
UC-NRLF

$B Sm bDh









Digitized by the Internet Archive

in 2008 with funding from

IVIicrosoft Corporation

http://www.archive.org/details/elementarytreatiOOhanurich



X



AN

ELEMENTAET TEEATISE

ON THE

? • ' \r^

THEORY OF DETERMINANTS.

A TEXT-BOOK FOR COLLEGES.

PAUL H. HANUS,
M

Formerly Professor of Mathematigs in the University of Colorado;
NOW Principal of Denver High School, District

No. 2 (West Denver).

UHV

BOSTON:
PUBLISHED BY GINN AND COMPANY.

1886.



Entered, according to the Act of Congress, in the year M86, by

PAUL H: IIAXUS,

in the Office of the Librarian of Congress, at Washington.

J. 8. Gushing & Co., Pkintkrs, Boston.



PEEFAOE.

The importance of a knowledge of Determinants to all

who extend their reading beyond the elements of mathematics,

and the fact that most modern writers employ the determinant

notation, have led to the belief that an American work on

Determinants might satisfy a growing demand.

This is a text-book, and not an exhaustive treatise. Enough

is given, however, to enable the student to use the determinant

notation with ease, and to enable him to pursue his further

reading in the modern higher mathematics with pleasure and

profit.

The book is written with reference to the wants of the

private student as well as to the needs of the class-room. The

subject is at first presented with great simplicity. As the stu-

dent advances, less attention is given to details. More than

half the volume is devoted to applications and special forms,

that the reader may get some notion of the power and utility

of determinants as instruments of research.

Throughout the work care has been taken to show how each

new concept has been evolved naturally ; and, whenever it is

thought advisable, a special case precedes the general dis-

cussion.

The work has been written in the far West, where contact

with others in the same field was practically impossible. I

167219



iv PREFACE.

shall therefore be grateful for any notification of errors that

may have escaped detection.

My thanks are due to Messrs. J. S. Gushing & Co., of

Boston, for great care and patience manifested in the prepara-

tion of the plates.

Among the works consulted most assistance has been derived

from the following. All the works named have been used

freely.

Matzka.— Grundziige der systematischen Einfiihrung und Begriin-

dung der Lehre der Determinanten.

Baltzer.— Theorie und Anwendung der Determinanten (Fiinfte

Aufiage).

Gunther.— Lehrbuch der Deterniinanten-Theorie (Zweite Aufiage).

Diekmann.— Einleitung in die Lehre von den Determinanten und

ihrer Anwendung auf, etc.

Dostor.— Elements de la Theorie des Determinants avec Applica-

tions, etc. (Deuxieme edition).

Houel.— Cours de Calcul Infinitesimal.

Scott.— A Treatise on the Theory of Determinants and their Appli-

cations, etc.

Burnside and Panton.— The Theory of Equations, with an Intro-

duction, etc.

Muir.— A Treatise on the Theory of Determinants.

I am especially indebted to the last, two works for many

examples.

PAUL H. HAN US.

BouLDBU, Col., May, 1886.
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THEORY OF DETERMINANTS.

CHAPTER I.

' PEELIMINARY NOTIONS AND DEFINITIONS.

1. The first notion of Determinants we owe to Leibnitz, who,

in his attempts to simplify the expressions arising in the elimi-

.nation of the unknown quantities from a set of linear equations,

employed symbols nearlj' identical with our present determinant

notation. In a letter dated April 28, 1693, Leibnitz communi-

cates his discovery to LTIospital ; and later, in another letter,

expresses the conviction that the functions will develop remark-

able and very important properties,— a conviction which time-

has abundantly verified. Leibnitz, however, never pursued the

subject himself, and his discovery lay dormant till the middle

of the eighteenth century.

In 1750 the celebrated geometer, Gabriel Cramer, rediscovered

determinants while working upon the analysis of curves. Dur-

ing the course of his investigations, Cramer had to solve sets

of linear equations, and naturally encountered the same func-

tions that had attracted the attention of Leibnitz.* To Cramer

is due the general rule for the solution of n simultaneous linear

equations (non-homogeneous), containing as many unknown
quantities.

This rule was inferred without proof from the form of the

values of the unknown quantities obtained in solving sets of

two and three equations.

The particular problem which led to Cramer's discovery of deter-

minants appears to have been : To pass a curve of the uth order through
u'^ 8y . . .

any —| given pomts.
2, 2,



2 THEORY OF DETERMINANTS.

Since the time of Cramer important advances hare been

made. The names of many celebrated mathematicians appear

in the list of those who aided the evolution of a theory of deter-

minants. Prominent among these are Vandermonde and Gauss.

From Gauss the name "determinant" instead of "resultant"

was adopted by Cauchy. Cauchy and Jacobi are perhaps to

be considered as the greatest among those who first developed

the subject. The monograph of Jacobi, published in 1841,*

established the foundation of a treatise on the theory of

determinants ; and his own writings, as well as the works of

many eminent mathematicians during the past fifty years, attest

the wonderful power of determinants as instruments of mathe-

matical investigation, and the fruitfulness of the functions

themselves.

2. The most natural way of approaching the theory of deter-

minants would be along the line of development. This is

accordingly our purpose. Owing to peculiar difficulties attend-

ing this mode of procedure, we can however onl}' employ this

.method at the outset, and must soon adopt a presentation

better suited to the further unfolding of the subject, and free

from the peculiar difficulties alluded to.

Determinants of the second^ thirds and fourth order.

3. Consider the set of four simultaneous linear equations :
—

(1) a^x -{- h-^y -\- CiZ -\- d^t — rrii

(2) a<iX + h^y + c^z -j-dzt = n^

(3) a;iX-^b.y-\-CsZ-\-dst==ms

(4) a^x -\- b^y -^ c^z -{• d^t = m^

Here it will be convenient to eliminate the unknown quantities

in a uniform manner, as follows : in each set of equations to be

obtained, (2) will be multiplied by the coefficient of the un-

known in (1) that is to be eliminated, and (1) by the corre-

sponding coefficient in (2) ; (3) will be multiplied by the

* De Formatione et Proprietatibus Determinantium.

I.



PRELIMINARY NOTIONS AND J3EF1NITI0NS. 6

coefficient of tlie unl^nown under consideration in (2) , and (2)

by the corresponding coefficient in (3) ; and so on tlirough the

set. Having tlius made the coefficients of one of the unknowns,

it', say, the same in all the equations, we will then eliminate x

by subtracting (1) from (2), (2) from (3), etc. We shall find

in performing these operations that the coefficients Of the un-

known quantities and the absolute terra after each elimination

are functions of a particular form, and subject to the same law

of formation,— that these functions are, in fact, Determinants.

Eliminating x in set I. as directed, we have

(1) (di^s— <^2^l)2/+(^1^2— «2Cl)^+(<^l<^2— %^l)^=<^l*^2— «2^ll

(2) {a,^z—aJ)<^y-\- (r/oCs— agCs)^;^ {a2dz—a.jic^t=a.2m^—a^m2 \ II.

(3 ) (
a^^— a^dg)y+ (^304

—

a^c^ z+ {a-^d^— a^d.^ t= a^m^^— a^m^
j

4. Examining these binomial coefficients, we see that each

contains one positive and one negative term, and involves four

quantities, viz., ai, a2, 61, &2 i
or ag? %? <^2? Cg, etc. It will also

be noticed that each term never contains more than one a

(coefficient of a?) , or h (coefficient of 2/) , or c (coefficient of z)
,

etc., but that each term does contain all the subscripts that

occur in the binomial. Finally, the terms in which the sub-

scripts occur in their natural order are positive, while in the

negative terms there is an inversion of the natural order in the

subscripts, ^.e., a^^c^ is +, but a4C3 is — . Such binomials are

determinants of the second order.* (The order of a determinant

is determined b}' the number of factors in each term.) It has

been agreed to denote them, following Laplace, by writing the

letters involved in regular succession, affecting each with the

subscripts in order, and enclosing the whole expression within

parentheses, thus : {a^h^) = ai^a — ^3^1 '•> {(^2^^) = «2^3 — <^3C2, etc.

Introducing this notation, set II. becomes

( 1 ) («! 62) y 4- (or-i C2) z + (a-i d^) t= {a^m^) '

(2) {a^h) y + (agCg) z + (ciodg) t= {cum^) . III.

(3) {a^h,) y + (otgC^) z + {a^d^) t = (^3^714)

* The general definition of a determinant is given in 17, Chap. II.
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5. If we now eliminate y, according to the directions given

in 3, we have

(1) [("1&2) («2C3)-(«2W (%C,)]2+[(aiW<«2«^3)

— (agftg) (aiC^2)]^= («1&2) (^2^3) — {^M («l'^2)

(2) t (ag^s) («3C4) - («3&4) («2C3)] 2 + [(a2&3) («3^4)

— (a364) {a2dz)~\t = {a^h) {a^m^)— {a^h^) {a^m^)

Examining the binomial coefficients of the unknowns, and

the absolute terms in set IV, we see at once that they are of

the same form; and if we can simplify any one of them and

discover the law of formation, we have them all. For this

purpose let us expand the coefficient of 2;, putting, for short-

ness, this coefficient equal to C. Then, by the definition in 4,

G = (ai&2) (ci2Cs) - (a^bs) (a^c,)

= (ai^a) (^2^3 — cisGo) — (a^bs) (ttjCa — agCi)

= ajj [ (ai 62) C3+ (a2 ^3) ^i] - Cg [ (ai 62) ^3 + («2 ^3) «i] •

The last binomial,

(aj 62) «3 + (^2 ^3) «1 = («1 ^2 — «2 ^1)% + («2 &3— «3 ^2) «! -

= ^2 («1^3 — «3^) = «2 («1^3) •

.-. C = a2 [(ai62) C3 — (aibs) Gi + («2&3) cj

= ttg [«! &2 C3 — ttg ^1 C3 — «i &3 C2 + ^3 61 Co + 0^2 ?>3 Cj — Cl^ h^cj .

Here the quantit}' within brackets consists of 2-3 = G terms,

^.e., of as many terms as there are permutations of the sub-

scripts 1/2, 3- Three of the terms are positive and as many

are negative. The quantity involves the 3^ = 9 quantities a^,

^29 ^35 "H b^-, O3, Cj, C2, C3.

No term involves more than one a, or &, or c, but does con-

tain all of the subscripts 1, 2, 3? each term containing a different

permutation of these numbers. Finally, as before, we notice

that those terms in which the subscripts occur in their natural

order, or in which there is an even number of inversions * of

* In a series of integers which are all different there is said to be an

inversion of order when a greater number precedes a less. Thus in 13452

there are three inversions, in 21354 there are two inversions, etc.
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order, are positive, while those terms are negative in which the

number of inversions of order of the subscripts is odd. Such

a function is a determinant of the third order. A determinant

in which the quantities are those of C is denoted by (rti&aCa).

We therefore have C = a2 (%&2C3) . It must be carefully noticed

that the equation

(tti^gCg) = (a^bo) Cs — (chbs) c^ + {ci^h) Cj

= tti^aCs — a^hiC^ — aibsC2 + (Xs^iCa + ci2^sCi — a^b2Ci

gives the expansion of a determinant of the third order.

Employing the notation just explained, the coefficient of

t in (1) is evidently a^^aib^d^), and the absolute term is

«2(ai&2W3)« The coefficients and the absolute term of (2) will

obviously be a^Xaob^c^), a-^ia^b^d^^ a^ia^b^m^^ in order.

Introducing this notation into set IV, and dividing (1) and

(2) by tta and a^ respectively, we have

( 1 ) (ai b. C3) ^ + (ai 62 ^^3) ^ = («ih m^) ,

;;i(2 ) (ttg 63 C4) 2; + (as &3 <^4) t= (a2bsm

6.* If we now eliminate z in the same manner as heretofore,

we have

= («1&2C3) («2&3W^4) — («2^3C4) («1&2^%)
VI.

The preceding results naturally imply a simplification and law

of formation to be discovered in the coefficient of t and the

absolute term of VI.

To simplify the coefficient of f, which for shortness we will

call (7, as before, we proceed as follows

:

C = (ai^gCs) ((1263^4) — (<^2&3C4) (0tl&2^3)

= (aihcs) [(a2^3) d* — («2M <^3 + («3&4) (^2]

- ((hhCi) [(Ctj 62) ^3 - (CLlps) ^2 + («2&3) <^J

= {<hh) [(ai&2C3) <^4 - ( o.ihc^) d{\ - Dd., + D,d2',

* 6 may be omitted on first reading, if thought best.
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in which

D = {a^h^c^ (^2^4) + (a2^3C4) (%&2)? and

Now, by 5, (aidgc's) = {aib^) Cg — {aM c^ + {a^h) Ci

;

and (ag 63 C4) = (ag ^3) ^4 — («2 ^4) C3 + (t^s ^4) ^2-

Substituting,

D = (a^h) [ia,\) C3 - (ai&g) Cg + (agftg) cj + (aiftg) [(«2&3) C4

— («2MC3+(«3^4)C2]

= (as 63) [(^2^ Ci+ (Oti^s) Cj - [(a2&4) {(^ih)

-{a^h) (a3&4)]c2-

The second binomial, {a^h^) {aih^) — ((1162) (^3^4)

= {a^h^-a^\) {aM - (^3^4 -«4 ^3) ((^ih)

= &4 [(ai?>3) 0(2 - (oti&2) «3] - <^4 [(tti^s) ^2 - (^1^2) hi

= ^4 [(«1^3 — «3&l) «2 — («1^2 — «2^) ^3]

— ^4 [(tti 63 — ttg 61) 62 — (<*!h — a^bi) 63]

= <Xi 64 (as 63 — cca bo) — O4 61 (tta ^s — % ^2)

= (0164) (ag&g) (K)

.*. D = {a^b^) [(ai^a) C4 — (ai&i) ^2 + (a2&4) cj.

Substituting the expansions of {a^b^c^) and of {a2biC^ in Di

we have

A = («'3M [(«1^2) C3 - (ai?>3) ^2 + («2W Cj + («l&3) [(a2^3) C4

— («2WC3+ («3MC2]

= {a.p.,) [(a3&4)ci+ (0163)^4] - [(ai&3) («2?>4) - («A) (ot3^4)]e3.

Here we notice that the binomial factor of the second term is

the same as the binomial factor in the last term of D : hence

equation (K) above, is {a^^b^ (<^i&4)«

.-.A= {(^ih) [(«1^3)C4- («1&4)C3+ (a3^4)^i].

Substituting the values of D and Di just obtained, in C,

we have
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O = {a^h) [_{a^h.2C^)d^— {a^h^c,)^.^— \{(hh.?)c^~ («! 64)03

= (^^s) l{.(^ihG^)d^— (a^hc^)d.i-h {chb^Ci)(l2— (aobsC,)d{].

From this value of C the absolute term of VI is obviously

((^kh) l(ctib2C^)mi— (ai 62^)^3+ (^i 6304)^13— (a2&3C4)mJ.

Now the quantit}^ within brackets in C (and in the absolute

term) of YI is here seen to be composed of four terms, each

of which contains a factor which is a determinant of the third

order. We shall presently show that this quantity is a deter-

minant of the fourth order ^ and will therefore write, in accord-

ance with the notation already exemplified, for determinants of

lower orders :

{a^h2C^)d^ — {a^b.2C^)ds + («iV4)<^2 — (ct2hcd^i = (<^hhc3d4) • • • (R).

Now, 5, («! 62 Cs) = («!h) C3 - («! 63) 6-2 + (a2 63) Ci

;

(aib2C^) = (ai 62)04 — (% 64)02 + (^2 64)^1

;

(ciibsc^) = (ai 63)04 - (0^^64)03+ ((1364)01

;

(a2 6304) = («2 63)04— (0^264)03+ (a3 64)02.

Expanding the determinants of the second order in the

second members of these equations according to 4, and sub-

stituting in equation (R) , there results ;

(ai6203cZ4) =ai6203d4— a26i03cZ4— a.i6302f^4H- a36i02d4+ a2b^Cid^— a^^^^id^

— aib^c^d^+ a^biCids+a^^c^d^— a^-^c^d^— a'^^c-^d^+ ap^^^d^

+(116304(^2— «36i04C^2—«i64C3^2+ a46i03d2H- a^b^pid^— a^b^c^d^

— a2bzC4il^-\-a^h^^di-\-a2b4p^di— a^2f-'.^di— a^b^c^di-^ ajft-^c^di.

This expansion contains 4 -S- 2 = 24 terms, involving 4^=16
quantities. Each term contains only one a (coefficient of x)

,

or 6 (coefficient of ?/) , or (coefficient of z)\, or d (coefficient

of t) , and contains all the subscripts ; a different permutation

of the subscripts belonging to each term. As before, we find

that the number of inversions of order of the subscripts is an

even number in the posi^ve terms, and is an odd number in
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the negative terms. Moreover, the number of terms is exactly

the number of permutations of the first four natural numbers.

Such a function is a determinant of the fourth order, and is

accordingly designated by {aih^c^d^. Introducing this nota-

tion, and dividing by (aa^s)? equation VI becomes

{aih2Czd^t=^ (aibzCsm^), VII. '

It is to be noticed that equation (R) of the present article

gives the expansion of a determinant of the fourth order.

7. We have now shown how determinants of the second,

third, and fourth orders arise in the solution of simple simul-

taneous equations. From the reductions of 6, it is obvious

that to continue the present method would very soon imply

difficulties in the simplifications practically insurmountable when

we attempt to produce determinants of the higher orders. For

determinants of the fifth order, the process of reduction would

be found very tedious. Hence, to investigate the properties of

determinants of the nth order, we are forced to take a new
starting-point ; and in Chapter II. we proceed upon a plan

somewhat different from that hitherto adopted.

Values of the Unknown Quantities.

8. From equation VII, 6, ^ = T-^-v-^rv- Had the equations

of set I been so arranged that z should be the last unknown

m each equation, we would evidentlv have z = -y—7—5—r-

^ ,,
(a,d,c,m,) ^ ^ (d,b,c,m ,)

(^^^^ds^^)

In the same way, y = ^^-^^-j ; x = "p^^^^j-

9. Among the many properties of determinants to be estab-

lished, we may here produce the following theorem, which is

among the most important of the elementary theorems in the

subject

:

The interchange of two letters, or of two subscripts, the others

remaining undisturbed, changes the sign but not the magnitude

of a determinant. ^
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1st. For determinants of the second order.

(a) The interchange of two letters.

{aih.2) =ai62 — ^2^1- In this, if we interchange a and 5, the

second member becomes

hia^ — b2ai= — (ai&2 — «2^i) •*• (^i<^'2) = — (f^i^a) •

(b) The interchange of two subscripts.

{a^h^ =ai62 — ^^2^1' If the subscripts are interchanged, the

second member becomes

a^hx — a-Jy^ = — («i?>2 — «2^i) •*• (^2^1) = — (^^2) •

2d. For determinants of the third order.

(a) The interchange of two letters.

(tti^aCs) = («i^2)c3— {(^\bz)<^2+ («2^3)<^i- In this, if we inter-

change a and &, the proposition is obvious from the first part

of the demonstration, (a).

We have therefore to show that the proposition holds for b

and c. We have, 5,

{aib.^ {a^c^) — {a^b^) {axG,^)^ a.{o-ih<^8)

-

In this expression, interchanging b and c, the first member
becomes {a-^c^) (^^s) — {(^'2<^z) (<^hh)' Since a^ remains un-

changed, (aiCg&s) = — (r^i^oCs).

(b) The interchange of two subscripts.

(oi 60 C3) = (tti 62)^3— (^1^3) <^2+ («2 ^3)^1- (I')- If the sub-

scripts 2 and 3 are interchanged, the second member becomes

{aibs)c2— (ai&2)c3+ («3&2)ci. Since {cisbo) = — («2^3)? 1st,

(6) , the second number of (L) becomes

— (ai&2)c3+ {aibs)Co— (a.2bs)ci

In the same manner it may be shown that the interchange of

any other two subscripts in (L) changes the sign of the second

\ member, .*. the proposition.
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3d. For determinants of the fourth order.

(a) The interchange of two letters.

(aiftgCa^O = {a^hcz)d^— {a^hc^d^-^ {aih^c^d^— (a2&3<J4)^i (I*)-

From 2d, (a) , the proposition is obvious for an interchange

of the first three letters. To show that the proposition holds

for c and d, we have, 6,

The interchange of c and d transforms the minuend into sub-

trahend, and the subtrahend into minuend, in the first member.

Hence, as (ag^s) remains unchanged, {aib2d3C4) = — {aiboC^di)

.

(b) The interchange of two subscripts.

{a^b^c^d^) = {aAcs) d^ — (aib2C^) d^ + (a^hc^) d^ — {aihc^ d^. (M)

.

In this, if we interchange the subscripts 2 and 3? the second

member of (M) becomes

(ai 63 C2) (^4 — («! 63 C4) (^2 + (oti 62 C4) do, + (% &2 C4) di.

Now, by 2d, (6), {aib^c^) = — (aib^Cs) ; and (ag&aQ) = — (ot2&3C4).

Hence the second member of (M) may be written

— (tti &2 C3) d^ + (ai 62 C4) ds — («! &3C4) ^2 + (02 &3 C4) di,

and therefore (ai 6302^4) = — (ai b2C3d^)

.

In a similar manner the proposition may be established for

the interchange of any other two subscripts.

It is obvious that two consecutive interchanges will leave the

determinant unaltered either in sign or magnitude. Notice

that an interchange of two letters corresponds to a uniform

change in the order of succession of the unknown quantities in

the original set of equations. Also, that an interchange of two

subscripts corresponds to changing the order of the equations.

10. Applying the proposition of the preceding article to the

values of cc, y^ z, and t, obtained in 8, we have

__ (mi 62^3 0^4)
,

_{0im2C^di)
^

_(ai?)2^3<^4). . _ ((^ib^c^m.i)
"

(% 62^3^4)
'

{dibiCsd^) ' ~ (ai&2C3C?4)' ~ {ctibzC^d^)'
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Notice that the common denominator in these" values is the

determinant of the fourth order, formed from the coefficients of

the unknown quantities. Also, that the numerator of the value

of X is obtained by changing the a of the denominator into m.

The numerator of the value of y is likewise obtained by chang-

ing the b of the denominator into m, and that the numerators

of the values of z and t are similarly obtained b}^ changing the

c and d into m respectively.

Notation.

11. We have seen that a determinant of the second order

contains 2^=4 quantities, a determinant of the third order

3^ = 9 quantities, and a determinant of the fourth order 4^ = 16

quantities. It is customary to employ the notation introduced

b}- Cayley, and write these determinants so that the quantities

(called elements) entering into the determinant appear arranged

in the form of a square, with a vertical line on each side.

Thus (aib2)= cti^i ; (aibzCs)^ aybyCi and (aj 62^3(^4)= aibiCidi

02^2 ^<2^2C2 a2b2C2d2

a^b^Cid^

Other forms of notation are also
|
cti 62 1 for (aj 62) ; | ai 62 Cg

|

for (0162^3); |ai&2C3<^4l ^ov {aib2Csdi).

There are still others to be described later. In Cayley's

notation the elements are so arranged that, regarded as coeffi-

cients of the unknowns in the original set of equations, they

occur in rows and columns in the regular order in which they

are found in these original equations. Further, comparing the

expansions with the square arrangement, we notice that each

term contains one, and only one^ element from each row and

cohimn, and that there is no other element from the same row

and column in the same term. Hence, as already exemplified,

there can be only 2, 3, or 4 elements in each term, according

as the determinant is of the second, third, or fourth order.

It will be noticed that the quantities occurring in the abbreviated
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forms (oihoCo), (ciiho^), \a1b.2 0^(1^1,, etc., are those found in one

of the diagonals in the square arrangement, viz., the diagonal

extending from the upper left-hand corner to the lower right-

hand corner. This diagonal is called the principal diagonal.

Similarly, that diagonal extending from the lower left-hand

corner to the upper right-hand corner is the secondary diagonal.

Any line parallel to these (principal or secondary) is a minor

diagonal. Any of the expansions heretofore given show that

the product of the elements of the principal diagonal is a posi-

tive term of the determinant. This term being composed of

the elements of the principal diagonal, is called the principal

term. The other terms can be formed from the principal term

by making all the possible permutations of the subscripts and

prefixing the proper sign to each permutation (5 and footnote
;

also 6).

Observe that the order of the letters in the abbreviated forms

of notation is the order of the columns in the square arrange-

ment, and that the order of the subscripts gives the order of

the rows. Thus, [ai^gCsl means the determinant whose first

column consists of a's, second column of &'s, and third column

of c's, and that the subscript of each letter in the first row is 1,

and in the second each letter has the subscript 2? and in the

third each letter has the subscript 3.

Illustrations are

:

|a3&2C4| = «3 h C3

a.2 b., Co

04 64 C4

'

1036405(^1! =

V

«3 63 C3 d^

a^h^c^d^

«'6 h C5 d^

Oi hi Ci di

; («i C2bs) = Oi Ci 61

a2C2&2

030363

\a,h,c^d,\ = Oy b^ c^

a. b, c,

a,b,c.

dr

d.

d.

•

'

•
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NOTATION. 13

The expansion of determinants of the second and third orders.

12. Though we have alread}' given the expansion of deter-

minants of the second and third order several times, it will be

useful here to compare these expansions with the square

arrangement once more. Also, we are now prepared for a

convenient mnemonic rule for the expansion of a determinant

of the third order, to be given in 15.

13. Since I «i&i =ai&2 — ^2^15 it is obvious that the expan-

I

Ct2 &2

sion of a determinant of the second order is obtained by taking

the product of the elements of the principal diagonal and the

product of the elements in the secondary diagonal, and sub-

tracting the second product from the first.

14. We have repeatedly shown that

Ci.ttl 61 tl = ai6i C3- a,b. C2 + aa^a

Osf&gCa 0^2 62 a^h «3&3

agftgCg

From this it appears that a determinant of the third order can

be decomposed into determinants of the second order, each

multiplied by the elements in order of the last column, begin-

ning with the last element. Since any column may be made

the last, 9, the assertion just made amounts to saying that

a determinant of the third order may be expressed in terms

of determinants of the second order and the elements of any

column.

The reader will readily see how the determinant factors of

the expansion in the present article are obtained from the

original determinant. For example, the ciifactor of Cg is ob-

tained by striking out the row and column in which c^ is found,

and regarding what is left as a determinant of the second order.

Thus, I

(h ^3 ?3
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15. The following convenient rule for the complete expan-

sion of a determinant of the third order is indicated in the

accompanying diagram, and is described as follows :
—

The terms composed of ele-

ments of the principal diagonal

and of the minor diagonals

parallel to it are positive, while

those formed of elements in

the secondary- diagonal and the

minor diagonals parallel to it

are negative. The elements

pierced by the double lines

compose the positive terms.

The elements pierced by tlie

single lines similarly consti-

tute the negative terms. In accordance with these directions,

the expansion of

6^2 0.2 C^

«3 h ^2,

is ai^a^'sH- «2^3Ci + da^iCg — ag^gCj — aa&iCg — aih^C2.

This is identical with the expansion already obtained in 5,

it should be.

as

EXAMPLES.

1 . Find the values of :

4 -G
5 3

25 18

49 75

10 -6
8 -3

a b

b a

7 1

5

2. Write in determinant form :

a-\- b b

a -\-b a

3

4

1

a -b b\;
b —c c

\

1

a

7 ; 5 : 16 ; —13;Xiy — xy', 3a — 7b ; (^ — bd; ; Sgh — xy.
b a

3 -1
1 2

(Suggestion :— 7 = 3x2 — (Ix— 1) Numberless

other forms could, of course, be given for the same quantity.)



EXAMPLES. 15

3. Without passing from the determinant notation, show

what relation exists between

(9.)
a, b.

and b^ai

62 ^2

. Also X y
m n

and m n
X y

•

Compare a b

c d
and a c

b d

Also <3ompare a b

G d
5 '

3a
c

36
d

, and 3a
3c

b

d

5. Write the expansion of the following determinants :

{a^h); (a^bj,); \a^biG„,\; {a^b^CQl; (ag 65 Cj)
; 162^3^1

6. Find the values of :

12 3
5

4 7 8
5

a
?

0a
1

a c
5

a 6 c

4 5 6 3 6 6 b c 6 6 b c a
7 8 9 5 9 c 6 c a cab

7. Compare

Also compare

Also compare

8. State the probable theorems exemplified by the results

Ex. 7.

a c

d f
g Ok

and a
d

9

.

h k

a mb c

d me f
g mh k

and a b c

d e f
g h k

tti 61 Ci

a.2 62 C2

ttg 63 Cg

and a

6

c

1^2 «3

1 ^2 h
1 ^2 C3

9. Find the value of x in the equations

:

(1)

(3)

X 2 = 3 4
; (2)

1 -1 5 6

4 1

3 -2
2 1

=

1 1 1

a X c

6 6 X

= 0; (4) X a a = — 6 6 a;

a X a 6 a; 6

a a X a; 6 6
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10. Find the complete expansion of

=
I

a^ 6< c„ cZ^I . (6, equation (R) , et seq.)a. K Crd^
a, b, Ct d,

«» K dn^n
a. \ Cod,

11. Wiite in determinant form, square notation:

(1) bfg-\- eid -\- lick — hfd — ecg — bik.

(2 ) Till Tig rg — my% rg+ mg n^ r^ — m^ Ui r^+ mg Wj ?'2— WgTigri.

(3) Sxyz-a^-f — ^.

12. Employ 9 to compare the following

:

a b c

d e f
g h'k

and d e f

g h ^k

a b c

'i
m n

p q r

s t u

and n m
r q p
u t s

m n and m n ,

p q r

s t u
r I

U i

q
f t

13. Expand the following in terms of determinants of the

second order and the elements of any column (14). Verify

the results by making use of the rule in 15

:

«! 6i Ci 1 002 2/2 ^2 5
a^ 64 C4

CL2 bo C2 ^*3 2/3 '^h as b. C3

«3 h Cs Xi y^ m^ C/6 ^6 Cs

14. Count the inversions of order in

(a) 13 5426 7

(6) 2 3 6 1457
(c) 6 3 5 4 17 2

(d) 789653421
(e) 987654321



CHAPTER II.

GENERAL PROPERTIES OF DETERMINANTS.

"^ Notation and Definition.

16. The investigations of the preceding chapter have revealed

the fact that a determinant of the second, third, or fourth order

is a function of 2^, 3^, or 4^ quantities respectively, and have also

established a uniform law of formation for these functions. In

order therefore to investigate the properties of Determinants in

general, we have but to consider a function of ?i^ quantities

whose law of formation is given in the following definition.

17. Definition.—A Determinant is always a function of n^

quantities. These quantities, called elements, being arranged

in the fonn of a square consisting of n rows, and thus also of

n columns, n quantities in each row and in each column, the

determinant of these n^ quantities is the sum of the terms

formed as follows :
* Each term is the product of n elements,

so chosen that there is one element from each row and one

from each column,— but two elements from the same row or

column must never occur in any one term. The sign-factor of

each term is (— 1)^+', in which p is the number of inver- /

sions of order t of the rows, and i is the number of inversions >

of order of the columns, from which the elements composing

the term have been chosen.

Note.— Each term being composed of n factors, the deter-

minant is said to be of the nth order or degree.

* 22 et seq. will show that the law of formation given in this definition

is the same as that already observed in determinants of the 2d, 3d, and

4th orders (3 to 6 inclusive).

t 5, footnote on inversions of order.
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18. To expand a b c

d ef
mn o\

by the definition, we may select any

row, as, for instance, the second row, and using each element*

of that row in turn, according to the directions given, we shall

form all the terms of the determinant. For the first term, then,

taking d as the first element, we see that we can take b and o

iy, h c

-M n

for the other factors of a term, and no more, since we have

then chosen one element from each row and one from each

column, and no two elements are from the same row or column.

We now have the term dbo. To form another term containing

d, we can evidentlj' take n and c, giving the term dnc^ which as

before contains an element from each row and column, and no

two elements are from the same row or column. No other

terms containing d can be formed. The terms containing e are

in the same way eao and mec ; the diagram will sufficiently

explain the manner of obtaining these terms.

a '1}^ c

m i^

The terms containing / are likewise naf and fbm.

a 1) ^

m n 6

To fix the signs of these terms, we will write under each

term the numbers giving the rows and the numbers giving the

* There is a difference in the nomenclature. What we have called

elements some authors call constituents, and an element is a term.
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columns from which the elements have been taken, and opposite

eacli series the number of inversions. Thus :

dho dnc eao mec naf fhm
Rows 213-1 231-2 213-1 321-3 312-2 213-1
Columns 123-0 123-0 213-1 123-0 213-1 321-3

The sum of the inversions of order in rows and columns of the

first term is unity; .-. (— 1)^= — 1, and dho is negative. In

dnc the sum of inversions of order in rows and columns is 2
;

.-.(—1)^=1, and dnc is positive. Similarly for the other

terms. Affecting the terms with their proper signs,

a h c

d e f
m n o

Scholium. -

dho + dnc -f eao — mec — naf -\- fhm.

This illustration is inserted only to give the

reader a clear idea of the meaning of the definition, and not

'|*> because we really employ the definition in the practical expan-

sion of determinants. In fact, the great beauty of the deter-

minant notation is that we are able to conduct most of our

investigations with the help of determinants without requiring

the expansions at all. In case it becomes necessary to expand

a determinant, we have several excellent methods to be given

later. One method for the expansion of a determinant of the

third order has been given already (15)

.

19. In accordance with the notation already exemplified in

Chapter I., a determinant of the nth order is written

tti hi Ci ... li

O2 0-2 C2 ... I2

a^ hs C3 ... Is

<.ln\, or to

a„ 6« c„ ... l„

This form is shortened to (ajdaCa ... /„) or \a1h2C3

2 ± cti&aCg ..*. l^. In each of these shortened forms those ele-

ments occur which occupy the principal diagonal* in the square

arrangement. The form S ± ai^a^s ... ?„ is suggestive of the

manner in which the function is formed. The 5 ± stands for

* 11.
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the sum of all the terms that can be formed from the pnncipal

term b}' permuting the subscripts and prefixing the proper sign

to each. (23.)

Another and very convenient notation is obtained by employ-

ing a single letter affected with two subscripts ; the first sub-

script giving the row, and the second subscript the column, in

which the element occurs. Thus :

ail ^12 ^% ••• %»
OE'21 tl22 <^23 ••• ^2w

a^i a^2 <^33 ••• <^3»

This form may, like the first, be shortened to
| «ii «22 ••• ct„„|,

(ciii a22 ^33 • • • ^nn) ,
or 2 ± «!! «22 «33 • • • «„»!• It may also be still

further abbreviated to
|
ai^ |

. A modification of this notation,

with the two subscripts, consists in omitting the letter alt^j

gether, and writing the determinant thus :

(1,1) (1,2) (1,3) ... (l,n)

(^2,1) (2,2) (2,3) ... (2,n)

(3,1) (3,2) (3,3) ... (3,71)

(n,l) (n,2) (n,3)

or, finally, /I 2 3

,. (n,n)

or 11 12 13 . . In
21 22 23 . . 2n
31 32 33 . . 3 71

nl n2 7i3 . .. 7171

', /I 2 3 ... 7iY
1,1 2 3 ... n)

These last three forms are called the iimbral notation.

20. The following corollaries flow from the definition in 17.

They are obvious upon a moment's reflection.

Cor. I.— The principal term is always positive.

Cor. II.— If each element of a row or of a column is zero,

the determinant vanishes.

^^ General Properties.

21. Theorem. — If in a series of integers tvhicJi are aJI

different^ any two are interchanged^ the others remaining undis-

turbed, the number of inversions of order is thereby increased or

diminished by an odd number*



GENERAL PROPERTIES OF DETERMINANTS. 21

Let the series of integers be Ae Bf (7, in wliich A is used to

denote the series ay/c ... preceding e, B denotes the series hgl ...

between e and /, and G the series following f.

In the first place, it is evident that if any two adjacent

integers are interchanged, the number of inversions of order

is thereby increased or diminished by unity. For let vm be

any two adjacent integers in a series. ^If we write mv, we
introduce one inversion of order if m >?;. Or, if m<v, we
have lost an inversion. Now, since this change cannot affect

the rest of the series, we have increased or diminished the total

number of inversions in the series by unity.

Again, in order to interchange e in Ae Bf (7, with / separated

from e by 7t, intervening elements, we may first interchange e

with the elements to the right in regular succession k-\-l times
;

I this brings e into the place at first occupied by /. Then, in

order to transfer / to the place formerly occupied by e, we have

to pass / over k elements to the left. Altogether, we have

changed the *number of inversions of order from odd to even,

or from even to odd, 2k-\-l (an odd number) of times. Hence
the proposition.

22. Theorem.— The number of terms in a determinant of

the nth order is 1 -2 '2> • ... n = n\

The simplest wa}' to form the terms of a determinant accord-

ing to the definition, is to choose the elements from the columns

in order ; that is, the first element of a term from the first

column, the second element from the second column, etc.

Choosing the elements in this wa}', we may take the first ele-

ment of a term from the first column and third row, say, the

next element from the second column and any row except the

thirds the next element from the third column and any row

except those already selected, and so on, until all the columns

and rows have been drawn upon. The numbers of the rows

from which the elements are chosen will constitute a permu-

tation of the numbers 1, 2, 3, ... n, and at is obvious that

we can therefore select the elements to form a term in as"
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many different ways as there are permutations of the first n

numbers, that is n ! There are accordingly n ! different terms.

23. Cor. I.— The terms of a detenninant
|
aidgCg ... ?„ I

may all be obtained by keeping the letters in alphabetical order

(^.e., choosing the elements for each term from the columns in

order), making all the possible permutations of the subscripts,

and prefixing the sign + or — to each permutation, according

as the number of inversions of order is even or odd. Since

the expansion of a determinant in accordance with the definition

would also be obtained by keeping the rows in order, and

choosing the elements from the columns in all possible ways.

all the terms of
|
ai 62C3 ... Z„

|
can be formed by permuting the

letters, keeping the subscripts in order, and prefixing the sign

+ or — to each permutation, according as the number of in-

versions of the letters is even or odd.

24. Cor. II.— Similarly, the terms of
|
a-^^

\
can be formed

by making all the jjossible permutations of the first set of sub-

scripts and keeping the second set in order ; or the terms may

be obtained by making all the possible permutations of the

second set and leavinsr the first set in order.

Illustrations : To expand , we may write the permu-ctj hi Ci

(^2 ^2 ^2

% O3 C3

tations of the subscripts in a column, and indicate the number

of inversions of order in each by a figure placed at the right

;

or we may write the permutations of the letters in the same

way. Thus

:

1 2 3 ... ah c ...

1 3 2 ... 1 ach ...I

3 1 2 ... 2 6 a c ... 1

3 2 1 ... 3 5 ca ... 2

2 3 1 ... 2 ca 6 ... 2

2 1 3 ... 1 c & a ... 3

The two expansions are accordingly

a^hoC^s — ai&gCo + ciz^iCi — ct^hoCi + aa^^aCi — cTo^iPsj
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To expand |aiia22«33| according to Cor. II, we have simply

to write the elements for each term with one set of subscripts

in order ; thus,

ai(X2<^35 %<^2«3^ «l«2%1 aia2%1 ftl<^2«35 «1«2<^3)

and then for every term, according as we choose from columns

or rows in order, write one permutation of the numbers 1, 2, 3,

before or after the subscripts already written, obtaining

ClllClooCtsS — ^'^11^32^^23 "T" ^31^2^23 — ^31^22^13 "T" ^21^%2^''13 <^21^12^33
or

%1^22^'33 — %lC'^23^32 — <^12<^21^33 ~\~ ^n<^23%l i ^13^% ^32 ^13^^22 '^Sl*

25. Theorem.— In any determinant, if the rows in order

are made the columns in order, the determinant is unchanged.

The theorem is an obvious consequence of 23 and 24. The

following proof is based directly upon the definition. Consider

the determinants A and A', which differ only by making the

rows of the one the columns of the other. Every term of A
contains an element from each row and column of A ; hence it

contains an element from each column and row of A', and is

therefore, disregarding the sign, also a term of A'. Similarly,

ever}^ term of A' must be a term of A. We have now to show

that the signs of corresponding terms are alike. Let the num-

bers of the rows and columns for a term of A be

a? y-i P-) Ti 0-9 ••• for the rows
;

r, t, a, s, 771, ... for the columns.

Then, by hypothesis, the numbers of the rows and columns of

the corresponding term from A' will be

r, t, a, s, m, ... for the rows
;

«5 y? i^? T-i ^? ••• for the columns.

The two terms obviously have the same sign. Hence the

proposition.

Illustrations

:

a^i ai2 cii3 ^14

^21 ^22 ^23 ^24

%1 ^32 ^33 <^34

a^i €1^2 ^43 ^'44

«U «21 «31.<*41

<^12 ^22 %2 ^'42

ai3 a2s a^g a^
^14 <^^24 <^34 ^44

(Xi bi Ci di

2 ^2 2 *^

% ^3 ^3 ^4

a^ 64 C4 di

cfci tta as a4

bi 62 i>3 h
Ci C2 C3 C4

di do ds d^
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26. Theorem. — In any determinant the number of positive

terms equals the 7iumher of negative terms. -

By 23 all the terms of a determinant can be formed by keep-

ing the letters in order, and making all the possible permuta-

tions of the subscripts (or 24, case of the double subscripts,

by keeping one set in order and permuting the other set) . AVe
n\ n\

have to show, therefore, that -^ permutations are even* and -^

are odd.* Let x and y be the number of even and odd per-

mutations respectively; then x-\-y = n\ If we interchange

any two subscripts in each of the aj even permutations and in

each of the y odd permutations, the even permutations become
odd and the odd even. Since by the interchange of two sub-

scripts we could only reproduce permutations all different from

each other, and already found in the original set of permuta-

tions, it follows that x = y.

27. Theorem.— If two parallel lines (rows or columns) of
a determinant are interchanged^ the sign of the determinant is

changed, but its numerical value is unchanged.

Let A be the given determinant and A' the same determinant

after the A:th and rth rows have been interchanged. Then
-A= A'.

Let J^ = ± Adj^Bm^C be a term of A, in which A, B, and C
denote the product of elements from all the rows and columns

except the cZth column and A;th row, and the mill column and

rth row. Then T (disregarding the sign) is also a term of A',

for it contains an element from each row and column of A'.

Now T, regarded as a term of A', contains exactly the same

inversions of the columns as it does when regarded as a term

of A ; but the number of inversions in T, as to rows, when
considered as a term of A', is an odd number, more or less,

than when considered as a term of A. For, in writing the

numbers of the rows, to determine the inversions, we write

* This language, of course, signifies permutations in wliicli the number
of inversions of order is even or odd respectively.
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them just as we would for A, except that Aj and r will have

changed places (dj, being found in the rth row, and m^ in the

Tcih. row of A') . Thus every term of A is found with the oppo-

site sign in A', .•. — A = A'. By 25 the proposition must be

equally true for an interchange of two columns.

Illustrations

ttj hi Ci

ao 69 Co

«l ^1 Ci c?i

02 &2 Co d2

«3 ^3 C3 (k
a^ 64 C4 ^4

— [«! 62 C3 + ^2 63 Ci + % ^1 Co f^lXX
— ttg ^2 Ci — tto 61 Co— a^ 63 Co] =( 75

ai bi Ci f7i

^2 &2 ^2 c^_>

a4 64 C4 CZ4

% ^3 ^3 ^^3

ttj bi Ci cli

«3 ^3 C3 <i3

a4 &4 C4 ^4

a2 ^2 ^-2 ^2

«! (^1 Cj bi

a^ ^4 C4 64

(ai^gCsfy = — (a^biCsd^) = {a^b^Cid^) = — (a2 53C4di) = (o3Z>2C4di).

28. Cor. — If two parallel lines of a determinant are iden-

tical, the determinant A^anishes.

For, by the proposition, if the two identical rows or columns

are interchanged, the sign of the determinant is changed. But

the interchange of two identical lines cannot affect the deter-

minant. Therefore

A= -A,
2A = 0, or A = 0.

Illustrations

a b*c = aec^

def
a b^^

«! Oj c

a.2 b.2 Co c?2

ag 60 C2 c?2 •v

0-4 64 c ,^4

ai a.2 a^ «4

h h h h
Ci C2 C2 C4

^1 d^d^ C^4

aec — dbc — a6/= 0.

0.

(Ctj 60 Co C?4) = 0. tti 62 «3 C?4
I

= 0.

29. If in a series of integers,

I /, a, d, c, Z, m, w.
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the first is passed over all the others in succession to become the

last, the others remaining undisturbed, thus,

a, d, c, Z, m, n, /,

the numbers are said to have been cyclically interchanged. It

is obvious that a cyclical permutation of n given numbers

can always be effected by n — 1 interchanges of two adjacent

W numbers. Accordingly, a permutation containing an odd or

{^ even number of inversions still contains, after a cyclical inter-

^ change, an odd or even number of inversions if n is odd ; if n

is even, however, a pepoiitation containing an_o_dd or even

number of inversions will, after a cyclical interchange, contain

an even or odd number of inversions respectively.

From a given permutation of n integers any other permuta-

tion can be obtained by cyclical interchanges. Thus, from

faclcegb
we get c a gfd b e

as follows :
— cfadegb

c afd e g b

c a gfd e

b

c a gfd b e

The groups in which the cyclical interchanges take place are,

of course, fade, fa, fdeg, /, d, eb.

30. The previous article (or 27) establishes the following

theorem

:

Theorem. — If in a determinant A any row or column be

passed over k rows or columns in succession, and the resulting

determinant be denoted by A', then

A=(-1)'=A'.

Illustrations

:

^iViZiti = ^3 Vs ^3 ^3 = ^3 h 2/3 2=3 = — x^ ?i 2/1 z,

x^y^z^h XlVlZih iCi fi yi Zi X2 /a y-i Z2

aJ3 2/3 »3 ^3 X2y2%2t2 X2 h 2/2 22 3^4^4 2/4^4

x,y,z,t. x^y^z^t^ x^ U 2/4 z^ X'ihy3^3

^0 2/l V2lVs\= — \
Xi ^2 VsWo\ = —\ViX2 2/3 ^^0

|
=

1
«1 2/2 f^3%\'
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EXAMPLES.

1. The student who has not done the examples at the end

of the first chapter may attend to them before proceeding to

the following.

2. What terms of
| aib2G^di \

contain ftgf^s?

. 3. Write the terms of (a^i 2/2 ^3 2:4Q that contain ^1 2/4 w^s.

4. Show that in a determinant of the nth order only two

terms can have (n — 2) elements in common, and that these

terms have opposite signs.

5. What is the sign-factor of the term containing the ele-

ments in the secondary diagonal of a determinant of the nth

order ?

6. Show that the sign of a term is independent of the

arrangement of the elements composing it.

7. Show that the sign of a determinant is not changed by

an}^ interchanges of rows and columns that leave the same

elements in the principal diagonal, whatever the final arrange-

ment of the elements in this diagonal.

Syg. If a^p ayy a^a • • • ot-m be the final arrangement sought,

a^p can be brought into the first place by 2 (^ — 1 ) interchanges

of two rows and columns, etc.

8. A corollary from 30 is : Any element (X,;^ can be trans-

ferred to the first place b}' making the ith row and A;th column

the first row and column, and then multiplying the determinant

by (-1)*+*.

31. Theorem.— If every element of any line (row or column) \y
is multiplied by any number, the determinant is multiplied by

that number.

Since every term of the determinant contains one element,

and only one, from the line mentioned in the theorem, the truth

of the proposition is evident.
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Illustrations

a^r hyV CiT = r ai 61 Ci = «! ftjr Ci = r2 «>,,
^ &1C1

^2 h C2 a2 h C2 (12 &2^ ^2

Clg 63 Cg a-g 6g Cg dg 63^ Cg
<^'2

,

yhC-I

«3 ,

7 h c.

A = 6c a (T

ca h b^

ah c c^

then a&cA = abc a^ a?

abc h^ b^

abc & <?

•. A = 1 OL' a" .

1 62 53

1 C^C^

Let the student show that

bed a a^a? =2:

cda b b^ W
dab c c^ c^

abc d d' d'

1 a^ a^ «*

1 62 53 J4

1 c2 c^ c^

1 d^ d^ d^

32. Cor. I.— Changing the signs of all the elements of any

row or column changes the sign of the determinant ; for it is

equivalent to multiplying the determinant by — 1.

33. CoR. II.— If two rows or two columns differ only by a

constant factor, the determinant vanishes. For we may divide

each element by the constant factor, and write this factor as a

multiplier before the determinant. Then the determinant van-

ishes by 28.

IllustratioiIS

:

i
al a** = a" al Z =0.
ba a-+i h0L a -

C a^ a~ + 2 eV a?

1 5 7

2 10 6

345 0)

1 1 7

2 2 6

33 9

= 0.

34. Theorem.— If each element of any line * of a determinant

is a binomial^ the determinant equals the sum of two determinants;

the first of which is obtained from the given -determinant by sub-

stituting for the binomial elements the first terms of the binomialSy-

and the second determinant is obtained from the given determi'

* Since it has been shown (25) that what is true of the rows of a

determinant holds for the columns, it will only be necessary hereafter to

state a proposition with reference to either rows or columns.
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nant by substituting for the binomial elements the second terms of

the binomials.

By the definition ever}' term of the determinant must contain

one of the binomial elements.

Let (m-\-n) b g h k ,.. I

be one of the terms of the given determinant ; this may be

written m b g h k ... l-{-n b g h k ... I.

Now the first term of this sum is a term of the original deter-

minant, with m written for m-i-n, and the second term is a

term of the original determinant, with n written for m.-fn. It

is obvious that a similar statement applies to every term of the

given determinant ; hence the proposition.

Illustrations

:

«! + «! h Ci = <2l bi Ci + tti bi Ci .

Cl2 + a2 &2 C2 a2 h C2 0-2 &2 ^2

a3 + «3 ^3 C3 % h Cs ag 63 C3

Xi — yi mi Ui = Xi mi 7?i
—

2/1 «h n^

0^2-2/2 ^2 ^2 X2 m-2 «2 2/2 '^2 no

a^-2/3 W3 Wg Xs mg 7 ^3 2/3 'nis nsl

35. The preceding theorem is evidently" capable of extension.

The same reasoning applies to a determinant any line of which

is composed of polynomial elements, or, again, in which each

element of every line is a polynomial. That is to say : If each

element of any row is a polynomial of q terms, each element of

another row a polynomial of r terms, each element of another

row a polynomial of s terms, etc., the given determiyiant is the

sum of sxq X r... determinants. Thus :

a-\-b -\- c m — n
d+e-f o+p
g — h-\-k q — r

t

u
V

1

i

7

m

Q

— n t

4-i) u
— r V

-f- b m — n
e -\-p

-h q — r

t

u
V

c m — n t

—f o+p u
k q — r V

— a m t

d u

g q V

+ a — n t

d p u

g — r V

+ b m t

e u
—hqv

b — n t +
e p u

— h — r V A

1 n i t

u
V

Hh c — n

-f P
k-r

t

u
V
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36. Reciprocally, If q determinants differ from each other

only in a single line, the sum of these determinants is a single

determinant, derived from any of the given determinants by sub-

stituting for the elements of the line which is different in each

of the q determinants, the sum of the corresponding elements of

the q determinants.

Illustrations :

ab c + ab c + mn = a b c \

def X y z ab c d-{-x — m e-\-y — n f-\-z — o

ghk g hk ghk g h k

The student may show that

«! «i 61 Ci — tti bi Ci = 0.

0-2 «'2 h C2 a^ 62 C2

ttg bs C3 ^3 ^3 C3 ag

a^ &4 C4 a^ b^ C4 a^

37. Theorem. — A determinant remains unchanged if the

elements of any line be increased or diminished by equal multiples

of the corresponding elements of ayiy parallel line.

We are to show that

tti 61 Ci

tta 62 ^2

^3 ^3 ^3

«i ^1 Ci±qiai±q2bi±...±li
a2 62 C2±qia2±q2b2±...±L
<X3 &3 Cs±qias±q2b3±...±l

d, ... h

4 •••
^s

a„ 6„ c,,±qia^±q2b^±...±l, d, ... /,

Calling the first determinant A, and the second A', we have, 35,

A' = a, bi Ci d, .

(/2 60 Cg (^2 •

±qi

±

«i ^1 «i ^^1 •

0^2 ^2 «2 C^2 • ./2

aa 62 ?2 ^2 •

(^n ^n ^n <^n •

ai 61 61 di .

a2 ?>2 ^2 ^^2 •

»n K «n <^n^-

«n K K dn . . L «n ^n ^« dn . .. I,

:t<?2

Whence, since all the determinants of this series, except ILe

first, A^anish, A = A'.
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This theorem is of great importance in simplifying and ex-

panding determinants. Thus

:

lab-\-c = la
1 b c + a 1 b

1 c a + b 1 c

a a+3 a+6
a + 1 a + 4 a-\-7

a + 2 a + 5 a-f-8

a + 6 + c
|

= (a4-6 + c)

a + 6 +c

1 a 1

1 & 1

1 c 1

= 13 (a 1) 3 (a + 4) 3 (a + 7)

1 a + 4 a-f7
2 a-l-5 a + 8

= 0,

The second determinant is obtained by adding the second

and third rows to the first row. 7

= -16.1 1 1 1 = -11 1

1

1--1 1 1 /0%2 2

1 1 -1 1 //O 2X2
1 1 1 -1 J 02 2

=r

—

2 2 = —8 1 1

202 1 1

2 20 1 1

The second determinant is obtained by adding the first row to

each of the others.

The third determinant is obtained from the second by ob-

serving that as all the elements, except one, of the first column

of that determinant are zeros, all the terms vanish that do not

contain (—1).

7

13

3

11

15

9

4

10
6

7 11

13 15

1 3

-240.

4 = 3 7 -10 -10 = 3 10 10

10 13 -24 -16 24 16

2 1

=30(16-24) =

The third determinant is obtained from the second by subtract-

ing three times the first column from the second column, and

twice the first column from the third.

/
Minor Determinants.

38. If in a determinant any number of rows and the same

number of columns are suppressed, the determinant consisting

of the remaining elements (their relative positions being undis-

turbed) is called a minor of the given determinant.

If one row and one column are suppressed, the result is a

principal minor, or a Jirst minor ; if two rows and two columns
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have been erased, a second minor ; and so on. The elements

common to the suppressed rows and columns also form a deter-

minant called the complementary of the minor, formed from the

rows and columns that were left undisturbed in the original

determinant.

Thus,

«3 ^3

and
C4 ^4

are complementary minors of

I

«! 62 C3 c?4
I

; also
I
«i 62 1 and

|
Cg (^4 1, or &2 and

|
a^ C3 CZ4

1
, are

complementary minors of
|
aj 62 C3 CZ4 1 .

|
c^ d^

\
and

|
a., 64 e^

\
are

complementary minors of \ai'b2C.id^e^\. In general, if the

determinant is of the nth order, two complementar}" minors will

be of the rth and {n — r)th orders respectively. A determinant
n^ (71 ~ IV

of the 71th order has rr first minors, —^^ L second minors,

etc.

Since we usually denote a determinant by A, it is convenient

to denote the minor obtained by suppressing the row and

column of a^ by A^g ; that obtained by suppressing the row

and column of d^ by A^^^, etc.

Similarly, a second minor, obtained by suppressing the rows

and columns of b^ and c^, is denoted by Abh.Cr ; and so on.

Equally efficient notations are : D ) and D} ^^
-. for the

minor obtained by suppressing the Zth row and mth column,

and the minor obtained by suppressing the Zth, wth, and tih.

rows, the mth, rth, and h\h columns respectively of
| %,i |

.

39. Since, by definition, every term of a determinant con-

tains one, and onl^^ one element from any line, the determinant

must be a linear homogenous function of the elements of any

one row or column. Thus :

I
tti 62 C3 ... ^^ 1

= «! J.1 + a2-42 + a^A^ -\ f- a,,A,,

= «!A + \B, + ci Ci + ••• + /i A
= ci Ci + C2 a, + C3 (73 + .-. + c„ a

in which ^1, A2...A,, ; Ci, (72...C„ ; etc., denote functions of the

elements found in the rows and columns outside of the particu-
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lar line, in terms of which the development is given. In the

next article we shall find the values of these functions. Since

we may regard the determinant as a function of r^ independent

quantities, each of the coefficients A^^ A^^ ..., may be obtained

by differentiating
|
aiftgCs-.-Z^

|
with reference to the quantity

whose coefficient is desired. Introducing this concept, the

equations above written become respectively

I

ai62C3...?„
, cZA , cZA

, cZA
,

cZttj da^ da^

cZA
•• + «,-—

da^

cZA , , cZA
,

cZA
,

dai "Oi dci

J
dA

^ d\ , clA
^

cZA
,

dci cZcg (Zc3

This notation is often employed.

/^^^s^xI'heorem.— The coefficient of any element in the expan-

sion of a determinant is the first minor obtained by suppressing

the row and column to which the elemeyit belongs. This 7riinor

is taken with the + sign, if the sum of the row and column

numbers, to which the element belongs, is even; if this sum is

odd, the minor has the — sign.

Consider the determinant A = 2 ± «i &2 ^3 . . . In-, and suppose

A to be written,

A = ai^1l + «2^2 + «3^3+ ••• +«nA- (1)

We can collect all the terms of A that contain ai, and write

this element as a factor of the polynomial that results ; we can

do the same for a^', a^, and so on, for each element of the first

column. These pol^'nomials are ^1, A2, A^, etc. Now A^ must

be composed of all the terms of A that contain no elements

from the first row or column ; hence A^ can be obtained from

2 ± «! &2 C3 ... Z^ by considering ai as fixed, and making all the

possible permutations of the subscripts of the remaining letters,

i.e., by multiplying aj by IS ± &2 ^3 ••• hv

Hence, ^1 = A„j, the minor. obtained by suppressing the first

row and first column of A.
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V'

Now, we can bring 0^2 into the first place by one interchange

of rows : we then have A = — 2 ± ag 61 Cg ... Z„. Employing the

same reasoning as before, A2 must be obtained by multiplying

^2 by — 5 ± &i Cg ... Z„ ; whence A2 = — Aa^. Again, a^ can be

brought into the first place by two interchanges of two rows
;

whence A^ = A^g, and so on. Finally, a^ can be brought into

the first place by n — 1 interchanges of two rows ; hence, as

before, A =(-!)""' Aa«.

Substituting these values of Ai, Az, etc., in (1),

A = tti Aa^ - a2^a, + %Aa3 h (- 1
)
""^ a^ Aa«.

Since the columns may be made rows, it is evident that

A = aiAa,-&iA6^+CiAc, + (-l)"-*ZiAv

It remains to be shown that the proposition holds for an ele-

ment not in the first row or column, that is, A^^ = (— 1)*'^'' Aaa,

for the coefficient of the element in the iih row and Jcth. column.

We may transfer the ith row to the first place by i— 1 inter-

changes of two rows, and the Jcth column may likewise be made

the first by A: — 1 interchanges of two columns. The element

under consideration is now in the first place. Calling the trans-

formed determinant A', we have

A = (-l)*+*-2A', orA = (-l)^+*A'.

Whence ^,, = (- 1^+* Aa^,

.

41. CoR. I. —A determinant can be developed in terms of

the elements of any line and their principal minors. The signs

are alternately + and — ; and the fii'st term is + or — , accord-

ing as the number of the line is odd or even.

Illustrations

:

tti bi Ci f?i = «! 62 C2 d2 -a^ h Ci c^i -\- as b, c, d, -a^ 61 Ci dy

O2 ^2 ^2 d.2 h Cg dg h Cg dg h C2 di 62 C2 (?2

«3 ^3 Cg ^3 64 C4 d^ 64 C4 ^4 64 C4 d4 h<hd^
^4 64 C4 6^4

= — 61 1 as Cg ^4
I

4-&2 1 «i Cg d^
I

— ftglai Cg d^
1 -f ?>4 1 «l C2 dgj

= Ci I a2 63 (^4 1 — C2 1 ai &3 ^4 1
4-C3|ai &2 1?4 1

— C4 | «i ^2 ^3

1

= - «4| ^ C2 (^3
I
+^4

1
% C2 C?3

I

-C4|ai hi ^3 |
-f-Cf4| tti &2 C3I
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42. 41 obviously gives a ready way of expanding any deter-

minant.* For we may express the given determinant in terms

of the elements of any line and their principal minors ; these

minors will be determinants of the (n — 1 ) th order. By a

second application of 41, each of the minors in the first expan-

sion ma^' be expressed in terms of the elements of any line and

their principal minors, which minors will be of the (?i — 2)th

order. So by successive application of 41, an}' determinant

may be expressed in terms of determinants of the second order
;

and these latter, being binomials, can be at once written out.

Thus

:

1 2 3 = 13 4 -2 2 3+3 2 3
2 3 4 4 5 4 5 3 4
3 4 5

1(15-16) -2(10-12) +3(8-9) =0.

\aib2Csd^\^=ai\b2Csd^\—a2\biCsdi\-^as\biC2di\—a^\biC2ds\

= ai[b2\csd^\-b^\c2d^\+bi\c2ds\2-a2lbi\Csd^\-b^\cidi\-\-bi\cids\2

+asibi\c2di\—b2\cid^\-\-b^\cid2\']—a^lb^\c2ds\—b2\cid-^\-\-b.i\cid2\^

= aiboC^d^ — aj 62^4^3 — «i 6302(^4 + ai 6304^2 + aibiC2ds — a^b^c^di

— a2 &i C3 C?4 + (^2 ^1 C4 c?3 +
-\-a^biC2d^ — a.;ib^G^d2 —

— a^b^Cid^ + 0146103^2 + aib2Cid^ — a^biC^d^ — a^b^Cid2 + aJy^Cidi

43. As another corollary from 40, it is evident that if all

the elements of any row of a determinant except one are

zeros, the determinant equals this element into its corresponding

minor, taken with the proper sign. Thus, if the element is in

the ith row and A:th column, i.e., a,.;^, then A = (— l)'+*a,4Aa,.^.

Illustrations :

0-2
1 1

1

5 643 = -2 6 4 3

1 1 1

1 2 1

= -2
2-0

3 111

3 = 2 -2 -3
1 1

* Compare 15. t Compare 6.
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The student may establish the following

:

«! h c,d.

h c,d.

CsCh
d.

ctiboCgd^. di

Ca ^2

&3 Cg d^

.

—

^^b^c^d^

a^hc^di.

44. From the last two examples it appears that if all the

elements on one side of either diagonal are zeros, the determinant

reduces to a single term, viz., the term composed of the elements

in the diagonal which contains no zero elements.

2 1 -
-4 -3

6 5-

7

8

9

= 2 1 1

2 3

3 5

7

8

9

•

Show that

a

. /3

J' (3''I"

= 1

al3y

EXAMPLES.

1. Show that the following determinant vanishes :

2.

1 1 1

a' (By /S' ya y' a/B

a"fty /S'V" y"^^

This can be readily established by multiplying the columns

by (Sy, ya, a^, respectively, and then dividing the first row by

aySy. A similar reduction can he effected, in general, tchenever it

is desired to reduce a determinant to one in which the elements

of one line are units.

4. Find the expansion of A 4 2 5 10

116 3

73 5

025 8

We notice that 20 is the L.C.M. of the elements in the first

row; hence, multiplying the columns in order by 5, 10, 4, 2,

there results

A = 1

5.10.4-2
20 20 20 20
5 10 24 6

—
35 30 10

20 20 16

1 1 1 11

5 10 24 6
1

7 6 2

5 5 4
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/

Now, subtracting four times the first row from the fourth

row, two times ,the first row from the third row, and six times

the first row from the second row, the last determinant becomes

1 1 1 1 _-1 4 18 .

1 71 -14 18
1 4 18 5 4 -2 -3 6 -2
5 4 -2 -4 1 1 1

4 1 1

= —6 71 — 7 = -6 64 -7 =-3
-1 1 1

5.

also

(Xj (X2 (X3

61 &2 &3

C.i C2 C3

1 a a'

IIS 13'

1 1 1 1

aia20

C2 C3

^3 *

<

^2 (Xs &i «! 0-3 62 ^1 Cf'

1 1

1 ttg 62 Cj a2 ^3 ^1

1 asbiC2 a2^C3

2&3

2C3

= (/3-7) (y-a) (a-;8)

A vanishes if a = /S, or j8 = y, or a = y ; hence a —^, /? — y,

and a — y must be faotors of A. Now the product of the three

differences is a function of the third degree in a, ^, y ; so is A
;

hence the product of the three differences can differ from A only

by a constant factor. Comparing the term j3y^ (the principal

term), we see the factor mentioned is + 1.

7. Show that

1111 =_(^_^)(,_8)(^_„)(^_S)(,_^)(^_8).
a /3 y 8

a' /32 y2 §2

a^ ^3 ^3 33

Notice that Examples 6 and 7 give in determinant form the

product of the differences of the roots of an equation whose

roots are a, ^, y, ...

8. Expand 8 7 2 20 ; also

3 1 4 7

5 11

8 10 6

1 a

-a 1

(S -y
7
1
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Expand the first determinant in terms of the elements of the

third row and their principal minors, since two of these elements

are zero ; then observe that two elements in a row of each of

the resulting determinants are unity ; hence, each determinant

can be readily reduced to one of the next lower order by 35

and 42.
«^ >> +

:V d^ + b^e^ + c'f-2 bcefr- 2 cafd - 2 abde.

c d ; also

d c

a b

b -a

P y,
y' -P'
1 a'

a' 1

1 o

-a 1

-y P

11. Establish the following identity, and express either

determinant as the product of four linear factors :

X y z

X z y
y z X
z y X

111 =
1 Oz'f
1 z'O x"

1 y^z'O

12. Simplify

13. Show that

ai-\-hi + ki a2 + ?h-hh cis-^h + h 1

Ci-j-Jh-\-h C2-{-hs-\-h Cs-hh-{-h 1

1 1 10
X y-^z + t

y z-\-t-{-x

z t + x-^y
t x-\-y-{-z

x-j-y z + t

y-\-z t + x
z-{-t x + y
t + x y-\-z

= 0.

14. Express as a single determinant:

(1) \a^b^Cs\-^\a2b^c,\-\a^biC,\.

(2)
I

Qq 62 Cs
I

—
I

ao 63 Cs
I

—
I

ai 63 Cj
I + 1 tti 62 C5I

.

15. (Xi+aa+tta (i2-\-^h-\-(^A «3+«4H-«i a4+^i+«2
6i+?>2+?>3 b2+h+b^ ^3+^+^ 64+^+^2
Cl+C2-f-C3 C24-C3+C4 C34-C4+C1 C4+C14-C2

d^-\-d2+ d^ C?2+ <^3+ <^4 C^3+ ^44-f?l C?4-f(Zi+ d2

= 3
1 ciibiC^d^ |.
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16.

17.

sin^^ 6sin^ 1 cos^
csin^ cos^ 1

cv'-{h^+c'-2bGGo^A).

a+h-\-nG (n— l)a {n— \)h

(n— l)c h-\-c-\-na (ti— 1)6
(w— l)c (n— l)a c-\-a-\-nh

18. {a+hy d" (? =2abc(a-{-b-hcy.
a' {b-^cy a'

b' b^ ' {c^ay

19. What is the coefficient of ^34 in |ai5 1?

20. From the first five rows of {dib^c^d^e^fQ {/y/ig] write all

the possible minors that can be formed, and their complemen-

taries.

How many minors, each a determinant of the hth. order, can

be formed from any k rows of
| ai„ |

?

21. If each of the elements of any line is the sum of the cor-

responding elements of two or more parallel lines, multiplied

respectively by constant factors, the determinant vanishes.

22. Show that

tti 61 Ci = 10 = «i h Ci 2/1
= «1 61 Ci Ui Vi .

«2 \ ^2 Xi «! 61 Ci ^2 h C2 2/2 a.2 &2 ^'2 ^^2 '^2

«3 ^3 C3 072 ^2 ^2 ^2 «3 h C3 2/3 ttg ?>3 C3 W3 -^3

x^ as h C3 1 1 V4

1

From this example it appears that any determinant may be

expressed as a determinant of higher order by tvriting a zero

above every column, prefixing a 1 to the row of zeros thus formed,

and filling in the new column having 1 at the top with any n

finite quantities.

,K 23. If in any determinant each element of the first row is

unity, and if each element of every other row is the sum of the

elements above and to the left of it in the preceding row,

commencing with the element directly above, the determinant

equals 1.
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24. Any determinant of order w, in which one element is

zero, is equal to the product of two factors, one oC which is a

determinant of the nth order, in which every other element of

the row and column containing the zero is unity.

25. If in any determinant the first element is zero, and if

each of the remaining elements in the first row and first column

is unity, the determinant is unchanged when each element of

the minor corresponding to the zero element is increased or

diminished by the same quantity.

26. A determinant of the nth. order is expressible as the

sum of n determinants, the first of which is obtained by chang-

ing into zero each element of any line except the first element,

the second by changing into zero the elements of the same line

except the second element, and so on.

27. If in two determinants A, A' of the nth order, the first

row of A is the last row of A', the second row of A the (n— l)th

row of A', the third row of A the (n— 2)th row of A', and so

on then A=(-l)
n (n-1)

2 A'.

28. If in two determinants A, A' of the nth order, the first

row of A when reversed is the last row of A', the second row

of A when reversed is the (n—l)th row of A', the third row of

A when reversed is the (w— 2)th row of A', etc. ; then A = A'.

45. Theokem. — If the elements of any line in a determinant

are respectively multiplied by the complementary minors taken

alternately plus and minus {i.e., the co-factors) of the correspond-

ing elements of any parallel line, the sum of the products is zero.

Consider the two determinants,

A oti bi Ci

02 &2 C2

... I,

... k

and A' = ai bi Ci ...

^2 Z>2 C2 ...

O'lc b„ Cj, ... Ifi a, 6, c, ... Ik

% K % ... Ip «A h Ck •••
''k

ttn K C„ ... t^ CtnKCn ...
"rt
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where A' differs from A only in having the Jcth and pth rows

identical. Employing the notation of 39, and expanding in

terms of the elements of the pth row,

Comparing these two expansions, we observe that the second

may be obtained from the first by substituting for the elements

of the pth. row of A the elements of the Zcth row ; that is to

say, if the elements of the kth row of A are multiplied by the

co-factors of the corresponding elements of the pth row, the

result is A' ; since A' = 0, the proposition is established.

Illustrations

:

If in (aib2Cs) = ai (b2C.]) — a2 (biC^) -{- a^ (biC2) we multiply

the elements of the second column respectively by the com-

plementary minors of «!, ag, as, there results

&i (&2C3 — bsC2) — 62 (^1^3 — &3C1) + &3 (^1^2 — &2C1) = 0.

Let the student prove the proposition, using a determinant

of the fourth order.

46. A determinant is said to be zero-axial if each element of

the principal diagonal is zero. Thus the following are zero-

axial determinants

:

\ Ci »
61 Ci c?i

a2 C2 (X2 C2 C?2

as h
04 ^4 C4

47. Theorem. — Any determinant may be decomposed into a

sum of zero-axial determinants : the first of these is obtained by

substituting zero for each element of the principal diagonal of the

given determinant ; the next ?i, by miiltiplying each element of

the principal diagonal by its complementary minor made zero-

n
axial; the next -(71— 1), by multiplying each product of pairs

of elements of the principal diagonal by its complementary minor

made zero-axial^ and so on.
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In A^"' = \a1b2C3... l,,\ change the elements of the principal

denote the resulting determi-

h

diagonal into zeros, and let aJ"

nant. Whence,
bi CiAr^

a^

ttg bs

b^ c„ ...

Let aJ"""^^ denote the minor of Aq"^ obtained by suppressing

any one row of Aq" ; Aq"" denote the minor obtained by sup--

pressing any two rows of Aq'^ ; and, in general, let Aq*'"'^ denote

the minor obtained by suppressing any i rows of Ao"\ Also

let C2 denote any product of the elements of the principal

diagonal of A^"^ taken 2 and 2 ; Cg any product of those elements

taken 3 and 3 ; and, in general, (7, any product of the elements

of the principal diagonal of A^**^ taken i and i. Now, Aq**

evidently contains all those terms of A^*"^ which involve no

element from the principal diagonal. CiAo"~ must be one of

those terms of the series which involve only a single element

from the principal diagonal of A^**^ ; consequently :S Cj Ao**"^^

will be the sum of all the terms that contain only one element

from the principal diagonal of A^''^ Similarly, 1<C2'^1'^~^^ will

be the sum of all the terms that contain only two of those

elements. And, in general, SCfAj""'^ will be the sum of all

the terms containing i elements of the principal diagonal of
^(n)^ Whence,

(n-2)
A("> = Ar+ :s o,Ar''+ 2 c,Ar""+ :s c.a^o

(n-3)+ ...+2C,A
(n-i)

It is to be noticed that Aq^' = ; i.e., there is a break in the

series,— there being no term containing only 7i— l of the

elements in the principal diagonal.

Illustration

«i 2/1 2^1

^2 2/2 ^2

^3 2/3 ^3

2/1 ^1

X2 Z2

^3 2/3

+ Xi Z2

2/3

+2/2 1 % + z, 2/i|+«i2^2^3-
X2O

I
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48. Theorem.— Ifeach consecutive pair of elements in the first

row of a determinant A is taken with each pair of corresponding

elements of the other consecutive rows to form determinants of

the second degree^ and if these determinants of the second degree

are used in order as the elements of a new determinant A', then

A equals A' divided by the product of all the elements except the

first ayid last in the first row of A.

We are to show that

1ai 6i Ci

ttg &2 ^2

«3 ^3 C3

... ri Zi

... r2 k

... 7*3 k

ttn K Cn ... r. In

h^c^d^...r^

ai b,

aa &2 62 C2.
...

ri Zi

^2 Z2

«3 h
&1 Ci

^3 C3
...

^3/3

ai 61 &1 Ci
...

Tn In

calling the first determinant A, and the second A'. Multiplying

the first column of A by — 61, and the second column by %,
and adding, there results

-6iA =
a^ bi -j- cii 62

a^bi + a^b^

Ci ...

C2 ...

Now, multiplying the second column by — Ci, and the third

column by &i, and adding, we have

61C1A

a2bi + aib2 — &2Ci + &iC2

a^bi-^a^bs —63^1 + ^1^3 ^3 h

—a^bi-\-a^bn -b^c^ + b^c^ c^...r^ l„

Proceeding in a similar manner, we have, after (n—l)

transformations,

{-ir-'b,c,d,...kA

... Zi

— a2bi + aib2 —b2Ci-\-biC2 — CgcZi + 01^3 ••• —^2^1 + ^1^2 k
— a^bi-haibs — ^s^i + ^Cg — Cgdj H-CicZg... — rgZi + riZg Z3

-a„6i+ai6„ -6„Ci-f&iC„ -c^di+CicZ„... -r„Zi + riZ„ Z«
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Now, applying 43, and dividing by (— l)**~^6iCicZi ... ^i,

we have ^^
|«i &2I l&i C2

l«i &3I 1^1 C3 7i ^3

-f- 6iCicZi...ri,^

«! &n| 1^1 c„| ... |ri Z,

which establishes the x>roposition.

49. Since by the preceding proposition any determinant of

the njih order may be reduced to one of the (n— l)th order, we
have another means of simplifying any given determinant.

The proposition is especially advantageous in the reduction of

determinants whose elements are given numbers. Thus :

A = 12 3 4 _1
3 2 14 6
13 4 5

5 4 3 2

-4 -4 8 = -4 -1 -1 2

1 -1 -1 1 -1 -1
-6 -6 -6 1 1 1

24.

Here we can mentally reduce the determinants of the second

order obtained by combining the first pair of elements of the

first row with the corresponding elements of the other rows,

and obtain the elements of the first column of the new deter-

minant, thus : lx2-3x2 = -4; 1x3-1x2 = 1; 1x4
— 5x2 = — 6. For the elements of the second column we
have similarly : 2x1-2x3= — 4; 2x4-3x3 = — 1;

2x3 — 4x3 = — 6; and so on.

Let the student apply the proposition to show that

1 1

1 \-\-x

1 1

1 1

1 1

1 1

+2/ 1

1 1+^

^xyz', also 10

4
3

7

17
8

8

20

13

6

1

17

= 124.

Also apply the proposition to show that

5 11

8 7 2

3 1 4

8 1

20
7

6

= 2188.
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MISCELLANEOUS EXAMPLES.

1. Find the value of

2 4 3 1 4 3

-4 2-3 2 -1 2

5_1 6 2-1 5

1 11-2 -2-2
7_3_5 1 4 2

3 12-123

1
also of 12 22 14 17

16-4 7 1 -
10-3 -2 3 -
7 12 8 9

11 2 4 -8
24 6 6 3

20
-2

-2

11

1

4

10

15

8

6

9

22

2. Expand the following:

X ... a„

-1 a; ic^ 3^3... a;"-ia„_i

0-1 ... a„_2

-1 ... a„_3

1 ai 62 ...

^2 — ^1 ^3 ...

ttg — &2 64...

rx4 -63...

... a,

... -1 ao

a„ 0...-
a„+i ...

1 K+i

3. Show that

1 aa; + /^2/ + 9^2

10 7iaj4- 62/ +/2=

1 gra; -f /y 4- C2;

1 ?a;4-m2/ + w2;

a; 2/ 2; 1 h

1

X

1

y

1

z

ax -^ hy -\- gz -{-

1

hx -\-by -\-fz + m
gx + fy + cz + n

k

4. Write the complementaries of the following minors of

|ao 61 02^3 64/5]: 10264!; Ico/sl; I
Co 6^4 62!; 1 61 63^4 1; [d^esfi]

5. What are the complementaries of

|ai2 (Xssl and
| ai2 ass asg], in

| aoi ai2 ass «34 «45 ^sel?

6. Show that

1 1

1 1+a
1 a+1
1 &H-1 6+a
1 c+1 c+a

1

1+6
a+ 6

c+ 6

1

1+c
a-\-c

6+c

= 23 1+a 1 1

1 1+6 1

1 1 1+c
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7. Prove that

\<h h\ K bs\ \(h &4|.

!«! C2I \ai C3I |ai C4I.

!«! d2\ [ai dal |ai d^].

\aik\ \cii h\ \cii k\'

8. Employing the notation

/n\ ^ n{n-l)(n-2) ... (n-r+ 1)

\rj~ rl .

'

show that

tti a2 as a^ ... a^

61 &2 h h '" K
Ci Cg C3 C4 ... c„

di ^2 ^3 c?4 ... dn

1

^n-2
«1

h h k k ... L^

6.1

a, Z«

rn

^
rx-\-2y\ /x+2tj+l\ /x+2y+2\

^^^
/x+3y-l\

Observe that
( ^ )-[ ^ j=( ^_, }

/x-{-y+l\ /a;+2/+2\ /aJ+2/+3\

/aj+2/+2\ /x+y-^3\ ^x+y-{-A\
^^^ /x+2y+l\

The Product of Two Determinants.

V 50. If we note a determinant by K, and another by i, their

product P is evidently expressed by

L
The form of this product suggests the probability that the

product of two determinants may be expressed by writing the

factors as complementary minors of a determinant of higher

order, and filling in the vacant places due to one or both of
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the factors with zeros. Suppose, for example, that K is of the

third order, and L of the second ; then P would take the form

:

«! bx Ci

«£ h C2

a4 ft
as ft

We now wish to discover if, when we fill in the vacant places

due to K or L with zeros, and thus make P a determinant of

the fifth order, P will still be the product of K and L. That

this is the fact will be shown in the next article.

51. Theorem.— The product of two determinants^ K and i,

of degree m and n, respectively^ is a determinant P, of degree

m-{-n, in which K and L are complementary minors^ so situated

that the principal diagonal of P is made up of the elements in

order of the principal diagonals ofK and L ; the vacant places

in P, due to either K or i, are filled with zeros, and any mn
finite elements occupy the remaining places.

We have to show, for example, that

KxL ai &i Ci

CI2 ^2 ^2

% ^3 C3

X a4 ^4 74

as ft 75

a* ft 76

— ai &i Ci

(I2 ^2 <^2

«3 ^3 C3

a^ 64 C4

«5 ^5 C5

ag b^ c.

a4 ft 74

as ft, 7s

a« ft 76

= p.

(1)

Developing P in terms of the elements of the fourth column

and their complementary minors, we have

P = 0-4 «! bi Ci — as

ag 62 C2

ttg 63 C3

tts h C5 ft 75

«6 ^6 Co ft 7c

«! 61 Ci

a2 62 C2

as 63 C3

^4 64 C4 ft 74

<^6 h ^6 ft 76

+ a6 «! ^'l Ci

^2 &2 C2

«3 &3 C3

^4 h C4 ft 74

«5 h Co ft 75

or P = a4 Aa^ - a^ A^s + og Aae

.

(2)
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But A, ft tti bi Ci

ttg 62 C2

ttg 63 C3

«6 ^6 Ce 76

-A «1 h Cl

a^ h C2

as bs C3

as h Co 75

= ftyel «i &2 C3 1
- ft 75 1 tti 62 C3

I

= ^
I

ft 75

I ft 76

In the same manner, we may show that

K A 74

ft 76

also Aa^ =K ft 74

ft 75

Substituting these values in (2) , we have

since the second factor is obviously L, expanded in terms of

the elements of the first column.

The method of proof here given is perfectly general, and is

applicable to determinants of an}^ order. Thus, if in (1) we

make y^ = y^z=zO, and 76=1, P takes the form considered

in 50. The student can readily make the application.

As another exercise, the student may show that

= -\ciif2C3d^\x\€,beg7A= ai Ci di fi

ttg C2 (^2 /a

as C3 dg /g

^4 C4 ^4 /4

65 65 9^5

b, e, g,

bj ej Qj

"What difference would it make in the result if tlie zeros in

the fifth, sixth, and seventh rows of A were replaced by any

finite elements?

52. Writing the product of
|
aj 63 Cg

|
and

|
iCi 2/2 2^3

1
, in accord-

ance with 51,
ai 61 ci - 1 = P,
ttg b.2 C2 0—1
ttg 6g Cg 0—1

x^ yi Zi

OOo
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we have, by 37,

P=

aiX^ + a2yi-\-asZi &!«!+ &2 2/i + &3 2'i

a^x^+a^Vi + a^z^ biX2 -^ b2y2 -{- b^Zz

ttl^S+ «22/3 + «32!3 b^Xs + 622/3 + b^Z^

which, by 43,

ai4 + «2yi + «3^i ^
«l»2 + «22/2 + "' ^ '^

ai»3 + 42/3 +

-10
0-10

0-1
Cia^i + Cg 2/1 + ^3% xi 2/1 %
^1^2 I <^22/2 "r <^3^2 **^2 2/2 %
CiiBs + c^^/s + Cs^Js a;'' 2/3 ^3

This result expresses the product of two determinants of the

third order as a determinant of the same order. We are thus

led to infer that the product of two determinants of any order

may be expressed at once as a determinant of the same order.

We now proceed to establish this important multiplication

theorem.

,

53. Theorem.— The product of two determinants, A, A'

of the nth order is a determinant A" of the same order. Any
element a^s of £i" is obtained by midtiplying each element of the

rth row of A by the corresponding element of the sth row of A',

and adding the products.*

Before giving the general demonstration, it will be useful to

establish the proposition for the product of two determinants

of the third order, and note carefully the form of the result.

* Forming the product by columns, the statement is, of course : The

element in the rth column and sth row of A" is obtained by multiplying

each element in the rth column of A by the corresponding element in the

sth column of A', apd adding the products.
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Put A = «1 h Cl

as 62 C2

as 63 C3

and A' = o-i Pi 71

«» A 72

^3 Ps 73

Apxjl3*ing the theorem, we have to show that

AA'=A"= «iai+&iA+ Ci7i «ia2+ &i/?2+Ci72 aia3+ 6i/83+Ci73
<^2ai+ &2^1+ C2 7l «2a2+ &2/52+ C272 «2a3+ ^2i83 4-C273

%ai+63/?i+C37i a3a2+63/J2+C372 a3a3-i-^3A+C373

Since each element of A" is a trinomial, the determinant may
be decomposed into twent3'-seven determinants (35), the ele-

ments of which will be monomials. But of these twenty-seven

determinants only six do not vanish.* Those determinants

which do not vanish are formed by taking for the first column

a set of first terms from the first column of A", for the second

column a set of second terms from the second column of A",

for the third column a set of third terms from the third column
;

or, by taking a set of second terms from the first column of A",

a set of first terms from the second column of A", and a set of

third terms from the third column of A" ; and so on. That is

to say, exactly as many non-vanishing determinants can be

formed from A" as there are permutations of the numbers 1, 2,

3, i.e., 6. Hence

A'' = ttiai 61^2 C173

«2ai ^2(^2 C273

«3<^i hPi C373

+ «!«! Ci72 5ift

a-iai C272 hfSs
a^a^ Csy2 h/Ss

+ 61^1 ttittg Ci73

hPi «2a2 C273

bsPl ttgOa C373

+ 5l/?i C172 dittg

&2^1 C272 «2a3

hPl C372 «3«3

+ Ci7i ^A CliOs

C271 69A «2a3

C37I ^3^2 «3a3

+ Ci7i aia2 &ift
C271 a2a2 b.2(Ss

C371 ^302 Z^sft

= aiftys («i 2^263) - ai/?372 (aib,c.i) - a^f^iys {a.hc^)

+ a3/5l72 («1&2C3) — a3/327l («1^2C3) + a2ft7l («1&2<^.0

(by 30 and 31)

* It is obvious that the determinants formed from sets of first terms

taken from the three columns of A", or those containing sets of first terms

from two columns, etc., must vanish. Similarly for determinants formied

from sets of second terms, and so on.
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= (cLihCs) [ai/3273+^2 /?371+^3Ara— a3/?27i— a2A73— aiftyg]

= («i^2C3)(aift73),

which establishes the proposition for the special case under

consideration.

In general, let

A = «! h Ci ^1

^2 b. C2 4
a. bs Cs ^3

ttn K Cn In

and A' «! ft 7i ••• ^i

«2 ft 72 ••• ^^2

"3 ft 73 ••• ^S

ttn ft 7» ••• -^^

Then the product AA' = A"

«!«! + ^ft + Ci7i + ... + hXl

«2ai-h&2ft + C2 7i +
<^3«l + ^3ft + C37i +

..+?2Ai

..+^3^1

Otn«l+ ^nft + C„7i+ ... + InK

«ia2+^ft + Cl72 + ... +^1^.2

a2a2 + 62ft + C272 4-

a3a2 + &3ft + C372 +
.. -j- /2A2 •

.. + ^3^2 .

«ian+&ift4-Ciy«+
«2an4-&2ft+C2 7„+
«3an+&3ft+C37n+

a„a2 + 6„ft + c„72 4-.-.+^„ 2 ... «»an+^„ft+C„y„+...+ Z„\

• Now, A" may be decomposed into a sum of 7i~ determinants,

the elements of which are monomials. But it is obvious that

all those determinants whose columns are formed from sets of

first terms of the columns of A", or from sets of second terms,

etc., will vanish, as each will contain identical columns. In

fact, all those determinants into which A" is decomposed will

vanish that have not the first column formed from a set of kth.

terms from the first column of A'', the second column formed

from a set of rth terms from the second column of A", the

third column formed from a set of ^th terms from the third

column of A", and so on. Now, as many such non-vanishing

determinants can be formed as there are permutations of the

numbers 1, 2, 3 ... n ; that is, n ! Hence, A" is decomposable

into n ! determinants, of which the following Ar is the type :
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bipi kX2 aittg . .. Ciy„

&2^1 ^2-^2 Ci20.3 • .. C27«

^sA ^3^ (^3<h . •. c^yn

Ar =

PnPl ^n^2 «»«3 ••• C„y,

But Ar= )8iA2a3 ... y„ I

6i?2a3 ••• c„|.

Now, the determinant factor of A^ is evidently A multiplied

by the sign-factor (— 1)^, in which p is the number of inter-

changes of two columns which must be made in A to leave its

columns in the order which they have in Ar. Accordingly,

Ar=(— 1)^/81X203. ..y„A. But (— iy/3iX2<^3"'yn is a term of

A', since the number of interchanges of two letters which must

be made in 01^273 ••• K to obtain the arrangement here given

is p. Accordingly, Ar equals a term of A' multiplied by A.

Thus each of the n\ determinants into which A" has been

decomposed is the product of A, and a term of A'. .*. A"= AA'.

Illustrations

:

12 3 X 110 =
1110 3 2 11
3 2 1 10 1

12 2 110

0+2+0+0 3+4+0+3
0+1+1+0 3+2+1+0
0+0+2+0 9+0+2+1
0+0+1+0 0+0+1+2

1+0+0+3 2+2+0+0
l_|_0+0+0 2+ 1 + 1+0
34-0+0+ 1 6+0+2+0
0+0+0+2 0+0+1+0

2 10 4 4 =4 15 2 2

2 6 14 2 6 14
2 12 4 8 16 2 4
13 2 1 13 2 1

10 X 10 =
1 « a 1 a a

16^ 10 6/?
1 c y 1 C y

1 1 1

1 a^ + a^ ab -{- a/3 ac + ay

1 ab + afi b^ + (i^ bc-\-l3y

1 ac + ay &C + )8y (T + y"

54. Since, before multiplying two determinants together, we

may change the form of one or both factors, the product of two

determinants can be expressed in a variety of different forms.

As an illustration, the student may verify the following equa-

tions :
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kxA
I a2'^02

aitti + aq/?!

^itti + ^aA

(Xi ttj -|- 012 012

6iai + &2a2

a2a2 + 12/82

ttittg + ^2A
6ia2 + &2/52

«2A + &2/S2

«l/?l+«2A
5lft + 62/?2

EXAMPLES.

1. Show that one form of the product of

1 aa" X a^-a 1 is

1 6 &2 6^-6 1

1 c c^ c'-c 1 W-ch + c" (?

2. One form of the product of

a+6 c c

a 6+c a
6 6 c+a

-i&

(?

a" &2

IS

3. Find the product of a a a a and
ahhh
a b c c

abed

-110
0-1 1

0-1 1

111-1

, and

thence show that the first determinant = a (b—a) (c—b)(d—c),

4. Show that

1111
-1-1 1 1

-1 1-1 1

-1 1 1-1

a h c d X
h —a d c

c d —a b

d c b —a

b-\-c-i-d—a

b—a-\-d-\-c

c+d—a-\-b
d-^c-{-b—a

a—b-{-c+d
b-^a-{-d-\-c

c—d—a+b
d—c+b—a

a-\-b—c+d
—b—a—d-\-c
—c-\-d-\-a+b
— d-\-c—b—a

a+b-\-c—d
— b— a-\-d—c
—c-}-d—a—b
—d-\-c-\-b-\-a



54 THEORY OF DETERMINANTS.

= (6+c+cZ-a) (c+d+a—b) (d-j-a+b-c) {a-\-b-\-c—d)

1111
1 1 -1 -1
1 -1 1 -1
1 -1 -1 1

and thence show that the first determinant

= (b-\-c-\-d—a) (c-i-d+a-b) (d+a+b—c) (a+b+c—d),

5. Show that

1 a^+a^ -2a -^2a
1 b^-\-l3^ -26 -2(3
1 c2+y2 _2c -2y
1 d2+82 -2d -28

a^+a^ 1 a a

b^+fS' 1 b /3

c^+Z 1 c y
^2+ 8M d a

{a-cy-{-{a-yr
la-dy-\-(a-8y

(a

(b-cy+(i3-yy

(c-dy+(y-sy

(a-dy+(a-&y
(b-dy+(^^By
(c-dy+{y-By

6. Show that

ai 5i Ci 1 X 1 fci X 10
ttg &2 ^2 1 1 A;2 10
as 63 C3 1 1 A:3 10
1110 1 hi Jiz /is 1

equals the determinant in Example 12, page 38.

7. Find the two determinant factors of

«i Mi+Ci2/i ^2+^12/2 ;
also of

«2 b<^i'-{-c^i 62^2+^22/2

Cts Ml+ Cs^l &3aJ2+C3y2

8. Form the product of % 61

Og 62

axi-\-cZi fxi+gzi

ax2+by2-\-cz2 dy^ fx2+gz2

bys+czs dys gz^

and ai A ri

"2 A 72

as /?8 78

The order of the first determinant may be raised to that of

the second by writing it

0^2 ^2 ^2

1

and the product can then
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be found in the usual way. If we wish the product to contain

only the elements found in the two factors, how should the first

determinant be written?

From this example it is evident that the product of any num-

ber of determinants of different degrees can he expressed as a

determinant of the nth degree.^ n being the highest degree among
the factors.

9. Emplc

\
— c-\-id

may be written

oying the notation i =V— 1, shaV \bsX tiie product of

a-\-ih c-j-id and
[ ai—ihi Cj— idJ

a— ib

I D-iC
-B-iA

\-Cy

B^iA
D+ iC

C = abi — aib + cdi — Cid

D = aa-i+ bbi + cc^ -}- ddi ;

m which
A = bc-i — biC + adi — aid

B = cai — c^a+ bd^ — bid

and thence show that the product of two sums, each of four

squares, is itself the sum of four squares, (Euler's Theorem.)

10. Show (1) that the product of {aiboCs] and \piq2Ts\ may
be expressed as a determinant of the fourth order by writing

the two factors cij bi Cj and —
i^i ^i rj respectively.cii bi Ci and —

a2 62 C2

«3 h C3

1

Pi Qi n
P2 q2 ^2

Ps Qs ^3

1

(2) By writing the two factors

Pi qi n
P2 O q2 rg

Ps qs Vs

10
10

show that the product is a determinant of the fifth order.

(3) By writing the two factors

«! bi Ci and
^2 62 C2

as bs Cs

10
1

tti 61 Ci and
aa 62 C2

asbsCsO
10
10

1

10
10
10
piqiri
P2 qz r2

Ps qs n
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show that the product is a determinant of the sixth order.

This example, and the theorems of 51 and 53, show that the

product of tivo determinants of the nth order can be eoopressed as

a determinant of each of the following orders: nth, (n+ l)^A,

(w+2)«7i... (2w-l)«7i, 2nth,

55. Theorem. — Any determinant A may be expanded as a
sum of products of pairs of minors. The first factor of each

product is a minor of the rth degree, formed from a set of r

chosen rows, and the other factor is the complementary minor of
the first factor . The sign of a product is -f- or — , according as

the product of the ^jrincipal terms of the factors regarded as a

term of A is -j- or — .*

Every term of A contains r elements from the columns of a

set of r columns found in the n columns and first r rows of A.

That is to say, from every minor of the rth degree formed from

the first r rows, r I partial terms of A can be formed. Now,
the remaining (n—r) elements of every such partial term will

be found in the remaining rows and columns after removing

one of these minors of the rth degree. Or, in other words,

(n— ?') ! partial terms of A corresponding to the r ! other par-

tial terms are found in every minor complementary to one of

the first set. —;

—

minors of the rth degree can be formed
r ! (n— r) !

from the first r rows. Now, the product of two such comple-

mentary minors gives r ! (n— r) I terms of A ; consequently, the

sum of all the products gives n ! terms, i.e., the full number of

terms in A.-

To fix the sign of any product in this expansion, we have

only to remember that its sign must be the same as the sign of

the product of the principal terms of the two minors. This

latter product being a term of A, the sign of the product of the

two minors must be the sign of the product of their principal

terms, regarded as a term of A.

If the selected rows are not the first r rows, we can easily

make them so ; then, after giving A the proper sign factor, the

demonstration applies as given.

* Tills expansion is knowr *^ Tiaplace's Theorem.
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Illustrations

:

Selecting the first two rows in ki h^ c^d^]-, we have

4-
1 6i Cgl ^3^4! — I &i cZgl I tto C4I 4-

1
Ci dgl I CI3&4I

.

Let the student select the first two columns of 1% 62 C3 (^4! , and

expand, obtaining

\(hh\\c3di\ — \aM\c2di\-{-\aM\C2ds\-h\a2bs\\cM

— lazb^WcM-hldsbiWcidzl.

Show that

loihcsd^esl = — lazb^l \cidse5\-{-\a.jC^\ Ibidse^l — laid^l IbiC^e^l

+ \a2ei\ 16103^51 — 16204! laid^e^l + lbzd^l la^c^e^l

— 16264! !aiC3d;5! + 10264! Iai63d5l4-!c2e4l laib^dgi

-Id^e.l \a,bsc,\. > !^^/^y/^SvyS'

What is the relation of 41 to the present theorem? .

-'
*

56. It will be interesting to note what results, if, instead of

multiplying the minors of the rth degree formed from r chosen

lines by their complementaries, as in the last article, we mul-

tiply every such minor by the complementary of a corresponding

minor formed from r lines different from those first chosen.

By the preceding article

jai 6203^465!

= !ai62l !c3d4e5! — !ai63l \c2d^e^\ + !ai64! \c2dse5\ — \aM \c2d.^ei\

+ ka 63! !cid4e5! — |a264! 101^365! + |a265l 101^364! -I- |0364l|cirZ2e5l

— Ia365l !cid!2e4! + !«46^ IcidzS^l.

Now, if in the above we write c for 6, it is evident that the

determinant on the left vanishes, and hence the second mem-
ber vanishes ; but by this substitution we multiply the minors

formed from the ^?'s^ and third columns of
I a^ 62 03^/465 1 by the

complementaries of the corresponding minors formed from the

Jirst and second columns. It is obvious that the truth here

exemplified holds in general. Moreover, it includes the special

case of 45.
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In symbols, the expansion of a determinant by 55 is expressed

by writing A = :S|ap6J Aflp,6^,

where the chosen columns are two in number, or

A=:Slap&gCj Aaj„6j,c„

where the chosen columns are three in number ; and so on.

Employing the notation of double subscripts, we have, in

general,

57. Theorem.— The product of a determinant A =
I ai„| , and

any one of its minors M, of order m, is a determinant A' of

order n -\- m. A' is expressible as the sum of pi'oducts of pairs

of minors of ^; the first factor of each product is a minor of A,

formed from r chosen rows containing J/, and the second factor

is that minor of A containing the complementary of the first

factor and the minor M. The sign of each product is determined

as in 55.

Let the chosen rows referred to in the statement of the

theorem be the first r ; then, by 51, we have at once

A'=
«11 %2 .-.^l*-! «1A .-.air-l Ctlr «lr+l • ••«!« .. .

ttai %2 "-ailc-l «2Jt ...agr-l a2r «2.+l • ..a,, .. .

...

«Ar+l • ..a,„ .. .^Al <^A2 '"^kk-\ a,ac •••«*r-l a*r

<^k+l\(^k+\J'"(^k-h\k-l (^k+yc • '(^k+i/---1 ^ft+lr ^A+Ir+1* ..a.+i. .. .

... ... . ... ...

^r-ll^r-12'"^r-lA:-l Ov_^...a,_i,.-ittr-lr «y-ir+i. ..«.-!„ .. .

a,l a^ "'Ctrk~l aru ...a.r-1 a„ a^r+i ' .

'Ctr+lr- 1 ^r+lr^r+uf^r+l2" '(^r+lk~l Ctr+lk-"<^r+lr--l«r+lr

» ... ... . ... ...

«nl an2 —Clnk-l

...

Ctnr ttnr+l •

.

-a^n Clnk '. -a^r-i «nr

... .. a^ .. 'C(kr-1 a*r

... ... . .. Ctk+lk" 'dk+lr.•iCti+lr

... ... . ... ...

... ... . .. Clr-lk" •«r-lr--iCt'r-lr

... ... . .. ark •• •«rr-l «rr
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where the minor by which A is multiplied is enclosed. Further,

observe that the n — r rows of A not included in the chosen

rows are prolonged in A' with the elements of these same rows

repeated in order of the columns beginning with the kth. Now
add the A;th row of A' to the {n + l)th, the (fc -f- l)th row to

the {n + 2)th, and so on, finally adding the rth row to the last.

Afterward subtract the (n + l)th column of A' from the A:th,

the (w + 2)th column from the (A;+l)th, and so on, finally

subtracting the last column from the rth. Then

«11 012 ...ttli-l f'l* ...ai^_i Oi^ %r+l ...«u

«21 022 •••«2*-l «2* ...a.2r-l Oj2r «2r+l ...asn

%1 ^*2 "'^kk-l

^r+1 1 ^r+1 2 • • •^r+1 A-1 ^

<^r-ll<^r-12"'<^r-l&-l ^

«'U .• .a^r-i «*.

a^+u- •«mr--1 (^k+\r

. ... ...

«,_!,.. .a.^ir--l«,-lr

a,, .. .a,,_, a,.

f'ftr+l

''A:+ln

^r-lr+l'"^r-l» ^

r+1

... ...

...

...

...

...

... ...

...

...

a.+ii...o.+lr- l«r+l,-

... ...

«nt •••«« r-V (^nr

(^kk •••«* r-1 Ctkr

<^t+lA*"<^A+lr- l«A+lr

... ...

ar-W'Clr -Ir-l«r-lr

a,j, ...a. r-1 a,.

By 55 A' can be decomposed into products of pairs of minors,

viz., the minors of the rth order formed from the first r rows

and their complementaries. Since the elements in the columns

of A' directly below M are zeros, all the minors of the rth

order,. formed from the first r rows, will have complementaries

that vanish unless the said minors contain the given minor M.
Hence the first factors of the products in the expansion of A'

will all be minors of A, of the rth order, that contain the given



60 THEORY OF DETERMINANTS.

«1 &i Ci di 6,0
^2 &o C2 (^2 ^2

a-i bs Cg <^3 63

a. h. C4 d^ 64 64 C4

as h C5 d. 65 h C5

62 C2

63 C3

minor. Further, each complementary of such a factor is made

up of the n — r rows of A not found in the first factor and the

r — Tc + l rows in which M is found. Which proves the

theorem.

I«1&2C3C24 65! 1^203! =
tta b^ C3 0^3 63 U

a^ 64 C4 (^4 64 64 C4

1^162^31 \d^e^h2C^\

16102^3! I a4 656203!

16102631104^562031 ;

!«! 62 63(^4 65! 16203(^4! = 10162630541 1656203^4! +161020^3641 10562 03^41.

The student may show (change the rows into columns before

applying the theorem)

1016263^465! I63C4I = 1016263^4! 1636465! — 1016364(^5! I636462I

+ 1026304(^5116364611;

1016263^4651(^2

= 161(^263! la4&6C?2l — \cid2e^\ \a^hsd^\ + 161(^265! 10364(^21

+ l62C?364l loi65c22l " \<^2di^5\ lo, 64(^21 + Uid^e^l \aibMi
= — 1^162! 1036465(^2! + 1(^263! !«! 6465(^2! — 1(^264! IOi6365C?2l

+ lc?2e5ll«i 6364(^2!

»

The second illustration given is especially interesting as it

shows the form of the product when the minor is of order n — 2.

In that case the chosen rows are 7i — 1 in number, and the

development consists only of two terms, each term being the

product of two determinants of the (71— l)th order. If we
change the order of rows and columns in the result, we have

!«! 6263(^4 65! 16263(^4! = 10162 63(^4! 16263(^465! — 16162(^36411026364(^5!,

or A Aai,e6 = Ae5 Aa^ — Aa^ Ag,
;

and, in general,

A Aa,7fc, apq = Aart ^Opq — Aa,-j Aop*.

Employing an obvious extension of the notation described in

the latter part of 39, the last formula becomes

A
^^^ = i?^^ _^ -^

dOidcii^ da da^ da -iq ^%k
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Rectangular Arrays or Matrices.

68. As a determinant is a function of n^ quantities, the

elements are always found in a square array. It is often

necessary to consider the determinant obtained by applying the

process of 53 to two rectangular arrays of elements, i.e., arrays

in which the number of rows is not equal to the number of

columns. We will now investigate the value of this product.

1st. When the number of columns exceeds the number of

rows:

The product of two arrays (matrices) of elements in whicli the

number of columns (m) exceeds the number of rows (n), is a

determinant which is equal to the sum of all the products in which

the first factor is a determinant of the nth order formed from the

first array (matrix) , and the second factor is the corresponding

determinant of the nth order formed from the other array

(matrix) . Let the two arrays of elements be

«ii «i2 ••• <^in ••• ^im 1 an ai2 ••• ^in ••• aim
1

Cl2i a^ ... a2n . .
. a2m I g^jjJ

a21 0-22 • • • a.2n • • • CL2m
I n <1 m

<^nl «'m2 ••• Ct„„ ... «„„, J a„i a„2 •.. Clnn ••• CLnm J

Applying the process of 53, we have the determinant

^nau4-*'*+<^'l»ainH h^lw "im <^llf^21-\-"--\-CLln<hn

<^21 anH h a2«ai„ H f- «2m ai^ ^21 a2i H h Of2na2n

<^niaiiH httn^a^.H ha„„ai„ ania2iH ha^^og^

H \-(^imf^2m •'• «na„iH |-ai„a„„H \-ai^a„„

-h"'-^-Cl2ni"-2m "' «2ia„iH \- Ci2n O-nn -\ 1-«2„ a„„

H \-(^nm<^2m '" «„ia„iH \-Ctnn"-nn-\ \- <^'nm O-n,,

Now we may form from A a number of determinants A,, Ag, A3 •••

of the nth order, the elements of which are all polynomials con-
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sistiug of n terms each. The number of such determinants is,

of course,
m(m - 1) (m-2) - (m-« + 1) . ^et us consider

n!

one of these determinants ; take, for example Ai, whose columns

are formed from the first n terms in the columns of A. AVe

have, accordingly,

Ai= auan4-C^i2ai2-| h^inain

«2ian+ <^22ai2H |-«2nain

^n\ "11+ 0tn2 ^12H f" ^nvP-\n

<^lia21+ <^12«22H \-(^\nf^2n '" Ctji «,»!+ « 12 an2H h^lnOnn

«21 «21+ ^22«22+*"+^2na2» •*"
^<21 a„i+ a22 a„2

H

|-«2»ann

«nia21+ <^n2a22H \-<^nnO-27i '" «»ianl+ ««2aH2H h^nnttnn

Now Ai is, by 53, the product of two factors, the first of which

is the determinant formed from the first n columns of the first

array of elements, and the second is the determinant formed

from the corresponding n columns of the second array. In a

similar manner we may show, that each of the determinants

Ai, Aa, Ag--- is the product of two factors, each factor being a

determinant formed from n corresponding columns of the two

given arrays. Then in order to establish the proposition it

remains to be shown that A = Ai + Ag + Ag H . Each of the

determinants Ai, Ag, Ag--- can be decomposed into n! non-

vanishing determinants whose elements are monomials. Ac-

cordingly the sum Aj -j- As + AgH— will contain

m(m— l)(m — 2) ••- {m — n-{- 1)

non-vanishing determinants whose elements are monomials.

Returning to A, we see that it can obviously be decomposed

into m" monomial element determinants ; but those which do

not vanish are only m(m— l) (m— 2)--- (m — n-f 1) in number.

Now observing that each one of these monomial element deter-

minants is a jmrt of that one in the series Aj, A2, Ag--- in which

its columns occur as parts of columns, the proposition is estab-

lished.
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Illustration

:

Performing the operation of 53 upon

ag 02 Co 0,2 j
a2 P2 72 f>2

j

we obtain the determinant

«2ai+ ^2A + C2yiH-(^2Sl «2a2 4-&2ft +^^272 + ^2^2

This determinant the student can readil}^ show is equal to

(«iW («1A) + (^^2) (aiy2) + («id2) (ai82)

+ (2^1 C2) (A 72) + (&lC^2) (/?lS2) + {cA) (7182) .

2d. Wlie7i the number of rows exceeds the number of columns.

Consider the two arrays.

a^ &2
f

and ttg ^2

Multiplying as before, we have

ajai + by^^ aia2 + &1/32 ajag + ftjft = 0.

«2ai + i^2/?l «2a2 + &2/?2 <^2 ^3 + h(^S

Cts"! + ^sA «3a2 + ^sft WsCtg 4- 63^3

The value of A is readily seen to be zero when we notice that

it can be obtained by multiplying two determinants formed from

the two given arrays by prefixing a column of zeros to each. The

method of proof employed in this special case is general. It is

only necessary to add to each array as many columns of zeros as

are necessary to make each array square, and then compare the

product of the two determinants thus formed with the deter-

minant formed by compounding the two matrices.

Reciprocal Determinants.*

59. If the principal minors of the elements of a determinant

are themselves made the corresponding elements of another

* Reciprocal determinants would more properly be considered in the

next chapter since they are among the " special forms," but for several

reasons it is thought best to introduce them here.
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determinant, the determinant thus formed is called the reciprocal

or adjugate determinant. Or, in other words, the elements of

the reciprocal determinant are the complementary minors of the

corresponding elements in the original determinant.

The reciprocal of {cti h^ c^) isipp

(as Cg) (tto h)
KC3) -(ai^a)
(ai C2) (ai 62)

Assimilating the notation of 19, we have

\AiB2Cs,..L,\, 1^1,1, or 1^11 ^22 -433... A„l,

for the determinant adjugate to

I
«i h C3 ... ^n I? I

«i^ |,
or

1
an a22 %3 •.• <^nu|?

respectively.

If the minus signs in the first illustration are erased, what is

the effect upon the determinant? How is it in general?

60. Theorem.— The determinant A' adjugate to any deter-

minant A oftJie nth degree, equals the (n — l)th power of A.

We have, for example.

Whence

A = «! 61 Ci

^2 ^2 C2

«3 h C3

AA'= A =

A
A

and A'=

A^

A B, C\

A2 B, (72

Ao Bo C.Q

The process here exemplified is perfectly general, hence the

proposition.

61. Theorem.—Any minor of the kth degree of the reciprocal

determinant A' is equal to the complementary of the corresponding

minor in the original determinant A multiplied by the {k — \)th

power of A.

Let A =
I
ai4 1, and A'=

I
^14 1

.
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Transform A and A' so that the minors
|
ctn ^32 «44 ]

and

I

All -^32 ^44
I

occupy the first three rows and columns in their

respective determinants. Then

A=(— 1)'' ail «i2

^31 ^^32 ^ai

41 42

and A'=(-l)'^ An Ai, ^4 ^1,

A. As, ^4 34 ^33

-I41 ^442 -i« ^«
An A.^_ A.^ ^..

Then

lAl A2 ^44|=(-l)'^ Ai Ay2 A,, A„
Ai A,, Au •^33

A,i Aj^ Au ^43

1

Multiplying,

A\Aii A^ A^\=z A «13 = a2C

A «83

A "c
a^

Whence
| An ^433^44 ]

= aog A^, which is the required value of a

first minor of A'.

To find the value of a second minor of A' we may proceed as

follows

:

The minor

1-^22 As, (-l)nA2
•^32

-"2;

A
^21

A^i

1

A4
-^34

1

and the corresponding form of A is

(-1) «'23 a^i a24

«33 asi (X34

^'13 «n «14

«43 «41 «44
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As before,

A Moo AJ = A^ ail a.A 0821 «2-
, _

A agi a34

an an
a^i a^

Whence, |^22 ^33!= \<^n «44|^-

The student may put

A =
I

ai 62 C3 di
I

and A' =\Ai B^ C^ A |

»

and then show that

\B, a, A|=aiA2;
Ml A|= I&2 C3IA.

The general theorem, of which the preceding are special cases,

is proved as follows :

Let A =|ai^| and A'= |An|?

and let the minor of the Mh order of A' whose value is sousfht be

V= ^PiQi ^PiQz ^PiQs •' ^PiQk

^PiQl ^P2l2 ^P2Q3 '" ^P2<lk

\^PkQi ^Pk<l2 ^PkQa '" ^PkQk^

Now putting

fi =Pi +P2 + ••• +Pu + qi + q2-\ f- ^*,

we may write

Qp^q^ ... Op^g^ ap^i ... Ctjy^q^-l Ctpiq^+l ••• <Vi?2-l ^Pi?2+1 "

^PiQi '" ^PiQk ^Pi'i- '" ^P2Qi-l ^zQ-i+l ••• ^i>2(?2-l ^i'2Q'2+l •'

^PkQi ••• ^PkQk ^Pk^'"' ^i'ftffi-l ^PkQi+'^ '" ^Pk^2-^ ^*ff2+l •'

Cip^n

^Pk^

aiq^ ... aig-^ an ... a\q^-\ aig-^+i ... aig^-i ai^^+i ... ai»

a2g^ ... a2g^ ttsi ... a2g'j-l O^g^i+l ••• ^2^2-1 ^ffa+l ••• «2n

* In this determinant the subscripts }\, }\, p^, ... g^, q^, q^, ... of course

stand for any integers in order of magnitude.
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The coiTesponding form of A;^ is

. . . Ap^q^i Ap^q^+i . . . Ap^n

• • • 4^2?2-l Ap^q^+l . . . ^^271

• • • Ap^q^-1 Ap^q^+i . . . Ap^n

... ...

... ...

ApiQi ' • • Ap^qi^ Axl" • Ap^q^--lAp,q,+l

Ap^Qi ' ••Ap^q„ Ap^\'' ' Ap^q^~-1 Ap^q^+i

Apj,gj_ • ' • Ap^q^ Aa-1" Apf^Qi--i4pftgi+i

. .. 1 ..

. . ..

. . .. 1

. . .. 1

. . ..

. . ..

. . ..

. ..

. ..

1 . ..

1 . ..

•••l(n-fc)

We notice that this form of A;^ is just the same as if it had

been derived from A' b}^ making the pith, pgth, •••^^th rows of

A' the 1st, 2d, ••• A:th rows, making the same changes in the places

of the ^ith, goth, ... Qj^th columns, and then putting 1 for each

remaining element of the principal diagonal, and for every

other element of the n — k rows of which A;^ is not a part.

Multiplying, we have

AA,

= A .

A .

ttp^i ... Clp^q^-l Ctpi^i+l ••• (^p^q^-l ^PiQi+l '" ^Pi^

•

... A ap^i.. • ^PkQi-T^ "2^i-?i+l • •• ^hk<li-'^ ^^PkQi+'i-

... an . • «lgi-l «l(Zi+l • •. «1(72-1 Cllq^+i

... a2i .. • «2f?i-l «2(7i+l • " «2(72-l Ct2g,+1

... a„i ... Clngi-l CLnq^+l ••• ^n^j-l ^^nq^+l

••• Cipkn

... ain

... a-zn

• .

.

Cf/fin
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Now this determinant is at once expressible as the product

of two determinate factors, and we have

A\ — A* times the complementary of the tninor of A corre-

sponding to A^ in A'.

Whence

A;^ = A*"-^ times the complementary of the minor of A corre-

sponding to A„of A',

as was to be shown.

62. From the preceding article it follows at once that if

A = 0, then

••=0;An Au
-^21 -^22

= = An Aio

Aqi Aq2

i.e., in general

whence
Aij, Ape

0,

or A, J,
: Aie ::Ap^: Ap^.

That is to say :

If A = 0, the cofactors of the elements of any row are propor-

tional to the cofactors of the corresponding elements of any other

row.

From the preceding article we have also

= A X complementary minor ofAik Ai.

^^pk -^^pe

which may be written

dA dA

dajj, da/g dai^dap^
'

dA dA
dap, dap.

whence

da

1'A dA dA

,,dape da,, da^.

dA dA
dap, da^.

which is the formula already obtained in 57.
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1. Show that

0,

EXAMPLES.

also

2. Show that

^2

^1

h

h
h

\B,

2/3

2/2

2/1

a4

= -2!i|a;i2/2%l |2/i2^2|;

|«1&4| |0t2&5l |«3&6

C2

^3

ClA A A
CiB, B, B,

c,C\ c. c.

= \A^B^C^\ lai^gCs].

3. If A is a determinant of the nth order, having n — m zero

elements in the corresponding places of m rows, then A is the

product of that minor whose elements are the other elements of

the 771 rows and its complementary ; the sign of the product is

determined as in 55.

4. If any determinant of the nth order has more than {n — m)
zero elements in the corresponding places of m rows, the deter-

minant vanishes.

5. «! \ Cy M iV^ = a^-M h^-N
0^2 h C2 P Q a,-P h-Q
0^3 h C3 ttg 63

a^ h ^'4 a4 64

as h C5 as 65

«! a^ ag a. = \d,a,\ \h,c\

&i h
Ci C4

d. d. d. C^4

03^4651;
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6. tti «2 a. ^4 «5 «6 Oj as ag «10

h h h &4 ?>-, h h h &9 K
Ce Cr Cg

f?6 cZ; dg

ec e? eg

/l /. f. /. /. ./o /r /s

9i 92 9s i/4 i/o ^6 i/z ^8

\ h h h h /'« /'r /'8

h h . ?'(; ^T ^*8

k. A:2 A'6 Av A-g

== -| <-hK\ 1^6 CZyCgIIA74/^.1 \hKX

7. Show tlint

{ay-h^y (a.-boY

(a,-b,r {a,-b,r
{a,-b,r {a,-b.^'

{a,-b,y
{a,-b,y
{a^-bsY

K--b.y
(«.--hy
(«3--b.y
(a,--hy

= 0.

This may be proved by multiplying the two arrays

:

and

8. Show that

|«ln| (^1 + 3^2 + a^3 + + ^.)

(("21 ^22

+ an
^21

«12

«nia^l (^n2^2

^2n

^2»

a„t,x,.

+
^21 1 ^22*^2 a2na;«

Notice that the coefficient of Xi in this sum is

ay.Au + a2iA2i + a.^Asi H h a,,f^„i = |
ai„|.

9. As an application of the preceding, show that

2 (xi + a^a + a^s)

1 1
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X,' xi xi + X^ X^ X., +
Xo X^ Xi x? xi x^-

1 1 1 1 1 1

X;X.2 XoX^ X^Xi + Xi X, X.,

X.J X^ Xi XiX.2 X2X^ X^Xi

1 1 1 1 1 1

1 . Given /^ (cc) = a^x"+ 3 b^x- -f- 3 CiX + d^
,

fo{x) = ao-Tr 4- 3 b.^oi^-i- 3 c.^ -j- c?2,

Mx) = apy'-\- 3 b.x'-^ 3 c,x + d,
;

show that

/iW /I'W /i"W =-18
^2^ f^'ix) f,"{x)

M^) fs\x) f,"{x)

I —X x^ — ar*^

h bi Ci di

I2 O2 C2 CI2

h ^3 ^3 ^3

The first determinant is at once reducible to

-18 ciiX + bi biX + Ci CiX-i-di

agic-h^a &2^ + C2 C2X-\-d2

b^x + C3 Cgic + da0-30; + 63

which may be written

10
«! a^x + bi biX-\-Ci CiOJ + c?!

«3 a^x + b^ hx-\-c.i c^x-\-d^

Again using 37, the last determinant becomes the result above

written. The student's attention is called to the fact that the

method of bordering a determinant, z.e., increasing its degree

without changing its value, here employed, is frequently of use

in simplifying.

63. The following examples comprise several interesting

expansions of determinants. The cases considered and the

methods employed are important.

I. Expand the following determinant in ascending powers

of xi
X a
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A is evidently a function of x of the nth degree, in which the

coeflacient of x"" is 1, and the absolute term is /(0) = |ai„|.

To complete the expansion, we have to find the coefficient of a^.

Consider the product of two complementary minors of A, of

the feth and {n — k) th degrees respectively,

otee + a;

a,, + x
and %„-\-x

This product contains the term

x' = ^n. say.

The entire coefficient of ic* is accordingly SDn-*, *.e., the

sum of all the minors of |ai„I of order 7i—k, whose principal

diagonal lies in the principal diagonal of lai„|.

As an illustration, the student may show that

CLi-{-x bi Ci di

«3 ^3 C3 + a; ds

a^ 64 C4 d4-\-x

+ \b2d^\-h\aM + \cM^x'

For another exercise, let the student find the terms of

A = |ai„| that contain k elements from the principal diagonal, by

considering the product of two complementary minors, as above.
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II. Expand

ax + ly CiX 4- n^y

h^ -f m^ a2X + ^22/

in ascending powers of x and y.

Putting first y = 0, and then a;

and 2/^, respective!}*, are

\x + m^
a^x 4- /i2/

ca; -\-ny

0, the terms involving a^

a ci &i , and f I rii Wi
Ca h a. ?i2 m h
&2 <^*2 C wig ^2 n

Putting the y's in the two last columns of A equal to zero,

we obtain for one set of terms involving afy

3?y I Cl

W2 h

m2 <X2

and the two other sets of terms containing x^y are, similarly,

a?y a Ui bi and a^y a Ci mi
C2 m ai C2 b Zi

&2 h c &2 «2 ^

The coefficient of xy^ is found in a similar manner, and the

entire expansion is accordingly

\=:X' a Ci &1 + 0^22/ I c. M+ a Ui &i + a Ci mi
C2 b a. 712 6 tti C2 m tti Ca 6 ^1

62 ttg c _ ma Ota C 62 ^a c 62 ^3 n —

4-a^ a Wj mj
C2 m ?!

+ Z Ci mj
W2 & ?i

+ ? Wi &1

rig m «!

+ 2/^ I nj mi
na ?>i Zi

_ ^2 ?2 n WI2 ^2 ^ m
2 ?2 c ma k n\

III. Show that any determinant A may be developed in terms

of the elements of any row and column and the second minors

of A corresponding to the product of these elements.

Let A'=|rtii ^22 agsh

and border it as indicated below ; calling the result A, we may
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expand A in terms of the bordering elements and first minors

of A', i.e.,

A= a^n am am «„« = ctoo A'—
J aio ttoi Ai+«io «02 ^12

4-«10 <^03 ^13H-«20 «01 ^21+<^20 «02 -^22

"i a^ a^Q -^23 "I ^30 ^01 -^31T" ^30 <^ -"32

-f- ago ttos -^^as 1 1

in which Ai^^ is, as usual, a first minor (with its proper sign)

of A'.

ttoo «01 «02 ^03

«10 «11 «12 ai3

«20 ^21 ^22 «23

^30 ^31 «S2 ^33

In general, if A'= 1 a^ 022 • , we have

aoo ttoi «02 ••• aon

ft^Q ail %2 ••• au

(7^0 ^21 «22 ••• «2«

«nO«nl «n2"- ^*nn

= aoo A'— 2 afoaot^i* (/, ^• = 1, 2, 3 ...w)

,

in which, as before, Aij, is a minor of A'.

For .the terms of A containing a^ are obviously aooA'. Now
let (7 be the complementary niinor of

cioo OoA in A
;

then ttooCtiAC' contains all the terms of A involving Oooaf*; hence

afjO contains all the terms of A' involving (x,^, and consequently

and — ai^aQj^Aij, is the expression for the terms of A containing

the bordering elements a^o, ao**

This expansion, known as Cauchy's Theorem, is frequently

written

A ='«,, A,- :Sa,,a,,/?i,. (a)

Here A is a determinant of the nth order. A^, is, as usual, the

complementary minor of a^, in A ; i has all integral values from

1 to n, except r ; Tc has all integral values from 1 to w, except s
;

and ^ik is the complementary' minor of a,j in A,,. (a) is,

accordingly, the expansion of A in terms of the elements of the

rth row and the sth column.
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The student may show that

A =

A =

a f g h

A b

9i ,0 c

hj^ d

ai-^Xi ag ag

= abed — Jficd — ggibd — hh^c.

a^

—x^ Xq

— ajg x^

ai+iTi ttg ttg a^

— Xi ct'a

— Xl iCg

a;^-x"i

f ai Og ag a4
"I= XiXoXoX, < i-\ —
Yi

^
J

4
j^

' iCi i»2 ^3 ^4 j

IV. If A

and if we put

Xl ag ttg . .. a„

ai X2 ttg . . . a„

tti ag ajg . •• '^n

«! as ttg . .. a;„

f{x) = (x^— ai) (iK2- 02) ••• (X,,- aj,

and

aa;.

we find

For

A =

A=f(x) + :S,aJ'(x,).

1 ...

1 Xl a.2 Og ... a„

1 tti a*2 ag • • • Ct/t

1 ttj Oo iTg ... OLn

1 ttj as ag ... a;.

1 fti a2 ttg

la.'i— ai "

1 X2-a2
10 ajg— ag

1 0* X^— a^

whence (if, as in III., we let A' represent the complementar}'

minor of the first element) A'=/(a!), and, since every first

minor of A' vanishes except the minors of the diagonal elements,

we have the required value of A on applying the theorem



76 THEORY OF DETERMINANTS.

V. Show that

A = CLi >C X OS , , , QC

X 02 X X ... X
X X a^ X ... X

= f{x)-xf{x).

X X X X ... a„

in which f{x) = (x — aj) {x — ag) (a; — ag) ... (a; — a„)

,

and f{x) = J^ = {x- a,,) (a; - ag) ... (» - a„)

+ {X- ai) {x - ag) ••• (a; - a„)

+ "'+(x-a,){x-a2)-"(x- a„_i)

.

A= 10 ... = 1 — a; — x — a;

Itti— a;

1 ag-a;
10 ttg-a;

1 0...
1 ai X X ... X
1 X a2 X ... X
1 X X ttg ... X

1 X X X ... a„

—X

a,-X10
Then, as in the preceding example,

A=/(a^)-<(a:).

64. To the expansions of the preceding article we append the

solutions of the following determinant equations.

I. Solve the equation

A = X tti «! tti

«! X ttl tti

tti ai X ai

«! tti tti X

= 0.

We find by easy reductions

A=(a;-aiy X tti «! «!

-1 1

-1 1

-1 1

= (a;-ai)3(a;4-3ai)= 0.

Whence, a; = ai, ai, ttj, —3 tti.
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II. Find the values of x in the equation

A = X ai h C]

ttl X Ci &1

h Ci X a.

Ci h «1 X

= 0.

A = a;+«i+^+Ci «! 61 Ci

ar+ai+6i+Ci a; Cj 61

x-i-ai-\-bi-\-Ci 61 ai a;

= (a;-f ai+6i+Ci) 1

1

1

1

X

&1

X <

^1

= (a; + ai+ &i+ Ci) (a; — ai+ 61— Ci) -1 1

1 X Ci

-1 •

1 Ci X

1 bi «! a;

Put the two polynomial factors =A and J5 respectively

e last expression

then

A.B.
0-10

1 x-hc^ Ci 61+ Ci

1 x-\-Ci X ai-{-x

1 6i-f-«i «i cii+a;

=
A.B. 1

1

1 feiH-Oi— a; —

(

-1

a;

-ai- X
•

Whence

{x -\- «!+ 61+ Cl) (x — a^— Ci+ &i) (5i4- ai— a; — Ci)

(tti+aj — &i— Ci) = 0.

.-. a; = -(ai+6i+ci), (a^- ftj-j-Ci), (^^-Ci+ai),

(61-tti+Ci).

III. Find the roots of the equation

A = = 0.a^ W (?

{a-^xy {b^-xy {G+xy
{2a + xy {2b+xy {2c-\-xy

From the third row of A subtract the first row multiplied by 8,
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aud from the second row subtract the first row. Then subtract

the second row from the third, and we have

= 3X2 o? V" <?

3a2 + 3aA. + A2 ZV^ + ^hX + X^ Z<^ + ZcX + X.,

3a2-f-aX 362 + 6X Z(?-{-cX

Now subtract the third row from the second, and

A = 3\'^ a^ h^ <?

2a +X 26-f-A. 2c+A
Sa^H-aA ?>W+hX Zc'-^cX

= 0.

From this equation it is obvious that three values of X are zero

;

the other two roots can be found by equating to zero the quad-

ratic factor of the first number, and solving for A..

A ma}^ however, be further simplified as follows : subtract

the first column from each of the other two ; then

A==3\Hc-a)(6-(x)
2a-\-X 2 2

3tt2+aA. 36+3a+X 3c+3a4-A.

Now subtract the second column from the third, and

A=3\3(6-a) {c-a) (c-b) a? a2-f-a6-f62 a-\-h + c

2a+X 2

3a2+a\ 3a + 364-X 3

Finally, add the second column multiplied by —a and the third

multiplied by ab to the first, and afterward subtract the third

multipUed by a + & from the second ; then

A=3X«(6-a) (c-a) (c-6) ahc —bc — ca — ab a-\-b-\-c

X 2

A 3

0.

Whence three values of X are seen to be zero, aud the other

two roots are readilv found from the quadratic

(a + 6 + c) X'+ 3 (&c + ac + a2>) X + 6 abc = 0.
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65. Theorem. — The total differential of a determinant A
is a sum of n determinants, each oftvhich is obtained from A by

substituting the differeyitials of the elements of a row for the

elements themselves.

Let A= \x^y2Z^---t^\.

Developing in terms of the elements of the ith. row,

A= x,X,-\- y,Y,-\- ;2^z,+ ... + t.T^.

.-. dA = dx,Xi+dyiYi+dZiZi-\ \-dt,Ti.

There must be n such expressions for the total differential, each

of which is obviously A, after changing the elements of the ^th

row into their differentials.

.-. [c2A]* =

+

From the differentials, partial or total, we, of course, pass

to the coiTesponding derivatives in the usual way.

Illustrations.

dxi dyi dzy

^2 y-i %
...dt,

... t2

+ »i 2/1 %
dx2 dy2 dz2

... t,

,..dt2

^n Vn ^n ... t,, ^u Vn ^n ... t.

X^ 2/1 ^1

^2 2/2 ^2

... t,

... t2.

•

r

dx^ dy^ dz^
'.'.'.

di

V —— ; N'^dvN
dM M
dN N

. d dM M
dN N

= d'^M M
d'jsr N

Let (^U ^22 ^33 ^44

1

a 26 c

a 26 c

b 2c k
b 2c k

dA
da

J^ll-\-A22 — a 26 c + Jc

2c k
6 2c k

a c

6 k

The [ ] denote the total differential.
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^ = 2A^+2A^+A,,-^A^=4b\l
k
-4k a b

b c

2b
a
b

c

26
2c

a c

b k

~7~ — -^13"f'-^24~f~ 2As2-}- 2A4Q = •••,

ac

dA
dk

66. Theorem

-^33+ -^44

dA
If the elements of A are all functions of the

same variable x, ^^— equals the sum of n determinants, each of
ux

which is obtained from A by substituting the derivatives of the

elements of a row for the elements themselves.

The truth of this proposition is evident from the preceding.

Thus, if

6A
dx

Mx) f22ix) .

/nl(aj) fn2{x) .

/2l(a5) /22(«)

f2n{x)

fnn(x)

JJix)
• Mx)

'fnnix)

+ /uW fu{x) .../in(a;)

fj(^\ f.J(r.\ fj(^a:)

+

If 1 Xiic

1 1 Aaic

1 1 X^x

1 1

fn'ix) f^\x)

fnl{x) fAx)

fn(x) f^(x)

U{x) f^x)

fnl'(x) fj(x)

= A1A.2X3 1

-fnnix)

'An{x)

'f2n{x)

Jnn'ix)

+ •••

- a;

X
1 1_

A2 A2

1 1

1

— X
A, ^
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the student may show that

dx
— — AiX2^S

1
X

^3

1 1

+ — a;

^ X
A3

1

+ 1
X

Ai

1 1
X

A2 A2

1

"b



CHAPTER III.

APPLICATIONS AND SPECIAL FORMS.

67. We have now discussed the origin and some of the

properties of determinants ; it remains to show how useful these

functions are in application, and to examine some of the Special

Forms that are of frequent occurrence. Within the limits of an

elementary work like this it will be possible to select only a

very few of the many important applications, and to touch

somewhat briefly upon the special forms. Enough will be given,

however, to enable the student to pursue his further investiga-

tions with pleasure and profit. We now return to the problem

with which we commenced the presentation of determinants, and

proceed to the

^^ Solution of Linear Equations, and Elimination.

68. Consider the set of three simultaneous linear equations :

aiX + 6i2/ + CiZ = 7?ii «1 h Ci

a^ h C2

cts h C3

a<fc + b^y -\- c^ = ^2 [> , and A
a^x -i- b^ -^ c^z = 7ns

Multiply these equations by Ai, A^, and A^ respectively, and

add by columns, obtaining :

(aiAi+ a2A2+asAs)x + (61^1+62^4-^3^3)2/

+ (Ci^l+C2A +03^3)2

= miAi-\-m2A2-\-m^As.

By 45 the coefficients of y and z vanish ; the coefficient of x

is A = |ai62C3l, and the absolute term is I mi 62 C3 1.

Whence ^,_ \m^ b^ Cgl
^

ki 62 C3I
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y =

If we had multiplied the given equations by By^ -Bg, -B3, we

should have caused the coefficients of x and z to disappear in

the resulting equation, and would have found

1^1 ^2 C3I

Using (7i, C2, C3 as multipliers, we should find, similarly,

^_ ki 62 ^3!
,

ki 62 C3!

69. To generalize the solution of the preceding article is now
an easy step. Given

and

^21^1 "I tt22*^2 "I • * * "T" tt2r'^r I

a,^X^ 4- «V2^2 H f- (^rrXr +

' + a2nX^ = m,2

* "T" Clrn'^n = '^r
, I.,

«11 «12 ... ai, . • «ln

«21 ^22 .. ttgr . . «2n

a,i a,2 .. a,r . . «,.«

am «„2 .. ttnr . . a„„

Here A is, as before, the determinant formed from the n^ co-

efficients in the first members of equations I., and is called the

determinant of the system.

Multiplying equations I. in order by A^^^ A^r-, ... A„^ ... yl„^,

and adding by columns, we find

+ OjriArr + * * * + f^nzAnr) ^2I \^12Air -f- (^22A2r ~\~ ' '

+ ...

+
+ a„,^,rH f- a„,,A^,)x^

-\-m,A„-\ Vm^A^,. (^)
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In equation (A) the coefficient of all the unknowns except the

coefficient of x^ vanish, and the coefficient of x^ is obviously A.

The second member of (A) is evidently what A becomes when

mi, mg, ...m^ are put for the corresponding elements of the rth

column. Hence

ttll a,2 mi ... tti.

^21 ^22 Wg ... ^2.

ftrl a.2 m. ... a,„

am (^n2 w« ... a„„

ttn ai2 .. . «!, . . a,.

^21 ^22 .

.

aa, . . a2«

-^
a,.i ay2 .. arr . . a^

a„i a„2 .. a„, . . a«n

Translating this formula, we have

:

The value of each of n unknowns in a set of n linear simul-

taneous equations is the quotient of two determinants; the divisor^

(denominator) is the same for all the unknowns and is the deter-

minant A of the 7ith degree formed by writing the coefficients of

the unknowns in order (i.e., the determinant of the system) ; the

numerator of the value of any unknown as x^ is obtained from A
by substituting for the elements of its rth column the second mem-
bers of the given equations in order.*

70. The following modification of tho solution already given

of equations I. will be interesting. Employing the same notation

as in 69, we have

flj^A

which, by 37,

an a^2 •

^21 a^ .

... ... .

a,i a.2 .

a„i a«2 •

airXr

a^rXf

...

a^x.
...

a«r»r

«1«

a««

* This is the rule for the solution of simultaneous linear equations first

obtained by Leibnitz, and subsequently rediscovered by Cramer. (See

opening paragraph of Chapter I.)
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^2r-l ^21'^l~r ^22*^2 1"

-f- a2n ^» C(-2r+i

• • "f" Cllr-l^r-l'T' (^Ir-^rl

" + Ot2r-l^r-l~H Cl2r^r~\~

"+ arr-lX,_i-^ a,rXr+

"+ anr-lXr-i+ar,rXr-\-

<^2/i

Now substitute in the last determinant the values of the

elements of the rth column, and

a? A = Oil ai2 . .

.

^21 ^22 •
•

'

Ot,,i Cl„

«2r-l

«1«

a2n

a,,_i m.

m. .. a„

I Cll\(^22 • • • ^rr • • • ^nn '

as before.

A simple example of the methods of 69 and 70 is the solution

of the following equations :

.'. X

2x + 6y — 3z=lS
Sx-Sy-\-2z = 21

48 3 3

18 6-3
21-3 2

Here A=
5 3 3

2 6-3
8-3 2

= -231,

-231
3; 2/ =

5 48 3

2 18--3

8 21 2

-231
5: z=

5 3 48

2 6 18

8-3 21

231
= 6.

As another example, we may solve the equations

:

z H-w +flj = b

ti-{-x -\-y = c

^ -\-y +2J =d
Here A =

1 1 1

1 1 1

1 1 1

1 1 1

= -3.
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The student may show that

a; = i(6+c-f d-2a); 2/ = J(c +d + a- 26) ;

z=l(d-{-a-\-b-2c); u = l{a-\'b -^c -2d).

71. We have hitherto tacitly assumed that neither A nor m<

(i= 1, 2, ... 7j) should vanish. If A vanishes and m^ does not,

the value of each unknown becomes infinite. If m^ vanishes

while A does not, the values of the unknowns are severally zero ;

but when mj vanishes, the system consists of homogeneous

equations, and their solution is given later. If m^ does not van-

ish, but A and the numerators of the unknowns do vanish, then

we have the following theorem.

72. IftJie equations of a set are not independant, i.e., if any

one {or more) is a consequence of the others, the value of each

imknown takes the form —

Since the equations are all linear, any one can be derived from

the others only by the addition of two or more of them after

each has been multiplied by some constant factor. But this

gives rise in the determinant numerator and denominator of the

value of any unknown to two or more identical rows, and hence

numerator and denominator vanish.

For an example, take

aiXi-[-biX2 +CiXs = mi

OoCCj + 62^2 + C2a;3 = '^h

aiXi-\- aibiX2+ aiC^x^^ aimi

We find

h &i Ci

where A = a.

Xi= tti

^2 &2 ^2

mi 61 Ci = 5; a., = ai'^^-^ = 5; x,^
A

«! 61 Ci

ao &2 ^2

ttj bi Ci

\ai &2^%I

0.

For a second example, the student may show that the values

of the unknowns in the following equations take the form -•

43a; + 2?/ — 02 =
6a; — 3?/ -f- 4z

y-2z

= 4^
= 22 L
= -2J
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m^_i = 0, and one m as m^ does not,

^n^nn

73. If mi = W2== ••

we evidently get

_ m^A,a

Whence J^ =^= ... -|!L = !??l\

74. If mi = m2= ••• =m„=0, ^.e., i/* equations I. become

homogeneous, tJien, unless x^, x^^ •••^« «»*e severally zero, A mi^s^

In that case, equations I. become

?! = <Xn^i+ tti2CC2+
+ a2^ir,.+ + «2Ha^n=0

(m^ being zero), the

II.
l^ = arl^l+ «r2^2H h «rr^%+

Since a:^A = I an a22 <^33 • • • 'wi,. ••• <^nnl

truth of the assertion is obvious.

An example is furnished by the homogeneous equations

:

an a^i -f ai2 if2 4- «i3 a?3 = ^

a2ia?l + «22^2 + «23»^3-=0 I. {E)

ctsiX^ + a32a^2 + «33a^3 = J

Multiplying equations (jEJ) by A^, A^i, ^31, respectively, and

adding by columns, we have

(an^n + «2i^2i + «3i^3i)a^i

+ («12^11 + «22^21 + a32^3l)^2

4- (ai3^ii + a-23^21 + 033^31) a's= 0.

The coefficients of X2 and x^ are zero, and we have

a;iA = 0, .-. A = 0.

As a further illustration, the student may show that if

nXiX-\-vyiy+icz^z-\-Ui{yz^+yiz) -i-Vj^izXi-^z^x) -\-w^{xy^+x^y)

is zero for all values of x, y, and z, then

uvw — uui— vv^— wWi-\- 2 ?/ii'iWi= 0.
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Observe that by the given conditions the coefficients of a;,

?/, z must severally vanish.

75. With the help of 74 we obtain an interesting proof of

the multiplication theorem of 53. Consider the simultaneous

equations

(ai-X)a;i-t- h^x^ + qajg =0^
as^i +(&2 — A)a72+ Cg^s =0 > I.

(h^ + h^2 +(C3-X)a;3=0 )

By the preceding article we must have

«! — A 6i Ci

CI2 62 — •^ C2

«3 &3 Cg — X

or

= 0,

0; (a)X^-Jfx^ + iVA-P

where we notice especially that

P =
I «! 62 C3 I .

Let the roots of (a) be Ai, Ag, A3 ; then, evidently,

P= — Ai A2 A3.

Now, from I. we obtain three new equations as follows

:

Multiply equations I. b}^ aj, as, ag respectively, and add them

together ; also multiply equations I. by ft, ft, ft respectively,

and add ; finally, multiply equations I. by yi, yg? 73 respec-

tively, and add. We now have three new equations where the

determinant of the S3'stem is

A'= aiai + «2a2 + C^3a3 — ttiA ftittj + &2a2 + ?>3a3 — a^A

C^lft+ «2ft+ <X3ft- ftA 61ft+ 62ft+ ?>3ft- ftA

«i7i + 0^2 72 + «3 73— 71^ &i7i + ^272 + &3 73 — 72^

Cittj -}- C2a2 4- Cgag — ttgA

Cift+C2ftH-C3ft-ftA

Ci7i + C272 + C3y3 — ygA

0,

or QA3-JIfiA2 + iViA-Pi = 0, (&)
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where we observe that Pi is what A' becomes when we put

X = 0, and that

Q = lai ^2 ysl*

Further, since

it follows that

— — — A.1 Ag Ag — P,

Pi = PQ= Ui &2 C3I X Ui ^2 ysl-

But Pi is exactly the determinant obtained by 53, and this

was to be shown.

76. The condition A = being fulfilled, the equations no

longer determine the actual values of the unknowns ; they deter-

mine only the ratios of these values. For, if a;/, x^-, ...xj

satisfy equations II., so will Jcxi, kx^j... 'kxj, k being any factor.

Any n — 1 of the given equations will suffice in general to de-

termine the ratios of n~l of the unknowns to the remaining

one. An example will make this clear. We employ for brevity

only three equations

:

aiX-{-biy -|-Ci2; =
a2X -\-b2y -{-C2Z =
a^x -{- b^y + CqZ =

Write these equations

X

(a),

tti - 4- Ci
-

y y
b.

X z
[if>)'

X . z
«3-+C3- -b.

From any two of equations (b) we may find the values of

X z
- ; thus from the first two

y y
\bi Cgl . z

1% Col
'

y

\cti &2I

|ai C2I
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Again, equations (6) are to be simultaneous ; hence these

lues of - an(

y

Substituting,

dC z '
'

values of - and - must satisf}^ the third equation

ttgl&i C2I — ftglai Col + Cgltti 62I = ;

or A = 0.

Since from the preceding equations - also equals
y

l&i C3I I&2 C3I

and hence

or,

Idi Csl las C3I

we have ^ — Al — -^ — -^
y" Br B~ b;

In the same way,

z _ C^ _ C2 __ C3

y B, B, b;

z Oi C2 O3

x:y:z = Ai:Bi:Ci
= ^2 • B2 ' G2

= ^3:^3:03. '

That is to say. The ratio of any two unknowns in a set of

homogeneous equations is equal to the ratio of the cofactors in A

of the coefficients of these unknowns in any of the given equations.

The general proof of the proposition just stated may be given

as follows. "We have to show (equations II.) that

Xi'.x^'.Xs: ••• : x^ : .•• : x^^Au : ^12 : -i4i3 :
.•• : ^1, :

••• : A^^

= A21 : -^22 : A2S : '" : A^r : • • • : Am

^=^A^\\An2''A^'. "*'. A^y. *.'"'. Ann*

If these proportions are true, we must have the equations

x^=\Aj^ (X = constant; p = 1, 2, ••• n). (^1)
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The equation ^

is always true, whatever the value of p, since A is itself zero.

Substituting in (^2) the values of

as obtained from (J5Ji), and multiplying by X, there results

a.iXi -f a,2a;2 + a.3^3 H h (^rr^r H h ^rna^n = 0.

This last being a true equation, the proportions from which it is

derived must hold.*
/.-/^'•

77. From the last article, or the two preceding articles,

we deduce the important conclusion. In order that n linear

homogeneous equations may be simultaneous, it is necessary and

sufficient that the determinant of the system vanishes. In that

case any one of the equations is expressible linearly in terms of

all the others, provided the first minors A^^ do not all vanish.

For we have in general, A being zero, and Zi, Zg, ...Z„ repre-

senting the linear functions of equations II.,

hAiie + hAzk + • • • + ^nAnk= ;

hence, if one at least of the first minors Au,, A2U, . . . A^^ is not zero,

as for example A^^, l^ must be expressible linearly in terms of

/g, ?3, '"In-) and hence Zi = is superfluous. If all the first

minors vanish, and one at least of the second minors does not,

then, similarly, it may be shown that two equations are super-

fluous, the system being doubly indeterminate, and so on.

78. Among the proportions of article 76 consider the

following

:

Xi'. X2'. x^: ••• Xn =-4„i : An2 : A^ : ••• Anr^. (P)

* This demonstration applies of course so long as tlie first minors of A
do not all vanish. V
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^ni5 ^«2i ^«3i '•'^nn ^16, nooe of them, functions of the

coefficients of the last equation of set II. in 74,

Hence, proportions (P) give the ratios of the unknowns

ajj, iCg, a^a, ••• a;„, that satisfy the n— 1 equations

a^iXi -{-ai2X2 -i \-auX^ ^^1
a2iXi -\-a22X2 -\ \-a2„x,, =0 liii.^

if we denote by A^i the determinant formed from the co-

efficients in equations III. after suppressing the first column of

terms, by ^„2 the determinant formed from the coefficients of

equations III. after suppressing the second cohimn of terms,

and so on. Hence having given n homogeneous equations con-

taining n + 1 unknowns

anXj^-\-ai2X2-\ l-ai«+i«n+i = "^

a2ii»i 4- «22^2 -\ f- (^2n+lXn+l = I jy^^ "

aniXi-{-a„2X2-] h«nn+ia^'«+i = J

we find the ratios of the unknowns as follows

:

put A, = (-iy (Xjl ai2 '•' «i,_i CLii-^i •••
«l»-fi

^21 ^22 *'• ^2J-1 ^'2i+l *•• ^2n+l

Then from what precedes

x^: X2: x^: '" : x^T^ = di,: ^2' ^3' '"
' A«+i-

79. Consider the following n equations containing w — 1

unknowns.
aiiXi +ai2X2 H hoT'in-i^'i +i>i =0
«2ia^l +a22a?2 H |-«2n-iaJn-l +i?2 =0

dn-llXl-h O.n-1^2 H h a«-ln-iaJn-l+Pn-l=
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Equations V. may be made homogeneous by multiplying them

by u, and regarding XiU, X2U, ...x^u^ u, as the unknowns, u

being any arbitrary quantity. Whence, if these equations are

simultaneous, we have by 77

= 0.On ai2 ... am-i Pi

^21 a22 ... a2n-i P2
... ... ... ...

CTn-n Gt'n-12 . .
. Ctn-ln-1 Pn-

am a«2 ... (^nn-1 Pn

This result may be expressed as follows : n equations (not

homogeneous) containing n — 1 unknoicns are simultaneous if the

determinant of the nth degree formed from alt the coefficients

(the second members of the equations being included among these

coefficients) vanishes.

This condition could also be derived from equations II., Art.

74, by putting ic^=l. Those equations, n in number, then

contain n— 1 unknowns ; and if the equations are simultaneous,

we see that lai^l must vanish.

80. With the help of the preceding article another solution

of a set of linear equations may be obtained. For brevity we
employ only three equations :

(1) aiXi-{-biX2-^CiXs=mi

(Z) a2Xi -\- O2X2 -J- e2X^

(o) a^Xi + b'iX2 -\- CqXq — iivQ.

Take with these equations another,

(4) o^ Xi -\-b^X2-\- C4 Xs = m^y

which we suppose consistent with the first three, and in which

^^4? &49 C4, m^ are undetermined. By 79

= ma L
= mnJ

or,

where, as usual,

\ai 62 C3 m^\ = 0;

a^A^ -f 64 ^4 -f- cJJ^ + W4 Jf4 = ;

A^ = — \bi C2 mgl ; ^4 = I aj Cg mgl ;

C4 = — !«! 62^31 ; Jf4=Iai 62^3! = ^.

(5)
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Now if we eliminate m^ from equations (4) and (5), we get

Since equation (6) must be true whatever the values of a^, 64, C4,

the coefficients of a^, 64, c^ severally vanish.

A,
fl?2
__:?4.

or,
_ \mi 62 C3I . _ \ai mo cj

Xi — -^
; Xo — -=

A A

O4.

"aT
'

81. Let us now return to equations I. Art. 69. Considering

mi, ma, mg, ... m^ as linear functions of the ic's, we can express

any new linear function

CiXi + C2X2 H h c,ifl;„ = 2/

in terms of the m's.

Thus, if we have given

by 79,

aiiXi-}-ai2X2+
a2ii»i4-a22^*2 +

A' =

• -i-CnXr, =2/ ^

• + CllnXn = Wi
I

or

Ci C2 ... c„ 2/

«!! ai2 ... «!„ mi

a2i a22 ... Cl2n ^2

a„i a„3 ... a„„ m„

Now if A = Itti,,! , we readily obtain

A'±2/A = ±2/A;

Ci C2 ... c„

+ a,.«a;n = m„

= 0.

±2/A =
an aj2

^21 <^22 a2„ m2

a„„ m„
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82. We have seen that if 7i homogeneous equations are to be

consistent with each other (simultaneous), the determinant of

the system must vanish. The equation

A =

then is an equation of relation between the coefficients, and is

really the result of eliminating the unknowns from the given

equations. We shall soon investigate this resulting equation of

condition or resultant in detail. We here deduce a general

form by which the result of eliminating n unknowns from p
given Imear equations, supposed simultaneous, may be ex-

pressed, 2^ being greater than n.

Given

VII,

(hi^i -{-a^X2-\-" . +ai«a;„ =0
a2iXi-i-a.22X2-{-" + «2n^« =

«nia^i + a„2«^2+" .+a„„a;„=0

aj,iXi + aj,2X2 + ... + Sn«n =

If these equations are to be satisfied for other than zero val-

ues of the variables, the determinant of the system for any n
of them must vanish by 77. The equation expressing this con-

dition is obtained by writing

an . ai2

^^21 <^22

0.

(M)

Equation (Jf) is accordingly interpreted to mean that every

determinant of the nth order formed from any n rows of the

matrix on the left must vanish. For an example the student

may eliminate the two ratios a?! : iCg : x^ from the five equations

aiXi + biX2-\-CiX^ = (i= 1, 2,...5),
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obtaining the equation

«! h Cl

^2 h C2

as h C3

a^ h C4

as

0, or

83. Suppose we have given

ttl as ttg a4 «5

&1 &2 2>3 &4 h
Ci C2 C3 C4 Cs

then, by 78,

c^Xs + d^x^^

C2CC3 + d^^

c^Xs + d^^

= 0,

= 0,

= 0;

Xi'.x^'.x^: i»4=l^i C2 ds\ :
— laj^c^dsl : kiJ

Substituting the values of

x^ x^—
•)
—

"i

Xs Xs

i»4—

?

l«i h dsl ' —1% 62C3I

we get the relations

61 1 ai C2 c?3 1 + Ci I «! &2 c?3 1
— (^1 1 ai 62«i 1 ^1 C2 ds

a2 1 61 C2 C^3
1
— &2 1 <^l C2 C?3 1 + C2 I «! &2 <^3 I

«3 I &1 C2 C^s 1
— &3 1 tti C2 ^3 1 + C3 1 tti 62 C^3 I

which are all expressed by the matrix

0,

C?2
I tti 62 C3 1 = 0,

ds I »! 62 C3 1 = 0,

ai h Ci ^1

a^ h C2 d2

as h Cs ds

To generalize this, we return to art. 78.

From equations IV. we found

x^'.x^iXs'.'" a;„+i = Ai : Ag : A3 ••. A„+i.

Substituting in equations IV. the values of

—
•>

X,

Wi
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given by these proportions, we have

ttiiAi 4- aio^a -\ f- (^hr X-\ f- «ln+l ^«+i — 1

ttsiAi + a.22^2 H 1- «'2,- A, H h cf2H+i A^+i =

a.iAi + a,2A2 H f- a,. A, H \- a,„+i A„^i =

a„iAi -f a„2A2 H h «»rA, H f- a^n+An+i = J

These n relations are expressed by the matrix

97

(li)

W'21 ^22

an a,2

«2r

ttln «ln+l

a2« «2«+l

... ...

«,-n ttm+l

... ...

«nn «nn+l

Jf.

We have accordingl}', in general, from a matrix of the form

M, the following relations ;

Ctrl Ou «13 ... Oi, ••• «ln ttln+l

Ot22 a23 ••• a^r ... a2n «2n+l

a.2 a,3 ... a^ ••• am ttm+l

a«2 a«3 ... a„. ••• ttnn ttrvn+l

a,2 an ai3 ••• air • •• a.|,j ai,,^i

^21 a23 ••• a2. ••• a2„ a2.+i

«rl a,3 - a,. "• cim a„,^i

am a«3 ••• a„r ••• a„„ a«n+i

+ --+(-l)"a^^.i ttji (Xj2

Ctrol (I9Q

air

a2r

am
a2n

a_a^i a,jj ... a^

a^i a„2 ••* a„y

in which r has successively all values from 1 to n inclusive.

= 0,
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84. We will now select a few examples to illustrate the

foregoing processes from the vast field of application.

I. To find the condition that three right lines shall pass

through the same point.

Let aiX + 6i2/ + Ci = ^

a2X + ^22/ + ^2 = r (A)

G'S^ +% + Cg = )

be the equations of the lines in cartesian co-ordinates, and let

a?!, 2/i be the given point. Equations (A) must be satisfied for

x = Xi, y = yi; hence

cti^i + hVi + Ci

«2aJi + hVi -f C2 = ^
• (JB)

(^8^ + ^zjji 4- C3 0)

But in that case, by 79,

Iai&2C3l = 0,

which expresses the required condition.

II. To find the condition that three points shall lie on the

same right line.

Let (a?i, 2/i)» ('»2» 2/2)? (i»8» ^s)

be the given points, and

ttjx + 61?/ + Ci =

the equation of the line. Then

cfi^^i + hVi + Ci = 0,

«fca;2 + %2 + c^ = 0,

«ba;3 + 6^3 + 03= 0.

Whence the required condition is

a?i Vi 1

x^ 2/2 1

^ 2/3 1

= 0.

(«)
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As an application of the present example, we show that the

middle poirits of the three diagonals of a complete quadrilateral

lie on the same straight line.

The three diagonals being 0(7, BA^ ByA^, and their middle

points F, D, E, we have to show that F, Z), E are on the same

right line.

Take the vertex as origin, and the sides OAi, OB^ as axes

of reference.

Put a^ = OA, a^^OA,, h^ = OB, h^^^OB^.

The co-ordinates of D are — , -^, and the co-ordinates of E

are — , — • The abscissa of F is half the abscissa of (7, and
2 2

the ordinate of F is half the ordinate of C. Hence we have

to find the co-ordinates of 0. The equations of AB^ and A^B
are respectively

-+|- = 1, or hcfc \- a^y = a^hi\
«! 02

—f- f = 1 , or hx^-\-aoy=^ a^h^-
a^ Oi

Whence the co-ordinates of G are

aib.2 a. W a^

x=
a.A as

? y =
b,

&2

aA

aih «!

h a^ W aa
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and the co-ordinates of F are

2 ( 62^12— ^i«i
)' 2 (^20^2— ^lOtl)

'

Now, by equation {R) above,

A = «1

2 2
1

a,

2

&2

2
1

aia2(&2-M 5i&, (02 - «i)
1

=0,

if the three points are on the same straight line.

A = 1

4(62«2 — ^l«l) a2

ttj ttg (62 — <^l) ^1 &2 (<^2 — <^l) ^2% — ^1 <^1

Now add the tliird column of this determinant multiplied by
— Qi to the fii'St column ; also add the third column multiplied

by — hi to the second column. Then

A = 1

4 (62 0^2 — ^itti)

1

ag — «! h^ — bi 1

«! bi («! — ag) tti 5i (6i — 62) ^2 «2 — ^1 «i

which is obviously zero. Hence F, D, E are on the same right

line.

III. To ohtaiyi the equation of a circle passing through three

given points.

The general equation of the circle is

{x^ 4-2/^) +2ax +2by 4-c = 0.

If (a?!, 2/1)? (a^2, 2/2), (a^3. 2/3) are the given points,

(^1' + 2/1') + 2 aa^i + 2 by, + c = 0,

(«2' + 2/2') + 2 a.r2 + 2 62/2 + c = 0,

W + 2/3') + 2aa;3H- 262/3 + c = 0.
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These four equations are simultaneous for the parameters

a, 6, c'f hence, by 79,

a^ -\-y^ 2x 2y 1

x^' + y^' 2x, 22/1 1

Xz^ + V'/ ^^2 22/2 1

^i + yi 20^3 22/3 1

= 0,

(O

which is the equation sought.

That equation C is the required equation of the circle deter-

mined by («!, 2/i)? (^2? 2/2)5 (%i 2/3)? is obvious from the form of

the first member. The determinant when expanded obviously

gives a function of the second degree, and having the charac-

teristics which distinguish the equation of the circle. Moreover,

this equation is satisfied for x = Xi^ y — 2/1, since in that case

the determinant vanishes. The same is true if x^x^^ ^ = 2/2»

or a; = a;3, 2/ = 2/3-

IV. To find the relation connecting the mutual distances of

four points on the circle.

We must have, if the points are (a?i, 2/1) ,
{x^^ y^}-, {x^-, 2/3)

,

(^4? 2/4)? ^ determinant equation just like the last one above,

except that the first row of the determinant will have the sub-

scripts 1, the second row the subscripts 2, and so on, the last

row having the subscripts 4.

Accordingly, multiplying together

Xi' + Vi' -2x, -22/1 1 X 1 x^ 2/1 «i^ + 2//

xi^yi -2x, -22/2 1 1 X2 2/2 a;2" + 2/2^

^i + yi -2x, -22/3 1 1 X, y, x^^ + yi
x^^y^ — 2x^ -22/4 1 1 x^ y^ x^' + y,'

which are two different forms of the first member of equation

{(J) above, we obtain the required relation

(12)2 ^13)2 (14)2

(12)2 Q ^23)2 (24)2

(13)2 (23)2 (34)2

(14)2 ^24)2 (34)2

= 0,
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in which

{12y = {x,-x,y-\-{y,-y2)\ {13y = (x,-Xsy + (y,-y,y,

and, in general, {iky is the square of the distance bet^feen

the ith and kth. points.

Expanding this determinant by 63, III., and adding and

subtracting 4(12)2(13)2(24)2(34)2, we obtain

[(12)2 (34)2 _|. (13)2 (24)2 _ (14)2 (23)2]2

-4(12)2(13)2(24)2(34)2 = 0.

Whence
|[(12)(34)-(13)(24)-(14)(23)]

[(12)(34)-(13)(24)+(14)(23)]^

Xl[(12)(34) + (13)(24)-(14)(23)]

[(12) (34) + (13) (24)-f(14) (23)]J = 0,

or (12)(34)±(13)(24)±(14)(23) = 0,

which expresses the condition sought in its simplest form.

V. To find the condition that two given straight lines in space

may intersect.

(a) Let x— a _ y — /3 _ z — y .jx

tti
~

bi Ci ' ^
x—ai _ y — Pi _ g— yi

(2)
(3^2 ^2 ^2

be the equations of the lines. If these lines intersect, the

^^^^^^ px-\-gy + rz = d

may be passed through them, and we must have for the first line

pa +ql3 -{-ry=d\

pai + Q'&i + rci = J
'

(3)

(4)

and for the second line

pai

pa^-\-qb2-\-rc2=0 ^ (6)

jpai + gft+ryi = (i) (5) &-
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From (3) and (5)

i>(a-ai) + g(;S-ft)+r(7-yi) = 0. (7)

(4), (6), (7) being simultaneous, the required condition is

tti bi Ci

0,2 V2 C2

a — tti p — pi y — yi

= 0.

(6) If the straight lines are given by the equations

aix -{- biy -{- CiZ = di 1

a2X-\- bzy -^02'

asX + b.sy-\-CsZ = ds

a^x + b^y + C4

?3Z = (^3

I

(1)

(2)

these four equations are simultaneous for the point of inter-

section (aj, y, 2J) , and the condition of intersection is

* ^' •
' ai62C3<^4l = 0.

VI. To jind the equation of a plane passing through three

given points {x^, 2/1? ^i)^ (^2, 2/25 ^2), (.^3^ Vs^ ^3)-

Let the plane be

aiX-^biy-\-CiZ = di. (1)

We must have

'aiXs + biys-hc^Zs=dj_
(^)

Equations (D) and (1) being simultaneous for the para-

meters Oi, 61, Ci, di, we have for the equation sought

X y z 1

Xi 2/1 ^i 1

^2 2/2 ^2 1

iC3 2/3 % 1

= 0.

0/1 Vic
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VII. An interesting application of determinants is afforded

by the following problems.

(a) To extend a recurring series of the rtli order without

knowing the scale of relation.

As is well known, a series of the form

UQ + Uy^x+ u^x^-^ h w^.^a;'*-*- H h ^n^"" + —

is a recurring series if the relation of any r+1 consecutive co-

efficients w„, ?f„_i, ••• Un_^ can be expressed by a linear equation

(the scale of relation). Under these conditions the series is

called a recurring series of the rth order. Every such series is

accordingly determined when 2?* of its consecutive terms are

known. If all the coefficients, with the exception of the 2 rth,

are known, this last is easily found. By the conditions of a

recurring series

^^r+1 -^PlUr +PlUr-i + P^U^-2 H hPr-1^2 +PAh =

^%-l+ Pl^%-2+P2W2r-3+ i>3W2r-4H hPr-l^r -^Pr^r-l^^

U2r +i)l^2r-l+ i>2^2r-2+ P3^2r-3H bPr-i^K+l+ Pr'^r =0
,

Now, by 79,

(F)

U^ W^_l W^_2 Wr-3

Ur^l U^ Ur_i Ur^2

U2r-\ U2r-2 %r-3 ^2r-4

^2r '^2r—1 '^2r—2 ^''2r—

3

U2 Ui

Us lU

U,.+i u.

= 0,

whence Wsr is found by expanding the determinant and solving

the equation.

To find U2r+i we have only to increase each subscript by unity.

Applying the above process to extend the series

l-\-x-\-bx^-^nx^ +
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we find

5 1 1 13 5 1 u^ 13 5

13 5 1 = 0; u, 13 5 = 0; ^5 W4 13

W4 13 5 Us ^/4 13 Uq Us W4

whence u^ = Al, W5 = 121, 16,5 = 365. The series is accordingly

1 _}_ a; _|- 5ar^ _|- 13a^ + 41 ir* + 121 a;^ + 365a;^ 4- •-.

(6) To find the generating function for any given recurring

series.

Since a recurring series is always the quotient of two integral

functions, of which the divisor is of a degree higher by 1 than

the dividend, we may find the required generating function by

indeterminate coefficients, as follows :

Assume the given series

Wo+ iiriX-\-u^-\ |-t^x= (T)
1 +PlX+P2^-\ ^PrX'

(after both terms of the fraction have been divided by the first

term of the denominator)

.

From the first r of equations (F) of the preceding example

we can determine the constants pi, pz-'-Pr- ^e may therefore

find the scale of relation. We have from equations {F)y after

obvious interchanges of columns,

Pr =

— u^ Ui " ' U^-2 Ur-1

- w.+l W2 ••
' y'r-l Ur

- ?*r+2 M3 .. • U, Ur+1
•

I :

*

— W2r-1 Uf " • W2,_3 W2r-2

^0 Ui" • Wr_2 ^*r-l

Wi U2 " • Wr-1 U^

W2 1h " • U^ Ur+1
• • , , ^

* *

W._l U, " • W2r-3 W2r-2

Having determined the constants PxiPi'-'Pn we need only

clear equation {T) of fractions; and then, equating the co-
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efficients of like powers of x, obtain the usual linear equations

from which Oq, aj, Og ... a^_i are found.

For an example, let us find the generating function of the

series we extended in the last example.

Put

Here
Wo=l, Wi=l, U2 = 5, '".

Substituting in the second member of ( Ti), clearing of fractions,

and finding the values of ao and Oj, we find

f(^)^
1

1— 2cc-3a^

85. The coefficients of the quotient Q of two polynomials

Pi and P2, and the coefficients of the remainder i?, can always

be expressed as determinants in terms of the coefficients of

Pi and Pg-

The method employed in the following example is applicable

in general.

Pj = Oo^ + %^^ + (^2^^ + %^ + <^4^ + %

;

P2 = 60^ + ^1 ^^ + ^2^ + &3

;

B = VoX^ -\- TiX +r2.

Let

Now

hence

P,Q-\-B = Pi;

(i>)

O'A- &2f?l + &l52 + ^l,

a«= Z'89'2 + ^2*
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From the first three of equations {p) we can find Qq, gi, ^2? and

then taking the first three with each of the others in succession,

we obtain Tq, r^, i^. For example,

&o'92 = h ao

h &o (h

h h ^2

; Wn= h tto

h ^>o «'i

h hr bo a2

h h h ^3

Let the student find the remaining coeflScients.

86. The coefficients of any equation can be expressed in

terms of the roots as the quotient of two determinants, as fol-

lows. The method employed is applicable in general. By
reference to examples 6 and 7, page 37, it is readily seen that if

f{x) = ic^ — a^T? + a2X— ttg = {x — a){x — (3) (x — y)^

we have

0' /

= - (^-y) (7-«) («-|8) (x-a) {X-P) (x-y)

.

Expanding the first member,

P y +x

1 1

a P

1 1

1

y
/3^ /

1 •a^l 1 1 1 + a^ 1 1 1

^ r a /3 y

^ / a^ /5^ y

{a^~aiX^ -{-a2X — as),

From this identity the required expressions in determinant form

are at once obtained by equating the coefficients of like powers

of X.

87. With the aid of determinants we readily find the sum of

the like powers of the roots of any equation, as follows

:
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Let Si, S2, S3...s„ denote as usual the sum of the first, sec-

ond, ... nth powers of the roots of

Then from the theory of equations we have

0. (1)

Pi +Si

2^2 +P1S1 + S2

^Pa +P2S1 + i>i«2 + «3

=
=
=

{n-l)Pn-l+ Pn-2Sl+ Pn-sS2-\-Pn-iS3-\- "' + 5^-1 =
nPn +Pn-lSl+ Pn-2S2+ Pn^3S3-\ ^PlSn-l+ S,,=

From equations (S) we obtain at once

{S)

Pi 1 ...0

2P2 Pi 1 .-00
3i>3 P2 Pi '

..0

(w-l)Pn-l Pn-2 Pn-S '"Pi 1

nPn Pn-1 Pn-2 '" P2 Pi

If in (1) the coefficient of of had been p^y we should, of course,

have to write in the value of s„ just obtained, {^^^^—\ instead
\Pj

of (— 1)", and pQ instead of 1, for each element of the minor

diagonal of the determinant. If n = 3, and n= 4, the above

formula gives

So= — Pi 1

2i)2 Pi 1

3i?3 P2 Pi

, and 54 =

respectively.

Pi 1

2p, p, 1

3i>3 P2 Pi 1

^Pa Ps P2 Pi

88. Equations (S) can also be employed to give the value

of the coefficients in terms of s„ Sg? ^3... ^n? ^7 solving these

equations for the coefficients. We find
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JP.

_(-iV Si 1 . ..

S2 Si 2 . ..

Ss S2 Si 3 . ..

^n-3 •'n-4 n-1
Sl

If, as before, the coeflScient of a;** in equation (1) had been Pq,

we would write in this value ofp^, ( ^^^ ) instead of (^^—
]

•

If n = 3, and 7i = 4,

1
i>3 = -^

Sl 1

52 Sl 1

S3 S2 Sl

; i?4=
Sl 1

S2 Sl 2

S3 S2 Sl 3

Si S3 S2 Sl

89. Any differential equation of the form

2/3 -h X12/2 +^22/1 +Xsy = 0, (1)

in which y, 2/1? y^i Vz denote a function of x and its successive

derivatives respectively, and Xi, Xg, X3 are also functions of ic,

can be reduced to an equation of the next lower order, provided

a particular solution of (1) is known.

Let y = z satisfy equation (1). Then

Put

z^ + X^z.,^-X2Z^-\-X^z = 0.

u = y^-'-y, v = zu.

(2)

Then, as above, denoting derivatives by subscripts, we have

— V -\-zyi-Ziy = 0.

— Vi-^zy2-Z2y=0.
— '^2 + ^ys + Ziy2 — 2=22/1 — 23?/ = 0.

These three equations and (1) are simultaneous ; hence
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A= 1 Xi X, X,y =0.

z —V —z^y

2; —Vi—Z2y
z zi -Z2 —Vz-z^y

Now multiply the fourth column of A by - , then add to the

fourth column the first multiplied by z^, the second multiplied

by 22, and the third multiplied by ^i, and we have

= 0;

or V2Z + Vi{Zi—XiZ)-\-v{z2 + X2z) = 0,

which is a differential equation of the second order.

1 X, X2
z — V

z -Vi
z «i -Z2 -V2

Resultants, or Eliminants.

90. If we have given a system of n homogeneous equations

containing n variables, or, what amounts to the same thing,

n non-homogeneous equations containing n— 1 variables, it is

always possible to combine these equations in such a way as to

eliminate the variables and obtain an equation of relation be-

tween the coefficients of the form

E = 0. (1)

i?, when expressed in a rational integral form, is called the

Resultant or Elmiinant of the system. In 77 and 79 we

l)ointed out the fact that the equation i? = must hold be-

tween the coefficients of a system of equations if they are

consistent with each other (simultaneous). In the examples

of 84 we repeatedly found the resultant of given systems of

equations. Among the most important problems of elimination

is the following : to find the resultant of two given equations,

containing a single variable.
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We consider first

Euler's Method of Elimination.

91. I. Given

f{x) =Pq3? -f- p^x 4-P2 = 0, (1)

and <^{x) = q^x^ -^ q^x + q^. (2)

If these equations have a common root, we must have

f{x) 4>{x)

^—^ = (a^x + as) , ^3^. = (61a;+ 62)

,

in which %, ag, 61, 62 are undetermined, since r is unknown.

Then
{\x + 62) {p<iX^-\-PiX +P2) = (^la; + tta) (go^+ gi^; + ga)-

Whence the equations

\Pq+ -aigo+ =0.

^iPi + 2>2i>o - tti^i - a2g'o = 0.

&li>2 + &2i3l — «ig2 — «2gi = 0.

+&2i>2+ — a2g2 = 0.

Hence, by 77, the resultant is

jR = 0.Po go

i>i i>o gi go

P2 Pi g2 gi

P2 g2

II. In general, let

f{x)=p,x- +p^x--' +p,x^-^ + ... +Pr,_^x+p^=0. (1)

<^(a;) = q,x- + gia;'*-' + g2a;'*-' + - + qn-i^ + g« = 0. (2)

Let r be a common root of (1) and (2), and put

—-^a,af^-^-\.a,x--'+>.>^a^_^x + a^=f,{x),

|^= 6,a--i + &2CC-2 + ... +\_^x+K^<i>,{x),
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Id which the coefficients Oi, dg? •••««? ^i? &2) "' K ^-re unde-

termined. Then
f,(x)cl>(x) = <l>,{x)f{x). (I.)

From the identity (I.), by the theory of indeterminate co-

efficients, we must have m + n homogeneous equations between

the m + n coefficients ctj, ag'-'C*^, bi, 62 •••6„. Hence the de-

terminant of the system of these m-{-n equations must vanish

if (1) and (2) have a common root, and the resultant sought is

accordingly this determinant.

As an application of Euler's method, take the following

example. To find the conditions that must be fulfilled when

f{x)=poX^+PiX^-hP2X+Ps=0, (1)

<f>(x) = qoi)(^-\-qiOi^-{-q2X + qs=0, (2)

have two common roots.

If (1) and (2) have two common roots, two factors off{x)

must be the same as two factors of <}){x). Hence

(ax+b) {po^ -^Pi^ +P2^ +P3) = (ca; + d) {q^ + qi^-^-q^-^q^) ,

where a, b, c, d are indeterminate coefficients. Whence

apo-\- —cqo+ =0.

«i>i + bjio — cqi — dgo = 0.

opa + bpi — cq.2 — dqi = 0.

«i>3 + bP2 — CQs — dq2 = 0.

+bps-{- -^^3 = 0.

From every four of these five homogeneous equations we obtain

a determinant of the fourth order whose vanishing expresses

one of the required conditions. Hence the conditions sought

are expressed by the matrical equation

Po Pi P2 Ps

Po P, P2 Ps

Qo Qi <?2 ga

qo qi ^2 Qs

= 0.
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Sylvester's Dialytic Method of Elimination,

92. I. Given

PO^ -^Pl^-\-P2^ + Pi = 0,

qoX^ + qiX +^2 =0.
(1)

(2)

Multiply (1) successively by a;^, ic, and (2) by a^, x^^ x. Then

we have the following system of equations :

PoX^+PiX^+PoX^+PsOi^ =0.

Pq^ +PiX^ +P2^-\-Ps^ = 0.

qoO^ + qj_x^ -}- q^x^ =0.

qo^:* -\- qiO(^ + q20!^ =0.

qo^ + qiX^-\-q2X = 0.

We may consider these equations linear and homogeneous with

respect to x^, «*, a^, a^, x, considered as separate variables.

Hence

E PO Pi P2 Ps

Po Pi Pi Ps

go gi g2

go qi q2

go gi g2

= 0.

II. In general, let

f{x)^poxr-j-p,x^-''-{-

cf>{x) = qoX'' 4-gia;"-i + -hqn-1^ + g» = o.

(1)

(2)

If we multiply (1) successively by ic, x^'"X'^, and (2) succes-

sively by ic, a^-'-ic"*, we obtain a system of m-j-n equations,

linear and homogeneous, with respect to a;, x^, x^^ ...a;'«+« con-

sidered as separate variables. From these equations we elimi-

nate the variables by 77 and obtain the resultant in the form of

a determinant of order m-\-n.
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B= Po Pi P2 '" Pn Pn+l Pn+2 '" = 0.

Po Pi '" Pn-l Pn Pn+l

Po '" Pn-2 Pn-1 Pn

Qo qi 92 '" Qn

Qo Ql ••• Qn-l qn

go ••• qn-2 g„-i qn

It is evident from the form of R that the coefficients of (1)

enter R in the degree of (2), and that the coefficients of (2)

enter R in the degree of (1).

Cauchy^s Modification of Bezoufs Method of Elimination.

93. I. Given

Po^'^+Pl^+P2X+P3=0, (1)

and qoX^ + qi^^ + ^2^*^ + ^s = 0. (2)

Transposing and dividing (1) by (2), we obtain successively

PO _ Pl^+P2^+P8
go qi^ -{- q2x -h qs

PqX +i>l ^ P2^-hPn

qox-\-qi ~q2^ + q^

Pq^+PiX-^P2 ^ PS^

qo^-hqi^ + q2 qi

Clearing these equations of fractions, we have

(Po^i - q^Pi)^ + (i?og2 - go2>2)« + {Poq^ - qoPs) =o,

iPoq2-qoP2)^-^ liPoq-s-qoPs) + (2>ig2-giP2)]a;+ {Piqs-qiPs)^^,

{Poq-s - qoPs)^^ + {Piqs - qiPs)^ + (^2^3 - ^2^3) =0.

Eliminating o^ and cc, regarded as distinct variables, from

these equations by 79, we find
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R = \P(^qi\ li>o^2l Ipogsl

1^0^21 \Poqi\ + \piq2\ li>i?3l

IPogsl li>1^3l 11^2^3!

= 0.

The resultant is found by this method in the form of an axisym-

metric determinant,* whose elements are easily written, as we

shall show by another example. Let the given equations be

Po^^+Pix

and go^'* + 5'i^

'+P2
' + q2

x'-\-P3X-hPi=0,

x^ + q^x-\-q^ = 0.

(1)

(2)

We have, as before,

^0 q^x^ -\- q.;^X' + q.^a

q^x + qi

P(^^-\-PiX-^P2

P2^-\-p^x+p^

qzx" -\- q^x -\- q^

PsX-\-Pi

qsx + q^

' -• (E)

2JqX^ +p^a^ + p^x

q^a^ -{- q^a^ -\- q^x + ^3

_Pa
qi

Clearing equations (E) of fractions, we have

\poqi\x'^ + \Poq2\x^ + \Poq3\x + \poq4\ 0,

\poq2\x^ + UPoQi\-^\PiQ2\^x^ + UPoqA\ + [Piq3\lx-{-\piq^\==o,

ll>0 53laJ'^4-[li>0^4l + li>1^3l]a^+[li>ig2H-IP2^3l]^+li>2g4l=0,

\Poq4\^-{-\piqi\x^-\-\p2qi\x-{-\psq4\ =0.

Hence, as before, the resultant is

E =
\po qi\ \Poq2\ \Poqs\

\Poq2\ \Poq3\ + \piq2\ \poqi\ + \piqs\

IPo ^sl Ipoq^l-hlpiqsl \p1qi\-h\P2q3\

Ipo q4\ \pi qi\ \P2 qi\

\poqi\

\pi qi\

\p2qi\

IPs q^l

= 0.

For symmetrical determinants, see 107.
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To form this resultant directly from the equations, write the

ro symmetrical determinants

\Poqi\ \poq2\ \Poqs\ \poqi\

\poq2\ Ipoq^l \poqi\ Ipiq^l

\Poq&\ Ipoq^ lihq^l \p2qi\

ipoq^l Ipiq^l lp2q^ Ipsqil

, and \Pi q2\ \Pi qsl

\Pi q^l \P2 qs\

f

formed from the coefficients of (1) and (2) in an obvious and

easy way. It is then evident that B is formed from these two

determinants by adding the elements of the second to the four

inner elements of the first. If the equations are of the fifth

degree, the student will form the resultant in the same way

from the three determinants

iPoqil \Poq2\ \Poq3\ \i>oq^\ Ipoqsl

iPo^J IjPogsI Ipoq^l Ipoqsl li^i^sl

iPo^sl \Poq^\ IPogsI IPl^sl 11^2^51

Ii>og4l Ipogsl \piq5\ l^gsl Ip^qsl

\Poqo\ Ipiqsl Ipzqsl \psq5\ Ip^qsl

\piq2\ Ipiqsl \piqi\

\piq3\ \piqi\ \p2q4\

\piqi\ \p2q4\ Ipzqil

\p2q3\y

by adding the third to the middle element of the second, and

then adding the elements of the second to the nine inner ele-

ments of the first. This process is, of course, general.

From the preceding examples we see that by Bezout's method,

tJie resultant of two equations, each of the nth degree, is a sym-

metrical determinant of the same degree whose elements are either

determinants of the second order or the sum of such determinants.

II. If the two equations are not of the same degree, suppose

we have given

i>oa^*+Pi^^+i>2^+i>3a;+P4 = 0, (1)

qox'^-hq^x +^2 =0. (2)

Multiply (2) by x^ ; the equations are then

Po^+Pi^^+Pzx'-hPsX-hPi^Oy (li)

qox'-\-q,x'-\-q,x' =0. (2,)
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From (li) and (2i),

PO^ +Pl ^ P2^'^ + P3^ + j^4
^

Clearing these equations of fractions, we have

\po q2\^ + \ \pi ^2' - Q'oi>3i ^ - (^oi>4 + qiPs)x - qip^ = 0.

With these equations consider (2) multiplied by x, and (2),

qQx'^ + qiX^-^q2X = 0,

qooc^-^qix + q.^ =0.

From these four equations eliminate x^, o^, cc, and we have

B
1^0^21

\poq2\ qoPs qoPi

Piq2\-qoP3 qoPi + qiPs qiPi

qi -q2

qo •qi -q'

0.

III. In general, let

f(x) =poQcr +piaf-i +p2a;«-2 4. +Pm~lOC+Pm=0, (1)

<f^(xy= q,x^ + gio;'-^ + q,^-^ + - + ^n-i a; + g, = 0, (2)

in which m is greater than n. Multiply (2) by mf'^ ; then

(2) becomes

goa;'" + gia;«-i + g2aj'""^+ ••• + gH-i^'"*"'*^^ + gna;"*""- (2i)

From (1) and (2i),

go qix""-^ + q2^ "" + ••• + gn-i a;"*
"-^^ + g„a;-

«'

go^j + gi g2aj"-' -{- gga^"' + • • • + qn-x^ + gn«"~"'

Poa?"~^+;>ia;"-^+ ... 4.p^_2aj_|_p^_^ p^a;'"-"-f-p„+iaj™-"-i+ ... 4-2?^

go«'*"''+gi»"''+ - +gn-2aj+g„-i g„a;-
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Clear these equations of fractions, and consider with them

the following m — n equations obtained from (2) bj' multiply-

ing it in order by 1, «, a^, •••a;"'""""^,

qoOf-'^ + qiixr '- + q2X"'-^-\ hgn-iic"*~"+ ^n^^'""^ =0,

go«" +Q'i«"~^H \-qn-i^ +qn =o.

From these m equations the resultant is obtained by elimina-

ting the m — 1 successive powers of x regarded as separate

variables.

The Resultant in Terms of the Roots,

94. Given

/ = j9oa;"'-FPia;"-^H f-i?«-ia;+i)« = 0, (a)

<^=go»"+gia;"-'4- - +qn-i^-\-qn =0. (&)

If tti, a2, ...a^ are the roots of (a), and /3i, ^2-, ...^n are the

roots of (6) , we have, of course,

<t>
= qo{x-(3,){x-p2)'"{^-^n)- (h)

Now, if in go«''* + Q'i^'*~^H hO'n-i^ + Q'n we substitute

successively ai, og, ... a^, </> takes the m corresponding values,

<^(ai), </)(a2) ...<^(a^). With these m values as roots we can

form an equation of the mth degree in <^. This equation may
be found as follows. Forming the resultant of

PoX'^+PiX'^-'^-^ \-Pmi^+p„, =0, (1)

qoX^'+qiX--^ +"'+qn-iX+qn-<l>=-0, (2)

bv 92, we have
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B,= PO Pi P2"' Pn Pn+l Pn+2

Po Pi--' Pn-1 Pn Pn+l

i>o ••• Pn-2 Pn~l Pn

Qo ^1 Q2 ••• 9n-<f>

go Qi ••• Qn-i qn-4>

^0 — 5n-2 g«-i qn-4>

= 0.

This is obviously an equation of the mth degree in <^, whose

roots are <^(ai), <^(a2), c^Cag), ••• </>(a,„). The absolute term T
of this equation is the product of its m roots multiplied by a

factor.

But from the determinant i?i,

Again, since JKi becomes identical with {— lyR of 92, II.,

when we have made <^ vanish, we see that

In just the same way we can show that

2"= (-i)>V(/80/(ft) -/(/S.);

and hence, after suitable interchanges of lines,

95. These forms of the resultant R may be obtained by
symmetric functions, as follows :

/W=i>oa;" + Pia;'^-'+i?2a^""'+ ••• +Pm-iX+p,,=:0, (a)

<i>{x) = q,x- + q^x--^ + q^x^-'' + ... + q,,^.,x + q,, = 0. (6)

Then aj, ag, •••a^ being the roots of (a), and ft, ft, ."ft
the roots of (&),
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Now, if (a) and (6) have a common root, the product

/(A)/(/SO-/(A) = .P

must vanish, since in that case some one of the factors vanishes.

The same statement applies to the product

c/>(ai)<^(a2)...(^(aJ=Pi.

But /(ft) = po (ft - ai) (ft - a^) . .
. (ft - aJ ,

/(ft) =Po (ft - ai) (ft - a,) ... (ft - a„)

,

/(ft) =Po(ft - ai) (ft - a^) ... (ft- aj ;

also </) (ai) = qo (ai - ft) (ai - ft)
.

. • (aj - ^„)

,

</> (02) = go («^ - ft) {0.2 - ft) — (a2- ft,) ,

<^(am) = go(a.-ft)(a.-ft)-(an.-ft.).

P is accordingly made up of mn factors of the form ft — a,.

We may therefore write

P=jOo"n(ft-a,),

where r has all integral values from 1 to w, and s has all

integral values from 1 to m. P is moreover a symmetric func-

tion of the roots of <^ (a;) =0, and can therefore always be

expressed as a rational integral function of the coefficients

;

and since it vanishes when /(a;) = and cf){x) = have a

common root, and not otherwise, when P is expressed in terms

of the coefficients, P is the resultant of (a) and (6) . In the

same way
Pi = go'"n(a,-ft) = (-l)-«go"n(ft-a.),

where s and r have the same values as before. Hence we may
write the resultant

J? = (-l)-go'"/(ft)/(ft)-/(ft.)=l>o''<^(ai)c^(a2)...<^(aJ, (A)
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for both these expressions are rational integral functions of the

coefficients of f{x) and <^(a^), which vanish when /(a;)=0

and <^(a;) = have a common root, and not otherwise, and

-wrhich become identical when expressed in terms of the co-

efficients. The value of R can accordingly be written

Properties of the Resultant.

96. I. By reference to the forms {A) , we observe that the

coefficients po? lh'"Pm of equation (a) enter the resultant in

the 7ith degree, and the coefficients q^^ Q'i-"5'» of (6) enter the

resultant in the mth degree ; moreover, we readily see that

(_l)""*gy'»j>^'* is a term from the first form of the resultant, and

Pq- q,^ is a term from the second form ; hence, given two equa-

tions of degree m and n respectively^ the order of the resultant R
in the coefficients is m-\-n; the coefficients of the first eqiiation

are found in R in the degree of the second, and the coefficients of

the second equation enter R in the degree of the first.

II. If the roots of (a) and (6) are multiplied by A;, R is

multiplied by A;'"". Since each of the mn binomial factors of

is in this case multiplied by A:, the truth of the statement is

obvious. This result is frequentlj' expressed by saying the

weight of the resultaiit is mn.*

III. If the roots of (a) and (b) are increased by 7i, the resul-

tant of the transformed equations is the same as the resultant of

the original equations. This, too, is obvious, for none of the

factors of R is changed when both roots are increased or

diminished by the same number.

* By the weight of any term is meant the degree in all the quantities

that enter it. The weight of ab^c^ is 6.
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IV. If the roots of (a) and (b) are changed into their recip-

rocals, the resultant Ei of the transformed equation is (— lj'"'*i?.

Putting y = —, (a) and (6) become respectively
X

</>(2/) = Qny"" + Qn-l 2/""' + Qn-2 2/""' + "
' + QiP + Qo == 0. {b,)

Whence

i2x = gri>."n(i-i)

But

(aia2---a„)= , (/Ji/:^2 '•• Pn) = »

hence the resultant of the transformed equations is identical with

the resultayit of the original equations^ or differs from it only in

, sign, according as mn is even or odd.

97. Of all the methods of elimination given, the dialytic

method is the most direct. Another advantage of this method

is that it may obviously be employed to eliminate one of two

unknowns from a pair of equations, as in the following example.

Given

Po^-{-Pi ^^y +P2^y^ +Psf = 0,

qo^ + qixy ^q.f +93^ =0.
/

To eliminate x we form the following equations :

Pox!* -hPi^^^y i-P2^y^ +P3xy^ = 0,

Po^ -^Pi^y -hP2xy--hP3f =0,

qox*-\-qix^y-i-{q2y' -\-<i3)x^ =o,

QoO^ +qiXy + q.y--\-q.;^=^0.
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Whence Po PiV i>2/ Psf
Po PiV P2y^ Psf

5o qiv q2f-\-q3

Qo QiV g2y'-\-q3

go qiv g2y' + qs

0,

an equation containing only y»

98. The same method is also frequently applicable to the

elimination of w — 1 unknowns from a set of n equations, so as

to obtain a final equation with but one unknown. It will afford

the student a good exercise to find from the three equations

aia^y-\-a2Xz-^as =0, (1)

yz — a^x = 0, (2)

a^xy +aQX +a7 =0, (3)

a final equation in y, as follows : First, eliminate x from (1) and

(3), and also from (1) and (2), obtaining two new equations

in y and z. From these equations eliminate », and obtain

a^y'^-^a.^a^ a^a^

—{a^+ae)a2a7 aia^'^+{a^aT^-{-2a^a5aQ)y+a^ai

an equation in y of the sixth degree. ~
'

99. A further interesting application is found in the follow-

ing examples, in which three variables are eliminated from as

many equations. Given

a^i + 3^2 + ^3 = 0, x^ = a^ x}—h^ x^ = c.

Multiplying the first equation successively by

a?!, x^-) Xq^ a;ia;2iC3,

and substituting from the last three, we get

CL ~\~ x^ X2 ~j~ a?! x^ ^^ u

,

b+XiX^ -f- a!2a;3 = 0,

C "7~ 37J ajg -j~ X2 X^ ^= 'J

,

cxi X2 -\- hxi x.^ -\-ax.,x.^z=0.
''
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Eliminating XiX^y XiX^^ ajg^a?

a 1 1

b 1 1

c 1 1

c b a

= 0,

Had we multiplied the first equation successively by

i^ iC2*^3? *^1*^3? ^l«^2?

we should find by eliminating XiX2X^, Xi, x^^ x^^

0.1 1 1

1 c 6

1 c a

1 b a

If the original equations are

Xi-\-X2-\-X^=0^ Xi^=a, X2^=b, 073^ = c,

one form of the resultant is obtained by multiplying the first

equation successively by

Xi^ ^2? "^S? *^2 ^3 » •^1*^3? "^i "^2 ? "^1 •^2'''3? 3/j*^2 "^S? 2/13/23/3 j

and substituting from the last three. Then by eliminating

•'^l ) *^2 ) 3/3 J
flJgflJs) fl72 3?3} 3/1 37^^ X^X^ X^ ^ X^ X^X^ j 37j SJg flJg^

we find

10 110
10 10 10
1110

c 6 1

c a 1

6 a 1

a 1 1

b 1 1

c 1 1

= 0.
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100. For a final application of the dialytic method we select

the following.

Given Vc/oic + <^^i + V6o^ + ^1 + ^0 = 0,

to free the equation from radicals, we ma\' proceed as follows.

Put Vao»+ ai = 2/i5 V&oa;-f 61 = 2/2.

Then we get at once

2/1+2/2 +c=0,
2/1^ — Ooa; — ai = 0,

2/2^ — 60 a; — &i = 0.

From (1) and (3),

1 —boX — bi

1 2/1 + Co

1 yi + Co

= 0.

(1)

(2)

(3)

(4)

= 0,

Eliminating 2/1 from (2) and (4) , we have

1 2cq Cq —\x—hi
1 2 Co CQ—h^x — hi

1 — ofo—

%

1 —aii!— tti

which is the equation sought.

In general, given

PiVfx +p,Vf(x) -hPs'^W) + - -^pJVfM = B,
,

in which ri, Vz-'-r^ are integers, and fi{x), f{x) --fnix) are

rational integral functions of x, we may rationalize the expres-

sion as follows. Put

/l(^) = 2//S f2{^) = 2/2^"', - /n(a^) = Vn
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Then we have a system of n equations, from which, together

with

we eliminate the n variables 2/1, Vit ••.2/»» ^^^ obtain a resulting

equation in x without radicals.

Discriminant of an Equation,

101. I. Given

f{x) =p,x-+p,x--''-\-p^x^'-^+ ... +i>„_ia;4-i>n = 0, (1)

and the first derivatives of f{x) , or

f{x) = np^--^-\- {n-l)p,x^-^+ (^_2)p2»--3+...4.p^_,. (2)

Then the resultant R of f{x) = and f\x) = is called the

discriminant of f(x) = 0, since, if B vanishes, f(x) = and

/'(if) = have a common root, and hence f(x) = has equal

roots.

Forming the resultant of (1) and (2) by 92, we have

Pn-2 Pn-1 Pn .

Pn-S Pn~2 Pn-l i^n •

Pn-i Pn-3 Pn-2 Pn~l Pn .

2Pn-2 JPn-1 0.
^Pn-S ^Pn-2 Pn-1 0-
4i>„-4 ^Pn-i 2p„_2 p„_i .

I

in which the first {n — 1) rows are formed from the coefficients

of (1), and the last n rows from the coefficients of (2).

Now multiply the first row of B by ?i, and subtract it from

the nth row ; the 7ith row becomes

Po Pi P2

Po Pi

Po

npo {n-^)P1 (n -2)i)2

npo (n -l)i>l

nPo

j>i -2i>2 (^-2)i)„_2 -(n-l)i?„_i -np^
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Hence R is at once reducible to a determinant of order 2n—

2

multiplied \)y Pq] calling this determinant A, we have

/
Now i2 =i>o'*-V'(aO/'(a2)/'(a3), -/'(«„) ; (94 or 95, A)

, ^ f(x) nx\^yf(x) f(x)
and since f\x)=--^-^-^ +^-^-^+^-^~L j^ ... ^ :^\±,

/'(ai) =i>o(ai — «2)(ai — as) ••• («! — »„ -i) (cti — a^)

/'(as). =i>o(a2 — ai)(a2~a3) *
'

' («2 — «n-i) ("2 — aj

f{o-n-\) =i^o(an-i— ai) (a„_i— as) ••• (a„_i— a^.g) (a„_i—aj
/'(a„) =Po(an— ai)(an— eta) ••' (««— an-2) (a»— a„_i)

{E)

If we multiply equations {E) together, we see that the second

member of the result will contain the product of the squares of

the differences of the roots aj, ag, ...a„ of (1). Employing the

usual notation for this product, viz., ^(ai, ag, ag, •••a„), we have

/(ai)/'(a2) -fM = i-iy '"'-''PoH(a,, a,, a,, - aJ ;

... A = (-l)^^"-^^i>o''^-^r(ai, 02, a3, .•• a„).

II. The discriminant of an equation can also be obtained as

follows

:

/(x) = 0, (1) and f(x) = 0; (2)

being simultaneous equations when f{x) = has equal roots,

the equation

nf{x)- xf'(x) = (3)

is also consistent with (1) and (2). Now (3) is an equation

of the (n— l)th degree; and finding the resultant of (3) and

f'(x) = 0, which is also of the {n — l)th degree, we obtain the

discriminant A as a determinant of order 2n — 2. For an

example, we shall find the discriminant of the cubic

PqX^ +PiX^-\-P2X +i>3 = 0.
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We have to find the resultant A of the equations

p^x^ + 2j92^' + 3^)3 = 0,

^PqX^ + 2piX + p2 = 0,

p^ 2^92 3i)3 =0.

3jpo ^Pi P2

3po 2pi ^2

By the same process we find the discriminant of the biquad-

ratic

to be
P = 2h^ + ^Pi^ + GP2^ + 4^)3^ -\-P4 =

i^o ^Pi ^P2 Pa = 0.

Pq 32h ^P2 P3

po Spi 3p2 p-s

Pi 3^2 3^3 p^

pi 3p2 3^3 i)4

2h 3^2 3|)3 i)4

This is accordingly the same as P — 27J^ = 0, where

/ = P(,Pi - 4:p^ps 4- 3^2%

J= P0P2P4 + ^PiP22h - PoPi - Pi Pa - pi-

102. We may show that »/= is one of the necessary con-

ditions when the biquadratic P= of the preceding article has

three equal roots. Since

P=i)oa^ + 4_piar^-j-62)2aj' + 4i)3a^+P4 = (1)

* In many processes it is found more convenient to write a given func-

tion in the form of this equation, i.e.,

+ ^ (n — 1 )
p„_2 a:2 4- n;>«- 1 x + ;?„,

Z !

in which each term is multiphed by tlie corresponding coefficient in the

expansion of {a:+l)*». Any given polynomial can, of course, be at once

reduced to this form.
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has three equal roots, two of these will be roots of

K^4-3i?iar^ + 3i>2a;+i)3 = 0, (2)

and one of them is a root of

Po^ + 2j9i 0^+^92 = 0. (3)

From (2) and (3) this root is also found in

Pix'^ + 2p.2X-^Ps = 0. (4)

Multiplying (3) b}* o^, (4) by 2x^ and adding, we obtain

ay'iPoX^ + 2piX H-i>a) + 2x{pixr + 2p.2X -fi^s) = 0. (5)

Now adding pa^ + '^Ih^ H~i^4 to the first member of (5), we
have, since P=0,

a^(PoX^-\-22h^-\-p2)-\-2x(piX^+2p2X+ps) -j^Paa^H- '^Ps^-\-p^= 0.

Hence, if (1) has three equal roots.

PqX^-\-2piX-{-P2 = 0,

PiX^-}-2p2X-\-ps = 0,

P2ic2+2j93aj+i>4=0.

or J= 0.

Po Pi Pi

Pi i>2 i>3

i>2 P& P4

= 0,

The other condition for three equal roots of (1) is accordingly

7=0.

103. The resultant of a system of n homogeneous equations,

one of which is of the second degree, and the remaining n—l
are linear, may be obtained as follows. Given

P=PQaf-\-p^y^--\-p2Z^-^2qoXy-\-2qiXZ-^2q2yz = 0, (1)

Pi= a^x -\-b^y +CiZ = 0, (2)

P2= a2X 4- bzy -\-C2Z = 0. (3)

Differentiating (1) with respect to x, ?/, z in succession, and

remembering Euler's theorem on homogeneous functions, we
obtain

P= x(poX-}-qoy-hqiZ) + y(qoX-\-piy-i-q2z)

+ z(qiX-{- q2y -i-PiZ) = 0. (4)
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Equations (2) and (3) and (4) are simultaneous homoge-

neous equations ; hence, by 77, (4) must be expressible linearly

in terms of (2) and (3), and

^1^1 + 192^2 = (5)

is an equation identical with (4) . Equating the coefficients of

(4) and (5), we have the following system of equations:

Po«+ go2/ + ^i2;-^iai- ^2^^2 = 0,
"I

qiX-{-q2y+P2^—0iCi—02C2 = O. )

Now, taking equations (2) and (3) with equations (E)^ we

have a system of five homogeneous equations. Eliminating

a;, y^ z, Oi, $2-, the resultant of (1), (2), (3) is

i2 = Pq go qi «i «2

go Pi g2 &i h
qi q-i P2 ci C2

tti bi Gi

a2 b2 C2

In general, let the system of equations be

f{x) =p,x,^ +P2X2 +P3X3 H ^PnXn' + ^qiXiX2

-{-2q2X^Xa-\ \-2q.^.x^_iX^ =0,

Pi =aiXi -hbiX2 -{-CiXs -{- "• -\-liX,, =0
P2 = aoXi +b2X2 -{-C2X^ +"'+kXn =0

P„ 1= a^.iXi-^b^_iX2-\-Cn-iXs-\ \-l

(«)

We have, as before, if /x/ denote the differential coefficient

of f{x) with respect to fl;^,

a?iA' + ^2A' 4- xja^j + - + Xnfx,! = 2/(0.') = 0. (&)

Since (a) and (&) constitute a system of simultaneous

homogeneous equations, (6) considered linear with respect to
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the variables, must be expressible linearly in terms of the

n — 1 linear equations of (a) . Hence (6) is identical with

Oll\ + e^P, + esPs+"'-h On-lPn-1 = 0. (c)

Equating the coefficients of (5) and (c), we obtain the 7i

homogeneous equations

qi^l +P2^2+ qn^S-\ \-q2n-l^n = Ml +^2^2 + MsH H K-lOn-1,

q^l + qn^2+ P-A^i-\ h q-ia-S^i= CA-^C202+ C3^3 H K C„_i^„_i,

g«-li»l+ ^2«-ia^2+ ^3H-3^*3H f-Pni»»= ^A+ ?2^,+ZAH h^H-A-l-

These equations, together with the n— 1 linear equations of

(a), form a system of 2n—l equations between x^, x.2, ••• x^,

Oil $2, •" ^n 1- Hence the resultant of the given system is

Pi

qi

^2

qi

P2

qn

q2

qn

Ps

qn-l q2nl q-An-S

Qi 5i Ci

0,2 h.2 C2

a«^i ^„-l (^n I

qn-l «1 «2

q2u~l h h
q-Sn-ti Ci Co

Pn h k

Zl

/.,

«H-1

Zn-1

Special Solutions of Simultaneous Quadratics.

104. By the help of a special expedient we may often solve

a pair of simultaneous quadratics much more rapidl3' and ele-

gantly with determinants than by the ordinary methods. The
following examples will serve to exemplify the method em-

ployed, and are, moreover, such forms as occur frequently.

A. Find x and y in

ttiic + ^i?/ _ mj \
'~ ^ T, . (1)

^ + f =
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Let / be such a factor that

(2)

From (2)

/
mi bi

nil 62 fD
A

/
y

«! mil

1 tti 62 1 ^ I «i ^2!

Substituting in the second equation of (1)

tD

fDi

A

rA

B. Solve the equations

2/
= rA
±Vi>^+A'

ttiic + Wy — niixy

a^x -\- 622/ = maic?/
(1)

Divide these equations member by member ; then, as before,

put

aiX-\-h^y = fmi^^
a^x-^h^y^fm^]'

(2)

/ I ^1 &2 I

y =
f I «i »% I

I
ai 62 1

From the first equation of (1)

[a, I mi 62
I

4- &i I «i Wi2l] I «! &2 I

/ =

£C =

mi I ?7li &2 I I «1 *^2 I

I tti 62
I

I «1 ^2

I tti m2

1

y
I mi 69 I

A shorter solution is obtained by dividing each equation of

(1) bv icy, and solving for - and -.
X y
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C. Solve the equations

asX^ -h b2y^ = rriz

)

Write these equations

aiX +&i2/ = wi

a2X ' X -{- b2y ' y = m.:!

133

(1)

(2)

mi 61 «! m.

Then x = -

ma 622/

A ; 2/
=

a2X mg 1

A ("
«! 6i

a2a; 622/

We have
icA — Wi 62 2/ = — ma 61,

mia2a;+ A?/ = aim^,

ttg 61a? — ai 52.7 =— A.

Hence
A —mi^a ^2^1 = 0.

mittg ^ —aimg

ag^i — ai52 ^
From which

A = ± Vc11^63^2 + &l^ 0^2^2 -mi^a2&2*

Again,

dio; + biy =mi,
a26ia; — ai622/ = — ^•

mi 6. ai mi
A 01*2 ttg^i —A

.

(. 1
= ai 61

cxa&i — ai62
"' = " A ; y =

Ai

D. Solve the equations

QiX -\- biy = Ml
I

«2aJ H- ^22/ + ^2^72^ =m2)'

These equations we write

aiX-\-biy =mi|

(1)

(2)
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\ nil h\
A

As before,

Whence

02 + Cay h,:!•)

(A + miCg)^/ — aim2+ mia2 = 0,

— hiC^y + tti 62 — (X2^i — A = 0.

A + mjCg mia2 — %^2
— 61 C2 (Xi^a — 0^2^! —

^

= 0,

a quadratic from^which A is found.

I mi 62 1

y =
I Oi mg I

A -h m 1 C2

Example 5 above can also be solved by the method of this

example.

E. Solve the equations

aa? + hxy -\- cy^ = d }

ex^ -^ fxy -]- gy"- = h)

Equations (1) may be written

x^ -{- 2 aixy -{- biy^ = m
xP -\- 2 a2xy -\- biy^ = m ;̂l

(1)

(2)

by easy reductions. We introduce the factor 2 for convenience

in calculation. A solution analogous to D could be given.

Whatever the coefficient of xy^ it can, of course, be at once

reduced to the form 2ai. We write equations (2)

x{x + a^y) -\r y {aiX-\- h,y) = m^

x (x + a2y) + y (a.x -\- b.

hy) = mi
I

),y) = m2
j

(3)

Then

X =

Ml aiX-\-b^y

mo a^x-^-b^y

x-\-aiy mi
I

X -\- a^y rrio
\
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where

We have

Whence

x-\-aiy aiX-{-biy

x-\-a2y a2X-\-h2y

[A+ \aim2\~\x-{-
I

\m2\y = 0,

[ma — mi] a; + [ I «! mg I
— A] 2/ = 0.

A + I aimal I ftimgl

ma — mi I a-^m^ I
— A

0.

Solving this quadratic,

Now

A = ± Vl aimgP— 1 61ms I {m^—m^,

\mMy
X =

A + I ai mg

Substitute tliis value of x in the first of equations (2), and

we have

I mi 62!^/ 2a^\mMlf
(AH- I aimgl)'^ A+Uim; + \y^ = ^1,

a pure quadratic, from which the value of y can be found

at once.

105. To the solutions of the last article we add the follow-

ing, in which one equation is a quadratic and the other is a

cubic.

Find the values of x and y in

a? -{-xy -\-y^ mi

x^ — xy -\-
y'^ ~~

m2

oc^-\-y^ = o?

(1)

From the first of equations (1)

• y = \mi
I

.?/ = Am2
3

X {x -\- y) -\- y ' y = \mi

x(x — y)-\-y
(2)
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A
m, y A

a; + 2/ mi

X = — mo y

A ; 2/ = -
x — ym^

A
. (.. a;-y y

We have

icA -- X (mi — wig) 2^ = |

Aa; (mi - mg) -f [A - A. (mi -f- mg)] 2/ = 0J

y.)

(3)

Whence

A A (?Hi — mg)

A(mi — ms) A — A(mi + m2)

= 0.

From this equation

^ ~~
2 ^^1 + ma ± Vl077iim2 — 3mi^ — 'dm/\ .

Now, since A = 2/,

we have to find the vahie of A in order to complete the

sohition.

From equations (2), and the second of equations (1),

x-\-y
Am,

xy = - (wii - ma)

(4)

From equations (4) , and the first of equations (2) , we get

A =
Vi (3 mi m2 -r m^)

and hence

y = ± (wi + Wo) ± VlOmjma— 3mi^— 3m.j

V ^ ( 3 m-im2 — mi)

X may be found from the second of equations (1), or from

the first of equations (3)

.
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Solution of the Cubic,

106. The general cubic equation

PO^ -i-Pl^ +P2^ +i>3 =

is always reducible to the form

x^ + qiX + q2 = 0.

We are therefore only concerned with the solution of (2),

The determinant equation

=

is identical with

We have

(1)

(2)

X «i as

a2 X ai

ai a^ X

a^ — Sa^ €12 x-\-ai^ -{- a/ = 0.

A= £c + ai4-a2 % (ig

x-\-ai-\-a2 X . ai

^ + «1 + «2 ^2 ^

(3)

hence a; -{- «! + ag is a factor of A.

Again, let a be one of the imaginary cube roots of unity

;

then the other is a^. Substitute aja, ag^^ foi" % and a^ re-

spectively in A, obtaining

2 /v» n ^

since a*"

a2a'

A =

a^ — 3 aittga^^ + ^i^ + %^a^ = ^j

CC + aitt + a^a^ CKja 0^2^

JC + Ofia + aoa^ » a^a.

a; rf «! a + agtt^ a2a^ ^
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and hence A is divisible by ic + aia + aga^ By substituting

a^a? and a^a for a^ and a^ respectively in A, we obtain a

determinant A", which is shown equal to A in the same way
as before.

Hence a^a? -\- aza -\- x is also a factor of A,

Accordingly,

A = A: (a; + ai -f- <^2) (a? + otja + a^a^) (x + aia^ + aga)
? (4)

where A: is a numerical factor. Comparing the term a^ of A
with the term x^ in the second member of (4) , we see that k=l.

.*. x^ — 3ai a2X-\- cii + ag^ = (x-\-ai-\- a^ {x-^-a^a + a^ a?)

(ic + aja^ + aaa). (5)

From (5) we have at once

a; = — «! — as, — aia — aga^, — ^la^ — aga.

Now applying this result to the solution of (2), we put

gi = — Saittg^ ^2 = 0^1 +(^2
'i

whence

\ 2 ^ 4.^21 ' ^2\4^27
Hence, finally, the roots of (2) are

^-f-#^ ^^-fWlVft'.

> 2 XT + S?
2 + > 2 + \T + 27 2
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Symmetrical Determinants.

107. When we regard the square of elements that make

up a determinant, it is natural to inquire what special proper-

ties, if any, the determinant possesses when we suppose the

elements not all independent ; in other words, what special

forms arise when we suppose certain relationships to exist

between the elements, and what are their most important prop-

erties. Among the special forms very frequently met with,

especially in Geometry, are the Symmetrical determinants. The

symmetry here referred to is first, symmetry with respect to

the diagonals^ and second, symmetry with respect to the inter-

section of the diagonals, i.e., the centre of the square. Two
elements, so situated that the row and column numbers of the

one are the column and row numbers of the other, are called

conjugate elements. Evidently the line joining two conjugate

elements a„ and a,^ is bisected at right angles by the principal

diagonal. If in a determinant a^^ = dsri then the determinant

is axisymmetric, or simply symmetrical. The definition of a

symmetrical determinant is extended so as to mean symmetry

with respect to the secondary diagonal also, so that a deter-

minant is symmetrical if for each element there is an equal

element so situated with respect to its equal that the line

joining the two is bisected at right angles by one of the diago-

nals. The following are symmetrical determinants :

ai bi Ci di ? a,i ai2 ai3 «14 ? a. &1 ^^ d.

bi h,Xyd2 <Xi2 ^13 «14 ^24 ^2 62 C2 Cl

Ci ,.Cjj " < ds a-13 ai4 ^24 «34 % h h bi

di ^2 ds di «14 ^24 «34 «44 ^4 as ^2 ai

108. We have already had a number of problems which

gave rise to symmetrical determinants. The student may refer

to the last determinant in example IV., 84, to the first deter-

minant of 84, VII., to the form of the resultant obtained by

Bezout's method of elimination, 93, (I.), and to the value of
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«7, 102, for illustrations of how symmetrical determinants

occur in practice. Again, we have

Ittji CI22 ^33! —

^11^21 "h Cl'12^22 "f~ ^13^28 ^11<^31 "f" ^12^32 ~f" <^13^33

0^21(^11+ Of22^ 12+ ^23^13 Ct2i -\-Ct22 ~f"^23 ^21^*^31 ~l~ ^22%2 H~ <^'23^;i3

%l%l+ <^32'^12+ ^33<^i3 <*31^2lH~%2^22+ <^33^23 ^31 + <^32^+ ^^33^

which is obviously symmetrical. It is easy to show that the

square of any determinant is a symmetrical determinant. Let

then we have to show that b,s = ft^-r*

br, = a,ia,i + a,2a,2 + a,.3«,3 H + «rna.ni

bgr = ot^i a,.i + ag2 ci,.2 H~ ^«3 ^rs 4" • * • + <^,„ ofy^

;

whence the proposition. An obvious coroUar}^ is that any even

power of a determinant is a symmetrical determinant.

109. It is evident that conjugate lines (a row and a column

having the same number) in a sj'mmetrical determinant are

composed of the same elements in the same order. Consider

now two minors M and Mi of any determinant such that the

rows and columns erased to obtain M are the columns and

rows erased to obtain M^. Then

' M = a^g «/A (ifi
'"

, and Jfi = %f %9

%9 %n «..•
- anf O^ng

... ... a,f Clia

Now, if the determinant is symmetrical, so that a„ = a^,.,

we have M= iV/i, and, in particular, A^s = -4,r ; or, in a sym-

metrical determinant, conjugate minors are equal. From this it

follows at once that the reciprocal determinant is symmetrical.

Further, it is evident that minors whose diagonal lies in the

principal diagonal of a symmetrical determinant (coaxial minors)

are themselves symmetrical.
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110. We may show that the product of a symynetric deter-

minant by the square of any determinant is a symmetric determi-

nant^ as follows :

Let 1 ain I
be a symmetrical determinant, and put

I aiJ X I ai^l = I Ci„| , and
I a^J x ki^l^ = \biJ.

Then
K = aaCa + f^i2Ck2 + afs^^s + *•• + ainCkn- (1)

In (1) substitute the values of c^, Cf,2i
••• C;^, and we have

+ (Woia^i + a.2zaja + «23 «ft3 + • • • + <^2n ^^kn) (^i2

+
+ («niaa + an2a;fc2 + «n3«A3 + "• + ««««&»)«£„,

= (^naa + Ct2ia,2 + «3ia;3 -!-•••+ «ni«in)aa

+ («i2a<i + «22af2 + a32ai3 + ••• + «n2am)a*2

+

Since a^i, = a^^, this sum becomes

O-kl^il + aA2C,-2 + ••• 4- a^nCfn = hi'

Whence I biJ is symmetrical.

From this and 108 we see that any power of a symmetrical

determinant is a symmetrical determinant.

111. Cauchy's theorem for the expansion of a determinant,

example III., 63, assumes a somewhat different form when

the determinant is symmetrical. Thus, instead of

A = (loo
A'- ^aioaokAi„,

we have, when A is symmetrical,

A = aooA'- ^a^Q^Aa - 2 2a,oa;fco4-ft.

in which, as before, i has all integral values from 1 to w, and



142 THEORY OF DETEEMIKANTS.

for ik we write the different combinations of the numbers

1,2, taken two at a time.

For example,

a h 9

h b f
9 f c

a b c

a h g
b h f
c 9 f

ahc - ap - bg" - cJi" + 2fg7u

= (Tp J^h-g^-^e-W-'l abfg

= {af+bg-chy-4.abfg.
2acfk — 2bcgh

112. Consider the determinant

A = ai bi d.

bi &2 ^2 <^2 62

Ci C2 C3 U3 63

dl d, dg ^4 64

61 62 63 64 65

and suppose that

«i+&i4-Ci+<^i+ ei = 61+62+^2+5^2+62= Ci+Ca-f-Ca+cZg -1-63

= (^1+^2+^3+^^4+64 = ei+e2+C3+e4+e5 = 0.

Then, first, A = ; since, if we add tlie elements of the

other rows to the corresponding elements of the first row, the

elements of this row all vanish ; and, secondly, we can show

that all the first minors of A are equal.

B, bi Ci d. ei

C2 C3 ^3 63

d. d. d. 64

62 63 64 65

and (7o = — «! Ci ^1 61

61 C2 d2 62

^1 d. ^4 64

ei 63 64 65

The first, third, and fourth columns of Bi are identical with

the second, third, and fourth rows of G^. By hypothesis the
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elements of the first row of Cs are respectively — q, — Cg, — c?3,

— 63; whence

a = A,Ci C3 U3 63

Oj C2 Ct'2 62

di dg ^4 64

61 63 64 65

as was to be shown.

In general, if in a symmetrical determinant the sum of the

elements in each row is zero^ the determinant vanishes^ and all

the first minors are equal.

Let
A = I aoo«iia22 ••• a^J , with a„ = a,^,

and ttio + a.i + ai2 H + afn = 0.

That A vanishes is obvious. Again,

-^ «11 ai2 ... «]*-! aU «1A+1

«21 a22 ...
«2A-1 .a2A <^2A+1

... ... ... ... ... ...

C^i-U «i-12
...

«i-lft-l «i* ^^i-lft-fl

aa -ai2
\

ttiA-l «a «tm
«i+ii «H-12 ^j+l*-l «t+l* <^i+lft+l

''nAi+l

«!„

t+ln

To the ith row of Aq^ add the remaining rows ; the ^th row

becomes

Then to the Zcth column of A^ add the remaining columns

;

the hih. column becomes

Now, making the I'th row the first row, and the Ajth column

the first column, we have
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A.=
(_!)<« «oo Ooi ^02 «0*-l <^0*+l " «0»

aio «u ai2 <*!*-! «!*+! •• «!«

a* -10 «i-ii <*i-12 «i-l*-l <*<-l*+l •• ai_

«i+10 «t+ii «i+12 <^i+U-l Ctt+lA+l " «i+

«nO «nl Ct„2 «'nA-l Cf'nk+l - ««»

which pre ves the theorem.

—-^1

113. If cc be subtracted from each element of the principal

diagonal of a symmetrical determinant, we have a function of

X which, equated to zero, gives an important equation. The
roots of this equation are all real, which may be proved as

follows. We have

/(«')= an-x aj2 ai3 am

«21 a22 — x ^23 «2n

«31 aga ^33- X «3n

... ... ... ...

«nl «n2 ^nS «n«-

Then

-x) = an + a; a,2 <^13
... «1«

ttsi a^i + x «23 ... a2«

ttgi %2 ^33- X ...
ttsn

«n3

= 0.

a„„ + a; a« = a.

0)

(2)

Multiplying (1) and (2),

/W/(-^)
= Pn-0^ P12 Pl3 "• Pin

P21 P22-^ P23 '" P2n

Psi P32 Pm-^ ... Psn

Pnl Pn2 PnS '•' Pnn-

= 0,

Pr. =Pn-

(3)
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Expanding the determinant of (3) by 63, I.,

\p,J-x'^D^_^-^x'^D^_,-x'^D^_,+ ... + {-^Y=0. (4)

Now i)„_i, D^^o^ Dn-s^ '"•> being coaxial minors of Ipinl,

are all sums of squares of minors of I aj^l ; for consider one

of these minors

i>n Pff Pf9

Vgf Pgg

Prf Prg

' Pfr

Prr P^t=Ptr

Z)„_2 iiiay 1>G obtained by squaring the array

*/3 Vn

in which there are n columns and n — 2 rows. By 58, 1st,

Z>„_2 must be the sum of products of pairs of determinants

which in this case are equal ; hence D„_2 is the sum of squares

of minors of I ai„l of order n — 2. Hence 5Z>„_i, 22>„_2,

2Z>„_3, •••, are all positive. The signs of the terms of (4) are

therefore alternately positive and negative, and, by Descartes'

Rule of Signs (4), can have no negative roots. Accordingly,

/(a;) = 0, or (1), cannot have a root of the form aV— 1, for

then a? would be negative, which we have shown is impossible.

Nor can (4) have a root of the form /3+aV— 1 ; for if we
write au-"iS=au» a 22 — 1^ = ci'^i etc., the proof just given

is applicable.

The student will find it interesting to apply the preceding

proof to the particular case where f{x) is of the third degree,

i.e. /w= a-x • «12 «13 = 0,

«12 a22 + x «23

«13 «23 ^33 + a; Ctr. = «.
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actually multiplying f{x) by /(—«), and expanding the result

to obtain the equation in a^, whose terms are alternately posi-

tive and negative.

114. Symmetrical determinants of the form

/6 «i

97 fe «i h
h 97 /e

d. es , and

Cs d.

h Cs

a, h
fe «!

ao ai a^

ay a., ag

a^ «3 ^4

ttg a^ a.

an -I a. ^«+i

= P(aia2---a2„_2),

are called ortliosymmetric or persymmetric. That is to say,

when each line perpendicular to either of the diagonals has all

its elements alike, the determinant is persymmetric. Such' a

determinant can contain at most 2n — l distinct elements.

Examples of the occurrence of orthosymmetric determinants

in practice are found in 84, VII.

115. The most important property of orthosymmetric deter-

minants is that the determinant remains unchanged when the

first terms of the successive orders of differences of its 2 n — 1

elements are substituted for the elements themselves. Consider

the following series of numbers, and form the 1st, 2d, 3d,

• •• (2n — l)th orders of differences by subtracting Oj^^i from a^

throughout. Then adopting the usual notation, v,

tto ai tta ttg «4 Ct5 '" Ci2n-2

Ai An Ai2 Al3 Ai4 ••• Ai2„-3

A2 A21 A22 A23 ••• A2 2„-4

Ag A31 Ago ••• A3 2„_5

A4 A41 ••• A4 2„-6

Aat-a
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We now show that

A = tto ao

tto Qo

€12 <^S

a„ a,n+l "'/1+2

Ct'n-l = tto Ai A2 A3 •• A,

«n Ai As A3 A4 • •• A,

«u+l As A3 A4 A5 •
•• A,

... ... ... ... ... . .. .

«2n-2 A«_lA. A„+i An+2 .. A.

n+l

If in A the (n-l)th, (n-'2)th,

from the nth, (n — l)th, (?i — 2)th,

we get

A = ao Ai

«! An
«2 A12

column be subtracted

• column respectively,

^ln-2

Aln-1

Am

ttn-l Ai„_i Ai^ Ai„+i ••• Ai2«_3

Repeating the operation successively, we obtain

A = ao Ai A2 A3 • • K-l
«i All A21 A31 •

• A,_ii

a-j A12 A22 A32 • • A._i2

... ... ... ... ' .

a„_ 1 Ai,,_i A2„_i A3n-1 • • A„.i„_i

Operating in a similar manner upon the rows, we get

A =
Ai

Ai

A2

A3

A4

A4

A 1 A

as was to be shown.

A„+i A„+2

A„_i

A„

A„+i

Thus
8 15

15 26

26
1

=
43 !

15 26 43 68

26 43 68 103

3 5 2 2

5 2 2

2 2

2

2'
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for we have

Similarly,

3 8 15 26 43 68 103

5 7 11 17 25 35

2 4 6 8 10

2 2 2 2.

7 0-4 —5 = 7 -7 3 = (

-4 -5 -3 -7 3

_4 _5 -3 2 3

-5 -3 2 10

dent may show that

12 4 7 =: 1 1 1

2 4 7 12 1 1 1

4 7 12 19 1 1 -2
7 12 19 30 1 -2 5

1 4 9 16 = 0. 1 8 27 64

4 9 16 25 8 27 64 125

9 16 25 36 27 64 ]125 216

16 25 36 49 64 125 i>16 343

= 6^

Besides exhibiting obvious simplifications, these examples

show that wlien the elements of a persymmetric determinant

of the nth degree form an arithmetical progression of order

m* < n — 1 , the determinant vanishes ; and if the order of the

progression is n— 1, the determinant reduces to an nth power.

*The series of numbers

1 8 27 64 125 216

form an arithmetical progression of the third order, because the terms of

the third order of differences are alike.

Thus
1 8 27 64 125 216

7 19 37 61 91

12 18

6

24

6

30

6.
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116. The conditions of the last statement will always be

fulfilled if a^ is a rational integral function of k of the mth

degree, whose highest term has the coefficient 1. For then,

according to the well-known theorem, a^^ aj, ag, ••• form an

arithmetical series of the mth order, of which the mth. dif-

ferences will be m!. If, then, ?7i = n — 1, all the elements of

the secondary diagonal will be (n — 1)!, and all the elements

below it will be zeros. Whence the determinant equals

(_l)2(«-i)[(^ _!)]«.

If m < n — 1, the determinant of course vanishes. In either

case, instead of ao, ai, ag, •••, we may write

If, for example, p is any given number, and

-\-m\ _{p-{-k + m){p-\-k-\-m — l) ••• {p-\-k-{- 1)

\ m

A) + mN /p -f m -f 1

\ m ) \ m
A)-hm + l\ /p + m-f2\
\ m J \ m J

'p-\-2m

m

^p + 2m\ A) + 2m + l

m et.'")

117. Consider the determinant

A k kr ki"" . .. A;r"-^

kr kr' ki^ . .. kr-

kr' ki^ kr"" . .. kr--^'

^y.n-1 ^.^n J^^+l ... ^^n^
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whose elements are in geometrical progression. That A must
vanish is obvious at sight ; for dividing any column except the

first by the ratio ?*, A is seen to contain identical columns.

Hence if the elements of a persymmetric determinant form a
geometrical progression, the determinant vanishes.

118. To the results of the last article we add the following.

'

Suppose in

A =
^2

Cfn-l Clr ^n+1

each element divides every other element whose subscript is

higher than its own, i.e., in general,

a^ = 6o 6i 62 • • • 6^.

Then

A = 60

6061

606162

6061

606162

bobib^bs

606162

60616263

6061626364

60616263

6061626364

60616.636465

6o6i62---6^_i 6o6i62---6„ 606162 •••6„.f.i bob^b.^-'-b^^z

6o6i62---6„_i

6061 "'b^_ib^

bobi •••6„6„+i

Now it is obvious that 60 is a factor of the first row of A,

6061 is a factor of the second row, 606162 is a factor of the

third row, and so on. Hence

A=n br^
i=0

1

1

1

b,

b,

bs

bibo

bibs

b,b.

616263

626364 .

636465

6162 •••6„_i

6263 •..6„

• b,b, ...6.^1

1 bn bnbn+l Kbn+lbn+2 • • bX^i-b.^^
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Skew Determinants, and Skew Symmetrical

Determinants.

119. We have heretofore shown (108) that the square of

any determinant is a symmetrical determinant. If we now
write the determinant of even order

3 ?>! Cl ck =
«2 b. Ca d.

«3 h C3 ds

a^ h C4 ch

h ai -d. Cl

h 02 -d^ C2

h «3 -d. C3

h a^ -d. C4

we get, by multiplying these factors together,

' - (^162) - (M2) -(«A)-(M3) -(«A)-(M4)
(«A) + (M2)

;

- {(^ih) - {C2d3) - {ciM - (c^d,)

(«A) + (M3) '(«2&3)-f (^2(^3) — («A) — (^3^4)

(aA) + {cA) (a^b^)+ (02^4) (a^b^) + (c^d^)

\ .

•

In this determinant each element is equal to its conjugate

with opposite, sign, and the elements of the principal diagonal

are zeros. Such determinants are called skew symmetHcal.

In other words, if in a determinant we have a,^ = — a^i and

af^ = 0, the determinant is skew symmetrical. If an is not

zero, we have a skew determinant. It may be shown that the

square of any determinant of even order can be expressed as

a skew symmetrical determinant. Thus, since

A = ttll «12 (Xl3 Oi4

«21 ^22 ^23 «24

... ...

«n-ll ««- 12 ttn-lS «n-14 •••

«nl «n2 «n3 a«4 •••

^n-ln-3 On^in-2 ^n-ln-1 ^^n-ln

<^nn-3 <^n»i 2 <^nn-l <^;m
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^22
— ^21 ^24 — ^23

^n-12

Ctn2

^ln-2 — ^ln-3 ^In — ^n-1

<^2»-2 — ^2»i-3 ^2» —^n-1

^n-ln-2 — <^n-ln-3 ^'n-ln — <^«-ln-l

we have, after multiplying these determinants together,

'

A2 =

nn—l

mi2 Wi3 . •• mi„

msi ^23 • • W'2n

mgi WI32 . • Wig,

m« m. m„ m,. = — m.

For

m,4 = tt,ia;(.2 — ^i2^kl + ^!3^ft4 — <^!4<^>t3 4- ••• + Otfn-l<^*n ~ <^in ^*n-l?

and hence m^i = 0, and mi;^= — '^h*

120. The consideration of skew determinants reduces to

that of skew symmetrical determinants, as we shall now show^

I. By 47,

A^")

<^21 ^22 Ct2n

Of'JIM. a,^ =

Now, since a^j = — a;^;, the determinants Aq^''^ Aq^''"^^, Ao^'*""^^

• ••, are all skew sj'mmetrical, and A^"^ is expressed in terms

of skew symmetrical determinants.

II. If, further, a^ in A^"^ is equal to a;, we have

It will soon be shown that a skew symmetrical determinant

of odd order vanishes. Accordiugl}', the terms of this expan-

sion in which the degree of Ao is odd will vanish. Thus
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+ x

+ 3^

X —a --h —

c

=
a X —d —e a

b d X -f b

c e f X c

-d -e + -h -c +
d -f h -/
e f f 1

-a -b —

c

-d —

e

d -/
e /

—a -c +
a — e

c e

—a -b
a -d
b d

r 0-/ + -e + -d + -c + -b + -a
~

L/ e d c b a _

= aj' + (/' + e2 + cZ2 + c2 + 62 + a^) a^ + (ct/*- 5e + cd)\

The student may show that

= (a2 + 62 + c2 4-^2)2.a 6 c d

-6 a -c? c

c d <x -b
—d — c 6 a

Writing another skew determinant A^, whose elements are

e, /, g, h, in the same form as A just written, we see that

Ai= (e2-|-/2 + fy2 _|_ 7^2)2^ jf ^g multiply A and Ai together

by rows, we get another skew determinant Ao, of the same

form as A and Aj ; the value of Ag may accordingly be written

where
m
n

(m2 + 7^2 +02+p2)2^

ae 4- 6/-f eg + dh, o

— af-\- be — di + c?^, ^

ag + 67i + ce — d/,

a/i — 6^ + c/4-de.

We have then

AAi = (a2+ 62+C2+ ^2)2 (e2+/2^ ^2^ ;^o^o _ ^^^o_^ ^2^ ^2 _^^2)2^

or (a2 + 52 _|_ c2 + c?2) (e2+/2^ ^2_|_ 7^2^ ^ ^^^2 + ^2 _|. ^2 _|_^2)^

which is Euler's theorem.
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121. Returning now to the consideration of skew symmet-

rical determinants, let us take the two minors M and Mi of

109, and making a^^ = — a^^^ an = 0, the determinant itself is

skew symmetrical ; M becomes M\ and M^ becomes Mi.
Now since every element of Jf' equals each element of Mi
with contrary sign, or since

Jf' and Ml
-a,

—a.

where m, as before, is the order of the minors, i.e., the con-

jugate minors of a skew symmetrical determinant are equal if

m is even ; but if m is odd, the conjugate minors are equal, with

contrary signs.

In particular, if n is odd, Aij, — A^^.

But if n is even, Aij, = — A^i.

122. If the skew symmetrical determinant

A = ai2

-ai3

is multiplied by (— 1)'', we obtain

-A=
ai2

But since the rows of A are the columns of

A = -A, or A = 0.

-ai2 -ai3

-<*23

«23

A,

It is obvious that, in general, the effect of multiplying a

skew symmetrical determinant A of order n by ( — 1)" is to

change the rows into columns. Hence, when n is odd.

A=- A.
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Therefore a skew symmetrical determinant of odd order

vanishes. In a skew symmetrical determinant An is, of course,

skew symmetrical ; hence

123. From 121, where n is odd, the reciprocal determinant

is symmetrical ; and, if n is even, the reciprocal determinant is

skew symmetrical.

124. I. Consider the following determinant

A =

^14

ass

«24

-ai3

-«23

^34

-«14

— «24

and the reciprocal determinant

Now, by 61,

— -^13

-Au

-A.

— ^24

-^13

A2S

-^34

= A

A =

A24

A^

I

^ <^2S

.-. ^1/ =j= a23^A, or

and hence A is a perfect square.

II. We shall now show that, in general, a skew symmetrical

determinant of even order is a perfect square.

Let

A =
«21

ai2 • «1»

• ^2n

.

*2 n+1

t-nn+l

''»H-11 "'M+12 ''n+ln

<^2n-l 1 ^2«-l 2
•

'
* <^2n-l n ^hn-l n+1

^2n 1 <*2» 2 • • * <^2n n ^2» n+1

<*12n-l

^2 2»-l

^2/» 2n-

%2»

<^2 2n

^2n-l 2n

ait=
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Then, as above,

A

Aa... , A,

= A . Aa.
11> <»2n2n« (a)

^2n 1 <*2n 2«

Now since A is skew symmetrical, and n is even,

^aii

^^«2.1=^

«2«2n

A,

; and A^12« -A«2nl'

«11» «2«2/i '
or A = <hnl

(6)

Therefore A is a perfect square if ^au,a2n2n is a perfect

square. In other words, a skew symmetrical determinant of

order 2?i is a perfect square if one of the next lower even order is.

But it is obvious that a skew symmetrical determinant of the

second order is a perfect square, and we have shown above

in I. that one of the fourth order is a perfect square ; hence,

by what we have just proved, a skew symmetrical determinant

of the sixth order is a perfect square, and so on. Hence the

theorem is true universally.

For a simple illustration, let us apply (6) to the following

determinant

:

A =

= (vx — uy-\- tzf.

—X

X

y t

z u

-y —z = —X —y —z
—t — u —t —u

— V t —V
V -t

t

As another application, we establish the followitig relation :

9 {a^—a^y {a^—a^Y («3— ^i)^ («2— «4)^ («i— "2)^ (as— «4)^

The first expression equals (see example 7, page 37)

a,' a,^ tti 1 X 1 — 3% 3ai2 -a,'

ai a/ a^ 1 1 — 3^2 3 a/ -a/
ai a/ ttg 1 1 -3a3 3 as' -os^

a,' a,' «4 1 1 — 3a4 3a,2 -«/
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(a^-aiy
{a,-a,y
(a,-a,y

{a^-a^y

{a.,-a,y

(a^ - a^y

(oi - a^y

{a^-a^y

{a^-a^y
{0-2- a^y

{a^-a^y {ai-a,y
{a^ — a^y^ {a^ — a^y

{a,-a,y
{a^ — a^y

{a^-a^y
(a2-a^y

ias-a,y

-^ («2-«3)^

= [(a2-«3)^ (ai-a4)3+ (a^-aj)\a2-a^y-\- (a^ -a2y(as-aiyf,

as was to be shown.

125. The following proof of the preceding theorem has some

advantages over the one just given. Let A be a skew symmet-

rical determinant of even order. Then A^^^ vanishes. Let

pij, be the complementary minor of an, in A^^^, and hence a

second minor of A. By 60,

= 0;

and since ft-. = ft., PuPuu=-PJ'

(1)

(2)

Expanding A by Cauchy's theorem, 63, III., in terms of the

elements of the first row and first column, we have, since

^Oll 0,

A = — ISttif ttaft* = ^(^li^ik '^^iil^kk') substituting from (2) , (3)

in which i*, k have the values 2, 3, ••• 2n. From (3) we have

at once
A = [2ai, Vft]^

Here A is expressed as the square of a linear function of

the elements of the first row. This function is rational if

Vfti is rational. But pa is a skew symmetrical determinant of

order 2?i — 2. Hence a skew symmetrical determinant of order

2n is a perfect square if one of order 2w — 2 is. But we
proved (124, I.) that a skew symmetrical determinant of the
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fourth order is a perfect square ; hence, by what we have just

proved, one of the sixth order is a perfect square, and so on.

126. Since

that is, since A is the square of a linear function of the ele-

ments of the first row, we see that if A is of the fourth order,

Va contains 3 terms ; then, if A is of the sixth order, Va
contains 5.3 terms, etc. In general, then, Va is the sum of

(2n-l) (271-3) ... 5. 3. 1 terms.

Every term of Va is, moreover, the product of n elements of

A, in which no subscript is repeated. For, taking the term

^14 V^44, for instance, we see that it consists of terms in which

neither of the subscripts i, 4 is repeated. But VAw will contain

a term a23 VTss' ^^ which, as before, -^/y^ contains none of tbe

subscripts 1, 2, 3, 4 ; find so on. Hence Va is the sum- of

terms of the form

ai2 0^34 ^56 • * * <^2n-12n1

in which no subscript is repeated.

If A is of the fourth order, for example, we have

AW = ai2 ai3 a]4

C*2i v/ tt23 0^24

(I3I €ts2 0^34

«41 ^42 «43

, and Va^) = {ai^a^ ± ai^a^i ± auO^) •

diu = — a.

To determine which sign is prefixed to each term, we observe

that since the interchange of two subscripts of A amounts to

an interchange of two rows, and also of two columns, and

therefore leaves A unchanged, Va must be a function in which

the interchange of two subscripts either causes no change or

simply a change in sign.
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If we consider any term of Va^''^ as ai2«34, which the inter-

change of the subscripts 1,2 transforms into a2iasi = — ai2a^,

it is obvious that Va^^^ does change sign on interchanging two

subscripts. We have then the square root equal to

^12^34 — ^13^24 ~l~ ^14^23 5 (2)

for, if the second term of (2) were +, the interchange of 2

and 3, while changing the sign of the last term, leaves the

signs of the first two unchanged.

Since «,*= — ot^i, it is alwajs possible to so interchange the

subscripts that all the terms shall be positive. Thus

Va<^> = ai2a34+ ai3a42 + a^aas.

127. In general, we proceed as follows

:

A being a skew symmetrical determinant of the 2 nth order,

A contains the term

(— I) ^'12<^21<^34<^43^56<^*65 ••• ^2n-l 2» ^2n 2n-l = (<^12<^34<^56 * * * ^2n-12n) •

Hence Va contains the term

The positive square root of A which contains T as its first

term is an important function, possessing many properties

analogous to the properties of determinants, and is called a

Pfaffian. The notation

P= [1, 2, ... 2n], or (1, 2, 3, .•• 2w),

has been adopted for the Pfaffian. From what precedes, we
see that the terms of the Pfaffian are obtained from the prin-

cipal term by permuting the subscripts 2, 3, ••• 2n in all pos-

sible ways, and changing sign with every permutation.

Since a,j = — a^^,-, we may so arrange the elements that every

term of P is positive. Thus in the case of A^^^ above we have

Va(^ = P = ai2 a34 -f ai3 a^^ + a^ «23- (i>)
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128. If two subscripts are interchanged, the sign of P is

changed. Let a^,/3 be the terms of P containing the element

a^g. Then the elements of /? do not involve the subscripts

r and s. Interchanging r and s, let P become P'. Now

P^=^P'\

since each square is A, in which two rows and also two columns

have been interchanged

;

,\P = ±PK

But because of the interchange in r and s,

ays(^ becomes —a^,/3',

or, since the term a,„/3 of P = — a^^f3 of P', it follows that

P=2 — P\ as was to be shown.

129. We shall now prove a theorem by which we may com-

pute Pfaffians of order 2n from those of order 2n — 2.*

Assuming

VS=(-1)'(2, 3, ..., t-1, z + 1, ..., 271), (1)

or, after making i — 2 cyclical interchanges,

VS=a+l, 1 + 2, ..., 271, 2, 3, ..., ^-l), (2)

where /? has the same meaning as in 125, we show that

VSV/y^ = ft,; (3)

and then since

P = ai2 V^22 + «13 V/?33 H f- ai2n V/?2«2«5 (4)

* There is a difference in the nomenclature. We have here considered

the order of the Pfaffian to be determined by the number of subscripts

involved. Some authors determine the order of the Pfaffian by the order

of the terms in the elements. Thus (1, 2, 3, 4), or
j
\an\, which we have

designated as a Pfaffian of the fourth order, is said by some writers to be

of the second order.
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(1, 2, 3, ..., 2 w) = a,, (3, ..-, 2n) + a^ (4, ..., 2n, 2) + - | .5)

+ ai2«(2,3, ...,2n-l) j

To show that upon the assumption (1) or (2) the equation

(3) results, we proceed as follows :

Since PiiPkk — Hik >

the terms of V/Sii V/S^^i must be equal each to each to the terms

of ^ai or equal with contrary sign. The product

(-l)'+^(2, 3

(2

, 3, ..., i-l, ^ + l, .-., 2n)
|

.g.

, 3, ..., k-1, A;+ l, •••, 2n) j ^ ^

becomes, after a certain number of interchanges,

where p, q, r, •••, u, v denote the series of numbers

2, 3, ..., 2n,

exclusive of i, k. Again,

/8«=(-l)'-^'

(7)

^2 2

"1-12 ^i-13

t't+i 2 "i+i

;

^2A-l

S+l Ai-1

^2k+l

^3k+l

i-1 A;+l

i+1 *+l

(8)

becomes, after the same number of interchanges as were em-

ployed to change (6) to (7),

(9)

a^kp «*, a*r " a,. ««

%P a,. a^ " %v Si
a,. «.. a,. " a^v a,i

... ... ... ...

a^ a.2 a,r •• Clvv avi
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Now the first term of the product of (7) is

which is identical with the first pterin of the determinant (9).

Whence the truth of (2) is established, and (5) gives the

desired expansion of P. It is to be noted that the successive

terms of P are written cyclically. For example, A^*^ being a

skew symmetrical determinant of the fourth order,

AW = P^= (1,2,3,4)2,

and (1,2,3,4) = a-^a^^+ a^^a^ + ai4«23-

A(6) = p2^ (1,2, 3, ..-6)2,

(1, 2, ... 6) = ai2 (3, 4, 5, 6) + a,, (4, 5, 6, 2) + a^ (5, 6, 2, 3)

+ ai5(6,2,3,4) + ai6(2,3,4,o)

= 0ti2 Cfc34 (Xgg + fti2 <^35 (^64 "f" ^^12 ^36 ^45

+ «13 «45 <*62 4- ttjg a46 (X25 + ^13 Of42 ttsg

+ ai4 0t56«23 + «14 0t52«36 + ai4«53«62

4- a 15 a62 ^34 + «15 «63 «42+ «15 «64 «23

+ aiett^sa^ + «16«24«53 + «16«25«34.

130. The student must have already noticed the analogy

between determinants and Pfaffians referred to above. The

following notation, based upon this analogy, is interesting.

Since the Pfaffian involves just half the elements of a skew

symmetrical determinant like A of 124, II., we write the

Pfaffian

P =: \ (li2 ^13 ^14 *•• ^1 2n 1 ^I2n

^23 0^24
•••

0^2 271-1 ^2 2n

0^34 ... ^3 2/1-1 Of3 2n

(hn-2 2n 1 ^2n-22n

^2»-12n

which is shortened to

1 1 «12«23«34 • • • «2r» -12«
|
, Or tO ff{a^ 2») 5

Or tO
1 1

ttj 2n
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In particular, we have for a Pfaffian of the third order

Ui bi Ci =ff{aib2Cs) = \\ai h^ C3I

We may accordingly write equation {p), at tlie end of 127,

Vaw= ||ai4|, or rather A^^^ = \\a^^f ;

and the general equation would be

131. We must here conclude the discussion of Pfaffians with

the theorem: a bordered* skew symmetrical determinant is

the product of two Pfaffians.

From equation (6), 122, II.,

^ «2nl — ^ ' '^«ll.«2n2n'

/. Aa,„i=(l,2,...,27i)(2,3, ...,2n-2, 2n-l), (1)

which proves the theorem when the determinant is of odd order.

Let A^**^ be a skew symmetrical determinant of odd order. Aa..

is a skew symmetrical determinant of even order, and hence

VA;;r=(-l)'-i(l,2, ..., i-l,i + l, ...,7i)

= (i+l, •••, n, 1, 2, .-., i-1).

Now A^"^ being zero, we have, by 60,

.
A%,= Aa,,A«,,.

.-.Aa^, =(1 + 1, ...,n,l,2, ..., ^-l) (2)

(A; + l,...,n, 1,2, ..., ^-1),

which proves that a bordered skew symmetrical determinant of

even order is the product of two Pfaffians : for any minor A^.^

* A bordered skew symmetrical determinant is one in which the minor

of one of the corner elements is skew symmetrical.
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of a skew symmetrical determinant is evidently expressible as

a bordered skew symmetrical determinant.

If

a,, = -a,,^
we find by (1),

*«61 <^12 ^13 ^14 ^15 ^16

^22 ^23 ^24 ^25 ^26

32 <^33 a34 *36 ttfl

%3 ^54 <^56 <^56

= -(1,2, 3, 4, 5, 6) (2, 3, 4, 5).

0,a„ = -a,

Again, if

a.. = - a,,

aa = , we find by (2)

^«42 ^21 ^% ^25 ^24

ttji a23 <^^15 <^14

«31 0-33 0-35 a34

(X51 a^ a^ a^

(5, 1,2, 3) (3, 4, 5,1),

= 0,a^. = -a,.

as the student can readily verify.

Circulants.

132. The resultant of

f{x) = aia^ + a2^4-«'3 = 0,

<^W=a^ 1 = 0,

Sylvester's method (92) is

aj tta «3 = cti a2 ttg

Oi ttg ttg as (Xj ttg

Oj a2 (/s «2 Oj tti

1 0-10
10 0-1

(1)

(2)

if.
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Now tti, ttg, ttg being the three roots of unity, it is evident

(94) that

or, denoting one of the imaginary cube roots of unity by a,

the other is a^, and we may write

R=f{\)f{a)f{a')

= (tti + a2 + (h) (%a^ + «£« + %) («!« + o.2a^ + ag)

,

an equation exhibiting the factors of R.

133. R is evidently a symmetrical determinant formed from

the elements ai, a^, a^ in its first row, in such a way that the

last element in every row is the first element in every succeed-

ing row, and the other elements are written in order. Such a

determinant is called a Circulant.* The intimate connection

of the Circulant of the third order with the cube roots of unity

was shown in the last article. We shall now prove that, in

general, the circulant of the nth order,

0= C(aia2 •••»„) = ai as ttg • •• ««-l a„

«« ai Cfa • •• an-2 ««-i

a„_ iCtn ai . •• a»-3 a«-2

... ... ... . ., ... ...

a. a, 05 • .. a, ^2

ag ag ^4 . " «n «1

is the product of all factors of the form

a„a,"-i + a„_iaf"-2 + a„_2a,"-« H h Cfga,^ + aga, + ai = /(aO,

in which a^ is one of the nth roots of unity, and i accordingly

takes successively all the values 1, 2, ••• w. In symbols, we

are to show

C (ai a2 ttg • • • a,„) = 11 (a„ a^"-^ + a^-i^-^ -\ f- ^2 «* + ^i)

= /(ai)/(<'2)/("a) -/K)-
Write another determinant of the ?ith order

The Circulant is of frequent occurrence in the Theory of numbers.
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1 ttj ai a^

1 a2 ai ai

1 ag ai ai

1 a„ ai ai

ttg

n-l

Multiplying by rows.

CA = /(ai) /(as)

ai/(«i) a2/(a2)

aiVCtti) ^if{o.2)

/(a„-0 /(a„)

a«-i/(a„_i) a„f{ai)

aL/(««-i) a^/Ca.)

a::l/(a«-0 a:-V(an)arv(«i) arvca^)

Factoring this product,

CA=/(aO/(a2)-/(a„)A.

.-. O =/(a0/(a2)-/(a„)

= II (anap^ + a^_ia"-2 H h a2ai + «i)

For an illustration, x y

y X

y X

y X

y X

= (x + ai2/) (x + a22/) (x + a32/) (a? 4- a,y) (x + a,y)

= {^ + y)fx-h\ V5-1 ,
V10 + 2V5+ V-10

= oy' + 2/•^

as was evident from the beginning.
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134. The circulant of the fourth order

C = a.ai 02 ^3

(X^ Ctj M'2 ^3

CI2 Cl^ «!

can be expressed as a circulant of the second order, as follows.

We have

-0 = aj -02 «3 -a. = «i ^4 % ^2

as -a^ «1 -a. «3 «2 «! a4

a. -«! «2 -a.. a2 ai 0^4 «3

^2 -«3 a^ -ai ^4 as as ai

The first of these determinants is obtained by interchanging

the second and third rows, and multiplying by (— 1)^; the

second is obtained from the first by reversing the order of the

rows, and then reversing the order of the columns.

Multiplying them together,

ai2_2a2a4+«3^ 2a^a^-ai-a^

2asai—a^—ai ai—2a^a.2+a^

^a^a^—a^—a} «2^+«/-2aia3

ai-la^a^-^a^ 'la-n^—ai—a^

Whence expressing (7^ as the product of two minors, and

extracting the square root,

= ai ai — a4 a2 + «3 ^3 — «2 ^4 «3 «1 — «2 «2 + Cll Ots — «4 «4

ttgai — a2«2 + «i«3 — Ct4«4 aitti — a4a2 + ^gas — a2a4

as was to be shown.

The method employed in this special case is equalh^ appli-

cable to show that, in general, a circulant of order 2n can he

expressed as a circulant of the nth order.

We add the following proof, however, which is based upon

the fundamental property of circulants.
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We have to show that

G:

(hn-l ^2» ^1

^2n-l ^2n

Oj2n-2 ^2n-l

• • • ^2«-2

6. 62 6»--1 &n

6» 61 K.-2 6n-l

&»-,J„ K-3 &n-2

... ... ... ...

h 6. 61 6.

h 63 6„ 61

ttg a^ Ois '" «1 «2

0^2 % <^4 ••• ^2» C^i

where

hi = ttitti — a2«a2 + <*2«-i<^3—f- ... — a2a2n

62 = astti — agag + o^^a^ —\. ... — a^a^n

hi = a^ai — a^a2 + «3^3 — +•••— «6«2n

^k — ^2*-l^l — <^2ft-2^2 "I" <*2;t-3^3 ^" ***
^2;t ^2n«

The first determinant

(1)

(2)

Now for every 2 nth root a of unity there is one —a. Hence

(2) may be written

C= if (&na>-' + &.-ia>-4 + ... 4- 63a/ 4- &2a/ + h) • (3)
i=i

If ± ttj, ± ttg, ± ttg, ±04, ••, ±a„,

are the 2 nth roots of unity, it is evident that

222 2
ttj , 02 , as , •••, a,i ,

are the nth roots of unity. Hence the second member of (3)

equals the second determinant of (1), which establishes the

theorem.

For example,

= a h c d = E F
d a b c F E
c d a h

b c d a
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in which

/. C={a' + c'-2bdy-(2ac-b^-d'y.

Centro-syininetric Determinants.

135. If we suppose a determinant to be symmetrical with

respect to the centre of the square (centro-symmetric*), we

have, if the determinant is of order 2w,

A = «!! ai2 «ln-l «ln K &I2 •
•• ^n-1 hn

«21 ^22 «2«-l «£« &21 K • •• hn~l hn
... ... ... ... ... ...

am a«2 ««n-l Ctnn &nl &«2 •
•• Kn-l Kn

Kn Kn--1 bn2 K, Clnn «n«-l • • ««2 ««1

... ... ... ... ... ...

h^ hn-\ &22 hi «2n a2n-l • • a22 «21

&ln hn^-1 &12 6ii ttln «ln-l • • Cli2 «11

We will transform A as follows : add the last column to the

first, the (2n — l)th to the second, and so on, finally adding

the (n4-l)th to the nth. Afterward subtract the first row

from the last, the second from the (2n — l)th, and so on,

finally subtracting the nth. from the (n -f- l)th. Then

A = an + &!» dm + ^1

«21 + &2« «2h + 621

Ofnl -\-Kn a«. + Ki

bn

hi

bn

K
hn

«21

«11

hn

K

* It may be shown that the product of any two determinants of the nth

order is expressible as a centro-symmetric determinant of the 2 nth order.
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Hence

A = «!! + ^m «12 + &1«-1 ••• <hn-l + ^12 ^m + &11

0^21 + hn ^22 + &2n-l *•• «2n-l + &22 C'in + K

ttnl 4- Kn Cln2+Kn-1 '•' ^mi-l + &n2 ««« 4" &„1

Cfnn — ^»1 <^nn-l ~~ ^n2 * *
*

<^n2 — ^nn-1 ^nl — ^nn

^2n — ^21 <^2w-l — ^22 * *
*

<^22 — 02„_i (X21 — 02„

If A is of order 2 n H- 1 , we write

dll Qq2

^21 ^22

h h

K K-1

«1« ^<^1 ^U

Ct2n "'2 ^21

Oil A*i «!„

v-1 6ln

&2«-l 62.

... ...

6„»-i Kn
?. k

0„2 0,1

ai2 a,!

By making just the same transformations as before, wc
find

«]1 + &1« «12 4- &1„-1

^21 + &2n «22 + &2»-l

««1 + &«n «n2 + Kn-1

21, 2k

^nn — ^nl ^nn-1 — "n2

Ogn— 621 a2n-l— &22

«ln — &11 <hn-i. — K

<^2n H" ^21 "^2

2L r

ttsi — h^
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Collecting results, we have : a centro-symmetric determinant

equals the product of two determinaiits each of the nth order,

if the order of the symmetric determinant is 2n ; if the order

of the symmetric determinant is 2 n + 1 , the factors are of order

n and n-\-l respectively.

For an illustration we expand the following determinant

:

a h c d e f 9 h

h a d c f e h 9
c d a b 9 h e f
d c b a h 9 f e

e f 9 h a b c d

f e h 9 b a d c

9 h e f c d a b

h 9 f e d c b a

a+h b + g c+f d-\-e

b-\-9 «+^^ ^ + e c-j-f

c+f d + e a+ h b+g
d-he c+f b + g a+h

a — h b — g c—f d — e

b — g a — h d — e c—f
c—f d — e a— h b — g

d—e c—f b—g a—h

a+h+d+e &4-gr+c+/

b-\-g+c+f a+^+d+e
a-^h—d— e b-\-g — c—f
b-\-g — c—f a+ h—d—e

a— h-\-d—e b— g-\-c—f

b— g+c—f a— h-\-d—e

a— h—d-\-e b — g— c+f
b —g — c-\-f a— h—d-\-e

Continuants.

136. Consider the three simultaneous equations

(a) 3 iCi — iCg ~ ^
)

(b) iCi-f-4a;2— ^3 = 0/'
(c) X2-\-5xq = )



172 THEORY OF DETERMINANTS.

From (a),

,(s-|)-, X, =
3^^

Xi

From (p),

re, =

From (c),

X2

^__1.

3 +
4-^«

oJa

aji =
34-

4 +

The value of Xi is thus expressed as a continued fraction.

If we solve for Xi by 69, we find

1 -1 -H

4 -1
1 5

3 -1
1 4 -1

1 5

We see then that a continued fraction may be expressed as

the quotient of two determinants.

We shall now proceed to the application of determinants to

continued fractions in general.

137. From the simultaneous equations

'
(1) aiXi — X2 =ai

(2) a2Xi + a2X2 = Xs

(3) asX2-^a^X2 = Xi

(»-i)

(«)
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we obtain from (1)

X, =
Xo

«!

Substituting in this the values of

2 3 t— J 7

Xi X2

as obtained from (2), (3), ••• (n — 1), (n), we have

Xx = —i

—

ttj + a2

«2 + «3

«n-l + a„

The value of iCi is seen to be expressible as a continued

fraction. If we stop at the nth quotient, and thus take the

nth convergent for the value of cCi, then x^^i and all the suc-

ceeding x's must be conceived to vanish. In that case Xi is

the continued fraction.

jr=^^ 02 ttg a„_i a„

The consecutive convergents to F will be denoted by

Pi A P^

pThe determinant expression for —^ is now found b}" making
Qn

a„_i = in equations I., and solving for x^ by 69. We find
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X, =

aj -1
a^ -1

as as -1
a* a^ -1

... ... ... ... ... ... ... ...

ttn-l On-X -1
a« ^n

ttl -1
ttg tt2 -1

ag % -1

a«-i ttn-l -1

^ «n

which is the determinant expression sought, and hence is

Looking at numerator and denominator of this convergent,

we see that
^

tti

and thus

dai

«!
dQn

_ da, , Tp d(\osQ„)

138. A determinant having the form of Q„ in the preceding

article is called a continuant ; i.e., a continuant is a determi-

nant in which the elements outside of the principal diagonal

and the two adjacent minor diagonals are all zeros, and one of

these minor diagonals has each of its elements — 1

.

Since

ttl -1 ..

a2 a^ -1 ..

ttg as -1 ..

•* ttn-l «n~l -1
.. «n On
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«1 ag . ..

-1 a2 as ..

-1 as 0-4 ..

... _1 ttn-l a«

... -1 a«

it is immaterial on which side of the principal diagonal we
write that minor diagonal whose elements are — 1 . Also we
may write

ai -1 .

02 (h -1 ..

ag 03 -1 ..

•• a«-i «n-l
"

.. ttn ttn

«! 1 . .

— ag a^ 1 . .

— ttg ttg 1 . .

. • — a«-i ttn-l 1

.. . — a« a„

We shall employ the following notation

:

\aia2as"'a„J

Thus

tti a2 Og aj
(h -1
«2 0^2 -1

as «3 —
a4 ^4

Pn
Returning to ^f » we may now write

Qn
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aj "3 "^ - ««
)

Qn / a2 og ... a„ \

or, the nth convergent to a continued fraction F is expressible as

the quotient of two continuants multiplied by the first numerator

ofF.

139. Expanding P„ in terms of the elements of the last row,

we find , .

\(h as ... a^J

= a„ai as —1

+ a„ai

"3 «3 -1
"4 «4 —

as -1
"3 «3 -1

a4 a. —

^»-l "'n-1

"-n-S "-n-l

a„_2 a„_2

= ana/ "« "^ - «-^ )-\-a^aJ «« «^ - ^-^ ^
Vag ag ... a^_iy \a2 a^ •.• a„_2y

= «.A-i + a,P,_2.

Similarly,

Q^= f a, a, ... a„
) = aj "^ "« - ^-^ ^

\ai a2 ... a„J \ai ag ... a„_i/

-honf "^ "^ '" """-^
^

= «n Qn-1 + an Q»-2.

(^)

(5)
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140. It is to be observed that the equations {A) and (B),

besides establishing the law of formation of the consecutive

convergents to F, give the expansion of a continuant of order

n in terms of continuants of lower orders. Thus, by (B),

/ 02 ag a4 \ / ag ttg \ /^ "^ ^

\«1 «2/ ^ ^ ^ V«l <^2/

= aia2<^3<^4 + aztt^a^ + aiaga^ + 010204 + 0204.

141. Equation (B) is, in fact, a special case of the more

general theorem

/ ttg ttg 04 ••• a„ \ _ / 02 Og •.. "r W a^+2 ••• ttn \

\a^ ..- Or-l/ V^r+2
••• a„y

This is easily proved by writing out the continuant of the

first member in full, and expanding by Laplace's Theorem

(55) in terms of the minors formed from the first r rows and

their complementaries.

We may also use {B) to obtain another expansion of Q„.

Thus

f 02 «3 ••• ttn \ _ f «3 a4 ••• «n \ / ^4 "s
*•• «« ^

\a^ 02 ••• On/ ~ "^
Va2 «3 ••• ««/ "^ \«3 «n/

as the student may easily verify by expanding the first member
in terms of the elements of the first column.

142. It will afford the student an excellent exercise to take

the quotient

/ Og Og ... O,^ N

\a^ 02 ... a,

J
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and, with the help of (C) of the preceding article, transform

it into the continued fraction

Ol «2 «3 ^n

143. 57 or 62 established the theorem

dai^dap, dUi^ da^, da^,,, dat^

Let A=q^ = (
"^ '" ^» Y

and let i = A; = 1, p = e = n.

Then c^^A ^ f a, ... a„_i A = 5-i^
da^ida^^ V«2 «3 ••• ««-!/ "'i

'

where P„_i has the meaning assigned to it from the beginning.

^=,( ^ '" <^ \ = Pn,Also dA
da^

Similarly,

—— =a2a3 ..• a„; =(_l)«-i;
dain da„i ^ ^

and dA
da„.

. / 0.2 as ••• ttn \ f
^S "4 ••• ttn-l \

"\a1a2 ••• a^jKa^a^ ••• a„_iy

or Q„P«-i - PnQn-1 = (-I)'*aia2a3...a,.
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144. With the help of determinants we may now show

that

Oi a2 0-3 a*-i h+i

+a*-i +«* +a*+i +«„

equals

JCtti ajtti O-k+l

as follows. The first fraction

F:

/ ttg a4 ... a„ \

tti Va2 «3 ••• «n/

/ 02 ttg ... a„ \

+a«

This quotient is easily shown to be equal to

ai -1 ... ...

^2 -1 ... ...

"3 ag -1 ... ...

X ...
a;fc_l a*-i O-k

...

... -1 Ctk -1 ...

... O-k+l «*+l -1 ...

... ••• an ««

«! -1 ... ...

«2 ^2 -1 ... ..0
ag a^ -1 ... ..0

X ... aj^^i «*--l a* ..0
... -1 a. -1 ..0
... a^+i «*+l -1 ..0

... .. a„ a.
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But this quotient obviously equals

a, -1 . . . ..

a^ -1 . .. . ..

03 % -1 . .. . ..

... ... . ... ... ... ... . ...

. •• ^O.k-1 a;a,_i Xaj, . ..

. " -1 «* -1 . ..

. .. a*+i «*+l -1 . ..

. .. . ' Cln a«

«! — 1 . .. . ..

a.2 a^ -1 . .. . ..

ag «3 -1 . .. . ..

. •• ^k-l a^a*-i Xaj, . ..

. .. -1 au -I . ..

. . "ft+i «*+l -1 . .. 0.

. . . . a^ a»

This last quotient is the continued fraction

F' = — "^

as was to be shown.

Xaj,_i Xa^ ttj+i

+a;a,_i +«* +«&+!

145. In a certain investigation it becomes necessary to show

that the denominators Di and D^ of the convergents to the

fractions

b b b
and

b b b

tti +a2 +a„ an +a«-i +a^

are equal.
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We have

A = ttj -1 ..
>

b ag -1 ..

6 as -1 ..

.. b a„_i -1

A

' .. b «n

A = «« -1 ..

6 «n-l -1 ..

6 «n^2 -1 ..

.. b a. -1

.. b ai

181

By reversing the order of the columns in Da, and also the

order of the rows, and afterward making the rows the columns

in order, the original determinant is unchanged either in sign

or magnitude. But by these transformations D^ is changed

to Di. Whence Dg = A> as was to be shown.

146. The quotient

62 C3I

Itti 62 C3I

can be expressed as a continued fraction, as follows

I&2 C3I

\ai 62 C3I

1 61 Ci

62 C2

63 Cs

ai bi Ci

^2 &2 C2

a^ &3 Ca

1

ttg ^2 I ^1^2!

«3 ^3 I ^1^3!

0^2 ^2 1^1^21

% ^3 I ^1^3!
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63

l«2&3l ^2 I^Cal

h I&1C3I
=

&3

Ia253l

-63I61C2I

-1
!&lC3l

63 I61C3I

-1
&2

-I&1C2I

-1
l^C3l

h _ 53I&1C2I

6IC3I \
This process is equally applicable to show that, in general,

the quotient of two determinants — is expressible as a con-

tinned fraction, provided only that

d^ dA.
Ai=--^, or Ai = —^, or Aj =

dan ^^in

147. The continued fraction

«! +«2 +«3

da„
or A, = dAg

H-^n

is evidently equal to

/ a2 ttg ••• a^ \

Vai 02 ••• ct»/

For

a, -1 ...

a2 -1 ...

ag as -1 ...

"n «n

+

F,=

m -1 ...

Cll -1 ..

a2 a, -1 ..

ttg ag ...

•• On ftn

,«1

Og ttg ... a„ \
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But the first determinant in the numerator may be written

0-10
ai tti —1

tta ag — 1

tto a.

-1
«! -1

a2 —
ttg «3

... =

...

...

...

••• On «n

...

...

...

...

••• ttn Ctn

whence the desired result is at once obtained by substituting

in the numerator of the value of F^, and adding the deter-

minants.

148. We may, with the help of the preceding article, express

the value of the periodic continued fraction

m + h ^2 &3

+02 +«i

h

as the quotient of two determinants. (The * marks the re-

curring period.)

If we put X for the continued fraction, we have

X = m + h ^2 ^3

«i +02 +»3
h

4-a2 +<^i m+a;

Then, by 147,

/ bi 62 ••• h h h \

\m % 0^2 ••• ttg «! (m-{-x) J

62 h/ 62 h "

\ai Og 0^3 ••• «2 ^1 (^

clearing of fractions, and expanding,

/ 62 h "' 63 h &A
^^f

h h

_/ 61 62 ••• h h \
X ( ^^ ^2

~"\m Oi tta ••• ^2 «! m /
"^ \m «! a^

^2 (h)
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But the first term of the first member equals the second

term of the second member of this equation.

x = ±
(

'' 63 62 ^1

^ h h '" h h
«! ^2 «3 ••• Cts «2 «1

149. Let us now consider the ascending continued fraction

as 4- .* a«— ^ « ^ tti +a2 +a3

^- = ». + "^

enote the convergents to F^ by

P Pi i>2 Pn
_, — , — , ... —

f

^ qi q2 qn

and let us obtain the determinant expression for the nth con-

vergent.

We have evidently

p^ is determined from the following equations, which the

student can easily deduce

:

— O'zPt-^Pz = a3

— ttn-a P«-8 + Pn-t = an-2

— an-lP«-2 + Pn -1 = a^-l

a«P»-i+i>» =0^.
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From these equations

i>n = 1 ttl

-^2 1 02

-^3 1 ttg

... ... ... ... ... ... ...

a„ ~2 1 an-2

--«n-l 1 O-n-1

<^n a«

ai -1 .

^2 a^ -1 .

"3 «3 -1 .

a«-2 . • «'»-2 -1
a„-i . ttn-l -1
ttn . ttn

ttl -1 . ..

0.2 ^2 -1 . ..

as «3 -1 . ..

... ... ... ... . ...

a«-i . •• «n-l -1

O-n . .. dn

ai -1 . .

a^ -1 . •

^3 -1 . .

... ... ... ... . ...

. •• ttn-l -1
. . a„

Pn
150. The numerator and denominator of - can be trans-

formed into continuants, and thus the fraction F^ can be

transformed into a descending continued fraction, as follows

:
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Multiply the last row of p„ by (v-u and subti-act from it the

(n— l)th row multiplied by a„ ; then multiply the (n— l)th

row by a„_2, and subtract from it the (w— 2)th row multiplied

by a„_i ; and so on. Then

«! -1
agai+ag — ai

— agoia ^so^j+as — ou

Pn =

— a„_2a„_i an_ia„_2-|-a„_i — a„_2

a„_ia„_2a„_3 a^a^ai

Similarly,

gn =

a, -1 ...

— aittg asttj+ aa — ttl ...

— tta^s «3a2-f-a3 — ttg ...
.

... ... ... ... ...

...

a«-i

a«-ia»-2

+ an-i
— an-2

0*
... -««-!««

an-ia»-2an-3 a2ai

Whence, by 144,

Ol a^a^ Ct2«l«3

Ol --a2ai+a2 — asOg+ag

5'«
•

an-2an-3a^-l a„_ia„_2an

— «n-ia„-2+an_i — ««««-!+an

the descending fraction sought.
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Alternants,

151. Consider the determinant

A = 1 «! Of/ ••• (

1 ttg a^

1 a„ a„2

as

and the product

P = (a2-ai)(a3-ai)(a4-ai) ... K-ai)
X (as—«2)(a4— «2) ••• («n— 02)

X (a^-as) ••• (a^-ag)

X (a^-a„_i)

of the - (71— 1) differences of the n different quantities involved

in A. This product is called the difference product of the n

quantities ai, ag, ••• a„, and for it the notation ^*(ai, ag, ag, ••• a„)

has been adopted.

The reader will remember that the square of the difference

product was denoted by ^(ai, as, ••• a„), and thus the difference

product itself is very appropriately designated by C*(ai, ag, ••• a„).

We shall now show that

A =P = CK«15 «2, --J ttn)' (1)

If in A we put a^ = a„^ A vanishes ; hence A is divisible by

each factor of P, and hence by P. Again, A and P are each
n

polynomials of degree - (n— 1), and therefore

A = \CH«15 «2, «3? ••-,«„),

where A. is a factor independent of ai, ag? •** <*»*• From the

special case
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(a^-a,) (ccg-^i) (a3-«2)>

we see that X= 1, and thus the truth of (1) is established.*

152. A of the preceding article is evidently an alternating

function ; for the interchange of a^ and a„ amounts to an

interchange of two rows in the determinant, and hence changes

its sign. A is accordingly an Alternant. In general, an alter-

nant is a determinant in which each element of the first row is

a function of £Ci, the corresponding elements of the second row

the same functions of x^, and so on. Thus

/»K)]A = fiixO Mx,) ... M^,)
Mx,) L{x^ - f.{x,)

Mx,d Mx:) ... Ux^)

^AlMx,), Ux,)

is an alternant.

153. We can easily show that

A = 1 fx{x,) Mx,) ... u,{x,)

1 fl(X2) A{X2) '•' fn-l(x,)

= H^(Xi, X,

1 /iW /sW - fn -l{Xn)

• x^),

where fr(x) is a function of the rth degree in x, and A. is the

product of the coefficients of the terms of highest degree in

the several functions. For subtracting the first column mul-

tiplied by the proper number from the second, we reduce the

elements of the second column to piX^, piX2, p^x.^, ... PiX,^.

Then subtracting the sum of the first and second columns, each

multiplied by the proper number, from the third column, the

elements of this column become ^2^/? ^2^2'*) ••• P2^n^. Pro-

ceeding in this way, we see that finally

A = \tj{xi, ^2, ••• a;„).

See also examples 6 and 7, page 37.
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where ^ = Pi • i>2 • • • Pn*

For an example, putting

we have

A 1 /iW f2M ... f^_,(x{)

1 Mx,) Mx,) ... f,,_,(x,)

1- /l(^n) /.(^n) - /n-l(^«)

(71-1)! (n-2)! ... 2!'

154. Every alternant whose elements are rational integral

functions of Xi, X2, ••• »„, is divisible by t}{xi^ iCg? ^31 ••• ^n)»

and the quotient is a symmetric function of the variables.

For the alternant vanishes if Xt = Xj,, and hence is divisible by

Xi — x^, and thus by CH^n ^2? ••• ^n). '^^^ quotient must be ^
symmetric function, for the interchange of Xi and Xj, changes

the sign of both dividend and divisor ; therefore the sign of the

quotient remains unchanged upon the interchange of two of

the variables, and is accordingly a symmetric function. We
shall now actually perform the division just considered. Alter-

nants whose functions are powers of the variables are called

simple alternants^ and are of frequent occurrence. We proceed

first to the discussion of simple alternants.

155. The quotient

1 X, ... arr'^i'

1 X, "'xr'x2'

1 x^ -'X^--'X^^

A(Xj\x2, Xs^"'Xl_-i,X„^)
-f- i {X,, X,, ... X^) = ^^^-_____^

may be developed as follows :

Expand the dividend A in terms of the elements of the last

column, and we obtain
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da^i' die/ dx/ dxj

Now, it is evident that each of the minors in this expansion

is a difference product.

Thus

dA
dxj

^(-1) -L 3/j flJj
,n-2

1 «,_i a^_i ••• x^i!

1 OJ,.^! a^^i ••• x^^i

1 a7„ £C„ icr

Substituting in (1) the values of the minors as found from

(2), and dividing both members of (1) by l^{xi, iCg, ••• a;„), we

have a series of terms, of which

(-!)»+" a;/

lx^-X,){x„_-^-X,) ... {Xr+i— Xr) (X,-X^_i) •" (x,—X2){X,-Xi)

is the type. Thus we find

C-{Xi, X2, ..., x„)

r=i {x^-Xr)(x^^i~x,) ... (a;,+i-a;,)(a;,-a;,_i) ... {x^-x,)
'

or
a^i'

4.... +

(X,--a;,) (»,--w„ -.) ••(^1 -X,)

+
x,^

(».--a!„)(X2--a;. -.)• ..(0^--X3) (asj--a;,)

^L.

(aJ„-2-««)(a;„_2-a?n-i)(»«-2-»n-3) ••• (a;«-2-aa)
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+ ^

For an illustration, we have

1 2 16 -f-

1 3 81

1 5 625

2 4

3 9

5 25

16 + 81 625 = 69.
(2-5) (2-3) (3-5) (3-2) (5-3) (5-2)

156. With the help of the preceding article we may reduce

the quotient

^i(a;i, ajg, ••• «„)

to the sum of two similar and simpler quotients, as follows

:

Since

A{X^, X}, Xi, ... <:f, V) - ^n^i^X-, ^2, K'-l. ^n'-')

1 x^ x^

1 X2 xi

1 X^_i af„_2 •«. flJ^-l ^n-l(^n-l— ^n)

1 x^ XI

(1)

we have, after dividing both members of (1) by l^{xi, x^, ••• x^)

in accordance with 155, and striking out the factor common
to numerator and denominator of each term in the second

member,

A{x,\ x}, xj, ..., x^-l x,^) x,A{x,\ x,\ x,\ ... <:f, x^')
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q-l
^i

?-l

+ ... + ^
K-i-aJ»-2) {x^-\-Xn-z) ••• (a^n-i-a^i)

But the sum in the second member of this equation is,

by 155,

1 Xi Xi

J. Xo Xo x^-'^ x^-'^

1 ^n-1 Xn-\ •••

Transposing, we have

/v.n-3
^H-1

-^ lK^i'>^2'> •••ja;„_i).

^H^i' ^2, ••• a;„) ^K^i5 ^2, ••• x^)

+
A.{Xi , a72 , i^3

, a^^Il)
^n-3 ^?-r

which is the desired reduction. For example,

\ X a? 1 a; «2

1 y f 1 y f 1 a.-2

1 2 ^ 1 ^ 2^
1

1 2/2

^i(a;,
2/, 2!) 4Ha^» ^5 ^) ^H^» 2/)

= a; + y + 2 = 2a;.

I X x'^ 1 X a^

1 2/ 2/* 1 2/ f 1 a!«

1 ;2^ 1 « 2?
,

1 2/»

The student may show

= '^a^ + 'Z^y-^-xyz,

1 X a^

1 y f
1 z z"

^H^5 2/5 2;)
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-^x^ + %a^y + 5a^2/2 _^ ^^^^^

1 X x'

1

1

y f
z z'

4* (^, y, z)

157. Since every term of CK^i' ^2^ ••• ^n) contains a permu-

tation of all the powers of the variables from 1 to 71 — 1 , each

term is of the -(n — l)th degree. Similarl}-, every term of

A(x,\ x,\ xi, ..., <:f, 0^,0 is of degree iliZliliZLlA) + g.

Hence every term of

f;^^ A{x,\x,\xi, '".xlzlx^)
,

i\x,, X2, '", X,)

is of the (q — n -\- l)th. degree, as is illustrated in the exam-
ples of the preceding article. We shall now show that every

possible term of the (g — n4-l)th degree in the variables is

found in Q, and that every such term is positive. That is to

say, the quotient Q is the complete symmetric function of degree

(g- 71 4-1) of a^i, X2, •••, x^.

Such a term of Q is

1 =i Xi X2 x^ '•' X n_2 ar„_i x^.

By successively applying 156, we develop Q so that the

terms containing ic„, aj^a^^i, x^x^^_ix\,^2i etc., are at once

distinguished. In the first place,

^ ^«,a;2^a^3^'••,<:i,a^r-l) .
x.,A(x,\x2\x,\ •^-.xZzlxlzl)

t}{xi, X2, ..., x^__{) ^i(a;i, X2, •.., a;„_i)

^

aiA(x,',X2\xi,...,xl-lxt_\)
^
^ xr''A(x^,X2\xir';x:izixZz])

The second term,

X^Ai^Xi , X2 , X^^ ' •
» , a?;i,„2^ ^ra 1 ) = «1,
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contains the first power of x^ ; hence we must look for T in

Qi. Applying 156 to Qi, as before, we have

^-1^(^1 ^ ^2 ? ^3 ^ "'^ ^n-3? ^n-2)
I

t (^li ^21 •*•? ^n-2)

a^n:r'^(«^l^ ^2\ «^3', -, ^n-l) j^^
-'}

4 (a?!, a;2i * * *
5 ^n 2)

In this expansion we must look for T in the third term

%

^n^n-\-^\^\ ^ ^2 ? ^3 ^
•••? ^n- 3? ^n '2) __ Q

t (^1? ^*2? '"j ^n-i)

Q2 may be expanded as before ; continuing in this way, we
finally obtain the term

X aP x^ ...T« ^W^2') .

^^{X^X2)

for the coefficient of a7„«l_ia;^„-2 ••• a^s^ contains only a^i and a?2,

and is of the third degree. Upon performing the division, and

multiplying, one of the terms is T. Since T is any term, the

proposition is established.

Employing the notation H^ for the complete symmetric

function of the rth degree, we may write the result of the

present article

A(x,\x,\x,\....xlzlx,^,) _ jj (^ X ... x\

or simply Hq^^+i*

For illustrations the student may refer to the examples in

the preceding article.

« With this notation, Hq = 1, ZT., = 0.
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Again,

1 X x^ x^

1 y y^ f
1 z ^ ^
1 t f f

= iJ^ = -^x* + 20^2/ + Ix^y^ + ^xyzt.
l'-{x, y, z, t)

158. From the two preceding articles we have at once

H^{X^,X^, "•,X^) = X^H,_.l(Xi,X2, '••,X^)-\-Hr(Xi,X.,, •••,i»«_i).

(1)
Whence we readily obtain

Hr.i{x„x.>, '•,x^+i)= x^^^H,_ci{x^,x^,"',x^^^)-^H,_^{x^,X2, ..., x^y,

Substituting in (1),

-"r(^l? ^2» "'-i ^n) = ^nL-"r-l(^l5 ^2> '**? ^n+l)

- x„+i^,_2(a;i, a^a, •••, Xn+i)~\+H,{x^, x^, ..., a;„_i). (2)

Similarly,

XZy(i»l, a;2» •••> ^n—l^«+l) = ^n+lL-"r-l(^l? ^25 '"^ ^n+l)

From (2) and (3),

Hri^l-, a^2, ••• ^n) —^ri^l, X^, '" X^_iX^+i)

= (^n- Xn+l)Hr-l(Xi, X2, ' - • iK„+i) . (4)

159. If any alternant whose elements are powers (simple

alternant) be divided by the difference product of its variables,

the result is expressible as a determinant whose elements are

complete symmetric functions of the variables. That is to say,

Ajx'^, xi, ... 0^::)

-fftt-n+l H^-n+l H^- -n+l
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This may be proved as follows. For brevity we employ

determinants of the third order, but the method applies, of

course, to determinants of any order.* In the alternant

Xi

x^ x^

(1)

subtract the first row from each of the other two, then remove

the factors {x^ — Xi) ,
(x2 — Xi) . Afterward subtract the second

row from the third, and remove the factor ccg— a^g? employing

equation (4) , 158. The result is

A{xi, Xj, x^) _ ll^{X,)
'

ll^(X,) ffy(X,)

H^_.2{X^,X2,^5) H^-2{X^,X2,X^) IIy-2{Xi,X2,X^)

The determinant on the right we now transform as follows.

Add the second row, multiplied by ajg, to the first, employing

equation (1), 158, and obtain the determinant

IIa{Xi, X2) H^i^lt i»2) Hy{X^^ Xo)

IIa-2{Xi, X2, Xs) Hp-2(Xi, X2, ajg) Hy-2{X^, X2, x-i)

Now add the third row, multiplied by ajg, to the second,

again employing (1) of 158; finally, add the second row,

multiplied by iCg, to the first.

We then obtain

^i(a;i, X2, x^)

Ha(x^,X2,Xs) B'p(Xi,X2,Xs) Hy(x^,X2,Xs)

Ha-l(Xi,X2,Xs) n^-l{X^,X2,X^) Hy-l{Xi,X2,X^)

Ha-2(Xi,X2,Xs) H^.2{Xi,X2,X^) Hy-2{Xi, X2, X^)

as was to be shown. For an example,

* The mode of proof here given is due to Mr. 0. H. Mitchell, American

Journal of Mathematics, Vol. IV., page 344.
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a a' a' = abc

h b' b'

c c' (^

= abc^^{a,b,c)

= abc^^{a,b,c)

1 a^ a*

1 b^ b'

1 c" c^

HQ{a,b,c) IIs(a,b,c) H^{a,b,c)

-Hi ^2

= abGt^{a, b, c)
|

Sa^ + ^ab ^a" + %a-b + %abc

= a6c^i(«» ^ c) I - 2a5 - Sa^^ - 2 2a6c

1 2a 2a' + 2a6

=^abc^^{a,bj c) — 2a6 2a6c

2a — 2a6

160. Form the product

an ai2 • • «1« X xr' ^-» .
• a^i 1

«21 ^22 • • «2n a,r' • X2 1

... . ... ... ... . . ... ..

a„i «n2 ••

_i . /I...

i»,"-2 . • ^n 1

changing the columns of the first determinant into rows before

multiplying. If we put

f,{x) = a^.x''-^ + a^.x''-"- H \- a^_^,x + a„„

we find

p=(_l)l(-^>|a,J^K^1.^2,-,aJn)

/l(»2) f2(X2) ••• fn{X2)

/l(^») /2(a'n) ••• /«(a;„)
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If now

we must have

laiJ =

m-1

/
TRBOBT OF DETERMLNANTS.

Mx.)^^x.-y;)'-\

1 (:T)i-y^^ Wy-y^y [vy-y^y

1 (7')^-^") {^ty-y^^y (Vy-y^y - (-^»)"-^

where

But this last determinant evidently equals

where K is the product of all the binomial coefficients of order

w — 1. We have, accordingly,

(aJi-2/i)"-' (a^i-2/2)""' - (aJi-2/n)""'

(«2-2/i)""' (^^2-2/2)""' ••• (a?2-2/n)"~'

(x^-y^y-' {x^-y^y-^ - K-2/n)"-'

= /r^*(^l> «'2, a?3, •••, a^n) ^*(2/l» 2/25 2/3,
•••, 2^n) •

If now x^ — y^y we have C(^i> ^2? ^s> •••^^n) in the form of a

determinant.

161. Siippose now that aj, ag, •••,a„ are the roots of an

equation

f(x) = 0. (1)
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Then ^^(ai, a^, ag, •••, a„) is the product of the differences of

the roots of (1). Square this determinant, obtaining

^ (ttj, as, • • • , an) = 1 + 1 +- + 1.

«! +CL2 H f-a„

a/ +ai +...+a,f

«! +a2 H f-an

ai^+ a^^ + .-.+a^f

tti

n-l

af +a2'* +
+ a

+ a„"

+ a2"-i+...+a,'*-i

-"+' + 02"+' + + a n+l

a,'--'+ai--'+ H-a„^'

So Sl S2 Sn-1

Si S2 S3 s»

S2 S3 s. ^n+l

... ... ... ...

s«- iSn Sn+1 S2»-2

where, as usual,

S^ = ai*- + a2'*+ ••• +a,r.

162. The preceding article gives us an expression for the

square of the differences of the roots in terms of s^. We can

also readily obtain an expression for the sum of the squares

of the differences in terms of s< as follows.

We have

by 58.

1 1

P y

Sl

Si So
= 2(a-^y

163. We shall conclude our discussion of alternants with a

theorem on the reduction of alternating functions to alternants.*

* " Reduction of Alternating Functions to Alternants," Wm. Woolsey

Johnson, American Journal of Mathematics, Vol. VII., page 345.
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(1)

Any function of the form

4>i{a, bed ••• I) 4>2(iii bed ••• I) ••• <^„(a, bed ••• I)

<f>i{b, aed '" I) </)2(6, acd ••• Z) ••• <j>n(b, aed "-
1)

r

<f>i{l, abc ••• k) cf>2{l, abc ••• A:) ••• ^^(Z, abc ••• k)

is evidently an alternating function of a,b,c, "• I, if

<^(ci, 6ccZ ••• Z)

denotes a function of the n quantities a^b,c,'"l, which is

symmetrical with respect to all the quantities except a. If

each element of this determinant contains only the leading

letter, (1) becomes

Mb)
M<^)
Mb)

/3(«)

Mb)

M') Ml) Ml)

Mo)
Mb)

Ml)

(2)

an alternant, which we represent, as usual, by its principal

term,

[/l(«),/2W,/3(c),-/n(0]. (3)

Now, if the principal term of (1) can be separated into parts

of the form (3), then the given alternating function (1) is

equal to the sum of the alternants represented by these partial

terms. This is proved as follows. Since an interchange of

two rows of (1) is equivalent to an interchange of the corre-

sponding letters, any term of (1) can be obtained from the

principal term by a suitable transposition of the letters, and,

similarly, the corresponding term in each of the alternants may

be derived from its principal term by the same transposition

of the letters ; hence every term in the expansion of (1) is

equal to the sum of the corresponding terms in the expansion

of the alternants.
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Accordingly, if a determinant of the form (1) is expressed,

as usual, by writing its principal term in (), with commas
between the elements, we may erase the commas, and treat the

expression within the ( ) as an ordinary algebraic quantit}'.

Thus,

= A{bcd, 1, c, d^)=^« 6, r, d^) = t,^{a, b,c, d).bed 1 a a'

cda 1 b W
dab 1 c (?

abc 1 d d'

Again,

1 b^ + (? a' + bc

1 c2-fa2 b^ + ca

1 a' + b^ c' + ab

=^(l,c2+ a2, c2 + a6)

A{a\ b\ c') -\-A(a\ b\ c') +A{a, b, c') +A{a\ 6, c«)

- A {a\ 6, c^) = _ (a -h 6 + c) C* (a, b,c). '

Functional Determinants.

164. Consider the following n functions of the n independent

variables iCi, X21 ••• x^.

2/i=/i(a?i,a;2, "',x^)

(1)

These functions will be independent if for every set of values

of yi,y2,"'yn equations (1) determine one or more sets of

values of a^i, ajg, ••• a;„, so that these latter variables can in their

turn be considered as functions of the n independent variables

yi,y2,"'yn'
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Differentiating equations (1), we have

dy, = ^'dx, + pdx2 + .-. + ^dx^
hXi

hXi
dy2=^'dx,-\-^dx2 +

Sx^

SX2 Sx^

dy, ^^Adx^+^^dx2 + ••• +^d.x„
hxi Sxo 6x„

(2)

Regarding equations (2) as a system of equations for deter-

mining dxi, dx2, •" dXn, the determinant of this system

S?/i

S«2

S.Vi ••,2/.)

%2
8x,

%2

8& 8& %,
8a;, 8x, 8*„

is called the Jacobian of the given functions yi^ 2/2? * * • Vn'

Or, in other words, the Jacobian of a set of n functions, each

of n variables, is the determinant |A:i„l, in which the element

kpg is the first derivative of the pth function with respect to the

^th variable. Thus, given

yi = az^ -\-2 hzt + ci^, 2/2 = ^i^!^ + 2 hiZt + Cif.

The Jacobian

az + 6i hz -\- ct

a^z + &i^ h^z 4- Ci?

_4 1

4 1 = 4 ^2 _2« 22 .

"^, 2/1 hz -\-ct c a 6 c
^'

Vi h,z H- Ci« Ci a, «'1 Cj
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165. If the functions 2/1,2/2, •••
2/n ^^^ iiot independent, but

are connected by a relation

<^ (2/15 2/2, •••2/n) = 0,

the Jacobian vanishes.

From (3) we have, by differentiating,

(3)

%l ^Xl 82/2 ^^1

82/1 80^2 82/2 8a;2

82/n S«^i

H- ^ . ^" =
S2/« 80^2 (4)

§i .
?^i

_i_
^ . 5^2 ^ ...

_i_
^ . ^ =

82/1 8a;« 82/2 8aj, 8y^ Sx^

From their mode of formation, .equations (4) are simulta-

neous. Hence the determinant of the system vanishes by 77
;

^ = 0.

We shall show presentl}^ that if the Jacobian of a set of

functions vanishes, the functions are not independent.

166. The Jacobian of the implicit functions

Fi (a^i, X2,'" cc„, 2/1, 2/2, •••
2/n) = ^

F2 (a^i, X2, ••• a;„, 2/1, 2/2? • • • 2/n) =
(5)

Fn(Xi, »2, ••• X^, 2/1? 2/2J
••• 2/n) =

is found as follows.

Equations (5) yield

_SF\^§T\
.
S^i_^S5 8^2 ^ ... ^ 55- . %2

Sxj, 82/1 Bxj, 82/2 Sx^ Sy^ Bx^

(1, A;=l, 2,

(6)

n).
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Using equation (6), we find the product of

to be

8F, 8F, SF^ and %2
8x,

Byn
'"

8x,

8F2 SF,

%1 %2

8F,

8x,

5^2

6X2 8x2

BF^ 8F„

Byi %2

SF^ Syi

8x„

%2 Byn
'"

8x^

(-1)" SF, 8F,
...

8F,

8x^

•

SF^ 8F2

8x1 8x2
...

8F2

Si^n S^n BF^

8x^ .8x2

...

Sx^

Whence

j^ Hyi.y2,'-yn) ^. 8(j^i,j^„-..i^0 .
bjf^f^^-'F^)

8{xi, X2, ••• x^) 8{xi, X2, — x„) '

8(2/1, 2/2»
•••

2/n)

(7)

If in (7) we put n= 1, we get

8F\_8F\ dyi

8x1 8yi dxi

a well-known formula.

167. If in equations (5) we consider ajj, ajg? •" x^ as func-

tions of yi, 2/2>
•••

2/rn W6 obtain, as above,

r^y S{F„F2r"F,) ^ 8iF,,F2r"F,) ^ 8(x,,X2,'"X^) ,g.

8(2/1,2/2, •••yn) S(a;i,a;2, •••»„) 8(2^1,2^2,
••• 2/«)*
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From (7) and (8),

8(a;i, x^, ... x„) 8(2/1, 2/2,
... y^)

168. Again, having given the n -{-p functions,

2^1 (xi, x^, ... a;,,, 2/1, 2/2,
•••

2/n+p) =
F^ix^, %, ••• a?„, yi, 2/2, — 2/«+;,) =

Fn-^{xi, 02, — a;„, 2/1, ^2,
•••

2/n+i>) =

The Jacobian

J-^ 8(2/1, ^2, — Vn)

o(aJi, a;2, ••• x^)

of the first w of these functions is found as follows. Differen-

tiating equations (10), we find

(10)

8x, Sy, Sx,
"^

By, Sx,
"^ "^ Sy„+, So;,

(6)

(* = 1,2,... 7i+i>; A:=l,2, ...n)

Now multipl}' together

A = 8i^i 8i^i

82/1 82/2

8i^i

S2/n+p

X S2/1 %2
8a;i

•*'

S2/n

8a;i

8F2 8i<T,

%i 82/2

8F2 S2/1

8^2

^2/2

8a;2

S2/n

80^2

%! 8^2

SF^^P

^Vr^p

%1
8cc„

%2
8a^n

*'*
82/n

first writing J" as a determinant of order w -j-p? thus :
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8^1

8xi 8xi

BX2 SX2

8x, 8x^

1

Sxi

SX2

Calling the product P, we have

p^(-iy
8a;i

SaJi

8P„.

8Pi 8Fi

8a;„ 8y„+i

s-f;+. 8-F-n+,

Sa^i

8Pi

n+p

SP„

= (-!)%

8a;„ 82/„+i

S(Pi, ^21*** ^^i+p)

^Vn+p

6 (a?!, a;2» • • • ^n» 2/n+l» 2/n+2> • • • Vn+p)

since, by equation (6) for A;^n, the element Ui^ of P is ?

;

and for A; > n, 8^
gajfc

We have, accordingly.

-=£•

169. Suppose equations (5) yield upon solution

2/1 = </>i(a?i, 3^2, •••,a;„). (0
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Solve (c) for x^, and substitute this value of Xi in the

remaining ii — l equations ; then 2/2, 2/3,
••• y^ become functions

of ?/i, a?2, ••• ic„. Thus

2/2= <^2(2/i, 372, •••ajn). W
Solve (c?) for »2? substitute the result in the remaining n — 2

equations ; then 2/3, 2/4,
•••

2/n become functions of

2/l> ^29 ^39 *••? ^n*

Thus 2/3 = <^3(.yi, 2/2, ^3» •••, a^«).

Solve (e) for 0^3, substitute as before
;
and so on.

We obtain the equations

2/1
- c}>i(Xi,X2, •••«„) =0

y2 — 4>2{yuX2,'"X^) =0
3/3- <^3(2/l9 2/2, 3^3, •••«?„) =0

2/« - <^n(2/l? 2/2,
•••

2/n-l,
••• a„) =

By 166, j^B(y,, 2/2,
•• •^n)

= (-1)"
8{x,,x,,'..y^)

hXi 8X2

^01 ... Bcfji

8x, " 8x^ 1

-^2
Sx,

Oc/j2 002

6x,
'"

g^
802

%1
1

Hs .
S03

3aJ3 K
803

S2/1

803

82/2

1

... -% S0n

8^1

80n

%2

B<f>n

82/3

_ 8<^,
_ 802

.

8i»i 8x2

803

8x^

(e)

(11)
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That is to say, the Jacohian of a set of functions 2/1, 2/2?
•••

2/n»

each of n independent variables x^, 0^2, ••• a;„, is expressible as a

product of n differential coefficients of the functions <f>i, <^2> * • • S^n*

where </)^ is a function of ?/i, 3/0, •••
2/r-i» ^n ••• ^n-

170. The result just obtained may be employed to show that

if the Jacobian of a set of functions vanishes, the functions are

not independent.

For, if r=5ii.?& ... Hn.

hxi 8x2 8x^

vanishes, some one of the coefficients, say

where i has one of the values 1, 2, ••• n. But if -^ = 0, <^<

does not contain cc^, i.e.,
*

Vi = ^iiVi^ 2/2,
••• Vi-i, ^i+u ••• a^n).

Also ?/,+i = <^f+i (2/1, 2/2,
•••

2/i5 ^i+u •••«'«).

From these two equations,

2/i+i = «Ai+i (2/1^ 2/2?
•••

2/t? »<+2, a^i+s,
••• ^«)

;

therefore 2/i+i does not contain x^^-^. In the same way we may
show that 2/<+2 ^^^^s not contain a;^^.2, and so on. Hence,

finally,

2/«= «Ah (^1^2/2, •••2/«-i);

or y^ is expressible as a function of the remaining n — 1 func-

tions, and hence the given functions are not independent.

For example, if the given functions are

(1) u=x-\-y, (2) v=:x — z, (3) w = qi^ -\-xz — yz — z^,

1 1 2/ + ^

1 x-z
-1 x-y-2z
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J evidently vanishes. Accordingly, (1), (2), (3) are not

independent. That the given functions are not independent is

easily shown directly as follows. We readily obtain

y z=u — 'V — Z. .'. W = V {u — V),

as was to be shown.

171. If the functions y^, y^, ••• y^ are the n partial derivatives

ic„) , the JacobianV-' /"' •*• -r-'
of a function /(a?!, 0^2,

hXi bxo bx^

•ff(/) = sy
ixiSxi

sy ay

sxi

sy sy
Sx^Sxi 8x^8x2

ay

8xi8Xn

jy_
Sx28x^

sy
8x^'

is called the Hessian of (x^, x^, • • • x^ . The Hessian is a

symmetrical determinant, since

jy_ = J!/L.
SXiSxj, Sxj^BXi

If the derivatives -^, -— ••• r^^ are connected by an equa-
OXi 6X2 ox,^

tion, with constant coefficients

dXi 6X2 Sx^

the Hessian must vanish.

172. Let /i, /2, "• fn be n given functions of the same

variable x. Suppose the functions are connected by the linear

relation

tti/i + a-,fo + aj, + ... + a„/^ = 0, (1)
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in which ai, ag, •••a„ are not functions of x. Differentiating

(1) successively n — 1 times, we have

ai/l" +«2/2" +«3/3" +-«n/u" =0

Eliminating oti, ag, ••• «« from (1) and (2), we find

(2)

/i fi h
f\ fi fz

fit fti ftt
Jl J2 J&

/'n-1 -fn—l -fn—l

= -D (/!,/«/« •••/,) = ()•

(3)

The determinant of (3) has been called the Wronskian of

fii f2y
•" fn' We see from (3) that if the functions /i,/2, •••/»

are connected b}" a linear equation of the form (1), the Wron-

skian vanishes.

173. If we denote the given functions by 2/1? 2/2?
•••

2/n? and

the derivatives by 2/11, 2/21?
•*• {i'^'-> the second subscript denoting

the derivatives), we may write (3)

Vn

y2 Vn = D{yi,y2iy3, •••2/n)=o.

Vln-i 2/2 «-l
••• Vnn-l

Now y being any function of », we find

2/"-0(yi5 2/2,2/3, •••2/«)= yiy iyiy)i

» (2/22/) 1

y^ (yny)i

(yiy)n-i

(2/22/) n-l

(2/n2/)n-l

(4)

(5)
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in which the subscript k of {yiy)k means the kih derivative of

{yiy). That is to say, the Wronskian of 2/i2/? 2/22/v
•••

2/n2/ is

the product on the left in (5). This is made evident by notic-

ing that since

(2/i2/)i = ViiV + ViV^ {yiy\ = 2/<22/ + ^yav' + ViV",

etc., where y', y", •••, are the successive derivatives of ?/, the

determinant on the right becomes a sum of determinants, of

which the first is the product on the left, and all the rest

vanish.

174. We find

dD{y^,y2,-',yn) Vi yn — yin-2 2/ln

dx 2/2 2/21 ••• 2/2n-2 2/2n

Vn 2/«i — 2/»«-2 2/««

(-1)

for in the sum of determinants which make up the derivative

sought, all vanish except the one expressed in equation {A) .

175. If in 173 we put y = —, the Wronskian on the right in

(5) reduces to
2/1

.2/1/1 ri/2

'2/3'

V2/1A V2/1/2

'y2'

.2/1

\yJn-i

D yA fys'

.2/1/1

Now

'2/2

i/i~ y? ' Wi" yi
'
"*
\yJ~ y?
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Then if we put

D (?/i, 2/2) = 2:2, D (2/1, 2/3) ^z^, '" D (2/1, 2/„) = 2!n1

we get

^ (2/1, 2/2,
••• 2/n) =-;n^ fe, 23, ••• O- (6)

2/1

176. We shall employ the result just obtained to show that

if the Wronskian of 2/15 2/2^
•** 2/» vanishes, the functions are

connected by a linear equation having constant coefficients.

Suppose that 2/1 does not vanish, and since by hypothesis

D{yi^y2^ •••2/n) = 0,

by (6) of the last article we must also have

yr'

Therefore, by 172, the n — 1 functions Zg? 2:3, z^ are connected

by a linear relation, i.e.,

0.2Z2-^asZs-\ f-an^n=0. (7)

Dividing (7) by 2/1^, and restoring the values of Z2, z^, ••• 2;,„

Integrating (8), we find

«i2/i + «2y2 + «32/3 H h a„2/n = 0. (9)

Therefore assuming that if the Wronskian of n — 1 func-

tions vanishes, the functions are connected by a linear relation,

we have shown that when the Wronskian of n functions van-

ishes, the functions are connected by a linear relation. But

the assumption is obviously true for two functions, hence the

theorem is true universally.
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Linear Substitution.

177. If the n functions (one or more)

/g = O2I a^2 + <^22 ^2 H + a^n^n
(1)

are transformed into functions of 2/i»2/2?
'•• Vn ^J the following

linear substitutions,,*

«1 = ^l2/l + &12 2/2 + ••• + Kyn
^2 = &212/1+&222/2 H h &2u2/n

»n= &«iyi + &n22/2 + •'• + &„„?/«

(2)

the determinant I 6i„ I of the system (2) is called the modulus

of transformation. If the modulus is unity, the substitution

is unimodular. If a^j, iCg, • • • »« are independent, the modulus

cannot vanish.

178. If the functions (1) are transformed by means of (2)

into

/i = mn2/i + mi22/2H (-Wi„?/„ 1

/a = msi 2/1 + m22 2/2 H f- m,,, y.

(3)

frf= l^nlVl + Wln22/2 H h W„,.2/„

the determinant of the system (3)

,

Imn W22 ••• m„^l,

* The learner can understand the importance of linear substitution by
noticing that such a substitution is the process involved in transformation

of coordinates in Geometry.
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equals the product of the determinant of the given sjstem (1)

by the modulus of transformation. That is to say,

\m,^\ = I«,J X |6i«I.

This is proved as follows. The coeflficient of y,^,

Wl« = ttii 6u + «,2 ^2* H h Clin &«*»

is found by multiplying equations (2) by ciii? ^f2» ••• «m? respec-

tively, and adding by columns. Whence, by 53, we see that

will mi2 ••• min = «n ai2

77121 m22 '" rn^n «21 ^22

... ... ...

m,a w„2 ••• m„„ a. a«2

«2h

^1 hi ••' hn

621 622
••• hn

&„i b„o ... 6„„

179. If /(iCi, aJa, '" x^) is to be so transformed by the sub-

stitution

i»l = /8„ 2/1 + A2 ^2 + — + /?l„ Vn ]

i«2 = /?21 2/1 + /?22 2/2 H h Au 2/n

'

5„= ;8„i^i + ^„22/2 -I (- ;3„„2/„ J

(a)

that 2// + 2/1 + - + ^n' = ^1' + a:/ + - + a^,f,

the linear substitution is called orthogonal. The coefficients of

an orthogonal substitution must satisfy the following condi-

tions.

A. Since

yi'+yi-h'-'+Vn'

= (/3ii2/i+ft2 2/2 + -+A»2/«)'+(Ai2/i+&2/2 4- - +ftn2/n)^

+ +(/8«l2/l+)8„22/2+-+)8nn2/u)'

+ ••• + 22/12/2 (ftii8i2 + ft,&+ - +i8„i;8„2) 4- -,
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we must have

X fAf +Af +'" + ^J =1
lA^A* + AA*-f •••+A.-/5«. = (t, A:=l,2, ... n).

B. If we wish to return to the original function from the

transformed function, we must put

For from (a) we readily find

Aia^i + /32i^2H hAu^^n

= 2/i(AiAi + AiAi + - AiAO + 2/2(^2Ai+&/32i+ - +/5„2A,)

+ - + ^nCAnA. + AnAi + - + AnAO '

Now, by I., the coefficient of ?/j = 1, and the other coefficients

vanish.

C. The square of the determinant of the S3'stem (a)

(modulus of transformation) is unity.

For

Al A2 - A:

Ai fe - A,III. = IAJ^=IA«!.

Al A2 - An

\Din\ is a symmetrical determinant by 108 ; since, by I.,

A*=o, A=i,
the truth of III. is obvious.

D. Bi„ being the minor of ySf^ in
I y8i„ I , we find

^.* = AJA«1-

For multiplying the equations

AiA* + - +AiA* = o,

A*A* + -+A*A*=i,
... ... ...

...J

A»A* + -+AnA* = o,
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ill order by Ba, Bi,, -•' Bi^, and adding, we have

But all the coefficients, except the coefficient of ^i^, vanish

;

hence

IV. 5a=AJAnI-

E. By the preceding condition IV.,

(Ai^a + - + A-u/?*n) I AJ = Bal3,i 4- - + An/3*«.

The second member of this equation is IjSiJ, or 0, according

as i and k are equal or unequal.

Whence

1 Ali^H + A2^2 + • • • + An)S,. = 0.

i^. The following relation holds between the minors of the

modulus of the orthogonal substitution.

VI.

Pr+l r+1 Pr+l r+2

Pr+2 r+1 Pr+2 r+2

Pn r+1 Pn r+2

For, by 61,

lAnI X Al A2
Al ^822

A

Ai y8^ - Ar

J521 i522 ... B,,

B. Brr

= lAnl
r--l

A+l r+1 A+1 r+2

A+2 r+1 Pr+2 r+2

A r+1 A r+2 An
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Now, by ly.,

B.21 B.22 '" B^r

B^, Bo B,,

=
I An l^ X Ai fe

P21 P22

f^rl A2

21T

Whence, equating the second members of these two equa-

tions, the relation VI. follows.
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