ic'^+ 8arc3- 5a2a;2 - 32a3r»+ 32a* = 0.
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IX. Iix^= 4iat],weh.a,ve{t]— a)(t]+ 2x — ^)=—^a^. The axis of

this hyperbola is i]—a= —^{J5 — l)(x+ %a), giving for one

vertex (a, ^a) very nearly. If the two curves be drawn

carefully it will be seen that they very nearly intersect, and

that they are very near, where x = fa; when a; = (f+ a)a,

a being very small,

for the hyperbola - = f— xi?+ f«— rlI^^j
ct

f

for the parabola -=|4-^+-|oc+ ^a^

;

therefore (AZL?) = ^4._|_+i|^2,

which shews that oV+ t^f is a minimum value of (>;' — >/)/«-

and that the curves do not intersect in the quadrant xOy
so that the branches at P and Q must join and also those at

U and /S.

The two negative values of x are — f(l— -oV)ft and —8a
nearly.

In the figure the asymptote 2/^ = a(iz;+ a) is drawn, for

want of room, so as to recede from the axis of x more rapidly

than it ought to do, seeing that when y=— 2a, x= — 9a.

For the sake of testing the direction of the curve at any

point (a, ^) as well as the direction of its flexure, I give the

equation which determines the form near this point, viz.

Arj+Bi+ Cri"+ Br}i+ Ei^ = 0,

where

A = ^\a- OL){oj3^-- 3a2)- 2a%2a.^+ 2/3^- oa^)/^,

B= /33(a2- ^2)_ 2a.l3%a- a) - 2a%2oL^+ 2/3^- 5a^)a.,

C=(10/32-3a2)(a-a)/3-a2(2a2+6/32-5a2),

D= 3^2(oc2_ /32)_ 6/32a(a- oc)- 2j3'- %a.^a\

E= 2a/33- (a- a) ^3 _ ^^2(^q^- _^ 2/3^- ba^).

Thus it can be shewn that the curve bends upwards at P,

and downwards at Q'. A further confirmation of the form

drawn in the figure can be found by examining where the

straight lines y = %x and y= —^x meet the curve.
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ISOLATED PORTIONS.

167. In order to find whether there is an isolated closed

portion of the curve, which does not cut either of the axes,

the existence of which might be suspected on account of

some compartments being empty which might have con-

tained a portion of the curve, or for any other reason,

several methods may be practically useful.

Since the curve is closed there must be two pairs of real

points at which the curve is parallel to the axes. The points

where it runs parallel to one of the axes will very often be

able to be found, and the oval being once known to exist its

nature can be examined by other processes.

168. Another plan is to draw a straight line from some

point in the curve, a multiple point if there be one, and

determine its direction when two of the other points of

intersection become coincident, which would be feasible, e.g.

for a curve of the fifth degree with a triple point ; since the

intersections oi y = mx with the curve would be given by a

quadratic, if the origin were the triple point.

The directions so found would include those of all tan-

gents drawn from the multiple point, and the curve being

supposed traced with the exception of the oval, the two
directions of the tangents to the oval could be selected.

Or, without seeking for the tangents, if any line parallel

to one of the axes or to an asymptote, or drawn through a

multiple point, could give, by assigning particular positions,

two real points among the points of intersection, which do

not coincide with any points previously determined, the oval

would be detected.

In the following curve, the symmetry and the compart-

ments which can be occupied shew where we should have

to look for an isolated oval, if any existed

:

(y- 2x -h 2a)(x- 2y 4- 2a)x2y2+ b (x^ -1- y^+ 2a3xy) = 0.

The asymptotes are 2x^ = hy, and 2^/^ = hx,

y-2x+ 2a-^h = 0, and x-2y+2a-^h = 0.

PLATE
IX.
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X. The compartments are defined by the curve (cf . PI. V, fig. 20)

x^-\-y^-\-2a^xy = (a)

and the two lines parallel to the rectilinear asymptotes,

y— 2x+ 2a = 0, and x— 2y-]-2a = 0,

and it is to be observed that X" = 0, and y^= do not influ-

ence the division into compartments since x^ and y^ are

of invariable sign.

The forms at the origin are given by

2a%x = — by*— 4ta^x^y for the given curve,

and 2a^x=—y'^— ~ for the curve (a),

so that the curve lies nearer to Oy' and Ox', and further

from Oy and Ox than the curve (a) which defines the com-

partments ; this determines the compartments which can be

occupied by the curve.

liy = x, {x- 2a)V+ 2b(x^-\- a^)= 0,

the roots of which are the abscissae of the points of inter-

section of x^-y+ 2a^ = 0, (i)

(x-2af= b{y-2x) (ii)

Of these (i) is a fixed curve for all values of b, and (ii) is a

parabola, which changes its shape and position with the

value of b, the vertex being (2a— 6, 4a— 6), and the latus

rectum b. The vertex lies in the straight line y — x= 2a.

Fig. 1. The figure is drawn for three positions of the parabola,

marked a., /3, and y, the values of b corresponding to ^ and

y being a and 6a. The case a belongs to the value of b

which makes (i) and (ii) touch one another, and is there-

fore the case of a multiple point; /3, y belonging to cases

in which (ii) intersects x^Ox in no point, or two distinct

points.

Fig. 2. The curve corresponding to ^ is drawn completely. The

part of the curve a is drawn only to shew the position of

the multiple point, and of y to shew how the curve runs

near ( — 4a, —4a); the asymptotes being too distant to be

represented in the figures.
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I find no isolated oval, after trying several search-lights x.

such as where the curve intersects the line x = c for different

values of c.

169. The following curve affords an example of an out-

lying oval, whose existence might not have been suspected :

xy^ — 4x^y -f ay^+ 3a-xy -f a^x= 0.

The asymptotes are y = 0, x-\-a = 0, and y + 2a;± a = 0.

Near (.0,0), if+ a-x= 0.

Writing the equation

{x+ a) y^— ^xy {x^— a^) — a"x(y — a) = 0,

we see that the form near ( — a, a) is

^-ix2^+>/ = 0, or r] = 7^.

The equations of the asymptotes lead us to put the equa-

tion of the curve in the form

(y -2x+ a)(y+ 2x -a)(x-ha)y -\-a\y+ x)= 0. Fig. 3.

The curve cuts the asymptotes where x= 0, y = a, —^a,

— a, respectively, there being three points in each at an

infinite distance.

(a) The curve is parallel to Oy where

4!x(^x^ - a^f= a%x+ a),

whose real solutions are the common abscissae of

x^= ^a{y-\-a), and 4>xy^= a%x-\-a),

which gives roughly cc=— fa, —^a, and fa.

(b) Or, the curve is parallel to Ox at the points of inter-

section of the two curves

yz 4. Qa^y_ i2x^y + a3 = 0, 8x^+ ay^ = 0.

The five points at which the curve runs parallel to Ox pig. 4.

are denoted by a, h, c, d, and e, of which a, h belong to the

isolated portion.

(c) Or, trying x= - ha, y^- 2a"y - a^ = 0,

whence y= —a, or A (± ^5+ 1 ) «•
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SPECIAL CURVE OF THE FOURTH DEGREE.

170. I shall conclude this chapter by shewing how the

methods which have been explained work when applied to

some equations selected by A. Beer, in a paper* on sym-

metrical curves of the fourth order, which serve excellently

to illustrate the varieties which the general equation may
produce. It will be found that all the peculiarities of the

curves can be determined without any great difficulty.

The equations are

(2/2=Fa^'){(i2/-l)-+ «^'}+M(2/+ cO = 0,

the ambiguous signs allowing the equation to represent

a curve with four, two, or no asymptotes.

171. (y'^-x2){(|y-l)2-x2} + /z(y+ a)= 0.

The curve being symmetrical with respect to Oy, we need

only examine on which side of two of the asymptotes the

curve lies ; this is given by

y — x = 2fx/Sx^, and hy — x—l=— fx/Sx^.

The compartments, formed by the four asymptotes and

the line y-{-a = 0, within which the curve can lie, are thus

determined for the cases fi positive and negative.

Where the curve meets Ox,

x^=H'i^±J{i-4m)}, (i)

so that, if 4tfxa be positive and not greater than 1, or nega-

tive, it is cut in four points, two on each side of Oy.

Where the curve intersects Oy,

y%hy-lf+fx(y+ (^)= 0,

the solutions of which are the common ordinates of

(y-lf = x+ l, (ii)

and x^+ 4!fjL(y-{-a) = (iii)

If (0, (3) be one of these points, the above equation for y
may be of one of the forms

(y-^)f(y)=o, (y-(3my)=o,
or -i(y-my-'^)=0-

* Bonn, 1852.
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Writing 2/ = /3+ '/i we see that the shape of the curve near x.

(0, j3) is given in these three cases by

or =v'<pm
or =lr)%(3— a.),

so that it is generally parabolic, but in critical cases a

double point or a cusp. The values of the constant, in

order that there may be a cusp on Oy, may be found by
equating coefficients of the powers of y in

{y-^)\y-^) and (2/2-22/)2+ 4/x(2/+ a).

Thus ^=±fV3, ct=-l=F^V3, /3 = ldtW3, a= l + V3.

Writing the equation of the curve in the form

[^'-H2/^-4-ai/-i)nP-i{2/'-(i2/-i)T+/«(?y+ct)=o,

we see that there are two equal values of x^, or the curve is

parallel to Ox, except in the case of a singular point, where

{2/'-(l2/-l)'P= V(2/ + «).

The ordinates of such points are the common ordinates of

/-(i2/-l)^= «.

or (2/+f)' = i(«^+ iX (iv)

and ic^= 4;u(2/+ a) (v)

The points themselves lie on the hyperbola

f-^= l (vi)

The tangents to the curve which are parallel to Ox, are

lines which pass through the intersections of (ii) and (iii),

or of (iv) and (v) ; the points of contact of the former being

on Oy, in critical cases the parabolic form is replaced by a

double point or cusp ; the latter tangents touch the curve

where they meet the hyperbola (vi), the critical cases being

when two or three of the lines coincide, in which case there

is a multiple point or cusp which touches the hyperbola.

The two parabolas (ii) and (iv), and the hyperbola (vi) Fig. 5.

are independent of the values of jj. and a, and it may be

observed, that the hyperbola passes through those four points
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X. of intersection of the asymptotes of the curve which do not

lie on Oy, viz. (±2, —2) and (±f, §).

For any value of ni and a, the parabolas (iii) and (v) are

equal, but are turned in opposite directions.

172. These considerations are suflScient to distinguish the

general shapes for all values of a and ^.

Suppose a figure carefully drawn of the three fixed curves,

(ii), (iv) and (vi), and that for any value of a the system of

curves corresponding to different values of /j. is to be drawn.

If yu be positive the singular point on y'Oy is first

determined by the point of contact of the parabola (iii),

whose axis is measured downwards, with (ii). It will be

in Oy', if the vertex be in Oy', and in OB, if the vertex be

either in OB or By.

The singular points which do not lie in y'Oy are then

determined by means of the points of contact of the para-

bola (v), whose axis is measured upwards, with (iv) and, if

KG, HD be parallel to Ox, they lie in the lowest part of the

portion ED of the hyperbola (vi) if the vertex be in Hy' or

OH, and in GF if the vertex be in Ky.

If the curves corresponding to these critical values of /j.

be constructed, they serve as guides to determine the direc-

tions in which the curves run for other values of jjl. It is

also to be noticed that, as /j. diminishes and ultimately

vanishes, the curve coincides with the asymptotes, and

therefore when fx is very small bends towards them.

We have thus the system for different values of a drawn

with tolerable accuracy without determining the exact angles

at which the curves cross at particular points.

Similarly, if yu be negative, we may find the singular

points and draw the curves.

173. This method of tracing the system of curves, which

correspond to any value of a, may be illustrated by taking

a = \.

Corresponding to some large positive values of fx, the

parabola (iii) touches (ii) and gives two equal ordinates,
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indicating a multiple point on Oy ; these are the only points x.

in which these parabolas meet.

The parabola (v) in the opposite direction meets (iv)

in the quadrants x'Oy' and xOy, giving two points at

which the curve is parallel to Ox, one in ED, the other

inOi^.

If a smaller value of /x than this be chosen, (iii) does not

meet (ii) and there is no point in Oy, but (v) meets (iv) in

two points, giving points on CED and CF nearer to C than

the former.

If a larger value of /x be taken, (ii) and (iii) intersect in

two points, giving points on Oy', one on each side of the

multiple point which corresponds to the case when the

parabolas (ii) and (iii) touch.

If fx be negative, the critical case is when (ii) and (iii)

touch, which they do at a point not far from the vertex of

(ii), giving a conjugate point on Oy. The other points of

intersection give a point on Oy' near and a point at some

distance on Oy beyond B. The reversed parabola (v) gives

two points on CED and DG near D.

If a less value of />t be chosen, (ii) and (iii) give two values

on OB, one on each side of the conjugate point; (iv) and (v)

give two points on CED and DG nearer to D.

If a greater value of fx be taken, (ii) and (iii) give only

two points on Oy' and Oy further from than in the last

case
;
(iv) and (v) give two points in CED and DG further

from D.

The figure represents by a darker line the critical cases. Fig. 6.

denoted by a. and a.', for /a positive and negative respectively,

and by lighter lines the other cases in order denoted by ^, y
and ^', y ; jB and ^' being the curves which approach

towards the asymptotes.

The dotted curve is the hyperbola (vi) on which lie all the

points of contact of tangents to the different curves of the

system, which are parallel to Ox and have not their points

of contact on yOy'. The dotted straight lines are the

asymptotes common to all curves.
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X. 174. It can be seen from the figure of the fixed curves

that when a is negative, a parabola (iii) can be drawn with

some small value of a, which, if /a be negative, will touch

the parabola (ii), and cut it in two other points, and that, for

a particular value of a, the particular parabola which touches

(ii) will meet it in three consecutive points, the corresponding

point of the curve being a cusp on Oy.

Fig. 7. The figure represents the central part of three curves

belonging to different values of /x, one of which corresponds

to the cusp, one is small, and the third is large. The corre-

sponding curves are denoted by a, /3, y respectively, and it

should be noted how the curve ^ approaches the asytoptotes.

175. There will also be a cusp for some negative value

of a, less than 2, and a positive value of /a; and for this value

PLATE of a, some value of /x will give contact between the parabolas
^^'

(iv) and (v), and therefore a multiple point.

Fig. 1. In the figure the curves marked a. and « are the cases

of cusp and multiple point respectively, /3 denotes the curve

which approaches the asymptotes, y that which corresponds

to a large value of /j., making (iv) and (v) intersect in two

points, and therefore indicating four points at which the

curve is parallel to Ox, situated on the dotted curve which

is the hyperbola (vi).

A fourth curve, denoted by §, bends towards the cusp oc

and the multiple point a>.

176. For the purpose of accurate drawing, we may find

the directions of the curve at the principal points as

follows

:

At a point (oc, 0) where the curve intersects Ox we have

oc4_a2+yua-= (a)

Writing the equation of the curve

x^— x^-\-lJLa+ {x^+lJL)y+tQvms, in y^ = 0,

and substituting for jua from (a), we obtain

x^-a}-{x'--aJ')+ {x^-\-fx)y-\-...=0,

whence 4a^^— 2a^+(a-+ /i)2/ =
gives the tangent at (a, 0) for any value of a.
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Near (a, — a), xi.

near ( — a, — a),

near (|a+ l, —a),

near( — Aa— 1, —a),
"
_{a2-(Ja+ l)2}(a+ 2)(i;;-^)+At>7= 0.

At a point (0, /3) where the curve crosses Oy

If (0, |8) is an ordinary point, the form there is given by

{/3H(|^-l)n«^— {/3(^-l)(/3-2)+Mh= 0.

If (0, /3) is a multiple or conjugate point, the form is

given by
{/32+(i^-l)-}«^'-{3(/3-l)—l}>?-= 0,

and hence we have a multiple point if (/3— l)-^-!- and a

conjugate point if (/3 — 1)'-< i-

If (0, ^) is a cusp, the form is given by

and hence the cusp points upwards or downwards according

as /3<C or >-l.

The values of a, fx, and /3 for a cusp on Oy may be

determined at once by the three equations

3(3-1)2 = 1, (/3-l)3-(/3-l)4-^ = 0,

and {(/3-l)--l}HV(/3-H-«+l)= 0;

whence ^8— 1 = dL ^JS = ± i nearly,

M = ± fv/3 = ±A nearly,

and a+ 1 = q=^y/3= T^ nearly, as in Art. 171.

177. The algebraical determination of the singular points

is as follows

:

The equations to be satisfied besides that of the curve are

or 2/(2/_l)(^_2)-(42/-lK+ M = 0,

and a3{2a;2-2/2-(iy-l)2}=0;
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XI. and yu is to be determined so that these equations and the

equations of the curve are simultaneously satisfied,

(a) Ux = 0, y(y-l)(y-2)+ fx = 0,

and y2(^ly-l)2+ ^(y^a) = 0;

therefore y(y — 2)— 4>(y — l)(y + a)= i),

so that when a is given, the last equation gives the values

of y, and the first gives the corresponding values of /ul. The

last equation gives

y = i[-2a-\-l±Jma+ lf-S}l
and 4(a+ 1)^ = 3 for a cusp.

(6) If 2x2-9/-(i2/-l)- = 0,

therefore Ml2/+ l)(l2/^+ 2/-l) = M;

and from the equation of the curve,

therefore ly^+ y-l={Sy-\-2)(y-\-a),

and y = f[-ida+l)±J{i2a-2f-12}l
which gives the position of the singular point for any value

of a.

In the particular case of the cusp

3a — 2 =±273, or a= ^, or —1 nearly;

whence 2/ = f ( — 3 =F 2^3)= — ft |- nearly.

Again. 3i/+ 2=+iV3,
so V+ 122/+ 4= V-, or ^y'^+y-l = -.

therefore M = =t -^rJ^ = ^tt nearly.

9 J

Figs. 2, 3. 178. The figures represent the systems of curves which

can be drawn for different values of ju, both positive and

negative, in the two cases in which a cusp occurs which is

not in the axis Oy, viz. when a = |(±^3+ l).

The multiple point in Oy' belongs to the positive value

of ju, the conjugate point in Oy to the negative value.

179. The only other case which need be considered is the

case of a = X . Here im. is indefinitely small and jua finite if

we wish to bring the curve within sight.
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The equation thus becomes xi.

{f^-x^)[{hy-\f-x^] = ±c^^ (A)

When ?/ = 0, x'= ^{l±J{l±^c^)],
when iK= 0,

y = l±J{l±'2.c), with the upper sign of (a);

with the lower sign y is impossible.

Two values of x^ are equal each to h{y'^+ {hy — iy'],ii

y'^— (hy — iy= ±2c, with the lower sign of (a),

or 2/ = f{-l±V('i±6c)}.

The figure is drawn for three values of c, both for

the upper and lower sign ; the dark lines and conjugate

point a correspond to the upper, with a value c= |, the

dark lines and conjugate point /3 to the lower, with a pig. 4^

value c= f.

180. The case of two asymptotes is given by the equation

The side of the asymptotes on which the curve lies is

given by ^yztx— 1— — /m/Sx^. *

Where the curve meets Ox,

x^= h{l±Jil-{-4^Jia)} (i)

The curve meets Ox in two points if 4/>ta be positive, in

four points if it be negative and >• — 1, and in no point if

it be < -1.

Where it meets Oy,

z/'(I^-i)Hm(2/+«)=o,

the ordinates, as before, are the common ordinates of

{y-lf= x+ l, , (ii)

and x'^+ 4!iu(y-}-a) = (iii)

Writing the equation in the form

we see that x^ has equal values, or the curve is parallel to

Ox, or else has a singular point, where

{2/H(l2/-l)^^HV(^/+ a) = 0;
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XII. therefore the ordinates of such points are the common ordi-

nates of y'^+ {^y— iy= x,

or (y-if=K^-i)> (iv)

and x^+ 4<ju{y+ a)= 0, (v)

the points themselves are on the ellipse

x^
, (y±jf
ay

or '^+^?r-= l (vi)

Fig. 1. 181. The fixed parabolas (ii) and (iv) and the ellipse (vi)

are represented in the figure, the parabolas touch one another

at the point (8, — 2). The parabolas (iii) and (v), which

vary with /jl and determine the points of intersection of the

curve with Oy and the points where the curve is parallel to

Ox, are in this example identical. In the last example

they were of the same magnitude but turned in opposite

directions.

It will be sufficient to shew in three cases, viz. when

a is 1, —3, and oo , how to form the systems of curves cor-

responding to different values of jm.

182. When a= l, the variable parabola has four critical

magnitudes, when it touches (iv) in some points P and U,

and (ii) in some points S and T; lines parallel to Ox through

these points determine p, u, on the ellipse (vi) wliich are

multiple points, and s, t, on the axis of y which are conjugate

ig. 2. points. The curves corresponding to the two values of /jl

which make the parabolas (iv) and (v) touch, are drawn

with a dark line, the conjugate points are marked s and t.

The curves which belong to other values of fx bend

towards the asymptotes or the dark curves, the points

where the curves cross the dotted line spu are the points of

contact of tangents parallel to Ox.

Fig. 1. 183. When a,= — 3, the critical magnitudes, fx being posi-

tive, are where the parabolas touch at some points Q and

Fig. 3. 1^, determining the multiple point q and conjugate point r.

There is also a multiple point on Oy corresponding to
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contact with the upper branch of (ii). The dotted line rq xii.

is the ellipse which contains the points at which the curves

are parallel to Ox,

184. The case of a= op may be found from the equation

{y''+x'')[{hy-lf-x'] = ±c^ (A)

When2/ = 0, x^= h{l±J{l^^c^)];

with the upper sign of (a), when x = 0, y = \ ±J{\ =t 2c).

With the upper sign of (a), if two values of x'^ are equal,

they are given by

^'=l{{\y-^f-f"] (B)

The corresponding values of y are given by

or 2/=I;{1±n/(10c-4)}, (c)

so that when the upper sign is taken, the curve does not

meet Ox unless 2c = or <C 1, and if 2c= 1, there is a conjugate

point at (0, 1).

There is a multiple point when 5c = 2 at a point near

When c = 4, and x = 0, y= —2 or 4; near (0, — 2),

x^= — 24;;, near (0, 4), 5x^= Stj, and since in this case the

values of y obtained from (c) are — 2 and J^, the values of

x^ obtained from (b) are one zero and the other negative, so

that the curve is not parallel to Ox at any point out of y'Oy.

The figure represents the principal varieties, the critical Fig. 4.

cases of c = ^ and f being marked a. and /5.

When the lower sign is taken there is no singular pointy

the curve running along the asymptotes like a hyperbola.

185. The remaining case of no asymptote is given by

(y2+ x-^){ay-l)2+ x2}+//(y+ a) = 0.

The points of intersection with Ox are given by

x2= i{-l±7(l-4/>i«)} (i)

The values of a;- are only possible for values of y which

make y%y — 2)--\-4</uL{y + a) negative, = — oc- suppose, and if

/3 be given by a-+ 4/>i(/5+ ct) = 0, these values of y will
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XII. satisfy y"{y — 2Y-\-^ix{y — ^) = Q, and be the common ordi-

"^'
nates of the parabolas,

aj2+4/x(2/-^) = 0, (ii)

and {y — lf= x-{-\ (iii)

With these values

X^= lJ[a}+{y'^J^{ly-lfY]-h[y^+ {},y-lf]

=HV(aHn-a (iv)

if (2/-|)^= i(^-4) (v)

186. The parabola (iii) is fixed for all values of a and

IX ; the parabola (ii) for particular values of a and /u com-

mences .in the position where its vertex is at (0, — a), and

moving in the direction of its axis, gives, by its intersections

with (iii), successive values of y which give real values of

X ; the initial position giving the points where the curve

meets the axis of y.

No values of y give equal values of x difiering from zero,

so that the curve is never parallel to Ox, except where it

meets the axis of y.

The equation giving the points where the tangent to the

curve is parallel to Oy is of too high an order to solve ap-

proximately except in particular cases.

187. The equations (iv) and (v) give means of determining

by construction the value of x corresponding to any value

oiy.

Fig. 5. Construct the parabolas (iii), (v), and (ii), the last for two

positions, viz. when ^= —a, and when ^ has a general

value.

If P be one of the points of intersection of (ii) and (iii),

let PMQ parallel to Ox meet (v) in Q and Oy in M, so

that MQ= ^, and let ^R, the tangent at ^, the vertex of (ii),

intersect the parabola (ii) in its first position, viz. ciR, in R.

Take S in aM such that 3IS= /3R= a., and T in PM, so that

QT=QS= J(a} -h f) ; then, by (iv), x^ = ^TM corresponds to

y = OM; and x is the ordinate UN to the abscissa AN= hTM
in the parabola (iii).
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188. To shew how to trace the curve we will take the xiii.

case in which the parabola (ii) in its first position, when
j3= —a, touches (iii) as at J , and cuts it in B, C, n being

negative. Aa, Bh, Cc determine points where the curve cuts

the axis of ^, of which a is a multiple point. As (ii) moves
upwards it cuts (iii) in P, Q, R, S; as (ii) continues to move
upwards, P and Q move away from A in opposite directions,

and R and S from B and C towards and D. When (ii)

touches (iii), R and P meet as at T, the figure traced out

by the points which correspond to them being aprb and the

symmetrical half loop ; similarly Q and S meet when (ii)

touches (iii) with the last contact as at U, and they produce

the top loop asc.

It may be seen, from the last article, that the maximum
value of X in the top loop is very nearly opposite to the point

of last contact, on account of the large value of ^.

189. The system of curves which have ju. for their para-

meter when a is a given positive quantity are readily traced,

a guide to the general direction being the fact that, as —/a

increases from to the value which corresponds to the figure

of eight, called a lemniscate, which has just been formed,

the curve changes from two conjugate points at and D to

the lemniscate.

When fji is negative and small, the points in which the

initial position of (ii) meets (iii) are two pairs of points, one

on each side of and near both and B, giving rise to two

small ovals surrounding the conjugate points.

As — yu approaches the value for the lemniscate, the ovals

terminate near c, a, and b.

When —fi is greater than this value, the initial position

of (ii) meets (iii) in only two points R' and S', joining points

on Oy below b and above c. As (ii) moves upwards, R'

moves towards until (ii) and (iii) touch, which they may
do if fx be not too great. The two points P, Q then come

into existence, at first coincident, and then P meeting R,

Q meeting S as before.

Fig. 1.
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XIII. The figure represents two of the ovals, the lemniscate,

p. 2 and two curves beyond.

The case of /x positive is the conjugate point and oval

marked + in the figure.

190. The case of a cusp on the axis of y occurs when

a= — l + l^yS or — i, and —^^ nearly, as shewn in Art. 171.

Fig. 3. The figure is drawn for the case of a = — 1 + \J^, shewing

the systems for negative and positive values of ix.

The figures are somewhat similar for a= — 1 — i^/3,

differing principally in the breadth, and in the position

where it is greatest.

191. When a is between —\±hj^y the systems for ix

positive and negative are each a conjugate point and a

Fig. 4. series of ovals.

192. The case of a= oo is given by

If 2/= 0, «;2 = i{-l+v/(l + 4c2)}=a2, suppose,

ifa;= 0, 2/'-22/=±2c, or y = \±J{l±2c).

Near (a, 0), -a.-y+{4>a,^+'lcL)$=Q),

near (0, 1), when 2c = 1, fa;^— >;^ = 0, or ;;= ±fa; nearly.

In this case we can construct for the points where the

curve is parallel to Oy by means of the equations

4(52/-2)V= 2/(2-2/)(3^2+ 4,^_4)2^ (1)

and (52/-2K+2i/(2/-l)(2/-2) = 0, (2)

which are easily obtained from the condition.

The solutions of equation (1) are the common ordinates

of the hyperbola
a:(52/-2)= 32/2+42/-4,

or (52/-2)(a;-|2/-ff)= -M> (3)

and the curve x'^y{2 — y) = ^c- (4)

Lines drawn parallel to Ox through the points of inter-

section of (3) and (4) meet the curve (2) in points where the

tangents to the given curve are parallel to Oy.
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The figure contains portions of the branches of the hyper- xiii.

bola (3), the curve (2), viz. Oqu and astp, and the curve (4) pig. 5.

traced for c = ^ and f , viz. PA Q and F'Q'.

When 2c =1, the curve has a lemniscate form, and the

points where it is parallel to Oy are p, q corresponding to

the intersections F, Q ; the point a corresponds to A, and,

being the node of the lemniscate, the condition of equal

values of y is satisfied.

When c= f ; p\ q are the points at which the curve is

parallel to Oy, corresponding to the points of intersection

P' and Q', the third point giving no point on the curve.

When c^-i, the curves (3) and (4) first intersect in R
and S and the lower branch, and, as c increases, they touch

in T, and afterwards give only one value in the branch Q U.

The corresponding points in the given curve are r, s, t, u,

there being a point of inflexion at t.

The complete system is drawn with the letters r, s,— Fig. 6.

Note. The curve (4) is easily drawn for different values

of c, since, by transposing the origin to (0, 1), the equation

is 4c2= (1 — y^)x^. If then y = sin 0, x = 2c sec 6.

Examples X.

1. (x^ — o^Yy— (y^ ~ h'^^'X.

Find the multiple points, and trace the curve.

Shew that each branch has a point of inflexion at each multiple

point.

2. ay{x — a)=x\x-\-(t).

Shew that ( — •26ci!, "Ola) is a point of inflexion.

3. Apply the method of compartments to draw the curves :

(«) xy^= c\x^ -'ry^~ ci?)-

Shew that, in order that there may be a singular point, Ac^= 3\/3 a^,

and that the two branches are inclined to Ox at angles ^V'"" ^^^ \^'^-

(b) x*—y*= ax{x^+y^-c^).

Trace the curve for the two cases c= |a and c= av'2.

Shew that when c— 2a, the curve cuts Ox where x= —^a nearly.

(c) x*-y*~x7/(x-+y'^-c^)= 0.

Trace the curve in the quadrant xOy and shew that the rest follows

by symmetry.
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XIII. (d) 2{x'^-{2/-ay}{4.v''-(i/-2ay-}+ 9f{x^+ a(y-ay, = 0.

Find the two multiple points and shew that one of the branches in

each has a point of inflexion.

Prove that there are two loops in the acute angle between the
dividing lines, and that at the points where the loops are parallel to

ftf, ?/= —§a nearly.

4. (^ — x)(i/'^ + x'^)= a(j/+ .V - a)Q/+ x - 4a).

Shade the compartments unoccupied by the curve, and shew that it

cuts Ox and Or/ at distances nearly 3a and a from the origin.

5. (3.r2 - 3/2 - 2ax)f - 4«2^(^2 + 7/2 - fa2)= 0.

Use the method of compartments, and find the direction of the
tangents at the points where the circle and hyperbola intersect.

6. (A-2 -f)(^+ 9/*)= a\x'^ +^2 _ ^2)(^+ 3^2 _ 4(j2),

Shew that at the two points where the curve cuts the asymptote in

the quadrant xOi/, it is equally inclined to the asymptote.

7. {y — x — a)y^ — {y — riia)hx'= 0,

or x{y — ma) (y^+ bx) — y^{y" — o.y — max)— 0.

Use the method of compartments derived from these two forms, to

limit the space within which the curve can lie, and compare with
Plate VI. figs. 15, 16, 17.

8. Draw the systems of curves coi'responding to different values of

II in the equations

{x"±y'^){x''-±{hy-\f]= li{y+ 2.) and {xy.



CHAPTER XL

SYSTEMATIC TRACING OF CURVES.
REPEATING CURVES.

PLATE
193. In the preceding chapters, when giving examples of xiv.

the particular points upon which I was engaged, I thought

it would be more interesting to the student to see how the

part under examination fitted into the rest of the curve

considered, and I therefore have given throughout a number

of elements of the curves, which have frequently been

sufficient to determine the entire shape. At the same time,

I have generally expected the student only to examine the

figure, in order to see how the elements were combined.

I shall now give a few rules for the systematic treatment of

the equation of a curve, only recommending them as con-

venient plans to adopt, and leaving to the ingenuity of the

student such modifications as particular forms of equations

may suggest.

194. The discussion of those equations which can be

readiljT- solved with respect to either of the coordinates, or

in which the coordinates may be separated from each other,

can be conveniently arranged in the following order

:

i. The statement of any symmetry which may be observed

in the equation of the kinds mentioned in Art. 7.

Any fresh arrangement of the terms of the equation

which may from the form suggest properties of the curve,

for instance, if it could be arranged in the form u^-\-vw= 0,

in which case v = and iu = would be curves which would

touch the required curve at their points of intersection with
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XIV. ?t = ; or any arrangement which would give distinct com-

partments within whicli the curve must lie.

ii. The tabulation of particular points such as those which

lie on the axes, or which the form of the solution of the

equation may suggest.

iii. The form of the curve at all the points at a finite

distance which may seem to be most important.

iv. The position of the asymptotes, rectilinear or para-

bolic, when the fact of the curve going off to infinity in any

direction has been established in the course of tabulation.

If not obvious for other reasons, the side of the asymptote

on which the curve lies must be investigated.

V. If more than the general form be looked for, it may
be necessary to find such points as where the curve is

parallel to the axes, and other peculiar points which would

not be required in a rough determination of the locus.

195. The following curves, selected on account of special

difficulties, will illustrate the application of these rules,

commencing with the curve, some of the properties of which

are discussed, without tracing it, in page 44, Ex. 4.

Ex.1. y(b-2-y2) = x2(a-x).

i. There is no symmetry, but the lines y = ov ±h, and

x= a determine compartments within which the curve must

lie.

ii. If x — or a, y = or ±h,

ii x = co
, y = cc.

iii. Near (0, 0), lry = ax^,

near (0, ±6), — 26^;; = acc'^,

near {a, 0), Ir^y = — a^^,

near («, ± b), Ih^ = a^^.

iv. Near (oo , oo
), y — x+ ^a = 0.

The asymptote meets the curve at a finite distance, where

-ia(y^-+ xy + x-)-\-ax--b-y = 0,
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or a{y^-{-xy-2x^)-\-2¥-y = 0, xiv.

or a\y+ 2x)-dhhj = 0,

or {%^--a'-)y = 2a^x.

The three points of intersection are at an infinite distance

if this equation is y = x, that is if 36^= a^.

V. The curve is parallel to Ox, or else there is a singular

point, where 2ax— 3a;'^ = 0.

It is parallel to Oy, or there is a singular point, where

62_ 32/2^0.

The singular point occurs when (2a/3± &/>/3) is a point on

the curve, in which case 2(X^= ± 3^36^.

The figures are drawn for the cases of 6 = a, hJZ = a, and Fig. i.

2a^= SJSb^, which are denoted by /S, y, and a. respectively.

Ex. 2. x*y3= a2(a-x)3(a-2x)2.

The compartments are determined by a; = a and y = 0.

The lines X" = and (a— 2xy= 0, being double lines, do not

affect the division into compartments.

If a;= 0,
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XIV. Near (0, b), Wrj^= 2a?x\

near {cQ2, h), 4>b"^^= 2«2( _ 2^2 a^).

Fig. 3. The figures are drawn for the cases a = h, hJ2, and

aJ2 = h, denoted by ex., /3, and y, the case a= b giving two

ellipses whose major axes are inclined to Ox at angles

±7r/4.

Ex. 4. aV(x- b)2 = (a2- x2)(bx - a^)^.

The curve is symmetrical with respect to the axis of x.

Whencc = 0, y= a^lb,

x= a"/b, y = (),

x = a, ' y = 0,

x= b, y=:x).

If y is real, we must have —a<^x<^a. But (a^jb, 0) is a

multiple point, and therefore must be a double point or

conjugate point, according as &> or <^a.

When b = a, the curve divides into two coincident straight

lines and a circle.

Near (0, a^/b), y = ci^jb - (1 - a^lW)x,

near (a2/?>, 0), {l-aW)y^= i\
near (± a, 0), y^= ^ 2a^,

near (6, co
), x— b = (a-— b^fjay.

Fig. 4. The dark lines correspond to b = a, the curves marked

a. and /3 correspond to 5 > and -< a.

Ex. 5. (a=5y- x*)'-- a^x- 2a)2(x'-- a-) = 0.

There can be no value of x between a and —a.

If X= d= (X, y = a, two values,

cc = 2a, y — 2*a, two values,

X=co
, y = co^

and ?y= gives no real values of x.

Near ( ± a, a), rf=± 2a^,

near (2a, 2*a), {a^n- 4 • 2ht^if- Sa^^^^ q^

or
~

f]= (2'±JS)i.

Near (oo , oc
),

a^y — x^= ±a^x^.
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There is, therefore, a multiple point (2a, 2*a) on the xiv.

parabolic asymptote o?y = x'^, from which the curve runs off Y\g. 5.

on both sides of the asymptote.

Ex. 6. (x2-4)2-y2(y+ 16)= 0.

The curve is symmetrical with respect to Oy ; therefore,

considering only positive values of x,

if i/ = Oor— 16, a) = 2, two values,

ifa; = 0, 2/^+161/2= 16,

whence y = \-^^, _(l+^i_), _(16-Jg) nearly

;

if 2/ = 00
,

33= CO .

Near (2,0), (4^)2-16i/2 = 0,

near (2, -16), {^if-lQS= 0.

If /3 be one of the values of y when x = 0,

near(0, /3), -8x2-(3/32+ 32^);;= 0,

hence 4cc2+17>/= 0,

4a;2-15>? = 0,

and fl32+32;;= nearly.

Near (oo , oo ), a?*— 2/^= 0.

It may be shewn that the curve is parallel to Oy, where

y=—
^-i'

and x = ^/- nearly. Fig. 6.

196. In the case of equations which cannot be solved

with respect to either of the coordinates, or which, if capable

of solution, would lead to clumsy results, no order of pro-

ceeding can be laid down as being generally the best ; but

it must be good, in the first place, to look for symmetry
in an equation, and to examine whether the equation can

be rearranged so as to exhibit properties, or whether a

change of coordinate axes would simplify it ; in the second

place, to find whether the curve cuts the axes and where,

and to discover whether the curve passes off to infinity,

either directly, or, if there be many terms or any doubt

exists, by means of the Analytical Triangle. It will gene-

rally be best to find next some of the most important forms
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XIV. or the curve near such particular points as may have turned

up, and the side of the asymptotes on which the curve lies

at each end, or, instead of this, the points where the curve

cuts the asymptotes at a finite distance ; it will then be seen

whether it is necessary to go into the question of the points

where the curve is parallel to the axes or whether there are

any singular points.

197. The example given at the end of the last chapter

is a good illustration of the methods of meeting difficulties,

but a few more examples, which have been selected with

a view of meeting as many difficulties as possible in a shoit

space, will not be useless.

Ex. 1. (y2-ax)2+ (x2-ay)2 = a4.

The curve is symmetrical with respect to x = y.

When x = Q, y" = h, (J5 — l)a^= fa^ nearly,

•• y =^aJ2 = ia nearly.

Where x = y cuts the curve,

x= y = ^{l±^(2j2+ l)}a = ^a or -|a roughly.

If x^—ay=± ct}, (y~— ax)^= ;

the first parabola, therefore, touches the curve where

2/*— a^y =F «* = 0.

The lower sign gives no solution ; but with the upper sign

2/ = — f(X and fa- nearly,

x= ^a and fa nearly,

where x^= a{y+ a) touches the curve.

Near (0, a), - 2a<X'X+ ^a}r}+ 2a\yLri= ;

and as a= ±^a nearly, .*. i]= ±^x nearly.

Fig. 7. In the figure the parabola ABis drawn touching the curve

at P and Q where y'^ = ax meets it.

Ex. 2. axy=^— (x—a)V+ a*x = 0.

Fig. 8. Placing the equation on the triangle, we have at the

origin y--\-ax=^0.
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Near (0, X ), xy+ a-= Q,

near (oo , 0), x-y-- a*= 0,

near(oo,co), ay — x--\-Sax— Sa"= 0,

(x-Uf = a(y-fa),

The curve is parallel to Ox where

a(y^+a^)— S(x—ayy^= 0,

or (ys^a^^sx-(x-a)}=0;

whence y= —a, x = a,

and x=—la, 2/ = 6'7a, •40a, —'SVa, nearly.

Ex. 3. aP(j- x)- 2a-(y2- x^)+ a(y3+ x^)-xV = 0.

The equation may be arranged

ay (y — af+ ax(x-+ 2ax — a^)— x^y- = 0.

If a; = 0, y = 0, or a, two values,

iiy = a, x = 0, or i(±^5 — l)(X = a, say,

iiy = 0, x = (±J2 — l)a,

iix = (±J2-l)a,

y = 0, and (y-af-(S^2j2)ay = 0,

whence y = fa and %a nearly for the upper sign, and y = \a

and (8 — f)a nearly for the lower sign.

The lines y=±x meet the curve where

x = y = 2a, and —x= y = a^'2 = l'2Qa.

"Whena;=±a, y^— Say^-\-a^y + 2a^ = 0,

y = 2a, or h{±J5 + l)a.

y— x-\- 2x?ja?' = 0,

>/"-— ax = 0,

(3a2+ 2aoc- cC")^- 2a.S = 0,

PLATE
XIV.

Fig. 9.

whence

Near (0, 0),

near (0, a),

near (a, a),

or

so that if a= 4a

and if a = — ^-a, 9^=13^.
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XIV. Near {y:i , <x>),x^ = a{y — 2a), and y- = a{x+ 2a).

The last parabolic asymptote meets the curv^e where

that is at the same distance from Ox as it meets the lines

x= ±a, so the curve has the property that the parabolic

asymptote y" = a{x-\-'2a) and the two lines x= ±.a intersect

the curve in nine points, three and three in the straight

Fig. 10. lines y = 2a, and y = h{±J^ + l)a.

Ex.4.
'

(y2-ax)(y2-bx)+x*=±c*.

The equation may be written

{y^-^{a+h)xY= ±c^^-^{a-hY- {x^-l{a-hff.

When 1/ = 0, x'^=- lab+ J(ia%^± c* ).

The curve is symmetrical with respect to Ox, and two

values of y'^ are equal where

x'=Ua-hf±^{Ma-hy±c^}.

i. Taking the positive sign in the equation of the curve,

the compartments within which the curve lies are given by

the two parabolas y^ = ax, y- = hx, and the two lines x= ±c^

and the curve is parallel to Oy where it meets the parabola^

y- = l{a-\-b)x.

Fig. 11. The three parabolas are dotted in the figure.

ii. Taking the negative sign, y'^ = ax, y- = hx are the only

dividing lines, between which the curve must lie.

In order that the curve may be possible, c^<C-i^{a — hy.

Let c'= eV(l - ^^')(a -&)*= (!- n')f\

then, where the curve is parallel to Oy,

a;2^(l+7l)/2,

and its equation may be written

{y'-H<^+ b)xr^-{x^^-0-n)f}{{l-{-n)f-x'-}=0,

therefore x^ lies between (l—n)P, and {l-\-n)f'^.

If 71 = 0, {2/2-i(a+ 6)a;}2+(a;2-/^')2 = 0, shewing that

Fig. 12. there are two conjugate points.







SYSTEMATIC TRACING OF CURVES 175

PLATE
Ex. 5. y2(x+ y)2(x-y)-2a(x+ y)x2y-4a2x3 = 0. xiv.

Near the origin the triangle shews that y^+ 4a^aj^= 0.

When X is infinite and y is finite,

whence y = {l±Jb)a.

Near (oo , oo
),

2{x-^yf+ 2a{x+ y)-4^a^ = 0,

or x+y= — 2a, or a,

and x— y — a = 0.

The asymptote x+ y + 2a = meets the curve at a finite

distance where

4<a^y%x — y)+ ^a?x^y — ia-x^= 0,

or -(x-{-y)(x-yf= 2a(x— yf = 0;

therefore this asymptote touches the curve at ( — a, — a).

The asymptote x+ y — a= meets it where •

y\x— y)— 2x^y— 4^x^ = 0, or —y'^-}-2xy — 4<x^= 0,

the roots of which are impossible.

The asymptote x — y = a meets the curve where

y\x -\-yf— 2y (x+ y)x^— 4aa;^ = 0,

or y(x+y){y^+xy — 2x")— 4!ax^= 0,

or y(x-{-y){y+ 2x)+ 4^x^ = 0.

To solve, write y = zx, then

23+ 3^2^22+ 4= 0,

sothatif 22 = 2u, (u + l){z+ S)=l.

The hyperbola and parabola which represent these equations

intersect where z= —S + y't nearly. Fig. 13.

Note. The asymptotes parallel to Ox have each two

points of the curve at a finite distance, and three points at

an infinite distance, one of which is due to the point in

which the parallel lines meet, so that in each case the curve

lies on opposite sides of the asymptote at an infinite

distance.
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XIV. Ex. 6. x5 = (x-y)2(x+ y)(x-2y).

Whencc = l, y = 0, or 2y^-'^y'^-y+ ^ = Q,

whose only real root is nearly equal to — '^.

Near (0, 0), {x —yy=— hx^, giving a ceratoid cusp,

or x-^y = -Ytx^,

or x— 2y = %x^.

' Near (oo , 00 ), x^-]-2y^ = 0.

The curve is parallel to Oy, where 3x^+ xy — 8y-= 0,

or, nearly, x =%y=- ^\, and x=- ^y = ff

.

Fig. 14. It is parallel to Ox, where x = 5y and x^= 2y^.

Ex. 7. x^+ a^y*+ a^x^y+ a^xy^ = 0.

Fig. 15. Placing the equation on the triangle, the forms at the

origin are y^-^ax= 0, x'^-\-ay = 0, and x^+a^y — O.

Where x = y,x'^-^ 2a^x+ a^= 0,orx= — -^-^a, the only value.

The line x= —y meets the curve where x= —y= —ct,

near which point r]=2^. Also, y= —l-x nearly represents

Fig. 16. the tangent to the loop in xOy'.

Ex. 8. 4y2(x+ y - a)3 = (x - y- hf.

The equation may be put into a simpler form by making

the lines xi-y — a = and x— y — h — axes of coordinates,

thus if x+ y — a — y'sJ2, and x — y — h = x'J2, the equation

becomes y'\y' - x' -]- a.f = x"'' (i)

The lines parallel to the asymptote through the new
origin are y'\y'— x!y- = x'^.

If x'= zy', z^= (z— l'f, and the values of s in this equa-

tion are the abscissae of the points of intersection of x^ = y^

and y'^x^= {x — iy\ the latter of which is the two rectangular

hyperbolas (l±y)x = l. These only intersect in two points,

Fig. 17. whose common abscissa is nearly f ; if on be this value, let

z^-(z-iy = (z-m)(p{z),

' write z =m+ ^, and equate coefficients of ^, then

^(m)= 5m^+2(1— on).

-V
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The equation of the asymptote is, by (i), xiv.

x'— my' = 2a( 1 — 7n)/0 (m), or od— f^'= fa,

and when x' = cl, y' =
-r^(*-.

Near the origin, a?y'^= x'^,

near (0, — a.), r] — x' = {— x^/oL^y,

near (a, a), ii x' = OL-j-^, y' = oi+ rj,

therefore 3;7+ 2(;/-^) = 5^, or 5,7=7|.

Where the curve meets the original axis of y,

4>y\y-af = {-y-by,
therefore y is the common ordinate of

h%y-a)+ x%y-{-b) = 0, and b(y + bf= 2x(y^-ay),

whence ii a = ^b, y — 16, -^b or — Jg 6 nearly. Fig- 18.

REPEATING CURVES.

198. I shall conclude this Chapter by shewing how to

trace a large class of curves, whose equations involve

trigonometrical functions of the coordinates in the place of

the coordinates themselves. The loci of such curves, from

the nature of a trigonometrical function, are made up of

patterns continually repeated in every direction.

This symmetrical arrangement frequently gives very

elegant figures, where the original curve has nothing to

recommend it from this point of view, trigonometrical

functions acting in fact as a kind of kaleidoscope.

The following is the method I have adopted for tracing

such curves.

199. If f{x, y) = be the equation of any curve, and we
write for y any trigonometrical function of x, and for x

any trigonometrical function of y, a new equation will be

formed of the kind which was spoken of ; and it will be

easy to see how any other functions can be treated, if we
take the particular functions sin x and sin y, and give con-

structions for the corresponding locus.
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XV. 200. Take the equation of the curve to be

/(siny, sina;) = 0, (i)

and construct the curve

/(^,'/) = 0, (ii)

and the two curves of sines

»; = sina', (iii)

and ^=smy (iv)

Fig. 1. Let ^ be a point in the locus of (ii), which, by (iii) and

(iv), must lie within a square whose sides AC, BO are

parallel to the axes at the unit distance from them.

Let pr parallel to Ox meet (iii) in r, and ps parallel to

Oy meet (iv) in s.

Draw siV, rM perpendicular to Oy, Ox, and let them

intersect in P, then P will be the point in the locus of (i)

which corresponds to p.

For )] = rM, .: OM=x, by (iii)

i=sN, .: ON=y by (iv)

Hence we have the following construction for the point

P of (i) which corresponds to p of (ii).

Draw pr, ps, parallel to Ox, Oy respectively, meeting the

curves (iii) and (iv) in r and s, and the point P will be at

the angle of the rectangle prPs, which is opposite to iJ.

Observing that each of the lines Pr, Ps will meet their

respective curves in an infinite number of such points as r,

s, for each point p of (ii) there will be an infinite number of

corresponding points, arranged in pairs symmetrically with

respect to lines whose distances from the axes are odd

multiples of h-rr.

201. In order to facilitate the tracing of any curve, such

as (i), by constructing a sufiicient number of points, the

following properties should be noticed.

(1) When 2^s is a tangent to (ii), sP will be a tangent to

Fig. 1. (i) ; for, if p' be an adjacent point on ps, P' the correspond-

ing point will be adjacent to P on sN.

i
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And similarly, if pr be a tangent at jp, PM will be a xv.

tangent at P.

(2) Since ^ and i] have no values beyond 1 and —1, the

portion of the locus of (ii) which lies within the squares,

whose sides are given by x=±l and y= ±\,\^ the only

portion which gives any part of the curve (i).

(3) If g' be a point of (ii) which lies on the side of the

square x= \, and q be an adjacent point, by considering

where lines through q and q' parallel to Oy meet the curve

(iv), it is seen that the points corresponding to q and q' are

Q, and the pair of points Q', Q", and the portion of (i) which

corresponds t.o qq' is Q'QQ" touching the line through Q
parallel to Oy ; except when (ii) touches A C.

(4) From the first of the properties given above, it follows

that, if the curve (ii) touch Ox at the origin, the curve (i)

will touch Oy at the origin.

202. It is easy to see that similar constructions hold for

the loci of equations in which sin^>iic, tawinx, etc., and

sin ny, tebnny, etc., take the place of sin a? and sin 2/. The
method of dealing with all these cases will be sufficiently

shewn by a few illustrations.

Ex, 1. Take the curve whose equation is

sin^y+ sin^x— 3a sin x sin y= 0, (a)

derived from x^-{-y^— Saxy = 0, (b)

which has been traced in page 89.

i. Consider first the case in which a is small enough to

allow the whole of the loop to lie within the square which

limits the values of sin x and sin y. Fig. 2.

Draw the curve (b), and suppose it the dotted curve

apO in the figure ; the curve being symmetrical with respect

to the line y = x, it will be onl}- necessary to construct the

part of the curve (a) corresponding to the portion abpOc

of (B).
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XV. The principal points to be considered are a in the line

y = x; h where the curve is parallel to Oy ; the origin ; and

c where it is cut off by the limiting square.

The corresponding points are A, also in y = x; B where

the curve (a) is parallel to Ox ; the origin, at which the

branch corresponding to Op touches Oy ; and C where the

curve (a) is parallel to Oy.

The construction of Art. 200 is made in the figure for the

points P, Q which correspond to two points jp, q, in a line

parallel to Ox and meeting the curve y = sin x in r, while

ps and qt, parallel to Oy, meet the curve x = sin y in s and t,

and Pspr and Qtqr are the rectangles spoken of in Art, 200.

The shape of half the curve may then be drawn, and the

other half by symmetry.

The manner in which the curve repeats itself is given in

Fig. 4. another figure.

ii. Consider next the case in which the loop of (b) inter-

sects two sides of the limiting square.

Fig. 3. The points of (b) to be principally considered are a in

y = x; b, d where it meets the side x= l ; the origin ; and c

in ic= — 1.

The corresponding points are A in Oa, B and D where

the curve (a) is parallel to Oy ; the origin 0, where it

touches Oy ; and C where it is parallel to Oy. The con-

struction is given for two points p>> q taken as before.

Fig. 4. The manner of repetition is given in another figure.

iii. The intermediate case, in which the loop touches the

two sides of the square, is represented in the figure, without

any construction, being given by a darker line, the previous

cases by lighter lines.

Fig. 3. Note. The isolated portion AB reduces to a conjugate

point A' when the loop passes through the point (1, 1).

203. The diflferent effects obtained by introducing a tan-

gent instead of one of the sines will be illustrated in the

most striking manner by taking the same auxiliary equation.

i
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Thus to trace the curve xv.

sin^x+ tan^y — 3a sin x tan y = 0.

The auxiliary equation is

In this case the curve will not be symmetrical with re-

spect to the line y = x, although the auxiliary curve is

so ; it will therefore be necessary to examine the positions

of corresponding points for the whole of that part of the

curve which is limited by the lines y=±l.
The principal points to be considered are a in y = x; b, c Fig. 5.

where the curve is parallel to the axes ; the origin ; and d, e

on the limiting lines. The corresponding points are A, B,

G, 0, D, E.

To shew how other points lie, p, q, r are points in a line

parallel to Ox, and P, Q, R are the corresponding points

lying in a line parallel to Oy, drawn through the point

where pqr meets the curve of sines.

The figure, which is derived from the case in which the Fig. 6.

loop cuts the line y = l in two points, is given without

naming the construction. PLATE

The manner of repetition is given in another figure, the ^^^'

dark line corresponding to the critical case in which the line Fig. i.

y = l is a tangent to the loop, in which case the two points

on 2/ = 1 coincide and give rise to the double point.

204. The figure is given without any construction for Fig. 2.

the curve
tan^x+ tan^y- 3a tan x tan y= 0.

To assist in the tracing, it is easily shewn that the tangent

at the point (Jtt, — ^tt) is ^+»?= 0.

205. The curve

sin^x+ sec^y— 3a sin x sec y =

is more difficult to trace, and I have given three figures.

Fig. 3, in which OA = 1, 05 = W, represents for different Fig. 3.

values of a, those parts of the curves, which are generated
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XVI, from the portions of the auxiliary curve tf-\-^'^— Sa>j^=0

lying between y = 0, y = l, and beyond x = l; the guiding

curves >; = sina3 and ^=secy are dotted.

The Lemniscate form L, drawn with a dark line, is derived

from the case in which the loop of the auxiliary curve

passes through (1, 1), viz,, when a<= f.

The portion of the auxiliary curve which corresponds to

this Lemniscate form, viz. that which lies beyond x = l, is

given in the figure, a and c being the points where it meets

x = l, and b the point at which the tangent is parallel to Oy.

The constructions for d, e, B, the points which correspond

to a, h, and c, are indicated in the figure.

The point 6 lies in the line x= ^2y, which contains the

points in each auxiliary curve obtained by giving different

values to a, at which the tangent is parallel to Oy, the

tangents at the corresponding points being parallel to

OAB.
The conjugate point C corresponds to the point of contact

when the auxiliary curve touches x=l, where it meets Ob.

The small oval surrounding the conjugate point is derived

from a particular auxiliary curve which passes between

those which produce the Lemniscate form and the conjugate

point.

The curve like a Cartesian oval is constructed from the

case in which a is little greater than |.

The outside curve corresponds to very large values of a.

Fig. 4. 206. Fig. 4 represents part of the curve which corre-

sponds to the branches of the auxiliary curve which run

from the origin along the asymptote, for the particular case

in which (X= |-, the same value which gave rise to the

Lemniscate of Fig. 3.

The portions d are generated from the part of the branch

which lies between x= —1 and x= — |7r

;

a from the part between 2/ = 7r+l,

c from the part between y= — (7r=Fl),

b from the part between y= — (27r4=l).
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Each time that the asymptotic branches intersect the curve xvi.

^ = sec y, a line such as a, b, c is generated, as where the

auxiliary curve lies between y = n7r±l or y=—{n'7r±l),

these lines lying nearer to the asymptotes of ^=secy as n
increases.

The conjugate points at B and B' belong to the particular

case a = 0, when the auxiliary equation becomes ^+>? = 0,

in which case there are two points, ( — 1, 1) and (1, —1),

which generate isolated points in the curve. In this case,

the part of the line ^+>7= 0, which lies between y = 7rl^l,

generates the line line e above the dark line a, and similarly

for other portions between y = n7r^=-l, n being a positive or

negative integer.

Note. To assist in drawing the lines a, h, c, etc., I recom- Fig. 5.

mend the student to shade the spaces in any part of which

no part of the auxiliary curve can generate any portion

of the curve to be drawn ; as between a^it 1 = 0, and between

y = l and tt — 1 or y — Tf-^-l and 27r— 1.

207. Fig. 5 is drawn to shew the manner of repetition,

and in order to save confusion, the curves corresponding to

only two of the auxiliary curves are given, viz., that which

generates the dark lined curves of figs. 3 and 4, and that

for which a = 0, generating the conjugate points B and B'.

208. By way of further illustration of the kaleidoscope

property, I have given the patterns of the figures which

correspond to three substitutions of trigonometrical func-

tions in another equation a(^+»?)^= >/(^^+ >?"'), the dark lines

corresponding to the case in which a = ^, for which the

auxiliary curve is parallel to Ox at the point (1, 1).

(1) a(siny+ sinx)^ = sinx(sin^x+ sin^y). Fig. 6.

(2) a(sin y+ tan x)'- = tan x(sin-y+ tan-x). Fig. 7.

(3) a (tan y+ sin x)- = sin x(tan-y+ sin-x). Fig. 8.
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', Examples XI.

1. 2/-(a^+x^)-4ai/(a^-x'^) + (a^--x^-y-=0.

Prove that there are two cusps, the tangents to which cut the curve

at a distance Aa from Ox, also that the curvatures at the points where
the curve crosses Oi/ are very nearly in the ratio 1 : IG.

Shew that the radius of curvature where the curve crosses Ox is f^a.

If it cross 0?/ at B and 0, prove that OB, OC are the radii of curvature

at C, B.

3. ^= (.r2-/)(.r2-4/).

Shew that the two loops on the negative side of yOy' run parallel to

Oy near points ( - j\,
Jg-) and ( - ^^,

-
/g).

Shew also what parts of the curve are cut by the guiding asymptote

^= 4/.

Shew that the semi-cubical parabolas which are the guiding asymp-

totes cut the loops where x= ±f nearly.

Shew that there are three loops, and that the tangents are parallel

to Ox where .t'+ |a = and x=\a nearly.

6. x>= {x'^- ?/2) (2a;2 - bxy+ ^y"-).

Prove that the lines joining the origin with the points of contact of

tangents to the three loops which are parallel to Oy are x+ '2y = 0y

Zx— 'iy, Sx= 4y roughly.

7. (y-x'-)(7/-.v'')-y\v= 0.

Examine the forms which correspond to the sides of the quadri-

lateral on the triangle. Shew on which side of the two guiding

parabolic asymptotes the curve lies at the four ends.

8. x^y - ax~y^+ hj2 a-y^ + a^xy - ^a^x"'= 0.

Using the sides of the pentagon formed on the analytical triangle,

shew that the guiding parabolic asymptote cuts the curve where

x=^a nearly, and that the semi-cubical parabolic asymptote cuts the

curve in the quadrant xOy'.

9. x"! -f-/ - 3a%».-5 -t-/)+ 4a3A%2= o.

Shew that there are two cusps and a double point ; that the radius

of curvature at the points where the cum'e meets the axes is fa ; and

that the branches of the double point make equal angles with y= Xy

each being tan~i(^^39).
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10. .ry-0/-^2)(_y_2^.2)(y_3^2). ^^j_

Shew by the triangle and by compartments that there are two
curvilinear asymptotes, and two very small loops ending near the

points (1,
^ij) and ( - f^, t^'Ij^).

11. (?/3 - ^)V= (.,;2 _ 1 )
(_^.2 _ 4)^

or 9/h/\^^ — 2x)= 4 — 5x^.

Use the method of compartments from the second form, and observe

from the first form that .r- cannot lie between 1 and 4.

12. sin^^=cosy.

Trace the curve, and shew that the radius of curvature at (\ir, ^tt)

is nearly Y".

13. sin2.y+ cos2?/ = acos?/.

Trace the pattern corresponding to a= i and 1.

14. tan'-^T+ sec2_?/ — tan x — sec i/= a^ — h
Trace the pattei'n corresponding to the auxiliary circles inscribed in

and circumscribed about the squares whose sides are x— ±1 and

y= ± 1, and .v= i^Tr, ?/= ±|^7r.

15. (cos-_y + sin^.r)2 — 6a cos y sin^.r+ 2a cos^y = 0.

Draw the repeating curve in the two cases in which the auxiliary

curve of example 5 lies entirely within, and where part lies without

the square formed by 3/= ± 1 and x= ±1.
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INVERSE PROCESS. A CURVE BEING GIVEN,
TO FIND ITS EQUATION.

PLATE
XVII. 209. I PROPOSE in this last chapter to say a few words

on methods of discovering equations which will represent

the general form of a traced curve, at all events when it is

known that the curve is capable of representation by means

of an algebraical equation.

Of course there are difficulties which are unavoidable in

the way of the exact determination of all the coefficients of

the terms of an equation, some of which it will be well to

point out, so that too much may not be expected from the

treatment of this kind of problem.

210. If a curve could be supposed to be so accurately

drawn that it would stand the test of measurement in every

part, we could theoretically obtain equations for determining

all the constants which would appear in the general equation

of any degree which we might judge the curve to require.

But in the case of curves which run off to infinity, the

observations which I have made in Art. 27, are sufficient to

explain the impossibility of such accuracy in some of the

most important parts of the curve. Again, it is impossible,

except by some sort of convention as to drawing, to dis-

tinguish the degrees of closeness of contact of such parabolic

forms as are given by y'^ = ax, y^ = ax^, y*— a^x, and the mis-

appreciation of the order of contact would affect the degree

of the equation to be tried.

Such difficulties might be met by a verbal statement of

the nature of the asymptotes and the forms at particular
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important points, at the same time that the curve is given xvii.

in its general features.

If such statement be not made we must make the best

approximation to which our experience in the direct treat-

ment of curves may guide us.

211. The impossibility of the representation of a given

curve by an algebraical equation would manifest itself in a

variety of ways. A breach of continuity, for example,

might exhibit itself by the curve passing off to an infinite

distance by one branch without returning by another ; for

the continuity involved in an algebraical equation requires

that, when a curve disappears along one branch of a recti-

linear or parabolic asymptote, it should reappear either at

the same or the opposite end, just as much as that the

curve should not stop short at a finite distance ; this could

only be represented by the introduction of discontinuous

functions.

212. In spite of the uncertainty which the difficulties

mentioned above introduce, I think this exercise in the

highest degree profitable, as an illustration of the manner

in which, in physical subjects, difficulties arising from uncer-

tain data and imperfect measurements are met and theories

formed, which, as science advances, become nearer and nearer

representations of the results given by experiments.

This must be my excuse for making this attempt, how-

ever imperfect, to shew how to deal with a problem which

is in its nature not very precise.

213. The most obvious step towards this inverse process

is to find as nearly as possible the degree of the curve. A
lower limit to the degree is given at once by finding the

greatest number, n, of points in which a straight line, drawn

in the most favourable position, can be made to intersect the

curve, since, in any position, there may be imaginary points

of intersection, the degree of the equation may be n-{-2m

where m is any positive integer.
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XVII. For example, a curve whose equation is x*-i-y^ = c* can

only be cut by a straight line in two distinct points. Such

a curve might be distinguished from a circle by its flatness

where it meets the axes, but it would be hard to distinguish

it from the curve x^-{-y^= c^.

However, there will very often be some position of an

intersecting line which will give as many real points of

intersection as are exactly equal to the degree of the curve ;

at all events, it would be advisable to make the first attempt

with such a degree.

214. The next necessary step is to select favourable

positions for the coordinate axes to which it is intended to

refer the curve. In this choice we are guided by many
considerations, among which are symmetry, relations to the

directions of asymptotes, contact of the axes with branches

of multiple points, or, if we observe that there is one

direction parallel to which all straight lines cut the curve

in a smaller number of points than in any other direction,

it may be advisable to take one of the axes, as that of x, in

that direction, since, if there were no imaginary values, the

highest power of x which would then appear in the equation

would be less than for any other direction, and there would

be a consequent diminution of the number of terms of the

general equation which would have to be introduced.

The advantage of having the origin at a multiple point

or cusp is obvious.

215. The terms involving the highest powers of one or

both coordinates can be found from the first approximations

to the asymptotic branches, if there be any, and those of

the lowest powers from the forms near the origin ; at the

same time there might be imaginary branches which would

not be revealed by the figure, and yet the corresponding

factors would raise the indices of the highest powers ; the

fact of their existence could then be detected by the impos-

sibility of representing the given form by the tentative

equation.
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We must then adjust the intermediate terms so as to xvii.

satisfy the conditions of magnitude and other peculiarities

presented by the curve.

If, when a suflBcient number of conditions have been taken

into consideration to determine these intermediate terms, it

should be found that other conditions are not satisfied, this

would shew that aij equation of a higher degree ought to

have been tried, or that some error of magnitude has been

made.

When the curve has not m.any special points, these

tentative methods will be generally sufficient for the

purpose.

In more complicated curves other processes will be

required, but before proceeding to these I shall give a few

examples of what I have been observing.

Ex. 1. Take the curve fig. 28, Plate III.

The principal features which have to be represented are

the following

:

It is at least of the fourth degree.

It is symmetrical with respect to a line which should be

chosen as the axis of x.

It has no asymptotes.

Its shape near the origin is that of two parabolas, one of

which has a smaller curvature than the other.

It has a multiple point on the a;-axis, with its branches

equally inclined to the axis.

It touches at two points a line perpendicular to the

axis.

Assuming that it is of the fourth degree, there can be no

odd powers of y ; the terms of the highest powers must give

imaginary results.

The equation which represents the form near the origin

must be of the form

{y-— ax)(y^— hx) = 0,

so that the coefficients of y^ in the complete equation must

be of the form ojx-\-^x'^.
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XVII. Where y = 0, the equation reduces to

yV(a;-c)2= 0.

To satisfy these conditions it is suflBcient to assume the

equation to be

.

y^-{-y\ajx+^x^)+ y"x\x-cf = Q.

To determine the constants, measure the ordinate where

x= c, and it will be found that y = ic, or ?/- = 3c- nearly,

therefore Sc^-\-olc+ I3c'- = 0,

or a.+/3c=— 3c (a)

The greatest value of x is fc nearly, and since

{y^+ KoLX+ (3x'-)y-= lxmoL+^xy-4^y%x-cf),

we have {oL-\-/3xy--4<y\x-cf= S%ic-x),

hence /S'^= 4y2, a^- ^^c^= ^cS^

and 2/3(a+ /3c)= -52.
^^y

therefore ol—^c=— f,8c,

and by (a) foc= — i|8c= — fc.

The resulting equation is

y^-%(7c-2x)xy^+^x%x-cf= 0,

whence at the multiple point y = ±2%^ nearly, and near the

origin (y^-j;^cx)(y--^\cx) = 0.

This does not coincide with the equation in the text, but

sufficiently represents the general features, the discrepancy

arising from a misappreciation of the magnitudes involved.

With good drawing and accurate measurements as near an

approximation as we like could be made.

Ex. 2. Take the curve fig. 28, PI. IV.

This curve appears to be of the fifth degree.

Choosing the axes as in the figure, the form at the origin

may be represented by x^= 7tia'^y.

For any value of x there are only two values of y.

The asymptotes can be represented by x = a, —a, and 2a

and y= ±a.

The equation of the curve may therefore be written

(x-— a-)(x — 2a)y- — c(rx^+ ma^y = 0.
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When x= 0, y= — 2a, therefore 771 = 4 ; this solution gives xvii;

(2a, 2a) as a point in the curve, and it is easily seen that

the curve lies on the proper sides of the asymptotes.

The equation deduced is the same as that given in the

text.

Ex. 3. Take fig. 17, PI. III.

The curve may be of the fourth degree.

By observing the direction in which the branches at

the triple point run, their equations, near that point, are

reducible to

y — 2x = a^x^", y — x=—^^a?, and y-\-x = 'f'X^;

the parabolic form at an infinite distance might be repre-

sented by 2/" = (5"i-, or y'^ = S% or &^
of these the last should be chosen, as representing a curve

spreading more rapidly than the others.

The form of the curve as it crosses the axis of y appears

to be given by y — a-\-2x= — e-x^.

These conditions are all satisfied by

a(y-2x)(y^-x''-) = y\
which is the equation given in the text.

Of course, there being other conditions, such as the size

of the loops, to be considered, it would be merely accidental

if a curve of the fourth degree could represent all the

conditions, since the arbitrary constants have been all

exhausted.

Ex. 4. Take fig. 26, PI. III.

Observe that in the form near the origin y cc x^ and

2/^ oc x^, both are represented by the equation

2Sy^+ OLx^y-\-^x^ = 0.

For the infinite branches x = 2 and y = Sx^.

To fulfil these four conditions the equation may be written

in the form
{x-2){y-Sx^-)y"+oLx^y+ 13x^ = 0.

Since there is a multiple point near (1, 1), the equation

for determining y when x = l, viz.

y'-6y''-oLy-(3 = 0,
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must be (y — lf'(y — 8)= 0;

.'. S = l3-\-2, -a = 2^+ ].

The equation now becomes

(x-2)(y-Sx-)i/+ (S-'2S)x^y-(2-S)x^ = 0.

When x = l, y= —% nearly, by the figure

;

therefore —%= S—2 and 6 = 1.

We have now arrived at the final equation

(x-2){y- -Ix^) 2/2+ 2x^y- ^x^= 0.

It only remains to test the equation by some properties

not yet used.

Near (2, oo ), x— 2-{-l()y~" = 0, so that the curve lies to

the left of the asymptote at both ends,

Near (1, 1), let x = l-\-^, y = l+)j,

since 2/^-i2/^-22/+ f = (2/-l)^(2/+ f),

[{x-l)y-i{(x-lfx-{x-J)}]y^--\-2(x^-l)y-%(x^-l)

={y-my-\-%)>

whence -(9 + +)P+^0^;7= |;?2.

therefore (>/ — 2^)- = if', and tj = ^--^, or y-^,

giving a proper result.

When x = 2, y = S, while, according to the figure, y ought

to be nearer to 2.

The equation difi'ers altogether from the one given in

the text, the divergence arising from the entirely different

forms of the parabolic asymptotes. It is curious, however,

to see how nearly the forms of the curves agree in all the

essential points.

216. In more difficult cases it will be advisable to save

trouble by making use of the properties of the analytical

triangle, by means of which, when the terms which give

the directions of infinite branches and branches of multiple

points and cusps at the origin have been determined, it is

seen exactly what intermediate terms may be introduced

without affecting these directions.
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METHOD BY THE TRIANGLE.

217. The arrangement of terms corresponding to infinite

branches and multiple points is made easy by considering

the property proved in Art. 145, i., that all parallel lines

containingcircles which indicate terms of an equation give,

when such are equated to zero, the same relation between

X and y as far as degree is concerned ; so that, if there be,

for example, a point of inflexion at the origin, the branch

touching 'one of the axes, an equation giving such a form

would be y^'= Ax% where r and s are different odd numbers,

and the same relation would be given for all parallel lines

;

the polygon must, therefore, have one of its lower sides

parallel to the line xlr-\-y/s = l.

218. If the form of the curve, whose equation is required,

be represented in the neighbourhood of the origin by the

two equations x^ccy^ and cc*"' oc y'', in which r/s<^r'ls', let

Ox, Oy be the sides of the triangle, intersected by AB,

A'B', where OA=^r, OB = s, etc. Complete the parallelo-

gram B'OAF, in Ox take A'G=B'F=OA, and in Oy take

BD = AF=OB', then DF, FC will contain circles which

correspond to terms in the equation giving the required

forms near the origin, if we take care that no circles lie

between DFC and the right angle of the triangle. Thus

the equation which would give the two forms might be

aa3''+'"'+ ^x''2/*'+ y ?y^+*' = ; thus, if we neglect y'"^^', x^' cc y^\

and the term was properly neglected if yy^ vanished com-

pared with ^a-'", or x^'''^' compared with x^l% which is the case,

since rjs <C r'/s'.

219. A similar argument holds for asymptotes with

respect to the upper sides of the polygon.

If there be a rectilinear asymptote, one of the sides of the

polygon must be parallel to the hypotenuse of the triangle.

If the asymptote pass through the origin, there is

generally no circle at those angles which the side first

encounters, when moved parallel to itself towards the right

PLATE
XVII.
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XVII. angle, the exception being when the same factor which gives

the asymptote is also a factor of the terms of dimensions

lower by unity.

If the curve cut one of the axes, we must take care that

circles are placed on the corresponding side of the triangle,

sufficient to give as many solutions as there are points of

intersection.

220 Having thus selected convenient axes, and deter-

mined the direction of lines corresponding to tangents to

the branches through the origin, as well as the equations

representing first approximations to the asymptotic branches,

a polygon must be drawn whose sides shall be parallel to

these and contain no re-entering angles, the upper sides

corresponding to the asymptotic branches, and, if the axes

of coordinates intersect the curve, two of the sides being

coincident with the sides of the triangle.

It will be seen that the sides of the polygon may often

be made to cover less ground by the introduction of addi-

tional sides, taking care that the corresponding equations

give imaginary solutions.

221. When the polygon is completed, circles indicating

terms must be placed in the interior, so as to satisfy the

other conditions of magnitude and position presented by

the curve. We must then trust to our ingenuity, or, if we

can rely on the correctness of the drawing, to our measure-

ments, to determine suitable coefficients for the terms.

222. The advantage gained by this use of the triangle

may be seen at once by trying to reproduce the equation

of the curve given, PL VI. figs. 25 and 26, which may be

of the seventh degree, the general equation of which would

contain thirty-six terms.

The forms at the origin are given hy x — y~= 0,X"+ i/= 0,

and y^— x^= 0\ by the method of Art. 218, these are repre-

sented by the simple equation

xy^— y'^-\-x^'if-— x'' = 0,
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which also gives the line corresponding to the asymptote, so xvii.

that the four sides of the polygon drawn in fig. 24 are given

by this equation. If they had not been sufficient to repre-

sent the form of the curve in other respects, any of the six

terms between x^ and y' might have been inserted, having

taken care that there was no real solution but a;+j/ = 0.

One term x^y might have been introduced between x"^

and x^y'^, which would have had the effect of making the

latera recta of the parabolic forms different, and only three

terms more could have appeared, viz. x-y^, x^y^, x^y'^. Even

if every possible additional term had been introduced,

the reduction of terms to be tried would have been very

great.

223. Both in the direct and inverse process Des Cartes'

rule of signs is invaluable as a test of correctness ; thus,

when X and y are both positive or both ne'gative, there are

only two changes of sign for a given value of x, so that in

the quadrants xOy and x'Oy', any line parallel to Oy meets

the curve in two points or more, as in the fig. 25, Plate VI.

;

when X and y have opposite signs, x positive gives three

changes, and y has either three negative values or one, x

negative gives only one change, and y has only one positive

value as in the figure.

224. I shall give a small number of examples of the

manner in which, when the directions of the sides of the

polygon are determined, they may be placed end to end,

without attempting in every case to complete the equation

in other respects.

225. Ex. 1. In the curve represented in the figure, if we rig. i.

make the point A the origin, and the tangent at the point

of inflexion the axis of y, the forms at the origin could be

represented hy y^= — a^x and x^= by^, giving directions ah, Fig. 2.

cd of the two lower sides of the polygon.

When y = 0,x+ c= 0,8o that one side of the polygon is

on a side of the triangle.

F.C.T. N 2
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XVII. x^ = d}y will apparentl}'- represent the infinite branches,

and an upper side must be parallel to ed.

The polygon c^ySe satisfies these conditions, with one

side yS which we must take care to make correspond with

an equation having imaginary solutions.

The equation

Gu^y-+ I3y^
— yxhj^— Sx^ — ex^=

represents all the above forms which correspond to the

sides of the polygon, the coefficients being chosen so as to

identify the terms wdth the corresponding circles in the.

angles of the polygon ; and it must be remembered that all

the Greek letters are positive, that e= cS, and that the

equation corresponding to yS gives an imaginary parabolic

asymptote.

Again, since the form at B would be given by y^= e\x-\-c),

the coefficients of y and y^ must vanish when x= —c.

These conditions are satisfied by the introduction of terms

involving x"y^ and o:^y^, and, the simplest equation to be

tried is therefore

y^— yx^y'^— ^x^y^ -\-a.{x-\- c)xy"— o{x-\- c)x^ = 0.

Applying Des Cartes' rule of signs

:

a;>0, y-\- gives H \
,

y— gives h H ,

consistent with one or more + , two — values of y,

— c<<a:<CO, ?/-f gives + + + — —,

X— gives — + — — —,

consistent with one + , one or more — value of y,

-oo<a;<-c, y-\- gives + + + + +,

y- gives
\ H +,

consistent with no +, one — value of y.

So also for the values x for any given value of y.

This form of the equation will therefore represent the

curve with tolerable accuracy.
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Ex. 2. The curve represented m fig. 3 may be of the sixth xvii.

degree ; the shapes near the origin appear to he x-\-y = 0, j.- 3

and y'^= Ax, corresponding to the sides a^, /3y of the Fig. 4.

polygon.

Near (0, 00 ) , xy'^ = B corresponding to y^,

near (00, CO ), (x-yf = 0, „ „ Se,

near (00, a), y^-a^= 0, „ „ e^,

near (2a, 0), x — 2a = 0, „ „ ^ol.

As far then as terms which correspond only to the

perimeter of the polygon the equation would be

xy\x— yy — a^x^— sa^y^+ 2a'^x {x+ y) = 0.

To determine what terms correspond to circles within

the polygon, we must examine the effects of still nearer

approximations.

Since the asymptote is met by the curve on both sides at

the positive end, {x— y)'^= Jc'^/x, so that there can be no term

of the fourth degree, and the' most general equation would

be of the form

xy\x— y)^— o?x^— sa^y^+ ra^xy'^+ ta^x'^y+ 2a*x (x+ y) = 0.

Near (2a, 0), (t+ l)y = x-2a,
therefore, according as we consider the tangent to be

y = x — 2a or y = 2{x — 2a), t = or —L
Apparently the bisectors of the angles between the axes

meet the curve where

x = y = 2a, whence s— r=l-\-t;

x= —y = a, whence s-\-r=5-{-t;

.'. r= 2, and s= 3 or f, as ^= or — |.

The complete equations are therefore on the two

suppositions

xy\x— y)^— a^x^+ 2a'^x {x+ y)-{- 2a^xy^= ^a^y^, (i)

or =^a^y^-\-\a^x^y (ii)

It only remains to see which equation will best represent

other apparent properties. Near (0, 00), x = Sa^/y^ and ^a^/y^
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XVII. in the two cases ; when x = 2a, 2/ = 0, and 2a in both cases,

and the third value is given by

22/2(2/ - 2a) -a2(32/+ 2a) = 0,

or 22/2(2/- 2a) -a2(|2/+ a) = 0,

one giving y a little greater and the other a little less than

fa, the other roots are impossible.

Near (00, a), (i) gives y = a—a^lx^, whereas (ii) gives

y = a+ \a^lx; hence (i) is alone admissible since the curve

is below the asymptote at both ends.

To shew that (i) satisfies the conditions fairly we observe

that the tangent at (2a, 0) intersects the curve at (|a, —^ci)

and (a, —a), and that the next approximation to the

tangent is y = ^— i^/2a, or that the curve bends downwards

at (2a, 0).

Near (fa, - |a), f}= fi;

near (a, -a), v = ii;

these agree with the double bend in passing from (2a, 0) to

(0, -X).
Again, the curve represented by (i) cuts the asymptote

2/ = a, where x= fa.

Also, ii x= —my, y is known from the equation

in{m+ 1 yy*— (m^— 2m— 3) a^y — 2m(m— 1 ) a^= ;

to obtain some idea of the size of the loop, let on= h, then

92/^+31a32/+4a*= 0,

whence y=—%ci and — y-^^a nearly, so that the loop is

smaller than in the figure.

If we assign values to y and apply the rule of signs

to the resulting equations in x, we find that the results

agree with the figure, and similarly if we assign values

to X.

Fig. 5. Ex. 3. The curve in the figure is apparently of the

fourth degree, the form near the origin is represented by

(y—xY= A^x^; near (0, 00), by xy = B-; near (qo , a), by

x\y — a)= —G^; also near ( — a, 0), which is a point of the

curve, a;+ a+ 2/ = 0.
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The bounding polygon contains the circles corresponding xvii.

to the following terms pj g

a\x— yf— {y— a)x^— yxy^— Sx'^y'^,

where y is + , and x'^+ Sxy+ yy-= has no real root.

The most general equation which can represent the curve,

supposed of the fourth degree, is of the form

a\x— y)^—{y — a)x^— OLyx^— (By^x— yxy^— Sx^y^ = 0.

Since near (oo , a) there is no term in a;"^, a-— aa— Sa^= 0.

Near { — a, 0),

ax\x-\-a)— '2a^xy — x^y— CLx'^y = 0,

which becomes x+a+y = (i, if a= 2a, whence ^=—1; /3

and y can be determined by the apparent values of y when
x= —a, viz., 2/^+ 30-2/+ 2a^ = 0, and y = 0. The equation so

far obtained gives y = 0, and

a(2/+ 2a)+a2-2aH/32/+ 72/Ha2/ = 0.

or y2/2+(^+2a)2/+ a2= 0;

.-. 2y=l, 2;8+ 4a= 3a, (3=-^a, y= \,

and the equation- of the curve is

o?((y— xf— (^y— a):ii?— 1ayx^-\-\axy'^— \xy^-\-x^y'^= ^.

It only remains to see how far this agrees with the given

curve.

When2/ = a, {x — af— 1x^-\-x'- — ^,

:. x= \a, almost exact.

When y — x, ^{x-\-a)— Q,

so that the tangent at cuts the curve at ( — a, — a).

The equation corresponding to the upper side of the

polygon is ^— xy-\- \y'^= 0, whose roots are imaginary.

Near (oo , (x), y — a=—2a^x~^.
The tangent at { — a, 0), viz., y+ x+ a = 0, meets the

curve where a^y^— (2axy-\-x"y){x+ a)+ ^xy\2a+ Sx)=
or y^ = and a-+ Sax + fa;- = 0, whose roots are impossible,

so that all the conditions are satisfied.
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METHOD BY PARTIAL CURVES.

226. It is frequently possible to discover, from the form of

the curve, simple partial curves, from which the given curve

may be supposed to have degenerated. If we then form a

single equation which will represent these partial curves,

we may obtain at once terms which will form the required

equation, by a proper alteration of the coefficients, or by
the introduction of such terms as will prevent the equation

from being split into simpler equations.

227. A simple case of the application of this method is

to the curve represented in fig. 15, PI. II., which may be

supposed to be degenerated from a circle and two straight

Fig. 7. lines, as in the figure.

The equation representing the partial curve is

from which we obtain an equation

which, if a be a little greater than b, would give the required

curve.

Pig. 8. 228. The curve represented (PI. XVII. fig. 8) can be con-

ceived to have degenerated from the three dotted .circles,

whose equation is

{(a;2+ 2/')'- 4aV} (x^+ 2/'- 4>a^)= 0,

and, considering the compartments within which the curve

lies, the equation may be written

{(«2+yy- 4aV} (a:2+ y^- 4a2)+ aa«= 0.

When x= 0, one value of y is fa, by the figure ; whence

a= f4(l— ^), and the other value of y^ is approximately

4a2-aa7l6 = 4a2-2a'745, .-. y = 2a-aJ90.

Thus the curve is properly represented by this value of a.

If there were a conjugate point at the origin, we might

write a*(oLx^+ I3y^) for a.a^.
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The curve (PI. XVII. fig. 9) may be obtained from the xvii.

partial curves whose equation is pjg 9,

(x^+ y^-a'"){x'-b'')(y + c) = 0.

Assuming the equation of the curve to be

(x^--i.y^-a^)(x^-b"){y + c)+ ca^bY"= 0,

where y is small compared with a, b, and c, the curve cuts

Ox where x'" = a^-aWy''/{a^-b") or b'^+ a^b^/ia^-b^)

nearly, which accounts for the two side loops, part of the

darker curve.

IfrK= 0, (^y2_(^2)(2/+c) = caV'
.-. y=±a{l + hcyy{c±a)} and -c{l-a.y/(c2-a2)}

which account for the position of the lower loop, and the

upper infinite branch.

It will be found that the curvature at the first and second

points on Oy is in the same direction and nearly equal to

that of the guiding circle, and that at the third point the

curvature is very small.

If — y- be written for y- we obtain the light curve.

JVote. The side loops degenerate each into a very small

oval touching the axis of x where x^^h {a-+ b-), if

2a262y2 = (a2-62)2.

In the figure lSb = Sa and 6c = lSa nearly.

229. The following examples will shew how the use of

compartments may be combined with that of partial curves

to obtain the equation of some curves.

230. Fig. 10 and fig. 11 represent curves which can

plainly be derived from an ellipse and straight line as

given by the dotted lines.

The equation of the curve in fig. 10 is of the form Fig. 10.

(ax^+ by--l)(y-c)+ Oi^= 0,

where o;. is a small quantity compared with those employed

in the partial equations ; for in the case of the oval

ax"+ by^— l is negative, and y — c positive, and vice versa

for the remaining portion of the curve.
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XVII. To find the equation of the curve in fig. 11 we have to

Fig. 11. contrive that the partial curves shall be cut by the given

curve in the three points A, B, C; as these points are

placed in the figure they would lie in a parabola, and the

equation of the curve would be of the form

(ax^ +by^--l)(y-c)+ oL\y^-hx)= 0.

If B had been in the line AC, the equation would have

^^®° j{ax''-}-bi/-l)(y-c)-a}{x-d) = 0.

231. The curves given in fig. 12 and fig. 13 are clearly

derivable from a circle, and three lines forming an inscribed

triangle.

Fig. 12. The equation of the curve in fig. 12 is of the form

{x^+ y^-2cx)(y^-m^x^){(l^m^)x-2c}-\-a} = 0;

Fig. 13. and since the curve in fig. 13 crosses the partial lines in

A, B, C, D, E which lie in a line, the equation is of the form

{x- -\-y^— 2cx)(y"— m-x^) {(1 + m'^)x — 2c}

— OL%ax+ by — 1) = 0.

Examples XII.

As examples the equations of the figs. 14-19 and each of the two
curves in fig. 20 may be found ; fig. 19 represents half of the curve,

whose equation is to be discovered, the curve being symmetrical with
respect to x'Ox ; the partial curves are indicated by dotted lines.

For general examples of this chapter, equations may be investigated

to represent the curves 1, 2, 6, 9, 13, 15-18, 20, 21, 25, 28 traced in

PI. V.
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V. 2 a^+y^--iaxy= 89

V. 3 x{y-xf=ay^ 93

V. 6 {x+2y){x-yf-Qa-{x+ij)= - ' - - 96

V. 8 2x{x-yf-Za{x'^-y'^)+ Aahj = - - - 96

V. 9 x{x+ \)y= {x'^+x-\-\){x-2) - - - - 97

V. 10 (.r-a)/= c3 98

V. 11 {x-a){x-b)y==(? 98

V. 15 {y-x)(y-Ax){y+ 2x)= o? - - - - 100

V. 16 {y-x)(i/-^x){y+ 2x)= 2a:\v - - - 100

V. 17 {y-x){y-Ax){y-ir2x)= Sax^ - - - 101

V. 30 x'^y-7fx= a{x-hf-h{y-af - - - 105

VII. 28 xy^+ 2a^y-ax^-3a\v-3a^= - - - 140

XIV. 1 y(b^--y'-)=x^-(a-x) 168
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Figure Equation Analysis
<Plate, number) (Page)

IV. 29, 30 {.cij-abf= ¥d{c-y) 86

IV. 32, 33 .fy-2«%j/-?-y+ 2a262-6< = ... 86

V. ,4 y{i/-x)\y+ 2x) = Qcx^ - ' - - - - 94

V. 5 y{y - xfiy \-2x)= '^c^x- 96

V. 7 {x-\-2ijf{x-yf-a?{x+y)= ... 96

V. 18 {y-xf{y+ x){y+ 'ix)= \Qa'^ - - - - 101

V. 19 (y-xy(y+ x){y + 2x)=:6ax^ - - - 101

V. 26 (.r2-y2)2_ 4^2+^= - - - - * - 104

V. 27 y{y-±y(y-2x)+ 3a(y-x)x--2alv'^= - 104

V. 28 y^^iy — x) — ay^ - hyx"^+ c^x"^= - - - 105

VL 6 a\y + x)~2a'^x{y+ x) + x^= - - - 111

VL 7 y^-2{Zx-Aa)ay''' + a^x'^= - - - -112

VL 8 x*-3ax^y+ 2aY-'ay^=0 - - - - 112

VL 12 a/(y-a)-.t-2(y2_cj2) + 2a.r3/2-a^4= - - 113

VI. 14 yx'^{y-x) — ay^ — byx'^ + c'^x^= - - - 114

VL 15, 16, 17 (y-x-a)y^-byx^-+ mabx^'= - - -114

VIL 2 (i/^-x^-y+ 2axy'-5ajr^= - - - - 124

VII. 22, 23 7j(y -a.){y- f3)(y - y) = ax{x - 8){x - e) - - 135

VIL 27 (y^-x^){x-l)(x-§)= 2(y^+x^-2xy - - 139

VIL 29 (y^--x'^y+ 6axy^-7ax^-4:aY
+ I8a'^x^-20a^x+ 8a*=0- - -141

VIIL 1 27/-9j/2(A'2+ 14aa;+a2)+ 32a(a+A')3=0

or (x - 5a)~ 2 + (4;^; - 6^^+ 4a)~^

+ {4x+ 6y+ Aa)~^ = - - 141

VIIL 2 xy{x--y^)+ ra~(x-+y'^-a^)= - - - 144

VIIL 3, 4 xy{x--y^-)+ a(x-c)(x^+y'-a'^)= - -145

X. 3 xy^-4x^y+ ay^ + 3a\vy+ a\v= - - - 151

:5a: 1,' 2, 3}
(/-^')Uk-i)'-.^-n+My+«)=o - - 152 -

XL 4 {y'-x'){(^y-lf-x^}=±c'^- - - - 159

XIL2, 3 (i/- + x'^){{hy-lf-x^} + ix(y+ a)= - -159

XIL 4 {y'"+x^){{y-iy-a^}=±c-- - - - 161

XIIL2, 3, 4 {f- + x''){\y-\f+ x'']+ ix{y + a) = Q - -161

XIIL5, 6 {y'^+ x'''){{\y-\f+ x'^)=±c^- - - -164

XIV. 3 Cr2-a2)2-l-(?/2_52)2^„4 . . . .169

XIV. 4 ahj\x-bf= {a^-x''-){bx-ce-f - - - 170
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Figure Equation Analysis
(Plate, number) (Page)

XIV. 6 (a;2 -4)2 -3/2(3/+ 16)= 171

XIV. 7 {y^-axf+ {x'''-ayf= a'^ - - - - 172

XIV. 10 a^(i/-x)-2a^(j/'--.t^)+ a(7/+ .^;^)-xY= - 173

XIV. 11, 12 (if-ax){i/'^-b.v) + x^=±c^ - - - -174

CURVES OF THE FIFTH DEGREE.

L 11 .v^-2a^x'^+ 5a^xi/-2aY+^^= (i - - " ^

III. 11 a^(i/^-x^)-2a'^(7/^+ x^)+ ai/*+ x^= - - .50

III. 20 a^(j/-xf-2ax'^+ a7/*-x^= . - - 55

III. 21 2a^(y-xf(;>/ + x)-iax^(T/-x)+ 2:)/'-x'h/= - 55

IIL 25 x^-a\x^+f)+ a^v}/= - - - - 62

in. 26 afi-3bx^y-bxf+ 4by= - - - - 62

III. 27 XT' — as(?'y — axy^ -\- ahj^= ^ - - - - 63

IV. 1 aT>-aofiy-2a\vy''-^ah/= ^ .... 64

IV. 11 x^ — a?xy — a'^y^= 66

IV. 12 x^-a?xy-ay^= (i 66

IV. 13 .^^/-a;p*+ay = 66

IV. 14 a^/-a='.r2+a/= 66

IV. 15 xr'-ax^-a?xy + ay^= 66

IV. 19 .r5+3/5-5a^y= - ..... 76

IV. 28 (.r2-a2)(.r-2a),?/2-a2.j;3+ 4(^4^= 0- - - 85

IV. 31 x^y'^-2a'^x'^y + a\v-¥= Q .... 86

V. 12, 13, 14 xfi-ax^y-bxY-+y''= ^ - - - "98
V. 20 xr'-2a?xy+f=0 - - - - - - 102

V. 21 x^-baxY'+y^= ^ 102

V. 22 x^-ahfiy-b-xy''-+y== - - - - 102

V. 23 ?/2(3.t'-4j/)3-a*.y= 102

V. 25 Aa'^{y-xf{y+ x)-Sax^{y-x)+x^->ry^^O - 103

VL 2 ar{y-x)^-ay*= 0- 109

VI. 4 axy^-{x-ayy+ a^ = Ill

VI. 5 axy^-{x-afy- + a^^O - - - - 111

VI. 28 x{x^-ayy--y^= 123

VII. 18, 19 x(x^-ayf-7/(y-c) = - - - -128

XIV. 9 axf-{x-a)Y'+ a\v=0 - - - - 172

XIV. 13 y\x+yf{x-y)-2a{x+y)x'^y-'^a"x'^^(i - 175
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(Pla^r^ber)
^'^"^""^

^fp™^
XIV. 14 x^= {x-yf{x+y){x-2y) - - - .176

XIV. 18 ^y'^{x+7j-af= {x-y-bf - - - -176

CURVES OF THE SIXTH DEGREE.

in. 15 2(.r-?/-|.^2)2+ (.^^+ ^/)/-^/«-A«= - - 53

IV. 2,3,4 x'^+ ax'^y-cx'^)j^+ dxy^±ey^= - - - 64

IV. 5 x^ + a^7/*+ aKv^y+ aHy:=0 - - - - 64

VL 1 x^+ 2a^x^y-by= 108 '

VI. 3 a(x^+y^)-x^?/^=0 110

VI. 10 a(x^+y^)-a^x^y+ x^7/'^= - - - - 113

VI. 13 cY-(a + b)c\v^y+ abx^-c\i'^f= - - 114

VI. 23 x'^ + 2a'^x^y-bY= 122

VIL 4 x^-2bxY-^ctbx^+ bY-^(tbh-f+ a%^x^=0 124

VII. 24, 25 y'^ + x'^-ai/^+ a(ay-cx)x-' = - - -137

VII. 26 (f-a^f+ .v^(2x+ 3ay= - - - - 138

IX. 1 x^ - y^+ a^(x'^+y^ -3axi/)= - - - 146

IX. 2 afi-f+ a^(x-a)(x'^+ ii/^-3axy)= - - 146

IX. 3 (2/-2x+ 2a)(x-2i/+ 2a)(x^+y^)xy

+ b%ri+f-a^)= - - - - 146

IX. 4 (j/^'-axy(x-af-a^xi/(x-+y'^-a-)= - - 146

IX. 5 (x^ — i/^)(x - a)y^

-a^x^-+y^-a^)(x''+f-4a^)= - 147

X. 2 Q/ -2x+ 2a){x-2y+ 2a)xY^

+ b(.%-^+y^+ 2a\vy)= - - - 149

XIV. 16 .r<5+ay + a2.?%+ a%?/2= - - - - 176

CURVES OF THE SEVENTH DEGREE.

V. 24 {*(?/ -.i-)-«2}y= a" 102

V. 29 x''-x^y*+aY-axY= - - - - 105

VI. 9 x'^-xY+ a^-a^y^^O - - - -112

VL 11 x''-a^x^y(x-y)+ a^(x-yf= - - - 113

VL 25 x^y^+xy^-f -.1-^ = - - - - 60, 122

VIL 6, 7 x^y*+axY+ by^+ cx*y+ dx= - - -125

VIL 11 (i/-afx*-2a*(y-a)x^+ a*(x-a)y^==0 - 127

VII. 21 6.r^-2xy-a3.ry+ 4rt3.r;3_y

+ 2a^v^-2a^xy+ay= - 130

XIV. 2 xY= a^{a-xf{a-2xf - - - - 169
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CURVES OF THE EIGHTH DEGREE.

FiouRB Equation Analysis

(Plate, number) (Page)

VII. 9 a?y^+ x^f-x^y^+ ajfii/-a^v^^O - - - 126

XIV. 5 (a3y-.r*)2-a'»(.r-2a)2(,r2-a2) = 0- - - 170

CURVES WITH EQUATIONS INVOLVING TRIGONOMETRICAL
FUNCTIONS.

XV. 4 sin^.t?+sin^?/-3asin.t'siny= - - - 179

XVI. 1 sin^.r+ tan3?/-3asin.r tan?/ = - - - 181

XVL 2 tan3.r+ tan3?/-3atan.rtan?/= - - - 181

XVI. 3,4,5 sin^jp + sec^^-3asin.fsec?/ = -
- - 181

XVI. 6 a(sin.^'^-sin?/)2= sin.^•(sin-.r+ sin2y) - - 183

XVI. 7 a(sin2/+ tan.r)2= tan.r(sin2?/ + tan2.r) - - 183

XVI. 8 a(sin.r+ tany)2= sin.r(sin2,r+ tan22/) - - 183



Fig. i +

Fi{f. 19
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Analytical Triangle, 117-122, 171,

193.

Approximation, rules for, 33.

examples of, 34.

to asymptotes, 79-82, 88-95.

to tangents, 15, 39, 44.

at multiple point, 45, 49, 51, 54.

at point of inflexion, 42, 48, 49.

Asymptotes, 5, 23, 68, 69, 193.

curvilinear, 107, 108.

inflexional, 72.

parabolic, 64, 65, 93, 108.

parallel, 95, 98.

parallel to axes, 80.

not parallel to axes, 88-92.

quasi-, 69, 108.

determination of, 74.

determination by approxima-

tion, 79-82.

how curve approaches, 81, 91,

92.

Auxiliary equation, 29.

Beer, A., 152.

Change of origin, 3, 137.

Compartments, method of, 143.

Conjugate points, 5, 51, 53, 135.

Cubic equation, graphical solution

of, 32.

Curvature, 17, 40.

circle of, 18, 41, 43.

conic of, 40, 41.

diameter of, 18, 41, 44.

at multiple point, 54.

Curvilinear asymptotes, 5, 69, 93,

107.

Cusp, 5, 15, 135.

ramphoid, 5, 16, 51.

keratoid, 5, 13, 16, 51.

Degeneration of curves, 24, 83, 135.

Degree of a curve, 23.

De Gua's Analytical Triangle, 58,

61, 117.

Des Cartes' Rule of Signs, 195, 196.

Double points, 45, 85.

at infinity, 95, 98.

Guiding asymptote, 5, 62, 69, 108.

Homogeneous curves, 100.

asymptotes to, 100.

Inflexion, point of, 5, 15, 22, 30, 31,

42, 48, 49.

at infinity, 72, 97.

Isolated portions of a curve, 149.

Keratoid cusp, 5, 13, 16, 51.

Method of compartments, 143.

of partial curves, 200.

Multiple points, 5, 45, 54, 134.

at infinity, 72, 80, 95, 98.

determination of, 85, 137.

Newton's Lemmas, 16.

Parallelogram, 58, 117.

Principia, 1.

Orders of quantities, 9, 58, 79.

Origin, change of, 3, 137.

shape of curve near, 39, 45, 58.

Osculating branches of curve, 55.

Parabola, semicubical, 21. 24, 64,

65, 108.

Parabolic asymptotes, 64, 65, 93,

108.

curves, 12, 20.
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Point, conjugate, 5, 51, 53, 135.

double, 45, 85, 95, 98.

multiple, 5, 45, 54, 134.

of inflexion, 5, 15, 22, 30, 31, 42,

48, 49.

of osculation, 5.

singular, 5, 137.

Points of intersection at infinity,

69, 80, 97.

Quarterly Journal, 135.

Quartic equation, graphical solution

of, 33.

Quasi-asymptote, 69, 108.

Ramphoid cusp, 5, 16, 51.

Repeating curves, 177.

Tangents, 15, 16, 39.

approximations to, 15, 39, 44.

Theory of equations, 29.

Triangle, the Analytical, 117-122,

171, 193.

Trigonometric fimctions, graphs of,

28.

curves whose equations involve,

177.

Semicubical parabola, 21, 24, 64,

65, 108.

Singular points, 5, 137.

Solution of equations, 32.

of tan x — x, 35.

Special curve of fourth degree,

152.

Symmetry, 7, 133.

Walker and Walton, 135.

Wolstenholme, J., 142.
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